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R E L A Z I O N E S C I E N T I F I C A

RECENT TRENDS IN THE THEORY OF BOUNDARY
VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL

EQUATIONS

KOBEBTO CONTI (Firenze)

PREFACE

The theory of boundary value probleins for ordinary differen-
tial équations almost exclusively included, until a few years ago,
problems witli side conditions assigned over a compact interval
of the independent variable. By contrast, problems involving the
behavior of solutions over non compact intervals were usually
labelled as « asymptotic ».

Recent developments of the theory show a tendency to reduce
more and more this traditionally accepted distinction. We have
tried, by this report, to give an account of such trend and to
recognize, at the same time, the common features of the under-
lying techniques.

Correspondingly our bibliography mainly refers to the litera-
ture of the last 15 years; earlier références may be found in the
expository papers of W. T. REID [1], Gk STAMPACCHIA [2] and
W. M. WHYBURN [3] or in books like E, A. CODDI^GTOST - N.
LEVIKSOX [1] and Gr. SANSONE [1]

The report is divided into two parts. Part 1, essentially alge-
braic, is devoted to the vector équation x — Ax = ƒ, v^hen f does
not depend on x.

In Part II, where f dépends on x, boundary value problems
are first reduced to the search for solution of some functional
équation, i.e. for fixed points of suitable mappings. The most
frequently used fixed point theorems, like SCHAIJDER-TYCHOKOV'S,

BAïfACH's etc, are listed in the Appendix, for the reader's con-
venience. The LERAT-SCHATJDER topological degree theory has
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not been considered because, as was noted in J. CRONIN'S book
[1], boundary value problems for ordinary differential équations
considered so f ar involve mappings with topological degree equal
to + 1, so that only a partial corollary of the LERAY-SCHATJDER

theory is needed, namely Th. A' of the Appendix. There is howe-
ver an exception at least, represented by. a problera studied by
G STAMPACCHTA, [1] to whieh we devote Sec. 19.

Throughout our exposition cc dénotes a real w-vector function, i.e.
a function whose values belong to Rn. A part of the theory can
be extended to differential équations in a BANACH space, provided
that A be bounded. This situation is fairly described in the recent
book by J. L. MASSERA - J. J. SCHAFFER [3].

To render our exposition as organic as possible we had also to
ignore the myriads of particular b.v.p. connected with n.th order
scalar differential équations.

Finally another intentional omission refers to b.v.p. with para-
meters (eigenvalue problems, perturbation theory, etc). This was
due to the fact that in our opinion this kind of problems, and also
problems involving arbitrary functions, as in control theory, or
differential inequalities, should find their natural and most appro-
priate place within the theory of «differential relations», x — Axe F,
where F represents a set-valued function. This part of differential
calcul us, essentially a revival of MARCHA TJD-ZAREMBA'S « équations
au contingent », is now rapidly developing and most promising,
but still fragmentary and incomplete.

Most probably, unintentional omissions should be added to the
above mentioned intentional oness a fact, which, I hope, will
stimulate the reader's criticisms and suggestions.

0. - Introduction.

The present report deals with boundary value problems for a
differential équation

(I) dxjdt — A(t)x = y(t)

or, more generally,

(II) dx/dt — A(t)x = f(t, x).

In the sequel we shall dénote by:

t, a real variable, tfe «J=]oc, w[, an open, possibly unbounded,
interval of R, the real numbers space;
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Bn the space of real n-vectors x with components xtJ ..., xn

and any norm \xK (not necessarily the euclidean one);

a the algebra of real n by n matrices M with the norm | M\ =
= sup \Mx\l\x\ ;

xÇRn-

t—^ A{t) a fanction from J into Si;

t •—- j/(£) a function from J into 72'* ;

t, x —- ƒ(£, x) a function from ƒ x Bl into JBn,

If A is a subinterval of J, a solution of (I) on A will be any
function t —̂  x(t) from A into jBtt locally absolutely continuous
on A, i.e. absolutely continuous on compact subintervals of A, such
that

dx(t)jdt — A(t)x(t\ = y(t) a.e. on A.

A solution of (II) on A is defined similarly.
The locution « boundary value problems » is part of a termi-

nology traditionally used for partial differential équations. In that
context it refers to determining solutions of a p.d.e. which, in
additionj satisfy some conditions on the boundary of a prescribed
domain. When transferred to ordinary d.e. this would mean, lite-
rally, conditions to be satisfied at the endpoints of some interval,
a problem which is a very particular (though important) case of
situations encountered in the field of « b.v.p. » for ordinary d.e.

Therefore we prefer to talk about « additional » rather than
about « boundary » conditions.

To be more spécifie, throughout this report, such « additional »
conditions ŝvill be of the form

(C) x e n

where Cl is a given infinité subset of C(A, Rn), the linear space of
continuous functions i—- x(t) from a prescribed subinterval A ot
J into Mn.

Thereï'ore a boundary Talue problem will henceforth consist of
équation (T) or (II) plus an additional condition (C) to be specified
from time to time.
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PART I

EQUATION (I)

1. - The eyolution operator.

In what f ollows we shall constantly assume that l —- A(t) is
a (LEBESGUE) measurable and locally integrable function of t e J
into fit, ie. , that the entries of the matrix A are real measurable
functions of t e ƒ, integrable on compact subintervals of J.

This implies that t •—*-1 A(t) | is a real function of t e J, mea-
surable and locally integrable on J.

I t follows the well known, basic theorem

TH. 1.1. - There exists only one function (t, s)—*U(t, s) of
J XJ into fit which is continuons and such that

t

(1.1) U(t, s) = 1+ f A ( T ) U ( C , s)dT, s , t e J

s

t

(1.2) ü ( t , s) = I + j ü { t T)A{r)dT, $ , t e J

where I dénotes the identity of 6L.

We sketch the proof in order to put into évidence some pro-
perties of U needed later.

Let K be any compact subinterval of J and let s be any point
of K. The linear space C(K, 6L) of continuous <l> ; K —^ fît normed by

t

|4>| = sup|4)(«)|exp(—^

s

is complete. If 1 > 1, then

is a contractive mapping of C(K, €1), tlierefore (See Appendix)
there is onïy one solution of (1.1) in C[K, fit). Since K and s are
arbitrary, U is defined in J x J.
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Similarïy one can prove the existence of a unique function
(t, s) — V(t, s) of J x J into a such that

(1.2')

From (1.1) and (1.2') we obtain d{V(t, r)TJ{r, s))/dr = 0, the zero
of CL, for a.e. reJ and-all 5, t e J*. Since r—*-V(£, r)U(r, s) is
absolutely continuous it fcllows U(t, s) = V(^ s) so that (1.2) is
proved by (1.2'). Further c(U(t, s)U(s, r))]ds = 0 for a.e. s € ƒ and
all t, r e J. Hence also

(1.3) U(t, s)ü(s, r) = U(t, r), r3 s, t e J

and since £ •—- Z7(£, s), r •—̂  U(s, r) are continuous and multiplica-
tion in d is a continuous opération it follows that U is continuous
on Jx J.

DEF. LI. - The function U: (t, s)-+ U{t} s) defined by Th. 1.1
is called the évolution operator generated by t—*• A(t).

EEMARK 1.1. - From (1.3) we have, for r = t, U(t, s)U{s, i) = I,
which means that for every (t, s) there exists the inverse U~\t, s)
and

(14) ü-\t, s) = U(s, t) t, se J.

1.2. - For each (t, s) e J x J", TJ(ty s) is the limit of
the PICAKD séquence

(1.5) U0(t, s) = I

t

(T)C7i(T, 8)dx

so that it is also the sum of the PEAJSTO series

t t Tl

(1.6) U(t, s) = I j J (

2. - Problem I. - The Cauchy problem for équation (I).

Since A is assumed to be measurable and locally integrable on
Jy if x is a solution of (I) on any subinterval ^dJ} then the function
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i-+dx(t)/dt—A(t)x(t) is necessarily measurable and locally integrable
«on A. Therefore, denoting by LiOG(J, Rn) the linear space of functions
of teJ into Rn which are measurable and locally integrable on
JT? it is natural to assume that

Hx) t — y(t) belowg to Lioc(J, Bn).

In this Sec. conditions (C) is, in a sense, the simplest possible
as the ü of (C) will be the set of functions of C{J, Bn) taking a
given Talue l e Rn at a given xe J. We thus have :

PKOBLEM I. - The Cauchy problem for equahon (I),

With given T G / , le Bn, détermine the solution of (I) on J such

that

Prom Th. 1.1 we have immédiate!y

TH, 2.1. - For every r e / , every ZeRn and every yeL\QC(J, Rn)
the unique solution of Problem I is

(2.2) t — Uit, T)5 + ƒ U(t, s)y(s)ds, t e J.

We use this classic resuit for a few remarks.

The linear operator defined by

(2.3) D = djdt — A(t)

has domain S)(D)d C{J, Rn) and range SL(D)CZ LiOc{J, Rn)* In f act,
writing (I) as

(I') Dx = y

Th. 2.1 asserts that St(jD) = iioc(J, Ru).

Further, the null space S>Z(D) of D is isomorphic to Rn. Por
every : e J the isomorphism is given by \ -+ U(*, T)E.

For each y e LiOG(J, Rn) its inverse image Dy by D? i.e., the set
of solutions of (I), is represented by the linear variety of C{J, Rn)

t

(2.4) Dy = Sr(D) + j J ü(t, s)y(s)ds J
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and using (13) one easily sees that the right hand side does not
depend on T.

The operator D, being onto, has right inverses, i.e. there are
linear operators D+ of L\OL{J> Rn) into C(J, Rrt) such that, DJD+ is
the identity operator on LiodJ, Rn)* For each T e J a right inverse
of D is

t

(2.5) J5+: y — ƒ ü(t, s)y(s)ds
T

so that the solutions of (I'), i.e. of (I), are represented by

(2.6) x = i + D+tf, x e

REMARK 2.1, - AU the solutions of équation (I) are defined for
teJ.

3. - Problem II .

We consider now

PKOBLEM IL - Let A he a real linear space and let L be a
linear operator tvith ®(L) = C{J, R"), 8L{L)ci A, §fl(L) 4= | 0 I.

), détermine the solutions of équation (1) (on J) such that

(3 1) Lx = L

Problem I is a particular case of Problem II (A = R'\ L : x -+

— X(T)) and Problem I I is in turn a particular case of (I)-(C), cor-
responding to il == LI, the inverse image of l by L.

Since ïe&(£), 9I(L)4=|Oj, i ï is a linear variety of QJ, R")
haviug dimension greater than zero.

Using the same notations of Sec. 2, we look for solutions
oc e C(J, Rn) of

(3.2) Dx = y, Lx = l.

By v i r tue of (2.6), h a v i u g fixed xej a r b i t r a r i l y ŷ  + BT y wi l l
be a solution of (3.1) if and only if / e SZ[D) is a solution of

LoX = l - LBty,

haring denoted by 7/0 the restriction of L to
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Since 7 = U(*9 T)5, 5 e Rn,

is a linear operator of Rn into A and J7(-, T)* -+• X>T?/ will be a so-
lution of (3.1) if and only if Ç e R" is a solution of

(3.3) Lul = I - ^

Since SfL^ = ^ n we hare dim ât(Lor) = m < w, so that Lu (can
be represented by an m X « matrix and it) has generalized inverses.

This means tliat there are linear operators _L# of 3i(Lu) into i2n

such that

(3.4)

and it means, also, that (3.3) will have solutions if and only if

(3.5) (IA - LvL9u) (l - LD+y) = 0,

where I\ is the identity operator on A. In fact if ? is a solution

of (3 3) we have (IA - LvL
g

0) (l - LDÎy) = (IA — LuLfyLm = 0 by

(3.4). Conversely if (3.5) holds, (3.3) can be written Lüi=LuLfyl -

- LDty). i.e. Lui* - Lu(l — LDty)) = 0, so that Ço + LQu(l — LDÏy)
is a solution of (3.3) for each %oe§ft[Lu).

In genera! there will be infinitely many L9u satisfying (3.4), but
it is readily seen that (3.5) is either valid for all of them or for
none.

In particular (3.4) (3.5) hold when Lu kas a right inverse Lu'

u = IA, and, more in particular, when Lu bas the inverse Lp1:

Lu1 Lu = IRU> LULÖJ1 = IA- In this last case §fl(Lu) = | 0 | . Thus:

TH. 3.1. - A necessary and sufficient condition in order that

Problem II have solutions is that (3,5) hold for any L^j satisfying
(3.4). Solutions are given by

(3.6) ÜLgul + m0 + [D+ - ÜLffuLDt]y, Eo G ®l(Lu)

If Lu has a right inverse Lu then ((3.4) holds and) (3.5) holds for

any yeL\^[J, Bn). Solutions are given by (3.6) with L9u replaced by Lu.
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If Lu has the inverse Lu then for each y e L\0C{J, Bn) the unique
solution of Problem I I is

(3.7) ÜL^l + [DÎ — TJLvlLI)t]y>

NOTE: About generalized inverses of linear bounded operators
between finite dimensional or hilbert spaces see, also for the biblio-
graphy : W.V. PETRYSHYH, Jour. of Math. Anal, & Appls., 18 (1967).

4. - S ome remarks albout Problem I L

EEMARK 4 1. - Problem I I is said to be incompatible when

(4.1) Bx = 0, Lx = 0 =» x = 0,

compatible otherwise.

It should be noted that (4.1) is equivalent to the existence of left

inverses L~o of Lu, i-e. of linear operators Lul A - * R'\
= IR», 80 that^ in gênerai, incompatibility is not enough to insure
the existence of solutions of Problem II for all l e A, y e LiodJ, Bn).
According to (3.5) solutions will exist only for those IsA, yeLioc(J, Bn)
such that

{IA-LuLu){l-LDty) = O

and for any such pair ly y, there will be a unique solution, namely

ÜLÜl + [DÎ - ULÜLDt]y.

It is easily verified, however, that if dim A = n then the existence

of L~ü (or of Lu) is equivalent to that of the inverse L^1. Therefore
if dim A = n, Problem I I is incompatible if and only if the inverse

Lzj1 exists, Le. if and only if Problem I I has a unique solution
for each Z e À, y G LIOG(J, Bn).

EEMARK 4.2. - To verify the validity of (3 5) is not easy in
gênerai. The most favorable situation is encountered when Lu
the inverse. This suggests to write équation (I) as

(4.2) dxldt — B[t)x = [A(t) — B{t)]x + y(t)

and then look for some B whose évolution operator V has the

property that L'y1 exists. If it is so then Problem I I can be dealt
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with by the methods which will be described in Sec. 16 for
Problem V.

Such methods require some conditions which will involve not
only B and l but also the right hand side of (4.2), hence A and y.

These conditions are only sufficient ones, while (3.5) is also
necessary,

EEMARK 4.3. - The existence of the inverse Lu1 of Lu dépends
on L and, via U and the PEAXO series (1.6), on A. Sufficient
criteria involving A direct]y can be given for particular L.

EEMARK 4.4. - For particular operators L it is possible to
represent solutions in a more compact form than (3.6) by defining
an appropriate Green operator (See Secs. 6-9).

Again, for particular L it is also possible to define a pair of
linear operators D*, _L* such that the solvability of Problem I I
can be expressed by means ot' a relationship between the pair l,
2/, and the solutions z of

(4,3) D*0 = O, I > 2 = 0.

Such a relationship is, necessarily, a disguised version of (3.4)
(3.5).

System (4.3) is called the adjoint of

(44) Dx = 0, Lx = 0

and reciprocally.
Extensive investigations have been made in order to define a

sufficiently « satisfactory » adjoint of (4 4) with seATeral particular
L. (See Secs 6-9).

5 . - Examples. « The geueralized Cauchy problem for
équation (I),

Let r e / , le A = Rm and let L be defined as x — MX[T) where
M is an m x n real matrix, so that (3.1) becomes

(5.1) Mx(x)=l, leR"\

and we have a « generalized CAUCHY problem » for équation (I)»
Now Lu can be represented by the matrix M itself. Since

LDT y — 0 for all y, then if MCJ is any generalized inverse of M,
MMoM = M, there will be solutions of équation (I) satisfying (5.1)
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if and only if (IR71 — MM9)l = 0, and these solutions are given by

(5.2) t — Ufr T) [Mol + y + ƒ Z7(«, %(*)<**,
T

with ilf ;0 = 0.
The CATJCHY problem corresponds to m — n, M ~ IRH and (5.2)

then reduces to (2.1).

6. - Examples. - Two-point b.v.p. for équation (I).

a) Let again Ze A = 12"', let T,, T ^ J , T I # = T 2 a n ^ let i be
defined as x —* M^T^ + M2X(TJ) where Jifj, ikf2 are real w X n
matrices.

Condition (3.1) then becomes

(6.1) ^ ( T i ) + ^2^(T
2) = I

and we have a « two-point b.T.p. » for équation (I).
Let T 1 < T J and take T = T1. Then Lu can be represented b j

the mxn matrix Ml + MtÜ(T2, T,) and Lüty = i Ms^(TÜ, s)y(s)ds.

If [Mt + M%U(T%, x^g satisfies

(6.2) [Mx + M%U(T,, TJ] [M, + M%ü(Tt, T , ) ] ^ , + M2?7(T2, Tl)] =

then for all leRm, yeL\0G(J, Rn) such that

(6.3) 1 IRm - [M, + MtU{xt, TX)] [Mx + M2U(rt, rx)]o | L̂  -

r K, 8)y{8)d8] = Q

the solutions of (I)-(6.L) are given by
t

(6.4) t - U(t, -e,) | [M, + Jf,Z7(Tt, Tl)]flï + ô I + ƒ ?7(<> «)y(8)da •

T2

r(T2» s)2/(s)ds
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where £0 is any solution of [M", + MtU(x%i T^J^ = 0.

b) Whi l e (6,4) is valid for all teJ,a simpler form of (6.4)
restricted to t e [TX , T2] is

6.5) t — ü[t, T J i [Mi + M*2Cr(T2, Tt)]9l -f- 0̂ i +Jo(t, s)y(s)ds,

where t, s—~ G(t, s) is the « generalized » GREEN operator of problem
(I)-(6.1) defined by taking

U{t, TX) [Mi + M2Ü{T%, il)\9MtTJ(Tt> s) +I

= j + ^ )' i s

The «ordinary» GREEK operator corresponds to the case m = i
when [Mi -\-MiU(Tti T,)]-X exists^ and (6.5) is replaced by

(6.6) f — U(t, Tjpf, + -M2Z7(T2, r^-H + 1 Gr(t, s)t/(s)ds

where G can be defined more symmetrically by taking

( ü(t, ^l)[Ml + M 2 D ( T Ï ; T , ) ] - ! ! , ^ , S),
Crtf, s) =

c) When Z = 0, denoting as usual by M * the transpose of a
matrix M, (6.3) can be written

T

(6 7) [
Tl

with

(6.8) «(f) = Z7*-H^ r%)MtH* E, ? e 5™

H - I*» - \MX + M% TJ{xt, Tl)] [Mx + M% Ü(T, , T,) ]^

It is readily verified fihat z defined by (6.8) is a solution of the
équation
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If ZVj, Nt are two real n xk matrices such that

(6.9) NXM, = NtMt

then by (6.2) we see that the z représentée! by (6.8) are the solutions
of (I)* satisfying

(6.1)o* N?Z(T1) + NÏZ(T,) = Q.

If rank [Mx \ M%) — m < 2n and k = 2n — m it can be proved
that there is a unique (2n — m) x n matrix (N? l N*) of rank

= 2n — m, such that (6.9) holds and we say that (Ij0 -(6.1)0 is the
adjoint of

(I), dx/dt - A(t)x = 0

) = 0

and reciprocally.
Therefore we can state the classical result: the two-point b.v.

problem (I)-(6.1)0 has solutions if and only if y satisfies the
« orthogonality » condition (6.7) for all the solutions z of the adjoint
problem (I)0*-(6.1)o*.

d) A case of special interest is m = n, ML = — M% = lnn,
l = 0 e B'\ i.e.

(6.10) x(Ti)~x(Ti) = 0.

When t - * A(t) and t —* y(t) are periodic functions with period
T2 — Tj, then problem (I)-(6.10) is equivalent to that of determining
the «harmonie» solutions of (I|, i.e. solutions of (I) with period
T2 — Tj. In this case we can take 2VX = — iV2 = IR* SO that (I) will
have harmonie solutions if and only if the «perturbing term» y
is «orthogonal» in the sense of (6.9) to all the harmonie solutions

of équation (I)o .

Références: J. 8- BRADLEY[J]; W.J. COLES [1]; J.B. GTARNER [t];

J.B. G-ARNER-L.P. BUBTON [1] ; A. JA. HOKRYAEIOV [1]; "W.S. LOUD

[1]; M.L URBA^TOVIC [1]; W. M. WÏÏYBÜRN [3]; O. WYLER [1].

7. - Examples* - &-point b.v.p. for équation (I).

A generalization of the two-poiut b.v.p. is the following.
Let Ie A — R'u, let T,, ..., xA e / , zl <. . . < T A , and let L be defined

as x — Mxx{^x) + .,. + Mkx(%k), where Mx, ..., Mk are k real m x n
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matrices. A « &-point b.v.p.» (also known as «NICOLETTI b y.p. »
for équation (I) is then that of finding solutions of (I) such that

Taking T = xt, Lu can be représentée! by the m X n matrix
Mt + MtU[Tt, T,) + ... + MtU(tk, T,) and

LD+t/ = ƒM2Ï7(TÊ, s ^ d s + ... + fMkü{Tk, s)y(s)ds.
Tl

Instead of going into further details as in Sec. 6 we wish ta
point out that a ft-point Tb.v.p. is, for instance, that of finding an
intégral curve of (I) intersecting k given linear varieties lying
in the hyperplanes t = Tj, .,., t =• rk respectively.

Références: L.N. ESHTJKOY [1]; W.M. WHYBURN [3],

For k = 3: W.J. COLES [1]; J.B. GARNER [1], [2], [3]; J.B. GARNER-
L. P. BURTON [i] t

8. - Examples, - B.v.p, for équation (I) >vith conditions at a
countable set of points.

We have so far considered b.v.p. with conditions bearing on
the value of the solutions at a finite number of points of / . The
case of conditions at a coitntable set of points of J can be dealt
with along similar lines as follows.

Let A be a compact subinterval of J, let j TA j be a séquence in
A, and let j Mh | be a séquence of real m xn matrices such that

?Jüf„|<oo, \Mk\ = mV\Mhx\l\x\.
t

If x 6 C(A, Rn) we have | SA Mhx(xh) | < m a x | x{t) \ 2A \Mh\< oo; sa
i te± i

00

that it makes sense to define L as x — Hh M"AX(TA), and (3,1) will
become x

with leR"'.
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oc

Lu is represented by ^h Mh TJ{TU , T J and (T = TX)
i

LDjy = 2A / MhU(vh, s)y(s)ds.
2 J

Références: E .H. COLE [1]; W.M. WHYBTJR^T [4].

9. - Examples. - B.v.p. for équation 1̂) with intégral conditions.

There are also b.v p. with side condition (3.1) involving an inté-
gral over a compact subinterval A of J and this, in turn, may involve
the values of solutions at all points of A.

a) For instance, let t —+ M(t) be a giveii real m X n matrix
whose entries are integrable functions of t e A. Then (3.1) can be
written

k r
2,, Mf,x(Th) + j M(<T)x(<j)dc = l

with leRm, and TA, Mh as in Sec. 1, or, more generally,

v

again with lsRl}\ but with TU7 Mh as in Sec. 8.

Références: E.H. COLE [1]; W.B. JONES [1]; ^ .M. KRALL [1];
M. PAC*NI [1]; W.M. WHYBURN [3], [4].

b) Conditions containing STIELTJES intégrais arise when L is

represented by x —*• I dF(a)x{a) where t—*F(t) is a given real mxn

matrix whose entries are functions of bounded variation on

Condition (3.1) becomes then

(91)

with leRm. The operator LJJ can be represented by the
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matr ix 1 dF(c)U(<ï, T,) and (T = TX)
A

*, s)jy(s)ds.
Tl 3

9
If ƒ dF{a)U(<*i T,) is an n X ÏM matr ix such that

A

A A

then for all ? 6 fi'», 3/ 6 Iaoc(J, fin) such that

B« - [ J dF(*)ü{*, T,)] [ ƒ
A A

«)]»(«) ds = 0

the solutions of (I)-(9.1) are given by

t

ƒ Dl*,

2

~ ƒ ETA ̂  [ [dF(c)ü(*, t^ [ ƒ
Tl A

where 0̂ is any solution of
L /
A

For t e A = [TJ . T2] the solutions eau be représentée! by

5„1+J"G(* . s)y(s)d,
Tl

s
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where t, s -* Gr(£, s) is the GIREEN operator defmed by taking

G(t, a) =

1

J G, s) + U[t, «),

- Z7(f, Tl) [ ƒ dF(c)ü(c, T ^ f dF(*)U(*, «), Tl

When / dF(ff)Z7(c, T^| exists, G can be defined by taking

G(t, s) =

-U[t, T s),

s), T X <

Références: A. SMOGORSHEWSKY [1]; W.M. WHYBURST [3].

10. - Problem I I I .

As we stated at the beginning of Sec. 3, Problem I I is a par-
ticular case of (I)-(C) corresponding to ü = LI. a linear variety of
C(J, Ra) defined by means of the linear operator L whose domain
©(£) is the whole of C(J, Rn). There are also problems where Cl,
although a linear variety of C(J, Rn), is not represented this way.

Por instance the set of xe C[J, Rn), J"=]a, w[, for which. the
limit x(w ---) = lim x(t) exists is clearJy a proper subspace of C(J, Rn)

so that a condition like

cannot be written as Lx = 1 with 3>[L) — G{J, Rn).
We are thus led to consider

PROBLEM I I I . — To détermine the solutions x of équation (1) such
that

(10.1) xe V

where V is a given linear variety of C{J, R% such that V f|
has dimension > 0.
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REMARK 10 1. - Ifc can always be assumed that V is a subspace
of C(J, Bn), otherwise taking any vQ e V f| ®(D) we would hare
y = j v0 j + W, W being a subspace of C{J, Rn) and the translation
& = x — VQ in C(J, Rn) would replace the original problem, i,e*
Dx — y, x e V by another problem of the same kind, Bz = y — Bv0.
0 G ? , Therefore Problem I I I is equivalent to

PROBLEM I I I \ - Let V be a given subspace of C(J, Rn). such
that V f| 3)(D) 4= i 0 ). We wish to détermine the solutions of équation
(I) satisfying the side condition (10.1).

REMARK 10.2. - Owing to the linearity Problem IIF, i.e, Dx—y,
oceV, V a subspace of C{J, Rn), will have solutions for the y belonging
to a certain subspace B of LiociJ, R11)- Using the terminology of
J. L. MASSERA-J. J. SCHAFFER [3] we say that the pair (B, V) is
admissible for D, if for every yeB, Bx — y has soluiions xeV*
(Y-solutions).

Then problem I I I ' can be reformulated in a more exhaustive
way as

PROBLEM III". - Let V be a given subspace of C(Jy R
n) such

that Vf) ©(7)14=10 i, It is required a) to détermine the maximal
subspace B d L\OC{J^ Rn) such that the pair (B} V) is admissible

for B ; b) for each y e B to détermine ail yeSft{B) such that x+D^î/e T̂-

11. - Examples.

Clearly Problem I I I is extremely gênerai. It includes Problem
II, hence practically all traditional b.v.p. for équation (1), as well
as a quantity of other problems which are far apart from that
class or halfway.

We are going to illustrate this point by a number of examples,

a) Let Vhe the subspace Cr{J. Rn) of f unctions x with continuous
rîh derivative (r > l). Problem I I I is then that of determining the
solutions of (I) with a prescribed « degree of regularity ».

6) Let us dénote by Lp(wy R
n)} I< j3<oo, the space of f unctions

x of teJ—]*i w[ into Rv, such that / \x(t) \pdt <oo for some p 6 J,
and let 7 = £ P ( W , R«) f| C(J, JS"). p

Symmetrically we can consider Zfp(a, R"), or else LP(J, Rv), the

space of x such that / [ x(t) \p dt <oo .

3
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c) Define V as the intersection of C{J, Bn) with the space of
n-vector f unctions t — x[t) whose first fc(< n) components are in
Lp on [S, oi[ for some p e J, or on ]x. p] for some p e J, or on ƒ. This
includes for instance the well known problems of de termining
1/(0, oo| or J/(— oo, oo) solutions of a second order l inear diffe-
rential eqaation.

d) Let Z/^CÜ, iü") be the space of x which are essentially bounded
on [6, w[, p e J, i e . such that ess snp [ x(t) [ < oo.

Then V = L̂ »(w, JS") f] C(J, En) is the space of w-vector functions
continuous on ƒ, bounded at w.

Similarly we can consider Xœ(a, i2n), and Lœ(J> Rn) and their
intersections V with

e) In particular given a séquence of real m X n matrices
00

I Mh î such that S/( ] M}t\ < oo as in Sec. 8, let | TA | be a séquence
ï

on ƒ having to as a limit point. Then take as V the linear manifold
of x e L*>{o), Bn) f] C(J, Bn) such that

ƒ) The « asymptotLc » CATJCHY problem

(11.1) a ( w - ) = £, £e£'1

already considered in Sec. 10 is a Problem III where V is the
linear variety of iceL°°(w, i2") f| 0[J, Rn) which satisfy (11.1).

Ifc should be noted that, contrary to the ordinary CAUCHT problem,
the « asymptotic * version may have no solution or infinitely many:
for instance take cfce/d£ + x = O5 n = l, with ?=}=0 or l~0 respectively.

g) Without going into details we shall indicate problems
analogous to those considered in Secs. 6, 7, 8, where one or both
limits x{%-{-)} xKoi — ) enter together with values oÜ x at given points^
of J.

Again, we could consider problems similar to those of Sec. 9, ïn
which the intégrais (LEBESGTUE or STIELTJES) are extended over
an interval [p, w[, or ]x, p], or over J.

h\ The problem indicated at the end of Sec. 7, of finding
Solutions of (ï) «intersecting» k given linear varieties of the (t, x)-
space is no more a Problem II, but a Problem III, with J=B, if
one at least of those varieties is not contained in a hyperplane
t = const.
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i) Another problem I I I with J=R is that of finding solutions
of (I) which are periodic with a given period T, i.e. x(t) - x(t-\~T)—0.

If also A and y have period T, this will be a Problem I I (Sec.
6, d) but not otherwise.

j) The problem of finding solutions of équation (I) which are
almost periodic is again a Problem III, with J — R.

12. - Non linear problems for équation (I),

In all the problems which have been considered so far, the set
fi of condition (C) is a linear variety of C(*/, Rn). There are other
problems in which the linearity of £1 is replaced by the weaker
assumption of convexity. For instance let p > 0 and let H be
defined as

Q = \xeG(J, Rn):\x(t)\<p, ?><t<o>\.

PART II

EQUATION (II)

13 - General remarks about problem (II)-(C).

Bef ore we turn our attention to problems of type (II)-(C) there
are a few gênerai remarks to be made.

First of all, while the solutions of équation (I) are all defiued
over the whole interval J — ]st, w[ and, for a given t/, they form
an ^-dimensional linear variety of C(J, R'% this is no longer true
for équation (II). In fact, to every solution x of (II) there corresponds
a (maximal) interval of existence, whicb, in gênerai, is a proper
subinterval of 3> depending on x. From this follows that, when
dealing with équation (II), VL will no longer be a subset of C(Jj R'%
but rather of C(A, Rn) where A is a prescribed subinterval of J.

Secondly, the treatment of problem (I)-(C), at least as long as
fl is a liuear variety, is almost entirely algebraic. The only point
requiring some topology is the existence of the évolution operator
U (Th. 1.1). On the contrary to solve problem (II)-(C) systematically
requires such tools, as fixed point theorems, which are essentially
topological. This will require, in turn, the introduction of a topology
ïnto the linear space C(A, Rn\ and this is done in different ways
according to whefcher A is compact or not.
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If A is compact one usually uses the norm topology with the
norm \x \ = sup | x(t) \ and then C(A, Rn) is a BANACH space ( =

linear, normed, complete space).
If A = [p, w[, or A — ]oc, [i], or A = J, one can use the compact

topology, i.e. the topology of uniform convergence on compact
intervals KCZ&, and C(A, Rn) then becomes a FBÉCHET space ( ~
linear metric, locally convex, complete spaoe).

We are now going to look more closely at the connection between
fixed point theorems and problem (II)-(C)

Griven A CZ J, define first the operator F which transforme
x : t — x(t) of C(A, Rn) into Fx\t-~ f(t, x(t% so that équation (II)
can be written Dx — Fx. It is clear that if Fx does not belong to
the image DQ of ü by B there is no solution of problem (II)-(C),
so that a necessary condition for (II)-(C) to be solved is

(13.1) FCL nDQ={=0,

where FVt is the image of Q, by F. Let us replace (13.1) by the
stronger assumption

(13.2) FCl d DÜ,

which means that for each w e O there are x € O. such that Fw = Dx.
Therefore (13.2) means that

(13.3) Dx == Fw, x e O,

a problem of type (I)-(C)} has solutions for all weQ.

Take we Cl, then JPVÜ, then its inverse image LFrv by Z), and
finally the intersection set BFw f| O, i.e. the set of solutions of
(13.3). Since, generally, this set contains more than one point, we
have thus defined a set-valued mapping

of ft. into the class P(O) of subsets of O. lts fixed points, xe'&x, if
there are any, are solutions of

(13.4) Dx^Fx, aeü,

i.e. of problem (II)-(C) and conversely, so that every fixed point
theorem for % will also be an existence theorem for (II)-(C). It
does not seem, however, that this procedure has been followed so
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far, probably because the existing fixed point theorems for set-
-vahied mappings are not suitable. The current trend is rather that
of replacing % by an ordinary, point-to-point mapping T of ü into
itself, obfcained by selecting a single point Tw trom DFw f) Q. We
thus have

(13.5) we tl => DTw = Fw, Tweü

so that every fixed point w= Tw is a solution of (13 4) ie. of
<1I)-(C(. In other words oue has to defme a convenient sélection
mapping S of P(^i) into n and then replace % by the composition

It should be noted that since JDLFw = i T^Ffo \ + &l( D), the effect
of S will be that of singling a certain Ulw out of §ft(D) and, ultimately,

a certain \w out of JB», such that U\w + ntVws0. and T will be
given by

(13.5) T: w — Tw = ülw + DÏFw.

Pinally, to prove the existence of fixed points of T one can
either use theorems based on «compactness» properties (such as
Ths. A, B of the Appendix) or on « contractivity » (such as Ths.
C, D, E of the sarae App.).

14. - Problem IV. - The Cauchy problem for équation (II),
Existence.

a) The simplest b.v.p. for equalion (II) is

PKOBLEM IV. - The Cauchy problem for équation (II).
Given an interval A CZ J, T e A, leRn, détermine the solutions of

(II) on A siich that

Contrary to what happens for Problem I, there are à CZ J "where
Probletn IV has no solution. For instance, the équation (n = 1,

(14.1)

q > 1 and the condition x(0) = \ > 0 has no solution on A if
0, (q - l ) - ^ - 9 ] .
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6) Ia accordance with (13.2) we have to impose conditions on
the data A, A, ƒ, T, % in order that

14.2 Dx = Fw, X(T) = Ç

have solutions on à for ail wieC(a, P") suci, hat W(T) — \. By
virtue of Th. 2.1 if we C(A, R») implies FweLiOG{&, Rl% i.e. if wô
assume that

-H2) t-+f(t,w(t)} belong to Lioc(^ Rn) for ail weC{k,R%

then (14.2) has a unique solution, namely

(14.3) Tw = m + DÏFw,

so that we have a point-to-point mapping T of

Q = | w

into itself whose fixed points are solutions of Problem IV, and
no sélection is needed.

However assumption iï2) does not insure the existence of fixed
points of T, as is shown by the example of équation (14.1), so one has
to impose on ƒ stronger assumptions.

c) The simplest set of such conditions is represented by
CA-RATHEODORY^S ones, namely

oc) for each tek let x —*- f{t, x) be continuons on Rn;

P) for each xs Rn let t — f(t, x) be (Lebesgue) measurable on A;

Y) let

\f{t, aO|<P(£). xeR\ a.e. te A,

for some t -+ p(£) belonging to iioe(A, R).

It is readUjT seen that a), 6), 7) imply H:) so that T can be
defmed by (14.3), i.e. by

(14.4) T: w— Tw= U{t, T)Ç + ƒ D(«, s) f (s, x(s))ds.
T

If A is compact, C(A. Rn) is a BAJSTACH space in the norm topology
(Sec. 13). To prove the existence of fixed points of T we can use
SCHAUDJER'S theorem (Appendix, Th. il), since T turns out to be
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continuons, TCl is bounded and the XB TO are equieontinuous on
A, hence, by ASCOLI'S theorem, TO. is compact.

Alternatively, since, again by ASCOLI'S theorem, T turns out
to be compact, hence completely continuous, we can apply Th. B
of the Appendix by showing that there are séquences \wk\ in Q
which are bounded and such that Twk — wA —* 0 in C(A, Rn).
Assuming, for instance, A = [T, T -|- S], S > 0, TONELLI'S séquence

t—Sfk

U(t, T)5 + ƒ U(t, 8)f[8, wk(s))ds, * e [T + S/fc, T + S]
T

has both properties. It should be noted that Th. B does iiot insure
the convergence of | wk(t) \ but only the existence of a subsequence
which converges to a fixed point.

When A is non-compact, for instance A = [8, w[ then CfA, Rn)
can be made into a PBÉCHET space (Sec. 13) and we may replace
SCHATIDEB'S theorem by TYCHONOV'S one (Appendix, Th. A).

Summing up we have:

TH. 14.1. - If Caratheodory conditions a), p, y) are satisfied on
A, then Problem IV has solutions for each x e A and each ü e Rn.

d) When A = J Th. 2,1 is a Corollary of Th. 14.1 as far as
existence is concerned. However assumption y) is exceedingly
restricted. For instance it does not apply to équation (14.1) with
0 <T q < 1 for Avhich Problem IV has solutions on J = R for ail
possible T and Ç. This example suggest to replace y) by the weaker

y') let

! A'? x) I ̂  PU) + Y(') I x \q> XB
 ^ " Î

 a-e- ' e A

for sonie pair o f fttnetions t —+- p(£), t —~ j(t) belongîng to iioc(A, R)
and 0 < q < 1.

By using an artifice it is then possible to deduce from Th. 14.1
the two extensions represented by Ths. 14.2 and 14.3.

T H . 14.2. - If assumptions a), p), y') are satisfied on A and Q<q < 1,
then problem I V has solutions for each xeA and each \BR}\

PROOP. - Let A be compact. Then iiocl^, ^) = £(^> &)• Since
0 < g <: 1 it follows that there are r > 0 such that

(14.5) r - M^ ƒ y(s)ds>MA[u] + ƒ
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where

(14.6) M± = sup ] U{t, s) |, {t, s) e A x A.

The artifice, largely used in the literature, consista of replacing

(f(t, x), if | a j | < £ r .
fit, x)=\

(f(t, r\x\-*x), if |a ]>r.

Clearly f satisfies <x), {}) and also y) since from y') follows

(14 7) | f\[t, x) | ̂  m + r<i(t), xeR", a . U s l

By virtue of Th. 14.1 there are fixed point of the mapping

t

f: w-* Tw*= TJ{t, T)1 + l U(t, s)f(s, rv(s))ds.
T

But if x= Tiï from (14.7) and (14.5) follows \x(t)\<r, te^ hence
f(s, x(s)) = f(s, x[s)) a.e. s e A . Therefore œ = Ta;, i.e. x is a fixed
point also for T defined by (14.4), hence a solution of Problem IY.

If A = [8, oi[ let | rk \ be a séquence in A, t^ —* w, T < T I <C^2 <! •••
and let xl be a solution of (II) on [8, Tt] such that o;1^) = Ç, let as*
be a solution on [TM T2] such that X9(T,) = X1(T1), etc, The x deüned
by xl on [$, TJ , by cc* on [TX, T2], etc. wil l be a solution on A hence
a solution of Problem IV.

e) When q — 1, (14.5) would become

(l - M* ƒ y(s)ds) r > M^\ l} + ƒ ?(s)ds]
A À

and to insure the existence of such an r > 0 we nave to make the
additional assumption

(14.8) 1—M^ i y($)d$ > 0, for every compact A c J ,

A

with MA defined by (14.6) "VVe thus lxave

T H . 14.3. - If assumptions a), 6), y') are satisfied on A, with q = l,
and if (14.8) holds3 then Problem TV has solutions for each t e A
and each l e Rn.
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REMARK 14.1. - When q = 1 the iiiequality in y')

\f(t, x)\<ZW) + i(t)\x\

could be replaced by the stronger one

(14.9) \f(t, x)~rtt)x\<m

without any farther assumption on y(t) like (14.8). In fact if (14.9)
holds we can write équation (II) as

dxjdt - [A(t) + i[t)IR»]x =* f(t, x) - f[t)x

and then apply Th, 14.1.

f) The same artifice used to deduce Ths, 14.2 and 14.3 from
Th. 14.1 can be applied to proye

T H . 14,4. - Let Caratheodory hypotheses a), P) hold and let y) be
replaced by the assumption that there is somepair r > 0 and t—*(*,(£)
belonging to L{&> B) such that

with M± defined by (14.6).
Then Problem IV has solutions for each TG & and each

such that

This Theorem covers such cases as that of équation (14.1) with

g) All the existence theorems considered in this Sec. are based
on a majoration of the norm | f\ of ƒ. Other theorems, insuring
the existence only on the left or on the right of T, can be obtained
by using instead a minoration or a majoration, respectiveîy, of
the inner product x*f. This is the starting point of a comparison
principle which is largely nsed in A^arious branches of the theory
of ordinary d.e. A présentation of this priuciple wonld go beyond
the scope of this report and ye refer the reader to the exposition
of F. BRAUER [1] and to E. CONTI [3], [4].
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15. - Problem IV: the Oauchy problem for équation (II),
Uniq^ueness.

a) Auother remarkable feature of Problem IV is that, con-
trary to Problem I, it may admit more than one solution. For
instance x = 0 and x — (1 — g /̂U-sO /̂d-g) for £ > 0 are distinct
solutions of équation (14.1), 0 < g < 1, such that x(Q) = 0,

The structure and the properties of the set of solutions of
Problem IY with given A, were investigated in detail by G-.
PEANO, H. KNESER, M. FUKUHARA, M. NAGTJMO, E KAUKE and

others. For more complete références and more recent results
see: K. HAYASHI [t], CH. C. PUGH [1], Q-. E. SET.L [1].

When there is only one solution of Problem IV on A it is
customarily denoted as x = x(t, T, l), The continuity of the mapping
l —+• x( • , • , l) of Rn into CïA, En) can be proyed by observing
that it transforms sets of Rn which are relatively compact (i.e.
bounded) into sets of C(A, Rn) which are also relatively compact
(i.e. bounded and equicontinuous), while the inverse mapping
#(•? #? ^)^^^ bas a closed graph.

See for instance A, F. FILTPPOV [1], [2].

h) The theorems of Sec. 14 not only do not insur*1 the uni-
queness of the solution but they are not of a constructive kind.
Both these disadvantages are eliminated when the assumptions
on f allow the use of BAKACH contraction principle in a form or
another (See Ths. C. D, E of the Appendix), so that a unique fixed
point of T is obtained by the «method of successive approxima-
tions», i.e. as the limit of a séquence of itérations x0, Tx0, TJx0,...
Since ail solutions of Problem IV are also solutions of x= Ul+D^ Fx,
i.e. fixed point of the mapping T defined by (14.3) we have, for
instance

T H . 15.1. - Let à be a compact subinterval o f J, let Caratheodory
hypotheses a), S) hold and let, fotrther

(15.1) | f{t, x) - f(t, y)| < l(t) \x-y\, x, y e R'\ a.e. t e A

for some t —-* \{t) belonging to L(A, R) If, either

- M± [l{s)ds :(15.2) 1 - Mx l{s)ds>0

with M\ defined by (14 6), or Caratheodory's Y) holds, ihen Problem
IV has a unique solution. This solution ts the limit in C(A, Rn)
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of the séquence
t

(15.3) xt+l(t) = U(t, T)5 +fü(t, s)f(s, xk(s))ds

x0 any function of C(A, i2w).

PROOF. - Let (15.2) hold. Then by (14.4) we have

\ x -

whe re | | dénote norms in C(A, B% and (15.2) means that T is a
contractive mapping of C(A, i2n).

Let now CARATHEODORY'S y) hold. Then T is continuons and
it is easy to prove that there is a positive integer v such that Tv is
contractive. The resnlt follows froni Th. D of the Appendix. Al-
ternat ively we could use the device we already used in the proof
of Th. 1.1, due to A. B I E L E C K I [1], consisting of i ender ing T a
contraction by introducing a suitable norm into C(A, Rn) and then
apply Th. C of the Appendix.

c) The inequal i ty (J5.1) does not hold for «strongly» nonli-
near ƒ such as \x\q w i th q > 1. I n cases like this one has to as-
sume the validity of (15.1) for cc, y restricted to a certain bail of
Bn and to niake use of « locally » contractive mappings, like that
of Th. E of the Appendix.

d) A remark aualogous to that made in Sec. 14, (/) holds.
Namely Th. 15,1 is based on a majoration of the norm | Af | of
&f=f(t, x + Aa;) — f{t, x) by means of a l inear function of Ax.
More gênerai uniqueness theorems like P E R R O K ' S or K A M K E ' S

criterion (See C. O L E C H f2]) using an inequality of the form |Af|<£
<^<?(t, |Aac|) are known. However , unilatéral uniqueness (i.e. only
on one side of T) can be obtained by using a majoration or a
minoration of the inner product (Ax)*(Af), or, more in gênerai , by
means of the comparison principle already mentioned. W e refer,
also for the l i terature to E. CONTI [3], E. D. MOYER [1] and G.
CILIBEHTO [1].

e) It is quite natural to ask whether there are conditions
under which the séquence of itérations can be used to obtain a
solution of Problem IV when there is no uniqueness. This is
stîll an open question, apparently (See E. A. CODDIKGTON - N.
LEVINSOIST [1]; also E. M. BIANCHINI [1]).
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16. - Problem Y.

a) We consider now for équation (II) the correspondu)g of
Problem II , namely:

PROBLEM V. - Let A 6e a given compact subinterval of J> Let
A be a real linear normed space and let L be a linear bounded
operator with <5){L) = C{&, R% St(i)czA and 9t(L)4=j0j. Given
an l e SUL), détermine the solutions of équations (II) on A such that

(16 1) Lx = l

We proceed, as for Problem IV, along the lines sketched in
Sec. 13.

In accordauce to (13.2) we have to put conditions on A, A, f,
L, Z, in order that

(16.2) Bx = Fw, Lx = l

have solutions on A for all w such that Lw = l.
To apply Th. 3.1, we define the operators LJJ, Lu as in Sec.

3. Then (16.2) will have solutions for all w, Lw = h if and only if

(16.3) Lw = l ^> (IA - LuLu) [l - LBtFw) = 0,

with T e A arbitrarily fixed. According to (3.6) the set of solutions
of (16.2) is

%w = U§Z(Lu) + I ÜLU l — LBtFw) +

so that w-+%w is a point-to-set mapping of Q = LI into P(ü) ,
unless ê>t(ii7) = | 0 j , i e . unless Lu has a left inverse. But, ob-
viously, ?K{LJJ) does not depend on w so that to replace % by a
point-to-point mapping T of LI into itself all we have to do is
to select ;0 e §ft{Ljj)> for instance £0 = 0, and define

(16.4) T: w — Tw = mo + ULhtt — LBtFw) +

b) A set of conditions insuring the existence of fixed points
of T is, again, represented by CARATHEODORY'S a), (S), y) of Sçc. 14.
To see this note first that Q — LI is closed since L is continuons,
by assumption. Next, Lnj is also continuous since it maps 8t(iu-),
a finite dimensional space, into Rn. Then writing T as

Tw = U[l0 + Lh l) - ÜLhLBtFw + Bt
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it is not difficult to prove, using a), 8), y), that wk~+w in C(A, i2w)
implies TwA —*• Tw in C(A, üï"), so that T is continuons.

Again by a), fi), y), we have that the f unctions t ~— Tw(t) are
uniformly bounded and equicontinuous on A, hence by ASCOLI'S

theorem it follows that TLl is a compact subset of C(A, Bn).
Therefore SCHAUDER-TYCHONOY'S theorem (Th. A of the Appendix)
insures the existence of fixed points of T. Summing up we ha^e:

TH. 16.1. - JProblem Y has solutions if i) f satisfies Caratheodory' s
conditions a), 3), y), of Sec. 14, and ii) the problem

(16.5) dxjdt ~ A(t)x = f(t, w{t% Lx = l

has solutions for each w e C(A, B% Lw = l.

c) Let A bB a compact subin te r ra l of J and assume, in addition
to the assnmptions of Th. 16.1, that the CAUCHY problem

Dx = Fx, X{T) = ?

has a unique solution for each 5 6 Rn. Dénote this solution by x%
and define the mapping

S : l — Si = Eo + LU - L9uLDtFxt

of Bn into itself. Since \ —*- x$ is a continuons mapping of Rn into
C(A, JK11) (Sec. 15, a)), it follows, under CAKATHEODORY conditions,
that S is continuons and it maps R>t into a bounded set. BROU-

WER7 s theorem then insures the existence of fixed points \ = S\*
But if ç = SÇ then

x*=m + B+Fx^ = Z7(H0 + L9u l - LlLB+Fx^) + BtFx^ = Txz ,

i.e x | is a fixed point of T.

Therefore, the addifcional assumption of uniqueness for the
CATJCHY problem allows to replace SCHATJDER'S theorem by the
more elementary BROUWER's theorem iu the proof of Th. 16.1.

d) To prove Th. 16.1 we could also have used Th. B of the
Appendix, but to construct a suitable séquence | wk \ would require,
in gênerai, the application of BROUWER's theorem for each Je,
which is substantially equiYalent to a unique application of SCHAU-

DER's theorem.
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e) As was already observed in Sec. 14. d), assumptiou y) is
a very restrictive one. l t can be replaced however by more gênerai
assumptions like y') (Sec. 14, d)) and existence theorems simiïar to
Ths. 14.2, 14.3 and 14.4 can be obtained through the artifice used
in the proof of Th. 14.2. We have, for instance:

TH. 16,2. - Problem V has solutions if i) f satisfies conditions
a), P) of Sec. 14, ii) there are two functions t~*P(£), £—*Y(£) integratie
on A such that

(16.6) | f(t, x) | < piQ + y(t)\x\, XB Rn, a.e. t G A

> 0| L | MA) f T
i

MA defined by (14,6), and m) /fee problem (16.5) ftas solutions
for each w e C(A, B"), Lw = l.

f) It is easily verified that, provided (16.3) hold, not only
every fixed point of T is a solution of Problem V, but also, con-
versely, every solution of Problem Y is a fixed point of T. "The-
refore conditions on f which insure some kind of contractivity
for T will also insure uniqueness of the solution of Problem Y.
Farther, such conditions wilt also insure that the solution can
be obtained as the limit of a séquence of itérations | TkxQ \ starting
from some r0 e C(A, Bn). arbitrarily chosen.

The dependence of the solution from the data A, f, L< l would
certainly deserve further investigation.

f̂) When Z = 0? taking c0 = 0 the mapping T is defined by

Tw = KFw

where K = — LIJLD^ + Dj is a linear operator of iioc(^, Rn) into
C(A, Rn) Therefore the fixed points of T are the solutions of a
HAMJMERSTEI:^ équation w~KFw Such équations have been exten-
sively investigated: we refer to the expository papers of H, EHR-
MANisr [2], [3], also for the bibliography, and to M. M. YAINBEKG' S

book [!].

h) We repeatedly observed that 3i(Lu) is a subspace of A
of dimension m<n. If m>n the incompatibility of Problem I I
(Remark 4.1), i.e.

Dx = 0, Lx = 0 => 0,
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or, equivalently, the existence of a left inverse LJJ of LJJ does not
insure per se that (16.2) i.e. (16.5), has solutions for each w, Lw—L
However, this will be the case when m = n, since then LJJ^LU

and (16.3) is satisfied for all n> e C(A, Bn), even those for which

4
This case is the one most frequently encountered in the lite-

rature. Por instance, when L is defined by Lx = X(TX)— #(T2) as
in the problem of harmonie solutions (Sec. 6, d)) it is called the
«non résonance» case.

When A — Rn, so that m = n9 and L is into A = Rn, it can be

proved (A. LASOTA-Z. OPIAL [2]) that there is a t—+Â{t) from A

into i(A, fil) such that denoting by Ü the évolution operator

associated with A, the corresponding operator Ly has the inverse

LQ . Writing équation (II) as

dxjdt - A\t)x = f(t, x)

with f[ty x) — f(t, x) + [A(t) — A{t)]xy if suitable assumptions are
satisfied by f such, for instance, as CARATHEODORY' S a), fi), y), the
existence of solutions of Problem Y can be proved. It must be
noted however that imposing conditions like y) on f implies a
restriction both on A and L, hence on Lu-

i) A case which frequently occurs is that of Problem Y for
an équation (II) of the form

(II') dxjdt = *(«, x)x + <p(t, x)

where o satisfies CARATHEODORY' S a), p), y) and 4> is- a function
(t, x) into fil which also satisfies CARATHEODORY' S assumptions.
More precisely 4> is continuous (in the norm topology of fil) with
respect to x e R'b for each t e A, (LEBESGTJE) measurable (in the
same topology) with respect to t for each xeRn, and | <î>(t, x)\<y(t),
x e R}\ a.e. t 6 A, for some y e ifioc(̂ j -Ri-

Equation (II') can be considered as a special case of (II) with
A(t) = 0, f(t, x) = 4>(*, x)x + <f[t, x),

\f[t, x)\ <, |*(*. x)| |*| + I f(t, x)\<m + Y(t)\x\.

Since A{t) = 0 the corresponding évolution operator is the iden-
tity I in Rn and Lu = Lj will be the restriction of L to Rn, con-
sidered as the subspace of constant x e C(A, Rn). Since M& — 1, we
dérive from Th. 16,2 the conclusion that Problem V for équation
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(ID, i.e.

(16.7) dxjdt = 4>(f, x)x + ff(t9 x\ Lx = l

has solutions if, in addition to the assumptions made on 4> and
f, we have

(16.8) l-(t + \Lh\\L\)ƒY(s)ds > 0
A

and

(16 9) dx/di = *(*, w(t))w(0 + <p(t, w(f)), Lx = l

has solutions for each w, Lw = L In particular, if A — E'1 and
det Li 4=0 there will be a solution of (16.7) provided that (16.8)
holds, with L9£ replaced b j LJ1.

j) Another way of dealing with Problem (16.7) is the fol-
lowing. For eacb tl?, Lw = l, the function

of A into £1, is integrable by yirtue of the assumptions on O.
Instead of (16.9) ]et us consider the problem

(16.10) dxjdt — AJt)x = <j>(t, w(tO, Lx = l

and assume that it has solutions for each w, Lw = l. Next we
define (Th. 1.1) the évolution operator Uw associated with Aw for
each w, the restriction LWi 0 of L to the null space 9Ï(Z)^) of
D„j = dfdt — Aw(t), the composition Luî0=

: Lw, oUw, and its genera-
lized inverse Ljjw .

The fixed points of

t

w(s))ds) +

Uw(t,

will then be solutions of problem (16.7). To insure the existence
of such fixed points one has to assume that the set spanned by

LÜW\ for Lw = l is bounded.

12
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This assumption will be satisfied, in particular, if A = Kn,

dxjdt — AJfix = 0, Lx = 0 => x = 0

for each w, Lw = l, so that Lu]v exists and, f urther,

Lw = l => | det LUw | > o > 0

for some o > 0.

Références: H. A. ANTOSIEWICZ [1], [2|; L. BARBALAT - A.
HALANAT [1]; E. CONTI [1], [2], [5], [6], [7], [8]; L. N. ESHUKOV

[2]; S. N. HILT [1]; A. LASOTA [1]; A, LASOTA - C. OLECH [1];

A. LASOTA - Z. OPIAD [1], [2], [3], [4]; Z. OPIAL [1]; P. SASTTORO [1];

Y. P. SKRIPKIK [1]; G. YILLARI [1]; W.M. WHYBURIST [1], [2], [5].

17. - ProWem VJ.

a) The linear variety LI defined by Lw = l can be considered
as the ï-level set of the linear operator L of C(&, iJ") into the
space A. This remark suggests the following generalization of
Problem V.

PROBLEM VI. - Let A be a given compact subinterval of J. Let
A be a real linear nornied space and let Q be a continuons, non
necessarily linear, mapping of C(A, En) into A such that the set

. Rn) :Qx = 0\

is infinité. It is required to détermine the solutions x of équation
belonging to Ü, i.e. such that

(17.1) Qx = 0.

b) We assume {Sec. 13) that

Dx = Fw, Qx = 0

has solutions for each n>, Qw = 0. Next we define a function
of (w> yj e ü x &t(D) into A by taking T G A and

, y) - Q(x + D+Fw).

The assumption just made means that to each w e Ù there cor-
responds a non empty subset Sw of ®L(D) such that / e Sw =>

» y) = o.
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A criterion to select a single yw out of Sw will tlien be repre-
sented by any implicit function theorem insuring the existence
of one mappiug w —- Xw of Q into £fi(D) sucli that <t>(w, ^w) = 0.

A fixed point w = Tw of the mapping T\ w —- Tw = Xw +
^ of ü into Ü is a solution of Problem VI.

Référence: C. AVRAMESCTJ [i].

c) Problem VI has also been treated by a different method
which is closer to the one used for Problem V.

Write Q = L- H, with H = L—Q and L linear, ®(i) = C(A, R»),
?fC{L) =j= 1 0 j , such that Lu bas right inverses Lu (or, in particular
the inverse Lzj1)- Then

T : x — Tx - ui, + ULt(Hx - LDÏFx) + Ü$Fx

is a mapping oC C(A, i2n) into itself such that

Therefore, in. gênerai, T does not map ü into Q, but anyway
its fixed points, if there are any, belong to ,Q and are solutions
of Problem VI.

Références: R. CONTI [6]; H. EHEMANN [1], [3]; G. PÜLVIRENTI

[1]; G-. SANTAGAÏI [1], [2]; E. SCBTTCCA [1].

18. - Problem VII.

a) Problem V can now be generalized in another direction.
Observe that the linear variety LI defined by Lw—l is a convex
and also (due to the assumptions on L) infinité and closed subset
of CO, JR11). This suggests:

PROBLEM VII. - Let A be a given subinterval of J. Let Q be
an infinité, convex closed subset of C(A, Rn). We want to détermine
the solutions x of équation (II) such that

(18.1) xeQ.

It should be noted that Problem VII does not include Problem
VI because the set j x e C(A, Rn) \ Qx = 0 ) needs not to be convex.

This time, as we shall see, the sélection criterion is provided,
under suitable assumptions, by a fundamental lemma due to MAS-
SERA and SCHAPFER.
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6) In accordance with Sec. 13 we should assume that Dx — Fw,
x e Q has solutions for each w e Q . In fact we shall assume, more
restrictively, that the span of Q (i.e. the set of linear combinations
of éléments in Q) and the span of FQ, are subspaces Vd C(A, Rn)
and jBdiioc(A, JB'O, respectively, such that the pair (5, V) is ad-
missible with respect to D in the sense of MASSERA-SCHAFFER

(Sec. 10). This means that

Bx — y, x e V

has solutions for each y e B.
Having fixed x e A let X0CZ Bn be the subspace of tt-vectors

7.(T) corresponding to i s SZ(D) f| V, let Xl be any complement of
XQ to Rn and let P be the projection of Bn onto X,. Since Xo,
X, are both finite dimensional, hence closed, it can be proved:

Massera-Schaffer3s lemma. If the pair (B, V) is admissible for
D and if lQ e Xo, then to each y e B the recorresponds a unique xv

such that
Dxy = y, ccye V, PXV(T) = ?0.

Moreover the mapping y — xy of B into DB f] V is continuons.

This is a sélection criterion which allows to define a point-
to-point mapping T of ü, into Q (Sec. 13) and the existence of
fixed points can then be proved under suitable assumptions.

This technique has been successfully applied both for compact
and non compact A.

Références: H. A. ANTOSIEWICZ [2]; W. A. COPPEL [1]; C.
CoRDTTNEAsru [2], [3]. [4]; P. HARTMAN [1]; P. HARTMAN - N*. ONTJ-

CHIC [1]; J. L. MASSERA [1]; J. L. MASSERA - J. J. SCHAFEER [IJ,

[2], [3]

c) A remark analogous to the one made in Sec. 16, d) about
the inconvenience of using Th. B of the Appendix instead of
SCHATJDER-TYCHONOV'S or BANACH'S theorems to prove the exi-
stence of solutions of Problem Y is valid also for Problem VII,
in gênerai. However Th. B suits well to solre the asymptotic
CAITCHT problem (11.1) for équation (II) by using a modified ver-
sion of To^ELiLi's séquence (Sec. 14) (See for instance IA. D.
MAMEDOV [1]).

19. - A problem of G, Stampacehia.

The following problem considered by GL STAMPACCHIA [1] is
an extension j;o équation (II) of the one considered in Sec. 11, h)
for équation (I).
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Let A be a compact subinterval of J. Let Vl9 ..., Vn be given
subsets of A x Rl. It is required to détermine solutions of équa-
tion (II) whose graph bas a non empty intersection with each set Vt.

Therefore in this problem Q will be the subset of x e C(A, Rn)
whose graph intersects each set Vt, hence it needs not to be convex.

Take x e A and let Ut dénote the set of points /(T) e Rn corre-
sponding to x. e &C(D) whose graph intersects V,. In other words
each set V, is projected into the hyperplane t = x along the intégral
curvea of Dx = 0 and the projection is Ut.

Then let 6, : x —^ 6/ar) be defined on Rn by

eXac) = d(sc, ü,), x e Bn.

Assumptions are made about the existence of solutions of the
System ô̂ or) = 0, < = 1 ; . . . , n, so that |J lZ7 l4=0 or, equivalently

Z)x = 0, x e Û

has solutions.
Finally équation (II), Dx = Fx, is imbedded in the family Dx =

= IFx, \ e [0j 1] and it is assumed that the CATTCHY problem with
arbitrary initial data has a unique solution on A for each X. This
allons to define n sets TJ%tx for each 1 by projecting the sets V,
along the intégral curves of Dx = \Fx and to define n functions
6t^ in B'\ by

K x(a?) = d(£c, ^ x), a e iî1*, X e [0, 1].

The problem is thus transformed into that of proving \JtTJ,, !=j=0,
or equivalently the existence of solutions of Ôt, 1(x) = 0i < = 1,...,n.

This is done under additional assumptions on the Z7(J 0 = TJt

which insure that the mapping x—*$if\(x) has an odd topological
degree (not necessarily equal to + IX ^y applying BROU^VER' S

invariance theorem.
The assumption about the uniqueness for the CAUCHT problem

can be replaced by using TO^ELLJ 's séquence \xk,\\ but this re-
quires an application of BROUWER'S theorem for each k. It spems
likely that a unique application of LERAY-SCHAÏTDER' S theory
would be equivalent, a remark analogous to that of Sec. 16, d),

20. - Generalized solutions and interface conditions.

In ail what précèdes solutions are always supposed to be abso-
lutely continuous. Technical applications require however to extend
the définition of solution so as to include functions of bounded
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variation, possibly discontinuons. Such discontinuities will then
neoessarily be of the first kind (both limits x(x — ), x(~ +) exist
for each T) and they will be countably many at most.

I t makes sense therefore to ask for such generalized solutions
which in addition to side conditions like those entering the ya-
rious b y.p., also satisfy a finite or countable set of equalities

(20.1) Mkx(xk - ) + Nkx(rk + ) = ck

where the Tk are preecribed discontinuity points on J, the Mk and
Nk are given matrices, and the ck are given vectors. Equalities
(20.1) are called iuterface conditions and problems (I)-(C) or (II)-(C)
with (20.1) are interface problems,

A natural development of this kind of problem is represented
by distribution diÜforential équations, i.e. by équations x— Ax — f
with f a distribution.

Références: A. G-ONNEKLJ [1]; C. OLECH [1]; D. PHAM - D.
"WEISS [1]; "T, J. PIGKAI^I - W- M. WHYBURN [1]; D. WEISS - D.

PHAM [1]; D. WEXLEE [t], [2]; W. M. WHYBTTBN [5].

APPEPsTDIX

ABOtfT PIXED POINT THEOEBMS

The most currently used fixed point theorems in the theory of
ordinary d.e. refer to a mapping T of a metric space X They
can be roughly divided into two catégories, the first based on
« compactness » assumptions, the second based on « contractirity ».
Of the following, Ths. A, A' and B beloiig to the first class, Ths.
C, D and E, to the second.

TH. A. - Let X be a Fréchet (—linear metric, locally convex,
complete) space. Let O be a convex, closed subset o f X If T is
continuons and TA is a compact subset of O, then there exists at
least one x = Tx G Q.

This is a particular case of TYCHOKOVS theorem (Math. An-
nalen 111, (1935), 767-776). When X is a BAKACH (= linear, nor-
med, complete) space Th. A reduces to SCHAUDER's theorem (Studia
Math. 2, (1930), 171-180) and, for X = Rn, to the classical BROU-
WEE' S theorem.

Extensions of BROUWER'S, SCHAUDER'S and TYCHOISTOV'S theo-
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rems to set-valued mappings were given respectively by S. KA-
KUTANI (Duke Math. Jour., 8 (1941), 457-459), H. F. BOHNENBLTJST -
S. KABLIN (Contributions to the Theory of Games Princeton 1950,
155-160) and KY FAN (Proe. Nat. Acad. Sci. U.S.A., 38 (1952), 121426).

TH. A' - Let X be a Fréchet space. Let T be completely conti-
nuons^ i.e. compact (= TS is a compact subset of X for each boun-
ded subset S of X) and continuons. Then, either there are x = XTx
for each X e [0, 1], or the set \x\x = \Tx, 1 e ]0, 1[ | is unbounded.

This is a particular case of H. SCHAEFER'S theorem (Math.
Annalen, 129 (1955), 415-416).

TH. B. - Let X be a metric space with distance d. If T is com-
pletely continuons there is at least one x — Tx if(emà only if) there
is a séquence \xk \ in X which is bounded and such that d(Txk, xf)-+ 0.
Moreover there is a subsequence | a y | such that d{xk', x)—^0.

See : R, CONTI, Le Matematiche, 15 (1960), 92*97 ; A. HAIMOVICI,

Analele Stiint Univ. Al. I. Cuza, 7 (1961), 65-76; K, ISEKI, Math.
Japon., 7 (1962), 203-204.

TH. C. - Let X be a complete metric space with distance d. Let
T be a contractive mapping (te. d(Tx\ Tx")<<&d{x\ x"), with 0 <
O < 1, for all xf) x" e X). Then T has a unique fixed point x = Tx,
and x = lim Tkx0, for any xQ e X, where T1 = T, T* = TT, ....

Th. C is known as BANACH' S (or BANACH-CACCIOPPOLI-TYCHO-

JSÎOV' S) contraction principle. Easy to prove and nseful conséquen-
ces of Th. C are the following Th. D and E.

TH. D. - Let X be a complete metric space with distance d. Let
there exist a positive integer v such that Tv is contractive. Then
T has a unique fixed point x = Tx. If, further, T is continuons,
then x = lim Tkx0, for any x0 e X.

TH. E - Let X be a Banach space, with norm | |. Let T be a
contractive mapping o f the bail \ x \ < p into X If 0 is the zero of
X and I T 0 I < p(l — a), there is a unique fixed point x — Tx and
x = lim T*0.
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