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On the index of nilpotency of some nil algebra»

ABIA^T and WILLIAM A. MCWORTER

(a Columbus, Ohio, U.S.A.) (*) (**)

Summary. • According to G. H.gman's proof [1] of Jkf. Nagata's conjec-
ture [2], if x2 = 0, for every element x of an (linear associative)'
algebra €L over a field o f characteristic p, then the index o f nilpotency
of fit is < 3j provided p > 2 (including p = oo),

Below, we prove thut if œ2 —0 ; for every element x of an algebra €1
over a field of charactertstic % then the index o f nilpotency N of €1 is
< m, provided dim €1 (dimension of €1) is < 2m — 1. Moreover, we
show that the upper bound m of N is attained for every integer m
(of course m > 2J. Furthermore, we show that under the same hypothesis,
there are non-nilpotent infinité dimensional algebras.

1. - Let fil be an algebra over a field W such that x*— 0r

for every acjeflL. Let N dénote the index of nilpotency of ÖL Then

dim fit < 2m — 1 implies N<m

PROOF. - To prove the lemma, it is enough to show that if
there exist m éléments x17 x%, ..., xm of £t such that

(1) xxx, ... x

then

dim] a > 2m — 1

Thus, in *what follows we assume (1).
Clearly, the hypothesis of the lemma implies that fit is anti

commutative, Le., xy = — y x , for every two éléments x and j
of &.

We order a subset [So (i = l, 2, ..., m), of \xif xi? ..., acltt

which has ^ éléments according to the natural order of

(*) Pervenu ta alla Segreteria dell'TL M. I. il 15 maggio 1963
(**) Formerly Smbat Abian
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subscripts of the éléments of S{. Moreover, for a given i, we
order the set of all such subsets St according to the principle of
first différences. Let Stj (j = 1,2, ..., a() represent the j — th
subset Si, where a,. = (7) .

Let xtJ represent the product of all the éléments of Sljf in the
natural order of their subscripts. Obviously, there are 2m — 1
such products x{j. We shall show that these products are linearly
independent over <F. To this end, it is enough to prove that if

m t

(2) 2 2 o ^ y = 0, ttyeï
• = l 7 = 1

then ati = 0, for every i = l, 2, ..., m and j = 1, 2, ..., a£.
In yiew of the hypothesis of the lemma and the anticommut-

ativity of d, multiplication of both sides of equality (2) by
xl ... xs-ïxg+1 ... xm yields a,sxlsrz:0, which in view of (1) implies
als = 0, for s ~ l , 2. ... , aa. Hence, (2) reduces to

m i

(3) 2 2 o , ^ = 0,
i=2 7=1

Multiplication of both sides of equality (3) by

a?! ... xu^xu^_x ... xv_,xu+] ... xmi yields a2tx2,. = 0

for r = l, 2, ..., ag. Continuing in this way, we dérive

implying a,Hl = 0. Thus, indeed in (2), a t i = 0 , for * = 1 , 2, ,.., w
and j=l, 2, ..., a,-, as desired.

In view of the above, the 2m — 1 products xtj are linearly
independent and hence dim û > 2 m — 1 .

Thus, Lemma 1 is proved.
In view of Lemma 1, we have

COBOLLARY. - If dim a < 3j wfoere a;x =£0, for everj/ oïsd iJien the
index of nilpotency of fit «*s egwaï fo 2,

Clearly, the result in the above Corollary also could not have
been obtained from the abovementioned result of HIGMAN.

"*"" LEMMA 2, - For every integer m > 2 , there exists an algebra
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£t over a field of characteristic 2 such that

X2 = O, for every Xe&,

with

dim a = 2m~l — 1 and N = m

where N is the index of nilpotency of fit.

PHOOF. - Consider the m — 1 indeterminates xx, xt, ..., xm_1

and let SI be the ring over GF(2) of all polynomials P(o5ls..., 5Cm_1)
with zero constant term. Let <S be the ideal of IR consisting of
all polynomials P(x]y ..., xm—^ whose non*-zero terms are at least
of degree 2 in some %t.

Take the quotient algebra 3t/<2 for fit.
Now, if P ^ ^ ..., a^-JsSt then in view of the définition of Q

and the fact that SI is over GF(2), we see at once that
P*{xx, ..., öcm_,)£Ö. From this it follows that

(4) X* = 0, for every Xsgl/Q

Let us dénote the element xx -f- <3 of âî/Q by Z,. Prom the
définition of fî and from (4) it j'ollows that §{,/© is the algebra
of all polynomials Q{Xly ..., ïw—i) whose constant terms are zero
and whose non-zero terms are of degree less than 2 in every Xt.

We claim that the 2m~l — 1 non-zero éléments

(5) X , , X2 , ...; XjXj!, XiXg, ..., X J X J ... Xm_j

of SI/U form a basis for eR/<2. Clearly, every abovementioned
polynomial Q(X}i ..., X^- J is a linear combination over GF(2)
of the éléments listed in (5). Moreover, no non-trivial linear
combination of the éléments listed in (5) can be equal to 0. Thus
indeed

dim a / a = 2m-1—ï.

Furthermore, every term of any product of m éléments of
St/Ö must contain Xf for some i and hence by (4), every such product
is equal to 0. Consequently, the index of nilpotency N of £1
is less than or equal to m. Finally, since X,XS ... Xm_j =j= 0, we
see that N = m.

Thus, Lemma 2 is proved.



ON THE INDEX OF NILPOTENCY OF SOME NIL ALGEBBAS 255

LEMMA 3. - There exists a non-nilpotent infinité dimensional
algebra fl, over a field of characteristic 2 such that

X2 = 0, for every X e â

PROOF. - Consider the infinitely inany indeterminates xly x%, ...
and let SI be the ring over GF{2) of all polynomials P(#15 x2 , ...)
with zero constant term. As in the case of the proof of Lemma
2, we construct the corresponding idéal <2 and we take the quo-
tient algebra GR/& for £1. Clearly, again

X 2 = 0 , for every Xs3t/â.

Here again we dénote the element xx -+- & of Si/61 by Xt and
here again for every integer m — 1 , the 2m — 1 éléments

(6) X1, Xj, ...j X,X2, XjX3> ..., XiX2 ... Xm

are linearly independent over GF{2) and every element Q{X1,
X2) ...) of SR/d is a linear combination over CrF(2) of the élé-
ments listed in (6), for a suitable m. Consequently, SR/â is an
infinité dimensional algebra. However. in this case 9t/<3 cannot
be nilpotent since XJXJ ... Xm^=0 for erery integer mZ>l.

Thus, Lemma 3 is proved
In view of Lemmas 1, 2 and 3, we have:

THEORBM. - Let £t be an algebra over a field of characteristic
2 such that xl = Q, for every xeflt. Let N be the index of nilpo-
tency of flL Then

dim (91 < 2m — 1 implies N^m

Moreover, the upper bound m of N is atiained for every
integer m. Furthermore, there exist infinité dimensional algebras
at which are not nilpotentenL

The above Thcorem together with the abovementioned Higman' s
result give an upper bound of the index of nilpotency (when it
exists) of any (linear associative) algebra fît in which # 2 = 0 , for
every x&SL.
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