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Ordered operations in linearly ordered systems

FEDERICO GRABIEL (Los Angeles, Calif. U.S.A\)

Summary. - An algebra of ordered operations operating inter-systems in
a class of linearly ordered systems is presented and applied to limiting
processes of integration and derivation.

Introduction. - An algebra of ordered operations in linearly
ordered systems was formulated in reference [1], and it was ap-
plied in [1], [2] and [3], to the development and application of a
theory of tensors defined over sets. Papers on set tensors will
not ordinarily draw the attention of readers interested in algebra
or in ordered systems; for that reason the author has thought it
may be convenient to make a separate presentation of that algebra.

Some analytical applications are included. The author considers
that the interconnection of this algebra with analytical processes
offers interesting problems for investigation.

The paper is not solely expository; besides correcting an error
of omission in [1] and [2], some of the material is presented here
for the first time. This applies in particular to the last part.

Algebra of Ordered Operations in Linearly Ordered Systems.

The values of the sequence { A4, | may be considered ordered
by the natural, induced ordering: 4, — A4, iff m — n. A similar
ordering may be considered in the terms of the series X 4, . But

the sequence differs from the series in that the secong one has
an algebraic structure as well as the order structure on its range,
while the first one has only the order structure. Both are linearly
ordered systems, but the series includes, besides the linearly or-
dered structure, an algebraic operation that operates within the
linearly ordered (l.0.) system; that operation is an imfra-system
operation. Our present objective, on the other hand, is an algebra
that operates imier-systems in the class of all l.o. systems.
Consider the class C of all l.o. systems ¢, each ¢ being compo-
sed of elements belonging to a field F. The internal structure of
each of these systems ¢ e C may include more than the order re-
lation between its elements; it may also include operations of F
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and passages to the limit (these passages to the limit preserving
the order structure). In particular, these l.o. systems may be se-
quences, finite sums, series, functions (the domains of which are
l.o. systems, the range being ordered by the induced ordering),
finite and infinite products, etc. Each of these particular structures
will be said to belong to a type of system of the class C; systems
of the same type possess the same internal algebraic structure.

We wish to emphasize that the elements of each ¢ e C are the
range values of the sequences, function, series terms, etc., these
range values being ordered by the linear ordering of the domain-
through the induced ordering. Conversely, any l.o. system can be
considered as the range values of a function on a domain that.is
l.o., with the induced ordering holding.

Each element ¢, € F' (x being an ordering index) of ¢ can be
multiplied by an element ¢ of the field ¥, the same ¢ multiplying
each ¢, of c. In this way we make up the class of ordered pairs
(¢, s) = CXF, cartesian product of C and F. To each ¢, e F corre-
sponds (C, o), a subclass of CXF, and (c,c,) will denote a generic
element of the system (c, 5,). For example, if the system (c, ) is
of the type of a series, then (¢, o)) = ¢,6, + €56, + €360 + ... + €,64 + ...
Systems of the same type and similar ordering indeces (i.e., iso-
morphic with respect to order) will be called homologus.

DeriNITION 1. ~ Let (a, &) and (b, ¢) be arbitrary homologous
systems of a subcless (C, ¢). To that pair of elements will be as-
sociated two other elements (homologous to the original pair) of
the same subclass: the ordered sum (@ @ b, s) and the ordered
product (@ © b, ¢) defined by

(@0) & (b,0) = ([a. + b, ]0); (@:5) O (by0) = (@,b.0),

« and y being ordering indices.
The following are important particular cases:

(1) (a’nc) @ (bmc) = ([a’Wl + bn] 6)
2) (%‘.aic)@(i}bka)z_?aib,c

[fix)s 1@ [faly)s ] =[fi®) + fulx) ] o
[ 1(@)s 1O [ fily)e | = (fu@)fy2))e.

‘When these special cases are taken in the subclass ¢ =1, ab-
breviation of (C, 1), the first of them coincides with the usually
considered sum of two sequences, and the third and fourth with
the usually considered sum aud product of two functions.
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THEOREM 1. — When systems of the subeclass ¢ =1 consist of
only omne element, their ordered sum and product coincide with
their ordinary sum and product in F.

It in (@, ¢)® (b, 0), or in (&, o)O (b, ¢), the F operations that
correspond to the inteinal stiucture of (a, ¢) ard (U, o) are perfor
med before carrying out the operations of definition 1, the induced
order structure of the systems (in C) will be destroyed, and the
ordered operations reduced to the degemnerate and trivial case cor-
responding to Theorem 1. In consequence we introduce the follo-
wing:

ORDEr RULE. - When an expression or a relation involving
lo. systems contains ordered operations, those ordered operations
are to be carried out previously to the F operations internal to
the systems, whenever these F operations would affect the order
structure of the l.o. systems.

As example, application of the order rule implies that, if 2 a,c=A4

4

and X b, = B, then in general
1

7 %

A+ B (Zas) ®(2bo)= X(a; + b)o

The subclass (¢, ) with the ordered operations defined in de-
finition 1 will be denoted by F,. When the calculations do not

take us outside of a single subclass, the symbol F will suffice.
Later on when considering limiting processes, we shall handle
sets of subclasses (generated by ¢ — (); in those cases we must
carefully distinguish the subclasses. and the more simplified sym-

bol F will not suffice. The symbol _F, however, will be employed
to denote the class CXF with the ordered operations of definition 1.

The order rule is but a consequence of the dual nature of a
lo. system that has algebraic operations in its inteinal structure.
Because of these internal algebraic operations, the l.o. system can
be reduced to a single number - and this is what is to be done
when the l.o. system enters in the expression as an element in F.
In those cases we operate in F with that number that results
from operating with the F operations internal to the l.o. system.

But, when the l.o. system enters as an element in F, operations,
the order rule states that then it is its nature as a l.o. system
(i.e. its ordersd structure) that is to be taken into account. In F

the algebraic structure dominates; in F, the order structure do-
minates.

2
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‘We may now state the order rule in a different way:

ORDER RULE. - When operating in 7, ,the only F operations
that are permissible are those that do not change the order struec-
ture of the lo. systems. Invariance of the order structure is the
criterion to decide which F operations are permissible when ope-

rating within F.

It is evident that each F, constitutes a ring with divisors of
zero. Thus, for example: [(1, 0 ]O[(0, 1)c ] =[(0, 0)s ] which is
the neutral element for the additive group in the subclass ¢ of
sequences of two elements.

To eliminate the rather serious limitations that the existence
of divisors of zero would bring upon our ordered algebra, we
shall impose upon the subclass (C, o) either one of the two follo-
wing conditions:

Condition I: Each c € C possesses as first element an element
of F different from 0.

Condition M: There exists one value 4, of the ordering index
such that ¢, 3= 0 for every ce C.

‘When the ordering index is of the nature of a linear interval.
condifion I requires that the interval be closed on the left. Thus,
in (f(x)e) © (g(x)s), condition I would demand that the domain of
definition of f(x) and g(x) be closed on the leff.

If it is desired to operate with l.o. systems that do not possess
a first element (like when handling functions with the whole real
line as domain of definition), then condition M should be imposed.
‘While condition M is more general than condition I, this last one
is of much easier verification.

From now on it will be considered that subclass (C, s) obeys
etther condition I or condition M. Such subclasses will be called
admissible, and they will be the only ones handled in this study,
unless otherwise stated.

The restriction to admissible subclasses is not strongly limiting,
since any finite set of bounded l.o. systems can be transformed
into an admissible one by a translation. Condition M (or its spe-
cial case, condition I) plays in this study a role similar, but not
equal, to that played in the theory of matrices by the condition
of non-vanishing determinant.

THEOREM 2. - Every admissible class (C, o) constitutes a field F, .
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For future reference we shall introduce the following notation:

Identity system of the subclass (C, o) for the ordered sum:
0, 5) =0, .
Identity system of the subclass (C, ¢) for the ordered prdd‘l‘lct:
(1, 9) =To.
Inverse to the system (a. ¢) for the ordered sum:
(—a, 6)=0O (a, o).

Inverse to the system (a, ¢) for the ordered product;

((é), c’) = (@, o' = (a—"9).

TeeEoreM 3. — In any subelass (C, 6) of CXF, the operation of
ordered multiplication is distributive with respect to the operation
of ordered addition.

Proor. ~ (¢,6) © | (a,.5) ® (b,0)}| = ¢,6 O (|&t + b.]o) =
= (Cz[@= + b.]0) = ([c.a; + ¢:b.]0) =
= (¢,a,.0) ® (¢,b,0) =
= 1(€:0) © (aa0) B (¢,5) O (byo) |

DeriviTioN 2. - If k is arbitrary element of F, and (a, ¢) an
arbitrary element of F_;, an operation fom FXF; to E will be
defined by k(a, o) = (ka, ). This operation will be called multipli-
cation by a scalar.

TaeoreEM 4. - For any arbitrary fixed o, the subclass (C, o)
with the operations of definitions 1 and 2 constitutes an algebra.

Proor. - The two distributivity laws follow from definition 2,
Theorem 3 and the commutativity of ordered multiplication, since
(ka, o) =(k, o)O(a, o)=(k,0)Ola,0) with k, =k for all x. Also
because of these equalities, the associativity of multiplication by
a scalar follows from the associativity of the ordered product.
Finally, O, o) =(0, o) =0,, 1(x, o) = (x, o) and k[(a, o) O(b, o)} =
= (ka, s) O (b, 5) = (a, 5)O(k, s)O (b, o)=(a, s)O(kd, ) by the com-
mutativity of ordered multiplication.
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Consider the following system of two equations in two unknowns:

@ : (4,0) © (X,0) @ (Byo) ©(Y,0) = (H,0)

(Ce0) © (X20) D (Do) © (Y,0) = (K;o)

-

THEOREM 5. - The set of equations (3) prossesses a unique so-
iution iff

[(4.5) ® (Dys) © (Byo) © (C,0)] 3= 0.

Proor. - The demonstration follows easily from preceding
material; we shall limit ourselves to deriving the actual form of

the solution, mostly as manipulative exercise in the algebra of
ordered operations.

The inverse of [(D;s) ©(Y,s)] under addition is [(— D) O(Y,s)],
and, referring definition 2 with k= — 1:

[(D4s) © (Y,0)] = [(— Dao) © (Y,0)] = © [(Das) © (Y,0)]-
Applying that to solve for (X.c) in the second equation of (3):
(X0) = [(Ky0) © (Do) © (Yy0) O (CeM)]
Substituting in the first equation of (3) and solving:
(Y,0) = {(H,0) © [(445) O (K;5) O (Cc'o)]
O [ [(449) © (Das) © (Ce'0)] @ (Byo) |~

Multiplying the right hand side ‘by (C.s) (C,o)! it is finally
obtained

(Yy0) = [(4a0) O (K;0) © (H;0) © (Ce0)] } (1a)
O [(440) © (Dus) © (B, 5) © (Ceo)]
Similarly:
(Xe0) = [1By0) O (K;0) © (H,0) O (Das)] } (4b)
O [(445) © (Da0) © (Byo) O (Co0)] .

Because 0O (x, o) = (0, o) O (x, ) = (0, o) =0 for any (x, o), it
is seen that for (4a) and (4b) to have meaning it is necessary and
sufficient that

[(49) © (Du5) © (By5) O (Co)] 2 5=0.

The procedure and theorem are extensible without difficulty,

except for notational inconvenience, to the case of » equations
in # unknowns.
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In (b, o) it may happen that b is a l.0. system of l.o. systems.
It will then be linearly ordered by two indices, the two orderings
being independent. Then we may assert

THEOREM 6. — Suppose that (b,,, o) is homologous to (a, s) with
respect to x, and is homologous to (¢, ) with respect to gy, them

(a/uﬁ @ l(b.-wc) @ ] = [ G) © (bryc)] © (cuc) = (arbfwcyc)'

The demonstration is immediate.
From (1) and (2) it is of easv verification that the convergence

of (@,5), (b,,9), ( 2. b,‘c) and (2 bko') as n, m — oo, implies the con-
vergence of (a } (b,,9) and of (_; a.c )@(L b,0). The corresponding

assertions can be made for (a,,c)@(b s) and for (Zac)@(_, b,0).

Limiting processes.

Limiting processes are introduced in Fby considering sequences
of expressions in F, each element of the sequence being in cor-
respondence with a value of o, and making ¢ pass to a limit.

More generally, we may consider the set of expressions (u, d),
where # belongs to some infinite set U C. Then and

DeFINITION 3. — (#,, 9,) = lim (%, ) When ¢ — o, implies that
°w — u,. =0y

Interesting limiting processes in F are the following.

Consider an amorphous space of points in which we introduce
a coordinate system X. The coordinates of a point P will be de-
noted by «p (j = 1...m), or by xp, the capital upper J standing
for j(j =1..wn). In this space we shall consider measurable sets
S, V, ete. Liet w(S) represent the measure of S.

DerinirioN 4. - We shall say that we have associated to S,
by means of X, a regular partition (R.P.) when X generates a
family »Sr of intervals with the following properties:

1. the intersection of any two intervals of .Sr is empty.
2. all intervals have the same measure w(S,).

3. the ratio of the one-dimensional measures of any two edges
of any interval is bounded.

4. S is contained in the union U §,.
ieT
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5. for no value of % is the intersection (S [} S,) empty.
6. the intervals of the family .Sr are ordered.

Now consider the expression

Is(f) = 1lim(R.P.) X [f(x7)]p w(S,),
Sif) = Hm(R-P) 3 [f(e)],0(50
Where
P, represents an arbitrary point of S;;

ka is the value, at the point P,, of the function f(x/);

lim(R.P.) means that the passage to the limit is carried out
under the conditions imposed by regular partitions.
Observe that lim(R.P.) X «(S,) = w(S).
W(Sy)—>0 keT .
In terms of the elements of F, ( 2 [f(xJ)Pk])e C, while w(S,)=
kerT

=oceF. Isis a lo. system of l.0. systems.

TaEOREM 7. — 1f f(x’) is integrable, then
Is!f) =ff(xJ)d(x).
S

TaEorREM 8. — The following relation holds:

Is(f) © Is(g) = Is(f © g) = Is(fg)-

Proor. - Consider the expressions

2@, 008

and
3 [glad)]g,0fSy).
ler

Operating upon sums corresponding to the same partition we
have that w(S,) = w(S,), and both sums belong to the same subclass
o = (S)).

‘We may hence apply the ordered product, using as ordering
index for the product the same one that orders the intervals in
the R.P. Remembering then that, acccrding to the Order Rule

Is(f) O Is(g) =
= lim {(R.P) 3 [fla))], wis,) ©(R.P.) Z [glat )]Qlu)(S,)\;
kerT k ler

(Sy—>0

on passing to the limit the thesis of the theorem follows.
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CorOLLARY. — If f(a/) and g(x’) are integrable, then

]f(xJ)dw @fg(ac")dw=f(f® gidwm.
S S S

Proor. - Consequence of theorem 7 and 8.

The preceding theorems have been used in [1] and [2] to for-
mulate a theory of tensors defined over arbitrary mesurable sets.

Consider now the l.o. set the elements of which are Af, =

1
—[f(x}—f(x]—-—a—o, i€ R, (B set of real numbers), ordered by

the induced ordermg Af, — Af.iff (x, — 2) > (%, — x). Bach Af,
itself is a l.o. system of two elements: the terms f(x,) and f(x) in

the subclass ¢ =

1 —
— In terms of the elements of F, [f(x,)—

1
— f(x)] € C while v w=° e F.

It is immediate that, if the function f possesses an ordinary
derivative D, f at the point x, then lim Af, = D,f.
x

x,

TeEEOREM 9. - 1f the functions f and g possess ordinary deri-
vatives at the point x, then the following relations hold in F':

D.FO D.g = D.(fO g)

1
ProoFr. - Applying the order rule, in the subclass ¢ —E—:a—:-

D.f© Dog = lim _}f(w) — fl@)] — Olgle) — gl -
= lim [f(2,)g(x,) — f(x)g(x)] L

x,—2 X, —x
— lim [f(z) © g(s) — (@) © g@)] . = Dl O g)

Observe that, while fg=f(© g in the sabclass s =1, it does
not follow that in gemeral D,(fg) = D.(fO g). This should not be
surprising because, in the first place, we are operating in the

1
subclass ¢ = = But more important is the fact that, to obtain

the well known formula D Af9) = 1D.(g) + gD.(f), We perform ope-
rations in F that change the order structure in [f(x,)® g(x,)—

1
—f(ac)@g(ac)];—;—;; indeed, those operations add terms to the
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order structure. To evaluate D, (f© g) the order rule must be fol-
lowed, and the order structure must be left snvariant by the
ordered operations.

TueEorEM 10. - If the functions f and g possess derivative
functions that are integrable over the interval [x,, ,], then

/ D.(f © g)dz = f(w,)g(x,) — f(,)g(®,).

Proor. - By direct application of preceding theorems:

fDr(fG g)dm=/[D,f® D,gldx =[D,fdx®/D,gdx
= [flxy) — f(2))] © [g(,) — g())] = [f(=zs) © glev,)]
— [f(,) © g(x))] = fla,)glx,) — flx,)g(x,).

As an interesting application of the preceding consider the
following function in F,:

x 2 x”

= x ® x" -
E El@l—!O—!Ong..QWQ...: lim 1

2 newoo N

If R represents the real line, the following results are of
immediate demonstration:

TaEOREM 11. - D (E®) = E* and Ip(E*)= E=.
Observe that in general E*®v4=E~(® Ev. On the other hand

TEEOREM 12. - E-Ov = E~< (O Ev.

An interesting area of investigation may be the possible rela-
tions between differential and integral equations in F and the
corresponding equations in F.

REFERENCES
[1] F. GraBieL, Set functions ond Tensors, «Tensor, N. S.», 10 (1960),
1-20.
[2] — —, Algebra of Set Temsors, «Tensor, N. S.», 14 (1963), 53-59.

18] — —., Geometria Differencial Global en las Mediciones Fisicas, < Revi-
sta de la Union Matemdtica Argentina y de la Asociacion Fisica Ar-
gentina», Vol. XVII (1955), 69-71.

Pervenuta alla Segreteria dell’ U.M.I.
il 3 giugno 1965



