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SEZIONE SCIENTIFICA

BREVI NOTE

Some arithmetical properties
in connection with pseudo-random numbers.

Nota di A. DE MarrEls ¢ B. FALESCHINI (a Bologna) (*) (*¥)

Sunto. - Il periodo di una successione di numeri pseudo-casuali generata
con un metodo congruenziale moltiplicativo é il gaussiano, per un asse-
gnato modulo, del moltiplicatore fisso. La conoscenza del gaussiano del
wmoltiplicatore é importante anche per il metodo moltiplicativo-additivo,
in quanto U esistenza di un soltoperiodo influenza la casualitc della
successione. Vengono qui messe in evidenza le proprietd dei numeri che
hanno lo stesso gaussiano, grazie alle quali 1 insieme di tali numeri
viene individuato con semplici operazioni di congruemza pariendo da
una sottoclasse minima.

1. - Introduction.

A new scheme for generating pseudo-random numbers has been
proposed by ROTENBERG [6]; namely, the linear congruence

(1) X4y =0, + k (mod m),

completely defined by the choice of the integer parameters m, a,
k, ,. The case k=0 is LeEMER’S classical scheme [5], which in
general differs from (1) for the length of period of the obtainable
succession. In the LEEMER-scheme this period, for ¢ and x, prime
to m, is called the exponent to which a belongs modulo m, and
following Liucas [1] it will be denoted by gss (m, a). Its value is
less than m, while the period of the succession (1) may reach m.

Recently it has been pointed out [7-8] that some statistical pro-
perties, which these sequences of numbers must satisfy to be en-
titled to the (vague) qualification «random'», may be inferred

(*) Pervenuta alla Segreteria dell’ U. M. I. il 16 aprile 1963.

(**) Work executed at the Centro di Calcolo del C.N, E.N. (Bologna)
and partially published in the C.N.E.N. report n. 88 <Pseudo-random
sequences of equal length », (1960).
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« a priori », on account of the arithmetical nature of the genera-
ting procedure. They depend on the values of the parameters en-
tering (1). It is thus important to dispose of a large possibility of
choice.

It is the purpose of this note to investigate some properties of
the numbers belonging to the same exponent modulo m, by which
the whole sef of such numbers may be obtained by simple addi-
tions, starting from a minimal subset.

The study of gss (m, a) is emphasized also because of ifs re-
markable influence ou the randomness of the sequences (1), as may
be seen in Figure 1 for the simple case m —3% The values z,
are plotted versus i for a succession of period m.
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Fig. 1 - A full sequence with m=27, a=4, k=22, x,=17;
gss (27, 4)=09.

Connecting lines are shown between 3 groups of exactly 9
points each, i.e. gss (m, a). The three curves my be obtained from
each other by translations in the system of integers mod m as
will subsequently be shown. For these features of the sequences
(1) one must be cautious when using a number of terms greater
than gss (m, a).
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2. - Definitions and basic properties.

We give here some definitions and properties which are fund-
amental in the theory of binomial congruences — [1—4].

Henceforth all numbers considered are positive integers unless
otherwise stated.

DrrInirioN - The number of positive integers less than and
relatively prime to m is called the indicator of m and is written
o(m).

TEEOREM 21 - It p is a prime, then o(p%) = p"~(p—1), ¢(1)=1.

TEEOREM 2.2 ~ If m —=p*-¢*...r" is the canonical decomposition
of m, then

¢m) = o(p*)-o(q’) ... ¢(r?)

Tagorem 2.3 - If d,, d,...d, are all the divisors of m, inclu-
ding m and unity, then

o(d,) + 9(dy) + ... + o(dy) = m.

DEriNITION - Reduced indicator of m is called the function
d(m) so defined:

Y(m) = g(m)
it m =1, 2, 4, p%, 2p° where p is an odd prime ;
§(2) = 2=
if s > 2; and finally
Y(m) =Leam. [$(p%), g, .., Ur7),

where l.c.m. is the least common multiple and m =p*¢’... r’ is the
canonical decomposition of m.

TeeorEM 2.4 (Lucas) - If @ is relatively prime to m, then

a¥m) =1 (mod m).
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DeriNiTIoN - The smallest number g > 0 satisfying the con-
gruence

2) af =1 (mod m)

where a is prime to m, is called the exponent to which a belongs
modulo m, or gaussian of a modulo m and will be written gss(m,a).

TaroREM 2.5 — All numbers g satisfying (2) are multiples of
gss(m, a).

TurorREM 2.6 — The sequence of the least positive remainders
modulo m of the successive powers of a (prime to m) is periodic
and the number of terms of the proper period is gss(m, a).

TeEOREM 2.7 — If p is an odd prime, if @ is prime to p and
p” is the largest power of p dividing agssip,a) — 1, then

gss(p, a) if s<r
gss(p', @)=

gss(p, a)ps—" it s>r

TerorEM 2.8 - (i) If ¢ =1 (mod 4} and 2% is the largest power
of 2 dividing a — 1, then

{ 1 ifit<w

88 (2%, a)=
R T TR

(i) If a =3 (mod 4) and 2¥ is the largest power of 2 divi-

ding a + 1, then

1 ift=1
gss (2, a)=1{ 2 ifl<t<o
2= ifi>w

TeEOREM 2.9 - If m, n, @ are relatively prime in pairs, then

gss (mn, a) = l.c.m. [gss (m, a), gss(n, a)]

TreorEM 2.10 - If m — p°, where p is an odd prime, and d is
a divisor of ¢(m), there are ¢(d) numbers belonging to d modulo m.
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TEEOREM 2.11 — If m ==2¢ where { ==3, there are
1 number belonging to 1 modulo m
3 numbers » » 2 » >

and if 2<<v <<t — 2, there are
2* numbers belonging to 2” modulo m.
TrEorEM 2.12 - If for a, prime to mi, gss(m, a) = g, then

9

gss (m, an):g.c.d. g, »]

where g.c.d. is the greatest common divisor.
DEriNITION - If gss (m, a)=9¢(m), a is called a primitive root of m.

TaEorEM 2.13 - A number m has primitive roots if and only
if m is 2, 4, p* or 2p5, where p is an odd prime.

3. - Numbers belonging to the same exponent.

We shall investigate in this Section some properties which
will allow us to determine by simple relations of congruence the
class of all numbers belonging to a given exponent.

Special attention will be given to the numbers belonging (mo-
dulo p°) to the divisors of ¢(p). They will be denoted by ¢, and
computed by means of the following rule.

RuLe 3.1 - Let p be an odd prime and ¢ an integer less than
p. Then for every ¢ such that
¢ =¢P*~! (mod p°),
one has
gss (p*, ¢) = gss (p, 9).

Indeed, let gss(p, §) —=d where d is a divisor of p — 1. With
the notation of theorem 2.7 it will be

d if s<<r

gss (ps, 1) =
gss (% ) dps—r ifs>r
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If gss(p’, 7) =d, by theorem 2.12 the assertion holds since p*—!
is prime to d.
On the other hand, if gss(p%, 4) = dp*—" then

. dps—r
sS S ,&ps——l —_— ———— .
g ) = i [y, o)
proving 3.1.
TEEOREM 3.2 - Let p be an odd prime, ¢ prime to p and gss
(p*, ¢)=d, where d is a divisor of p — 1. Then for every r, 1<
< r <s, and for every «x satisfying the conditions

3) x = c(mod p), x == ¢(mod pt)
one has

gss (p5, x) =dp*.

Indeed if d is a divisor of p — 1. then gss(p%, ¢)—d implies
gss (p, ¢)= d. Hence gss(p, ) = gss(p, ¢)=4d.

Furthermore the numbers x have the form x = ¢ + hp” where
h (positive or negative integer) is prime to p. By the binomial
expansion of (c + hp")* we get

x* —1=0 (mod p’) and x* — 1 = dc®'hp” (mod p'*})

But ¢, d, h, are prime to p. Therefore pr is a divisor of x?—1,
but not p*+!. The theorem then follows from theorem 2.7.

TaEoREM 3.3 ~ The numbers x obtained under assumptions (3)
of the preceding theorem from the ¢(d) numbers ¢, exhaust all
numbers belonging to dp*—" modulo p.

Indeed by 3.2 for every ¢ we find ¢{p)—=p — 1 numbers belon-
ging to dp*—’, in any set of p"*' successive numbers. Thus for a
given c¢ there are

(0 — 1= ()

positive integers less than p* belonging to the same exponent.
For all the ¢ we have

o(d)e(p*—) = ¢(dp*~"}.

According to theorem 2.10 they are all the numbers belonging
to dp*—", proving 3.3.
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Moreover the summation over all possible values of d and 7,
yields

2 o(d)-9(p*=") = 9(p*) — 9(p)

which, added to the ¢(p) values of ¢, exhaust all numbers less than
and prime to p*.

As an easy example consider the case p*=— 3% The two num-
bers ¢ may be computed by means of 3.1, or more easily by ob-
serving that, for every p, the number belonging to the exponent
2 modulo p* is p*—'. Thus 1 and 26 belong respectively to the ex-
ponents 1,2, Letting h run through the set of values prime to 3
we obtain the Table I below.

TaBLE 1
Example
¢ 3" x = ¢+ h3r (mod 33%) gss (3%, x)
3 4, 7, *, 13, 16, *, 6 22 25 9
1 pa—
9 10, 19, 3
3 2, 5, *, 11, 14, * 20, 23 18
26 —
9 8. 17, 6

For the construction of a table reduced to its characteristic
elements we have the two following theorems:

TaroreM 3.4 - If for x, prime to p, gss(p’, ) = dp*—"(1<r<s),
then for every y = &« (mod p"*’) one has gss(p’, y)=— gss(p’, x).

By the theorem 3.3 every such number z may be written in
only one way, ¥ = ¢ + hp”, where & is prime to p and gss(ps, c}=d.

If k is an integer, the number ¢+ (b + kp)p” = a + kp*' also
belongs to the exponent of «, since h + kp is prime to p. This
proves the theorem.

TeEOREM 3.5 - There are {¢(p)-¢(d)] numbers less than p *! be-
longing to the exponent dp*—" modulo p°.
This follows immediately from the above theorems.

‘We conclude that there is a minimal subset of numbers belon-
ging to a given exponent from which all others may be obtained
by simple additions. In the above example all primitive roots of
3% are obtained from 2 and 5 by adding successively 3%.
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For the case p = 2, with the restrictions 2<<v<<{— 2, it fol-
lows from the basic theorems that the numbers belonging to 2:—
modulo 2¢, are the 2% numbers of the form x = #= 1 + h2*, where
h is an odd pasitive integer, i.e., £ = =1 (mod 2%) and x===1
(mod 2°%1).

If we denote with ¢ these four numbers belonging to the divi-
sors of ¢(2%) = 2, modulo 2¢:

1 Dbelonging to 1
201 -1 » » 2
-1 4 1 > » 2
2 —1 . » 2

(the last of which is equivalente to — 1 modulo 2¢), we have the
following theorems, which are formally analogous to 3.2 and 3.4
for the modulus p°.

THEOREM 3.6 - If 2 <w<<f — 2 and with ¢ defined as above,
for the numbers

x=c (mod 2%, and x3|=c (mod 2"*'),
one has
gss (2, x) = 2,

TeEOREM 3.7 - If 2<<v <<t —2 and the odd number x is such
that gss (2!, x)=2'-" then for every y=x (mod 2°*!) one has
gss (2, y) = gss (2, @).

Finally, in view of the further applications, theorems 3.4 and
3.7 may be so extended, by means of theorem 2.9, to the composite
modulus m = 2p*:

TeHEOREM 3.8 - If 2, prime to m = 2ip*, is such that
gss (2, x) =277, gss(pf, x) =dp*”

where d is a divisor of o(p), 2<v<<t{—2, 1<<r <s, then for
every y = (mod 2°*!p*!), one has

gss (m, y) = gss (m, ).

4. - Applications.

a) As a first application of the preceding theorems, we shall
find all numbers belonging to }(10'°) = 5.10° modulo 10,
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Since (with the notation of Section 3.) t =5s=10, v =2, r=1,
one has 2v+15r+! — 200. It will be sufficient to find the numbers
less than 200 belonging to 5.10%; they are the numbers a quoted
in Table II. From the column « periodicitv », Wwhere the zeros stand
for 10, one may obtain gss (10", @) by multiplying the last # num-
bers (see Appendix) Furthermore, every number congruent ¢ mo-
dulo 200 will belong to the same exponent of a, modulo 10"

TasLe IT

gss (10", a) = 5.108

a periodicity a periodicity
3 0000005554 109 0000000552
11 0000000501 117 0000005554
13 0000005554 123 0000005554
19 0000000552 131 0000000501
21 0000000051 133 0000005564
27 0000005554 139 0000000552
29 0000000552 141 0000000051
37 0000005554 147 0000005554
53 0000005554 163 0000005554
59 0000000552 171 0000000501
61 0000000051 173 000000555+
67 0000005554 179 0000000552
69 0000000552 181 0000000051
77 0000005554 187 00000055564
83 0000006554 189 0000000552
91 0000000501 197 0000005554

Example - gss (10", 3)=10%.5.5.5.4 = 5.10% and the numbers
xxxxxXxx003, xxxxxxx203, ete.

where x are arbitrary digits, belong to the same exponent of 3.
Furthermore, in the sequence of pseudo-random numbers gene-
rated with one of these numbers as fixed mulfiplier in the Lehmer
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scheme, the period of, say, the last five digits will be 10.5.5.5.4=

5000.

b) In general the nmumbers belonging to a given expoment
modulo 10'° may be found without attempts by a procedure like
that shown in Table I.

Let ¢, , be the numbers prime to 2 and belonging to the divi-
sors of (2%) =2, modulo 2* and ¢,;,, the numbers prime to 5 and
belonging to the divisors of ¢(3)=4, modulo 5. Tables 1II and
IV yield these values for progressive moduli.

TaBrLe IIT

Values of ¢,

Coya | Coya| Coys | Coy0 | Coyr| Coys|Coyo|Csyno

gss =1 1 1 1 1 1 1 1 1

gss =2 2 7 15 | 31 63 | 127 | 265 | H11

gss — 2 5 9 17 | 383 65 | 129 | 257 | 513

gss — 2 7 15 31 63 | 127 | 266 | 511 |7023

TaBLE IV
Values of ¢,
C5,11|C5, 2(C5,31C5, 4| C5,5 | Cs,6|Cs,7| OCs,8 Csy 0 Cs5. 10

gss—=1) 1 1 1, 1 1 1 1 1 1 1
gss—=4| 2 7 | 57 |182|2057 (14557 |45807! 280182 | 280182 | 6139557
gss—4| 3 | 18 | 68|443 1068 | 1068!32318| 110443 | 1672943 | 3626068
gss =2 4 | 24 [ 124|624 |3124 |15624 78124 | 390624 | 1953124 | 9765624

Taking the numbers ¢ in the following way

€=2¢,, ,, (mod 29

c=¢c,, ,, (mod 5!)

2

then gss (10, ¢) will be 1, 2 or 4. Since the possible combinations
are 16, we find 16 values tor ¢, shown in Table V.
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TaABLE V

Values of ¢ for 10

CONNECTION,

ETC.

gss (6',c)=1 ' gss (5',c) =4 | gss (5*°,c) =4 | gss (5",¢)=2
gss (2¥.¢c)=1 1 | 8092077057 | 8333704193 | 6425781249
gss (219¢) = 2 | 8574218751 | 6666295807 | 6907922943 | 4999999999
gss (21%¢) = 2 | 5000000001 | 3092077057 | 3333704193 | 1425781249
88 (2'%¢) =2 | 3574218751 | 1666295807 | 1907922943 | 9999999999

181

Taking now, with notation of Section 3, a number « such that
2= ¢ (mod 2'5") but xZ|=¢ (mod 2v*! 5"} and xz==c¢ (mod 2 5%}
one has

gss(2'9, x) = 2~ and gss(5'°, x) = db'0—,
where d =1, 2 or 4. Hence
gss (1010, x) = l.c.m. [2!°—7, d@bi0—].

For v=2, r =1, 2*0’ =20 and starting for instance from c=1
we find the numbers

1+20=21,1+3.20=61, 1 + 7-20 =141, 1 + 9-20 =181

less than 200 belonging to 5.10% given in Table II. This may
be repeated for the other c.

By this procedure and by means of the IBM 650 Computer, a
complete table of the minimal subset of numbers belonging to all
divisors of ¢(10'°) has been prepared at the Computing Centre of
the C.N.E.N. Bologna, Italy, We give here an abstract of this
table, in Table VI, showing the smallest numbers a belonging to
the exponent quoted in the first column. The third column, con-
tains the moduli 2°+'5"*! such that the numbers x = a (mod 2°*!
57%!) belong to the same exponent of a.
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TaBLe VI

Smallest numbers belonging to the divisors of ¢ (10'9)

! 9v+1 frtl

gss(104%a) a gss (IOIU’a) a Qv+l Fr+1
1 1 1010 25000 || 322943 4000000

2 111425781249 1010 31250 || 138751 3200000

4 392077057 | 5000000000 32000 | 156251 3125000

5 12000000001 100 40000 || 31249 2500000

8 || 175781249 [2500000000 50000 18751 2000009

10 || 425781249 100 62500 || 21249 1600000

16 32922943 | 1250000000 78125 || 128001 640000

20 74218751 | 5000000000 80000 47943 1250000

25 || 400000001 |2000000000 100000 4193 1000000

32 |1 103795807 | 625000000 125000 2943 800000

40 83704193 | 2500000000 156250 10751 640000

A0 25781249 120000000600 160000 14557 625000

64 19531249 | 312500000 200000 27057 500000

80 41295807 | 1250000000 250000 15807 400000
100 7922943 | 1000000000 312600 8193 640000
125 80000001 | 400000000 390625 || 25601 128000
128 25670807 | 156250000 400000 2057 250000
160 11718751 ! 625000000 500000 1249 200000
200 16295807 | 500000000 625000 5249 160000
250 14218751 | 400000000 781250 2049 128000
256 6139557 | 78125000 800000 6251 125000
320 1672943 | 812500000 1000000 5807 100000
400 781249 | 250000000 1250000 193 80000
500 5781249 | 200000000 1562500 257 64000
625 16000001 [ 80000000 1953125 5121 25600
640 3906249 | 156250000 2000000 807 50000
800 3795807 | 125000000 2500000 1057 40000
1000 2077057 ) 100000000 3125000 1151 32000
1250 1781249 80000000 3906250 511 25600
1280 2233307 | 78125000 40600000 443 25000
1600 2454193 | 62500000 5000000 751 20000
2000 1295807 | 50000000 6250000 449 16000
2500 77057 | 40000000 7~ 12500 513 25600
3125 3200001 [ 16000000 10000000 57 10000
3200 670807 ! 31250000 12500000 351 8000
4000 422943 | 25000090 15625000 127 6400
5000 218751 20000000 20000000 251 5000
6250 181249 16000000 25000000 49 4000
6400 110443 15625000 31250000 63 3200
8000 45807 | 12500000 50000000 7 2000
10000 704193 | 10000000 62500000 31 1600
12500 104193 8000000 100000000 43 1000
15625 640001 3200000 125100000 17 800
16000 156249 6250000 250000000 9 400
20000 204193 5000000 500000000 3 200
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5. - Sequences of full period.

An mentioned in the Introduction, for particular choices of the
parameters, the sequences (1) may have w distinct numbers, i.e.
a full period.

In Appendix I of ref. [8] it is shown that for m =2 k odd
and for every z,, the full period is gss(2*®, a) for any e =1
(mod 4), where v is the highest power of 2 dividing a — 1.

Analogously the period of (1), for m = p* (p odd prime), k& prime
to p and for every x,, is gss (p**", a) for any a=1 (mod p), where
7 is the highest power of p dividing a — 1. By theorem 3.2 where
now ¢c=d =1 and s is replaced by s+ 7, follows

gss (p**7, a) = p*.

Finally for the composite modulus m = 2/p* the full period is
obtained for @ =1 (mod 4p) and k prime to m.

The presence of subsequences with a number of terms g—
gss (m, @) <m and translated among them in the system of inte-
gers mod m may be put in evidence by observing that, since

Xy = 0"%, + k(1 + a + ... + a"') (mod m),
for n = g one obtains

Zoyo — %, =k(l +a + ..+ a’"") (mod m)

which does not depend on <.

APPENDIX
Computation of gss(m, «)

When the modulus is of the form m=0", the number gss (b", a)
may be computed on an electronic machine as follows. Once one
has found g, =gss (b, a) by successive multiplications, then the
first integer k, such that

(ag)f2 =1 (mod b?)
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yields

g, = gss (0%, a) = kyg, .
If in general g, = gss (b%, a), it will be

g: = k:gz—l (Z > 1)
and

gss (b", a)=k.k.—, ... k,g,.

Since g, << ¢(b) and, as may easily be shown, k,<<b, the num-
ber of multiplications to perform is surely less than nb.
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