BOLLETTINO UNIONE MATEMATICA ITALIANA

LUCIO GAMBELLI

Le Concoidi nella risoluzione di problemi sul triangolo

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 2 (1947), n.3, p. 239–244.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1947_3_2_3_239_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



Le Concoidi nella risoluzione di problemi sul triangolo.

Nota di Lucio Gambelli (a Volterra).

- Sunto. Si risolvono alcuni problemi di costruzione di triangoli, dati in grandezza tre elementi, per mezzo delle Concoidi di NICOMEDE e delle Lumache di PASCAL.
- a) Studiando i problemi sui triangoli, di cui siano dati in grandezza tre elementi, col metodo dei luoghi geometrici, ho trovato che molti di essi possono risolversi con la Concoide di Nicomede o con la Lumaca di Pascal.

Con questo metodo sono giunto alla risoluzione di un migliaio di problemi distinti, riconducibili a circa centocinquanta costruzioni diverse.

Alcuni di questi problemi sono di secondo grado, moltissimi sono di quarto grado ed hanno quattro soluzioni che possono essere tutte reali oppure due reali e due immaginarie.

- b) Premetto ora le seguenti proposizioni:
- 1a) Data la Lumaca del cerchio $\left(O,\frac{1}{2}\,m_a\right)$ rispetto ad M_a con intervallo a_{ab} (punteggiata), il luogo geometrico dei punti simmetrici della Lumaca rispetto ad M_a è la Lumaca del cerchio $\left(O,\frac{1}{2}\,m_a\right)$ (simmetrico del precedente rispetto ad M_a) rispetto ad M_a con lo stesso intervallo a_{ab} (tratti corti).
- 2^{a}) Data la Lumaca del cerchio $\left(O,\,rac{1}{2}\,m_a
 ight)$ rispetto ad A con intervallo $rac{1}{2}\,b_{h^a}$ (tratto corto e punto), il luogo geometrico dei punti simmetrici della Lumaca rispetto ad M_a è la Lumaca del cerchio $\left(\overline{O},\,rac{1}{2}\,m_a
 ight)$ rispetto ad \overline{A} con lo stesso intervallo $rac{1}{2}\,b_{h^a}$ (tratto corto e due punti). Vedi anche le due Lumache a tratto lungo e punto ed a tratto lungo e due punti).
- 3^{a}) Dato il cerchio $\left(O, \frac{1}{2} m_{a}\right)$ e con centro in un suo punto A il cerchio (A, c_{hb}) , una qualunque retta uscente da A interseca il primo cerchio in un punto Q ed il secondo in due punti $P \in P'$; se si riportano su tale retta i due segmenti $\overline{PQ} \in \overline{P'Q}$ dalla parte di Q si hanno i punti M ed M': il luogo geometrico di questi punti

- (è la Lumaca del cerchio (M_a, m_a) rispetto ad A con intervallo c_{nb} tratti lunghi). (Vedi anche la Lumaca a tratto lungo e tre punti).
- c) Darò ora la risoluzione di alcuni interessanti problemi di quarto grado, riservandomi in una prossima nota di indicare la risoluzione di molti altri.

Posti per brevità i seguenti simboli:

 $m_a \ (= \overline{A} M_a \mod \text{inna} \ \text{relativa al vertice} \ A \ (\text{opposto al lato} \ a)$ $a_{hb} \ (= \overline{C} \overline{H}_a), \ a_{hc} \ (= \overline{B} \overline{H}_a)$ proiezioni ortogonali dei lati $b \in c$ sul tato a $b_{ha} \ (= \overline{C} \overline{H}_b), \ b_{he} \ (= \overline{A} \overline{H}_b)$ proiezioni ortogonali dei lati $a \in c$ sul lato b $c_{ha} \ (= \overline{B} \overline{H}_c), \ c_{hb} \ (= \overline{A} \overline{H}_c)$ proiezioni ortogonali dei lati $a \in b$ sul lato c

consideriamo i seguenti problemi: d) Dati: m_a , a_{hb} , c_{hb} .

Fissato $\overline{AM_a} = m_a$, sia 0 il punto medio; sia $\overline{M_aA} = m_a$ e sia $\overline{0}$ il punto medio.

Essendo $\overline{CH_a} = a_{hb}$, il luogo geometrico dei vertici C è la Lumaca del cerchio $\left(O, \frac{1}{2} m_a\right)$ rispetto ad M_a con intervallo a_{hb} (punteggiata), e quindi, per la premessa 1^a , il luogo dei vertici B è la Lumaca del cerchio $\left(\overline{O}, \frac{1}{2} m_a\right)$ rispetto ad M_a con intervallo a_{hb} (tratti corti).

Essendo $\overline{BN}_c = \overline{N_cH_c}$ e $\overline{AH_c} = c_{hb}$, il luogo dei vertici B è, per la premessa 3^a , la Lumaca del cerchio (M_a, m_a) rispetto ad A con intervallo c_{hb} (tratti lunghi).

Queste ultime due Lumache si intersecano in due punti $B \in B'$ (come intersezioni si hanno anche i punti $B_1 \in B_1'$, che però, essendo i simmetrici di $B \in B'$ rispetto alla retta AM_a , non dànno luogo a soluzioni distinte dalle due precedenti. Questo fatto si intenderà sottinteso in tutti gli esercizi seguenti).

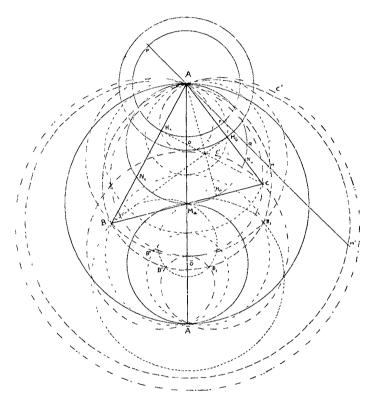
e) DATI: m_a , c_{ha} , b_{ha} .

Essendo $\overline{C}N_b = \overline{N_b}\overline{H}_b = \frac{1}{2}\,b_{h^a}$, il luogo dei vertici C è la Lumaca del cerchio $\left(O,\,\frac{1}{2}\,m_a\right)$ rispetto ad A con intervallo $\frac{1}{2}\,b_{h^a}$ (tratto corto e punto), e quindi, per la premessa 2^a , il luogo dei vertici B è la Lumaca del cerchio $\left(\overline{O},\,\frac{1}{2}\,m_a\right)$ rispetto ad \overline{A} con intervallo $\frac{1}{2}\,b_{h^a}$ (tratto corto e due punti).

Essendo $\overline{BN}_c = \overline{N_cH}_c = \frac{1}{2} c_{ha}$, il luogo dei vertici B è anche la

Lumaca del cerchio $\left(0, \frac{1}{2} m_a\right)$ rispetto ad A con intervallo $\frac{1}{2} c_{ha}$ (tratto lungo e punto).

Queste ultime due Lumache si intersecano in due punti B e B''. Osserviamo che delle sedici intersezioni delle due Lumache dei



due esercizi precedenti, otto sono nei due punti ciclici (in ciascuno dei quali una Lumaca ha una cuspide) e quattro sono immaginarie.

f) DATI: m_a , a_{hb} , b_{hc} .

Essendo $\overline{CN_b} = \overline{N_bH_b}$ e $\overline{AH_b} = b_{hc}$, il luogo dei vertici C è, per la premessa 3^a , la Lumaca del cerchio (M_a, m_a) rispetto ad A con intervallo b_{hc} (tratto lungo e tre punti).

Essendo $\overline{CH}_a = a_{hb}$, il luogo dei vertici C è anche la Lumaca del cerchio $\left(0, \frac{1}{2} m_s\right)$ rispetto ad M_a con intervallo a_{hb} (punteggiata).

Queste due Lumache si intersecano in quattro punti C (in figura si hanno solo C e C', ma si possono modificare i dati in modo da averne quattro).

g) DATI: m_a , a_{hb} , c_{ha} .

Essendo $\overline{BN}_c = \overline{N_cH_c} = \frac{1}{2} c_{ha}$, il luogo dei vertici B è la Lumaca del cerchio $\left(O, \frac{1}{2} m_a\right)$ rispetto ad A con intervallo $\frac{1}{2} c_{ha}$ (tratto lungo e punto), e quindi, per la premessa 2^a , il luogo dei vertici C è la Lumaca del cerchio $\left(\overline{O}, \frac{1}{2} m_a\right)$ rispetto ad \overline{A} con intervallo $\frac{1}{2} c_{ha}$ (tratto lungo e due punti).

Essendo $\bar{C}H_a=a_{hb}$, il luogo dei vertici C è anche la Lumaca del cerchio $\left(O,\,rac{1}{2}\,m_a
ight)$ rispetto ad M_a con intervallo a_{hb} (punteggiata).

Queste ultime due Lumache si intersecano in quattro punti C (in figura si hanno solo C e C'', ma si possono modificare i dati in modo da averne quattro).

h) Dati: m_a , b_{ha} , c_{hb} .

Essendo $\overline{CN}_b = \overline{N_b H_b} = \frac{1}{2} b_{ha}$, il luogo dei vertici C è la Lumaca del cerchio $\left(O, \frac{1}{2} m_a\right)$ rispetto ad A con intervallo $\frac{1}{2} b_{ha}$ (tratto corto e punto), e quindi, per la premessa 2^a , il luogo dei vertici B è la Lumaca del cerchio $\left(\overline{O}, \frac{1}{2} m_a\right)$ rispetto ad \overline{A} con intervallo $\frac{1}{2} b_{ha}$ (tratto corto e due punti).

Essendo $\overline{BN}_c = \overline{N_cH_c}$ e $\overline{AH}_c = c_{hb}$, il luogo dei vertici B è, per la premessa 3^a , la Lumaca del cerchio (M_a, m_a) rispetto ad A con intervallo c_{hb} (tratti lunghi).

Queste ultime due Lumache si intersecano in quattro punti B (in figura si hanno solo $B \in B'$, ma si possono modificare i dati in modo da averne quattro).

- i) Se $h_a (= \overline{AH}_a)$ è l'altezza relativa al lato $a (= \overline{BC})$ ed $m_b (= \overline{BM}_b)$ è la mediana relativa al lato $b (= \overline{AC})$, ecco le soluzioni di altri sei problemi di quarto grado risolubili con una Concoide di NICOMEDE o con una Lumaca di PASCAL (le figure sono facilmente costruibili).
 - l) DATI: h_a , m_a , b_{ha} .

Fissato $\overline{AH}_a = h_a$ e per H_a la perpendicolare \overline{BC} , il cerchio (A, m_a) dà il punto M_a ; sia O il punto medio di AM_a .

La Concoide della retta BC rispetto ad A con intervallo $\frac{1}{2} b_{ha}$ interseca il cerchio $\left(0, \frac{1}{2} m_a\right)$ in quattro punti N_b ; le AN_b dànno quattro punti C, i cui simmetrici rispetto ad M_a sono i punti B.

La Lumaca del cerchio $\left(0,\frac{1}{2}\,m_a\right)$ rispetto ad A con intervallo $\frac{1}{2}\,b_{\scriptscriptstyle ha}$ interseca la retta BC in quattro punti C, i cui simmetrici rispetto ad M_a sono i punti B.

m) DATI: h_a , m_a , b_{hc} .

Trovato come sopra il punto M_a , sia $M_a\overline{A}=m_a$; costruito il cerchio $(M_a,\ m_a)$ ed intersecato con la retta AC nel punto K_b , osserviamo che è $\overline{AH}_b=\overline{CK}_b=b_{hc}$.

La Concoide della retta BC rispetto ad A con intervallo b_{hc} interseca il cerchio (M_a, m_a) in quattro punti K_b e le rette AK_b dànno i quattro punti C.

La Lumaca del cerchio (M_a, m_a) rispetto ad A con intervallo b_{hc} interseca la retta BC in quattro punti C.

n) DATI: h_a , m_b , b_{ha} .

Fissate due rette BC e AB' parallele a distanza h_a ed il punto B sull'una, il cerchio $(B.\ 2m_b)$ dà sull'altra il punto B'. Il punto medio di $\overline{BB'}$ è il punto M_b . Sia O il punto medio di \overline{BM}_b .

La Concoide della retta BC rispetto ad M_b con intervallo b_{ha} interseca il cerchio $\left(0,\frac{1}{2}m_b\right)$ in quattro punti H_b e le M_bH_b dànno sulla BC quattro punti C e sulla AB' quattro punti A.

La Lumaca del cerchio $\left(0,\frac{1}{2}\,m_b\right)$ rispetto ad M_b con intervallo b_{ba} interseca la retta BC in quattro punti C, i cui simmetrici rispetto a M_b sono i punti A.

o) DATI: h_a , m_b , b_{hc} .

La Concoide della retta AB' rispetto ad M_b con intervallo b_{hc} interseca il cerchio $\left(0,\frac{1}{2}\,m_b\right)$ in quattro punti H_b .

La Lumaca del cerchio $\left(0, \frac{1}{2} m_b\right)$ rispetto ad M_b con intervallo b_{hc} interseca la retta AB' in quattro punti A.

p) Dati: h_a , m_b , c_{ha} .

Trovato come sopra il punto M_b , costruito il cerchio (M_b, m_b) ed intersecato con la retta AB nel punto K_c , osserviamo che è $\overline{BH_c} = \overline{AK_c} = c_{ha}$.

La Concoide della retta AB' rispetto a B con intervallo c_{ha} interseca il cerchio (M_b, m_b) in quattro punti K_c e le rette BK_c dànno i quattro punti A.

La Lumaca del cerchio (M_b, m_b) rispetto a B con intervallo c_{ha} interseca la retta AB' in quattro punti A.

q) Dati: h_a , m_b , c_{hb} .

Osserviamo che se M_bN è la perpendicolare da M_b alla AB, N è il punto medio di \overline{AH}_c e che quindi è $\overline{AN}=\overline{NH}_c=\frac{1}{2}\,c_{hb}$.

La Concoide della retta AB' rispetto a B con intervallo $\frac{1}{2}c_{hb}$ interseca il cerchio $\left(O,\frac{1}{2}m_b\right)$ in quattro punti N e le BN dànno i quattro punti A.

La Lumaca del cerchio $\left(0, \frac{1}{2} m_b\right)$ rispetto a B con intervallo $\frac{1}{2} c_{hb}$ interseca la retta AB in quattro punti A.

Osserviamo che delle otto intersezioni di una Concoide di Ni-COMEDE con un cerchio, due sono nei due punti ciclici per i quali passano semplicemente sia le Concoidi che i cerchi e due sono nel punto doppio della Concoide che non soddisfa al problema.