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�In theory there is no di�erence between

theory and practice in practice there is.�

� Yogi Berra

�Was sich überhaupt sagen läÿt, läÿt sich klar sagen;

und wovon man nicht reden kann, darüber muÿ man

schweigen.�

� Ludwig Wittgenstein
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Introduction

Starting from the 80's, thanks to the improvement of the computation power, the
reduced dimension and the economical availability of computers, Signal Theory has
increased its attention on multi dimensional data. In particular, image elaboration,
concerning both processing as analysis, in static and dynamic conditions, has gained
a meaningful importance in the scienti�c community. The bottleneck to pass from
the pure mathematical theory, investigated years before, to the applications, is of-
ten represented by the impossibility to satisfy the hypothesis in real-world cases, so
that approaches to negotiate the suitability of the results with the theoretical frame-
works are needed. The resulting mathematical models on this respect should take
into account of the multidimensional setting and of the necessary adaptation of the
analytical theory in a discrete domain, a crucial passage for the reliability of the
applications. This thesis re�ects the above mentioned concepts dealing mainly with
the applications of some approximation problems belonging to the area of Approx-
imation Theory and Signal Processing, to real-world problems arising from medical
and engineering �elds through the implementation of some theoretical results for the
reconstruction of digital images, suitable for the considered problems. In particular,
the main topic concentrates on the theory of discrete linear operators of sampling
type, considering in particular the so called Sampling Kantorovich (SK) operators,
used as main mathematical instrument in order to reconstruct digital signals/images.
In order to �rst frame the state of the art of the problem, the starting point is rep-
resented by the well known Whittaker-Kotelnikov-Shannon sampling theorem, whose
formulation was �rstly introduced around the years 50's [126, 106, 107, 84]. It reads
as follows.

Theorem 1. (WKS Sampling Theorem)

Let f ∈ L2(R) such that supp f̂ ⊆ [−πw, πw], w > 0, where f̂ denotes the Fourier
transform of the function f . Then

∑

k∈Z
f

(
k

w

)
sinc(wt− k) = f(t), t ∈ R.
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The WKS sampling theorem states the conditions for the exact reconstruction of
a function f ∈ L2(R), by means of the above interpolation formula given its sam-

ples values f( k
w

) calculated in the, so called, nodes
k

w
. For an interesting discussion

about the above formula, see e.g., [71]. Although this result has had a very strong
impact both in the mathematical literature as in the applications, the theorem has
both theoretical and applicative disadvantages. From the theoretical point of view,
requiring that the function to be reconstructed belongs to L2 (which means that the
signal has �nite energy), having its Fourier transform compact support (the signal
is band-limited), means requiring (by the Paley-Wiener theorem [105]) that f is the
restriction to the real axis of an entire function of exponential type, which in turns
imply that the signal must be too regular, strongly restricting the �eld of action in
the case of physical data (i.e., signals that in practice are found). Moreover, from
the applicative point of view, the above interpolation formula requires the knowledge
of the samples values f

(
k
w

)
all over R, with k varying in all integers, thus requir-

ing the sampling of the signal on in�nite time nodes of it, which in practice is not
possible; furthermore, the evaluation of the signal should be done both in the past
of a �xed instant t ∈ R as in the future, which means making a prediction. Fur-
thermore, in concrete application problems, signals are duration-limited (i.e. their
extension in the domain is bounded) and this is not compatible with the requested
band-limitation (this depends by the Heisenberg uncertainty principle). For these
reasons, the assumptions of WKS sampling theorem need to be weakened.

Starting from the 60's, the mathematical community began to work on this prob-
lem with the price of losing the exact reconstruction but having instead an approxi-
mated reconstruction, that is, with some approximation errors to estimate.

In this direction, Weiss in 1963 [124] and Brown in 1967 [24] proved that

Theorem 2. Let f ∈ L2(R)∩C(R) (C(R) being the space of bounded and uniformly
continuous functions) such that f̂ ∈ L1(R); then one has the following estimate for
the approximation error

|(Swf)(t)− f(t)| ≤
√

2

π

∫

|v|≥πw

∣∣∣f̂(v)
∣∣∣ dv, t ∈ R.

The above estimates imply the uniform convergence of (Swf)(t) towards f as
w → +∞, since

lim
w→+∞

∫

|v|≥πw

∣∣∣f̂(v)
∣∣∣ dv = 0,

being f̂ ∈ L1(R). It is also possible to prove that the constant
√

2
π
is optimal, in the

sense that it can not be improved further. Moreover, the above inequality reveals,
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in terms of signals, the property of the operators (Swf)(t) to behave as low-pass
�lters: in fact, the integral on the right side, depends mainly on the high-frequency
components of the Fourier transform f̂ of the function f .

To further relax the WKS sampling assumptions, around 80's, a new class of
operators, called generalized sampling operators, has been introduced by the famous
mathematician P. L. Butzer and his school at RWTH-Aachen, with the aim to solve all
the previous mentioned critical issues connected with the classical sampling theorem,
(see e.g., [31, 32, 28]).

For a function ϕ : R → R with ϕ ∈ Cc(R) and a bounded function f : R → R,
the generalized sampling operators are de�ned as

(Sϕwf)(x) :=
∑

k∈Z
f

(
k

w

)
ϕ(wx− k), x ∈ R, w > 0.

The above operators are bounded linear operators mapping L∞ into L∞ and C(R) into
itself, with respect to the L∞ and C(R) norms, respectively. Here the operator norm
is ‖SϕW‖[C(R),C(R)] = supu∈R

∑
k∈Z |ϕ(u − k)|, where m0(ϕ) = supu∈R

∑
k∈Z |ϕ(u − k)|

is the absolute discrete moment of order zero of the function ϕ.
Moreover, it is possible to prove that (Sϕwf)(x) converges to f(x) as w tends to

+∞, when the kernel ϕ satisfy the following condition:

∑

k∈Z
ϕ(x− k) = 1,

for every x ∈ R, and in every point x of continuity for f (when f is bounded and
continuous) and uniformly with respect to x (when f is bounded and uniformly
continuous). This represents the so called generalized sampling theorem.

The generalized sampling formulation has, compared to the classical WKS sam-
pling theorem, the advantages to require only a �nite number of samples, that in
addition, can be taken only in the past with respect to the point to reconstruct (this
last result being valid assuming ϕ ∈ Cc(R+)). As it is natural to expect, the weaken-
ing of the hypotheses has its downside, represented by the introduction of an error in
the reconstruction of f . Controlling this error is important to quantify the goodness
of the reconstruction: for these reasons, besides results of convergence, there are re-
sults of order of approximation, higher order derivatives, saturation and many others
(see e.g., [30, 31, 32, 121, 28]). For the extension to the theory in multidimensional
setting, see [27].

Although the theory of reconstruction using these operators has solved all the
drawbacks of the formula of the classical sampling theorem, considerably weakening
the hypotheses, these operators are not very suitable to be studied in a context of
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functions/signals that are not necessarily continuous. In fact, it is not di�cult to show
(see the counterexample in [15]) that they do not map Lp into itself, that is, they
are not continuous in Lp; and indeed their expression shows how strongly they are

related to the evaluation of the function on single nodes
k

w
, k ∈ Z, w > 0. To overcome

this problem, to lead the way for a theory that would allow the reconstruction of a
more broad class of signals (therefore not necessarily restricted to C(R)), in [15] the
Sampling Kantorovich (SK) operators have been introduced and studied.

In the one-dimensional case and (for a sake of simplicity) for equi-spaced sampling,
given a locally integrable function, they are de�ned as

(Kχ
wf)(x) :=

∞∑

k=−∞

{
w

∫ (k+1)/w

k/w

f(u) du
}
χ(wx− k) x ∈ R, w > 0, (1)

where f : R→ R is such that the above series converges for every x ∈ R, and χ is a
kernel function. Under suitable assumptions on χ, it is possible to prove convergence
results for the above operators.

In this thesis, dealing with applications, we are more interested to the exten-
sion of the above operators in a multivariate setting where we may now de�ne the
multidimensional sampling Kantorovich operators as

(Kχ
wf)(x) :=

∑

k∈Zn
χ(wx− k) ·

[
wn

Ak
·
∫

Rwk

f(u) du

]
x ∈ Rn, w > 0,

where Rw
k =

[
tk1
w
,
tk1+1

w

]
×
[
tk2
w
,
tk2+1

w

]
× ...×

[
tkn
w
,
tkn+1

w

]
, Ak := ∆k1 · · ·∆kn , ∆ki :=

tki+1 − tki and f : Rn → R is a locally integrable function such that the above series
converges for every x ∈ Rn.

For the above SK operators, the following results have been provided [49].

Theorem 3. Let f : Rn → R be a bounded and continuous function. Under suitable
assumptions on the kernel χ, for each x ∈ Rn there holds

lim
w→∞

(Kχ
wf)(x) = f(x).

Moreover, if f is uniformly continuous and bounded, there holds

lim
w→∞

‖Kχ
wf − f‖∞ = 0.
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Moreover, recalling the main motivation that stimulated the introduction and the
study of the SK operators, results in Orlicz spaces6 have been proved, from which we
can deduce, as a particular case, the following convergence theorem in Lp.

Theorem 4. Let χ be a kernel satisfying suitable assumption and let f : Rn → R, f ∈
Lp, p ≥ 1. Then Kχ

wf ∈ Lp, and there holds

lim
w→∞

‖Kχ
wf − f‖p = 0.

Moreover, order of approximation results, inverse and saturation results and Voronoskaja
type formulas for the exact order of approximation, have been proved in [50, 52, 53].

In addition, the pointwise behaviour of SK operators in the discontinuity points,
has been also studied in [45].

Supported by solid theoretical basis, the theory of the SK operators has been
implemented. The algorithmic implementation, �rstly introduced in [49], has been
rewritten in di�erent programming languages (C++, Python, Php, Matlab) and opti-
mized until to reach a good computational complexity: this optimization has reduced
considerably the execution time [48]. Furthermore, it o�ers a realistic model for the
e�ective sampling process, thanks to which the quality of signal reconstruction ex-
ceeds other methods extensively investigated in literature, as proved in [48]. It should
be pointed out that the e�ect of the reconstruction through the SK operators confers,
on the one hand an increase in the resolution and, on the other hand, an elimination
of the noises caused by high frequencies. In other words, the SK operators act as
�microscopes� and as low pass �lters at the same time.

In particular, in Chapter 2, Section 2.3, working with 2D digital images, the
behavior of the SK operators has been numerically compared with bilinear and bicubic
interpolation besides Finite Impulse Response (FIR) and In�nite Impulse Response
(IIR) quasi-interpolation methods (for these last quasi-interpolation method, see e.g.,
[43]). The achieved results stated that SK operators have better performance for
signal reconstruction compared to the other considered ones [48].

Thanks to the reduction of the algorithmic computational cost of the SK operators
above mentioned, it has been possible to apply the SK operators for the innovative
solution of some real-world problems in the Medical as in the Engineering �elds: the
proposed methodologies matched together the SK operators with other Digital Image
Processing (DIP) algorithms.

From the medical point of view, in Chapter 3, Section 3.1., the segmentation of the
pervious lumen of the aorta artery without contrast medium introduction has been

6The Orlicz spaces have beeen introduced in the years 30's by the Polish mathematician W.
Orlicz, as natural extension of Lp-spaces and they play a fundamental role in Functional Analysis
as in many other branches of Mathematical Analysis where these spaces �nd various applications.
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Figure 1. Two examples of the comparison between the segmented pervious lumen of the aorta
artery without contrast medium extracted after the application of SK algorithm (in blue) and the
corresponding contrast medium gold standard reference (in green). The quality of the matching is
evident.

performed [39, 40, 47]. Here the �rst crucial step is given by the reconstruction of
the considered CT images by means of SK operators. Then segmentation algorithms
were designed and implemented. Finally, a single algorithm has been developed that
allows in a short time (about 9 seconds per image) to reconstruct and to segment the
patient lumen of the aneurysmal aortic vessel. Results analyzed by Dice, Tanimoto
and other similarity indexes available in literature, as well as by Hausdor� distance
and some problem-speci�c parameters, have shown a good matching with the contrast
medium CT image sequences. i.e., the gold standard reference (see Fig.1); moreover,
an improvement in the segmentation with respect to images not processed by the SK
algorithm, has been shown.

To the knowledge of the author, this has been the �rst attempt, proved in lit-
erature, to segment pervious lumen of occluded vessels without contrast medium
introduction.

In the ophthalmological �eld (Chapter 3, Section 3.2), SK algorithm has been
used to enhance the visualization of images of the retinal fundus, achieved by Optical
Coherence Tomography of the Super�cial Capillary Plexus (SCP) as of the Chorio-
capillaris tissue (CC). The obtained results have been evaluated as qualitatively by
medical specialists as quantitatively using cluster counting, Shannon Entropy and
co-occurrences matrices. The comparison to estimate the parameters was made us-
ing �uorangiography as the gold standard for the SCP images, while the histological
specimens of cadavers, for the CC images. In both cases the improvement has been
meaningful (see Fig. 2). Here a new hybrid thresholding method, suitable for the
problem under consideration, has been introduced in order to distinguish the macula
from the capillary plexus as faithfully as possible.
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Figure 2. From left to right: Super�cial Capillary Plexus and Choriocapillaris tissue. In the �rst
row the original Optical Coherence Tomography images, in the second row the images processed by
means of SK algorithm. The qualitative visual improvement is evident. The small red squares in
the images of the second row are the �uoroangiographic and the autoptic references.
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Figure 3. Examples of thermal bridges acquired by a thermal camera: pillar (left), beam-pillar-joint
(right). The red zones are the ones with higher temperature.

For what concerns the engineering applications, in Chapter 4 two main problems
have been examined: the �rst one related to the segmentation of thermal bridges
(Section 4.1), the second one connected with the study of acoustic bridges (Section
4.2).

Thermal bridges are areas of buildings where constructive elements exhibit a high
gradient of temperature. The presence of these areas results in an energy loss for the
building. Precisely, estimating the contours of thermal bridges allows to quantify the
amount of these losses (see Fig. 3). It has been proved that, using SK algorithms on
thermographic images, together with suitable segmentation methods, improves the
correctness of estimation from 3% to 11% compared to not SK reconstructed data
[7, 8].

Similarly to thermal bridges, acoustic bridges are zones of the environment where
the presence of noise sources determines strong variations of acoustic power7 (see
Fig. 4). These variations give rise to environmental pollution. Their individuation
allows to reduce the e�ect of noise sources on the neighborhood. Using SK algorithm
together with a well suited triangulation method, has proved to be e�cient in the
three-dimensional localization of such sources of noise. The estimated error in the
case study has been quanti�ed to be around 46cm at a distance from the source of
12.25m, i.e., around 4%.

The whole thesis is structured as follows: Chapter 1 provides a summary of some
arguments that have been valued fundamental for the self-contained character of the
thesis; in Chapter 2 the theory behind the SK operator is reviewed, with particular
attention to its multidimensional formulations. Here the implementation of the re-
construction algorithm for digital images by the SK operators has been obtained and
the numerical results demonstrating the good performances of the SK algorithm have

7The individuation of acoustic bridges is not restricted to environmental noise but can be con-
ducted in many other investigation areas, e.g., engine diagnostic.
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Figure 4. Experimental data of an acoustic bridge recorded by an Acoustic Camera (AC). The
round red areas are the ones where the sound pressure is bigger, corresponding to two speakers in
the experimental setup.

been discussed. Chapters 4 and 5 represent the part of the thesis dedicated to con-
crete applications to real world problems, as discussed above. The thesis ends with
the conclusions that outline, in a summarizing fashion, the original achieved results.
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Chapter 1

Preliminary Overview

In this �rst chapter an overview of topics, whose knowledge is necessary to make this
thesis self contained, is presented. The reader who is familiar with Fourier Analy-
sis, Approximation Theory, Sampling, Image processing and Filtering can skip this
section.

1.1 Fourier Transform

The theoretical tool mostly used in Signal Theory is the Fourier Transform (FT),
introduced by Jean Baptiste Joseph Fourier in 1822, in his work Théorie analytique
de la chaleur [66].

Given f2π, a periodic function of period 2π, such that f2π ∈ L2[−π, π], where
L2[−π, π] is the set of 2π periodic square summable functions in the closed interval
[−π, π], the best approximation of f2π, in the space generated by the orthonormal
system SN = {ϕ0, ϕ1, ..., ϕN} of L2[−π, π], is expressed by

sn(x) =
n∑

k=0

f̂kϕk(x)

and it is called the partial sum of the Fourier series associated with f2π, where f̂k, k =
0, 1, ..., n are the Fourier coe�cients whose values depend on f2π and SN .

In the particular case of the real trigonometric system (i.e., SN = {cos(kx),
sin(kx)}, k = 0, 1, 2, ...n), the following equality stands

f2π =
1

2
f̂c(0) +

∞∑

k=1

(f̂c cos(kx) + f̂s sin(kx)) (1.1)

13



with

f̂c(k) =
1

π

∫ π

−π
f2π(x) cos(kx)dx, k = 0, 1, 2, ...,

and

f̂s(k) =
1

π

∫ π

−π
f2π(x) sin(kx)dx, k = 1, 2, ...

The equality expressed in (1.1) de�nes the trigonometric Fourier series of f2π. Using
an exponential notation, it is possible to rewrite

f2π =
+∞∑

k=−∞
cke

ikx, (1.2)

with ck = 1
2π

∫ π
−π f2π(u)e−ikudu, k ∈ Z. The equation (1.2) is the complex form of the

Fourier series of f2π [130].
In a similar fashion, it is possible to extend the Fourier expansion to not periodic

functions. Given f ∈ L1(R), the function

f̂(λ) =

∫ +∞

−∞
f(t)e−iλtdt

de�nes the Fourier transform (FT) of f .
In each point x ∈ R such that the Dini's1 condition is satis�ed, it is possible to

de�ne the Inverse Fourier Transform (IFT) of f given by

f(x) =
1√
2π

(P.V.)

∫ +∞

−∞
f̂(λ)eiλxdλ,

where (P.V.) denotes the principal value of the integral [29, 123].
What has been introduced in R can be obviously extended to Rn, n ≥ 1.
From a physical point of view, the variable λ expresses the pulsation (related to

the frequency of oscillation (ν) by the relation ν = 2πλ) and the FT shows the way
to reconstruct the original function f by the combination of oscillating functions2.

More than one century later Whittaker, Kotelnikov and Shannon will demonstrate
how to reconstruct a function f starting by the knowledge of a set of sampled points.
The Fourier Transform theory, as given in its original form, can be formulated in
Lp(R) spaces with 1 < p ≤ 2.

On the other hand, introducing the theory of distributions, it is possible to extend
the theory of FT to a wider class of functions belonging to Lp(R), with p > 2. This

1Dini's condition requires that with f ∈ L1, exists x0 ∈ R and exists δ ∈]0, a[, with a ∈ R
conveniently chosen, such that

∫ δ
0
|f(x0 + u) + f(x0 − u)− 2f(x0)|u−1du < +∞.

2From the well known Euler's formula eix = cos(x) + i · sin(x).
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Figure 1.1. Decomposition by the Fourier series of a periodic square wave in its �rst 7 (sin(·),
cos(·)) components. The function to reconstruct is the unitary square wave, in �gure denoted by
f(x) (in red). The signal resulting after the reconstruction exhibits the so called Gibbs phenomenon,
i.e., an undesired oscillation due to the truncation of the series (in this speci�c case to the 7th term).

approach is particularly useful when a real signal is modeled by e.g., a Dirac impulse,
an Heaviside step function or other theoretical models.

In Figure 1.1 the �rst seven terms of the Fourier series associated to the periodic
square wave are shown.

Further result connected with the FT concerns the convolution product. Given
two measurable functions f and g de�ned on R, their convolution product is de�ned
as

(f ∗ g)(x) =

∫ +∞

−∞
f(x− u)g(u)du .

There holds the following result.

Theorem 5. Given f, g ∈ L1(R), then f ∗ g ∈ L1(R) and

(̂f ∗ g)(x) = f̂(x) ĝ(x)

Theorem 5 describes the equivalence between the convolution product in the time
domain with the usual product in the frequency domain. Another version of the
theorem provides the same result in case of periodic functions, the di�erence being
only in a normalization term [29, 123, 65].

1.2 Classical Sampling Theorem

The capacity to reconstruct a signal, only starting from the knowledge of a set of sam-
ples, has always been a fascinating problem, not only theoretical but with substantial
practical implications (e.g. signal transmission and elaboration).
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Historically, the �rst and most important result has been formalized in the years
between '30s and '50s of the twentieth century and today it takes the name of three
scientists who independently reached a similar result: the British mathematician Ed-
mund Taylor Whittaker, the Russian engineer Vladimir Kotelnikov and the American
engineer and mathematician Claude Elwood Shannon.

Given a continuous function f ∈ L2(R), such that f̂(λ) has a compact support,
i.e., f̂(λ) = 0, for every |λ| > λ0 ∈ R (band-limited), the classical form of the so called
WKS sampling theorem stands.

Theorem 6. Given T = π
λ0
, for every t ∈ R

f(t) =
+∞∑

k=−∞
f(nT )

sin(λ0t− nπ)

λ0t− nπ
=

+∞∑

k=−∞
f(nT )sinc

(
λ0t

π
− n

)

where T is said to be the sampling period and the sinc(·) function is de�ned as
follows:

sinc(x) =





1, if x = 0;
sin(πx)

πx
, otherwise.

An equivalent set of hypothesis for the WKS sampling theorem prescribes that f
must have �nite energy (f ∈ L2(R)) and be band-limited [72].

The WKS sampling theorem expresses the possibility to reconstruct a function
having suitable properties, starting from the knowledge of a set of discrete values,
multiplying the value of each sample for suitable shifted version of a sinc(·) function.
The shifted sinc(·) functions play the role of an orthonormal set in R, the same way
the Fourier coe�cients, together with the sin(·) and cos(·), behave in the trigonomet-
ric Fourier series.

The value for the sampling period T must satisfy the so called Nyquist criterion
[93, 94]:

1

T
≥ 2νmax . (1.3)

where νmax is the maximum frequency in the signal to be reconstructed. If condition
(1.3) is violated, spectral replicas overlap in the FT domain, causing aliasing, i.e., the
generation of artifacts corrupting the original function (see Figure 1.3). Despite its
elegant mathematical formulation and the assurance of an exact reconstruction, the
WKS sampling theorem hides some limitations for its concrete applicability [32]:
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Figure 1.2. Partial decomposition of a generic signal using a set of shifted sinc(·) functions (on
the right). The graphic of a centered sinc(·) function is on the left of the �gure.

• the �nite energy and the band-limited conditions imply that f must be the
restriction, to the real axis, of an entire function of exponential type;

• an in�nite number of samples is needed for the reconstruction;

• the reconstruction is possible depending on the knowledge of samples also in
the future, with respect to the point to reconstruct;

• due to the Heisenberg principle, real signals can not be simultaneously band-
limited and duration-limited (i.e., the domain is bounded).

To tackle these limitations, an approximated version of the WKS sampling theo-
rem has been formalized, as will be more accurately explained in the section relative
to the Generalized Sampling Theorem.
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Figure 1.3. Aliasing e�ect (image on the right) in the high frequencies band of the signal. The
sampling rate is too low compared to the spectral content of the original image (on the left). Image
courtesy of prof. Fredo Durant, MIT CSAIL.

1.3 Generalized Sampling Theorem

To overpass the limitations of the WKS sampling theorem, a generalized formulation
has been introduced in the 80's by P. L. Butzer et al. [31, 32, 28, 26]. The main
idea consisted in replacing the sinc(·) function with another class of functions, having
certain properties needed for the convergence. These functions ϕ : R→ R, are called
kernels and they satisfy the conditions

(ϕ1) ϕ ∈ Cc(R) (the space of continuous functions with compact support);

(ϕ2)
+∞∑

k=−∞
ϕ(u− k) = 1, for every u ∈ R.

Given the above kernel ϕ and a function f ∈ C(R), it is possible to de�ne the
generalized sampling operator:

(Sϕwf)(t) :=
+∞∑

k=−∞
f

(
k

w

)
ϕ(wt− k), t ∈ R.
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Given a kernel function, the singularity condition (ϕ2) is not so easy to be veri�ed.
The following theorem proves the equivalence with another condition, expressed in
terms of the Fourier transform.

Theorem 7. Given ϕ ∈ Cc(R), then

+∞∑

k=−∞
ϕ(u− k) = 1, for every u ∈ R⇐⇒

√
2πϕ̂(2kπ) =

{
1, if k = 0;

0, if k ∈ Z,

where ϕ̂ is the FT of ϕ.

Denoting the absolute discrete moment of order zero asm0(ϕ) := supu∈R
∑+∞

k=−∞ |ϕ(u−
k)|, it is possible to prove that the generalized sampling operator is well de�ned in
C(R). In fact,

|(Sϕwf)(t)| ≤
∑

k∈Z

∣∣∣∣f
(
k

w

)∣∣∣∣ |ϕ(wt− k)| ≤ ‖f‖∞m0(ϕ) < +∞,

where the last inequality holds being f ∈ C(R), m0(ϕ) < +∞ (since ϕ ∈ Cc(R)), and
passing to the supremum on the left hand-side.

Moreover, the following convergence result stands.

Theorem 8. Let ϕ be a kernel. If the bounded function f : R→ R is continuous in
t0 ∈ R, then

lim
w→+∞

(Sϕwf)(t0) = f(t0). (1.4)

In addition, if f ∈ C(R), then

lim
w→+∞

‖Sϕwf − f‖∞ = 0. (1.5)

Proof. To prove (1.4), being f continuous in t0, for each ε > 0 there exists δ > 0 such
that, if |t0 − k/w| < δ then |f(t0)− f(k/w)| < ε. Using ϕ2, it is possible to write

|f(t0)− (Sϕwf)(t0)| =
∣∣∣∣∣

+∞∑

k=−∞
f(t0)ϕ(wt0 − k)−

+∞∑

k=−∞
f

(
k

w

)
ϕ(wt0 − k)

∣∣∣∣∣

≤
+∞∑

k=−∞

∣∣∣∣f
(
k

w

)
− f(t0)

∣∣∣∣ |ϕ(wt0 − k)|

=


 ∑

|wt0−k|<δw
+

∑

|wt0−k|≥δw



∣∣∣∣f(t0)− f(

k

w
)

∣∣∣∣ |ϕ(wt0 − k)| =: I1 + I2
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with w > 0. For I1 there holds

I1 ≤ ε
∑

|wt0−k|<δw
|ϕ(wt0 − k)| ≤ ε m0(ϕ)

with w > 0. For I2, being w > 0 big enough such that wt0 − k 6∈ [−δw, δw], and
supp ϕ ⊂ [−δw, δw], then I2 = 0. The thesis follows by the arbitrariness of ε.

Analogously, it is possible to prove (1.5) replacing the continuity condition by the
uniform continuity of f .

The following corollary shows how it is possible to reconstruct the function f using
only values in the past.

Corollary 1.3.1. Given ϕ ∈ Cc(R) with supp ϕ ⊂ R+ and such that condition (ϕ2)
holds, then for each bounded f : R→ R, in the points of continuity t0, there holds

lim
w→+∞

(Sϕwf)(t0) =
∑

k
w
<t0

f

(
k

w

)
ϕ(wt0 − k) = f(t0).

Proof. Being ϕ(wt0 − k) = 0 for k
w
≥ t0, then

(Sϕwf)(t0) =
∑

k
w
<t0

f

(
k

w

)
ϕ(wt0 − k).

The thesis follows from the previous theorem.

In 1987, P.L. Butzer, S.Ries and R.L. Stens proved that the generalized sampling
operators do not converge to f in its points of discontinuity. For details see [30].

1.4 Digital Images

Digital images play a fundamental role in information theory and signal processing.
Their visual information are stored on electronic media and are elaborated by com-
puter science algorithms. For these reasons, a coherent introduction to the digital
images topic needs a multidisciplinary approach.

By the mathematical point of view, a grayscale digital image is a bidimensional
function I (equivalently a signal) from a discrete domain to a discrete range, formally:

I : L×M → C

with L,M,C ⊂ N.
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Figure 1.4. Grayscale image and its matricial representation. The matrix represents the luminosity
of the red bounded area in the original image on the left.

The mathematical model assuming L,M,C ⊂ N descends by the hypothesis that,
in reality, an image is bounded in geometrical size and in the number of admissible
gray values, until a certain extent practically proportional to the luminosity at each
pixel. The luminosity signal is recorded thanks to suitable sensors (e.g., photodiodes),
able to generate an electric signal (usually a tension) proportional to the amount of
light they are excited by.

From the Computer Science point of view, each couple (i, j) ∈ L×M individuates
the position of the corresponding pixel, whose coordinates are measured respect to a
reference, conventionally �xed in the top left corner of the image itself (this convention
is inherited from the standard mathematical matricial notation). Without loss of
generality and with the aim to simplify the image processing procedures, whatever
digital image is assumed to be rectangular, i.e., associated to a L×M matrix. More
irregular shapes are constructed marking the set of pixels not belonging to the image
as "unde�ned" (e.g., using a negative value).

The grayscale attribute, used to distinguish "black and white" images from colored
ones, speci�es the property of such type of images to be represented by one single
luminosity channel, i.e., using a single matrix. Color type images need more than
one channel (e.g., three in the RGB encoding), each one representing the intensity
value of a fundamental color (usually red, green3, blue). In �gure 1.4 an example of
grayscale image with the corresponding matrix is shown. In �gure 1.5 an example of
color scale image and its decomposition [68]

In cases of 8 bit coding, C = [0, 255], such that the luminance can assume 256

3Strictly speaking, green is not a fundamental color but it is used in place of yellow (that in the
green color is contained) because of reduction of measurement errors, descending from the frequency
band occupied by the yellow color in the light spectrum.
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Figure 1.5. Decomposition of a native color image (on the left) in its corresponding RGB compo-
nents.The last row on the right represents the luminosity (read intensity), expressed in graylevels,
of each color for each channel.

di�erent gray levels (28 = 256). For medical devices, this value increases to 12 bits,
resulting in 212 = 4096 possible di�erent combinations (C = [0, 4095]) [14].

Digital images can be acquired directly in digital form (native digital camera) or
converted into digital by an appropriate analog to digital (A/D) converter [96] (e.g.
photographic scanner). The A/D conversion has the advantage of a noise reduction
on the acquired signal but pays the price of a reduced resolution, due to the lower
number of possible luminance values.

From a mathematical modeling point of view, a digital grayscale image can be
represented using a step function I ∈ Lp(R2), 1 ≤ p < +∞, formally de�ned as [47]

I(x, y) :=
N∑

i=1

M∑

j=1

aij · 1ij(x, y) ((x, y) ∈ R),

where 1ij(x, y), i = 1, 2, ..., L, j = 1, 2, ...,M are the characteristic functions of the
sets (i − 1, i] × (j − 1, j] (i.e., 1ij(x, y) = 1, for (x, y) ∈ (i − 1, i] × (j − 1, j] and
1ij(x, y) = 0 otherwise). The above function I(x, y) is de�ned in such a way that,
to every pixel (i, j) the corresponding gray level aij is associated. This model will
be particularly useful to guarantee the convergence of the SK operators in continuity
points (see Chapter 2 for more details).

Operations modifying images (and signals in general) are referred as �lters [103].
Filters take in input the original signal and provide its elaborated version. This
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process can present di�erent characteristics, depending on the type of used �lter.
Some of these features are linearity, time invariance and causality. When a �lter is
linear, its e�ect on the input signal fI(t) can be modeled by a convolution product:
using h(t) to describe the �lter behavior in the time domain t, the output signal fO(t)
is given by (assuming to work in unidimensional setting):

fO(t) =

∫ +∞

−∞
fI(t− u)h(u)du = fI(t) ∗ h(t) (1.6)

Assuming fI(t) and h(t) Fourier transformable, equation 1.6 can be rewritten in
frequency domain as :

f̂O(λ) = f̂I(λ)H(λ),

being H(λ) = ĥ(t) the transfer function of the �lter. The function h(t) is called the
impulsive response of the �lter and it expresses the �lter output to a Dirac impulse
in input. Results are naturally extensible to higher dimensional spaces, as for im-
ages. In this case the frequency represents the geometrical size of the details (small
details=high frequencies). If the �lter is time invariant its transfer function does not
change in time. Causal �lters have the characteristic to have their outputs depending
only on past and present inputs (a �lter described by a sinc(·) function, as in the
WKS sampling theorem, is an example of not causal �lter). Classical example of lin-
ear �lters is the mean �lter, providing in output the mean value of the input signal.
The median �lter, calculating the median value of the input signal is, on the other
hand, an example of not linear �lter. In the frequency domain the result of a �ltering
procedure is the modi�cation of the frequential content of the signal.

Due to the importance of the �ltering process (e.g., noise suppression, signal trans-
mission, interpolation and quasi interpolation and many others) several techniques
have been introduced and the originating �lters accordingly classi�ed (e.g., Kalman,
Butterworth, FIR, IIR). Here a short review of the Finite Impulse Response (FIR)
�lters and In�nite Impulse Response (IIR) �lters is given.

FIR �lters are a linear class of �lters and, as the adjective �nite suggests, their
impulsive responses have compact support. In discrete setting, the impulsive response
takes discrete values in the general form:

h[n] =
N∑

i=0

bi · δ[n− i] = bn .

where N is the order of the �lter, bi ∈ C and δ is the Dirac delta function. In case
of causal FIR bn 6= 0 ⇐⇒ n ≥ 0. In terms of Z-transform4 the transfer function is

4The bilateral Z transform of a discrete time signal x[n] is de�ned as Z(x[n]) :=∑+∞
n=−∞ x[n]z−n,

with n ∈ Z and z ∈ C, given all the needed hypothesis for the series convergence [96].
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given by

H(z) =
+∞∑

n=−∞
h[n]z−n

For IIR �lters, as the adjective in�nite suggests, h(t) has a not compact sup-
port. Compared to FIR, this kind of �lters has a more complex expression, involving
retroaction, i.e., e�ect of previous outputs on the current one. The associated math-
ematical model in a discrete asset satis�es the equation

Q∑

j=0

ajfO[n− j] =
P∑

i=0

bifI [n− i]

with P and Q parameters determining the length of the feedback chain, aj, bi ∈ R,
fI and fO respectively the functions to the input and to the output of the �lter. The
associate transfer function in the Z-transform domain

H(z) :=
Y (z)

X(z)
=

∑P
i=0 bi∑Q
j=0 aj

,

being the transfer function H(z) de�ned as the ratio between the �lter at the output
Y (z) and the �lter at the input X(z).

1.5 Interpolation and Quasi-Interpolation Operators

The sampling theory, thanks to its theorems, explains how to reconstruct a continue
(in the sense of analog) signal in its original form, starting from the knowledge of a
number of samples. The classical WKS sampling theorem formulation is the only one
that guarantees, in line of principles, an exact reconstruction of the original waveform.
To behave correctly, the sampling frequency, i.e., the number of samples measured in
the time unit, must satisfy the so called Nyquist condition [93, 94]

νs ≥ 2νmax

where νs is the sampling frequency and νmax the band of the signal to be reconstructed.
This condition is necessary to avoid the aliasing phenomenon, i.e., the overlapping

of spectral tails.
In practice, especially in case of image processing and visualization, resizing the

original signal, constituted by measured samples, is a common procedure. Topologi-
cally, a digital image can be schematized as a lattice in R2, each node of the lattice
corresponding to a measured value (see Fig. 1.6). Theoretically, each lattice node
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Figure 1.6. A lattice in Euclidean plane. Providing the missing points between the given nodes
(whose values derive from a measurement process) is the goal of interpolation and quasi interpolation
methods. Strictly speaking, these methods can be seen as particular case of the super-resolution
problem [114].

has no geometrical size but practically they are associated with a pixel (picture el-
ement) of a visualization system (e.g., the screen of a computer): the pixel has a
not negligible geometrical size, corresponding to the size of the associated element
of the electronic device (e.g., led or LCD). Between each point of the lattice there
are topological lacks where the values of the image function has not been measured.
The goal of interpolation and quasi-interpolation methods is to forecast the most re-
alistic value for each of these missing points. Elaborations like zooming in and out,
and in general whatever a�ne transformation, need the introduction of such points
not directly deriving from the measuring process. In literature, many reconstruction
techniques have been introduced to reach this aim.

The simplest way to reconstruct unidimensional signals magni�ed (e.g., by a factor
2) is to calculate the mean value between two consecutive samples, using the values
originally measured. This procedure is called linear interpolation: it is linear because
the new reconstructed point stands on the segment linearly connecting 2 consecutive
points; it is interpolating because the points used for the calculation of the new values
are in the set of samples.

Linear interpolation for one dimensional signals results in substituting the sinc(·)
function, used in the classical WKS sampling theorem, with a triangular kernel func-
tion. In the frequency domain this is equivalent to the application of a not performing
low pass �lter, far in shape and characteristics from the ideal �lter, causing the aliasing
of data with a not complete and correct attenuation of the high frequency components
[86].

Similar to the linear, the cubic interpolation is achieved approximating the sinc(·)
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function with piecewise cubic polynomials. The corresponding kernel is expressed by:

ϕ(x) =





A1|x|3 +B1|x|2 + C1|x|+D1, 0 < |x| < 1

A2|x|3 +B2|x|2 + C2|x|+D2, 1 < |x| < 2

0 2 < |x|

where suitable boundary conditions are needed to calculate the parameters A, B, C,
D. See, e.g. [79, 86], for a complete description and more details.

In case of bidimensional signals, linear and cubic interpolation methods are called
biliniear and bicubic respectively to enhance their bidimensional character.

To extend the previous considerations, it is useful to generalize that every interpo-
lation method can be formally described by the formulation of the sampling theorem
in the generalized form, with the choice of an appropriate kernel ϕ. The famous
B-spline interpolators originate when ϕ is a piecewise polynomial: linear and cubic
interpolators are B-spline using polynomials of order 1 and 3 respectively.

Despite the most intuitive way to reconstruct a function looks to be using values
from the set of the given samples, it has been proved that this it is not the most
e�cient and convenient way [20, 21]. When a reconstruction method does not employ
values from the sampling set, it is called to be quasi interpolant. In the context of
this thesis, the most meaningful example of quasi interpolating algorithm is the one
provided by the Sampling Kantorovich (SK) operators. In the speci�c case, the values
for the reconstruction are calculated as mean values:

w

∫ k+1
w

(k)
w

f(u)du

obviously not belonging to the measured sampling set. More details about SK oper-
ators will be provided in the next chapter.

1.6 Indexes of Similarity

After processing a signal to achieve some results, their estimation is necessary to
quantify the goodness of the procedures. Several indices are known in literature for
this evaluation. Interpolation and quasi interpolation are, for example, in some sense,
reconstruction processes. Application of segmentation methods, i.e., di�erent objects
boundary detection, needs indices to evaluate the presence of misclassi�cation and to
eventually reduce its source of error.

To evaluate the rate of similarity between two digital images, one of the most
popular index in literature is the Peak Signal to Noise Ratio (PSNR) [68]. It is
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expressed, for a generic function f : G→ R, G ⊂ Rn, by the following formula

PSNR = 10 · log




[max
x̄∈Rn

f(x̄)]2

MSE


 ,

where MSE is the standard Mean Square Error, de�ned as follows

MSE =

∫
G

|f(x̄)− fr(x̄)|2 dx̄
∫
G

dx̄
,

f being the original signal and fr being its reconstructed version.
The PSNR is extensively used in image analysis and processing to evaluate,

for example, the rate of similarity of two images after a watermarking process [91].
In the �eld of grayscale image reconstruction, where the domain G is discrete, the
bidimensional discrete version of theMSE is achieved replacing the integral with the
summation symbol, as follows:

MSEd =
L∑

i=1

M∑

j=1

|I(i, j)− Ir(i, j)|2
L ·M ,

where I is the original image of size L ·M and Ir is its reconstructed version.
In case of 8-bits coded graylevel images, the maximum value in the admissible

range is equal to 255, hence the PSNR turns to be

PSNRd = 10 · log

(
2552

MSEd

)
.

The use of the log(·) function in the de�nition of PSNR is justi�ed mostly by engi-
neering reasons:

• PSNR expresses a ratio between energies, traditionally measured in decibel dB
(logaritmic scale) in engineering measurement processes;

• the logaritmic scale provides more comparable numerical values respect to the
linear scale (e.g., as in the case of a signal varying of some order of magnitude).

Thanks to its general de�nition, the PSNR can be employed for several families
of signals.

On the other hand, more speci�c indexes are focused on binary sets. For example,
the Dice coincidence index (DCI) [59], speci�c for the similarity of two binary sets of
points, A and B, is de�ned as

DCI :=
2 ·#(A ∧B)

#A + #B
, (1.7)
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where #A is the number of elements in A, #B is the number of elements in B, and
#(A ∧B) is the number of common elements in A and B (logic AND).

With the same meaning of symbols, the Tanimoto index (TI) [61], measuring
the ratio between the correctly classi�ed elements and the total number of them, is
de�ned as

TI :=
#(A ∧B)

#A + #B − #(A ∧B)
. (1.8)

Moreover, it is possible to de�ne the misclassi�cation error as, in some sense,
complementary to TI, considering the number of misclassi�ed elements in A and B

Em :=
#m

#A + #B − #(A ∧B)
, (1.9)

where #m is the number of misclassi�ed elements.
Em counts the total number of elements wrongly classi�ed, both false positive and

false negative, and compare them to the whole size of the sets.
An additional normalized evaluation of the di�erence between two binary sets can

be also introduced as

En :=
#m

#ROI
,

where, #m has the same meaning as before and #ROI is the total number of elements
in the considered Region Of Interest, equal to the size of the sets (e.g., an image can
be seen as a set of points to be classi�ed). In this way En turns out to be, in some
way, a normalized error.

Another important factor to quantify di�erences between binary sets stands in
their shapes: for this reason the circularity shape-factor [95], de�ned as

Circ :=

√
4πArea

P 2
, (1.10)

can be used to compare the di�erence between the shape of a perfect circle and the
boundary of a whatever set. In (1.10), Area and P are respectively the area and the
perimeter of the objects under analysis. Then, the shape error between A and B can
be de�ned as

Es :=

∣∣∣∣1 −
Circ A

Circ B

∣∣∣∣ ,

where Circ A is the circularity of A and Circ B is the circularity of B. Without
additional hypothesis Es can assume values bigger than 1.

Moreover, Hausdor� distance Hdc between the border of two sets, together with
the Hausdor� distance Hd between the full sets (i.e., with the inner part of the set
included in the measurement), can be calculated to estimate the shape similarity.

28



More precisely, the Hausdor� distance measures the mismatch level between two sets
of points, A and B, considering the maximum value of the distance of A from B and
viceversa. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be two non-empty discrete
subsets of a metric space (M, d); the Hausdor� distance Hd is de�ned as

Hd := max{d(A,B), d(B,A)} ,
where

d(A,B) := max
ai

min
bj
|ai − bj|, d(B,A) := max

bj
min
ai
|ai − bj| ,

with i ∈ [1, n], j ∈ [1,m].
During a measurement process, it could be of some importance to evaluate if an

algorithm systematically tends to the over-estimation or under-estimation (bias error),
e.g., in a segmentation process. To consider this behavior, the following parameter
can be borrowed from [127]

Bpn :=
#fp−#fn

#tp
,

where fp is the set of false positive, fn is the set of false negative and tp is the set of
the true positive. If Bpn > 0 the classi�cation procedure tends to overestimate, the
other way around if Bpn < 0.

Another aspect that is important to consider concerns the di�erence, in terms
of extracted area, between two planar sets A and B. A meaningful parameter to
quantify the morphological di�erences between them is

∆Dc := ‖CA − CB‖2 ,

where CA is the centroid of one set and CB the centroid of the other one, being a
generic centroid Ce in a bidimensional discrete set S constituted by N points, de�ned
as

Ce := (xC , yC), xC :=

∑N
i=1 xi
N

, yC :=

∑N
i=1 yi
N

.

Further, it can be of some utility to estimate the di�erence between the diameters of
A and B

∆Da := |DA −DB| ,
where DA and DB are the diameters of the two extracted zones, being a generic
diameter D in a convex or non convex set Sµ, de�ned as

D := sup
{
‖p− q‖2, for every p, q ∈ Sµ

}
,

in the cases considered in this work being the considered points belonging only to the
boundary of the sets. The di�erence between the area of A and B is de�ned as:

∆Aa :=
#A+ #B − 2 ·#(A ∧B)

#A+ #B
,
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having ∆Aa a normalized formulation such that ∆Aa ∈ [0, 1].
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Chapter 2

Multivariate Sampling Kantorovich

Operators

The formalization of the �rst version of the generalized Sampling Theorem states the
reconstruction of a function f ∈ C(R). To relax the assumptions and extend the
result of the theorem to a class of functions not necessarily continuous, i.e., belonging
to Lp spaces, the Sampling Kantorovich (SK) operators have been introduced as more
suitable operators in this setting [15]. The need for the continuity of the function f
depends mainly on the pointwise values f( k

w
) of the samples considered in the for-

malization of the sampling theorems (in both the WKS or Generalized formulation).

2.1 De�nitions

In one dimensional setting, given Π = (tk)k∈Z, a sequence of real numbers such that:

(i) −∞ < tk < tk+1 < +∞ ;

(ii) lim
k→±∞

tk = ±∞ ;

(iii) there exists ∆, δ > 0 such that δ ≤ tk+1 − tk ≤ ∆,∀k ∈ Z ;

the sampling distance ∆k is de�ned as ∆k := tk+1 − tk.

A function χ : R→ R is a kernel for the SK operator if:

(χ1) χ ∈ L1(R) and it is bounded in a neighborhood of the origin;

(χ2)
∑

k∈Z χ(u− tk) = 1, for each u ∈ R;
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(χ3) there exists β > 0, such that mβ,Π(χ) := sup
u∈R

∑

k∈Z
|χ(u− tk)||u− tk|β < +∞ ,

i.e., the discrete absolute moments of order β are �nite.

De�nition 2.1.1. Given a kernel χ, the family of operators (Kwf)w>0,

(Kwf)(x) :=
∑

tk∈Z
χ(wx− tk)

[
w

∆k

∫ tk+1
w

tk
w

f(u) du

]

for x ∈ R, w > 0 and f : R → R a locally integrable function such that the
previous series converges for each x ∈ R, de�nes the sampling Kantorovich operators.

In general, it is possible to de�ne the same family of operators in a multidimen-
sional setting. In this case, we consider Π = (tk)k∈Zn , and the kernel χ : Rn → R,
with suitable properties below reformulated.

De�nition 2.1.2. Given a kernel χ : Rn → R, the family of multidimensional oper-
ators (Kwf)w>0, is de�ned as [49]

(Kwf)(x) :=
∑

k∈Zn
χ(wx− tk)

[
wn

Ak

∫

Rwk

f(u) du

]
, x ∈ Rn, w > 0,

where f : Rn → R is a locally integrable function such that the above series is
convergent for every x ∈ Rn,

Rw
k :=

[
tk1
w
,
tk1+1

w

]
×
[
tk2
w
,
tk2+1

w

]
× ...×

[
tkn
w
,
tkn+1

w

]
,

and Ak := ∆k1 · · ·∆kn.

Moreover, it is possible to generalize the previous de�nition in the case of not
equi-scaled multidimensional sequences, such that w is not constant in each direction
of the space.

The multidimensional function χ : Rn → R, used in de�nition 2.1.2, is a kernel if
the following assumptions are satis�ed:

(χ′1) χ belongs to L1(Rn), and it is bounded in a neighborhood containing the origin
of Rn;

(χ′2) for every x ∈ Rn, there holds:

∑

k∈Zn
χ(x− tk) = 1;
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(χ′3) for some β > 0, the discrete absolute moment of order β of χ is �nite, i.e.,

mβ(χ) := sup
u∈R

∑

k∈Zn
|χ(u− tk)| · ‖u− tk‖β2 < +∞,

where ‖ · ‖2 denotes the usual Euclidean norm of Rn.

A brief list of some well known and important class of kernels which satisfy the
above assumptions, and that can be used in order to implement (2.1.2), is given.

It has to be noted that the classical formulation of the sampling theorem uses the
sinc(·) function as a kernel, whose integral on the real axis is equal to one but does
not belong to L1(R). An example of a one dimensional kernel, is the one dimensional
central B-spline of order N ∈ N. It is de�ned as (see, e.g., [118, 119, 2])

MN(x) :=
1

(N − 1)!

N∑

i=0

(−1)i
(
N

i

)(
N

2
+ x− i

)N−1

+

, x ∈ R, (2.1)

where (x)+ = max{x, 0}.
In general, checking the validity of the assumptions (χ′γ), γ = 1, 2, 3 for a multivari-

ate kernel is not immediate. A possibility to achieve suitable kernels in multivariate
setting lies in considering the product of one dimensional versions of the same kernel
type, as stated by the following lemma1.

Lemma 2.1.3. Let χi : R→ R, i = 1, . . . , n, be unidimensional kernels. Then

χ(x) :=
n∏

i=1

χi(xi), x ∈ Rn,

is a multidimensional kernel satisfying the kernel conditions (χ′γ), γ = 1, 2, 3.

Lemma 2.1.3 (see [27]) provides a useful procedure to construct multivariate ker-
nels of product type starting from univariate ones.

Given the previous result, it is immediate to introduce the corresponding multi-
variate version of the central B-spline of order N , as

Mn
N(x) :=

n∏

i=1

MN(xi), x = (x1, ..., xn) ∈ Rn. (2.2)

Central B-spline functions are examples of compact support kernels (see �gure 2.1).
Another important kernel family, constructed using the sinc(·) function, is given by

1For simplicity of notation, in what follows, only the case tk = k ∈ Zn of an uniform sampling
scheme is going to be formally considered.
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Figure 2.1. Plots of one dimensional and bidimensional central B-spline M3(x) (left) andM2
3(x)

(right), respectively.

Figure 2.2. Plots of one dimensional and bidimensional Jackson type kernels J2(x) (left) and
J 2
2 (x) (right), with α = 1.

the so-called Jackson type kernels of order N (see, e.g., [29, 17, 73, 41, 42]), de�ned
in the univariate case by

JN(x) := cN sinc2N
( x

2Nπα

)
, x ∈ R, (2.3)

with N ∈ N, α ≥ 1, and cN a non-zero normalization coe�cient, given by

cN :=

[∫

R
sinc2N

( u

2Nπα

)
du

]−1

.

Jackson type kernels have not compact support. An example of Jackson type kernel is
shown in �gure 2.2. In a similar way, as in the case of central B-splines, multivariate
Jackson type kernels of order N are de�ned by the product of n univariate kernels as

J n
N(x) :=

n∏

i=1

JN(xi), x = (x1, ..., xn) ∈ Rn. (2.4)
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Another not compact support example is given by the multivariate Fejér kernels,
de�ned as

Fn(x) =
n∏

i=1

F (xi), x = (x1, ..., xn) ∈ Rn, (2.5)

where F (x), x ∈ R, denotes the univariate Fejér kernel, de�ned by

F (x) :=
1

2
sinc2

(x
2

)
, x ∈ R, (2.6)

with the sinc(·) function previously given.
Another important class of (radial) kernels is represented by the so called Bochner-

Riesz kernels of order N > 0, expressed by

RN(x) :=
2N√
2π

Γ(N + 1) ||x||−N−1/2
2 JN+1/2(||x||2), x ∈ Rn, (2.7)

where Jλ is the Bessel function of order λ [44], and Γ is the usual Euler gamma
function.

Other results of approximation in both univariate and multivariate cases by means
of sampling type operators, can be found in [29, 27, 17, 50, 51, 3, 53].

To the light of the given de�nitions, the SK operators Kw can be reviewed as an
L1-version of the generalized sampling operators, introduced by P.L. Butzer and his
school in 1980s, and widely studied in last thirty years, see, e.g., [30, 27, 82, 81]:
being formalized by an integral calculated in the neighborhood of the sampled point,
the SK operators, as well as in the generalized sampling formulation, are a kind of
quasi-interpolation operators, see, e.g., [38, 120, 111, 108].

2.2 Convergence Results

It is well known that Kw, w > 0, de�ned in (2.1.2), are approximation operators, able
to reconstruct pointwise, continuous and bounded functions, and uniformly, functions
which are uniformly continuous and bounded, as w → +∞, [15, 122, 97]. Moreover,
the operatorsKw revealed to be suitable also to reconstruct not necessarily continuous
signals, in the Lp-sense.

The following theorem states the convergence properties of the above operators
in (2.1.2) when one deals with continuous signals (see, e.g., [49]).

Theorem 9. Let χ be a kernel for the operators de�ned in 2.1.1 and let f : Rn → R
be a continuous and bounded function. Then, for every x ∈ Rn,

lim
w→+∞

(Kwf)(x) = f(x).
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Moreover, if f ∈ C(Rn), then

lim
w→+∞

‖Kwf − f‖∞ = 0,

where ‖ · ‖∞ denotes the usual sup-norm.

Moreover, the following Lp-convergence theorem can be obtained as a particular
case of a modular convergence theorem in Orlicz spaces, in order to reconstruct not
necessarily continuous signals by means of SK operators, (see e.g., [49] and, for Orlicz
spaces, see e.g., [92, 17]).

Theorem 10. Let χ be a kernel for the operators de�ned in 2.1.1. For every f ∈
Lp(Rn), 1 ≤ p < +∞, there holds

lim
w→+∞

‖Kwf − f‖p = 0,

where ‖ · ‖p denotes the usual Lp-norm.

2.3 Implementation of Sampling Kantorovich algo-

rithm and numerical results 2

Given the previous convergence theorems it is possible to apply the SK algorithm to
image reconstruction, using methods similar to those ones described in Section 1.4.

Thanks to its integral de�nition, being each sample of the WKS sampling theorem
replaced by a mean of the function in the interval [k, k + 1], the SK operator puts in
evidence a model particularly suitable to describe the e�ective real-world sampling
process.

Every real-world system able to perform a measurement needs a certain time
to complete the acquisition. This time is connected, on one hand to the inertia
of the instrument, on the other hand to the �nite duration D of the measurement
itself (D > 0). Due to both these reasons, the resulting sample is a mean value of
the e�ective signal. The SK operators provides a mathematical model capable to
realistically describe this acquisition procedure. Moreover, during a time periodic
sampling process, a �clock� scanning the signal is needed to respect the hypothesis
of equi-spaced (uniform) sampling: even using sophisticated techniques, this goal is
not strictly achievable. Due to this, real-world samples are not mathematically equi-
spaced: this is referred in Signal Theory as the jitter error. Providing a local average
around the sample, SK algorithm constructively takes into account the jitter error.

2Results contained in this section are published in [48].
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In Table 2.1 the pseudo code of the SK algorithm is shown. The user inputs the
values for the scaling factor R, the parameter w and the type of kernel χ. Starting
from the original image I, having resolution of n×m pixels, the code calculates the
bivariate kernel χ chosen for the reconstruction, according with the value of w. The
�nal image will have the size of (n ·R)× (m ·R). The algorithm proceeds computing
the mean values (samples), represented by the integral in the theoretical formulation,
by means of the Kroenecker matrix product. The core of the code is the convolution
product of χ by the samples (Iteration part in the table), at the end of which the
image is saved in lossless format.

The problem of image rescaling has been widely studied in Digital Image Process-
ing (DIP). The main di�culty to overpass when increasing the image size is due to
the unknown information between two contiguous points or pixels. Typical methods
developed to perform the above task are based on mathematical interpolation (see,
e.g., [35, 129] or Chapter 1). For instance, bilinear and bicubic interpolation are
among the most common (even if not the best performing) interpolation methods for
image rescaling, being in fact B-spline of order two and four respectively (see, e.g.,
[100, 34]). They are quite easy to implement and fast to execute. On the other hand,
they do not provide optimal results in terms of reconstruction quality, as measured
by the PSNR [43].

Recently, to overcome this limit, quasi interpolation methods have been success-
fully used. From the theoretical point of view, they provide better performances
compared to standard interpolation, as proved by suitable estimates (see, e.g., [20]).
For instance, quasi3 Finite Impulse Response (quasi FIR) and quasi In�nite Impulse
Response (quasi IIR) have been applied to the rescaling problem. Numerical results
con�rmed the theoretical previsions, in case of non trivial multiple image rotation
(see [43] again).

Concerning quasi interpolation methods, SK algorithm has been introduced in
[49].

The implementation of the SK algorithm makes use of suitable kernels which,
from the mathematical point of view, are discrete approximate identities in the sense
described in [29], such as the central B-spline, the Jackson type and the Bochner-
Riesz kernels [50]. In the case of the implementation of the SK algorithm based upon
the Jackson type kernels, some meaningful numerical results have been achieved in
the engineering �eld concerning the study of thermal bridges and the behavior of
buildings under seismic actions, by means of thermographic images ([41, 42, 7, 8] or
Chapter 3, Section 4).

The main purpose of this paragraph is to evaluate the performance of the SK
algorithm in image magni�cation, in term of PSNR and CPU time, in comparison

3The adjective quasi here speci�es the use of quasi interpolation methods for FIR and IIR �lters.
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Objective: Reconstructing and improving
the resolution of the original
bivariate image I by sampling
Kantorovich operators based
upon the bivariate kernel χ.

Inputs: Original image I (n×m pixels
resolution), the parameter
w > 0 and the scaling factor R.

• Choice and de�nition of the kernel
function χ;

• Size of the reconstructed image:
(n ·R)×(m ·R);

• Computation of matrices of the
mean values (samples) of I by
means of the Kronecker matrix
product.

• De�nition of the vectors conta-
ining the arguments of χ.

Iteration: Summation over k of all non
zero terms of the form

χ(wx− k) ·
[
w2
∫
Rwk
I(u) du

]
,

for a suitable �xed grid of
points x.

Output: The reconstructed image of
resolution (n ·R)×(m ·R).

Table 2.1. Pseudo-code of the sampling Kantorovich algorithm for image reconstruction and
enhancement.

with the above mentioned interpolation and quasi interpolation methods. The �nal
goal is to obtain an objective map of the performances of the SK algorithm for di�erent
kernel types, studying their behavior when varying the parameter w of the operators
and the order N of each kernel.
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The SK (optimized) implementation is based on a numerical version of the formula
before de�ned in 2.1.2, Chapter 2, Section 2.1.

In �gure 2.3, an example of the application of the SK algorithm for reconstruc-
tion purposes is shown, employing di�erent kernels. The initial image, denoted by
�Starting image� in �gure 2.3, has a dimension of 128 × 128 pixels, and has been
obtained, reducing in size, the so called �Target� image (256 × 256 pixels). If the
starting image is resized to the dimension of 256× 256 pixels without any interpola-
tion or quasi interpolation algorithms, i.e., by means of a mere pixel duplication, the
second image of the �rst column in �gure 2.3 is obtained (�No interpolation� image).
On the second column of �gure 2.3, there are the results of reconstruction (all of
256 × 256 pixels) obtained by the application of the SK algorithm with di�erent w
and N (i.e., varying the order of the kernel, as de�ned in Section 2.1). More precisely,
�gure �A� has been obtained by the bidimensional central B-spline B2

5 with w = 5.
The �gure �B� has been obtained by the bidimensional Jackson type kernel J 2

10 with
w = 40, and �nally, �gure �C� has been obtained by the bidimensional Bochner-Riesz
kernel R2

5 with w = 25 (given a generic χnN kernel, n is the dimension of the domain
of the kernel of the function χ and N is its order). Complete numerical results for
di�erent values of w are provided in the tables at the end of this chapter. To per-
form the measurement of the similarity between the original and the reconstructed
images, the standard version of PSNR has been adopted: it gives an objective, not
observer-dependent, evaluation of the error after the reconstruction (see, e.g., [43]).

To evaluate the PSNR with Matlab c©, the native function psnr() has been
used. Before performing the calculation, the conversion of the image data from the
uint8 Matlab c© speci�c format4, into the double format is opportune. This casting5

operation is necessary because, if the psnr() function is applied to uint8 data, the
result is forced to be zero even if the di�erence in the MSEd is lower than zero: this,
obviously, brings to erroneous numerical estimations.

As reference for the state of the art, standard bilinear and bicubic methods other
than quasi FIR and quasi IIR �lters, as de�ned in [100, 43], have been chosen. Accord-
ing with [20, 21], the expectation is to �nd better results applying quasi interpolation
methods than interpolation ones. The choice of the reference algorithms is moti-
vated by the fact that bilinear and bicubic, which are both interpolation methods,
represent very performing algorithms in terms of time consuming and PSNR ([79]),
respectively.

On the other side, FIR and IIR are both quasi interpolation methods that appear
to be more performing in the PSNR sense, if compared with standard interpolation

4The Matlab c© format uint8 speci�es the unsigned 8 bit integer. Its range is from 0 to 28 − 1,
suitable for 8 bit grayscale image representation but not correct in case of negative values, e.g., when
working with reconstruction errors.

5In Computer Science the speci�c cast operator forces one data type to be converted in another.
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Figure 2.3. In the �rst column the original �Starting image�, derived shrinking the �Target� image
of a factor 2 in vertical and horizontal directions, together with a rescaled image without any inter-
polation (nearest neighborhood) are shown. In the second column, there are some reconstructions
of the �Starting image� by the application of the SK algorithm with various kernels. Quantitative
evaluations for the results achieved with other methods are available in tables 2.3, 2.4, 2.5, 2.6, 2.7.
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algorithms (see [43] again).
Technically, it is well known that quasi interpolation methods need the speci�ca-

tion of certain boundary conditions. One of the advantages of using SK algorithm is
that it can operate without specifying any particular boundary conditions: the pixels
outside the border of the image do not provide any additional information and it is
not necessary to resort to any speculative methods to assign to them, suitable values.

The general mathematical model describing all the reconstruction methods con-
sidered in this work can be formalized by a double convolution

I(x) =
∑

k∈Z2

ck ϕ(x− k), (ck) = (Ik) ∗ (pk), (2.8)

where the coe�cients (ck) are obtained by a discrete �ltering (pk) of (Ik), i.e., of the
digitalized original image Ik, and ϕ(x) is a suitable kernel (see, e.g. [109]).

Bilinear method consists of a linear interpolation for functions of two variables:
this interpolation method has been implemented in Matlab c© using (2.8) with ϕ = β1,
being βN a generic central B-spline of order N , and all pk = 1.

Bicubic method consists in the implementation of (2.8) with ϕ = β3 and all pk = 1.
Quasi FIR method has been implemented by (2.8) with ϕ = β1 and the coe�cients

(ck) computed by the matrix convolution between the original image and the �ltering
matrix

A =



− 1

144
− 7

72
− 1

144

− 7
72
−49

36
− 7

72

− 1
144
− 7

72
− 1

144


 .

The matrix A is generated using the following transfer function H(z) (i.e., the
Z-transform of the impulsive response (hk), k ∈ Z, of the �lter6, [43])

H(z) = − 1

12
z−1 +

7

6
− 1

12
z .

Quasi IIR method has been implemented, according to (2.8), using both ϕ = β1

and ϕ = β3 and the coe�cients (ck) computed by the product between the original
image and a suitable �ltering matrix AI .

The matrix AI is generated using the transfer function H(z) expressed by

H(z) = Y (z)X(z),

where X(z) and Y (z) are respectively the Z-transform of the input and the output
of the �lter, with

Y (z) =

(
I − A

m

)−1

− X(z)

m
.

6Shortly, the Z-transform of hk, k ∈ Z, is de�ned as H(z) :=
∑
k∈Z hkz

−k
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Here, m is a suitable coe�cient determined by H(z).
In case of ϕ = β1, the transfer function (in the Z-transform domain) is the

following

H(z) =
1

12
z−1 +

5

6
+

1

12
z

giving m = 25
36
, and the matrix A consisting of Toeplitz matrices itself, in the form

A =




A1 A2 0 0 ... ... 0
A2 A1 A2 0 ... ... 0
0 A2 A1 A2 0 ... 0
...

...
...

...
...

...
...

0 ... ... ... 0 A2 A1




with A1 and A2 Toeplitz matrices de�ned as follows

A1 = −




0 5
72

0 0 ... 0
5
72

0 5
72

... ... 0
0 5

72
0 ... ... 0

...
...

...
...

...
...

... ... ... ... ... 5
72

0 ... ... 0 5
72

0



,

A2 = −




5
72

1
144

0 0 ... ... 0
1

144
5
72

1
144

... ... ... 0
0 1

144
5
72

1
144

0 ... 0
...

...
...

...
...

...
...

... ... ... ... ... ... 1
144

0 ... ... ... 0 1
144

5
72



.

In case of ϕ = β3, the transfer function H(z) (in the Z-transform domain) is the
following

H(z) = − 1

720
z−2 +

31

180
z−1 +

79

120
+

31

180
z − 1

720
z2,

giving m = c2, and the A matrix consisting of Toeplitz matrices itself, of the form

A =




A1 A2 A3 0 ... ... 0
A2 A1 A2 A3 ... ... 0
A3 A2 A1 A2 A3 ... 0
...

...
...

...
...

...
...

0 ... ... .A3 A2 A1 A2

0 ... ... ... A3 A2 A1



,
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with A1, A2 and A3 Toeplitz matrices de�ned as follows

A1 = −




0 bc ac 0 ... 0
bc 0 bc ac ... 0
ac bc 0 ... ... bc
...

...
...

...
...

...
0 ... ... ac bc 0



,

A2 = −




bc b2 ab 0 ... ... 0
b2 bc b2 bc ... ... 0
ab b2 bc b2 0 ... 0
...

...
...

...
...

...
...

0 ... ... ... ab b2 bc



,

A3 = −




ac ab a2 0 ... ... 0
ab ac ab a2 ... ... 0
a2 ab ac ab 0 ... 0
... ... ... ... ... ... 0
0 ... ... ... a2 ab ac



,

and a = 1
720
, b = 31

180
, c = 79

120
.

For software simulation, a standard set of 5 square images7 (�le names: `lena',
`baboon', `cameraman', `boat', `barbara'), .png (Portable Network Graphix) �le for-
mat, have been used, image sizes varying from 16 × 16 pixels to 64 × 64 pixels, by
steps of powers of 2 (16, 32, 64, 128): in total, 20 images grouped by dimensions.

To generate the above test sets, each 256× 256 sized �le has been reduced in size
by powers of 2, achieving �ve 128× 128 pixels images, �ve 64× 64 pixels images and
so on.

The size reduction process proceeded by a mean of the original digital image Ik:

IR(i, j) =

∑2i
u=2i−1

∑2j
v=2j−1 Ik(u, v)

4
, i, j = 1, 2, ...,M,

with Ik of size 2M × 2M , IR the resized image of size M × M . In this way an
�original� reference is available for comparison with the post processing results (�gure
2.4 illustrates an example of the resizing procedure). Each IR of size M ×M is then
reconstructed using the SK algorithm [8] and the result is compared, using the PSRN,
with the reference of size 2M × 2M . In the implementation of the SK algorithm for
the reconstruction process, three di�erent families of kernels have been chosen: the
central B-spline, the Jackson type and the Bochner-Riesz, varying w and the order

7Using square images does not imply loss of generality respect, e.g., to rectangular shaped ones.
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Figure 2.4. The size reduction process associates to a 2× 2 pixels area (on the left) a single pixel
(on the right) having as value the mean value of the 2× 2 cell.

N for each kernel (with its own meaning for any case) from w = 5 to w = 50
(with step size 5) and from N = 1 to N = 10 (with step size 1). As expected, the
SK algorithm with central B-spline, Jackson type and Bochner-Riesz kernels showed
results depending on N and w.

For the central B-spline kernels the PSNR exhibits its maximum (that expresses
the best achieved performance) for N ∈ {4, 5} and w = 5. This trend reproduces
for each one of the investigated images, independently from the size. For instance,
plotting the trend of the PSNR in function of N , for some values of w (see �gure 2.5),
results in a concave function with some small oscillations, the latter due to numerical
computation errors, as w and N increase. Consequently, for stability reasons, the
results with w ≥ 15 is risen to reference. The value w = 15 represents a lower bound
for the resizing problem, in the sense that the error is almost constant for every N .

Moreover for w ≥ 15 the PSNR shows no signi�cant improvements when varying
w. The choice of lower values for w and N decreases the execution time, common
behavior for each kernel.

The results of the application of the SK algorithm with both Jackson type and
Bochner-Reisz kernels exhibit a saturation of the PSNR when the order N increases.

Here the word saturation is intended in the engineering sense, meaning that the
PSNR has not meaningful variations increasing the parameters on which the SK
operator depends.

A noteworthy example of the general trend of PSNR when varying w and N is
given in �gure 2.6. The Jackson as well as the Bochner-Riesz type kernels exhibit
an improvement of the PSNR as w increases. Also in these cases, the value of the
PSNR saturates with respect to N .
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Figure 2.5. Central B-spline trend for various N . Best results are for w = 5 and N = 5. The
graph refers to the reconstruction of `lena.png', starting size 32×32 pixels, reconstructed size 64×64
pixels. The trend in the graph is qualitatively the same for all the considered images.

Figure 2.6. Trend of the Jackson (on the left) and Bochner-Reisz (on the right) type kernel
reconstructions for various N . Best results are for w = 5 and N = 5. The graph refers to the
reconstruction of `lena.png', starting size 32 × 32 pixels, �nal size 64 × 64 pixels. The trend in the
graph is qualitatively the same for all the considered images.
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To achieve a lower bound for w and N for the saturation of the SK algorithm a
new a posteriori gain speed has been introduced as

Vgain :=
Gimax

|∆t|
, (2.9)

where Gimax is the maximum gain (will be de�ned below), in terms of PSNR, when
varying N , between two subsequent values of w (among those considered), ∆t is the
mean di�erence of CPU time between two subsequent values of w. The index Vgain
is positive if and only if Gimax > 0, according to the fact that the increase of the
execution time is acceptable only when the achieved results for a certain w are better
than the ones from the previous values of w.

In table 2.2 the evolution of Vgain, as w increases, is shown. In case of Jackson type
kernel since order N = 20, Vgain has a value signi�cantly high. For instance, passing
from w = 5 to w = 10, the increase of PSNR is almost 114 times bigger than the
increase of the CPU time, while passing from w = 10 to w = 15, the ratio is almost
16, following a decreasing trend with the increment of w. Passing from w = 25 to
w = 30 the CPU time doubles compared to the improvement of the PSNR, so that
it appears disadvantageous to apply the SK algorithm with such value of w. Finally,
some values of Vgain appears to be negative but approximatively close to zero: this
is the e�ect of computational numerical errors. Analogous considerations explain
the numerical results of table 2.2 relative to the reconstruction by the Bochner-Riesz
kernels.

The reference methods (bilinear, bicubic, quasi FIR, quasi IIR with β1 and β3)
show their best results in terms of PSNR as the image size generally increases (results
available in tables 2.3, 2.4, 2.5, 2.6, 2.7). From the results shown in table 2.8, it
is evident that the SK algorithm produces better results than the reference methods,
even when a small value of w (e.g., w = 5) is considered. The central B-spline kernels
give the best results in terms of PSNR: this behavior stands with low values of w.
When w increases the central B-spline kernels show a fast saturation compared to
Jackson and Bochner-Riesz type ones (see table 2.9 again, and �gure 2.7). As w
increases, Jackson type kernels express the best performance.

It is possible to evaluate the SK algorithm performances by the above kernels, for
di�erent values of w and N . In table 2.9 and 2.11 respectively, the mean values of
PSNR and CPU time have been computed for all 1 ≤ N ≤ 10, N ∈ N, and for each
of the reconstructed images, when varying w. Figure 2.7 and 2.9, respectively, shows
the PSNR qualitative trends and the CPU time for di�erent kernels. In terms of
PSNR, central B-spline kernels perform better for low values of w being their PSNR
inversely proportional to w, until w = 15. On the other hand, for 15 ≤ w < 25, the
Bochner-Riesz kernels show better performances than any other ones. Finally, for
w ≥ 25, the best results are achieved by the Jackson type kernels (see �gure 2.8).
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Jackson

PSNR w Time (s) Vgain
(PSNR/s)

17.209 5 0.044 �

19.773 10 0.058 114.531

21.059 15 0.093 16.669

21.711 20 0.134 6.166

22.082 25 0.251 1.141

22.242 30 0.352 0.546

22.293 35 0.489 0.124

22.289 40 0.587 -0.013

22.262 45 0.692 -0.087

22.231 50 0.847 -0.070

Bochen-Riesz

PSNR w Time (s) Vgain
(PSNR/s)

18.992 5 0.060 �

21.244 10 0.073 77.898

22.018 15 0.121 5.901

21.938 20 0.403 -0.104

22.246 25 0.356 -2.233

22.209 30 0.494 -0.093

22.164 35 0.687 -0.080

19.709 40 1.302 -1.220

22.149 45 1.067 -3.620

22.126 50 1.452 -0.021

Table 2.2. Incremental time for Jackson and Bochner-Riesz type kernels reconstructions performed
on square sized images of 16 × 16 pixels. The reported values are the means of the results for the
entire set.

47



Original size Rec. size PSNR Time (s) Filename

16 32 15,483 0,019 baboon

16 32 14,582 0,019 barbara

16 32 15,774 0,019 boat

16 32 15,036 0,019 cameraman

16 32 16,006 0,023 lena

Mean 15,376 0,020

Std. Dev. 0,573 0,002

32 64 17,673 0,050 baboon

32 64 16,684 0,050 barbara

32 64 17,372 0,050 boat

32 64 16,957 0,051 cameraman

32 64 18,383 0,051 lena

Mean 17,414 0,050

Std. Dev. 0,661 0,001

64 128 19,426 0,173 baboon

64 128 19,208 0,171 barbara

64 128 19,341 0,170 boat

64 128 18,702 0,172 cameraman

64 128 20,922 0,173 lena

Mean 19,520 0,172

Std. Dev. 0,833 0,001

128 256 19,942 0,812 baboon

128 256 21,296 0,772 barbara

128 256 20,934 0,818 boat

128 256 20,704 0,840 cameraman

128 256 23,074 0,652 lena

Mean 21,190 0,779

Std. Dev. 1,164 0,075

Table 2.3. Numerical results obtained by bilinear interpolation for di�erent image sizes for each

�le of the dataset. For any size, at the bottom, the mean PSNR, the mean execution time, and the

standard deviation are computed.
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Original size Rec. size PSNR Time (s) Filename

16 32 16,614 0,018 baboon

16 32 16,321 0,019 barbara

16 32 17,390 0,020 boat

16 32 16,617 0,020 cameraman

16 32 17,584 0,114 lena

Mean 16,905 0,038

Std. Dev. 0,549 0,042

32 64 18,870 0,050 baboon

32 64 18,153 0,049 barbara

32 64 18,929 0,049 boat

32 64 18,361 0,049 cameraman

32 64 19,887 0,049 lena

Mean 18,840 0,049

Std. Dev. 0,672 0,000

64 128 20,565 0,162 baboon

64 128 20,569 0,163 barbara

64 128 20,683 0,164 boat

64 128 20,112 0,162 cameraman

64 128 22,339 0,166 lena

Mean 20,854 0,163

Std. Dev. 0,859 0,002

128 256 21,000 0,650 baboon

128 256 22,465 0,619 barbara

128 256 22,278 0,665 boat

128 256 22,105 0,666 cameraman

128 256 24,486 0,622 lena

Mean 22,467 0,644

Std. Dev. 1,264 0,023

Table 2.4. Numerical results obtained by bicubic interpolation for di�erent image sizes for each

�le of the dataset. For any size, at the bottom, the mean PSNR, the mean execution time, and the

standard deviation are computed.
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Original size Rec. size PSNR Time (s) Filename

16 32 16,319 0,019 baboon

16 32 15,926 0,021 barbara

16 32 17,267 0,020 boat

16 32 16,471 0,023 cameramen

16 32 17,477 0,241 lena

Mean 16,692 0,065

Std. Dev. 0,656 0,099

32 64 18,530 0,048 baboon

32 64 17,879 0,049 barbara

32 64 18,698 0,048 boat

32 64 18,228 0,048 cameramen

32 64 19,739 0,054 lena

Mean 18,615 0,049

Std. Dev. 0,702 0,003

64 128 20,256 0,170 baboon

64 128 20,354 0,160 barbara

64 128 20,492 0,161 boat

64 128 19,908 0,163 cameramen

64 128 22,178 0,165 lena

Mean 20,638 0,164

Std. Dev. 0,888 0,004

128 256 20,709 0,750 baboon

128 256 22,260 0,612 barbara

128 256 22,043 0,662 boat

128 256 21,868 0,769 cameramen

128 256 24,266 0,610 lena

Mean 22,229 0,681

Std. Dev. 1,287 0,075

Table 2.5. Numerical results obtained by FIR quasi interpolation for di�erent image sizes for each

�le of the dataset. For any size, at the bottom, the mean PSNR, the mean execution time, and the

standard deviation are computed.
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Original size Rec. size PSNR Time (s) Filename

16 32 13,615 0,029 baboon

16 32 15,185 0,029 barbara

16 32 14,363 0,028 boat

16 32 14,990 0,026 cameraman

16 32 16,580 0,032 lena

Mean 14,947 0,029

Std. Dev. 1,100 0,002

32 64 14,232 0,189 baboon

32 64 17,164 0,161 barbara

32 64 16,836 0,189 boat

32 64 15,755 0,205 cameraman

32 64 18,510 0,163 lena

Mean 16,499 0,181

Std. Dev. 1,604 0,019

64 128 14,555 5,437 baboon

64 128 18,511 5,329 barbara

64 128 19,840 5,464 boat

64 128 16,945 5,521 cameraman

64 128 19,600 4,856 lena

Mean 17,890 5,321

Std. Dev. 2,187 0,269

128 256 15,629 228,440 baboon

128 256 20,060 226,970 barbara

128 256 17,404 223,610 boat

128 256 17,483 228,850 cameraman

128 256 20,428 233,970 lena

Mean 18,201 228,368

Std. Dev. 2,011 3,749

Table 2.6. Numerical results obtained by IIR quasi interpolation with β1 for di�erent image sizes

for each �le of the dataset. For any size, at the bottom, the mean PSNR, the mean execution time,

and the standard deviation are computed.
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Original size Rec. size PSNR Time (s) Filename

16 32 14,603 0,029 baboon

16 32 13,816 0,031 barbara

16 32 15,760 0,030 boat

16 32 13,823 0,028 cameraman

16 32 15,601 0,033 lena

Mean 14,721 0,030

Std. Dev. 0,935 0,002

32 64 14,328 0,170 baboon

32 64 13,884 0,174 barbara

32 64 15,635 0,186 boat

32 64 14,185 0,169 cameraman

32 64 14,907 0,169 lena

Mean 14,588 0,174

Std. Dev. 0,693 0,007

64 128 17,303 5,647 baboon

64 128 15,227 5,446 barbara

64 128 17,435 5,404 boat

64 128 13,883 5,405 cameraman

64 128 14,859 4,931 lena

Mean 15,741 5,367

Std. Dev. 1,566 0,263

128 256 15,694 228,850 baboon

128 256 15,913 220,950 barbara

128 256 17,658 215,050 boat

128 256 15,419 229,590 cameraman

128 256 14,670 222,110 lena

Mean 15,871 223,310

Std. Dev. 1,104 6,028

Table 2.7. Numerical results obtained by using IIR quasi interpolation with β3 for di�erent image

sizes for each �le of the dataset. At the bottom of each size, the mean PSNR, the mean execution

time, and the standard deviation are computed.
52



Starting
size

Bilinear Bicubic quasi FIR quasi IIR β1

16 15,376 16,905 16,692 14,947

32 17,414 18,840 18,615 16,499

64 19,520 20,854 20,638 17,890

128 21,190 22,467 22,229 18,201

Starting
size

quasi IIR
β3

B-
splines

Bochner-
Riesz

Jackson

16 14,721 22,096 18,993 17,209

32 14,588 23,743 21,047 19,242

64 15,741 25,569 22,545 21,204

128 15,871 26,815 25,07 24,137

Table 2.8. The mean values of the PSNR computed on all the images of the dataset, for any

method considered. The last three columns of the table on the bottom refer to the kernels used for

the implementation of the SK algorithm, with w = 5. In particular, the mean PSNR is computed

considering the above kernels for all the orders 1 ≤ N ≤ 10. From the results of these tables, it

is evident that SK algorithm gives the best performances, in terms of PSNR, compared to other

methods. In particular, B-spline kernels gives the highest (best) values of PSNR.

w B-spline Bochner-
Riesz

Jackson

5 24,5555 21,589 20,0779

15 24,2577 24,397 23,81

25 24,4577 24,412 24,733

35 24,4577 24,286 24,802

50 24,4577 24,085 24,645

Table 2.9. The mean values of the PSNR computed on all the images of the dataset with their

relative dimension, processed by the SK algorithm, based upon the above kernels. Also here, the

mean PSNR is computed considering the above kernels for all the orders 1 ≤ N ≤ 10. Note that,

the PSNR increases with w.
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Starting
size

Bilinear Bicubic quasi FIR quasi IIR
β1

16 0,020 0,038 0,065 0,029

32 0,050 0,049 0,049 0,181

64 0,172 0,163 0,164 5,321

128 0,779 0,644 0,681 228,368

Starting
size

quasi IIR
β3

B-spline Bochner-
Riesz

Jackson

16 0,030 0,035 0,039 0,044

32 0,174 0,083 0,206 0,172

64 5,367 0,236 0,523 1,254

128 223,310 0,844 4,565 3,447

Table 2.10. The mean values of CPU time (expressed in seconds) computed on all the images of

the dataset, for the considered methods. The last three columns of the table on the bottom refer to

the kernels used for the implementation of the SK algorithm, with w = 5. In particular, the mean

CPU time is computed considering the above kernels for all the orders 1 ≤ N ≤ 10. From the results

of these tables, it is evident that bilinear and bicubic give the best performances. In particular,

B-spline kernels show the best performance.

w B-spline Bochner-Riesz Jackson

5 0,2997 6,236 7,204

15 0,4581 38,272 34,326

25 0,6965 132,379 98,632

35 0,9944 241,444 182,441

50 1,6 205,64 351,601

Table 2.11. The mean values of the CPU time (expressed in seconds) on all the images of the

dataset with their relative dimension, processed by the SK algorithm, based upon the above kernels.

Also here, the mean CPU time is computed considering the above kernels for all the orders 1 ≤ N ≤
10.
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Figure 2.7. Trend of PSNR after the images' reconstruction by the SK algorithm. The saturation
process occurs as w increases.

Figure 2.8. Graphical representation of the numerical results listed in table 2.8.
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Figure 2.9. Trend of the CPU time after the images' reconstruction by the SK algorithm.

For what concerns SK algorithm time consumption, implemented as in [7], it
depends on the size of the original image being reconstructed, on the used kernel χ
and on w.

All the code has been written and executed in Matlab c©, version 8.4.0.150421
(R2014b) on a pc running Microsoft Windows c©10 Home Version 10.0.

The SK algorithm performs signi�cantly faster8 respect to the quasi FIR and quasi
IIR (see table 2.10 again). In particular, the CPU time of the quasi IIR depends on
the complexity of the algorithm used to invert the matrix (I − A): it is well known
that the time for this calculation increases with the size of the matrix A that is
proportional to the size of the image to reconstruct (as happens, e.g., in Cholesky
factorization [69] and other well known methods). In terms of CPU time the best
performances of the SK algorithm are achieved in case of central B-spline kernels,
that result to be almost constant when varying w, while in case of both Jackson and
Bochner-Riesz kernels, the CPU time increases with an exponential behavior with
respect to w (see �gure 2.9).

8To estimate the CPU time with each methods following the same implementative logic, the
code has been structured in two main logically di�erent parts: in the �rst part the kernel convolu-
tion matrix is computed, in the second part the convolution between the image and the kernel is
calculated. The only exception to this �ow is in the quasi FIR implementation that uses the custom
Matlab c© provided function conv2(). The output from the IIR �lter has not been calculated in the
Z-transform domain, which would result in a faster implementation. This because similar methods
are not available yet for SK operators.
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In conclusion, experimental results have shown better performances of SK algo-
rithm in terms of PSNR and CPU time than the other considered reconstruction
methods. Summarizing what previously discussed, for values of w ≤ 15, central B-
splines provide the best results; for 15 < w < 25, the Bochner-Riesz kernels is the
most performing; if w ≥ 25, the Jackson type kernels are the best ones. These results
suggest how to proceed in the choice of the kernel and w before the application of SK
algorithm in concrete cases, such those studied in [7, 8, 47] (see also Chapter 3).

The experimental trends achieved for each used kernel show the typical saturation
behavior of the approximation processes with respect to w > 0. The numerical results
con�rm that the proposed algorithm is suitable for image processing and reconstruc-
tion.
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Chapter 3

Application of Sampling Kantorovich

Operators to problems arising from

medical pathologies

Thanks to the proved theoretical aspects, multivariate SK operators are particularly
suitable to be applied to practical problems, especially those needing for the re�ne-
ment of low resolution data or for noise reduction. With this aim, the mathematical
theory has been translated into a computer science executable algorithm. The initial
software version, characterized by long execution times, has been optimized until to
reach an acceptable reduction of the computational cost, for some orders of magni-
tude.

Given the limits imposed by the WKS sampling theorem together with the Nyquist
criterium, and without the integration of some other sources of information, the im-
possibility to implement super resolution techniques using only the SK algorithm
clearly appears. On the other hand, the multivariate SK theory e�ectively models
the real functioning of sample and hold circuits, describing what really happens in
the sampling process of real signals. In what follows the theoretical results have
been applied and veri�ed on partially elaborated data (e.g., CT images after the
reconstruction from native Houns�eld absorption values), after a pre-elaboration pro-
cess operated by the measurements devices (see Figure 3.1). Exploiting the SK model
characteristics, future applications of such methodology could interest signals at early
stages of elaboration (e.g., immediately downstream of the measuring sensors).
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Figure 3.1. A scheme illustrating the signal acquisition and elaboration. After the measurement
process a pre-elaboration stage transforms the native raw data into an usable, diagnosable ver-
sion. Post processing algorithms focus on improvement of signal quality or evaluation of diagnostic
parameters. Currently, multivariate SK algorithm operates at the diagnostic data stage.

3.1 Detection of Aortic Aneurysms 1

In this section a new algorithm, speci�cally developed for the segmentation of the
pervious lumen of the aorta artery in CT (Computed Tomography) images without
contrast medium, is introduced. In the diagnosis of vascular pathologies, such as
stenosis of main vessels or aneurysms, CT images play a central role (see, e.g., [58]).
In particular, in order to diagnose aneurysm of the aorta artery (see, e.g., [110]) it is
necessary to identify the pervious lumen of the vessel inside the artery, i.e., the zone
in which the blood �ows, and to quantify the rate of the possible occlusion. In CT
images, to distinguish the contours of the pervious lumen from the rest of the vessel
is generally not possible. To solve the above problem, the vascular surgeons resort
to the introduction, in the body of the patient, of a contrast medium, which changes
the blood radio opacity with respect to the neighborhood zones, making the pervious
section recognizable with respect to the adjacent anatomical structures. However, for
patients with severe kidney diseases or allergic problems, the introduction of contrast
medium is very inconvenient. For this reason, the availability of techniques for the
automatic segmentation of the pervious lumen of the vessels in CT images without
contrast medium becomes crucial, the CT being considered the gold standard diag-
nostic procedure in presence of aortic aneurysms. Actually, due to the similarity of
the gray levels in the di�erent zones to segment, this process represents a challenging
task in research. The novel approach of the proposed procedure mainly resides in
enhancing the resolution of the image by the SK operators. After the application of
suitable DIP techniques, the pervious zone of the artery can be distinguished from the
occluded one. Numerical tests have been performed using 233 CT images, grouped
in 5 sequences, for each one suitable numerical errors being computed or introduced
ex novo to objectively evaluate the performance of the new proposed method. Each
scan has been acquired by a Philips spiral Tomograph, model Billiance 16, 120 kVp

1Results contained in this section are published in [39, 40, 47].
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(see Table 3.2 for more details). Corresponding CT scans with contrast medium have
been recorded as reference. The number of sequences considered is comparable, if
not larger in any case, with the number of sequences used in other valuable works in
literature, e.g., [112, 57, 127]. The proposed procedure is completely automatic in all
its parts after the initial Region Of Interest (ROI) selection. The main advantages
of this approach relies in the potential possibility of performing diagnosis of vascular
pathologies even in case of patients with severe kidney diseases or allergic problems,
for which contrast medium can not be used.

Currently, a software procedure able to segment the pervious and the occluded
zones exploiting standard CT images (i.e., without contrast medium), has not been
developed yet.

Starting from standard CT images, a square ROI of size n × n, depicting the
aorta artery, is selected and processed using the SK algorithm. The ROI selection is
operated, along the axial plane, in a way that the entire CT scan of the portion where
the aorta shows the atheroma, is included in the square boundaries of the selection.

Naturally, to avoid this manual selection and reduce the operational time, it is
possible to think to adopt one of the numerous automatic algorithms proposed in
literature for the segmentation of the aorta artery (see, e.g., [80, 127, 85]). After the
application of the SK operator to the ROI, the algorithm proceeds with the analysis
of a �circular� area inscribed in it. The selected zone is processed with a wavelet
�lter, from which the image of the residual low frequency component is extracted.
Then, a suitable mask image is used in order to remove the possible e�ects of spurious
structures, such as plaques of calcium or measurement artifacts, and normalization
and equalization procedures are applied. Finally, the estimated pervious area in the
lumen of the artery, is extracted by a certain adaptive thresholding.

In order to analyze the performance of the proposed procedure, some de�ni-
tions of well known numerical errors are computed using the corresponding contrast
medium images as reference. In particular, standard Dice coincidence [59] and the
Jaccard/Tanimoto [74, 61] indexes are calculated, together with the new misclassi-
�cation error. The well known Hausdor� distance and a shape error are used to
quantify the di�erence in the shapes of the reference CM , extracted from the con-
trast medium CT, and CF , resulting by the SK algorithm. The Bpn [127] bias term
is computed to consider the direction of bias in the extraction procedure; geometric
measurements like centroid distance ∆Dc, aortic area di�erence ∆Aa, aortic diame-
ter di�erence ∆Da, using the generalized de�nition of diameter for convex and not
convex shapes [54], are calculated for both CF and CM . The results show that the
procedure is able to localize the position of the pervious lumen inside the artery with
a good accuracy in matching the contrast medium reference.

The role of the bidimensional SK operators is fundamental in order to process
such kind of digital data (e.g., images) and reduce the errors in the segmentation
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Figure 3.2. On the left: CT image without contrast medium. In the square is depicted the
aorta artery. On the right: CT image with contrast medium, corresponding to the CT on the left
(reference).

procedure (see, e.g., [75, 51, 7, 8]).
The above method, as well as the evaluation of the segmentation errors, have been

implemented in Matlab c© and Python vers. 2.6.7..
Examples of practical reconstruction and enhancement of some biomedical images

that leads to interesting arguments from the diagnostic point of view, can be found
in [89].

In Figure 3.2 (left) a CT image without contrast medium depicting the aorta
artery is shown. The images have been achieved converting the CT scans, natively
acquired in Houns�eld scale, from a 12 bits DICOM format to 8 bits graylevels �les
in the lossless .png (Portable Network Graphics) format. The set of resulting images
has been achieved after the application of a standard windowing procedure, selected
by medical specialists, according to their diagnostic needs. In general, in order to
investigate some pathology of the vascular apparatus, such as aneurysms or stenosis,
CT images (see, e.g., [1]) as those showed in Figure 3.2 (left) are not useful. For
instance, in the above image the aorta artery is delimited by a square ROI of 240×240
pixels, and the lumen is not distinguishable from the entire vessel. Indeed, to perform
a correct diagnosis, images with contrast medium, like the one shown in Figure 3.2 on
the right, are necessary. The white area in the aorta of Figure 3.2 (right) represents
the pervious lumen of the vessel highlighted by the contrast medium.

In what follows, images like the one of Figure 4.4, i.e., representing only the ROI
of size n× n, are used.

In the �rst step, the image into the ROI is processed using the SK algorithm:
the code of the algorithm is applied using the bidimensional Jackson type kernel and
generated by the one dimensional J 1

12(x), with scaling factor R = 2, where R is
the parameter de�ned in table 3.1, so that the analitical form of the corresponding
function is available. This step will reveal to be particularly useful in the whole
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Figure 3.3. ROI of the CT image without contrast medium of �gure 3.2 (left), and depicting the
aorta artery.

procedure for the reduction of the errors in the segmentation, as it will be shown in
the following numerical examples.

The procedure continues working on the portion C of the above image (processed
by the SK algorithm) obtained selecting the artery with a �circular curve� inside the
enhanced ROI. The goal of this manual procedure, in some sense avoidable as said
before, is to exclude from the ROI other vascular structures too similar in terms of gray
levels to the aorta artery but not belonging to it. For technical reasons, in order to
work always with square matrices, all the pixels outside the above selected area are set
to zero (zero padding). A �lter based on the wavelet decomposition by the �Mexican
hat� mother wavelet, implemented by the �á trous� algorithm (see, e.g., [62, 67]), is
applied to the image C obtained from the previous step. The implementation of the
wavelet decomposition consists on a �lter bank in the frequencies domain, splitting
the di�erent components of the image into 5 levels (or bands), Ci, i = 0, 1, ..., 4,
each one with its own frequencial content. The images Ci contain the high frequency
contributions to C. The number of levels has been chosen according to the physical
dimensions of the structures under analysis, supposing that the size of the lumen of
the vessel is bigger that a square of 24 × 24 pixels (where the exponent 4 denotes the
lowest wavelet decomposition frequency), see, e.g., Table 3.2 for the features of the
experimentally used images.

From the image C, and the above components Ci, i = 0, 1, ..., 4, the residual image
(see, e.g., [64]) Cr can be calculated as follows

Cr := C −
4∑

i=0

Ci. (3.1)

that contains, by construction, the lowest frequencies components of C (see, e.g.,
Figure 4.8). In general, it is possible to observe that, the pervious zone is hidden
inside the vessel but has an higher mean gray value than the occluded one, this
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Figure 3.4. Result of the wavelets �lter application to a circular portion of the image in Fig. 3.3,
previously processed by the SK algorithm. High frequencies components move from top left to down
right. Image Cr is in the right bottom corner (second row).

di�erence not being distinguishable at naked eye: it is possible to verify such assertion
by increasing the contrast of the original image until to visualize white marks in the
pervious zone on a black background. Since in general, the high frequency components
of C are too detailed in relation to the dimension of the lumen of the vessel, in Ci,
i = 0, 1, ..., 4, it is possible to identify the area of interest, while, since Cr contains
the low frequency components of C, it allows to evidence the major structures inside
the image. Sometimes, in the original image C, light structures (close to the white
saturation value) consisting of plaques of calcium (or other mineral materials) inside
the aorta artery, can be found, their presence reducing the contrast of the entire
image, in�uencing the �nal segmentation of the pervious zone. In order to reduce the
e�ect of such white structures, the algorithm generates a mask image Cp, as follows:

1. the image C = (ci,j) is achieved, i.e., the negative version of C = (ci,j);

2. Ĉ := |C−C| is computed, the symbol | · | denoting the pointwise absolute value
of the di�erence between the above matrices; in the resulting image all the pixels
that in C were su�ciently close to the boundary of the interval [0, 255] belong
to a su�ciently small left neighborhood of 255, while all the other pixels assume
values in a su�ciently small right neighborhood of 0;

3. a threshold equal to 127 is applied to Ĉ, resulting in the binary image C̃;

4. for technical reasons, the auxiliary matrix A is generated by applying a threshold
equal to 127 to C too;
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5. �nally, Cp := C̃∧A is calculated, with the pointwise matrix operation ∧ de�ned
by:

c̃i,j ∧ ai,j :=

{
255, if c̃i,j = ai,j = 255,
0, otherwise,

for any pixels of C = (c̃i,j) and A = (ai,j). The �nal image Cp = (cpi,j) contains,
on a black background, only the light areas of the original image C (i.e., the
plaques of calcium), represented by white pixels.

At this point, exploiting the �nally achieved mask image Cp, it is possible to elimi-
nate from Cr the artifacts generated by the presence of calci�cations. For notation
simplicity, the new image �ltered by Cp is denoted with the same pre-�ltering symbol
Cr. In order to enhance its contrast and to increase the di�erence among the various
pixels, Cr is linearly normalized and equalized, achieving Cr,N,E. The crucial step of
the procedure is the segmentation of the pervious lumen of the artery, consisting in
the determination of a suitable threshold for Cr,N,E.

The above threshold value is automatically computed exploiting the two possible
trends of the histogram associated with Cr,N,E (see Figure 3.5 and Figure 3.6):

1. increasing on the gray levels interval [127, 255] (see Figure 3.5);

2. with two relative maximums s1 < s2, assumed respectively at g1 and g2, on the
gray levels interval [127, 255] (see Figure 3.6).

The above classi�cation can be obtained after the application of a �low pass �lter�,
i.e., analyzing the behavior of the histogram of the image in a neighborhood of each
point under analysis, and neglecting all the variations less than a suitable �xed value
(varying between the 0− 20% on the basis of the shape of the histogram) along the
vertical axes. In particular, the distance between the two contiguous bars of the
histogram closer to the determined maximum, results at least bigger or equal to dm
increased by 2σd, where dm denotes the mean value of the distances between any pair
of contiguous bars of the whole histogram, and σd represents the associated standard
deviation. In the �rst of the above cases, the shape of the histogram suggests that,
the lighter zones, i.e., the areas of Cr,N,E with gray levels belonging to the interval
[127, 255], are quite homogeneous, in the sense that they can be associated to the
same anatomical structure, hence the threshold is chosen equal to the mean value of
the range [0, 255], i.e., θ1 = 127.

In the second of the above cases, the presence of the two maximums is connected to
the existence of two di�erent anatomical zones, both placed in the areas corresponding
to the range of gray levels [127, 255]. For this reason, the threshold value θ2 = g1 + 1
is preferred, since the above procedure for the computation of the maximum provides
that the closest gray level bar bigger than g1 (and also than θ2) in the histogram is
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Figure 3.5. Monotone his-
togram

Figure 3.6. Two relative max-
imums histogram

Figure 3.7. Final result of the segmentation algorithm applied to the image in Figure 3.3.

su�ciently spaced along the horizontal axes, to justify the presence of two distinct
anatomical structures. Note that, the experimental evidence con�rms the previous
assertion. By the application of the above threshold, a binary image CF , where the
white pixels represent the extracted lumen of the artery, is achieved. The thresholding
values coming from the procedure described above have been compared with the ones
deriving from the application of Otsu method [98]. As shown in what follows, the
results of the proposed method are ameliorative if compared with the ones achieved
applying Otsu.

For a pseudo code see table 3.1. An example of the result obtained from the
procedure described is shown in �gure 4.6, where the pervious zone has been extracted
from the original image of �gure 4.4. The advantages coming from the applications
of the SK algorithm can be seen in �gure 4.9: the contour of the pervious zone,
extracted from the image processed by the SK algorithm, is more accurate than
the corresponding one obtained elaborating the original image. The gold standard
reference for the comparison is, again, the CT image with contrast medium.
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Objective: Segmentation of the ROI depicting the aorta artery,

in order to extract the lumen of the vessel.

Inputs: ROI of the CT images without contrast medium,

I, n× n pixel resolution

Main steps:

• Application of the sampling Kantorovich algorithm to I,
with scaling factor R = 2, Jackson-type kernel J12,
and w = 15, obtaining an N ×N image, with N = nR;
• Selection of the circular area surrounding the artery
and generation of the image C;
• Application of the wavelet �lter, and generation of the image Cr;
• Computation of the mask image Cp;
• Removal of the plaques of calcium from Cr using the mask Cp;
• Normalization and equalization of Cr, obtaining Cr,N,E ;
• Computation of the threshold value for the �nal segmentation;

Output: Image CF showing the lumen of the artery.

Table 3.1. Pseudo-code of the segmentation algorithm.

Remark 3.1.1. Note that, the above procedure can be simpli�ed by avoiding a double
manual selection of the ROI, e.g., directly using a ROI of circular shape surrounding
the aorta artery. Automatic methods for such selections are also available in literature.
To not loose the focus on the SK algorithm such technical details have been omitted
in the discussion.

The results coming from numerical simulations have been compared, by super-
position, with the extracted areas of the lumen of the vessels in the corresponding
contrast medium reference images. From now on, the symbol CM = (cmi,j) will
denote the area on the CT image with contrast medium corresponding to the ROI (of
the original CT without contrast medium) in such a way that, they are superposable.

One of the biggest problem in medical image analysis remains the lack of gold
standard references (e.g., atlas), while manual segmentation appears time consuming
as well as strictly connected with the available visualization devices and the exper-
tise of the medical users [55]. To overpass this limitation, an automatic way for
the segmentation of the pervious lumen of the aorta, in contrast medium images, is
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Figure 3.8. On the left, the lumen of the vessel (white area), extracted from the original image
(i.e., Figure 3.3), is compared with the pervious zone from the corresponding CT image with contrast
medium contoured by a black line. On the right, the lumen of the vessel (white area), extracted from
the original image previously reconstructed by the SK algorithm, is compared with the pervious zone
as before. The advantages in the approximation produced by the SK algorithm appears evident.

suggested.

Before proceeding with the segmentation it is necessary to �lter possible arti-
facts due to the presence of calci�cations inside the artery, and to superpose the two
di�erent images taking into account of some anatomical or arti�cial landmarks.

Some algorithms available in literature, preliminarly tested for the segmentation
of the contrast medium area (see, e.g., [76, 19, 78]), revealed to be scale variant,
in�uencing negatively the accuracy and the reproducibility of the method. The main
errors could occur extracting areas with not convex shape and with multiple edges,
reasons good enough to prefer other segmentation techniques.

To generate the reference Cp, previously determined and suitably scaled without
interpolation at the same size of CM , a suitable mask is applied to remove, from the
image, the plaques of calcium placed in the artery. This �ltering operation follows
the rule

CM(i, j) =

{
0, if Cp(i, j) = 1,

CM(i, j), otherwise,

for each point (i, j) belonging to CM . Note that, in order to not alter the data
contained in CM , assumed as reference, it is preferable to reduce the size of Cp
instead of increasing the size of CM .
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Seq. n. 1 #51

Slice's thickness 2.5 mm
Spacing between slices 1,25 mm
Resolution 1,280 pixel/mm
Pitch 0,953

Seq. n. 2 #9

Slice's thickness 3.0 mm
Spacing between slices 3,00 mm
Resolution 1,314 pixel/mm
Pitch 1,375

Seq. n. 3 #98

Slice's thickness 2.0 mm
Spacing between slices 1,00 mm
Resolution 1,463 pixel/mm
Pitch 0,938

Seq. n. 4 #44

Slice's thickness 2.5 mm
Spacing between slices 1,25 mm
Resolution 1,164 pixel/mm
Pitch 0,891

Seq. n. 5 #31

Slice's thickness 2.5 mm
Spacing between slices 1,5 mm
Resolution 1,219 pixel/mm
Pitch 0,953

Table 3.2. CT technical features. Image size, for each sequence, is 512× 512.

Being the contrast medium highly radio opaque, a suitable threshold to segment
the pervious area is η = 127, whose value is equal to the midpoint of the range [0, 255].
After the thresholding operation the binary image CMb is obtained. The choice of
η seems to be the most suitable since the e�ect on the CT by the contrast medium
introduction is the saturation of the gray levels of the pixels corresponding to the
interested areas. Indeed, the above choice allows to include in the pervious zone the
pixels of the boundary corresponding to hardware CT sensors having, during the data
acquisition phase, at least a half occupied by the contrast medium (i.e., with a gray
level greater than η = 127). The reference extraction process described above uses
images deriving from a windowing procedure analogous to the one applied in case of
no contrast images, with parameters selected by medical specialists. In Table 3.3 a
pseudo code of the algorithm for the automatic extraction of the pervious area CMb,
from CM , is given.
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Objective: Extraction of the pervious area from CM

Inputs: CM image, n× n pixel resolution

Cp image, N ×N pixel resolution, N = nR, R = 2

Main steps:

• Resize of Cp by the scaling factor 1/R;
• Deletion of the pixels corresponding to the

plaques of calcium from CM using the scaled Cp
• Thresholding of the above modi�ed CM

Output: Binary image CMb, where the pervious area

(contrast medium area) is white

Table 3.3. Pseudo-code of the algorithm for the automatic extraction of the pervious area of CM .

Finally, CMb is comparable, by superposition, to CF . In Figure 3.9 the white area
of CMb is superposed to the original CT image without contrast medium. Various
errors are computed in order to evaluate the accuracy of the results, e.g., DCI, TI,
Em (see Section 1.6).

In Table 3.4 some results concerning the previous analysis applied to some of the
images belonging to the above sequences are provided. In the images of the central
column of Table 3.4 it is possible to note how the segmentation algorithm is able
to distinguish the calci�cations without including them in the pervious zones. This
aspect is not negligible since, in general, in CT images with contrast medium it is not
possible to distinguish plaques of calcium from the pervious areas.

Figure 3.9. In white the pervious zone of the vessel obtained from CMb. In the background, in
transparency, the original image for reference (CF ).
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Moreover, some other considerations have to be done on the errors calculated
in Table 3.4. The DCI and TI show good values of similarity and Em low error
rates. In particular, Em values are quite the same of the complementary of TI (i.e.,
1-TI) and bigger than the complementary values of DCI (i.e., 1-DCI). For this reason
it is possible to use this index to compare with other segmentation methods, i.e.,
where the threshold is calculated using the standard Otsu method [98]. In particular,
it appears that the new proposed thresholding procedure gives, in general, better
results than Otsu (see Table 3.6). This could be explained considering that Otsu
does not select the threshold as the minimum value between two maxima in a bimodal
histogram but minimizes the intra classes variance. In CT images without contrast
medium the gray levels of the signal are so similar that a strict separation between
the two modalities could be not possible, resulting in a more approximated and less
accurate segmentation. For sake of completeness, in the algorithmic implementation
for this particular issue, the Otsu thresholding method does not take into account
the pixels of the histogram at value 0: these pixels represent the background signal,
they derive from previous image elaborations and, if not excluded, they will a�ect
the segmentation process, representing a third modality of the distribution in the
histogram.

In order to give a complete evaluation of the above numerical results it is oppor-
tune to consider that the starting images are completely homogeneous and useless
to perform even an approximate medical diagnosis. As introduced in Section 1.6,
the misclassi�cation error is a severe measurement of the discrepancies between the
extracted contours and the original contrast medium image, if compared to the visual
diagnostic methods commonly used by vascular surgeons (see Figure 3.10). For this
reason the normalized version En of the misclassi�cation error can be evaluated. An-
other important factor in order to plan a surgical vascular intervention, is the shape
of the occlusion, estimated by the circularity shape factor [95], connected with the
shape error Es. In this speci�c case, thanks to the regularization property of the SK

operators, it results Circ CM ≤ Circ CF , thus 0 <
Circ CM

Circ CF

≤ 1.

Moreover, Hausdor� distance Hdc between the contours of the extracted zone
compared with the contrast medium reference, together with the Hausdor� distance
Hd between the full set given by the extracted zone compared with the contrast
medium reference, have been calculated.
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CT Image EX image CM Image DCI TI Em

0,90 0,82 0,17

0,90 0,81 0,18

0,92 0,85 0,15

0,79 0,64 0,35

0,94 0,89 0,11

0,92 0,86 0,14

0,92 0,85 0,14

Table 3.4. Starting from left: in the �rst column the square ROI selected from the original CT
image; in the second column the corresponding results after the application of the segmentation
algorithm; in the third column the corresponding CT image with contrast medium. The last three
columns report, respectively, the corresponding Dice Coincidence Index (DCI), the Tanimoto Index
(TI) and the misclassi�cation error (Em).
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Figure 3.10. Superposition of the pervious zone extracted by the algorithm (in light gray) and
the lumen of the vessel individuated by the contrast medium reference (in black). The white zone
represents the pixels correctly classi�ed. In the above image Em=0,24.

It could be of some importance to evaluate if the algorithm tends to over or under
estimate the pervious zone. To consider this behavior the index Bpn can be used.

Other than the misclassi�cation and the shape errors, it is important to consider
which is the di�erence in terms of extracted area between CF and CMb, considering
that from a medical point of view the blood �ow depends on the area of the pervious
zone. To estimate the morphological di�erences between the extracted zones and
the references, the distance between the centroids of the sets ∆Dc, the di�erence
between the extracted diameters ∆Da, in this case restricting the de�nition only to
the boundary of the bidimensional sets, geometrically being of interest the blood �ow
in the aorta artery.

The di�erence between the area in CF and CMb, can be quanti�ed: ∆Aa has a
normalized formulation and it always belongs to the interval [0, 1].

In Table 3.5, DCI, TI, Em, Es, En are shown for each image of an entire sequence
and in mean for all the sequences; in Table 3.6 the same measurements, together with
EmOtsu and Bpn, are reported in mean.

All the indexes for the evaluation of similarity of binary sets have been introduced
in Section 1.6. As demonstrated by the results of Table 3.4, the extraction algorithm
identi�es the position of the pervious zone into the vessels with a good degree of
approximation.
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Seq. 5 DCI TI Em Es En
0,82 0,70 0,30 0,13 0,22
0,84 0,72 0,28 0,11 0,20
0,82 0,70 0,30 0,11 0,22
0,84 0,72 0,28 0,16 0,19
0,83 0,71 0,29 0,11 0,20
0,83 0,71 0,29 0,09 0,21
0,83 0,71 0,29 0,09 0,21
0,82 0,69 0,31 0,07 0,23
0,83 0,70 0,29 0,09 0,21
0,81 0,68 0,32 0,09 0,24
0,82 0,70 0,30 0,13 0,22
0,81 0,67 0,32 0,13 0,24
0,85 0,73 0,27 0,22 0,18
0,83 0,72 0,28 0,17 0,20
0,85 0,73 0,27 0,21 0,19
0,84 0,72 0,28 0,22 0,20
0,85 0,73 0,27 0,25 0,19
0,87 0,76 0,24 0,16 0,16
0,87 0,76 0,24 0,23 0,16
0,89 0,80 0,20 0,30 0,13
0,88 0,79 0,21 0,21 0,13
0,87 0,77 0,23 0,26 0,15
0,88 0,79 0,21 0,34 0,13
0,89 0,80 0,20 0,32 0,12
0,88 0,79 0,21 0,20 0,13
0,91 0,84 0,16 0,16 0,09
0,88 0,78 0,22 0,29 0,13
0,88 0,79 0,21 0,27 0,11
0,92 0,85 0,15 0,32 0,08
0,92 0,84 0,16 0,26 0,09
0,92 0,85 0,15 0,28 0,09

Mean 0,86 0,75 0,25 0,19 0,17

Std. Dev. 0,03 0,05 0,05 0,08 0,05

Table 3.5. Numerical errors for the sequence N. 5.
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Seq. n◦ DCI TI Emmean Emmean−Otsu Esmean Enmean Bpn

1 (Mean) 0,82 0,71 0,28 0,31 0,05 0,12 0,07
(Std. dev.) 0,08 0,12 0,12 0,18 0,03 0,06 �
2 (Mean) 0,86 0,77 0,24 0,25 0,18 0,14 -0,00
(Std. dev.) 0,05 0,07 0,07 0,07 0,08 0,05 �
3 (Mean) 0,79 0,62 0,37 0,46 0,09 0,13 -0.37
(Std. dev.) 0,06 0,14 0,14 0,13 0,08 0,07 �
4 (Mean) 0,79 0,67 0,33 0,32 0,13 0,16 0,02
(Std. dev.) 0,12 0,16 0,16 0,15 0,13 0,08 �
5 (Mean) 0,86 0,75 0,25 0,28 0,19 0,17 -0,32
(Std. dev.) 0,03 0,05 0,05 0,07 0,08 0,05 �

Mean 0,82 0,69 0,31 0,37 0,11 0,14 0,07

Std. Dev. 0,08 0,13 0,13 0,16 0,09 0,07 �

Table 3.6. Mean and standard deviation of the numerical errors for each of the analyzed sequences.

Geometrical and morphological measurements and related morphological errors
have been reported in mean in Table 3.7.

Seq. n◦ ∆Hdmean ∆Hdcmean ∆Dcmean ∆Damean ∆Aamean

1 (Mean) 13,47 13,91 7,32 0,35 0,17
(Std. dev.) 5,04 5,46 3,49 0,13 0,08
2 (Mean) 15,51 15,87 9,36 0,26 0,14
(Std. dev.) 2,91 3,07 4,04 0,03 0,05
3 (Mean) 23,06 23,17 9,22 0,37 0,24
(Std. dev.) 11,87 11,85 4,53 0,10 0,11
4 (Mean) 19,78 20,47 2,81 0,28 0,21
(Std. dev.) 6,79 6,88 1,59 0,06 0,12
5 (Mean) 14,13 14,15 2,02 0,23 0,14
(Std. dev.) 2,89 2,84 1,38 0,01 0,03
Mean 18,86 19,15 7,06 0,33 0,19
Std. Dev. 9,58 9,06 5,24 0,11 0,10

Table 3.7. Mean and standard deviation of the numerical geometrical and morphological errors
for each of the analyzed sequences. All the values are measured in pixels.

On the other hand, for the sake of completeness, there are some aspects that have
to be taken into consideration in order to give a complete analysis of the performance
of the described methodology. The results are strongly connected to the "visible"
part of each image that depends on the real anatomical texture of the biological
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Figure 3.11. An example of a 3-zones image in which the three white zones are not each other
four-connected.

tissues as well as on the accuracy of the CT exam (e.g., contrast setting of the
CT apparatus, noise during the measurement, etc). Moreover, starting from images
whose distribution of gray levels is homogeneous, it is di�cult to obtain very accurate
numerical results. The DCI similarity indexes show values bigger or approximatively
equal to 80%.

The resolution of the measure strictly depends on the procedure for the com-
putation of the threshold: the areas of the extracted zones varies with the number
of pixels, corresponding, in the histogram of Cr,N,E, to the gray levels closer to the
threshold.

Another point to take into account is the presence, in the entire sequences or just
in some images of them, of di�erent, not 4-connected (polyominoes), light zones in
Cr,N,E: even if one of the above is the real pervious zone, the only discriminating cri-
teria that can be used to choose the right one, is its geometrical dimension, assuming
that the pervious zone is the most extended one in the set. When this condition is
not satis�ed a wrong extraction could result, a�ecting the value (in percentage) of
the mean errors.

Despite this reason, critical images, like the one shown in Figure 3.11, have not
been excluded a priori, in order to perform a complete cases analysis.

The new proposed method obtains a separation between the lumen of the aorta
artery and the vessel itself, more accurate with respect to the one obtained from the
original not reconstructed image. The possibility to identify the lumen of the vessel
without the use of the contrast medium is crucial from a medical point of view, and
could allow the vascular surgeons to perform accurate diagnosis of the pathologies of
the vascular apparatus even without the introduction of contrast medium.

The proposed procedure opens the way to overcome the inability for the doctors
to perform a vascular diagnosis without contrast medium, given that CT images with
contrast medium still represents the gold standard procedure to diagnose aneurys-
matic pathologies. Moreover, the presence of errors in the evaluation of the extraction
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seems to not a�ect the �nal medical diagnosis.
The developed procedure is completely automated after the ROI selection (as ob-

served in Remark 3.1.1) in the extraction of the pervious zones as well as in the
calculation of the errors. Further, di�erently from other studies proposed in liter-
ature (see, e.g., [125, 80]), here also the reference CT image with contrast medium
is extracted automatically allowing the reproducibility of the test, which results, for
this reason, not operator dependent.

The execution time of the procedure on an entire set allows the processing of an
entire sequence in a reasonable time.

Even if the method has been tested on a considerable number of images, further
investigations are needed to con�rm its validity even in general cases of noisy CT
scans, to determine a Signal To Noise Ratio limit for its applicability. This task could
be the object for future investigations. The results of this application want to point
out the possibility of a software segmentation of the pervious aortic lumen directly
from the analysis of the CT scans even when the acquired signal appears homogeneous
and even if di�erent functional zones are not distinguishable at naked eye.

3.2 Investigation of Retinal Tissues for diagnostic

purposes 2

The aim of this section is to provide an improvement in the reconstruction and vi-
sualization of retinal choriocapillaris images from normal patients. The implemented
method starts from multiple Optical Coherence Tomography (OCT) scanned se-
quences, performs a registration, an average and a �ltering on them using for this
last step the SK operator. The resulting images are then analyzed with some well
known methods in literature in order to quantitatively evaluate the improvement
achieved. Also �uoroangiographic and histological images are introduced like refer-
ences to support the reliability and the goodness of the results.

The OCT technology allows to reconstruct the vascularization of both the Su-
per�cial Capillary Plexus (SCP) on the retinal fundus as well as that of the deeper
Choriocapillaris (CC) tissues.

The process of multiple acquisition and averaging of CC images, which are rigidly
connected with SCP corresponding scans, has been recently introduced in some works
([117, 115, 116, 37]). The idea is to acquire multiple sequences (at least 4, see [37])
from the same patients, to register the SCP images taking one scan as reference, and
to operate the same geometrical transformation on the corresponding CC images, for
each sequence. The registration procedure uses the ImageJ/Fiji Turboreg algorithm

2Results contained in this section are almost ready to be submitted.
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[113], in order to operate a �rst a�ne transformation and a �rst rough superposition
of the SCP images coming from the previous multiple sequences. In general, the
above registration algorithm is based on the minimization of the MSE between the
two involved images. Each SCP a�ne transformation is recorded and subsequently
applied to each corresponding CC images for each sequence of the set under analysis.
In this way SCP images and corresponding CC images are subjected to the same
modi�cations. After this �rst coarse registration procedure, a supplementary �ner
one, based on the ImageJ/Fiji bUnwarpJ algorithm [104, 4], is performed on the
SCP and, as before, reported on the corresponding CC images, using the ImageJ/Fiji
Multi-Scale Oriented Patches (MOPS) feature extraction method [63, 87, 25]. This
algorithm operates an elastic transformation on the source image (the one to be
modi�ed) in order to minimize the MSE respect to the target (the one assumed as
reference).

The process, computationally heavy, could result in a not correct registration if
target and source are considerably di�erent one from the other. For this reason this
kind of registration will not be applied to the �uoroangiographic image. The whole
procedure ends with an averaging operation on one hand, between all the achieved
SCP, and on the other hand, between all the CC images. The mean process is certainly
useful to reduce, or to the limit suppress, the noise of the measurement, assuming its
model being linear.

At this point the SK algorithm is applied to both the images resulting from the
averaging procedure, SCPAV and CCAV respectively; this is driven by two distinct
reasons:

• to increase the image size in order to help the medical visual inspection and
diagnosis;

• to �lter the noise inherently connected with the OCT acquisitions.

By hypothesis, the random noise present in the data can be generally characterized
by an additive model, considering that OCT scanning process is itself the result of
a mean on multiple acquired signals: this justify the application of an SK-like �lter
(see [48]).

The morphology of the vessels in both the SCP and CC tissues tends to create
�4-connected zones� (polyominoes) that, from now on, will be generically designed as
clusters. The presence of clusters depends on the anatomy of the ocular fundus, whose
vessels, in depth developing through di�erent tissues, creates a capillary network
going from more super�cial layers to deeper ones. This behavior is more evident in
the anatomy of the CC tissues but it is realistic in SCP ones too.

For evaluation reasons, after the reconstruction and �ltering process, given healthy
patients, it is convenient to measure the number of clusters and the area they cover
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Figure 3.12. Example of SCP images after the application of local Otsu (center) and Phansalkar
(right) thresholding procedures on the original image (left). The Otsu method results in an over-
segmentation of the macular zone while the Phansalkar tends to over connect vessels.

to understand if the applied methodology results in a quantitative enhancement.
Before the clusters counting, a local thresholding procedure is needed. In litera-

ture, several local automatic thresholding methods are available.
Despite this, a new hybrid thresholding procedure is proposed, mixing the results

achieved by Otsu [98] and Phansalkar [102]. More in detail, local (i.e., adaptive) Otsu
thresholding method over-segments uniform zones, like the macula in the SCP images
(see Figure 3.12 left), resulting in a wrong classi�cation. This is because the Otsu
method assumes a bimodal distribution of the gray values in the area under analysis,
even if this is not necessarily always true. On the other hand, Phansalkar procedure
is strongly dependent on the choice of the thresholding parameters and it risks to
over connect vessels. For these reasons, a combination of them can result to be the
best choice. In Figure 3.12 an example of the distinct application of the two methods
is shown.

In Figure 3.13 the di�erence D between the application, on the same image, of
the local Phansalkar thresholding procedure and the local Otsu method is shown. D
is calculated according to the following formula

D = max{(BP −BO), 0},

where BP is the binary image achieved through the application of the local Phansalkar
thresholding procedure and BO is the binary image resulting from Otsu. It is evident
(see Figure 3.13 again) that the local Phansalkar thresholding procedure tends to
under segment the image and risks to produce arti�cial connections among di�erent
vessels.

In the SCP images elaboration, a mixed automatic method that performs a local
Phansalkar thresholding in the macular zone and a local Otsu thresholding in the
remaining part is preferable (see Figure 3.14).
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Figure 3.13. Image D. It is evident the under segmentation compared to the local Otsu method
and the consequently risk to over connect vessels.

Figure 3.14. Example of the application of the proposed hybrid thresholding methodology on
one single SCP image (original on the left). On the right, the macular area results from the local
Phansalkar thresholding, the remaining part is binarized using the local Otsu procedure.
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On the other hand, the CC images (see, e.g., Figure 3.15 right), where there are
not uniform areas, have been thresholded using a local Otsu procedure.

For what concerns the reference images, a di�erent logic has driven the segmen-
tation of the histological tissue. Starting from the knowledge of the anatomy of
the vascular network, it is expected that the thresholding procedure will result in a
strongly connected network or, to the limit case, in one single connected cluster cov-
ering the whole image. The histologic image, acquired with an electronic microscope,
has a higher resolution and much more details than the CC OCT scanned images.
In frequency domain this implies the presence of more meaningful high frequency
components. Due to these components, that can also operate like impulse noise, and
to the fact that Otsu method is based on bimodal distribution of the histogram asso-
ciated to the image or to subsets of it, it tends to give not realistic results, producing
over-segmentation (the situation in some sense is the opposite to the one previously
described). For this reason the Phansalkar thresholding procedure has been preferred
in this case. A prove of the correctness of the choice is given carrying the frequency
spectrum of the histological image at a comparable level with the CC OCT scans, i.e.,
applying a suitable linear �lter to suppress the exceeding high frequency components.
In the latter case, if the Otsu thresholding method is applied, the results are assim-
ilable to what achievable with the Phansalkar procedure (see Figure 3.18). In what
follows, in each binary image, the white points represent, if not diversely speci�ed,
pixels belonging to vessels, the other way around the black points.

To perform an analysis of the results, two well known textural indexes have been
used. More precisely, the Angular Second Moment (ASM) and the Entropy (E), see
Appendix I of [70]. In short, the ASM is de�ned as:

ASM(θ) =
∑

i

∑

j

{pθ(i, j)},

where i = 1, ..., N , j = 1, ...,M with N ×M the image size; θ ∈ [0, 2π) is the angle of
evaluation of pθ(i, j), that is the so-called normalized co-occurrences matrix3.

The entropy E, on the other hand, is de�ned as:

E =





0, if pθ(i, j) = 0,

−∑i

∑
j pθ(i, j) log(pθ(i, j)), otherwise.

The presence of a log in the formula means that noisy images have bigger entropy
than �ltered ones. In addition, both ASM and E are normalized to the image size,
so that, when operating any dimension changes, they are taken into account.

3Another term frequently used in literature to design this kind of matrices is �transition matrices�.
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Figure 3.15. Example of results after the registration and the averaging process (no SK applied
yet). On the left an example of the SCP image, on the right the corresponding CC.

The averaging process has been operated on twenty normal eyes of di�erent pa-
tients, each one OCT scanned six times. Each scan consists of one couple of one SCP
and one corresponding CC image, taken at a convenient depth in the ocular fundus,
both coded in 8 bits gray scale levels.The spatial resolution of the scan is 3.125 mi-
cron/pixel. Each image has an initial area of 1504×972 pixels, reduced considering
that the di�erent rotation in the �rst a�ne registration process causes some layers
to outgo the borders of the target image. This outgoing process, if not considered,
would result in a wrong averaging, having lacking signal zones superposed to valid
ones (see Figure 3.16). As reference, the best image from the diagnostic point of view,
for each sequence, has been chosen like target in the registration process.

To quantitatively evaluate the quality of the SK reconstruction, an image coming
from �uoroagiography taken at the same scale of the corresponding SCP sequences,
has been used as gold standard. At the same time, an higher resolution histologi-
cal image, acquired using an electronic microscope, has been analyzed to prove the
behavior of vessels network in the CC tissue.

In Figure 3.15 the reconstructions of an SCP and a CC sequence are shown,
after the registration and the averaging process. In Figure 3.17 the results after the
application of the SK algorithm to the images of Figure 3.15 are shown. The SK
algorithm has been applied using the bidimensional Jackson kernel with N=2, w=15
and zoom factor R=2.

In the SCP case, the matching with the gold standard image has been proved
registering:

1. the SCP averaged (SCPA) to the �uoroangiographic reference;
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Figure 3.16. Averaged image registered to the �uoroangiographic reference: original size (top),
after the SK reconstruction (down). Note the rotation of the image due to the registration process.
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Figure 3.17. Results of the registration, the averaging process and the SK reconstruction on the
images of Figure 3.15. At the top, we have the SCP image, while at the bottom the corresponding
CC. To highlight the enhancement provided by the SK algorithm, the images are shown with the
same visual scale with respect to Figure 3.15: for this reason they appear doubled in size. It is
evident the improvement of the visualization for the medical visual diagnosis and investigation.

83



Type of Processing PSNR MSE Area
Averaged (SCPA) 24.524 229.427 318095 (565×563)
Averaged+SK (SCPSK) 25.217 195.804 1272380

Table 3.8. PSNR and MSE from the comparison of the �uoroangigraphic image with the image
achieved after the averaging process with and without the SK reconstruction. The Area column
shows the number of pixels of the whole image.

2. the SCP after the SK reconstruction (SCPSK) to the SK-�ltered �uoroangio-
graphic reference.

The SK reconstruction of the �uoroangiographic image is needed to compare
it with the SCPSK images without applying any other magni�cation procedure to
SCPSK .

Using the PSNR index (see, e.g., [48]) to quantify the improvement related with
the SK reconstruction the results shown in Table 3.8 have been achieved.

Since the PSNR in the case of SCPSK is bigger than SCPA this means that the
application of the SK algorithm improves the correspondence with the gold standard
images.

In Table 3.9 the results of the cluster counting procedure is shown. The number
of clusters of SK reconstructed images is lower than all the other corresponding im-
ages in which SK algorithm has not been applied. Moreover, their areas (scaled by
the factor R2) are bigger too. Further, the standard deviation of the areas of the
clusters decreases, in proportion, in SK elaborated images. This means that the SK
reconstruction method tends to reconstruct in a more realistic way the anatomy of
the retinal fundus. In the CC case the matching with the gold standard image, rep-
resented by a generic histological image, has been tested using the cluster analysis.
The image in Figure 3.18 shows how the vascular network tends to become fully con-
nected, according with the numerical results of Table 3.10 that shows how the number
of clusters decreases (mean and standard deviation) contrary to their extension. A
textural analysis using ASM and E has been introduced to quantify the improvement
coming from the SK reconstruction. In Table 3.11 and Table 3.12 the values of ASM
and E are reported for θ = {0◦, 45◦, 90◦, 135◦}. In all the measurements ASM in-
creases and E decreases after the SK reconstruction. This means that, as expected
from theory, the SK tends to �lter the high frequency noise in the reconstructed im-
age. The application of the SK algorithm for the enhancement of retinal OCT images
allows to improve the visual diagnosis connected with the evaluation of the shape and
the density of the vessels in the eye fundus. Moreover, quantitative analysis shows an
e�ective improvement of the images, thanks to the SK algorithm that behaves as a
low-pass �lter, suppressing, indeed, the main spurious high frequencies components.
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Figure 3.18. Top: on the left the histological image; on the right the corresponding binary image
achieved after the application of the automatic Phansalkar thresholding procedure. Bottom: on
the left the image of the main cluster coming from histological tissue after the thresholding (points
belonging to vessel in white), on the right the remaining clusters (in white pixels belonging to
clusters).
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SCP P. Nr. Method Cluster Nr. Mean Area Std. dev. Area Img. Pixels
1 AVG 523 411.9 5239.7 585225
2 AVG 426 508.9 9461.6 585209
3 AVG 366 597.5 10702.0 585221
4 AVG 351 627.6 11329.0 580635
5 AVG 468 486.0 8529.6 576065
6 AVG 328 727.5 12588.0 586755
7 AVG 1452 118.6 1248.01 579105
8 AVG 1347 154.0 1341.5 588289
9 AVG 845 262.4 5982.2 580643
10 AVG 629 386.2 8409.8 586707
11 AVG 555 427.6 8572.7 588285
12 AVG 492 504.8 9862.8 588285
13 AVG 275 836.4 12941.0 585209
14 AVG 264 844.8 13049.0 580619
15 AVG 326 770.8 13383.0 585209
16 AVG 275 917.7 14337.0 591361
17 AVG 417 520.7 9088.8 583695
18 AVG 371 604.8 10204.0 589823
19 AVG 411 507.0 93196.0 580595
20 AVG 493 427.7 6427.1 591357
MEAN 530 532.1 9100.8
1 AVG+SK 221 1951.1 13606.0 2340900
2 AVG+SK 166 2627.2 28340.0 2340836
3 AVG+SK 147 3040.8 33358.0 2340884
4 AVG+SK 124 3570.8 35738.0 2322540
5 AVG+SK 173 2764.0 31064.0 2304260
6 AVG+SK 127 3928.7 42016.0 2347020
7 AVG+SK 620 592.7 4107.4 2316420
8 AVG+SK 481 956.6 6054.4 2353156
9 AVG+SK 361 1279.0 10231.0 2322572
10 AVG+SK 246 2066.3 20910.0 2346828
11 AVG+SK 189 2689.9 31299.0 2353140
12 AVG+SK 192 2744.1 23813.0 2353140
13 AVG+SK 85 5550.6 45776.0 2340836
14 AVG+SK 106 4212.9 39619.0 2322476
15 AVG+SK 108 4941.1 49048.0 2340836
16 AVG+SK 115 4645.5 45949.0 2365444
17 AVG+SK 191 2300.9 15641.0 2334780
18 AVG+SK 146 3184.4 29992.0 2359292
19 AVG+SK 179 2196.9 15028.0 2322380
20 AVG+SK 157 2549.4 16942.0 2365428
MEAN 206 2889.6 26926.6

Table 3.9. From the left to the right: the sequential number describing the patient from which
the image comes from (SCP P. Nr.); the method used to modify the image (AVG=averaging only,
AVG+SK=averaging and SK algorithm); the number of clusters constituting the network of vessels
(Cluster Nr.); the mean of the area of all the previous clusters (Mean Area) and the corresponding
standard deviation (Std. dev. Area); the number of pixels of the whole image.
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CC P. Nr. Method Cluster Nr Mean Area Std. dev. Area Img. Pixels
1 AVG 1688 170.0 3247.4 585225
2 AVG 1601 189.7 5717.9 585209
3 AVG 1562 194.7 6245.8 585221
4 AVG 1242 248.8 7607.8 580635
5 AVG 1204 253.2 6418.6 576065
6 AVG 1445 210.6 6353.4 586755
7 AVG 1548 199.3 5872.5 579105
8 AVG 1552 183.4 3147.2 588289
9 AVG 1583 179.6 2500.5 580643
10 AVG 1510 190.8 4327.8 586707
11 AVG 1625 175.3 4101.6 588285
12 AVG 1592 184.6 4421.9 588285
13 AVG 1509 186.3 4338.4 585209
14 AVG 1621 181.3 3677.3 580619
15 AVG 1584 179.2 2647.9 585209
16 AVG 1988 148.6 4454.9 591361
17 AVG 1602 190.5 6164.4 583695
18 AVG 2489 103.4 673.3 589823
19 AVG 2506 109.6 1482.9 580595
20 AVG 1900 134.0 776.1 591357
MEAN 1667 180.6 4208.9
1 AVG+SK 558 1169.3 17315.0 2340900
2 AVG+SK 513 1348.3 26487.0 2340836
3 AVG+SK 505 1371.2 27361.0 2340884
4 AVG+SK 411 1721.1 28150.0 2322540
5 AVG+SK 400 1735.4 27088.0 2304260
6 AVG+SK 444 1542.1 27967.0 2347020
7 AVG+SK 546 1283.6 24116.0 2316420
8 AVG+SK 493 1324.3 14875.0 2353156
9 AVG+SK 495 1311.6 13392.0 2322572
10 AVG+SK 513 1282.2 19406.0 2346828
11 AVG+SK 491 1328.7 16821.0 2353140
12 AVG+SK 517 1300.9 20944.0 2353140
13 AVG+SK 512 1252.6 18982.0 2340836
14 AVG+SK 540 1232.0 16969.0 2322476
15 AVG+SK 532 1213.3 11848.0 2340836
16 AVG+SK 693 977.9 20377.0 2365444
17 AVG+SK 521 1328.9 22686.0 2334780
18 AVG+SK 869 678.0 4029.6 2359292
19 AVG+SK 766 831.4 10052.0 2322380
20 AVG+SK 646 908.2 4266.1 2365428
MEAN 548 1257.0 18656.6

Table 3.10. From the left to the right: the sequential number describing the patient from which
the image comes from (CC P. Nr.); the method used to modify the image (AVG=averaging only,
AVG+SK=averaging and SK); the number of clusters constituting the network of vessels (Cluster
Nr.); the mean of the area of the previous clusters (Mean Area) and the corresponding standard
deviation (Std. dev. Area); the number of pixels of the whole image.
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CC P. Nr. Method ASM θ = 0◦ ASM θ = 45◦ ASM θ = 90◦ ASM θ = 135◦

1 AVG 4,45E-004 3,23E-004 4,24E-004 3,19E-004
2 AVG 4,07E-004 2,89E-004 3,78E-004 2,89E-004
3 AVG 3,32E-004 2,37E-004 3,06E-004 2,34E-004
4 AVG 4,03E-004 2,85E-004 3,72E-004 2,85E-004
5 AVG 4,80E-004 3,42E-004 4,44E-004 3,40E-004
6 AVG 4,54E-004 3,20E-004 4,10E-004 3,17E-004
7 AVG 6,57E-004 4,53E-004 5,86E-004 4,61E-004
8 AVG 4,77E-004 3,29E-004 4,19E-004 3,30E-004
9 AVG 5,26E-004 3,69E-004 4,85E-004 3,72E-004
10 AVG 4,28E-004 3,03E-004 3,87E-004 2,97E-004
11 AVG 4,23E-004 3,01E-004 3,92E-004 3,01E-004
12 AVG 5,38E-004 3,81E-004 4,93E-004 3,82E-004
13 AVG 4,21E-004 3,01E-004 3,96E-004 3,02E-004
14 AVG 3,85E-004 2,76E-004 3,60E-004 2,75E-004
15 AVG 4,35E-004 2,91E-004 3,72E-004 3,01E-004
16 AVG 4,49E-004 3,11E-004 3,92E-004 3,09E-004
17 AVG 4,13E-004 2,95E-004 3,87E-004 2,93E-004
18 AVG 4,16E-004 2,94E-004 3,85E-004 2,95E-004
19 AVG 4,03E-004 2,79E-004 3,60E-004 2,80E-004
20 AVG 4,02E-004 2,88E-004 3,79E-004 2,88E-004
MEAN 4,45E-004 3,13E-004 4,06E-004 3,13E-004
1 AVG+SK 4,45E-004 3,23E-004 4,24E-004 3,19E-004
2 AVG+SK 9,51E-004 6,70E-004 9,27E-004 6,68E-004
3 AVG+SK 8,43E-004 5,88E-004 7,93E-004 5,79E-004
4 AVG+SK 9,73E-004 6,79E-004 9,22E-004 6,75E-004
5 AVG+SK 1,27E-003 8,86E-004 1,20E-003 8,78E-004
6 AVG+SK 1,17E-003 8,05E-004 1,07E-003 7,95E-004
7 AVG+SK 1,77E-003 1,20E-003 1,63E-003 1,23E-003
8 AVG+SK 1,25E-003 8,42E-004 1,13E-003 8,53E-004
9 AVG+SK 1,23E-003 8,59E-004 1,20E-003 8,75E-004
10 AVG+SK 1,10E-003 7,76E-004 1,03E-003 7,47E-004
11 AVG+SK 1,04E-003 7,27E-004 9,99E-004 7,27E-004
12 AVG+SK 1,34E-003 9,30E-004 1,28E-003 9,44E-004
13 AVG+SK 1,05E-003 7,44E-004 1,03E-003 7,46E-004
14 AVG+SK 9,47E-004 6,74E-004 9,22E-004 6,63E-004
15 AVG+SK 1,13E-003 7,40E-004 9,94E-004 7,73E-004
16 AVG+SK 1,21E-003 8,20E-004 1,08E-003 8,11E-004
17 AVG+SK 1,00E-003 7,16E-004 9,93E-004 7,04E-004
18 AVG+SK 1,02E-003 7,12E-004 9,87E-004 7,17E-004
19 AVG+SK 1,01E-003 6,88E-004 9,22E-004 6,90E-004
20 AVG+SK 1,03E-003 7,23E-004 9,97E-004 7,23E-004
MEAN SK 1,09E-003 7,55E-004 1,03E-003 7,56E-004

Table 3.11. From the left to the right: the sequential number describing the patient from which
the image comes from (CC P. Nr.); the method used to modify the image (AVG=averaging only,
AVG+SK=averaging and SK); ASM values for θ = 0◦, θ = 45◦, θ = 90◦, θ = 135◦.
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CC P. Nr. Method E 0◦ E 45◦ E 90◦ E 135◦

1 AVG 8,009 8,325 8,056 8,335
2 AVG 8,103 8,438 8,174 8,441
3 AVG 8,291 8,624 8,373 8,634
4 AVG 8,112 8,451 8,190 8,450
5 AVG 7,928 8,260 8,008 8,268
6 AVG 7,982 8,327 8,085 8,337
7 AVG 7,667 8,034 7,785 8,016
8 AVG 7,956 8,318 8,077 8,313
9 AVG 7,843 8,189 7,920 8,180
10 AVG 8,051 8,390 8,152 8,409
11 AVG 8,062 8,394 8,135 8,394
12 AVG 7,832 8,171 7,917 8,168
13 AVG 8,073 8,404 8,138 8,401
14 AVG 8,161 8,491 8,225 8,492
15 AVG 8,038 8,436 8,198 8,403
16 AVG 7,999 8,363 8,138 8,369
17 AVG 8,077 8,405 8,140 8,412
18 AVG 8,074 8,415 8,150 8,413
19 AVG 8,096 8,461 8,215 8,456
20 AVG 8,102 8,432 8,163 8,432
MEAN AVG 8,023 8,366 8,112 8,366

1 AVG+SK 7,117 7,440 7,122 7,467
2 AVG+SK 7,253 7,596 7,275 7,602
3 AVG+SK 7,355 7,712 7,416 7,730
4 AVG+SK 7,220 7,580 7,271 7,581
5 AVG+SK 6,954 7,313 7,013 7,320
6 AVG+SK 7,021 7,394 7,109 7,406
7 AVG+SK 6,641 7,032 6,732 7,004
8 AVG+SK 6,983 7,372 7,081 7,361
9 AVG+SK 6,978 7,334 7,004 7,314
10 AVG+SK 7,106 7,456 7,167 7,485
11 AVG+SK 7,159 7,512 7,195 7,510
12 AVG+SK 6,911 7,273 6,955 7,260
13 AVG+SK 7,148 7,496 7,172 7,492
14 AVG+SK 7,261 7,601 7,283 7,613
15 AVG+SK 7,074 7,502 7,209 7,457
16 AVG+SK 7,010 7,396 7,124 7,410
17 AVG+SK 7,188 7,517 7,193 7,533
18 AVG+SK 7,188 7,538 7,217 7,537
19 AVG+SK 7,168 7,556 7,268 7,553
20 AVG+SK 7,160 7,510 7,188 7,508
MEAN SK 7,095 7,456 7,150 7,457

Table 3.12. From the left to the right: the sequential number describing the patient from which
the image comes from (CC P. Nr.); the method used to modify the image (AVG=averaging only,
AVG+SK=averaging and SK); E values for θ = 0◦, θ = 45◦, θ = 90◦, θ = 135◦.
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Chapter 4

Application of Sampling Kantorovich

operators to problems arising from

energy and acoustic engineering

Engineering applications ordinarily face approximation problems. The approxima-
tion, in real-world scenarios, depends on di�erent limitations arising at the same
time: the intrinsic limitations of the measuring instruments contributes to a not ex-
act data availability; the environmental noise corrupts, by its side, the authenticity
of the investigated signal; data missing, together with not exact mathematical mod-
els, determine a quite intractable situation. As seen reviewing the theory, as well as
considering the results achieved in the medical �eld, SK operators seem suitable to
reduce, by construction, some of the above described limitations. For this reason, the
energetic problem connected with the segmentation of thermal bridges for the eval-
uation of energetic losses in building, and the 3D localization of sources of acoustic
noise, have been examined, using the developed theory.

4.1 Detection of Thermal Bridges for Energy Losses

estimation 1

In this section a procedure for the detection of the contours of thermal bridges from
thermographic images is proposed, in order to study the energetic performance in
buildings. This new method is algorithmically divisible in two logical parts:

• the enhancement of the thermographic images by an optimized version of the
SK operators;

1Results contained in this section are published in [7, 8].
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• the application of a suitable histogram based thresholding procedure of the
enhanced thermographic images.

Finally, an improvement in the accuracy of the parameters de�ning the thermal bridge
is obtained.

The thermographic survey on the building envelope is a useful non invasive method
to detect thermal bridges, causes of reduction of the overall energy performance of
buildings. In civil and energy engineering, in order to perform non invasive investi-
gations, infrared thermography images are commonly used. The thermography is a
technique which allows to measure the heat �ux associated with the infrared radiation
emitted from every object without direct contact. It supplies a non invasive technique
for investigating buildings, see, e.g., [33, 22, 23]. The thermography exploits the pe-
culiarity that any object, having a certain temperature higher than the absolute zero,
emits radiations in the infrared range (wavelength from 700 nm to 1 mm, correspond-
ing to the interval of frequencies [300 GHz, 430THz]). The infrared band is located
between the visible radiation (in particular the red component, from which the name)
and the microwave range.

The result of a thermographic survey is a bidimensional thermal mapping of the
heat �ux of the object expressed by temperature values, when the emissivity is known.

Thermal bridges are zones of buildings that present a thermal �ow higher than
the adjacent constructive elements. For this reason, thermographic images appear to
be an appropriate tool to study such a problem. The presence of thermal bridges
determines the energy losses of e�ciency in buildings and this impacts on structural
and comfort aspects. In [5, 6] the above investigation has been performed by the help
of a suitable index, the so called incidence factor of thermal bridge Itb (see formula
4.1 in this section), which points out the energetic incidence of a thermal bridge
on the basis of the temperature decrement that it causes. Because of the higher
heat �ux through the walls, the areas a�ected by thermal bridges appear colder than
the neighborhoods (i.e., darker) in the �ctitious visual representation provided by
the thermal camera. Measuring the temperature along a single direction results, in
presence of thermal bridges, in a U-shaped not uniform trend, as in Figure 4.1. The
accuracy of the analysis for the energy performance estimation depends on various
aspects:

• the correct detection of the areas belonging to the thermal bridges, strictly
operator dependent;

• the quality (i.e., the resolution) of the available thermographic data.

The depth of the U-shape is strongly linked to the thermal bridge weakness. Given
these limitations, the new method proposed in this section introduces a segmentation
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Figure 4.1. Typical U-shaped temperature trend in presence of thermal bridge. The measurement
on the right part of the �gure corresponds to the red line on the left.

procedure which allows to detect the thermal bridges from thermographic images,
automating the energetic analysis of the buildings and retrieving more accurate results
respect to the original methodology described in [5].

The new algorithm is characterized by various steps. Firstly, the thermographic
images are reconstructed and enhanced in their resolution, by the application of the
SK operator (see, e.g., [41, 42]). The SK algorithm has been �rstly introduced in [49],
but its original implementation was not optimized and required a much longer CPU
time for the execution. In this contest a new optimized version of the SK algorithm
is given.

For the aim of this problem, the SK algorithm for image enhancement has been
implemented by a bidimensional Jackson type kernel and the original resolution of
thermographic images improved.

Then, by a probabilistic interpretation of the histogram of the data associated to
the above enhanced thermographic images (see, e.g., [77]), a suitable threshold value
for the thermal bridge segmentation is determined.

The validation of the proposed method has been obtained from the experimental
results e�ected in a hot box setup with controlled laboratory conditions (see, e.g.,
[9, 13]). More precisely, three types of bidimensional thermal bridges, with di�erent
geometrical shape, have been assembled and subsequently tested. The numerical
results show that the proposed algorithm, other to improve the energy analysis of
the buildings with respect to the original approach, is able to identify the geometry
of the thermal bridges generated in composite walls (i.e., constructed by di�erent
materials).

Indeed, such improvement has been validated by a comparison among the factor
Itb, �rstly computed measuring the temperatures detected by the probes in the hot
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box, and then by the new method here proposed, i.e., working with the thermographic
images, enhanced by the SK algorithm with the shape of the thermal bridge extracted
by the automatic thresholding procedure. Moreover, numerical results show that,
in thermal bridges caused by the presence of di�erent materials, the method here
introduced provides results closer to the reference approach, i.e., to the one completed
using probes.

Three cases of thermal bridges have been studied, classi�ed depending on the
morphology of the walls on which they appear:

1. 2D thermal bridges - pillar;

2. 2D thermal bridges - beam-pillar joint;

3. 2D thermal bridges -wall-wall joint.

The �rst two types of thermal bridges occur on plain walls, the �rst one developing
in a straight direction, the second one drawing an angle on the surface. The last
category of thermal bridges considers energy losses occurring on two di�erent walls
joining with an orthogonal corner. In Figure examples of the pillar and wall-wall joint
thermal bridges, specially assembled in laboratory, are shown.

Figure 4.2. Examples of the pillar structured thermal bridge (left) and the wall-wall joint one
(right). Specimens have been build in laboratory for temperature measurements.

In order to e�ect a complete analysis on thermal bridges and their energy per-
formance, hot box examples of each one of the typologies above described have been
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built.The availability of these specimens in a laboratory allows to know all their ther-
mal characteristics. The latter fact will be used to evaluate the goodness of the
analysis performed with the new methodology.

Data showed in Figure 4.3, have been acquired by a Flir b360 thermal camera with
a 320x240 pixel resolution. The values retrieved from the thermal camera represent
temperature data but they can be also interpreted as gray levels of an image, and
displayed in a eye-readable format.

As it usually happens in literature, the thermal values have been represented
by images coded with a certain color map instead of a grayscale one. Currently, it

Figure 4.3. The thermal bridges built in a hot-box: on the left, a pillar 2D thermal bridge; on the
right, a beam-pillar-joint 2D thermal bridge.

seems that no automatic procedures are available for the segmentation of the thermal
bridges.

At the aim of achieving this result, a speci�c procedure has been implemented
and applied to the original matrix dataset I = [N ×M ], with N=320, M=240. To
improve the accuracy of the border extraction, the SK algorithm has been used on
the native thermal data I, with a scaling factor R = 2, w = 15, and by bidimensional
Jackson type kernel generated by J 2

12(x). In order to speed up the procedure, the
SK operators have been approximated by truncation, neglecting all terms with values
less than 10−4. This value has been computed taking into account the accuracy of
the measurements (that here is 10−2), together with other parameters.

Once the data have been reconstructed using the SK algorithm, the contours of
the thermal bridges are extracted by a thresholding procedure, using a parameter
obtained from the associated histogram of temperatures (see Figure 4.4).

The procedure for the identi�cation of the threshold value considers that, by
de�nition, the thermal bridges boundaries are zones where the temperature shows a
signi�cant gradient compared to its mean value on the entire surrounding area.
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Figure 4.4. Histograms corresponding to the thermal bridges shown in �gure 4.3, respectively,
which have been processed by the SK algorithm.

More precisely, by the above assumption, it is possible to verify as the data associ-
ated histogram exhibits two peaks corresponding to the two biggest relative maximum
P1 and P2 (P1 < P2), respectively at coordinates TP,1 and TP,2, with an absolute min-
imum Tm belonging to the interval [TP,1, TP,2] (see, e.g., Figure 4.5). The threshold
value Tm has been chosen as the temperature corresponding to the minimum between
P1 and P2. This choice is made associating Tm to the minimum error due to the wrong
classi�cation of pixels located inside the thermal wall but classi�ed as external, and
viceversa (see Figure 4.6).

Note that, if the minimum is achieved at more than one temperature, the higher
value among P1 and P2 is preferable.

In Figure 4.5, TP,1 and TP,2 represent the points around which homogeneous tem-
peratures are distributed; therefore, they highlight the thermal bridge area AB and
the external homogeneous area AE.

From the previous considerations, assuming P1 and P2 to be the maximum of
two distinct bell shaped functions representing the distribution of probability of a
point to belong to AB or AE, it is possible to segment the original image I choosing
the threshold value equal to Tm. The results obtained from the above segmentation
procedure concerning the thermal bridges of Figure 4.3, have been shown in Figure
4.7, and a pseudo-code of the algorithm for the determination of the threshold values
Tm is given in Table 4.1. Fixed Tm, it is possible to classify the data in the two
mutually exclusive zones AB and AE. This method has been standardly used in
literature for image segmentation (e.g., [83, 68]) as well as for bimodal distribution
statistical analysis. In table 4.2, the temperature of thresholding Tm, determined
using the described procedure, is given for each one of the two thermal bridges under
analysis.
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Figure 4.5. Identi�cation of the various parameters on the histogram of the temperatures (con-
cerning the �rst thermal bridge of �gure 4.3), needed in order to compute the threshold value for the
segmentation. The oval shaped curves are drawn only to approximatively indicate pixels belonging
to the two bigger homogeneous areas, denoted by AB and AE .

Figure 4.6. Probabilistic interpretation of data values.

The results obtained from the applications of the procedure described in this
section are represented in Figure 4.7, where the segmentation results are relative to
the thermal bridges of Figure 4.3.

The SK reconstruction procedure, when implemented according to Table 4.1, es-
sentially reduces itself to multiply the chosen bidimensional kernel, computed in a
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Objective: Segmentation of thermal bridges from
thermographic data

Inputs: thermographic data of thermal bridges
of size 320× 240 points

• Application of the sampling Kantorovich algorithm
with scaling factor R = 2 and w = 15
obtaining a matrix of size 640× 480;
• Generation of the histogram associated to the data;
• Computation of the minimum between TP,1 and TP,2.

Output: The scalar threshold value Tm.

Table 4.1. Pseudo-code of the segmentation algorithm for thermal bridge individuation.

Thermal bridge number Tm
TB. n. 1 21.50 ◦C
TB. n. 2 20.36 ◦C

Table 4.2. Threshold values for the analyzed thermal bridges.

suitable grid of nodes, by the starting data set, i.e., the gray levels image I. This
numerical calculation can be operated following two basically di�erent approaches:

(1) for each point to reconstruct, runtime recalculating the kernel matrix (see Figure
4.8, left);

(2) at �rst calculating, for any nodes needed to complete the whole procedure, the
kernel matrix, sized according to w, and then selecting the portion of interest
for any data point (see Figure 4.8, right). In this case, a numerical truncation
of the above kernel matrix is convenient, in order to neglect all the values that,
certainly, are not signi�cant in the �nal computation for the reconstruction.
This is possible, since the main part of the kernel that provides the most mean-
ingful contribution to the quasi interpolation procedure, is concentrated in a
small portion of the domain (see Figure 4.8 again).

Each of these approaches has its advantage: the coding policy (1) requires less mem-
ory occupation than (2), while (2) requires a signi�cant small number of arithmetic
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Figure 4.7. Thermal bridges extracted using the threshold temperatures calculated by the algo-
rithm. The homogeneous dark areas represent the zones outside the thermal bridges.

Figure 4.8. Example of the bidimensional Jackson type kernel J 2
2 : (left) calculated in a single

step (1), (right) computed as in (2).

operations than (1).
In the case (1), given a grayscale image of size N ×M , the kernel memory occu-

pation can be estimated by:
N M w2B,

where B is the number of bits used for the representation of every data value. On
the other hand, in item (2) it results equal to:

N M w2R2B,

where R is the scaling factor. It is clear that if R > 1, for the same value of w, N ,
M and B, the approach (2) is more expensive in therms of memory occupation than
(1).

Moreover, since approach (2) computes the kernel matrix only once, and it is
further numerically optimized (truncation), it requires a smaller number of arithmetic
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operations than case (1).
More precisely, the numerical truncation of (2) consists in determining a threshold

value k > 0, useful to identify all the elements of the kernel matrix that can be
neglected, being not signi�cant in the output computation.

Recalling that the current thermographic data have been recorded by a thermal
camera whose measurament resolution is P := 10−2, the threshold value k can be
expressed as

k =
4 · 10−1 P

w2N M A
,

where:

A := max {ai,j : i = 1, ..., N, j = 1, ...,M} , I = (ai,j)i,j.

By this approach, all values which contribute (in the worse case) of an amount less
or equal to 0.4P are neglected. For instance, in case of the two thermal bridges
considered in this section, the value of A is equal to 22.5 and 22, respectively. Hence,
recalling that w = 15 , N = 320, and M = 240, we have that k is approximatively
equal to 1.0288× 10−11 and 1.0522× 10−11, respectively.

With the purpose to estimate the performance of the optimized version of the
SK algorithm, the CPU time for the reconstruction of some data sets on a computer
system equipped with i7 quad core CPU and 8 GB of ram has been measured, run-
ning Matlab c© ver. R2014b on Windows c© OP Windows 7 c©, Service pack 1, 64-bit
parallelism. The rate of growth of the CPU time (expressed in seconds) has been
considered in relation to the size N ×M , and to w > 0, for the two approaches.

From the results of Table 4.3, Table 4.4 and Table 4.5, it is clear that the approach
(2) is faster than (1).

N x M w=1 w=4 w=9 w=25 w=100 w=400
1× 1 0.041870 0.040219 0.041105 0.038928 0.042712 0.039214
2× 2 0.042075 0.042040 0.041391 0.041092 0.040991 0.042992
3× 3 0.043006 0.042132 0.041864 0.044914 0.043080 0.048435
5× 5 0.044211 0.048586 0.047370 0.048077 0.055869 0.060404

10× 10 0.064676 0.066046 0.068574 0.074969 0.093118 0.227232

Table 4.3. CPU time for the data sets of the dimension listed in the �rst column, corresponding

to each value of w, for the approach (1).

The advantage provided by the approach (2) appears more evident increasing the
matrices size with respect to those considered in Table 4.3 and Table 4.4. Indeed, in
Table 4.5 a matrix of dimension 20× 20 has been tested, varying w.
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N x M w=1 w=4 w=9 w=25 w=100 w=400
1× 1 0.043561 0.040653 0.042252 0.043928 0.040932 0.041430
2× 2 0.043919 0.044333 0.043065 0.043307 0.043592 0.045282
3× 3 0.043289 0.043140 0.044113 0.043985 0.041659 0.044925
5× 5 0.043000 0.043482 0.043960 0.044029 0.044554 0.045373

10× 10 0.045015 0.045146 0.045300 0.046053 0.058119 0.147052

Table 4.4. CPU time for the data sets of the dimension listed in the �rst column, corresponding

to each value of w, for the approach (2).

Figure 4.9. Comparison between the CPU time for the approaches (1) and (2), in function of
w > 0 for an image of size 20× 20.

Approach w=10 w=20 w=30 w=40 w=50 w=60
(1) 0.236207 1.943428 4.20498 8.0352 12.3671 17.9449
(2) 0.14637 0.158876 0.18029 0.20343 0.23314 0.24744

Table 4.5. CPU time for a matrix of size 20 × 20 for both approaches (1) and (2), for di�erent

values of w.

The results of Table 4.5 have been plotted in Figure 4.9; the execution times using
the algorithm based on (1) is longer than the corresponding ones based on (2).

On the basis of the previous considerations, approach (2) results faster than ap-
proach (1): for these reasons it has been preferred for the algorithmic implementation.
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Figure 4.10. Thermographic image from pillar type thermal bridge. The black line has been
used for the computation of the index Itb. On the right, the values of Itb resulting from the probes
measurements Itb_probe and from the thermographic technique proposed in [5] (Itb_infrared).

The segmentation method described above is applied in order to detect the shape
of thermal bridges of the building envelope from thermographic images. Moreover, it
also allows to determine their heat losses, using a suitable incidence factor of thermal
bridge, i.e., the index Itb, previously introduced in [5, 6] and de�ned as

Itb :=

N∑

p=1

(Ti − Tp)

N(Ti − T1D)
, (4.1)

where Ti is the internal air temperature, Tp is the acquired surface temperature of
the single pixel from the infrared camera, T1D is the surface temperature of the
undisturbed zone of the wall, evaluated with infrared camera as well, and N is the
number of the pixels that compose an imaginary line (see, e.g., Figures 4.10, 4.11,
4.12) along the thermal bridge. The Itb parameter is higher than one and gives
information on the thermal bridge e�ects on the overall energy performance of the
surface under investigation. The accuracy of Itb depends on the resolution of the
thermal map but it is independent from the length of the imaginary line chosen for
its computation.

Its value has been calculated using the original thermographic images as well as
by the corresponding reconstructed version after the application of the SK algorithm.
In the �rst case, the shape of the thermal bridge has been manually delineated, while
in the second case it has been automatically extracted by the proposed segmentation
algorithm. The above achieved results have been compared with a reference index
computed with the real data coming from the experimental setup, i.e., with the
thermal parameters detected by heat �ow meters and thermocouples in the hot box
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Figure 4.11. Thermographic image from beam-pillar joint type thermal bridge. The black line has
been used for the computation of the index Itb. On the right, the values of Itb resulting from the
probes measurements Itb_probe and from the thermographic technique proposed in [5] (Itb_infrared).

Figure 4.12. Thermographic image from wall-wall joint type thermal bridge. The black line has
been used for the computation of the index Itb. On the right the values of Itb resulting from the
probes measurements Itb_probe and from the thermographic technique proposed in [5] (Itb_infrared).
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setup with controlled laboratory conditions. The Itb index computed thanks to the
application of the segmentation algorithm developed in this section provides results
that are closer to the experimental reference Itb respect to the user dependent not SK
reconstructed methodology.

In this direction, Itb estimations computed by the native method described in [5],
i.e., from the original not-enhanced thermographic images, are 1.611 for pillar type
thermal bridges, 1.467 for beam-pillar joint thermal bridges and 1.369 for wall-wall
joint thermal bridges. On the other hand, the corresponding ones, computed by the
application of the proposed algorithm, respectively are 1.585, 1.462 and 1.378. The
latter are closer to the reference values of Itb (resulting by probes measurements),
which are 1.439 and 1.303. Indeed, from the estimation of the ratio between the
absolute errors for each one of the two di�erent methods respect to the Itb reference,
it turns out that the new approach gains an improvement of around 15% and 4%,
in case of pillar and beam-pillar joint thermal bridges type. For what concerns the
wall-wall joint, the results are less signi�cant, mainly because the geometrical issues
related to the experimental setup: the impossibility to place the heat �ux meters in
proximity of the corner. In general, these results moves into the direction of a more
accurate heat loss estimation. In the above examples, one of the main aspects that
allows to achieve such improvement is given by the fact that the thermal bridges are
generated by di�erent materials: the proposed segmentation algorithm detects with
a high accuracy the boundary separating the two di�erent zones.

In conclusion, the above experimental results demonstrate the enhancement of
the new procedure respect to the standard approach for the evaluation of heat losses
in buildings. In addition, further advantages of the present algorithm consist in
the possibility to automatically detect the exact geometry of the thermal bridge,
eliminating the operator-induced dependencies.

4.2 Localization of Acoustic Bridges in 3D spaces 2

In this section, a new procedure for three dimensional detection of sources of industrial
noise and evaluation of their Euclidean distances in space is introduced. The above
method is based on the analysis of acoustic and optical data recorded by an acoustic
camera (AC) [36]. An AC is an array of microphones, distributed in a more or less
regular geometry (preferably on a plane, depending on the speci�c application) to
which an optic camera is connected. In this way an AC can provide sound pressure
data rigidly connected with visual ones (see Figure 4.16). In order to improve the
resolution of the data, interpolation and quasi interpolation algorithms for digital data

2Results contained in this section have been submitted in [10, 11].
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processing have been used, such as the bilinear, bicubic and SK operators. According
with the results of Section 2.3, the experimental tests show the best performance of
SK algorithm compared to the other considered methods.

The main techniques available for the realization of acoustic cameras can be clas-
si�ed in beamforming (BF) and acoustic holography. BF uses the hypotesis of far
�eld in the acoustic signal processing, assuming the signal propagating on a plane
front from an in�nitely di�used source. Compared to acoustic holography, BF is
more suitable for investigation of big sized industrial implants. In this application
�eld, BF is preferable compared to acoustic holography. A detailed description of the
mathematical model for BF is provided in [12, 60, 99].

The experimental set up was built using two sources of noise: two speakers S1

and S2, respectively on the left and on the right of the AC optical axis OA, have
been tuned to sinusoidal signals of frequency of f1 = 1733Hz and f2 = 1000Hz. S1

and S2 have been considered two point-sources with sound emitting element in the
center of each speaker. Having two signals whose frequencies are not integer multiples
each other, avoids any summation e�ects that could result from spurious harmonics
superposition.

In Figure 4.13 the disposition of the two speakers is shown. The horizontal distance
of S1 and S2 from OA is 3000 mm, the height of S1, hS1 = 1500 mm, the height of
S2, hS2 = 700 mm. The Euclidean distance between the sources is d(S1, S2) '
6053mm. The acoustic camera used for the measurement is composed by a matrix
of microphones rigidly connected with a single optical camera in the center of the
system, so that all the sensors (microphones and optical camera) lie on the same
plane Q. P indicates the (vertical) plane passing for S1 and S2 and parallel to Q (see
Figure 4.13 again).

The distance between the acoustic camera AC and the plane P is Z = 12250 mm.
Then, two measurementsM1 andM2, of both sound pressure and corresponding visual
scene have been performed by AC. The data obtained from the above measurements
have been stored in two matrices for each, MO

1 , M
O
2 , M

A
1 , M

A
2 , the ones with apex

O (standing for Optical) containing the optical data expressed by gray level 8 bit
coded images, the other ones with apex A (standing for Acoustic) containing acoustic
data expressed in dB. The measurement M1 has been acquired with AC at a height
of hM1 = 1350 mm and OA equidistant from the projection of S1 and S2 on the
ground baseline (like in Figure 4.13), while the measurement M2 has been acquired
horizontally shifting AC of 230 mm to the right. Figure 4.14 shows the shifting
procedure and Figure 4.15 the frontal view of the system to be measured.

The ground of the experimental setup is made of asphalt, with an acoustic re�ec-
tivity coe�cient of 0.95 constant for any frequencies [56].

The size of the matrices MA
1 , M

A
2 is 16 × 21, and the data have been stored in

TDMS (Technical Data Management Solution by National InstrumentsTM) �les and
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Figure 4.13. Experimental setup: planar view.

Figure 4.14. Acoustic camera shifting between M1 and M2.
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Figure 4.15. Experimental setup: frontal view of the P plane.

Figure 4.16. Acoustic resolution over the optical one. The colored square represent the acoustic
"pixel" size.

expressed in dB with a scaling factor of 2 · 105 Pa. A normalization by this factor has
been operated as follows

PdB = 20 · log10

PTDMS

2 · 105
,

where PTDMS is any value of MA
1 or MA

2 .
From the matrices MA

1 , M
A
2 it is possible to select, using certain software �lters,

the spectral components contained in a band of 100 Hz tuned to f1 and f2, obtaining
from each one two new matrices denoted byMA

1S1
,MA

1S2
, andMA

2S1
,MA

2S2
, respectively.

By the above constructionMA
1S1

, andMA
2S1

contain the acoustic data from the speaker
S1, while MA

1S2
and MA

2S2
the acoustic data from the speaker S2.

The matrices MO
1 and MO

2 consist of grayscale images of 1024 × 780 pixels; an
acoustic "pixel" contained in one of MA

j , j = 1, 2, approximately corresponds to a
square of 48× 48 optical pixels (see Figure 4.16). The acoustic camera guarantees a
rigid superposition of the acoustic data with the optical ones.

In the whole post-processing procedure for the spatial individuation of the noise
sources (the speakers S1 and S2) the correspondence "1 acoustic pixel = 48 × 48
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optical pixels" holds.
In order to improve the resolution of the acoustic data, such that to each pixel of

the optical acquisition can be assigned a single value of sound pressure, two standard
bidimensional interpolation methods are used: bilinear and bicubic.

The aim of this section is to suggest a new method to improve the reconstruction
results achieved by the above standard methods, using the SK quasi interpolation,
theoretically more performing than standard interpolation algorithms.

In order to quantify the Euclidean distance d(S1, S2) between S1 and S2, the
estimation of Z, the distance between the plane of the sources and the acoustic camera
(which in general is unknown) is needed and can be achieved from the available data
using a triangulation procedure, similar to the one used for GPS localization of points
on the Earth surface [88, 101, 90].

The knowledge of Z is necessary to quantify the corresponding dimension, in world
units (mm), of a single pixel at that distance. Accordingly to 3D scene reconstruction
from multiple measurements techniques, a pointwise correspondence between the val-
ues of MA

1Sj
and MA

2Sj
, j = 1, 2 is needed. In this speci�c case, it is su�cient to �nd a

match only between the maximum points of the above matrices, in which S1 and S2

are obviously localized. Thus

M1
ν := (iMAX

MA
1Sν

, jMAX
MA

1Sν

) := arg max
i,j
{MA

1Sν
(i, j)},

i = 1, ..., 16, j = 1, ..., 21, corresponds to

M2
ν := (iMAX

MA
2Sν

, jMAX
MA

2Sν

) := arg max
i,j
{MA

2Sν
(i, j)},

ν = 1, 2.
The Euclidean distance d∗ := d(M1

ν ,M2
ν), ν = 1, 2, in 3D scene reconstruction

from multiple measurements, is called disparity, see, e.g., [18].
The estimation of Z can be obtained as follows:

Z = f · b
d∗
, (4.2)

where f is the focal length of the camera, a characteristic constructive parameter and
b is the amount of displacement of the AC position in M1 and M2. In this speci�c
case b = 230 mm. For the calculation of f the method introduced by Zhang [128] and
available for camera calibration in MatlabTMhas been used. This technique, together
with the available data, provides f = 2173.6 pixel.

Since the value of the disparity changes on the bases of the interpolation and
quasi interpolation techniques used for the acoustic matrices magni�cation, di�erent
estimation of Z are achieved.
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S1 Z (mm) d(S1, S2)(pixel) Ed(pixels) psize(Z) Epsize(Z)(mm) EZ(mm) ETOT (mm)
Raw 499928 10.198 490.058 496.58 484.48 487678 237425.14

Bilinear 10634.360 489.506 10.750 10.56 1.54 1615 16.52
Bicubic 13151.447 482.685 17.571 13.06 0.96 901 16.93
SK 11783.416 488.922 11.334 11.70 0.39 467 4.88

Table 4.6. Error estimation for S1 considering raw data, bilinear, bicubic and SK reconstructions.

Moreover, once Z is determined, it is possible to calculate the size of a single pixel,
using the linear equation

psize(Z) = psize(D) · D
Z
, (4.3)

where D is a depth for which the size psize(D) of a single pixel in mm is known;
psize(Z) is the size of a pixel in mm at distance Z. From the previous 4.3 equation
naturally descends the need to know the dimension of some reference objects inside
the image.

Then, the numerical results achieved for each one of the used interpolation and
quasi interpolation methods are given in Table 4.6: it shows the results of the esti-
mations of Z (mm); d(S1, S2)(pixel), i.e., the distance (in pixels) between S1 and S2;
Ed, i.e., the number of wrong pixels between the reference of d(S1, S2)(pixel) and its
estimations; psize(Z), i.e., the size (in mm) of one single pixel at distance Z; Epsize(Z)

(mm), i.e., the error between the reference value and its estimations for each single
pixel; ETOT := Ed · Epsize(Z).

In particular, for what concerns the SK operator, the reconstructions have been
performed with w = 20 and bidimensional Jakson type kernel J 2

12(x), obtaining an
enhanced acoustic image with size increased by a scale factor of 48.

The simplest way to convert the error Ed, originally expressed in pixel, into mm,
is to multiply it by the estimated pixel size psize(Z). This procedure is inaccurate,
not taking into account the error on the estimation of psize(Z). In order to avoid this
inaccuracy, ETOT is introduced as the most correct index expressing and evaluating
the goodness of the results. In this case, the SK algorithm performs better than the
other proposed methods according to [48].

The same considerations can be repeated in the case of the following relative
errors:

Erd =
Ed(pixels)

d(S1, S2)(pixel)
, (4.4)

ErZ =
EZ(mm)

Zref
, (4.5)

Erpsize(Z)
=
Epsize(Z)(mm)

psize(D)(mm)
, (4.6)
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S1 Z (mm) d(S1, S2)(pixel) Erd (4.4) ErZ(2) (4.5) Erpsize(Z)
(4.6) ErTOT

(4.7)
Bilinear 10634.360 489.506 0.021 0.131 0.127 0.0027
Bicubic 13151.447 482.685 0.035 0.073 0.080 0.0028
SK 11783.416 488.922 0.022 0.038 0.032 0.0007

Table 4.7. Error estimation for S1 in case of raw data, bilinear, bicubic and SK reconstructions.
The columns have the same meaning that in table 4.6 except that now the introduced relative errors
(1), (2), (3), (4) are shown.

Figure 4.17. From left to right, top to down: raw data of MA
1S1

, bilinear interpolation of MA
1S1

,

bicubic interpolation of MA
1S1

, SK quasi interpolation of MA
1S1

.

ErTOT = Erd · Erpsize(Z)
, (4.7)

where Erd is compared to the reference distance d(S1, S2), Erpsize(Z)
to the reference

size psize(D)(mm), and ErZ to Zref = 12250 mm. Results are shown in Table 4.7.
In Figures 4.17 and 4.18 the planar distributions of sound pressures are shown

before and after the application of the interpolation and quasi interpolation methods.

In Figures 4.19 and 4.20 the three dimensional distributions of sound pressures are
shown before and after the application of the interpolation and SK quasi interpolation
methods.

For what concerns S2, the results are di�erent. Due to the reduced height of the
speaker hS2 '

hS1
2
, to the not directivity of S2 and to the re�ectivity coe�cient of

the asphalt, the estimation of Z results evidently wrong. This error is caused by
the re�ections occurring on the ground at a distance that is half of the distance of
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Figure 4.18. From left to right, top to down: raw data of MA
1S2

, bilinear interpolation of MA
1S2

,

bicubic interpolation of MA
1S2

, SK quasi interpolation of MA
1S2

.

Figure 4.19. From left to right, top to down: three dimensional raw data of MA
1S1

, bilinear

interpolation of MA
1S1

, bicubic interpolation of MA
1S1

, SK quasi interpolation of MA
1S1

.
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Figure 4.20. From left to right, top to down: three dimensional raw data of MA
1S2

, bilinear

interpolation of MA
1S2

, bicubic interpolation of MA
1S2

, SK quasi interpolation of MA
1S2

.

S2 Z (mm)
Raw 249964
Bilinear 5207.583
Bicubic 6096.683
SK 5434

Table 4.8. Distance estimation relative to S2 for raw data, bilinear, bicubic and Sampling Kan-
torovich interpolated data. Z (mm) is the achieved depth of the plane of the source S2.

S1 from the acoustic camera, see table 4.8. In the case of S1 the contributions of
the re�ections are negligible, being the sound source distant enough from the asphalt
ground and being the sound waves enough attenuated, such that they do not in�uence
the estimation of the Z. Moreover, in accordance with the dependence from the height
of the speakers, the estimation of Z for S2 is approximately half of what resulted for
S1.

Thanks to triangulation techniques the location of the sources of noise in a 3D
orthogonal system is correctly identi�ed. The poor resolution of the microphonic array
poses the need for the introduction of interpolation or quasi interpolation methods
(standard bilinear and bicubic interpolation together with SK quasi interpolation
methods). Numerical results show that by means of the data enhanced with the SK
algorithm, a more accurate detection of noise sources is possible compared to what
achieved by means of the standard bilinear and bicubic interpolation (see [10, 11]),
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as easily deductible from the values of ETOT in Tables 4.6 and 4.7.
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Conclusions

The aim of this thesis has been the investigation and the understanding of the Sam-
pling Kantorovich operators in view of real-world practical applications. In this last
section a summary of what has been developed is reported.

Sampling Kantorovich operators have been introduced in mathematical literature
with the aim to reconstruct functions not necessarily continuous. Firstly, one di-
mensional formulation and its extended multidimensional theory has been developed.
Thanks to the achieved theoretical results and their implementation, reconstruction
of two dimensional signals has been possible. From a physical point of view, the
most meaningful advantage introduced by the SK operators is a precise modeling of
the sampling process, if compared with previous formulations of the sampling theo-
rems (WKS and Generalized). This modeling, based on a mean process around each
sample, reduces, by construction, the time jitter error, connected with the practi-
cal impossibility to realize an exact equi-spaced sampling. SK operators have seen
to perform like low pass �lters, reducing high frequency noise, inevitably present in
every real-world measurement process.

A comparison with other interpolation and quasi-interpolation methods, well
known in literature, has been done: the achieved results have shown better quan-
titative performances of the SK algorithm with respect to the other methods [48].

The experimental results encouraged the application of SK operators in medical
as in engineering �elds.

From the medical point of view, the individuation of the pervious lumen of the
aorta artery in presence of ateroma and without the introduction of contrast medium
has been possible with a good localization of the occluded areas [39, 46, 40, 47]. The
procedure, integrated with Digital Image Processing algorithms, has shown great per-
formances, measured by speci�c indexes of similarity, compared to the gold standard
contrast medium reference. To the knowledge of the author, at the present time, this
seems to be the �rst attempt to segment the pervious lumen of aorta artery without
contrast medium introduction.

In the ophtalmological �eld, SK algorithm has been used to improve the visual-
ization of OCT images of the Super�cial Capillary Plexus (SCP) as of the Choriocap-
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Figure 4.21. Sagittal section of human head. From left to right: the original MRI acquisition;
the brain segmentation (in white) on the original MRI; the brain segmentation (in white) on the
SK reconstruction with R = 2. From the anatomy of the brain, the improvement in the case of SK
reconstruction is evident.

illaris tissue (CC). The low-pass �ltering properties of the SK method processed the
images suppressing the high frequency noise, allowing as to improve the �nal quality,
as to individuate and measure the number of anatomical connected vessels in the
ocular fundus. Thanks to this, a more accurate visual diagnosis and a quanti�cation
of the rate of interconnection for the vessels have been possible, resulting in a more
precise early individuation of pathologies.

Diagnostic procedures are important, as well, in the engineering �eld: for this
reason the SK algorithm has been used to evaluate the thermal bridges extension
in buildings [7, 8] and the three-dimensional localization, in space, of noise sources
in acoustically polluted environments [10, 11]. In both cases the results overpassed
the quality achieved using other standard methods, even in this cases con�rming the
theoretical performances of SK operators.

As a future research, a trial originated by the work developed in this thesis about
the localization of the pervious lumen in aortic diseases, is going on to improve
the achieved results, also considering the development of new segmentation meth-
ods based on Neural Networks.

Moreover, other planned researches, interested by the application of the Sampling
Kantorovich operators, will investigate the brain segmentation in Magnetic Resonance
Imaging (MRI) for the precocious Alzheimer's disease diagnosis (see Fig. 4.21 for an
example of a preliminary work).
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