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ABSTRACT

Given an elliptic curve E over Fp and an integer e ≥ 1, we define a new object, called

“elliptic loop”, as the set of points in P2(Z/peZ) lying over E , endowed with an operation

inherited by the curve addition. This object is proved to be a power-associative abelian

algebraic loop. Its substructures are investigated by means of other algebraic cubics defined

over the same ring, which we named “shadow curve” and “layers”. When E has trace 1,

a distinctive behavior is detected and employed for producing an isomorphism attack to

the discrete logarithm on this family of curves. Stronger properties are derived for small

values of e, which lead to an explicit description of the infinity part and to characterizing

the geometry of rational |E|-torsion points.
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INTRODUCTION

MOTIVATION

Elliptic curves have been providing number theory with a fertile field of intense research

for the last century, even though these objects are rooted in the much older Arithmetica1

of Diophantus. Although their definition is fairly accessible, their grasp has proven to be

remarkably challenging, as it often happens to fundamental entities in mathematics.

Over the last decades, the increasing knowledge of these curves has led to terrific con-

jectures and results. Among them, some instances that are certainly worth to be mentioned

are Mordell’s Theorem, conjectured by Poincaré and proved in 1922 [52], the positive solu-

tion to the Torsion Conjecture proposed by Ogg, settled for any elliptic curves from 1977

to 1996 by Mazur, Kamienny and Merel [48, 49, 30, 31, 50], and the Taniyama–Shimura

Conjecture, named Modularity Theorem after being demonstrated by Wiles, Breuil, Con-

rad, Diamond and Taylor [76, 19, 16, 11] from 1995 to 2001. The latter has grown a huge

attention since it had led to a proof of the celebrated Fermat’s Last Theorem [76, 69], an

emblematic breakthrough that witnesses the deep role played by these fascinating curves

in arithmetic geometry. Despite the research on these objects is becoming more and more

sophisticated, it is far from being completed: many other conjectures with stunning im-

plications are still open, such as those of Birch and Swinnerton-Dyer or Szpiro, and many

others may notably see the light in the years to come.

Not to mention the overwhelming impact that elliptic curves had on the algorithmic

community: from 1985 they have been applied, among others, to square roots computing

over finite fields [59], primality testing [10, 14, 21, 3] and integer factorization [43].

As for cryptography, the applications of elliptic curves are incalculable. From the

early 80s, when Miller and Koblitz had envisioned the use of their points as base group

for cryptosystems, these objects have had an all-embracing spread: key exchange and key

agreement [51], encryption and decryption [32], digital signature [29] and authentication

[63] are only few among the schemes that have benefited from their applications [77]. One of
1An English version of this Greek classic may be found in [24]. The problem involving a Weierstrass

polynomial is the number 24.
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the desirable features provided by these protocols is the capability of maintaining the same

level of security with smaller keys with respect to their ancestors. Besides, this attribute

makes them a particularly useful tool for the lightweight schemes’ design [41]. Further

research lines that have been recently seeing florid research are the exploitation of these

curves for producing pseudo-random sources [64] and the investigation of isogenies between

supersingular elliptic curves, aiming at achieving post-quantum resistance [17].

Given the outstanding range of both theoretical and practical applications of these

entities, their understanding has become essential: most of the cryptographic elliptic curves-

based protocols rely on the belief that the discrete logarithm problem on their point group

(ECDLP) is practically infeasible, an assumption that has proved not to hold for certain

families of curves, that need to be carefully avoided consequently.

It is not arduous to realize that the structure and the properties of these objects

dramatically depend on their base field, which in this work is always assumed to be finite.

What is less evident is that elliptic curves may also be concretely defined over fairly general

rings, as remarkably shown by Lenstra [42]. When the considered base ring is the familiar

Z/NZ, this fact has served new cryptographical results [43, 36] and schemes [35, 20], as well

as it was used to avoid computation with p-adic numbers during the arithmetic attack to

the ECDLP over anomalous curves [56]. However, the theoretical background of the latter

algorithm remains solidly based on the properties of these curves over the p-adic field.

The conviction that such an attack shall be viable, even theoretically, only by means

of finite arithmetic has moved us, in the first part of the current work, to investigate the

group structure of elliptic curves over Z/NZ, producing a complete classification in terms of

their projected components. In fact, we prove (Theorem 2.3.9) that for any non-anomalous

elliptic curve E there is a group isomorphism

E(Z/NZ) ≃
⊕

p|N
E(Fp)⊕ Z/pvp(N)−1Z,

whereas, if E is anomalous, both

E(Z/pvp(N)Z) ≃ Z/pvp(N)−1Z⊕ Z/pZ and E(Z/pvp(N)Z) ≃ Z/pvp(N)Z

2



may occur in the group decomposition of E(Z/NZ). This structure suffices to derive, in

the cyclic anomalous case, a clear isomorphism attack to efficiently recover the discrete

logarithm (Proposition 2.3.12).

Nevertheless, there is still an annoying arbitrariness in the definition of E(Z/peZ):
such a curve may be realized as a lift of E(Fp), but many lifts are simultaneously possible.

The second part of this work is devoted to addressing this issue by considering a common

framework for all the points that legitimately lift a base curve point. Indeed, given an

elliptic curve E , we define elliptic loop as the subset of P2(Z/peZ) made of points that

are projected to points of E modulo p. Under weak assumptions, these objects may be

endowed with the curve operation, which turns out to be not associative even in small

cases. However, all is not lost: a careful examination shows that these entities are always

power-associative abelian algebraic loops (Corollary 3.3.3 and 3.3.8).

The techniques developed for proving such a result (Theorem 3.3.7) have shed light

on a special elliptic curve, which is hiding behind the main curve and has almost always

trivial intersection with it, so we referred to it as shadow curve. A joint use of the curve

equation together with its shadow leads to other projective cubics in P2(Z/peZ), which we

named layers as they constitute a complete stratification of the affine part of elliptic loops

(Proposition 3.3.13 and 3.3.15). Their group structure is characterized (Theorem 3.5.1),

generalizing the behaviour exhibited by elliptic curves over Z/NZ.

A different story appears in the infinity part of these loops, which is proved to consti-

tute itself a loop generated by two of its cyclic subgroups (Theorem 3.4.3).

Furthermore, stronger results are proved for elliptic loops over P2(Z/peZ) with small

values of e, which are discussed in the last part of the current manuscript. The infinity part

is a proper group whenever e ≤ 5, with an explicit description if e ≤ 3 (Proposition 4.2.1

and 4.3.1). Moreover, when e ≤ 2 several weak forms of associativity hold, with remarkable

consequences in the smallest non-trivial case (e = 2). In fact, in such case, they underlie

the geometry of the |E|-torsion points lying over a fixed point (Theorem 4.5.2), as well as

layers’ maximality (Proposition 4.5.6).

Besides, connections with existing works and future research lines are outlined in the

last part of the manuscript.

3



CONTENTS ORGANIZATION

The present introduction is meant to motivate and cover the standard notation and

results employed in this work, as far as clarifying stylistic choices.

In Chapter 1 we recall some known results about elliptic curves over finite fields, with

a special focus on their addition law and group structure, which constitute key ingredients

for the following discussion.

Chapter 2 is devoted to detailing the definition of elliptic curves over Z/NZ and to

characterizing the groups arisen from this construction. An isomorphism attack working

on anomalous elliptic curves is also derived.

Elliptic loops are introduced in Chapter 3 and their associativity properties are dis-

cussed. Their structure is detailed in terms of large subgroups that are explicitly determined

and characterized.

By adding constraints on the exponent parameter of elliptic loops, in Chapter 4 we

derive exceptional situations and stronger results.

Conclusions and open problems are drawn in the final chapter of the work.

METHODOLOGY

An aside is needed about the use of appendices. Throughout the whole work a decisive

push towards constructive proofs may be detected, explicit methods are always preferred, if

possible. However, sometimes direct approaches are burdensome, so much that the classic

“by a straightforward computation” might be jokingly considered full-fledged cheating.

In this view, Appendix A, B and C constitute a substantial part of many crucial

results and are located at the end of the present work only for expository reasons. The

reader is invited to verify that they are designed to let a calculator performing the very

same computations a human could carry out, if it were equipped with an “almost-infinite”

amount of time and patience.

Conversely, Appendix D is not needed for the current work but it aims at sketching

other relevant results obtained by the author during his Ph.D. studies.

4



NOVEL CONTRIBUTIONS

In a nutshell, the novelty of the present essay consists of Chapter 3, Chapter 4 and

roughly half of Chapter 2. However, to avoid disarray about the contents origination, the

results of this work are systematized in the following manner.

• If both the statement and a complete proof of the result have already appeared in

the literature, only a precise reference is given.

• If only the statement, or part of it, has appeared in a book or paper, the reference is

given but a proof is proposed anyway. The same format is used when the proof is only

sketched in the given reference, or when it employs different ideas and techniques.

• If the statement itself is original, no references are included and a proof follows the

claimed result.

PRELIMINARIES AND NOTATION

We employ standard algebraic notation and results throughout this work. A compre-

hensive list of books covering the preliminaries that may serve an interested but not expert

reader is [2, 27, 28, 37, 44]. Nonetheless, we find that a notation recap may still be of use,

therefore it follows.

Algebraic structures

A magmaM is a set equipped with a binary operation. In this work such operation will

always be an addition + :M×M→M, so we callM additive. When it is commutative,

M is said to be abelian.

A quasigroup Q is a magma satisfying the Latin square property, i.e.

∀a, b ∈ Q, ∃! x, y ∈ Q :




a+ x = b,

y + a = b.

5



A loop L is a quasigroup with identity, i.e. there is e ∈ L such that

∀a ∈ L, a+ e = e+ a = a.

It is immediate that an associative loop is a group.

Given an additive group G, its exponent exp(G) is defined as the non-negative gener-

ator of the ideal {n ∈ Z | ∀ g ∈ G, ng = 0}.
Let R be a commutative ring with unity and S ⊂ R be a subset. The annihilator ideal

of S is defined as

AnnR(S) = {r ∈ R | ∀ s ∈ S, rs = 0}.

The characteristic of R is denoted by char(R) and in this work is always assumed to be

char(R) = min
n∈Z
n≥1

{n1R = 0R} ̸= 2, 3.

Let K be a field. The algebraic closure of K is denoted by K, so that we write K = K

when the field K is algebraically closed.

Short exact sequences

Let A, B and C be groups and ϕ : A → B, ψ : B → C be group morphisms. If ϕ is

injective, ψ is surjective and Imϕ = kerψ, then we refer to

0→ A
ϕ→ B

ψ→ C → 0

as a short exact sequence (of groups). Furthermore, if B ≃ A ⊕ C, then we call it split

exact sequence or, in short, we say it splits. Given a group X, we denote by idX : X → X

its identity morphism. In reference to the above sequence, we say that a group morphism

s1 : B → A is a left section if s1 ◦ ϕ = idA and similarly a group morphism s2 : C → B is

called a right section if ψ ◦ s2 = idC . These notions are related by the following well-known

result.
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Lemma (Splitting Lemma, [47] Proposition I.4.3). For every short exact sequence, the

following are equivalent.

• The sequence splits.

• There exists a left section.

• There exists a right section.

Divisors

Given a field K and a smooth projective irreducible curve C = V(F ) defined by the

irreducible polynomial f ∈ K[x, y], we define its rational function field K(C) as the field

of fractions of the integral domain K[x, y]/(f). We also denote by Div(C) =
⊕

P∈C Z · (P )
the group of divisors on C. The degree of a divisor D =

∑
P∈C nP (P ) ∈ Div(C) is defined

as deg(D) =
∑

P∈C nP , and D is called principal if there exists f ∈ K(C) such that

div(f) =
∑

P∈C
ordP (f)(P ) = D.

It is known [67, Corollary 3.5] that if E is an elliptic curve and O is its point at infinity,

then a divisor D =
∑

P∈E nP (P ) is principal if and only if deg(D) = 0 and
∑

P∈E nPP = O,

where the latter sum is intended to be performed with the addition law of E . In particular,

the principal divisors of these curves form a subgroup of

Div0(E) = {D ∈ Div(E) | deg(D) = 0}.

Thus, their quotient is well-defined, it is called 0-Picard Group and it is denoted by Pic0(E).

Integers and p-adics

Let n ∈ Z be an integer. The integers greater or equal than n are denoted by

Z≥n = {m ∈ Z | m ≥ n}.

7



The set of all positive prime integers is denoted by

P = {p ∈ Z≥1 | p is prime in Z}.

Let p ∈ P be a prime. For every n ∈ Z we denote by

vp(n) =





max
{
e ∈ Z≥0

∣∣ pe|n
}

if n ̸= 0,

∞ if n = 0,

the p-adic valuation of n. This may be used to define the p-adic norm

| · |p : Q→ R,
n

m
7→ pvp(m)−vp(n).

The completion of Q with respect to this norm is called the field of p-adic numbers, first

described in [25] and nowadays denoted by Qp. The unit disc around 0 ∈ Qp is

Zp = {x ∈ Qp

∣∣ |x|p ≤ 1}

and it is known as the ring of p-adic integers.

When working with extensions and lifts, the following lemma is particularly useful. It

holds in more generality, but we state only the version we employ in the current work.

Lemma (Hensel’s lemma, [38] Proposition II.2). Let f(x) ∈ Z[x] and m, k ∈ Z≥1 be positive

integers with m ≤ k. For every integer n̄ ∈ Z such that

f(n̄) ≡ 0 mod pm, f ′(n̄) ̸≡ 0 mod pm,

there exists a unique (explicitly computable) integer 0 ≤ n ≤ pk − 1 such that

f(n) ≡ 0 mod pk, n ≡ n̄ mod pm.

8



More notation

For any prime p ∈ P and positive integer e ∈ Z≥1 we denote the finite field with q = pe

elements by Fq. When the exponent is e = 1 we write it as Fp and we call it a prime field.

We write Fq = Fp(α) when we need to identify a generator α of F∗
q.

Let r ∈ R be a real number. We denote by ⌊r⌋ the floor of r, i.e. the largest integer

n ∈ Z such that n ≤ r, and by ⌈r⌉ its ceiling, i.e. the smallest integer n ∈ Z such that

r ≤ n.

9



CHAPTER 1

CLASSICAL THEORY OF ELLIPTIC CURVES

1.1 BASIC DEFINITIONS

In this section we define the main objects of our interest, elliptic curves, as they are

introduced in classical textbooks [26, 67, 74].

1.1.1 The projective space

Let n ∈ Z≥0 be a non-negative integer and K be a field. There is a well-known

equivalence relation ∼ on Kn+1 given by

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ ∃ u ∈ K∗ ∀ i ∈ {0, . . . , n} : xi = uyi.

Definition 1.1.1 (Projective n-space). We define the Projective n-space over K as the

quotient set

Pn(K) =
(
Kn+1 \ {(0, . . . , 0)}

)
/ ∼ .

The equivalence class of (x0, . . . , xn) is denoted by (x0 : . . . : xn) ∈ Pn(K).

We refer to points of type (x0 : . . . : xn−1 : 1) as affine points, whereas those of the

form (x0 : . . . : xn−1 : 0) are called points at infinity. Since they are a partition of Pn(K) it

is easy to see that, when K is finite, we have

|Pn(K)| = |K|n + |Pn−1(K)| = |K|
n+1 − 1

|K| − 1
.

1.1.2 Definition via Weierstrass equations

Let us now consider the projective plane P2(K). We are interested in certain types of

plane curves
(
i.e. curves inside P2(K)

)
, namely those defined by particular cubic equations.

Definition 1.1.2 (Weierstrass polynomial and equation). Let {a1, a2, a3, a4, a6} ⊆ K. A

polynomial Fa1,a2,a3,a4,a6 ∈ K[x, y, z] of the form

Fa1,a2,a3,a4,a6(x, y, z) = x3 + a2x
2z + a4xz

2 + a6z
3 − (y2z + a1xyz + a3yz

2)
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is called Weierstrass polynomial. An equation of the form

Fa1,a2,a3,a4,a6(x, y, z) = 0

is called Weierstrass equation.

It is well-known that, if the characteristic of K is not 2, any Weiestrass equation may

be simplified by changing the y-coordinate as

y ← y − a1
2
x− a3

2
z.

Moreover, if char(K) ̸= 3 as well, the further change of the x-coordinate

x← x−
(
a2
3

+
a21
12

)
z

leads us to the short Weierstrass polynomial

FA,B = x3 + Axz2 +Bz3 − y2z.

where



A = a4 +

a1a3
2
− a22

3
− a41

48
− a21a2

6
,

B = a6 +
a61
864

+
a41a2
72
− a31a3

24
+

a21a
2
2

18
− a21a4

12
− a1a2a3

6
+

2a32
27
− a2a4

3
+

a23
4
.

Henceforth we consider only fields K such that 6 ∈ K∗ and use the short form EA,B of

these equations.

Definition 1.1.3 (Discriminant). Let A,B ∈ K. We define the discriminant of FA,B as

∆A,B = −(4A3 + 27B2).

This quantity is called this way because it is precisely the polynomial discriminant of
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x3 + Ax+B = (x− r1)(x− r2)(x− r3) ∈ K[x], i.e.

∆A,B = Discx(x3 + Ax+B) = −
∏

i ̸=j
(ri − rj).

It is a standard fact [67, Proposition III.1.4] that the projective cubics defined via Weier-

strass equations are non-singular if and only if their discriminant is non-zero, which moti-

vates the following definition.

Definition 1.1.4 (Elliptic curve over K). Let A,B ∈ K such that ∆A,B ̸= 0. The elliptic

curve defined by FA,B over K is

EA,B(K) = V(FA,B) = {(X : Y : Z) ∈ P2(K) | Y 2Z = X3 + AXZ2 +BZ3}.

The element O = (0 : 1 : 0) ∈ EA,B(K) is referred to as the zero point or point at infinity,

while the others are called affine points.

1.1.3 Addition law

Elliptic curves have been deeply studied as they constitute “small” examples of

positive-genus abelian varieties. In fact, it is known [67, Section III.2] that the follow-

ing is a well-defined binary operation, which provides elliptic curves with an abelian group

structure.

Definition 1.1.5 (Addition on EA,B). Let K be a field and EA,B(K) be an elliptic curve.

For every pair of points P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ EA,B(K), we define their

sum P1 + P2 as

• If Zi = 0 (i.e. Pi = O) for some i ∈ {1, 2}:

Pi +O = O + Pi = Pi.

• If Zi ̸= 0 for both i = 1, 2 and P1 = P2:

P1 + P2 = 2P1 = (X3 : Y3 : Z3),

12



where 



X3 = 2Y1Z1

(
(3X2

1 + AZ2
1)

2 − 8X1Y
2
1 Z1

)
,

Y3 = (3X2
1 + AZ2

1)(12X1Y
2
1 Z1)− (3X2

1 + AZ2
1)

3 − 8Y 4
1 Z

2
1 ,

Z3 = 8Y 3
1 Z

3
1 .

• If Zi ̸= 0 for both i = 1, 2 and P1 ̸= P2:

P1 + P2 = (X3 : Y3 : Z3),

where, by denoting [X,Z] = X1Z2 −X2Z1 and [Y, Z] = Y1Z2 − Y2Z1,





X3 = Z1Z2[X,Z][Y, Z]
2 − (X1Z2 +X2Z1)[X,Z]

3,

Y3 = (2X1Z2 +X2Z1)[X,Z]
2[Y, Z]− Y1Z2[X,Z]

3 − Z1Z2[Y, Z]
3,

Z3 = Z1Z2[X,Z]
3.

An easy inspection of the above formulae shows that if two points sum to zero, then

[X,Z] = 0, which by means of the curve equation also gives [Y 2, Z2] = Y 2
1 Z

2
2 − Y 2

2 Z
2
1 = 0,

i.e. the additive inverse is given by

−(X : Y : Z) = (X : −Y : Z),

which is the symmetric point with respect to the xz-plane.

The above definition reflects the following geometrical procedure: to double a point

P1, we consider the intersection of the line lp1 through P1 and tangent to EA,B(K) with the

curve itself:

EA,B(K) ∩ lp1 = {P1, Q}.

Then 2P1 is the inverse of Q, i.e. the point of EA,B(K) that is vertically aligned with Q.
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Figure 1.1. Point doubling on E0,3 over R

Likewise, the point P1+P2 is the inverse of Q, the third point of intersection between

the line lP1,P2 through P1, P2 and EA,B(K):

EA,B(K) ∩ lP1,P2 = {P1, P2, Q}.

Figure 1.2. Point sum on E0,3(R)

Remark 1.1.6. It is worth noting that the addition formulae stated above work also over

finite fields F, in particular over prime ones. They may also be interpreted geometrically,

via the toric identification of the affine (F× F)-plane.

Figure 1.3. Point sum on E0,3(F19)
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1.2 COMPLETE SYSTEMS OF ADDITION LAWS

Given an elliptic curve E = EA,B(K), the addition formulae discussed in Section 1.1.3

distinguish three different cases. Two of them (P1,2 = O, P1 = P2) work on subsets of E ×E
that are closed in the product Zariski topology, whereas the remaining case is valid on an

open subset of E × E .

The question whether or not such addition laws may be found on an open covering of

E × E has been positively answered. The existence of such laws has been proved true for

abelian varieties over algebraically closed fields in [39]. Such a set of addition laws is called

complete system of addition laws and in the same work it has been explicitly provided

for elliptic curves over fields K = K of characteristics char(K) ̸= 2, 3 (and of arbitrary

characteristic in [40]).

A similar result over not-necessarily closed field has been shown in a further work

[9], which has also provided us with specific conditions that these laws have to satisfy.

The results and the explicit laws from this paper are recalled in this section, although the

formulae have been slightly modified following [74].

Definition 1.2.1 (Addition law). Let µ, ν ∈ Z≥1 be positive integers and E be an elliptic

curve defined over K. An addition law of bidegree (µ, ν) on E is a triple of polynomials

S1, S2, S3 ∈ K[x1, y1, z1, x2, y2, z2] such that

• the Si’s are homogeneous of degree µ in the variables x1, y1, z1,

• the Si’s are homogeneous of degree ν in the variables x2, y2, z2,

• for every pair of points P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ E either

P1 + P2 =
(
S1(X1, Y1, Z1, X2, Y2, Z2) : . . . : S3(X1, Y1, Z1, X2, Y2, Z2)

)

or for every i ∈ {1, 2, 3} we have

Si(X1, Y1, Z1, X2, Y2, Z2) = 0.

In the latter case, the pair (P1, P2) is called exceptional for this addition law.
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By replacing the polynomials Si with any of their multiples by non-zero constants,

one evidently finds another proper addition law, which we call equivalent to the original

one since it produces the same values on every pair of points of E .

Definition 1.2.2 (Complete system of addition laws). Let E be an elliptic curve over K.

A collection C of addition laws on E is called a complete system of addition laws on E if

every pair of points in E is not exceptional for at least one law of C.

Theorem 1.2.3 ([9], Theorem 2). Let E be an elliptic curve over K. For every point

(a : b : c) ∈ P2(K) there exists a unique (up to equivalence) non-zero addition law of

bidegree (2, 2) on E such that a pair P1, P2 ∈ E is exceptional if and only if P1 − P2 lies on

the line aX + bY + cZ = 0 in P2(K).

Definition 1.2.4 (Addition law corresponding to P ). The addition law of bidegree (2, 2)

corresponding as in Theorem 1.2.3 to the projective point P ∈ P2(K) is denoted by +P .

The following are explicit instances of addition laws of bidegree (2, 2) on E . As in

Section 1.1.3, we shorten the notation by writing

[X,Y ] = X1Y2 −X2Y1, [X,Z] = X1Z2 −X2Z1, [Y, Z] = Y1Z2 − Y2Z1.

For j ∈ {1, 2, 3}, we also write Sj(Xi, Yi, Zi) in place of Sj(X1, Y1, Z1, X2, Y2, Z2).

+(0:0:1): The addition law corresponding to (0 : 0 : 1).

S1(Xi, Yi, Zi) = [X,Y ](Y1Z2 + Y2Z1) + [X,Z]Y1Y2 −A[X,Z](X1Z2 +X2Z1)

− 3B[X,Z]Z1Z2,

S2(Xi, Yi, Zi) = − 3X1X2[X,Y ]− Y1Y2[Y, Z]−A[X,Y ]Z1Z2

+A[Y, Z](X1Z2 +X2Z1) + 3B[Y, Z]Z1Z2,

S3(Xi, Yi, Zi) = 3X1X2[X,Z]− [Y, Z](Y1Z2 + Y2Z1) +A[X,Z]Z1Z2.
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+(0:1:0): The addition law corresponding to (0 : 1 : 0).

S1(Xi, Yi, Zi) = Y1Y2(X1Y2 +X2Y1)−AX1X2(Y1Z2 + Y2Z1)

−A(X1Y2 +X2Y1)(X1Z2 +X2Z1)− 3B(X1Y2 +X2Y1)Z1Z2

− 3B(X1Z2 +X2Z1)(Y1Z2 + Y2Z1) +A2(Y1Z2 + Y2Z1)Z1Z2,

S2(Xi, Yi, Zi) = Y 2
1 Y

2
2 + 3AX2

1X
2
2 + 9BX1X2(X1Z2 +X2Z1)

−A2X1Z2(X1Z2 + 2X2Z1)−A2X2Z1(2X1Z2 +X2Z1)

− 3ABZ1Z2(X1Z2 +X2Z1)− (A3 + 9B2)Z2
1Z

2
2 ,

S3(Xi, Yi, Zi) = 3X1X2(X1Y2 +X2Y1) + Y1Y2(Y1Z2 + Y2Z1)

+A(X1Y2 +X2Y1)Z1Z2 +A(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)

+ 3B(Y1Z2 + Y 2Z1)Z1Z2.

Although in this work we only make use of +(0:0:1) and +(0:1:0), we also recall the

addition law corresponding to (1 : 0 : 0) since {+(0:0:1),+(1:0:0)} constitutes an interesting

example of a system of two addition laws that is never complete (all the pairs (P, P ) are

exceptional for both the laws).

+(1:0:0): The addition law corresponding to (1 : 0 : 0).

S1(Xi, Yi, Zi) = [X,Y ](X1Y2 +X2Y1) +AX1X2[X,Z]

+ 3B[X,Z](X1Z2 +X2Z1)−A2[X,Z]Z1Z2,

S2(Xi, Yi, Zi) = [X,Y ]Y1Y2 − 3AX1X2[Y, Z] +A(X1Y2 +X2Y1)[X,Z]

+ 3B[X,Y ]Z1Z2 − 3B(X1Z2 +X2Z1)[Y, Z] +A2[Y, Z]Z1Z2,

S3(Xi, Yi, Zi) = − (X1Y2 +X2Y1)[Y, Z]− [X,Z]Y1Y2

−A[X,Z](X1Z2 +X2Z1)− 3B[X,Z]Z1Z2.

Remark 1.2.5. Since the projective point (1 : 0 : 0) cannot lie inside any elliptic curve as

in Definition 1.1.4, then the addition laws {+(0:0:1),+(0:1:0)} always form a complete system

of addition laws on E . However, if the considered curve has no 2-torsion points (e.g. if it
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has an odd prime order) then for every pair of points P1, P2 ∈ E we have (P1 − P2)y ̸= 0.

Hence, in this case the addition law corresponding to (0 : 1 : 0) forms itself a complete

system of addition laws.

1.3 THE POINT GROUP OVER FINITE FIELDS

Several significant results about the point group structure of elliptic curves have been

developed in the last century. The characterization of these groups substantially varies

depending on the field underlying the curve [67, Chapters V-VIII] and in this work we

focus only on finite ones, which play a relevant role in practical applications.

A crucial theorem about their size has been conjectured by Artin [1] and proved by

Hasse [23], from whom it has been named.

Theorem 1.3.1 (Hasse’s Theorem, [67], Theorem V.1.1). Let E = EA,B(Fq) be an elliptic

curve defined over a finite field Fq. Then

(
√
q − 1)2 ≤ |E| ≤ (

√
q + 1)2.

Many algorithms for efficiently computing the size of a given elliptic curve over a

finite field have been conceived [58]. Among them, the celebrated Schoof’s one [59] surely

deserve to be mentioned, being the first deterministic polynomial time algorithm, which

has attracted plentiful further research and improvements [4]. Nowadays, highly efficient

implementations of the Schoof-Elkies-Atkin algorithm may deal with curves of industrial

size (∼ 512-bits) in less than a second [8].

The group structure of elliptic curves is governed by an important invariant of the

curve [67, Remark V.2.6].

Definition 1.3.2 (Trace of Frobenius). Let E = EA,B(Fq) be an elliptic curve defined over

a finite field Fq. The integer

t = q + 1− |E|

is called the trace of Frobenius or the trace of E .

By Theorem 1.3.1 every t ∈ Z that is the trace of an elliptic curve over Fq satisfies
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|t| ≤ 2
√
q, but not all the values in this range can occur as the trace of an elliptic curve.

Theorem 1.3.3 ([75], Theorem 4.1). Let p ∈ P be a prime, e ∈ Z≥1 be an integer and let

q = pe. For every integer |t| ≤ 2
√
q there is an elliptic curve E = EA,B(Fq) of trace t if and

only if one of the following conditions is satisfied:

(i) GCD(t, p) = 1,

(ii) t = ±2√q and e is even,

(iii) t = ±√q, p ̸= 1 mod 3 and e is even,

(iv) t = ±√pq, p ∈ {2, 3} and e is odd,

(v) t = 0 and either e is odd or p ̸≡ 1 mod 4.

From part (i) of Theorem 1.3.3 follows that all the values determined by Hasse’s

theorem over prime fields actually occur as a group order.

Corollary 1.3.4 ([60], Theorem 4.2). Let p ∈ P be a prime, p ≥ 5 and |t| ≤ 2
√
p be an

integer. Then there is an elliptic curve E = EA,B(Fp) of trace t.

Proof. If p|t then

p2 ≤ t2 ≤ 4p =⇒ 0 ≤ p ≤ 4.

Therefore, when p ≥ 5 we have GCD(t, p) = 1 and the statement follows from case (i) of

Theorem 1.3.3.

Remark 1.3.5. By using the long form of Weierstrass equations one can define elliptic

curves even over fields K with char(K)|6. In these cases, it may be verified that an

analogous of Corollary 1.3.4 holds for every prime p ∈ P .

Now we focus on the actual group structures.

Definition 1.3.6 (Torsion points). Let E = EA,B(K) be an elliptic curve and m ∈ Z≥1 be

a non-negative integer. We define the m-torsion points of E as

E [m] = {P ∈ E(K) | mP = O}.
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The following proposition gives a precise characterization of the possible group struc-

tures that torsion points may display.

Proposition 1.3.7 ([74], Theorem 3.2). Let K be a field and E = EA,B(K) be an elliptic

curve. Then

• if char(K) = 0 or char(K) = p and gcd(m, p) = 1, then

E [m] ≃ Z/mZ⊕ Z/mZ,

• if char(K) = p and m = m′pe, with p ∤ m′, then

either E [m] ≃ Z/m′Z⊕ Z/m′Z or E [m] ≃ Z/m′Z⊕ Z/mZ.

From the above proposition a first structure result follows.

Corollary 1.3.8 ([74], Theorem 4.1 and Corollary 3.11). Let E = EA,B(Fq) be an elliptic

curve defined over a finite field Fq. Then there are two positive integers n, k ∈ Z≥1 such

that n|(q − 1) and

E ≃ Z/nZ⊕ Z/nkZ.

Thus, the possible point groups arising from elliptic curves over finite fields are either

cyclic or product of two cyclic groups, but deciding which is the case may be burdensome. It

is known that the cyclic scenario often happens over small prime fields [7], and asymptotic

formulae for their density have been given [22]. Moreover, it has been also studied the

frequency with which the group cyclicity is preserved under finite fields extensions [71].

From Theorem 1.3.3 a complete characterization of the possible structures occurring as

point groups of elliptic curves over finite fields has seen the light, independently discovered

by two different authors.

Theorem 1.3.9 ([54] and [72]). Let p ∈ P be a prime, e ∈ Z≥1 be an integer and let q = pe.

Let also |t| ≤ 2
√
q be an integer satisfying one of the conditions (i)-(v) of Theorem 1.3.3.
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Then the following is a complete list of the group structures of the trace-t elliptic curves

defined over Fq, where the enumeration corresponds to the cases of Theorem 1.3.3.

(i) Let |E| = ∏l∈P l
el be the prime factorization of the curve order. There are integers

0 ≤ al ≤ min{vl(q − 1), ⌊ el
2
⌋} such that the group is

Z/pepZ⊕
⊕

l∈P\{p}

(
Z/lalZ⊕ Z/lel−alZ

)
.

(ii) Z/(
√
q ± 1)Z⊕ Z/(

√
q ± 1)Z.

(iii) Cyclic.

(iv) Cyclic.

(v) The group is 



Z/2Z⊕ Z/ q+1
2

Z or cyclic if q ≡ 3 mod 4,

cyclic if q ̸≡ 3 mod 4.

We observe that, for every integer t ∈ Z, Theorem 1.3.9 provides a restrictive but not

necessarily trivial list of possible group structures arising from trace-t elliptic curves. The

following is an example of an elliptic curve whose group structure cannot be retrieved by a

mere application of the aforementioned theorem.

Example 1.3.10. Let p = 5, q = p2 = 25 and consider the finite field

F25 = F5[x]/(x
2 + 4x+ 2) = F5(α).

Let E be the elliptic curve E2,0(F25), whose order is |E| = 20 which implies that its trace

is t = 25 + 1 − 20 = 6. Since GCD(t, p) = 1, then we are in case (i) of Theorem 1.3.9,

therefore there is an integer 0 ≤ a ≤ 1 such that

E ≃ Z/5Z⊕ Z/2aZ⊕ Z/22−aZ.
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Thus, by applying Theorem 1.3.9 we conclude that the point group of E may be either

cyclic (if a = 0) or isomorphic to Z/2Z⊕Z/10Z (if a = 1). A further inspection shows that

the latter is the case, in fact the point group is given by

E ≃ ⟨(0 : 0 : 1)⟩ ⊕ ⟨(α : α : 1)⟩.

We note that, as prescribed by Theorem 1.3.9, also the cyclic scenario may happen, e.g.

by considering the trace-6 elliptic curve

Eα2,α5(F25) ≃ ⟨(α : α2 : 1)⟩.

We conclude this section by noting that the problem of efficiently finding generators

of the cyclic components of these groups is still open. This task may be fulfilled over a

generic finite field Fq in exponential time O(q 1
2
+o(1)) [34], although it may be sped up for a

large class of finite fields [65].

1.4 ECDLP AND ANOMALOUS CURVES

In this section we revise the discrete logarithm problem and its fast solution in the

case of trace-1 elliptic curves over prime fields.

Definition 1.4.1 (Discrete logarithm). Let G be a cyclic (additive) group of exponent

exp(G) and let g ∈ G be one of its generators. The discrete logarithm based on g is the

group morphism

logg : G→ Z/ exp(G)Z, m · g = (g + . . .+ g) 7→ m.

The Discrete Logarithm Problem, shortened as DLP, amounts to computing logg(h)

for any given element h ∈ G. The difficulty of such a problem heavily depends on the

considered group G. When G is the group of points of an elliptic curve over a finite

(usually prime) field, it is denoted by ECDLP and is considered to be hard in general.

However, there are instances of curves over which the ECDLP may be efficiently solved.
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Definition 1.4.2 (Anomalous curve). Let p ∈ P be a prime. An elliptic curve E = EA,B(Fp)
is called anomalous if its trace is 1, i.e. if |E| = p.

The solution of the ECDLP for anomalous curves over Fp is known to be feasible

in O(ln p) field operations via different approaches, which we summarize in the following

sections.

1.4.1 Semaev’s isomorphism

The algebraic geometrical method [61] works on p-subgroups of E(Fpe), but here we

assume for simplicity that |E(Fp)| = p. We consider the proper extension of the base-field

Fq = Fp[x]/(x3 + Ax+B) ⊃ Fp, over which E has a 2-torsion point S = ([x] : [0] : [1]).

In this way the extended curve E ′ = EA,B(Fq) contains all the points of E and at least

one, namely S, that does not lay inside E . We consider the well-known [67, Exercise II.2.6]

group isomorphism

σ : EA,B(Fq)→ Pic0
(
EA,B(Fq)

)
,

P 7→ [(P )− (O)].

For every point Q ∈ E we have that pQ = O, hence the same point inside E ′ gives rise to

a rational function fQ ∈ Fq(E ′) such that div(fQ) = p(Q+ S)− p(S), since

p[(Q+ S)− (S)] = p[(Q)− (O)] = [pσ(Q)] = [σ(O)] = [0].

In [61, Lemma 1] it is proved that for every f ∈ Fq(E ′) such that (f) = pD for some

nonprincipal divisor D, its derivative f ′ with respect to x satisfies (f ′) = (f)− (y). Thus,

for every R ∈ E the map

ϕR : E → Fq,

Q 7→




(f ′
Q/fQ)(R) if Q ̸= O,

0 if Q = O,

is well-defined. Moreover, in the same work this application is proved to be an injective
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group morphism [61, Lemma 2], therefore the discrete logarithm may be computed as

logP (Q) =
ϕR(Q)

ϕR(P )
.

Since the evaluation of (f ′
Q/fQ)(R) may always be performed in O(ln p) operations over Fq

[61, Lemma 3], the same asymptotic complexity holds for the computation of logP (Q).

This technique has been generalized to higher genus smooth projective curves C over

finite fields Fq of characteristic p, with at least one Fq-rational point. In fact, in [55] it was

proved that the discrete logarithm inside the pe-torsion part of Pic0(C) may be evaluated

with O(e2 ln p) operations in Fq.

1.4.2 Satoh-Araki and Smart lift

A number theoretical solution of the ECDLP over anomalous curves has appeared

simultaneously in [68] and in [56], the latter fixed in [57]. It consists of lifting the curve

over the p-adic field Qp and rephrasing the problem inside the p-adic integers Zp.

Let π : EA,B(Qp) → EA,B(Fp) be the classical reduction map and consider any of its

liftings u : EA,B(Fp) → EA,B(Qp), i.e. π ◦ u = idEA,B(Fp). Let also Ψ : ker π → pZp be the

map defined by (X : Y : Z) 7→ X/Y , and let

logE : pZp → pZp, t 7→ t− 2A

5
t5 + . . .

be the formal logarithm as defined in [67, Chapter IV.5]. If EA,B(Fp) is anomalous, then

[56, Theorem 3.2] the map

λEA,B(Qp) : EA,B(Fp)
u−→ EA,B(Qp)

·p−→ ker π Ψ−→ pZp
logE−−→ pZp

mod p2−−−−→ pZp/p
2Zp ≃ Fp

does not depend of the choice of u and is proved to be either the zero map or a group

isomorphism. The case λEA,B(Qp) = 0 occurs rarely [57, Theorem 3.7] and may be effortlessly

avoided [57, Corollary 3.8] by changing the lifted curve EA,B(Qp).

In [56] an algorithm for evaluating such λEA,B(Qp) by using only operations in Z/p2Z is

also provided.
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CHAPTER 2

ELLIPTIC CURVES OVER Z/NZ

2.1 PROJECTIVE n-SPACE

In this section we recall the construction of the projective n-space over commutative

rings with unity, mainly following [15]. We draw a special attention to the Z/NZ-case, as

it will be largely employed in the continuation of the present work.

2.1.1 General construction of Pn(R)

Let n ∈ Z≥0 be a non-negative integer and R be a commutative non-zero ring with

identity. The construction of the projective n-space over R is classically performed with two

main goals in mind: we want the componentwise multiplication to induce an equivalence

relation and we wish our construction to respect projections.

The first requirement is achieved by considering only the action of the unit group R∗,

defined for every u ∈ R∗ and (x0, . . . , xn) ∈ Rn+1 as

u(x0, . . . , xn) = (ux0, . . . , uxn). (2.1)

The second condition is assured by considering primitive entries.

Definition 2.1.1 (Primitivity). A finite collection {xi}i∈{0,...,n} ⊆ Rn+1 is called primitive

if the ideal ⟨{xi}i∈{0,...,n}⟩R they generate is R itself.

We consider only primitive (n+ 1)-tuples to ensure projections on non-zero subrings.

More precisely, if I = ⟨{xi}i∈{0,...,n}⟩R were a proper ideal of R, then the projection R→ R/I

would map (xi)i∈{0,...,n} to the zero vector, which is not desirable in a projective space.

The above discussion motivates the following definition.

Definition 2.1.2 (Projective n-space). We define the Projective n-space over R as the set

of orbits of primitive (n + 1)-tuples under the action (2.1) of R∗. It is denoted by Pn(R),

while (x0 : . . . : xn) ∈ Pn(R) represents the orbit of (x0, . . . , xn) ∈ Rn+1.
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In accordance with the classical notion of projective spaces over fields, we call affine

any point of Pn(R) whose last component is invertible:

Pnaff(R) = {(X0 : . . . : Xn−1 : 1) | ∀i, Xi ∈ R}.

We may also identify the points whose last coordinate is 0 with a projective space of

dimension n− 1, while the remaining points are called special:

Pns (R) = {(X0 : . . . : Xn) | Xn ∈ R \ (R∗ ∪ {0})}.

This leads to a natural decomposition of the projective n-space as

Pn(R) = Pnaff(R) ∪ Pn−1(R) ∪ Pns (R).

2.1.2 The case R = Z/NZ

Let N ∈ Z≥2. The case of our interest is R = Z/NZ, which is a suitable ring for

number-theoretic algorithms. In this setting an (n + 1)-tuple (x0, . . . , xn) is primitive if

and only if

GCD(x0, . . . , xn, N) = 1.

Thus, the elements of Pn(Z/NZ) are (n + 1)-tuples of integers modulo N that are not all

divisible by the same prime factor of N . Two tuples are identified if they are equal up to

componentwise multiplication for integers that are coprime with N .

A formula to count elements of the projective space over such rings is known and

its proof usually involves Möbius inversion formula. However, we find that a constructive

proof might well be stimulating and useful for practical reasons, so we propose it below.

Proposition 2.1.3 ([15], Section 10.3.2). Let N ∈ Z≥2 and n ∈ Z≥0. Then

|Pn(Z/NZ)| = Nn
∏

p∈P
p|N

(
1 +

1

p
+ . . .+

1

pn

)
.
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Proof. Let N =
∏

p|N p
ep be the prime factorization of N , i.e. ep = vp(N). Here all the

products are ordered according to the increasing value of p.

Since projections respect primitivity, the Chinese Reminder Theorem gives rise to a

well-defined bijection

Pn(Z/NZ)→
∏

p∈P,
p|N

Pn(Z/pepZ),

(X0 : . . . : Xn) 7→
(
(X0 mod pep : . . . : Xn mod pep)

)
p|N .

Thus, it is sufficient to prove the formula for N = pe. We do it by induction on n, exhibiting

the size of the three disjoint components of Pn(Z/peZ).

[n = 0] This case is trivial, since P0(Z/peZ) = {(1)}, hence |P0(Z/peZ)| = 1.

[n→ n+ 1] The affine part is easily counted:

|Pn+1
aff (Z/peZ)| = |{(X0 : . . . : Xn : 1) | Xi ∈ Z/peZ}| = (pe)n+1,

while the inductive hypothesis provides us with the size of the projective part:

|Pn(Z/peZ)| = (pe)n
(
1 +

1

p
+ . . .+

1

pn

)
.

To count the elements of the special part, we first notice that they can be written as

(X0, . . . , Xn, p
γ) for some 0 < γ < e. Let us consider the projections

πγ : {(X0 : . . . : Xn : pγ) | Xi ∈ Z/peZ} → Pn(Z/peZ),

(X0 : . . . : Xn : pγ) 7→ (X0 : . . . : Xn).

For any given point (X0 : . . . : Xn) ∈ Pn(Z/peZ), its fibers are given by

π−1
γ

(
(X0 : . . . : Xn)

)
= {(αX0 : . . . : αXn : pγ) | α ∈ (Z/peZ)∗}.
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However, some of these points may be identified, in fact

(αX0 : . . . : αXn : pγ) = (X0 : . . . : Xn : pγ) ⇐⇒ αpγ ≡ pγ mod pe

⇐⇒ α ≡ 1 mod pe−γ,

which implies that the elements of π−1
γ

(
(X0 : . . . : Xn)

)
are precisely (i.e. without repeti-

tions) the (n+ 1)-tuples (αX0 : . . . : αXn : pγ) such that

α = h+ kp, h ∈ {1, . . . , p− 1}, k ∈ {0, . . . , pe−γ−1 − 1}.

Therefore, the size of the fibers is |π−1
γ

(
(X0 : . . . : Xn)

)
| = pe−γ−1(p−1). Since Pn+1

s (Z/peZ)

is the disjoint union of
{
π−1
γ

(
Pn(Z/peZ)

)}
0<γ<e

, then we have

|Pn+1
s (Z/peZ)| =

e−1∑

γ=1

|Pn(Z/peZ)|pe−γ−1(p− 1)

= (pe)n
(
1 +

1

p
+ . . .+

1

pn

)
(pe−1 − 1)

= (pe)n+1

(
1

p
+

1

p2
+ . . .+

1

pn+1

)
− |Pn(Z/peZ)|.

Thus, the size of the whole projective space is

|Pn+1(Z/peZ)| = (pe)n+1 + (pe)n+1

(
1

p
+

1

p2
+ . . .+

1

pn+1

)
,

which concludes the inductive step.

2.2 ELLIPTIC CURVES OVER RINGS

2.2.1 Matrix rank over rings

This section is devoted to recalling the notion of matrix rank when the considered

matrices have entries in a commutative ring R with unity. Such a subject is needed to

properly characterize, in the next section, the conditions we shall assume on rings over

which elliptic curves may be defined. The key reference for this part is [12, Chapter 4].
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Definition 2.2.1 (Minor ideal). Let n,m ∈ Z≥1 and A ∈ Mn,m(R). For every integer

1 ≤ t ≤ min{n,m} we define the t-minor ideal It(A) as the ideal generated by the t × t
minors of A. We also define by convention I0(A) = R and for every t > min{n,m} we set

It(A) = (0).

From the Laplace expansion of the determinant we have the ascending chain of ideals

(0) = Imin{n,m}+1(A) ⊆ Imin{n,m}(A) ⊆ . . . ⊆ I1(A) ⊆ I0(A) = R.

Thus, we have the reverse chain of their annihilators

R = AnnR
(
(0)
)
⊇ AnnR

(
Imin{n,m}(A)

)
⊇ . . . ⊇ AnnR

(
I1(A)

)
⊇ AnnR(R) = (0).

This motivates the following definitions.

Definition 2.2.2 (Rank). Let n,m ∈ Z≥1 and A ∈Mn,m(R). The rank of A is defined as

rk(A) = max{t ∈ Z≥0 | AnnR
(
It(A)

)
= (0)}.

Definition 2.2.3 (Strong rank). Let n,m ∈ Z≥1 and A ∈Mn,m(R). The strong rank of A

is defined as

rk(A) = max{t ∈ Z≥0 | It(A) ̸= (0)}.

The above notions of rank coincide when R is a field, but it easy to see that in general

only rk(A) ≤ rk(A) holds, since AnnR
(
(0)
)
= R ̸= (0). The following example shows that

the inequality might well be strict.

Example 2.2.4. Let us consider the ring R = Z/6Z and the matrix

A =


2 2

3 2


 ∈M2,2(R).

We have I1(A) = R and I2(A) = ⟨4⟩, so that AnnR
(
I2(A)

)
= ⟨3⟩. Therefore rk(A) = 1 and

rk(A) = 2.
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The rank we employ to define a sum operation on elliptic curves over rings is the strong

one. In fact, we need linear combinations of the columns of certain matrices to produce a

unique projective point, which is ensured by the following lemma.

Lemma 2.2.5. Let n,m ∈ Z≥1 and A ∈Mn,m(R) be a matrix whose entries are primitive.

The following are equivalent.

(i) rk(A) = 1.

(ii) The 2× 2 minors of A vanish.

(iii) All the primitive vectors of Rn that may be obtained from an R-linear combination

among the columns of A are equal up to R∗-multiples.

Proof. Let A = (ai,k) 1≤i≤n
1≤k≤m

.

[i⇒ ii] Since rk(A) = 1 then I2(A) = (0), hence all the generators of I2(A) vanish.

[ii ⇒ iii] Let v1 = (v11, . . . , v1n) and v2 = (v21, . . . , v2n) be two primitive columns combi-

nations. Since v1 is primitive there are α1, . . . , αn ∈ R such that

n∑

i=1

αiv1i = 1 ∈ R.

It is easy to see that any 2× 2 minor of the (n× 2)-matrix (v1|v2), whose columns are v1
and v2, is an R-linear combination of the 2× 2 minors of A, hence it vanishes. Hence, for

every i, j ∈ {1, . . . , n} we have v1iv2j = v1jv2i, then

v2 =

(
n∑

i=1

αiv1i

)
v2 =

(
n∑

i=1

αiv1iv2j

)

1≤j≤n

=

(
n∑

i=1

αiv1jv2i

)

1≤j≤n

=

(
n∑

i=1

αiv2i

)
v1.

This proves that v2 is a multiple of v1, and since also v2 is primitive then the scalar factor

has to be a unit, i.e.
∑n

i=1 αiv2i ∈ R∗.

[iii ⇒ i] For every pair of columns ck and ch of A there is rkh ∈ R∗ such that ch = rkhck.

Therefore for every 1 ≤ i, j ≤ n we have

aikajh − aihajk = rkh(aikajk − aikajk) = 0,
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which shows that I2(A) = (0). Moreover, since the entries of A are primitive we have

I1(A) = R, so that rk(A) = 1.

Remark 2.2.6. Lemma 2.2.5 provides us with an equivalent and practical way of testing

whether two points (X0 : . . . : Xn), (Y0 : . . . : Yn) ∈ Pn(R) are equal, by testing for every

i, j ∈ {0, . . . , n} if XiYj −XjYi = 0. In the following sections and chapters this procedure

is always adopted for verifying projective points equalities.

2.2.2 Elliptic curves over rings

In this section we define elliptic curves over commutative rings R with unity by ex-

tending Definition 1.1.4. However, a technical condition on the ring is needed in order to

endow these objects with a group structure.

Condition 2.2.7. For every pair of positive integers n,m ∈ Z≥1 and every matrix

A = (aij) 1≤i≤n
1≤j≤m

∈Mn,m(R)

with strong rank rk(A) = 1 and primitive entries, there exists an R-linear combination of

the columns of A whose entries are primitive.

We notice that when the above combination exists, then it is unique in Pn(R) by

Lemma 2.2.5.

Remark 2.2.8. Condition 2.2.7 is trivially satisfied when R is a field. In fact, if A has

primitive entries then it has a non-zero entry aij, so that the j-th column is primitive.

More generally, in [42] it is pointed out that rings R satisfying Condition 2.2.7 are such

that every projective R-module of rank 1 is free or, equivalently, those having vanishing

Picard group. We do not use these characterizations in the continuation of the present

work, so we refer an interested reader to [5].
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Definition 2.2.9 (Elliptic curve overR). LetR be a commutative ring with unity satisfying

Condition 2.2.7 and let A,B ∈ R such that ∆A,B = −(4A3 + 27B2) ∈ R∗. The elliptic

curve defined by FA,B = x3 + Axz2 +Bz3 − y2z ∈ R[x, y, z] is

EA,B(R) = {(X : Y : Z) ∈ P2(R) | Y 2Z = X3 + AXZ2 +BZ3}.

Given an elliptic curve E = EA,B(R), we denote by O = (0 : 1 : 0) ∈ E its zero element,

with Ea = E ∩ P2
aff(R) its affine points and with E∞ the remaining points, which are called

points at infinity.

The formulae from Section 1.2, which are guaranteed to work over fields, may also

be used to define a sum operation on EA,B(R). In this more general setting, a pair of

points (P1, P2) is called exceptional for an addition law if the defining polynomials S1, S2, S3

evaluated in the entries of P1 and P2 produce a non-primitive set of elements.

Definition 2.2.10 (Point sum on EA,B(R)). Let P1, P2 ∈ EA,B(R). We define their sum

P1+P2 as any primitive R-combination of the vectors P1+(0:1:0)P2 and P1+(0:0:1)P2, where

the latter two sums are those defined in Section 1.2.

Proposition 2.2.11 ([42], Section 3). The point sum always defines a unique point on the

elliptic curve EA,B(R). Moreover, EA,B(R) with this sum is an abelian group whose unity

is O and the inverse of a point is given by

−(X : Y : Z) = (X : −Y : Z).

Proof. Let us consider any triple of points

P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2), P3 = (X3 : Y3 : Z3) ∈ P2(R),

let F = x3 + Axz2 +Bz3 − y2z ∈ R[x, y, z] and define the ideal

J = ⟨F (P1), F (P2), F (P3)⟩ ⊆ R.
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First we prove that P1 + P2 is uniquely defined. Let us define

(U1, U2, U3) = P1 +(0:0:1) P2,

(V1, V2, V3) = P1 +(0:1:0) P2.

We computationally verify [Appendix A.1] that all the 2× 2-minors of

M =




U1 V1

U2 V2

U2 V2




belong to J .1 Thus, whenever P1, P2 ∈ EA,B(R) the strong rank of M is 1. We prove

that M is also primitive: assume by contradiction that I = ⟨Ui, Vi⟩i∈{1,2,3} ̸= R, then by

Zorn’s lemma there exists a maximal ideal I ⊆ m ⊊ R. Both (Ui mod m) and (Vi mod m)

are equal to the zero vector of (R/m)3, contradicting the fact that {+(0:1:0),+(0:0:1)} is a

complete system of addition laws over the field R/m.

Therefore, M is primitive with rk(M) = 1 and Condition 2.2.7 guarantees that there

exists a primitive R-combination among (U1, U2, U3) and (V1, V2, V3). By Lemma 2.2.5 this

combination is also unique, so it defines P1 + P2.

Now we show that this operation satisfies the group axioms. Given two primitive

triples (X1, Y1, Z1), (X2, Y2, Z2) ∈ R3, we may define

c1 = [X,Y ] = X1Y2 −X2Y1,

c2 = [X,Z] = X1Z2 −X2Z1,

c3 = [Y, Z] = Y1Z2 − Y2Z1.

As observed in Remark 2.2.6, they represent the same point in P2(R) if and only if

c1 = c2 = c3 = 0.

1In our computational verification, this is checked by proving that they may be expressed as integer
polynomials in elements of R.
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If the above triples are coordinates of points in EA,B(R), it is sufficient to show that

c1, c2, c3 ∈ J,

which may be straightforwardly tested. In fact, we verify [Appendix A.2] that

- [Closure] If S1, S2, S3 ∈ R are such that P1 + P2 = (S1 : S2 : S3) then

F (S1, S2, S3) ∈ J.

- [Commutativity] P1 + P2 = P2 + P1 ∈ P2(R).

- [Associativity] (P1 + P2) + P3 = P1 + (P2 + P3) ∈ P2(R).

- [Identity] P1 +O = P1 ∈ P2(R).

- [Inverse] P1 + (X1 : −Y1 : Z1) = O ∈ P2(R).

This proves the second part of the statement and concludes the proof.

For any elliptic curve EA,B(R) and any proper ideal I ⊊ R, since ∆A,B ∈ R∗ then

∆A,B ̸∈ I so ∆A,B ∈ (R/I)∗, which implies that EA,B(R/I) is in turn an elliptic curve.

Moreover, since the sum is defined by polynomial operations in the entries of the considered

points, it commutes with the ring projection R ↠ R/I. Thus, the following is a well-defined

group morphism.

Definition 2.2.12 (Canonical projection). Let EA,B(R) be an elliptic curve and I ⊊ R be

a proper ideal of R. We define the canonical projection as the group morphism

π : EA,B(R)→ EA,B(R/I),

(X0 : . . . : Xn) 7→ (X0 mod I : . . . : Xn mod I).

We say that P ∈ EA,B(R) lies over P ∈ EA,B(R/I) if π(P ) = P .
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We conclude this section by noting that Definition 2.2.10 is somehow “essential”: the

addition formulae that are working over fields have no hope of composing a complete system

of addition laws over general rings.

Example 2.2.13. Let E0,1(Z/35Z) be the elliptic curve defined by

Y 2Z ≡ X3 + Z3 mod 35.

We consider its point P = (20 : 21 : 15) and we sum it with O by using the addition laws

corresponding to (0 : 0 : 1) and (0 : 1 : 0):

P +(0:0:1) O = (20, 0, 15) ̸∈ P2(Z/35Z),

P +(0:1:0) O = (0, 21, 0) ̸∈ P2(Z/35Z).

A primitive linear combination of the triples is obtained by componentwisely adding them,

so that P +O = (20 : 21 : 15), which is P . Notice that any other combination (20, 21α, 15)

is primitive if and only if α ̸≡ 0 mod 5. If this is the case, the element β defined by




β ≡ 1 mod 7,

β ≡ α mod 5,

is invertible in Z/35Z and satisfies β(20, 21, 15) = (20, 21α, 15). Hence, these points are all

equal to P inside P2(Z/35Z).

2.3 ELLIPTIC CURVES OVER Z/NZ

2.3.1 The Z/NZ-case

Let N ∈ Z≥2 be an integer. Hereafter we consider elliptic curves defined over the ring

R = Z/NZ, over which Condition 2.2.7 is always satisfied. We give a simple proof for these

specific rings, although in [42] it has been proved to hold for every finite ring.

Lemma 2.3.1. Let N ∈ Z≥2 be an integer and A be a matrix over Z/NZ whose entries

are primitive, then there exists a linear combination of the columns of A that is primitive.

35



In particular, R = Z/NZ satisfies Condition 2.2.7.

Proof. Let A = (c1|c2| . . . |cm) be the columns of the considered matrix. Since A is primitive,

for every prime p|N there are coefficients α(p)
1 , . . . , α

(p)
m ∈ Z/pZ such that the vector

v(p) =
m∑

i=1

α
(p)
i ci

is primitive over Z/pZ. Therefore by Chinese Reminder Theorem we may find integers

βi ∈ Z solving the congruence system

(
βi ≡ α

(p)
i (mod p)

)
p|N

.

Thus, v =
∑m

i=1 βici is primitive. In fact, if there were a prime factor of N dividing all its

entries, then v would be the zero-vector modulo p, contradicting its construction.

Remark 2.3.2. The previous result witnesses how special Z/NZ is: Lemma 2.3.1 holds

for every matrix with primitive entries, not only for those of strong rank 1 as we require

from general rings.

Ascertained the existence of a group operation on elliptic curves over Z/NZ, we aim

at studying their point group structure. For dealing only with short Weierstrass equations,

we always assume 2, 3 ∤ N .

We forthwith notice that, by Chinese Reminder Theorem, the problem may be sim-

plified by considering only its p-subgroups, for p ranging among the prime divisors of N .

Proposition 2.3.3 ([74], Corollary 2.32). Let N1, N2 be coprime integers and A,B ∈ Z

such that ∆A,B ∈ (Z/N1N2Z)∗. Then the canonical projections induce a group isomorphism

EA,B(Z/N1N2Z) ≃ EA,B(Z/N1Z)⊕ EA,B(Z/N2Z).

Therefore, for every N ∈ Z≥2 the point group of a curve over Z/NZ may de decom-
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posed as a direct sum of groups

EA,B(Z/NZ) ≃
⊕

p∈P
p|N

EA,B(Z/pvp(N)Z).

Hence, it is sufficient to study the group structure of elliptic curves EA,B(Z/peZ) for p prime.

First, we notice that the points of such curves always have prescribed representatives.

Lemma 2.3.4. Let e ∈ Z≥1, p ∈ P and P ∈ EA,B(Z/peZ) be a point of an elliptic curve.

• If P lies over an affine point of EA,B(Fp), then there are X,Y ∈ Z/peZ such that

P = (X : Y : 1).

• If P lies over O ∈ EA,B(Fp), then there are X,Z ∈ p(Z/peZ) such that

P = (X : 1 : Z).

Proof. Let P = (X : Y : Z) and π(P ) = (X : Y : Z). If π(P ) is affine then Z ∈ (Z/pZ)∗

then also Z ∈ (Z/peZ)∗, which implies P = (X
Z
: Y
Z
: 1). Instead, if π(P ) = O then both Z

and X belong to p(Z/peZ). But P must have primitive entries, hence Y ∈ (Z/pZ)∗ so that

P = (X
Y
: 1 : Z

Y
).

Remark 2.3.5. A point cannot be represented by both the forms of Lemma 2.3.4, since

either GCD(p, Z) = 1 or p|Z. However, if Y Z ≡ 1 mod pe, then we may write an affine

point as (X : Y : 1) = (XZ : 1 : Z). In particular, if the curve is made only of points with

an invertible second coordinate, they may all be written as (X : 1 : Z) and the points at

infinity are precisely those with a not-invertible X. Nonetheless, we notice that this is not

always the case
(
e.g.: (3 : 7 : 1) ∈ E6,4(Z/49Z)

)
.

2.3.2 Points at infinity

Inspired by the ideas of [67, Chapter IV], in this section we develop an explicit de-

scription of the sum operation for points at infinity, i.e. those lying over O.
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To simplify the exposition, for any X ∈ Z/peZ and any integer 0 ≤ t ≤ e we write

pt|X or X ≡ 0 mod pt in place of the more precise X ∈ pt(Z/peZ). It can easily be made

formally accurate by considering any integer representative of X.

In the same spirit, we assign a p-adic valuation to elements X ∈ Z/peZ by writing

vp(X) =




t if X ∈ pt(Z/peZ) \ pt+1(Z/peZ),

e if X = 0.

Proposition 2.3.6. Let e ∈ Z≥1, p ∈ P and EA,B(Z/peZ) be an elliptic curve. There is

a polynomial f ∈ Z[x] of degree at most e − 1 such that for every P ∈ EA,B(Z/peZ) lying

over O ∈ EA,B(Fp) there is X ≡ 0 mod p satisfying

P =
(
X : 1 : f(X)

)
.

Moreover, we have

f(X) ≡ X3 + AX7 +BX9 mod p10.

Proof. By Lemma 2.3.4 we know that points at infinity inside EA,B(Z/peZ) are of the form

(X : 1 : Z) with p|X, p|Z and they satisfy

Z ≡ X3 + AXZ2 +BZ3 mod pe.

We recursively define the following sequence of polynomials in Z[x, z]:

F0(x, z) = x3 + Axz2 +Bz3, ∀ i ∈ Z≥1 : Fi(x, z) = Fi−1

(
x, F0(x, z)

)
.

It is easy to see by induction on i ∈ Z≥0 that this sequence satisfies

Z ≡ Fi(X,Z) mod pe.

Moreover, every Fi for i ∈ Z≥1 is obtained from Fi−1 by substituting all the occurrences

of z with terms of degree 3, hence the total degree of terms involving z in Fi is strictly
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increasing while increasing i. This means that there exists an integer M ∈ Z≥0 such that

FM(x, z) = f(x) + g(x, z), with





deg(g) ≥ e,

deg(f) < e.

Since both X and Z are divisible by p, this means that

Z ≡ FM(X,Z) ≡ f(X) mod pe,

so that f ∈ Z[x] is the required polynomial. A direct computation shows that

F1 = x3 + z2(Ax+Bz),

F2 = x3 + Ax7 +Bx9 + 3ABx7z2 + 3B2x6z3 + 3A2Bx5z4 + 2A2x5z2 + 6AB2x4z5

+ 2ABx4z3 + (A3B + 3B3)x3z6 + A3x3z4 + 3A2B2x2z7 + 2A2Bx2z5 + 3AB3xz8

+ AB2xz6 +B4z9,

F3 = x3 + Ax7 +Bx9 + (terms of degree ≥ 11),

which proves the moreover part.

Proposition 2.3.7. Let e ∈ Z≥1, p ∈ P and EA,B(Z/peZ) be an elliptic curve. Let also

P1 =
(
X1 : 1 : f(X1)

)
, P2 =

(
X2 : 1 : f(X2)

)
∈ EA,B(Z/peZ)

be two points lying over O ∈ EA,B(Fp) with e1 = vp(X1) and e2 = vp(X2). Then we have

P1 + P2 =
(
X3 : 1 : f(X3)

)
with

X3 ≡ X1 +X2 mod p5min{e1,e2}.

Proof. Since the canonical projection is a group morphism, the sum of two points lying

over O lies itself over O, which implies that these points are never exceptional for +(0:1:0).

A straightforward computation with this addition formula shows that, modulo monomials
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in X1 and X2 of total degree at least 5 (i.e. modulo p5min{e1,e2}), the sum P1 + P2 is given

by

P1 + P2 =
(
X1 +X2 : 1 + 3AX2

1X
2
2 : (X1 +X2)

3
)
,

which is equal to
(
X1 +X2 : 1 : (X1 +X2)

3
)

as we establish by multiplying its entries by

1− 3AX2
1X

2
2 ∈ (Z/p5min{e1,e2}Z)∗.

2.3.3 Group structure

In this section we describe the group structure of elliptic curves over Z/peZ. The size

of those curves is known, by means of Hensel’s lemma.

Lemma 2.3.8 ([42], Section 4). Let e ∈ Z≥1 be a positive integer, p ∈ P be a prime and

EA,B(Z/peZ) be an elliptic curve. Then for every P ∈ EA,B(Fp) we have

|π−1(P )| = pe−1.

In particular, the size of the curve is

|EA,B(Z/peZ)| = pe−1|EA,B(Fp)|.

Proof. If P = O we already know by Proposition 2.3.6 that any point over O may be

written for some X ∈ p(Z/peZ) as
(
X : 1 : f(X)

)
. Since every point of this form lies over

O, they are as many as the possible choices of X, namely pe−1.

Let us now assume P = (X : Y : 1) affine and consider the curve polynomial

F (x, y, z) = x3 + Axz2 +Bz3 − y2z ∈ Z[x, y, z].

Since EA,B(Fp) is not singular, at least one between ∂xF (P ) and ∂yF (P ) is non-zero modulo

p: in fact, if they were both zero, by Euler’s Homogeneous Function Theorem we would

have

∂zF (P ) ≡ X∂xF (P ) + Y ∂yF (P ) + ∂zF (P ) ≡ 3F (P ) ≡ 0 mod p, (2.2)

and P would be singular. Thus, let us assume ∂xF (P ) ̸≡ 0 mod p. For every integer
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α ∈ {0, 1, . . . , pe−1 − 1} we may define gα ∈ Z[w] as

gα(w) = F (w, Y + αp, 1).

By definition gα(X) ≡ 0 mod p, and ∂wgα(X) ≡ ∂xF (P ) ̸≡ 0 mod p, then by Hensel’s

Lemma there exists a unique χα ∈ Z/peZ such that χα ≡ X mod p and gα(χα) ≡ 0 mod pe.

Therefore, we have constructed a point

Pα = (χα : Y + αp : 1) ∈ EA,B(Z/peZ)

lying over P . These {Pα}α∈{0,1,...,pe−1−1} are all distinct and by uniqueness of Hensel’s

Lemma every point (X1 : Y1 : 1) ∈ EA,B(Z/peZ) over P arises in this way, as

(X1 : Y1 : 1) = Pα′ , with α′ =

(
Y1 − Y
p

)
.

We conclude that {Pα}α∈{0,1,...,pe−1−1} are all the points of EA,B(Z/peZ) over P .

If, instead, ∂xF (P ) ≡ 0 mod p and ∂yF (P ) ̸≡ 0 mod p, the same result is obtained by

considering the polynomial

gβ(w) = F (X + βp, w, 1).

In each cases, there are pe−1 points lying over P , which concludes the proof.

We are ready to characterize the point group structure of elliptic curves over Z/peZ.

Theorem 2.3.9. Let e ∈ Z≥1 be a positive integer, p ∈ P be a prime and EA,B(Z/peZ) be

an elliptic curve. Then

0→
⟨(
p : 1 : f(p)

)⟩ id→ EA,B(Z/peZ) π→ EA,B(Fp)→ 0.

is a short exact sequence of groups.

Proof. We know that the canonical projection π : EA,B(Z/peZ) ↠ EA,B(Fp) is a surjective

group morphism and that | ker π| = pe−1 by Lemma 2.3.8. Thus, it is sufficient to prove that
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(
p : 1 : f(p)

)
∈ ker π has order pe−1. It lies over O ∈ EA,B(Fp) by means of Proposition

2.3.6 and its order is a power of p since ker π is a p-group. We prove by induction on

0 ≤ ϵ ≤ e− 1 that2

pϵ
(
p : 1 : f(p)

)
=
(
X : 1 : f(X)

)
with vp(X) = ϵ+ 1.

In particular, the minimal ϵ such that X ≡ 0 mod pe is ϵ = e− 1.

[ϵ = 0] It is trivially seen that

p0
(
p : 1 : f(p)

)
=
(
p : 1 : f(p)

)
with vp(p) = 1.

[ϵ→ ϵ+ 1] By the inductive hypothesis we know that

pϵ+1
(
p : 1 : f(p)

)
= p
(
X : 1 : f(X)

)
with vp(X) = ϵ+ 1.

By Proposition 2.3.7 and induction on α ∈ {1, . . . , p− 1} we have

(
X : 1 : f(X)

)
+
(
αX : 1 : f(αX)

)
=
(
X2 : 1 : f(X2)

)

with

X2 ≡ (α + 1)X mod p5(ϵ+1).

Thus, by specializing the above result for α = p − 1, the p-adic valuation of the first

component of p
(
X : 1 : f(X)

)
is proved to be vp(X) + 1 = ϵ+ 2.

The above theorem uniquely determines the group structure when the projected curve

is not anomalous.

Corollary 2.3.10. Let e ∈ Z≥1 be a positive integer, p ∈ P be a prime and EA,B(Z/peZ)
be an elliptic curve such that |EA,B(Fp)| ̸= p. Then

EA,B(Z/peZ) ≃ EA,B(Fp)⊕ Z/pe−1Z.
2If ϵ ≥ e we clearly have pϵ

(
p : 1 : f(p)

)
= O, and by definition vp(0) = e.
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Proof. It is sufficient to show that the short exact sequence provided by Theorem 2.3.9 is

a split sequence, which by the Splitting Lemma amounts to proving that it is left split.

Let q = |EA,B(Fp)| be the size of the projected curve. Since we assumed p ̸= q then by

Theorem 1.3.1 we have GCD(p, q) = 1, so we can find an integer k ∈ Z satisfying




k ≡ 1 mod pe−1,

k ≡ 0 mod q.

We prove that the multiplication-by-k is a left section for the considered sequence. In fact,

since k ≡ 0 mod q then

EA,B(Z/peZ) ·k→
⟨(
p : 1 : f(p)

)⟩

is a well-defined group morphism. Moreover, since k ≡ 1 mod pe−1 the cyclic group
⟨(
p :

1 : f(p)
)⟩

is fixed under this map, hence id1 ◦ (·k) = id2, where id1 is the injection
⟨(
p : 1 : f(p)

)⟩
↪→ EA,B(Z/peZ), while id2 is the actual identity map on

⟨(
p : 1 : f(p)

)⟩
.

In particular, Corollary 2.3.10 shows that if the group of points of a non-anomalous

curve E = EA,B(Fp) is cyclic, then the point group of every elliptic curve lying over E is

also cyclic.

When the exponent e is small, an explicit group isomorphism may be exhibited.

Proposition 2.3.11. Let 1 ≤ e ≤ 5 be an integer, p ∈ P be a prime, EA,B(Z/peZ) be an

elliptic curve and q = |EA,B(Fp)| be the size of its projected curve. Then the map

Φ : EA,B(Z/peZ)→ EA,B(Fp)⊕ Z/pe−1Z,

P 7→
(
π(P ),

1

p

(qP )x
(qP )y

)
,

is a well-defined group morphism. Moreover, if q ̸= p then Φ is a group isomorphism.

Proof. It is easy to see that Φ(P ) does not depend on the representative of P . Moreover,

since π as in Definition 2.2.12 is a group morphism, then

π(qP ) = qπ(P ) = O ∈ EA,B(Fp).
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Hence, by Proposition 2.3.6 we can write qP =
(
X : 1 : f(X)

)
for some X ≡ 0 (mod p).

Therefore, (qP )x
(qP )y

∈ p(Z/peZ), which is (canonically) isomorphic to Z/pe−1Z via the multi-

plication by 1
p
. Thus, Φ is a well-defined map between groups having, by Lemma 2.3.8, the

same size.

This map is a group morphism: for every pair P1, P2 ∈ EA,B(Z/peZ) we have

Φ(P1) + Φ(P2) =

(
π(P1 + P2),

1

p

(
(qP1)x
(qP1)y

+
(qP2)x
(qP2)y

))
.

Since e ≤ 5 ≤ 5min{vp
(
(qP1)x

)
, vp
(
(qP2)x

)
} then by Proposition 2.3.7, we get

(qP1)x
(qP1)y

+
(qP2)x
(qP2)y

=
(qP1 + qP2)x
(qP1 + qP2)y

=

(
q(P1 + P2)

)
x(

q(P1 + P2)
)
y

,

which is precisely the second component of Φ(P1 + P2).

It is now sufficient to prove that if q ̸= p, then kerΦ = {O}. From Φ(P ) = (O, 0) we

get that P is a point at infinity, so P =
(
X : 1 : f(X)

)
, and since the second entry of Φ(P )

is 0, we also have
qX

p
≡ (qP )x

p
≡ 0 mod pe−1.

Since q ̸= p, then by Theorem 1.3.1 also GCD(p, q) = 1 and we conclude thatX ≡ 0 mod pe,

hence P =
(
0 : 1 : f(0)

)
= O.

2.3.4 The anomalous cases

When the restricted curve EA,B(Fp) is anomalous two different scenarios may occur.

By Theorem 2.3.9 the curve EA,B(Z/peZ) is guaranteed to contain a cyclic subgroup of

order pe−1, therefore it may be either cyclic

EA,B(Z/peZ) ≃ Z/peZ, (Cyclic)

or split, i.e.

EA,B(Z/peZ) ≃ Z/pe−1Z⊕ Z/pZ. (Split)
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These cases may both occur as it is witnessed by Example 2.3.18 and 2.3.19. Their

behaviour is quite dissimilar, so we discuss them separately.

△ Cyclic

In the cyclic scenario there is a group morphism from which the discrete logarithm on

the projected curve may be immediately read.

Proposition 2.3.12. Let e ∈ Z≥2 be an integer, p ∈ P be a prime and E = EA,B(Z/peZ)
be an elliptic curve, whose point group is cyclic of order pe. Then the map

Θ : E → Fp,

P 7→ 1

pe−1

(pe−1P )x
(pe−1P )y

,

is a well-defined surjective group morphism, whose kernel is

kerΘ = ⟨(p : 1 : 0)⟩.

Proof. For every P ∈ E the point pe−1P is a p-torsion point of E , hence we have

pe−1P =
(
X : 1 : f(X)

)
, with vp(X) ≥ e− 1,

therefore Θ(P ) = X
pe−1 ∈ Fp is well-defined. Let G ∈ E be a generator of the point group of

E , then for every integer m ∈ Z we have

pe−1mG = m
(
X : 1 : f(X)

)
=
(
mX : 1 : f(mX)

)
,

where the last equality follows from Proposition 2.3.7, as for every e ≥ 2 the point pe−1G

lies in ⟨(pe−1 : 1 : 0)⟩. Thus, Θ(mG) = mΘ(G), so that Θ is a group morphism. Moreover,

from the above equation it follows that

kerΘ = {mp G | m ∈ Z} = ⟨(p : 1 : 0)⟩.

By comparing the size of these groups, the surjectivity follows.
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From the above proposition, the discrete logarithm may be immediately recovered.

Corollary 2.3.13. Let e ∈ Z≥2 be an integer, p ∈ P be a prime and E = EA,B(Z/peZ) be

an elliptic curve, whose point group is cyclic of order pe. Then the map

Θ ◦ π−1 : E(Fp)→ Fp

is a well-defined group isomorphism.

Proof. The canonical projection induces a group isomorphism E/⟨(p : 1 : 0)⟩ ≃ E(Fp) by

Theorem 2.3.9, whereas the map Θ of Proposition 2.3.12 induces a group isomorphism

E/⟨(p : 1 : 0)⟩ ≃ Fp. By composing those isomorphisms, the result follows.

△ Split

In the split case, the multiplication-by-p morphism sends the p2 − 1 points of order

p to O. As a result, we see that this map always produces at least a p2-factor in the

x-component of any point.

Proposition 2.3.14. Let e ∈ Z≥1 be a positive integer, p ∈ P be a prime and consider

an elliptic curve E = EA,B(Z/peZ) such that E ≃ Z/pe−1Z⊕ Z/pZ. Then for every P ∈ E
there exists X ∈ p2(Z/pe−1Z) such that pP =

(
X : 1 : f(X)

)
.

Proof. By Proposition 2.3.6 we know that pP =
(
X : 1 : f(X)

)
with p|X. Moreover, by

Theorem 2.3.9 we know that there exists α ∈ {0, 1, . . . , pe−1 − 1} such that

(
X : 1 : f(X)

)
= α

(
p : 1 : f(p)

)

Since P has order at most pe−1, then pe−2(pP ) = O, so that

O = pe−2
(
X : 1 : f(X)

)
= αpe−2

(
p : 1 : f(p)

)
.

As
(
p : 1 : f(p)

)
generates a group of order pe−1, we conclude that p|α so that, by Propo-

sition 2.3.7, we have p2|X.
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As a consequence, the explicit group morphism of Proposition 2.3.11 may be made

surjective in this setting, by restricting its codomain.

Corollary 2.3.15. Let 2 ≤ e ≤ 5 be an integer, p ∈ P be a prime and E = EA,B(Z/peZ) be

an elliptic curve such that E ≃ Z/pe−1Z⊕ Z/pZ. The map

Ψ : E → EA,B(Fp)⊕ Z/pe−2Z,

P 7→
(
π(P ),

1

p2
(pP )x
(pP )y

)
,

is a well-defined surjective group morphism, whose kernel is

kerΨ = ⟨(pe−1 : 1 : 0)⟩.

Proof. For every point P ∈ E we have p2|(pP )x by Proposition 2.3.14, hence the map Ψ

is well-defined. Since it is equal to Φ of Proposition 2.3.11, with the second component

divided by p, it is also a group morphism.

Let P ∈ kerΨ, then by Proposition 2.3.7 there is an element X ∈ Z/peZ such that

P =
(
X : 1 : f(X)

)
and pX

p2
≡ 0 mod pe−2, hence X ≡ 0 mod pe−1. Therefore, we have

kerΨ = {(αpe−1 : 1 : 0)}α∈{0,...,p−1} = ⟨(pe−1 : 1 : 0)⟩.

Finally, by a size comparison (Lemma 2.3.8) the morphism Ψ is also surjective.

In the split case the short exact sequence of Theorem 2.3.9 splits, therefore there is

a right section. Actually, there are many: if s : EA,B(Fp) → EA,B(Z/peZ) is a section, it

immediately follows that ∀α ∈ {0, 1, . . . , pe−1 − 1} also ·(αp+ 1) ◦ s are right sections.

Remark 2.3.16. We shall relate the split case to the canonical lift of EA,B(Fp), which

has been introduced in [18, 46] and applied to anomalous lifts in [73]. Hence, this case

is expected to occur with probability 1
p

and may be effortlessly overcome by changing the

curve coefficients of a p-multiple.
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2.3.5 Some examples

In this section we provide concrete instances of the previous results, both in the general

case (Example 2.3.17) and in the anomalous ones (Example 2.3.18 and 2.3.19).

Example 2.3.17. Let us consider the curve E3,3(Z/49Z), whose projection has size

|E3,3(F7)| = 6. According to Corollary 2.3.10 its group structure is

E3,3(Z/49Z) ≃ E3,3(F7)⊕ F7.

The proof of the same Corollary also provides us with a left section for the exact sequence

of Theorem 2.3.9, i.e. the multiplication-by-36 map. We also have an explicit group

isomorphism from Proposition 2.3.11, which is visually represented by the following table.

6 (42:1:0) (39:39:1) (45:5:1) (8:7:1) (38:16:1) (4:31:1)

5 (35:1:0) (32:25:1) (24:40:1) (8:14:1) (10:2:1) (11:17:1)

4 (28:1:0) (25:11:1) (3:26:1) (8:21:1) (31:37:1) (18:3:1)

3 (21:1:0) (18:46:1) (31:12:1) (8:28:1) (3:23:1) (25:38:1)

2 (14:1:0) (11:32:1) (10:47:1) (8:35:1) (24:9:1) (32:24:1)

1 (7:1:0) (4:18:1) (38:33:1) (8:42:1) (45:44:1) (39:10:1)

0 (0:1:0) (46:4:1) (17:19:1) (8:0:1) (17:30:1) (46:45:1)

(0:1:0) (4:4:1) (3:5:1) (1:0:1) (3:2:1) (4:3:1)

F7

E3,3(F7)

π

· 6

In reference to the above diagram, a right section for the sequence of Theorem 2.3.9

is obtained by sending the points of E3,3(F7) to their bold representatives in E3,3(Z/49Z).

It is easily seen that the discrete logarithm problem over the base curve could be

efficiently solved if we were able to find lifted points with the same ratio as their base

points. As an instance, if we knew that (10 : 47 : 1) = 2 · (4 : 18 : 1), we would immediately

recover the (same) discrete logarithm between the corresponding projections (3 : 5 : 1) and

(4 : 4 : 1). However, no way are known to consistently perform such lifts [66].
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Example 2.3.18. By considering the elliptic curve E7,3(Z/132Z), we may verify that

E7,3(Z/169Z) ≃ ⟨(0 : 61 : 1)⟩.

Since Θ ◦ π−1 is a group isomorphism, as prescribed by Corollary 2.3.13, when solving the

discrete logarithm the choice of a lift is irrelevant: every lift of the same point is sent to

the same point at infinity by the multiplication-by-13 morphism, as depicted below.

...
...

...
...

...
... . .

.

(78:1:0) (78:35:1) (81:70:1) (84:116:1) (82:41:1) (86:57:1) …

(65:1:0) (65:152:1) (68:161:1) (71:103:1) (69:158:1) (73:18:1) …

(52:1:0) (52:100:1) (55:83:1) (58:90:1) (56:106:1) (60:148:1) …

(39:1:0) (39:48:1) (42:5:1) (45:77:1) (43:54:1) (47:109:1) …

(26:1:0) (26:165:1) (29:96:1) (32:64:1) (30:2:1) (34:70:1) …

(13:1:0) (13:113:1) (16:18:1) (19:51:1) (17:119:1) (21:31:1) …

(0:1:0) (0:61:1) (3:109:1) (6:38:1) (4:67:1) (8:161:1) …

(0:1:0) (0:9:1) (3:5:1) (6:12:1) (4:2:1) (8:5:1) …

E7,3(F13)

π

· 13

Thus, we can read the discrete logarithms in E7,3(F13) from any lift in E7,3(Z/169Z). As in

instance, in the considered example we have

13 · π−1
(
(4 : 2 : 1)

)
= {(52 : 1 : 0)} = {4 · (13 : 1 : 0)},

13 · π−1
(
(3 : 5 : 1)

)
= {(26 : 1 : 0)} = {2 · (13 : 1 : 0)},

therefore

log(3:5:1) ((4 : 2 : 1)) =
Θ ◦ π−1 ((4 : 2 : 1))

Θ ◦ π−1 ((3 : 5 : 1))
=

4

2
= 2.

There are no right sections in this case, as the only 13-subgroup is π−1(O).
Finally, it is also worth pointing out that this attack never fails, as for every affine

point P ∈ E(Fp) the map logP is well-defined.
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Example 2.3.19. We now consider the anomalous elliptic curve E1,6(F13). The point group

of this curve over Z/169Z is a direct product of two groups, namely

E1,6(Z/169Z) ≃ ⟨(2 : 4 : 1)⟩ ⊕ ⟨(13 : 1 : 0)⟩.

...
...

...
...

...
...

... . .
.

6 (78:1:0) (54:4:1) (113:113:1) (167:140:1) (142:24:1) (94:7:1) …

5 (65:1:0) (158:4:1) (9:74:1) (89:140:1) (90:76:1) (107:33:1) …

4 (52:1:0) (93:4:1) (74:35:1) (11:140:1) (38:128:1) (120:59:1) …

3 (39:1:0) (28:4:1) (139:165:1) (102:140:1) (155:11:1) (133:85:1) …

2 (26:1:0) (132:4:1) (35:126:1) (24:140:1) (103:63:1) (146:111:1) …

1 (13:1:0) (67:4:1) (100:87:1) (115:140:1) (51:115:1) (159:137:1) …

0 (0:1:0) (2:4:1) (165:48:1) (37:140:1) (168:167:1) (3:163:1) …

(0:1:0) (2:4:1) (9:9:1) (11:10:1) (12:11:1) (3:7:1) …

F13

E1,6(F13)

π

In this case, the multiplication-by-13 map annihilates every point of E1,6(Z/169Z).

As mentioned in Remark 2.3.16, this situation may (rarely) occur. To solve the DLP in

E1,6(F13), we can either change the considered coefficients to return to the cyclic scenario
(
e.g. by considering E14,6(Z/169Z)

)
or look at higher (e ≥ 3) powers of p and try to exploit

the morphism given by Corollary 2.3.15. The latter case appears to be problematic, as it

works only when the lifted points lie inside the same subgroup of E1,6(Z/2197Z), i.e. when

the discrete logarithm actually exists in E1,6(Z/2197Z).

As an instance of the second approach, let P = (2 : 4 : 1) and Q = (1389 : 816 : 1),

which lie over (2 : 4 : 1) and (11 : 10 : 1) respectively. Since they belong to the same

subgroup of E1,6(Z/169Z), the discrete logarithm between the correspondent base points is

given by

log(2:4:1)

(
(11 : 10 : 1)

)
=

(13 ·Q)x(13 · P )y
(13 ·Q)y(13 · P )x

=
338

845
=

2

5
≡ 3 mod 13.

In this case the ratio has not been preserved by lifting, as Q = 16 · P .
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CHAPTER 3

ELLIPTIC LOOPS

All the objects considered in Chapter 2 have been defined for given integers A,B ∈ Z,

but different choices of these parameters would have led to different, still well-defined,

curves. In fact, for every α, β ∈ Z and e ∈ Z≥1 the classical elliptic curve EA,B(Fp) underlies

EA+αp,B+βp(Z/peZ) and the projection

π : EA+αp,B+βp(Z/p
eZ) ↠ EA,B(Fp)

is a group morphism, as in Definition 2.2.12. In this chapter we consider the smallest

algebraic object containing all these curves, for which the above projections are instances

of the same reduction map.

3.1 SET DESCRIPTION

Definition 3.1.1 (Elliptic set). Let p ∈ P be a prime and e ∈ Z≥1 be a positive integer.

Let also A,B ∈ Z be integers such that ∆A,B ̸≡ 0 mod p. We define

LA,B(Z/peZ) = {(X : Y : Z) ∈ P2(Z/peZ) | pe−1(−Y 2Z +X3 + AXZ2 +BZ3) = 0},

and we call it the Elliptic set defined by (A,B) over Z/peZ.

By the same slight abuse of notation of Section 2.3.2, we may write

LA,B(Z/peZ) = {(X : Y : Z) ∈ P2(Z/peZ) | Y 2Z ≡ X3 + AXZ2 +BZ3 mod p},

which is the characterization that we employ in this section.

We have a natural way to project points of elliptic sets onto points of the underlying

elliptic curves.
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Definition 3.1.2 (Canonical set projection). We define the canonical (set) projection as

the standard reduction map

π : LA,B(Z/peZ) ↠ EA,B(Fp),

(X : Y : Z) 7→ (X mod p : Y mod p : Z mod p).

For every pair of integers α, β ∈ Z we also observe that LA,B(Z/peZ) contains

EA+αp,B+βp(Z/peZ). In turn, LA,B(Z/peZ) can obtained by adding suitable multiples of

p to the coordinates of points of EA,B(Z/peZ), as in the following proposition.

Proposition 3.1.3. Let p ∈ P and e ∈ Z≥1. Let also A,B ∈ Z defining an elliptic curve

E = EA,B(Z/peZ). Then for every point P = (X : Y : Z) of L = LA,B(Z/peZ) there exists

a unique α ∈ {0, 1, . . . , pe−1 − 1} such that

(i) If p ∤ Y , then (X : Y + αp : Z) ∈ E .

(ii) If p|Y, p ∤ X and p ∤ Z, then (X : Y : Z + αp) ∈ E .

(iii) If p|Y, p|X and p ∤ Z, then (X + αp : Y : Z) ∈ E .

In particular, the size of L is

|L| = pe−1|E| = p2(e−1)|EA,B(Fp)|.

Proof. According to P , we define the polynomial F (β) ∈ Z[β] as

F (β) = X3 + AXZ2 +BZ3 − (Y + β)2Z if p ∤ Y [case (i)],

F (β) = X3 + AX(Z + β)2 +B(Z + β)3 − Y 2(Z + β) if p|Y, p ∤ X [case (ii)],

F (β) = (X + β)3 + A(X + β)Z2 +BZ3 − Y 2Z if p|Y, p|X [case (iii)].

Since P ∈ L, regardless the considered case this polynomial satisfies F (0) ≡ 0 mod p. The
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corresponding derivatives modulo p are

F ′(β) ≡ −2(Y + β) mod p [case (i)],

F ′(β) ≡ 2AX(Z + β) + 3B(Z + β)2 mod p [case (ii)],

F ′(β) ≡ 3β2 + A mod p [case (iii)].

In case (i) we have p ∤ Y , hence F ′(0) ≡ −2Y ̸≡ 0 mod p.

In case (ii), we have F ′(0) ≡ (2AX + 3BZ)Z mod p. Since p|Y , necessarily p ∤ Z, so F ′(0)

could vanish only if π(P ) = (3B : 0 : −2A), which cannot be a point of E(Fp) since we are

assuming p ∤ X, so 3B ̸≡ 0 mod p, which implies p ∤ B and

(3B)3 + A(3B)(−2A)2 +B(−2A)3 = B(27B2 + 4A3) = B∆A,B ̸≡ 0 mod p.

In case (iii) we have F ′(0) ≡ A mod p, which cannot be zero since when p| gcd(X,Y ) then

the Weierstrass equation of E(Fp) is BZ3 ≡ 0 mod p, hence B ≡ 0 mod p, so that

0 ̸≡ ∆A,B ≡ 4A3 mod p.

In each cases, F ′(0) ̸≡ 0 mod p, therefore by Hensel’s Lemma there is a unique α′ ∈ Z/peZ

such that F (α′) ≡ 0 mod pe and α′ ≡ 0 mod p. Thus, α = α′
p

seen as an integer between 0

and pe−1 − 1 is the required element.

Similarly to the curve-setting, we may distinguish between affine points and those at

infinity, i.e. those lying over OEA,B(Fp).

Definition 3.1.4. Let L = LA,B(Z/peZ) be the elliptic set defined by (A,B) over Z/peZ.

We define its affine part as

La = {(X : Y : Z) ∈ L | gcd(Z, p) = 1}
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and its part at infinity as

L∞ = {(X : Y : Z) ∈ L
∣∣ p|Z}.

We refer to the points of La as affine points and to those of L∞ as points at infinity.

Clearly the above definition ensures that a point P ∈ LA,B(Z/peZ) is affine (resp. at

infinity) if and only if the projected point π(P ) is affine (resp. at infinity) in EA,B(Fp).
The affine part of an elliptic set LA,B(Z/peZ) is entirely covered by the affine points of

the elliptic curves {EA+αp,B+βp(Z/peZ)}α,β∈{0,1,...,pe−1−1}. To be more precise, the following

lemma shows that it is a pe−1-covering.

Lemma 3.1.5. Let L = LA,B(Z/peZ) be the elliptic set and P ∈ La one of its affine points.

For every integer α ∈ {0, 1, . . . , pe−1−1} there exists a unique integer β ∈ {0, 1, . . . , pe−1−1}
such that P ∈ EA+αp,B+βp(Z/peZ).

Proof. Since P is affine we may assume P = (X : Y : 1). Given α ∈ {0, 1, . . . , pe−1− 1} we

define the polynomial

F (ω) = X3 + (A+ αp)X + (B + ω)− Y 2 ∈ Z[ω],

which satisfies F (0) ≡ 0 mod p and F ′(0) = 1 ̸≡ 0 mod p by assumptions. Hence, by

Hensel’s Lemma there is a unique integer 0 ≤ β′ ≤ pe − 1 such that β′ ≡ 0 mod p and

F (β′) ≡ 0 mod pe, therefore β = β′

p
is the required element.

Remark 3.1.6. On the infinity side, it is easy to verify that L∞, as a set, does not depend

on the given (A,B). In fact, it is equal to

L∞ = {(αp : 1 : βp)}α,β∈{0, ...,pe−1−1} ⊆ P2(Z/peZ).

Thus, |L∞| = p2(e−1).

Unlike the affine case, not all points at infinity of L belong to some elliptic curve over

the same base ring. In fact, given a pair A,B ∈ Z and f(A,B) as in Proposition 2.3.6, a
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point (X : 1 : Z) ∈ L belongs to EA,B(Z/peZ) if and only if Z = f(A,B)(X). Therefore, the

points of L∞ that also belong to some elliptic curve are those of the form

{(
αp : 1 : f(A,B)(αp)

)}
α∈{0,1,...,pe−1−1},

so in particular the family

{(αp⌈ e
3
⌉ : 1 : 0)}

α∈{0,1,...,p⌊ 2e
3 ⌋−1}

belongs to every elliptic curve over Z/peZ, regardless of (A,B). On the contrary, a family

of points that cannot belong to any elliptic curve over Z/peZ is

{(0 : 1 : αp)}α∈{1,...,pe−1−1}.

3.2 THE OPERATION

For every pair of points P1, P2 ∈ P2(Z/peZ) the operation +(0:1:0) as defined in Sec-

tion 1.2 determines a point P1+(0:1:0)P2 ∈ P2(Z/peZ) whenever π(P1)+π(P2) has a non-zero

second coordinate. From now on, will consider only this case.

Assumption 3.2.1 (Odd order). Any elliptic set L = LA,B(Z/peZ) is assumed to be odd

order, namely for every P = (X : Y : Z) ∈ L we have GCD(Y, p) = 1, i.e. π(P ) has odd

order in EA,B(Fp).

Definition 3.2.2 (Elliptic loop). Let p ∈ P ∩ Z≥5. An elliptic set LA,B(Z/peZ) endowed

with the operation +(0:1:0) and satisfying Assumption 3.2.1 is called elliptic loop.

Obviously, if the size of an elliptic curve is an odd prime, its correspondent loop is

odd order.

Under the above assumption, the addition law +(0:1:0) has no exceptional points in L,

therefore we simply refer to it as +. So far we denoted elliptic loop a specific set, but in

the next few pages we will prove that, with this + operation, it is actually a loop in the

standard algebraic notation.
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We begin by proving that any elliptic loop endowed with this addition law is indeed

a well-defined commutative magma with identity and inverses.

Proposition 3.2.3. Let L = LA,B(Z/peZ) be an elliptic loop. Then (L,+) is an abelian

magma with identity O = (0 : 1 : 0). Moreover, every element (X : Y : Z) ∈ L has a

unique inverse, namely

−(X : Y : Z) = (X : −Y : Z).

Proof. The explicit addition law as defined in Section 1.2 is a polynomial combination of

the entries of its addenda, hence it commutes with the standard reduction. Therefore for

every P1, P2 ∈ L we have

π(P1 + P2) = π(P1) + π(P2) ∈ EA,B(Fp),

which means that the coordinates of π(P1+P2) satisfy the Weierstrass equation of EA,B(Fp),
i.e. P1+P2 is still a point of L. Moreover, this operation is symmetric in the entries of the

two addenda, hence it is commutative.

To check that O is the identity element, we verify that

(X : Y : Z) + (0 : 1 : 0) = (XY : Y 2 : Y Z) = (X : Y : Z) ∈ P2(Z/peZ),

where the last equality follows from the odd order assumption. Another direct check shows

that for every P = (X : Y : Z) we have

P − P = (0 : −(A3 + 9B2)Z4 − 6A2X2Z2 − 6ABXZ3 + 3AX4 + 18BX3Z + Y 4 : 0) = O,

which proves the existence of the inverse. As for the uniqueness, let us consider two points

P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ L satisfying

P1 + P2 =
(
S1(Xi, Yi, Zi) : S2(Xi, Yi, Zi) : S3(Xi, Yi, Zi)

)
= O.
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Hence there exists t ∈ (Z/peZ)∗ such that




S1(Xi, Yi, Zi) = S3(Xi, Yi, Zi) = 0,

S2(Xi, Yi, Zi) = t.

A direct check [Appendix B.1] shows that for every such pair P1, P2 we have

X1Y2 +X2Y1 = 0, Y1Z2 + Y2Z1 = 0.

Under the odd order assumption both Y1 and Y2 are invertible, hence the above relations

imply that

(X2 : Y2 : Z2) =

(
−Y1
Y2
X2 : −

Y1
Y2
Y2 : −

Y1
Y2
Z2

)
= (X1 : −Y1 : Z1),

i.e. the unique inverse of P1 is (X1 : −Y1 : Z1).

3.3 ASSOCIATIVITY

3.3.1 Loop structure

If L were associative it would be a group, but this is almost never the case as we will

see in Section 4.1. For the moment, we just present a small example to support this claim.

Example 3.3.1. Let p = 5, A = 2 and B = 4. The elliptic curve E2,4(F5) has 7 points,

therefore the elliptic loop L2,4(Z/25Z) has odd order. By considering P = (12 : 11 : 1),

Q = (5 : 18 : 1) and R = (15 : 8 : 1) we have

(P +Q) +R = (5 : 17 : 1)

̸=

P + (Q+R) = (15 : 22 : 1).

Although these structures are rarely groups, a weak form of associativity holds.
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Lemma 3.3.2. Let P,Q ∈ LA,B(Z/peZ) be any pair of points of an elliptic loop. Then

P + (−P +Q) = Q.

Proof. We formally compute the polynomials S1, S2, S3 in the coordinates of the points P

and Q = (Q1 : Q2 : Q3), i.e.

(S1 : S2 : S3) = P + (−P +Q).

A straightforward verification [Appendix B.2] shows that

S1Q2 − S2Q1 = 0, S1Q3 − S3Q1 = 0, S2Q3 − S3Q2 = 0,

which means (S1 : S2 : S3) = Q ∈ P2(Z/peZ).

We can now prove that the name loop is well-given.

Corollary 3.3.3. Any elliptic loop LA,B(Z/peZ) is an abelian algebraic loop.

Proof. By Proposition 3.2.3 we know that LA,B(Z/peZ) is an abelian magma with identity,

therefore it is a loop as soon as it is a quasigroup. Hence, it is sufficient to show that for

every P,Q ∈ LA,B(Z/peZ) the equation

P +R = Q

has a unique solution R ∈ LA,B(Z/peZ). By Lemma 3.3.2 a solution is R = Q− P , and it

is unique because if R2 ∈ LA,B(Z/peZ) satisfies the same equation, then

R2 = −P + (P +R2) = −P +Q,

which implies R = R2.

Remark 3.3.4. We should mention that other weak associativity properties may be tested
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for commutative loops, most of them arising from non-associative algebras [62]. For in-

stance, given P,Q,R ∈ LA,B(Z/peZ), one may test

• alternativity; P + (P +Q) = (P + P ) +Q

• Jordan identities; (P + P ) + (P +Q) = P +
(
Q+ (P + P )

)

• Moufang identities (or Bol loop).





(
P + (Q+R)

)
+R =

(
(P +R) +R

)
+Q

(P +R) + (Q+R) =
(
(P +Q) +R

)
+R

None of the above forms of associativity but the one of Lemma 3.3.2 hold (in general).

In absence of associativity, one defines the multiple of a given point P recursively: for

every pair of non-negative integers n,m ∈ Z≥0, we set

0P = O, (n+ 1)P = nP + P, (−m)P = m(−P ).

For finite loops a natural notion of order may be introduced. In fact, finiteness implies

that there are different integers n ̸= m such that nP = mP , which in a loop implies

(n−m)P = O. Therefore, the following definition makes sense, i.e. the following minimum

always exists.

Definition 3.3.5 (ordL). Let L be a finite loop and P ∈ L. We define the order of P as

ordL(P ) = min
i∈Z≥1

{iP = O}.

Thus, for every P ∈ L it is easy to see that ordL(P ) divides every integer i ∈ Z such

that iP = O, so that for every n,m ∈ Z≥0 we have

nP = mP =⇒ n ≡ m mod ordL(P ).

3.3.2 Power associativity

A stronger and relevant associativity condition that may be investigated is the possi-

bility of arbitrarily associating multiples of a given point.
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Definition 3.3.6 (Power associativity). A magma (M,+) is called power associative if

the submagma generated by any element is associative.

Power associativity means that for any P ∈M and for every pair of positive integers

n,m ∈ Z≥0 we have

(n+m)P = P +
(
P + . . .+

(
P + (P + P )

)
. . .
)

︸ ︷︷ ︸
(n+m) times

=


P +

(
. . .+ (P + P ) . . .

)
︸ ︷︷ ︸

n times


+


P +

(
. . .+ (P + P ) . . .

)
︸ ︷︷ ︸

m times


 = nP +mP,

which implies that multiples of P do not depend on the order we evaluate them.

We are going to show that elliptic loops are, indeed, power associative. However, this

proof requires a deeper understanding of their associativity structure, which is detailed by

the following theorem.

Theorem 3.3.7. Let L = LA,B(Z/peZ) be an elliptic loop. Let also

F (x, y, z) = x3 + Axz2 +Bz3 − y2z ∈ Z[x, y, z],

F(x, y, z) = A2z3 − 3Ax2z − 9Bxz2 − 3xy2 ∈ Z[x, y, z],

and for a triple P1, P2, P3 ∈ L, define the matrix

M =


F (P1) F (P2) F (P3)

F(P1) F(P2) F(P3)


 .

Then, the following hold.

(i) Whenever rk M ≤ 1 the triple is associative, that is P1 + (P2 + P3) = (P1 + P2) + P3.

(ii) We have

rk


F (P1) F (P2 + P3)

F(P1) F(P2 + P3)


 ≤ rk


F (P1) F (P2) F (P3)

F(P1) F(P2) F(P3)


 .
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Proof. For part (i) we formally compute the values h1, h2, h3, l1, l2, l3 ∈ Z/peZ as functions

of the entries of Pi = (Xi : Yi : Zi) such that

(h1 : h2 : h3) = P1 + (P2 + P3),

(l1 : l2 : l3) = (P1 + P2) + P3.

The above entities represent the same point in P2(Z/peZ) if all the following

c1 = h1l2 − h2l1, c2 = h2l3 − h3l2, c3 = h3l1 − h1l3

vanish. A direct check [Appendix B.3] shows that all the cj’s belong to the ideal I2(M)

generated by the 2× 2-minors of M. Thus, when the strong rank of M is strictly lower than

2 we have I2(M) = (0) so that for every i, j ∈ {1, 2, 3} we have cj(Xi, Yi, Zi) = 0, i.e. the

Pi’s associate.

As for part (ii), we verify [Appendix B.3] that for both i = 1, 2 we have the ideal

containment

Ii




F (P1) F (P2 + P3)

F(P1) F(P2 + P3)




 ⊆ Ii




F (P1) F (P2) F (P3)

F(P1) F(P2) F(P3)




 ,

from which the strong rank inequality follows immediately.

Theorem 3.3.7 provides a sufficient condition for associativity, but it is far from being

necessary. In fact, by commutativity, for every P,Q ∈ L we have

P + (Q+ P ) = (P +Q) + P,

but, experimentally, the strong rank

rk


F (P ) F (Q) F (P )

F(P ) F(Q) F(P )


 = rk


F (P ) F (Q)

F(P ) F(Q)




is often equal to 2 when P,Q are randomly chosen points of L.
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However, this condition is sufficient to prove that any elliptic loop is indeed power

associative.

Corollary 3.3.8. Any elliptic loop L = LA,B(Z/peZ) is power associative.

Proof. By part (i) of Theorem 3.3.7 it is sufficient to show that for every triple of integers

α, β, γ ∈ Z we have

rk


F (αP ) F (βP ) F (γP )

F(αP ) F(βP ) F(γP )


 ≤ 1.

We prove that all the 2 × 2-minors of the above matrix vanish, namely we prove that for

any P ∈ L and every n,m ∈ Z we have

rk


F (mP ) F (nP )

F(mP ) F(nP )


 ≤ 1. (3.1)

Since F (P ) = F (−P ) and F(P ) = F(−P ), we may assume n ≥ m ≥ 1. We notice that

when m = n it is trivial, since

rk


F (nP ) F (nP )

F(nP ) F(nP )


 ≤ 1.

We prove by extended induction on n ∈ Z≥1 that for every positive m ≤ n the rank

inequality (3.1) holds.

[n = 1] The unique possibility is n = m = 1, discussed above.

[{1, . . . , n−1} → n] If m = n it holds as above, so we may assume n > m ≥ 1. By applying

part (ii) of Theorem 3.3.7 we have

rk


F (mP ) F (nP )

F(mP ) F(nP )


 ≤ rk


F (mP ) F

(
(n− 1)P

)
F (P )

F(mP ) F
(
(n− 1)P

)
F(P )


 .
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By inductive hypothesis we have

rk


F (mP ) F

(
(n− 1)P

)

F(mP ) F
(
(n− 1)P

)


 ≤ 1, rk


F (mP ) F (P )

F(mP ) F(P )


 ≤ 1, rk


F
(
(n− 1)P

)
F (P )

F
(
(n− 1)P

)
F(P )


 ≤ 1.

Thus, we obtain

rk


F (mP ) F

(
(n− 1)P

)
F (P )

F(mP ) F
(
(n− 1)P

)
F(P )


 ≤ 1,

which concludes the inductive step.

As a consequence of Corollary 3.3.8, every point of an elliptic loop is contained in a

subloop that is also a group, e.g. the one it generates.

3.3.3 Shadow Curve

In this section, the odd order Assumption 3.2.1 is not needed.

Theorem 3.3.7 sheds light on the special polynomial F, which stands behind the Weier-

strass polynomial F defining the elliptic curve. Here we investigate some of its properties.

Definition 3.3.9. (Shadow polynomial) Let F (x, y, z) = x3+Axz2+Bz3−y2z ∈ Z[x, y, z]

be a Weierstrass polynomial. We define its shadow polynomial as

F(x, y, z) = A2z3 − 3Ax2z − 9Bxz2 − 3xy2 ∈ Z[x, y, z].

The projective cubic V(F) defined by F over the same base ring of V(F ) is referred to as

the shadow curve.

As any shadow worthy of its name, the shadow curve usually intersects the original

curve precisely in one point, namely the one at infinity.

Proposition 3.3.10. Let E = EA,B(Z/peZ) = V(F ) be the elliptic curve defined by the

Weierstrass polynomial F and let P ∈ E be a point of order not dividing 3. Then

gcd
(
F(P ), p

)
= 1.
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In particular, if E has no 3-torsion points, then

V(F ) ∩ V(F) = {O}.

Proof. A direct computation [Appendix B.4] shows that, regardless of the addition formula

used, by formally computing S1, S2, S3 such that

(S1 : S2 : S3) = 3P,

we have

S1 ∈ ⟨F, F⟩ ⊂ Z[x, y, z] and S3 ∈ ⟨F, F⟩ ⊂ Z[x, y, z].

Therefore, if a point P ∈ P2(Z/peZ) annihilates both F and F, then 3P = O. If also

P ̸= O, this implies that ord(P ) = 3.

Clearly F (O) = F(O) = 0, so if E has no 3-torsion points, O is the unique point in

the supports of both F and F.

A surprising property of these objects is that the addition law respects any linear

combination of a polynomial and its shadow polynomial.

Proposition 3.3.11. Let E = EA,B(Z/peZ) = V(F ) be the elliptic curve defined by the

Weierstrass polynomial F and let α, β ∈ Z. For every pair of points P1, P2 ∈ P2(Z/peZ), if

(αF + β F)(P1) = 0 and (αF + β F)(P2) = 0,

then, with the notation of Section 1.2, we have

(αF + β F)(P1 +(0:0:1) P2) = (αF + β F)(P1 +(0:1:0) P2) = 0.

Moreover, if gcd(α, p) = 1 then +(0:0:1) and +(0:1:0) are both associative and they agree on

the points of V(αF + β F).
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Proof. A direct computation [Appendix B.4] shows that

⟨(αF + β F)(P1 +(0:0:1) P2), (αF + β F)(P1 +(0:1:0) P2)⟩ ⊆ ⟨(αF + β F)(P1), (αF + β F)(P2)⟩,

as ideals in Z/peZ. Thus, both (αF + β F)(P1 +(0:0:1) P2) and (αF + β F)(P1 +(0:1:0) P2)

vanish if (αF + β F)(P1) and (αF + β F)(P2) do.

As for the “moreover” part, we straightforwardly [Appendix B.4] check that when α

is invertible (i.e. we are allowed to use 1
α

during the computations) then both the addition

laws are associative and they agree modulo ⟨(αF + β F)(P1), (αF + β F)(P2)⟩.

Proposition 3.3.11 shows that
(
V(αF + β F),+

)
is a group whenever the operation

makes sense, i.e. when it produces proper projective points. In the next section we see that

it is always the case when these curves lie inside the elliptic loop defined by F .

3.3.4 Layers

By Theorem 3.3.7 the points P ∈ L with the same ratio F (P )
F(P )
∈ p(Z/pZ), whenever

this quotient is defined, are associative. By Proposition 3.3.11 we also know that if the

sum operation for points in V(F + β F), then it endows this set with a group structure.

The following definition exploits both these ideas for determining a new family of algebraic

curves inside elliptic loops.

Definition 3.3.12 (Layer). Let p ∈ P be a prime integer, e ∈ Z≥1 be a positive integer

and F ∈ Z[x, y, z] be a Weierstrass polynomial. For every integer i ∈ Z we define the i-th

layer as the plane projective curve

Li = {P ∈ P2(Z/peZ) | (F − ipF)(P ) ≡ 0 mod pe}.

If F is the polynomial defining an elliptic loop L = V(F ), we say that Li is a layer of L.

Given an elliptic loop LA,B(Z/peZ), its zero-layer L0 = EA,B(Z/peZ) is a proper group.

The following proposition shows that this is actually true for every layer.

Proposition 3.3.13. Let L = LA,B(Z/peZ) be an elliptic loop and i ∈ Z. If Li is a layer

of L, then
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(i) Li is a subloop of L,

(ii) Li is a group,

(iii) the fibers of π : Li → EA,B(Fp) have constant size pe−1.

Proof. (i − ii) The inclusion Li ⊆ L is clear, since a point P ∈ P2(Z/peZ) such that

(F − ipF)(P ) ≡ 0 mod pe also satisfies F (P ) ≡ 0 mod p. By Proposition 3.3.11 layers

are closed and associative, and the sum of two points P1, P2 is always defined because

π(P1 + P2) is a point of EA,B(Fp), thus P1 + P2 ∈ P2(Z/peZ). The unity of both Li and L
is O, hence Li is a subloop of L that is also a group itself.

(iii) Since for every P ∈ P2(Z/peZ) we have F (P ) − ipF(P ) ≡ F (P ) mod p, Hensel’s

Lemma applies as in Lemma 2.3.8, therefore for every P ∈ EA.B(Fp) there are pe−1 points

P ∈ Li such that π(P ) = P .

Proposition 3.3.13 shows that layers are large associative substructures inside elliptic

loops. However, this condition is not exclusive: it may occasionally happen that a triple of

points inside different layers associate, as shown by the following example.

Example 3.3.14. Let p = 5, e = 2, A = 2 and B = 1. We consider the following points

inside L = L2,1(Z/25Z):

P = (21 : 18 : 1), Q = (23 : 18 : 1), R = (16 : 18 : 1).

They associate, as

P + (Q+R) = (20 : 1 : 0) = (P +Q) +R.

Nonetheless, they belong to different layers of L, in fact

P ∈ L3, Q ∈ L4, R ∈ L0.

As shown by the following proposition, in absence of 3-torsion points the affine parts

of layers are a partition for the affine points of the correspondent elliptic loop.
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Proposition 3.3.15. Let L = LA,B(Z/peZ) be an elliptic loop without points of order 3

and, for any of its layers Li, denote by Lai = Li ∩ La its affine part. Then La is given by

the disjoint union

La =
⊔

0≤i≤pe−1−1

Lai .

Proof. For any affine point P ∈ La, by Proposition 3.3.10 we may define

nP =
F (P )

p

(
F(P )

)−1 mod pe−1,

so that P ∈ LnP
. We also observe that

i ≡ j mod pe−1 =⇒ Li = Lj,

so that

La ⊆
∪

0≤i≤pe−1−1

Lai .

Disjointness follows by counting: if we call q = |EA,B(Fp)|, by part (iii) of Proposition 3.3.13

we find that

|Lai | = pe−1(q − 1),

whereas |L| = p2(e−1)q by Proposition 3.1.3 and |L∞| = p2(e−1) by Remark 3.1.6. Thus, we

have

|La| = |L| − |L∞| = p2(e−1)(q − 1) =

pe−1−1∑

i=0

|Lai |,

therefore the Lai ’s cannot intersect.

A different story occurs for the infinity part of layers, as they always intersect in a

small group, even if particular pairs of layers are allowed to have a larger intersection, how

it is exhibited by the following lemma.
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Lemma 3.3.16. Let e ∈ Z≥2 and L = LA,B(Z/peZ) be an elliptic loop without points of

order 3. Then for every i, j ∈ Z such that gcd(i− j, p) = 1 we have

Li ∩ Lj = ⟨(pe−1 : 1 : 0)⟩.

In particular, the intersection of the layers of L is

∩

i∈Z

Li = ⟨(pe−1 : 1 : 0)⟩.

Proof. If P ∈ Li ∩ Lj then by Proposition 3.3.15 it is a points at infinity, so we may write

P = (X : 1 : Z) with p|X and p|Z. Moreover, it has to satisfy both the layers equations:




F (P ) ≡ ipF(P ) mod pe,

F (P ) ≡ jpF(P ) mod pe,
=⇒




(i− j)F (P ) ≡ 0 mod pe,

(i− j)F(P ) ≡ 0 mod pe−1.

Since i− j ∈ (Z/peZ)∗ this implies




Z ≡ X3 + AXZ2 +BZ3 mod pe,

3X ≡ AZ3 − 3AX2Z − 9BXZ2 mod pe−1.

From the first equation we obtain vp(Z) ≥ vp(X). By means of the second equation,

as e ≥ 2, we conclude that X ≡ 0 mod pe−1. Therefore, there exists α ∈ Z such that

P = (αpe−1 : 1 : 0), so P ∈ ⟨(pe−1 : 1 : 0)⟩. On the other side, all the points in

⟨(pe−1 : 1 : 0)⟩ clearly satisfy every layer equation, so Li ∩ Lj = ⟨(pe−1 : 1 : 0)⟩.

Since layers intersect at infinity, they cannot fill the whole L∞. In fact, we will see in

the next section that there is a large group inside L∞ that they never meet.

3.4 THE INFINITY LOOP

Let L = LA,B(Z/peZ) be an elliptic loop. Its infinity part L∞ is a subloop of L, which

is not a group in general, as shown by the following example.
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Example 3.4.1. Let p = 5, e = 6, A = 2 and B = 1. In L = L2,1(Z/15625Z) we compute

(
(5 : 1 : 0) + (5 : 1 : 0)

)
+ (0 : 1 : 5) = (4510 : 1 : 7505),

while the other association order produces

(5 : 1 : 0) +
(
(5 : 1 : 0) + (0 : 1 : 5)

)
= (7635 : 1 : 4380).

Thus, L∞ cannot be a group. The choice e = 6 is not accidental, it is the smallest we

might have considered to construct such an example, as we will see in Section 4.2.

Interestingly, L∞ is a loop generated by two of its cyclic subgroups. The proof of this

fact involves a technical result about points at infinity, which follows.

Proposition 3.4.2. Let L = LA,B(Z/peZ) be an elliptic loop, α, β ∈ Z and ϵ ∈ Z be an

integer such that 1 ≤ ϵ ≤ e− 1. For every Xα, Xβ, Zα, Zβ ∈ pZ the following hold.

(i) If (X : 1 : Z) = (Xα : 1 : Za) + (Xβ : 1 : Zβ) ∈ P2(Z/peZ), then

(Xα + αpϵ : 1 : Zα) + (Xβ : 1 : Zβ + βpϵ) = (X + αpϵ : 1 : Z + βpϵ) ∈ P2(Z/pϵ+2Z).

(ii) Let m = min{vp(Xα), vp(Zα), vp(Xβ), vp(Zβ)}. Then

(Xα : 1 : Zα) + (Xβ : 1 : Zβ) = (Xα +Xβ : 1 : Zα + Zβ) ∈ P2(Z/p3mZ).

(iii) Let X,Y ∈ pZ. Then

α(X : 1 : Z) = (αX : 1 : αZ) ∈ P2(Z/pvp(α)+2Z).

Proof. We explicit the operation between such points:

(S1 : S2 : S3) = (X1 : 1 : Z1) + (X2 : 1 : Z2),
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where

S1 = X1 +X2 − AX2
1Z2 − 2AX1X2Z1 − 2AX1X2Z2 − 6BX1Z1Z2 − 3BX1Z

2
2

− AX2
2Z1 − 3BX2Z

2
1 − 6BX2Z1Z2 + A2Z2

1Z2 + A2Z1Z
2
2 ,

S2 = 1 + 3AX2
1X

2
2 + 9BX2

1X2Z2 − A2X2
1Z

2
2 + 9BX1X

2
2Z1 − 4A2X1X2Z1Z2

− 3ABX1Z1Z
2
2 − A2X2

2Z
2
1 − 3ABX2Z

2
1Z2 + (−A3 − 9B2)Z2

1Z
2
2 ,

S3 = Z1 + Z2 + 3X2
1X2 + 3X1X

2
2 + 2AX1Z1Z2 + AX1Z

2
2 + AX2Z

2
1 + 2AX2Z1Z2

+ 3BZ2
1Z2 + 3BZ1Z

2
2 .

(i): For every i ∈ {1, 2, 3} let us define

S̃i = Si(Xα, 1, Zα, Xβ, 1, Zβ).

Since all the considered elements are divisible by p, the degree-3 terms of the above poly-

nomials does not change by adding to their arguments a multiple of pϵ, i.e.

S1(Xα + αpϵ, 1, Zα, Xβ, 1, Zβ + βpϵ) ≡ S̃1 + αpϵ mod pϵ+2,

S2(Xα + αpϵ, 1, Zα, Xβ, 1, Zβ + βpϵ) ≡ S̃2 mod pϵ+2,

S3(Xα + αpϵ, 1, Zα, Xβ, 1, Zβ + βpϵ) ≡ S̃3 + βpϵ mod pϵ+2,

from which the statement follows by noting that S̃2 ≡ 1 mod p2 so that even its inverse

modulo pϵ has the form 1 + kp2. Therefore

(Xα + αpϵ : 1 : Zα) + (Xβ : 1 : Zβ + βpϵ) = (S̃1 + αpϵ : S̃2 : S̃3 + βpϵ)

=

(
S̃1

S̃2

+ αpϵ : 1 :
S̃3

S̃2

+ βpϵ

)
= (X + αpϵ : 1 : Z + βpϵ) ∈ P2(Z/pϵ+2Z).

(ii): Since pm divides Xα, Zα, Xβ and Zβ, then p3m divides all the degree-3 pieces of S1, S2
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and S3, from which we get

S1(Xα, 1, Zα, Xβ, 1, Zβ) ≡ Xα +Xβ mod p3m,

S2(Xα, 1, Zα, Xβ, 1, Zβ) ≡ 1 mod p3m,

S3(Xα, 1, Zα, Xβ, 1, Zβ) ≡ Zα + Zβ mod p3m.

(iii): First, we prove by induction on ϵ ∈ Z≥0 that

pϵ(X : 1 : Z) = (pϵX : 1 : pϵZ) ∈ P2(Z/pϵ+2Z).

[ϵ = 0] There is nothing to prove.

[ϵ− 1→ ϵ] By power associativity (Corollary 3.3.8), for ϵ ≥ 1 we have

pϵ(X : 1 : Z) = p
(
pϵ−1(X : 1 : Z)

)
∈ P2(Z/pϵ+2Z),

while by inductive hypothesis there are integers α, β ∈ Z such that

pϵ−1(X : 1 : Z) = (pϵ−1X + αpϵ+1 : 1 : pϵ−1Z + βpϵ+1) ∈ P2(Z/pϵ+2Z).

By part (i) we easily see that

2(pϵ−1X + αpϵ+1 : 1 : pϵ−1Z + βpϵ+1) = (2pϵ−1X + 2αpϵ+1 : 1 : 2pϵ−1Z + 2βpϵ+1),

3(pϵ−1X + αpϵ+1 : 1 : pϵ−1Z + βpϵ+1) = (3pϵ−1X + 3αpϵ+1 : 1 : 3pϵ−1Z + 3βpϵ+1),

...

p(pϵ−1X + αpϵ+1 : 1 : pϵ−1Z + βpϵ+1) = (pϵX : 1 : pϵZ) ∈ P2(Z/pe+2Z),

which concludes the induction step.

Since m = min{vp(X), vp(Z)} ≥ 1, then 3m ≥ m + 2 so we apply part (ii) to prove

that for every α′ ∈ Z \ pZ we have

α′(pϵX : 1 : pϵZ) + (pϵX : 1 : pϵZ) = (α′pϵX : 1 : α′pϵZ) ∈ P2(Z/pϵ+2Z).
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From power associativity and the above results, the main statement easily follows. In

fact, by defining α′ = α
pvp(α) , we have

α(X : 1 : Z) = α′pvp(α)(X : 1 : Z) = α′(pvp(α)X : 1 : pvp(α)Z),

= (α′pvp(α)X : 1 : α′pvp(α)Z) ∈ P2(Z/pvp(α)+2Z),

which concludes the proof.

We may now prove the structure theorem of L∞.

Theorem 3.4.3. Let L = LA,B(Z/peZ) be an elliptic loop. Then

(i) ⟨(p : 1 : 0)⟩ ∩ ⟨(0 : 1 : p)⟩ = {O}.

(ii) |⟨(p : 1 : 0)⟩| = |⟨(0 : 1 : p)⟩| = pe−1.

(iii) For every P ∈ L∞ there are unique integers α, β ∈ {0, 1, . . . , pe−1 − 1} such that

P = α(p : 1 : 0) + β(0 : 1 : p).

Proof. By Part (iii) of Proposition 3.4.2 every (X : 1 : Z) ∈ ⟨(p : 1 : 0)⟩ satisfies

Z ≡ 0 mod pvp(X)+1,

while for every (X : 1 : Z) ∈ ⟨(0 : 1 : p)⟩ we have

X ≡ 0 mod pvp(Z)+1.

The unique point that may satisfy them together is O, which proves (i).

The same proposition also shows that α(p : 1 : 0) = (Xα : Yα : Zα) is equal to O in

P2(Z/peZ) if and only if pe−1|α, so we conclude that ordL
(
(p : 1 : 0)

)
= pe−1. In the same

way we prove that also ordL
(
(0 : 1 : p)

)
= pe−1, which is (ii).
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Since |L∞| = p2(e−1), to prove (iii) it is sufficient to demonstrate that for every

α1, α2, β1, β2 ∈ Z we have

α1(p : 1 : 0) + β1(0 : 1 : p) = α2(p : 1 : 0) + β2(0 : 1 : p) =⇒




α1 ≡ α2 mod pe−1,

β1 ≡ β2 mod pe−1.

We prove by induction on 1 ≤ ϵ ≤ e − 1 that, if the above equation holds, then we have

both α1 ≡ α2 mod pϵ and β1 ≡ β2 mod pϵ.

[ϵ = 1] By considering the entries of the above points modulo p2 we have




α1(p : 1 : 0) + β1(0 : 1 : p) = (α1p : 1 : 0) + (0 : 1 : β1p) = (α1p : 1 : β1p) ∈ P2(Z/p2Z),

α2(p : 1 : 0) + β2(0 : 1 : p) = (α2p : 1 : 0) + (0 : 1 : β2p) = (α2p : 1 : β2p) ∈ P2(Z/p2Z),

so if the above quantities are equal then α1 ≡ α2 mod p and β1 ≡ β2 mod p.

[ϵ− 1→ ϵ] By inductive hypothesis there are integers α, β ∈ Z such that α2 = α1 + αpϵ−1

and β2 = β1 + βpϵ−1. By Corollary 3.3.8 we have that L is power associative, so is L∞.

Thus, we can write

α2(p : 1 : 0) + β2(0 : 1 : p) = (α1 + αpϵ−1)(p : 1 : 0) + (β1 + βpϵ−1)(0 : 1 : p)

=
(
α1(p : 1 : 0) + αpϵ−1(p : 1 : 0)

)
+
(
β1(0 : 1 : p) + βpϵ−1(0 : 1 : p)

)
∈ P2(Z/pϵ+1Z).

We then apply part (iii) of Proposition 3.4.2 to write the above quantity as

(
α1(p : 1 : 0) + (αpϵ : 1 : 0)

)
+
(
β1(0 : 1 : p) + (0 : 1 : βpϵ)

)
∈ P2(Z/pϵ+1Z). (3.2)

By applying part (i) of the same proposition, if we call (Xα : 1 : Zα) = α1(p : 1 : 0) and

(Xβ : 1 : Zβ) = β1(0 : 1 : p), then




(Xα : 1 : Zα) + (αpϵ : 1 : 0) = (Xα + αpϵ : 1 : Zα),

(Xβ : 1 : Zβ) + (0 : 1 : βpϵ) = (Xβ : 1 : Zβ + βpϵ).
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Moreover, if we define

(X : 1 : Z) = (Xα : 1 : Zα) + (Xβ : 1 : Zβ),

then, by applying again part (i) of Proposition 3.4.2, we have

(Xα + αpϵ : 1 : Zα) + (Xβ : 1 : Zβ + βpϵ) = (X + αpϵ : 1 : Z + βpϵ).

Therefore, Equation (3.2) becomes

α2(p : 1 : 0) + β2(0 : 1 : p) = (X + αpϵ : 1 : Z + βpϵ),

and since by hypothesis this is equal to (X : 1 : Z), we conclude that α ≡ β ≡ 0 mod p,

which proves that α1 ≡ α2 mod pϵ and β1 ≡ β2 mod pϵ.

Theorem 3.4.3 shows that, as a set, L∞ may be thought as the direct product of its

subloops

L∞ ≃ ⟨(p : 1 : 0)⟩ × ⟨(0 : 1 : p)⟩,

but the addition of L∞ is not the product-operation of these subloops.

The next lemma shows that layers can never intersect the right-hand piece of this

decomposition.

Lemma 3.4.4. Let L = LA,B(Z/peZ) be an elliptic loop. For every layer L of L we have

L ∩ ⟨(0 : 1 : p)⟩ = {O}.

Proof. By part (iii) of Proposition 3.4.2, if

P = (X : Y : Z) ∈ ⟨(0 : 1 : p)⟩,
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then vp(Z) ≤ vp(X). However, for such points we have

vp
(
F (P )

)
= vp(Z), vp

(
F(P )

)
≥ min{3vp(Z), vp(X)} ≥ vp(Z).

If P satisfies satisfies a layer equation, then there is an integer i ∈ Z such that

e = vp(0) = vp
(
F (P )− ipF(P )

)
= vp(Z),

which implies Z ≡ X ≡ 0 mod pe, i.e. P = O.

3.5 THE GROUP STRUCTURE OF LAYERS

From Chapter 2 we know the group structure of L0 = EA,B(Z/peZ). The following

result generalizes Theorem 2.3.9 by showing that all the layers of L have in fact the same

structure when the underlying curve is not anomalous.

Theorem 3.5.1. Let L = LA,B(Z/peZ) be an elliptic loop. For every i ∈ Z and layer Li

of L, there is a unique Zi ∈ p(Z/peZ) such that the following

0→ ⟨(p : 1 : Zi)⟩ id→ Li
π→ EA,B(Fp)→ 0,

is a short exact sequence of groups. Moreover, if gcd(|EA,B(Fp)|, p) = 1 then

Li ≃ Z/pe−1Z⊕ EA,B(Fp).

Proof. We consider the polynomial

(F − ipF)(p, 1, z) ∈ Z[z].

We have (F − ipF)(p, 1, 0) ≡ 0 mod p and its derivative in z = 0 is F ′(0) ≡ −1 ̸≡ 0 mod p,
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hence by Hensel’s Lemma there exists a unique Zi ∈ Z/peZ such that




Zi ≡ 0 mod p,

(p : 1 : Zi) ∈ Li.

By part (iii) of Proposition 3.3.13 we have |π−1(O)| = pe−1, hence it is sufficient to show

that ordL
(
(p : 1 : Zi)

)
= pe−1. By part (iii) of Proposition 3.4.2 we have

α(p : 1 : Zi) = (αp : 1 : αZi) ∈ P2(Z/pvp(α)+2Z),

hence the minimal α ∈ Z≥1 for which α(p : 1 : Zi) = O ∈ P2(Z/peZ) is α = pe−1.

As for the “moreover” part, we observe that if gcd(|EA,B(Fp)|, p) = 1, then we may

find k ∈ Z such that 


k ≡ 1 mod pe−1,

k ≡ 0 mod |EA,B(Fp)|.

Thus, the multiplication-by-k map

Li
·k→ ⟨(p : 1 : Zi)⟩

is a left section of the above short exact sequence, so that Splitting Theorem applies.

3.5.1 Anomalous elliptic loops

In this section we discuss elliptic loops lying over anomalous curves. To define them,

we use their size by means of Proposition 3.1.3.

Definition 3.5.2 (Anomalous loop). Let L = LA,B(Z/peZ) be an elliptic loop. We say

that L is an anomalous loop if |L| = p2e−1.

As in the corresponding situation for elliptic curves (Section 2.3.4), two possible group

structures may occur for layers of anomalous loops.
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Definition 3.5.3 (Cyclic/Split). Let L = LA,B(Z/peZ) be an anomalous loop. A layer L

of L is called cyclic if there is a group isomorphism L ≃ Z/peZ, it is called split if there is

a group isomorphism L ≃ Z/pe−1Z⊕ Z/pZ.

We know by Theorem 3.5.1 that any layer of an anomalous loop is either cyclic or

split. It seems that both cases appear in a highly regular manner.

Conjecture 3.5.4. Let L = LA,B(Z/peZ) be an anomalous loop. There exists an integer

m ∈ Z such that for every layer Li of L, if i ̸≡ m mod p then Li is cyclic, whereas if

i ≡ m mod p then Li is split.

In particular, every anomalous loop has precisely pe−2 split layers.

If the above conjecture holds, a strong link between the canonical lifts of an elliptic

curve [18, 46] and the split layers of the correspondent elliptic loop seems to be prompted.

However, we shall mention that no explicit relation between these objects is known.

The motivation behind such a conjecture is twofold: on the practical side, no coun-

terexamples have been discovered in small case testing, of which an instance is given by

Example 3.5.5. On the other side, there are some theoretical arguments supporting this

behaviour, such as the frequency of split cases in the group structure of anomalous el-

liptic curves. Moreover, in the next chapter we provide a partial proof of this conjecture

(Proposition 4.5.5), which appears to have good chances to be extended to the general case.

Example 3.5.5. Let p = 7, e = 4, A = 3, B = 5 and L = L0,3(Z/2401Z). It may be

directly verified that |L| = 823543 = 72·4−1, therefore it is anomalous, and among the 343

layers of L only 49 of them, namely those of the form

Li, ∀i ∈ {2 + 7k}k∈{1,...,pe−2},

are isomorphic to Z/pe−1 ⊕ Z/pZ, hence split. The remaining layers are isomorphic to

Z/peZ, therefore cyclic, as prescribed by Conjecture 3.5.4 for m = 2.
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3.5.2 Subgroups description

Let L = LA,B(Z/peZ) be an elliptic loop whose projected curve E = EA,B(Fp) has size

|E| = q. In the previous sections we have determined many large subgroups lying inside L,

such as its layers, whose size is pe−1q, and the group at infinity, which has p2(e−1) elements.

As for the maximal subgroups investigation, we suspect is that this list is exhaustive.

Conjecture 3.5.6. Let L = LA,B(Z/peZ) be an elliptic loop without points of order 3 and

G ⊆ L be a subloop that is a group. Then one of the following conditions hold.

• There is a layer L of L such that G ⊆ L.

• G ⊆ L∞.

Moreover, if G is cyclic, then it is contained in a layer or there are α, β ∈ Z with p ∤ β

such that G ⊆ ⟨(αp : 1 : βp)⟩.

This conjecture simultaneously reflects two ideas: the (presumed) impossibility of find-

ing subgroups that are “transverse” to layers and the (supposed) possibility of generating

every point at infinity as a multiple of a point with p-adic valuation 1 in some of its entries.

Even in this case, there are several reasons standing behind this claim. The idea that

layers shall be the maximal associativity structures is supported by practical considerations

arisen from the proof of Theorem 3.3.7, which provides a sufficient condition for associativ-

ity. Although this may not be necessary, the association between different layers, appears

to be, de facto, occasional: we find that such “lucky” associations (Example 3.3.14) may

hardly hold simultaneously for all the points lying inside two (or more) layers. Another

argument in favour of such a conjecture will be given in the next chapter by Corollary 4.5.7,

where layers are proved to be maximal with respect to inclusion if e = 2.

The following lemma provides a partial motivation to the formulation of the final part

of Conjecture 3.5.6, by showing that the case p|β shall not lead to maximal groups.

Lemma 3.5.7. Let L = LA,B(Z/peZ) be an elliptic loop without points of order 3 and

P = (X : 1 : Z) ∈ L∞ a point at infinity. If p2|Z, then either p2|X or there exists a layer

L of L such that P ∈ L.
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Proof. Let F ∈ Z[x, y, z] be the Weierstrass polynomial defining L. If p2|Z and p2 ∤ X,

then we write P = (αp : 1 : βp2) with gcd(α, p) = 1, and for every integer i ∈ Z we have

(F − ipF)
(
(X : 1 : Z)

)
≡ X3 + AXZ2 +BZ3 − Z − ip(A2Z3 − 3AX2Z − 9BXZ2 − 3X)

≡ p2
(
(pα3 + p3Aαβ2 + p4Bβ3 − ip5A2β3 + ip33Aα2β + 9ip4Bαβ2) + (3iα− β)

)
mod pe.

If e ≤ 2 then P ∈ ⟨(p : 1 : 0)⟩ and the statement follows from Lemma 3.3.16. Let us assume

e ≥ 3 and define the polynomial G ∈ Z[i] as

G(i) = (pα3 + p3Aαβ2 + p4Bβ3 − ip5A2β3 + ip33Aα2β + 9ip4Bαβ2) + (3iα− β).

It is easy to see that ι = β
3α

satisfies G(ι) ≡ 0 mod p, as well as G′ ≡ 3α ̸= 0 mod p,

therefore by Hensel’s Lemma there is a unique lift 0 ≤ i ≤ pe−2 − 1 of ι that annihilates G

modulo pe−2. Therefore, we conclude that the given P lies inside the p layers Lm of L such

that 0 ≤ m ≤ pe−1 − 1 and m ≡ i mod pe−2.

We recall that 3-torsion points are often pathological for layers, as in these points

layers may exceptionally intersect. In fact, the following example shows that their absence

is essential for Conjecture 3.5.6.

Example 3.5.8. Let p = 11, e = 2, A = 1, B = 7 and let L = L1,7(Z/121Z). We define

G = π−1
(
{O, (4 : 3 : 1), (4, 8, 1)}

)
,

as the set of points lying over the rational 3-torsion points of E1,7(F11). Since π respects

the point addition, this set is patently a closed subloop of L. A direct check shows that

every triple in G associates, hence G is a group.

However, |G| = 363, while layers have size 165 and the size of L∞ is 121, so that G

may not be contained inside any of them.

Remark 3.5.9. For some reasons that will be treated in the next chapter (Lemma 4.1.1)

one might argue that for e ≥ 3 the assumption on 3-torsion points might be omitted. As

we decided to state this conjecture uniformly on e, we have not investigated this scenario.
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CHAPTER 4

SMALL EXPONENTS

The results of Chapter 3 hold for every value of e ∈ Z≥1. However, one might conceive

that for small values of e, stronger results hold due to the minor number of possible scenarios

that may occur. In this chapter we pursue this idea, by finding results that are exclusive

to some exponents, with a special focus on the small ones.

4.1 NON-GROUP GUARANTEE

In this section we certify that elliptic loops are never groups when e ≥ 3, with few

bizarre and small exceptions when e = 2.

Lemma 4.1.1. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≥ 3. Then for every affine

point P ∈ La we have

(
P + (p : 1 : p)

)
+ (0 : 1 : p) ̸= P +

(
(p : 1 : p) + (0 : 1 : p)

)
.

Proof. It is sufficient to show that the two associations are different inside P2(Z/p3Z). The

computational verification of the following claims may be found in [Appendix C.1].

Let P = (X : Y : 1) and compute

(S1 : S2 : S3) =
(
P + (p : 1 : p)

)
+ (0 : 1 : p), (T1 : T2 : T3) = P +

(
(p : 1 : p) + (0 : 1 : p)

)
.

These two points are equal inside P2(Z/p3Z) if and only if

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2

are all zero modulo p3. It they were, also the elements of ⟨c1, c2, c3⟩ would vanish. In
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particular, since

54Y 3B(B − 2X3)4p2 ∈ ⟨c1, c2, c3⟩,

54Y 3(96AX10 − 3B4 + 26B3X3 − 92B2X6 + 248BX9)p2 ∈ ⟨c1, c2, c3⟩,

we would have



Y 3B(B − 2X3)4 ≡ 0 mod p,

Y 3(96AX10 − 3B4 + 26B3X3 − 92B2X6 + 248BX9) ≡ 0 mod p.

Since we always work under the odd order Assumption 3.2.1, then gcd(Y, p) = 1 so the

above system implies either B ≡ 0 mod p, that gives X ̸≡ 0 mod p, hence

A ≡ B ≡ 0 mod p,

or B ̸≡ 0 mod p, that implies X ̸≡ 0 mod p and leads to

A ≡ −3X2 mod p, B ≡ 2X3 mod p.

In both cases, we have ∆A,B ≡ 0 mod p, which cannot hold as L is an elliptic loop.

Lemma 4.1.1 provides a concrete example of a triple that is never associative for every

e ≥ 3. When e = 2 the situation is slightly dissimilar, in fact there are few examples of

elliptic loops that are also groups.

Definition 4.1.2 (Exceptional loops). Each of the following elliptic loops

L5a = L4,2(Z/25Z), L5b = L4,3(Z/25Z), L7a = L0,4(Z/49Z),

L7b = L0,2(Z/49Z), L13a = L0,3(Z/169Z), L13b = L0,10(Z/169Z),

is referred to as exceptional (elliptic loop).
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Proposition 4.1.3. Exceptional loops are non-cyclic groups. More precisely, we have

L5a ≃ L5b ≃ Z/5Z⊕ Z/15Z and L7a ≃ Z/7Z⊕ Z/21Z,

L7b ≃ Z/21Z⊕ Z/21Z and L13a ≃ L13b ≃ Z/39Z⊕ Z/39Z.

Proof. It may be straightforwardly verified [Appendix C.2]: there are 421875 ordered triples

of points inside L5a and L5b, 3176523 inside L7a, 85766121 inside L7b and 3518743761

inside L13a and L13b, which are all checked to associate. Therefore, the operations of the

exceptional elliptic loops are associative, hence these loops are groups.

The sizes of L5a,L5b and L7a are 3p2 (p = 5, 5 and 7, respectively), while those of

L7b,L13a and L13b are 9p2 (p = 7, 13 and 13, respectively). Thus, for proving the above

group structures, it is sufficient to show that every element is of 3p-torsion. We do it in

[Appendix C.2] by showing that the multiplication-by-3p annihilates all the points.

Remark 4.1.4. We notice that L5a and L5b are actually closely related, as they lie over

the elliptic curves E5a = E4,2(F5) and E5b = E4,3(F5), which are isomorphic via

E5a ∼→ E5b,

(X : Y : Z) 7→ (4X : 2Y : Z).

The same holds for L13a and L13b, as we have an elliptic curve isomorphism

E13a ∼→ E13b,

(X : Y : Z) 7→ (12X : 8Y : Z).

The following proposition shows that the situation portrayed in Proposition 4.1.3 is

unique: no other elliptic loops may be associative for any e ≥ 2.

Proposition 4.1.5. Let L = LA,B(Z/peZ) be an elliptic loop with e ≥ 2 and consider an

affine point P = (X : Y : 1) ∈ La such that the order of π(P ) is not 3. By defining
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P ′ = (X : Y + p : 1) and R = (0 : 1 : p), we have

(P + P ′) +R ̸= P + (P ′ +R).

Proof. It is sufficient to show that the two associations are different inside P2(Z/p2Z). We

compute

(S1 : S2 : S3) = (P + P ′) +R, (T1 : T2 : T3) = P + (P ′ +R),

which are equal inside P2(Z/p2Z) if and only if

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2

all vanish modulo p2. If we define F1, F2, G1, G2 ∈ Z/p2Z as

F1 =A2 − 3AX2 − 9BX − 3XY 2,

F2 =A3 + 6A2X2 + 6ABX − 3AX4 + 9B2 − 18BX3 − Y 4,

G1 =10A4X + 9A3B + 2A3Y 2 − 30A2BX2 + 6A2X5 + 6A2X2Y 2 + 45AB2X + 45ABX4

+ 9ABXY 2 + 54B3 + 135B2X3 + 18B2Y 2 − 9BX3Y 2,

G2 =2A4 − 15A2BX + 30A2X4 + 6A2XY 2 + 9AB2 + 90ABX3 + 3ABY 2 − 6AX3Y 2

+ 135B2X2 − 27BX5 − 27BX2Y 2.

we observe [Appendix C.3] that

c1 = 2pY 2F1F2G1, c3 = 2pY 2F1F2G2.

Assume by contradiction that c1 ≡ c3 ≡ 0 mod p2. By the odd order Assumption 3.2.1 we
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have gcd(Y, p) = 1, therefore one of the following conditions needs to be satisfied:

(I) F1 ≡ 0 mod p (II) F2 ≡ 0 mod p (III)




G1 ≡ 0 mod p,

G2 ≡ 0 mod p.

Let F ∈ Z[x, y, z] be the Weierstrass polynomial defining L. We prove that none of the

above cases may occur.

[Case I] We compute

(X3 : Y3 : Z3) = 3P

and we verify [Appendix C.3] that

X3, Z3 ∈ ⟨F (P ), F1⟩.

Thus, if F1 vanishes modulo p, then π(3P ) = O, which implies that the order of π(P ) ̸= O
divides 3, contradicting the hypothesis.

[Case II] We compute

(X4 : Y4 : Z4) = 4P

and we verify [Appendix C.3] that

X4, Z4 ∈ ⟨F (P1), F2⟩.

Thus, if F2 vanishes modulo p, then π(4P1) = O, which is impossible by the odd order

Assumption 3.2.1.

[Case III] We define the ideal

I = ⟨F (P ), G1, G2⟩.

A straight check [Appendix C.3] shows that both

864Y 10(X3 − Y 2) ∈ I, and 288Y 8(B − 2X3 + 2Y 2) ∈ I.
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Therefore, if both the Gi’s vanish modulo p, then by using again gcd(Y, p) = 1 we get





X3 − Y 2 ≡ 0 mod p,

B − 2X3 + 2Y 2 ≡ 0 mod p,

X3 + AX +B − Y 2 ≡ 0 mod p,

which implies A = B = 0, contradicting ∆A,B ̸≡ 0 mod p.

Thus, we conclude that all but six elliptic loops with e ≥ 2 are non-exceptional, in

particular they are not groups.

Corollary 4.1.6. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≥ 2. Then L is a group

if and only if L is an exceptional loop.

Proof. By Proposition 4.1.5 the addition law on L may be associative only if the affine

points of E = EA,B(Fp) have all order 3. By Corollary 1.3.8 this may happen only if

E ≃ Z/3Z or E ≃ Z/3Z⊕ Z/3Z.

By Hasse’s Theorem 1.3.1 the first case may occur only for p ∈ {5, 7}, while the joint

use of Corollary 1.3.8 and Theorem 1.3.1 shows that the second case may occur only for

p ∈ {7, 13}. A direct check of these possibilities shows that the only viable curves are

Z/3Z → E4,2(F5), E4,3(F5), E0,4(F7),

Z/3Z⊕ Z/3Z → E0,2(F7), E0,3(F13), E0,10(F13),

which underlie exceptional loops. On the other side, in such cases by Proposition 4.1.3 the

loops are associative, hence groups.

Remark 4.1.7. The points of order divisible by 3 are special, as we have already noticed

in Proposition 3.3.10 and 3.3.15. In those points, layers may exceptionally intersect, origi-

nating a possibly strange behaviour. In fact, the cases discussed in Proposition 4.1.3 show
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that when there are only 3-torsion points in the underlying curve, the corresponding elliptic

loop has, in a sense, a unique large layer.

4.2 THE CASE e ≤ 5

As shown by Corollary 4.1.6, there is no hope of having associativity for almost every

elliptic loop L = LA,B(Z/peZ), even for small exponents e ∈ Z≥1.

However, we have already observed (Proposition 2.3.7) that the infinity part tends to

have a simpler behaviour when e ≤ 5. The next proposition shows that, in such cases, L∞

is a group.

Proposition 4.2.1. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 5. Then L∞ is an

abelian group, generated by

L∞ = ⟨(p : 1 : 0)⟩ ⊕ ⟨(0 : 1 : p)⟩.

In particular, we have a group isomorphism

L∞ ≃ Z/pe−1Z⊕ Z/pe−1Z.

Proof. Let P1, P2, P3 ∈ L∞, then there are integers X1, Z1, X2, Z2, X3, Z3 such that they

may be written as P1 = (X1p : 1 : Z1p), P2 = (X2p : 1 : Z2p) and P3 = (X3p : 1 : Z3p). Let

us define

(S1 : S2 : S3) =
(
P1 + P2

)
+ P3, (T1 : T2 : T3) = P1 +

(
P2 + P3

)
,

and the commutators

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2.

We directly verify [Appendix C.4.1] that all minimal degrees of p appearing in the above
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commutators are at least 5, in fact

c1, c3 ∈ p5Z, and c2 ∈ p6Z.

Thus, we conclude

(S1 : S2 : S3) = (T1 : T2 : T3) ∈ P2(Z/p5Z),

so the sum operation is associative on L∞ when e ≤ 5, i.e. it is an abelian group.

Moreover, by Theorem 3.4.3 we know that L∞ is generated by (p : 1 : 0) and (0 : 1 : p),

hence the same holds as a group. By the same theorem these two elements generate cyclic

groups of order pe−1, from which the claimed group isomorphism immediately follows.

Proposition 4.2.1 shows that the infinity part is always a group when the exponent is

e ≤ 5. The following lemma shows that this condition is sharp: for e ≥ 6 the infinity part

of an elliptic loop cannot be a group, regardless the choice of the parameters.

Lemma 4.2.2. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≥ 6. Then

(
(p : 1 : 0) + (0 : 1 : p)

)
+ (0 : 1 : p) ̸= (p : 1 : 0) +

(
(0 : 1 : p) + (0 : 1 : p)

)
.

Proof. It is sufficient to show that they are different inside P2(Z/p6Z). We compute

(S1 : S2 : S3) =
(
(p : 1 : 0) + (0 : 1 : p)

)
+ (0 : 1 : p),

(T1 : T2 : T3) = (p : 1 : 0) +
(
(0 : 1 : p) + (0 : 1 : p)

)
.

They represent the same point in P2(Z/p6Z) if and only if

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c1 = S2T3 − S3T2
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all vanish modulo p6. We notice [Appendix C.4.2] that c2 ≡ 0 mod p6, while

972p5B3(B − 2) ∈ ⟨c1, c3⟩,

36p5B(4A− 9B2 + 24B) ∈ ⟨c1, c3⟩,

6p5A(2A+ 3B) ∈ ⟨c1, c3⟩.

Thus, if c1 ≡ c3 ≡ 0 mod p6 then also





B(B − 2) ≡ 0 mod p,

B(4A− 9B2 + 24B) ≡ 0 mod p,

A(2A+ 3B) ≡ 0 mod p,

whose solutions are

A ≡ B ≡ 0 mod p and A ≡ −3, B ≡ 2 mod p.

In both cases ∆A,B ≡ 0 mod p, contradicting the fact that L is an elliptic loop.

4.3 THE CASE e ≤ 3

We have already observed (Remark 3.1.6) that the infinity part of an elliptic loop

L = LA,B(Z/peZ) never depends, set theoretically, on the chosen A and B. Here we notice

that, when the exponent e is at most 3, even the addition operation on L∞ is independent

of (A,B), so that this group might be defined without referring to any curve.

Proposition 4.3.1. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 3. Then for every

a, b, c, d ∈ Z we have

(ap : 1 : bp) + (cp : 1 : dp) =
(
(a+ c)p : 1 : (b+ d)p

)
,

88



so that the following

ι : L∞ → Z/pe−1Z⊕ Z/pe−1Z,

(X : Y : Z) 7→
(
X

pY
,
Z

pY

)
,

is a well-defined group isomorphism.

Proof. We have m = min{vp(ap), vp(bp), vp(cp), vp(dp)} ≥ 1, hence by part (ii) of Proposi-

tion 3.4.2 we get

(ap : 1 : bp) + (cp : 1 : dp) = (ap+ cp : 1 : bp+ dp) ∈ P2(Z/p3mZ),

even more so the same equality holds in P2(Z/p3Z). Since every point (X : Y : Z) ∈ L∞

has an invertible Y -value, while both X and Z are divisible by p, therefore the map ι is

well-defined. The above equality proves that it is also a group morphism, as for every

P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ L∞ we have

ι(P1 + P2) = ι

((
X1

Y1
: 1 :

Z1

Y1

)
+

(
X2

Y2
: 1 :

Z2

Y2

))
= ι

((
X1

Y1
+
X2

Y2
: 1 :

Z1

Y1
+
Z2

Y2

))

=

(
X1

Y1
+ X2

Y2

p
,
Z1

Y1
+ Z2

Y2

p

)
=

(
X1

Y1

p
,
Z1

Y1

p

)
+

(
X2

Y2

p
,
Z2

Y2

p

)
= ι(P1) + ι(P2).

It is easily seen that its inverse is

ι−1 : Z/pe−1Z⊕ Z/pe−1Z→ L∞,

(a, b) 7→ (ap : 1 : bp),

then ι is a well-defined group isomorphism.

When e ≤ 3, by means of Proposition 4.3.1 we may write L∞(Z/peZ) in place of

L∞
A,B(Z/p

eZ), further shortened to L∞ when the ring is understood. In such cases L∞ is

universal, it is the same group regardless of the underlying elliptic curve.
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4.4 THE CASE e ≤ 2

When the exponent e does not exceed 2, many forms of weak associativity hold for

points in special positions. In this section we investigate them, providing examples to

highlight that such formulae may not hold when e ≥ 3.

It is worth pointing out that for e = 1 the results are still true but trivial since in

these cases elliptic loops are groups, as seen in Chapter 2.

4.4.1 Associativity with L∞

The following lemmas show that three points associate if two of them belong to L∞

or one of them lies inside < (p : 1 : 0) >.

Lemma 4.4.1. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2. For every P ∈ L and

Q,R ∈ L∞, we have

P + (Q+R) = (P +Q) +R.

Proof. Under our assumptions there are a, b, c, d ∈ Z such that

Q = (ap : 1 : bp), R = (cp : 1 : dp).

Let

(X1 : Y1 : Z1) = P + (Q+R), (X2 : Y2 : Z2) = (P +Q) +R

and define

c1 = X1Y2 −X2Y1, c2 = X1Z2 −X2Z1, c3 = Y1Z2 − Y2Z1.

A formal verification [Appendix C.5] shows that all these ci’s belong to p2Z, which implies

that (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are the same point inside P2(Z/p2Z).

Lemma 4.4.2. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2. For every P,Q ∈ L
and R ∈< (p : 1 : 0) >, we have

P + (Q+R) = (P +Q) +R.
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Proof. Under our assumptions there is a ∈ Z such that R = (ap : 1 : 0). Let F be the

Weierstrass polynomial defining EA,B(Fp) = V(F ), let

(X1 : Y1 : Z1) = P + (Q+R), (X2 : Y2 : Z2) = (P +Q) +R

and define

c1 = X1Y2 −X2Y1, c2 = X1Z2 −X2Z1, c3 = Y1Z2 − Y2Z1.

A formal verification [Appendix C.6] shows that for every P,Q ∈ P2(Z/p2Z), if we define

the ideal Ip = ⟨p, F (P ), F (Q)⟩ ⊆ Z, then

{c1, c2, c3} ⊆ I2p .

If P,Q are points of L, then F (P ) ≡ F (Q) ≡ 0 mod p, hence Ip is the ideal generated by

p in Z, which implies that

c1 ≡ c2 ≡ c3 ≡ 0 mod p2.

Thus, the points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are equal inside P2(Z/p2Z).

Lemma 4.4.1 and 4.4.2 detail some cases where parentheses are not needed. The

following example displays this may not hold for e ≥ 3, even if the hypotheses of both

lemmas are simultaneously satisfied.

Example 4.4.3. Let p = 13, e = 3, A = 0, B = 2 and define L = L0,2(Z/2197Z). We

consider the points

P = (1 : 9 : 1) ∈ L, Q = (0 : 1 : 13), R = (13 : 1 : 0) ∈ L∞,
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and we observe that

P + (Q+R) = (469 : 1036 : 1) ∈ P2(Z/2197Z),

Q+ (P +R) = (469 : 22 : 1) ∈ P2(Z/2197Z),

(P +Q) +R = (469 : 2050 : 1) ∈ P2(Z/2197Z)

are all different. However, when e = 2 the same operations give

P + (Q+R) = Q+ (P +R) = (P +Q) +R = (131 : 22 : 1) ∈ P2(Z/169Z),

as prescribed from both Lemma 4.4.1 and 4.4.2.

We also notice that Lemma 4.4.2 does not hold by using ⟨(0 : 1 : p)⟩ in place of

⟨(p : 1 : 0)⟩, as

(1 : 9 : 1) +
(
(10 : 1 : 1) + (0 : 1 : 13)

)
= (97 : 98 : 1) ∈ P2(Z/169Z),

(10 : 1 : 1) +
(
(1 : 9 : 1) + (0 : 1 : 13) = (149 : 85 : 1) ∈ P2(Z/169Z),

(
(1 : 9 : 1) + (10 : 1 : 1)

)
+ (0 : 1 : 13) = (19 : 33 : 1) ∈ P2(Z/169Z)

are three different points.

4.4.2 A pair lying over the same point

When performing the difference between two points that lie over the same point, we

may associate their parts at infinity.

Proposition 4.4.4. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2, and let P1, P2 ∈ L
such that π(P1) = π(P2). Then for every R1, R2 ∈ L∞ we have

(P1 +R1)− (P2 +R2) = (P1 − P2) + (R1 −R2).

Proof. If P1 = (X : Y : Z) then, by hypotheses, there are integers sx, sy, sz, a, b, c, d ∈ Z
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such that

P2 = (X + sxp : Y + syp : Z + szp), R1 = (ap : 1 : bp), R2 = (cp : 1 : dp).

The points

(S1 : S2 : S3) = (P1 +R1)− (P2 +R2), (T1 : T2 : T3) = (P1 − P2) + (R1 −R2).

are equal inside P2(Z/p2Z) if and only if the commutators

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2,

belong to p2Z, which may be straightforwardly verified [Appendix C.7].

Proposition 4.4.4 easily implies that any possible association of points satisfying the

proposition’s hypotheses produces the same final result. As an instance, since L∞ is a

group and P1 − P2 ∈ L∞, we have

(P1 − P2) + (R1 −R2) =
(
(P1 − P2) +R1

)
−R2 =

(
(P1 − P2)−R2

)
+R1,

and by Lemma 3.3.2 we also get

(P1 +R1)− (P2 +R2) =
((

(P1 +R1)−R2

)
+R2

)
− (P2 +R2) =

(
(P1 +R1)−R2

)
− P2.

In conclusion, when summing points lying over opposite points to those at infinity,

the parentheses may be omitted. The following example shows that a similar result may

not hold for higher exponents.

Example 4.4.5. Let p = 11, e = 3, A = 6 and B = 6. In L = L6,6(Z/1331Z) we consider

P1 = (1229 : 326 : 1), P2 = (569 : 502 : 1),
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which both lie over (8 : 7 : 1) ∈ E6,6(Z/11Z). Let also consider

R1 = (11 : 1 : 0), R2 = (0 : 1 : 11).

We have

(P1 +R1)− (P2 +R2) = (935 : 1 : 506),

(P1 + P2)− (R1 +R2) = (814 : 1 : 22),

(P1 −R2)− (P2 −R1) = (693 : 1 : 869),

(
(P1 +R1)− P2

)
−R2) = (209 : 1 : 264),

(
(P1 +R2)− P2

)
−R1) = (1177 : 1 : 143),

which are all distinct points in P2(Z/1331Z). However, they agree in P2(Z/121Z) as pre-

scribed by Proposition 4.4.4, being all equal to (88 : 1 : 22) ∈ P2(Z/121Z).

4.4.3 A triple lying over the same point

Proposition 4.4.6. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2, and let

P1, P2, P3 ∈ L such that π(P1) = π(P2) = π(P3). Then

(P1 + P2)− P3 = P1 + (P2 − P3).

Proof. By hypothesis, there are integers X,Y, Z, sx, sy, sz, tx, ty, tz ∈ Z such that

P1 = (X : Y : Z), P2 = (X+sxp : Y +syp : Z+szp), P3 = (X+ txp : Y + typ : Z+ tzp).

With this notation, we compute

(S1 : S2 : S3) = (P1 + P2)− P3, (T1 : T2 : T3) = P1 + (P2 − P3).

and

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2.
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We explicitly check [Appendix C.8] that all the ci’s belong to the ideal p2Z, so that

(S1 : S2 : S3) = (T1 : T2 : T3) ∈ P2(Z/p2Z),

which concludes the proof.

Remark 4.4.7. In the setting of Proposition 4.4.6 we may avoid useless parentheses: as

the result is independent of the association, it will be simply denoted by

P1 + P2 − P3.

Again, the impossibility of extending such a result for larger exponents e is witnessed

by the following example. It also shows that the minus sign is essential, three points lying

over the same point may not associate if they belong to different layers.

Example 4.4.8. Let p = 31, e = 3, A = 0 and B = 3. In L0,3(Z/29791Z) we consider

P1 = (45 : 22 : 1), P2 = (45 : 115 : 1), P3 = (14 : 29782 : 1).

It is easy to check that π(P1) = π(P2) = π(P3) = (14 : 22 : 1) ∈ E0,3(F31), as well as

(P1 + P2)− P3 = (17374 : 3029 : 1)

̸=

P1 + (P2 − P3) = (1998 : 146 : 1).

However, for e = 2 the same computation gives

(P1 + P2)− P3 = (76 : 146 : 1) = P1 + (P2 − P3) ∈ P2(Z/961Z).

Finally, we notice that the same result does not hold by replacing −P3 with P3, as

(P1 + P2) + P3 = (314 : 118 : 1) ̸= (159 : 924 : 1) = P1 + (P2 + P3) ∈ P2(Z/961Z).
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Corollary 4.4.9. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2, and let P1, P2 ∈ L
such that P1 + P2 ∈ L∞. Then

2(P1 + P2) =
(
(P1 + P2) + P1

)
+ P2 = (2P1 + P2) + P2.

Proof. Since P1 + P2 ∈ L∞, then π(P1) = π(−P2) and by Proposition 4.4.4 we have

(P1 + P2) + (P1 + P2) =
(
P1 + (P1 + P2)

)
+ (P2 +O).

By Proposition 4.4.6 we can associate

(
P1 + (P1 + P2)

)
+ P2 = (2P1 + P2) + P2,

which concludes the proof.

Even this weak form of associativity is extremely “exclusive”, neither it holds for larger

values of e nor it may be extended to higher multiples of P1 + P2, i.e. for a generic n ∈ Z

we may have

n(P1 + P2) ̸=
(
. . .
(
(nP1 + P2) + P2

)
+ . . .

)
+ P2.

The following example portrays both phenomena, also showing that the most “natural”

association of the above points, namely 2P1 + 2P2, is the unique one that may produce a

different outcome.

Example 4.4.10. Let p = 11, e = 3, A = 1 and B = 6. In L = L1,6(Z/1331Z) we consider

P1 = (618 : 213 : 1), P2 = (255 : 1096 : 1),

which sum to P1 + P2 = (429 : 1 : 341) ∈ L∞. We check that

2(P1 + P2) = (858 : 1 : 682) ̸= (495 : 1 : 77) = (2P1 + P2) + P2 ∈ P2(Z/1331Z),
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even if, when e = 2, we have

2(P1 + P2) = (11 : 1 : 77) = (2P1 + P2) + P2 ∈ P2(Z/121Z),

as prescribed by Lemma 4.4.9. It is also worth pointing out that

2(P1 + P2) = (11 : 1 : 77) ̸= (110 : 1 : 44) = 2P1 + 2P2 ∈ P2(Z/121Z).

Moreover, we observe that this weak associativity may not work for higher multiples even

inside P2(Z/121Z), in fact

3(P1 + P2) = (77 : 1 : 55) ̸= (22 : 1 : 110) =
(
(3P1 + P2) + P2

)
+ P2 ∈ P2(Z/121Z).

4.4.4 Two triples lying over two points

The following result is a weak associativity property, which will be of fundamental

importance in the next section. In its statement, unnecessary parentheses are avoided by

means of Remark 4.4.7.

Proposition 4.4.11. Let L = LA,B(Z/peZ) be an elliptic loop, with e ≤ 2, and let

P1, P2, P3, Q1, Q2, Q3 ∈ L such that π(P1) = π(P2) = π(P3) and π(Q1) = π(Q2) = π(Q3).

Then

(P1 + P2 − P3) + (Q1 +Q2 −Q3) = (P1 +Q1) + (P2 +Q2)− (P3 +Q3).

Proof. Since π(P1) = π(P2) = π(P3), there are integers X1, Z1, a1, b1, c1, d1 ∈ Z such that

P1 = (X1 : 1 : Z1), P2 = (X1 + a1p : 1 : Z1 + b1p), P3 = (X1 + c1p : 1 : Z1 + d1p).

Similarly, since π(Q1) = π(Q2) = π(Q3), there are X2, Z2, a2, b2, c2, d2 ∈ Z such that

Q1 = (X2 : 1 : Z2), Q2 = (X2 + a2p : 1 : Z2 + b2p), Q3 = (X2 + c2p : 1 : Z2 + d2p).
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We compute

(S1 : S2 : S3) = (P1 + P2 − P3) + (Q1 +Q2 −Q3),

(T1 : T2 : T3) = (P1 +Q1) + (P2 +Q2)− (P3 +Q3),

and we computationally check [Appendix C.9] that the three quantities

c1 = S1T2 − S2T1, c2 = S1T3 − S3T1, c3 = S2T3 − S3T2

belong to p2Z, hence (S1 : S2 : S3) = (T1 : T2 : T3) ∈ P2(Z/p2Z).

Even in this case, the result holds only for e ≤ 2, as shown by the following example.

It contextually shows that this particular association holds only for triples of points.

Example 4.4.12. Let p = 7, e = 3, A = 0, B = 3 and L = L0,3(Z/343Z). Let us consider

P1 = (143 : 122 : 1), P2 = (45 : 325 : 1), P3 = (262 : 297 : 1),

Q1 = (184 : 215 : 1), Q2 = (86 : 166 : 1), Q3 = (184 : 152 : 1),

which satisfy

π(P1) = π(P2) = π(P3) = (3 : 3 : 1) ∈ E0,3(F7),

π(Q1) = π(Q2) = π(Q3) = (2 : 5 : 1) ∈ E0,3(F7).

Nonetheless, we have

(P1 + P2 − P3) + (Q1 +Q2 −Q3) = (265 : 311 : 1)

̸=

(P1 +Q1) + (P2 +Q2)− (P3 +Q3) = (216 : 213 : 1).

98



Instead, if e = 2 we find

(P1 + P2 − P3) + (Q1 +Q2 −Q3) = (20 : 17 : 1)

= (P1 +Q1) + (P2 +Q2)− (P3 +Q3) ∈ P2(Z/49Z).

Finally, we observe that

(P2 − P3) + (Q2 −Q3) = (0 : 1 : 21) ̸= (7 : 1 : 35) = (P2 +Q2)− (P3 +Q3) ∈ P2(Z/49Z),

which shows that a similar result does not hold for pairs in place of triples.

Remark 4.4.13. We conclude this section by highlighting a technical detail. The proofs

of Lemma 4.4.1 and Proposition 4.4.4, 4.4.6 and 4.4.11 do not involve the Weierstrass

polynomial of the curve. This means that the same results generically hold for points

inside P2(Z/p2Z), whenever the involved operations make sense.

4.5 THE CASE e = 2

In this section we focus on the smallest non-associative case of elliptic loops, i.e. those

of exponent e = 2.

4.5.1 Rational q-torsion

Let L = LA,B(Z/p2Z) be an elliptic loop and E = EA,B(Fp) be its underlying elliptic

curve. When E is not anomalous, we know by Theorem 3.5.1 that every layer of L contains

an isomorphic copy of E . If q = |E|, these points are referred to as (rational) q-torsion

points, as their orders divide q.

Here we aim at characterizing such q-torsion points lying over the same point P ∈ E .

Lemma 4.5.1. Let L = LA,B(Z/p2Z) be an elliptic loop and let P1, P2, P3 ∈ L such that

π(P1) = π(P2) = π(P3). Then for every m ∈ Z≥0 we have

m(P1 + P2 − P3) = mP1 +mP2 −mP3.
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Proof. We prove it by induction on m.

[m = 1] There is nothing to prove.

[m→ m+ 1] By inductive hypothesis we have

(m+1)(P1+P2−P3) = (P1+P2−P3)+m(P1+P2−P3) = (P1+P2−P3)+(mP1+mP2−mP3).

Since π(mP1) = π(mP2) = π(mP3), Proposition 4.4.11 implies

(P1 + P2 − P3) + (mP1 +mP2 −mP3) = (P1 +mP1) + (P2 +mP2)− (P3 +mP3),

which is (m+ 1)P1 + (m+ 1)P2 − (m+ 1)P3, concluding the inductive step.

Lemma 4.5.1 immediately implies that for every m ∈ Z≥1, if P1, P2, P3 are m-torsion

points lying over the same point P ∈ E , then also P1 + P2 − P3 is.

We may now describe q-torsion points lying over the same point. We first notice that

the infinity-case is easily understood, as the unique q-torsion point over O ∈ E is O ∈ L.

On the other hand, q-torsion points lying over the same affine point P ∈ Ea may be notably

detected by intersecting π−1(P ) with a line, as shown by the following theorem.

Theorem 4.5.2. Let L = LA,B(Z/p2Z) be an elliptic loop whose underlying elliptic curve

E = EA,B(Fp) has size q = |E| with gcd(p, q) = 1. For every affine point P ∈ Ea let

QP = {Q ∈ L | qQ = O, π(Q) = P}

be the q-torsion points of L lying over P . Then

(i) There are P1, . . . , Pp ∈ L such that

∀i ∈ {1, . . . , p} : QP ∩ Li = {Pi}.

(ii) {Pi − Pj}1≤i,j≤p is a subgroup of L∞ of order p.
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(iii) There are a, b, c ∈ Z such that

QP = π−1(P ) ∩ V(ax+ by + cz).

Proof. (i): Since gcd(p, q) = 1, for every layer Li we have by Theorem 3.5.1 a group

isomorphism ϕi : Li
∼→ E ⊕ Z/pZ, whose restriction to the first coordinate is the canonical

projection. Thus, Pi is the unique element in ϕ−1
i

(
(P, 0)

)
.

(ii): Since the Pi’s lie over P , their differences lie over O, therefore

G = {Pi − Pj}1≤i,j≤p ⊆ L∞.

G is closed under point addition, since for every 1 ≤ i1, j1, i2, j2 ≤ p Proposition 4.4.4 gives

(Pi1 − Pj1) + (Pi2 − Pj2) =
(
Pi1 + (Pi2 − Pj2)

)
− Pj1

and Lemma 4.5.1 implies that the point Pi1 + Pi2 − Pj2 is again q-torsion and lies over P ,

then there exists 1 ≤ k ≤ p such that

(Pi1 + Pi2 − Pj2)− Pj1 = Pk − Pj1 ∈ G.

Since O = P1 − P1 ∈ G and −(Pi − Pj) = Pj − Pi ∈ G, then G is a subgroup of L∞.

By Proposition 4.2.1, L∞ is a group of size p2. Since the Pi’s belong to different layers

and are affine, they cannot be the same point, so |G| > 1. As for every 1 ≤ i, j ≤ p we have

Pi−Pi = O = Pj −Pj, not all the possible differences are distinct, which implies |G| < p2.

Being G a subgroup of a p-group, the unique possibility left is |G| = p.

(iii): From part (ii) we know that G is cyclic of prime order, hence generated by any

of its non-zero elements, such as P2 − P1. Therefore

QP = {P1, P2, . . . , Pp} = {k(P2 − P1) + P1}k∈{1,2,...,p}.
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As P2 − P1 ∈ L∞, there are s, t ∈ Z such that

(P2 − P1) = (sp : 1 : tp),

whose multiples, by Proposition 4.3.1, are

k(P2 − P1) = (ksp : 1 : ktp).

By defining

α(x, z) = (−At)x2 − (2As+ 6Bt)xz + (−3Bs+ A2t)z2 + s ∈ Z[x, z],

β(x, z) = 3sx2 + 2Atxz + (As+ 3Bt)z2 + t ∈ Z[x, z],

a direct inspection of the addition laws shows that, for every integers X,Z ∈ Z, one has

(ksp : 1 : ktp) + (X : 1 : Z) =
(
X + kα(X,Z)p : 1 : Z + kβ(X,Z)p

)
.

Therefore, if we define

P1 = (X1 : 1 : Z1), α1 = α(X1, Z1), β1 = β(X1, Z1),

then for every k ∈ {1, 2, . . . , p} we have

k(P2 − P1) + P1 =
(
X1 + kα1p : 1 : Z1 + kβ1p

)
,

which means that all the Pi’s belong to the line in P2(Z/p2Z) given by

−β1︸︷︷︸
a

x+
(
β1X1 − α1Z1

)
︸ ︷︷ ︸

b

y + α1︸︷︷︸
c

z ≡ 0 mod p2. (4.1)

This proves the inclusion QP ⊆ π−1(P ) ∩ V(ax+ by + cz).

On the other side, let (X : 1 : Z) a point over P satisfying the Equation (4.1). Since
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π(P1) = π(X : 1 : Z), there are sx, sz ∈ Z such that




X ≡ X1 + sxp mod p2,

Z ≡ Z1 + szp mod p2,

which substituted in the above equation leads to

α1szp ≡ β1sxp mod p2.

We observe that at least one between α1 and β1 needs to be coprime to p, otherwise every

Pi would be equal to P1. If gcd(α1, p) = 1, the above equation gives




X ≡ X1 + sxp ≡ X1 +

sx
α1
α1p mod p2,

Z ≡ Z1 + szp ≡ Z1 +
α1szp
α1
≡ Z1 +

sx
α1
β1p mod p2,

therefore (X : 1 : Z) = sx
α1
(P2 − P1) + P1 ∈ QP . An analogous argument shows that if

gcd(β1, p) = 1, then (X : 1 : Z) = sz
β1
(P2 − P1) + P1 ∈ QP , proving the opposite inclusion

π−1(P ) ∩ V(ax+ by + cz) ⊆ QP , from which the equality follows.

Remark 4.5.3. We observe that the coefficients of the line determined by Theorem 4.5.2

are unique modulo p, but p2 choices of these triples are possible inside Z/p2Z. This is due

to the definition of α1 and β1 in the above proof, that are easily seen to be uniquely defined

only up to p-multiples.

4.5.2 Small anomalous loops

In this section we give a partial proof of Conjecture 3.5.4 in the case e = 2 and under

an additional assumption.

Condition 4.5.4. Let L = LA,B(Z/p2Z) be an anomalous loop. For every affine point

P ∈ EA,B(Fp) we have

|p · π−1(P )| > 1.

The above condition simply states that the multiplication-by-p does not map the fiber
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of an affine base point to a unique point at infinity.

It is needless to mention that, as Conjecture 3.5.4 implies Condition 4.5.4, neither

we have found nor we expect to be there an example of an anomalous loop that does not

satisfy it. As another piece of motivation, we have verified Condition 4.5.4 for every elliptic

loop constructed over all the non-isomorphic anomalous elliptic curves that may be defined

over Fp, for every p ∈ P such that p ≤ 300 [Appendix C.10].

Proposition 4.5.5. Let L = LA,B(Z/p2Z) be an anomalous loop satisfying Condition 4.5.4.

Then L has a unique split layer.

Proof. Let P = (X : 1 : Z) ∈ La and define for every k ∈ {1, . . . , p} the points

Pk = P + k(0 : 1 : p).

They all belong to different layers, as their differences lies in ⟨(0 : 1 : p)⟩, which has trivial

intersection with any layer by Lemma 3.4.4. We also define

sx = A2Z2 − AX2 − 6BXZ, sz = 2AXZ + 3BZ2 + 1,

and we verify that

Pk = (X + ksxp : 1 : Z + kszp).

It is easy to see that, since sx and sz appear only paired with p and vice versa, then for

every n ∈ Z there are linear homogeneous forms ln,x, ln,y, ln,z ∈ Z[x, z], which depends only

on n and P , such that if nP = (Xn : Yn : Zn) then

nPk =
(
Xn + kln,x(sx, sz)p : Yn + kln,y(sx, sz)p : Zn + kln,z(sx, sz)p

)
.

Since the loop is anomalous then pP ∈ L∞, but pP also belongs to the same layer of P ,

therefore by Lemma 3.4.4 and Theorem 3.4.3 it lies inside ⟨(p : 1 : 0)⟩, as well as every pPk.

Thus, we have

pP = (Xp : 1 : 0) ∈ P2(Z/p2Z), with Xp ≡ 0 mod p,
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which implies

pPk =
(
Xp + klp,x(sx, sz)p : 1 + klp,y(sx, sz)p : 0

)
=
(
Xp + klp,x(sx, sz)p : 1 : 0

)
.

Now we prove that lp,x(sx, sz) ̸≡ 0 mod p under Condition 4.5.4. In fact, if we had

lp,x(sx, sz) ≡ 0 mod p, then for every k we would get pP = pPk. Since every Pk lies over

π(P ) and by part (iii) of Proposition 3.3.13 every layer has precisely p points lying over

π(P ), then the fiber of π(P ) in L is

π−1
(
π(P )

)
= {Pk + h(p : 1 : 0)}1≤k,h≤p.

The addition law is associative inside layers
(
Proposition 3.3.13-(ii)

)
, therefore we conclude

pπ−1
(
π(P )

)
= {pPk + hp(p : 1 : 0)}1≤k,h≤p = {pP},

contradicting Condition 4.5.4.

Thus, if lp,x(sx, sz) ̸≡ 0 mod p we may define

m ≡ −Xp

p

(
lp,x(sx, sz)

)−1 mod p,

and we prove that Lm is the unique split layer of L. Indeed, every Pk with k ̸≡ m mod p

has order p2, since

pPk =
(
Xp + klp,x(sx, sz)p : 1 : 0

)
=

((Xp

p
+ klp,x(sx, sz)

)
p : 1 : 0

)
̸= 0,

while every P ′ ∈ Lm has order p because it may be written for some α, β ∈ {1, . . . , p} as

P ′ = α
(
Pm + β(p : 1 : 0)

)
,

so that pP ′ = αpPm + βp(p : 1 : 0) = O.
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4.5.3 Layers’ maximality

In this section we prove that layers are maximal subgroups inside non-anomalous

elliptic loops for the smallest non-trivial exponent. We just notice that this is a particular

case of Conjecture 3.5.6.

Proposition 4.5.6. Let L = LA,B(Z/p2Z) be an elliptic loop and L one of its layers. For

every point P ∈ L there is a unique pair of points (P1, P2) ∈ L× ⟨(0 : 1 : p)⟩ such that

P = P1 + P2.

Proof. By Proposition 3.3.13-(iii) we may consider a point

PL ∈ π−1
(
π(P )

)
∩ L.

Since π(P ) = π(PL), then P−PL ∈ L∞ so by Theorem 3.4.3 there are α, β ∈ {0, 1, . . . , p−1}
such that

P − PL = α(p : 1 : 0) + β(0 : 1 : p).

By Lemma 4.4.2 we may associate

P =
(
α(p : 1 : 0) + β(0 : 1 : p)

)
+ PL = β(0 : 1 : p) +

(
α(p : 1 : 0) + PL

)
,

and α(p : 1 : 0) + PL ∈ L by Lemma 3.3.16.

An easy counting (applying Proposition 3.1.3 and 3.3.13, together with Theorem 3.4.3)

gives

|L| = p2|EA,B(Fp)| = |L| |⟨(0 : 1 : p)⟩| = |L× ⟨(0 : 1 : p)⟩|,

from which uniqueness follows.

From the above proposition, layers’ maximality follows.

Corollary 4.5.7. Let L = LA,B(Z/p2Z) be a non-exceptional elliptic loop and L be a layer

of L. If G ⊆ L is a subloop of L that is a group and L ⊆ G, then G = L.
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Proof. By Proposition 4.5.6, for every P ∈ G we may write

P = β(p : 1 : 0) + PL

for some β ∈ {0, . . . , p− 1} and PL ∈ L ⊆ G, so that

β(p : 1 : 0) = P − PL ∈ G.

If β ̸= 0 then (0 : 1 : p) ∈ G, which implies by Proposition 4.5.6 that G = L so L is

exceptional. Thus, we have β = 0, so P ∈ L. Therefore we conclude that G ⊆ L, from

which G = L follows.

This last result supports Conjecture 3.5.6, but does not prove it either in case e = 2,

which is still open and requires further investigation.
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CONCLUSIONS AND FURTHER WORK

In this work, we have defined and investigated elliptic loops as algebraic structures

that enclose the behaviour of points lying above given elliptic curves over finite fields. Many

objects of independent interest such as shadow curves and layers have seen the light and

have been employed to study the geometry of these loops, which appears to be considerably

more regular than what one could have expected.

A deeper inspection of these objects and their relation with the base curve is advised.

Despite their construction in terms of the starting parameters is crystal-clear, no geometric

connections among these entities are known.

Moreover, two relevant claims (Conjecture 3.5.4 and 3.5.6) arisen from the current

investigation are still open and firmly demand further work to be better understood. They

both seem to rely on a “lifting displacement” among layers, but a formal description of this

behaviour is still considered challenging.

Furthermore, the results of this manuscript have always been presented without spe-

cializing the involved parameters, except for the exponent restraints considered in the final

chapter. An intriguing line of work may consist of deriving stronger properties (e.g. asso-

ciativity, substructures or discrete logarithm solution) when special values of p,A,B ∈ Z

are chosen.

Finally, the choice of developing such a research on non-singular cubics is motivated

by their wide interest and applications, but other types of abelian varieties might well

be considered. As an instance, the case of conics is well-studied [70, Chapter VI] and

had already seen cryptographical applications, such as RSA-like schemes built on Pell

Hyperbolae [53, 6]. In the latter case, the group structure of these curves over Z/NZ

resembles that of elliptic ones, hinting at possible extensions of the current work to certain

abelian varieties, whose addition laws display similar characteristics at infinity.
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APPENDICES

The following appendices are devoted to verifying some tedious computations involved

in proofs from the current work, in order not to pointlessly weighing down the reading.

Only exact (i.e. without any approximations) and directly verifiable statements are

presented, they are just overly heavy to be performed directly.

These tasks are accomplished by exploiting the Magma software [8]. The bulk of

the code is intended to produce the reported output in a working Magma environment

supporting or compatible with Magma V2.24-8.

The code is designed to perform the prescribed computations within few minutes on a

personal computer, with the only exceptions of Appendix C.9, which is memory intensive,

and Appendix C.2, which is highly time-consuming. A server is advised to run such parts:

our results have been obtained on the Noether1 server of University of Trento, running

Magma V2.22-5.

The expected outputs and the running time, if critical, have been included to assist

the verification process.



APPENDIX A

ADDITION LAWS

Here we verify the computations involved in the proof of Proposition 2.2.11. We begin
with the definition of the involved objects.

S< A,B, x1,y1,z1, x2,y2,z2, x3,y3,z3 > := PolynomialRing(Integers(),11);

J := ideal< S | y1^2*z1 - x1^3 - A*x1*z1^2 - B*z1^3,

y2^2*z2 - x2^3 - A*x2*z2^2 - B*z2^3,

y3^2*z3 - x3^3 - A*x3*z3^2 - B*z3^3 >;

We define the two addition laws +(0:0:1) and +(0:1:0).

// (0:0:1)

function AL1(A,B, x1,y1,z1, x2,y2,z2)

local X1,Y1,Z1;

X1 := ( (x1*y2 - x2*y1)*(y1*z2 + y2*z1) + (x1*z2 - x2*z1)*y1*y2 - A*(x1*z2 +

x2*z1)*(x1*z2 - x2*z1) - 3*B*(x1*z2 -x2*z1)*z1*z2 );

Y1 := ( -3*x1*x2*(x1*y2 - x2*y1) - y1*y2*(y1*z2 - y2*z1) - A*(x1*y2 - x2*y1)

*z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 - y2*z1) + 3*B*(y1*z2 - y2*z1)*z1*z2 );

Z1 := ( 3*x1*x2*(x1*z2 - x2*z1) - (y1*z2 + y2*z1)*(y1*z2 - y2*z1) + A*(x1*z2

- x2*z1)*z1*z2 );

return X1,Y1,Z1;

end function;

// (0:1:0)

function AL2(A,B, x1,y1,z1, x2,y2,z2)

local X2,Y2,Z2;

X2 := ( y1*y2*(x1*y2 + x2*y1) - A*x1*x2*(y1*z2 + y2*z1) - A*(x1*y2 + x2*y1)

*(x1*z2 + x2*z1) - 3*B*(x1*y2 + x2*y1)*z1*z2 - 3*B*(x1*z2 + x2*z1)*(y1*z2 +

y2*z1) + A^2 *(y1*z2 + y2*z1)*z1*z2 );

Y2 := ( y1^2*y2^2 + 3*A*x1^2*x2^2 + 9*B*x1*x2*(x1*z2 + x2*z1) - A^2*x1*z2*(

x1*z2 + 2*x2*z1) - A^2*x2*z1*(2*x1*z2 + x2*z1) - 3*A*B*z1*z2*(x1*z2 + x2*z1)
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- (A^3 + 9*B^2)*z1^2*z2^2 );

Z2 := ( 3*x1*x2*(x1*y2 + x2*y1) + y1*y2*(y1*z2 + y2*z1) + A*(x1*y2 + x2*y1)*

z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 + y2*z1) + 3*B*(y1*z2 + y2*z1)*z1*z2 );

return X2,Y2,Z2;

end function;

The following functions are used to check if two triples (X1, Y 1, Z1) and (X2, Y 2, Z2)

agree in P2(S/J), i.e. to test whether [X,Y ], [X,Z], [Y, Z] ∈ J .

function Comm(V,W)

return V[1]*W[2] - V[2]*W[1];

end function;

function ProjAgree(X1,Y1,Z1, X2,Y2,Z2)

if Comm([X1,Y1],[X2,Y2]) in J and Comm([X1,Z1],[X2,Z2]) in J and Comm([Y1,Z1

],[Y2,Z2]) in J then

return true;

else

return false;

end if;

end function;

A.1 DEFINITION

We show that the + operation is well-defined, i.e. that +(0:0:1) agrees with +(0:1:0).

X1,Y1,Z1 := AL1(A,B, x1,y1,z1, x2,y2,z2);

X2,Y2,Z2 := AL2(A,B, x1,y1,z1, x2,y2,z2);

ProjAgree(X1,Y1,Z1, X2,Y2,Z2);

> true

A.2 GROUP

We check that all the group conditions are satisfied.

[ Closure ]
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X1,Y1,Z1 := AL1(A,B, x1,y1,z1, x2,y2,z2);

X2,Y2,Z2 := AL2(A,B, x1,y1,z1, x2,y2,z2);

Y1^2*Z1 - X1^3 - A*X1*Z1^2 - B*Z1^3 in J;

> true

Y2^2*Z2 - X2^3 - A*X2*Z2^2 - B*Z2^3 in J;

> true

[ Commutativity ]

X1a,Y1a,Z1a := AL1(A,B, x1,y1,z1, x2,y2,z2);

X1b,Y1b,Z1b := AL1(A,B, x2,y2,z2, x1,y1,z1);

X2a,Y2a,Z2a := AL2(A,B, x1,y1,z1, x2,y2,z2);

X2b,Y2b,Z2b := AL2(A,B, x2,y2,z2, x1,y1,z1);

ProjAgree(X1a,Y1a,Z1a, X1b,Y1b,Z1b);

> true

ProjAgree(X2a,Y2a,Z2a, X2b,Y2b,Z2b);

> true

[ Associativity ]

// I.

X1A,Y1A,Z1A := AL1(A,B, x1,y1,z1, x2,y2,z2);

AssX1A, AssY1A, AssZ1A := AL1(A,B, X1A,Y1A,Z1A, x3,y3,z3);

X2A,Y2A,Z2A := AL2(A,B, x1,y1,z1, x2,y2,z2);

AssX2A, AssY2A, AssZ2A := AL2(A,B, X2A,Y2A,Z2A, x3,y3,z3);

// II.

X1B,Y1B,Z1B := AL1(A,B, x2,y2,z2, x3,y3,z3);

AssX1B, AssY1B, AssZ1B := AL1(A,B, x1,y1,z1, X1B,Y1B,Z1B);

X2B,Y2B,Z2B := AL2(A,B, x2,y2,z2, x3,y3,z3);
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AssX2B, AssY2B, AssZ2B := AL2(A,B, x1,y1,z1, X2B,Y2B,Z2B);

ProjAgree(AssX1A,AssY1A,AssZ1A, AssX1B,AssY1B,AssZ1B);

> true

ProjAgree(AssX2A,AssY2A,AssZ2A, AssX2B,AssY2B,AssZ2B);

> true

[ Identity ]

x10,y10,z10 := AL1(A,B, x1,y1,z1, 0,1,0);

x20,y20,z20 := AL2(A,B, x1,y1,z1, 0,1,0);

ProjAgree(x1,y1,z1, x10,y10,z10);

> true

ProjAgree(x1,y1,z1, x20,y20,z20);

> true

[ Inverse ]

x1e,y1e,z1e := AL1(A,B, x1,y1,z1, x1,-y1,z1);

x2e,y2e,z2e := AL2(A,B, x1,y1,z1, x1,-y1,z1);

ProjAgree(x1e,y1e,z1e, 0,1,0);

> true

ProjAgree(x2e,y2e,z2e, 0,1,0);

> true
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APPENDIX B

LOOP PROPERTIES

In this appendix we expand on the computations of Chapter 3. First, we define the

points sum and the commutator functions.

function Sum(A,B, x1,y1,z1, x2,y2,z2)

local X2,Y2,Z2;

X2 := ( y1*y2*(x1*y2 + x2*y1) - A*x1*x2*(y1*z2 + y2*z1) - A*(x1*y2 + x2*y1)

*(x1*z2 + x2*z1) - 3*B*(x1*y2 + x2*y1)*z1*z2 - 3*B*(x1*z2 + x2*z1)*(y1*z2 +

y2*z1) + A^2 *(y1*z2 + y2*z1)*z1*z2 );

Y2 := ( y1^2*y2^2 + 3*A*x1^2*x2^2 + 9*B*x1*x2*(x1*z2 + x2*z1) - A^2*x1*z2*(

x1*z2 + 2*x2*z1) - A^2*x2*z1*(2*x1*z2 + x2*z1) - 3*A*B*z1*z2*(x1*z2 + x2*z1)

- (A^3 + 9*B^2)*z1^2*z2^2 );

Z2 := ( 3*x1*x2*(x1*y2 + x2*y1) + y1*y2*(y1*z2 + y2*z1) + A*(x1*y2 + x2*y1)*

z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 + y2*z1) + 3*B*(y1*z2 + y2*z1)*z1*z2 );

return X2,Y2,Z2;

end function;

function Comm(V,W)

return V[1]*W[2] - V[2]*W[1];

end function;

B.1 INVERSE

Here we verify that in any elliptic loop the inverse element is unique, as stated in

Proposition 3.2.3.

Z< t > := FunctionField(Integers());

S< A,B, x1,y1,z1, x2,y2,z2 > := PolynomialRing(Z,8);

X,Y,Z := Sum(A,B, x1,y1,z1, x2,y2,z2);

I := ideal< S | [X,Y-t,Z] >;
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x1*y2+x2*y1 in I;

> true

z1*y2+z2*y1 in I;

> true

B.2 WEAK ASSOCIATIVITY

Here we prove the weak associtativity property of Lemma 3.3.2.

S< A,B, x1,y1,z1, x2,y2,z2 > := PolynomialRing(Integers(),8);

P := [x1,y1,z1]; Q := [x2,y2,z2];

X,Y,Z := Sum(A,B, Q[1],Q[2],Q[3], P[1],-P[2],P[3]); // Q - P

QmP := [X,Y,Z];

X,Y,Z := Sum(A,B, P[1],P[2],P[3], QmP[1],QmP[2],QmP[3]); // P + (Q - P)

Su := [X,Y,Z];

(Su[1] div Q[1]) eq (Su[2] div Q[2]);

> true

(Su[1] div Q[1]) eq (Su[3] div Q[3]);

> true

B.3 ASSOCIATIVITY

In this part we perform the computationally heavy check involved in the proof of

Theorem 3.3.7. We begin by verifying that the commutators ci belong to the ideal generated

by the 2× 2-minors.

S< x1,y1,z1, x2,y2,z2, x3,y3,z3, A,B > := PolynomialRing(Integers(),11);

// Notice: Here A,B are considered as last variables to speed up the following

computations. The same check may result infeasible with a personal computer

when other variables orders are considered.
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SXYZ< X,Y,Z > := PolynomialRing(S,3);

F := X^3 + A*X*Z^2 + B*Z^3 - Y^2*Z;

G := A^2*Z^3 - 3*A*X^2*Z - 9*B*X*Z^2 - 3*X*Y^2;

X1,Y1,Z1 := Sum(A,B, x1,y1,z1, x2,y2,z2); // P+Q

X1,Y1,Z1 := Sum(A,B, X1,Y1,Z1, x3,y3,z3); // (P+Q)+R

X2,Y2,Z2 := Sum(A,B, x2,y2,z2, x3,y3,z3); // Q+R

X2,Y2,Z2 := Sum(A,B, x1,y1,z1, X2,Y2,Z2); // P+(Q+R)

c1 := Comm([X1,Y1],[X2,Y2]);

c2 := Comm([X1,Z1],[X2,Z2]);

c3 := Comm([Y1,Z1],[Y2,Z2]);

Minor1 := Comm( [ Evaluate(F,[x1,y1,z1]), Evaluate(F,[x2,y2,z2]) ],

[ Evaluate(G,[x1,y1,z1]), Evaluate(G,[x2,y2,z2]) ] );

Minor2 := Comm( [ Evaluate(F,[x1,y1,z1]), Evaluate(F,[x3,y3,z3]) ],

[ Evaluate(G,[x1,y1,z1]), Evaluate(G,[x3,y3,z3]) ] );

Minor3 := Comm( [ Evaluate(F,[x2,y2,z2]), Evaluate(F,[x3,y3,z3]) ],

[ Evaluate(G,[x2,y2,z2]), Evaluate(G,[x3,y3,z3]) ] );

I := ideal< S | [Minor1,Minor2,Minor3] >;

c1 in I;

> true

c2 in I;

> true

c3 in I;

> true
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Now we verify the part (ii), i.e. we check that the minors ideal of order 1 and 2 of the

left-hand side matrix are contained in those of the right-hand side one.

P := [x1,y1,z1];

Q1 := [x2,y2,z2];

Q2 := [x3,y3,z3];

Xt,Yt,Zt := Sum(A,B, Q1[1],Q1[2],Q1[3], Q2[1],Q2[2],Q2[3]); // P+Q

Q1Q2 := [Xt,Yt,Zt];

[ 1× 1 minors, i.e. entries ]

We prove a stronger statement, i.e. we show that F (Q1 +Q2) ∈ ⟨F (Q1), F (Q2)⟩ and

G(Q1 + Q2) ∈ ⟨G(Q1), G(Q2)⟩. This is not sterile virtuosity: with a personal computer,

directly checking the whole ideal containment would be unfeasible.

g1 := Evaluate(F,Q1Q2);

g2 := Evaluate(G,Q1Q2);

IF := ideal< S | [Evaluate(F,Q1), Evaluate(F,Q2)] >;

IG := ideal< S | [Evaluate(G,Q1), Evaluate(G,Q2)] >;

g1 in IF;

> true

g2 in IG;

> true

[ 2× 2 minors ]

Minor1 := Comm( [ Evaluate(F,P), Evaluate(F,Q1) ],

[ Evaluate(G,P), Evaluate(G,Q1) ] );

Minor2 := Comm( [ Evaluate(F,P), Evaluate(F,Q2) ],

[ Evaluate(G,P), Evaluate(G,Q2) ] );

Minor3 := Comm( [ Evaluate(F,Q1), Evaluate(F,Q2) ],

[ Evaluate(G,Q1), Evaluate(G,Q2) ] );

g := Comm( [ Evaluate(F,P), Evaluate(F,Q1Q2) ],

[ Evaluate(G,P), Evaluate(G,Q1Q2) ] );
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g in ideal< S | [Minor1,Minor2,Minor3] >;

> true

B.4 SHADOW CURVE

This part is devoted to verifying the computational part of Section 3.3.3. They both

make use of the addition laws introduced in Section 1.2.

// (0:0:1)

function AL1(A,B, x1,y1,z1, x2,y2,z2)

local X1,Y1,Z1;

X1 := ( (x1*y2 - x2*y1)*(y1*z2 + y2*z1) + (x1*z2 - x2*z1)*y1*y2 - A*(x1*z2 +

x2*z1)*(x1*z2 - x2*z1) - 3*B*(x1*z2 -x2*z1)*z1*z2 );

Y1 := ( -3*x1*x2*(x1*y2 - x2*y1) - y1*y2*(y1*z2 - y2*z1) - A*(x1*y2 - x2*y1)

*z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 - y2*z1) + 3*B*(y1*z2 - y2*z1)*z1*z2 );

Z1 := ( 3*x1*x2*(x1*z2 - x2*z1) - (y1*z2 + y2*z1)*(y1*z2 - y2*z1) + A*(x1*z2

- x2*z1)*z1*z2 );

return X1,Y1,Z1;

end function;

// (0:1:0)

function AL2(A,B, x1,y1,z1, x2,y2,z2)

local X2,Y2,Z2;

X2 := ( y1*y2*(x1*y2 + x2*y1) - A*x1*x2*(y1*z2 + y2*z1) - A*(x1*y2 + x2*y1)

*(x1*z2 + x2*z1) - 3*B*(x1*y2 + x2*y1)*z1*z2 - 3*B*(x1*z2 + x2*z1)*(y1*z2 +

y2*z1) + A^2 *(y1*z2 + y2*z1)*z1*z2 );

Y2 := ( y1^2*y2^2 + 3*A*x1^2*x2^2 + 9*B*x1*x2*(x1*z2 + x2*z1) - A^2*x1*z2*(

x1*z2 + 2*x2*z1) - A^2*x2*z1*(2*x1*z2 + x2*z1) - 3*A*B*z1*z2*(x1*z2 + x2*z1)

- (A^3 + 9*B^2)*z1^2*z2^2 );

Z2 := ( 3*x1*x2*(x1*y2 + x2*y1) + y1*y2*(y1*z2 + y2*z1) + A*(x1*y2 + x2*y1)*

z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 + y2*z1) + 3*B*(y1*z2 + y2*z1)*z1*z2 );

return X2,Y2,Z2;
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end function;

First, we perform the computational tasks required by Proposition 3.3.10.

S<A,B, x,y,z> := PolynomialRing(Integers(),5);

F := x^3 + A*x*z^2 + B*z^3 - y^2*z;

G := A^2*z^3 - 3*A*x^2*z - 9*B*x*z^2 - 3*x*y^2;

I := ideal< S | [F,G] >;

// The addition laws that are non-exceptional for point doubling are those

corresponding to points with non-zero y coordinate. Hence, only AL1 will be

used for evaluating 2P.

X2,Y2,Z2 := AL2(A,B, x,y,z, x,y,z);

// (S1:S2:S3) = (2P) + P - version a

S1a,S2a,S3a := AL1(A,B, x,y,z, X2,Y2,Z2);

// (S1:S2:S3) = (2P) + P - version b

S1b,S2b,S3b := AL2(A,B, x,y,z, X2,Y2,Z2);

S1a in I and S3a in I;

> true

S1b in I and S3b in I;

> true

Then, the verification employed by Proposition 3.3.11. First, for general (i.e. possibly

not invertible) integers α ∈ Z.

S< A,B, x1,y1,z1, x2,y2,z2, a,b > := PolynomialRing(Integers(),10);

SXYZ< X,Y,Z > := PolynomialRing(S,3);

F := X^3 + A*X*Z^2 + B*Z^3 - Y^2*Z;

G := A^2*Z^3 - 3*A*X^2*Z - 9*B*X*Z^2 - 3*X*Y^2;
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P := [x1,y1,z1];

Q := [x2,y2,z2];

PQx,PQy,PQz := AL1(A,B, x1,y1,z1, x2,y2,z2);

PQ1 := [PQx,PQy,PQz];

PQx,PQy,PQz := AL2(A,B, x1,y1,z1, x2,y2,z2);

PQ2 := [PQx,PQy,PQz];

I := ideal< S | [Evaluate(a*F-b*G,P),Evaluate(a*F-b*G,Q)] >;

J := ideal< S | [Evaluate(a*F-b*G,PQ1),Evaluate(a*F-b*G,PQ2)] >;

J subset I;

> true

As for the “moreover” part, we consider α ∈ Z invertible.

PreS<a> := FunctionField(Integers(), 1);

S< x1,y1,z1, x2,y2,z2, x3,y3,z3, b, A,B > := PolynomialRing(PreS,12);

SXYZ< X,Y,Z > := PolynomialRing(S,3);

F := X^3 + A*X*Z^2 + B*Z^3 - Y^2*Z;

G := A^2*Z^3 - 3*A*X^2*Z - 9*B*X*Z^2 - 3*X*Y^2;

P := [x1,y1,z1]; Q := [x2,y2,z2]; R := [x3,y3,z3];

J := ideal< S | [Evaluate(a*F-b*G,P), Evaluate(a*F-b*G,Q), Evaluate(a*F-b*G,R)]

>;

function Comm(V,W)

return V[1]*W[2] - V[2]*W[1];

end function;

function ProjAgree(X1,Y1,Z1, X2,Y2,Z2)

if Comm([X1,Y1],[X2,Y2]) in J and Comm([X1,Z1],[X2,Z2]) in J and Comm([

Y1,Z1],[Y2,Z2]) in J then
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return true;

else

return false;

end if;

end function;

X1,Y1,Z1 := AL1(A,B, x1,y1,z1, x2,y2,z2);

X2,Y2,Z2 := AL2(A,B, x1,y1,z1, x2,y2,z2);

ProjAgree(X1,Y1,Z1, X2,Y2,Z2);

> true

AssX1A, AssY1A, AssZ1A := AL1(A,B, X1,Y1,Z1, x3,y3,z3);

AssX2A, AssY2A, AssZ2A := AL2(A,B, X1,Y1,Z1, x3,y3,z3);

tmpX1, tmpY1, tmpZ1 := AL1(A,B, x2,y2,z2, x3,y3,z3);

tmpX2, tmpY2, tmpZ2 := AL2(A,B, x2,y2,z2, x3,y3,z3);

AssX1B, AssY1B, AssZ1B := AL1(A,B, x1,y1,z1, tmpX1,tmpY1,tmpZ1);

AssX2B, AssY2B, AssZ2B := AL2(A,B, x1,y1,z1, tmpX2,tmpY2,tmpZ2);

ProjAgree(AssX1A,AssY1A,AssZ1A, AssX1B,AssY1B,AssZ1B);

> true

ProjAgree(AssX2A,AssY2A,AssZ2A, AssX2B,AssY2B,AssZ2B);

> true
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APPENDIX C

SMALL EXPONENTS

Here we perform the computations involved in Chapter 4. We recall the Sum function,

which will be used all along this appendix. For our convenience, unlike the addition laws

employed in previous appendices, now this function returns triples.

function Sum(A,B, x1,y1,z1, x2,y2,z2)

local X2,Y2,Z2;

X2 := ( y1*y2*(x1*y2 + x2*y1) - A*x1*x2*(y1*z2 + y2*z1) - A*(x1*y2 + x2*y1)

*(x1*z2 + x2*z1) - 3*B*(x1*y2 + x2*y1)*z1*z2 - 3*B*(x1*z2 + x2*z1)*(y1*z2 +

y2*z1) + A^2 *(y1*z2 + y2*z1)*z1*z2 );

Y2 := ( y1^2*y2^2 + 3*A*x1^2*x2^2 + 9*B*x1*x2*(x1*z2 + x2*z1) - A^2*x1*z2*(

x1*z2 + 2*x2*z1) - A^2*x2*z1*(2*x1*z2 + x2*z1) - 3*A*B*z1*z2*(x1*z2 + x2*z1)

- (A^3 + 9*B^2)*z1^2*z2^2 );

Z2 := ( 3*x1*x2*(x1*y2 + x2*y1) + y1*y2*(y1*z2 + y2*z1) + A*(x1*y2 + x2*y1)*

z1*z2 + A*(x1*z2 + x2*z1)*(y1*z2 + y2*z1) + 3*B*(y1*z2 + y2*z1)*z1*z2 );

return [X2,Y2,Z2];

end function;

C.1 NON-ASSOCIATIVITY FOR e ≥ 3

This section is devoted to perform the calculations used by Lemma 4.1.1.

S< p, A,B, X,Y > := PolynomialRing(Integers(), 5);

P1 := [X,Y,1];

P2 := [p,1,p];

P3 := [0,1,p];

P12 := Sum( A,B, P1[1],P1[2],P1[3], P2[1],P2[2],P2[3] );

SS := Sum( A,B, P12[1],P12[2],P12[3], P3[1],P3[2],P3[3] );

127



P23 := Sum( A,B, P2[1],P2[2],P2[3], P3[1],P3[2],P3[3] );

TT := Sum( A,B, P1[1],P1[2],P1[3], P23[1],P23[2],P23[3] );

c1 := SS[1]*TT[2] - SS[2]*TT[1];

c2 := SS[1]*TT[3] - SS[3]*TT[1];

c3 := SS[2]*TT[3] - SS[3]*TT[2];

c1 := &+[m : m in Terms(c1) | Degree(m,p) lt 3];

c2 := &+[m : m in Terms(c2) | Degree(m,p) lt 3];

c3 := &+[m : m in Terms(c3) | Degree(m,p) lt 3];

I := ideal< S | c1,c2,c3 >;

54*Y^3*B*(B-2*X^3)^4*p^2 in I;

> true

54*Y^3*(96*A*X^10 - 3*B^4 + 26*B^3*X^3 - 92*B^2*X^6 + 248*B*X^9)*p^2 in I;

> true

C.2 ELLIPTIC GROUPS

In this section we check that anomalous elliptic loops are non-cyclic groups, as claimed

by Proposition 4.1.3. The larger cases of these computation (p = 13) may last for several

days on a personal laptop.

Parameters := [ [5,4,2], [5,4,3], [7,0,4], [7,0,2], [13,0,3], [13,0,10] ];

for par in Parameters do

p := par[1];

A := par[2];

B := par[3];

Laff := [ [X,Y,1] : X,Y in [0..p^2-1] | (-Y^2 + X^3 + A*X + B) mod p eq 0 ];

Linf := [ [a*p,1,b*p] : a,b in [0..p-1] ];

L := Laff cat Linf;

res := true;
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time for P,Q,R in L do

PQ := Sum(A,B, P[1],P[2],P[3], Q[1],Q[2],Q[3]);

PQRa := Sum(A,B, PQ[1],PQ[2],PQ[3], R[1],R[2],R[3]);

QR := Sum(A,B, Q[1],Q[2],Q[3], R[1],R[2],R[3]);

PQRb := Sum(A,B, P[1],P[2],P[3], QR[1],QR[2],QR[3]);

c1 := (PQRa[1]*PQRb[2] - PQRa[2]*PQRb[1]) mod p^2;

c2 := (PQRa[1]*PQRb[3] - PQRa[3]*PQRb[1]) mod p^2;

c3 := (PQRa[2]*PQRb[3] - PQRa[3]*PQRb[2]) mod p^2;

if not( c1 eq 0 and c2 eq 0 and c3 eq 0) then

res := false;

break P;

end if;

end for;

par, res;

end for;

> Time: 22.470

> [ 5, 4, 2 ]

> true

> Time: 22.700

> [ 5, 4, 3 ]

> true

> Time: 151.830

> [ 7, 0, 4 ]

> true

> Time: 4018.330

> [7, 0, 2]

> true

> Time: 190043.830

> [13, 0, 3]
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> true

> Time: 201058.250

> [13, 0, 10]

> true

Now we prove these groups are not cyclic by proving that, every point of LA,B(Z/p2Z)
is of (3p)-torsion.

Parameters := [ [5,4,2], [5,4,3], [7,0,4], [7,0,2], [13,0,3], [13,0,10] ];

for par in Parameters do

p := par[1];

A := par[2];

B := par[3];

Laff := [ [X,Y,1] : X,Y in [0..p^2-1] | (-Y^2 + X^3 + A*X + B) mod p eq 0 ];

Linf := [ [a*p,1,b*p] : a,b in [0..p-1] ];

L := Laff cat Linf;

res := true;

for P in L do

sum := P;

for i in [2..3*p] do

sum := Sum(A,B, P[1],P[2],P[3], sum[1] mod p^2,sum[2] mod p^2,sum[3]

mod p^2);

end for;

if not( sum[1] mod p^2 eq 0 and sum[3] mod p^2 eq 0 ) then

res := false;

break P;

end if;

end for;

par, res;

end for;

> [ 5, 4, 2 ]

> true
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> [ 5, 4, 3 ]

> true

> [ 7, 0, 4 ]

> true

> [7, 0, 2]

> true

> [13, 0, 3]

> true

> [13, 0, 10]

> true

C.3 CONDITIONED NON-ASSOCIATIVITY FOR e ≥ 2

In this section we detail the computations of Proposition 4.1.5.

S< p, A,B, X,Y > := PolynomialRing(Integers(), 5);

P1 := [X,Y,1];

P2 := [X,Y+p,1];

P3 := [0,1,p];

P12 := Sum( A,B, P1[1],P1[2],P1[3], P2[1],P2[2],P2[3] );

SS := Sum( A,B, P12[1],P12[2],P12[3], P3[1],P3[2],P3[3] );

P23 := Sum( A,B, P2[1],P2[2],P2[3], P3[1],P3[2],P3[3] );

TT := Sum( A,B, P1[1],P1[2],P1[3], P23[1],P23[2],P23[3] );

c1 := SS[1]*TT[2] - SS[2]*TT[1];

c3 := SS[2]*TT[3] - SS[3]*TT[2];

c1 := &+[m : m in Terms(c1) | Degree(m,p) lt 2];

c3 := &+[m : m in Terms(c3) | Degree(m,p) lt 2];
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F1 := A^2 - 3*A*X^2 - 9*B*X - 3*X*Y^2;

F2 := A^3 + 6*A^2*X^2 + 6*A*B*X - 3*A*X^4 + 9*B^2 - 18*B*X^3 - Y^4;

G1 := 10*A^4*X + 9*A^3*B + 2*A^3*Y^2 - 30*A^2*B*X^2 + 6*A^2*X^5 + 6*A^2*X^2*Y^2

+ 45*A*B^2*X + 45*A*B*X^4 + 9*A*B*X*Y^2 + 54*B^3 + 135*B^2*X^3 + 18*B^2*Y^2

- 9*B*X^3*Y^2;

G2 := 2*A^4 - 15*A^2*B*X + 30*A^2*X^4 + 6*A^2*X*Y^2 + 9*A*B^2 + 90*A*B*X^3 + 3*A

*B*Y^2 - 6*A*X^3*Y^2 + 135*B^2*X^2 - 27*B*X^5 - 27*B*X^2*Y^2;

c1 eq 2*p*Y^2*F1*F2*G1;

> true

c3 eq 2*p*Y^2*F1*F2*G2;

> true

ExtS<x,y,z> := PolynomialRing(S,3);

F := x^3+A*x*z^2+B*z^3-y^2*z;

// Case I

dP1 := Sum( A,B, P1[1],P1[2],P1[3], P1[1],P1[2],P1[3] );

tP1 := Sum( A,B, dP1[1],dP1[2],dP1[3], P1[1],P1[2],P1[3] );

tP1 := [ &+[m : m in Terms(tP1[i]) | Degree(m,p) lt 2] : i in [1..3]];

I3 := ideal< S | Evaluate(F,P1), F1 >;

tP1[1] in I3;

> true

tP1[3] in I3;

> true

// Case II
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dP1 := Sum( A,B, P1[1],P1[2],P1[3], P1[1],P1[2],P1[3] );

qP1 := Sum( A,B, dP1[1],dP1[2],dP1[3], dP1[1],dP1[2],dP1[3] );

qP1 := [ &+[m : m in Terms(qP1[i]) | Degree(m,p) lt 2] : i in [1..3]];

I4 := ideal< S | Evaluate(F,P1), F2 >;

qP1[1] in I4;

> true

qP1[3] in I4;

> true

// Case III

I := ideal<S | Evaluate(F,P1), G1, G2 >;

864*(X^3*Y^10 - Y^12) in I;

> true

288*(B*Y^8 - 2*X^3*Y^8 + 2*Y^10) in I;

> true

C.4 INFINITY PART

In this section we deal with the computations of Proposition 4.2.1 and Lemma 4.2.2.

C.4.1 Group if e ≤ 5

In this part we prove that, when e ≤ 5, the infinity part of an elliptic loop is associative,

hence a group, as stated by Proposition 4.2.1.

S< p, A,B, x1,z1, x2,z2, x3,z3 > := PolynomialRing(Integers(),9);

P1 := [x1*p,1,z1*p];

P2 := [x2*p,1,z2*p];

P3 := [x3*p,1,z3*p];
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P12 := Sum(A,B, P1[1],P1[2],P1[3], P2[1],P2[2],P2[3]);

SS := Sum(A,B, P12[1],P12[2],P12[3], P3[1],P3[2],P3[3]);

P23 := Sum(A,B, P2[1],P2[2],P2[3], P3[1],P3[2],P3[3]);

TT := Sum(A,B, P1[1],P1[2],P1[3], P23[1],P23[2],P23[3]);

c1 := SS[1]*TT[2] - SS[2]*TT[1];

c2 := SS[1]*TT[3] - SS[3]*TT[1];

c3 := SS[2]*TT[3] - SS[3]*TT[2];

Min([Degree(X,p) : X in Monomials(c1)]) eq 5;

> true

Min([Degree(X,p) : X in Monomials(c2)]) eq 6;

> true

Min([Degree(X,p) : X in Monomials(c3)]) eq 5;

> true

C.4.2 Non-group if e ≥ 6

We continue by specializing, in the above setting, the points P1 = (p : 1 : 0) and

P2 = P3 = (0 : 1 : p), to perform the computations involved in Lemma 4.2.2.

c1ev := Evaluate(c1,[p, A,B, 1,0, 0,1, 0,1]);

c2ev := Evaluate(c2,[p, A,B, 1,0, 0,1, 0,1]);

c3ev := Evaluate(c3,[p, A,B, 1,0, 0,1, 0,1]);

IsEmpty( [m : m in Terms(c2ev) | Degree(m,p) lt 6] );

> true

c1ev := &+[m : m in Terms(c1ev) | Degree(m,p) lt 6];

c3ev := &+[m : m in Terms(c3ev) | Degree(m,p) lt 6];
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I := ideal< S | c1ev,c3ev >;

972*p^5*B^3*(B-2) in I;

> true

36*p^5*B*(4*A-9*B^2+24*B) in I;

> true

6*p^5*A*(2*A+3*B) in I;

> true

C.5 TWO POINTS AT INFINITY

In this part we verify the inclusion stated in the proof of Lemma 4.4.1.

S< p, A,B, x1,y1,z1, a,b,c,d > := PolynomialRing(Integers(), 10);

P := [x1,y1,z1];

Q := [a*p,1,b*p];

R := [c*p,1,d*p];

Ip := ideal<S | p >;

QR := Sum( A,B, Q[1],Q[2],Q[3], R[1],R[2],R[3] );

Ass1 := Sum( A,B, P[1],P[2],P[3], QR[1],QR[2],QR[3] );

PQ := Sum( A,B, P[1],P[2],P[3], Q[1],Q[2],Q[3] );

Ass2 := Sum( A,B, PQ[1],PQ[2],PQ[3], R[1],R[2],R[3] );

c1 := Ass1[1]*Ass2[2]-Ass1[2]*Ass2[1];

c2 := Ass1[1]*Ass2[3]-Ass1[3]*Ass2[1];

c3 := Ass1[2]*Ass2[3]-Ass1[3]*Ass2[2];

c1 in Ip^2 and c2 in Ip^2 and c3 in Ip^2;

> true
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C.6 WELL-BEHAVING INFINITY

Here we check the containment employed while proving Lemma 4.4.2.

S< p, A,B, x1,y1,z1, x2,y2,z2, a > := PolynomialRing(Integers(), 10);

P := [x1,y1,z1];

Q := [x2,y2,z2];

R := [a*p,1,0];

F1 := x1^3+A*x1*z1^2+B*z1^3-y1^2*z1;

F2 := x2^3+A*x2*z2^2+B*z2^3-y2^2*z2;

Ip := ideal<S | p, F1, F2 >;

QR := Sum( A,B, Q[1],Q[2],Q[3], R[1],R[2],R[3] );

Ass1 := Sum( A,B, P[1],P[2],P[3], QR[1],QR[2],QR[3] );

PQ := Sum( A,B, P[1],P[2],P[3], Q[1],Q[2],Q[3] );

Ass2 := Sum( A,B, PQ[1],PQ[2],PQ[3], R[1],R[2],R[3] );

c1 := Ass1[1]*Ass2[2]-Ass1[2]*Ass2[1];

c2 := Ass1[1]*Ass2[3]-Ass1[3]*Ass2[1];

c3 := Ass1[2]*Ass2[3]-Ass1[3]*Ass2[2];

c1 in Ip^2 and c2 in Ip^2 and c3 in Ip^2;

> true

C.7 TWO POINTS INSIDE π−1(P )

In this part we verify the computational tasks required by Proposition 4.4.4.

S< p, A,B, x,y,z, sx,sy,sz, a,b,c,d > := PolynomialRing(Integers(), 13);

P1 := [x,y,z];

P2 := [x+sx*p,-y+sy*p,z+sz*p];

R1 := [a*p,1,b*p];

R2 := [c*p,1,d*p];
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F := x^3+A*x*z^2+B*z^3-y^2*z;

Ip := ideal< S | p >;

P1P2 := Sum( A,B, P1[1],P1[2],P1[3], P2[1],P2[2],P2[3] );

R1R2 := Sum( A,B, R1[1],R1[2],R1[3], R2[1],R2[2],R2[3] );

SS := Sum( A,B, P1P2[1],P1P2[2],P1P2[3], R1R2[1],R1R2[2],R1R2[3] );

P1R1 := Sum( A,B, P1[1],P1[2],P1[3], R1[1],R1[2],R1[3] );

P2R2 := Sum( A,B, P2[1],P2[2],P2[3], R2[1],R2[2],R2[3] );

TT := Sum( A,B, P1R1[1],P1R1[2],P1R1[3], P2R2[1],P2R2[2],P2R2[3] );

// Cast into the quotient now to speed up computations

SS := [(S/Ip^2)!SS[i] : i in [1..3]];

TT := [(S/Ip^2)!TT[i] : i in [1..3]];

c1 := SS[1]*TT[2]-SS[2]*TT[1];

c2 := SS[1]*TT[3]-SS[3]*TT[1];

c3 := SS[2]*TT[3]-SS[3]*TT[2];

c1 eq 0 and c2 eq 0 and c3 eq 0;

> true

C.8 THREE POINTS INSIDE π−1(P )

In this section we detail the proof of Proposition 4.4.6.

S< p, A,B, x1,y1,z1, sx,sy,sz, tx,ty,tz > := PolynomialRing(Integers(), 12);

P1 := [x1,y1,z1];

P2 := [x1+sx*p,y1+sy*p,z1+sz*p];

P3 := [x1+tx*p,-y1+ty*p,z1+tz*p];
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Ip := ideal< S | p >;

P1P2 := Sum( A,B, P1[1],P1[2],P1[3], P2[1],P2[2],P2[3] );

SS := Sum( A,B, P1P2[1],P1P2[2],P1P2[3], P3[1],P3[2],P3[3] );

P2P3 := Sum( A,B, P2[1],P2[2],P2[3], P3[1],P3[2],P3[3] );

TT := Sum( A,B, P1[1],P1[2],P1[3], P2P3[1],P2P3[2],P2P3[3] );

// Cast into the quotient now to speed up computations

SS := [(S/Ip^2)!SS[i] : i in [1..3]];

TT := [(S/Ip^2)!TT[i] : i in [1..3]];

c1 := SS[1]*TT[2]-SS[2]*TT[1];

c2 := SS[1]*TT[3]-SS[3]*TT[1];

c3 := SS[2]*TT[3]-SS[3]*TT[2];

c1 eq 0 and c2 eq 0 and c3 eq 0;

> true

C.9 THREE POINTS INSIDE π−1(P ) AND THREE INSIDE π−1(Q)

This part is devoted to complete the proof of Proposition 4.4.11. Despite the introduc-

tion of many implementation strategies aiming at reducing space consumption, this task is

still heavily memory intensive, therefore a server is advised for running it.

First, we create the objects involved in the computation.

S< p, x1,z1, x2,z2, a1,b1, c1,d1, a2,b2, c2,d2, A,B > := PolynomialRing(Integers

(), 15);

P1 := [x1,1,z1];

P2 := [x1+a1*p,1,z1+b1*p];

P3 := [x1+c1*p,1,z1+d1*p];
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Q1 := [x2,1,z2];

Q2 := [x2+a2*p,1,z2+b2*p];

Q3 := [x2+c2*p,1,z2+d2*p];

Here we perform the first association:

SS = (P1 + P2 − P3) + (Q1 +Q2 −Q3).

// We perform the difference first. This heuristically speeds up the final

computation.

P23 := Sum( A,B, P2[1],P2[2],P2[3], P3[1],-P3[2],P3[3] );

P123 := Sum( A,B, P1[1],P1[2],P1[3], P23[1],P23[2],P23[3] );

Q23 := Sum( A,B, Q2[1],Q2[2],Q2[3], Q3[1],-Q3[2],Q3[3] );

Q123 := Sum( A,B, Q1[1],Q1[2],Q1[3], Q23[1],Q23[2],Q23[3] );

// leave out p^2 terms to speed up the following operations

P123 := [ &+[m : m in Terms(P123[i]) | Degree(m,p) lt 2] : i in [1..3] ];

Q123 := [ &+[m : m in Terms(Q123[i]) | Degree(m,p) lt 2] : i in [1..3] ];

time SS := Sum( A,B, P123[1],P123[2],P123[3], Q123[1],Q123[2],Q123[3] );

> Time: 175.830

Now we perform the second association:

TT = (P1 +Q1) + (P2 +Q2)− (P3 +Q3).

X1 := Sum( A,B, P1[1],P1[2],P1[3], Q1[1],Q1[2],Q1[3] );

X2 := Sum( A,B, P2[1],P2[2],P2[3], Q2[1],Q2[2],Q2[3] );

X3 := Sum( A,B, P3[1],P3[2],P3[3], Q3[1],Q3[2],Q3[3] );

// leave out p^2 terms to speed up the following operations
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X1 := [ &+[m : m in Terms(X1[i]) | Degree(m,p) lt 2] : i in [1..3] ];

X2 := [ &+[m : m in Terms(X2[i]) | Degree(m,p) lt 2] : i in [1..3] ];

X3 := [ &+[m : m in Terms(X3[i]) | Degree(m,p) lt 2] : i in [1..3] ];

// again, we perform the difference first, to shorten computational time

X2X3 := Sum( A,B, X2[1],X2[2],X2[3], X3[1],-X3[2],X3[3] );

// leave out p^2 terms to speed up the following operations

X2X3 := [ &+[m : m in Terms(X2X3[i]) | Degree(m,p) lt 2] : i in [1..3] ];

time TT := Sum( A,B, X1[1],X1[2],X1[3], X2X3[1],X2X3[2],X2X3[3] );

> Time: 1136.010

The following is the heavy part. Let SS = (S1 : S2 : S3) and TT = (T1 : T2 : T3), we

want to verify that

S1T2 − S2T1 = S1T3 − S3T1 = S2T3 − S3T2 = 0.

To speed up the multiplications, which involve huge polynomials, we cancel the p2-terms

before computing them, as follows:

S1 = So1 + Sp1p

S2 = So2 + Sp2p

T1 = T o1 + T p1 p

T2 = T o2 + T p2 p





→ S1T2−S2T1 =

∣∣∣∣∣∣∣∣∣∣∣

So1T
o
2 − So2T o1

+ (So1T
p
2 + Sp1T

o
2 − So2T p1 − Sp2T o1 )p

+ (Sp1T
p
2 − Sp2T p1 )p2 ← do not compute

In fact, we prove that

So1T
o
2 − So2T o1 = So1T

p
2 + Sp1T

o
2 − So2T p1 − Sp2T o1 = 0.

The same strategy is applied on S1T3 − S3T1 and S2T3 − S3T2.
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SS := [ &+[m : m in Terms(SS[i]) | Degree(m,p) lt 2] : i in [1..3] ];

TT := [ &+[m : m in Terms(TT[i]) | Degree(m,p) lt 2] : i in [1..3] ];

ppart1 := [ &+[(m div p) : m in Terms(SS[i]) | Degree(m,p) eq 1] : i in [1..3]

];

opart1 := [ SS[i] - p*ppart1[i] : i in [1..3] ];

ppart2 := [ &+[(m div p) : m in Terms(TT[i]) | Degree(m,p) eq 1] : i in [1..3]

];

opart2 := [ TT[i] - p*ppart2[i] : i in [1..3] ];

// We verify that the opart of the commutators are 0

opart1[1]*opart2[2]-opart1[2]*opart2[1] eq 0;

> true

opart1[1]*opart2[3]-opart1[3]*opart2[1] eq 0;

> true

opart1[2]*opart2[3]-opart1[3]*opart2[2] eq 0;

> true

// Now the heavy part

time c1 := ppart1[1]*opart2[3] + ppart2[3]*opart1[1] - ppart2[1]*opart1[3] -

ppart1[3]*opart2[1];

> Time: 14647.680

c1 eq 0;

> true

time c2 := ppart1[1]*opart2[2] + ppart2[2]*opart1[1] - ppart2[1]*opart1[2] -

ppart1[2]*opart2[1];

> Time: 11185.280
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c2 eq 0;

> true

time c3 := ppart1[2]*opart2[3] + ppart2[3]*opart1[2] - ppart2[2]*opart1[3] -

ppart1[3]*opart2[2];

> Time: 10902.050

c3 eq 0;

> true

C.10 CONDITION VERIFICATION FOR p ≤ 300

We conclude this appendix by computationally verifying Condition 4.5.4 for every

prime p ≤ 300. Actually, we show that no intensive research is needed: for any pseudo-

randomly chosen P ∈ La, we always find pP ̸= p
(
P + (0 : 1 : p)

)
. This procedure lasts

roughly fifteen minutes.

function AnomalousCurves(p)

local l, toAdd;

l := [];

for A,B in [0..p-1] do

b,E := IsEllipticCurve([GF(p)!A,B]);

if b and #E eq p then

toAdd := true;

for C in l do

if IsIsomorphic(C,E) then

toAdd := false;

end if;

end for;

if toAdd then

l cat:= [E];

end if;

end if;

end for;
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return l;

end function;

Z := Integers();

time for p in PrimesInInterval(5,300) do

Zp2 := Integers(p^2);

for E in AnomalousCurves(p) do

A := Z!Coefficients(E)[4];

B := Z!Coefficients(E)[5];

for P in Points(E) do

if P ne E![0,1,0] then

sP := Sum(A,B,Z!P[1],Z!P[2],Z!P[3],0,1,p);

psP := [Zp2!Z!P[1],Zp2!Z!P[2],Zp2!Z!P[3]];

pP := [Zp2!Z!P[1],Zp2!Z!P[2],Zp2!Z!P[3]];

for i in [2..p] do

pP := Sum(A,B,Z!P[1],Z!P[2],Z!P[3],pP

[1],pP[2],pP[3]);

sP := Sum(A,B,sP[1],sP[2],sP[3],psP[1],

psP[2],psP[3]);

end for;

if ( pP[1]*sP[2]-pP[2]*pP[1] eq 0 and pP[1]*sP

[3]-pP[3]*pP[1] eq 0 and pP[2]*sP[3]-pP[3]*pP[2] eq 0 ) then

E,P;

break P;

end if;

end if;

end for;

end for;

end for;

> Time: 847.750
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APPENDIX D

OTHER WORKS

A Ph.D. in mathematics is intended, by the author, as a period where facing research-

level problems from different fields, testing yourself against thrilling challenges that keep

reminding you how moving this discipline is.

Since the present essay constitutes the author’s doctoral thesis, it needs to collect at

least a short reference to other journeys made in the past years, even if not related to the

main subject of this work, which is what this appendix is devoted to.

The first mention undoubtedly needs to be granted to a substantial work1 where a

symmetric tensor decomposition algorithm is provided by exploiting properties of apolar

duality and Hankel operators. In this paper, we have improved the best known symbolic

algorithm for recovering Waring decomposition of symmetric tensors by means of simple

symmetric pieces, as far as we have employed the same ideas to address more general types

of decomposition, such as the tangential and the cactus ones.

A second credit is given to the description2 of first degree prime ideals in biquadratic

extensions, which shows great potential for further generalizations and applications to the

general number field sieve toolkit.

On the cryptographic side, a new ECDLP-based scheme has been proposed3 for de-

signing a blockchain model in which users do not need to trust either the protocol proposers.

Finally, two surveys45 have seen light to systematize the knowledge about the modern

notions of proof-of-work and distributed computing techniques.

1A. Bernardi, D. Taufer, Waring, tangential and cactus decompositions, to appear, accepted in JMPA,
Preprint available at https://arxiv.org/abs/1812.02612.

2M. Sala, G. Santilli, D. Taufer, First-Degree Prime Ideals of Biquadratic Fields dividing prescribed
Principal Ideals, Preprint available at https://arxiv.org/abs/1908.00383.

3A. Meneghetti, M. Sala, D. Taufer, A new ECDLP-based PoW model, CEUR Proceedings, Vol. 2580,
2020.

4A. Meneghetti, M. Sala, D. Taufer, A survey on PoW-based consensus, AETiC, Vol. 4, No. 1, 2020.
5A. Meneghetti, T. Parise, M. Sala, D. Taufer, A survey on efficient parallelization of blockchain-based

smart contracts, AETiC, Vol. 3, No. 5, 2019.
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