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On the uniqueness of limit cycles 

by W. A. COPPEL (Canberra, Australia) (*) 

Sunto. • Si generalizsa un noto criterio dell'unicità dei cicli dovuto a 
Massera e Hudaî-Veronov. 

By sit variety of méthode and under différent hypothèses L I É -
NARD [3], LEVINSON and SMITH [2], SANSONE [5], MASSERA [4] and 

HTTDAÎ-VERONOV [1] hâve proved that the équation 

(1) x" + f(x)x' + x = 0 

has at most one limit cycle. The object of the présent note is to 
extend the method of HTJDAÎ-VERONOV to the system 

xf = P(x, y) 
(2) 

y' = Qfa y)-

JVtoreover we replace by rigorous proof the appeal which this 
author makes to géométrie intuition. 

The proof of our uniqueness criterion is based on the follo-
wing lemma, which is perhaps of independent interest. 

LEMMA. - Let f(x, y) be a continuons real-valued function such 
that a unique solution of the differential équation 

(3) dy/dx = f(x, y) 

passes through any point of the rectangle a < se < p, y <iy <Z§-
Moreover let there exist a continuons function x = ¢(#), defined for 

'Y < y < 8, such that f(xf y) < 0 according as x < y(y). 
Then the derivative of any solution y(x) of the differential équa

tion (3) vanishes at most once in the interval a <^ x < (3. Moreover 

if #'(Ç) = 0 then y\x) < 0 according as x < H. 

(*) Pervenuta alla Segreteria dell'ÏT. M. I. il 10 agosto 1964. 
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P R O O F . - A solution of the differential équation (3) cannot-
have its dériva t ive equal to zéro throughout an interval xx < 
<ix < xt. For this would imply the existence of a constant c such 
that f(x, c) = 0 for xx < x < xz, whereas x = ©(c) is the ouly value 
of x for which f(x, c) = 0. 

Suppose that y%) = 0 and y'(x)^0 for \x<ix<\%, Then either 
y\x) > 0 or y\x) < 0 for \x < x ^ Es. W e wi l l show that the second 
alternative is impossible. In fact it implies that y = y(x) has a 
continuous, strictly decreasing inverse x = ty(y) for v)8 ^y^f\l, 
w h e r e v̂  = y^) and y\% = y(lt) Moreover tyy) < ®{y) for fi^y^y]^ 
since y'(x) = f\x, y(x)] < 0. 

Def ine a new function f{x, y) throughout the rectangle ^ <ç 
^x^l%9 ^ 8 ^ 2 / ^ "1i, by setting 

f(x, y) — f{x, y) if x < ©(#), = 0 ofcherwise. 

Also put 

/ t e 2/) = / t e '0,) for y > -/),, = /(x, T]2) for t/ < 1 t • 

Then f(x, y) is continuous, bounded and non-posit ive in the 
entire strip ^ < ce <; S2, — oo < £/ < oo. Choose any value v\0 between 
v)2 and T]J and take Ç0 greater than (̂v)0) and less than both £s and 
<p(v]0). The differential équation 

dyjdx = f(x, y) 

has a solution y = w(x) which passes through the point (Ç0, y\0) 
and is defiued for Ç i ^ a 5 < Ç 0 . Moreover w(œ) is a non- increasing 
function of x. 

The graph of y = w(x) is contained m the région R: œ<:<p(t/), 
^ 1 0 ^ 2 / ^ ^ 1 - For suppose the point (xX9 wfx,)) lay outside R. Since 
(ÇOJ *)<>) belongs to R there must exist a value xt > a^ such that 
(o;2, w(a;2)) is situated on the boundary of R and {x, w(x)) lies out
side R for xx<x<zx%. It fol lows that w'(#) = 0 for xx<x-<ix% 

and hence w{xi)=w(xi). Moreover w(xt) > T]0 , because w'(f0) = 
= /(5o» ^ X 0 » a n d w t e X Ç i ) because x t > 7 ] , . Thus 

7)0 < » ( » ! ) = ! « < « , ) < » ) ! . 
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ïïence, by the définition of the points (xx, w(xx]) and (œ2, n)(xt)), 

x% = <f[w(x8)], a^ > «pjwto)]. 

Since a?! <a;2 this is a contradiction. 
I t follows that w(x) is a solution of the original differential 

équation (3). Therefore the graphs oE w(x) hâve no common point 
and w(x) is always greater than y{x). Since y{^1) = 7\l this implies 
w(5i) >7h> contrary to what we hâve just proved. 

Similarly it may be shown that if y'(^2) = 0 and y'(x) =t 0 for 
Ci <^as < ?8 then y'ïx) < 0 for Çt <Ça: < Ç,. 

Suppose now that t/'(x) vanished at least twice. At some point 
x0 between the two zéros y(x) must be différent from 0. Let £CJ 

and x% be the nearest zéros of y'(x) on either side of x0(xt<ix0<ix%). 
Then by what has been shown y'(x) is positive to the right of xY 

and négative to the left of xt. Therefore it vanishes between xl 

and ac8, which is a contradiction. This complètes the proof. 
After thèse préparations we can prove without difficulty our 

main resuit : 

THEOREM. - Let P(x, y), Q(x, y) be continuous functions such 
that the solutions of the System (2) are uniquely determined by their 
initial values. Suppose also 

(i) the system (2) has no critical points,, except possibly the 
origin, 

(ii) for every X > 1 and every point (x, y) 

(4) A s pfa xy)Q{Xi y) _ P (aC | y)Q{iXi iy) ^ o, 

(iii) strict inequality holds in (4) at ail points (x, y)=\=(0, 0) 
for which xQ(x, y) = yP(x, y) and at ail points of a curve extending 
from the origin to inflnity. 

Then the system (2) has at most one closed path. 

We can suppose the origin is a critical point, since otherwise 
there are certainly no closed paths. Changing to polar coordinates 
x = r cos 0, y = r sin 0 we get 

r' = P cos 0 + Q sin 0 

r&' = Q cos 0 — P sin 0. 
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If 0 ' vanishes for t = tQ then r' 4= 0 for t = t0 by (i). Thus in 
the neighbourhood of (r0, 0O) we can write 

de 1 Q cos 0 — P sin 0 _ 
dr~r P cos 0 + Q sin 0 = ^ r ' " '' 

By (iii) we hâve strict inequality in (4) near the point (a;0, y0) = 
= (r0cos©0 ; r0sin©0) . If P(x0, y0)=\=0 then cos0o=]=O and (4) tells 
us that Q(r cos 0, r sin 0)/P(r cos ©, r sin 0) is a decreasing function 
of r near (r0, 0O). Hence, by the most elementary form of the 
implicit function theorem, for each 0 near 0O there is a unique 
value p(0) of r near r0 such that 

Q(r cos 0, r sin 0)/P(r cos 0, r sin 0) = tan 0 . 

Moreover p(0) is a continuous function of 0 and cp(r, 0) > 0 

according as r < p(0). The same holds if P{x0, yQ)=0 and Q(as0,2/o]=H}* 
By the lemma, with y replaced by — y, it follows that at any zéro 
of 0 ' dB/dr changes sign from + to — as r increases. Consequen-
tly 0 ' changes sign from + to — as t increases. Therefore 0 ' va
nishes at most once on any path and does not vanish at ail on a 
closed path. 

Thus any closed path is defined by an équation r = r(0), where 
r(0) is a solution of the équation 

1 dr_ _ P cos 0 + Q sin 0 
r d0 — Q cos 0 — P sin 0 

such that r{2iz) = r(0). Integrating with respect to 0 we get 

_ r "poo80+_Qs in© 
V~J Q c o s 0 - P s i n 0 a * 

o 

If there were two closed path s, defiued by équations r = r ^ 0 
and r = rt(®), where *"i(0)O2(0), then by subtraction we would get 

27T 

0=f P,Q, - P , & 
/ (Q, cos 0 — P t sin ®)(Qt cos 0 — Pt sin 0) 

n 
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The denominator of the integrand has constant s ign by what w e 
hâve already proved. The numerator is non-negat ive by (ii), and 
actually positive for at least one value of 0 by (iii). Thus w e hâve 
a contradiction. 

The équation (1) is équivalent to the system 

x = y — F(x) 

y' = — x, 

where F(x) = i f(f;)dl*. It follows from the theorem that the equa-
0 

tion (1), where f(x) is continuous, has at most one non-constant 
periodic solution if F(x)jx is an increasing function for x > 0 and 
a decreasing function for x < 0. This is more gênerai than the 
requirement of M A S S E R A and H U D A Î - Y E R E K O V that f(x) be an 

increasing function for x > 0 and a decreasing function for x<0, 
since 

[F(x)lx]' = x-\xf(x) — F{x)] 

=x-*J[f(x)-mm. 

Moreover in most practical applications it is the function F(x) 
which is g iven directly, rather than its derivative f(x). 
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