BOLLETTINO UNIONE MATEMATICA ITALIANA

ALEXANDER ABIAN, WILLIAM A. MCWORTER

On the index of nilpotency of some nil algebras.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 18 (1963), n.3, p. 252-255. Zanichelli <http://www.bdim.eu/item?id=BUMI_1963_3_18_3_252_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

On the index of nilpotency of some nil algebras

ALEXANDER ABIAN and WILLIAM A. MCWORTER

(a Columbus, Ohio, U.S.A.) (*) (**)

Summary. According to G. H gman's proof [1] of M. Nagata's conjecture [2], if $x^2 = 0$, for every element x of an (linear associative) algebra \mathfrak{A} over a field of characteristic p, then the index of nilpotency of \mathfrak{A} is ≤ 3 , provided p > 2 (including $p = \infty$).

Below, we prove that if $x^2 = 0$, for every element x of an algebra \mathfrak{A} over a field of characteristic 2, then the index of nilpotency N of \mathfrak{A} is $\leq m$, provided dim \mathfrak{A} (dimension of \mathfrak{A}) is $< 2^m - 1$. Moreover, we show that the upper bound m of N is attained for every integer m (of course $m \geq 2$). Furthermore, we show that under the same hypothesis, there are non-nilpotent infinite dimensional algebras.

LEMMA 1. • Let \mathfrak{A} be an algebra over a field \mathfrak{F} such that $x^2 = 0$, for every $x \in \mathfrak{A}$. Let N denote the index of nilpotency of \mathfrak{A} . Then

dim
$$\mathfrak{A} < 2^m - 1$$
 implies $N \leq m$

PROOF. – To prove the lemma, it is enough to show that if there exist m elements $x_1, x_2, ..., x_m$ of \mathfrak{A} such that

(1)
$$x_1x_2 \dots x_{m_s} \stackrel{\bullet}{=} + 0$$

then

dim]
$$\mathfrak{A} \ge 2^m - 1$$

Thus, in what follows we assume (1).

Clearly, the hypothesis of the lemma implies that \mathfrak{A} is anticommutative, i.e., xy = -yx, for every two elements x and yof \mathfrak{A} .

We order a subset S_i , (i = 1, 2, ..., m), of $|x_1, x_2, ..., x_m|$ which has *i* elements according to the natural order of the

(*) Pervenuta alla Segreteria dell'U.M.I. il 15 maggio 1963 (**) Formerly Smbat Abian subscripts of the elements of S_i . Moreover, for a given *i*, we order the set of all such subsets S_i according to the principle of first differences. Let S_{ij} $(j=1,2,...,\alpha_i)$ represent the j-th subset S_i , where $\alpha_i = \binom{m}{i}$.

Let x_{ij} represent the product of all the elements of S_{ij} in the natural order of their subscripts. Obviously, there are $2^m - 1$ such products x_{ij} . We shall show that these products are linearly independent over \mathcal{F} . To this end, it is enough to prove that if

(2)
$$\sum_{i=1}^{m} \sum_{j=1}^{i} a_{ij} x_{ij} = 0, \quad a_{ij} \in \mathbb{F}$$

then $a_{ij} = 0$, for every i = 1, 2, ..., m and $j = 1, 2, ..., \alpha_i$.

In view of the hypothesis of the lemma and the anticommutativity of \mathfrak{A} , multiplication of both sides of equality (2) by $x_1 \dots x_{s-1}x_{s+1} \dots x_m$ yields $a_{1s}x_{1s} = 0$, which in view of (1) implies $a_{1s} = 0$, for $s = 1, 2, \dots, \alpha_1$. Hence, (2) reduces to

(3)
$$\sum_{i=2}^{m} \sum_{j=1}^{i} a_{ij} x_{ij} = 0,$$

Multiplication of both sides of equality (3) by

$$x_1 \dots x_{u-1} x_{u+1} \dots x_{v-1} x_{v+1} \dots x_m$$
, yields $a_2, x_2, = 0$

for $r = 1, 2, ..., \alpha_{2}$. Continuing in this way, we derive

$$a_{m1}x_{m1}=0$$

implying $a_{m1} = 0$. Thus, indeed in (2), $a_{ij} = 0$, for i = 1, 2, ..., m and $j = 1, 2, ..., \alpha_i$, as desired.

In view of the above, the $2^m - 1$ products x_{ij} are linearly independent and hence dim $\mathfrak{A} \geq 2^m - 1$.

Thus, Lemma 1 is proved.

In view of Lemma 1, we have

COROLLARY. - If dim $\mathfrak{A} < 3$, where $x^{\mathfrak{r}} = 0$, for every $x \mathfrak{A}$ then the index of nilpotency of \mathfrak{A} is equal to 2.

Clearly, the result in the above Corollary also could not have been obtained from the abovementioned result of HIGMAN.

LEMMA 2. - For every integer $m \ge 2$, there exists an algebra

 \mathfrak{A} over a field of characteristic 2 such that

$$X^2 = 0$$
, for every $X \in \mathfrak{A}$,

with

dim
$$\mathfrak{A} = 2^{m-1} - 1$$
 and $N = m$

where N is the index of nilpotency of \mathfrak{A} .

PROOF. - Consider the m-1 indeterminates $x_1, x_2, ..., x_{m-1}$ and let \mathfrak{R} be the ring over GF(2) of all polynomials $P(x_1, ..., x_{m-1})$ with zero constant term. Let \mathfrak{Q} be the ideal of \mathfrak{R} consisting of all polynomials $P(x_1, ..., x_{m-1})$ whose non-zero terms are at least of degree 2 in some x_1 .

Take the quotient algebra \Re/\Im for \Im .

Now, if $P(x_1, ..., x_{m-1}) \in \mathcal{R}$ then in view of the definition of \mathcal{Q} and the fact that \mathcal{R} is over GF(2), we see at once that $P^2(x_1, ..., x_{m-1}) \in \mathcal{Q}$. From this it follows that

(4)
$$X^2 = 0$$
, for every $X \in \mathfrak{R}/\mathfrak{Q}$

Let us denote the element $x_i + \mathfrak{A}$ of $\mathfrak{R}/\mathfrak{A}$ by X_i . From the definition of \mathfrak{A} and from (4) it follows that $\mathfrak{R}/\mathfrak{A}$ is the algebra of all polynomials $Q(X_1, \ldots, X_{m-1})$ whose constant terms are zero and whose non-zero terms are of degree less than 2 in every X_i .

We claim that the $2^{m-1}-1$ non-zero elements

(5)
$$X_1, X_2, \dots, X_1X_2, X_1X_3, \dots, X_1X_2 \dots X_{m-1}$$

of \Re/\mathfrak{Q} form a basis for \Re/\mathfrak{Q} . Clearly, every abovementioned polynomial $Q(X_1, \ldots, X_{m-1})$ is a linear combination over GF(2)of the elements listed in (5). Moreover, no non-trivial linear combination of the elements listed in (5) can be equal to 0. Thus indeed

$$\dim \ \mathfrak{R}/\mathfrak{A} = 2^{m-1} - 1.$$

Furthermore, every term of any product of m elements of \Re/\Im must contain X_i^2 for some i and hence by (4), every such product is equal to O. Consequently, the index of nilpotency N of \mathfrak{A} is less than or equal to m. Finally, since $X_1X_2 \dots X_{m-1} \neq 0$, we see that N = m.

Thus, Lemma 2 is proved.

LEMMA 3. – There exists a non-nilpotent infinite dimensional algebra \mathfrak{A} over a field of characteristic 2 such that

$$X^2 = 0$$
, for every $X \in \mathfrak{A}$

PROOF. - Consider the infinitely many indeterminates $x_1, x_2, ...$ and let \Re be the ring over GF(2) of all polynomials $P(x_1, x_2, ...)$ with zero constant term. As in the case of the proof of Lemma 2, we construct the corresponding ideal \Im and we take the quotient algebra \Re/\Im for \Im . Clearly, again

$$X^2 = 0$$
, for every $X \in \mathcal{R}/\mathcal{Q}$.

Here again we denote the element $x_i + \mathfrak{Q}$ of $\mathfrak{R}/\mathfrak{Q}$ by X_i and here again for every integer m=1, the 2^m-1 elements

$$(6) X_1, X_2, \dots, X_1X_2, X_1X_3, \dots, X_1X_2 \dots X_m$$

are linearly independent over GF(2) and every element $Q(X_1, X_2, ...)$ of \Re/\Im is a linear combination over GF(2) of the elements listed in (6), for a suitable *m*. Consequently, \Re/\Im is an infinite dimensional algebra. However, in this case \Re/\Im cannot be nilpotent since $X_1X_2 ... X_m \neq 0$ for every integer $m \geq 1$.

Thus, Lemma 3 is proved

In view of Lemmas 1, 2 and 3, we have:

THEOREM. – Let \mathfrak{A} be an algebra over a field of characteristic 2 such that $x^{2} = 0$, for every $x \in \mathfrak{A}$. Let N be the index of nilpotency of \mathfrak{A} . Then

dim $\mathfrak{A} < 2^m - 1$ implies $N \leq m$

Moreover, the upper bound m of N is attained for every integer m. Furthermore, there exist infinite dimensional algebras \mathfrak{A} which are not nilpotentent.

The above Theorem together with the abovementioned Higman's result give an upper bound of the index of nilpotency (when it exists) of any (linear associative) algebra \mathfrak{A} in which $x^2 = 0$, for every $x \in \mathfrak{A}$.

REFERENCES

- [1] M. NAGATA, On the nilpotency of nil algebras, J. Math. Soc. Japan, 4(1652), 296-301.
- [2]. G. HIGMAN, On a conjecture of Nagata, Proceed. Camb. Phil. Soc. vol. 52(1956) part. I 1.4.