Bollettino Unione Matematica Italiana

George Piranian

The orders of lacunarity of a power series.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.2, p. 198-199.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1956_3_11_2_198_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]
The orders of lacunarity of a power series (*)

Nota di George Piranian (a Ann Arbor U.S. A.)

Sunto. - The proof of a theorem of G. Ricci [(1), pp. 610, 615.622] on the Hadamard.Ostrowser and the Fabry-Polya lacunarity of power series is simplified.

Let the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

have radius of convergence 1 . For $\theta>0$, a sequence of intervals (p_{h}, q_{h}) on the positive real axis, with $p_{h} \rightarrow \infty$ and $q_{h}>(1+\theta) p_{h}$, is a θ-sequence of $H-O$ (Hadamard-Ostrowski) gaps for (1) provided the condition

$$
\begin{equation*}
\lim \sup \left|a_{n}\right|^{1 / n}<1 \tag{2}
\end{equation*}
$$

is satisfied for the indices n that fall into the intervals $\left(p_{h}, q_{h}\right)$.
 indices n that fall into the intervals (p_{k}, q_{h}) can be divided into two infinite sets such that (2) holds for the first set but not for the second, and such that the number v_{h} of indices n in $\left(p_{h}, q_{h}\right)$ which belong to the second set satisfies the condition

$$
\begin{equation*}
v_{h}=o\left(q_{h}-p_{h}\right) \tag{3}
\end{equation*}
$$

In a recent paper [1], G. Ricci defined Λ, the order of $H-0$ lacunarity of the series (1), to be the supremum of the values θ for which (1) possesses a θ-sequence of $H-O$ gaps (with the special provision that $\Lambda=0$ if no θ-sequence of $H-O$ gaps exists); similarly, he delined the order Λ^{*} of $F-P$ lacunarity. And by means of explicit constructions, he proved the following theorem. To every pair of values Λ and Λ^{*} in the closed interval $[0, \infty]$ there corresponds a series (1) whose orders of $H-O$ and $F-P$ lacunarity are Λ and Λ^{*}, respectively.

It is the purpose of this note to present a simpler example of a series (1) with the desired properties. Suppose first that Λ and Λ^{*} lie in the open interval ($0, \infty$). Let

$$
\begin{aligned}
& p_{h}=(2 h)!, q_{h}=(1+\Lambda) p_{h}(h \text { odd, greater than } \Lambda), \\
& p_{h}=(2 h)!, q_{h}=\left(1+\Lambda^{*}\right) p_{h}\left(h \text { even, greater than } \Lambda^{*}\right) .
\end{aligned}
$$

(*) This note was written under contract DA 20.018 .ORD- 13585 between the Office of Ordnance Research of the U. S. Army and the Engineering Research Institute of the University of Michigan.

If the index n does not fall into one of the intervals $\left(p_{h}, q_{h}\right)$, let $a_{n}=1$. If n falls into one of the intervals (p_{h}, q_{h}) (h odd), let

$$
\begin{equation*}
a_{n}=\left\{1-\frac{\left(q_{h}-n\right)\left(n-p_{h}\right)}{\left(q_{k}-p_{k}\right)^{2}}\right\}^{n} . \tag{4}
\end{equation*}
$$

If n falls into one of the intervals $\left(p_{h}, q_{h}\right)$ (h even), let

$$
\begin{align*}
& a_{n}=0(n \text { not a perfect square }), \tag{亏}\\
& a_{n}=1(n \text { a perfect square }) . \tag{6}
\end{align*}
$$

Obviously, for every θ in $(0, \Lambda)$ the series (1) thus defined has a θ-sequence of $H-O$ gaps, and for every θ in ($0, \Lambda^{*}$) it has a θ-sequence of $F-P$ gaps. Suppose, on the other hand, that for some fixed value θ_{1} the series (1) has a θ_{1}-sequence of $H-O$ gaps $\left(r_{h}, s_{k}\right)$. Because of (6), all except finitely many of the intervals $\left(r_{h}, s_{h}\right)$ fall into intervals ($p_{h} q_{h}$) whose indices h are odd; and because of (2) and (4), they satisfy the condition.

$$
\lim \sup s_{k} / r_{h}<\lim q_{h} / p_{k}=1+\Lambda
$$

Therefore $\theta_{1}<\Lambda$.
Similarly, suppose that for some fixed θ_{2} the series (1) has a θ_{2}-sequence of $F-P$ gaps (r_{k}, s_{k}). Again, all except finitely many of the gaps (r_{k}, s_{k}) fall entirely or almost entirely into gaps $\left(p_{h}, q_{h}\right)$. Also, there exists a sequence of special indices n which fall into intervals $\left(r_{k}, s_{h}\right)$ and for which $\lim a_{n}{ }^{1 / n}=1$. If infinitely many of these special indices fall into odd-numbered gaps (p_{l}, q_{h}). then it follows from (4) that the number μ_{k} of indices * of the second set" in (r_{k}, s_{k}) can not satisfy the condition $\mu_{k}=o\left(s_{k}-r_{k}\right)$ analogous to (3). Therefore infinitely many of the gaps (r_{k}, s_{k}) lie entirely or almost entirely in even-numbered gaps (p_{h}, q_{h}), and therefore $\theta_{2} \leq \Lambda^{*}$.

It remains to modify the construction for the cases where one or both of the values Λ and Λ^{*} does not lie in the open interval $(0, \infty)$. If $\Lambda=0$, we omit the odd-numbered gaps (p_{h}, q_{k}) from our construction; if $\Lambda^{*}=0$, we omit the even-numbered gaps. If $\Lambda=\infty$, we replace the 'condition $q_{h}=(1+\Lambda) p_{h}$ by $q_{h}=h p_{h}(h=1$, $3,5, \ldots)$; and we make a similar provision for the case where $\Lambda^{*}=\infty$. The remainder of the proof for these exceptional cases is trivial.

REFERENCE

[1] G. Ricci, Prolungabilità e ultraconvergenza delle serie di potenze. Modulazione del margine delle lacune. Rend. Mat. e Appl. (5) 14 (1955), $60-63$.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

