BOLLETTINO UNIONE MATEMATICA ITALIANA

W. A. AL-SALAM

Operational derivation of some formulas for the Hermite and Laguerre polynomials.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 18 (1963), n.4, p. 358–363.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1963_3_18_4_358_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Operational Derivation of Some Formulas for the Hermite and Laguerre Polynomials

Summary. - Various generating functions and formulas are derived by means of the operators e^{-D^2} and D^n .

1. The Hermite polynomials $|H_n(x)|$ may be defined by means of the Rodrigue's formula

(11)
$$D^n |e^{-x^2}| = (-1)^n e^{-x^2} H_n(x), \quad D = D_x = d/dx.$$

Another operational representation, mentioned by Gould and HOPPER [4], is

(1.2)
$$e^{-D^2}|x^n| = H_n(x/2).$$

We shall employ these operators to obtain, in a simple and rapid manner, various properties of the Hermite polynomials. One of these, namely formula (1.7), is believed to be new.

To start with let us operate on the identity

$$e^{xt} = \sum_{n=0}^{\infty} x^n \frac{t^n}{n!}$$

by means of e^{-D^2} . The familiar shift rule gives for the left hand side

$$e^{-D^2} e^{xt} = e^{xt} e^{-(D+t)^2} |1|$$

$$= e^{xt} e^{-(D^2+2tD+t^2)} |1|$$

$$= e^{xt} e^{-t^2} = e^{xt-t^2}$$

(*) Pervenuta alla Segreteria dell'U. M I. il 24 maggio 1963.

On the other hand the right hand side yields

$$\sum_{n=0}^{\infty} H_n(x/2) \frac{t^n}{n!}$$

We thus arrive at the familiar generating function

(1.3)
$$e^{2xt-t^2} = \sum_{n} H_n(x) t^n/n!$$

which is often used as a definition of the Hermite polynomials. This derivation may be interepreted as a simple proof of (12).

Another way of deriving (1.3) is the following: We have formally

$$e^{-tD} = \sum_{n=0}^{\infty} \frac{(-1)^n t^n}{n!} D^n$$

Now multiply from the right by e^{-x_2} we get for the left hand side by TAYLOR's theorem

$$e^{-tD} e^{-x^2} = e^{-(x+t)^2}$$

The right hand side gives

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) e^{-x^2}$$

Combining these two expressions we get (1.3).

We shall now derive the Mehler formula

(1.4)
$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) H_n(y) = (1-t^2)^{-1/2} \exp \left[\frac{2xyt - t^2(x^2 + y^2)}{2(1-t^2)} \right]$$

by means of this method.

We need the formula [3].

(1.5)
$$e^{aD^2} e^{-kx^2} = (1 + 4ak)^{-1/2} \exp\left[\frac{kx^2}{1 + 4ak}\right]$$

which may be proved by expanding e^{aD^2} and e^{-kx^2} in their power series, performing the differentiation operation and then summing the resulting series

Now replace t by tD_y in (1.3) and operate on both sides e^{-y^2} . We have from the left hand side

$$\begin{split} \exp[2 imes tD_y - t^2D^2_y] &= e^{2xtD_y} \; rac{1}{\sqrt{1-4t^2}} \exp\left[rac{y^2}{1-4t^2}
ight] \ &= \; rac{1}{\sqrt{1-4t^2}} \exp\left[rac{(y+2xt)^2}{1-t^2}
ight] \end{split}$$

The right hand side gives

$$\sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n D_y^n e^{-y^2} = e^{-y^2} \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} H_n(x) H_n(y)$$

Combining these two sides we get (1.4).

We also mention that (1.4) can be derived by operating on $e^{-x^2-y^2}$ by means of the operator $e^{-tD_xD_y}$.

A third variation of this method is to replace t by ty in (1.3) and operate on both sides with $e^{-}D^{2}_{v}$.

Other generating functions can be obtained in this manner. For example if we operate on e^{-x^2} by means of D^k e^{-tD} we get [5, p. 197]

(1.6)
$$\sum_{n=0}^{\infty} \frac{H_{n+k}(x)}{n!} t^n = e^{2xt-t^2} H_k(x-t).$$

On the other hand if we employ the operator $D^k e^{-tD^k}$ we get

$$(1.7) \quad \sum_{n=0}^{\infty} \frac{H_{2n+k}(x)}{n!} t^n = (1+4t)^{-(k+1)/2} \exp\left[\frac{4tx^2}{1+4t}\right] H_k\left(\frac{x}{1+4t}\right).$$

This formula may also be derived by operating on e^{ix} by means of $D^k e^{-D^2}$. To the best knowledge of the writer formula (1.7) is new. The cases k = 0, k = 1 are given by Rooney [6].

We now derive the formula [2]

$$(1.8) \ H_{m}\left(\frac{x+y}{\sqrt{2}}\right)H_{m}\left(\frac{x-y}{\sqrt{2}}\right) = \sum_{k=0}^{m} (-1)^{m+k} {m \choose k} H_{2k}(x/2)H_{2m-2k}(y/2).$$

Operate on both sides of the identity

$$(x+y)^m(x-y)^m = (x^2-y^2)^m = \sum_{k=0}^m (-1)^{m+k} \binom{m}{k} x^{2k} y^{2m-2k}$$

with the operator $e^{-D_x^2} - D_y^2 = e^{-D_x^2} e^{-D_y^2}$.

The right hand side gives the right hand side of (1.8) To evaluate the left hand side we first rewrite

$$D_x^2 + D_y^2 = \frac{1}{2}(D_x + D_y)^2 + \frac{1}{2}(D_x - D_y)^2.$$

We then make the change of variables x + y = u, x - y = v. Thus the left hand side becomes

$$\left\langle \exp\left(-\frac{1}{2}D_v^2\right)v^m \right. \left\langle \left\{ \exp\left(-\frac{1}{2}D_u^2\right)u^m \right\} = 2^m H_m\left(\frac{v}{\sqrt{2}}\right)H_m\left(\frac{v}{\sqrt{2}}\right)$$

and thus (1.8) follows.

In a similiar manner the identity

$$(x+y)^{2m}+(x-y)^{2m}=2\sum_{k=0}^{m}\binom{2m}{2k}x^{2k}y^{2m-2k}$$

yields the formula [2]

$$2^{m-1}|H_{2m}(x+y)+H_{2m}(x-y)|=\sum_{k=0}^{m}\binom{2m}{2k}H_{2k}(\sqrt{2}x)H_{2m-2k}(\sqrt{2}y)$$

2. The special Laguerre polynomials $|L_n^{(a-n)}(x)|$ possess the Rodrique's formula

$$(2.1) \quad D^{n} \left[x^{\alpha} e^{-x} \right] = n! \ x^{\alpha - n} e^{-x} L_{n}^{(\alpha - n)}(x) \qquad n = 0, 1, 2, 3, \dots$$

We have by TAYLOR'S theorem

$$e^{tD}[x^ae^{-xt}] = (x+t)^a e^{-x-t}$$

Thus we get the generating, due to Erdelyi,

(2.2)
$$(1+t)^a e^{-xt} = \sum_{n=0}^{\infty} t^n L_n^{(a-n)}(x).$$

If now we replace t by tD_y in (2.2) and operate on y^{β} e^{-y} we get from the right hand side

$$y^{\beta} e^{-y} \sum_{n=0}^{\infty} n! (t/y)^n L_n^{(\alpha-n)}(x) L_n^{(\beta-n)}(y).$$

The left hand side yields

$$(2.3) (1+tD_y)^a e^{-xtD}y[y^\beta e^{-y}] = (1+tD_y)^a(y-xt)^\beta e^{-y+xt}$$

Now replace y - xt by u then $D_y = D_u$ and l(2.3)-becomes

$$(1 + tD_y)^a e^{-xtD}y \left[y^{\beta}e^{-y}\right] = (1 + tD_u)^a \left[u^{\beta} e^{-u}\right]$$

$$= e^{-u}(1 + tD_u - t)^a \left[u^{\beta}\right]$$

$$= e^{-u}(1 - t)^a (1 + \frac{t}{1 - t}D_u)^a \left[u^{\beta}\right]$$

$$= e^{-u}(1 - t)^a u^{\beta} 2F_0\left[-a, -\beta; -; \frac{t}{(1 - t)^a u}\right].$$

Here we need to add the assumption that either α or β is a positive integer. In this case the ${}_{2}F_{0}$ is a finite series and may aè writter as α ${}_{1}F_{1}$ by summing backward. We get, after some reduction, the formula [1, p. 151]

$$\sum_{n=0}^{\infty} n! t^n L_n^{(\alpha-n)}(x) L_n^{(\beta-n)}(y) = e^{vyt} \begin{cases} (1-yt)^{\alpha-\beta} t^{\beta} \beta! L_{\beta}^{(\alpha-\beta)} \left(-\frac{(1-xt)(1-yt)}{t} \right) \\ (1-xt)^{\beta-\alpha} t^{\alpha} a! L_{\alpha}^{(\beta-\alpha)} \left(-\frac{(1-xt)(1-yt)}{t} \right) \end{cases}$$

REFERENCES

- H. Buchholz, Die konfluente Hypergeometrische Funktionen, Berlin, 1953.
- [2] E. FELDHEIM, Développements en série de polynomes d'Hermite et de Laguerre à l'aide des transformations de Gauss et de Hankel III, Proc. Kon. Ned. Akad. v. Wetensch., Amesterdam, vol. 43 (1940), pp. 479-486.
- [3] J. W. L. GLAISHER, Theorems involving certain exponential operators, Quarterly J. of Mathematics, vol. 15 (1878), pp. 266-272.
- [4] H. Gould and A. Hopper, Operational formulas connected with two generalizations of the Hermite polynomials, Duke Moth. J., vol. 29 (1962), pp. 51-64.
- [5] E. RAINVILLE, Special functions, New York, 1960.
- [6] P. G. ROONEY, On the inversion of the Gauss Transformation, Canadian Journal of Mathematics, Vol. 9. (1957), pp. 459- 464.