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Abstract

In this thesis we investigate how the nonlocalities affect the study of different
PDEs coming from physics, and we analyze these equations under almost optimal
assumptions of the nonlinearity. In particular, we focus on the fractional Laplacian
operator and on sources involving convolution with the Riesz potential, as well as on
the interaction of the two, and we aim to do it through variational and topological
methods.

We examine both quantitative and qualitative aspects, proving multiplicity of
solutions for nonlocal nonlinear problems with free or prescribed mass, showing
regularity, positivity, symmetry and sharp asymptotic decay of ground states, and
exploring the influence of the topology of a potential well in presence of concentration
phenomena. On the nonlinearities we consider general assumptions which avoid
monotonicity and homogeneity: this generality obstructs the use of classical variational
tools and forces the implementation of new ideas.

Throughout the thesis we develop some new tools: among them, a Lagrangian
formulation modeled on Pohozaev mountains is used for the existence of normalized
solutions, annuli-shaped multidimensional paths are built for genus-based multiplicity
results, a fractional chain rule is proved to treat concave powers, and a fractional
center of mass is defined to detect semiclassical standing waves. We believe that
these tools could be used to face problems in different frameworks as well.
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Introduction

Nonlinear phenomena pervade natural and social sciences, and lots of them are modeled by
nonlinear equations: there has been an enormous progress in the study of the structure and in the
qualitative understanding of these equations in recent years, and many astonishing interrelations
have been found. In this thesis we aim to contribute to these studies.

In particular, the goal is to detect local and nonlocal effects in some nonlinear partial
differential equations, having as a common feature a variational structure. Mathematically,
nonlocality is an intrinsic feature of integral operators and of associated energy functionals, which
have the peculiarity — contrary to the classical local ones — of capturing long-range interactions
or self-interactions. In the context of functional variational principles and associated inequalities,
nonlocal energy functionals are currently receiving great attention since they are closely related
to problems in geometry, physics, engineering, biology, finance and many others, manifesting
both in the operator and in the source. In this setting, classical PDE theory fails because of the
presence of the nonlocality.

A first goal of our research is the study of some generalized nonlinear Schrédinger equations
(here the Planck’s constant and the mass are normalized A = m = 1)

i0u = P(D)u — h(ju))u, zeRN,t>0

where P(D) denotes a pseudo-differential operator with constant coefficients, defined by mul-

tiplication in Fourier spaces as @u(&) = p(§)u(€), and h € C(R4). In particular, we are
interested to the case p(¢) = [£]?%, s € (0,1), and to the study of standing waves solutions

u(t, ) = e"Q(x)

with some nontrivial profile (), depending on the frequency p > 0: this leads to investigate the
so called fractional nonlinear Schrodinger equation (fNLS),

(—A)°Q+pQ =n(lQNQ, = eRY

where P(D) = (—A)?® is known as fractional Laplacian. In 1948 Feynman [182] proposed indeed
a new suggestive description of the evolution of the state of a non-relativistic quantum particle:
according to Feynman, the wave function solution of the Schrédinger equation should be given
by a sum over all possible histories of the system, that is by a heuristic integral over an infinity
of quantum-mechanically possible trajectories. Following this approach, Laskin [249-252] derived
the fractional Schrédinger equation (fNLS): numerous applications of these equations in the
physical sciences could be mentioned, ranging from image reconstruction to water wave dynamics,
passing through jump processes in probability theory with applications to financial mathematics.

In this thesis we are interested in detecting existence of one or more solutions of (fNLS)
equations, or more generally problems related to equations of the type

(=A)u+ pu=g(u), xR, (L.1)

where g € C'(R), and in studying their qualitative properties. We aim to do it by looking at
solutions as critical points of suitable real-valued functionals, as well as by exploiting methods

iv
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coming from both algebraic topology and geometry. Here, the influence of an external potential
V = V(x) may be considered as well.

Another target of this thesis is the analysis of the so-called Pekar nonlinear problem, which
describes a polaron — namely a quantum electron in a polar crystal — at rest. This problem was
raised by Pekar [313] in 1954: the atoms of the crystal are displaced due to the electrostatic
force induced by the charge of the electron and the resulting deformation is then felt by the
electron itself. Afterwards, Choquard [106] (see also Lieb [264,265] and Lions [271]) developed
a similar theory to study steady states of the one-component plasma approximation in the
Hartree-Fock theory; the same model was then also derived by Penrose in his discussion about the
self-gravitational collapse of a quantum-mechanical wave function [314-316], coupling together
the Schrodinger equation with the Newton law. Mathematically, these models belong to the class
of equations

—Au+ pu= (W F(u)F'(u), xeRN

where W is a radially symmetric potential, y > 0 and F € C'(R). In particular, the above-
mentioned physics problems are set in the case N = 3, F' power and W(x) = 47r1‘x|
potential.
We address to study existence, multiplicity and qualitative results for these integro-differential
N,«

equations, in the wider (model) class of Riesz potentials W (x) = I, (z) := ij’_w with a € (0, N)
and Cy o > 0 constant, that is

Newton

—Au+pu = (I F(u)F'(u), zeRN (1.2)

also known as Choquard-Hartree-Pekar equation.

When dealing with the mathematical description of the gravitational collapse of exotic stars,
double nonlocalities arise naturally, both in the operator and in the source: this was observed
already by Chandrasekhar [93] in 1931, and then developed by Lieb, Thirring and Yau [268—
270,360]. Other applications can be found for example in quantum chemistry and in the study
of graphene. This is why part of the thesis will be devoted to the study of equations of the type

(=A)*u+ pu = (In * F(u)F'(u), xeRY, (L.3)
highlighting especially how the two nonlocalities interact.

The approach of this thesis will be mainly of variational type: in the last thirty years, the
study of abstract variational methods and their applications to nonlinear differential equations
have greatly developed. In the past, variational methods have been applied to solve nonlinear
differential equations, both ordinary and partial, taking advantage of a related functional with
some specific features: among them we can find compactness properties (typically the Palais-
Smale condition), natural constraints of Nehari type, use of integral identities (such as the
Pohozaev identity), presence of a local operator, restriction to bounded domains, and others. In
the subsequent years, the study of nonlinear differential equations arising in geometry, physics
and applied mathematics has suggested developments in which at least one of the previous
assumptions is not satisfied.

The substantial progress made in the last years allows now to tackle equations with particular
features, as nonlocal PDEs. The greatly increased interest in nonlocal operators has motivated a
systematic study of the properties of the fractional Laplacian and pseudo-differential operators in
general [84,86-88,158,177,190,201,328,329,346,347]; variational techniques have been employed
also to obtain quantitative and qualitative results for elliptic PDEs with nonlocal nonlinearities
[109, 128, 205,206,257, 279,299,300, 332,372,378, 384].

A key aspect in the study of partial differential equations consists also on the hypothesis
assumed on the nonlinearity: considering very general ones allows to include different models
coming from different frameworks. In 1983 Berestycki and Lions [50,51] proposed a set of
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assumptions which relies, essentially, only on the growth of the nonlinearity in zero and at
infinity: these assumptions may be considered, from a variational point of view, almost optimal,
and include for instance the most common power type functions g(t) ~ tP, but also combined
powers representing cooperation g(t) ~ tP 4+ t? and competition g(t) ~ t? — t9, as well as
lfr—stg and in the study of
and many others. The generality of these assumptions, which

asymptotically linear saturable sources arising in nonlinear optics g(t) ~
t

Vit

do not include regularity, homogeneity, Ambrosetti-Rabinowitz-type or monotonicity conditions,

precludes the possibility of using classical tools of the variational analysis, such as minimization
on Nehari manifolds and fibering methods [74, 244, 306, 319, 379], use of Pohozaev identities
[318], as well as boundedness of standard Palais-Smale sequences and classical Mountain Pass
geometries [18].

Goal of this thesis is to investigate the abovementioned PDEs avoiding the use of these
additional assumptions, examining especially how the geometry and the compactness of the
problems can be tackled in this generality. In particular, we solve here also some problems which
were left open in literature, and their resolution requires the implementation of new ideas.

semiconductors g(t) ~ t —

Studying equations (I.1) and (I.2), the research has been pursued essentially in two main
directions: the first is to assign the frequency p € (0,+00), and let the mass (given by the
L2-norm of u) to be free. This unconstrained approach has been extensively studied in the
literature [49-51,79,95,229, 230,237,290, 302,304]. A second approach is to prescribe the mass
fRN u? = m > 0 and let instead the frequency to be an unknown [37,224,271,278,343]: this
constrained approach is also significantly meaningful in physics, for instance in quantum mechanics
due to the normalization of probability.

In this thesis we aim to find existence and multiplicity results for L?-constrained problems,
that is

(=A)u+ pu = g(u), xRV, — Au+ pu = (I * F(u)F'(u), zeRYN,

u? =m, u? = m.
RN RN

When dealing with nonlocalities, the classical minimization approach on the L?-sphere is rather
involved, since the techniques require a delicate control on the tails of the functions; moreover,
this approach is less suitable for the research of multiple solutions. Here we propose instead a
minimax approach, related to a Lagrangian formulation of the problem, and modeled on suitable
mountains on the product space: we believe that this method may be applied to a wider class of
equations. A posteriori, we show also that the found solution with minimal energy is indeed an
L?-minimum. Even though the approach to the two problems is similar, the study of the two
abovementioned equations gives rise to different problems.

A particular feature of the fractional Laplacian, indeed, is the lack of a regularizing effect: this
fact does not allow to prove the well known Pohozaev identity, a quite useful tool in the framework
of PDEs. This lack of regularity is here tackled by implementing a suitable modification of
the Palais-Smale condition, that we call Palais-Smale-Pohozaev condition, and a deformation
argument around the set of critical points satisfying the Pohozaev identity. Here we face for the
first time the problem of the existence of a normalized solution for a fractional framework, where
the Pohozaev identity is no more ensured; moreover, we highlight that the multiplicity result
presented is new even in the power setting g(u) = |u|P~2u. This is done in Chapter 2.

In the case of Choquard nonlinearities, instead, a delicate issue is the research of multiple
solutions: indeed, this is typically based on the construction of suitable multidimensional
Mountain Pass paths. On the other hand, when the nonlinearity is not local, this is not obvious,
and that is why we need to implement a delicate construction based on multidimensional annuli
which takes into account the interaction of far components. In particular, as a peculiar feature
of the nonlocal setting we are allowed to consider odd (and not only even) functions F', which
make the energy functional symmetric as well: this possibility has not been developed in the
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common literature. Nevertheless, the case F' odd makes much more involved the control of far
nonlocal contributions; here we include this case in our study. Moreover, as a byproduct of
this construction, we find existence of infinitely many solutions for the unconstrained Choquard
problem (I.3), solving a problem which was left open in the literature [302] and extending to
nonlocal nonlinearities the seminal paper by Berestycki and Lions [51]. We do this in Chapter 3.

When studying fractional Choquard equations [138] of the type (I.3), the combination of the
two nonlocalities and of the nonhomogeneous nonlinearity heavily influences the investigation of
qualitative properties of the solutions. The lack of explicit computations, the absence of a proper
chain rule and the singularities of the Fourier symbol and of the convolution kernel obstruct
classical approaches in the study of boundedness, L'-summability and regularity of solutions,
as well as positivity and asymptotic decay of ground states. Again, also here we consider the
possibility of F' to be odd in the study of some symmetry properties: all the abovementioned
difficulties require new ideas and the implementation of more delicate arguments. Some of the
cited results are, in addition, new even for the case s = 1, improving some results in [302].

The nonlocal interaction of the fractional Laplacian and of the Choquard term gives rise
moreover to new phenomena: for instance, when F has a subquadratic growth in the origin,
the asymptotic behaviour at infinity of the solutions seems to be connected to a new growth
threshold, differently from the local case s = 1. All these properties are examined in Chapter 4.

Finally, another problem we aim to investigate is the concentration of solutions in fractional
nonlinear Schrédinger equations. Indeed, given an external potential V' = V' (z), physicists are
interested in studying the effect of this potential on the solutions of the equation

B2 (=A)u+V(z)u = g(u), z RN

as long as the term A goes to zero, which somehow describes the passage from quantum to
classical mechanics [73,337]; this is why solutions of this equation for A > 0 small are also
called semiclassical. In particular it has been proved that, if a family of solutions has maxima
which concentrate in a point, then that point is critical for V' [174,370]. This is the reason
why a huge literature is focused on studying concentration on different types of critical points,
both in a local framework [81,119] and nonlocal [10,96,123,183,338]. Our aim is to investigate
concentration phenomena on local minima of V, in the framework of fractional equations: in this
case, the spreading of the mass carried by the fractional Laplacian strongly opposes the research
of solutions localized in a prescribed domain of RYN. Despite this obstruction, we find the existence
of multiple solutions with this behaviour, whose number is related to some algebraic-topological
information on the set of local minima of V.

In order to achieve this, some careful analysis is needed: indeed, the possible degeneracy of
the local minimum of V' does not allow to implement finite-dimensional reduction arguments,
while the generality of the function g hinders the possibility of working on natural constraints,
such as Nehari manifolds. In order to study sets of local minima we combine perturbation and
penalization arguments and implement delicate deformation theorems on some set of expected
solutions. In this discussion, we include a posteriori the case of a lost of compactness given by
a Sobolev-critical growth of g, through the use of a truncation argument and suitable a priori
estimates.

As already highlighted, the presence of a nonlocality makes the whole study much more
involved: the lack of a proper Leibniz rule and of the preservation of the supports prevents the
use of classical cut-off functions and standard penalization arguments. Moreover, a strong control
on the tails of the functions is needed, especially when trying to localize their fractional center
of mass, and we do this by means of a suitable mixed fractional seminorm. This study is made
in Chapter 5.

The general spirit of this thesis is thus to investigate how the nonlocalities — both in the
operator and in the source — comes into account in the study of different PDEs, and analyze
these equations under almost optimal assumptions on the nonlinearity.
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The thesis is organized as follows. In Chapter 1 we recall and revisit some known results in
literature, furnishing the proofs whenever it was not possible to find a precise reference, and we
present some new results as well. Chapter 2 is dedicated to the study of autonomous fractional
equations: after having recalled what is known for the unconstrained problem, we focus on the
study of the mass-constrained problem, obtaining both existence and multiplicity of solutions for
general nonlinearities. Then, in Chapter 3 we research for multiple solutions to the Choquard
problem: in this case, one of the main issues is the construction of suitable multidimensional
paths, since the general and nonlocal nonlinearity heavily affects the geometry of the problem. In
Chapter 4 we move to study the case of doubly nonlocal equations, where we mainly focus on the
qualitative properties of the solutions, investigating how the interaction of the two nonlocalities
influences both the techniques and the results. Finally, we face the fractional semiclassical
problem in Chapter 5, by studying how the nonlocality of the fractional operator comes into
play while searching for multiple solutions concentrating to a local minimum of the potential.
Appendix A is dedicated to a little survey on the algebraic and topological tools used throughout
the thesis.

This thesis is mainly based on the papers [111-117,197,198].



CHAPTER

Some facts about nonlocalities

In this Chapter we introduce some preliminary results about the fractional Laplacian (Section 1.2)
and the Riesz potential (Section 1.3), as well as some considerations about nonlinear functionals
(Section 1.5). Here we collect and revisit some known results in literature, furnishing some proofs
whenever it was not possible to find a precise reference.

Moreover, we present here some new results: in particular, in Section 1.2.4 we deal with a
fractional chain rule in presence of concave compositions, by working with a viscosity formulation;
this can be found in paper [198]. In Section 1.2.5 instead, we present an L°°-bound for non-
positive solutions of fractional nonautonomous elliptic — possibly critical — equations, which
adapts also to the Choquard framework; this has been developed in papers [115,197].

1.1 Notations

We start by writing down some notations used throughout the thesis. We write Ry := (0, +00)
and

B(z0) == B(zo,7) :={x € RN | |& —xo| < r} for zg € RN and r > 0,
Dy :={¢cRY||¢) <1} for N € N¥,
AR h) :=={z cRY | |z| € [R—h,R+h]}, for R>0,h>0

for balls, disks, annuli; in particular, B, := B,.(0), and x(R, h;-) := xa(r,)- In addition,
As:={x € X |d(z,A) <4}
denotes a neighborhood for any A C (X, d) metric space. Sometimes we will write
C(4):=A°:=X\ 4

for A C X to avoid cumbersome notation, if the ambient space is clear from the context. The
function P; will denote, generally, the projection on the i-th component (in some product space).
We write

1/r
llu|lr == (/ |u]” dx) for r € [1,00) and u € L"(RY),
RN
|u||oo := ess supgn|u| for u € L®(RYN),
the classical LP-norm in the entire space, p € [1, +00]; we will use also the following notation

1Flloco = IF L+ 7)o

1



2 1. Some facts about nonlocalities

for any 0 > 0. By F(u) or u we will denote, moreover, the Fourier transform of a function u,
and by u. its positive and negative parts, u = uy — u—_.

The function I'(-) will denote the standard Gamma function, while 9 F7 (-, -, - ; -) will denote
the Gauss hypergeometric function.

We write S for the Schwartz function space. For any k£ € N and o € (0,1), we denote by
Co(RY) the space of continuous functions decaying to zero at infinity, by CF(RY) (resp. C¥(RY))
the space of k times differentiable functions with bounded (resp. compactly supported) and
continuous j-derivative, j = 0,..., k, by C*7(RY) the space of k times differentiable functions
with o-Holder continuous k-derivatives (on RYY), where

u(x) — u(y
[ulcow(a) = sup M
vyed |z —yl
TFY

denotes the usual seminorm in Hélder spaces for o € (0,1] and A C RY. By C’k’U(RN ) we

loc
consider functions whose k-derivatives are locally o-Holder continuous; if 0 = 1 we also write

Lip(RN) := COY(RYN) and similarly Lip;,.(RY) and Lip.(RY). More briefly we will sometimes
write

CHRN) .= CBLA-IBI(RN)
for any 3 > 0, observing that this notation throws out spaces C*!(RY), usually subsituted by
Zygmund spaces (see Remark 1.1.2 below); similarly cP (RM).

loc

Remark 1.1.1. In [16/] it is defined, for o € (0,1], u € Lip(o) if there exist C >0 and 6 >0
such that, for each z,y € RN,

|z =yl

We notice that

C%(RN) C Lip(o) € C(RN)
and moreover

Lip(o) N L®(RY) ¢ ¢%(RY);
indeed, for each x,y € RV,

u(z) —u(y)] _ 2ull

—y| >0 =
=l lz—ylo T &

Remark 1.1.2. To state some results it is useful to introduce also the Zygmund space Aj(RY)
[352, Section 6] as the space of the continuous functions u such that
|u(x 4+ h) — 2u(x) + u(x — h)|

sup < Q.
z,heRN |h|

We notice that u € C%°(RN) for o € (0,1) if equivalently
|u(z + h) — 2u(z) + u(x — h)|

z,heRN ‘h|a

< 00,

but the same does not hold true for o = 1; indeed
COYRY) ¢ A (RY).

We can further define Ao(RY) as the space of functions in CY(RN) with partial derivatives in
A1(RN); also in this case CYLHRN) C Ao (RN). The following relations hold true [351, Propositions
5.5.8, 5.5.9 and 5.5.10]:

C*NL® Cc A NL® c CPo2n L™ c CForn L™

for k=20,1 and each 0 < 01 < 09 < 1.



1.2. The fractional Laplacian 3

Here we write f ~ g as * — o € R if there exist constants C1, Cy > 0 independent of = such
that
Cig(z) < f(z) < Cag(z) for x near zo,

while by f ~ g as x — x¢ we mean that

m 7f(z) =1.
w0 g(x)
Moreover, by ~ we will mean approzimately equal to (in a sense clear from the context) or
isomorphic to. Symbols <, ~ and = will mean less, equal or greater up to (positive) constants.
Finally, for every A C B C RY, we will write

A<¢=<B
to indicate a Urysohn-type regular function ¢ € C°(RY) such that

¢|A =1 and ¢\RN\B = 0.

We introduce the following terminology: if G is a group acting on a set X, we say that A C X
is invariant under G if gA = A for each g € G, while we say that a function f : X — Y (V'
another set) is invariant under G if f(g-) = f for each g € G; finally we say that f: X — X
is equivariant if f(g-) = g - f for each g € G. When G = Zy = {£1} acting on some vectorial
space X, we have that A C X invariant means symmetric with respect to the origin (4 = —A),
f invariant means even (f(—-) = f), f equivariant means odd (f(—) = —f).

We highlight that, all throughout the thesis, we will actually assume N > 2 when dealing with
the fractional framework s € (0,1) (despite the beginning of the preliminaries, where generally
N > 2s), and N > 3 in the local framework s = 1. Moreover the constants C,C’" appearing in
inequalities may change from a passage to another; to avoid cumbersome notations, we will not
stress the dependence of such constants, which will be based only on the fixed quantities in play.

1.2 The fractional Laplacian

Let s € (0,1) and N > 2s. For this Section we mainly refer to [153,201], together with
[6,79,177,346]; other interesting references are [22, 56, 76, 84, 150, 339] (see also [99]). For
motivations and a physical introduction we refer to Sections 2.1 and 4.1.

Let the fractional Laplacian be defined by [153]

—A)® — PV — 7 I/
(=A)%u(z) := Cns RN\$—4HN+%dy

where
o - 4SF(N 4523)
b aNEIN ()]
is a normalization constant with I' the Gamma function, and the integral is in the Principal
Value sense, that is

>0

. u(z) — u(y)
—A)°® =Cns 1 —————="dy;
(—A)*u(z) N L Be(e) [T — Y|V Y
notice that, when s € (0, %), we actually do not need to employ the Principal Value formulation
(when u belongs, for instance, to CZOO’Z(RN) N L= (RYN) for some o € (2s,1] [153, Remark 3.1], see
also the proof of Proposition 1.2.2 below).

A sufficient condition in order to have (—A)%u well defined pointwise is given by [346,
Proposition 2.4] (see also [201, Proposition 2.15] and [79, Lemma 2.4]).
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Proposition 1.2.1 (Fractional well posedness). Let zg € R, Then, if
o ue LP(RNYNCV(U) for some p € [1,4+00], v > 25 and U open neighborhood of o,

then (—A)u(zo) is well defined; in this case, actually, (—A)%u € C(U). In particular, (—A)*u
s everywhere well defined pointwise if

. uGLp(RN)ﬁC’Y

loc

(RYN) for some p € [1,+00] and v > 2s,
and we have (—A)*u € C(RY).

Actually the condition u € LP(R™) can be substituted by the more general condition

/]RN % < oo (1.2.1)

A different pointwise representation is given in the following Proposition [153, Lemma 3.2]
(see also [201, Proposition 2.8]).

Proposition 1.2.2. Assume u € LP(RN) N C)

loc

_ COpgs / 2u(z) —u(r +y) —ulr —y)
2 Jrw |y |V +2s

(RY) for some p € [1,+oc] and v > 2s, Then

(=4)%u(z) dy,

and the integral is absolutely convergent.

Proof. We check only the absolute convergence. Indeed, let 2 € RY and R > 2|z| + 1. Notice
that, for |y| > R, we have, for |y| > R,

lz+yl > |yl —|z] > R— |z > |z] +1

and | "
T+yl +
r+yl — |z
ooty = el > A
thus
[2u(@) —u(z +y) —ulx —y)| ,
. ‘y’N+2s
R
2|u(z)| / lu(z + y)| / lu(z —y)|
< / dy + — e dy + — Ay
N+2 N+2 N+2
By, [yl By y[NH N
1 u(z)]
< 2|u($)|/ dy~|-2/ 5o dz
s P (P P
N+2s [u(2)|
< Crlu(@)] + 22+ [=]) /Br N WCZ’KW

Let now s € (0,1). Then, being u € CV(RN) for some vy > 2s,

2u(z) — u(@ +y) — u(z —y)| / 1
dy <2C ——————dy < 00;
/BR |y|N+2s B |y|N+257'y

notice that a similarly argument shows also that the integral in the definition of the fractional
Laplacian does not need the Principal Value, being absolute convergent.

If instead s € [%, 1), then, being u € C'llo’z(RN) for some v > 2s — 1, for each z,y € RN there
exists 0 = o(z,y) € (0,1) such that

/ 2u(x) —u(z +y) —u(z — y)ldy _ / \Vu(z +oy) -y — Vu(z — oy) - yldy
Br |y|N+28 Br |y‘N+28
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< / 20 du <
< e dy < 00.
By, [y[N+2s—7-1
Joining the pieces, we have the claim. |

It is well known that the fractional Laplacian is a nonlocal operator. This means, for example,

that
supp ((—A)"u) ¢ supp(u);

in particular, if ¢ is a cut-off function with support in some A C RY™, we cannot localize
(—=A)*(¢pu) inside A as well. Notice that the fact that (—A)%u is expressed through an integral
does not directly implies that the operator is nonlocal (see, for instance, [1, Section 2.1]); anyway
we can see this considering, for example, a nonnegative u € C2(RY) with v > 1 on B1(0), and a
point € RY far from the support: we thus have

u(y) 1
—A)u(z S—/ dyg—/ ———dy
CA U@ <= ) o Ty o) (LT )%

— _# <0
C (L e T

Moreover, a proper Leibniz rule lacks in this framework, thus in general
(—A)*2(pu) # (=A)Pugp + (=A) Py,

formula which instead holds when (—A)%/2 is substituted with the gradient V in the local
framework s = 1 (see Remark 1.2.11). In the fractional framework a correction term is needed
[54, Proposition 1.5]

(u(@) —u(y)) (Y(z) = ¥(y))

|.7} _ y|N+s

(~)F2(pu) = (~A) 2w + (-8) Hpu+ C, [ dy
R
or different approaches, like error estimates [208] or approximation arguments [336, Lemma 2.6]
must be employed. All these issues create problems, for example, in concentration arguments
(see Chapter 5). A proper chain rule lacks as well, and we will make some comments in Section
1.2.4.
The operator anyway enjoys some trivial but useful scaling properties

(=A)° () = A(=A)%u,  (=A)*(u(B-)) = [BI**((=2)"u) (8").
for any A, 8 € R, as well as linearity.

We further have the following relation with the Fourier transform [153, Proposition 3.3] (see
also [201, Proposition 2.8]) whenever u € S

(—A)*u = FH(g[* F(u); (1.2.2)

this relation can be extended to the setting of Proposition 1.2.1, that is for functions u €
G (RN N LP(RYN) for v > 2s, see [346, proof of Proposition 2.4] (see also [79, Lemma 2.4]).
When u is not regular enough, relation (1.2.2) might be taken as a definition, whenever for
example |£|2F(u) € L2(RY); in this case the fractional Laplacian is defined up to a set of zero
Lebesgue measure. Notice moreover that (1.2.2) could be interpreted more generally also in the

sense of tempered distributions S’.

Remark 1.2.3. We notice that relation (1.2.2), i.e.

(—2)"u(x) = / (1€1%)° (u, %)z e dg
RN

for almost every x € RN, can be interpreted in terms of the spectral theorem by considering the

continuum of eigenvalues & € RY +— ¢ 1= |€|? with eigenfunctions e¢(z) := e ¢ L®(RN), and

applying the power function h(t) := t°. This is indeed how the spectral fractional Laplacian is

defined on bounded sets (see [6, Section 2.3]).
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Remark 1.2.4. Actually there are several equivalent ways to define the fractional Laplacian
[245]. One of the most used is the Caffarelli-Silvestre s-harmonic extension, where the fractional
Laplacian in RN is seen as the trace of a divergence-form operator (possibly singular) in RN+
[86]: this formulation is widely used in order to bring the computations from a nonlocal framework
to a local framework. Anyway we stress that we will not make use of the s-harmonic extension in
this thesis, by mean of working directly with integral quantities. This has the further advantage
of possibly extending our results to other nonlocal frameworks where the harmonic extension is
no more available, see e.g. [170].

Relation (1.2.2) shows, informally, that
(—=A)%u 29" u, (—=A)°u 21 —Au

which motivates the symbol with a fractional power of the Laplacian; see [352, Theorems 3 and
4] for a precise statement (see also [153, Proposition 4.4]).

Moreover, (1.2.2) is suitable to extend the notion of fractional Laplacian to every s > 0
[32,98,330,346] (see also [3, Proposition 3.1}); see [1] for an overview on the topic (see in particular
[2-5] and [334, Section 3.1] for a hypersingular integral definition, [89] for a recursive pointwise
definition, [200] for a harmonic-extension definition).

Another feature of the fractional Laplacian is its polynomial decay, that is, whenever u is
good enough (for example, Schwartz), then [201, Proposition 2.9] (see also Remark 5.2.2)

[(=A) u(z) z € RY; (1.2.3)

<« -
’ — 1+ |x’N+23

generally, one can not expect a faster decay: this is the case, for example, of u(x) = —

(1+|z?) "2
(see Section 1.2.2, and also [201, Lemma 8.6] and [346, Proposition 2.12]). Even when u is a
Schwartz function, by (1.2.2) we notice that (—A)u has generally not a fast decay, since |¢|?* is

not regular enough near zero when s < 1; thus

(—A)PS ¢S  forse(0,1).

On the other hand, one can show [201, Lemma 8.1] that, for every u € S, one has (—A)*u €
C>®(RY) with

D ((—A)*u) (x) z€RY

<
= 1+ |x|N+2s

for each multi-index 3. We find the asymptotic decay (1.2.3) also in fundamental solutions of the
operator (—A)® + id (see Lemma 1.2.29) and actually it will be a key feature of the solutions of
fractional PDEs (see Section 5.2), at least when there is not a too strong nonlocal effect coming
from the nonlinearity (see Section 4.6.2).

1.2.1 Fractional Sobolev spaces

We introduce, for any Q@ C RY and s € (0, 1), the fractional Sobolev space

ulxr) —u 2

endowed with
HUH%{S(Q) = HUH%?(Q) + [U]J%IS(Q)‘

The finite quantity [u]gs(q) is said Gagliardo seminorm. We will denote the dual space by
(H*())".
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We recall, whenever = RY or Q has a Lipschitz and bounded boundary, the continuous
embedding [153, Theorem 6.7]

H?(Q) — LP(Q) (1.2.4)
for every p € [2,2%] with
o 2N
* N-—2s

the fractional Sobolev critical exponent, and, if p € [2,2%), the compact embedding [153, Corollary
7.2]
H(RY) e LP

loc

(RY)

in the sense that for every (u,), bounded in H*(R™), and for every A C R" bounded and regular
enough (e.g. 0A Lipschitz), we have that (uy), restricted to A admits a convergent subsequence
in LP(A).

Moreover we set
Hi (RN := {u ‘RN S R | u e H*(Q) for each Q CC ]RN}
and, for any Q C R, [363, Section 4.3.2]
X5(0) = {w € B*®Y) [w=00n 0}
= {w e H*(RY) | supp(w) C ﬁ} .
Remark 1.2.5. The following density result holds in RN [150, Proposition 4.27] (see also
[150, Proposition 4.11]):
H*(RY) = CRRN) e,

Assume now ), with 9 compact, to be a Lipschitz domain [289, Definition 3.28]. Then
[289, Theorem 3.29]

X3(2) = C(@)! e,
If moreover s # L, then [289, Theorem 3.33]
X3() = Cr@) 1.
See also [363, Theorem 1 in Section 4.3.2] for more results on these spaces.

In the case Q = R we also have the following relation [153, Proposition 3.4]
ey = o2 lElal3:

by interpreting the fractional Laplacian through the Fourier transform definition (1.2.2) we may
also write
[ulFre @y = g I (=) %ul3. (1.2.5)

Moreover, by polarization
/ (A 2u(—A) 2pdy = / €[ Twde
RN RN
_1 (u(z) — uy)) (v(z) —v(w))
=5CNs /RN /RN dzdy (1.2.6)

|.%' _ y|N+23

for every u, v € H*(RY). Relation (1.2.5) leads also to an equivalent definition for the fractional
Sobolev space

H®RY) = {ue L*RY) | ¢ € *(RY)]
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= {ue L*RY) | (-8)"?u e LX(RY)}
endowed with

lullZrs = Tlull3 + [1IE]*all3

= JJull3 + 1(=2)*?ul3.

Together with H*(RY) < L2(RM) N L% (RY) we have the following embedding of the
homogeneous fractional space H*(RY) < L2 (RY) [153, Theorem 6.5] (see also [98]), where

H*(RY) := {u measurable | (~A)*?u e L2RM)};

here the fractional Laplacian is intended in the sense of tempered distributions. That is, for
some optimal constant S > 0,

2 < ST2I(=A)*2ulls. (1.2.7)

I

Moreover, we recall the fractional version of the Gagliardo-Nirenberg inequality [312] (see
also [42])
1—
lullr < Cll(=A)"2ull [lully™ (1.2.8)

for u € H¥(RY), r € [2,2] and B satisfying

1_#8

15
ot

Extension to p € [1,00] and s > 0
Consider now again the relation
HY(RY) = {u e 2®Y) | F7'(jg]'n) € LA(RY)}
= {ue P®Y) | F7H((1+ |¢g))a) € L2RN)}. (1.2.9)

This last expression is suitable for defining the fractional Sobolev space W*P(RY) also for s > 1
and p > 1, by [177]

WePRY) := {u e LP(RY) | F7H((1 + |¢]%)a) € LP(RY)}. (1.2.10)
It has been proved in [177, Theorem 3.1] that this definition coincide with the following
WPRYN) = {u e LP(RY) | F71((1+[¢*)¥%a) € Lr(RY)}

that is
WweP(RN) = WP (RY).

Remark 1.2.6. We want to highlight that the last equality is actually not trivial a priori. Indeed,
we can rewrite the spaces as

WP(RY) = {u € LP(RY) | u = Kas ¥ g for some g € LP(RN)},

WPRY) = {u € LP(RY) | u = Gos * g for some g € LP(RY)}

1
Kos:=F! <>
? 1+ [¢[

where
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is the Bessel kernel, and

& = ()

is the pseudorelativistic kernel. The two functions are the fundamental solutions, respectively, of
(_A)SIC2S + IC2S = 607 (_A + id)sg2s = 50
in RN, where 8y is the Dirac delta; the operator (—A + id)* is also called pseudorelativistic
operator (see Section 4.1). Even if
3

and &+~

I o
L+ g (1+1¢%)

have same behaviour in zero and at infinity and same summability, the fact that the two functions
have different reqularity (the first is nonregular in the origin, the second is analytic) brings Kas
and Gas to be quite different kernels: for instance, Kos has a polynomial decay at infinity (of
order W, see Lemma 1.2.29), while Gaos decays exponentially [9, equation (1.2.15)]. These

properties influence the qualitative behaviours of the solutions of the linear equations
(-AYutu=g, (-A+id)’u=g

in RN, given by u = Kas * g and u = Gog * g respectively (see e.g. Lemma 1.2.29). Because of
these representation formulas, we also write

Kosx = ((—A)* +id)™",  Gagx = (—A +id)*.

These considerations also show that the pseudorelativistic operator is quite different from the
fractional Laplacian by giving more reqularity and decay to solutions, but without enjoying the
same scaling properties; its study is an interesting line of research for the future.

Remark 1.2.7. Notice that in (1.2.9) and (1.2.10) the request u € LP(RY) is actually superfluous.
This is the same for W P(RN) as well, since by [9, Theorem 1.2.4] we have (if N > ps)

Ft ((1 + |§\2)S/2ﬁ> e I’(RY) = w e LYRY) for each q € [p, ]fi\;s];

this result is in accordance to the continuous embeddings (1.2.4) stated before for p = 2. In
particular the previous embedding is continuous, which means that (for ¢ =p)

lully < CIFHQ + [€7)*7%) |13
this relation can be rephrased by saying that
10— A +id) " ully = [|Gas * ullp < Cllull,

and this can be obtained directly by Young’s inequality with C = ||Gas||1 (indeed Gos € L*(RY),
see [9, equation (1.2.12)]). A similar argument holds for ((—A)® +id)~!, since

1((=2)° +id) " ully = [Kas % ullp < [KCasll1]lull,
being Kas € LY(RY) (see Lemma 1.2.29), thus
(=A)* +id) " : LP(RN) — LP(RN) (1.2.11)
is a continuous operator for every p € (1,4+00) and

lellp < 1Kol |7~ (1 + [€[>*) - (1.2.12)
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We observe, by (1.2.2), that if u € W2P(RY) for some p, then (—A)%u is well defined
pointwise up to a set of zero Lebesgue measure.
Moreover, by [177, Theorem 3.2] we obtain the following embedding, for every s € (0,1),

COY(RY) for v € (0,2s) if 2s <1,

1.2.13
CY=HRYN) for v € (0, 2s) if 2s > 1. ( )

HQS(RN) N WQs,oo(RN) SN {

Remark 1.2.8. We observe that, if s > s’ and p € (1,00), then [363, equation (9) in Section
2.3.9]
WP (RN) — WP (RN);

this is easily seen for p = 2: indeed, by the fact that |§\23/ < 1+ [€]?* we have

/ (1 + [€2)al* < / 2+ [¢>)al® < 4/ |(1+ [€]>)al.
RN RN RN
In particular,
H*(RY) — HYRYN)  for 2s > 1.
Moreover, for every s > 0, since H*(RYN) — H2I(RN) — H21=9)(RN), we notice that, for
u € H*(RN),

(~8)'u=F (jePE e a)

(1P (F (g a) ) )
= (=A)ll-s ((—A)[S]u)
and similarly
(~A)'u = (=A) (Al ).
See also [32, Proposition 2.1], [3, Remark 3.2], [89] and [2, Theorems 1.2 and 1.8 and Corollary
1].

Remark 1.2.9. By exploiting the Gagliardo seminorm one can define a fractional Sobolev space,
forp e [l,00) and s € (0,1), by

—~ p
s,p ]RN = P RN / / )‘ P I g }
wer@) = fue @) [ [ |x_ iy < oo

this is a possible good choice [153], but generally it does not coincide with W*P(RN) for p # 2
[153, Remark 3.5]. See also [363, Remark 4 in Section 2.3.3] and [333, Remark 6 in Section
2.1.1]. The space W*5P (]RN ) is also known as Triebel-Lizorkin space, or Bessel-potential space, o
Liouville space, while WP (RN) is also known as Besov space or Slobodeckii space.

Radially symmetric functions

In order to gain some compactness on the entire space, we consider also the subspace of radially
symmetric functions

HRY)={uc H'®RY) | Fv: Ry =R st. u(z) =v(z])};

to avoid cumbersom notation, we will alway write u(x) = u(|z|). We notice that the fractional
Laplacian inherits the radial symmetry of the function (this is immediate by use of the Fourier
transform (1.2.2), see also [201, Lemma 2.7]); anyway, it has not an easy representation in radial
coordinates (see [181] and [201, Lemma 7.1]) based on Gaussian hypergeometric functions (see
Section 1.2.2), and this obstructs, for example, ODE’s methods for resolution of PDEs.
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We recall that, whenever N > 2, Lions proved the compact embedding [272] (see also
[91, Proposition 1.7.1] and [167])

H3(RY) s LP(RY) (1.2.14)

for every p € (2,2%); however, as shown in [105] for general s € (0,4), a result in the spirit of
Radial Lemma by Strauss [353]

| ( )|2 ~ ‘iL‘|N 25 ||( )S/QUH%’ HARS RN \ {0}

is not available in the fractional framework H32(RY). We highlight that the embedding is not
compact for ¢ = 27 even on bounded subsets of RY. Sometimes we will write || - |gs := || - || ar=.

Remark 1.2.10. We observe that
H:(RY) = Fix(O(N)) = {u € H*(RY) | 7(Q,u) = u for each Q € O(N)},
where O(N) is the orthogonal group of rotation matrices and the isometric action is given by
7 (Q,u) € O(N) x H*(RY) » u(Q-) € H(RM);

working with a variational formulation, we will often work with O(N)-invariant functionals: by
the Principle of Symmetric Criticality of Palais [310] we will obtain that every critical point on
H3(RYN) is actually a critical point on the whole H*(RY), which justifies our restriction onto the
radial setting.

Remark 1.2.11. Notice that, when s = 1, we have

oy = [ ) = [ el =% [ liefar

=3 [ Fear =3 [ 1wl = [ vuf

= [|Vull3

and this justifies, for example, the use of (—A)5/2 in the weak formulation of PDEs (see Definition
1.2.16). We highlight, anyway, the nontriviality of the relation, since (—A)Y? is a nonlocal
operator, while V is a local operator (see also [201, Section 6]).

When s = 1 thus we will actually consider the classical Sobolev space H'(RY) endowed with

1/2
lull g = (/RN (IVuf? +u2) da:) foru € HY(RY)

and its subspace
HYRYY := {u e HYRY) | u radially symmetric}.

Tail-controlling mixed norms

In order to handle the long range interaction of the fractional norms, we will make use of the
following mized Gagliardo seminorm

|2
: ——————rs—drdy, |uja:=|ulaa
Al’AQ /Al /AQ |‘r’C - y|N+2S [ ] [ ]

for any A1, Ay, A C RY and u € H*(RYN); by using that o, (z,y) := % satisfies g1 <
u + @p and [u]a; a4, = [[@ullz2(4,x4,), We have that [u]a, 4, is actually a seminorm. This
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seminorm has been introduced in [111], although after the publication the authors discovered
that similar tools were implemented in different frameworks [130,178,234].
For any u € H*(R™) and A C R¥ it will be useful to work also with the following norms:

lullZ = Il o) + [l gz

and

el 4 = llll Lot cay + Ml a,
for some suitable p € (2,27). We highlight that [[ullgy = ||lul[gs@n), but generally |lul[4a >
ul| s (ay for A # RN, By H%(A) < LPT'(A) the norms || - |4 and |||, are equivalent: on
the other hand, the constant such that ||uf|, < Callul|la depends on A, thus not useful for
e-dependent sets A = A(e) (see Chapter 5). This is why we will make direct use also of [||-|| 4.

Regarding e-dependent norms, we will use also

2 W ANS/2. 112 2
oy = N-A)ul + [ Vieoylda

which is an equivalent norm on H*(RY) whenever V € L®(R™) with V > V; > 0; the space
HE(RY) is defined straightforwardly.

1.2.2 Some computations: hypergeometric Gaussian functions

In order to implement some comparison argument (see Section 4.6.3), we search for a function
which behaves like ~ ﬁ, B > 0, and which lies in H*(R"); in order to handle the presence of a
pole in the origin when 5 > N, we make the following choice, by considering, for any g > 0,

1
hg(z) := ——;
A e

notice that, when 8 = N + 2s, this function is related to the extremals of the fractional Sobolev
inequality [98,265] and to the solutions of the zero mass critical fractional Choquard equation
[253] (see also Proposition 1.3.1 below). Chosen hg in this way, we have [246, Table 1 page 168]
(see also [181, Sections 4 and 6])

N N
(=A)°hs(z) = Cp s 2F1 (2 + s, g +8 o —|x2) (1.2.15)

where N 5
281—‘(7 + S)F(§ + S)

L(5)0(3)

>0

C/ijys =2

and 2 F; denotes the Gauss hypergeometric function (see also [166, Corollary 2], observed that
hg(x) = o F1 (5, g, &, —|z[?)). Notice that we will be interested in

B € (0,N +2s].

The asymptotic behaviour at infinity of the hypergeometric function appearing in (1.2.15) can
be found in [7, pages 559-560] (see also [23, pages 78-79, 88] and [374, page 161]). Recall that the
Gamma function I'(z) is well defined whenever z € R\ (—N) and |I'(z)| — 400 as z approaches
—N (so that the reciprocal Gamma function is well defined on —N and equals zero). Moreover,
recall the symmetry property oF}(a,b,c;xz) = 2F1(b, a,c;x) and the fact that o F1(0,b,¢c;x) = 1
and oFy(—1,b,¢c;2) =1 — %z.
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Lemma 1.2.12 ([7]). Consider 2F1(a,b,c;-). For the sake of simplicity, assume a priori that
a,b,c >0 and
a—ceRy\N,

a—beZ < a—beN,
b—ceN < b—ce{0,1};

in particular a — b and b — ¢ do not lie in Z at the same time. We have the following asymptotic
estimates as x — —o0.

e Ifa—b¢Z andb—c¢ N, then

Fe)'(b—a) 1 I'(c)l(a—0b) 1
I'(c—a)l'(b) (—x)*  I(c—b)l(a) (—z)*’

2Fy(a,b,c;x) ~

e Ifb=c (and a—b ¢ 7Z), then

2F1(a,b,b;x) =

(=)
e Ifb=c+1 (anda—b¢ 7Z), then

ro—1)ro-—a) x 1
T(b—a—DI() (1—2)* 1 (1 =gyt
b-1T(b-a) 1

T(b—a— DT(b) (—2)®

2F1(a,b,b—1;2) = —

. T

~

e Ifa=0b (andb—c¢ N), then

L(c) log(=2) G Tl log(—x)
I(a)l(c—a) (—z)*  (-2)* TL(@@)T(c-a) (-z)*’

2F1(CL, a, C; :I:) ~

Ifa—beN* (andb—c¢ N), then

L(e)l'(a—0b) 1 log(—x) Cs N F(e)l'(a—0b) 1
T(e—bT(a) (aP TP Cae T Ca)e ~ Te— b a) (o)

2F1(aa bv (& 33) ~

Here C;, i = 1,2,3, are some strictly positive constants.

Notice that a = % + s, b= g + s, ¢c= % satisfy the assumptions of the previous Lemma,

whenever s € (0,1) and 8 € (0, N + 2s]. Thus, exploiting the representation of (—A)*hg given
in (1.2.15) and the results on Gauss hypergeometric functions, we come up with the following
lemma.

Lemma 1.2.13. Let 3 € (0, N+2s|. Then (—A)*hg(x) is well defined for every x # 0. Moreover,
we have the following asymptotic behaviours:

o if € (N,N + 2s], then
s . 1
(—=A)’hg(z) ~ Clﬁ,N,57|x’N+2s as |x| — 400

_ per(Er(3-)

where C”ﬁ Nt W < 0. This in particular includes the case B = N —2s+ 2
b b § —8

(possible if s > 5 ), with CN_2s1aNs = 22+ o8 < 0. Notice moreover that CNio2sNs =

92s D)y 0 gs 5 — 1.

I'(=s)
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e if 8= N, then

s : log(|])
(—A) hN(.’IZ’) ~ C&’N’sm as |:13’ — 400

22s+1

where C],V,N,s = < 0.

r(F+s)
r($)r(=s)

e ifB€ (N —2s,N), then

1
(—A)’hg(x) ~ CBN5|$|B+28 as |x| — 400

,1
—

N[ o[
+
»
SN—
!
—~

where Cy ¢ = 2 (
o if =N —2s, then

(_A)ShN—Qs(x) = C],V—QS,N,shN-FQS(x) fO?" YOS RN \ {0}

, 1
~ Cfv—2s,N,sW as |z| — 400

r
where Cy_o g = 2281“( ) > 0.

o if € (0, N —2s), then

. 1
(—A)shﬁ(af) ~ C/ﬁ’N’SW as ’x’ — +00

N_B
where C' = QQSM > 0. This in particular includes the case f = N — 2k
N CITe

[ Mo
|z

with k=1,...,[5].

Remark 1.2.14. Notice that, for f € {N — 2s} U [N, N + 2s|, the asymptotic behaviour of
|(=A)*hg(x)| does not depend on B; on the other hand, the sign and the precise constant depend

on .

In the case € (0,N)\ {N — 2s}, we may use x ﬁ, whose fractional Laplacian has a

close (simple) representation:

.1 1
(81 7p) )= oo e

see [246, Table 1 and Theorem 3.1] (see also [173, Lemma 4.1], [366, Appendiz 1, page 798] and
[68, Lemma A.2]). In particular

(—A)*h(z) ~ ((-A)s’}w (@) as |z| — +oo.

On the other hand, if 5 = N — 2s, we obtain, far from the origin, (—A)Sﬁ =0 (recall that the

Riesz potential ‘N%QS = Iys is a fundamental solution, see Proposition 1.5.]); thus, in particular,
the two functions have different asymptotic behaviours. This is the same reason why, for hg, we
have a discontinuity on the behaviour at infinity around g = N — 2s.

Finally we highlight that, when 8 = N + 2s, we may use the function found in Lemma 1.2.30.
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1.2.3 Definitions of solutions: weak, viscosity, strong, classical

In the majority of the thesis we will work with the notion of weak solutions, by exploiting a
variational formulation. Anyway, sometimes we will need to exploit different formulations, in
particular strong, classical and viscosity formulations; that is why we recall them here for the
sake of clarity.

Definition 1.2.15 (Strong and classical solution). Let Q C RY and g: Q — R. We say that u
is a strong solution to
(=A)’u=g(x) inQ

if u and (—A)*u are almost everywhere defined (e.g. uw € H?*(Q)) and u satisfies the relation for
almost every x € Q.

We say instead that u is a classical solution if u and (—A)*u are continuous (e.g. u €
LP(RNYN C) (RN) for some p € [1,+00] and v > 2s) and the relation is satisfied pointwise

loc
everywhere on €.

Definition 1.2.16 (Weak solution). Let @ C RY and g : Q — R be measurable. We say that
u € H*(Q) is a weak subsolution [supersolution] of

(—A)u=g(z) inQ

/ (=A)*2u(=A)*2pdx < / g(z)pda (1.2.16)
RN RN

[ A Pu-ayPpin = [ glo)gda]
RN RN
is well defined (finite) and holds for each positive ¢ € X§(2). We say that u is a weak solution

if it is both a subsolution and a supersolution, i.e. if it satisfies the equality in (1.2.16) for every
¢ € X§(). Notice that, when Q = RN we have X§(RN) = H3(RYN).

Remark 1.2.17. By (1.2.6) and (1.2.2) we may interpret the left-hand side of (1.2.16) as
RN RN JRN ‘

T — y‘N—i—Qs
= [ leags

Moreover we see that the definition of weak solution is justified by the following integration by
parts rule

[ earu= [ lepan= [ o= [ a)Tu-a)

which holds whenever u € H?*(RYN) and v € H*(RYN). In particular, if both u,v € H*(RN) we
have (see also [201, Lemma 5.4])

/R (A= /R u(-ay

Remark 1.2.18. If ¢ € CZ(RY) and u € L®(RY), we can show the relation

A1 (u(z) —u(®) (p(@) = ¢(y) ,
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also by exploiting the pointwise definition of the fractional Laplacian. Indeed (assume for simplicity
s € (0,3) to avoid the technicality of the Principal Value) we have

u(@) (p(x) — ¢(y))
(/RN |z — y|N+2s dy) dx. (1.2.17)

First, we rewrite (1.2.17) by applying Fubini- Tonelli theorem, possible because

notice that we are actually using that o € W2L(RYN) (see Remark 1.2.9). Thus

AV o(e\de — u(@)(p(@) —¢(y)
[ o876 —cN,s/RN(/RN L d)dy.

Secondly, we rewrite (1.2.17) by simply renaming the variables, that is

(—u(y)) (p(x) — oy))
</]RN o — gV dac) dy.

By summing the two expressions obtained, we get the claim.

/R ula) (A p(a)dz = O, /

RN

< o0;

U(ﬂf)(@(fc)so(y))| - ||u||oo/ lo(x) — o(y)|
R

|x_y|N+28 9N |$_y|N+2s

| w@)=ayetad =y, [

RN

For the following definition, see e.g. [339, page 136] or [97, Definition 2.1].

Definition 1.2.19 (Viscosity solution). Let @ C RY and g: Q — R. We say that u € C(RY) is
a viscosity subsolution [supersolution] of

(=A)Yu=g(x) inQ
if, for any xo € Q, every U C Q open neighborhood of xq, and every ¢ € C%(U) such that
¢(z0) = u(x0), ¢ >ulp<u] inU

set
v = Xy + uxue

we have
(=A)*v(zo) < g(xzo)  [(=A)*v(z0) = g(x0)].

We say that w is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

We observe that, generally, the function v appearing in the definition of viscosity solution
might be discontinuous. More generally, this definition involves lower and upper semicontinuity
of u (see for instance [87, Definition 2.2]). Furthermore, one can easily check that every classical
solution is a viscosity solution, that the sum of two viscosity solutions is still a viscosity solution
(with source the sum of the sources), and that the notion of viscosity solution is conserved on
subdomains Q' C .

We refer to [328, Remark 2.11] and [339, Theorem 1] for some discussions on the relation
between classical, weak and viscosity solutions on bounded domains.

When dealing with equations with nonlinearities of the type h = h(z,u), h: @ x R — R, we
interpret the equation by saying that u is a classic/strong/weak/viscosity solution if u satisfies
the equation with nonlinearity g(x) := h(z,u(x)). The same interpretation will be given in the
case of nonlocal nonlinearities (see Section 1.3).
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Remark 1.2.20. In this preliminary Chapter, we will sometimes mention distributional solutions
of equations of the type (—A)*u = T, with T distribution on some Q. By this, we mean that
u € L} (RN) satisfies (1.2.1) and

/ueawszw>
Q

for every ¢ € C°(QQ). The extra condition required on w (differently form the usual definition of
distributional solution) is due to the fact that (—A)s/Qcp has generally not compact support; here
we use thus (1.2.3) to well define the integral.

1.2.4 A concave Chain rule

We already pointed out how the fractional Laplacian does not satisfy a proper Lebiniz formula.
The same conclusion is actually true looking at chain rule formulas. A first result is given by the
following lemma.

Lemma 1.2.21. Let Q CRY. Ifu € H*(Q) and h : R — R is a Lipschitz function with h(0) = 0,
then h(u) € H*(Q).

Proof. The proof is straightforward. Indeed

()220 /m mesLmﬁm—wwzmmmmm>

and

h y2
ey < O [ [ PO ZMOF 40y — 2 e, '

We look now to proper pointwise chain rules. What one can prove is that, whenever ¢ is
convex (and Lipschitz), then the following inequality holds (see [88, Theorem 1.1], [201, Theorem
19.1])

(=A)p(u) < ¢'(u)(-A)*u
in the weak sense. One may expect the inverse inequality when handling concave functions: and
this is actually what we need in the study of the asymptotic behaviour of ground state in doubly
nonlocal equations (see Section 4.6.6).

On the other hand, since we do not know if u? ¢ H*(RY) when v € H*(RY) and 0 € (0,1),
the weak formulation seems not to be the right choise; pointwise formulation seems not good as
well, since (—A)*u’ might be not well defined, even by assuming u regular. The idea is thus to
take advantage of a viscosity formulation.

We prove hence the following inequality in the case of concave (not globally Lipschitz) function,
in the framework of viscosity solutions. Notice that we do not require u to be in L2(RY).

Lemma 1.2.22 (Cérdoba-Cérdoba chain rule inequality). Let ¢ : I — R be a concave function,
I C R interval, such that o € C*(I). Let u: RN — I.

o Let Q C RN, and assume ¢ € Lip(u(f2)). Then
[o(w)] s ) < N[ oo (u(er)) (W] 1rs (02)-
In particular, if ¢ € Lip(I) and (—=A)%/?u € L*(RYN), then (—A)*/?p(u) € L*(RN) and
1(=2)"2o(u)l2 < 1¢'l| oo (1) [| (=) 2ulfo-
o If u is defined pointwise, then

(=) (p(u)(x) = ¢ (u(x))(=A)*u(z)
for every x € RY such that (—A)*(p(u))(x) and (—A)%u(x) are well defined.
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o Assume in addition ¢ invertible, increasing, with o~ € C? increasing. If u is a continuous
viscosity supersolution of
(=AYu>g in§

for some function g and Q C RN, then p(u) is a viscosity supersolution of
(—=A)*(p(w) > ¢'(u)g  in Q.

Proof. The first claim is a direct consequence of the Lipschitz continuity

lp(u(z)) — p(uly))? 2 / lu(z) — u(y)|®
dwdy < . B = DL dady.
/Q/Q |z — y|NH2s v< el @@ Jo Jq |z — y|N+2s Y

Secondly, by the concavity of ¢, for each ¢,r € I we have

p(t) —(r) = ¢'(t)(t — )

thus

(A (pw)) = Oy, [ AU ey,

Ry |w—yNt

PN Z 10D by = ) (D) ).

> CN,S
RN

We move to the third part. Let zop € U C 2 and ¢ € C?(U) be such that ¢(zg) = ¢(u(zo))
and ¢ < p(u) in U, and set v := ¢xu + ¢(u)xve. Let now

1

=@ log, wi=¢ lov=Yxu +uxue

By the assumptions on ¢! we have 1 € C?(U), 1 (xo) = u(z) and 1 < u in U. Thus
(=A) w(wo) = g(x0).

On the other hand, w = ¢ € C? on U and p(w) = ¢ € C? on U, hence both the functions are
regular enough in a neighborhood of x( to state that both the fractional Laplacians are well
defined (see Proposition 1.2.1). Thus we may apply the previous point and obtain

(=A)*(p(w))(z0) = @' (w(w0))(=A) w(o).

Since w(zg) = u(xp), p(w) = v and ¢’ is positive, we obtain, by joining the two previous
inequalities
(=A)*v(z0) = ¢'(u(x0))g(x0)

which is the claim. This concludes the proof. |

As a corollary, we obtain the following result.

Corollary 1.2.23. Let 0 € (0,1), and let u € C(RN) be strictly positive. We have the following
results.

o We have 9
0
[u” ] s () < W[U]HS(Q)
In particular, if u € Hi (RY), then v’ € Hp (RN).! As a consequence, if u € H*(RY),
then g
[0 v(0) < g I(=2) ule.

Indeed, if u € L. (RY), then v’ € LE.(RY) can be deduced by the inverse Holder inequality: Jou® =

loc

Jou* 1> [, uv Jo 1777 = Jou?? -m(Q), if p:= % > 1 and Q is bounded (with positive measure).
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o If (—A)°u is well defined pointwise, then
b
(u(x))'~*

for every x € RN such that (—A)*u®(x) is well defined.

(—A)°u’(z) > (—=A)%u(z)

o Ifu is a viscosity supersolution of
(=AYu>g inQ

for some function g and @ C RN, then u? is a viscosity supersolution of

(—A)*uf > 4

1.2.5 Regularity: tail functions and De Giorgi classes

We gain now some L*°-bound for sign-changing solutions, in a fractional, possibly critical,
framework. We adapt some arguments from the papers [115,197]. This result will be then
implemented in the study of sign-changing solutions for doubly nonlocal equations (Theorem
4.4.1), and in the study of uniform bounds for semiclassical critical problems (Proposition 5.5.5).
Notice that we avoid the use of the Caffarelli-Silvestre s-harmonic extension, and this allows to
extend our proof to different frameworks where this tool is not available.

Proposition 1.2.24. Let u € H*(RY) be a weak subsolution of
(—A)u < g(z,u) inRY

with
lg(z, )| < C(t] + [t|>71)  forallz e RN, teR
for some uniform C > 0. Then u € L= (RY).

Proof. We already know that « € L2(R™) N L2 (RY). Let us introduce v > 1, to be fixed, and
an arbitrary T' > 0, and set a vy-linear (positive) truncation at T

0 if t <0,
h(t) = hyq(t) = { if t € (0,7,
AT — (y = )T if ¢ > T.

We have that h € C1(R) N W1H*°(R), it is positive (increasing and convex), zero on the negative
halfline, and by direct computations it satisfies the following properties

0<h(t) <], teR, (1.2.18)
0 < th'(t) < vh(t), teR, (1.2.19)
i =17 > 0. 2.
TEIEOO hr,(t) =17, t>0 (1.2.20)

The goal is to estimate ||2(u)[|2: and give thus a bound of u in L%7(RY), where 27y > 2. In
order to handle the weak formulation of the notion of solution we introduce

h(t) := /Ot(h’(r))2 dr, teR

and observe that h € C L(R) N WL>(R) is positive, increasing, convex and zero on the negative
halfline. In particular
R (t)= (K (t)? teR (1.2.21)
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by definition and } ) )
h(t) —h(r) <KW (@#t)(t—7), t,reR (1.2.22)

by convexity, and we gain also the Lipschitz continuity

h(t) = h(r)| < ||I||c|t — 7], t 7 ER.
Combining the definition of &, (1.2.19) and (1.2.18) we obtain
0 < h(t) <|[W||lt]”, teR. (1.2.23)
Finally, by a direct application of Jensen inequality we gain
\h(t) — h(r)[2 < (B(t) — h(r))(t—7), t,rER. (1.2.24)

We observe that h(u) € H*(RN) since h is Lipschitz continuous and A(0) = 0 (see Lemma 1.2.21);
moreover, since 2% is the best summability exponent, if we assume
*

2
l<y<™ (1.2.25)

by (1.2.23) we obtain also )
h(u) < I [loslul” € LXRY).

We use now the embedding (1.2.7) and combine (1.2.5), (1.2.24) and (1.2.6) to obtain

()13, < S™HI(=2)*h(w)]3

/ e h(u(x)) — h(u 2
— (C'(N,s)) '8! RM' ( Tx)z y|N(+2gy))| dzdy

(A(u(z)) = h(u(y))) (u(z) — u(y))

R2N |z — y|N+2s

=S [ (=A)2u(=A)*"?h(u) d.
RN

< (C'(N,s)) '8! da dy

Since h(u) € H*(RV) we can choose it as a test function in the equation and gain
I, <57 [ gl i) de
By the assumptions on g and the positivity of h(u) we get
I, <57 [ law i) de <057 [l + P )b da.
Since h(u) and h(u) are zero when u is negative, we obtain
Il < 057 [ e+ i) de

Now we use (1.2.22) (with r = 0), (1.2.21), and (1.2.19)

(sl < €87 [ s+ sy do

< os7! /RN (us + ui_:fl)u_,_(h/(u_s_))z dx < ~*CS™! /RN (1+ ui;72)(h(u+))2 dx

< 2057 [ (h(us))?de+2CS / 2 () de (1.2.26)
RN RN
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Let now R > 0 to be fixed; splitting the second piece of the right-hand side of (1.2.26) and by
using the Hoélder inequality we gain

252 2:—2 252
/ ui " (h(uy))? do —/ uy’ (h(u+))2dx+/ uy " (h(ug))? d
RN u<R u>R

*

. . 57
<R 2B+ ([ adar) T pnl:
u>

Since u € L% (RY), we can find a sufficiently large R = R(y, mg,S™') such that

*

25
o 2% 1 1
sd < -
(/M“ ”“"> 272051

Thus, plugging this information into (1.2.26), and absorbing the second piece on the right-hand
side into the left-hand side, we obtain by (1.2.18)

Ih(us)lB; < 292CSTHL+ B%72)|h(ug )|l < 20°C8 71+ R%72) us |-

Recalled that h = hr,, by (1.2.20) and Fatou’s Lemma we have

2
*
28

2
Hu+||§g,y = (/R lim inf hZ: T (u+)dac> "< (liminf hzT;iW(qu)dx)

N T—+o00 T—+oo JrN

<272CSTH 1+ RE7%)ug||3)

By our choice (1.2.25) of v we gain that u, € L?7(RY), which was the claim. By an iteration
argument, with

1, 1.,

70 - 257 Yi = 72377,'715 Yi — +OO,

T2 2
we obtain uy € L"(RY) for each r € [2,400). In order to achieve u, € L>®(R"™) we need to be
careful on the bound on the L"-norms.

Knowing that w4 lies in every Lebesgue space for r» < oo we can implement a more precise

iteration argument, where we drop the dependence of the constant on R. We exploit once more
(1.2.26). Applying again Fatou’s Lemma to (1.2.26) and using (1.2.18) we obtain

luy |3, <~*CS™! /RN w4 dg (1.2.27)

Focusing on the second term on the right-hand side, exploiting first the generalized Holder

inequality with
1 n 1 n I 1
N/s 2 2¢r 7

s

possible since ui_zfz € Lg(RN) because (2% — 2)% = N4iv25 > 2, and the generalized Young’s

inequality then, we get

2* 242 2% -2 2% -2
Lo e = [ de < s e

3.) = s 75 (sl + Sl 132,
2e s

2% -2 1 2
< s . v —
< flu ||g(28\|U+H2 HU+

Plugging this into (1.2.27), set a := ||u+Hi§4z\,i, choosing ¢ = Wlsfl and bringing the L2 ”-norm

on the left hand side, we gain

2 — — 2 2
lutllz?, < 29v2CS7H1+ 507y CS ™) usll3) < C'y* fluslla]
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for some 7-independent C’ > 0. Choosing 2v; := 2%v;_1 we have

_1
s ll2s < (C7) i lluy

2%%i—1
and thus
I s ()
g llozy; < TT (€)% g llzsne = €970 20 [y [lazy,
=0
; log (C’(%)M’Yal)
Zj:o 2(2§)j
2 ) 0
=€ ”u-&-H%’m

and finally, sending i — +o0o (recall that || - ||, = || - [ as p = +00),

*\ 47
e (3)"0)
Yoo

(%) o
s floo < e s

2570

where the constant is finite. Thus uy € L>®(RV).
To deal with u_ we consider

0
B(t) = ko (t) = hro(—1),  K(t) := / (K (r))? dr = h(—t)
t
and choose k(u) as test function. With the same passages as before we obtain
BB, < -7 [ gl )i do
S RN

and thus

I, <57 [ lgtaali) e < €57 [ (ul + P do

° RN RN

which implies
[k (—u-)

<05 [ (mul b = u B do
RN

and hence
Il < €87 [ e+ a7 b das
RN

we then proceed as before to gain u_ € L>(R"Y). This concludes the proof.

Once obtained that v € L>®(RY), we can improve the regularity. The following result can be
found in [352, Theorem 15] (see also [346, Propositions 2.8 and 2.9]); see Remark 1.1.2 for the

definition of A7 and As.
Proposition 1.2.25. Let s € (0,1) and u € L¥(RYN) be a strong solution of
(-A)u=g inRVN.
i) If g € L= (RYN), then

COYRNY for v < 2s if 2s € (0,1),
u € AL (RY), thus COY(RYN) fory <1 if2s =1,
CY=LRN) for v < 25 if 2s € (1,2).
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ii) If g € C¥7(RY) for some o € (0,1], then

COo 25 (RN if o +2s € (0,1),
Ay, thus C*Y(RY) fory <1 ifo+2s=1,
u € { CLot2s—L(RN) if o +2s € (1,2),
Ay, thus CYY(RY) fory <1 if o+ 2s =2,
C2ot25=2(RN) if o+ 2s € (2,3);

the previous relations holds also if we substitute global spaces with local spaces.
Notice that the conclusion in i) was partially contained in the embedding (1.2.13).

Remark 1.2.26. We see that reqularity theory of Proposition 1.2.25 extends to s > 1. Indeed,
by Remark 1.2.8, if u € H**(RN) N W2lloo(RN) then

() u=g — (=AM (a)u) = g

and all the reqularity results apply to (—A)[S]u. At this point it is sufficient to apply reqularity
theory for polyharmonic operators [381, Section 3.20]. See also [330, Theorem 1.2] and [5, Theorem
3.7].

We want now to investigate in a more detailed way the regularity of solutions. Set first

Tail(u; xg, R) :== (1 — s RQS/ wdm 1.2.28
(50, ) := ( ) RN\ B (x0) 12 — 0| VT2 ( )

the tail function of u € H*(RY), centered in 29 € RV with radius R > 0, introduced in [151,152].
We recall properties of the fractional De Giorgi class stated in [134], to which we refer for a
complete introduction on the topic; we focus only on the linear case.

By [134, Paragraph 6.1] we have the following definition.

Definition 1.2.27. Let A C RN be open, ¢ >0, H > 1, ko € R, p € (0,25/N], A > 0 and
Ry € (0,400]. We say that u belongs to the fractional De Giorgi class DGi2(A, ¢, H, ko, 11, \, Ro)

if and only if
(uly) —k)-
[(U - k)-‘r]ZBT(xO) + /Br(mo)(U(x) - k)+</BQRO(;p) ‘CL‘ :'_J y’NJrzs d )dl’

< 1?8((]%)\( +]|%]\|m)|supp((u—k;)+)QBR(JUO)}I—%—W_’_

R2(1—s)
+WH(U — k)4l 728y +

ey (0= D)o Tl (= R)im0.7) )

for any zg € A, 0 <r < R < min{Ry, d(xo,0A)} and k > ko.

We see now how this class of functions is related to the PDE setting. By a careful analysis of
the proof of [134, Proposition 8.5] we obtain the following result.

Theorem 1.2.28. Let N > 2 and let u € H*(RY) be a weak subsolution of

(—A)u < g(z,u), =eRY
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where g : RY x R — R satisfies, for a.e. v € RY and every t € R,

l9(x,t)] < di + dat|"
for some q € (2,2%). Then there exist « = a(N,s,q) > 0, C = C(N,s,q,d2) > 0 and
H = H(N,s,q,dy) > 1 such that, for each xo € RN and each Ry verifying

0 < Ro < C(N, s, q,dz) min {1’ ‘“”L%(gg’)q)} ’

it results that 7

u € DG*? (BRO(xO),dl,H,O, - o0
S

28, R())

As shown in [134, Proposition 6.1 and Theorem 8.2], the belonging to a De Giorgi class
implies useful Lf and C’loo’g estimates.

For other regularity results we refer to [22,79,84,190, 240, 328].

1.2.6 Existence theorems and comparison principles

We collect here some results regarding existence and comparison principles.

As a consequence of the Riesz representation theorem, we start by recalling the situation
for linear equations in RY [177, page 1241, Theorem 3.3 and Lemma 4.1] (see also [190, Lemma
C.1]).

Lemma 1.2.29 (Representation in RY). Consider the equation in the weak sense
(=A)Yu+ A u=g inRN
where A > 0 and g € L>(RN). Then u is given by
u=>Kasx*g

where Kas x is the Bessel Kernel (see Remark 1.2.6)

1
Kogn = F ! <> .
- A+ Jgf

Moreover
o Kas ) is non-negative, radially symmetric and decreasing,

. mgﬁ < Kasa(z) < mgﬁ for |z| > 1 and some Cy,Cs > 0, while |[K(x)| < W(\“Zi‘*_gs for
|x| <1 and some C3 > 0,

o Kosx € LYRY) for every g € [1,1+ N2—s2s)’

o Kosn solves (—A)°Kasx + AMCas x = 0o (in a distributional sense), where dg is the standard
Dirac delta.

We notice that the fundamental solution of (—A)%u = §y, instead, is given (up to constants)

by Iy, := F~! (lél%s) = W%QS, which lies in L (RY) for every ¢ < 325 but in no LP(RY).

This Riesz potential will be better studied in Section 1.3.

The Bessel kernel allows also to find suitable comparison function with no restriction on the
boundary; the result can be found in [111, Lemma A.2] (see also [177, Lemmas 4.2 and 4.3]).
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Lemma 1.2.30 (Comparison function). Let b > 0. Then there exists a strictly positive continuous
function Wy, € H*(RYN) such that, for some positive constants Cj, Cy', it verifies

b
(ZA)W, +5W, =0, =€ RV\ B,,

. . . 2 1/2s
pointwise, with ry 1= (5) , and

Cy cy
W < Wiy(z) < m, for |z > 2ry. (1.2.29)

The constants 4, Cy, C remain bounded by letting b vary in a compact set far from zero.

Proof. Let By/3 < ¢ < By, and define W := Ko * @, where Koy is the Bessel potential. Arguing
as in [177] (see also [79, Theorem 1.3]) we obtain

(=AW +W =¢p, zecRY

and o o
By scaling W := W (ry-) we reach the claim. |

We give now an existence result (see also [344, Corollary 1.15]).

Lemma 1.2.31 (Existence for weak solutions). Let @ C RN be of class C%' with bounded
boundary, X\ > 0, ¥ € H*(Q°), and g € L1(Q), for some q € []\?TN%,, |. Then there exists a
(unique) function v € H*(RN) such that

—APv+Iv=gyg in €,
v="1 on )°,

in the weak sense, which in particular means v € X§(Q) + . If moreover g € LL (RYN) for some

q > 5, then v € LS (RN). If instead g € Cl%’g(RN) for some o € (0,1], then v € CEF7(RN).
Remark 1.2.32. The result is still valid in a whatever Q¢ extension domain (see [153]).
Proof. By [153, Theorem 5.4] we know that there exists ¢» € H*(RY) such that TZ‘QC =1). The
problem is thus equivalent to

(—A)Yv+ =g in €,
v =1 on ¢

Consider u = v — ¢ and rewrite the weak formulation as

AV 2 AV o — _ AV G A 2,
L cartucayoen [ up= [ g-xie- [ -ayrae-art

It is easy to see that the left-hand side is a bilinear, continuous coercive map on X3(€2), while

pe i@ [ (oMo [ (~APPI-a)
RN RN
belongs to the dual space (X§)*(2). By Lax-Milgram theorem, we obtain a solution u € X§(2),
which implies that v := u + 1 is the desired function.
Finally, the regularity results are a consequence of De Giorgi-Nash-Moser estimates [240,
Proposition 2.6] and Schauder estimates [240, Theorem 2.11]. 1

The following existence result can be found in [97, Lemma 2.2 and Remark 4.1] for bounded
domains, and in [349, Theorem A.1] for the homogeneous case ¥ = 0.
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Lemma 1.2.33 (Existence for viscosity solutions). Let Q@ C RN be a C%-domain, A > 0,
P € L®(Q)NC(N°), and g € L®(Q)NC(Q). Then there exists a function v € C(RN)N L (RN)
such that
—Av+Iv=g in Q,
v="1 on F,

in the viscosity sense. If g € C () for some o € (0,1), then v € C} (Q), for some v > 2s is a
pointwise solution. If 1) = 0, we further have v € C*(RN) N C} (), for some v > max{1,2s}
and g aayy € C%0(Q) for some 6 € (0,1).

Proof. First notice that, by extension, we may assume g € L>®(RY) N C(RY). Since Q is a
C?%-domain, g € C(RY), v € C(Q2°) N L>®(02°), by [31, Theorem 4] with b = ¢ = 0, we obtain
the existence of a (unique) viscosity solution v € C(RY), satisfying the boundary condition
pointwise (see also [87, page 615]). Since the cited theorem is a corollary of [31, Theorem 1],
with F(z,u,p, X,1) = F(z,u,l) =1+ M — g(z), | = Z[u] = (—A)%u, dug(z) = JTZM, one can
notice, looking carefully at the proof, that the found solution is actually bounded (see also
[339, Corollary 4]). Thus v is a bounded viscosity solution.

By [322, Theorem 2.6], since (—A)*v = —Av+g € L®(Q) with v € C(Q), we have v € CJL (RY)
for some ; > 0. Since ¢ € L*°(Q°) and g — \v € C;Zlcin{a"”}(ﬁ), by [322, Theorem 2.5] we have
that v € C} (2) for some v > 2s; thus (—A)%v is pointwise defined (actually Hélder continuous).

As observed in [322, Remark 2.3], we conclude that v is a pointwise solution. |

We write down now the following two maximum principles (for unbounded domains). See
[111, Lemma A.1] for the first (see also [339, Lemma 6] and [233]).

Lemma 1.2.34 (Maximum Principle (weak)). Let @ C RN, A > 0, and let u € H*(RY) be a
weak subsolution of
(=A)°u+ A <0 in Q.

Assume moreover that
u(z) <0 fora.e xeQF.

Then
u(z) <0 fora.e xRN, (1.2.30)

Proof. By the assumption we have ut = 0 on QF, thus vt € X§() is a suitable test function
(see Lemma 1.4.1) and we obtain, using v = u™ —u~ and u™u~ =0,

02 [ ICayPuPaeen [ e [ (AT (-8) Pt do
RN RN RN

() — (o
U ANS/2, 12 2 u” (x)u"(y) +u” (y)u"(z)
= APt Nt 0 [ W ey
> [|(=2) a5+ A3
which implies vt = 0 on RV, |

Remark 1.2.35. We point out that if u is assumed continuous, then (1.2.30) is actually pointwise.
Moreover, the constant X > 0 may be substituted by a more general V(z) > 0 which gives sense
to the integrals.

Lemma 1.2.36 (Maximum Principle (viscosity)). Let © C RY be open, A > 0, and let u be a
viscosity, continuous subsolution of

(A)Pu+ <0 in
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such that
lim wu(z) <0.

|| —+o00 -

Assume moreover that

u(z) <0 on Q°.

Then
u(z) <0 on RY. (1.2.31)

The result applies, in particular, to pointwise solutions.

Proof. We first observe that u € L%°(R"™) and set M := sup,cpy u(z). By contradiction, assume
M > 0. Let (z,,)n be a maximizing sequence, i.e. u(x,) — M as n — +o00; we can assume that
xn € Q. We observe that (z,), is bounded (up to a subsequence) since, if not, we would have
|| — +00 and thus lim, u(z,) < 0, which is an absurd. Thus z,, — x¢ € Q, and by continuity
u(zg) = M > 0; since u(z) < 0 on Q¢ D 9Q, we have zo € Q. In particular, xq is a point of
maximum for u.

We can thus choose a whatever U C € neighborhood of xy and set ¢ = u(zg) as contact
function in the definition of viscosity solution: indeed ¢ € C?(U), ¢(x¢) = u(xo) and ¢ > u in U.
Hence, set v := ¢xv + uxye we have

s u(zo) — v(y)
0> (=A)* (o) + Mv(wg) = Cng /RN Wdy + Au(zo)
M-uly)
= s dy + A
Cn, /Uc |zg — y|N+28 - >0
which is a contradiction. This concludes the proof. |

1.3 The Riesz potential

Let o € (0, N). We recall here some results on the Riesz kernel [304, Appendix]
C’N a

Iy(z) := ‘m’N’_a (1.3.32)
where N
(%32
CNa = 2 >0
N garN/2p(9)

is a normalization constant. For motivations and a physical introduction we refer to Sections 3.1
and 4.1.
We are interested in studying the behaviour of the convolution

Ioxg

for some g. We will use the following notation, whenever well defined for some g and h:

Duolg, h ::/ (1o * / /
(9, h) RN 9)h RN JRN |93—y\N ad

We start observing that the operator enjoys a trivial but useful scaling property
Da(g(6-), h(6-)) = 0]+ Dy(g, h).

for any 6 € R.
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Well posedness

The following theorem ensures the well posedness of the Riesz potential: see [266, Theorem 4.3],
[248, pages 61-62] and [297, Section 4.2] for a proof.

Proposition 1.3.1 (Hardy-Littlewood-Sobolev inequality). Let a € (0, N).

e Let g be a measurable function. Then I, * g is finite almost everywhere if and only if

/RN fERFEe Jlg’gj))]‘\,_a < . (1.3.33)

In particular, 1, * g is well defined if g € L} _(RV) N L"(B%) for some R > 0 and some

loc

r € [1, ). Moreover, if (1.3.33) does not hold, then I, * |g| = oo.
N _
o Letr e (1,5). Then, for some C = C(N,a,r) >0 we have
[ Lo * g”% < Cllgll-
for all g € L™(RY), thus the map
g€ L"(RY) s I, + g € Lo (RY)
is continuous. In particular, since the operator is linear,
Nr
gn — g in L"(RN) = I, % g, — I, *g in L¥=ar (RV),

o Let r,t € (1,+00) be such that 1 4+ 1 = % Then there exists a constant C =
C(N,a,rt) >0 such that
Palg, )| < Cllgllr[P]l:

for all g € L"(RY) and h € L*(RY). Thus the bilinear map
(9:h) € L"(RY) x LY(R™) == Da(g, h) € R

is continuous. Ifr =t = %7 then equality is reached in the previous inequality if and

only if g = h (up to multiplicative constants), and g(x) = (1+ |x|2)_% (up to translations
and rescaling).

In the limiting case g € L%(RN) (i.e. 35 — 00) we have that I, * g is a BMO function (see

[304, Appendiz A.2] and references therein). Anyway we have

N
[eY

e Ifge Lo 5(RM)N L%JFE(RN) for some & > 0, then I, * g € Co(RYN) c L®(RY).

Proof. We show only the last claim, i.e. [275, Lemma 4.5(ii)]; we argue as in [115, Proposition
4.5] (see also Proposition 4.4.6 and Remark 1.5.8). Recall theat, by Young’s Theorem, if two
functions belong to two Lebesgue spaces with conjugate (finite) indexes, then their convolution
belong to Co(RM). We first split

Ion*xg= (IOéXB1) * g+ (IOLXBf) *9g

where
Ioxp, € L"(RY),  forr €[1, 1),

IaXBf e L™ (RN), for r9 € (NL_OC,OO].

We need that g € L% (RY) N L%2(RYN) for some ¢; satisfying
1 1

—+—=1, i=1,2
qi i
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that is
q1

N ® N ]
1
Q1—1€[7N—a>’ CJ2—1E(N—OZ7OO

or equivalently gs < g < q1. Thus we have the claim. |

We emphasize the similarity of condition (1.3.33) and condition (1.2.1), when formally
o= —2s.

Positivity

We observe the following: if g € S [351, Lemma 5.1.2] or if a € (0, %) and g € L~ (RM)
[266, Corollary 5.10] then we have

—_— —_ A2
Da(g,9) =/ (Io * g)gdx = / Lo * ggd§ = / Io|gl*de = / 7‘9‘0}!5 >0
RN RN RN RN ‘§|

(see also [275, Lemma 4.5(v)], [75, Lemma 2.7], [248, Section 1.1], [297, Theorem 2.8 in Chapter
2], [334, Sections 2.1.1 and 2.3.3] and [266, Theorem 5.9]). This shows that

g+~ Dalg,9)

is a positive functional (i.e. its sign does not depend on the sign of g). A more general result can
be adapted from a = 2 [266, Theorem 9.8] to a generic o € (0, N) as follows.

Proposition 1.3.2 ([266]). Let g : RY — R measurable be such that

Da(lgl, g]) < o0

Then
Du(g,9) >0

and the above quantity is zero if and only if g = 0 almost everywhere. In particular the following
representation holds

—+o00
Da(9,9) =/ tQN“H/ |h(t) * g|*dzdt >0
0 RN

for a whatever nonnegative, radially symmetric h € C°(RY) normalized in such a way that
SN (o h)(t)dt = C g

Decay

We investigate now the decay of I, * g: indeed, if g € L} (RY), g > 0 and g > 0 on some ball,

then 1
(In % g)(x) > Ia(233)/B ( )g 2 1o () ~ e for |z] >0
2|z (T

which shows a polynomial bound from below on the Riesz potential, whatever the decay of g is
(even with compact support). Moreover, if g > 0 has at least a polynomial decay

1
9(z) < 2 as |z| — +oo

with 6§ > «, then the following estimates from above hold [301, Lemma A.1] (see also [204, Lemma
2.1] and [211, Lemma 4.6])

1
e if 0 € (o, N),
1
(o 9)(0) 5§ A 6= N, (1.3.3)
1
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In particular, if # > N the decay of I, * g is exactly the same of I, as stated in the following
result.

Lemma 1.3.3 ([300]). Let g € L=(RY) be continuous and 6 > N be such that

sup lg(@)lzf’ < +oo.
TrERN

Then there exists C = C'(N,a) > 0 such that

CHQHO@G < 1 1 >
dy| < ’ +
g(y) y‘ - |33|N «a 1 ’$| 1 |17|9 N

(I * )(2) — I (z) /

RN
for each x € RN | z # 0, where we recall that ||g|leos = |lg(-)(1 + | |?)]l0o-

Proof. See [300, Lemma 6.2]. See also [190, Lemma C.3]. 1

The rigidity of the previous result in particular highlights that it is not possible to implement
a bootstrap-type argument in order to show fine results on the decay of a solutions. See Section
4.6.6.

1.3.1 The Riesz potential as the inverse of the fractional Laplacian
Since roughly

(8120 = 7 (1 Ta(0) = 7 (€ sy ) = 70 = o

then the Riesz kernel can be seen as the fundamental (distributional) solution for the fractional
Laplacian [4, Theorem 5.10] (see also [201, Theorem 8.4] and [75, Theorem 2.3] for the case
a€(0,2))

(=A%, =8, in RV, (1.3.35)

thus the Riesz potential generates the solutions of fractional equations in RY, that is
p=Iyxg <~ (—A)a/qu:g in RV,

Therefore we may roughly say that ([351, Section 5.1], [201, equation (2.7)], [346, equation (2.3)]
and [9, equation (1.2.7)])
Ipx = (=A)~/2,

More precisely
Iy % (—A)20) = v = (=A)2(I, xv)  for every v € C°(RN);

indeed, when the fractional Laplacian is defined through hypersingular integrals, the first equality
can be found in [297, proof of Theorem 2.9 in Chapter 2 and Section 4.5] for Schwartz functions,
while the second equality for LP functions in [334, Theorems 3.22 and 3.24]: anyway the
hypersingular definition coincides with the Fourier transform one at least on C2° functions (see
[334, Lemma 3.1] and [2, Theorem 1.8]). See also [248, equation (1.1.12")]. For the case o € (0,2)
see also [75, Theorem 2.8 and Corollary 2.9] and [352, Theorem 6], while for o = 2 see also
[275, Lemma 4.5(iii)].
Let us state this relation in a more general framework.

Proposition 1.3.4. Let a € (0,N) (i.e., set s := 5, we ask N > 2s).
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i) Assume g € LP(RY) for some p € [1, %) Then
(~A)% (I, xg) =g inRN

in the strong sense; notice, in particular, that the fractional Laplacian of ¢ = I, * g is well
defined pointwise (i.e., finite) almost everywhere. Moreover, if x is a Lebesque point for g
(e.g., g is continuous at x), then the previous relation holds at x.
ii) If g € LP(RN) N X for some p € [1, %) and some function space X, then (—A)*(Iy * g) €
N
LP(RN) N X; in particular if g € LP(RN) N LN=an (RY), then

Iy*xge€ Wa’NiVap (RN).

iii) Let g € LP(RN) for some p € [1, %) Then ¢ = I, x g is the only (distributional) solution
to
()¢ =g inRY
Np
belonging to LN-op (RN),

i) Let ¢ € W e (RN) for some p € [1, %), assume moreover that (—A)*/2¢ € LP(RN).
Then
I+ (=A)%¢) = ¢ in RN

in the strong sense.

Proof. Point i) is stated in [245, page 22, Definition 2.5 and Proposition 7.1] (see also [4,
Corollary 5.16] for compactly supported g € L'(R") and [266, Corollary 5.10] for a € (0, %) and

gE L%(RN)); see instead [334, Theorems 3.22 and 3.24], and [297, Theorem 5.1 and Remark
5.1 in Chapter 4] for a hypersingular approach. Point i) is a direct consequence.

To show 4ii), by linearity it is sufficient to prove the statement for g = 0; this can be done as
in [100, Theorems 1.3 and Theorem 3.1]. See also [172, Corollary 1.4], [175, Corollary 1.3] and
[159, Theorem 1.5] for a € (0,2), [4, Theorem 5.17] for o ¢ 2N and [225] for a € 2N.

We give some details only on iv) (see also [98]). Indeed, consider

(fA)a/ng =0 in RY;

N
by #ii) we know that the only solution ¢ € W~ ~op (RY) is the null function. Thus the kernel
of the linear operator

(—A)o/2 W Tas (RV) = L¥ o (RV)
is null, and hence the operator injective. In particular, considered the homogeneous space
WeP(RY) = {u measurable | (—A)*?y € LP(RN)}
we have that
(—A)/2 . Jror(RV) A W n=as (RN) — LP(RN) 0 L¥=a7 (RY)
is injective, and thus admits a left inverse. On the other hand, by ii) we have

Np

Np .
Ly : IP(RY) N L¥=05 (RN) — WP(RN) 0 W N=er (RY)

and moreover, by 4), it is a right inverse for (—A)®/2. Therefore the left and right inverse must
coincide, which means that I* is a right inverse for (—A)®/2. This concludes the proof. 1

Remark 1.3.5. By the previous proof, we see that, if p € [1, %), then
Ix = (—A)_O‘/Q.

. N N
when looked on the spaces WP(RN) N W N =ap (RY) and LP(RY) N Lop (RM).
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Regularity

As already seen by point i) of Proposition 1.3.4, the Riesz potential has a regularizing effect.
We give more details in the following result.

Proposition 1.3.6. Let a € (0,N) and p € [1, ), and let g € LP(RY).
i) Assume g € LY(RYN) for some q € (£, 00) with o — % €(0,1). Then I, *g € C’a_%(RN).

ii) Assume a € (0,2) and g € L®(RY), and we assume a priori that I, x g € L¥(RN). Then

COYRNY fory < a if a € (0,1),
In % g € A (RY), thus COY(RY) for~y <1 if a =1,
CYYRYY for v < a if o € (0,2).

iii) Assume g € C%°(RN) N L®(RYN) for some o € (0,1], and g > 0. Then I, * g € CO'(RYN)
for each v < (1 — &p)o?
iv) Assume o € (0,1) and g € CO7(RN) for some o € (0,1) such that o+« € (0,1). Then

I, * g € Lip(c + «).
In particular, if we assume a priori also I, x g € L¥(RN), then I, x g € CT(RY).

v) Assume a € (0,2) and g € C¥7(RYN) for some o € (0,1], and we assume a priori that
I, xg € L®(RN). Then

CcOote(RN) if o +a€(0,1),
Ay, thus C*Y(RY) fory <1 ifo+a=1,
Iy % g € { CHoroI(RY) ifo+ac(1,2),
Ay, thus CYY(RY) fory <1 ifo+a=2,
C?ote=2(RN) ifo+a€(2,3);

the previous relations holds also if we substitute global Holder spaces with local spaces.

Proof. Point i) can be found in [297, Theorem 2.2 in Section 4.2] (see also [164, Theorem 2] and
[328, Theorem 1.6]); point iv) can be found in [164, Theorem 1] and Remark 1.1.1. Points #7)
and v) are consequences of Proposition 1.2.25 and Proposition 1.3.4.

We are left to prove iii). Indeed, let r:=2 > N]_Vap > 1. We can find thus 6 € (1, &) such

that (1 — 1)0 > p. We thus have, for z,y,z € RY, exploiting [a" — b"| < |a — b|[a" "1 — "1

9(x —2) — gy — 2)| S (g(z — 2))7 = (9ly — )7 |l(g(x — 2)) T — (g(y — 2)) "+ |
Slgla—2) = gly — 2)| 7 |(glz — 2) T — (g(y —2)) 7 |

r—1

Sle—ylF (9@ —2)F — (9ly —2)7 |

as a consequence

|(In % g)(z) — (In * 9)(y)| Slo—y|” /RN |(g(x — Z))T|y|];(£(y — Z))T‘dz
ol 9(z—2)| 7 + |g(z — 2)|' i
sl (/Blan Jy[ N dz+

Actually, if in add1t1on fRN g? < oo for some ¢ € (0,1), then we can take v < (1 — $r¢)o. In particular, if
then v <

q:NJr’ N+a :
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r—1

r—1
. ot =2 +lgla =27 )
B¢(0) lyl

— y g oo —a g r—1 o)f’

Limiting cases
We wonder what happens when a@ — 0 or a — N. In the first case, the Riesz potential collapses
into a local operator (as one may expect from the representation I, * g = F~1(|£]7%3)), that is

Loxg X Soxg=g; (1.3.36)

in the second case, as one may imagine looking at the Poisson equation (1.3.35) with o = N (for
example, in the planar case N = 2 with the classical Laplacian), the Riesz kernel converges (up
to constants) to a logarithm kernel

a— N~

Inxg™ = log (ﬁ) *g (1.3.37)

whenever computed on a function with zero mean fRN g = 0. See [248, pages 46 and 50| for
precise statements.

Definitions of solutions

The definitions of weak and viscosity solutions apply, mutatis mutandis, to nonlocal equations of
the type
(—A)Su A+ pu = (I * F(u))f(u) on RN (1.3.38)

where we ask u to satisfy the equation in the classic/strong/weak /viscosity sense with nonlinearity
g(x) := (IoxF(u))(x) f(u(x)). When dealing with weak solution, we need the term to be summable
(see Remark 1.5.7); while, when dealing with classical and viscosity solutions, we need I, * F'(u)
to be well defined pointwise (see Remark 1.5.8).

We notice that, under the assumptions of invertibility of the fractional Poisson equation (see
Proposition 1.3.4), equation (1.3.38) can be rewritten as a fractional Schrodinger-Newton system

{(—A)Su +pu=¢f(u) in RN,

(—A)*2¢ = F(u) inRN. (1.3.39)

1.4 Some manipulations: absolute value and polarization

If one considers a function u € H'(R") and its absolute value, it is easy to see that
Viul] = [Vl

Actually, the equality is not the case of the fractional Laplacian, generally. We show thus how
the fractional Laplacian, and the Riesz potential, behave with respect to the absolute value.

Lemma 1.4.1. Let s € (0,1) and o € (0, N).
o Letuc H(RN). Then |u| € H*(RY) and
I(=2)Julll2 < 1(=2)"2ull2.

As a consequence, if u = uy — u_, then uy = ‘ul% € H5(RY).



34 1. Some facts about nonlocalities

o Let F: R — R continuous and u : RN — R measurable be such that Do (F(|u]), F(Ju])) <
00.
If F is even, then
Da(F(Jul), F(Ju])) = Da(F(u), F(u);

if F' is odd and has constant sign on (0,400), then
Da(F(Ju]), F(Ju])) = Da(F(u), F(u)).

Proof. By (1.2.5) we have

2
CANVS/21 112 — (Ju(@)] — |u(y)])
) 2l = O || i dody

o ul®(@) + |ul*(y) = 2|ul(2)]ul(y)
N,s
" JR2N |z — y|N+2s

u?(z) + u?(y) — 2u(z)u(y)
/R?N |z — y|N+2s dxdy

dxdy

(u(x) - u(y))’
= A ) = |l(=A)/2)|2
CN,S /[%21\7 ‘.’E — y\N“S d.fdy ”( ) u”27

thus the first claim. Focus on the second claim: if F' is odd and with constant sign on (0, +00),
then, set for brevity A* := {£u > 0},

Do (EF(lul), F(|ul))
= / Io(x = y)F(u(x))F(u(y)) —/ Io(x = y)F(u(x))F(u(y)) -
At xAt A xAT

—/ To(x —y) F(u(z))F(u(y)) + / To(x —y) F(u(z))F(u(y))
At xA—

A XA~

> / Io(z — y)F(u(x))F(u(y)) + / Io(z — y)F(u(z))F(u(y)) +
AtxAt+ A-x AT
t R F@@FE)+ [ e ) @) ()
At xA— A-XA—
= Da(F(u), F(u)),
which concludes the proof, observing that equality holds if F' is instead even. |

Remark 1.4.2. We highlight that, in Sobolev spaces, the absolute value conserves the weak
convergences. Indeed, assume uj, — u in H*(RYN). Since uy is bounded and uglll s vy <
|kl s vy we have that lug| is bounded too. Therefore, [ug| — v in H*(RN) up to a subsequence.
As a consequence, up to a subsequence, ur — u and |ug| — v almost everywhere, which means
that |u| = v almost everywhere. This means that |uy| — |u| in H*(RN).

Notice that, in general, for weak convergences in LP-spaces the implication is not true
[389, Section 5].

We turn now to the study of symmetries. We exploit the tool of the polarization, useful in
the presence of the Riesz potential. Let

H := {H c R closed half-space, 0 € H}.

For any H € H let o be the reflection with respect to 0H. The polarization (or two-points
symmetrization) of a function u : RY — R is defined as

u (z) = {maX{“(ﬂﬂ)aU(UH(x))} if v € H,
min{u(x),u(aH(a:))} ifx¢ H.
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For example, if u = yq, with Q C RY crossing 0H, then

XQUo Q(x) ifl‘EH,
(x2)(z) = { s ) .
Xonog@)(®) ifr ¢ H,

which roughly means that u brings mass from H¢ to H. One can see [77], [380, Section 8.3]
and [364] and references therein for an introduction on the topic and some relations with the
symmetric decreasing rearrangement.
Clearly we have
=4 < w>uooy onH,

uHEuoaH <— u<wuooy onH

which means, roughly, that there is more mass of v on H than on H¢. We expect that, if u
coincide with u# for all the hyperplanes, then some symmetry must hold. This is actually stated
in the following result [300, Lemma 5.4] (see also [365, Proposition 3.15] and [72, Lemma 6.3]).

Proposition 1.4.3. Let u € LP(RY), for some p € [1,+00), be nonnegative. Then u is radially

symmetric if and only if for every H € H it results that u™ = u, while u is radially symmetric

up to a translation if and only if for every H € H it results that u = u or u =wooy.

We state now a proposition which shows both how the Riesz potential behaves with respect
to polarization, and why this tool is particularly effective in this framework [300, Lemma 5.3].

Proposition 1.4.4. Let a« € (0,N) and H € H, and let g € L%(RN) be nonnegative. Then

Do(9™, g™) > Dalg, 9)

and equality holds if and only if v =u or v =wooy.

We investigate now how the fractional Laplacian behaves with respect to polarization, see
[47, equation (2.14)] and [72, Lemma 5.3] (see also [40, page 4818]).

Proposition 1.4.5. Let s € (0,1) and H € H, and let u € H¥(RY). Then uf € H*(RY) and
1(=A)*2u" |l < [[(=2)*"ull2.
When s = 1, the equality holds.
Finally, it is easy to verify that [380, Proposition 8.3.7], for every p € [1, +00),
Il llp = llully
and that, if F': R — R is nondecreasing, then
F(ufl) = (F(u)f. (1.4.40)

We refer to [259] for other interesting results about manipulations of nonlocal quantities.

1.5 Berestycki-Lions type assumptions: some convergences

The assumptions considered throughout the thesis are in the spirit of the ones proposed by
Berestycki and Lions [50,51], adapted then to the fractional framework in [79,95] and to the
Choquard-Hartree-Pekar framework by Moroz and Van Schaftingen [302]. These assumptions
cover different models which arise in applications, see Examples 1.5.1.

In the case of the unconstrained problem (frequency fixed, mass free), as shown in the
abovementioned papers (see also [138,237,300]), these assumptions are somehow almost optimal,
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in the sense that when the nonlinearity collapses to a power, the growth condition are optimal
for the existence of a (sufficiently regular) variational solution. See also [90,353,392] for the case
of combination of powers and [291] for some further generalizations to the so called infinity-mass
regime.

We highlight that no pointwise condition of Ambrosetti-Rabinowitz type, nor of monotonicity
type, is assumed, and this lack of additional assumptions obstructs some classical arguments
related both to compactness and geometry of the problems.

In the L?-constrained case (frequency free, mass prescribed), different qualitative phenomena
are related to sub and super L?-critical cases: for instance, the sub or super L?-criticality of the
exponent influences the boundedness of the functional on the L?-sphere, as well as the lifespan
and the stability of the solutions in some related equations (see [92]). In this thesis we restrict
our analysis to the L?-subcritical regime: we aim to extend our results to the L2-critical and
supercritical regime in the future.

In this Section, for the sake of clarity, we list all the assumptions on the nonlinearities that
will come into play in the following Chapters, both in the fractional framework and in the
Choquard framework; we let here s € (0,1] and o € (0, N). In particular, we show the role of
the subcriticality growth in the convergence of nonlinear functionals.

We highlight that the labeling here introduced will be changed throughout different Chapters,
in order to avoid cumbersome notations.

1.5.1 Local nonlinearities

For local nonlinearities of the type g(u), G(t) = fg’ g(T)dt, we introduce the following notations:

o Lower critical exponent: 2% := 2,

o Upper critical exponent: 2% := 2 + N‘gs = 7]\72}[25 € (2,+00),
o L2-critical exponent: 27 = 2 + 4NS = % €(2,2+ %),

and notice that
2=2% <27 < 2% < 4o0.
Moreover we introduce the following set of assumptions:
(h0) Continuity: g € C(R),
(h0’) Pohozaev regularity: s € (3,1) or g € CZ (R) for some o > 1 — 2s,
(h1) Nontriviality (frequency free): there exists to > 0 such that G(t9) > 0,
(h1’) Nontriviality (frequency p > 0 fized): there exists to = to(u) > 0 such that G(tg) > 5t2,

(h2) Supercriticality in 0: limy_,o @ =0,

(h2*) L2-subcriticality in 0: lim;_q ItGl%g = +o0,

(h3) Subcriticality at oo: limyy 4 Mggiﬂ)zt =0,

(h3") Subcriticality (strict) at oo: limyy 4 “ﬁ,(%)zt = 0 for some p € (2,2%),
(h3”) L2-subcriticality at co: limyy 400 ‘tlgg&%% =0,

(h3*) Criticality at co: limyy 4o % =a # 0; if a > 0 we also assume g(t) > at* ! 4 CtP~!
for some C' > 0 and p € (max{2¥ — 2s,2},2*) and every t > 0,
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(h4) Symmetry: g odd,
(h5) Negative-cut (for positivity): g =0 on (—oo, 0].
Notice that
(h2*) v (h3*) = (h1’) = (h1), (h3”") = (h3’) = (h3).

Example 1.5.1. These general assumptions include different models arising in applications. For
ezamples, they cover pure powers g(t) = |t|972t, with q € (2,2%) (or q € (2,2™)), and combined
powers like g(t) = [t|772t + [t|" "2t (cooperation models) and g(t) = [t|97%t — [t|""%t (competion
models). Other physical models can be found for example in asymptotically linear functions

t3

1
= Gh=5 (2 —tog(1+ %)),

g(t) 5

which arise in the saturation effect in nonlinear optics for photorefractive media [161, 226, 281,
327, 383], or also

g(t) = (1 - \/11+7t2> t, G(t)= % (t2 —2V1+¢2 +2)

of square-root type, which describes narrow-gap semiconductors [317,348].

Remark 1.5.2. We trivially observe that assigning a condition on g is generally stronger than
assigning a similar condition on G. Indeed, by De I’Hopital theorem,
g(t) G(t)

im =]lcR = lim =1,
|t|—+oo |E]172¢ |t|—+oo |t]

or more generally

t G(t G(t t
lim inf g(f)Z < liminf &) < lim sup el) < lim sup g(,)Q .
timtoo [E972¢ T ftltoo [T T jrjgoo [ET T jtmtoo [E]777

The viceversa is generally not true: consider for example G(t) := t4 ( g w — g) which verifies

G(t t
lim (t) =0, liminf& =-1 ;
t—+oo t4 t—4oo ta—1 t—+00 -1

notice that the limsup s finite (consider G(t) = $43 cos(t) for an infinite limsup). On the other
hand, if one assume a priori that lim_, 4 ng(%)zt exists, then the viceversa holds true.
Moreover, if 6 € (0,1), by choosing € € (0,1 —0) and setting G(t) = t1¢ cos(t) we see that

G(t t
O o0
|t —+oo |t|2 |t|—>+oo [t]2t0—1

7# 0;
in particular, since generally 2% — 27" € (0,400), we have

G@) _ gt
=0 == lim 2T =0.

|t|—>+o0 |t]25" [t|—+o00

Similar considerations can be done for t — 0 (consider G(t) = t4 (fol/t SinT(T) - g) or

G(t) =% cos (1)).

Remark 1.5.3. Generally, when v € H*(RYN), g(u) will not lie on a precise Lebesgue space, but
on a summation of spaces. To handle these quantities we remark that the following properties
are equivalent [27, Proposition 2.3/, for any p,q € (1, +00):
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« g€ LP(RY) + LI(RY),
o |gl € LP(RY) + LI(RY),
e |g| < h for some h € LP(RYN) + LY(RY).
Remark 1.5.4. We write here in which spaces lie the considered quantities. Let u € HS(RN) C

L2RN) N L% (RN). By assuming

t t
lim sup ()] < o0, limsup |g(22| < 00 (1.5.41)
t—o |t lt|—sto0 |t

(for instance given by (h2) and (h3)) we have (see Remark 1.5.3)
g(u) € LARY) N L5 (RY) 4 [2N7% A LNTs (RY)
C L2®RY) + L5 (RY),
G(u) € L'RN) 0 L% (RY) + 1277 (RY) n L' (RY)
c L'(RM).
If o € H*(RYN) c L2(RN) N L% (RYN) is a test function, we notice that the found summability is
enough to have [pn g(u)p dx well defined.

We state now the convergence properties of the nonlinear functionals, in the case of a
subcritical growth [95] (see also [298, Theorem 2 and Corollary 2]).

Proposition 1.5.5. Assume (h0) and (1.5.41).
o Let up, — u in H¥(RN). Then for any ¢ € H*(RY) we have

/RN g(un)p — /RN g(u)p

o Assume in addition (h2) and (h3). Let u, — u in H3(RY). Then
[ 16t =Gl 0. [ lgtun)un — gyl 0
RN RN

as well as [ |g(un)v — g(u)v| = 0 for each v € H*(RY).

o Assume in addition (h2) and (h3). Let u, — u in H*(QY) with Q C RY bounded. Then

as well as [pn \g(un)v —g(u)v| = 0 for each v € HS(Q)
Proof. We prove the first claim. Let ¢ € C°(RY), and let Q := supp(¢). Since u, — u in

L™ () for each r € [2,2%), we have (by the L"-dominated convergence theorem) g(u,) — g(u) in

L™(Q) for each r € [1, %) For a whatever of such r, let ¢ be its conjugate; since ¢ € LI(RY)

for such ¢, we have g(u,)¢ — g(u)y in L'(Q). Thus

/RN ungp—>/ u)p VgoGCOO(RN)

We want to extend the relation to H*(R™). Indeed, observe first that, for p € H*(RY),

Lot 5 [ Gl + o) o
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N+2s
N—-2s

< unll2li@llz + llunllzs™ llelle; < Cllgllars

uniform in n € N, since u,, are equibounded in L*(RY) N L% (RY). Let now ¢. € CZ(RY)
approximating a fixed ¢ in H*(RY). Then

/RN g(un)p — /RN g(u)p = /RN g(un)(p — @) + /RN (9(un) — g(u))pe + /N g(u) (e — ©);

R

thus the first and the third quantities are small in & (uniformly in n), and the second is small for
n = n(e) > 0. Hence we have the first claim.

The second and the third claims are a consequence of [95, Lemma 2.4]. We exhibit here an
easier proof of the second point, by assuming the stronger condition (h3’).

Recall that H2(RY) is compactly embedded in LP(R"), being p € (2,2}) introduced in (h3’).
Then by standard argument one has, up to a subsequence, that

e u, — u almost everywhere,
o u, — u strongly in LP(RN), with |uy,|, |u| < w € LP(RN).
By the assumption there exists an M such that

Cs|t|? if [t] < M,
S|tPif [t] > M.

(0] < {
Fixed a whatever R > 0, set

M, = {|un| < M} N Br(0),
we have

|9 (tn)tn| = 19(un)tn X1, + |9(tn)tn|XEn\ 1, < Csltin]*Xaz, + 0|unlPxpa\ar,
< Cs M, + 8lunl? < CsM*x 0 + Slwl? € LY(RY)

and similarly for G(uy,) and |g(uyn)v|. Moreover, since g is continuous, we have g(u,) — g(u)
almost everywhere. By dominated convergence theorem, we obtain the claim. |

1.5.2 Nonlocal nonlinearities
For nonlocal nonlinearities of the type (I, * F(u))f(u), F(t) = f(f f(7)dr, we introduce the
following notations:

o Lower critical exponent: 2% =1+ & = 8¥a € (1,2),

e Upper critical exponent: 2, =1+ ]‘i‘,t%‘z = J]VV:F;; € (1,400),

o L2-critical exponent: 217 =1+ 428 = Niadds ¢ (1,24 2),

and notice that
1< 2f <20, <2}, < 4o0;

if s = 1, if there is no ambiguity from the framework, we write 27, =27 ; =1+ ?V+_225 = % and
2m:2m:1+o¢7—&-2:N+o¢+2
a = “al N N

Remark 1.5.6. We observe that, defining the Riesz potential by x — %, as some authors do,

OIN-8 _ 2N—f+2s _ 2N-8
N O <T N~ < 7N

we have that the critical exponents become

We introduce the following set of assumptions:
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(HO) Continuity: f € C(R) (i.e. F € C1(R)),
(HO) Additional regularity: f € CF (R) (i.e. F € C2(R)) for some o € (0,1],
(H1) Nontriviality: F' # 0, i.e. there exists tg € R* such that F(tg) # 0,

FAQ]

o2

“l‘;i% < 00, or equivalently

(H2) Well posedness: limsup,_, < 00, limsupy 4o

L) < C([t|2 + [t)%) for some C < 0,

H2’ L2—’U)€ll pOS@dTLESS.' lim sup 7"’0(0' < 00, lim sup |frr(7,t)‘_ < 00, Or equivalently
— # —+00 1
t—=0 [t]25 -1 [¢] RS

[tf(t)| < C(]t]ﬁ + [t|*%%=) for some C < 0,

(H3) Supercriticality in 0: limy_,q % =0
t|“a

(H3’) (Super)linerarity in 0: limsup,_,q % < 00,

(H3*) L2-subcriticality in 0: limy_q LG +00,

IR

(H3*") Sublinearity in 0: lims_g % = 400,

(H4) Subcriticality at oo: limyy 4 ‘52% =0,

(H4’) L2-subcriticality at co: limyy 400 F) 0,

s
(H5) Symmetry: f is odd or even,
(H6) Sign: f has constant sign on (0,400).
Notice that
(H0’) = (HO), (H2") = (H2), (H3) = (H3), (H2) = (H4),

(H3*)V (H3%) = (H1), (H3)A (H4) = (H2),

while generally (H3*) and (H3*’) are not related (since 2 and 2 are not so).
When searching for multiple normalized solutions in Choquard equations, in addition to
(H3*) and (H5) we will ask the following technical assumption (see also Remark 3.1.3):

(H7) Almost monotonicity: if F' is odd, then F' has a constant sign in (0, dp] and

F(th)
sup F(t)‘ < 00

t€(0,50], h€[0,1]

for some dp > 0 (e.g., | F'| is non-decreasing in [0, d]).
Remark 1.5.7. We write here in which spaces lie the considered quantities. Let u € H*(RY) C
L2(RN)n L% (RY). By (H2) we have (see Remark 1.5.3)
f(u) € L (RN) 0 L% 5 (RY) 4 2o 0 Lavs (RY)
C L% (RY) + Lav= (RY),
F(u), f(u)u € LT+ (RV) 0 L7+ 85 (RY) + L2 N7a (RY) N L+ (RV)

c L¥+a (RN).
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Thus by the Hardy-Littlewood-Sobolev inequality we obtain
2N __ oN? 2N(N—2s) 2N
I, * F(u) € L¥a (RN) N L¥?~(at2)N-2sa (RN) 4 [ ¥-an+1sa (RY) 0 L¥=a (RY)
2N
C L= (R™).
Finally, by the Hélder inequality, we have
(In * F(u))F(u) € LYRY)

and

2N (N —2s)

(Io % F(u))f(u) € L2(RY) N L% % (RN) +L gy RN L& (RM)
C L2(RY) + L5 (RV);

we observe that (I, * F(u))f(u) does not lie in L2(RY), generally. On the other hand, if
o € H¥(RYN) c L2(RN) N L% (RY) is a test function, we notice that the found summability of
(Io* F(u)) f(u) is enough to have [pn (Io* F(u))f(u)p dx well defined, since f(u)p € L%(RN).
Remark 1.5.8. By Propsition 1.3.1 we see that I, x F(u) € Co(RN) (and thus it is well
defined pointwise) if F(u) lies in Lgfg(]RN) N LgJFE(RN) for some € > 0. In particular, if

u € LYRN) N L®(RY), it is sufficient to assume that F grows at most polynomially (and at
least superlinearly) in zero and at infinity. Moreover, assuming (HO) and (H2) on f, we need to

o N NHao
assume that u € Lo “ERN)N Lav-25T5(RN) for some € > 0; in particular, the convolution is
N 2N
pointwise well defined if u € L2(RN) N Lo ¥==2 (RV).

We state now the convergences for the nonlinear Choquard terms in the case of a subcritical
growth (see also [302, pages 6565 and 6577], [37, page 11] and [22, page 353]).

Proposition 1.5.9. Assume (HO) and (H2).
o Let u, — u in H¥(RN). Then for any ¢ € H*(RY) we have
/ (In * F(upn)) f(un)p — (Io * F(u)) f(u)p.
RN RN
o Assume in addition (H3) and (H4). Let u, — u in H(RN). Then
/ (I * F(un))F(un) = | (I F(u)) F(u)
RN RN

and

/ (I * F'(un)) f(un)un — (In * F(uw)) f(u)u.

RN RN

Proof. Let u, — u in H*(RY), then u, is bounded in L2(R™) N L% (RY). By Remark 1.5.7 we
have F'(uy) bounded in L+a (RY). Moreover we can assume u, — u in L}

loc(RN> for pe [L 2:)’
and thus F(u,) — F(u) in L (RY) for ¢ € [1, 22). This two information on F(u,) imply

' N+«
F(up) = F(u) in L%(RN )3.4 By some standard topological argument, the convergence holds

5We argue in this way. First, fix Q@ C RY bounded and ¢ € [1, N+a) so that L¥+a () C LYQ) for
every q € 1, N+a) Since F(un) is bounded in L~ ®RY) ¢ L~%a (©) and ]\?f > 1, it converges to some
ve LRt () € LY(Q); on the other hand F(u,) — F(u) € LY(RY) C L9(Q), thus by uniqueness v = F(u»). Let
now ¢ be in the dual L (R™), and consider ¢y, € C2°(RY) approximating . Thus

[ () = P@)e < 1P = F@l gl = oullaga + [ (Plun) = Pl)) s

supp(¢)

exploiting that F'(u,) is bounded, the first piece is small for k large (uniform in n), while the second is small (fixed
this k), for n large, by the previous argument with Q = supp(px).
4We can deduce the implication also in this way: since u, — u a.e. pointwise and F is continuous, then
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for the whole sequence. Moreover, by Proposition 1.3.1 we gain
2N
Iy % F(uy) = Iy * F(u) in L¥=a (RY).

Let now ¢ € C®(RY), and set Q := supp(y). Since u, — u in LP(Q) for each p € [2,2}), we

. . 2N
have (by the LP-dominated convergence theorem) f(un) — f(u) in LP(Q) for each p € [1, 75;)-

)
Let p € (ﬁf@é, Oir]\és) be whatever and let ¢ be such that % + % = ]\é]*\,a; since ¢ € LI(RY) for

such ¢, we have f(up)p — f(u)p in L%(Q) Thus

[ e Fa e = [ (s F@)ft)e Ve € C2(RY).

To extend the relation to ¢ € H*(RY) we argue as in Proposition 1.5.5, after having observed
that

[ U Flan)) fum)ie| 1P ()l g )] s
#_ .
< M) 1¢11%+|Hun\2‘*’s 1@“&

a a+2s
< unl ¥ ll2a lpllo + [en| ¥=2 | _2a_lpl2;
[e% a+2s

2% 1 23
< lunlly® llells + [lunlly

~1
2 el S llellas-

Assume now (H3) and (H4). Let G(¢) := (F(t))% By the assumptions we have

N+a N+«
F 2N F 2N
lim @ = lim (2 =0, lim G(t*) = lim z(f) =0.
=0 |2 =0 \ |¢)28 t=oo |25 150 \ [t]%as

Thus, by Proposition 1.5.5 we gain G(u,) — G(u) in L'(RY), which means F(u,) — F(u) in
2N
L~+a (RY). In particular, by Proposition 1.3.1 we obtain

2N
Iy % Fup) — Iy % F(u) in LV=a (RY),
Thus we get the first claim. Moreover, arguing as before we get f(uy)u, — f(u)u in L%(RN ),
and this concludes the proof. |

Remark 1.5.10. When a — 0, by (1.3.36), we know that, under suitable assumptions,

(Lo * F(w)) f(u) “3° F(u) f(u) =t g(u);

notice that (by integration by parts) G(u) = $F*(u). This relation is coherent with the definitions

of the critical exponents of the local and nonlocal frameworks; indeed:
W+ -D=2" -1 B+, -D=2-1 A +@-D=2"-1

This correspondence lacks when comparing the nontriviality assumptions F(to) # 0 and G(ty) >
%t%: this is due to the fact that, for any a # 0, the pieces pu and (Io* F(u)) f(u) scales differently.
Moreover, we see that while the subcriticality assumptions for the local problem are made for g,
for the nonlocal problem are made for F, since essentially the product F'f automatically becomes
subcritical if F' is so.

F(un) — F(u) a.e. pointwise; moreover, being bounded, then F(u,) — v in L~¥+a (R™) for some v, where

]\?fa > 1; hence by [298, Lemma 1] we have v = F'(u).




CHAPTER

Fractional Schrodinger equations: prescribed and free mass
problems

In this Chapter we study the following fractional Schrodinger equation
(—A)u+ pu = gu) in RV,

where N > 2, s € (0,1), u € H5(RY), > 0 is a frequency and g € C(R,R) satisfies Berestycki-
Lions type conditions. First, we recall some known facts about the unconstrained problem, i.e.
when p is fixed, which has been investigated in [79,95]. Then we study the constrained problem

(—A)*u+ pu=g(u) inRY,

/ w’dr = m,
RN

where m > 0 is a prescribed mass, u € H3(R") and u is a Lagrange multiplier, part of the
unknowns. Using a Lagrangian formulation, we prove the existence of a weak solution with
prescribed mass when ¢ has an L?-subcritical growth. The approach relies on the construction of
a minimax structure, by means of a Pohozaev mountain in a product space and some deformation
arguments under a weaker version of the Palais-Smale condition. A multiplicity result of infinitely
many normalized solutions is also obtained if g is odd, and this is new even for g power.

The present Chapter is mainly based on the paper [113] (see also [114]).

2.1 The fractional Schrodinger equation: a long-range interac-
tion

In 1948, following a suggestion by Dirac, Feynman [182] proposed a new suggestive description
of the time evolution of the state of a non-relativistic quantum particle. According to Feynman,
the wave function solution of the Schrédinger equation should be given by a heuristic integral
over the space of paths: the classical notion of a single, unique classical trajectory for a system is
replaced by a functional integral over an infinity of quantum-mechanically possible trajectories.
Following Feynman’s path integral approach to quantum mechanics, Laskin [249-252] generalized
the path integral over Brownian motions (random motion seen in swirling gas molecules) to Lévy
flights (a mix of long trajectories and short, random movements found in turbulent fluids) and
derived the fractional nonlinear Schrédinger ((NLS) for short) equation

ihdph = K25 (=AY’ + V()Y — g(¥), (t,x) € (0,400) x RY (2.1.1)

43
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where s € (0,1), N > 2s, the symbol (—A)® denotes the fractional power of the Laplace operator
(defined via Fourier transform on the spatial variable), /i designates the usual Planck constant, V'
is a real potential and ¢ is a Gauge invariant nonlinearity, i.e. g(e?p) = eg(p) for any p, 6 € R.
The complex wave function 1 (z,t) represents the quantum mechanical probability amplitude
for a given unit mass particle to have position z at time ¢, under the confinement due to the
potential V, and [t/|? is the corresponding probability density.

Fractional integrals and derivatives in the calculation methods have been used for the
explanation of physical phenomena which do not comply with the laws of classical statistical
physics, for instance in modeling Bose-Einstein condensates. It is known that Bose-Einstein
condensation, theoretically discovered in 1924 and observed experimentally with alkali metals in
1995, represents a topical subject due to the explanation of quantum effects seen on a macroscopic
scale, transmission of matter and the behaviour of superconductivity and superfluids. In this
respect, not only experimental studies are important but theoretical studies too, which lead to
the analysis of class of (fNLS) equations (also known as fractional Gross-Pitaievskii equations).
Numerical simulations show existence of standing waves solutions, having a soliton behaviour
and bound states [165,394], including mass conservation, energy conservation and dispersion
relation, in which the fractional order exponent influences the shape of the state.

In 2015 a first optical realization of the fractional Schrodinger equation, based on transverse
light dynamics in aspherical optical cavities, was achieved by Longhi [274]; subsequently, the
propagation dynamics of wave packets were reported in Kerr nonlinearities, with constant or
double-barrier potential. Numerical results showed the existence of solitons for (fNLS) equations
where the Lévy index s and the saturation parameter can significantly affect the stability of these
solitons [243,262, 383, 387]. Numerous other applications of the (fNLS) equation arise in the
physical sciences, ranging from models of boson stars (see Section 4.1) to geo-hydrology [25], from
charge transport in biopolymers, like DNA [242] to anomalous diffusion phenomena [76,295,367],
from water wave dynamics [232] to jump processes in probability theory with applications to
financial mathematics (see also [153] and the references therein). Applications for wide ranges of
s appears, for example, also in the dynamics of populations [85]: here small values of s ~ 0 or
large values of s &~ 1 better model specific behaviours, according to the environments. We refer
also to [29,30] for some recent applications to the analysis of the amount of bromsulphthalein in
the human liver and to the study of thermostat systems, and others.

From a mathematical view point, when searching for standing waves to (2.1.1), i.e. factorized
solutions '
blt,x) = etu(z), p> 0,

two possible directions can be pursued. A first possibility is to study (2.1.1) with a prescribed
frequency p and free mass. This approach, which we call the unconstrained problem, has been
deeply developed: the literature concerning the local version of the unconstrained problem starts
from the seminal papers of Berestycki and Lions [50,51] (see also [48,70,237,290]) and it is so
large that we do not even make an attempt to summarize it. Some fundamental contributions
for the fractional case s € (0,1) instead can be found in [84,86,190]; in particular, the existence
and qualitative properties of the solutions for more general classes of fractional NLS equations
with local source were studied in [22,79,95,177,229, 230].
A second approach is to prescribe the mass of u, thus conserved by v in time

/ (2, )2 dz = m, Ve (0,+00)
RN

and let the frequency u to be free, becoming an unknown. This second approach is of considerable
significance in physics, not only for the quantum probability normalization and the information
on the mass itself, but also because the mass may also have specific meaning, such as the power
supply in nonlinear optics, or the total number of atoms in Bose-Einstein condensation. Moreover,
it can give better insights into the dynamical properties, such as the orbital stability or instability
of solutions of (2.1.1) (see [92]).
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In the local framework (s = 1) the seminal contribution to the study of constrained problems
is due to Stuart [356], Cazenave and Lions [92]; see [35,36,55,58-60, 224,235,292, 335, 343] for
more recent contributions in the local case.

In the fractional case, the existence of a mass-constrained solution was, instead, recently
considered in [156, 179, 385] for pure powers and in [278] for combined powers. It remains an
open problem anyway to derive analytically the existence of infinitely many bound states with
higher energy, including mass conservation.

The present Chapter is dedicated to the study of standing waves solutions of (2.1.1) (when
V = const and we fix h = 1) with prescribed mass, by means of a new variational method.
Namely, we are interested to seek for radially symmetric solutions of the fractional problem

(—A)u+ pu = g(u) inRY,
/ g (2.1.2)
RN B ’

where N > 2, s € (0,1), m > 0 and pu is a Lagrange multiplier. We assume that the function g
satisfies the following Berestycki-Lions type conditions:

(gl) ¢g:R — R continuous and lim;_, @ =0,
(82) limypy_oo % = 0 where p = 27" = 1 + % (see also Remark 2.1.4),

(g3) there exists ¢y > 0 such that G(to) > 0,

where G(t fo 7)dr. We recall that (g2) means that g has an L?-subcritical growth.
The solutlons to (2.1.2) can be characterized as critical points of the C'-functional £ :
HE(RY) - R
1
clw) =y [ N8P - [ G
2 RN RN

constrained on the sphere
Sm = {u € H}RY) | [ull3 = m};

here we consider thus, as in [224], a Lagrangian formulation of the problem (2.1.2). In order to
avoid technical issues with the boundary of R, (see Section 4.2.2 for a different approach), we
write

6)\

,u
with A € R and define the C!-functional Z™ : R x H3(RY) — R by setting

m 1 S
0= g [ 1A = [ G+ G (i3 - m)

We seek for critical points (A, u) € R x H2(RY) of Z™, namely weak solutions of 9,Z™(\,u) = 0
and O\Z™ (A, u) = 0 or equivalently

| (o ayPoscug) = [ oo, voe R,

w’dx = m.
RN

We implement a minimax approach to detect normalized solutions in the nonlocal framework
using a Pohozaev type function. More precisely, inspired by the Pohozaev (or Pohozaev-Derrick)
identity [318]

2 RN RN 2
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for any s € (0,1) we introduce the Pohozaev function P : R x H*(R") — R by setting

N —2 A
PO ) = s / a2+ N [ (S = g
2 RN ]RN 2

and the Pohozaev set
Q:={(\u) e Rx HERY) | P(\,u) >0} U{()0)| )R}

We note that, for each A € R, the set {u € H(RY) | P(\,u) > 0} U {0} is a neighborhood of
u = 0, and thus
00 = {(\u) € R x HERY) | P(\,u) =0, u#0}.

Therefore (A, u) € 0Q if and only if v # 0 and u satisfies the Pohozaev identity. However we
emphasize that under assumptions (g1)—(g3), if u € H*(RY) solves 9,7™(),-) = 0 with A € R
fixed, then P(\,u) = 0 when s € (3,1). A similar result for s € (0, 1] is not available since the
weak solutions are not proved to be C, in general (see Section 2.2).

In spite of this lack of regularity, which is a special feature of the nonlocal framework, we
recognize a Mountain Pass structure [18] for the functional Z™, where the mountain is given by
the subset 0Q2. We refer to it as the Pohozaev mountain. This approach can be useful to deal
with different problems in other contexts.

Inspired by [224,231], we need to use a new variant of the Palais-Smale condition which takes
into account the Pohozaev identity, and we establish some deformation theorems which enable
us to perform our minimax arguments in the product space R x H(RN).

As a byproduct, our solutions satisfy the Pohozaev identity, even if we assume that f is only a
continuous function (see Corollary 2.6.3). We also note that solutions with the Pohozaev identity
are essential, in the following sense: our deformation argument shows that only critical points
with the Pohozaev identity contribute to the topology; that is, solutions without the Pohozaev
identity are deformable with a suitable deformation flow and have no topological relevance.

Firstly we prove the following existence results for (2.1.2).

Theorem 2.1.1. Suppose N > 2 and (gl)—(g3). Then there exists mg > 0 such that for any
m > mg, the problem (2.1.2) has a solution, satisfying the Pohozaev identity (2.1.3).

Theorem 2.1.2. Suppose N > 2, (gl)—(g3) and
(g4) limy_o —ﬁgf}l = 400, where p=2" =1+ 4—]\‘;.
Then for any m > 0, the problem (2.1.2) has a solution, satisfying the Pohozaev identity (2.1.3).

We highlight that the found solution is actually a minimum for £ constrained to the sphere
(see Proposition 4.2.9), which furnishes a strong indication to its stability properties. The
techniques employed in [343] for the local case s = 1, to get directly the existence of a minimum
for £, are not easily adaptable to the fractional framework, because of the need of a control on
the tails in the Brezis-Lieb lemma and in the Concentration-Compactness techniques. Anyway,
our method not only gets around these difficulties, but moreover it is also suitable to get multiple
solutions.

Indeed, if we also suppose the oddness of g, namely

(g5) g(—t) = —g(t) for all t € R,

we have Z™(\, —u) = Z™(\, u) for all (\,u) € R x H$(RY) and we can establish the existence of
infinitely many L2-constrained standing waves solutions for the (fNLS) equation.
We prove the following multiplicity result.

Theorem 2.1.3. Suppose N > 2 and (gl)—(g3) and (g5). Then we have:
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(i) For any k € N there exists my, > 0 such that for each m > my, the problem (2.1.2) has at
least k montrivial, distinct pairs of solutions, satisfying the Pohozaev identity (2.1.3).

(ii) In addition assume (g4). For any m > 0 the problem (2.1.2) has countably many solutions
(un)n (satisfying the Pohozaev identity (2.1.3)), which verify

L(uy) <0 forallm €N,
L(up) =0 asn— +oo.

We remark that our subcritical multiplicity result seems new even in the case of the pure
power g(t) = [t|2"?t and in the non-monotone case of competing powers g(t) = [t|92t — [¢|"~2¢,
and it has a physical relevance since it describes the existence of multiple bound states with
arbitrary high energies (see e.g. [165]). We stress that the analytical solutions for fractional
differential equations are still limited, while there is a large amount of numerical methods in
discretizing the fractional differential operators. In Theorem 2.1.3 we furnish an analytical
rigorous approach to detect infinitely many symmetric solitons, which can be applied to the
computation of ground and excited states to (fNLS) equations.

Remark 2.1.4. We highilight that (g2) can be weakened, with no changes in the proofs, by
asking, for some q € (27" — 1,25 — 1)

t G(t
@ = and  limsup (T,)L = lim sup
|t|—+oo |t]2 |t/ —-oo |t]% |t| =400

g(t)

PP =0.

See also Remark 5.5.8 for some additional discussions.

Remark 2.1.5. We highlight that we assume a priori the positivity of the Lagrange multiplier u
in (2.1.2). As a matter of fact, this condition seems to be quite natural: if u is a ground state on
the sphere fRN u? dx = m and its energy is negative, then a posteriori the corresponding Lagrange
multiplier p is strictly positive (see Proposition 2.8.1). In addition, from a physical perspective,
in the study of standing waves the multiplier p describes the frequency of the particle, and thus
it is positive; moreover, this prescribed sign is characteristic also of chemical potentials in the
description of ideal gases, see [267, 320].

The Chapter is organized as follows. In Section 2.2, we establish some preliminaries related
to the unconstrained problem. In Section 2.3 we give the Lagrangian formulation of the problem
(2.1.2) and a description of the geometry of a functional in a product space. Section 2.4 concerns
with the Palais-Smale-Pohozaev ((PSP) for short) condition and Section 2.5 is devoted to the
construction of the deformation argument under this (PSP) condition. Section 2.6 deals with
our minimax procedure to detect the normalized solutions by means of the Pohozaev mountain.
Finally in Section 2.7 we derive the multiplicity result of infinitely many normalized solutions
when g is odd.

2.2 The unconstrained problem
In this Section we consider the unconstrained fractional equation
(—=A)su+ pu = g(u) in RV, (2.2.4)

where s € (0,1), N > 2, u € H*(RY), u > 0 is fixed and g satisfies (g1) together with the
following assumptions
2N .

(g2’) lim SUP|¢| 00 % = 0 where ¢ € (1,27 — 1), where 2§ = y=5;;
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(g3") there exists to > 0 such that G(to) > &3, where G(t) = fg g(T)dr.

Under the assumptions (g1)-(g2’), it is standard to show that any weak solution of (2.2.4) is
a critical point of the C'-functional J, : H*(RY) — R defined by

Tu(u) = 1/ |(—A)*2u|? do + M/ u? dr — G(u)dz.
2 JrN 2 [N RN

In the celebrated paper [50], for the local case s = 1, Berestycki and Lions proved the existence
of a classical solution to (2.2.4), which is radially symmetric and has an exponentially decay,
under the assumption (gl)-(g2’)-(g3’); these conditions are almost optimal for the existence of
(2.2.4). The found solution is of least energy among all nontrivial solutions, and a Mountain Pass
(MP for short) solution as shown by Jeanjean and Tanaka [237]. Successively Byeon, Jeanjean,
Maris [80] showed that every least energy solution of (2.2.4) has constant sign and is radially
symmetric (and decreasing) up to translations.

For the nonlocal case s € (0,1), we begin to recall that in the recent paper [79], Byeon, Kwon
and Seok established the following results (see also [95]).

Proposition 2.2.1 (Regularity). Suppose (g1)-(g2). Let u € H*(RN) be a weak solution of the
fractional equation (2.2.4). Then u € C1(RYN) if one of the following assumptions holds:

(i) se(1/2,1);
(i) s € (0,1/2] and g € CYI(R) for some o € (1 — 2s,1).

Proposition 2.2.2 (Fractional Pohozaev identity). Suppose (gl)-(g2’) and
(g4") if s € (0,1/2], g € C22(R) for some o € (1 —2s,1).

Then every weak solution v € H3(RYN) of the fractional equation of (2.2.4) satisfies the Pohozaev
identity (2.1.3), which can be rewritten as

1

+ ZA)S/2)2 N/ 2 _

where 2% = N2iV25 and 2% = 2 are the upper and lower critical exponents.

Roughly, we see that the Pohozaev identity essentially means d%ju(“(' / 69))|9:0 = 0, thus
it is strictly related to the scaling invariance of the problem (which will be exploited through
an augmented functional, see (2.4.28)). Anyway the fact that u is a critical point for 7, does
not imply directly this relation, since d%j#(u(-/eg))wzo = (J,(u), Vu - ¥) = 0 requires some
restriction on J, and w.

Indeed, the C'-regularity of the weak solution seems crucial for proving formally a Pohozaev
type identity. Under (gl)-(g2’)-(g3’) we know [79] that each weak solution of (2.2.4) belongs to
H*(RM) N CB(RN) with B € (0,2s) and thus it is not known if the Pohozaev identity holds when
s € (0,1/2], without additional regularity assumptions on the nonlinearity g.

In [79], the authors further investigated the existence of MP weak solutions of (2.2.4). We
recall that a weak solution w is said of MP type if

Tu(u) = ap), (2.2.5)
where
a(p) = inf e Tu(1(1))
and

Py = {(t) € C([0.1], HY(B)) | 7(0) = 0, Tu(+(1)) < 0}. (2.2.6)
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As for s = 1, the functional J,, does not satisfies the Palais-Smale condition at level a(sx) under
the assumptions (g1)-(g2’)-(g3’), thus one can not directly apply the MP theorem. For the local
case s = 1, any weak solution is C' and it satisfies the Pohozaev identity, so that one can reduce
the search of MP solutions to that of minimizers on the Pohozaev type constraint. For the
fractional case, this approach seems to work for s € (1/2,1), while requires additional regularity
on the nonlinearity if s € (0,1/2].

Conversely, in [79] the authors established that every minimizer of J, on the Pohozaev
constraint corresponds to a MP weak solution and derived some radially symmetric properties of
the minimizer using a fractional version of the Polya-Szego inequality. Namely they introduce
the Pohozaev functional P : HS(RY) — R by setting

Putwi= S5 [ J=aya e n [ (B - 6w)

and
Py = {u e H}RY)\ {0}| Py (u) = 0},

p(p) = min Ju(w).
In [79, Theorem 1.2] they established the following result.
Theorem 2.2.3. Assume (gl)-(g2’)-(g3’). Let s € (0,1) and u > 0. Then
(i) there exists a minimizer of J, subject to P,;
(ii) every minimizer of J, subject to P, is a MP weak solution of (2.2.4);

From Theorem 2.2.3 it follows that

While the equivalence between Mountain Pass solutions and least energy solutions is shown for
s € (1/2,1), it is yet an open problem for s € (0,1/2] under the assumptions (gl)-(g2’)-(g3’).
In [79], this equivalence is established under the same regularity assumption of Proposition
2.1, namely g € C%?(RY) for some o € (1 — 2s,1); see Section 4.3 for more comments on this
relation. In the following Sections, in contrast, we will show that, under L?-constraint, least
energy solutions have Mountain Pass characterization. See Proposition 2.8.1.

Remark 2.2.4. We highlight that in [79] they define a(u) and p(i) on the whole space H*(RN),
by additionally assuming
g(t)=0 fort <O0;

indeed, thanks to this assumptions, they can pass from a generic minimization sequence to a
positive one, and thus to a radially symmetric one (and exploit then compactness). With this
additional assumption they also show that

(ili) every minimizer of J,, subject to P, is positive and radially symmetric up to a translation.

Without this assumption we notice that their arguments show that every positive minimizer of
Jy. subject to P, is radially symmetric up to a translation.

On the other hand, without this additional assumption but by assuming (g4’), one may argue
as follows: by a result similar to Proposition 5.5.3 (see [50, Theorem 3] and [80, Lemma 1]
for details) the ground state problem can be seen as a minimization problem; thus we can apply
[275, Theorem 4.1] to deduce the radial symmetry (up to a translation) of any minimizer. See

also [255].
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Remark 2.2.5. The existence of a Pohozaev minimum (Mountain Pass solution) when

g9(t)

R

lim sup
[t|—o0

substitutes (g27) can be found in [95], where it is assumed that g € CY(R) (or, more specifically, it
is sufficient that Pohozaev holds for every solution). A result involving this assumption together
with g € C(R) seems to lack in literature, even though the proof by [79] can be easily adapted.
Anyway, we can obtain this result as a byproduct of our argument, similarly to Section 3.7. See
instead [230] for the existence of infinitely many solutions.

Some further properties of this autonomous equation will be invetigated in Section 5.2 and in
Section 5.5.1.

2.3 Lagrangian formulation and Pohozaev geometry

We come back to the constrained case; from now on in this Chapter we briefly denote

4s
p::2?—1=1+ﬁ-

We consider the Lagrangian formulation of the problem (2.1.2) in the space of radially symmetric
functions H?(RY). Namely, we seek for critical points of the functional Z™ : R x H5(RV) — R

e)\
=5 [ 1A = [ G + Gl = m). (2.3.7)

Under the assumption (g1)—(g3), it is standard to prove that Z™ is C! in the product space
R x HS(RY). It is immediate to recognize that for any m > 0

o
™A\ u) = T\ u) — 5 m
where J : R x H}(RV) — R is the C'-functional defined by J(\,u) := Jox(u), i.e.

1 A
T\ u) = 2/RN [(—A) 2% - ox G(u) + eQ/RN u?,

For a fixed A € R, u is critical point of J (), -) means that u € HZ(RY) solves, in the weak sense,
(=A)’u+eru=g(u)  inRV. (2.3.8)

Inspired by the Pohozaev identity (2.1.3), for any s € (0,1) we also introduce the Pohozaev
functional P : R x H$(RY) — R by setting

_ A
POV =g [ l-a)P 4 N (u - G<u>) .
2 ]RN RN 2

By Proposition 2.2.2, it follows that for any A € R, if u € H$(R") solves (2.3.8), then P(\,u) =0
when s € (3,1). A similar result for s € (0, 3] is not known under (g1)—(g3).

We introduce now the Pohozaev set
Q:={(\u) e Rx HERY) | P(\,u) >0} U{()0)|\eR}

Since [pn G(u) = o(||ul|:) as u — 0 we have the following.
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Lemma 2.3.1. We have
{(\,0) | A € R} Cint(9). (2.3.9)

Proof. For any fixed § > 0 there exists a suitable Cs > 0 such that
G(t) < 8]t + Csltf+,

where p +1 < 2%. Thus

1 1 s e
0= NP(A,u) > ;zll(—A) ull3 + (2 - 5) Jull3 — C&”U”ﬁﬁ

+1
> Nullds — lulltst >0

for § small and ||u||gs small, u # 0. |

This last result implies
00 ={(\u) € R x HERY) | P(\,u) =0, u#0};

we call this set the Pohozaev mountain. We remark that (A, u) € 0 if and only if u # 0 and u
satisfies the Pohozaev identity P (A, u) = 0.

Contrary to assumption (g3’), the arbitrariness of the frequency p and the corresponding
assumption (g3) lead to different interactions between the pieces pu and g(u), which have to be
taken into account; these interactions are described by the quantity

G(t)

we deduce po € (0, +o0] under the assumptions (gl)—(g3). We also denote
Ao = log(u())v if Ho € (07 00)7 (2311)

otherwise \g := 400. Analysing the two cases (A\g € R and \g = 4+00) will be of key importance
in the study of the geometry of the problem.
Taking into account that 27" < 2%, we deduce by (i) Theorem 2.2.3 that for any A € (—oo, Ag)
the functional
ue HI(RY) = J(\u) €R

has a minimizer u) subject to
(095 := {u € HY(RY)\ {0} | P(A,u) =0},

namely

TN\ uy) = uer{l@igr)l) T\ u). (2.3.12)

Furthermore by (i7) of Theorem 2.2.3 such u) is a Mountain Pass critical point of J (A, -) at level
a(A), i.e.
T (A ux) = a(A)

where

\) = inf X (¢ 2.3.13
a() vé?(x)tg}%ff]j( v(t)) ( )

and
() == {v € C(0, 1], X (®™)) | 7(0) = 0, T(A /(1)) < 0}. (2.3.14)
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We notice that A € (—oo, Ag) — a(A) € R is strictly monotone increasing: this can be shown, for
example, by relying on the fact that a(\) coincides with the Pohozaev minimum and exploiting
some scaling argument.!

Lemma 2.3.2. Let A € R. Then the following statements are equivalent:
(a) A< Ao
(b) There exists a to = to(A) > 0 such that

eA
(c) There exists u € HE(RN)\ {0} such that P(A\,u) = 0; in particular (0) # 0.
(d) T(X) # 0, and thus a(\) is well defined.
As further consequence, we see that Q) # (0. Finally, a()\) > 0.

Proof. (a) <= (b). This is a straightforward consequence of the definition of Ag.
(b) = (c) Let u € H*(R") to be fixed. We have, for ¢ > 0,

— 4S8 eA
PO ul-/t)) = NthN—ZS /RN (=AY — NN /RN <G(u) - 2u2> .

We notice that P(\, u(-/t)) > 0 for small ¢ > 0. In order to get a ¢ such that P(\,u(-/t)) =0 we

need the quantity
A
/ (G(u) - eu2>
RN 2

to be positive. For any R > 0 we choose a smooth u = ur € C2° such that ug = to in Br(0)
and ug = 0 out of BR+%(O), 0 <up <tyg. We set
R

C:= sup ‘G — %\tﬂ < +o0.
t€[0t0]

Then

eA eA GA
/RN (G(UR) - 2“?%) = /BR+1\BR (G(UR) - 2“%2) + /BR (G(UR) - 2“%2)

A
(&
> C’BR—F \BR‘ + ‘BR‘ ( (t()) — 2“0’2) — 400

and in particular it is positive for a sufficiently large R.

Tet A1, X2 € R and v be a A2-Pohozaev minimum (i.e. J(A2,v) = a(X2) and P()2,v) = 0). Let rescale
v in such a way it belongs to the A\i;-Pohozaev set, i.e. u := (/0) with P(A1,u) = 0, for some explicit

1
* 2 — 35
0= (1 + 278()\2 — AI)HP%) . Thus, by the Pohozaev identities,

)3/2v]13

a() £ T w) = I (A ul} = 677 T (=8) " 0ll3 = 0¥ T O, 0) = 0¥ aa).
If A1 < A2 then 6 < 1 and thus the have claim a(A1) < a(A2).

As a further result, since §# — 1 as A1 and A2 approach, we obtain also a(A1) < liminfy,—x, a(A2) and
limsup,, ,y, (A1) < a(A2). Swapping the role of A1 and A2 actually we obtain the (extra) continuity property:
lim)\%)\o a()\) = a()\o).
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(c) = (d). Let u € HS(RN), u # 0 such that P(\,u) = 0. We define y(t) := u(-/t) for
t #0 and y(0) = 0, so that ~ : [0,00) — H2(RY) is continuous. We have

_ v CAY 22 — N u_e/\u2>
TOA®) =5t [ 18072l t/RN(Gm “2).

Noting [pn (G’(u) - %ug) > 0 by P(A\,u) =0, we have J(A,v(t)) — —oo as t — oo and thus

I'(X\) #0.
(d) = (b). If y € I'(\), then J(A,v(1)) <0, thus

6)\
/ (Gwa)) - 27(1)2> >0,
RN

which implies that there exists an g € RY such that

A

G (1)(wa) = 5 (1)(0) > 0.

The claim comes by setting to := (1) (o).
Finally, by Theorem 2.2.3, there exists a Pohozaev minimum wu) which is also a Mountain
Pass solution, thus J (A, uy) = a(A), Dy J (A, uy) = 0 and P(\, uy) = 0, which imply

a(A) = = (=2)*uy|3 > 0. i

s
N

Remark 2.3.3. Assume Ny < +oo. We observe that, in this case, for X > Xy we have
P(A\u) > 0 and J(A\,u) > 0 for each u, both strictly positive for u % 0. This means that
Ao, +o00) x HS(RN) C Q.

In the next result, we consider the case A\g € R and we investigate the behaviour of a(\) as A
approach \g.

Proposition 2.3.4. Assume (gl)—(g3) and Ao € R. We have
(a) if (\,u) € OQ for some u € HE(RN), then A < Ag.
(b) lim, a(A) = +oo.

Proof. Let (A u) € 9Q, namely P(\,u) = 0 and u # 0. This implies that for some zo € RY

6/\
G(u(xo)) — ?u(azo)Q >0

and thus A < A\g and (a) holds.

Now we show point (b). Let A < Ag; by contradiction, since by Lemma 2.3.2 a(\) is increasing
and strictly positive, we assume that a(A) — ¢ € (0,400) as A = A, from which we deduce that
|(=A)%/?uy||2 is bounded. Moreover, for any fixed § > 0 there exists a suitable Cs > 0 such that

G(t) < 6|t]* + Cs|t|PTt,

where we recall that p =1+ 4ﬁs.
Thus we have by the fractional Gagliardo-Nirenberg inequality (1.2.8) and the fact that
|(—=A)*/2uy]|2 is bounded,

1 1 s e
0= 3 PAw) = 5 (=8)us3 + (2 - 6) luallz = Csllualip
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v

1 s e B —
5ol (=) 2 + (2 - 6) uall3 = €' Csll (=) un Bl

e)\ 2 1" 47\?
> 3*5 |uxllz = C"Cslluxll,

for some C’'; C"” > 0. By choosing § < %, since 3 < 2, also ||uy |2 must be bounded, which
means that (u))x<), is bounded in H2(RY). Hence, up to a subsequence, uy — ug in HS(RY).
By the immersion (1.2.14) and taking into account that 9,7 (A, uy) = 0, we deduce that uy — ug
strongly in H(RY) with J (Ao, u0) = ¢, 0T (Mo, u0) = 0, P(Ng,up) = 0. Since ¢ > 0, we have
uo # 0. By P(Ao, up) = 0, we conclude

e 9
G(uo(z)) — 7U0(1‘) >0
for some = € RY, which contradicts the definition of \g. |

We consider now the case Ao = +o0o0 and we investigate the behaviour of a(\) for A large.

Proposition 2.3.5. Assume that A\g = +0o. Then

lim a(})

Tox T oo
A—=+4oc0 €

Proof. By (gl)-(g2) we have that for any § > 0 there exists C5 > 0 such that for all £ € R

o C,
< p+1 75 2. .O.
G(t) < P+ S (2.3.15)

We also denote by b(6) the MP value of H; : HS(RY) — R defined by

1 1 § L
Hs(v) = 5 I(=2) 20l + 5 olls - - vl

It is easy to see that?
b(6) = +oo0 asd— 0.

For v € H(RN) \ {0}, we set
ug == 0N?0(0-),

and for simplicity we write = e* and J(u,-) = J(),-). By (2.3.15), we pass to evaluate

1 1 0
2s s/2,.112 —2s 2 +1
Tluvuo) 2 6% (G-l + 30— Copp [l ~ —lolh)

Setting 0 := (1 — C5)/?* for = ps > Cs, we have

J(u, U(M_Cé)l/Zs) > (u— Cs)Hs(v) (2.3.16)
and hence 7( )
> Uy— s —
DUV ™ FYNY (2.3.17)
7 7
Thus we have o
o) o 1=Cop gy (2.3.18)
[ 7

2Indeed, by scaling, H5(5_P+1~) = 5_P%1’H1, which implies I's = 5_P+11"1; here I's is the set of paths related
2
to Hs. Using these two relations one obtains b(§) = 6~ »—1b(1) — +oo.
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Choosing pu = ps > 2C;5 we obtain

als) _ b(o)
pooo2
since 0 > 0 is arbitrary, we derive
p——+00 v

Finally we investigate the behaviour of a(A) for A — —oo, under some more restrictive
assumption in the origin.

Proposition 2.3.6. Assume (g4) in addition to (gl)—(g3). Then

a(N)

lim —=+
e

A——00

= 0. (2.3.19)

Proof. We fix u € HS(RN) N L®(RY) with |lul|sc = 1. Recalled p =1+ %, by (g4) there exists
M, > 0 such that for all r € (0, 1]

G(ru(z)) > MprP Hu(z)PH, Vo eRY

with
M, — 400 asr— 0.

We write again p = e* for the sake of simplicity. Therefore for ¢ > 0 we have

T (p,ru(-/t)) <

POV (Al + BNl — AN

1
9 p+1
N—2s [ 1 N—2s 1 ~ 4s N—2s
= T (R )Pl g ul - M Y )
9 _N=2s (1 N o 2 w2 . L N2 5 1 N +1
= T (V) Rl + Gl - Mo el )

after setting 7 := ,u%s t. Moreover choosing r := ,u%s we infer

T (ponssul- /(7))

1 1 1
< p <2TN #N(=8)"ul + S ull3 - MMN/(45>TNIIU|1211) ~

For p € (0,1), the map
7 € (0,00) — M%u('/ﬂ_l/@s)ﬂ c Hﬁ(RN)

can be regarded as a path in I'(u) after rescaling. Thus

a(p) 1 N-2s 1 N +1_N
B max (IR Sl = Myl )

Since M uN/(as) = 00 as p — 0, we derive the conclusion. |
Proposition 2.3.7. Assume (gl)—(g3). Then we have

(a) J(A\,u) >0 for all (A\,u) € Q;

(b) T\, u) > a(X) >0 for all (X, u) € 00.
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Proof. We notice that for all (A, u) € 2

i77()\, w)

- (~2)/2ull} = 0

JNu) > TAu) —

and thus (a) follows.
The proposition (b) follows from the fact that every minimizer of J (A, ) subject to (09)y is
a mountain pass weak solution of (2.2.4) at level a()) (see Theorem 2.2.3). 1

_iH
N

We are ready to show that for any m > 0 the functional Z™ is bounded from below on the
Pohozaev set 0f).

Proposition 2.3.8. Assume (gl)—(g3). For any m > 0, we set

e)\
B,, ;= inf (a()\) - 2m>

A<Ao
and
En = inf TI™(\u)
(A u)eof2
Then
Ep > By > —oc. (2.3.20)
Proof. Let m > 0. If (A\,u) € 09, by (b) of Proposition 2.3.7 we have
A A

"N u) = T (A u) — %m >a(A) — %m;
since, by (a) of Proposition 2.3.4 it results that A < Ao, we have, passing to the infimum,
E,, > B,,.

We distinguish now two cases. Firstly we assume Ao € R. From (b) of Proposition 2.3.4 we have
a(X) = +oo as A — Ay, and thus we conclude

o
inf (a()\) — 2m> > —00.

A<Ao

Secondly, we suppose that A\g = +00. We have

a(X) — 62/\7” = e (a()\) _ T;)

and thus, by Proposition 2.3.5

6)\
inf (a()\) — 2m> > —o00. i

AER

2.4 Compactness by scaling

Firstly we introduce the notations:
Ky :={(\u) R x HSRN) | Z™(\, u) = b, HI™ (N, u) =0, 0,T™(\, u) = 0},
Ky °" ={(\u) € Ky | P(A,u) = 0}

Clearly, we have K, ,fj SP K. We note that for the definition of K é) SP we do not need additional
regularity about g.

Under the assumptions (g1)—(g3), it seems difficult to verify the standard Palais-Smale
condition for the functional Z™. Therefore we cannot recognize that the set K is compact.

Inspired [224,231], we introduce the Palais-Smale-Pohozaev (shortly (PSP)) condition, which
is a weaker compactness condition than the standard Palais-Smale one. Such (PSP) condition
takes into account the scaling properties of Z™ through the Pohozaev functional P. Using this
new condition we will show that K lfj SP is compact when b < 0.
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o7

2.4.1 A limiting Pohozaev identity
We give the definition of (PSP) condition in the radial setting.

Definition 2.4.1. For b € R, we say that I™ satisfies the Palais-Smale-Pohozaev condition at
level b (shortly the (PSP), condition), if for any sequence (An,Un)n C R x HS(RN) such that

Im(Ana un) - b’
OI™(An,upn) — 0,
10w Ay i) 22 mvyy- — O,
P()\TM Un) - O’

it happens that (An, un)n has a strongly convergent subsequence in R x H3(RY).

We will show the following result.

(2.4.21)

(2.4.22)
(2.4.23)
(2.4.24)

Proposition 2.4.2. Assume (gl)—(g3). Let b < 0. Then I™ satisfies the (PSP), condition on

R x HS(RN).

Proof. Let b < 0 and suppose that (\,,u,) C R x HS(RY) satisfies (2.4.21)—(2.4.24). We will

show that (A, u,) has a strongly convergent subsequence in several steps.
Step 1: A\, is bounded from below.
Indeed

Py tn) = I (s ) + 51 (=8) a3

> P(Anaun) _Im(Anaun)

z2|l=2[=

hence m
—liminfe >0—b> 0,
2 n

which implies (since m > 0) that A, is bounded from below.
Step 2: ||un||3 — m.

Indeed, we have
An

m (&
NT™ (Anytn) = - (lluall3 = m) =0,

which implies the claim by Step 1.
Step 3: [|[(—A)*2u,||3 and \, are bounded (from above) as n — 4oo.

Indeed, by (gl)-(g2) we have that for any J > 0 there exists C5 > 0 such that for all ¢ € R

g(t) < o[t + Cilt].

By (2.4.25) and the fractional Gagliardo-Nirenberg inequality (1.2.8) we have

O™ ( Ay U U, = ”(_A)S/QUTLH% + 6’)\"““””% B /N g(un)un,
R
1
> [[(=2)2un|l} + (> = Cs) l[unll3 = SllwnlZE1
moreover

0uZ™ (A, un Jun| < ||8uIm()‘n7un)”(Hg(RN))*HUTLHH;:J(RN)

= ||3uIm(/\mun)H(Hg(RN))*\/II(*A)S/ZunH% + [lunlf3-

(2.4.25)

> (= 8)Punl3 + (M = C5) llwall3 = CH(=A) Bl l5
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Set en == [|OuL™ (Ans un) | (s mvy)- and (by Step 2) lunll3 = m + o(1), we finally have, joining
the previous two inequalities, that

(=) 2un 3 (1= 6C(m +0(1))"7 ) + (X = Cy) (m + 0(1)

< en/Il(=2)"2u, |3 + m + o(1).

Choosing § > 0 small so that sOm'T < 1, we obtain the claim.

Step 4: Conclusion.
By Steps 1-3, we have that (A, u,) is bounded in R x H2(R™). Hence, up to a subsequence,
An — A and u, — v in H(RY). Therefore, we obtain (see Proposition 1.5.5)

/g(un)un—> g(u)u and /g(un)u—> g(u)u.
RN RN RN RN

Again by the assumption 0, Z™(An, un) — 0 we get

0= h};n L™ (A, un)u

= lim (/ (=A)* 2, (=AY Py + e / UpU — / g(un)u)
n RN RN RN
= I8l + Ml - [t (2.4.26)

Since 0,Z™ (A, up) — 0 and u,, — u, we have 9,Z™ (A, upn)u, — 0; thus

0= lirILn OZL™ (An, Up,) U,
— i (J(-2) 2+ >l — [ glun)un)
n RN
= lim (|(~2)"%un || + e unl3) / g(u)u (2.4.27)
n RN

and hence, joining (2.4.26) and (2.4.27),

An A
1(=2)" w3 + e llunl3 = [[(=A)"2ul3 + elull3,

A

which easily implies (since e*» — e* and ||u,||3 is bounded)

[ = [lullX,
where || - |13 := [[(=A)%2 - ||z + €| - ||3 is an equivalent norm on HZ(RY). This, together with

up — uin HE(RY) gives u, — u strongly in HS(RY). i

Corollary 2.4.3. Assume (g1)—(g3). Let b € R, b < 0. Then KPP N (R x {0}) =0 and KF'5F
18 compact.

Proof. Since 0,Z™(A,0) = —% # 0, we have KT 0 (R x {0}) = (. Proposition 2.4.2 implies
that K5F is compact. |

Remark 2.4.4. We emphasize that the (PSP)y condition does not hold at level b = 0. Indeed
we can consider the unbounded sequence (\;,0) with \j — —oo such that

Aj
T™(\;,0) = OzT™(;,0) = —%m =0

and
0uZL™(N;,0) =0, P(A;,0)=0.
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2.4.2 A functional in an augmented space

Following [223,224,235] we introduce the augmented functional H™ : R x R x HS(RY) — R
H™(0,\, 1) :=T™(\, u(e™")) (2.4.28)

for (0, \,u) € R x R x H3(RY). By the scaling properties of ™ we can recognize that

e(N—Qs)G
H™(0, A, u) = / (—a) 22— N0 [ Gu)
2 RN RN

e

- E(eNGHuﬂg —m) (2.4.29)

for all (0, \,u) € R x R x H(RY).
Moreover, by standard calculations we have the following proposition.

Proposition 2.4.5. For all (0,\,u) € R x R x H5(RY), h € H3(RN), B € R, we have
(i) QpH™ (0, A, u) = P(Xu(-/e%)),

(i) ONH™(0, A, u) = RI™(\,u(-/e?)),

(iil) OuH™(0, A, u)h = OuT™(N, ul-/€?))h(-/e?),
(iv) H™(O + B, N, u(el-)) = H™(6, )\ ).

Now we define a metric on the Hilbert manifold

M =R xR x HRY)

by setting

_ 2
s )y = | (2 1™ 1z ) |
=02+ 12 + e [n|3 + N2 (- A) 203

for any (a,v,h) € Tig )M =R x R x H3(RM). We also denote the dual norm on T(*(a /\U)M

by || @) We notice that ||(-,+,)[[7. .,y depends only on 6 and we can write ||(-,-,)[[. )
Moreover for any (a, v, h) € T(g » )M and € R we have

2
(@, b)) s, = o, v, DI, (2.4.30)

Furthermore we define the standard distance between two points as the infimum of length of
curves connecting the two points, namely

1
distar (60, Ao, o), (61, Aty hin)) = inf/ 1) ot
veG 0
where
G = {y € C([0,1], M) 4(0) = (60, Ao, o), ¥(1) = (61, Ax, hn) }.

Observe that, if o is a path connecting (ag, 1o, ho) and (o, v1, hi), then by (2.4.30) (¢ ) =
(01(t) + B, 02(¢), (o5(1))(¢-)) is a path connecting (a0 + B, vo, ho(e®)) and (ax + B, 1, ha (c-)
with same length, and hence

dist s ((co, 0, ho), (a1, v1, b)) = distas ((ao + 8, v0, ho(e?-)), (a1 + B,v1, hi(eP-))).  (2.4.31)

Denote now for simplicity D := (9p, Oy, 0,) the gradient with respect to all the variables; a
direct computation shows that

DH™ (0, \, u)(o, v, k) = P\ u(e™?))a + NI\ u(e ?))v + 0,27\, u(e ?)h(e™?")
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and thus we obtain
IDH™ (0, X, )1 7 )

= (PO ule™)), ™ ule ™), 102 (A ule ™)) | arg vy )
= [POu(e™ )2+ [T (A ule ")) + 102 (0 wle ™)) s vy

2

Now defined .
K, = {(Q,A,u) e M|H™O,\u) =b, DH™(0,\,u) = 0}

the set of critical points at level b of H™, we deduce
Ky = {(0, ) u(e”) | (\u) € K75F, 9 € R}. (2.4.32)

Proposition 2.4.6. Assume (gl)—(g3). Let b € R, b < 0. Then the functional H™ satisfies the

—

following Palais-Smale type condition (PSP)y: for each sequence (0, An,up)n such that
H™ (0, Ay un) — b,

||D7‘[m(9n, )\na Un) ||(9n,>\n7un)7* - 07

we have, up to a subsequence,
dist pr (O, A, un ), Kp) — 0.

We note that (155\’1/3)1, condition is different from the standard Palais-Smale condition and it
ensures the compactness of the sequence (0, An, uy)n after a suitable scaling. By (2.4.32) we
also highlight that, if K} # (), then K} is not compact.

Proof. Let (0, An, up)n be as in (f/’:S’?’)b. Then set i, := u,(e~%-) we have

P(An,tn) — 0,

8)\Im()\n,7ln) — 0,
HauImO‘nvﬁn)H(Hg(RN))* — 0,
and thus by Proposition 2.4.2 the sequence (A, ;) is convergent (up to subsequences) to a
(\a) € KfSP. Observe that, for each n, set v, := ii(e-), we have (6, \,v,) € Kj,. Therefore
by (2.4.31)
diStM((ena Ans un)7 f{b) < diStM((ena Ans Un)7 (ena A Un))
= distar ((0, A, Uy ), (0, A\, @)

< P = AR+ [l — all3 vy = O,

which reaches the claim. i
Notation. We use the following notation: for A € M and p > 0 we set
Ny(A) :={(0,\,u) € M | dista((6, N\, u), A) < p},
while for A C R x H3(RY) and R > 0 we set
Nr(A) = {(\,u) € R x HI(RY) | d((A,u), A) < R},

where

d((Au), (V) = (A = NP u = [3,) V2
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We also write for a < b

[Z™ < b] := {(\u) € Rx HSRY) | Z(\,u) < b},
[a <T™ <b:={(\u) €eRx HI(RY) | a <T(\u) < b},
[H™ < bl _{(0 A u) € M| H(O,\u) < b},
[a < H™ < blar == {(0, \,u) € M | a<H(O \u)<b}.

Using these notations, as a corollary to Proposition 2.4.6, we have

Corollary 2.4.7. For any p > 0 there exists a 6, > 0 such that
V(0,\u) €b—0, <H™ < b+l \ Np(Kp) = [|IDH(O, X\ 1)l (9.7 u) > 6p- (2.4.33)

Here, if K = 0, we regard N,(K3) = 0.

2.5 A deformation flow by projections

Exploiting an idea in [224] (see also [231]), we aim to prove the following Deformation Theorem
in the fractional framework.

Theorem 2.5.1. Let b < 0, and assume KéDSP = 0. Let € > 0, then there exist € € (0,€) and
n:[0,1] x (R x HS(RN)) = R x HS(RY) continuous such that
1. (0, ) = idgy s (mN)
2. n fizes [I™ < b — g], that is, n(t,-, ) = idigm<y_q for all t € [0,1];
3. I™ is non-increasing along n, and in particular Z™(n(t,-,-)) < ZI™(-,-) for allt € [0, 1];
4. (LI <b+¢e]) CIT™<b—¢g].

We omit the proof of the Theorem since it will be very similar to the one made in the case of
multiplicity (see Theorem 2.7.1). We remark that this deformation flow is not C! and it does
not satisfy the two properties of the standard deformation flows, in general [224, Remark 3.2]:

(1) s+, u) = nlt,n(s, Aw) with s+ € [0,1], (\ u) € R x H(RY);
(2) for t € [0,1], the map (A, u) — n(t, A\, u) is a homeomorphism.

This is due to the fact that this deformation will be built through a projection of another
deformation, built for the augmented functional H".

We also stress that the deformation argument in Theorem 2.5.1 works for K f SP Hut not for
Kp and thus, if K" = (), then we have the statement (4) in Theorem 2.5.1 even if Kj, # (). By
classical arguments, we derive the following existence theorem (see also the proof of Corollary
2.6.3).

Corollary 2.5.2 (Existence). Let b < 0 be a MP minimaz value for T™. Then K{SP # 0, that
is, ™ has a critical point (5\, u) satisfying the Pohozaev identity, namely P\ @) = 0.

2.6 Minimax critical points in the product space

For any m > 0, let B,, and E,, be the constants defined in Proposition 2.3.8, namely

A
By, = inf (a()\) — em) , Ep= inf ZI™(\u).
A< X0 2 (\u)€0Q
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As a minimax class for Z™, we define the paths going from 2 to Q°, such that the energy of the
ending points is below the minimal energy on the mountain 0€2:
= {g e C([0,1], R x HX(R™)) | £(0) R x {0}, T"(£(0) < B — 1,

We have the following result.
Proposition 2.6.1. Assume (gl)—(g3).
(i) For any m >0, we have T™ # ().

(ii) For sufficiently large m > O there exists & € I'™ such that

tlél[gi(] Zm((t)) < 0. (2.6.34)

(iii) Assume (g4). Then for any m > 0 there exists £ € I'™ with the property (2.6.34).

Proof. Let Ay € (—o0, 0] be defined in (2.3.11). For any A < Ao we show there exists a path
1y € I'™ such that

e

AL t) <a(\) — —m. 2.6.35

max I(a(t)) < a(d) — 5 m (2.6.35)

Let uy be a MP solution of 9,7 (A, u) = 0 (by Theorem 2.2.3). Set ()(t) := ux(-/t) for t > 0 and
(x(0) := 0 and note that, since u) satisfies the Pohozaev identity, we have Z™ (X, () (t)) — —o0

and P(A,(\(t)) — —oo as t — +o0o. We can find vy := (\(L-) for L > 1 satisfying

a(A) = max J (A, (1)),

te(0,1]
Im(/\a')/)\(l)) <Bpn -1, (>\a7>\(1)) §é Q.
We also note that ¢ — Z™(¢,0) = —%tm is decreasing and tending to —oo as t — +o00. Thus,

joining 7y and t + (A + Lt,0); [0,1] — R x H*(RN) for L > 1, we find a path 1y € I, defined
as
(A+L(1—2t),0) iftel0,1/2],
YA(t) == .
(@ - 1) ifte(1/2,1]

with (2.6.35). Thus in particular we have (i).
Next we deal with (ii) and (iii). By (2.6.35), we have that (ii) follows easily; (iii) also follows
from Proposition 2.3.6. |

We notice that each path in I'™ passes through 0f2, thus the minimax value

b = glelll“f;” tren[aai(]Z (&(1)) (2.6.36)

verifies b,, > FE,, and hence by Proposition 2.3.8 it is well defined and finite. Since the Palais-
Smale-Pohozaev condition holds on (—o00,0), it is important to estimate b,,. We have the
following result.

Proposition 2.6.2. Assume (gl)—(g3). We have

A
b < a()) — %m for all X < Ao. (2.6.37)

Moreover
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(i) Setting

a(A)
=92 f7>
mo =2 of S50 20

we have
by <0 for m > my.

(ii) Assume (g4) in addition, then mo = 0, that is,

bm <0 for allm > 0.
(iii) We have by, = Eyy = By,
(iv) Hmsup,,_ o0 22 < =2 If Ao = 400, then limp, 400 22 = —00 (see [11/)).
Proof. By (2.6.35) we have (2.6.37), and thus
a(\
by < A( ald) _m) for all A < Ao,
e 2
By definition of mg, we have b,, < 0 for m > mgy. Thus we have (i). By Proposition 2.3.6, we
have mg = 0 under the assumption (g4) and thus we have (ii).
Furthermore, from (2.6.37) it follows b, < By,. As already observed b,,, > E,, > B,,, from

which we deduce (iii).
Finally for any A € R we have, again by (2.6.3

e e
lim sup = < lim - — -
m—s—4oco M ~ m—+4oo 2 2
Since \ is arbitrary, we get (iv). i

By Proposition 2.6.2 and Corollary 2.5.2 we conclude that the level b,,, defined in (2.6.36), is
a critical value of Z™ in the product space R x H?(RY) and thus Theorem 2.1.1 and Theorem
2.1.2 hold.

Corollary 2.6.3. Let m > mg. Then there exists a solution of problem (2.1.2) which satisfies
the Pohozaev identity (2.1.3). If moreover (g4) holds, then there exists a solution of (2.1.2) for
each m > 0.

Proof. Let £ € (0,1). By Theorem 2.5.1, in correspondence to b,, < 0, there exists ¢ € (0, )
and 7 satisfying 1) — 4). By definition of inf, there exists v € I'™ such that

tm[aa;i(]I (v(t)) < by, + €,

that is

~v([0,1]) C [Z™ < by, + €] (2.6.38)
Set

F(t) == n(1,7(t)),
we show that 4 € I'". Indeed for i € {0,1}, since Z"(v(i)) < B, — 1 < by, — &, Theorem
2.5.1 implies that 5(i) = n(1,v(i)) = (i) € [T < by, + €], and thus 4(0) = ~v(0) € R x {0},
(1) =~(1) ¢ Q. Therefore
by < max Z™(5(t)). (2.6.39)

By contradiction, assume K{“F = (). By the properties of n and (2.6.38) we obtain that
5(00,1)) = 1(1,7([0, 1)) € [T™'< by, — <], that s

Z™(n(1,7(t))) < by, —
e (n(1,~(t))) <

This is in contradiction with (2.6.39), and we conclude the proof. i



64 2. Fractional Schrédinger equations: prescribed and free mass problems

Remark 2.6.4. We observe that, by Proposition 2.6.2 (iii), the found Mountain Pass solution
(i, @) at level by, is a Pohozaev minimum on the product space R x HE(RN). This additionally
implies that the found solution is a Pohozaev minimum for the unconstrained case, once fixed [i;
see also Remark 4.5.9.

2.7 Multiple normalized solutions

We focus now on the existence of multiple solutions. In the whole Section we assume, in addition,
(85)-
2.7.1 Symmetric deformation theorems

In what follows we will use the following terminology. Consider the action o of G := Z3 on the
last components of R x H3(RY) and M = R x R x H(RY), that is

o: (£1,\u) € G x (Rx HIRY)) — (A, +u) € R x H(RY),

o:(£1,0,\,u) € Gx M+~ (0, \, £u) € M.

We notice that Z™ and H™ are invariant under this action (i.e. they are even in u), as
well as the set Q (i.e. it is symmetric with respect the axis R). In particular this means
that, if u is a solution, then —u is a solution as well. We highlight instead that the function
n=(n1,m): Rx HSRN) = R x H}(RY) (resp. 7 = (7o, 71,72) : M — M) is equivariant if
is even in w and 7, is odd in u (resp. 7jp and 7; are even and 72 is odd).

Theorem 2.7.1. Let b < 0, and let O be a neighborhood of KfSP. Then for each & > 0 there
exist e € (0,8) and n: [0,1] x (R x HZ(RY)) = (R x HS(RN)) continuous such that

1. n(0,-,-) = idRXHﬁ(]RN);
n fives [I™ < b—&], that is, n(t,-, ) = idjgm<p—g for all t € [0,1];
I™ is non-increasing along n, and in particular Z"(n(t,-,-)) < Z™(-,-) for all t € [0,1];

if KPSP =0, then n(1,[I™ <b+¢]) C[Z™ <b—¢];

AR

if KPSP #£ 0, then
n(1,[Z" <b+¢e]\O)C[I" <b—¢]

and
n(L[Zm <b+e¢]) CZ" <b—elUO;

6. n(t,-,-) is G-equivariant, in the sense mentioned before.

To prove this, we work first on the functional H™, for which we obtained the (IS:S’?’) condition.

Theorem 2.7.2. Let b < 0, p > 0 and write O := N,(K}). Then for each & > 0 there exist
e €(0,8) and 77:[0,1] x M — M continuous such that

1. 7(0,-,-) =idpy;
7 fizes [H™ < b— &y, that is 7j(t, -, -) = idjym<p—_g),, for all t € [0,1];

H™ is non-increasing along 7, and in particular H™(7(t, -, -,-)) < H™(-,-,-) for allt € [0,1];

e

if Ky =0, then (1, [H™ < b+¢e|ar) C [H™ < b—¢e|n;



2.7. Multiple normalized solutions 65

5. if Ky # 0, then .
ﬁ(l,[Hm Sb—FE]M\O) Q [Hm Sb—E]M

and .
(1, HE) CHPE U O;

6. 7(t,-,-) is G-equivariant, in the sense mentioned before.

We postpone the proof of Theorem 2.7.2 for H™ and see now how to use it to deduce the one
for Z™. Introduce first the following notation:

7 M —Rx H(RY), n(0,\u) := (A ule™?)),

LR x HSRYY = M, o\, u) == (0, )\, u),
which are a kind of rescaling projection and immersion. Observe that

ToL=idp,psmn), (while o #idy),

H"or=TI", I"om=HM,
n(Ky) = KPoF.
For 7j obtained in Theorem 2.7.2, define "n = wo 7o +" up to the time; more precisely
n(t, \,u) := m(7(t, c(Au))). (2.7.40)

It is now a straightforward computation showing that 7 satisfies the requests of Theorem 2.7.1.
A delicate issue, anyway, is to show the intuitive fact that neighborhoods of K} are brought to
neighborhoods of KgD SP_More precisely we have the following result.

Lemma 2.7.3. Assume zzhat Kfsf is compact (for instance, b < 0). Let p > 0, then there exists
R(p) > 0 such that, set O := N,(K3) and O := NR(p)(KéDSP), we have

7(0) C O,

- distar ((0, M, u), Kp) < p = d((\u(e ), KE5P) < R(p).

In particular, for 6 =0 we have
distar ((0, M\, u), Kp) < p = d((\,u), KFSP) < R(p), (2.7.41)

that is
L(BO) c Co

where G denotes the complement of the set. Moreover

lim, R(p) = 0.

Proof. We observe that is sufficient to prove (2.7.41) since by (2.4.31)
dist (0, \, u), Kp) = distas ((0, X, u(e ™)), Kp).

Let € > 0. By definition of dista((0, A, u), K) there exists a o = o(t), 0 = (6, A, u), such that
a(0) = (0,\,u), o(1) € Kj and

1
/0 lo(®)|lo@dt < p+e. (2.7.42)
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By (2.4.32) we have (A(1),u(1)(e?M.)) € KSF and thus

dist((\, u), KT
< IO w) = A, (W) (e lpsmp @)
< O ) = W), (W) g ey + D), u(1)) = AD), w(L) (el gz

= [[(A(0),u(0)) = (AL, w(D) sy + (1) = w(1) (e D) | e
= I+1I.

Focus on I. We have, by the fundamental theorem of calculus and Holder inequality,
Lo g 1/2
1= IA(0),u(0)) — (A1), (1) [z prz vy < /0 (A2 + 1) [y )
1 : . s/2 ¢ 1/2
= /0 (AP + @) I3 + 1 (-A)a@)3) " dt.
In order to use (2.7.42) it must appear the norm associated to M, which we recall is

lo(D)5) = 0(8)* + A1) + O la() |5 + N 2O (—a)*2a(0)|3.

Since we do not know the sign of N6(t), we need an estimate on 6(¢) and a corrective factor.
Indeed, recalled that 6(0) = 0, we have

1 1
6(1)] = 16(t) - 0(0)] < /0 6(t) dt < /0 16(8)odt < p+e.

Thus 0(t) > —(p+¢) > — 525 (p + €) which imply

eN(p+€) > 1’ eN(p+a)€N0(t) > 1 eN(p+a)e(N—2s)9(t) >1

and hence we obtain

N(p+e) L. s s/2, 1/
r< ™5 [0 + O]+ 20 - >/2u<t>r\§)

N (p+e) 1 . . . 8 s . 1/
<5 0071+ AOR + MO0 + 0 (-8) (o))

N(p+e) —

1
N (p+e)
=M [ o0lde < M5 ) T eFp,
0

Focus now on IT. Set @ := u(1)(e™%M).) we have @ € Py(K5") (where P is the projection on
the second component) with [#(1)| < p + ¢, and thus

11 = (1) = u(D) (™" V) |z vy = (") = &l ey
< sup {[lw(e™) = wllgz@m | lal < p+e, we Py(Ky )}

Since Py (K. If’ SP ) is compact, it is simple to show that, as ¢ — 0,
17 < sup {w(e™) = wll v | lal < p, w € Po(ET) .
Summing up, we have

N
dist((A, ), K757) < e p + sup { |w(e®) = wll e | o] < p, w € P(ELT)}
=: R(p) < 0.
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Here we have

lim R(p) =0,

which concludes the proof. |

We are now ready to show that 7 satisfies the desired properties.

Proof of Theorem 2.7.1. Let O be a neighborhood of KéDSP, and choose R such that
Ng(K{5") c O. By Lemma 2.7.3 choose p < 1 satisfying R(p) < R and thus Np(,) (K *") c O.
Consequently, by Theorem 2.7.2, there exists a deformation 7 corresponding to the neighborhood
0= Np(f(b). We thus define 1 by (2.7.40) and prove the properties. Start observing that

MNu) €[Z" <b+d] = b+d>T"(A\u)=H"((\u))
= (A u) € [H™ <b+xd]nm,

ie. (([Z™ < b=+ 4]) C[H™ < b+ d]ay; similarly, 7([H™ < b+6d]y) C[Z7 <b+4].
1. n(0, A\ u) = (70, (A, u))) = w(L(A u) = (A u).

2. If (N, u) € [Z™ < b—¢], then ¢(\,u) € [H™ < b—¢&]p. Thus n(t, A\, u) =n(7(t, (A u))) =
(A w)) = (A u).

3. I™(n(t, A u)) = T (w(i)(t, e(A, w)))) = H™ (7t e(A w))) < HT (1A w) =T, w).

4. If KSP = (), then Kj = (). Thus for (\,u) € [I™ < b+ ¢], we have Z™(n(1,\,u)) =
I (m((L, (A w)))) = H™ (01, (A u)) < b —e.

5. We have, by previous arguments and Lemma 2.7.3, that «([Z™ < b+¢]\ O) = (([I™ <
b+¢e]NCO) C ([T <b+¢€]) Ne(CO) C[H™ <b+e|pN(CO) =[H™ <b+e]y \ O and

thus
n(L[Z" <b+e]\O)
= m(7i(1, «([Z™ < b+ €]\ 0)) C (AL, [H™ < b+elar\ O))
Cr([H" <b—c¢|y) CZ™ <b—¢gl.

The other inclusion is similar and easier.
6. We write 7j(¢, 0, \,u) = (7o(¢, 0, A, w), 71 (¢, 0, X\, u), f2(t, 0, A, w)). Then by definition
(16,2, w), o (8 A w)) = (7 (8,0, A, ), 7 (1,0, X, u(e™P(E0A).)) )
thus by the property 6 of Theorem 2.7.2,
(m (8 3, =), (e, N, —)) = (o (8,0, =) 7 (1,0, A, —u(e™ 0N
— (ﬁl (t,0, A\, w), —7j2(t, 0, A, u(e_ﬁo(t’o”\’“)o)))
= (m(t A w), —ma(t, A, w)).
The theorem is hence proved. |

Now we are ready to prove the main theorem for H"™.

Proof of Theorem 2.7.2. To avoid cumbersome notation, we write £ = (6, \,u) € M. Set
M’ = {DH™(€) £ 0}.

It is known [14] that there exists a pseudo-gradient on the Hilbert manifold M associated to H™,
namely a locally Lipschitz vector field V : M’ — T'M such that
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(a) [IV(&)lle < 2[[DH™ ()¢
(b) DH™(&) - V(&) = [DH™(E)IIZ s
in particular,

%I!V(ﬁ)\lg < IDH™(E)le« < [V(E)lle- (2.7.43)

Moreover, we can ask, in the construction of the pseudo-gradient, that V is G-equivariant, since
H™ is G-invariant. Namely, set V = (Vy, V1, Vs), then Vy and V; are even in u, while Vs is odd
in u.

By Corollary 2.4.7, there exists § = 6§ > 0 such that

VEEh—6 <H™ <b+d)y st dista (6, K,) > g L IDH™(E)]|en > 6. (2.7.44)
We assume L 1
€< mm{ (5 6p5} (2.7.45)

Set the following
A=b—e<H"<b+ely, B:=[b—2e<H"<b+ 2|y
and choose a locally Lipschitz function g € C(M, [0, 1]) such that
g=1onA, g¢g=0 onC(B,

) d(¢LB
for instance g(&) := m‘

When K} # ), we choose a locally Lipschitz function § € C(M, [0,1]) satisfying

G=0 on Ne(Kp), §g=1 on Eng(Kb).

14
3

When K, = 0, we set § = 1. Moreover we introduce, for any r > 0,

1

- ifr>1
b(r):=<r

1 ifo<r<l.

Finally define, for £ € M,
W (&) == —9(&)g(©)b([V(E)ll) V(E)

and, fixed £ € M, consider the Cauchy problem

{ﬁ’ = W(m),
7(0) = €.

We have that W is well defined on M and

W Elle < VEleb(VE)lle) <1

where we have used that |g|, |§| < 1. Therefore we have the global existence of a flow 77 = 7(¢, &);
we are interested in 7 restricted to [0, 1]. We now verify the desired properties.

1) 7(0,&) = £ by construction of the flow.

2) If € € [H™ < b—&|u, then g(¢) = 0, and thus W (£) = 0. This means that 7(¢,§) = & is
an equilibrium solution. Since W € Lip;,.(M) we have uniqueness of the solution, hence
actually 7(t,&) = &.
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3)

We have

SHM((E,€)) = DH™ (7(1, €))7 (1:6)
DM (1 WV (1 )31 ) (VG )
(7

~[DH™ (1,200 912, )1 )b (IVE ) 0.0
0

<
<

that is the claim; we have used that g, g, b are positive and the property (b).

We assume here Kj, = (). By using the fundamental theorem of calculus and previous
arguments, we obtain

1
M (3(1,6)) — H"(7(0,6) = /0 d%Hm(( ©)ds

1

0

AN
|
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Let now & € [H™ < b+ ¢]p. This means, by point 3), that for s € [0, 1]

H™(7(s,€)) < H™(71(0,8)) = H™(§) < b+e,

thus 7(s, &) € [H™ < b+ €]y and

1
HP((1L.€) < bte = [ IDH G ) 1,900(5. D (V5. le0)) s

Assume now by contradiction that H™(7(1,£)) > b — e, which implies (again by point 3))
H™(7(s,&)) > b—e, for all s € [0,1]. Thus for all s € [0,1] we have 7j(s,£) € [pb—e < H™ <
b+ €] and in particular, since e < 3£, that g(j(s,£)) = 1; hence

1
HP(1.€) < bte = [ IDH (s )b (V5. D) d

By (2.7.43), by the fact that 7(s,§) € [p—e < H™ <b+¢e|py C[b—0 <H™ < b+ 0]y and
by (2.4.33), we have

V(s ) llaes.e) = IDH™ (110, €)lz(s.00, = 0 = 4e; (2.7.46)

in particular,

) 1
b (HV(n(& f))”ﬁ(&é)) ~ Vs s

Thus, exploiting again (2.7.43) and (2.7.46) we obtain

m(= 1 ! m(=
HO(1.6) < bre =5 [ DR G000
1
§b+5—2/ eds =b— ¢,
0

which is an absurd.
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5) We assume now K # 0. Let now & € [H™ < b+ €] \ O. Assume again by contradiction
that H™(7(1,£)) > b — e, which implies again 7(s,§) € [b—e¢ < H™ < b+ ¢]y. We
distinguish two cases.
Case 1: 7(t,§) ¢ ng(Kb) for all ¢ € [0,1]. In this case we proceed as in the proof of 4).
Indeed since € < § £, We are in the assumptions of (2.4.33) and thus
||DHm(ﬁ(S7£))Hﬁ(S,§),* >0 > 4e.
We argue as before and conclude.
Case 2: 7(t*,¢) € N%p(Kb) for some t* € [0,1]. In this case ¢ has to be better specified.
We make a finer argument by choosing suitable [a, 8] C [0, 1] and observing that
i N _ Ol
HPG(1,) < M GI(5.€)) = H" G €) + [ 5 H (s, €)ds
_ P d
<HG0.0) + [ S H (s, ©)ds
fd
<b+e+ / %Hm(ﬁ(s, €))ds.
Noting that 7(0,&) = ¢ ¢ O = N,(K;) and 7j(t*,€) € N%p(f(b), we can find « and 8 such
that o o
() € ONy(Kp), 71(8) € ON2,(Kb),
and o 3 .
M(s) € Np(Kp) \ N2, (Kp) Vs € (o, ).
Hence we obtain by (2.7.44)
H™(7(1,€) <b+e—d(8—a)
We need an estimate from below of § — «, which is obtained by observing that 7(-,€) is a
path connecting 7(«, §) and 7(8, ), thus (recall that 1 > ||[W(£)||¢)
6 s
s-a= [ dtz [ IWGEEOeed
s ~/ . ~ ~
= [ 7 & O)lqeedt > distar (7i(a, £),7(5,€))
> distyy (N,(K), N2, () > 1
el M p b)s %p b = 3p
Finally
H™(i(1,€) <b+e—Lps<b—e¢
by our choice (2.7.45) of €.
As regards the second inclusion, we argue in a similar way. Let § € [H™ < b+ e]p. Case 1
can be done verbatim. In Case 2, if 7j(1,&) € O we are done; if not, then we repeat the
argument but with the path built thanks to 7(1,&) ¢ N,(K}) and 7(t*,€) € N%p(Kb).
6) Notice that, written W = (Wy, W1, W5), we have that Wy and Wj are even in u while Wy

is odd in u, since V is so and g, b(|[DH™(-)||. «) are even in u. Thus, by uniqueness of the
solution, we have that 7 satisfies the required symmetry properties.

The proof is thus concluded. |
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2.7.2 Minimax values

Minimax values a;(\)

We write for j € N, D; := {£ € R/ | |¢] < 1} and we introduce the set of paths
Li(\) = {v € C(D;, HX(RY)) | 7 odd, T(A,7(€)) < 0Y¢ € 0D;}
and
(V) :=_dnf sup T (X (6))-

By an odd extension from [0, 1] to [—1,1] = D;, we may regard I'1(A) = I'(\) and a;1(\) = a()N).
Thus these quantities can be seen as generalizations. As for j = 1, we prove the following
properties.

Proposition 2.7.4. Let Ao € RU {400} be given in (2.3.11), A < Ag and j € N.
1. Tj(A) # 0, thus a;(\) is well defined. Moreover, it is increasing with respect to \;
2. aj(A) < ajp1(N);
3. aj(A) > 0;

. i(A
4. 11m>\_>/\a % = 400,

5. if (g4) holds, then limy_, o, 2% = 0.

Proof. The proofs are quite the same of Propositions 2.3.2-2.3.6. We point out just some slight
differences.

1. For A\ < )\g, there exists tg > 0 such that

6/\ 2

As in [51], we find that there exists a continuous odd map ¥ : D; — H}(RN) — HE(RY)
with 7 (A, 7(§)) < 0. Extending 4 onto D; we find I';(\) # 0.

2. Since Dj C Djt1, we observe v|p, € I';(A) for v € I'j11(A). Thus we regard I'j11(A) C I';(A)
and obtain 2).

3. Clear by a;(A) = a(A) > 0 and point 2).
4. Again by lim)\%)\a % = 400 and point 2).
5. We consider the path 4 : dD; — HZ(R") obtained in 1) and introduce a path

€€ Dy ¥y () (- fuHle) € H@Y)

Arguing as in Proposition 2.3.6, we have 5). |
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Minimax values b;."’

We set

7" :={0eC(Dj,R x HE(RY)) | © is G-equivariant;
I7(6(0)) < B — 1
O ¢ Q, I™(O(&)) < By, —1forall £ €0D;}

and
b7 := inf sup Z™(©(E)).
’ O€l'f" ¢eD;
We notice that for j = 1 we obtain I'!* = I'" (up to an even/odd extension from [0, 1] to
[—1,1] = D1) and b{* = by,. So I'M" is a natural extension to build multiple solutions.
As in the case of I'™ and by,, we want to prove that I'7" # () and that, for a fixed k € N, there
exists an my, > 0 (possibly equal to 0) such that, if m > my, then bt <0 forj=1...k.

Proposition 2.7.5.

(i) For any A < Xo, m >0, j € N, we have I'[" # 0 and bI* < a;(\) — M.
(ii) For any k € N, set
- eoag(A)
= > ol
my = 2 )\12{0 a2 0 (2.7.47)

we have, for any m > my
bi* <0 forj=1,2,... k.

(iii) mg =0 for all k € N if (g4) holds. That is,

bj* <0 forall j€N.

Proof. For (i), the proof is similar to Proposition 2.6.1. We just need to set, for ¢y € I';(\),

(A4 L(1 =2[¢]), 0) if [ € [0,1/2],

Ya(§) = <)\7 o (é’(gm _ 1))) if |¢] € (1/2,1]

and we come up again to the same proof.
For (ii), (iii), we come up with a proof similar to Proposition 2.6.2, observing in addition
that my < myyq since ax(\) are increasing in k. |

By Proposition 2.4.2 and Theorem 2.5.1 Z™ satisfies the (PSP); condition for b < 0 and the
deformation lemma holds. Let mj > 0 be a number given in Proposition 2.7.5. For m > my, we
can see that 07" <0 for j =1,2,... k are critical values of Z™. If 07" are different, we directly
have multiplicity of solutions. To deal with the case 0" = b?? for some j # j', we need another
family of minimax methods, which exploits the topological information hidden in this equality.

Minimax values c;ﬂ

Let us define minimax families Ag” which allow to find multiple solutions. We use an idea from
[325]. In what follows, we denote by genus(A) the genus of closed symmetric sets A with 0 ¢ A
(see Appendix A.6).

Define, for each j € N,

AT ={A=0(D;n\Y) | 120, 0T},
Y C Dj4 \ {0} is closed, symmetric in 0,
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and genus(Y) <[}

and
cj' == inf supZ™.
AeAT A

In the following lemma, we observe that A;-" includes, in some way, I'j* and that it inherits
the property that the paths intersect 0.

Lemma 2.7.6.
(i) AT #0;
(ii) ¢ < b7
(iii) for any A € AT', we have AN OQ # (). As a consequence, we obtain

b = By = En, < &I

Proof. Indeed, we see that, by choosing [ = 0 and Y = () we have
{A=0D;) | ®elj} C AT

from which come the first two claims.

Focus on the third claim. Let A =0(D;1;\Y) and set U := ©71(2). By the symmetry in
(A, u) of © and the symmetry in u of Q we have that U is symmetric. Moreover, since ©(0) € 2,
we have that U C Dj4; C RI*! is a symmetric neighborhood of the origin. By Proposition A.14

we have
genus(0U) = j + L. (2.7.48)

Observe in addition the following chain of inclusions

QUN\Y =(@UND;)\Y = (D; 4 \Y)NOU C Dy \Y NOU =D, ;\Y NdU

hus
t 0 (aU\Y) co (D \YNaU) €O (D;\Y)Ne(@U) = AN dU).

Assume for the moment that it holds
O(oU) C 9. (2.7.49)
Then by the previous computation we have

0 (aU\Y) C Anon.

Thus, to reach the claim, we need to show that OU \ 'Y # (). But is an immediate consequence of
(2.7.48) and Proposition A.14 that

genus(OU \ 'Y) > genus(OU) —genus(Y) > (j+1)—1=j>1

which directly excludes the possibility that OU \ Y is empty.
Focus now on (2.7.49); we first observe that, by continuity, we have

dp,.,U=0p, ,(071Q) c e71(69),

J+l1 J+l

where dp,, is the boundary with respect to the topology restricted to Dj;, but this is not
enough, since dp,,,U is generally smaller than OU (the boundary made with respect to the

whole space R7*!), which is the one appearing in (2.7.48). Let thus ¢ € OU; we need to show
that ©(€) € 9. By definition of U, we have ©(¢) € ©(0-1(Q)) C Q; assume by contradiction
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O(&) € Q. We first observe that £ ¢ 0D, ;, by definition of © € 7%, thus £ is in the interior

of Dj4;. We then can find a neighborhood N; of £ (with respect to RI*!) contained in Djy,
and a neighborhood My of ©(€) contained in ; set N := N3 N ©~(My), we have that N is a
neighborhood of ¢ (with respect to R7t) contained in U, which implies that ¢ is in the interior
of U, absurd. This concludes the proof of the first part.

We prove now the consequence. Indeed, for each A € A;T” we have

E, = mfI < inf Z™ < sup I™ < supIm
0NNA 90NA

and thus the claim passing to the infimum over Ag”. |

Let us now show the main properties of A;” and ¢, which will actually be the only ones
used in the multiplicity result.

Proposition 2.7.7. Let j € N.
1. AT #0;

2. A?}H - Am, and thus ¢i* < ¢ y;

3. let A€ AT and Z C R x H;?(RN) be G-invariant, closed, and such that 0 ¢ Ps(Z) and
genus(P(Z)) <i. Then A\ Z € AT",.

Fiz now k € N, and let m > my, where my, has been introduced in (2.7.47). Then

4. ¢ <0 and I™ satisfies (PSP)

5. if A€ A} and n is a deformation as in Theorem 2.7.1 for b= c', then n(1,A) € AT".

Proof. Properties 1) and 4) have already been shown in the Lemma 2.7.6, while property 2) is a
consequence of the definition. Let us see properties 3) and 5).

i+ 7 -
3) Let A=0(D;1,\Y) € A" and let Z be G-invariant, closed and such that 0 ¢ Py(Z) and
genus(P(2)) <. Assume it holds

A\Z =0((Dj \Y)\071(2)) (2.7.50)
= O0(Dg—iy+a) \ (Y UOT(Z)));

if genus(Y U©~1(Z)) <1+ we have the claim. But this is a direct consequence of the
assumptions and Proposition A.14, since

genus(Y U©O1(Z)) < genus(Y) + genus(071(2))
<1+ genus(h(©071(2)))
=1+ genus(Pa(Z)) <l+i

where we have set h := P, 0 O, which is an odd map and thus admissible for the genus.
Turn now to (2.7.50). Set B := D;;\ 'Y and W := ©7(Z) we have to prove

O(B)\ O(W) = O(B\W).
We have

6(B)\ (W) 6B\ W) C 6B\ W) &

and

o(B\W) ¢ e@\W) & 6(B)\ 6 C 6(B)\ o)

where
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(i) is due to the fact that W is closed,;
(ii) B\ W C Dj4, is compact, thus ©(B \ W) is closed;

)

)
(iii) derives from the continuity of ©;
iv)

(iv) is due to the fact that W is a preimage.

5) Consider 0 < € < 1, b = ¢j* =2 By and n as in the deformation lemma, and fix A =

O(Dj+1\Y) € AT with © € I'T ;. To show that n(1, A) € AT* and conclude the proof, it is

sufficient to show that © :=7(1,0) € 7, as well.
o O(=6) = n(1,0(=¢)) = n(1,01(=£), O2(=£)) = (1, 01(£), ~O2(¢)) and thus

(01(=€),02(=8)) = (m(1,01(€), =©2(9)), m(1,©1(£), =6:(£)))
= (m(1,01(8),05(9), ~m(1,01(£), ©:(9)) ) = (1(€), ~65(9))

which shows that (:)1 is even and (:)2 is odd.
e By Lemma 2.7.6, for £ =0 and £ € 0D we have Z7"(O(§)) < B, —1=Ep,, —1 <

) < Bn,
cn — £, thus ©(¢) € [I™ < ¢ — £]. Therefore ©(€) = 1(1,0(¢)) = O(¢) for £ =0 and

§ € 0Dj4, and the same properties are satisfied. |

2.7.3 Multiplicity theorem

Fix k € N*, and let AT* and ¢}" be given in the previous Section for j =1...k. Exploiting the
properties given in Proposition 2.7.7, we can find multiple solutions.

Theorem 2.7.8. Fiz k € N*, and assume m > my. We have that
A<y <<t <0
are critical values of T™. Moreover

(i) if, for some ¢ > 1,

cit <y <<y,
then we have q + 1 different nonzero critical values, and thus q + 1 different (pairs of)
nontrivial solutions of (2.1.2);

(ii) if instead, for some q > 1,

cjt=dly ==, =b (2.7.51)
then
genus(Py(KP9F)) > g +1 (2.7.52)

and thus (by Proposition A.1}) #Py(KF5T) = +o00, which means that we have infinite
different solutions of (2.1.2).

Summing up, we have at least k different (pairs of) solutions of (2.1.2) which satisfy the Pohozaev
identity (2.1.3).

Proof. Tt is sufficient to show only the property (2.7.52) on the genus: indeed by choosing ¢ = 0
we have that, for each j, #(K, gLSP ) > 1 and thus cj" is a nontrivial critical value.
J

By the (PSP), we have that K,fDSP is compact, thus Pg(K,fDSP) is compact; moreover it is
symmetric with respect to 0 and does not contain 0 (see Corollary 2.4.3).

By Proposition A.14 we can find a (closed, symmetric with respect to origin, not containing the
zero) neighborhood N of Py(K[™5) which preserves the genus, i.e. genus(N) = genus(Ps (K} 5T)).
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We can easily think N as a projection of a neighborhood Z of K'5F (i.e. N = Py(Z)) satisfying
the properties of Proposition 2.7.7.

By Theorem 2.7.1, there exist a sufficiently small € and an 1 such that n([Z™ <b+¢|\ Z) C
[Z™ < b — ¢]. Corresponding to e, by definition of ', there exists an A € AT} such that
supy I™ < b+e¢, that is A C [Z < b+ ¢]. Thus, being 7(1, ) continuous

n(LANZ) Sy, [T <b+e]\Z) S, [I™ <b+e]\ 2)
CZm<b—¢el=[TI"<b—¢g],

and hence
sup I <b-—e. (2.7.53)
n(1,A\2)
On the other hand, assume by contradiction that genus(Py(K{°T)) < ¢, i.e. genus(P2(Z)) < q.
We use now the properties on ¢} and A’j“.
Replacing j with j 4+ ¢ and i with ¢ and applying Proposition 2.7.7, we have A\ Z € A" by
property 5) of Proposition 2.7.7 we obtain n(1, A\ Z) € AT, which implies (by definition of ¢]")

sup I™ >c" =b.
n(1,A\2)

This is a contradiction with (2.7.53), and thus concludes the proof. |

Proof of Theorem 2.1.3. As consequence of Theorem 2.7.8, we derive (i). We pass to prove
(ii). Under condition (g4), we have my = 0 for all k € N. Thus for any j € N, ¢]" is a critical
value of 7™ and ¢* < b" < 0. Since ¢]" is an increasing sequence, we have ¢* — ¢ < 0 as j — oc.

We need to Shovv]that c=0. ’

By contradiction we assume ¢ < 0. Then K57 is compact and KZ9F N (R x {0}) = 0. Tt
follows that ¢ = genus(Pe(K297)) < co. Arguing as in the proof of Theorem 2.7.8, let § > 0 be
such that ¢ = genus(Py(Ns(KLIST))) < co. By Theorem 2.7.1, there exist € € (0,1) small and
n:[0,1] x R x H¥(RY) — R x H3(RY) satisfying

n(1,[I™ < é+e]\ Ns(KPIP) C[I™ < ¢ —¢] (2.7.54)

and

n(t, A\ u) = (A\u) if Z™(A\u) < B, — 1. (2.7.55)

We can choose j € N sufficiently large such that ¢j' > ¢ —¢ and take B € A;-’iq such that
B C [I™ < ¢+ ¢]. Then we have

B\ Ns(KF5P) e AT

From equations (2.7.54), (2.7.55) we derive ¢* < ¢ — ¢, which gives a contradiction. |

Remark 2.7.9. We observe that, even if the problem is invariant under translations, the found
solutions are not translations of a same solution since they all are radially symmetric. Moreover,
assuming (g4), since 0 > ¢ = 0 we easily find a sequence of solutions with distinct energy levels.

2.8 L’-minimum

In Theorems 2.1.1 and 2.1.2 we find a solution via mountain pass minimax methods. We remark
that this solution is characterized as minimizer of the functional £ on S,,, where £ : H(RY) — R
is defined by
1
£u) = 5l -a)Pul - [ 6t
RN
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and S, is the L2-sphere in H?(RY), i.e.
Sm = {u € HYRY) | ||u]l3 = m}.

Set
Km = inf L(u).

’U,ESm

Proposition 2.8.1. Assume (gl)—(g3), and let m > my, where myq is introduced in Proposition
2.6.2. We have that the following statements hold.

(i) The Mountain Pass level and the ground state level coincide, i.e.
B = by (2.8.56)
In particular, thanks to Corollary 2.6.5, there exists a ground state of Lis,, .

(ii) Every ground state of Ls,, satisfies the Pohozaev identity (2.1.3) with yu the associated
Lagrange multiplier. Thanks to (2.8.56), the same conclusion holds for every Mountain
Pass solution at level by,.

(iii) Every ground state of L;s, has a positive associated Lagrange multiplier. This means that
every ground state of Ls,, is a solution of problem (2.1.2).

Moreover, if (g4) holds, then mg = 0.

Proof. (i) Let u, be the Mountain Pass solution obtained in Corollary 2.6.3, which verifies
|u« |2 = m. Thus,
Em < L(uy) = by, < 0. (2.8.57)

In particular, by (2.8.57) we can find a minimizing sequence (uy), C Sy, for k,, satisfying

L(u,) < 0, and thus we can set

An

e (SH(—A)S/Quan - N/J(un)) >0

2

" Nm

so that P(An,un) =0, ie., (An, upn) € 0. At this point Proposition 2.6.2 implies
Em +0(1) = L(up) = L™ (An, upn) > Em = by

Passing to the limit, together with (2.8.57), we have (2.8.56).

(ii) Let ug be a minimizer of £ on S,,. Corresponding to ug, there exists a Lagrange multiplier
o € R such that

(—A)* g 4 pouo = g(uo),

and thus, in particular,

=) 2u0l+ palfuoll = [ gty d =0 (28.58)

We show first that ug satisfies the Pohozaev identity. In fact, we consider the R-action @ :
R x S, = S, defined by

(Ppv)(x) := egev(eex), (2.8.59)

since ||®gv||3 = ||v||3. Then we have

1 _ N
£(@pug) = 3¢ (~A) w3 e /RN G5 up).
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Since ug is a minimizer, we have d%|9:o£(q)9u0) = 0, that is,

N
s|[(=A)*ug|2 + N/ G(up) — 2/ g(up)ugdx = 0. (2.8.60)
RN RN

From (2.8.58) and (2.8.60), the Pohozaev identity follows

N — 2s
2

s N
-0 0l + Gululg - [ Gl =0, (2.8.61)
(iii) Finally, from (2.8.57) we have L(ug) = Ky, < 0, that is
1
SN2 2wl [ Glu) = rm <0, (2.8.62)
2 RN

which joined to (2.8.61) gives up > 0. This concludes the proof. |

Remark 2.8.2. By [275, Theorem 4.1], we have that actually every L*-minimum is radially
symmetric (up to a translation). Thus k,, coincide with the infimum made on the L2-ball of the
whole space H*(RY).

2.9 Relation between constrained and unconstrained problems

Let 0 < g < o and m > 0. By joining the results of Proposition 2.6.2 and Proposition 4.2.9, we
proved the following relation.

r(m) = inf | (p(k) — pm) (2.9.63)

where we slightly changed the definition of L?-minimum

wm)i= it (Gl - [ Gw)

u€H(RY)
Sllul3=m
and of Pohozaev minimum
() = in (G122~ [ G +5lulg):
ue HE (RN)\{0} 2 RN 2

I(=a)*"2ul3+25 (5 ull3~ fun G(u))=0

we recall that, when s € (3,1) or g € C7 (R) for some o > 1 — 2s, p(p) is actually a ground
state level.

The relation between the unconstrained and the constrained problem is an old-fashioned
problem, which has been deeply investigated in a recent paper by Jeanjean and Lu [236] in the
case s = 1. We see that equation (2.9.63) gives an interesting relation between the two energy
levels: this relation may be also reformulated by saying that

k(m) = —p*(m) (2.9.64)

where p* is the Legendre transform of a. A relation of this type, but in a different framework,
has been also obtained by Dovetta, Serra and Tilli in a very recent paper [162]. Here, relying on
the convexity of the energy functions (due to the polynomial shape of g), they exploit (2.9.64) in
order to achieve interesting results.

We believe thus that (2.9.64) could give more insights in the study of the relation between
these two problems.



CHAPTER

Choquard-Hartree-Pekar equations: multiplicity of solu-
tions

In this Chapter we study the following nonlinear Choquard-Hartree-Pekar equation
—Au+ pu = (I * F(u)F'(v) in RY,

where N > 3, a € (0,N), I, is the Riesz potential, and F is an almost optimal subcritical
nonlinearity. The goal is to prove existence of infinitely many solutions v € H}(R™), by assuming
F odd or even.

We analyze the two cases: y is a fixed positive constant or y is unknown and the L2-norm of
the solution is prescribed, i.e. fRN u? = m > 0. Since the presence of the nonlocality prevents
to apply the classical approach introduced by Berestycki and Lions in [51], we implement a
new construction of multidimensional odd paths, and we find a nonlocal counterpart of their
multiplicity result. In particular we extend the existence result in [302], due to Moroz and Van
Schaftingen.

This Chapter is mainly based on the paper [116].

3.1 Convolution with Riesz potential: a self-interaction

Given a nonlinearity F € C'(R,R) and set f := F’, we are interested to seek for multiple
solutions u € H!(RY) of the nonlocal equation

— Au+ pu = (I * F(u))f(u) in RY, (3.1.1)

where N > 3 and o € (0, N). In literature the semilinear equation (3.1.1) with nonlocal source
has several physical motivations and it is usually called nonlinear Choquard (or Hartree, or Pekar)
equation.

In 1954 the equation (3.1.1) with N = 3, o = 2 and F(s) = 3|s|?, that is

— Au+ pu = ( * ]u\Q) u in R3 (3.1.2)

1
4 |x|
was elaborated by Pekar in [313] (see also [260]) to describe the quantum theory of a polaron
at rest, through the use of the Newton potential ﬁ\ﬂﬂl' The idea of the convolution as a feature
of interaction of a body with itself was exploited also by other authors: in 1976 it was arisen
in the work [264] suggested by Choquard [106] on the modeling of an electron trapped in its

79
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own hole, in a certain approximation to Hartree-Fock theory of one-component plasma (see
also [194,196,355]). In 1996 the same equation was derived by Penrose in his discussion on
the self-gravitational collapse of a quantum mechanical wave-function [299,314-316] (see also
[196,361,362]) and in that context it is referred as Schrodinger-Newton system (see (1.3.39)).
See also Section 3.1 for a derivation concerning exotic stars.

If w is a solution of (3.1.2), then we notice that the wave function

U(z,t) = eMu(z), (z,t) € R? x [0, +00)
is a solitary wave of the time-dependent Hartree equation [216]

1
47 |x|

ity = — Ay — ( ] W) ¥ in RS x (0, +00); (3.1.3)

thus (3.1.2) represents the stationary nonlinear Hartree equation.

As already pointed out in Chapter 2, the study of standing waves of (3.1.3) has been pursed
in two main directions, which opened two different challenging research fields.

A first topic regards the search for solutions of (3.1.2) with a prescribed frequency p and
free mass, the so-called unconstrained problem. The second line of investigation of the problem
(3.1.3) consists of prescribing the mass m > 0 of u, thus conserved by 1 in time

/ [(z, t)[*de =m YVt e0,400),
RS

and letting the frequency p to be free. Such problem is usually said constrained.

For the unconstrained problem, the first investigations for existence and symmetry of the
solutions to (3.1.2) go back to the works of Lieb [265] and Menzala [293], and also to [108,299,355]
by means of ordinary differential equations techniques. We mention also the recent papers by
Lenzmann [257] and by Winter and Wei [375] about the nondegeneracy of the unique radial
solution of (3.1.2).

Variational methods were also employed to derive existence and qualitative results of standing
wave solutions for more generic values of o € (0, N) and of power type nonlinearities F'(t) = 113|t|p:
in particular Moroz and Van Schaftingen [300] (see also [304]) considered the special model

— Au+ pu = (I * [ulP)|ufP~2u  in RY, (3.1.4)
and they proved that (3.1.4) has solutions if

N+a< <N+a
N p

2 = =2F. (3.1.5)

N-2 ™
When dealing with variational (and regular) solutions, they proved that range (3.1.5) is optimal.
Moreover in [300] they showed that all positive ground states of (3.1.4) are radially symmetric
and monotone decreasing about some point and derived the decay asymptotics at infinity of
such ground states (see [109] for p > 2, and also [279]). Furthermore, in [205, 206, 332] the
authors study, for some values of p and «, least energy nodal solutions, odd with respect to a
hyperplane; see also [109, 128,372,378, 384] for other results on sign-changing solutions with
various symmetries and saddle type solutions.

Recently in [302] Moroz and Van Schaftingen considered the problem (3.1.1) when F is a
Berestycki-Lions type function under the following general assumptions:

(F1) F € CY(R,R);
(F2) there exists C' > 0 such that, for every s € R,

[sf(s)] < C(s + |s[%)

I
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(F3)

Fs) o o FO)

50 |S|2ff 7 sotoo |s|%

(F4) F(s) # 0, that is, there exists sp € R, sp # 0 such that F(sg) # 0.
In particular they prove the following theorem (see [302, Theorems 1 and 4]).
Theorem 3.1.1 ([302]). We have the following results.

o Assume (F1)~(F4). Then there exists a ground state solution u € H'(RY). Moreover

u € VVIZO’C’](RN) for each ¢ > 1 (in particular, u is Hélder continuous);

o Assume (F1)-(F2), f odd and with constant sign on (0,+0c0). Then every ground state has
strict constant sign (strictly positive or negative) and it is radially symmetric with respect
to some point in RV,

The qualitative result contained in Theorem 3.1.1 will be extended in this thesis to the case
f even, see Theorem 4.5.3. The existence of an infinite number of standing wave solutions to
(3.1.2) was instead faced by Lions in [271] (see also [128]); here the homogeneity of the source
plays a crucial role in order to work on finite dimensional subspaces. Similar ideas have been
applied in [8,323] in presence of more general sources satisfying Ambrosetti-Rabinowitz type
conditions. We remark that all these multiplicity results deal with odd power nonlinearities f.

To our knowledge it is still an open problem the existence of infinitely many radially symmetric
solutions for the nonlinear Choquard equation (3.1.1) under the optimal assumptions (F1)-(F4)
and symmetric conditions on the nonlocal source term (I, * F'(u))f(u), and this is the aim of
this Chapter. We note that this nonlinear term is odd both if f is even or odd.

Existence of a solution for the nonlinear Choquard equation (3.1.4) under mass constraint
has been obtained by Ye [388]; see also [261] for odd powers-sum type functions. More recently,
Cingolani and Tanaka in [124] obtained existence of a solution u € H(RY) to

—Au+ pu = Iy F(u)f(u) in RV,
/‘ﬁmzm (3.1.6)
RN 7

assuming that F satisfies (F1), (F4) and it is L2-subcritical, namely

(CF2) there exists C' > 0 such that, set 2] = W, for every s € R,
# m
|sf(s)] < C (s +[s]*);

(CF3)

1mf%2:0, im ) g,

s—0 ‘8‘20 s—++00 ‘5‘204
The existence result in [124] relies on a Lagrangian formulation of the problem, in the spirit of
Chapter 2.

Multiplicity of radial standing wave solutions to (3.1.3) with prescribed L?-norm has been
instead faced again by Lions in [271] (see also [118] for the planar logarithmic Choquard equation);
as regards instead the case of general nonlinearities f, recently Bartsch et al. [37] obtained the
existence of infinitely many solutions of (3.1.6) by assuming that f is an odd function which
satisfies monotonicity and Ambrosetti-Rabinowitz conditions. We highlight that the restriction
on odd functions is not just a matter of symmetry of the functional, but it is related also
to some sign restriction on the function f. The authors in [37] rely on mountain pass and
Concentration-Compactness arguments, together with the use of a stretched functional, i.e. a
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functional in an augmented space which takes into consideration scaling properties and the
Pohozaev identity.

It remains open the challenging problem of the existence of infinitely many solutions for the
constrained nonlinear Choquard equation (3.1.6) under optimal assumptions on the nonlinearity
f, when monotonicity and Ambrosetti-Rabinowitz type conditions do not hold or f is not odd.

In the present Chapter we will give an affirmative answer to both the unconstrained and
constrained problems when F' satisfies the general Berestycki-Lions type assumptions (F1)—(F4)
and (F1)-(CF2)-(CF3)-(F4) respectively, together with the symmetric condition

(F5) F'is odd or even.

We begin to notice that despite [124], where existence is investigated, to gain multiplicity
the symmetry of the function F' plays a crucial role. In particular, we assume F' to be odd or
even, which guarantees the evenness of the energy functional associated to (3.1.1). We emphasize
that the possibility to assume both the symmetries on F' is a particular feature of the nonlocal
source: indeed, in the source-local case [51,224] (see also Chapter 2), the nonlinear term is usually
assumed odd in order to get the symmetry of the functional. We mention the recent paper [137]
where the existence of a single nonradial solution to (3.1.1) is obtained under the condition (F5).

We start to analyze the constrained case, which appears, as usual, more delicate. By virtue
of [310], radially symmetric solutions to (3.1.6) can be characterized as critical points of the
C'-functional £ : H}(RY) — R

Llu) = ;/RN IVl de — % /RN(Ia ¥ F(u))F(u) dz,

constrained on the sphere
S = {ueHﬁ(RNH u2dx:m}.
RN

A possible approach to problem (3.1.6) is to minimize £ on the sphere S,,,, whenever the functional
is here bounded. Nevertheless, in the spirit of Chapter 2, for the general class of nonlinearities
related to [50,302], considered in this thesis, we introduce a Lagrangian formulation of the
nonlocal problem (3.1.6), extending a new approach introduced by Hirata and Tanaka [224] for
the local case. We highlight again the advantage of this method, that can be suitably adapted to
derive multiplicity results of normalized solutions in several different frameworks.

We recall here briefly the ideas of Chapter 2. Writing Ry := (0, 4+00), a solution (u,u) €
R, x HY(RYN) of (3.1.6) corresponds to a critical point of the functional Z™ : Ry x H}(RY) — R
defined by

T () = ;/RN Vul? da — ;/RN(Ia  F(u))F(u) o+ 2 </sz 2 de —m> .

We seek for critical points (u,u) € Ry x HY(RY) of Z™, namely weak solutions of 9,Z™(u,u) = 0
and 0,7 (p,u) = 0.

Inspired by the Pohozaev identity, we introduce the Pohozaev functional P : Ry x H}(RY) —
R by setting

N -2

N
P, u) :z/ |Vu|2d:c—i—N'u/ u? dr — —|—oz/ (I * F(u))F (u) dz
2 RN 2 RN 2 RN

and the Pohozaev set

Q= {(u,u) € Ry x Hy(RY) [ P(p,u) > 0} U{(1,0) [ € Ry}
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We note that {(p,0) | p € Ry} C int(Q2) and thus
00 = {(,u) € Ry x HARY) | P(p,u) = 0, u £ 0},

where the interior and the boundary are taken with respect to the topology of Ry x H}(RY).
Therefore (p,u) € 0 if and only if u # 0 satisfies the Pohozaev identity P(u,u) = 0. We
recognize a Mountain Pass structure for the functional Z™ in Ry x H}(RY), where the mountain
is given by 0€2. We call 002 a Pohozaev mountain for Z™. We emphasize that under assumptions
(F1)-(F2), if u € H}(RY) solves 0,Z™(u,u) = 0 with p € R, fixed, then P(u,u) = 0.

Using a variant of the Palais-Smale condition [224,231], which takes into account the Pohozaev
identity, we will prove a deformation theorem which enables us to apply minimax arguments in
the product space R x H}(RN ). We will prove the existence of multiple L?-normalized solutions
detecting minimax structures in such product space.

We state our main results.
Theorem 3.1.2. Suppose N >3, a € (0,N) and (F1)-(CF2)-(CF3)-(F4)-(F5).

(i) For any k € N there exists my > 0 such that for every m > my, the problem (3.1.6) has at
least k pairs of nontrivial, distinct, radially symmetric solutions.

(ii) Assume in addition an L?-subcritical growth also at zero, i.e.

(CF4)
iy 170
0 |5] 28

additionally, if F' is odd, assume that there exists dg > 0 such that F' has a constant
sign in (0, do] and

F(sh
sup (sh)

s€(0,80], hefo,1] F'(8) ( )

for example, this is satisfied if |F(s)| is assumed non-decreasing in [0, dp].

Then my = 0 for each k € N, that is for any m > 0 the problem (3.1.6) has countably many
pairs of solutions (fn, un)n satisfying L(u,) < 0, n € N. Moreover we have

L(up) =0 asn— +oo.
Remark 3.1.3. We comment condition (3.1.7). Set

F(sh
M := sup (sh)
s€(060], hefo,1] £(8)

< +00

we have, when |F(s)| is non-decreasing, M = 1. As a nontrivial example one can consider
B € (27,2™) and F oscillating near zero between |s|® and 2|s|®, so that M < 2; for instance the
odd extension of

F(s):=s(2 +sin(})) ass— 0F.

If instead F oscillates (not strictly) between |s|®* and |s|’2, with 2% < 1 < B2 < 21, then
M = +4o00; thus for instance the odd extension of

F(s):=s" (1 +sin(l)) + s (1 —sin(l)) ass—0F

is not covered by (3.1.7).
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Remark 3.1.4. We observe that, by substituting F' with —F, there is no loss of generality in
assuming
F(s9) >0 for some so # 0

in (F4) (so can be chosen positive if, for ezample, (F5) holds) and
F(s)

s—0F ’8’23”

:+Oo

in (CF4). Thus, for the remaining part of the Chapter, we assume this positivity on the right-hand
side of zero.

A key point of the argument is the construction of multidimensional odd paths. When f
satisfies some Ambrosetti-Rabinowitz condition (i.e., F' can be estimated from below by an
homogeneous function [¢[P), the construction of such a path classically relies on the equivalence of
the H'-norm and the LP-norm on finite dimensional subspaces of H!(RY). When such condition
is no longer available, a finer construction is needed: in the celebrated paper [51] Berestycki and
Lions build this path for a local problem by exploiting an inductive process based on piecewise
affine functions.

In our nonlocal case, in order to prove the existence of multiple solutions for m > 0 (point
(7) of Theorem 3.1.2), unlike the elaborated approach of [51] we can obtain the existence of
a multidimensional odd path by exploiting the positivity of the Riesz potential functional. A
similar approach can be implemented to gain existence of infinitely many solutions for any m > 0
when F' is even (first part of point (iz) of Theorem 3.1.2), since in this case F' can be assumed
positive in a neighborhood of the origin. See anyway Remark 3.1.6 below.

A quite delicate issue, instead, comes up when F is odd. Differently from [224] and Chapter
2, the classical argument given by [51] cannot be applied directly in the context of nonlinear
Choquard equations because of the presence of a nonlocal source, and we need to implement a
new approach to gain the existence of an admissible odd path.

To this aim we proceed by finding suitable annuli: using characteristic functions corresponding
to the annuli, we construct our multidimensional odd paths. Here interactions between these
characteristic functions produced by the Riesz potential play a crucial role, in particular the
index « is related to the strength of interaction and the case a € (0, 1] reveals to be more delicate.
To this aim we use sharp estimates for the Riesz potential obtained by Thim [359].

As a further byproduct of the previous approach we gain the existence of infinitely many solu-
tions for the unconstrained problem. More precisely, defined the C-functional J, : H}(RY) — R
by setting

1

Tu(u) == / \Vu|2dx+'u/ u2dx—1/ (I * F(u))F(u) dz,
2 RN 2 RN 2 RN

we establish the following result.

Theorem 3.1.5. Suppose N > 3, a € (0,N) and pn > 0 fized. Assume that (F1)-(F5) hold.
Then there exist countably many radial solutions (uy,), of the nonlinear Choquard equation (3.1.1).
Moreover we have

Tu(un) = +00  asn — 4o0.

Our multiplicity result is the counterpart of what done in [51] for the local case with odd
nonlinearities and extend the existence result in [302] due to Moroz and Van Schaftingen.

Remark 3.1.6. We highlight that the easier approach for building a multidimensional path, based
on the positivity of the Riesz kernel (Proposition 1.5.2), cannot generally be applied to more
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generally frameworks (also if F' is even); for examples, when dealing with kernels K = K(x,y)
which do not makes the functional

g /RN . K(z,y)g(z)g(y)

positive (for example, K (x,y) sign-changing). In this case, the approach here developed, based on
suitable annuli, might instead be adapted. This is an interesting line of research for the future.

The Chapter is organized as follows. In Section 3.2 we focus on the construction of multi-
dimensional paths, by dealing first with an easier version based on the positivity of the Riesz
potential, and then a refined version based on some suitable annuli and essential interaction
estimates for non-local terms. Section 3.3 is then dedicated to the study of the asymptotic
behaviour of the mountain pass values, according to variable values of u. Afterwards, in Section
3.4, we detect a mountain pass structure, built on the Pohozaev mountain, for the constrained
case, and in Section 3.5 we derive a Palais-Smale-Pohozaev condition. In Section 3.6 we introduce
an augmented functional which will be used to gain a deformation lemma, and we further study
suitable minimax values defined through the tool of the genus which allows to prove the main
Theorem 3.1.2. Finally in Section 3.7 we deal with the unconstrained case by proving Theorem
3.1.5.

3.2 Multidimensional annuli-shaped paths: even and odd non-
linearities

In this Chapter we briefly denote by ¢ the lower-critical exponent 2f and by p the L2-critical

exponent 27, i.e.
N+« N+a+2

N o P N
Again, to avoid problems with the boundary of R, we write from now on (see Section 4.2.2
for a different approach)

q:zQﬁ:

p=ete(0,4), AeR.

We also set
D(u) := Do(F(u), F(u)) = /R (T F(u)F(u) dr.

Using Proposition 1.3.1 and (F1)-(F2), we notice that D is continuous on L?(R™) N L2 (RN),

where 2* = 22 is the Sobolev critical exponent, and thus continuous on H}(R™); notice that if

we assume (CF2), then D is continuous also on L(RN) N L** e (RM).
To deal with the unconstrained problem, we further define the C'-functional J : R x
H}(RYN) — R by setting

1 1 e
T = 3IVul3 = 5D() + S ull3, (A u) € Rx HY(EN). (3.2.8)

For a fixed A € R, u € H}(RY) is critical point of J(),-) if and only if u solves (weakly)
— Au+eMu= (Io* F(u))f(u) inRY. (3.2.9)
In this Section we study the geometry of
u e HRY) — J(\u) € R,

for a fixed A € R. We introduce a sequence of minimax values a, (), n € N*: these values play
important roles to find multiple solutions for the constrained problem (Theorem 3.1.2) as well as
for the unconstrained problem (Theorem 3.1.5).
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For n € N* and A € R we introduce the set of paths
Ln(A) = {7 € C(Dn, H; (RY)) | 7 0dd, T (X, 7j0p,) < 0}

and the minimax values
an(A) := inf sup J(X, v(£)).
¥€ln(A) ¢eDy,

For n > 2 the nonemptiness of I',,(A) has to be checked; for n =1 we refer to [302, claim 1 of
Proposition 2.1]. Classically, in the local framework this fact was proved in [51] by constructing
inductively piecewise affine paths. This construction does not fit the nonlocality interaction given
by the Choquard term, thus we need another approach.

Proposition 3.2.1. Assume (F1)—(F4) and F(£sg) # 0. Let n € N* and A € R. Then
LX) # 0, thus a, () is well defined. Moreover, an(\) > 0 and it is increasing with respect to A
and n.

Proof. Start observing that the polyhedron

5 {t: (t1,.. ) | max |t;] = 1}
i=1,...,n
is homeomorphic to dD,, (we passed from the L? to the L norm). Let us fix eq, . .., e, € C2(RY),
each of them between 0 and 1, radially symmetric, equal to one in some annulus A;, and such
that their supports are mutually disjoint. Then set v : ¥ — H}(RY) by

n
Y(t)(@) == s0 ) tiei(x) (3.2.10)
i=1
for every t = (t1,...,t,) € ¥ and € RV, The map 7 is clearly odd and continuous. Moreover

every t € ¥ has at least a nontrivial component |t;| = 1, thus we have F(v(t)(x)) = F(sotiei(z)) =
F(£s0) # 0 on A;, hence F(v(t)) #Z 0. By Proposition 1.3.2 we have

D(v(t)) >0 for each t € X.

Since
Do~vy: ¥ =R

is continuous, and ¥ is compact, we obtain

min D(v(t)) =: C >0,

ie.
D(y(t)) > C >0 foreachte .

Set moreover M := maxs [|7[|%: € R. By scaling, we obtain

9N—2 , HNB)\ ) N+«
OOC/0) = 1103 + = @ ~ 5D ()
9N—2 eNe)\ 0N+a
< M M —
S + 5 5 C<0

for some § = 6* > 0. Thus we consider 7 := (-)(-/6%) : 0D,, — H}(RY). Finally we extend 7

to D,, by
316) = Ie ()

for every £ € D,, \ {0}, and 5(0) := 0. Therefore 5 € T',(\) # 0.
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What remains to prove is the monotonicity and positivity of a,(\). Since D,, C Dy41, we
may regard for v € I'),11(N),
Y\ Dy, € Fn()‘)

Thus we have a,(\) < an+1(A). Since J (A, u) is monotone in A, we also have the monotonicity
with respect to A.
The positivity of aj()) is essentially obtained in [302] (see also [124]). Thus

an(N) > ai(A) > 0. |

In the proof of Proposition 3.2.1 we hardly relied on the positivity of the Riesz potential
functional given in Proposition 1.3.2, to obtain the existence of path v : D,, — H}(R") and a
C > 0 such that

D(v(&))>C >0 for each & € OD,,. (3.2.11)

Notice moreover that this « satisfies v(0€) = 6v(&) for any £ € D,, and 6 € R. Anyway, no good
information on the constant C' appearing in (3.2.11) are given by this result.

A useful estimate in order to get infinitely many solutions for any m > 0, when (CF4) holds,
is the one which relates D(67) to F(fsg) (see Lemma 3.2.8 and Section 3.3), that is

D(04(€)) > C(F(£0s0))?  for each & € D, and 0 € [0, 1] (3.2.12)

for some uniform C' > 0. When F is positive in a neighborhood of the origin (which is the case
of F even and (CF4)), then one can build a suitable v which satisfies (3.2.12).

Proposition 3.2.2. Assume (F1)—~(F4). Assume moreover that F is positive in some [—sg, So],
F(£sg) # 0. Let n € N* and A € R. Then the path v € T'y,(\) defined in (3.2.10) satisfies
(3.2.12).

Proof. Assume the notation of the proof of Proposition 3.2.1. For each t € X, there exists
|ti| = 1, thus, by exploiting that fsot;e; € [—so, so] we obtain

1
I
%\
4
T
z
s
8
|
N
S—
By
—
>
»
o
=
D
s
S—
S—
S
—
>
»
o
S
)
oL
—
K
SN—
SN—

which is the claim. |

When F is odd (and thus it cannot be positive around the origin) it seems not an easy task
to build a v € T',,(\) satisfying (3.2.12); indeed some estimate from below on

[/ Lo -y POQ@IFOOW)
R JRY (F(s0))

uniform for  — 0 seems required; this is related to quotients of the type ?Zﬁ) with s € (0, s0]

and h € [0,1]. This is essentially the meaning of condition (3.1.7).

To deal with this case we need a deep understanding of the Riesz potential on radial functions.
We thus give now a different construction for a v € I'y,(A): this procedure might be investigated
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also for more general Choquard-type equations, where different kernels (possibly sign-changing)
appear.

We start by recalling a result contained in [359, Theorem 1] (see also [294, Lemma 6.3] and
references therein).

Theorem 3.2.3 ([359]). Let a € (0, N) and u € LY(RN) N L>®(RY) be radial. Then I, * u is

radial and ~ N i
r P P
1, =r® F,(-) (-~ — 3.2.13
ax )= [ Fa (2) (2) ) (3:2.13
where Fy, is positive and it satisfies, for some constants Cn o, CN,c0, Cn,a > 0,
F,
Fo(s) = Cnpo ass—0, 3—(}9\/) — CNoo S8 — 400
S
and Fu(s)
w(s
—1 ass—1, 3.2.14
Gols) ( )
with
CN,a ifOzE (I,N),
Ga(s) = Cnallog|s—1|| ifa=1, (3.2.15)

Cnals =171 ifae(0,1).

For a proof of Proposition 3.2.1, we prepare some notation and some estimates. We introduce
the annuli

A(R7 h) = {I‘ S RN ’ |$’ S [R - h'7 R+ h]}7 X(R7 h7 ) ‘= XA(R,h)
for any R > h > 0. We have the following key estimates.

Lemma 3.2.4. It results as h — 0

h? if a € (1, N),
// Io(z — y)x(1, h;z)x(1, hyy) dedy ~ { h*|logh| if a =1,
RN xRN 1ta )
h if « € (0,1).

Proof. We apply Theorem 3.2.3 to u(|z|) = x(1, h; |z|). In particular, by (3.2.13) we have

= T —y)u(x)u Tady = - ) (P u(r)yrN "t dr
Sem [ dela = put@uty) dedy = € [ (o s w)yura

= C/ / Fa <T> pa—l’["N—lu(p)U('I") dpd?" = C// Fa (T> pa_er_l.
" ’ p [1_h>1+h]2 p

First we note that

sup
pre [17h71+h]

r—l‘—>0 as h — 0.
p

We consider the following three cases separately:
(i) ae (1,N), (i) a=1, (i) «ae€(0,1).

(i) When a € (1, N) we may assume F'(7) ~ Cn, > 0. Thus

Sp, ~ // 0> N =Y dpdr ~ h2.
[1—h,1+h]2

F, (T) ~ Gy (’"> = Cna|log|= —1||
p p p

(ii) When a =1
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~ |log|r — p| —log p| = —log|r — p| + log p.

Thus
Sp ~ // (=log |r — p| +log p)rN L dpdr.
1—h,14-h]?
Set
Ap = {(p.)llp = 7| < 3h, [r = 1] < 3h},
By, = {(p,7)l|p—r| < 2h, |r = 1| < h},
we have

A, C[1—h,1+h*C By.

Hence for some C, C' > 0

C// (—log|r — p| +log p)r™ L dpdr < Sj, < C’// (—log|r — p| +log p)r™ ~L dpdr. (3.2.16)
Ah Bh

We compute

J[| (~10glr = ol +10g )™ dpdr

By

< // (=log|r — p| +log(1 + h))(1 + h)N "t dpdr
By,

= // (—log |7 —}—log(l—|—h))(1+h)N_1 drdr
[—2h,2h] X [1—h,1+h]

2h
= 4h(1 + R)N7L / (—log7)dr + 8h*(1 4+ h)NLlog(1 + h)
0

= 4h(1 + h)N7(— 2hlog(2h) + 2h) + 8K (1 + h)N " log(1 + h)
< C"h*|logh| ash — 0.

Similarly we have

// (—log|r — p| +log p)r™ L dpdr > C"'h?|log hl,
Ap

from which we obtain
Sy, ~ h?|logh| as h — 0.

(iii) When « € (0,1)

Thus

-1

S ~ // r
[1—h,14h]2

C// —p|*H (1 = )N dpdr < S, < C’// Ir— p|* ' (1 + BNV dpdr,

we have as in (3.2.16)

a—1
p* N dpdr = // lr — p|* N L dpdr.
(1—h,1+h]2

Since

Sy, ~ W as h = 0.

This completes the proof. 1
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We show how to use it to build a continuous odd map in L2(RV)NL2" (RY). By a regularization
argument, we will obtain a map in I';,(A).
By scaling, we have

17‘ Lo(x — y)x (R hi 2)X(R, hs y) dady
RN xRN

= RN*e //RNxRN Io(x — y)x(l, %;x)x(l, %,y) dxdy

RN*o(Ly2 if o € (1,N),
~ S RNHL (N2 1og 2| if o =1,
RNta(Lylta if @ € (0,1).

For R > 2, we set the thickness of the annuli as

Rf 2 if o € (1, N),
(logR) 12 ifa=1,
if « € (0,1),

hr =

‘ z

R~
R~
so that a uniform bound is gained.

Corollary 3.2.5. We have

// Io(z = y)X(R, hr; )X (R, hr;y) dzdy € [Cor, Cp2]  for R > 2, (3.2.17)
RN xRN

where Cyy, Coa > 0 are independent of R > 2.

Proof. We check (3.2.17) only for o = 1. We have

//]RNxRN Io(x — y)X(l, %; x)x(l, %; y) dxdy
o ()

R R )
N-—-1 N—-1
_ g1 (BT [log RV bgR"TmyWW
R R
= (logR)™ ’10g ( = 2 (log R)_l/Q)‘
1
= (log R)™* log R+ 3 log(log R))
N+1
— T+ as R — oo.
whic shows the claim. i

Next we compute the interaction effect between x(R’, hpi;-) and x(R7, hpi;-) with 4,5 € N,
i# jand R> 1.

Lemma 3.2.6. Fori < j we have
// In(x — y)X (R, hgi; 2)x (R, hpssy) dedy — 0 as R — oc.
RN xRN
Proof. Since supp x(R, hgr;-) = A(R, hr) we get

dist(suppx(Ri,hRi; -),suppx(Rj,hRj; D)) = (Rj — hpi) — (Ri + hgi)
=R/ — O(R").
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Thus
In = // Lo — 9)X(R b ) (R, b y) derdy
RN xRN
< O(R 4 O(RY) ™ W=\ (R higas )l | (R?, hgas ) |-
Here
IX(R, hg; )|y = meas(A(R, hg)) ~ CRYN thp
hence

Ip < qC(RV — O(RY))~ W) gIN=Dip o, RIN=Dip s

< C/R(afl)jﬂN*l)ihRihRj'

When a € (1, N), we have by the definition of hr
Ir < O R Di+(N=1)i p—5(N=2+a)(i+))
— 'R WN-20-) 50 asR— 00;
when o = 1, we obtain
Iz < C'RN-DiR=3(N=D(+)) (1og R~ (log RY) "2
= C'R_%(N_l)(j_i)(ij)_%(log R)™ =0 as R— oo
when a € (0,1),
In < O’ Rla=1i+(N-1)i p— 155 (i+7)

= 'R e ((V=0?)i—aN-1) o a5 R - 0,

This concludes the proof. |

We have now the tools to build a refined path v € T',,(\).

Proof of Proposition 3.2.1 (refined). We construct now a path v € I',,(A); this path will
moreover satisfy

max x)| < sp.
e € @)] < so

Step 1: Construction of an odd path in L".
For n > 2 we consider again the polyhedron

S={t=(tr,...,tn) ’iirlli_ifinﬁi‘ =1}.

For a large R > 1, which we will choose later, we define

yr(t)(z) := isgn(ti)x(Ri, [ti|lhgi;z) + B — L™ (RY)
i—1

where 7 € [1,+00]. Here we regard x(R’,0;x) = 0, and we notice that yr(t) is radial for each
t € 3. Considered sy, we have

D(sovr(t)) = Z F(sgn(t;)so)F (sgn(t)so)-

: // Io(z — y)xX (R, [tilhge; o)X (R, [t hge y) dady.
RN xRN

‘We note that
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(i) For any t = (t1,...,t,) € X, there exists at least one t; such that |t;| = 1.

(ii) By Lemma 3.2.4,
(F(%s0))? // Io(z — y)x(R*, hge; 2)X(RF, higes y) dwdy > Co.
RN xRN

(ifi) By (i) and (ii),

> (F(£s0))? // Io(z — y)X(R', hgs; 2)x (R’ hpis y) dady > Co.

i=1 RN xRN

(iv) If i # j, by Lemma 3.2.6,

// Io(x — y)X (R, hgi; 2)x (R, hps; ) dedy — 0 as R — oo.
RN xRN

By (i)—(iv), we have for sufficiently large R > 1,
D(soyr(t)) > C >0 forallte X. (3.2.18)

In what follows we fix R > 1 so that (3.2.18) holds.

Step 2: Construction of an odd path in H}.
For 0 < h < R and € > 0, we set

1 if z € A(R,h),
Xe(R, h;x) := {1 — Ldist(z, A(R, h)), if dist(z, A(R,h)) € (0,¢),
0 otherwise.

Here we regard A(R,0) = {x € RY||z| = R}. We note that

Xe(R, h;-) € HY(RY) for e > 0,
Xe(R, h; ) = x(R, h;-) in L"(RY) as e — 0 for all r € [1,00),
supp Xe(R', hgi;-) Nsupp xe(R?, hpi;-) = 0 for i # j for £ small.

We set .
Ve r(t) = ngn(ti)XE(Ri, ltilhgi;-), tex, (3.2.19)
=1

Yer : ¥ — HYRY), continuous. By (3.2.18) and the continuity of D on L2(RY) N L2"(RY), we
have for € > 0 small
D(s07e,r(t) > C >0 forallteX.

Since \
TOnu(-/8)) = 362 Vul + 0 ul ~ 0¥ D),
we have for large 6 > 1
TN, 507%,r(t)(-/0)) <0 forallte X~ 0D,.
Considering D,, = {st | s € [0,1], t € £} and extending soy. r(t)(-/0) to Dy, by
Y(st) = ss07e,r(t)(-/0),

finally we obtain a path 5 € T';,(\). |
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Remark 3.2.7. Even without assuming the positivity of F' (see Proposition 3.2.2), we notice

that the construction of an odd map in L" gets easier when F is an even function. Indeed there

is no negative contribution given by the mized interactions. We give only an outline of the proof,

highlighting that in this case we do not need to use the fine Theorem 3.2.3 given by [359].
Define for everyi=1,...n and s € [—1,1] the annuli

Ai(s) = {x € RN | |z| € [2ni — |s|,2ni + |s]]}.

For every t = (t1,...,t,) € ¥ we have that A1(t1),..., An(t,) are disjoint. Moreover, if t; =0,
then meas(A;(t;)) = 0. Thus we define a continuous, odd map by

n

y(t)(z) := ngn(ti)XAi(ti)(fU) Y — L2(RN) N L2*(RN).
=1

Since F' is even, we obtain
D(soy(t)
-3 // T D osgnt) a0 D F om0 () oy
VX A;j(t5)

= — X S 2
= (F(s0)) Z//A@M y) dzdy(F(so))” > C > 0,

where C' does not depend on the specific t. The regularization to a H}-path can be done as in the
general case (or by mollification), as well as the extension to D,,.

We highlight that this construction can be adapted also to the local case, and thus it gives a
simplified construction of a multidimensional path in the setting of Berestycki and Lions [51].

We are ready now to show that g, : ¥ — H}(RY), defined in (3.2.19), has the desired
property (3.2.12).

Lemma 3.2.8. Assume (F1)—<(F5), and F > 0 in some (0, d]. If F is odd, additionally assume
(3.1.7). Then there exists a constant A > 0 independent of s € (0,do] and t € ¥ such that

D(svre(t)) > = (F(s))*(A+0.(1)) ase—0;

N

here o¢(1) is a quantity which goes to 0 as ¢ — 0 uniformly int € ¥ and s € (0, o).

Proof. We prove Lemma 3.2.8 in two steps.
Step 1: For t € X, set

as®) = [[ | Talo = X tlhasa) (R, i) dady,
X

Then for sufficiently large R > 0, we have

A= inf (Za” Zaz] ) : (3.2.20)

i=1 i#]

This fact follows from (3.2.17) and Lemma 3.2.6. We fix R > 1 so that (3.2.20) holds.
Step 2: D(syre(t)) > 3F(s)*A as e — 0.
We note that for € > 0 small

supp Xe (R, |ti|hgi;-) N supp xe(R7, |tjhps;-) =0 for i # j.
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Thus we have
Z)(Sqqis(t))

=5 [ Tl = )P st e s ) (st e, ) (3:2:20)
5 x

=: Y Bij(s,t). (3.2.22)
'7j
We consider cases i = j and i # j separately.
First we focus on the case i = j. For both even and odd F' we have
Bii(s, t)

= // Io(z — y)F(ssgn(t;)xe(R', |ti|hgi; 2)) F (s sgn(t;)x=(R7, |ti|hgi;y))
RN xRN

= // Io(z — y)F(sxe(R', [tilhge; o)) F (sx= (R, [tilhgis v))
RN xRN

> //RNX]RN Io(z — y)F(sx(R", |ti|hgi; 2)) F (sx (R, [ti|hgis y))
SR (3.2.23)

where we used the positivity of F' and the monotonicity of the integral. Next we consider the
case i # j for even F. Since F(s) > 0 for s € [—dp, Jp] we obtain

Bij(s,t) >0 forallte 3. (3.2.24)
Finally we consider the case i # j for odd F. Since |F(s)| = F(|s|) for s € [—do, do]
Bij(s,1)

— //RNXRN In(z — y)F(ssgn(t;)xe (R, [ti|hgi; ) F(ssgn(t;)xe (R, |tj|hgris ) (3.2.25)
= // Lo = y)F(sxe (B, ltilhgss ) F(sxe (B, [t;1hri; ). (3.2.26)
RN xRN

Setting '
Ci(t,e) == {z | dist(z, A(R', [tilhg:)) € (0,2)}
we have
XE(Ri, [tilhpi;x) € (0,1) for x € Ci(t,€),
XE(Ri, ti|hgi;x) = X(Ri, |ti|hgi;x) for x & Ci(t;,e),

meas(C;(ti,€)) = 0 as ¢ — 0, uniformly in ¢ € 3.

Thus for r € [1,00) and s € (0, ¢]

1 . . r
ravd Yltilhgis) — x (R [til hgis -
|57 P (Rl ) = X(R )|

< F(sxe(RY, |ti|hpis © dx

/C o e )
Fihs)\"
i,
<h%1[%?i1 ()| ) meslCiltne)

—0 as € — 0 uniformly in ¢ € X.
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F(s

Here we use the fact that maxje(o ) % < C, which follows from the local almost-monotonicity

assumption in (CF4). We note that (3.2.27) implies, exploiting again (CF4)

‘(F(l))z Lo Tl = PR s ) Pl (. s s ) = a0
—0 ase—0. (3.2.27)
By (3.2.26) and (3.2.27),
Bij(s,t) > —(F(s))2(as;(t) + o(1)) as e — 0. (3.2.28)
Thus, it follows from (3.2.22)~(3.2.24) and (3.2.28) that

D(syre(t)) > (F(s)) (Z anlt) = 3 ai + o(l))
i=1 i#j

IV
N =

(F())*(A +0(1))

This concludes the proof. |

3.3 Asymptotic analysis of mountain pass values

We end this Section with some key estimates on the asymptotic behaviour of a,(\) as A — oo.

Proposition 3.3.1. Assume (F1)—~(F4) and let n € N*.
(i) If (CF3) holds, then limy_, oo L@ - oo,

(ii) If (CF4) holds, then limy_, o a’;i@ —0.

Proof of (i) of Proposition 3.3.1. Recall ¢ = N]J\;a, p = N*ﬁ,‘”, and write y = ¢* (and
consequently adapt the notations) for the sake of simplicity.

Since ap, (1) > a1(p) for each n € N*, it is sufficient to show the claim for n = 1. By (CF3),
for any 0 > 0 there exists Cs > 0 such that

|F(s)| < d|sP + Cs|s|? for all s € R.
For v € HY(RY), setting u, := s™V/?v(s-), we have
D(ug) = s VD (s 20)

< S—N—a/ (Lo * (65 ZP[off + Cos 9J0[7)) (35 2P |o]? + Cys 3 |u|7) do
RN
= 2 I, * (8v|P + Css M u|?)) (8|vP + Css~Hol9) da
(Za % (3lo]? + C5 5
RN
=: §°Ds ¢, -1 (v), (3.3.29)
where we write for § > 0 and A > 0,

Dy a(v) = /RN (L * (8lof” + AJo]?)) (8lof” + AJo]?) da,

1 1 1
T5.4(0) 1= 59013 + 5110l — 5 Ds.a(0)



96 3. Choquard-Hartree-Pekar equations: multiplicity of solutions

We also denote by b(d, A) the MP value of J54. Taking into account the continuity and
monotonicity property of b(d, A) with respect of each variable § and A and observing that Js 4
satisfies the (PS) condition, we have

b(6, A) — b(5,0) as A — 0T,

b(6,0) = +oo asd — 0.
Thus, from (3.3.29) we have that

1 1 _ 1
Tl = 8 (519018 + G52 olB = 3D5001(0)).

Setting s := ,/u, we obtain
I (s uym) = wTs csp-1/2(v)

and thus all(f‘) > b(6, Csp~'/?), which implies

tim inf Y > 1im b(5, A) = b5, 0).
pU—>00 o) A—0

Since § > 0 is arbitrary, we gain
a1 (p)

lim = +00. |
H—>—+00 ik

We deal now with the proof of (ii) of Proposition 3.3.1. We highlight that, when F' is even, the
proof can be simplified (see [124], Proposition 2.3.6, and Proposition 3.2.2).
The proof will be based on the key Lemma 3.2.8. We start noticing that, by (CF4) and
Remark 3.1.4, for some §y > 0
F(s) >0 for s e (0,0,

which implies
(i) when F is even, F(s) > 0 for all s € [—do, do] \ {0};
(ii) when F is odd, F(s) < 0 for all s € [—dp,0).
By (CF4), we also note that there exists Ly > 0 with Ls — +00 as s — 07 such that
F(o) > Lso? for all o €0, s]. (3.3.30)

Proof of (ii) of Proposition 3.3.1. Let v defined in (3.2.19). For sy € (0, do] and p > 0,
we consider the map
_1
st € Dy ss07Re(t)(-/p2) € HY(RY).

We have by Lemma 3.2.8 (since ¢ > 0 is here fixed small, we write A instead of A 4 0.(1))

W T (s ss0vRe (8) (/1)

1 _w~ 1
=5n (s50)* VYR ()15 + oM

N 1 _»~
2 (s50)°[lvre (03 — oH 2PD(ss0VRe(t))

N 1
2

1 _ _N
< o (s50)?lvre (017 — s 2P(F(ss0))”A.

Thus for p small
1
T (1, s0vRe(t)(-/p~2)) <0 forteX,

which implies that st — sofyR,E(t)(-/,ufé) is a path belonging to I'y,(x). Moreover by (3.3.30)

-1 < -1 . -3
u an(u)_se[gﬁ@u T (1, 850 R (1) (-/12))
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I _x 2 2 I _x 2
< — 2 t - = 2P(F A
< e o (550 () — i TP (F(sso)

I _x 2 2 1 - 2
< — 2 t —-L 2 PA
S cppax e (550) " IR.e (Ol — 3 Lo (™% (550)%)
< Cs,

where

1 1
Cs, = sup <T||’yR’5(t)||§{1 — LSOATP> e R.
7>0,t€x \ 2 4
Thus we have
limsup p~"an (1) < Cao.
nu—0t

Since Cs, — 0 as s9 — 0, we have (ii) of Proposition 3.3.1. i

3.4 The Pohozaev mountain

In this Section we start studying the Lagrangian formulation, applying the previous asymptotic
estimates to a Pohozaev geometry. We consider the functional Z : R x H}(R") — R defined by

et

5 (Jul3 —m), (A u) € R x HYRY). (3.4.31)

1 1
"0\ u) i= 5[ Vul} - 5D(w) +

It is immediate that, for any (\,u) € R x H}(RY),

A
T™Ou) = T\ u) — %m
If (F1)-(F2) hold, by [302, Theorems 2 and 3] we have that each solution u of (3.2.9) belongs to
I/Vli’f(RN ) and it satisfies the Pohozaev identity
N

A
IVull3 + 5 ulls -

N -2
2

N+«
2

D(u) = 0 (3.4.32)

or equivalently
1 9 e 9
7 IVullz + —l[ullz = D(u) = 0
20( 20{

where 27, = % and 27 = % are the upper and the lower critical exponents; again we see

that essentially the identity means d%j (N u(-/ 69))‘9:0 = 0. Inspired by this relation, we also
introduce the Pohozaev functional P : R x H}(RY) — R by setting

N -2
2

N+«
2

N
D(u) + S fuld, () eRx HIERY).  (3.4.33)

P\ u) = 5

[Vull3 —

We consider the action of G := Zy on R”, n € N*, and on R x H}(RY), given by
(£1,£) € G x R" — ££ € R,

(£1,\u) € G x (R x HYRY)) = (A, u) € R x H}(RY).
We notice that, under the assumption (F5), Z™, J and P are invariant under this action, i.e.
they are even in u:

I\, —u) =" (N u), T\ —u)=TN\u), P —u)=PA\u).

In addition, we observe by the Principle of Symmetric Criticality of Palais [310] that every critical
point of Z™ restricted to R x H!(RY) is actually a critical point of Z™ on the whole R x H(RY).
Finally, we denote by P : R x H}(RY) — H}(R™) the projection on the second component.
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Moreover we consider the Pohozaev set
Q:={(\u) €Rx HRY) | P\,u) >0} U{()\0)|\eR};
under the assumption (F5), € is symmetric with respect to the axis {(A,0) | A € R}, that is,
(Nu) e Q = (\,—u) € Q.
We start showing the following property, due to the fact that D(u) = o(||ul|3;1) as u — 0.

Lemma 3.4.1. We have
{(\,0) | A € R} Cint(Q). (3.4.34)
Proof. By
[F(s)] < [s]? + |s[?

where ¢ = % and p = W < 2*. Thus

1Pl g, S Il g + Pl gz, = ol + s
Therefore by Proposition 1.3.1 and Young’s inequality we have
2
[ o P@DIF@] o S 1P S (Il + il

N+a N+a

N+ao

S lullz® + lull vy < llullh + llull:
thus
PO u) < ullip — ullgh — ulZ >0
for |Ju|| g1 small, u # 0. i
By (3.4.34) we detect the Pohozaev mountain
00 = {(\u) € R x HYRY) | P(\,u) =0, u#0}.

We observe that 9 # (), for instance by [302, Theorems 1 and 3.
Proposition 3.4.2. Assume (F1)—~(F4) and (F5). We have the following properties.

(i) T\, u) >0 for all (A, u) € Q.

(it) TN\, u) > ar(X) >0 for all (A, u) € 0.

(iii) Assume (CF3). For any m > 0, we set

o
E™ .= (A,ir)léagzm(/\’u)’ and B™:= )1\2]% (al()\) — 2m> .
Then E™ > B™ > —oo. In particular B™ € R and

I™(A u) > B™  for every (A u) € 0.

Proof. We notice that for all (A, u) € Q

P\, u) o+ 2 9 a 12
_ — = >0
) s Il + Ml >

T\ u) > T\ u) 2(N + )

and thus (7) follows. Point (iz) follows from the fact that for each A the mountain pass level
a1 () coincides with the ground state energy level (see [301, Section 4.2] and Section 4.3 for
details); see also Remark 3.4.3. Focus on (4i7): the fact that E™ > B™ is a direct consequence of
(1), while the fact that B"™ > —oo comes from Proposition 3.3.1 (i). i



3.4. The Pohozaev mountain 99

Remark 3.4.3. In order to show that aj(\) > 0, without exploiting the existence result for
the unconstrained problem, we arque as follows (see also [114]). Let v € T'1(\); by definition
of I'1(N\) and by Proposition 3.4.2 (i) there exists t* such that y(t*) € 02 and ~(t*) # 0, thus
P\, ~(t*)) = 0. This means that

o+ 2

TAA(t)) = WI\VW*)II% + ﬁllv(t*)llg ~ ||y (t) I3

thus
A)Z inf -
oM 2 b el
Since, by (3.4.34), (0N) is far from the line (X\,0), we obtain that the right-hand side is strictly
positive, which is the claim.

From now on we assume (CF3) to give sense to the quantity B™. In view of Proposition

3.4.2 (iii), we set for m > 0 and n € N*
"= {0 € C(D,,R x H(RY)) | © is G-equivariant, Z™(0(0)) < B™ — 1,
©lop, ¢ Q, I™(Olop,) < B™ — 1}
and
by = eiglrfw i Z(0(8));

we point out that asking © = (01,03) € I'/" to be G-equivariant means that ©; is even and 0,
is odd, and in particular ©2(0) = 0 which implies ©(0) € Q.
Proposition 3.4.4. Assume (F1)-(F2)-(CF3)-(F4)-(F5). We have the following properties.

(i) For any m >0 and n € N*, we have I'"" # () and

B < an(\) — e)‘%, (3.4.35)

for each A € R. Moreover, b)' increases with respect to n.

(i) For any k € N* there exists my > 0, namely given by

e ap(N)
mg = 2/{%% S (3.4.36)
such that for m > my
byt <0 formn=1,2,... k.
Moreover, my, is increasing with respect to k.
(iii) If (CF4) holds, then my =0 for each k € N*. That is, for each m > 0 we have
byt <0 for allm € N*.
Proof. For given A € R and ¢ € T',,()), we will find a ¢ € I']* such that
< A 3.4.37
max 7 (1(€)) < max J(A,(€)), ( )
so that we have \
e
o< < - —
bp < max I (1 (€)) < max (A, C(§)) — 5m

and, passing to the infimum over I'y,(\), we gain (3.4.35).
To find ¢ € I']" with (3.4.37), observe that, by definition of I',(A) and compactness of ((9Dy,),
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there exists C' > 0 such that D(¢(&)) > C > 0 for £ € OD,,. Thus, we have Z™(\, ((§)(-/L)) —
—oo and P(A,((€)(-/L)) — —oo as L — 400, uniformly for £ € D,,. Thus, for L > 1 we obtain,
for every € € 0D,,,

"N CE(/L) <B™ =1 and  P(A((€)(-/L)) <0. (3.4.38)
We also note that Z™(A + L,0) = —eA;Lm — —oo as L — +oo. Thus, for L > 1, we find that
the path ¢ : D,, — R x H}(RY)
b(E) = [ |
(re(ga-n)em) ez

satisfies ¥(0) = (A + L,0) € R x {0}, Z™(¢(0)) < B™ — 1 and Z™(¢(§)) < B™ — 1 for £ € 9D,,.
Thus, by (3.4.38), we obtain ¢ € I'" and (3.4.37) holds.

The monotonicity of b with respect to n is a consequence of the definition. Point (iz) follows
from (3.4.35) and (4i7) follows from Proposition 3.3.1 (ii). i

As a corollary to Proposition 3.4.4, we have the following result.
Corollary 3.4.5. For any m > 0, we have
B™ = E™ =b]",
i.e. the first minimax value b7" equals the Pohozaev minimum E™ on the product space.

Proof. Since any path in I']" passes through 02, we have 0" > E"™ > B™ for each n. On the
other hand, passing to the infimum (3.4.35) we obtain b* < B" and thus the claim. |

3.5 The Palais-Smale-Pohozaev condition

For every b € R we set
K" o= {(\u) €R x HRY) | T\, u) = b, HRI™(\,u) =0, BI™(\,u) = 0},

As already observed, under (F1)-(F2) we have that P(\, u) = 0 for each (A, u) € K};". We notice
also that, assuming (F5), Kj" is invariant under the G-action, that is

(\u) e K" = (\,—u) € Kj".

Under our assumptions on F', it seems difficult to verify the standard Palais-Smale condition
for the functional Z™. Therefore we cannot recognize that Kj" is compact.

Inspired by [125,224,231], we introduce the Palais-Smale-Pohozaev condition, a weaker
compactness condition that takes into account the scaling properties of Z"* through the Pohozaev
functional P. Through this tool we will show that Kj" is compact when b < 0.

Definition 3.5.1. For b € R, we say that (An, un), C R x HY(RY) is a Palais-Smale-Pohozaev
sequence for I™ at level b (shortly a (PSP), sequence) if

" (A, upn) = b, (3.5.39)

NI™(An,un) — 0, (3.5.40)

10uZ™ (A wn) || (112 (v )y — 0, (3.5.41)

P(Ans tn) — 0. (3.5.42)

We say that ™ satisfies the Palais-Smale-Pohozaev condition at level b (shortly the (PSP),

condition) if every (PSP), sequence has a strongly convergent subsequence in R x H}(RY).
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We show now the following result.

Proposition 3.5.2. Assume (F1)-(CF2)-(CF3) and let b < 0. Then I™ satisfies the (PSP),
condition.

Proof. Let b < 0 and let (\p,u,) C R x HY(RY) be a (PSP), sequence, i.e. satisfying
(3.5.39)—(3.5.42). First we note that by (3.5.40) we obtain

e (|Jun |3 —m) — 0. (3.5.43)

Step 1: A, is bounded from below and |u,||3 — m as n — +oc.
We have by (3.5.42), (3.5.39) and (3.5.43)

o(1) = P(An,up)

a+2 m et N
- [Vun 3 + (N + ) (27 s tn) = =5 (lwall3 = m) ) + e a3

- O‘H’uv 3+ (N 4+ 0)(b-+ (1) + 5 em + o).

Here we used (3.5.43). From the above identity, we derive boundedness of \,, from below, since
b < 0. This result joined to (3.5.43) finally gives ||u,||3 — m.

Step 2: \, and ||Vu,||3 are bounded.
Since, by (3.5.41), &5 1= [|0uZ™ (An, un) || (2 (rv))» — 0, we have

Hv“n”% - /RN(Ia * F(up)) f (un)undr + eAnHUnH% < enllunl g (3.5.44)

We observe that by (CF3) for 6 > 0 fixed, there exists C5 > 0 such that
[F'(s)| < dls|” + Cs]s[?

Nta+2
N

where we recall p = and ¢ = &~ *0‘ Thus

1 (un) | 2x < 6l[funl?l| 2x + Cslllunlll_2x = 6lfunl o, + Csllunll2.
+

Therefore by (CF2), Proposition 1.3.1 and Young’s inequality we have

/RN (Lo * | F (un)|) | f (un)tn| dz
< CIIF (un)l| 25 1f (un)tin]| 2x

< C (Sl + Csllunl) €' (Ieallyy + )

N+«
1) 1
< CC'8un%y, +CC'(5+ Co) (G unlByy + 5llunll’) +CC Collun
N+«

< C"6llunl Ty, + Cfllunlls”
N+a

and thus, by the Gagliardo-Nirenberg inequality and (3.5.44),

Hv“n”% + eAn”unH% < /N(Ia | F(un) )| f (un)un|de + ep|un | g
R

" (p—1) M
< "8 Vunl3llunll3? ™V + Clunlly ¥ + enllunl -

Since by Step 1 ||u, |3 = m + o(1), we obtain

(1= C"5(m +o(1))P"1) [ Va3 + e (m + o(1))
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N+a
< CY(m+0(1)) N + (| Vunll3 +m + 0(1)) /2,
For 6 small enough, we have the boundedness of e’ and ||Vu,||2. Hence A, can not go to +oo

and thus by Step 1 we infer that A, is bounded.

Step 3: A\, and u,, strongly converge.

By Steps 1-2, the sequence (\,,uy), is bounded in R x H}(RY) and thus after extracting a
subsequence, denoted in the same way, we may assume that A\, — Ag and u,, — ug weakly in
H}RYN) for some (A, u0) € R x H}(RY). Taking into account the assumptions (F1)-(F3) and
the compact embedding of H}(R™) in L"(RY) for r € (2,2*), we have by Proposition 1.5.9

/ (I * F(up)) f(upn)up dz — (I * F(up)) f(uo)ug dzx
RN RN

and

/ (Lo * F(up)) f(un)u, dx — (Lo * F(ug)) f(ug)uo de.
RN RN

By (3.5.41) we derive that (9,Z™(An, un), un) — 0 and (0,Z™ (A, un),up) — 0, and hence
(Vitn, V(tpn — ug))2 + (tn, My, — eMug)s — 0. Combining this with u, — ug and \, — A\ we
get

[Vun|3 + e [Junllz = [[Vuoll3 + € [luoll3

which implies u,, — ug strongly in H}(RY). |
As a straightforward consequence we obtain the following result.

Corollary 3.5.3. Assume (F1)-(CF2)-(CF3) and let b < 0. Then K" N (R x {0}) =0 and K"
18 compact.

Remark 3.5.4. We emphasize that the (PSP), condition does not hold at level b= 0. Indeed
we can consider a (PSP)g unbounded sequence (A\p,0) with Ay, — —o0.

3.6 Genus-shaped critical points

In this Section we essentially follow the lines of Sections 2.4.2-2.7. We give just an outline,
avoiding details and proofs.

3.6.1 Augmented functional
We start by achieving a deformation lemma. In order to do this we define
M =R xR x H}(RY)

and introduce the augmented functional H™ : M — R

H™(0, A, u) :=T™ (N, u(e’")) (3.6.45)
o(N=2)0 o(N+a)0 oA
= vl — S D) + S (Nl - m)

for all (6, \,u) € M, and thus 9pH™ (0, \,u) = P(\, u(-/e?)). We point out that, considered the
action of G on M
G XM — M; (£1,0,\,u) — (0, \, +u)

and assumed (F5), it results that H™ is G-invariant. Introducing a metric on M by

2
s va ) g = | (s e )l
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for any (o, v,h) € Tig )M = R x R x HY(R"), we regard M as a Hilbert manifold. We also
denote the dual norm on T(j, \ )M by || [|(9,xu),« and observe that both || [(g,5u) and ||+ [lg,xu),«
actually depend only on 6.

Denote now D := (9, 0, 0,) the gradient with respect to all the variables; a direct computa-
tion shows that for any (0, \,u) € M

IDH™ (6. X ) [ {g.x 0.
= [P\ u(e )P+ 1™ (N ule™ )P + 18, (N ule™ ) I vy -
We furthermore define the set of critical points of H™ at level b by
K" :={(0,\,u) € M | H™(0, \,u) = b, DH™(0,\,u) = 0}
={(0, \,u(e?)) | (\,u) € K", 6 € R}.
Finally we introduce the distance between two points as

diStM((eo, )\07 h0)7 (017 )\17 hl)) =

1
inf { [ IOl de 17 € C(0.1.00), 5(0) = (80.30.Ba). (1) = (61 Al,m)}.

As a consequence of Proposition 3.5.2 we obtain the following.

Proposition 3.6.1. Assume (F1)-(CF2)-(CF3) and let b < 0. Then H™ satisfies the following

—

Palais-Smale-type condition (PSP)y: for each sequence (On, A, Uun)n C M such that
Hm(env )\nu un) — b7
HDHm(Qn, >\n7 un) H(Bn,)\n,un),* —0
as n — +o0o, we have, up to a subsequence,

distar((ny Ay un), KJ) — 0.

3.6.2 Deformation theory
We write, for b € R
7 < 8] = {(Aw) € R x H{EN) | T7(\u) < b},
[H™ < blpr = {(0,\,u) € M | H"™(0, A\, u) < b}.
We state the following result.

Proposition 3.6.2. Assume (F1)-(CF2)-(CF3). Let b <0, and let O be a neighborhood of K}"
with respect to the standard distance of R x HY(RN). Let &€ > 0, then there exist € € (0,£) and
n:[0,1] x (R x H}(RM)) = R x HY(RN) continuous such that

1. 77(07 K ) = ideH}(RN);
n fives [I™ < b—¢&], that is, n(t,-,-) = idjgm<p—g for all t € [0,1];
I™ is non-increasing along 1, and in particular Z"(n(t,-,-)) < I™(-,-) for all t € [0,1];

if Ki* =0, then n(1,[Z" <b+¢]) C[Z™ <b—¢];

SAEER SN

if K" # 0, then
NL[Z™<b+¢e]\O)C[IT™<b—¢]

and
N(L,[Z™<b+e)) CIT"<b—elUO;
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6. if (F5) holds, then n(t,-,-) is G-equivariant, i.e. for n = (m,n2) we have n1 even and 12
odd in u.

To prove this, we work first on the functional H, for which we obtained a (FJSP) condition,
which implies that for any b < 0 there exists €, §, v > 0 such that

[DH™ (0, A u)ll o7 u)x =V
for (6, \,u) € M satisfying H™ (0, \,u) € [b —e,b+ €] and distM((Q,)\,u),f(/lT) > 4.

Proposition 3.6.3. Assume (F1)-(CF2)-(CF3). Let b < 0, and let O be a neighborhood of KJ"
with respect to distys. Let € > 0, then there exist € € (0,€) and 7 : [0,1] x M — M continuous
such that

1.79(0, -, -) = idn;

i fizes [H™ < b— &y, that is 7j(t, -, -, ) = idpym<p—g,, for all t € [0,1];

H™ is non-increasing along 7, and in particular H™(7(t, -, -, ) < H™(-,-,-) for allt € [0,1];
if K" =0, then 7j(1, [H™ < b+¢elpy) C [H™ < b—€]n;

if K" # 0, then

AR RS

AL H™ <b+elm \O) C[H™ <b—¢lu
and )
AL H™ <b+elm) CH™ <b—elmUO;
6. if (F5) holds, then 1(t,-,-) is G-equivariant, i.e. for i = (fo,M1,72) we have M, 71 even
and 7o odd in u.
To get Proposition 3.6.2 from Proposition 3.6.3 we introduce
7 (0,\u) € M — (\u(e™?)) € R x H{(RYN),
v:(\u) € Rx HYRY) — (0,\,u) € M,
which are a kind of rescaling projection and immersion satisfying
TolL= ideH}(RN)a W(Kl:n) = K",
H"or=TI", IMom=Hm
For a deformation 7 obtained in Proposition 3.6.3 we thus define

n(t, A u) = 7wt (A ), (tA\u) € 0,1] x (R x HY(RY)). (3.6.46)

3.6.3 Multiple critical points
For each n € N* define
Ay ={A=0(D,,\Y)|leN, 0T,
Y C D,y \ {0} is closed, symmetric in 0
and genus(Y) <1}

and

mo,___ : m

cy = Alen/\fw sgpI .

We notice that {O(Dy)}germ C Al In the following lemma, we observe that A} and ¢}’

inherit the properties of I']* and 0], also given by

ANoQ #0 forall Ae AT,

together with the extra property (v).
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Proposition 3.6.4. Assume (F1)-(F2)-(CF3)-(F4). Let n € N* and m > 0. Then
(i) A7 #0.

(ii) AYq C A, and thus ¢ <y q.

n ’
(idi) ™ < b

(iv) B™ = E™ < .

(v) Let A € AT and Z C R x HY(RY) be G-invariant, closed, and such that 0 ¢ Py(Z) and

genus(Py(Z)) <i<n. Then A\ Z € A]" ..

Fix n € N* and let A" and ¢]" satisfying the properties of Proposition 3.6.4. We build now
multiple solutions.

Proposition 3.6.5. Assume (F1)-(CF2)-(CF3)-(F4)-(F5). Fiz k € N* and assume m > my
(see (3.4.36)). Then
A<y << gt <0

are critical values of T™. Moreover

(i) if, for some q € N*,

Cn < Cpyp <<ty <0

then we have q + 1 different nonzero critical values, and thus q + 1 different pairs of
nontrivial solutions of (3.1.6);

(ii) if instead, for some q € N*,

Cp = Cpy1 = = Cpyg =0 <0 (3.6.47)
then
genus(Pa(Kj")) > g+ 1 (3.6.48)

and thus #P(K}") = 400, which means that we have infinite different solutions of (3.1.6).

Summing up, we have at least k different pairs of nontrivial solutions of (3.1.6).

3.7 The unconstrained problem

In this Section we show how to exploit some of the developed tools also to obtain infinitely
many radial solutions for the unconstrained problem (3.1.1), and give a sketch of the proof of
Theorem 3.1.5. Here we assume (F1)—(F5). We fix A € R and write u = ¢*; omitting ), we
denote J(-) :== J()\,-) : HH(RY) = R, i.e.

1 1 o
) = S Vul3 — 3D) + Elul, e m(EY). (3.7.49)
Similarly we write P(-) :== P(\,-). For every b € R we set
Ky :={ue H®RY)| T (u) =b, J'(u) = 0}.

We have the following result.

Proposition 3.7.1. Assume (F1)-(F3) and let b € R. Then J satisfies the Palais-Smale-
Pohozaev condition at level b (shortly (PSP)y), that is every sequence (un), C H}(RN) satisfying

T (un) = b, (3.7.50)
1T (un )\l (a2 vy — O, (3.7.51)
P(un) — 0, (3.7.52)

admits a strongly convergent subsequence in H}(RN). In particular, Ky is compact in H}(RN).
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Proof. First observe that, by (3.7.50) and (3.7.52) we obtain
o+ 2
2

We observe that b > 0 and the boundedness of u,, in H!(RY). Thus by (F2)-(F3), D’(u,) has a
strongly convergent subsequence in (H!(R"))* and by (3.7.51), u, has a strongly convergent
subsequence in H}(RY). Here we make use of Proposition 1.5.9. i

(0%
IVunlz + 5 pllunllz = (N + )b + o(1). (3.7.53)

Set [J < 0] :={uec H(RN) | Jx(u) < b}. Following the arguments of Section 3.6 and 3.6.2,
we prove the following deformation result by means of an augmented functional.

Proposition 3.7.2. Assume (F1)—(F3). Let b € R and let O be a neighborhood of Ky(\). Let
£ > 0, then there exist € € (0,) and n: [0,1] x HY(RN) — H}(RY) continuous such that

1. 77(07 ) = idH}(RN);

2. n fixres [T < b—¢], that is, n(t,u) = u for all t € [0,1] and J(u) < b—&;

3. J is non-increasing along n, and in particular J(n(t,-)) < J(-) for all t € [0,1];

4o i Ky =0, thenn(L,[J <b+e)) C [T <b—e;

5. if Ky # 0, then

N1 [T <b+e]\NO)C [T <b—¢
and
(LT <b+e]) ST <b-elUO;

6. if (E5) holds, then n(t,-) is G-equivariant, i.e. it is odd.

As in Section 3.2, for any n € N* we define I';, := I',, (). We note that I',, # () is shown in
Proposition 3.2.1. Now our Theorem 3.1.5 can be obtained through the arguments given in [325].
Here we just give the definition of another minimax classes A}, which ensures the multiplicity of
solutions. We set for n € N*

Ay = {A = ®(D7’L+l \Y) | le N*7 SRS Fn+l7
Y C D,y \ {0} is closed, symmetric in 0
and genus(Y) <[}
and

¢p = iInf supJ.
" AcA, Ap

Then we have {v(D,)|v € I',} C A, and we can also see that
0<cr<cg< o <ep<oee
Thus we have the following result.
Proposition 3.7.3. Assume (F1)—(F5). Let n € N* and m > 0. Then
(i) A £ 0 and ¢, < cpyr.

(ii) Let A € A, and Z C HY(RN) be G-invariant, closed, and such that 0 ¢ Z and genus(Z) <
i<n. Then A\ Z € Aj—;.

(iii) ¢ 1s a critical value of J. Moreover
¢p — +00  as n — +oo.
In particular, J has an unbounded sequence of critical values.

Proof. Using Proposition 3.7.2, the proof can be given along the lines in [325]. See also
[125]. |

Proof of Theorem 3.1.5. Theorem 3.1.5 follows from Proposition 3.7.3. |



CHAPTER

Doubly nonlocal equations: qualitative and quantitative
results

This Chapter is dedicated to the study of the following fractional Choquard equation
(=AYu+ pu = (In * F(u))F'(u) in RN

where N > 2, s € (0,1), « € (0,N), u > 0 and F € C*(R) is a general nonlinearity, in the
spirit of Berestycki and Lions assumptions. After having achieved existence of positive solutions
and ground states, we will focus on the study of some qualitative properties of these solutions:
boundedness, regularity, L'-summability, positivity, radial symmetry and asymptotic decay. We
will stress how the interplay between a fractional framework and a nonlocal nonlinearity, generally
nonhomogeneous, obstructs the application of classical techniques. Some results generalize the
ones presented in [138] and extend [79,302]; in particular, some new results are stated also for
the limiting case s = 1. In addition, we will see that the interaction of the two nonlocalities
arises a new critical threshold.

This Chapter is mainly based on the papers: [114] (see also [113]) for Section 4.2, [115]
for Sections 4.2, 4.3, 4.4.1-4.4.3, 4.6.1, [112] for Sections 4.3, 4.4.4-4.4.5, 4.5, [197] for Sections
4.6.2-4.6.7, and [117] for Section 4.7.

4.1 An example of double nonlocality: collapse of boson stars

In Sections 2.1 and 3.1 we highlighted the importance in physics of the fractional Laplacian and
of the Hartree-type terms. Combinations of the two arise as well in different frameworks: for
example equations of the type

(=AY u+pu = (In* F(u)) f(u) in RN (4.1.1)

where N > 2, s € (0,1), « € (O,N), u > 0 and f = F' € C(R), can be found in quantum
chemistry [24,142,215] (see also [103] for some orbital stability results): here (4.1.1) appears in the
study of the mean field limit of weakly interacting molecules and in the physics of multi-particle
systems. In particular the equation applies to the study of graphene [276], where the nonlocal
nonlinearity describes the short time interactions between particles. Doubly nonlocal equations
appear also in the dynamics of populations [85], where small or large values of s better model
specific environments.

One of the main applications anyway arises in the study of exotic stars: minimization
properties related to (4.1.1) play indeed a fundamental role in the mathematical description

107
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of the dynamics of pseudorelativistic boson stars and their gravitational collapse [169, 192—
195,222,256-258,269], as well as the evolution of attractive fermionic systems, such as white
dwarf stars [214]. In fact, the study of the ground states to (4.1.1) gives information on the size
of the critical initial conditions for the solutions of the corresponding pseudorelativistic equation
[256], where a critical value is given by the Chandrasekhar limiting mass. In particular, when
5= %, N =3, a =2 and f(u) = u, we obtain

V—=Au+ pu = ( * u2) u in R3 (4.1.2)

4r|x|
related to the so called massless boson stars equation [189,222 258], where the pseudorelativistic
operator v/—A + m collapses to the square root of the Laplacian. Here f(t) = [t|"~%t with r = 2
is L?-critical: in this Chapter, when dealing with the mass-constrained problem, we essentially
address the subcritical case r € (%, 2), but we believe that this result, together with the developed
minimax tools, can be a first step towards the study of the L?-mass critical (and supercritical)
case, since for these problems the minimization approach is generally not well posed. Moreover,
the high generality assumed on the function f could be useful in the study of different physical
problems.

Mathematically, concerning the fractional Schrédinger equation with Hartree nonlinearity,
we mention the papers [138,139] where D’Avenia, Siciliano and Squassina considered the case of
pure power nonlinearities and obtained existence and qualitative properties of the solutions. We
mention also [103,202] for some orbital stability results, [L04] for a Strichartz estimates approach,
and [129] for the unidimensional case. Other results can be found in [41,277,342] for superlinear
nonlinearities, in [219] for some local perturbation, in [218,305] for critical equations and in [386]
for concentration phenomena with strictly noncritical and monotone sources.

The existence of L2-normalized solutions was investigated when F(t) = [t|P in [382] (see
also [203,212] for L2-supercritical Cauchy problems by scattering), while in [102] it has been
addressed the non-autonomous unconstrained case. In [141], symmetry and monotonicity of
positive solutions are shown for the fractional Hartree equation for 4 = 0 and a critical power
nonlinearity, by means of the direct method of moving planes. Regularity results for a class of
doubly nonlocal equations on bounded domains are obtained in [207].

Some theoretical aspects related to the study of doubly nonlocal equations, both in the
operator and in the source, remain open for general nonlinearities F', in particular when F' is not
a power function or F' is odd.

In the present Chapter we are interested to derive some qualitative properties of the solutions
to (4.1.1), also in these special cases. In particular, after having stated existence of free
and normalized solutions, we will focus our attention on the study of regularity of solutions
(boundedness, L!-summability, Holder continuity, differentiability), moving then to positivity
and symmetry of ground states, to tackle at the end the asymptotic behaviour at infinity. The
precise statements will be presented throughout the Chapter: these results generalize some of
the ones in [138] from the case of power functions to general nonlinearities of Berestycki-Lions
type; moreover, we extend some results of [302] to the fractional framework, and some results of
[79] to the Choquard framework.

The achieving of these results requires some technical effort in order to deal with the two
nonlocalities and their interaction, as well as the nonhomogeneity and the nonregularity of the
function f. In particular, we highlight some of the difficulties that arise in this general framework.

In the proof of the positivity, for instance (as well as in the proof of the existence), the
presence of the fractional power of the Laplacian does not allow to use the fact that every solution
satisfies the Pohozaev identity to conclude that, if |u| is a solution, then it satisfies the Pohozaev
identity; moreover, the conservation of the norm of the gradient does not hold anymore, i.e.
|V|ulll2 = ||Vul|2 is not generally true in the fractional framework, and an inequality is needed.
In addition, when dealing with f even other information about u are lost through inequalities;
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this is not the case when dealing with f odd [302]. Furthermore, the presence of the Choquard
term, which scales differently from the L?-norm term, does not allow to implement the classical
minimization argument of [50,131] (see (5.5.78)), which is useful to deal with the absolute value
of u. Similarly, the nonhomogeneity of the nonlinearity f obstructs the minimization approach
of [138,300]. Thus, a new approach is needed, and it relies on a fiber map which sends solutions
to the Pohozaev set (see Proposition 4.5.5). When dealing with f even, this technique allows to
treat also the case s = 1, generalizing [302].

Regarding the L'-summability, the possibility of including a critical behaviour in zero (that is,

F(t) ~ tﬁ) is not relevant when dealing with pure power functions [138,300], since no solution
exists in this case: this growth is instead relevant for general f (for example, suitable sum of
powers). Contrary to the case of noncritical nonlinearities, when f is critical it is not possible to
implement a simple bootstrap argument to achieve that every solution is in L': a new method is
thus needed, and it is based on a suitable combination of bootstrap argument and fixed point
theorems (see Proposition 4.4.10). The study of this case is new even for s = 1, improving
[300, 302].

When studying the asymptotic behaviour of solutions, especially when f has a sublinear
growth, the interaction of the two nonlocalities is quite strong, and new phenomena arise: indeed,
contrary to the local case s = 1 [300], here the effect of the fractional Laplacian and of the
Choquard term give rise to a new threshold depicting the qualitative profile of ground states at
infinity (see Theorem 4.6.11). From a technical point of view, new difficulties arise related to
the explicit computation of the fractional Laplacian, and to the computation of concave powers,
requiring a more delicate analysis and the implementation of new inequalities (see Sections 1.2.2
and 1.2.4). This result is new even for power functions, improving [138].

We refer to the following Sections for the detailed statements of the results.

The Chapter is organized as follows. In the remaining part of the Section we will briefly
give a physical interpretation of equation (4.1.1) in the framework of gravitational collapses.
In Section 4.2 we will deal with existence of solutions, both for the unconstrained problem
and the constrained one, by highlighting some approach different from the ones developed in
Chapters 2 and 3; some properties related to the energy minimum levels and existence of positive
solutions will be then investigated in Section 4.3. Section 4.4 will be devoted to the study of
regularity of positive solutions, including boundedness and Hoélder regularity; moreover we will
gain L'-summability of solutions through a combination of bootstrap and fixed point maps
arguments. Then in Section 4.5 we will exploit these results in order to gain positivity and
radial symmetry of Pohozaev minima, by the implementation of maximum principles on some
fiber maps. Afterwards, we will investigate in Section 4.6 the asymptotic decay of ground states,
focusing especially on the case of f sublinear, which raises some new phenomenon. Finally in
Section 4.7 we furnish a proof of the Pohozaev identity in the doubly nonlocal framework, by
assuming the solutions merely C*.

Physical derivation

Here we want to show how equation (4.1.1), in the particular case N = 3, s = %, a =2 and

F(u) = %uQ, can be derived from a significant physical framework regarding boson stars. Aim of
this Section is just to give an idea of the process, without any aim of accuracy or rigors. We refer
to [93,169,192,196,213,257,258,268, 269, 296,307] (see also [189,270,308,360] and [193,214,256])
for complete expositions on the topic.

The goal is to show how the equation (4.1.2) is strictly connected with the self-gravitational
collapse of boson stars. Actually a similar derivation holds also for neutron stars and white
dwarfs, with some little complications.

Let us consider thus a group of n bosons (i.e. particles with entire spin, described by symmetric
functions, and which do not respond to the Pauli exclusion principle). We assume these bosons



110 4. Doubly nonlocal equations: qualitative and quantitative results

to form a boson star, i.e. n > 0 and we assume most of them (i.e. up to o(N) particles) to be
close one to each other and moving at a fast speed: these particles are at a same coherent state
¥ (and for this reason called condensate) and create a trap for the remaining particles.

Due to the high speed of the particles, we cannot ignore the special relativistic effect; on the
other hand, since the masses are not too big, we can ignore the effect of general relativity (this is
not the case, instead, of neutron stars). Thus we consider the total relativistic energy

B2 = (pe)? + (mc?)?

summation of the kinetic energy and the energy at rest; here p is the momentum, m the mass of
the boson particle at rest, ¢ the speed of light. Thus we obtain, in momentum representation,

E = /[£]2¢2 + m2c4;

passing through a quantization p — —iAV to the coordinate representation (and setting /i := 1)
we obtain the pseudorelativistic operator

E =V —c2A + m?ct.

We observe that, letting ¢ — 400 (that is, the velocities are far from the one of the light) we
obtain the operator —ﬁA, that is the nonrelativistic operator (i.e. the classical Laplacian). We
set instead, from now on, ¢ := 1 for the sake of simplicity. Thus

E=vV—-A+m?

which is formally defined through the Fourier symbol F~1((|¢]? +m?)Y/?4) (see also Remark
1.2.6).

We consider now the interaction between the particles: this interaction can be treated
classically as a Newton two-bodies interaction, and thus given by the quantity

1

B A
|z — ]

where k is a coupling constant (proportional to G, the gravitational constant).
Thus we come up with the Hamiltonian of the system

n

Han ;ZZ\/—AHmZ—gZ#

=1 i#] ‘xl - .%'j| ‘

When dealing with dwarf stars, additional pieces given by the interaction (due to the Pauli
exclusion principle) appear; anyway, for n > 0, one can ignore these pieces: this is called the
Hartree approximation of Hartree-Fock theory.

Now we are interested in what happens when n > 0, that is, when the particles act like a
single body, in what is called the mean field limit:

n— 4+oo, k—0, nk=const;

formally this is given by assuming that the state of motion 1, (t) can be factorized at each ¢ —
fact that is not generally true, even if one starts from a factorized state at ¢ = 0. We highlight
that the powers appearing in the relation nk = const are typical of the boson star framework,
and are indeed different in other frameworks (for instance, in the case of white dwarfs, we have
n3/2k = const).

By letting n — 400 one can formally prove that, in some precise sense, the motion of the
(single body) boson star converges to the motion of the following (time-dependent) PDE

iug =V —A+m?u— (/ () dy) u in (0,400) x R3 (4.1.3)
R

s |z —y]
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that is (up to constant)
iugy = V—A+m2u— (I xu*)u  in (0, 400) x R3,

We focus now on this equation, and on the corresponding energy functional

1 1
E(u) := 5 /RS [(=A +m) V4> - 3 /R3 (I % u?)u?.

By exploiting the Hardy-Littlewood-Sobolev and the fractional Gagliardo-Nirenberg inequalities
we obtain

[ sy < -0 4l ul, (114)
R3
which combined with the trivial inequality |£|? +m? > |£]? gives

1 _
SN2 Al (1 - Clull)

/ ur=:M
R3

the total mass of the boson star (interpreting u?(x) as the density in 2 € R?) we obtain

E(u) >

for some C > 0. Set

Bu) > J|(~8) 3~ O

from this we see that F(u) could be or be not bounded from below on the sphere {u € H'/2(R?) |

|u||3 = M} depending on the size of M: this is actually a phenomenon related to the L2-critical

1
growth 2 = 3+2; %2 — 22”; in N = 3. More precisely, one can prove that there exists a constant

2
M., related to the best constant of the inequality (4.1.4), such that

inf  FE(u)

{ >0 if M < M,,
[ull3=M

= —00 if M > M,.

As a further consequence, one might study the dynamical properties of u(z,t) = e’

of (4.1.3), showing that

u(x), solution

( exists for each t > 0 if M < M,,
u = u(x
explodes in finite time if M > M,.

This is why M., called Chandrasekhar mass, is related to the self-gravitational collapse of boson
stars (i.e., the collapse due to their own gravity). One could show that M, is related to a number
of particles of the size of ~ 1038, that is, the number of particles that can be approximately
found in a mountain.

As already highlighted, M, is related to the best constant of the inequality (4.1.4). And one
can show that the optimizers @) of this inequality satisfy the following equation

V=AQ + pQ = (I,  Q*)Q in R3

for some p > 0 (actually M, equals the L? norm squared of Q). And this is the equation we
study.
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4.2 Different approaches for the existence problem

In this Section we briefly sketch how to get existence of free and constrained solutions. The
techniques are based on the ideas of Chapters 2 and 3. Anyway we present here a different
approach to handle the boundary of R, instead of considering the change of variable 1 = e?.
With this aim, we will give a proof of some details, referring to Chapters 2-3 for all the other
proofs.

This first Section is based on the paper [114] and [115] (see also [113]). For multiplicity

results we refer to [117].

The first goal we address is to study the unconstrained problem of (4.1.1) when f satisfies
the following set of assumptions of Berestycki-Lions type [50]:

(F1) f e C(R,R);
(F2) we have

tf(t
i) li sup| It )| < 400, i) lim sup| f( )| < 4-00;
-0 [¢2E tlstoo [E20
(F3 fo T)dT satisfies
F(t F(t
i) lim (#2 =0, ) lim 2() =0;
t—0 ‘t‘Qa |t|—+oc0 |t| a,s

(F4) there exists tg € R, tg # 0 such that F(tg) # 0.

We observe again that (F3) implies that we are in a noncritical setting: indeed the exponents
ot = N A% and 27 = ]]VV £ have been addressed in [300] as critical for Choquard-type equations
when s = 1, and then generalized to s € (0,1) in [138]; we will assume the noncriticality in order
to obtain the existence of a solution, while all the qualitative results in the following Sections
will be given in a possibly critical setting.

This unconstrained case was studied by [138] for a power nonlinearity and by [53] in the case
of combined local and nonlocal power-type nonlinearities; see also [199,277,342].

We obtain the following result.

Theorem 4.2.1. Assume (F1)—(F4). Then there exists a radially symmetric weak solution u of
(4.1.1), which satisfies the Pohozaev identity:

= /]RN ’( )S/zu‘Q + ];[M/N U2 B = ;_ : /]RN(Ia * F(u))F(U) =0 (425)

2
1 8/2 2
[(—A)%%ul* 4+ u? — (Io * F(u))F(u) = 0.
285 JrRN RN ]RN

This solution is of Mountain Pass type.

or equivalently

We point out some difficulties which arise in this framework. Indeed, the presence of the
fractional Laplacian does not allow to use the fact that every solution satisfies the Pohozaev
identity to conclude that a Mountain Pass solution is actually a (Pohozaev) ground state, as in [237]
(see Remark 4.3.3). On the other hand, the presence of the Choquard term, which scales differently
from the L?-norm term, does not allow to implement the classical minimization argument by
[50,131]. Finally, the nonhomogeneity of the nonlinearity f obstructs the minimization approach
of [138,302]. Thus, we need a new approach to get existence of solutions, and this can be done
in the spirit of Chapters 2-3. We omit the details, refering to [115].
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The next goal is to study the constrained problem, i.e. we study the existence of solutions
(p,u) € (0,+00) x HS(RY) to the nonlocal problem

(~A)u+pu = (I + F(u) f(u) inRY,
/ e —m (4.2.6)
RN ’

where u > 0 is a Lagrange multiplier, part of the unknowns.
In particular we assume (F1), (F4) together with the stronger assumptions

(CF2)
tf(t tf(t
i) limsup | f(#)| < 400, i) limsup | f2(m)] < +oo;
=0 |t|% [tl+oo [E[7s
(CF3)
F(t F(t
i) lim (;2 =0, ) lim rgm) =0;
t—0 |t‘2a ‘t|—)+00 ’t’ a,s
we remark that the exponent 27’ = W appears as an L?-critical exponent for the fractional
Choquard equations and the conditions (F1)-(CF2)-(CF3)-(F4) correspond to L2-subcritical
growth.

For this general class of nonlinearities of the Berestycki-Lions type [50,302] we introduce
a Lagrangian formulation: namely, set Ry = (0,+00), a radially symmetric solution (u,u) €
R, x H(RYN) of (4.2.6) corresponds to a critical point of the functional Z™ : Ry x H(RY) — R
defined by

()= [ N8 Pufde =5 [ (s F@)F) o+ 5 (ulf - m).
2 RN 2 RN 2

Using a variant of the Palais—-Smale condition [224,231], which takes into account the Pohozaev
identity, we will prove a deformation theorem which enables us to detect minimax structures in
the product space R x HZ(RY) by means of a Pohozaev mountain. Our deformation arguments
show that solutions without Pohozaev identity are suitably deformable, and thus they do not
influence the topology of the sublevels of the functional. This information could be relevant in a
fractional framework since it is not known if the Pohozaev identity holds for general continuous
f and general values of s € (0,1).

We state our main results.

Theorem 4.2.2. Assume (F1)-(CF2)-(CF3)-(F4). Then there exists mg > 0 such that, for any
m > myg, the problem (4.2.6) has a radially symmetric solution, which satisfies the Pohozaev
identity (4.2.5).

Theorem 4.2.3. Assume (F1)-(CF2)-(CF3), together with an L?-subcritical growth at zero, i.e.,
(CF4) limy_0 lt%? = +00.

Then, for any m > 0, the problem (4.2.6) has a radially symmetric solution, which satisfies
the Pohozaev identity (4.2.5).

We naively notice that (CF4’) automatically implies (F4). We remark that, as in the local
unconstrained case [237], the Mountain Pass solutions obtained in the above theorems are ground
state solutions, that is, they have the least energy among all solutions; see Section 4.2.2 for details.
This fact gives a strong indication on the stability properties of the found solution [103,180].

Here we find solutions satisfying automatically the Pohozaev identity: in Section 4.7 we will
prove that a general C'! solution actually satisfies such relation.
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4.2.1 Dealing with the boundary

In what follows, we will often denote

N+« _om _N+a+2s.

q:2f: N P=24s= N

Consider the functional

1 1
Tuw) =5 [ 18)Puf do— D) + 5 Jul?

2 Jan 2 2
with D(u) = [pn (Lo * F(u))F(u). We notice that, by the Principle of Symmetric Criticality of
Palais, the critical points of J, are weak solutions of (4.1.1). Moreover, inspired by the Pohozaev
identity (4.2.5), we define also the Pohozaev functional P, : H(RY) — R by

N —2s H N+«
2 2
Here we highlight how to deal with the boundary of R} without implementing the change of

variable 1 = ¢*. More details can be found in [114].

As a matter of fact, we notice that R, x HZ(RY) with the standard metric induced by

R x H?(RY) is not complete, and thus it is not suitable for a deformation argument. Since

(Ry, x%d:EQ) is instead complete, it is natural to introduce a related metric on Ry x H2(RYM).

That is, we regard

Pu(u) = (=2)"2ul3 -

N
D) + - pllull3

R:=R, x HR")

as a Riemannian manifold with the metric
((Vlﬁ w1)7 (V27 w2))T(u R = EV1V2 + (wl’ w2)Hﬁ

for (v1,w1), (v2,w2) € T(uu)R, (1, u) € R; it is standard to see that (R, (-,-)rr) is a complete
Riemannian manifold. We regard thus Z™ as a functional defined on R, and obtain

10T (1), T (1)) P, e = 121OWT™ (s )2 4 0T 1, 0) B

Definition 4.2.4. For b € R, we say that (u;,u;); C R = Ry x HS(RY) is a Palais-Smale-
Pohozaev sequence at level b (in short, the (PSP), sequence) if, as j — 400,

Im(ujvuj) — b,
|| (@Jm(u, U), auIm(:uv u)) ”(T(;_L,u)M)* — 0,

P(1j,uj) = 0,

or equivalently
I™(pj,uj) — b, (4.2.7)
1+ O™ (g, uj) — 0, (4.2.8)
OuI™(1j,uj) — 0 strongly in (HE(RN))*, (4.2.9)
P(j,u;) — 0. (4.2.10)

We say that I™ satisfies the (PSP), condition if, for any (PSP)y sequence (pj,u;); C Ry x
HE(RN), it happens that (u;,u;); has a strongly convergent subsequence in Ry x HZ(RY).

Remark 4.2.5. Clearly, setting
™\ u) =TI (M), I:Rx HS(RY) =R,

we can observe that I™ satisfies the (PSP), in the sense of Definitions 2.4.1 and 3.5.1 if and
only if I™ satisfies the (PSP), condition in the sense of Definition 4.2.4 with p; = e,
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For the sake of completeness, we give here some details on the proof of the (PSP); condition
at strictly negative levels. We emphasize again indeed that the (PSP);, condition does not hold
at level b = 0: it is sufficient to consider an infinitesimal sequence (p;,0) with p; — 0.

Theorem 4.2.6. Assume (F1)-(CF2)-(CF3). Let b < 0. Then Z™ satisfies the (PSP), condition
on Ry x H(RVN).

Proof. Let b < 0 and (pj,u;j); C R x HS(RY) be a sequence satisfying (4.2.7)—(4.2.10). First
we note that, by (4.2.8), we have
wi (g3 —m) — 0. (4.2.11)

Step 1: liminf;_,oo it > 0 and ||u;||3 — m.
By (4.2.10) and (4.2.7), we have

N25

o(1) = P(pj, uj) = 1(=2)* 203+

m s 1y N
+ (N + a)(I (uj,uj-) - 5!\(—A) g3 - 3"(\%\\% - m)) + 5uj|!uj|!§

= OB aY P+ (N + @)+ 0(1) + 5 ugm + 1)

here we have used (4.2.11). Since b < 0, we have liminf; o > 0. Thus (4.2.11) implies
21513 — m.

Step 2: ||(—A)*?u;||3 and p; are bounded.

Since €j = [[0uZ™ (115, wj) | (s (mvy)» — 0, we have

1(=2)"2u;3 — /RN(Ia s F(u)) f (ug)ug da + pg g3 < ellug ms (4.2.12)

Note that J%Lﬁ; € (2,2%). Moreover, we observe that, by (CF3), for 6 > 0 fixed, there exists
Cs5 > 0 such that
N+o
()] < OltP + Cslt ¥, teR,

where p = W, and thus

1 () zav < Ol ot ]| 2o + Callfus) F | ax o —M\%H;zip + Collusll, ™

Therefore, by (CF2) we have

/RN(Ia | (ug) )] f ()| dae
< CF(ug)l 2o |1 (w)usll 2x

< (me+wwb)<MMwWWB>

2(N+a)
= C'dlluj| Ty, + C'(8+ Cs)luyll” vy ||ug||2 L C'Csllujll, ~
N+
y 6 2( N+a) , 2(N+a)
= C'8|luj| %y, +C'(6+ Cs) ( e 1% oy ||Ua||2 ) + C'Csllujll, ™
N+a 2 25

1" 1" W
C"5|uy 1% 2y + C5 [l

IA

and thus, by the fractional Gagliardo—Nirenberg inequality (1.2.8), with r = N
derive

+ andﬁ—f

(—2)" 2513 + pjllus |3 < /RN(Ia* [E(uy) DL (uj)ug| do + e mg
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2(N+a)

(
s 2(p—1
< C"S| (=AY 2ulBllug 137 + Colluglly ¥+ &l s
Since [|u;]|3 = m + o(1), we get
(1= C"6(c+ o(1)P ) I(—=A)*u; 13 + pj(m + o(1))

N+ao
< Cf(m+o() N +ei(I(=A)2u;|3 +m+o(1)*.

For a small enough §, we have the boundedness of ||(—A)%/2u;]|2 and ;.

Step 3: Convergence in Ry x HE(RYN).

By Steps 1-2, the sequence (p;,u;); is bounded in Ry x H(RY) and thus, after extracting a
subsequence denoted in the same way, we may assume that p; — po > 0 and u; — ug weakly in
HE(RYN) for some (uo,uo) € Ry x HE(RN).

Step 4: Conclusion.

Taking into account the assumptions (F1)—(F4), we obtain by Proposition 1.5.9

/ (Io * F(uj)) f(uj)uo de — (I * F(up)) f(uo)up dx
RN RN

and
/RN(Ia * F(ug)) f(uj)uj de — . (Lo * F(ug)) f(ug)uo dz.
Thus, we derive that (0,2 (15, u;), uj) — 0 and (9,2 (15, uj), up) — 0, and hence
1(=2)*2u;][3 + prollus 13 = [(=2)*"uoll3 + polluoll3
which implies u; — ug strongly in Hg(RY). |
Now we define a metric on the Hilbert manifold

M:=RxR=R xR, x H}R"Y)

by setting
1 —48 S
et = 02 g N3 4 N2 ()2

for any (o, v, h) € Tig )M =R xR x HE(RY). We also denote the dual norm on T(“; i U)M by

|- l¢6,p1,),+- We motice that ||(-, -, -)H?e%u) depends both on € and p (but not on «). Furthermore
we define the standard distance between two points disty; as the infimum of length of curves
connecting the two points.

On M we consider the augmented functional

H™ (0, pyw) =T (, u(efa-));
denoted D := (09p, Oy, 0y), We obtain

IDH™ (8, 15 w) [y 0
= [P(uule )P+ 1?10, (1 ule™ )P + 10T (1 ule™ ) 1)

Finally, defined
Ky = {(0,\,u) € M | H™(0,\,u) = b, DH™ (0, \,u) =0}

the set of critical points at level b of H"", we deduce the following.
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Proposition 4.2.7. Let b € R, b < 0. Then the functional H™ satisfies the following Palais-
Smale type condition (PSP)y. That is, for each sequence (6, f1j,u;); such that

|’DHm(9]? Mj? uj)”(@j,uj,uj-),* — 07
we have, up to a subsequence,
distar (65, 15, u;), Kp) — 0.

Through the use of the augmented functional we can obtain again a deformation result. We
write here the statement for the unconstrained case (similarly to Proposition 3.7.2), since it will
be used afterwards. Set

KPSP = {u e HYRY) | Ju(u) = 0, Th(w) =0, Pulu) =0}.

Lemma 4.2.8. For any b € R, € > 0 and any U open neighborhood of Kfsp, there exist an
e € (0,8) and a continuous map 1 : [0,1] x HS(RN) — HZ(RY) such that

1°) n(0,u) =u Yuc HRYN);
2°) n(t,u) =u V(t,u)€[0,1] x [T, <b—¢];
Tu(n(t,u)) < Tu(uw)  ¥(t,u) € [0,1] x HX(RY);
(L, [Ty <b+el\U) C [T, <b—e];
n(1, [T, <b+e|) C [Ty <b—e]UU;

if KPSP =0, then n(1,[J, <b+e]) C [T, <b—el.

30

)
)
)
)
5%)
)

(
(
(
(47
(
(67

The remaining part of the proof follows the lines of the previous Chapters, so that we obtain
the existence of a (normalized) Mountain Pass solution: this proves Theorems 4.2.2 and 4.2.3.

4.2.2 Existence of L?-ground states

In this Section we show (with an approach different from Section 2.8) how to obtain the existence
of an L? ground state, by assuming that this energy level is negative and by exploiting Ekeland
variational principle together with our Palais-Smale-Pohozaev condition; then we relate this
solution to our Mountain Pass solution of Theorem 4.2.2.

More precisely, for any m > 0, we introduce the functional L : S, — R defined by

L) =4 /R AP da ~D(u) (4.2.13)

on the sphere
Sm = {u € H}®RY) | [|ull3 = m}

and we consider the L? ground state level

Km 1= uleI}Sfm L(u).

We have the following result.
Proposition 4.2.9. Under the assumption of Theorem 4.2.2, we have, for any m > mg,
(i) —00 < km < 0 and Ky, is attained;

(ii) K = bm, where by, is defined in (2.6.36).
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Moreover, in the assumptions of Theorem 4.2.3, mg = 0.

Proof. We split in some steps.
Step 1: Kk, > —oc.
By arguing as in Step 2 of Theorem 2.4.2 we obtain

N+ao

L) = (5 - 0Cm™ D) |(~8)2ully ~ Com® 5,

Choosing § > 0 small so that % — 5Cm2-1) > 0, we have k., > —Cng% > —00.
Step 2: For m > myg, Ky < 0.
Since the solution u, € S,, obtained in Theorem 4.2.2 satisfies, for m > my,

0> by = L(us) > B,

we have the claim.

Step 3: For m > myg, K, s attained.
To show the existence of a minimizer of £ on S,,, we use a linear action ® : R — L(H3Z(RY))
defined by

Dyv = e%‘gv(ee-).

We note that S,, is invariant under ®y, that is, ®y(S,,) = Sy, Let
N:=R xS,

and on the tangent bundle TN = R x TS, = [{(g.u)en (R X TuSm) we introduce a C*-metric

1/2
165, 0) ) = (2 + 1@0v]137e ) )

for all (6,u) € N and (k,v) € TN. We also introduce £ : N — R by

L(0,u) = L(Pou)
1 s s 1 o N
= 5@ =2)2ulf — e VD (e ug).
We note that .
inf L(0,u) = k.
(6,u)eN

Since k€ R by Step 1, applying Ekeland’s principle, there exists a sequence (6;, uj)?i1 CN
such that

ﬁ(Qj,uj) — Km,
IDLO;,uj)llry, N = 0.
7777

That is, noticing that T,S,, = {v € H(RY) | fpx uwv = 0}, we have
89[:(9]',10]') — 0,
||au£~(9jauj)||T;jSm = sup |8uﬁ~(9j,uj)v| — 0.

UETuanL
”(I)ijHHs(RN)Sl

Setting u; := g, u;, we thus have

;13 = m, (4.2.14)
L(a;) = 5[(=A)*2a;3 — §D(@;) — ki, (4.2.15)
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sl (=2)*2a;5 + 852D () — F fen (L * F (7)) f(3;)i5 — 0 (4.2.16)

and for a suitable u; € R
L' () + /Lj/ ;0 = o(1)||9]| s (mvy for all o € HS(RM). (4.2.17)
RN

By using (4.2.15) and arguing as in Step 1 we see that u; is bounded in H3(RY). Thus, choosing
0 =4  in (4.2.17), we have

I(—A) 4|5 — / (Lo * F(1;)) f(@;)@; + pym = o(1),
RN

which, joined to (4.2.16), gives a Pohozaev identity in the limit

N N
; (i) + S hm = o(1). (4.2.18)

N —2s §/2 ~
IR

From this relation and (4.2.15) we have

Hj

_ 2 <a+2s
~ Nm 2

(=802 = (N + a)m ) +o(1)

which implies, by Step 1, that ;; > 0 for j large.

Relations (4.2.14), (4.2.15), (4.2.17) and (4.2.18) imply that (fi;, ;) is a (PSP),,, sequence.
Thanks to the Palais-Smale-Pohozaev condition given in Proposition 4.2.6, (fi;,%;) has a strongly
convergent subsequence to some (fix, ) € N, which shows the existence of a minimizer @,. Thus
(i) is proved.

Step 4: For m > mg, Kkm = by,.
In Step 2 we showed by, > Ky, On the other hand by the argument in Step 3, for the minimizer
Uy of £ on S, there exists fi, € R such that

Im(ﬂ*aa*) = Rm, 6uIm(ﬂ*7a*> =0,
8MIm(ﬂ*?&*) =0, P(ﬂ*a ﬂ*) =0.

Set &, (t) := . (-/t) we have, by the Pohozaev identity, Z" (i, &« (t)) — —o0 as t — +oo; thus,
up to a rescaling, we obtain &, € I'™ and

Im *t :Im ~*7~* — Rm,
max (&«(1)) (fts, Us) = K

which implies b,, < k,, and the proof is completed. |

4.3 Preliminary properties of Pohozaev energy levels

As highlighted, the goal of this Chapter is to study qualitative properties of solutions and, in
particular, of Pohozaev minima. In this Section, thus, we start by observing that the solution
found in Theorem 4.2.1 is actually a Pohozaev minimum. Since, afterwards, we will be interested
in studying symmetric properties of general ground states, in this Section we highlight the
dependence of some sets and energy levels from the subspace of radially symmetric functions.
Moreover, we show existence of positive solutions.
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Energy levels in radially symmetric spaces

We introduce the set of paths

Tr(p) = {v € C([0,1), H}(R™)) | 4(0) = 0, Tu(7(1)) < 0}
and the Mountain Pass (MP for short) value

ar(p) = ’Ylélffu tren[aaﬁz] Tu(y(t))- (4.3.19)

Then we introduce
pr(p) = inf {T(u) [ w € HY(RY)\ {0}, Ppu(u) = 0}
the least energy of J,, on the Pohozaev set of radially symmetric functions.

Proposition 4.3.1. The Mountain Pass level and the Pohozaev minimum level coincide, that is

ar(p) = pr(p) > 0.
In particular, the solution found in Theorem 4.2.1 is a Pohozaev minimum.

Proof. Let u € H(RY)\ {0} such that P,(u) = 0; observe that D(u) > 0. We define
A(t) :==u(-/t) for t # 0 and 7(0) := 0 so that ¢t € (0, +00) — J,(¥(t)) is negative for large values
of t, and it attains the maximum in ¢ = 1. After a suitable rescaling we have ¥ € I',.(u¢) and thus

Tulw) = max Tu(3(1)) > ar(). (143.20)

Passing to the infimum in (4.3.20) we have p,(u) > a,(p). Let now v € I'r(u). By definition we
have J,(v(1)) < 0, thus by

Pulv) = NJu(v) — sl (=A)*?0]|3 — %D(v), ve HI(RY),

we obtain P, (v(1)) < 0. In addition, since D(u) = o(||ul|%.) as u — 0 and y(t) — 0 as t — 0 in
H3(RYN), we have
P.(v(t)) >0 for small ¢ > 0.

Thus there exists a t* such that P,(y(t*)) = 0, and hence

IN

pr(p) < Ju(v(t)) < max J(7(1));

T t€0,1]
passing to the infimum we come up with p,(u) < a,(¢), and hence the claim. |

We pass to investigate more in details Pohozaev minima, showing that it is a general fact
that they are solutions of equation (4.1.1).

Proposition 4.3.2. Every Pohozaev minimum is a solution of (4.1.1), i.e.
Tu(u) = pr(n) and Py(u) =0

imply
j;i(“) =0.

As a consequence

pr(n) = inf { T (w) | w € HYRN)\ {0}, Pr(u) = 0, T, (u) = 0}.
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Proof. Let u be such that J,(u) = p,(u) and P, (u) = 0. In particular, considered y(t) := u(-/t),
we have that 7,(7(t)) is negative for large values of ¢ and its maximum value is p(u) attained
only in t = 1.

Assume by contradiction that u is not critical. Let I := [1—4, 144] be such that v(1)N K,y =
0, and set & := p(u) — maxyg; J,(v(t)) > 0. Let now U be a neighborhood of K, verifying
¥(I)NU = (): by the Deformation Lemma 4.2.8 there exists an 7 : [0,1] x H3(RY) — H3(RY) at
level p, (1) € R with properties (1°)-(6°). Define then 4(¢) := n(1,~(t)) a deformed path.

For t ¢ I we have J,(7(t)) < pr(1) — €, and thus by (2°) we gain

Tu(A(@) = Tu(v(t)) < pr(p) —&, fort¢I. (4.3.21)
Let now t € I: we have y(t) ¢ U and J,(v(t)) < pr(p) < pr(p) + €, thus by (4°) we obtain
Tu(3(t)) < pr(p) —e. (4.3.22)

Joining (4.3.21) and (4.3.22) we have

I?Zag( jﬂ(’?(t)) < pr(M) = ar(:u)

which is an absurd, since after a suitable rescaling it results that ¥ € I',.(u), thanks to (3°). i

Remark 4.3.3. We point out that it is not known, even in the case of local nonlinearities [79], if

pr() = inf { T (u) | w € HIRV)\ {0}, T)(u) =0}

On the other hand, by assuming that every solution of (4.1.1) satisfies the Pohozaev identity (see
e.g. [342, Proposition 2] and [138, Eq (6.1)] and Section 4.7), the claim holds true. We point
out that the equality may hold even if it is not true that every solution satisfies the Pohozaev
identity. The fact that Deformation Lemma 4.2.8 allows to deform the functional near critical
points not satisfying the Pohozaev identity might be useful in the investigation of these facts.

Energy levels in the whole space

We pass studying general Pohozaev minima on the whole space H*(R"). We start defining
the least energy of 7, on the Pohozaev set, and call every minimizer a Pohozaev minimum (or
ground state)

p(p) := inf { () | w € H*(®RY)\ {0}, Pulu) = 0}. (4.3.23)

We start by showing that Proposition 4.3.2 holds also in a nonradial setting, providing here
the proof. To do this, we get advantage of the minimax paths and level of J,,. Set

a(p) :== inf sup J,(y(t))
Y€l tef0,1]

where
L(p) == {y € C([0,1], H*(RY)) | 4(0) = 0, Ju(7(1)) < 0}.

Notice that, with the same proof of Proposition 4.3.1 we obtain

a(p) = p(p) > 0. (4.3.24)

Proposition 4.3.4. Assume (F1)-(F2). Then every Pohozaev minimum of J,, is a solution of
(4.1.1), d.e.

Tu(u) =p(pn) and Py(u) =0
imply
T (u) = 0.

As a consequence

p(p) = inf {Tu(u) | w € HXR)\ {0}, Pu(u) =0, Tj(u) = 0}.
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Proof. Assume by contradiction that J,(u) # 0. Thus J, remains far from zero in a neighbor-
hood of u, that is there exist § > 0 and A > 0 such that

v € Bys(u) = [0 2 A

Consider the path (t) := u(-/t); it is straightforward to show that ¢t € Ry +— J,(7(t)) is negative
for t > 0 and it has a unique strict maximum, equal to J,(u) = p(p) > 0, attained in ¢ = 1. Let
now I :=[1 —w, 1+ w], w small, be such that

S :=~(I) C Bs(u);

we can also assume that

max Ju(7(1)) € (0,p())-

Introduce moreover

0 < e <min {p(,u) — gl j”(v(t)), )\6} .
2 8
By writing Sas := {v € H*(RY) | d(v, S) < 26}, we see that
8¢
ve Sy = |0 >
and in particular
_ 8¢
ve T (Ip(w) = 26,p(n) + 26)) N 825 = | T ()l > =,

where we observe that p(u) — 2e > 0. We are thus in the assumptions of [379, Lemma 2.3], and
we have the existence of a local continuous deformation 7 : [0,1] x H*(RY) — H*(RY) such that
(we write J} := J, ((—00,b]))

(a) (0,0) =v
(b) n(t,v) =vif v ¢ T, ([p(n) — 2e,p(1) + 2¢]) N Sas,

(¢) Ju(n(-,v)) is non increasing for each v € H*(RN),

(d) (1, T 08y c gp e
We thus define a deformed path
7(t) = n(1,7(2))-
Consider first ¢ ¢ I. By (c) and the definition of €, we have

Tu(3 (1) < Tu(y(t)) < p(p) — 2& < p(p).
Assume instead t € I. Then v(t) € v(I) = S and J,(7v(t)) < T.(v(1)) = p(p) < p(p) + €, thus
by (d) we have
Tu(3(t)) < p(u) —e < p(p).

Joining together the two inequalities we obtain

max J.(3(1)) < p(s). (4.3.25)

On the other hand, we have 5(0) = n(1,~(0))

and J,(3(0) < JL(1(L1(®) < (D) < 0
4 € I'(1) and hence, by (4.3.24)

7(1,0) = 0 since 0 ¢ 77 ([p(p) — 22, p(p2) +2¢]),
for t > 0. Up to a rescaling, we can assume

max Tu(3(t)) = alp) = p(p),

which is in contradiction with (4.3.25). The proof is thus concluded. i
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Remark 4.3.5. As in Remark 4.3.3, we point out that it is not known, even in the case of local
nonlinearities, if

? .
p(p) = inf {T,(u) [ u € H*RY)\ {0}, Tj(u) =0},
unless some additional assumptions on s or f are assumed.
In Corollary 4.5.8 we will state some relation between p,(u) and p(u).

Most of the qualitative properties that we will investigate, will be stated in the case of positive
solutions. Thus it is important to highlight the existence of a solution of constant sign.

Proposition 4.3.6. Assume (F1)—(F4) and that F # 0 on (0,4+00) (i.e., to in assumption (F4)
can be chosen positive). Then there exists a positive radially symmetric solution of (4.1.1), which
is mintmum over all the positive functions on the Pohozaev set.

Proof. Let us define )
J = X(0,400)f-
We have that f still satisfies (F1)—(F4). Thus, by Theorem 4.2.1 there exists a solution u of
(=A*u+ pu = (In * F(u) f(u) inRY

where F fo T)dT, F = X(0,4-00)F'- We show now that u is positive. Recall by Lemma 1.4.1

that u_ = € H3(RYN). Thus, chosen u_ as test function, we obtain

/RN(—A)S/QU (=A)*?u_dx + u/

R

IU\

Nuu_dx:/RN(Ia*F( w)) f(u)u_ dx.

By definition of f and (1.2.5) we have

(o) ) (&) —u () [
Cn,s /RNX]RN 7 — g dz dy M/RN ‘d 0. (4.3.26)

Splitting the domain, we gain

[ e ) g,
RN xRN

|{IJ‘ _ y‘N+28
N (1) + 0 0- @)
{u(z)>0} x {u(y)<0} |z — y
- (1) b ) 0)
{u(z)<0}x {u(y)>0} lz — 9
_ 2
(u(@)<0}x{u(y)<0} 1T =Y
Since the left-hand side of (4.3.26) is sum of nonpositive pieces, we have u_ = 0, that is u > 0.

Hence f(u) = f(u) and F(u) = F(u), which imply that v is a positive solution of (4.1.1). |

4.4 Regularity

In this Section we investigate regularity of solutions, focusing in particular on boundedness,
Holder regularity and L'-summability.

The discussed results generalize some of the ones in [138] to the case of general, not homoge-
neous, nonlinearities; in particular, we do not even assume f to satisfy Ambrosetti-Rabinowitz
type conditions nor monotonicity conditions. Moreover, we improve the results in [277,342] since
we do not assume f to be superlinear, and we have no restriction on the parameter «.

Some of these results extend the ones in [79,302] to the fractional, Choquard framework.
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4.4.1 Boundedness by splitting

Here we prove that solutions of (4.1.1) are bounded. In particular, when dealing with sign-
changing solutions, we will consider also the following stronger assumption:

(F6) limsup;_, % < +o0,

which says that f is linear or superlinear in the origin. Observe that
(F6) = (F2,i) and (F3.i).

Theorem 4.4.1. Assume (F1)-(F2). Let u € H*(RY) be a weak positive solution of (4.1.1).
Then u € L®(RN). The same conclusion holds for generally (possibly sign-changing) solutions
by assuming also (F6).

We start from the following lemma, that can be found in [302, Lemma 3.3].

Lemma 4.4.2 ([302]). Let N > 2 and a € (0,N). Let A € [0,2] and q,7,h,k € [1,400) be such

that
a1 1) 200
N h k g ro

Let 6 € (0,2) satisfying

a

min{q,r} (N — 2) < 0 < max{q,r} (1 — ;L) )

min{gq,r} (; - 2) <2 -0 < max{q,r} (1 — ]1) :

Let H € L"(RYN), K € LF(RN) and u € LIRN) N L™ (RN). Then
/R (Ja () KJul*~ da < CLHalK el 31l

for some C > 0 (depending on 0).

By a proper use of Lemma 4.4.2 we obtain now an estimate on the Choquard term depending
on H®-norm of the function.

Lemma 4.4.3. Let N > 2, s € (0,1) and o € (0,N). Let moreover 0 € (5,2 — §) and
H, K € L%(RN) + L%(RN). Then for every € > 0 there exists Czp > 0 such that

[ (fo = (%)) KIuP~" do < 2/(~8)"2ul + Cellull
for every u € H*(RY).
Proof. Observe that 2 — 6 € (§,2 — &) as well. We write
H=H*+ H, e I (RY) + La5 (RY),
K =K*+ K, € L% (RY) + Lats (RV).

We split [pn (Ia s (H|u|9)) K|u|?>~% dz in four pieces and choose

qgq=r=2, h=k= , A=2,
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2N 2N 2N
qZQ’T:N—Qs Tat2s T A A=l
fero PN N B
N —2s’ o+ 2s ’

in Lemma 4.4.2, to obtain
/ (Ia * (H]u\a)) Klu>~0 dz <
RN
| oo (1B 22 [aal|3 4 1 2o (1G]] 2 a2l ex +
o o «@ a+2s N—2s
I H| 2 (15| 2 fullz el ey + | E_ax (|| 2o [fullon
a+2s @ N—2s a+2s a+2s N—2s

Recalled that N ¥ and the Sobolev embedding (1.2.7), we obtain
/ « (Hlul")) KJu*~ dr <

(U a1 ) el (D g ) (=) 2l +
o o a+2s a+2s

T (HH*\|2§||K*||Q2NQS ] 2 1 ) el (-2l (4.4.27)

We want to show now that, since ==+ N

= +28, we can choose the decomposition of H and K such

that the Lai% -pieces are arbltrary small (see [71, Lemma 2.1]). Indeed, let
H=Hy + Hy € L% (RY) + Lotz (RY)
be a first decomposition. Let M > 0 to be fixed, and write

H = (Hl + HQX{\HzlﬁM}> + HoX{|m,)> My

Since HoX{|mo|<my € L%(RN) N L®(RY) and % € (Y- o), we have Hox{im|1<my €

a+2s’
2N

L% (RY), and thus

* 2N N 255 N
H" := H + HQX{‘HQ‘SM} €L« (R ), H, = HQX{|H2|>M} € Lo+as (R )
On the other hand

a+2s

oON 2N
||H*|2N=/ Hy 5 da
a+2s |H2|>M

which can be made arbitrary small for M > 0. In particular we choose the decomposition so that

(1.1 25, 1.1 2. ) <
a+2s a+2s

and thus
C'(e) o (1 [l 1K) -

In the last term of (4.4.27) we use the generalized Young’s inequality ab < ga2 + 2—161)2, with
-1
6= (I a1 g+ Iz I )
e a+2s a+2s @

so that

(7 e Il + N g I ) el (=)
< 32l + OOl (-A)ul}.
Merging the pieces, we have the claim. |

The following technical result can be found in [207, Lemma 3.5].
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Lemma 4.4.4 ([207]). Let a,b € R, r > 2 and k > 0. Set T}, : R — [—k, k] the truncation in k,
that is

—k ift < —k,
Tk(t) = t Z'ft S (—k,k’),
k ift>k,

and write ay, := Tx(a), by := Tx(b). Then
4(r —1 - 79\ 2 — .
RSt 2 ) <|ak| 12— by /2> < (a—"b) (aklakl 2 — b by 2)-

Notice that the (optimal) Sobolev embedding tells us that H*(RY) < L% (RY). In what
follows we show that u belongs to some L"(RY) with r > 2*; we highlight that we make no
use of the Caffarelli-Silvestre s-harmonic extension method, and work directly in the fractional
framework.

Proposition 4.4.5. Let H, K € L%(RN) + L%(RN). Assume that u € H*(RY) solves
(=Au+ pu = (Iy * (Hu))K, in RN

in the weak sense. Then

we L"(RY)  forallr e {2, %Nzi\gs)
Moreover, for each of these r, we have

[ullr < Crllull2

with Cr > 0 not depending on u.

Proof. By Lemma 4.4.3 there exists A > p (that we can assume large) such that
1 /2,12 0 A2
[ o (1)) Kl d < 5(=)2ul + 3 ul (4.4.28)

Let us set
H, = HX{|H\§n}7 K, = KX{|K\§n}7 forn e N

and observe that
2N N
H,, K, € La(R"Y),

H, — H, K, — K almosteverywhere, as n — 400

and
|H,| <|H|, |Kn|<|K| foreveryneN. (4.4.29)

We thus define the bilinear form
onlot)i= [ (CA)Po(-a)Pude s n [ pudo= [ (1 (Hop)) Kyoda
RN RN RN
for every ¢,v € H*(RY). Since, by (4.4.29) and (4.4.28), we have
1 $/2, 112 A 91 2
anlr0) 2 SNAY0l3 + 2ol > 2 el (4.4.30)

for each p € H*(RY), we obtain that a, is coercive. Set

Ji= (A= pu e BY(RY)
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we obtain by Lax-Milgram theorem that, for each n € N, there exists a unique u, € H*(R")
solution of

an(umSO) = (fa @)2) ' € HS(RN)a

that is
(=A)’up + My, — (I * (Hpun)) Ky = (A — p)u,  in RY (4.4.31)

in the weak sense; moreover the theorem tells us that

= 2(A = p)lull2

(since 1/2 appears as coercivity coefficient in (4.4.30)), and thus u,, is bounded. Hence u,, — u
in H?® (]RN ) up to a subsequence for some u. This means in particular that u, — u almost
everywhere pointwise.

Thus we can pass to the limit in

/RN(—A)s/zun (—A)2p + )\/RN Unp — /RN (Ia * (Hpun)) Kne = (A — 1) /RN up;

we need to check only the Choquard term. We first see by the continuous embedding that u, — @
in LY(RN), for q € [2,2%]. Split again H = H* +H,, K = K"+ K, and work separately in the four
combinations; we assume to Work generally with H € {H*, H,}, H € L? (]RN yand K € {K*, K.},
K e LV(RN) Where B,v e {2, a+23} Then one can easily prove that H,u, — Ha in LT(RN)
with % = B + 1 7 By the contlnulty and linearity of the Riesz potential we have I, x (H,u,) —

I, *(Hu) in Lh(RN) Where F = =12 As before, we obtain (In * (Hpun)) Kn — (In * (Hu)) K

in L*(RN), where = —|— h Slmple computations show that if § =+ = M and q = 2, then
K =2;if g ==~ N = aij\;s (or viceversa) and ¢ = 2, then k' = 2% if =~ = a+28 and ¢ = 27,

then & = 2¢. Therefore H*(RY) c L* (R") and we can pass to the limit in all the four pieces,
obtaining

/RN (In * (Hpuy)) Kppdz — o (Io* (Hu)) Ky dz.

Therefore, u satisfies
(=AY u+ i — (I * (Hu)) K = (A — p)u, in RN

as well as u. But we can see this problem, similarly as before, with a Lax-Milgram formulation
and obtain the uniqueness of the solution. Thus © = u and hence, as n — 400,

Up —u in H3(RY)
and almost everywhere pointwise. Let now k > 0 and write
Un 1 = Ti(uy) € L2(RY) N L=(RY)

where T, is the truncation introduced in Lemma 4.4.4. Let r > 2. We have |u, x|"/? € H*(RY),
by exploiting (1.2.5) and the fact that h(t) := (Ty(t))"/? is a Lipschitz function with 2(0) = 0.
By (1.2.5) and by Lemma 4.4.4 we have

T— T ' 2
4(T — 1) / |( A)S/2(| |r/2)‘2 —C / 4(7»2 L (’un,k(l‘” /2 — ‘un,k(y” /2>
r2 RN Un.k — N R2N |z — y‘N"'QS
/ (un (@) = un(y)) (Un k(@) tn 1 (€)™ = () [tn 1 ()| 2)
< CNs
" JR2N |z — y| N2

Set
Y = un,k|un,k|r_2
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it results that ¢ € H*(RY), since again h(t) := Ty(t)|Tk(t)|" "2 is a Lipschitz function with
h(0) = 0. Thus we can choose it as a test function in (4.4.31) and obtain, by (1.2.6),

4(r —1) AV (g [T 2 (un(z) — un(y)) (p(z) — ¢(¥))
T [ A s PR < O [

|1: _ y|N+28
= —)\/ Un P +/ (I * (Hpup)) Kne + (A — u)/ up
RN RN RN

and since upp > |y ;|" We gain

4(7’ ; 1) /RN ‘(_A)s/2(|un7k‘r/2)’2 <

< —A [tun i|" +/ (Io * (Hypupn)) Kpp + (A — ,u)/ up. (4.4.32)
RN RN RN

r

Focus on the Choquard term on the right-hand side. We have, by using (4.4.29),
/ (In * (Hpup)) Knp <
RN

< [ o (Halltalxqun i) Bl +

r—1

+ / (Lo 5 (|l [t o) Ko
RN

IN

[ G Qi e Dl [ (o Ql b )

IN

[ G Qs sl ™+ [ ol ) Bl
= (I)+ (II). (4.4.33)

Focus on (I). Consider r € [2,2), so that 6§ := 2 € (£,2 — &). Choose moreover
v = |up|"? € H*(RN) and €2 := w > 0. Thus, observed that if a function belongs to a
sum of Lebesgue spaces then its absolute value does the same (see Remark 1.5.3), by Lemma

4.4.3 we obtain 2 0
r— s r r
(I) < T”(_A) ﬂ(’”n,k‘ /Q)H% + C(T)H‘un,k‘ /2”%' (4'4'34)

Focus on (II). Assuming r < min{%, NQiVQS}, we have u, € L"(R") and H,, € L%(RN), thus

|Hyllun| € LYRY), with 1 =% +1
for the Holder inequality. Similarly
|Kpllun|"' € LYRY), with + =% +1— 1.

Thus, since % + % = %, we have by the Hardy-Littlewood-Sobolev inequality (see Proposition

1.3.1) that

[ o Qb DV da

1/a 1/b
<o i) ([ istpa)
{Jun|>k} RN

With respect to k, the second factor on the right-hand side is bounded, while the first factor
goes to zero thanks to the dominated convergence theorem, thus

(II) = op(1), as k — +oo. (4.4.35)
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Joining (4.4.32), (4.4.33), (4.4.34), (4.4.35) we obtain

2(r—1 s .
A [ 180 sl P e <

< —)\/ |un7k|Td:U+C(r)/ |un7k|rda§+()\—,u)/ up dx + ox(1).
RN RN RN

That is, by Sobolev inequality (1.2.7)

r

) ([ lunal#) < @00 =X [ s+ Q=) [l s (1),

Letting k — +oo by the monotone convergence theorem (since w,, ; are monotone with respect
to k and u,  — u, pointwise) we have

' ([ i) <00 [l w0 [ et @

and thus u, € Lz% (RY). Notice that 2 € [1,min{Z, %%}) If N —2s < o we are done.

Otherwise, set 1 := r, we can now repeat the argument with

. 2N ] 2N2< N )2
"2 N725’mln a’ \N-—-2s ’

2
Again, if % <2 (%) we are done, otherwise we repeat the argument. Inductively, we have

m
(N—Qs) — 400, asm — +0oo

thus % <2 (N]Ls)m after a finite number of steps. For such r = r,, consider again (4.4.36):

by the almost everywhere convergence of u, to u and Fatou’s lemma

v\ /% N2/
C"(r) (/ !u|228> dz < liminf C"(r) (/ || 525 d$>
RN n RN

< lim inf <(C(7‘) - )\)/ |up|" dx + (A — ,u)/ R da:)
n RN RN

< (C(r) — A) limsup /RN lun|" dx 4+ (A — ) limnsup /]RN |u| |un|" ! da.

n

Being u,, equibounded in H*(RY) and thus in L% (RY), by the iteration argument we have that
it is equibounded also in L"(RY); in particular, the bound is given by |lu|z times a constant
C(r). Thus the right-hand side is a finite quantity, and we gain u € L2% (R"), which is the
claim. i

The following lemma states that I, x g € L°(R") whenever g lies in L(RY) with ¢ in a
neighborhood of g; in particular, it extends Proposition 1.3.1 (see also Remark 1.5.8).

In addition, it shows the decay at infinity of the Riesz potential, which will be useful in
Section 4.6.

Proposition 4.4.6. Assume that (F1)-(F2) hold. Let u € H*(RYN) be a solution of (4.1.1).

Then u € LY(RYN) for q € [2, %NQiVQs)f and

Iy % F(u) € Co(RN),
that is, continuous and zero at infinity. In particular,
I, % F(u) € L®(RY)

and
(In* F(u))(z) = 0 as |z| = +oo.
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Proof. We first check to be in the assumptions of Proposition 4.4.5. Indeed, by (F1)-(F2) and
the fact that v € H5(RY) c L2(RN) N L% (RY) we obtain that

H = FQ(Lu), K = f(u)

lie in L%(RN )+ LaQTN?s(RN ), since bounded by functions in this sum space (see Remark 1.5.3).

Now by Proposition 4.4.5 we have u € LI(R") for q € [2, %NQfNQS), the claim follows by Remark

1.5.8. i

Once obtained the boundedness of the Choquard term, we can finally gain the boundedness
of the solution.

Proposition 4.4.7. Assume that (F1)-(F2) hold. Let u € H*(RY) be a positive solution of
(4.1.1). Then u € L®(RY).

Proof. By Lemma 4.4.6 we obtain
a:= I, * F(u) € L°(RY).
Thus u satisfies the following nonautonomous problem, with a local nonlinearity
(=A)*2u+ pu = a(z) f(u), in RN
with a bounded. In particular
(=A)*%u = g(x,u) == —pu+ a(z)f(u), in RN

where .
lg(x,t)| < plt] + Cllal|so <|t|ﬁ + |t|m> '

Set v := max{1, L2} € [1,2}), we thus have

lg(z, )] < C(1+ [¢]7).
Hence we are in the assumptions of [157, Proposition 5.1.1] and we can conclude. i

Proof of Theorem 4.4.1. The first part of the claim comes from Proposition 4.4.7. In the case
of sign-changing solutions, we may apply Proposition 1.2.24 with

ga.t) = (I + F(w) (@) £(2) - pu,

whenever u is a fixed solution and (F6) holds (together with (F1)-(F2)), thanks to Proposition
4.4.6. i

4.4.2 Holder regularity: strong solutions

Gained the boundedness, we obtain now that solutions are Holder continuous and satisfy the
equation in the strong sense. This extra regularity will be also implemented in some bootstrap
argument for the L'-summability, see Section 4.4.3.

Proposition 4.4.8. Assume that (F1)-(F2) hold. Let u € H*(RY) N L>®(RY) be a weak solution
of (4.1.1). Thenu € H*RN)NCY(RY) for any v € (0, min{1,2s}), and u is a strong solution,
i.e. u satisfies (4.1.1) almost everywhere.

In addition, if s € (3,1), then u € C*1(RY) for any v € (0,25 — 1).
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Proof. By Proposition 4.4.7, Proposition 4.4.6 and (F2) we have that u € L>(R") satisfies
(—A)*u=g e L*(RY)
where g(z) := (Io * F(u))(z)f(u(z)) — pu(x). We prove first that v € H>*(RY). Indeed, we
already know that f(u), F(u) and I, * F(u) belong to L>(R"). By Remark 1.5.7, we obtain
f(u) € Lavs RY) A LO(RY),  F(u) € L¥a (RY) 0 L®(RY),

Io* F(u) € LV (RY) N LP(RY), (Lo * F(u)f(u) € L2RY) N L=(RN).

In particular,
9= (I * F(u) f(u) — jiu € L2(RY),

Since u is a weak solution, we have, fixed ¢ € H*(RY),
/ (=A)*2u (=AY 2pde = / gpd. (4.4.37)
RN RN

Since g € L?(R"), we can apply Plancharel theorem and obtain

[ eragds= [ gode (4.4.35)
RN RN
Since H*(RY) = F(H*(R™)) and ¢ is arbitrary, we gain

€*u=g e L*(RY).

By definition, we obtain v € H?*(R"), which concludes the proof. Observe moreover that
FHA+1€2%)) = u+ g € LARY) N L>®°(RY), thus by definition u € H2(RY) N W25 (RY).
By the embedding (1.2.13) (see also Proposition 1.2.25) we obtain u € C%7(R") if 25 < 1 and
v € (0,2s), while u € C(RY) if 25 > 1 and v € (0,25 — 1).

It remains to show that u is an almost everywhere pointwise solution. Thanks to the fact
that u € H?(RY), we use again (4.4.38), where we can apply Plancharel theorem (that is, we
are integrating by parts (4.4.37)) and thus

/(—A)sucpdx:/ gpdx.
RN RN

Since ¢ € H*(RY) is arbitrary, we obtain
(=A)’u =g almost everywhere.
This concludes the proof. |

We observe, by the proof, that if s € (%, 1), then u is a classical solution, with (—A)%*u € C(RY)
and equation (4.1.1) satisfied pointwise. We will further investigate these aspects in Section
4.4.4.

4.4.3 L'-summability: fixed point maps

We deal now with the summability of u in Lebesgue spaces L"(RY) for r < 2. We observe that
the information u € L'(R™) N L2(RY) is new even in the power-type setting: indeed in [138]
the authors, in order to ensure existence of solutions, assume the nonlinearity to be not critical,
while here we can include the possibility of criticality. Moreover, this result is new even for s = 1,
improving [302]. The L!-summability will be then used also to gain the asymptotic behaviour of
the solutions in Section 4.6.
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Remark 4.4.9. We start noticing that, if a solution u belongs to some LI(RN) with q < 2, then
u € LYRY). Assume thus q € (1,2) and let u € LY(RN) N L=®(RY), then we have
flu) € L5 ®Y) N L2RY),  F(u) € ¥ (RY) 0 Lo(RY),

qN aN

Iy % F(u) € LVt (RN) N L®RY), (Iy* F(u))f(u) € LV e (RY) N L®(RY).

Thanks to Proposition 4.4.8, u satisfies (4.1.1) almost everywhere, thus we have

FU(E + 1)) = (—A)'u+ pu = (Lo % F(u)) f(u) € L7707 (RV)

hence by the properties of the Bessel operator (1.2.12) we obtain that u itself lies in the same
Lebesgue space, that is

u € L¥Fae= (RN).

If # < 1, we mean that (I, * F(u))f(u) € LY(RN) N L>®RY), and thus u € L*(RN) N

a(2—q)
L®(RN). We convey this when we deal with exponents less than 1.
If ¢ < 2, then
AN
Nia2—q 1

and we can implement a bootstrap argument to gain u € L*(RY). More precisely

do € [172)
P\

where g, — 0 (but we stop at 1).

We show now that v € L'(RY). It is easy to see that, if the problem is (strictly) not
lower-critical, i.e., (F2) holds together with

F
im —(t) =0

t—0 ‘t‘ﬁ

for some 3 € (252, M) thenw € LY(RY). Indeed u € H¥(RY)NL=(RY) ¢ LARN)NL®(RY)
and

(Lo * F(u)) f(u) € LYRY),
B
2

< noticed that ¢ < 2, we can implement the bootstrap argument of Remark

1 _ o
where & = oN

q
4.4.9.
We will show that the same conclusion can be reached by assuming only (F2).

Proposition 4.4.10. Assume that (F1)-(F2) hold. Let u € H*(RN)NL®(RN) be a weak solution
of (4.1.1). Then u € L'(RY).

Proof. For a given solution u € H*(RY) N L®(RY) we set again

H = Fiu), K = f(u).

Since u € L2(RN) N L>®(RN), by (F2) we have H, K € L%(RN). For n € N, we set

Hy, = HX{ja|>n}-

Then we have
|Hp|lzxy — 0 asn — oo. (4.4.39)
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Since supp(H — H,) C {|z| < n} is a bounded set, we have for any 3 € [1, 2]
H - H, € LP(RY) forallneN. (4.4.40)

We write our equation (4.1.1) as

(=A’u + pu = (I * Hyu)K + R, in RY,
where we introduced the function R, by

R, := I+ (H — Hp)u)K.

Now we consider the following linear equation:

(=A)v +pv = (In * Hyo)K + R, in RV, (4.4.41)
We have the following facts:

(i) The given solution u solves (4.4.41).

N+a’ «

(ii) By the property (4.4.40) with g € (2, 2N) there exists ¢ € (1,2), namely q% =
5+ 3 — o such that R, € L% (RY) N L*(RY).

(iii) By the property (4.4.39), for any r € (522—,2] C (1,2]

ve L"RY) — A,(v) := (I * Hyv)K € L™ (RY)

is well defined and verifies

Here C,, satisfies C}.,, — 0 as n — oo.

We show only (iii). Since v € L"(R"), by Hardy-Littlewood-Sobolev inequality and Hélder
inequality we obtain
[ An(V)llr < Crl[Ha | 220 [| K[| 2 [0,

where C, > 0 is independent of n, v. Thus by (4.4.39) we have C, ,, := C;||Hp||2n | K||2v — O
as n — oo. : :

Now we show u € L% (RY), where ¢; € (1,2) is given in (ii). Since ((—A)*+pu)~t: L"(RY) —
L"(RY) is a bounded linear operator for r € (1,2] (see (1.2.11)), (4.4.41) can be rewritten as

v ="T,(v),

where
To(v) = ((—A)° + ,u)’l(An(”u) + Ry,).

By choosing S € (2, %) we have ¢q; € (%, 2) C (1,2), thus we observe that for n large, T}, is
a contraction in L?(RY) and in L% (RY). We fix such an n.
Since Ty, is a contraction in L2(RY), we can see that u € H*(RY) is a unique fixed point of
T,. In particular, we have
w= lim TF0) in L*(RY).

k—o00

On the other hand, since T, is a contraction in L% (RY), (T¥(0))22, also converges in L% (RY).
Thus the limit u belongs to L9 (RN).

Since ¢ < 2 we can use the bootstrap argument of Remark 4.4.9 to get v € L'(R"), and
reach the claim. i

With similar arguments we obtain also the following result for s = 1.

Proposition 4.4.11. Let s = 1 and assume N > 3 and (F1)-(F2). Let u € HY(RY) N L= (RY)
be a weak solution of (3.1.1) Then u € L*(RY).
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4.4.4 ("-regularity: classical solutions

We continue the analysis of the regularity started in Proposition 4.4.8 and we infer the following
result. This extra regularity will be exploited in the discussion of the positivity of solutions, see
Section 4.5.1; some more results about the regularity of the solutions will be stated in Section
4.4.5.

Consider the condition
(F7) f e CY7(R) for some o € (0, 1].

loc

Proposition 4.4.12. Assume (F1)-(F2). Let u € H*(RY) N L>®RY) be a weak solution of
(4.1.1). If s € (3,1), then u € CYY/(RYN) for any v € (0,2s — 1) and u is a classical solution.

Assume now instead s € (0,1) and in addition (F7). Then u is a classical solution, that is a
pointwise solution lying in

o COYRNYN HZ(RN) for some v > 2s, if 25 < 1,
o CYV Y RN) N H2(RYN) for some vy > 2s, if 25 > 1.
More specifically, set w := min{o,2s0, a}, we have
o ifw+2s€(0,1], then u € COY(RYN) for each v € (0,w + 2s] N (0,1),
o ifw+2s€(1,2], then u € CYY"Y(RYN) for each v € (0,w + 25 N (0,2),
o ifw+25€(2,3), then u € C?*+25=2(RN),

Proof. Start noticing that by Proposition 4.4.6 we have I, * F(u) € Co(R"); in particular
2N
I, * F(u) is pointwise finite. Moreover, by (F2) we have F(u) € L¥+a (RN) N L>®(RY). If we

choose
{ q€[5,00) ifae(0,1],
ge 5 2y) ifae(1,N)
we obtain

F(u) e L/RY), X <a<14+X
and thus we can apply Proposition 1.3.6 to conclude that
Lo+ F(u) € C%* 5 (RN,
In particular, by suitable choices of g, we gain
In % F(u) € C™(RY)  for every w € (0,min{1, a}).

Notice that up to now we did not use the regularity on f. Assume (F7) now. By Proposition
4.4.8 we have that u is bounded and u € C%V(RY) for every v € (0, min{1,2s}). By composition,
we obtain

f(u) e COYRYN),  for 6 € (0, min{o, 250}).

Chosen
w =0 € (0,min{o, 2s0, a})

then, since both f(u) and I, * F'(u) are bounded and Holder continuous, we have
(In * F(u))f(u) € CO%RN).
At this point we can use Proposition 1.2.25 to gain

o if w+2s¢€(0,1], then u € CO%Y(RYN) for each v < w + 25, v < 1,
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e if w+2s € (1,2], then u € CYL(RYN) for each v < w + 25, v < 2,
o if w+2s€(2,3), then u € C2H25=2(RV),

and thus the regularity claim. Finally, again by Proposition 4.4.8 u satisfies (4.1.1) almost
everywhere; moreover, by the achieved regularity and Proposition 1.2.1, we have that all the
appearing functions in (4.1.1) are continuous; thus the equation must be satisfied everywhere
pointwise. This concludes the proof. |

4.4.5 C' and C? regularity

We prove now that, under some more restrictive conditions on s, @ and o, where f € C’loo’g (RM),
we can prove that u € C'(RY). We notice that partial results for s € [§,1) are already contained
in Proposition 4.4.8 and Proposition 4.4.12. This C'-regularity will be implemented then in the

study of the Pohozaev identity in Section 4.7.

Proposition 4.4.13. Assume (F1)-(F2). Let u € H*(RY) N L>®RY) be a weak solution of
(4.1.1). Then

i) if s € (1,1), then u e CY(RYN) for any v € (0,2s — 1).
Assume now (F7) in addition. Then

i) if s € [3,1) and w := min{o, o} < 2 — 2s, then u € CY'(RYN) for any v € (0,w + 25 — 1);
if instead w > 2 — 2s, then u € C?%+2=2(RN);

iii) if s € [5,2), a >1—2s and o > 152, then u € CW(RYN) for every v € (0,w +2s — 1),
where w := min{2so, a};

w) ifa <2 and o >1—2s, then u € CYY(RN) for every v € (0,1).
Proof. We need to check only the fourth case. We aim to prove

(In * F(u))f(u) € C29(RN),  for some w + 25 > 1

loc

in order to apply Proposition 1.2.25. We want to show thus that I, * F'(u) is Holder continuous;
more precisely, we will show that it belongs to C%*(R™) for some w that increases according to
v, where u € 00’7(RN ), so that we can employ a bootstrap argument.

Thanks to Proposition 4.4.12, set

0y :=min{o + 2s,2s0 + 2s,a + 25,1}
=min{2s0 + 2s,a + 2s, 1}

we have
u e COYRN) N L®RY),  for v € (0,6)).

By composition we obtain
fu) € COYRY),  for v € (0,06)),

and
F(u) € CO7(RY),  for v € (0,60),

which implies, by Proposition 1.3.6 (possible since @ < 2) and Remark 1.1.1 (recall that
I * F(u) € L*(RY)), that

Iy % F(u) € CY*t(RY), for v € (0, min{6p,1 — a})
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that is
I % F(u) € COY(RY), for v € (0, min{fy + o, 1}).

Since wp := 0y < min{fy + «, 1}, we have
(I * F(u))f(u) € C™Y(RN)  for v € (0,wp).
We implement now the bootstrap argument. By Proposition 1.2.25 we gain
o if 6 :=wp + 25 > 1, then u € CY/(RYN) for v € (0,601 — 1);
o if 61 = wp + 25 < 1, then u € CO(RY) for v € (0,61).
In the first case, we stop. Otherwise,
(I * F(u)) f(u) € CO“1(RY),  w; = ob,
and
o if Oy := wy + 25 > 1, then u € CY(RY) for v € (0,6, — 1);
o if fo = w; + 25 < 1, then u € COV(RYN) for v € (0, 02).

We proceed inductively by setting
W; =0 92‘,
0; == w1+ 2s,

0; = o00;_1 + 2s.

that is

We need to show that 8; > 1 at some point. We observe that

2s
l1—0

9@ > 91'71 <~ Qz;l <

If for some 7 we have
2s

— 0

>1

0; > 1
then we stop. Otherwise, 0; is increasing, and thus its limit 6; — [ satisfies

l=o0l+2s

2s

which means that [ = +oo or [ = %%

> 1. This concludes the proof. |

Remark 4.4.14. We notice that, by assuming F' > 0, we can use Proposition 1.5.6 to implement
a bootstrap argument (namely wy := min{o, NL_‘_&}OO with the notations of the above proof) to
get additional regularity for a generic a € (0, N). We leave the details to the interested reader.
Similar arguments can be developed by assuming

F(t) = F(s)| S [t = sl’lf()) = f(s)]. fort,s € R

for some 6 € (0,1].
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Remark 4.4.15. Let us consider u > 0 radially symmetric decreasing and assume f €
C((0,400)) with
—a 2a
P OIS+ 1555, Jort>0
and
1f(t) = F)I S Nt =81/ (t) = f'(s)],  fort,s >0
for some 0 € (0, 1], then we can refine the regularity argument of Remark 4.4.14 by exploiting
some asymptotic estimates. Indeed, better reqularity on (I * F(u))f(u) can be deduced as follows:
for x,y € RN we have

| (Lo # F(w) () f (u(x)) — (Lo x F(w)) (y) f (u(y))]
< o+ F(w)(@) = (I * F(u)) )] 1f (@)lloo + [u(z) = u()|” |(Ia = F () ()] 1 (u(x)) = f'(u(y))]

where, by Corollary 4.6.20 and Remark 4.6.17

N—« 1 + ’f]}‘Nﬁa

| (Lo F(w) (y)] Ju(z)| <C

whenever |x —y| < 1. Thus the Holder regularity exponent of (In * F(u))f(u) directly depends on
the ones of 1o * F(u), u and on 0. We leave the details to the interested reader.

Finally, we exploit the L!-summability in order to further investigate the C?-regularity of the
solution u. We notice that some results are already contained in Proposition 4.4.12, whenever

s € (1,1), with some restriction on the regularity of f and on a: for instance, if f € Clogi (R) we

need a + 2s > 2 (e.g., a > 1). We prove now that, if f € C1(R), then no restriction on « is
needed. Notice that f € C1(R) implies f non sublinear in zero, that is (F6).

Proposition 4.4.16. Assume (F1)-(F2) and s € (3,1). Let u € H*(RY) N L(RY) be a weak
solution of (4.1.1). Then we have

e if (F7) holds with w := min{o,a} > 2 — 2s, then u € C?>**+2=2(RN),

o if f € CYR), then u € C*Y72(RN) for every v < 2s + 1.

Proof. We need to prove only the second point. First we show that I, * F(u) is in C1(RY).
Indeed, considered 7 € C2°(RY) a smooth mollification of xp,, we have

(Ian) * F(u) € C'(RY)
since I,n € L'(RY) has compact support and u € C'(R"Y) (by Proposition 4.4.8), while
(Ia(1 =) * F(u) € C'(RY)

since I,(1 —n) has support far from the origin and thus belongs to C}(RY), while F(u) € LY(R")
N+tao

by Proposition 4.4.10 (since u € L*(RY) N L2(RY) > L™~ (RY), see also Remark 4.4.9).
In particular

(=A)*u = —pu+ (In * F(u)) f(u) € CHRY).
Since 2s > 1, we gain u € H**(RY) — H(RY), and in particular 9;u € L2(RY) N C*(RY) C
L>®(RN) for each j = 1...N. Moreover we have

9j (Lo * F(u)) = (Ian) * (0;F (u)) + (9;(1a(1 —n))) * F(u).

We want to show that the derivative can be moved to F(u) in the second term. Indeed, set
h := I,(1 — n) for brevity, and let ¢, be a cut-off function with ¢, =1 in B,, and support in
By 41; thus

Oyl = P@)ents) = [ b =)0 F(u(w)on(n)+

RN
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+ / h(z — y)F(u(y))0jén(y);
RN

being ¢, — 1, ;¢ — 0 as n — +oo, and |h|,|0;h| < C together with F(u) € L'(RY) and
O;F(u) = f(u)dju € L*(RY) (notice that f(u) € L*(RY) since u € L*(RY) N L>®°(RY)), by
dominated convergence theorem we reach the claim. Thus we obtain

0; (o * F(u)) f(w)) = (I * (f (w)0ju)) f () + (o * F(u)) f' () ju.
Since u € L>®(R"Y) and f’ is continuous, we have f’(u) is bounded. Thus the right hand side
belongs to L2(RY) N L= (RY).
If we prove that

0;((—A)%u) = (—A)*(9u) (4.4.43)

then we have
(=A)*(95u) = —pdju + 0; (Lo * F(u)) f(u)) € LX(RY);

by Proposition 1.2.25 and again 2s > 1, we obtain that 9;u € C17(RY) for any v € (0,2s — 1),
which is the claim.

We deal thus with (4.4.43). Since 9;((—A)%u) € L?*(RY), we can evaluate the Fourier
transform F(0;((—A)%u)), and since (—A)*u € CH(RY) we have

FO((=A)w) = i&F((-A)"u) = ig; (|¢[*F (w)-
Since u € L2(RY) N CY(RY) we obtain
F(05((=A)*u) = [€]**(i&;F (u)) = [€]* F (95u);

taking back the Fourier transform, we obtain (4.4.43). This concludes the proof. |

4.5 Shape of ground states

In this Section we exploit the regularity of the solutions gained in Proposition 4.4.12 to deduce
the following theorem concerning the sign and the symmetry of the ground state solutions.

Theorem 4.5.1. Assume N > 2 and (F7) in addition to (F1)-(F2). Assume moreover

(F8) (i) f is odd or even,
(ii) f has constant sign on (0,400).

Then every Pohozaev minimum of (4.1.1) has strict constant sign (strictly positive or negative),
is radially symmetric and decreasing.

This last result is obtained also for constrained problem with fixed mass, see Remark 4.5.9
for details.

Remark 4.5.2. We observe that the qualitative results in Theorem 4.5.1 holds also for least
energy solutions, when the Pohozaev identity holds for every solution, see Section 4.7 (see also

[1538, Eq (6.1)] and [3/2]).

This theorem extends the result in Theorem 3.1.1 to the fractional case; in particular,
[302] deals with the case F' even. Here we address also the study of the case F' odd: as
already highlighted in Chapter 3, this case is generally less studied in literature, even if (in the
nonlocal framework) this assumption makes the functional symmetric as well as the odd case.
Mathematically, F' odd reveals to be more challenging, since the interactions in the nonlocal
term among positive and negative contributions is stronger and more difficult to manage.

Specifically, we highlight that this result is new even in the limiting local case s =1, N > 3,
when F' is odd, extending some results in [302]. Notice that in this framework the regularity
results hold for f merely continuous, and moreover every Pohozaev minimum is a least energy
solution, since every solution satisfies the Pohozaev identity (3.4.32).
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Theorem 4.5.3. Let s =1 and assume N > 3 and (F1)-(F2). Assume moreover (F8). Then
every least energy solution of (3.1.1) has strict constant sign (strictly positive or negative), is
radially symmetric and decreasing.

4.5.1 Positivity through fibers

We want to show now that every Pohozaev ground state has constant sign. This result requires
some additional symmetric condition on f.
We start by providing some trivial but useful inequalities, consequence of Lemma 1.4.1.

Lemma 4.5.4. Let u € H*(RY). Then
I(=2)"[ulllz < [|(=A)*ulls.
Assume moreover that
e fis odd, or
o f is even, and F has constant sign on (0, +00),

then
D(|ul) = D(u);

if f is odd, equality holds. As a consequence
Tu(lul) < Tu(w),  Pulul) < Pu(u).

To prove the positivity of Pohozaev ground states, we need to get information about the
absolute value of the function. This analysis is simplified when dealing with local operators s = 1
(since ||V]ul|l2 = ||Vull2 and the Pohozaev identity holds for every solution, see [302]), or when
dealing with local nonlinearities (since the source scales in the argument in the same way as
|u|? and an equivalent minimization approach can be exploited, see [50]), or when dealing with
homogeneous nonlinearities (since another minimization approach holds, see [138,300]). In order
to implement a different approach, we start observing the following fact.

For every u € H*(RY), u # 0, we define the fiber g, : (0, 4+00) — R as follows
tN—Zs
2

tN+Oé
2

gu(t) := Tu(ul-/1)) =
By a straightforward computation we notice that
9u(1) = Pp(u).

Since N +a > N > N — 25 it is immediate showing that there exists a single critical point for
gu, that we call A(u), which is a global maximum. That is

S tN
1(=2)*2ul3 + g flulls = D(u), t€(0,400).

a(A(w) =0, gu(A(u)) > gu(t) for each t € (0,+0c0).

Noticed that A(u) > 0, we set
0= u(/MW);
by the fact that g, (A(u)t) = g,(t), we obtain ¢/ (1) = 0, that is
Pu(v) = 0.

In other words, the scaling through A(u) brings u to the Pohozaev manifold; moreover, the energy
is maximized in A(u) all over the scaling.

Proposition 4.5.5. Assume
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o f is odd, or
o f is even, and F has constant sign on (0, +00),

in addition to (F1)-(F2). Assume moreover (F7). Let u be a Pohozaev minimum of (4.1.1).
Then u has strict constant sign (strictly positive or negative).

Proof. Since u satisfies P, (u) = 0, we obtain A(u) = 1 and thus
gu(t) < gu(1) for each t € (0, +00). (4.5.44)
Consider |u| and A(|u|). Define
= [u|(-/A([u]))
which satisfies P, (v) = 0. Since u is a Pohozaev minimum we obtain
Tu(w) < Tu(v).
We then use Lemma 4.5.4 to gain

Tu(u) < Fu(v)

N—-2s U N4+«
g2l 4+ QLT - QDT

u N—-2s N+ao
_ (AuD) ||(_A)s/2u||§w<x<12|>> g - QDY

= gu(A(ful))-
We finally use (4.5.44) with ¢ = A(Ju|) and obtain

Tu(u) < Tu(v) < gu(MJu])) < gu(1) = Tu(u).
Thus
Tu(v) = Tu(u) = p(p)
which, together with P,(v) = 0, implies that v is also a Pohozaev minimum of (4.1.1). By
Proposition 4.3.4 we obtain that v is a weak solution of (4.1.1), positive by definition. Thus by
Proposition 4.4.7 we have v € H*(RY) N L>(RY); this implies, by Proposition 4.4.12, that v is a

classical solution, and in particular well defined pointwise. Thus, if by contradiction there exists
an zg € RY such that v(xg) = 0, then computing

(=A)*v(x0) + po(wo) = (1o * F(v))(20) f(v(20))
we obtain, by definition of fractional Laplacian and f(0) = 0,

v(y)
_ N gy =
/]RN |z — y|NF2s y=0

and hence v = 0, which is absurd. Thus |u| # 0. Being v € L®(R"), we obtain u € L>®(R"),
and hence u continuous by Proposition 4.4.8. As a consequence, u does not change sign. This
concludes the proof. |

Remark 4.5.6. We point out that, without assuming (F7), we can achieve
p(p) = inf {T,(uv) | u € H*(RY)\ {0}, P.(u) =0, u positive}

and the same for p,(n). Indeed, let (up), C H*(RN)\ {0}, Pu(un) =0, Ju(un) — p(u) be a
minimizing sequence. Set vy, = |up|(-/A(|un|)) we have Py(uyn) = 0 and, arguing as in the first
part of Proposition 4.5.5, we obtain

Hm  Jy(un) = p(p) < Tu(n) < gu, (A(|unl)) < Tu(un);

n—-+00

thus J,(vn) — p(p), which means that v, is a positive minimizing sequence.
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4.5.2 Radial symmetry

The solution found in Theorem 4.2.1 is radially symmetric by construction. We show now that,
under some condition on f, every Pohozaev ground state is actually radially symmetric. To this
aim, we will exploit the polarization introduced in Section 1.4. We remark that other techniques
could be investigated (with different assumptions on f, see e.g. [275,371]), but this goes beyond
the scope of this thesis.

Proposition 4.5.7. Assume that f has constant sign on (0,400) in addition to (F1)-(F2). Let
u be a positive Pohozaev minimum of (4.1.1). Then w is radially symmetric and decreasing with
respect to some point.

Proof. Let v be the polarization of u with respect to a closed half-space H ¢ RY. By
Proposition 1.4.5 we have

(=) |z < (=2)*2ul.

Assume moreover that f > 0 on (0, +00) (if we substitute f with —f the Hartree-type terms are
conserved). Observed that F' is nondecreasing on (0, +00), we have by (1.4.40)

F(o) = (F(v))!  whenever v > 0.

Thanks to these facts, we can argue as in [302, Section 5.3] to reach that J,(u”) = J,(u),
which implies D(u!’) > D(u); on the other hand, the inverse inequality is always true, and hence
D(uf') = D(u); again by the argument in [302] we have the claim. 1

Corollary 4.5.8. In the assumptions of Theorem 4.5.1, every Pohozaev minimum of (4.1.1) has
constant sign, is radially symmetric and decreasing. Moreover, assuming also (F3)-(F4), we have

pr() = p() = inf { Ty (u) | w € HIRN)\ {0}, Pyu) = 0, u positive}.

Proof Theorems 4.5.1 and 4.5.3. The claim of Theorem 4.5.1 is contained in Corollary 4.5.8.
The proof of Theorem 4.5.3 can be obtained arguing in the same way, obtaining regularity of
solutions by standard results (see e.g. [302]). 1

Remark 4.5.9. In Section 4.2.2 we found a Mountain Pass solution (ji,u) for the L*-mass
prescribed problem by assuming L?-subcriticality of the nonlinearity. This solution is a ground
state of

1 s/2,,12 1

L(u) == (=AY “ul*de — = (Io * F(u))F(u) dx,

2 RN 2 RN

restricted to the set
Sm={u € HYRY) | [lu]3 = m};

moreover, this solution (i, u) is a minimum over the Pohozaev set in the product space, that is

L(p,u) = pf(%)f:oﬁ(”’ v).
This property easily implies that u is a ground state (in the unconstrained case) of Ju over the
Pohozaev set, that is
Tu(u) = pr(f).
Thus, the positivity result in Proposition 4.5.5 applies to u.

Actually, all the positivity and symmetry results gained in this Section hold also for this
constrained mass problem, up to simple adaptations. Indeed, in this case the proof of the positivity
1S even easier, since

ue {|lolz =m} = |u] € {||v]; =m},
which means that if u is a ground state, then |u| is a ground state as well. We highlight again
that this simplified approach can be not implemented in the unconstrained case. In addition,
under these symmetric and regularity assumptions (F7)-(F8), also this L?-minimum is actually
an L2-minimum all over the whole H*(RY) (and not only restricting the functional on HS(RY)).
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4.6 Asymptotic decay

In this Section we exploit the L'-summability of the solutions to study the asymptotic behaviour
of solutions for |z| — +o0o. Recall that 27 = &2 and 2= Mo
When s = 1 and f(u) = |u|""2u, that is

— Au+pu = (I * |ul")|ul"?u  in RN (4.6.45)

Cingolani, Clapp and Secchi in [109, Proposition A.2] obtained an exponential decay of positive
solutions whenever r > 2, which means that the effect of the classical Laplacian prevails.
Afterwards, Moroz and Van Schaftingen in [300] (see also [301,304] and [101,128]) extended the
previous analysis in the case of ground state solutions to all the possible values of r in the range
(27, 2, 1], in particular by finding a polynomial decay when f is sublinear (i.e., the Choquard
term effect prevails). They prove the following result [300, Theorem 4].

Theorem 4.6.1 ([300]). Let s = 1 and let u € H'(RY) be a nonnegative ground state of (4.6.45),
and r € [27,27 {]. Assume p = 1. Then

ar “a,l

o if r > 2, then

lim u(m)|x|¥e‘x| € (0, +00);
|z| =400

_ || [q_pN—o
lim u(x)\a:|¥ef” Tt (0, 400)

|z| =400

e ifr =2, then

for some explicit v = v(u);

o if r <2, then
N—«a
lim wu(z)z|2" =C(N,a,r,u) € (0,+00)

|z| =400
where )
C(N,a,r,u) := (Cnallull;) > (4.6.46)

: N
with Cn o = 2em VAT

Notice that, when p # 1, p influences both the limiting constants and the speed of the
exponential decays. We refer also to [135, Section 8.2] for some results on convolution equations
with non-variational structure.

The case of the fractional Choquard equation s € (0, 1) with homogeneous f, that is
(—A)su+ pu = (I * [u|")|u|""?u  in RY, (4.6.47)

has been studied by D’Avenia, Siciliano and Squassina in [138] (see also [139] and [280,395] for
other related results). In this paper the authors gain existence of ground states, multiplicity
and qualitative properties of solutions. In particular they obtain asymptotic decay of solutions
whenever the source is linear or superlinear, that is when r > 2 (see also [41] for the p-fractional
Laplacian counterpart): in this case the rate is polynomial, as one can expect dealing with the
fractional Laplacian; more specifically, it does not depend on «, and they prove the following
theorem.

Theorem 4.6.2 ([138]). Let u € H*(RN) be a solution of (4.6.47), and assume r € [2,27 ,].

’ “a,s
Then

‘N+2s

0 < liminf |u(z)||z|¥ 2 < limsup |u(z)||z < +o0.
o0

|z|—+ |z| =400
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In this Section we study the asymptotic profile of solutions of equation (4.1.1), starting by
the case f linear or superlinear. In the remeaning part we will develop the more tricky case of f
sublinear: the found decay is of polynomial type, with a rate possibly slower than ~ W; the

result is new even for homogeneous functions f(u) = |u|""*u, r € [%, 2), and, differently from

the local case s = 1 in [300], new phenomena arise connected to a new s-sublinear threshold that
we detect on 7.

|r72

This Section is mainly based on papers [115] and [198].

We show first some conditions which imply the decay at infinity of the solutions.

Lemma 4.6.3. Assume that (F1)-(F2) hold. Let u € H*(RY™) be a weak solution of (4.1.1).
Assume

(Io * F(u))f(u) € L*RY) N L= (RY).

Then we have
u(x) =0 as|z| = 4o0.

Proof. Being u solution of
(=A)u+ pu = (In* F(u)) f(u) = x inRY,
where y € L?(RY) nL2 (RV)N L>®(RYN), we have the representation formula (being x € L2(RY))
u =K%y

where K := Kg, , is the Bessel kernel; we recall that K is positive, it satisfies IC(x) < MN% for

|z| > 1 and K € LYRY) for g € [1,1+ 25-) (see Lemma 1.2.29). Let us fix > 0; we have, for
z e RN,

u(z) = [ Kz —y)x(y)dy
]RN

:/ K(x —y)x(y)dy + / K(z — y)x(y)dy.
lz—yl>1/n

lz—y|<1/n
As regards the first piece

C

Kz —y)x(y)dy < IIXHOO/ ——-dy < O
/wylzl/n le—y|>1/n |z — y|N+2s

N

while for the second piece, fixed a whatever ¢ € (1, min{2, ;=5

}) and its conjugate exponent
¢ € (max{2, £}, +00) we have by Holder inequality

/|z_y|<1/,7 ke~ 9x@)dy < [Klalxl s, o

where the second factor can be made small for || > 0. Joining the pieces, we conclude the
proof. |

Notice that v € L2(R™) N L>(RY) implies the assumptions of Lemma 4.6.3.

4.6.1 The (super)linear case

By assuming the condition in zero (F6) for the function f, we obtain the following polynomial
decay, as stated in paper [115].
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Theorem 4.6.4. Assume (F1)-(F2) and (F6). Let u € H5(RY) be a positive weak solution of
(4.1.1). Then there exists C',C" > 0 such that

C/ C//
[EFREE ) <7y | NH2s”

for z e RV,
We are now ready to prove the polynomial decay of the solutions.

Proof of Theorem 4.6.4. Observe that, by (F6) and Theorem 4.4.1

Q) e L>(RM). (4.6.48)

u

Moreover, by Proposition 4.4.6 we obtain

f(u(z))
u(z)

As a consequence, by (4.6.49) and the positivity of u, we have for some R’ > 0

(Io * F(u))(x) —0 as |z| — +oo. (4.6.49)

(—A)*u+ Spu = (I % F(u) f(u) — Lpu = ((Ia x F(u)) L) — %M) w<0 inRN\ Bp.
Similarly

(=AY u+ 3pu = (In * F(u))f(u) + spu = ((Ia * F(u))M + %,u) u>0 in RV \ Bp.

u

Notice that we always intend differential inequalities in the weak sense.
In addition, by Lemma 1.2.30 we have that there exist two positive functions W', W' and
three positive constants R”, C' and C” depending only on u, such that

3
(—A)Swl + §Mwl =0 in RN \ BR//,

C/

2]V <W'(x), for |z| >2R".

and .
(AW + §MW’ =0 in RV \ By,

okt
‘$|N+25’

W' (z) < for x| > 2R".

Set R := max{R',2R"}. Let C; and C; be some lower and upper bounds for v on Bp,

Cy :=ming, W and Cj := maxp, W', all strictly positive. Define
W:=CCy' W, W:=CC3'W
so that
W(z) <u(zx) <W(z), for|z|]<R.
Thanks to the comparison principle in Lemma 1.2.34, and redefining C’ and C”, we obtain

C/ C//

S <W(z) <u(z) <W(z) < T for |z| > R.

By the boundedness of u, we obtain the claim. |

We see that, for non sublinear f (that is, (F6)), the decay is essentially given by the fractional
operator. It is important to remark that, contrary to the limiting local case s = 1 (Theorem
4.6.1), the Choquard term in case of linear f seems not to affect the decay of the solution.
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Remark 4.6.5. We observe that the conclusion of the proof of Theorem 4.6.4 can be substituted
by exploiting the results in [190] through a Kato’s inequality (see also [19, Theorem 3.2]). Indeed
write V := —(Ia*F(u))w, which is bounded and zero at infinity as observed in (4.6.48)—(4.6.49),
and gain

(=A)u+V(z)u=—pu in RN,

Up to dividing for ||u||2, we may assume ||u|l2 = 1. Thus we are in the assumptions of [190, Lemma
C.2] and obtain, for constant sign or sign-changing solutions of (4.1.1),

Ch

u(z)] < ———
(1+ [2[2)"%

together with
1

Co
lu(x)| = v +o PRz as |x| = +o0

for some C1,Co > 0.

4.6.2 The sublinear case: fractional Laplacian versus Riesz potential

We focus now on the case f sublinear: we aim to study the fractional Choquard case s € (0,1),
a € (0, N), in presence of general, sublinear nonlinearities. We point out that the arguments
in [300] cannot be directly adapted to the fractional framework: for instance, we see that the
explicit computation of the fractional Laplacian of some comparison function is not possible, and
the choice of the comparison functions itself is hindered by some growth condition typical of
the nonlocal framework; moreover, it is not obvious that all the weak solutions are pointwise
solutions, and neither one can deduce that the concave power of a pointwise solution is indeed a
solution (of a different equation) itself.

We start by presenting the case of homogeneous powers f, which has an interest on its own.
Since in the superlinear case the rate of convergence is of the type ~ —xss, in the sublinear
ERAs
case we generally expect a slower decay. Actually this is what we find, as the following theorem
states.

Theorem 4.6.6. Let u € H*(RY), strictly positive, radially symmetric and decreasing, be a
weak solution of (4.6.47). Let r € [27,2) and set

N —
8= min{2 a,N—l—Qs} > N.
—-r

Then
0 < liminf u(z)|z|® < limsupu(z)|z|® < +oo.
|z|—+o0 |z| =400
We refer to Remark 4.6.12 and Corollary 4.6.32 for some comments and generalizations on
the assumptions. This result in particular applies to ground states solutions.

Corollary 4.6.7. Let u be a positive ground state of (4.6.47). Then the conclusions of Theorem
4.6.6 hold.

We highlight that the found decay of the ground states might give information, when
r < 2, also on the twice Gateaux differentiability of the corresponding functional and on the
nondegeneracy of the ground state solution itself, see [300] (see also [304, Section 3.3.5]). Moreover
this information on the decay may be exploited to study fractional Choquard equations with
potentials V' = V(x) approaching, as |x| — 400, some V, > 0 from above or oscillating, in
the spirit of [282,283]. It might be further used, for example, in the semiclassical analysis of
concentration phenomena, see e.g. Chapter 5.

Joining the results in Theorem 4.6.2 and Theorem 4.6.6 we obtain the following picture of
the asymptotic decay of fractional Choquard equations.
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Corollary 4.6.8. Let u be a positive ground state of (4.6.47), with r € [27, 25 sl and p>r—1.

o Ifre [2f,%], then

N—« N—«
0 < liminf u(z)|z|2= <limsupu(z)|z|2=" < +oo;
|| =00 |z|——+o0

in particular, ]\2[?77?‘ = N in the lower critical case r = Qﬁ.

e Ifre [N;i;fs,237s], then

0 < liminf u(z)|z|Y 2% < lim sup u(z)|z|¥ T2

|z[—+00 |z| =400

< +00.

By the previous Corollary we see that the exponent

__N+a—|—4s
s N42s ]

Tos € (27,2), separates the cases where the fractional Laplacian influences more the rate of
convergence (which does not depend on «), from the cases where the asymptotic behaviour
is dictated by the Choquard term (which does not depend on s). This phenomenon seems to
highlight a difference between the fractional and the local case, where the separating exponent is
r =2 (see Theorem 4.6.1): indeed, when r € (77, 1,2), the arbitrary big (as r — 2) polynomial
1

behaviour ~ —z—5 keeps being slower than the exponential decay induced by the classical
|{l‘| 2—r
Laplacian; this is not the case when compared with the polynomial decay induced by the fractional

Laplacian, and this is why this new phenomenon appears in this range. Thus 77, ; can be seen as
a kind of s-subquadratic threshold for the growth of F'; set instead

¥ s _a+2s
pa,s '_ra,s

- N +2s’

it can be seen as a s-sublinear threshold for the growth of f. Notice that

r;s 30 2%, 7';75 az N 2,
while N+tatd N+4
s—1 (&% a—0 S
R e (27,2 * = € (1,2).
ra,s N+2 ( a) )7 Ta,s N+28 ( Y )

We refer also to the recent paper [209, Theorem 1.4] where asymptotic decay results are studied
in a different framework (still involving the fractional Laplacian and the Riesz potential); here a
threshold different from the classical case s = 1 is detected as well.

When r € [27, 75.s) We are also able to find a sharp decay for w.

Corollary 4.6.9. Let u € H*(RY), strictly positive, radially symmetric and decreasing, be a
weak solution of (4.6.47); in particular, u may be a ground state. If r € [27,7% ), we have

a’'a,s
(oN,a ,u,;)zz _
b)
7!

lim w(x)lz|?= =
|z| =400

notice that, if p =1, the constant is coherent with (4.6.46).

We finally highlight that, for s € (0, 1], the rate of convergence of the solutions for r < Tovs

is ~ ——: for bigger values of r, the rate stabilizes to ~ W when s < 1, while it keeps

|LL" 2—r

getting faster when s = 1 (up to the threshold r = 2, where it gets constantly exponential). It
might be interesting to investigate other possible phenomena on fractional Choquard equations
when 7 is above and below this exponent 77, ¢, or also possible phenomena in (77, ;,2) for the
local Choquard equation.
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Remark 4.6.10. We notice that, fixed a positive solution u, by setting
pi= Iy xu"
equation (4.6.47) can be rewritten as
(—A)*u + pu = p(z)u™L.

When =0 and p(z) < ﬁ with v > N, this fractional sublinear equation (r € (0,2)) has been
studied in [321] (see also [211, Theorem 4.4] where they extend the result to v > 2s): here the
authors find an estimate from above of the asymptotic decay of the solutions, which is strictly
slower than ~ ﬁ Notice that, in our case, p = Ioxu” decays at most as ~ Ix\+‘a (see (1.3.34)),
and we discuss the strict positive mass case p > 0. See also [138, 253] for more results on the
zero mass case.

We pass now to more general nonlinearities, and study (4.1.1). We will assume (F1)-(F2),
which in particular imply
F(t
i) limsup| (;2| < 400, i) limsup
t—0 |t|2a |t|—=+oc0 ‘t

F(t
| 2@' < 400, (4.6.50)

or equivalently that there exists C' > 0 such that for every ¢t € R,
28 2%
@) < C(It™ + [t]7e).
In addition we consider f sublinear in the origin, given by the following assumptions:

(F9) there exists 7 € [27,2) such that

li){iggp |£n(_tz’ € [0, +00),
i.e., for some C' > 0 and d € (0,1) we have
If(t)] < Ct™—! fort e (0,0); (4.6.51)
(F10) there exists r € [2#,2) such that
lit§3£1f£(? € (0, +00),
i.e., for some C' > 0 and ¢ € (0,1) we have
f(t)y>cCtt forte(0,0). (4.6.52)
A sufficient condition for (F9) is clearly given by
lig(s#p ii(_tz =0 for some r € [27,2), (4.6.53)

which means that C' can be taken arbitrary small in (4.6.51); in particular it includes logarithmic
nonlinearities f(t) = tlog(t?), where r can be chosen arbitrary close to 2. A sufficient condition
for (F10) is instead given (for example) by a local Ambrosetti-Rabinowitz condition of the type

f)t>rF(t)>0 forte(0,0).

The restriction in (F9) and (F10) to right neighborhoods of zero is due to the fact we deal with
positive solutions.

We eventually come up with the following generalization of Theorem 4.6.6.
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Theorem 4.6.11. Assume (F1)-(F2), and let u € H*(RY), strictly positive, radially symmetric
and decreasing, be a weak solution of (4.1.1). Let r € [2%,2) and set

N —
B = min{2 a,N—|—28} > N.
—r

(i) Assume (F9). Then
lim sup u(z)|z|® € (0, +00).

|z| =400

(ii) Assume (F10), f locally Hélder continuous and [pn F(u) > 0 (e.g. F >0 on (0,+00)).
Then
lim inf u(z)|z|? € (0, +00).

|z| =400

If both conditions in (i) and (i) hold, together with C = C (i.e., f is a power near the origin)

and r € [NEe, N;i‘{js), then we have the sharp decay

1

N (ON,amem SO fon F<u>) .

. (4.6.54)

where Cn o > 0 is given in (4.6.46).

Remark 4.6.12. We highlight that the conclusions of Theorem 4.6.11 (as well as of Theorem
4.6.6) hold in more general cases. Indeed:

e The case

t
1 & = 400
t—0t &
in a non-strict sense (i.e. lim;_,q |f£t,)l =0 for each r € [1 + £&,2), for example f(t) ~
[¢] N

—tlog(t?)) is included, and as we expect the decay is of order ~ W See Corollary
4.6.91.

e The conclusions hold also without assuming radial symmetry and monotonicity of u, but by
assuming a priori that
lim sup |u(x)||z|* < 400

|z| =400

for some w > NN—fa see Remark 4.6.19. When u € LI(RN), ¢ < %, is radially
symmetric and decreasing, this is the case with w = % (see Remark 4.6.17); in particular,
if ¢ =1, we have w = N. Notice that u is automatically radially symmetric and decreasing
when u € CHRN), f(u) = |[u]"2u and w > 25 thanks to [254, Theorem 1] (see also

loc

[371, Theorem 1.5]).

o In light of the previous remark, we highlight that the estimate from above actually holds true
also for nonnegative solutions u > 0; see Proposition 4.6.23; moreover, it can be further
extended to |u| in the case of changing sign solutions, by applying a Kato’s inequality
[19, Theorem 3.2].

o The conclusions hold also for solutions u € L*(RN)NC(RN) in the viscosity sense, without
assuming f Holder continuous (which is needed in (ii) only to pass from weak to viscosity
solutions): see Section 4.6.6.

o When (F10) holds, we actually have F(t) > Ct fort € (0,6); thus, being also u € L>®(R™),
the condition [px F(u) > 0 means that F is not too negative in [0, |lul|-c]. We highlight
that the energy term [pn (In * F(u))F(u) is always positive (see e.g. Proposition 1.3.2).
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o We find some estimates on the asymptotic constants, which are coherent, when r € [27, Tos)s

with the one found in Theorem 4.6.1 and Theorem 4.6.11: see Propositions 4.6.23 and
4.6.26, and Corollary 4.6.9. We notice that (4.6.47) is obtained by (4.1.1) formally choosing
f(t) = /r[t|""%t. In our proofs — up to well posedness and regularity — we do not use that
F is the primitive of f: in particular, we do not apply (F9) and (F10) to F. Thus we can
arbitrary move constants from f to I in our arguments to adjust — for example — the value
of C, and this allows to gain the result for every p > 0 (see also Corollary 4.6.30).

Our results apply in particular to Pohozaev minima of the equation, whenever some symmetric
assumption is assumed on f, that is (F7)-(F8). We notice that, since every Pohozaev minimum
has constant sign, it is not restrictive to assume a priori the sign of u.

Corollary 4.6.13. Assume (F1)-(F2) and (F7)-(F8). Let u be a (positive) Pohozaev minimum
of (4.1.1). Then the conclusions of Theorem 4.6.11 hold.

We finally want to highlight that our results may be adapted to the local case s = 1, extending
Theorem 4.6.1 to general nonlinearities, studied in [302]. We leave the details to the reader,
. . . . A . _ N— .
observing that in this case the rate of decaying is simply given by § = 5=, since, as already
observed, the solutions of the homogeneous linear (associated) equation decay exponentially.

Theorem 4.6.14. Let s = 1 and N > 3, and assume (F1)-(F2). Let u € HY(RY), strictly
positive, radially symmetric and decreasing, be a solution of (3.1.1); in particular, uw may be a
ground state. Let r € [27,2).

(i) Assume (F9) and pu > (r — 1)C'ﬁ. Then

lim sup u(z)|z| e (0, 400).

|z|—+o0
(ii) Assume (F10) and [pn F(u) >0 (e.g. F >0 on (0,400)). Then

N—«a
lim inf u(z)|z| 2= € (0, +00).
|z| =400

If both conditions (i) and (i) hold, together with C = C, then (4.6.54) holds.

In both the estimates from above and below in Theorem 4.6.11 we rely on some comparison
principle and the use of some auxiliary function whose fractional Laplacian is related to the
Gauss hypergeometric function. For the estimate from above we succeed in working with the
weak formulation of the problem; on the other hand, in order to deal with the estimate from
below, we find the necessity of working with u?~", where 2 — r € (0,1): this concave power of
the solution may fail to lie in H*(R"), and thus we cannot treat the problem with its weak
formulation. The pointwise formulation seems to arise some problems as well, since the fractional
Laplacian of u?>~" needs some restrictive assumption on «, s, N and r in order to be well defined.
This is why we work with a viscosity formulation of the problem: in this case, to pass from weak
to viscosity solutions, we ask only a bit of Holder regularity on f. We remark that the estimate
from above may be treated with the viscosity formulation as well.

The remaining part of the Chapter is organized as follows. In Section 4.6.3 we recall the
suitable auxiliary function introduced in Section 1.2.2, and establish some asymptotic behaviour
on suitable comparison functions; other preliminary estimates are studied in Section 4.6.4. Then
in Section 4.6.5 we deal with the estimate from above, by working with the weak formulation,
while in Section 4.6.6 we study the asymptotic behaviour from below, by exploiting a viscosity
formulation. Finally in Section 4.6.7 we conclude the proofs of Theorem 4.6.11 and its corollaries.
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4.6.3 Fractional auxiliary functions
In order to implement some comparison argument, in Section 1.2.2 we introduced the function

1
hg(z) = ——
T ey

which behaves, at infinity, like ~ ﬁ, B > 0, but lies in H*(RY), avoiding the pole in the origin
when 8 > N. This function verifies

N N
(—A)Shﬁ(x) = Cﬁ,N,s o FY (2 + s, g + s, 5; _|.%'2)

I(X4s)r(£+4s)
where Cg n s = 92s 22 1 2217/
) r(3)r(s)
Notice that we will be interested in 8 € (0, N + 2s]. In Section 1.2.2 we collected some results on
Gauss hypergeometric functions and their asymptotic behaviour at infinity. We use now this
auxiliary function to study some comparison at infinity.

> 0 and 9F) denotes the Gauss hypergeometric function.

Lemma 4.6.15 (Comparison for weak equation). Let u € C(RY) be a weak solution of
(=A)u+ M u=~hg in RN\ B,(0)
for some A,y >0, p>0 and
RS (];[,N + 25] )
Then

lim sup u(z)|z]® < co.
|z| =400

Moreover, if B € (%,N + 2s), we have

lim wu(x .CCB:l

Proof. We start noticing that, since 8 > %, then the equation is well posed from a weak point
of view. By Lemma 1.2.30 there exists a continuous function w € H?*(RY), such that

(—=AYw+Aw =0 inRY\ B,(0)

in the weak sense and pointwise, and moreover, for some C{,CY > 0,

O// C//
—A <w(r) < —25, forevery |z| >
|z[VF2s = JgVes Y p-

Let thus define, for some 7,0 € R and 0 € [, N + 2s] to be chosen,

7

)\hg(ﬂ:) + ohg(z) + Tw(x)

Vro() ==

for every x € RY. We have, for |z| > p,

A
= ’}’hﬁ(l‘) + 90,9($)‘

(—A)°vro(x) + Mpo(x) = Yha(z) + (7(—A)5h5(x) +o(—A)°hg(x) + )\ohg(x)>

By Lemma 1.2.13 we obtain
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« if Be (5, N)\{N—2s},
Gop(x) ~ %C%,N7Shﬂ+23(x) + aCé}Msths(:c) + Aohg(z) as |z| = +oo;

in this case we assume 6 € (8, min{N, 5+ 2s}) \ {N — 2s};
o if =N,

Go(w) ~ LCh vy J08(2)h426(2) + 7Ch v shvsas () + Aoho(@) as [a] = +00;

in this case we assume 6 € (N, N + 2s);

e otherwise

~ 7

/\C/g7N7ShN+28(a:) + aCéyMshNJrgs(x) + Aohg(z) as |z| = 400,

9o,0(T)
and in this case

— if = N — 2s (possible only if N > 4s), we choose 0 € (N, N + 2s);
— if 8 € (N, N + 2s), we choose 0 € (3, N + 2s);
— if § = N + 2s, we simply assume § = N + 2s.

Assume first 8 < N + 2s. By the abovementioned choices of § >  we obtain
9op(x) ~ Aohg(z) as |z| = +oo.
In particular, fixed € > 0, for some R = R.(y,\, 3,0,0) > 0 (we may assume R > p) we obtain
(I —¢e)Aohg(z) < goo(x) < (L +e)Aohg(z) for |z| > R

if 0 > 0, and
(1+e)Aohp(x) < gop(z) < (1 —e)Aohg(z) for |z| > R

if 0 < 0. Notice that R does not depend on 7. Thus

(—A)*vr5(2) + Mora(@) = 7hs (@) + (1 — £)AGhg(z) = 7hs(x) in BV \ Br(0)
by choosing a whatever & > 0, and

(=A) 0rg () + Avrg () < Yhs (@) + (1 — )Achy(w) < vhs(x) in BV \ By(0)
by choosing a whatever ¢ < 0. Summing up

{(—A)Svﬂg(w) + Avrz(x) > vhg(x) in RV \ Bg(0),

(—A)°vr o (z) + Avrg(x) < vhg(x) in RN \ B(0). (4.6.55)

We choose now 7 > 0 such that
vzz —u >0 on Bg(0).

Indeed, we impose
}h/g(l’) +chg(x) + Tw(xz) > u(x) on Bg(0)

that is
rw(z) > u(z) — %hﬁ(aj) —Ghe(z) on Bg(0)
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which is satisfied if we impose (recall that @ > 0)

Tminw > maxu — lh/g(R) > u(x) — lh/g(ac) —ohy(z) on Br(0)
Br Br A A

that is ,
7> maXBR.u — Xhﬁ(R).
- ming, w

Similarly, we choose 7 € R such that
vre —u <0 on Bg(0),

given by
ming, u — yhg(R)

T <
maxpp W

We notice that both the minimum and the maximum of w in the ball are finite and strictly
positive, since w > 0 is continuous. Thus, summing up

T,0 — 2 0 B 0 )
Vrg — U on Bp(0) (4.6.56)
vro—u<0  on Bg(0).
By joining (4.6.55) with the assumption on u, we obtain
(=A)(vsz —u)(z) + AMvgz —u)(xz) >0 in RV \ Bg(0), (4.6.57)
(=A)(vrg —u)(@) + Avrg —u)(2) <O in RV \ Bg(0). -

By the weak version of the Comparison Principle (Lemma 1.2.34) we obtain

vrs —u >0 on RV,
Vro—u<0 on RV,

that is
%hﬁ(&f) + ohg(x) + Tw(z) < u(z) < lhg(x) +chg(x) + Tw(x)
and hence, by the assumption on w,
C// C//
Tha(@) + che(x) + Tige < ule) < Thg(x) + The(e) + Tyt
A || A ||
for each z € RY, x # 0. Thus
SO A (N
Ai+[R)E  A+laP)s T
vzl _ =ff _ o
< u(z)]a]” < 2\ R o @ N+225—/5’
(142 (A+fzP)2

which gives the claim passing to the limit |z| — +o00, since §# >  and < N + 2s.
Assume now 8 = N + 2s, and choose § = 8 = N + 2s. Now we have

9o9(x) ~ Cohnyos(z) as |z] = +oo

where

= _7
CU = XC§V+23,N,S + UC§V+2S,N,S + AO-;
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recall that Cly, o x4 Cp v < 0. We can choose proper @ € R such that C5 < 0 and thus the
first equation in (4.6.55) still hold. Since the sign of @ may be now different, we choose

> maxpg, u — }hg(R) — min{7, 0}‘
ming, w

We come up then with the same proof, obtaining

lim sup u(z)|z|® < %+E+?C§’.

|| =400

Notice that the appearing constants depend on w,~, A, p, 8, N, s. |

Lemma 4.6.16 (Comparison for pointwise equation). Let u € C(RY) be a pointwise solution of
(=A)*u+ Mu=~hg in RN\ B,(0)
for some A,y >0, p>0 and
B € (0,N +2s].
Then
0 < liminf u(z)|z|® < limsupu(z)|z|® < co.
|z|—+o00 |z|—+o0

More precisely, if 5 € (0, N + 2s), we have

lim  w(z)|z|® = %

|z| =400
Proof. The proof goes as the previous Lemma, with the difference that at the end we apply the
pointwise version of the Comparison Principle (Lemma 1.2.36). |
4.6.4 A preliminary range

We start with some observations.

Remark 4.6.17. Let u € LY(RY), for some q € [1,+00), be continuous and such that |u| is
radially symmetric and decreasing. Then, for every x € RV,

|| |z
(el = Nludlal)| [ %= N [ fujel) e
0 0

N N
w()ldy < ——||ul|?
oo Lo O S Sl

||
< N/ Ju(t)| N ~Ldt =
0

where wy_1 denotes the area of the N — 1 dimensional sphere. Thus

2
@) < S5 w40

el

where C := Cn|ul|? > 0. In particular, if u € LYRN), we have

Ca
u(@)] < [ T AO

We keep with some preliminary results.
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Lemma 4.6.18. Let u € L'(RY) continuous be such that |u| is radially symmetric and decreasing.
Let f satisfy (F1)-(F2,i), and let 0 € (N, N + «. Then there exists C = C(N,a) > 0 such that

Lo+ F)@) - @) [ F(w)

R

chF(u)Hoo,eIa(fc)( o : —)

1+ x| 14 |z0-N
for each x € RN, 2 # 0.

Proof. First notice that v € L*(R"), F(u) € L*°(R"), and that I, * F(u) and [, F(u) are
finite and well defined. By Remark 4.6.17 we have

2

C
u(z)] < —%
) < o

Thus |F(u(z))||z|° is bounded on a ball Bg (since F(u) is bounded), and it is bounded on the
complement of this ball since

— 0.

|F(u(z))]

R ju(@)|

by considering the growth condition (F2,i) of F' in zero (when R > 0, not depending on 6) and
the restriction on #. Thus

[Fluz)]  C

Nta
N ‘ | N+a ‘x‘N-HX 0
u(z)|"w

|F(u(x))[|e|” =

sup [F(u(a)|fef’ < +o0
z€RN

and Lemma 1.3.3 applies with g(x) := F(u(x)), which concludes the proof. We further notice
that

. |F(t)] \ 1+ R?
F(1)]loos < |F(u)]|loo(1 + RY) +  limsu -
IF ()l < (1) o1 + ) ( wsop- S ) v
for any 6 € (N, N + a] and any R > 0 (not depending on 6, but depending on u). i

Remark 4.6.19. In what follows, for the sake of exposition we will restrict our analysis to
the space of radially symmetric and decreasing functions in L*(RN), but we highlight that this
assumption is needed only to get the a priori asymptotic decay of Remark 4.6.17. By the above
proof, actually we see that we may ask only

C
for some w such that
N2
w > N+ o

In particular w = N, obtained in Remark /.6.17, fits this condition. Alternatively, one may
assume this a priori asymptotic decay on u (and adapt the restrictions on 6 by 6 € (N, NJ‘VH"UJ]).

Corollary 4.6.20. Let u € L'(RY) continuous be such that |u| is radially symmetric and
decreasing. Let f satisfy (F1)-(F2,i), and let @ € (N, N + «]. Then for any € > 0, there exists
R. = R.(N,a,0) > 0 such that

(o Pa)@)] < Tota) (| [ P@| + elF@)lco)

and

(I * F(u))(z) > L(x) ( /R ) - eIIF(u)Hoo,e>

for each |x| > R..
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Remark 4.6.21. In Section 4.6.1 it was showed that the solutions decay as fast as ~ W when
the nonlinearity s linear or superlinear. In the sublinear case, we expect a slower decay. Indeed,
assume (F1)-(F2) and (F10), and let u be a strictly positive solution of (1.3.38). By Lemma
4.6.3 we obtain u(x) — 0 as |v| — +ool. Thus there exists R > 0 such that 0 < u(x) <6 < 1
for |x| > R and thus
f(u(@) = Cu'Y(x) for |z > R
together with
u"Hz) > u(x) for|z| > R.
If we assume (I * F(u))(z) > 0 for |x| > R, we gain
(=A’u + pu > (Ig * F(u))u on RN\ Br(0)

which implies
(=AY’ u+ 3pu > (Ia * F'(u) + %,u,) u on RV \ Br(0).

By Proposition 4.4.6 we have that (I, * F(u))(z) — 0 as |z| — +00,%, thus for some R' > R >0
we get
(=ASu+3pu >0 on RN\ Br(0).
At this point (being u strictly positive) we conclude as in the proof of Theorem J.6.4 and obtain
1

u(zx) > m for|z| > R

for some constant C} = CN,a,R,pming, u > 0 and some sufficiently large R > 0.

By Remarks 4.6.21 and 4.6.17, we obtain that every strictly positive, continuous, radially
symmetric and decreasing solution of (1.3.38) in L'(R") satisfies

Cy c?
‘x|Nj—25 <u(z) < |xﬁV for [z > R >0, (4.6.58)

whenever f satisfies (F1)-(F2) and (F10), together with [pn F'(u) > 0: indeed in this case, by
Lemma 4.6.18, we have (I * F(u))(z) ~ Io(x) [gn F(u) > 0 for |z| large. Thus the goal is to
improve the asymptotic decay (4.6.58) in the case of sublinear nonlinearities.

Remark 4.6.22. By Lemma 4.6.15, Corollary 4.6.20, and a bootstrap argument we can give
some first qualitative proofs of the main result. Indeed, by

1 1 1
_ s _ < r—1 < =
(=AY’ u+pu= (Io*F(uw)f(u) $ la(z)u"" |z| V= |zolr=1) |z

1
|x\71 .

where vy := N and 71 := y(r — 1)+ N — «, and a comparison argument, we obtain u(x) <
By induction, set
Yir1:=7i(r—1)+ N -«

we obtain u(z) < 5 and v; S N=2 (but the argument works only for v; < N + 2s). Similarly,

[z]7i 2—r
1 1 1
(=A)Yu+ pu = (In * F(u)) f(u) 2 In(z)u" " 2 |z|N=e |g[olr=1) |z

where now 7o := N + 2s, which implies u(x) > = and v; \, % if 1 <154 (while the case

~ el
T > 5o tmplying i % cannot be set in motion).
In order to pass to the limit we have to take care of the bounding constants (or, equivalently,
of the radii related to the complements of the balls where the inequalities hold), which is not
an easy task; see anyway Corollary 4.6.30. This suggests the implementation of more direct

approaches, as done in following Sections.

'If u is assumed radially symmetric and s € (%, 1), this is actually a consequence of the Strauss radial lemma.
If w is radially symmetric and decreasing, it is a consequence of the monotonicity and (a whatever) summability.

2Notice that the claim is obtained by assuming that u is a weak solution or, alternatively, that u is in the right
Lebesgue spaces; in particular it is true if u € L*(RY) N L>°(RY) a priori.
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4.6.5 Estimate from above

First, we deal with the estimate from above. In this case we succeed in arguing in the weak sense
with no additional assumption on f.

Proposition 4.6.23. Assume (F1) and (F9). Letu € H*(RV)NLY(RY), continuous, nonnegative,
radially symmetric and decreasing, be a weak solution of (1.3.38). Assume moreover

u> (r—1)0m.

Then, set 8 := min{ N + 23}, we have, for some Cy, > 0,

27"

lim sup u(z)|z|® < Cy;

|z| =400
if 8 < N + 2s, the constant C,, depends on w in the following way:

(2= 1) (Ca | F(w)) 7=

Cy = —
p—(r—1)C1

where C o > 0 is given in (1.3.32).
Remark 4.6.24. We observe that

(6%
—1+2 — =N
" N p=n,

6(1+a 1+0¢—|—2s
r
N’ N +2s

N_
) = b= e (N2,

N + 2s

actually, as already observed, the asymptotic decay with 8 = N + 2s applies for general r €

14+ ]%1222, 1+ % atds =>], including linear and superlinear cases, thanks to the results in Section 4.6.1.

We notice that when r > 1+ %, we are actually improving (4.6.58).

2
S [1+a+8,2> — B =N+ 2s;

Proof. We start noticing that, by the Young product inequality, we obtain

(T Fu)f(u) < = [T F)|” + %!f(u)lb

when a,b > 0, + + 3 = L. In particular we choose b = 1 and thus a = 5= > 0 (possible thanks
to the subhnearlty restriction on r); with this choice, by (4.6.51) and the Fact that u(z) =0 as
|x| — +o0, we obtain

(Lo % F(u)) f(1) < (2 = 7)| Lo ¥ F(w)| 77 + (r — 1)C7Tu

for |z| > R, where R = R(u) > 0 is sufficiently large. By Corollary 4.6.20, for a whatever fixed
6 € (N, N + o] and any £ > 0 we obtain
[ Fw
RN
R

2—1r CNO[ —L
u)| + | P (u >||oo,a) Vo )Gty

‘:L'| 2—7r

(T F) ) < 2= 1) (1afa) T s|F<u>||oo,e))21r +(r—1)CFTu

= (|

for every || > R. = R.(u, N, a, ), thus

1

2—1r 1 — 1
w)| + e[ P (u >uoo,e) L oo

’x‘ 2—7r

(—A)® u+uu<(2—r)C’ﬁ,o’; (’/
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Notice that F'(u) # 0 (otherwise, by the equation, u = 0 and the claim is trivial), thus we set

Yue = (2—7) C]f,oj <‘/

)\::,u—(r—l)6_’$>0

_1
2—r
0| +elF W) >0

and

we obtain

(— A)u+)\u<|%|; in RV \ Bg_(0);

notice that we use the fact that —i— < W for |z| large. For each § > 1 we have ﬁ < dhg(x)

|$| 2—r
1

when |z| > Rs := (55 —1)72; we may choose Rs. > max{Rs, R.}. Thus

(—=A)*u+ M < dyuchp(z)  in RN\ Bg, (0). (4.6.59)

We have hg € L2(RY), since 25=% > N. By Lemma 1.2.31, being u € H*(R"), there exists
v € H*(RY) such that

()04 X = bruchs(e) i RY\ B, (0),
{v =u on Bpg;_(0).
Joining the first equation with (4.6.59) we obtain
(=AY (u—v)+Au—v) <0 inRY\ Bg (0)
and thus, by the weak version of the Comparison Principle (Lemma 1.2.34) we gain
u<v onRV. (4.6.60)

By Lemma 4.6.15, if 8 < N + 2s, we can estimate v by
0
lim sup v(z)|z|f < —%2 Tue
|z| =400 A
This relation, combined with (4.6.60), gives
1
lim sup u(z)|z]? < —=2 Yue
|x| =400 A
for each § > 1. In particular, as § — 1T and € — 07, we obtain the claim. If 3 = N + 2s, we

argue similarly (without moving § and ¢). |

Notice that, if we assume (4.6.53), then one can choose every C > 0, and thus in particular
every p > 0 is allowed.

Corollary 4.6.25. Assume (F1) and the condition (4.6.53). Let uw € H*(RN)n LY(RYN), con-
tinuous, nonnegative, radially symmetric and decreasing, be a solution of (1.3.38). Then, set

i N—a
B.—mm{2

}, we have
lim sup u(z)|z|® < Cy;
|z| =400

if B < N + 2s the constant C,, > 0 depends on u in the following way:

(2= 1) (Crva | fon F)]) 7
. .

We observe that the previous estimate from above is still valid by considering viscosity
solutions u € L'(R™) N C(RY), see Section 4.6.6. We leave the details to the reader.

Cy =
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4.6.6 Estimate from below

Next, we deal with the estimate from below. Here we need to deal with the fractional Laplacian
of the concave power of a function: since it might happen that u? ¢ H*(RY) when v € H*(RY)
and 6 € (0,1), the weak formulation seems not to be appropriate. Similarly, (—A)*u? might be
not well defined pointwise, even if u is regular enough. Notice that knowing a priori that u is
continuous, radially symmetric and decreasing seems of no use. The idea is thus to treat the
problem via viscosity formulation, and we do it by exploiting the concave chain rule obtained in
Section 1.2.4.

Proposition 4.6.26. Assume (F1)-(F2,i) and the sublinear condition (F10). Let u € L'(RY) N
C(RN), strictly positive, radially symmetric and decreasing, be a viscosity solution of (1.3.38).
Assume [pn F(u) > 0. Then,

N—«a
lim inf u(z)|z| 2= > C),
|x| =400

where

1
o (ch,a Ju F<u>dx>2—r
u T L

and Cn,o > 0 is given in (1.3.32). Moreover, set 3 := min {%,N + 25}, we have, for some
Cll >0,

lim inf u(z)|z|® > C”;

|z| =400

if =2 < N +2s (i.e. B=5=2), we have C!/ := C},, otherwise we have CJl := Cy (see Remark

4.6.21).

Proof. First notice that, by the assumptions, u € L'(RY) N L>®(RY) and thus, by Remark 1.5.8,
I, % F(u) is pointwise well defined.
By Corollary 1.2.23, since 2 —r € (0,1 — %] C (0,1) we have

(A 2 2t (o F(u) f(w))

— ur1
on R¥ in the viscosity sense. Thus

(T * F() S (w)

(A>T (2 =) > (2—7) —

u’f‘

For a fixed 6 € (N, N 4+ o] and any ¢ > 0 small, by Corollary 4.6.20 and (4.6.52) (since u(x) — 0
as |z| — +o00, being u decreasing and in L!(R")) we obtain — we use here that [pn F(u) >0 -

(o s F@) 1) > C ([ P = el Pl ) Tor ™ i B\ B (0
for some R, > 0, thus

(-8 2= = @ -nC ([P - el Plu)les) In i RY\ Ba.(0)
RN
L, we get
(1+[zf2) 2

that is, exploiting M]\lj,a >

(=AU 4+ Nu?™" > Yochn-a in RN\ Bg (0)

in the viscosity sense, where

Yo = @=CCx ([ P =l P)lxo) >0
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and
N o= p(2—r).

We observe that u>~" € L°°(Bg(0)) N C(Bg.(0)), while hy_o € L®RY)NCZ (RY) (for any

), thus by Lemma 1.2.33, there exists v € C¥_(RY), for some w > 2s such that

(=A)v+Nv =", hn_q in RV \ Bg_(0),

v=u’" on Bg_(0),
pointwise. Thus

(=AW =)+ N —v) >0 in RN\ Bg.(0)
in the viscosity sense, with
u*™ —v >0 on Bg(0).

Observe that, by Lemma 4.6.16, we have v(z) — 0 as |z| — +oco. Since (u"~2 —v)(z) — 0 as
|z| — 400, by the viscosity version of the Comparison Principle (Lemma 1.2.36) we obtain

w7 >0 on RV,

By Lemma 4.6.16 we gain

liminf v(z)|z|N 7% > %,
|| =00 N

Combining the previous inequalities and sending € — 0T, we have the first claim. We conclude
by adapting Remark 4.6.21 to the viscosity case (notice that v € L*(RY) N L>°(RY)). i

The above estimate applies, in particular, to pointwise solutions.

Corollary 4.6.27. Assume (F1)-(F2.,i) and the sublinear condition (F10). Let u € L*(RN) N

C’?OC(]RN ) for some vy > 2s, strictly positive, radially symmetric and decreasing, be a pointwise

solution of (1.3.38), such that [px F(u) > 0. Then the conclusions of Proposition 4.6.26 hold.

By the results of the previous Sections (see Proposition 4.4.12), we gain sufficient conditions
in order to state that a weak solution is a pointwise solution.

Corollary 4.6.28. Assume (F1)-(F2,i) together with (F7), and the sublinear condition (F10).
Let w € H(RY) N LYRYN) N C(RY), strictly positive, radially symmetric and decreasing, be
a weak solution of (1.3.38), such that [pn F(u) > 0. Then u is a classical solution and the
conclusions of Proposition 4.6.26 hold.

Notice that, by the sublinearity in zero, the Holder exponent o can lie only in (0,r — 1].
We conjecture anyway that the conclusion of Corollary 4.6.28 holds in more general cases, by
assuming merely f continuous.

4.6.7 An s-sublinear threshold

We can sum up some of the results of the previous Sections in what follows.

Corollary 4.6.29. Assume (F1)-(F2i) and the sublinear conditions (F9)-(F10), in particular

@ _ . ) -
T < lll?jélp i1 < C < +oo.

0 < lim inf
t—0

Let u € HS(RN) N LYRY) N C(RY), strictly positive, radially symmetric and decreasing, be a
weak solution of (1.3.38). Finally assume (E7), i.e.

f e C*(R) for some o € (0,1 — 1],
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and [pn F(u) > 0. Then, if
w> (r— 1)6Yﬁ
we have

0 < liminf u(z)|z|® < limsupu(z)|z|® < 400
|| =00 |z|—+o0

where B := min{];f:f‘,N + 23} .

We notice that, by assuming

lim su € (0,+
DS ( )
we obtain that
t
lim sup f(®) =0
t0  [t]"e

for any € > 0. Thus we may directly extend the estimate from above to a whatever p > 0 by
paying the cost of a slower decay at infinity; this was essentially contained already in Remark
4.6.22. Notice that we still need r — & > 27.

Corollary 4.6.30. Assume (F1)-(F2i) and the sublinear conditions (F9)-(F10), in particular
t t
O )

‘t‘r‘fl -0 |t|r71

0 < liminf < 400
t—0

with r € (21,2). Let u € H¥(RV) N LY (RN) N C(RN), strictly positive, radially symmetric and
decreasing, be a weak solution of (1.3.38). Finally assume (F7), i.e.

f e C*(R) for some o € (0,1 —1],
and [pn F(u) > 0. Then, if p > 0 is arbitrary and € > 0 is small, we have

0 < lim inf u(z)|z% < lim sup u(z)|z|* < +oo
|z|—=+o0 |z| =400

where

. N —«
ﬁs = mln{W,N+2S}.

We can now conclude the proof of the main theorem.

Proof of Theorem 4.6.11. First, we show how to remove the restriction on y in Proposition
4.6.23. Indeed, for any & > 0 we can write (In * F(u)) f(u) = (Io * Fio(u)) fy(u), where fo := Lf
and F), := kF. We can thus rewrite (f3) as

1—
| fu(t)] < EC’tr’l for t € (0,0).

Since in Proposition 4.6.23 we did not use that F' is the primitive of f (in particular, we did not
apply (f3) to F), fixed a whatever p > 0 we can choose k such that

1

p>(r—1) <C>T1>O,

K
. . 1\l .
that is a large x given by x > (TT) C, and obtain

lim sup u(x)|z|® < Cy .
|z|—=+o0
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where, if 8 < N + 2s,
1
_ 2-1) (Cnak | [y F(u)]) >

Cup = —
p=(r=1)($)

We notice, as we expect, that as y — 0 then kK — +o00 and C,, ,, — 400, while C}, defined in
Proposition 4.6.26 is invariant under s-transformations.
We show now the sharp decay. Indeed, we search for a x such that C,, = C). By a

r=1

w
k* (which actually is a point of minimum) if only if C'= C, i.e. if f is exactly a power near the
origin.

—1__
straightforward analysis of g(k) := Cy x — C},, k > ( )r C, we find a (unique, explicit) zero

By the results of the previous Sections (Theorem 4.4.1, Proposition 4.4.8, Proposition
4.4.10), we have that every positive solution is bounded, and every bounded solution is in
H*RN)NC(RY) N LY(RY). By the previous results we conclude the proof. i

The conditions on f in the previous results imply that f is sublinear, but in a strict sense.
We see that the results actually generalize to sublinear functions in a non strict sense.

Corollary 4.6.31. Assume (F1)-(F2,i). Assume moreover that f is sublinear in a non-strict
sense, i.€.

lim —f(t) =400
t—0+ ¢
" £(t)
. _ #
%g% = 0 for each r € (2%,2).

Let u € HS(RN) N LYRY) N C(RYN), strictly positive, radially symmetric and decreasing, be a
weak solution of (1.3.38). Finally assume

f e C*(R) for some o € (0,r—1].
Then, if u > 0, we have

0 < liminf u(z)|z|V 2% < limsup u(z)|z|¥ T2 < +oo0.
|| =00 |z|—+o0

Proof. The estimate from below comes from the argument in Remark 4.6.21 (since f(t) > Ct

for ¢ small and positive). The estimate from above comes from Proposition 4.6.23, after having
chosing a whatever 7 € [r}, ,2). i

Proof of Corollary 4.6.13. By the results in the previous Sections (Theorem 4.5.1), we have
that every Pohozev minimum has constant sign — e.g., it is strictly positive — (if f is odd or
even, and Holder continuous), and it is radially symmetric and decreasing (if in addition f has
constant sign on (0, +00)). Thus we conclude by the previous results. i

All the previous theorems particularly apply to homogeneous nonlinearities f(u) = |u|"~2u;
notice that in this case we have f € C_(RV).

loc

Corollary 4.6.32. Let u € H*(RY), strictly positive, radially symmetric and decreasing, be a
solution of
(=A)u+ pu = (I * |u")|ul"%u  in RN

with r € [27,2). Set, for every e >0,

B = min{N_a,N—l—Qs}.

2—r+e
We have
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o ifu>r—1 then

0 < liminf u(z)|z|? < limsupu(z)|z]® < +oo;
|| =00 |z| =400

o ifr € (27,2) and p € (0,7 — 1] then, for any ¢ > 0 small,

0 < liminf u(z)|z|? < limsupu(z)|z|* < +oo.

|| =00 |z|—+o0

Proof of Theorem 4.6.6, Corollary 4.6.7 and Corollary 4.6.9. Theorem 4.6.6 is a direct
consequence of the above result. By [138, Theorems 3.2 and 4.2] we have that every ground state

satisfies all the assumptions of the previous results; thus we have the claims of Corollary 4.6.7
and Corollary 4.6.9. |

4.7 The Pohozaev identity

In [138, equation (6.1)], in presence of power nonlinearities, it is proved that every weak solution
u is C? and thus satisfies the Pohozaev identity (4.2.5), and this relation is extended to general
superlinear nonlinearities f € C1(R) in [342, Proposition 2]. Here we want to further extend the
identity to more general nonlinearities and to more general solutions u € C!, without employing
the Caffarelli-Silvestre s-harmonic extension.

This Section is mainly based on the paper [117].

First, we collect the results of the previous Sections to highlight the conditions that ensure
the right regularity of the solutions.

Corollary 4.7.1. Assume that (F1)-(F2) hold. Let u € H*(RN) N L>®(RY) be a weak solution
of (4.1.1). Assume in addition one of the following

e set ), ae(1-25N) and (F7) with o € (152,1],

o 5€(0,1), @€ (0,2) and (F7) with o € (1 —2s,1].

Then u € CYY(RY) for some v € (0,1). If s € (3,1) and (F7) holds too, then we can choose
v € (2s—1,1).

Thus we want to prove the following result.

Theorem 4.7.2. Let u € H¥(RN)NL>®(RYN) be a weak solution of (4.1.1), and assume (F1)-(F2).
Assume moreover (F7) and one of the following:

1),

1
2
¢« SE [i,%), a€(l1—=2s,N)ando € (15523’ ],

o s€]

e 5€(0,1), @€(0,2) and o € (1 —2s,1].

Then u € CYY(RYN) for some v € (max{0,2s — 1},1), and u satisfies the Pohozaev identity

(4.2.5), or equivalently
1

2*

a,s

s p
I(=2)*2ull3 + ﬁIIU\Ig —D(u) = 0.

The result in particular applies to positive weak solutions u € H5(RN) of (4.1.1).
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We start by the following integration by parts rule, inspired by [155, Lemma 4.2], obtained
under a pointwise well posedness of the fractional Laplacian and the existence of a weak gradient.

Proposition 4.7.3. Let s € (0,1). Let u € H*(RY) N O} (RN) N Lipoe(RY) for some vy > 2s,
and assume (1.2.1). Let moreover X € CH(RYN RN) be a vector field, and define, for z,y € RY,

T #y,

(div(X)) (=) + (div(X))(y) N +2s (X(z) — X(y) - (z — y)
2 2 |z —yl?

K (x,y) =

the fractional divergence kernel related to X. Then it holds
Cnvs / / ’2K§(($,y)dxdy = —/ (—A)’u(Vu - X)dx;
RN JRN ’33 - ’N+2S RN
noticed that the left-hand side is the weighted Gagliardo seminorm with weight K5, set
Cns Ju() — u(y)?

2 ‘x_y‘N-i-Qs

Gulz,y) =
we can write
(gZ7K§()L2(R2N) = —((—A)su Vu, X)LQ(RN).

Proof. For the proof, we follow the lines of [154]. We start noticing that, being u € H*(RY), by
the assumptions we have
g e L'®RY), K € L®(R*Y)

so that the product is summable. By dominated convergence theorem, the symmetry of the
kernel, and the Fubini theorem, we obtain

2 S S
e (G K ) 2 (2

2
- ;g%//kc y|>a |$— ‘NS—Z)J K%(%,y)dmdy
= lim (@) = wW)F (405 () - &=y X(@)\
_ bute) ) e
e (/RN\BE(y) o — gz (V@)

(¢ —v) X)),
—(IV +2s) P ) d ) dy.

Exploiting that, for = # vy, VIW = —(N+ 25)‘36_;{1\,%, and the divergence theorem

(possible because X € CHRN Y Ba(y) and u € Liproe(RY) C W' (supp(X)), see [170,
Theorem 4.6])

2 (G5 K5 ooy

= lim w(z) — u(y)|? 7div(X)(a:) —
_ LmRN<4M&@N() Wl (S
—(N +2s )(—y)X(a:)> dx) dy

’LL‘ _ ’N+2s+2

X
= lim / w(z) — u(y)|?div, (> z)dx | d
%mRN<RM&@|<> ()P, (e ) ) | dy
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= —2lim u(lxr) —u U L X
o 22—>0 RN (/RN\BE(y)( ) W)vulz)- lz—y |N+28d )dy+

— ulv)? X(z) Y o
+lim [ </aB€<>'“<””) )P = e |l,_y|d<>>dy

= —2lim - (/R WW@)-X(@@) dy +

=0 M\B.(y) [T =Y

1 2
e ( L @) P @) - y>da<x>) dy.
=: —2lim I + lim E;
e—0 e—0

here we split the limits since we will prove the existence of both.

For the first integral, we notice that x fRN\BE(x) %|VU($) - X(x)|dy <
Co|lul|oo|Vu(z) - X (2)| € LY(RY) so that we can apply Fubini theorem, then we perform a
symmetrization substitution and apply again Fubini theorem, and finally dominated convergence
theorem (since y — 2"(1)_7;T;£;u(w_y) € L'(RY) by Proposition 1.2.2), obtaining

Cn.slim I,
T e—=0

= CN’S;I_{%//MJ . ]x— ’N£2z u(z) - X (z)dzdy
'LL

_ COngs .. 2u(r) —u(z +y) —u(z —y)
= = ;1_1)]% //y>6 pLE=n Vu(z) - X (x)dzxdy
) Cn.s 2u(z) —u(z+y) —ulx —y)
— X (z) [ 2N dy | d
liy [ (o) X(a) ( o o y) do
= Vu- X(—A)’u
RN

For the second integral, notice that the set {(z,y) € R* | z € supp(X), |z — y| = €} is
bounded. Thus the integrand (being bounded) is summable, which allows us to implement the
Fubini theorem and obtain, by exploiting also a symmetrization argument,

(¥ +29)E. EMH I o) =) (0 = o) ¢
- g //: ) —uly) P(X(@) ~ X (1) - (2 — y)lo(e)  dy

If supp(X) C Bgr(0), then out of the set
Ape = {(z,y) € Br(0) X Br(0) | [z —y[ = £}

the integrand is null. Thus, being u € Lipi,.(RY) (actually it is sufficient v € C%?(RY) for some
0 > s) and X € Lip(RN,RY), we get

1 4
—_— —y|°d x d
cN+25+1 //AR,S [z —y| do(z) x dy

— 57N72s+3m2N71(AR,5)‘

E.

N

Observed that mon_1(Ag:) S mn(Br)my—1(0B:) ~ V71, we obtain E. < e %2 — 0.
Joining the pieces, we reach the claim. |
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Corollary 4.7.4. In the assumptions of Proposition 4.7.3, let G € CY(RN) with G(u) € L*(RY)
and
(=A)u=g(u) inRN

in the pointwise sense, where G' = g. Then

CNs ’2
S — ) X
/RN /RN ]:1: — ’N-I—Qs v Kx (@ y)dady o VG(u) - X dx

= G(u) div(X)dz,
RN

i.e.

(G0, K ) L2 (meny = (G(w), div(X)) L2 @)
We deal now with the Riesz kernel right-hand side of the equation.
Proposition 4.7.5. Let a € (0, N) and H € Lipi,.(RY) N L>®(RN) be such that
(Lo *|H)IH| € L'RY),  (Io*|H|)|VH| € Lijpo(RY).
Let moreover X € CLRN RYN) be a vector field and set, for x,y € RN, x # 5,

(div(X))(2) + (div(X))(y) N —a (X (@)= X(y) - (z—y)

Kx

R

(l‘,y) =

2 2 |z — y|?
Then
/ / I(x — y)H(:L")H(y)IC;(% (x,y)dzdy = —/ (In*H)VH - X dx,
RN JRN RN
i.e. set
RE(2,y) = Io(z — y)H(z)H(y)
we have

(R?{JC)_(E)N(WN) = —((la* H)VH, X)L2(RN)'

Proof. We proceed as in the proof of Proposition 4.7.3. We start noticing that
@ c LMR2Y), K32 € L°(RY)

by the assumptions, so that the product is summable. Thus

o

(R, Kx?) r2(ren)

i ( [ - H@EE @)
RN \JRN\B:(y)

e—0

—(N — oz)—(x —y)- X(az)) da:) dy.

|z —yl?
Since H € Lipjo.(RY) € W1 (supp(X)), we have

P
CNQ(RHJCXZ)LQ(R?N)

1
= —lim / VH x)dz | dy +
e—=0 JpN ( ]RN\BE(y) |£C — y|N « ( ) ( ) ( ) >

lim /a o HEH W)X @)~ y)do(a:)) dy.
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=: —limI; + lim E..
e—0 e—0

For I. we notice that (I,*|H|)|VH||X| € LY(RY), thus (z,y) — I.(z—y)H(y)VH(z)- X (z) €
LY(R?N) and we can apply (twice) Fubini theorem; moreover I,(z —-)H € L*(RY), and we can
apply dominated convergence theorem. Hence we obtain

e—0

CnNa 11mI = lim // |> (x —y)H(y)VH(x) - X (z)dxdy

= lim VH(z)  X(z) (/ In(z — y)H(y)dy) dx
RN RN\ B.(z)

e—0

RN e—0

= VH(z)  X(x) (hm/ Iy(x — y)H(y)dy) dx
RN\ B (x)
= VH(z)- X (Io*H).
RN

We can write E. instead as

B = g [ H@HO)XE) = X)) (ol x dy

If supp(X) C Bg(0), set Ar. := {(z,y) € Br(0) x Br(0) | |x — y| = €} and observed that
H € L*®(RY), we obtain

1 _
EE S m ﬂ |.’13 — y|2d0'(.'13) X dy =£ N+a+1m2N_]_(AR75) S.; Ea — O,
AR,E

being o > 0. This concludes the proof. |

Theorem 4.7.6. Let s € (0,1) and o € (0, N) and assume that (F1)-(F2) hold. Let u €
HS(RM) N O (RN) N Lipoe(RY) for some v > 2s, be a pointwise solution of (4.1.1). Then u

loc

satisfies the Pohozaev identity (4.2.5).

Proof. We apply Proposition 4.7.3 and Proposition 4.7.5 with H = F(u); notice that the
assumptions on u and F' imply the needed conditions on H (in particular we highlight that

fu) € L;Z;a (RM)). Thus, for a generic X € C}(RY,R") we obtain
(G2 K50 pa(aemy = —((~A)u ¥, X) 2 o
= ,U(u Vu, X)LQ(RN) - ((Ia * F(u)) f(u) Vu, X)L2(RN)
L
— §(V(u2), X)L2(]RN) — (Lo * F(u))VF(u),X)L2(RN)
/’[/ . « -5
= _E(UQ’ le(X)>L2(RN) + (RF(U)7ICX2 )L2(R2N)'

In particular, we apply the result to

Xn(z) = gn(x)z

where ¢, is a cut-off function with ¢, = 1 in B,(0), supp(¢n) C Bn+1(0), ||¢nllecc = 1 and
|z||Vpn(z)] < C for each # € RY and n € N; for instance, defined such ¢, we can set
©n = ¢1(-/n) and obtain

|2[[Vn(@)| = |z/n[[Vei(z/n)] < [[|l2]IVer(2)]]o-

In particular, x — @, (x) is equi-Lipschitz. Noticed that div(X,,) = Ny, + V¢, - z we gain

(Gus K, ) L2 (m2m)
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Cns +<ﬂn( )))
_ dzdy —
/RN /RN Ix—yIN“S < o
CNS N+2s (on(T) T — @n(y)y) - (I—y))
/IRN /RN |$_ |N+25 ( |$_y|2 d:cdy—i—
CNS a:—i—chn()y>
/RN /RN |x— ‘N+25 ( dxdy

C’NS/ / (y)]? (N N+2s>_N—25H
RN JRN ‘.’I}— ‘N+28 2 - 2 RN

where we used ¢, — 1, V¢, — 0 and dominated convergence theorem. Similarly

R K ooy = [ [ Tala = p)Pa(@)FP(uty) (N = 252 ) dody

_ N;“ /RN (L * F(u)) F(u).

and N
p .
5(“27d1V(Xn)>L2(RN) — :u HUHQ
Joining the pieces, we have the claim. |

Proof of Theorem 4.7.2. The theorem is a consequence of Corollary 4.7.1 and Theorem
4.7.6. |

Remark 4.7.7. We comment the name of K% . Indeed, up to a multiplicative constant, we have,
for any B € (0,1) and X € Lipc(RN,RN), by [132, equations (2.9c) and (2.11)] (see also [345])

/RN/RN |:v— |N+,B 1 :/RN (Adey>dx_
S ([ B )
N +2s

:(N+5—1)/RNdivB(X)(:c)— 5 /RNdivﬁ(X)(@
—(N+25_2—23)/ div? (X);

RN

/RN /]RN |x_ |N+s 1 (N—Q)/RN div®(X).

We refer also to [154, Chapter 3] where K% is seen as the derivative of a suitable family of
deformations.

in particular



CHAPTER

Concentration phenomena: the effect of the fractional op-
erator

In this Chapter we investigate how the nonlocalities interact with concentration phenomena. We
consider the fractional, semiclassical nonlinear Schrédinger equation

e¥(=A)v+V(z)v = fv), xRN

where s € (0,1), N > 2, V € C(RY,R) is a positive potential and f is a nonlinearity satisfying
Berestycki-Lions type conditions. For £ > 0 small, we prove the existence of at least cupl(K) + 1
positive solutions, where K is a set of local minima in a bounded potential well and cupl(K)
denotes the cup-length of K. Due to the generality of f, we cannot implement a Lyapunov-
Schimdt reduction, nor we can bound our functional on a Nehari manifold: thus, by means of
variational methods, our approach is to analyze the topological difference between two levels of
an indefinite functional in a neighborhood of expected solutions. Since the nonlocality comes
in the decomposition of the space directly, we introduce also a new fractional center of mass,
via a suitable seminorm. Some other delicate aspects arise strictly related to the presence of
the nonlocal operator: in particular, L°°-boundedness, regularity and polynomial decay have
to be specifically investigated. We show then that the found solutions decay polynomially and
concentrate around some point of K as ¢ — 0.

The main discussion (Section 5.1-5.4) will be focused on the case f Sobolev-subcritical. This
is based mainly on paper [111]. Afterwards, in Section 5.5, we will see how to treat the case f
critical; the argument will be based mainly on paper [197].

5.1 From classical to quantum: semiclassical states

In Section 2.1 we highlighted the physical relevance of the fractional Laplacian operator. In
particular we mentioned the study of standing waves of the fractional nonlinear Schrédinger
(fNLS for short) equation

ihoph = K25 (=AY’ + V()Y — f(¥), (t,z) € (0,+00) x RY (5.1.1)

i.e. factorized functions (¢, z) = eihtv(a;), i € R. Instead of considering the fixed case h = 1, we
focus now on the study of small & > 0: in this case standing waves are usually called semiclassical
states and the transition from quantum physics to classical physics is somehow described letting
h— 0.

168
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Roughly speaking, when s = 1 the centers of mass ¢. = ¢-(t) of the soliton solutions in
(5.1.1), under suitable assumptions and initial conditions, converge as h — 0 to the solution of
the Newton’s equation of motion

G(t) = =VV(q(t)), te(0,+00); (5.1.2)

for s € (0,1) a suitable power-type modification of equation (5.1.2) is needed. Here, considering
small & roughly means that the size of the support of the soliton in (5.1.1) is considerably smaller
than the size of the potential V; for details we refer to [46,73,191,241], and to [337] for the
fractional case (see also [57] for the Choquard case).

Similar problems arise also in the study of superconductivity in Ginzburg-Landau vortices,
see [52] and references therein; here the point of concentration is indeed a point where a vortex
is formed.

Without loss of generality, shifting p to 0 and denoting i = ¢, the search for semiclassical
states leads to the investigation of the following nonlocal equation

B (=APv+V(z)v=f(v), zeRY (5.1.3)

where V' is positive and € > 0 is small. Setting u := v(e-), we observe that (5.1.3) can be
rewritten as

(=A)Yu+ V(ex)u = f(u), xRN, (5.1.4)

thus the equation
(=AU 4aU = f(U), zeRY (5.1.5)

becomes a formal limiting equation, as € — 0, of (5.1.4), for some a > 0. Indeed, if 2o € RY and
r >0,
sup |V(ex) —V(xzg)| =0 ase—0.
x€B(x0,eT)

Solutions of (5.1.3) usually exhibit concentration behaviour as € — 0: by concentrating solutions
we mean a family v, of solutions of (5.1.3) which converges, up to rescaling, to a ground state of
(5.1.5) and whose maximum points converge to some point 2o € RY given by the topology of
V' (see Theorem 5.5.1 for a precise statement). This point xg reveals, generally, to be a critical
point of V' —i.e. an equilibrium of (5.1.2) — as shown in [174,370].

In the limiting case s = 1 the semiclassical analysis of NLS equations has been largely
investigated, starting from the seminal paper [184]: by means of a finite Lyapunov-Schmidt
dimensional reduction argument, Floer and Weinstein proved the existence of positive spike
solutions to the homogeneous 3D cubic NLS equation, concentrating at each nondegenerate
critical point of the potential V' (see also [309]); here the nondegeneracy of the ground states
of the limiting problem (5.1.5) is crucial. Successively, refined variational techniques were
implemented to study singularly perturbed elliptic problems in entire space: several existence
results of positive spike solutions to the NLS equation in a semiclassical regime are derived
under different assumptions on the potential and the nonlinear terms. We confine to mention
[13,66,78,81,82,140, 148,149,326, 370] and references therein.

Starting from the work [144], in [17,96,119-121,143,239] topological invariants were used
to derive multiplicity results in singularly perturbed frameworks, in the spirit of well known
results of Bahri, Coron [28] and Benci, Cerami [44] for semilinear elliptic problems with Dirichlet
boundary condition. Precisely, in [120] it has been proved that the number of positive solutions of
the stationary NLS equation is influenced by the topological richness of the set of global minima
of V. Some years later, using a perturbative approach, Ambrosetti, Malchiodi and Secchi [17]
obtained a multiplicity result for the NLS equation with power nonlinearity, assuming that the
set of critical points of V' is nondegenerate in the sense of Bott. More recently, in [119] Cingolani,
Jeanjean and Tanaka improved the result in [120], relating the number of semiclassical standing
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waves solutions to the cup-length of K, where K is a set of local (possibly degenerate) minima of
the potential, under almost optimal assumptions on the nonlinearity (see also the recent paper
[123] in the context of nonlinear Choquard equations).

When s € (0, 1), the search of semiclassical standing waves for the fNLS equation has been
firstly considered by Dévila, Del Pino and Wei in [146] under the assumptions f(t) = |[t|P~2t,
with 2 < p < 2%, where 2} := Nzi\gs is the Sobolev critical exponent, and V € CH*(RYN) is
bounded. Using a Lyapunov-Schmidt reduction inspired by [184,309], they showed the existence
of a positive spike solution whose maximum point concentrates at some nondegenerate critical
point of V': this approach relies on the nondegeneracy property of the linearization at the positive
ground state shown by Frank, Lenzmann and Silvestre [190]. Successively, inspired by [78,148],
variational techniques were employed to derive existence of spike solutions concentrating at local
minima of V, see [12,20,338] and references therein (see also [336] where global assumptions on
V' are considered).

A first multiplicity result for the (fNLS) equation is obtained in [183], inspired by [120].
Precisely, letting K be the set of global minima of V', Figueiredo and Siciliano proved that the
number of positive solutions of (5.1.3), when f satisfies monotonicity and Ambrosetti-Rabinowitz
condition, is at least given by the Ljusternik-Schnirelmann category of K: here the search of
solutions of (5.1.3) can be reduced to the study of the (global) level sets of the Nehari manifold,
where the energy functional is restricted, and to deformation arguments valid on Hilbert manifolds
without boundary. See also [10] where the Ambrosetti-Rabinowitz condition is dropped. In [96],
moreover, Chen implemented a Lyapunov-Schmidt reduction for nondegenerate critical points
of V' and power-type functions f in order to get multiplicity results related to the cup-length,
extending the results of [17].

In this first part of the Chapter we are interested to prove multiplicity of positive solutions
for the fNLS equation (5.1.3) when ¢ is small, without monotonicity and Ambrosetti-Rabinowitz
conditions on f, nor nondegeneracy and global conditions on V', concentrating at a local minimum

of V.
On the potential V' we assume

(V1) Ve CRN)NL>®RYN), V :=infgn V > 0 (see also Remark 5.1.3);
(V2) there exists a bounded domain Q € RY such that
mo :=inf V <inf V;
Q Ery)

by the strict inequality and the continuity of V', we can assume that 0f) is regular. We define K
as the set of local minima
K:={zecQ|V(z)=mp}. (5.1.6)

On f we assume the following subritical assumptions

(f1) Berestycki-Lions type assumptions with respect to my, that is

(fl.1) f e C(R,R);

(f1.2) limgg ( ) — 0;

(f f( ) 1\72iV25’
(

f1.4

)
2)
3) limyyioo oo fp = 0 for some p € (1,2% — 1) where we recall 2% =
4) F(to) > $mot} for some ty > 0, where F(t fo

)

=0 for ¢t <0.

(f2) f(t

On f we further assume

(f3) f € CYY(R) for some v € (1 —2s,1) if s € (0,1/2].

loc
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Remark 5.1.1. We remark that (£3) is needed only to get a Pohozaev identity (see Proposition
2.2.2). See also Remark 5.4.3 below.

It is standard that weak solutions to (5.1.4) correspond to critical points of the C'-energy
functional

I.(u) := 1/ |(=A)2u|?dx + 1/ V(ex)udx —/ F(u)dz, wue H*RY).
2 JrN 2 JrN RN

We remark that, because of the general assumptions on f, we can not take advantage of the
boundedness of the functional from above and below, nor of Nehari type constraint. Therefore
in the present paper we combine reduction methods and penalization arguments in a nonlocal
setting: in particular, as in [119,123], the analysis of the topological changes between two level
sets of the indefinite energy functional I. in a small neighborhood X. s of expected solutions is
essential in our approach. With the aid of e-independent pseudo-differential estimates, we detect
such a neighborhood, which will be positively invariant under a pseudo-gradient flow, and we
develop our deformation argument in the context of nonlocal operators. To this aim we introduce
two maps ®. and V. between topological pairs: we emphasize that to define such maps, a center
of mass T and a functional P, which is inspired by the Pohozaev identity are crucial.

With respect to the local case, several difficulties arise linked to special features of the nonlocal
nature of the problem: among them we have the polynomial decay of the least energy solutions
of the limiting problems, the weak regularizing effect of the fractional Laplacian, the lack of
general comparison arguments, the differences between the supports of a function and of its
Fourier transform, and the lack of the standard Leibniz formula (see e.g. [54,336]). Moreover we
highlight that, for fractional equations, the nonlocal part strongly influences the decomposition
of the space and this makes quite delicate to use truncating test functions and perform the
localization of the centers of mass.

In the present Chapter we need to implement new ideas to overcome the above obstructions;
in particular we introduce a new fractional local center of mass by means of a suitable seminorm,
stronger than the usual Gagliardo seminorm in a bounded set.

Our main result is the following theorem.

Theorem 5.1.2. Suppose N > 2 and that (V1)-(V2), (f1)~(f3) hold. Let K be defined by (5.1.6).
Then, for sufficiently small € > 0, equation (5.1.3) has at least cupl(K) + 1 positive solutions,
which belong to C%7(RN) N L=®(RN) for some o € (0,1).

Here cupl(K) denotes the cup-length of K defined by the Alexander-Spanier cohomology with
coefficients in some field F (see Appendix A). Notice that the cup-length of a set K is strictly
related to the category of K, see Lemma A.10 and Remark A.11.

Remark 5.1.3. Observe that, arguing as in [78] and [81], we could omit the assumption that
V' is bounded from above in Theorem 5.1.2. For the sake of simplicity, we assume here the

boundedness of V.

The regularity statement in Theorem 5.1.2 relies on some recent regularity results based on
fractional De Giorgi classes and tail functions (see Section 1.2.5); notice that the fact that the
noncriticality is strict in (f1.3) (that is p < 2% — 1) is here needed. Through these results we are
able to prove also the concentration of the solutions.

Theorem 5.1.4. In the assumptions of Theorem 5.1.2, let v. be one of the cupl(K) + 1 family
of solutions of equation (5.1.3). Then, (v:)e>o concentrates in K as e — 0, i.e. there exist a
mazimum points x. € RN of v. such that

11_r>r(1) d(ze, K) = 0;

S
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moreover, for some positive C',C", we have the uniform polynomial decay

C/ C//

— —— <y (r) < ——————— foer]RN.
—zc [N+2s — 2\ = —Te |N+2s’
1 ‘$€$| 2s 1 ’$ELE| 2s

In addition, let (€,)y with €, — 07 as n — +oo. Then, up to a subsequence, there exists a point
xo € K sucht that x., — xo as n — +00, and ve, (en - +x¢,) converges in H*(RN) and uniformly
on compact sets to a least energy solution of

(=AU +moU = f(U), U>0, UeHRY). (5.1.7)

This first part of the Chapter is organized as follows. In Section 5.1.1 we recall the mixed
Gagliardo seminorm introduced in Section 1.2.1, while in Section 5.2 we show the uniform
polynomial decay of the solutions of (5.1.5), and we introduce a new fractional center of mass
T, by means of a suitable seminorm. Section 5.3 is the main core of the Chapter, where we
introduce a penalized functional and prove a deformation lemma on a neighborhood of expected
solutions; moreover, we build suitable maps ®., W, essential in the proof of the multiplicity of
solutions. Then in Section 5.4 we prove Theorem 5.1.2 by the use of the deformation lemma and
the built maps applied to the theory of relative category and relative cup-length. Finally we
prove Theorem 5.1.4 by using regularity results based on fractional De Giorgi classes.

Afterwards, in Section 5.5 we move to the study of the critical case.

5.1.1 A tail-controlling mixed norm

In this Chapter we will make use of the following norm
vy = -2l + [ Vieoplds
RN

which is an equivalent norm on H*(R") (once ¢ is fixed), thanks to the positivity and the
boundedness of V; the space HZ(RY) is defined straightforwardly. Moreover we will make use of
the mized Gagliardo seminorm (introduced in Section 1.2.1)

u(y)|? o
Al,A2 /Al /A2 - |N+28 ——————=—dxdy, [u]a:=[ulax

for any Ay, Ay, A C RN and v € H*(RN). For any u € H*(R") and A ¢ R¥ it will be useful to
work also with the following norms:

lull% == llellF2ca) + [W]5 gr (5.1.8)
and
llwll 4 = llulla + l[ull e+ ay, (5.1.9)

where p is introduced in assumption (f1.3). We highlight that |lu[|gy = ||ul| s &~y, but generally
lulla > [[ullgrsay for A # RN, By H(A) < LPT1(A) the norms || - |4 and ||-[| 4, are equivalent:
on the other hand, the constant such that [|ul|, < Callul|4 depends on A, thus not useful for
expanding sets A = A(e). This is why we will make direct use of ||-||| 4.

Before ending this Section, we highlight that, by the assumptions on f, for each ¢ > p and
B > 0 there exists a Cz > 0 such that

[F(O] < B + Calt]?  and  [F(t)] < C (B2 + Calt*). (5.1.10)

5.2 Limiting equation

In this Section we further investigate the autonomous equation studied in Section 2.2.
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5.2.1 A single equation

Consider
(AU +aU = f(U), zecRY (5.2.11)

with a > 0. Weak solutions of (5.2.11) are known to be characterized as critical points of the
C'-functional L, : H*(RY) = R

1 S a S
L) i= S I-2) U+ SR - [ Pz, U € HH@Y),
RN
Set moreover the Pohozaev functional P, : H*(RY)\ {0} — R,

1
Jew F(U)dz — §|U|3) > N
P (U) = | 2* . UeHRN), U+#0.
( ) (s H(_A)S/QUH% . € ( ) 7é

We further set
Cpoa = inf {L,(U) | U € H*RN)\ {0}, P,(U) =1}

the Pohozaev minimum energy, and
E, :=inf {L,(U) | U € H*(R™)\ {0}, L,(U) =0}

the least energy for L.
We recall the following result by Section 2.2, where we further highlight the regularity, the
positivity and the decay at infinity (see [79, Theorems 1.1-1.3] and [177, Theorem 1.5]).

Theorem 5.2.1. Assume (f1) with respect to a > 0 and (£2).
o There exists a positive minimizer for Cpoq > 0, which is a weak solution of (5.2.11).

o Every weak solution U € H*(RN) of (5.2.11) is actually a strong solution, i.e. U satisfies
(5.2.11) almost everywhere. Moreover U € H?*(RN) N C7(RY) for every o € (0,2s).

o Every weak solution U € H*(RN) of (5.2.11) is strictly positive and decays polynomially at
infinity, that is there exist positive constants Cl,C! such that
cl cl

< U(x) <

Y& __a___ cRY. 5.2.12
11 [N+ = =1+ [oVF2s for x ( )

Observe that the bounding functions in (5.2.12) belong to LI(RN) for any q € [1,+00].
o If (£3) holds, then the Pohozaev identity
P(U) =1
holds for each nontrivial solution U of (5.2.11). As a consequence

Ey = Cpoa. (5.2.13)

We observe that to reach the Pohozaev identity we need the solutions to be regular enough,
fact that is given by (f3). The functional P, will be of key importance for estimating L, from
below, see Lemma 5.2.3 and Lemma 5.2.6.

We highlight the polynomial decay of solutions of (5.2.11). This decay is much less slower
than the one, exponential, of the local case s = 1. An alternative proof, which underlines some
uniformity in a, can be found in Proposition 5.4.2.
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Remark 5.2.2. Since the equation is satisfied almost everywhere, we have also, by (5.1.10)

(=2)°U(2)] < [f(U())| + a|lU(2)| < pIU(z)] + CplU (2)]” + a|U ()]

<C ! + 1 < 071
- 1+ |x‘(N+2s)p 1+ |$|N+23 - 14+ ‘$|N+23
for almost every x € RN,

We end this Section by a technical lemma, which allows to link the level L, (u) of a whatever
function u, having a functional P,(u) ~ 1, with the ground state E,; in particular, it provides a
useful lower bound for L,.

Lemma 5.2.3. Let u € H*(RY) and define

1
g(t) == % (NtN_QS — (N — 25)tN) , teR.
s

1

(a) If Py(u) € (O, (%) % ), which we highlight is a neighborhood of 1, then

Lo(u) > g(P,(u))E,.

(b) Ifu="U, (%q) for some q € RY and t € R, with U, being a ground state of (5.2.11), then
the above inequality is indeed an equality, that is

Lo (va (54)) = o0 £

We highlight that the function g verifies
gt) <1 and g¢g(t)=1 << t=1.

Proof. Let 0 := P,(u) and set v := u(o-). Then P,(v) = 1. A straightforward computation
shows, by using P,(v) =1 and g(o) > 0, that

La(u) = g(U)La(U) > g(U)Cpo,a = Q(U)Ea-

We see that, if v = U, (%), then by P,(U,) = 1 we have 0 = P, (Ua (_Tq) = t and
thus v = Uy(- — ¢), which by translation invariance is again a ground state of (5.2.11); thus
L,(v) = Cpoq. This concludes the proof. |

5.2.2 A family of equations: minimal radius map
In this Section we study equation (5.2.11) for variable values of a > 0. Introduce the notation
Qla,b] :=V~([mo + a,mg + b)) N Q

and similarly Q(a,b) and mixed-brackets combinations. We choose now a small vy > 0 such that
the minimum mg is not heavily perturbed, namely

o Berestycki-Lions type assumptions (f1) hold with respect to a € [mg, mg + o] — i.e., in
particular, F(to) > 3(mo + vo)t3;

o assumption (V2) holds with respect to mg + vp, i.e. mo + 1y < infyq V;

Q[0,p] C K4 C Q for a sufficiently small d > 0 subsequently fixed, see Lemma A.5;
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o other conditions subsequently stated, see e.g. (5.2.14) and Lemma 5.2.6.

We observe that, by construction, for a € [mg, mg + 1] the considerations of Section 5.2.1 apply.
Moreover, by scaling arguments on (), 4, We notice that

a € [mg,mo + o] — E, € (0, +00)

is strictly increasing and that, up to choosing a smaller vy, we have! E,, 1, < 2E;,, and thus
we can find an lyp = lp(vp) € R such that

Ergtve < lo < 2Ep,,. (5.2.14)

As a final step in the proof of the main Theorem, we will make 1y and lp moving such that
vy — 0 and I — Ep,,. We now define the set of almost ground states of (5.2.11)

So = {U € H'(R)\ {0} | L,(0) = 0, Lo(U) < o, U(0) = max U} 40,

We observe that we set the last condition in order to fix solutions in a point and prevent them
to escape to infinity; the idea is to gain thickness and compactness (see [78,119,122]): notice
indeed that, in the case of a proper ground state U € S, then U is radially symmetric (see also
(5.5.81)). We further define

S = U Sa-

a€[mo,mo+vo)
The following properties of the set S will be of key importance in the whole paper.
Lemma 5.2.4. The following properties hold.
(a) There exist positive constants C',C" such that, for each U € S we have

I 1
¢ <U(x) < ¢

v v e RV, 5.2.15
1 2] V72 = S T Jor® (5.2.15)

(b) S is compact. Since it does not contain the zero function, we have

r* = min |Ul| gs @y > 0;
vesS

the mazximum s attained as well.

(c) We have

REIJI:OO |Ullgv\, =0, uniformly for U € S,

where the norm || - |[gwv\ g, is defined in (5.1.8). Moreover, if (Un)n C S, and (6,,), c RN
is bounded, then
[V + 8z, = 0.

Proof. We divide the proof in some steps.

Step 1. We see that S is bounded. Indeed, by the Pohozaev identity, we have

N N
I(=2)"2U]|3 = ~ La(U) = —lo.

Let v to be fixed, and v be a mo-Pohozaev minimum (i.e. Ly (v) = Cpo,mg)- Let rescale v in such a way it
belongs to the (mg + vo)-Pohozaev set, i.e. u:= v(-/0) for some explicit §: computation shows § > 1 and 6 — 1 as
vo = 0. Thus Cpo,mo+vo < Limg+vo (1) = 0% 72° Ling (v) = 8772 Cpo,me. By choosing 1o small we have 672 < 2.
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By (1.2.7) we have that also ||U

2+ is uniformly bounded. Since L (U)U = 0, we have by (5.1.10)
s 23
=AY 2UIE +alU1 = [ fO)Wde < AIUIE + Call VI

which implies, by choosing 3 < a, that also |U]|3 is bounded.
Step 2. There exist uniform C' > 0 and o € (0,1) such that

HUHOO < Ca [U]CZO(;Z(RN) < C (5.2.16)

for any U € S. We postpone the proof of (5.2.16), as well as the proof of the uniform pointwise
estimate (5.2.15) (where we use (f3)), since they will carry some arguments used in the proof of
Theorem 5.1.4 in Section 5.4.1; see Proposition 5.4.2.

We show now (b), which is a refinement of the fact that S, itself is compact.
Step 3. We observe first that S is closed. Indeed, if Uy, € S, C S converges strongly to U, then
up to a subsequence we have ay — a € [mg, mo + 1] and, by the strong convergence, we have
that the condition
Emg < La(U) < lO

holds, which in particular implies that U # 0. Moreover, exploiting the weak convergence
U — U, and the almost everywhere convergence (together with the estimate on f, the uniform
estimate (5.2.15) and the dominated convergence theorem), we obtain that for each v € H*(RY)

0= Li, o = [

(=AY 2UL(=A)* %0 dz + ay, /
IRN

Urv dx — f(Ug)vdz
RN

RN

— (—A)S/QU(—A)S/dex—i—a/ Uvdx — f(U)vdx = L, (U)v,
RN RN RN

that is, L/, (U) = 0. As regards the maximum in zero, we need a pointwise convergence. In order
to get it, we exploit the fact that, by (5.2.16), Uy are uniformly bounded in L>®(R"™) and in
Cﬁ;g (R™) and we apply Ascoli-Arzela theorem to get local uniform convergence. This shows that
UeS,CS8.
Step 4. Let now Uy, € S, C S. By the boundedness, up to a subsequence we have U, — U €
H*RYM) and ap = a € [mo, mo + vo]. We need to show that ||Uk||gs@mny — [|U||gsmny; the
closedness of S will conclude the proof.

As observed in Step 3, we have by the weak convergence that L (Ux)U = 0 = L, (U)U;

hence, if R > 0 is some radius to be fixed, we gain

[(I=2)"20)13 + axllUx3) = (I(=2)"2U 13 + allU|3)]

_l’_

< ‘ /xKRf(Uk)dex— /xl<Rf<U)wa

" /lM O+ [ O = 1)+ (1)

|z|>R

Fix now a small n > 0. As regards (/I), we have by (5.1.10)

/| | |f(Uk)Ug|dx < 3 |Uy|?da + Cﬁ/ |Up|PTdz < n
z|>R

|z|>R |z|>R

for sufficiently (uniformly in k) large R > 0 thanks to (5.2.15); up to taking a larger R, it holds
also for U.
Fixed this R > 0, focusing on (I), by Proposition 1.5.5 we have

| / (U Uz — / FOUdz| <
|z|<R lz|<R
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for sufficiently large k = k(R). Merging together, we obtain
1(=2)*"2Uk[13 + ax[UK[I3 — [I(=2)*"*U |5 + al|U|3

which with elementary passages leads to the claim.

Step 5. Finally, we prove (¢). By contradiction, there exists an 1 > 0 such that, for each n € N
there exists a U,, € S which satisfies

|Unllr~\B, > -
By the compactness, we have, up to a subsequence, U, — U € S as n — +0o. Thus (notice that
2
Jrw %dw € L'(R") and absolute integrability of the integral applies)
N <Unllem\s, < IUn = Ullgs@yy + [[Ullrvyp, — 0

which is an absurd.
For the second part, we argue similarly. Indeed, up to a subsequence, U,, — U in H*(RY)
and 6, — 6 in RY, thus

HUn(' - gn)HRN\Bn
< NUn = Ullgs@ny + 170,U — 70U || gs vy + U = 0)[[gv\ B, — 0,

where 7y is the translation. This concludes the proof. |

Remark 5.2.5. The compactness of the set S of (almost) ground states is somehow expected by
thinking at the power case f(u) = |u|P~2u: in this case, indeed, the ground state is unique (and
nongenerate) [190,2/7]. On the other hand, in the general case (for examples for suitable sums
of powers), uniqueness seems not to be the case [145, 376].

Gained compactness, we turn back considering the set of all the solutions (with no restrictions
in zero), that is

we observe that S’ is bounded. Moreover we define an open r-neighborhood of S , reminiscent of
the perturbation approach in [13,146, 184],

S(r) = {ue H*RY) | d(u,5) < r}
that is
S(r) = {u =U(—p)+peHRY)|UES, peRY, pe H\RY), [|¢llgs@n) < T}-

In order to re-gain some compactness, we aim to detect and somehow bound the point of
translation and the size of the error. To this last goal, we define a minimal radius map
p:H(RY) = R, by

p(w) i=inf {|lu = U(- = y)l|gpor) | U € S, y e RV}

‘We observe
ueSr) = plu) <r, (5.2.17)

and in addition
p(u) =inf{t € Ry |u e S(t)},
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where the infimum on the right-hand side is not attained. Finally, p € Lip(H*(R"),R) with
Lipschitz constant equal to 1, that is, for every u,v € H*(RY),

P(w) = P(0)] < llu = ol o gary- (5.2.18)

The detection of the point of translation will be instead more tricky, and will be investigated in
Section 5.2.3.

We end this Section with two technical lemmas. The first one is a direct consequence of
Lemma 5.2.3, and allows to link the level L,,,(u) of a whatever function u € S(r) with the
ground state Ep,,, once r is sufficiently small; this further gives a lower bound for the functional
L,

Lemma 5.2.6. Up to taking a smaller vy = vo(lp) > 0, there exists a sufficiently small
r" =1"(vy,r*) > 0 such that, for every u € S(r’), we have

Ling (1) = g(Prng (1)) By -

Proof. By Lemma 5.2.3 (a), we know that the inequality holds if P,,,(u) is in a neighborhood
of the value 1. Observe that P, (U) =1if U € S,: by continuity and compactness, Pp,(U) = 1
if U € S, and a = mg. In particular, by choosing a small value of vy, P, (U) =~ 1 for U € S.

Indeed 102

1 N U

P, (U) =1+ — — _n=nz .
mo(U) + 95 N — 2 (a mO)”(—A)S/QUH% +o(1);

the addendum on the right-hand side can be bounded by the maximum and the minimum over

S (notice that (—A)*/2U cannot be zero) and thus we can find a uniform small vy. Again by

continuity we have that P, (u) = 1 for u € S(r'), " sufficiently small. Indeed

1 N 1
P, =1—-— L., - — — Ly, - — 1).
This concludes the proof. |

We notice that the condition 4., < lo keeps holding by decreasing 1y, so no ambiguity in
the lp-depending choice of 1y in Lemma 5.2.6 arises. We focus now on the second lemma.

Lemma 5.2.7. There exist v1 € (0,1) and 69 = do(v1) > 0 such that
Ly, (U) > Epy + 00,  uniformly for U € S.

Proof. Observe first that, since S is compact also in L2 (RY), we have also finite and strictly
positive minimum M and maximum M with respect to || - ||2. Consider v; € (0,19) such that

1
Em0+l/1 - Emo > 5(”0 - Vl)M;

we notice that such v; exists since, as v; — VS_ , the left hand side positively increases while the
right hand side goes to zero. Let now a € [mg, mo+1yp|; we consider two cases. If a € [mg, mo+v1]
we argue as follow: for U € S, we have

Ling 4, (U) = La(U) + 5(mo + v1 — a)||U][3
>FE,+ %(mo +uv—a)M =:(I)+ (II);

now, the quantity (I) is minimum when a = myg, while (I7) is minimum when a = mgy + vy; if
both could apply at the same time, we would have as a minimum the quantity F,,,. Since it is
not possible, we obtain

inf LmOJ’_Vl (U) > Em()'
UeUaE[mo,m0+u1] a
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If a € (mg + v1, mp + 1] instead, we have

Ling+1, (U) > Eq — %(a — (mo + Vl))M > Emoton — %(VO —v)M

and thus, by the property on v,

inf Loty (U) = Emgivy — 3(v0 — v1) M > Ep.
UeUae[m0+V1,m0+VO] Sa

This concludes the proof, by taking as dy > 0 the smallest of the two differences. |

5.2.3 Fractional center of mass

As in [119], inspired by [43, 81, 149], we want to define a barycentric map Y which, given a
function uw = U(- — p) + ¢ € S(r), gives an estimate on the maximum point p of U(- — p); since ¢
is small and U decays (polynomially) at infinity, p is, in some ways, the center of mass of u. The
idea will be to bound Y (u) in order to re-gain compactness.

Since the nonlocality comes into the very definition of the ambient space, we need the use
of the norm (5.1.8), which we notice being stronger than the one induced by the Gagliardo
seminorm.

Lemma 5.2.8. Let r* be as in Lemma 5.2.4. Then there exist a sufficiently large Ry > 0, a
sufficiently small radius ro € (0,7*) and a continuous map

T:S(rg) — RY
such that, for each u=U(- —p)+ ¢ € S(rg) we have
T(u) — p| < 2R

Moreover, T is continuous and —7Y is shift-equivariant, that is, T(u(- + &)) = T(u) — & for every
u € S(rg) and £ € RV,

Proof. Recalled that 7* = min ;_&[|U|[fs®~) > 0, we have by Lemma 5.2.4
HU||]RN\BR0 < 2r*,  uniformly for U € S (5.2.19)
for Ry > 0. Thus
< |Ullgsny < 1UlBg, + 1Ullen\5g, < I1UllBg, + 57

which implies
1UllBr, > & and  [[Ullg~\p,, < §7°

for each U € S. Consider now a cutoff function 1) € C>°(R,) such that
[0, 37 < ¥ < [37", +00);

let 7o € (0, ér*) and define, for each u € S(rg) and ¢ € R, a density function

d(q, u) == (ianllu ~U(- - Q)HBRO(q)> :

ves

Notice that d(-,u) is an integrable function: indeed [u(- —|—£)}BRO(,1) = [U]BRO(q+§) for ¢ € RN, and
q = [[u=U( = llp,(q) = I7qu = Ul|Bg, is continuous by

l7qu = Ullgg, = 175t = Ullgg, | < Irgu — mpull 5y < ll7qu — mptt]l s vy — 0
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as p — ¢, and the infimum over continuous functions is upper semicontinuous.
If we show that d(-,u) > 0 is not identically zero and it has compact support, then it will be
well defined the quantity

o) Jrv @ d(q,u)dq
(u) = JBN AL
S~ d(q, w)dg

We show first that d(-, u) has compact support. Indeed if u = U(- — p) + ¢ and U € S is arbitrary,
then

lu—U(- - D Bg, (0)
> UG =DBay @ = 1UC=P)Bg, @ — €l B, )
> UllBr, = 1UlBry(g-p) = ¢l s@yy = §7° = 10| B4, (g—p);
take now q ¢ Bap,(p): if z € Br,(¢ — p), by the fact that |z — (¢ — p)| < Ry and |q — p| > 2Ry,
we obtain that |z| > Ry, that is, z € RV \ BRO Therefore by (5.2.19)
lu=U( = a)llBgy (@) = § = 1Ullgn\Bg, = 3 > 377 (5.2.20)

thus inf & {lu — U(-— q)||BR0(q) > 1r* and hence d(q,u) = 0 for ¢ ¢ Bag,(p); this means that
supp(d(-;u)) C Bar, (p)-
We show next that d(-,u) is equal to 1 on a ball. Indeed if u =U(- —p) + ¢

inf [~ U(- = q)llBay(a) < Ilu = U = Dy, (0)
vesS

< NUC=p) =UC = DBry ) T 1918y @) < 170-aU = Ullpg, + 57"
We can make the first term as small as we want by taking |p — ¢| small, that is

inf |lu—U(- - Dl Bry(q) < i
UeS

for g € By(p), r small, which implies d(q,u) = 1.
By the fact that B,(p) C supp(d(-,u)) C Bag,(p) we have the well posedness of Y (u) and

Bany () 4400 0)dg
fB2RO(p ( a; )dq‘

The main property comes straightforward, as Well as the shift equivariance. We show now the
continuity. Indeed, assume ||u — v|| sy < gr*. Then, by (5.2.20),

T(u) =

v =T (= @)l Bry (@) > llu— (- - Q)”BRO(q) —lv = ull By @) = 37"
and again we can conclude that supp(d(-,v)) C Bag,(p) for each [|u — v|[gs@n) < £r*, where
p depends only on u. Moreover, observe that fBgR ) d(q,u)dq > [p w1da> |B| =: C1 not
0 T

depending on u and p (and similarly Cy := |Bag,|), and that d(qg, -) is Lipschitz (since 1) and the
norm are so, and the infimum over a family of Lipschitz functions is still Lipschitz). Thus we
have

JBop o |01 ld(q,u ) d(g,v)|dq
() — T ()] < 22hl +
fB2R ,u)dq
+ [ lalda.0)dg S 110 0) — 40, Ol
q q,v
Baro (») fBQR ) @) [p,, ) d(g,v)dg
1 Cy
< / lqldg— (1+) = ol sreqay = Copll — vl grogamy.
Bag (p) 1 C &%) P &)

Since €}, can be bounded above by a constant of the type C(1 4+ Y(u)), we have

[u = vl s sy <o = |T(w) = T(v)] <O+ T(w))|u— vl gs@n);

in particular this implies the continuity. |
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5.3 Singularly perturbed equation
We come back now to our equation

(=AYu+V(ex)u = f(u), zecRV, (5.3.21)
It is known that the solutions of (5.3.21) can be characterized as critical points of the functional

I : HSRY) 5 R

I.(u) := }H(—A)S/QuH% + 1/ V(ex)udz —/ F(u)dz, we H*(RY)
2 2 RN RN

where I. € C1(H*(RY),R), since || - | 77wy is & norm.
We start with a technical result. Let vy be as in Lemma 5.2.7; we want to show that the

claim of the lemma continues holding, for € small, if we replace Ly,,+,, with I., and S with
S(ry) N{eY(u) € Qvi, 9]}, ry small.

Lemma 5.3.1. Let vy and &y be as in Lemma 5.2.7. Then there exist §; € (0,dp) and r(, =
r0(01) € (0,70) sufficiently small, such that for every e small we have

Is(u) > Emo + 01
for each u € {u € S(r}) | eX(u) € Qui,+00)} D {u € S(r}) | €Y (u) € Qvr, 0]}

Proof. First we improve Lemma 5.2.7 for L, in the direction of the nonautonomous equation.
Indeed, by the assumption, we have V(eY(u)) > mqg + vy, that is

Ly (erw)(U) = Ling+1, (U) = Emqy + do

for any U € S. Moreover, if u = U(- —p) + @ € S(r) then, by Lemma 5.2.8, ep € Qocr, C 2R,
which is compact. By uniform continuity of V' and boundedness from above of S, we have

LV(sp)(U) > Emo + 60/2 (5.3.22)

for all U € S and ¢ small enough.
Let now r{ to be fixed and u = U(- — p) + ¢ € S(r1). Then we have

I(u) = L(U(—p) +¢) = LU( - p)) + L(v)e

for some v € H5(RY) in the segment [U(- — p), u]. Notice that v lies in a ball of radius max S + 14
and I/ sends bounded sets in bounded sets (uniformly on ¢); thus there exists a constant C, not
depending on U, p and ¢, such that

Ie(u) 2 L(U(- = p)) = Cllel s @y = 1(U(- = p)) — 61/2 (5.3.23)

for [|]| grsmvy < 7 sufficiently small. Recalled that ep € Q2r, we have, by the uniform continuity
of V and the uniform estimate (5.2.15), for sufficiently small ¢,

I(U(- = p)) = Ly(ep)(U) = 01/2
and the claim comes from (5.3.23) and (5.3.22), since, for 6; < dp/4,
Is(u)ZEm0+50/2_512Em0+51' |

Before introducing the penalized functional, we state another technical lemma, which gives a
(trivial, but useful) lower bound for I’(v)v for small values of v € H*(RY).
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Lemma 5.3.2. There exists r1 > 0 sufficiently small and a constant C' > 0 such that
I(v)v 2 Cllol 7 gy (5.3.24)
for every e > 0 and v € H*(RN) with [Vl s mvy < 71
Proof. We have, by (5.1.10) with 8 < %K,
L = [(A)2ol+ [ Verda = gol - Callolf]
s 1 1
> [|[(=2)20]3 + SVl — Callvllpia (5.3.25)
> Ol gy = Collvlbm, > €0l )

where the last inequality holds for [|v[|fs@n~y small, since p +1 > 2. i

Remark 5.3.3. For a later use, we observe that one can improve (5.3.25) by

s 1 1
(—A)*0|l3 + §KHUH§ = 2°Cglvllpy = Cllvll s @y (5.3.26)

up to choosing a smaller r1.

5.3.1 A mass-concentrating penalization

We want to study now a penalized functional (see [78,83,119]), that is I plus a term which
forces solutions to stay in €.
Since V > mg on 012, we can find an annulus around 0f2 where this relation keeps holding,
that is
V(z) > mg, forxz € Qop, \ O

for hg sufficiently small. We then define the mass-concentrating penalization functional Q). :
H*(RY) - R

1 =
where a € (0, min{1/2, s}).
We observe that, for every u,v € H%(RM),
p—1

/ (p+1) ( 1 2 ) 2 / d
Q 1 X
e(u)v e g HUHLQ(RN\(Q%O/en +  JRN\(Q2p /) v

and it is straightforward to prove the following estimate

Qe(u)u > (p+ 1)Qx(u). (5.3.27)

We thus set
Js = Ie + Qs

the penalized functional. It results that Q. and J. are in C(H*(RY),R).

We want to find critical points of J. and show, afterwards, that these critical points, under
suitable assumptions, are critical points of I. too, since Q. will be identically zero. Let ¢ = 1:
observed that @1(u) vanishes if v have much mass inside €2, we see that J;(u) = I1(u) holds
when the mass of u concentrates in ; this is why we say that Q. forces u to stay in . Similarly,
as € — 0, much less mass must be found outside Q/¢.

We start by two technical lemmas. The first one gives a sufficient condition to pass from weak
to strong convergent sequences in a Hilbert space, similarly to the convergence of the norms.
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Lemma 5.3.4. Fiz e > 0 and let (u;); C H*(RY) be such that
Assume moreover that uj — ug in H*(RN) as j — 400, and that

R}LerOO lujll Larm\Bry =0 (5.3.29)

forq=2and q=p+1. Then u; — ug in H¥(RY) as j — +oo.
Proof. We have by the weak lower semicontinuity of the norm
i inf o | e vy 2 llwoll s v)- (5.3.30)

Moreover

o By = [ Fluyudo + )
= ( f(Uj)Ujdx —/ f(uo)uodx> + (Ié(uj)uj — Ié(uo)u0)+
RN RN

+ I (ug)uo + /N f(uo)uodz =: (I) + (I1) + HUOH%IES(RN);
R

if we prove that
limsup ((I)+ (II)) <0

Jj—+oo

we are done, because together with (5.3.30) we obtain
il sy = ol sy as j — +oo0,

which implies the claim, since H?(R") is a Hilbert space.
Focus on (I); we have

/ uw»w—fwwwwxz/'Uw»w—fwwmm%%
RN

Br

+/§ gy — fluo)uo)de = (In) + (Iy).
RN\Bpr

The piece (I3) can be made small for j and R sufficiently large, by exploiting the estimates on f,
assumption (5.3.29) and the absolute continuity of the Lebesgue integral for ug. For such large
R and j, up to taking a larger j, we can make the piece (I1) small by Proposition 1.5.5.
Focus now on (I7); we first observe that by exploiting Hélder inequalities and again classical

arguments we have I (u;j)ug — I.(ug)ug. Thus we have, by (5.3.28),

limsup (IZ(u;)uj — IL(uo)uo) = —liminf (QL(uj)u; — QL(uj)uo)

j—+oo J—r+o0
p—1

2

. 1 2
- _ ggligof ( (gallug-lle(RN\mQho/e)) - 1>+

(/ u?dx —/ uju0d$>> <0
RN\ (Q2n, /) RN\ (Q2p, /€)

where the last inequality is due to the following fact: observe first that u; — ug in HS(RY) —
L2(RY) thus (by restriction) u; — ug in L2(R™\ (Q2p,/€)); by definition of weak convergence
and by the lower semicontinuity of the norm, we have

ljminf/ u?d:ﬁ 2/ uddr = lim ujugdr,
IO JRN\(Qang /) RN\ (Q2n, /) IO JRN\ (a1 /)
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that is

lim inf (/ u?dx —/ ujuodx> >0.
I740 \ JRN\(Qang /2) RN \(Q21 /)

Noticed that a, > 0 and liminf,, b, > 0 imply lim inf,,(a,b,) > 0, we conclude. |

The second Lemma is a lower bound for .J. with respect to the functional L,,,. We highlight
that in what follows we understand that the case mg =V, i.e. mg global minimum, gives rise to
a not-perturbed result.

Lemma 5.3.5. Set Cynin = 3(mo — V) > 0 we have, for e small and u € H*(RY),

Je(u) > Ly (u) — Crpine®.

Proof. We have, recalling that mg is the infimum of V over Qgp,, and V is the infimum over RY,

Jo(u) = Iy () + /R (Vier) — moyude + Quu)
u } X)) — Ty U2 X u
> L)+ 5 | V)~ MO+ Q)

> L (u) — CminHuH?ﬂ(RN\(tho/g)) + Qc(u).

If HUH%Q( < 2¢® we have the claim by the positivity of Q.(u). If instead

RN\ (Qap, /€))

HUH%Z(RN\(Q%O/S)) > 2e®, then

pt1
2

1 1
QE(U) > <2€aHuH%Q(RN\(QQhO/E))> > @Hu”%2(RN\(QQhO/E)).

Thus 1
2
Js(u) > Lmo + (250‘ a Cmm) HUHLQ(RN\(Q%O/S)) z Lmo

for € small. This concludes the proof. |

5.3.2 Ciritical points and truncated Palais-Smale condition

In order to get critical points of J. we want to implement a deformation argument. As usual, we
need a uniform estimate from below of [|.JZ(u)||(zs@®ny)+, and this is the next goal.
First, by the strict monotonicity of E,, let us fix I = I{;(v1) > 0 such that

Emo < l6 < Emo+l/1;
as well as 1y and [y, even [, will be let vary as (Ij)"™ — Ey,, in the proof of the existence.

Lemma 5.3.6. Let rg and r1 be as in Lemma 5.2.8 and Lemma 5.3.2. There exists vl €
(0, min{ro,r1}) sufficiently small with the following property: let 0 < p1 < po < 14 and (ug): C
S(rhy) be such that

12 (ue)ll (prs@yy- =0 ase — 0, (5.3.31)
Je(us) <1y < Epgtvy,  for any e > 0, (5.3.32)

with the additional assumption
(p(uc))e € 10,p0], (€Y (ue))e C [0, 10)].

Then, for e small
plus) € [0,p1], €Y (ue) € 20, v1].
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We notice, by (5.3.31) and (5.3.32), that (u.). resembles a particular (truncated) Palais-Smale
sequence. As an immediate consequence of the Lemma, set the sublevel

JE = {ue H*RY) | Jo(u) < c}
we have the following theorem.

Theorem 5.3.7. There exists v, € (0, min{rg, 1 }) sufficiently small with the following property:
if 0 < p1 < po < 1h, then there exists a 62 = d2(po, p1) > 0 such that, for e small

T2 ()| (s @ yy» = 02

for any

/N
we {ue 5() 0 I8 | (pu),X(w)) € (0. pu] x 200, 10) \ (0. 1] x 2[0,11])}
> {ue S0 NI | p1 < plu) < po, €X(u) € Avs, 1]}
Remark 5.3.8. Arguing as in the last part of the proof of Lemma 9.2.4, noticed that S is compact
not only in H*(RN) but also in LY(RN) for q € [2,2%], if (Up)n C S and (0,)n C RN s included

in a compact, we have
Jdim [Un (- + 6n) [l 5, =0,

where the norm ||-[[gx g, is defined in (5.1.9).

Proof of Lemma 5.3.6. We use the notation, for A > 0,
Q) := (Qen) /e = (Q/e)n
and notice that if h < A then Q/e C Q5 C Q5,. Let r5 < min{rg,r1} to be fixed.
Step 1. An estimate for u..
We have, for u. = U(- — pe) + e € S(15),
lluellgay (2/ey < NU:(- = pe)lllrany (/e) + lleelllman (/e
< IU:(- = pe + T(UE))MRN\(Q/a—T(uE)) + CH%HHS(RN)
<MU:( = pe + Y (ue))llgay (0/e—r () + CT-

By the fact that €Y (u:) € Q[v1, 9] C €2, we have that 0 € /e — T(u.) and thus /e — Y (u,)
expands in RY as ¢ — 0. Moreover by Lemma 5.2.8 we have 0. := Y (u.) — p- € Bag, compact.
By Remark 5.3.8, for € small we have

el /ey < (1 +C)rh = C'r. (5.3.33)

Let
eN

£ -

\/1+4h0/€+1
2

which by definition satisfies en.(n. + 1) < hg and n. — +oo as ¢ — 0. We have

Ne

2 2 AV
€ € < £ < C
ZE 1: ”u6||[2(QnE(i+1>\QnEi) = ||us||[,2(QnE(nE+l)\Q;S) < (C'ry)

and similarly
Ne

Ne
+1
Z[Ua]?)s \Q: RN < (C’rlz)2, Z Hua”ipﬁ»l(ga (i+1)\Q; ) < (C”ré)?-ﬁ-l
i=1 =t

: ne(i+1) \ned’ ne
i=1
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thus, for some C = C(r}),

Ne

2
> (el o+ el e o) <

i=1
This implies that there exists i € {1,...,n:} such that

C
luelfe + luelfis gy < = =0 ase =0, (5.3.34)
(3

where
A% = szg(igﬂ) \ Qi
and C depends on 4 (we will omit this dependence).

Step 2. Split the sequence.
Consider cutoff functions . € C°(RY)

QE . < ©e =< Qf’bg(ig-i-l)

Nele

such that ||[Ve|leo < rTs =o(1) as ¢ — 0 (which is possible because the distance between €2, ;_
and Q7 ;L) I8 ne = +00).
Deﬁne
uf:l) = Ol u?) =1 —pe)us and u;, = u( ) + u(2)

notice that both supp (uél)u?)) and supp(F'(us) — F(ugl)) - F(ug))) are contained in A%, that
is where we gained the estimate of the norm. Moreover, since

SUPP(US)) - Qis(isﬂ) - Qeng(ng—i-l)/e C Qopy /e
we have, by definition of )., that Qe(ugl)) =0, Q:(ue) = Qa(ugz)) and
QL) =0, QL(uc) = QL(ul). (5.3.35)

Step 3. Relations of the functionals.
We show that
I (ue) — I (uY) = L(uP)] =0 ase—0

from which
Je(ue) = L (uM) + L (u®) + Q= (ul®) + o(1). (5.3.36)

Indeed
/RN(_A)S/ZUQ)(_A)S/QUEZ)

+/‘wm9n¢%Fw9n
—:(I) + (IT) + (IT1).

The second piece can be easily estimated by the boundedness of ¢, and V', and the information
on the L?-norm given by (5.3.34), i.e (II) < 7% Similarly, as regards (/II), we estimate each
single piece separately, in the same way: use (5.1.10) and the information on the L?-norm and
the LP*l-norm given by (5.3.34), obtaining (I11) < n%

Focus instead on (I). Recall that (u:). C S(r}), and thus ||u.||2 is bounded. We have

[l () = ul” () [0 () — (g

(I)<C ( )‘dacdy

R2N |z — y|N+2s
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i () — ul () |[ul (z) — ul ()]

<20 dx dy+
QL xBQ_ ) |z — y|N+2s
(1) _ @ (2 _ .2
120 lue " (z) — ue " (y)|Jus” (v) — ue (y)|d:): dy
AsXRN |z — y| N2

=:20((1) + (I2))

since on €2, . x Q° . and C(Qis(i€+1)) X C(szg(igﬂ)) the integrand is null. Focusing on (I;)

Nele Nele

|ue (7)uc(y)|
)= / Juelwue\Y)l 4 g
() @ xC(© NA{lz—y|>ne} [T — Y|V

e
neie ne (ie+1)

[ wa) +udy)
(

Q. x0(Q |z — y|N+2s

nete

<

me ie +1))) N {lz—y[>ne}

N = N

1
2
u (a:)/ ————-dy dx+
/E = s {jo—y|>nc} [T — Y[V T2

nete ne (ig+1)

1 / 9 / 1
= uZ(y) N drdy
2 C( Qs . N{|z—y|>n} ‘m - y‘N+2

e
"s(ieJrl)) neie

_l’_

1 C
< Clu ||%/ —————drdy< —— —0 ase—0.
e |$_y|>n6 ‘:U _ y‘N—i-Qs TL528

Focusing on (I2) we have

(I2)
1
= /AMRN oy (@) = el ue@)] + o) (uela) = w())]) -

(16 9) = pe(@))uc(@)] + 11 = o) (ue () = ue(y))])der dy

_ 2 2 _ 2

R - R ey g O .

As xRN “T - y‘ ts As xRN |:C - y| +as

f e et — Wy,
As xRN ‘x - y‘ s
|0 () — e (y)]?|uc(z)[? |ue (@) — ue(y)?

< N+2s + N+2s +

As xRN ‘l’ - y‘ As xRN |l’ - y‘

1 1
+2 / |‘P€(l') - ‘r”s(y)|2|us($)‘2 ’ / ’us(m) - UE(?/NZ ’
As xRN |:E - y|N+25 As xRN |5C - y|N+2S
—: A+ B?>+2A4B

and we see that both A and B go to zero: B = [u:]e gy < % by (5.3.34), while for A we

exploit that ||Vee|e — 0. Indeed, let a, := m; we have
_ 2
€ © lz—y|<ae ‘:B - y’N+2s

_ 2
& |z—y|>ae |1: - y|

< C\“s’%?(Ae)(HV%Hgo/

1 ) 1
|Z|N+zs—zd2+4\|%||oo/ |Z|N+2sdz>

|<ae |z|>ae
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c _ C
< o (IVeelZa? +1) = —HV % < e 20 ase 0,
€

Thus (I2) < 25+1 + S+1 + C Q — 0, which reaches the claim.

Step 4. Relatwns of the derwatwes.
We have
172 (ue) — I (ulV) = I () || s mvyy- = 0 ase — 0, (5.3.37)

from which, joined to (5.3.35),
JL(ue) = IL(ulM) + IL(uP) + QL(uP?) + o(1). (5.3.38)
Indeed by Holder inequality, for any v € H*(RY),

o = 1) = 1ol < [ 17(0) = Fl) = £ olda

and again we argue in the same way as in the third piece of Step 3, observing that, by (5.1.10),
|f (ue)lv] < Bluel[v] + Cplucl?|v] thus

/AE |f (ue)llvlde < Blluel L2 Ivll2 + CalluellF e ae) I0llp41
< C (Blluell z2gas) + Colluelpr gy ) I0]lrs
and hence the claim. In particular, |(IZ(us) — Ié(ugl)) - Ié(ugz)))u§2)| < n% We see also that
I'(uM)ul® = o(1). (5.3.39)
Indeed

@] < | [ (82 (-8) 0l +

—i—/E\V(ea:) o (z)dm\—i—/s\f(ugl))ug)dx\ =: (I) + (IT) + (I1T)

where for (I) and (I1) we argue as in Step 3 obtaining (I) + (1) <
argue as in (5.3.38) obtaining (I11) < &

S+ &, while for (I11) we

Step 5. Conwvergence of u?)
2

Observing that the support of us™’ is outside €2/e, we have with arguments similar to Step 3 that,
by (5.3.33),
[uf| e vy < 71 (5.3.40)

Indeed, focusing only on the nonlocal part, we have (recall that supp (U/g ) c C(Q/e))
[ (2) = uf? (y) [ (2) = uf () ?
N+2s <2 Ntz drdy
r2N |z —yl ©@/e)xrN |z =yl

< 4/ |‘Pe(x) _‘Pe(y)|2‘ua(x)’2
= Jo@ e xrY |z — y| N2
|ue () — ue(y)?
+4/ dx dy
C/e)xrN [T —y|NT2s

and we use again the final argument in Step 3 and (5.3.33) to gain, for ¢ small,

dx dy+

||u§2)|!%15(RN) <(C+ 0“))”“6”%2([3(52/5)) + C[UE]%(Q/5)7RN < (Cré)Q
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where C' does not depend on 75. We choose thus r4 such that (5.3.40) holds.
This allows us to use Lemma 5.3.2. By joining (5.3.31), (5.3.38), (5.3.39), (5.3.24), (5.3.27)
we obtain

o(1) = Ji(u)ul®) = I (ul)ul® + L (uP)ul? + QL(ul)u) + o(1)
> Olul® (| @y + (0 + 1Q:(ul?) +o(1)

or more precisely (we highlight this for a later use), for some C' = C(r}),

o(1) = T > Clul® v,y + (0-+ Q) = (4 ). (5.341)
which implies (since Q). is positive) that
Hugz)HHs(RN) -0 ase—0 (5.3.42)
and
Q-(u?) -0 ase—0. (5.3.43)
As a further consequence, (5.3.42) and the boundedness of V' imply
Lw®) =0 and I'(w®)—0 ase—0. (5.3.44)
Step 6. Convergence of Ié(ugl)).
In particular we obtain from (5.3.44), together with (5.3.36) and (5.3.43), that
Jo(uz) = L(uM) + o(1). (5.3.45)
We want now to show that
I'(wM)y =0 in (H5(RN))* ase— 0. (5.3.46)
Start observing that (5.3.44) together with (5.3.37) give
L(ue) = IL(ulV) 4 o(1); (5.3.47)

let now v € H*(RY) and evaluate I é(ugl))v. We want to exploit (5.3.47) together again with the

assumption (5.3.31). In order to do this we need to pass from u? to ue, but getting rid of QL (u.)

on which we have no information. Thus we introduce a cutoff function ¢ € C2°(R™) such that
Q%ho << QQho
and hence
supp(ugl)) C Qp, /e C Q%ho/a C {@(e:) =1} C supp(p(e-)) C Qap,/e.

Thus we have

7y & 1) (@(e)0) + (14 [[o]l2)o(1)
= L) (@) — (IL(ue) (@(e)v) — L) (@(e)v)) + (1 + [[v]l2)o(1)

= JL(ue) (B(e)0) = (I(ue) = L)) (@(e)0) + (1 + [o]l2)0(1).

Indeed, we justify (%) as done in Step 3: notice that uY = 0 outside Qp,/e and 1 — @(e) =0 in
Qs /¢, so in the annulus (3, /) \ (2, /€) both u and 1 — @(e-) are zero; notice also that
2 2

C(Qs,, /e) and Qp,/c get far one from the other as ¢ — 0. Thus we have
310

1wl (2)]1(1 — B(ey))v(y)]
|$ _ y|N+23

mw@xu—wemmzzf

(g /)xE(Q,,,/2)

dx dy
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|ue(2)[[v(y)]

<9 / dx dy < (1+ [|v]l2)o(1)
(o /2)xC(@y,, /o) [T = IV

where in the last passage we argue as for (/1) in Step 3. Notice that o(1) does not depend on v.
Thus we obtain

IOyl

(T2 s ey + 1L Cute) = L ul) | g vy ) )0l sy

+(1+ 0]l s rvy)o(1)

(HJé(ua)H(Hs(RN))* + HI;(ua) - Ié( )H(HS(]RN) ) V]l g RN)(C + 0<1)) +
(1 ([0l s rvy)o(1)

IN

IN

where in the last inequality we argue as in Step 5 (again o(1) does not depend on v). Concluding,
we have, by choosing [|v[| sy = 1, that

() [ s vy -
<C (HJé(ue)H(Hs(RN))* + 1 (ue) = T () [ o ey ) (I+o(1)) +o(1) =0

by using (5.3.31) and (5.3.47).

Step 7. Weak convergence of uél).
Set g := Y (ue) to avoid cumbersome notation. Since (g¢.). C [0, 9] C  bounded in RV, we
have that up to a subsequence

eqe — po € Q[0,v] C Kq C Q.
(1)

Moreover, by estimating the norm of ug’ with the norm of u. (as done before, in Step 5, for u

())

)

where u. belongs to S(r5) bounded in H*(R"), we have that also uY is a bounded sequence,

(1)

and thus is so ue (- + ¢<), which implies, up to a subsequence
uM(-+¢.) = U in H*(RN) ase—0.

For each v € H*(RY) we apply this weak convergence to the following equalities, derived from
(5.3.46),

o) = Lot = a) = [ (A)2uD -+ @) (=A) o(y)dy+

eyt e (1) v
*/RNV( y o+ ) uD(y + 0 )o(y)dy — / Dy + .))o(y)dy
=: (I) + (II) + (1II).

For (I) and (I1I) we obtain by the weak convergence and by Proposition 1.5.5
()= [ (=AU (=A)*?vdy and (III) - — [ f(O)vdy ase—0.
RN RN

For (II) instead we have

an - [ Vi

1/2
g( / (V(€y+5%)—v(po))2v2(y)> 1w (- + ge) |2+
RN

[ i+ at) - [ 0w

+ V(po)
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(1)

where the first term goes to zero (thanks to the boundedness of us ’) by the dominated convergence
theorem, while the second thanks to the weak convergence. Thus we finally obtain

(po)(f])v = / (=A)*20 (=AY v dy + / V (po)Uv dy — / f(@)vdy =0
RN RN RN
for each v € H*(RY), that is )
Ly (p)(U) = 0. (5.3.48)
(1)

Step 8. Strong convergence of us ’.

(1)

We want to show the strong convergence of us (- + ¢¢), that is
uM(-+¢.) = U in HS(RN) ase— 0. (5.3.49)

Set w. = ugl)(- +¢.) — U — 0, again by (5.3.46) we have

o(1) = I (D). — gz)
= Ly @i+ (I(-2)720]3 + / Viey +eayiddy) +

+ / (V(ey + eaz) — V(po)) Uibedy + / (F(O) — F(0 + ) yivedy
RN R

N

(H(— )5/ 2. |3 +/ V(6y+6q5)w§dy> + (1)
RN

> | (—A)2 |3 + V@[3 + (1)

where we have used (5.3.48). We obtain by the boundedness of V' and (5.1.10)
()2 =2V [ 100cldy— [ (26101 + Cotz + DITP) el
RN RN
= [ (Bl + 2ol ™) dy = o1) = Bl 13 ~ 2 Colac

in the last passage we have used that w. — 0 in H*(RY), thus by Remark 1.4.2 || — 0 in
~ 1

H*(RN) and hence in L2(RY) and in LPT(RY) (observing that U? € L'"#(RN)). Merging

together all the things we have, by (5.3.26) and choosing 8 < %K,

o(1) 2 [|(=A)*%@c |3 + (V.= B)ll@e 13 — 2°Cpllde Ty = Cllae o sy

and thus @, — 0 strongly in H*(RY), that is the claim.

Step 9. Localization.
Observe first that U # 0. Indeed, if not, by (5.3.42), (5.3.49) and translation invariance of the
norm we would have

rt < 11?551f U £rs ()
< lilan_}élf |Ue(- — pe) + @ell s mmy + lilgiiélf l9e [l £rs mv)y
< lim (lu@ | sy + 1u@llscam) ) +75 <15 <7,
impossible. By (5.3.49) we obtain also
I (uV) — LV(po)(U) as e — 0.
Thus we find, by using also (5.3.45) and (5.3.32),

Ly (o) (0) = L(ulY) + 0(1) = Je(ue) + o(1) < Iy + o(1)
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and hence, letting ¢ — 0, )
LV(PO)(U) S l6 < Em0+1/1' (5350)

Moreover by (5.3.48) and U # 0, we have

Ev(po) < Ly o) (0);

po) = Do)

joining together the two previous inequalities we find Ey(,,) < Emg+y, which implies, by the
monotonicity of E,, that
V(po) < mg + v1.

Joining this information to the fact that py € Q (and in particular V(pyg) > mg) we have
po € Q[0, 1), that is

el (us) = po € Q[0,11) ase — 0. (5.3.51)
Expl?iting again (5.3.50) ~(observe that Epgtvn < Emgtue < lo) together with L/V(po)(ﬁ) =0,
and U # 0, we have that U belongs to Sy (,,) up to translations, that is
U := 0( — ) € SV(po) C S
for some suitable yo € RY. So, set
De = ¢ + Y0
we have
[ul — U (- = pe)lgrsmny = 0 ase — 0. (5.3.52)
For a later use observe also that
epe = po € Q0,11) ase— 0. (5.3.53)

Step 10. Conclusions.
By (5.3.51) we have that
€T(u5) € Q[O, 1/1)

definitely for £ small. This is the first part of the claim. Moreover, by (5.3.52) and (5.3.42) we
gain
|ue = U(- = pe)llgsenvy =0 ase—0 (5.3.54)

and thus, since p(ue) < [lue — U(- — pe) | gs(mvy by definition, also p(ue) — 0 and hence
pluc) € [0, p1]
definitely for € small. This concludes the proof. |

In the next proposition we see that solutions of J/(u) = 0 are, under suitable assumptions,
also solutions of I’ (u) = 0.

Corollary 5.3.9. Let (u:). be a sequence of critical points of Je, that is J.(us) = 0, satisfying
us € S(rh), Je(ue) <1l and Y (ue) € Q[0, v)
for any € > 0. Then, for e sufficiently small, we have
Quue) =0, and QL(uc) = 0.

In particular IL(u:.) = 0, which means that u. is a solution of (5.3.21).
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Proof. By the proof of Lemma 5.3.6, we notice, since 1 —; = 1 outside (2 |, and thus outside
Qp, /e, that
el L2\ (2, /2)) = Hug)HLQ(RN\(QhO/a)) < Nl || s vy (5.3.55)

and hence HUEHLQ(RN\(QhO/a)) —0 by (5342)
Through a careful analysis of the Steps 3-5 of the proof, that is by (5.3.41) and (5.3.55), we
see, more precisely, that

C
HUEH%Q(RN\(Q}LO/E)) < TTE + nigs +o(1)

where C' = C(r4) and o(1) depends on the rate of convergence of J(u.). Thus, since we assume
JL(us) = 0, we gain uniformity, i.e., called o* := min{1,2s}, we obtain

C ot
”Us”QL?(RN\(QhO/E)) < ar Y€ /2 (5.3.56)

As a consequence
1 2
QH%HLQ(RN\(Q;LO/S)) =0 ase—0

for a € (0,*/2), and hence Q. (u:) = Q. (u:) = 0 for € sufficiently small. i

We want to show now a (truncated) Palais-Smale-like condition.

Proposition 5.3.10. There exists 4y € (0,min{ro,r1}) sufficiently small with the following
property: let € > 0 fized and let (u;); C S(ry) be such that

12 (u)l(gs@nyy- =0 as j — 400 (5.3.57)

with the additional assumption

(eT(uy)); € [0, vol.

Then (uj;); admits a strongly convergent subsequence in H*(RN).

Proof. Let rj to be fixed. Since S(r4) is bounded, up to a subsequence we can assume u; —
in H*(RY). We want to show that

Rl o g = 0

for ¢ =2 and ¢ = p+ 1 and conclude by Lemma 5.3.4.
Arguing similarly to Step 1 of the proof of Lemma 5.3.6, i.e. exploiting Remark 5.3.8, we
obtain for L > 0, uniformly in j € N,

[ |HRN\BL < Cry;

indeed we work with the set By, — Y (u;) which expands to RY as L, j — +o0, since Y (u;) € Q/e,
a fixed bounded set. Moreover, for any n € N, we have

n
2 2
z; 14l Z2(By 40\ Brsniiry) = (Cry)
1=
and similarly for the Gagliardo seminorm and the (p + 1)-norm, thus for some i;, € {1,...,n}

2 +1 c
w4 + Hujuierl(Aj,n) < "
where 47" = Brini;, \ Brin(ij,—1)- Again similarly to Step 2 of the proof of Lemma 5.3.6, we
introduce v;,, such that
Brin(i;n—1) < ¥jn < BLini;,
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and ||V nllec = 0(1) as n — +00; moreover we set

aj?” = (1 - w]vn)u]‘
Observe that xp, < ¥, thus supp(@;,) C C(Br). Arguing as in Step 5 and 3 of the proof of
Lemma 5.3.6 we obtain

[y RO B THE e
R2N ~ JU(BL)XRN |z —

’x_y|N+25 y’N—&—Zs

|uj(z) — u;(y)|?
+4 /E(B o j‘x ~ y‘Nj+25 dz dy < o(1)||ujll72 s,y + Cluiliis,) my
L

thus |l grs vy < Cry and hence, choosing 7y sufficiently small, we have
%jnll s mvy < 715
by Lemma 5.3.2, for ¢ € {2,p + 1}, we obtain
H“J'H%q(RN\BLer‘j’n) = Haj,n”%q(RN\BHm )= < Cllay, n”Hs ®Y) S CIL () Ujm-
Thus the claim comes if we show that
I (T ), — 0  as j,n — 4o0.

Indeed we have

()i = )5 — [ (= 8)201) ()21 = 5) )~

R2N
o V(ex)ihjn(1 — o )usde — / = Yin)uj) — flug))(1 = ¥jn)ujde
= Jé(uj)ﬂjm - Q (“J)UJ nt(I) < + (1)

where we have used that J.(u;) — 0 (as j — +oo, uniformly in n € N), the boundedness of
%0l s (mvy and the positivity of QL (u;)i;,. The term (1) can be estimated in the same way as
done in Steps 3-4 of the proof of Lemma 5.3.6 (fixed j € N, and n — 400), and hence we reach
the claim. 1

5.3.3 Deformation lemma on a neighborhood of expected solutions

We want to define now a neighborhood of expected solutions (see [119]), which will be invariant
under a suitable deformation flow. Consider rs := min{r’, r(,r5,r5} (see Lemma 5.2.6, Lemma
5.3.1, Theorem 5.3.7 and Proposition 5.3.10), and let us define

02

R(S,u) = 6 = 2 (pu) — 1) <0

and
X.5:= {u € S(po) | X (u) € Q[0,10), J-(u) < Eny + R(6, u)}
where

0<p1<po<rs,

¢ is sufficiently small and

5 (O,min {%(po — ), 61, U — Emo}) ; (5.3.58)

here 61 and do are the ones that appear in Lemma 5.3.1 and Theorem 5.3.7. Notice that the
height of the sublevel in &; 5 depends on wu itself; this will be used to gain a deformation which
preserves X ;.

We begin by pointing out some geometrical features of the neighborhood X 5.
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o X5 is open. Indeed, S(p) and {J.(u) < Ep,, + R(6,u)} are open, and [0, vy) = Q(—~, 1)
for a whatever v > 0 (since V' cannot go under my in ) and thus open. Moreover it is
nonempty (see e.g. Section 5.3.4).

o Ifve X, 5 CS(py), then by (5.2.17) we have p(v) < po.
o Ifve X5 C{eY(v) € Q0, 1]}, then
£Y(v) € Q[0, 7). (5.3.59)
Indeed, if not, i.e. €Y (v) € Q[v1, 1], then by Lemma 5.3.1 we have
Je(v) > I.(v) > Epy + 01 > Enmy + 6 > Epy, + R(5,0)
which is an absurd.

o If R(6,v) > —6 then
v e S(po). (5.3.60)

Indeed %(ﬁ(u) — p1)+ < 0 implies, by the restriction on d,

(P(u) — p1)+ < po — p1.

If p(u) < p1 then clearly u € S(p1) C S(po). If instead p(u) > p1, then p(u) < po, which
again implies u € S(pp).

We further define the set of critical points of J. lying in the neighborhood of expected solutions
K.:={ueX.s|J.(u) =0, J.(u) = c},
the sublevel
Xé& = XE,(S N Jg

and the strip level
(Xeo)g:={u€ Xes | d< Je(u) < e}

for every ¢, d € R. We present now a deformation lemma with respect to K., for ¢ sufficiently
close to Ey,.

Lemma 5.3.11. Let c € (Epy — 0, Epyy +6). Then there exists a deformation at level ¢, which
leaves the set X. 5 invariant. That is, for every U neighborhood of K. (U =0 if K. = (), there
exist a small w > 0 and a continuous deformation n : [0,1] x X. 5 — X5 such that

(i) J:(n(-,u)) is non-increasing;

(iii) n(t,u) =wu for every t € [0,1], if Je(u) & (Emg — 0, Emy +9);
() (1, X5“\U) C XI5%;

(v) n(-,u) is a semigroup.

Proof. Let V: {u € H*(RYN) | J/(u) # 0} — H*(RY) be a locally Lipschitz pseudo-gradient

vector field associated to J., and let ¢ € Lip.(H*(RY),R) be a cutoff function such that

supp(¢) C (X&(;)g:girg and ¢ = 1 in a small neighborhood of ¢. We consider the Cauchy problem

V(n)
IV s vy’ (5.3.61)
n(0,u) = u.

n=—¢(n)
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The proof keeps on classically, obtaining a deformation 7 : [0,1] x X. 5 — H*(RY). We want to
prove now that n goes into A% 5.

Let u € X, 5. We need to show that n(t,u) € &, ; for every t > 0. Since A, 5 is open, (s, u)
continues staying in &; s for s small. Thus assume that

n(s,u) € X, 5, forevery 0 <s <t

for some tp > 0, and we want to show that n(to,u) € X 5. Notice first that, by using (iii), (v),
(ii) and the continuity of n and J. we can assume that

Je(n(to,w)) € [Emg — 0, By +9). (5.3.62)

Step 1: eX(n(to,u)) € Q[0,1p).
By (5.3.59) we have
eY(n(s,u)) € Q0,v1), forevery 0 < s < o,

and thus by continuity €Y (n(tg, u)) € 2[0,v1) C [0, vp].

Step 2: J.(1(to, u)) < Em, + R(6,7(to, u)).

If p(n(to,u)) < p1 then R(d,n(to,u)) = ¢ and we directly have the claim, recalled that
Je(n(to,u)) < Emy + 0 by (5.3.62). Assume instead p(n(to,u)) > p1. By continuity, there
exists t; € (0,tp) such that we have

pn(s,w)) > pr,  for every s € [t1,to].
In particular
n(s,u) € S(po) C S(rs) € S(ry),
Je(n(s,u)) < Emg +0 < Emgtu,
5(77(37 u)) € (ph :00]7
eY(n(s,u)) € Q[0, )
for s € [t1,t0]. Then by Theorem 5.3.7 we have

HJ;(T](S,U))H(HS(RN))* > 09, for every s € [t1,to].

We can thus compute with standard argument, by using (5.3.61), the properties of the pseudo-
gradient and (5.2.18),

J:

Je(n(to, w)) < Je(n(ts, w) = 5 (P(n(to, w) = pln(t1, u)))

< By +0 = 2(@ln(t1,0)) = p1) = 2 (ntto. ) - platr. )

2
= Emo + R(é, n(t07 u))a

that is the claim.

Step 3: n(to,u) € S(po).

By the previous point we have J:(n(to,u)) < Em, + R(d,1(to,u)). Since (5.3.62) implies
J=(n(to,u)) > Ep, — 0, then by (5.3.60) we have n(to,u) € S(po), and thus the claim. i
5.3.4 Maps homotopic to the embedding

We search now for two maps ®., U, such that, for a sufficiently small o € (0,1) and a sufficiently
small 6 = (o) € (0,6) (see (5.3.58)), defined

I:=[1-09,1+ 00,
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we have, for small €,
o

IxK %5 x"m™ % 1y K,
with the additional condition

Eimg—6

oI x K %5 xo;o " Y5 (1\ {1}) x Kg;

then we will prove that W, o &, is homotopic to the identity. While the first property is useful
for category arguments to gain multiplicity of solutions, the second additional condition will
be essential for developing relative category (and cup-length) arguments and controlling the
sublevels of the functional below the expected critical level.

Definition of &,
Let us fix a ground state Uy € Spy C S, i.e. Ly (Uy) = En, (see Theorem 5.2.1 and (5.2.13)).
Define, for p € K and t € I (0¢ to be fixed)

O.(t,p) == Up (%) e HY(RM).

We show now that, for € small, ®.(t,p) € XEJ?OM.

o Oc(t,p) € S(p1) C S(po):
indeed, recalled that the dilation ¢ € R + Up(-/t) € H*(RY) is continuous, we have

100 (“22) = Uo(- = p/e)ll ey = U0 (-/8) = Uoll s ey < 1
for t € I and sufficiently small g = 0¢(Uy) (not depending on €). Thus, setting p; :=
Uo (%/5) — Up(- — p/e) we have
O.(t,p) = Uo(- —p/e) + ¢t
with Up € S, p/e € RY and ||| zs(mvy < p1, which is the claim.
« eX(Pc(t,p)) € Q[0, v0):
indeed, by the previous point and Lemma 5.2.8, we have
T(P(t,p)) — p/el < 2Ro
hence |eY(®.(t,p)) — p| < 2eRo, and since p € K
d(eY(P(t,p)), K) < 2¢Ry.

For sufficiently small e, we have Ks.r, C ©[0,10), and thus the claim. In particular, for a
later use observe that
eY(P.(t,p)) =p+o(1). (5.3.63)
o Jo(P:(t,p)) < Emg + R(5, (1, p)):
indeed ®.(t,p) € S(p1), thus p(P:(¢t,p)) < p1, which implies R(J, P-(¢,p)) = J and the
claim comes from the following point, since § < 4.
o Jo(Pe(t,p)) < Emg + 9
indeed we have by Lemma 5.2.3 (b)

T@(t.0)) = Ly (@ult0) + 5 [ (Vi) = mo)82(0.p)de + Qe (9:(t.0)
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=t Ling (Uo (“25)) + (1) + (IT) = g(t) By + 0(1) (5.3.64)
< En + o(1)
where we used ¢(t) < 1. Indeed, as regards (I) we have

(1) = ;/RN(V(El‘ +p) — mo)U(x/t)dz — 0 as e — 0

by exploiting that p € K and the dominated convergence theorem, together with the
boundedness of V. Focusing on (1) instead, we have

pt1
2

1
(IT) = <€aHUo('/t)H%%RN\((Q%op)/e) B 1>+ ;

since p € K C Q C Qgy,,, we have 0 € €2y, — p and moreover B, C (g, — p for some ball
B,; notice that B, /e covers the whole RY as & — 0. Therefore, by the polynomial estimate
we have

100/ L2 @3\ (@ang -p10) < Cl e 2@ (s, ey < C™ T,

and hence (I1) — 0 as € — 0, since a < N +4s. Therefore, by choosing a sufficiently small
€, we obtain
Jo(®:(t,p)) < Epmg + 50 < Epg + 0.
Finally, we show the additional condition.
o J(®(1+00,p) < Epy — 0
indeed, looking at (5.3.64) we see that, for small ¢,
Ja(q)s(l + Uo,p)) < g(l + UO)Emo + 3;

1—g(1to09)
2

since g(1 £ 0g) < 1, we can find a small § < E.,, (not depending on ¢) such that

Jo(P.(1£00,p) < g1 £00)Epmy +06 < Epg — 6 (5.3.65)

and thus the claim.

Definition of W,

Define a truncation
1—09 ift<1-—o0y,

T(t) == t ifte(1—o00,14 09),
l4+09 ift>1+o09g

for t € R, and
Ve (u) := (T(Prg(u)), €Y (u))
for every u € Xfé" ot0, By the definition of 7" and property (5.3.59), we have directly

U (u) € I xQ[0,11] CIxQ0,v] CIx Ky
Assume now u € XEE(;"O_(S. We have, by using Lemma 5.3.5 and Lemma 5.2.6,

Emo - 3 > JE(U) > Lmo (U) - Cminga > g(Pmo (u))Emo - Cminea

and hence
Emg 2 9(Prmy(1))Emy 4 0 — Criine® > (P (1)) Eyg
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where the last inequality holds for € small, not depending on u. Thus

9(Prng(u)) <1

and this must imply, by the properties of g, that P, (u) # 1, and in particular

T (P (u)) # 1.

This reaches the goal.

An homotopy to the identity

Introduce the notation of topological pair from the algebraic topology: we write, for B C A and
B c A,
f: (A B)— (4, B

whenever

feC(AA) and f(B)CB.
Observed that ®. and ¥, are continuous, we can rewrite the stated properties as

o, : (I x K, 0l x K) — (ng”o‘*‘S’ ngno_g)7

U, (ng”“é, ng%‘g) = (I x Kg, (1\ {1}) x Kq)

and
U, 0, : (IxK, aIxK) = (Ide, (I\ {1}) de),

where a straightforward computation shows
(W. 0 ®o)(t,p) = (t, T (Uo (45))),

thus actually ¥, o &, : (I x K, 0l x K) — (I x Kg, 01 x Kd). Clearly, we notice that the

inclusion map has the same property, that is set j(¢,p) := (¢t,p) we have
j (IxK, aIxK) . (Ide, aIde) c (Ide, (I\{1}) de).

We want to show that these maps are homotopic, information useful in the theory of relative
cup-length.

Proposition 5.3.12. For sufficiently small €, the maps V. o ®. and j are homotopic, that is
there exists a continuous map H : [0,1] x I x K — I x Ky such that

H(O,): (Ix K, 0 x K) = (I x Kg, 0I x Kq) € (I x Kg, (I\ {1}) x Kq)

for each 6 € [0, 1], with H(0,-,-) = Y. 0®. and H(1,-,-) = j.

Proof. Noticed that also ¥, o ®, fixes the first variable, it is sufficient to link the second variables
through a segment, that is

H(O,t,p) = (£, (1= 0)e7 (Up (Z22)) +6p),

with 6 € [0,1]. We must check that H is well defined, since K is not a convex set, generally.
Indeed we have, by (5.3.63)

(1 —-0)eY (Uo ('_?/8» +O0p=(1-0)p+o(1l)+0p=p+o(l).



200 5. Concentration phenomena: the effect of the fractional operator

Since p € K, for sufficiently small € we have that p 4+ o(1) € Ky, and thus the claim. |

Before coming up to multiplicity results, we highlight that existence of a single solution could
be obtained without any use of algebraic tools. Notice that we need only the map ®. and the
first component of V..

Proof (existence). Let p € K. First observe that we can slightly change the map ®. such that

Eimg—6

(1 +o00,p) € X5 (5.3.66)
indeed (see (5.3.64) and (5.3.65)), it is sufficient to take a smaller ¢ > 0 and § < § <
MEW) < Ey,,, where we point out that oy depends only on Uy and p; (and thus not on
J).

Let ¢ = E,,,; by contradiction, assume K. # 0. Thus, by the Lemma 5.3.11, there exists a
deformation 7 related to the regular value c. By Lemma 5.3.5 we have, for each o € I,

Lmo (77(17 (I)E(pr))) < Ja(n(la ®8(0-7 p))) + Cminga < Emo -9 + Cminga

. . . Epmg+o
where in the last inequality we have used that ®.(o,p) € A_ 00 X;j{‘g. Thus, for € small, we

have
Ly (n(1,®:(0,p))) < Em, for each o € I.

To conclude, we need to find a & € I such that

Pmo (77(17 (1)8(5-7}7))) =1

since this implies Ly, (n(1, ®-(6,p))) > Cpo,me = Em, and thus an absurd.
Indeed, by (5.3.66) we have

Pro(n(1,@.(1 £ 00,p))) = Py (P(1 £ 00,p)) =1+ 09

and the claim follows by the intermediate value theorem. |

5.4 Existence of multiple solutions

We finally come up to the existence of multiple solutions. Here the algebraic notions of relative
category and relative cup-length (built on the Alexander-Spanier cohomology with coefficients in
some field ) are of key importance. We refer to the Appendix A for definitions, comments and
properties of these algebraic tools.

Proof of Theorem 5.1.2. By construction of the neighborhood X 5 and Corollary 5.3.9 (recall
that po < 73 < 5 and that J.(u) < Epy + R(0,u) < Ep + 0 < I}y for u € X, 5), we have

{ue ot i) = o) © {ue I*®Y)| 1) = 0}

Thus we obtain

Enmg+9
Ermg—9

#{u solutions of (5.3.21)} > #{u € (X.5) JL(u) = O}

o) ; 5y () ; _5
> cat(A507 A50T0) S enpl (2507, A5 1

(i4i)
> cupl(K)+1

that is the claim, up to the proof of (i)—(iii). Indeed, (i) is obtained classically from the
Deformation Lemma 5.3.11 as in Section A.5. Inequality (ii) is given by the algebraic-topological
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Lemma A.10. Point (iii) is instead due to the existence of the homotopy gained in Proposition
5.3.12 and properties of the cup-length: indeed, by (A.3) in Lemma A.4 (a), we have

Em +(§ Enz _S
Cupl(X&(; O A ) > cupl(¥, o ®,);

moreover, since ¥, o ®. is homotopic to the immersion j thanks to Proposition 5.3.12, we have
by Lemma A.4 (b)
cupl(¥. o ®.) = cupl(j),

which leads to the conclusion thanks to Lemma A.5. See Remark 5.4.1 for the proof of regularity.

5.4.1 Concentration in the potential well

We prove now the polynomial decay and the concentration of the found solutions in K. To deal
with uniform bound, we will make use of the fractional De Giorgi class recalled in Section 1.2.5.

Proof of Theorem 5.1.4. For ¢ sufficiently small, let u. be one of the cupl(K) + 1 critical
points of J; built in Theorem 5.1.4, which by Corollary 5.3.9 is also a solution of (5.3.21), positive
by (f2). In particular, since it satisfies the assumptions of Lemma 5.3.6, looking at the proof (see
(5.3.54) and (5.3.53)) we obtain that

[ue = U(- = pe)ll s @ny — 0

with U € SV(po)a Pe € RN and
epe — po € Q[0,11).

Step 1. Notice that we have found these solutions by fixing vy, lp and [j,. Let them move,
throughout three sequences v \, 0, If \( Em,, and (15)" ¢ Em,, and find the corresponding
(sufficiently small) &, > 0 such that cupl(K) + 1 solutions exist; let u.,, be one of those and p,,
as before. It is not reductive to assume ¢, — 0 as n — +00; by a diagonalization-like argument
we obtain

e, (- +pe,) = U in H*(RY), for some U least energy solution of (5.1.7), (5.4.67)

EnDe, — Do € K,

as n — +oo.

Step 2. From now on we write € = ¢, to avoid cumbersome notation. By I’(u.) = 0 we obtain
(=A)us + V(ex)u. = f(ue), =R, (5.4.68)
thus (recall that w. is positive), by choosing 5 < V in (5.1.10),
(=A)*us < Ve + f(ue) < (B —V)ue + Cgul < Cpulb, xRV,
Therefore by Theorem 1.2.28 we have, choosing ¢ = p+ 1, d; = 0 and dy = Cg,

1
u. € DG (Bg,(20),0, H,0,1~ %, 25, Ro),

S
with H = H(N,s,p, ) and Ry depending on N, s,p,Cs and a uniform upper bound of the
H?*-norms of u,.
We can thus use now [134, Proposition 6.1]: observing that d(zo, 0Br,(x0)) = Ry, and that

p=1- p;l, we obtain, for any w € (0,1] and R € (0, £2),

sup ue < ¢ ! !
Ba(o) (N — 28)% w2 (2R)N/2

el 2By (ze)) + wTail(ue; 2o, R)
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that is, rewriting the constant C' = C'(N, s, p, 5),

1 1
sup e < C—————||lu + wTail(us; xg, R).
pup vz < O el Bantany) +wTail{ues 0. F)
Step 3. We have
HUEHL"O(RN): Sup  Sup Ue

zo€RN BRr(o)

1 1 .
< sup <C1RN/QHUsHL%BgR(zo))+WT311(U5§$07R)>~

zoERN w?2n

Observe that, by definition of Tail function (1.2.28) and Hélder inequality,
Tail (ue; w0, R) < (1 — S)R%HUEHLQ(RN\BR@O))Hm”LQ(RN\BR(xo))

C
< WH%HL%RN)-

Thus

C _1
l[ue |l oo vy < fog‘;v (w 2 [ue | L2 (Byg(wo)) +w||us||L2(RN\BR(x0)))

c _L
< v (@7 +0) luell 2y

which is uniformly bounded by the properties on u.. Hence u. are uniformly bounded in L>(RY).
In addition, by the estimates on V', f and u., we have

9e() := =V (ex)uc(z) + f(us(x)) € L*(RY)
with bound uniform in €; since
(—A)%us = ge(x), @ €RY,
by [134, Theorem 8.2] there exists o € (0, 1), not depending on u., and C = C(N, s), such that,
for each R > 1 and zo € RY,

C . s
[uclcoe (Baao) < Tz (Htell 2 (Bae(aoyy + Tail(te; 20, 4R) + B2|ge | o (B (a)))
<c (5.4.69)

We highlight that, since the constant is uniform in R > 1, we obtain u. € C%(R").

QhO/E)ZRo) — O, but thlS
lack of uniformity on the domain can be improved. Thus we exploit the tightness of . to reach
the claim, where

Step 4. By the local uniform estimate on u. we could gain ||u8||Loo(RN\(

Ue = U+ + Pe)-
Indeed, by Step 2, and (5.4.67) we have
(=A)a. + V(ex + epe)ie = f(a:), x€RY,
[te]loo < C,
. — U in H*(RY)ase =0, U least energy solution of (5.1.7).

In particular, it is standard to show that f(@.) — f(U) in L2(RY), || f(@:)]|ee < C and
U, f(U) € L>(RY). By interpolation we thus obtain

Xe :=Ue + f(te) > x:=U+ f(U) in Lq/(]RN)
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for every ¢’ € [2,+00), and || x|lcoc < C. Proceeding as in the proof of Lemma 4.6.3 we gain
Ue(z) = 0 as |z| = +oo, uniformly in e. (5.4.70)
For the reader’s convenience, we give some details. Indeed, being . solution of
(=AU + 0. = xe — V(ex + epe)te, x € RY,
we have the representation formula
Ue = Kos * (xe — V(ex + epe)iic)

where Kog is the Bessel kernel. Let us fix n > 0; since V, @, and Ka4 are positive, we have, for
z e RN,

e () = /RN Kas(z —y) (xe(y) — V(ex + epe)ii=(y))dy
< / Kas(z — y)xe(y)dy + / Kas(x — y)xe(v)dy.
le—y|=1/n le—y|<1/n
As regards the first piece
[ KWyl [ oy < O
P——— ja—yl=1/n |2 — YN

while for the second piece, fixed a whatever ¢ € (1, min{2, ﬁ}) and its conjugate exponent
¢ € (max{2, %}, +00), we have by Holder inequality

/|x—y<1/77 Kas(x — y)xe(y)dy < HK2S”qHXe:HLq/(BI/n(x))

< 1Kasllg (Ixe = Xl + X155, )

where the first norm can be made small for ¢ < gy = g¢(n), while the second for |z| > 0
(uniformly in €). On the other hand, for € > ¢¢ (and thus for a finite number of elements, since

we recall we are working with € = &, small) the quantity ||xc||,s By (a)) €A1 be made small for
n

|z| > 0, uniformly in €. Joining the pieces, we have (5.4.70).

Step 5. Let now 3. € RY be a maximum point for u., which exists by the boundedness of u.
and its continuity (see (5.4.69)). Therefore z. := y. — p. is a maximum point for .. In particular

Ue(ze) = max . = |lielloo ~ 0 ase—0
R

since on the contrary we would have %, — 0 almost everywhere, which is in contradiction with
the fact that @ — U # 0 almost everywhere (up to a subsequence). As a consequence, thanks to
(5.4.70), we have that z. is bounded (up to a subsequence). That is, again up to a subsequence,

Ze = D
for some 7 € RY. In particular
EYe = €2 +EP: = po € K

and, by the fact that
U(-+2z)—=U(+p) =U in HRY)
we have u.(- +y.) — U in H*(RY), U least energy solution of (5.1.7). We set

Ug = UE(' + ys))
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. — U in H5(RY), U least energy solution of (5.1.7);

in addition, . is positive by (f2), and in the same way we obtained (5.4.70) we obtain also

Ue(z) = 0 as |z| » +oo, uniformly in e. (5.4.71)

Moreover, by exploiting the uniform estimates in L>(R") and Cl()o’g(RN ) we obtain by Ascoli-
Arzella theorem also that . — U > 0 in L;’OOC(RN ), with U continuous; this easily implies, for
every r > 0, that

1 —
minu, > 3 minU > 0 (5.4.72)

T T

for € small, depending on U and r.

Step 6. By (5.4.71) we have, for R large (uniform in ¢), that
u:(z) <n', for|z| >R

for every € > 0, where ' > 0 is preliminary fixed. As a consequence, by (f1.2), we gain
1—_ _ 1., /
—§Vu5(x) < fue(z)) < §Zu5(:p), for |z| > R,

where V := ||V ||o. We obtain by (5.4.68)
(—A)*Te + §VT. < f(u.) — 4Vu. <0, zeRYV\Bp,

(=A)°Te + 3V > f(u@) + 3V >0, = €RY\ Bp.

Notice that we always intend differential inequalities in the weak sense. In addition, by Lemma
1.2.30 we have that there exist two positive functions W', W' and three positive constants R,
C’ and C" depending only on V, such that

3
(_A)Swl"i’ivwl :0, WS RN\BR//,
/

|z[N+2s <W'(z), for |z| >2R",

and .
(AW + §KW’ =0, zeRY\ Bp,

C//

5/
w (l’) < W, fOI‘ |x’ > 2R//,

Set R := max{R’,2R"}. Let C; and C be some uniform lower and upper bounds for %. on Bp,

Cy :=ming, W' and Cy = maxpgp, W', all strictly positive. Define
W:=CCy W, W:=CCy'W

so that
W<u.<W, for|z|]<R.

Through a Comparison Principle (see Lemma 1.2.34), and redefining C’ and C”, we obtain

C/ _ C//
W < w(iﬁ) < ﬂg(ﬂf) < W(.%') < W, for ‘.CU| > R.
By the uniform boundedness of @, and (5.4.72) we also obtain
C/ C//
< (x) < for z € RV,

1+ ’x‘N—l-Qs 1+ ‘x’N+2s’
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Recalling the definition of @., we have finally obtained a sequence of solutions such that

Uen (Yen) = MAX U,

d(enye,, K) — 0,
C/ C//

< < , forx € RV,
1+ ’$_y5n’N+28 = uEn('r) =14 ’x_ygn’N—l-QS orx

[, (- + ¥e,) = Ullgs@ny = 0, for some U least energy solution of (5.1.7),

where the limits are given by n — +oco. Furthermore, by the uniform estimates in L>°(R"V) and
the local uniform estimates in C’loo’g (RN of we,, together with the locally-compact version of
Ascoli-Arzeld theorem, we have that the last convergence is indeed uniform on compacts. Thus,
recalled that v, = u,, (-/ey) are solutions of the original problem (5.1.3), defined ., = e,ye,,
we obtain, as n — 400,

Uan (aj&n) = I%?VX Uén )

d(z.,,K) =0,

! 1!
¢ <, (z) < ¢

for x € RN
— 1+|I*2?5n’N+257 € 9
En

1+ |9U*Efisn |N+23

lve, (€ - +xe,) — Ullx =0, X =H*RY)and X = L (RY),

loc
for some U least energy solution of (5.1.7). This concludes the proof. |

Remark 5.4.1. We observe that Steps 2 and 3 apply to a whatever family of equations (us)e>0,
that is why the reqularity statement in Theorem 5.1.2 holds true. Moreover, the uniform concen-
tration in K and the uniform polynomial decay are obtained by a contradiction argument.

Proof of Lemma 5.2.4: polynomial decay of S

By adapting some argument of the proof of Theorem 5.1.4 we can now complete the proof of
Lemma 5.2.4.

Proposition 5.4.2 (Polynomial decay). Assume (f1)—(f3). Let a > 0 and let U be a weak
solution of
(=AU 4+ aU = f(U), zeRY.

Then there exist positive constants Cl,, Cl such that

! i
Co <U(x) < G . forzeRN.
1+ ‘x|N+28 1+ ‘x|N+25

These constants can be chosen uniform for U € S,

Proof. The proof is similar to the one carried out in Theorem 5.1.4.

Indeed, as in Step 2 and Step 3, we obtain the uniform boundedness in L>(RY). We point
out that the values Cs, H, C and Ry depend on a € [mg, mo+ 1y], since they depend on § and we
must have § < a; on the other hand, it is sufficient to take & < mg to gain uniformity. The same
can be said on the uniform boundedness in C%?(R") and for the constants R”, C’, C" related to
the comparison functions E/,W/, thanks to Lemma 1.2.30. As we will show, this allows us to
gain that

lim U(z)=0 uniformly for U € 5, (5.4.73)
|z| =400

which leads, as in Step 6 of the proof, to

FU@)I < galla), for la] > B



206 5. Concentration phenomena: the effect of the fractional operator

where R’ does not depend on a € [mg, mg + 1]. In addition, compactness of S and a simple
contradiction argument lead to ming, U > C > 0 uniformly for U € S. If we prove (5.4.73), we
conclude as in Step 6.

Let us prove (5.4.73). By contradiction, there exist (zj)r C RN, |z — +00, (Uy)r C S and
6 > 0 such that Ug(x) > 6 > 0. Define

Vk = Uk( + {L‘k)

Since both are bounded sequences in H*(RY), we have Uy — U and V}, — V in H*(RY);
moreover, by the uniform L>°(RY) and C’l(:)’g(RN ) estimates and Ascoli-Arzela theorem, we have
also that the convergences are pointwise. In particular by

Ui(0) > Up(x) >0, Vi(0) = Up(xy) >0
we obtain
U )>60>0, V(0)>6>0.

As a consequence, U and V are not trivial. Let now (ax)r C R be such that Uy € Sg,; up to a
subsequence we have ay — a € [mg, mg +1vo]. Observed that also Vj are solutions of L, (V}) =0,
we obtain, as in Step 3 of Lemma 5.2.4 (see also Step 7 of the proof of Lemma 5.3.6), that U
and V are (nontrivial) solutions of L/ (U) = 0. Hence

Epny < Ba < Lo(U), By < Eq < Lo(V).
By the Pohozaev identity (applied to Uy) we have the following chain of inequalities, once fixed
R > 0 and k> 0 such that |zi| > 2R,

S
> 1 . _ 5 . _ 3/2 2
lo = léﬂli?of Ly (Ur) N légli?f RN (=) Uk de

> 5 Jim inf (/ (—A)s/2Uk|2dﬂc+/ |(—A)S/2Vk|2dy>
N k——+o0 Bgr Br

zs< / [(—A)2U Pdz + / |<A>S/2v2dy)
N BR BR

where in the last passage we have used that Uy — U in H*(RY), thus (—A)%/2U;, — (=A)*/2U
in L?(R™), hence (by restriction) in L?(Bg), and the weak lower semicontinuity of the norm.

Thus, by choosing R sufficiently large, we have, again by the Pohozaev identity (applied to U
and V', we use (3))

lo > ( / (—A)2U)dz + / r<—A>S/2V\2dy) —7
N ]RN ]RN
= La(U> + LG(V) -nz= 2Em0 -7

which leads to a contradiction if we choose n € (0,2E,,, — ly), possible thanks to (5.2.14). i

Remark 5.4.3. Actually, (£3) can be dropped, and we highlight here some modifications to the
previous proofs.

e Define Sy := {U € H}RN)\ {0} | L.(U) = 0, Lo(U) < lo, Py(U) = 1}.

We comment the proof of the compactness (Lemma 5.2./). The nonemptiness si given by the
existence of a ground state with Lo(U) = E, < ly, which is automatically radially symmetric.
The boundedness ofg is given by the extra condition on the Pohozaev; compactness is now
enduced by the radial symmetry (and the fact that [pn g(un)un — [pn g(u)u, see Proposition
1.5.5), and the strong convergence implies that the Pohozaev identity is preserved.
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Finally, the proof of uniform asymptotic decay (Proposition 5.4.2) is modified in the
following way: after having shown that, for Uy € S and |zy| — 400, Vi, = Up(- + x3)
satisfies Vi, =V #£ 0 (in H*(RY), thus in LP(RN), p € (2,2%)), while Uy — U in H(RY),
by the compactness we have Uy, — U in LP(RN), p € (2,2%). Thus, for every ¢ € 54 (RM)
we have (- — x) = 0 € L (RN) and hence

Vip = / Urp(- —z) = 0
RN RN
i.e. Vi =0 in LP(RYN), thus V = 0, impossible.

o Lemma 5.2.6, Lemma 5.2.3 (and whenever the Pohozaev identity is used for §), can be
proved thanks to the extra condition in Sg.

Her we kept the original definition of Sq (i.e. U € H*(RYN) such that maxU = U(0)), since this
approach can be adapted also to frameworks where radial symmetry is not a feature of the limiting
problem.

5.5 The critical case

Goal of this Section is to study equation (5.1.3), that is
e¥(=A)v+V(z)v = f(v), ze€RY,

where now f is assumed critical and satisfying general Berestycki-Lions type conditions. When
€ > 0 is small, we obtain again existence and multiplicity of semiclassical solutions, relating the
number of solutions to the cup-length of the set of local minima of V; these solutions are proved
to concentrate in the potential well, exhibiting a polynomial decay. In particular, we improve
the result in [221]. Finally, we prove the previous results also in the limiting local setting s = 1
and N > 3, with an exponential decay of the solutions.

Here, thus, we assume (V1)-(V2) where we recall
my = igf |4
with
K={zxeQ|V(z)=mp}, (5.5.74)
and (f1)-(f3), where now (f1.3) is substituted with a critical (not pure) growth, i.e.
(f1’) Berestycki-Lions type assumptions with respect to mg > 0, that is
(fl.1) f e C(R,R);

(f1.2) lim o 22 = 0;

(f1.3") limt_>+oot2f:(—?1 = a > 0, where 2} = NQiVQS, and moreover for some C > 0 and
max{2; — 2,2} < p < 2%, i.e. satisfying
4 2N
( 5 ) N € (2s,4s),
N —2s" N —2s
pe on (5.5.75)
(2, m) N Z 48,

it results that
f(t) > at>* P 4+ CtP7t for t > 0;

(f1.4) F(to) > $mot} for some to > 0.
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See also Remark 5.5.2 for some weakening and comments on the assumptions (V1), (f1.3") and
(f3). Notice that the stronger condition on p in the first line of (5.5.75) is verified, whenever N > 2,
only if N =2 and s € (3,1], or N =3 and s € (2,1]. We point out that the condition C > 0 in
(f1.3’) is of key importance: indeed, for pure critical nonlinearities of the type f(t) = [t|*~2t,
the limiting problem (5.1.5), that is

(=A)u 4+ mou = |u>*2u, zcRN

does not admit any variational solution [138].

The existence of a solution in a critical, fractional setting, in the case of local minima
(V1)-(V2) and general Berestycki-Lions assumptions (f1’)-(f2)-(£3), has been faced in [238] by
assuming V € C*(RY), and moreover in [220] by means of penalization methods.

Inspired by [326], multiplicity of solutions of (5.1.3) in the case of global minima of V' was
studied in [341] for power-type nonlinearities. Moreover, in [263] the authors consider functions
of the type

f(t) = g(t) +|t|* 2, (5.5.76)

where ¢ is subcritical and satisfies a monotonicity condition which allows to implement the
Nehari manifold tool, and they relate the number of solutions to the Lusternik-Schnirelmann
category of the set of global minima.

Existence of multiple solutions for local minima of V' has been investigated, in the spirit
of [148], by [221] with sources of the type (5.5.76), where now g satisfies also an Ambrosetti-
Rabinowitz condition: this assumption enables to employ Mountain Pass and Palais-Smale
arguments, combined with a penalization scheme. Again, the authors are able to find cat(K)
solutions, where K is the set of local minima of V' and cat(K) denotes its Lusternik-Schnirelmann
category.

In the present Section we prove a multiplicity result for equation (5.1.3) under almost optimal
assumptions of f, showing the concentration of the solutions around local minima of V.

In particular, we prove the following result.

Theorem 5.5.1. Assume s € (0,1), N > 2 and that (V1)-(V2), (f1")-(f2)-(f3) hold. Let K be
defined by (5.5.74). Then, for small ¢ > 0 equation (5.1.3) has at least cupl(K) + 1 positive
solutions, which belong to C%°(RN) N L®(RYN) for some o € (0,1). Moreover, each of these
sequences v, concentrates in K as e — 0: namely, there exist z. € RN global mazimum points of
Ve, such that

lim d(z., K) =0

e—0

and
Cl C//

—_— < v, (I) < 107 S RN
—Ze [N = 13 = —T [N

where C',C" > 0 are uniform in € > 0. Finally, for every sequence €, — 0" there exist a ground
state solution U of (5.5.77) and a point xo € K such that, up to a subsequence,

Ze, =+ o € K
and
Ve, (En - +xe,) > U asn — +o0

in H*(RN) and locally on compact sets.

We highlight that Theorem 5.5.1 extends the existence results in [220,263] to a multiplicity
result, and it improves the multiplicity theorem in [221], since we do not assume monotonicity
nor Ambrosetti-Rabinowitz conditions on the nonlinearity. Moreover, no nondegeneracy and
global conditions on V' are considered.
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Remark 5.5.2. As observed in Remark 5.1.3, assumption (V1) in Theorem 5.5.1 can be relaxed
without assuming the boundedness of V' (see also [78,81]). Moreover, the condition

p > max{2; — 2,2}

in (f1.37) can be relaxed in p > 2 by paying the cost of considering a sufficiently large C > 0;
see for instance [220, 340]. Finally, we remark that (f3), instead of the mere continuity of f, is
needed only to get a Pohozaev identity by means of the regularity of solutions (see Proposition
2.2.2). See also Remark 5.5.8 for further comments.

The idea of the present Section is the following: first, we gain compactness and uniform
L*>°-bounds on the set of ground states of the critical limiting problem (5.1.5); to this aim we
employ a Moser’s iteration argument adapted to the fractional framework, without the use of the
s-harmonic extension, and appropriate for weak solutions (see Proposition 1.2.24). The criticality
of the problem, as well as the absence of a chain rule, make the argument more delicate. The
gained uniformity allows then the introduction of a suitable truncation on the nonlinearity f;
the new truncated function reveals thus to be subcritical.

Therefore, we can apply to the truncated problem the approach of the previous Sections:
we employ a penalization argument on a neighborhood of expected solutions, perturbation of
the ground states of a limiting problem, and this neighborhood results to be invariant under
the action of a deformation flow. Compactness is restored also by the use of the new fractional
center of mass, which engages the new strong seminorm; the topological machinery between two
level sets of the associated indefinite energy functional is then built also through the use of the
Pohozaev functional. The number of solutions is thus related to the cup-length of K and these
solutions are proved to exhibit a polynomial decay and to converge to a ground state of the
limiting equation. This last convergence allows finally to prove that these solutions solve the
original critical problem (5.1.3).

We point out that the techniques employed in the previous Sections cannot be applied directly
to the critical framework: indeed, the embedding of H*(R") in L? (RY) is not compact, even if
we reduce to radially symmetric functions or to bounded domains; in particular, the criticality
obstructs the convergence of truncated Palais-Smale sequences related to the penalized functional,
which is a key point in the proof. Moreover, the regularity results given by [134], exploited in
the concentration and in the decay of the solutions, do not apply; in particular, L°°-bounds
and compactness of the set of ground states of the limiting problem have to be specifically
investigated.

We highlight that the conclusions of Theorem 5.5.1 hold also for s =1 and N > 3, as we
state in Theorem 5.5.9. Regarding this local framework, Theorem 5.5.9 is the critical counterpart
of the result in [119]: again, we point out that the arguments exploited in the subcritical setting
of [119] cannot be directly implemented in our framework, because of the lack of compactness.
In the critical case, previous results were given by [11,21,393]: in particular we extend here the
existence result in [390] to a multiplicity result, and we improve the multiplicity theorem in [369]
in the sense that we do not need to work with global minima of V' nor we need monotonicity on
f- In this setting, the solutions decay exponentially and enjoy more regularity. Notice that in
such a case (f3) is no more needed.

This last part of the Chapter is organized as follows. In Section 5.5.1 we obtain compactness
of the set of ground states and a crucial L*°-bound on the critical limiting problem. In Section
5.5.2 we use this uniform estimate to introduce a truncation which brings the problem back to
the subcritical case, and we prove Theorem 5.5.1. Finally, in Section 5.5.3 we deal with the local
case.
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5.5.1 Uniform L*-bound

Let us recall some crucial results on the limiting critical problem (5.1.5), that is
(=AU +moU = f(U), zcRYN. (5.5.77)

We recall the energy £ : H*(RV) — R

1 s m
LU) = 2/sz I(=A) /2U2d$+20/

U? dx—/ F(U)dz, U e H*RY),
RN RN

the related least energy
E,, :=inf {L(U)|U € H*®RY)\ {0}, £'(U) =0},

and the Mountain Pass level

Chp = inf sup L((t))
Y€l ¢ef0,1]

with
[ = {y e O([0,1], H(®)) [ 1(0) = 0, L(y(1)) < 0}.

We introduce also the following minimization problem
Conin == f {T(U) | U € H*RY), V(U) =1} (5.5.78)

where

TU) = /RN (=AY 2UPde, V(U):= /RN (F(U)—n;()U2> dz.

Notice that £ = %’T — V. The following collection of results states the equivalence of the previous
problems and the existence of a solution.

Proposition 5.5.3. Assume (f1)-(f2)-(f3). Then there exists a ground state solution for the
problem (5.5.77), that is a function U which solves the equation and such that

Moreover, every ground state is also a Mountain Pass solution and (up to scaling) also a solution
for the minimization problem (5.5.78), and viceversa; in addition the following relations hold

Em = Cmpa
_N

and every ground state is positive. Finally, recalled that S is the best Sobolev constant for the
embedding (1.2.7), we have that the following upper bound holds

2%\ 2%
Corin < (a) s (5.5.80)

where a > 0 appears in assumption (f1.3).

Proof. The positivity is a straightforward consequence of assumption (f2). Existence of a ground
state solution can be achieved through the use of (5.5.80) and minimization of C)y,;, as classically
made by [50] (see also [80, Lemma 1]). The equivalence with the Mountain Pass formulation is
instead discussed as in [237]. We refer to [238, Proposition 2.4 and Remark 1.3] for the precise
statement and to [391, Section 4.1 and Remark 1.2], [255, Section 2] for details.
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Moreover, as observed in Remark 5.5.2, to get the existence of a ground state, the restriction
on the range of p in assumption (f1.3’) can be substituted, by arguing as in [341, Lemma 3.3],
with the request that C is sufficiently large (see also [220, Proposition 2.8] and references therein).
We refer also to [22, Theorem 3.1.3, Theorem 3.1.5]. 1

Thanks to Proposition 5.5.3 we can define
S:={U e H*(RY)\ {0} | U ground state solution of (5.5.77), U(0) = maxgy U}.

We observe that, by the fractional version of the Pélya-Szeg6 inequality [311], every minimizer
of Cpin (i-e. every ground states of (5.5.77)) is actually radially symmetric decreasing up to a
translation (see also Remark 2.2.4 and [79, Proposition B.3]). Thus, the request in S for U to
have a maximum in zero is equivalent to the radial symmetry of U; that is

S ={U e H*RY)\ {0} | U radially symmetric ground state solution of (5.5.77)}. (5.5.81)

Proposition 5.5.4. Fvery U € S satisfies the Pohozaev identity, i.e.

mo

[(=A)*2U)? da — 23 F(U) - =2U?%) dz = 0. (5.5.82)
L oo (0= 2207)

Moreover, the set S is compact.

Proof. Once one observes that U € L®(R"), which follows from Proposition 1.2.24, the proof
of (5.5.82) is gained by means of regularity results and explicit computations on the s-harmonic
extension problem; the arguments can be easily adapted from [79, Proposition 1.1] to the critical
case.

Let us show the boundedness of S. For any U € S, the embedding (1.2.7) and the Pohozaev
identity (5.5.82) lead to

Ul < S 3(—0)20 )y = 53 N ey = s+ Vg,
s S S

moreover equation (5.5.77) and assumption (f1’) imply
=AY 201+ mollU1 = [ )0 de < 51U + sl

for 0 < mg and some Cs > 0. The combination of the two bounds leads to the claim.

Let thus focus on compactness; we use some ideas from [392]. Let U,, be a sequence in S ;
by (5.5.81) we assume (Uyn), C HF(RY), where HF(RY) << LI(RN) for ¢ € (2,2}). By the
boundedness of S we can assume U, — U in HZ(RY). Set

and
Vi :=Uyn(o-), V:=U(o)

we have, by exploiting the Pohozaev identity, that V,, are solutions of the minimization problem
(5.5.78), that is
T(Vi) = Crin, V(Vn) =1

Thus we have V,, — V in H$(RY), and hence V,, — V in LYRY), ¢ € (2,2%), and V;, — V

almost everywhere. By the lower semicontinuity of the norm we obtain

T(V) < Crin (5'5'83)
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hence, to conclude the proof, it is sufficient to show that V(V') = 1, since this implies also that
U=V(c") lies in S.
Set
Wp =V, -V

we have by the Brezis-Lieb Lemma (since (—A)%/?V;, — (—=A)*/2V in the Hilbert space L?*(RV))

)
TWy)=T(Vy) —T(V)+o0(1)

= Cpin —T(V) +0(1) (5.5.84)
Moreover, rewrite V(W,,) as
a a 2: Mo
v = [ (RO%) = fW2) dot Wl = W (5586)
. 2 2 2

Again by the Brezis-Lieb Lemma (since V,, — V in LI4(R"Y), ¢ = 2,2% and V;, — V almost

S
everywhere) we have

[Walld =[IValld = IVIIE +0(1), ¢=2,2¢. (5.5.87)
Set
ot) = £(t) ~ at* !

we have that g is subcritical at infinity by (f1.3"), and superlinear in zero by (f1.2); thus, set
G(t) := [ g(r)dr, by Proposition 1.5.5 we have

G(Wy)dzx = o(1), G(Vp)dx = G(V)dz +o(1). (5.5.88)
RN RN RN
Therefore by (5.5.86)—(5.5.88) we obtain

V(Wn) = V(Vn) - V(V) + 0(1)
—1-V(V) +o(1). (5.5.89)

Finally, through a simple scaling argument, we observe that
2

T(u) > Crin(V(u))%  for every V(u) > 0. (5.5.90)

We pass to prove that V(V) = 1 by contradiction.
Case V(V) > 1. In this case, by (5.5.90) we have

1™
rn*"‘:’

TV) > Crin(V(V))2% > Crin

which contradicts (5.5.83).
Case V(V) < 0. Then, by (5.5.89) we have that

1
VW,) >1- §V(V) >1 forn>>0.

Thus, by (5.5.90) we obtain

N
rr*"‘-"

which contradicts (5.5.85).

Case V(V) € (0,1). Again by (5.5.89) we have that

| = ~—

VIW,)>=-(1-V(V)) >0 forn>0.



5.5. The critical case 213

Thus by (5.5.84), (5.5.90) and (5.5.89) we gain

which is an absurd.
Case V(V) = 0. By (5.5.89) we have

V(Wy) =1+ o(1), (5.5.91)

2

and thus by (5.5.90) T(W,,) > Cpin(1 + 0(1))2 . This, combined with (5.5.85), gives
T(Why) = Crin + o(1). (5.5.92)
Combining (5.5.91), (5.5.86) and (5.5.88) we obtain
L 0(1) = V(W) = o IWalsf — 52 1Wal
that is
Il = % 4 27

> % +o(1). (5.5.93)

IWall3 + o(1)

By (5.5.92), the Sobolev embedding (1.2.7) and (5.5.93) we gain

2
2% 27
Conin + 0(1) = T(W,) = | (=)W = SIWalB, = S (2 +0(1))
Letting n — 400 we finally have
27\ %
a
which is in contradiction with (5.5.80). This concludes the proof. i

As a key property to employ the truncation argument, and to detect a handy neighborhood
of approximating solutions, we have the following result.

Proposition 5.5.5. The following bound holds

sup [|U]|oc < 0.
vesS

Proof. Assume by contradiction that there exists (Up), C S such that ||Up|lec — +00 as
n — +o00. By the compactness of S in Proposition 5.5.4 we may assume that U, is positive and
convergent in H*(RN); in particular U,, converges in L% (RY) and is equibounded a. e. pointwise
by a function in L% (R™). If we prove that

sup || Un||oo < +00
n

we get a contradiction and conclude the proof. In order to do this, we argue as in the proof of
Proposition 1.2.24, uniformly in n for U, = U,’; the idea is a Moser’s iteration argument in a
critical, fractional framework, appropriate for weak solutions. We refer to [197] for details. |
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5.5.2 The truncated problem

In virtue of Proposition 5.5.5, let

M := sup ||U||eo + 1.
ves

We preliminary observe that we can find a to € [0, M] such that

1
F(to) > 5motg. (5.5.94)

Indeed fixed a whatever U € S, by the Pohozaev identity (5.5.82) we have (notice that (—A)%/2U
cannot identically vanish)

1
/ (F(U) - m0U2> de = —||(~=A)2U|2 > 0
RN 2 2%
and thus there exists an 2o € RY such that

F(U(z0)) > %U(xo)%

setting to := U(xo) € [0, M] we have the claim.
We thus set

k:= sup f(t) € (0,+00),
te[0,M]

where we observe that the strict positivity is due to the fact that F'(¢g) > 0. Moreover we define
the truncated nonlinearity fr : R — R

fe(®) :=min{f(t),k}, teR.
We have the following properties on fr : R — R:
o fr(t) < f(t) for each t € R,
o fr(t) = f(t) whenever |t| < M,
o fu(U) = f(U) for every U € S.

Notice that the same relations hold also for F' and

Fy(t) := /Ot fr(m)dr.

We have that fj is subcritical, i.e. fi satisfies assumptions (f1)—(f3); here p € (1,2 — 1) is
however fixed and ¢y € [0, M] is the one appearing in (5.5.94); notice that ¢y does not depend on
k.

Consider now the truncated problem

e¥(=A)v+V(z)v = fr(v), zeRY (5.5.95)
and the corresponding limiting truncated problem
(=AU +moU = fp(U), zeRY. (5.5.96)

Notice again that, since f; satisfies (f2), all the ground states of (5.5.96) are positive. Thus
define

S == {U € H*(RM)\ {0} | U ground state solution of (5.5.96), U(0) = maxgn U}.

We have that the following key relation holds.
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Proposition 5.5.6. It results that S = gk Moreover, the least energy levels coincide.

Proof. Let us denote by Ly, 'y, Vi, Efn = C,’flp, Cﬁlm the quantities of the truncation problem
analogous to the ones introduced in Section 5.5.1 for the critical problem.

First observe that, by L > £, we have 'y, C I' and

CFp > Conp; (5.5.97)
moreover for any V € S we have also L5 (V) =0, and hence

min £,(V) > min L(V)= EF. 5.5.98
mip k( )_%(V):0 k(V) = Ey, ( )

Let now U € S. We have by (5.5.97) and (5.5.98)

Ck, > Cpp=LU) =Ep =min £(V) = min L(V) > Ef,.
Ves vVes

Therefore
Ly(U) = LU) = Cy, = B},

which, together with £} (U) = L'(U) = 0, gives that U € S,. Hence S C Sj. As a further
consequence we gain
EF = E,,. (5.5.99)

We show now that S, C 5. By (5.5.99), (5.5.79) and the analogous relation on the subcritical
problem, we have
Ck

min

= Cmina

thus, by rescaling, it is sufficient to prove that every minimizer of Cﬁqm is also a minimizer of C;p,-
Let thus U be a minimizer for C*

s 1. T(U) = C* . and Vi (U) = 1. Since T(U) = Chpin, it

min

suffices to prove that V(U) = 1. By definition, we have
VU) >2Ve(U)=1.
On the other hand, set 0 := (V(U))% we obtain, by scaling, that V(U (6-)) = 1 and thus
T(U) = Crin < TUB) =675 T(U)
from which we achieve
V(U)<1.
This concludes the proof. |

We are now ready to prove Theorem 5.5.1.

Proof of Theorem 5.5.1.

Step 1. We first look at the truncated problem (5.5.95). Indeed, by Theorems 5.1.2 and 5.1.4
we obtain the existence of cupl(K') + 1 sequences of solutions of (5.5.95) satisfying the properties
of Theorem 5.5.1 for € > 0 small. For each of these sequences v, of solutions of (5.5.95), called
z. € RN a global maximum point of v., we obtain

lim d(z., K) =0

e—0

and
Cl C//

— <y () < ———— forz€RV
1+‘%|N+28 1+’%|N+28

where C',C"” > 0 are uniform in € > 0.
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Moreover, for every sequence &, — 07 there exist U € §1€ and an xo € RY such that, up to
subsequences,
Ve, (en - +2e,) > U(- +x0), asn— +oo (5.5.100)

in H*(R") and locally on compact sets.

Step 2. Notice that by Proposition 5.5.6 we have U € S, thus U(- 4 zp) is a ground state of
(5.5.77). We prove now that v are solutions of the original equation, which is given by

|velloo < M definitely for e small. (5.5.101)

Assume by contradiction that (5.5.101) does not hold: thus there exists a sequence &,, — 0 such
that
|ve,lloc > M for each n € N.

By the previous Step, there exists an U € Si and an zy € RY such that, up to subsequence,
(5.5.100) holds. In particular, by the pointwise convergence we obtain

[Ven lloo = v(2e,,) = Uwo) < |U]Joo < M

which implies
[ve, lloo < M

definitely for n > 0, which is an absurd. Thus (5.5.101) holds. As a consequence

fk(va) = f(va)
and hence v, are solutions of the original problem (5.1.3), satisfying the desired properties. |

Remark 5.5.7. We point out that the found solutions are perturbations of ground states of the
truncated limiting problem (5.5.96) which are, on the other hand, coinciding with the ground
states of the critical limiting problem (5.5.77) thanks to Proposition 5.5.6. One may think to
search directly the solutions as perturbation of functions in the compact set 3, but actually
the direct approach in a critical setting reveals several problems, such as the convergence of
the Palais-Smale sequences. A different and direct approach is given in [21] by means of
Concentration-Compactness techniques, but in the assumptions that f satisfies monotonicity and
Ambrosetti-Rabinowitz conditions.

Remark 5.5.8. We see that actually the ideas of this Section adapts to study the case of f
negatively critical a < 0, or subcritical a = 0 (but not in the strict sense of (f1.3) treated in the
previous Sections), that is

instead of (f1.3%), filling the gap between the papers [111] and [197]. This case covers functions

_ . 125 —2¢
of the type f(t) = [t|P72t — [t|% 72t and f(t) = l(‘)gl(t2+2)'

In order to achieve this result, we sketch the steps:

o We substitute the existence result Proposition 5.5.3 with the one by [95], observing that
f € C' is needed only to get the Pohozaev identity, thus our assumptions (f3) is enough
(see also Remark 2.2.5).

o The uniform L*>®-bound of Proposition 5.5.5 can be easily adapted.

o The uniform C%%-bound can be obtained as in the Step 3 of the proof of Theorem 5.1.4.



5.5. The critical case 217

o The compactness result Proposition 5.5.4 can be obtained as in the strict-subcritical case

Lemma 5.2.4. When a = 0, the proof follows verbatim, otherwise we adapt Step 4 in the
following way.
Let f = fT — f~. Ifa <0 it means that f+(t) =0 for t > 0; in particular f* is subcritical.
By knowing Uy — U in H*(RY), a, — a and L}, (Up)Up = 0 = L,(U)U we want to
show that ||(=A)*2UL|3 + ar||Ukl13 = [|[(=A)*/2U |3 + a||U||3. Observe that, by (5.2.15),
Proposition 1.5.5 and Fatou’s Lemma, for any n > 0 there exists R > 0 such that

fO)U| <n foreach k €N,

Br

S(Ur)Uy
Br

i

FHU)U, — ),
Br Br

lim inf f(Up)U > f-(O)U.
k—4o00 Br Br
Thus

im s (||(~ )72V [§ + x| UnIB) < timsup [ £
k k RN

< limsup f(Uk)Uk+limsup f+(Uk)Uk—hm1nf f (Ug) Uy,
k BS,

<ot [ rru- [ Un+/f -], 1w

< 2 [ JOW = 2+ [(-8)2U1 + U
Letting n — 0 we obtain

tim sup (1|(~A)*2Uell3 + ax|[Uxl13) < 1(~2)*U)3 +allU

which, together with the semicontinuity of the norm, gives the claim. |

The remaining part of the proof follows the lines of the critical case treated in this Section.

5.5.3 The local case

The arguments presented in Theorem 5.5.1 apply, with suitable modifications, also to local
nonlinear Schrédinger equations. We give here some details. Condition (f1’) rewrites in the local
case s =1 as

(f1’) Berestycki-Lions type assumptions with respect to mg > 0, that is

(f1.1) f e C(R,R);
(f1.2) limy () =0;

(f1.3") hmt%Jrooth*(—t)l = a > 0, where 2* = ]\2[—]_\72, and moreover for some C > 0 and
max{2* — 2,2} < p < 2% i.e. satisfying
(4,6) N =3,
pE 2N
(25 —3) > 4,

it results that
ft) > at>* L+ CtP~t for t > 0;
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(f1.4) F(to) > $motd for some to > 0.
See also Remark 5.5.2 for some weakening and comments on the assumption (f1.3").

Theorem 5.5.9. Suppose s =1, N > 3 and that (V1)-(V2), (f1’)-(f2) hold. Let K be defined by
(5.5.74). Then, for small e > 0 the equation

—?Av+V(z)o = f(v), xeRY

has at least cupl(K)+1 positive solutions, which belong to C17 (RN)NL>®(RYN) for some o € (0,1).
Moreover, each of these sequences v. concentrates in K as e — 0: namely, there exist x. € RN
global mazximum points of ve, such that

limd(z., K) =0

e—0

and
T — X

ve(x) < C'exp( -’

) forzeRY (5.5.102)

where C',C" > 0 are uniform in € > 0. Finally, for every sequence e, — 0% there exists a ground
state solution U of

—AU +moU = f(U), xe€RN

and a point xy € K such that, up to a subsequence, x., — xo and
Ve, (en - +xe,) > U asn — 400
in H3(RN) and locally on compact sets.

Proof. The arguments of the previous Sections apply mutatis mutandis. Indeed, we define in the
same way the set of ground states S , which turns to be nonempty [392] and compact. Moreover
to get the uniform LOO(RN ) bound, one can easily adapt the proof of Proposition 5.5.5 after
observing that by the chain rule it holds

|Vh(U)|? = VU -VhU), U e H\(RY),

where we recall that A’ = (h)2. Then the truncation machinery can be set in motion, and one
can prove Sp=S. Existence, multiplicity and decay of solutions of the truncated problem are
given by [119, Theorem 1.1 and Remark 1.3]; the regularity is instead a consequence of standard
elliptic estimates [354, Appendix BJ. |



APPENDIX

A Some algebraic topology: the relative cup-length

In order to estimate the number of critical points of certain functionals not bounded from below
and above, it is useful to implement the algebraic-topological tool of the relative cup-length,
together with the more used relative category. In this Appendix we briefly recall the basic notion
of algebraic topology needed to define this object; afterwards we will highlight how it relates to
the category and how they are exploited in order to gain multiple solutions of PDEs. Finally we
will briefly recall also the definition of the genus.

A.1 The singular cohomology

We start by defining the singular cohomology. Here we essentially follow the self-contained
description due to [94], but we refer also to [69,160,168,210,210,217,287, 288,350, 368|.

Fix X a topological space (in our case it will be a subset of some Hilbert space, such as
RN or H*(RY), see Section 5.4), and fix an abelian group G: actually the choice of G' does not,
heavily influence the main properties of cohomology, and usually G is chosen as a generic field F
[119], or some specific ones like the real field R [185,187] or the Zy field [358].

Let ¢ € N, and let A, be the g-simplex defined by

q q q
Aq::{z)‘jej|)‘j20aZ)‘jzl}:{()‘07)‘17-",)‘qa0a--')’)‘jzovZ)‘jzl}
j=0 Jj=0 j=0

where eg := (0,0,...), e; := (0,1,...) and so on, are vectors in R*. We define the set of singular
q-simplexes by
Y¢(X):={o:A; = X continuous}.

Starting from ¥,(X) and G we can build the free abelian group Cy(X,G) with bases ¥,(X),
that is
Cq(XaG) = { Z gi0i |gi €G, 0, € Z:q()()}
i, finite

where the linear combination has to be intended in the formal sense!. We call C,(X,G) the set

'For example, if G = R is a ring with unit 1, we define the free abelian group in this way [368, page 4]: start

lrifr=0
by identifying the elements o € o, with the functions f, : 4(X) = R, fo(7) := {OR o Then set
RIUIT o

Co(X,G) :={f:2¢(X) = Z| f(o) # 0 for a finite number of o € ¥4(X)}

219
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of singular q-chains; here an inner summation and an external product (through G) can be easily
defined.

We define now a boundary operator on Cy(X,G), introducing it first on ¥,(X) and then
extending it by linearity. Indeed, for any ¢ > 1 and ¢ € ¥,(X) and j = 0...q we define
o) e Yg-1 by

U(J)(azo,xl, sy Zg—1) = 0(x0, 21, ... Tj—1,0, 25, ... Tg—1)
where 0 is in the j-th position. Thus the boundary operator is defined as

q

Jdo := Z(—l)ja(j)

J=0

and hence
0:Cy(X,G) = Cyiu1(X,G).

If ¢ = 0, the boundary operator 9 : Cyp(X,G) — G is defined as 9(>_ gio;) := Y. g; (we are
formally setting C_1(X,G) := G). We have that 0 is a homomorphism. Set

Ci(X,G) =P Cy(X.G)

q>0

we have 0 : Ci (X, G) — Ci(X, G). It is a straightforward computation showing that
9> =0

which is of key importance in the theory of homologies and cohomologies. With these ingredients
it is possible to define a homology H,.(X,G); we are anyway interested in cohomologies, and
thus we need first to pass on homomorphisms and dualities. Thus we define the set of singular
q-cochains

C1(X,G) = Hom(Cy(X, G),G);

by using the bracket notation
[0,¢c] := c(o)

for every ¢ € C9(X,G) and o € Cy(X, G), the definition of C?(X, G) rewrites as
[01 + 02, ¢] = [01,¢] + [o2,¢] and  [g0,¢] = g[o, ]

for every c € C9(X,G), 0,01,02 € Cy(X,G) and g € G. We can hence define the dual operator
of 9, named the coboundary operator, by

[0, 0¢] := [0, c]
for every c € C7 1 X, G), 0 € Cy(X, G); thus
§:CTYX,G) - CYX,Q),
which is a homomorphism. Set

C*X,G) =P CUX,G)

q>0
we have 6 : C*(X,G) — C*(X,G), and we obtain

5% = 0.
and observe that ¥¢(X) = {fs }oex,(x) is a basis for Cy(X, G), that is, elements of Cy(X,G) are of the form

f: Z gifffi'

i, finite
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In particular the last property easily implies that Im(d) < Ker(d), thus we are allowed to define
the singular q-cohomology group

HL(X,G) = Ker(djco(x,c))/Im(dca-1(x,c))

the sets Ker(d) and Im() are said, respectively, the sets of the cocycles and of the coboundaries.

We highlight that H°(X,G) may be interpreted as the set of functions X — G constant on

path-components of X [217, pages 198-199] (see also [368, Proposition 3.11], [210, page 183],

[350, page 244], [287, Lemma 1.2]), while H%((), G) is the trivial cohomology [287, page 192].
Moreover we define the singular cohomology group on X with coefficients in G

HA(X,G) =P HL(X,G).
q=0

Assume from now on G = R to be a commutative ring with unit. On the cohomology
H} (X, R) (also called cohomology ring of X [160, Remark 8.17]) we can define a cup product:
instead of introducing it in terms of cross product, we give here a direct construction. We start by
defining it on C*(X, R), then by quotient we obtain it also on HX (X, R). Indeed, fixed p,q > 0,
we define

¢p : Ap — Ap-‘r(p /Bq : Aq — Ap-‘rq

the immersions in the first p components and in the last ¢ components respectively, i.e.
gf)p()\l,...,Ap,O,...) = ()\1,...,)\p,0,...,0,0,...),

Bq(Al,...,)\q,O,...):: (O,...,0,)\1,...,>\q,0,...),

so that, if o € Cpi (X, R), then 0¢, € C,(X, R) and 0, € Cy(X, R). Thus we define, through
the product in R, the cup product

[0,¢— d] := [0y, c][0fy, d]
for any ¢ € CP(X,R), d € C4(X,R) and o € Cpy4(X, R), which implies
—: CP(X,R) x C(X, R) — C"*9(X, R)

and more generally, —: C*(X, R) x C*(X, R) — C*(X, R). Notice that multiplying ¢ € C?(X, R)
with d € C°(X, R) means multiplying by constant elements of the form >_i finite 9i0i(€0), With
gi € G and 0; € ¥,(X). The cup product results bilinear, associative and unitary. Moreover, it
satisfies ¢ — d = (—1)P?d — ¢ (since R is commutative [217, Theorem 3.11]), which implies that
it is skew-commutative: even if not properly commutative, it nevertheless satisfies

c—d=0 <= d—c=0. (A1)

Moreover, it holds
d(c—d)=dc—d+ (-1 — dd,

for c € CP(X,R) and d € C?(X, R); in particular, this easily implies that Ker(d) is a subalgebra
of C*(X, R) and Im(J) is an ideal of Ker(d). Thus, — can be passed to the quotient and hence
defined on

—: Hi(X,R) x H\(X,R) — HL(X, R).

Starting from a whatever cohomology H*(X, R) = HX (X, R) (see Section A.2), we can define
the cup-length as the length of the longest nontrivial chain of cup products in H*(X, R) (up to
the constants in H(X, R)).
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Definition A.1. Let X be topological space and R be a commutative ring with unit. We define
the cup-length of X as

cupl(X, R) := max{l € N* | Jo; € H¥(X,R),q; > 1 fori=1...1,
s.t. ag — - —ag # 0}
if such | does not exists, but H(X, R) is not trivial, we set cupl(X, R) := 0, otherwise (if
HY(X,R) = {0}) we set cupl(X, R) := —1.

We notice that by (A.1), the order in the cup product is of no importance. In the case X is
not connected, a slightly different definition (which makes the cup-length additive) can be found
in [33].

For explicit computations of the cup-length we refer to [185, Example 3.4 and page 19] and
to [133]: for instance if B € RY is the closed unit ball, then cupl(9B) =1 for N > 2; if TV is
the N-dimensional torus, then cupl(7V) = N.

Singular relative cohomology and cup-length

We define now the cohomology and the cup-length relative to a topological pair (X,Y), that is
Y C X topological spaces. Observed that

Cy(Y,G) < Cy(X,G)
and that 0 conserves Cy(Y, G), we can define the singular q-relative chain module
CCI(X7 Y7 G) = Cq(Xa G)/CCI(Ya G)

Notice that Cy(X,0,G) = C4(X,G). Considered the canonical projection 7y : Cy(X,G) —
Cy(X,Y,G), we introduce )
0:Cy(X,Y,Q) = Cy—1(X,Y,G)

the well defined function such that the canonical diagram commutes
5o7rq =mg—100.
The other definitions follows in the same way as before:
C1UX,Y,G) = Hom(Cy(X,Y,G),G),
6:CTYXY,G) —» CUX,Y,G),
H(X,Y,G) := Ker(d)/Im(3),

and also C4(X,Y,G), C*(X,Y,G), HA(X,Y,G) and — (see also [217, page 209]). Notice that,
if X is path-connected and Y # ), then H°(X,Y, R) is trivial [210, page 183].

When G = R, we can define the relative cup-length as the length of the longest chain of cup
products in H*(X, R) multiplied with an element of H*(X,Y, R); see also [185,187,358].

Definition A.2. Let (X,Y) be a topological pair and R be a commutative ring with unit. We
define the cup-length of X, relative to Y as

cupl(X,Y,R) :=
max{l € N* | Ja; € H¥(X,R),q; > 1 fori=1...1,3a9 € H*(X,Y,R)
s.t. ag — ay — -+ — o # 0}.
if such | € N does not exists, but H*(X,Y, R) is not trivial, we set cupl(X,Y, R) := 0, otherwise
(if H*(X,Y,R) = {0}) we set cupl(X,Y, R) := —1.
Notice that
cupl(X, R) = cupl(X, 0, R);

this is the same as taking ag € H(X, R), since H*(X, 0, R) is essentially H*(X,G) (see also
[287, page 256] and [69, Proposition 12.3]). Again, for explicit examples we refer to [185, Example
3.4]: for instance, if B C RY is the closed unit ball, then cupl(B,dB) = 0.
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Cup-length relative to a function

Let us consider two topological pairs (X,Y) and (X’,Y”’) and a continuous map f : (X,Y) —
(X')Y"), that is f : X — X' with f(Y) C Y'. It is possible to prove? that f induces and
homomorphism of groups

fHNXL Y, G) — HY(X,Y,G)

which is suitable functorial, namely
(id)* =id, (gf)" = f"g", [f*=g" whenever f, g homotopic.
Moreover one can show that
dof* =00, [ —as)=f(a)— f*(a);

the second is said the naturality of the cup product (see [160, Section 7.8.6]). With this tool, when
G = R, we can define the cup-length relative to f, as the length of the longest chain of cup products
in f*(H*(X',R)) C H*(X, R) multiplied with an element of f*(H*(X', Y’ ,R)) C H*(X,Y, R);
see also [38].

Definition A.3. Let (X,Y), (X', Y') be two topological pairs, R be a commutative ring with
unit and f: (X,Y) — (X',Y') be continuous, with f* the induced homomorphism on the relative
cohomolgies. We define the cup-length relative to f as

cupl(f, R) :=
max{l € N* | Ja; € H%¥(X',R),q; > 1 fori=1...1, 3ap € H*(X",Y', R)
st [T (ao) — fH(on) — - = fF(au) # 0}
if such | € N does not exist, but f* # 0, it results cupl(f) := 0, otherwise (if f* =0) we define
cupl(f) := —1.

Notice that
cupl(X, Y, R) = cupl(id x y), R),

and in particular cupl(X, R) = cupl(id x gy, R?).

A.2 Other cohomologies

We highlight that other cohomologies could be used to define the cup-length: for instance, the
Alexander-Spanier cohomology [119] and the Cech cohomology [358]. We sketch here how they
are built, and then we point out how they are closely related to the singular cohomology.

2We show here the standard construction in the non-relative case [288, Section VIL3]. Consider the induced

function
fFoUx") - cUX)
such that
(fH)o) =c(foo) (ie [o,fF ()] =[fooc)
for every ¢ € C%(X') and ¢ € Cy(X). A straightforward computation shows that f# o ¢’ = § o f#, where
8 CYX') — CT(X'); this easily implies that f#(Ker(¢6')) C Ker(d) and f#(Im(¢")) C Im(8). This allows to
pass to the quotient and define
¥ Ker(8")/Im(6") — Ker(5)/Im(6).
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Alexander-Spanier cohomology. We refer to [286,287] (see also [350]). Let X be a topological
space and GG be a group. We define the abelian group of all the q-functions

PUX,G) = {p: X1 = G}
and its normal subgroup
P(X,G) :={p € /(X,G) | ¢ = 0 in a neighborhood of the diagonal}.
On ®7(X,G) we can define the coboundary operator § : ®4(X,G) — ®9T1(X, G) by

3 q+1

(0p)(xo ... xg41) = Z(—l)jgo(:z‘g, c Ty Zgg)
j=1

where £; means that the variable is omitted; we have 62 = 0. Moreover, we can define the
q-cochain B
CI(X, G) == BI(X, G)BY(X, C)

and then the Alezander-Spanier cochain C*(X,G), on which we can define ¢ through quotients.
Thanks to the property 62 = 0 we can pass to the quotient of Ker(§) over Im(§) and obtain the
Alexander-Spanier cohomology H*(X,G). Slightly different definitions, which focus on locally
finitely valued g-functions or which define ®f through supports, can be found in [286,287].

Once defined a relative Alexander-Spanier cohomology H*(X,Y,G), by exploiting [288, The-
orem 14.6.1 and Proposition 14.6.2] one can show that actually, for Y closed subset of X
paracompact Hausdorff space (for example a manifold, such as R" or a more general Hilbert
space, see Section 5.4) and G = R ring, it results that

H*(X,Y,R) ~ Hi(X,Y,R) (A.2)

that is, the Alexander-Spanier cohomology and the singular cohomology are isomorphic.

Cech cohomology. We refer to [67,377] (see also [160,168,217,350]). Let X be a topological
space and G be a group (notice that we focus only on the case of a constant presheaf with
identical restrictions). Let 4 be a open covering of X and define

o := (Uy,...Uy)

to be a g-simplex if U; € Y and |o| := NI, U; # 0; |o| C X is called support of . We thus define
>4 as the set of all the g-simplexes, and

CUL,G) == {p: %, —» G}

the set of all the g-cochains. On C?(8l, G) we can define the coboundary operator § : CU(8l, G) —
CIL U, Q) as

(00)(Uo ... Ugs1) == > (1) Uy, ... Uj, ... Ugy1)
j=1

satisfying 62 = 0. Thanks to this property we can define H* (4, G) by passing to the quotient the
kernel and the image of §. Finally, considering the coverings of X ordered by inclusion, we can
define the Cech cohomology as

H(X,G) = lim H* (4, G)

in the sense of the direct limits. Notice that, if X is an n-dimensional manifold and 4l is a good
cover, i.e. every finite intersection of its elements is diffeomorphic to RY (and there always exists
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such a good cover [67, Theorem 5.1]), then there is no need of passing to the direct limit, since it
results that
H*(X,G) =~ H*(Y4,G);

in particular, the right-hand side does not depend on the particular good cover 4.

By [67, Proposition 15.8] (see also [217, page 257]) we have that

~

H*(X,Z)~ HA(X,Z)
whenever X is a manifold. Moreover [350, Corollary 6.9.9]
H*(X,G)~ H*(X,G)

whenever X is a closed subset of a manifold (or more generally, X is a Hausdorff space with
coefficients in a module G [350, Corollary 6.8.8]).
Once defined also the relative Cech cohomology, one can prove [350, pages 342 and 359)

H*(X,Y,G) ~ H*(X,Y,Q)

whenever X,Y are closed subset of a manifold. Thus, by combining this result with (A.2),
whenever Y and X are closed subsets of a manifold (such as RY or a more general Hilbert space,
see Section 5.4) and G = R ring, we have

H*(X,Y,G) =~ HA(X,Y,G);

see also [160, Proposition 8.6.12] for a direct proof in the case of a pair of ENR (FEuclidean
Neighborhood Retracts, which is the case for example of Y € X € RY with X retractible).

See also [69] for further relations on these three cohomologies.

A.3 Properties of the cup-length

Here we focus on the case G := F for some field F, and we drop the dependence on G in the
notations. We collect some properties of the cup-length, see e.g. [38, Lemma 2.6].

Lemma A.4. We have the following properties.
(a) For any f:(A,B) — (A", B') and f': (A", B") — (A", B") it results that
cupl(f' o f) < min{eupl(f), cupl(f)}.

As a consequence,

cupl(f' o f) < cupl(4’, B). (A.3)
(b) For any f,g: (A, B) — (4', B") homotopic, we have

cupl(f) = cupl(g).

Finally, we cite the following key result [34] which can be found in [119, Lemma 5.5].
Lemma A.5. Consider the inclusion
J: (I XK, 0l x K)— (I x Kgq,0I x Ky)

for a whatever K C RN compact, Kq:= {x € RN | d(z, K) < d}, and I = [a,b]. Then, for d > 0
sufficiently small, we have
cupl(j) > cupl(K).
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A.4 Relation with the Ljusternik-Schnirelmann category

We recall here the definition of relative category, by following [185,358] and references therein
(see also [33]).

Definition A.6. Let X be a topological space and let A, B be two closed subsets of X. We call
the category of A in X, relative to B, and write

k = catx g(A),

the least integer k € N such that there exist Ag, A1, ..., Ay closed subsets of X which verify

(Ai)i=0..x cover A;
(A;)i=1..k are contractible in X, i.e. id: A; — X is homotopic to a constant;

Ap is deformable in B, i.e. there exists a continuous hg : [0,1] x (Ag U B) — X such that
ho(0,-) = id, ho(1, Ag) C B and ho(t,B) C B for each t € [0, 1].

If such k does not ezists, we set catx p(A) := +0o0.

Examples of computations can be found in [185, Examples 2.2 and 3.7] and [186, Remark
3.2]. For example, if B is the unit ball in RY, then cat BoB(B) =1 (while it is equal zero if B is
the unit ball in H¥(RY)); if A is the annulus in RY with N > 2, then cats ga(A4) = 2; moreover
catgz g(R?) = catpgz (o,0)(R?) = 0.

Remark A.7.

If we drop the condition on B, Ay and hg, we have the classical definition of category, and
simply write catx (A); more precisely

catx (A) = catx g(A).

This definition can be given for a whatever A (even not closed), and a posteriori one has

catx (A) = catx(A) (see [133, Remark 1.12]).

We required the covering to be closed, but equivalently one can ask Ay ... Ay to be open (see
[133, Proposition 1.10]).

We do not require that B C Ag C A, even if equivalent definitions could be given in this
way (see e.g. [185]).

Some authors require the stronger condition ho(t,-|g) = idp (see e.g. [119,186,187] and
Remark 2.2 in [358]), and this modification would bring no differences in what follows.

Considered a continuous map f : (A,B) — (A',B’) one can define the category of f
by substituting, in the definition (with A = X), "id : A; — A" with "fla, :+ Ai — A,
'ho : [0,1] x (Ag U B) — A" with "hg : [0,1] x (AgU B) — A" and "ho(0,-) = id" with
'ho(0,-) = f"; in this case cata p(A) = cat(id(a,p)). See [38]. Anyway, we will not use
this tool.

The following classical properties on category can be found, e.g., in [38, Lemma 2.2] and
[133, Lemma 1.13] (see also [185, Proposition 2.9]).

Lemma A.8. Let A be a closed subset of X.

#A > catx(A);
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If A is compact, and every point in A has an open neighborhood in X contractible in X,
then there exists an open neighborhood N C X of A such that catx(N) = catx(A4). In
particular, if AC X C X' C H, with A compact and X open subset of the Hilbert space H,
then the claim holds true for catx/(A).

Next proposition deals with some properties on relative category, and can be found, for
instance, in [358, Propositions 2.5 and 2.8] or [185, Propositions 2.4 and 2.9] (see also [186, Remark
3.2 and Propositions 3.4 and 3.5]).

Lemma A.9. Let A, A’, B,V be closed subsets of X.

Then catx p(A) =0 if and only if A can be deformed in B, i.e. there exists h: (AU B) X
[0,1] — X such that h(0,-) = id, h(t,B) C B for each t € [0,1] and h(1,A) C B. As a
consequence, if A C B, then catx g(A). In particular, catx a(A) = 0.

If AcC A, then catx p(A) < catx p(A’).

If AUB C X C X', then catx g(A) > catxs g(A). In particular, if B C A C X, then
cata g(A) > caty p(A).

If catx (V') < oo, then catx p(A\ V) > catx p(A) — catx (V).

If there exists n: [0,1] x (AU B) — X such that n(1, A) C A" and n([0,1], B) C B, then
catx,B(A) < catX7B(A’).

The following lemma links the concepts of category (when A = X) and cup-length, and it can
be found in [358, Proposition 2.6 and Remark 2.7] (see also [187, Theorem 1] and [185, Theorem

3.6)).

Lemma A.10. Let B be a closed subset of a metric space A. Then

cata,g(A) > cupl(4, B) + 1.

In particular, cat4(A) > cupl(A) + 1.

To avoid cumbersome notation we will write

cat(A) :=cata(A), and cat(A4,B) :=cata p(A).

Notice that, if A C X, then cat(A, B) > catx p(A) (and in particular cat(A4) > catx(A)).

Remark A.11. We notice that in standard examples the inequality in Lemma A.10 is actually
an equality. Indeed, if K is a contractible set or it is finite (e.g. a single point), then

cupl(K) + 1 = catg (K) = 1;

if K= SN=1 is the N — 1 dimensional sphere in RN, then

cupl(K) + 1 = catg (K) = 2;

if K =TV is the N-dimensional torus, then

cupl(K) + 1 =catg(K) =N + 1.

However in general the strict inequality may hold, see [133, Sections 2.8 and 9.23] for some
examples.
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Remark A.12. When one deals with a functional which is not bounded from below, the tool of
the relative category is needed. On the other hand, for any interval I C R and any neighborhood
K, of K, considered the inclusion

Jj:(IxK,0I x K)— (I x Kg,0I x Ky)

the key relation
cat(j) > catg (K),

essential in the estimation of the relative category of two sublevels of the indefinite functional (see
[119, Remark 4.3]) does not generally hold [133, Remark 7.47]. Nevertheless, the same relation
for the cup-length

cupl(j) > cupl(K)

holds true, as proved in [119, Lemma 5.5] (see also [185, Proposition 3.5]). That is why we take
advantage of the relative cup-length in order to get a bound on the number of solutions.

A.5 Application to multiplicity of solutions

We sketch now how to obtain multiple solutions from the information on the category of a set.

Let indeed J : X — R to be a C''-functional on a function space X, and denote, for every
c € R, J¢:={J < ¢} the sublevel at ¢ and K. := {J = ¢, J' = 0} the set of critical points at c.
Assume the following:

o there exist ¢ € R and 6 > 0 such that K, is compact for every ¢ € [¢ — 0, ¢+ 4] (for example,
a Palais-Smale type condition holds at level ¢) and a Deformation Lemma holds around K;

e ¢+ 0 is a regular value; this is not restrictive, up to choosing properly ¢ (small), since
otherwise we would have a sequence of critical values at levels ¢+ d,, with 61 > ... > d4,, — 0.

o there exist a compact K and two continuous maps ¢, ¢2 such that (I x K,9I x K) L2}
(JE+0 Je9) % (I x Kg4,01 x Ky) is homotopic to the inclusion j : (I x K,0I x K) —
(I x Kq,0I x Kg), where Ky = {z € R | d(z, K) < d} and I = [a, b] for some a,b € R.

We want to show

(4) _
#{ue X | J(u)€c—6,c+6], J'(u) =0} > catyers jos(JT)

(i7) _ _
> cupl (Jc+5, Jc_‘s) +1
(#44)
> cupl(K) + 1.

which is an estimate from below on the number of critical points of J.

Proof of (i). This is a consequence of the Deformation Lemma and of the compactness of
critical level sets, as done in [358, Proposition 3.2] and [186, Theorem 4.2] (see also [187, Theorem
3] and [185, Theorem 6.1]). Let thus define

k.= CatJ6+5’J6—§(JE+6) e NU {+OO},
if £ = 0 the claim is trivial, thus we can assume k > 1. For each j = 1...k define
[ :={AC X | A closed, cat je+s je—s(A) > j},

c¢; = inf supJ.
J AGFj Ap
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Notice that, since j > 1, then each A € I'; cannot be included in J¢9. that is cj > ¢—0;
moreover, since j < k, then J9 ¢ I'j, which implies ¢; < ¢+ ¢. Therefore

c—0<ci<cep<---<c+0.
Fix j € {1...k} and let p € N be such that
¢j=-=CcCjqp=:Cc€E[c—0,c+0);
to reach the claim, it is sufficient to show that
cat jers (Ke) > p+1 (A.4)

since # K. > cat jors(K.) and by combining the estimates for different values of ¢; (if ¢; # ¢; we
clearly have different critical points at the two levels).

We do some preliminary work. We first exploit that ¢ 4 ¢ is a regular point to show that
¢ < ¢+ 9. Indeed, since Kz;5 = (), by the Deformation Lemma there exist 1 : [0,1] x X — X
and an w > 0 such that

o J(n(t,-)) < J(:) for each t € [0,1], and thus 7 : [0,1] x JETO — Jet+d,
o (1, JEHOT®) € JEHw and thus (1, JT0) € JEHOe,
o J(t,J°%) C J® for each t € [0,1];
by Lemma A.9 we have
cat gess goms (JTOTY) > cat jers ge-s (J0) =k > j;

thus JeH0—« ¢ I';, which implies ¢; < ¢+ 0 —w < ¢+ 6 for each j, which is the claim.
Since ¢ < ¢+ 6, we have K. C {J < ¢+ 8} C J; moreover K, is compact; thus by Lemma
A.8 we have that there exists an open neighborhood N of K. such that

CatJa+5 (N) = catJa+5 (KC)

Corresponding to N, again by the Deformation Lemma there exist an w € (0,¢+ § — ¢) and an
n:[0,1] x J& — J+ (notice that Je+~ U J=9  JéH9) such that n(1, J¢* \ N) C J*™* and
n(t, J¢°) C J°=° for each ¢ € [0,1]. By Lemma A.9 we have

Ca.tjé+§7Ja—6(Jc+w \ N) S CatJE+57JE—5 (chw)‘ (AS)

Corresponding to w, by definition of ¢ = ¢j;, there exists an A € I';1,, such that sup, J < c+w,
which means that A C J°™ and thus

A\ N C JH\ N, (A.6)

We prove now (A.4) by contradiction. Assume cat(K.) < p < co. Thus, by (A.5), (A.6) and
Lemma A.9 (notice that A\ N is closed) we have

Cat(]a+57J575 (Jc—w) Z CatJEJré’JEfé (Jc+w \ N) Z Catja+5,‘]576 (A \ N)
> cat jets jo-s(A) — catjers(N) = (j+p) —p = J.
This means that J°“ € I';, and thus

cjgjtipl]gc—w:cj—w

which is an absurd.
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Proof of (ii). This is a consequence of the property of algebraic topology given in Lemma
A.10.

Proof of (iii). This is due to the existence of the homotopy and properties of the cup-length.
Indeed, by (A.3) in Lemma A.4 (a), we have
cupl (JE”, JE*‘;) > cupl(¢z2 0 ¢1);

we highlight that the left-hand side deals with subsets of the function space X, while the right-
hand side deals with subsets of RY. Since ¢ o ¢; is homotopic to the immersion j, we have by
Lemma A.4 (b)

cupl(¢2 o ¢1) = cupl(j).
Finally, we conclude thanks to Lemma A.5. |

A.6 The Krasnoselskii genus: a particular category

In order to obtain existence of multiple solutions in the entire space RY, without any topology
related to some potential V', it is useful to exploit some symmetry of the functionals, and some
tool related to them.

In particular, we introduce the well known Krasnoselskii genus.

Definition A.13. For any A closed subset of RN \ {0}, symmetric with respect to the origin
(i.e. A= —A), the Krasnoselskii genus is defined by

genus(A) :=max{n € N|35: A — R"\ {0} continuous and odd} ;

if such n does not exists, v(A) := 4+o00; moreover v(A) = 0 if (and only if) A = 0.

The genus enjoys several standard properties [324, Section 3].
Proposition A.14. Let A, B C RV \ {0} be closed and symmetric.

o if A is finite, then genus(A) = 1;

o genus(A U B) < genus(A) + genus(B);

o if genus(B) < oo, then genus(A\ B) < genus(A) — genus(B);

o if h:RN = RN is continuous and odd, then genus(A) < genus(h(A));

e if A is compact, then there exists a closed, symmetric neighborhood U # 0 of A such that

genus(U) = genus(A) < oo;
o if U is a symmetric neighborhood of the origin, then genus(0U) = N.

Example A.15. The genus describes, roughly, how a set is wrapped near the origin. Let A be
a closed subset of RN \ {0}, such that A = —A. If A = BU(—B), with BN (—B) = 0, then
genus(A) = 1. If A is connected, then genus(A) > 2. Moreover, genus(SN) = N + 1.

Actually, this tool reveals to be a subcase of the already introduced category. Indeed,
considered the action of Zy over RY (which identifies 2 with —z) we have the following relation
[324, Theorem 3.7] (see also [171])

genus(A) = catpn (0y)/z, (A/Z2).
This relation highlights the fact that the genus tool exploits not the topology of a particular
subset of RY | but the topology induced by a symmetry relation.
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I have written a truly marvelous praise about this, which this margin unfortunately is too narrow
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