BOLLETTINO UNIONE MATEMATICA ITALIANA

GUIDO VAONA

Curve e superficie quasi-asintotiche della varietà di Grassmann che rappresenta le rette di uno spazio lineare

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 4 (1949), n.4, p. 360–367.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1949_3_4_4_360_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Curve e superficie quasi-asintotiche della varietà di Grassmann che rappresenta le rette di uno spazio lineare.

Nota di Guido Vaona (a Bologna).

- Sunto. Si determinano e caratterizzano geometricamente le curve quasi-asintotiche γ_{12} . γ_{13} e le superficie quasi-asintotiche σ_{12}^q (q = 1, 2, 3) della varietà di Grassmann che rappresenta la totalità delle rette di uno spazio lineare.
- 1. Recentemente il prof. VILLA, in una delle sue comunicazioni al II Congresso della Società Matematica Austriaca (Innsbruck, settembre 1949), si è trattenuto fra l'altro sull'interesse della ricerca delle curve e delle varietà quasi-asintotiche delle varietà di Grassmann e di altre ricerche che ad essa si connettono.

In questa Nota espongo appunto alcuni risultati riguardanti le quasi-asintotiche della varietà di Grassmann che rappresenta le rette di uno spazio lineare S_n , riservandomi di ritornare sull'argomento in altro lavoro.

Più precisamente nel presente lavoro determino le curve quasi-asintotiche γ_{12} e γ_{13} (nn. 3, 4) e le superficie quasi-asintotiche $\sigma_{12}{}^q(q=1, 2, 3)$ (n. 5) della grassmanniana delle rette (¹). Di esse dò caratterizzazioni geometriche che le pongono in relazione assai semplice colle corrispondenti superficie e V_3 rigate di S_n . Queste caratterizzazioni lasciano intravvedere l'esistenza di interessanti legami fra le varietà quasi-asintotiche delle grassmanniane e i ca-

(4) Il concetto di varietà quasi-asintotica, appartenente ad una varietà, è dovuto al Bompiani; si veda ad es. Bompiani, Recenti progressi nella geometria proiettiva differenziale degli iperspazi, « Proceed. of the fiith Int. Congress of Mathem. », Cambridge (1912), vol. II, p. 24.

Una varietà V_h , appartenente ad una varietà V_k , si dice quasi-asintotica σ_{rs}^q (0 < r < s) per V_k , quando l'S(r)-osculatore a V_k in un punto generico di V_h e l'S(s)-osculatore ivi alla V_h hanno uno spasio congiungente di dimensione inferiore all'ordinario.

La specie q di una V_h quasi-asintotica (h > 1) è un carattere proiettivo, introdotto dal VILLA, dipendente dalla dimensione dello spazio congiungente gli spazi osculatori di cui alla definizione. Si veda: VILLA, Sulle superficie quasi-asintotiche della V_4 6 di S_8 che rappresenta le coppie di punti di due piani, « Rend. Acc. d'Italia », ser. VII, vol. I, p. 229 (1940).

ratteri di sviluppabilità delle corrispondenti varietà luoghi di spazi da esse rappresentate.

I risultati ottenuti porgono anche un nuovo esempio di varietà che posseggono superficie quasi-asintotiche σ_{12} di tutte tre le specie (2).

2. Equazioni parametriche della varietà di Grassmann rappresentativa delle rette di S_n .

È ben noto che le rette di uno spazio lineare S_n vengono rapsentate biunivocamente, senza eccezioni, dai punti di una varietà algebrica razionale $W(varietà\ di\ Grassmann)$ di dimensione t=2(n-1), di ordine $\frac{[2(n-1)]!}{(n-1)!\ n!}$, di uno spazio lineare $S_\rho\Big[\rho=\binom{n+1}{2}-1\Big]$. Nello spazio S_ρ , di coordinate proiettive omogenee $p_{ij}(i,j=0,1,\ldots,n;i<0)$, W risulta intersezione completa delle $\binom{n+1}{4}$ quadriche di equazioni

(1)
$$p_{ij}p_{hk} - p_{ih}p_{jk} + p_{ik}p_{jk} = 0$$

$$(i, j, h, k = 0, 1, ..., n; i < j < h < k).$$

Una rappresentazione parametrica di W, che useremo in seguito, è indicata in una classica Memoria del SEVERI (3). Se delle equa-

- (2) Mentre è stata molto sviluppata la teoria delle curve quasi-asintotiche, ad opera sopratutto del Bompiani e del Villa, poco è stato fatto finora sulle superficie e varietà quasi-asintotiche. Esempi notevoli ed interessanti sono stati dati dal VILLA. Si vedano oltre al lavoro cit. nella (1) i seguenti lavori: Sull'annullarsi, in un punto, della matrice Jacobiana di m funzioni in n variabili, « Rend. Acc. d'Italia », ser. VII, vol. III, p, 209 (1942); Sulle trasformazioni puntuali degeneri, « Memorie Acc. di Bologna >, ser. IX, vol. IX, p. 19 (1942); Superficie della V₄6 di Segre e relative trasformazioni puntuali, « Memorie Acc. di Bologna », ser. IX, vol. IX, p. 143 (1942); Sulle direzioni caratteristiche di una trasformazione puntuale, . Memorie Acc. di Bologna », ser. IX, vol. X, p. 7 (1943). In tali lavori l'A. determina alcune classi di superficie e varietà quasi-asintotiche o12 e o43 delle varie specie, appartenenti alla varietà di Segre che rappresenta le coppie di punti di due spazi lineari, caratterizzandole geometricamente in relazione alle corrispondenti trasformazioni puntuali. Un altro esempio è offerto dal Bogdan (Sopra una classe di V3 che ammettono una infinità di superficie quasi-asintotiche dipendente du una funzione arbitraria, « Rend. Acc. dei Lincei », ser. VI, vol. XXVII, p. 62, 1938) il quale determina analiticamente le superficie quasi-asintotiche σ_{12} di una classe di V3 costruite partendo dalla superficie di Veronese. Recentemente il Longo (Sopra una classe di varietà che ammettono varietà subordinate quasi-asintotiche, « Rend. Acc. dei Lincei », ser. VIII, vol. V, p. 19, 1948) ha esteso l'esempio dato dal BOGDAN.
- (3) Si veda: Severi, Sulla varietà che rappresenta gli spazi subordinati di data dimensione, immersi in uno spazio lineare, « Annali di Matema-

362 GUIDO VAONA

zioni (1) si considerano le $\binom{n-1}{2}$ ottenute ponendo i=0, j=1, ossia le

(2)
$$p_{01}p_{kk} - p_{0k}p_{1k} + p_{0k}p_{1k} = 0 \qquad (h, k = 2, 3, ..., n; h < k),$$

si ottiene la rappresentazione di una varietà W + M che si spezza nella grassmanniana W e in una varietà M appartenente all'iperpiano $p_{01} = 0$. Risolvendo le (2) rispetto a p_{hk} , avendo posto $p_{01} = 1$, $p_{0g} = u_g$, $p_{1m} = u_{m+n-1}$, si ha la seguente rappresentazione parametrica di W

$$p_{01} = 1$$

$$p_{0g} = u_{g}$$
(3)
$$p_{1m} = u_{m+n-1}$$

$$p_{hk} = \begin{vmatrix} u_{h} & u_{k} \\ u_{h+n-1} & u_{k+n-1} \end{vmatrix}$$
 $(h, k, g, m = 2, 3, ..., n; h < k).$

Si osservi che, avendo tolto l'omogeneità ponendo $p_{01}=1$, le (3) non rappresentano i punti di M e contemporaneamente i punti di W dell'iperpiano $p_{01}=0$. Apparirà evidente che tale particolarità non lede la generalità dei problemi trattati in seguito.

3. Curve quasi-asintotiche Y12 di W.

La varietà W possiede una infinità di curve quasi-asintotiche γ_{12} , dipendente da funzioni arbitrarie, che si possono assai semplicemente caratterizzare ponendole in relazione alle superficie rigate di S_n che esse rappresentano. Si ha:

Le curve quasi-asintotiche γ_{12} della varietà di Grassmann che rappresenta le rette di S_n sono tutte e sole le curve che sono immagini di superficie rigate sviluppabili, o in particolare di coni e rigate piane.

È intanto evidente che fra le quasi-asintotiche γ_{12} di W figurano le curve tracciate sugli spazi lineari appartenenti a W, che sono immagini o di coni o di rigate piane (4). Viceversa egni cono o rigata piana è rappresentato da una di quelle curve. Esclusi questi casi, dimostriamo che egni quasi-asintotica γ_{12} è immagine di una rigata sviluppabile e viceversa.

tica », ser. III, vol. XXIV, pp. 106-107 (1915). A questa Memoria rimandiamo per le proprietà fondamentali delle grassmanniane.

(4) Gli unici spazi lineari giacenti su W sono gli $\infty^n S_{n-1}$, immagini ciascuno delle rette di S_n passanti per un punto, e gli $\infty^{3(n-1)}$ piani, immagini dei piani rigati di S_n . Si veda ad. es.: Terracini, Las variedades de Grassmann y las ecuaciónes en derivadas parciales de primer orden en el caso de mas variables independientes, « Revista de Mat. y Fís. teór. de la Univ. Nac. de Tucumán », vol. IV, p. 368 (1944).

Sia γ una curva di W (non appartenente ad uno spazio lineare di W) rappresentata dalle (3) dove si ponga

(4)
$$u_r = u_r(\tau)$$
 $(r = 2, 3, ..., 2n - 1).$

Affinche γ sia quasi-asintotica γ_{12} occorre e basta che siano nulli tutti i minori di ordine massimo estratti dalla matrice le cui righe sono costituite dalle coordinate di un punto P generico di γ , dei punti derivati primi di P su W e del punto derivato secondo di P su γ . Si trova che le $u_r(\tau)$ devono soddisfare le equazioni differenziali

$$u'_{g+n-1} = \lambda u'_g \qquad (g=2,\ldots, n),$$

dove gli apici indicano derivazione rispetto a τ e λ è una funzione di τ , per le ipotesi fatte, non identicamente nulla. D'altra parte la rigata di S_n rappresentata da γ è il luogo delle rette congiungenti i punti A e B di coordinate omogenee

(6)
$$A(0, 1, u_2, u_3, ..., u_n); B(-1, 0, u_{n+1}, u_{n+2}, ..., u_{2n-1}),$$

e quindi luogo del punto

$$X = A + vB$$
.

Il piano tangente in un punto di una generatrice generica AB è il piano dei punti A, B, A' + vB' [A' e B' essendo i punti di coordinate $(0, 0, u_2', ..., u_n')$, $(0, 0, u_{n+1}', ..., u_{2n-1}')$]. Ma per le (5) si ha $A' \equiv B'$, onde il piano tangente nei punti di una generica generatrice è fisso e la rigata è sviluppabile.

Si verifica immediatamente che è vero il viceversa. Basta assumere una rappresentazione parametrica di una generica rigata sviluppabile X = A + vB in guisa che i punti A e B descrivano le curve intersezione della rigata cogli iperpiani $x_0 = 0$ e $x_1 = 0$ rispettivamente.

Si ha pure:

Le curve quasi-asintotiche γ_{12} di W sono tutte e sole quelle le cui tangenti giacciono su W.

Infatti se una curva γ di W è quasi-asintotica γ_{12} , ogni sua tangente ha tre punti, infinitamente vicini, appartenenti a W. Ma è evidente che ogni retta avente tre punti su W (che è intersezione di quadriche) vi appartiene. Viceversa se γ ha le sue tangenti giacenti su W, la superficie rigata sviluppabile circoscritta a γ sta su W, i suoi piani tangenti (osculatori a γ) appartengono ai relativi S_t tangenti a W e perciò γ è quasi asintotica γ_{12} .

364 GUIDO VAONA

Dai due teoremi precedenti segue il risultato noto (°):

Affinchè una rigata dello spazio ordinario o di un iperspazio sia sviluppabile (o, in particolare, sia un cono), occorre e basta che la sua imagine sulla grassmanniana delle rette sia una curva le cui tangenti giacciano su tale grassmanniana.

4. Curve quasi-asintotiche γ_{12} di W.

Le curve quasi-asintotiche γ_{18} di W sono caratterizzate dal se guente teorema:

Le curve quasi-asintotiche γ_{13} , non γ_{12} , della varietà di Grassmann che rappresenta le rette di S_n ($n \ge 3$) sono tutte e sole le curve che sono immagini di superficie rig te sghembe immerse in spazi S3 di Sn (6).

Sia y una curva di W di equazioni (3) e (4) e supponiamo che non sia quasi-asintotica γ_{12} .

Affinche y sia quasi-asintotica y13 occorre e basta che siano nulli tutti i minori di ordine massimo estratti dalla matrice le cui righe sono formate colle coordinale di un punto P generico di γ, dei punti derivati primi di P su W e dei punti derivati secondo e terzo di P su γ, ma non tutti i minori d'ordine massimo estratti dalla matrice ottenuta dalla precedente sopprimendo l'ultima riga.

Da tali condizioni si trae che le $u_r(\tau)$ devono annullare tutti i minori del 2º ordine estratti dalla matrice

ma non devono annullare tutte le β_{bk} .

Si consideri la rigata di S_n , rappresentata da γ , X = A + vB, dove A e B hanno coordinate date dalle (6). Si osservi che le β_{hk} sono le coordinate grassmanniane delle rette A'B' congiungenti i punti derivati primi di A e B. Le condizioni analitiche che devono essere soddisfatte perchè γ sia una γ13, geometricamente, significano che la curva di W immagine delle rette A'B' si riduce ad un punto. Segue che la retta A'B' è fissa e i punti A', B', A'' + vB''sono allineati. Lo spazio S(2) osculatore in un punto generico Xdella rigata, individuato dai punti A, B, A', B', A'' + vB'', ha dimensione 3. Ma allora la superficie è immersa in un S_a o è una

^(°) Si veda: B. Segre, Trasporti rigidi di vettori, e geometria della retta, « Annali di Matematica », ser. IV, vol. XXVII, p. 272 (1948).

⁽⁶⁾ Evidentemente se n=3 ogni curva di $W \in \gamma_{13}$.

rigata sviluppabile. Poichè è escluso che si tratti di una sviluppabile, non essendo γ una γ_{12} (n. 3), si conclude che essa è una rigata sghemba immersa in un S_3 .

Viceversa la curva immagine di una rigata sghemba immersa in un S_3 appartiene alla V_4^2 di KLEIN di W che rappresenta le rette di quell' S_3 . E siccome tale V_4^2 sta in un S_5 , ogni sua curva è quasi-asintotica γ_{13} per essa. Il teorema è così dimostrato poichè è evidente che se una curva è quasi-asintotica di indici r, s per una varietà V_h giacente su una V_k , lo è anche per la V_k .

OSSERVAZIONE. – Dal teorema precedente scende evidentemente che: Le curve quasi-asintotiche γ_{13} , non γ_{12} , di W sono tutte e sole quelle tracciate sulle V_4 ° di Klein di W, le cui tangenti non giacciono su W.

5. Superficie quasi-asintotiche σ_{12} di W.

La varietà W possiede una infinità di superficie quasi-asintotiche σ_{10} , dipendente da funzioni arbitrarie, di tutte tre le specie.

a) Per le σ_{12}^{3} , quasi-asintotiche σ_{12} di 3^{a} specie, cioè tali che l'S(2) osculatore alla superficie in un suo punto generico appartiene all' S_{t} tangente ivi a W, si ha:

Le superficie quasi-asintotiche σ_{12}^{2} della varietà di Grassmann rappresentativa delle rette di S_n sono, oltre ai piani immagini dei piani rigati di S_n , tutte e sole le superficie rappresentative dei coni di S_n proiettanti da un punto una superficie.

Se σ è una superficie quasi-asintotica σ_{12}^3 , palesemente ogni sua curva è quasi-asintotica γ_{12} per W. Consideriamo ora la ∞^2 di rette rappresentata da σ . Siccome ogni curva di σ è quasi asintotica γ_{12} , per il teorema del n. 3, tutte le superficie rigate della ∞^2 sono s viluppabili. Ma ciò, come è ben noto (7), vuol dire che la ∞^2 si compone di rette passanti per un punto o giacenti in un piano.

La proposizione inversa è immediata quando si pensi che ogni ∞^2 di rette passanti per un punto o giacenti in un piano ha per immagine su W una superficie tracciata su uno spazio lineare appartenente a W.

Osservazione. – Scende dal teorema precedente che le superficie quasi-asintotiche $\sigma_{12}{}^3$ di W sono tutte e sole le superficie tracciate sugli spazi lineari di W.

b) Per le σ_{12}^2 , quasi-asintotiche σ_{12} di 2^a specie, tali cioè che l' S(2) osculatore alla superficie in un suo punto generico e l' S_t tangente ivi a W hanno uno spazio congiungente di dimensione t+1, si ha.

⁽⁷⁾ Si veda: C. Segre, Preliminari di una teoria delle varietà luoghi di spazi, « Rend. Circolo Mat. di Palermo », vol. XXX, p. 111 (1910).

366 GUIDO VAONA

Le superficie σ_{12}^2 , non σ_{12}^3 , della varietà di Grassmann rappresentativa delle rette di S_n sono tutte e sole quelle che rappresentano V_3 di S_n , luogo di ∞^2 rette non passanti per un punto, aventi l' S_3 tangente fisso lungo ogni retta.

Sia σ una superficie di W e supponiamo che non sia quasi-asintotica σ_{12} ³. Essa sia rappresentata dalle (3) dove si ponga

(7)
$$u_r = u_r(\tau_1, \tau_2)$$
 $(r = 2, 3, ..., 2n - 1).$

Consideriamo la matrice, avente 2(n+1) righe, i cui elementi sono costituiti ordinatamente dalle coordinate di un punto P generico di σ , dei 2(n-1) punti derivati primi di P su W e dei tre punti derivati secondi di P su σ . Perchè σ sia quasi-asintotica $\sigma_{12}{}^2$ occorre e basta che tale matrice abbia caratteristica 2n. Da ciò si deduce che le u_r devono annullare tutti i minori del 2° ordine estratti dalla matrice

(8)
$$\begin{vmatrix} \alpha_{hk} \\ \beta_{hk} \\ \gamma_{hk} \end{vmatrix} \qquad (h, k = 2, ..., n; h < k),$$

ma non tutti gli elementi della medesima, dove si è posto

$$\alpha_{hk} = \begin{vmatrix} u^{1}_{h} & u^{1}_{k} \\ u^{1}_{h+n-1} & u^{1}_{k+n-1} \end{vmatrix}, \quad \beta_{hk} = \begin{vmatrix} u^{1}_{h} & u^{1}_{k} \\ u^{2}_{h+n-1} & u^{2}_{k+n-1} \end{vmatrix} + \\ + \begin{vmatrix} u^{2}_{h} & u^{2}_{k} \\ u^{1}_{h+n-1} & u^{1}_{k+n-1} \end{vmatrix}, \quad \gamma_{hk} = \begin{vmatrix} u^{2}_{h} & u^{2}_{k} \\ u^{2}_{h+n-1} & u^{2}_{k+n-1} \end{vmatrix}$$

e gli indici 1, 2 in alto indicano derivazione parziale delle u_r risperto a τ_1 , τ_2 . Si consideri la V_3 di S_n rappreventata su W da σ . Questa è il luogo del punto X = A + vB, dove A, B sono i punti aventi per coordinate le (6), essendo le u_r date dalle (7). Si osservi che le α_{hk} sono le coordinate grassmanniane della retta A^1B^1 , le γ_{hk} quelle della retta A^2B^2 (8). L'essere nulli tutti i minori del 2º ordine della (8) significa intanto che le due rette A^1B^1 , A^2B^2 coincidono o sono entrambe indeterminate, o una sola è indeterminata. Nel I e II caso è manifesto che l' S_3 tangente in un punto generico X di una generatrice, individuato dai punti A, B, $A^1 + vB^1$, $A^2 + vB^2$, è fisso al variare del punto sulla generatrice. Nel III caso, se ad es. è indeterminata la retta A^1B^1 poichè coincidono i punti A^1 e B^1 , si osservi che le β_{hk} rappresentano le coordinate

⁽⁸⁾ A^{1} , B^{1} , A^{2} , B^{2} rappresentano i punti derivati di $A \in B$ rispetto a τ_{1} , τ_{2} ; ad es. A^{1} è il punto di coordinate $(0, 0, u_{2}^{1}, ... u_{n}^{1})$.

grassmanniane della retta $A^{1}B^{2} + \lambda A^{2}A^{1}$ (*). Per le condizioni poste tale retta deve coincidere colla $A^{2}B^{1}$ dal che segue la conclusione stessa (10).

Invertendo il ragionamento precedente e assumendo una rapsentazione parametrica di una V_1 , X=A+vB, in modo che i punti A e B descrivano due superficie degli iperpiani $x_0=0$ e $x_1=0$ rispettivamente, si dimostra la proposizione inversa.

c) Infine per le σ^1_{12} di 1^a specie, tali cioè che l'S(2) osculatore alla superficie in un suo punto generico a l' S_t tangente ivi a W hanno uno spazio congiungente di dimensione t+2, si ha:

Le superficie quasi-asintotiche σ_{12}^{11} , non σ_{12}^{2} nè σ_{12}^{3} , della varietà di Grassmann rappresentativa delle rette di S_n (n>3) sono tutte e sole quelle che rappresentano V_3 , luogo di ∞^{2} rette, aventi un piano tangente fisso lungo ogni retta e l' S_3 tangente variabile.

Affinchè una superficie σ di W, di equazioni (3) e (7), sia quasiasintotica σ_{12}^{1} , ma non σ_{12}^{2} nè σ_{12}^{3} , occorre e basta che le u_r , annullino tutti i minori del 3º ordine estratti della matrice (8), ma non tutti quelli del 2º. Se sono nulli tutti i minori del 3º ordine estratti dalla matrice (8) sono nulli anche quelli del 3º ordine estratti dalla

(9)
$$\left\| \begin{array}{c} \alpha_{hk} \\ \alpha_{hk} + v\beta_{hk} + v^2\gamma_{hk} \\ \gamma_{hk} \end{array} \right\|.$$

Siccome le $\alpha_{hk} + v\beta_{hk} + v^2\gamma_{hk}$ sono le coordinate grassmanniane della retta congiungente i punti $A^1 + vA^2$, $B^1 + vB^2$, le precedenti condizioni assicurano che le rette A^1B^1 , A^2B^2 , $A^1 + vA^2B^1 + vB^2$ stanno in un fascio o una di esse è indeterminata. In ogni caso ne deriva che stanno pure in un fascio le rette congiungenti i punti $A^1 + vB^1$, $A^2 + vB^2$ e che perciò lungo ogni generatrice vi è un piano tangente fisso, che è quello che la congiunge cel centro di detto fascio.

Assumendo la rappresentazione parametrica di una V_a come è stato indicato in b), si prova l'inverso.

⁽⁹⁾ Con $A^4B^2 + \lambda A^2A^4$ denotiamo la retta avente per coordinate grassmanniane la corrispondente combinazione lineare delle coordinate delle rette A^4B^2 , A^2A^4 .

⁽¹⁰⁾ Se poi A^4 è indeterminato le β_{kk} sono le coordinate della A^2B^4 e se ne trae subito la stessa conclusione.