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On a (third) functirnal équation, connectée! with the
Weierstrassian function fp{%) (*).

Nota di HARI DAS BAGCHÏ e PHATIK CHAND CHATTERJI (a Calcutta)^

Suiito. • St studta una equamone fwnsior*ale connetsa aile fuiieiowi elht-
hche d% WEIERSTRASS.

The présent paper aims at finding the complète solution of
the functional équation:

compatible with the limitation that f{z) shall be devoid of anv
essential singularity in the fimt€ part of the plane. A particuîar
solution of (I) being known to be f(z)~JP{z), [WHITTAKER and
WATSON, 1], we propose to take account of all other solutions,
consistent with the afore-said restrictions. This paper is, 111 a
sensé, supplementary to t"Wo previous papers [2] of our . bearing
on two other functional équations, satisfied by fp\zv

¥ e are not aware whether the functional équation il) has
been scrutinised heretofore by any other writer,

1. A simple glance at (I) obviously suggests that tLe ongin
(s? = 0) must be a singularity for f (g). For if that were not so,
the L. S. of (I) would be finite and the E. S. would be infinité
on setting y=x. So f[z) must have the origin for a singularity,
which in the present set-up cannot but be a pôle, Supposing the
order of this pôle to be n we may take the assoeiated principal
part as :

7-S?+-•-£• (a

Vedi nota redazionale. pagt 277.
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Consequeutly when s is very small, we have the approximation:

(t) A., = 5i + 2g + ... + £ , (nearlyl.

Now putting x — y H- e in (I), we get :

(2) f(2y + t)f(e) j fly + ^-fty) | « = { flj,)fly +• e)-|-«iâ-l- 6 [ fly-t- «)

If in this relation we insert the value of f(&), as given by (1),
and substitute TAYLOR'S expansions for f(y *- e) and f(2y -4 s), (2)
assumes the form:

winch, on being multirjlied by £n, becomes:

i £ 2

(3) f{2y) ~h ef'(2y) +- ̂  f\2y) -h ... (a„ -f- an-^ -+•... H- a^^"1)

j « •+• l i H y ) + . . . f = £ ï i | fa) j fa) H- «r(») -*- ft t"(y) + . . ( + » ] *

Inasmuch as the lowesfc orders of the (infinitésimal) ternis on
the L. S. and E, S. of (3) are 2 and n respectively, we infer
immediately that n = 2. That is to say, if a function f{z), analytic
except for pôles in the finite région of the plane, is to satisfy (I).
it must have the origin for a quadratic pôle. Other conséquences
of this resuit wi l l be considered in 2,

2. The point 0 = 0 being a pôle of the second ordei, the cor-
responding principal part may be taken as :

so that

(1) A£) = — -+- —| (nearlyl when s is vert\ small.

If we now put x = 2e and y ~ s in (I), it becomes :

(2) ƒ( £)ƒ (3s) ï ƒ(2s) - ƒ(«) i « = f{fr)f(t) 4- a |2 -h 6 i f(2s) + ^ g ) ,
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When the values of f(2e) and f(3e), derived from (1), are substi-
tuted in (2), and the resulting relation is simplified, it reduces to:

(3)

Comparison of the coefficients of s on both sides of (3) leads to

which, by virtue of the inequality a2=|=0, gives:

Writing k for a,, we may now represent the principal part
k V

oi{ f(z) at z — 0 in the form -2 (4),

3. If we now fall back upon the original équation (I), and
put y — E (very small) and allow unrestrîcted variation to x} we
get:

(1) fix + t)f(x - t) i f(x) — f (e) |« = t f{x)f(*) + a |2 + 6 ! ƒ(«) -H A«) i.

Substituting TAYLOR' S expansions for f(x H- ç) and f(x — e) and
k

writing f (E) = - on the strength of (4) of 2, we can Jexhibit (1)

in the form:

f-
kf(x)

a

If we now multiply (2) by e*, and then equate the coefficients
of s on both sides, we dérive :

(*)ƒ"(*) - I f'ix) !'] = 2\f{x)f

which can be throAvn into the form:

provided that

(41
2œ

V ss f{x) and l s= T , m = , and n = r .
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If we now set:

TT = I - ^ I ,

{3) can without much difficulty be presented in the form of a
différentiel équation (having U for the dependent variable and
V for the independent variable), viz.,

where
p == _ _ and Q = Î

Manifestly (5) can be integrated in the form:

Z7= 21V1 — 2mV— n -+- Xy1, (where X is the constant of intégration)

(6) i.e., ff)l=2lV^

The two variables V and x being changed respectively into
; and x', according to the trasforming scheme:

= V -+• ôi

(7)

the differential équation (6) can be carried over into:

(8)
where

Bvidently the relation (8) caji be inverted into the form:

(10) 5 = W),

where ^? dénotes the Weierstrassian elliptic function, formed
with the two invariants g2(X) and <jr3(X), as defined by (9),

Now restoring the actual values of 5, œ\ as given by (7) and (4)
we can re-write (10) in the form:

(U)

ivhere (x, v are respectively the two constants J / T and — j ^ •
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Before we can déclare (11) to be the complete solution of (I),
we have to ascertain what restrictions (if any) are to be placed
upon the parametric constants [/., v. This will be done in the
next article.

4. The relation:
(1) fl»)=#%S)H-V

being now taken as the starting point, and the corresponding
values of f(y\ f(x — y) and f(x -+- y) being formed and then snibsti-
tuted in (I), m ,

f(x -*- y)f(x - y) | f(x) - f (ij) | * = | f(x)f(y) + a>*+b\ f{x) •+- fiy)\,

Ave get:

(2) [ | p^x) + v | | pistfj) + v | + a ] ^ bffifax) -+- p(w) •+• *'] -

— I F(f^ "+- W) -+• v ! I F ( ^ — W) •+• v j j #%X) — ̂ ?(W) i * r=r 0.

Certainly if (1) is to satisfy (I), the relation (2) must kold for
all values of x% y, {/., v. If we now as a matter of pleasure keep
x, y, [A fisxed and allow v only to vary, (2) ought to hold for all
values of v. i. e., (2) ought to be an identity in v. But this ie im-
possible, for the coefficient of the highest power v^^O, being in
f act unify; in f act for any prescribed set of values o£ x. y, u, the
relation (2), as it stands, can be solved as a biquadratie in v,
having, ot course, only four roots. So the logical conclusion is
that the parameter v must be absent in (1). As for the other para-
meter [/., it can be easily verified that, whatever \ralue be assi-
gned to it in (1), the equatioii (I) will be satisfied.

In other words, the most gênerai solution of the fitnctional
équation (TJ, subject to the afore-said conditions, is

where p is an arbitrary constant.
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