Bollettino
 Unione Matematica Italiana

Rodica Trandafir

Problems of integral geometry of lattices in an Euclidean space E_{3}.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 22 (1967), n.2, p. 228-235.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1967_3_22_2_228_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]
Problems of integral geometry of lattices in an Euclidean space E_{3}.

Rodica Trandafir (Bucarest)

Summary. - In this paper the author establishes an integral formula referring to lattices in an Euclidean space E_{3}, by which some of S. Oshio's theorems [3] are found directly and some suggestive interpretations of these theorems are obtained, some new theorems being also given. The results thus obtained are applied to some usual lattices in the space E_{3}.
L. A. Santalo has worked up a systematical study of the problems of integral geometry referring to the lattices in an Euclidean plane and has obtained a number of general results [6], [8] which have been applied to the lattices built up by means of some regular figures.

Some of Santalo's results have been extended to lattices in the space E_{3} and the space E_{n} by S. Oshio [3], [4].

I shall prove here a general integral formula for the lattices in the space E_{3}, from which I deduce Oshio's results and give a number of new results that are applied to the lattices built up by means of some regular spatial figures.

Definition. - We call a lattice of fundamenta domain in the space E_{3}, a sequence of domains $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$, which satisfies the following conditions:

1) Each point P in the space, belongs to one and only one α_{1}.
2) Each domain α_{2} can be superposed on α_{0} by a motion T of the space, which superposes every α_{h} on an α_{k}, that is, by a motion which leaves invariant the lattice given.

The domain α_{n} is called fundamental cell of the lattice and a domain α, is called a cell of a lattice.

Consider now a fixed figure K_{0}, which may be a domain, a surface, a curve, a system of surfaces, a system of curves. a system of surfaces and curves or a system of points (the points are considered a spheres of null radius).

Suppose the figure K_{0} is conditioned in the fundamental cell α_{0} and let K be a mobile figure.

Let

$$
\begin{equation*}
I=\int_{i \in \cap K_{0} \neq \varnothing} f\left(K_{0} \cap K\right) d K \tag{1}
\end{equation*}
$$

where f is a integrable function of the figure $K_{0} \cap K$ (in case where $K_{0} \cap K=\emptyset$, we take $f=0$), and $d K$ is an elementary kinematic measure in the space E_{3}, that is

$$
\begin{equation*}
d K=|\sin \theta|[d P d \rho d \theta d \nmid] \tag{2}
\end{equation*}
$$

P being a point rigidly linked to the region $K,(\cos p \sin \theta, \sin \varphi$ $\sin \theta, \cos \theta$) being the directoris cosinus of a direction rigidly linked to the figure K, and ψ being the angle of the rotation round the axis.

We can write

$$
I=\sum_{i} \int_{\alpha_{i}} f\left(K_{0} \cap K\right) d K
$$

We apply to the space E the motiou T_{2}, which superposes the cell α_{i} on the fundamental cell α_{0}, that is $T, \alpha_{2}=\alpha_{0}$. This motion transforms the figure K into the congruent figure $K^{*}=T_{1} K$.

Taking into account the invariance of the elementary kinematic measure, we have $d K^{*}=d K$, hence

$$
I=\frac{\Sigma}{i} \int_{\alpha_{0}} f\left(K_{0} \cap T_{i}^{-1} K^{*}\right) d K^{*}=\sum_{i} \int_{\alpha_{0}} f\left(K_{0} \cap T_{i}^{-1} K\right) d K
$$

If we consider that the figure $K_{0} \cap T_{i}^{-1} K$ is congruent with $T_{\imath} K_{0} \cap K$, consequently we have

$$
I=\int_{x_{0}}\left[\underset{i}{\underset{i}{2}} f\left(T_{2} K_{0} \cap K\right)\right] d K
$$

From here as well as from (1) we deduce the following formula

$$
\begin{equation*}
\int_{\dot{K}_{0} \cap K \neq \varnothing} f\left(K_{0} \cap K\right) d K=\int_{\alpha_{0}}\left[\underset{i}{\Sigma} f\left(T_{t}^{\circ} K_{0} \cap K\right)\right] d K \tag{3}
\end{equation*}
$$

Let us assume now that the figure K_{0} is a domain D_{0} of volume V_{0}, whose boundary ∂K_{0} has area S_{0}, and the figure K is a domain D of volume V, whose boundary ∂K has area S. Denoting by $\chi_{(}\left(D_{0}\right)$
the Euler-Poincare characteristic of the domain D_{0} and

$$
\begin{equation*}
\bar{H}=\int_{\partial K_{0}} H_{0} d \sigma_{0} \tag{4}
\end{equation*}
$$

where H_{0} is the mean curvature of the surface ∂K_{0} and $\partial \sigma_{0}$ is the area element on this surface. we write the main kinematic relationship of BLaschee [1] (${ }^{1}$)

$$
\begin{equation*}
\left.\int_{D \cap D_{0} \neq \varnothing} \chi\left(D_{0} \cap D\right) d K=8 \pi^{2}\left[V_{0} \chi(D)+V \chi_{(} D_{0}\right)\right]+2 \pi\left(S_{0} \bar{H}+S \bar{H}_{0}\right) \tag{5}
\end{equation*}
$$

If we take in (3), $f\left(D_{0} \cap D\right)=\%\left(D_{0} \cap D\right)$, and taking into account (5), we have:

$$
\begin{equation*}
\int_{\alpha_{0}} \varkappa_{01} d K=8 \pi^{2}\left[V_{0}^{\prime} /(D)+V \chi_{(}\left(D_{0}\right)\right]+2 \pi\left(S_{0} \bar{H}+S \bar{H}_{0}\right) \tag{6}
\end{equation*}
$$

where $\%_{01}$ is the Euler-Poincaré characteristic of the intersection of D with the figures T, D_{0}, that is with the lattice generated by the reproduction of D_{0} in each cell α_{1}, the integer being extended over $P \in x_{0}, 0 \leq \varphi \leq 2 \pi, 0 \leq \theta \leq \pi, 0 \leq \psi \leq 2 \pi$.

On the other hand, we have

$$
\begin{equation*}
\int_{\alpha_{0}} d K=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi \int_{P \in x_{0}} d P=8 \pi^{2} v_{0} \tag{7}
\end{equation*}
$$

where v_{0} is the volume of the fundamental cell α_{0}.
From (6) and (7) we deduce the mean value of χ_{01}

$$
M\left[\chi_{01}\right]=\frac{V_{0} \not \%(D)+V \angle\left(D_{0}\right)}{v_{0}}+\frac{S_{0} \bar{H}+S \overline{H_{0}}}{4 \pi v_{0}}
$$

Let us consider now as a figure K_{0} a curve $\left(\Gamma_{0}\right)$ of length L_{0} and as a figure K a surface of area S. In that case, if we denote by n the number of intersection points of the surface K with the curve (Γ_{0}) we have Santalo's formula [5] (${ }^{2}$)

$$
\int_{K \cap \Gamma_{0} \neq \varnothing} n d K=4 \pi^{2} S L_{0}
$$

${ }^{(1)}$ Pag. 347.
${ }^{(2)}$ Pag. 39.

Taking, into account this relationship in (3), we get Oshio's formula [3] (${ }^{3}$)

$$
\int_{\alpha_{0}} n d K=4 \pi^{2} S L_{0}
$$

where n represents the number of intersection points between the surface K and the lattice generated by the reproduction of $\left(\Gamma_{0}\right)$ in each cell α_{l}.

From here as well as from (7) we deduce:

$$
\begin{equation*}
M[n]=\frac{S L_{0}}{2 v_{0}} \tag{8}
\end{equation*}
$$

From this formula it results, that it is always possible tofind a position of the surface, which has at least $\left[\frac{S L_{0}}{2 v_{0}}\right]$ points common to the curve $\left(\Gamma_{0}\right)$.

If we suppose that the surface K may be intersected by the lattice generated by $\left(\Gamma_{0}\right)$ in n_{1} or n_{2} points and if we denote by p_{1} and p_{2} the probabilities that the surface are K is intersected by the lattice in n_{1} and n_{2} points respectively, formula (8) is written as follows:

$$
n_{1} p_{1}+n_{2} p_{2}=\frac{S L_{0}}{2 v_{0}}
$$

Considering $p_{1}+p_{2}=1$, we have

$$
p_{1}=\frac{S L_{0}-2 n_{2} v_{0}}{2 v_{0}\left(n_{1}-n_{2}\right)}, \quad p_{2}=\frac{2 n_{1} v_{0}-S L_{0}}{2 v_{0}\left(n_{1}-n_{2}\right)}
$$

Let us take a fixed surface K_{0} of area S_{0} and a mobile surface or area S and let $f\left(K_{0} \cap K\right)=s$ (the length of the intersection curve of the two surfaces).

Taking into account Santalo's formula [7] (${ }^{4}$)

$$
\int_{K_{0} \cap K \neq \gamma} s d K=4 \pi^{3} S_{0} S
$$

we get the formula obtained by Oshio in an other way [3] (5)

$$
\int_{x_{0}} L_{01} d K=4 \pi^{3} S_{0} S
$$

${ }^{(3)}$ Pag. 39.
(${ }^{4}$) Pag 352.
${ }^{(5)}$ Pag. 42.
where L_{01} is the length of the intersection curve of the surface K with the surfaces $T_{1} K_{0}$, that is with the lattice generated by the reproduction of K_{0} in each cell α_{1}.

From here as well as from (7) it results the mean value:

$$
M\left[L_{01}\right]=\frac{\pi S_{n} S}{2 v_{0}}
$$

This formula tells us that it is always possible to find a position of the surface K, whose intersection with the surface K_{n} has at least the length $\frac{\pi S_{11} S}{2 v_{0}}$.

Suppose that the domain D_{0} and D in Blaschke's formula (5) are simply convex. In that case we bave $\chi(D)=\chi\left(D_{0}\right)=1$. Denoting by v the number of simple convex domains, of which the domain $D_{0} \cap D$ is formed up, we have $\gamma\left(D_{0} \cap D\right)=v$ and the formula (5) gives us:

$$
\int_{D_{\cap D_{0} \neq \varnothing}} v d K=8 \pi^{2}\left(V_{0}+V\right)+2 \pi\left(S_{0} \bar{H}+S \bar{H}_{0}\right)
$$

where $K=D \bigcap \partial D$.
Taking into account this relation in (3), we get

$$
\int_{\alpha_{0}} v d K=8 \pi^{2}\left(V_{0}+V\right)+2 \pi\left(S_{0} \bar{H}+S \bar{H}_{n}\right)
$$

Where v is the number of simp, x convex domains, of which the intersection between the domain D and the lattice generated by the reproduction of D in each cell α_{2} is formed α_{3}.

From here as well as from (7) the mean value results

$$
\begin{equation*}
M[v]=\frac{V_{0}+V}{v}+\frac{S_{0} \bar{H}+S \overline{H_{n}}}{4 \pi v_{n}} \tag{9}
\end{equation*}
$$

Thus it is always possible to find a position of the domain D, whose intersection with D_{0} is formed up from at least $\left[\frac{V_{0}+V}{v}+\right.$ $\left.+\frac{S_{n} \bar{H}+S \bar{H}_{0}}{4 \pi v_{0}} \right\rvert\,$ simple connex domains.

Supposing that the intersection between the domain D and the lattice generated by D is formed up from v_{1} or v_{2} simply convex domains with p_{1} and p_{2} respectively, the probabilities corresponding
to formula (9), we write

$$
v_{1} p_{1}+v_{2} p_{2}=\frac{V_{0}+V}{v_{0}}+\frac{S_{0} \bar{H}+S \bar{H}_{0}}{4 \pi v_{0}}
$$

hence

$$
\begin{aligned}
& p_{1}=\frac{4 \pi\left(V_{n}+V-v_{2} v_{0}\right)+S_{0} \bar{H}+S \bar{H}_{0}}{4 \pi v_{0}\left(v_{1}-v_{2}\right)} \\
& p_{2}=\frac{4 \pi\left(V_{0}+V-v_{1} v_{0}\right)+S_{0} \bar{H}+S \bar{H}_{0}}{4 \pi v_{0}\left(v_{1}-v_{2}\right)}
\end{aligned}
$$

Considering $D_{0}=\alpha_{0} \bigcup \partial \alpha_{0}$ and denoting by η the number of simple connex domains, in which the domain D is divided by the lattice, formula (9) is written as follows:

$$
M[\eta]=\frac{V_{n}+V}{v_{0}}+\frac{s_{0} \bar{H}+S \overline{h_{0}}}{4 \pi v_{0}}
$$

where S_{0} is the area of ∂x_{0} and has the measure of the set of the planes intersecting the boundary ∂x_{0}.

Hence we have the theorem:
Any simple connex domain of volume V, whose boundary ∂D has area S, can be covered by

$$
N \leq 1+\frac{V}{v_{0}}+\frac{s_{0} \bar{H}+S \bar{h}_{0}}{4 \pi v_{0}}
$$

cells of a lattice whose fundamental cell has volume v_{0} and whose boundary has area s_{0}.

Let us apply this result to a lattice formed of cubes of side a. In this case we have $v_{0}=a^{3}, s_{0}=6 a^{2}$.

To calculate h_{0} taking into account Blaschike, formula [2] (${ }^{6}$) which says that the measure of the set of the planes intersecting a convex polyhedron is equal to $\frac{1}{2} \Sigma l \varphi_{l}, l$ being the length of an edge of the polyhedron, and φ_{l} the dyhedron angle corresponding to this edge, and the sum being extended to all the edges of the: polyhedron. So we have $\bar{h}_{0}=3 \pi a$.

Hence:

$$
N \leq 1+\frac{V}{a^{3}}+\frac{3 S}{a^{2}}+\frac{3 \bar{H}}{2 \pi a}
$$

${ }^{(6)}$ Pag. 89.

This formula has been proved by Santalo in the case of a topological sphere [9] (${ }^{7}$).

Suppose that the figure K_{0} is formed of n points, and the figure K is a body of volume V. Taking into account that a point can be considered as a sphere of null radius, we have $S_{0}=V_{0}=0$, $\gamma\left(K_{0}\right)=m$ and Blaschke's formula (5) becomes

$$
\int_{K_{\cap} \cap K_{0} \neq \varnothing} n d K=8 \pi^{2} m V
$$

where n is the number of points inside a position of K.
If we denote by m^{*} the number of points in the lattice generated by the reproduction of K_{0} in each cell α_{i}, contained inside K, formula (3) gives us:

$$
\int_{\alpha_{0}} m * d K=8 \pi^{2} m V,
$$

the formula proved in an other way by Osmo [3] $\left(^{8}\right.$).
From here as well as from (7) it results:

$$
\begin{equation*}
M[m *]=\frac{m V}{v_{0}} . \tag{10}
\end{equation*}
$$

Supposing that inside the body K we may have m_{1}^{*} and m_{2}^{*} points and denoting by p_{1} and p_{2} the corresponding probabilities, formula (10) is written

$$
m_{1}^{*} p_{1}+m_{2}^{*} p_{2}=\frac{m V}{v_{0}}
$$

hence:

$$
p_{1}=\frac{m V-m_{2}^{*} v_{0}}{v_{0}\left(m_{1}^{*}-m_{2}^{*}\right)}, \quad p_{2}=\frac{m_{1}^{*} v_{0}-m V}{v_{0}\left(m_{1}^{*}-m_{2}^{*}\right)} .
$$

REFERENCES

[1] W. Blaschee, Conematica integrale, «Rend Acc. Naz Lincei», (6), Vol. 23, 193f, pagg 546-jे7.
[2] — -, Vorlesungen uber Integralgeometrıe, ed. 3, «V.E.B. Deutscher Verlag der Wiss ${ }^{\text {, }}$, Berlin, 1955
${ }^{(7)}$ Pag. 189.
${ }^{(8)}$ Pag 38.
[3] S. Oshio, On mean values and geometrical probabilities in E_{3}, Sci. Rep. Kanazawa Univ.», Vol. 3, 1955. pagg. 35.43.
[4] - -, On mean values and geometrical probabilities in E_{n}, «Sci. Kana. zawa Univ.>, Vol. 3, 1955, pagg. 199.207.
[5] L. A. Santalo, Über das kinematische Mass im Raum, , Act. Sci. et Ind. ${ }^{\text {, }}$ nr. 357, Paris, ed. Hermann, 1936.
[6] — - Sobre valores medris y probabilidades geometricas, «Abh. Math. Sem. Haus. Univ.», Hamburg, vol. 13, 1910, pagg. 284.294.
[7] - -. Quelques formules intégrales dans le plan et dans l'espace,

[8] - - , Introduction to integral geometry, "Act. Sci. et Ind.», nr. 1198, Paris, ed. Hermann, 1953.
[9] — -, Sur la mesure des espaces linéaires qui coupent un corps convexe et problèmes qui s'y rattachent, "Colloque sur les questions de realite en géométrie», Liège, 195̄̆, pagg. 177.190.

Pervenuta alla Segreteria dell' \mathbb{C} M. 1
l'8 marzo 1967

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

