BOLLETTINO UNIONE MATEMATICA ITALIANA

GEORGE PIRANIAN

The orders of lacunarity of a power series.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.2, p. 198–199. Zanichelli

<http://www.bdim.eu/item?id=BUMI_1956_3_11_2_198_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

The orders of lacunarity of a power series (*)

Nota di George PIRANIAN (a Ann Arbor U.S.A.)

Sunto. - The proof of a theorem of G. RICCI [(1), pp. 610, 615-622] on the HADAMARD-OSTROWSKI and the FABRY-POLYA lacunarity of power series is simplified.

Let the series

(1)

 $\sum_{n=1}^{\infty} a_n z^n$

have radius of convergence 1. For $\theta > 0$, a sequence of intervals (p_h, q_h) on the positive real axis, with $p_h \to \infty$ and $q_h > (1 + \theta)p_h$, is a θ -sequence of H - O (HADAMARD-OSTROWSKI) gaps for (1) provided the condition

(2)
$$\lim \sup |a_n|^{1/n} < 1$$

is satisfied for the indices n that fall into the intervals (p_h, q_h) . It is a θ -sequence of F - P (FABRY-PÓLYA) gaps provided the indices n that fall into the intervals (p_k, q_k) can be divided into two infinite sets such that (2) holds for the first set but not for the second, and such that the number v_h of indices *n* in (p_h, q_h) which belong to the second set satisfies the condition

(3)
$$\mathbf{v}_h = o(q_h - p_h).$$

In a recent paper [1], G. RICCI defined A, the order of H - Olacunarity of the series (1), to be the supremum of the values θ for which (1) possesses a θ -sequence of H - O gaps (with the special provision that $\Lambda = 0$ if no θ -sequence of H - 0 gaps exists); similarly, he defined the order Λ^* of F - P lacunarity. And by means of explicit constructions, he proved the following theorem. To every pair of values Λ and Λ^* in the closed interval $[0, \infty]$ there corresponds a series (1) whose orders of H = 0 and F = Placunarity are Λ and Λ^* , respectively.

It is the purpose of this note to present a simpler example of a series (1) with the desired properties. Suppose first that Λ and Λ^* lie in the open interval $(0, \infty)$. Let

$$\begin{array}{l} p_h=(2h)\,!\,,\;q_h=(1+\Lambda)p_h\;(h\;\;{\rm odd},\;{\rm greater}\;{\rm than}\;\;\Lambda),\\ p_h=(2h)\,!\,,\;q_h=(1+\Lambda^*)p_h\;(h\;\;{\rm even},\;{\rm greater}\;{\rm than}\;\;\Lambda^*). \end{array}$$

(*) This note was written under contract DA 20:018:ORD-13585 between the Office of Ordnance Research of the U.S. Army and the Engineering Research Institute of the University of Michigan.

If the index *n* does not fall into one of the intervals (p_h, q_h) , let $a_n = 1$. If *n* falls into one of the intervals (p_h, q_h) (*h* odd), let

(4)
$$a_n = \left\{ 1 - \frac{(q_h - n) (n - p_h)}{(q_h - p_h)^2} \right\}^n$$

If n falls into one of the intervals (p_h, q_h) (h even), let

(5)
$$a_n \equiv 0 \ (n \text{ not a perfect square})$$

(6) $a_n = 1$ (*n* a perfect square).

Obviously, for every θ in $(0, \Lambda)$ the series (1) thus defined has a θ -sequence of H - O gaps, and for every θ in $(0, \Lambda^*)$ it has a θ -sequence of F - P gaps. Suppose, on the other hand, that for some fixed value θ_1 the series (1) has a θ_1 -sequence of H - O gaps $(r_{\lambda}, s_{\lambda})$. Because of (6), all except finitely many of the intervals $(r_{\lambda}, s_{\lambda})$ fall into intervals $(p_{\lambda}, q_{\lambda})$ whose indices h are odd; and because of (2) and (4), they satisfy the condition.

$$\lim \sup s_h/r_h < \lim q_h/p_h = 1 + \Lambda.$$

Therefore $\theta_1 < \Lambda$.

Similarly, suppose that for some fixed θ_2 the series (1) has a θ_2 -sequence of F - P gaps (r_k, s_k) . Again, all except finitely many of the gaps (r_k, s_k) fall entirely or almost entirely into gaps (p_h, q_h) . Also, there exists a sequence of special indices n which fall into intervals (r_k, s_k) and for which $\lim a_n n^{1/n} = 1$. If infinitely many of these special indices fall into odd-numbered gaps (p_h, q_h) , then it follows from (4) that the number μ_k of indices \circ of the second set \circ in (r_k, s_k) can not satisfy the condition $\mu_k = o(s_k - r_k)$ analogous to (3). Therefore infinitely many of the gaps (r_k, s_k) lie entirely or almost entirely in even-numbered gaps (p_h, q_h) , and therefore $\theta_s \leq \Lambda^*$.

It remains to modify the construction for the cases where one or both of the values Λ and Λ^* does not lie in the open interval $(0,\infty)$. If $\Lambda = 0$, we omit the odd-numbered gaps (p_h, q_h) from our construction; if $\Lambda^* = 0$, we omit the even-numbered gaps. If $\Lambda = \infty$, we replace the condition $q_h = (1 + \Lambda)p_h$ by $q_h = hp_h(h = 1,$ 3, 5, ...); and we make a similar provision for the case where $\Lambda^* = \infty$. The remainder of the proof for these exceptional cases is trivial.

REFERENCE

 G. RICCI, Prolungabilità e ultraconvergenza delle serie di potenze. Modulazione del margine delle lacune. Rend. Mat. e Appl. (5) 14 (1955), 602-632.