BOLLETTINO UNIONE MATEMATICA ITALIANA

DAVID F. DAWSON

On subgroups of semigroups.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. **21** (1966), n.2, p. 144–146. Zanichelli

<http://www.bdim.eu/item?id=BUMI_1966_3_21_2_144_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

On subgroups of semigroups

DAVID F. DAWSON, (Denton, Texas, U.S.A.)

Summary. - Some conditions are given under which the set of left zeroids [1] of a semigroup S is a subgroup of S. In particular, one of the conditions implies that S is a group (Theorem 2), and this result is an extension in a different direction from the author's earlier extension [3] of a theorem of Gallarati.

Throughout, S denotes a semigroup with a left zeroid [1] and L denotes the set of all left zeroids of S. In this note we determine some conditions under which L is a group. Two of the conditions imply that S = L and S is a group (Theorems 2 and 5). We omit dual statements and their proofs.

THEOREM 1. – If L contains a regular element μ of S [2, p. 26] such that the element $x \in S$ for which $\mu = \mu x \mu$ is unique, then L is a group.

PROOF. - Since $\mu = \mu x \mu$, we have $x\mu = x\mu x\mu$, and so $x\mu$ is a left zeroid idempotent of S, since $x\mu \in S\mu = L$. Let $e = x\mu$. Suppose f is a left zeroid idempotent of S. There exists $k \in S$ such that $k\mu = f$. We note that f is a right identity of Sf = L. Thus $\mu k\mu = \mu f = \mu$. Therefore k = x by the uniqueness property in the hypothesis, and so f = e. Hence S has only one idempotent in L, namely e. Therefore e is a right zeroid of S [4]. Thus L is the group of zeroids of S [1].

REMARK. - CLIFFORD and MILLER [1] showed that if S has a left zeroid and a right zeroid, then every left or right zeroid of S is a zeroid of S, and the set of zeroids of S forms a subgroup of S. We can easily show that if \dot{L} is a group, then every left zeroid of S is a right zeroid of S. To this end, suppose L is a group, $\mu \in L$, and $x \in S$. Then $x\mu \in L$ and there exists $y \in L$ such that $\mu = (x\mu) y = x(\mu y)$ since L is a group. Thus μ is a right zeroid of S.

THEOREM 2. - Suppose $\mu \in L$ and for each $b \in S$ the solution $x \in S$ of $xb = \mu$ is unique and if there exists $y \in S$ such that $by = \mu$, then y is unique. Then S is a group.

PROOF. - Let $k \in S$ such that $k\mu\mu = \mu$ and let $e = k\mu$. Then $e \in L$ and ee = e by the left uniqueness property, since $ee\mu = e\mu =$ μ . It follows from a lemma in [4] that Se is regular. Thus since Se = L, there exists $x \in S$ such that $\mu = \mu x\mu$. Suppose $y \in S$ such that $\mu = \mu y\mu$. By the left uniqueness property, $e = \mu x$ and $e = \mu y$. Since e is a right identity of Se and $\mu \in Se$, we have $\mu = \mu e = \mu \mu x$ and $\mu = \mu e = \mu \mu y$. Hence by the right uniqueness property, x = y. Thus by Theorem 1, L is a group, and by the remark following the proof of Theorem 1, μ is a zeroid element of S. Therefore by a theorem of GALLARATI [5], S is a group.

THEOREM 3. – If L contains a normal element, i.e., there exists $\mu \in L$ such that $\mu L = L\mu$, then L is a group.

PROOF. - Let μ be a normal element of L. We note that $L\mu \subseteq S\mu = L$. Suppose $\alpha \in L$. There exists $z \in S$ such that $z\mu\mu = \alpha$. Thus $\alpha \in L\mu$ since $z\mu \in L$. Hence $L \subseteq L\mu$. Therefore $\mu L = L\mu = L$. There exists $x \in S$ such that $x\mu\mu\mu = \mu$, and there exists $y \in L$ such that $(x\mu)\mu = \mu y$, since $L\mu = \mu L$. Hence $\mu = x\mu\mu\mu = \mu y\mu$, and so μ is a regular element of L. We note that $e = \mu y$ is a left zeroid idempotent of S. Suppose $\beta \in L$. There exists $t \in L$ such that $\beta = \mu t$ since $L = \mu L$. Thus $e\beta = e(\mu t) = (\mu y)(\mu t) = (\mu y\mu)t = \mu t = \beta$. Hence e is a left identity element of L. Recalling that $y \in L$, we can find $w \in S$ such that $w\beta = y$. Thus $(\mu w)\beta = \mu y = e$, and $\mu w \in L$ since L is an ideal of S [1]. Hence e is a left zeroid element of the semigroup L. Thus the semigroup L contains a left identity, with respect to which each element of L has a left inverse in L. Therefore L is a group.

COROLLARY. - If L contains a normal element, then every element of L is a normal element of S.

PROOF. - From the hypothesis and Theorem 3, we see that every element of L is a normal element of L. Let $\mu \in L$. We note that $\mu S \supseteq \mu L$. But L is an ideal of S [1], and so $\mu S \subseteq L$. But from the proof of Theorem 3, $L = \mu L$. Hence $\mu S = \mu L = L = S\mu$, and μ is a normal element of S. This completes the proof.

K. ISEKI [6] defined a relation $\ll \leq \gg$ on the nonempty set of idempotents of S as follows: $e \leq t$ if and only if ef = e. We conclude with two theorems concerning ISEKI's relation.

THEOREM 4. – If L contains an idempotent and S contains a unique least idempotent, then L is a group.

PROOF. - Let e be the unique least idempotent of S and let f be an idempotent in L. Suppose $e \in S - L$. Since $e \leq f$, we have

ef = e. But $ef \in Sf = L$, which contradicts the assumption that $e \in S - L$. Thus $e \in L$. Hence e is a zeroid of S [4], and so L is a group [1].

THEOREM 5. – If S is regular and contains a unique greatest idempotent e, then S is a group if $e \in L$.

PROOF. - Suppose f is an idempotent in L. Then f is a right identity of Sf = L, and so ef = e, which means that $e \leq f$. But since $\ll \leq \gg$ is transitive and e is the unique greatest idempotent of S, we have f = e. Thus e is the only idempotent in L, and so e is a zeroid of S [4] and L is a group [1]. Suppose g is an idempotent in S - L. Then $g \leq e$ and so ge = g. But $ge \in Se = L$ and we have a contradiction. Thus S - L contains no idempotent. Hence e is the only idempotent of S. Suppose $S \neq L$. Let $b \in S - L$. Then there exists $x \in S$ such that b = bxb since S is regular. But xb is an idempotent and so xb = e. Thus $b = be \in L$, which is a contradiction. Hence S = L and S is a group.

REFERENCES

- A. H. CLIFFORD and D. D. MILLER, Semigroups having zeroid elements, Amer. J. Math., 70 (1948), pp. 117-125.
- [2] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, vol. 1, Mathematical Surveys, n. 7, American Mathematical Society, Providence, Rhode Island, 1961.
- [3] D. F. DAWSON, On a result of D. Gallarati concerning semigroups, Boll. Un. Mat. Ital., (3), 19 (1964), pp. 446-447.
- [4] D. F. DAWSON, Semigroups having left or right zeroid elements, Notices Amer. Math Soc., 12 (1965), p. 372, Abstract 65T 180.
- [5] DIONISIO GALLARATI, Un'osservazione sopra i semigruppi, Boll. Un. Mat. Ital., (3), 18 (1963), pp. 279-280.
- [6] K. ISÉKI, Contribution to the theory of semigroups. II, Proc. Japan Acad., 32 (1956), pp. 225-227.

Pervenula alla Segreteria dell'U M.I. l'11 gennaio 1966