BOLLETTINO UNIONE MATEMATICA ITALIANA

LORRAINE D. LAVALLEE

Mosaic spaces, P_1 -mappings, and property K.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.2, p. 95-97. Zanichelli <http://www.bdim.eu/item?id=BUMI_1964_3_19_2_95_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Zanichelli, 1964.

SEZIONE SCIENTIFICA BREVI NOTE

Mosaic Spaces, P_1 – Mappings, and Property K

by LORRAINE D. LAVALLEE (a University of Massachusetts) (*)

Summary. - A characterization of those mosaic spaces which have property K is given, and a necessary and sufficient condition for an M-space which is the image of an hereditary mosaic space under a quasi-compact mapping to be an hereditary mosaic space is established.

Davison [2, def. 1.1, p. 526]' introduced the following definition of a mosaic space. A collection $|(X_a, \mathfrak{F}_o)$: a $\varepsilon A|$ is said to be a mosaic of topological spaces on a set X if and only if (i) each X_a , \mathfrak{F}_a) is a topological space; (ii) $X = \bigcup \{X_a : a \in A\}$; and (iii) for all subsets E of X and all $a, b \in A$, if $E \subseteq X_a$ and E is \mathfrak{F}_a -closed then $E \cap X_b$ is \mathfrak{F}_b -closed. For a mosaic of topological spaces on X the mosaic topology \mathfrak{F} is defined as follows: for all $E \subseteq X$, *E* is \mathfrak{F} -closed if and only if $E \cap X_a$ is \mathfrak{F}_a -closed for all $a \in A$. If each (X_a, \mathfrak{F}_a) is a compact metric space, then the topological space (X, \mathfrak{F}) determined by the collection $\{(X_a, \mathfrak{F}_a): a \in A\}$ is called a mosaic space. Every mosaic space is T, but not, in general, HAUSDORFF. In fact, DAVISON [2, ex. 6.1, p. 541] has given an examble of a compact, hereditary mosaic space which is not HAUSDORRF, where by an hereditary mosaic space we mean a mosaic space with the property that each subspace is a mosaic space.

Let f be a function from a topological space (X, \mathfrak{F}) onto a

^(*) Pervenuta alla Segreteria dell'U. M. I. il 10 settembre 1963.

⁽⁴⁾ Numbers in square brackets refer to the bibliography.

topological space (Y, S). We shall call f a quasi-compact mapping provided that for every subset E of Y, E is S-closed if and only if $f^{-l}(E)$ is S-closed. Davison [2, theorem 3.7, p. 534] has shown that if f is a quasi-compact mapping from a mosaic space (X, S)onto an *M*-space (Y, S) i. e., a space (Y, S) for which limits of S-convergent sequences are unique [5, p. 474], then (Y, S) is a mosaic space.

In this note we shall establish a necessary and sufficient condition for an *M*-space which is the image of an hereditary mosaic space under a quasi-compact mapping to be an hereditary mosaic space and we shall characterize those mosaic spaces (X, \mathfrak{F}) which have property K (for each point x and each subset E of X having x as a \mathfrak{F} -limit point, there exists a \mathfrak{F} -compact subset of $E \cup \{x\}$ which has x as a \mathfrak{F} -limit point [3, def. 2, p. 689]).

Bae [1, p. 39] proved the following theorem.

THEOREM 1. – Let f be a quasi-compact mapping of a HAUS-DORFF space (X, \mathfrak{F}) having property K onto a HAUSDORFF space (Y, \mathfrak{S}) . Then (Y, \mathfrak{S}) has property K if and only if f is a P_1 -mapping (if $y \in Y$ and U is a \mathfrak{F} -open set containing $f^{-1}(y)$ then $y \in$ int f(U) [5, p. 474]).

THEOREM 2. – Let f be a quasi-compact mapping of a mosaic space (X, \mathfrak{F}) having property K onto an M-space (Y, \mathfrak{S}) . Then (y, \mathfrak{S}) has property K if and only if f is a P_1 -mapping.

PROOF. Bae's argument for theorem 1 can be seen to hold for any T_1 -space (X, \mathfrak{F}) having property K and for any topological space (Y, \mathfrak{S}) in which every compact set is closed. Thus the result follows directly from Bae's argument and Davison's results that every mosaic space is a T_1 -space [2, p. 527], that (Y, \mathfrak{S}) is a mosaic space [2, theorem 3.7, p. 534]and that every compact set in a mosaic space is closed [2, cor. 19, p. 527].

THEOREM 3. – Let (X, \mathfrak{F}) be a mosaic space. (X, \mathfrak{F}) has property K if and only if (X, \mathfrak{F}) is hereditary.

PROOF. – Let (X, \mathfrak{F}) be a mosaic space with property K. To show that (X, \mathfrak{F}) is hereditary it is sufficient to show that every \mathfrak{F} -limit point of a subset of X is also a \mathfrak{F} -sequential limit point of the subset [2, theorem 4.3, p. 536]. So let x be a \mathfrak{F} -limit point of a subset E of X. Since (X, \mathfrak{F}) has property K, there exists a F-compact subset F of $E \cup |x|$ which has x as a F-limit point. Since (X, \mathfrak{F}) is a mosaic space, F is \mathfrak{F} -closed and x is therefore in F. It follows that F - |x| is not \mathfrak{F} -closed. Thus there exist a sequence S and a point y in X such that S \mathfrak{F} -converges to y, $y \varepsilon F - |x|$, and $S_J \subseteq F - |x|$, where S_J is the point set associated with the sequence S [2, theorem 1.3, p. 526]. Now y is a \mathfrak{F} -limit point of S_J and hence of F - |x| and, since $y \varepsilon F - |x|$, then y = x. Therefore x is a \mathfrak{F} -sequential limit point of F - |x|and hence of E and it follows that (X, \mathfrak{F}) is hereditary.

Now let (X, \mathfrak{F}) be an hereditary mosaic space. To show that (X, \mathfrak{F}) has property K, let x be a \mathfrak{F} -limit point of a subset Eof X. Since (X, \mathfrak{F}) is hereditary, there exists a sequence S such that $S \mathfrak{F}$ -converges to x and $S_J \subset E$. If the mosaic space (X, \mathfrak{F}) is determined by the mosaic $|(X_n, \mathfrak{F}_n): a \in A|$ of compact metric spaces on the set X with the mosaic topology \mathfrak{F} . then there exist a subsequence S' of S and an $a \in A$ such that $S'_j \cup |x| \subseteq X_n$ [2, lemma 1.5, p. 526]. $S'_J \cup |x|$ is \mathfrak{F}_i -closed and therefore \mathfrak{F}_n -compact. Moreover, since \mathfrak{F}_n is the topology \mathfrak{F} relativized to X_n , $S'_J \cup |x|$ is \mathfrak{F} -compact. Since $S'_J \cup |x|$ is a \mathfrak{F} -compact subset of $E \cup |x|$ which has x as a \mathfrak{F} -limit point then (X, \mathfrak{F}) has property K.

The next result follows immediately from theorems 2 and 3.

THEOREM 4. – Let f be a quasi-compact mapping of an hereditary mosaic space (X, \mathfrak{F}) onto an M-space (Y, \mathfrak{S}) . Then (Y, \mathfrak{S}) is an hereditary mosaic space if and only if f is a P_1 -mapping.

BIBLIOGRAPHY

- MI-SOO BAE, P₄-Mapping and Property K, Kyungpook Math J. vol 3 (1960) pp. 39-41.
- [2] W. F. DAVISON, Mosaics of Compact Metric Spaces, Trans. Amer. Math. Soc. vol. 91 (1959) pp. 525-546.
- [3] E. HALFAR, Conditions Implying Continuity of Functions, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 688:691.
- [4] J. L. RELLEY, General Topology, Van Nostland, 1955.
- [5] P. McDougle, A Theorem on Quasi-Compact Mappings, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 474-477.