BOLLETTINO UNIONE MATEMATICA ITALIANA

GIOVANNI SANSONE

Su una disuguaglianza relativa ai polinomi di Legendre

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 4 (1949), n.4, p. 339–341.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1949_3_4_4_339_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

SEZIONE SCIENTIFICA

PICCOLE NOTE

Su una disuguaglianza relativa ai polinomi di Legendre.

Nota di Giovanni Sansone (a Firenze).

Sunto. Si studia la differenza $P_{n^2} - P_{n+1}P_{n-1}$ per x > 1 e si stabilisce una limitazione per P_{n+1}/P_n .

a) Se $P_n(x)$, $P_0 = 1$, $P_n(x) = (2^n n!)^{-1} [d^n(x^2 - 1)^n/dx^n]$, (n = 1, ...) è la successione dei polinomi di Legendre, G. Szego (1), ha dato quattro dimostrazioni della disuguaglianza di P. Turan

$$(1_1) \qquad \Delta_n(x) = [P_n(x)]^2 - P_{n-1}(x)P_{n+1}(x) \ge 0, \quad (n \ge 1, -1 \le x \le 1),$$

e a questa, in una nota precedente (²) abbiamo sostituito una limitazione più forte

$$0 < \frac{1 - P_n^2(x)}{2n(n+1)} < \Delta_n(x) < \Delta_n(0) + \frac{P_n^2(0) - P_n^2(x)}{2n(n+1)}, \ (n \ge 1, \ -1 < x < 1).$$

Vogliamo ora completare lo studio di $\Delta_n(x)$ per |x| > 1, ed essendo $\Delta_n(x)$ pari, basterà limitarci al caso x > 1.

(2)
$$\Delta'_{n}(x) - \frac{x}{x^{2} - 1} \Delta_{n}(x) = -\frac{1}{n(n+1)} P_{n}(x) P'_{n}(x)$$

- (4) G. SZEGÖ: On an inequality of P. Turán concerning Legendre polynomials, « Bull. of the Am. Math. Soc. », 54 (1948), pp. 401-405.
- (2) G. Sansone: Su una disuguaglianza di P. Turán relativa ai polinomi di Legendre; « Boll. Un. Mat. It. », (3), 4 (1949), pp. 221-223. Nella (7) vi è un evidente errore di stampa: il denominatore è 2n(n+1).
 - (3) Cfr. G. Sansone: nota cit. in (2), formula (4).

e da questa equazione differenziale lineare integrando otteniamo

$$\Delta(x) = \sqrt{x^2 - 1} \left[-\frac{1}{n(n+1)} \int_{1}^{x} \frac{P_n(t) P_n'(t)}{\sqrt{t^2 - 1}} dt + c \right],$$

e poiche $\lim_{x\to 1+0} \Delta_n(x)/(x^2-1)^{1/2} = 0$, ne viene

$$-\Delta_{n}(x) = \frac{\sqrt{x^{2}-1}}{n(n+1)} \int_{1}^{x} \frac{P_{n}(t)P'_{n}(t)}{\sqrt{t^{2}-1}} dt, \quad (n \geq 1, x > 1),$$

e perciò

$$(1_2) \Delta_n(x) < 0 per n \ge 1, x > 1.$$

Ora $P_n(1) = 1$, $P'_n(1) = n(n+1)/2$, ed essendo $P_n(t)$, $P'_n(t)$ crescenti per $t \ge 1$ ne viene che $\Delta_n(x)$ è negativo, decrescente per x > 1, e

(3)
$$\lim_{x \to \infty} \Delta_n(x) = -\infty.$$

c) Una seconda dimostrazione della decrescenza di $\Delta_n(x)$ in $(1, +\infty)$, di natura algebrica è la seguente.

Per la (2) se un valore di x > 1 annullasse $\Delta'_n(x)$, le funzioni $\Delta_n(x) = -P(x)P_n'(x)$ avrebbero segno contrario, e poichè

ne viene che
$$-P_n(x)P_n'(x) < 0 \quad \text{per} \quad x \ge 1$$

$$\Delta_n(x), \quad \Delta_n'(x), \quad -P_n(x)P_n'(x)$$

formano una successione di STURM in $(1 + \varepsilon, +\infty)$, $\varepsilon > 0$.

Essendo $\Delta(1) = 0$, $\Delta_{n'}(1) = -1$, si può scegliere ϵ così piccolo in guisa che risulti

sa che risulti
$$\Delta_n(1+\varepsilon) < 0, \qquad \Delta_n'(1+\varepsilon) < 0, \qquad -P_n(1+\varepsilon)P'_n(1+\varepsilon) < 0,$$

cioè la successione (4) per $x=1+\varepsilon$ presenta due permanenze, e siccome crescendo x questa non può acquistare variazioni (4) ne segue che per x>1 è

$$\Delta_n(x) < 0, \qquad \Delta'_n(x) < 0.$$

d) Dalla (3) (per x > 1) si ha

(5₁)
$$P_n(x)/P_{n-1}(x) < P_{n+1}(x)/P_n(x),$$

ma
$$\lim_{n \to \infty} P_{n+1}(x)/P_n(x) = x + \sqrt{x^2 - 1}$$
 (5), e ne segue (5₂) $0 < P_{n+1}(x)/P_n(x) < x + \sqrt{x^2 - 1}$, $(x > 1, n = 1, ...)$.

- (4) Cfr. ad es. M. CIPOLLA: Analisi Algebrica e introduzione al Calcolo Infinitesimale, (3ª ed., Principato, Milano, 1948), p. 430.
- (5) Cfr. G. Sansone: Equazioni Differenziali nel Campo Reale, I (2ª ed., Bologna, 1948), p. 161.

È poi noto che posto $\xi = x + \sqrt{x^2 - 1}$, per il rapporto $P_{n+1}(x)/P_n(x)$

vale la formula di approssimazione asintotica (6)

(6₁)
$$\frac{1}{\xi} \frac{P_{n+1}(x)}{P_n(x)} = 1 - \frac{1}{2(n+1)} - \frac{1}{2(n+1)(2n-1)} \frac{1}{\xi^2} + R(\xi)$$
 con

(6₂)
$$R(\xi) \mid \leq \frac{\pi}{n+1} \left[\frac{3}{\xi^2(\xi-1)} + \frac{1}{\xi^2(\xi-1)^2} \right].$$