
BOLLETTINO
UNIONE MATEMATICA ITALIANA

Piero D’Ancona, Sergio Spagnolo

Quasi-symmetrization of hyperbolic systems
and propagation of the analytic regularity

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 1-B (1998),
n.1, p. 169–185.
Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_169_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per
motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_169_0
http://www.bdim.eu/


Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 1998.



Bollettino U. M. I.
(8) 1-B (1998), 169-185

Quasi-Symmetrization of Hyperbolic Systems
and Propagation of the Analytic Regularity.

PIERO D’ANCONA - SERGIO SPAGNOLO

Sunto. – Dopo aver introdotto la nozione di quasi-simmetrizzatore per sistemi del pri-
m’ordine debolmente iperbolici, si dimostra che ad ogni sistema di tipo Sylvester,
cioè proveniente da un’equazione scalare di ordine superiore, si può associare in
modo regolare un quasi-simmetrizzatore. Come applicazione di questo risultato si
prova che, per qualunque sistema semi-lineare N3N debolmente iperbolico, le so-
luzioni Gevrey in x di ordine sEN/(N21) restano analitiche non appena lo siano
all’istante iniziale.

1. – Introduction.

The main purpose of this paper is to investigate the notion of smooth
quasi-symmetrizer for a hyperbolic system

¯t u1A(t , x , D) u4 f ,

where D4 i 21 ¯x , tF0, x�Rn , and A(t , x , j) is a N3N matrix-valued sym-
bol, homogeneous of order one in j . By hyperbolic we mean here weakly hy-
perbolic, i.e.,

A(t , x , j) has pure imaginary eigenvalues(1.1)

for all t , x and j�RN .
We call quasi-symmetrizer for A any family of N3N matrix-valued

symbols

Qe (t , x , j) �C 1 ( [0 , T]; S 0 ) , eD0 ,

with the following properties: for some positive constants d eD0, C indepen-
dent of t , x , j ,

d e IGQe4Qe*GI ,

AQe1Qe A *GCeajb Qe ,

where ajb 4k11NjN2 , I is the identity matrix, and AGB (with A , B matri-
ces) means (Av , v) G (Bv , v) for all v�CN .

This is clearly an extension of the classical concept of symmetrizer for a
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system of first order, which corresponds to the case when QefQ is indepen-
dent of e , so that AQ1QA *40. A similar notion was introduced for the first
time by E. Jannelli in [J], where he constructed a non-smooth quasi-sym-
metrizer for systems depending only on time (see also [DS]).

The notion of quasi-symmetrizer is connected to energy estimates in spaces
of analytic or Gevrey functions. We mention, e.g., the local stability of the ana-
lytic solutions to nonlinear weakly hyperbolic systems (see [DS], [Ki]).

In the first part of the paper we shall construct a smooth quasi-symmetrizer for
a special class of hyperbolic systems, namely the systems of Sylvester type (or,
more generally, of block Sylvester type); these are the systems arising after reduc-
tion of a higher order scalar equation to a system of first order, see Section 2 for a
precise definition. This result is contained in Proposition 1 below.

In the second part we shall apply the preceding construction to prove the ana-
lytic regularity for a class of semilinear weakly hyperbolic systems. More precise-
ly, we consider the systems

¯t u1A(t , D) u4 f(t , x , u)(1.2)

where A(t , j) are N3N matrix-valued symbols of order one in j and of class C N in
t , hyperbolic in the sense of (1.1). Denote by g L 2

s (Rn) the space of the so called uni-
formly Gevrey functions on Rn , i.e., the functions u(x): RnKCN satisfying

VD a uVL 2GCLNaN a!s

for some C , LF0; for s41 we obtain the space AL 2 (Rn) of uniformly analytic
functions. Moreover, we assume that f(t , x , u) is of class C N in t , with time deriva-
tives ¯ t

j f(t , x , u) uniformly analytic in x and entire analytic in u , for
j40, 1, R , n . Then we shall prove:

THEOREM 1. – Let u(t , x) be a solution of the system (1.2), belonging to the
Gevrey class C N ([0, T], g L 2

s (Rn)) for some 1 GsEN/(N21), and assume that
u(0, Q) �AL 2 (Rn). Then u(t , x) is uniformly analytic in x for all t, more precisely
u�C N ([0, T], AL 2 (Rn)) .

The condition sEN/(N21) is connected to the fact that for these values of s ,
system (1.4), and more generally any nonlinear hyperbolic first order system, is
well-posed in the Gevrey class g L 2

s (Rn) (see [B], [Ka]), while for sD1/(N21) the
local existence may not hold. Compare with the case of strictly hyperbolic nonlin-
ear systems, for which the analytic regularity propagates for any C Q solution
([AM]).

We mention that a result similar to Theorem 1, concerning second order
scalar equations, was proved in [S].
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2. – Construction of a quasi-symmetrizer.

In the following we shall construct a smooth quasi-symmetrizer for a special
class of hyperbolic operators A , which we shall call operators of Sylvester type. By
this we mean that A(t , x , j) 4 ajbB(t , x , j) where B is a Sylvester matrix, i.e.,

B4

.
`
`
`
`
`
´

0

QQ
Q

b1

1

0

b2

1

0

Q Q Q

Q Q
Q

Q Q Q

Q Q
Q

0

0

1

bN

ˆ
`
`
`
`
`
˜

.(2.1)

Here bj (t , x , j) are symbols of order 0. Typically such matrices are obtained
after reduction of a higher order scalar equation to a first order system.

More generally, we shall say that B is a N-block Sylvester type matrix if it is
a block matrix of dimension nN of the form

B4

.
`
´

B0

0

Q Q
Q

0

B0

ˆ
`
˜

where the n blocks B0 are N3N identical matrices and have the form (2.1).
Then we can prove:

PROPOSITION 1. – Assume that A(t , x , j) �C k ( [0 , T]; S 1 ) (kF2) and
that

A(t , x , j) has only pure imaginary eigenvalues ;(2.2)

(2.3) ajb21 A(t , x , j) is a uniformly bounded N-block Sylvester matrix .

Then there exists a quasi-symmetrizer

Qe4Qe (t , x , j) �C k ( [0 , T]; S 0 )

satisfying the following conditions for all (t , x , j) � [0 , T]3Rn 3Rn and all
eD0:

e 2(N21) IGQe4Qe*GI ,(2.4)

AQe1Qe A *GCeajb Qe ,(2.5)

2Ce 12N QeGQ 8e GCe 12N Qe ,(2.6)



PIERO D’ANCONA - SERGIO SPAGNOLO172

where Q 8 is the time derivative of Q and C a positive constant independent of
e , t , x , j.

More precisely, Qe has the form

Qe4 !
h40

N21

e 2h qh (a1 (t , x , j)ajb21 , R , aN (t , x , j)ajb21 )(2.7)

where qh(z1 , R , zN) are matrix-valued polynomials on CN , depending only on N.

REMARK 1. – We do not know if Proposition 1 can be extended to any
hyperbolic matrix A(t , x , j) not of Sylvester type. However, the nonsmooth
quasi-symmetrizer constructed in [J], [DS] is sufficient to handle analytic solu-
tions for nonlinear systems with constant coefficients (but is not useful to get
Theorem 1).

The core of the proof of Proposition 1 is the following algebraic lemma.

LEMMA. – Let N be an integer greater than 1. There exists a N3N matrix-
valued polynomial in N complex variables, PN (z1 , R , zN ) such that

(i) det PN 4 (21)N21;

(ii) for any N3N Sylvester matrix B, denoting with (l 1 , R , l N ) its (re-
peated) eigenvalues in any order, the matrix PN (l) 4PN (l 1 , R , l N ) triangu-
lates B, more precisely,

PN (l) BPN (l)21 4diag [l 1 , R , l N ]1K(2.8)

with

K4

.
`
`
`
´

0 21

0

0

21

0

Q Q Q

Q Q
Q

0

21

0

ˆ
`
`
`
˜

.(2.9)

We remark that, by (i), also the inverse P 21 is polynomial in z1 , R , zN .

PROOF OF THE LEMMA. – The first part of the proof is inspired by the paper of
E. Jannelli [J2]. Let

p h (z1 , R , zN ) 4 !
NaN4h
a iG1

z1
a 1

R zN
a N , h41, R , N ,

be the elementary symmetric polynomials, and ej 4 (0 , R , 0 , 1 , 0 , R , 0 ), j4

1, R , n , the canonical row vectors of CN ; it is convenient to set p 0 41. Then, if
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B is given by (2.1) and l 1 , R , l N are its (repeated) eigenvalues, we have, set-
ting bN11 421,

bh 4 (21)N2h p N112h (l 1 , R , l N ) , 1 GhGN11 .

This shows in particular that there is a unique Sylvester matrix B with given
eigevalues. On the other hand, if t is any one of such eigenvalues the row
vector

w4 !
j41

N

!
h40

N2 j

t h bj1h11 ej

is a left eigenvector of B for l , i.e., wB4lw , as it can be easily checked. Thus,
the vector

(2.10) v(z) fv(z1 , R , zN ) 4 !
j41

N

!
h40

N2 j

zN
h (21)N2 ( j1h11) p N2 ( j1h) (z1 , R , zN ) ej ,

which is a polynomial in z�CN , has the following property: if B is the (unique)
Sylvester matrix with repeated eigenvalues z1 , R , zN , then v(z) is a left eigen-
vector of B with eigenvalue zN .

We now argue by induction on N . The conclusion of the Lemma is trivial in
the case N41, where we can take simply P1 f1. Let PN21 (z1 , R , zN21 ) be the
(N21)3 (N21) matrix given by the Lemma at step N21, and let

PAN21 (z1 , R , zN21 ) 4
.
`
´

PN21

0

0

1

ˆ
`
˜

.

We define now the matrix-valued polynomial

S(z1 , R , zN ) 4row [e1 , R , eN21 , v(z1 , R , zN ) ] ,

with v(z) given by (2.10); we claim that the matrix

PN (z1 , R , zN ) 4 PAN21 (z1 , R , zN21 ) S(z1 , R , zN )

is the required triangulator for B . To prove this, we first remark that
det S421, since the last entry of the vector v is vN 421 (see (2.10)). Moreover
we have S 21 4S , indeed, by the definition of S we have

ei S4ei for i41, R , N21 ,

eN S4v

and hence

ei S 2 4ei for iGN21 , eN S 2 4vS4 !
j41

N21

vj ej 1vN v4eN .
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Now, if B has eigenvalues z1 , R , zN , then S(z) BS(z) fS(z) BS(z)21 has the
form

S(z) BS(z) 4

.
`
`
`
`
`
´

0

v1 (z)

0

1

0 1

Q Q
Q

Q Q Q

Q Q Q

Q Q
Q

1

vN21 (z)

0

0

QQ
Q

0

vN (z)

zN

ˆ
`
`
`
`
`
˜

4

.
`
`
`
´0

B 8 (z)

0

0

21

zN

ˆ
`
`
`
˜

.

Indeed, recalling that ei B4ei11 for iGN21, and v(z)B4l N v(z), we have

ei S(z) BS(z) 4ei BS(z) 4ei11 S(z) 4ei11 , i41, R , N22 ,

eN21 S(z) BS(z) 4eN21 BS(z) 4eN S(z) 4v (z) ,

eN S(z) BS(z) 4Bv(z) S(z) 4zN v(z) S(z) 4zN eN .

But the (N21)3 (N21) matrix B 8 (z) is of Sylvester type and its repeated
eigenvalues are exactly z1 , R , zN21 (since S(z) BS(z)21 has the same eigenval-
ues as B); thus PN21 (z1 , R , zN21 ) triangulates B 8 (z) in the sense of (2.8). This
implies that the N3N matrix PAN21 (z1 , R , zN21 ) triangulates S(z) BS(z) in
the sense of (2.8), and hence PAN21 (z1 , R , zN21 ) S(z) triangulates B .

PROOF OF PROPOSITION 1. – The matrix-valued polynomial P(z) f

PN (z1 , R , zN ) constructed in the Lemma, when applied to the eigenvalues of a
given Sylvester matrix B , gives a matrix P(z) which is not, in general, a regular
function of the entries of B . To overcome this difficulty, we apply a procedure of
symmetrization, based on the fact that any symmetric, polynomial function of
the eigenvalues of B can be also written as a polynomial function of the
entries.

We consider the diagonal matrix

He4

.
`
`
`
´

e 12N

0

e 22N

Q Q
Q

0

1

ˆ
`
`
`
˜

and we define

Qe (z) 4P(z)* He
22 P(z) .

From (2.8)-(2.9), we have for any z4 (z1 , R , zN ) and for the Sylvester matrix B
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with repeated eigenvalues z1 , R , zN the following identity

He
21 P(z) BP(z)21 He4D(z)1eK , where D(z) 4diag [z1 , R , zN ] ,

since He
21 KHe4eK , and hence also

Qe (z) B4P(z)* He
21 D(z) He

21 P(z)1P(z)* He
21 (eK) He

21 P(z) 4(2.11)

De (z)1eRe (z) .

We remark that De is anti-Hermitian whenever B is hyperbolic, i.e, z� iRN;
moreover,

(Re v , v) 4 (KHe
21 Pv , He

21 Pv) GNHe
21 PvN2 4 (Qe v , v) .(2.12)

Now, denoted by SN the class of permutations over N indices, let us de-
fine

Qe (z) 4 !
s� SN

Qe (sz)

and Re (z), De (z) analogously. Since He
22 4diag [e 2N22 , R , e 2 , 1 ], we see that

Qe has the form

Qe (z) 4 !
h40

N21 e 2h qh (z) ,(2.13)

where qh (z) are symmetric polynomials in z1 , R , zN ; hence the qh can be ex-
pressed as polynomials in the fundamental symmetric polynomials p 1 , R , p N .
If B is the Sylvester matrix with repeated eigenvalues z1 , R , zN , this implies
that each qh (z) can be expressed as a polynomial in the entries of B (see
(2.1)):

qh (z) 4 qAh (b1 , R , bN ) .(2.14)

Moreover, by (2.11) we have

Qe (z)B4 De (z)1eRe (z) ,(2.15)

with De anti-Hermitian and

(Re v , v) G (Qe v , v) .

Finally, since P(z), P(z)21 are polynomials in z , recalling the definition of Qe (z)
we have easily, for some pair of continuous functions C1 (r), C2 (r),

C1 (NzN) e 2(N21) IG Qe (z) GC2 (NzN)I .(2.16)

Let us now go back to the matrix A(t , x , j). Clearly, it is sufficient to prove
the Proposition in the special case when A is made of a unique Sylvester block,
i.e., A4 ajbB(t , x , j) with B a Sylvester matrix as in (2.1), with uniformly
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bounded entries bj (t , x , j). We then define

Qe (t , x , j) 4 !
h40

N21

e 2h qAh (b1 (t , x , j), R , bN (t , x , j) )

where qAh are given by (2.14). With this definition, (2.4), (2.5) and (2.7) follow im-
mediately (after some rescaling) from the properties (2.13), (2.15), (2.16) proved
above. In order to prove (2.6), we resort to Glaeser’s inequality

Na 8 (t)N2 G2Va 9 (t)VL Q (0 , T) a(t) ,

valid for any a(t) F0. We apply it to the C 2 function a(t) 4 (Qe (t , x , j) v , v) .
Thanks to the explicit expression (2.7), we see that Qe9 is bounded independently
of e , thus using (2.4) we obtain (2.6). This concludes the proof.

3. – The regularity result for a block Sylvester system.

In this section, we investigate the special case of Theorem 1 when the opera-
tor A(t , D) is of block Sylvester type. More generally, we consider the pseudo-
differential system

¯t u1A(t , D) u4g(t , x , K(D) u) ,(3.1)

where

A(t , j) is a N-block Sylvester matrix, homogeneous in j of order 1 ,(3.2)

A(t , j) �C 1 ([0 , T], S 1 (Rn ) ) ,(3.3)

K(j) is a m3N matrix-valued symbol of order 0 ,(3.4)

and g(t , x , v): [0 , T]3Rn 3Cm KCN is continuous in t , uniformly analytic in x
and entire analytic in v , so that there is some function F e (s) for which

ND a
x D b

v g(t , x , v)N2 GF e (NvN) L NaN e NbN a! b! for all eD0 .(3.5)

We have then:

PROPOSITION 2. – Let u�C 1 ( [0 , T]; g L 2
s (Rn ) ), with 1 GsEN/(N21), be a

solution of (3.1) such that u(0 , x) � AL 2 (Rn ), and assume that (3.2)-(3.5) are
satisfied. Then u�C 1 ([0 , T]; AL 2 (Rn ) ).

PROOF. – First of all, we fix three positive constants L0 , r 0 , M0 in such a way
that

VK(j)VGL0 .(3.6)
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s
Rn

e r 0 ajb1/s
Nu×(t , j)Najb2 djGM0 , Vu(t , Q)VL Q (Rn ) GM0 , on [0 , T] ,(3.7)

We note that (3.7) can be assumed withot loss of generality by replacing s with
some s 8 such that sEs 8EN/(N21).

In the course of the proof we shall use two kinds of Gevrey energies. To in-
troduce them, we apply Proposition 1 and we take a quasi-symmetrizer Qe , of
A(t , j). Then, we choose

e4 ajb21/N

and we define the matrix

Q(t , j) 4Qe (t , j)Ne4 ajb21/N ,(3.8)

which satisfies, for some constant C0 ,

ajb22(121/N) IGQ(t , j) GI ,(3.9)

A(t , j) Q(t , j)1Q(t , j) A *(t , j) GC0 ajb121/N Q(t , j) ,(3.10)

N(Q 8 (t , j) v , v)NGC0 ajb121/N (Q(t , j) v , v) .(3.11)

Finally, we fix the radius function

r(t) 4r 0 2
r 0

2T
t ,(3.12)

which is positive on [0 , T], and we define for any vector function w(x) with
Fourier transform w×(j) (w�CN in (3.13)), the s-Gevrey energies

E(t , w) 4se r(t)ajb1/s
(Q(t , j) w×, w×)1/2 dj ,(3.13)

E
A(t , w) 4se r(t)ajb1/s

Nw×Ndj ,(3.14)

the integrals being extended over all Rn . If w4w(t , x) depends also on t , we
denote by w× the Fourier transform with respect to x and we write

E(t , w) 4 E(t , w(t , Q) ) , E
A(t , w) 4 E

A (t , w(t , Q) ) .

We divide the proof into several steps.

A) Linear Gevrey estimate.

Let w�C 1 ([0 , T]; g L 2
s (Rn ) ) be an arbitrary solution to the linear sys-

tem

¯t w1A(t , D) w4B(t , x) K(D) w1 f (t , x) ,(3.15)
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where A(t , j), K(j) satisfy (3.2)-(3.4), and B(t , x) is N3m matrix belonging to
the space C([0 , T]; g L Q

s (Rn ) ) . Let us fix a constant M such that

E
A(t , B) GM on [0 , T] .(3.16)

If Q4Q(t , j) is the matrix given by (3.8), we have by (3.9)-(3.11)

d

dt
[ (Qw×, w×)1/2 ] GC0 ajb121/N (Qw×, w×)1/2 1N(BK(D) w) ×N1N f× N ,

thus, by differentiating E(t , w) with respect to t , we find

E8 (t , w) G

se r(t)ajb1/s
(Q(t , j) w×, w× )1/2 [ajb1/s r 81C0 ajb121/N ] dj1 E

A (t , BK(D) w)1 E
A(t , f ) .

Now for any pair of scalar functions f(x), c(x), we have the estimate

E
A(t , f Qc) 4se r(t)ajb1/s

Nf× * c×NdjG E
A(t , f) E

A(t , c)(3.17)

since ajb1/s G ajb2h 1/s 1 ahb1/s , and this implies, by (3.4), (3.6), (3.16) and
(3.9),

E
A (t , BK(D) w)GML0 E

A(t , w) GML0se r(t)ajb1/s
(Qw×, w×)1/2 ajb121/N dj .

Thus

E8(t , w)Gse r(t)ajb1/s
(Q(t , j) w×, w× )1/2 [r 81(C01L0 M)ajb121/N21/s ] ajb1/s dj1E

A(t , f ) .

But 121/N21/sE0, hence we can find a constant R4R(T , C0 , L0 , r 0 , M) so
large that

r8(t)1(C01L0 M)ajb121/N21/s42
r

2T
1(C01L0 M)ajb121/N21/sG0 if ajbFR ,

which gives

E8 (t , w) G s
NjNGR

e r(t)ajb1/s
(Q(t , j) w×, w× )1/2 (C0 1L0 M)ajb121/N dj1 E

A(t , f ) .

In conclusion we obtain, for any solution w of (3.15), the a priori esti-
mate

E8 (t , w) GC1 E(t , w)1 E
A(t , f ) .(3.18)

where C1 depends on T , C0 , L0 , r 0 and on M , defined in (3.16).
We remark that (3.18) implies the global well-posedness in g L 2

s (Rn ),
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sEN/(N21), to the Cauchy problem for the linear system (3.15). Moreover, by
standard arguments one can prove the local well-posedness in the same space
for the nonlinear system (3.1).
B) Uniqueness in the Gevrey class for the nonlinear problem.

Let u , v�C 1 ([0 , T]; g L 2
s (Rn ) ) be two solutions of (3.1), sEN/(N21), and

assume that u(0 , x) 4v(0 , x). Then w4u2v satisfies a linear system of the
form (3.15) with f40, thus using the linear estimate (3.18) we obtain that u4v
on [0 , T]3Rn .

C) Gevrey estimates of the nonlinear term.

Let us go back to the nonlinear system (3.1), where u(t , x) is a given solution
satisfying (3.7). In the following we shall assume, for sake of simplicity, that the
nonlinear term g(t , x , v) 4g(v) is independent of (t , x), so that (3.1) be-
comes

¯t u1A(t , D) u4g(K(D) u) ,(3.19)

where g : Cm KCN is an entire function. The general case presents only some
additional technical complications. By applying the operator D a4Dx

a , with
NaND0, to both members of (3.19), we obtain

(¯t 1A(t , D) )D a u4B(t , x) K(D) D a u1 fa (t , x) ,(3.20)

where B is the N3m matrix given by

B(t , x) 4Dg i (K(D)u)(3.21)

and

fa (t , x) 4D a (g i (K(D) u))2B(t , x) K(D) D a u .(3.22)

We remark that Dg(v) is entire analytic, so it admits a Taylor expansion
Dg(v) 4!Gb v b ; thus using (3.17) and recalling (3.4), (3.6), we find

E
A(t , B) GF( E

A (t , K(D) u))GF(L0 E
A(t , u) )GF(L0 M0 ) on [0 , T] ,(3.23)

for some function F(s) depending on g .
On the other hand, for any function v4 (v1 (t , x), R , vm (t , x) ) and a�

Nn , aD0, the chain rule gives

D a (g i v) 4a! !
1 GNbNGNaN

D b g i v

b!
!

a(1)1R1a(NbN) 4a
Na(i)ND0

D a(1) v1 RD a(NbN) vm

a(1) ! R a(NbN) !
,
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where b�Nm , a(i) �Nn . Hence, if we introduce the higher order energies

Ej (t , w) 4 !
NaN4 j

j!

a!
E(t , D a w) , E

A
j (t , w) 4 !

NaN4 j

j!

a!
E
A(t , D a w) , j41, 2 , R ,

we find, using (3.17), (3.5), (3.7), that for all eD0 there is some constant Ce de-
pending on M0 for which

E
A

j (t , g i v) GCe j! !
n41

j en !
h11R1hn4 j

hiF1

E
A

h1
(t , v)R E

A
hn

(t , v)

h1 !Rhn !
.

In a similar way we can estimate the higher order energies of fa . Indeed
from (3.22) we derive, replacing v with K(D) u and isolating the terms corre-
sponding to n41,

!
NaN4 j

1

a!
E
A(t , fa ) GCe j! !

n42

j

en !
h11R1hn4 j

hiF1

E
A

h1
(t , u)R E

A
hn

(t , u)

h1 !Rhn !
( jG2) .(3.24)

But

E
A

j (t , u) G Ej11 (t , u) ,

since

Nu×NG ajb121/N (Qu×, u×)1/2 G ajb(Qu×, u×)1/2 .

Hence (3.24) implies, for jF2,

!
NaN4 j

1

a!
E
A(t , fa ) GCe j! !

n42

j en !
h11R1hn4 j

hiF1

Eh111 (t , u) R Ehn11 (t , u)

h1 ! R hn !
.(3.25)

Summing up, if we apply the a priori estimate (3.18) to the system (3.20), and
use (3.23) and (3.25), we obtain that our solution satisfies, for all eD0 and
jF2,

(3.26) Ej8 (t , u) GC1 Ej (t , u)1Ce j! !
n42

j en !
h11R1hn4 j

hiF1

Eh111 (t , u) R Ehn11 (t , u)

h1 ! R hn !
,

with constants C1 , Ce depending on T , C0 , L0 , r 0 , M0 .

D) Superenergy of Gevrey type.

In the following, to denote the s-energy of order j of the given solution
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u(t , x), we shall write simply

Ej 4 Ej (t) 4 Ej (t , u) .

Let us fix some r0 D0, strictly smaller than the radius of analyticity of
u(0 , x), so that we have in particular

!
j42

Q r 0
j22

( j22) !
Ej (0) 4M1 EQ .(3.27)

Then we define, for any s�]1 , s[, the (s , s)-Gevrey energies

Fs (t) 4 !
j42

Q r j22

( j22) !s
Ej , F 1

s (t) 4 !
j42

Q r j22

( j22) !s ( j21)s21
Ej11 ,

where

r4r (t) 4r0 e 2mt ,

with mD0 to be defined later. We remark that, for all sD1

Fs (t) G F 1
s (t) , F 1

s (0) GM1 .

Finally we assume that the given solution u satisfies

F 1
s (t) EQ on [0 , t[ .(3.28)

As it will be precised at the step E), condition (3.28) is always fulfilled, for some
tGT , by the Cauchy-Kovalewski theorem. By differentiating Fs and using
(3.26) we obtain

F s8 Gr 8 F s
1 1C1 Fs1 Gs , e(3.29)

for all eD0, where

Gs , e4Ce !
j42

Q j( j21) r j22

( j22) !s21
!

n42

j

en !
h11R1hn4 j

hiF1

Eh111 REhn11

h1 !Rhn !
.

Now, grouping together the terms with 2 GnG j21, we write

Gs , e4 GI
s , e1 GII

s , e .

The last term, where n4 j , can be easily estimated thanks to the main assump-
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tion (3.7). Indeed, n4 j implies hi 41 for all i , thus we have, for eG

1/(2r0 M0 ),

GII
s , e4Ce !

j42
Q

j( j21) r j22

( j22) !s21
e j E 2

j11 GCe !
j42

Q

j 2 r 0
j22 e j M0

j11 GC2 ,

where C2 is a constant depending only on M0 , r0 .
As to GI

s , e , we observe that it contains only terms with max]hi ( F2. Thus,
after some reordering, we find

GI
s , eGCe !

j42

Q j( j21) r j22

( j22) !s21
!

n42

j21

nen !
h11R1hn4 j

h1FhiF1, h1F2

Eh111 REhn11

h1 ! R hn !
.

Introducing the notations

h h 4
r h22

(h22) !s
Eh , h 1

h 4
r h22

(h22) !s (h21)s21
Eh11 , hF2 ,

and exchanging the order of summation between j and n , the last inequality
yields

GI
s , eGCe !

n42

j21

nen !
j4n

Q

!
h11R1hn4 j
Nh1 NF2, hiF1

H( j , h) h h1
1 h h211 R h hn11 r p( j , h) ,(3.30)

where

H( j , h) 4 k h1 21

j22
ls21

Q
j( j21)

h1 (h1 21)h2 R hn

Q y (h1 22) ! (h2 21) ! R (hn21) !

( j23) !
zs21

and

p( j , h) 4 ( j22)2 [ (h1 22)1 (h2 21)1R1 (hn21) ] .

Now, h1 f max]h1 , R , hn( F j/n thus for jDn we have j( j21) /[h1 (h1 21) ] G

n 3 . Hence, using that h1 1R1hn4 j and nF2, we find that

H( j , h) Gn 3 , p( j , h) F1 .

As a consequence, (3.30) gives

GI
s , eGCe r !

n42

Q

n 4 en !
h11R1hn4 j
Nh1 NF2, hiF1

h 1
h1

h h211 R h hn11 4Ce r !
n42

Q

n 4 en F 1
s (Fs )n21 ,
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since

F 1
s4 !

j42

Q

h 1
j , Fs4 !

j42

Q

h j .

If we introduce in (3.29) the above estimates of GI
e , s , GII

e , s , we find

F s8 G ]r 81c e (Fs ) r( F s
1 1C1 Fs1C2 ,(3.31)

for eG1/(2r0 M0 ), where

C1 4C1 (T , r 0 , C0 , L0 , M0 ) , C2 4C2 (M0 , r0 ) , c e (s) 4Ce !
n42

Q

n 4 en s n21 .

Now we split (3.31) into the couple of inequalities

F s8 GC1 Fs1C2 , r 81c e (Fs ) rG0 .

The first inequality gives

Fs (t) GgFs (0)1
C2

C1
h e C1 T GC3 , t� [0 , t[ ,

and hence

c e (Fs (t) )Gc e (C3 ) GC4 if eGminm 1

2C3

,
1

2r0 M0
n ,

where C3 , C4 are constants depending on the solution u and on T , r 0 , C0 , L0 ,
M0 , r0 , M1 .

Thus, if we choose r (t) 4r0 e C4 t , we obtain for our solution the estimate

Fs (t , u) GC3 , t� [0 , t[ ,(3.32)

for all 1 EsEs , with C3 independent of s .

E) Conclusion of the proof.

The Cauchy-Kowalewski theorem and the uniqueness proved in Step B), en-
sure that the given solution u(t , x) of (3.1) is in fact analytic in some interval
[0 , t[, hence Gevrey of any order sD1 with arbitrarily large radius. Thus (3.27)
is fulfilled. Hence we are in the position to apply to u(t , x) the a-priori estimate
(3.32), and we find the uniform estimate Fs (t , u) GC3 , for all sE1. This
implies

ND a u(t , x)NGCL NaN NaN!s

for some constants C , L independent of s . Letting sK1, we obtain that u(t , x)
is analytic also at t4t . Applying again the Cauchy-Kovalewski theorem, we
conclude that t4T .
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4. – Regularity for general systems.

To conclude the proof of Theorem 1, we shall now show that the study of reg-
ularity for a generic first order system of the form

¯t u1A(t , D) u4 f (t , x , u)(4.1)

can be reduced to the study of a block Sylvester system as in Section 3.
Let L(t , t , j) be the cofactor matrix of tI1A(t , j), so that L(t , t , j) (tI1

A(t , j) )4d(t , t , j)I where

d(t , t , j) 4t N 1 !
h40

N21

bN2h (t , j) t h

is the determinant of tI1A , and bh are homogeneous polynomials of order h in
j . We remark that L4L(t , ¯t , D) is an N3N matrix of homogeneous differen-
tial operators of order N21, while d(t , ¯t , D) is scalar homogeneous of order
N . By applying L to (4.1) we obtain d(t , ¯t , D) u4L[ f (u) ]1l.o.t., i.e.,

¯ t
N u1 !

j40

N21

bN2h (t , D) ¯ t
h u4g(t , x , R , ¯ t

j D a u , R) , j1NaNGN21(4.2)

for a suitable function g(t , x , p), analytic in x , p and C 1 in t .
We define now the N 2 column vector

U4 [¯ t
j21 L N2 j u]j41, R , N , L4 aDb 4 (12D)1/2 ,(4.3)

which satisfies the first order system

¯t U1 A(t , D) U4G(t , x , R , D a L2h u , R) , NaNGhGN21 .(4.4)

We thus obtain a block Sylvester system of dimension N 2; more precisely, A is
made of N identical blocks A0 of size N , and A0 is the Sylvester matrix

A0 4L

.
`
`
`
´

0

QQ
Q

b1 L21

1

0

0

1

Q Q
Q

Q Q Q

Q Q Q

0

0

1

bN L2N

ˆ
`
`
`
˜

.

We are in the position to apply Proposition 2. Indeed, let u�
C N ([0 , T], g L 2

s (Rn ) ) be a solution of (4.1), and assume that u(0 , Q) � AL 2 (Rn ).
Then U given by (4.3) belongs to C 1 ([0 , T], g L 2

s (Rn ) ) and solves the block
Sylvester system (4.4), while U(0 , Q) � AL 2 (Rn ). Now, if sEN/(N21), by
Proposition 2 we conclude that U�C 1 ([0 , T], AL 2 (Rn ) ) , and this implies that
u�C N ([0 , T], AL 2 (Rn ) ) .

This concludes the proof of Theorem 1.
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