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Bollettino U. M. I.
(8) 1-B (1998), 187-215

Some Remarks on Almost-Positivity of cdo 8 s.

CESARE PARENTI - ALBERTO PARMEGGIANI

Sunto. – Per una classe di operatori pseudodifferenziali a caratteristiche multiple vengo-
no date condizioni necessarie e sufficienti per la validità di stime dal basso
«ottimali».

1. – Introduction.

The problem of understanding almost-positivity (i.e. lower bounds) of diffe-
rential and, more generally, of pseudodifferential operators (cdo 8 s), has been
started long time ago by the pioneering work of Gårding [4], who established his
famous inequality for elliptic operators. Namely, let P4P * be a self-adjoint clas-
sical cdo of order m on some open set X%Rn . Then, the following two properties
are equivalent (1):

pm (x , j) D0, ((x , j) �T * X00 .(1)

For any mEm/2 and any compact K%X there exist cm , K , Cm , K D0 such
that

(Pu , u) Fcm , K VuV

2
m/2 2Cm , K VuVm

2 , (u�C0
Q (K) .(2)

The difficult problem is next to understand what happens when one relaxes the
ellipticity condition (1). Hörmander (see [7]) proved the equivalence of the
following:

pm (x , j) F0 , ((x , j) �T * X00 .(3)

For any compact K%X there exists CK D0 such that

(Pu , u) F2 CK VuV

2
(m21) /2 , (u�C0

Q (K)(4)

(the so-called Sharp Gårding Inequality).
Notice that the above inequalities depend only on the principal symbol of P . It

was Melin [9], who studied how almost-positivity is influenced by the lower order

(1) Unexplained notation used throughout are standard, and can be found in Hörman-
der’s books [8], Vol. I and III.
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terms of the total symbol of P . Precisely, he proved the equivalence of the
following:

For any eD0, for any mE (m21) /2 and any compact K%X there exists
Ce , m , K D0 such that

(Pu , u) F2 eVuV

2
(m21) /2 2Ce , m , K VuV

2
m , (u�C0

Q (K)(5)

(the so-called Melin inequality);

.
/
´

pm (x , j) F0, ((x , j) �T * X00 ,

pm (x , j) 40 ¨ pm21
s (x , j)1Tr1 (Fx , j ) F0 ,

(6)

where

pm21
s (x , j) 4pm21 (x , j)1

i

2
!
j41

n
¯2 pm

¯xj ¯j j

(x , j)

is the subprincipal symbol of P , and Tr1 (Fx , j ) is the positive trace of the funda-
mental matrix Fx , j defined by

Qx , j (v) 4 aQx , j v , vb 4s (v , Fx , j v) , v�T(x , j) T * X ,

Qx , j being the Hessian of pm /2 at (x , j) and with s4 !
j41

n

dj j Rdxj the canonical

symplectic form on T * X . In explicit form, Tr1 (Fx , j ) 4 !
mD0

m with im in the spec-
trum of Fx , j .

It is crucial to observe that in conditions (6) above, no assumption on the geo-
metry of the characteristic set

S»4 ](x , j) �T * X00 ; pm (x , j) 40(

is made.
In fact, supposing that:

(a) S is a smooth sub-manifold of T * X00,

(b) s has constant rank on the connected components of S (i.e. S�r O
dim (Tr SOTr Ss ) is locally constant, Tr Ss being the symplectic orthogonal of
Tr S),

(c) pm (x , j) vanishes exactly to second order on S ,

Hörmander [7] proved the following result: (6) above is equivalent to

For any compact K%X there exists CK D0 such that

(Pu , u) F2 CK VuV

2
m/221 , (u�C0

Q (K) .(7)

We recall that inequalities (5) and (7) play a central role in a number of pro-
blems, such as the well-posedness of the Cauchy problem for weakly hyperbolic
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operators (see Hörmander [7]), the Weyl-asymptotics for degenerate elliptic ope-
rators on compact manifolds (see Menikoff-Sjöstrand [10], Mohamed [11]), just to
mention a few of them.

From a somewhat different viewpoint, Fefferman and Phong [3] proved the
following sharp result:

If m42 and the total symbol p(x , j) of P is non-negative on T * X , then for
any compact K%X there exists CK D0 such that

Re (Pu , u) F2CK VuV0
2 , (u�C0

Q (K) .

Our point of view here will be focussed upon invariant conditions. More precise-
ly, we are concerned with finding a suitable generalization of inequality (7) above,
when the principal symbol vanishes to order higher than second on S . To this
purpose, the main point will consist in finding the correct generalization of condi-
tions (6) above.

Some «experiments» in this direction can be found in [12], [13], [14], where
examples with pm vanishing to fourth order are treated. Soon after, we found the
«kind-of-forgotten» Mohamed’s paper [11], where, among other results, he pro-
ves a generalization of Melin’s inequality (5) (see below for more details).

In this paper we shall deal with the geometric machinery required by the sta-
tement of our generalization of (7) (see Theorems 4.1 and 4.10 below). The geome-
tric setting will be developed by largely using the methods introduced by Boutet,
Grigis and Helffer in [2]. The proof of Theorems 4.1 and 4.10, which uses Moha-
med’s results, will appear elsewhere.

2. – Operators with multiple characteristics and related invariants.

Let X be an open subset of Rn (or, more generally, a C Q n-dimensional mani-
fold without boundary) and let S%T * X00 be a C Q conic submanifold. With
m�R and k�Z14 ]0, 1 , 2 , R(, we denote by N m , k (X , S) (see [16], [2]) the set
of all classical symbols of order m , p(x , j) A !

jF0
pm2 j (x , j), such that for any jF

0 one has

Npm2 j (x , j)N�NjNm2 j distS (x , j)(k22 j)1 ,(8)

where t1 »4 max ]t , 0(, distS (x , j) denotes the distance of (x , j/NjN) to S , and
the relation f � g means that for any conic set G%T * X00 with compact base, there
exists a constant CGD0 for which

f (x , j) GCG g(x , j), ((x , j) �G .

By OPNm , k (X , S) we denote the corresponding class of (properly-supported)
cdo 8 s.
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We will say that p (or the corresponding operator P4Op (p) ) is transversally
elliptic (with respect to S) iff the principal symbol pm vanishes exactly to kth-or-
der on S, i.e.

Npm (x , j)N�NjNm distS (x , j)k .(9)

It is useful to recall the following algebra properties:

(10)
.
/
´

A� OPNm , k (X , S), B� OPNm 8 , k 8 (X , S) ¨ AB� OPNm1m 8 , k1k 8 (X , S) ,

A� OPNm , k (X , S) ¨ A *� OPNm , k (X , S) ,

A� OPNm , k (X , S) ¨ A� OPNm1 l , k12 l (X , S) , (l�Z1 .

Moreover, transversal ellipticity is obviously preserved by composition and by
taking adjoints.

We will also need the invariance of the above classes under canonical change
of variables (see [1] for a proof of this nontrivial fact).

Let X , Y%Rn be open sets and let

x : T * X00 KT * Y00

be a smooth homogeneous (of degree one in the fibers) canonical transformation.
Let L x% (T * Y00)3 (T * X00) (resp. L x21 % (T * X00)3 (T * Y00)) be the canoni-
cal relation associated with x (resp. x21 ) and finally denote by

F�I 0 (Y3X , L x ) (resp. F 21 �I 0 (X3Y , L x21 ) )

an elliptic Fourier integral operator of order 0, associated with L x (resp. L x21 )
(see [6]), with FF 21

fI , F 21 FfI . Then

P� OPNm , k (X , S) ¨ PA»4FPF 21 � OPNm , k (Y , x(S) ) .(11)

It turns out that there are invariants naturally attached to operators in the class
considered above. Their definition relies on a crucial result of Helffer [5]. First of
all, we need to recall what the Weyl-symbol of a classical cdo is. Let
p(x , j) A !

jF0
pm2 j (x , j) be a classical symbol. Then we define the Weyl-symbol

pw as

pw (x , j) 4e aDx , Dj b /2 i p(x , j) A !
jF0
u !

l1r4 j

1

r!
u 1

2 i
aDx , Dj bvr

pm2 l (x , j)v .(12)

Notice that pw �N m , k (X , S) iff p does.
The aforementioned result may then be stated as follows.
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THEOREM 2.1. – Let p�N m , k (X , S) and let x : T * X00 KT * Y00 be as above.
Put

Op (pA) 4F Op (p) F 21 � OPNm , k (Y , x(S) ) .

Then

pAw ix2pw �Nm , k11 (X , S) .(13)

We are now in a position to define the main invariant attached to an operator
Op (p) � OPNm , k (X , S). Write

pw (x , j) A !
jF0

qm2 j (x , j) .

For any r�S , and any v�Tr T * X , let V be a smooth section of TT * X , defined in
a neighborhood of r , with V(r) 4v . Define

pr
(k) (v) 4 !

0 G jGk/2

1

(k22 j) !
(V k22 j qm2 j )(r) .(14)

It is easy to see that the above definition is independent of the extension V of v ,
and that the map

.
/
´

p (k) : TT * XNSKC ,

(r , v) O p (k) (r , v) »4pr
(k) (v) ,

(15)

is smooth.
The next proposition lists a number of important properties of p (k) .

PROPOSITION 2.2.

1) The map p (k) is a polynomial map of degree Gk in the fibers of
TT * XNS .

2) Denote by L r (k) %Tr T * X the lineality of the polynomial p (k)
r (Q).

Then

Tr S%L r (k) , (r�S .

Equality holds for every r�S iff p is transversally elliptic.

3) If x : T * X00 KT * Y00 is a symplectomorphism as above, and Op (pA) 4

F Op (p) F 21 , then

pAx(r)
(k) (dx(r) v)4pr

(k) (v) , (r�S , (v�Tr T * X .(16)

The proof uses Theorem 2.1 and it is straightforward.
Having defined the polynomials pr

(k) (Q), r�S , we «quantize» them as follows.



CESARE PARENTI - ALBERTO PARMEGGIANI192

For any fixed r�S , let

z : T * Rn CRn
y 3 (Rn )8hKTr T * X

be a linear symplectomorphism. Pulling back gives

pr
(k) (z(y , h) )4»pz (y , h) ,(17)

and we can define

Opw (pz )(y , Dy ): S(Rn ) K S(Rn )

as

(18) Op w (pz ) f (x)4(2p)2nsse iax2y, hb pzu x1y

2
, hv f (y) dy dh , f� S(Rn ) .

The crucial observation is now that if z 8 : T * Rn KTr T * X is another linear sym-
plectic map, then

pz 84pz i(z21
iz 8) ,(19)

whence, as it is well-known (see [8], Vol. III, Thm. 18.5.9), there exists a unitary
operator U : L 2 (Rn ) KL 2 (Rn ) (uniquely determined up to a complex constant
factor of modulus 1), which is also an automorphism of S(Rn ) and S8 (Rn ), such
that

Opw (pz 8 ) 4U 21 Opw (pz ) U .(20)

As a consequence, with every P4Op (p) � OPNm , k (X , S), we can associate, for
any fixed r�S , a family Pr of differential operators of order Gk acting in S(Rn )
(and S8 (Rn ) ) as

Pr , z (y , Dy ) 4Opw (pz )(y , Dy ) ,(21)

where z : T * Rn KTr T * X is any linear symplectic map. By (20), Pr , z are all
unitarily equivalent (and therefore their «spectral properties» are independent
of z . This point will be made clear later on).

We group together in the next proposition some useful properties of the fami-
ly Pr , r�S .

PROPOSITION 2.3.

1) Let P� OPNm , k (X , S) and PA4FPF 21 � OPNm , k (Y , x(S) ) be obtained
as above through a homogeneous canonical transformation x : T * X00 K

T * Y00. Then

PAx(r), dx(r) iz4Pr , z(22)

for any r�S and any linear symplectic map z : T * Rn KTr T * X .
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2) If P� OPNm , k (X , S), then

(Pr , z )*4 (P *)r , z(23)

for any r�S and z as above.

3) If P� OPNm , k (X , S), Q� OPNm 8 , k 8 (X , S), then

(PQ)r , z4Pr , z Qr , z(24)

for any r�S and z as above.

4) Suppose P4Op (p) � OPNm , k (X , S), X%Rn , with
p(x , j) A !

jF0
pm2 j (x , j),

and, for a fixed r�S , let z be the canonical indentification of Rn
x 3 (Rn )8j with

Tr T * X . Then

Pr , z (x , Dx ) 4 !
NaN1NbN12 j4k

1

a!b!
(¯x

a ¯ j
b pm2 j )( r) x a Dx

b .(25)

PROOF.

1) (22) is a trivial consequence of (16).

2) To prove (23), we recall that if P4Op (p) then P *4Op (p *),
p *A !

aF0
¯ j

a Dx
a p /a! , and hence (see [8])

(p *)w 4 pw .

Thus

p *(k)
r (v) 4 pr

(k) (v), (r�S , (v�Tr T * X .

As a consequence,

(Opw (p (k)
r iz) )*4Opw (p *r (k)

iz) ,

for any r , z , which is (23).

3) We recall (see [8]) that if P4Op (p), Q4Op (q), PQ4Op (r), then

rw (x , j) 4e is(Dx , Dj ; Dy , Dh ) /2 (pw (x , j) qw (y , h) )Nx4y
j4h

4»(pw J qw )(x , j) ,

with s(Dx , Dj ; Dy , Dh ) 4 aDy , Dj b2 aDx , Dh b. Thus

rr
(k1k 8 )

iz4 (pr
(k)

iz) J (qr
(k 8 )

iz) ,

and (24) follows by Weyl-quantization.

4) (25) is an immediate consequence of the following identity:

(pr
(k)

iz)(x , j) 4e aDx , Dj b /2 iu !
NaN1NbN12 j4k

1

a!b!
(¯x

a ¯ j
b pm2 j )(r) x a jbv . r
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Using (25), we can explicitly compute Pr . Some meaningful examples are
given below.

Case k41.

Pr (x , Dx ) 4!
j41

n u ¯pm

¯xj

(r) xj 1
¯pm

¯j j

(r) Dxjv .

Case k42.

pr
(2) (x , j) 4

1

2 »Hess pm (r)yx

j
z ,yx

j
z«1pm21

s (r) ,

where pm21
s 4pm21 1 ia¯x , ¯j bpm /2 . Equivalently,

pr
(2) (x , j) 4suyx

j
z, F(r)yx

j
zv1pm21

s (r) ,

where

F(r) 4
1

2
J Hess pm (r) , J4y 0

2In

In

0
z ,

is the fundamental matrix of pm /2 at r .
Observe that transverse ellipticity means

Ker F(r) 4Ker Hess pm (r) 4Tr S , (r�S .

A SOURCE OF EXAMPLES. – Let Pj � OPNm , k (X , S), j41, 2 , R , N , NF1. For
a4 (a 1 , R , a N ) �Z1

N , define

P a4P1
a 1 P2

a 2
RPN

a N

(then P a� OPNmNaN , kNaN (X , S) ) . For a as above, with NaNGm , m�N , let Aa be a
classical cdo of order 0, with principal symbol aa . Define

R4 !
NaNGm

Aa P a� OPNmm , km (X , S) .

By Proposition 2.3,

Rr4 !
NaNGm

aa (r) Pr
a , r�S ,

where Pr
a4P1, r

a 1 P2, r
a 2

R PN , r
a N . In case all the Pj’s are transversally elliptic, a suffi-

cient condition in order for R to be transversally elliptic may be given as
follows.

For gF0 define

L g4 ]z�C ; Re zF0, NIm zNGg Re z( .
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Suppose that for some gF0, we have

pm , j (x , j) �L g , j41, R , N , ((x , j) �T * X00 .(26)

Moreover, suppose that for any conic set with compact base G%T * X00, there
exists CGD0 and b�Z1

N , with NbN4m , for which

N !
NaN4m

aa (x , j) ta NFCG »
j41

N

Nt j N
b j ,(27)

for every (x , j) �G and for every t4 (t 1 , R , t N ), t j �L g , j41, 2 , R , N . We
leave it to the reader to check that conditions (26), (27) and the transversal ellip-
ticity of the Pj’s indeed imply the transversal ellipticity of R . We note in passing
that the cases studied in [12], [13], [14] fall in this latter setup.

3. – Setting of the problem and necessary conditions.

The natural generalization of inequality (7) of the Introduction to the present
framework may be stated as follows.

Suppose P4P *� OPNm , k (X , S). When is it true that

For any compact K%X there exists CK D0 such that

(Pu , u) F2 CK VuV

2
m/22 (k12) /4 , (u�C0

Q (K)?(28)

The reason why the Sobolev exponent m/22 (k12) /4 is chosen in (28), is that we
look for a lower bound which depends only on the first k/2 terms of the total sym-
bol of P , precisely the terms which, due to conditions (8), vanish on S . Notice that
when k42, (28) reduces to (7) (see also [12], [13], [14], when k44).

One could also ask for a generalization of Melin’s inequality (5) of the Intro-
duction. Namely, supposing P4P *� OPNm , k (X , S), when is it true that

For any eD0, any mEm/22k/4 and any compact K%X there exists
Ce , m , K D0 such that

(Pu , u) F2 eVuVm/22k/4
2 2Ce , m , K VuVm

2 , (u�C0
Q (K)?(29)

Obviously inequality (29) is a consequence of (28), the converse being in gene-
ral false.

The following proof of a necessary condition for (29) to hold relies on comple-
tely standard arguments that we recall for the sake of completeness.

THEOREM 3.1. – Let P4P *� OPNm , k (X , S) satisfy inequality (29). Denote
by Pr (x , Dx ), x�Rn , r�S , the operator attached as above to P . Then

(Pr f , f ) F0 , (f� S(Rn ) .(30)
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PROOF. – Take r4 (x 0 , j 0 ) �S , Nj 0 N41, and fix any compact neighborhood
K of x 0 . Let K 8%X be a compact such that supp (Pu) %K 8 if u�C0

Q (K). Take
x�C0

Q (X) with xf1 near KNK 8 , so that Pu4xP(xu) 4Op (p) u , for u�C0
Q (K)

and p�N m , k (X , S), with p coinciding with the total symbol of P over K . Let now
v�C0

Q (Rn ) and tF1. Put

ut (x) 4e it 2 ax , j0 b v(t(x2x 0 ) ) .(31)

For t large, ut �C0
Q (K) and one computes

.
/
´

u×t (j) 4 t 2n e iax 0 , t 2 j02jb v×(j/t2 tj 0 ) ,

VuVs
2 4 t 4s2n (VvV0

2 1o(1) ) as tK1Q ,
(32)

for any s�R .
On the other hand,

Put (x) 4e it 2 ax , j0 b f t (t(x2x 0 ) )

with

f t (x) 4 (2p)2nse iax , hb p(x 0 1x/t , th1 t 2 j 0 ) v×(h) dh .

Taylor expanding then yields

p(x 0 1x/t , th1 t 2 j 0 ) 4

4 t 4(m/22k/4 ) !
NaN1NbN12 j4k

1

a!b!
(¯x

a ¯j
b pm2 j )(r) x a hb1O(t 4(m/22 (k11) /4) ) .

Hence,

(Put , ut ) 4 t 4(m/22k/4 )2n (Pr (y , Dy ) v , v)1O(t 4(m/22 (k11) /4)2n ) F

F2 et 4(m/22k/4 )2n (VvV0
2 1o(1) )2Ce , m , K t 4m2n (VvV0

2 1o(1) ) ,

as tK1Q . Dividing by t 4(m/22k/4 )2n , and letting tK1Q , eK01, gives

(Pr v , v) F0, (v�C0
Q (Rn ) . r

Some remarks are in order.

1) It follows from the proof that (29) implies

pm (x , j) F0 on T * X00.

Thus, k is an even integer (as we shall suppose from now on).

2) It is also clear that the above proof is purely pointwise-microlocal. One
could define Pr (x , Dx ) directly by (25) and get the same consequence (30).
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To prove sufficiency, it seems that one is forced to require the invariant
setting developed earlier.

In [11], Mohamed proves the following sharp lower bound.

THEOREM 3.2. – Let P4P *� OPNm , k (X , S), and suppose:

1) P is transversally elliptic.

2) For any r�S , (Pr f , f ) F0, (f� S(Rn ).

3) For any r�S , Pr : S(Rn ) K S(Rn ) is injective.

4) mDk/2 .
Then, for any compact K%X there exists CK D0 such that

(Pu , u) F2 CK VuV0
2 , (u�C0

Q (K) .(33)

It is now an easy matter to obtain Melin inequality (29) from Mohamed’s re-
sult. Precisely, we have the

THEOREM 3.3. – Let P4P *� OPNm , k (X , S), and suppose:

1) P is transversally elliptic.

2) For any r�S , (Pr f , f ) F0, (f� S(Rn ).

Then inequality (29) holds.

PROOF. – We can suppose mDk/2 , for otherwise we write

(Pu , u) 4 (L2s PL2s Ls u , Ls u) ,

with sEm/22k/4 , and observe that

L2s PL2s� OPNm22s , k (X , S) ,

it is transversally elliptic, and for any r4 (x , j) �S ,

(L2s PL2s )r4NjN22s Pr .

To prove (29), define

Pe4P1eL m2k/2 , eD0 .

It is immediate to check that conditions (1) to (4) in Theorem 3.3 are satisfied by
Pe . Hence, from (33), we obtain that for any eD0, any compact K%X , there exists
Ce , K D0, such that

(Pe u , u) 4 (Pu , u)1e(L m2k/2 u , u) F2 Ce , K VuV0
2 , (u�C0

Q (K) ,

which yields (29) with m40. r

We stress upon the fact that in the double-characteristic case (i.e. k42),
Theorem 3.3 does not recover Melin’s result in its full strength, for in the latter S
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need not be smooth and, most importantly, P is not required to be transversally
elliptic. We do not know to what extent condition (1) in Theorem 3.3 can be
relaxed.

We now turn to Hörmander’s counterpart, that is inequality (28).
As a matter of fact, it is impossible to get (28) from (29) by perturbation

arguments.
Our approach will be the content of the next section.

4. – Geometrical assumptions and precised invariants.

From now on we suppose that S%T * X00 satisfies the following assumption
(H) (assumptions (H1) to (H3) below):

(H1) S has fixed codimension.
(H2) The symplectic form s has constant rank on S , i.e. dim (Tr SO

Tr Ss ) 4constant, for any r�S .
(H3) The canonical 1-form !

j41

n

j j dxj does not vanish identically on Tr S ,
r�S .

When S is involutive, i.e. Tr Ss%Tr S , for any r�S , we have the following
result.

THEOREM 4.1. – Let P4P *� OPNm , k (X , S), and suppose:

1) P is transversally elliptic.
2) For any r�S , (Pr f , f ) F0, (f� S(Rn ).
3) S satisfies (H) and is involutive.

Then inequality (28) holds.

We now turn to the more difficult case in which S is non-involutive, that is
when

Tr Ss’OTr S , (r�S .

By virtue of condition (H2), we have only two possibilities:
either

Tr SOTr Ss4 (0) , (r�S .

(the symplectic case), or

.
/
´

Tr Ss /(Tr SOTr Ss ) c (0) ,

Tr SOTr Ss
c (0) ,

(r�S ,

(the non-involutive and non-symplectic case).
We will only deal with the second case, leaving to the reader the required ad-

justments needed when S is symplectic.
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Let 2n4dim (Tr Ss /(Tr SOTr Ss ) ) , and l4dim (Tr SOTr Ss ).
It is important to notice that the integers n and l above are independent of r�

S , by virtue of condition (H). In fact,

.
/
´

2n1 l4codim S ,

2 (n2 (n1 l) )4rk sNS .
(34)

In the sequel a special role will be played by a particular class of local sym-
plectic coordinates near S , whose existence is guaranteed by Thm. 21.2.4 of [8],
Vol. III.

Precisely: Given any r 0 �S , there exist

(i) a conic neighborhood G%T * X00 of r 0 ,

(ii) an open conic set G
A

%T * Rn3T * Rl 3 (T * Rn2 (n1 l) 00),

(iii) a smooth symplectomorphism (homogeneous of degree 1 in the fibers)
x : GK G

A, for which

x(GOS) 4 ](y , h) 4 (y 8 , h 8 , y 9 , h 9 , yR , hR) � G
A; y 84h 840, h 940( .(35)

Such a map will be called a canonical flattening of S (near r 0 ).
Remark that in condition (iii) above, «symplectic» means x*(sA) 4s ,

where

sA 4 !
j41

n

dh 8j Rdy 8j 1 !
j41

l

dh 9j Rdy 9j 1 !
j41

n2 (n1 l)

dhRj RdyRj .

Denote by NS4TT * X/TS the normal bundle to S ( dim Nr S42n1 l , r�S).
Any canonical flattening x : GK G

A of S induces a local trivialization of the vector-
bundle NS .
Precisely, if we identify, by means of (35), x(GOS) with an open conic set of Rl 3

(T * Rn2 (n1 l) 00), we can define the map

.
`
`
/
`
`
´

z x : x(GOS)3R2n1 l KNSNGOS ,

z x (x(r); (z 8 , z 8 , z 9 ) )4ur ,ydx21 (x(r) )yz 8

z 8

0

z 9

0

0

zzv ,
(36)

r�GOS , (z 8 , z 8 ) �R2n , z 9�Rl , where [v] denotes the residue class in Nr S of
v�Tr T * X .

The following lemma shows the nature of the structure-group associated with
the trivializations z x .
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LEMMA 4.2. – Let x : GK G
A, x 8 : G 8K G

A
8 be two canonical flattenings of S with

GOG 8OSc¯ . Then the map

z x 8
21

iz x : x(GOG 8OS)3R2n1 l Kx 8 (GOG 8OS)3R2n1 l

takes the form

(z x 8
21

iz x )ux(r);yyz 8

z 8
z

z 9

zv4ux 8 (r);ya(r)

0

b(r)

g(r)
zyyz 8

z 8
z

z 9

zv ,(37)

where

.
/
´

a�C Q (GOG 8OS , Sp (2n , R) ) ,

g�C Q (GOG 8OS , GL (l , R) ) ,

b�C Q (GOG 8OS , Mat (2n3 l , R) ) .

(38)

The proof relies on standard symplectic linear algebra (see [8], Vol. III, paragra-
ph 21.2) and will be given in Appendix 1.

From now on, we will consider NS as a vector-bundle over S with respect
to the structure given by (36), (37).

Notice that to any canonical flattening x : GK G
A of S , there corresponds, for

every r�GOS , a symplectic basis of Tr T * X , given by the linear symplectic
map

.
`
`
/
`
`
´

u r : T * Rn CT * Rn3T * Rl 3T * Rn2 (n1 l) KTr T * X ,

u r (z 8 , z 8 , z 9 , z 9 , zR , zR) 4dx21 (x(r) )yz 8

z 8

z 9

z 9

zR

zR

z .
(39)

Supposing that P� OPNm , k (X , S) (S as above), we can write down the opera-
tor Pr , u r

, r�GOS (see (21)). Precisely, consider the polynomial map p (k) defined
in (15). It induces naturally, by virtue of Proposition 2.2, a smooth mapping, still
denoted by p (k) ,

p (k) : NSKC ,
which is a polynomial of degree Gk in the fibers.

Now consider

(p (k)
iz x ) (x(r); z 8 , z 8 , z 9 ) ,(40)
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as a polynomial in ((z 8 , z 8 ), z 9 )�R2n3Rl , and observe that it is elliptic
if P is transversally elliptic.

We claim that for every r�GOS ,

(41) Pr , u r
(z 8 , Dz 8 , z 9 , Dz 9 , zR , DzR ) 4Opw (p (k)

iz x ) (x(r); z 8 , Dz 8 , Dz 9 )7IdzR .

The proof is obvious.

From (41) it follows that Pr , u r
may be thought of as an unbounded operator in

L 2 (Rn1 l ). The problem with this is that even if P is transversally elliptic, Pr , u r

does not have discrete spectrum in L 2 (Rn1 l ). However, if we Weyl-quantize the
polynomial (40) with respect to the variables (z 8 , z 8 ) only, thus thinking of z 9 as a
parameter together with r , the resulting «k-th order oscillator» has in fact di-
screte spectrum in L 2 (Rn ), when P is transversally elliptic. The related «eigen-
values» are henceforth functions of the parameters r , z 9 . Since our generaliza-
tion of Hörmander’s inequality is completely based upon spectral properties of
Pr , the crux of the matter consists of giving them invariance.

We now make a digression to develop some abstract setting required to achie-
ve the aforementioned invariance.

DEFINITION 4.3. – Let E , F be smooth manifolds, and let

r : EKF
be a surjective submersion. We say that the triple (E , F , r) is a smooth symplec-
tic fibration of rank 2n (nF1) if: For some atlas ](h , Vh )( of F , with Vh%RN ,
N4dim F , h : VhKh(Vh ) %F smooth diffeomorphisms, there exist smooth
diffeomorphisms

c h : Vh3R2nKr 21 (h(Vh ) )

with

ruc hux ,yz 8

z 8
zvv4h(x), (x�Vh , (yz 8

z 8
z�R2n ,

such that

.
/
´

c h 8
21

ic h : (VhOVh 8 )3R2nK (VhOVh 8 )3R2n ,

(c h 8
21

ic h )ux ,yz 8

z 8
zv4uh 821 (h(x) ) , ah 8 h (x)yz 8

z 8
z1bh 8 h (x)v ,

(42)

where

.
/
´

ah 8 h�C Q (VhOVh 8 , Sp (2n , R) ) , ahh (x) fI2n , (x�Vh ,

bh 8 h�C Q (VhOVh 8 , R2n ), bhh (x) f0, (x�Vh ,
(43)
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and with the following cocycle conditions satisfied:

.
/
´

ah 9 h (x) 4ah 9 h 8 (x) ah 8 h (x) ,

bh 9 h (x) 4ah 9 h 8 (x) bh 8 h (x)1bh 9 h 8 (x),
(x�VhOVh 8OVh 9 .(44)

DEFINITION 4.4. – Suppose (E , F , r) is a symplectic fibration of rank 2n , and
let q : EKC be a smooth function. We say that q�Sk

reg (E), k�R , if for any tri-
vialization c h : Vh3R2nKr 21 (h(Vh ) ) as above, we have

(q ic h )ux ,yz 8

z 8
zv4»qh (x ; z 8 , z 8 ) �C Q (Vh , Sk

reg (R2n ) ) .(45)

Recall that Sk (Rn ) denotes the space of all smooth functions f such that for every
a�Z1

n :

sup
y�Rn

(11NyN)NaN2k N¯y
a f (y)NE1Q .

By Sk
reg (Rn ) we denote the elements f�Sk (Rn ) which admit an asymptotic expan-

sion f (y) A !
jF0

fk2 j (y), where fk2 j is (positively) homogeneous of degree k2 j ,
jF0.

DEFINITION 4.5. – We say that q�Sk
reg (E) is elliptic iff for any c h as

above

qh (x ; z 8 , z 8 ) A !
jF0

qk2 j , h (x ; z 8 , z 8 ) ,

with

qk , h (x ; z 8 , z 8 ) c0 , ((x ; z 8 , z 8 ) �Vh3 (R2n 0]0() .(46)

REMARK 4.6. – Definitions 4.4-4.5 do not depend on the particular ]c h( cho-
sen, as it will be shown in Appendix 2.

It makes now sense to Weyl-quantize each qh (x ; Q) by setting

Opw (qh )(x ; z 8 , Dz 8 ): S(Rn ) K S(Rn ), x�Vh .(47)

By (42) and [8], Vol. III, Thm. 18.5.9, we have the following relation between
Opw (qh ) and Opw (qh 8 ) on VhOVh 8 :

Opw (qh 8 ) ((h 821
ih)(x); Q)4U(x)21 Op w (qh )(x ; Q) U(x), (x�VhOVh 8 ,(48)

where x O U(x) is a smooth family of unitary operators in L 2 (Rn ), which are also
automorphisms of S(Rn ) and S8 (Rn ).



SOME REMARKS ON ALMOST-POSITIVITY OF cdo 8 s 203

Suppose now that q�Sk
reg (E) has the following properties:

q is elliptic and kD0 ,(49)

for every h as above

.
/
´

(Opw (qh )(x ; Q) f , c)4 (f , Opw (qh )(x ; Q) c) ,

(Opw (qh )(x ; Q) f , f)F0 ,
(x�Vh , (f , c� S(Rn ) .(50)

Then it is well-known (see, e.g., [15]) that every such Opw (qh )(x ; Q) admits a
unique self-adjoint realization as an unbounded operator in L 2 (Rn ), whose
spectrum

Spec Opw (qh )(x ; Q) % [0 , 1Q)

is discrete, made of eigenvalues (with finite multiplicity) tending to 1Q .
As a consequence, we can define

l h (x) 4 min (Spec Opw (qh )(x ; Q) ) , x�Vh .(51)

Observe that l h : VhK [0 , 1Q) is a-priori only a continuous function. Further-
more, by (48) we have

l h 8 (h 821 (h(x) ))4l h (x) , (x�VhOVh 8 .(52)

(52) yields the existence of a well-defined continuous function

l : FK [0 , 1Q) (l(h(x) )4l h (x), x�Vh ) ,(53)

which will be called the ground energy of q .

DEFINITION 4.7. – We say that q�Sk
reg (E), satisfying (49), (50), is tame-dege-

nerate iff

l(h(x 0 ) )40 ¨ dim Ker (Opw (qh )(x ; Q)2l(h(x) ))4constant ,(54)

for any x in a suitable neighborhood of x 0 contained in Vh .

It is important to observe that (54) is a condition on the ground energy of q
and it yields (see Appendix 3) that l is actually smooth in a neighborhood of its
zero-set.

We now show how, in case S is non-involutive and non-symplectic, the family
Pr of Section 2 fits in the abstract setting just developed.

We put E4NS and F4 (TSOTSs )8 , the dual bundle of the vector-bundle on
S (of rank l) TSOTSs . As regards the map r : EKF , we define it by

r(r , [v] ) 4 (r , s r (v , Q) ) , r�S , v�Tr T * X .(55)

It is straightforward to check that r is a surjective morphism between the vec-
tor-bundles E and F (whose kernel can be canonically identified with the vector-
bundle TSs /(TSOTSs ). We next define the atlas ](h , Vh )( of F .
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Any canonical flattening x : GK G
A of S induces a trivialization of F by the

map

.
`
`
/
`
`
´

h x : x(GOS)3Rl KFNGOS ,

h x (x(r), z 9 )4rur ,ydx21 (x(r) )y 0

0

0

z 9

0

0

zzv .
(56)

Hence, we choose

h4h x and Vh4x(GOS)3Rl ,

with x ranging in the set of the canonical flattenings of S . The corresponding c h

are defined as follows:

.
/
´

c h : (x(GOS)3Rl )3R2nKr 21 (h x (x(GOS)3Rl )) ,

c hu(x(r), z 9 ) ,yz 8

z 8
zv »4z x (x(r); z 8 , z 8 , z 9 ) ,

(57)

where z x is defined in (36).
From (37) we get

(c h 8
21

ic h )u(x(r), z 9 ) ,yz 8

z 8
zv4u(x 8 (r), g(r) z 9 ) , a(r)yz 8

z 8
z1b(r) z 9v ,(58)

whence, upon calling x4 (x(r), z 9 ),

.
/
´

(x 8 (r), g(r) z 9 )4h x 8
21 (h x (x) ) ,

ah 8 h (x) 4a(r) , bh 8 h (x) 4b(r) z 9 .
(59)

We leave it to the reader to check that conditions (43), (44) are satisfied.
Suppose now that P� OPNm , k (X , S), S as above, satisfies the following

conditions:

.
/
´

1) P4P *.

2) P is transversally elliptic .

3 ) For any r�S , (Pr f , f ) F0, (f� S(Rn ) .

(60)
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The preceding discussion allows us to define the ground energy of P as
follows.

We take as q in Definition 4.4 the polynomial map p (k) : NSKR , and check
that p (k) �Sk

reg (E) satisfies (49) and (50). Observe that

ph
(k)u(x(r), z 9 ) ;yz 8

z 8
zv4 (p (k)

ic h )u(x(r), z 9 ) ;yz 8

z 8
zv4

4 (p (k)
iz x ) (x(r); z 8 , z 8 , z 9 )4 !

NaN1NbN1NgNGk
cabg (r) z 8a z 8b z 9g ,

for some smooth coefficients cabg (r), r�GOS .
It is then obvious that p (k)

h �C Q (x(GOS)3Rl , Sk
reg (R2n ) ) , with principal

symbol

p (k)
h u(x(r), z 940) ,yz 8

z 8
zv ,

which does not vanish when (z 8 , z 8 ) �R2n 0]0(, because of the transversal ellip-
ticity of P .

From (41) we get the fundamental relation

(61) Pr , u r
(z 8 , Dz 8 , z 9 , Dz 9 , zR , DzR ) f(z 8 , z 9 , zR) 4

(Opw (p (k)
iz x ) (x(r); z 8 , Dz 8 , Dz 9 )7IdzR ) f(z 8 , z 9 , zR) 4

(2p)2lse iaz 9 , z 9 b Opw (ph
(k) ) ((x(r), z 9 ) ; z 8 , Dz 8 ) f×(z 8 , z 9 , zR) dz 9 ,

for every f� S(Rn1 l1 (n2n2 l) ), where

f×(z 8 , z 9 , zR) 4se 2iaz 9 , z 9 b f(z 8 , z 9 , zR) dz 9 .

Condition (50) is now an immediate consequence of (61) and Pr4Pr*.
Hence, it makes sense to give the following definition.

DEFINITION 4.8. – If P� OPNm , k (X , S) satisfies conditions (60), we define the
ground energy l of P to be the ground energy l of p (k) , and say that P is tame-de-
generate exactly when p (k) is.

REMARK 4.9. – Note that l is a function on (TSOTSs )8 with values in
[0 , 1Q).

Remark that in all the preceding discussion we have supposed S to be non-in-
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volutive (i.e. nF1) and non-symplectic (i.e. lF1). When S is symplectic, i.e.
when

Tr SOTr Ss4 (0), (r�S ,

all the arguments above greatly simplify. In fact, NS is canonically identified
with the bundle TSs (of rank 2n), while (TSOTSs )8 reduces to a rank 0 vector-
bundle over S , thus canonically identified with S itself. As before, we can define
the ground energy l of P� OPNm , k (X , S) satisfying (60). In this case, l is natu-
rally a function on S with values in [0 , 1Q), and, accordingly, the fact that P is
tame-degenerate makes sense.

We are finally in a position to state the non-involutive counterpart of Theorem
4.1.

THEOREM 4.10. – Let P4P *� OPNm , k (X , S), and suppose:

1) P is transversally elliptic.

2) For any r�S , (Pr f , f ) F0, (f� S(Rn ).

3) S satisfies (H) and is non-involutive.

4) P is tame-degenerate.

Then inequality (28) holds.

The proofs of Theorems 4.1 and 4.10 are too long to be given here. They will
appear elsewhere.

EXAMPLES AND REMARKS.

1) The case k42. Let P4P *� OPNm , 2 (X , S), S satisfying condition (H),
be transversally elliptic. Recall from the Introduction that by F(r), r�S , we de-
note the fundamental matrix of pm /2 , i.e.

s(v , F(r) v)4
1

2
aHess pm (r) v , vb, v�Tr T * X ,

and by p s
m21 (r) 4pm21 (r)1 ia¯x , ¯j b pm (r) /2 the subprincipal symbol of P at

r�S .
Supposing that pm (x , j) F0 on T * X00, let us check the equivalence of the

following properties:

(Pr f , f ) F0, (r�S , (f� S(Rn ) ,(a)

pm21
s (r)1Tr1 F(r) F0, (r�S ,(b)

where Tr1 F(r) »4 !
mD0

m(r), with im(r) �Spec F(r). By [8], Vol. III, Thm. 21.5.3,
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there exists a linear symplectic map z : T * Rn KTr T * X such that

suzyx

j
z, F(r) zyx

j
zv4!

j41

n

m j (r)(x 8j
2 1j 8j

2 )1!
j41

l

j 9j
2 ,(62)

where 2n4dim (Tr Ss /(Tr SOTr Ss ) ) and l4dim (Tr SOTr Ss ).
If p (2)

r denotes the polynomial map associated with P , then

Opw (pr
(2)

iz )(x , Dx ) 4 !
j41

n

m j (r)(x 8j
2 1Dx 8j

2 )1 !
j41

l

Dx 9j
2 1pm21

s (r) .(63)

It follows that condition (a) is equivalent to

(Opw (pr
(2)

iz)(x , Dx ) f , f )F0 , (f� S(Rn ) .(64)

A standard density argument shows that in turn (64) amounts to

g!
j41

n

m j (r)(x 8j
2 1Dx 8j

2 ) f , fh1 !
j41

l

j 9j
2 1pm21

s (r) F0 ,(65)

for any f(x 8 ) � S(Rn ), VfV0
2 41, and every j 9�Rl .

Let

hk (t) »4p 1/4 (2k k! )21/2u d

dt
2 tvk

e 2t 2 /2 , k40, 1 , R(66)

be the k-th Hermite function, and define

f b (x 8 ) 4 »
j41

n

hb j
(x 8j ), b4 (b 1 , R , b n ) �Z1

n .(67)

It is well-known that

!
j41

n

m j (r)(x 8j
2 1Dx 8j

2 ) f b (x 8 ) 4g!
j41

n

m j (r)(2b j 11)h f b (x 8 ) ,(68)

whence, because of the density in S of the Hermite functions, (65) is equivalent
to

!
j41

n

m j (r)(2b j 11)1 !
j41

l

j 9j
2 1pm21

s (r) F0, (b�Z1
n , (j 9�Rl ,(69)

which is in turn equivalent to condition (b).
When S is non-involutive, we can explicitly compute the ground energy of P .

Namely,

l(r , v) 4Tr1 F(r)1s(v , F(r) v)1pm21
s (r) ,(70)

v�Ker (F(r)2 )/Ker F(r) C (Tr SOTr Ss )8 .
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In fact, (69) gives all the eigenvalues of

Opw (pr
(2)

iz)(x 8 , Dx 8 ; j 9 ) .

Since for every (r , v) the multiplicity of the eigenvalue l(r , v) is 1, P is automa-
tically tame-degenerate.

Theorems 4.1 and 4.10 therefore recover Hörmander inequality.

2) For k larger than 2, the explicit knowledge of l(r , v) is clearly out of
reach in general. In the next example, which is a variation of the ones treated in
[12], [13], [14], the function l may be explicitly computed.

Consider, for j41, 2 , R , N , N operators Pj 4Pj*� OPNm , 2 (X , S) (S sati-
sfying condition (H)) such that:

(A) All the Pj’s are transversally elliptic with

pm , j (x , j) F0, ((x , j) �T * X00 .

(B) [Fj (r), Fk (r) ] 4Fj (r) Fk (r)2Fk (r) Fj (r) 40, for any r�S , and any
j , k41, 2 , R , N , Fj being the fundamental matrix of pm , j /2 .

As a consequence, the operators Pj , r , j41, 2 , R , N , commute with each
other. In fact, it follows from the aforementioned Thm. 21.5.3 of Hörmander ([8],
Vol. III), that for any r�S we can find a symplectic map z : T * Rn KTr T * X such
that

suzyx

j
z, Fj (r) zyx

j
zv4 !

h41

n

m jh (r)(x 8h
2 1j 8h

2 )1 !
h41

l

a jh (r) j 9h
2 ,(71)

j41, 2 , R , N , where m jh (r), a jh (r) D0, for any j , h .
Hence, for j41, R , N ,

Pj , r4 !
h41

n

m jh (r)(x 8h
2 1Dx 8h

2 )1 !
h41

l

a jh (r) Dx 9h
2 1pm21, j

s (r) ,(72)

which yields immediately the commutativity.
Note that, because of conditions (A) and (B),

Ker Fj (r)4Ker Fk (r)4Tr S and Ker (Fj (r)2 )4Ker (Fk (r)2 ) , (r�S , (j , k .

Consider now the operator

R»4 !
NaNGm

Aa P a , P a4P1
a 1

R PN
a N ,(73)

where Aa4Aa* are classical cdo 8 s of order 0, with principal symbol aa .
Suppose that for any conic set G%T * X00 with compact base there exist
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CGD0 and g�Z1
N , NgN4m , for which

!
NaN4m

aa (x , j) taFCG »
j41

N

t j
g j ,(74)

for every (x , j) �G and t� [0 , 1Q)N .
It is then obvious that R� OPNmm , 2m (X , S) is transversally elliptic. Further-

more,

Rr4 !
NaNGm

aa (r) Pr
a , Pr

a4P1, r
a 1

R PN , r
a N , r�S ,(75)

is self-adjoint, because the Pj , r’s are self-adjoint and commute. Remark that to
obtain the lower bound for Re (Ru , u), we have to look at

1

2
(R1R *)r4Rr .

Let us define, for j41, 2 , R , N ,

t j (r , v ; b) 4 !
h41

n

m jh (r)(2b h 11)1s(v , Fj (r) v)1pm21, j
s (r) ,(76)

r�S , v�Ker (Fj (r)2 )/Ker Fj (r), b�Z1
n .

We claim that

(Rr f , f ) F0, (f� S(Rn )

iff

Q(r , v ; b) »4 !
NaNGm

aa (r) »
j41

N

t j (r , v ; b)a j F0,(77)

for every v as above, and every b�Z1
n .

The proof uses Hermite functions as in the case k42 above. As a consequen-
ce, the ground energy (in the non-involutive case, of course) of R (more precisely
of (R1R *) /2) is

l(r , v) 4 min
b�Z1

n
Q(r , v ; b) .(78)

Furthermore, the dimension of the eigenspace corresponding to l(r , v) is

J J(r , v) ,(79)

where

J(r , v) »4 ]b�Z1
n ; Q(r , v ; b) 4l(r , v)( ,(80)

so that the tame-degeneracy of R amounts to requiring

J J(r , v) 4constant

in some neighborhood of every (r 0 , v0 ) for which l(r 0 , v0 ) 40.
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3) The foregoing example, though very special, already shows how difficult
it can be to check whether tame-degeneracy holds (see, for instance, [12]).

However, we are not able to avoid in our proof the tame-degeneracy
condition.

Appendix 1.

Let us consider the following geometric setting.
Suppose S is a real vector space of dimension 2n with a symplectic form s , and

let V%S be a subspace satisfying

.
/
´

dim (VOV s ) 4 lF1 ,

dim (V s /(VOV s ) )42nF2
(81)

(so that 2n1 l4dim (S/V) and 2(n2 (n1 l) )4rk sNV ). Put

.
/
´

r : S/VK (VOV s )8 ,

[v] O s(v , Q) ,
(82)

[Q] denoting the residue class in S/V . Consider on V s /(VOV s ) the symplectic
form

s×( [u]8 , [v]8 ) »4s(u , v) ,(83)

[Q]8 denoting the residue class in V s /(VOV s ). We have the canonical map

.
/
´

i : V s /(VOV s ) KS/V ,

[u]8 O [u] .
(84)

It is trivial to check that we have the exact sequence

0 K
V s

VOV s
K

i S

V
K

r
(VOV s )8K0 .(85)

Given two linear maps

.
/
´

m : T * RnKV s /(VOV s ), m symplectic ,

L : Rl KVOV s , L isomorphism ,
(86)

let

z m , L : T * Rn3T * Rl 3T * Rn2 (n1 l) KS(87)
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be a linear symplectic map satisfying

.
/
´

[z m , L (y 8 , h 8 ; 0 , 0 ; 0 , 0 ) ] 4 i(m(y 8 , h 8 ) ) ,

z m , L (0 , 0 ; y 9 , 0 ; 0 , 0 ) 4Ly 9 .
(88)

The existence of z m , L is guaranteed by the linear Darboux Theorem. Observe
that

z m , L (y 8 , h 8 ; y 9 , h 9 ; yR , hR) �V ` y 84h 840, h 940 ,(89)

whence we have an induced isomorphism

.
/
´

z×m , L : T * Rn3 (Rl )8KS/V ,

z×m , L (y 8 , h 8 ; h 9 ) »4 [z m , L (y 8 , h 8 ; 0 , h 9 ; 0 , 0 ) ] .
(90)

Let now m 8 , L 8 be linear maps having the same properties of m , L , respectively,
and let z m 8 , L 8 be a corresponding linear symplectic map satisfying the correspon-
ding (88). We have the following proposition.

PROPOSITION 4.11. – There exists a unique linear map a : (Rl )8KT * Rn such
that

z×m 8 , L 8 (x 8 , j 8 ; j 9 ) 4 z×m , L ((m21
im 8 )(x 8 , j 8 )1aj 9 ; t (L 821

i L) j 9 ) .(91)

PROOF. – Since

z×m 8 , L 8 (x 8 , j 8 ; 0 ) 4 i(m 8 (x 8 , j 8 ) ) ,

we immediately have

z×m 8 , L 8 (x 8 , j 8 ; 0 ) 4 z×m , L ((m21
im 8 )(x 8 , j 8 ); 0) .(92)

For any w�VOV s , we have

w4z m , L (0 , 0 ; y 9 , 0 ; 0 , 0 ) 4z m 8 , L 8 (0 , 0 ; Ty 9 , 0 ; 0 , 0 ) ,

for a unique y 9�Rl , with T»4L 821
i L . As

ar(z×m 8 , L 8 (0 , 0 ; j 9 ) ) , wb4s(z m 8 , L 8 (0 , 0 ; 0 , j 9 ; 0 , 0 ), z m 8 , L 8 (0 , 0 ; Ty 9 , 0 ; 0 , 0 ) )4

aj 9 , Ty 9 b 4 atTj 9 , y 9 b 4

s(z m , L (0 , 0 ; 0 , tTj 9 ; 0 , 0 ), z m , L (0 , 0 ; y 9 , 0 ; 0 , 0 ) )4 ar(z×m , L (0 , 0 ; tTj 9 ) ) , wb ,

we conclude that

z×m 8 , L 8 (0 , 0 ; j 9 )2z×m , L (0 , 0 ;tTj 9 ) �Ker r4Im i .(93)
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It follows that

(z×m , L
21

iz×m 8 , L 8 )(0 , 0 ; j 9 ) 4 (0 , 0 ; t Tj 9 )1 (y 80 , h 80 ; h 90 ) ,(94)

for some (y 80 , h 80 ; h 90 ), for which

z×m , L (y 80 , h 80 ; h 90 ) 4 [z m , L (y 80 , h 80 ; 0 , h 90 ; 0 , 0 ) ] �Im i .

On the other hand, one has

z m , L (y 8 , h 8 ; y 9 , h 9 ; yR , hR) �V s ` h 940, yR4hR40 ,

so that [z×m , L (y 80 , h 80 ; h 90 ) ] �Im i iff there exist y8 , h8 for which

z m , L (y 80 , h 80 ; 0 , h 90 ; 0 , 0 )2z m , L (y8 , h8 ; 0 , 0 ; 0 , 0 ) �V ,(95)

i.e.

y 80 4 y8 , h 80 4 h8 , h 90 40 .

Hence

(z×m , L
21

iz×m 8 , L 8 )(0 , 0 ; j 9 )2 (0 , 0 ; tTj 9 ) 4 (a 1 (j 9 ), a 2 (j 9 ); 0) ,(96)

for a well-defined linear map

(Rl )8�j 9 O (a 1 (j 9 ), a 2 (j 9 ) )4»aj 9�T * Rn .(97)

Finally, (96) and (92) give (91). r

Lemma 4.2 is now a trivial consequence of the above Proposition.

Appendix 2.

Showing that Definitions 4.4 and 4.5 do not depend on the particular triviali-
zations c h , amounts to proving the following result.

Let V y %Rn be an open set, and suppose we are given

f (y ; j) �C Q (V y , Sk
reg (RN

j ) ) ,

f (y ; j) A !
jF0

fk2 j (y ; j) .

Let f : V 8x %Rn KV y be a smooth diffeomorphism, and A(x) �C Q (V 8x ,
GL(N , R) ) , b(x) �C Q (V 8x , RN ) be given. Define

fA(x ; z) 4 f(f(x); A(x)z1b(x) ) .(98)
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We claim that

.
/
´

fA(x ; z) �C Q (V 8x , Sk
reg (RN

z ) )

f
A
(x ; z) A !

rF0
f

A
k2r (x ; z) ,

(99)

with

fA
k2r (x ; z) 4 !

NaN1 j4r

b(x)a

a!
(¯j

a fk2 j ) (f(x); A(x)z) , rF0 .

In particular,

fA
k (x ; z) 4 fk (f(x); A(x) z) ,(100)

hence fA is elliptic iff f is.

The proof is almost obvious. In fact, by remarking that

.
/
´

fA(x ; z) �C Q (V 8x , Sk (RN
z ) ) ,

(¯j
a f ) (f(x); A(x) z)�C Q (V 8x , Sk2NaN (RN

z ) ) , (a�Z1
N ,

(101)

Taylor’s formula easily yields

fA(x ; z) A !
aF0

b(x)a

a!
(¯j

a f )(f(x); A(x) z) .(102)

Since

(¯j
a f ) (f(x); A(x) z)A !

jF0
(¯j

a fk2 j ) (f(x); A(x) z) ,(103)

we immediately obtain (99) and (100). r

Appendix 3.

The smoothness of the lowest eigenvalue l , supposed to have constant multi-
plicity, is a consequence of a general, and well-known, argument that we repro-
duce here for the sake of completeness.

Let B and H be two (complex) Hilbert spaces such that B %KH with compact
immersion and dense image.

Let x O A(x) be a smooth family of linear continuous operators from B to H ,
for x in some open set U%Rn (say).

For every x�U , consider A(x) as an unbounded operator in H , with domain
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B , and suppose

.
/
´

A(x) 4A(x)* ,

(A(x) u , u)F0, (x�U , (u�B .
(104)

Since

(A(x)2l)21 : HKB %KH

is a compact operator, it follows that the spectrum of A(x), Spec A(x) % [0 , 1Q),
consists of eigenvalues with finite multiplicity. In particular, it makes sense to
define

l(x) 4 min (Spec A(x) ) , x�U ,(105)

which a-priori is a continuous function of x with values in [0 , 1Q). Put

Vx 4Ker (A(x)2l(x) ) , x�U .(106)

We claim that if Vx has constant dimension in a neighborhood of some x 0 �U ,
then l(x) is smooth in the same neighborhood.

To prove the claim, fix a compact neighborhood v%U of x 0 , and eD0 such
that, for x�v , we have

Nl(x)2l(x 0 )NEe , Spec A(x)O ]z�C ; Nz2l(x 0 )NG2e( 4 ]l(x)( ,

and

dim Vx 4constant .

Then, for x�v , define

p(x) 4
1

2pi
t

Nz2l(x 0 )N4e

(z2A(x) )21 dz .(107)

It turns out that p(x) is a smooth self-adjoint projection onto Vx , which makes
Nx�v Vx into a smooth Hermitian vector-bundle on v . Since the restriction of
A(x) to Vx is just l(x) IdVx

, we get the required smoothness of l in v .
To identify the above abstract setting to the one considered in Section 4, sup-

pose we have a(x ; (z 8 , z 8 ) )�C Q (U , Sk
reg (R2n ) ) , kD0, and put A(x) 4

Opw (a)(x ; z 8 , Dz 8 ), with H4L 2 (Rn ) and

B4 ]u�L 2 (Rn ); (11Nz 8 N2 1NDz 8 N
2 )k/2 u�L 2 (Rn )(. r
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