BOLLETTINO UNIONE MATEMATICA ITALIANA

PHILIP HARTMAN

On oscillators with large frequencies.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 14 (1959), n.1, p. 62-65. Zanichelli <http://www.bdim.eu/item?id=BUMI_1959_3_14_1_62_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

On oscillators with large frequencies. (1)

Nota di Philip HARTMAN (a Baltimore)

Summary. - A simple proof is given for the theorem of ARMELLINI, SAN-SONE and TONELLI that if q(t) is continuous for $t \ge 0$, is monotone, $q(t) \rightarrow \infty$ as $t \rightarrow \infty$ and log q(t) is of "regular growth," then all solutions of $d^2x/dt^2 + q(t)x = 0$ tend to 0 as $t \infty$.

Let q(t) be a continuous, non-decreasing, unbounded function for $0 \le t < \infty$:

(1)
$$q > 0, \ dq \ge 0, \ q \to \infty \text{ as } t \to \infty.$$

As is well known, every solution x = x(t) of

$$(2) x'' + q(t)x = 0$$

is bounded; in fact the "conjugate energy" E = E(t) belonging to x(t),

(3)
$$E = x^2 + x'^2/q$$
,

is non-increasing,

$$dE = -x^{\prime 2} dq/q^2 \leq 0.$$

In answering a question raised by Biernacki, Milloux [2] has shown that (1) implies that (2) has a non-trivial $(\equiv 0)$ solution satisfying

(5)
$$x \to 0$$
, that is, $E \to 0$, as $t \to \infty$.

(4) This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under contract No. AF 18(603)-41. Reproduction in whole or in part is permitted for any purpose of the United States Government. A simple proof of Milloux's theorem and a generalization of it, involving a system of linear first order equations instead of (2), were given in [1].

It is not true that (1) implies (5) for every solution x = x(t) of (2). In this direction, one has the following theorem:

(*) Let q(t) be continuous for $t \ge 0$ and satisfy (1). In addition, let $\log q(t)$ be of "regular growth". Then every solution x = x(t) of (2) satisfies (5).

This theorem was stated and proved in part by G. AR-MELLINI; its proof was completed independently by G. SANSONE and L. TONELLI. For references, see [4], p. 61. For a generalization of (*), see [3].

According to ARMELLINI, a continuous, non-decreasing, unbounded function Q(t), where $t \ge 0$, is called of "irregular growth" if, for every $\varepsilon > 0$, there exists an unbounded sequence of numbers $0 = t_0 < t_1 < \dots$ such that if C(n) and B are the open sets

(6)
$$C(n) = \bigcup_{k=1}^{n} (t_{2k-1}, t_{2k}), \ B = \bigcup_{k=0}^{\infty} (t_{2k}, t_{2k+1}),$$

then

(7)
$$\limsup_{n \to \infty} t_{2n}^{-1} \int_{C(n)} dt < \in \operatorname{and} \int_{B} dQ < \infty.$$

If Q(t) is not of irregular growth, then it is said to be of "regular growth".

The object of this note is to give a short, simple proof of (*), avoiding the awkward use for STURM's second comparison theorem in TONELLI's proof. (The argument below can be modified to give the result of OPIAL).

Proof of (*). For a non-trivial solution x = x(t) of (2), let $\varphi(t)$ be the continuous function defined by

(8)
$$\varphi(t) = \arctan q^{1/2}(t)x(t)/x'(t)$$
 and $0 \leq \varphi(0) < \pi$.

Then, by (2),

(9)
$$d\varphi = q^{1/2}dt + (\sin 2\varphi) dq/4q$$
,

while (4) can be written as

(10)
$$-dE/E = (\cos^2 \varphi) \ d(\log q).$$

Suppose that (5) fails to hold for some solution x=x(t); so that $E(\infty) > 0$ and $-\int dE/E < \infty$. Then (11) $\int_{0}^{\infty} (\cos^2 \varphi) \ d(\log q) < \infty$,

Let $0 < s_1 < s_2 < ...$ be the sequence of positive zeros of x = x(t)Since $d\varphi = q^{1/2} dt > 0$ at $t = s_n$, it follows that $\varphi(s_n) = n\pi$ for n = 1, 2, ... and that $n\pi < \varphi(t) < (n + t)\pi$ for $s_n < t < s_{n+1}$. If $0 < \mu < 1$ and n > 1, there exists a unique pair of t-values, $t = t_{2n}$ and $t = t_{2n+1}$ satisfying

$$s_{n-1} < t_{2n} < s_n < t_{2n+1} < s_{n+1}$$
, $|\cos \varphi(t_{2n})| = |\cos \varphi(t_{2n+1})| = \psi$
and

(12)
$$|\cos \varphi(t)| > \mu \text{ for } t_{2n} < t < t_{2n+1}$$

(The numbers t_0 , t_1 can be defined arbitrarily and will not be considered below). The positive numbers

(13)
$$\gamma_0 = \varphi(t_{2n}) - \varphi(t_{2n-1}), \ \gamma_1 = \varphi(t_{2n+1}) - \varphi(t_{2n})$$

are independent of n. If $\varepsilon > 0$ is given and $\mu = v_{\varepsilon}$ is sufficiently small, then

(14)
$$0 < \gamma_0 / \gamma_1 < \varepsilon \ (< 1) \, .$$

Let $\Delta = \Delta(n)$ be the t-interval (t_{2n-1}, t_{2n}) . By (9).

$$\int_{\Delta} dt \leq \int_{\Delta} q^{-1/2} d\varphi + \int_{\Delta} q^{-3/2} q' dt.$$

In the first integral on the right, replace $\varphi(t)$ by $\varphi(t) - \varphi(t_{2n})$ and integrate by parts. It follows, from $|\varphi(t) - \varphi(t_{2n})| \leq \pi < 4$ on Δ , that

$$\int_{\Delta} dt \leq \gamma_{0} q^{-1/2} (t_{2n-1}) + 3 \int_{\Delta} q^{-3/2} q' dt .$$

Similarly. if $\delta = \delta(n)$ is the t-intervall (t_{2n-2}, t_{2n-1}) ,

$$\int\limits_{\delta} dt \geq \gamma_1 q^{-1/2}(t_{2n-1}) - 3 \int\limits_{\delta} q^{-3/2} q' dt.$$

Hence.

$$\int_{\Delta} dt \leq (\gamma_0/\gamma_1) \int_{\delta} dt + 3 \int_{\Delta} q^{-3/2} q' dt + (3\gamma_0/\gamma_1) \int_{\delta} q^{-3/2} q' dt$$

and so, by (14),

$$\int\limits_{\Delta} dt \leq \int\limits_{\Delta U\delta} dt + 3 \int\limits_{\Delta U\delta} q^{-3/2} q' dt \, .$$

Since $\int_{-3/2}^{\infty} q' dt < \infty$, the set C(n) in (6) satisfies the first part of (7).

It follows from (11) and (12) that the second part of (7) holds if $Q = \log q(t)$. Consequently, $\log q(t)$ is of irregular growth. Since this contradicts the hypothesis of (*), the assumption that (5) fails for some solution x = x(t) is untenable. This proves (*).

REFERENCES

- P. HARTMAN, On a theorem of Milloux, « American Journal of Mathematics », vol. 70 (1948), pp. 395-399.
- [2] H. MILLOUX, Sur l'équation différentielle x'' + A(t)x = 0. « Prace Matematycznö · Fizyczne », vol. 41 (1934), pp. 39-53.
- [3] Z OPIAL, Sur l'équation différentielle u'' + a(t)u = 0, «Annales Polonici Matematici », vol. 5 (1958), pp. 77-93.
- [3] G. SANSONE, Equazioni differenziali nel campo reale, vol. 2, Bologna (1949).