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Introduction

In this thesis, we deal with the problem of optimizing a trajectory to “visit”,
i.e., to touch or at least to pass as close as possible, to a collection of tar-
gets. In the following, we refer to this problem as optimal visiting. The
issue presents various inherent difficulties: some related to its high compu-
tational complexity (shared with other well-known optimization problems
as the “Traveling salesman problem” [27]) and other related to its possible
continuous/discontinuous nature.

Let us state the problem more precisely: consider the controlled dynam-
ics {

y′(s) = f(y(s), α(s), s), s ∈]t, T ]
y(t) = x, x ∈ Rd

, (0.0.1)

where t ∈ [0, T ], α : [t, T ] −→ A is a measurable control function, and
the dynamics f : Rd × A × [0,+∞[−→ Rd is suitably regular. Consider a
collection of N compact disjoint target sets in Rd, {T 1, T 2, . . . , T N}, and
y(x,t)(·;α) a solution of (0.0.1) related to a starting point x, a starting time t
and a control α. We can write the optimal visiting problem just considering,
for instance, the minimization of a cost functional of the form, in a finite
horizon feature,

J(x, t, α) =
∫ T

t
`(y(s), α(s), s)ds,

with the running cost ` suitably designed in order to keep trace of the
distances from the targets of the trajectory. The visiting cost is then defined
as

v(x, t) = inf
α∈A

J(x, t, α).

Actually, the problem requires a particular framework as a standard contin-
uous optimal control setting fails to describe the problem correctly. Let us
illustrate this difficulty using the following toy example.

Let us consider the one-dimensional problem with A = R, f(x, a) = a,
and T1 =] − ∞,−1], T2 = [1,+∞[. We focus on giving an optimal visit
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formulation in the interval [−1, 1]. At first, we consider the easiest running
cost

`(y, a, t) := 1
2




2∑

j=1
d(y, T j)2 + ‖a‖2


 ,

which penalizes quadratically the distance from the targets and the norm
of the control. It is easy to verify that we have a feedback formula for the
optimal control as

α(x, t) = − x

(1− t)2 + 1/2 ,

which means that the trajectory is led to zero, which is the middle point
between the two targets. Since we want to model a slightly different problem,
i.e., a visit more than a compromise between the distances, we are unsatisfied
with this result.

Therefore, we should include the information about the visit of the tar-
gets in a different way in the model, allowing us to focus on a single target,
as well as on a subfamily of targets, at once. If, for example, we consider
the problem of visiting first target T 1 and then T 2, we can easily observe
that we would obtain a different problem just swapping the order of the
visit. This is a consequence because no Dynamical Programming Principle
would be available for the value function v(x, t), since the only information
brought by the state-position x does not give information about the already
visited targets (see also [3, 2, 5, 6]). Hence, at this level, we can not in gen-
eral characterize the visiting cost as a suitable solution of a Hamilton-Jacobi
equation. Consequently, it is quite challenging to perform a global study of
the problem or obtain a feedback optimal control map.

The argument above suggests that we need to include in the model a
“memory” of the targets already visited. This can be done using various
tools. Here, we opt for a hybrid control-based construction. In particular,
we introduce additional discrete state-variables as switching N -strings p of
0 and 1, where 1 in the i-position means that the target Ti has been already
visited and viceversa for 0, and they have a discontinuous evolution in time.
Hence, starting from po = (0, . . . , 0), the goal can be seen as obtaining
the string p̄ = (1, . . . , 1), i.e., visiting all the N targets, paying as less as
possible. We then split the optimal visiting problem into several problems,
labeled by the N -strings p, and we suitably interpret it as a collection of
several optimal stopping/switching problems coupled to each other by the
stopping/switching cost (a switch between N -strings corresponds to the visit
of a target or the choice to forgo visiting one or more targets). This leads
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to the study of the following Hamilton-Jacobi equation




max{v(x, t)− ψ(x, t),−vt(x, t) + λv(x, t) +H(x, t,Dxv(x, t))} = 0,
(x, t) ∈ Rd × [0, T [

v(x, T ) = ψ(x, T ), x ∈ Rd
,

(0.0.2)
where ψ is the stopping/switching cost and H is the Hamiltonian, which
characterizes the value function v as the unique viscosity solution.

0.1 A network representation
We study also an optimal visiting problem in a quite different framework
than Rd. Indeed, we interpret the additional discrete state-variables p, which
give a memory feature to the model, as nodes of a direct network, where po
is the origin and p̄ is the final destination. The problem can be seen then
as the search for an optimal origin-destination path. Due to the dynamical
feature of the multi-dimensional optimal visiting problem described before,
in the network representation we keep the possibility to choose the sequence
of instant to perform the switches. Our idea is then to study the problem
without a real dynamics as (0.0.1), i.e., without a controlled continuous
trajectory for visiting the N targets. In particular, the state of the system
is represented by the discrete variable p, which basically corresponds to the
node of the network on which the agent is. Such a variable acts also as a
switching discrete control at the agent’s disposal, that is, once the agent is
on the node p, it has to choose optimally the next admissible subsequent
node p′ after p. In this way, the agent switches to p′, i.e., visit a new target,
and the state of the system becomes p′. In performing such a switch, the
agent incurs a switching cost. A time-variable is accounted for the problem
too. In particular, besides the switching discrete control variable p, the agent
has to choose the optimal time it is convenient to switch to the next node
of the network. Moreover, all the admissible switches have to be performed
within a fixed time T > 0: if the agent reaches the final node before T , for
example it pays an earliness penalization cost, while if it does not reach the
final node and the time is over, it pays a time-loseness penalization cost.

0.2 The mean-field case
In this thesis, we are also interested in a possible study of a mean-field game
model, that is when a huge population of agents plays the optimal visiting
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problem with/without a controlled dynamics and with costs also depending
on the distribution of the population. Actually, the study of the interacting
motion of many agents with more than one target seems to be rather new
in the literature, especially for what concerns the corresponding continuity
equation for the mass distribution. As regards the multi-dimensional opti-
mal visiting problem (i.e., in Rd with controlled dynamics (0.0.1)), we start
such a kind of study investigating a single continuity equation with a mass-
sink in Rd (corresponding to the case where some agents, possibly labeled
by the same N -strings p, visit or forgo visiting some targets and then pass
to a subsequent level, labeled by another N -string p′), and then we extend
the analysis to a more general transport equation with a mass-source too
(corresponding to the previous case with the addition of agents coming from
an admissible preceding level). The single continuity equation with just a
mass-sink is formally described by




µt(x, t) + div(µ(x, t)b(x, t)) + 1{(S,t):t∈[0,T ]}µ(x, t) = 0,
(x, t) ∈ Rd × [0, T ]

µ(x, 0) = µ0(x), x ∈ Rd
,

(0.2.3)
which models the transport of a mass µ of agents with initial distribution
µ0, subject to a given suitably regular field b (possibly depending on the
mass µ too) with the presence of a region S ⊂ Rd (possibly depending
on time) acting as a sink: the portion of mass possibly entering the sink
instantaneously disappears. Roughly speaking, the first two terms give the
evolution of the mass µ and the third 1{(S,t):t∈[0,T ]}µ(x, t) represents the
leaving rate of agents which stop in S and then vanish. We prove that the
unique candidate for suitably solving (0.2.3) is the following measure in Rd

µ̃(s) =
{

Φ(·, 0, s)]m̃0 on Rd \ K(s)
0, otherwise

, s ∈ [0, T ],

where Φ is the flow generated by the field b, and K(s) is suitably defined in
such a way that it takes account of the agents who passed through the sink
S at least once in the time interval [0, T ] and then disappeared.

We generalize then the analysis of the continuity equation with a sink
to the case of the evolution in Rd of a mass µ with the presence of a region
acting as a source: the portion of mass possibly coming out from the source
starts flowing immediately, according to the field b. In particular, starting
from the ideas for the study of (0.2.3), we find a suitable candidate for the
evolution and we prove its uniqueness.
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The results that are shown for what concerns the study of a single conti-
nuity equation with sinks and sources (including the possible dependence of
the field b on the measure µ), also constitute the first step toward a general
theory of mean-field games in the presence of switches in the formulation of
the problem. To complete the theory, a major point to be investigated would
be the introduction of a real coupling between the continuity equations with
sinks and sources and the Hamilton-Jacobi equations (0.0.2) via the opti-
mal feedback (regularity assumptions on the vector field should be probably
adjusted). In any case, as shown in the tests in [6], we may suppose, due to
some promising numerical evidence, the existence of an equilibrium for such
a coupling. We postpone this study to future research.

We investigated also a mean-field game model for the optimal visiting
problem on a network in §0.1. In particular, after studying the single-
player optimization problem and the properties of the value function, we face
the problem of the existence of a mean-field equilibrium. This is done by
performing a suitable fixed-point procedure for an approximated problem,
and then we address the passage to the limit in the approximation. We
need first an approximated problem because the switching mass-evolution,
solution of the mean-field equilibrium problem, turns out to be piecewise
continuous (even piecewise constant in some particular case) and this fact
makes the standard compactness and convexity requirements for fixed-point
results lacking in our case. Moreover, possibly due to non-uniqueness of the
optimal control, we have to work with set-valued functions and, similarly as
in [2, 12], we must consider agents splitting into fractions, each one of them
following one of the optimal behaviors. That rather new approximation
allows us to prove the existence of an approximated mean-field equilibrium
via a fixed-point procedure for a suitable set-valued map. The passage to
the limit in the approximation is then investigated by assuming a suitable
hypothesis on the optimal switching instants. Anyway, such a hypothesis can
be satisfied by requiring some proper conditions on the costs. A more general
investigation for avoiding this assumption is left to future works. As regards
the uniqueness of the equilibrium, usually, in the mean-field games theory, it
is guaranteed by imposing a kind of monotonicity condition satisfied by the
costs with respect to the mass of the agents (see [31]). In several cases, the
adaptation of that property to uniqueness results does not require too much
work because the studied problem almost naturally fits that condition. Our
problem, due to many of its aspects, does not provide instead an immediate
evident way to adapt it. However, inspired by [31], using a monotonicity-
type property, we give some easy examples and calculations which seem to
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be promising for a future and deeper study of the uniqueness.

0.3 Discussion
In general, as aforementioned, the study of single-player optimal visiting
problems requires an hybrid control framework in order to recover a dynamic
programming property, and hence to derive a Hamilton-Jacobi equation.
More precisely, it requires a special framework able to include a memory of
the targets already visited. For the formulation, we adapt to our setting
some classic results of viscosity solutions theory that can be found, e.g., in
[9, 25] (see also Appendix B, §B.1). In particular, the hybrid framework
that we propose is related to hybrid control [15] and somehow to the math-
ematical switching hysteresis models [38]. The need of a memory feature,
associated with the optimal visiting, dynamic programming and Hamilton-
Jacobi equations, has been presented in [3], where a continuous hysteresis
memory was introduced. The use of a switching/discontinuous/hybrid mem-
ory, as in the present thesis, was instead used for a one-dimensional optimal
visiting problem on a network in [2], which basically inspired the model
introduced in §0.1. For switching hybrid control problems related to the
models here presented, and in connection with Hamilton-Jacobi equations,
we refer to [11] (similar formulations for the deterministic case have also
been proposed in [15, 22]).

The literature concerning the Traveling Salesman Problem, to which our
optimal visiting problems are related, is very large. We only quote an early
paper by R. Bellman [10] devoted to the problem and dynamic programming.

The model for a crowd of indistinguishable players is taken from the
framework of mean-field games [31, 30, 29, 19], while the adaptation of the
same hybrid structure to networks has been only very recently attempted, as
in [2, 4] and, more generally, in [16, 17]. Some works which share the same
ideas to treat the mean-field case in the presence of switches in the dynamics
of the problem are [13, 12], where the author discusses a mean-field optimal
stopping and impulse control problem, and [24], where a hybrid mean-field
game is presented to model a multi-lane traffic flux of vehicles. Moreover,
another similar mean-field model can be found in [33], where a continuous
and a discrete set of switching labels are introduced to study the case of a
leader-follower dynamics.

There are several applicative motivations for our models. For instance,
the multi-dimensional optimal visiting problem complies with tourists’ flow
which has to visit some points of interest both in an heritage city and in a
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museum environment (see for example [2, 20]). In [14] it is instead given
an example of a situation where, in a crowded environment, people have to
perform a sequence of different operations in different places, such as in big
airports or train stations. Still concerning the multi-dimensional setting, but
related to a single-player one, in [7] it is given an example of a framework
which is used to solve a series of applied problems arising from the sport of
orienteering races. Finally, as we already said in §0.1, we rewrite the optimal
visiting problem as an origin-to-destination one on a network, and of course
the possible applications and literature on this kind of problems are very
huge. Other possible interesting interpretations of such a model could be
found in the optimal job scheduling and in the similar open-shop scheduling
problem, or in the optimal co-flow scheduling in operations research (see for
example [37, 28] and [21]).

0.4 Reading this thesis
The body of the thesis is organized as follows. In Chapter 1, we introduce the
optimal visiting problem in Rd for a single agent, reporting all the theoretical
elements that justify the use of a Hamilton-Jacobi formulation. In support
of this, in Appendix A, §A.1 we state and prove several preliminary results.
The main contributions have been published in [5, 6] (together with some
numerical tests in order to verify in practice the model), while in [7] it is
given an original approach for a sport game known as orienteering problem,
based on the hybrid control techniques in this chapter.

In Chapter 2, we consider a crowd of indistinguishable players focusing
on the good position of the continuity equation (at first with a sink and
then with a source too), which models the motion of the density of players.
This is a first essential step for a possible study of a more general mean-field
game model. The main contributions in this chapter have been published
in [6], where, however, just the continuity equation with a sink is studied.
Furthermore, in the same paper, the model in action through a collection of
some promising numerical tests is also examined.

In Chapter 3, we introduce a network representation of the multi-dimen-
sional optimal visiting problem in Ch. 1, for a single agent and for a crowd,
giving all the theoretical elements and hypotheses that motivate the use of
a switching feature on a different framework. In particular, we focus on
the well-position of such a problem and we address also the mean-field case.
In Appendix A, §A.2 and §A.3, some examples and calculations are given
to support the main results. The contributions in this chapter have been
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submitted for publication in [8].
In Appendix B, we state some important tools and useful results which

are needed in the thesis.



Notations

Rd the Euclidean d-dimensional space
|x| the absolute value or modulus of a real number x
x · y or 〈x, y〉 the scalar product ∑d

i=1 xiyi of vectors x =
(x1, . . . , xd) and y = (y1, . . . , yd)

‖x‖ the Euclidean norm of x ∈ Rd, ‖x‖ = 〈x, x〉 1
2

‖x‖∞ the supremum norm supx∈E |u(x)| of a function
u : E −→ R

d(x,E) the distance from x to E (i.e., d(x,E) = infy∈E ‖x−
y‖)

dH(E,S) the Hausdorff distance between the sets E and S
(§2.1.1)

B(x0, r) the open ball {x ∈ Rd : ‖x− x0‖ < r}
B(x0, r) the closed ball {x ∈ Rd : ‖x− x0‖ ≤ r}
ut(x, t) or ∂tu(x, t) the time derivative of the function u, i.e. the

derivative w.r.t. t
Dxu(x, t) the spatial gradient of the function u, i.e. the

gradient w.r.t. x
D+u(x, t), D−u(x, t) the super- and the subdifferential (or

semidifferentials) of u at (x, t) (§1.1.3)
Jf the Jacobian matrix of a function f : Rd −→ Rm

P(E) the power set of a set E
C0(E) the space of continuous functions u : E −→ R
C0(E,D) the space of continuous functions u : E −→ D, D 6= R
C1(E) the space of continuously differentiable functions

u : E −→ R
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C∞(E) the space of infinitely differentiable functions (i.e.,
possess derivatives of all orders in E) u : E −→ R

Ckc (E) the space of compactly supported and k-times
continuously differentiable functions u : E −→ R,
0 ≤ k ≤ ∞

Lp(E) the Lebesgue space of integrable functions u : E −→
R, 1 ≤ p <∞

Lp(E,D) the Lebesgue space of integrable functions u : E −→
D, D 6= R, 1 ≤ p <∞

L∞(E) the space of essentially bounded functions u : E −→
R

L∞(E,D) the space of essentially bounded functions u : E −→
D, D 6= R

BUC(E) the space of bounded and uniformly continuous
functions u : E −→ R

PC(E, [0, 1]) the space of piecewise constant functions u : E −→
[0, 1]

Ld(E) the d-dimensional Lebesgue measure of E
Hd(E) the d-dimensional Hausdorff measure of E
1E the indicator function of a set E, that is 1E(x) = 1

if x ∈ E and 1E(x) = 0 if x /∈ E



Chapter 1

Hybrid control for a
single-player optimal visiting
problem

The optimal visiting problem is the optimization of a trajectory that has
to touch or pass as close as possible to a collection of target points. The
problem does not verify the dynamic programming principle, and it needs a
specific formulation to keep track of the visited target points. In this chap-
ter, we introduce a hybrid approach by adding a discontinuous part of the
trajectory switching between a group of discrete states related to the targets.
Then, we show the well-position of the related Hamilton-Jacobi problem, by
reformulating the optimal visiting as a collection of time-dependent optimal
stopping problems.

1.1 The optimal visiting problem
Given N disjoint compact target sets {T j}j=1,...,N ⊂ Rd, we represent the
state of the system by the pair (x, p) ∈ Rd×I, where p = (p1, p2, . . . , pN ) ∈
I = {0, 1}N . Therefore, x is the continuous state variable (i.e., the position
in Rd) and p is the switching discrete state variable. The evolution of the
continuous variable is described by the controlled dynamics

{
y′(s) = f(y(s), α(s), q(s)), a.e. s ∈]t, T ]
y(t) = x, q(t) = p

, (1.1.1)
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where (x, p) ∈ Rd ×I is the initial state, t ∈ [0, T ] the initial instant, T > 0
the fixed finite horizon. The measurable control is (for A ⊂ Rm compact)

α ∈ A := {α : [0,+∞[−→ A measurable}

and the dynamics q(·) of the switching variable (which represents here the
memory) is subject to

∃τ ∈ [t, s], y(τ) ∈ T j ⇒ qj(s) = 1; qj(s) = pj otherwise. (1.1.2)

Formally, qj(s) = 0 means that the target T j has not been visited yet in
[t, s] and viceversa for qj(s) = 1. The dynamics f : Rd × A × I −→ Rd
is continuous, bounded and Lipschitz continuous w.r.t. x ∈ Rd uniformly
w.r.t. (a, p) ∈ A× I, i.e., there exists L > 0 such that

‖f(x, a, p)−f(y, a, p)‖ ≤ L‖x−y‖ for all (x, y) ∈ Rd×Rd and (a, p) ∈ A×I.

The state of the system at time s is the pair (y(s), q(s)) and, for every
initial state (x, t, p) and control α, by our hypotheses the existence of a
unique solution (y(s), q(s)) of (1.1.1)-(1.1.2) is guaranteed. In particular,
note that the number of switches of the variable q is necessarily finite, hence
q is piecewise constant and the solution yα(x,t,p)(s) (or simply y(s)) of (1.1.1)-
(1.1.2) is in the sense of absolutely continuous function.

The optimal visiting problem consists then in reaching, if possible, the
discrete state p̄ = (1, 1, . . . , 1) (i.e., to visit all the targets) at a time t ≤ t̄ ≤
T , minimizing the cost

∫ t̄

t
e−λ(s−t)`(y(s), α(s), q(s), s)ds,

for a given running cost ` and a discount factor λ > 0.

1.1.1 A hybrid-control relaxation: optimal switching
The optimal control problem described above requires to “exactly touch”
all the targets. This makes the evolution of the discrete variable q rather
complicated, in particular in view of the corresponding Hamilton-Jacobi
equation. We then relax the problem asking instead for “to pass as close as
possible” to each target. Then we assume that we can definitely get rid of
some targets and take into account only the remaining ones. In doing that,
we also pay an additional cost depending, for instance, on the actual distance
from the discarded targets. In this way, the evolution q(·) of the discrete
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(1, 1, 1)
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Figure 1.1: An optimal visiting problem with three targets: 1, 2, 3. The
initial state is (x, (0, 0, 0)): no target visited/discarded yet. The agent first
visits/discards target 1 and then the label switches to (1, 0, 0). The sec-
ond visited/discarded target is 3, and hence the second switch is to (1, 0, 1).
After visiting/discarding target 2, the final switch is to (1, 1, 1). The rect-
angular indicates Rd and, for every label, the corresponding already visit-
ed/discarded targets are not displayed.

variables is no more a solution of (1.1.1)-(1.1.2), but instead, it becomes a
control at our disposal. Clearly, there are some constraints: for example,
for N = 3, if p = (1, 0, 0), p′ = (1, 0, 1), p′′ = (0, 1, 1) and p′′′ = p̄ = (1, 1, 1),
then from p we can not switch to p′′ otherwise we lose the information
about the already visited/discarded target T1. However, we can switch to
p′′′ directly. The process above is sketched in the Figure 1.1. In particular,
by an optimization criterium, such a process is feasible because at every
switching instant we get rid of a maximal quantity of targets, and hence
no infinitesimal accumulation of subsequent switches is possible (no Zeno
phenomenon). See also Figure 2.2.

Therefore, for any p, we denote by Ip the set of all possible new variables
in I after a switch from p:

Ip = {p̃ ∈ I : pi = 1 ⇒ p̃i = 1 and ∃l = 1, . . . , N : pl = 0, p̃l = 1}.

Note that in particular Ip̄ = ∅, where p̄ = (1, 1, . . . 1).
For a given p, the number of the admissible subsequent switches is at

most N − ∑i p
i ≤ N . Given the state (x, p) at the time t with p 6= p̄,
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the controller chooses: the measurable control α ∈ A, and the discrete one
q : [0,+∞[−→ I which contains: the number 1 ≤ m ≤ N−∑i p

i of switches
to be performed in order to reach p̄, the switching instants t ≤ t1 < t2 <
. . . < tm ≤ T and the switching destinations p1, . . . , pm−1, pm = p̄. Such
destinations must satisfy p1 ∈ Ip, pi+1 ∈ Ipi , i = 1, . . . ,m − 1. To resume,
the control at disposal is then

(α,m, t1, . . . , tm, p1, . . . , pm−1) =: u,

and note that for any (x, p, t) as above such a string belongs to a set de-
pending on p and t denoted by U(p,t). The cost to be minimized is

J(x, t, p, u) =
m∑

j=1

(∫ tj

tj−1
e−λ(s−t)`(y(s), α(s), pj−1, s)ds

+ e−λ(tj−t)C(y(tj), pj−1, pj)
)
,

with λ ≥ 0, p0 = p, t0 = t and y(s) is the solution of (1.1.1) where q(s) =
pj−1 if s ∈ [tj−1, tj ].

We assume ` : Rd × A × I × [0, T ] −→ [0,+∞[ bounded, continuous
and uniformly continuous w.r.t. x uniformly w.r.t. a ∈ A, p ∈ I and
t ∈ [0, T ]. Moreover C : Rd × I × I −→ [0,+∞[ is uniformly continuous
w.r.t. x ∈ Rd, uniformly w.r.t. p, p′ ∈ I×Ip. Note that C(x, p, p′) represents
the switching cost from p to p′ when the state position is x ∈ Rd. For
example, it may depend on the distance from the discarded targets, that is
C(x, p, p′) = ∑

j χj(p, p′)d(x, Tj), where

χj(p, p′) =
{

0, pj = p′j

1, otherwise
.

The value function of the problem is

V (x, t, p) = inf
u∈U(p,t)

J(x, t, p, u). (1.1.3)

1.1.2 Another possible interpretation: a family of optimal
stopping problems

Our aim is to make the optimal switching problem of the previous subsection
more prone to be solved by an algorithmic procedure using Hamilton-Jacobi
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type problems. We then introduce here a possible formulation as a family
of time-dependent optimal stopping subproblems, one per every switching
variable p, suitably coupled by the stopping costs. For example, suppose
N = 3 and take p such that ∑i p

i = N − 1 = 2 (i.e., from p we can
switch only to p̄). Then, for a (x, t, p), the controller has only to choose
u = (α ∈ A, τ ∈ [t, T ]) and minimize the cost

Jp(x, t, α, τ) =
∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds+ e−λ(τ−t)C(y(τ), p, p̄).

(1.1.4)
Note that in this representation p is fixed, that is does not change in the
time interval [t, τ ]. Hence (1.1.4) gives a time-dependent optimal stopping
problem in the state space Rd, whose value function is

Vp(x, t) = inf
(α,τ)

Jp(x, t, α, τ).

Now, take p such that∑i p
i = N−2 = 1. Then consider the time-dependent

optimal stopping problem in the state space Rd where, for a given (x, t), the
control is u = (α ∈ A, τ ∈ [t, T ], p′ ∈ Ip) and the cost to be minimized is

Jp(x, t, α, τ, p′) =
∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds

+ e−λ(τ−t)
(
C(y(τ), p, p′) + Vp′(y(τ), τ)

)
. (1.1.5)

Note that from p′ we can only switch to the final state p̄, and hence Vp′ can
be a priori evaluated as in the previous step. Since when p = p̄, the game
stops, we set Vp̄ ≡ 0. Hence (1.1.4) can be seen formulated as (1.1.5). The
value function is then

Vp(x, t) = inf
(α,τ,p′)

Jp(x, t, α, τ, p′). (1.1.6)

Proceeding backwardly in this way, we consider a suitable time-dependent
optimal stopping problem in Rd for any p ∈ I, and we can at least formally
compute the corresponding value functions Vp.

We will see in §1.1.4 the equivalence between the optimal control prob-
lem formulated in §1.1.1 and the family of optimal stopping problems here
formulated.
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1.1.3 Time-dependent optimal stopping problem: position
and theoretical results

In this section, we collect some theoretical results for a time-dependent
optimal stopping problem with a fixed finite horizon T > 0. We suitably
generalize to our finite horizon time-dependent model the results in [9] for
an optimal stopping problem with no time-dependence and infinite horizon
feature. In order to prove the uniqueness of the solution of the related
Hamilton-Jacobi equation, we need a key result, that is Lemma 1.1.1, which
is proved in Appendix A, §A.1. In the same section, we also state and prove
several preliminary results. Moreover here, and in the following, we use the
notion of viscosity solution. For the definition and the first properties, we
refer to Appendix B, §B.1.

Let us consider the dynamical system
{
y′(s) = f(y(s), α(s)), s ∈]t, T ]
y(t) = x

, (1.1.7)

where x ∈ Rd, t ∈ [0, T ] and

– α ∈ A := {α : [0,+∞[−→ A : α is measurable}, A ⊂ Rm compact,

– f : Rd × A −→ Rd is continuous, bounded and Lipschitz w.r.t. x
uniformly w.r.t. a, that is there exists L > 0 such that

‖f(x, a)− f(y, a)‖ ≤ L‖x− y‖ for all x, y ∈ Rd, a ∈ A. (1.1.8)

We recall the following basic estimates on the trajectory y(x,t)(·;α):

– for all x ∈ Rd, α ∈ A and s ∈ [t, T ],

‖y(x,t)(s;α)− x‖ ≤M(s− t), (1.1.9)

where M := sup{‖f(z, a)‖ : (z, a) ∈ Rd ×A};

– for all x, z ∈ Rd, α ∈ A, t, τ ∈ [0, T ] and s ∈ [max(t, τ), T ],

‖y(x,t)(s;α)−y(z,τ)(s;α)‖ ≤ eL(T−max(t,τ))(‖x−z‖+M |t−τ |). (1.1.10)

The cost to be minimized is

J(x, t, α, τ) =
∫ τ

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds+ e−λ(τ−t)ψ(y(x,t)(τ ;α), τ),

where τ ≤ T is the stopping time and λ ≥ 0 the discount factor. We assume
that



1.1 The optimal visiting problem 7

- ψ : Rd × [0, T ] −→ [0,+∞[ is bounded and uniformly continuous;

- ` : Rd × A × [0, T ] −→ [0,+∞[ is bounded, continuous and such that
there exists a modulus of continuity ω` for which |`(x, a, t)−`(y, a, t)| ≤
ω`(‖x− y‖) for every x, y ∈ Rd, a ∈ A and t ∈ [0, T ].

The value function is

V (x, t) = inf
(α∈A,τ≥t)

J(x, t, α, τ). (1.1.11)

In the following, K, G and ωψ are respectively the bounds for `, ψ and the
modulus of continuity of ψ.

Proposition 1.1.1. Under the previous hypotheses, V as in (1.1.11) is in
BUC(Rd × [0, T ]).

Proof. Fix x, z ∈ Rd, t, t̃ ∈ [0, T ], ε > 0 and α̃ ∈ A, τ̃ ≥ t̃ such that

V (z, t̃) ≥
∫ τ̃

t̃
e−λ(s−t̃)`(y(z,t̃)(s; α̃), α̃(s), s)ds+ e−λ(τ̃−t̃)ψ(y(z,t̃)(τ̃ ; α̃), τ̃)− ε.

Then, recalling (1.1.10) too, we have

|V (x, t)− V (z, t̃)| ≤ |J(x, t, α̃, τ̃)− J(z, t̃, α̃, τ̃) + ε|

=
∣∣∣∣∣

∫ τ̃

t
e−λ(s−t)`(y(x,t)(s; α̃), α̃(s), s)ds+ e−λ(τ̃−t)ψ(y(x,t)(τ̃ ; α̃), τ̃)

−
∫ τ̃

t̃
e−λ(s−t̃)`(y(z,t̃)(s; α̃), α̃(s), s)ds− e−λ(τ̃−t̃)ψ(y(z,t̃)(τ̃ ; α̃), τ̃) + ε

∣∣∣∣∣

≤ K(1 + T )|t− t̃|+
∫ τ̃

max(t,t̃)
ω`(|y(x,t)(s; α̃)− y(z,t̃)(s; α̃)|)ds+G|t− t̃|

+ ωψ(|y(x,t)(τ̃ ; α̃)− y(z,t̃)(τ̃ ; α̃)|) + ε ≤ K(1 + T )|t̃− t|
+ Tω`

(
eL(T−max(t,t̃))(‖x− z‖+M |t− t̃|)

)
+G|t− t̃|

+ ωψ
(
eL(T−max(t,t̃))(‖x− z‖+M |t− t̃|)

)
+ ε.

By the arbitrariness of ε, we get the uniform continuity of V . The bound-
edness follows from the ones of ` and ψ.

We have the following Dynamic Programming Principle.

Proposition 1.1.2. Assume the hypotheses of Proposition 1.1.1. For every
x ∈ Rd and t ∈ [0, T ], we have
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(i) V (x, t) ≤ ψ(x, t);

(ii) for every t̃ ≥ t, α ∈ A,

V (x, t) ≤
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds+ e−λ(t̃−t)V (y(x,t)(t̃;α), t̃);

(iii) for any (x, t) for which the strict inequality in (i) holds, there exists
t0 = t0(x, t) > 0 such that, for every ζ ∈ [t, t+ t0],

V (x, t) = inf
α∈A

(∫ ζ

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds

+ e−λ(ζ−t)V (y(x,t)(ζ;α), ζ)
)
.

Proof. Inequality (i) is clear since, in particular,

V (x, t) ≤ J(x, t, α, t) = ψ(x, t) for all (x, t) ∈ Rd × [0, T ].

For (ii), fix α ∈ A, t̃ ≥ t, ε > 0 and let (α̃, τ̃ ≥ t̃) be ε-optimum for
V (y(x,t)(t̃;α), t̃), that is

J(y(x,t)(t̃;α), t̃, α̃, τ̃) ≤ V (y(x,t)(t̃;α), t̃) + ε.

Now define

α̂(τ) =
{
α(τ), τ ≤ t̃
α̃(τ − t̃), τ > t̃

.

Observe that, calling z := y(x,t)(t̃;α), we have

V (x, t) ≤ J(x, t, α̂, τ̃) =
∫ τ̃

t
e−λ(s−t)`(y(x,t)(s; α̂), α̂(s), s)ds

+ e−λ(τ̃−t)ψ(y(x,t)(τ̃ ; α̂), τ̃) =
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds

+
∫ τ̃

t̃
e−λ(s−t)`(y(z,t̃)(s; α̃), α̃(s), s)ds+ e−λ(τ̃−t)ψ(y(z,t̃)(τ̃ ; α̃), τ̃)

=
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds

+ e−λ(t̃−t)
∫ τ̃

t̃
e−λ(s−t̃)`(y(z,t̃)(s; α̃), α̃(s), s)ds
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+ e−λ(τ̃−t̃)e−λ(t̃−t)ψ(y(z,t̃)(τ̃ ; α̃), τ̃) =
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds

+ e−λ(t̃−t)
(∫ τ̃

t̃
e−λ(s−t̃)`(y(z,t̃)(s; α̃), α̃(s), s)ds+ e−λ(τ̃−t̃)ψ(y(z,t̃)(τ̃ ; α̃), τ̃)

)

=
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds+ e−λ(t̃−t)J(z, t̃, α̃, τ̃)

≤
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds+ e−λ(t̃−t)

(
V (y(x,t)(t̃;α), t̃) + ε

)
.

Then, from the arbitrariness of ε, the inequality follows.
Now let us prove (iii). Suppose that (x, t) ∈ Rd × [0, T ] is such that

V (x, t) < ψ(x, t) (1.1.12)

and let {(αn, tn)} ⊂ A× [0, T ] be a minimizing sequence, that is

lim
n→∞ J(x, t, αn, tn) = V (x, t). (1.1.13)

We claim that there exists t0 > t such that

tn ≥ t+ t0 > t (1.1.14)

for n sufficiently large. To see this, set δn := J(x, t, αn, tn)− V (x, t). Then

V (x, t) + δn ≥ −C
∫ tn

t
e−λ(s−t)ds

+ e−λ(tn−t)
(
ψ(x, t)− ωψ

(
‖y(x,t)(tn;αn)− x‖+ |tn − t|

))
.

If for some subsequence tn → t, the previous inequality would imply that

V (x, t) ≥ ψ(x, t),

a contradiction with (1.1.12). Then (1.1.14) holds. Now observe that, for
t̃ ∈ [t, t+ t0],

J(x, t, αn, tn) =
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;αn), αn(s), s)ds

+ e−λ(t̃−t)J(y(x,t)(t̃;αn), t̃, αn, tn).

Since tn ≥ t̃ from (1.1.14), by definition of V it follows that
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J(x, t, αn, tn) ≥
∫ t̃

t
e−λ(s−t)`(y(x,t)(s;αn), αn(s), s)ds

+ e−λ(t̃−t)V (y(x,t)(t̃;αn), t̃)

≥ inf
α∈A

(∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds+ e−λ(t̃−t)V (y(x,t)(t̃;α), t̃)

)

for any t̃ ∈ [t, t+ t0]. Letting n→∞, from (1.1.13) we get

V (x, t) ≥ inf
α∈A

(∫ t̃

t
e−λ(s−t)`(y(x,t)(s;α), α(s), s)ds

+ e−λ(t̃−t)V (y(x,t)(t̃;α), t̃)
)

for any t̃ ∈ [t, t+ t0].

From this inequality and (ii), statement (iii) follows.

For x, ξ ∈ Rd and t ∈ [0, T ], we define the Hamiltonian function by

H(x, t, ξ) = sup
a∈A
{−f(x, a) · ξ − `(x, a, t)}.

Theorem 1.1.1. Under the hypotheses of Proposition 1.1.2, the value func-
tion V is a viscosity solution of




max{u(x, t)− ψ(x, t),−ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t))} = 0,
(x, t) ∈ Rd × [0, T [

u(x, T ) = ψ(x, T ), x ∈ Rd
.

(1.1.15)

Proof. Let (x1, t1) ∈ Rd × [0, T [ be a local maximum point of V − ϕ, ϕ ∈
C1(Rd × [0, T ]). Then, for some r > 0,

V (x1, t1)− V (z, t) ≥ ϕ(x1, t1)− ϕ(z, t)

for every (z, t) ∈ B((x1, t1), r). Fix an arbitrary a ∈ A and let y(x1,t1)(·) be
the solution corresponding to the constant control α(ζ) = a for all ζ. For ζ
sufficiently close to t1, (y(x1,t1)(ζ), ζ) ∈ B((x1, t1), r) by (1.1.9), and then

ϕ(x1, t1)− ϕ(y(x1,t1)(ζ), ζ) ≤ V (x1, t1)− V (y(x1,t1)(ζ), ζ).

By (ii) of Proposition 1.1.2, we obtain
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ϕ(x1, t1)− ϕ(y(x1,t1)(ζ), ζ) ≤
∫ ζ

t1
e−λ(s−t1)`(y(x1,t1)(s), α(s), s)ds

+ e−λ(ζ−t1)V (y(x1,t1)(ζ), ζ)− V (y(x1,t1)(ζ), ζ)

=
∫ ζ

t1
e−λ(s−t1)`(y(x1,t1)(s), α(s), s)ds+ (e−λ(ζ−t1) − 1)V (y(x1,t1)(ζ), ζ).

Dividing now by ζ− t1 and letting ζ → t1, by the differentiability of ϕ w.r.t.
x and t we get

−ϕt(x1, t1)−Dxϕ(x1, t1) · f(x1, a) ≤ `(x1, a, t1)− λV (x1, t1).

Since V (x, t) ≤ ψ(x, t) for every (x, t) ∈ Rd × [0, T ] by (i) of Proposition
1.1.2 and a ∈ A is arbitrary, the subsolution condition follows.

Next suppose that (x2, t2) ∈ Rd × [0, T [ is a local minimum point of
V − ϕ, ϕ ∈ C1(Rd × [0, T ]), that is, for some r > 0,

V (x2, t2)− V (z, t) ≤ ϕ(x2, t2)− ϕ(z, t) (1.1.16)

for every (z, t) ∈ B((x2, t2), r). If V (x2, t2) = ψ(x2, t2), then, obviously,

max{V (x2, t2)− ψ(x2, t2),
− Vt(x2, t2) + λV (x2, t2) +H(x2, t2, DxV (x2, t2))}

≥ V (x2, t2)− ψ(x2, t2) = 0

and V is a supersolution of (1.1.15). Assume then V (x2, t2) < ψ(x2, t2) (the
only other possibility by (i) of Proposition 1.1.2). For each ε > 0 and ζ ≥ t2,
by (iii) of Proposition 1.1.2 there exists ᾱ ∈ A such that

V (x2, t2) ≥
∫ ζ

t2
e−λ(s−t2)`(ȳ(x2,t2)(s), ᾱ(s), s)ds

+ e−λ(ζ−t2)V (ȳ(x2,t2)(ζ), ζ)− (ζ − t2)ε, (1.1.17)

where ȳ(x2,t2)(s) = y(x2,t2)(s; ᾱ) is the trajectory of (1.1.7) corresponding to
ᾱ. Now, by the hypotheses on ` and by (1.1.9), we have

|`(ȳ(x2,t2)(s), ᾱ(s), s)− `(x2, ᾱ(s), s)| ≤ ω`(M(s− t2)), (1.1.18)

and, by (1.1.8) and (1.1.9) again,

‖f(ȳ(x2,t2)(s), ᾱ(s))− f(x2, ᾱ(s))‖ ≤ LM(s− t2). (1.1.19)
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By (1.1.18), the integral in (1.1.17) can be written as
∫ ζ

t2
e−λ(s−t2)`(x2, ᾱ(s), s)ds+ o(ζ − t2) as ζ → t2,

where o(ζ−t2) indicates a function g(ζ−t2) such that limζ→t2 g(ζ−t2)/(ζ−
t2) = 0 and, in this case, |g(ζ−t2)| ≤ (ζ−t2)ω`(M(ζ−t2)). Then, by (1.1.16)
with (z, t) = (ȳ(x2,t2)(ζ), ζ) and by (1.1.17), we obtain

ϕ(x2, t2)− ϕ(ȳ(x2,t2)(ζ), ζ)−
∫ ζ

t2
e−λ(s−t2)`(x2, ᾱ(s), s)ds

+ (1− e−λ(ζ−t2))V (ȳ(x2,t2)(ζ), ζ) ≥ −(ζ − t2)ε+ o(ζ − t2). (1.1.20)

Moreover, by (1.1.9), (1.1.19) and the fact that ϕ ∈ C1, we have

ϕ(x2, t2)− ϕ(ȳ(x2,t2)(ζ), ζ) = −
∫ ζ

t2

d

ds
ϕ(ȳ(x2,t2)(s), s)ds

= −
∫ ζ

t2
(Dxϕ(ȳ(x2,t2)(s), s) · f(ȳ(x2,t2)(s), ᾱ(s)) + ϕt(ȳ(x2,t2)(s), s))ds

= −
∫ ζ

t2
(Dxϕ(x2, s) · f(x2, ᾱ(s)) + ϕt(x2, s))ds+ o(ζ − t2). (1.1.21)

Plugging (1.1.21) into (1.1.20) and adding ± ∫ ζt2 `(x2, ᾱ(s), s)ds, we get

∫ ζ

t2
{−Dxϕ(x2, s) · f(x2, ᾱ(s))− ϕt(x2, s)− `(x2, ᾱ(s), s)}ds

+
∫ ζ

t2
(1− e−λ(s−t2))`(x2, ᾱ(s), s)ds+ (1− e−λ(ζ−t2))V (ȳ(x2,t2)(ζ), ζ)

≥ −(ζ − t2)ε+ o(ζ − t2). (1.1.22)

The first integral is estimated from above by
∫ ζ

t2
sup
a∈A
{−Dxϕ(x2, s) · f(x2, a)− ϕt(x2, s)− `(x2, a, s)}ds

and the second one is o(ζ− t2) by the hypotheses on `. Dividing (1.1.22) by
ζ − t2 and letting ζ → t2, we obtain

−ϕt(x2, t2) + sup
a∈A
{−Dxϕ(x2, t2) · f(x2, a)− `(x2, a, t2)}+ λV (x2, t2) ≥ −ε,

where we also used the continuity of V and ȳ(x2,t2) at (x2, t2) and t2 respec-
tively. Since ε is arbitrary, the supersolution condition follows.
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For the uniqueness, we show that if u is a viscosity solution of (1.1.15),
then

u(x, t) = inf
α∈A

J(x, t, α, τ∗(x,t)(α))

for some τ∗(x,t)(α) such that

inf
α∈A

J(x, t, α, τ∗(x,t)(α)) = inf
(α∈A,τ≥t)

J(x, t, α, τ) = V (x, t),

and hence V is the unique viscosity solution. We need at first the following
Lemma, which is proved in Appendix A, §A.1.

Lemma 1.1.1. Let Ω ⊆ Rd be an open subset. For (x, t) ∈ Ω × [0, T ] and
α ∈ A, we set

τ(x,t)(α) := min{inf{τ ≥ t : y(x,t)(τ ;α) /∈ Ω}, T}.

Then, under the hypotheses of Theorem 1.1.1, for u ∈ BUC(Ω× [0, T ]) the
following statements are equivalent:

(i) for all x ∈ Ω, α ∈ A and t ≤ s ≤ τ < τ(x,t)(α),

e−λ(s−t)u(y(x,t)(s;α), s)− e−λ(τ−t)u(y(x,t)(τ ;α), τ)

≤
∫ τ

s
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ;

(ii) ut(x, t) − λu(x, t) − H(x, t,Dxu(x, t)) ≥ 0, (x, t) ∈ Ω × [0, T [, in the
viscosity sense;

(iii) −ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t)) ≤ 0, (x, t) ∈ Ω× [0, T [, in the
viscosity sense.

Proof. See the proof of Lemma A.1.7 in Appendix A, §A.1.

Theorem 1.1.2. Let u ∈ BUC(Rd×[0, T ]) be a viscosity solution of (1.1.15).
Then, under the hypotheses of Theorem 1.1.1,

u(x, t) = inf
α∈A

J(x, t, α, τ∗(x,t)(α)) = V (x, t)

for every (x, t) ∈ Rd × [0, T ], where

τ∗ := τ∗(x,t)(α) = inf{τ ∈ [t, T ] : u(y(x,t)(τ ;α), τ) = ψ(y(x,t)(τ ;α), τ)}.
(1.1.23)
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Proof. At first we observe that, since u(x, T ) = ψ(x, T ) for every x ∈ Rd, the
set in (1.1.23) is always non-empty, and hence τ∗ ≤ T always exists. Now
let u ∈ BUC(Rd× [0, T ]) be a viscosity solution of (1.1.15) and consider the
open set C = {(x, t) ∈ Rd × [0, T [: u(x, t) < ψ(x, t)}. At first we prove that

u(x, t) ≤ ψ(x, t), (x, t) ∈ Rd × [0, T ] (1.1.24)

and that

−ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t)) ≤ 0, (x, t) ∈ Rd × [0, T [, (1.1.25)

−ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t)) = 0, (x, t) ∈ C, (1.1.26)

in the viscosity sense. By contradiction, suppose that u(x0, t0) > ψ(x0, t0)
at some (x0, t0) ∈ Rd × [0, T ]. Then, by continuity,

u(x, t) > ψ(x, t) for every (x, t) ∈ B((x0, t0), δ), δ > 0. (1.1.27)

It can be easily proved that u − ϕ has a local maximum at some point
(x̄, t̄) ∈ B((x0, t0), δ) for some ϕ ∈ C1(Rd × [0, T ]), so that, since u is a
viscosity solution of (1.1.15),

max{u(x̄, t̄)− ψ(x̄, t̄),−ut(x̄, t̄) + λu(x̄, t̄) +H(x̄, t̄, Dxϕ(x̄, t̄))} ≤ 0.

This contradicts (1.1.27) and hence (1.1.24) holds.
By (1.1.24), the inequality (1.1.25) immediately follows since u is a vis-

cosity solution of (1.1.15).
To prove (1.1.26), it is sufficient to show that

−ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t)) ≥ 0, (x, t) ∈ C, (1.1.28)

in the viscosity sense. At any local minimum (x1, t1) ∈ C of u − ϕ, ϕ ∈
C1(Rd × [0, T ]), by (1.1.15) we have

max{u(x1, t1)− ψ(x1, t1),
− ut(x1, t1) + λu(x1, t1) +H(x1, t1, Dxϕ(x1, t1))} ≥ 0,

and (1.1.28) is proved since (x1, t1) ∈ C.
Now we apply Lemma 1.1.1 with Ω = Rd, s = t and, by (1.1.24), (1.1.25),

we get
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u(x, t) ≤ e−λ(τ−t)u(y(x,t)(τ ;α), τ) +
∫ τ

t
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ

≤ e−λ(τ−t)ψ(y(x,t)(τ ;α), τ) +
∫ τ

t
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ

for all t ≤ τ ≤ T and α ∈ A. Then

u(x, t) ≤ inf
(α∈A,τ≥t)

J(x, t, α, τ) = V (x, t).

For the reverse inequality, assume at first (x, t) /∈ C. In this case, u(x, t) =
ψ(x, t) and τ∗ = t. Then

u(x, t) = ψ(x, t) = J(x, t, α, τ∗) ≥ inf
(α∈A,τ≥t)

J(x, t, α, τ) = V (x, t).

Now suppose (x, t) ∈ C, so that (1.1.26) holds. Applying Lemma 1.1.1 with
Ω = C and s = t, we obtain

u(x, t) = inf
α∈A

(
e−λ(τ−t)u(y(x,t)(τ ;α), τ)

+
∫ τ

t
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ

)

for every t ≤ τ < τ∗ ≤ T . Letting τ → τ∗, we get

u(x, t) = inf
α∈A

J(x, t, α, τ∗) ≥ inf
(α∈A,τ∈[t,τ∗])

J(x, t, α, τ)

≥ inf
α∈A,τ∈[t,T ])

J(x, t, α, τ) = V (x, t)

since u(y(x,t)(τ∗;α), τ∗) = ψ(y(x,t)(τ∗;α), τ∗).

1.1.4 Equivalence of the two formulations
In this section, we show the equivalence between the optimal switching prob-
lem and the family of the optimal stopping ones, i.e., V (x, t, p) = Vp(x, t)
for every (x, t, p) ∈ Rd × [0, T ] × I. Here, and in the sequel, V is the value
function defined in (1.1.3) and Vp is the value function defined backwardly
as in (1.1.6).

Proposition 1.1.3. Under the hypotheses in §1.1.1, we have
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(i) V ∈ BUC(Rd × [0, T ]) for every p ∈ I;

(ii) for every p, the value functions Vp are bounded and uniformly contin-
uous too.

Proof. The proof of (i) goes as the one in Proposition 1.1.1 in §1.1.3. For
(ii), by the backward definition of Vp, as in §1.1.2, note that at the levels p
with ∑i p

i = N − 1, the stopping cost is just C and hence does not depend
on the value function Vp′ at lower levels p′ ∈ Ip. For higher levels p such
that ∑i p

i < N − 1, let us define

ψp(x, t) := inf
p′∈Ip

(C(x, p, p′) + Vp′(x, t)), x ∈ Rd, (1.1.29)

and recalling that ` does not depend on p′ ∈ Ip, we have

Vp(x, t) = inf
(α,τ)

(∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds+ e−λ(τ−t)ψp(y(τ), τ)

)
.

By the backward definition of Vp at every level p ∈ I, the stopping cost
ψp(x, t) can be assumed as known and hence, in particular, bounded and
uniformly continuous. Again, the thesis comes from the results in §1.1.3.

Proposition 1.1.4. Under the hypotheses of Proposition 1.1.3, for all x ∈
Rd, t ∈ [0, T ] and p ∈ I, we have

V (x, t, p) = inf
(α,τ,p′∈Ip)

(∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds

+ e−λ(τ−t)
(
C(y(τ), p, p′) + Vp′(y(τ), τ)

))
.

As a consequence, V (x, t, p) = Vp(x, t) for all (x, t, p).

Proof. We follow a procedure as the one used in §1.1.2. Consider p with∑
i p
i = N − 1. By definition we have

V (x, t, p) = inf
(α,τ)

(∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds+ e−λ(τ−t)C(y(τ), p, p̄)

)

= Vp(x, t)
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for every (x, t) ∈ Rd × [0, T ] since V (·, ·, p̄) = Vp̄(·, ·) ≡ 0. Consider now p
with ∑i p

i = N − 2. We need to show that

V (x, t, p) = inf
(α,τ,p′∈Ip)

(∫ τ

t
e−λ(s−t)`(y(s), α(s), p, s)ds

+ e−λ(τ−t)
(
C(y(τ), p, p′) + Vp′(y(τ), τ)

))
. (1.1.30)

We recall that, calling x1 := yα(x,t,p)(t1), we have

V (x, t, p) = inf
(α,t≤t1≤t2,p1∈Ip)

(∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds

+ e−λ(t1−t)C(x1, p, p1) +
∫ t2

t1
e−λ(s−t)`(yα(x,t,p1)(s), α(s), p1, s)ds

+ e−λ(t2−t)C(yα(x,t,p1)(t2), p1, p̄)
)
. (1.1.31)

So we have to prove that the inf in (1.1.30) coincides with the inf in (1.1.31).
At first we show the inequality (≤). For every x ∈ Rd, t ∈ [0, T ], α ∈ A and
p1 ∈ Ip, we have
∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(t1−t)C(x1, p, p1)

+
∫ t2

t1
e−λ(s−t)`(yα(x,t,p1)(s), α(s), p1, s)ds+ e−λ(t2−t)C(yα(x,t,p1)(t2), p1, p̄)

=
∫ t1

t
e−λ(s−t)`(yα(x,t,q)(s), α(s), p, s)ds+ e−λ(t1−t)C(x1, p, p1)

+ e−λ(t1−t)
∫ t2

t1
e−λ(s−t1)`(yα(x1,t1,p1)(s), α(s), p1, s)ds

+ e−λ(t1−t)e−λ(t2−t1)C(yα(x1,t1,p1)(t2), p1, p̄)

=
∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(t1−t)C(x1, p, p1)

+ e−λ(t1−t)
(∫ t2

t1
e−λ(s−t1)`(yα(x1,t1,p1)(s), α(s), p1, s)ds

+ e−λ(t2−t1)C(yα(x1,t1,p1)(t2), p1, p̄)
)
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=
∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(t1−t)C(x1, p, p1)

+ e−λ(t1−t)J(x1, t1, p1, α, t2, p̄) ≥
∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds

+ e−λ(t1−t)
(
C(x1, p, p1) + V (x1, t1, p1)

)

=
∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds

+ e−λ(t1−t)
(
C(x1, p, p1) + Vp1(x1, t1)

)
.

Passing to the inf over (α, t1, p1 ∈ Ip), we get V (x, t, p) ≥ Vp(x, t).
Let us prove (≥). Fix α ∈ A, τ ≥ t, p′ ∈ Ip and let (α̃1, t̃ ≥ τ ≥ t) be

ε-optimum for Vp′(yα(x,t,p)(τ), τ). Then, calling x′ := yα(x,t,p)(τ), we have

inf
(α,τ,p′)

(∫ τ

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds

+ e−λ(τ−t)
(
C(x′, p, p′) + Vp′(x′, τ)

))

≥
∫ τ

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(τ−t)

(
C(x′, p, p′)

+
∫ t̃

τ
e−λ(s−τ)`(yα̃1

(x′,τ,p′)(s), α̃1(s), p′, s)ds+ e−λ(t̃−τ)C(yα̃1
(x′,τ,p′)(t̃), p

′, p̄)− ε
)

=
∫ τ

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(τ−t)C(x′, p, p′)

+ e−λ(τ−t)
∫ t̃

τ
e−λ(s−τ)`(yα̃1

(x′,τ,p′)(s), α̃1(s), p′, s)ds

+ e−λ(τ−t)e−λ(t̃−τ)C(yα̃1
(x′,τ,p′)(t̃), p

′, p̄)− eλ(τ−t)ε

=
∫ τ

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds+ e−λ(τ−t)C(x′, p, p′)

+
∫ t̃

τ
e−λ(s−t)`(yα̃1

(x′,τ,p′)(s), α̃1(s), p′, s)ds

+ e−λ(t̃−t)C(yα̃1
(x′,τ,p′)(t̃), p

′, p̄)− eλ(τ−t)ε. (1.1.32)

By defining

α̂(s) =
{
α(s), s ≤ τ
α̃1(s− τ), s > τ

,
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we can write the right-hand side of (1.1.32) as
∫ τ

t
e−λ(s−t)`(yα̂(x,t,p)(s), α̂(s), p, s)ds+ e−λ(τ−t)C(yα̂(x,t,p)(τ), p, p′)

+
∫ t̃

τ
e−λ(s−t)`(yα̂(x,t,p′)(s), α̂(s), p′, s)ds+e−λ(t̃−t)C(yα̂(x,t,p′)(t̃), p′, p̄)−eλ(τ−t)ε

≥
∫ τ

t
e−λ(s−t)`(yα̂(x,t,p)(s), α̂(s), p, s)ds+ e−λ(τ−t)C(yα̂(x,t,p)(τ), p, p′)

+
∫ t̃

τ
e−λ(s−t)`(yα̂(x,t,p′)(s), α̂(s), p′, s)ds+ e−λ(t̃−t)C(yα̂(x,t,p′)(t̃), p′, p̄)− ε

≥ inf
(t≤t1≤t2,α,p1∈Ip)

(∫ t1

t
e−λ(s−t)`(yα(x,t,p)(s), α(s), p, s)ds

+ e−λ(t1−t)C(yα(x,t,p)(t1), p, p1) +
∫ t2

t1
e−λ(s−t)`(yα(x,t,p1)(s), α(s), p1, s)ds

+ e−λ(t2−t)C(yα(x,t,p1)(t2), p1, p̄)
)
− ε = V (x, t, p)− ε.

By the arbitrariness of ε we get the desired inequality.
The same arguments can be repeated for the others p such that ∑i p

i <
N − 2.

1.1.5 Optimality condition for Vp in PDE form
In view of the results in §1.1.4, we are able to obtain a differential character-
ization of the value function Vp as viscosity solution of an Hamilton-Jacobi
equation. For x, ξ ∈ Rd, t ∈ [0, T ] and p ∈ I, we define then the Hamiltonian
function by

Hp(x, t, ξ) = sup
a∈A
{−f(x, a, p) · ξ − `(x, a, p, t)}.

Theorem 1.1.3. Under the hypotheses of Proposition 1.1.4, for any p ∈
I the value function Vp is the unique bounded and uniformly continuous
viscosity solution u of (ψp as in (1.1.29))




max{u(x, t)− ψp(x, t),−ut(x, t) + λu(x, t) +Hp(x, t,Dxu(x, t))} = 0,
(x, t) ∈ Rd × [0, T [

u(x, T ) = ψp(x, T ), x ∈ Rd
.

(1.1.33)
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Proof. See Theorem 1.1.1 and 1.1.2 in §1.1.3.

Theorem 1.1.4. The family of functions V := {Vp : p ∈ I} is the unique
family of bounded and uniformly continuous functions U := {up : p ∈ I}
that solves the problem




for any p ∈ I, up is the unique viscosity solution of (1.1.33) with
ψp replaced by ψUp (x, t) := inf

p′∈Ip
(C(x, p, p′) + up′(x, t)),

up̄ = 0

.

(1.1.34)

Proof. Note that ψVp = ψp as in (1.1.29). For p ∈ I such that∑i p
i = N−1,

we have that the problem (1.1.34) is the same as (1.1.33) because ψp = ψUp .
Therefore, by Theorem 1.1.2 in §1.1.3, Vp = up. Hence, if p ∈ I is such that∑
i p
i = N − 2, we also have ψp = ψUp and again up = Vp. We then conclude

backwardly.



Chapter 2

Towards a mean-field type
optimal visiting problem

In a possible study of a mean-field game for a population of agents of density
µ, each one of them playing a p-labeled optimal stopping problem like the
one in Ch. 1, §1.1, we would be led to consider the coupling of the system
(1.1.33) of Hamilton-Jacobi equations (coupled by the stopping costs) with
a system of continuity equations (one per each level p and coupled by a
transfer through some sinks and sources). In particular, the sink at level
p is the region where the agents stop running at level p and pass to a new
subsequent level p′ ∈ Ip, and similarly for the sources. Such a coupling
should provide the optimal vector field bp(x, t), giving the optimal flow, and
the optimal switching time-dependent sets Stp for the evolution of the masses
of the agent µp, labeled by p. The vector field bp and the switching sets Stp
will depend on the value function Vp(x, t), in particular bp is typically −DxVp
(see also Remark 2.1.1 and Figure 2.1 for an illustrative scheme). A sketch
of the motion rules of µp is represented in Figure 2.2.

2.1 Optimal visiting for a crowd of agents: the
continuity equation

Here, from an analytical point of view, we focus only on a single continuity
equation for a given suitably regular field (possibly depending on the mea-
sure), with possible sinks and sources, and we left further analysis to future
studies. In particular, in §2.1.1, we investigate at first the model with just
a sink, and then, in §2.1.4, the one with a source too. In [6], some numer-
ical tests are also shown for the cases addressed here and for more general
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−DxVp,Stp µp

Hamilton-Jacobi inequality
computes Vp

backward in time

Continuity Equation
moves the density µp

forward in time

Figure 2.1: The coupling between the Hamilton-Jacobi and the continuity
equation.

situations too.

2.1.1 The continuity equation with a sink
We want to model the evolution on Rd of a mass µ subject to a given flow
with a presence of a given region of Rd acting as sink: the portion of mass
that possibly enters the sink instantaneously disappears. The region repre-
senting the sink can be in general moving in time but here, for simplicity,
we consider it as constant. Under suitable hypotheses, the generalization
to the moving case works with same ideas and calculations as explained in
Remark 2.1.8.

For the notation and the construction of the following setting, we mostly
rely on [18]. We consider a flow Φ : Rd×R×R −→ Rd given by the solutions
of the ordinary differential system for t ∈ R and x ∈ Rd,

{
y′(s) = b(y(s), s), s > t

y(t) = x
, (2.1.1)

that is Φ(x, t, s) = y(s) solving (2.1.1). We will be mostly concerned with
Φ(·, 0, ·). In (2.1.1), the field b : Rd × R −→ Rd is assumed to be bounded,
continuous and Lipschitz continuous w.r.t. x ∈ Rd uniformly w.r.t. t ∈ R.
Then, the flow Φ(·, 0, ·) is Lipschitz continuous.

The sink is represented by a subset S ⊂ Rd, which is assumed to be
closed with compact and C1 boundary. Then, for a point x ∈ Rd, we define
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p̄

p′′ ∈ Ip′

p′ ∈ I

Stp′′

Stp′
Stp′ −DxVp′ (x, t)

−DxVp′′ (x, t)

−DxVp̄(x, t)

Figure 2.2: The evolution of the densities µp: when outside the switching
sets, for a label p, the density moves accordingly to the direction −DxVp;
when inside a switching set, the new label is also detected by any optimiza-
tion criterium which may also depend on space and time.

the possible first arrival time (to the sink) as

tx := inf{t ≥ 0 : Φ(x, 0, t) ∈ S} (inf ∅ = +∞), (2.1.2)

and the set of possible arrival points to the sink, for a given t, as

St := {z ∈ ∂S : ∃x ∈ Rd such that tx = t and Φ(x, 0, t) = z}.

We will see in §2.1.3 that it is possible to characterize the possible first arrival
time tx as the unique (viscosity) solution of an Hamilton-Jacobi equation
with suitable boundary conditions.

We work in the set G of positive Radon measures µ on Rd with finite first
order moment, bounded by a constant G (i.e.,

∫
Rd dµ ≤ G for every µ ∈ G).

Such a space can be endowed with the generalized Wasserstein distance (see
[35, 36]), which, for simplicity, we write in the following equivalent form:

W(µ, µ′) = sup
{∫

Rd
ϕd(µ− µ′) : ϕ ∈ C0

c (Rd), ‖ϕ‖∞ ≤ 1, Lip(ϕ) ≤ 1
}
.

(2.1.3)
Let

m̃0(x) :=
{
m0(x), x ∈ Rd \ S
0, otherwise

, m̃0 ∈ G, (2.1.4)
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where m0 ∈ G is given, be the initial distribution on Rd. We suppose that it
is absolutely continuous with a density, still denoted m̃0, which is bounded
and has a compact support.

Then, the continuity equation with a sink (to be interpreted in a suitable
weak formulation), with a finite horizon T > 0, is




µt(x, t) + div(µ(x, t)b(x, t)) + 1{(St,t):t∈[0,T ]}µ(x, t) = 0,
(x, t) ∈ Rd × [0, T ]

µ(x, 0) = m̃0(x), x ∈ Rd
.

(2.1.5)

Remark 2.1.1. In the possible mean-field game problem, using the notation
of previous sections in Ch. 1, at every level p the sink would be given by the
evolutive stopping set Sp(t) = {x ∈ Rd : Vp(x, t) = ψp(x, t)} and the field b
by the gradient of the value function Vp. Hence, the regularity assumptions
above should be probably adjusted. In particular, the presence of more than
one target leads to possible multiplicity of the optimal control, which makes
the population split into several fractions, each one of them following one of
the optimal behaviors. A similar situation is studied in [2], [12] and in Ch.
3 (see also [8]). Anyway, we may expect that the value function Vp will be
suitably regular along the optimal trajectories.

In view of the mean-field case, in §2.1.2 we will study a possible depen-
dence of the field b on the measure. In [6], some numerical experiments are
performed including also this possibility.

In the sequel, we denote by Ψ the inverse of the flow Φ starting from ∂S,
i.e., all the states backwardly reached by the trajectories starting from the
points of ∂S in the time interval [0, T ]. That is

(z, τ) 7−→ Ψ(z, τ, τ), 0 ≤ τ ≤ T, z ∈ ∂S

with Ψ(z, τ, τ) = ζ(τ) satisfying
{
ζ ′(s) = −b(ζ(s), τ − s) = βτ (ζ(s), s), 0 < s < τ

ζ(0) = z
. (2.1.6)

By hypotheses, Ψ is Lipschitz continuous as Φ and it is such that

Φ(Ψ(z, τ, τ), 0, τ) = z,

Ψ(Φ(x, 0, τ), τ, τ) = x.
(2.1.7)
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Now, fixed s ∈ [0, T ], we define the sink-reaching-points set, at time s, as

B(s) := {x ∈ Rd : tx ≤ s}, (2.1.8)

that is the set of all initial points x ∈ Rd from which the agents enter the
sink before s. Observe that

B(s) =
⋃

τ∈[0,s]
{x ∈ Rd : tx = τ}︸ ︷︷ ︸

=:Bτ
=

⋃

τ∈[0,s]
{x = Ψ(z, τ, τ) : z ∈ Sτ}

and that
s1 ≤ s2 ⇒ B(s1) ⊆ B(s2). (2.1.9)

Definition 2.1.1. We say that µ is a weak solution of (2.1.5) if µ ∈
L1([0, T ],G) is such that, for any test function ϕ ∈ C∞c (Rd × [0, T [), we
have
∫

Rd
ϕ(x, 0)dm̃0(x)

+
∫ T

0

∫

Rd\Φ(B(t),0,t)
(ϕt(x, t) + 〈Dxϕ(x, t), b(x, t)〉)dµ(t)(x)dt

−
∫ T

0

∫

Rd
1{(St,t):t∈[0,T ]}ϕ(x, t)dµt(t)(x)dt = 0,

where µt entering the last integral is µt(t) = g(t)µt(0). The measure µt(0)
is the disintegration of µ(0) on the fibers Bτ that compose B(t), and g(·) is
the density of the measure ν on the indices τ of the fibers Bτ such that

E ⊂ B(t) ⇒ µ(0)(E) =
∫ t

0
µτ (0)(Bτ ∩E)dν(τ) =

∫ t

0
g(τ)µτ (0)(Bτ ∩E)dτ.

For s ∈ [0, T ], we define the following measure on Rd

µ̃(s) =
{

Φ(·, 0, s)]m̃0 on Rd \ Φ(B(s), 0, s)
0, otherwise

. (2.1.10)

Observe that the set Φ(B(s), 0, s) takes into account all the positions of the
agents who passed through the sink S at least once in the time interval [0, T ]
and then disappeared. For simplicity, we set µ(s) := Φ(·, 0, s)]m̃0.

By the hypotheses on b, m̃0 and by (2.1.10), we have that µ̃(s) is a
positive Radon measure on Rd with finite first order moment. Moreover, it
certainly satisfies the constraint

∫
Rd dµ̃ ≤ G because, with respect to µ(s),

it may only lose mass through the sink. Hence µ̃(s) ∈ G. Furthermore, it is
absolutely continuous with a density which is bounded and has a compact
support.
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Lemma 2.1.1. For s ∈ [0, T ], consider the function

π : B(s) −→ [0, s], π(x) := tx (2.1.11)

and suppose that it is Lipschitz continuous (see Remark 2.1.2). Then, the
map s 7−→ µ̃(s) is Lipschitz continuous in G (with respect to the metrics
(2.1.3)).

Proof. Let s, s′ ∈ [0, T ], s ≥ s′. Then, recalling (2.1.9), we have

W(µ̃(s′), µ̃(s)) = sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
ϕ(x)dµ̃(s′)(x)−

∫

Rd
ϕ(x)dµ̃(s)(x)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd\Φ(B(s′),0,s′)
ϕ(x)dµ(s′)(x)−

∫

Rd\Φ(B(s),0,s)
ϕ(x)dµ(s)(x)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
ϕ(x)d(µ(s′)−µ(s))(x) +

∫

Φ(B(s),0,s)\Φ(B(s′),0,s)
ϕ(x)dµ(s)(x)

+
∫

Φ(B(s′),0,s)
ϕ(x)dµ(s)(x)−

∫

Φ(B(s′),0,s′)
ϕ(x)dµ(s′)(x)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
(ϕ(Φ(x, 0, s′))− ϕ(Φ(x, 0, s)))dm̃0(x)

+
∫

B(s)\B(s′)
ϕ(Φ(x, 0, s))dm̃0(x)

+
∫

B(s′)
(ϕ(Φ(x, 0, s))− ϕ(Φ(x, 0, s′)))dm̃0(x)

}

≤ sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
‖Φ(x, 0, s′)− Φ(x, 0, s)‖dm̃0(x)

+
∫

B(s)\B(s′)
ϕ(Φ(x, 0, s))dm̃0(x)

+
∫

B(s′)
‖Φ(x, 0, s)− Φ(x, 0, s′)‖dm̃0(x)

}

≤ 2GM |s′ − s|+ ‖m̃0‖∞Ld(B(s) \ B(s′)),
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where M is the time-Lipschitz constant for Φ (i.e., the bound for b). Hence
we conclude if we estimate Ld(B(s) \ B(s′)). In particular, if we prove that
the map s 7−→ Ld(B(s)) is Lipschitz continuous, we are done. Observe that
the function

f : σ 7−→ π(Φ(y, 0, σ)) = π(y)− σ
is such that

1 = |f ′(0)| = |∇π(y) · b(y, 0)| ≤ ‖∇π‖‖b‖∞ ≤M‖∇π‖ a.e.

and then ‖∇π‖ ≥ 1
M > 0 almost everywhere. Therefore

Ld(B(s) \ B(s′))
M

≤
∫

B(s)\B(s′)
‖∇π‖dx =

∫ s

s′
Hd−1(π−1(τ))dτ

=
∫ s

s′
Hd−1(Ψ(Sτ , τ, τ))dτ ≤ K|s− s′|, (2.1.12)

where we used the Coarea Formula (see Theorem B.2.2) and the fact that
the (d− 1)-dimensional Hausdorff measure Hd−1(Ψ(Sτ , τ, τ)) is bounded by
a constant K > 0 since, by hypotheses, Ψ is Lipschitz continuous and Sτ
is compact. Then, the map s 7−→ Ld(B(s)) is Lipschitz continuous and the
thesis follows.

Remark 2.1.2. In general, the map π is not Lipschitz continuous in B(s).
But, in view of the possible mean-field game model, the field b will be the
optimal feedback for an optimal control problem with controlled dynamics
from a system y′ = α, and hence with total controllability. Then we expect
that such a Lipschitz continuity may hold and, at the moment, it is not too
restrictive to assume it. Anyway, future investigations will be made on this
direction.

Theorem 2.1.1. The map s 7−→ µ̃(s) is a weak solution of (2.1.5).

Proof. Let ϕ ∈ C∞c (Rd × [0, T [). By Lemma 2.1.1, the map

s 7−→
∫

Rd
ϕ(x, s)dµ̃(s)(x)

is absolutely continuous and then we have

d

ds

∫

Rd
ϕ(x, s)dµ̃(s)(x) = d

ds

∫

Rd\Φ(B(s),0,s)
ϕ(x, s)dµ(s)(x)

= d

ds

∫

Rd
ϕ(Φ(x, 0, s), s)dm̃0(x)− d

ds

∫

B(s)
ϕ(Φ(x, 0, s), s)dm̃0(x)
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=
∫

Rd
(ϕs(Φ(x, 0, s), s) + 〈Dxϕ(Φ(x, 0, s), s), b(Φ(x, 0, s), s)〉)dm̃0(x)

− d

ds

∫

B(s)
ϕ(Φ(x, 0, s), s)dm̃0(x)

=
∫

Rd
(ϕs(y, s) + 〈Dxϕ(y, s), b(y, s)〉)dµ(s)(y)

− d

ds

∫

B(s)
ϕ(Φ(x, 0, s), s)dm̃0(x).

We have to compute

d

ds

∫

B(s)
ϕ(Φ(x, 0, s), s)dm̃0(x).

By the Disintegration Theorem (see Remark 2.1.3), we get

d

ds

∫

B(s)
ϕ(Φ(x, 0, s), s)dm̃0(x)

= d

ds

∫ s

0

∫

{x∈Rd:tx=τ}
ϕ(Φ(x, 0, s), s)dm̃τ

0(x)dν(τ)

= d

ds

∫ s

0

∫

{x∈Rd:tx=τ}
ϕ(Φ(x, 0, s), s)g(τ)dm̃τ

0(x)dτ

=
∫

{x∈Rd:tx=s}
ϕ(Φ(x, 0, s), s)g(s)dm̃s

0(x)

+
∫

B(s)
(ϕs(Φ(x, 0, s), s) + 〈Dxϕ(Φ(x, 0, s), s), b(Φ(x, 0, s), s)〉)dm̃0(x).

Now, recalling that {x ∈ Rd : tx = s} = Ψ(Ss, s, s) by definition, we have
∫

{x∈Rd:tx=s}
ϕ(Φ(x, 0, s), s)g(s)dm̃s

0(x)

=
∫

Ψ(Ss,s,s)
ϕ(Φ(x, 0, s), s)g(s)dm̃s

0(x) =
∫

Ss
ϕ(y, s)dµs(s)(y),

where µs(s) := g(s)(Φ(·, 0, s)]m̃s
0). Finally, we obtain

d

ds

∫

Rd
ϕ(y, s)dµ̃(s)(y)

=
∫

Rd\Φ(B(s),0,s)
(ϕs(y, s) + 〈Dxϕ(y, s), b(y, s)〉)dµ(s)(y)

−
∫

Ss
ϕ(y, s)dµs(s)(y).
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Since µ̃(0) = m̃0, integrating this between 0 and T we get
∫

Rd
ϕ(y, 0)dm̃0(y)

+
∫ T

0

∫

Rd\Φ(B(s),0,s)
(ϕs(y, s) + 〈Dxϕ(y, s), b(y, s)〉)dµ(s)(y)ds

−
∫ T

0

∫

Ss
ϕ(y, s)dµs(s)(y)ds = 0,

that is
∫

Rd
ϕ(y, 0)dm̃0(y)

+
∫ T

0

∫

Rd\Φ(B(s),0,s)
(ϕs(y, s) + 〈Dxϕ(y, s), b(y, s)〉)dµ(s)(y)ds

−
∫ T

0

∫

Rd
1{(Ss,s):s∈[0,T ]}ϕ(y, s)dµs(s)(y)ds = 0.

Remark 2.1.3. The Disintegration Theorem (see also Theorem B.2.3) in
the previous proof is applied as follows: we set Y = B(s), X = [0, s] and we
consider the map (2.1.11)

π : Y −→ X, π(x) = tx

and ν = π]m̃0 ∈ G(X). In this way π−1(τ) = {x ∈ Rd : tx = τ} for every
τ ∈ [0, s]. Then, there exists a ν-almost everywhere uniquely determined
family {m̃τ

0}τ∈[0,s] ⊂ G(Y ) such that for every f ∈ C0
c (Y ),

∫

Y
f(y)dm̃0(y) =

∫ s

0

∫

{x∈Rd:tx=τ}
f(y)dm̃τ

0(y)dν(τ).

Moreover, in view of (2.1.12), that is the Lipschitz continuity of the map
s 7−→ Ld(B(s)), the measure ν is absolutely continuous on X with a L∞

density denoted by g.

Remark 2.1.4. The absolute continuity of the measure ν on [0, s] can be
proved also without assuming the Lipschitz continuity of π. In this case,
it turns out to have just a L1 density. For the proof, we have to show at
first the continuity of the map s 7−→ Ld(B(s)). By (2.1.9), it follows that
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s 7−→ Ld(B(s)) is increasing. It is right continuous too. Indeed, recalling
that dH(·, ·) is the Hausdorff distance in Rd, we have

lim
s′→s+

dH(B(s′),B(s)) = 0.

In fact, since B(s) ⊆ B(s′), we have

dH(B(s′),B(s)) = sup
x∈B(s′)

d(x,B(s)).

Now, if x ∈ B(s′), then x ∈ Bτ for some 0 ≤ τ ≤ s′. If τ ≤ s, then x ∈ B(s)
and d(x,B(s)) = 0. Otherwise if s < τ ≤ s′, then x = Ψ(z, τ, τ) = ζ(τ) for
z ∈ ∂S and x̃ := Ψ(z, s, s) = ζ̃(s) ∈ B(s). Moreover, by the well-position of
the dynamical system (2.1.6) (that is if τ → t, then βτ −→ βt uniformly at
least on compact sets by the regularity of the field b), we have

‖x− x̃‖ = ‖Ψ(z, τ, τ)−Ψ(z, s, s)‖ ≤ O(|τ − s|) ≤ O(|s′ − s|).

Then
lim
s′→s+

dH(B(s′),B(s)) = 0.

By (2.1.9) and the upper-semicontinuity of Ld w.r.t. dH, we obtain

Ld(B(s)) ≤ lim inf
s′→s+

Ld(B(s′)) ≤ lim sup
s′→s+

Ld(B(s′)) ≤ Ld(B(s))

and hence the right continuity holds.
Let us prove the left continuity. Let s′ → s−. Observe that

B(s) \ B(s′)→ Bs = {x = Ψ(z, s, s) : z ∈ ∂S}

in the Hausdorff metrics as s′ → s−. Indeed if x ∈ B(s) \ B(s′), then
x ∈ Bτ = {x = Ψ(z, τ, τ) : z ∈ ∂S} for some s′ < τ ≤ s and, again by
(2.1.9),

dH(B(s) \ B(s′),Bs) = sup
x∈B(s)\B(s′)

d(x,Bs).

Setting again x̃ := Ψ(z, s, s) ∈ Bs, we have

‖x− x̃‖ = ‖Ψ(z, τ, τ)−Ψ(z, s, s)‖ ≤ O(|τ − s|) ≤ O(|s− s′|).

Then, by (2.1.9) and the upper-semicontinuity of the Lebesgue measure w.r.t.
the Hausdorff metrics,

Ld(Bs) ≤ lim inf
s′→s−

Ld(B(s) \ B(s′)) ≤ lim sup
s′→s−

Ld(B(s) \ B(s′)) ≤ Ld(B(s)).
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It follows that lims′→s− Ld(B(s) \ B(s′)) = Ld(Bs).
Now, Bs is the image of ∂S by z 7−→ Ψ(z, s, s). Such a function is

Lipschitz continuous and hence it preserves zero Lebesgue measure sets, that
is if Ld(∂S) = 0, then Ld(Bs) = 0. Therefore

lim
s′→s−

Ld(B(s) \ B(s′)) = 0.

Then
lim
s′→s−

Ld(B(s′)) = lim
s′→s−

(
Ld(B(s))− Ld(B(s) \ B(s′))

)

= Ld(B(s))− lim
s′→s−

Ld(B(s) \ B(s′))

= Ld(B(s))

.

Finally
lim
s′→s
Ld(B(s′)) = Ld(B(s)),

that is the function s 7−→ Ld(B(s)) is continuous.
Now, we prove the absolute continuity of ν on the intervals of [0, s]. So

let [s1, s2] ⊂ [0, s]. By the definition of tx (2.1.2), we have

π−1([s1, s2]) ⊆ B(s2) \ B(s1).

Hence

ν([s1, s2]) = m0(π−1([s1, s2])) ≤ ‖m0‖L∞Ld(π−1([s1, s2]))
≤ ‖m0‖L∞Ld(B(s2) \ B(s1)) ≤ ‖m0‖L∞ω(|s2 − s1|), (2.1.13)

where ω is the modulus of continuity of the map s 7−→ Ld(B(s)) (which exists
globally since such a function is uniformly continuous on [s1, s2]). It follows
that ν is absolutely continuous on the intervals of [0, s].

Now, let I be a Borel subset of [0, s] such that L(I) = 0. Then, for every
ε > 0 there exists an open set O such that O ⊃ I and L(O) < ε. But every
open set in the real line can be expressed as a disjoint countable union of
open intervals and then, thanks to (2.1.13), we have that ν(O) < ε. By the
arbitrariness of ε, we conclude that ν is absolutely continuous on [0, s].

Notice that, in general, these calculations do not allow to bypass the
hypothesis of Lipschitz continuity of π. Indeed, the continuity of the map
s 7−→ Ld(B(s)) is not sufficient to prove Lemma 2.1.1, which anyway needs
a Lipschitz property of π. This would guarantee a Lipschitz continuity of
s 7−→ Ld(B(s)), which is essential to prove such a lemma (see also Remark
2.1.2). Nevertheless, the same arguments allow us to weaken the hypotheses
in Theorem 2.1.3 (see also Remark 2.1.5).
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Theorem 2.1.2. The continuity equation (2.1.5) has a unique solution given
by s 7−→ µ̃(s).

Proof. Let ϕ ∈ C∞(Rd) with supp(ϕ) ⊂ Rd \ Φ(B(t), 0, t) for every t ≤ T .
Fix t ≤ T and let us consider the map

w : Rd × [0, t] −→ R, w(x, s) := ϕ(Φ(x, 0, t− s)). (2.1.14)

Then, w is Lipschitz continuous in both variables (x, s) ∈ Rd × [0, t] with
supp(w) ⊂ (Rd \ Φ(B(s), 0, s))× [0, t]. Moreover, by (2.1.7) we have

ϕ(x) = w(Ψ(x, t− s, t), s) = ϕ(Φ(Ψ(x, t− s, t), 0, t− s))

and, recalling that Ψ(x, t, t) is the solution of (2.1.6) with τ = t, the function
w satisfies

0 = d

ds
ϕ(x) = ws(Ψ(x, t− s, t), s)

+ 〈Dxw(Ψ(x, t− s, t), s), b(Ψ(x, t− s, t), s)〉 a.e.

and hence, in general,

ws(y, s) + 〈Dxw(y, s), b(y, s)〉 = 0 a.e. in Rd×]0, t[.

Using w as a test function for a generic µ satisfying Definition 2.1.1, for
almost all s ≤ t we have

d

ds

∫

Rd
w(y, s)dµ(s)(y) =

∫

Rd
ws(y, s)dµ(s)(y) +

∫

Rd
w(y, s)dµs(s)(y)

=
∫

Rd
(−〈Dxw(y, s), b(y, s)〉+ 〈Dxw(y, s), b(y, s)〉)dµ(s)(y) = 0

since supp(w) ⊂ (Rd \ Φ(B(s), 0, s))× [0, t], which implies
∫

Ss
w(y, s)dµs(s)(y)

=
∫

Φ(B(s),0,s)
(ws(y, s) + 〈Dxw(y, s), b(y, s)〉)dµ(s)(y) = 0, s ≤ t.

Therefore, integrating between 0 and t, we get
∫

Rd
w(y, t)dµ(t)(y) =

∫

Rd
w(y, 0)dµ(0)(y)
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and then ∫

Rd
ϕ(y)dµ(t)(y) =

∫

Rd
ϕ(Φ(y, 0, t))dm̃0(y),

which shows that µ(t) = Φ(·, 0, t)]m̃0 on Rd \ Φ(B(t), 0, t).
Now we have to prove that µ(t) = 0 on Φ(B(t), 0, t), that is

∫

Rd
ϕ(x)dµ(t)(x) = 0

for any ϕ ∈ C∞(Rd) with supp(ϕ) ⊂ Φ(B(t), 0, t) for every t ≤ T . Again fix
t ≤ T and let us consider the map (2.1.14). Then, proceeding as before, we
get

ws(y, s) + 〈Dxw(y, s), b(y, s)〉 = 0 a.e. in Rd×]0, t[.
Using w as a test function for a generic µ satisfying Definition 2.1.1, for
almost all s ≤ t we have

d

ds

∫

Rd
w(y, s)dµ(s)(y) =

∫

Rd
ws(y, s)dµ(s)(y) +

∫

Rd
w(y, s)dµs(s)(y)

=
∫

Rd
(−〈Dxw(y, s), b(y, s)〉+ 〈Dxw(y, s), b(y, s)〉)dµ(s)(y)

−
∫

Φ(B(s),0,s)
(ws(y, s) + 〈Dxw(y, s), b(y, s)〉)dµ(s)(y)−

∫

Ss
w(y, s)dµs(s)(y)

= −
∫

Φ(B(s),0,s)
(ws(y, s) + 〈Dxw(y, s), b(y, s)〉)dµ(s)(y)

−
∫

Ss
w(y, s)dµs(s)(y).

Now, observe that
∫

Ss
w(y, s)dµs(s)(y) +

∫

Φ(B(s),0,s)
(ws(y, s) + 〈Dxw(y, s), b(y, s)〉)dµ(s)(y)

=
∫

{x∈Rd:tx=s}
w(Φ(y, 0, s), s)g(s)dµs(0)(y)

+
∫

B(s)
(ws(Φ(y, 0, s), s) + 〈Dxw(Φ(y, 0, s), s), b(Φ(y, 0, s), s)〉)dµ(0)(y)

= d

ds

∫

B(s)
w(Φ(y, 0, s), s)dµ(0)(y).

Then, by (2.1.14) and the semigroup property of the flow Φ, since µ(0) = m̃0
we obtain

d

ds

∫

Rd
w(y, s)µ(s)(y) = − d

ds

∫

B(s)
ϕ(Φ(y, 0, t))dm̃0(y)
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and hence, integrating between 0 and t,
∫

Rd
w(y, t)dµ(t)(y) =

∫

Rd
w(y, 0)dµ(0)(y)−

∫ t

0

d

ds

∫

B(s)
ϕ(Φ(y, 0, t))dm̃0(y).

Therefore
∫

Rd
ϕ(y)dµ(t)(y) =

∫

Rd
ϕ(Φ(y, 0, t))dm̃0(y)−

∫

B(t)
ϕ(Φ(y, 0, t))dm̃0(y)

+
∫

B(0)
ϕ(Φ(y, 0, t))dm̃0(y).

Since supp(ϕ) ⊂ Φ(B(t), 0, t) (and m̃0 = 0 in S = B(0)), the thesis follows.

2.1.2 On the measure dependence of the field b

We consider now the field b depending on the measure, that is

b : C0([0, T ],G)× Rd × [0, T ] −→ Rd,
(µ, x, t) 7−→ b(µ, x, t).

We suppose that it is bounded and continuous in the whole entry (µ, x, t) and
Lipschitz continuous w.r.t. x ∈ Rd uniformly w.r.t. (µ, t) ∈ C0([0, T ],G) ×
[0, T ], that is, there exists L > 0 such that

‖b(µ, x, t)−b(µ, y, t)‖ ≤ L‖x−y‖, ∀x, y ∈ Rd, (µ, t) ∈ C0([0, T ],G)×[0, T ].

In the evolution of the flow given by b, the sink is always represented by S.
In the sequel, for every µ ∈ C0([0, T ],G) fixed, we will also use the notation

b[µ] : Rd × [0, T ] −→ Rd

(x, t) 7−→ b[µ](x, t) := b(µ, x, t)

and we consider the corresponding flow with sink evolution given by the
field b[µ]. As, for every fixed µ, we denote by µ̃ the unique solution of the
corresponding problem (2.1.5), which is, for every t ∈ [0, T ],

µ̃(t) =
{

Φ[µ](·, 0, t)]m̃0 on Rd \ Φ[µ](B[µ](t), 0, t)
0, otherwise

, (2.1.15)

where Φ[µ] is the flow generated by the field b[µ] and B[µ](·) is the corre-
sponding sink-reaching-points set. We also denote by π[µ] the map as in
(2.1.11).
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Theorem 2.1.3. Let us suppose that π[µ] is Lipschitz continuous uniformly
in µ ∈ C0([0, T ],G) (see Remark 2.1.5). For every µ ∈ C0([0, T ],G), we have
µ̃ ∈ C0([0, T ],G). Moreover, the function

ψ : C0([0, T ],G) −→ C0([0, T ],G), ψ(µ) := µ̃

has a fixed point in C0([0, T ],G). This means that the problem of flow with
sink and with field depending on the measure has a solution.

Proof. At first observe that, under the previous hypotheses, by analogous
considerations as in the case with no measure dependence we have µ̃(t) ∈ G
for all t ∈ [0, T ].

Let us prove that µ̃ ∈ C0([0, T ],G). In particular we have to prove
that, whenever tn → t in [0, T ], then µ̃(tn)→ µ̃(t) weakly-star. This comes
from standard regularity results for push-forward measures (see (2.1.15))
and from the fact that B[µ](tn)→ B[µ](t) in the Hausdorff metrics and as d-
dimensional Lebesgue measure, and hence similarly for Φ[µ](B[µ](tn), 0, tn)
and Φ[µ](B[µ](t), 0, t).

Now, to prove the second statement of the theorem, we have to show that
the function ψ is continuous and compact. In this way, we can conclude by
the Schauder-Tychonoff fixed-point Theorem (see Theorem B.2.5).

At first we prove the continuity of ψ. Let µn → µ in C0([0, T ],G). We
have to prove that µ̃n → µ̃. Let us consider the two trajectories

xn(t) = x0 +
∫ t

0
b[µn](xn(s), s)ds, x(s) = x0 +

∫ t

0
b[µ](x(s), s)ds

and we prove that xn uniformly converges to x on compact sets. Indeed,
by the continuity and boundedness hypotheses, the field b is bounded and
uniformly continuous on ({µn}n∪{µ})×K× [0, T ], where {µn}n∪{µ} is the
compact set in C0([0, T ],G) given by the whole sequence with its limit, and
K ⊂ Rd is compact. Then, the sequence b[µn] is bounded and equicontinu-
ous on K× [0, T ] and moreover it pointwise converges to b[µ]. Hence, by the
Ascoli-Arzelà Theorem, the convergence is uniform on K× [0, T ]. From this
we deduce the desired uniform convergence of the trajectories. Therefore,
also the flows Φ[µn] uniformly converge to Φ[µ] on compact sets. From this
we have that B[µn](·) converges to B[µ](·) in the Hausdorff distance and uni-
formly in time, and we conclude the convergence of µ̃n to µ̃ in C0([0, T ],G),
that is, for every ϕ ∈ C0

c (Rd),

sup
t∈[0,T ]

∣∣∣∣
∫

Rd
ϕ(x)dµn(t)(x)−

∫

Rd
ϕ(x)dµ(t)(x)

∣∣∣∣→ 0 as n→ +∞.
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It remains to prove that ψ has compact image. We can restrict to measures
on a compact set K ⊂ Rd independent of µ, which contains all the possible
compact supports of the measures µ̃ (because of bounded dynamics and
finite horizon). Then, since s 7−→ µ̃(s) is Lipschitz continuous uniformly
in µ (similarly as in Lemma 2.1.1 and using the hypothesis on π[µ]) with
values in the compact set G of Radon measures on K, we get the desired
conclusion by Ascoli-Arzelà Theorem.

Remark 2.1.5. In the previous proof, we used the fact that s 7−→ µ̃(s)
is Lipschitz continuous uniformly in µ, and this comes from the Lipschitz
continuity of π[µ] uniformly w.r.t. µ. However, just assuming the Lipschitz
continuity of π[µ], and not necessarily uniformly in µ, after some calcula-
tions similar to the ones in Remark 2.1.4, we can prove the equicontinuity
w.r.t. µ of s 7−→ µ̃(s) and then still apply Ascoli-Arzelà Theorem.

2.1.3 A differential characterization of the first arrival time
In this section, we see a characterization of the possible first arrival time tx
(2.1.2) to the sink S as the unique viscosity solution of an Hamilton-Jacobi
equation with suitable boundary conditions. For the statements and the
proofs, we mostly refer to [9]. We define

T : Rd × [0, T ] −→ [0,+∞[,
T(x, t) := t(x,t) = inf{ζ ≥ t : Φ(x, t, ζ) ∈ S}.

Fixed s ∈ [t, T ], the sink-reaching-points set, that is the set from which the
agents are able to reach the target S, is

B(s) = {(x, t) ∈ Rd × [0, T ] : T(x, t) ≤ s}.

Let us set

B :=
⋃

s∈[t,T ]
B(s) = {(x, t) ∈ Rd × [0, T ] : T(x, t) ≤ T}.

We suppose that

(i) T is continuous in B;

(ii) T(x, t) = T for any (x, t) ∈ ∂B.
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Remark 2.1.6. Hypotheses (i) and (ii) are not too restrictive to be assumed.
Indeed, a priori, T may be discontinuous in B. But, as we noticed in Remark
2.1.2 too, in view of the possible mean-field game model, the field b comes
as the optimal feedback from a system like y′ = α, with total controllability.
Then it is not too strong to assume that T is continuous in B. Moreover,
again in view of the possible mean-field model, condition (ii) holds only on
the boundary which is not viable.

Remark 2.1.7. Observe that T(x, t) > 0 if and only if (x, t) /∈ (S, t).
Indeed, by the properties of the trajectory (see (1.1.9)),

d(x,S) ≤ ‖Φ(x, t, t(x,t))− x‖ ≤M(t(x,t) − t) = M(T(x, t)− t),

where M is the bound for b, and d(x,S) > 0 for (x, t) /∈ (S, t) because S is
closed.

We have the following Dynamic Programming Principle for T.

Proposition 2.1.1. For every (x, t) ∈ B,

T(x, t) = (τ − t)∧ t(x,t) +1{τ−t≤t(x,t)}T(Φ(x, t, τ), τ) for all τ ≥ t (2.1.16)

and

T(x, t) = (τ − t) + T(Φ(x, t, τ), τ) for all τ ∈ [t,T(x, t)]. (2.1.17)

Proof. Let B and C be respectively the right-hand sides of (2.1.16) and
(2.1.17). Note that (2.1.16) reduces to the definition of T(x, t) for τ − t >
T(x, t). For τ − t ≤ T(x, t), we have B = C. To show that T(x, t) = C,
observe that for all t ≤ τ ≤ T(x, t) = t(x,t) we have

T(x, t) = t(x,t) = (τ − t) + t(Φ(x,t,τ),τ) = (τ − t) + T(Φ(x, t, τ), τ).

Hence T(x, t) = C = B and the proof is complete.

Now, taking into account that T is time dependent (and then the asso-
ciated Hamilton-Jacobi equation is evolutive) and that there is no control,
we have the following

Theorem 2.1.4. The function T is the unique viscosity solution of




−Tt(x, t)− b(x, t) ·DxT(x, t)− 1 = 0, (x, t) ∈ B
T(x, t) = t, (x, t) ∈ (∂S, t)
T(x, t) = T, (x, t) ∈ ∂B

. (2.1.18)
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Proof. Let us prove at first that T is a viscosity solution of (2.1.18). Let
ϕ ∈ C1(B) and (x1, t1) be a local maximum point of T−ϕ, that is for some
r > 0,

T(x1, t1)− T(x, t) ≥ ϕ(x1, t1)− ϕ(x, t) for every (x, t) ∈ B((x1, t1), r).

For τ sufficiently close to t1, we have that (Φ(x1, t1, τ), τ) ∈ B((x1, t1), r) by
the properties of the trajectory ((1.1.9)) and then

ϕ(x1, t1)− ϕ(Φ(x1, t1, τ), τ) ≤ T(x1, t1)− T(Φ(x1, t1, τ), τ).

Now, by Proposition 2.1.1 (note that T(x, t) > 0 by Remark 2.1.7) we have

ϕ(x1, t1)− ϕ(Φ(x1, t1, τ), τ) ≤ T(x1, t1)− T(Φ(x1, t1, τ), τ)
= (τ − t1) + T(Φ(x1, t1, τ), τ)− T(Φ(x1, t1, τ), τ) = τ − t1,

that is
ϕ(x1, t1)− ϕ(Φ(x1, t1, τ), τ)

τ − t1
≤ 1.

Letting τ → t1, we get

−ϕt(x1, t1)− b(x1, t1) ·Dxϕ(x1, t1) ≤ 1.

We conclude that T is a subsolution of (2.1.18).
Next assume that (x2, t2) is a local minimum point of T−ϕ, ϕ ∈ C1(B).

As above, for τ sufficiently close to t2, by (1.1.9) we have

ϕ(x2, t2)− ϕ(Φ(x2, t2, τ), τ) ≥ T(x2, t2)− T(Φ(x2, t2, τ), τ).

By Proposition 2.1.1, we have

ϕ(x2, t2)− ϕ(Φ(x2, t2, τ), τ) ≥ τ − t2,

that is
ϕ(x2, t2)− ϕ(Φ(x2, t2, τ), τ)

τ − t2
≥ 1.

Letting τ → t2, we obtain

−ϕt(x2, t2)− b(x2, t2) ·Dxϕ(x2, t2) ≥ 1.

We conclude that T is a supersolution of (2.1.18).
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Now we prove that T is the unique viscosity solution of (2.1.18). Let u1
and u2 be, respectively, a subsolution and a supersolution of (2.1.18). We
define

vi(x, t) = 1− e−ui(x,t), i = 1, 2.
By Proposition B.1.2 (taking into account that the Hamilton-Jacobi equa-
tion in (2.1.18) is evolutive), v1 and v2 are, respectively, a sub- and a super-
solution of

−vt(x, t) + v(x, t)− b(x, t) ·Dxv(x, t)− 1 = 0, (x, t) ∈ B.
Moreover, vi is bounded if ui is bounded below and, by the boundary con-
ditions on ∂B in (2.1.18), vi can be uniquely extended to vi ∈ BUC(B)
satisfying the boundary conditions

vi(x, t) = 1− e−t, (x, t) ∈ (∂S, t), i = 1, 2
vi(x, t) = 1− e−T , (x, t) ∈ ∂B, i = 1, 2

.

Then, by comparison results (see Theorem B.1.1 and Remark B.1.2) we
obtain that v1 ≤ v2 and therefore u1 ≤ u2. The thesis follows by exchanging
the roles of u1 and u2.

Hence, to conclude, the possible first arrival time tx (2.1.2) to the sink
S is given by the solution T(x, t) of (2.1.18) at the time t = 0.
Remark 2.1.8. Until now, the region representing the sink, i.e., S, was
considered for simplicity as constant. Indeed, as mentioned at the beginning
of §2.1.1, it can be in general moving in time but the generalization works
with the same ideas and calculations. Anyway, for the evolutive case, suitable
hypotheses have to be assumed. The sink is represented by the image of a
multifunction

S : R −→ P(Rd), t 7−→ S(t) ⊂ Rd, (2.1.19)

which describes its evolution, and it has to be supposed continuous with re-
spect to the Hausdorff distance. Moreover, similarly to the non-moving case,
we have to assume S(t) closed with compact and C1 boundary ∂S(t) for ev-
ery t ∈ [0, T ]. The continuity w.r.t. the Hausdorff distance is essential in
the proof of Theorem 2.1.1, in particular when we integrate between 0 and
T the map s 7−→ ∫

Ss(s) ϕ(y, s)dµs(s)(y)ds, which has to be at least continu-
ous (in order to be integrable). This is guaranteed by Lemma 2.1.1 and by
the continuity of the map (2.1.19) w.r.t. the Hausdorff distance. The other
assumptions on S(t) and its boundary are as necessary as the ones in the
constant case.
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2.1.4 The continuity equation with a sink and a source
Here, we extend the case of the continuity equation with just a sink, studied
in §2.1.1, to a more general one. In particular, we want to model the evolu-
tion on Rd of a mass µ subject to a given flow with a presence of two regions
in Rd acting as a sink and a source: the portion of mass that possibly enters
the sink instantaneously disappears and the portion of mass that possibly
exits the source starts flowing immediately. We consider the regions rep-
resenting the source and the sink as constant. In particular, the source is
represented by a subset Γ ⊂ Rd, which has the same properties of the sink
S in §2.1.1.

In order to preserve the hierarchical feature in Ch. 1, §1.1.2 (see also the
comments at the beginning of Ch. 2) and to make the problem of flow with
a sink and a source more close to the one with a sink only, we study it at
a fixed level p1 ∈ I, assuming that the agents flowing out from the source
come from a previous level p0 (i.e., p1 ∈ Ip0), in which Γ represents a sink.
We need to introduce the following quantities:

b1 := field at level p1,

b0 := field at level p0,

m̃p1
0 := initial distribution at p1 (as in (2.1.4) with m0 = mp1

0 ),
m̃p0

0 := initial distribution at p0 (as in (2.1.4) with m0 = mp0
0 and S = Γ).

The hypotheses on S, b1, b0, m̃p1
0 and m̃p0

0 are the same as S, b and m̃0
in §2.1.1. Roughly speaking, at level p0 the agents flow with Φ0 (solving
(2.1.1) with b = b0), reach the sink Γ and pass to the subsequent level p1
(in which Γ is now a source) starting to flow with Φ1 (solving (2.1.1) with
b = b1) and possibly entering the sink S. Such agents, at level p1 are then
detected flowing with Φ1 “concatenated” to Φ0.

In order to formally formulate the problem, we have to basically redefine
the same quantities as in §2.1.1 in view of the presence of a source and of
a flow of agents coming from a previous level. In the following, we denote
the starting positions of agents on p0 and on p1 by y ∈ Rd and x ∈ Rd
respectively. In particular, we define

t̄ := tp0
y = inf{t ≥ 0 : Φ0(y, 0, t) ∈ Γ}, y ∈ Rd (inf ∅ = +∞), (2.1.20)

that is the possible first arrival time to the sink Γ at level p0, and

tp1
(x,t) := inf{τ ≥ t : Φ1(x, t, τ) ∈ S}, (x, t) ∈ Rd × [0, T ] (inf ∅ = +∞),
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that is the possible first arrival time to the sink S starting from time t at
level p1. Moreover, we introduce the flow Φ1 ⊗ Φ0 as the concatenation of
the flows Φ1 and Φ0, that is (Φ1 ⊗ Φ0)(·, 0, ·) = y(s) as the solution of

{
y′(s) = b0(y(s), s), 0 < s ≤ t̄
y(0) = y ∈ Rd

,

{
y′(s) = b1(y(s), s), s > t̄

y(t̄) = xt̄
,

where xt̄ ∈ Γ is such that xt̄ = ȳ = Φ0(y, 0, t̄), that is the starting flowing
point from Γ at level p1 corresponding to the arrival point to Γ at level p0.
By hypotheses on the fields b0 and b1, the flow (Φ1 ⊗Φ0)(·, 0, ·) is Lipschitz
continuous. Here, and in the sequel, we use the notation “⊗” even though
it is typically used for the tensor product or the measure product.

We then define

tp1⊗p0
y := inf{τ ≥ 0 : (Φ1 ⊗ Φ0)(y, 0, τ) ∈ S}, y ∈ Rd (inf ∅ = +∞),

that is the possible first arrival time to the sink S at level p1 for agents
coming from level p0 and starting from y at time 0. Note that, if tp0

y < +∞,
we have

tp1⊗p0
y = tp1

(ȳ,tp0y ) = tp1
(ȳ,t̄).

The condition tp0
y < +∞ means that the set in (2.1.20) is nonempty, and

hence there exists at least an instant t ≥ 0 at which the agents reach the
sink Γ at level p0 and pass to the new subsequent level p1 (see also Remark
2.1.9).

The set of possible arrival points to the sink S, for a given t ∈ [0, T ], for
agents starting from level p0, is given by

Stp1⊗p0 := {z ∈ ∂S : ∃y ∈ Rd such that tp1⊗p0
y = t and (Φ1⊗Φ0)(y, 0, t) = z}.

We call instead Γtp0 and Stp1 the sets of possible arrival points to the sinks
Γ and S, for a given t ∈ [0, T ], for agents starting from levels p0 and p1
respectively.

Similarly to §2.1.1, we denote by Ψ1 the inverse of the flow Φ1 starting
from ∂S at level p1, and by Ψ0 the inverse of the flow Φ0 starting from ∂Γ
at level p0. Moreover, we denote by Ψ0⊗Ψ1 the inverse of the flow Φ1⊗Φ0
starting from ∂S, i.e., all the states at level p0 backwardly reached by the
trajectories starting from the points of ∂S at level p1, and passing through
Γ, in the time interval [0, T ]. That is

(z, τ) 7−→ (Ψ0 ⊗Ψ1)(z, τ, τ), z ∈ ∂S, 0 ≤ τ ≤ T
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with (Ψ0 ⊗Ψ1)(z, τ, τ) = ζ(τ) solving
{
ζ ′(s) = −b1(ζ(s), τ − s), 0 < s < τ

ζ(0) = z
,

{
ζ ′(s) = −b0(ζ(s), s̄− s), 0 < s < τ − s̄
ζ(s̄) = z̄ ∈ Γ

,

(2.1.21)

where s̄ = inf{s ≥ 0 : ζ(s) ∈ Γ}. It is Lipschitz continuous as Φ1 ⊗ Φ0 and
such that

(Φ1 ⊗ Φ0)((Ψ0 ⊗Ψ1)(x, τ, τ), 0, τ) = x,

(Ψ0 ⊗Ψ1)((Φ1 ⊗ Φ0)(y, 0, τ), τ, τ) = y.
(2.1.22)

Now, fixed s ∈ [0, T ], we redefine the following sink-reaching-points sets for
levels p1 (starting from t 6= 0) and p0:

Bp0(s) := {y ∈ Rd : tp0
y ≤ s} = {y ∈ Rd : t̄ ≤ s},

Bp1
t (s) := {(x, t) ∈ Rd × [0, s] : tp1

(x,t) ≤ s},
Bp1⊗p0(s) := {y ∈ Rd : tp1⊗p0

y ≤ s}.

Observe that

Bp1⊗p0(s) =
⋃

τ∈[0,s]

{
y ∈ Rd : tp1⊗p0

y = τ
}

=
⋃

τ∈[0,s]

{
y = (Ψ0 ⊗Ψ1)(z, τ, τ) : z ∈ Sτp1⊗p0

}

and that property (2.1.9) clearly holds for Bp0 , Bp1
t and Bp1⊗p0 too. Fur-

thermore, note that the sink-reaching points set at level p1 which takes
into account all the initial positions x ∈ Rd at time t = 0 from which the
agents enter the sink S before s corresponds to Bp1

0 (s) (and in this case tx in
(2.1.2), corresponds to tp1

(x,0)). Clearly B
p1
0 (s) satisfies all the same properties

as (2.1.8).
As in §2.1.1, we work in the set G of positive Radon measures equipped

with the generalized Wasserstein distanceW (see also Remark 2.1.10 below).
The continuity equation with a sink and a source (to be interpreted in

a suitable formulation we will see in the next Definition 2.1.2), with a finite
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horizon T > 0, is




µt(x, t) + div(µ(x, t)b(x, t)) + 1{(Stp1 ,t):t∈[0,T ]}µ(x, t)
+1{(Stp1⊗p0 ,t):t∈[0,T ]

}µ(x, t) = 1{(Γtp0 ,t):t∈[0,T ]}µ(x, t), (x, t) ∈ Rd × [0, T ]

µ(x, 0) = m̃p1
0 (x) +mp0

0 (x)
∣∣
Bp0 (0), x ∈ Rd.

(2.1.23)
Definition 2.1.2. We say that µ is a weak solution of (2.1.23) if µ ∈
L1([0, T ],G) is such that, for any test function ϕ ∈ C∞c (Rd× [0, T [), we have
∫

Rd
ϕ(x, 0)dm̃p1

0 (x) +
∫

Bp0 (0)
ϕ(y, 0)dmp0

0 (y)

+
∫ T

0

∫

Rd\Φ1(Bp10 (t),0,t)
(ϕt(x, t) + 〈Dxϕ(x, t), b1(x, t)〉)dµ(t)(x)dt

+
∫ T

0

∫

Rd
1{(Γtp0 ,t):t∈[0,T ]}ϕ(y, t)dµp0,t(t)(y)

+
∫ T

0

∫

(Φ1⊗Φ0)(Bp0 (t),0,t)\(Φ1⊗Φ0)(Bp1⊗p0 (t),0,t)
(ϕs(x, t)

+ 〈Dxϕ(x, t), b1(x, t)〉)dµ(t)(x)

−
∫ T

0

∫

Rd
1{(Stp1 ,t):t∈[0,T ]}ϕ(y, t)dµp1,t(t)(y)

−
∫ T

0

∫

Rd
1{(Stp1⊗p0 ,t):t∈[0,T ]

}ϕ(y, t)dµp1⊗p0,t(t)(y),

where µp0,t(t) = gp0(t)µp0,t(0), µp1,t(t) = gp1(t)µp1,t(0) and µp1⊗p0,t(t) =
gp1⊗p0(t)µp1⊗p0,t(0). The measure µp0,t(0) is the disintegration of µ(0) on
the fibers Bp0,τ :=

{
y ∈ Rd : tp0

y = τ
}
that compose Bp0(t), and gp0(·) is the

density of the measure νp0 on the indices τ of the fibers Bp0,τ such that

E ⊂ Bp0(t) ⇒ µ(0)(E) =
∫ t

0
µp0,τ (0)(Bp0,τ ∩ E)dνp0(τ)

=
∫ t

0
gp0(τ)µp0,τ (0)(Bp0,τ ∩ E)dτ.

Similarly for µp1,t(0) and µp1⊗p0,t(0).
For s ∈ [0, T ], we define a new measure on Rd

˜̃µ(s) =
{

(Φ1 ⊗ Φ0)(·, 0, s)] ˜̃mp0
0 on Rd \ (Φ1 ⊗ Φ0)(Bp1⊗p0(s), 0, s)

0 otherwise
,

(2.1.24)
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where
˜̃mp0

0 (·) :=
{
mp0

0 (·) in Bp0(s)
0 otherwise

, ˜̃mp0
0 ∈ G.

By the hypotheses on m̃p0
0 , the distribution ˜̃mp0

0 is absolutely continuous
with a density which is bounded and has a compact support.

Note that the set (Φ1 ⊗ Φ0)(Bp1⊗p0(s), 0, s) takes into account all the
positions of the agents at level p1, coming from level p0, who passed through
the sink S at least once in the time interval [t̄, T ] and then disappeared.
The measure ˜̃µ(s) is indeed detected at level p1 only for times s ≥ t̄. By
hypotheses on b0, b1, by the properties of ˜̃mp0

0 and by (2.1.24), we have that
˜̃µ(s) ∈ G. In fact, as (2.1.10), it certainly satisfies the constraint

∫
Rd d ˜̃µ ≤ G

because, with respect to ˜̃µp1(s) := (Φ1 ⊗ Φ0)(·, 0, s)] ˜̃mp0
0 , it may only lose

mass through the sink S at level p1. Furthermore, it is absolutely continuous
with a density which is bounded and has a compact support.

Lemma 2.1.2. For s ∈ [0, T ], consider the maps

πp0 : Bp0(s) −→ [0, s], π(y) = tp0
y at level p0, (2.1.25)

πp1
t : Bp1

t (s) −→ [0, s], πp1
t (x) = tp1

(x,t) at level p1, (2.1.26)

and assume that they are Lipschitz continuous with Lipschitz constants Lp0

and Lp1 respectively (see Remark 2.1.9 too). Then, the map s 7−→ ˜̃µ(s) is
Lipschitz continuous in G (with respect to the metrics W (2.1.3)).

Proof. Let s, s′ ∈ [0, T ], s ≥ s′. We have

W(˜̃µ(s′), ˜̃µ(s)) = sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
ϕ(y)d ˜̃µ(s′)(y)−

∫

Rd
ϕ(y)d ˜̃µ(s)(y)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd\(Φ1⊗Φ0)(Bp1⊗p0 (s′),0,s′)
ϕ(y)d ˜̃µp1(s′)(y)

−
∫

Rd\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
ϕ(y)d ˜̃µp1(s)(y)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
ϕ(y)d(˜̃µp1(s′)− ˜̃µp1(s))(y)

+
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)\(Φ1⊗Φ0)(Bp1⊗p0 (s′),0,s)
ϕ(y)d ˜̃µp1(s)(y)
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+
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s′),0,s)
ϕ(y)d ˜̃µp1(s)(y)

−
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s′),0,s′)
ϕ(y)d ˜̃µp1(s′)(y)

}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Rd
(ϕ((Φ1 ⊗ Φ0)(y, 0, s′))− ϕ((Φ1 ⊗ Φ0)(y, 0, s)))d ˜̃mp0

0 (y)

+
∫

Bp1⊗p0 (s)\Bp1⊗p0 (s′)
ϕ((Φ1 ⊗ Φ0)(y, 0, s))d ˜̃mp0

0 (y)

+
∫

Bp1⊗p0 (s′)
(ϕ((Φ1 ⊗ Φ0)(y, 0, s))− ϕ((Φ1 ⊗ Φ0)(y, 0, s′)))d ˜̃mp0

0 (y)
}

= sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Bp0 (s)
(ϕ((Φ1 ⊗ Φ0)(y, 0, s′))− ϕ((Φ1 ⊗ Φ0)(y, 0, s)))dmp0

0 (y)

+
∫

Bp1⊗p0 (s)\Bp1⊗p0 (s′)
ϕ((Φ1 ⊗ Φ0)(y, 0, s))d ˜̃mp0

0 (y)

+
∫

Bp1⊗p0 (s′)
(ϕ((Φ1 ⊗ Φ0)(y, 0, s))− ϕ((Φ1 ⊗ Φ0)(y, 0, s′)))d ˜̃mp0

0 (y)
}

≤ sup
‖ϕ‖∞≤1
Lip(ϕ)≤1

{∫

Bp0 (s)
‖(Φ1 ⊗ Φ0)(y, 0, s′)− (Φ1 ⊗ Φ0)(y, 0, s)‖dmp0

0 (y)

+
∫

Bp1⊗p0 (s)\Bp1⊗p0 (s′)
ϕ((Φ1 ⊗ Φ0)(y, 0, s))d ˜̃mp0

0 (y)

+
∫

Bp1⊗p0 (s′)
‖(Φ1 ⊗ Φ0)(y, 0, s)− (Φ1 ⊗ Φ0)(y, 0, s′)‖d ˜̃mp0

0 (y)
}

≤ 2GMb1 |s′ − s|+ ‖ ˜̃mp0
0 ‖∞Ld(Bp1⊗p0(s) \ Bp1⊗p0(s′)),

whereMb1 is the time-Lipschitz constant for Φ1⊗Φ0 in [t̄, T ] (i.e., the bound
for b1). Note that the integrals

∫

Bp0 (s)
‖(Φ1 ⊗ Φ0)(y, 0, s′)− (Φ1 ⊗ Φ0)(y, 0, s)‖dmp0

0 (y)

and ∫

Bp1⊗p0 (s′)
‖(Φ1 ⊗ Φ0)(y, 0, s)− (Φ1 ⊗ Φ0)(y, 0, s′)‖d ˜̃mp0

0 (y)

are both bounded by GMb1 |s′ − s| since s, s′ ≥ t̄ by definition of (2.1.24)
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(recall that mp0
0 is restricted to Bp0(s)), and hence the time-Lipschitz con-

stant of Φ1 × Φ0 is given by the bound for b1. Then, to conclude, we need
the Lipschitz continuity of the map s 7−→ Ld(Bp1⊗p0(s)).

For this we have to prove at first the Lipschitz continuity of the map

πp1⊗p0 : Bp1⊗p0(s) −→ [0, s], πp1⊗p0(y) = tp1⊗p0
y . (2.1.27)

Let y1, y2 ∈ Rd such that πp0(y2) ≤ πp0(y1), and let ȳ1 = Φ0(y1, 0, πp0(y1)),
ȳ2 = Φ0(y2, 0, πp0(y2)) and ỹ1 = Φ0(y1, 0, πp0(y2)). Observe that by defini-
tion of πp0 (2.1.25), we clearly have πp0(y1), πp0(y2) < +∞. By the Lipschitz
continuity of πp0 and πp1

t , we have (Mb0 and Lb0 are the bound and the Lip-
schitz constant of b0 respectively)

|πp1⊗p0(y1)− πp1⊗p0(y2)| = |πp1
π0(y1)(ȳ1)− πp1

πp0 (y2)(ȳ2)|
≤ Lp1(‖ȳ1 − ȳ2‖+ |πp0(y1)− πp0(y2)|)

≤ Lp1 (‖ȳ1 − ỹ1‖+ ‖ỹ1 − ȳ2‖+ Lp0‖y1 − y2‖)
≤ Lp1

(
Mb0(πp0(y1)− πp0(y2)) + eLb0π

p0 (y2)‖y1 − y2‖+ Lp0‖y1 − y2‖
)

≤ Lp1
(
Mb0L

p0‖y1 − y2‖+ eLb0T ‖y1 − y2‖+ Lp0‖y1 − y2‖
)

≤ Lp1⊗p0‖y1 − y2‖ for some Lp1⊗p0 > 0. (2.1.28)

Now, note that the function

f : σ 7−→ πp1⊗p0((Φ1 ⊗ Φ0)(y, 0, σ)) = πp1⊗p0(y)− σ, σ ∈ [t̄, T ]

is such that

1 = |f ′(0)| = |∇πp1⊗p0(y) · b1(y, 0)| ≤ ‖∇πp1⊗p0‖‖b1‖∞ ≤Mb1‖∇π‖ a.e.
(2.1.29)

and then ‖∇πp1⊗p0‖ ≥ 1
Mb1

> 0 almost everywhere. Observe that inequality
(2.1.29) holds also for σ ≤ t̄, but we are not considering such values of σ
because of definition of (2.1.24), which is detected at level p1 only after t̄ (in
other words, the agents reach the sink Γ at time t̄ < +∞ at level p0, pass
to the new level p1 and start flowing with field b1). Therefore

Ld(Bp1⊗p0(s) \ Bp1⊗p0(s′))
M

≤
∫

Bp1⊗p0 (s)\Bp1⊗p0 (s′)
‖∇πp1⊗p0‖dx

=
∫ s

s′
Hd−1

((
πp1⊗p0

)−1 (τ)
)
dτ

=
∫ s

s′
Hd−1

(
(Ψ0 ⊗Ψ1)

(
Sτp1⊗p0 , τ, τ

))
dτ ≤ K̃|s− s′|, (2.1.30)
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where, similarly as in the proof of Lemma 2.1.1, we used the Coarea Formula
(see Theorem B.2.2) and the fact that the Hausdorff measure in the last in-
tegral is bounded by a constant K̃ > 0 since, by hypotheses, Ψ0⊗Ψ1 is Lips-
chitz continuous and Sτp1⊗p0 is compact. Hence, the map s 7−→ Ld(Bp1⊗p0(s))
is Lipschitz continuous and the thesis follows.

Remark 2.1.9. Due to the same reasons explained in Remark 2.1.2, at the
moment it is not restrictive to assume the Lipschitz continuity of the maps
πp0 and πp1

t on Bp0(s) and Bp1
t (s). Moreover, observe that, in the previous

proof, the Lipschitz continuity of πp1⊗p0, which we proved on Bp1⊗p0(s),
makes sense only if the map πp0 is finite, that is the agents reach the sink Γ
at level p0 and pass to the new level p1: the points y1 and y2 are indeed such
that πp0(y1), πp0(y2) < +∞ by definition of the map πp0 (2.1.25), and this
allows us to write πp1⊗p0(yi) = πp1

πp0 (yi)(ȳi), where ȳi = Φ0(yi, 0, πp0(yi)),
i = 1, 2.

The candidate for solving (2.1.23) is then the following measure on Rd

µ̄(s) = µ̃(s) + ˜̃µ(s), s ∈ [0, T ],

where

µ̃(s) =
{

Φ1(·, 0, s)]m̃p1
0 on Rd \ Φ1(Bp1

0 (s), 0, s)
0, otherwise

is defined exactly as in (2.1.10) with Φ = Φ1, B(s) = Bp1
0 (s) and m̃0 = m̃p1

0 .
We set µ̃p1(s) := Φ1(·, 0, s)]m̃p1

0 .

Remark 2.1.10. Note that, a priori, µ̄ may not belong to G. Indeed, it may
happen that

∫
Rd dµ̄ > G because, at the level p1, the flowing mass from the

source (coming from the previous level p0), detected by ˜̃µ(s), can be greater
than the mass entering the sink. To avoid this issue, it is sufficient to take
the constant G such that the total mass at p1 (i.e., the initial distribution
and the flowing mass from the source, which is a datum) is less or equal than
G. In the general case with more than one optimal stopping problem with a
sink and a source, that is with more than one level (and more than one sink
and one source), by solving the problem forwardly in time, the sources are
data and G corresponds to the initial distribution at all levels.

Moreover, observe that µ̄ is absolutely continuous with a density which
is bounded and has compact support and it is also Lipschitz continuous in
G (since µ̃(s) and ˜̃µ(s) are Lipschitz continuous as proved in Lemma 2.1.1
and Lemma 2.1.2).
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Theorem 2.1.5. The map s 7−→ µ̄(s) is a weak solution of (2.1.23).
Proof. Let ϕ ∈ C∞c (Rd× [0, T [). By Lemma (2.1.1) and Lemma (2.1.2), the
map

s 7−→
∫

Rd
ϕ(x, s)dµ̄(s)(x)

is absolutely continuous and then we have
d

ds

∫

Rd
ϕ(x, s)dµ̄(s)(x) = d

ds

∫

Rd
ϕ(x, s)dµ̃(s)(x) + d

ds

∫

Rd
ϕ(x, s)d ˜̃µ(s)(x)

= d

ds

∫

Rd\Φ1(Bp10 (s),0,s)
ϕ(x, s)dµ̃p1(s)(x)

+ d

ds

∫

Rd\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
ϕ(y, s)d ˜̃µp1(s)(y)

= d

ds

∫

Rd
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x)− d

ds

∫

Bp10 (s)
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x)

+ d

ds

∫

Rd
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y)

− d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y)

=
∫

Rd
(ϕs(Φ1(x, 0, s), s) + 〈Dxϕ(Φ1(x, 0, s), s), b1(Φ1(x, 0, s), s)〉)dm̃p1

0 (x)

− d

ds

∫

Bp10 (s)
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x)

+ d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)dmp0

0 (y)

− d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y)

=
∫

Rd
(ϕs(z, s) + 〈Dxϕ(z, s), b1(z, s)〉)dµ̃p1(s)(z)

− d

ds

∫

Bp10 (s)
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x)

+ d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)dmp0

0 (y)

− d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y).

We have to compute
d

ds

∫

Bp10 (s)
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x), (2.1.31)
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d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)dmp0

0 (y), (2.1.32)

d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y). (2.1.33)

The first integral (2.1.31) is computed exactly as in the proof of Theorem
2.1.1 by the Disintegration Theorem (see Remark 2.1.11). We have indeed

d

ds

∫

Bp10 (s)
ϕ(Φ1(x, 0, s), s)dm̃p1

0 (x)

= d

ds

∫ s

0

∫
{
x∈Rd:tp1(x,0)=τ

} ϕ(Φ1(x, 0, s), s)dm̃p1,τ
0 (x)dνp1(τ)

= d

ds

∫ s

0

∫
{
x∈Rd:tp1(x,0)=τ

} ϕ(Φ1(x, 0, s), s)gp1(τ)dm̃p1,τ
0 (x)dτ

=
∫
{
x∈Rd:tp1(x,0)=s

} ϕ(Φ1(x, 0, s), s)gp1(s)dm̃p1,s
0 (x)

+
∫

Bp10 (s)
(ϕs(Φ1(x, 0, s), s)+〈Dxϕ(Φ1(x, 0, s), s), b1(Φ1(x, 0, s), s)〉)dm̃p1

0 (x).

Recalling that
{
x ∈ Rd : tp1

(x,0) = s
}

= Ψ1(Ssp1 , s, s) by definition, we have

∫
{
x∈Rd:tp1(x,0)=s

} ϕ(Φ1(x, 0, s), s)gp1(s)dm̃p1,s
0 (x)

=
∫

Ψ1(Ssp1 ,s,s)
ϕ(Φ1(x, 0, s), s)gp1(s)dm̃p1,s

0 (x) =
∫

Ssp1
ϕ(z, s)dµp1,s(s)(z),

where µp1,s(s) := gp1(s)(Φ1(·, 0, s)]m̃p1,s
0 ).

The second integral (2.1.32) is computed again by the Disintegration
Theorem (see Remark 2.1.11). We have

d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)dmp0

0 (y)

= d

ds

∫ s

0

∫

{y∈Rd:tp0y =τ}
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)dmp0,τ

0 (y)dνp0(τ)

= d

ds

∫ s

0

∫

{y∈Rd:tp0y =τ}
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp0(τ)dmp0,τ

0 (y)dτ
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=
∫

{y∈Rd:tp0y =s}
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp0(s)dmp0,s

0 (y)

+
∫

Bp0 (s)
(ϕs((Φ1 ⊗ Φ0)(y, 0, s), s)

+ 〈Dxϕ((Φ1 ⊗ Φ0)(y, 0, s), s), b1((Φ1 ⊗ Φ0)(y, 0, s), s)〉)dmp0
0 (y).

Recalling that
{
y ∈ Rd : tp0

y = s
}

= Ψ0(Γsp0 , s, s) by definition, we have
∫

{y∈Rd:tp0y =s}
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp0(s)dmp0,s

0 (y)

=
∫

Ψ0(Γsp0 ,s,s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp0(s)dmp0,s

0 (y)

=
∫

Γsp0
ϕ(w, s)dµp0,s(s)(w),

where µp0,s(s) := gp0(s)((Φ1⊗Φ0)(·, 0, s)]mp0,s
0 ). Notice that in the last step

we used the fact that (Φ1⊗Φ0)(Ψ0(Γsp0 , s, s), s, s) = Γsp0 . This is true because
tp0
y = s, and then (Φ1 ⊗Φ0)−1(y, 0, s) = Ψ0(y, s, s) (the mass, starting from

Γ, backwardly flows with field b0).
For the third integral (2.1.33), by the Disintegration Theorem (see Re-

mark 2.1.11) we have

d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0

0 (y)

= d

ds

∫ s

0

∫
{
y∈Rd:tp1⊗p0y =τ

} ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)d ˜̃mp0,τ
0 (y)dνp1⊗p0(τ)

= d

ds

∫ s

0

∫
{
y∈Rd:tp1⊗p0y =τ

} ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp1⊗p0(τ)d ˜̃mp0,τ
0 (y)dτ

=
∫
{
y∈Rd:tp1⊗p0y =s

} ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp1⊗p0(s)d ˜̃mp0,s
0 (y)

+
∫

Bp1⊗p0 (s)
(ϕs((Φ1 ⊗ Φ0)(y, 0, s), s)

+ 〈Dxϕ((Φ1 ⊗ Φ0)(y, 0, s), s), b1((Φ1 ⊗ Φ0)(y, 0, s), s)〉)d ˜̃mp0
0 (y).

Recalling that
{
y ∈ Rd : tp1⊗p0

y = s
}

= (Ψ0⊗Ψ1)(Ssp1⊗p0 , s, s) by definition,
we have
∫
{
y∈Rd:tp1⊗p0y =s

} ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp1⊗p0(s)d ˜̃mp0,s
0 (y)
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=
∫

(Ψ0⊗Ψ1)(Ssp1⊗p0 ,s,s)
ϕ((Φ1 ⊗ Φ0)(y, 0, s), s)gp1⊗p0(s)d ˜̃mp0,s

0 (y)

=
∫

Ssp1⊗p0
ϕ(w, s)dµp1⊗p0,s(s)(w),

where µp1⊗p0,s(s) := gp1⊗p0(s)((Φ1 ⊗ Φ0)(·, 0, s)] ˜̃mp0,s
0 ).

Finally, we obtain

d

ds

∫

Rd
ϕ(x, s)dµ̄(s)(x)

=
∫

Rd\Φ1(Bp10 (s),0,s)
(ϕs(z, s) + 〈Dxϕ(z, s), b1(z, s)〉)dµ̃p1(s)(z)

−
∫

Ssp1
ϕ(z, s)dµp1,s(s)(z)

+
∫

(Φ1⊗Φ0)(Bp0 (s),0,s)\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ϕs(w, s)

+ 〈Dxϕ(w, s), b1(w, s)〉)d ˜̃µp1(s)(w)

+
∫

Γsp0
ϕ(w, s)dµp0,s(s)(w)

−
∫

Ssp1⊗p0
ϕ(w, s)dµp1⊗p0,s(s)(w)

=
∫

Rd\Φ1(Bp10 (s),0,s)
(ϕs(z, s) + 〈Dxϕ(z, s), b1(z, s)〉)dµ̃p1(s)(z)

−
∫

Ssp1
ϕ(z, s)dµp1,s(s)(z)

+
∫

(Φ1⊗Φ0)(Bp0 (s),0,s)\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ϕs(w, s)

+ 〈Dxϕ(w, s), b1(w, s)〉)d ˜̃µp1(s)(w)

+
∫

Γsp0
ϕ(w, s)dµp0,s(s)(w)−

∫

Ssp1⊗p0
ϕ(w, s)dµp1⊗p0,s(s)(w). (2.1.34)

Since µ̄(0) = µ̃(0) + ˜̃µ(0) = m̃p1
0 + ˜̃mp0

0 , integrating (2.1.34) between 0 and
T we get
∫

Rd
ϕ(x, 0)dm̃p1

0 (x) +
∫

Rd
ϕ(y, 0)d ˜̃mp0

0 (y)

+
∫ T

0

∫

Rd\Φ1(Bp10 (s),0,s)
(ϕs(z, s) + 〈Dxϕ(z, s), b1(z, s)〉)dµ̃p1(s)(z)
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+
∫ T

0

∫

Γsp0
ϕ(w, s)dµp0,s(s)(w)

+
∫ T

0

∫

(Φ1⊗Φ0)(Bp0 (s),0,s)\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ϕs(w, s)

+ 〈Dxϕ(w, s), b1(w, s)〉)d ˜̃µp1(s)(w)

−
∫ T

0

∫

Ssp1
ϕ(z, s)dµp1,s(s)(z)−

∫ T

0

∫

Ssp1⊗p0
ϕ(w, s)dµp1⊗p0,s(s)(w),

that is
∫

Rd
ϕ(x, 0)dm̃p1

0 (x) +
∫

Bp0 (0)
ϕ(y, 0)dmp0

0 (y)

+
∫ T

0

∫

Rd\Φ1(Bp10 (s),0,s)
(ϕs(z, s) + 〈Dxϕ(z, s), b1(z, s)〉)dµ̃p1(s)(z)

+
∫ T

0

∫

Rd
1{(Γsp0 ,s):s∈[0,T ]}ϕ(w, s)dµp0,s(s)(w)

+
∫ T

0

∫

(Φ1⊗Φ0)(Bp0 (s),0,s)\(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ϕs(w, s)

+ 〈Dxϕ(w, s), b1(w, s)〉)d ˜̃µp1(s)(w)

−
∫ T

0

∫

Rd
1{(Ssp1 ,s):s∈[0,T ]}ϕ(z, s)dµp1,s(s)(z)

−
∫ T

0

∫

Rd
1{(Ssp1⊗p0 ,s):s∈[0,T ]

}ϕ(w, s)dµp1⊗p0,s(s)(w).

Remark 2.1.11. The Disintegration Theorem (see also Theorem B.2.3) for
integrals (2.1.31), (2.1.32) and (2.1.33) in the previous proof is applied as
follows: for integral (2.1.31), we set Y = Bp1

0 (s), X = [0, s] and we consider
the map (2.1.26) with t = 0

πp1
0 : Y −→ X, πp1

0 (x) = tp1
(x,0)

and νp1 = πp1
0 ]m̃

p1
0 ∈ G(X). In this way (πp1

0 )−1(τ) =
{
x ∈ Rd : tp1

(x,0) = τ
}

for every τ ∈ [0, s]. Then, there exists a νp1-almost everywhere uniquely
determined family {m̃p1,τ

0 }τ∈[0,s] ⊂ G(Y ) such that for every f ∈ C0
c (Y ),

∫

Y
f(y)dm̃0(y) =

∫ s

0

∫
{
x∈Rd:tp1(x,0)=τ

} f(y)dm̃p1,τ
0 (y)dνp1(τ).
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Moreover, in view of the Lipschitz continuity of the map s 7−→ Ld(Bp1
0 (s)),

which is proved by the Lipschitz continuity of πp1
0 (see Lemma 2.1.2 and

(2.1.12) for the calculations, recalling that we are considering just the level
p1 with sink S), the measure νp1 is absolutely continuous on X with a L∞
density denoted by gp1.

For integral (2.1.32), we set Y = Bp0(s), X = [0, s] and we consider the
map (2.1.25)

πp0 : Y −→ X, πp0(y) = tp0
y

and νp0 = πp0]mp0
0 ∈ G(X). In this way (πp0)−1(τ) =

{
y ∈ Rd : tp0

y = τ
}

for every τ ∈ [0, s]. Then, there exists a νp0-almost everywhere uniquely
determined family {mp0,τ

0 }τ∈[0,s] ⊂ G(Y ) such that for every f ∈ C0
c (Y ),

∫

Y
f(y)dmp0

0 (y) =
∫ s

0

∫

{y∈Rd:tp0y =τ}
f(y)dmp0,τ

0 (y)dνp0(τ).

Moreover, in view of the Lipschitz continuity of the map s 7−→ Ld(Bp0(s)),
which is proved by the Lipschitz continuity of πp0 (see Lemma 2.1.2 and
(2.1.12) for the calculations, recalling that we are considering just the level
p0 with sink Γ), the measure νp0 is absolutely continuous on X with a L∞
density denoted by gp0.

For integral (2.1.33), we set Y = Bp1⊗p0(s), X = [0, s] and we consider
the map (2.1.27)

πp1⊗p0 : Y −→ X, πp1⊗p0(y) = tp1⊗p0
y

and νp1⊗p0 = πp1⊗p0] ˜̃mp0
0 ∈ G(X). In this way

(πp1⊗p0)−1(τ) =
{
y ∈ Rd : tp1⊗p0

y = τ
}

for every τ ∈ [0, s].

Then, there exists a νp1⊗p0-almost everywhere uniquely determined family
{mp0,τ

0 }τ∈[0,s] ⊂ G(Y ) such that for every f ∈ C0
c (Y ),

∫

Y
f(y)d ˜̃mp0

0 (y) =
∫ s

0

∫
{
y∈Rd:tp1⊗p0y =τ

} f(y)d ˜̃mp0,τ
0 (y)dνp1⊗p0(τ).

Moreover, in view of (2.1.30), that is the Lipschitz continuity of the map
s 7−→ Ld(Bp1⊗p0(s)), the measure νp1⊗p0 is absolutely continuous on X with
a L∞ density denoted by gp1⊗p0.

Theorem 2.1.6. The continuity equation (2.1.23) has a unique solution
given by s 7−→ µ̄(s).
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Proof. Let ϕ ∈ C∞(Rd). The proof of the cases with supp (ϕ) ⊂ Rd \
Φ1(Bp1

0 (t), 0, t) for every t ≤ T and supp (ϕ) ⊂ Φ1(Bp1
0 (t), 0, t) for every

t ≤ T , goes basically as the one of Theorem 2.1.2.
Then suppose that supp (ϕ) ⊂ Rd \ (Φ1 ⊗ Φ0)(Bp1⊗p0(t), 0, t) for every

t ≤ T . Fix t ≤ T and let us consider the map

w : Rd × [0, t] −→ R, w(y, s) := ϕ((Φ1 ⊗ Φ0)(y, 0, t− s)). (2.1.35)

Therefore, w is Lipschitz continuous in both variables (y, s) ∈ Rd×[0, t] with
supp(w) ⊂ (Rd \ (Φ1 ⊗ Φ0)(Bp1⊗p0(s), 0, s)) × [0, t]. Moreover, by (2.1.22)
we have

ϕ(x) = w((Ψ0⊗Ψ1)(x, t−s, t), s) = ϕ((Φ1⊗Φ0)((Ψ0⊗Ψ1)(x, t−s, t), 0, t−s))

and, recalling that (Ψ0 ⊗ Ψ1)(x, t, t) is the solution of (2.1.21) with τ = t,
the function w satisfies

0 = d

ds
ϕ(x) = ws((Ψ0 ⊗Ψ1)(x, t− s, t), s)

+ 〈Dxw((Ψ0 ⊗Ψ1)(x, t− s, t), s), b1((Ψ0 ⊗Ψ1)(x, t− s, t), s)〉 a.e.

and hence, in general,

ws(y, s) + 〈Dxw(y, s), b1(y, s)〉 = 0 a.e. in Rd×]0, t[.

Using w as a test function for a generic µ satisfying Definition 2.1.2, for
almost all s ≤ t we have

d

ds

∫

Rd
w(y, s)dµ(s)(y) =

∫

Rd
ws(y, s)dµ(s)(y) +

∫

Rd
w(y, s)dµs(s)(y)

=
∫

Rd
(−〈Dxw(y, s), b1(y, s)〉+ 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y) = 0

since supp(w) ⊂ (Rd \ (Φ1 ⊗ Φ0)(Bp1⊗p0(s), 0, s))× [0, t], which implies
∫

Γsp0
w(y, s)dµp0,s(s)(y) =

∫

Ssp1⊗p0
w(y, s)dµp1⊗p0,s(s)(y)

=
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y) = 0.

Therefore, integrating between 0 and t, we get
∫

Rd
w(y, t)dµ(t)(y) =

∫

Rd
w(y, 0)dµ(0)(y)
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and then
∫

Rd
ϕ(y)dµ(t)(y) =

∫

Rd
ϕ((Φ1 ⊗ Φ0)(y, 0, t− 0))dmp0

0 (y)
∣∣
Bp0 (t−0)

=
∫

Rd
ϕ((Φ1 ⊗ Φ0)(y, 0, t))dmp0

0 (y)
∣∣
Bp0 (t),

which shows that

µ(t) = (Φ1 ⊗ Φ0)(·, 0, t)] ˜̃mp0
0 on Rd \ (Φ1 ⊗ Φ0)(Bp1⊗p0(t), 0, t).

Now we have to prove that µ(t) = 0 on (Φ1⊗Φ0)(Bp1⊗p0(t), 0, t), that is
∫

Rd
ϕ(x)dµ(t)(x) = 0

for any ϕ ∈ C∞(Rd) with supp(ϕ) ⊂ (Φ1 ⊗ Φ0)(Bp1⊗p0(t), 0, t) for every
t ≤ T . Fix again t ≤ T and let us consider the map (2.1.35). Then,
proceeding as before, we obtain

ws(y, s) + 〈Dxw(y, s), b1(y, s)〉 = 0 a.e. in Rd×]0, t[.

Using w as a test function for a generic µ satisfying Definition 2.1.2, for
almost all s ≤ t we have

d

ds

∫

Rd
w(y, s)dµ(s)(y) =

∫

Rd
ws(y, s)dµ(s)(y) +

∫

Rd
w(y, s)dµs(s)(y)

=
∫

Rd
(−〈Dxw(y, s), b1(y, s)〉+ 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

+
∫

(Φ1⊗Φ0)(Bp0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

−
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

+
∫

Γsp0
w(y, s)dµp0,s(s)(y)−

∫

Ssp1⊗p0
w(y, s)dµp1⊗p0,s(s)(y)

=
∫

(Φ1⊗Φ0)(Bp0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

−
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

+
∫

Γsp0
w(y, s)dµp0,s(s)(y)−

∫

Ssp1⊗p0
w(y, s)dµp1⊗p0,s(s)(y).
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Now, observe that
∫

Γsp0
w(y, s)dµp0,s(s)(y)

+
∫

(Φ1⊗Φ0)(Bp0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

+
∫

(Φ1⊗Φ0)(Bp1⊗p0 (s),0,s)
(ws(y, s) + 〈Dxw(y, s), b1(y, s)〉)dµ(s)(y)

+
∫

Ssp1⊗p0
w(y, s)dµp1⊗p0,s(s)(y)

=
∫

{y∈Rd:tp0y =s}
w((Φ1 ⊗ Φ0)(y, 0, s), s)gp0(s)dµp0,s(0)(y)

+
∫

Bp0 (s)
(ws((Φ1 ⊗ Φ0)(y, 0, s), s)

+ 〈Dxw((Φ1 ⊗ Φ0)(y, 0, s), s), b1((Φ1 ⊗ Φ0)(y, 0, s), s)〉)dµ(0)(y)

+
∫
{
y∈Rd:tp1⊗p0y =s

}w((Φ1 ⊗ Φ0)(y, 0, s), s)gp1⊗p0(s)dµp1⊗p0,s(0)(y)

+
∫

Bp1⊗p0 (s)
(ws((Φ1 ⊗ Φ0)(y, 0, s), s)

+ 〈Dxw((Φ1 ⊗ Φ0)(y, 0, s), s), b1((Φ1 ⊗ Φ0)(y, 0, s), s)〉)dµ(0)(y)

= d

ds

∫

Bp0 (s)
w((Φ1 ⊗ Φ0)(y, 0, s), s)dµ(0)(y)

+ d

ds

∫

Bp1⊗p0 (s)
w((Φ1 ⊗ Φ0)(y, 0, s), s)dµ(0)(y).

Then, by (2.1.35) and the semigroup property of the flow Φ1 ⊗ Φ0, since
µ(0) = ˜̃mp0

0 we obtain

d

ds

∫

Rd
w(y, s)dµ(s)(y) = d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))dmp0

0 (y)

− d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))d ˜̃mp0

0 (y)

and hence, integrating between 0 and t,
∫

Rd
w(y, t)dµ(t)(y) =

∫

Rd
w(y, 0)dµ(0)(y)

+
∫ t

0

d

ds

∫

Bp0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))dmp0

0 (y)
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−
∫ t

0

d

ds

∫

Bp1⊗p0 (s)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))d ˜̃mp0

0 (y).

Therefore
∫

Rd
ϕ(y)dµ(t)(y) =

∫

Rd
ϕ((Φ1 ⊗ Φ0)(y, 0, t))d ˜̃mp0

0 (y)

+
∫

Bp0 (t)
ϕ((Φ1 ⊗Φ0)(y, 0, t))dmp0

0 (y)−
∫

Bp0 (0)
ϕ((Φ1 ⊗Φ0)(y, 0, t))dmp0

0 (y)

−
∫

Bp1⊗p0 (t)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))d ˜̃mp0

0 (y)

+
∫

Bp1⊗p0 (0)
ϕ((Φ1 ⊗ Φ0)(y, 0, t))d ˜̃mp0

0 (y).

Since supp(ϕ) ⊂ (Φ1 ⊗ Φ0)(Bp1⊗p0(t), 0, t) (and ˜̃mp0
0 = 0 in Γ = Bp0(0) and

S = Bp1⊗p0(0)), the thesis follows.

Remark 2.1.12. The case of a possible dependence of the fields b1, b2 on
the measure is straightforward and very similar to the one with just a sink
in §2.1.2. Indeed, as in Theorem (2.1.3), the essential hypothesis is the
Lipschitz continuity of the maps π0[µ] and πp1

t [µ] uniformly w.r.t. µ ∈
C0([0, T ],G). This, with similar calculations as (2.1.28), allows to prove the
Lipschitz continuity of the map πp1⊗p0 [µ] uniformly w.r.t. µ, which gives in
turn the Lipschitz continuity of the map s 7−→ ˜̃µ(s) uniformly w.r.t. µ for
applying Ascoli-Arzelà Theorem.



Chapter 3

Mean-field type optimal
visiting problems on
networks

In this chapter, motivated by the optimal visiting problem in Ch. 1, we
investigate a pure switching mean-field game model on a network, where
both a decisional and a switching time-variable are controls at disposal of
the agents for what concerns, respectively, the instant to decide and to per-
form the switch. The presence of such time variables gives to the problem a
dynamical feature, which, a priori, is not accounted for due to the absence of
a controlled trajectory. Every switch between the nodes of the network cor-
responds to a flip from 0 to 1 of one component of the string p = (p1, . . . , pn)
which, as in §1.1, possibly represents the visited targets, being labeled by
i = 1, . . . , n. The goal is to reach the final string (1, . . . , 1) (i.e., to visit all
the targets) within a fixed final time T , minimizing a switching cost also
depending on the congestion on the nodes. In particular, after introducing
the problem, we show the existence of a suitable approximated ε-mean-field
equilibrium and then we address the limit as ε→ 0.

3.1 A time-dependent optimal switching problem
on network

Let {Tj}j=1,...,N ⊂ Rd be a collection of N targets of the optimal visit-
ing problem as in Ch. 1, §1.1. We consider the set of the N -strings
p = (p1, p2, . . . , pN ) ∈ I = {0, 1}N , which we detect as the nodes of our
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network. We recall that pi = 1 means that the target Ti has already been
visited and viceversa for pi = 0. The node (1, 1, . . . , 1) is the final destination
and, once reached, the game ends.

Quite differently from §1.1.1, here, at every switch, just one component
of p may change and it can do that only from 0 to 1. Such a component
corresponds to the visited target. For example, for N = 3, if p = (1, 0, 0),
p′ = (1, 0, 1), p′′ = (0, 1, 1) and p′′′ = (1, 1, 1), then from p we can not
switch to p′′ otherwise we lose the information that the first target has been
already visited. Moreover, we can not switch to p′′′ directly since, as we
said, at every switch just one component flips.

Hence, to any p ∈ I we associate the number kp given by the sum of
the components of p, that is kp = p1 + . . . + pN . In other words, kp is the
number of “1” in p, that is the number of the visited targets. Then, as in
§1.1.1, for any p ∈ I we denote by Ip the set of all possible new variables
(nodes) in I after a switch from p:

Ip := {p̃ ∈ I : for every i = 1, . . . , N,
p̃i = pi + 1 if pi 6= 1 and kp̃ = kp + 1}.

Clearly Ip̄ = ∅, where p̄ = (1, 1, . . . , 1).

Example 3.1.1. For N = 3 targets, all the possible ways to visit them
are N ! = 3! = 6 as we can see in Figure 3.1. The corresponding di-
rect network is represented in Figure 3.2, where po = (0, 0, 0) is the ori-
gin and p̄ = (1, 1, 1) is the final destination. We then have for example
Ipo = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and Ip̃=(0,0,1){(1, 0, 1), (0, 1, 1)}.

The optimal visiting problem can be seen then as the search for an
optimal path from an origin node p to p̄, which must be performed within a
fixed final time T > 0. However, we will assume that an agent at the time
T may be still on an intermediate node and then, in that case, it will pay a
final cost. Hence, similarly to §1.1.1, for an agent on the origin node p 6= p̄
at time t < T , the number of the admissible subsequent switches is at most
N −∑i p

i ≤ N . The control at disposal of an agent on p at time t is then:
the number of switches 0 ≤ r ≤ N −∑i p

i; the decision/switching instants
σ = (t = t0 < t1 < t2 < . . . < tr ≤ T ) and the switching path π given
by the sequence of nodes p = p0, p1, . . . , pr, satisfying p1 ∈ Ip0 , pi+1 ∈ Ipi ,
i = 0, 1, . . . , r − 1. We assume that the choice 1 ≤ r < N −∑i p

i requires
that tr = T and obviously pr 6= p̄ (because the number of switches r is not
sufficient in order to reach p̄ from p = p0). Moreover, if the choice is r = 0,
then, necessarily, either p = p0 6= p̄ and t = t0 = T (that is the time is
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T1

T2

T3

∗
(A) First way

T1

T2

T3

∗
(B) Second way

T1

T2

T3

∗
(C) Third way

T1

T2

T3

∗
(D) Fourth way

T1

T2

T3

∗
(E) Fifth way

T1

T2

T3

∗
(F) Sixth way

Figure 3.1: The six possible ways to visit all the three targets

already over) or p = p0 = p̄ and t = t0 ≤ T (that is the agent may still
have time at disposal but instead no more switches: it is already on p̄). In
particular, this implies that an agent can not decide to permanently stand
still on a node p along a switching path unless p = pr = p̄ (or tr = T ). To
resume, the control at disposal of the agent, which is on p at time t, is a
triple as

(r, σ, π) = (r, t0, t1, . . . , tr, p0, p1, . . . , pr), (3.1.1)

where t0 = t and p0 = p. Actually, it is the switching evolution inside the
network at disposal of the agent with constraints as specified here above.
For example, referring to the network in Figure 3.2, the following switching
evolutions/controls are admissible

(
2, t0, t1, t2 ≤ T, (0, 1, 0), (1, 1, 0), (1, 1, 1)

)
,

(
2, t0, t1, t2 = T, (0, 0, 0), (1, 0, 0), (1, 0, 1)

)
,

whereas the following ones are not admissible
(
0, t0 < T, (1, 1, 0)

)
,
(
2, t0, t1, t2 < T, (0, 0, 0), (1, 0, 0), (1, 0, 1)

)
.
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(0, 0, 0)

(0, 0, 1)
(0, 1, 1)

(1, 0, 1)

(1, 0, 0) (0, 1, 0)

(1, 1, 0)

(1, 1, 1)

Figure 3.2: The direct network corresponding to N = 3 targets

In particular, t0 . . . , tr−1 are seen as decision instants and t1, . . . , tr are seen
as switching instants. That is the agent at time ti ∈ {t0, . . . tr−1} decides
to switch from p to pi+1 and to perform such a switch at the time ti+1 ∈
{t1, . . . , tr}. Note that t1, . . . tr−1 are both decision and switching instants,
and this means that the decision about the next switch occurs exactly at
the actual switching time.

The cost to be minimized is (note that by the argumentation above if
p 6= p̄ and t < T , then necessarily r ≥ 1)

J(p, t, (r, σ, π), ρ) =





∑r
i=1C(pi−1, pi, ti−1, ti, ρ) + C̃(pr, tr) if p 6= p̄, t < T

C̃(p, t) if p = p̄ or
(p 6= p̄, t = T )

(3.1.2)
where:

– ρ =
(
ρ0, . . . , ρ(2N−1)

)
∈ L2([0, T ], [0, 1])2N is a (2N )-uple of L2 func-

tions ρj : [0, T ] −→ [0, 1]. Here we are using a possible enumeration
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of the nodes, and every ρj(t) represents the mass of the agents at the
j-node at time t. In particular, in the optimal visiting problem in
§1.1.1, this would give the mass of agents with the same remaining
targets to be visited as detected by the positions of the zeros in the
string representing the node.

–

C : D ⊂ I × I × [0, T ]×]0, T ]× L2([0, T ], [0, 1])2N −→ [0,+∞[
(p, p′, t, τ, ρ) 7−→ C(p, p′, t, τ, ρ)

is (for a suitable domain D) the cost function, that is the cost that
an agent incurs when, at the (decision) time t, being on the node p,
decides that it will switch to a new node p′ ∈ Ip at the (switching)
time τ > t. We assume that

(i) for every (p, p′) ∈ I × Ip and τ ∈]0, T ], the map (t, ρ) 7−→
C(p, p′, t, τ, ρ) is bounded and Lipschitz continuous in [0, τ −h]×
L2([0, T ], [0, 1])2N , for all sufficiently small h > 0 and indepen-
dently of τ , that is, there exists L > 0, depending only on h, such
that

|C(p, p′, t′, τ, ρ′)− C(p, p′, t′′, τ, ρ′′)|
≤ L

(
|t′ − t′′|+ ‖ρ′ − ρ′′‖L2([0,T ],[0,1])

)
;

(ii) for every fixed ρ, (p, p′) ∈ I × Ip and t ∈ [0, T ], C is decreasing
in τ ∈]t, T ] and limτ→t+ C(p, p′, t, τ, ρ) = +∞;

(iii) C(p, p, ·, ·) = 0 for every p ∈ I and C(·, ·, T, T ) = 0. These
assumptions correspond to the cases when the agent is on p =
pr = p̄ and tr is not necessarily T and when tr = T but the agent
is on p = pr 6= p̄, and moreover give some kind of continuity of
(3.1.2).

– The cost C̃ is bounded and Lipschitz continuous in time and it rep-
resents the final cost that an agent incurs at the end of the switching
path (pr, tr). For example

– if tr = T , it depends on the number of the zeros in pr (that is the
number of the remaining targets to be visited);

– if pr = p̄, it depends on the remaining time T − tr (that is the
agent is penalized if p̄ is obtained before T );
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– if pr = p̄ and tr = T , then it is null.

Definition 3.1.1. Let p ∈ I, p′ ∈ Ip, and t < T be fixed. We say that the
switch from p to p′ with decision instant t optimally generates τ ∈]t, T ] as
switching instant if there exists a control (r̄, σ̄, π̄), with r̄ ≥ 1, σ̄ = (t0 =
t, t1 = τ, t2, . . . , tr̄) and π̄ = (p0 = p, p1 = p′, p2, . . . , pr̄), which minimizes
the cost J among all controls (r, σ, π) such that r ≥ 1, σ = (t0 = t, t1, . . . , tr),
π = (p0 = p, p1 = p′, p2, . . . , pr). In other words: if whenever an agent on p
at the time t decides to switch to p′ (independently of the optimality of such
a choice), then τ is an optimal choice as switching instant.

Note that the optimally generated τ may be not unique. Hence the function
ϕ := ϕp,p′ : t 7−→ ϕp,p′(t) = τ may be multivalued.

Moreover, other modeling assumptions are the following:

(iv) if at the decision time t, an agent on a node p chooses the switching
time τ in order to switch to p′, then, in the time interval [t, τ [, it
is assumed that such an agent continues to concur to the total mass
present on the node p (coherently with the fact that the switch will
occur at time τ and hence the agent will be on p in the time interval
[t, τ [). However, the agent can not change its decision (switching to p′
at time τ) or take another decision in the time interval ]t, τ [. In other
words, in the time interval ]t, τ [ it must stay on p;

(v) for the switching from p to p′, if we have two different decision times t1,
t2 with t1 < t2, which optimally generate the switching times τ1, τ2 < T
respectively (see Definition 3.1.1), then τ1 < τ2.

Assumption (iv) suggests the following useful definition

Definition 3.1.2. An agent which is on p at time t and uses the control

(r, t0 = t, t1, . . . , tr, p0 = p, p1, . . . , pr)

is called a decision-making agent at the decision instants t0, . . . , tr−1. Ac-
tually, since there is no incoming flow in our network (all the agents are
already present at t = 0), all the agents are decision-making at t = 0. In
particular, any single agent will take a new decision, mandatory, at time τ
when it will switch to the new node; in other words: all agents are decision-
making at t = 0 and they will return to be decision-making again exactly
when, and only when, they switch to a new node.
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Remark 3.1.1. Assumption (ii) means that, if the switching time is too
much close to the corresponding decision time, then the agent pays an high
cost.

The second part of assumption (iv) (the agent can not change the deci-
sion in [t, τ [) is certainly due to the discrete feature of the time-dependent
component σ of the global control (r, σ, π), but it may also be justified by
a possible overlying optimal visiting problem (as the one in §1.1.1) where,
when an agent is moving from one target to another, then, under some as-
sumptions, it is not optimal to change destination or to come back to the
previous node (see also [2]).

From assumption (v), it follows (v′): any optimal switching time less
than T originates from a unique decision time. This can be also directly
proved by assuming further hypotheses (see Remark 3.1.3). Moreover, sup-
pose that the decision time t optimally generates the switching times τ1, τ2
with τ1 < τ2 for the switching from p to p′. Then, in view of assumption (v),
in the time interval [τ1, τ2[ only the agents with decision time t can switch
from p to p′. More generally, if we define τ− := infτ{τ is optimal for t}
and τ+ := supτ{τ is optimal for t}, in the time interval [τ−, τ+[, only the
agents with decision time t can switch from p to p′. Hence, we can consider
the function ϕ : t 7−→ τ , giving the optimal switching instant τ for the deci-
sional instant t, as a maximal monotone graph filling the jumps by vertical
segments, and so, in this case, ϕ is a multivalued function.

All the previous assumptions and arguments can be justified by a possible
overlying optimal visiting problem, similar to the one in §1.1.1, with suitable
energy and congestion costs (see [2] too). See also Remark 3.1.3.

The value function of the problem is

V (p, t, ρ) = inf
(r,σ,π)

J(p, t, (r, σ, π), ρ) (3.1.3)

and a control (r, σ, π) is said to be optimal for (p, t) if

V (p, t, ρ) = J(p, t, (r, σ, π), ρ).

Definition 3.1.3. Let p 6= p̄, t ∈ [0, T [ and τ ∈]t, T ] be fixed. We say
that τ is optimal for V (p, t, ρ) if there exists a control (r̄, σ̄, π̄) with r̄ ≥ 1,
σ̄ = (t0 = t, t1 = τ, t2, . . . , tr̄) and π̄ = (p0 = p, p1, p2, . . . , pr̄) which is
optimal, that is minimizes the cost J among all controls. In other words,
there exists an optimal control whose first switching instant is τ .

Given next Proposition 3.1.2 (and in particular looking at its proof), the
previous definition is equivalent to require that there exists p′ ∈ Ip such
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that the pair (p′, τ) realizes the minimum in

V (p, t, ρ) = inf
p′∈Ip
τ∈]t,T ]

{
V (p′, τ) + C(p, p′, t, τ, ρ)

}
.

3.1.1 The optimal switching problem with fixed mass ρ
In this section, we mostly assume that the mass ρ ∈ L2([0, T ], [0, 1])2N is a
priori fixed and then, when not needed, we do not display it as entry of the
cost J and of the value function V .

Proposition 3.1.1. The value function V in (3.1.3) is bounded and Lips-
chitz continuous in time, uniformly in ρ. Moreover, if ρn converges to ρ in
L2([0, T ], [0, 1]), then V (p, ·, ρn) uniformly converges to V (p, ·, ρ) on [0, T ],
for all p. Also, if t′n is optimal for V (p, tn, ρn) and t′n, tn converge to
t′, t respectively, then t′ is optimal for V (p, t, ρ) (see Definition 3.1.3 for t
optimal).

Proof. First of all note that, by (3.1.3) and by the definition of the control
triple (r, σ, π), V is increasing with respect to time. Fix p ∈ I, t′, t′′ ∈ [0, T ],
with t′ > t′′, and ε > 0. Let (r, σ, π) be ε-optimal for (p, t′′), that is
V (p, t′′) ≥ J(p, t′′, (r, σ, π)) − ε. Hence the control triple (r, σ, π) is also
admissible for t′ (all the instants in σ are larger than t′) and, by increasing-
ness, we have

|V (p, t′)− V (p, t′′)| = V (p, t′)− V (p, t′′)
≤ J(p, t′, (r, σ, π))− J(p, t′′, (r, σ, π)) + ε

= C(p, p1, t
′, t1) +

r∑

i=2
C(pi−1, pi, ti−1, ti) + C̃(pr, tr)− C(p, p1, t

′′, t1)

−
r∑

i=2
C(pi−1, pi, ti−1, ti)− C̃(pr, tr) + ε

= C(p, p1, t
′, t1)− C(p, p1, t

′′, t1) + ε ≤ L|t′ − t′′|+ ε,

where L is Lipschitz constant of the cost C (see assumption (i)), which is
independent of ρ. By the arbitrariness of ε and changing the role of t′ and
t′′, we get the Lipschitz continuity of V in time. The boundedness follows
from the fact that, taking r = 0, it is V (p, t) ≤ C̃(p, t), which is bounded.
The uniformity on ρ is then obtained.
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For the convergence of V (p, ·, ρn), note that, by the previous points and
by Ascoli-Arzelà Theorem, at least for a subsequence, we have the uniform
convergence to a limit function Ṽ . Taking h > 0 as in the next Remark 3.1.2
(and hence, for all t, the optimal t′ belongs to [t + h, T ]), by the Lipschitz
continuity hypotheses on C and C̃ (in particular the continuity of C with
respect to ρ ∈ L2), we get the pointwise convergence to V (p, ·, ρ), which
then turns out to be the uniform limit Ṽ , independently of the subsequence.
The final point on t′n, tn and t′, t also comes, for example using the char-
acterization of V by Proposition 3.1.2 which is independent of Proposition
3.1.1.

Proposition 3.1.2. The value function V is the unique solution of the
following




V (p, t) = inf p′∈Ip
t′∈]t,T ]

{V (p′, t′) + C(p, p′, t, t′)}, (p, t) ∈ (I \ {p̄})× [0, T [

V (p̄, t) = C̃(p̄, t), t ∈ [0, T ]
V (p, T ) = C̃(p, T ), p ∈ I

.

(3.1.4)

Proof. First of all, let us note that the second and third equalities come from
the definition of J (3.1.2). We have to prove the first equality. Suppose that
pr = p̄, that is pr = (1, 1, . . . , 1).

Case 1) Let p ∈ I be such that ∑i p
i = N − 1, for instance p =

(1, 1, . . . , 1, 0), so r = 1, π = (p, p̄) and σ = (t, t′) for some arbitrary t′ ∈]t, T ].
Thus we have to prove that

V (p, t) = inf
t′∈]t,T ]

{V (p̄, t′) + C(p, p̄, t, t′)} = inf
t′∈]t,T ]

[C(p, p̄, t, t′) + C̃(p̄, t′)]

(3.1.5)
since V (p̄, ·) = C̃(p̄, ·). The last term in the above equality is

inf
(r,σ,π)

J(p, t, (r, σ, π)) = V (p, t),

being the controls (1, (t, t′), (p, p̄)) the only admissible ones for (p, t).
Case 2) Let p ∈ I be such that ∑i p

i = N − 2, that is, for instance,
p = (0, 0, 1, . . . , 1). In this case, the admissible controls must have either
r = 2 or r = 1, and so V is the minimum of the infimum of the cost over
the controls with r = 2 and the infimum of the cost over the controls with
r = 1. In the first case, setting tr−2 = t and pr−2 = p, we have
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V (pr−2, tr−2) = inf
(r,σ,π) s.t.

r=2
σ=(tr−2,tr−1,tr)
π=(pr−2,pr−1,p̄)

J(p, t, (r, σ, π))

= inf
tr−1∈]tr−2,T [
tr∈]tr−1,T ]
pr−1∈Ipr−2

[
C(pr−2, pr−1, tr−2, tr−1) + C(pr−1, p̄, tr−1, tr) + C̃(p̄, tr)

]

= inf
tr−1∈]tr−2,T [
pr−1∈Ipr−2

[
C(pr−2, pr−1, tr−2, tr−1)

+ inf
tr∈]tr−1,T ]

[
C(pr−1, p̄, tr−1, tr) + C̃(p̄, tr)

] ]

= inf
tr−1∈]tr−2,T [
pr−1∈Ipr−2

[V (pr−1, tr−1) + C(pr−2, pr−1, tr−2, tr−1)] ,

where the last equality comes from Case 1). The desired result follows.
In the second case, r = 1, we must necessarily have pr 6= p̄ and tr = T .

Thus we have only to prove that

V (p, t) = inf
pr∈Ip

{V (pr, T ) + C(p, pr, t, T )} = inf
pr∈Ip

{C(p, pr, t, T ) + C̃(pr, T )}

since V (·, T ) = C̃(·, T ). The last term in the above equality is

inf
(r,σ,π)

J(p, t, (r, σ, π)) = V (p, t)

being, in this case, the controls (1, (t, T ), (p, pr)) the only ones we are taking
account of.

Up to now, we proved the equality for every (p, t) such that∑i p
i = N−1

and ∑i p
i = N − 2. Proceeding backwardly in this way, we then can prove

all the other cases with ∑i p
i = N − s for s = 3, . . . , N .

Still arguing backwardly, the uniqueness comes from the fact that any
other function satisfying (3.1.4), by (3.1.5) must coincide with V on the
nodes (p, t) with t ∈ [0, T [ and p such that ∑i p

i = N − 1.

Remark 3.1.2. By system (3.1.4), by the boundedness of V (Proposition
3.1.1) and by conditions (i), (ii) in §3.1, there exists h > 0 such that the
infimum in the first line of (3.1.4) is indeed a minimum and t′ belongs to
[t+ h, T ]. The presence of this sort of minimal waiting time h between two
consecutive switches will lead to a piecewise continuous/constant feature of
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the evolution of the masses ρ with a uniform bounded number of pieces in
[0, T ].

Also justified by Remark 3.1.2, we define

P (p, t) = arg min
p′∈Ip
t′∈]t,T ]

{V (p′, t′) + C(p, p′, t, t′)}. (3.1.6)

In other words, P (p, t) is the couple (p′, t′) of the node p′ where it is optimal
to switch at the switching instant t′ > t. As above, we do not display the
dependence on ρ.

Remark 3.1.3 (still on assumption (v) in §3.1). Assumption (v) may hold
for example in the case where the cost C, besides (ii), is derivable w.r.t. the
switching time-variable τ with derivative Cτ strictly increasing w.r.t. the
quantity τ − t. A possible cost satisfying the previous hypotheses may be for
example of the form

C(p, p′, t, τ, ρ) = C̄(p, p′, ρ)
τ − t . (3.1.7)

Moreover, we assume that V is convex in time. It follows that it is two
times derivable in time almost everywhere (see Theorem B.2.4). For the
following counterexample, we are going to assume that the first derivative
exists everywhere. By contradiction, let us suppose that if, for the switching
from p to p′, the decision times t1, t2 with t1 < t2 optimally generate the
switching times τ1, τ2 < T respectively, then τ2 < τ1. Hence it follows that
τ1 > τ2 ≥ t2 > t1. This means that

inf
τ≥t1

{
V (p′, τ, ρ) + C(p, p′, t1, τ, ρ)

}
= V (p′, τ1, ρ) + C(p, p′, t1, τ1, ρ),

inf
τ≥t2

{
V (p′, τ, ρ) + C(p, p′, t2, τ, ρ)

}
= V (p′, τ2, ρ) + C(p, p′, t2, τ2, ρ).

First order conditions give

V ′(p′, τ1, ρ) + Cτ (p, p′, t1, τ1, ρ) = 0,

V ′(p′, τ2, ρ) + Cτ (p, p′, t2, τ2, ρ) = 0.

Therefore

V ′(p′, τ1, ρ) = −Cτ (p, p′, t1, τ1, ρ) < −Cτ (p, p′, t2, τ2, ρ) = V ′(p′, τ2, ρ),

which contradicts the convexity of V in time.
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Recall that assumption (v) implies (v′): any optimal switching time less
than T originates from a unique decision time. With the same hypotheses on
C as above, (v′) can be also inferred, without assuming (v), just assuming
that V is derivable w.r.t. the time-variable without any convexity property.
Indeed, suppose that at the decision times t1, t2, t1 < t2, the agents are op-
timally switching from p to p′ with the same switching time τ < T . Arguing
as above, with τ1 = τ2 = τ , we obtain

V ′(p′, τ, ρ) = −Cτ (p, p′, t1, τ, ρ) = −Cτ (p, p′, t2, τ, ρ),

contradicting t1 6= t2.
Without the convexity assumption on V , we can infer property (v) by

(v′) if, besides the derivability of V , we assume that the map ϕ : t 7−→ τ
is continuous. Note that, by definition of the optimal switching instant,
ϕ(t) → T as t → T . By contradiction, suppose that if, for the switching
from p to p′, the decision times t1, t2 with t1 < t2 optimally generate the
switching times τ1, τ2 < T respectively, then ϕ(t2) = τ2 < τ1 = ϕ(t1) < T .
Hence, the function ϕ is somehow decreasing in [t1, t2] but, by continuity
and the limit property above, we must have the existence of t′ 6= t′′ such that
τ = ϕ(t′) = ϕ(t′′), contradicting (v′).

Finally, for what concerns the convexity of V , note that if C is strictly
convex in t and C̃ is decreasing in time, due to the decreasingness of C with
respect to τ ((ii)) (and the example in (3.1.7) satisfies both hypotheses), then
for all p with one 0 only (i.e., directly linked to the destination p̄), V (p, ·, ρ)
is strictly convex and the functions ϕ are constantly equal to T . Proceeding
backwardly, we can then prove that for all the other nodes the value functions
are all strictly convex and, in particular, the function ϕ is single-valued and
increasing (see the example in Appendix A.3).

Remark 3.1.4. Let us note that equation (3.1.4) is in some sense the Dy-
namic Programming Principle for the value function V . However, we can
not differentiate it in the time-variable t and obtain an Hamilton-Jacobi
equation because our model does not take account of a continuous dynamic
evolution of the agents.

3.2 On the continuity equations for the flow
For what concerns the ρ functions for the masses, using the same possible
enumeration of nodes as in §3.1, for every j = 0, . . . , 2N − 1 we will have,
at least formally, a system of 2N continuity equations in the variables ρdm

j ,
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the mass of decision-making agents (see assumption (iv) in §3.1), to be
interpreted in a suitable formulation that we will see later:




(ρdm
j )′(t) = ∑

pk|pj∈Ipk λk,j(s(t), t)ρ
dm
k (s(t))δt

−∑ph|ph∈Ipj λj,h(t, ϕ(t))ρdm
j (t)δt, t ∈]0, T ]

ρdm
j (0) = ρ0

j

,

(3.2.8)
where ρ0

j is fixed for every j, ϕ is the (possibly multivalued) function intro-
duced in Remark 3.1.1 and t 7−→ s(t) ∈ [0, T ] takes into account the decision
instant s at which an agent switches from pi to pj at the switching time t.
By assumption (v), s(t) is continuous and non-decreasing (being the inverse
of the function ϕ in Remark 3.1.1) and satisfies s(t) ≤ t for every t and
s(0) = 0. Formally such a function s (as well as ϕ) should be indexed by
i, j but, for simplicity, we omit that. The first term in the right-hand side of
(3.2.8) represents the mass of decision-making agents arriving to pj at the
switching instant t and the second one, the mass of decision-making agents
leaving pj at the decisional instant t. The unknowns are the 2N functions
ρdm
j and the functions λk,j : D ⊂ [0, T ]×]0, T ] −→ [0, 1], (s, t) 7−→ λk,j(s, t),

which indicate how many decision-making agents, on pk at time s, have
chosen P (pk, s) = (pj , t), (3.1.6), that is the percentage of mass of decision-
making agents which is on pk and at time s optimally decides to switch to pj
at t > s. Of course, if λk,j(s, t) > 0, then, at time s, deciding to switch from
pk to pj at time t is optimal, and we also have∑pj |pj∈Ipk λk,j(s, ξ) = 1, where
ξ ∈ ϕ(s) is any possible selection for the switch from pk to pj . Similarly for
λj,h.

Note that the previous sum equal to 1 means that every instant s is a de-
cisional instant for all the decision-making agents present on the node. The
fact that those λ activate a real switch obviously depends on the real pres-
ence of decision-making agents on the node at the time s. Indeed, roughly
speaking, the interpretation of (3.2.8) is the following one. The functions
λi,j , for every i, j, give the right way to interpret it. Such functions are
basically values between 0 and 1 along the curve t 7−→ (s(t), t), that is λi,j
is concentrated on the curve and it is elsewhere null. From a distributional
point-of-view, λi,j is a concentration of Dirac deltas on that curve. In other
words, if at the switching instant t the switches from pk to pj and from pj to
ph are both optimal, then λk,j and λj,h are possibly nonzero at (s(t), t) and
consequently activate the Dirac deltas, which give the corresponding accu-
mulation of mass (of decision-making agents only) on the arrival node at time
t. In the case when the function t 7−→ τ = ϕ(t) (Remark 3.1.1) is always a
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singleton, i.e. not multivalued, then system (3.2.8) may be also interpreted
as system of impulsive delayed equations (see for instance [32]). The solu-
tions ρdm

j are somehow collections of possibly nonzero values on switching
(incoming as well as outgoing) instants, and equal to zero elsewhere. The
real mass evolution ρj , taking into account both decision-making and non-
decision making agents, is just the right-continuous constant interpolation
of those values. In other words, the 2N solutions ρj are constructed node-by-
node for every switching time according to the λ functions, and this process
gives piecewise constant functions on [0, T ] (see also Remark 3.1.2).

In the next section we are going to make a suitable approximation of
the problem, in order to be able to work with piecewise constant functions.
Moreover, in that case, we will see a possible direct construction of such
functions λ also explaining their presence and roles in (3.2.8), and then
the construction of the functions ρ. Actually, we will not use the formal
equations (3.2.8) but directly construct step-by-step (switch-by-switch) the
solutions. In Figure 3.3, §3.3.1, we graphically represent the construction of
a possible ρdm and its constant interpolation ρ.

3.3 The approximated mean-field problem
As argued at the end of the previous section, we are going to make a suit-
able approximation in order to allow us to look for solutions ρ of (3.2.8) in
PC([0, T ], [0, 1])2N , where we recall that PC([0, T ], [0, 1]) is the set of piece-
wise constant functions from [0, T ] to [0, 1]. In order to possibly simplify
the notation, using the same enumeration of the nodes in §1.1, we consider
all the functions ρj as forming a unique function in a juxtaposed sequence
of 2N intervals of length T . We then define K := PC([0, 2NT ], [0, 1]) whose
elements ρ are still thought as (ρ0, . . . , ρ2N−1). The mean-field game system
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we are going to study is formally described by




V (p, t, ρ)
= inf p′∈Ip

t′∈]t,T ]
{V (p′, t′, ρ) + C(p, p′, t, t′, ρ)},

(p, t, ρ) ∈ (I \ {p̄})× [0, T [×K
V (p̄, t, ρ) = C̃(p̄, t), (t, ρ) ∈ [0, T ]×K
V (p, T, ρ) = C̃(p, T ), (p, ρ) ∈ I × K
λi,j(s, t) = 0 if (pj , t) 6∈ P (pi, s),
(ρdm
j )′(t) = ∑

pk|pj∈Ipk λk,j(s(t), t)ρ
dm
k (s(t))δt

−∑ph|ph∈Ipj λj,h(t, ϕ(t))ρdm
j (t)δt, t ∈ [0, T ]

ρdm
j (0) = ρ0

j

ρj constant interpolation of ρdm
j

.

(3.3.9)
Note that the fourth line of (3.3.9) stands for the fact that if a switch is not
optimal, then the corresponding fraction λ is zero: no one is following that
switch.

Next section is devoted to prove the existence of a solution (ρj , λj,k) of an
approximated version of (3.3.9) and hence of an ε-approximated equilibrium
of the mean-field game. Such an approximation is mainly consistent in a
suitable approximation of the function P in (3.1.6).

3.3.1 Existence of an ε-approximated mean-field equilibrium
As usual in mean-field game problems, we are going to identify the solution
ρ of (3.3.9) as a fixed point of a suitable function. At first sight, given also
Remark 3.1.2, the space where to search for a fixed point would seem to be
the following one:

X = {ρ ∈ K : ρ has at most M pieces of constancy},

where M is a priori fixed, for example M =
(

2NT
h

)2N
. Note that such a

space can be made compact with respect to a suitable convergence but it
is certainly not convex (every ρ has different pieces from the others) and,
to perform a fixed-point procedure, we need that X satisfies a convexity
property. Therefore, to overcome this difficulty, we fix ε > 0 and we consider
the partition Pε of [0, 2NT ], given by the nodes 0 < ε < 2ε < . . . ≤ 2NT
with ε = T

m for some m ∈ N. We then consider the space
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Cε =
{
ρ ∈ L2([0, 2NT ], [0, 1]) :

ρ is piecewise constant on the open intervals of Pε and ‖ρ‖∞ ≤ ‖ρ0‖∞
}
.

Now, Cε is convex and compact with respect to the L2 topology. Indeed,
since the partition Pε is fixed and all the functions ρ are constant on it,
from every interval of Pε we can extract a convergent constant subsequence
whose limit belongs to L2.

We then look for a fixed point of a suitable multifunction ψε : Cε −→
P(Cε), ρ 7−→ ψε(ρ), that is we look for ρε ∈ Cε such that ρε ∈ ψε(ρε).
Roughly speaking, the idea is to construct ψε as follows:

(i) ρ is put into (3.1.4) and the value function V is derived;

(ii) V is inserted in (3.1.6) and the variable P , which is not necessarily
unique (that is, a priori, there may exist more than one optimal switch-
ing instant and more than one admissible subsequent node where it is
optimal to switch), is derived;

(iii) we suitably approximate the optimal switching instants given by P at
point (ii) with the nodes of the partition Pε;

(iv) with such approximated variables Pε as in (iii), we construct all the
possible optimal switching paths with their decision and switching
times;

(v) for each optimal switching path π of point (iv), we construct the cor-
responding functions λ in (3.2.8), as all the agents were following π,
that is

λπ,εi,j (s, t) =
{

1, (pj , t) ∈ Pε(pi, s) ∩ π
0, otherwise

;

(vi) for any π, we insert the functions λπ into (3.2.8), obtaining the evolu-
tion of the mass ρπ ∈ Cε;

(vii) by a suitable convexification (interval by interval of the partition Pε)
of the functions ρπ of (vi), we construct a set of functions ψε(ρ), which
is contained in P(Cε);

(viii) by proving that ψε(ρ) is a non-empty and convex subset of Cε and that
the map ρ 7−→ ψε(ρ) has closed graph, we can apply the fixed-point
Kakutani-Ky Fan Theorem (see Theorem B.2.6) to find a desired ρε.
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Note that, by construction, ρε, together with the coefficients λ of the con-
vex combinations of the extremal ρπ as in point (vii), gives what can be
considered as an approximated solution of (3.3.9) and hence an ε-mean-field
equilibrium.

We divide the construction of ψε(ρ) into some steps. For simplicity, we
suppose N = 3 (compare with Figure 3.2) and consider only paths starting
from p0 = (0, 0, 0) and that, at the initial time t = 0, all the agents are
on p0 (see Remark 3.3.2 below for the general situation). Moreover note
that all the paths start at time t = 0. In the sequel, we use the following
further notation: p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1), p4 = (1, 1, 0),
p5 = (0, 1, 1), p6 = (1, 0, 1), p7 = p̄ = (1, 1, 1).

Step 1 (points (i) − (iv)). Let ρ = (ρp0 , ρp1 , ρp2 , ρp3 , ρp4 , ρp5 , ρp6 , ρp7) ∈ Cε
be fixed. Consider the finite set

P̃p0 = {(p1, τ1), (p2, τ2), (p3, τ3), (p4, τ4), (p5, τ5), (p6, τ6), (p7, τ7)},

whose elements are the couples composed by all the possible optimal admis-
sible nodes p1, . . . , p7 (starting from p0 = (0, 0, 0)), and the possible optimal
switching instants τ1, . . . , τ7, as derived in point (ii), that is, for example,
τ2 is the optimal switching instant in order to switch to p2 = (0, 1, 0) with
decision at t = 0 on p0 = (0, 0, 0) (independently whether the choice of p2 is
optimal or not).

For point (iii), we argument as follows. At first observe that, at point
(ii), the multiplicity of the variables P lies on the admissible subsequent
node, but may also lie on the optimal switching instant (for a fixed node), if
τ− < τ+, as in Remark 3.1.1. In order to make the solution ρ consistent with
the partition Pε, and to overcome the possible difficulties of the multivalued
feature in time (making it at most discrete), we approximate the possible
optimal switching instants τ1, . . . , τ7 with the nodes of Pε. In particular, for
a generic switching instant τi, we set

m(τi, ε) := max{n ∈ N : nε ≤ τi},
m(τi, ε)ε = the largest node not larger than τi,

m(τi, ε) := min{n ∈ N : nε ≥ τi},
m(τi, ε)ε = the smallest node not smaller than τi.

Then, if in the switching from p to p′, the optimal switching instant τi
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belongs to the interval [m(τi, ε)ε,m(τi, ε)ε], we select

τ̃i,ε ∈ F (τi) =





{m(τi, ε)ε}, τi ∈ [m(τi, ε)ε,m(τi, ε)ε+ ε
2 [

{m(τi, ε)ε,m(τi, ε)ε}, τi = m(τi, ε)ε+ ε
2

{m(τi, ε)ε}, τi ∈]m(τi, ε)ε+ ε
2 ,m(τi, ε)ε]

.

(3.3.10)
In this way, the approximated variables Pε in (iii) replace every optimal
pair (pi, τi) ∈ P ⊆ P̃po by the pairs (which we call ε-optimal) (pi, τ̃i,ε),
τ̃i,ε ∈ F (τi). Therefore, we construct all the possible ε-optimal switching
paths π with decision and switching times given by those approximated
τ̃i,ε, just taking, switch by switch, one and only one of the pairs above.
For example, if p0 → p1 → p4 → p7 is an optimal path with τ1, τ4, τ7 the
corresponding optimal switching instants, that is

(p1, τ1) ∈ P (p0, 0), (p4, τ4) ∈ P (p1, τ1), (p7, τ7) ∈ P (p4, τ4),

then we consider all the possible ε-optimal paths p0 → p1 → p4 → p7 with
ε-optimal switching instants τ̃j,ε ∈ F (τj), j = 1, 4, 7, that is

(p1, τ̃1,ε) ∈ Pε(p0, 0), (p4, τ̃4,ε) ∈ Pε(p1, τ1), (p7, τ̃7,ε) ∈ Pε(p4, τ4),

where
Pε(pi, s) = {(pj , F (τj)) : (pj , τj) ∈ P (pi, s)}. (3.3.11)

In particular, note that, if ϕ(s) = [τ−j , τ+
j ] as in Remark 3.1.1, then Pε(pi, s)

contains all the pairs (pj , τ̃j) with τ̃j = nodes of Pε in [m(τ−j , ε)ε,m(τ+
j , ε)ε].

Step 2 (points (v)−(vii)). The aim is to build a multifunction ρ 7−→ ψε(ρ) ⊂
Cε with (compact and) convex images and closed graph, to which we will
apply the fixed-point Kakutani-Ky Fan Theorem.

For each ε-optimal switching path π of point (iv), Step 1, we construct
the corresponding evolution of the mass, assuming that all the agents (which
here are assumed to be all at p0 at time t = 0) are following π. For example,
for the possible ε-optimal path p0 → p1 → p4 → p7 as in Step 1, we would
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get

ρ0(t) =
{
ρ0, 0 ≤ t < τ̃1,ε

0, τ̃1,ε ≤ t ≤ T
, ρ1(t) =





0, 0 ≤ t < τ̃1,ε

ρ0, τ̃1,ε ≤ t < τ̃4,ε

0, τ̃4,ε ≤ t ≤ T
,

ρ4(t) =





0, 0 ≤ t < τ̃4,ε

ρ0, τ̃4,ε ≤ t < τ̃7,ε

0, τ̃7,ε ≤ t ≤ T
, ρ7(t) =

{
0, 0 ≤ t < τ̃7,ε

ρ0, τ̃7,ε ≤ t ≤ T
,

ρi ≡ 0, i = 2, 3, 5, 6,

and note that, by juxtaposition, ρπ,ε = (ρ0, ρ1, . . . , ρ7) ∈ Cε. Formally,
as explained in §3.2, such an evolution ρπ,ε can be seen as the constant
interpolation of a decision-making solution ρdm of (3.2.8), with coefficients
λ (to be understood associated to π, ε and hence to the corresponding
selection in Pε) satisfying

λπ,εi,j (s, t) =
{

1, (pj , t) ∈ Pε(pi, s) ∩ π
0, otherwise

.

The aim is to construct ψε(ρ) as a suitable convexification of all those “ex-
tremal” evolutions ρπ,ε. Such a convexification is constructed by taking into
account the decision-making nodes (p0, 0) and (pj , τ̃j,ε). Still considering an
example, suppose that the following paths (nodes pi and switching time τ̃i)
are ε-optimal

π1 : (p0, 0)→ (p1, τ̃
1
1 )→ (p4, τ̃

1
4 )→ (p7, τ̃

1
7 ),

π2 : (p0, 0)→ (p1, τ̃
2
1 )→ (p6, τ̃

2
6 )→ (p7, τ̃

2
7 ),

π3 : (p0, 0)→ (p3, τ̃
3
3 )→ (p6, τ̃

3
6 )→ (p7, τ̃

3
7 ),

where we suppose

0 < τ̃1
1 = τ̃2

1 < τ̃2
6 < τ̃3

3 < τ̃3
6 < τ̃1

4 < τ̃1
7 = τ̃2

7 = τ̃3
7 = T.

We have a first decisional split in p0 at t = 0 between agents switch-
ing to p1 and to p3, respectively. We then have the convex coefficients
λ0,1(0), λ0,3(0) ∈ [0, 1] with sum equal to 1. Then another decisional split
occurs in p1 at τ̃1 = τ̃1

1 = τ̃2
1 , giving the convex coefficients λ1,4(τ̃1), λ1,6(τ̃1),

and no other decisional split occurs. We then obtain the evolutions
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ρ0(t) =





ρ0, 0 ≤ t < τ̃1
1

λ0,3(0)ρ0, τ̃1
1 ≤ t < τ̃3

3
0, τ̃3

3 ≤ t ≤ T
,

ρ1(t) =





0, 0 ≤ t < τ̃1
1

λ0,1(0)ρ0, τ̃1
1 ≤ t < τ̃2

6
λ1,4(τ̃1)λ0,1ρ0, τ̃6

2 ≤ t < τ̃1
4

0, τ̃1
4 ≤ t ≤ T

,

ρ3(t) =





0, 0 ≤ t < τ̃3
3

λ0,3(0)ρ0, τ̃3
3 ≤ t < τ̃3

6
0, τ̃3

6 ≤ t ≤ T
,

ρ4(t) =





0, 0 ≤ t < τ̃1
4

λ1,4(τ̃1)λ0,1(0)ρ0, τ̃1
4 ≤ t < T

0, t = T

,

ρ6(t) =





0, 0 ≤ t < τ̃2
6

λ1,6(τ̃1)λ0,1(0)ρ0, τ̃2
6 ≤ t < τ̃3

6
(λ1,6(τ̃1)λ0,1(0) + λ0,3(0))ρ0, τ̃3

6 ≤ t < T

0, t = T

,

ρ7(t) =
{

0, 0 ≤ t < T

ρ0, t = T
,

ρ2 = ρ5 ≡ 0.

(3.3.12)

Again, by juxtaposition, we get an element of Cε. The set ψε(ρ) ⊆ Cε is
then constructed by all the possible convexifications as above of all sets of
extremal evolutions ρπ,ε. See Figure 3.3 for a graphic representation of ρdm

6
and its constant interpolation ρ6.
Remark 3.3.1. The functions λi,j and their products as shown in the ex-
ample above, together with the decisional and switching instants, give the
coefficients λi,j in the formal equations (3.2.8), for the decision-making part
ρdm of the evolution.
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0 Tτ̃2
6 τ̃3

6 t

ρdm
6

λ1,6(τ̃1)λ0,1(0)ρ0

(λ1,6(τ̃1)λ0,1(0) + λ0,3(0))ρ0

0 Tτ̃2
6 τ̃3

6 t

ρ6

Figure 3.3: Representation of ρdm
6 and of its constant interpolation ρ6

Lemma 3.3.1 (point (viii)). For any ρ ∈ Cε, the set ψε(ρ) is a non-empty
convex (and compact) subset of Cε. Moreover, the map ρ 7−→ ψε(ρ) has
closed graph.

Proof. Clearly the set ψε(ρ) is non-empty and moreover it is convex. In-
deed, if ρ1, ρ2 ∈ ψε(ρ) and λ ∈ [0, 1], then λρ1 + (1 − λ)ρ2 ∈ ψε(ρ). First,
note that the extremal evolutions are in a finite quantity {ρπ1,ε , . . . , ρπr,ε}
because the number of ε-optimal paths, πk,ε, k = 1, . . . , r, is finite. Hence
we can consider both ρ1 and ρ2 as a convex combination, decisional node
by decisional node (as described in Step 2), of all extremal evolutions, with
convex coefficients sets Λ1 and Λ2 (note that the decisional nodes (pi, τ̃i)
are determined by the fixed ρ ∈ Cε via (3.1.6), (3.3.11)). This gives that
λρ1 + (1−λ)ρ2 is a same kind of convex combination of the extremal evolu-
tions with set of convex coefficients λΛ1 + (1− λ)Λ2 (the sum is performed
ε-optimal path by ε-optimal path, πk,ε, and decisional node by decisional
node), and hence it belongs to ψε(ρ), which turns out to be convex.

Now, we prove that the multifunction ρ 7−→ ψε(ρ) has closed graph.
From this, we also get the closedness of ψε(ρ) and, since Cε is compact, it
follows that ψε(ρ) is compact too.

Consider a sequence {ρn}n ⊂ Cε with ρn −→ ρ in Cε, that is ρ ∈ Cε and
the convergence is in L2. We want to show that for every ρ′n ∈ ψε(ρn) with
ρ′n −→ ρ′ in Cε, we have ρ′ ∈ ψε(ρ).

Let us prove that, up to a subsequence, ρ′n −→ ρ̃′ in L2 with ρ̃′ ∈ Cε
and ρ̃′ ∈ ψε(ρ). By the uniqueness of the limit in L2, it must hold ρ′ = ρ̃′,
ending the proof. By Proposition 3.1.1, we have V n −→ V uniformly on [0, 1]
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(i.e., V (p, ·, ρn) −→ V (p, ·, ρ) uniformly on [0, T ]) and if t′n is optimal for
V (p, tn, ρn) and tn → t, t′n → t′, then t′ is optimal for V (p, t, ρ). Therefore,
denoting by Pn, Pnε , P, Pε the functions (3.1.6) and (3.3.11) corresponding
to ρn and ρ, respectively, we have

(p′n, t′n) ∈ Pn(p, tn) and (p′n, t′n)→ (p′, t′)⇒ (p′, t′) ∈ P (p, t), (3.3.13)

and hence, by definition of Pε, (3.3.11) (see also the comment below it), in
particular by the definition of F in (3.3.10), for every choice of (p′n, t̃′n) ∈
Pnε (p, tn) there exists (p′, t̃′) ∈ Pε(p, t) such that

(p′n, t̃′n)→ (p′, t̃′) up to a subsequence (with p′n, t′n, p′, t′ as in (3.3.13)).
(3.3.14)

Moreover, since the nodes are finite, there exists n̄ ∈ N such that for every
p,

pn → p ⇒ pn = p for every n ≥ n̄. (3.3.15)
Let (ρπ1,ε , . . . , ρπr,ε) be the extremal points of ψε(ρ), where π1, . . . , πr are
the ε-optimal paths. By (3.3.15), we can assume that for n sufficiently
large, also in ψε(ρn) the extremal points are exactly in the quantity r and
their sequences of nodes are the same as the ones of π1, . . . , πr and only
the decisional and switching instants may change with n. Let us denote
by ρπ1,n,ε, . . . , ρπr,n,ε those extremal points. Then, for n sufficiently large,
ρ′n ∈ ψε(ρn) is a convex combination, constructed as in Step 2, of the
extremal points ρπ1,n,ε, . . . , ρπr,n,ε. Let λni,j(t̃n) ∈ [0, 1] be the corresponding
coefficients for the generic decisional instant t̃n. Up to a subsequence, we can
assume that t̃n → t̃ and λni,j(t̃n) → λi,j =: λi,j(t̃) ∈ [0, 1] and also t̃′n → t̃′

with (p′, t̃′n) ∈ Pnε (p, t̃n) and, by (3.3.14), (p′, t̃′) ∈ Pε(p, t̃). Since t̃′n, t̃n
assume only discrete values on partition Pε, we can also assume t̃′n = t̃′ and
t̃n = t̃ for n sufficiently large. Hence the extremal points ρπ1,n,ε, . . . , ρπr,n,ε

are exactly the same as the ones of the limit case ψε(ρ): the same ε-optimal
paths π1, . . . , πr with the same decisional and switching instants. The only
convergence is in the convex coefficients.

Now, we construct ρ̃′ as the convex combination of the extremal points
with limit coefficients λi,j . Obviously ρ̃′ ∈ Cε and ρ̃′n −→ ρ̃′ in L2. To
conclude, we have to prove that ρ̃′ ∈ ψε(ρ). In particular, we have to show
that if (pj , t̃′) /∈ Pε(pi, t̃), then the corresponding λi,j(t̃) = 0. This is true
because, if λi,j(t̃) was greater than 0, then λni,j(t̃n) > 0 by convergence
and hence (pj , t̃′n) ∈ Pnε (pi, t̃n), and this is in contradiction with (3.3.14).
Therefore ρ̃′ ∈ ψε(ρ) and we conclude because, by construction, ρ′n −→ ρ̃′ in
L2 since the convergence of the coefficients λni,j gives the convergence of the
constant values of ρ′n on the partition Pε to the constant values of ρ̃′.
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Remark 3.3.2. Observe that the general case N > 3 works with the same
ideas and tools, being careful that we will have a more complex network (i.e,
many more nodes and paths, that is a more complex topology of the net-
work), which makes the fixed-point procedure above certainly harder from
a computational point-of-view but even just from a notational one, already
for what concerns the analytical description of ψε (see for example the de-
scription of ρ6 in the simple case in (3.3.12)). Moreover, here above, for
simplicity, we considered only paths starting from p0 = (0, 0, 0) and that,
at the initial time t = 0, all the agents are on p0, that is ρi(0) = 0 for all
i 6= 0. The case where at the initial time the mass is possible distributed to
different nodes, up to suitably construct the evolutions as in Step 2, which
will be more knotty, does not change the proof too much (we may have more
involved intersections and overlaps of switches, still in a finite number, as
ρ6 in (3.3.12) but probably in a more complicated way).

Still considering the network in Figure (3.2) as in (3.3.12), with the
same enumeration of nodes p0, p1, . . . , p7 = p̄, in order to give an idea of
the descriptive and notational complexity of the construction of ψε, already
in the case of that simple network, but with a generic initial distribution
ρ0 = (ρ0

0, ρ
0
1, . . . ρ

0
7), if we consider, for instance, the flow ρ6 through the

node p6, we have

ρ6 = ρ6,6 + ρ1,6 + ρ3,6 + ρ0,1,6 + ρ0,3,6.

The term ρ6,6 corresponds to the flow of the agents that at time t = 0 are
already on p6: all of them, at the decisional instant t = 0, choose a switching
instant τ6,7 optimally generated as in (3.3.10) in order to switch from p6 to
p7.

The term ρ1,6 corresponds to the flow, through p6, of the agents that at
t = 0 were on p1: all of them, at the decisional instant t = 0, choose a
switching instant τ1,6 optimally generated as in (3.3.10) in order to switch
from p1 to p6, together with the corresponding fraction λ1,6 of agents per-
forming such a switch. Hence, at the instant τ1,6, the mass of agents λ1,6ρ0

1
switches from p1 to p6. Such a mass of agents, at the (decisional) instant
τ1,6, optimally chooses a switching instant τ1,6,7 in order to switch from p6
to p7.

The term ρ3,6 is constructed similarly to ρ1,6 by replacing p1 with p3.
The term ρ0,1,6 corresponds to the flow, through p6, of the agents that

at t = 0 were on p0: all of them, at the decisional instant t = 0, choose a
switching instant τ0,1 optimally generated as in (3.3.10) in order to switch
from p0 to p1, together with the corresponding fraction λ0,1 of agents per-
forming such a switch. Hence, at the instant τ0,1, the mass of agents λ0,1ρ0

0



3.4 On the limit ε→ 0 and the existence and uniqueness of a
mean-field equilibrium 81

switches from p0 to p1. Such a mass of agents, at the (decisional) instant
τ0,1, optimally chooses a switching instant τ0,1,6 in order to switch from p1
to p6, together with the fraction λ0,1,6 of agents performing such a switch.
Therefore, at the instant τ0,1,6, the mass of agents λ0,1,6λ0,1ρ0

0, switches from
p1 to p6. Such a mass of agents, at the (decisional) instant τ0,1,6, optimally
chooses a switching instant τ0,1,6,7 in order to switch from p6 to p7.

The term ρ0,3,6 is constructed similarly to ρ0,1,6 by replacing p1 with p3.
Obviously, the coefficients λ above must be constrained to have sum equal

to 1 with the other corresponding coefficients. For instance, λ0,1,6 + λ0,1,4 =
1. Finally note that in the simple case (3.3.12), ρ6 corresponds to ρ0,1,6 +
ρ0,3,6 only, and, in particular, λ3,6 = 1, which means that λ3,5 = 0, for the
optimality hypotheses assumed in that example.

Theorem 3.3.1. Under all the hypotheses stated in §3.1, there exists an
ε-mean-field equilibrium of system (3.3.9).

Proof. The proof follows from Lemma 3.3.1, Remark 3.3.2 and the fixed-
point Kakutani-Ky Fan Theorem.

3.4 On the limit ε → 0 and the existence and
uniqueness of a mean-field equilibrium

In the sequel, we denote by ρε a fixed point for ψε(ρ), i.e., a total mass
satisfying ρε ∈ ψε(ρε). The existence of such fixed points is proved in the
previous section and now we will perform the limit procedure as ε → 0,
obtaining as limit ρ ∈ L2([0, T ], [0, 1])2N such that ρ ∈ ψ(ρ), where ψ is
constructed as in the previous points (i)–(viii) with the only difference that
we do not perform the approximation Pε in (iii), but we just consider the
function P , (3.1.6). Hence ρ, together with its convexity coefficients, will be
a solution of (3.3.9) and a mean-field equilibrium.

One of the main problems in performing such a limit is the fact that the
functions t 7−→ τ = ϕ(t) (see Remark 3.1.1) may be multivalued, and, in
particular, with a continuum (an interval) as image of t. This problem was
bypassed in the previous section using the time-discretizetion given by the
partition Pε. We first assume that the functions ϕ are not multivalued and
we prove, in such a case, the existence of a mean-field equilibrium, that is
of a function ρ ∈ L2 such that ρ ∈ ψ(ρ).
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Theorem 3.4.1. Under all the hypotheses stated in §3.1 and assuming the
single-valued feature of ϕ, there exists a mean-field equilibrium of system
(3.3.9), that is there exists ρ ∈ L2 such that ρ ∈ ψ(ρ).

Proof. First of all note that, fixed ρ, under the hypothesis on ϕ, for every
decisional instant t and node pi, there exists a unique optimal switching
instant τ for the switch to pj , that is (pj , τ) ∈ P (t, pi). This fact gives that
the mass evolution ρ′ ∈ ψ(ρ) is also piecewise constant and similarly con-
structed as in Step 2, §3.3.1, with the only difference that now the pieces of
constancy are not fixed a priori (we do not have the partition Pε). More-
over, for all ε > 0, the function Pε, (3.3.11), evaluated at (t, pi), generates
at most two ε-approximated switching instants for the switch to pj : the
possible approximation τ̃ε of τ by the function F in (3.3.10) (and not the
whole intersection of the nodes of the partition with the interval ϕ(t) in the
case of multivalued feature). Finally, τ̃ε → τ as ε→ 0.

Now, recall that (see the beginning of §3.3.1) the fixed points ρε are
piecewise constant with at most a fixed number M of pieces of constancy.
Hence, possibly extracting a subsequence, we can make such intervals of
constancy converge as well as the corresponding values of the constants.
We then obtain a function ρ such that, up to a subsequence, ρε → ρ in
L2. The convergence of the constant values is obviously constructed by
the convergence, up to a subsequence, of the convex coefficients λεi,j ∈ R
evaluated on the decisional instants and implemented at the corresponding
ε-approximated instants as in Step 2, §3.3.1. Note that the decisional and
switching instants are the extremal points of the intervals of constancy, and
also that, being the number of possible cases finite, we may assume, up to
a subsequence, that those ones are decisional and switching instants for the
same switch from pi to pj , i.e. for the same i and j for all ε. Finally note
that ρε, being a fixed point of ψε, is exactly constructed by its coefficients
λεi,j implemented on the nodes that are generated by ρε itself via Pε.

Arguing as in the proof of Lemma 3.3.1, using Proposition 3.1.1 and
similar convergence for ε → 0 as in (3.3.13) and (3.3.14), we have that
ρ ∈ ψ(ρ) (i.e.: ρ is constructed by the coefficients λi,j implemented on the
nodes that are generated by ρ itself via P , and moreover if the switch is not
optimal, then λi,j = 0).

3.4.1 The general case: ϕ multivalued
Without the single-valued hypothesis on ϕ, the passage to the limit as ε→ 0
is more involved. Indeed, if the image of the decisional time t is an interval
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[τ−, τ+], in the ε-approximation case we discretize it through the partition
Pε and, on every node, we get a value λεi,j(t, ·) which composes with the
others. Formally, we have a sum of weighted delta functions on the nodes
of Pε inside [τ−, τ+]. In the the limit as ε→ 0, we obtain instead a possible
sum of functions λi,j(t, ·), defined on the whole interval [τ−, τ+] and other
sums of delta functions. Hence the situation is more complex, including the
interpretation of system (3.2.8). A deeper investigation of this situation is
going to be the subject of future works. Again considering a particular case,
where ρε −→ ρ in L2 and ρ, via the functions P , generates functions ϕ not
multivalued, then ρ may be a mean-field equilibrium because the proof of
Theorem 3.4.1 can be probably adapted. Also for this case the details have
not been checked. However, in Appendix A.3, we give an explicit example
of possible costs that guarantee the single-valued feature of ϕ.

3.4.2 On the uniqueness of the equilibrium
The uniqueness of the equilibrium is often proved by assuming the Lasry-
Lions monotonicity condition on the cost (see [31]). Our problem does
not immediately fit into such a property because of its deterministic and
network-type features, and the presence of two kinds of time variables. Any-
way, in Appendix A.2, we try to show, by two simple examples, how a
monotonicity-type condition can be promising in order to study the unique-
ness of the equilibrium, but the real implementation of that condition in our
model is completely left to future studies.



Conclusions

The aim of this thesis was to present some optimal visiting problems in
different frameworks (multi-dimensional and network). For each of them,
we studied the model for a single player, proving rather exhaustively the
well-position of the problem, and then the model for a huge population of
agents. For the latter, several difficulties arose for both frameworks. Some
mainly due to the non-uniqueness of the optimal control, for which we had
to propose different approaches to address the mean-field case and to study
the existence of an equilibrium. Others essentially due to the deterministic
features and to the presence of switches as well as more than one target in
the dynamics of the problem. This led us to a step-by-step study, focusing
at first on giving a suitable formulation to the continuity equation for the
distribution of agents, and proving some important results which, although
partial, are necessary for the continuation of the work and for a possible
extension to a more general theory of mean-field games. To this purpose, a
rigorous investigation, together with other questions left open in the thesis,
is going to be the subject of future research.





Appendix A

Auxiliary results and proofs

A.1 Preliminary results on the time-dependent op-
timal stopping problem in Ch. 1, §1.1.3

The aim of this section is to prove Lemma 1.1.1 in Ch 1, §1.1.3, which is
Lemma A.1.7 here. In particular, at first we prove it in the case with no
control, which is Lemma A.1.5. Then, we observe that the general case
can be proved by combining Lemma A.1.5 and an approximation argument,
which is Lemma A.1.6, and hence we give the proof. As we explained also
at the beginning of §1.1.3, for the results and the proofs in this section we
suitably generalize the results in [9] for an optimal stopping problem with
no time-dependence and infinite horizon feature.

Let Ω ⊂ Rd be an open subset. Let us consider the system
{
y′(s) = f(y(s)), s ∈]t, T ]
y(t) = x ∈ Ω

, (A.1.1)

where T > 0, t ∈ [0, T ] and f : Ω −→ Rd satisfies the same hypotheses in
§1.1.3.

Let us associate to a function u ∈ C0(Ω× [0, T ]) and (x, t) ∈ Ω× [0, T [,
the sets

D+u(x, t) =
{

(p, g) ∈ Rd+1 :

lim sup
(y,s)→(x,t),(y,s)∈Ω×[0,T [

u(y, s)− u(x, t)− g(s− t)− p · (y − x)
‖y − x‖+ |s− t| ≤ 0

}
,
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D−u(x, t) =
{

(p, g) ∈ Rd+1 :

lim inf
(y,s)→(x,t),(y,s)∈Ω×[0,T [

u(y, s)− u(x, t)− g(s− t)− p · (y − x)
‖y − x‖+ |s− t| ≤ 0

}
,

that is the super- and the subdifferential (or semidifferentials) of u at (x, t)
respectively.

The following lemma provides a description of D+u(x, t) and D−u(x, t)
in terms of test functions.

Lemma A.1.1. Let u ∈ C0(Ω× [0, T ]). Then,

(a) (p, g) ∈ D+u(x, t) if and only if there exists ϕ ∈ C1(Ω × [0, T ]) such
that Dxϕ(x, t) = p, ϕt(x, t) = g and u − ϕ has a local maximum at
(x, t);

(b) (p, g) ∈ D−u(x, t) if and only if there exists ϕ ∈ C1(Ω × [0, T ]) such
that Dxϕ(x, t) = p, ϕt(x, t) = g and u − ϕ has a local minimum at
(x, t).

Proof. At first we prove (a). Let (p, g) ∈ D+u(x, t). Then, for some δ > 0,

u(y, s) ≤ u(x, t) + p · (y − x) + g(s− t)
+ σ(‖y − x‖+ |s− t|)(‖y − x‖+ |s− t|) for any (y, s) ∈ B((x, t), δ),

where σ is a continuous increasing function on [0,+∞[ such that σ(0) = 0.
Now define a C1 function ρ by

ρ(r) =
∫ r

0
σ(τ)dτ.

It is not difficult to check that the properties

ρ(0) = ρ′(0) = 0, ρ(2r) ≥ σ(r)r

imply that the function ϕ defined by

ϕ(y, s) = u(x, t) + p · (y − x) + g(s− t) + ρ (2(‖y − x‖+ |s− t|))

belongs to C1(Rd × [0, T ]) and Dxϕ(x, t) = p, ϕt(x, t) = g. Moreover, for
(y, s) ∈ B((x, t), δ),
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(u− ϕ)(y, s) ≤ σ(‖x− y‖+ |s− t|)(‖y − x‖+ |s− t|)
− ρ (2(‖y − x‖ − |s− t|)) ≤ 0 = (u− ϕ)(x, t).

For the opposite implication, it is sufficient to observe that

u(y, s)− u(x, t)−Dxϕ(x, t) · (y − x)− ϕt(x, t)(s− t)
≤ ϕ(y, s)− ϕ(x, t)−Dxϕ(x, t) · (y − x)− ϕt(x, t)(s− t)

for (y, s) ∈ B((x, t), δ), and the proof of (a) is complete.
Since D−u(x, t) = −(D+(−u)(x, t)), the proof of (b) follows from the

above argument applied to −u.

A fundamental property of the super- and subdifferential and the semid-
ifferential versions of a useful fact in elementary calculus are shown in the
following lemma.

Lemma A.1.2. Let u ∈ C0(Ω× [0, T ]).

(i) The sets A+ = {(x, t) ∈ Ω × [0, T [: D+u(x, t) 6= ∅}, A− = {(x, t) ∈
Ω× [0, T [: D−u(x, t) 6= ∅} are dense.

(ii) For v(x, t, r) = ϕ(r)u(x, t) ((x, t) ∈ Ω× [0, T ], r ∈ R), we have

D+v(x, t, r) = {(q, g, σ) ∈ Rd+2 :
(q, g) ∈ ϕ(r)D+u(x, t), σ = ϕ′(r)u(x, t)},

provided ϕ ∈ C1(R), ϕ(r) ≥ 0 for all r ∈ R.

Proof. Let us prove (i). Let (x̄, t̄) ∈ Ω × [0, T [ and consider the smooth
function

ϕε(x, t) = ‖x− x̄‖
2 + |t− t̄|2
ε

.

For any ε > 0, u − ϕε attains its maximum over B = B((x̄, t̄), R) at some
point (xε, tε). From the inequality

(u− ϕε)(xε, tε) ≥ (u− ϕε)(x̄, t̄) = u(x̄, t̄)

we get, for all ε > 0,

‖xε − x̄‖2 + |tε − t̄|2 ≤ 2ε sup
(x,t)∈B

|u(x, t)|.
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Hence (xε, tε) is not on the boundary of B for ε sufficiently small, and, by
(a) of Lemma A.1.1,

(Dxϕε(xε, tε), ∂tϕε(xε, tε)) =
(

2xε − x̄
ε

, 2 tε − t̄
ε

)

belongs to D+u(xε, tε). This proves that A+ is dense. Similar arguments
show that A− is dense too.

Now we prove (ii). Since ϕ ∈ C1(R) we have

v(y, τ, s)− v(x, t, r) = ϕ(s)u(y, τ)− ϕ(r)u(x, t)
= ϕ(s)u(y, τ)− (ϕ(s) + ϕ′(s)(r − s) + o(|r − s|))u(x, t)

= ϕ(s)u(y, τ)− ϕ(s)u(x, t)− ϕ′(s)u(x, t)(r − s) + o(|s− r|)u(x, t)
= ϕ′(s)u(x, t)(s− r) + ϕ(s)(u(y, τ)− u(x, t)) + o(|s− r|).

Hence (q, g, σ) ∈ D+v(x, t, r) if and only if

v(y, τ, s)− v(x, t, r)
≤ p · (x− y) + g(τ − t) + σ(s− r) + o(‖x− y‖+ |τ − t|+ |s− r|),

that is

ϕ′(s)u(x, t)(s− r) + ϕ(s)(u(y, τ)− u(x, t)) + o(|s− r|)
≤ p · (x− y) + g(τ − t) + σ(s− r) + o(‖x− y‖+ |τ − t|+ |s− r|),

that is

(ϕ′(s)u(x, t)− σ)(s− r) + ϕ(s)(u(y, τ)− u(x, t))
− p · (x− y)− g(τ − t) ≤ o(‖x− y‖+ |τ − t|+ |s− r|)

for any (y, τ, s) in a neighborhood of (x, t, r). This easily implies that σ =
ϕ′(s)u(x, t).

Assume now ϕ(r) 6= 0 and that (q/ϕ(r), g/ϕ(r)) /∈ D+u(x, t). This
implies

u(y, τ)− u(x, t) > q

ϕ(r) · (x− y) + g

ϕ(r)(τ − t) + o(‖x− y‖+ |τ − t|),

i.e.,

ϕ(r)(u(y, τ)− u(x, t))− q · (x− y)− g(τ − t) > ϕ(r)o(‖x− y‖+ |τ − t|),
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a contradiction with the above inequality with r = s. If ϕ(s) = 0, the choice
r = s gives

−q · (x− y)− g(τ − t) ≤ o(‖x− y‖+ |τ − t|),

thus q = 0 and g = 0. Hence the thesis follows.

Remark A.1.1. A similar result of Lemma A.1.2, (ii), holds for D−. The
sign condition on ϕ is essential. Indeed, in general, if u ∈ C0(Ω × [0, T ]),
then

(1) D+(αu)(x, t) = αD+u(x, t) if α > 0;

(2) D+(αu)(x, t) = αD−u(x, t) if α < 0.

In the following lemma, the term T does not stand for the fixed finite
horizon above.

Lemma A.1.3. Let u ∈ C0(]0, T [), T > 0. Then the following statements
are equivalent

(i) u is nondecreasing in ]0, T [;

(ii) u′ ≥ 0 in ]0, T [ in the viscosity sense;

(iii) −u′ ≤ 0 in ]0, T [ in the viscosity sense.

Proof. See for example [9], Ch. II, §5.5, Lemma 5.15.

Remark A.1.2. From Lemma A.1.3 it follows that if ` ∈ C0(]0, T [), then
t 7−→ u(t)+

∫ t
0 `(s)ds is nondecreasing if and only if u′+` ≥ 0 or −u′−` ≤ 0

in the viscosity sense.
Moreover, it can be proved similarly that u is nonincreasing if and only

if u′ ≤ 0 in the viscosity sense. Hence, u′ = 0 in the viscosity sense is
equivalent to u being a constant.

In order to generalize Lemma A.1.3 to a higher dimension, let u ∈ C0(Ω×
[0, T ]). For a fixed z = (x2, . . . , xd, t) ∈ Rd−1 × [0, T ], we set

Ωz := {x1 ∈ R : x = (x1, z) ∈ Ω× [0, T ]}

and
uz : Ωz −→ R, uz(x1) := u(x1, z).
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Lemma A.1.4. Let u, ` ∈ C0(Ω × [0, T ]). Then the following statements
are equivalent:

(i) for each z ∈ Rd−1 × [0, T ], uz is a viscosity supersolution of

u′z(x1) ≥ `z(x1) in Ωz;

(ii) u is a viscosity supersolution of

∂u

∂t
(x1, x2, . . . , xd, t) + ∂u

∂x1
(x1, x2, . . . , xd, t)

≥ `(x1, x2, . . . , xd, t) in Ω× [0, T [.

Proof. At first we prove that (ii) implies (i). Let z0 ∈ Rd−1 × [0, T ] such
that Ωz0 6= ∅ and assume that x0

1 is a strict local minimum for uz0 − η with
η ∈ C1. It is not restrictive to assume that η ≤ −1 in B(x0

1, δ) for some
δ > 0. Consider now

ϕε(x1, . . . , xd, t) := η(x1)
(

1 + ‖z − z
0‖2

ε

)
, ε > 0.

If xε = (xε1, zε) is a minimum point for u − ϕε in B(x0, δ) (x0 = (x0
1, z

0)),
then

u(xε)− ϕε(xε) = u(xε)− η(xε1)− η(xε1)‖z
ε − z0‖2
ε

≤ u(x0)− ϕε(x0) = uz0(x0
1)− η(x0

1). (A.1.2)

Since η ≤ −1 in B(x0
1, δ), it follows that

‖zε − z0‖2
ε

≤ uz0(x0
1)− η(x0

1) + η(xε1)− u(xε).

Therefore
‖zε − z0‖2

ε
≤ C, zε → z0, as ε→ 0+.

Then, at least for a subsequence,

xε1 → x̄1,
‖zε − z0‖2

ε
→ α ≥ 0, as ε→ 0+.

Letting ε→ 0+ in (A.1.2) we obtain

uz0(x0
1)− η(x0

1) ≥ u(x̄1, z
0)− η(x̄1)− η(x̄1)α ≥ uz0(x̄1)− η(x̄1).
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Since x0
1 was a local strict minimum for uz0 − η, the above implies x̄1 = x0

1
and α = 0. Now, assuming the validity of (ii), we have

∂ϕε
∂t

(xε) + ∂ϕε
∂x1

(xε)

= η(x1)2(tε − t0)
ε

+ η′(xε1)
(

1 + ‖z
ε − z0‖2
ε

)
≥ `(xε).

If we let ε→ 0+ in the above inequality, we conclude

η′(x0
1) ≥ `(x0

1, z
0) = `z0(x0

1),

which shows that (i) holds.
The proof of the reverse implication is straightforward. It is enough to

observe that if x̄ = (x̄1, z̄) is a local minimum for u−ϕ, ϕ ∈ C1(Ω× [0, T ]),
then x̄1 is a local minimum for uz̄(x1)− ϕ(x1, z̄).

In the following, we use the notation

τ(x,t) := min{inf{τ ≥ t : y(x,t)(τ) /∈ Ω}, T}, (x, t) ∈ Ω× [0, T ],

where y(x,t)(·) is the solution of (A.1.1).

Lemma A.1.5. Let us assume u, ` ∈ C0(Ω × [0, T ]), λ ∈ R. Then the
following statements are equivalent:

(i) for all x ∈ Ω and t ≤ s ≤ τ < τ(x,t),

e−λ(s−t)u(y(x,t)(s), s)− e−λ(τ−t)u(y(x,t)(τ), τ)

≤
∫ τ

s
e−λ(ζ−t)`(y(x,t)(ζ), ζ)dζ;

(ii) ut(x, t)−λu(x, t) + f(x) ·Dxu(x, t) + `(x, t) ≥ 0, (x, t) ∈ Ω× [0, T [, in
the viscosity sense;

(iii) −ut(x, t) + λu(x, t)− f(x) ·Dxu(x, t)− `(x, t) ≤ 0, (x, t) ∈ Ω× [0, T [,
in the viscosity sense.

Proof. At first let us observe that it is not restrictive to assume λ = 0.
Indeed, u satisfies (ii) if and only if û(x, xd+1, t) := xd+1u(x, t) is a viscosity
supersolution of

f̂ ·Dxû+ ˆ̀≥ 0 in Ω× R+ × [0, T ],
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where f̂(x, xd+1) := (f(x),−λxd+1) and ˆ̀(x, xd+1, t) := xd+1`(x, t) (see
Lemma A.1.2, (ii), and Remark A.1.1). On the other hand, it is easy to
check that (i) is equivalent to

û(ŷ(s), s)− û(ŷ(τ), τ) ≤
∫ τ

s

ˆ̀(ŷ(ζ), ζ)dζ, t ≤ s ≤ τ,

where ŷ is the solution of
{
ŷ′(τ) = f̂(ŷ(τ)) = (f(y(τ)),−λyd+1(τ))
ŷ(t) = (x, 1)

.

Let us prove that (i) implies (ii). Assume then that (i) holds with λ = 0.
It is not hard to show that, for (x, t) ∈ Ω × [0, T [ and s < t, |s − t| small
enough,

u(y(x,t)(s), s)− u(x, t) ≤
∫ t

s
`(y(x,t)(ζ), ζ)dζ. (A.1.3)

Now, if (x, t) ∈ Ω× [0, T [ is a local minimum for u− ϕ, ϕ ∈ C1(Ω× [0, T ]),
then

ϕ(y(x,t)(s), s)− ϕ(x, t) ≤ u(y(x,t)(s), s)− u(x, t) (A.1.4)

for |s− t| small enough. Combining (A.1.3) and (A.1.4) we obtain

ϕ(y(x,t)(s), s)− ϕ(x, t) ≤
∫ t

s
`(y(x,t)(ζ), ζ)dζ.

Dividing this by s− t and letting s→ t we conclude that −ϕt(x, t)− f(x) ·
Dxϕ(x, t) ≤ `(x, t) and (ii) is proved.

To prove the reverse implication, let us assume first that (x0, t0) ∈ Ω×
[0, T [ is a local minimum for u−ϕ with ϕ ∈ C1(Ω× [0, T ]). Then (ii) gives

ut(x0, t0) + f(x0) ·Dxu(x0, t0) + `(x0, t0) ≥ 0 (A.1.5)

in the viscosity sense. Now if f(x0) = 0, then y(x0,t0)(τ) ≡ x0. Inequality
(i) reduces in this case to

u(x0, t0)− u(x0, τ) ≤
∫ τ

t0
`(x0, ζ)dζ.

Dividing both members by τ − t0 and letting τ → t0, we get

−ut(x0, t0) ≤ `(x0, t0),

which is clearly implied by (A.1.5).
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Consider now the case f(x0) 6= 0. Under the hypotheses on f , by classical
results on ordinary differential equations, there exists a local diffeomorphism
Φ such that, in the new coordinates, ξ = Φ(x) system (A.1.1) becomes

{
ξ′(τ) = e1 = (1, 0, . . . , 0)
ξ(t) = x0

. (A.1.6)

The change of coordinates in (ii) implies that u(Φ−1(ξ), t) satisfies

ut(Φ−1(ξ), t) + f(Φ−1(ξ)) · JΦ(Φ−1(ξ))Dxu(Φ−1(ξ), t)
+ `(Φ−1(ξ), t) ≥ 0

in the viscosity sense. Due to (A.1.6), this gives

ut(Φ−1(ξ), t) + ∂u

∂ξ1
(Φ−1(ξ), t) + `(Φ−1(ξ), t) ≥ 0.

Using now Lemmas A.1.3 and A.1.4 (see also Remark A.1.2) we conclude
that

u(Φ−1(s, 0, . . . , 0), s)− u(Φ−1(τ, 0, . . . , 0), τ)

≤
∫ τ

s
`(Φ−1(ζ, 0, . . . , 0), ζ)dζ

for t ≤ s ≤ τ , with s, τ sufficiently close to t.
By definition of Φ, this is the same as

u(y(x0,t)(s), s)− u(y(x0,t)(τ), τ) ≤
∫ τ

s
`(y(x0,t)(ζ), ζ)dζ,

for t ≤ s ≤ τ , s, τ sufficiently close to t. A simple continuation argument
shows the validity of (i) for any t ≤ s ≤ τ < τ(x,t).

Up to now we have proved that (i) holds for any (x, t) ∈ A− = {(x, t) ∈
Ω × [0, T [: D−u(x, t) 6= ∅} (recall Lemma A.1.1). Since A− is dense in
Ω × [0, T [ (see Lemma A.1.2, (i)), we conclude the validity of (i) for all
(x, t) ∈ Ω× [0, T [ using the continuous dependence of the solution of (A.1.1)
with respect to the initial datum.

The equivalence between (i) and (iii) can be proved similarly.

Let us now consider the controlled system (1.1.7). We set, for (x, t) ∈
Ω ∈ [0, T ] and α ∈ A,

τ(x,t)(α) := min{inf{τ ≥ t : y(x,t)(τ ;α) /∈ Ω}, T}.
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If we use constant controls α(τ) ≡ a in (1.1.7), then the equivalence between

e−λ(s−t)u(y(x,t)(s; a))− e−λ(τ−t)u(y(x,t)(τ ; a))

≤
∫ τ

s
e−λ(ζ−t)`(y(x,t)(ζ; a), a, ζ)dζ

for every x ∈ Ω, a ∈ A and t ≤ s ≤ τ < τ(x,t)(a),

−ut(x, t) + λu(x, t) +H(x, t,Dxu(x, t)) ≤ 0 (A.1.7)

for every (x, t) ∈ Ω× [0, T [, in the viscosity sense, and

ut(x, t)− λu(x, t)−H(x, t,Dxu(x, t)) ≥ 0 (A.1.8)

for every (x, t) ∈ Ω × [0, T [, in the viscosity sense, is a straightforward
consequence of Lemma A.1.5. A repeated application of Lemma A.1.5 shows
that (A.1.7) and (A.1.8) are equivalent to

e−λ(s−t)u(y(x,t)(s;α), s)− e−λ(τ−t)u(y(x,t)(τ ;α), τ)

≤
∫ τ

s
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ (A.1.9)

for all x ∈ Ω, t ≤ s ≤ τ < τ(x,t)(α), α ∈ PC, where PC ⊂ A is the class
of piecewise constant controls. To prove the equivalence between (A.1.7),
(A.1.8), (A.1.9) for general controls α ∈ A, that is Lemma 1.1.1 in §1.1.3
and Lemma A.1.7 below, we need the following

Lemma A.1.6. Let α ∈ A, (x, t) ∈ Ω× [0, T ] and y(τ) = y(x,t)(τ ;α) be the
corresponding solution of (1.1.7). Under the hypotheses on f in §1.1.3, for
every T > 0 there exists a sequence {αn} ⊂ A such that





αn is piecewise constant on [t, T ],
|αn(τ)− α(τ)| < 1/n for every τ ∈ En ⊂ [t, T ],

En compact and L([t, T ] \ En) < 1/n
, (A.1.10)

yn −→ y uniformly in [t, T ], (A.1.11)
where yn(τ) = y(x,t)(τ ;αn).

Proof. Assertion (A.1.10) is a consequence of Lusin’s Theorem (see Theorem
B.2.1). To prove (A.1.11) observe that

|yn(τ)− y(τ)| ≤ L
∫ τ

t
|yn(s)− y(s)|ds+

∫ τ

t
|Bn(s)|ds,
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where L is as in (1.1.8) and
Bn(s) = f(y(s), αn(s))− f(y(s), α(s)).

Hence, by Gronwall’s inequality, for τ ∈ [t, T ]

|yn(τ)− y(τ)| ≤
∫ T

t
|Bn(s)|ds+ LeLT

∫ T

t

∫ T

s
|Bn(ζ)|dζds. (A.1.12)

From (A.1.10), αn(τ) −→ α(τ) a.e. in [t, T ] (at least for a subsequence).
Hence by continuity

Bn(ζ) −→ 0 a.e. in [t, T ].
Moreover, by the continuity and the boundedness of f on Ω×A,

|Bn(ζ)| ≤ C for every ζ ∈ [t, T ], n ∈ N .

Assertion (A.1.11) now follows from (A.1.12) and the Dominated Conver-
gence Theorem.

Lemma A.1.7. Let us assume ` ∈ C0(Ω × A × [0, T ]), ` bounded, λ ∈ R
and u ∈ C0(Ω× [0, T ]). Then the following statements are equivalent:

(i) for all x ∈ Ω, α ∈ A and t ≤ s ≤ τ < τ(x,t)(α),

e−λ(s−t)u(y(x,t)(s;α), s)− e−λ(τ−t)u(y(x,t)(τ ;α), τ)

≤
∫ τ

s
e−λ(ζ−t)`(y(x,t)(ζ;α), α(ζ), ζ)dζ,

(ii) ut(x, t) − λu(x, t) − H(x, t,Dxu(x, t)) ≥ 0, (x, t) ∈ Ω × [0, T [, in the
viscosity sense,

(iii) −ut(x, t) + H(x, t,Dxu(x, t)) ≤ 0, (x, t) ∈ Ω × [0, T [, in the viscosity
sense,

where H is as in §1.1.3.
Proof. The discussion before Lemma A.1.6 shows that in order to prove
Lemma A.1.7 is sufficient to show that (A.1.9) implies (i) for any u ∈ C0(Ω×
[0, T ]) (the reverse implication being trivial). To this aim, let α ∈ A and
take αn and yn as in Lemma A.1.6. By (A.1.9),

e−λ(s−t)u(yn(s), s)− e−λ(τ−t)u(yn(τ), τ) ≤
∫ τ

s
e−λ(ζ−t)`(yn(ζ), αn(ζ), ζ)dζ

for t ≤ s ≤ τ < τ(x,t)(αn). Since αn −→ α almost everywhere and yn −→
y(x,t)(·;α) uniformly on compact intervals by Lemma A.1.6, letting n→ +∞
in the previous inequality, we get the desired result.
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A.2 On the uniqueness of the equilibrium in Ch.
3, §3.4

In this section, we show two examples that do not necessarily meet in all
their aspects the model studied in Ch. 3. They are just inspiring examples
about the possible use of a monotonicity property in order to prove the
uniqueness of the equilibrium.

We first recall that, as in §3.4, a mean-field equilibrium is a function
ρ ∈ L2 such that ρ ∈ ψ(ρ), which means that ρ is a juxtaposed convex com-
bination of the extremal evolutions generated by ρ itself via the optimization
functions P (3.1.6).

p0

p3

p2

p1

p4

Figure A.1: The network of Example A.2.1

Example A.2.1. Consider the network in Figure A.1, where the goal is
to start from p0 and to arrive to p4, along the three possible paths: p0 →
p1 → p4, p0 → p2 → p4 and p0 → p3 → p4. Moreover, we suppose that
all the agents at the time t = 0 are on p0, that at the time t = 1 they are
all forced to switch to one of the three nodes p1, p2 and p3, and that at
the time t = T = 2 they are all forced to switch to p4, ending the game.
Since the switching instants are fixed and the significant nodes are just p1,
p2 and p3, we only give the cost of stay on such nodes respectively, inde-
pendently of time: C1(ρ1) = ρ1, C2(ρ2) = 2ρ2, C3(ρ3) = 3ρ3, where ρi is
the mass in the node pi. In this case a mean-field equilibrium is given by
(λ1, λ2, λ3) = (6/11, 3/11, 2/11), which means that, denoted by ρ0 the initial
distribution in p0, at time t = 1 the fraction λiρ0 switches to the node pi,
i = 1, 2, 3. Indeed, with these fractions all the costs C1, C2, C3 are equal
to (6/11)ρ0. Hence if all the agents in p0 conjecture such a distribution,
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then all the possible generated extremal distributions are the following ones:
(ρ0, 0, 0), (0, ρ0, 0), (0, 0, ρ0), that is all the switches are optimal. The ac-
tual mass (λ1ρ0, λ2ρ0, λ3ρ0) is then a convex combination of the generated
extremal distributions with convex coefficients (λ1, λ2, λ3), and hence it is
a mean field equilibrium. By linearity of the costs, the coefficients λi are
easily calculated by imposing C1(λ1) = C2(λ2) = C3(λ3) with the constraint
λi ∈ [0, 1] and λ1 + λ2 + λ3 = 1, and they are the only ones satisfying the
system and the constraint. Note that if, for example, we are looking for
a possible equilibrium using just the nodes p1 and p2, that is we look for
λ1, λ2 ≥ 0, λ1 + λ2 = 1 and C1(λ1) = C2(λ2), we find λ1 = 2/3, λ2 = 1/3
and then we have the distribution (λ1ρ0, λ2ρ0, 0). But such a distribution
is not an equilibrium because it gives the costs ((2/3)ρ0, (2/3)ρ0, 0), which
generates the only extremal distribution (0, 0, ρ0): all agents switch to p3.
And (λ1ρ0, λ2ρ0, 0) is not a convex combination of (i.e., is not equal to) the
singleton {(0, 0, ρ0)}. The problem then has a unique equilibrium which is
given by ((6/11)ρ0, (3/11)ρ0, (2/11)ρ0).

Note that, whenever we find a triple of convex coefficients (λ1, λ2, λ3)
such that C1(λ1) = C2(λ2) = C3(λ3), then the corresponding distribution
(λ1ρ0, λ2ρ0, λ3ρ0) is an equilibrium because it gives the same costs along any
path, and then generates all the extremal distributions (ρ0, 0, 0), (0, ρ0, 0),
(0, 0, ρ0) of which it is a convex combination. The question about uniqueness
is then: given three functions Ci : [0, 1] → R, i = 1, 2, 3, under which
condition there exists at most one triple of convex coefficients (λ1, λ2, λ3)
such that

C1(λ1ρ0) = C2(λ2ρ0) = C3(λ3ρ0)? (A.2.13)

A condition that guarantees such a uniqueness is the following monotonicity
property which is, in our discrete case, the condition in [31]:

3∑

i=1

(
Ci(λ′iρ0)− Ci(λ′′i ρ0)

)
(λ′i − λ′′i ) > 0

for all (λ′1, λ′2, λ′3) 6= (λ′′1, λ′′2, λ′′3) convex triples and for any ρ0 > 0.
(A.2.14)

Indeed, let us suppose that there are two convex triples

(λ′1, λ′2, λ′3) = (λ′1, λ′2, 1− λ′1 − λ′2), (λ′′1, λ′′2, λ′′3) = (λ′′1, λ′′2, 1− λ′′1 − λ′′2)

satisfying (A.2.13), and denoting by C ′, C ′′ the common costs, for the single
triple respectively, we obtain
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3∑

i=1
(C ′i − C ′i)(λ′i − λ′′i )

= (C ′ − C ′′)
2∑

i=1
(λ′i − λ′′i ) + (C ′ − C ′′)(1− λ′1 − λ′2 − 1 + λ′′1 + λ′′2) = 0

and hence, by (A.2.14), (λ′1, λ′2, λ′3) = (λ′′1, λ′′2, λ′′3).

p0
p4

p3

p1

p2

p5

Figure A.2: The network of Example A.2.2

Example A.2.2. Consider the network in Figure A.2. The goal is to start
from p0 and to reach p5 among one of the possible paths p0 → p1 → p5,
p0 → p2 → p3 → p5 and p0 → p2 → p4 → p5. Again, the agents at t = 0
are all on p0, with distribution ρ0, at time t = 1 they are forced to switch to
p1 or to p2, at time t = 3/2 the agents on p2 are forced to switch to p3 or
p4 and at the time t = T = 2 they are all forced to switch to p5. The costs
are C1(ρ1) = ρ1, C2(ρ2) = 4ρ2, C3(ρ3) = 3ρ3, C4(ρ4) = 2ρ4. Moreover, the
costs are also multiplied by the amount of the time spent on the node. We
denote by (λ1, λ2, λ2,3, λ2,4) the coefficients of a possible equilibrium, that is:
at t = 1 the fraction given by λ1ρ0 switches to p1 and the fraction given by
λ2ρ0 switches to p2; at time t = 3/2, the fraction λ2λ2,3ρ0 switches from p2
to p3 and the fraction λ2λ2,4ρ0 switches from p2 to p4. Still by linearity of
the costs, such coefficients are founded by solving





2λ2 + 3
2λ2λ2,3 = λ1

2λ2 + λ2λ2,4 = λ1

λ1 + λ2 = λ2,3 + λ2,4 = 1
, (A.2.15)
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which corresponds to, taking also account of the time spent on the node,




C2(λ2ρ0)
2 + C3(λ2λ2,3ρ0)

2 = C1(λ1ρ0)
C2(λ2ρ0)

2 + C4(λ2λ2,4ρ0)
2 = C1(λ1ρ0)

λ1 + λ2 = λ2,3 + λ2,4 = 1
. (A.2.16)

From (A.2.15), we obtain the unique solution

(λ1, λ2, λ2,3, λ2,4) =
(13

18 ,
5
18 ,

2
5 ,

3
5

)
.

This is an equilibrium because it generates the distribution
(13

18ρ0,
5
18ρ0,

1
9ρ0,

1
6ρ0

)
, (A.2.17)

which gives the cost, for each one of the three paths, equal to 13/18. Hence
all the paths are equivalent and the distribution generates all the possible
extremal evolutions (ρ0, 0, 0, 0), (0, ρ0, ρ0, 0), (0, ρ0, 0, ρ0) of which (A.2.17)
is a juxtaposed convex combination.

Similarly as in (A.2.14), the uniqueness of the solution of (A.2.16) is
guaranteed by the following monotonicity conditions




4∑

i=3

(
Ci(λλ′2,iρ0)− Ci(λλ′′2,iρ0)

)
(λ′2,i − λ′′2,i) > 0 for every λ > 0,





(
C1(λ′1ρ0)− C1(λ′′1ρ0)

)
(λ′1 − λ′′1) + 1

2
(
C2(λ′2ρ0) + C3(λ′2λ′2,3ρ0)

−C2(λ′′2ρ0)− C3(λ′′2λ′′2,3ρ0)
)

(λ′2 − λ′′2) > 0
∀(λ′1, λ′2) 6= (λ′′1, λ′′2), (λ′2,3, λ′2,4) 6= (λ′′2,3, λ′′2,4) convex pairs and ρ0 > 0.

(A.2.18)
Indeed, by the second inequality we have the uniqueness of the pair of convex
coefficients (λ1, λ2), which, putting λ = λ2 in the first inequality, gives the
uniqueness of the pair (λ2,3, λ2,4).

Remark A.2.1. Similarly as in Example A.2.1 (see Figure A.1) when the
number of the nodes is n instead of 3, the uniqueness of the n-string of
convex coefficients satisfying Ci(λiρ0) = Cj(λjρ0) for all i, j = 1, . . . , n is
guaranteed by the monotonicity conditions as (A.2.14), replacing n = 3 by
the generic n. As seen in Example A.2.2 (see Figure A.2), in the case
of more complex networks, the conditions are much more involved and less
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treatable, because of the peculiar characteristics of the problem. The topology
of the network in fact strongly affects the monotonicity property, the way of
representing it and, ultimately, its applicability. However, we point out that
if all the single costs Ci are strictly monotone, then they will certainly satisfy
the corresponding monotonicity property.

Remark A.2.2. In the two examples here presented, the switching instants
are a priori fixed for all agents, and hence they do not enter in the opti-
mization process performed by the single agent. In the model in Ch. 3, we
instead consider also the switching time as well as the decisional time as part
of the control for the agents, and the costs also depend on them. This fact
obviously makes the situation much more complicated in order to establish
a reasonable condition for the uniqueness of the mean-field game.

Remark A.2.3. The monotonicity conditions (A.2.14) and (A.2.18) and
their possible generalization to more complicated networks, guarantee only
the uniqueness of the possible n-string of convex coefficients but not, in gen-
eral, its existence. Note that, if the (unique) solution presents some λi = 0,
then it means that the corresponding node will be not reached by the equi-
librium, but anyway, even with zero mass, that node produces the same cost
as the others. Moreover, we may not have existence of the n-string convex
solution. Looking at Example A.2.1 (generalized to n intermediate nodes),
this means that we do not have a n-string which gives the fraction of mass
switching to the n nodes. That is there is at least a node which must be not
considered in the game from the beginning. For example, a node pi such that
Ci(λiρ0) > Cj(λjρ0) for all j 6= i and λi, λj: it is a too expensive node, no
one will switch to it. In this situation, the actual game is with just n − 1
nodes and not with n. Hence, one must look for a possible unique (n − 1)-
string of convex combination solving the corresponding problem without that
node. Proceeding in this way, one can find a possible unique m-string, and
will set the other components to 0: no flow through such nodes. However
note that, in the model in Ch. 3, we have also the time spent on the node at
our disposal, which possibly modulate the paid cost, and hence the situation
is more flexible but less prone to have a good condition for uniqueness.

The points and the questions of these last remarks are certainly worth
investigating and may be the argument of future studies.
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A.3 On the convexity of V and single-valued fea-
ture of ϕ in Ch. 3, §3.1.1 and §3.4

In this section, we show an example of a possible cost which guarantees the
convexity of the value function V and the single-valued feature of the map
ϕ in Ch. 3, §3.1.1 and §3.4.

Let us assume

C(p, p′, t, τ, ρ) = C̄(p, p′, ρ)
τ − t , τ 7−→ C̃(p̄, τ) strictly decreasing.

In particular, C̄ does not explicitly depend on t and τ , for example

C̄(p, p′, ρ) = a(p)
T

∫ T

0
ρp(s)ds+ a(p′)

T

∫ T

0
ρp′(s)ds

for some weight p 7−→ a(p). A possible strictly non-decreasing C̃ is C̃(p̄, τ) =
T − τ .

Let p1 be a node directly linked to p̄, i.e. ∑i p
i
1 = N − 1, and let t < T .

Hence we have

V (p1, t) = inf
τ∈]t,T ]

{
C̄(p1, p̄, ρ)
τ − t + C̃(p̄, τ)

}
= C̄(p1, p̄, ρ)

T − t + C̃(p̄, T ).

Therefore, t 7−→ V (p1, t) is strictly convex and ϕ(t) = T is single-valued.
Now, let p2 be a node linked to p̄ with two switches, i.e. ∑i p

i
2 = N − 2,

and let p1 ∈ Ip2 and t < T . We consider the function

ψp2,p1 :]t, T [3 τ 7−→ V (p1, τ) + C̄(p2, p1, ρ)
τ − t

= C̄(p1, p̄, ρ)
T − τ + C̃(p̄, T ) + C̄(p2, p1, ρ)

τ − t .

Note that limτ→t+ ψp2,p1(τ) = limτ→T− ψp2,p1(τ) = +∞. Hence, the mini-
mization problem

inf
τ∈]t,T [

ψp2,p1(τ)

has a solution ϕp2,p1(t) ∈]t, T [ and it must be

C̄(p1, p̄, ρ)
(T − ϕp2,p1(t))2 −

C̄(p2, p1, ρ)
(ϕp2,p1(t)− t)2 = 0, (A.3.19)
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which gives a unique possible point of minimum

ϕp2,p1(t) =

√
C̄(p2,p1,ρ)
C̄(p1,p̄,ρ) T + t

√
C̄(p2,p1,ρ)
C̄(p1,p̄,ρ) + 1

∈]t, T [,

and note that ϕ is strictly increasing and linear and hence derivable. More-
over, its derivative satisfies

0 < ϕ′p2,p1(t) < 1. (A.3.20)

We now consider the function

Vp2,p1 : t 7−→ ψp2,p1(ϕp2,p1(t)) = C̄(p1, p̄, ρ)
T − ϕp2,p1(t) + C̃(p̄, T ) + C̄(p2, p1, ρ)

ϕp2,p1(t)− t ,

which represents the optimum when, being on p2 at time t, the agent decides
that it will switch to p1 before T , that is it will perform the path p2 → p1 →
p̄. Such a function is then twice derivable and it is strictly convex in ]0, T [.
Indeed, taking account of (A.3.19) and (A.3.20), it is

V ′′p2,p1(t) =
2C̄(p2, p1, ρ)(ϕp2,p1(t)− t)(1− ϕ′p2,p1(t))

(ϕp2,p1(t)− t)4 > 0.

Note that we do not need the second derivative of ϕp2,p3 (even if it exists,
in our example) because in the calculation of V ′p2,p1 it cancels in view of
(A.3.19). Finally, note that limt→T− Vp2,p1(t) = +∞.

Now, we take p3 such that p2 ∈ Ip3 and consider the function

Vp3,p1,p1 : t 7−→ inf
τ∈]t,T [

{
Vp2,p1(τ) + C̄(p3, p2, ρ)

τ − t

}
,

which represents the optimum when, being on p3 at time t, the agent de-
cides that it will perform the path p3 → p2 → p1 → p̄. Note that the
function ]t, T [3 τ 7−→ ψp3,p2,p1 , inside the minimization, is twice derivable
and satisfies limτ→t+ ψp3,p2,p1(τ) = limτ→T+ ψp3,p2.p4(τ) = +∞. Hence the
minimization process has a solution ϕp3,p2,p1(t) ∈]t, T [, and such a solution
is unique. Indeed, again, it must be

V ′p2,p1(ϕp3,p2,p1(t)) = C̄(p3, p2, ρ)
(ϕp3,p2,p1(t)− t)2 . (A.3.21)
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Whereas τ 7−→ V ′p2,p1(τ) is strictly increasing (being Vp2,p1 strictly con-
vex) and τ 7−→ C̄(p3, p2, ρ)/(τ − t)2 is strictly decreasing, the solution
ϕp3,p2,p1(t) ∈]t, T [ is unique. Moreover, by the Implicit Function Theorem,
ϕp3,p2,p1 is derivable. Differentiating the equality (A.3.21), we get (we write
ϕ for ϕp3,p2,p1)
(
V ′′p2,p1(ϕ(t) + 2C̄(p3, p1, ρ)(ϕ(t)− t)

(ϕ(t)− t)4

)
ϕ′(t) = 2C̄(p3, p2, ρ)(ϕ(t)− t)

(ϕ(t)− t)4 ,

from which, being V ′′p2,p1 > 0 and ϕ(t) > t, we get

0 < ϕ′p3,p2,p1(t) < 1 (A.3.22)

and in particular ϕp1,p2,p3 is strictly increasing. Now, we prove that (still
denoting ϕp3,p2,p1 by ϕ)

t 7−→ Vp3,p2,p1(t) = Vp2,p1(ϕ(t)) + C̄(p3, p2, ρ)
ϕ(t)− t

is strictly convex. Indeed, differentiating two times, taking account of
(A.3.21) and (A.3.22), we get again

V ′′p3,p2,p1(t) = 2C̄(p3, p2, ρ)(ϕ(t)− t)(1− ϕ′(t))
(ϕ(t)− t)4 > 0.

Again, note that we do not need the second derivative of ϕ (even if it exists,
in our example) because in the calculation of V ′p3,p2,p1 it cancels in view of
(A.3.21). Finally note that limt→T− Vp3,p2,p1(t) = +∞.

Proceeding in this way we obtain that, for every path pn → pn−1 →
· · · → p1 → p̄, the function

Vpn,pn−1,...,p1(t) = inf
τ∈]t,T [

{
Vpn−1,...,p1(t) + C̄(pn, pn−1, ρ)

τ − t

}

is realized by a unique τ = ϕpn,...,p1(t) ∈]t, T [, it is strictly convex, and
ϕpn,...,p1 is strictly increasing with derivative less than 1.

We finally obtain that the value function, for all p 6= p̄ and t < T ,

V (p, t) = inf
τ∈]t,T ]
p′∈Ip

{
V (p′, τ) + C̄(p, p′, ρ)

τ − t

}
,

is realized by a unique, strictly increasing (for t such that ϕ(t) > T ) single-
valued function t 7−→ τ = ϕ(t) ∈]t, T ], giving the optimal instant τ ∈]t, T ]
for switching to the optimal node p′ ∈ Ip.



Appendix B

Mathematical tools

B.1 Viscosity solutions: definition and first prop-
erties

In this section, we briefly recall the definition and the basic properties of
continuous viscosity solutions of the Hamilton-Jacobi equation

F (x, u(x), Dxu(x)) = 0, x ∈ Ω, (B.1.1)

where Ω is an open domain of Rd and the Hamiltonian F = F (x, r, p) is a
continuous real valued function on Ω× R× Rd.

Definition B.1.1. A function u ∈ C0(Ω) is a viscosity subsolution of
(B.1.1) if, for any ϕ ∈ C1(Ω),

F (x0, u(x0), Dxϕ(x0)) ≤ 0 (B.1.2)

at any local maximum point x0 ∈ Ω of u − ϕ. Similarly, u ∈ C0(Ω) is a
viscosity supersolution of (B.1.1) if, for any ϕ ∈ C1(Ω),

F (x1, u(x1), Dxϕ(x1)) ≥ 0 (B.1.3)

at any local minimum point x1 ∈ Ω of u−ϕ. Finally, u is a viscosity solution
of (B.1.1) if it is simultaneously a viscosity sub- and supersolution.

The definition applies also to evolutionary Hamilton-Jacobi equation of
the form

ut(y, t) + F (y, t, u(y, t), Dxu(y, t)) = 0, (y, t) ∈ D×]0, T [, T > 0 (B.1.4)
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In fact, equation (B.1.4) is reduced to the form (B.1.1) by setting

x = (y, t) ∈ Ω = D×]0, T [⊆ RN+1, F̃ (x, r, q) = qN+1 + F (x, r, q1, . . . , qN )

with
q = (q1, . . . , qN , qN+1) ∈ RN+1.

In Ch. 1, §1.1.3 (see also Appendix A, §A.1) and §1.1.5, and Ch. 2, §2.1.3,
we focus on evolutionary Hamilton-Jacobi equations of the type (B.1.4). A
special attention is dedicated to the case where F̃ (x, r, q) is of the form

F̃ (y, t, r, q) = qN+1 + r +H(y, t, q1, . . . , qN )
= qN+1 + r + sup

a∈A
{−f(y, a) · (q1, . . . , qN )− `(y, a, t)}.

Remark B.1.1. In the Definition B.1.1, we can always assume that x0 is a
local strict maximum (minimum) point for u−ϕ (otherwise, replace ϕ(x) by
ϕ(x) + |x− x0|2) for subsolutions (supersolutions). Moreover, since (B.1.2)
and (B.1.3) depend only on the value of Dxϕ at x0, it is not restrictive to
assume that u(x0) = ϕ(x0). Geometrically, this means that the validity of
the subsolution condition (B.1.2) (supersolution condition (B.1.3)) for u is
tested on smooth functions “touching from above” (“touching from below”)
the graph of u at x0.

The following result shows the local character of the notion of viscosity
solution and its consistency with the classical pointwise definition.

Proposition B.1.1.

(a) If u ∈ C0(Ω) is a viscosity solution of (B.1.1) in Ω, then u is a viscosity
solution of (B.1.1) in Ω′ for any open set Ω′ ⊂ Ω;

(b) if u ∈ C0(Ω) is a classical solution of (B.1.1), that is, u is differentiable
at any x ∈ Ω and

F (x, u(x), Dxu(x)) = 0 for every x ∈ Ω,

then u is a viscosity solution of (B.1.1);

(c) if u ∈ C1(Ω) is a viscosity solution of (B.1.1), then u is a classical
solution of (B.1.1).

Proof. See for example [9], Ch. II, §1, Proposition 1.3.
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In Appendix A, §A.1, we describe an alternative way of defining vis-
cosity solutions for equation (B.1.1) (in particular, in that case, for equa-
tion (B.1.4)) and prove the equivalence of the new definition with the one
given here (for the evolutionary case). More precisely, see Lemma A.1.1 and
Lemma A.1.2, Remark A.1.1 for other properties.

The next Proposition B.1.2 is on the change of unknown in (B.1.1) and
in its evolutionary form (B.1.4).

Proposition B.1.2.

(a) Let u ∈ C0(Ω) be a viscosity solution of (B.1.1) and Φ ∈ C1(R) be
such that Φ′(t) > 0. Then v = Φ(u) is a viscosity solution of

F (x,Ψ(v(x)),Ψ′(v(x))Dxv(x)) = 0, x ∈ Ω,

where Ψ = Φ−1.

(b) Let u ∈ C0(Ω) be a viscosity solution of (B.1.1) and Φ : Ω× R −→ R
a C1 function such that

Φr(x, r) > 0 for every (x, r) ∈ Ω× R.

Then the function v ∈ C0(Ω) defined implicitly by

Φ(x, v(x)) = u(x),

is a viscosity solution of

F̃ (x, v(x), Dxv(x)) = 0, x ∈ Ω,

where
F̃ (x, r, p) = F (x,Φ(x, r), DxΦ(x, r) + Φr(x, r)p).

Proof. See for example [9], Ch. II, §2, Proposition 2.5 and 2.6.

Now, we give a comparison result concerning the evolutionary case. It
gives a uniqueness result for the Cauchy problem

{
ut(x, t) +H(t,Dxu(x, t)) = 0, (x, t) ∈ Rd×]0, T [
u(x, 0) = u0(x), x ∈ Rd

,

with initial condition u0 ∈ BUC(Rd). See Remark B.1.2 for more general
Hamiltonians.
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Theorem B.1.1. Assume H ∈ C0(Rd × [0, T ]). Let u1, u2 ∈ BUC(Rd ×
[0, T ]) be, respectively, viscosity sub- and supersolution of

ut(x, t) +H(t,Dxu(x, t)) = 0, (x, t) ∈ Rd×]0, T [.

Then,
sup

Rd×[0,T ]
(u1 − u2) ≤ sup

Rd
(u1(0, ·)− u2(0, ·)).

Proof. See for example [9], Ch. 2, §3, Theorem 3.7.

Remark B.1.2. The comparison Theorem B.1.1 can be extended to the
equation

ut +H(x, t,Dxu) = 0

if the Hamiltonian H is uniformly continuous in Rd × [0, T ] × B(0, R) for
every R > 0 and satisfies

|H(x, p)−H(y, p)| ≤ ω1(‖x− y‖(1 + ‖p‖))

for x, y, p ∈ Rd, where ω1 : [0,+∞[−→ [0,+∞[ is continuous, nondecreasing
with ω1(0) = 0 and independent of t ∈ [0, T ].

Such results (Proposition B.1.2 and Theorem B.1.1) are needed to prove
Theorem 2.1.4 in Ch. 2, §2.1.3.

B.2 Some measure theory and fixed-point results
In this section, we state some useful measure theory results and the fixed-
point Schauder-Tychonoff and Kakutani-Ky Fan theorems.

The following result is essential to prove Lemma 1.1.1 in Ch. 1, §1.1.3
(see also Lemma A.1.6 in Appendix A, §A.1).

Theorem B.2.1 (Lusin’s Theorem). Let µ be a Borel regular measure on Rd
and f : Rd −→ Rm be µ-measurable. Assume that A ⊂ Rd is µ-measurable
and µ(A) < ∞. Fix ε > 0. Then there exists a compact set K ⊂ A such
that

(i) µ(A−K) < ε;

(ii) f
∣∣
K

is continuous.

Proof. See for example [23], Ch. 1, §1.2, Theorem 2.
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The following theorems B.2.2 and B.2.3 are needed in Ch. 2 to prove
Lemma 2.1.1 (§2.1.1), Lemma 2.1.2 (§2.1.4) and Theorem 2.1.1 (§2.1.1),
Theorem 2.1.5 (§2.1.4) respectively.

Theorem B.2.2 (Coarea Formula). Let f : Rd −→ Rm be Lipschitz con-
tinuous, d ≥ m. Then for each Ld-measurable set A ⊂ Rd, we have

∫

A
Jfdx =

∫

Rm
Hd−m(A ∩ f−1{y})dy.

Proof. See for example [23], Ch. 3, §3.4.2, Theorem 1.

Theorem B.2.3 (Disintegration Theorem). Let Y and X be metric spaces,
µ a Radon measure on Y , π : Y −→ X a Borel map and let ν = π]µ.
Then there exists a ν-a.e. uniquely determined measurable family of Radon
measures {µx}x∈X such that

µx(Y \ π−1(x)) = 0 for ν-a.e. x ∈ X

and ∫

Y
f(y)dµ(y) =

∫

X

(∫

π−1(x)
f(y)dµx(y)

)
dν(x)

for every f ∈ C0
c (Y ). The family {µx}x∈X is called the disintegration of µ

with respect to π (and ν).

Proof. See for example [1], Ch. 2, §2.5, Theorem 2.28 and [26], Ch. 45, §452
for a more general discussion.

The next result is used in Ch. 3, §3.1.1, Remark 3.1.3.

Theorem B.2.4 (Alexandrov’s Theorem). Let f : Rd −→ R be convex.
Then f has a second derivative Ld almost everywhere.

Proof. See for example [23], Ch. 6, §6.4, Theorem 1.

The following fixed-point theorems B.2.5 and B.2.6 are required for prov-
ing respectively Theorem 2.1.3 in Ch. 2, §2.1.2 and Theorem 3.3.1 in Ch.
3, §3.3.1.

Theorem B.2.5 (Schauder-Tychonoff Theorem). Let X be a locally convex
space, K ⊂ X be nonempty and convex (not necessarily closed) and K0 ⊂ K
be a compact set. Given a continuous map f : K −→ K0, there exists x̄ ∈ K0
such that f(x̄) = x̄.
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Proof. See for example [34], Ch. 10, Theorem 10.1.

Theorem B.2.6 (Kakutani-Ky Fan Theorem). Let K be a nonempty, com-
pact and convex subset of a locally convex space X. Let f : K −→ P(K)
be upper semicontinuous such that f(x) is nonempty, convex and closed for
every x ∈ K. Then f has a fixed point x̄ ∈ K.

Proof. See for example [34], Ch. 13, Theorem 13.1.
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