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Preface
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Introduction

The aim of this thesis is to give results on long-standing problems in the theory of Ten-
sor Decomposition, namely on the problems of identifiability and singularity of points in the
secant varieties of lines of both Grassmannians and Spinor varieties, and possible generaliza-
tions to other homogeneous spaces. The main spirit of this thesis is to investigate such topics
from a representation-theoretical perspective, considering the action of groups on such varieties.

Tensors are everywhere in our world: they can be thought as collections of data, and as
such they appear in several scientific areas, eg. Statistics, Data Science, Quantum Information,
Phylogenetics and so on. In some sense, the Wachowski sisters got very close in their film “The
Matrix”, a better name would have been “The Tensor”: nowadays tensorists would say that
they just got the format wrong.

But what are tensors? Matrices are the simplest example (besides the trivial one, eg. vec-
tors): a matrix A ∈ Matn×m(k) with coefficients in a field k is a tensor in the vector space
kn ⊗ km of order 2 and format n ×m. More in general, given d k–vector spaces V1, . . . , Vd of
dimensions dimVi = ni, an element of the tensor k–vector space V1 ⊗ . . . ⊗ Vd is a tensor of
order d and format (n1, . . . , nd).

Certain tensors have the nice property that they are the “building blocks” for constructing
any other tensor: here the intuition should be the same as in certain toys like LEGO and GE-
OMAG. In the case of matrices, these are the rank–1 matrices, as any matrix A ∈ Matn×m(k)
of rank r is sum of r matrices Ai = vi · (twi) ∈ Matn×m(k) of rank 1 (here vi ∈ kn and
wi ∈ km are vectors). Similarly, any tensor T ∈ V1 ⊗ . . . ⊗ Vd is sum of tensors of the form
v

(1)
i ⊗ . . .⊗ v

(d)
i ∈ V1 ⊗ . . .⊗ Vd, called decomposable or simple or rank–1.

This setting can be extended to any irreducible non-degenerate projective variety X ⊂ PMk .
Given a point f ∈ PMk , one defines the X–rank of f with respect to X as the minimum number
of points of X whose linear span contains f . In particular, point of X have X–rank 1. Then,
starting from X, for any r ∈ Z>0 one can define the r–th secant variety σr(X) ⊂ PMk as the
Zariski closure of points of PMk of X–rank at most r.

The theory of Tensor Decomposition studies tensors, their decompositions and the varieties
related to them in an algebro-geometric perspective. Its widely-recognized importance relies in
the fact that decomposing tensors into simpler ones is equivalent to extracting simpler (more

vii



viii Introduction

feasible, hence more efficient) information from arbitrarily confusing collections of data: correc-
tion of noises, image resolutions, entanglements of quantum states can all be restated in terms
of tensors and their decompositions. We refer to [Lan12; Ber+18; OR20] for a general overview
on secant varieties and tensors, and [BC12; Com14; Lim21] for applications of the study of
secant varieties and tensors. Motivated by most of the applications in the sciences, the theory
of Tensor Decomposition is considered over fields of zero characteristics, mainly either the real
field R or the complex field C. However, even when the applied setting is over the real numbers,
almost all results are obtained by working in the complexified setting. In this respect, in the
following as well as all along the thesis, we assume k = C.

Secant varieties have been studied for decades, but several aspects of their geometry are
still mysterious and difficult to handle with. Even computing their dimensions is a hard task
and a current topic of research. A state of the art on the dimension of such varieties can be
found in [Ber+18], and more detailed results are in [GO22; BDD07; LP13]. Two crucial aspects
of secant varieties which are fundamental for applications and are still unknown in general are
the identifiability and the singularity of their points.

Identifiability means uniqueness. Namely, a given point f ∈ PM of X–rank r is identifiable if
it admits a unique decomposition as sum of r elements of X. From an applicative point of view,
this corresponds to uniqueness in recovering data. On the other hand, singularity means unfea-
sibility in computations. Formally, singular points in σr(X) are those such that the dimension
of the tangent spaces at these points overcome the dimension of the secant variety. The bigger
the tangent space at a point, the more unfeasible the computations in a neighbourhood of that
point. Of course, singularities are of great impact to theory too: results having the smooth-
ness (ie. non-singularity) of the variety among the hypotheses are a dense in Geometry. For
instance, in [COV14, Prop. 5.1] the authors give a criterion for identifiability of specific tensors
in a secant variety under the assumption that these tensors are smooth. In fact, identifiability
and smoothness are quite related each other and often one notion suggests the other (as in this
work), although in general both implications admit counterexamples.

Owned to the above, determining the singular locus Sing(σr(X)) of a secant variety σr(X) is
a central problem in both theory and applications. Classically, if σr(X) is not a linear space, it
is known that the singular locus Sing(σr(X)) contains the secant variety σr−1(X) but only in
few cases Sing(σr(X)) is actually determined. For instance, the case r = 2 for Segre varieties is
solved by M. Micha lek, L. Oeding and P. Zwiernik in [MOZ15] via tools from toric geometry;
for Veronese varieties V. Kanev [Kan99] and K. Han [Han18] solve the cases r = 2 and r = 3
respectively, while partial results for higher cases r ≥ 4 are obtained by K. Furukawa and K.
Han in [FH21]; L. Manivel and M. Micha lek in [MM15] obtain partial results for the 2–nd secant
variety of Grassmannians and other cominuscule varieties. The latter case is exactly the one
we focus on in this thesis.

Segre varieties, Veronese varieties and Grassmannians are example of homogeneous vari-
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eties (ie. varieties on which a group acts transitively), and more precisely of projective rational
homogeneous varieties (RHV). Also known as generalized flag varieties, which we assume to be
projective, they are a class of varieties described as quotients G/P of a semisimple complex Lie
group G by a parabolic subgroup P , or equivalently as unique closed orbits (of the highest weight
vectors) into projectivized representations of such groups. The Representation Theory behind
these varieties allows to derive several geometric properties: in this respect, the geometry of
RHVs has been largely studied by J.M. Landsberg and L. Manivel [LM03; LM04]. In particular,
a wide literature has been devoted to the secant variety of lines σ2(G/P ) (ie. Zariski closures
of the union of all secant lines) and the tangential variety τ(G/P ) (ie. unions of all tangent
lines) to a RHV G/P , starting with Zak’s key work [Zak93] and continuing with [Kaj99; LW07;
LW09; MM15; Rus16].

A RHV G/P which is defined by a maximal parabolic subgroup P (ie. for which the Picard
group Pic(G/P ) ≃ Z is monogenic) is called generalized Grassmannian: besides the classical
Grassmannians (of Dynkin–type A), other well-known examples are the isotropic Grassmanni-
ans (of type C) and the orthogonal Grassmannians (of type B or D). However, some of the
generalized Grassmannians have nicer properties than the other ones: these are the cominuscule
varieties and are characterised by the property that their tangent space g/p is an irreducible
P–module (or equivalently, their tangent bundle τ(G/P ) is irreducible as homogeneous bundle).
All classical Grassmannians are cominuscule, but the only isotropic and orthogonal Grassman-
nians to be cominuscule are the ones whose subspaces have maximum dimension.

The main part of this thesis is devoted to the study of the 2–nd secant varieties (aka. secant
varieties of lines) to Grassmannians and to Spinor varieties (ie. maximal orthogonal Grassman-
nians). The Grassmannian Gr(k,N) ⊂ P(

∧k CN ) is the projective varieties of k–dimensional
linear subspaces of CN , and it is homogeneous with respect to the action of the special linear
group SLN .

On the other hand, given a non-degenerate quadratic form q ∈ Sym2(C2N )∨, the set of q–
isotropic subspaces of C2N of maximal dimension N splits into two connected components,
namely the Spinor varieties S±

N , or also the maximal orthogonal Grassmannians OG±(N, 2N).
These varieties live in the so-called half-spin representations

∧ev CN and
∧odCN and are ho-

mogeneous under the action of the Spin group Spin2N . Roughly known as the universal double
cover of the special orthogonal group SO2N , the spin group has an elegant and formal descrip-
tion via Clifford algebras. Despite their description as maximal orthogonal Grassmannians,
already known to Cartan [Car67], Spinor varieties are not well understood as well as the clas-
sical Grassmannians. However, their intrinsic relation with Clifford algebras makes them an
interesting and rich topic of research.

However, the beauty of such varieties rests not only in the very elegant combinatorial and al-
gebraic description of them, but also in their versatility in several applied sciences: they are sets
of separable states in bosonic and fermionic spaces respectively in Quantum Information [ST13;
LH15; LH18]; tropical Grassmannians appear as spaces of phylogenetics trees [SS04]; nonlinear
eigenvalue problems on Grassmannians are of interest in Quantum Chemistry [BSS23]; positive
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Grassmannians have been introduced for studying scattering amplitudes in Quantum Physics
[Wil21].

The key idea giving the kick-off to the whole thesis is that the action of a group G (SLN for
the Grassmannian Gr(k,N), and Spin2N for the Spinor varieties S±

N ) leaves the secant variety
of lines invariant, which then splits into G–orbits, actually finitely many ones. But there’s
more: the properties of identifiability and singularity are invariant under such an action, and in
particular the singular locus of the secant variety of lines is union of orbits. This implies that
it is enough to check such properties for only one representative of each orbit.

Let’s denote by X either the Grassmannian Gr(k,N) or the Spinor variety S±
N . We treat sep-

arately orbits of points lying on bisecant lines to X, and orbits of points lying on tangent lines
to X: we refer to the former as secant orbits, to the latter as tangent orbits. We parametrize the
secant orbits via the notion of Hamming distance between points of X: namely, the Hamming
distance between two points of X is the minimum number of lines lying in X and connecting the
two points. The tangent orbits are instead parametrized by the notion of rank in the tangent
space g/p. We describe the poset (partially ordered set) of G–orbits in the secant variety of lines
together with their dimensions. Our first result is the following: we collect at once the results
obtained separately fro Grassmannians and Spinor varieties. By duality of Grassmannians we
also assume k ≤ ⌊N2 ⌋.

Theorem (Theorem 4.1.12, Theorem 5.1.12). Let (X,G, d) be either (Gr(k,N),SLN , k) or
(S+
N ,Spin2N , ⌊N2 ⌋). Then the poset of G–orbits of the secant variety of lines σ2(X) is

X

Θ2 = Σ2

Θ3

...

Θd

Σ3

...

Σd

where arrows denote the inclusion of an orbit into the closure of another orbit, the orbits Θl

are made of tangent points to X, the orbits Σl are made of points lying on bisecant lines to X.
Moreover, the orbits Θd and Σd are respectively dense in the tangential variety τ(X) and in the
secant variety of lines σ2(X).

We completely determine such orbits, by exhibiting representatives and inclusions of their
closures (cf. Sec. 4.1 and Sec. 5.1), and computing their dimensions (cf. Sec. 4.4 and Sec. 5.4).

Next we consider the problem of identifiability and tangential-identifiability: we say that a
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tangent point in τ(X) is tangential-identifiable if it lies on a unique tangent line to X (cf. Def.
2.1.1). The results for Grassmannians are obtained by considering suitable wedge-multiplication
maps between different fundamental SLN–representations. The case of Spinor varieties is a little
bit trickier and we use the theory of nonabelian apolarity, introduced by J.M. Landsberg and
G. Ottaviani in [LO13] and extending the classical apolarity theory: when applied to Spinor
varieties, such theory allows to define what we call Clifford apolarity (cf. Sec. 3.6). The solutions
to the problems of (tangential-)identifiability for both Grassmannians and Spinor varieties are
collected in the following theorem.

Theorem (cf. Sec. 4.2, Sec. 5.2). In the notation of the previous Theorem, the following facts
hold:

• the points in the orbits Σl for 3 ≤ l ≤ d are identifiable;

• the points in the orbits Θl for 3 ≤ l ≤ d are tangential-identifiable;

• for 3 ≤ k ≤ ⌊N2 ⌋, each point in the orbit Σ2 ⊂ σ2(Gr(k,N)) is unidentifiable and its set
of equivalent decompositions is 4–dimensional;

• for N ≥ 4, each point in the orbit Σ2 ⊂ σ2(S+
N ) is unidentifiable and its set of equivalent

decompositions is 6–dimensional.

The undentifiability of the orbit Σ2 in both cases follows inductively from the fact the Grass-
mannian Gr(2, 4) ⊂ P5 and the Spinor variety S+

4 ⊂ P7 are just quadrics.
We go one step further by also determining the 2–nd Terracini locus Terr2(X) of X, namely

the locus of pairs of points of X whose tangent spaces have non-trivial intersection.

Theorem (Theorem 4.5.2, Theorem 5.5.1). The 2–nd Terracini locus Terr2(X) corresponds to
the orbit closure Σ2 = X ⊔ Σ2.

The Terracini locus tells us where the differential of the projection from the abstract secant
variety onto the secant variety drops rank. More importantly, combined with the identifiability,
it is a very useful tool for deducing smoothness of points lying on bisecant lines. However, for
tangent points other arguments are needed. Our main results on the singular loci of secant
varieties of lines to Grassmannians and to Spinor varieties are the following.

Theorem (Theorem 4.6.10). For any N ≥ 7 and any 3 ≤ k ≤ ⌊N2 ⌋, the singular locus of the
secant variety of lines σ2(Gr(k,N)) is

Sing(σ2(Gr(k,N))) = Σ2

of dimension k(N − k) + 2(N − 2)− 3.

The above result corrects a previous statement in [AOP12, before Figure 1] in which the
authors stated that Sing(σ2(Gr(3, 7))) = Gr(3, 7).
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Theorem (cf. Sec. 5.6). For any N ≥ 7, the singular locus of the secant variety of lines σ2(S+
N )

is bounded as follows:
Σ2 ⊂ Sing(σ2(S+

N )) ⊂ τ(S+
N ) .

We conjecture that the first inclusion on the left actually is an equality, as for the Grassman-
nian case. This is suggested by some arguments with Hilbert schemes of 2 points and secant
bundles (cf. Sec. 7.3).

Quite remarkably, for other cominuscule varieties we partially deduce a poset of G–orbits
in the secant variety of lines which is similar to the one obtained for Grassmannians and Spinor
varieties (cf. Sec. 6.1): we say partially because the only inclusions that we haven’t proved yet
are the ones Θl ↪→ Σl.

We conclude our study by exhibiting an example of a non-cominuscule variety for which such
a poset graph fails. Our example is the (non-maximal) isotropic Grassmannian (cf. Sec. 6.2):
we show that the orbits in the tangential variety are not totally ordered.

The thesis is organized as follows.

• Chapter 1 is thought as a crash course in the theory of Lie algebras, Lie groups and
their representations. We start by recalling the notions of Lie algebras, root systems, Lie
Groups and their parabolic subgroups, as well as the theory of representations. Then we
introduce the rational homogeneous varieties, study homogeneous bundles on them and
get our focus on the cominuscule varieties.

• Chapter 2 collects basic notation and results from Tensor Decomposition. We introduce
secant varieties, abstract secant varieties and the problem of identifiability, and we give
an overview on the apolarity theory, from the classical one for symmetric tensors to the
skew-apolarity for skew-symmetric tensors, ending with the nonabelian apolarity. A small
section on the notion of Hamming distance concludes the chapter.

• Chapter 3 is devoted to the world of spinors. First we define algebraically the spin groups
as multiplicative subgroups of Clifford algebras, then we give the definition of the spin
representations. In the second part of the chapter we introduce Spinor varieties and
we determine their diameter. Finally, we describe some homogeneous bundles on them
playing a central role in the Clifford apolarity.

• In Chapter 4 we determine the poset of SLN–orbits in the secant variety of lines to a
Grassmannian Gr(k,N), we solve the problem of identifiability of its points, and as a
consequence we compute the orbit dimensions. Moreover, we determine both the second
Terracini locus to the Grassmannian and the singular locus of the secant variety of lines.
The results in this chapter appear in the work [GS23] joint with R. Staffolani.

• In Chapter 5 we move our focus to the secant varieties of lines to Spinor varieties. We
determine their poset of spin-orbits and we use Cliffors apolarity for solving the problem
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of identifiability of their points. After computing the orbit dimensions, we also determine
the second Terracini locus to a Spinor variety. The last section of the chapter contains
partial results on the singular locus of the secant variety of lines to a Spinor variety and a
conjecture for the complete result. All results of this chapter are collected in the preprint
[Gal23].

• In Chapter 6 we investigate generalizations of results obtained on the poset of orbits in the
previous chapters. We give a partial description of the poset in the case of cominuscule
varieties. Finally, we show that such a poset does not hold for non-cominuscule variety,
by determining the poset of parabolic orbits in the tangent space to an isotropic Grass-
mannian. The results in the last section have been obtained during a visit at Institut de
Mathématiques de Toulouse under the supervision of L. Manivel.

• The first two sections in the appendix in Chapter 7 collects well-known results for which
we haven’t been able to find a proper reference, thus we propose them as solved exercises.
The last section on secant bundles is a motivation to the conjecture at the end of Chapter
5.





Notations

Indices and Index Subsets

ℓ = a : b ℓ ∈ {a, a+ 1, . . . , b− 1, b} ∀a ≤ b ∈ Z>0

[n] {1, . . . , n} ∀n ∈ Z>0

2[n] {I ⊂ [n]}([n]
k

)
{{i1 < . . . < ik} ⊂ [n]} ∀k ≤ n ∈ Z>0

eI ei1 ∧ . . . ∧ eik ∀I = {i1, . . . , ik}

Roots, Groups and Representations

G semisimple (simply conn.) complex Lie group
g complex Lie algebra

∆ := {α1, . . . , αN} simple roots

ω1, . . . , ωN fundamental weights

Λ++ ⊂ Λ+ ⊂ Λ regular ⊂ dominant ⊂ weight lattice
w0 ∈ WG longest element in the Weyl group of G

PI parabolic subgr. def.ed by I ⊂ ∆
V D
λ = V g

λ = V Gλ irred. repres. of g of Dynkin type D
vλ , ℓλ highest and lowest weight vectors in V D

λ

SN =
∧• CN spin repres. of type BN (cf. Sec. 3.2)

S+
N =

∧ev CN , S−
N =

∧odCN half -spin repres. of type DN (cf. Sec. 3.2)

(Semi∗)Simple complex Lie algebras of classical type

A∗
N glN+1 = MatN+1

AN slN+1 = {X ∈ MatN+1 | tr(X) = 0}
BN soQ2N+1 = {A ∈ Mat2N+1 | tAQ = −QA} Q ∈ Sym2 C2N+1

CN spΩ
2N = {A ∈ Mat2n | tAΩ = −ΩA} Ω ∈ ∧2 C2N

DN soQ2N = {A ∈ Mat2N | tAQ = −QA} Q ∈ Sym2 C2N

xv
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Simple complex Lie groups of classical type

AN SLN+1 = {A ∈ GL(N + 1) | detA = 1}
BN SOQ

2N+1 = {A ∈ SL2N+1 | tAQA = Q} Q ∈ Sym2 C2N+1

BN Spin2N+1 = cf. Sec 3.1
CN SpΩ

2N = {A ∈ SL2N | tAΩA = Ω} Ω ∈ ∧2 C2N

DN SOQ
2N = {A ∈ SL2N | tAQA = Q} Q ∈ Sym2 C2N

DN Spin2N = cf. Sec 3.1

Generalized Grassmannians of classical type

Qm m− dim. smooth quadric in Pm+1

AN/Pk = Gr(k,N + 1) Grassmannian

CN/Pk = IG(k, 2N) isotropic Grassmannian ∀k ∈ [N − 1]
CN/PN = LG(N, 2N) Lagrangian Grassmannian

DN/Pk = OG(k, 2N) orthogonal Grassmannian ∀k ∈ [N − 2]
DN/PN−1 ≃ DN/PN = SN Spinor variety (cf. Sec. 3.3)
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Chapter 1

Preliminaries from
Representation Theory

1.1 Toolkit on Lie groups and Lie algebras

We refer to [FH91; Pro07; Man13] for the theory about Lie Groups and Lie algebras appearing
in this section. We restrict to consider only Lie groups and Lie algebras over the complex field

C which are semisimple.

Let G be a semisimple complex Lie group, and let T ⊂ B ⊂ G be a maximal torus and
a Borel subgroup respectively. We denote the corresponding complex Lie algebras by gothic
letters g, t and b: from now on we adopt the gothic notation for any other Lie algebra.
Given Φ ⊂ t∨ \ {0} an irreducible root system for G, let Φ+ = Φ(B) be the set of positive
roots with respect to the Borel subgroup B, and Φ− = Φ \ Φ+ its complement. We set
∆ = {α1, . . . , αN} ⊂ Φ+ to be the set of (positive) simple roots.

For any α ∈ Φ we denote by gα := {v ∈ g | [h, v] = α(h)v ∀h ∈ t} the corresponding weight
space (or eigenspace). In particular, one gets the Cartan decomposition

g = t⊕
⊕

α∈Φ+

gα

︸ ︷︷ ︸
=b

⊕
⊕

α∈Φ−

gα .

The algebraic properties of (isomorphism classes of) irreducible root systems are encoded in
the Dynkin diagrams. We list them in Table 1.1 following the Bourbaki notation.

1
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α1 α2 αN−1 αN

AN

α1 α2 αN−1 αN

BN

α1 α2 αN−1 αN

CN

α1 α2 αN−2

αN−1

αN

DN

α1

α2

α3 α4 α5 α6

E6

α1

α2

α3 α4 α5 α6 α7

E7

α1

α2

α3 α4 α5 α6 α7 α8

E8

α1 α2 α3 α4

F4

α1 α2

G2

Table 1.1: Dynkin diagrams of irreducible root systems.

Weights. Let (·, ·) be the standard scalar product in ⟨Φ⟩R = RN . For any two roots α, β ∈ Φ,
the Cartan integer ⟨β|α⟩ = 2 (β,α)

(α,α) ∈ Z is linear only in β, not in α. Then one defines the lattices
in RN = ⟨Φ⟩R:

• (weights) Λ := {λ ∈ RN | ⟨λ|α⟩ ∈ Z ∀α ∈ Φ};

• (dominant weights) Λ+ := {λ ∈ Λ | ⟨λ|αi⟩ ≥ 0 ∀αi ∈ ∆};

• (regular dominant weights) Λ++ := {λ ∈ Λ | ⟨λ|αi⟩ ⪈ 0 ∀αi ∈ ∆};

The fundamental weights ω1, . . . , ωN ∈ Λ are those such that ⟨ωi|αj⟩ = δij for any αj ∈ ∆.
In particular, for any λ ∈ Λ it holds λ =

∑
i⟨λ|αi⟩ωi, and Λ =

∑
i Zωi. Notice that the root

lattice
∑
i Zαi is a subgroup of the weight lattice Λ of index det(⟨αi|αj⟩). On the weight lattice

Λ one considers the partial dominance order: for any two weights λ, µ ∈ Λ

λ ≻ µ ⇐⇒ λ− µ ∈
∑

β∈Φ+

R≥0β .

The Weyl group. For any α ∈ Φ, let sα ∈ Orth(⟨Φ⟩Q) be the reflection sα(v) = v− 2(v,α)
(α,α) α.

We denote by si = sαi
the simple reflection for αi ∈ ∆. Then the Weyl group of G is the finite

group
WG := NG(T )/T = ⟨sα | α ∈ Φ⟩ = ⟨si | i = 1 : N⟩ .

Since WG preserves Φ, it preserves the weight lattice Λ too.
We recall that any Weyl element w ∈ WG admits a reduced expression in terms of the simple
reflections w = si1 · · · siℓ(w) , where ℓ(w) is the length of w. We denote by w0 ∈ WG the (unique)
longest element of WG such that ℓ(w0) = |Φ+| and w0(Φ+) = Φ−.

Remark 1.1.1. The involution −w0 defines an involution on the Dynkin diagram D of G. Thus
for groups D = BN , CN , E7, E8, F4, G2 whose Dynkin diagram does not admit an involution
different from the identity, it holds −w0 = id. For the other types −w0 acts as follows:
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AN : ωk ↔ ωN+1−k ∀k ∈ [N ] , DN :

{
ωN−1 ↔ ωN if N ≡ 1 (mod 2)
id if N ≡ 0 (mod2)

, E6 : ω1 ↔ ω6 , ω3 ↔ ω5 .

Bruhat decomposition. To any root α ∈ Φ one can associate the unipotent subgroup Uα

such that Lie(Uα) = gα, called root subgroup. Such subgroups generate G and allow to describe
the Bruhat cells. More precisely, given the Bruhat decomposition G =

⊔
w∈W BwB, any Bruhat

cell BwB is isomorphic (as an algebraic variety) to B ×
(∏

α∈Φ+, w−1(α)∈Φ− Uα

)
. The Bruhat

cells stratify G/B and their closures BwB inside G/B (which is a projective variety, see Sec.
1.3) are called Schubert varieties.

Parabolic subgroups and Levi decomposition. For any subset of simple roots I ⊂ ∆,
one defines the parabolic subgroup PI := ⟨B,U−α | α /∈ I⟩ (any parabolic group arises as such).
In particular, any simple root αi ∈ ∆ defines a maximal parabolic subgroup Pi := P{αi}.

Remark. We stress out that we fix the notation such that the parabolic subgroup PI defined
by the subset I ⊂ ∆ is generated by the root subgroups whose roots do not lie in I.

Set Φ(I) := {α ∈ Φ | ⟨α|ωi⟩ ≥ 0 ∀i ∈ I}, Φ(I)0 := {α ∈ Φ | ⟨α|ωi⟩ = 0 ∀i ∈ I} and
Φ(I)+ := Φ(I) \ Φ(I)0. At the Lie algebra level, one has

pI = t⊕
⊕

α∈Φ(I)

gα = t⊕
⊕

α∈Φ(I)0

gα

︸ ︷︷ ︸
lI

⊕
⊕

α∈Φ(I)+

gα

︸ ︷︷ ︸
pu

I

(1.1.1)

where lI and puI are respectively reductive and nilpotent (with respect to the adjoint action)
Lie algebras. Notice that pI actually contains the Borel subalgebra b: indeed, for any positive
root β ∈ Φ+ such that β =

∑N
j=1 mαj (β)αj for mαj (β) ∈ Z≥0, it holds for any i ∈ I

⟨β|ωi⟩ =
N∑

j=1
mαj

(β)⟨αj |ωi⟩ =
N∑

j=1
mαj

(β) (αj , αj)
(ωi, ωi)

δij ≥ 0 ,

hence Φ+ ⊂ Φ(I). As a reductive Lie algebra, lI splits as direct sum of a semisimple component
sI and its centre zI : more precisely, given tαi

the semisimple element in the sl2–triplet for
αi ∈ ∆, it holds

sI =
⊕

αi /∈I
Ctαi

︸ ︷︷ ︸
tI

⊕
⊕

α∈Φ(I)0

gα , zI = t \ tI .

In particular, Φ(I)0 is a linear section Φ, hence it is a root system itself whose Dynkin diagram
is obtained by keeping the I-indexed nodes from the one of g. Moreover, Φ(I)0 is the root
system of the semisimple Lie algebra sI : in this respect, we say that Φ(I)0 are the roots of the
parabolic algebra pI . Similarly, we can define the weights of pI (strictly formally, of sI) as

ΛI :=
∑

i∈I
Zωi ⊂ Λ ,
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and denote by Λ+
I and Λ++

I its dominant weights and regular dominant weights respectively.
Going back to the group level, the splitting pI = lI⊕puI corresponds to the Levi decomposition

PI = LIP
u
I , where LI and PuI are respectively reductive and unipotent subgroups. Finally, the

Weyl group of PI is
WPI

:= NPI
(T )/T = ⟨si | αi /∈ I⟩ .

Z-gradings on Lie algebras. Fix a simple root αk ∈ ∆ and consider P = Pk its correspond-
ing maximal parabolic subgroup. For any root β ∈ Φ we denote by mk(β) the coefficient of αk
in β. Then we consider on g the Z-grading g =

⊕
Z gi defined by

g0 = t⊕
⊕

β∈⟨∆\{αk}⟩Z
gβ , gi =

⊕

mk(β)=i

gβ . (1.1.2)

In particular, p =
⊕

i≥0 gi and g/p ≃ g−1 ⊕ g−2 ⊕ . . . ≃ pu, where pu is a P -module after
adjoint action and the last identification of P -modules is given by the Killing form on g. Notice
that only the summand g−1 is a p-submodule of g/p. Moreover, given ρ the longest root in Φ,
one has mk(β) ≤ mk(ρ). Thus, g/p splits in as many summands as mk(ρ). We list the Dynkin
diagrams labeled with the coefficients in ρ of the corresponding simple roots.

1 1 1 1

AN

1 2 2 2

BN

2 2 2 1

CN

1 2 2

1

1

DN

1

2

2 3 2 1

E6

2

2

3 4 3 2 1

E7

2

3

4 6 5 4 3 2

E8

2 3 4 2

F4

3 2

G2

Table 1.2: Coefficients of simple roots in the longest root.

1.2 Irreducible representations of semisimple Lie algebras
In this section we recall the main results of irreducible representations of semisimple Lie

algebras and semisimple (simply connected) Lie groups.
Our main references are [FH91; Pro07].

We use the terms “G-representation” and “G-module” indistinctly. We recall that a G-
equivariant map is a map between G-structures (eg. G-modules, G-varieties) commuting with
the group action. By Weyl’s theorem, every finite-dimensional representation of a semisimple
complex Lie group G splits as a direct sum of irreducible G-modules. A key result in the theory
of representations is the following.
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Schur’s Lemma ([FH91], Sec. 1.2, Lemma 1.7). Let V ,W be irreducible G-representations
and let f, g : V →W be G-equivariant maps. Then the following facts hold:

(i) either f is an isomorphism (of G-modules) or f = 0;
(ii) if V = W , then f = λ · IdV for some λ ∈ C×;

(iii) f = λg for some λ ∈ C×.

From the Lie group-Lie algebras correspondence one knows that every G-module is a g-
module, and that, under the (necessary) assumption that G is simply connected, every g-module
comes from a G-module.

In this respect, from now on G is a simply connected semisimple complex Lie group.

Let V be a finite-dimensional irreducible g-module (hence an irreducible G-module). The
Cartan subalgebra t acts diagonally on V , which decomposes as

V =
⊕

α∈t∨

Vα , Vα := {v ∈ V | h · v = α(h)v ∀h ∈ t} ,

where α and Vα are said weights and weight spaces of V respectively. Actually, the weights
appearing above are exactly the weights in Λ defined from the root system.

Finite-dimensional irreducible G-representations are in one-to-one correspondence with the
dominant weights Λ+ of g. In particular, given u := b \ t, every (finite-dimensional) irreducible
g-representation V admits a unique dominant weight λV ∈ Λ+ such that the weight space VλV

coincides with the 1-dimensional subspace V + := {v ∈ V | u · v = 0}. The weight λV ∈ Λ+ is
said highest weight of V , while a non-zero vector vλV

∈ V + is called a highest weight vector of V .

Given G simply connected semisimple of Dynkin type D, we denote by V Gλ or V D
λ the irre-

ducible g-representation with highest weight λ, and by vλ ∈ V Gλ its highest weight vector.

Remark. We distinguish the weight space Vλ = V + from the irreducible representation V Gλ
by writing G (or its Dynkin type) at exponent.

Recall that the dominant weight lattice Λ+ =
∑
i Z≥0ωi is spanned by the fundamental weights

ω1, . . . , ωN : then for any dominant weight λ = a1ω1 + . . .+ aNωN ∈ Λ+ it holds

V Gλ ⊂ Syma1
(
V Gω1

)
⊗ . . .⊗ SymaN

(
V GωN

)
.

We refer to an irreducible representation V Gωk
, for ωk a fundamental weight, as to fundamental

representation.

Example. For Dynkin type AN the simply connected simple Lie group is G = SLN+1. Then for
any k ∈ [N ] the k-th fundamental G-representation is V Gωk

= V AN
ωk

=
∧k CN+1. For any k ∈ [N ]

and any a ∈ Z>0, the dominant weight aωk ∈ Λ+ defines the irreducible G-representation
V AN
aωk
⊂ Syma(

∧k CN+1). Notice that the latter inclusion is strict for any k ̸= 1.
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The theory of characters provides a formula for the dimension of irreducible representations.
In the following κ denotes the Killing form, while

ζ :=
N∑

i=1
ωi

is the sum of all the fundamental weights.

Weyl’s dimension formula ([Pro07], Sec. 11.10.5). The irreducible G-representation V Gλ of
highest weight λ ∈ Λ+ has dimension

dimV Gλ =
∏

α∈Φ+

κ(λ+ ζ, α)
κ(ζ, α) . (1.2.1)

Dual representations. Let V G be a G-representation and let (V G)∨ be its dual space. The
action of G on (V G)∨ is defined by (g ·f)(v) = f(g−1 ·v) for any g ∈ G, v ∈ V G and f ∈ (V G)∨.
If Λ(V G) denotes the weights of V G, then Λ((V G)∨) = −Λ(V G). Now assume V G = V Gλ to be
irreducible of highest weight λ ∈ Λ+ and consider w0 the longest element in the Weyl group
WG. Then −λ is the lowest weight of (V Gλ )∨ and −w0λ is the highest weight of (V Gλ )∨, implying

(
V Gλ
)∨ = V G−w0(λ) .

Parabolic representations. Let PI be a parabolic subgroup with Levi decomposition PI =
LIP

u
I , where LI and PuI are reductive and unipotent respectively. Let pI , lI and puI be the

corresponding Lie algebras. Recall that puI is nilpotent, and that lI is reductive with semisimple
component sI . The irreducible root system associated to sI is Φ(I)0 as in (1.1.1) and irreducible
sI -representations are in bijection with the dominant weights Λ+

I . Moreover, for any λ ∈ Λ+
I , the

irreducible sI–representation V sI

λ is also an irreducible lI–representations V lI
λ , which extends

to an irreducible pI–representation V pI

λ by letting the nilpotent component puI act trivially.

1.3 Rational homogeneous varieties
Rational homogeneous varieties are the main characters of the Geometric Representation

Theory, studying the geometry arising from representations. However they are of great interest
in several areas of Algebraic Geometry as they offer promising driving examples for the

behaviour of more general varieties. All notation and assumptions from the previous section
are assumed. For references we suggest [Ott95], [Sno89, Sec. 5-6] and [FH91, Sec. 23.3].

Rational homogeneous varieties. Let G be a simply connected simple complex Lie group
and let V Gλ an irreducible G-representation with highest weight λ ∈ Λ+ and highest weight
vector vλ ∈ V Gλ . Then G acts on the projective space P(V Gλ ): in particular, the point [vλ] ∈
P(V Gλ ) corresponds to the weight space V + = C · vλ. The orbit G · [vλ] is the unique closed
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G-orbit in P(V Gλ ), hence it is a projective homogeneous variety. Moreover, the stabilizer of [vλ]
is a parabolic subgroup (as it contains the Borel subgroup): more precisely,

stabG([vλ]) = PIλ
, Iλ := {αi ∈ ∆ | ⟨λ|αi⟩ ≠ 0} .

As parabolic subgroups are closed, G/PIλ
= G·[vλ] ⊂ P(V Gλ ) is compact, and one can prove it is

rational too. On ther other hand, every projective rational homogeneous variety is isomorphic
to a product of finitely many compact rational homogeneous varieties Gi/Pi for certain Gi

simple and Pi parabolic subgroups. The compact rational homogeneous varieties G/P are also
called generalized flag varieties, as they generalize the complete flag varieties G/B. When G is
simple simply connected of Dynkin type D, we use indistinctly the notation G/P = D/P .

The following result highlights a very important geometric property of rational homogeneous
varieties: the statement appears in [Lan12, Theorem 6.10.6.5] and a proof is sketched in [Lan12,
Sec. 16.2.2].

Kostant’s Theorem. Let V Gλ be an irreducible G-module with highest weight λ ∈ Λ+, and let
G/P ⊂ P(V Gλ ) be the orbit of a highest weight line [vλ]. Then the ideal I(G/P ) ⊂ Sym•(V Gλ )∨

is generated in degree 2 by (V G2λ)⊥ ⊂ Sym2(V Gλ )∨. In particular, rational homogeneous varieties
are intersections of quadrics.

Generalized Grassmannians. We are interested in the varieties G/Pk where G is simply
connected simple and Pk = Pαk

is a maximal parabolic subgroup defined by a simple root
αk ∈ ∆. Such G/Pk are called generalized Grassmannians as they are generalization of Grass-
mannians (length-1 flags). They are the unique closed orbits in the projective spaces of the
irreducible representations V Gdωk

defined by the highest weights dωk as d ∈ Z>0 varies: indeed,
given λ the highest weight such that G/Pk ⊂ P(V Gλ ), one has ⟨λ|αi⟩ = 0 for any i ̸= k, that is
λ = dωk for some d ∈ Z>0.

Example 1.3.1 (Grassmannians). For G = SLN+1 and k ∈ [N ], the unique closed orbit G/Pk =
AN/Pk in the fundamental representation P(V Gωk

) = P(
∧k CN+1) is the Grassmannian

Gr(k,N + 1) :=
{

[v1 ∧ . . . ∧ vk] ∈ P

(
k∧
CN+1

)}
≃
{
W ⊂ CN+1 | W ≃ Ck

}
.

We denote points in Gr(k,N + 1) by both [W ] and [w1 ∧ . . . ∧ wk] where W = ⟨w1, . . . , wk⟩C.
After fixing a basis (e1, . . . , eN+1) of CN+1, the point corresponding to the highest weight vector
is [E] = [e1 ∧ . . . ∧ ek] = [vωk

]. Then, as stabilizer of [E], the parabolic subgroup Pk is

Pk =
{[

A B

C

]
∈ GLN+1

∣∣ A ∈ GLk, B ∈ Mat(k,N+1−k), C ∈ GLN+1−k

}
.

In particular, Pk has Levi decomposition given by Lk ≃ GLk ×GLN+1−k and Puk ≃ Mat(k,N+1−k).
Notice that the Levi Lie algebra lk is semisimple of Dynkin type Ak−1 and it acts on E with high-
est weight ω1. As any irreducible lk-module with a given highest weight extends to an irreducible
pk-module with the same highest weight, we get that E is the irreducible Pk-representation with
highest weight ω1.
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Example 1.3.2 (Isotropic Grassmannians). Let Ω ∈ ∧2(C2N )∨ be a non-degenerate symplectic
form on C2N . For any W ⊂ C2N , let W⊥ be its orthogonal with respect to Ω. Recall that W is
Ω-isotropic if W ⊂ W⊥. For G = SpΩ

2N and k ∈ [N − 1], the k-th fundamental representation
is V Gωk

=
∧k C2N and the unique closed orbit G/Pk = CN/Pk is the isotropic Grassmannian

IGΩ(k, 2N) :=
{

[v1 ∧ . . . ∧ vk] ∈ P

(
k∧
C2N

)
| Ω(vi, vj) = 0 ∀i, j ∈ [k]

}

≃
{
W ⊂ C2N | W ≃ Ck , W ⊂W⊥} .

Example 1.3.3 (Lagrangian Grassmannians). In the same notation as Example 1.3.2, for k = N

the variety G/PN = CN/PN is defined in the same way. It is called Lagrangian Grassmannian
and denoted by LGΩ(N, 2N).

Example 1.3.4 (Orthogonal Grassmannians). Let q ∈ Sym2(C2N )∨ be a non-degenerate quadratic
form on C2N (similarly on C2N+1). For any W ⊂ C2N (resp. C2N+1), let W⊥ be its orthogonal
with respect to q: then W is q-isotropic if W ⊂W⊥. The simply connected simple group G of
Dynkin type DN (resp. BN ) is the spin group Spinq2N (resp. Spinq2N+1), which will be defined
in Sec. 3.1. However, the fundamental representations V Gωk

for k ∈ [N − 2] (resp. [N − 1]) are
also representations for the group SOq

2N (resp. SOq
2N+1) and they are V Gωk

=
∧k C2N . For such

a k, the unique closed orbit G/Pk = DN/Pk (resp. BN/Pk) is the orthogonal Grassmannian

OGq(k, 2N) :=
{

[v1 ∧ . . . ∧ vk] ∈ P

(
k∧
C2N

)
| q(vi, vj) = 0 ∀i, j ∈ [k]

}

≃
{
W ⊂ C2N | W ≃ Ck , W ⊂W⊥} .

(similarly for type BN ). However, for k = N − 1, N (resp. N) the fundamental representations
of the spin group Spin2N (resp. Spin2N+1) are not representations of SOq

2N (resp. SOq
2N+1)

and the above description fails: we describe them in Sec. 3.2. The varieties G/P arising in this
way are the Spinor varieties, which will be the topic of Sec. 3.3.

Example 1.3.5 (Veronese varieties). Consider G = SLN+1 and d ∈ Z>0. The irreducible
representation of highest weight dω1 is V AN

dω1
= Symd(V AN

ω1 ) = Symd CN+1: this is not true for
the other fundamental weights, as for k, d ≥ 2 the representation Symd(V AN

ωk
) is not irreducible

anymore. After fixing a suitable basis (e1, . . . , eN+1) of CN+1, the highest weight vector in
Symd CN+1 is the monomial vdω1 = ed1 and the unique closed orbit AN/P1 = SLN+1 ·[ed1] in
P(V AN

dω1
) is the degree–d Veronese variety

νd(PN ) :=
{

[vd] ∈ P(Symd CN+1) | [v] ∈ PN
}
.

In the language of homogeneous bundles (see next paragraph), one says that the degree–d
Veronese variety νd(PN ) is the rational homogeneous variety AN/P1 projectively embedded via
the (homogeneous) line bundle O(d).
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Homogeneous bundles. Let G be a simply connected semisimple complex Lie Group and
let P be a parabolic subgroup. A rank-r vector bundle E on G/P is G-homogeneous if there
exists a G-action on E commuting with the fibration E → G/P . The action of G permutes
the fibers of E : given [gP ] ∈ G/P and h ∈ G, one has h · E[gP ] = E[hgP ]]. Moreover, given
[P ] ∈ G/P the base point, one has P · E[P ] = E[P ], hence E[P ] is a P -representation. On the
other hand, starting from a representation ρ : P → GL(V P ) such that V P ≃ Cr, one can
construct a rank-r G-homogeneous bundle Eρ (cf. [Sno89, Sec. 5]): one defines Eρ as the
quotient G×ρ V P = (G× V P )/∼P

where (g, v) ∼P (h,w) if and only if (h,w) = (gp−1, ρ(p)v)
for some p ∈ P . If V P = V Pλ is an irreducible P -reprensentation of highest weight λ, then Eρ
is said irreducible G-homogeneous bundle, and we denote it by Eλ.

The above construction allows to describe the global sections of Eρ:

H0(G/P, Eρ) ≃
{
s : G→ V P | s(gp−1) = p · s(g) ∀g ∈ G, p ∈ P

}
.

In particular, the vector space H0(G/P, Eρ) is endowed with the natural action of g

(g · s)(h) = s(g−1h) ∀g, h ∈ G, s ∈ H0(G/P, Eρ) ,

hence it is a G-representation.

All line bundles on G/P are G-homogeneous and, if PI is the parabolic subgroup defined
by the subset of simple roots I ⊂ ∆, then [Sno89, Theorem 6.4]

Pic(G/PI) ≃ ZI ≃ ΛI =
∑

i∈I
Zωi .

In particular, if Pk is maximal defined by the simple root αk ∈ ∆, then the Picard group of
G/Pk is Pic(G/Pk) = ZOG/Pk

(1) ≃ Zωk.
Recall that ΛI , Λ+

I and Λ++
I denote the lattices of weights, dominant weights and regular

dominant weights respectively. Recall that ΛI is in one-to-one correspondence with the line
bundles on G/PI , while the dominant weight lattice Λ+ is in one-to-one correspondence with
the irreducible G-representations.

Borel-Weil’s Theorem ([Sno89], Theorem 6.5). Let G be a semisimple simply connected
complex Lie group and let PI be a parabolic subgroup defined by the subset of simple roots
I ⊂ ∆. Let Lλ ∈ Pic(G/PI) be a line bundle with highest weight λ ∈ ΛI . Then:

(i) Lλ is spanned at one point of G/PI iff L is spanned at every point of G/PI , iff λ ∈ Λ+
I ;

(ii) Lλ is ample iff L is very ample, iff λ ∈ Λ++
I ;

(iii) H0(G/PI ,Lλ) = 0 if λ ∈ ΛI \ Λ+
I ;

(iv) H0(G/PI ,Lλ) ≃
(
V Gλ
)∨ if λ ∈ Λ+

I .
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The above result generalizes toG-homogeneous bundles of higher rank too. It is a consequence
of the fact that any irreducible G-homogeneous bundle on a rational homogeneous variety G/P
is isomorphic to the pull-back π∗L of a line bundle L onG/B via the projection π : G/B → G/B:
a proof is sketched in [Ott95, Sec. 10].

Borel-Weil’s Theorem (Generalized). Let G be a semisimple simply connected complex Lie
group and let PI be a parabolic subgroup defined by the subset I ⊂ ∆ of simple roots. Let Eλ be
an irreducible G-homogeneous bundle with highest weight λ ∈ Λ+

I . Then

H0(G/PI , Eλ) ≃ (V Gλ )∨ = V G−w0(λ) .

Example 1.3.6 (Minimal homogeneous embedding). Let G/Pk be the generalized flag defined
by the maximal parabolic subgroup Pk. The highest weight defining the line bundle O(1) is
the fundamental weight ωk, which is regular dominant. Then by Borel-Weil’s Theorem we get
the minimal homogeneous embedding

G/Pk ↪→ P
(
H0(G/Pk,O(1))∨) ≃ P

(
V Gωk

)
.

Example 1.3.7 (Universal bundles). In the notation of Example 1.3.1, let U∨ be the rank-k
bundle (dual to the universal bundle U) on the Grassmannian AN/Pk = Gr(k,N + 1) with
fibers U∨

[W ] ≃ W for any [W ] ∈ Gr(k,N + 1). Since Pk = stabAN
([E]), the fiber U∨

[E] ≃ E is a
Pk-representation with highest weight ω1. Then

H0(Gr(k,N + 1),U∨) ≃
(
V AN
ω1

)∨ ≃
(
CN+1)∨

.

Example 1.3.8 (The bundle U(1) on Grassmannians). In the notation of the above examples,
consider the rank–k vector bundle U(1) = U ⊗ O(1) on the Grassmannian Gr(k,N + 1). The
rank–k universal bundle U has no global sections, but its twisting U(1) does. Indeed, the
determinant bundle of U is det(U) :=

∧k U ≃ O(1) and it holds

U ⊗O(1) ≃ U ⊗ det(U) ≃
k−1∧
U∨ .

In particular, the fiber at [W ] ∈ Gr(k,N + 1) of the bundle U(1) is (U(1))[W ] ≃
∧k−1

W∨, and
its global sections are

H0(Gr(k,N + 1),U(1)) ≃
k−1∧

(CN+1)∨ .

We stress out that the above description does not always apply: for instance, it fails for Spinor
varieties (cf. Sec. 3.5).

Example 1.3.9. Let TG/P be the tangent bundle on G/P . The fiber at [P ] ∈ G/P is
(TG/P )[P ] ≃ g/p ≃ pu, which is a P -module under the adjoint action. We know that in
general g/p is not irreducible as P -module (neither if P is maximal, cf. Sec. 6.2), hence the
tangent bundle is not always an irreducible homogeneous bundle. The generalized flags G/P
for which it is irreducible are the cominuscule varieties (see Sec. 1.4).
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1.4 Cominuscule varieties
The “cominuscule” varieties appears in different corners of the literature: in the theory of
algebraic groups and their representations (eg. parabolic subgroups with abelian unipotent

radical [RRS92]), in differential geometry (eg. compact hermitian symmetric spaces [Kos61,
Sec. 8]), in Quantum Information (eg. varieties parametrizing certain simple quantum states

[ST13]).

Definition. A fundamental weight ωi is cominuscule if the longest root ρ ∈ Φ has coefficient
1 on the simple root αi. Given Pi a maximal parabolic subgroup defined by a fundamental
weight ωi, the generalized Grassmannian G/Pi is cominuscule if ωi is so.

Table 1.2 shows that cominuscule (fundamental) weights (and cominuscule varieties) only
appear in Dynkin types ABCD and E6, E7.

Proposition 1.4.1. Let G a simple simply connected complex Lie group. Let ω be a cominuscule
weight and let P be the corresponding maximal parabolic subgroup. The following facts are
equivalent:

1. The weight ω is cominuscule;

2. The Z-grading of g with respect to P is g = g−1 ⊕ g0 ⊕ g1;

3. The tangent space g/p is an irreducible p-module;

4. The unipotent radical Pu is an abelian group.

Proof. Let α be the simple root corresponding to the fundamental weight ω. Consider the Z-
grading on g induced by α as in (1.1.2). The non-zero component of highest grade corresponds
to the coefficient mα(ρ) of α in the longest root ρ. Moreover, the only p-submodule of g/p =
g−1⊕g−2⊕ . . . g−mα(ρ) is g−1. Thus the equivalence among 1 , 2 and 3 is straightforward. The
equivalence between 1 and 3 is proved in [RRS92, Lemma 2.2].

The above proposition and Example 1.3.9 imply the following characterization of cominuscule
varieties.

Corollary. Let G/P be a projective rational homogeneous variety defined by a maximal parabolic
subgroup P . The following facts are equivalent:

1. The variety G/P is cominuscule;

2. The tangent bundle T (G/P ) is an irreducible P -homogeneous bundle.

In Table 1.3 we list all the cominuscule varieties together with their tangent bundles. We
denote by U both the rank-k universal bundle on the Grassmannian Gr(k,N + 1) and, when
N + 1 = 2M , its pullbacks on the Lagrangian Grassmannian LG(M, 2M) (cf. Example 1.3.3)
and on the Spinor varieties S±

M (cf. Sec. 3.3); Q (italic style) is the rank-(N + 1− k) quotient
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bundle on the Grassmannian Gr(k,N + 1); Qm (non-italic style) is the m-dimensional quadric
in Pm+1; the variety OP2 := E6/P1 is called Cayley plane; V D5

ω5 is (one of) the half-spin
representation of type D5 (cf. Sec. 3.2).

Dynkin G cominuscule weights G/P T (G/P )
AN SLN+1

ωk
Gr(k,N + 1) U∨ ⊗Q

BN Spin2N+1
ω1

Q2N−1 U∨ ⊗ (U⊥/U)

CN Sp2N
ωN

LG(N, 2N) Sym2 U∨

DN Spin2N
ω1

Q2N−2 U∨ ⊗ (U⊥/U)

DN Spin2N

ωN−1

ωN

S+
N , S−

N

∧2 U∨

E6 E6
ω1 ω6

OP2 V D5
ω5 =

∧odC5

E7 E7
ω7

E7/P7 V E6
ω1

Table 1.3: Cominuscule weights, cominuscule varieties and their tangent bundles.

Remark 1.4.2. The varieties Gr(3, 6), LG(3, 6), S±
6 and E7/P7 are known as Legendrian va-

rieties, while OP2 is a Severi variety. They fit in the third and second row respectively of the
Freudenthal’s magic square (Table 1.4), which has been studied in detail by J.M. Landsberg
and L. Manivel in [LM01; LM07].

ν2(Q1) P(TP2) LG(2, 6) OP2
0

ν2(P2) P2 × P2 Gr(2, 6) OP2

LG(3, 6) Gr(3, 6) S±
6 E7/P7

F ad4 Ead6 Ead7 Ead8

Table 1.4: Freudenthal’s magic square.

In the above table, Gad denotes the adjoint variety of G, that is the unique closed orbit in P(g)
under the adjoint action. The fourth row contains some adjoint varieties, while the third row
(the Legendrian one) is given by the varieties of lines through a point of the adjoint variety in
the same column. The second row contains the Severi varieties, which have the property that
a generic hyperplane section is still homogeneous: such hyperplane sections give the first row.



Chapter 2

The geometry of tensors

2.1 Secant varieties and identifiability
Our main references about the geometry of tensors are [Lan12; Ber+18; OR20]. In this

section we recall some notions and results from the theory of tensor decomposition.
We work over the complex field C.

Secant varieties. Given X ⊂ PM an irreducible non-degenerate projective variety, the X-
rank of a point p ∈ PM , denoted by rX(p), is the minimum number of points of X whose span
contains p. The r-th secant variety σr(X) of X in PM is defined as the Zariski closure of the
set σ◦

r (X) := {p ∈ PM : rX(p) ≤ r} ⊂ PM of points of rank at most r, i.e.

σr(X) := σ◦
r (X) = {p ∈ PM : rX(p) ≤ r} ⊂ PM .

The border X-rank of a point p ∈ PM , denoted by brX(p), is the minimum integer r such that
p ∈ σr(X). Although computing the dimension of secant varieties is a hard problem in general,
the following inequality always holds:

dim σr(X) ≤ expdim σr(X) := min{r(dimX + 1)− 1,M} ,

where the right-hand side is called expected dimension of the secant variety. This is a straight-
forward consequence of the celebrated Terracini’s Lemma.

Terracini’s Lemma. In the above notation, let p1, . . . , pr ∈ X be r distinct general points and
let q ∈ ⟨p1, . . . , pr⟩ ⊂ σ◦

r (X). Then

Tqσr(X) = ⟨Tp1X, . . . , Tpr
X⟩ .

If dim σr(X) ⪇ expdim σr(X), then the secant variety σr(X) is said to be defective. We say
that σr(X) overfills the ambient space if dim σr(X) = M ⪇ r(dimX + 1)− 1, while it perfectly
fills the ambient space if dim σr(X) = M = r(dimX + 1)− 1. The latter is said perfect case.

13
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In the above notation, quite often one refers to points in PM as to “tensors” and to the
points of X–rank 1 (i.e. points in X) as to “simple (or decomposable) tensors”. As the chain
of secant varieties to X always stabilizes at PM , it is quite common to look at points in X as
to “building blocks” for the whole space PM .

This general theory comes from a more concrete setting, motivating the choice of the word
“tensor”. Indeed, the most basic example is the one of matrices, for which the ambient space
PM = P(Cn ⊗Cm) is given by all n×m matrices, the variety X = Seg(Pn−1 × Pm−1) is given
by rank-1 matrices and the secant variety σr(X) is given by the matrices of rank less or equal
than r. Although basic, this is a “degenerate” case in which rank and border rank coincides.

However, the situation gets more complicated (and more interesting) when considering tensor
spaces of higher order d ≥ 3 (i.e. with d tensor entries) C(n1,...,nd) := Cn1 ⊗ . . . ⊗ Cnd . An
element f ∈ C(n1,...,nd) is said to be a tensor of format (n1, . . . , nd) (and order d). Ten-
sors of the form f = v1 ⊗ . . . ⊗ vd ∈ C(n1,...,nd) for some vi ∈ Cni are said decompos-
able or simple or rank-1: the set of projective classes of such elements is the Segre vari-
ety Seg(n1, . . . , nd) := Seg(Pn1−1 × . . . × Pnd−1) ⊂ P(C(n1,...,nd)). Clearly, any element
f ∈ C(n1,...,nd) can be written as sum of decomposable elements, and the notion of rank is
quite immediate as previous X-rank where X = Seg(n1, . . . , nd).

Other examples of tensors which are ubiquitous in the literature are the space of symmet-
ric tensors Symd Cn whose “symmetric rank”-1 elements define the degree–d Veronese variety
νd(Pn−1) (cf. Example 1.3.5), and the space of skewsymmetric tensors

∧k Cn whose “skewsym-
metric rank”-1 elements give the Grassmannian Gr(k, n) (cf. Example 1.3.1). More in general,
from Sec. 1.3 we know that any (projective) rational homogeneous variety G/P embedded in
an irreducible representation V Gλ is a rank-1 variety.

Identifiability. For any p ∈ PM with rX(p) = r, the decomposition locus of p is the set of all
r-tuples of points of X giving a minimal (i.e. length-r) decomposition of p

DecX(p) := {(p1, . . . , pr) | pi ∈ X, p ∈ ⟨p1, . . . , pr⟩, r = rX(p)} ⊂ Xr
/Sr

,

where Xr
/Sr

denotes the symmetric quotient of Xr by the symmetric group Sr acting on r

elements. An element (p1, . . . , pr) ∈ DecX(p) is called a decomposition of p. A point p is
identifiable if there exists a unique decomposition of p, i.e. DecX(p) is a singleton. Otherwise
one says that p is unidentifiable.
For any subset Y ⊂ PM , we say that Y is (un)identifiable if any point of Y is so. In particular,
an orbit is (un)identifiable if and only if a representative of it is so.

Tangential-identifiability The tangential variety of X in PM is the union of all lines in PM

which are tangent to X, i.e. it is the set of all tangent points to X

τ(X) :=
⋃

p∈X
TpX ⊂ PM .
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In particular, X ⊂ τ(X) ⊂ σ2(X). Moreover, from Zak’s key result [Zak93, Theorem 1.4] it
holds that either dim τ(X) = 2 dimX and dim σ2(X) = 2 dimX + 1, or τ(X) = σ2(X).

Definition 2.1.1. A tangent point q ∈ τ(X) is tangential-identifiable if it lies on a unique
tangent line to X, or equivalently if there exists a unique p ∈ X such that q ∈ TpX. Otherwise
it is tangential-unidentifiable.

We say that an orbit is tangential-(un)identifiable if all of its elements are so.

Definition 2.1.2. Given a tangent point q ∈ τ(X), its tangential-locus is the set of points
p ∈ X such that q ∈ TpX.

Clearly, if q is tangential-identifiable, then its tangential-locus is given by a single point at X.

Hilbert scheme of 2 points. Given X a smooth projective variety of dimension n, the
Hilbert scheme of 2 points Hilb2(X) on X is the scheme of 0-dimensional subschemes of X of
length 2: since X is smooth, Hilb2(X) is smooth too (this is false for Hilbert schemes of higher
lengths). The subschemes in Hilb2(X) are of two types: the reduced subschemes, corresponding
to subsets of distinct points {p, q} ⊂ X, and the non-reduced subschemes supported at only
one point, lying on the boundary and parametrized by points of X along with their tangent
directions (a.k.a. 2-jets), that is {p, v} such that p ∈ X and v ∈ TpX. The Hilbert scheme
Hilb2(X) admits the universal subscheme

X

Φ := {(x,Z) ∈ X ×Hilb2(X) | x ∈ Z}

Hilb2(X)
πX πH

Notice that π−1
H (Z) ≃ Z. The universal subscheme Φ is isomorphic to the blow-up Bl∆(X×X)

of the product X ×X along the diagonal ∆X (see [Ver01, Section 3], [Ull16, Section 1]).

Remark 2.1.3. Let X2
/S2

:= (X×X)/S2 be the symmetric square of X obtained by quotienting
X ×X by the action of the symmetric group acting on two elements and switching the entries
in every pair: it is singular along the diagonal ∆X (which by abuse of notation we denote in
the same way as the diagonal in X × X). The isomorphism Φ ≃ Bl∆(X × X) leads to the
commutative diagram

Hilb2(X) X2
/S2

X ×XBl∆(X ×X)
/S2

Bl

/S2

in which the projection πH : Φ → Hilb2(X) corresponds to the quotient by the S2-action
Bl∆(X ×X)→ Hilb2(X). In particular, the Hilbert scheme of 2 points can be realized as the
blow-up of the symmetric square X2

/S2
along the diagonal, i.e.

Hilb2(X) ≃ Bl∆X
(X2

/S2
) .
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Abstract secant varieties of lines. Motivated by the problem of identifiability and tangential-
identifiability of points in the secant variety of lines, one can consider an incidence variety which
“solves” the unidentifiabilities by distinguishing among the different bisecant or tangent lines on
which each point lies. Such a variety is the 2–nd abstract secant variety. In the literature there
are several (and non–equivalent) definitions of abstract secant varieties. Due to our purposes,
we define the 2–nd abstract secant variety as the smooth variety

Abσ2(X) :=
{

(Z, p) ∈ Hilb2(X)× PM | p ∈ ⟨Z⟩
}
,

where Hilb2(X) is the Hilbert scheme of 2 points on X, and ⟨Z⟩ ⊂ PM denotes the linear span
of Z. The 2–nd abstract secant variety comes with the natural projections onto the two factors
π1 : Abσ2(X)→ Hilb2(X) and π2 : Abσ2(X)→ PM : in particular,

π2 (Abσ2(X)) = σ2(X) .

The fiber of π2 at an identifiable point [a+ b] ∈ σ◦
2(X) is given by just the reduced subscheme

{[a], [b]} ⊂ X, while the fiber at a tangential-identifiable point [q] ∈ τ(X) such that [q] ∈ T[x]X

is just the 2–jet {[x], [q]} ∈ Hilb2(X). More in general, the fiber at a given point p ∈ σ◦
2(X)

coincides with the decomposition locus of p. On the other hand, the projection π1 onto the first
factor is a P1–fibration, i.e. fibers are isomorphic to projective lines.

Remark 2.1.4. With this definition, Abσ2(X) is smooth (as Hilb2(X) is so) and closed. How-
ever, different definitions of the 2–nd abstract secant variety may require to take the closure,
and may even be singular. For instance, if one replaces the Hilbert scheme by the product
X × X, then one needs to take the closure and gets a smooth variety. On the other hand,
one can also replace Hilb2(X) by the symmetric square X2

/S2
:= (X × X)/S2: in this case,

again the closure is needed but the variety is singular along the preimage of the diagonal via
the projection onto the first factor.

2.2 Apolarity Theory: from classical to nonabelian
Apolarity Theory is a very rich toolbox for studying several properties of tensors: historically

it was born in the setting of symmetric tensors [IK99] and then spread to wider classes of
varieties [Arr+21; LO13; Sta23]. We assume notation and arguments from previous sections.

Classical apolarity. Given a degree–d homogeneous polynomial (i.e. symmetric tensor)
f ∈ Symd CN+1, the Waring decomposition problem consists in finding a minimal decomposition
(i.e. as many summands as the symmetric rank) of f as sum of d–powers of linear forms (i.e.
rank–1 symmetric tensors):

f =
r∑

i=1
ℓdi , ℓi ∈ CN+1 , .
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In the language from Sec. 2.1, this is equivalent to asking for which r ∈ N the point [f ] ∈
P(Symd CN+1) lies in the set σ◦

r (νd(PN )) \ σ◦
r−1(νd(PN )). A problem of great interest, both

in pure and applied mathematical areas, is whether a minimal Waring decomposition of f is
either unique (i.e. f is identifiable) or there are either finitely or infinitely many of them.

Consider the dual space Symd(CN+1)∨, whose elements can be seen as degree–d homogeneous
derivations. Given f ∈ Symd CN+1, for any h ≤ d the pairing

Ch,d−h : Symd CN+1 ⊗ Symh(CN+1)∨ → Symd−h CN+1

induces the h-th catalecticant map of f

Ch,d−h
f : Symh(CN+1)∨ −→ Symd−hCN+1

∂ 7→ ∂(f)
.

The apolar ideal of f is the ideal of the graded algebra Sym•(CN+1)∨

(f)⊥ :=
{
g ∈ Sym•(CN+1)∨ | g(f) = 0

}
=
⊕

h≥0
ker
(
Ch,d−h
f

)
,

where we also admit the values h ≥ d for which ker(Ch,d−h
f ) = Symh(CN+1)∨. The apolar ideal

plays a central role in the following key result in Apolarity Theory [IK99].

Apolarity Lemma. Let f ∈ Symd CN+1 be a degree–d homogeneous polynomial and let
ℓ1, . . . , ℓr ∈ CN+1 be r distinct linear forms. Then

f =
r∑

i=1
ℓdi ⇐⇒ I([ℓ1], . . . , [ℓr]) ⊂ (f)⊥ .

Roughly, Apolarity Lemma allows to look for decompositions of f among the saturated 0–
dimensional ideals inside (f)⊥.

Remark 2.2.1. As the pairing Ch,d−h is SLN+1–equivariant, one can read it in terms of rep-
resentations as V AN

dω1
⊗ (V AN

hω1
)∨ ≃ V AN

dω1
⊗ V AN

hωN
→ V AN

(d−h)ω1
. As there is only one copy of the

irreducible module V AN

(d−h)ω1
as summand in the tensor module on the left-hand side, by Schur’s

Lemma it follows that the map Ch,d−h is the unique (up to scalars) SLN+1–equivariant map
between the two above modules. Since Symd CN+1 = H0(PN ,O(d))∨, another interpretation
of the map Ch,d−h comes from the natural contraction map between spaces of global sections of
line bundles on PN : indeed, the classical apolarity is a special case of the nonabelian apolarity
which we introduce later in this section.

Skewsymmetric apolarity. An analog of the h-th catalecticant map from the classical ap-
olarity for skewsymmetric tensors is the following [Arr+21, Def. 4]. We denote decompos-
able elements by vI = v{i1,...,ik} = vi1 ∧ . . . ∧ vik ∈

∧k CN+1 and their dual elements by
wJ = w{j1,...,jk} = w1 ∧ . . .∧wk ∈ ∧k(CN+1)∨. For any h ≤ k and any rank–1 skewsymmetric
tensor vI ∈

∧k CN+1, one considers

Ch,k−h
vI :

∧h(CN+1)∨ → ∧k−h CN+1

wJ 7→ (wJ) · (vI)
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where
(wJ) · (vI) =

∑

S∈(I
h)
sign(S) det

(
wjp(vsq )

)
vI\S

for S varying among the (ordered) subsets of h elements in I, sign(S) being the sign of the per-
mutation that sends the sequence {i1, . . . , ik} to the sequence {s1, . . . , sh, I \S}, and

(
wjp(vsq

)
)

being the h × h matrix with J-indexed rows and S-indexed columns. Then the skewapolarity
action is defined by extending by linearity the above map to the bilinear map

Ch,k−h :
k∧
CN+1 ⊗

h∧
(CN+1)∨ −→

k−h∧
CN+1 . (2.2.1)

The restriction Ch,k−h
f ∈ Hom(

∧h(CN+1)∨,
∧k−h CN+1) are called skew-catalecticants. Given

f ∈ ∧k CN+1 one defines its orthogonal with respect to the skew-apolar action

f⊥ :=
{
g ∈

h≤N+1∧
(CN+1)∨ | g · f = 0

}
.

Moreover, given r decomposable elements vi = vi,1 ∧ . . . ∧ vi,k ∈ Gr(k,N + 1) for i ∈ [r] corre-
sponding to the k–dimensional subspaces Hvi

⊂ CN+1, one defines I(v1, . . . ,vr) :=
⋂
i∈[r] H

⊥
vi

and by I(v1, . . . ,vr)k := I(v1, . . . ,vr) ∩
∧k CN+1 its k–degree component. There is a result

similar to the Apolarity Lemma holds [Arr+21, Lemma 12].

Skew-apolarity Lemma (Arrondo-Bernardi-Marques-Mourrain). In the above nota-
tion, the following are equivalent:

(i) f =
∑
i∈[r] vi;

(ii) I(v1, . . . ,vr) ⊂ f⊥;

(iii)
(
I(v1, . . . ,vr)

)
k
⊂ (f⊥)k.

Remark 2.2.2. Similarly to Remark 2.2.1, the skew-apolarity action can be interpreted in
terms of SLN+1–representations as the SLN+1–equivariant map V AN

ωk
⊗ V AN

ωN+1−h
→ V AN

ωk−h
.

Again, by Schur’s Lemma one can prove that this map is uniquely determined (up to scalars).
Moreover, also in this case one can translate everything in the language of vector bundles, since∧k CN+1 = V AN

ωk
≃ H0(Gr(k,N + 1),O(1))∨.

Nonabelian apolarity The classical apolarity action and the skew-apolarity action are par-
ticular cases of a more general apolarity, namely the nonabelian apolarity, introduced at first in
[LO13, Section 1.3]. Let X ⊂ Pn be a projective variety and let L be a very ample line bundle
on X giving the embedding X ⊂ Pn = P(H0(X,L)∨). Let E be a rank-e vector bundle on X

such that H0(X, E∨ ⊗ L) is not trivial, where E∨ denotes the bundle dual to E . The natural
contraction map

H0(X, E)⊗H0(X, E∨ ⊗ L) −→ H0(X,L)
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leads to the morphism A : H0(X, E)⊗H0(X,L)∨ −→ H0(X, E∨⊗L)∨ and, after fixing a given
f ∈ H0(X,L)∨, one gets the linear map

Af : H0(X, E) −→ H0(X, E∨ ⊗ L)∨

defined as Af (s) := A(s ⊗ f) for any s ∈ H0(X, E), and called nonabelian apolarity action.
Let H0(X, IZ ⊗ E) and H0(X, IZ ⊗ E∨ ⊗ L) be the spaces of global sections vanishing on a
0-dimensional subscheme Z ⊂ X, and let ⟨Z⟩ ⊂ H0(X,L)∨ be the linear span of Z. For a proof
of the following result we refer to [LO13, Proposition 5.4.1].

Proposition 2.2.3 (Landsberg-Ottaviani). Let f ∈ H0(X,L)∨ and let Z ⊂ X be a
0-dimensional subscheme such that f ∈ ⟨Z⟩. Then it holds H0(X, IZ ⊗ E) ⊆ kerAf and
H0(X, IZ ⊗ E∨ ⊗ L) ⊆ ImA⊥

f .

It is worth remarking that the above result holds for non-reduced subschemes Z ⊂ X too.
The schematic non-reduced version of the nonabelian apolarity has already been considered
in [OR20, Theorem 6.10] for Veronese varieties, and more generally in [Ga l17, Proposition 7].
In the classical apolarity, the case of minimal subschemes is considered with respect to cactus
varieties and cactus rank [BB14; BR13], while for non-minimal subschemes see [BT20]. Finally,
for reduced subschemes we recall the following result [OO13, Proposition 4.3].

Proposition 2.2.4 (Oeding-Ottaviani). Let f ∈ H0(X,L)∨ and let Z ⊂ X be a 0-dimensional
reduced subscheme of length r, minimal with respect to the property f ∈ ⟨Z⟩. Assume that
RkAf = r · Rk E. Then it holds H0(X, IZ ⊗ E) = kerAf and H0(X, IZ ⊗ E∨ ⊗ L) = ImA⊥

f .
In particular, Z is contained in the common zero locus of kerAf and ImA⊥

f .

2.3 Hamming distance on projective varieties
We introduce a notion of distance between points of a projective variety with respect to its

embedding. The name “Hamming” comes from the similarity with the Hamming distance in
Code Theory, which measures how much two code arrays differ. This notion has already

appeared in [CGG05; BDD07; AOP12].

Definition 2.3.1. Let X ⊂ PM be an irreducible projective variety. The Hamming distance
d(p, q) between two points p, q ∈ X is the minimum number of lines in PM which are fully
contained in X and connect p to q, that is

d(p, q) := min {r | ∃p1, . . . , pr−1 ∈ X s.t. L(pi, pi+1) ⊂ X, i = 0 : r − 1}

where p0 = p and pr = q and L(pi, pi+1) is the line passing through pi and pi+1.

In particular, d(p, q) = 0 if and only if p = q, while d(p, q) = 1 if and only if L(p, q) ⊂ X and
p ̸= q. The maximum Hamming distance possible between points of X is called the diameter
of X:

diam(X) := max {d(p, q) | p, q ∈ X} .
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Remark 2.3.2. Given G a group, W a G–representation and X ⊂ P(W ) a variety which
is invariant under the G-action induced on P(W ), then the G-action preserves the Hamming
distance between points in X, that is d(g · p, g · q) = d(p, q).

Remark. As any generalized flag variety G/P is intersection of quadrics, for any two distinct
points p, q ∈ G/P by Bèzout one gets d(p, q) ≥ 2 if and only if L(p, q) ∩ (G/P )) = {p, q}.

Remark. For cominuscule varieties the Hamming distance coincides with the minimum possible
degree of rational curves passing through the two points [Buc+13, Lemma 4.2]. For non-
cominuscule varieties this is not true in general (a counterexample is given in Sec. 6.2).



Chapter 3

Diving into spinors

3.1 Spin groups from Clifford algebras
Spin groups are known as the universal double coverings of the special orthogonal groups. This

section is devoted to construct algebraically spin groups starting from Clifford algebras.
We refer to [Pro07, Secc. 5.4, 5.5].

Clifford algebras. Let V be an N -dimensional complex euclidean space endowed with a non-
degenerate quadratic form q ∈ Sym2 V ∨. We denote the norm and the inner product defined
by q as q(v) = ∥v∥2 and q(v, w) respectively. We recall the polarization formula 2q(v, w) =
q(v+w)− q(v)− q(w). Given T (V ) =

⊕
k≥0 V

⊗k the graded tensor algebra over V , one defines
the Clifford algebra of q over V as the quotient algebra

Clq(V ) := T (V )
(v⊗2 − q(v)) .

We denote by v · w (or simply, vw) the ring product in Clq(V ): for any v, w ∈ V ,

v · w + w · v = (v + w)2 − v2 − w2 = q(v + w)− q(v)− q(w) = 2q(v, w) .

In particular, orthogonal elements in V anticommute in Clq(V ): v ⊥ w =⇒ v · w = −w · v.
Although the ideal I = (v⊗2− q(v)) is not homogeneous, it is of even degree and it decomposes
as I0 ⊕ I1, where I0 is the even-degree component and I1 the odd-degree one. It follows that
the quotient algebra Clq(V ) is Z/2Z-graded with graded decomposition

Clq(V ) = T ev(V )
I0

⊕ T od(V )
I1

= Cl+q (V )⊕ Cl−q (V ) .

The [0]2–degree component Cl+q (V ) is called even Clifford algebra of q over V .

It is useful to give a functorial definition for Clifford algebras.

21
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Universal property. The Clifford algebra Clq(V ) of q over V is the algebra with the following
universal property: for any algebra R such that V ⊂ R and for any linear map ϕ : V → R such
that ϕ(v)2 = q(v) · 1R, there exists a unique algebra homomorphism ψ : Clq(V ) → R making
the following diagram commuting

V R

Clq(V )

⟲

ϕ

i ψ

Remark. By functoriality, for any orthogonal transformation of vector spaces f : (V, q) →
(V ′, q′) there is an algebra homomorphism f∗ : Clq(V ) → Clq′(V ′). This also leads to the
identification of the orthogonal group as subgroup of the automorphism group of the Clifford
algebra: O(V, q) < Aut(Clq(V )).

Given (e1, . . . , eN ) a q–orthogonal basis of V , then (ei1 · · · eik | k ≥ 0, i1 < . . . < ik) is a basis
of Clq(V ) [Pro07, Sec. 5.4.1, Lemma 1]: in particular, dim Clq(V ) = 2N . As dimensions may
suggest, Clifford algebras are strictly related to exterior algebras. Indeed, there is a canonical
isomorphism of vector spaces [LM89, Sec. 1.1, Proposition 1.3]

∧
V

≃−→ Clq(V )
v1 ∧ . . . ∧ vk 7→ 1

k!
∑
σ∈Sk

(−1)σvσ(1) · · · vσ(k)
. (3.1.1)

Remark. One can always reduce to study Clifford algebras over even-dimensional vector spaces.
Indeed, given dimV = 2N + 1 and (e1, . . . , e2N+1) a q–orthonormal basis of V , the element
c = e1 · · · e2N+1 is central in Clq(V ) and c2 = (−1)N [Pro07, Sec. 5.4.1, Lemma 2]. Since
e2N+1 = e2Ne2N−1 · · · e2e1c, one has Clq(V ) = Clq(⟨e1, . . . , e2N ⟩C) + Clq(⟨e1, . . . , e2N ⟩C) · c. In
particular, as (−1)N has a square root in C, the following isomorphism holds

Clq(V ) ≃ Clq(⟨e1, . . . , e2N ⟩C)⊕ Clq(⟨e1, . . . , e2N ⟩C) . (3.1.2)

Clifford multiplication. In respect of the previous remark, we assume dimV = 2N . Con-
sider a hyperbolic standard basis (e1, . . . , eN , f1, . . . , fN ) of V such that q is described by the
symmetric matrix

Q =
[

0 IN

IN 0

]
∈ Sym2 C2N .

Then V decomposes as V = E ⊕ F , where E = ⟨e1, . . . , eN ⟩C and F = ⟨f1, . . . , fN ⟩C. In
particular, E and F are two fully isotropic subspaces of V (i.e. E = E⊥ and F = F⊥) of
maximal dimension ⌊ 2N

2 ⌋ = N . Up to isomorphism, we identify F = E∨ and V = E ⊕E∨: via
this identification, it holds q

(
(v, φ)

)
= φ(v) for any v ∈ E and φ ∈ E∨.

Consider the linear maps
µ : E −→ End(

∧
E)

v 7→ v ∧ •
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λ : E∨ −→ End(
∧
E)

φ 7→
(
v1 ∧ . . . ∧ vk 7→

∑k
l=1(−1)l−1φ(vl)v1 ∧ . . . ∧ v̂l ∧ . . . ∧ vk

) (3.1.3)

A straightforward count shows that µ(v)2 = λ(φ)2 = 0 and µ(v)λ(φ) + λ(φ)µ(v) = φ(v) · id.
Hence the linear map µ+ λ : E ⊕ E∨ → End(

∧
E) is such that

(µ+ λ)(v, φ)2 = (µ(v) + λ(φ))2 = φ(v) = q
(
(v, φ)

)
,

that is, by the universal property of Clifford algebras, there exists an algebra homomorphism
(actually, an isomorphism [Pro07, Sec. 5.4.1, Theorem 2 ])

θ : Clq(V ) = Clq(E ⊕ E∨) ≃−→ End(
∧
E) . (3.1.4)

From (3.1.2) and (3.1.4), it follows that

Clq(C2N+1) ≃ Mat2N (C)⊕Mat2N (C) , Clq(C2N ) ≃ Mat2N (C) . (3.1.5)

In particular, Clq(V ) has centre

Z(Clq(V )) =




C if dimV even
C + C · c ≃ C⊕ C if dimV odd

.

Remark. The isomorphisms above hold since we are over an algebraically closed field. We
refer to [Pro07, Sec. 5.4.2] for details over more general fields.

The contraction map λ (3.1.3) and the isomorphism (3.1.1) lead to a nice description of the
multiplication in the Clifford algebra, which we call Clifford multiplication. As E = E⊥, the
map λ extends to V = E ⊕ E∨ trivially, and for any v ∈ V and x ∈ Clq(V ), via the vector
space isomorphism Clq(V ) ≃ ∧V , it holds

v · x ≃ v ∧ x+ λ(v)(x) . (3.1.6)

Even Clifford algebras. Now assume V of dimension dimV = N + 1, endowed with a non-
degenerate quadratic form q ∈ Sym2 V ∨. Let (c, e1, . . . , eN ) be a q–orthogonal basis of V and
set V ′ = ⟨e1, . . . , eN ⟩C: then V = C · c⊕ V ′. Let q′ ∈ Sym2(V ′)∨ be the restriction of q to V ′.
Given γ := c2 = q(c) ∈ C×, one can construct an algebra isomorphism between the Clifford
algebra of −γq′ on V ′ and the even Clifford algebra of q on V [Pro07, Sec. 4.4, Proposition 1]

f̃ : Cl−γq′(V ′)→ Cl+q (V ) . (3.1.7)

Spin groups. Let V be a complex vector space and let q ∈ Sym2 V ∨ be a quadratic form
on it. Let Clq(V ) be the Clifford algebra of q over V and let Clq(V )× be the multiplicative
subgroup given by the invertible elements in the Clifford algebras. Clearly, Clq(V )× acts by
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conjugacy on Clq(V ). One defines the Clifford group Γ(V, q) to be the normalizer in Clq(V )×

of V
Γ(V, q) :=

{
x ∈ Clq(V )× | xV x−1 = V

}
.

Let Γ+(V, q) = Γ(V, q) ∩ Cl+q (V ) be the intersection between the Clifford group and the even
Clifford algebra. Given x ∈ Γ(V, q), the conjugacy endomorphism conjx : v 7→ xvx−1 on V is
orthogonal: indeed, since v2 = q(v), it holds q(xvx−1) = (xvx−1)2 = xv2x−1 = q(v). Thus one
has the group homomorphism

conj : Γ(V, q) −→ Oq(V )
x 7→

(
conjx : v 7→ xvx−1) .

Notice that, for any v ∈ V such that q(v) ̸= 0, v is invertible and it holds v−1 = v
q(v) . Moreover,

given v, w ∈ V with v invertible, one has

conjv(w) = vwv−1 = (2q(v, w)− wv)v−1 = 2q(v, w)
q(v) v − w = −ρv(w) ,

where ρv is the orthogonal reflection with respect to the hyperplane v⊥. This implies that any
x = v1 · · · vk ∈ Γ(V, q) induces a product of k reflections. In particular, any x = v1 · · · v2k ∈
Γ+(V, q) (in the even Clifford algebra) induces an even product of reflections, hence it induces
a special orthogonal transformation, that is

conj : Γ+(V, q) −→ SOq(V ) .

Remark. By the Cartan-Dieudonné theorem, any special orthogonal trasnformation is an even
product of reflections, thus the conjugacy map above is surjective. Moreover, if dimV is even,
then conjv = −ρv is in Oq(V ) \ SOq(V ) and the map Γ(V, q) → Oq(V ) is surjective too, while
for dimV odd the image is SOq(V ) [Pro07, Sec. 5.5, Proposition 1].

Let x ∈ ker(conj) ⊂ Γ(V, q): then xvx−1 = v for any v ∈ V and, since V generates the
Clifford algebra, it means that x ∈ Z(Clq(V )). Thus we have the exact sequence

1 −→ Z(Clq(V ))× −→ Γ(V, q) −→ Oq(V ) .

Remark. For dimV even, we know that Z(Clq(V ))× = C×. On the other hand, for dimV

odd the map Γ(V, q)→ Oq(V ) has image SOq(V ), thus any element x ∈ Γ(V, q) is of the form
x = av1 · · · v2h for a ∈ Z(Clq(V ))× and v1, . . . , v2h reflections. In particular, if x ∈ Γ+(V, q)
then a ∈ C×.

The above remark implies that the restriction of the latter exact sequence to the even Clifford
group Γ+(V, q) leads to the short exact sequence

1 −→ C× −→ Γ+(V, q) −→ SOq(V ) −→ 1 . (3.1.8)

independently from the parity of dimV .
For any x = v1 · · · vk ∈ Γ(V, q), one defines its spinor norm as

N(x) = xx∗ = q(v1) · · · q(vk) ∈ C× ,
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where ∗ is the involution on Clq(V ) given by (v1 · · · vk)∗ = vk · · · v1. When restricted to the even
Clifford group, the spinor norm induces a group homomorphism N : Γ+(V, q) → C×, whose
kernel is the spin group

Spinq(V ) :=
{
x ∈ Γ+(V, q) | N(x) = 1

}
.

If V = CN , we write SpinqN for the spin group Spinq(CN ).

Remark. The spin group Spinq(V ) is a double covering of SOq(V ): in particular, they share
the same Lie algebras

Lie(Spinq(V )) ≃ soq(V ) ≃
2∧
V .

Indeed, for any x = v1 · · · v2k ∈ Γ+(V, q), there exists a ∈ C such that N(ax) = a2N(x) = 1,
hence ax ∈ Spin(V ). It follows that the map conj in the short exact sequence (3.1.8) restricted
to Spinq(V ) is still surjective onto SOq(V ). Moreover, for any a ∈ C×, it holds N(a) = a2 = 1
if and only if a = ±1. Thus one gets the short exact sequence

1 −→ {±1} −→ Spin(V ) 2:1−→ SOq(V ) −→ 1 .

Remark. The (complex) spin group Spinq(V ) is simply connected. This is a consequence
(actually, equivalent to) the fact that the fundamental group of SOq(V ) is isomorphic to Z/2Z:
for details we refer to [FH91, Sec. 23.1].

3.2 Spin representations
Following [Pro07, Sec. 11.7] we introduce the spin representations, that is the fundamental
representations of the spin group which are not representations for the special orthogonal

group. In the even dimensional case, the two half-spin representations are known to physicists
as “chiral spin representations”, whose sum gives the “fermionic Fock space” [LH15].

Let V be a M–dimensional complex vector space endowed with a non-degenerate quadratic
form q ∈ Sym2 V ∨. Depending on the parity of dimV , say either M = 2N or M = 2N + 1, we
assume q to be described by the symmetric matrix

either Q = 1
2

[
0 IN

IN 0

]
or Q = 1

2




1
0 IN

IN 0


 ,

where the rescaling by 1
2 is in order to simplify counts. We fix either (e1, . . . , eN , f1, . . . , fN ) or

(u, e1, . . . , eN , f1, . . . , fN ) respectively for the standard hyperbolic basis so that the quadratic
form q is described by the matrix Q with respect to this basis.

Consider the linear subspace of the even Clifford algebra L := ⟨v · w | v, w ∈ V ⟩C ⊂ Cl+q (V )
and the linear map

ϵ :
∧2

V −→ Cl+q (V )
v ∧ w 7→ 1

2 [v, w] = 1
2 (vw − wv)

. (3.2.1)
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Given (e1, . . . , eM ) a q–orthogonal basis of V , we have

ϵ(ei ∧ ej) = 1
2(eiej − ejei) = 1

2 · 2eiej = eiej ,

thus ϵ is injective and we can identify
∧2

V as subset of Cl+q (V ). After this identification, the
subset L is precisely C⊕∧2

V and it is a subalgebra of Cl+q (V ). Moreover, [L,L] =
∧2

V and,
under the adjoint action, L acts as soq(V ) on V [Pro07, Sec. 5.4.4, Proposition 2].

As algebra, Cl+q (V ) is generated by
∧2

V . It follows that any irreducible representation of
Cl+q (V ) is an irreducible representation of Spinq(V ): indeed, given an irreducible representation
of Cl+q (V ), if it was reducible as Spinq(V )-module, then it would be so as soq(V )-module,
that is as

∧2
V -module, hence as C[

∧2
V ]-module; but C[

∧2
V ] = Cl+q (V ) would leads to a

contradiction.
Thus we study the irreducible representations of Cl+q (V ) in order to find the ones of Spinq(V ).
As the Lie algebra of the spin group is so(V ), we talk about “type–BN case” if dimV = 2N + 1
and about “type–DN case” if dimV = 2N .

Type–DN case. Set V = E ⊕ E∨ with dimV = 2N . Then from the isomorphisms (3.1.5)
and (3.1.7) one gets

Cl+q (V ) ≃ Clq′(C2N−1) ≃ Mat2N−1(C)⊕Mat2N−1(C) ,

hence Cl+q (V ) has only two non-isomorphic irreducible representations of dimension 2N−1. Via
the isomorphism (3.1.4) Clq(V ) ≃ End(

∧
E), the even Clifford algebra Cl+q (V ) embeds in

End(
∧
E) and the two irreducible representations correspond to

∧ev
E and

∧od
E.

Definition. The two irreducible Spin2N -modules

S+
N :=

ev∧
E , S−

N :=
od∧
E .

are said half-spin representations. Given (ϵ1, . . . , ϵN ) a suitable orthogonal basis of ⟨ΦDN ⟩R,
the half-spin representations are defined by the fundamental weights of Dynkin type DN

ωN−1 = 1
2 (ϵ1 + . . .+ ϵN−1 − ϵN ) , ωN = 1

2 (ϵ1 + . . .+ ϵN−1 + ϵN ) .

More precisely, given (e1, . . . , eN , f1, . . . , fN ) a hyperbolic basis of V = E ⊕ E∨, the highest
weights, the highest weight vectors and the lowest weight vectors (we denote them by ℓωi

) of
S+
N and S−

N depend on the parity of dimE (hence on the value of dimV modulo 4) as follows:
we denote by 1 the scalar 1 ∈ C in order to remark its property of being a lowest weight vector.

N ≡ 0 (mod 2)
V DN
ωi

vωi ℓωi

ωN−1 S−
N =

∧od
E e[N−1] = e1 ∧ . . . ∧ eN−1 e1

ωN S+
N =

∧ev
E e[N ] = e1 ∧ . . . ∧ eN 1

Table 3.1: Half-spin representations of Spin2N for N ≡ 0 (mod 2).
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N ≡ 1 (mod 2)
V DN
ωi

vωi ℓωi

ωN−1 S+
N =

∧ev
E e[N−1] = e1 ∧ . . . ∧ eN−1 1

ωN S−
N =

∧od
E e[N ] = e1 ∧ . . . ∧ eN e1

Table 3.2: Half-spin representations of Spin2N for N ≡ 1 (mod 2).

Type–BN case. Let V be of dimension 2N + 1 and let (u, e1, . . . , eN , f1, . . . fN ) be a hy-
perbolic basis of it. By setting ai = eiu and bi = ufi, one defines E = ⟨a1, . . . , aN ⟩C and
q′ ∈ Sym2(E ⊕ E∨)∨ (induced by q). From (3.1.4) one gets the isomorphism

Cl+q (V ) = Clq′(E ⊕ E∨) ≃ End(
∧
E) .

In particular,
∧
E is the only irreducible representation of Cl+q (V ) of dimension 2N , hence of

Spin(V ).

Definition. The irreducible Spin2N+1-module

SN =
∧
E .

is said the spin representation of type BN . Given (ϵ1, . . . , ϵN ) a suitable orthogonal basis of
⟨ΦBN ⟩R, the highest weight of the spin representation is the fundamental weight of Dynkin type
BN

ωN = 1
2 (ϵ1 + . . .+ ϵN )

and its highest weight vector is vωN
= a1 ∧ . . . ∧ aN = e1u ∧ . . . ∧ eNu.

Remark. We stress out the fact that in the odd case the even Clifford algebra is isomorphic
to End(

∧
E), while in the even case it just embeds in the latter. Moreover, in the odd case the

subspaces
∧ev

E and
∧od

E are not Cl+q (V )-invariant: indeed, in the notations above, for any
φ ∈ ∧E it holds

u · φ =




φ if φ ∈ ∧ev E
−φ if φ ∈ ∧odE

,

thus for any w ∈ V \ ⟨u⟩C we get by (3.2.1)

(u ∧ w) · φ = 1
2[u,w]φ = 1

2uwφ−
1
2w uφ︸︷︷︸

±φ

= 1
2 (−wu+ q(u,w))φ∓ 1

2wφ

= ∓1
2wφ+ 1

2 q(u,w)︸ ︷︷ ︸
0

φ∓ 1
2wφ = ∓wφ

that is (u ∧ w) · φ = ∓wφ is in
∧ev

E (resp.
∧od

E) if φ is in
∧od

E (resp.
∧ev

E).



28 3. Diving into spinors

Remark 3.2.1 (Duality). From Remark 1.1.1 and the duality of irreducible representations,
one gets the following duality between the two half-spin representations

(
V DN
ωN−1

)∨
= V DN

−w0(ωN−1) =




V DN
ωN

if N ≡ 1 (mod 2)
V DN
ωN−1 if N ≡ 0 (mod 2)

and similarly for V DN
ωN

. On the other hand, the spin representation of type BN is always
self-dual.

Remark (Triality). The case of Dynkin type D4 is very special. Indeed, there exists a subgroup
of automorphism of the Dynkin diagram of type D4 isomorphic to S3 which acts on the three
extremal nodes corresponding to the fundamental weights ω1, ω3, ω4. In particular, it induces
isomorphisms among the three 8–dimensionall irreducible Spin8–representations

V D4
ω1 = C8 , V D4

ω3 = C4 ⊕
3∧
C4 , V D4

ω4 = C⊕
2∧
C4 ⊕

4∧
C4 .

3.3 Spinor varieties
Spinor varieties are the generalized Grassmannians lying in the spin representations. Their

elements are called “pure spinors” and they have been studied since E. Cartan [Car67] and C.
Chevalley [Che54]. Spinor varieties are of interest to physicists as Spin–orbits of the vacuum

state in the fermionic Fock spaces [LH15]. We keep notation from previous sections.

From the theory of rational homogeneous vareities in Sec. 1.3 one can abstractly define
the Spinor varieties to be the Generalized Grassmannians

SN := BN/PωN
= Spin2N+1 ·[vωN

] ⊂ P
(
V BN
ωN

)
,

S+
N := DN/Pω+ = Spin2N ·[vω+ ] ⊂ P

(
S+
N

)
,

S−
N := DN/Pω− = Spin2N ·[vω− ] ⊂ P

(
S−
N

)
,

where ω+, ω− are the fundamental weights ωN−1, ωN of Dynkin type DN depending on the
parity of N , accordingly to Table 3.1 and 3.2: namely, for N even it holds S+

N = DN/ωN and
S−
N = DN/ωN−1, while for N odd one gets S+

N = DN/PωN−1 and S−
N = DN/PωN

. In the
literature, the elements of the above orbits are said pure spinors while the element of the spin
representations are said spinors.

Remark. From Sec. 1.4 we know that the DN -type Spinor varieties S±
N are cominuscule vari-

eties, while the BN -type Spinor varieties SN are not. However, in Theorem 3.3.1 we are going
to see that the Spinor varieties of type BN and DN+1 are projectively equivalent, and that one
can always consider an action of Spin2N+2 on the Spinor variety SN . In particular, SN and
S±
N+1 share the same geometry inside their minimal homogeneous embedddings.
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It is useful to enlight the geometry of the Spinor varieties, by giving a description of them
analogous to the one of the Grassmannian Gr(k,N) as variety of k-planes in CN . More precisely,
we are going to exhibit a correspondence between Spinor varieties and the maximal orthogonal
Grassmannians.

Spinors and isotropic subspaces. Given q a non-degenerate quadratic form, let H⊥ be
the q–orthogonal space to a subspace H: recall that a subspace H is q–isotropic if and only if
H ⊂ H⊥, and for any q–isotropic subspace H ⊂ V it holds dimH ≤ ⌊dimV

2 ⌋. We denote by

OG(N, 2N + 1) :=
{
H ∈ Gr(N, 2N + 1) | H = H⊥}

the connected maximal orthogonal Grassmannian of maximal (i.e. N–dimensional) q–isotropic
subspaces of C2N+1, and by

OG+
q (N, 2N) :=

{
H ∈ Gr(N, 2N) | H = H⊥, dim(H ∩ E) ≡ 0 (mod 2)

}

OG−
q (N, 2N) :=

{
H ∈ Gr(N, 2N) | H = H⊥, dim(H ∩ E) ≡ 1 (mod 2)

}

the two connected components of the maximal orthogonal Grassmannian of q–isotropic N–
planes in C2N .

Let V be a complex vector space of dimension 2N (resp. 2N+1) endowed with q ∈ Sym2 V ∨.
Let V = E ⊕ E∨ (resp. V = E ⊕ E∨ ⊕ Cu) a hyperbolic decomposition of V with respect to
q, where E = ⟨e1, . . . , eN ⟩C and E∨ = ⟨f1, . . . , fN ⟩C are such that q(ei, ej) = q(fi, fj) = 0 and
q(ei, fj) = δij : in particular, E = E⊥ and E∨ = (E∨)⊥.

For any spinor a ∈ ∧E (not necessarily pure), the Clifford multiplication (3.1.6) defines a
map

ψa : V −→ ∧
E

v 7→ v · a . (3.3.1)

We denote by
Ha := ker(ψa) = {v ∈ V | v · a = 0} . (3.3.2)

Remark. For any non-zero spinor a ∈ ∧E (not necessarily pure) the subspace Ha is always
q–isotropic (hence dimHa ≤ ⌊dimV

2 ⌋ = N): indeed, for any v ∈ Ha one has

0 = v · (v · a) = q(v)a a̸=0=⇒ q(v) = 0 .

On the other hand, given H ⊂ V a q–isotropic subspace, one can consider the subspace of∧
E

SH :=
{
b ∈

∧
E | H · b = 0

}

of spinors annihilated by H. For pure spinors the subspaces Ha ⊂ V and SH ⊂
∧
E gives a

correspondence between Spinor varieties and maximal orthogonal Grassmannian.

Lemma. In the above setting and notation:
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1. If a is a pure spinor, then Ha has maximal dimension N .

2. For any q–isotropic subspace H ⊂ V it holds dimSH = 2N−dimH . In particular, if H is
maximal q–isotropic, then dimSH = 1.

3. If H is maximal q–isotropic, then SH = CaH for a certain pure spinor aH .

Proof.

1. [Pro07, Sec. 11.7.2, Theorem 1] It is useful to work with the lowest weight vectors as
they do not depend on the parity of N : indeed, 1 is always the lowest weight vector
of S+

N and V BN
ωN

, while e1 is always the lowest weight vector of S−
N . From the Clifford

multiplication (3.1.6), elements of E acts via wedge-multiplication while elements of E∨

acts as derivations. Thus for any v ∈ V it holds v·1 = 0 if and only if v ∈ E∨, and v·e1 = 0
if and only if v ∈ ⟨e1, f2 . . . , fN ⟩C. In particular, H1 = E∨ and He1 = ⟨e1, f2 . . . , fN ⟩C
are of maximal dimension N .
Now we work with 1 ∈ S+

N but the same argument apply to the other orbits S−
N and SN .

For any pure spinor a ∈ S+
N there exist g ∈ G = Spin(V ) and λ ∈ C× such that a = g ·λ1.

Pick v ∈ Ha. Since by definition Spin(V ) normalizes V , we can consider w ∈ V such that
v = gwg−1 and

0 = v · a = (gwg−1)(g · λ1) = g · (w · λ1) ⇐⇒ w · 1 = 0

that is Ha = gH1g
−1 = gE∨g−1. As conjugation of subspaces preserve dimensions, one

gets dimHa = N .

2. [Bat14, Sec. 3, Theorem 1] Given H q–isotropic, one can complete a basis of it to obtain
a maximal q–isotropic subspace Ĥ giving an equivalent decomposition V = E ⊕ E∨ =
Ĥ ⊕ Ĥ∨. Thus we may assume H = ⟨f1, . . . , fs⟩C ⊂ E∨ for s = dimH. Then a basis of
SH is

(1, ei1 ∧ . . . ∧ eit | t = 1 : N − s, {i1, . . . , it} ⊂ {s+ 1, . . . , N}) ,

hence dimSH =
∑N−s
j=0

(
N−s
j

)
= 2N−s.

3. For any g ∈ Spin(V ) and any q–isotropic subspace H ⊂ V it holds

SgHg−1 =



b ∈

∧
E | gH g−1 · b︸ ︷︷ ︸

=:a

= 0



 =

{
g · a ∈

∧
E | gH · a = 0

}

♣=
{
g · a ∈

∧
E | H · a = 0

}

= g · SH ,

where the equality (♣) holds as g ∈ Clq(V )× is an automorphism of
∧
E. In particular, if

H is maximal q–isotropic, then it is Spin(V )–conjugated to either H1 or He1 (depending
on the parity of dimV , on the parity of N and on the connected component in which H

lies). For instance, if H = gH1g
−1, then aH = λg · 1 for some λ ∈ C×, that is aH is a

pure spinor.
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Remark. We stress out the action of Spin(V ) on Ha and SH (cf. the above proof):

Hg·a = gHag
−1 , SgHg−1 = g · SH .

Theorem. The Spinor varieties S+
N , S−

N and SN are in correspondence with the connected max-
imal orthogonal Grassmannians OG+(N, 2N), OG−(N, 2N) and OG(N, 2N + 1) respectively.
More precisely, the one-to-one correspondence is given by

S+
N ←→ OG+(N, 2N)

[a] −→ Ha

[aH ] := P(SH) ←− H

(3.3.3)

and similarly for the other Spinor varieties.

Proof. The previous lemma shows that pure spinors and maximal q–isotropic subspaces are in
one-to-one correspondence. Moreover, the fact that this correspondence preserves the connected
components (in the sense that pure spinors in S+

N correspond to maximal q–isotropic subspaces
in OG+(N,V )) follows from [Car67, Sec. VI.I.124].

Remark. The map ψa (3.3.1) allows to give equations for Spinor varieties. Indeed, a spinor
a ∈ ∧E is pure if and only if Ha = ker(ψa) has maximum dimension N , hence if and only if
Rk(ψa) ≤ N . Thus pure spinors are determined by the vanishing of the (N + 1) × (N + 1)
minors of ψa.

Parametrization. Being generalized Grassmannians, the Spinor varieties S±
N and SN are

rational varieties. In particular, they are parametrized by skew-symmetric matrices
∧2 CN and

they have dimension
dim S±

N =
(
N

2

)
.

Indeed, given a pure spinor a, up to choosing a Plücker basis, the subspace Ha is defined by the
2N ×N matrix Xa =

[
IN

Ya

]
. Given Q =

[
IN

IN

]
the symmetric matrix defining the quadratic

form q, by isotropicity of Ha it holds 0 = tXa ·Q ·Xa = Ya +tYa, that is tYa = −Ya.

DN+1 − BN projective equivalence. The spin representations S±
N+1 ∈ {V

DN+1
ωN , V

DN+1
ωN+1 }

and SN = V BN
ωN

have both dimension 2N , hence they are isomorphic as vector spaces. Actually,
a stronger result holds.

Theorem 3.3.1. The Spinor varieties S±
N+1 ⊂ P(V DN+1

ωN+1 ) and SN ⊂ P(V BN
ωN

) are projectively
equivalent.

Proof. We describe an isomorphism between S±
N+1 and SN in terms of maximal orthogonal

Grassmannians as follows. Any q′–isotropic subspace W ⊂ C2N+1 has dimension at most N ,
and the set of maximal (i.e. of dimension N) q′–isotropic subspaces is connected. On one hand,
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any q–isotropic subspace W ⊂ C2N+2 of maximal dimension N + 1 restricts to a q′–isotropic
subspace W ′ = W ∩H of dimension at least N , hence of dimension exactly N . On the other
hand, any maximal q′–isotropic subspace W ′ ⊂ C2N+1 lifts to two possible maximal q–isotropic
subspaces of C2N+2, namely W1 = W ⊕CeN+1 and W2 = W ′⊕CfN+1. One concludes that the
maximal ortoghonal Grassmannians OGq′(N, 2N +1) and OG±

q (N +1, 2N +2) are isomorphic.
This isomorphism among pure spinors maps basis elements of

∧• C2N+1 to basis elements of∧ev C2N+2, inducing the aimed projective equivalence.

In respect of Theorem 3.3.1, from now on we only work with the DN–type spin group
Spin(2N) for N even. In particular, we focus on the Spinor variety

S+
N = DN/PωN

⊂ P
(
V DN
ωN

)
= P

(
ev∧
E

)
.

The setting in Table 3.1 is assumed.

Pfaffian coordinates. Let N be even (cf. Table 3.1). Consider the Spinor variety S+
N =

Spin2N ·[vωN
] ⊂ P(

∧ev CN ) where vωN
= e[N ] = e1 ∧ . . . ∧ eN is the highest weight vector. A

neighbourhood of [vωN
] is given by pure spinors [a] such that the subspace Ha is described by

the matrix in Plücker form
[
IN

Ya

]
where Ya ∈

∧2 CN . On the other hand, any skew-symmetric
matrix Y = (yij) ∈

∧2 CN defines in a neighbourhood of [vωN
] the pure spinor (cf. [Man09,

Sec. 2.3])

aY =
(
e1 +

N∑

i=2
y1,ifi

)
∧ · · · ∧

(
eN +

N−1∑

i=1
yN,ifi

)
=

∑

#I even
PfI(Y )e[N ]\I , (3.3.4)

where PfI(Y ) is the pfaffian of the principal submatrix of Y whose rows and columns are
indexed by I, and e[N ]\I = ej1 ∧ . . . ∧ ejN−2r

indexed by the set [N ] \ I = {j1, . . . , jN−2r}.

Remark. The middle-term in the above chain of equations describes the subspace HaY
but it

is not an element of the half-spin representation as the vectors fj ’s appear; on the other hands,
the termn on the right-hand side is an element of

∧ev CN and one can prove the second equality
by multiplying on the right both terms by f1 · · · fN ∈ Cl+q (C2N ).

In particular, after the isomorphism P(S+
N ) ≃ P2N−1−1, one gets the following coordinate

description for pure spinors in a neighbourhood of [vωN
]

S+
n+1 ↪→ P2n−1

[aY ] 7→
[
1 : Pf{i,j}(Y ) : . . . : PfI(Y ) : . . .

] .

From OG+(N, 2N) to S+
N . We assume the notation for V = E ⊕ E∨ as in the previous

paragraphs, for dimV = 2N and N even. Recall that, under these assumptions, the highest
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weight vector [vωN
] corresponds to the maximal isotropic subspace HvωN

= E.
Given H ∈ OG+(N,V ) ∪ OG−(N,V ), we are interested in expliciting the coordinates (in

the standard basis of
∧
E) of the corresponding pure spinor [aH ] ∈ S+

N ∪ S−
N with respect to

the coordinates of a given basis of H. Given (h1, . . . , hN ) a basis of H, via the correspondence
(3.3.3) we know that the pure spinor [aH ] is given by the (unique up to scalars) spinor

aH =
∑

I

βIeI ∈
∧
E

such that hj · a = 0 for all j = 1 : N .
Assume p := dim(H ∩ E) ≡ 0 (mod 2), so that H ∈ OG+(N,V ) and [aH ] ∈ S+

N . Up to
rotations we may assume H = ⟨e1, . . . , ep, gp+1, . . . , gN ⟩C where for all j = p+ 1 : N

gj = fj +
N∑

k=p+1
αkjek , αkj = −αjk , (3.3.5)

where the coefficients αjk define a skew-symmetric matrix A = (αjk) ∈ ∧2 CN−p. Since
[aH ] ∈ S+

N ⊂ P(
∧ev

E), one gets βI = 0 for any I ∈ 2[N ] such that #I is odd. Moreover,
as basis elements of H, the vectors e1, . . . , ep annihilates aH , hence βI = 0 also for any I not
containing [p]. Thus we restrict to consider spinors of the form

aH =
∑

I⊂[N ]\[p] , #I even

βIe[p] ∧ eI .

Proposition 3.3.2. Let p ≡ N ≡ 0 (mod 2). Let H = ⟨e1, . . . , ep, gp+1, . . . , gN ⟩C ∈ OG+(N, 2N),
where gj are as in (3.3.5) and define the matrix A = (αkj) ∈

∧2 CN−p. Then H corresponds
to the pure spinor in S+

N

aH =
∑

I⊂[N ]\[p] , #I even

Pf(AI)e[p] ∧ eI . (3.3.6)

Proof. It is enough to prove that each generator of H annihilates (via Clifford multiplication
(3.1.6)) the above spinor aH . This clearly holds for e1, . . . , ep. Consider the generator gj for
j ∈ [N ] \ [p] fixed. Then

gj · a =




N∑

h=p+1
αhjeh


 ∧ aH + λ(fj)aH

=
N∑

h=p+1

∑

I ̸∋h
αhj Pf(AI)eh ∧ e[p] ∧ eI +

∑

I∋j
Pf(AI)(−1)pos(I,j)+1e[p] ∧ eI\{j}

where: in the first summand one restricts only to subsets I not containing h, since for h ∈ I it
holds eh ∧ eI = 0; in the second summand one restricts only to subsets I containing j since for
j /∈ I it holds λ(fj)(e[p] ∧ eI) = 0; pos(I, j) denotes the position of the index j in the ordered
subset I. Notice that, for h ∈ [N ] \ [p] and t = 0 : N−p

2 − 1 fixed, it holds
∑

I∈([N]\[p]
2t ) : I ̸∋h

αhj Pf(AI)eh ∧ e[p] ∧ eI =
∑

J∈([N]\[p]
2t+1 )

αhj Pf(AJ\{h})(−1)pos(J,h)+1e[p] ∧ eJ
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since for the J ’s not containing h the submatrix AJ\{h} = AJ is of odd size, hence its pfaffian
is zero. By a similar argument, after fixing j ∈ [N ] \ [p] and c = 1 : N−p

2 , one gets
∑

I∈([N]\[p]
2c ) : I∋j

Pf(AI)(−1)pos(I,j)+1e[p]∧eI\{j} =
∑

J∈([N]\[p]
2c−1 )

Pf(AJ∪{j})(−1)pos(J∪{j},j)+1e[p]∧eJ .

Thus one has

gj · a =
N∑

h=p+1

N−p
2 −1∑

t=0

∑

J∈([N]\[p]
2t+1 )

αhj Pf(AJ\{h})(−1)pos(J,h)+1e[p] ∧ eJ +

+

N−p
2 −1∑

c=0

∑

J∈([N]\[p]
2c+1 )

Pf(AJ∪{j})(−1)pos(J∪{j},j)+1e[p] ∧ eJ

=

N−p
2 −1∑

t=0

∑

J∈([N]\[p]
2t+1 )

[
N∑

h=p+1

αhj Pf(AJ\{h})(−1)pos(J,h)+1 + Pf(AJ∪{j})(−1)pos(J∪{j},j)+1

]

︸ ︷︷ ︸
=: ΓJ

e[p] ∧ eJ .

Consider the Heaviside step function

H(x) = 1x>0 =





1 if x > 0
0 otherwise

.

Notice that H(x) = 1−H(−x). Then, for any t = 0 : N−p
2 − 1 and for any subset J ∈

([N ]\[p]
2t+1

)
,

one has

N∑

h=p+1
αhj Pf(AJ\{h})(−1)pos(J,h)+1 =

N∑

h=p+1
(−αjh) Pf(A(J∪{j})\{h,j})(−1)pos(J,h)+1

=
N∑

h=p+1
αjh Pf(A(J∪{j})\{h,j})(−1)pos(J∪{j},h)+H(h−j)

= (−1)pos(J∪{j},j) Pf(AJ∪{j})

where the last equality follows by the recursive equation for the pfaffian (for an index i fixed)

Pf(B) =
∑

j ̸=i
(−1)i+j+1+H(i−j)bij Pf(Bî,ĵ) .

It follows that for all index subsets J it holds

ΓJ = (−1)pos(J∪{j},j) Pf(AJ∪{j}) + (−1)pos(J∪{j},j)+1 Pf(AJ∪{j}) = 0 ,

hence gj · a = 0 for any j ∈ [N ] \ [p]. This concludes the proof.
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3.4 The diameter of Spinor varieties
In this section we describe the Hamming distance between points on Spinor varieties as

codimension of the intersection of their corresponding maximal isotropic subspaces, hence we
determine the diameter of Spinor varieties. These computations have been made before finding
out that the distance on Spinor varieties (as well as on any cominuscule variety) was already

known in [Buc+13, Sec. 4].

In light of Theorem 3.3.1 we assume N to be even and we consider the 2N–dimensional
complex vector space V = E ⊕ E∨ with basis (e1, . . . , eN , f1, . . . , fN ) which is hyperbolic with
respect to the quadratic form q =

∑N
i=1 xiyi. Consider the Spinor variety S+

N ⊂ P(
∧ev

E) being
the closed Spin2N -orbit of the highest weight vector vωN

= e[N ] = e1 ∧ . . . ∧ eN , as well as of
the lowest weight vector ℓωN

= 1.

Let [a], [b] ∈ S+
N be two pure spinors and letHa, Hb ∈ OG+(N,V ) be their corresponding max-

imal q–isotropic subspaces. Consider the line L([a], [b]) = {[λa+µb] | [λ : µ] ∈ P1} ⊂ P(
∧ev

E).
Any point in L([a], [b]) defines via the map (3.3.1) a q-isotropic subspace H[µa+λb] of dimension
dimH[µa+λb] ≤ N . Moreover, Spinor varieties being intersections of quadrics, by Bèzout it
holds either L([a], [b]) ⊂ S+

N or L([a], [b]) ∩ S+
N = {[a], [b]}. In particular, in the former case

[a], [b] have Hamming distance d([a], [b]) = 1 and

L([a], [b]) ⊂ S+
N ⇐⇒ [a+ b] ∈ S+

N ⇐⇒ dimHa+b = N .

If d([a], [b]) = k ⪈ 1, then L([a], [b]) ⊈ S+
N and we look for distinct pure spinors [c1], . . . , [ck−1] ∈

S+
N such that L([cj ], [cj+1]) ⊂ S+

N (or equivalently Hcj+cj+1 ∈ OG+(N,V )) for all j = 0 : k− 1,
where [c0] = [a] and [ck] = [b]. Moreover, since each Hci

has to lie in the same connected
component OG+(N,V ), it holds codimHci

(Hci
∩Hci+1) ≡ 0 (mod 2) for any i = 0 : k − 1. For

simplicity we write Hi for Hci .

Lemma 3.4.1. Let [a], [b] ∈ S+
N be two pure spinors corresponding to the subspaces Ha, Hb ∈

OG+(N,V ). Then
d([a], [b]) = 1 ⇐⇒ dim(Ha ∩Hb) = N − 2 .

Proof. From Remark 2.3.2, the action of Spin2N preserves the Hamming distance between pure
spinors in S+

N : thus we may assume a = vωN
= e[N ] with Ha = He[N] = E.

Let p := dim(E ∩Hb) ≡ 0 (mod 2) and consider a basis (e1, . . . , ep, gp+1, . . . , gN ) of Hb for
gj as in (3.3.5). From Proposition 3.3.2 we know that

b =
∑

I⊂{p+1,...,N}
Pf(AI)e[N ] ∧ eI ,

where A = (αkj) ∈
∧2 CN−p is defined by the coefficients in the gj ’s, and we set e∅ := 1.

If p = dim(E ∩Hb) = N − 2, then we can write b = e[N−2] ∧ (1 + αN−1,N (eN−1 ∧ eN )) and
e[N ] + b = (1 + αN−1,N )e[N ] + e[N−2], hence

He[N]+b = ⟨e1, . . . , eN−2, fN−1 − (1− αN−1,N )eN , fN + (1− αN−1,N )eN−1⟩C ∈ OG+(N,V ) ,
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implying d([e[N ]], [b]) = 1.
Conversely, if d([eN ], [b]) = 1, then E ∩ Hb ⊊ He[N]+b ∈ OG+(N,V ), hence He[N]+b =

⟨e1, . . . , ep, ep+1 . . . , eq, hq+1, . . . , hN ⟩C for some q ≥ p: actually, it has to be q = p, otherwise
He[N]+b ∩ E = He[N]+b ∩ H−e[N] ⊂ He[N]+b−e[N] = Hb would lead to contradiction. Then one
has He[N]+b = ⟨e1, . . . , ep, hp+1, . . . , hN ⟩C for some vectors hj as in (3.3.5) defined by a certain
B ∈ ∧2 CN−p. By Proposition (3.3.2) one gets

e[N ] + b =
∑

I⊂{p+1,...,N}
Pf(BI)e[p] ∧ eI .

Notice that both in b and e[N ] + b the summand e[p] ∧ e∅ = e[p] appears with coefficient 1, thus
it cancels out in the above equation leading to

e[N ] =
∑

∅̸=I⊂{p+1,...,N}

(
Pf(BI)− Pf(AI)

)
e[p] ∧ eI .

If it was p ⪇ N −2, then for any I = {i, j} ⊂ {p+1, . . . , N} the coefficient Pf(BI)−Pf(AI) has
to be zero, hence all the 2×2 pfaffians of A and B would coincide: in particular, by recursiveness
of pfaffians, also the maximum pfaffians Pf(A{p+1,...,N}) and Pf(B{p+1,...,N}) should coincide,
leading to the contradiction e[N ] = 0. Thus it has to be p = N − 2.
This completes the proof.

Proposition 3.4.2. Let [a], [b] ∈ S+
N be two pure spinors with corresponding subspaces Ha, Hb ∈

OG+(N,V ). Then

d([a], [b]) = N − dim(Ha ∩Hb)
2 .

Proof. As in the previous proof, we may assume a = e[N ] and b =
∑
I⊂{p+1,...,N} Pf(AI)e[p]∧eI ,

where A = (αkj) ∈
∧2 Cn+1−p. Then Hb = ⟨e1, . . . , ep, gp+1, . . . , gN ⟩C where p = dim(E∩Hb) ≡

0 (mod 2). Let d([e[N ]], [b]) ≥ 2.
For any j = 1 : N−p

2 consider the pure spinor [cj ] ∈ S+
N corresponding to the maximal

q–isotropic subspace

Hj = ⟨e1, . . . , ep, ep+1, . . . , eN−2j , gN−2j+1, . . . , gN ⟩C ∈ OG+(N,V ) .

Notice that HN−p
2

= Hb so that [cN−p
2

] = [b]. Moreover, for any j = 1 : N−p
2 it holds

dim(E ∩H1) = dim(Hj ∩Hj+1) = N − 2

which by Lemma 3.4.1 is equivalent to d([e[N ]], [c1]) = d([cj ], [cj+1]) = 1: in particular, we get

d([e[N ]], [b]) ≤
N − p

2 = N − dim(E ∩Hb)
2 .

Let d := d([e[N ]], [b]) and assume the thesis holds for d− 1. Consider a minimal sequence of
pure spinors [p1], . . . , [pd−1] ∈ S+

N such that for any j = 0 : d−1 it holds d([pi], [pi+1]) = 1 where
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we set p0 = e[N ] and pd = b, that is dim(Hpj ∩Hpj+1) = 2. By minimality of the sequence and
by inductive hypothesis, it holds

d− 1 = d([e[N ]], [pd−1]) =
N − dim(E ∩Hpd−1)

2 ,

hence dim(E ∩Hpd−1) = N − 2d+ 2. From the Grassmann dimension formula we get

dim(E ∩Hpd−1 ∩Hb) =
= dim(E ∩Hpd−1) + dim(Hpd−1 ∩Hb)− dim

(
(E ∩Hpd−1) + (Hpd−1 ∩Hb)

)

= (N − 2d+ 2) + (N − 2)− dim((E ∩Hpd−1) + (Hpd−1 ∩Hb))
= 2N − 2d− dim((E ∩Hpd−1) + (Hpd−1 ∩Hb)) .

The latter dimension can be a value in {N − 2, N − 1, N}, then one has

N − 2d ≤ dim(E ∩Hpd−1 ∩Hb) ≤ N − 2d+ 2 .

If it was N − 2d+ 1 ≤ dim(E ∩Hpd−1 ∩Hb) ≤ N − 2d+ 2, from the inequality d ≤ N−p
2 already

proven, one would get

N − 2d+ 1 ≤ dim(E ∩Hpd−1 ∩Hb) ≤ dim(E ∩Hb) = p ≤ N − 2d ,

leading to contradiction. It follows that dim(E ∩Hpd−1 ∩Hb) = N − 2d must hold and, from a
similar chain of inequalities as above, one conclude that 2d = N − p, that is the thesis.

It follows straightforward from Proposition 3.4.2 that the maximum possible distance between
two pure spinors [a], [b] ∈ S+

N is realized when Ha ∩ Hb = {0}. Moreover, similar argument
apply to the case of N odd. The following result is now just a corollary.

Theorem 3.4.3. The Spinor variety S±
N ⊂ P(V DN

ωN
) has diameter

diam
(
S±
N

)
=
⌊
N

2

⌋
.

Remark 3.4.4. The Spinor varieties S±
2 ≃ P1 and S±

3 ≃ P3 are linear spaces, thus their diameter
is trivially 1. The Spinor variety S±

4 is isomorphic to the 6-dimensional quadric Q6 ⊂ P7 and
it has diameter 2: this holds for any quadric QN ⊂ PN+1. The first Spinor variety having
diameter at least 3 is S±

6 ⊂ P31.

3.5 Some homogeneous bundles on Spinor varieties

In this section we describe some homogeneous bundles on the Spinor varieties which will be
useful for defining the Clifford apolarity in Sec. 3.6.
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We keep the notation from previous sections. We recall that we may assume N to be even
in light of Theorem 3.3.1 and of the duality between the half-spin representations. In particular,

DN/PN = S+
N ⊂ P

(
V DN
ωN

)
= P

(
ev∧
E

)
.

Consider the half-spin representations V DN
ωN−1 =

∧od
E and V DN

ωN
=
∧ev

E with highest weight
vectors vωN−1 = e[N−1] = e1∧ . . .∧eN−1 and vωN

= e[N ] = e1∧ . . .∧eN−1 respectively: since N
is even, by Remark 3.2.1 both half-spin representations are self–dual. Let V DN

ω1 = V = E ⊕E∨

be the standard representation with highest weight vector vω1 = e1.
Let (ϵ1, . . . , ϵN ) be an orthonormal basis of the vector space ⟨ΦDN ⟩R ≃ RN spanned by the

DN–type root system, so that the simple roots of type DN are of the form

α1 = ϵ1 − ϵ2 , . . . , αN−1 = ϵN−1 − ϵN , αN = ϵN−1 + ϵN ,

while the fundamental weights are

ω1 = ϵ1 , ω2 = ϵ1 + ϵ2 , . . . , ωN−2 = ϵ1 + ϵ2 + . . .+ ϵN−2 ,

ωN−1 = 1
2 (ϵ1 + . . .+ ϵN−1 − ϵN ) , ωN = 1

2 (ϵ1 + . . .+ ϵN−1 + ϵN ) .

The line bundle OS(1). Being a generalized Grassmannian, the Picard group of the Spinor
variety S+

N is monogenic, generated by the very ample line bundle

OS(1) = EωN

defined by the irreducible PN–representation with highest weight ωN . Moreover, by Borel–Weil
Theorem such line bundle gives the minimal homogeneous embedding (cf. Example 1.3.6)

S+
N ↪→ P

(
H0(S+

N ,OS(1))∨) ≃ P
(
V DN
ωN

)
.

After the identification between the Spinor variety S+
N and the maximal orthogonal Grassman-

nian OG+(N, 2N), one gets the inclusion

ι : S+
N → Gr(N, 2N) .

The pull-back via ι of the line bundle OGr(1) on the Grassmannian is related to the line bundle
OS(1) on the Spinor variety as follows:

ι∗OGr(1) = OS(1)⊗2 = OS(2) .

Remark. This relation follows from the fact that the maximal q–isotropic subspaces in Gr(N, 2N)
splits in two isomorphic connected components, and it is classicaly stated as “the line bundle
on the Spinor variety is the square root of the one on the Spinor variety” or also, by abuse of
notation OS(1) = OGr( 1

2 ).
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The dual bundle U∨
S . The pull-back via ι of the bundle U∨

Gr dual to the universal bundle on
the Grassmannian Gr(N, 2N) (see Example 1.3.7) gives the dual bundle

U∨
S = i∗U∨

Gr

on S+
N , defined by the PN–representation of highest weight ω1, hence by Borel–Weil Theorem

it holds
H0 (S+

N ,U∨) ≃
(
V DN
ω1

)∨ = V DN
ω1 ,

where the last equality follows from −w0(ω1) = ω1 (see Remark 1.1.1).

The twisted bundle US(1). Consider the rank–N bundle

US(1) = US ⊗OS(1)

on the Spinor variety S+
N . Notice that the description in Example 1.3.8 fails in this case: indeed,

det(US) = det(ι∗UGr) = ι∗ det(UGr) = ι∗OGr(1) = OS(2) .

However, as a homogeneous bundle, US(1) is defined by a PN–representation whose weights are
of the form λ+ µ as λ and µ vary among the weights defining US and OS(1) respectively. The
line bundle OS(1) has unique weight ωN , while the rank–N bundle US has weights −ϵ1, . . . ,−ϵN :
then the bundle US(1) has weights 1

2 (c1ϵ1+. . .+cN ϵN ) for ci ∈ {±1} such that
∑N
j=1 cj = N−1.

In particular, the highest weight of the PN–representation defining US(1) is 1
2 (ϵ1 + . . .+ ϵN−1−

ϵN ) = ωN−1, and by Borel–Weil’s Theorem we get the global sections

H0(S+
N ,US(1)

)
=
(
V DN
ωN−1

)∨
= V DN

ωN−1 ,

where the last equality follows from Remark 1.1.1 under the assumption that N is even.

3.6 Clifford apolarity
In this section we analyze the nonabelian apolarity in the case of Spinor varieties. For certain
vector bundles, this leads to what we call “Clifford apolarity”. We also exhibit the vanishing

condition of some global sections on Spinor varieties.

We assume the same setting, notation and results from Sec. 3.5. We recall that we
may assume N to be even in light of Theorem 3.3.1 and of the duality between the half-spin
representations.

In light of the global section spaces exhibited in Sec. 3.5, the contraction map H0(S+
N ,U∨)⊗

H0(S+
N ,U(1))→ H0(S+

N ,O(1)) is equivalent to

(
V DN
ω1

)∨ ⊗
(
V DN
ωN−1

)∨
−→

(
V DN
ωN

)∨
,
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which under the assumption ofN even and after the duality of half-spin representations (Remark
3.2.1) coincides with

(E ⊕ E∨)⊗
od∧
E −→

ev∧
E . (3.6.1)

Such map is uniquely determined as Spin(V )-equivariant morphism (up to scalars): this is a
consequence of Schur’s lemma applied to the following result.

Theorem 3.6.1. The irreducible Spin(V )-module
∧ev

E (resp.
∧od

E) appears with multiplic-
ity 1 in the Spin(V )-module V ⊗∧odE (resp. V ⊗∧ev E).

Proof. In light of the natural inclusion SL(E) ⊂ Spin(V ), for any Spin(V )-module W among
the above ones we can consider its restriction as SL(E)-module ResSpin(V )

SL(E) (W ): we lighten up
the notation by simply writing W and specifying its module structure. Since N is even, one
can rewrite the SL(E)–module (E ⊕ E∨)⊗∧odE as

(E ⊕ E∨)⊗
od∧
E =

N−2
2⊕

k=0

(
E ⊗

2k+1∧
E

)
⊕
(
E∨ ⊗

2k+1∧
E

)
.

For each k = 0 : N−2
2 , from Pieri’s formula [Pro07, Sec. 9.10.2], one gets the following decom-

positions into irreducible SL(E)-modules:

E ⊗
2k+1∧

E = S

2k+1︷ ︸︸ ︷
(2, 1, . . . , 1) ⊕

2k+2∧
E , E∨ ⊗

2k+1∧
E = S(

2k+1︷ ︸︸ ︷
2, . . . , 2,

N−2−2k︷ ︸︸ ︷
1, . . . , 1) ⊕

2k∧
E .

where we used that E∨ ≃ ∧N−1
E, C∨ ≃ ∧N E and

∧h
E = 0 for any h ≥ N + 1. Thus in the

decomposition of (E ⊕ E∨)⊗∧odE into SL(E)-modules

V ⊗
od∧
E = C⊕ 2




N−4
2⊕

k=1

2k∧
E


⊕

N∧
E ⊕




N−2
2⊕

k=0
S

2k+1︷ ︸︸ ︷
(2, 1, . . . , 1) ⊕ S(

2k+1︷ ︸︸ ︷
2, . . . , 2,

N−2−2k︷ ︸︸ ︷
1, . . . , 1)




there is only one copy of
∧ev

E, hence there has to be only one copy in the Spin(V )-module
decomposition as well.

By fixing q ∈ ∧ev E, from the map (3.6.1) we get a Spin(V )-equivariant map ψq : (E ⊕
E∨)→ ∧od

E which is unique (up to scalars) by Theorem 3.6.1, thus it coincides with the map
ψq : V → ∧

E defined in (3.3.1). Moreover, the natural contraction (3.6.1) is equivalent to a
map

Φ :
ev∧
E ⊗

od∧
E∨ −→ E ⊕ E∨

which again by Theorem 3.6.1 is uniquely determined as Spin(V )-equivariant morphism: more
precisely, it is the projection onto the unique copy of the irreducible Spin(V )-submodule E⊕E∨.
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Remark 3.6.2. By uniqueness, the map Φ is intrinsically related to the skew-apolarity map
(2.2.1). Consider the splitting in SL(E)-modules

ev∧
E ⊗

od∧
E∨ =

N
2⊕

r=0

N−2
2⊕

s=0

( 2r∧
E ⊗

2s+1∧
E∨
)
.

The map Φ is Spin(V )-equivariant, hence SL(E)-equivariant, so are its restrictions

Φ2r,2s+1 :
2r∧
E ⊗

2s+1∧
E∨ −→ E ⊕ E∨ .

By Schur’s lemma, each restriction Φ2r,2s+1 is non-zero if and only if either E or E∨ appears
as irreducible SL(E)-summand in the tensor product on the left-hand side: this happens if and
only if |2r − (2s+ 1)| = 1. In particular, it holds

Im (Φ2r,2s+1) =





E if 2r = (2s+ 1) + 1
E∨ if 2r = (2s+ 1)− 1
0 otherwise

.

For 2r = (2s + 1) + 1 (resp. 2r = (2s + 1) − 1), the module
∧2r

E ⊗∧2s+1
E∨ has a unique

copy of E (resp. E∨) as irreducible SL(E)-submodule, thus (up to scalars) there exists a unique
SL(E)-equivariant morphism from the tensor product onto E (resp. E∨). By uniqueness, the
restrictions Φ2r,2s+1 are given (up to composing with a projection πE⊕E∨ onto E ⊕ E∨) by
generalizing the skew-catalecticant maps Cs,d−s

t in (2.2.1) as follows:

Φ2r,2s+1 :
∧2r

E ⊗∧2s+1
E∨ → ∧2r−(2s+1)

E ⊕∧2s+1−2r
E∨ πE⊕E∨

↠ E ⊕ E∨

e⊗ f 7→ C2s+1,2r−(2s+1)
e (f) + C2r,2s+1−2r

f (e)

where Cs,d−s
t = 0 for s > d: roughly, depending on the sign of 2r− (2s+1), one looks at vectors

in E∨ as derivations on E, or viceversa.

Definition 3.6.3. The Clifford apolarity action is the Spin(E ⊕ E∨)-equivariant map

Φ :
∧ev

E ⊗∧odE∨ −→ E ⊕ E∨

e⊗ f 7→ Ce(f)|E
+ Cf (e)|E∨

(3.6.2)

where Ce(f)|E
(resp. Cf (e)|E∨ ) is the projection onto E (resp. E∨) of the contraction f ·e ∈ ∧E

(resp. e · f ∈ ∧E∨) obtained via Clifford multiplication.

Vanishing of sections in H0(S+
N ,U(1)). Via the isomorphism

H0(S+
N ,U(1)) ≃

(
V DN
ωN−1

)∨
=

od∧
E∨ ,

any section jf ∈ H0(S+
N ,U(1)) corresponds to a spinor f ∈ ∧odE∨: we describe the zero locus

of a section jf by generalizing an argument from [Man21, proof of Prop. 2].
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For any [a] ∈ S+
N , one has the fiber (U(1))[a] ≃ Hom((O(1))∨

[a],U[a]). In particular, it holds
(O(1))∨

[a] = ⟨a⟩C ⊂
∧ev

E and U[a] = Ha := {v ∈ E ⊕ E∨ | v · a = 0}. Thus we can iden-
tify jf ([a]) ∈ (U(1))[a] with a homomorphism jf ([a]) : ⟨a⟩C → Ha. We want to determine
jf ([a])(λa) ∈ Ha as the scalar λ ∈ C varies.

Remark 3.6.4. The scalar product q(·, ·) on V = E ⊕ E∨ extends to a scalar product ⟨·, ·⟩ on∧
V defined on decomposable elements x = x1 ∧ . . . ∧ xk ∈

∧k
V and y = y1 ∧ . . . ∧ yh ∈

∧h
V

as

⟨x, y⟩ =





det(q(xi, yj)) if k = h

0 otherwise

and extended by linearity. The isomorphism of vector spaces
∧
V ≃ Cl(V, q) defines such scalar

product on the Clifford algebra too. The well-known adjointness between exterior product and
contraction ⟨v ∧ x, y⟩ = ⟨x, v¬y⟩ for v ∈ V , x ∈ ∧h−1

V and y ∈ ∧h V , together with the
Clifford multiplication (3.1.6), implies ⟨x, v · y⟩ = ⟨v · x, y⟩ for any x, y ∈ ∧V and any v ∈ V :
in the Clifford algebra, this property extends to any element z ∈ Cl(V, q) as ⟨x, zy⟩ = ⟨z∗x, y⟩,
where z∗ is the reverse involution

z = x1 · · ·x2k =⇒ z∗ = x2k · · ·x1 .

The function ψf,a(v) = ⟨f, v · a⟩ is linear in v ∈ V and vanishes on Ha, thus it belongs to
H⊥
a = {ψ : V → C | ψ(Ha) = 0}. But Ha = H⊥

a (since a is a pure spinor), thus ψf,• ∈
Hom(⟨a⟩C, Ha). It follows that we have two maps

∧od
E∨ −→ H0 (S+

N ,U(1)
)

j : f 7→ jf

Ψ : f 7→ ψf,•

where j is the Spin(V )-equivariant isomorphism given by Borel–Weil Theorem. Next remark
shows that the maps j and Ψ coincide up to scalars.

Remark 3.6.5. The map Ψ is Spin(V )-equivariant too. Indeed, for any G-homogeneous bun-
dle on a variety G/P , the G-action on a global section s is given by (g · s)(a) = s(g−1 ·
a). Since for any x ∈ Spin(V ) it holds x−1 = x∗, one gets (x · ψf,•) (a) = ψf,•(x∗a) =
ψf,x∗a ∈ Hom (⟨x∗a⟩, Hx∗a) where ψf,x∗a(λx∗a) ∈ H⊥

x∗a = Hx∗a is the functional on V given by
ψf,x∗a(λx∗a)(v) = ⟨f, v ·λx∗a⟩. But x∗ ∈ Spin(V ) acts by conjugacy on V , thus V = x∗V x and
by adjointness one concludes ⟨f, v · λx∗a⟩ = ⟨f, (x∗wx) · λx∗a⟩ = ⟨f, x∗w · λa⟩ adj.= ⟨x · f, w · λa⟩,
that is x · ψf,• = ψx·f,•.

Lemma 3.6.6. In the previous notation, the zero locus Z(jf ) of a global section jf ∈ H0(S+
N ,U(1))

corresponding to a spinor f ∈ ∧odE∨ is

Z(jf ) = S+
N ∩ (V · f)⊥ . (3.6.3)
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Proof. By Schur’s lemma, the equivariant maps j and Ψ coincide up to scalar, hence the section
jf ∈ H0(S+

N ,U(1)) is such that jf ([a])(λa) = ⟨f, • · (λa)⟩ ∈ Ha for any λ ∈ C. We conclude
that the zero locus Z(jf ) of the global section jf is given by the pure spinors [a] ∈ S+

N such
that 0 = ⟨f, v · a⟩ = ⟨v · f, a⟩ for any v ∈ V , that is the thesis.





Chapter 4

Identifiability and singular locus
of σ2(Gr(k, N))

Despite Grassmannians are ubiquitous objects in theoretical and applied areas of Mathematics,
there are several aspects of their geometry still mysterious. Among these, only partial results
have been obtained about their secant varieties (eg. see [MM15]). This chapter is devoted to
solve the identifiability problem and to determine the singular locus of the secant varieties of
lines to Grassmannians. The results appearing in this chapter come from the work [GS23]

joint with Dr. Reynaldo Staffolani.

Let V be an N -dimensional complex vector space. After the identification with CN , we fix
the standard basis (e1, . . . , eN ). For k ≤ N we consider the Grassmannian (cf. Example 1.3.1)

Gr(k,N) = AN−1/Pk ⊂ P
(
V AN−1
ωk

)
= P

(
k∧
CN
)
.

We recall that the highest weight vector and the lowest weight vector in V AN−1
ωk are respectively

vωk
= e[k] = e1 ∧ . . . ∧ ek and ℓωk

= e[N ]\[N−k] = eN−k+1 ∧ . . . ∧ eN . For any [v1 ∧ . . . ∧ vk] ∈
Gr(k,N) we denote the corresponding k–dimensional linear subspace by Hp = ⟨v1, . . . , vk⟩C.

Secant variety of lines to Gr(k,N). Consider the secant variety of lines

σ2(Gr(k,N)) = σ◦
2(Gr(k,N)) =

{
[a+ b] ∈ P(V AN−1

ωk ) | [a], [b] ∈ Gr(k,N)
}
⊂ P(V AN−1

ωk
) .

The dense subset σ◦
2(Gr(k,N)) is given by the union of bisecant lines, while the union of tangent

lines defines the tangential variety τ(Gr(k,N)). It is known that the secant variety of lines is
quasi–homogeneous, in the sense that it admits a dense orbit: more prcisely, σ2(Gr(k,N)) =
SLN ·[vωk

+ ℓωk
] [Zak93, Theorem 1.4]. Moreover, it is non-defective for any 3 ≤ k ≤ N

2

45
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[CGG05, Theorem 2.1], thus its dimension is the expected one

dim σ2(Gr(k,N)) = min
{

2 dim Gr(k,N) + 1,dimP
(
V AN−1
ωk

)}

= min
{

2k(N − k) + 1,
(
N

k

)
− 1
}
.

On the other hand, the secant variety of lines σ2(Gr(2, N)) to the Grassmannians of (affine)
planes is defective for any N ⪈ 5 with defect equal to 4 [CGG05, Theorem 2.1].

Remark 4.0.1. In same terminology from Sec. 2.1, the secant variety σ2(Gr(3, 6)) is a perfect
case. The Grassmannian Gr(3, 6) is a Legendrian variety and, as such, its secant variety of lines
has been studied by J.M. Landsberg and L. Manivel (cf. Remark 1.4.2).

The duality of irreducible representations
∧k(CN )∨ = (V AN−1

ωk )∨ = V
AN−1
ωN−k =

∧N−k CN

induces a duality of Grassmannians

Gr(k,N) ≃ Gr(N − k,N) .

Toy-case Gr(2, N). For k = 2, the SLN–module V AN−1
ω2 =

∧2 CN parameterizes the space of
N×N skew-symmetric matrices, while the secant variety of lines σ2(Gr(2, N)) parameterizes the
N ×N skew-symmetric matrices of rank at most 4. Since σ2(Gr(2, 4)) = P5 and σ2(Gr(2, 5)) =
P9, we assume N ≥ 6.
By defectivity we know that dim σ2(Gr(2, N)) = 4(N − 2) − 3. Moreover, from the key result
[Zak93, Theorem 1.4] one has the identity τ(Gr(2, N)) = σ2(Gr(2, N)).

Theorem. For N ≥ 6 the singular locus of the secant Sing(σ2(Gr(2, N))) is exactly Gr(2, N).

Proof. Since Gr(2, N) parametrizes the N ×N skew-symmetric matrices of rank 2 (i.e. skew-
symmetric rank 1), the variety σ2(Gr(2, N)) is given by the union of only two orbits: Gr(2, N)
and σ2(Gr(2, N)) \Gr(2, N). Since in general Sing(σr(Gr(k,N))) ⊃ σr−1(Gr(k,N)) holds, the
thesis follows.

In respect of the duality of Grassmannians and of the above theorem,
through out all this chapter we assume

3 ≤ k ≤
⌊
N

2

⌋
.

4.1 The poset of SLN–orbits in σ2(Gr(k, N))
The secant variety of lines to the Grassmannian Gr(k,N) is invariant under SLN–action, and

its subsets σ◦
2(Gr(k,N)) and τ(Gr(k,N)) too. We refer to the orbits in σ2(Gr(k,N)) as secant

orbits and to the ones in τ(Gr(k,N)) as tangent orbits: we already stress out that there could
be points being both secant and tangent (see Remark 4.1.9). The spirit is at first determining
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such orbits separately, and then analyzing how they interacts. We fix the notation for any
l ∈ [k]

el := e[k−l] ∧ e[k+l]\[k] = e1 ∧ . . . ∧ ek−l ∧ ek+1 ∧ . . . ∧ ek+l .

In particular, ek = ek+1 ∧ . . . ∧ e2k. Moreover, for any l ∈ [k] we fix the notation for the
intersection

Ek−l := ⟨e1, . . . , ek−l⟩C = He[k] ∩Hel
.

We are going to use a more linear-algebraic description of the Hamming distance between
two points in Gr(k,N) (cf. Sec. 2.3).

Lemma 4.1.1. Let [p], [q] ∈ Gr(k,N) and let Hp, Hq ⊂ CN be their corresponding k–dimensional
subspaces. Then [p], [q] are joined by a line in the Grassmannian if and only if the corresponding
subspaces Hp, Hq meet along a common hyperplane. In particular,

d([p], [q]) = k − dim(Hp ∩Hq) .

Proof. The trivial case [p] = [q] (i.e. Hp = Hq) implies d([p], [q]) = 0 = k − dim(Hp ∩ Hq).
If d([p], [q]) = 1, then ⟨[p], [q]⟩ ⊂ Gr(k,N) and [p + q] ∈ Gr(k,N), which is equivalent to
dim(Hp ∩Hq) = k − 1.

For the general case, assume d([p], [q]) = ℓ ≥ 2 and let dim(Hp ∩ Hq) = s. First, we prove
that ℓ ≤ k− s. We may assume p = x1 ∧ . . . xs ∧ . . .∧ xk and q = x1 ∧ . . .∧ xs ∧ ys+1 ∧ . . .∧ yk.
Consider the points [p1], . . . , [pk−s−1] ∈ Gr(k,N) corresponding to the k-dimensional subspaces

Hpj
= ⟨x1, . . . , xs, . . . , xk−j , yk−j+1, . . . , yk⟩ , ∀j = 1 : k − s− 1 .

Since dim(Hpj
∩Hpj+1) = k − 1 for any j = 0 : k − s (where p0 = p and pk−s = q), it follows

that d([pj ], [pj+1]) = 1 for any j = 0 : k − s, that is d([p], [q]) = ℓ ≤ k − s.
On the other hand, from Definition 2.3.1 there exists [c1], . . . , [cℓ−1] ∈ Gr(k,N) such that

⟨[ci], [ci+1]⟩ ⊂ Gr(k,N) for any i = 0 : ℓ − 1, where c0 = p and cℓ = q. Clearly it holds
d([p], [cℓ−1]) = ℓ− 1, hence by induction one has ℓ− 1 = d([p], [cℓ−1]) = k − dim(Hp ∩Hcℓ−1),
that is dim(Hp ∩ Hcℓ−1) = k − ℓ + 1. Now consider the intersection Hp ∩ Hcℓ−1 ∩ Hq: using
Grassmann Formula its dimension is

dim(Hp ∩Hcℓ−1 ∩Hq) =
= dim(Hp ∩Hcℓ−1) + dim(Hcℓ−1 ∩Hq)− dim

(
(Hp ∩Hcℓ−1) + (Hcℓ−1 ∩Hq)

)

= 2k − ℓ− dim((Hp ∩Hcℓ−1) + (Hcℓ−1 ∩Hq)) .

Since the latter dimension can be either k − 1 or k, one has

k − ℓ ≤ dim(Hp ∩Hcℓ−1 ∩Hq) ≤ k − ℓ+ 1 .

If it was dim(Hp ∩Hcℓ−1 ∩Hq) = k − ℓ+ 1, from the inequality ℓ ≤ k − s one would get

k − ℓ+ 1 = dim(Hp ∩Hcℓ−1 ∩Hq) ≤ dim(Hp ∩Hq) = s ≤ k − ℓ ,
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leading to contradiction. It follows that dim(Hp ∩Hpℓ−1 ∩Hq) = k − ℓ must hold and, from a
similar chain of inequalities as above, we conclude that ℓ = k − s, that is the thesis.

Corollary. The Grassmannian Gr(k,N) has diameter diam Gr(k,N) = k.

Notice that for any l ∈ [k] it holds d([e[k]], [el]) = l as the intersection He[k] ∩ Hel
= Ek−l

has dimension k − l.

4.1.1 The secant branch
We show that the secant SLN -orbits in σ2(Gr(k,N)) are as many as the diameter of Gr(k,N),

and the points [e[k] + el] are their representatives. For any l ∈ [k], we denote

Σk,Nl :=
{

[p+ q] ∈ σ2(Gr(k,N))
∣∣ d([p], [q]) = l

}
. (4.1.1)

Notice that Σk,N1 = Gr(k,N). Since the SLN -action preserves the Hamming distance between
points in Gr(k,N) (cf. Remark 2.3.2), the action of SLN preserves Σk,Nl .

Proposition 4.1.2. For any l ∈ [k], the set Σk,Nl is an SLN -orbit. More precisely,:

Σk,Nl = SLN ·[e[k] + el] .

In particular, the SLN -orbit partition of the dense subset σ◦
2(Gr(k,N)) is

σ◦
2(Gr(k,N)) = Gr(k,N) ⊔

k⊔

l=2
Σk,Nl .

Proof. Clearly, the orbit SLN ·[e[k] +el] is contained in Σk,Nl but actually equality holds: given
[p+ q] ∈ Σk,Nl , we can write it as

p+ q = v1 ∧ · · · ∧ vk−l ∧ (vk−l+1 ∧ · · · ∧ vk + vk+1 ∧ · · · ∧ vk+l)

and one can always find a g ∈ SLN such that g(vi) = ei for any i ∈ [k + l], that is g · [p+ q] =
[e[N ] + el].

Remark 4.1.3. The orbit Σk,Nk is dense: indeed, another representative is given by [e[k] +
e[N ]\[N−k]] = [vωk

+ ℓωk
]. Moreover, the closures Σk,Nl are already known in the literature as

restricted chordal varieties [FH91, Hard exercise 15.44].

In the following we reinterpret the vector subspaces corresponding to Grassmannian points
as kernels and we associate certain vector subspaces to secant points too: we underline that the
latter is not a 1:1 correspondence, in the sense that to any vector subspace could correspond
more secant points.
For any point q ∈ ∧k CN , we consider the multiplication map

ψq : CN −→ ∧k+1 CN

x 7→ x ∧ q (4.1.2)
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and we associate to the point q the subspace

Hq := ker(ψq) .

For instance, for [q] = [v1 ∧ . . . ∧ vk] ∈ Gr(k,N) one recovers the corresponding subspace
ker(ψp) = Hp. Notice that at the moment we know the dimension and a basis of Hq only for
[q] ∈ Gr(k,N).

Lemma 4.1.4. Let [p+ q] ∈ Σk,Nk be a generic secant point. Then Hp+q = {0}.
Proof. By homogeneity of the dense orbit Σk,Nk , we may assume p+ q = e[k] + ek. Notice that
{0} = Hp ∩Hq ⊂ Hp+q = ker(ψp+q). Let y ∈ Hp+q ⊂ CN with y =

∑N
i=1 βiei: then

0 = y ∧
(
e[k] + ek

)

=
N∑

i=k+1

(−1)kβie[k] ∧ ei +
k∑

i=1

βiei ∧ ek +
N∑

i=2k+1

(−1)kβiek ∧ ei .

From the linear independence of the summands above in
∧k+1 CN , it follows βi = 0 for any

i ∈ [N ], that is y = 0 and the thesis follows.

Proposition 4.1.5. Let 2 ≤ l ≤ k and let [p+ q] ∈ Σk,Nl . Then

Hp+q = Hp ∩Hq .

Proof. By Lemma 4.1.4 we know that the thesis holds for l = k. Fix 2 ≤ l ≤ k − 1 and a
point [p+ q] ∈ Σk,Nl . Let p = v1 ∧ . . . ∧ vk and q = v1 ∧ . . . ∧ vk−l ∧ wk−l+1 ∧ . . . ∧ wk, so that
Hp ∩Hq = ⟨v1, . . . , vk−l⟩C.
Consider the multiplication map ψp+q as in (4.1.2): then it clearly holds Hp ∩Hq ⊂ Hp+q :=
ker(ψp+q). Take y ∈ Hp+q being linearly independent from v1, . . . , vk−l: in particular, if we
complete {v1, . . . , vk−l} to a basis of CN , we may assume that y does not depend on v1, . . . , vk−l.
Then we get

0 = y ∧ (p+ q) = y ∧ v1 ∧ . . . ∧ vk−l ∧ (vk−l+1 ∧ . . . ∧ vk + wk−l+1 ∧ . . . ∧ wk)

= (−1)k−lv1 ∧ . . . ∧ vk−l ∧


y ∧ vk−l+1 ∧ . . . ∧ vk︸ ︷︷ ︸

=: a

+ y ∧ wk−l+1 ∧ . . . ∧ wk︸ ︷︷ ︸
=: b


 .

Since y ∧ (a+ b) is linearly independent on v1, . . . , vk−l, it follows that y ∧ (a+ b) = 0. Notice
that, if we denote V ′ := CN/Hp ∩Hq ≃ CN−k+l, we have [a], [b] ∈ Gr(l, V ′) with d([a], [b]) = l,
thus [a + b] lies in the dense orbit Σl,V

′

l . Moreover, y ∈ ker
(
ψa+b : V ′ → ∧l+1

V ′
)

=: Ha+b

and by Lemma 4.1.4 it holds Ha+b = {0}. It follows that y = 0, thus Hp+q = Hp ∩Hq.

4.1.2 The tangent branch
Now we focus on orbits in the tangential variety τ(Gr(k,N)). By homogeneity of the Grass-

mannian, it is enough to study only one tangent space. Indeed, it holds

g · Tx Gr(k,N) = Tg·x Gr(k,N) ,∀g ∈ SLN , ∀x ∈ Gr(k,N) ,
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hence the SLN–orbits in τ(Gr(k,N)) are in bijection with the orbits in T[e[k]] Gr(k,N) under
the action of the parabolic subgroup Pk = stab(e[k]).

It is known that the (affine) tangent space at [e[k]] is

T[ek] Gr(k,N) =
k∑

j=1
e1 ∧ . . . ∧ CN︸︷︷︸

jth

∧ . . . ∧ ek (4.1.3)

=
〈
e[k], e1 ∧ . . . ∧ êj ∧ . . . ∧ ek ∧ er | j ∈ [k], r ∈ [N ] \ [k]

〉

where êi denotes that the vector ei has been removed.

Remark 4.1.6. For a given [p] = [v1 ∧ . . . ∧ vk] ∈ Gr(k,N) one has the following isomorphism
[Har13, Example 16.1] which is compatible with the action of stabSLN

(p):

T[p] Gr(k,N) =
k−1∧

Hp ∧ V ≃ Hom
(
Hp,CN/Hp

)
.

Remark 4.1.7. One can describe the tangent space to the Grassmannian at some point [p] ∈
Gr(k,N) using the notion of Hamming distance. If p = v1 ∧ · · · ∧ vk, then from (4.1.3) one gets
that

T[p] Gr(k,N) =
〈{

[q] ∈ Gr(k,N)
∣∣ d([p], [q]) ≤ 1

}〉
,

that is the tangent space at a point is generated by lines passing through that point.

Consider the k elements in T[e[k]] Gr(k,N)

θl :=
l∑

j=1
e1 ∧ · · · ∧ ej−1 ∧ ek+j ∧ ej+1 ∧ · · · ∧ ek , ∀l ∈ [k] . (4.1.4)

From Remark 4.1.6, any element of T[e[k]] Gr(k,N) corresponds to an (N − k) × k matrix
in CN−k ⊗ Ck: in particular, any θl corresponds to an (N − k) × k matrix of rank l. The
only invariant in CN−k ⊗ Ck is the rank and, since the isomorphism is compatible with the
group action, so is for T[e[k]] Gr(k,N). In particular, all points in T[e[k]] Gr(k,N) of rank l are
conjugated to θl. Finally, by homogeneity of Gr(k,N), the action of SLN conjugates all tangent
spaces, and for any l ∈ [k] the unions of all the rank–l orbits (as the tangent space varies) gives
an SLN -orbit in the tangential variety, namely

Θk,N
l := {t ∈ τ(Gr(k,N)) | Rk(t) = l} . (4.1.5)

From the arguments above we conclude the following result.

Proposition 4.1.8. For any l ∈ [k], the set Θk,N
l coincides with the SLN–orbit

Θk,N
l = SLN ·[θl] .

In particular, the SLN -orbit partition of the tangential variety is

τ(Gr(k,N)) =
k⊔

l=1
Θk,N
l .
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Remark 4.1.9. From (4.1.4) we have [θ1] = [e2 ∧ . . . ∧ ek ∧ ek+1] ∈ Gr(k,N), thus

Θk,N
1 = Gr(k,N) = Σk,N1 .

Morover, θ2 = e2 ∧ . . . ∧ ek ∧ ek+1 + e1 ∧ e3 ∧ . . . ∧ ek ∧ ek+2 is sum of two points in Gr(k,N)
having Hamming distance 2, thus [θ2] ∈ Σk,N2 and we get

Σk,N2 = Θk,N
2 .

Finally, the orbit Θk,N
k is given by points corresponding to (N − k)× k matrices of maximum

rank, which are a dense subset in CN−k ⊗ Ck. Thus the orbit Θk,N
k is dense in τ(Gr(k,N)).

4.1.3 Inclusions among closures of SLN–orbits
From the previous subsections we get the SLN–orbit partition

σ2(Gr(k,N)) = Gr(k,N) ⊔
(

k⊔

l=2
Σk,Nl

)
∪
(

k⊔

l=3
Θk,N
l

)
.

In the following we determine the closures of the orbits and we prove that the above “weak
union” actually is a “disjoin union”.

Proposition 4.1.10.

1. For any l ∈ [k − 1] it holds Σk,Nl ⊂ Σk,Nl+1 .

2. For any l ∈ [k − 1] it holds Θk,N
l ⊂ Θk,N

l+1 .

3. For any l = 3 : k it holds Θk,N
l ⊂ Σk,Nl .

Proof. 1. Fix l ∈ [k − 1]. By homogeneity, it is enough to show that a representative of
the distance–l orbit lies in the closure of the distance–(l + 1) orbit. The representative
[e[k] + el] ∈ Σk,Nl is limit for ϵ→∞ of the sequence

e[k] + e[k−l−1] ∧
(
ek−l + 1

ϵ
ek+l+1

)
∧ ek+1 ∧ . . . ∧ ek+l ∈ Σk,Nl+1 .

2. The tangent points in Θk,N
l correspond to (N − k) × k matrices of rank l, while points

Θk,N
l+1 to (N − k) × k matrices of rank l + 1. The thesis follows from the fact that the

former matrices lie in the closure of the latter ones.

3. Given [e[k] + el] and [θl] the representatives of the orbits Σk,Nl and Θk,N
l , respectively, it

is enough to find elements gϵ ∈ GLN such that limϵ→0(gϵ · (e[k] + el)) = θl. For any ϵ > 0
consider the element gϵ ∈ GLN acting as

ei 7−→ ei + ε · ek+i, ek+j 7−→ ek+j−l + ε2 · ek+j , ek+l 7−→ −ek + ε2 · ek+l
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for any i ∈ [l] and j ∈ [l − 1], and as the identity on the other basis vectors: since the
images of the basis vectors are all linearly independent, the linear map gϵ actually belongs
to GLN . From a straightforward count one gets gϵ · (e[k] +el) = ϵ · θl + ϵ2 · t for a suitable
t ∈ ∧k CN , hence limϵ→0(ϵ−1gϵ · (e[k] + el))) = θl, that is the thesis.

We complete Remark 4.1.9 by showing that for any l = 3 : k it holds Θk,N
l ̸= Σk,Nl . For

the dense case l = k the equality does not hold since for k ≥ 3 the secant variety is always
non-defective and τ(Gr(k,N)) ⊊ σ2(Gr(k,N)) [Zak93, Theorem 1.4].

Proposition 4.1.11. For any l = 3 : k − 1 it holds Σk,Nl ̸= Θk,N
l .

Proof. By contradiction, we assume that there exists 3 ≤ l ≤ k − 1 such that Σk,Nl = Θk,N
l .

Then from the inclusions in Proposition 4.1.10 we easily get that Σk,Ni = Θk,N
i for any 2 ≤ i ≤ l:

in particular, Σk,N3 = Θk,N
3 . Thus it is enough to assume by contradiction that Σk,N3 = Θk,N

3 .
Since we don’t want the dense orbit, we consider k ≥ 4. Consider the representative of Θk,N

3

θ3 = e2 ∧ . . . ∧ ek ∧ ek+1 + e1 ∧ e3 ∧ . . . ∧ ek ∧ ek+2 + e1 ∧ e2 ∧ e4 . . . ∧ ek ∧ ek+3

= e4 ∧ . . . ∧ ek ∧


e2 ∧ e3 ∧ ek+1 + e1 ∧ e3 ∧ ek+2 + e1 ∧ e2 ∧ ek+3︸ ︷︷ ︸

=:η


 .

From the multiplication map ψθ3 as in (4.1.2) we get the subspaceHθ3 = ker(ψθ3) = ⟨e4, . . . , ek⟩C
having dimension dimHθ3 = k − 3. Define W := ⟨e1, e2, e3, ek+1, . . . , eN ⟩C.

Since [θ3] ∈ Θk,N
3 = Σk,N3 , there exist [p], [q] ∈ Gr(k,N) such that [θ3] = [p + q] and

d([p], [q]) = 3. Then, by definition as kernels, one gets ⟨e4, . . . , ek⟩C = Hθ3 = Hp+q = Hp ∩Hq,
where the last equality follows from Proposition 4.1.5. This implies that we can write p+ q =
e4 ∧ . . . ∧ ek ∧

(
a+ b

)
for a certain [a+ b] ∈ Σ3,W

3 . Given the multiplication map

µ :
∧3

W −→ ∧k CN
t 7→ e4 ∧ . . . ∧ ek ∧ t

,

it holds µ(η) = θ3 = p+q = µ(a+ b), and by injectivity of µ we get η = a+ b. But [η] is exactly
the representative of the orbit Θ3,W

3 , while [a+ b] is in the orbit Σ3,W
3 : in particular, it follows

that τ(Gr(3,W )) = σ2(Gr(3,W )) which is a contradiction.

Theorem 4.1.12. For any 3 ≤ k ≤
⌊
N
2
⌋
, the poset of SLN–orbits in the secant variety of lines

σ2(Gr(k,N)) is described by the graph in Figure 4.1, where the arrows denote the inclusion of
an orbit into the closure of the other orbit. In particular, the orbits Θk,N

k and Σk,Nk are the
dense orbits of the tangential and secant variety respectively.
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Gr(k,N)

Θk,N
2 = Σk,N2

Θk,N
3

...

Θk,N
k

Σk,N3

...

Σk,Nk

Figure 4.1: Poset graph of SLN–orbits in σ2(Gr(k,N)).

4.2 Identifiability in σ2(Gr(k, N))

In this section we prove that the secant orbit Σk,N2 is unidentifiable while the secant orbits
Σk,Nl for l = 3 : k are identifiable. We refer to [BV18, Theorem 1.1] for the most updated
results about generic identifiability for skew-symmetric tensors when N ≤ 14. We refer to Sec.
2.1 for the notions of identifiability and decomposition locus.

Unidentifiability of Σk,N2 . The unidentifiability of the distance-2 orbit Σk,N2 is a consequence
of the fact that the Grassmannian Gr(2, 4) is just a quadric in P5. This is clear if one considers
the representative

[e[k] + e2] =
[
e[k−2] ∧

(
ek−1 ∧ ek + ek+1 ∧ ek+2

)]
∈ Σk,N2 ,

and notices that the sum in the round brackets actually is a sum of two points lying on a quadric
in P(

∧2⟨ek−1, ek, ek+1, ek+2⟩C), which is unidentifiable: for instance, another decomposition is

ek−1 ∧ ek + ek+1 ∧ ek+2 = ek−1 ∧ (ek + ek+1) + ek+1 ∧ (ek+2 + ek−1) .

Thus the point [e[k] + e2] is unidentifiable too, hence the orbit Σk,N2 is so. Moreover, given
W := ⟨ek−1, . . . , eN ⟩C, the dimension of the decomposition locus of [ek−1 ∧ ek + ek+1 ∧ ek+2]
in Σ2,W

2 ⊂ σ◦
2(Gr(2,W )) is equal to the defect of σ2(Gr(2,W )) which is 4, as recalled at the

beginning of this chapter.

Corollary 4.2.1. The distance-2 orbit Σk,N2 is unidentifiable. Moreover, the decomposition
locus of any point in Σk,N2 has dimension 4.
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Identifiability of Σk,Nl for l ≥ 3. First we prove that the dense Σk,Nk is identifiable for k ≥ 3,
and then we conclude the identifiability of any orbit Σk,Nl for l ≥ 3.

Lemma 4.2.2. For any 3 ≤ k ≤ ⌊N2 ⌋, the dense orbit Σk,Nk is identifiable.

Proof. Consider the multiplication map
∧k

V ⊗ ∧2
V −→ ∧k+2

V defined on decomposable
elements as x⊗ y 7→ x ∧ y and extended by linearity. Given a secant point [p+ q] ∈ Σk,Nk , the
induced multiplication map (p+ q) ∧ • :

∧2
V −→ ∧k+2

V has kernel

ker((p+ q) ∧ •) =
{∑

i

vi ∧ wi |
∑

i

p ∧ vi ∧ wi = −
∑

i

q ∧ vi ∧ wi
}

= Hp ∧Hq

where the last equality follows from the fact that d([p], [q]) = k, that is Hp ∩ Hq = 0. Then,
given the point [p+q], the subspaces Hp and Hq (hence [p] and [q]) can be recovered in a unique
way as follows. First, one recovers Hp ⊕Hq as kernel of V ∧ ker((p+ q) ∧ •)→ ∧3

V .
Let [p′ + q′] = [p + q] be another decomposition: since Hp′ ∩ Hq′ ⊂ Hp′+q′ = Hp+q =

Hp ∩Hq = {0}, it holds d([p′], [q′]) = k. Clearly, as kernel of a multiplication map with respect
to [p+ q] = [p′ + q′], it holds

Hp ∧Hq = Hp′ ∧Hq′ , Hp ⊕Hq = Hp′ ⊕Hq′ .

In particular, for any v ∈ Hp it holds either v ∈ Hp′ or v ∈ Hq′ (similar for w ∈ Hq):
indeed, if v = vp′ + vq′ and w = wp′ +wq′ in Hp′ ⊕Hq′ for some vp′ , vq′ , wp′ , wq′ ̸= 0, then 0 =
(v∧w)∧(p+w) = (vp′∧wp′ +vp′∧wq′ +vq′∧wp′ +vq′∧wq′)∧(p′+q′) = vp′∧wp′∧q′+vq′∧wq′∧p′,
leading to a contradiction since dimHp′ = dimHq′ = k ≥ 3 (together with Hp′ ∩ Hq′ = {0})
implies ⟨Hp′ , vq′ , wq′⟩ ≠ ⟨Hq′ , vp′ , wp′⟩.

Now, assume by contradiction that {Hp, Hq} ≠ {Hp′ , Hq′}, that is there exist v1, v2 ∈ Hp such
that v1 ∈ Hp′ and v2 ∈ Hq′ , and similarly w1, w2 ∈ Hq such that w1 ∈ Hp′ and w2 ∈ Hq′ .Then
one gets

0 = (v1 ∧ w1 + v2 ∧ w2) ∧ (p+ q) = (v1 ∧ w1 + v2 ∧ w2) ∧ (p′ + q′)
= v1 ∧ w1 ∧ p′ + v2 ∧ w2 ∧ q′ ̸= 0 ,

hence a contradiction. We conclude that {Hp, Hq} = {Hp′ , Hq′}, hence {[p], [q]} = {[p′], [q′]}.

Theorem 4.2.3. For any 3 ≤ k ≤ ⌊N2 ⌋ and any 3 ≤ l ≤ k, the secant orbit Σk,Nl is identifiable.

Proof. From Lemma 4.2.2 we already know that the dense orbit Σk,Nk is identifiable, thus we
fix 3 ≤ l ≤ k − 1. By homogeneity, it is enough to prove the thesis for the representative

[e[k] + el] =
[
e[k−l] ∧ (ek−l+1 ∧ . . . ∧ ek + ek+1 ∧ . . . ∧ ek+l)

]
∈ Σk,Nl .

Let [p], [q] ∈ Gr(k,N) be such that [p + q] = [e[k] + el]: in particular, Hp ∩ Hq = Hp+q =
He[k]+el

= Ek−l. Given W := ⟨ek−l+1, . . . , eN ⟩C ≃ CN−k+l, we can write

p = e[k−l] ∧ vk−l+1 ∧ . . . ∧ vk︸ ︷︷ ︸
=:a

, q = e[k−l] ∧ wk−l+1 ∧ . . . ∧ wk︸ ︷︷ ︸
=:b

,
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and it holds Ha ∩Hb = {0}, that is [a+ b] ∈ Σl,Wl . Now, the multiplication map

µ :
∧l

W −→ ∧k CN
t 7→ e[k−l] ∧ t

restricts to the map Σl,Wl → Σk,Nl . Since

µ(a+ b) = p+ q = e[k] + el = µ(ek−l+1 ∧ . . . ∧ ek + ek+1 ∧ . . . ∧ ek+l) ,

by injectivity we get a + b = ek−l+1 ∧ . . . ∧ ek + ek+1 ∧ . . . ∧ ek+l ∈ Σl,Wl . But from Lemma
4.2.2 the orbit Σl,Wl ⊂ σ2(Gr(l,W )) is identifiable (as dense orbit), thus {a, b} = {ek−l+1∧ . . .∧
ek, ek+1 ∧ . . . ∧ ek+l} and {p, q} = {e[k], el}, that is [e[k] + el] is identifiable.

4.3 Tangential-identifiability in τ(Gr(k, N))

In this section we focus on the tangent orbits Θk,N
l ⊂ τ(Gr(k,N)). We point out that each

tangent orbit Θk,N
l for l ≥ 2 is unidentifiable: indeed, any representative [θl] ∈ Θk,N

l in (4.1.4)
admits the equivalent decomposition

(
e1 ∧ (ek+2 + ek+1) + ek+1 ∧ (e1 + e2)

)
∧ e3 ∧ . . .∧ ek +

l∑

j=3
e1 ∧ · · · ∧ ej−1 ∧ ek+j ∧ ej+1 ∧ · · · ∧ ek .

Remark 4.3.1. The distance-2 orbit Σk,N2 = Θk,N
2 is not tangential-identifiable: indeed, the

representative [θ2] = [ek+1 ∧ e2 ∧ . . . ∧ ek + e1 ∧ ek+2 ∧ e3 ∧ . . . ∧ ek] lies on both the tangent
spaces

[θ2] ∈ T[e[k]] Gr(k,N) ∩ T[e[k+2]\[2]] Gr(k,N) .

However, for any equivalent decomposition of [θ2] one can exhibit two tangent spaces on which
that decomposition lies. Thus we conclude that the tangential-locus of [θ2] has the same di-
mension of the decomposition locus of [θ2], which by Corollary 4.2.1 is 4.

Theorem 4.3.2. For any 3 ≤ k ≤ ⌊N2 ⌋ and any 3 ≤ l ≤ k, the tangent orbit Θk,N
l is tangential-

identifiable.

Proof. Fix l ≥ 3. By homogeneity, it is enough to prove the thesis for the representative
[θl] = [

∑l
j=1 θl,j ] ∈ Θk,N

l where

θl,j := e1 ∧ · · · ∧ ej−1 ∧ ek+j ∧ ej+1 ∧ · · · ∧ ek

are the summands appearing in (4.1.4). We already know that [θl] ∈ T[e[k]] Gr(k,N). We want
to prove that, if [q] ∈ Gr(k,N) is such that [θl] ∈ T[q] Gr(k,N), then [q] = [e[k]].

Assume [θl] ∈ T[q] Gr(k,N) for some [q] ∈ Gr(k,N), hence [θl] ∈ Te[k] Gr(k,N)∩T[q] Gr(k,N).
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Notice that

T[e[k]] Gr(k,N) ∩ T[q] Gr(k,N) =
(
k−1∧

He[k] ∧ V
)
∩
(
k−1∧

Hq ∧ V
)

=
k−1∧

(He[k] ∩Hq) ∧ V +
k−2∧

(He[k] ∩Hq) ∧He[k] ∧Hq .

(4.3.1)

If dim(He[k] ∩ Hq) ⪇ k − 2 (i.e. d(e[k], [q]) ≥ 3), then T[e[k]] Gr(k,N) ∩ T[q] Gr(k,N) = {0},
leading to a contradiction. If k − 2 ≤ dim(He[k] ∩ Hq) ≤ k − 1 (i.e. 1 ≤ d([e[k]], [q]) ≤ 2), as
each summand θl,j for j ∈ [l] is a simple element in the space (4.3.1), it follows that in each θl,j
there are at least k − 2 wedge-entries lying in He[k] ∩Hq, that is

He[k] ∩Hq ⊂ ⟨e1, . . . , êj , ek+j , . . . ek⟩C , ∀j ∈ [l] .

Since l ≥ 3, one deduces Hq = He[k] , which is in contradiction with the condition 1 ≤
d([e[k]], [q]) ≤ 2. We conclude that dim(He[k] ∩ Hq) = k must hold, that is [q] = [e[k]] and
the point [θl] is tangential-identifiable.

4.4 Dimensions of SLN–orbits in σ2(Gr(k, N))
This section is devoted to the computation of the dimensions of the SLN–orbits in the secant

variety σ2(Gr(k,N)). Since k ≥ 3, the secant variety is non-defective and the tangential variety
has codimension 1, thus the corresponding dense orbits have dimensions

dim Σk,Nk = dim σ2(Gr(k,N)) = 2k(N − k) + 1 ,

dim Θk,N
k = dim τ(Gr(k,N)) = 2k(N − k) .

First, we determine the dimensions of the secant orbits: unlike the case of the tangent orbits,
the computation for secant orbits does not require information about identifiability.

Proposition 4.4.1. For l = 2 : k − 1, the distance-l secant orbit Σk,Nl has dimension

dim Σk,Nl =




k(N − k) + 2(N − 2)− 3 for l = 2
k(N − k) + l(N − l) + 1 for l ≥ 3 .

Proof. Fix l = 2 : k − 1. Consider the fibration

ξ : Σk,Nl −→ Gr(k − l, N)
[p+ q] 7→ Hp ∩Hq

which is well-defined by Proposition 4.1.5. Define W := ⟨ek−l+1, . . . , eN ⟩C ≃ CN−k+l. Then,
following the same arguments in the proof of Proposition 4.1.11, one gets the fibre

ξ−1(Ek−l) =
{

[p+ q] ∈ Σk,Nl | Hp ∩Hq = Ek−l
}

=
{[

e[k−l] ∧ (a+ b)
]
| [a], [b] ∈ Gr(l,W ), d([a], [b]) = l

}

≃ Σl,Wl
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where the last isomorphism is given by restriction of the multiplication map

e[k−l] ∧ • :
l∧
W −→

k∧
CN .

In particular, Σl,Wl is the dense orbit in the secant variety σ2(Gr(l,W )), thus

dim ξ−1(Ek−l) =





2 dim Gr(2,W )− 3 = 4(N − k)− 3 for l = 2
2 dim Gr(l,W ) + 1 = 2l(N − k) + 1 for l ≥ 3 .

From the fibre dimension theorem we conclude that

dim Σk,Nl = dim Gr(k − l, N) + dim ξ−1(Ek−l) =




k(N − k) + 2(N − 2)− 3 for l = 2
k(N − k) + l(N − l) + 1 for l ≥ 3 .

Next we determine the dimensions of tangent orbits by using the results from Sec. 4.3. From
the equality Σk,N2 = Θk,N

2 we only consider l ≥ 3.

Proposition 4.4.2. For any 3 ≤ k ≤ ⌊N2 ⌋ and any 3 ≤ l ≤ k, the distance–l tangent orbit
Θk,N
l has dimension

dim Θk,N
l = k(N − k) + l(N − l) .

In particular, for any l ≥ 3 the closure Θk,N
l has codimension 1 in the closure Σk,Nl .

Proof. By definition (4.1.5), the orbit Θk,N
l exactly corresponds to the set of all rank–l matrices

in T[p] Gr(k,N) ≃ Hp ⊗ (CN/Hp) ≃ Ck ⊗ CN−k as [p] ∈ Gr(k,N) varies. We recall that the
subset of rank–l matrices [Ck ⊗ CN−k]l has dimension l(N − k + k − l) = l(N − l).
Finally, since l ≥ 3, the tangential-identifiability (cf. Proposition 4.3.2) implies that any tangent
point lies on a unique tangent space to the Grassmannian, hence Θk,N

l = Gr(k,N) × [Ck ⊗
CN−k]l. It follows that

dim Θk,N
l = dim Gr(k,N) + dim[Ck ⊗ CN−k]l = k(N − k) + l(N − l) .

4.5 The 2-nd Terracini locus of Gr(k, N)
In the following we determine the Terracini locus, introduced in [BC21; BBS20]. Its impor-

tance relies in the fact that it gives information on the singularities of points lying on bisecant
lines.

Definition 4.5.1. The r-th Terracini locus of a variety X is

Terrr(X) := {{p1, . . . , pr} ∈ Hilbr(X) | dim⟨Tp1X, . . . , Tpr
X⟩ < dim σr(X)} ,

where Hilbr(X) is the Hilbert scheme of 0-dimensional subschemes of X of length r (see Sec.
7.3 for details).
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From Sec. 2.1 we also recall the definition of the abstract secant variety

Abσ2(X) := {(Z, p) ∈ Hilb2(X)× Pm | p ∈ ⟨Z⟩} ,

together with the two natural projections π1 : Abσ2(X) → Hilb2(X) and π2 : Abσ2(X) →
σ2(X) ⊂ Pm.

Theorem 4.5.2. For any 3 ≤ k ≤ ⌊N2 ⌋, the second Terracini locus Terr2 (Gr(k,N)) of the
Grassmannian Gr(k,N) corresponds to the distance-2 orbit closure Σk,N2 . More precisely, in
the above notation, it holds

Terr2 (Gr(k,N)) = (π1 ◦ π−1
2 )

(
Σk,N2

)
.

Proof. Consider a point [p + q] ∈ σ2(Gr(k,N)) for certain [p], [q] ∈ Gr(k,N). We show that
dim

〈
T[p] Gr(k,N), T[q] Gr(k,N)

〉
drops only for [p+q] ∈ Σk,N2 = Gr(k,N)⊔Σk,N2 . As in (4.3.1),

it holds

T[p] Gr(k,N) ∩ T[q] Gr(k,N) =
k−1∧

(Hp ∩Hq) ∧ V +
k−2∧

(Hp ∩Hq) ∧Hp ∧Hq .

In particular, for d([p], [q]) ≥ 3 one gets T[p] Gr(k,N)∩T[q] Gr(k,N) = {0}, hence the dimension
of the span does not drop. On ther other hand, for d([p], [q]) ≤ 2 the above intersection has
positive dimension and the dimension of the span drops.

4.6 The singular locus of σ2(Gr(k, N))
We are now ready to determine the singular locus of the secant variety σ2(Gr(k,N)), proving

that it exactly coincides with the distance-2 orbit closure Σk,N2 . From the previous sections, we
recall that we assume 3 ≤ k ≤ ⌊N2 ⌋.

Remark. From Remark 4.0.1, we recall that the Grassmannian Gr(3, 6) has been studied in
[LM07] as one of the Legendrian varieties, and it has been proven that the tangential variety
τ(Gr(3, 6)) has singular locus coinciding with Σ3,6

2 (corresponding to σ+ in [LM07]).

In the respect of the above remark, from now on we consider k ≥ 3 and N ≥ 7: for any
N ≥ 7, the secant variety σ2(Gr(k,N)) does not fill up the ambient space P(N

k )−1.
In the following we deduce the singularity of the distance-2 orbit Σk,N2 in the secant variety
from its tangential-unidentifiability. First, we recall two general lemmas which are well-known
to experts. The first result is a weaker version of classical Terracini’s Lemma (cf. [Rus16,
Theorem 1.3.1]).

Lemma 4.6.1. Let X ⊂ PM be an irreducible smooth projective variety. Given any p, q ∈ X
and p+ q ∈ σ◦

2(X), the following inclusion holds

⟨TpX,TqX⟩ ⊂ Tp+qσ2(X) .
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Proof. By symmetry, it is enough to prove the inclusion TpX ⊂ Tp+qσ2(X). For any curve
γ(t) ⊂ X such that γ(0) = p and γ′(0) = v ∈ TpX, the curve δ(t) := q + γ(t) ⊂ σ2(X) is such
that δ(0) = q + γ(0) = p+ q and δ′(0) = γ′(0) = v, that is v ∈ Tp+qσ2(X).

Lemma 4.6.2. Let X ⊂ PM be an irreducible smooth projective variety. For any q ∈ τ(X)
and any p ∈ X such that q ∈ TpX, it holds

TpX ⊂ Tqσ2(X) .

Proof. Let q ∈ σ2(X) and p ∈ X such that q ∈ TpX. Given a tangent vector v ∈ TpX, the
line γ(t) := q+ t · v lies in the tangent space TpX ⊂ σ2(X), where the latter inclusion holds by
definition of secant variety. Since γ(0) = q and γ′(0) = v, we conclude that v ∈ Tqσ2(X).

Lemma 4.6.3. For any 3 ≤ k ≤ ⌊N2 ⌋, the distance-2 orbit is singular in the secant variety, i.e.

Σk,N2 ⊂ Sing
(
σ2
(

Gr(k,N)
))

.

Proof. By homogeneity, it is enough to prove the singularity of the representative

e[k] + e2 = e1 ∧ · · · ∧ ek−2 ∧ (ek−1 ∧ ek + ek+1 ∧ ek+2) .

From Lemma 4.6.1 we know that
〈
Te[k] Gr(k,N), Te2 Gr(k,N)

〉
⊂ Te[k]+e2σ2(Gr(k,N)). On the

other hand, from Remark 4.3.1 we deduce that the tangential-locus of e[k] + e2 contains the
points

p1 = e1 ∧ · · · ∧ ek−2 ∧ ek−1 ∧ ek+1 , p2 = e1 ∧ · · · ∧ ek−2 ∧ ek−1 ∧ ek+2

p3 = e1 ∧ · · · ∧ ek−2 ∧ ek ∧ ek+1 , p4 = e1 ∧ · · · ∧ ek−2 ∧ ek ∧ ek+2 ,

that is e[k] + e2 ∈ Tpi
Gr(k,N) for any i ∈ [4], hence from Lemma 4.6.2 we get the inclusions

Tpi
Gr(k,N) ⊂ Te[k]+e2σ2(Gr(k,N)) for any i ∈ [4]. In particular, since Te[k]+e2σ2(Gr(k,N)) is

a linear space, it must contain the sum

Te[k] Gr(k,N) + Te2 Gr(k,N) + Tp1 Gr(k,N) + Tp2 Gr(k,N) =

=
(
k−1∧

He[k] ∧ V
)

+
(
k−1∧

He2 ∧ V
)

+
(
k−1∧

Hp1 ∧ V
)

+
(
k−1∧

Hp2 ∧ V
)
. (4.6.1)

Given Ek−2 := ⟨e1, . . . , ek−2⟩C, for any p ∈ {e[k], e2, p1, p2} one has Ek−2 ⊂ Hp and

k−1∧
Hp ∧ V =

k−2∧
Ek−2 ∧

Hp

Ek−2
∧ V

Hp
⊕

k−2∧
Ek−2 ∧

2∧ Hp

Ek−2
⊕

k−3∧
Ek−2 ∧

2∧ Hp

Ek−2
∧ V

Hp
,

and an easy computation of the generators (and their repetitions among the four tangent spaces)
shows that the sum in (4.6.1) has dimension (N − k)(4k − 4)− 4k + 6. If we prove that

(N − k)(4k − 4)− 4k + 6 ⪈ 2(N − k)k + 2 = dim σ2(Gr(k,N)) + 1
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we are done. Notice that the above strict inequality is equivalent to (N−k)(2k−4)−4(k−1) ⪈ 0.
Moreover, since N ≥ 2k, it holds (N − k)(2k − 4)− 4(k − 1) ≥ 2k2 − 8k + 4.

Now, for k ≥ 4 ⪈ 2 +
√

2 one gets 2k2 − 8k + 4 ⪈ 0, while for k = 3 and N ≥ 8 one has
(N − k)(2k − 4) − 4(k − 1) = 2(N − 3) − 8 ⪈ 0. Finally, for k = 3 and N = 7, Lemma 4.6.2
implies that the tangent space Te[k]+e2σ2(Gr(3, 7)) must contain the sum

Te[k] Gr(3, 7) + Te2 Gr(3, 7) + Tp1 Gr(3, 7) + Tp2 Gr(3, 7) + Tp3 Gr(3, 7) + Tp4 Gr(3, 7)

which, by similar computations as above, has dimension 30 ⪈ 26 = dim σ2(Gr(3, 7)) + 1. In
each one of the above cases we conclude that e[k] + e2 is singular in σ2(Gr(k,N)), hence the
orbit Σk,N2 is so.

We are left with proving the smoothness of all the secant and tangent orbits of distance
greater or equal than 3.

Remark 4.6.4. In order to prove the inclusion Sing(σ2(Gr(k,N))) ⊂ Σk,N2 , it is enough to
prove the smoothness for the distance–3 tangent orbit Θk,N

3 , as it is contained in the closure of
all the orbits (both secant and tangent) of distance greater or equal than 3.

Remark 4.6.5. We point out that one can deduce the smoothness of the secant orbits Σk,Nl
for l ≥ 3 also from the information about both the second Terracini locus (Theorem 4.5.2)
and identifiability (Theorem 4.2.3). In order to see this, it’s more convenient to consider the
alternative definition of abstract secant variety (cf. Remark 2.1.4)

Abσ2(Gr(k,N)) :=
{

([a], [b], [q]) ∈ Gr(k,N)2
/S2
× P

(
k∧
CN
)
∣∣ [q] ∈ ⟨[a], [b]⟩

}
.

Indeed, in light of the identifiability of the orbit Σk,Nl , the projection from such abstract secant
variety onto the second factor restricts to a bijection π′ : π−1

2 (Σk,Nl ) → Σk,Nl . Moreover,
the differential of this restriction at a point ([p], [q], [p + q]) ∈ π−1

2 (Σk,Nl ) is injective: since
Terr2(Gr(k,N)) corresponds to Σk,N2 , the tangent spaces at [p] and [q] do not intersect and
the differential maps T[p] Gr(k,N) × T[q] Gr(k,N) to T[p] Gr(k,N) ⊕ T[q] Gr(k,N), hence it is
injective. It follows that the projection π2 is locally an isomorphism onto Σk,Nl , implying the
smoothness of the latter orbit.

In the following we prove the smoothness in σ2(Gr(k,N)) of the tangent point

q3 := e2 ∧ . . . ek ∧ ek+1− e1 ∧ e3 ∧ . . .∧ ek ∧ ek+2 + e1 ∧ e2 ∧ e4 ∧ . . .∧ ek ∧ ek+3 ∈ Te[k] Gr(k,N)

lying in the orbit Θk,N
3 (it differs from the representative θ3 by a sign). Consider the dual space

(CN )∨ with coordinates (x1, . . . , xN ) such that xi(ej) = δij . We denote by I(q) ⊂ ∧•(CN )∨

the ideal of a point q ∈ σ2(Gr(k,N)), by (I(q)2)k the k-th graded component of its squared
ideal and by

(I(q)2)⊥
k :=

{
v ∈

k∧
CN | α(v) = 0 ∀α ∈ I(q)2

}

the subspace of
∧k CN orthogonal to I(q)2.
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Lemma 4.6.6. For any q ∈ σ2(Gr(k,N)), it holds

Tqσ2(Gr(k,N)) ⊂ (I(q)2)⊥
k .

Proof. Consider v ∈ Tqσ2(Gr(k,N)) being the direction of a curve γ(t) ⊂ σ2(Gr(k,N)) passing
through γ(0) = q. As any α ∈ (I(q)2)k is continuous and linear, being a derivation, one has

α(v) = α

(
lim
t→0

γ(t)− q
t

)
cont= lim

t→0

α(γ(t)− q)
t

lin= d

dt
α(γ(t))∣∣

t=0

= dα

dγ(t) ∣∣
γ(0)=q

· dγ(t)
dt

∣∣
t=0︸ ︷︷ ︸

=v

.

Since α ∈ (I(q)2)k, we can write α =
∑
j fj ∧ gj for some fj , gj ∈ I(q). Hence

α(v) =
∑

j

[
dfj
dγ(t) ∧ gj + fj ∧

dgj
dγ(t)

]
∣∣

γ(0)=q

· v =
∑

j


f ′

j ∧ gj(q)︸ ︷︷ ︸
=0

−g′
j ∧ fj(q)︸ ︷︷ ︸

=0


 · v = 0 .

The next step is to compute the dimension of (I(q3)2)⊥
k . As it is clear that the multiplication

we consider is the wedge product, in the following we lighten up the notation by omitting the
wedges: for instance, xixj means xi ∧ xj . The ideal of q3 is generated by

I(q3) = (xk+4 , . . . , xN︸ ︷︷ ︸
(1)

, x1xk+1 , x2xk+2 , x3, xk+3︸ ︷︷ ︸
(2)

,

xk+1xk+2 , xk+1xk+3 , xk+2xk+3︸ ︷︷ ︸
(3)

,

x2xk+1 + x1xk+2 , x3xk+1 + x1xk+3 , x2xk+3 + x3xk+2︸ ︷︷ ︸
(4)

) ⊂
•∧

(CN )∨ ,

and a direct computation shows that the generators of the squared ideal I(q3)2 are

(1)2 xixj ∀i, j ∈ {k + 4, . . . , N}
(1)(2) xixjxk+j ∀i ∈ {k + 4, . . . , N}, ∀j ∈ {1, 2, 3}
(1)(3) xixk+jxk+s ∀i ∈ {k + 4, . . . , N}, ∀j, s ∈ {1, 2, 3}

(2)2 xjxsxk+jxk+s ∀j, s ∈ {1, 2, 3}
(2)(3) xjxk+1xk+2xk+3 ∀j ∈ {1, 2, 3}
(1)(4) xi(x2xk+1 + x1xk+2) , xi(x3xk+1 + x1xk+3) , xi(x2xk+3 + x3xk+2) ∀i ∈ {k + 4, . . . , N}
(2)(4) x3xk+3(x2xk+1 + x1xk+2) , x2xk+2(x3xk+1 + x1xk+3) , x1xk+1(x2xk+3 + x3xk+2) .

Consider the sets of generators A := {(1)2, (1)(2), (1)(3)} and B := {A, (2)2, (2)(3)}. In partic-
ular, it holds

(I(q3)2)⊥
k = (B)⊥

k ∩
(
(1)(4), (2)(4)

)⊥
k
.
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First we compute the dimension of (B)⊥
k and then we compute the linearly independent relations

imposed by the generators (1)(4) and (2)(4). Given [r] := {1, . . . , r} for any r ∈ N and given
s ≤ r, we denote by

([r]
s

)
the set of all subsets of [r] having s distinct elements. In the

following we distinguish the cases k = 3 and k ≥ 4: the arguments are the same although the
computations are slightly different as (I(q3)2)3 =

(
A, (1)(4)

)
3.

Proposition 4.6.7. For any N ≥ 7, the subspace (I(q3)2)⊥
3 has dimension 6(N − 3) + 2, i.e.

dim(I(q3)2)⊥
3 = dim σ2(Gr(3, N)) + 1 .

Proof. Since (I(q3)2)⊥
3 =

(
A, (1)(4)

)⊥
3 , first we study (A)⊥

3 and then we cut it by the relations
obtained from (1)(4).

Since A is given by monomials, also (A)⊥
3 has to be spanned by monomials of the form

ei1 ∧ ei2 ∧ ei3 . Let e[3] = e1 ∧ e2 ∧ e3 be the (unique by tangential-identifiability) point of
tangency of q3. Set ei ∧ ej ∧ eℓ a possible generator of (B)⊥

3 , and d := d(e[3], ei ∧ ej ∧ eℓ).

• If d = 3, then {i, j, ℓ} ⊂ {4, . . . , N}. Since ei ∧ ej ∧ eℓ has to vanish on A, the conditions
from (1)2 impose that at least two indices lie in {4, 5, 6}. However, the conditions from
(1)(3) imply that there cannot be an index lying in {7, . . . , N}. Thus the only possibility
is that {i, j, ℓ} = {4, 5, 6}, leading to a unique generator of (A)⊥

3 having distance 3 from
e[3].

• If d = 2, then we may assume i ∈ {1, 2, 3} and {j, ℓ} ⊂ {4, . . . , N}. The relations from
(1)2 imply that {j, ℓ} ⊈ {7, . . . , N}. If j ∈ {4, 5, 6} and ℓ ∈ {7, . . . , N}, the conditions
(1)(2) impose that j ̸= 3 + i, thus one gets 3 · 2 · (N − 6) generators. On the other hand,
the case {j, ℓ} ⊂ {4, 5, 6} leads to other 3 · 3 generators.

• The case d = 1 leads to 3(N − 3) generators as from Remark 4.1.7 these elements span
the tangent space at e[3].

• The case d = 0 trivially leads to the generator e[3] itself.

As the above generators are all linearly independent, we get dim(A)⊥
3 = 9(N − 3)− 7.

Next we impose on (A)⊥
3 the equations from (1)(4): since the 3(N − 6) elements in (1)(4)

impose linearly independent relations on (A)⊥
3 we get

dim(I(q3)2)⊥
3 = dim(B)⊥

3 − dim⟨(1)(4)⟩ = 9(N − 3)− 7− 3(N − 6) = 6(N − 3) + 2 .

Proposition 4.6.8. In the above notation, for k ≥ 4 the dimension of (B)⊥
k is

dim(B)⊥
k = 5 + 3(N − k − 3)(k − 1) + 6(k − 2) + k(N − k) .

Proof. Since (B)k ⊂
∧k(CN )∨ is spanned by monomials of the form xi1 ∧ . . . ∧ xik , then

(B)⊥
k has to be spanned by monomials of the form ej1 ∧ . . . ∧ ejk

. More precisely, if (B)k =
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⟨xi1 ∧ . . . ∧ xik | (i1 ⪇ . . . ⪇ ik) ∈ I} for a certain subset of ordered k-tuples I ⊂
([N ]
k

)
, then

(B)⊥
k = ⟨ej1 ∧ . . . ∧ ejk

| (j1 ⪇ . . . ⪇ jk) /∈ I}. We recall that q3 ∈ Te[k] Gr(k,N)×k,N3 where
e[k] = e1∧ . . .∧ek, and that e[k] is the only point of tangency for q3, by tangential-identifiability.
We analyze the possible generators ei1 ∧ . . .∧eik of (B)⊥

k as the Hamming distance with respect
to e[k] varies. We set d := d(e[k], ei1 ∧ . . . ∧ eik ).

((i) If d ≥ 4, we may assume i1, . . . , ik−d ∈ [k] and ik−d+1, . . . , ik ∈ {k + 1, . . . , N}. The
conditions imposed by the generators (1)2 imply that there cannot be two or more in-
dices in {ik−d+1, . . . , ik} ∩ {k + 4, . . . , N}. Moreover, if it was ik ∈ {k + 4 . . . , N} and
ik−d+1, . . . , ik−1 ∈ {k+1, k+2, k+3}, then it would be d = 4 leading to contradiction with
the conditions imposed by (1)(3). Finally, it cannot be ik−d+1, . . . , ik ∈ {k+1, k+2, k+3}
as it would imply d = 3. Thus there are no generators in (B)⊥

k having distance at least 4
from e[k].

(ii) If d = 3, we may assume i1, . . . , ik−3 ∈ [k] and ik−2, ik−1, ik ∈ {k + 1, . . . , N}. Again, it
has to be {ik−2, ik−1, ik} ∩ {k + 4, . . . , N} = ∅ because of the conditions from (1)2 and
(1)(3). On the other hand, for {ik−2, ik−1, ik} = {k + 1, k + 2, k + 3} the conditions from
(2)2 and (2)(3) impose {i1, . . . , ik−3} = [k]\ [3]. Thus there is only one generator in (B)⊥

k

having distance 3 from e[k], namely e4 ∧ . . . ∧ ek ∧ ek+1 ∧ ek+2 ∧ ek+3.

(iii) If d = 2, we may assume i1, . . . , ik−2 ∈ [k] and ik−1, ik ∈ {k + 1, . . . , N}. Similarly to
the above cases, the conditions from (1)2 impose that {ik−1, ik} ⊈ {k + 4, . . . , N}. If
ik ∈ {k+ 4, . . . , N} and ik−1 ∈ {k+ 1, k+ 2, k+ 3}, then the conditions from (1)(2) imply
{i1, . . . , ik−2} ⊂ [k] \ {ik−1 − k}, leading to (N − k− 3) · 3 · (k− 1) generators. Finally, if
{ik−1, ik} ⊂ {k+1, k+2, k+3}, then (2)2 implies that {ik−1−k, ik−k} ⊈ {i1, . . . , ik−2}:
in particular, the case {i1, . . . , ik−2} = [k] \ {ik−1 − k, ik − k} leads to 3 · 1 generators,
while the case |{ik−1 − k, ik − k} ∩ {i1, . . . , ik−2}| = 1 leads to 2 · 3 · (k − 2) generators.

(iv) All of the k(N − k) monomials ei1 ∧ . . . ∧ eik of distance d = 1 from e[k] are generators,
as by Remark 4.1.7 they span Te[k] Gr(k,N).

(v) For d = 0 there trivially is the generator e[k] itself.

Clearly, all of the above generators are linearly independent, hence the thesis follows.

Proposition 4.6.9. For k ≥ 4, the subspace (I(q3)2)⊥
k has dimension 2k(N − k) + 2, that is

dim(I(q3)2)⊥
k = dim σ2(Gr(k,N)) + 1 .

Proof. In order to compute the dimension of (I(q3)2)⊥
k =

(
(1)(4), (2)(4)

)⊥
k
∩ (B)⊥

k , we cut (B)⊥
k

by the relations in
(
(1)(4), (2)(4)

)
k
. Thus we determine the generators from

(
(1)(4), (2)(4)

)
k

which are linearly independent from (B)⊥
k . Notice that any generator in (2)(4) multiplied by

xi for i = k + 4, . . . , N lies in the ideal generated by (1)(4).

Let us start from the relations in ((2)(4))k. By symmetry, we may consider the element
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x1xk+1(x2xk+3 + x3xk+2) ∈ (2)(4). The generators in degree k coming from the above ele-
ment are obtained by multiplying it with monomials xi1 ∧ . . . ∧ xik−4 ∈

∧k−4(CN )∨. Clearly,
{i1, . . . , ik−4} cannot contain 1, k + 1, otherwise the multiplication goes to zero. On the other
hand, it cannot contain 2, 3, k+ 2, . . . , N , otherwise the multiplication would give linear combi-
nations of elements of B. Thus the generators in degree k coming from x1xk+1(x2xk+3+x3xk+2)
are obtained from the k− 3 monomials with indices {i1, . . . , ik−4} ∈

([k]\[3]
k−4

)
. By symmetry, the

same holds for the other two generators in (2)(4). Moreover, a direct computation shows that
the generators of ((2)(4))k obtained as above

x1xk+1(x2xk+3 + x3xk+2) ∧ xi1 · · ·xik−4 ∀{i1, . . . , ik−4} ∈
(

[k] \ [3]
k − 4

)

x2xk+2(x1xk+3 + x3xk+1) ∧ xj1 · · ·xjk−4 ∀{j1, . . . , jk−4} ∈
(

[k] \ [3]
k − 4

)

x3xk+3(x2xk+1 + x1xk+2) ∧ xs1 · · ·xsk−4 ∀{s1, . . . , sk−4} ∈
(

[k] \ [3]
k − 4

)

are linearly independent. It follows that ((2)(4))k imposes 3(k − 3) conditions on (B)⊥
k .

Finally, we focus on the relations from ((1)(4))k. By symmetry, we consider the set of
elements xi(x1xk+2 + x2xk+1) ∈ (1)(4) for i ∈ {k + 4, . . . , N} and we multiply it with a mono-
mial xi1 ∧ . . . ∧ xik−3 . Similarly to the previous argument, the set of indices {i1, . . . , ik−3}
cannot contain 1, 2, k + 1, . . . , N otherwise we would get linear combinations of elements of
B. However, in this case one can have 3 ∈ {i1, . . . , ik−3}, thus we get (N − k − 3)(k − 2)
generators of ((1)(4))k from {xi(x1xk+2 + x2xk+1) | i = k + 4 : N} by multiplying it with the
k − 2 monomials indexed by {i1, . . . , ik−3} ⊂ {3, . . . , k}. Analogously, the remaining sets of
elements {xj(x1xk+3 + x3xk+1) | j = k + 4 : N} and {xs(x3xk+2 + x2xk+3) | s = k + 4 : N}
in (1)(4) give (N − k− 3)(k− 2) generators each, after multiplying with monomials indexed by
{j1, . . . , jk−3} ⊂ {2, 4, . . . , k} and {s1, . . . , sk−3} ⊂ {1, 4, . . . , k} respectively. Again, one has to
check possible linear combinations among the above 3(N − k − 3)(k − 2) generators: a direct
computation shows that the only possible linear combinations are of the form

xi(x1xk+2 + x2xk+1) ∧ x3xi2 · · ·xik−3 + xi(x1xk+3 + x3xk+1) ∧ x2xi2 · · ·xik−3+
+ xi(x3xk+2 + x2xk+3) ∧ x1xi2 · · ·xik−3 = 0

as i ∈ {k + 4, . . . , N} and {i2, . . . , ik−3} ∈
([k]\[3]
k−4

)
vary. It follows that ((1)(4))k imposes

3(N − k − 3)(k − 2)− (N − k − 3)(k − 3) conditions on (B)⊥
k .
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We conclude that the dimension of (I(q3)2)⊥
k is

dim(I(q3)2)⊥
k = dim

(
(B)⊥

k ∩
(
(1)(4), (2)(4)

)⊥
k

)

=
[
5 + 3(N − k − 3)(k − 1) + 6(k − 2) + k(N − k)

]
− 3(k − 3)

−
[
3(N − k − 3)(k − 2)− (N − k − 3)(k − 3)

]

= 2k(N − k) + 2 .

Theorem 4.6.10. For any 3 ≤ k ≤ N
2 and N ≥ 7, the singular locus of the secant variety of

lines to the Grassmannian Gr(k,N) coincides with the closure of the distance-2 orbit, i.e.

Sing (σ2(Gr(k,N))) = Σk,N2 .

Proof. From Lemma 4.6.3 we already know that the inclusion Σk,N2 ⊂ Sing(σ2(Gr(k,N))) holds.
From Remark 4.6.4 it is enough to prove the smoothness of Θk,N

3 for deducing the smoothness
of all the remaining orbits. Moreover, by homogeneity it is enough to check the smoothness of
a representative of Θk,N

3 , say q3. Finally, from Lemma 4.6.6, Proposition 4.6.7 (for k = 3) and
Proposition 4.6.9 (for k ≥ 4) we get the chain of inequalities

2k(N − k) + 2 ≤ dimTq3σ2(Gr(k,N)) ≤ dim(I(q3)2)⊥
k = 2k(N − k) + 2 ,

leading to dimTq3σ2(Gr(k,N)) = dim σ2(Gr(k,N)) + 1, hence the point q3 is smooth in the
secant variety.

Remark. Theorem 4.6.10 corrects a previous statement in [AOP12, before Figure 1] in which
the authors states that Sing(σ2(Gr(3, 7))) = Gr(3, 7).





Chapter 5

Identifiability and singular locus
of σ2(S±N )

Similarly to the Grassmannian case, only partial results appear on the secant variety of lines to
Spinor varieties (eg. see [MM15; Man09]). In this chapter we solve the identifiability problem
and we determine upper and lower bounds for the singular locus of the secant varieties of lines
to Grassmannians. The results appearing in this chapter are collected in the preprint [Gal23].

In light of Theorem 3.3.1 we work in the DN -type setting for N even. In particular,
we assume notation in Table 3.1. We consider a 2N -dimensional complex vector space V =
E ⊕ E∨ endowed with the quadratic form q =

∑N
i=1 xixN+i and we fix the q–hyperbolic basis

(e1, . . . , eN , f1, . . . , fN ). We focus on the Spinor variety

S+
N = DN/PωN

⊂ P(V DN
ωN

) = P

(
ev∧
E

)
.

We recall that, under these assumptions, the highest weight vector and the lowest weight vector
are respectively vωN

= e[N ] = e1∧. . .∧eN and ℓωN
= 1, with corresponding maximal q–isotropic

subspaces E = He[N] and E∨ = H1.

Secant variety of lines to S+
N . Consider the secant variety of lines of S+

N

σ2(S+
N ) = σ◦

2(S+
N ) =

{
[a+ b] ∈ P

(
V DN
ωN

)
| [a], [b] ∈ S+

N

}
⊂ P(V DN

ωN
) .

A dense subset is σ◦
2(S+

N ), given by the union of bisecant lines, while the union of tangent
lines defines the tangential variety τ(S+

N ). It is known that the secant variety of lines is
quasi–homogeneous, in the sense that it admits a dense orbit: more precisely, σ2(S+

N ) =
Spin2N ·[vωN

+ ℓωN
] [Zak93, Theorem 1.4]. Moreover, it is non-defective for any N [Kaj99;

67
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Ang11], thus its dimension is the expected one:

dim σ2(S+
N ) = min

{
2 dim S+

N + 1,dimP
(
V DN
ωN

)}
=





2N−1 − 1 for N ≤ 6
N(N − 1) + 1 for N ≥ 6

.

We list the dimensions of Spinor varieties and their secant varieties for N ≤ 8.

Spin2N S±
N dim S±

N dim σ2(S±
N ) P

(
V DN
ωN

)

Spin4 S+
2 ≃ P1 1 1 P(

∧ev C2) ≃ P1

Spin6 S−
3 ≃ P3 3 3 P(

∧odC3) ≃ P3

Spin8 S+
4 ≃ Q6 6 7 P(

∧ev C4) ≃ P7

Spin10 S−
5 10 15 P(

∧odC5) ≃ P15

Spin12 S+
6 15 31 P(

∧ev C6) ≃ P31

Spin14 S−
7 21 43 P(

∧odC7) ≃ P63

Spin16 S+
8 28 57 P(

∧ev C8) ≃ P127

Table 5.1: Spinor varieties in low dimensions, and their secants of lines.

Remark. In same terminology from Sec. 2.1, for N ≤ 5 the secant variety σ2(S+
N ) overfills

the ambient space P2N−1−1, for N ≥ 7 it is strictly contained, while for N = 6 we are in the
perfect case. We recall that the Spinor variety S±

6 is a Legendrian variety and, as such, its
secant variety of lines has been studied by J.M. Landsberg and L. Manivel (cf. Remark 1.4.2).

5.1 The poset of Spin2N–orbits in σ2(S±N)
The secant variety of lines σ2(S+

N ) is invariant under Spin2N–action, as well as its subsets
σ◦

2(S+
N ) and τ(S+

N ). We refer to the orbits lying in σ◦
2(S+

N ) as secant orbits, and to the orbits
lying in τ(S+

N ) as tangent orbits. Recall that the Spinor variety has diameter diam(S+
N ) = N

2
(cf. Theorem 3.4.3). Moreover, for any l = 1 :

(
N
2 − 1

)
we consider the following pure spinors

and their corresponding maximal q–isotropic subspaces

e[N−2l] = e1 ∧ . . . ∧ eN−2l ∈ S+
N ,

EN−2l := He[N−2l] = ⟨e1, . . . , eN−2l, fN−2l+1, . . . , fN ⟩C ∈ OG+(N,V ) .
(5.1.1)

By convention, for l = N
2 we set e[0] = ℓωN

= 1. On the other hand, for l = 0 one gets
e[N ] = vωN

.

Spin2N–orbits in S+
N × S+

N . The action of Spin2N on S+
N naturally induces the action on the

direct product S+
N × S+

N given by g · ([a], [b]) = ([g · a], [g · b]). We recall that the notation g · a
stands for the action of Spinq(V ) ⊂ (Clq(V ))× on

∧
E via Clifford multiplication (3.1.6).
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Remark 5.1.1. Via the bijection (3.3.3), the action on S+
N × S+

N is equivalent to the action of
Spinq(V ) on OG+(N,V )×2 given by g · (Ha, Hb) = (g ·Ha, g ·Hb), where g ·Ha = gHag

−1 is
the conjugacy action: this follows from the inclusion Spinq(V ) ⊂ NClq(V )×(V ).

From Remark 2.3.2, the Hamming distance in S+
N is invariant under Spinq(V )-action, as well

as the dimensions of subspaces in V are preserved under conjugacy. In particular, the actions
of Spinq(V ) on S+

N × S+
N and on OG+(N,V )×2 restrict to actions on the subsets

Ol,N :=
{

([a], [b]) ∈ S+
N × S+

N | d([a], [b]) = l
}

(5.1.2)

Ôl,N :=
{

(Ha, Hb) ∈ OG+(N,V )×2 | dim(Ha ∩Hb) = N − 2l
}

(5.1.3)

respectively, for any l = 0 : N2 where N
2 = diam(S+

N ). Since for l = 0 one gets the diagonals ∆S+
N

and ∆OG+(N,V ) we consider l ≥ 1. From Proposition 3.4.2, for any distance l ≥ 1, the subsets
Ol,N and Ôl,N are equivalent one to the other, and they give partitions of the corresponding
direct products (as sets). Since dim(He[N] ∩Hel

) = dim(E ∩ El) = N − 2l, for any l = 1 : N2
one gets the inclusion Spinq(V ) ·

(
[e[N ]], [e[N−2l]]

)
⊂ Ol,N .

Remark. It is likely well-known that the Spin2N–orbit partition of Q2N−2×Q2N−2 is uniquely
determined by the Hamming distance: in particular,

Q2N−2×Q2N−2 = ∆Q2N−2 ⊔ Spin2N ·([e1], [e2]) ⊔ Spin2N ·([e1], [f1]) .

However, we haven’t been able to find a proper citation, hence we prove this result in Sec. 7.2.

Proposition 5.1.2. For any l = 1 : diam(S+
N ), the spin group Spinq(V ) acts transitively on

Ol,N ⊂ S+
N × S+

N . In particular, it holds

Ol,N = Spinq(V ) ·
(
[e[N ]], [e[N−2l]]

)
.

Proof. Given ([a], [b]) ∈ Ol,N , by homogeneity of S+
N we may assume a = e[N ].

First we prove the result for l = N
2 . Since d([e[N ]], [b]) = N

2 , it holds E ∩ Hb = {0} and
we may assume Hb = ⟨g1, . . . , gN ⟩C for generators gj as in (3.3.5). In light of Theorem 7.2.1
Spinq(V ) conjugates the q–isotropic vector g1 = f1 +

∑N
i=2 αi1ei (having Hamming distance

2 from e1) to f1 by leaving e1 fixed. Now, consider V ′ = ⟨e2, . . . , eN , f2, . . . , fN ⟩C and the
subspaces E′ = E ∩ V ′ and H ′

b = Hb/⟨e1, f1⟩C: again Spin(V ′) conjugates g2 − α12e1 ∈ H ′
b to

f2 by leaving e2 fixed. In particular, Spinq(V ) conjugates g2 ∈ Hb to f2 by leaving e1, f1, e2

fixed. By iterating, Spinq(V ) conjugates Hb to E∨, hence ([e[N ]], [b]) to (e[N ], [1]).
On the other hand, for l ⪇ N

2 one has Hb = ⟨h1, . . . , hN−2l, gN−2l+1, . . . , gN ⟩C for gj ’s as
in (3.3.5) and E ∩ Hb = ⟨h1, . . . , hN−2l⟩C. Up to reordering h1, . . . , hN−2l, one gets that hj
has Hamming distance 1 from ej for any j = 1 : N − 2l, hence by applying Theorem 7.2.1
and similar arguments as above one can conjugates E ∩Hb to EN−2l. Finally, by working in
W := V/EN−2l one can conjugates E/EN−2l to Hb/EN−2l via Spin(W ) and lifting this to a
conjugation under Spinq(V ) leaving EN−2l fixed. The thesis follows.
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Corollary 5.1.3. The product S+
N × S+

N splits in the Spin2N–orbits

S+
N × S+

N = ∆S+
N
⊔

N
2⊔

l=1
Spin2N ·

(
[e[N ]], [e[N−2l]]

)
.

5.1.1 Secant orbits in σ◦
2(S+

N)
We deduce the orbit partition of the dense subset σ◦

2(S+
N ) from Proposition 5.1.2. We recall

that each spinor [a+ b] ∈ P (
∧ev

E) defines, via the map (3.3.1), a q–isotropic subspace Ha+b =
ker(ψa+b) ⊂ Q2N−2, which has maximal dimension N if and only if [a+b] is pure. By definition
of these subspaces as annihilators, it clearly holds

Ha ∩Hb ⊆ Ha+b .

For any two distinct pure spinors [a], [b] ∈ S+
N such that d([a], [b]) = 1, the spinor [a + b] is

pure too, since the line L([a], [b]) fully lies in the Spinor variety: in particular, in this case one
has dim(Ha ∩Hb)

(3.4.2)= N − 2 while dimHa+b = N , thus the strict inclusion Ha ∩Hb ⊊ Ha+b

holds. However, for higher Hamming distances the equality holds.

Lemma 5.1.4. In the above notation, the following holds:

He[N]+e[N−2l] = E ∩ EN−2l ⇐⇒ l ̸= 1 .

In particular, for any l ≥ 2, it holds dimHe[N]+e[N−2l] = N − 2l.

Proof. We already know that ⟨e1, . . . , eN−2l⟩C = E ∩ EN−2l ⊂ He[N]+e[N−2l] holds. Assume
that there exists v ∈ He[N]+e[N−2l] such that v /∈ (E ∩EN−2l) \ {0}. Thus, since He[N]+e[N−2l] is
q–isotropic, up to linear combinations we can consider a decomposition of v with respect to the
standard hyperbolic basis (e1, . . . , eN , f1, . . . , fN ) of the form v = α1eN−2l+1 + . . . + α2leN +
β1fN−2l+1 + . . .+ β2lfN for some αi, βj ∈ C. Since He[N]+e[N−2l] = ker(ψe[N]+e[N−2l]), it holds

0 = v · (e[N ] + e[N−2l])

(3.1.6)=
2l∑

i=1
αi(e1 ∧ . . . ∧ eN−2l ∧ eN−2l+i) +

2l∑

j=1
(−1)j+1βj(e1 ∧ . . . ∧ êN−2l+j ∧ . . . ∧ eN ) ,

where êN−2l+j denotes that the vector is missing in the wedge product.
Now, the summands above may simplify one to each other if and only if l = 1, otherwise
they do not since they are all independent vectors in the standard basis of

∧
E. It follows

that, for l ≥ 2, it holds v · (e[N ] + e[N−2l]) = 0 if and only if αi = βj = 0 for all i, j ∈ [2l],
that is He[N]+e[N−2l] = E ∩ El. On the other hand, for l = 1, the conditions α1 = β2 and
α2 = −β1 give a non-zero vector 0 ̸= v ∈ He[N]+e[N−2l] \ (E∩El), thus E∩E1 ⊊ He[N]+e[N−2l] =
⟨e1, . . . , eN−2, eN−1 + fN , eN − fN−1⟩C.

Corollary 5.1.5. For any [a+ b] ∈ σ◦
2(S+

N ) \ S+
N , the equality Ha+b = Ha ∩Hb holds.
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Proof. Let [a + b] = [c + d] ∈ σ◦(S+
N ) \ S+

N be such that d([a], [b]) = l and d([c], [d]) = m for
certain 2 ≤ l,m ≤ N

2 . By Proposition 5.1.2 there exists g ∈ Spinq(V ) such that g · ([a], [b]) =
([e[N ]], [e[N−2l]]) and g · ([c], [d]) = ([c′], [d′]). In particular, [e[N ] + e[N−2l]] = g · [a + b] =
g · [c + d] = [c′ + d′], and by Proposition 5.1.4 we get Hc′ ∩ Hd′ ⊂ Hc′+d′ = He[N]+e[N−2l] =
E ∩ EN−2l, where the last equality follows from Lemma 5.1.4 since l ≥ 2. Dimensionally we
have N − 2m = dim(Hc′ ∩Hd′) ≤ dim(E ∩EN−2l) = N − 2l. But, by symmetry, one also gets
N − 2l = dim(Ha′ ∩Hb′) ≤ dim(E ∩EN−2m) = N − 2m, thus l = m and the thesis follows.

Corollary 5.1.5 allows to define for any l = 2 : N2 the subset

Σl,N :=
{

[a+ b] ∈ σ◦
2(S+

N ) | dimHa+b = N − 2l
}

=
{

[a+ b] ∈ σ◦
2(S+

N ) | d([a], [b]) = l
}
. (5.1.4)

Moreover, we set Σ1,N := S+
N . Our claim is that the subsets Σl,N are exactly the Spinq(V )-

orbits in σ◦
2(S+

N ).
The action of Spinq(V ) on σ2(S+

N ) preserves the subsets Σl,N , as by Remark 5.1.1 the spin
group acts on V and its subspaces by conjugacy. Moreover, by Proposition 5.1.2 any two pairs
([a], [b]) and ([c], [d]) of Hamming distance l are conjugated, hence their lines L([a], [b]) and
L([c], [d]) are so. Finally, the following result proves that Spinq(V ) acts transitively on points
on a same line L([a], [b]) \ {[a], [b]} too.

Lemma 5.1.6. For any two distinct pure spinors [a], [b] ∈ S+
N , the spin group Spinq(V ) acts

transitively on L([a], [b]) \ {[a], [b]}.

Proof. Since the lines defined by pairs of pure spinors having the same Hamming distance are
all conjugated, it is enough to prove the transitivity on the line L([e[N ]], [e[N−2l]]). Moreover,
given a point [λe[N ] + µe[N−2l]] = [e[N ] + ze[N−2l]] ∈ L([e[N ]], [e[N−2l]]), we can rewrite it as
e[N ] + ze[N−2l] = e1 ∧ . . . ∧ eN−2l ∧ (eN−2l+1 ∧ . . . ∧ eN + z1). Since [eN−2l+1 ∧ . . . ∧ eN ] and
[z1] are pure spinors in S+

2l, we can restrict to consider the line L([e[N ]], [1]).
Given e[N ] + z1, we look for a spin element g ∈ Spinq(V ) such that e[N ] + z1 = k(e[N ] + 1)

for some k ∈ C×. We consider the element g̃ = (a1e1 + b1f1) · · · (aNeN + bNfN ) ∈ Cl+q (V ) for
certain ai, bi ∈ C×: it is product of an even number of vectors in V by the assumption as N is
even. Then g̃ ∈ Spinq(V ) if and only if it is invertible and it has unitary spinor norm, that is

g̃ ∈ Spinq(V ) ⇐⇒
N∏

i=1
aibi

♣= 1 .

Via Clifford multiplication (3.1.6) it holds (a1e1 + b1f1) · (e[N ] + z1) = a1ze1 + b1e2 ∧ . . .∧ eN ,
and by iterating for i = 1 : N one gets g̃ ·(e[N ] +z1) = a1 · · · aNze[N ] +b1 · · · bN1. In particular,
the second required condition is

g̃ · (e[N ] + z1) = k(e[N ] + 1) ⇐⇒ z

N∏

i=1
ai

♠=
N∏

i=1
bi .

By putting together the conditions (♣) and (♠), it is straightforward that for the choice a1 =
. . . = aN = 2N

√
z−1 and b1 = . . . = bN = 2N

√
z one gets g̃ · (e[N ] + z1) =

√
z(e[N ] + 1).
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It follows that for any l = 1 : N2 the subset Σl,N is a Spinq(V )-orbit in σ◦
2(S+

N ). Moreover, by
Proposition 5.1.2 we deduce that for any l it holds Σl,N = Spin(V ) · [e[N ] + e[N−2l]].
In conclusion, we have proved the following theorem.

Theorem 5.1.7. The dense set σ◦
2(S+

N ) splits under the action of Spin2N in the orbits

σ◦
2(S+

N ) =
N
2⊔

l=1
Spin2N ·[e[N ] + e[N−2l]] .

5.1.2 Tangent orbits in τ(S+
N)

From the non-defectivity of σ2(S+
N ) and the dicotomy between tangential and secant varieties

[FH79, Corollary 4], we know that τ(S+
4 ) = σ2(S+

4 ) = P7 and τ(S+
5 ) = σ2(S+

5 ) = P15, while for
N ≥ 6 the tangential variety τ(S+

N ) is a divisor in σ2(S+
N ) ⊂ P2N−2−1. We deduce the orbit

partition of τ(S+
N ) from the tangent bundle on the Spinor variety.

Tangent bundle. Let TS+
N

be the tangent bundle on the Spinor variety S+
N . Under the

identification S+
N = Spin2N /P , the base point [P ] ∈ DN/P corresponds to the pure spinor

[vωN
] = [e[N ]], hence to the maximal q–isotropic subspace E ∈ OG+(N,V ), and

P = stab(E) ≃
{[

A B

A−1

]
| A ∈ SL(E), B ∈

2∧
CN
}

.

It follows that the fiber of the tangent bundle at the base point [P ] is
(
TS+

N

)
[P ]
≃ pu ≃ ∧2 CN .

From the parametrization of Spinor varieties, one can describe the fiber at any pure spinor
[a] ∈ S+

N as
(
TS+

N

)
[a]

= T[a]S+
N ≃

2∧
Ha .

In particular, this leads to the isomorphism of homogeneous bundles

TS+
N
≃

2∧
U∨ , (5.1.5)

where U is the rank–N universal bundle on S+
N obtained by pulling back the universal bundle on

the Grassmannian Gr(N,V ) (cf. Example 1.3.7). Notice that the fiber at the point [vωN
] ≃ E

is T[vωN
]S+
N ≃

∧2
E and it is an irreducible SL(E)–module with highest weight ω2: as such the

P–orbits in the tangent space are uniquely determined by the rank of skew-symmetric matrices.

Tangent orbits. By homogeneity of S+
N , all tangent spaces are conjugated one to each other

by transformations in Spin2N \P . Thus the Spin2N–orbits of points in the tangential variety
τ(S+

N ) are in bijection with the P–orbits in the tangent space T[vωN
]S+
N , which are parametrized

by the possible ranks in
∧2 CN .

Let
[
T[a]S+

N

]
2l be the set of tangent points to S+

N at the pure spinor [a] corresponding to
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skew-symmetric matrices of size N and rank 2l. Then for any l = 1 : N
2 we denote the set of

all tangent points corresponding to rank–2l skew-symmetric matrices by

Θl,N :=
{

[q] ∈ τ(S+
N ) | ∃[a] ∈ S+

N : [q] ∈
[
T[a]S+

N

]
2l
}
. (5.1.6)

The above arguments ensure that each subset Θl,N is indeed a Spinq(V )-orbit, and all together
they give the Spinq(V )-orbit partition of τ(S+

N ).
Finally, for any l = 1 : N2 the tangent orbit Θl,N admits as representative the spinor

[ql] :=
[

l∑

i=1
e2i−1 ∧ e2i

]
. (5.1.7)

Indeed, the curve of rank–2l skew-symmetric matrices of size N

tCl = t




P1
. . .

Pl
0N−2l


 where Pi =

[
0 1

−1 0

]
(5.1.8)

defines the curve of maximal q–isotropic subspaces

Hc(t) =
〈
f1 + t

N∑

k=1
ck1ek, . . . , fN + t

N∑

k=1
ckNek

〉

C

∈ OG+(N,V ) ,

which by Proposition 3.3.2 corresponds to the curve of pure spinors c(t) =
∑
I∈2[N] Pf(C(t)I)eI

passing at c(0) = 1 with direction c′(0) = ql, thus [ql] ∈ T[1]S+
N .

Theorem 5.1.8. The tangential variety τ(S+
N ) splits in the Spin2N -orbits

τ(S+
N ) =

N
2⊔

l=1
Spin2N ·

[
l∑

i=1
e2i−1 ∧ e2i

]
.

5.1.3 Inclusions among closures of Spin2N–orbits
We have treated the secant orbits and the tangent orbits separately, now we analyze the

behaviour of their inclusions. First of all, notice that the tangent representative [q1] = [e1∧e2] ∈
Θ1,N is a pure spinor, hence

Θ1,N = S+
N = Σ1,N .

Remark. The orbit Θ1,N is given by skew-symmetric matrices having rank (as matrices) 2,
hence it is described by the Grassmannian of planes Gr(2, N). This agrees with the more
theoretical result [LM03, Prop. 2.5 + Subsec. 3.1] TxS+

N ∩ S+
N ≃ Gr(2, N) for any x ∈ S+

N .

Moreover, for l = 2, a representative of Θ2,N is [q2] = [e1 ∧ e2 + e3 ∧ e4]. But [e1 ∧ e2]
and [e3 ∧ e4] are pure spinors with corresponding subspaces He1∧e2 = E[2] and He3∧e4 =
⟨f1, f2, e3, e4, f5, . . . , fN ⟩C, hence they have Hamming distance 2 and [q2] ∈ Σ2,N . Thus

Θ2,N = Σ2,N .
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Remark 5.1.9. Via the map ψq in (3.3.1) every [q] ∈ Θl,N defines a subspace Hq ∈ OG(N −
2l, V ): indeed, the representative [ql] (5.1.7) defines the subspace Hql

= ⟨f2l+1, . . . , fN ⟩C of
dimension N−2l and Spinq(V ) acts by conjugacy on the subspaces, preserving their dimensions.
Moreover, by definition, a tangent point [q] ∈ T[a]S+

N ∩ Θl,N is the direction of a curve γ(t) =
{[a(t)] | t ∈ (−ϵ, ϵ)} ⊂ S+

N passing at γ(0) = [a] and, up to considering a smaller neighbourhood,
one can assume d([a], [a(t)]) = m for any t ∈ (0, ϵ). Then for any t > 0 the spinor a−a(t)

t defines
a subspace Ht ∈ OG(N − 2l, V ) and one gets the equality Hq = limt→0 Ht ∈ OG(N − 2l, V ).

From the previous arguments we deduce the following description of the secant variety of
lines

σ2(S+
N ) = S+

N ⊔




N
2⊔

l=2
Σl,N


 ∪




N
2⋃

l=3
Θl,N


 ,

where non-disjoint unions appear since we haven’t proved Σl,N ̸= Θl,N for l ≥ 3 yet. Since we
are interested in considering l ≥ 3, we assume N ≥ 6.

Lemma 5.1.10.

1. For any l = 2 : N2 it holds Σl−1,N ⊂ Σl,N .

2. For any l = 2 : N2 it hols Θl−1,N ⊂ Θl,N .

3. For any l = 3 : N2 it holds Θl,N ⊂ Σl,N .

Proof. 1. For ϵ > 0 consider the sequence [e[N ] + aϵ] ∈ Σl,N for the pure spinors [aϵ] defined
by the maximal q–isotropic subspaces

Haϵ
= ⟨e1, . . . , eN−2l, gN−2l+1(ϵ), gN−2l+2(ϵ), gN−2l+3, . . . , gN ⟩C

where

gN−2l+1(ϵ) = 1
ϵ
fN−2l+1 + eN−2l+2 , gN−2l+2(ϵ) = 1

ϵ
fN−2l+2 − eN−2l+1

and gh = fh +
∑N
k=N−2l+3 αkjek as in (3.3.5). Then the sequence [e[N ] + aϵ] has limit

[e[N ] +a] where the pure spinor [a] ∈ S+
N corresponds to the maximal q–isotropic subspace

Ha = ⟨e1, . . . , eN−2l+2, gN−2l+3, . . . , gN ⟩C: in particular, [e[N ] +a] ∈ Σl−1,N . By reversing
this argument, one can always look at a point in Σl−1,N as limit of a sequence in Σl,N .

2. The tangent points in Θl−1,N correspond to skew-symmetric matrices of size N and rank
2l− 2, while points in Θl,N to rank–2l skew-symmetric matrices of size N . As the former
matrices lie in the closure of the latter ones, the thesis follows.

3. Consider [q] ∈ Θl,N ⊂ τ(S+
N ): then by Remark 5.1.9 dimHq = N − 2l and there exists a

curve of pure spinors γ(t) = {[a(t)] | t ∈ (−ϵ, ϵ)} ⊂ S+
N with direction γ′(0) = [q] such that

(up to a smaller ϵ) d([a(t)], [a(0)]) = l for any t ∈ (0, ϵ). In particular, for any t > 0 it holds[
a(t)+a(0)

t

]
∈ Σl,N and by definition [q] =

[
limt→0

a(t)−a(0)
t

]
= limt→0

[
a(t)+a(0)

t

]
∈ Σl,N .
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Lemma 5.1.11. For any N ≥ 6 and l = 3 : N2 , it holds Σl,N ̸= Θl,N .

Proof. For l = N
2 the equality does not hold since for N ≥ 6 one has τ(S+

N ) ⊊ σ2(S+
N ).

By contradiction, assume that there exists 3 ≤ l ≤ N
2 − 1 such that the equality holds. Then

Lemma 5.1.10 implies Σi,N = Θi,N for any 3 ≤ i ≤ l: in particular, Σ3,N = Θ3,N . Since we
want to deal with 3 ⪇ N

2 , we assume N ≥ 7.
Consider the tangent representative [q3] = [e1∧e2+e3∧e4+e5∧e6] ∈ Θ3,N . It defines the sub-

space Hq3 = ⟨f7, . . . , fN ⟩C of dimension dimHq3 = N − 6. Set E ∩E[6] = ⟨e1, e2, e3, e4, e5, e6⟩C.
Since [q3] ∈ Σ3,N , there exist pure spinors [a], [b] ∈ S+

N such that [q3] = [a+b] and d([a], [b]) = 3.
Then, being kernels, one gets ⟨f7, . . . , fN ⟩C = Hq3 = Ha+b = Ha ∩Hb, where the last equality
follows from Corollary 5.1.5. This implies that a + b ∈ ∧ev(E ∩ E[6]) and [a], [b] ∈ S+

6 : in
particular, the equality [q3] = [a + b] holds in Σ3,6 for the representative [q3] ∈ Θ3,6. But this
means that Θ3,6 = Σ3,6, that is τ(S+

6 ) = σ2(S+
6 ) which is a contradiction.

Theorem 5.1.12. For any N ≥ 6, the poset of Spin2N–orbits in the secant variety of lines
σ2(S+

N ) is described by the graph in Figure (5.1), where arrows denote the inclusion of an orbit
into the closure of the other orbit. In particular, the orbits Θ N

2 ,N
and Σ N

2 ,N
are the dense

orbits of the tangential and secant variety respectively.

S+
N

Θ2,N = Σ2,N

Θ3,N

...

Θ N
2 ,N

Σ3,N

...

Σ N
2 ,N

Figure 5.1: Poset graph of Spin2N–orbits in σ2(S+
N ).

5.2 Identifiability in σ2(S+
N)

In Sec. 2.1 we have defined a point [q] ∈ σ◦
2(S+

N ) to be identifiable if there exists a unique pair
of pure spinors ([a], [b]) ∈ (S+

N )×2
/S2

such that [q] = [a + b], which geometrically means that [q]
lies on a unique bisecant line to S+

N . On the contrary, [q] is unidentifiable (or non-identifiable) if
it lies on at least two distinct bisecant lines to S+

N . Recall that we say that a subset Y ⊂ σ◦
2(S+

N )
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(eg. an orbit) is (un)identifiable if any of its points is so. Finally, the decomposition locus of
[q] ∈ σ◦

2(S+
N ) is the set Dec([q]) =

{
([x], [y]) ∈

(
S+
N

)×2
/S2

∣∣ [x+ y] = [q]
}

.

Unidentifiability and decomposition loci for Σ2,N The 6–dimensional Spinor variety
S+

4 ⊂ P7 coincides with the 6-dimensional quadric Q6 ⊂ P7. In this case, the secant orbit
Σ2,4 is dense in σ2(S+

4 ) = P7. Given [q] ∈ P7 \ Q6, for any pair ([x], [y]) ∈ Dec([q]) in the
decomposition locus it holds d([x], [y]) = 2, since L([x], [y]) ⊈ Q6.

Proposition 5.2.1. For any [q] ∈ P7 \Q6, the decomposition locus Dec([q]) is parametrized by
the lines P1 ⊂ P7 passing at [q] and intersecting Q6 in two distinct points, i.e.

Dec([q]) ≃ P6 \Q5 .

In particular, the distance-2 orbit Σ2,4 is unidentifiable.

Proof. The set of lines P1 ⊂ P7 passing through [q] and intersecting Q6 in two distinct points is
isomorphic to P6 \Q5: indeed, points in Q5 ⊂ P6 correspond to lines P1 ⊂ P7 which are tangent
to Q6. A pair ([x], [y]) ∈ (Q6)×2 gives a decomposition for [q] = [x + y] if and only if the line
L([x], [y]) ⊂ P7 contains [q] and intersects Q6 exactly in the distinct points [x], [y]. Thus the
thesis follows.

Example 5.2.2. For S+
4 , consider the representative [e[4] + 1] of the dense orbit Σ2,4: an

alternative decomposition is
[
e[4] + 1

]
= [(e[4] − e[2]) + (e[2] + 1)]

where both summands are pure spinors since d([e[4]], [e[2]]) = d([e[2]], [1]) = 1.

Proposition 5.2.3. For any N ≥ 6, let [q] ∈ Σ2,N defining the (N − 4)–dimensional isotropic
subspace Hq ⊂ C2N via ψq in (3.3.1). Let Q6 ⊂ P7 = P(H⊥

q /Hq) be the quadric in the
(projectivization of the) orthogonal quotient of Hq. For any [ã] ∈ Q6, we denote by [a] = [ã∧Hq]
the pure spinor in S+

N . Then the decomposition locus of [q] is 6–dimensional and isomorphic to
the open set

Dec([q]) ≃ Q6 \
{

[ã] ∈ Q6 | L([a], [q]) ⊂ S+
N

}
.

In particular, the distance-2 orbit Σ2,N is unidentifiable.

Proof. Fix [q] ∈ Σ2,N . For any ([a], [b]) ∈ Dec([q]), the pure spinors [a], [b] have Hamming
distance 2 and define two maximal q–isotropic subspaces Ha, Hb such that Ha ∩ Hb = Hq.
In particular, dim(Ha ∩ Hb) = N − 4 and dim

(
(Ha∩Hb)⊥

Ha∩Hb

)
= 8. Thus, in the orthogonal

quotient space W := H⊥
q /Hq ≃ C8, they give the 4–dimensional (maximal) isotropic subspaces

Ha/Hq, Hb/Hq which intersect trivially, hence they correspond to two pure spinors [ã], [b̃] ∈
S+

4 ≃ Q6 such that d([ã], [b̃]) = 2: in particular, the line L([ã], [b̃]) ⊈ Q6 as well as L([a], [b]) =
L([a], [q]) ⊈ S+

N .
On the other hand, start from a pure spinor [ã] ∈ Q6 (look at the quadric as the Spinor
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variety S+
4 constructed from W ) and consider the lifting of its corresponding subspace H̃ã ∈

OG+(4,W ) to the subspace H := ⟨H̃ã, Hq⟩C ∈ OG+(N,V ), which corresponds to the pure
spinor [a] = [ã ∧ Hq] ∈ S+

N . If [ã] ∈ Q6 is such that L([a], [q]) ⊈ S+
N , then by Bézout (S+

N is
intersection of quadrics) there exists a unique [b] ∈ S+

N such that L([a], [q]) ∩ S+
N = {[a], [b]}.

We conclude that each [ã] ∈ Q6 such that L([a], [q]) ⊈ S+
N corresponds to a unique pair ([a], [b]) ∈

Dec([q]) in the decomposition locus of [q], hence the thesis.

Identifiability of orbits Σl,N for l ≥ 3. We show the identifiability of the secant orbits
Σl,N for l ≥ 3 via an inductive argument, based on the injectivity of a wedge-multiplication
map. The base case of the induction is given by the identifiability of the dense orbit Σ N

2 ,N
,

which we prove via Clifford apolarity introduced in Sec. 3.6.

Remark. The case of the 15-dimensional spinor variety S+
6 ⊂ P31 was already known [AR03,

Example 5] as an example of variety with one apparent double point (OADP variety), namely
a n–dimensional variety X ⊂ P2n+1 such that through a general point of P2n+1 there passes a
unique secant line to X [AR03, Definition 3].

Lemma 5.2.4. For any N ≥ 6, the dense secant orbit Σ N
2 ,N

is identifiable.

Proof. We prove that the representative [e[N ]+1] ∈ Σ N
2 ,N

is identifiable. In the notation of Sec.
3.6, consider the map Φe[N]+1 : H0(S+

N ,U(1)) → H0(S+
N ,U∨)∨ corresponding to the Clifford

apolarity (3.6.2)

Φe[N]+1 :
∧od

E∨ → E ⊕ E∨

f 7→ Ce[N]+1(f)|E
+ Cf (e[N ] + 1)|E∨

.

Since Rk Φe[N]+1 = 2N = 2 RkU(1), from Proposition 2.2.4 it is enough to prove that the
common zero locus of ker(Φe[N]+1) is Z

(
ker(Φe[N]+1)

)
= {[e[N ]], [1]}.

Given f =
∑N−2

2
k=0

∑
I∈( [N]

2k+1) cIfI ∈
∧od

E∨, one gets

Φe[N]+1(f) =
(
f · e[N ] + f · 1

)
|E

+
(
e[N ] · f + 1 · f

)
|E∨

=
(
f · e[N ]

)
|E

+ f|E∨ ,

hence

ker(Φe[N]+1) =
3∧
E∨ ⊕ . . .⊕

N−3∧
E∨ .

Consider a =
∑N

2
s=0

∑
J∈([N]

2s ) αJeJ ∈
∧ev

E such that [a] ∈ Z
(
ker(Φe[N]+1)

)
. From the

vanishing of global sections in Lemma 3.6.6, we know that ⟨V ·f, a⟩ = 0 for any f ∈ ker(Φe[N]+1).
In particular, for any index subset I ⊂ [N ] of odd cardinality from 3 to N − 3 (so that fI lies
in the kernel), and for any basis vector eλ ∈ E, we get

0 = ⟨eλ · fI , a⟩ = ⟨fI , eλ ∧ a⟩ =
N
2∑

s=0

∑

J∈([N]
2s )

αJ⟨fI , eλ ∧ eJ⟩ (5.2.1)

=
N
2∑

s=0

∑

J∈([N]
2s ) : J ̸∋λ

(−1)pos(λ,J∪{λ})+1αJ⟨fI , eJ∪{λ}⟩ = (−1)pos(λ,I)+1αI\{λ} , (5.2.2)
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where pos(λ, I) denotes the position of λ in the ordered subset I, and the last equality follows
from Remark 3.6.4. Thus in a there is no summand indexed by a subset J such that J ⊂ I

and |J | = |I| − 1 for any subset I with |I| = 3, 5, . . . , N − 3. On the other hand, for any subset
I ⊂ [N ] of odd cardinality from 3 to N − 3 (i.e. fI ∈ ker(Φe[N]+1)) and for any basis vector
fν ∈ E∨ such that ν /∈ I, it holds

0 = ⟨fν · fI , a⟩ = ⟨fν ∧ fI , a⟩ = (−1)pos(ν,I∪{ν})+1

n+1
2∑

s=0

∑

J∈([N]
2s )

αJ⟨fI∪{ν}, eJ⟩ (5.2.3)

= (−1)pos(ν,I∪{ν})+1αI∪{ν} , (5.2.4)

implying that a has no summand indexed by a subset J such that 4 ≤ |J | ≤ N − 2. We deduce
that every [a] ∈ Z

(
ker(Φe[N]+1)

)
is such that a = α+βe[N ] ∈ C⊕∧N E. Since d(1, e[N ]) = N

2 ,
the line L([e[N ]], [1]) does not lie in S+

N : as Spinor varieties are intersections of quadrics, by
Bézout the only points of the form [α1+βe[N ]] being pure spinors are for either α = 0 or β = 0,
that is Z

(
ker(Φe[N]+1)

)
= {[e[N ]], [1]}.

Theorem 5.2.5. For any N ≥ 6 and l ≥ 3, the secant orbit Σl,N ⊂ σ2(S+
N ) is identifiable.

Proof. Fix l ≥ 3 and consider the orbit Σl,N = Spin2N ·[e[N ] + e[N−2l]]. By homogeneity, it is
enough to show that the spinor [e[N ] + e[N−2l]] is identifiable.

Assume ad absurdum that there exist two pure spinors [a], [b] ∈ S+
N \ {[e[N ]], [e[N−2l]]} such

that [a+ b] = [e[N ] + e[N−2l]]. In particular, since l ̸= 1, Corollary 5.1.5 implies that Ha ∩Hb =
Ha+b = He[N]+e[N−2l] = E∩EN−2l, where we recall that EN−2l = ⟨e1, . . . , eN−2l, fN−2l+1, . . . , fN ⟩C.
Since ⟨e1, . . . , eN−2l⟩C = E ∩ EN−2l ⊂ Ha, Hb, by Proposition 3.3.2 it follows that there exist
two spinors a′, b′ ∈ ∧ev (⟨eN−2l+1, . . . , eN ⟩C) such that a = e[N−2l] ∧ a′ and b = e[N−2l] ∧ b′: by
maximality of Ha and Hb, the spinors [a′], [b′] ∈ S+

2l are pure in a smaller Spinor variety where
they have maximum Hamming distance l. Moreover, since [a], [b] ∈ S+

N \ {[e[N ]], [e[N−2l]]}, we
also know that [a′], [b′] ∈ S+

2l \ {[eN−2l+1 ∧ . . . ∧ eN ], [1]}.
The spinor [a + b] = [e[N−2l] ∧ (a′ + b′)] ∈ Σl,N is the image of [a′ + b′] ∈ Σl,2l via the wedge-
multiplication map

e[N−2l] ∧ • :
ev∧
⟨eN−2l+1, . . . , eN ⟩C −→

ev∧
E (5.2.5)

restricting to (e[N−2l] ∧ •) : Σl,2l → Σl,N . Since the above linear map is injective, the equality(
e[N−2l]∧•

)
([a′ +b′]) =

(
e[N−2l]∧•

)
([eN−2l+1∧ . . .∧eN +1]) implies that [a′ +b′] = [eN−2l+1∧

. . . ∧ eN + 1]. But the spinor [eN−2l+1 ∧ . . . ∧ eN + 1] is a representative for the dense orbit
Σl,2l ⊂ σ2(S+

2l), which is identifiable by Lemma 5.2.4 (since l ≥ 3). Thus it holds {[a′], [b′]} =
{[eN−2l+1 ∧ . . . ∧ eN ], [1]}, in contradiction to [a′], [b′] ∈ S+

2l \ {[eN−2l+1 ∧ . . . ∧ eN ], [1]}.

5.3 Tangential-identifiability in τ(S+
N)

In this section we prove that any point of a tangent orbit Θl,N for l ≥ 3 is tangential-
identifiable (cf. Definition 2.1.1), and we do so via Clifford apolarity (cf. Section 3.6). The
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setting at the beginning of the chapter is assumed. Since for N ≤ 5 it holds Θ2,N = τ(S+
N ) =

σ2(S+
N ), in the following we assume N ≥ 6.

Remark 5.3.1. The 15-dimensional Spinor variety S+
6 ⊂ P31 has been deeply studied in the

context of the Freudenthal’s magic square, (cf. Table 1.4). Indeed, S+
6 is the third of the four

Legendrian varieties lying in the third row of the square (associated to the group Spin12 - see
[LM01]), while P31 = σ2(S6)+ is the third prehomogenous space in the fourth row (associated
to the exceptional group E7 - see [Cle03]). In both the above references the generic tangential-
identifiability of τ(S+

6 ) is obtained: we refer to [LM01, Propp. 5.8-5.12] and [Cle03, Propp. 8.4,
9.8] for details.

In the notation of Section 3.6, for a tangent spinor [q] ∈ τ(S+
N ) \ S+

N we consider the map

Φq : H0 (S+
N ,U(1)

)
−→ H0 (S+

N ,U∨)∨

corresponding to the Clifford apolarity in (3.6.2). Similarly to the proof of Lemma 5.2.4, we
apply the nonabelian apolarity, but in this case we deal with non-reduced subschemes. Let
Y ⊂ S+

N be a non-reduced subscheme of S+
N of length 2 such that [q] ∈ ⟨Y ⟩, and let Ysupp be

its support: in particular, such a Y corresponds to {[p], [q]} for [p] ∈ S+
N such that [q] ∈ T[p]S+

N ,
and Ysupp = {[p]}. Then by Proposition 2.2.3 we get H0 (S+

N , IY ⊗ U(1)
)
⊂ ker(Φq) and in

particular Z(ker(Φq)) ⊂ Ysupp, where Z(ker(Φq)) is the common zero locus of global sections
in ker(Φq). If such common zero locus is given by only one pure spinor [p] ∈ S+

N , then for any
0-dimensional subscheme Y ⊂ X of length 2 such that [q] ∈ ⟨Y ⟩ it holds Ysupp = {[p]}, that is
[q] lies on only one tangent space, namely T[p]S+

N , and [q] is tangential-identifiable.

Theorem 5.3.2. For any N ≥ 6 and l ≥ 3, the tangent orbit Θl,N ⊂ τ(S+
N ) is tangential-

identifiable.

Proof. Fix l = 3 : N2 . From the above argument it is enough to prove that Z (ker(Φql
)) = {[1]}

for [ql] ∈ T[1]S+
N \ S+

n+1 being the representative of Θl,N as in (5.1.7):

ql =
l∑

i=1
e2i−1 ∧ e2i ∈

2∧
E .

From the Clifford apolarity, for any f ∈ ∧odE∨ we have

Φql
(f) = Cql

(f)|E
+ Cf (ql)|E∨ .

First, notice that for any f =
∑N
r=1 βrfr ∈ E∨ one gets

Cql
(f) =

N∑

r=1

l∑

i=1
βr
[
fr · (e2i−1 ∧ e2i)

]
=

l∑

i=1

(
β2i−1e2i − β2ie2i−1

)
,

implying that ker(Φql
) ∩ E∨ = {0}. Moreover, since ql ∈

∧2
E, it is straightforward that

od≥5∧
E∨ :=

⊕

k≥2

2k+1∧
E∨ ⊂ ker(Φql

) .



80 5. Identifiability and singular locus of σ2(S±
N )

As the images Φql
(
∧2k+1

E∨) are linearly independent one to each other, we get

ker(Φql
) =

od≥5∧
E∨ ⊕

(
ker(Φql

) ∩
3∧
E∨
)
,

thus Z (ker(Φql
)) is the intersection of the common zero loci of the two summands above.

Consider [a] ∈ Z
(

ker(Φql
)
)

such that a =
∑N

2
s=0

∑
J∈([N]

2s ) αJeJ . From Lemma 3.6.6 it holds

⟨V · f, a⟩ = 0 ,∀f ∈
od≥5∧

E∨ ⊕
(

ker(Φql
) ∩

3∧
E∨
)
.

The same computation in (5.2.1) shows that for any index subset I ⊂ [N ] such that |I| =
2k+ 1 ≥ 5 and for any basis vector eλ ∈ E it holds 0 = ⟨eλ · fI , a⟩ = (−1)pos(λ,I)+1αI\{λ} where
again pos(λ, I) denotes the position of λ in the ordered index subset I. We deduce that in a

there is no summand indexed by a subset J such that J ⊂ I and |J | = |I| − 1 for any |I| ≥ 5,
hence a ∈ C⊕∧2

E ⊕∧n+1
E. On the other hand, the same computation as in (5.2.3) shows

that for any I ⊂ [N ] such that |I| = 3 and any basis vector fν ∈ E∨ such that ν /∈ I, it holds
0 = ⟨fν · fI , a⟩ = (−1)pos(ν,I∪{ν})+1αI∪{ν}, hence a has no summand in

∧N
E either. It follows

Z (ker(Φql
)) = P

(
C⊕

2∧
E

)
∩ Z

( 3∧
E∨ ∩ ker

(
Φql

)
)
.

Clearly, [1] ∈ Z(ker(Φql
)) since for any λ ∈ C and any f ∈ ∧3

E∨ one has ⟨f, v ·λ⟩ = λ⟨f, v⟩ =
0. Moreover, for any b ∈ ∧2

E it holds that b ∈ Z (ker(Φql
)) if and only if λ+ b ∈ Z (ker(Φql

))
for any λ ∈ C: in particular, it is enough to prove that Z (ker(Φql

)) ∩ P(
∧2

E) = ∅ in order to
conclude.

Let [a] ∈ Z (ker(Φql
)) be such that a =

∑
{s⪇t}⊂[N ] αstes∧et. First, consider an index subset

I ⊂ [N ] such that |I| = 3 and {2k − 1, 2k} ⊈ I for any k ∈ [l]: the condition CfI
(ql)|E∨ = 0

implies fI ∈ ker(Φql
). Then, for any eλ ∈ E one gets

0 = ⟨eλ · fI , a⟩ = δλ,i1αi2,i3 − δλ,i2αi1,i3 + δλ,i3αi1,i2 ,

for δxy being the Kronecker symbol. Since N ≥ 6, given any two distinct indices {i ⪇ j} ⊂ [N ]
such that {i, j} ≠ {2k− 1, 2k} for any k ∈ [l], one can always find a third index r ∈ [N ] \ {i, j}
such that {2k− 1, 2k} ⊈ I = {i, j, r} for any k ∈ [l]. Thus for any {i, j} ≠ {2k− 1, 2k} it holds
αij = 0 and

Z (ker(Φql
)) ∩ P

( 2∧
E

)
⊂
{

[a] =
[

l∑

k=1
α2k−1,2ke2k−1 ∧ e2k

]}
.

Now, for any {k ⪇ h} ⊂ [l] and any r ∈ [N ] \ {2k − 1, 2k, 2h − 1, 2h} consider f2k−1,2k,r −
f2h−1,2h,r ∈

∧3
E∨: it is a straightforward count that f2k−1,2k,r − f2h−1,2h,r ∈ ker(Φql

). In
particular, 0 = ⟨er · (f2k−1,2k,r − f2h−1,2h,r), er · a⟩ = α2k−1,2k − α2h−1,2h, hence it holds

α2k−1,2k = α2h−1,2h ,∀{h ⪇ k} ⊂ [l] .

It follows that a = α · ql for some α ∈ C. But [ql] /∈ S+
N (since l ≥ 3), thus it has to be α = 0

and Z (ker(Φql
)) ∩ P(

∧2
E) = ∅. We conclude that Z (ker(Φql

)) = {[1]}.
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5.4 Dimensions of Spin2N–orbits in σ2(S+
N)

In this section we compute the dimensions of each orbit in the secant variety of lines to a
Spinor variety. We have postponed this computation as we apply tangential-identifiability for
computing dimensions in the tangent branch.

From [Zak93, Theorem 1.4] the secant orbit Σ N
2 ,N

is dense of dimension

dim Σ N
2 ,N

= dim σ2(S+
N ) =





2N−1 − 1 for N ≤ 6
N(N − 1) + 1 for N ≥ 6

. (5.4.1)

Moreover, for N ≥ 6 the tangential variety has codimension 1, hence its dense orbit Θ N
2 ,N

has
dimension

dim Θ N
2 ,N

= dim τ(S+
N ) = N(N − 1) , ∀N ≥ 6 .

Recall that for N ≤ 5 the Spinor variety S+
N has diameter 2, and the distance-2 orbit Σ2,N

either does not exist (for N ≤ 3) or it is the dense one. In this respect, in the following we
assume N ≥ 6.

Lemma 5.4.1. For any N ≥ 6 and any l = 2 : N2 − 1, the fibration

ξ : Σl,N −→ OG(N − 2l, V )
[a+ b] 7→ Ha+b

Cor. 5.1.5= Ha ∩Hb

has fibers isomorphic to the dense orbit on the smaller Spinor variety S+
2l, namely ξ−1(H) ≃

Σl,2l ⊂ σ2(S+
2l). In particular,

ξ−1(H) ≃ σ2(S+
2l) .

Proof. Consider the distance-l orbit Σl,N = Spin2N ·[e[N ] + e[N−2l]] and the above fibration ξ.
By homogeneity, it is enough to determine the fiber at the subspace ξ([e[N ] + e[N−2l]]) = E ∩
EN−2l = ⟨e1, . . . , eN−2l⟩C. We set V ′ = ⟨eN−2l+1, . . . , eN , fN−2l+1, . . . , fN ⟩C and E′ = V ′ ∩ E.

Let [a + b] ∈ ξ−1(E ∩ EN−2l): then E ∩ El ⊂ Ha (resp. E ∩ El ⊂ Hb) and, by definition
of the maximal q–isotropic subspaces as kernels of (3.3.1), we can write [a] = [e[N−2l] ∧ wa]
(resp. [b] = [e[N−2l] ∧ wb]) for some wa ∈

∧ev
E′ (resp. wb ∈

∧ev
E′). In particular, since wa

and wb are defined by 2l linearly independent columns in the matrices describing Ha and Hb,
they corresponds to maximal isotropic subspaces H ′

a, H
′
b ⊂ OG+(2l, V ′), hence [wa], [wb] ∈ S+

2l.
Finally, the condition Ha ∩ Hb = E ∩ EN−2l implies H ′

a ∩ H ′
b = (0), hence [wa] and [wb]

have maximum Hamming distance d([wa], [wb]) = l in S+
2l. Therefore the injective wedge-

multiplication map (e[N−2l] ∧ •) : Σl,2l → Σl,N in (5.2.5) gives the biregular isomorphism

ξ−1(E ∩ EN−2l) = {[a+ b] ∈ Σl,N | Ha ∩Hb = E ∩ EN−2l}
=
{

[e[N−2l] ∧ (wa + wb)] ∈ Σl,N | [wa], [wb] ∈ S+
2l, d([wa], [wb]) = l

}

≃
{

[wa + wb] ∈ σ◦
2(S+

2l) | d([wa], [wb]) = l
}

= Σl,2l .
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Proposition 5.4.2. For any N ≥ 6 and l = 2 : N
2 − 1, the secant orbit Σl,N ⊂ σ◦

2(S+
N ) has

dimension

dim Σl,N =




N(N−1)

2 + 4N − 15 if l = 2
N(N−1)

2 + l(2N − 1)− 2l2 + 1 if l ≥ 3 .

Proof. Consider the fibration ξ in Lemma 5.4.1. From the fiber dimension theorem we get

dim Σl,N = dim OG(N − 2l, V ) + dim σ2(S+
2l) .

In general, the orthogonal Grassmannian OG(r,M) coincides with the kernel of the global
section sq ∈ H0(Gr(r,M),Sym2 U) induced by the quadratic form q on CM , where U is the
rank-r universal bundle on Gr(r,M). Thus

dim OG(r,M) = dim Gr(r,M)− Rk
(
Sym2(U)

)
= r(M − r)−

(
r + 1

2

)
.

The thesis follows by substituting r = N − 2l and M = 2N , and recovering dim σ2(S+
2l) from

(5.4.1).

The above computation puts on light a particular feature of the second-to-last secant orbit.
In the following result we need N ≥ 8 in order to get an intermediate proper secant orbit
between Σ2,N and Σ N

2 ,N
.

Corollary 5.4.3. For any N ≥ 8, the closure of the second-to-last orbit Σ N−2
2 ,N is a divisor

in σ2(S+
N ) parametrized by the vanishing of a pfaffian. Indeed, up to chart-changing, all pure

spinors [a] ∈ S+
N such that d([e[N ]], [a]) = N−2

2 correspond to maximal q–isotropic subspaces Ha

described by matrices
[

IN
A

]
where Rk(A) = N − dim(E ∩Ha) = N − 2.

Proof. The thesis “being a divisor” is a straightforward count from Proposition 5.4.2. We show
that the closure of Σ N−2

2 ,N is parametrized by the vanishing of a pfaffian.
The pure spinors [a] ∈ S+

N having Hamming distance l from [e[N ]] correspond to subspaces
Ha ∈ OG+(N,V ) such that dim(E ∩ Ha) = N − 2l. Up to chart-changing, we may assume
that Ha is described by the matrix

[
IN

A

]
for a certain A ∈ ∧2 CN : in particular, Rk(A) =

N − dim(E ∩ Ha) = 2l. It follows that the pure spinors having Hamming distance l = N−2
2

from [e[N ]] are described (up to chart-changing) by skew–symmetric matrices of rank N − 2,
that is they are parametrized by the vanishing of the pfaffian of such matrices. Now, given the
pure spinor [e[N ]], the subvarieties

Fe[N],
N−2

2
=
{

[e[N ] + a]
∣∣ [a] ∈ S+

N , d([e[N ]], [a]) ≤ N − 2
2

}
⊂ Σ N−2

2 ,N ,

Fe[N] =
{

[e[N ] + a] | [a] ∈ S+
N

}
⊂ σ◦

2(S+
N )

are such that Fe[N],
N−2

2
= Fe[N] ∩ V (Pf(A)): more in general, for any pure spinor [b] ∈ S+

N it
holds Fb,N−2

2
= Fb ∩ V (Pf(A)), giving the rational isomorphism in the thesis.
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We are left with computing dimensions in the tangent branch for N ≥ 6. From Proposition
5.4.2 we know that Θ2,N = Σ2,N has dimension N(N−1)

2 + 4N − 15. Thus in the following we
assume N ≥ 6 and l = 3 : N−1

2 − 1.

Remark. In the following proof we use that the tangent orbits Θl,N for l ≥ 3 are tangentially-
identifiable (cf. Theorem 5.3.2): each point [q] ∈ Θl,N lies on a unique tangent space T[a]S+

N .

Proposition 5.4.4. For any N ≥ 6 and any l = 3 : N
2 − 1, the tangent orbit Θl,N ⊂ τ(S+

N )
has dimension

dim Θl,N = N(N − 1)
2 + l(2N − 1)− 2l2 .

In particular, for such N, l, the closure Θl,N is a divisor in Σl,N .

Proof. Given [
∧2 CN ]2l the space of rank–2l skew–symmetric matrices of size N , from Sec.

5.1.2 we know that for any l = 2 : N2 it holds

Θl,N =
⋃

[a]∈S+
N

[
T[a]S+

N

]
2l ≃

⋃

[a]∈S+
N

[ 2∧
CN
]

2l

.

For l ≥ 3, any tangent [q] ∈ Θl,N belongs to a unique tangent space T[a]S+
N , hence

dim Θl,N = dim S+
N + dim

[ 2∧
CN
]

2l

, ∀l ≥ 3 .

The space [
∧2 CN ]2l is the GL(N)-orbit in CN⊗CN of the skew–symmetric matrix Cl in (5.1.8)

having stabilizer isomorphic to Sp(2l)×GL(N − 2l)× (C2l ⊗ CN−2l). Therefore one gets

dim
[ 2∧

CN
]

2l

= N2 −
[(

2l + 1
2

)
+ 2l(N − 2l) + (N − 2l)2

]
= l(2N − 1)− 2l2

and the thesis straightforwardly follows.

Example 5.4.5. The Spinor variety S+
6 ⊂ P(

∧ev C6) ≃ P31 has diameter 3. Set G = Spin(12)
and vω6 = e1 ∧ . . . ∧ e6. The secant variety σ2(S+

6 ) stratifies in the Spin(12)-orbits

S+
615

Θ2,6 = Σ2,6 = G · [vω6 + e1 ∧ e2]24

Θ3,6 = G · [e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6]30

Σ3,6 = G · [vω6 + 1]31

Figure 5.2: Poset graph of the Spin12–orbits in σ2(S+
6 ), and their dimensions.
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This poset and the dimensions were already known to J.M. Landsberg and L. Manivel [LM01]
in the context of Legendrian varieties. Actually, as confirmed by the authors (which we thank
for the confrontation), our arguments allow to recognize a misprint in [LM01, Proposition 5.10],
where the dimension of the orbit σ+ (in the authors’ notation, corresponding to our Σ2,6 for
m = 4) is 5m+ 4 instead of 5m+ 3.

Example 5.4.6. The Spinor variety S+
8 ⊂ P(

∧ev C8) ≃ P127 has diameter 4: this is the only
case in which the inclusion Θ3,8 ⊂ Θ4,8 ∩ Σ3,8 actually is an equality.

S+
828

Θ2,8 = Σ2,845

Θ3,855

Σ3,856 Θ4,8

Σ4,857

Figure 5.3: Poset graph of the Spin16–orbits in σ2(S+
8 ), and their dimensions.

5.5 The 2–nd Terracini locus of S+
N

We recall the definition of the second Terracini locus from Sec. 4.5:

Terr2(S+
N ) :=

{
{p1, p2} ∈ Hilb2(S+

N ) | dim⟨Tp1S
+
N , Tp2S

+
N ⟩ ⪇ dim σ2(S+

N )
}
.

We consider the abstract secant variety (cf. Sec. 2.1)

Abσ2(S+
N ) :=

{
(Z, [q]) ∈ Hilb2

(
S+
N

)
× P

(
ev∧
E

)
∣∣ [q] ∈ ⟨Z⟩

}

and the diagram

Hilb2(S+
N )

Abσ2(S+
N )

σ2(S+
N )

π1 π2

where π1 and π2 are the natural projection from the abstract secant variety onto the first and
second factor respectively.

As already pointed out in Remark 4.6.5 for the case of Grassmannians, the second Terracini
locus tells us where the differential of the projection from the abstract secant variety onto the
secant variety drops rank: this information, combined with the identifiability, allows to deduce
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the smoothness on the locus of points which are both identifiable and outside the Terracini
locus. In the following we consider N ≥ 7 as for N ≤ 6 the second secant variety coincides with
the ambient space.

Theorem 5.5.1. For any N ≥ 7, the second Terracini locus Terr2(S+
N ) of the Spinor variety

S+
N corresponds to the distance–2 orbit closure Σ2,N . More precisely, in the above notation, it

holds
Terr2(S+

N ) =
(
π1 ◦ π−1

2
) (

Σ2,N
)
.

Proof. Given a point [a+b] ∈ σ2(S+
N ) for certain [a], [b] ∈ S+

N , we show that dim⟨T[a]S+
N , T[b]S+

N ⟩
drops if and only if [a+ b] ∈ Σ2,N = S+

N ⊔ Σ2,N , that is if and only if d([a], [b]) ≤ 2.
If d([a], [b]) = 1, then any point on the line L([a], [b]) ⊂ S+

N is direction of the curve defined
by such line, that is L([a], [b]) ⊂ T[a]S+

N ∩ T[b]S+
N .

If d([a], [b]) = 2, then there exists [c] ∈ S+
N such that L([a], [c]), L([c], [b]) ⊂ S+

N . In particular,
from the previous case we deduce [c] ∈ T[a]S+

N ∩ T[b]S+
N .

On the other hand, if the dimension drops, then there exists a common non-zero tangent point
[x] ∈ T[a]S+

N ∩ T[b]S+
N . In particular, [x] is not tangential-identifiable, hence [x] ∈ Θ2,N . From

the definition (5.1.6) of Θ2,N ∩ T[a]S+
N as the set of rank–4 skew-symmetric matrices in T[a]S+

N ,
we know that [x] = [y + z] for [y], [z] ∈ Θ1,N ∩ T[a]S+

N = S+
N ∩ T[a]S+

N skew-symmetric matrices
of rank 2. In particular, [a + y] and [a + z] lie in S+

N , that is d([a], [y]) = d([a], [z]) = 1. The
same argument shows that also d([b], [y]) = d([b], [z]) = 1. We conclude that d([a], [b]) ≤ 2.

5.6 Results on the singular locus of σ2(S+
N)

This section is devoted to study the singular locus of the secant variety of lines σ2(S+
N ) to a

Spinor variety S+
N . We use results on identifiability from previous sections.

Remark. As defective cases, the secant varieties σ2(S+
4 ) = τ(S+

4 ) = P7 and σ2(S+
5 ) = τ(S+

5 ) =
P15 overfill the ambient space. On the other hand, the secant variety σ2(S+

6 ) = P31 perfectly
fills the ambient space (hence it is smooth), but the tangential variety τ(S+

6 ) is a quartic
hypersurface in it. Accordingly to Remark 5.3.1, S+

6 has been widely studied in [LM01; LM07]
and it has been proven that Sing(τ(S+

6 )) = Σ2,6 (corresponding to σ+ in [LM07]).

According to the above remark, we assume N ≥ 7, so that σ2(S+
N ) ⊊ P2N−1−1. In the same

spirit of Remark 4.6.5, in the following we consider the alternative definition of abstract secant
variety (cf. Remark 2.1.4)

Abσ2(S+
N ) :=

{
([a], [b], [q]) ∈

(
S+
N

)2
/S2
× P

(
ev∧
E

) ∣∣∣∣ [q] ∈ ⟨[a], [b]⟩
}
,

which is smooth outside the preimage of the diagonal ∆X ⊂
(
S+
N

)2
/S2

via the projection onto
the first factor. In particular, given π the projection onto the second factor, the preimage
π−1(σ2(S+

N ) \ Σ2,N ) is smooth in Abσ2(S+
N ).
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Lemma 5.6.1. For any N ≥ 7, the distance–2 orbit Σ2,N lies in the singular locus Sing(σ2(S+
N ))

of the secant variety of lines to the Spinor variety S+
N . In particular,

Σ2,N ⊂ Sing
(
σ2(S+

N )
)
.

Proof. Clearly, the Spinor variety is singular in its secant variety of lines, hence we just have
to prove the singularity of the distance–2 orbit Σ2,N . We assume by contradiction that Σ2,N

is smooth: then the poset in Theorem 5.1.12 implies that all the open subset σ2(S+
N ) \ S+

N is
smooth. Consider the projection from the abstract secant variety onto the second factor

π : Abσ2(S+
N ) −→ σ2(S+

N )
([a], [b], [q]) 7→ [q]

.

The (tangential-)identifiability of the orbits Σl,N and Θl,N for l ≥ 3 (cf. Theorem 5.2.5
and Theorem 5.3.2) implies that the restriction of π to the open subset π−1(σ2(S+

N ) \ Σ2,N )
is a bijection of smooth open subsets, hence it is an isomorphism. On the other hand, the
orbit Σ2,N is unidentifiable and any of its points has 6–dimensional decomposition locus (cf.
Proposition 5.2.3), thus the differential d(π)([a],[b],[q]) drops rank exactly at the points in the
preimage π−1(Σ2,N ).

It follows that the restriction

π| : Abσ2(S+
N ) \ π−1(S+

N ) −→ σ2(S+
N ) \ S+

N

is a morphism of smooth varieties of the same dimension: in particular, the locus of points where
the rank of the differential drops is a (determinantal) divisor. We show that the preimage

{
([a], [b], [q]) ∈ Abσ2(S+

N ) \ π−1(S+
N ) | Rk d(π)([a],[b],[q]) < N(N − 1)

}
= π|

−1 (Σ2,N
)

cannot be a divisor (leading to a contradiction). Indeed, from Proposition 5.4.2 we know that
dim Σ2,N = N(N−1)

2 + 4N − 15, and from Proposition 5.2.3 that the decomposition locus of any
point in Σ2,N is 6–dimensional, thus from the fiber dimension theorem we get dim π−1

| (Σ2,N ) =
dim Σ2,N + 6 = N(N−1)

2 + 4N − 9 and

dimAbσ2(S+
N )− dim π−1

| (Σ2,N ) = N(N − 1)
2 − 4N + 10

N≥7
⪈ 1 .

Thus π−1
| (Σ2,N ) cannot be a divisor for N ≥ 7, giving the contradiction. We deduce the

inclusion Σ2,N ⊂ Sing(σ2(S+
N )).

Lemma 5.6.2. For any N ≥ 7 and any l = 3 : N2 , the secant orbit Σl,N is smooth in the secant
variety of lines σ2(S+

N ). In particular, the singular locus of the secant variety of lines to the
Spinor variety S+

N lies in the tangential variety:

Sing
(
σ2(S+

N )
)
⊂ τ(S+

N ) .
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Proof. From Proposition 5.2.5 we know that the secant orbits Σl,N for l = 3 : N are identifiable.
Moreover, from the poset in Figure 5.1 it holds

Σ3,N ⊔ . . . ⊔ Σ N
2 ,N

= σ2(S+
N ) \ τ(S+

N ) .

Then the projection π : Abσ2(S+
N ) → σ2(S+

N ) from the abstract secant variety onto the second
factor restricts to a bijection

π′ : π−1
(
σ2(S+

N ) \ τ(S+
N )
)
→ σ2(S+

N ) \ τ(S+
N ) .

Finally, the points in σ2(S+
N ) \ τ(S+

N ) are outside the Terracini locus Terr2(S+
N ) (cf. Theorem

5.5.1), thus for any point [p+ q] ∈ σ2(S+
N ) \ τ(S+

N ) it holds TpS+
N ∩ TqS+

N = {0}. In particular,
for such points the differential dπ′

([p],[q],[p+q]) maps TpS+
N × TqS+

N to TpS+
N ⊕ TqS+

N , hence it is
injective. It follows that π′ is an isomorphism and the open subset σ2(S+

N ) \ τ(S+
N ) is smooth

in the secant variety of lines.

Collecting Lemma 5.6.1 and Lemma 5.6.2 we get the bound on the singular locus

Σ2,N ⊂ Sing
(
σ2(S+

N )
)
⊂ τ(S+

N ) .

However, at this point we haven’t been able to get more information on the singular locus of
σ2(S+

N ), but we have a conjecture whose proof is left for future work.

Conjecture 5.6.3. For any N ≥ 7, the singular locus of the secant variety of lines to the
Spinor variety S+

N is the closure of the distance–2 orbit, i.e.

Sing
(
σ2(S+

N )
)

= Σ2,N = S+
N ⊔ Σ2,N .

Although we don’t have a proof yet, in Sec. 7.3 we propose an argument suggesting that the
conjecture is actually true.





Chapter 6

What about other generalized
Grassmannians?

The identity between the poset graphs of G–orbits in the secant varieties of lines to
Grassmannians (cf. Figure 4.1) and to Spinor varieties (cf. 5.1) suggests that such poset

graph may hold for other generalized Grassmannians too. This chapter is addressed to
investigated so. In Sec. 6.1 we show that cominuscule varieties are very good candidates: a
complete proof is left for future work. In Sec. 6.2 we show that such graph does not hold for
every generalized Grassmannian, by exhibiting an example: this has been obtained during a

visit at Institut de Mathématiques de Toulouse with Prof. Laurent Manivel, whom the
candidate thanks for the inspiring suggestions.

We assume notation and results from Chap. 1. Let G be a semisimple simply connected
complex Lie group and let Pk be a maximal parabolic subgroup corresponding to the simple
root αk ∈ ∆, or equivalently to the fundamental weight ωk. Let W and WPk

be the Weyl
groups of G and Pk respectively. Given V Gωk

the irreducible G–representation with highest
weight ωk, we denote by vωk

∈ V Gωk
a highest weight vector, so that Pk = stabG(vωk

). Let
G/Pk = G · [vωk

] ⊂ P(V Gωk
) be the projective generalized Grassmannian minimally embedded in

P(H0(X,OG/Pk
(1))∨) = P(V Gωk

).

In the notation of Sec. 2.1, let σ2(G/Pk) ⊂ P(V Gωk
) be the secant variety of lines to G/Pk

in its minimal embedding, obtained as union of the dense subset σ◦
2(G/Pk) of points lying on

bisecant lines to G/Pk, and of the tangential variety τ(G/Pk), whose points lie on tangent lines
to G/Pk.

G–orbits in σ◦
2(G/Pk). The G–orbits in the dense subset σ◦

2(G/Pk) are in bijection with the
G–orbits in (G/Pk)× (G/Pk), on which G acts diagonally:

g · ([x], [y]) = (g · [x], g · [y]) , ∀g ∈ G, ∀[x], [y] ∈ G/Pk .

89
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By homogeneity of G/Pk, any pair ([x], [y]) ∈ (G/Pk) × (G/Pk) is G–conjugated to a pair of
the form ([vωk

], [y′]), whose first entry is left fixed by Pk = stabG(vωk
). Since Pk moves only

the second entry, the G–orbits in (G/Pk)× (G/Pk) are in bijection with Pk–orbits in G/Pk: in
particular, we get the bijection between the cosets

σ◦
2(G/Pk)
G

←→ G/Pk
Pk

= Pk\G/Pk .

From the Bruhat decomposition of G (cf. Sec. 1.1) one recovers the Bruhat decomposition of
G/Pk =

⊔
w∈W/WPk

BwPk, so that

Pk\G/Pk =
⊔

w∈WPk
\W/WPk

PkwPk .

Remark 6.0.1. The Pk–orbits in G/Pk (hence the G–orbits in σ◦
2(G/Pk)) are always finitely

many.

G–orbits in τ(G/Pk). As already pointed out in the previous chapters, by homogeneity
of G/Pk, the action of G on the tangential variety τ(G/Pk) conjugates all tangent spaces
T[x](G/Pk) as [x] ∈ G/Pk varies, since g · T[x](G/Pk) = T[g·x](G/Pk). It follows that any
G–orbit O in τ(X) is of the form

O =
⋃

[x]∈G/Pk

(O ∩ T[x](G/Pk))

hence it is enough to determine O ∩ T[vωk
](G/Pk) and then move it by G–action. But O ∩

T[vωk
](G/Pk) is a Pk–orbit, hence determining the G–orbits in τ(G/Pk) is equivalent to deter-

mining the Pk–orbits in T[vωk
](G/Pk) ≃ g/p⊗ Cvωk

≃ puk :

τ(G/Pk)
G

←→
T[vωk

](G/Pk)
Pk

←→ g/pk
Pk

.

Remark 6.0.2. Unlike the orbits in σ◦
2(G/Pk) (cf. Remark 6.0.1), the tangent space g/pk ≃ puk

may contain infinitely many Pk–orbits. The cases in which the nilpotent algebra puk has finitely
many P -orbits have been classified by L. Hille and G. Röhrle [HR99, Theorem 1.1].

Remark. It is surprising that the algebra g/p (hence the tangential variety τ(G/P )) may have
infinitely many orbits although the ones in G/P (hence in the dense subset σ◦

2(G/P )) are always
finitely many. This means that a secant orbit may degenerate to infinitely many tangent orbits.

6.1 G–orbits in σ2(G/P ) for G/P cominuscule
In this section we restrict to consider only fundamental weights ωk (hence generalized Grass-

mannians G/Pk) which are cominuscule. We assume notation and results from Sec. 1.4.
From the first part of this chapter we know that the dense subset σ2(G/Pk) has always finitely
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many G–orbits parametrized by double cosetsWPk
\W/WPk

of the Weyl group. Moreover, from
Proposition 1.4.1 we know that the tangent space g/pk = g−1 is an irreducible Pk–module.
In the following we collects already-known results which allow to prove that the Pk–orbits in
g/pk are finitely many too, and they are as many as the Pk–orbits in G/Pk: we denote by dG,k
such value.

Proposition 6.1.1. In the above notation, let G/Pk be a cominuscule variety. Then:

1. There are dG/Pk
–many Pk–orbits in G/Pk for dG,k as in Table 6.1:

G/Pk =
dG,k⊔

j=1
PkwjPk ;

2. For any j = 2 : dG,k the points wj−1Pk, wjPk ∈ G/Pk have Hamming distance 1 and
d(idPk, wjPk) = j. In particular, the variety G/Pk has diameter dG,k;

Moreover, the Pk–orbits in G/Pk are totally ordered:

PkwjPk =
j⊔

i=1
PkwiPk , ∀j ∈ [dG,k] .

Proof. (2) is proved in [Buc+13, Sec. 4, Lemma 4.2]. (1) is proved in [RRS92, Sec. 2, Table
1], while the total order of the orbits is proved in [RRS92, Corollary 3.7(a)]: here one uses
the characterization of cominuscule varieties as the generalized Grassmannians having abelian
unipotent radical (cf. Proposition 1.4.1).

In the following table we list all the cominuscule varieties together with dimensions and
values dG,k of their secant varieties. For the Grassmannian Gr(k,N), the symbol (⋆) is to
remark that for k ∈ {2, N − 2} and N ≥ 6 the secant variety of lines is defective of dimension
min{2k(N − k) + 1,

(
N
k

)
− 1} − 4 (cf. Sec. 4). We have computed the values dk,G for Gr(k,N),

Q2N−2 and S±
N in Sec. 4.1.1, Sec. 7.2 and Sec. 3.4 respectively, while for the other values we

refer to [RRS92, Table 1] or also[Buc+13, Sec. 4].

G/Pk dim G/Pk P(V G
ωk

) dim σ2(G/Pk) dG,k

Gr(k,CN ) (⋆) k(N − k) P(
∧k CN ) min{2k(N − k) + 1,

(
N
k

)
− 1} min{k, N −k}

Q2N−2 2N − 2 P(C2N ) 2N − 1 (whole space) 2
LG(N, 2N)

(
N+1

2

)
P(
∧N C2N ) min{N(N + 1) + 1,

(2N
N

)
− 1} N

S±
N

(
N
2

)
P(
∧ev/od CN ) min{N(N − 1) + 1, 2N−1 − 1} ⌊ N

2 ⌋
OP2 16 P26 25 ( hypers. ) 2

E7/P7 27 P55 55 ( whole space ) 3

Table 6.1: Secant varieties of lines to cominuscule varieties: dimensions and dG,k.

We are left with analyzing the tangent orbits in σ2(G/Pk), or equivalenlty the Pk–orbits in
g/pk ≃ puk . We recall some arguments due to L. Hille and G. Röhrle [HR99] implying that for
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cominuscule varieties such orbits are finitely many.
Given a parabolic subgroup PI defined by the subset I ⊂ ∆ of simple roots, the nilpotency

class of the radical unipotent Pu (or equivalently of the nilpotent algebra pu) is

ℓ(Pu) :=
∑

α∈∆\Φ(I)0

mα(ρ) , (6.1.1)

where ρ is the longest root in Φ, mα(ρ) the coefficient of α in ρ, and Φ(I)0 are the roots of the
parabolic algebra pI (cf. (1.1.1)). For I = {αk} and ωk cominuscule, one gets

ℓ(Puk ) = mαk
(ρ) = 1 .

Then by [HR99, Theorem 1.1] we get that, for any cominuscule variety G/Pk, the tangent space
g/pk has finitely many Pk–orbits. Actually, there is more than this.

Proposition 6.1.2. In the above notation, let G/Pk be a cominuscule variety. Then the tangent
space T[vωk

](G/Pk) ≃ g/pk has finitely many Pk–orbits. More precisely, there are dG,k–many
orbits for dG,k as in Table 6.1 and they are totally ordered:

T[vωk
](G/Pk) =

dG,k⊔

j=1
Rj , Ri =

i⊔

s=1
Rs , ∀i ∈ [dG,k] .

Proof. We already know that there are finitely many orbits. Their exact number and the
inclusions among their closures can be deduced from the fact that cominuscule varieties are
compact hermitian symmetric spaces, and as such their tangent spaces stratify accordingly to a
notion of rank. However, although unelegant, we avoid to formalize the latter description, and
we prove the thesis by analyzing the tangent space case by case.

The cases of the Grassmannians and Spinor varieties have been settled in Sec. 4.1.2 and
Sec. 5.1.2 respectively: their tangent spaces are spaces of matrices and the stratification by
rank is immediate. Moreover, the maximum ranks are respectively dAN ,k = min{k,N} and
dDN ,N = ⌊N2 ⌋.

The case of Lagrangian Grassmannians is analogous. Accordingly to Table 1.3, the tangent
space at [vωN

] to the Lagrangian Grassmannian LG(N, 2N) is isomorphic to the space of N×N
symmetric matrices

T[vωN
] LG(N, 2N) ≃ Sym2 CN ,

and the unique invariant is the rank of matrices: the maximum rank is dCN ,N = N .
The case E7/P7 is already known among the Legendrian varieties [LM01, Sec. 5]: the dE7,7 =

3 orbits in T[vω7 ](E7/P7) are obtained as intersections with the orbits (in the authors’ notation)
E7/P7, σ+ \ (E7/P7) and τ(E7/P7) \ σ+.

Finally, the case of the quadric Q2N−2 is trivial, while the secant variety to the Cayley plane
OP2 is defective and σ2(OP2) = τ(OP2): in particular, there are just dE6,1 = 2 orbits.

The results in Proposition 6.1.1 and Proposition 6.1.2 allows to give a partial (actually,
almost complete) description of the poset graph of G–orbits in the secant variety of lines to a
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cominuscule variety.
For any Pk–orbit Rj in the tangent space T[vωk

](G/Pk) from Proposition 6.1.2, we denote by

Θj := G · [vωk
+Rj ] ⊂ τ(G/Pk) , ∀j ∈ [dG,k]

the corresponding G–orbit in the tangential variety. Moreover, any Pk–orbit PkwjPk in G/Pk

from Proposition 6.1.1 defines the G–orbit

Σj := G · [idPk + wjPk] ⊂ σ◦
2(G/Pk) , ∀j ∈ [dG,k]

in the dense subset of points lying on bisecant lines to G/Pk.

Remark. Since d(idPk, w1Pk) = 1 (cf. Proposition 6.1.1), the line L(idPk, w1Pk) lies in G/Pk,
hence the representative [idPk + w1Pk] is a point on G/Pk. Moreover, from the proof of
Proposition 6.1.2 any θ ∈ R1 corresponds to a rank–1 matrix, hence it defines a point [vωk

+ θ]
of G/Pk as well. In particular, it holds

Θ1 = G/Pk = Σ1 .

Finally, any point in θ ∈ R2 corresponds to a rank–2 matrix, hence it is of the form θ = θ1 + θ2

for θ1, θ2 rank–1 matrices. Since both [vωk
+ θ1] and [vωk

+ θ2] lies in G/Pk, we conclude
that the point [vωk

+ θ1 + θ2] lies on the bisecant line L([ 1
2vωk

+ θ1], [ 1
2vωk

+ θ2]) such that
d([ 1

2vωk
+ θ1], [ 1

2vωk
+ θ2]) = 2, that is

Σ2 = Θ2 .

The above remark leads to the following graph, where the arrows denote the inclusion of an
orbit into the closure of the other orbit:

G/Pk

Θ2 = Σ2

Θ3

...

ΘdG,k

Σ3

...

ΣdG,k

Figure 6.1: G–orbits in σ2(G/Pk) for G/Pk cominuscule, and some inclusions.
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Conjecture 6.1.3. The poset graph of the G–orbit in the secant variety of lines σ2(G/Pk) to
a cominuscule variety G/Pk is obtained by adding to the graph in Figure 6.1 the inclusions
Θj ⊂ Σj for any j ∈ [dG,k].

Remark. Conjecture 6.1.3 is very close to be a theorem. Indeed, it has been proved for Grass-
mannians and Spinor varieties in Theorem 4.1.12 and Theorem 5.1.12 respectively. Moreover,
as pointed out in the proof of Proposition 6.1.2, the cases of the quadrics Q2N−2 and of the
Cayley plane OP2 are trivial as their secant varieties of lines coincide with the tangential va-
rieties, and split in just two orbits. Finally, the cases LG(3, 6) and E7/P7 have been proved
among the Legendrian varieties. Thus the only case for which the conjecture hasn’t be proved
yet is for any Lagrangian Grassmannian LG(N, 2N).

6.2 A non-cominuscule example: the isotropic Grassman-
nian IG(k, 2N)

In this section we show that the graph in Figure 6.1 does not hold for generalized Grassman-
nians which are not cominuscule. As a counterexample, for k ⪇ N , we consider the isotropic
Grassmannian IG(k, 2N) (cf. Example 1.3.2). Notice that the condition k ⪇ N is necessary, as
for k = N one gets the Lagrangian Grassmannian which is cominuscule. Moreover, for k = 1
one gets the trivial representation. Thus in this section we assume 2 ≤ k ≤ N − 1.

Setting. Let V ≃ C2N be a complex vector space endowed with a non-degenerate symplectic
form ω ∈ ∧2

V ∨. For any m ∈ Z>0 we fix the notation

Jm :=




1

. .
.

1


 ∈ Matm×m , Ωm :=

[
0 Jm

−Jm 0

]
∈

2∧
C2m .

Let (e1, . . . , eN , e−N , . . . , e−1) be a basis of V such that the symplectic form ω is represented
by the skew-symmetric matrix ΩN ∈

∧2 C2N : in particular, for any i, j ∈ [N ] it holds

ω(ei, ej) = ω(e−i, e−j) = 0 , ω(ei, e−j) = δij .

Then we consider the symplectic group

Spω
2N = Spω(V ) = {A ∈ SL(V ) | tAΩNA = ΩN}

and, for any k ⪇ N , the isotropic Grassmannian

IGω(k, 2N) = IGω(k, V ) =
{
W ⊂ V | W ≃ Ck, W ⊂W⊥}

of k-dimensional linear subspaces of V which are ω–isotropic. For simplicity we write Sp2N =
Sp(V ) and IG(k, 2N) = IG(k, V ) by omitting the symplectic form ω. We recall that

IG(k, 2N) = Sp2N /Pk = CN/Pk ⊂ P
(
V CN
ωk

)
= P

(
k∧
C2N

)
,
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where Pk is the parabolic subgroup associated to the fundamental weight ωk of Dynkin type
CN . The highest weight vector and its corresponding ω–isotropic subspace are

vωk
= e[k] = e1 ∧ . . . ∧ ek , Ek = ⟨e1, . . . , ek⟩C ⊂ V .

Moreover, the ω–orthogonal and the dual subspaces to Ek are respectively

E⊥
k = ⟨e1, . . . , eN , e−N , . . . , e−k−1⟩C , E∨

k = ⟨e−k, . . . , e−1⟩C .

Levi decomposition of Pk. We lighten up the notation by fixing P := Pk. The parabolic
subgroup P = stab(vωk

) = stab(Ek) stabilizes the subspace Ek. In particular, it admits the
Levi decomposition P = LPu where

L =
{[

G

S

Jk(tR−1)Jk

] ∣∣∣∣
G ∈ GL(Ek)

S ∈ Sp(E⊥
k /Ek)

}
≃ GL(Ek)× Sp(E⊥

k/Ek) (6.2.1)

is the Levi factor of P stabilizing the consecutive quotients Ek, E⊥
k/Ek and E∨

k ≃ V/E⊥
k in the

flag Ek ⊂ E⊥
k ⊂ V , and

Pu =





[
Ik A B

I2N−2k ΩN−k(tA)Jk

Ik

] ∣∣∣∣
A ∈ Ek ⊗ E⊥

k /Ek

B ∈ Ek ⊗ Ek

BJk − Jk(tB) = AΩN−k(tA)



 (6.2.2)

is the unipotent radical of P acting trivially on the consecutive quotients of Ek ⊂ E⊥
k ⊂ V .

The tangent bundle. The inclusion ι : IG(k, 2N) ↪→ Gr(k, 2N) defines the universal bundle
UIG on the isotropic Grassmannian IG(k, 2N) as pull-back of the universal bundle UGr on the
Grassmannian Gr(k, 2N). Moreover, the dual bundle

U∨
IG = Eω1

is defined by the irreducible Pk–representation of highest weight ω1.
One way to describing the tangent bundle TIG(k,V ) is through the short exact sequence

0 −→ U∨ ⊗ (U⊥/U) −→ TIG(k,V ) −→ Sym2 U∨ −→ 0 ,

fitting in the commutative diagram
0 0

U∨
IG ⊗

(
U⊥

IG /UIG

)
U∨

Gr ⊗
(

U⊥
Gr /UGr

)

TIG TGr = U∨
Gr ⊗ Q

Sym2 U∨
IG

U∨
Gr ⊗ U∨

Gr

0 0

0

0

0
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Another way to describe TIG(k,V ) is by determining its fiber at [vωk
]. From the theory in Sec.

1.1 we know that the simple root αk defines a Z–grading on the Lie algebra sp2N whose degrees
are bounded by the coefficient mαk

(ρ) of αk in the longest root ρ. From Table 1.2 we know
that mαk

(ρ) = 2, hence

T[vωk
] IG(k, 2N) ≃ pu ≃ sp2N/p = g−1 ⊕ g−2 .

Recall that, as we are not in the cominuscule case, the pu is not irreducible as P–module, and
its only submodule is g−1. Deriving the description of the unipotent radical Pu in (6.2.2) we
get the nilpotent algebra

pu =
(
E∨
k ⊗ E⊥

k/Ek
)
⊕ Sym2E∨

k ,

whose only P–invariant (for the adjoint action of P ) summand is g−1 = E∨
k ⊗ E⊥

k/Ek. Notice
that such summand is the fiber of U∨ ⊗ (U⊥/U), which is a P -homogeneous sub-bundle of
TIG(k,V ) being the kernel in the above short exact sequence.

6.2.1 Pk–orbits in sp2N/pk

We keep notation from the beginning of the section. We want to determine the poset of
P–orbits in the tangent space T[vωk

] IG(k, 2N) ≃ Sym2E∨
k ⊕

(
E∨
k ⊗ E⊥

k/Ek
)
.

Remark. The parabolic subgroup Pk ⊂ Sp2N has nilpotency class ℓ(Pk) = 2 (cf. (6.1.1)),
hence from [HR99, Theorem 1.1] we know that pu has finitely many P–orbits.

An element of the tangent space is of the form

σ +H ∈ Sym2E∨
k ⊕

(
E∨
k ⊗ E⊥

k/Ek
)
.

Notice that the action of GL(Ek) ⊂ L conjugates the above element to one of the form (e2
−k +

. . .+ e2
−k+r−1) + Ĥ, where r is the rank of σ ∈ Sym2E∨

k . In this respect, we may assume

σ = σr := e2
−k + . . .+ e2

−k+r−1 .

In the following we describe separately how the Levi factor L and the unipotent radical Pu

act on an element of the form σr +H for a certain r ≤ k.

The action of Pu. We start from the action of the unipotent radical Pu ⊂ P in (6.2.2),
which depends only on the entries A ∈ Ek ⊗ E⊥

k/Ek and B ∈ Ek ⊗ Ek.

Remark. The action of B on Sym2E∨
k is identically zero since there is no non-zero projection

from (Ek⊗Ek)⊗Sym2E∨
k onto Sym2E∨

k ⊕
(
E∨
k ⊗E⊥

k/Ek
)
. Similarly, also the actions of A and

B on E∨
k ⊗ E⊥

k/Ek are identically zero.

The only non-trivial action is the one of A on Sym2E∨
k , which by Schur’s theorem coincides

with the contraction map
(
Ek ⊗ E⊥

k/Ek
)
⊗ Sym2E∨

k −→ E∨
k ⊗ E⊥

k/Ek(∑
i,j aijei ⊗ ej

)
⊗ f 7→ ∑

i,j aij
∂f
∂e−i

⊗ ej
.
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In particular, given A =
∑k
i=1
∑−k−1
j=k+1 aijei ⊗ ej ∈ Ek ⊗ E⊥

k/Ek, one gets

A · σr =
∑

j

k∑

i=k−r+1
2aije−i ⊗ ej .

It follows that, for any unipotent element gA ∈ Pu depending on A ∈ Ek⊗E⊥
k/Ek, and for any

H =
∑
i,j hije−i ⊗ ej ∈ E∨

k ⊗ E⊥
k/Ek, it holds

gA · (σr +H) = (Ik · σr) + (I2N−2k ·H) + (A · σr) = σr +H +A · σr

= σr +
∑

j

[
k−r∑

i=1
hije−i ⊗ ej +

k∑

i=k−r+1
(hij + 2aij)e−i ⊗ ej

]
.

Thus acting by Pu allows to “truncate” the summand H. We conclude that there are infinitely
many Pu–orbits in σr +

(
E∨
k ⊗ E⊥

k/Ek
)
, namely

σr +
(
E∨
k ⊗ E⊥

k/Ek
)

=
⊔

Q∈Ck−r⊗C2N−2k

Pu ·
(
σr +

k−r∑

i=1
e−i ⊗Qi

)
,

where Qi denotes the i-th column of the matrix Q ∈ Ck−r ⊗ C2N−2k.

Remark. We point out that to be infinitely–many are the Pu–orbits (not P–orbits) for a fixed
σ ∈ Sym2E∨

k . The additional action of the Levi factor L will reduce the number of orbits in
the whole tangent space to finitely many.

The action of L. Now we deal with the action of the Levi factor L ⊂ P in (6.2.1). In light
of the previous arguments, up to acting by both GL(Ek) ⊂ L and Pu, we may assume

σr +H =
(
e2

−k + . . .+ e2
−k+r−1

)
+
k−r∑

i=1
e−i ⊗ qi (6.2.3)

for certain vectors qi ∈ E⊥
k/Ek, and we are left with considering the action of the stabilizer in

L of σr:

stabL(σr) =








∗ ∗
∗

N

O R

M


 ∈ L

∣∣∣∣

O ∈ Orth(r)
M ∈ GL(k − r)
R ∈ Cr ⊗ Ck−r

N ∈ Sp(E⊥
k /Ek)




≃ stabGL(Ek)(σr)× Sp(E⊥

k/Ek) ,

where the first block (the one with asterisks, of size k × k) uniquely depends on the last block[
O R

M

]
.

Let Q := ⟨q1, . . . , qk−r⟩C ⊂ E⊥
k/Ek be the subspace spanned by the second tensor-entries in

H (6.2.3), and let
h := dimQ ≤ min{2N − 2k, k − r}

be its dimension. Acting by a proper permutation matrix in GL(k − r) ⊂ stabGL(Ek)(σr),
we can reorder the summands in H such that (q1, . . . , qh) is a basis of Q. Then for any
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h+ 1 ≤ i ≤ k− r we can write qi =
∑h
j=1 αijqj with respect to this basis, for a suitable matrix

(αij) ∈ Ck−r−h ⊗ Ch, getting

σr +H = σr +
h∑

i=1

(
e−i +

k−r∑

ℓ=h+1
αℓie−ℓ

)
⊗ qi .

Moreover, by applying a base change via GL(k − r) ⊂ stabGL(Ek) ⊂ L in the above first
tensor-entries, we can move such σr + H to the point σr +

∑h
i=1 e−i ⊗ qi. Thus for any

Q = ⟨q1, . . . , qh⟩C ∈ Gr(h,E⊥
k/Ek) we set

σr +HQ := σr +
h∑

i=1
e−i ⊗ qi . (6.2.4)

Remark 6.2.1. The dimension h = dimQ is an invariant for the Pu–action too (hence for the
P–action). Indeed, given supp(σr) = ⟨x ∈ Ek | σr(x) ̸= 0⟩C = ⟨ek−r+1, . . . , ek⟩C ⊂ Ek, one has

Pu · (σr +HQ) = {σr +HQ +H ′ | H ′ ∈ supp(σr)∨ ⊗ E⊥
k/Ek} .

Then h is well defined as the invariant

h := min{Rk(Q|Q′) | HQ′ ∈ supp(σr)∨ ⊗ E⊥
k/Ek} .

Up to now, we have used the action of both L and Pu on σr +H for minimizing the number
of summands appearing in H. The next step is to find representatives for such “minimal”
summands.

Let ω′ ∈ Sym2(E⊥
k/Ek)∨ be the non-degenerate symplectic form obtained as restriction of

ω ∈ Sym2 V ∨. It is represented by the skew-symmetric matrix ΩN−k ∈
∧2 C2N−2k.

For any subspace Q ∈ Gr(h,E⊥
k/Ek), the restriction of ω′ to Q has rank

Rk
(
ω′

|Q

)
= h− dim(Q ∩Q⊥) ≡ 0 (mod 2) .

Notice that:

• If Q ⊂ Q⊥, i.e. Q ∈ IGω′(h,E⊥
k/Ek) and Rk

(
ω′

|Q

)
= 0, then h ≤ N−k and the symplectic

group Sp(E⊥
k/Ek) conjugates σr +HQ to the point σr +

∑h
i=1 e−i ⊗ ek+i.

• If Q ∩Q⊥ = {0}, then Q⊕Q⊥ = E⊥
k/Ek and Rk

(
ω′

Q
) = h is even. Thus the symplectic

group Sp(E⊥
k/Ek) conjugates σr +HQ to the point σr +

∑h
2
i=1 e−i⊗ ek+i +

∑h
2
i=1 e− h

2 −i⊗
e−k−i.

In general, assume that
Rk
(
ω′

|Q

)
= h− t

for a certain 1 ≤ t ≤ h such that h ≡ t (mod 2). Then the intersection Q∩Q⊥ ∈ IGω′(t, E⊥
k/Ek)

is ω′–isotropic and (Q/(Q∩Q⊥))⊕ (Q⊥/(Q∩Q⊥)) = (Q+Q⊥)/(Q∩Q⊥), hence the action of
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Sp(E⊥
k/Ek) conjugates the subspace HQ in (6.2.4) to the subspace

H(h,t) :=
t∑

i=1
e−i ⊗ ek+i +

h−t
2∑

i=1
e−t−i ⊗ ek+t+i +

h−t
2∑

i=1
e−t− h−t

2 −i ⊗ e−k−t−i , (6.2.5)

that is the point σr +HQ to the point σr +H(h,t).

Theorem 6.2.2. For any 2 ≤ k ≤ N −1, the tangent space T[vωk
] IGω(k, 2N) ≃ sp2N/pk splits

in the finitely many Pk–orbits

O(r,h,t) :=




σ +H ∈ Sym2E∨

k ⊕
(
E∨
k ⊗ E⊥

k/Ek
) ∣∣∣∣

Rk(σ) = r

ker(H) ⊂ supp(σ)
dim Im(H) = h

Rk
(
ω|Im(H)

)
= h − t





= P ·
(
σr +H(h,t)

)

(6.2.6)
where: Rk(σ) and supp(σ) := {x ∈ Ek | σ(x) ̸= 0} ⊂ Ek are respectively the rank and the
support of the quadratic form σ ∈ Sym2 E∨

k ; the matrix H ∈ E∨
k ⊗ E⊥

k/Ek is considered as
a linear map in Hom(Ek, E⊥

k/Ek); Rk(ω|Im(H)) is the rank of the restriction of the symplectic
form ω ∈ ∧2

V ∨ to the subspace Im(H) ⊂ E⊥
k/Ek; σr +H(h,t) is the representative in (6.2.5).

Proof. The thesis has been proved all along the previous arguments. However, we recap the
steps remarking how the parabolic subgroup P acts on a given point σ + H ∈ Sym2E∨

k ⊕(
E∨
k ⊗ E⊥

k/Ek
)
:

• given r := Rk(σ), the action of GL(Ek) ⊂ L conjugates σ to σr = e2
−k + . . .+ e2

−k+r−1;

• the unipotent radical Pu maps σ + H to a certain σ + H ′ such that ker(H ′) ⊂ supp(σ),
so that H ′ is obtained by truncating from H the component in supp(σ)∨ ⊗ E⊥

k/Ek (cf.
(6.2.3));

• the action of GL(k− r) ⊂ stabGL(Ek)(σr) ⊂ L allows to reduce the number of summands
in (6.2.3) to as many summands as h := dim Im(H), leading to the form (6.2.4);

• the rank Rk(ω|Im(H)) is invariant under the action of Sp(E⊥
k/Ek) ⊂ L, which conjugates the

form (6.2.4) to the representative σr+H(h,t) in (6.2.5) where t := dim Im(H)−Rk(ω|Im(H)).

Finally, we notice that, as r, h, t vary, the points σr + H(h,t) cannot be conjugated with each
other via P–action: indeed, even if the unipotent radical Pu moves σr +H(h,t) to σr +H(h,t) +∑k
i=k−r+1 e−i ⊗ qi for arbitrary qi ∈ E⊥

k/Ek, then the Levi factor L could not mix the vectors
e−k, . . . , e−k+r−1 with the vectors e−k+r, . . . , e−1 without also changing the quadric σr.

6.2.2 Inclusions and dimensions of the orbits
We know that the invariants of the P–action on the tangent space to IGω(k, 2N) are given

by the triplet

Rk(σ)︸ ︷︷ ︸

=:r

, dim Im
(
H|Ek/ supp(σ)

)

︸ ︷︷ ︸
=:h

, dim Im
(
H|Ek/ supp(σ)

)
− Rk

(
ω

Im
(
H|Ek/ supp(σ)

)
)

︸ ︷︷ ︸
=:t


 .
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We stress out that such invariants satisfy the inequalities:

r ≤ k , h ≤ min{k − r, 2N − 2k} , t ≤ min{h,N − k} , t ≡ h (mod 2) . (6.2.7)

Proposition 6.2.3. The inclusions among the closures of the Pk–orbits in sp2N/pk are ruled
by the degeneracies of the ranks in the matrix spaces

Sym2E∨
k ,

(
Ek

supp(σ)

)∨
⊗ (E⊥

k/Ek) ,

2∧(
(Ek/ supp(σ))⊥

Ek/ supp(σ)

)∨
.

In particular, the following inclusions hold (where the constraints on the right-side also respect
the conditions (6.2.7)):

i) O(r,h,t) ⊂ O(r,h′,t′) ∀h ≤ h′ ≤ min{k − r, 2N − 2k}, ∀t ≤ t′ ≤ h′ ;
ii) O(r,h,t) ⊂ O(r′,h,t) ∀r ≤ r′ ≤ k − h ;
iii) O(r−1,h+1,t−1) ⊂ O(r,h,t) ∀h ≤ min{k − r − 1, 2N − 2k} ;
iv) O(r,h−1,t+1) ⊂ O(r,h,t) ∀t ≤ h− 2 ;
v) O(r,h,t) ⊂ O(k−1,1,1) ∀(r, h, t) ̸= (k, 0, 0) ;
vi) O(k,0,0) = P · σk = sp2N/p .

Proof. (i) For r fixed, and h, t ≥ 2 when necessary, the sequences in O(r,h,t)

a(ϵ) := σr +H(h,t) +
(

1
ϵ
− 1
)
e−t ⊗ ek+t ,

b(ϵ) := σr +H(h,t) +
(

1
ϵ
− 1
)(

e−t− h−t
2
⊗ ek+t+ h−t

2
+ e−t−h+t ⊗ e−k−t− h−t

2

)
(if h− t ≥ 2) ,

c(ϵ) := σr +H(h,t) + e−t+1 ⊗
1
ϵ
e−k−t + e−t ⊗

[(
1
ϵ
− 1
)
ek+t + e−k−t+1

]

have limits for ϵ→∞ respectively

a(ϵ)→ σr +H(h−1,t−1) ∈ O(r,h−1,t−1) ,

b(ϵ)→ σr +H(h−2,t) ∈ O(r,h−2,t) ,

c(ϵ)→ σr +H(h,t−2) ∈ O(r,h,t−2) .

Then O(r,h,t) ⊂ O(r,h′,t′) for (h′, t′) ∈ {(h+ 1, t+ 1), (h+ 2, t), (h, t+ 2)} and the thesis follows
by an iterative argument.

(ii) Given t ≤ h ⪇ (k − r), the sequence
(
e2

−k + . . .+ 1
ϵ
e2

−k+(r+1)−1

)
+H(h,t) ∈ O(r+1,h,t)

has limit σr +H(h,t) ∈ O(r,h,t) for ϵ→∞, hence the thesis.
(iii) The sequence

σr +
(

1
ϵ
− 1
)
e2

−k +H(h,t) + e−k ⊗ e−k−t
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lies in O(r,h,t) (as it is Pu-conjugated to σr +
( 1
ϵ − 1

)
e2

−k +H(h,t)) and for ϵ→∞ has limit in
O(r−1,h+1,t−1).

(iv) The sequence

σr +H(h,t) +
(

1
ϵ
− 1
)
e−h ⊗ e−k−t− h−t

2

lies in O(r,h,t) and has limit σr +H(h−2,t) + e−t− h−t
2
⊗ ek+t+ h−t

2
∈ O(r,h−1,t+1).

(v) If h ≥ 1, the sequence

σr + 1
ϵ

(
e2

−k+r + . . .+ e2
−2
)

+H(h,t)

lies in O(k−1,1,1) (as under Pu-action one can reduce H(h,t) to e−1 ⊗ ek+1) and has limit σr +
H(h,t) ∈ O(r,h,t). If h = 0, the thesis follows by (i) and (ii).

(vi) In the orbit O(k,0,0) = P · σk there are all the points of the form σk +
∑k
i=1 e−i ⊗ qi for

any qi ∈ E⊥
k/Ek (via the action of Pu). In particular, for any triplet of invariants (r, h, t) the

sequence
σk +

(
1
ϵ
− 1
)(

e2
−k+r + . . .+ e2

−1
)

+H(h,t)

lies in O(k,0,0) and for ϵ→∞ it has limit σr +H(h,t) ∈ O(r,h,t), hence the thesis.

Corollary 6.2.4. The orbit O(k,0,0) is dense in sp2N/pk. Moreover,

O(k−1,1,1) = (sp2N/pk) \ O(k,0,0)

is the hypersurface defined by the vanishing of the determinant in Sym2E∨
k .

Dimensions. We conclude the study of the Pk-orbits in sp2N/pk by computing their dimen-
sions. From the description of pu ≃ Sym2 E∨

k ⊗ E⊥
k/Ek we know that

dim IGω(k, 2N) = dim sp2N/pk = k(k + 1)
2 + k(2N − 2k) = k

(
4N − 3k + 1

2

)
.

Remark. One can recover the above dimension also by noticing that IGω(k, 2N) is the kernel
of the section sω ∈ H0(Gr(k, 2N),

∧2 U
)

corresponding to the symplectic form ω ∈ ∧2(C2N )∨

(via Borel–Weil’s Theorem). Thus the fiber dimension theorem implies

dim IGω(k, 2N) = dim Gr(k, 2N)− Rk
( 2∧

U
)

= k

(
4N − 3k + 1

2

)
.

Proposition 6.2.5. In the above notation, the orbit O(r,h,t) has dimension

dimO(r,h,t) = r(r + 1)
2 + (r + h)(2N − k − r) + t(t+ 1)

2 − h2 − t2 . (6.2.8)

Proof. For any h, t satisfying conditions (6.2.7), consider the incidence variety

Ih,t :=
{

(Q′, Q) ∈ IGω(t, E⊥
k/Ek)×Gr(h,E⊥

k/Ek) | Q′ = Q ∩Q⊥}
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whose projection onto the first factor π : Ih,t → IGω(t, E⊥
k/Ek) has fiber

π−1(W ) ≃
{
Q ∈ Gr(h,E⊥

k/Ek) | Q ∩Q⊥ = W
}

≃
{
Q̃ ∈ Gr(h− t,W⊥/W ) | Q̃ ∩ Q̃⊥ = {0}

}
.

As the latter set is a dense in the Grassmannian Gr(h − t,W⊥/W ), from the fiber dimension
theorem we get

dim Ih,t = dim IGω(t, E⊥
k/Ek) + dim Gr(h− t, 2N − 2k − 2t)

= t(t+ 1)
2 + t(2N − 2k − 2t) + (h− t)(2N − 2k − h− t)

Let
[

Sym2 Ck
]
r

be the set of k× k symmetric matrices of rank r, having dimension r(r+1)
2 +

r(k − r). For any triplet of invariants (r, h, t) we consider the fibration

ρ : O(r,h,t) −→
[
Sym2E∨

k

]
r
× Ih,t

σ +H 7→
(
σ , [ Im(H) ∩ Im(H)⊥ ⊂ Im(H) ]

) .

Given U := ⟨e−k+r, . . . , e−1⟩C ⊂ E∨
k and supp(σr)∨ = ⟨e−k, . . . , e−k+r−1⟩C ⊂ E∨

k , the fiber of
ρ at the point xσr,Q :=

(
σr, [Q ∩Q⊥ ⊂ Q]

)
is

ρ−1(xσr,Q

)
=
{
σr +

h∑

i=1
vi ⊗ qi +H ′

∣∣∣∣ vi ∈ U, H ′ ∈ supp(σr)∨ ⊗ E⊥
k/Ek

}

and it has dimension dim(U ⊗Ch) + dim
(

supp(σr)∨⊗E⊥
k/Ek

)
= h(k− r) + r(2N − 2k). From

the fiber dimension theorem again, we deduce

dimO(r,h,t) = dim
[
Sym2E∨

k

]
r

+ dim Ih,t + dim ρ−1(xσr,Q)

= r(r + 1)
2 + (r + h)(2N − k − r) + t(t+ 1)

2 − h2 − t2 .

Example 6.2.6. Consider the isotropic Grassmannian IG(3, 8). From the constraints in (6.2.7),
the invariants (r, h, t) are such that

0 ≤ r ≤ 2 , h ≤ min{2, 3− r} , t ≤ min{h, 1} .

Moreover, the condition t ≡ h (mod 2) implies that, in such a case, the value t is uniquely
determined by the value h: the first non trivial case in which r, h, t are not redundant is
IG(3, 10). Then the tangent space sp8/p3 has the following poset of P3–orbits, where the
arrows denote the inclusion of an orbit into the closure of another.
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(0)

O(0,1,1)4

O(1,0,0)5 O(0,2,0)6

O(1,1,1)8

O(2,0,0)9 O(1,2,0)9

O(2,1,1)11

O(3,0,0)12

Figure 6.2: Poset graph of P3–orbits in sp8/p3, and their dimensions.

Remark. Recall that each P3–orbit O(r,h,t) in the tangent space sp8/p3 corresponds to a Sp8–
orbit, say Sp8 ·O(r,h,t), in the tangential variety τ(IG(3, 8)). Then the graph in Figure 6.2
also describes the poset of Sp8–orbits in τ(IG(3, 8)): of course, the dimensions of the orbits
Sp8 ·O(r,h,t) depend on the tangential-identifiability of their points.





Chapter 7

Appendix

This chapter collects some results which either are not relevant to the rest of the chapters
(but they were made as an exercise) or are well-known but we haven’t been able to find a proper
reference.

7.1 The degree of Spinor varieties
This section is mainly intended as an exercise and it is independent from the results appearing
in other chapters. We have determined a general formula for the degree of Spinor varieties by
ourselves. Only after evaluating it in small dimensions (up to N = 8), we have found out that

the sequence of degrees matches with the series A003121 on the “Online Encyclopedia of
Integer Sequences” (OEIS) [Slo].

As usual, we assume notation from previous sections and we treat the case of DN–type in
light of Theorem 3.3.1. Given Φ the root lattice of type DN with (ϵ1, . . . , ϵN ) an orthonormal
basis of ⟨Φ⟩R, the simple roots ∆ = {α1, . . . , αN} are

α1 = ϵ1 − ϵ2 , . . . , αN−1 = ϵN−1 − ϵN , αN = ϵN−1 + ϵN

and they define the positive roots Φ+ = {ϵi − ϵj}i<j ∪ {ϵi + ϵj}i<j . Recall that the DN–type
fundamental weights are

ω1 = ϵ1 , ω2 = ϵ1 + ϵ2 , . . . , ωN−2 = ϵ1 + ϵ2 + . . .+ ϵN−2 ,

ωN−1 = 1
2 (ϵ1 + . . .+ ϵN−1 − ϵN ) , ωN = 1

2 (ϵ1 + . . .+ ϵN−1 + ϵN ) .

We denote the sum of all the fundamental weights by

ζ :=
N∑

i=1
ωi =

N−1∑

l=1
(N − l)ϵl .

105
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Remark. Given a projective variety X ⊂ PM of dimension m, its degree deg(X) is the number
of points in which a general PM−m ⊂ PM intersects X. One can define the Hilbert polynomial
of X to be the Euler characteristic

HilbX(t) := χ(X,O(t)) :=
m∑

i=0
(−1)ihi(X,O(t)) ,

where hi(X,O(t)) := dimHi(X,O(t)). When O(t) is spanned, all cohomology groups vanish
but the one of global sections, thus the above value coincides with

HilbX(t) = h0(X,O(t)) .

A key result about the Hilbert polynomial is [Har13, Sec. 13] is that

HilbX(t) = deg(X)
dim(X)! t

dimX +O(tdim(X)−1) .

Theorem 7.1.1. For any N , the spinor variety S±
N ⊂ P(S±

N ) has degree

deg(S±
N ) =

(
N
2
)
!∏

1≤i<j≤N (2N − (i+ j)) .

Proof. We assume N to be even and we work with S+
N = DN/PN ⊂ P(V DN

ωN
). We compute the

Hilbert polynomial of S+
N , and from its leading coefficient we deduce the degree.

For any t ≥ 1 the line bundle O(t) on S+
N is defined by the irreducible PN–representation

with highest weight tωN : the latter weight is dominant for any t ≥ 1, hence by Borel–Weil
Theorem the line bundle O(t) is spanned at any point of S+

N . Thus HilbS+
N

(t) = h0(S+
N ,O(t)).

Moreover, again by Borel–Weil Theorem, the latter dimension coincides with the dimension of
the irreducible representation V DN

tωN
, which can be computed by the Weyl’s dimension formula

(1.2.1):

dimV DN
tωN

=
∏

α∈Φ+

κ(tωN + ζ, α)
κ(ζ, α)

=
∏

1≤i<j≤N

κ(tωN + ζ, ϵi − ϵj)
κ(ζ, ϵi − ϵj)

· κ(tωN + ζ, ϵi + ϵj)
κ(ζ, ϵi + ϵj)

.

By direct computation one gets

κ(tωN + ζ, ϵi − ϵj) = κ

(
N∑

l=1

(
N − l + t

2

)
ϵl, ϵi − ϵj

)

=
(
N − i+ t

2

)
κ(ϵi, ϵi)−

(
N − j + t

2

)
κ(ϵj , ϵj)

= j − i ,
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κ(tωN + ζ, ϵi + ϵj) = κ

(
N∑

l=1

(
N − l + t

2

)
ϵl, ϵi + ϵj

)

=
(
N − i+ t

2

)
κ(ϵi, ϵi) +

(
N − j + t

2

)
κ(ϵj , ϵj)

= 2N − (i+ j) + t ,

κ(ζ, ϵi − ϵj) = (N − i)κ(ϵi, ϵi)− (N − j)κ(ϵj , ϵj) = j − i ,

κ(ζ, ϵi + ϵj) = (N − i)κ(ϵi, ϵi) + (N − j)κ(ϵj , ϵj) = 2N − (i+ j) .

We conclude that the Hilbert polynomial for S+
N is the degree–

(
N
2
)

polynomial

HilbS+
N

(t) = dimV DN
tωN

=
∏

1≤i<j≤N

2N − (i+ j) + t

2N − (i+ j) ,

having leading coefficient
deg(S+

N )(
N
2
)
!

= 1∏
i<j(2N − (i+ j)) .

Remark. The degrees of the Spinor varieties S+
N for N = 2 : 8 are (also cf. integer sequence

A003121 on OEIS [Slo])

N 2 3 4 5 6 7 8

deg(SN ) 1 1 2 12 286 33592 23178480

Table 7.1: Degrees of small Spinor varieties SN for N = 2 : 8.

From Table 5.1 we recall that S2 ≃ P1 and S3 ≃ P3 are linear (hence of degree 1), while S4 ≃ Q6

is a quadric (hence of degree 2). The first non-trivial case is the ten–fold Spinor variety S5.

7.2 SpinM–orbits in QM−2×QM−2

Let V be an M–dimensional complex vector space and let q ∈ Sym2 V ∨ be a non-degenerate
quadratic form on it. Let QM−2 be the projective quadric in PM−1 = P(V ) defined by q.
The action of the special orthogonal group SOM splits PM−1 into the two orbits QM−2 and
PM−1 \ QM−2, depending on the q–isotropicity of points. In particular, the SOM -action on
PM−1 × PM−1 restricts to an action on QM−2×QM−2.

For points in QM−2×QM−2 one can consider the notion of Hamming distance (cf. Sec. 2.3).
Since quadrics have Hamming distance 2, one gets the set partition

QM−2×QM−2 = ∆QM−2 ⊔ O1 ⊔ O2
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where ∆QM−2 is the diagonal and Oℓ := {([v], [w]) | d([v], [w]) = i} for i = 1, 2. By Remark
2.3.2 the Hamming distance is invariant under the action of SOM , hence SOM acts on each Oi
for i = 0, 1, 2: clearly, the action on the diagonal is transitive.

Remark. From now on we assume V to be of even dimension M = 2m and equipped with the
quadratic form q(x) =

∑m
i=1 xixm+i ∈ Sym2 V ∨ represented by the matrix

Q := 1
2

[
0 Im

Im 0

]
.

Let (e1, . . . , em, f1, . . . , fm) be a standard hyperbolic basis with respect to q. For any w ∈ V
the scalar q(ei, w) is the coefficient of fi in the decomposition of w with respect to the above
basis (and viceversa, q(fi, w) is the one of ei).

Proposition. SO2m acts transitively on O1. In particular, O1 = SO2m ·([e1], [e2]).

Proof. Given ([v], [w]) ∈ O1, we may assume [v] = [e1] up to moving via SO2m. Since
d([e1], [w]) = 1, the line L([e1], [w]) lies in Q2m−2, hence the subspace ⟨e1, w⟩C is q–isotropic,
that is ⟨e1, w⟩C ∈ OG(2, V ). Since OG(2, V ) is homogeneous under the action of SO2m, it
follows that ⟨e1, w⟩C is conjugated to the q–isotropic subspace ⟨e1, e2⟩C, hence the thesis.

Proposition. SO2m acts transitively on O2. In particular, O2 = SO2m ·([e1], [f1]).

Proof. Given ([v], [w]) ∈ O1, we may assume [v] = [e1] up to moving via SO2m. Since
d([e1], [w]) = 2, the line L([e1], [w]) does not lie in Q2m−2 but there exists [z] ∈ Q2m−2 such
that L([e1], [z]), L([z], [w]) ⊂ Q2m−2. The subspace ⟨e1, z, w⟩C is not q–isotropic since ⟨e1, w⟩C
is not so, but ⟨e1, z⟩C ∈ OG(2, V ), hence there exists A ∈ SO2m conjugating it to ⟨e1, e2⟩C and
we may assume z = e2.
Since q(e1, w) ̸= 0 and q(e2, w) = 0 we may assume q(e1, w) = 1 so that w = q(f1, w)e1 +
f1 + q(f2, w)e2 + w′ where w′ ∈ V ′ := ⟨e3, . . . , em, f3, . . . , fm⟩C . Notice that up to acting by
SO(V ′) < SO2m we may assume w′ = 0. Hence we reduce to consider an action of SO4 on
⟨e1, e2, f1, f2⟩C. Finally, the condition q(w) = 0 implies q(f1, w) = 0, that is w = f1+q(f2, w)e2,
which is SO4–conjugated to f1 + e2. At the end of the day, we have reduced to prove that

(e1, f1 + e2) and (e1, f1) are SO4–conjugated, and this is done by the matrix
[

1 0 0 −1
0 1 1 0
0 0 1 0
0 0 0 1

]
.

Corollary. The group Spin2m acts transitively on O1 and on O2.

Proof. The spin group Spin2m is the universal double cover of SO2m and the following SES
holds

1 −→ {±1} −→ Spin2m −→ SO2m −→ 1 .

Thus any transformation A ∈ SO2m lifts to two transformations ±A ∈ Spin2m differing by
a sign. But the sign does not affect the action on O1 and O2 since their points are pairs of
projective points.
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Remark. The above results still hold for V of odd dimension M = 2m + 1. In this case
one considers the quadratic form described by the matrix

[
Q

1
2

]
with respect to the standard

hyperbolic basis (e1, . . . , em, f1, . . . , fm, u) for q(u) = 1. Then it is enough to repeat the same
arguments in the previous proves up to substituting every matrix A with the matrix

[
A

1

]
.

We conclude the following result.

Theorem 7.2.1. Let G be either SOM or SpinM . The Hamming distance is the unique G-
invariant in QM−2×QM−2, splitting in the G-orbits

QM−2×QM−2 = ∆QM−2 ⊔O1 ⊔O2 =
(
G · ([e1], [e1])

)
⊔
(
G · ([e1], [e2])

)
⊔
(
G · ([e1], [f1])

)
.

7.3 Secant bundle on Spinor varieties
The arguments in this section are inspired from [Ver01; Ver09; Ull16]: we thank L. Manivel

for suggesting these references. They have been investigated in the attempt of proving the
smoothness of both secant and tangent orbits of distance greater or equal than 3 in the secant

variety of lines to a Spinor variety. The idea was to prove that the secant bundle gives a
desingularization of the secant variety, but we have just been able to exhibit a bijection (as

sets) between dense subsets.

We recall that a line bundle L on a smooth projective variety X is k–very ample if every
0–dimensional subscheme Z ⊂ X of length k + 1 imposes independent conditions on L, or
equivalently if the restriction map H0(X,L) → H0(X,L ⊗ OZ) is surjective: in particular,
L is 1–very ample if and only if it is very ample, and L is k–very ample if and only if there
does not exist a 0–dimensional subscheme Z ⊂ X of length k + 1 lying on a linear subspace
Pk−1 ⊂ P(H0(X,L)∨).

Remark 7.3.1. The line bundle OS+
N

(1) on the Spinor variety S+
N is very ample, giving the

embedding in P
(
H0(S+

N ,OS+
N

(1))∨
)
≃ P (

∧ev
E), but not 2–very ample. Indeed, it would be

2–very ample if and only if there would not exist a 0–dimensional subscheme of S+
N of length 3

lying on a line P1 ⊂ P(
∧ev

E). But we know that the Spinor variety contains lines, defined by
pairs of pure spinors having Hamming distance 1.

Secant bundle. Let L = O(1) be the very ample line bundle on X := S+
N , and let Hilb2(X)

be the Hilbert scheme of 0-dimensional subschemes of S+
N of length 2. We denote by EL the

locally free sheaf of rank 2 on Hilb2(X) having fibers (EL)Z = H0(X,L ⊗ OZ): formally,
EL := (π2)∗(π∗

1)(L) where π1 and π2 are the natural projections from the universal family
Φ := {(x,Z) ∈ X ×Hilb2(X) | x ∈ Z} onto X and Hilb2(X) respectively. From the projection
formula, one gets the following global sections of sheaves:

H0(Hilb2(X), EL) = H0(Φ, (πX)∗L) = H0(X,L ⊗ (πX)∗OΦ) = H0(X,L) ,
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where the last equality follows since πX is a proper projection and (πX)∗OΦ = OX .
By pushing forward via πH the morphism H0(X,L)⊗OΦ → (πX)∗L (of sheaves on Φ) one gets
the evaluation morphism of sheaves on Hilb2(X)

ev : H0(X,L)⊗OHilb2(X) −→ EL ,

defined on the fibre as the restriction: for any Z ∈ Hilb2(X) it holds

evZ : H0(X,L) −→ (EL)Z = H0(X,L ⊗OZ)
s 7→ s|Z

.

As L is very ample, the evaluation

evZ : H0(X,L) ↠ H0(X,⊗OZ)

is a surjection for any Z ∈ Hilb2(X), hence the morphism of sheaves H0(X,L)⊗OHilb2(X) → EL
is surjective. Moreover, again by very ampleness of L, one can get the injective morphism

ψ : Hilb2(X) ↪→ Gr
(
2, H0(X,L)

)

Z 7→
[
H0(X,L) ↠ H0(X,L ⊗OZ)

] .

Now, we may think at PM = P(H0(X,L)∨) as to the 1-dimensional quotients of H0(X,L), i.e.

PM =
{
H0(X,L) ↠ Q | dimQ = 1

}
.

We denote by Q1 a 1-dimensional vector space. Then one defines the (first) secant bundle
PEL as the P1-bundle on Hilb2(X) with fibers (PEL)Z =

{(
Z,
[
H0(X,L ⊗OZ) ↠ Q1])}. The

following morphism is well-defined:

f : PEL −→ P
(
H0(X,L)∨)

(
Z,
[
H0(X,L ⊗OZ) ↠ Q1]) 7→

[
H0(X,L) ↠ Q1] .

Notice that
[
H0(X,L) ↠ Q1] ⊂ Im(f) if and only if it factors through a certain H0(X,L⊗OZ)

for some Z ∈ Hilb2(X): in particular,

f (PEL) = σ2(X) ⊂ P(H0(X,L)∨) .

For any Z ∈ Hilb2(X), the fibre (PEL)Z =
{

(Z,
[
H0(X,L ⊗OZ) ↠ Q1])

}
is bijectively

mapped via f to the secant line L(Z) ⊂ σ2(X) intersecting X in the points of Z: if Z = {p, q}
is a reduced subscheme, then the fibre at Z gives the bisecant line (PEL)Z

1:17→ L(p, q), while if
Z is a non-reduced subscheme corresponding to {p, v}, where p ∈ X and v ∈ TpX, then the
fibre at Z gives the tangent line (PEL)Z

1:17→ Lv(p) = p+ tv. Finally, in our setting, for any two
distinct subschemes Z,Y ∈ Hilb2(X) the lines L(Z) and L(Y) coincide if and only if they lie
in X, as the Spinor variety is intersection of quadrics.

Lemma 7.3.2. The restriction of f to f−1(σ2(S+
N ) \ Σ2,N ) is a bijection.
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Proof. By Theorem 5.2.5, the points in the secant orbits Σl,N for l ≥ 3 are identifiable, thus
any two bisecant lines (given by points in Σl,N for l ≥ 3, except for the two points in which they
intersect S+

N ) do not intersect away from S+
N . By Theorem 5.3.2, the points in the tangent orbits

Θl,N for l ≥ 3 are tangential-identifiable, liying on a unique tangent line, hence any two tangent
lines do not intersect away from Σ2,N . Finally, by the orbit partition of σ2(S+

N ) in Theorem
5.1.12, since Θl,N ̸= Σl,N for any l ≥ 3, a tangent line and a bisecant line never intersect away
from Σ2,N . It follows that f : PEL → σ(S+

N ) is a bijection away from f−1 (Σ2,N
)
.

Remark. We point out that Vermeire in [Ver09, Proposition 1.2, Theorem 2.2] and Ullery in
[Ull16, Lemma 1.1] prove the smoothness of σ2(X)\X under the assumption of the line bundle
giving the embedding to be 3-very ample: this assumption is the one separating secant and
tangent lines away from X. In our case, the previous hypothesis is not satisfied (see Remark
7.3.1). At the set-level, the identifibiability and the tangential-identifiability allow to separate
secant and tangent lines (away from Σ2,N ) as well. What is missing is that the above restriction
has injective differential, so that it would be an isomorphism.
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