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Introduction

The aim of this thesis is to present some results about controllability of evolution equations
by means of a bilinear control.
In the field of control theory of dynamical systems a huge amount of works is devoted to the
study of models in which the control enters as an additive term (boundary o locally distrib-
uted control), see, for instance, the books [49] and [50] by J.L. Lions. Such controls can,
for example, be a source of heat/mass–transfer or a piezoelectric actuator placed on a beam.
This kinds of controls describe the effect of external sources of forces on the considered phe-
nomenon. On the other hand, such control systems are not suitable to describe processes that
change their physical characteristics in presence of control. This issue is quite common in
many biomedical, chemical and nuclear chain reactions as well as in new technologies, like,
for instance, the so–called smart materials.
For example, in a nuclear chain reaction the number of particles involved increases by the
interaction with the surrounding medium. In particular, the process of nuclear fission is ob-
tained by the collision of neutrons with active uranium nuclei that leads to the growth of
the amount of particles involved in the reaction. These new neutrons start interacting with
active nuclei and so the number of such particles keeps increasing. A simplified model of this
phenomenon can be represented by the following equation

ut = a2∆u+ v(t, x)u, (0.0.1)

where u(t, x)≥ 0 is the neutron density and the coefficient v is strictly positive since the chain
reaction is equivalent to a source of neutrons that is proportional to their concentration.
In order to control an a priori endless chain reaction, the so–called “control roads” are em-
ployed. These devices are indeed able to absorb neutrons. The action of the control roads
can be associated to the change of sign of the coefficient v in (0.0.1).
It is important to stress that describing a nuclear fission by the action of additive controls
would yield to the following equation

ut = a2∆u+ v(t, x). (0.0.2)

However, the additive locally distributed control v(t, x) in (0.0.2) would represent the pos-
sibility to add or withdraw out at will a certain number of neutrons to the reaction, that is
obviously not realistic.
Another example of a model that involves a bilinear control is the SMA–composite beam
containing NiTi fibers that are able to change the response when heated by an electric current.
The equation that describes this phenomenon is

ut t + ux x x x + v(t)u= 0, (0.0.3)

with v(t) that represents the axial load.
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When the multiplicative control depends both on time and space variables, many results of
approximate and exact controllability have been obtained for different types of initial/target
conditions. For instance, Khapalov in [45] proved a result of non-negative approximate con-
trollability of the 1D semilinear parabolic equation. In [46], the same author proved approx-
imate and exact null controllability for a bilinear parabolic system with the reaction term
satisfying Newton’s law. Paper [39] is devoted to the study of global approximate multiplic-
ative controllability for nonlinear degenerate parabolic problems. In [18] and [19], results of
approximate controllability of a one dimensional reaction-diffusion equation via multiplicat-
ive control and with sign changing data are proved. Moreover, in [62] the authors presented
a result of exact controllability of parabolic equations to special positive target states for large
time.
The controllability of equations in which the control is a scalar function depending only on
time, however, is a more delicate issue. A structural obstruction to obtain such property for
systems of the form �

u′(t) + Au(t) + p(t)Bu(t) = 0, t > 0
u(0) = u0.

(0.0.4)

has been presented by Ball, Marsden and Slemrod in [6]. Let X be a infinite dimensional
Banach space, let A be the generator of a C0-semigroup of bounded linear operators on X and
let B : X → X be a bonded linear operator. Then the main result of [6] establishes that system
(0.0.4) is not controllable. Indeed, if u(t; p, u0) denotes the unique solution of (0.0.4), then
the attainable set from u0 defined by

S(u0) = {u(t; p, u0); t ≥ 0, p ∈ L r
loc([0,+∞),R), r > 1}

has a dense complement.
On the other hand, when B is unbounded, the possibility of proving a positive controllability
result remains open. This idea of exploiting the unboundness of the operator B was developed
by Beauchard and Laurent in [11] for the Schrödinger equation

�
iut + ux x + p(t)µ(x)u= 0, (t, x) ∈ (0, T )× (0,1)
u(t, 0) = u(t, 1) = 0.

For such an equation the authors proved the local exact controllability along the ground state
solution (namely, the solution of the free dynamics with initial condition equal to the first
eigenfunction of the second order operator) in a stronger topology than the natural one of
X = H2 ∩ H1

0(0, 1) for which the multiplication operator Bu = µ(x)u is unbounded. In other
terms, the above result could be regarded as a description of the attainable set from an initial
submanifold of the original Banach space.
Following the same strategy, Beauchard in [7] studied the wave equation

�
ut t − ux x − p(t)µ(x)u= 0, (t, x) ∈ (0, T )× (0,1)
ux(t, 0) = u(t, 1) = 0

showing that for T > 2 the system is locally controllable in a stronger topology than the
natural one for this problem and for which the operator Bu= µ(x)u is unbounded.
In both papers [7] and [11] a key point of the analysis is the application of the inverse mapping
theorem which is made possible by the controllability of the linearized problem. This is the
reason why, for parabolic problems, the above strategy meets an obstruction: the spaces for
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which one can prove controllability of the linearized equation are not well–adapted to the use
of the inverse map technique.
Therefore, for bilinear control problems of parabolic type, a natural question that arises is
whether it is possible to steer the solution exactly to a fixed trajectory ū(t; p̄, ū0) in finite time
T > 0. Since in this case the target is represented by the evaluation of ū at time T , and not
by a neighborhood of it (as it happens for the classical exact controllability property), the
aforementioned work by Ball, Marsden and Slemrod does not represent a hindrance to such
kind of result.
The controllability to a target trajectory is not a new property. It has been studied, for in-
stance, in the work [38] by Fernández-Cara, Guerrero, Imanuvilov and Puel for the Navier-
Stokes equations, by means of additive controls. The authors obtained controllability to free
trajectories by a Carleman estimate and an inverse mapping argument. Such a strategy seems
hard to adapt to problems like (0.0.4). In [33] Duprez and Lissy showed the controllability
of the Fokker-Plank equation to a target trajectory with a multiplicative control depending
on both space and time. However, to our best knowledge, for bilinear control systems of the
form (0.0.4) this property has not yet been explored.
Therefore, our first interest regarded the possibility of steering the solution of (0.0.4), with a
bilinear control, to a specific uncontrolled trajectory of the equation, namely the ground state
solution.
To be more precise, let X be a separable Hilbert space, A : D(A) ⊂ X → X be a self-adjoint ac-
cretive operator with compact resolvent (see Chapter 1 for more on notation and assumptions)
and let {λk}k∈N∗ be the eigenvalues of A, (λk ≤ λk+1, ∀k ∈ N∗), with associated eigenfunc-
tions {ϕk}k∈N∗ . Since it is customary to call ϕ1 the ground state of A, we refer to the function
ψ1(t) = e−λ1 tϕ1 as the ground state solution.
Our main result of Chapter 2 (Theorem 2.1.4) ensures that, if {λk}k∈N∗ satisfy a suitable
gap condition (see condition (2.1.3)) and B spreads the ground state in all directions (see
condition (2.1.4)), then system (0.0.4) is locally stabilizable to ψ1 at superexponential rate,
that is, one can find a control p ∈ L2

loc(0,∞) such that the corresponding solution u(·) of
(0.0.4) satisfies

log ||u(t)−ψ1(t)|| ≤ C − eωt , ∀t > 0, (0.0.5)

for suitable constants C ,ω > 0. This property can be seen as a weak version of the exact
controllability to the ground state solution.
An important point to underline is that our approach — based on the moment method for
the linearized system — is fully constructive. First, we use the gap condition (2.1.3) to build
a biorthogonal family {σk(t)}k∈N∗ to the exponentials eλk t . Then, we apply such a family
to construct a control p(·) that steers the linearized system of (0.0.4) exactly to the ground
state solution in finite time. Finally, we repeatedly apply such exact controls for the linearized
system in order to build a control p(·) for (0.0.4) which achieves (0.0.5).
We point out that our method applies to both cases λ1 = 0 and λ1 > 0, giving an even faster
decay rate in the latter case.
In Chapter 3 we address the more delicate issue of the exact controllability to the ground state
solution. Under stronger assumptions, we prove that for any T > 0 such property is enjoyed
by the abstract control system (0.0.4). Taking advantage from the stability estimates proved
in Chapter 2, we repeat the linearization argument for a suitable sequence of time intervals
of decreasing length T j , with

∑∞
j=1 T j = T , in order to construct a control p ∈ L2(0, T ) such

that u(T ; p, u0) =ψ1(T ).
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Furthermore, from the local exact controllability property (Theorem 3.1.1) we were able to
infer two different kinds of global results (Theorems 3.1.2 and 3.1.3).
We show in Chapter 2 that the superexponential stabilizability result can be applied to several
classes of parabolic equations as, for instance, the heat equation with a controlled source term

ut − ux x + p(t)µ(x)u= 0,

with different kinds of boundary conditions, as well as to a variable coefficients equation of
the form

ut − ((1+ x)2ux)x + p(t)µ(x)u= 0,

and also to degenerate parabolic equations as

ut − (xαux)x + p(t)µ(x)u= 0. (0.0.6)

Moreover, in Chapter 3, we observe that all the examples presented in Chapter 2 fulfill also
the stronger hypotheses needed to prove the exact controllability to the ground state solution.
While checking the validity of the assumptions on A and B of Theorems 2.1.4 and 3.1.1 turned
out to be straightforward for almost all the aforementioned examples, it required a more com-
plex and careful analysis for the degenerate equation (0.0.6). However, we were interested
in treating this kind of operators since degenerate differential equations describe valuable
phenomena in many fields such as in physics, climate dynamics, biology and economics (see,
e.g., [40, 34, 22]). Furthermore, the problem of controlling such equations is, by now, a fairly
well–developed subject (see, for instance, [21, 22, 24, 23]). Nevertheless, we noticed that
very few results are available in the case of degenerate hyperbolic equations. To our best
knowledge, a class of degenerate wave equations has been studied from the point of view of
control theory in [2], by means of boundary controls, using HUM and multiplier methods,
and in [59, 60, 61], where locally distributed controls are considered.
This has been the inspiring reason to study a bilinear control problem for the following equa-
tion 




wt t − (xαwx)x = p(t)µ(x)w, x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(x = 0) = 0, t ∈ (0, T ),

wx(x = 1) = 0, t ∈ (0, T ),

w(x , 0) = w0(x), x ∈ (0, 1),

wt(x , 0) = w1(x), x ∈ (0, 1),

(0.0.7)

where α ∈ [0, 2) is the degereracy parameter (α = 0 for the classical wave equation and
α ∈ (0, 2) in the degenerate case), p ∈ L2(0, T ) is a bilinear control, and µ is an admissible
potential. The goal of Chapter 4 is to extend to the degenerate case α ∈ (0,2) the result [7]
by Beauchard for the controllability of the classical wave equation.
A further direction of research arose from the analysis of the potentials µ that are suitable for
each bilinear control problem. In particular, a necessary condition that the functions µ have
to fulfill in [7, 11, 13, 29, 20, 25, 52, 53, 54, 55] and in the examples of [3, 4] is that

〈µϕ1,ϕk〉 6= 0, ∀ k ∈ N∗. (0.0.8)

Namely, the Fourier coefficients of the multiplication operator by the potential µ, applied to
the ground state, must not vanish. This requirement usually appears when facing a moment
problem. Even though such condition is satisfied generically, it is not so easy to exhibit a
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large explicit class of real valued potential µ satisfying it and only few examples of suitable
potentials are available in the existing literature. Moreover, these examples are based on the
knowledge of the explicit form of the eigenvalues and eigenfunctions. However, the eigen-
values cannot longer be explicitly represented when changing, for instance, the boundary
conditions from Dirichlet-Dirichlet to Dirichlet-Robin. Therefore, natural questions that raise
in this context are: is it possible to exhibit large classes of functions µ satisfying (0.0.8)? Can
we build a general constructive algorithm to define such functions µ? Is it possible to ex-
tend Beauchard and Laurent controllability results for the Schrödinger equation and Alabau-
Boussouira, Cannarsa and Urbani superexponential stabilization [4] and controllability [3]
results for parabolic equations, and further existing results for other equations to more gen-
eral boundary conditions?
The aim of Chapter 5 is to give positive answers to these questions.
This thesis is organized as follows. In Chapter 1 we introduce the notation and recall some
classical results that will be used throughout the work. Chapter 2 is devoted to present our
result of rapid stabilization for abstract parabolic equations by mean of bilinear control. We
also give applications to several examples of parabolic problems. In Chapter 3 we exhibit
and prove our result of exact controllability to the ground state solution for the same class
of problems considered in the previous chapter. Bilinear control for hyperbolic degenerate
equations is studied in Chapter 4. Finally, in Chapter 5 we present an algorithm to build
polynomials of any degree that satisfy (0.0.8). Furthermore, we extend [4, 3, 11] to mixed
boundary conditions of Dirichlet-Robin type.
The Appendix A is dedicated to the investigation of spectral properties of degenerate operator.
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CHAPTER 1

Preliminaries

Let (X , 〈·, ·〉) be a separable Hilbert space. We denote by || · || the associated norm on X .
Let A : D(A) ⊂ X → X be a densely defined linear operator with the following properties:

(a) A is self-adjoint,
(b) A is accretive: 〈Ax , x〉 ≥ 0, ∀x ∈ D(A),
(c) ∃λ > 0 such that (λI + A)−1 : X → X is compact.

(1.0.1)

We recall that under the above assumptions A is a closed operator and D(A) is itself a Hilbert
space with the scalar product

(x |y)D(A) = 〈x , y〉+ 〈Ax , Ay〉, ∀ x , y ∈ D(A).

Moreover,−A is the infinitesimal generator of a strongly continuous semigroup of contractions
on X which will be denoted by e−tA. Furthermore, e−tA is analytic.
In view of the above assumptions, there exists an orthonormal basis {ϕk}k∈N∗ in X of eigen-
functions of A, that is, ϕk ∈ D(A) and Aϕk = λkϕk ∀ k ∈ N∗, where {λk}k∈N∗ ⊂ R denote the
corresponding eigenvalues. We recall that λk ≥ 0, ∀ k ∈ N∗ and we suppose — without loss of
generality — that {λk}k∈N∗ is ordered so that 0≤ λk ≤ λk+1→∞ as k→∞. The associated
semigroup has the following representation

e−tAϕ =
∞∑
k=1

〈ϕ,ϕk〉e−λk tϕk, ∀ϕ ∈ X . (1.0.2)

For any s ≥ 0, we denote by As : D(As) ⊂ X → X the fractional power of A (see [57]). Under
our assumptions, such a linear operator is characterized as follows

D(As) =
�

x ∈ X
�� ∑

k∈N∗ λ
2s
k |〈x ,ϕk〉|2 <∞

	

As x =
∑

k∈N∗ λ
s
k〈x ,ϕk〉ϕk, ∀ x ∈ D(As).

(1.0.3)

Let T > 0 and consider the problem
�

u′(t) + Au(t) = f (t), t ∈ [0, T]
u(0) = u0

(1.0.4)

where u0 ∈ X and f ∈ L2(0, T ; X ). We now recall two definitions of solution of problem
(1.0.4):

• the function u ∈ C([0, T], X ) defined by

u(t) = e−tAu0 +

∫ t

0

e−(t−s)A f (s)ds

is called the mild solution of (1.0.4),
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• u is a strong solution of (1.0.4) in L2(0, T ; X ) if there exists a sequence {uk} ⊆ H1(0, T ; X )∩
L2(0, T ; D(A)) such that

uk → u, and u′k − Auk → f in L2(0, T ; X ),

uk(0)→ u0 in X , as k→∞.

The well-posedness of the Cauchy problem (1.0.4) is a classical result (see, for instance, [15]).

Theorem 1.0.1. Let u0 ∈ X and f ∈ L2(0, T ; X ). Under hypothesis (1.0.1), problem (1.0.4)
has a unique strong solution in L2(0, T ; X ). Moreover u belongs to C([0, T]; X ) and is given by
the formula

u(t) = e−tAu0 +

∫ t

0

e−(t−s)A f (s)ds. (1.0.5)

Furthermore, there exists a constant C0(T )> 0 such that

sup
t∈[0,T]

||u(t)|| ≤ C0(T )
�||u0||+ || f ||L2(0,T ;X )

�
(1.0.6)

and C0(T ) is non decreasing with respect to T .

Given T > 0, we consider the bilinear control problem
�

u′(t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T]
u(0) = u0

(1.0.7)

where u is the state variable, B : X → X is a bounded linear operator and p ∈ L2(0, T ) is the
control function.
Given an initial condition u0 ∈ X and a control p ∈ L2(0, T ), we denote by u(·; u0, p) : [0, T]→
X the corresponding solution of (1.0.7) and we call it a trajectory of problem (1.0.7).

Definition 1.0.2. Let T > 0. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2(0, T )
we say that the control system (1.0.7) is locally controllable along ū(t; ū0, p̄) in time T if, for
every ε > 0, there exists δ > 0 such that, for every (u0, u f ) ∈ X × X with ||u0 − ū0|| ≤ δ and
||u f − ū(T ; ū0, p̄)|| ≤ δ, there exists a control p ∈ L2(0, T ) such that

u(T ; u0, p) = u f ,

||p− p̄||L2(0,T ) ≤ ε.
We recall that, in general, the exact controllability problem along a given trajectory for system
(1.0.7) has a negative answer as shown by Ball, Marsden and Slemrod in [6].

Theorem 1.0.3 (Ball, Marsden, Slemrod 1982). Let X be an infinite dimensional Banach space.
Let−A generate a C0-semigroup of bounded linear operators on X and let B : X → X be a bounded
linear operator. Let u0 ∈ X be fixed, and let u(t; u0, p) be the trajectory of (1.0.7) corresponding
to p ∈ L1

loc([0,+∞),R). Then, the attainable set from u0 defined by

S(u0) = {u(t; u0, p); t ≥ 0, p ∈ L r
loc([0,+∞),R), r > 1},

is contained in a countable union of compact subsets of X and, in particular, has a dense comple-
ment.
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A different notion of controllabilty is the exact controllability to a given trajectory.

Definition 1.0.4. Let T > 0. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2(0, T ), we
say that the control system (1.0.7) is locally exactly controllable to ū(t; ū0, p̄) in time T if there
exists δ > 0 such that, for every u0 ∈ X with ||u0 − ū0|| ≤ δ, there exists a control p ∈ L2(0, T )
such that

u(T ; u0, p) = ū(T ; ū0, p̄).

Since in this definition of controllability the target set reduces to a point, Theorem 1.0.3 does
not represent an obstruction when proving such property for control systems like (1.0.4).
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CHAPTER 2

Superexponential stabilizability to trajectories

This chapter is devoted to the study of a weaker notion of controllability to a given trajectory
and it is based on [4, 25].
We prove rapid stabilizability to the ground state solution for a class of abstract parabolic
equations of the form

u′(t) + Au(t) + p(t)Bu(t) = 0, t ≥ 0

where the operator A satisfies hypothesis (1.0.1), B is a linear bounded operator and p(·)
is the control function. The proof is based on a linearization argument. We prove that the
linearized system is exactly controllable and we apply the moment method to build a control
p(·) that steers the solution to the ground state in finite time. Finally, we use such a control
to bring the solution of the nonlinear equation arbitrarily close to the ground state solution
with doubly exponential rate of convergence.
The aforementioned stabilizability result can be used to study several classes of parabolic
problems, for which checking the validity of the assumptions on A and B is quite often straight-
forward. We show the stabilizability property for the heat equation with a controlled source
term of the form

ut − ux x + p(t)µ(x)u= 0

with Dirichlet or Neumann boundary conditions, as well as for operators with variable coef-
ficients

ut − ((1+ x)2ux)x + p(t)µ(x)u= 0,

for 3D problems with radial data symmetry such as

ut −∆u+ p(t)µ(|x |)u= 0,

and finally for degenerate parabolic equations of the form

ut(t, x) + (xαux(t, x))x + p(t)x2−αu(t, x) = 0.

2.1 Main result

We are interested in studying the stabilizability of system

�
u′(t) + Au(t) + p(t)Bu(t) = 0, t > 0
u(0) = u0

(2.1.1)
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with p ∈ L2
loc([0,+∞)) to a fixed trajectory. Let X be a Hilbert space equipped with the

scalar product 〈·, ·〉. We denote by || · || =p〈·, ·〉 the associated norm and by BR(ϕ) the open
ball of radius R > 0, centered in ϕ ∈ X . Given an initial condition u0 ∈ X and a control
p ∈ L2

loc([0,+∞)), we denote by u(·; u0, p) : [0,+∞) → X the corresponding solution of
(2.1.1).

Definition 2.1.1. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2
loc([0,+∞)), we say

that the control system (2.1.1) is locally stabilizable to ū(·; ū0, p̄) if there exists δ > 0 such that,
for every u0 ∈ Bδ(ū0), there exists a control p ∈ L2

loc([0,+∞)) such that

lim
t→+∞ ||u(t; u0, p)− ū(t; ū0, p̄)||= 0.

Definition 2.1.2. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2
loc([0,+∞)), we say

that the control system (2.1.1) is locally exponentially stabilizable to ū(·; ū0, p̄) if for any ρ > 0,
there exists R(ρ)> 0 such that, for every u0 ∈ BR(ρ)(ū0), there exists a control p ∈ L2

loc([0,+∞))
and a constant M > 0 such that

||u(t; u0, p)− ū(t; ū0, p̄)|| ≤ Me−ρt , ∀t > 0.

Definition 2.1.3. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2
loc([0,+∞)), we

say that the control system (2.1.1) is locally superexponentially stabilizable to ū(·; ū0, p̄) if for
any ρ > 0 there exists R(ρ) > 0 such that, for every u0 ∈ BR(ρ)(ū0), there exists a control
p ∈ L2

loc([0,+∞)) such that

||u(t; u0, p)− ū(t; ū0, p̄)|| ≤ Me−ρeωt
, ∀t > 0,

where M ,ω> 0 are suitable constants depending only on A and B.

For any j ∈ N∗ we set ψ j(t) = e−λ j tϕ j and we call ψ1 the ground state solution. Observe that
ψ j solves (2.1.1) with p = 0 and u0 = ϕ j . We shall study the superexponential stabilizability
of (2.1.1) to the trajectory ψ1.
We observe that if there exists ν > 0 such that 〈Ax , x〉 ≥ ν||x ||2, for all x ∈ D(A), then the
semigroup generated by −A satisfies

||e−tA|| ≤ e−νt , ∀t > 0.

If we consider any initial condition u0 ∈ X , then the evolution of the free dynamics with initial
condition u0 can be represented by the action of the semigroup, u(t) = e−tAu0. Therefore, one
can prove easily that, when A is strictly accretive, choosing the control p = 0, system (2.1.1)
is locally exponentially stabilizable to the trajectory ψ1. Indeed,

||u(t)−ψ1(t)||= ||e−tAu0 − e−tAϕ1|| ≤ e−νt ||u0 −ϕ1|| (2.1.2)

and this quantity tends to 0 as t goes to +∞.
On the contrary, in the general case of an accretive operator A, we do not have a straightfor-
ward choice of p to deduce any stabilizability property of system (2.1.1) to the ground state
ψ1.
The novelty of our work is the construction of a control function p that brings u(t) arbitrary
close toψ1(t) in a very short time. Namely, we prove that (2.1.1) is locally superexponentially
stabilizable to the ground state solution. This can be seen as a weak version of the exact
controllability to trajectories.
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Let B : X → X be a bounded linear operator. From now on we denote by CB the norm of B

CB = sup
ϕ∈X , ||ϕ||=1

||Bϕ||

and, without loss of generality, we suppose CB ≥ 1.
We can now state our main result.

Theorem 2.1.4. Let A : D(A) ⊂ X → X be a densely defined linear operator satisfying hypothesis
(1.0.1) and suppose that there exists a constant α > 0 such that the eigenvalues of A fulfill the
gap condition Æ

λk+1 −
Æ
λk ≥ α, ∀k ∈ N∗. (2.1.3)

Let B : X → X be a bounded linear operator and let τ > 0 be such that

〈Bϕ1,ϕk〉 6= 0, ∀k ∈ N∗,

∑
k∈N∗

e−2λkτ

|〈Bϕ1,ϕk〉|2
< +∞.

(2.1.4)

Then, system (2.1.1) is superexponentially stabilizable to ψ1.
Moreover, for every ρ > 0 there exists Rρ > 0 such that any u0 ∈ BRρ (ϕ1) admits a control
p ∈ L2

loc([0,+∞)) such that the corresponding solution u(·; u0, p) of (2.1.1) satisfies

||u(t)−ψ1(t)|| ≤ Me−(ρeωt+λ1 t), ∀t ≥ 0, (2.1.5)

where M and ω are positive constants depending only on A and B.

To prove Theorem 2.1.4 we first start assuming that the first eigenvalue of A is zero, λ1 = 0,
and we prove the local superexponential stabilizability of (2.1.1) to the trajectory ϕ1. Then,
we will recover the general case from this one.
The proof of Theorem 2.1.4 will be built through a series of propositions. The first result is
the well-posedness of the problem

�
u′(t) + Au(t) + p(t)Bu(t) + f (t) = 0, t ∈ [0, T]
u(0) = u0.

(2.1.6)

We introduce the following notation:

|| f ||2,0 := || f ||L2(0,T ;X ), ∀ f ∈ L2(0, T ; X )

|| f ||∞,0 := || f ||C([0,T];X ) = supt∈[0,T] || f (t)||, ∀ f ∈ C([0, T]; X ).

Proposition 2.1.5. Let T > 0. If u0 ∈ X , p ∈ L2(0, T ) and f ∈ L2(0, T ; X ), then there exists a
unique mild solution of (2.1.6), i.e. a function u ∈ C([0, T]; X ) such that the following equality
holds in X for every t ∈ [0, T],

u(t) = e−tAu0 −
∫ t

0

e−(t−s)A[p(s)Bu(s) + f (s)]ds. (2.1.7)

Moreover, there exists a constant C1(T )> 0 such that

||u||∞,0 ≤ C1(T )(||u0||+ || f ||2,0). (2.1.8)
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Hereafter, we denote by C a generic positive constant which may differ from line to line even
if the symbol remains the same. Constants which play a specific role will be distinguished by
an index i.e., C0, CB, . . . .
The proof of the existence of the mild solution of (2.1.6) is given in [6]. For what concerns
the bound for the solution u of (2.1.6), it turns out that if C0(T )CB||p||L2(0,T ) ≤ 1/2, then we
have inequality (2.1.8) with C1 = C2 defined by

C2 := 2C0(T ). (2.1.9)

Otherwise, to obtain (2.1.8), we proceed subdividing the interval [0, T] into smaller subin-
tervals for which C0(T )CB||p||L2 ≤ 1/2 in all of them, and in this case the constant C1 of
inequality (2.1.8) is defined by

C1 = (1+ N)(2C0(T/N))
N , (2.1.10)

where N is the number of subintervals.
Consider the system

�
u′(t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T]
u(0) = u0,

(2.1.11)

and the trajectory ϕ1 that is a solution of (2.1.11) when p = 0, u0 = ϕ1 and λ1 = 0. Set
v := u−ϕ1, we observe that v is the solution of the following Cauchy problem

�
v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [0, T]
v(0) = v0 = u0 −ϕ1.

(2.1.12)

Remark 2.1.6. Applying Theorem 1.0.1, we find that v ∈ C([0, T]; X ) is a mild solution of
(2.1.12), that is

v(t) = e−tAv0 −
∫ t

0

p(s)e−(t−s)AB(v(s) +ϕ1)ds = V0(t) + V1(t), (2.1.13)

where
V0(t) := e−tAv0,

V1(t) := −∫ t

0 p(s)e−(t−s)AB(v(s) +ϕ1)ds.

Since p(·)B(v(·) + ϕ1) ∈ L2(0, T ; X ), we have that V1 ∈ H1(0, T ; X ) ∩ L2(0, T ; D(A)), while
V0 ∈ C1((0, T]; X ) ∩ C((0, T]; D(A)). Therefore, for every ε ∈ (0, T ), v ∈ H1(ε, T ; X ) and for
almost every t ∈ [ε, T] the following equality holds

v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0. (2.1.14)

Showing the stabilizability of the solution u of (2.1.11) to the trajectory ϕ1 is equivalent to
proving the stabilizability to 0 of system (2.1.12): we have to prove that there exists δ > 0
such that, for every initial condition v0 that satisfies ||v0|| ≤ δ, there exists a trajectory-control
pair (v, p) such that limt→+∞ ||v(t)||= 0.
For this purpose, we consider the following linearized system

�
v̄(t)′ + Av̄(t) + p(t)Bϕ1 = 0, t ∈ [0, T]
v̄(0) = v0.

(2.1.15)

For this linear system we are able to prove the following null controllability result.
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Proposition 2.1.7. Let T > τ and let A and B be such that (1.0.1), (2.1.3), (2.1.4) hold and
furthermore we assume λ1 = 0. Let v0 ∈ X . Then, there exists a control p ∈ L2(0, T ) such that
v̄(T ) = 0.
Moreover, there exists a constant Cα(T )> 0 such that

||p||L2(0,T ) ≤ Cα(T )ΛT ||v0|| (2.1.16)

where ΛT is defined in (2.1.18) and α > 0 is the constant in (2.1.3).

Let us recall the notion of biorthogonal family and a result we will use to show the null con-
trollability of the linearized system (2.1.15).

Definition 2.1.8. Let {ζ j} and {σk} be two sequences in a Hilbert space H. We say that the two
families are biorthogonal or that {ζ j} (resp.{σk}) is biorthogonal to {σk} (resp. {ζ j}) if

〈ζ j ,σk〉H = δ j,k, ∀ j, k ≥ 0

where δ j,k is the Kronecker delta.

The notion of biorthogonal family was used by Fattorini and Russell in [37], where they
introduced the moment method. Such a technique was developed later by several authors.
We recall below the result proved in [24].

Theorem 2.1.9. Let {ωk}k∈N be an increasing sequence of nonnegative real numbers. Assume
that there exists a constant α > 0 such that

∀k ∈ N,
p
ωk+1 −pωk ≥ α.

Then, there exists a family {σ j} j≥0 which is biorthogonal to the family {eωk t}k≥0 in L2(0, T ),
that is,

∀k, j ∈ N,

∫ T

0

σ j(t)e
ωk t d t = δ jk.

Furthermore, there exist two constants Cα, Cα(T )> 0 such that

||σ j ||2L2(0,T ) ≤ C2
α(T )e

−2ω j T eCα
p
ω j/α, ∀ j ∈ N. (2.1.17)

Remark 2.1.10. For all T ∈ R we define the quantity

ΛT :=

�∑
k∈N∗

e−2λk T eCα
p
λk/α

|〈Bϕ1,ϕk〉|2
�1/2

(2.1.18)

and we observe that if there exists τ > 0 such that (2.1.4) holds then, for every T > τ, ΛT < +∞.
Furthermore, if λ1 > 0 then ΛT → 0 as T → +∞.

Thanks to Theorem 2.1.9 and Remark 2.1.10 we are able to prove Proposition 2.1.7:

Proof (of Proposition 2.1.7). For any v0 ∈ X and p ∈ L2(0, T ), it follows from Proposition 2.1.5
that there exists a unique mild solution v̄ ∈ C0([0, T], X ) of (2.1.15) that can be represented
by the formula

v̄(t) = e−tAv0 −
∫ t

0

e−(t−s)Ap(s)Bϕ1ds. (2.1.19)
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We want to find p ∈ L2(0, T ) such that v̄(T ) = 0, thus the following equality must hold

∑
k∈N∗
〈v0,ϕk〉e−λk Tϕk =

∫ T

0

p(s)
∑
k∈N∗
〈Bϕ1,ϕk〉e−λk(T−s)ϕkds. (2.1.20)

Since {ϕk}k∈N∗ is an orthonormal basis of the space X , the equality must hold in every direction
and it follows that

〈v0,ϕk〉=
∫ T

0

eλks p(s)〈Bϕ1,ϕk〉ds (2.1.21)

for every k ∈ N∗. Therefore, proving null controllability of the linearized system reduces to
finding a function p ∈ L2(0, T ) that satisfies

∫ T

0

eλks p(s)ds =
〈v0,ϕk〉
〈Bϕ1,ϕk〉

(2.1.22)

for all k ∈ N∗. Thanks to assumption (2.1.3), there exists α > 0 such that the gap conditionp
λk+1−

p
λk ≥ α holds for all k ∈ N∗. Then, Theorem 2.1.9 ensures the existence of a family

{σk}k∈N∗ that is biorthogonal to {eλks}k∈N∗ . Taking p(s) =
∑

k∈N∗ ckσk(s) one finds that the
coefficients ck are given by ck =

〈v0,ϕk〉
〈Bϕ1,ϕk〉 , ∀k ∈ N∗. Thus, in order to show that

p(s) :=
∑
k∈N∗

〈v0,ϕk〉
〈Bϕ1,ϕk〉

σk(s) (2.1.23)

is a solution of (2.1.22), it suffices to prove that the series is convergent in L2(0, T ). Indeed,

||p||L2(0,T ) ≤
∑
k∈N∗

����
〈v0,ϕk〉
〈Bϕ1,ϕk〉

���� ||σk||L2(0,T ) ≤ ||v0||
�∑

k∈N∗

||σk||2L2(0,T )

|〈Bϕ1,ϕk〉|2
�1/2

and we appeal to estimate (2.1.17) for {σk}k∈N∗ , with ωk = λk for all k ∈ N∗, to obtain that

�∑
k∈N∗

||σk||2L2(0,T )

|〈Bϕ1,ϕk〉|2
�1/2

≤
�

C2
α(T )

∑
k∈N∗

e−2λk T eCα
p
λk/α

|〈Bϕ1,ϕk〉|2
)

�1/2

= Cα(T )ΛT

that is finite thanks to hypothesis (2.1.4) and Remark 2.1.10. Thus, the following bound for
the L2-norm of p holds true:

||p||L2(0,T ) ≤ Cα(T )ΛT ||v0||.

In Proposition 2.1.7 we have found a control p that steers the solution of the linearized system
to 0 in time T . We use such a control in the nonlinear system (2.1.12) to obtain a uniform
estimate for the solution v(t).

Proposition 2.1.11. Let A and B satisfying hypotheses (1.0.1), (2.1.3), (2.1.4) and furthermore
we assume λ1 = 0. Let p ∈ L2(0, T ) be defined by the following formula

p(t) =
∑
k∈N∗

〈v0,ϕk〉
〈Bϕ1,ϕk〉

σk(t) (2.1.24)

where {σk}k∈N∗ is the biorthogonal family to {eλk t}k∈N∗ given by Theorem 2.1.9.
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Then, the solution v of (2.1.12) satisfies

sup
t∈[0,T]

||v(t)||2 ≤ eC3(T )ΛT ||v0||+CB T (1+ C4(T )Λ
2
T )||v0||2 (2.1.25)

where CB ≥ 1 is the norm of the operator B, C3(T ) := 2
p

T CBCα(T ), and C4(T ) := CBC2
α(T ).

Proof. We consider the equation in (2.1.12). Thanks to Remark 2.1.6, since (2.1.14) is satis-
fied for almost every t ∈ [ε, T], we are allowed to take the scalar product with v:

〈v′(t), v(t)〉+ 〈Av(t), v(t)〉+ p(t)〈Bv(t) + Bϕ1, v(t)〉= 0. (2.1.26)

Thus, using that B is bounded, we get

1
2

d
d t
||v(t)||2 + 〈Av(t), v(t)〉 ≤ CB

�|p(t)|||v(t)||2 + |p(t)|||ϕ1||||v(t)||
�

≤ CB

�
|p(t)|||v(t)||2 + 1

2
|p(t)|2 + 1

2
||v(t)||2

� (2.1.27)

and therefore, since A is accretive, we have that

1
2

d
d t
||v(t)||2 ≤ CB

�
|p(t)|+ 1

2

�
||v(t)||2 + 1

2
CB|p(t)|2.

We integrate the last inequality from ε to t:
∫ t

ε

d
ds
||v(s)||2ds ≤ 2CB

∫ t

ε

�
|p(s)|+ 1

2

�
||v(s)||2ds+ CB

∫ T

0

|p(s)|2ds

and by Gronwall′s inequality, we obtain

||v(t)||2 ≤
�
||v(ε)||2 + CB

∫ T

0

|p(s)|2ds

�
e2CB

∫ t
ε
(|p(s)|+1/2)ds

and taking the limit ε→ 0 we find that

||v(t)||2 ≤
�
||v0||2 + CB

∫ T

0

|p(s)|2ds

�
e2CB

∫ t
0 (|p(s)|+1/2)ds.

Thus, taking the supremum over the interval [0, T], the last inequality becomes

sup
t∈[0,T]

||v(t)||2 ≤ eCB(2
p

T ||p||L2(0,T )+T)
�
||v0||2 + CB||p||2L2(0,T )

�
(2.1.28)

and finally, recalling the estimate (2.1.16) for the L2-norm of p from Proposition 2.1.7, we
get

sup
t∈[0,T]

||v(t)||2 ≤ eCB(2
p

T Cα(T )ΛT ||v0||+T) �1+ CBC2
α(T )Λ

2
T

� ||v0||2. (2.1.29)

We want now to measure the distance at time T of the solutions of the nonlinear system and
the linearized one when using the same control function p built by solving of the moment
problem in Proposition 2.1.7.
Therefore, we introduce the function w(t) := v(t)− v̄(t) that satisfies the following Cauchy
problem �

w′(t) + Aw(t) + p(t)Bv(t) = 0, t ∈ [0, T]
w(0) = 0.

(2.1.30)

We define the constant K2
T := CBC4(T )Λ2

T eC3(T )+(CB+1)T (1+ C4(T )Λ2
T ).
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Proposition 2.1.12. Let A and B satisfy hypotheses (1.0.1), (2.1.3), (2.1.4), and furthermore
we assume λ1 = 0. Let T > τ, p be defined by (2.1.24), and let v0 ∈ X be such that

KT ||v0|| ≤ 1. (2.1.31)

Then, it holds that

||w(T )|| ≤ KT ||v0||2. (2.1.32)

Proof. Observe that w ∈ C([0, T]; X ) is the mild solution of (2.1.30). Moreover w ∈ H1(0, T ; X )∩
L2(0, T ; D(A)) and thus w satisfies the equality

w′(t) + Aw(t) + p(t)Bv(t) = 0 (2.1.33)

for almost every t ∈ [0, T].
We multiply equation (2.1.33) by w(t) and we obtain

1
2

d
d t
||w(t)||2 ≤ |p(t)|||Bv(t)||||w(t)||

≤ 1
2
||w(t)||2 + C2

B
1
2
|p(t)|2||v(t)||2.

(2.1.34)

Therefore, applying Gronwall′s inequality, taking the supremum over [0, T] and using (2.1.25)
and (2.1.16), we get

sup
t∈[0,T]

||w(t)||2 ≤ C2
B eT ||p||2L2(0,T ) sup

t∈[0,T]
||v(t)||2

≤ C2
B eC3(T )ΛT ||v0||+CB T+T (1+ C4(T )Λ

2
T )||v0||2||p||2L2(0,T )

≤ C2
B C2
α(T )Λ

2
T eC3(T )ΛT ||v0||+(CB+1)T (1+ C4(T )Λ

2
T )||v0||4.

(2.1.35)

We can suppose, without loss of generality, that Cα(T ) ≥ 1. Thus, from (2.1.31), we obtain
that ΛT ||v0|| ≤ 1. Therefore,

sup
t∈[0,T]

||w(t)||2 ≤ K2
T ||v0||4,

that implies

||w(T )|| ≤ KT ||v0||2. (2.1.36)

Recalling that v̄(T ) = 0, we deduce from (2.1.32) that

||v(T )|| ≤ KT ||v0||2, (2.1.37)

and, moreover,

KT ||v(T )|| ≤ (KT ||v0||)2 ≤ 1. (2.1.38)

We observe that we can apply Proposition 2.1.12 to problem (2.1.12) defined in the interval
[T, 2T]. Indeed, vT := v(T ) that was computed by solving (2.1.12), is the initial condition of
the problem �

vt(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [T, 2T]
v(T ) = vT .

(2.1.39)
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We shift this problem to the interval [0, T] by introducing the variable s := t− T in the above
system. If we set ṽ(s) := v(s+ T ) and p̃ := p(s+ T ), then ṽ solves

�
ṽt(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, T]
ṽ(0) = vT .

(2.1.40)

Here the control p̃ is given by Proposition 2.1.11, with initial condition vT , that is:

p̃(s) =
∑
k∈N∗

〈vT ,ϕk〉
〈Bϕ1,ϕk〉

σk(s) (2.1.41)

where {σk(s)}k∈N∗ is the biorthogonal family to {eλks}k∈N∗ in [0, T]. Thus, it is possible to
bound the L2-norm of p̃ by

||p̃||L2(0,T ) ≤ Cα(T )ΛT ||vT || (2.1.42)

thanks to the estimate for {σk(s)}k∈N∗ given in Theorem 2.1.9. Therefore, for the control p of
the linearized system associated to (2.1.39), it holds that

||p||L2(T,2T ) = ||p̃||L2(0,T ) ≤ Cα(T )ΛT ||vT ||.

Finally, thanks to (2.1.38), the hypotheses of Proposition 2.1.12 for problem (2.1.39) are
satisfied and we obtain that ||v(2T )|| ≤ KT ||v(T )||2. Furthermore,

KT ||v(2T )|| ≤ (KT ||v0||)2 ≤ 1, (2.1.43)

and we can repeat this argument for the next intervals [2T, 3T], [3T, 4T], . . . , [(n−1)T, nT], . . . .
Therefore, we deduce that

KT ||v(nT )|| ≤ 1, ∀n ∈ N∗. (2.1.44)

Now, we want to obtain an estimate as (2.1.37) for the solution v of problem (2.1.12) defined
in time intervals of the form [nT, (n+ 1)T], with n≥ 1.

Proposition 2.1.13. Let A and B satisfy hypotheses (1.0.1), (2.1.3), (2.1.4) and furthermore
we assume λ1 = 0. Let v0 ∈ X be such that

KT ||v0|| ≤ 1. (2.1.45)

Then, the following iterated estimate holds:

||v(nT )|| ≤ 1
KT
(KT ||v0||)2

n
, ∀n≥ 0. (2.1.46)

Proof. We proceed by induction on n. For n= 1, the formula has been proved in Proposition
2.1.12. We suppose that (2.1.46) holds and we prove the estimate for v((n+ 1)T ): iterating
the construction of the solution v of (2.1.12) in consecutive time intervals of the form [kT, (k+
1)T] until k+ 1= n, we come to the following problem

�
v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [nT, (n+ 1)T],
v(nT ) = vnT .

(2.1.47)

where vnT is the value assumed at time nT by the solution of the same problem solved in the
interval [(n−1)T, nT]with initial data v(n−1)T . We shift this problem in the time interval [0, T]
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by introducing the variable s := t − nT and the functions ṽ(s) = v(s+ nT ), p̃(s) = p(s+ nT ).
Then, ṽ is the solution of the following Cauchy problem

�
ṽt(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, T]
ṽ(0) = vnT .

(2.1.48)

The control function p̃ is defined in [0, T] by solving the null controllability problem for the
associated linearized system and its L2-norm can be bound by

||p̃||L2(0,T ) ≤ Cα(T )ΛT ||vnT ||.
Therefore, coming back to the original time interval [nT, (n+ 1)T] we find that

||p||L2(nT,(n+1)T ) = ||p̃||L2(0,T ) ≤ Cα(T )ΛT ||vnT ||. (2.1.49)

Moreover, since it holds that
KT ||vnT || ≤ 1 (2.1.50)

we can use Proposition 2.1.12 for problem (2.1.47), obtaining

||v((n+ 1)T )|| ≤ KT ||v(nT )||2 ≤ KT

�
1

KT
(KT ||v0||)2

n
�2

=
1

KT
(KT ||v0||)2

n+1

(2.1.51)

and this concludes the induction argument and the proof of the proposition.

The last step that allows us to prove Theorem 2.1.4 consists in showing the rapid decay of the
solution u of our initial problem (2.1.1) to the fixed stationary trajectory ϕ1.

Proposition 2.1.14. Let θ ∈ (0,1) and ||v0|| ≤ θ
KT

. Then, under the hypotheses (1.0.1), (2.1.3),
(2.1.4) and λ1 = 0, there exists a constant CT > 0 such that

||u(t)−ϕ1|| ≤
CT

KT
θ 2t/T−1 ∀t ≥ 0. (2.1.52)

Proof. We have supposed that ||v0|| ≤ θ
KT

, with θ ∈ (0, 1). Thus, (2.1.46) becomes

||v(nT )|| ≤ θ
2n

KT
. (2.1.53)

Consider now the time interval [nT, (n+ 1)T]. From estimate (2.1.8) for the solution of the
control system in the time interval [nT, (n+1)T] and from the bound (2.1.49) for the control
p, we deduce that there exists a constant CT > 0 such that

||v(t)|| ≤ CT ||v(nT )||, t ∈ [nT, (n+ 1)T]. (2.1.54)

Therefore, using (2.1.46) in (2.1.54), we obtain that

||v(t)|| ≤ CT ||v(nT )|| ≤ CT

KT
θ 2n
=

CT

KT

�
θ 2(n+1)

�1/2
. (2.1.55)

Since n≤ t
T ≤ (n+ 1) and θ ∈ (0, 1), it holds that

||v(t)|| ≤ CT

KT

�
θ 2(n+1)

�1/2 ≤ CT

KT

�
θ 2t/T

�1/2
=

CT

KT
θ 2t/T−1

. (2.1.56)

By definition, v(t) = u(t)−ϕ1. So, we get

||u(t)−ϕ1|| ≤
CT

KT
θ 2t/T−1

, t ≥ 0. (2.1.57)
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We are ready to prove Theorem 2.1.4.

Proof of Theorem 2.1.4. We first consider the case in which the first eigenvalue of A is zero.
Let θ ∈ (0,1) and let ρ > 0 be the value for which θ = e−2ρ. Then, from Proposition 2.1.14,
there exist a constant Rρ > 0 such that if ||u0 −ϕ1|| ≤ Rρ, then

||u(t)−ϕ1|| ≤ MT e−ρeωT t
,∀t ≥ 0.

where MT ,ωT > 0 are constants that depend only on T . With the notation of the previous
propositions, we have that

Rρ :=
e−2ρ

KT
, MT :=

CT

KT
, ωT :=

log2
T

. (2.1.58)

Now, in order to deal with a general operator A satisfying (1.0.1), we introduce the operator

A1 := A−λ1 I . (2.1.59)

We observe that A1 : D(A1) ⊂ X → X is self-adjoint, accretive and −A1 generates a strongly
continuous analytic semigroup of contraction. Its eigenvalues are given by

µk = λk −λ1, ∀k ∈ N∗ (2.1.60)

(in particular, µ1 = 0) and it has the same eigenfunctions as A, {ϕk}k∈N∗ . Moreover, the
family {µk}k∈N∗ satisfies the same gap condition (2.1.3) that is satisfied by the eigenvalues of
A. Indeed, it holds that

p
µk+1 −pµk =

λk+1 −λkp
µk+1 +

p
µk
≥ λk+1 −λkp

λk+1 +
p
λk

=
Æ
λk+1 −

Æ
λk ≥ α, ∀k ∈ N∗.

Thus, the operator A1 satisfies the hypotheses that are required in Theorem 2.1.4.
We observe that if we introduce the function z(t) = eλ1 tu(t), where u is the solution of (2.1.1),
then z solves �

z′(t) + A1z(t) + p(t)Bz(t) = 0, t > 0,
z(0) = u0.

(2.1.61)

So, we can apply the previous analysis to this problem and deduce that there exist MT ,ωT > 0
such that, for all ρ > 0 there exists Rρ > 0 such that, if ||u0 −ϕ1|| ≤ Rρ, then

||z(t)−ϕ1|| ≤ MT e−ρeωT t
, ∀t ≥ 0. (2.1.62)

We claim that the local superexponetial stabilizability of z to the stationary trajectory ϕ1

implies the same property of u to the ground state solution ψ1. Indeed, it holds that

||u(t)−ψ1(t)||= ||e−λ1 tz(t)− e−λ1 tϕ1||= e−λ1 t ||z(t)−ϕ1|| ≤ MT e−(ρeωT t+λ1 t), ∀t ≥ 0

and this concludes the proof also in the case of a strictly accretive operator A.

Remark 2.1.15. Even in the case when A : D(A) ⊆ X → X has a finite number of negative
eigenvalues, we can define the operator A1 := A− λ1 I . A1 has nonnegative eigenvalues and
we can perform the proof of Theorem 2.1.4 and deduce the superexponential stabilizability of
the solution u of the problem with diffusion operator A to the ground state solution. In this case
ψ1(t) = eλ1 tϕ1 blows up as t →∞ since λ1 < 0, and the same occurs for the controlled solution
u.
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2.2 Applications

In this section we discuss examples of bilinear control systems to which we can apply Theorem
2.1.4. The first problems we study are 1D parabolic equations of the form

ut(t, x)− ux x(t, x) + p(t)Bu(t, x) = 0, (t, x) ∈ [0, T]× (0, 1)

in the state space X = L2(0, 1), with Dirichlet or Neumann boundary conditions and with B
the following multiplication operators:

Bu(t, x) = µ(x)u(t, x).

Then, we prove the superexponential stabilizability of the following one dimensional equation
with variable coefficients

ut(t, x)− ((1+ x)2ux(t, x))x + p(t)Bu(t, x) = 0

with Dirichlet boundary condition.
Moreover, we apply Theorem 2.1.4 to the following parabolic equation

ut(t, x)−∆u(t, x) + p(t)Bu(t, x) = 0, (t, x) ∈ [0, T]× B3

for radial data in the 3D unit ball B3.
Finally, we use the abstract result to prove stabilizability for a class of degenerate parabolic
equations of the form

ut(t, x)− (xαux(t, x))x + p(t)Bu(t, x) = 0, (t, x) ∈ [0, T]× (0, 1),

with α ∈ [0,3/2).
In each example, we will denote by {λk}k∈N∗ and {ϕk}k∈N∗ , respectively the eigenvalues and
eigenfunctions of the second order operator associated with the problem under investigation.
We will take (ū, p̄) = (ψ1, 0) as reference trajectory-control pair, where ψ1 = e−λ1 tϕ1 is the
solution of the uncontrolled problem with initial condition the ground state u(0, x) = ϕ1.

2.2.1 Diffusion equation with Dirichlet boundary conditions.

Let Ω= (0, 1), X = L2(Ω) and consider the problem




ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ Ω, t > 0
u= 0 x ∈ ∂Ω, t > 0
u(0, x) = u0(x) x ∈ Ω,

(2.2.1)

where p ∈ L2(0, T ) is the control function, u the state variable, and µ is a function in H3(Ω).
We denote by A the operator defined by

D(A) = H2 ∩H1
0(Ω), Aϕ = −d2ϕ

d x2
. (2.2.2)

A satisfies all the properties in (1.0.1): in particular, it is strictly accretive and its eigenvalues
and eigenvectors have the following explicit expressions

λk = (kπ)
2, ϕk(x) =

p
2sin(kπx), ∀k ∈ N∗.
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It is straightforward to prove that the eigenvalues fulfill the required gap property. Indeed,
Æ
λk+1 −

Æ
λk = (k+ 1)π− kπ= π, ∀k ∈ N∗.

So, (2.1.3) is satisfied.
In order to apply Theorem 2.1.4 to system (2.2.1) and deduce the superexponential stabiliz-
ability to the trajectory ψ1, we need to prove that there exists τ > 0 such that:

• 〈Bϕ1,ϕk〉 6= 0, for all k ∈ N∗,
• the series ∑

k∈N∗

e−2λkτ

|〈Bϕ1,ϕk〉|2

is finite.

For this purpose, let us compute the scalar product 〈B0ϕ1,ϕk〉= 〈µϕ1,ϕk〉

〈µϕ1,ϕk〉=
p

2

∫ 1

0

µ(x)ϕ1(x) sin(kπx)d x

=
p

2

�
− (µ(x)ϕ1(x))

cos(kπx)
kπ

����
1

0

+

∫ 1

0

(µϕ1)x(x)
cos(kπx)

kπ
d x

�

=
p

2

�
(µϕ1)x(x)

sin(kπx)
(kπ)2

����
1

0

−
∫ 1

0

(µϕ1)x x(x)
sin(kπx)
(kπ)2

d x

�

=
p

2

�
(µϕ1)x x(x)

cos(kπx)
(kπ)3

����
1

0

−
∫ 1

0

(µϕ1)x x x(x)
cos(kπx)
(kπ)3

d x

�

=
4

k3π2

�
µx(1)(−1)k+1 −µx(0)

�−
p

2
(kπ)3

∫ 1

0

(µϕ1)x x x cos(kπx)d x .

Observe that the last integral term above represents the kth-Fourier coefficient of the integ-
rable function (µϕ1)x x x(x) and thus, it converges to zero as k goes to infinity. Therefore, if
we assume

µx(1)±µx(0) 6= 0 and 〈µϕ1,ϕk〉 6= 0 ∀k ∈ N∗ (2.2.3)

then, we deduce that 〈µϕ1,ϕk〉 is of order 1/k3 as k→∞.

Remark 2.2.1. An example of a function which satisfies (2.2.3) is µ(x) = x2. Indeed, in this
case

〈x2ϕ1,ϕk〉=




4k(−1)k

(k2−1)2 , k ≥ 2,

2π2−3
6π2 , k = 1

and so 〈x2ϕ1,ϕk〉 6= 0 for all k ∈ N∗ and furthermore

|〈x2ϕ1,ϕk〉| ≥
2π2 − 3

6π2

1
k3
=
π(2π2 − 3)

6
1

λ
3/2
k

, ∀k ∈ N∗.

We conclude that, under assumption (2.2.3),

∃ C > 0 such that |〈Bϕ1,ϕk〉| ≥ ck−3 = Cλ−3/2
k , ∀k ∈ N∗ (2.2.4)
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and thanks to the polynomial behavior of the bound, the series

∑
k∈N∗

e−2λkτ

|〈Bϕ1,ϕk〉|2

converges for all τ > 0.
Therefore, all the hypotheses of Theorem 2.1.4 are satisfied and system (2.2.1) is superexpo-
nentially stabilizable to the trajectory ψ1.

Remark 2.2.2. Assumption (2.2.4) for problem (2.2.1) is not too restrictive. In fact, it is
possible to prove that the set of functions in H3(Ω) for which (2.2.4) holds is dense in H3(Ω).
For a proof of this fact, see Appendix A in [11].

2.2.2 Diffusion equation with Neumann boundary conditions

Now we look at an example with Neumann boundary conditions: let Ω= (0, 1) and consider
the following bilinear stabilzability problem





ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ Ω, t > 0
ux = 0 x ∈ ∂Ω, t > 0
u(0, x) = u0(x). x ∈ Ω

(2.2.5)

Let X = L2(Ω). When we rewrite (2.2.5) in abstract form, the operators A and B are defined
by

D(A) = {ϕ ∈ H2(0, 1) : ϕx = 0 on ∂Ω}, Aϕ = −ϕx x

D(B) = X , Bϕ = µϕ.

where µ is a real-valued function in H2(Ω).
Operator A satisfies the assumptions in (1.0.1) and it is possible to compute explicitly its
eigenvalues and eigenvectors:

λ0 = 0, ϕ0 = 1
λk = (kπ)2, ϕk(x) =

p
2cos(kπx), ∀k ≥ 1.

Since the eigenvalues are the same of those in Example 2.2.1 for k ≥ 1, the gap condition is
satisfied for all k ≥ 0.
Let us compute the scalar product 〈µϕ0,ϕk〉 to find, if it is possible, a lower bound of the
Fourier coefficients of Bϕ0:

〈µϕ0,ϕk〉=
p

2

∫ 1

0

µ(x) cos(kπx)d x

=
p

2

�
µ(x)

sin(kπx)
kπ

����
1

0

−
∫ 1

0

µx(x)
sin(kπx)

kπ
d x

�

=
p

2

�
µx(x)

cos(kπx)
(kπ)2

����
1

0

−
∫ 1

0

µx x(x)
cos(kπx)
(kπ)2

d x

�

=
p

2
(kπ)2

�
µx(1)(−1)k −µx(0)

�−
p

2
(kπ)2

∫ 1

0

µx x(x) cos(kπx)d x .
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Thus, reasoning as Example 2.2.1, if 〈Bϕ0,ϕk〉 6= 0 ∀k ∈ N and µx(1)± µx(0) 6= 0, then we
have that

∃ C > 0 such that |〈Bϕ0,ϕk〉| ≥ Ck−2 = Cλ−1
k , ∀k ∈ N∗ (2.2.6)

and therefore the series in (2.1.4) is finite for all τ > 0.

Remark 2.2.3. An example of a suitable function µ for problem (2.2.5) that satisfies the
above hypothesis, is µ(x) = x2, for which

〈x2ϕ0,ϕk〉=




2
p

2(−1)k

(kπ)2 , k ≥ 1,

1
3 , k = 0.

Applying Theorem 2.1.4, it follows that system (2.2.5) is superexponentially stabillizable to
ψ1.

2.2.3 Variable coefficient parabolic equation with Dirichlet boundary conditions

In this example, we analyze the superexponential stabilizability of a parabolic equation in
divergence form with nonconstant coefficients in the second order term.
Let Ω= (0,1), X = L2(Ω) and consider the problem





ut(t, x)− ((1+ x)2ux(t, x))x + p(t)µ(x)u(t, x) = 0 x ∈ Ω, t > 0
u(t, 0) = 0, u(t, 1) = 0, t > 0
u(0, x) = u0(x) x ∈ Ω

(2.2.7)

where p ∈ L2(0, T ) is the control and µ is a function in H2(Ω) with some properties to be
specified later.
We denote by A the operator

A : D(A) ⊂ X → X , Au= −((1+ x)2ux)x

where D(A) = H2 ∩H1
0(Ω) and it is possible to prove that A satisfies the properties in (1.0.1).

The eigenvalues and eigenvectors of A are computed as follows

λk =
1
4
+
�

kπ
ln2

�2

, ϕk =

√√ 2
ln 2
(1+ x)−1/2 sin

�
kπ
ln2

ln(1+ x)
�

.

The gap condition holds true because
Æ
λk+1 −

Æ
λk ≥

π

ln 2
, ∀k ∈ N∗.

Now, we check the hypotheses on the operator Bϕ = µϕ needed to apply Theorem 2.1.4. We
recall that we want to prove that:

• 〈Bϕ1,ϕk〉 6= 0, for all k ∈ N∗,
• there exists τ > 0 such that the series

∑
k∈N∗

e−2λkτ

|〈Bϕ1,ϕk〉|2
(2.2.8)

is finite.
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Let us compute the Fourier coefficients of Bϕ1:

〈µϕ1,ϕk〉=
√√ 2

ln 2

∫ 1

0

µ(x)ϕ1(x)(1+ x)−1/2 sin
�

kπ
ln2

ln(1+ x)
�

d x

=

√√ 2
ln 2

ln2
kπ

�
− µ(x)ϕ1(x)(1+ x)1/2 cos

�
kπ
ln 2

ln(1+ x)
�����

1

0

+

+

∫ 1

0

�
(1+ x)1/2µϕ1

�
x (x) cos

�
kπ
ln2

ln(1+ x)
�

d x

�

=

√√ 2
ln 2

�
ln2
kπ

�2
��
(1+ x)1/2µϕ1

�
x (x)(1+ x) sin

�
kπ
ln2

ln(1+ x)
�����

1

0

+

−
∫ 1

0

��
(1+ x)1/2µϕ1

�
x (1+ x)

�
x
(x) sin

�
kπ
ln 2

ln(1+ x)
�

d x

�

=

√√ 2
ln 2

�
ln2
kπ

�3
���
(1+ x)1/2µϕ1

�
x (1+ x)

�
x
(x)(1+ x) cos

�
kπ
ln2

ln(1+ x)
�����

1

0

+

−
∫ 1

0

���
(1+ x)1/2µϕ1

�
x (1+ x)

�
x
(1+ x)

�
x
(x) cos

�
kπ
ln 2

ln(1+ x)
�

d x

�

=

√√ 2
ln 2

�
ln2
kπ

�3
�√√ 2

ln2
2π
ln 2

�−2µx(1)(−1)k −µx(0)
�
+

−
∫ 1

0

���
(1+ x)1/2µϕ1

�
x (1+ x)

�
x
(1+ x)

�
x
(x) cos

�
kπ
ln2

ln(1+ x)
�

d x

�

Observe that, for the same reason of Example 2.2.1, if 2µx(1)±µx(0) 6= 0 and 〈µϕ1,ϕk〉 6= 0,
∀k ∈ N∗ then, there exists a constant C > 0 such that |〈B0ϕ,ϕk〉| is bounded from below by
Cλ−3/2

k , for all k ∈ N∗. Thus, series (2.2.8) is finite for all τ > 0.

Remark 2.2.4. As an example of a function µ that verifies the lower bound |〈Bϕ,ϕk〉| ≥
Cλ−3/2

k , one can consider again µ(x) = x: indeed, it satisfies the sufficient condition 2µx(1)±
µx(0) 6= 0 and the Fourier coefficients of Bϕ1 = xϕ1 are all different from zero:

〈xϕ1,ϕk〉=





2(2(−1)k+1−1)

(k2−1)2
�

1+ (k+1)2π2

(ln 2)2

��
1+ (k−1)2π2

(ln 2)2

�
�
4k3 + k+ 1+ 2k(k2 − 1)2 π

(ln 2)2

�
, k ≥ 2

1
ln 2

�
(1−ln 2)( 2π

ln2 )
3− 2π

ln 2

1+( 2π
ln 2 )

3

�
, k = 1

This concludes the verification of the hypotheses of Theorem 2.1.4, that imply the superex-
ponential stabilizability of (2.2.7) to ψ1.

2.2.4 Diffusion equation in a 3D ball with radial data

In this example we consider an evolution equation in the three dimensional unit ball B3 for
radial data. The bilinear stabilizability problem is the following





ut(t, r)−∆u(t, r) + p(t)µ(r)u(t, r) = 0 r ∈ [0,1], t > 0
u(t, 1) = 0, t > 0
u(0, r) = u0(r) r ∈ [0,1]

(2.2.9)
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where the Laplacian in polar coordinates for radial data has the form

∆ϕ(r) = ∂ 2
r ϕ(r) +

2
r
∂rϕ(r).

The function µ is a radial function as well in the space H3
r (B

3), where the spaces Hk
r (B

3) are
defined as follows

X := L2
r (B

3) =
�
ϕ ∈ L2(B3) | ∃ψ : R→ R,ϕ(x) =ψ(|x |)	

Hk
r (B

3) := Hk(B3)∩ L2
r (B

3).

The domain of the Dirichlet Laplacian A := −∆ in X is D(A) = H2
r ∩ H1

0(B
3). We observe

that A satisfies the hypotheses required to apply Theorem 2.1.4. We denote by {λk}k∈N∗ and
{ϕk}k∈N∗ the families of eigenvalues and eigenvectors of A, Aϕk = λkϕk, namely

ϕk =
sin(kπr)p

2πr
, λk = (kπ)

2 (2.2.10)

∀k ∈ N∗, see [48], section 8.14. The family {ϕk}k∈N∗ forms an orthonormal basis of X .
In order to prove a superexponential stabilizability result to the trajectory ψ1, we need to
verify the remaining hypotheses in Theorem 2.1.4 regarding the gap condition of the eigen-
values of A and the properties of the operator B : X 7→ X , Bϕ = µϕ.
Since the Laplacian in the 3D ball for radial data behaves as a one dimensional operator, the
analysis is very similar to the previous cases. Indeed, since the eigenvalues of the operator A
are actually the same of the 1D Dirichlet Laplacian, we have

Æ
λk+1 −

Æ
λk = π, ∀k ∈ N∗.

In order to compute a suitable lower bound for the Fourier coefficients of Bϕ1, we recall the
following property of radial symmetric functions f = f (r): the integral over the unit ball
Bn ⊂ Rn of f = f (r) reduces to

∫

Bn

f dV = |Sn−1|
∫ 1

0

f (r)rn−1dr (2.2.11)

where |Sn−1| is the measure of the surface of the sphere Sn−1.
Therefore,

〈µϕ1,ϕk〉=
∫

B3

1
2π
µ(r)

sin(πr)
r

sin(kπr)
r

dV

= 4π

∫ 1

0

1
2π
µ(r)

sin(πr)
r

sin(kπr)
r

r2dr

=

∫ 1

0

2µ(r) sin(πr) sin(kπr)dr

= − 4
k3π2

�
∂rµ(1)(−1)k + ∂rµ(0)

�
+

− 2
(kπ)3

∫ 1

0

∂ 3
r (µ sin(πr)) (r) cos(kπr)dr.

(2.2.12)
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Following the same argument as in Example 2.2.1, if all the coefficients 〈µϕ1,ϕk〉 are different
from zero and, moreover, ∂rµ(1)± ∂rµ(0) 6= 0 then, there exists a constant C > 0 such that

|〈µϕ1,ϕk〉| ≥ Cλ−3/2
k , ∀k ∈ N∗

and thus the series in (2.2.8) is finite also in this case, for all τ > 0.

Remark 2.2.5. An example of a function µ ∈ H3
r (B

3) with the aforementioned properties is
µ(r) = r2. In this case the Fourier coefficients of Bϕ1 are defined by

〈Bϕ1,ϕk〉=




8(−1)k+1k
(k2−1)2π2 , k ≥ 2

2π2−3
6π2 , k = 1

Finally, applying Theorem 2.1.4, we deduce that, fixed T > 0, there exist constants MT ,ωT >

0 such that, for all ρ > 0, there exists Rρ > 0 such that, if the initial condition u0 satisfies
||u0 −ϕ1|| ≤ Rρ, then

||u(t)−ψ1(t)|| ≤ MT e−(ρeωT t+π2 t), ∀t > 0.

2.2.5 Degenerate parabolic equation

Let I = (0,1), X = L2(I) and consider the following degenerate parabolic equation





ut − (xαux)x + p(t)x2−αu= 0, (t, x) ∈ (0,∞)× (0,1)

u(t, 1) = 0,

¨
u(t, 0) = 0, if α ∈ [0, 1),

(xαux) (t, 0) = 0, if α ∈ [1, 3/2),

u(0, x) = u0(x).
(2.2.13)

where p is the bilinear control function and the parameter α ∈ [0,2) describes the degeneracy
magnitude. In particular, the problem is called weakly degenerate for α ∈ [0, 1), and strongly
degenerate for α ∈ [1, 2).
Depending on the type of degeneracy, it is customary to assign different boundary conditions
to the problem and therefore the spectral analysis of the second order degenerate operator
will be different. We refer to Appendix A for a more detailed discussion.
The natural spaces for the well-posedness of degenerate problems are weighted Sobolev
spaces, that we will indicate by H s

α(I), and that differ in the weak and strong degeneracy
settings.
We introduce the linear operator

A : D(A) ⊂ X → X

u 7→ −(xαux)x

that can be shown to be a densely defined, self-adjoint, accretive operator with compact re-
solvent for all α ∈ [0,2).
For any α ∈ [0,2), let

να :=
|1−α|
2−α , kα :=

2−α
2

.
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Given ν ≥ 0, we denote by Jν the Bessel function of the first kind and order ν and by jν,1 <

jν,2 < · · · < jν,k < . . . the sequence of all positive zeros of Jν. It is possible to prove that the
eigenvalue {λα,k}k∈N∗ and the corresponding eigenfunction {ϕα,k}k∈N∗ related to the operator
A are given by

λα,k = k2
α j2
α,k, (2.2.14)

ϕα,k(x) =

p
2kα

|J ′να( jνα,k)|
x (1−α)/2Jνα

�
jνα,k x kα

�
(2.2.15)

for every k ∈ N∗. Moreover, the family
�
ϕα,k

�
k∈N∗ is an orthonormal basis of X , see [41].

To apply Theorem 2.1.4 to problem (2.2.13), we have to prove the validity of the gap condition
(2.1.3) and of hypothesis (2.1.4) for the multiplication operator

B : X → X

u 7→ µu,

with µ(x) = x2−α.

Concerning the gap condition, it has been proved (see [47], page 135) that

• if α ∈ [0, 1), να =
1−α
2−α ∈

�
0, 1

2

�
, the sequence

�
jνα,k+1 − jνα,k

�
k∈N∗ is nondecreasing and

converges to π. Therefore,

Æ
λk+1 −

Æ
λk = kα

�
jνα,k+1 − jνα,k

�≥ kα
�

jνα,2 − jνα,1

�≥ 7
16
π,

• if να ≥ 1
2 , the sequence

�
jνα,k+1 − jνα,k

�
k∈N∗ is nonincreasing and converges to π. Thus,

Æ
λk+1 −

Æ
λk = kα

�
jνα,k+1 − jνα,k

�≥ kαπ≥
π

2
.

Therefore, (2.1.3) is satisfied in both weak and strong degenerate problems with different
constants.

The operator B is linear and bounded in I . What remains to prove is that there exists τ > 0
such that

〈µϕα,1,ϕα,k〉 6= 0, ∀k ∈ N∗,
∑
k∈N∗

e−2λkτ

|〈µϕα,1,ϕα,k〉|2
< +∞.

(2.2.16)

We compute the scalar product 〈µϕα,1,ϕα,k〉 for k 6= 1 and, from now on, we write ϕk instead
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of ϕα,k to lighten the notation:

〈µϕ1,ϕk〉=
∫ 1

0

µ(x)ϕ1(x)ϕk(x) = −
1
λk

∫ 1

0

µ(x)ϕ1(x) (x
α(ϕk)x)x (x)d x

= − 1
λk

�
µ(x)ϕ1(x)x

α(ϕk)x(x)|10 −
∫ 1

0

(µϕ1)x (x)x
α(ϕk)x(x)d x

�

=
1
λk

�∫ 1

0

µx(x)ϕ1(x)x
α(ϕk)x(x)d x +

∫ 1

0

µ(x)(ϕ1)x(x)x
α(ϕk)x(x)d x

�

=
1
λk

�∫ 1

0

µx(x)ϕ1(x)x
α(ϕk)x(x)d x + µ(x)(ϕ1)x(x)x

αϕk(x)|10

−
∫ 1

0

(µ(ϕ1)x xα)x (x)ϕk(x)d x

�

=
1
λk

�∫ 1

0

µx(x)ϕ1(x)x
α(ϕk)x(x)d x −

∫ 1

0

µx(x)(ϕ1)x(x)x
αϕk(x)d x

−
∫ 1

0

µ(x)(xα(ϕ1)x)x(x)ϕk(x)d x

�

=
1
λk

�∫ 1

0

µx(x)x
α [ϕ1(x)(ϕk)x(x)− (ϕ1)x(x)ϕk(x)] d x

+λ1

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x

�
.

(2.2.17)

We observe that in the weakly degenerate case, thanks to the Dirichlet conditions in both
extrema, the boundary terms vanish. We can deduce the same vanishing property at x = 0
for the strong degenerate case thanks to the first item of Proposition A.1.1 and to (A.1.12).
Moving the last term of (2.2.17) to the left-hand side, we get

�
1− λ1

λk

�
〈µϕ1,ϕk〉=

1
λk

∫ 1

0

µx(x)x
αϕ2

1(x)
�
ϕk

ϕ1

�

x
(x)d x (2.2.18)

and therefore, integrating by parts we obtain

〈µϕ1,ϕk〉=
1

λk −λ1

�
µx(x)x

αϕ2
1(x)

ϕk(x)
ϕ1(x)

����
1

0

−
∫ 1

0

�
µx xαϕ2

1

�
x (x)

ϕk(x)
ϕ1(x)

d x

�

=
−1

λk −λ1

�∫ 1

0

(µx xα)x(x)ϕ
2
1(x)

ϕk(x)
ϕ1(x)

d x

+2

∫ 1

0

µx(x)x
αϕ1(x)(ϕ1)x(x)

ϕk(x)
ϕ1(x)

d x

�

= − 1
λk −λ1

�∫ 1

0

(µx xα)x(x)ϕ1(x)ϕk(x)d x

+2

∫ 1

0

µx(x)x
α(ϕ1)x(x)ϕk(x)d x

�
.

(2.2.19)
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The boundary terms vanish for the Dirichet conditions if α ∈ [0, 1) and thanks to the second
item in Proposition A.1.1 for α ∈ [1,3/2).

Recalling that µ(x) = x2−α, we have that

〈µϕ1,ϕk〉= −
2(2−α)
λk −λ1

∫ 1

0

x(ϕ1)x(x)ϕk(x)d x

=
2(2−α)
λk(λk −λ1)

∫ 1

0

x(ϕ1)x(x) (x
α(ϕk)x)x (x)d x

=
2(2−α)
λk(λk −λ1)

�
x(ϕ1)x(x)x

α(ϕk)x(x)|10 −
∫ 1

0

(x(ϕ1)x)x (x)x
α(ϕk)x(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0 − (x(ϕ1)x)x (x)x

αϕk(x)
��1
0

+

∫ 1

0

�
(x(ϕ1)x)x (x)x

α
�

x ϕk(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0

+

∫ 1

0

(((ϕ1)x + x(ϕ1)x x) xα)x (x)ϕk(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0 −λ1

∫ 1

0

ϕ1(x)ϕk(x)d x

+

∫ 1

0

�
x1+α(ϕ1)x x

�
x (x)ϕk(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0 +

∫ 1

0

�
x1+α(ϕ1)x x

�
x (x)ϕk(x)d x

�

(2.2.20)

where we have used the fact that, for α ∈ [1,3/2), (x(ϕ1)x)x(x)xαϕk(x)|10 vanishes in view
of Proposition A.1.1.

Since ϕk is an eigenfunction of A for all k ∈ N∗, it satisfies the equation

− (αxα−1(ϕk)x(x) + xα(ϕk)x x(x)) = λkϕk(x), (2.2.21)
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then we can rewrite the expression of (ϕk)x x(x) in (2.2.20) using (2.2.21):

〈µϕ1,ϕk〉=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0 +

∫ 1

0

�
x1+α(ϕ1)x x

�
x (x)ϕk(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0

−
∫ 1

0

(λ1 xϕ1 +αxα(ϕ1)x)x (x)ϕk(x)d x

�

=
2(2−α)
λk(λk −λ1)

�
x1+α(ϕ1)x(x)(ϕk)x(x)

��1
0 −λ1

∫ 1

0

x(ϕ1)x(x)ϕk(x)d x

−λ1

∫ 1

0

ϕ1(x)ϕk(x)d x −α
∫ 1

0

(xα(ϕ1)x)x(x)︸ ︷︷ ︸
−λ1ϕ1(x)

ϕk(x)d x
�
.

(2.2.22)

Recalling that {ϕk}k∈N∗ is an orthonormal basis of L2(0, 1), the last two terms on the right-
hand side of the above equality are zero.
Thus, from the first equality of (2.2.20) and the last one of (2.2.22), we obtain that

− 2(2−α)
λk −λ1

�
1− λ1

λk

�∫ 1

0

x(ϕ1)x(x)ϕk(x)d x =
2(2−α)
λk(λk −λ1)

x1+α(ϕ1)x(x)(ϕk)x(x)
��1
0

(2.2.23)
that implies

〈µϕ1,ϕk〉= −
2(2−α)
λk −λ1

∫ 1

0

x(ϕ1)x(x)ϕk(x)d x =
2(2−α)
(λk −λ1)2

x1+α(ϕ1)x(x)(ϕk)x(x)
��1
0

(2.2.24)
Recalling that the eigenvalues {λk}k∈N∗ of A are defined by (2.2.14) where να = |1−α|/(2−α),
and the eigenfunctions, {ϕk}k∈N∗ , by (2.2.15), we compute the right-hand side of (2.2.24):

x1+α(ϕ1)x(x)(ϕk)x(x) =

=
2(2−α)kαx1+α

|J ′να( jνα,1)||J ′να( jνα,k)|
�

1−α
2

x−(1+α)/2Jνα( jνα,1 x kα)

+ jνα,1kαx (1−2α)/2J ′να( jνα,1 x kα)
�

·
�

1−α
2

x−(1+α)/2Jνα( jνα,k x kα) + jνα,kkαx (1−2α)/2J ′να( jνα,k x kα)
�

.

(2.2.25)

Therefore

x1+α(ϕ1)x(x)(ϕk)x(x) |10 = (ϕ1)x(1)(ϕk)x(1) =
2k3
α jνα,1 jνα,k

|J ′να( jνα,1)||J ′να( jνα,k)|
J ′να( jνα,1)J

′
να
( jνα,k).

(2.2.26)
Now, we recall that the zeros of J ′να , j′να,k, satisfy να < j′να,1 < jνα,1 < j′να,2 < jνα,2 . . . , to
conclude that the right-hand side of (2.2.26) does not vanish.
From (2.2.24) and (2.2.26) we deduce that there exists a constant C such that

|〈µϕ1,ϕk〉| ≥
C

λ
3/2
k

, ∀k ∈ N∗, k 6= 1. (2.2.27)
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For k = 1, we have

〈µϕ1,ϕ1〉=
2kα

|J ′να( jνα,1)|2
∫ 1

0

x2−αx1−αJ2
να
( jνα,1 x kα)d x

=
4kα j4

να,1

(2−α)|J ′να( jνα,1)|2
∫ jνα ,1

0

z3J2
να
(z)dz.

(2.2.28)

We now appeal to the identity

(σ+2)

∫ z

tσ+2Jν(t)d t = (σ+ 1)
§
ν2 − 1

4
(σ+ 1)2

ª∫ z

tσJ2
ν (t)d t

+
1
2

zσ+1

�§
zJ ′ν(z)−

1
2
(σ+ 1)Jν(z)

ª2

+
§

z2 − ν2 +
1
4
(σ+ 1)2

ª
J2
ν (z)

� (2.2.29)

with σ = 1 (see [51], equation (17) page 256) to turn (2.2.29) into

〈µϕ1,ϕ1〉=
4kα j4

να,1

(2−α)|J ′να( jνα,1)|2
2
3

�
ν2
α − 1

	∫ jνα ,1

0

zJ2
να
(z)dz

+
1
6

j3
να,1

h¦
jνα,1J ′να( jνα,1)− Jνα( jνα,1)

©2
+
¦

j2
να,1 − ν2

α + 1
©

J2
να
( jνα,1)

i
.

(2.2.30)

Using Lommel’s integral
∫ c

0

zJν(az)2dz =
c2

2

�
J2
ν (ac)− Jν−1(ac)Jν+1(ac)

�
(2.2.31)

in (2.2.30), we obtain

〈µϕ1,ϕ1〉=

=
4kα j4

να ,1

(2−α)|J ′
να
( jνα ,1)|2

�
2
3

�
ν2
α
− 1

	� j2
να ,1

2

�
J2
να
( jνα ,1)− Jνα−1( jνα ,1)Jνα+1( jνα ,1)

��

+
1
6

j3
να ,1

�
jνα ,1J ′

να
( jνα ,1)

�2
�

=
4kα j4

να ,1

(2−α)|J ′
να
( jνα ,1)|2

�
−1

3
j2
να ,1

�
ν2
α
− 1

	
Jνα−1( jνα ,1)Jνα+1( jνα ,1)

+
1

24
j5
να ,1

�
Jνα−1( jνα ,1)− Jνα+1( jνα ,1)

�2
�

=
4kα j4

να ,1

(2−α)|J ′
να
( jνα ,1)|2

�
1

24
j5
να ,1

�
J2
να−1( jνα ,1) + J2

να+1( jνα ,1)
�

−
�

1
3

j2
να ,1

�
ν2
α
− 1

	
+

j5
να ,1

12

�
Jνα−1( jνα ,1)Jνα+1( jνα ,1)

�

≥
4kα j4

να ,1

(2−α)|J ′
να
( jνα ,1)|2

�
1

24
j5
να ,1

�
J2
να−1( jνα ,1) + J2

να+1( jνα ,1)
�

−
�

1
3

j2
να ,1

�
ν2
α
− 1

	
+

j5
να ,1

12

�
1
2

�
J2
να−1( jνα ,1) + J2

να+1( jνα ,1)
��

.

Thus, 〈µϕ1,ϕ1〉> 0 if

1
24

j5
να,1 >

1
2

�
1
3

j2
να,1

�
ν2
α − 1

	
+

j5
να,1

12

�
. (2.2.32)

37



Since
α ∈ [0,1) ⇒ να ∈ (0,1/2],

α ∈ [1,3/2) ⇒ να ∈ [0, 1),

equation (2.2.32) holds true for both weak and strong degeneracy.
Hence, since 〈µϕ1,ϕk〉 6= 0 for every k ∈ N∗ and (2.2.27) is valid, the series (2.2.16) converges
for every τ > 0.
We have checked that every hypothesis of Theorem 2.1.4 holds for problem (2.2.13) if α ∈
[0,3/2). Therefore, we conclude that, for any ρ > 0, if the initial condition u0 is close enough
to ϕ1, the system is superexponentially stabilizable to the ground state solution ψ1.
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CHAPTER 3

Exact contrallability to trajectories

In this chapter we present results of local and global controllability to a target trajectory that
are based on [3].
In a separable Hilbert space X , we study the linear evolution equation

u′(t) + Au(t) + p(t)Bu(t) = 0,

where A is an accretive self-adjoint linear operator, B is a bounded linear operator on X , and
p ∈ L2

loc(0,+∞) is a bilinear control.
We give sufficient conditions in order for the above control system to be locally controllable
to the ground state solution, that is, the solution of the free equation (p ≡ 0) starting from
the ground state of A. Such a property, that is obviously stronger than superexponential
stabilizability, holds true in more restrictive settings than those considered in Theorem 2.1.4.
Nevertheless, the result we present in this chapter apply to all the examples of parabolic
problems we have treated in chapter 2.
We also derive global controllability results in large time.

3.1 Main result

In a separable Hilbert space X , consider the control system




u′(t) + Au(t) + p(t)Bu(t) = 0, t > 0

u(0) = u0.
(3.1.1)

where A : D(A) ⊂ X → X is a linear self-adjoint maximal accretive operator on X , B be-
longs to L (X ), the space of all bounded linear operators on X , and p(t) is a scalar function
representing a bilinear control.
In chapter 2, we have studied the stabilizability of (3.1.1) along the ground state solution of
the free equation (p ≡ 0). More precisely, we have given sufficient conditions on A and B to
ensure the superexponential stabilizability of (3.1.1) along ψ1: for all u0 in some neighbor-
hood of ϕ1 there exists a control p ∈ L2

loc([0,+∞)) such that the corresponding solution u of
(3.1.1) satisfies

||u(t)−ψ1(t)|| ≤ Me−(e
ωt+λ1 t), ∀ t ≥ 0 (3.1.2)

for some constants ω, M > 0.
In this chapter, we address the related, more delicate, issue of the exact controllability of
(3.1.1) to the ground state solution ψ1 via a bilinear control.
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Theorem 3.1.1. Let A : D(A) ⊂ X → X be a densely defined linear operator such that (1.0.1)
holds and suppose that there exists a constant α > 0 for which the eigenvalues of A fulfill the gap
condition Æ

λk+1 −
Æ
λk ≥ α, ∀ k ∈ N∗. (3.1.3)

Let B : X → X be a bounded linear operator such that there exist b, q > 0 for which

〈Bϕ1,ϕ1〉 6= 0, and λ
q
k|〈Bϕ1,ϕk〉| ≥ b ∀ k > 1. (3.1.4)

Then, for any T > 0, there exists a constant RT > 0 such that, for any u0 ∈ BRT
(ϕ1), there exists

a control p ∈ L2(0, T ) for which system (3.1.1) is controllable to the ground state solution in
time T. Furthermore, the following estimate holds

||p||L2(0,T ) ≤
e−π

2CK/T f

e2π2CK/(3T f ) − 1
, (3.1.5)

where

T f :=min{T, Tα}, Tα :=
π2

6
min

�
1, 1/α2

	
(3.1.6)

and CK is a suitable positive constant.

The main idea of the proof consists of applying the stability estimates of [4] on a suitable
sequence of time intervals of decreasing length T j , such that

∑∞
j=1 T j <∞. Such a sequence,

however, has to be suitably chosen in order to fit the error estimates that we take from [4].
From the above local exact controllability property we deduce two global controllability res-
ults. In the first one, Theorem 3.1.2 below, we prove that all initial states lying in a suitable
strip, i.e., satisfying |〈u0,ϕ1〉 − 1| < r1, can be steered to the ground state solution (see Fig-
ure 3.1). Moreover, we give a uniform estimate for the controllability time.

Theorem 3.1.2. Let A and B satisfy hypotheses (1.0.1), (3.1.3), and (3.1.4). Then there exists
a constant r1 > 0 such that for any R> 0 there exists TR > 0 such that for all u0 ∈ X that satisfy

|〈u0,ϕ1〉 − 1|< r1,

||u0 − 〈u0,ϕ1〉ϕ1|| ≤ R,
(3.1.7)

problem (3.1.1) is exactly controllable to the ground state solution ψ1(t) = e−λ1 tϕ1 in time TR.
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ϕ1ψ1(TR)

R

−R

r1

u0

Figure 3.1: the colored region represents the set of initial conditions that can be steered to the ground
state solution in time TR.

Our second global result, Theorem 3.1.3 below, ensures the exact controllability of all initial
states u0 ∈ X \ ϕ⊥1 to the evolution of their orthogonal projection along the ground state
solution defined by

φ1(t) = 〈u0,ϕ1〉ψ1(t), ∀ t ≥ 0, (3.1.8)

where ψ1 is the ground state solution.

Theorem 3.1.3. Let A and B satisfy hypotheses (1.0.1), (3.1.3) and (3.1.4). Then, for any
R> 0 there exists TR > 0 such that for all u0 ∈ X satisfying

||u0 − 〈u0,ϕ1〉ϕ1|| ≤ R|〈u0,ϕ1〉| (3.1.9)

system (3.1.1) is exactly controllable to φ1, defined in (3.1.8), in time TR.

Notice that, denoting by θ the angle between the half-lines R+ϕ1 and R+u0, condition (3.1.9)
is equivalent to

| tanθ | ≤ R,

which defines a closed cone, say QR, with vertex at 0 and axis equal to Rϕ1 (see Figure 3.2).
Therefore, Theorem 3.1.3 ensures a uniform controllability time for all initial conditions lying
in QR. We observe that, since R is any arbitrary positive constant, all initial conditions u0 ∈
X \ϕ⊥1 can be steered to the corresponding projection to the ground state solution. Indeed,
for any u0 ∈ X \ϕ⊥1 , we define

R0 :=

����
����

u0

〈u0,ϕ1〉
−ϕ1

����
���� .

Then, for any R≥ R0 condition (3.1.9) is fulfilled:

1
|〈u0,ϕ1〉|

||u0 − 〈u0,ϕ1〉ϕ1||= R0 ≤ R.
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θθ̂
ϕ1ϕ1 φ1(TR)φ̂1(TR)

u0

û0

QR

Figure 3.2: fixed any R> 0, the set of initial conditions exactly controllable in time TR to their projection
along the ground state solution is indicated by the colored cone QR.

3.2 Proof of Theorem 3.1.1

First, we recall some results from chapter 2 that are necessary for the construction of the proof
of Theorem 3.1.1. Fixed T > 0, consider the following bilinear control problem





u′(t) + Au(t) + p(t)Bu(t) + f (t) = 0, t ∈ [0, T]

u(0) = u0,
(3.2.1)

with u0 ∈ X , p ∈ L2(0, T ) and f ∈ L2(0, T ; X ). Proposition 2.1.5 ensures the existence of a
unique mild solution u ∈ C([0, T]; X ) of (3.2.1) for which the following estimate holds

||u||∞,0 ≤ C1(T )(||u0||+ || f ||2,0). (3.2.2)

Our aim is to show the controllability of the following system




u′(t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T]

u(0) = u0,
(3.2.3)

to the ground state solutionψ1 = e−λ1 tϕ1, that is the solution of (3.2.3) when p = 0 and u0 =
ϕ1. We first consider the case λ1 = 0 and prove the controllability result to the corresponding
ground state solution ψ1 = ϕ1. Then, we recover the result also for the case λ1 > 0.
Set v := u−ϕ1, then v is the solution of the following Cauchy problem





v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [0, T]

v(0) = v0 = u0 −ϕ1.
(3.2.4)
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We observe that the controllability of u to ϕ1 is equivalent to the null controllabiliy of (3.2.4).
In order to prove this latter result, we consider the following linearized system





v̄(t)′ + Av̄(t) + p(t)Bϕ1 = 0, t ∈ [0, T]

v̄(0) = v0.
(3.2.5)

and we recall the definition the constant ΛT

ΛT :=

�∑
k∈N∗

e−2λk T eC̄
p
λk/α

|〈Bϕ1,ϕk〉|2
�1/2

. (3.2.6)

where α is the constant in (3.1.3). We observe that, thanks to assumption (3.1.4), ΛT con-
verges for any T > 0.
Thanks to Proposition 2.1.7, we are able to build a control p ∈ L2(0, T )

p(t) =
∑
k∈N∗

〈v0,ϕk〉
〈Bϕ1,ϕk〉

σk(t) (3.2.7)

that steers the solution of (3.2.5) to 0 in time T . Such a control p satisfies the following bound

||p||L2(0,T ) ≤ Cα(T )ΛT ||v0|| (3.2.8)

where ΛT is defined in (3.2.6) and α is the constant in (3.1.3).

Remark 3.2.1. The behavior of Cα(·) with respect to its argument has been studied in [24] and
is given by

C2
α(T ) = C̄ ·





�
1
T +

1
T 2α2

�
eC̄/(Tα2), T ≤ 1

α2

C̄α2, T ≥ 1
α2 ,

(3.2.9)

where C̄ > 0 is a constant independent of T and α.

By using the control p built in Proposition 2.1.7 also in the nonlinear system (3.2.4) and we
have proved in chapter 2, Proposition 2.1.11 that the solution v of (3.2.4) satisfies

sup
t∈[0,T]

||v(t)||2 ≤ eC3(T )ΛT ||v0||+CB T (1+ C4(T )Λ
2
T )||v0||2 (3.2.10)

where CB ≥ 1 is the norm of the operator B, C3(T ) := 2
p

T CBCα(T ), and C4(T ) := CBC2
α(T ).

We introduce the function w(t) := v(t)− v̄(t) that satisfies the following Cauchy problem




w′(t) + Aw(t) + p(t)Bv(t) = 0, t ∈ [0, T]

w(0) = 0.
(3.2.11)

We define the function K on (0,∞) by

K2(T ) := CBe2CB
p

T+(CB+1)T C4(T )Λ
2
T (1+ C4(T )Λ

2
T ). (3.2.12)

In the following Proposition we estimate how close we are able to steer v to 0 in time T by
means of the control p defined in (3.2.7).
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Proposition 3.2.2. Let A and B satisfy hypotheses (1.0.1), (3.1.3), (3.1.4), and, furthermore,
we assume λ1 = 0. Let T > 0, p be defined by (3.2.7), and let v0 ∈ X be such that

Cα(T )ΛT ||v0|| ≤ 1. (3.2.13)

Then, it holds that
||w(T )||= ||v(T )|| ≤ K(T )||v0||2. (3.2.14)

Proof. Observe that w ∈ C([0, T]; X ) is the mild solution of (3.2.11). Moreover w ∈ H1(0, T ; X )∩
L2(0, T ; D(A)) and thus w satisfies the equality

w′(t) + Aw(t) + p(t)Bv(t) = 0 (3.2.15)

for almost every t ∈ [0, T].
We multiply equation (3.2.15) by w(t) and we obtain

1
2

d
d t
||w(t)||2 ≤ |p(t)|||Bv(t)||||w(t)||

≤ 1
2
||w(t)||2 + C2

B
1
2
|p(t)|2||v(t)||2.

(3.2.16)

Therefore, applying Gronwall′s inequality, taking the supremum over [0, T] and using (3.2.10)
and (3.2.8), we get

sup
t∈[0,T]

||w(t)||2 ≤ C2
B eT ||p||2L2(0,T ) sup

t∈[0,T]
||v(t)||2

≤ C2
B eC3(T )ΛT ||v0||+CB T+T (1+ C4(T )Λ

2
T )||v0||2||p||2L2(0,T )

≤ C2
B C2
α(T )Λ

2
T eC3(T )ΛT ||v0||+(CB+1)T (1+ C4(T )Λ

2
T )||v0||4.

(3.2.17)

We can suppose, without loss of generality, that Cα(T ) ≥ 1. Thus, thanks to (3.2.13), we
obtain

sup
t∈[0,T]

||w(t)||2 ≤ C2
B C2
α(T )Λ

2
T e2CB

p
T+(CB+1)T (1+ C4(T )Λ

2
T )||v0||4

that is equivalent to
sup

t∈[0,T]
||w(t)||2 ≤ K(T )2||v0||4.

By the last inequality we infer that

||w(T )|| ≤ K(T )||v0||2. (3.2.18)

Fixed 0< T ≤min
�
1, 1/α2

	
, we define the sequence {T j} j∈N∗ by

T j := T/ j2, (3.2.19)

and the time steps

τn =
n∑

j=1

T j , ∀n ∈ N, (3.2.20)

with the convention that
∑0

j=1 T j = 0. Notice that
∑∞

j=1 T j =
π2

6 T .
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The proof of our result relies on the construction of the solution v of (3.2.4) in consecut-
ive intervals of the form [τn,τn+1] for which we are able to perform an iterate estimate of
(3.2.14).
First, through the following Lemma, we study the behavior of the constant K(T ) with respect
to T .
We define the function

GM (T ) :=
M
T 2

eM/T
∞∑
k=1

e−2λk T+M
p
λk

|〈Bϕ1,ϕk〉|2
, 0< T ≤ 1 (3.2.21)

where M is a positive constant.

Lemma 3.2.3. Let A : D(A) ⊂ X → X be such that (1.0.1) and (3.1.3) hold and B : X → X be
such that (3.1.4) holds. Then, there exists a suitable positive constant CM such that

GM (T )≤ eCM/T , ∀ 0< T ≤ 1. (3.2.22)

Proof. Thanks to assumption (3.1.4), we have that

GM (T ) =
M
T 2

eM/T
∞∑
k=1

e−2λk T+M
p
λk

|〈Bϕ1,ϕk〉|2

≤ M
T 2

eM/T

�
eM2/(8T )

|〈Bϕ1,ϕ1〉|2
+

1
b2

∞∑
k=2

�
λ

2q
k e−λk T

�
e−λk T+M

p
λk

�
.

(3.2.23)

For any λ ≥ 0 we set f (λ) = e−λT+M
p
λ. The maximum value of f is attained at λ =

�
M
2T

�2
.

So, we can bound GM (T ) as follows

GM (T )≤
M
T 2

eM/T

�
eM2/(8T )

|〈Bϕ1,ϕ1〉|2
+

eM2/(4T )

b2

∞∑
k=1

λ
2q
k e−λk T

�
. (3.2.24)

Now, for any λ≥ 0 we define the function g(λ) = λ2qe−λT . Its derivative is given by

g ′(λ) = (2q−λT )λ2q−1e−λT

and therefore we deduce that

g(λ) is





increasing if 0≤ λ < (2q)/T

decreasing if λ≥ (2q)/T

and g has a maximum at λ= (2q)/T . We define the following index:

k1 := k1(T ) = sup
§

k ∈ N∗ : λk ≤
2q
T

ª

Note that k1(T ) goes to∞ as T converges to 0. We can rewrite the sum in (3.2.24) as follows

∞∑
k=1

λ
2q
k e−λk T =

∑
k≤k1−1

λ
2q
k e−λk T +

∑
k1≤k≤k1+1

λ
2q
k e−λk T +

∑
k≥k1+2

λ
2q
k e−λk T . (3.2.25)

For any k ≤ k1 − 1, we have
∫ λk+1

λk

λ2qe−λT dλ≥ (λk+1 −λk)λ
2q
k e−λk T ≥ α(

Æ
λ2 +

Æ
λ1)λ

2q
k e−λk T (3.2.26)
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and for any k ≥ k1 + 2

∫ λk

λk−1

λ2qe−λT dλ≥ (λk −λk−1)λ
2q
k e−λk T ≥ α(

Æ
λ2 +

Æ
λ1)λ

2q
k e−λk T . (3.2.27)

So, by using estimates (3.2.26) and (3.2.27), (3.2.25) becomes

∞∑
k=1

λ
2q
k e−λk T =

2

α(
p
λ2 +

p
λ1)

∫ ∞

0

λ2qe−λT dλ+
∑

k1≤k≤k1+1

λ
2q
k e−λk T . (3.2.28)

Furthermore, recalling that g has a maximum for λ= 2q/T , it holds that

k = k1, k1 + 1 ⇒ λ
2q
k e−λk T ≤ (2q/T )2q e−2q. (3.2.29)

Finally, the integral term of (3.2.28) can be rewritten as

∫ ∞

0

λ2qe−λT dλ=
1
T

∫ ∞

0

� s
T

�2q
e−sds =

1
T 1+2q

∫ ∞

0

s2qe−sds =
Γ (2q+ 1)

T 1+2q
, (3.2.30)

where by Γ (·) we indicate the Euler integral of the second kind.
Therefore, we conclude from (3.2.29) and (3.2.30) that there exist two constants Cq, Cq,α > 0
such that ∞∑

k=1

λ
2q
k e−λk T ≤ Cq

T 2q
+

Cα,q

T 1+2q
. (3.2.31)

We use this last bound to prove that there exists CM > 0 such that

GM (T )≤
M
T 2

eM/T

�
eM2/(8T )

|〈Bϕ1,ϕ1〉|2
+

eM2/(4T )

b2

� Cq

T 2q
+

Cα,q

T 1+2q

��
≤ eCM/T , 0< T ≤ 1

as claimed.

Remark 3.2.4. We recall that K(·) is defined by

K2(T ) := C2
B e2CB

p
T+(CB+1)T C2

α(T )Λ
2
T (1+ CBC2

α(T )Λ
2
T ).

For any 0< T ≤min
�
1,1/α2

	
, C2

α(·) is given by

C2
α(T ) = C̄

�
1
T
+

1
T 2α2

�
eC̄/(α2 T ).

Thus, we have the following bound for K(·)

K(T )2 ≤ C2
B e2CB

p
T+(CB+1)T GM (T ) (1+ CBGM (T )) , (3.2.32)

where GM (·) is defined by (3.2.21) and the subscribed M is given by M = C̄
�
1+ 1

α2

�
.

Thanks to Lemma 3.2.3, we infer that there exists a suitable constant CK > 0 such that CK > CM

and
K(T )≤ eCK/T , ∀ T ∈ (0, 1]. (3.2.33)

In the following Proposition we prove that it is possible to iterate the construction of v in
consecutive time intervals of the form [τn−1,τn].
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Proposition 3.2.5. Let 0 < T ≤ min
�
1, 1/α2

	
, and consider the sequence (T j) j∈N∗ defined by

(3.2.19). Let v0 ∈ X for which ||v0|| < e−6CK/T , let A : D(A) ⊂ X → X be such that (1.0.1) and
(3.1.3) hold and let B : X → X satisfies (3.1.4). Moreover, we assume that λ1 = 0. Then, for
every n ∈ N∗, problem





v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [τn−1,τn]

v (τn−1) = vn−1,
(3.2.34)

where vn−1 is determined by induction from the previous steps, p ∈ L2(τn−1,τn) is given by

p(t) =
∞∑
k=1

〈vn−1,ϕk〉
〈Bϕ1,ϕk〉

σk(t −τn−1), (3.2.35)

admits a unique mild solution v ∈ C ([τn−1,τn] , X ) that satisfies

||v (τn)|| ≤ e
�∑n

j=1 2n− j j2−2n6
�
CK/T , (3.2.36)

where the time steps {τn}n∈N are defined by (3.2.20).

Proof. To prove the result, we proceed by induction on n. For n= 1, by Proposition 3.2.2, the
hypothesis on v0 and Remark 3.2.4, v it satisfies

||v(T )|| ≤ K(T )||v0||2 ≤ e−11CK/T .

Now, suppose the statement is true for all indices k ≤ n− 1, we show the validity for index
n. Therefore, by inductive hypothesis, the solution v has been constructed in consecutive
intervals until [τn−2,τn−1] and it satisfies

||v (τn−1)|| ≤ e
�∑n−1

j=1 2n−1− j j2−2n−16
�
CK/T .

Hence,

Cα(Tn)ΛTn
||v (τn−1)|| ≤ eCM n2/T e

�∑n−1
j=1 2n−1− j j2−2n−16

�
CK/T

≤ e(n
2+(−(n−1)2−4(n−1)+2n−16−6−2n−16)CK/T

= e−(2n+3)CK/T ,

(3.2.37)

where we have used that CM < CK and the identity

n∑
j=0

j2

2 j
= 2−n(−n2 − 4n+ 6(2n − 1)), n≥ 0, (3.2.38)

which can be easily checked by induction.
Consider problem (3.2.34) with vn−1 the solution built in the previous interval, evaluated at
τn−1. By the change of variables s = t − τn−1, we shift (3.2.34) into the interval [0, Tn]. We
introduce the functions ṽ(s) = v (s+τn−1) and p̃(s) = p (s+τn−1) and we rewrite (3.2.34) as





ṽ′(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, Tn]

ṽ(0) = vn−1.
(3.2.39)
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From (3.2.37) it follows that Cα(Tn)ΛTn
||v(τn−1)|| < 1 and thus we can apply Proposition

3.2.2 to problem (3.2.39), obtaining

||ṽ(Tn)|| ≤ K(Tn)||vn−1||2. (3.2.40)

We shift back the problem into the original interval [τn−1,τn] and we get

||v (τn)|| ≤ K(Tn)||vn−1||2. (3.2.41)

By inductive hypothesis, we can estimate ||v (τn)|| as follows

||v (τn)|| ≤ eCK n2/T
h
e
�∑n−1

j=1 2n−1− j j2−2n−16
�
CK/T

i2
= e

�∑n
j=1 2n− j j2−2n6

�
CK/T . (3.2.42)

Proposition 3.2.6. Let 0 < T ≤ min
�
1, 1/α2

	
and consider the sequence (T j) j∈N∗ defined by

(3.2.19). Let v0 ∈ X be such that ||v0||< e−6CK/T , let A : D(A) ⊂ X → X be such that (1.0.1) and
(3.1.3) hold and let B : X → X satisfies (3.1.4). Let p ∈ L2(τn−1,τn) be defined by (3.2.35).
Moreover, we assume that λ1 = 0. Then, the solution of (3.2.34) satisfies

||v (τn)|| ≤
n∏

j=1

K(T j)
2n− j ||v0||2

n
, (3.2.43)

for all n ∈ N∗.

Proof. We prove formula (3.2.43) by induction on n. The case n= 1 follows from Proposition
3.2.2, thanks to the assumption ||v0|| < e−6CK/T . Now, suppose the formula holds for all the
indices less than or equal to n−1. We prove it for n as follows. We consider problem (3.2.34)
and in order to shift it in the interval [0, Tn], we introduce the variable s = t −τn−1 as before
and the functions ṽ(s) = v (s+τn−1) and p̃(s) = p (s+τn−1). Thus, (3.2.34) can be rewritten
as 




ṽ′(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, Tn]

ṽ(0) = vn−1.
(3.2.44)

By Proposition 3.2.5, it holds that Cα(Tn)ΛTn
||vn−1|| ≤ 1 and hence, we can apply Proposition

3.2.2 considering as final time Tn (instead of T), obtaining that

||v (τn)||= ||ṽ(Tn)|| ≤ K(Tn)||vn−1||2. (3.2.45)

Finally, by inductive hypothesis, we conclude that

||v (τn)|| ≤ K(Tn)||vn−1||2 ≤ K(Tn)




n−1∏
j=1

K(T j)
2n−1− j ||v0||2

n−1




2

(3.2.46)

that is equivalent to formula (3.2.43).

We are now ready to prove our main result.
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Proof of Theorem 3.1.1. We start the proof by considering the case in which λ1 = 0. Let T > 0
and let Tα and T f be defined by (3.1.6). We define T̃ = 6

π2 T f and RT := e−π
2CK/T f . Observe

that 0 < T̃ ≤ 1 and we define the time steps {τn}n∈N as in (3.2.20) with T j := T̃/ j2. Fixed
v0 ∈ BRT

(0), we apply (3.2.43) to obtain

||v (τn)|| ≤
n∏

j=1

K(T j)
2n− j ||v0||2

n

≤
n∏

j=1

�
eCK j2/T̃

�2n− j

||v0||2
n

= eCK 2n/T̃
∑n

j=1 j2/2 j ||v0||2
n

≤ eCK 2n/T̃
∑∞

j=1 j2/2 j ||v0||2
n

≤
�
e6CK/T̃ ||v0||

�2n

(3.2.47)

where we have used that
∑∞

j=1 j2/2 j = 6. We take the limit as n→∞ of (3.2.47) and we get

����
����u
�
π2

6
T̃

�
−ϕ1

����
����=

����
����v
�
π2

6
T̃

�����
����= ||v(T f )|| ≤ 0 (3.2.48)

since ||v0|| < e−π
2CK/T f = e−6CK/T̃ . This means that, we have built a control p ∈ L2

loc([0,∞)),
defined by

p(t) =





∑∞
n=0 pn(t)χ[τn,τn+1](t), t ∈ �0, T f

�
,

0, t ∈ (T f ,+∞)
(3.2.49)

where

pn(t) =
∞∑
k=1

〈v (τn) ,ϕk〉
〈Bϕ1,ϕk〉

σk (t −τn) , ∀n ∈ N, (3.2.50)

such that the solution u of (3.1.1) reaches the ground state solution ϕ1 in time T , and stays
on it forever.
Observe that, thanks to (3.2.8) and (3.2.37), we are able to yield a bound for the L2-norm of
such a control:

||p||2L2(0,T ) =
∞∑
n=0

||pn||2L2(τn,τn+1)

≤
∞∑
n=0

�
Cα(Tn+1)ΛTn+1

||v (τn)||
�2

≤
∞∑
n=0

e−2(2(n+1)+3)CK/T̃

=
e−6CK/T̃

e4CK/T̃ − 1

=
e−π

2CK/T f

e2π2CK/(3T f ) − 1

(3.2.51)

Now we face the case λ1 > 0. We define the operator

A1 := A−λ1 I .
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It is possible to check that A1 satisfies (1.0.1) and moreover it has the same eigenfuctions,
{ϕk}k∈N∗ , of A, while the eigenvalues are given by

µk = λk −λ1, ∀k ∈ N∗. (3.2.52)

In particular, µ1 = 0 and furthermore, {µk}k∈N∗ satisfy the same gap condition (3.1.3) fulfilled
by {λk}k∈N∗ .
We define the function z(t) = eλ1 tu(t), where u is the solution of (3.1.1). Then, z solves the
following problem 




z′(t) + A1z(t) + p(t)Bz(t) = 0, t > 0,

z(0) = u0.
(3.2.53)

For any T > 0, we define T f as in (3.1.6) and the constant RT := e−π
2CK/T f . We deduce from

the previous analysis that, if u0 ∈ BRT
(ϕ1), then there exists a control p ∈ L2([0,+∞)) that

steers the solution z to the ground state solution ϕ1 in time T f ≤ T . This implies the exact
controllability of u to the ground state solution ψ1(t) = e−λ1 tϕ1: indeed,

����u �T f

�−ψ1

�
T f

�����=
����e−λ1 T f z

�
T f

�− e−λ1 T f ϕ1

����= e−λ1 T f
����z �T f

�−ϕ1

����= 0.

This concludes the proof of our Theorem.

Remark 3.2.7. We observe that, from (3.2.51), it follows that ||p||L2(0,T f )→ 0 as T f → 0. This
fact is not surprising because as T f approaches 0, also the size of the neighborhood where the
initial condition can be chosen goes to zero.

3.3 Proof of Theorems 3.1.2 and 3.1.3

Before proving Theorem 3.1.2, let us show a preliminary result that demonstrates the state-
ment in the case of a strictly accretive operator.

Lemma 3.3.1. Let A and B satisfy hypotheses (1.0.1), (3.1.3) and (3.1.4). Furthermore, we
assume λ1 = 0. Then, there exists a constant r1 > 0 such that for any R > 0 there exists TR > 0
such that for all v0 ∈ X that satisfy

|〈v0,ϕ1〉|< r1,

||v0 − 〈v0,ϕ1〉ϕ1|| ≤ R,
(3.3.1)

problem (3.2.4) is null controllable in time TR.

Proof. First step. We fix T = 1. Thanks to Theorem 3.1.1, there exists a constant r1 > 0 such
that if ||u1(0)−ϕ1|| <

p
2r1 then there exists a control p1 ∈ L2(0,1) for which the solution

u1 of (3.1.1) on [0, 1] with p replaced by p1, satisfies u1(1) = ϕ1. We set v1 = u1 − ϕ1 on
[0, 1]. We deduce that if ||v1(0)|| <

p
2r1 then there exists a control p1 ∈ L2(0,1) for which

the solution v1 of (3.2.4) on [0, 1] with p replaced by p1, satisfies v1(1) = 0.

Second step. Let v0 ∈ X be the initial condition of (3.2.4). We decompose v0 as follows

v0 = 〈v0,ϕ1〉ϕ1 + v0,1,
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where v0,1 ∈ ϕ⊥1 and we suppose that |〈v0,ϕ1〉|< r1. We define tR as

tR :=
1

2λ2
log

�
R2

r2
1

�
(3.3.2)

and in the time interval [0, tR] we take the control p ≡ 0. Then, for all t ∈ [0, tR], we have
that

||v(t)||2 ≤
����e−tA

�〈v0,ϕ1〉ϕ1 + v0,1

�����2 ≤ |〈v0,ϕ1〉|2 + e−2λ2 t
����v0,1

����2 < r2
1 + e−2λ2 tR2.

In particular, for t = tR, it holds that ||v(tR)||2 < 2r2
1 .

Now, we define TR := tR+1 and set v1(0) = v(tR). Thanks to the first step of the proof, there
exists a control p1 ∈ L2(0, 1), such that v1(1) = 0, where v1 is the solution of (3.2.4) on [0, 1]
with p replaced by p1.
Then v(t) = v1(t − tR) solves (3.2.4) in the time interval (tR, TR] with the control p1(t − tR)
that steers the solution v to 0 at TR.

Proof (of Theorem 3.1.2). We start with the case λ1 = 0. Let u0 ∈ X that satisfies (3.1.7). Set
v(t) := u(t)−ϕ1, then v satisfies (3.2.4) and moreover v0 := v(0) = u0 −ϕ0 fulfills (3.3.1).
Thus, by Lemma 3.3.1, problem (3.1.1) is exactly controllable to the ground state solution
ψ1 ≡ ϕ1 in time TR.
Now, we consider the case λ1 > 0. As in the proof of Theorem 3.1.1, we introduce the variable
z(t) = eλ1 tu(t) that solves problem (3.2.53). For such a system, since the first eigenvalue of
A1 is equal 0, we have the exact controllability to ϕ1 in time TR. Namely z(TR) = ϕ1, that is
equivalent to the exact controllability of u to ψ1:

z(TR) = ϕ1 ⇐⇒ eλ1 TRu(TR) = ϕ1 ⇐⇒ u(TR) =ψ1(TR). (3.3.3)

The proof is thus complete.

The proof of Theorem 3.1.3 easily follows from Theorem (3.1.2).

Proof (of Theorem 3.1.3). Suppose that γ := 〈u0,ϕ1〉 6= 0. We decompose u0 as u0 = γϕ1+ζ1,
with ζ1 := u0 − 〈u0,ϕ1〉ϕ1 ∈ ϕ⊥1 and define ũ(t) := u(t)/γ. Hence, ũ solves

�
ũ′(t) + Aũ(t) + p(t)Bũ(t) = 0, t > 0
ũ(0) = ϕ1 + ζ̃1,

(3.3.4)

where ζ̃1 := ζ1/γ.
We apply Theorem 3.1.2 to (3.3.4) to deduce the existence of TR > 0 such that ũ(TR) =
ψ1(TR). Therefore, the solution of (3.1.1) with initial condition u0 ∈ X that do not vanish
along the direction ϕ1 can be exactly controlled in time TR to the trajectory 〈u0,ϕ1〉ψ1(·).
Note that if u0 ∈ X satisfies both u0 ∈ ϕ⊥1 and (3.1.9), then we have trivially that u0 ≡ 0. We
then choose p ≡ 0, so that the solution of (3.1.1) remains constantly equal to φ1 ≡ 0.

3.4 Applications

In this section we present some examples of parabolic equations for which Theorem 3.1.1
can be applied. The hypotheses (1.0.1), (3.1.3) and (3.1.4) have been verified in Chapter 2,
section 2.2, to which we refer for more details. Furthermore, we observe that also the global
results Theorem 3.1.2 and Theorem 3.1.3 can be applied to any example.
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3.4.1 Diffusion equation with Dirichlet boundary conditions

Let I = (0, 1) and X = L2(0,1). Consider the following problem





ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I , t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I .

(3.4.1)

We denote by A the operator defined by

D(A) = H2 ∩H1
0(I), Aϕ = −d2ϕ

d x2
.

and it can be checked that A satisfies (1.0.1). We indicate by {λk}k∈N∗ and {ϕk}k∈N∗ the
families of eigenvalues and eigenfunctions of A, respectively:

λk = (kπ)
2, ϕk(x) =

p
2sin(kπx), ∀k ∈ N∗.

It is easy to see that (3.1.3) holds true:

Æ
λk+1 −

Æ
λk = π, ∀k ∈ N∗.

Let B : X → X be the operator
Bϕ = µϕ

with µ ∈ H3(I) such that

µ′(1)±µ′(0) 6= 0 and 〈µϕ1,ϕk〉 6= 0 ∀k ∈ N∗. (3.4.2)

Then, there exists b > 0 such that

λ
3/2
k |〈µϕ1,ϕk〉| ≥ b, ∀k ∈ N∗.

For instance, a suitable function that satisfies (3.4.2) is µ(x) = x2, for which b = 2π2−3
6π2 .

For any T > 0, we define T f as in (3.1.6). Then, there exists a constant RT f
> 0 such that

the solution u of (3.4.1), with u0 ∈ BRTf
(ϕ1), reaches the ground state solution ψ1(t, x) =

p
2 sin(πx)e−π

2 t in time T f and stays on it forever.

3.4.2 Diffusion equation with Neumann boundary conditions

Let I = (0, 1), X = L2(I) and consider the Cauchy problem





ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I , t > 0

ux(t, 0) = 0, ux(t, 1) = 0, t > 0

u(0, x) = u0(x). x ∈ I .

(3.4.3)
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The operator A, defined by

D(A) = {ϕ ∈ H2(0,1) : ϕ′(0) = 0, ϕ′(1) = 0}, Aϕ = −d2ϕ

d x2

satisfies (1.0.1) and has the following eigenvalues and eigenfunctions

λ0 = 0, ϕ0 = 1
λk = (kπ)2, ϕk(x) =

p
2cos(kπx), ∀k ≥ 1.

Thus, the gap condition (3.1.3) is fulfilled with α = π. The ground state solution is just the
stationary function ψ1(x) = ϕ1(x) = 1.
We define B : X → X as the multiplication operator by a function µ ∈ H2(I), Bϕ = µϕ, such
that

µ′(1)±µ′(0) 6= 0 and 〈µ,ϕk〉 6= 0 ∀k ∈ N. (3.4.4)

It can be proved that, there exists b > 0 such that

λk|〈µϕ0,ϕk〉| ≥ b, ∀k ∈ N∗. (3.4.5)

For example, µ(x) = x2 satisfies (3.4.5) with b = 2
p

2.
Therefore, equation (3.4.3) is controllable to the ground state solution ψ1 = 1 in any time
T > 0 as long as u0 ∈ BRT

(1), with RT > 0 a suitable constant.

3.4.3 Variable coefficient parabolic equation

Let I = (0, 1), X = L2(I) and consider the problem




ut(t, x)− ((1+ x)2ux(t, x))x + p(t)µ(x)u(t, x) = 0 x ∈ I , t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I .

(3.4.6)

We denote by A : D(A) ⊂ X → X the following operator

D(A) = H2 ∩H1
0(I), Aϕ = −((1+ x)2ϕx)x .

It can be checked that A satisfies (1.0.1) and that the eigenvalues and eigenfunctions have
the following expression

λk =
1
4
+
�

kπ
ln2

�2

, ϕk =

√√ 2
ln 2
(1+ x)−1/2 sin

�
kπ
ln2

ln(1+ x)
�

.

Furthermore, {λk}k∈N∗ verifies the gap condition (3.1.3) with α= π/ ln2.
We define the operator B : X → X by Bϕ = µϕ, where µ ∈ H2(I) is such that

2µ′(1)±µ′(0) 6= 0, and 〈µϕ1,ϕk〉 6= 0 ∀k ∈ N∗. (3.4.7)

Hence, thanks to (3.4.7), (3.1.4) is fulfilled with q = 3/2. An example of a suitable function
µ that satisfies (3.4.7) is µ(x) = x , see Chapter 2, section 2.2.2 for the verification.
Thus, from Theorem 3.1.1, we deduce that, for any T > 0, system (3.4.6) is controllable to
the ground state solution if the initial condition u0 is close enough to ϕ1.
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3.4.4 Diffusion equation in a 3D ball with radial data

In this example, we study the controllability of an evolution equation in the three dimensional
unit ball B3 for radial data. The bilinear control problem is the following





ut(t, r)−∆u(t, r) + p(t)µ(r)u(t, r) = 0 r ∈ [0, 1], t > 0

u(t, 1) = 0, t > 0

u(0, r) = u0(r) r ∈ [0, 1]

(3.4.8)

where the Laplacian in polar coordinates for radial data is given by the following expression

∆ϕ(r) = ∂ 2
r ϕ(r) +

2
r
∂rϕ(r).

The function µ is a radial function as well in the space H3
r (B

3), where the spaces Hk
r (B

3) are
defined as follows

X := L2
r (B

3) =
�
ϕ ∈ L2(B3) | ∃ψ : R→ R,ϕ(x) =ψ(|x |)	

Hk
r (B

3) := Hk(B3)∩ L2
r (B

3).

The domain of the Dirichlet Laplacian A := −∆ in X is D(A) = H2
r ∩H1

0(B
3). We observe that A

satisfies hypothesis (1.0.1). We denote by {λk}k∈N∗ and {ϕk}k∈N∗ the families of eigenvalues
and eigenfunctions of A, Aϕk = λkϕk, namely

ϕk =
sin(kπr)p

2πr
, λk = (kπ)

2 (3.4.9)

∀k ∈ N∗, see [48, Section 8.14]. Since the eigenvalues of A are actually the same of the
Dirichlet 1D Laplacian, (3.1.3) is satisfied, as we have seen in Example 3.4.1.

Let B : X → X be the multiplication operator Bu(t, r) = µ(r)u(t, r), with µ be such that

µ′(1)±µ′(0) 6= 0, and 〈µϕ1,ϕk〉 6= 0 ∀k ∈ N∗. (3.4.10)

Then, it can be proved that

λ
3/2
k |〈µϕ1,ϕk〉| ≥ b, ∀k ∈ N∗, (3.4.11)

with b a positive constant. For instance, µ(x) = x2 verifies (3.4.10) and (3.4.11) with b =
2π2−3

6π2 .

Therefore, by applying Theorem 3.1.1, we conclude that for any T > 0, the exists a suitable
constant RT > 0 such that, if u0 ∈ BRT

(ϕ1), problem (3.4.8) is exactly controllable to the
ground state ψ1 in time T .
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3.4.5 Degenerate parabolic equation

In this last section we want to address an example of a control problem for a degenerate
evolution equation of the form





ut − (xγux)x + p(t)x2−γu= 0, (t, x) ∈ (0,+∞)× (0,1)

u(t, 1) = 0,





u(t, 0) = 0, if γ ∈ [0,1),

(xγux) (t, 0) = 0, if γ ∈ [1,3/2),

u(0, x) = u0(x).
(3.4.12)

where γ ∈ [0,3/2) describes the degeneracy magnitude, for which Theorem 3.1.1 applies.
If γ ∈ [0, 1) problem (3.4.12) is called weakly degenerate and the natural spaces for the
well-posedness are the following weighted Sobolev spaces. Let I = (0,1) and X = L2(I), we
define

H1
γ(I) =

�
u ∈ X : u is absolutely continuous on [0,1], xγ/2ux ∈ X

	

H1
γ,0(I) =

¦
u ∈ H1

γ(I) : u(0) = 0, u(1) = 0
©

H2
γ(I) =

¦
u ∈ H1

γ(I) : xγux ∈ H1(I)
©

.

We denote by A : D(A) ⊂ X → X the linear degenerate second order operator



∀u ∈ D(A), Au := −(xγux)x ,

D(A) := {u ∈ H1
γ,0(I), xγux ∈ H1(I)}.

(3.4.13)

It is possible to prove that A satisfies (1.0.1) (see, for instance [16]) and furthermore, if we
denote by {λk}k∈N∗ the eigenvalues and by {ϕk}k∈N∗ the corresponding eigenfunctions, it turns
out that the gap condition (3.1.3) is fulfilled with α= 7

16π (see [47], page 135).
If γ ∈ [1, 3/2), problem (3.4.12) is called strong degenerate and the corresponding weighted
Sobolev space are described as follows: given I = (0, 1) and X = L2(I), we define

H1
γ(I) =

�
u ∈ X : u is absolutely continuous on (0, 1], xγ/2ux ∈ X

	

H1
γ,0(I) :=

¦
u ∈ H1

γ(I) : u(1) = 0
©

,

H2
γ(I) =

¦
u ∈ H1

γ(I) : xγux ∈ H1(I)
©

.

In this case the operator A : D(A) ⊂ X → X is defined by




∀u ∈ D(A), Au := −(xγux)x ,

D(A) :=
¦

u ∈ H1
γ,0(I) : xγux ∈ H1(I)

©

=
�
u ∈ X : u is absolutely continuous in (0,1] , xγu ∈ H1

0(I),

xγux ∈ H1(I) and (xγux)(0) = 0
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and it has been proved that (1.0.1) holds true (see, for instance [21]) and that (3.1.3) is
satisfied for α= π

2 (see [47]).
For all γ ∈ [0, 3/2), we define the linear operator B : X → X by Bu(t, x) = x2−γu(t, x) and in
Chapter 2, section 2.2.5 we have proved that there exists a constant b > 0 such that

λ
3/2
k |〈Bϕ1,ϕk〉| ≥ b ∀k ∈ N∗.

Finally, by applying Theorem 3.1.1, we ensure the exact controllability of problem (3.4.12)
to the ground state solution, for both weakly and strongly degenerate problems.
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CHAPTER 4

Exact controllability of degenerate wave equation

In this chapter we consider the linear degenerate wave equation

wt t − (xαwx)x = p(t)µ(x)w, x ∈ (0,1)

controlled by means of a bilinear control p and subject to Neumann boundary conditions. We
study the controllability of such an equation locally around the ground state solution. We
prove that, generically with respect to µ, any target state close to the ground state solution in
the H3 × H2 topology (suitably adapted to the underlying degenerate operator) is reachable
in time T > 4

2−α , with controls in L2((0, T ),R).
The content of the chapter is based on [20] in which we extend to the degenerate case the
work of Beauchard [7] concerning the bilinear control of the classical wave equation (α= 0),
and adapt to bilinear controls the work of Alabau-Boussouira, Cannarsa and Leugering [2] on
the degenerate wave equation where additive control are considered.
It is worth noting that one the main difficulties when dealing with degenerate operators is
the study of the associated spectral problem. Since it requires a long and technical analysis,
we discuss this topic in Section A.2 of the Appendix A.

4.1 Main result

This chapter is devoted to the study of the controllability property of the following degenerate
control system 




wt t − (xαwx)x = p(t)µ(x)w, x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(0, t) = 0, t ∈ (0, T ),

wx(1, t) = 0, t ∈ (0, T ),

w(x , 0) = w0(x), x ∈ (0, 1),

wt(x , 0) = w1(x), x ∈ (0, 1),

(4.1.1)

where T is a positive constant, α ∈ [0, 2) is the degereracy parameter (α= 0 for the classical
wave equation and α ∈ (0, 2) in the degenerate case), p ∈ L2(0, T ) is the bilinear control and
µ is an admissible potential.
We recall that when α ∈ [0,1) the problem is said to be weakly degenerate, while when
α ∈ [1, 2) we have a strongly degenerate problem (see chapter A). For α ∈ [0,1) we consider
the following Hilbert spaces

H1
α(0,1) :=

�
u ∈ L2(0,1), u absolutely continuous in [0,1], xα/2ux ∈ L2(0, 1)

	
, (4.1.2)
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and
H2
α(0, 1) :=

�
u ∈ H1

α(0, 1), xαux ∈ H1(0, 1)
	

. (4.1.3)

We define the operator A : D(A) ⊂ L2(0,1)→ L2(0,1) by
(
∀u ∈ D(A), Au := −(xαux)x ,

D(A) := {u ∈ H2
α(0,1), (xαux)(0) = 0, ux(1) = 0}. (4.1.4)

For the strongly degenerate problem, we introduce the Hilbert spaces

H1
α(0, 1) :=

�
u ∈ L2(0,1), u locally absolutely continuous in (0, 1], xα/2ux ∈ L2(0, 1)

	
,

(4.1.5)
H2
α(0,1) := {u ∈ H1

α(0,1) | xαux ∈ H1(0, 1)}. (4.1.6)

and the operator A : D(A) ⊂ L2(0,1)→ L2(0,1)
(
∀u ∈ D(A), Au := −(xαux)x ,

D(A) := {u ∈ H2
α(0,1), (xαux)(0) = 0, ux(1) = 0}. (4.1.7)

For any α ∈ [0, 2)we have proved in Propositions A.2.1 and A.2.5 that the operator A : D(A) ⊂
L2(0, 1) → L2(0,1) defined by (4.1.4) and (4.1.7) (for the weakly and strongly degenerate
setting, respectively) is self-adjoint, accretive and with dense domain. Thus, −A is the infin-
itesimal generator of an analytic semigroup of contraction e−tA on L2(0,1)
Furthermore, from Propositions A.2.3 and A.2.7 it follows that the eigenvalues and eigen-
functions of A are given by:

• for α ∈ [0,1):
λα,0 = 0, ϕα,0(x) = 1 (4.1.8)

and for all m≥ 1
λα,m = κ

2
α j2
−να−1,m, (4.1.9)

ϕα,m(x) = Kα,m x
1−α

2 J−να
�

j−να−1,m x
2−α

2

�
, (4.1.10)

where

κα :=
2−α

2
, να :=

1−α
2−α ,

J−να is the Bessel′s function of order −να, ( j−να−1,m)m≥1 are the positive zeros of the
Bessel′s function J−να−1 and Kα,m are positive constants,

• for α ∈ [1,2):
λα,0 = 0, ϕα,0(x) = 1 (4.1.11)

and for all m≥ 1
λα,m = κ

2
α j2
να+1,m, (4.1.12)

ϕα,m(x) = Kα,m x
1−α

2 Jνα
�

jνα+1,m x
2−α

2

�
, (4.1.13)

where

κα :=
2−α

2
, να :=

α− 1
2−α ,

Jνα is the Bessel′s function of order να, ( jνα+1,m)m≥1 are the positive zeros of the Bessel′s
function Jνα+1 and Kα,m are positive constants.

58



To avoid possible problems generated by the eigenvalue 0, we denote

λ∗α,n :=max(1,λα,n) =

(
1 for n= 0,

λα,n for n≥ 1.
(4.1.14)

We recall that since the operator A satisfies hypothesis (1.0.1), for any s ≥ 0 the fractional
powers As : D(As) ⊂ X → X are characterized by (1.0.3) and the fractional Sobolev spaces
H s
(0)(0, 1) := D(As/2) are defined by

H s
(0)(0,1) :=

¨
ψ ∈ L2(0, 1),

∞∑
k=0

(λ∗α,k)
s〈ψ,ϕα,k〉2L2(0,1) <∞

«
, (4.1.15)

equipped with the norm

‖ψ‖Hs
(0)(0,1) :=

�∞∑
k=0

(λ∗α,k)
s〈ψ,ϕα,k〉2L2(0,1)

�1/2

.

We also introduce the following spaces, that are related to the potential µ:

V (2,∞)
α (0,1) := {µ ∈ H2

α(0, 1), xα/2µx ∈ L∞(0, 1)}, (4.1.16)

V (2,∞,∞)
α (0, 1) := {µ ∈ H2

α(0,1), xα/2µx ∈ L∞(0,1), (xαµx)x ∈ L∞(0,1)}, (4.1.17)

V 2
α (0, 1) :=

(
V (2,∞)
α (0,1) if α ∈ [0,1),

V (2,∞,∞)
α (0, 1) if α ∈ [1,2),

(4.1.18)

and also the following closed subspace of H2
α(0,1)

V (2,0)
α (0,1) := {w ∈ H2

α(0, 1), (xαwx)(0) = 0}. (4.1.19)

Given (w0, w1) ∈ H1
α(0,1)× L2(0, 1) and p ∈ L2(0, T ), we will denote w(w0,w1;p) the solution

of (4.1.1). When (w0, w1) = (1,0), that is when the initial condition of the problem is the
ground state, and p = 0, we observe that

w(1,0;0) ≡ 1

solves (4.1.1). We are interested in studying the controllability of problem (4.1.1), with initial
condition (w0, w1) = (1, 0), along the ground state solution, that is the stationary trajectory
w(1,0;0).
Thus, we consider the following control problem





wt t − (xαwx)x = p(t)µ(x)w, x ∈ (0, 1), t ∈ (0, T ),

(xαwx)(0, t) = 0, t ∈ (0, T ),

wx(1, t) = 0, t ∈ (0, T ),

w(x , 0) = 1, x ∈ (0, 1),

wt(x , 0) = 0, x ∈ (0, 1).

(4.1.20)

The solution of (4.1.20) will be denoted by w(1,0;p) or, more simply, by w(p).
The main result of this chapter is contained in the following theorem.
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Theorem 4.1.1. For any α ∈ [0,2), let

T > T0 :=
4

2−α , (4.1.21)

and let µ ∈ V 2
α (0,1) be such that

∃ c > 0 : |〈µ,ϕα,n〉L2(0,1)| ≥
c
λ∗α,n

, ∀n≥ 0. (4.1.22)

Then, there exists a neighborhood V (1,0) of (1, 0) in H3
(0)(0, 1)× D(A) and a C1-map

Γα,T : V (1, 0)→ L2(0, T )

such that, for all (w f
0 , w f

1) ∈ V (1,0), the solution of (4.1.20) with p = p f := Γα,T (w
f
0 , w f

1)
satisfies

(w(p
f )(T ), w(p

f )
t (T )) = (w f

0 , w f
1).

Remark 4.1.2. Let us immediately note that there the set of functions µ satisfying (4.1.22) is
not empty. For instance

µ(x) = x2−α,

verifies (4.1.22).
Furthermore, the set of functions in V 2

α (0, 1) that fulfill (4.1.22) is dense in V 2
α (0,1), see section

4.2.4.

4.2 Proof of Theorem 4.1.1

The proof of Theorem 4.1.1 is built through a series of preliminary results. The first one is
the well–posedness of our control system.

4.2.1 Well–posedness

Let T > 0 and consider the nonhomogeneous problem




wt t − (xαwx)x = p(t)µ(x)w+ f (x , t), x ∈ (0,1), t ∈ (0, T ),

(xαwx)(0, t) = 0, t ∈ (0, T ),

wx(1, t) = 0, t ∈ (0, T ),

w(x , 0) = w0(x), x ∈ (0,1),

wt(x , 0) = w1(x), x ∈ (0,1).

(4.2.1)

We recast it into the a first order problem: introducing

W :=

�
w
wt

�
, W0 :=

�
w0

w1

�
, F (x , t) :=

�
0

f (x , t)

�
,

the state space
X := H1

α(0, 1)× L2(0, 1),
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and the operators

A :=

�
0 Id
−A 0

�
, D(A ) := D(A)×H1

α(0,1), (4.2.2)

and

B :=

�
0 0
µ 0

�
, D(B) := H1

α(0, 1)× L2(0, 1), (4.2.3)

then, problem (4.2.1) can be rewritten as
(
W ′(x , t) =AW (x , t) + p(t)BW (x , t) +F (x , t),

W (x , 0) =W0(x).
(4.2.4)

We also introduce the space

V (1,∞)
α (0,1) := {µ ∈ H1

α(0, 1), xα/2µx ∈ L∞(0,1)}. (4.2.5)

Proposition 4.2.1. Let T > 0, p ∈ L2(0, T ) and f ∈ L2((0, T ), H1
α(0, 1)). Assume that

µ ∈ V 1
α (0,1) :=

(
H1
α(0, 1) if α ∈ [0, 1),

V (1,∞)
α if α ∈ [1, 2).

(4.2.6)

Then, for all (w0, w1) ∈ D(A) × H1
α(0,1), problem (4.1.1) has a unique classical solution of

(4.2.1), i.e. a function
(w, wt) ∈ C0([0, T], D(A)×H1

α(0, 1)),

such that the following equality holds in D(A)×H1
α(0,1): for every t ∈ [0, T],

W (t) = etAW0 +

∫ t

0

e(t−s)A (BW (s) +F (s)) ds. (4.2.7)

Moreover, there exists C = C(α, T, p)> 0 such that W satisfies

‖W‖C0([0,T],D(A )) ≤ C
�‖W0‖D(A ) + ‖F‖L2(0,T ;D(A ))

�
. (4.2.8)

To prove the above proposition we need first to prove the following lemma.

Lemma 4.2.2. Let µ ∈ V 1
α (0,1). Then, the operatorB defined in (4.2.3) satisfies

B ∈Lc(D(A ), D(A )).

Proof. We have to prove that

z ∈ D(A) =⇒ µz ∈ H1
α(0, 1)

and that there exists C > 0 such that

‖µz‖H1
α(0,1) ≤ C‖z‖D(A) ∀ z ∈ D(A). (4.2.9)

We distinguish the cases α ∈ [0,1) and α ∈ [1, 2).
α ∈ [0,1)α ∈ [0,1)α ∈ [0,1)
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For any z ∈ D(A), by definition we have that

z ∈ H2
α(0,1) ⇒ z ∈ H1

α(0,1) ⇒ xα/2zx ∈ L2(0,1).

Moreover, we can express zx as zx = (xα/2zx)(x−α/2) and this implies that zx ∈ L1(0,1) and
thus z ∈ L∞(0, 1). The same holds for µ because V 1

α (0, 1) = H1
α(0,1) when α ∈ [0,1). Hence,

(µz)x = µxz+µzx ∈ L1(0, 1) and therefore µz is absolutely continuous in [0, 1]. Furthermore,
we have that xα/2(µz)x = (xα/2µx)z+µ(xα/2zx) ∈ L2(0, 1) and we deduce that zµ ∈ H1

α(0, 1).
Finally, there exists C > 0 such that

∀w ∈ H1
α(0, 1), ‖w‖L∞(0,1) ≤ C‖w‖H1

α(0,1),

and this implies that (4.2.9) holds.

α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2).
First we note that µ ∈ V 1,∞

α (0, 1) implies that |µx | ≤ C
xα/2 . Therefore we get that µx ∈ L1(0, 1).

So, µ ∈ L∞(0,1) and µz ∈ L2(0, 1). Moreover, xα/2(µz)x = (xα/2µx)z + (xα/2zx)µ, and
since xα/2µx ∈ L∞(0, 1) and z ∈ L2(0, 1), we have (xα/2µx)z ∈ L2(0, 1). Furthermore,
since xα/2zx ∈ L2(0, 1) and µ ∈ L∞(0,1), we have (xα/2zx)µ ∈ L2(0, 1), hence xα/2(µz)x ∈
L2(0,1). By reasoning as in the case α ∈ [0, 1), we deduce that also (4.2.9) is verified.

Proof of Proposition 4.2.1. We prove the existence and uniqueness of the solution of problem
(4.2.4) by a fixed point argument. We consider the map

K : C0([0, T], D(A ))→ C0([0, T], D(A ))

defined by

∀ t ∈ [0, T], K (W )(t) := etAW0 +

∫ t

0

e(t−s)A (p(s)BW (s) +F (s)) ds. (4.2.10)

We first prove that K is well-defined, which means that it maps C0([0, T], D(A )) into itself.
We observe that, thanks to Lemma 4.2.2, for anyW ∈ C0([0, T], D(A )),BW ∈ C0([0, T], D(A ))
and thus pBW ∈ L2((0, T ), D(A )). Hence, it is possible to apply the classical result of exist-
ence of strict solutions (see Proposition 1.0.5) and deduce that K (W ) ∈ C0([0, T], D(A )).
Moreover, for any W1,W2 ∈ C0([0, T], D(A )), it holds that

‖K (W1)(t)−K (W2)(t)‖D(A ) =







∫ t

0

e(t−s)A p(s)B (W1(s)−W2(s)) ds







D(A )

≤
∫ t

0

|p(s)|‖e(t−s)AB (W1(s)−W2(s))‖D(A )ds

≤ C1

∫ t

0

|p(s)|‖B (W1(s)−W2(s))‖D(A )ds

≤ C1CB‖p‖L1(0,T )‖W1 −W2‖C0([0,T],D(A )).

Suppose C1CB‖p‖L1(0,T ) < 1. Then, K is a contraction and therefore it has a unique fixed
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point. Furthermore, we have that

‖W‖C0([0,T],D(A )) ≤ sup
t∈[0,T]






etAW0 +

∫ t

0

e(t−s)A (p(s)BW (s) +F (s))ds







D(A )

≤ C1

�
‖W0‖D(A ) +

∫ T

0

|p(s)|‖BW (s)‖D(A ) + ‖F (s)‖D(A )ds

�

≤ C1

�‖W0‖D(A ) + CB‖W‖C0([0,T],D(A ))‖p‖L1(0,T ) +
p

T‖F‖L2(0,T ;D(A ))
�

.

Hence

‖W‖C0([0,T],D(A )) ≤
C1

1− C1CB‖p‖L1(0,T )
(‖W0‖D(A ) +

p
T‖F‖L2(0,T ;D(A ))). (4.2.11)

Thus, we have obtained the conclusion under the extra hypothesis that p satisfies C1CB‖p‖L1(0,T ) <

1. In the general case, it is sufficient to represent [0, T] as the union of a finite family of suf-
ficiently small subintervals on each of which we can repeat the above argument.

Equivalently, (4.2.8) can be proved by Gronwall′s Lemma, obtaining:

‖W‖C0([0,T],D(A )) ≤ C1

�‖W0‖D(A ) +
p

T‖F‖L2(0,T ;D(A ))
�

eC1‖p‖L1(0,T ) . (4.2.12)

4.2.2 Controllability of the linearized problem

In this section we prove that the solution of (4.1.20) is more regular than expected (extending
[7, Theorem 3] to the degenerate case). So, we can introduce the endpoint map

ΘT : L2(0, T )→ H3
(0)(0,1)× D(A)

p 7→ (w(p)(T ), w(p)t (T )).

Our aim is to apply the inverse mapping theorem to ΘT . This would mean that, chosen any
target state (w f

0 , w f
1) in a suitable subspace of the image ofΘT , we are able to provide a control

p ∈ L2(0, T ) such that the solution of our control problem (4.1.20) satisfies (w(p)(T ), w(p)t (T )) =
(w f

0 , w f
1). Namely, (4.1.20) is exactly controllable.

Proposition 4.2.3. Let µ ∈ V 2
α (0, 1) (the space defined in (4.1.18)). Then,

a) for all p ∈ L2(0, T ), the solution w(p) of (4.1.20) has the following additional regularity

(w(p)(T ), w(p)t (T )) ∈ H3
(0)(0, 1)× D(A), (4.2.13)

b) given p ∈ L2(0, T ), ΘT is differentiable at p, and DΘT (p) : L2(0, T )→ H3
(0)(0,1)× D(A) is a

continuous linear application, that satisfies

DΘT (p) · q = (W (p,q)(T ), W (p,q)
t (T )),

where W (p,q) is the solution of




W (p,q)
t t − (xαW (p,q)

x )x = p(t)µ(x)W (p,q) + q(t)µ(x)w(p), x ∈ (0, 1), t ∈ (0, T ),

(xαW (p,q)
x )(x = 0, t) = 0, t ∈ (0, T ),

W (p,q)
x (x = 1, t) = 0, t ∈ (0, T ),

W (p,q)(x , 0) = 0, x ∈ (0, 1),

W (p,q)
t (x , 0) = 0, x ∈ (0, 1),

(4.2.14)
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c) moreover, the map

ΘT : L2(0, T )→ H3
(0)(0,1)× D(A), ΘT (p) := (w(p)(T ), w(p)t (T )) (4.2.15)

is of class C1.

The proof of Proposition 4.2.3 is based on several steps, the first one consists of analyzing the
eigenvalues and eigenfunctions of the operatorA . Thus, we first solve the problem

AΨ = ω̃Ψ with Ψ(x) =

�
ψ1(x)
ψ2(x)

�
∈ D(A ). (4.2.16)

Lemma 4.2.4. The solutions ω̃ of problem (4.2.16) form a sequence (iωα,n)n∈Z with




ωα,n = −
Æ
λα,|n|, n≤ −1,

ωα,0 = 0, n= 0,

ωα,n =
Æ
λα,n, n≥ 1,

(4.2.17)

associated with the eigenfunctions




Ψα,n =

 
ϕα,|n|

−i
Æ
λα,|n|ϕα,|n|

!
, n≤ −1,

Ψα,0 =

 
ϕα,0 = 1

0

!
, n= 0,

Ψα,n =

 
ϕα,n

i
Æ
λα,nϕα,n

!
, n≥ 1,

(4.2.18)

where {λα,n}n∈N and {ϕα,n}n∈N are the eigenvalues and eigenfunctions of A, respectively.

Proof of Lemma 4.2.4. The spectral problem (4.2.16) can be explicitly written as
(
ψ2(x) = ω̃ψ1(x),

(xαψ′1)
′ = ω̃ψ2(x),

hence, ψ1 solves
(xαψ′1)

′ = ω̃2ψ1(x), with ψ1 ∈ D(A).

Using Propositions A.2.3 and A.2.7 concerning the eigenvalues of A, we obtain that

∃n≥ 0, such that ω̃2 = −λα,n and ψ1 = ϕα,n.

Vice–versa, given n ∈ Z, let ω̃ = ±i
Æ
λα,|n|, and ψ1 = ϕα,|n|, and ψ2 = ω̃ψ1. Then, it can be

checked that ω̃ solves of the eigenvalue problem. Therefore, the eigenvalues of A form the
sequence (iωα,n)n∈Z defined in (4.2.17), associated with the eigenfunctions (4.2.18).

Since the family {ϕα,n}n∈N is an orthonormal basis of L2(0,1), we can decompose the solution
w(p) of (4.1.20) under the form

w(p)(x , t) =
∞∑
n=0

wn(t)ϕα,n(x).
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We decompose in the same way the nonlinear term

r(x , t) := p(t)µ(x)w(p)(x , t) =
∞∑
n=0

rn(t)ϕα,n(x)

with
rn(t) = 〈p(t)µ(·)w(p)(·, t),ϕα,n〉L2(0,1).

So, (4.1.20) implies that the sequence (wn(t))n≥0 satisfies





w′′0(t) = r0(t),

w0(0) = 1,

w′0(0) = 0,

and ∀n≥ 1,





w′′n(t) +λα,nwn(t) = rn(t),

wn(0) = 0,

w′n(0) = 0.

We obtain that

w0(t) = 1+

∫ t

0

r0(s)(t − s)ds and wn(t) =

∫ t

0

rn(s)
sin
Æ
λα,n(t − s)Æ
λα,n

ds.

Hence, the solution of (4.1.20) can be written as

w(p)(x , t) =

�
1+

∫ t

0

r0(s)(t − s)ds

�
+
∞∑
n=1

�∫ t

0

rn(s)
sin
Æ
λα,n(t − s)Æ
λα,n

ds

�
ϕα,n(x), (4.2.19)

and

w(p)t (x , t) =

�∫ t

0

r0(s)ds

�
+
∞∑
n=1

�Æ
λα,n

∫ t

0

rn(s)
cos

Æ
λα,n(t − s)Æ
λα,n

ds

�
ϕα,n(x), (4.2.20)

or, equivalently,

�
w(p)(x , t)
w(p)t (x , t)

�
=

�
w0(t)
w′0(t)

�
+
∞∑
n=1




�∫ t

0 rn(s)
sin
p
λα,n(t−s)p
λα,n

ds
�
ϕα,n(x)�Æ

λα,n

∫ t

0 rn(s)
cos
p
λα,n(t−s)p
λα,n

ds
�
ϕα,n(x)


 .

Now, by manipulating the above formula and we get

�
w(p)(x , t)
w(p)t (x , t)

�
−
�

w0(t)
w′0(t)

�
=

=
∞∑
n=1

1

2i
Æ
λα,n

 �∫ t

0 rn(s)(e
i
p
λα,n(t−s) − e−i

p
λα,n(t−s))ds

�
ϕα,n(x)�∫ t

0 rn(s)(e
i
p
λα,n(t−s) + e−i

p
λα,n(t−s))ds

�
i
Æ
λα,nϕα,n(x)

!

=
∞∑
n=1

1

2i
Æ
λα,n

�∫ t

0

rn(s)e
−i
p
λα,nsds

��
ϕα,n(x)

i
Æ
λα,nϕα,n(x)

�
ei
p
λα,n t

− 1

2i
Æ
λα,n

�∫ t

0

rn(s)e
i
p
λα,nsds

��
ϕα,n(x)

−i
Æ
λα,nϕα,n(x)

�
e−i
p
λα,n t

=
∑

n∈Z,n6=0

1
2iωα,n

�∫ t

0

rn(s)e
−iωα,nsds

��
ϕα,|n|(x)

iωα,nϕα,|n|(x)

�
eiωα,n t ,
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that can be expressed more compactly by
�

w(p)(x , t)
w(p)t (x , t)

�
=

�
1+

∫ t

0 r0(s)(t − s) ds∫ t

0 r0(s)ds

�

+
∑

n∈Z,n 6=0

1
2iωα,n

�∫ t

0

rn(s)e
−iωα,n(t−s)ds

�
Ψα,n(x)e

iωα,n t .

(4.2.21)

To lighten the notation, we rewrite (4.2.21) as
�

w(p)(x , T )
w(p)t (x , T )

�
= Γ (p)0 (T ) +

∑
n∈Z∗

1
2iωα,n

γ(p)n (T )Ψα,n(x)e
iωα,n T , (4.2.22)

with

Γ
(p)
0 (T ) =

�
1+

∫ T

0 r0(s)(T − s)ds∫ T

0 r0(s)ds

�
=

�
γ
(p)
00 (T )
γ
(p)
01 (T )

�
, (4.2.23)

and

∀n ∈ Z∗, γ(p)n (T ) =

∫ T

0

rn(s)e
−iωα,ns ds, (4.2.24)

where we recall that rn(·) is defined by

∀n ∈ Z, rn(s) = 〈p(s)µ(·)w(p)(·, s),ϕα,|n|〉L2(0,1).

From Proposition 4.2.1, we already know that (w(p)(T ), w(p)t (T )) ∈ D(A)×H1
α(0, 1). To prove

the hidden regularity result, it is useful to consider expression (4.2.22). We have that

w(p)(T )− γ(p)00 (T ) =
∞∑
n=1

1
2iωα,n

�
γ(p)n (T ) e

iωα,n T − γ(p)−n(T ) e
−iωα,n T

�
ϕα,n(x),

hence, w(p)(T ) ∈ H3
(0)(0, 1) if and only if

∞∑
n=1

λ3
α,n

����
1

2iωα,n

�
γ(p)n (T ) e

iωα,n T − γ(p)−n(T ) e
−iωα,n T

�����
2

<∞.

Moreover,

w(p)t (T )− γ(p)01 (T ) =
∞∑
n=1

1
2

�
γ(p)n (T ) e

iωα,n T + γ(p)−n(T ) e
−iωα,n T

�
ϕα,n(x),

thus, w(p)t (T ) ∈ H2
(0)(0, 1) if and only if

∞∑
n=1

λ2
α,n

����
1
2

�
γ(p)n (T ) e

iωα,n T + γ(p)−n(T ) e
−iωα,n T

�����
2

<∞.

Therefore,
∑
n∈Z
λ2
α,|n| |γ(p)n (T )|2 <∞ =⇒ (w(p)(T ), w(p)t (T )) ∈ H3

(0)(0,1)× D(A). (4.2.25)

In what follows we prove that
∑
n∈Z
λ2
α,|n| |γ(p)n (T )|2 <∞. (4.2.26)
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Lemma 4.2.5. Let T > 0, p ∈ L2(0, T ), g ∈ C0([0, T], V (2,0)
α (0,1)). Consider the sequence

(S(p,g)
n )n≥1 defined by

∀n≥ 1, S(p,g)
n =

∫ T

0

p(s) 〈g(·, s),ϕα,n〉L2(0,1)e
i
p
λα,nsds. (4.2.27)

Then (S(p,g)
n )n≥1 satisfies

∞∑
n=1

λ2
α,n |S(p,g)

n |2 <∞, (4.2.28)

and moreover, there exists a constant C(α, T ) > 0 independent of p ∈ L2(0, T ) and of g ∈
C0([0, T], V 2,0

α (0, 1)) such that
�∞∑

n=1

λ2
α,n |S(p,g)

n |2
�1/2

≤ C(α, T )‖p‖L2(0,T ) ‖g‖C0([0,T],V (2,0)
α (0,1)). (4.2.29)

Proof. We proceed as in [7], but the properties of the space V (2,0)
α (0, 1) will help us to over-

come some new difficulties. (Note that V (2,0)
α (0,1) = H2

α(0,1) if α ∈ [1, 2).)
First, we observe that

S(p,g)
n =

∫ T

0

p(s)〈g(·, s),ϕα,n〉L2(0,1)e
i
p
λα,nsds

=

∫ T

0

p(s)〈g(·, s),
1
λα,n
(Aϕα,n)〉L2(0,1)e

i
p
λα,nsds

=
−1
λα,n

∫ T

0

p(s)〈g(·, s), (xαϕ′α,n)
′〉L2(0,1)e

i
p
λα,nsds.

(4.2.30)

Next, integrating by parts, we have

〈g, (xαϕ′α,n)
′〉L2(0,1) =

∫ 1

0

g(x)(xαϕ′α,n)
′(x)d x

= [g(x)xαϕ′α,n(x)]
1
0 −

∫ 1

0

g ′(x)xαϕ′α,n(x)d x

= [g(x)xαϕ′α,n(x)]
1
0 − [xαg ′(x)ϕα,n(x)]

1
0 +

∫ 1

0

(xαg ′)′(x)ϕα,n(x)d x .

Using the above expression of the scalar product in (4.2.30), we get

−λα,nS(p,g)
n = S(1)n − S(2)n + S(3)n , (4.2.31)

with

∀ i ∈ {1, 2,3}, S(i)n =

∫ T

0

h(i)n (s) e
i
p
λα,nsds, (4.2.32)

and the associated functions

h(1)n (s) = p(s)[g(x , s)xαϕ′α,n(x)]
x=1
x=0, (4.2.33)

h(2)n (s) = p(s)[xαgx(x , s)ϕα,n(x)]
x=1
x=0, (4.2.34)

h(3)n (s) = p(s)〈(xαgx)x ,ϕα,n〉L2(0,1). (4.2.35)

To conclude the proof we appeal to the following results.
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Lemma 4.2.6. Let T > 0, p ∈ L2(0, T ) and g ∈ C0([0, T], V (2,0)
α (0, 1)). Then function h(1)n

defined in (4.2.33) satisfies
∀ s ∈ [0, T], h(1)n (s) = 0.

Proof of Lemma 4.2.6. The proof follows from regularity properties: since g(·, s) ∈ H2
α(0, 1),

then g(·, s) ∈ H1( 1
2 , 1) and has a finite limit as x → 1. Hence, thanks to the Neumann bound-

ary condition at x = 1 for ϕα,n, we have

g(x , s)xαϕ′α,n(x)→ 0, as x → 1.

When x → 0, we have to distinguish the cases of weak and strong degeneracy:
α ∈ [0, 1)α ∈ [0, 1)α ∈ [0, 1)
First, we note that g(·, s) has a finite limit as x → 0: indeed,

gx(x , s) = (xα/2 gx(x , s))x−α/2,

and since x 7→ xα/2 gx(x , s) and x 7→ x−α/2 belong to L2(0,1), then gx(·, s) ∈ L1(0, 1), which
implies that g(·, s) has a finite limit as x → 0. Therefore,

g(x , s)xαϕ′α,n(x)→ 0, as x → 0,

α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2)
Observe that g can be unbounded as x → 0. However, the series of ϕα,n obtained thanks to
(A.2.37) gives that

∃Cα,n, |xαϕ′α,n(x)| ≤ Cα,n x ∀ x ∈ (0,1).

We claim that x 7→ x g(x , s) has a finite limit as x → 0. Indeed,

(x g(x , s))x = g(x , s) + x gx(x , s) = g(x , s) + xα/2 gx(x , s)x1−α/2,

and since g(·, s) ∈ L2(0, 1), x 7→ xα/2 gx(x , s) ∈ L2(0, 1) and x 7→ x1−α/2 ∈ L∞(0,1), we have
that (x g(x , s))x ∈ L1(0,1). Therefore x 7→ x g(x , s) has a finite limit as x → 0:

∃`(s), x g(x , s)→ `(s), as x → 0.

However, since g(·, s) ∈ L2(0, 1) we get that x 7→ `(s)

x ∈ L2(0,1), which is possible only if
`(s) = 0. Therefore,

x g(x , s)→ 0, as x → 0,

and so
g(x , s)xαϕ′α,n(x)→ 0, as x → 0.

Lemma 4.2.7. Let T > 0, p ∈ L2(0, T ) and g ∈ C0([0, T], V (2,0)
α (0,1)). Then, h(2)n defined in

(4.2.34) belongs to L2(0, T ) and there exists C(α, T ) > 0 independent of p ∈ L2(0, T ) and of
g ∈ C0([0, T], V (2,0)

α (0,1)) and of n≥ 1 such that

‖h(2)n ‖L2(0,T ) ≤ C(α, T )‖p‖L2(0,T )‖g‖C0([0,T],V 2,0
α (0,1)). (4.2.36)

Furthermore,
∞∑
n=1

|S(2)n |2 <∞, (4.2.37)
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and there exists C2(α, T ) > 0 independent of p ∈ L2(0, T ) and of g ∈ C0([0, T], V (2,0)
α (0, 1))

such that ∞∑
n=1

|S(2)n |2 ≤ C2(α, T )2‖p‖2
L2(0,T )‖g‖2

C0([0,T],V (2,0)
α (0,1))

. (4.2.38)

Proof of Lemma 4.2.7. We recall that

h(2)n (s) = p(s) (xαgx(x , s)ϕα,n(x))
��

x=1 − p(s) (xαgx(x , s)ϕα,n(x))
��

x=0 . (4.2.39)

Using the definition of V (2,0)
α (0, 1) and respectively (A.2.23) when α ∈ [0,1) and (A.2.47)

when α ∈ [1, 2) in (4.2.39), we obtain that

(xαgx(x , s)ϕα,n(x))
��

x=0 = 0.

Therefore from (A.2.22) and (A.2.46), we have
��h(2)n (s)

��=
��p(s)(xαgx(x , s)ϕα,n(x))

��
x=1

��=p2−α |p(s)(xαgx(x , s)|x=1

�� .
Moreover, since g(·, s) ∈ H2

α(0, 1), then x 7→ xαgx(x , s) belongs to H1(0,1). By the continu-
ous injection of H1(0, 1) into L∞(0, 1) (and hence of H2

α(0, 1) into L∞(0,1)), there exists a
positive constant C∞ such that

�� (xαgx(x , s))|x=1

��≤ C∞‖g(·, s)‖H2
α(0,1) ≤ C∞‖g‖C0([0,T],V (2,0)

α (0,1)).

Therefore, we get

∀n≥ 1, |h(2)n (s)| ≤ C∞
p

2−α |p(s)|‖g‖C0([0,T],V (2,0)
α (0,1)),

hence, h(2)n ∈ L2(0, T ) and

∃C ′∞ > 0, such that ‖h(2)n ‖L2(0,T ) ≤ C ′∞‖p‖L2(0,T )‖g‖C0([0,T],V (2,0)
α (0,1)), ∀n≥ 1. (4.2.40)

This proves (4.2.36).
Now, we prove (4.2.37) and (4.2.38). These results follow from (4.2.36) and from classical
results of Ingham type (we refer, in particular, to [11, Proposition 19, Theorem 6 and Corollary
4]).
We have seen in Proposition A.2.3, when α ∈ [0,1), and in Proposition A.2.7, when α ∈ [1, 2),
that Æ

λα,n+1 −
Æ
λα,n→

2−α
2
π as n→∞.

Furthermore, a stronger gap condition holds

∀α ∈ [0, 2),
Æ
λα,n+1 −

Æ
λα,n ≥

2−α
2
π.

Hence we are allowed to apply a general result of Ingham (see, e.g., [47, Theorem 4.3],
generalized by Haraux [42], see also [11, Theorem 6]), and we derive that given

∀ T1 > T0 :=
2π

2−α
2 π

=
4

2−α ,

there exist C1(α, T1), C2(α, T1)> 0 such that, for for every sequence (cn)n≥1 with finite support
and complex values, it holds that

C1(α, T1)
∞∑
n=1

|cn|2 ≤
∫ T1

0

�����
∞∑
n=1

cnei
p
λα,n t

�����
2

d t ≤ C2(α, T1)
∞∑
n=1

|cn|2. (4.2.41)
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Therefore, if T1 > T0, (4.2.41) implies that the sequence (ei
p
λα,n t)n≥1 is a Riesz basis of

Vect {ei
p
λα,n t , n≥ 1} ⊂ L2(0, T1) (see [11, Proposition 19, point (2)] ).

So, for all T > 0, there exists a positive constant CI (α, T ) such that

∀ f ∈ L2(0, T ),
∞∑
n=1

�����
∫ T

0

f (t)ei
p
λα,n t d t

�����
2

≤ CI (α, T )‖ f ‖2
L2(0,T ) (4.2.42)

(by applying [11, Proposition 19, point (3)], if T > T0, or extending f by 0 on (T, T0) if
T ≤ T0, see also [11, Corollary 4] ).

And this is what we need to conclude the proof of Lemma 4.2.7. First, we note from (4.2.39)
that

�����
∫ T

0

h(2)n (t)e
i
p
λα,n t d t

�����=
�����
∫ T

0

p(t)(xαgx(x , t)ϕα,n(x))(x = 1)ei
p
λα,n t d t

�����

=
p

2−α
�����
∫ T

0

p(t)gx(1, t)ei
p
λα,n t d t

����� ,

and then we can apply (4.2.42) to the function t 7→ p(t)gx(1, t) (which is independent of n),
and we obtain that

∞∑
n=1

|S(2)n |2 =
∞∑
n=1

�����
∫ T

0

h(2)n (s)e
i
p
λα,nsds

�����
2

= (2−α)
∞∑
n=1

�����
∫ T

0

p(t)gx(1, t)ei
p
λα,n t d t

�����
2

≤ (2−α)CI (α, T )‖p(·)gx(1, ·)‖2
L2(0,T )

≤ (2−α)CI (α, T )C2
∞‖p‖2

L2(0,T )‖g‖2
C0([0,T],V (2,0)

α (0,1))
.

This concludes the proof of Lemma 4.2.7.

Lemma 4.2.8. Let T > 0, p ∈ L2(0, T ) and g ∈ C0([0, T], V (2,0)
α (0,1)). Then, the sequence

(S(3)n )n≥1 satisfies
∞∑
n=1

|S(3)n |2 <∞, (4.2.43)

and there exists C3(α, T ) > 0 independent of p ∈ L2(0, T ) and of g ∈ C0([0, T], V (2,0)
α (0, 1))

such that
∞∑
n=1

|S(3)n |2 ≤ C3(α, T )2‖p‖2
L2(0,T )‖g‖2

C0([0,T],V (2,0)
α (0,1))

. (4.2.44)

Proof of Lemma 4.2.8. First, let us prove that
∑

n |S(3)n |2 <∞. Notice that

|S(3)n |2 ≤
�∫ T

0

|h(3)n (s)|ds

�2

≤ ‖p‖2
L2(0,T )

�∫ T

0

|〈(xαgx)x ,ϕα,n〉L2(0,1)|2ds

�
,
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hence

∞∑
n=1

|S(3)n |2 ≤ ‖p‖2
L2(0,T )

�∫ T

0

∞∑
n=1

|〈(xαgx)x ,ϕα,n〉L2(0,1)|2ds

�

≤ ‖p‖2
L2(0,T )

�∫ T

0

‖(xαgx)x‖2
L2(0,1)ds

�

≤ ‖p‖2
L2(0,T )T‖g‖2

C0([0,T],V (2,0)
α (0,1))

.

This concludes the proof of Lemma 4.2.8.

Then, the proof of Lemma 4.2.5 follows directly from (4.2.31) and Lemmas 4.2.6, 4.2.7 and
4.2.8.

In what follows we prove that Lemma 4.2.5 implies that (4.2.26) holds true, and then from
(4.2.25) we deduce that (w(p)(T ), w(p)t (T )) ∈ H3

(0)(0,1)×D(A), which is the aim in point a) of
Proposition 4.2.3.
Let us prove the following regularity result:

Lemma 4.2.9. If µ ∈ V 2
α (0,1) and w ∈ C0([0, T], D(A)), then µw ∈ C0([0, T], V (2,0)

α (0,1)).
Moreover, there exists C(α, T ) > 0, independent of µ ∈ V 2

α (0,1) and w ∈ C0([0, T], D(A)), such
that

‖µw‖C0([0,T],V (2,0)
α (0,1)) ≤ C(α, T )‖µ‖V 2

α (0,1)‖w‖C0([0,T],D(A)). (4.2.45)

Proof. We separately treat the case of weak and strong degeneracy.
α ∈ [0, 1)α ∈ [0, 1)α ∈ [0, 1).
Let µ ∈ V (2,∞)

α (0, 1) and w ∈ V (2,0)
α (0,1). As we have already shown,

µ ∈ H2
α(0, 1) ⇒ µ ∈ L∞(0, 1) ⇒ µw ∈ L2(0, 1).

Moreover,
(µw)x = µx w+µwx ∈ L1(0,1)

because µ, w ∈ L∞(0,1), µx = (xα/2µx)x−α/2 ∈ L1(0,1) and wx = (xα/2wx)x−α/2 ∈ L1(0, 1).
Thus µw is absolutely continuous on [0, 1].
Furthermore,

xα/2(µw)x = (x
α/2µx)w+ (x

α/2wx)µ ∈ L2(0, 1)

because xα/2µx , xα/2wx ∈ L2(0,1) and w,µ ∈ L∞(0, 1).
We observe that

(xα(µw)x)x = (x
αµx)x w+ (xαwx)xµ+ 2xαµx wx .

Since (xαµx)x , (xαwx)x ∈ L2(0,1) and w,µ ∈ L∞(0,1), then we deduce that (xαµx)x w +
(xαwx)xµ ∈ L2(0,1). Concerning the last term of the above identity, we note that

µ ∈ V (2,∞)
α (0, 1) ⇒ |xαµx wx | ≤ C xα/2|wx |,

and since xα/2wx ∈ L2(0, 1), we obtain that µw ∈ H2
α(0,1).

It remains to check the condition at x = 0. We have that

xα(µw)x = xαµx w+ xαwxµ.
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Since µ ∈ V (2,∞)
α (0, 1) and w ∈ L∞(0,1), it holds that

xαµx w→ 0 as x → 0,

and moreover, since w ∈ V 2,0
α (0,1) and µ ∈ L∞(0, 1), then

xαwxµ→ 0 as x → 0.

Thus µw ∈ V (2,0)
α (0, 1).

We conclude thatµ ∈ V (2,∞)
α (0, 1) and w ∈ C0([0, T], D(A)), thenµw ∈ C0([0, T], V (2,0)

α (0, 1)).
α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2).
We observe that

µ ∈ V (2,∞,∞)
α (0,1) ⇒ |µx | ≤

C
xα/2

⇒ µx ∈ L1(0, 1) ⇒ µ ∈ L∞(0, 1).

This implies that µw ∈ L2(0, 1).
Moreover

xα/2(µw)x = (x
α/2µx)w+ (x

α/2wx)µ ∈ L2(0, 1)

because xα/2µx ∈ L∞(0,1), w ∈ L2(0,1) (thus, (xα/2µx)w ∈ L2(0, 1)) and xα/2wx ∈ L2(0, 1),
µ ∈ L∞(0,1) (hence, (xα/2wx)µ ∈ L2(0,1)).
Now, we consider

(xα(µw)x)x = (x
αµx)x w+ (xαwx)xµ+ 2xαµx wx .

Since (xαµx)x ∈ L∞(0, 1) and w ∈ L2(0, 1), we have that (xαµx)x w ∈ L2(0,1). Furthermore,
since (xαwx)x ∈ L2(0, 1) and µ ∈ L∞(0, 1), it holds that (xαwx)xµ ∈ L2(0,1). Concerning
the last term of the above identity, we note that

µ ∈ V (2,∞,∞)
α (0,1) ⇒ |xαµx wx | ≤ C xα/2|wx | ∈ L2(0,1),

therefore µw ∈ H2
α(0,1). Finally, µw ∈ H2

α(0, 1), with α ∈ [1,2), imply that xα(µw)x → 0 as
x → 0.
So, we have proved thatµw ∈ V (2,0)

α (0, 1). And, ifµ ∈ V (2,∞,∞)
α (0,1) and w ∈ C0([0, T], D(A)),

then µw ∈ C0([0, T], V (2,0)
α (0,1).

We now proceed to prove Proposition 4.2.3.

Proof of Proposition 4.2.3. The first result to prove is that the solution (w(p), w(p)t ) of (4.1.20)
fulfills the regularity property (4.2.13). By using formula (4.2.24), Lemma 4.2.9 (with w =
w(p)) and Lemma 4.2.5, we obtain that (4.2.26) holds true and then (4.2.25) shows that
(w(p)(T ), w(p)t (T )) ∈ H3

(0)(0,1)× D(A).
Now we show that ΘT is differentiable at every p ∈ L2(0, T ). Let p0, q ∈ L2(0, T ). Then,
consider w(p0), solution of (4.1.20) with p = p0, and w(p0+q), solution of (4.1.20) with p =
p0 + q.
Formally, let us write a limited development of w(p0+q) with respect to q:

w(p0+q) = w(p0) +W1(q) + · · ·

We use this development in (4.1.20) to find the equation satisfied by the supposed first order
term W1(q): denoting

Pw := wt t − (xαwx)x ,
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we have

P
�
w(p0) +W1(q) + · · ·

�
=
�
p0(t) + q(t)

��
µ(x)w(p0) +µ(x)W1(q) + · · ·

�
,

hence we deduce that W1(q) is (probably) solution of

PW1(q) = p0(t)µ(x)W1(q) + q(t)µ(x)w(p0),

which is the motivation in taking W1(q) as the solution of (4.2.14) with p = p0, or in other
words:

W1(q) =W (p0,q).

This is the motivation to introduce

v(p0,q) := w(p0+q) −w(p0) −W (p0,q), (4.2.46)

which allows us to write

ΘT (p0 + q) = ΘT (p0) + (W
(p0,q)(T ), W (p0,q)

t (T )) + (v(p0,q)(T ), v(p0,q)
t (T )).

We are going to prove the following Lemmas:

Lemma 4.2.10. The application

L2(0, T )→ H3
(0)(0,1)× D(A)

q 7→ (W (p0,q)(T ), W (p0,q)
t (T ))

is well-defined, linear and continuous.

and

Lemma 4.2.11. The application

L2(0, T )→ H3
(0)(0,1)× D(A)

q 7→ (v(p0,q)(T ), v(p0,q)
t (T ))

is well-defined, and satisfies

‖(v(p0,q)(T ), v(p0,q)
t (T ))‖H3

(0)(0,1)×D(A)

‖q‖L2(0,T )
→ 0, as ‖q‖L2(0,T )→ 0. (4.2.47)

Then, we conclude that ΘT is differentiable at p0 and that

DθT (p0) · q = (W (p0,q)(T ), W (p0,q)
t (T )).

Proof of Lemma 4.2.10. First, we prove that

(W (p0,q)(T ), W (p0,q)
t (T )) ∈ H3

(0)(0,1)× D(A).

We observe that problem (4.2.14) is well-posed. Indeed, from Proposition 4.2.1 we de-
duce that w(p0) ∈ C0([0, T], D(A)), and by applying Lemma 4.2.9 we obtain that µw(p0) ∈
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C0([0, T], V (2,0)
α (0,1)) because µ ∈ V 2

α (0, 1). Therefore µw(p0) ∈ C0([0, T], H1
α(0,1)). Mul-

tiplying µw(p0) by q, we get that qµw(p0) ∈ L2(0, T ; H1
α(0,1)). Thus, we can apply Proposition

4.2.1 to (4.2.14) (taking f = qµw(p0)), and we deduce that

(W (p0,q), W (p0,q)
t ) ∈ C0([0, T], D(A)×H1

α(0, 1)).

Furthermore, (4.2.8) gives that

‖W (p0,q)‖C0([0,T],D(A)) + ‖W (p0,q)
t ‖C0([0,T],H1

α(0,1))

≤ C(T )‖qµw(p0)‖L2(0,T ;H1
α(0,1)))

≤ C(T )‖q‖L2(0,T )‖µw(p0)‖C0([0,T],H1
α(0,1))).

(4.2.48)

We now decompose (W (p0,q)(T ), W (p0,q)
t (T )) as follows: denoting

Rn(s) = 〈p0(s)µ(·)W (p0,q)(·, s) + q(s)µ(·)w(p0)(·, s),ϕα,|n|〉L2(0,1), (4.2.49)

we have
�

W (p0,q)(x , T )
W (p0,q)

t (x , T )

�
= Γ (p0,q)

0 (T ) +
∑
n∈Z∗

1
2iωα,n

γ(p0,q)
n (T )Ψα,n(x)e

iωα,n T , (4.2.50)

with

Γ
(p0,q)
0 (T ) =

� ∫ T

0 R0(s)(T − s)ds∫ T

0 R0(s)ds

�
=

�
γ
(p0,q)
00 (T )
γ
(p0,q)
01 (T )

�
, (4.2.51)

and

∀n ∈ Z∗, γ(p0,q)
n (T ) =

∫ T

0

Rn(s)e
−iωα,nsds. (4.2.52)

Moreover, the following implication holds true
∑
n∈Z
λ2
α,|n| |γ(p0,q)

n (T )|2 <∞ =⇒ (W (p0,q)(T ), W (p0,q)
t (T )) ∈ H3

(0)(0,1)× D(A). (4.2.53)

Therefore, to prove that

(W (p0,q)(T ), W (p0,q)
t (T )) ∈ H3

(0)(0, 1)× D(A)

we have to prove the convergence of the above series. We decompose as follows: ∀n 6= 0

γ(p0,q)
n (T ) =

∫ T

0

p0(s)〈µ(·)W (p0,q)(·, s),ϕα,|n|〉L2(0,1)e
−iωα,nsds

+

∫ T

0

q(s)〈µ(·)w(p0)(·, s),ϕα,|n|〉L2(0,1)e
−iωα,nsds

=: γ(p0,µ,W (p0,q))
n (T ) + γ(q,µ,w(p0))

n (T ).

(4.2.54)

We apply Lemma 4.2.5 first choosing p = p0 and g = µW (p0,q). Since p0 ∈ L2(0, T ) and
µW (p0,q) ∈ C0([0, T], V (2,0)

α (0,1) we obtain
∑
n∈Z∗

λ2
α,|n||γ(p0,µ,W (p0,q))

n (T )|2 <∞, (4.2.55)
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and furthermore
�∑

n∈Z∗
λ2
α,|n||γ(p0,µ,W (p0,q))

n (T )|2
�1/2

≤ C(α, T )‖p0‖L2(0,T )‖µW (p0,q)‖C0([0,T],V (2,0)
α (0,1))

≤ C ′(α, T )‖p0‖L2(0,T )‖µ‖V 2
α
‖W (p0,q)‖C0([0,T],D(A))

≤ C ′′(α, T )‖p0‖L2(0,T )‖µ‖V 2
α
‖q‖L2(0,T )‖µw(p0)‖C0([0,T],H1

α(0,1)))

≤ C ′′′(α, T )‖p0‖L2(0,T )‖q‖L2(0,T )‖µ‖2
V 2
α
‖w(p0)‖C0([0,T],D(A)),

(4.2.56)

In the same way, we apply Lemma 4.2.5 with p = q and g = µw(p0) and we get
∑
n∈Z∗

λ2
α,|n||γ(q,µ,w(p0))

n (T )|2 <∞. (4.2.57)

Moreover,
�∑

n∈Z∗
λ2
α,|n||γ(q,µ,w(p0))

n (T )|2
�1/2

≤ C(α, T )‖q‖L2(0,T )‖µw(p0)‖C0([0,T],V 2,0
α (0,1))

≤ C ′(α, T )‖q‖L2(0,T )‖µ‖V 2
α
‖w(p0)‖C0([0,T],D(A)).

(4.2.58)

We have proved that ∑
n∈Z∗

λ2
α,|n||γ(p0,q)

n (T )|2 <∞.

So, from (4.2.53) we have that

(W (p0,q)(T ), W (p0,q)
t (T )) ∈ H3

(0)(0,1)× D(A),

and furthermore




�

W (p0,q)(·, T )
W (p0,q)

t (·, T )

�
− Γ (p0,q)

0 (T )





H3
(0)(0,1)×D(A)

≤ C
�∑

n∈Z∗
λ2
α,|n||γ(p0,q)

n (T )|2
�1/2

≤ C ′′′(α, T )‖p0‖L2(0,T )‖q‖L2(0,T )‖µ‖2
V 2
α (0,1)‖w(p0)‖C0([0,T],D(A))

+ C ′(α, T )‖q‖L2(0,T )‖µ‖V 2
α (0,1)‖w(p0)‖C0([0,T],D(A)).

However, Γ (p0,q)
0 (T ) is independent of x , hence

‖Γ (p0,q)
0 (T )‖H3

(0)(0,1)×D(A) = ‖Γ (p0,q)
0 (T )‖L2(0,1)×L2(0,1) ≤ C

∫ T

0

|R0(s)|ds,

and

|R0(s)| ≤ |p0(s)||〈µW (p0,q)(s),ϕα,0〉L2(0,1)|+ |q(s)||〈µw(p0)(s),ϕα,0〉L2(0,1)|
≤ |p0(s)|‖µW (p0,q)(s)‖L2(0,1) + |q(s)|‖µw(p0)(s)‖L2(0,1)

≤ C |p0(s)|‖µ‖V 2
α (0,1)‖W (p0,q)‖C0([0,T],D(A))

+ C |q(s)|‖µ‖V 2
α (0,1)‖w(p0)‖C0([0,T],D(A))

≤ C ′|p0(s)|‖µ‖2
V 2
α (0,1)‖q‖L2(0,T )‖w(p0)‖C0([0,T],D(A))

+ C |q(s)|‖µ‖V 2
α (0,1)‖w(p0)‖C0([0,T],D(A)).
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Thus
‖R0‖L1(0,T ) ≤ C(α, T,µ, w(p0))‖q‖L2(0,T ),

and therefore





�

W (p0,q)(·, T )
W (p0,q)

t (·, T )

�



H3
(0)(0,1)×D(A)

≤ C(α, T,µ, w(p0))‖q‖L2(0,T ).

This concludes the proof of Lemma 4.2.10.

Proof of Lemma 4.2.11. The function v(p0,q), defined in (4.2.46), is the classical solution of





v(p0,q)
t t − (xαv(p0,q)

x )x = p0(t)µ(x)v(p0,q) + q(t)µ(x)(w(p0+q) −w(p0)),

(xαv(p0,q)
x )(0, t) = 0,

v(p0,q)
x (1, t) = 0,

v(p0,q)(x , 0) = 0,

v(p0,q)
t (x , 0) = 0,

(4.2.59)

that is actually a problem similar to (4.2.14) with p = p0 and w(p0+q)−w(p0) that replaces wp.
The linear control system (4.2.59) is well-posed, and

(v(p0,q), v(p0,q)
t ) ∈ C0([0, T], D(A)×H1

α(0, 1)).

So, (4.2.8) gives that

‖v(p0,q)‖C0([0,T],D(A)) + ‖v(p0,q)
t ‖C0([0,T],H1

α(0,1))

≤ C‖qµ(w(p0+q) −w(p0))‖L2(0,T ;H1
α(0,1)))

≤ C‖q‖L2(0,T )‖µ(w(p0+q) −w(p0))‖C0([0,T],H1
α(0,1)))

≤ C‖q‖L2(0,T )‖µ‖V 2
α (0,1)‖(w(p0+q) −w(p0))‖C0([0,T],H1

α(0,1)));

(4.2.60)

We decompose (v(p0,q)(T ), v(p0,q)
t (T )) as follows: denoting

zn(s) = 〈p0(s)µ(·)v(p0,q)(·, s) + q(s)µ(·)(w(p0+q) −w(p0))(·, s),ϕα,|n|〉L2(0,1), (4.2.61)

we have
�

v(p0,q)(x , T )
v(p0,q)

t (x , T )

�
= E(p0,q)

0 (T ) +
∑
n∈Z∗

1
2iωα,n

ε(p0,q)
n (T )Ψα,n(x) e

iωα,n T , (4.2.62)

with

E(p0,q)
0 (T ) =

� ∫ T

0 z0(s)(T − s)ds∫ T

0 z0(s)ds

�
, (4.2.63)

and

∀n ∈ Z∗, ε(p0,q)
n (T ) =

∫ T

0

zn(s)e
−iωα,nsds. (4.2.64)

As showed by (4.2.25), we have that
∑
n∈Z
λ2
α,|n||ε(p0,q)

n (T )|2 <∞ =⇒ (v(p0,q)(T ), v(p0,q)
t (T )) ∈ H3

(0)(0,1)× D(A). (4.2.65)
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Thus, we have to prove the convergence of the series on the left-hand side of (4.2.65). We
observe that

p0(t)µ(x)v
(p0,q) + q(t)µ(x)(w(p0+q) −w(p0)) = (p0(t) + q(t))µ(x)v(p0,q) + q(t)µ(x)W (p0,q),

therefore, we decompose ε(p0,q)
n (T ) as follows: ∀n 6= 0

ε(p0,q)
n (T ) =

∫ T

0

(p0(s) + q(s))〈µ(·)v(p0,q)(·, s),ϕα,|n|〉L2(0,1)e
−iωα,nsds

+

∫ T

0

q(s)〈µ(·)W (p0,q)(·, s),ϕα,|n|〉L2(0,1)e
−iωα,nsds

= γ(p0+q,µ,v(p0,q))
n (T ) + γ(q,µ,W (p0,q))

n (T ).

(4.2.66)

Applying twice Lemma 4.2.5, we obtain

�∞∑
n=1

λ2
α,n|γ(p0+q,µ,v(p0,q))

n (T )|2
�1/2

≤ C(α, T )‖p0 + q‖L2(0,T )‖µv(p0,q)‖C0([0,T],V 2,0
α (0,1))

≤ C ′(α, T )‖p0 + q‖L2(0,T )‖µ‖V 2
α (0,1)‖v(p0,q)‖C0([0,T],D(A))

≤ C ′′(α, T )‖p0 + q‖L2(0,T )‖q‖L2(0,T )‖µ‖2
V 2
α (0,1)‖w(p0+q) −w(p0)‖C0([0,T],D(A)),

(4.2.67)

and

�∞∑
n=1

λ2
α,n|γ(q,µ,W (p0,q))

n (T )|2
�1/2 ≤ C(α, T )‖q‖L2(0,T )‖µW (p0,q)‖C0([0,T],V 2,0

α (0,1))

≤ C ′(α, T )‖q‖L2(0,T )‖µ‖V 2
α (0,1)‖W (p0,q)‖C0([0,T],D(A))

≤ C ′′(α, T )‖q‖2
L2(0,T )‖µ‖2

V 2
α (0,1)‖w(p0)‖C0([0,T],D(A)).

(4.2.68)

Thus, we have proved that ∑
n∈Z∗

λ2
α,|n||ε(p0,q)

n (T )|2 <∞,

which implies that
(v(p0,q)(T ), v(p0,q)

t (T )) ∈ H3
(0)(0, 1)× D(A).

Furthermore,





�

v(p0,q)(·, T )
v(p0,q)

t (·, T )

�
− E(p0,q)

0 (T )





H3
(0)(0,1)×D(A)

≤ C
�∑

n∈Z
λ2
α,|n||ε(p0,q)

n (T )|2
�1/2

≤ C ′′(α, T )‖p0 + q‖L2(0,T )‖q‖L2(0,T )‖µ‖2
V 2
α (0,1)‖w(p0+q) −w(p0)‖C0([0,T],D(A))

+ C ′′(α, T )‖q‖2
L2(0,T )‖µ‖2

V 2
α (0,1)‖w(p0)‖C0([0,T],D(A)).

To conclude, we observe that
u(p0,q) := w(p0+q) −w(p0) (4.2.69)

is solution of
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



u(p0,q)
t t − (xαu(p0,q)

x )x = p0(t)µ(x)u(p0,q) + q(t)µ(x)w(p0+q),

(xαu(p0,q)
x )(0, t) = 0,

u(p0,q)
x (1, t) = 0,

u(p0,q)(x , 0) = 0,

u(p0,q)
t (x , 0) = 0,

(4.2.70)

hence (4.2.8) implies that

‖w(p0+q) −w(p0)‖C0([0,T],D(A)) = ‖u(p0,q)‖C0([0,T],D(A))

≤ C‖qµw(p0+q)‖L2(0,T ;H1
α(0,1)))

≤ C‖q‖L2(0,T )‖µ‖V 2
α
‖w(p0+q)‖C0([0,T],D(A)).

So, we get





�

v(p0,q)(·, T )
v(p0,q)

t (·, T )

�
− E(p0,q)

0 (T )





H3
(0)(0,1)×D(A)

≤ C ′′(α, T )‖q‖2
L2(0,T )

�
‖p0 + q‖L2(0,T )‖µ‖3

V 2
α (0,1)‖w(p0+q)‖C0([0,T],D(A))

+ ‖µ‖2
V 2
α (0,1)‖w(p0)‖C0([0,T],D(A))

�
.

However, E(p0,q)
0 (T ) is independent of x , hence

‖E(p0,q)
0 (T )‖H3

(0)(0,1)×D(A) = ‖E(p0,q)
0 (T )‖L2(0,1)×L2(0,1) ≤ C

∫ T

0

|z0(s)|ds,

and

|z0(s)| ≤ |p0(s)||〈µv(p0,q)(s),ϕα,0〉L2(0,1)|+ |q(s)||〈µ(w(p0+q) −w(p0))(s),ϕα,0〉L2(0,1)|
≤ |p0(s)|‖µv(p0,q)(s)‖L2(0,1) + |q(s)|‖µ(w(p0+q) −w(p0))(s)‖L2(0,1)

≤ C |p0(s)|‖µ‖V 2
α (0,1)‖v(p0,q)‖C0([0,T],D(A))

+ C |q(s)|‖µ‖V 2
α (0,1)‖w(p0+q) −w(p0)‖C0([0,T],D(A))

≤ C ′|p0(s)|‖µ‖2
V 2
α (0,1)‖q‖L2(0,T )‖(w(p0+q) −w(p0))‖C0([0,T],H1

α(0,1)))

+ C |q(s)|‖µ‖2
V 2
α (0,1)‖q‖L2(0,T )‖w(p0+q)‖C0([0,T],D(A))

≤ C ′|p0(s)|‖µ‖3
V 2
α (0,1)‖q‖2

L2(0,T )‖w(p0+q)‖C0([0,T],D(A))

+ C |q(s)|‖µ‖2
V 2
α (0,1)‖q‖L2(0,T )‖w(p0+q)‖C0([0,T],D(A)).

Hence, we have showed that

‖z0‖L1(0,T ) ≤ C(α, T,µ, w(p0))‖q‖2
L2(0,T ),

and therefore





�

v(p0,q)(·, T )
v(p0,q)

t (·, T )

�



H3
(0)(0,1)×D(A)

≤ C(α, T,µ, w(p0))‖q‖2
L2(0,T ).

This concludes the proof of Lemma 4.2.11.
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It remains to prove thatΘT is of class C1. To this purpose, we have to prove that the application
DΘT is continuous from L2(0, T ) into Lc(L2(0, T ), H3

(0)(0, 1)× D(A)), namely

|||DΘT (p0 + p̃)− DΘT (p0)|||Lc(L2(0,T ),H3
(0)(0,1)×D(A))→ 0, as ‖p̃‖L2(0,T )→ 0.

Proceeding as in the proof of Lemma, 4.2.10 it is easy to verify that there exists C(α, T,µ, p0)>
0 such that for any p̃, q ∈ L2(0, T )

‖DΘT (p0 + p̃) · q− DΘT (p0) · q‖H3
(0)(0,1)×D(A) = ‖W (p0+p̃,q)(T )−W (p0,q)(T )‖H3

(0)(0,1)×D(A)

≤ C(α, T,µ, p0)‖p̃‖L2(0,T )‖q‖L2(0,T ),

(4.2.71)

which implies that

∀ p̃, |||DΘT (p0 + p̃)− DΘT (p0)|||Lc(L2(0,T ),H3
(0)(0,1)×D(A)) ≤ C(α, T,µ, p0)‖p̃‖L2(0,T ).

Thus, DΘT is continuous and this concludes the proof of Proposition 4.2.3.

The proof of Theorem (4.1.1) follows from the application of the classical inverse mapping
theorem to the function ΘT : L2(0, T )→ H3

(0)(0, 1)× D(A) at the point p0 = 0. We recall that
ΘT (p0 = 0) = (1, 0).
The key point of the proof is represented by the following Lemma.

Lemma 4.2.12. The linear application

DΘT (0) : L2(0, T )→ H3
(0)(0,1)× D(A)

q 7→ (W (0,q)(T ), W (0,q)
t (T ))

is surjective, and

DΘT (0) : Vect {1, t, cos
Æ
λα,n t, sin

Æ
λα,n t, n≥ 1} → H3

(0)(0, 1)× D(A)

is invertible.

Proof. Since w(0) = 1, (4.2.14) implies that W (0,q) is solution of the following linear problem





W (0,q)
t t − (xαW (0,q)

x )x = q(t)µ(x), x ∈ (0,1), t ∈ (0, T ),

(xαW (0,q)
x )(0, t) = 0, t ∈ (0, T ),

W (0,q)
x (1, t) = 0, t ∈ (0, T ),

W (0,q)(x , 0) = 0, x ∈ (0,1),

W (0,q)
t (x , 0) = 0, x ∈ (0,1).

(4.2.72)

Following the procedure presented in the proof of Proposition (4.2.3) , we introduce

rn(s) = 〈q(s)µ,ϕα,n〉L2(0,1) = µα,nq(s) (4.2.73)

with µα,n = 〈µ,ϕα,n〉L2(0,1), and we have

W (0,q)(x , T ) =

∫ T

0

r0(s)(T − s)ds+
∞∑
n=1

�∫ T

0

rn(s)
sin
Æ
λα,n(T − s)Æ
λα,n

ds

�
ϕα,n(x), (4.2.74)
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and

W (0,q)
t (x , T ) =

∫ T

0

r0(s)ds+
∞∑
n=1

�Æ
λα,n

∫ T

0

rn(s)
cos

Æ
λα,n(T − s)Æ
λα,n

ds

�
ϕα,n(x). (4.2.75)

To prove the surjectivity of DΘT (0), we choose any pair (Y f , Z f ) ∈ H3
(0)(0,1)× D(A), and we

want to show that there exists q ∈ L2(0, T ) such that

(W (0,q)(T ), W (0,q)
t (T )) = (Y f , Z f ). (4.2.76)

Introducing the Fourier coefficients of the target state

Y f
α,n = 〈Y f ,ϕα,n〉L2(0,1), and Z f

α,n = 〈Z f ,ϕα,n〉L2(0,1)

we can decompose (Y f , Z f ) as follows

Y f (x) =
∞∑
n=0

Y f
α,nϕα,n(x) = Y f

α,0 +
∞∑
n=1

Y f
α,nϕα,n(x)

and

Z f (x) =
∞∑
n=0

Z f
α,nϕα,n(x) = Z f

α,0 +
∞∑
n=1

Z f
α,nϕα,n(x).

We derive from (4.2.74) and (4.2.75) that (4.2.76) is satisfied if and only if





∫ T

0 r0(s)ds = Z f
α,0,

Æ
λα,n

∫ T

0 rn(s)
cos
p
λα,n(T−s)p
λα,n

ds = Z f
α,n, for all n≥ 1,

∫ T

0 rn(s)
sin
p
λα,n(T−s)p
λα,n

ds = Y f
α,n, for all n≥ 1,

∫ T

0 r0(s)(T − s)ds = Y f
α,0.

(4.2.77)

Introducing
Q(s) := q(T − s),

(4.2.77) becomes




µα,0

∫ T

0 Q(t)d t = Z f
α,0,

µα,n

∫ T

0 Q(t) cos
Æ
λα,n td t = Z f

α,n, for all n≥ 1,

µα,n

∫ T

0 Q(t) sin
Æ
λα,n td t =

Æ
λα,nY f

α,n, for all n≥ 1,

µα,0

∫ T

0 Q(t)td t = Y f
α,0.

(4.2.78)

System (4.2.78) is usually called moment problem. Observe that (4.1.22) implies that the
coefficients µα,n are all different from 0 for all n≥ 0, which is necessary for solving (4.2.78).
Let us introduce 




Af
α,0 :=

Z f
α,0

µα,0
,

Af
α,n :=

Z f
α,n

µα,n
, for all n≥ 1,

B f
α,n :=

p
λα,n Y f

α,n

µα,n
, for all n≥ 1,

B f
α,0 :=

Y f
α,0

µα,0
,

(4.2.79)
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and 



cα,0 : t ∈ (0, T ) 7→ 1,

cα,n : t ∈ (0, T ) 7→ cos
Æ
λα,n t, for all n≥ 1,

sα,n : t ∈ (0, T ) 7→ sin
Æ
λα,n t, for all n≥ 1,

sα,0 : t ∈ (0, T ) 7→ t,

(4.2.80)

so that (4.2.78) can be written as follows




〈Q, cα,0〉L2(0,T ) = Af
α,0,

〈Q, cα,n〉L2(0,T ) = Af
α,n, for all n≥ 1,

〈Q, sα,n〉L2(0,T ) = B f
α,n, for all n≥ 1,

〈Q, sα,0〉L2(0,T ) = B f
α,0.

(4.2.81)

Finally, we define the space

Eα := Vect {cα,0, cα,n, sα,n, n≥ 1},

which is a closed subspace of L2(0, T ).
To solve (4.2.81) we use the following characterization of the Riesz basis (see [11, Prop. 19]
or also [32]):
the family {cα,0, cα,n, sα,n, n≥ 1} is a Riesz basis of Eα if and only if there exist C1(α, T ), C2(α, T )>
0 such that, for all N ≥ 1 and for any (an)0≤n≤N , (bn)1≤n≤N it holds that

C1(α, T )

�
a2

0 +
N∑

n=1

a2
n + b2

n

�
≤
∫ T

0

���S(a,b)(t)
���
2
d t ≤ C2(α, T )

�
a2

0 +
N∑

n=1

a2
n + b2

n

�
, (4.2.82)

where

S(a,b)(t) = a0cα,0(t) +
N∑

n=1

ancα,n(t) + bnsα,n(t). (4.2.83)

We observe that (4.2.82) holds as a consequence of Ingham theory. Indeed, by expressing
cos y and sin y as

cos y =
ei y + e−i y

2
, and sin y =

ei y − e−i y

2i
,

we have

S(a,b)(t) = a0eiωα,0 t +
N∑

n=1

an
eiωα,n t + e−iωα,n t

2
+ bn

eiωα,n t − e−iωα,n t

2i

=
N∑

n=−N

dneiωα,n t ,

with 



d0 = a0,

dn =
an
2 +

bn
2i , for n≥ 1,

dn =
a−n
2 − b−n

2i , for n≤ −1.

Since ωα,n+1 −ωα,n > 0 for all n ∈ Z and

∀|n| ≥ 2, ωα,n+1 −ωα,n ≥
2−α

2
π,
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we can apply a general result of Haraux [42] (see also [11, Theorem 6]) that ensures that if

T >
2π

2−α
2 π

=
4

2−α ,

then there exist C (I)1 , C (I)2 > 0 independent of N , and coefficients (dn)−N≤n≤N such that

C (I)1

N∑
n=−N

|dn|2 ≤
∫ T

0

���
N∑

n=−N

dneiωα,n t
���
2
d t ≤ C (I)2

N∑
n=−N

|dn|2. (4.2.84)

Since
N∑

n=−N

|dn|2 = a2
0 + 2

N∑
n=1

a2
n + b2

n

4
,

(4.2.84) implies that (4.2.82) is verified and so {cα,0, cα,n, sα,n, n≥ 1} is a Riesz basis.
We can now use [11, Proposition 20] that ensure that if {cα,0, cα,n, sα,n, n≥ 1} is a Riesz basis,
then the application F : Eα→ `2(N):

F ( f ) = (〈 f , cα,0〉L2(0,T ), 〈 f , cα,1〉L2(0,T ), 〈 f , sα,1〉L2(0,T ), 〈 f , cα,2〉L2(0,T ), · · · )

is an isomorphism.
We note that

Y f ∈ H3
(0)(0,1) =⇒

∞∑
n=0

λ3
α,n|Y f

n |2 <∞,

and

Z f ∈ D(A) =⇒
∞∑
n=0

λ2
α,n|Z f

n |2 <∞,

and then (4.1.22) ensures us that

|Af
α,0|2 +

∞∑
n=1

|Af
α,n|2 + |B f

α,n|2 <∞,

and therefore there exists a unique Qα ∈ Eα such that

F (Qα) = (Af
α,0, Af

α,1, B f
α,1, Af

α,2, · · · ).

Thus, 



〈Qα, cα,0〉L2(0,T ) = Af
α,0,

〈Qα, cα,n〉L2(0,T ) = Af
α,n for all n≥ 1,

〈Qα, sα,n〉L2(0,T ) = B f
α,n for all n≥ 1;

(4.2.85)

and, moreover, the application

l2(N)→ Eα,

(Af
α,0, Af

α,1, B f
α,1, Af

α,2, · · · ) 7→Qα

is continuous.
Finally, we claim that sα,0 /∈ Eα: indeed, if t 7→ t was the limit of a sequence of linear combin-
ations of cα,0, cα,n and sα,n, so it would be t 7→ t2 by integration. Then, by integrating further,
also t 7→ t3 would be the limit of a sequence of linear combinations of cα,0, cα,n and sα,n.
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Thus, by iterating this procedure, we deduce that all the polynomials could be written in this
form. Therefore, L2(0, T ) would be equal to Eα and (4.2.85) would have a unique solution.
However, this is not the case: define T0 := 4

2−α , and choose qα smooth, compactly supported
in (0, T−T0

2 ) and different from Qα on that interval. Now, consider the following problem





〈Q̃α, cα,0〉L2( T−T0
2 ,T ) = Af

α,0 − 〈q̃α, cα,0〉L2(0, T−T0
2 ),

〈Q̃α, cα,n〉L2( T−T0
2 ,T ) = Af

α,n − 〈q̃α, cα,n〉L2(0, T−T0
2 ) for all n≥ 1,

〈Q̃α, sα,n〉L2( T−T0
2 ,T ) = B f

α,n − 〈q̃α, sα,n〉L2(0, T−T0
2 ) for all n≥ 1.

(4.2.86)

Since T − T−T0
2 = T+T0

2 > T0, and the sequences (〈q̃α, cα,n〉L2(0, T−T0
2 ))n and (〈q̃α, sα,n〉L2(0, T−T0

2 ))n
are square-integrable (by integration by parts), there exists a solution Q̃ ∈ L2( T−T0

2 , T ) of
(4.2.86). So, the function

Q∗α :=

(
qα on (0, T−T0

2 ),

Q̃α on ( T−T0
2 , T )

solves (4.2.85) and it is different from Qα. Hence sα,0 /∈ Eα, and if we denote p⊥α,0 the ortho-
gonal projection of sα,0 on Eα, then sα,0 − p⊥α,0 6= 0, and

Q⊥α :=
sα,0 − p⊥α,0

‖sα,0 − p⊥α,0‖2
L2(0,T )

is orthogonal to Eα, and furthermore

〈Q⊥α , sα,0〉L2(0,T ) = 1.

Thus,

Q :=Qα + Bα,0Q⊥α

solves (4.2.81). Moreover,

‖Q‖2
L2(0,T ) = ‖Qα‖2

L2(0,T ) + ‖B f
α,0Q⊥α‖2

L2(0,T ) ≤ C
�∞∑

n=0

|Af
α,n|2 + |B f

α,n|2
�
,

which completes the proof of Lemma 4.2.12.

4.2.3 Inverse mapping theorem

Proof of Theorem 4.1.1. We have proved in Proposition 4.2.1 that problem (4.1.20) is well
defined and the solution (w(p), w(p)t ) is of class C0([0, T]; D(A) × H1

α(0, 1)). Moreover, from

Proposition 4.2.3 we know that (w(p)(T ), w(p)t (T )) is even more regular

(w(p)(T ), w(p)t (T )) ∈ H3
α(0,1)× D(A).

Therefore, the end point map

ΘT : L2(0, T )→ H3
(0)(0,1)× D(A), p→ (w(p)(T ), w(p)t (T ))
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is well defined. Furthermore, in Proposition 4.2.3 we have showed that ΘT is of class C1 and
the action of the differential DΘT can be represented by

DΘT (p) · q =
�
W (p,q)(T ), W (p,q)

t (T )
�

,

where W (p,q) is the solution of (4.2.14).
Now, since we want to apply the inverse mapping theorem to ΘT , we have proved in Lemma
(4.2.12) that

DΘT (0) : L2(0, T )→ H3
(0)(0, 1)× D(A), q→ (W (0,q)(T ), W (0,q)

t (T ))

is surjective. Moreover, if we define the space

Fα := Vect {1, t, cos
Æ
λα,n t, sin

Æ
λα,n t, n≥ 1}.

then, the restriction of ΘT to Fα

Θα,T : Fα→ H3
(0)(0,1)× D(A),

p 7→ Θα,T (p) := ΘT (p)

is C1 (Proposition 4.2.3) and DΘα,T (0) is invertible (Lemma 4.2.12). Thus, the inverse
mapping theorem ensures that there exists a neighborhood V (0) ⊂ Fα and a neighborhood
V (1, 0) ⊂ H3

(0)(0,1)× D(A) such that

Θα,T : V (0)→V (1,0)

is a C1-diffeomorphism. Hence, given (w f
0 , w f

1) ∈ V (1, 0), we choose p f := Θ−1
α,T (w

f
0 , w f

1), and
so the solution of (4.1.20) with p = p f satisfies

(w(T ), wt(T )) = ΘT (p
f ) = ΘT (Θ

−1
α,T (w

f
0 , w f

1)) = (w
f
0 , w f

1).

Therefore, we have proved that, starting from the first eigenfunction ϕα,0 ≡ 1, the solution
of the control system (4.1.20) reaches a neighborhood of the trajectory w(1,0;0) ≡ 1 in time
T > T0. Hence, by time reversibility, we have proved the local exact controllablility of (4.1.20)
along the ground state solution w(1,0;0) in any time T > 2T0.

4.2.4 Proof of Remark 4.1.2

First we check that
µ(x) = x2−α

satisfies all the regularity assumptions.
α ∈ [0, 1)α ∈ [0, 1)α ∈ [0, 1)
We observe that

µ′(x) = (2−α)x1−α ∈ L1(0,1).

Hence µ is absolutely continuous on [0, 1]. Moreover,

xα/2µ′(x) = (2−α)x1− α2 ∈ L2(0, 1).
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Thus, µ ∈ H1
α(0,1). Furthermore,

xαµ′(x) = (2−α)x ∈ H1(0,1)

and therefore µ ∈ H2
α(0,1). Finally,

xα/2µ′(x) = (2−α)x1− α2 ∈ L∞(0,1)

that implies µ ∈ V (2,∞)
α (0, 1).

α ∈ [1, 2)α ∈ [1, 2)α ∈ [1, 2)
It easy to check that µ ∈ L2(0,1). Moreover,

xα/2µ′(x) = (2−α)x1− α2 ∈ L2(0,1)

and therefore µ ∈ H1
α(0, 1). Furthermore,

xαµ′(x) = (2−α)x ∈ H1(0, 1).

Thus µ ∈ H2
α(0, 1). Finally,

xα/2µ′(x) = (2−α)x1− α2 ∈ L∞(0, 1),

and
(xαµ′)′(x) = 2−α ∈ L∞(0, 1).

Hence µ ∈ V (2,∞,∞)
α (0,1).

We have showed that the regularity assumptions are satisfied.
It remains to check the validity of (4.1.22). We have that

〈µ,ϕα,0〉L2(0,1) =

∫ 1

0

x2−αd x =
1

3−α ,

and, for all n≥ 1, we develop the scalar product as follows

〈µ,ϕα,n〉L2(0,1) =

∫ 1

0

µ(x)ϕα,n(x)d x

=
1
λα,n

∫ 1

0

µ(x)λα,nϕα,n(x)d x

=
1
λα,n

∫ 1

0

µ(x)(−xαϕ′α,n)
′(x)d x

=
1
λα,n

�
[−xαµ(x)ϕ′α,n(x)]

1
0 +

∫ 1

0

xαµ′(x)ϕ′α,n(x)

�
.

Recalling that µ(x) = x2−α, we obtain

∫ 1

0

xαµ′(x)ϕ′α,n(x) = (2−α)
∫ 1

0

xϕ′α,n(x)

= (2−α)[xϕα,n(x)]
1
0 − (2−α)

∫ 1

0

ϕα,n(x)d x

= (2−α)[xϕα,n(x)]
1
0 − (2−α)〈ϕα,0,ϕα,n〉L2(0,1).
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Since the eigenfunctions are orthogonal, we have that

〈ϕα,0,ϕα,n〉L2(0,1) = 0,

hence

〈µ,ϕα,n〉L2(0,1) =
1
λα,n

�
[−x2ϕ′α,n(x)]

1
0 + (2−α)[xϕα,n(x)]

1
0

�
.

From the Neumann boundary conditions satisfied by ϕα,n, we know that xϕ′α,n(x) → 0 as
x → 0 and x → 1, thus

[−x2ϕ′α,n(x)]
1
0 = 0.

We have also proved (Lemmas A.2.4 and A.2.8) that ϕα,n has a finite limit as x → 0, therefore

xϕα,n(x)→ 0, as x → 0.

Finally, once again from Lemmas A.2.4 and A.2.8 we have that |ϕα,n(1)|=
p

2−α that yields

|(2−α)[xϕα,n(x)]
1
0|= (2−α)3/2,

and

|〈µ,ϕα,n〉L2(0,1)|=
(2−α)3/2
λα,n

.

Hence, (4.1.22) is satisfied.
Now, let us prove that the set of functions µ satisfying (4.1.22) is dense in V 2

α . By integrating
by part, we get

〈µ,ϕα,n〉L2(0,1) =
1
λα,n

�
[−xαµ(x)ϕ′α,n(x)]

1
0 +

∫ 1

0

xαµ′(x)ϕ′α,n(x)d x

�

=
1
λα,n

�
[−xαµ(x)ϕ′α,n(x)]

1
0 + [x

αµ′(x)ϕα,n(x)]
1
0 −

∫ 1

0

(xαµ′)′(x)ϕα,n(x)d x

�
.

Then, since µ ∈ L∞(0,1), we have

[−xαµ(x)ϕ′α,n(x)]
1
0 = 0.

Moreover, since xα/2µ′ ∈ L∞(0,1) and ϕα,n has a finite limit as x → 0, we deduce

xαµ′(x)ϕα,n(x)→ 0, as x → 0.

Thus, we obtain
[xαµ′(x)ϕα,n(x)]

1
0 = µ

′(1)ϕα,n(1),

and we recall that |ϕα,n(1)|=
p

2−α.
Finally, since (xαµ′)′(x) ∈ L2(0, 1), we get

∫ 1

0

(xαµ′)′(x)ϕα,n(x)d x = 〈(xαµ′)′(x),ϕα,n〉L2(0,1)→ 0, as n→∞.

So,
µ ∈ V 2

α (0,1) =⇒ |λα,n〈µ,ϕα,n〉L2(0,1)| →
p

2−α|µ′(1)|, as n→∞.
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We define the spaces

Vn :=

(
{µ ∈ V 2

α (0, 1), 〈µ,ϕα,n〉L2(0,1) 6= 0} for n≥ 0,

{µ ∈ V 2
α (0, 1), µ′(1) 6= 0} for n= −1,

and
V 2
α := ∩∞n=−1Vn.

Clearly every Vn is open in V 2
α , and they are also dense. Indeed, consider µ̃ ∈ V 2

α (0,1) such
that µ̃ /∈ Vn for some n≥ −1, and define

µ̃ε(x) := µ̃(x) + εx2−α

where ε ∈ R∗. Then, if n≥ 0, we have

〈µ̃ε,ϕα,n〉L2(0,1) = ε〈x2−α,ϕα,n〉L2(0,1) 6= 0,

and if n= −1, we have
µ̃′ε(1) = ε(2−α) 6= 0.

Therefore µ̃ε ∈ Vn and it is close to µ̃ in V 2
α if ε is sufficiently small. This means that Vn is

dense in V 2
α . Thus V 2

α is the intersection of a sequence of open and dense subsets and, thanks
to Baire Theorem, it is dense in V 2

α .
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CHAPTER 5

A constructive algorithm for building mixing coupling
real valued potentials

Given an unbounded linear operator A on a separable Hilber space (X , 〈·, ·〉), such that its
eigenfunctions {ϕk} form an orthonormal basis of X , we are interested in characterizing the
functions µ such that

〈µϕ1,ϕk〉 6= 0, ∀ k ∈ N∗. (5.0.1)

In particular, in this Chapter we will consider the Laplacian operator on the space X = L2(0, 1)
and we provide an algorithm to build polynomials of ant degree q ∈ N∗ that fulfill the non-
vanishing property (5.0.1).
Furthermore, we will explain the importance of such kind of functions in the context of con-
trol theory by giving examples of applications to different types of problems as the bilinear
controllability of the Schrödinger equation with mixed boundary conditions as well as the
stabilizability and the controllability of the heat equation with mixed boundary conditions via
bilinear control.
The content of this Chapter is based on [5].

5.1 Introduction

As we have seen in the introduction, bilinear controls are well-suited to describe processes
capable of modifying some of their physical characteristics in presence of the control. A
well-known example of bilinear control system is given by the description of the motion of a
quantum particle in an electric field. The corresponding model is given by the Schrödinger
equation





i∂tu(t, x) = −∂ 2
x u(t, x)− p(t)µ(x)u(t, x), (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = 0, u(t, 1) = 0,
u(0, ·) = u0(·) ∈ (0,1),

(5.1.1)

where u is the wave function of the particle, p ∈ L2(0, T ;R) is the control and represents the
magnitude of the electric field and µ is a real valued function called dipolar moment of the
particle. Denote by A the operator defined by:

D(A) := H2 ∩H1
0 ((0, 1);C) , Aϕ = −d2ϕ

d x2
, (5.1.2)

then, its eigenvalues and eigenfunctions are given by:

λk := (kπ)2 ,ϕk(x) :=
p

2 sin(kπx) , ∀ k ∈ N∗. (5.1.3)
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Beauchard and Laurent in [11] proved a local controllability result along the ground state
solution ψ1(t) = e−iλk tϕ1 for system (5.1.1) (in a smoother space than the natural one for
the well-posedness) provided that µ ∈ H3(0,1) satisfies

∃ c > 0 such that

�����
∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x

�����¾
c

λ
3/2
k

∀k ∈ N∗. (5.1.4)

They also prove that this condition holds generically in H3(0,1). Observe that a necessary
condition for (5.1.4) to hold is that

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x 6= 0 ∀k ∈ N∗. (5.1.5)

On the other hand, Beauchard and Morancey in [13] proved that if condition (5.1.5) is viol-
ated for an index k ∈ N∗, then there exists a minimal time such that the Schrödinger equation
(5.1.1) is controllable along the ground state solution.
A further example of bilinear control problem is represented by the heat equation with a
controlled potential




∂tu(t, x)− ∂ 2

x u(t, x) + p(t)µ(x)u(t, x) = 0, (t, x) ∈ (0, T )× (0,1),
u(t, 0) = 0, u(t, 1) = 0,
u(0, ·) = u0(·) ∈ (0, 1),

(5.1.6)

where p ∈ L2(0, T ;R) is the control and stands for the temperature and µ is an admissible
potential. More generally, one can consider a parabolic control system of the form

�
∂tu+ Au+ p(t)Bu= 0, t ∈ (0, T ),
u(0, ·) = u0(·), (5.1.7)

where A is a self-adjoint accretive operator on a Hilbert space and p(·) is the control function.
Alabau-Boussouira, Cannarsa and Urbani proved in [4] (see Chapter 2) a result of superex-
ponential stabilizability to the ground state solution of (5.1.7) when B : X → X is a linear
bounded operator such that there exists τ > 0 for which

〈Bϕ1,ϕk〉 6= 0, ∀k ∈ N∗,

∑
k∈N∗

e−2λkτ

|〈Bϕ1,ϕk〉|2
< +∞.

(5.1.8)

Moreover, we proved in [3] (see Chapter 3) a result of exact controllability for (5.1.7) to the
ground state solution in X , under the following condition on the linear bounded operator
B : X → X

〈Bϕ1,ϕ1〉 6= 0, and ∃ b , q > 0 , such that λ
q
k|〈Bϕ1,ϕk〉| ≥ b ∀ k > 1. (5.1.9)

When B is defined as Bu = µu for all u ∈ X (under suitable assumptions on µ), several
examples of applications of these two abstract results are also given in [4, 25, 3].
Observe that, in both [4] and [3] the weaker condition

〈Bϕ1,ϕk〉 6= 0, ∀k ∈ N∗, (5.1.10)

is necessary to have (5.1.8) and (5.1.9).
In practice:
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• even though conditions (5.1.4), (5.1.8) and (5.1.9) are satisfied generically, it is not so
easy to exhibit a large explicit class of real valued potential µ satisfying them and only
few examples of suitable potentials are available in the existing literature,

• these examples also are based on the knowledge of the explicit form of the eigenvalues
and eigenfunctions. However, if one changes, for instance, the boundary conditions
from Dirichlet-Dirichlet to Dirichlet-Robin, the eigenvalues cannot longer be explicitly
represented.

Therefore, some natural questions that raise are:

1. Is it possible to exhibit large classes of functions µ satisfying (5.1.10)?

2. Can we build a general constructive algorithm to build such functions µ?

3. Is it possible to extend Beauchard and Laurent controllability results for Schrödinger
equation and Alabau-Boussouira, Cannarsa and Urbani superexponential stabilization
[4] and controllability [3] results for parabolic equations, and further existing results
for other equations to more general boundary conditions?

The purpose of our work has been to give positive answers to these questions and, in particular,
to give a general algorithm to provide a large (infinite) class of explicit real valued potential
µ satisfying (5.1.10).
Let us describe the general framework that can be considered for bilinear control systems by
using spectral properties of the eigenvalues and eigenfunctions associated to the infinitesimal
generator of the semigroup −A.
Let X be a separable complex Hilbert space equipped with a scalar product denoted by 〈·, ·〉X
and the corresponding norm || · ||X .
Fix T > 0 and consider the following bilinear control problem associated to the pair (A, B)





u′(t) + β1Au(t) + β2p(t)Bu(t) = 0, t ∈ [0, T]

u(0) = u0,
(5.1.11)

where β1,β2 are given suitable complex numbers.
The control operator B is defined as follows. We consider real valued potentials µ ∈ Y where
Y is a suitable subspace of X so that the multiplication operator B defined by

Bv = µv, ∀ v ∈ X , (5.1.12)

is well-defined on X and such that B ∈ L (X ).
Let A : D(A) ⊂ X 7→ X be a given unbounded linear operator acting on X . The operators
that we consider for applications are differential operators. We shall denote in the sequel by
A0 the unbounded operator when we do not precise the boundary conditions to which it is
associated.
For the sake of simplicity, we fix the spatial domain as Ω= (0,1). We set X = L2(Ω), A= −∆,
that is the Laplacian operator with some admissible boundary conditions denoted by (BC) (so
that the associated elliptic problem is well-posed) and B the multiplication operator defined
in (5.1.12).
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Observe that, taking β1 = β2 = −i, we recover from (5.1.11) the bilinear control problem
(5.1.1) for the Schrödinger equation, while by choosing β1 = β2 = 1 we obtain (5.1.6) from
(5.1.11).
Examples of boundary conditions (BC) that can be imposed to u ∈ D(A) are Dirichlet-Dirichlet
boundary conditions denoted by (DD), Dirichlet-Robin boundary conditions denoted by (DR),
Dirichlet-Neumann boundary conditions denoted by (DN), Neumann-Neumann boundary
conditions denoted by (NN), . . .:





(DD) u(0) = 0, u(1) = 0,
(DR) u(0) = 0, u′(1) + u(1) = 0,
(DN) u(0) = 0, u′(1) = 0,
(NN) u′(0) = 0, u′(1) = 0,

...

(5.1.13)

Note that the domain of A is defined with respect to the chosen (BC) among the above ones.
The method that we present is valid for different boundary conditions and allows to prove new
controllability results for bilinear Schrödinger equations as well as for parabolic equations. It
also gives a large variety of explicit classes of real valued potentials µ for which the existing
controllability results are valid.
Our goal is thus to find and explicit algorithm to select functions µ in certain classes of func-
tions that satisfy ∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x 6= 0, ∀k ∈ N∗. (5.1.14)

The more refined asymptotic behavior (5.1.4) required as sufficient condition in [11] for
Schrödinger equation with (DD) boundary conditions, or of the form (5.1.8) and (5.1.9) for
parabolic bilinear control systems in [4, 3] respectively, can be proved more easily than the
above (necessary) nonvanishing condition. This will be shown in the sequel.

5.2 Main results

We present the following key result based only on the property that (ϕk,λk) are the eigenfunc-
tions and eigenvalues of the Laplacian operator (without specifying the boundary conditions).
Let A0,Lap be the second order differential operator defined by

A0,Lap = −
d2

d x2
, (5.2.1)

and let (ϕk,λk)k∈N∗ be any pair that solves

A0,Lapϕk = λkϕk, ||ϕk||X 6= 0. (5.2.2)

Moreover, we define the positive constants

αk := 2(λ1 +λk). (5.2.3)

Theorem 5.2.1. For any pair (ϕk,λk) that solves (5.2.2), for any function µ ∈ H4(0, 1) and
for any k ¾ 2 the following relation holds

(λk −λ1)
2

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

Tk(µ)(x)ϕ1(x)ϕk(x)d x + BG,k(µ). (5.2.4)
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where Tk : H4(0, 1) 7→ L2(0, 1) are the linear operators defined by

Tk(µ) = −
�
µ(4) +αkµ

′′� , ∀µ ∈ H4(0,1) , ∀k ∈ N∗, (5.2.5)

and BG,k : H4(0,1) 7→ R are the linear operators defined by

BG,k(µ) =
−µ′′(1) [ϕ1(1)ϕk′(1) +ϕ1′(1)ϕk(1)] +µ(3)(1)ϕ1(1)ϕk(1) +µ′′(0) [ϕ1(0)ϕk′(0) +ϕ1′(0)ϕk(0)]
−µ(3)(0)ϕ1(0)ϕk(0) +µ′(1) [(λ1 +λk)ϕ1(1)ϕk(1) + 2ϕ1′(1)ϕk′(1)]
−µ′(0) [(λ1 +λk)ϕ1(0)ϕk(0) + 2ϕ1′(0)ϕk′(0)] +µ(1)(λk −λ1) [ϕ1′(1)ϕk(1)−ϕ1(1)ϕk′(1)]
+µ(0)(λk −λ1) [ϕ1(0)ϕk′(0)−ϕ1′(0)ϕk(0)] ,

(5.2.6)
for all µ ∈ H4(0,1) and k ∈ N∗.
Proof. Thanks to (5.2.2) we have the following identities:

λk

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

(µ′(x)ϕ1(x) +µ(x)ϕ1′(x))ϕk′(x)d x − µ(x)ϕ1(x)ϕk′(x)|10

λ1

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

(µ′(x)ϕk(x) +µ(x)ϕk′(x))ϕ1′(x)d x − µ(x)ϕ1′(x)ϕk(x)|10 .

(5.2.7)

Taking the difference between the first and the second equation in (5.2.7), we obtain

(λk −λ1)

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

µ′(x) [ϕ1(x)ϕk′(x)−ϕ1′(x)ϕk(x)] d x

−µ(x) [ϕ1(x)ϕk′(x)−ϕ1′(x)ϕk(x)]|10 .

(5.2.8)

Now, recalling that ϕ′′k (x) = −λkϕk(x), for all k ∈ N∗, we compute the following equalities

λk

∫ 1

0

µ′(x)ϕ1′(x)ϕk(x)d x =−
∫ 1

0

µ′(x)ϕ1′(x)ϕ′′k (x)d x

=

∫ 1

0

(µ′ϕ1′)′(x)ϕk′(x)d x − µ′(x)ϕ1′(x)ϕk′(x)|10

=

∫ 1

0

�
µ′′(x)ϕ1′(x)−λ1µ′(x)ϕ1(x)

�
ϕk′(x)d x − µ′(x)ϕ1′(x)ϕk′(x)|10 .

(5.2.9)

By exchanging the indices 1 and k we have that

λ1

∫ 1

0

µ′(x)ϕ1(x)ϕk′(x)d x =

∫ 1

0

�
µ′′(x)ϕk′(x)−λkµ′(x)ϕk(x)

�
ϕ1′(x)d x−µ′(x)ϕ1′(x)ϕk′(x)|10 .

(5.2.10)
We consider the left-hand side of (5.2.9) and we integrate by parts:

λk

∫ 1

0

µ′(x)ϕ1′(x)ϕk(x)d x = λk

�
µ′(x)ϕ1(x)ϕk(x)|10 −

∫ 1

0

(µ′ϕk) ′(x)ϕ1(x)d x

�

= λk

�
µ′(x)ϕ1(x)ϕk(x)|10 −

∫ 1

0

�
µ′′(x)ϕ1(x)ϕk(x) +µ′(x)ϕ1(x)ϕk′(x)

�
d x

�
.

(5.2.11)
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Using (5.2.11) inside (5.2.9), we get

λkµ′(x)ϕ1(x)ϕk(x)|10−λk

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x −λk

∫ 1

0

µ′(x)ϕ1(x)ϕk′(x)d x

=

∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x −λ1

∫ 1

0

µ′(x)ϕ1(x)ϕk′(x)− µ′(x)ϕ1′(x)ϕk′(x)|10
(5.2.12)

and therefore, recasting the terms (5.2.12) becomes

(λk −λ1)

∫ 1

0

µ′(x)ϕ1(x)ϕk′(x)d x =−
∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x −λk

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

+ µ′(x)ϕ1′(x)ϕk′(x)|10 + λkµ′(x)ϕ1(x)ϕk(x)|10 .

(5.2.13)

By exchanging the indices 1 and k in (5.2.13), we obtain

−(λk −λ1)

∫ 1

0

µ′(x)ϕ1′(x)ϕk(x)d x =−
∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x −λ1

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

+ µ′(x)ϕ1′(x)ϕk′(x)|10 + λ1µ′(x)ϕ1(x)ϕk(x)|10 .

(5.2.14)

Adding (5.2.13) to (5.2.14), we get

(λk −λ1)

∫ 1

0

µ′(x) (ϕ1(x)ϕk′(x)−ϕ1′(x)ϕk(x)) d x =− 2

∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x

− (λk +λ1)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

+ (λ1 +λk)µ′(x)ϕ1(x)ϕk(x)|10
+ 2µ′(x)ϕ1′(x)ϕk′(x)|10 ,

(5.2.15)

and using (5.2.15) in (5.2.8), we obtain

(λk −λ1)
2

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =− 2

∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x − (λk +λ1)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

+ (λ1 +λk)µ′(x)ϕ1(x)ϕk(x)|10 + 2µ′(x)ϕ1′(x)ϕk′(x)|10
− (λk −λ1)µ(x) [ϕ1(x)ϕk′(x)−ϕ1′(x)ϕk(x)]|10 .

(5.2.16)

On the other hand, we have that

2ϕ1′(x)ϕk′(x) = (ϕ1ϕk)
′′(x) + (λ1 +λk)ϕ1(x)ϕk(x). (5.2.17)
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We use expression (5.2.17) in the first term on the right-hand side of (5.2.16) and we get that

2

∫ 1

0

µ′′(x)ϕ1′(x)ϕk′(x)d x =

∫ 1

0

µ′′(x)(ϕ1ϕk)
′′(x)d x + (λ1 +λk)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

= µ′′(x)(ϕ1ϕk)′(x)
��1
0 −

∫ 1

0

µ′′′(x)(ϕ1ϕk)′(x)d x

+ (λ1 +λk)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

= µ′′(x)(ϕ1ϕk)′(x)
��1
0 −µ′′′(x)ϕ1(x)ϕk(x)

��1
0

+

∫ 1

0

µ(4)(x)ϕ1(x)ϕk(x)d x + (λ1 +λk)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x .

(5.2.18)

Thus, thanks to (5.2.18), (5.2.16) becomes

(λk −λ1)
2

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =−
∫ 1

0

µ(4)(x)ϕ1(x)ϕk(x)d x − 2(λ1 +λk)

∫ 1

0

µ′′(x)ϕ1(x)ϕk(x)d x

− µ′′(x)(ϕ1ϕk)′(x)
��1
0 +µ

′′′(x)ϕ1(x)ϕk(x)
��1
0

+ (λ1 +λk)µ′(x)ϕ1(x)ϕk(x)|10 + 2µ′(x)ϕ1′(x)ϕk′(x)|10
− (λk −λ1)µ(x) [ϕ1(x)ϕk′(x)−ϕ1′(x)ϕk(x)]|10

(5.2.19)

that can be rewritten as (5.2.4).

In the following Theorem we derive a relation to express 〈µϕ1,ϕk〉 through higher order
derivative of µ. For this, we introduce for any n ∈ N∗ and any k ¾ 2, the following inductive
boundary linear operator RG,k,n on H4n(0,1) as follows

Definition 5.2.2. Let (ϕk,λk)k∈N∗ be any pair that solves (5.2.2) and let αk be the constant in
(5.2.3). We define, for any n ∈ N∗ and any k ¾ 2,

RG,k,n(µ) =
n−1∑
p=0

(λk −λ1)
2p(−1)n−p−1

n−p−1∑
l=0

C l
n−p−1α

l
k

�
BG,k(µ

(4(n−p−1)−2l))
�

,µ ∈ H4n(0,1).

(5.2.20)

Remark 5.2.3. Note that this definition is valid for any boundary conditions that can be asso-
ciated to the Laplacian operator A0,Lap (in such a way that the corresponding elliptic problem is
well-posed in a suitable Sobolev space for its corresponding variational form).

Remark 5.2.4. Observe that the operatorRG,k,n involves only derivatives of µ (as well as deriv-
atives of the eigenfunctions ϕk and ϕ1) at the boundaries of the interval (0,1). This is the reason
why we called it boundary operator with respect to µ.

We denote by d·e : R → Z the function that associates to every real number x the smallest
integer greater or equal to x .

Theorem 5.2.5. Let (ϕk,λk)k∈N∗ be any pair that solves (5.2.2) and αk be defined by (5.2.3).
For any function µ ∈ H4n(0, 1), for any n ∈ N∗ and any k ¾ 2, we have the following inductive
formulas:
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(i)

(λk −λ1)
2n

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

T n
k (µ)(x)ϕ1(x)ϕk(x)d x

+
n−1∑
p=0

(λk −λ1)
2p
�
BG,k(T

n−p−1
k (µ))

�
,

(5.2.21)

where T n
k (µ) = (Tk ◦ · · · ◦ Tk)︸ ︷︷ ︸

n

(µ) and T 0
k (µ) = Id,

(ii)

T p
k (µ) = (−1)p

p∑
l=0

C l
pα

l
kµ
(4p−2l), ∀ p ∈ N∗, (5.2.22)

where the notation C l
p stands for the binomial coefficient C l

p =
�p

l

�
= p!

l!(p−l)! , for all 0 ≤
l ≤ p,

(iii)

(λk −λ1)
2n

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =(−1)n
n∑

l=0

C l
nα

l
k

∫ 1

0

µ(4n−2l)(x)ϕ1(x)ϕk(x)d x

+RG,k,n(µ),
(5.2.23)

where for any function µ ∈ H4n(0,1), any n ∈ N∗ and any k ¾ 2, the following identity

RG,k,n(µ) =
2(n−1)∑

r=0

BG,k(µ
(2r))

min(r,n−1)∑

j=d r
2 e
(−1) jC r− j

j α
2 j−r
k (λk −λ1)

2(n− j−1) (5.2.24)

holds.

Proof. (i) We proceed by induction on the index n ∈ N∗. For n = 1, we have proved the
validity of formula (5.2.4) in Theorem 5.2.1. Suppose (5.2.21) holds true up to index
n. We shall prove that it also holds for n+ 1.

Consider equation (5.2.21) and multiply it by (λk −λ1)2:

(λk −λ1)
2(n+1)

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =(λk −λ1)
2

∫ 1

0

T n
k (µ)(x)ϕ1(x)ϕk(x)d x

+
n−1∑
p=0

(λk −λ1)
2(p+1)

�
BG,k(T

n−p−1
k (µ))

�
.

Then, for the integral term on the right-hand side, we use the identity (5.2.4) applied
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to the function T n
k (µ) and we obtain

(λk −λ1)
2(n+1)

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

Tk(T
n
k (µ))(x)ϕ1(x)ϕk(x)d x + BG,k(T

n
k (µ))

+
n−1∑
p=0

(λk −λ1)
2(p+1)

�
BG,k(T

n−p−1
k (µ))

�

=

∫ 1

0

T n+1
k (µ)(x)ϕ1(x)ϕk(x)d x + BG,k(T

n
k (µ))

+
n∑

p=1

(λk −λ1)
2p
�
BG,k(T

n−p
k (µ))

�

=

∫ 1

0

T n+1
k (µ)(x)ϕ1(x)ϕk(x)d x

+
n∑

p=0

(λk −λ1)
2p
�
BG,k(T

(n+1)−p−1
k (µ))

�
,

which is exactly equation (5.2.21) with index n+1. This concludes the induction argu-
ment.

(ii) To prove formula (5.2.22), we use again an induction argument on the index p ∈ N∗. If
p = 1 we have

Tk(µ) = (−1)
1∑

l=0

C l
1α

l
kµ
(4−2l)

= −µ(4) −αkµ
′′

(5.2.25)

that is the definition of the operator Tk. We suppose that (5.2.22) holds till the index p
and we prove it for p+ 1:

Tk(T
p
k (µ)) = Tk

�
(−1)p

p∑
l=0

C l
pα

l
kµ
(4p−2l)

�

= (−1)p
p∑

l=0

C l
pα

l
k Tk(µ

(4p−2l))

= (−1)p
p∑

l=0

C l
pα

l
k(−µ(4p−2l+4) −αkµ

(4p−2l+2))

= (−1)p+1
p+1∑
l=0

C l
p+1α

l
kµ
(4(p+1)−2l),

(5.2.26)

where we used the relation for the binomial coefficients C l
p + C l−1

p = C l
p+1. Hence

(5.2.22) also holds for p+1. This concludes the induction argument to prove (5.2.22).

We deduce the inductive formula (5.2.23) using (5.2.22) in (5.2.21) together with the
linearity of the operators T n

k and BG,k.

(iii) We now prove (5.2.24) as follows. We make the change of index r = 2(n− p−1)− l in
the second sum of (5.2.20) defining RG,k,n(µ). This gives

RG,k,n(µ) :=
n−1∑
p=0

(λk −λ1)
2p(−1)n−p−1

2(n−p−1)∑
r=n−p−1

C2(n−p−1)−r
n−p−1 α

2(n−p−1)−r
k BG,k(µ

(2r)).
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Then, we perform another change of indices, replacing p by j = n− p− 1. We obtain

RG,k,n(µ) :=
n−1∑
j=0

(λk −λ1)
2(n− j−1)(−1) j

2 j∑
r= j

C2 j−r
j α

2 j−r
k BG,k(µ

(2r)). (5.2.27)

We can rewrite (5.2.27) as

RG,k,n(µ) =
n−1∑
j=0

βk, j

2 j∑
r= j

γk, j,rσk,r , (5.2.28)

with
βk, j = (λk −λ1)2(n− j−1)(−1) j

γk,r, j = C2 j−r
j α

2 j−r
k

σk,r = BG,k(µ(2r)).

Therefore, we have

n−1∑
j=0

βk, j

2 j∑
r= j

γk, j,rσk,r =
n−1∑
j=0

2 j∑
r= j

βk, jγk, j,rσk,r

=
2(n−1)∑

r=0

min(r,n−1)∑

j=d r
2 e
βk, jγk, j,rσk,r

=
2(n−1)∑

r=0

σk,r

min(r,n−1)∑

j=d r
2 e
γk, j,rβk, j .

We conclude thanks to the equality C2 j−r
j = C r− j

j :

C2 j−r
j =

j!
(2 j − r)!( j − r)!

, C r− j
j =

j!
(r − j)!(2 j − r)!

.

From now on we denote byPq(R) the space of real valued polynomials of degree q on R, and
by P (R) the space of real valued polynomials on R.

Definition 5.2.6. We define the function Rr(·) : R→ R as

Rr(α) :=
r∑

j=d r
2 e
(−1) jα jC r− j

j , ∀ α ∈ R. (5.2.29)

Corollary 5.2.7. Let µ ∈ Pq(R) and n be such that 2n > q. Then, for any k ¾ 2, the following
inductive formula holds

(λk −λ1)
2n

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =
n−1∑
r=0

BG,k(µ
(2r))
(λk −λ1)2(n−1)

αr
k

Rr

��
αk

λk −λ1

�2
�

(5.2.30)

where (ϕk,λk), for all k ∈ N∗, are the eigenfunctions and eigenvalues associated to A0,Lap and
αk is given by (5.2.3). Moreover, the following inequality holds

�
αk

λk −λ1

�2

> 4, ∀ k ¾ 2. (5.2.31)
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Proof. We use the inductive formula (5.2.23) for n > 2q. Looking at the first term on the
right-hand side of (5.2.23), we observe that the involved derivative of µ with the lowest
order is µ(2n). Thus, since µ is a polynomial of degree q, with q < 2n, then all the terms of∑n

l=0

∫ 1

0 µ
(4n−2l)(x)ϕ1(x)ϕk(x)d x vanish. The second term on the right hand side isRG,k,n(µ)

which is given by (5.2.24). Thus for r ¾ n, we have 2r ¾ 2n > q, so that µ(2r) ≡ 0 and
BG,k(µ(2r)) = 0 for all r ∈ [n, 2(n− 1)]. Using this property in (5.2.24), we have

RG,k,n(µ) =
n−1∑
r=0

BG,k(µ
(2r))

r∑

j=d r
2 e
(−1) jC r− j

j α
2 j−r
k (λk −λ1)

2(n− j−1). (5.2.32)

Therefore, we can easily conclude by using the definition of Rr and αk.

We concentrate now on the operator Rr(α), with α > 4 arbitrary. We shall prove that it has a
precise sign depending on the parity of r.
If r is odd, r = 2m+ 1, m≥ 0, we have

R2m+1(α) =
2m+1∑
j=m+1

(−α) jC2m+1− j
j ,

and we perform the following change of variable s = j − (m+ 1) obtaining

R2m+1(α) =
m∑

s=0

(−α)s+m+1Cm−s
s+m+1. (5.2.33)

If r is even, r = 2m, m≥ 0, the expression of Rr is

R2m(α) =
2m∑
j=m

(−α) jC2m− j
j ,

and if we introduce the variable s = j −m, we get

R2m(α) =
m∑

s=0

(−α)s+mCm−s
s+m . (5.2.34)

In the following Lemma we prove a relation between three consecutive elements of the se-
quence {Rr(α)}r , where α > 0 is fixed.

Lemma 5.2.8. Let α > 0. Then, the sequence {Rr(α)}r , with Rr(·) defined by (5.2.29), satisfies

R2m(α) = −α (R2m−2(α) + R2m−1(α)) , (5.2.35)

and
R2m+1(α) = −α(R2m−1(α) + R2m(α)) (5.2.36)

for any m≥ 1.

Proof. We can compute the expression of R2m+2 using (5.2.34):

R2m+2(α) = (−α)m+1
m+1∑
s=0

(−α)sCm+1−s
m+1+s . (5.2.37)
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Moreover using in (5.2.37) Pascal’s formula for the binomial coefficients, that is: C k
n +C k+1

n =
C k+1

n+1 for all n≥ 0 and for all k = 0, . . . , n− 1, we have

R2m+2(α) = (−α)m+1

�
1+

m∑
s=1

(−α)sCm+1−s
m+1+s + (−α)m+1

�

= (−α)m+1

�
1+

m∑
s=1

(−α)s(Cm−s
m+s + Cm−s+1

m+s ) + (−α)m+1

�

=

�
(−α)m+1 + (−α)m+1

m∑
s=1

(−α)sCm−s
m+s

�
+ (−α)m+1

�
m∑

s=1

(−α)sCm−s+1
m+s + (−α)m+1

�

= (−α)m+1
m∑

s=0

(−α)sCm−s
m+s + (−α)m+1

�
m−1∑
s=0

(−α)s+1Cm−s
m+s+1 + (−α)m+1

�

= (−α)m+1
m∑

s=0

(−α)sCm−s
m+s + (−α)m+2

m∑
s=0

(−α)sCm−s
m+s+1

= −αR2m(α)−αR2m+1(α),

and therefore
R2m+2(α) = −α(R2m(α) + R2m+1(α)).

Thus, since we have prove the relation for Rr when r is even, we can recover formula (5.2.35)

R2m(α) = −α (R2m−2(α) + R2m−1(α)) .

Let us show what relation Rr satisfies for r odd:

R2m+1(α) = (−α)m+1
m∑

s=0

(−α)sCm−s
m+s+1

= (−α)m+1

�
m−1∑
s=0

(−α)sCm−s
m+s+1 + (−α)m

�

= (−α)m+1

�
m−1∑
s=0

(−α)s �Cm−s−1
m+s + Cm−s

m+s

�
+ (−α)m

�

= (−α)m+1
m−1∑
s=0

(−α)sCm−s−1
m+s + (−α)m+1

�
m−1∑
s=0

(−α)sCm−s
m+s + (−α)m

�

= −αR2m−1(α)−αR2m(α)

that implies formula (5.2.36).

Lemma 5.2.9. Let Rr(·) be defined by (5.2.29). Then, it holds that

R2m(α)> 0, ∀α > 4, ∀m≥ 0, (5.2.38)

R2m+1(α)< 0, ∀α > 4, ∀m≥ 0. (5.2.39)

Proof. We define the following vectors

Um(α) =

�
R2m(α)

R2m+1(α)

�
, Um−1(α) =

�
R2m−2(α)
R2m−1(α)

�
(5.2.40)
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for all m≥ 1, and thanks to (5.2.35) and (5.2.36) we can write the following relation
�

1 0
α 1

��
R2m(α)

R2m+1(α)

�
= −α

�
1 1
0 1

��
R2m−2(α)
R2m−1(α)

�
. (5.2.41)

We set

Mα :=

�
1 0
α 1

�
, N :=

�
1 1
0 1

�

then, (5.2.41) becomes

MαUm(α) = −αNUm−1(α), ∀m≥ 1. (5.2.42)

Observe that det(Mα) = 1 for all α and therefore Mα is invertible and we can rewrite (5.2.42)
as follows

Um(α) = −αM−1
α NUm−1(α). (5.2.43)

Let us set Aα := −αĈα with Ĉα := M−1
α N =

�
1 1
−α 1−α

�
. Hence, we have Um(α) =

AαUm−1(α) for all m≥ 1 and it holds that

Um(α) = AαUm−1(α) = Aα(AαUm−2(α)) = · · ·= Am
αU0(α) = (−α)mĈm

α U0(α) (5.2.44)

where by definition of Rr(α), we have

U0(α) =

�
R0(α)
R1(α)

�
=

�
1
−α

�
(5.2.45)

To compute Ĉm
α for any m ∈ N, we prove below that we can diagonale the matrix Ĉα. For this,

we look for its eigenvalues. Its characteristic polynomialΠ is given byΠ(λ) = λ2+(α−2)λ+1
for all λ ∈ R. The eigenvalues of Ĉα are real and distinct if and only if

θα := α(α− 4)

is such that θα > 0. This holds in particular for all α > 4.

We recall that, for our analysis, we are interested in studying Rr(α) for α =
�

αk
λk−λ1

�2
for all

k ≥ 2, and where the coefficients αk are given by (5.2.3). Thanks to the inequality (5.2.31)

proved in Corollary 5.2.7, we have
�

αk
λk−λ1

�2
> 4 for all k ≥ 2. This implies that we only need

to consider the matrices Ĉα for parameters α > 4. For all these cases, the matrices Ĉα have
thus always two distinct real eigenvalues given by

λ+
Ĉα
=

2−α+pθα
2

, λ−
Ĉα
=

2−α−pθα
2

(5.2.46)

and corresponding eigenvectors given by

f +
Ĉα
=

�
1

λ+
Ĉα
− 1

�
, f −

Ĉα
=

�
1

λ−
Ĉα
− 1

�
. (5.2.47)

The diagonalization of the matrix Ĉα is given by Ĉα = QαDαQ
−1
α where Dα is the diagonal

matrix formed by the eigenvalues, and Qα is the matrix of the eigenvectors f +
Ĉα

and f −
Ĉα

, so
that
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Dα =

�
λ+

Ĉα
0

0 λ−
Ĉα

�
, Qα =

�
1 1

λ+
Ĉα
− 1 λ−

Ĉα
− 1

�
,

We can easily get that

Q−1
α = −

1p
θα

�
λ−

Ĉα
− 1 −1

−(λ+
Ĉα
− 1) 1

�

Thus, we have for any m ∈ N Ĉm
α =QαDm

α Q−1
α . This implies that for or any m ∈ N, we have

Ĉm
α =

1p
θα

�
(λ+

Ĉα
)m(1−λ−

Ĉα
) + (λ−

Ĉα
)m(λ+

Ĉα
− 1) (λ+

Ĉα
)m − (λ−

Ĉα
)m

−(λ+
Ĉα
− 1)(λ−

Ĉα
− 1)((λ+

Ĉα
)m − (λ−

Ĉα
)m) (λ+

Ĉα
)m(λ+

Ĉα
− 1)− (λ−

Ĉα
)m(λ−

Ĉα
− 1)

�
.

(5.2.48)
It is possible to simplify the above expression of Ĉm

α . Observing that

λ+
Ĉα
− 1=

−α+pθα
2

, λ−
Ĉα
− 1=

−α−pθα
2

we have (λ+
Ĉα
− 1)(λ−

Ĉα
− 1) = α. Moreover, we also have

λ+
Ĉα
λ−

Ĉα
= 1.

Thus, we obtain

(λ−
Ĉα
)m(λ+

Ĉα
− 1)− (λ+

Ĉα
)m(λ−

Ĉα
− 1) = (λ−

Ĉα
)m−1(λ−

Ĉα
λ+

Ĉα
−λ−

Ĉα
)− (λ+

Ĉα
)m−1(λ+

Ĉα
λ−

Ĉα
−λ+

Ĉα
)

= (λ−
Ĉα
)m−1(1−λ−

Ĉα
)− (λ+

Ĉα
)m−1(1−λ+

Ĉα
).

Thus, (5.2.48) is equivalent to

Ĉm
α =

−1p
θα

�
(λ+

Ĉα
)m−1(1−λ+

Ĉα
)− (λ−

Ĉα
)m−1(1−λ−

Ĉα
) (λ−

Ĉα
)m − (λ+

Ĉα
)m

α((λ+
Ĉα
)m − (λ−

Ĉα
)m) (λ−

Ĉα
)m(λ−

Ĉα
− 1)− (λ+

Ĉα
)m(λ+

Ĉα
− 1)

�
.

(5.2.49)
So, we can rewrite Um(α) as

Um(α) =
−(−α)mp

θα
Ĉm
α

�
1
−α

�

=
−(−α)mp

θα

�
(λ+

Ĉα
)m−1(1−λ+

Ĉα
)− (λ−

Ĉα
)m−1(1−λ−

Ĉα
)−α((λ−

Ĉα
)m − (λ+

Ĉα
)m)

α((λ+
Ĉα
)m+1 − (λ−

Ĉα
)m+1)

�
.

(5.2.50)

Furthermore, since both the eigenvalues are strictly negative, we can use that

λi
Ĉα
= −|λi

Ĉα
|, i = +,−

inside (5.2.50), obtaining

Um(α) =
−(−α)m(−1)m−1

p
θα

� |λ+
Ĉα
|m−1(1+ |λ+

Ĉα
|)− |λ−

Ĉα
|m−1(1+ |λ−

Ĉα
|) +α(|λ−

Ĉα
|m − |λ+

Ĉα
|m)

α(|λ+
Ĉα
|m+1 − |λ−

Ĉα
|m+1)

�

=
αm

p
θα

� |λ+
Ĉα
|m−1(1+ |λ+

Ĉα
| −α|λ+

Ĉα
|)− |λ−

Ĉα
|m−1(1+ |λ−

Ĉα
| −α|λ−

Ĉα
|)

α(|λ+
Ĉα
|m+1 − |λ−

Ĉα
|m+1)

�
.

(5.2.51)
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Now, we introduce the function fm(x) = xm−1(1 + x − αx), m ≥ 1, α > 4, and we observe
that (5.2.51) is equivalent to the following formula

Um(α) =

�
R2m(α)

R2m+1(α)

�
=
αm

p
θα

�
fm(|λ+Ĉα |)− fm(|λ−Ĉα |)
α(|λ+

Ĉα
|m+1 − |λ−

Ĉα
|m+1)

�
. (5.2.52)

To deduce the sign of the first component of Um(α), we study the variation of fm:

f ′m(x) = (m− 1)xm−2 +mxm−1(1−α).

Thus, fm has a maximum at x = m−1
m(α−1) . Moreover, since 0 ≤ m−1

m < 1 and α > 4, we deduce

that 0≤ m−1
m(α−1) <

1
α−1 . We claim that

0≤ m− 1
m(α− 1)

<
1

α− 1
< |λ+

Ĉα
|< |λ−

Ĉα
|, ∀m≥ 1, ∀α > 4. (5.2.53)

Indeed, it is easy to check

1
α− 1

<
α− 2−pθα

2
, ∀α > 4.

Moreover,

|λ+
Ĉα
|= α− 2−pθα

2
<
α− 2+

p
θα

2
= |λ−

Ĉα
|.

Hence, since fm is strictly decreasing in
�

m−1
m(α−1) ,+∞

�
, and thanks to the above inequalities,

we get that fm(|λ+Ĉα |)> fm(|λ−Ĉα |). Thus, we have

R2m(α) =
αm

p
θα

�
fm(|λ+Ĉα |)− fm(|λ+Ĉα |)

�
> 0, ∀m≥ 1, ∀α > 4,

R2m+1(α) =
αm+1

p
θα

�
|λ+

Ĉα
|m+1 − |λ−

Ĉα
|m+1

�
< 0, ∀m≥ 1, ∀α > 4.

(5.2.54)

Note that thanks to (5.2.45), we also have R0(α)> 0 and R1(α))< 0 for all α > 4.

5.3 Example of application with respect to the choice of bound-
ary conditions: Dirichlet-Robin boundary conditions

In this section we consider the Laplacian operator A0,Lap associated with mixed boundary
conditions of (DR) type. The eigenvalues and eigenfunctions are now precisely defined by
the spectral problem




−ϕ′′k (x) = λkϕk(x), x ∈ (0, 1),

ϕk(0) = 0, ϕk(1) +ϕk′(1) = 0,
(5.3.1)

for all k ∈ N∗, and are given by

λk = r2
k , ϕk(x) = ηk sin(rk x), (5.3.2)
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where rk are the positive solutions of

sin rk + rk cos rk = 0, (5.3.3)

and ηk > 0 are defined by

ηk =
p

2
rkq

r2
k + sin2 rk

, ∀ k ∈ N∗. (5.3.4)

Proposition 5.3.1. The following properties hold

rk ∈
�
π

2
+ (k− 1)π,

3π
4
+ (k− 1)π

�
,∀ k ∈ N∗, (5.3.5)

and
sin rk = (−1)k−1| sin rk|= (−1)k−1 rkq

r2
k + 1

. (5.3.6)

Proof. Thanks to (5.3.3), we know that cos rk 6= 0 for all k ∈ N∗, thus (5.3.3) is equivalent to
the equation tan(rk) + rk = 0 for all k ∈ N∗. Observing that tan

�
3π
4 + (k− 1)π

�
+ 3π

4 + (k −
1)π = −1+ 3π

4 + (k − 1)π > 0 for all k ∈ N∗, we easily deduce (5.3.5). On the other hand,
using once again (5.3.3), we obtain

sin2 rk = r2
k cos2 rk = r2

k (1− sin2 rk),

so that
| sin rk|=

rkq
r2

k + 1
. (5.3.7)

We deduce (5.3.6) thanks to (5.3.5).

We set

γk :=
1q

r2
1 + 1

q
r2

k + 1
, ∀ k ¾ 1. (5.3.8)

From Theorem 5.2.1, we deduce the following formula for the Fourier coefficients of µϕ1.

Corollary 5.3.2. Let (ϕk,λk)k∈N∗ be any pair that solves (5.3.1). Then, it holds that

BG,k(µ) = Bk(µ) + Ck(µ), ∀µ ∈ H4(0,1), ∀ k ¾ 2, (5.3.9)

where the linear operator Tk is defined in (5.2.5) and the linear operators Bk : H4(0, 1) 7→ R
and Ck : H4(0, 1) 7→ R are respectively defined for all k ¾ 2 by

Bk(µ) = η1ηk r1rk(−1)k−1γk

�
(λk +λ1 + 2)µ′(1) + 2µ′′(1) +µ(3)(1)

�
, ∀µ ∈ H4(0,1).

(5.3.10)
Ck(µ) = −2η1ηk r1rkµ′(0), ∀µ ∈ H4(0,1). (5.3.11)

Moreover, the following identity holds

(λk −λ1)
2

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x =

∫ 1

0

Tk(µ)(x)ϕ1(x)ϕk(x)d x + Bk(µ) + Ck(µ). (5.3.12)

Proof. We use identity (5.2.4) proved in Theorem 2.1. Thanks to the (DR) boundary con-
ditions given in (5.3.1) satisfied by ϕk and the expression of the eigenfunctions (5.3.2), we
easily deduce that (5.3.9) holds. By using the expression (5.3.9) for BG,k in (5.2.4), we obtain
(5.3.12).
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Proposition 5.3.3. For any function µ ∈ H4n(0,1) and for any n ∈ N∗, and any k ¾ 2, we have

(λk−λ1)
2n

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x = (−1)n
n∑

l=0

C l
nα

l
k

∫ 1

0

µ(4n−2l)(x)ϕ1(x)ϕk(x)d x+η1ηk r1rk Dk,n(µ),

(5.3.13)
where Dk,n(·) is the linear operator defined on H4n(0, 1) by

Dk,n(µ) =
2(n−1)∑

r=0

�
(−1)k−1γk

�
(λk +λ1 + 2)µ(2r+1)(1) + 2µ(2r+2)(1) +µ(2r+3)(1)

�− 2µ(2r+1)(0)
�·

·
min(r,n−1)∑

j=d r
2 e
(−1) jC r− j

j α
2 j−r
k (λk −λ1)

2(n− j−1),

(5.3.14)

where γk is defined in (5.3.8).

Proof. We use the formulas (5.2.23) and (5.2.24) of Theorem 5.2.5 together with the formulas
(5.3.9), (5.3.10) and (5.3.11). This concludes the proof.

From now on, we drop the argument µ in Dk,n to shorten the notation.
We consider the even and odd terms with respect to the index k of Dk,n and we define

Ai,n := −D2i,n

=
2(n−1)∑

r=0

�
γ2i

�
(λ2i +λ1 + 2)µ(2r+1)(1) + 2µ(2r+2)(1) +µ(2r+3)(1)

�
+ 2µ(2r+1)(0)

� ·

·
min(r,n−1)∑

j=d r
2 e
(−1) jC r− j

j α
2 j−r
2i (λ2i −λ1)

2(n− j−1),

(5.3.15)

for all i ≥ 1, and

Bi,n := D2i+1,n

=
2(n−1)∑

r=0

�
γ2i+1

�
(λ2i+1 +λ1 + 2)µ(2r+1)(1) + 2µ(2r+2)(1) +µ(2r+3)(1)

�− 2µ(2r+1)(0)
� ·

·
min(r,n−1)∑

j=d r
2 e
(−1) jC r− j

j α
2 j−r
2i+1(λ2i+1 −λ1)

2(n− j−1),

(5.3.16)

for all i ≥ 1.

Lemma 5.3.4. For any µ ∈ Pq(R), and any n ∈ N∗ such that 2n> q, it holds that

Ai,n =
n−1∑
r=0

�
γ2i

�
(λ2i +λ1 + 2)µ(2r+1)(1) + 2µ(2r+2)(1) +µ(2r+3)(1)

�
+ 2µ(2r+1)(0)

� ·

· (λ2i −λ1)2(n−1)

αr
2i

Rr

��
α2i

(λ2i −λ1)

�2
�

,

(5.3.17)
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for all i ≥ 1, and

Bi,n =
n−1∑
r=0

�
γ2i+1

�
(λ2i+1 +λ1 + 2)µ(2r+1)(1) + 2µ(2r+2)(1) +µ(2r+3)(1)

�− 2µ(2r+1)(0)
� ·

· (λ2i+1 −λ1)2(n−1)

αr
2i+1

Rr

��
α2i+1

(λ2i+1 −λ1)

�2
�

.

(5.3.18)

for all i ≥ 1.

Proof. We apply the formula (5.2.30) of Corollary 5.2.7 for k = 2i and k = 2i + 1.

Since we have proved in Lemma 5.2.9 that the sign of Rr(·) depends only on the parity of r,
we are able to give sufficient conditions to build a polynomial µ(·) that satisfies 〈µϕ1,ϕk〉 6= 0,
∀ k > 1.
For any q ∈ N∗, we now choose the smallest n so that the assumption 2n> q of Lemma 5.3.4
holds, as follows

Definition 5.3.5.

if q is even, q = 2l, then we set n := q
2 + 1= l + 1,

if q is odd, q = 2l + 1, then we set n := q−1
2 + 1= l + 1.

(5.3.19)

This choice is now fixed in all the sequel. We set

ar := µ(2r+3)(1) + 2µ(2r+2)(1), r = 0, 1, . . . , l − 1

br := µ(2r+1)(1), r = 0, 1, . . . , l − 1 ( r = 0, 1, . . . , l if q is odd),

cr := 2µ(2r+1)(0), r = 0, 1, . . . , l − 1 ( r = 0, 1, . . . , l if q is odd),

(5.3.20)

and define the function

gr(x) :=
1p

x + 1
(ar + (x +λ1 + 2)br) , ∀ x ∈ (λ1,+∞). (5.3.21)

Remark 5.3.6. Note that if q = 2l and defining n as in Definition 5.3.5, then it is still meaningful
to write an−1, bn−1 and cn−1 (or similarly al , bl and cl) but one has in this case an−1 = bn−1 =
cn−1 = 0 (or similarly al = bl = cl = 0). We may use the upper bound n−1 (or similarly l) even
in the case q = 2l for shortening some statements as for instance the next Corollary.

Corollary 5.3.7. For any µ ∈ Pq(R), choosing n with respect to q as in Definition 5.3.5, it holds
that for all i ≥ 1

Ai,n =
n−1∑
r=0

�
1p
λ1 + 1

gr(λ2i) + cr

�
(λ2i −λ1)2(n−1)

αr
2i

Rr (τ2i) , (5.3.22)

and

Bi,n =
n−1∑
r=0

�
1p
λ1 + 1

gr(λ2i+1)− cr

�
(λ2i+1 −λ1)2(n−1)

αr
2i+1

Rr (τ2i+1) , (5.3.23)
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where for all k ≥ 2

τk := 4
�
λk +λ1

λk −λ1

�2

, (5.3.24)

and αk is given in (5.2.3). Moreover if µ is such that

Ai,n 6= 0, Bi,n 6= 0, ∀ i ∈ N∗. (5.3.25)

then ∫ 1

0

µ(x)ϕ1(x)ϕk(x) 6= 0,∀ k ≥ 2. (5.3.26)

Our aim is to give an algorithm to build an infinite set of polynomials µ ∈ Pq(R) such that,
choosing n as in Definition 5.3.5, we have (5.3.25). Notice that such polynomials are com-
pletely determined by the knowledge of µ(k) for all k ∈ {0, . . . , q}, thanks to the (finite) Taylor
expansion of µ at 1:

µ(x) =
q∑

k=0

µ(k)(1)
k!

(x − 1)k.

We shall prove that knowing the coefficients µ(k)(1), k = 1, . . . , q is equivalent to knowing the
coefficients (ar) and (br) for a suitable range of indices r (depending on the parity of q, see
(5.3.19), (5.3.20)).

Remark 5.3.8. Observe that knowing the coefficients µ(k)(1), k = 1, . . . , q determines the poly-
nomial µ up to a constant, namely µ(1) is completely free at this stage.

For the sake of clarity, let us introduce the linear operator P0 defined on the set P (R) by

P0(µ) = µ(1), ∀µ ∈ P (R). (5.3.27)

We set
Q0 = Id − P0, E0 = P0P (R), F0 =Q0P (R), (5.3.28)

and for any q ∈ N∗
E0,q = P0Pq(R), F0,q =Q0Pq(R), (5.3.29)

where Id denotes the identity operator on P (R).
Lemma 5.3.9. Let q ∈ N∗ be given. We have the following properties

(i) If q is an even integer, that is q = 2l with l ≥ 1, then

for all ((ar)0≤r≤l−1, (br)0≤r≤l−1), there exists a unique µ ∈ F0,2l such that for all r ∈ {0, . . . , l−1}




ar := µ(2r+3)(1) + 2µ(2r+2)(1),

br := µ(2r+1)(1),

(5.3.30)

and µ is determined by the relations




µ(2r)(1) =
1
2
(ar−1 − br) , ∀ r ∈ {1, . . . , l − 1},

µ(2r+1)(1) = br , ∀ r ∈ {0, . . . , l − 1}.
(5.3.31)

Conversely,
�
µ(k)(1)

�
k=1,...,2l determines uniquely the coefficients ((ar)0≤r≤l−1, (br)0≤r≤l−1).
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(ii) If q is odd, that is q = 2l + 1 with l ≥ 0, then

for all ((ar)0≤r≤l−1, (br)0≤r≤l), there exists a unique µ ∈ F0,2l+1 determined by the relations





µ(2r)(1) =
1
2
(ar−1 − br) , ∀ r ∈ {1, . . . , l − 1},

µ(2r+1)(1) = br , ∀ r ∈ {0, . . . , l}.
(5.3.32)

Conversely,
�
µ(k)(1)

�
k=1,...,2l+1 determines uniquely the coefficients ((ar)0≤r≤l−1, (br)0≤r≤l),

thanks to (5.3.30).

Remark 5.3.10. Note that for q = 2l, the second relation in (5.3.30) for r = l is still meaningful,
since it can be written as bl = 0 even though we are only interested in coefficients (br)0≤r≤l−1).
This is due to the fact that µ is assumed to be a polynomial of degree 2l in that case. In a similar
way, for q = 2l+1, the first relation in (5.3.30) for r = l is still meaningful, since it can be
written as al = 0 even though we are only interested in coefficients (ar)0≤r≤l−1). This is due to
the fact that µ is assumed to be a polynomial of degree 2l + 1 in that case.

Proof. Let q ∈ N∗ be even, q = 2l. Then, the second relation in (5.3.30) implies that

µ(2r+1)(1) = br ,∀ r ∈ {0, . . . , l − 1}.

Choosing r = l − 1 in the first relation of (5.3.30) and since µ is a polynomial of degree 2l,
we have

µ(2l)(1) =
1
2

al−1.

Hence, changing r into r − 1 in the first relation of (5.3.30), we deduce that

µ(2r)(1) =
1
2
(ar−1 − br) ,∀ r ∈ {1, . . . , l − 1}.

Therefore, µ(k)(1), ∀ k = 1, . . . , 2l can be uniquely determined from the coefficients ((ar)0≤r≤l−1, (br)0≤r≤l−1).
Let q ∈ N∗ be odd, q = 2l + 1. Then, the second relation in (5.3.30) implies that

µ(2r+1)(1) = br , ∀ r ∈ {0, . . . , l}.

Hence, changing r into r − 1 in the first relation of (5.3.30), we deduce that

µ(2r)(1) =
1
2
(ar−1 − br) , ∀ r ∈ {1, . . . , l − 1}.

Namely, we recover everyµ(k)(1), k = 1, . . . , 2l+1 from the coefficients ((ar)0≤r≤l−1, (br)0≤r≤l).

Thus, in the sequel, instead of working directly on the coefficients
�
µ(k)(1)

�
k=1,...,q, we shall

determine sufficient conditions on ((ar), (br)) with the suitable range of indices r (depending
on the parity of q), which will ensure that

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x 6= 0, ∀ k ≥ 2.
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Remark 5.3.11. We observe that the coefficients cr = 2µ(2r+1)(0) can be completely determined
from (µ(k)(1))1≤k≤q since we have:

µ(k)(0) :=
q∑

i=k

µ(i)(1)
(i − k)!

(−1)i−k. (5.3.33)

Therefore, we can explicit the coefficients cr in terms of the coefficients ((ar), (br)) with the
suitable range of indices r (depending on the parity of q) as explained in the following Pro-
position.

Proposition 5.3.12. Let q = 2l with l ≥ 1, and ((ar)0≤r≤l−1, (br)0≤r≤l−1) be a given set of
coefficients. Then, we have

cr =
(l−1)−r∑

k=0

�
2(k+ 1)
(2k)!

br+k −
1

(2k+ 1)!
ar+k

�
, r = 0,1 . . . , l − 1, (5.3.34)

Let q = 2l + 1 with l ≥ 0, and ((ar)0≤r≤l−1, (br)0≤r≤l) be given. Then, we have

cr =
l−r∑
k=0

2(k+ 1)
(2k)!

br+k −
(l−1)−r∑

k=0

1
(2k+ 1)!

ar+k, r = 0,1, . . . , l, (5.3.35)

with the convention that
∑−1

k=0 ≡ 0.

Proof. Let q = 2l with l ≥ 1. We multiply by 2 (5.3.33) and set i = 2r + 1. On the left hand
side of the resulting equation we have cr , on the right hand side we separate the sum between
odd and even indices, and use (5.3.31). We easily get (5.3.34). For q = 2l + 1, we proceed
in a similar way to get (5.3.35) using (5.3.32).

From Lemma 5.2.9, we know the sign of Rr(τk) for all k ≥ 2. Hence, looking at formulas
(5.3.22) and (5.3.23), we find out that a sufficient condition to guarantee the non-vanishing
property of Ai,n, Bi,n will come from the choice of the sign of the factors in (5.3.22) and
(5.3.23), respectively, where n is chosen with respect to q as in Definition 5.3.5.
Assume that either





1p
λ1+1

gr(λ2i) + cr ≥ 0, ∀ i ≥ 1, ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,

∃ r∗ even , r∗ ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
gr∗(λ2i) + cr∗ > 0, ∀ i ≥ 1

and

1p
λ1+1

gr(λ2i) + cr ≤ 0, ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,

∃ r∗∗ odd , r∗∗ ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
gr∗∗(λ2i) + cr∗∗ < 0, ∀ i ≥ 1

(5.3.36)
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or that





1p
λ1+1

gr(λ2i) + cr ≤ 0, ∀ i ≥ 1, ∀ r even , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
,

∃ r∗ even , r∗ ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
gr∗(λ2i) + cr∗ < 0, ∀ i ≥ 1

and

1p
λ1+1

gr(λ2i) + cr ≥ 0, ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,

∃ r∗∗ odd , r∗∗ ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
gr∗∗(λ2i) + cr∗∗ > 0, ∀ i ≥ 1.

(5.3.37)
Defining n with respect to q as in Definition 5.3.5, then, we observe that

(5.3.36)⇒ Ai,n > 0, ∀ i ≥ 1,

(5.3.37)⇒ Ai,n < 0, ∀ i ≥ 1.

Furthermore, assume that either





1p
λ1+1

gr(λ2i+1)− cr ≥ 0, ∀ i ≥ 1, ∀ r even , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
,

∃ r̂∗ even , r̂∗ ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
g r̂∗(λ2i+1)− cr̂∗ > 0, ∀ i ≥ 1

and

1p
λ1+1

gr(λ2i+1)− cr ≤ 0, ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
,

∃ r̂∗∗ odd , r̂∗∗ ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
g r̂∗∗(λ2i+1)− cr̂∗∗ < 0, ∀ i ≥ 1

(5.3.38)
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or that




1p
λ1+1

gr(λ2i+1)− cr ≤ 0, ∀ i ≥ 1, ∀ r even , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
,

∃ r̂∗ even , r̂∗ ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
g r̂∗(λ2i+1)− cr̂∗ < 0, ∀ i ≥ 1

and

1p
λ1+1

gr(λ2i+1)− cr ≥ 0, ∀ i ≥ 1, ∀ r odd , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
,

∃ r̂∗∗ odd , r̂∗∗ ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
: 1p

λ1+1
g r̂∗∗(λ2i+1)− cr̂∗∗ > 0, ∀ i ≥ 1.

(5.3.39)
Defining n with respect to q as in Definition 5.3.5, then, we note that

(5.3.38)⇒ Bi,n > 0, ∀ i ≥ 1,

(5.3.39)⇒ Bi,n < 0, ∀ i ≥ 1.

Hence, keeping in mind that n is defined with respect to q as in Definition 5.3.5, we have to
check that there exist coefficients (ar , br , cr) such that

Ai,n > 0 and Bi,n > 0, ∀ i ≥ 1, (5.3.40)

or
Ai,n > 0 and Bi,n < 0, ∀ i ≥ 1, (5.3.41)

or
Ai,n < 0 and Bi,n > 0, ∀ i ≥ 1, (5.3.42)

or
Ai,n < 0 and Bi,n < 0, ∀ i ≥ 1. (5.3.43)

If one of the options (5.3.40), (5.3.41), (5.3.42) or (5.3.43) holds, then (5.3.25) is verified
and it implies

∫ 1

0 µ(x)ϕ1(x)ϕk(x)d x 6= 0, ∀ k ≥ 2. For the sake of brevity, we will analyze in
detail only choice (5.3.40), which holds true as soon as (5.3.36) and (5.3.38) are satisfied.
For this purpose, we introduce the following definitions:

• we say that property (P1,r) holds if

− gr(λ2i)p
λ1 + 1

≤ cr ≤
gr(λ2i+1)p
λ1 + 1

, ∀i ≥ 1, (5.3.44)

• we say that property (P2,r) holds if

− gr(λ2i)p
λ1 + 1

< cr , ∀i ≥ 1, (5.3.45)
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• we say that property (P3,r) holds if

cr <
gr(λ2i+1)p
λ1 + 1

, ∀i ≥ 1, (5.3.46)

• we say that property (Q1,r) holds if

gr(λ2i+1)p
λ1 + 1

≤ cr ≤ −
gr(λ2i)p
λ1 + 1

, ∀i ≥ 1, (5.3.47)

• we say that property (Q2,r) holds if

cr < −
gr(λ2i)p
λ1 + 1

, ∀i ≥ 1, (5.3.48)

• we say that property (Q3,r) holds if

gr(λ2i+1)p
λ1 + 1

< cr , ∀i ≥ 1. (5.3.49)

Assume that (P1,r) holds for every r even, r ∈ {0,1, . . . , l −1} if q = 2l and r ∈ {0,1, . . . , l} if
q = 2l + 1, and that there exist r∗, r̂∗ even, where r∗, r̂∗ are in {0, 1, . . . , l − 1} if q = 2l and
are in {0,1, . . . , l} if q = 2l + 1, such that (P2,r∗) and (P3,r̂∗) hold respectively, then the first
properties in (5.3.36) and (5.3.38) are satisfied.
Moreover, if (Q1,r) is fulfilled for every r odd, r ∈ {0, 1, . . . , l−1} if q = 2l and r ∈ {0, 1, . . . , l}
if q = 2l+1, and there exist r∗∗, r̂∗∗ odd, where r∗∗, r̂∗∗ are in {0, 1, . . . , l−1} if q = 2l and are
in {0,1, . . . , l} if q = 2l + 1, such that (Q2,r∗∗) and (Q3,r̂∗∗) hold respectively, then the second
properties in (5.3.36) and (5.3.38) are satisfied.
For the sake of simplicity and shortness, we will give conditions on (ar , br) (with a suitable
range of indices r) to satisfy (5.3.44) and (5.3.47) with strict inequalities. Thus, to guarantee
that Ai,n > 0 and Bi,n > 0, ∀ i ≥ 0 (where n and l are defined with respect to q in Definition
5.3.5), we should give sufficient conditions on (ar , br) to fulfill




− gr (λ2i)p
λ1+1

< cr <
gr (λ2i+1)p
λ1+1

, ∀ i ≥ 1, ∀r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,

gr (λ2i+1)p
λ1+1

< cr < − gr (λ2i)p
λ1+1

, ∀ i ≥ 1, ∀r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
.

(5.3.50)

For every k ≥ 1 we define
µk := λk + 1. (5.3.51)

Set
Ki := µ1 +

p
µ2i
p
µ2i+1,∀ i ≥ 1. (5.3.52)

Lemma 5.3.13. A necessary condition for (5.3.50) to hold is




ar > −Ki br , ∀ i ≥ 1, ∀ r even , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,

ar < −Ki br , ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
.

(5.3.53)
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Proof. From (5.3.50), the following compatibility conditions must hold




gr(λ2i) + gr(λ2i+1)> 0, ∀ i ≥ 1, ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,

gr(λ2i) + gr(λ2i+1)< 0, ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
.

(5.3.54)
Recalling the definition (5.3.21) of gr(·), we have

gr(λ2i) + gr(λ2i+1) = ar

�
1p
µ2i
+

1p
µ2i+1

�
+ br

�
µ2i +µ1p
µ2i

+
µ2i+1 +µ1p
µ2i+1

�

=

�
1p
µ2i
+

1p
µ2i+1

� 
ar +

 p
µ2i +

p
µ2i+1

1p
µ2i
+ 1p

µ2i+1

+µ1

!
br

!

=

�
1p
µ2i
+

1p
µ2i+1

��
ar + (µ1 +

p
µ2i
p
µ2i+1)br

�

=

�
1p
µ2i
+

1p
µ2i+1

�
(ar + Ki br) .

Hence, (5.3.54) is equivalent to




ar > −Ki br , ∀ i ≥ 1, ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,

ar < −Ki br , ∀ i ≥ 1, ∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,

Remark 5.3.14. (Ki)i≥1 is a strictly increasing sequence and lim
i→+∞

Ki = +∞.

Lemma 5.3.15. Conditions (5.3.53) imply




br ≥ 0, ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,

br ≤ 0, ∀ r odd , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
.

(5.3.55)

Proof. We proceed by contradiction. Let r be even, in {0, 1, . . . , l − 1} if q = 2l and in
{0,1, . . . , l} if q = 2l+1, be such that br < 0. From Lemma 5.3.13 condition 0< ar+Ki br must
be satisfied∀i ≥ 1. Taking the limit i→ +∞ in this inequality, we find 0≤ lim

i→+∞
(ar + Ki br) = −∞.

Thus, the coefficients br should be necessarily nonnegative, for every r even, r ∈ {0, 1, . . . , l−
1} if q = 2l and r ∈ {0,1, . . . , l} if q = 2l + 1.
Analogously, let r ∈ {0,1, . . . , l−1} if q = 2l and r ∈ {0,1, . . . , l} if q = 2l+1, be odd and such
that br > 0. From the second condition of Lemma 5.3.13, we get that ar+Ki br < 0, for all i ≥
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1. Therefore, taking the limit i→ +∞ in this inequality, we obtain 0≥ lim
i→+∞

(ar + Ki br) = +∞.

Hence, br should be necessarily nonpositive, for every r odd, r ∈ {0, 1, . . . , l−1} if q = 2l and
r ∈ {0,1, . . . , l} if q = 2l + 1.

Lemma 5.3.16. The first condition in (5.3.53) holds if and only if

− K1 br < ar , ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
. (5.3.56)

The second condition in (5.3.53) holds if and only if

ar < −K1 br , ∀ r odd , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
. (5.3.57)

Proof. If ar > −Ki br , ∀ i ≥ 1, ∀ r even, r ∈ {0,1, . . . , l − 1} if q = 2l and r ∈ {0, 1, . . . , l} if
q = 2l + 1, then (5.3.56) trivially holds. Vice versa, if (5.3.56) is verified, then, since (Ki)i≥1

is strictly increasing and from Lemma (5.3.15) br ≥ 0, we get

−Ki br < −Ki−1 br < · · ·< −K1 br < ar , ∀ i ≥ 1, ∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
.

If ar < −Ki br , ∀ i ≥ 1, ∀ r odd, r ∈ {0, 1, . . . , l − 1} if q = 2l and r ∈ {0, 1, . . . , l} if q =
2l + 1, then (5.3.57) trivially holds. Vice versa, if (5.3.57) is satisfied, since (Ki)i≥1 is strictly
increasing and from Lemma (5.3.15) br ≤ 0, we have

ar < −K1 br < −K2 br < · · ·< −Ki br , ∀ i ≥ 1, ∀ r odd , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
.

In summary, necessary conditions for (5.3.50) to hold are









br ≥ 0

∀ r even , r ∈
(
{0, 1, . . . , l − 1} if q = 2l,

{0, 1, . . . , l} if q = 2l + 1,
,

−K1 br < ar ,

and





br ≤ 0

∀ r odd , r ∈
(
{0,1, . . . , l − 1} if q = 2l,

{0,1, . . . , l} if q = 2l + 1,
.

ar < −K1 br ,

(5.3.58)
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We define the following functions

Ji := ϕ(pµ2i+1), ∀ i ≥ 1, ϕ(x) := (x−pµ1)2

x
p
µ1+1 ,

Li =ψ(
p
µ2i), ∀ i ≥ 1, ψ(x) := (x+pµ1)2

x
p
µ1−1 ,

Ti :=pµ1ζ(
p
µ2i+1), ∀ i ≥ 1, ζ(x) := x

x
p
µ1+1 ,

Q i :=pµ1ξ(
p
µ2i), ∀ i ≥ 1, ξ(x) := x

x
p
µ1−1 ,

(5.3.59)

and the quantities

Gr,l =
(l−1)−r∑

k=1

�
2(k+ 1)
(2k)!

br+k −
1

(2k+ 1)!
ar+k

�
, r = 0,1 . . . , l − 1, when q = 2l

Mr,l :=
2(l − r + 1)
(2(l − r))!

bl + Gr,l , r = 0,1 . . . , l − 1 when q = 2l + 1.

Lemma 5.3.17. The following properties hold true:

• {Ji}i≥1 is a positive, strictly increasing sequence,

• 4(1+µ1)
µ1

≤min
i≥1
ψ(
p
µ2i),

• {Ti}i≥1 is a positive, increasing sequence and Ti < 1 for all i ≥ 1,

• {Q i}i≥1 is a positive, decreasing sequence and Q i > 1 for all i ≥ 1.

•




cr = 2br − ar + Gr,l ,∀ r = 0, 1 . . . , l − 1, when q = 2l,

cr = 2br − ar +Mr,l ,∀ r = 0, 1 . . . , l − 1, cl = 2bl , when q = 2l + 1.

(5.3.60)

Proof. • It is easy to check that ϕ′(x) = (x−pµ1)(x
p
µ1+2+µ1)

(xpµ1+1)2 > 0 for all x >
p
µ1. Hence,

0< J1 = ϕ(
p
µ3)< Ji , ∀ i > 1. (5.3.61)

• It can be easily proved that ψ(·) has a minimum over (1/pµ1,∞) at x = 2p
µ1
+pµ1.

Moreover we have (1/pµ1)< 1<
p
µ2i <

p
µ2i+1 for all i ≥ 1. In addition,ψ is strictly

increasing for x > 2p
µ1
+pµ1. Therefore,

4(1+µ1)
µ1

= min
x>1/

p
µ1

ψ(x)<min
i≥1
ψ(
p
µ2i) =min

i≥1
Li . (5.3.62)

• The derivative of ζ is given by ζ′(x) = 1
(xpµ1+1)2 > 0. Thus,

p
µ1
p
µ3p

µ1
p
µ3 + 1

<

p
µ1
p
µ2i+1p

µ1
p
µ2i+1 + 1

< 1, ∀ i > 1. (5.3.63)
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• It is easy to prove that ξ′(x) = −1
(xpµ1−1)2 < 0 that implies

1<
p
µ1
p
µ2ip

µ1
p
µ2i − 1

<

p
µ1
p
µ2p

µ1
p
µ2 − 1

, ∀ i > 1. (5.3.64)

Theorem 5.3.18. Let (Ai,n, Bi,n)i∈N∗ be defined as in Corollary 5.3.7 with respect to the coeffi-
cients (ar , br) (with r in a suitable range of indices, depending on the parity of q). We present
the algorithm that allows to find coefficients (ar , br) such that Ai,n > 0 and Bi,n > 0. This gives
in particular sufficient conditions so that (5.3.26) holds for all k ≥ 2. The algorithm is built as
follows
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Algorithm 1:

if q = 2l then
r = l − 1;
if r is even then�

br > 0
−min {K1, J1} br < ar <

4(1+µ1)
µ1

br
;

else�
br < 0
4(1+µ1)
µ1

br < ar < −min {K1, J1} br
;

for r = l − 2, . . . , 0 do
if r is even then




br >max
§

Q1|Gr,l |
4(1+µ1)
µ1

+K1

,
(1+Q1)|Gr,l |

4(1+µ1)
µ1

+J1

ª

max{−K1 br ,−J1 br + |Gr,l |}< ar <
4(1+µ1)
µ1

br −Q1|Gr,l |
;

else



br <min
§
−Q1|Gr,l |

4(1+µ1)
µ1

+K1

,
−(1+Q1)|Gr,l |

4(1+µ1)
µ1

+J1

ª

4(1+µ1)
µ1

br +Q1|Gr,l |< ar <min{−K1 br ,−J1 br − |Gr,l |}
;

else
r = l;
if r is even then

br > 0, ar = 0;
else

br < 0, ar = 0;

for r = l − 1, . . . , 0 do
if r is even then




br >max
§

Q1|Mr,l |
4(1+µ1)
µ1

+K1

,
(1+Q1)|Mr,l |

4(1+µ1)
µ1

+J1

ª

max{−K1 br ,−J1 br + |Mr,l |}< ar <
4(1+µ1)
µ1

br −Q1|Mr,l |
;

else



br <min
§
−Q1|Mr,l |

4(1+µ1)
µ1

+K1

,
−(1+Q1)|Mr,l |

4(1+µ1)
µ1

+J1

ª

4(1+µ1)
µ1

br +Q1|Mr,l |< ar <min{−K1 br ,−J1 br − |Mr,l |}
;
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Remark 5.3.19. Note that the above algorithm provides easily sufficient conditions on the coef-
ficients (ar , br) such that Ai,n < 0 and Bi,n < 0 for all i ≥ 1. It is sufficient to remark that the
sign of (Ai,n)i≥1 and of (Bi,n)i≥1 is uniformly changed in the opposite sign when the coefficients
(ar , br) are all changed into (−ar ,−br) (or equivalently when µ is changed into −µ). Indeed
by applying the above algorithm to the coefficients (−ar ,−br), we derive the resulting sufficient
conditions on the coefficients (ar , br). These conditions are then sufficient conditions for Ai,n < 0
and Bi,n < 0 for all i ≥ 1 to hold.

Thus we just need to explore two cases, that is the above case for which Ai,n > 0 and Bi,n > 0 for
all i ≥ 1 and the case which consists in producing the second algorithm that leads to coefficients
(ar , br) such that Ai,n > 0 and Bi,n < 0 for all i ≥ 1. This latter case will also allow to derive
the algorithm to produce coefficients (ar , br) such that Ai,n < 0 and Bi,n > 0 for all i ≥ 1 by to
changing the coefficients (ar , br) into (−ar ,−br), use the second algorithm, and finally changing
back (−ar ,−br) into (ar , br). The second algorithm will be presented in [5].

Proof. The proof consist of showing that following the instructions of the algorithm, we pro-
duce coefficients (ar , br) that fulfilled (5.3.50) with strict inequalities. Indeed, we have seen
that conditions (5.3.50) guarantee Ai,n > 0 and Bi,n > 0, for all i ∈ N.

We recall that, necessary conditions for (5.3.50) to be well defined, are given by (5.3.58).

First case: q is even, that is q = 2l with l ≥ 1

Let r = l − 1 be even. We prove that





bl−1 > 0,

−min {K1, J1} bl−1 < al−1 <
4(1+µ1)
µ1

bl−1,
=⇒





− gl−1(λ2i)p
λ1+1

< cl−1 <
gl−1(λ2i+1)p

λ1+1
, ∀ i ≥ 1,

bl−1 ≥ 0

−K1 bl−1 < al−1.

Recalling the definition (5.3.21) of gr(·) and the identity (5.3.34) for cr for r = l − 1, we
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obtain





− gl−1(λ2i)p
λ1+1

< cl−1, ∀ i ≥ 1,

cl−1 <
gl−1(λ2i+1)p

λ1+1
, ∀ i ≥ 1,

bl−1 ≥ 0,

−K1 bl−1 < al−1,

⇔





− 1p
µ1
p
µ2i
(al−1 + (µ2i +µ1)bl−1)< 2bl−1 − al−1, ∀ i ≥ 1,

2bl−1 − al−1 <
1p

µ1
p
µ2i+1
(al−1 + (µ2i+1 +µ1)bl−1), ∀ i ≥ 1,

−K1 bl−1 < al−1, bl−1 ≥ 0,

⇔





�
1− 1p

µ1
p
µ2i

�
al−1 <

�
2+ µ2i+µ1p

µ1
p
µ2i

�
bl−1, ∀ i ≥ 1,

�
2− µ2i+1+µ1p

µ1
p
µ2i+1

�
bl−1 <

�
1+ 1p

µ1
p
µ2i+1

�
al−1, ∀ i ≥ 1,

−K1 bl−1 < al−1, bl−1 ≥ 0,

⇔





al−1 <
(pµ2i+

p
µ1)2p

µ1
p
µ2i−1 bl−1, ∀ i ≥ 1,

− (
p
µ2i+1−pµ1)2p
µ1
p
µ2i+1+1 bl−1 < al−1, ∀ i ≥ 1,

−K1 bl−1 < al−1, bl−1 ≥ 0,

⇔





al−1 <min
i≥1

¦
(pµ2i+

p
µ1)2p

µ1
p
µ2i−1

©
bl−1,

max
i≥1

¦
− (
p
µ2i+1−pµ1)2p
µ1
p
µ2i+1+1

©
bl−1 < al−1,

−K1 bl−1 < al−1, bl−1 ≥ 0,

⇔





al−1 <min
i≥1
{Li} bl−1,

−min
n

K1, min
i≥1
{Ji}

o
bl−1 < al−1,

bl−1 ≥ 0.

Therefore, using the properties of Li and J1 of Lemma 5.3.17 it can be checked that





bl−1 > 0,

−min {K1, J1} bl−1 < al−1 <
4(1+µ1)
µ1

bl−1,
=⇒





al−1 <min
i≥1
{Li} bl−1,

−min
n

K1,min
i≥1
{Ji}

o
bl−1 < al−1,

bl−1 ≥ 0.
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If r = l − 1 is odd, we have to prove that





bl−1 < 0

4(1+µ1)
µ1

bl−1 < al−1 < −min {K1, J1} bl−1

=⇒





gl−1(λ2i+1)p
λ1+1

< cl−1 < − gl−1(λ2i)p
λ1+1

, ∀ i ≥ 1,

bl−1 ≤ 0

al−1 < −K1 bl−1.

We observe that



gl−1(λ2i+1)p
λ1+1

< cl−1, ∀ i ≥ 1,

cl−1 < − gl−1(λ2i)p
λ1+1

, ∀ i ≥ 1,

bl−1 ≤ 0

al−1 < −K1 bl−1.

⇔





1p
µ1
p
µ2i+1
(al−1 + (µ2i+1 +µ1)bl−1)< 2bl−1 − al−1, ∀ i ≥ 1,

2bl−1 − al−1 < − 1p
µ1
p
µ2i
(al−1 + (µ2i +µ1)bl−1), ∀ i ≥ 1,

al−1 < −K1 bl−1, bl−1 ≤ 0,

⇔





�
1+ 1p

µ1
p
µ2i+1

�
al−1 <

�
2− µ2i+1+µ1p

µ1
p
µ2i+1

�
bl−1, ∀ i ≥ 1,

�
2+ µ2i+µ1p

µ1
p
µ2i

�
bl−1 <

�
1− 1p

µ1
p
µ2i

�
al−1, ∀ i ≥ 1,

al−1 < −K1 bl−1, bl−1 ≤ 0,

⇔





al−1 < − (
p
µ2i+1−pµ1)2p
µ1
p
µ2i+1+1 bl−1, ∀ i ≥ 1,

(pµ2i+
p
µ1)2p

µ1
p
µ2i−1 bl−1 < al−1, ∀ i ≥ 1,

al−1 < −K1 bl−1, bl−1 ≤ 0,

⇔





al−1 <min
n

K1,min
i≥1
{Ji}

o
(−bl−1),

min
i≥1
{Li} bl−1 < al−1,

bl−1 ≤ 0.

Since bl−1 ≤ 0, from (5.3.62), we have

4(1+µ1)
µ1

bl−1 ≥ψ(
p
µ2i)bl−1 = Li bl−1, ∀ i ≥ 1,

and thus
4(1+µ1)
µ1

bl−1 ≥min
i≥1
{Li} bl−1.

Hence, it follows that





bl−1 < 0

4(1+µ1)
µ1

bl−1 < al−1 < −min {K1, J1} bl−1

=⇒





al−1 <min
n

K1, min
i≥1
{Ji}

o
(−bl−1),

min
i≥1
{Li} bl−1 < al−1,

bl−1 ≤ 0.
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For r = l − 2, . . . , 0, we should prove that the algorithm yields coefficients (ar , br) such that





− gr (λ2i)p
λ1+1

< cr <
gr (λ2i+1)p
λ1+1

, ∀ i ≥ 1,

∀ r even , r ∈ {0,1, . . . , l − 2}
br ≥ 0, −K1 br < ar ,





gr (λ2i+1)p
λ1+1

< cr < − gr (λ2i)p
λ1+1

, ∀ i ≥ 1,

∀ r odd , r ∈ {0, 1, . . . , l − 2}
br ≤ 0, ar < −K1 br .

Using (5.3.60), we notice that for any r even, we have





− gr (λ2i)p
λ1+1

< cr , ∀ i ≥ 1,

cr <
gr (λ2i+1)p
λ1+1

, ∀ i ≥ 1,

br ≥ 0, −K1 br < ar ,

⇔





− 1p
µ1
p
µ2i
(ar + (µ2i +µ1)br)< 2br − ar + Gr,l , ∀ i ≥ 1,

2br − ar + Gr,l <
1p

µ1
p
µ2i+1
(ar + (µ2i+1 +µ1)br), ∀ i ≥ 1,

−K1 br < ar , br ≥ 0,

⇔





�
1− 1p

µ1
p
µ2i

�
ar <

�
2+ µ2i+µ1p

µ1
p
µ2i

�
br + Gr,l , ∀ i ≥ 1,

�
2− µ2i+1+µ1p

µ1
p
µ2i+1

�
br + Gr,l <

�
1+ 1p

µ1
p
µ2i+1

�
ar , ∀ i ≥ 1,

−K1 br < ar , br ≥ 0,

⇔





ar <
(pµ2i+

p
µ1)2p

µ1
p
µ2i−1 br +Q iGr,l , ∀ i ≥ 1,

− (
p
µ2i+1−pµ1)2p
µ1
p
µ2i+1+1 br + TiGr,l < ar , ∀ i ≥ 1,

−K1 br < ar , br ≥ 0,

⇔





ar <min
i≥1

�
Li br +Q iGr,l

	
,

max
n
−K1 br , max

i≥1

�−Ji br + TiGr,l

	o
< ar ,

br ≥ 0.

where Ti and Q i are defined in (5.3.59).

The quantities Gr,l do not have a prescribed sign, however from Lemma 5.3.17 we deduce the

121



following bounds

Q iGr,l ≥





Gr,l if Gr,l > 0

Q1Gr,l if Gr,l < 0

0 if Gr,l = 0




≥ −Q1|Gr,l |, ∀ i ≥ 1,

TiGr,l ≤





Gr,l if Gr,l > 0

T1Gr,l if Gr,l < 0

0 if Gr,l = 0




≤ |Gr,l |, ∀ i ≥ 1.

Hence, it is easy to check that





br >max
§

Q1|Gr,l |
4(1+µ1)
µ1

+K1

,
(1+Q1)|Gr,l |

4(1+µ1)
µ1

+J1

ª
,

max{−K1 br ,−J1 br + |Gr,l |}< ar ,

ar <
4(1+µ1)
µ1

br −Q1|Gr,l |

=⇒





ar <min
i≥1

�
Li br +Q iGr,l

	
,

max
n
−K1 br ,max

i≥1

�−Ji br + TiGr,l

	o
< ar ,

br ≥ 0.
(5.3.65)

Observe that the constraint that appears in the algorithm on br ensures that the set of defini-
tion of ar is nonempty, or equivalently,

max{−K1 br ,−J1 br + |Gr,l |}<
4(1+µ1)
µ1

br −Q1|Gr,l |.
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Thanks to (5.3.60), we notice that for any r odd, we have





gr (λ2i+1)p
λ1+1

< cr , ∀ i ≥ 1,

cr < − gr (λ2i)p
λ1+1

, ∀ i ≥ 1,

br ≤ 0,

ar < −K1 br

⇔





1p
µ1
p
µ2i+1
(ar + (µ2i+1 +µ1)br)< 2br − ar + Gr,l , ∀ i ≥ 1,

2br − ar + Gr,l < − 1p
µ1
p
µ2i
(ar + (µ2i +µ1)br), ∀ i ≥ 1,

br ≤ 0,

ar < −K1 br ,

⇔





�
1+ 1p

µ1
p
µ2i+1

�
ar < −

�
µ2i+1+µ1p
µ1
p
µ2i+1
− 2

�
br + Gr,l , ∀ i ≥ 1,

�
2+ µ2i+µ1p

µ1
p
µ2i

�
br + Gr,l <

�
1− 1p

µ1
p
µ2i

�
ar , ∀ i ≥ 1,

br ≤ 0,

ar < −K1 br ,

⇔





ar < − (
p
µ2i+1−pµ1)2p
µ1
p
µ2i+1+1 br + TiGr,l , ∀ i ≥ 1,

(pµ2i+
p
µ1)2p

µ1
p
µ2i−1 br +Q iGr,l < ar , ∀ i ≥ 1,

br ≤ 0,

ar < −K1 br ,

⇔





ar <min
n
−K1 br ,min

i≥1

�−Ji br + TiGr,l

	o

max
i≥1

�
Li br +Q iGr,l

	
< ar

br ≤ 0.

Thanks to the following bounds

Q iGr,l ≤





Q1Gr,l if Gr,l > 0

Q i |Gr,l | if Gr,l < 0

0 if Gr,l = 0




≤Q1|Gr,l |, ∀ i ≥ 1,

TiGr,l ≥





T1Gr,l if Gr,l > 0

−Ti |Gr,l | if Gr,l < 0

0 if Gr,l = 0




≥ −|Gr,l |, ∀ i ≥ 1,
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it easily follows that




br <min
§
−Q1|Gr,l |

4(1+µ1)
µ1

+K1

,
−(1+Q1)|Gr,l |

4(1+µ1)
µ1

+J1

ª

4(1+µ1)
µ1

br +Q1|Gr,l |< ar

ar <min{−K1 br ,−J1 br − |Gr,l |}

=⇒





ar <min
n
−K1 br , min

i≥1

�−Ji br + TiGr,l

	o

max
i≥1

�
Li br +Q iGr,l

	
< ar

br ≤ 0.

Notice that, the constraint on the coefficients br ensures that

4(1+µ1)
µ1

br +Q1|Gr,l |<min{−K1 br ,−J1 br − |Gr,l |},

thus, the set where to choose ar is nonempty.

Second case: q is odd, that is q = 2l + 1 with l ≥ 0.

We recall that thanks to (5.3.60) and since q is odd, the coefficients cr are given by

cr =





2br , r = l,

(2br − ar) +Mr,l , r = 0,1, . . . , l − 1.

Let r = l be even. We recall that al = 0. Then, we should prove that the algorithm implies




− gl (λ2i)p
λ1+1

< cl <
gl (λ2i+1)p
λ1+1

, ∀ i ≥ 1,

bl ≥ 0, −K1 bl < 0,

(5.3.66)

which is equivalent to 


− (µ2i+µ1)blp

µ2i
p
µ1
< 2bl <

(µ2i+1+µ1)blp
µ2i+1

p
µ1

,

bl ≥ 0, −K1 bl < 0.

Hence, it is sufficient to choose bl > 0 to verify (5.3.66).
Analogously, if r = l is odd, it easy to check that

bl < 0 =⇒





gl (λ2i+1)p
λ1+1

< cl < − gl (λ2i)p
λ1+1

, ∀ i ≥ 1,

bl ≤ 0, −K1 bl > 0.

For any r = l − 1, . . . , 0, we should prove that, if r is even,





br >max
§

Q1|Mr,l |
4(1+µ1)
µ1

+K1

,
(1+Q1)|Mr,l |

4(1+µ1)
µ1

+J1

ª
,

max{−K1 br ,−J1 br + |Mr,l |}< ar ,

ar <
4(1+µ1)
µ1

br −Q1|Mr,l |

=⇒





− gr (λ2i)p
λ1+1

≤ cr , ∀ i ≥ 1,

cr ≤ gr (λ2i+1)p
λ1+1

, ∀ i ≥ 1

bl−1 ≥ 0,

−K1 bl−1 < al−1,

(5.3.67)
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and if r is odd, then





br <min
§
−Q1|Mr,l |

4(1+µ1)
µ1

+K1

,
−(1+Q1)|Mr,l |

4(1+µ1)
µ1

+J1

ª
,

4(1+µ1)
µ1

br +Q1|Mr,l |< ar ,

ar <∈ {−K1 br ,−J1 br − |Mr,l |}

=⇒





gr (λ2i+1)p
λ1+1

< cr , ∀ i ≥ 1,

cr < − gr (λ2i)p
λ1+1

, ∀ i ≥ 1,

br ≤ 0,

ar < −K1 br .

(5.3.68)

The case q = 2l + 1 can now be analyzed similarly to the first case q = 2l noticing that it is
sufficient to replace Gr,l by Mr,l (due to (5.3.60)) along the proof of the first case.
This concludes the proof of the Theorem 5.3.18.

Let q ≥ 1 be given arbitrarily, n be as in Definition 5.3.5 and Ai,n > 0, Bi,n > 0 for all i ≥ 1
being defined in (5.3.15). Then the above algorithm allows us to produce sets of coefficients
(ar , br) (r varying in a suitable finite range) such that we have Ai,n > 0, Bi,n > 0 for all
i ≥ 1. Thanks to the bijection between the sets of coefficients (ar , br) and the subspace of
polynomials F0,q (defined in (5.3.29)), when q varies in N∗, this algorithm provides an infinite

class of polynomials µ̃ ∈ ∪q=1F0,q such that the condition
∫ 1

0 µϕ1ϕkd x 6= 0 holds for all k ≥ 2.

It remains to provide polynomials µ ∈ Pq(R) satisfying the condition
∫ 1

0 µϕ1ϕkd x 6= 0 for all
k ≥ 1. By definition, for any µ̃ ∈ F0,q, we have µ̃(1) = 0. The idea is to use the polynomials
µ̃ built thanks to the above algorithm and to determine suitable associated polynomials µ of
degree q using just the degree of freedom we have with µ(1), which is for the moment free,
to guarantee that

∫ 1

0 µ(x)ϕ
2
1(x)d x 6= 0, once chosen the higher order coefficients. Denote by

µ̃ a polynomial belonging to the sets of polynomials we have built in Theorem 5.3.18 (using
the bijection above mentioned). We recall that

µ̃(x) =
q∑

k=1

µ̃(k)(1)
k!

(x − 1)k.

We set
µ(x) = K + µ̃(x). (5.3.69)

Note that K = µ(1). Then, the following result holds.

Proposition 5.3.20. Let q ∈ N∗, and µ̃ ∈ Pq(R) ∈ F0,q be any polynomial built as in Theorem
5.3.18 and let µ ∈ Pq(R) be defined by (5.3.69). Let K be any real number such that

K 6= −
∫ 1

0

µ̃(x)ϕ2
1(x)d x , (5.3.70)

then, µ satisfies ∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x 6= 0, ∀ k ≥ 1. (5.3.71)

Proof. The polynomial µ̃ ∈ Pq(R) built in Theorem 5.3.18 satisfies by construction that

∫ 1

0

µ̃(x)ϕ1(x)ϕk(x)d x 6= 0, ∀ k ≥ 2.
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Therefore we have

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x = K

∫ 1

0

ϕ1(x)ϕk(x)d x +

∫ 1

0

µ̃(x)ϕ1(x)ϕk(x)d x

=

∫ 1

0

µ̃(x)ϕ1(x)ϕk(x)d x 6= 0,

for all k ≥ 2. Furthermore, for k = 1 we obtain

∫ 1

0

µ(x)ϕ2
1(x)(x)d x = K

∫ 1

0

ϕ2
1(x)d x +

∫ 1

0

µ̃(x)ϕ2
1(x)d x

= K +

∫ 1

0

µ̃(x)ϕ2
1(x)d x 6= 0,

by hypothesis (5.3.70).

Remark 5.3.21. Hence, Theorem 5.3.18 and Proposition 5.3.20 allow us to build an infinite
class of polynomials of any degree, such that the non vanishing condition (5.3.26) holds. We
will see in the next section how the constructive ideas and algorithm provided here lead to many
applications for the bilinear control of PDEs.

5.4 Applications

In this section we present extensions of the works [11], [4] and [3] by considering control
systems subject to mixed boundary conditions. In particular, we will study the controllability
through bilinear control of the Schrödinger equation with (DR) boundary conditions, super-
exponential stabilizability and exact controllability to the ground state solution of the heat
equation with a controlled potential and (DR) boundary condition.

5.4.1 Bilinear controllabilty of Schrödinger equation with mixed boundary condi-
tions

We consider the motion of a quantum particle that is influenced by the presence of an electric
field. Fixed T > 0, the wave function of the particle is described by the following Schrödinger
equation





i∂tu(t, x) = −∂ 2
x u(t, x)− p(t)µ(x)u(t, x), (t, x) ∈ (0, T )× (0,1)

u(t, 0) = 0, u(t, 1) + ∂xu(t, 1) = 0
(5.4.1)

where p ∈ L2(0, T ;R) is the control function and represents the magnitude of the electric
field. The function µ is the dipolar moment of the particle.
Let X = L2(0, 1;C) and define the linear operator A by

D(A) =
�
ϕ ∈ H2(0,1;C) : ϕ(0) = 0, ∂xϕ(1) +ϕ(1) = 0

	 ⊂ X , Aϕ = −∂ 2
x ϕ. (5.4.2)
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The eigenvalues and eigenfunctions of A are given by

λk = r2
k , ϕk(x) = ηk sin(rk x), ∀k ∈ N∗, (5.4.3)

where the elements of the family {rk}k∈N∗ are solutions of the equation

rk cos(rk) + sin(rk) = 0, (5.4.4)

and ηk are normalization constants

ηk =
p

2rkq
r2

k + sin2(rk)
, ∀ k ∈ N∗. (5.4.5)

The family {ϕk}k∈N∗ forms an orthonormal basis of X . The operator −iA generates a group of
isometries, e−iAt , defined by

e−iAtϕ =
∞∑
k=1

〈ϕ,ϕk〉e−iλk tϕk, ∀ϕ ∈ L2(0, 1), (5.4.6)

where we denote by 〈·, ·〉 the standard L2(0, 1;C) scalar product.
The solution of system (5.4.1) with p = 0 and initial conditionϕ1, that isψ1(t, x) = e−iλ1 tϕ1(x),
is tipically called ground state solution. Our aim is to prove the local controllability of (5.4.1)
along ψ1.
For all s > 0, we define the spaces

H s
(0)(0, 1;C) = D(As/2),

hs(N∗,C) :=
¦

a = (ak)k∈N∗ :
∑∞

k=1 |λs/2
k ak|2 < +∞

©
,

(5.4.7)

equipped, respectively, with the norms

‖ϕ‖Hs
(0)
=
�∑

k∈N∗ |λs/2
k 〈ϕ,ϕk〉|2

�1/2
,

‖a‖hs :=
�∑

k∈N∗ |λs/2
k ak|2

�1/2
.

(5.4.8)

In the result that follows we characterize the reachable set from the first eigenstate ϕ1:

Theorem 5.4.1. Let T > 0 and µ ∈ H2(0,1;R) be such that

∃ C > 0 such that |〈µϕ1,ϕk〉| ≥
C
λk

, ∀ k ∈ N∗. (5.4.9)

Then, there exists δ > 0 for which the reachable set from ϕ1, with p ∈ L2(0, T ;R), is defined by

RT :=
¦

u f ∈ S ∩H2
(0)(0,1;C) :



u f −ψ1(T )




H2 < δ
©

, (5.4.10)

where S denote the unit L2(0,1;C)-sphere.

In the proposition that follows we establish the well-posedness of the following problem




i∂tu= −∂ 2
x u− p(t)µ(x)u− f (t, x), (t, x) ∈ (0, T )× (0,1)

u(t, 0) = 0, u(t, 1) + ∂xu(t, 1) = 0

u(0, x) = u0(x).

(5.4.11)
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Proposition 5.4.2. Let T > 0, µ ∈ H2(0,1;R), u0 ∈ H2
(0)(0, 1;C), p ∈ L2(0, T ;R) and f ∈

L2(0, T ; (H2∩H1
(0))(0,1;C)). Then, there exists a unique mild solution u ∈ C0([0, T], H2

(0)(0, 1;C))
of (5.4.11), defined by

u(t) = e−iAtu0 + i

∫ t

0

e−iA(t−s)[p(s)µu(s) + f (s)]ds. (5.4.12)

Moreover, there exists a constant C = C(T )> 0 such that

‖u‖C0([0,T];H2
(0))
≤ C

�
‖u0‖H2

(0)
+‖ f ‖L2(0,T ;H2∩H1

(0))

�
. (5.4.13)

The proof relies on a fixed point argument. To use this strategy, a crucial point is played by
the regularizing effect due to the action of the Schrödingr group. This result is contained in
the following Lemma.

Lemma 5.4.3. Let T > 0 and f ∈ L2(0, T ; (H2 ∩H1
(0))(0,1)). Then, the function

F(t) := t 7→
∫ t

0

eiAs f (s)ds

belongs to C0([0, T], H2
(0)(0,1)) and furthermore the following inequality holds

‖F‖L∞(0,T ;H2
(0))
≤ C1(T )‖ f ‖L2(0,T ;H2∩H1

(0))
, (5.4.14)

where C1(T )> 0 is uniformly bounded in bounded intervals with respect to T .

Proof. From the definition of the group generated by −iA, we rewrite F(·) as

F(t) =
∞∑
k=1

�∫ t

0

〈 f (s),ϕk〉eiλksds

�
ϕk.

We observe that the scalar product 〈 f (s, ·),ϕk〉 can be expressed by

〈 f (s, ·),ϕk〉= −
1
λk

∫ 1

0

f (s, x)∂ 2
x ϕk(x)d x = − 1

λk

�
f (s, x)∂xϕk(x)|10 −

∫ 1

0

∂x f (s, x)∂xϕk(x)d x

�

= − 1
λk

�
f (s, 1)∂xϕk(1)− ∂x f (s, x)ϕk(x)|10 +

∫ 1

0

∂ 2
x f (s, x)ϕk(x)d x

�

= − 1
λk

�
f (s, 1)ηk rk cos(rk)− ∂x f (s, 1)ηk sin(rk) +

∫ 1

0

∂ 2
x f (s, x)ϕk(x)d x

�

and recalling relation (5.4.4), we have

〈 f (s),ϕk〉=
1
λk

�
( f (s, 1) + ∂x f (s, 1))ηk sin(rk)−

∫ 1

0

∂ 2
x f (s, x)ϕk(x)d x

�
.
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Therefore, using this last expression, we get

‖F(t)‖H2
(0)
=

�∞∑
k=1

|λk〈F(t),ϕk〉|2
�1/2

=



∞∑
k=1

�����λk

*∞∑
j=1

�∫ t

0

〈 f (s),ϕk〉eiλksds

�
ϕ j ,ϕk

+�����

2



1/2

=

 ∞∑
k=1

�����λk

∫ t

0

〈 f (s),ϕk〉eiλksds

�����
2!1/2

=







∫ t

0

〈 f (s),ϕk〉eiλksds







h2

=







∫ t

0

1
λk

�
( f (s, 1) + ∂x f (s, 1))ηk sin(rk)− 〈∂ 2

x f (s),ϕk〉
�

eiλksds







h2

≤






∫ t

0

( f (s, 1) + ∂x f (s, 1))ηk sin(rk)e
iλksds







l2

+







∫ t

0

〈∂ 2
x f (s),ϕk〉eiλksds







l2

=: ‖F1(t)‖l2+‖F2(t)‖l2 .

We estimate F2(·) as follows:

‖F2(t)‖l2 =

 ∞∑
k=1

�����
∫ t

0

〈∂ 2
x f (s),ϕk〉eiλksds

�����
2!1/2

≤
�∞∑

k=1

t

∫ t

0

|〈∂ 2
x f (s),ϕk〉|2ds

�1/2

≤pt

�∫ t

0

‖∂ 2
x f (s)‖2

L2(0,t)ds

�1/2

≤pt‖ f ‖L2(0,t;H2).

To bound F1(·) we appeal to [11, Corollary 4], obtaining

‖F1(t)‖l2≤ ηkc(t)
�‖ f (·, 1)‖L2(0,t)+‖∂x f (·, 1)‖L2(0,t)

�
.

Thus, by trace Thorem we get

‖F(t)‖H2
(0)
≤ C1(t)‖ f ‖L2(0,t;H2∩H1

(0))
,

where C1(t) is uniformly bounded for t lying in bounded intervals. Hence, we have proved
that F(t) is in H2

(0)(0,1) and furthermore that F is continuous at t = 0. It is possible to prove
the continuity at any t ∈ (0, T ).

Now, we prove the well-posedness of problem (5.4.11).

Proof of Proposition 5.4.2. We prove the existence of a solution for problem (5.4.11) through
a fix point argument. Consider the map

Φ : C0([0, T]; H2
(0)(0,1))→ C0([0, T]; H2

(0)(0, 1))

u(t) 7→ Φ(u)(t) = e−iAtu0 + i

∫ t

0

e−iA(t−s) (p(s)µu(s) + f (s)) ds.

129



For any u(·) ∈ C0([0, T]; H2
(0)(0,1)), function p(·)µu(·) belongs to L2(0, T ; (H2 ∩ H1

(0))(0, 1))
since p ∈ L2(0, T ), µ ∈ H2(0, 1) and furthermore we have used that, in dimension 1, H s is an
algebra for any s > 1/2. Then, Lemma 5.4.3 ensures that Φ maps C0([0, T]; H2

(0)(0, 1)) into
itself.
We show that Φ is a contraction: for any u1, u2 ∈ C0([0, T]; H2

(0)(0,1)) thanks to (5.4.14) we
have

‖Φ(u1)(t)−Φ(u2)(t)‖H2
(0)
=







∫ t

0

eiAs p(s)µ(u1(t)− u2(t))ds







H2
(0)

≤ C1(t)‖p(t)µ(u1 − u2)‖L2(0,t;H2∩H1
(0))

≤ C1(t)‖p‖L2(0,t)‖µ(u1 − u2)‖L∞(0,t;H2∩H1
(0))

≤ C2(t,µ)‖p‖L2(0,t)‖(u1 − u2)‖L∞(0,t;H2
(0))

that implies

‖Φ(u1)−Φ(u2)‖L∞(0,T ;H2
(0))
≤ C2(T,µ)‖p‖L2(0,T )‖(u1 − u2)‖L∞(0,T ;H2

(0))
.

Hence, if C2(T,µ)‖p‖L2(0,T )≤ 1/2, Φ is a contraction and it has a fixed point u such that

‖u‖L∞(0,T ;H2
(0))
≤ 2

�
‖u0‖H2

(0)
+C1(T )‖ f ‖L2(0,T ;H2∩H1

(0))

�
.

If C2(T,µ)‖p‖L2(0,T )> 1/2, we divide the time interval in subintervals of the form [Tk, Tk+1],
with 0 = T1 < T2 < · · · < Tn = T , in which ‖p‖L2(Tk ,Tk+1) is small enough for every k =
1,2, . . . n− 1. We perform a fixed point strategy in each interval and eventually we glue the
solution.

Let T > 0, we introduce the tangent space of S , the unit L2(0, 1;C)-sphere, to the ground
state solution at time T , ψ1(T ),

Tψ1(T ) :=
�
ξ ∈ L2(0,1) : R〈ξ,ψ1(T )〉= 0

	
, (5.4.15)

and the projection onto this space:

PTψ1(T )
: L2(0, 1)→Tψ1(T )

ξ 7→ ξ− R〈ξ,ψ1(T )〉
||ψ1(T )||2

ψ1(T )
(5.4.16)

In the Lemma that follows we prove some properties of the set Tψ1(T ) and the map PTψ1(T )
.

Lemma 5.4.4. Tψ1(T ) is a closed convex subset of L2(0, 1). Moreover, it holds that

PTψ1(T )
(H2
(0)(0,1)) ⊂ H2

(0)(0,1).

Proof. It easy to check that Tψ1(T ) is stable under sum and multiplication by a real number.
However, it is not the case for multiplication by a complex number. Let ξ ∈ L2(0,1), we have

2R〈iξ,ψ1(T )〉= i
�
〈ξ,ψ1(T )〉 − 〈ξ,ψ1(T )〉

�
,

that does not necessarily vanish. Moreover, it can be showed that Tψ1(T ) is closed and for any
σ ∈ [0, 1] and for any ξ ∈ Tψ1(T ), the function σξ + (1 − σ)ξ ∈ Tψ1(T ). Thus, Tψ1(T ) is a
closed convex subset of L2(0, 1).
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It can be proved that PTψ1(T )
is a projection onto the set Tψ1(T ) and furthermore for every

ξ ∈ H2
(0)(0, 1), the projection is defined by

PTψ1(T )
(ξ) = ξ− R〈ξ,ψ1(T )〉

||ψ1(T )||2
ψ1(T ),

and since ψ1(T ) = e−iλ1 Tϕ1 is in H2
(0)(0,1), then

PTψ1(T )
(H2
(0)(0,1)) ⊂ H2

(0)(0,1).

We define the end-point map

ΘT : L2(0, T ;R)→Tψ1(T ) ∩H2
(0)(0, 1)

p 7→ PTψ1(T )
(u(T ))

where u is the solution of (5.4.1) with initial condition u(0, x) = ϕ1(x).
The results that follows can be proved with the same strategy of [11].

Proposition 5.4.5. Let T > 0 and µ ∈ H2(0, 1;R). The map ΘT is of class C1. Moreover, for
any p, q ∈ L2(0, T ;R), the differential of the end-point map satisfies

dΘT (p) · q =PTψ1(T )
[U(T )] ,

where U is the mild solution of the linearized system




i∂t U = −∂ 2
x U − p(t)µ(x)U − q(t)µ(x)u, (t, x) ∈ (0, T )× (0, 1),

U(t, 0) = 0, U(t, 1) + ∂x U(t, 1) = 0,
U(0, x) = 0,

and u is the mild solution of (5.4.1) with the ground state as initial condition.

Proposition 5.4.6. Let T > 0 and µ ∈ H2(0,1;R) be such that (5.4.9) is fulfilled. Then, the
linear map

dΘT (0) : L2(0, T ;R)→Tψ1(T ) ∩H2
(0)(0, 1)

has a continuous right inverse dΘT (0)−1 : Tψ1(T ) ∩H2
(0)(0, 1)→ L2(0, T ;R).

Thanks to Proposition 5.4.6 it is possible to apply the inverse mapping theorem to the map
ΘT in a neighborhood of p = 0, proving that the Schrödinger equation (5.4.1) with initial
condition u(0, x) = ϕ1 is exactly controllable locally along the ground state solution ψ1. We
refer to [11] for the strategy of the proof of Theorem 5.4.1.
We want to point out that since the eigenvalues and eigenfunctions of the Laplacian with
(DR) boundary conditions are not explicit, it is even more difficult to provide examples of
potentials µ that fulfill hypothesis (5.4.9), and in particular such that

〈µϕ1,ϕk〉 6= 0, ∀ k ∈ N∗. (5.4.17)

However, following the algorithm presented in Theorem 5.3.18 it is possible to construct
polynomials of any degree q ∈ N∗ that verifies the aforementioned non-vanishing condition
of the Fourier coefficients of µϕ1. Furthermore, we will show that actually, in this setting,
property (5.4.17) implies (5.4.9).
The first step consists in proving the following Lemma.
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Lemma 5.4.7. Let (λk,ϕk)k∈N∗ be the eigenvalues and eigenfunctions of the operator (5.4.2)
and let µ ∈ H2(0,1).
Then, it holds that

λk

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x = µ′(1)ϕ1(1)ϕk(1)−
∫ 1

0

(µϕ1)
′′ (x)ϕk(x)d x , ∀ k ≥ 1.

(5.4.18)

Proof. Using the equation satisfied by ϕk, and the boundary condition, we have that

λk

∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x = −
∫ 1

0

µ(x)ϕ1(x)ϕ
′′
k (x)d x

= − �µ(x)ϕ1(x)ϕ
′
k(x)

�1

0 +

∫ 1

0

(µϕ1)
′ (x)ϕ′k(x)d x

=
�
µ′(x)ϕ1(x)ϕk(x) +µ(x)ϕ

′
1(x)ϕk(x)−µ(x)ϕ1(x)ϕ

′
k(x)

�1

0

−
∫ 1

0

(µϕ1)
′′ (x)ϕk(x)d x

= µ′(1)ϕ1(1)ϕk(1)−
∫ 1

0

(µϕ1)
′′ (x)ϕk(x)d x ,

as it was claimed.

Now, we show the asymptotic behavior of
∫ 1

0 µ(x)ϕ1(x)ϕk(x)d x .

Lemma 5.4.8. Let (λk,ϕk)k∈N∗ be the eigenvalues and eigenfunctions of the operator (5.4.2)
and let µ ∈ H2(0,1) be such that µ′(1) 6= 0.
Then, there exists k0 ∈ N∗ and cµ > 0 such that

�����
∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x

�����≥
cµ
λk

, ∀ k > k0.

Proof. Recalling the expression of the eigenfunctions (5.4.3) and noticing that 1≤ ηk ≤
p

2,
∀k ∈ N∗, and that

ηk →
p

2, as k→∞,

from (5.4.18) we obtain the following estimate
�����
∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x

�����≥
1
λk
|µ′(1)| r1rkq

r2
1 + 1

q
r2

k + 1
η1ηk −

ηk

λk

�����
∫ 1

0

(µϕ1)
′′ (x) sin(rk x)d x

�����

≥ 1
λk
|µ′(1)| r2

1

r2
1 + 1

−
p

2
λk

�����
∫ 1

0

(µϕ1)
′′ (x) sin(rk x)d x

�����
(5.4.19)

for all k ≥ 1. Thanks to Riemann-Lebesgue Lemma, since µ ∈ H2(0,1), we deduce that

∫ 1

0

(µϕ1)
′′ (x) sin(rk x)d x → 0, as k→∞,
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which implies that, fixed ε := |µ′(1)|
2
p

2

r2
1

r2
1+1 , there exists k0 ∈ N∗ such that

�����
∫ 1

0

(µϕ1)
′′ (x) sin(rk x)d x

�����< ε, ∀ k > k0.

Thus, using the latter bound in (5.4.19), we get
�����
∫ 1

0

µ(x)ϕ1(x)ϕk(x)d x

�����≥
cµ
λk

, ∀k > k0,

where cµ := |µ′(1)|
2

r2
1

r2
1+1 .

Finally, we prove that condition (5.4.17) yields to (5.4.9).

Lemma 5.4.9. Let (λk,ϕk)k∈N∗ be the eigenvalues and eigenfunctions of the operator (5.4.2)
and let µ ∈ H2(0,1) be such that (5.4.17) is verified and µ′(1) 6= 0.
Then, condition (5.4.9) holds true.

Proof. We set Ik(µ) :=
���∫ 1

0 µ(x)ϕ1(x)ϕk(x)d x
���. From the hypotheses on µ, we have that

|Ik(µ)|=
1
λk
|λk Ik(µ)| ≥

λ1

λk
min{|I1(µ)|, |I2(µ)|, . . . , |Ik0

(µ)|}> 0, ∀1≤ k ≤ k0.

Thus,

|Ik(µ)| ≥
1
λk

min
§

cµ, min
1≤`≤k0

|I`(µ)|
ª
=

Cµ
λk

, ∀ k ≥ 1.

Therefore, by choosing a polynomial µ of any degree q ∈ N∗ that satisfies Theorem 5.3.18
and Proposition 5.3.20, we have that

µ′(1) = b0 6= 0.

Hence Lemma 5.4.9 implies (5.4.9) for any function µ built through our algorithm.

5.4.2 Superexponential stabilizability of the heat equation with potential

Consider the bilinear control problem




ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0, t > 0, x ∈ (0,1)
u(t, 0) = 0, u′(t, 1) + u(t, 1) = 0,
u(0, x) = u0(x).

(5.4.20)

Definition 5.4.10. Given an initial condition ū0 ∈ X and a control p̄ ∈ L2
loc([0,+∞)), we

say that the control system (5.4.20) is locally superexponentially stabilizable to ū(·; ū0, p̄) if
for any ρ > 0 there exists R(ρ) > 0 such that, for every u0 ∈ BR(ρ)(ū0), there exists a control
p ∈ L2

loc([0,+∞)) such that

||u(t; u0, p)− ū(t; ū0, p̄)|| ≤ Me−ρeωt
, ∀t > 0,

where M ,ω> 0 are suitable constants.
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From [4, Theorem 3.4] we deduce that

Theorem 5.4.11. Let τ > 0 and µ ∈ H2(0,1;R) be such that

〈µϕ1,ϕk〉 6= 0, ∀k ∈ N∗,

∑
k∈N∗

e−2λkτ

|〈µϕ1,ϕk〉|2
< +∞.

(5.4.21)

Then, system (5.4.20) is superexponentially stabilizable to ψ1.
Moreover, for every ρ > 0 there exists Rρ > 0 such that any u0 ∈ BRρ (ϕ1) admits a control
p ∈ L2

loc([0,+∞)) such that the corresponding solution u(·; u0, p) of (5.4.20) satisfies

||u(t)−ψ1(t)|| ≤ Me−(ρeωt+λ1 t), ∀t ≥ 0, (5.4.22)

where M and ω are positive constants.

We observe that, reasoning as in the previous section, choosing any µ that fulfills Theorem
5.3.18 and Proposition 5.3.20, such function verifies (5.4.9). Hence the series in (5.4.21)
converges for all τ > 0.
Thus, is possible to exhibit an infinite class of polynomials µ that satisfy (5.4.21) thanks to
the algorithm described in Theorem 5.3.18.

5.4.3 Exact controllability to the ground state solution of the heat equation with
potential

Let T > 0 and consider the bilinear control system




ut(t, x)− ux x(t, x) + p(t)µ(x)u(t, x) = 0, (t, x) ∈ (0, T )× (0,1)
u(t, 0) = 0, u′(t, 1) + u(t, 1) = 0, t ∈ (0, T )
u(0, x) = u0(x) x ∈ (0,1).

(5.4.23)

Thanks to [3, Theorem 1.1] we deduce that

Theorem 5.4.12. Let µ ∈ H2(0, 1;R) be such that there exist b, q > 0 for which

〈µϕ1,ϕ1〉 6= 0, and λ
q
k|〈µϕ1,ϕk〉| ≥ b ∀ k > 1. (5.4.24)

Then, for any T > 0, there exists a constant RT > 0 such that, for any u0 ∈ BRT
(ϕ1), there exists

a control p ∈ L2(0, T ) for which system (5.4.23) is controllable to the ground state solution in
time T.

Therefore, it is enough to choose µ that verifies Theorem 5.3.18 and Proposition 5.3.20 to
have (5.4.24) fulfilled with q = 1, as showed in Lemma 5.4.9.
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APPENDIX A

Spectral properties of degenerate operators

In this appendix we present a class of degenerate operators and we study their spectral prop-
erties. We revise some known feature of this operators and show new results contained in
[25] and [20].
Let I = (0, 1), X = L2(I) and consider the degenerate operator

Au= −(a(x)ux)x (A.0.1)

where a(x) is the degenerate coefficient. We now recall the definition of two different kind
of degenerate operators. Let

a ∈ C0([0, 1])∩ C1((0, 1]), a > 0 on (0,1] and a(0) = 0. (A.0.2)

Definition A.0.1. If (A.0.2) holds and moreover

1
a
∈ L1(I) (A.0.3)

we say that the operator A defined in (A.0.1) is weakly degenerate.

Definition A.0.2. If (A.0.2) holds and moreover

a ∈ C1([0,1]) and
1p
a
∈ L1(I) (A.0.4)

we say that the operator A defined in (A.0.1) is strongly degenerate.

In particular, we will be interested in treating the degenerate coefficient

a(x) = xα.

Following the above definitions, we have a weakly degenerate operator for α ∈ [0, 1) and a
strongly degenerate one for α ∈ [1,2).

A.1 Dirichlet boundary conditions at x = 1

Consider the degenerate operator
Au= −(xαux)x , (A.1.1)

with Dirichlet boundary condition at x = 1. Depending on the type of degeneracy, it is cus-
tomary to assign different boundary conditions at x = 0.
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A.1.1 Weak degeneracy

Let α ∈ [0,1) and consider the degenerate operator (A.1.1) applied to a class of functions
that satisfy Dirichlet boundary conditions at both extrema. The natural spaces to define the
domains such operators are weighted Sobolev spaces. Let X = L2(I), we define the spaces

H1
α(I) =

�
u ∈ X : u is absolutely continuous on [0,1], xα/2ux ∈ X

	
(A.1.2)

endowed with the natural scalar product

( f , g) =

∫ 1

0

(xα fx gx + f g) d x , ∀ f , g ∈ H1
α(0,1),

and
H1
α,0(I) =

�
u ∈ H1

α(I) : u(0) = 0, u(1) = 0
	

,

H2
α(I) =

�
u ∈ H1

α(I) : xαux ∈ H1(I)
	

.
(A.1.3)

The domain of the linear operator (A.1.1) is defined by

D(A) := {u ∈ H1
α,0(I), xαux ∈ H1(I)}. (A.1.4)

It is possible to prove that D(A) is dense in X and A : D(A) ⊂ X → X is a self-adjoint accretive
operator (see, for instance, [16]). Therefore −A is the infinitesimal generator of an analytic
C0-semigroup of contraction e−tA on X .
To determine the spectrum of A, we need to solve the eigenvalue problem

¨ −(xαϕx)x(x) = λϕ(x), x ∈ I

ϕ(0) = 0, ϕ(1) = 0,
(A.1.5)

and it turns out that Bessel functions play a fundamental role in this circumstance. Indeed,
let us define the function ψ by

ϕ(x) = x
1−α

2 ψ

�
2

2−α
p
λx

2−α
2

�
,

then, ψ solves the following boundary problem




y2ψ′′(y) + yψ′(y) +
�

y2 − �α−1
2−α

�2�
ψ(y) = 0, y ∈

�
0, 2

p
λ

2−α
�

,

y
1−α
2−αψ(y)→ 0, as y → 0,

ψ
�

2
p
λ

2−α
�
= 0.

For α ∈ [0, 1) let

να :=
1−α
2−α , kα :=

2−α
2

. (A.1.6)

We can rewrite the above differential equation as

y2ψ′′(y) + yψ′(y) +
�

y2 − ν2
α

�
ψ(y) = 0

that is usually called Bessel′s equation for functions of order να. The solutions of the Bessel′s
equation generate a vector space of dimension 2 and it can be checked (see [58], pag. 43)
that the functions

Jνα(y) :=
∞∑

m=0

(−1)m

m!Γ (m+ να + 1)

� y
2

�2m+να
=
∞∑

m=0

c+να,m y2m+να ,
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and

J−να(y) :=
∞∑

m=0

(−1)m

m!Γ (m− να + 1)

� y
2

�2m−να
=
∞∑

m=0

c−να,m y2m−να ,

where Γ is the Gamma function, are well-defined on R∗+ and are a fundamental system of
solutions of the Bessel′s equation. Hence, any other solution ψ is a linear combination of Jνα
and J−να :

ψ(y) = C+Jνα(y) + C−J−να(y), ∀ y ∈
�

0,
2
p
λ

2−α

�
.

Coming back to the variable ϕ, we obtain that any solution of the differential equation in
(A.1.5) is defined by

ϕ(x) = C+x
1−α

2 Jνα

�
2

2−α
p
λx

2−α
2

�
+ C−x

1−α
2 J−να

�
2

2−α
p
λx

2−α
2

�
.

Using the series expression of Jνα and J−να , it is possible to prove that ϕ ∈ H1
α(0, 1) (see, for

instance, [24, pag. 182]) and, moreover, by imposing the boundary conditions we get that

ϕ(0) = 0 =⇒ C− = 0,

and

ϕ(1) = 0 =⇒ Jνα

�
2
p
λ

2−α

�
= 0.

For any ν ≥ 0, the Bessel function Jν of the first kind and order ν has an infinite number of
real zeros which are simple with the possible exception of x = 0 (see [58, pag. 478-479]). Let
jνα,1 < jνα,2 < · · · < jνα,k < . . . be the sequence of all positive zeros of Jνα , then the boundary
condition ϕ(1) = 0 implies that

2
Æ
λα,k

2−α = jνα,k ⇐⇒
Æ
λα,k =

2−α
2

jνα,k ⇐⇒ λα,k =
�

2−α
2

�2

j2
να,k, ∀ k ∈ N∗.

Therefore, we have proved that the pairs eigenvalue/eigenfunction (λα,k,ϕα,k) that satisfy
(A.1.5) are given by

λα,k = k2
α j2
να,k, (A.1.7)

ϕα,k(x) =

p
2kα

|J ′να( jνα,k)|
x (1−α)/2Jνα

�
jνα,k x kα

�
(A.1.8)

for every k ∈ N∗. Moreover, the family
�
ϕα,k

�
k∈N∗ is an orthonormal basis of X , see [41].

A.1.2 Strong degeneracy

In the case of strong degeneracy, that is, when α ∈ [1,2), we apply the operator A to a class of
functions satisfying a Neumann condition at the extremum where degeneracy occurs, x = 0,
and a Dirichlet condition at x = 1.
We define the Sobolev spaces

H1
α(I) =

�
u ∈ X : u is absolutely continuous on (0,1], xα/2ux ∈ X

	

H1
α,0(I) =

�
u ∈ H1

α(I) : u(1) = 0
	

,

H2
α(I) =

�
u ∈ H1

α(I) : xαux ∈ H1(I)
	 (A.1.9)
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Thus, the domain of A is defined as

D(A) :=
¦

u ∈ H1
α,0(I) : xαux ∈ H1(I)

©

=
�
u ∈ X : u is absolutely continuous in (0,1] , xαu ∈ H1

0(I),

xαux ∈ H1(I) and (xαux)(0) = 0
	

.

(A.1.10)

It can be proved that D(A) is dense in X and that A is self-adjoint and accretive (see, for
instance, [21]) and thus −A is the infinitesimal generator of an analytic semigroup of con-
tractions etA on X .
To compute the eigenvalues and eigenfunctions of A, we should solve the eigenvalue problem





−(xαϕx(x))x = λϕ(x), x ∈ I

(xαϕx)(0) = 0,

ϕ(1) = 0.

(A.1.11)

First of all, we observe that λ > 0. Indeed, multiplying the equation in (A.1.11) by ϕ and
integrating by parts, we obtain

λ

∫ 1

0

ϕ2(x)d x =

∫ 1

0

xαϕ2
x(x)d x

that implies λ ≥ 0. Moreover, if λ = 0, then ϕ(x) ≡ c and by imposing the boundary condi-
tions we get ϕ ≡ 0. Thus, λ= 0 is not an admissible eigenvalue.
As for the weakly degenerate spectral problem, we introduce the functionψ, implicitly defined
by

ϕ(x) = x
1−α

2 ψ

�
2

2−α
p
λx

2−α
2

�
,

that is the solution of the following boundary value problem




y2ψ′′(y) + yψ′(y) +
�

y2 − �α−1
2−α

�2�
ψ(y) = 0, y ∈

�
0, 2

p
λ

2−α
�

,

(2−α)y 1
2−αψ′(y)− (α− 1)y

α−1
2−αψ(y)→ 0, as y → 0,

ψ
�

2
p
λ

2−α
�
= 0.

For every να 6∈ N, every solution of the above Bessel′s equation can be expressed as a linear
combination of the fundamental system (Jνα , J−να):

ψ(y) = C+Jνα(y) + C−J−να(y), ∀ y ∈
�

0,
2
p
λ

2−α

�
,

or, equivalently,

ϕ(x) = C+x
1−α

2 Jνα

�
2

2−α
p
λx

2−α
2

�
+ C−x

1−α
2 J−να

�
2

2−α
p
λx

2−α
2

�
, ∀ x ∈ (0, 1).

On the other hand, when να ∈ N, Jνα and J−να are linearly dependent. Indeed, for any n ∈ N,
it holds that Jn(y) = (−1)nJn(y) (see, for instance, [58, pag. 43]). Therefore, to determine a
fundamental system of solutions, we introduce the Bessel′s functions of order ν of second kind
Yν, defined by � ∀ν /∈ N, Yν(y) := Jν(y) cos(νπ)−J−ν(y)

sin(νπ) ,
∀n ∈ N, Yn(y) := limν→n Yν(y).
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For any ν ∈ R+, the functions Jν and Yν are linearly independent (see [58, pag. 76]) and,
in particular, for any n ∈ N the pair (Jn, Yn) forms a fundamental system of solutions of the
Bessel′s equation.
Therefore, if να ∈ N, any solution of the Bessel′s equation can be expressed in terms of Jνα
and Yνα :

ψ(y) = C+Jνα(y) + C−Yνα(y), ∀ y ∈
�

0,
2
p
λ

2−α

�
,

or, back to the function ϕ:

ϕ(x) = C+x
1−α

2 Jνα

�
2

2−α
p
λx

2−α
2

�
+ C−x

1−α
2 Y−να

�
2

2−α
p
λx

2−α
2

�
, ∀ x ∈ (0, 1).

In both cases, να /∈ N and να = nα ∈ N, it is possible to prove that ϕ ∈ H1
α(0,1) if and

only if C− = 0 (see [23, pag- 13-15]). Hence, ϕ(x) = C+x
1−α

2 Jνα
�

2
2−α
p
λx

2−α
2

�
∈ H1

0(0, 1).
Furthermore, from the series expression of Jνα it can be shown that

xα
�

x
1−α

2 Jνα

�
2

2−α
p
λx

2−α
2

��
x
→ 0 as x → 0,

thus the boundary condition at x = 0 is automatically satisfied.
Similarly to the weakly degenerate case, from the boundary condition at x = 1 we find that

λk,α = k2
α j2
να,k, ∀ k ∈ N∗,

where { jνα,k} j∈N∗ are the positive zeros of the Bessel′s function Jνα .
To sum up, for any α ∈ [1,2), if we define the quantities

να :=
α− 1
2−α , kα :=

2−α
2

,

the eigenvalues and eigenfunctions that solve (A.1.11) are

λα,k = k2
α j2
να,k,

ϕα,k(x) =

p
2kα

|J ′να( jνα,k)|
x (1−α)/2Jνα

�
jνα,k x kα

�

for every k ∈ N∗, and the family
�
ϕα,k

�
k∈N∗ is an orthonormal basis of X .

In the following Proposition (from [25]) we present some properties enjoyed by the functions
in D(A), for α ∈ [1,2), which will be useful to study the degenerate control problem of section
2.2.5 in chapter 2.

Proposition A.1.1. Let α ∈ [1, 2). The following properties holds true:

1. |v(x)| ≤ 2||v||D(A)
α−1 x1−α, ∀ v ∈ D(A),

2. |xαv(x)| ≤ C
p

x , ∀ v ∈ D(A),

3. for α ∈ [1,3/2) it holds that

lim
x→0

x2v(x)wx(x) = 0, ∀v, w ∈ D(A),
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4. for α ∈ [1,3/2) it holds that

lim
x→0

x v(x)w(x) = 0, ∀v, w ∈ D(A),

5. let {ϕα,k}k∈N∗ be the family of eigenfunctions of A. For α ∈ [1, 3/2) and for every k, j ∈ N∗,
it holds that

lim
x→0

�
x(ϕα, j)x(x)

�
x xαϕα,k(x) = 0

.

Proof. 1. For all v ∈ D(A) and y ∈ I , we have

|v(1)− v(y)|=
�����
∫ 1

y

vx(x)d x

�����=
�����
∫ 1

y

(xαvx(x))
1
xα

d x

�����

≤ sup
0<x<1

|xαvx(x)|
��1− y1−α��
α− 1

≤ 2||v||D(A)
α− 1

y1−α

where in the last inequality we have used that, for all v ∈ D(A), it holds that

|a(y)vx(y)|=
����
∫ y

0

(avx)x (x)d x

����≤ ||(avx)x ||Xpy (A.1.12)

with a(y) = yα. Finally, recalling that v(1) = 0, we obtain the desired formula.

2. For every v ∈ D(A) and y ∈ I , we have

|yαv(y)| ≤
����
∫ y

0

(xαv)x(x)d x

����≤ ||(av)x ||Xpy .

3. Let v, w ∈ D(A). We can rewrite x2v(x)wx(x) as

x2−αv(x)xαwx(x). (A.1.13)

Thanks to (A.1.12), there exists a constant C > 0 such that

|xαwx(x)| ≤ C x1/2. (A.1.14)

Thus, using the first item and (A.1.14) we obtain that

|x2−αv(x)xαwx(x)| ≤ C x2−αx1−αx1/2 (A.1.15)

and therefore the right-hand side tends to 0 as x goes to 0 for α < 3/2.

4. Let v ∈ D(A). It is sufficient to prove that lim
x→0

x1/2v(x) = 0.

For this purpose, we observe that the function x1/2v(x) is integrable in I : indeed, using
again the first point of the Proposition, we get

|x1/2v(x)| ≤ C x1/2+1−α
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that is integrable in I . Moreover, the derivative of x1/2v(x) is integrable in I :

�
x1/2v(x)

�
x = x1/2vx(x) +

1
2

x−1/2v(x) (A.1.16)

and we can bound the two terms on the right by

|x1/2vx(x)| ≤ |xαvx(x)x
1/2−α| ≤ C x1−α

that is integrable for any α ∈ [1,2) and by

|x−1/2v(x)| ≤ C x1/2−α

that is integrable for α ∈ [1,3/2).

Thus, we can deduce that the function x1/2v(x) is absolutely continuous in I for α ∈
[1,3/2). So, the limit

lim
x→0+

x1/2v(x) = L (A.1.17)

does exist. If L 6= 0, then v(x)would be of the same order as 1
x1/2 near 0. This contradicts

the fact that v ∈ X . Thus, L = 0.

5. Recalling that (xα(ϕα,k)x)x(x) = −λkϕα,k(x), we have

(x(ϕα, j)x)x(x)x
αϕα,k(x) = (x

α(ϕα, j)x x1−α)x(x)x
αϕα,k(x)

= (xα(ϕα, j)x)x(x)x
1−αxαϕα,k(x)

+ (1−α)xα(ϕα, j)x(x)x
−αxαϕα,k(x)

= −λ j xϕα, j(x)ϕα,k(x) + (1−α)xα(ϕα, j)x(x)ϕα,k(x).

The first of the two terms in the last equation on the right-hand side of the above formula
goes to 0 as x → 0, for α < 3/2, by the previous item. Moreover, we have

|xα(ϕα, j)x(x)ϕα,k(x)| ≤ C x1/2 x1−α.

Therefore,
lim
x→0

�
x(ϕα, j)x

�
x (x)x

αϕα,k(x) = 0

for α ∈ [1, 3/2), as it was claimed.

A.2 Neumann boundary conditions

In this section (mostly based on [20]) we study the degenerate operator A, defined in (A.1.1)
applied to functions that satisfy Neumann boundary conditions.

A.2.1 Weak degeneracy

Let α ∈ [0, 1), I = (0,1), X = L2(I) and consider the weighted Sobolev spaces H1
α(I) and

H2
α(I) defined in (A.1.2) and (A.1.3) respectively.
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We define the linear operator A : D(A) ⊂ X → X by

� ∀u ∈ D(A), Au := −(xαux)x ,
D(A) :=

�
u ∈ H2

α(I), (x
αux)(0) = 0, ux(1) = 0

	
.

(A.2.1)

Proposition A.2.1. Let α ∈ [0,1), then A : D(A) ⊂ L2(0,1)→ L2(0,1) is a self-adjoint accretive
operator with dense domain.

Before proving Proposition A.2.1, let us show the following integration by parts formula.

Lemma A.2.2. Let α ∈ [0,1), then

∫ 1

0

(xα f ′)′(x)g(x)d x = −
∫ 1

0

xα f ′(x)g ′(x)d x , ∀ f , g ∈ H2
α(I) (A.2.2)

Proof. If f ∈ H2
α(I), then

F(x) := xα f ′(x) ∈ H1(I).

Let g ∈ H2
α(I), and ε ∈ (0,1). Decompose

∫ 1

0

F ′(x)g(x)d x =

∫ ε

0

F ′(x)g(x)d x

∫ 1

ε

F ′(x)g(x)d x .

Then, since g ∈ H2
α(I) ⊂ H1(ε, 1), the usual integration by parts formula gives

∫ 1

ε

F ′(x)g(x)d x = [F(x)g(x)]1ε −
∫ 1

ε

F(x)g ′(x)d x

= [F(x)g(x)]1ε −
∫ 1

ε

(xα/2 f ′(x))(xα/2 g ′(x))d x .

Now, since xα/2 f ′ and xα/2 g ′ belong to L2(I), we have

∫ 1

ε

F(x)g ′(x)d x →
∫ 1

0

F(x)g ′(x)d x , as ε→ 0,

and since F ′ and g belong to L2(I), we get

∫ ε

0

F ′(x)g(x)d x → 0, as ε→ 0.

It remains to study the boundary terms. First, because of Neumann boundary condition at
x = 1, we have

[F(x)g(x)]1ε = −F(ε)g(ε).

We note that F(ε)→ 0 as ε→ 0, and g is absolutely continuous on [0, 1], hence

[F(x)g(x)]1ε = −F(ε)g(ε)→ 0, as ε→ 0,

and this concludes the integration by parts formula.
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Proof of Proposition A.2.1. First, we note that D(A) is dense in X , since it contains all the
functions of class C∞, compactly supported in I .
We derive from Lemma A.2.2 that

〈Af , f 〉= −
∫ 1

0

�
xα f ′

�′
(x) f (x)d x =

∫ 1

0

xα f ′(x)2d x ≥ 0, ∀ f ∈ D(A),

therefore A is accretive.
In order to show that A is symmetric, we apply Lemma A.2.2 twice to obtain that

∀ f , g ∈ D(A), 〈Af , g〉= −
∫ 1

0

(xα f ′)′(x)g(x)d x =

∫ 1

0

xα f ′(x)g ′(x)d x

=

∫ 1

0

(xαg ′(x)) f ′(x)d x = −
∫ 1

0

(xαg ′)′(x) f (x)d x = 〈 f , Ag〉.

Finally, we check that I + A is surjective. Let f ∈ L2(I). Then, by Riesz theorem, there exists
one and only one element u ∈ H1

α(I) such that

∀ v ∈ H1
α(I),

∫ 1

0

�
uv + xαu′v′

�
=

∫ 1

0

f v.

In particular, the above relation holds true for all v of class C∞, compactly supported in I .
Thus, x 7→ xαu′ has a weak derivative given by

−
�

xαu′
�′
= f − u.

Since f − u ∈ L2(I), we obtain that (xαu′)′ ∈ L2(I). Hence, u ∈ H2
α(I). Now, choosing first v

of class C∞ compactly supported in [ 1
2 , 1], but not equal to 0 at the point x = 1, we derive

that
∫ 1

0

f v =

∫ 1

0

�
uv + xαu′v′

�

=

∫ 1

0

uv + [xαu′v]10 −
∫ 1

0

(xαu′)′v = [xαu′v]10 +
∫ 1

0

(u− (xαu′)′)v,

therefore u′(1)v(1) = 0 that implies u′(1) = 0. In the same way, by choosing v of class
C∞ compactly supported in [0, 1

2 ], but not equal to 0 at the point x = 0, we obtain that
(xαu′)(0) = 0. Thus, u ∈ D(A) and (I + A)u = f . So, the operator I + A is surjective. This
concludes the proof of Proposition A.2.1.

We now investigate the eigenvalues and eigenfunctions of the operator A : D(A) ⊂ X → X by
looking for solutions (λ,ϕ) of the following eigenvalue problem




−(xαϕx)x(x) = λϕ, x ∈ I ,
(xαϕx)(0) = 0,
ϕx(1) = 0.

(A.2.3)

Proposition A.2.3. Given α ∈ [0,1), let

κα :=
2−α

2
, να :=

1−α
2−α ,
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and consider the Bessel function J−να of negative order −να, and the positive zeros ( j−να−1,m)m≥1

of the Bessel function J−να−1.
Then, the solutions of problem (A.2.3) are

λα,0 = 0, ϕα,0(x) = 1 (A.2.4)

and for all m≥ 1
λα,m = κ

2
α j2
−να−1,m, (A.2.5)

ϕα,m(x) = Kα,m x
1−α

2 J−να
�

j−να−1,m x
2−α

2

�
, (A.2.6)

where the positive constant Kα,m is such that ‖ϕα,m‖L2(0,1) = 1. Moreover, the sequence (ϕα,m)m≥0

forms an orthonormal basis of L2(0, 1).
Furthermore, the following property holds true: the sequence (

Æ
λα,m+1−

Æ
λα,m)m≥1 is decreas-

ing and Æ
λα,m+1 −

Æ
λα,m→

2−α
2
π, as m→∞. (A.2.7)

Proof. First, we note that if (λ,ϕ) solves (A.2.3) then λ ≥ 0: indeed, for any α ∈ [0, 1),
multiplying by ϕ, we obtain

λ

∫ 1

0

ϕ2 =

∫ 1

0

−(xαϕ′)′ϕ = [−(xαϕ′)ϕ]10 +
∫ 1

0

xα(ϕ′)2 =
∫ 1

0

xα(ϕ′)2.

If λ= 0, then x 7→ xαϕ′ is constant and, by imposing to the boundary conditions, we find that
it is actually equal to 0. Thus, the constant functions are the ones and only ones associated
to the eigenvalue λ= 0.
We now investigate the positive eigenvalues: if λ > 0, we introduce the function ψ defined
by the relation

ϕ(x) = x
1−α

2 ψ
� 2

2−α
p
λx

2−α
2

�
,

and the associated new space variable

y =
2

2−α
p
λx

2−α
2 .

After some classical computations, we obtain that ψ satisfies the following problem:





y2ψ′′(y) + yψ′(y) +
�

y2 − ( 1−α
2−α )

2
�
ψ(y) = 0, y ∈ (0, 2

2−α
p
λ),

y
1

2−αψ′(y) + 1−α
2−α y

α−1
2−αψ(y)→ 0 as y → 0,p

λψ′( 2
2−α
p
λ) + 1−α

2 ψ
′( 2

2−α
p
λ) = 0.

(A.2.8)

The first equation in (A.2.8) is the Bessel equation of order

να :=
1−α
2−α ∈

�
0,

1
2

�
.

Then, the ODE we need to solve can be rewritten as

y2ψ′′(y) + yψ′(y) + (y2 − ν2
α)ψ(y) = 0. (A.2.9)

The fundamental theory of ordinary differential equations establishes that the solutions of
(A.2.9) generate a vector space of dimension 2. Looking for solutions of (A.2.9) of the form
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of series of ascending powers of y , we find that the Bessel functions of order να and −να
solve the equation

Jνα(y) :=
∞∑

m=0

(−1)m

m! Γ (m+ να + 1)

� y
2

�2m+να
=
∞∑

m=0

c+να,m y2m+να , (A.2.10)

J−να(y) :=
∞∑

m=0

(−1)m

m! Γ (m− να + 1)

� y
2

�2m−να
=
∞∑

m=0

c−να,m y2m−να . (A.2.11)

When να 6∈ N, the two functions Jνα and J−να are linearly independent and therefore the pair
(Jνα , J−να) forms a fundamental system of solutions of (A.2.9), (see [58, section 3.1, eq. (8),
p. 40], [58, section 3.12, eq. (2), p. 43] or [48, eq. (5.3.2), p. 102])): hence

(
y2ψ′′(y) + yψ′(y) + (y2 − ν2

α)ψ(y) = 0,

y ∈ I

=⇒ ∃ C+, C− ∈ R,

(
ψ(y) = C+Jνα(y) + C−J−να(y),

y ∈ I .
(A.2.12)

Thus, going back to the original variables, we obtain that

(
−(xαϕ′)′(x) = λϕ(x),
x ∈ I

=⇒ ∃ C+, C− ∈ R,

(
ϕ(x) = C+ϕ+(x) + C−ϕ−(x),

x ∈ I ,
(A.2.13)

with

ϕ+(x) = x
1−α

2 Jνα
� 2

2−α
p
λx

2−α
2

�
= x

1−α
2

∞∑
m=0

c+να,m

� 2
2−α

p
λx

2−α
2

�2m+να

=
∞∑

m=0

c+να,m

� 2
2−α

p
λ
�2m+να

x1−α+(2−α)m =
∞∑

m=0

c̃+α,λ,m x1−α+(2−α)m
(A.2.14)

and

ϕ−(x) = x
1−α

2 J−να
� 2

2−α
p
λx

2−α
2

�
= x

1−α
2

∞∑
m=0

c−να,m

� 2
2−α

p
λx

2−α
2

�2m−να

=
∞∑

m=0

c−να,m

� 2
2−α

p
λ
�2m−να

x (2−α)m =
∞∑

m=0

c̃−α,λ,m x (2−α)m.

(A.2.15)

Note that
ϕ+(x)→ 0, as x → 0+,

hence ϕ+ ∈ L2(I). Moreover,

ϕ′+(x)∼ c̃+α,λ,0

1−α
xα

, as x → 0+,

therefore ϕ+ is absolutely continuous on [0, 1] and multiplying ϕ′+ by xα/2 we obtain

xα/2ϕ′+(x)∼ c̃+α,λ,0

1−α
xα/2

, as x → 0+,
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so, ϕ+ ∈ H1
α(I). Finally,

(xαϕ′+)
′(x)→ 0, as x → 0+,

and we deduce that ϕ+ ∈ H2
α(I). With the same procedure, one easily checks that ϕ− ∈ H2

α(I).
Since the eigenfunctions, in addition, have to satisfy that xαϕ′(x)→ 0 as x → 0, we have

xαϕ′−(x)→ 0, as x → 0,

while this is not the case for ϕ+:

xαϕ′+(x)→ c̃+α,λ,0(1−α) 6= 0, as x → 0.

Therefore,
(
−(xαϕ′)′(x) = λϕ(x), x ∈ I

(xαϕ′)(0) = 0
=⇒ ∃ C− ∈ R,

(
ϕ(x) = C−ϕ−(x),

x ∈ I ,

Furthermore, ϕ has to fulfill the second boundary condition: ϕ′(1) = 0. The expression of
the derivative of ϕ− is given by

ϕ′−(x) =
1−α

2
x
−1−α

2 J−να
� 2

2−α
p
λx

2−α
2

�
+ x

1−α
2

p
λx−α/2J ′−να

� 2
2−α

p
λx

2−α
2

�
,

and since C− 6= 0, the condition ϕ′−(1) = 0 is equivalent to require

1−α
2

J−να
� 2

2−α
p
λ
�
+
p
λJ ′−να

� 2
2−α

p
λ
�
= 0. (A.2.16)

This is the equation that characterizes the eigenvalues λ. Multiplying by 2
2−α , (A.2.16) be-

comes
2

2−α
1−α

2
J−να

� 2
2−α

p
λ
�
+

2
2−α

p
λJ ′−να

� 2
2−α

p
λ
�
= 0. (A.2.17)

Introducing

Xλ =
2

2−α
p
λ,

(A.2.17) can be rewritten as

ναJ−να(Xλ) + XλJ ′−να(Xλ) = 0. (A.2.18)

This is a known formula, see [58] p. 45, formula (3):

νJν(z) + zJ ′ν(z) = zJν−1(z). (A.2.19)

Hence, we get that
XλJ−να−1(Xλ) = 0, (A.2.20)

which implies
J−να−1(Xλ) = 0. (A.2.21)

Thus, the possible values for Xλ are the positive zeros of J−να−1:

2
2−α

p
λ= Xλ = j−να−1,m.
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We obtain that the eigenvalues of (A.2.3) have the following form:

λ= κ2
α j2
−να−1,m.

Vice–versa, given m≥ 1, consider

λm := κ2
α j2
−να−1,m and ϕm(x) = x

1−α
2 J−να

�
j−να−1,m x

2−α
2

�
.

From the previous argument, we deduce that ϕm ∈ H2
α(I) and that (λm,ϕm) solves (A.2.3).

Finally, the proof of (A.2.7) follows directly from [47] p. 135. Since −να−1≤ −1< − 1
2 , the

sequence ( j−να−1,m+1 − j−να−1,m)m≥1 is decreasing and moreover

j−να−1,m+1 − j−να−1,m→ π as m→∞.

This concludes the proof of Proposition A.2.3.

Lemma A.2.4. Given α ∈ [0, 1), the eigenvalues ϕα,n satisfies

|ϕα,n(1)|=
p

2−α, ∀n≥ 1, (A.2.22)

and

ϕα,n(0)∼ c−να,0

√√ (2−α)π
2

( j−να−1,n)
1
2−να , as n→ +∞, (A.2.23)

where the coefficient c−να,0 is defined in (A.2.11). In particular, the sequence (ϕα,n(0))n≥1 is
bounded if and only if α= 0.

Proof. First we note that j−να−1,n is not a zero of J−να :

∀α ∈ [0,1),∀n≥ 1, J−να( j−να−1,n) 6= 0. (A.2.24)

Indeed, if J−να( j−να−1,n) = 0, we derive from (A.2.19) that J ′−να( j−να−1,n) = 0, and then the
Cauchy problem satisfied by J−να would imply that J−να is constantly equal to zero.
We also deduce from (A.2.19) that

J ′−να( j−να−1,n) = −
να

j−να−1,n
J−να( j−να−1,n). (A.2.25)

We compute the value of the constants Kα,n that appear in (A.2.6): we have

1= K2
α,n

∫ 1

0

x1−αJ−να
�

j−να−1,n x
2−α

2

�2
d x .

Thanks to the change of variables y = x
2−α

2 , we get

1= K2
α,n

2
2−α

∫ 1

0

yJ−να
�

j−να−1,n y
�2

d y,

and applying formula (5.14.5) p.129 in [48], we obtain

1= K2
α,n

1
2−α

�
J ′−να

�
j−να−1,n

�2
+

�
1− ν2

α

j2
−να−1,n

�
J−να

�
j−να−1,n

�2

�
.
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Therefore

∀α ∈ [0,1),∀n≥ 1, Kα,n =


 2−α

J ′−να
�

j−να−1,n

�2
+
�

1− ν2
α

j2
−να−1,n

�
J−να

�
j−να−1,n

�2




1/2

,

and using (A.2.25), we obtain a simple expression for Kα,n:

∀α ∈ [0, 1),∀n≥ 1, Kα,n =
p

2−α
|J−να( j−να−1,n)|

. (A.2.26)

Thus, from (A.2.6) we deduce the value of |ϕα,n(1)| given in (A.2.22), and the value ofϕα,n(0).
Indeed, from (A.2.11), we have

ϕα,n(0) =
p

2−α
|J−να( j−να−1,n)|

c−να,0( j−να−1,n)
−να . (A.2.27)

In particular, functionϕα,n has a finite limit as x → 0. Moreover, using the classical asymptotic
development (see, for instance, [48, formula (5.11.6) p. 122]):

Jν(z) =

√√ 2
πz

�
cos(z − νπ

2
− π

4
)(1+O(

1
z2
)) +O(

1
z
)
�
, as z→∞, (A.2.28)

we obtain that

Jν(z)
2 =

2
πz

cos2(z − νπ
2
− π

4
) +O(

1
z2
), as z→∞ (A.2.29)

Applying this latter formula with ν+ 1, we get

zJν+1(z)
2 =

2
π

cos2
�

z − (ν+ 1)π
2

− π
4

�
+O

�
1
z

�
=

2
π

sin2
�

z − νπ
2
− π

4

�
+O

�
1
z

�
.

Therefore

zJν(z)
2 + zJν+1(z)

2 =
2
π
+O

�
1
z

�
,

which gives that

zJν(z)
2 + zJν+1(z)

2→ 2
π

, as z→ +∞. (A.2.30)

This implies that

j−να−1,nJ−να−1( j−να−1,n)
2 + j−να−1,nJ−να( j−να−1,n)

2→ 2
π

, as n→ +∞.

Hence

J−να( j−να−1,n)
2 ∼ 2

π j−να−1,n
, as n→ +∞, (A.2.31)

and then, combining with (A.2.27) we obtain (A.2.23).

A.2.2 Strong degeneracy

In this section we study the properties of the strongly degenerate operator

Au= −(xαux)x ,
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that is, when α ∈ [1,2). Consider the weighted Sobolev spaces H1
α(I) and H2

α(I) introduced
in (A.1.9). We define the domain of A : D(A) ⊂ X → X by

D(A) :=
�
u ∈ H2

α(I), (x
αux) (0) = 0, ux(1) = 0

	
.

Then, the following result holds true.

Proposition A.2.5. Let α ∈ [1,2), then A : D(A) ⊂ X → X is a self-adjoint accretive operator
with dense domain.

Therefore, also in the strongly degenerate setting, A is the infinitesimal generator of an ana-
lytic semigroup of contractions etA on X .
To prove the above Proposition, the following integration by parts formula will be necessary.

Lemma A.2.6. Let α ∈ [1,2), then

∀ f , g ∈ H2
α(I),

∫ 1

0

(xα f ′)′(x)g(x)d x = −
∫ 1

0

xα f ′(x)g ′(x)d x . (A.2.32)

Proof. If f ∈ H2
α(I), then

F(x) := xα f ′(x) ∈ H1(I).

Let g ∈ H2
α(I), and ε ∈ (0, 1). Decompose

∫ 1

0

F ′(x)g(x)d x =

∫ ε

0

F ′(x)g(x)d x +

∫ 1

ε

F ′(x)g(x)d x .

Since g ∈ H2
α(I) ⊂ H1(ε, 1), the classical integration by parts formula gives

∫ 1

0

F ′(x)g(x)d x =

∫ ε

0

F ′(x)g(x)d x + [F(x)g(x)]1ε −
∫ 1

ε

F(x)g ′(x)d x .

To prove equation (A.2.32), we have to let ε→ 0 in this identity. First, we note that
∫ 1

ε

F(x)g ′(x)d x =

∫ 1

ε

(xα f ′(x))g ′(x)d x =

∫ 1

ε

(xα/2 f ′(x))(xα/2 g ′(x))d x ,

and since x 7→ xα/2 f ′(x) and x 7→ xα/2 g ′(x) belong to L2(I), we have that
∫ 1

ε

(xα/2 f ′(x))(xα/2 g ′(x))d x →
∫ 1

0

(xα/2 f ′(x))(xα/2 g ′(x))d x , as ε→ 0.

Therefore, ∫ 1

ε

F(x)g ′(x)d x →
∫ 1

0

F(x)g ′(x)d x , as ε→ 0.

Moreover, since F ′ and g belong to L2(I), we get that
∫ ε

0

F ′(x)g(x) d x → 0, as ε→ 0.

It remains to study the boundary terms: first, because of Neumann boundary conditions at
x = 1, we have F(1) = 0 and since g has a finite limit as x → 1, we obtain

[F(x)g(x)]1ε = −F(ε)g(ε).
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Now, we note that

∀ x ∈ (0, 1), (F(x)g(x))′ = F ′(x)g(x) + F(x)g ′(x)

= F ′(x)g(x) + (xα/2 f ′(x))(xα/2 g ′(x)),

and therefore (F g)′ ∈ L1(0, 1) because F ′, g, xα/2 f ′, xα/2 g ′ belong to L2(0,1). Thus, F g is
absolutely continuous on (0,1] and it has a limit as x → 0. This means that there exists L
such that

F(x)g(x)→ L, as x → 0+.

We claim that L = 0. Indeed, the function x 7→ xα f ′(x) belongs to H1(I), hence it has a limit
as x → 0+:

xα f ′(x)→ `, as x → 0+.

If ` 6= 0,

xα/2 f ′(x)∼ `

xα/2
, as x → 0+.

However, since α≥ 1, we have that `
xα/2 /∈ L2(I), so `= 0. Moreover,

∀ x ∈ (0, 1), xα f ′(x) =
∫ x

0

(sα f ′)′(s)ds,

and using the Cauchy-Schwartz inequality, we obtain

∀ x ∈ (0,1), |xα f ′(x)| ≤ C
p

x .

Finally,
∀ x ∈ (0,1), |xα f ′(x)g(x)| ≤ C

p
x |g(x)|,

thus
∀ x ∈ (0,1), |F(x)g(x)| ≤ C

p
x |g(x)|.

If L 6= 0, then for x sufficiently close to 0 we have

|g(x)| ≥ C L
2
p

x
,

which is in contradiction with the fact that g ∈ L2(I). Therefore, L = 0.
This implies that

[F(x)g(x)]1ε = −F(ε)g(ε)→ 0, as ε→ 0+.

This concludes the proof of Lemma A.2.6.

Proof of Proposition A.2.5. The strategy of the proof is similar to the one of Proposition A.2.1
and relies on the integration by parts formula given by Lemma A.2.6. It is possible to prove, as
in Proposition A.2.1, that D(A) is dense in X and furthermore that A is accretive and symmetric.
To prove the surjectivity of I + A, we have already noted that for any f ∈ L2(I) there exists a
unique u ∈ H1

α(I) such that

∀ v ∈ H1
α(I),

∫ 1

0

�
uv + xαu′v′

�
=

∫ 1

0

f v.
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Actually, we have proved that u ∈ H2
α(0,1). This implies that xαu′(x)→ 0, as x → 0. Hence,

the boundary condition is satisfied at x = 0. Taking now v of class C∞, but not equal to 0 at
the point x = 1, we derive that

∫ 1

0

f v =

∫ 1

0

�
uv + xαu′v′

�

=

∫ 1

0

uv + [xαu′v]10 −
∫ 1

0

(xαu′)′v = [xαu′v]10 +
∫ 1

0

(u− (xαu′)′)v,

thus u′(1)v(1) = 0, and therefore u′(1) = 0. We obtain that u ∈ D(A) and (I + A)u = f . So,
the operator I + A is surjective. Therefore A : D(A) ⊂ X → X is self-adjoint.

We now analyze the spectral property of the strongly degenerate operator A : D(A) ⊂ X → X .
Thus, we want to solve (A.2.3) for α ∈ [1, 2).

Proposition A.2.7. For any α ∈ [1, 2), let

κα :=
2−α

2
, να :=

α− 1
2−α ,

and consider the Bessel function Jνα of positive order να, and the positive zeros ( jνα+1,m)m≥1 of
the Bessel function Jνα+1.
Then, the solutions of problem (A.2.3) are

λα,0 = 0, ϕα,0(x) = 1 (A.2.33)

and for all m≥ 1
λα,m = κ

2
α j2
να+1,m, (A.2.34)

ϕα,m(x) = Kα,m x
1−α

2 Jνα
�

jνα+1,m x
2−α

2

�
, (A.2.35)

where the positive constant constant Kα,m is such that ‖ϕα,m‖L2(0,1) = 1. Moreover, the sequence
(ϕα,m)m≥0 forms an orthonormal basis of L2(0, 1).
Furthermore, the following property holds true: the sequence (

Æ
λα,m+1−

Æ
λα,m)m≥1 is decreas-

ing and Æ
λα,m+1 −

Æ
λα,m→

2−α
2
π, as m→∞. (A.2.36)

Proof. First, we note that if (λ,ϕ) solves (A.2.3) with α ∈ [1,2), then λ≥ 0: indeed, for any
α ∈ [1, 2), multiplying by ϕ, we obtain

λ

∫ 1

0

ϕ2 =

∫ 1

0

−(xαϕ′)′ϕ = [−(xαϕ′)ϕ]10 +
∫ 1

0

xα(ϕ′)2 =
∫ 1

0

xα(ϕ′)2.

If λ= 0, then x 7→ xαϕ′ is constant and, by imposing to the boundary conditions, we find that
it is actually equal to 0. Thus, the constant functions are the ones and only ones associated
to the eigenvalue λ= 0.
We now investigate the positive eigenvalues. Following the same strategy of the proof of
Proposition (A.2.3), we introduce the function ψ defined by the relation

ϕ(x) = x
1−α

2 ψ
� 2

2−α
p
λx

2−α
2

�
,
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and the associated new space variable

y =
2

2−α
p
λx

2−α
2 .

It turns out thatψ satisfies problem (A.2.8). The first equation in (A.2.8) is the Bessel equation
of order

να :=
α− 1
2−α ∈

�
0,

1
2

�
.

Then, the ODE we need to solve can be rewritten as (A.2.9).
As recalled previously, when να /∈ N, Jνα and J−να form a fundamental system of solutions of
(A.2.9). Hence (A.2.12) and (A.2.13) still hold. However, the difference lies in the functions
ϕ+ and ϕ−: here we have

ϕ+(x) = x
1−α

2 Jνα
� 2

2−α
p
λx

2−α
2

�

= x
1−α

2

∞∑
m=0

c+να,m

� 2
2−α

p
λx

2−α
2

�2m+να

=
∞∑

m=0

c+να,m

� 2
2−α

p
λ
�2m+να

x (2−α)m

=
∞∑

m=0

c̃+α,λ,m x (2−α)m,

(A.2.37)

and

ϕ−(x) = x
1−α

2 J−να
� 2

2−α
p
λx

2−α
2

�

= x
1−α

2

∞∑
m=0

c−να,m

� 2
2−α

p
λx

2−α
2

�2m−να

=
∞∑

m=0

c−να,m

� 2
2−α

p
λ
�2m−να

x (2−α)m

=
∞∑

m=0

c̃−α,λ,m x1−α+(2−α)m.

(A.2.38)

We note that
ϕ+(x)→ c̃+α,λ,0, as x → 0+,

hence ϕ+ ∈ L2(I). Moreover,

xα/2ϕ′+(x)∼ c̃+α,λ,1(2−α)x1− α2 , as x → 0+,

that implies ϕ+ ∈ H1
α(I). Furthermore,

(xαϕ′+)
′(x)→ c̃+α,λ,1(2−α), as x → 0+,

thus ϕ+ ∈ H2
α(I). However, for ϕ− it holds that

xα/2ϕ′−(x)∼ c̃−α,λ,1(1−α)x−α/2, as x → 0+,

and we deduce that ϕ− /∈ H1
α(I), and, in particular, ϕ− /∈ H2

α(I).
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Therefore C− = 0 and (A.2.13) becomes
(
−(xαϕ′)′ = λϕ,

x ∈ I
=⇒ ∃ C+ ∈ R,

(
ϕ(x) = C+ϕ+(x),

x ∈ I .
(A.2.39)

Observe that (xαϕ′+)(0) = 0 and therefore the boundary condition at x = 0 is automatically
satisfied.
Additionally, to be an eigenfunction, ϕ has to solve the second boundary condition ϕ′(1) = 0.
We recall that

ϕ′+(x) =
1−α

2
x
−1−α

2 Jνα

�
2

2−α
p
λx

2−α
2

�
+ x

1−α
2

p
λx−α/2J ′να

�
2

2−α
p
λx

2−α
2

�
.

Hence, if ϕ is an eigenfunction, C+ 6= 0 and ϕ′+(1) = 0 that yields the following relation

1−α
2

Jνα

�
2

2−α
p
λ

�
+
p
λJ ′να

�
2

2−α
p
λ

�
= 0. (A.2.40)

This is the equation that characterizes the eigenvalues λ. Multiplying by 2
2−α , (A.2.40) be-

comes
2

2−α
1−α

2
Jνα
� 2

2−α
p
λ
�
+

2
2−α

p
λJ ′να

� 2
2−α

p
λ
�
= 0. (A.2.41)

Introducing once again

Xλ =
2

2−α
p
λ,

equation (A.2.41) can be rewritten as

− ναJνα(Xλ) + XλJ ′να(Xλ) = 0. (A.2.42)

This is a known formula, see [58, p. 45, formula (4)]:

zJ ′ν(z)− νJν(z) = zJν+1(z). (A.2.43)

that in our case would be the following relation

−ναJνα(Xλ) + XλJ ′να(Xλ) = XλJνα+1(Xλ).

Thus, (A.2.41) implies
XλJνα+1(Xλ) = 0, (A.2.44)

or, equivalently,
Jνα+1(Xλ) = 0. (A.2.45)

The possible values for Xλ are the positive zeros of Jνα+1:

2
2−α

p
λ= Xλ = jνα+1,m.

This identity provides the following expression for the eigenvalues

λ= κ2
α j2
να+1,m.

Vice–versa, given m≥ 1, consider

λm := κ2
α j2
να+1,m and ϕm(x) = x

1−α
2 Jνα

�
jνα+1,m x

2−α
2

�
.
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It is clear from the previous analysis thatϕm ∈ H2
α(I) and that the pair (λm,ϕm) solves (A.2.3).

Finally, the proof of (A.2.36) follows directly from [47, p. 135]. Since να + 1 ≥ 1 > 1
2 , the

sequence ( jνα+1,m+1 − jνα+1,m)m≥1 is decreasing

jνα+1,m+1 − jνα+1,m→ π as m→∞.

Now, we cope with the case να =
α−1
2−α ∈ N. It has been proved in [23] that (A.2.39) remains

true (with ϕ+ defined in (A.2.37), the only difference is that the fundamental system of the
solutions of (A.2.9) now involve Jνα and Yνα , the Bessel’s function of order να and of second
kind (see [58, section 3.54, eq. (1)-(2), p. 64] or [48, eq. (5.4.5)-(5.4.6), p. 104]). Thus,
one can conclude by reasoning as in the case να /∈ N.
Note that there is a hidden continuity property concerning the eigenvalues as α → 1: if
α ∈ [0, 1), then (A.2.5) gives that

Æ
λm(α) = κα j−να−1,m→

1
2

j−1,m, as α→ 1−,

and if α ∈ [1, 2), then (A.2.34) gives that

Æ
λm(α) = κα j−να−1,m→

1
2

j1,m =
Æ
λm(1) as α→ 1+.

From [58, p. 45 formula (1)]
J−1(x) + J1(x) = 0,

we deduce that J−1 and J1 have the same zeros, and therefore
Æ
λm(α)→

Æ
λm(1) as α→ 1−.

The following result shows that the eigenvalues of the degenerate operator are unbounded
as x → 0.

Lemma A.2.8. Given α ∈ [1, 2), function ϕα,n satisfies

|ϕα,n(1)|=
p

2−α, ∀n≥ 1, (A.2.46)

and

ϕα,n(0)∼ c+να,0

√√ (2−α)π
2

�
jνα+1,n

� 1
2+να , as n→ +∞ (A.2.47)

where the coefficient c+να,0 is defined in (A.2.10). In particular, the sequence (ϕα,n(0))n≥1 is
unbounded.

Proof. First we note that jνα+1,n is not a zero of Jνα :

∀α ∈ [1,2),∀n≥ 1, Jνα( jνα+1,n) 6= 0. (A.2.48)

Indeed, if Jνα( jνα+1,n) = 0, we derive from (A.2.43) that J ′να( jνα+1,n) = 0, and then the Cauchy
problem satisfied by Jνα would imply that Jνα is constantly equal to zero.
We also deduce from (A.2.43) that

J ′να( jνα+1,n) =
να

jνα+1,n
Jνα( jνα+1,n). (A.2.49)
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With the same strategy of Lemma A.2.4, we compute the value of Kα,n that appears in (A.2.35),
and we find that

∀α ∈ [1, 2),∀n≥ 1, Kα,n =
p

2−α
|Jνα( jνα+1,n)|

. (A.2.50)

Therefore, we obtain from (A.2.35) the value given in (A.2.46) of |ϕα,n(1)|, and the value of
ϕα,n(0). Indeed, using (A.2.10), we have

ϕα,n(0) =
p

2−α
|Jνα( jνα+1,n)|

c+να,0( jνα+1,n)
να , (A.2.51)

and, in particular, the function ϕα,n has a finite limit as x → 0. Moreover, using once again
(A.2.30), we have

jνα+1,nJνα( jνα+1,n)
2 + jνα+1,nJνα+1( jνα+1,n)

2→ 2
π

as n→ +∞,

and hence

Jνα( jνα+1,n)
2 ∼ 2

π jνα+1,n
, as n→ +∞. (A.2.52)

Finally, combining (A.2.52) and (A.2.27), we obtain (A.2.47).
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