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On the nonnegativity of Green’s functions.

Nota di RicEARD BELLMAN (California U.S.A.) (*)

Summary. - In previous papers we discussed various methods of estalishing
the nonnegalivity of the Greew’s function associated with the ordinary
differential equation

w' + q(x)u = f(x), u(0) = u(l)=0.

In this paper we wish to present another method which has certain
merits. It clarifies the role played by the characteristic values of the as-
sociated Sturm-Liouville problem and it indicates how useful it may be
to study the behavior of the solution of Lu=v, where Li is a linear
operator, by means of the limiting behavior of the solution of

ou

ﬁ—zLu—v,

as t — oo. This method has been used by Arrow and Hearon to siudy
the inverse of input-output matrices.
1. - Introduection.

In previous papers [1}, [2], [3], we discussed various methods
of establishing the nonnegativity of the GREEN’S function asso-
ciated with the ordinary differential equation

(L.1) u’ + glxym = flz), w(0) = u(1)=0.

(*) Pervenuta alla Segreteria dell’U. M. 1. il 29 aprile 1963.
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220 RICHARD BELLMAN

In this paper we wish to present another method which has
certain merits. It clarifies the role played by the characteristic
values of the associated STURM-LIovvILLE problem and it indicates
how useful it may be to study the behavior of the solution of
Lu =wv, where L is a linear operator, by means of the limiting
behavior of the solution of

o
(1.2) a—t = Lu — v,

as ¢ — oo. This method has been used by Arrow and Hearon to
study the inverse of input-output matrices; see [4].

2. - Nonnegativity of solutions of partial differential equa-
tions.

Consider the partial differential equation of parabolic type,

2.1) e+ oy — i) = U

with the initial condition wu(xz, 0) = h(x), with A(x) >0, 0 <<z <1,
and u{0, {) = u(l, {)=0. If we suppose that g(x) is uniformly boun-
ded, 0 <<x <1, it is easy to show, under the hypotheses that h(x),
fle) = 0, that u(x, {)=0 for ¢ =0. If q(x)=0, we use the finite
difference approximation

w(xe + A, t) +ulx — A, i)
2

(2.2) u(x, t+ AY) =

+ g(@)ufz, 1A + flx)a,

t=0, A% ..., which establishes inductively that uix, ) = 0. As A0,
the solution of the finite difference equation converges to that of
the partial differential equation, thus establishing the required
nonnegativity.

If g(x) is not nonnegative, but bounded from below by a cons-
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tant so that M+ q(x)=0, we write u = e—Mtw(x). Substituting,
we obtain the equation

2.3) Wy = W+ (gl) + Mo — fla)e—,

which we can treat as in (2.2) to establish nonnegativity.

3. — Nonnegativity of solution .of ordinary differential equa-
tion.

Returning (2.1), let us allow ¢ to become infinite. If all charac-
teristic values of the equation

(3.1) W + QX)tt = dut, u(0) = u(1) =0,

are negative, the solution of (2.1) converges as ¢ — co to the solu-
tion of (1.1), establishing thereby the mnonnegativity of the solu-
tion of (1.1)

4. - Extension.

There is no difficulty in eytending the proof to cover ordinary
differential equations with more general boundary conditions and
multidimensional partial differential equations of parabolic type.
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