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Chapter 1

Introduction

This thesis deals with the analysis of interacting particle systems and with
related numerical topics. It is focused on the so-called interacting diffusion models,
i.e. we always consider continuous on-site variables. This work is based on the
papers [3], [21], [47], [48] and [51] as described in more detail below.

Many of the cases we are going to discuss arise naturally from other fields
of study like physics, biology, population dynamics, chemistry or social sciences.
Often, some phenomena coming from different of the above disciplines present
some similarities in their behavior. These similarities can be captured through
the use of mathematics. Many of the models that we currently use to understand
such systems represent a simplified version of the reality. These simplifications are
made, not only to obtain a model that is easier to study, but also in order to have
a better understanding of the primary mechanisms involved. The balance between
accuracy and approximation is the key to obtain a model which is well suited for
applications to real world problems.

Particle models, or Individual Based Model, are a good instrument to obtain
a precise description of the physical process involved. Very often in the field of
studies mentioned above many phenomena are nothing else that the repercussion in
the macroscopic world of what is happening on a smaller scale. Think the dynamics
of a fluid or the formation of tissue in a living being. They are all the reflection
on the outer world of more than billions of interactions and processes happening
underneath. Here we are using the word “particle” in a broad sense. In the case of
fluids particles represents water molecules interacting through chemical forces. In
tissue formation the situation is more complicated since particles, now representing
cells, can affect each other in many ways such as tactile or contact forces, long
or short range chemical signaling et cetera. Being able to describe precisely this
heterogeneity of interactions can be a major advantage when trying to model living
complex systems.

7
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However individual based models are not directly suitable to be used for
applications. In practice complex systems such as those introduced above, are
made of an enormous amount of individuals, far from what is possible to treat
mathematically or to store in a computer. The number of cells in a human tissue
is around 109 for cm3, which is already out of our capabilities if one considers
an entire organism. In the case of fluids like water the situations is even more
complicated since the number of molecules in a single drop is about 1021. Hence a
statistical approach is usually preferred where, instead of considering the position
of each particle, we try to describe a probability density function f(t, x) for the
particles positions at time t around site x. To do so we perform the so called
many particle limit where we assume to have an infinite number of particles, and
derive a deterministic Partial Differential Equation (PDE) for the density f . Some
times in this work (Chapters 2, 3) we will deal with the kinetic formulation for
particle systems. All particles will hence be defined by position and velocity at
each time. Consequently in the many particle limit the equation for the density of
the particles is in the kinetic form f(t, x, v). An example of such equation is the
well known Boltzmann equation for the distribution of thermodynamic system in a
non equilibrium state.

Nonetheless in concrete applications, dealing with nonlinear PDEs especially in
high dimension is not an easy task. Imagine a numerical method which aims at
approximating the solution of a PDE in a grid made of N points per dimension.
If we assume to have a d-dimensional problem the resulting number of points
would be of order Nd. Assuming to work in dimension d = 10 (proportional to
the degrees of freedom of the problem), by taking simply N = 10 would result in
1010 points to compute the approximation, a number which is already difficult to
treat numerically. Not to mention the poorness of the approximation obtained by
computing the solution only in ten points per dimension. For this reason sometimes
methods based directly on particle simulation are preferred. Of course the setting of
PDEs deriving from particle system is not the only one where high dimensionality
poses significant problems to the numerical approximation of the solution. Many
numerical methods, usually grouped in the huge class of Monte-Carlo Methods, are
developed exactly for this purpose, where other classical approaches usually fail.
We analyze some topics related to Monte-Carlo methods, specifically deepening
the analysis of the variance of the estimation, in Chapter 4. A specific subclass
of problems, for which I have developed a specific interest, is the computation of
rare-events and extreme probabilities. This family of problems requires particular
attention even when applying Monte-Carlo methods. In fact average based methods
need to be revisited in order to work when the number of successful observables is
limited. To make the idea more clear imagine to estimate the probability of some
rare events by performing independent iterations and by averaging the number of
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successes by the number of iterations. If the number of successes is infinitesimal
compared to the total number (imagine of order ten over a million of tries), then
the resulting approximation of the probability of the event will be very poor. On
this matter, an approach based directly on the Fokker-Planck equation associated
to the process should be more feasible. Sometimes the theory of the Kolmogorov
equation is easier. One issue which affects the study of Fokker-Planck equations
is that in general solutions are measure valued functions instead of functions of
space-time. This approach is analyzed in Chapter 5.

This introductory chapter is structured as follows. In Sections 1.1 and 1.2
we develop more details concerning Chapters 2 and 3 of this Thesis. Both these
chapters deal with some particle modeling problem, presenting a scaling limit result.
In Chapter 2 we work with the so-called Vlasov-Navier-Stokes-Fokker-Planck model
which describes the collective behavior of infinitely many particles suspended in a
fluid. Chapter 3 instead focuses on a biological problem: the growth of the Hyphae
of the fungus, i.e. the microscopic branching filaments which collectively form the
mycelium. In both cases the dynamic of the particles is of second order, hence will
will always deal with kinetic limiting equations. Moreover in Sections 1.3 and 1.4 we
introduce the problematics analyzed in Chapters 4 and 5, included in Part II. Here
the focus is more on the numerics. Chapter 4 deals with particle systems in the
form of McKean-Vlasov SDE, specifically in the ergodic case. Instead in Chapter 5
we work on the approximation of Kolmogorov Equation in high dimensional setting.
The theoretical analysis is performed in infinite dimension. The approach proposed
here, even if particle systems are not directly involved, relies on some Gaussian
analysis techniques due to the strong connection of such equations witch stochastic
analysis. Since chapters are not directly connected, even if they often deal with
close topics, we won’t make a detailed review of the previous works here. In this
introductory chapter we will only make a brief introduction of what is the problem
that we analyzed in the corresponding chapter, and point out the main problem.
Therefore an appropriate review of the literature is included at the beginning of
each chapter.
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1.1 Particle-fluid interaction: the Vlasov-Fokker-
Planck-Navier-Stokes system

The results of this section appeared in the works [47], [48]. In Chapter 2 we
deal with the so called Vlasov-Navier-Stokes-Fokker-Planck system:





∂tu = ∆u− u · ∇u−∇π −
∫
Rd(u− v)F dv;

div(u) = 0;

∂tF + v · ∇xF + divv((u− v)F ) = σ2

2
∆vF.

(1.1)

This system aims to model the interaction between a large amount of particles
suspended in a fluid. The variable u = u(t, x) is a vector field, and represents
the velocity of the fluid, while π stands for the pressure. The scalar function
F = F (t, x, v) stands for the density of the particles suspended, and is defined
on the phase space i.e. is a function of the space and velocity variables. This
description is well-founded only when one looks at a large amount of particles. In
this chapter we aim to prove rigorously that this description is correct. We introduce
a system of interacting particles, that are treated as individuals instead of as an
ensemble described by a density, and prove the convergence in the many-particle
limit to system (1.1).

Before introducing the particle model let us now go a bit more into the details
of the system of PDEs. As we said the fluid is described by its velocity field
u(t, x) ∈ Rd. Of course the natural setup is to have d = 3, however in what follows
we will consider mainly the case d = 2. We assume that particles are diluted
enough, so that the density of the fluid remains constant ρf > 0. Hence, calling G
the term concerning the interaction with the particles, the function u obeys the
following equation

{
ρf (∂t + Div(u⊗ u) +∇P )− ν∆u = G,

div(u) = 0

where ν is the viscosity of the fluid. The condition div(u) = 0 is assumed by our
hypothesis about the spreading of the particles. Here, since u is a vector field,
we denoted by u ⊗ u the matrix with component (i, j) equal to uiuj, and with
Div(u⊗ u)i =

∑d
j=1 ∂xj (uiuj). Due to the incompressibility conditions one also has

Div(u⊗ u) = (u · ∇)u. In system (1.1) we set all the constants identically to one
for the sake of simplicity.

On the other hand in the equation for the particle density, by denoting with H
the acceleration of the fluid on the particles, the function F satisfies the following
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Vlasov-type equation

∂tF + v · ∇xF + divv(HF ) =
σ2

2
∆vF. (1.2)

The right hand side represents the diffusivity of the system with velocity σ, corre-
sponding the Brownian motion of the particles. Here we will treat always the case
σ > 0. The case σ = 0 is usually named in the literature simply as Vlasov-Navier-
Stokes. In this equation, if one assume particles have mass m, then m ·H is the
force exerted on the particles by the fluid. Note also that due to the differential
structure of the equation, it enjoys the property of conservation of mass

d

dt

∫ ∫
F (t, x, v) dx dv = 0.

Assuming that particles are not affected by gravity, which corresponds to assuming
the density of the particles ρp is comparable to that of the fluid ρf , the force of the
fluids on the particles reduces to the Stokes drag force

m ·H = m(u(t, x)− v).

This force is proportional to the relative velocity of each particle with respect
to that of the fluid in its position. Therefore equation (1.2) can be seen as a
Vlasov-type equation with friction and with forcing term proportional to u(t, x)

∂tF + v · ∇xF − divv(vF ) + divv(uF ) =
σ2

2
∆vF.

Moreover, the opposed force exerted by all the particles on the fluid is obtained by
Newtons Third Law an by summing up all the contributions

G = −
∫
mHF dv = −m

∫
(u(t, x)− v)F dv.

Again in system (1.1) all the constants, apart from the diffusion σ that is left
explicit, are taken to be identically one.

Thanks to the counter effect structure given by Newton Law, this system enjoys
an energy condition: setting

E(t) =
1

2

(∫
|u(t, x)|2 dx+

∫ ∫
|v|2 F dx dv

)

one has
d

dt
E(t) +

∫
|∇u(t, x)|2 dx+

∫ ∫
|u− v|2 F dx dv =

σ2

2
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In the case σ = 0 this implies the dissipation of energy property. The case where
σ 6= 0 is more intricate. In this case, by talking into account also the entropy of
the particle ensemble one has

d

dt

(
E(t) +

∫ ∫
F logF dx dv

)
+

∫ ∫
∣∣∣(u− v)F − σ2

2
∇vF

∣∣∣
2

F
dx dv

+

∫
|∇u(t, x)|2 dx = 0

This property does not directly imply any entropy inequality since the term F logF
has an indefinite sign. However the negative components of the latter can be
controlled (we omit some details here) leading to the following entropy conservation
law:

d

dt

(
E(t) +

1

2

∫ ∫
|x|2 F dx dv +

∫ ∫
F |logF | dx dv

)

+

∫ ∫ |(u− v)F −∇vF |2
F

dx dv +

∫
|∇u(t, x)|2 dx = 0.

Moving on to the particle model, let us start by introducing the discrete-
continuous dynamical system:




∂tu
N = ∆uN − uN · ∇uN −∇πN − 1

N

∑N
i=1(uNεN (X i,N

t )− V i,N
t )θεN (x−X i,N

t )

div(uN) = 0,{
dX i,N

t = V i,N
t dt

dV i,N
t = ((θεN ∗ uN)(X i,N

t )− V i,N
t ) dt+ σdBi

t

i = 1, . . . , N.

(1.3)
We say this system is discrete-continuous since, while particles are treated as
individuals, the fluid is still described by a continuous quantity. In the previous
system we assume to have N identically distributed particles that are determined
by finite dimensional SDEs. Each particle is identified by the pair (X i,N

t , V i,N
t )

which stands for position and velocity. The equation for the fluid is the classical
Navier-Stokes type but with the addition of an interaction term with the particles,
which this time is of discrete type.

Let us go a bit more into the details of the discrete model. Starting from the
equation for the particles we see that the dynamics is of second order. In the
expression for the velocity note that particles are affected by a random perturbation
in the form of Brownian motion. The diffusion coefficient σ is directly related to
the term σ2

2
∆vF appearing in equation (1.1). Moreover, the drift is given by the
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difference between the relative velocity of the particle and a local average of the
fluid. This idea is embedded in the expression

(θεN ∗ uN)(X i,N
t )

where θεN = ε−dN θ(ε−1
N x) is a mollifier (ideally with compact support) which expresses

the local area where the velocity of the fluid is averaged. The opposed mechanism
of particles on the fluid is given, as in the PDE case, by Newton Third Law by
summing all the contributions. Each particle affects the fluid in a neighborhood of
its position, with an intensity that is proportional to the relative velocity, leading
to the interaction term

1

N

N∑

i=1

(uNεN (X i,N
t )− V i,N

t )θεN (x−X i,N
t ).

The area of interaction is the same as the one in the expression for the velocity, i.e.
is given by the mollifier θεN . Here the factor 1

N
in front of the summation stands

for the mass of each particle. By this mean the total mass of the particle ensemble
is preserved as in the PDE case. Concerning physical quantities related to the
mass, let us look more closely at the volume occupied by each particle. This size is
strictly related to the scaling factor introduced in the mollifier θεN . The subject of
the proper scaling is difficult topic. In this chapter we will assume that εN satisfies

εN = N−β β ≤ 1

4
(1.4)

in the 2-dimensional case which is the case that we will treat more rigorously (the
factor 1/4 is strictly related to the dimension of the problem). This hypothesis
which may appear irrelevant is really crucial when dealing with interacting particle
system. It is connected with the topic of long or short-range interactions. This
matter is very extensive and would need a separate discussion by itself, but let us
try to explain it briefly. As we said we assumed our particles to have each mass
1
N
. At the same time we imposed our particle to have a volume (the local area

around which they interact with the fluid) which is given by the scaled mollifier θεN .
Assuming by simplicity that θ is of compact support of radius one, the radius of θεN
is ε−1

N hence the volume of each particle is of order ε−2
N = N−2β. If we want to have

particles of constant density, we see that the volume of each should be of order 1
N
,

i.e. the volume should shrink at the same rate of the mass. Hence we should have
β = 1/2 so that ε−2

N = 1
N
. However this choice is prohibited by assumption (1.4).

The difficulties behind hypothesis (1.4) are very deep (see Lemma 2.5.5 in Chapter
2) and we will not go further into more details here. Let us only mention that the
arguments about rescaling made here fall into the topic of moderate interactions,
that is a theory developed to be in between of short and long range interactions.
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By the discussion made above we see that the description of a microscopic
model for particle-fluid interaction is far from being completely rigorous. In fact
the proper behavior of a solid object which is suspended in a fluid is a very difficult
topic by itself. Including these difficulties in a model which consider infinitely
many particles would have been of a tremendous intricacy. Hence in this first
work we decided to adopt a more phenomenological description of the phenomenon.
Therefore we neglected some of the difficulties strictly related to fluid-dynamics
and focus more on other technical problems associated to the macroscopic limit.

1.2 Self interacting network: the case of the mycelium

What is presented in this section, and in the corresponding chapter, is based on
the work [21]. In Chapter 3 we are interested in the study of a biological problem:
the growth of the hyphae. Hyphae are a long filamentous structure that contribute
to make the vegetative structure of a fungus. Collectively many hyphae form the
so-called mycelium. In this chapter we deal with a system of kinetic particles as in
the previous chapter. However here we focus more on the modeling side, since we
don’t have in mind a specific macroscopic model to approximate. Hence our aim is
to analyze all the phenomena involved in the growth and propose a microscopic
model, together with a scaling limit result. Moreover, since we have in mind to
continue this study with the aid of some numerical simulations, we also propose a
regularity result for the solution of macroscopic PDE that describes the density of
the hyphae.

The growth of the hyphae, as well as that of any complex network, is a very
intricate process. Think for example about a system of neurons interacting through
electrical signals. In order to develop the graph, neurons needs to increase their
connectivity by either connecting with new nodes or by forming new relations with
other nodes. In both cases the development is lead by individuals, and modifications
happening between them affect the global behavior. The same mechanism works
for the hyphae, which is why an individual based model can be meaningful to
investigate the phenomenon. For this reason we decided to adopt this strategy
by describing the motion of the tips of each hypha. By tip, we mean the head of
any filament that compose the mycelium, and whose growth is responsible for the
expansion. In fact branches tend to increase their length by expanding in search
for nutrients, allowing the mushroom to sustain. Moreover, as seen in Figure 1.1
the linear expansion of filaments is not the only mechanism involved in the growth.
The most relevant tool that the mycelium has to expand is the formation of new
tips by a mechanism of branching. By branching we mean the creation of a new tip
from an existing one, or by creating a ramification from a filament. One can also
observe experimentally that branches can also coalesce. In fact when two moving
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Figure 1.1: Consecutive snapshot of the growth of multiple tips from a single spore.
See the increase in length of branches and the bifurcation into additional ones.

filaments meet they merge, forming a loop. With respect to Chapter 2 we see
that here the total mass is not conserved since proliferation can occur. The same
behavior will be observed at the PDE-level where proliferation will appear as zero
order term in the Fokker-Planck equation.

We start by describing the motion of the tips. These are modeled by a second
order differential equation:

{
dX i,N

t = V i,N
t dt

dV i,N
t = −λV i,N

t dt+∇CN(t,X i,N
t )dt+ σdBi

t

t ∈ [T i,N ,Θi,N) (1.5)

where the pair (X i,N
t , V i,N

t ) stands for position and velocity. We study this system
in Rd, even if the main case that we have in mind is d = 2, 3. Here Bi

t are
independent Brownian motions, and the diffusion coefficient σ > 0 takes into
account the wobbling that we observe experimentally in the growth of the hyphae.
The factor λ is the friction coefficient, that expresses the effort that hyphae have
to make to move into a solid medium. The motion of particles is driven by the
term ∇CN(t,X i,N

t ) which represent the concentration of nutrients that is needed
for the expansion and that couples the equations. As we aforementioned one key
factor to include in the model is branching, i.e. proliferation of particles. As we
see from system (1.5) each particles is active for a certain life-span [T i,N ,Θi,N).
The random time T i,N expresses the birth time of the i-th tip. We assume to start
at time zero by N individual particles (T i,N = 0 for i = 1, . . . , N). Afterwards
that may increase after a bifurcation event. Hence we consider the total number of
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particles which lived up to time t, call it NN
t . Note that we specifically consider

individuals which have been alive up to a certain time since, as mentioned above,
coalescence of branches can occur. Living particles representing moving tips can
disappear from the system after a coalescence event, as specified by the random
time Θi,N .

The mathematics of proliferation is far from being new in the field of interacting
diffusions. We will not report here a detailed survey on the mathematical techniques
used in that field, to give more attention to some less known issues. Let us
only mention that, as done in the literature, we can handle the mathematics of
proliferation by means of Poisson Point processes. To do so one has to specify what
is the distribution of points generated by the point process. In our case, since we
have to include the possibility to have branching from the present filament, we
introduce δ

X
N
t
the uniform measure on the trajectory of the particles up to time t:

δ
X
N
t

=
1

N

∫ t

0

NN
s∑

i=1

1[T i,N ,Θi,N )(s)
∣∣V i,N
s

∣∣δXi,N
s

(dx)ds. (1.6)

This is the main tool that we will use in Chap 3. For any given t this is a measure
over the space Rd which behaves like a Dirac delta on particles, but instead is
spread along all the trajectories. It gives mass only to points that belong to some of
the particles trajectories. More than that, it is corresponds to the uniform measure
on trajectories, i.e. the 1-d Hausdorff measure. The fact that (1.6) corresponds to
the uniform measure is not trivial. The key point is the presence of the velocity∣∣V i,N
s

∣∣ inside the formulation. As one does when computing the length of a curve
γ : [0, t]→ Rd

L(γ) =

∫ t

0

|γ′(s)| ds

where the length needs to be computed through the use of the velocity, the same
happens here. Note that in case of system (1.5) this was possible only due to
the Langevin dynamic. By using a first order equation that would not have been
possible due to the lack of regularity of the Brownian paths that doesn’t allow to
take derivatives in the classical sense.

We finally also introduce the equation for the concentration CN that couples
the particle equations

∂tC
N =

σ2
C

2
∆CN − (KC ∗ δXNt )CN . (1.7)

The rationale behind equation (1.7) is the following: the hyphae in order to expand
and to sustain themselves need to absorb some of the nutrients that permeate
the environment. Hence the term (KC ∗ δXNt ) with a negative sign expresses this
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absorption in an local area around the trajectories of the tips, whose range is
prescribed by the kernel KC .

Here, we highlight that one of the main difficulties that arises during the study
of this system is related to proliferation. Usually with proliferating processes one
needs to have an estimate on the average number of individuals that appear in any
finite time horizon, E

[
NN
T

]
. In the case of duplicating cells usually this is achieved

by considering a Yule process that dominates the branching process under study. It
is enough to consider a process with a rate which is bigger than the random rate of
proliferation of the cells considered. However here this strategy was not feasible due
to branching happening along all the filaments. This prevents us from establishing
an upper-bound on the rate of proliferations as in the classical case and required
the development of new techniques that where suitable in this framework.

1.3 A numerical method for the ergodic McKean-
Vlasov SDE

In this chapter, based on the work [3], we focus on some numerical aspects
related to interacting particle systems. Systems of interacting diffusions and their
corresponding Mean-Field limits have been intensively studied since the works of
McKean. These interacting diffusions pave a way to probabilistic representations
for many important nonlinear or/and nonlocal PDEs, but provide a great challenge
for Monte Carlo simulations. The non-linear dependence of the approximation
bias due to the approximation of the dynamics and the statistical error due to the
approximation of the measure renders classical variance reduction techniques not
directly applicable and consequently simulations become numerically prohibitive.
Usually the main difficulty is that, especially in the high dimensional setting,
to obtain a good approximation one needs to consider a very big number N of
particles. Consequently, since all particles can interact with each other, the cost
of simulating grows quadratically in the number N , making the computational
cost prohibitive. The high computational cost is even more pronounced when the
aim is to simulate particle systems over a long-time horizon. The interest in the
long-time simulations arises due to study of the equilibrium/invariant measures for
associated McKean-Vlasov SDEs. In this chapter we specifically tackle the problem
of approximating the McKean-Vlasov equation for large times.

Let us start by introducing the main subject of our study i.e. the McKean-Vlasov
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SDE (McV-SDE)



Xt = X0 +

∫ t

0

b(Xs, µs) ds+

∫ t

0

σ(Xs, µs) dBs

µt is the law of Xt.

(1.8)

The peculiarity of this equation is the dependence of b and σ on the law µt of the
solution. Existence and uniqueness of solutions, also for infinite times, has been
widely studied under different regularity assumptions for the coefficients. In the
previous chapters of this thesis we worked with limiting PDEs for particle system
in the form of Fokker-Planck equations. Here, even if we devote more attention at
the McV-SDE, the problems are strictly connected with what we have done before.
We recall that, with proper hypothesis on the coefficients, the law of the process
Xt satisfies the following nonlinear Fokker-Planck equation

∂

∂t
f(t, x) =

1

2

d∑

i,j=1

∂2

∂xi∂xj

(
ai,j(x, f(t, x))f(x)

)
−

d∑

i=1

∂

∂xi

(
b(x, f(t, x))f(t, x)

)
,

(1.9)
where a(x, y) = σ(x, y)σ(x, y)t. Here we don’t aim to present a complete discussion
on the relation between systems (1.8) and (1.9). We only highlight that in this
chapter we preferred to give more relevance to the McV-SDE. All the results
obtained here can hence be transposed with the suitable caution to the study of
the non-linear Fokker-Planck equation (1.9).

As we mentioned before we are particularly interested in the study of the
invariant distribution for equations (1.8). We will always consider coefficients b
and σ for which the solution converges to the stationary distribution π. One of
such examples is the following specific case of the McV-SDE

Xt = X0 −
∫ t

0

αXs ds+

∫ t

0

βE [Xs] ds+Bt.

We highlight that the dependence on the law of Xt is present only in the drift part.
Moreover the dissipative term −αXtdt is crucial in order to have convergence to
equilibrium. In fact, calling µt the law of Xt and π the invariant distribution, we
have

W2(µt, π) ≤ e−2(α−β)W2(µ0, π),

where W2 is the 2-Wasserstein distance. If α > β, i.e. if the dissipation is stronger
than the McKean-Vlasov part of the drift, we have convergence to the equilibrium
exponentially fast. Exponential type of convergence has been proved on more
general assumptions, see Chapter 4 for more extensive references on the topic. The
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aim of this chapter is to analyze multiple particle representations that will allow us
to approximate ∫

Rd
f(x)π(x) dx

where f : Rd → R is a suitable observable, for a general McV-SDE with invariant
distribution π.

Let us consider the following particle system, approximating (1.8)




X i,N
t = X i,N

0 +

∫ t

0

b(X i,N
s , SNs ) ds,+

∫ t

0

σ(X i,N
s , SNs ) dBi

s

SNt =
1

N

N∑

i=1

δXi,N
t
.

(1.10)

The measure SN is called the empirical measure of the particle system. The
expression in the drift b(X i,N

t , SNt ) can be made more explicit in those cases where
the drift b (analogue for the diffusion coefficient) has the specific form

b(x, µ) =

∫

Rd
b̃(x, y)µ(dy)

for some b̃→ Rd → R. In fact one has

b(X i,N
t , SNt ) =

1

N

N∑

j=1

b̃(X i,N
t , Xj,N

t ).

Under some regularity assumptions on the coefficients (e.g. Lipschitzianity) one
can prove that the law of any subset of size k of {X i,N} converges as a probability
measure, as N tends to infinity, to the product measure µ⊗k where µ is defined as
in (1.8). This property is called Propagation of chaos and holds even with more
general assumptions on the coefficients.

Particle system (1.10) represents the classical approach to the problem and
that we will use as a comparison. We now introduce a new particle representation
where we consider particle grouped in M ensembles or clouds, each one made of N
particles




X
(i,N),(j,M)
t =X

(i,N),(j,M)
0 +

∫ t

0

b
(
X(i,N),(j,M)
s , SN,js

)
ds+

∫ t

0

σ
(
X(i,N),(j,M)
s , SN,js

)
dBi,j

s ,

SN,jt =
1

N

N∑

i=1

δ
X

(i,N),(j,M)
t

, i = 1, . . . , N, j = 1, . . . ,M.

(1.11)
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Here Bi,j are independent Brownian Motions for each i, j. The idea is to have
ensembles made of N particles that interact with each other, but that are inde-
pendent from all the other particles that belong to different clouds. Hence for j
fixed, particles (X(i,N),(j,M))i=1,...,N interact, and they are independent any of the
(X(i,N),(j′,M))i=1,...,N for j′ 6= j. Moreover we will also follow an alternative approach
based on ergodic average. This second idea is based on the analysis of the following
interacting diffusion

Zt = X0 +

∫ t

0

(
1

s

∫ s

0

b(Zs, Zr)dr

)
ds+

∫ t

0

(
1

s

∫ s

0

σ(Zs, Zr)dr

)
dBs. (1.12)

In fact, we expect the process Zt to be a good approximation of Xt when t is large.
This intuition is due to the ergodicity in the form of exponential convergence to
the equilibrium measure. Moreover we will apply the ensembles of particle strategy
also to equation (1.12). In this chapter we will perform the analysis of the cost
of each method, by computing the mean-squared error of our approximation, and
compare the results with the naive particle approximation (1.10).

1.4 A numerical method for Kolmogorov equation
in high dimension

In this chapter, based on the work [51], we perform some analysis on Kolmogorov
equation in infinite dimension, and propose a numerical method for the finite but
high dimensional setting. The numerical analysis of PDEs in high dimension
remains one of the most challenging problems which is still to be solved. In many
disciplines, such as geophysics or climate study, the number of degrees of freedom
to be considered is enormous. In fact a large number of phenomena is involved in
these studies, leading to an incredible intricate contraption. Moreover the use of
many parameters is needed in order to obtain the desired accuracy in these field. Of
course this requirement of accuracy is counterbalanced by the incredible difficulty
of dealing with such an intricate system. For this reason these and many other
fields of study have the need of solving very high dimensional problems. Specifically
in all those frameworks where the evaluation of the parameters of the problem is
impossible, it becomes more and more relevant to quantify how the uncertainty
on the parameters affect the uncertainty of the results. For these reasons the
study Fokker-Planck or Kolmogorov equations becomes significant to tackle these
problems.

In this short introduction, to make the discussion more clear, we will treat all
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the examples in finite dimension. Our starting point is the Kolmogorov equation



∂tu(t, x) =

σ2

2
Tr
(
QD2u(t, x)

)
+ 〈Ax+B (x) , Du(t, x)〉 ,

u(0, x) = u0(x).

(1.13)

Since we treat the problem in finite dimension here u(t, x) : [0, T ] × Rd → R is
a scalar function over Rd, A,Q ∈ Rd×d are matrices, Q is positive definite and
symmetric. B is a non-linear vector field that we will always assume to be bounded
measurable. Kolmogorov equation is usually written in backward formulation. In
this chapter we will always use the forward formulation to make the numerical
analysis more clear. We used the notation D and D2 to denote the first and
second spatial partial derivatives and by 〈·, ·〉 the scalar product. By this choice
the notation is consistent with the infinite dimensional case where the euclidean
space Rd is replaced by a Hilbert space H. The SDE associated with equation
(1.13) is the following

{
dXx

t = (AXx
t +B (Xx

t )) dt+ σ
√
Q dWt,

Xx
0 = x.

(1.14)

where Wt is a Brownian motion over Rd and
√
Q is the standard square root of Q,

since Q is a symmetric positive definite matrix.
The relation between the previous SDE and equation (1.13) is

u(t, x) = E [u0(Xx
t )] . (1.15)

This connection gives the idea to compare Kolmogorov equation to probabilities
related to the stochastic process Xx

t . By taking u0(x) = 1{||x||≥R} one has

E [u0(Xx
t )] = P (||Xx

t || ≥ R) .

Moreover, by equation (1.15), we can also deduce the naive Monte-Carlo method
that can be used to solve Kolmogorov equation

u(t, x) = E [u0(Xx
t )] ≈ 1

N

N∑

i=1

u0

(
Xx,i
t

)
, (1.16)

where N is the number of samples considered, and the processes Xx,i
t , i = 1, . . . , N

are independent copies of Xx
t

Here we propose a new numerical method to improve the results of classical
Monte-Carlo method, that we will use as a comparison. It is based on some
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Gaussian analysis technique, trying to see the solution of the non-linear problem
(1.14) as a perturbation of the linear equation

{
dZx

t = AZx
t dt+

√
Q dWt,

Z0 = x.
(1.17)

Considering the semigroup Stf(x) = E [f(Zx
t )] the mild formulation of Kolmogorov

equation (1.13) is the following

u(t, x) = (Stu0)(x) +

∫ t

0

(
St−s〈B,Du(s)〉

)
(x) ds. (1.18)

This suggests us to consider the iterative scheme:

un+1(t, x) = (Stu0)(x) +

∫ t

0

(
St−s〈B,Dun(s)〉

)
(x) ds

with u0(t, x) = (Stu0)(x) = Eu0(Z
x
t ) and to take un(t, x) as an approximation of

the solution for n large enough. Of course to apply this strategy one needs to be
able to compute efficiently the expression

(
St−s〈B,Dun(s)〉

)
(x) which is far from

obvious. The way we are able to compute this expression is quite intricate and we
do not discuss it here entirely. We only present the following equation, which is
fully explained in Chapter 5

In(t, x) =
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

〈
Λ(ri+1−ri)B

(
Zx
ri

)
, Q
−1/2
ri+1−ri

(
Zx
ri+1
−e(ri+1−ri)AZx

ri

)〉
,

un+1(t, x) = un(t, x) + E
[
u0(Zx

t )In+1(t, x)
]
.

The previous formula has a very important feature that we now try to explain
here. To compute iterates un(t, x) one only needs to compute the process Zx

t and
never the original SDE (1.14). This poses a significant advantage when one has to
approximate the solution u(t, x) in several spatial points x ∈ Rd. With the naive
Monte-Carlo method, to change the point x, one has to recompute all the samples
on all Xx

t and then average. Here instead it is enough to store the samples obtained
from the process Z0

t (i.e. Zx
t starting from x = 0), compute Zx

t by linearity and
then compute the approximations un(t, x). This improvement is highlighted more
explicitly in Chapter 5 where we compare the computational time required to
compute the solution u(t, x) for many different values of x. Of course, the same
reasoning on changing x holds by changing any of the other parameters that are
not related to the Gaussian process Zx

t , such as the non-linearity B.



23

The gain obtained when changing parameters and avoiding to recompute the
stochastic process Xx

t is even more underlined when the dimension of the problem
d is large. In fact in this case the cost of re-sampling from Xx

t is even higher
than it would have been for smaller values of d. Moreover as we mentioned above,
the theoretical analysis that we performed concerning the convergence of un to u
is performed in infinite dimension on Hilbert spaces. For this reason the rate of
convergence of iterates un to the real solution is independent of the dimension of the
problem. This fact support the numerical method and emphasize the independence
from the many issues related to dimensionality.
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Part I

Kinetic Particle systems: scaling
limit
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Chapter 2

Particle-fluid interaction: the
Vlasov-Fokker-Planck-Navier-Stokes
system

2.1 Introduction

The results of this chapter are included in the works [47], [48]. In the theory
of multiphase flows, the coupled PDE system called Navier-Stokes-Vlasov-Fokker-
Planck is a way of modeling the behavior of a large number of particles immersed
into a fluid. It is made by two major components: a vector field u, representing
the velocity of the fluid at a given time and position, and a scalar valued function
F , representing the density on phase space of the particles immersed in the fluid.
In the incompressible case, when the interaction between particles and fluid is
modelled by Stokes drag force, the system is given by the following equations





∂tu = ∆u− u · ∇u−∇π −
∫
Rd(u− v)F dv;

div(u) = 0;

∂tF + v · ∇xF + divv((u− v)F ) = σ2

2
∆vF.

(2.1)

Often the case σ = 0 is considered in the literature. Here we deal with the
case σ > 0 because of technical reasons. The case σ = 0 is usually called Vlasov-
Navier-Stokes (VNS); the case σ > 0, Navier-Stokes-Vlasov-Fokker-Planck. In the
sequel, for simplicity of notations, we will often call VNS also the system above
with σ > 0.

The PDE description for the density of particles is reasonable when the number
of particles is very large and overcomes the problem of describing the details of

27
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each single particle. The aim of this chapter is to prove that this simplification
is correct: we prove that a system composed by Newtonian particles and fluid
converges to the PDE system when the number of particles tends to infinity.

The mathematical analysis of the coupled system (2.1) in dimension d = 2, 3
has received much attention in the past years. A first result of global existence
of weak solutions and large asymptotic for Stokes-Vlasov system in a bounded
domain appeared in [61]. Existence of weak solutions has been extended to the
Navier-Stokes case, hence including the convection term in the equation for the fluid,
in a periodic domain in [16]. Global existence of smooth solutions with small data
for Navier-Stokes-Vlasov-Fokker-Planck was obtained first in [57]. In [94] global
existence for smooth solutions is generalized for large data. Recent results on the
topic of uniqueness have been obtained in the case σ = 0 in [63]. We shall prove a
variant of these results adapted to the regularity of our solutions. Uniqueness plays
a fundamental role in the mathematical problem we are interested in; existence is
less relevant because it is obtained as a byproduct of our convergence result.

As said above, the aim of this work is to investigate a coupling between the fluid
and a particle system, which converges, in the limit of large number of particles, to
system (2.1). The literature on this topic is still fragmentary. The works [58] [59],
present results of PDE to PDE convergence, only implicitly motivated by particle
arguments. The works [1], [2], [8], [37], [38], [44], [64] aim to treat links between
particles and fluid but, in the trade-off between different levels of mathematical
complexity and physical realism: there in a simplified fluid regime, the correct
boundary condition for the interaction between finite size particle and the fluid is
included. Compared to these works, our choice here is a sort of phenomenological
description of interaction between particles and fluid, that keeps the structure of
Stokes drag force and that maintains the usual Navier-Stokes regime. Our attention
is devoted to others technical problems related to the macroscopic limit, instead of
the very difficult problem of the precise boundary conditions between particles and
fluid. The microscopic system considered here has the form





∂uN

∂t
= ∆uN − uN · ∇uN −∇πN − 1

N

∑N
i=1

(
uNεN (t,X i,N

t )− V i
t

)
δεN
Xi,N
t

,

div(uN) = 0,


dX i,N

t = V i,N
t dt,

dV i,N
t =

(
uNεN

(
t,X i,N

t

)
− V i,N

t

)
dt+ σdBi

t

where N is the number of particles and (X i,N
t , V i,N

t ) are position and velocity of
the particles. The equations for the fluid velocity and pressure (uN , πN) are given
by the classical Navier-Stokes equations for an incompressible Newtonian fluid
with an interaction with particles of discrete type. We choose a phenomenological
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description of the interaction:
i) the intensity of the force exerted by the fluid on each single particle is given by
the difference between the particle velocity and a local average of fluid velocity
around particle position

uNεN (t,X i,N
t ) = (θ0,εN ∗ uNt )(X i,N

t );

ii) viceversa the force exerted by each single particle on the fluid is given by
Newton’s third law: the intensity of the force is the same in (i), but with the
opposite sign. Moreover we impose an action distributed in a small neighbor of
particle position, as described by the mollified delta Dirac function

δεN
Xi,N
t

(x) = θ0,εN (x−X i,N
t ).

The choice to use local averages and locally distributed action is obviously an
artefact, convenient for the mathematical investigation; still it preserves the idea
that particles are not just points but finite objects, or at least objects with a finite
action radius, a sort of small boundary layer of interaction with the fluid.

Finally, let us comment on our previous work [48], and also on [45]. They both
deal with a similar particle system coupled with the fluid and the question of its
scaling limit. However, they are affected by important restrictions. The paper
[45] discusses only the so called two steps approach. In this setting one keeps ε
fixed when N → ∞ and removes ε only later, as a second step. As usual, the
analysis of such disjoint limits is much simpler: the first step is a classical mean
field problem (opposite to the problem considered here, see the next section on
the technical difficulties), the second step is a question of convergence of PDEs
to PDEs (essentially a repetition of schemes known from the proofs of existence
theorems for the limit system). One can mix the parameters a posteriori, taking
subsequences, but the conditions on the link are quite unrealistic and restrictive.
As in the present work, the paper [48] treats the joint limit in the two parameters,
but a special bounded modification of Stokes law is required and due to lack of a
suitable uniqueness result, we prove only convergence of subsequences. Compared
to [45], [48], the result proved here is complete, without the main restrictions of
those works. For future research, however, it would be interesting to extend further
the range of the parameter β that quantifies the radius of interaction between a
particle and the surrounding fluid. See below and in the same vein how to treat
more realistic boundary conditions between particles and fluid.

2.1.1 Difficulties

In this subsection we aim to highlight the difficulties we met in proving the
convergence from the discrete to the continuous model. Apparently it looks a mean
field result but several aspects are far from standard, as we now describe.
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Uniform control on velocity and vorticity creation by particles

The rough structure of the particle approximation used here is of a mean field
type. The empirical measure SNt of the particles

SNt =
1

N

N∑

i=1

δ(Xi,N
t ,V i,Nt )

(see also Section 2.2) will be proved to converge to the solution Ft (x, v) of the
Vlasov component of our system (in parallel, the approximation of the velocity field
will converge to the limit velocity field). However in classical mean field problems,
first it is proved that SNt converges to Ft (x, v) in the weak sense of measures, then
one can pass to the limit, thanks to the non-local structure of the nonlinear terms.
In our problem, there is a main difficulty: SNt is coupled with the approximation
uNεN of the Navier-Stokes component, in a local way. The term in the Navier-Stokes
equation takes the form (see system of equations (PS −NS) in Section 2.2)

θ0,εN ∗
((
uNεN − v

)
SNt
)

and the corresponding term in the identity satisfied by the empirical measure SNt
(Lemma 2.3.2) has the form

〈
SNt ,

(
uNεN − v

)
∇vϕ

〉
.

In order to pass to the limit in the previous terms we need uniform convergence of
uNεN to u.

This is a demanding property that we approach, using Sobolev embedding
theorem, by controlling the first derivatives of uNεN . We approach it by means of
the equation for the vorticity ωN . This strategy reveals a conceptual problem with
physical content: the presence of particles in the fluid may produce vorticity. The
estimates on the vorticity are far from being obvious, due to the interaction with
the particles. The equation for the vorticity contains the interaction term

1

N

N∑

i=1

(
uNεN

(
X i,N
t

)
− V i,N

t

)
∇⊥ · δεN

Xi,N
t

where δεN
Xi,N
t

is a smooth approximation of the delta Dirac δXi,N
t

. Hence the term

∇⊥ · δεN
Xi,N
t

may induce a blow-up in the estimates, a priori. This is a key conceptual
difficulty we had to overcome, among others of more technical nature. The fact
that an infinitesimal particle in a fluid may produce vorticity is the topic of recent
research, see [55]. These works are restricted to single particle for very difficult
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technical reasons; it may be that some link with the present research will be possible
in the future after due progresses.

Thanks to the fact that ∇ωN has a control due to the viscous term, the energy
type estimate leads to control the term

∥∥∥∥∥
1

N

N∑

i=1

(
uNεN

(
X i,N
t

)
− V i,N

t

)
δεN
Xi,N
t

∥∥∥∥∥
L2(T2)

. (2.2)

This is not a simple task; just to mention, the trivial estimate

≤ 1

N

N∑

i=1

(
uNεN

(
X i,N
t

)
− V i,N

t

)∥∥∥δεN
Xi,N
t

∥∥∥
L2(T2)

leads to diverging quantities. This introduces a new ingredient with its own
difficulties, as explained in the next subsection.

The regularized empirical measure

We control the term (2.2) by introducing the regularized empirical measure
FN
t (x, v)

FN
t (x, v) = θεN ∗ SNt

(see details in Section 2.2), inspired by works of Karl Oelschleger, see for instance
[85]. It allows us to write

∣∣∣∣∣
1

N

N∑

i=1

(
uNεN

(
t,X i,N

t

)
− V i,N

t

)
δεN
Xi,N
t

(x)

∣∣∣∣∣

≤
∥∥uNεN (t, ·)

∥∥
∞

1

N

N∑

i=1

δεN
Xi,N
t

(x) +

∣∣∣∣∣
1

N

N∑

i=1

V i,N
t δεN

Xi,N
t

(x)

∣∣∣∣∣

=
∥∥uNεN (t, ·)

∥∥
∞

∫

R2

FN
t (x, v) dv +

∣∣∣∣
∫

R2

vFN
t (x, v) dv

∣∣∣∣ .

The proof of the last line is given in Lemma 2.5.3.
Now the problem is to prove suitable estimates on the regularized empirical

measure FN
t (x, v). Controls on SNt essentially amounts to suitable estimates on

the SDEs satisfied by particles, while a full treatment of FN
t (x, v) requires both

SDEs properties and PDEs arguments applied to the identity satisfied by FN
t (x, v)

(Lemma 2.3.2). This identity however is not closed; commutators appear and
several technical difficulties arise, which perhaps are new here with respect to
previous literature.
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The cut-off and its removal

We are able to perform the estimates outlined above only when a suitable cut-off
on velocity is introduced; see χR(u) introduced in Section 2.3 and appearing in
the rest of the chapter. The idea is to use this truncated system as a bridge to
the original one. By using the truncation in the interaction between particles and
fluid we managed to produce an a priori bound independently on the number of
particles N ∣∣∣∣uN,R

∣∣∣∣
∞ ≤ CR, (Lemma 2.5.9) (2.3)

which we used to obtain a suitable tightness criterion, needed for the convergence.
We remark that this bound was only possible due to the presence of the cut-off,
since the constant provided in (2.3) depends on the threshold R of the truncation.

Therefore the preliminary result is that the PDE-particle system with cut-off
converges to the PDE system with cut-off. However, by showing that the velocity
field of the PDE system with the cut-off satisfies

∣∣∣∣uR
∣∣∣∣ ≤ C (Proposition 2.5.13)

independently on R, it is possible to prove that the PDE system with cut-off is also
solution without cut-off. In summary we can prove that the PDE-particle system
with cut-off converges to the PDE system without cut-off, see Proposition 2.5.1.
The proof of this step is organized differently from the previous description but
here we have explained the concept behind the proof.

The final problem is to prove that the cut-off can be removed also from the
approximating PDE-particle system. This seems to be a difficult question. Here
we use a special trick.

To appreciate the difficulty and the trick, think for a second to a different
problem where the approximations are not random. Assume we have proved
that uN,R converges uniformly to the limit u. Since u is uniformly bounded by a
constant R0 we deduce that, eventually in N , also uN,R is bounded, say, by R0 + 1.
Hence eventually in N , the function uN,R solves the equation without cut- off,
hence it is equal to the unique solution uN of such equation. Next, consider the
full approximating sequence (uN)N≥1 solving the equations without cut-off; this
sequence converges uniformly to u, because the property of limit involves only the
tail of the sequence and the tail coincides with the tail of the sequence

(
uN,R

)
N≥1

,
which we know to converge to u. This idea resemble us the method used to prove
well-posedness of 3D Navier-Stokes equations with strong rotation, see for instance
[52].

Unfortunately this simple idea does not work when the approximations are
random. Forget about the fact that our convergence is in law; go to another
probability space where it is almost sure. Thus, almost surely, eventually we may
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transfer the uniform bound R0 of the limit solution to a bound R0 + 1 for the
approximations. But this time the "eventually" qualification is random! Hence,
given a large N , we cannot claim that the stochastic process uN,R coincides with
the unique solution uN of the equation without cut-off, because the bound on uN,R
is true only for certain ω’s.

So the problem is that we have two families of stochastic processes,
(
uN,R

)
N≥1

and
(
uN
)
N≥1

and we know that for a.e. ω there is N0 (ω) such that for N ≥ N0 (ω)

the paths of the sequence
(
uN,R (ω)

)
N≥N0(ω)

are bounded, say, by R0 + 1 < R. We
want to deduce a relation between

(
uN,R

)
N≥1

and
(
uN
)
N≥1

from this property.
To this aim we invoke a property of path-by-path uniqueness (see [46]) opposite
to the usual concept of pathwise uniqueness: given ω, for N ≥ N0 (ω) the path
uN,R (ω) satisfies the equation without cut-off (formulated for that single ω) and by
path-by-path uniqueness it coincides with uN (ω). The conclusion is the same as in
the deterministic case: consider the sequence of processes

(
uN
)
N≥1

; for a.e. ω, the
sequence of functions

(
uN (ω)

)
N≥1

converges to u because it coincides, eventually,
with the sequence

(
uN,R (ω)

)
N≥1

.The first major result of path-by-path uniqueness
for SDEs has been proved by [13] and it is a very sophisticated result; however,
here we have additive noise and relatively smooth coefficients, hence path-by-path
uniqueness in our case is not difficult. We isolated the idea behind this reasoning
into a general criterion, that we applied to transfer the convergence from the
particle system where the cut-off is present, to the system without the cut-off.

The structure of this chapter is the following: In Section 2.2 we introduce all the
notation that we will use and we present our main result, Theorem 2.2.3. In Section
2.3 we collect some preliminary result that will be needed in the rest of the chapter,
while Section 2.4 is devoted to a theorem of uniqueness for the Vlasov-Navier-Stokes
system. In Section 2.5 we prove a first intermediate result, that is the convergence
of the particle system with the cut-off to the Vlasov-Navier-Stokes system without
the cut off. Finally, in Section 2.6 we manage to remove the cut-off also from the
approximating system, ending the proof of Theorem 2.2.3.

2.2 Notation and Main Results
We begin this section by introducing rigorously the Vlasov-Navier-Stokes system

and its associated particle model. We will always assume the framework of a filtered
probability space, denoted by (Ω,F , {Ft} ,P). For the whole chapter we will also
work on the two dimensional torus T2 = R2/Z2. The case of other bounded
domains is more delicate due to creation of vorticity at the boundaries. Some of the
intermediate results stated here will work also in higher dimension. However, to
obtain the full result, due to uniqueness and smoothness obstacles, dimension d = 2
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is needed, so we will always keep the dimension fixed for a matter of simplicity.
We start by recalling the Vlasov-Navier-Stokes PDE-system




∂tu = ∆u− u · ∇u−∇π −
∫
R2(u− v)F (x, v) dv (t, x) ∈ [0, T ]× T2

∂tF + v · ∇xF + divv((u− v)F ) = σ2

2
∆vF (t, x, v) ∈ [0, T ]× T2 × R2

div(u) = 0,

(V NS)
σ > 0, with initial condition u(0, ·) = u0 and F (0, ·, ·) = F0. We also introduce the
continuous-discrete Particle System approximating (V NS):





∂tu
N = ∆uN − uN · ∇uN −∇πN − 1

N

∑N
i=1(uNεN (X i,N

t )− V i,N
t )δεN

Xi,N
t

div(uN) = 0,{
dX i,N

t = V i,N
t dt

dV i,N
t = (uNεN (X i,N

t )− V i,N
t ) dt+ σdBi

t

i = 1, . . . , N

(PS −NS)
with initial condition

uN(0, ·) = u0, (X i,N
0 , V i,N

0 )
Law∼ F (0, ·, ·) dx dv i.i.d

namely the random variables (X i,N
0 , V i,N

0 ) are independent and identically dis-
tributed with density F (0, x, v). In the previous equations, (Bi

t)t≥0 is a sequence
of independent Brownian motions, θ0 is a mollifier over the torus, εN ∈ R+ is a
sequence converging to zero, and

θ0,εN (x) := ε−2
N θ0 (x/εN) , uNεN := u ∗ θ0,εN , δεN

Xi,N
t

(x) := θ0,εN (x−X i,N
t ),

All the hypothesis and requirements on the objects introduced above are collected
in subsection 2.2.3.

2.2.1 Definition of weak solutions

Definition 2.2.1 (Definition of weak solution of (V NS)). We say a pair (u, F ) is
a weak solution of (V NS) if the following conditions are satisfied:

a)
u ∈ L∞([0, T ];L2(T2)) ∩ L2([0, T ];H1(T2));

F ∈ L∞([0, T ];L1(T2 × R2) ∩ L∞(T2 × R2)), F ≥ 0;

F |v|2 ∈ L∞([0, T ];L1(T2 × R2));
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b) for all ϕ ∈ C∞([0, T ]× T2;R2) with divϕ = 0 we have

〈ut, ϕt〉 = 〈u0, ϕ0〉+

∫ t

0

〈us,
∂ϕs
∂s
〉ds+

∫ t

0

〈us,∆ϕs〉ds+

∫ t

0

〈us · ∇ϕs, us〉ds

−
∫ t

0

∫

R2

∫

T2

ϕs(x)(us(x)− v)Fs(x, v) dx dv ds,

c) for all ψ ∈ C∞([0, T ]× T2 × R2;R) with compact support in v we have

〈Ft, ψt〉 = 〈F0, ψ0〉+

∫ t

0

〈Fs,
∂ψs
∂s
〉ds+

σ2

2

∫ t

0

〈Fs,∆vψs〉ds+

∫ t

0

〈Fs, v · ∇xψs〉ds+

∫ t

0

〈Fs, (us − v) · ∇vψs〉ds;

Definition 2.2.2 (Definition of Bounded weak solution of (V NS)). We say a pair
(u, F ) is a bounded weak solution of (V NS) if it is a weak solution and

u ∈ L∞([0, T ]× T2).

We refer to Theorem 2.4.1 for an uniqueness result for bounded weak solutions.
Existence of bounded weak solutions for system (V NS) will be obtained as a
consequence of our main convergence result.

2.2.2 The Empirical measure of the particle system

Before stating our main result we introduce some function spaces defined as
follows. Given the space E = T2 × R2 we introduce

P1(E) =

{
µ probability measure on (E,B(E)) |

∫

E

|x| µ(dx) <∞
}

the space of all probability measure on the Borel sets of E, with finite first moment.
We endow this space with the Wasserstein−1 metric, that can be defined equivalently
as

W1(µ, ν) = sup
[ϕ]Lip≤1

∣∣∣∣
∫

E

ϕdµ−
∫

E

ϕdν

∣∣∣∣

where [ϕ]Lip is the usual Lipschitz seminorm. Endowed with this metric the space
P1 becomes a complete separable metric space, whose convergence implies the weak
convergence of probability measures.
From now on, when µ is a measure and f is a function, we will denote by 〈f, µ〉
the integration in full space of f with respect to µ.
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We now introduce the empirical measure of the particle system

SNt =
N∑

i=1

δ(Xi,N
t ,V i,Nt ), (2.4)

which is random measure on (Ω,F ,P), on the space C([0, T ];P1(T2 × R2)). We
will consider a smoothed version of the empirical measure: let us introduce two
functions θ0 : T2 → R and θ1 : R2 → R which are C∞, non negative and integrate
to one. Introduce also

θ(x, v) := θ0(x)θ1(v)

which is a function on the product space T2 × R2. Consider then

θεN (x, v) = ε−2
N θ0(ε−1

N x)ε−2
N θ1(ε−1

N v) = θ0,εN (x)θ1,εN (v) (2.5)

and let us define

FN
t (x, v) := θεN ∗ SNt =

1

N

N∑

i=1

θ0,εN (x−X i,N
t )θ1,εN (v − V i,N

t )

the mollified empirical measure.

Remark 1. Note that the function θ0,εN in the previous equation, appear in system
(PS −NS) in the coupling term.

In what follows and in the rest of the chapter we will adopt the following
notation for the moments on the v component for the function F :

mkF (x) :=

∫

R2

|v|k F (x, v) dv, MkF :=

∫

T2

∫

R2

|v|k F (x, v) dv dx.

where mkF (x) is function over T2 while MkF ∈ R.

2.2.3 Main Result

We summarize all the main hypotheses of our framework:

1) u0 ∈ H2(T2);
2) F0 ∈ (L1 ∩ L∞)(T2 × R2) and M6F0 <∞;
3) θ(x, v) = θ0(x)θ1(v), θ0 and θ1 mollifiers on T2 and R2 respectively, such that
|∇θ0(x)| ≤ θ0(x) and supp(θ1) ⊆ B(0, 1). Moreover θ1(v) satisfies the following
symmetry assumption

∫
R2 θ

1(v)v dv = 0;
4) The scaling factor εN satisfies εN = N−β with β ≤ 1/4;
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Remark 2. We remark that hypothesis (3) is needed in Lemma 2.5.5 to obtain the
first a priori estimate on the mollified empirical measure. Regarding the scaling
factor in (4), this hypothesis is also needed for Lemma 2.5.5: the bound on β is
strictly related to the space dimension and to the Lp norm that is computed. In
our case, we will compute the L4 norm, and the general requirement in dimension
d is

β ≤ d

3d+ 2
.

In what follows we will always use the notation . to indicate that the inequality
holds, up to a multiplicative constant that does not depend on any of the key
parameters involved. To emphasize the dependence on one of those parameter
we will adopt the convention .X to denote the dependence on the parameter X.
Moreover we will make use of the letter C to mark a constant, whose value does
not matter for the argument.

We are finally able to present our main result:

Theorem 2.2.3. Under hypothesis of subsection 2.2.3, the family of laws
{
QN
}
N∈N

of the couple (uN , SN)N∈N is tight on C([0, T ] × T2) × C([0, T ];P1(T2 × R2)).
Moreover

{
QN
}
N∈N converges weakly to δ(u,F ), where the couple (u, F ) is the

unique bounded weak solution of system of equation (V NS).

2.3 Preliminary results.
In this section we collect the basic results about our particle systems, and all

the technical inequalities that will be used in the rest of the chapter.
In order to obtain Theorem 2.2.3, it is necessary to introduce another coupled

system of PDE-SDE, where the interaction between the particles and fluid is
truncated. Introduce for R > 0 the cut-off function χ0

R : R→ [0, 1] defined as

χ0
R(x) =

{
1 if x ≤ R− 1

0 if x ≥ R

and that is C∞(R). Define also χR(u) = χ0
R(||u||L∞(T2)). With this choice of

notation one has
||uχR(u)||L∞(T2) ≤ R.

Introduce now the truncated PDE-system:




∂tu
R = ∆uR − uR · ∇uR −∇π −

∫
R2(u

R − v)χR(uRt )FR(x, v) dv

∂tF
R = σ2

2
∆vF

R − v · ∇xF
R − divv((u

RχR(uR)− v)FR)

div(uR) = 0,

(V NSR)
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with the same initial conditions as system (V NS). We also introduce the continuous-
discrete truncated Particle System approximating (V NSR):




∂tu
N,R = ∆uN,R − uN,R · ∇uN,R −∇πN,R

− 1
N

∑N
i=1(uN,RεN

(X i,N,R
t )− V i,N,R

t )χR(uN,Rt ) δεN
Xi,N,R
t

div(uN,R) = 0,{
dX i,N,R

t = V i,N,R
t dt

dV i,N,R
t = (uN,RεN

(X i,N,R
t )χR(uN,Rt )− V i,N ;R

t ) dt+ σdBi
t

i = 1, . . . , N

(PSR −NSR)
using the same notation and initial condition as (PS −NS).

Definition 2.3.1 (Definition of bounded weak solution of (V NSR)). We say a
pair (uR, FR) is a bounded weak solution of (V NSR) if the following condition are
satisfied:

a)
uR ∈ L∞([0, T ]× T2) ∩ L2([0, T ];H1(T2));

FR ∈ L∞([0, T ];L1(T2 × R2) ∩ L∞(T2 × R2)), FR ≥ 0;

F |v|2 ∈ L∞([0, T ];L1(T2 × R2));

b) for each divergence free, C∞ vector field ϕ : [0, T ]× T2 → R2 we have

〈uRt , ϕt〉 = 〈uR0 , ϕ0〉+

∫ t

0

〈uRs ,
∂ϕs
∂s
〉ds+

∫ t

0

〈uRs ,∆ϕs〉ds+

∫ t

0

〈uRs · ∇ϕs, uRs 〉ds

−
∫ t

0

∫

R2

∫

T2

ϕs(x)(uRs (x)− v)χR(uRs )FR
s (x, v) dx dv ds,

c) for each C∞ function ψ : [0, T ]× T2 × R2 → R, we have

〈FR
t , ψt〉 = 〈FR

0 , ψ0〉+

∫ t

0

〈FR
s ,
∂ψs
∂s
〉ds+

σ2

2

∫ t

0

〈FR
s ,∆vψs〉ds+

∫ t

0

〈FR
s , v · ∇xψs〉ds+

∫ t

0

〈FR
s , (u

R
s χR(uRs )− v) · ∇vψs〉ds;

Applying the maximum principle to system of equation (V NSR) we have
∣∣∣∣FR(t, x, v)

∣∣∣∣
Lp(T2×R2)

≤ CT ||F0(x, v)||Lp(T2×R2) ∀p > 1
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so that ∣∣∣∣FR(t, x, v)
∣∣∣∣
L∞(T2×R2)

≤ C

independently on R. We now introduce the empirical measure of the truncated
particle system

SN,Rt =
N∑

i=1

δ(Xi,N,R
t ,V i,N,Rt )

and its associated mollified empirical measure

FN,R
t (x, v) = θεN ∗ SN,Rt .

We now recall the identity satisfied by the empirical measure SNt .

Lemma 2.3.2. For every test function ϕ : T2 × R2 → R the empirical measure
SNt satisfies the following identity

d〈SNt , ϕ〉 = 〈SNt , v · ∇xϕ〉 dt+ 〈SNt , (uNεN − v) · ∇vϕ〉 dt

+
σ2

2
〈SNt ,∆vϕ〉 dt+ dMN,ϕ

t ,

with

MN,ϕ
t =

σ

N

N∑

i=1

∫ t

0

∇vϕ
(
X i,N
t , V i,N

t

)
· dBi

t.

Moreover FN
t (x, v) = (θεN ∗ SNt )(x, v) satisfies:

dFN
t =

σ2

2
∆vF

N
t − divv(θ

εN ∗ (uNεN − v)SNt ) dt

− divx(θ
εN ∗ vSNt ) dt+ dMN,εN

t ,

with MN,εN
t = M

N,θεN (x−·,v−·)
t .

Proof. The first part follows easily by applying Itô formula to ϕ(X i,N
t , V i,N

t ) and
using linearity. The second part follows by taking ϕ(·, ·) = θεN (x− ·, v − ·).
The analogue of the previous result holds for the empirical measure of the truncated
system SN,R, as well as for it mollified version FN,R. We now state the kinetic
energy balance for the truncated system:

Lemma 2.3.3. With the previous notation, we denote with EN,R the kinetic energy
of the microscopic system,

EN,R(t) =
1

2

∫

T2

∣∣∣uN,Rt (x)
∣∣∣
2

dx+
1

2N

N∑

i=1

∣∣∣V i,N,R
t

∣∣∣
2

.
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One has formally

1

2

d

dt
EN,R(t) +

∫

T2

∣∣∣∇uN,Rt (x)
∣∣∣
2

dx dt+

+
1

N

N∑

i=1

∣∣∣uN,RεN
(X i,N,R

t )χR(uN,Rt )− V i,N,R
t

∣∣∣
2

dt ≤

≤ σ2 dt+
σ

N

N∑

i=1

V i,N,R
t · dBi

t.

Proof. The lemma follows by Itô formula and by classical energy estimates for
uN,R.

Remark 3. The last inequality guarantees that, even if the truncated system has
no direct interpretation for the dynamics of particle-fluid, it maintains the basics
physical properties.

An analogue of the previous result holds for the limit PDE system (V NSR), as
well as for (V NS). We state it in the case of system (V NSR) and omit the proof,
which is classical.

Lemma 2.3.4. If (uR, FR) is a weak solution of (V NSR), denoting with E the
kinetic energy of the macroscopic system

E(t) =
1

2

(∫

T2

∣∣uRt
∣∣2 dx+

∫

R2

∫

T2

|v|2 FR
t dx dv

)
,

one has

d

dt
E(t) +

∫

T2

∣∣∇uRt
∣∣2 dx+

∫

R2

∫

T2

FR
t

∣∣uRt − v
∣∣2 χR(uRt ) dx dv =

σ2

2
||F0||L1(R2×T2).

Moreover there exists a constant C, independent on R such that
∫ T

0

∫

R2

∫

T2

|v|2 FR
t dx dv dt ≤ C.

Remark 4. By the previous lemma we have a bound on uR in the norm L2([0, T ];H1(T2))
independently on R. By Sobolev embedding in dimension two we also have an
uniform bound with respect to R on uR in the space L2([0, T ];Lp(T2)) for all
p <∞.

We now collect all the inequalities concerning the marginal distributions of the
function F : some of them are classical, see [61], [94], while others have been used
in [48].
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Lemma 2.3.5. If F is positive, defined on T2×R2 and
∫ ∫

F (x, v) dx dv = 1, then
the followings hold

1.
||m0F ||2L2(T2) . (||F ||L∞(T2×R2) + 1)2M2F,

||m0F ||4L4(T2) . (||F ||L∞(T2×R2) + 1)4M6F ;

2.
||m1F ||2L2(T2) . (||F ||L∞(T2×R2) + 1)2M4F ;

3.
||m0F ||2L2(T2) . ||F ||

4
L4(T2×R2) +M3F ;

4.
||m1F ||2L2(T2) . ||F ||

4
L4(T2×R2) +M6F ;

5. For all k < k′

MkF . ||F ||L1(T2×R2) +Mk′F.

Proof. All the inequalities are derived through the same strategy: 1. and 2. are
classical, see [61], while the proof of 3. can be found in [48], so we only outline the
main idea. For inequality 1. and 3. let us consider the following decomposition

∫

R2

F dv =

∫

|v|≤r(x)

F dv +

∫

|v|>r(x)

F dv

≤
∫

|v|≤r(x)

F dv +
1

r(x)k

∫

|v|>r(x)

|v|k F dv

where r(x) will be chosen in the next lines. Now one can estimates the integral
on the ball of radius r(x) using the infinity norm of F for inequality 1. or using
Holder inequality to obtain ||F ||L4 for inequality 3. To obtain the desired result,
one has to take the square both sides, integrate on T2 and choose r(x) in order to
group all the terms. For inequality 2. and 4. one has just to decompose

∫
|v|F dv

and apply the same strategy, while for 5 is enough to take r(x) ≡ 1.

Remark 5. Inequality 3. and 4. will be used to prove a first tightness result in
Section 2.5. Motivated by the fact that the infinity norm is not available on the
mollified empirical measure, we propose a variant of 1. and 2., avoiding the use of
such norm. Inequalities 1. and 2. will be used in Section 2.5 in order to prove a
bound on the infinity norm of uR, while 5. will be used in the next lemma.

We now state and prove a variant of Lemma 2.1 in [61]. This variation is needed
due to the presence of the noise on the diffusion on the particle velocity, i.e. the
presence of ∆v in the equation for FR.
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Lemma 2.3.6. If (uR, FR) is a bounded weak solution of (V NSR), k > 2 and if
MkF0 is finite, then there exists a constant Ck, independent on R, such that

sup
t∈[0,T ]

MkF
R
t ≤ Ck.

The same result holds for any (u, F ) weak solutions of (V NS).

Proof. In this proof we omit the superscript R in (uR, FR) to short the notation.
We start by computing

d

dt

∫

R2

∫

T2

|v|k Ft dx dv .
∫

T2

|u(t, x)|
∫

R2

|v|k−1 Ft dv dx+

∫

R2

∫

T2

|v|k Ft dx dv

+

∫

R2

∫

T2

|v|k−2 Ft dx dv.

Following [61] we have
∫

T2

|u(t, x)|
∫

R2

|v|k−1 Ft dv dx . ||ut||Lk+2(T2)

(∫

R2

∫

T2

|v|k Ft dx dv
)1− 1

k+2

,

while, using Lemma 2.3.5 inequality 5. we have
∫

R2

∫

T2

|v|k−2 Ft dx dv ≤
∫

R2

∫

T2

|v|k Ft dx dv + ||Ft||L1(T2×R2) .

Hence we get

MkFt .MkF0 +

∫ t

0

||us||Lk+2(T2)

(∫

R2

∫

T2

|v|k Fs dx dv
)1− 1

k+2

dt

+

∫ t

0

MkFs ds+ C.

We now note that
(∫

R2

∫

T2

|v|k Fs dx dv
)1− 1

k+2

≤ C

(∫

R2

∫

T2

|v|k Fs dx dv + 1

)
,

hence we obtain

MkFt ≤MkF0 + C

∫ t

0

(||us||Lk+2(T2) + 1)MkFs ds+ C

∫ t

0

(||us||Lk+2(T2) + 1) ds ≤

≤ C(MkF0 + ||u||L2([0,T ];Lk+2(T2))) + C

∫ t

0

(||us||Lk+2(T2) + 1)MkFs ds.

We conclude by classical Gronwall Lemma applied to the function MkFt and by
Remark 4.
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2.3.1 Maximum principle for weak solutions of the linear
Vlasov-Fokker-Planck equation

We now focus on boundedness of weak solutions for the linear Vlasov-Fokker-
Planck equation

∂tF + v · ∇xF + divv(a(t, x, v)F ) = ∆vF.

Boundedness of solutions will be fundamental in the latter when we will prove that
the limit points, in the appropriate sense, of particle system (PSR −NSR) are
supported on bounded weak solutions of (V NS).

While this topic is classical in the case of smooth solutions, the case of weak
solutions is more delicate. What follows is mainly an adaptation of the work [36],
Appendix A, Proposition A.3.
In that work the author assumed the vector field a to be

a ∈ L∞([0, T ]× T2 × R2), divv(a) ∈ L∞([0, T ]× T2 × R2),

and solutions F are assumed to belong to the set

Y :=

{
F ∈ L2([0, T ]×T2;H1(R2)) s.t. ∂tF + v ·∇xF ∈ L2([0, T ]×T2;H−1(R2))

}
.

On these solutions, a maximum principle is proved,

||Ft||L∞(T2×R2) ≤ C ||F0||L∞(T2×R2) .

In our case, we have to consider

a(t, x, v) = u(t, x)− v (2.6)

hence, we cannot apply directly the result presented in [36] since the function
a(t, x, v) is not globally bounded. However, it is possible to recover the same result
by considering some estimates on higher moments for the function F . If a satisfies
(2.6), where u is uniformly bounded, one can consider

Ỹ :=

{
F ∈ L2([0, T ]× T2;H1(R2)) s.t. vF ∈ L2([0, T ]× T2 × R2),

∂tF + v · ∇xF ∈ L2([0, T ]× T2;H−1(R2))

}
.

Namely, in this setup the same result proved in [36] still works, provided that one
can consider solutions satisfying

∫ T

0

∫

T2

∫

R2

|v|2 F 2
s dx dv ds <∞.
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Without going into the details of this adaptation, we only remark that this additional
condition is achievable under our hypothesis, since

∫ T

0

∫

T2

∫

R2

|v|2 F 2
s dx dv ds =

∫ T

0

∫

T2

∫

R2

|v|2 F
1
2
s F

3
2
s dx dv ds

≤
(∫ T

0

∫

T2

∫

R2

|v|4 Fs dx dv ds
) 1

2
(∫ T

0

∫

T2

∫

R2

F 3
s dx dv ds

) 1
2

,

and we will show how to control the last two terms when needed.

2.4 Uniqueness for bounded weak solutions of sys-
tem of equations (V NS)

In this section we isolate a first major result needed to prove Theorem 2.2.3.
We preferred to isolate it here, because it has some interest by itself. We present
an uniqueness result for (V NS) in the class of bounded weak solutions (Definition
(2.2.2)). This result is required in order to prove that converging subsequences of
the laws of (uNk , SNk) are all supported on the same limit, which are in fact weak
solutions of (V NS).

Before going into the details of this Theorem let us make some remark about
the hypothesis. We first highlight that the boundedness of solutions on the
fluid component is strictly needed: we will make frequent use of the fact that
u ∈ L∞([0, T ] × T2) in order to close some of the estimates needed to end the
proof. We also remark that, even if in the proof we used the uniform bound
||u||L∞([0,T ]×T2), with a bit more effort it is possible to complete the proof using
only u ∈ L2([0, T ];L∞(T2)). Motivated by the fact that in this work we prove
existence of solutions uniformly bounded in time and space, we prefer to choose
u ∈ L∞([0, T ]× T2). Regarding the assumptions on weak derivatives, we require
only

u ∈ L∞([0, T ]× T2) ∩ L2([0, T ];H1(T2))

avoiding any assumption on the second derivative of u.
Also in the following proof we will make frequent use of Gagliardo-Nirenberg
inequality in dimension two

||u||Lp . ||u||
2
p

L2 ||∇u||
2
q

L2

where 1
p

+ 1
q

= 1
2
. However, this is only needed to minimize the hypothesis on MkF0,

required to be finite only for some k strictly bigger than 4. One could have used
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the classical Ladyzhenskaya’s inequality (p = q = 4) with the downside of requiring
higher-order moments to be finite.
The proof of this result is mainly inspired by the work [24].

Theorem 2.4.1. Let (u1, F1) and (u2, F2) be two bounded weak solutions (Definition
(2.2.2)) with the same initial conditions, of system (V NS). If

M4+εFi(0) <∞

for some ε > 0, then u1 = u2 and F1 = F2.

Proof. We introduce the new variables F = F1 − F2 and u = u1 − u2. Then the
pair (u, F ) satisfies in the weak sense

∂tu = ∆u− u · ∇u1 − u2 · ∇u−∇(π1 − π2)−
∫

R2

(uF1 + u2F − vF ) dv,

∂tF = ∆vF − v · ∇xF − divv(uF1 + u2F − vF )

with (u(0, ·), F (0, ·, ·)) = 0. We prove uniqueness by applying Gronwall Lemma to
the quantity

||ut||2L2(T2) +
∣∣∣
∣∣∣〈v〉k Ft

∣∣∣
∣∣∣
2

L2(T2×R2)

for some k > 2 which will be chosen later and where 〈v〉 = (1 + |v|2)
1
2 .

We start by estimating ||ut||2L2(T2): computing the time derivative we have

d

dt
||u||2L2(T2) + ||∇u||2L2(T2) .

−
∫

T2

u(u · ∇u1) dx−
∫

T2

u(u2 · ∇u) dx

+

∫

T2

u

∫

R2

vF dvdx−
∫

T2

u

∫

R2

uF1 dvdx−
∫

T2

u

∫

R2

u2F dvdx. (2.7)

Integrating by parts the term
∫

T2

u(u2 · ∇u) dx = 0

vanishes, while the term

−
∫

T2

u

∫

R2

uF1 dvdx = −
∫

T2

∫

R2

u2F1 dvdx ≤ 0
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can be neglected due to positivity of F1. Hence we can estimate the remaining
terms as

(2.7) . −
∫

T2

u(u · ∇u1) dx+

∫

T2

u

∫

R2

vF dvdx

−
∫

T2

u

∫

R2

u2F dvdx = (I) + (II) + (III).

where

(I) ≤
∫

T2

|u| |∇u| |u1| dx ≤ ||u1||∞
∫

T2

|u| |∇u| dx

. 1

δ
||u||2L2(T2) + δ ||∇u||2L2(T2)

and δ > 0 can be taken arbitrarily small.

(II) ≤
∫

R2

∫

T2

|u| |v|F dxdv ≤
∫

R2

∫

T2

|u|
〈v〉k−1

〈v〉k F dxdv

≤
∫

T2

|u|2 dx
∫

R2

1

〈v〉2(k−1)
dv +

∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)

. ||u||2L2(T2) +
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
,

because 2(k − 1) > 2 being k > 2.

(III) ≤
∫

R2

∫

T2

|u| |u2|F dxdv ≤ ||u2||∞
∫

R2

∫

T2

|u|
〈v〉k
〈v〉k F dxdv

.
∫

T2

|u|2 dx
∫

R2

1

〈v〉2k
dv +

∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
. ||u||2L2(T2) +

∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
.

This ends the estimate for ||u||2L2(T2). Concerning
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
we proceed by

computing the time derivative

d

dt

∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
+
∣∣∣
∣∣∣〈v〉k∇vF

∣∣∣
∣∣∣
2

L2(T2)
.

+

∫

R2

∫

T2

〈v〉2k−2 F 2 dxdv −
∫

R2

∫

T2

〈v〉2k Fv · ∇xF dxdv

−
∫

R2

∫

T2

〈v〉2k Fdivv(u2F ) dxdv −
∫

R2

∫

T2

〈v〉2k Fdivv(uF1) dxdv

+

∫

R2

∫

T2

〈v〉2k Fdivv(vF ) dxdv. (2.8)
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The first term on the r.h.s. can be estimated with
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
, being 〈v〉 ≥ 1.

By a standard integration by parts argument, it is proved that the second term is
equal to zero. Hence, what is left from (2.8) is

−
∫

R2

∫

T2

〈v〉2k Fdivv(u2F ) dxdv −
∫

R2

∫

T2

〈v〉2k Fdivv(uF1) dxdv

+

∫

R2

∫

T2

〈v〉2k Fdivv(vF ) dxdv = (IV ) + (V ) + (V I).

Now we proceed by treating each term separately:

(IV ) = −1

2

∫

R2

∫

T2

〈v〉2k u2 · ∇vF
2 dxdv ≤

∫

R2

∫

T2

〈v〉2k−1 |u2|F 2 dxdv

. ||u2||∞
∫

R2

∫

T2

〈v〉2k F 2 dxdv .
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
.

(V ) =

∫

R2

∫

T2

∇v(〈v〉2k F ) · uF1 dxdv ≤
∫

R2

∫

T2

〈v〉2k−1 F |u| F1 dxdv

+

∫

R2

∫

T2

〈v〉2k |∇vF | |u| F1 dxdv.

The first term on the r.h.s. of the last inequality can be treated in the following
way
∫

R2

∫

T2

〈v〉2k−1 F |u| F1 dxdv =

∫

R2

∫

T2

(
〈v〉k F

) |u|
〈v〉
(
〈v〉k F2

)
dxdv

≤
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
L2(T2×R2)

||u||Lp(T2)

(∫

R2

1

〈v〉p dv
) 1

p ∣∣∣
∣∣∣〈v〉k F2

∣∣∣
∣∣∣
Lq(T2×R2)

(2.9)

where p and q are such that 1
p

+ 1
q

+ 1
2

= 1. Note that p > 2 so that 1/ 〈v〉p
is integrable in dimension two. Applying Gagliardo-Nirenberg inquality to the
previous identity we have

(2.9) ≤
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
L2(T2×R2)

||u||
2
p

L2(T2) ||∇u||
2
q

L2(T2)

∣∣∣
∣∣∣〈v〉k F2

∣∣∣
∣∣∣
Lq(T2×R2)

.
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(T2×R2)
+

1

δ
||u||2L2(T2) + δ

∣∣∣
∣∣∣〈v〉k F2

∣∣∣
∣∣∣
q

Lq(T2×R2)
||∇u||2L2(T2)

where δ can be taken arbitrarily small. In order to control the quantity∣∣∣
∣∣∣〈v〉k F2

∣∣∣
∣∣∣
q

Lq(T2×R2)
at the end of the proof we will impose that kq < 4 + ε. On the
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other hand for the second term on the r.h.s. of (V ), introduce α > 0 such that
αp > 2 so that
∫

R2

∫

T2

〈v〉2k |∇vF | |u| F1 dxdv =

∫

R2

∫

T2

〈v〉 |∇vF |
|u|
〈v〉α 〈v〉

k+α F1 dxdv

≤
∣∣∣
∣∣∣〈v〉k |∇vF |

∣∣∣
∣∣∣
L2(T2×R2)

||u||Lp(T2)

(∫

R2

1

〈v〉αp dv
) 1

p ∣∣∣
∣∣∣〈v〉k+α F1

∣∣∣
∣∣∣
Lq(T2×R2)

.

Now we apply Gagliardo-Niremberg inequality and Young inequality, in the same
manner as we treated (2.9), obtaining

. δ
∣∣∣
∣∣∣〈v〉k |∇vF |

∣∣∣
∣∣∣
2

L2(T2×R2)
+

1

δ2
||u||2L2(T2) + δ

∣∣∣
∣∣∣〈v〉k+αF1

∣∣∣
∣∣∣
q

Lq(T2×R2)
||∇u||2L2(T2) .

We require that (k + α)q < 4 + ε in order to match our hypothesis on M4+εF (0).
This ends the term in (V ). For the last one, by the product rule

(V I) .
∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(R2×T2)
+

∫

R2

∫

T2

〈v〉2k+1∇v(F
2) dxdv .

∣∣∣
∣∣∣〈v〉k F

∣∣∣
∣∣∣
2

L2(R2×T2)
.

What is left, before applying Gronwall Lemma, is only to find parameters (k, p, q, α)
matching all the needed constraints:





k > 2;
1
p

+ 1
q

+ 1
2

= 1;

αp > 2;

(k + α)q < 4 + ε.

The rationale behind this is the following: k and q can be taken arbitrarily close
to 2. Doing so, p will be very large and hence α can be take arbitrarily small
preserving the condition αp > 2, and having (k + α) close to 2.

These conditions allow us obtain that∣∣∣
∣∣∣〈v〉k+α F1

∣∣∣
∣∣∣
q

Lq(T2×R2)
,
∣∣∣
∣∣∣〈v〉k F2

∣∣∣
∣∣∣
q

Lq(T2×R2)
,

∫

R2

1

〈v〉αp dv ≤ C,

being
∣∣∣
∣∣∣〈v〉k+α F1

∣∣∣
∣∣∣
q

Lq(T2×R2)
≤ ||F1||q−1

L∞(T2×R2)

∫

R2

∫

T2

〈v〉(k+α)q F1 dxdv

. ||F1||q−1
L∞(T2×R2) (||F1||L1(T2×R2) +M(k+α)qF1) ≤ C.

Summarizing we have obtained

d

dt
||ut||2L2(T2) +

d

dt

∣∣∣
∣∣∣〈v〉k Ft

∣∣∣
∣∣∣
2

L2(T2×R2)
≤ C1 ||ut||2L2(T2) + C2

∣∣∣
∣∣∣〈v〉k Ft

∣∣∣
∣∣∣
2

L2(T2×R2)
,

hence by Gronwall Lemma we obtain u ≡ 0 and F ≡ 0, proving uniqueness.
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2.5 Scaling limit for the truncated system

In this section we focus on the proof of a first tightness result. As remarked in
the introduction, first we will prove the convergence of (PSR −NSR) to (V NS).
To do so, we will show that, if the cutoff threshold R is large enough, then the
system (V NSR) coincides with (V NS). This whole section is devoted to the proof
of this intermediate result:

Proposition 2.5.1. Under hypothesis of subsection 2.2.3 and if R ≥ Ku + 1,
where the constant Ku will be specified later (Proposition 2.5.13), the family of laws{
QN,R

}
of the couple (uN,R, SN,R)N∈N is tight on C([0, T ]×T2)×C([0, T ];P1(T2×

R2)). Moreover
{
QN,R

}
N∈N converges weakly to δ(u,F ), where the couple (u, F ) is

the unique weak solution of system of equation (V NS).

With a special argument we will be finally able to remove the cut-off also in the
approximating system and to get our main result, Theorem 2.2.3.

2.5.1 Tightness

In order to prove Proposition 2.5.1 we have to establish the tightness of the laws
of the empirical measure SN,R and that of uN,R. First we deal with the empirical
measure, the easier of the two. The tightness of SN,R follows easily by a well known
criterion, [89], the particles being exchangeable and due to the presence of the
cut-off.

Proposition 2.5.2. The family of laws {QN,R,S}N∈N of the empirical measure
{SN,R· }N∈N is relatively compact with respect to the weak convergence
on C ([0, T ];P1(T2 × R2)).

We now focus on the tightness of the laws of uN,R. To get an idea of what is
the right topology to work with, we focus on the coupling term that appears in the
equation for uN,R in (PSR −NSR). The term can be rewritten as

χR(uN,Rt )
1

N

N∑

i=1

(uN,RεN
(X i,N,R

t )− V i,N,R
t ) δεN

Xi,N,R
t

=

χR(uN,Rt )

∫

R2

∫

T2

(uN,RεN
(x′)− v′)θ0,εN (x− x′)SN,Rt (dx′, dv′) =

= χR(uN,Rt )(θ0,εN ∗ (uN,RεN
− v)SN,Rt )(x).

In order to pass to the limit in the previous term, it is required that uN,R is
converging uniformly over T2, since SN,R is converging only weakly as probability
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measure. Hence, we look for a tightness criterion for {uN,R}N∈N in C(T2). By
Sobolev embedding in dimension two we have H2(T2) ↪→ C(T2) (and also in the
space of Hölder continuous functions). Thus, to get estimates on second derivative
of uN,R, we start by looking at the equation for uN,R in vorticity form:

∂tω
N,R = ∆ωN,R − uN,R · ∇ωN,R

− χR(uN,Rt )

N

N∑

i=1

(
uN,RεN

(X i,N,R
t )− V i,N,R

t )
)
∇⊥ · δεN

Xi,N,R
t

. (2.10)

In order to be able to obtain a priori estimates on ωN,R we need first to rewrite
the coupling term in (2.10) as a function of the mollified empirical measure FN,R.
We highlight that this is one of the most important key steps in this work, that
remarks the importance to introduce the mollified empirical measure, and justify
all the following computations.

Lemma 2.5.3.

1

N

N∑

i=1

V i,N,R
t δεN

Xi,N,R
t

(x) =

∫

R2

vFN,R
t (x, v) dv = m1F

N,R
t (x)

1

N

N∑

i=1

δεN
Xi,N,R
t

(x) =

∫

R2

FN,R
t (x, v) dv = m0F

N,R
t (x)

Proof. Notice that

1

N

N∑

i=1

V i,N,R
t δεN

Xi,N,R
t

(x) =

∫

R2

∫

T2

θ0,εN (x− x′)v′SN,Rt (dx′, dv′)

=

∫

R2

∫

R2

∫

T2

θ0,εN (x− x′)θ1,εN (v − v′)v′SN,Rt (dx′, dv′) dv,

and
∫

R2

vFN,R
t (x, v) dv =

∫

R2

∫

R2

∫

T2

θ0,εN (x − x′)θ1,εN (v − v′)vSN,Rt (dx′, dv′)dv

so that to complete the proof we only need to prove
∫

R2

∫

R2

∫

T2

θ0,εN (x− x′)θ1,εN (v − v′)(v − v′)SN,Rt (dx′, dv′)dv = 0.

However this is true due to∫

R2

θ1,εN (v − v′)(v − v′) dv = 0

by the hypothesis of symmetry (3) in 2.2.3. The second identity of the Lemma
follows by the very definition of δεN

Xi,N,R
t

. This ends the proof.
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As stated above, we look for an estimate in H2(T2) for uN . This is obtained by
energy type estimates for the fluid in the vorticity form.

Lemma 2.5.4.

E

[
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)
+

∫ T

0

∣∣∣∣∇ωN,Rs

∣∣∣∣2
L2(T2)

ds

]
. E

[∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
2

L2(T2)

]

+ E
[∣∣∣∣m1F

N,R
∣∣∣∣2
L2([0,T ]×T2)

]
+RE

[∣∣∣∣m0F
N,R
∣∣∣∣2
L2([0,T ]×T2)

]
.

Proof. The thesis follows by classical energy inequality for ωN,R and by using
lemma 2.5.3.

We remark that the previous computation was only possible due to the presence
of the cuf-off. The truncation is needed to decouple the fluid and particles in
(PSR −NSR), hence allowing us to close estimates for fluid and particles separately.
From Lemma 2.5.4 it is clear that it is necessary to control the L2 norm of both
m1F

N,R and m0F
N,R. To do so we will exploit Lemma 2.3.5 and thus look for an

estimate for M6F
N,R and for (FN,R)4. This is exactly the goal of the next lemmas.

Lemma 2.5.5. There exists a constant CT,R,4, independent on N , such that

sup
t∈[0,T ]

E

[∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)

]
≤ CT,R,4.

Proof. This proof strictly follows the proof of Lemma 3.3 in [48]. By Itô formula
and integration by parts we have

1

4
d

∫

R2

∫

T2

(FN,R
t )4 dxdv +

3σ2

2

∫

R2

∫

T2

(FN,R
t )2

∣∣∣∇vF
N,R
t

∣∣∣
2

dxdvdt =

−
∫

R2

∫

T2

(FN,R
t )3divx(θ

εN ∗ (vSN,Rt )) dxdvdt (2.11)

−
∫

R2

∫

T2

(FN,R
t )3divv(θ

εN ∗ (uN,RεN
(t, x)χR(uN,Rt )− v)SN,Rt ) dxdvdt (2.12)

+

∫

R2

∫

T2

(FN,R
t )3 dMN,εN

t dxdv +

∫

R2

∫

T2

(FN,R
t )2 d[MN,εN ]t dxdv. (2.13)

We estimate each of the terms above separately. Concerning (2.11), we can rewrite
the convolution inside the integral as

divx(θ
εN ∗ (vSN,Rt )) = v · ∇x(θ

εN ∗ SN,Rt )− ((∇xθ
εN · v) ∗ SN,Rt ).
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Hence, for the first term on the r.h.s. we have

−
∫

R2

∫

T2

(FN,R
t )3∇xF

N,R
t · v dx dv dt =

∫

R2

∫

T2

∇x(F
N,R
t )4 · v dx dv dt = 0.

For the second one, note that due to our hypothesis on the mollifiers θ0(x) and
θ1(v) we have ∣∣∇xθ

0,εN (x− x′)
∣∣ θ1,εN (v − v′) |(v − v′)|

= ε−1
N ε−2

N

∣∣∇xθ
0(ε−1

N (x− x′))
∣∣ ε−2

N θ1(ε−1
N (v − v′)) |v − v′|

≤ ε−2
N

∣∣θ0(ε−1
N (x− x′))

∣∣ ε−2
N θ1(ε−1

N (v − v′)) |v − v
′|

εN

≤ θ0,εN (x− x′)θ1,εN (v − v′)2
implying

|(2.11)| .
∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(R2×T2)
.

The main differences with respect to the proof of [48] concerns the term (2.12): we
split it into two parts. One contains the fluid velocity u and the other one contains
the velocity variable: the first one follows easily by the truncation, being

∣∣∣∣
∫

R2

∫

T2

(FN,R
t )3divv(θ

εN ∗ uN,RεN
(t, x)χR(uN,Rt )SN,Rt ) dxdv

∣∣∣∣

=

∣∣∣∣
∫

R2

∫

T2

∇v(F
N,R
t )3(θεN ∗ uN,RεN

(t, x)χR(uN,Rt )SN,Rt ) dxdv

∣∣∣∣

≤
∫

R2

∫

T2

∣∣∣∇v(F
N,R
t )3

∣∣∣ (θεN ∗
∣∣∣uN,RεN

(t, x)χR(uN,Rt )
∣∣∣SN,Rt ) dxdv

≤ R

∫

R2

∫

T2

∣∣∣∇vF
N,R
t FN,R

t

∣∣∣ (FN,R
t )2 dx dv . 1

δ

∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
+

δ

∫

R2

∫

T2

(FN,R
t )2

∣∣∣∇vF
N,R
t

∣∣∣
2

dxdv

and by choosing δ small enough we can take the second term to the l.h.s. maintaining
the positivity. For the other one we again split it into a basic term plus a commutator
∫

R2

∫

T2

(FN,R
t )3divv(θ

εN ∗ vSN,Rt ) dxdv =
∫

R2

∫

T2

(FN,R
t )3divv(v(θεN ∗ SN,Rt )) dxdv

−
∫

R2

∫

T2

(FN,R
t )3divv(θ

εNv ∗ SN,Rt ) dxdv. (2.14)
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The first term on the r.h.s. on (2.14) is easily handled by direct computation

= −
∫

R2

∫

T2

∇v(F
N,R
t )3 · v FN,R

t dxdv =

− 1

4

∫

R2

∫

T2

∇v(F
N,R
t )4 · v dxdv =

1

2

∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
,

while the second one is more tricky: we compute the divergence on v and obtain

∫

R2

∫

T2

(FN,R
t )3divv(θ

εNv ∗ SN,Rt ) dxdv = 2

∫

R2

∫

T2

(FN,R
t )4 dxdv

∫

R2

∫

T2

(FN,R)3

∫

R2

∫

T2

θ0,εN (x− x′)∇vθ
1,εN (v − v′) · (v − v′)SN,Rt (dx′, dv′)dxdv

≤ 2
∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
+

+

∫

R2

∫

T2

∣∣∇+v(FN,R)3
∣∣
∫

R2

∫

T2

θ0,εN (x−x′)θ1,εN (v−v′) |v − v′|SN,Rt (dx′, dv′)dxdvdt.

Now we just look at the most inner term in the last inequality: using the compact
support assumption for θ1(v), see 2.2.3 hypothesis (3), we get

θ0,εN (x− x′)θ1,εN (v − v′) |v − v′| ≤ 2εNθ
0,εN (x− x′)θ1,εN (v − v′),

which leads to (2.14) being

(2.14) .
∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
+ εN

∫

R2

∫

T2

∣∣∣∇(FN,R
t )3

∣∣∣FN,R
t dxdv

.
∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
+ 2εN

∫

R2

∫

T2

∣∣∣∇vF
N,R
t

∣∣∣
2

(FN,R
t )2 dxdv.

We now deal with the two last term in (2.13): the integral with respect to the
martingale MN,εN

t vanishes when computing the expected value, while for the
integral with respect to the quadratic variation we have

∫

R2

∫

Πd
(FN

t )2 d[MN,εN ]t dxdv =
σ2

N

∫

R2

∫

Πd
(FN

t )2(|∇vθ
εN |2 ∗ SNt ) dxdvdt ≤

σ4
∣∣∣∣FN

t

∣∣∣∣4
L4 dt+

1

N2

∫

R2

∫

Πd
(|∇vθ

εN |2 ∗ SNt )2 dxdvdt.

The square outside the convolution (|∇vθ
εN |2 ∗ SNt )2 can be troublesome, but we

can handle it using the property of compact support of θ1(v) and the separation of
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variables, in the following way:
∫

R2

∫

T2

(|∇vθ
εN |2 ∗ SNt )2 dx dv .

1

N

N∑

i=1

(∫

R2

∫

T2

∣∣∣∇vθ
1,εN (v − V i,N,R

t )
∣∣∣
2

θ0,εN (x−X i,N,R
t )2 dx dv

)2

. 1

N

N∑

i=1

∫

R2

∣∣∣∇vθ
1,εN (v − V i,N,R

t )
∣∣∣
4

dv

∫

T2

θ0,εN (x−X i,N,R
t )4 dx.

Now we compute ∫

R2

∣∣∣∇vθ
1,εN (v − V i,N

t )
∣∣∣
4

dv = CN5β,

∫

Πd
θ0,εN (x−X i,N

t )4 dx = CN3β,

and substitute into the integral for the quadratic variation

1

N2

∫

R2

∫

Πd
(|∇vθ

εN |2 ∗ SNt )2 dxdv . 1

N2
N5βN3β

which is bounded for β ≤ 1
4
.

Summarizing we have obtained

d
∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
+ C

∫

R2

∫

T2

(FN,R
t )2

∣∣∣∇vF
N,R
t

∣∣∣
2

dxdvdt ≤

. CR

∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
4

L4(T2×R2)
dt+

∫

R2

∫

T2

(FN,R
t )3 dMN,εN

t dxdv + Cdt

which, after taking the average, ends the proof by standard Gronwall lemma.

By interpolation between Lp spaces, and the fact that FN,R
t is a probability density

function, we obtain the following corollary:

Corollary 2.5.6. There exists a constant CT,R,2, independent on N , such that

sup
t∈[0,T ]

E

[∣∣∣
∣∣∣FN,R

t

∣∣∣
∣∣∣
2

L2(T2×R2)

]
≤ CT,R,2.

We now proceed to bound the moments on the v-component of the mollified
empirical measure FN,R. The proof of the next Lemma follows by the very definition
of MkF

N,R by using change of variable formula.
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Lemma 2.5.7. For all k ≤ 6 and for all N and R, there exists a constant CT,R
k ,

independent on N such that

E

[
sup
t∈[0,T ]

MkF
N,R
t

]
≤ CT,R

k .

Proof. The proof follows by expanding FN,R as a summation, and by a change
of variables inside the integral with respect to v. This allow to bound the k-th
moments along v of FN,R by

E

[
sup
t∈[0,T ]

∣∣∣V i,N,R
t

∣∣∣
k
]
.

Moreover, we can bound the expected value in the previous formula using the SDEs
for the particles velocity, by using the truncation and the hypothesis on the initial
conditions.

Summarizing, up to this point we were able to prove the following bounds, inde-
pendently on N :

sup
t∈[0,T ]

E

[∣∣∣
∣∣∣m0F

N,R
t

∣∣∣
∣∣∣
2

L2(T2)

]
≤ CT,R,

sup
t∈[0,T ]

E

[∣∣∣
∣∣∣m1F

N,R
t

∣∣∣
∣∣∣
2

L2(T2)

]
≤ CT,R,

by Lemmas 2.5.5, 2.5.7 and inequality 3. and 4. from Lemma 2.3.5. Also

E

[
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)
+

∫ T

0

∣∣∣∣∇ωN,Rs

∣∣∣∣2
L2(T2)

ds

]
≤ CT,R.

by Lemma 2.5.4.
Hence we have obtained the desired bound for the fluid in vorticity form. However,
in order to obtain convergence, we need to apply an appropriate tightness criterion.
Classical Aubin-Lions Lemma states that when E0 ⊆ E ⊆ E1 are three Banach
spaces with continuous embedding, and E0 compactly embedded into E, then
for all p, q <∞ the space Lp([0, T ];E0) ∩W 1,q([0, T ];E1) is compactly embedded
into Lp([0, T ];E). Hence, we can apply this criterion choosing p = q = 2 and
E0 = H2(T2), E = C(T2) and E1 = H−1(T2) to obtain

L2([0, T ];H2(T2)) ∩W 1,2([0, T ];H−1(T2)) ↪→ L2([0, T ];C(T2))

and the embedding is compact. Thus, in order to obtain the required tightness
result, we also need an a priori estimate for the time derivative of ωN,R:
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Lemma 2.5.8. For every ε > 0 there exists Z > 0, such that

P
(∣∣∣∣ωN,R

∣∣∣∣
W 1,2([0,T ];H−1(T2))

> Z
)
≤ ε

Proof. By Lemma 2.5.4 we already have the result for the L2([0, T ];L2(T2)) norm
of ωN . Since H1 ↪→ L2 ↪→ H−1 we already know that

P
(∣∣∣∣ωN,R

∣∣∣∣
L2([0,T ];H−1(T2))

> Z
)
≤ ε.

Hence we only need to estimate
∣∣∣∣∂tωN,R

∣∣∣∣
L2([0,T ];H−1(T2))

. Thus we compute the
H−1 norm both sides in the equation for ωN,R, obtaining
∣∣∣
∣∣∣∂tωN,Rt

∣∣∣
∣∣∣
H−1(T2)

.
∣∣∣
∣∣∣∆ωN,Rt

∣∣∣
∣∣∣
H−1(T2)

+
∣∣∣
∣∣∣uN,Rt · ∇ωN,Rt

∣∣∣
∣∣∣
H−1(T2)

+R
∣∣∣
∣∣∣m0F

N,R
t

∣∣∣
∣∣∣
L2(T2)

+
∣∣∣
∣∣∣m1F

N,R
t

∣∣∣
∣∣∣
L2(T2)

by classical argument and integration by parts. Taking the square and integrating
both sides we obtain
∫ T

0

∣∣∣
∣∣∣∂tωN,Rt

∣∣∣
∣∣∣
2

H−1(T2)
dt .

∫ T

0

∣∣∣
∣∣∣∇ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)
dt+

sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)

∫ T

0

∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
2

C(T2)
dt

+R

∫ T

0

∣∣∣
∣∣∣m0F

N,R
t

∣∣∣
∣∣∣
2

L2(T2)
dt+

∫ T

0

∣∣∣
∣∣∣m1F

N,R
t

∣∣∣
∣∣∣
2

L2(T2)
dt.

Finally, We compute probability both sides

P

(∫ T

0

∣∣∣
∣∣∣∂tωN,Rt

∣∣∣
∣∣∣
2

H−1(T2)
dt > Z

)

and use the fact that we can split product term inside probabilities

P

(
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)

∫ T

0

∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
2

C(T2)
dt > Z

)

≤ P

(
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
2

L2(T2)
>
√
Z

)
+ P

(∫ T

0

∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
2

C(T2)
dt >

√
Z

)
.

Since all the terms above are bounded in expected value, we can apply Chebyshev
inequality to make each term smaller than ε. This ends the proof.
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At this point, thanks to Aubin’s Lemma, we are able to obtain a first tightness
result for the law of uN,R in L2([0, T ];C(T2)). L2 estimates on time are enough to
prove a convergence result (as partially done in [48]), but they are not sufficient to
remove the cutoff at the particle level, thus obtaining Theorem 2.2.3. Hence we
will have to improve our estimates in order to obtain stronger time convergence.
We apply Corollary 8 in [88] by taking

X = H1+2α(T2), B = H1+2α−ε(T2), Y = H−1(T2),

where ε < 2α and where X ↪→ Y is compact. The interpolation inequality between
the space B and X, Y , required in Corollary 8, it is an easy result of Fourier analysis
since we are on the torus. Hence we have that

L∞([0, T ];H1+2α(T2)) ∩W 1,2([0, T ];H−1(T2)) ↪→ C([0, T ];H1+2α−ε(T2))

with a compact embedding. Hence, by Sobolev embedding in dimension two of
H1+2α−ε(T2) into C(T2) we also have that

L∞([0, T ];H1+2α(T2)) ∩W 1,2([0, T ];H−1(T2)) ↪→ C([0, T ]× T2)

with a compact embedding. Clearly the result also holds when H1+2α(T2) is
replaced by H2(T2). However we were not able to obtain a uniform in time result
for the H2 norm and hence we tried to trim our requirements. To do so, we first
rewrite the equation for ωN,R in its mild formulation

ωN,Rt = et∆ωN,R0 −
∫ t

0

e(t−s)∆uN,Rs · ∇ωN,Rs ds

−
∫ t

0

e(t−s)∆∇⊥ · 1

N

N∑

i=1

(uN,RεN
(X i,N,R

s )χR(uN,Rs )− V i,N,R
s )δεN

Xi,N,R
s

ds. (2.15)

Lemma 2.5.9. For all α < 1
2
and for each ε, there exists Z such that

P
(∣∣∣∣uN,R

∣∣∣∣
L∞([0,T ],H1+2α)

> Z
)
≤ ε

Proof. We apply a generalized Gronwall Lemma to the function of the time vari-
able only

∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
H1+2α(T2)

. Since
∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
H1+2α(T2)

∼
∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
H2α(T2)

we apply the
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operator (I −∆)α on the mild formulation of vorticity equation (2.15), obtaining

∣∣∣
∣∣∣(I −∆)αωN,Rt

∣∣∣
∣∣∣
L2(T2)

≤
∣∣∣
∣∣∣(I −∆)αet∆ωN,R0

∣∣∣
∣∣∣
L2(T2)

+

∫ t

0

∣∣∣∣∣

∣∣∣∣∣(I −∆)αe(t−s)∆∇⊥ · 1

N

N∑

i=1

(uN,RεN
(X i,N,R

s )χR(uN,Rs )− V i,N,R
s )δεN

Xi,N,R
s

∣∣∣∣∣

∣∣∣∣∣
L2(T2)

ds

+

∫ t

0

∣∣∣∣(I −∆)αe(t−s)∆uN,Rs · ∇ωN,Rs

∣∣∣∣
L2(T2)

ds.

(2.16)

We start by estimating the initial conditions:

∣∣∣
∣∣∣(I −∆)αet∆ωN,R0

∣∣∣
∣∣∣
L2(T2)

≤
∣∣∣∣et∆

∣∣∣∣
L2(T2)→L2(T2)

∣∣∣
∣∣∣(I −∆)αωN,R0

∣∣∣
∣∣∣
L2(T2)

.
∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
H2α(T2)

. (2.17)

Regarding the second term of the r.h.s. of (2.16)

∣∣∣∣∣

∣∣∣∣∣(I −∆)αe(t−s)∆∇⊥· 1
N

N∑

i=1

(uN,RεN
(X i,N,R

s )χR(uN,Rs )− V i,N,R
s )δεN

Xi,N,R
s

∣∣∣∣∣

∣∣∣∣∣
L2(T2)

≤
∣∣∣∣∇(I −∆)−1/2

∣∣∣∣
L2(T2)→L2(T2)

∣∣∣∣(I −∆)α+1/2e(t−s)∆∣∣∣∣
L2(T2)→L2(T2)

×
∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

(uN,RεN
(X i,N,R

s )χR(uN,Rs )− V i,N,R
s )δεN

Xi,N,R
s

∣∣∣∣∣

∣∣∣∣∣
L2(T2)

≤ C

(t− s)α+1/2

∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

(uN,RεN
(X i,N,R

s )χR(uN,Rs )− V i,N,R
s )δεN

Xi,N,R
s

∣∣∣∣∣

∣∣∣∣∣
L2(T2)

≤ C

(t− s)α+1/2

(
R
∣∣∣
∣∣∣m0F

N,R
t

∣∣∣
∣∣∣
L2(T2)

+
∣∣∣
∣∣∣m1F

N,R
t

∣∣∣
∣∣∣
L2(T2)

)
, (2.18)

while for the last one of (2.16) we have
∣∣∣
∣∣∣(I −∆)αe(t−s)∆uN,Rs · ∇ωN,Rs

∣∣∣
∣∣∣
L2(T2)

≤
∣∣∣∣(I −∆)α+1/2e(t−s)∆∣∣∣∣

L2(T2)→L2(T2)

∣∣∣∣(I −∆)−1/2uN,Rs · ∇ωN,Rs

∣∣∣∣
L2(T2)

≤ C

(t− s)α+1/2

∣∣∣∣(I −∆)−1/2uN,Rs · ∇ωN,Rs

∣∣∣∣
L2(T2)

,
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and
∣∣∣∣(I −∆)−1/2uN,Rs · ∇ωN,Rs

∣∣∣∣
L2(T2)

= sup
ϕ∈L2(T2)

∣∣〈(I −∆)−1/2uN,Rs · ∇ωN,Rs , ϕ〉
∣∣ .

Now, notice that

〈uN,Rs · ∇ωN,Rs , (I −∆)−1/2ϕ〉 = −〈ωN,Rs , uN,Rs · ∇(I −∆)−1/2ϕ〉
≤ sup
||ϕ||L2(T2)≤1

||ϕ||L2(T2)

∣∣∣∣uN,Rs

∣∣∣∣
∞
∣∣∣∣ωN,R

∣∣∣∣
L2(T2)

. (2.19)

Combining (2.17),(2.18),(2.19):
∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
H2α(T2)

.
∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
H2α(T2)

+

∫ t

0

(
R
∣∣∣∣m0F

N,R
s

∣∣∣∣
L2(T2)

+
∣∣∣∣m1F

N,R
s

∣∣∣∣
L2(T2)

)

(t− s)α+1/2
ds

+

∫ t

0

∣∣∣∣uN,Rs

∣∣∣∣
L∞(T2)

∣∣∣∣ωN,Rs

∣∣∣∣
L2(T2)

(t− s)α+1/2
ds

≤ C
∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
H2α(T2)

+

∫ T

0

(
R
∣∣∣∣m0F

N,R
s

∣∣∣∣
L2(T2)

+
∣∣∣∣m1F

N,R
s

∣∣∣∣
L2(T2)

)

(T − s)α+1/2
ds+

+ C

(
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
L2(T2)

)∫ t

0

∣∣∣∣uN,Rs

∣∣∣∣
H1+2α(T2)

(t− s)α+1/2
ds.

Finally,

∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
H1+2α(T2)

. C
∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
H2α(T2)

+

∫ T

0

R
∣∣∣∣m0F

N,R
s

∣∣∣∣
L2(T2)

(T − s)α+1/2
ds+

+

∫ T

0

∣∣∣∣m1F
N,R
s

∣∣∣∣
L2(T2)

(T − s)α+1/2
ds+

(
sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
L2(T2)

)∫ t

0

∣∣∣∣uN,Rs

∣∣∣∣
H1+2α(T2)

(t− s)α+1/2
ds.

Notice that in the expression above the terms involved above are random (for
simplicity we have omitted ω ∈ Ω). Introduce, to short the notation, the random
function

ϕ(t) :=
∣∣∣
∣∣∣uN,Rt

∣∣∣
∣∣∣
H1+2α(T2)

.

We have proved that the function ϕ satisfies

ϕ(t) ≤ X1 +X2

∫ t

0

ϕ(s)

(t− s)α+1/2
ds
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where

X1 =
∣∣∣
∣∣∣ωN,R0

∣∣∣
∣∣∣
H2α(T2)

+

∫ T

0

(
R
∣∣∣∣m0F

N,R
s

∣∣∣∣
L2(T2)

+
∣∣∣∣m1F

N,R
s

∣∣∣∣
L2(T2)

)

(T − s)α+1/2
ds

X2 = sup
t∈[0,T ]

∣∣∣
∣∣∣ωN,Rt

∣∣∣
∣∣∣
L2(T2)

.

Notice that, by the uniform estimates proved in this section, there exist two constant
C1 and C2, independent on N , such that

E [X1] ≤ C1, E [X2] ≤ C2,

so that, for fixed ε we can chose R1, R2 > 0 in order to have

P(X1 > R1) <
ε

2
, P(X2 > R2) <

ε

2
.

For a fixed ω ∈ Ω applying Gronwall Lemma to the function ϕ we obtain

sup
t∈[0,T ]

ϕ(t)(ω) ≤ f(X1, X2)(ω).

We now claim that

P

(
sup
t∈[0,T ]

ϕ(t) > f(R1, R2)

)
< ε.

In fact we have the following chain of inequalities

P

(
sup
t∈[0,T ]

ϕ(t) ≤ f(R1, R2)

)
≥ P

(
ϕ(t) ≤ R1 +R2

∫ t

0

ϕ(s)

(t− s)α+1/2
ds

)

≥ P ((X1 ≤ R1) ∩ (X2 ≤ R2)) ≥ 1−P(X1 > R1)−P(X2 > R2) ≥ 1− ε.

We end the proof by taking the complement set both sides.

We are finally able to obtain the following tightness result:

Lemma 2.5.10. The family of laws {QN,R,u}N∈N of {uN,R}N∈N, is tight, and hence
is relatively compact as a probability measure on C([0, T ]× T2).

Proof. The proof is just an application of Simons embedding in [88]. For each
M,Z > 0 we can consider the following set, for all α < 1/2

KM,Z =

{
u ∈ C([0, T ]× T2) | ||u||L∞([0,T ];H1+2α(T2)) ≤M,

||u||W 1,2([0,T ];H−1(T2)) ≤ Z

}
.
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By the Simons Lemma KM,Z is relatively compact in C([0, T ]× T2). Notice that

QN,R,u(Kc
M,Z) = P(uN,R ∈ Kc

M,Z) ≤
P
(∣∣∣∣uN,R

∣∣∣∣
L∞([0,T ];H1+2α(T2))

> M
)

+ P
(∣∣∣∣uN,R

∣∣∣∣
W 1,2([0,T ];H−1(T2))

> Z
)
≤

≤
E
[∣∣∣∣uN,R

∣∣∣∣
L∞([0,T ];H1+2α(T2))

]

M
+ ε

by lemma 2.5.8. By Lemma 2.5.9 the expected values on the r.h.s. is uniformly
bounded with respect to N , hence the sequence {QN,R,u}N∈N is tight and proof is
concluded.

Combining Proposition 2.5.2 and Lemma 2.5.10 we obtain the following:

Corollary 2.5.11. The family of laws {QN,R}N∈N of the couple (uN,R, SN,R) is
tight, and hence relatively compact as a probability measures on C([0, T ]× T2)×
C([0, T ];P1(T2 × R2)).

2.5.2 Convergence of (PSR −NSR) to (V NS).
We will now prove that, under hypothesis on Section 2.2.3, and if R is large

enough, then the solution (uR, FR) of (V NSR) coincide with the solution (u, F ) of
(V NS). To do so we will prove that uR is bounded in L∞([0, T ]×T2), independently
on R. First we summarize all the intermediate results needed for the proof. We
remark that all the following bounds hold independently on R:

• For all k ≤ 6
sup
t∈[0,T ]

MkF
R
t ≤ C

by Lemma 2.3.6 and hypothesis 2.2.3;
• ∣∣∣∣m0F

R
∣∣∣∣
L∞([0,T ];L2(T2)

≤ C, and
∣∣∣∣m1F

R
∣∣∣∣
L∞([0,T ];L2(T2)

≤ C

by Lemma 2.3.6 and inequality 1. and 2. in Lemma 2.3.5;
• for all p > 1 ∣∣∣∣uR

∣∣∣∣
L2([0,T ];Lp(T2))

≤ Cp

by Remark 4.

We can now formulate a further result, needed in the proof of Theorem 2.5.14.

Lemma 2.5.12. There exists a constant C, independent on R, such that
∣∣∣∣ωR

∣∣∣∣
L∞([0,T ];L2(T2))

≤ C.
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Proof. Computing the time derivative of
∫
T2

∣∣ωRt
∣∣2 dx we obtain

∣∣∣∣ωRt
∣∣∣∣2
L2(T2)

+

∫ T

0

∫

T2

∣∣∇ωRs
∣∣2 dx ds . ||ω0||2L2(T2) +

∫ t

0

∫

T2

ωRs ∇⊥ ·
∫

R2

(uRs − v)χR(uR)FR
s dv dx ds. (2.20)

Focusing only on the last term of the previous inequality we have

(2.20) .
∫ t

0

∫

T2

∣∣∇ωRs
∣∣ ∣∣uRs

∣∣
∫

R2

FR
s dv dx ds+

∫ t

0

∫

T2

∣∣∇ωRs
∣∣
∫

R2

|v|FR
s dv dx ds

.
∫ T

0

∫

T2

∣∣∇ωRs
∣∣2 dx ds+

∫ T

0

∫

T2

∣∣uRs
∣∣2
(∫

R2

FR
s dv

)2

dx ds

+

∫ T

0

∫

T2

∣∣∇ωRs
∣∣2 dx ds+

∫ T

0

∫

T2

(∫

R2

|v|FR
s dv

)2

dx ds.

Let us notice that

∫ T

0

∫

T2

∣∣uRs
∣∣2
(∫

R2

FR
s dv

)2

dxds ≤
∫ T

0

∣∣∣∣uRs
∣∣∣∣2
L4(T2)

(∫

T2

(∫

R2

FR
s dv

)4

dx

) 1
2

ds

≤ sup
t∈[0,T ]

∣∣∣∣m0F
R
t

∣∣∣∣2
L4(T2)

∣∣∣∣uR
∣∣∣∣
L2([0,T ];L4(T2))

. sup
t∈[0,T ]

(M6F
R
t )

1
2

∣∣∣∣uR
∣∣∣∣
L2([0,T ];L4(T2))

≤ C

and ∫ T

0

∫

T2

(∫

R2

|v|FR
s dv

)2

dx ds .T sup
t∈[0,T ]

M4F
R
t ≤ C

again by Lemma 2.3.5. We conclude the proof by classical Gronwall Lemma.

We emphasize that, even if it is possible to prove the uniform bound with respect
the parameter R, it is not possible to obtain the same result directly at the particle
level. In other terms, we were not able to obtain directly any bound on the vorticity
in the particle system (PS −NS)

E
[∣∣∣∣ωN

∣∣∣∣
L∞([0,T ];L2(T2))

]

without using the cut off. This result would have allowed us to remove the cut off
directly at the particle level, without any further complication.
We finally prove the uniform bound on uR:
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Proposition 2.5.13. There exists a constant Ku, independent on R, such that
∣∣∣∣uR

∣∣∣∣
∞ ≤ Ku.

Proof. In order to produce the required bound we bound uniformly the norm of
uR in the space L∞([0, T ];H1+2α(T2)) for any α < 1/2. Hence we use the mild
formulation for the vorticity equation associated with uR:

∂tω
R = ∆ωR − uR · ∇ωR −∇⊥ ·

∫

R2

(uR − v)χR(uR)FR dv.

Following the same argument of Lemma 2.5.9 we get
∣∣∣∣uRt

∣∣∣∣
H1+2α(T2)

.
∣∣∣∣ωRt

∣∣∣∣
H2α(T2)

.
∣∣∣∣ωR0

∣∣∣∣
H2α(T2)

+

∫ t

0

∣∣∣∣uRs
∣∣∣∣
L∞(T2)

∣∣∣∣ωRs
∣∣∣∣
L2(T2)

(t− s)α+1/2
ds

+

∫ t

0

∣∣∣∣uRs
∣∣∣∣
L∞(T2)

∣∣∣∣m0F
R
s

∣∣∣∣
L2(T2)

(t− s)α+1/2
ds+

∫ t

0

∣∣∣∣m1F
R
s

∣∣∣∣
L2(T2)

(t− s)α+1/2
ds

.
∣∣∣∣ωR0

∣∣∣∣
H2α(T2)

+
∣∣∣∣ωR

∣∣∣∣
L∞([0,T ];L2(T2))

∫ t

0

∣∣∣∣uRs
∣∣∣∣
H1+2α(T2)

(t− s)α+1/2
ds

+

(
sup
t∈[0,T ]

M2F
R
t

) 1
2 ∫ t

0

∣∣∣∣uRs
∣∣∣∣
H1+2α(T2)

(t− s)α+1/2
ds+

(
sup
t∈[0,T ]

M4F
R
t

) 1
2

,

by neglecting the cutoff function χR which is bounded by one. By using the
uniform bound described at the beginning of Section 2.5.2, Lemma 2.5.12 and
Lemma 2.3.5 inequality 1. and 2. we see that all the expression above are bounded
independently on R and we conclude by a Gronwall type argument applied to the
function

∣∣∣∣uRt
∣∣∣∣
H1+2α(T2)

.

In conclusion we have the following Theorem:

Theorem 2.5.14. If R ≥ Ku + 1, then any weak solution (uR, FR) of system
of PDE (V NSR) coincide with the unique bounded weak solutions of system of
equations (V NS).

Proof. By proposition 2.5.13, taking R ≥ Ku + 1 we have that the function
χR(uR) ≡ 1, hence system of equation (V NSR) reduce to (V NS). Hence, we
obtain that the couple (uR, FR) satisfies system of equation (V NS). By the
uniqueness of solution for system of equations (V NS), we obtain u = uR and
F = FR.
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In order to complete the proof of Proposition 2.5.1 we need only to verify that
limit points of the sequence {QN,R}N∈N are supported on weak solutions of system
of equations (V NS).

Proposition 2.5.15. If R ≥ Ku+1 limit points of subsequences of {QN,R}N∈N are
supported on the bounded weak solutions of system of PDE (V NS) (see Definition
2.2.2).

Proof. In order to prove that weak limits are supported on weak solutions, we
have to prove that those objects satisfies equation (V NS) in the weak sense, and
that they have the correct regularity. The fact that limit objects satisfy system of
equations (V NS) is classical, see [68]. Let us focus on the regularity issue.

First, by By Lemma 2.5.4 together with Lemma 2.3.5 inequality 3. and 4, limit
points on the component corresponding to uN,R satisfy the regularity properties of
Definition 2.2.2. Similarly from a priori estimates in Corollary 2.5.6 limit points of
subsequences have a density on their particle component (corresponding to SN,R)
which is also in L2([0, T ] × T2 × R2). In order to complete the proof we need
to verify that such density is uniformly bounded, as required in Definition 2.2.2.
This follows by the maximum principle argued in Section 2.3.1. Namely, the fact
that the limit points along the particles component satisfies system of equations
(V NS), where u is uniformly bounded, yields an uniform bound for the density
in L∞([0, T ]× T2 × R2). Denoting by F one of the limit points, we only need to
verify that ∫ T

0

∫

T2

∫

R2

|v|2 F 2
s dx dv ds <∞. (2.21)

By using Lemma 2.5.5 F is in L4([0, T ]× T2 × R2). By interpolation inequality of
Lp spaces we also have F ∈ L3([0, T ]× T2 × R2). Also, the uniform bound on the
v-moments of FN,R, provided in Lemma 2.5.7, grants also M4F to be finite. Hence,
by an easy computation (see Section 2.3.1), we see that (2.21) is satisfied. Thus
by the maximum principle we have F ∈ L∞([0, T ] × T2 × R2), hence ending the
proof.

Combining Proposition 2.5.15 with Theorem 2.4.1 we complete the proof of
Proposition 2.5.1.

2.6 Scaling limit for the full system
The aim of this section is to prove that the cut-off can be removed also in

the approximating system (uN,R, SN,R): the uniform convergence result proved in
the previous section, Proposition 2.5.1, gives a simple but relevant hint to prove
the final result of convergence. We expect that the converging object (uN,R, SN,R)
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inherits the property of boundedness, independently on the parameter R, that
holds for the limit object. If so, we can remove the cut-off, choosing R large enough
from the beginning. The first difficulty in the realization of this intuition is given
by the type of convergence which we are dealing with: convergence in law. We will
overcome this technicality, appealing to the Skorohod’s Theorem to strengthen the
convergence.

We will first state and prove a general result for almost sure convergence of
random variables. Then, in order to utilize such criterion, we will make use of
Skorohod’s Theorem and we will understand our particle systems in a path-by-
path sense: we will give a precise definition of path-by-path solutions and prove
a uniqueness result for such kind of solutions. The application of the above
mentioned criterion to our case will let us transfer the property of convergence
from the sequence (uN,R, SN,R) to (uN , SN).

In the rest of the section we will always assume to have taken

R = max(Ku + 1, ||u||∞ + 1)

where the constant Ku has been defined in Proposition 2.5.13. This choice will
assure that Proposition 2.5.1 is verified. The condition that R is greater than
||u||∞ + 1 is needed in order to let the sequence of uN,R to inherit the uniform
boundedness of the limit u. This process will be clarified later.

2.6.1 Convergence criterion

We now present the general criterion that we will use to obtain the convergence
of the sequence (uN , SN )N∈N from that of (uN,R, SN,R)N∈N. The framework of this
criterion is pretty general. We preferred to isolate it and state it in its general form,
rather than in our specific case, in order to make the underlying idea more evident.

Theorem 2.6.1 (General Principle). Let (Ω,F ,P) a probability space and let
(E, dE) a separable metric space. Let {XN}N∈N and {YN}N∈N two sequences of
random variables taking values in E and let x be a point in E. Moreover, suppose
that for each N ∈ N, there exist two collections of subset SXN (ω) ⊆ E and SYN (ω) ⊆
E, indexed by ω ∈ Ω. Assume further that the following conditions are satisfied:

1.
XN

N→∞−−−→ x ∈ E P-a.s.;

2. denoting
ΩS =

{
ω ∈ Ω | ]SYN(ω) ≤ 1 ∀N ∈ N

}

where by ]A we mean the cardinality of the set A, we have

P(ΩS) = 1;
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3. denoting
ΩX =

{
ω ∈ Ω |XN(ω) ∈ SXN (ω) ∀N ∈ N

}
,

ΩY =
{
ω ∈ Ω |YN(ω) ∈ SYN(ω) ∀N ∈ N

}
,

we have
P(ΩX) = P(ΩY ) = 1;

4.
BE(x, 1) ∩ SXN (ω) ⊆ SYN(ω) ∀N ∈ N, ∀ω ∈ Ω.

Then the sequence {YN}N∈N converges in E to the same limit of the sequence
{XN}N∈N

YN
N→∞−−−→ x ∈ E P-a.s.

Proof. Consider the set

ΩC,X :=
{
ω ∈ Ω | d(XN(ω), x)E

N→ 0
}

and
ΩC,Y :=

{
ω ∈ Ω | d(Y N(ω), x)E

N→ 0
}

Note that, by property 1. the set ΩC,X has full measure P(ΩC,X) = 1.
We will prove that

ΩS ∩ ΩC,X ∩ ΩX ∩ ΩY ⊆ ΩC,Y (2.22)

thus implying the thesis being P(ΩS) = P(ΩX) = P(ΩY ) = 1 by property 2. and
3. To do so let us consider the set

Ω1 = {ω ∈ Ω | ∃N(ω) d(XN(ω), x) ≤ 1 ∀N > N(ω)}

and note that
ΩX,C ⊆ Ω1.

Now define
Ω2 = {ω ∈ Ω |XN(ω) = YN(ω)∀N > N(ω)}

where N(ω) is defined for each ω, in the set Ω1. We claim that

ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY ⊆ Ω2. (2.23)

Take ω ∈ ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY . Hence if N > N(ω), given that ω lies in ΩX,C ,
it also lies in Ω1, thus we have XN(ω) ∈ BE(x, 1)E. Moreover, ω lies also in ΩX ,
hence XN (ω) ∈ SXN (ω). By property 4. we conclude XN (ω) ∈ SYN (ω). Furthermore
ω ∈ ΩY implies YN (ω) ∈ SYN (ω), but ω is also in ΩS hence by property 2. SYN (ω) is a
singleton, hence SYN(ω) = {YN(ω)}. Since XN(ω) ∈ SXN (ω) and SYN(ω) = {YN(ω)}
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we obtain XN(ω) = YN(ω) and we have proven condition (2.23).
Finally, we can prove condition (2.22): taking ω ∈ ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY , we have
that ∀ε > 0 there exists Nε(ω), such that

d(XN(ω), x)E < ε ∀N > Nε(ω)

By condition (2.23) ω lies also in Ω2, hence

XN(ω) = YN(ω) ∀N > N(ω).

Calling N(ω) = max(Nε(ω), N(ω)) we conclude

d(YN(ω), x)E < ε ∀N > N ε(ω)

and hence ω ∈ ΩY,C . Thus the proof is concluded.

2.6.2 Path by Path solutions for (PS −NS)
We will now focus on the problem of uniqueness for path-by-path solutions. The

issue of uniqueness for this class of solutions is very difficult: very few result are
know before the work of [35]. The analysis of such kind of problem for (PS −NS)
will be a key point of the proof of Theorem 2.2.3. In fact, to apply Theorem 2.6.1
to our case, we will see that strong uniqueness in the sense of SDEs, which is more
classical than that path-by-path, will not be enough. We now recall the concept of
path-by-path solutions and uniqueness in this class. We will discuss this topic in
the specific case that is needed here, the system of PDE-SDEs (PS −NS).

Recall system of equation (PS −NS) and note that, in the equation for the
particle position and velocity (X i,N

t , V i,N
t ) the noise is pure additive Brownian

motion, i.e. the diffusion coefficient is constant. For this reason Itô integral is not
involved into the equations and one can understand system of equations (PS −NS)
in its integral form as a coupling PDE-ODEs, where the Brownian motions plays
the role of a given external force. This perspective is outlined in the following
system




∂tu
N = ∆uN − uN · ∇uN −∇πN − 1

N

∑N
i=1(uNεN (X i,N

t )− V i,N
t )δεN

Xi,N
t

div(uN) = 0,


X i,N
t = X i

0 +
∫ t

0
V i,N
s ds

V i,N
t = V i

0 +
∫ t

0
(uNεN (X i,N

s )− V i,N
s ) ds+ σBi

t(ω)
i = 1, . . . , N

(2.24)
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where Bi
t(ω) stands for a single realization of a Brownian path for fixed ω ∈ Ω. We

now introduce the set of path-by-path solutions for a given realization of ω ∈ Ω
and for fixed N ∈ N:

SN(ω) =

{(
w,
(
xi· , v

i
·
)
i=1,...,N

)
∈ C([0, T ]× T2)× C([0, T ];T2 × R2)N s.t.

(
w,
(
xi· , v

i
·
)
i=1,...,N

)
solves (2.24) with additive noise (Bi

t(ω))i=1,...,N

}
. (2.25)

Roughly speaking SN(ω) is the set of curves that solves (2.24) in a deterministic
setting for a prescribed realization of a Brownian path (identified by ω). We do
not give a precise definition of existence of path-by-path solutions. We remark that
existence of weak or strong solutions in an SDE settings imply that the set SN(ω)
is non empty with probability one. We now focus our attention to the topic of
uniqueness.

Definition 2.6.2 (Uniqueness of path-by-path solutions). Given a natural number
N we say that there is path-by-path uniqueness for system of equations (PS −NS)
with N particles, if there exist a set ΩS ⊆ Ω with probability one P(ΩS) = 1 such
that

]SN(ω) ≤ 1 ∀ω ∈ ΩS

where ]A stands for the cardinality of the set A.

Opposite to the case of existence, uniqueness of path-by-path solutions is a
much more difficult topic: uniqueness in this class is a stronger notion that weak
or strong uniqueness for SDE. In Definition 2.6.2 no measurability with respect to
the probability space (Ω,F , {Ft},P) is required. In case of uniqueness for SDE a
much richer structure is available, given that solutions are required at least to be
adapted to the filtration Ft.

We now prove a path-by-path uniqueness result for system of equation (PS −NS).
Some results about path-by-path uniqueness for SDEs are already known: Davie in
[35] proved the result for a single SDE with pure additive Brownian noise and only
bounded measurable drift. This type of result for low regularity drift functions,
less than locally Lipschitz, are very difficult. In our case, the drift appearing into
the particle equations (X i,N

t , V i,N
t ) is even more regular than Lipschitz: in fact the

function uNεN (t, x) is C∞ in the space variable due to the convolution with the C∞
function θεN (x). However, the case here is slightly different from the case of a single
SDE due to the strong coupling with the Navier-Stokes equation that introduces
additional difficulty.

Proposition 2.6.3. Let us consider on the probability space (Ω,F , {Ft} ,P)

ΩB =
{
ω ∈ Ω |Bi

t(ω) is continuous on [0, T ]∀i ∈ N
}
⊆ Ω
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the set where all the Brownian motion (Bi)i∈N are continuous, which is of full
measure with respect to P. Then, for all N ∈ N we have uniqueness path-by-path
for system of equation (PS −NS) with N particles, namely

]SN(ω) ≤ 1 ∀ω ∈ ΩB.

Proof. For a matter of simplicity we prove the result in the case N = 1: the
generalization for general N , is straightforward. Moreover, to make the notation
less heavy, we will omit the dependence on N and ω indicating with ut the variable
uNt (ω) and with (Xt, Vt) the couple of variables (X1,1

t , V 1,1
t )(ω). Also the mollifier

θ0,εN will be labeled simply by θ. In our simplification, the system becomes:




∂tu = ∆u− u · ∇u−∇π − ((θ ∗ u)(Xt)− Vt) θ(x−Xt)

div(u) = 0{
Ẋt = Vt

V̇t = ((θ ∗ ut)(Xt)− Vt) +Bt.

Now we consider two solutions (u,X, V ) and (u′, X ′, V ′), with (u0, X0, V0) =
(u′0, X

′
0, V

′
0), and we apply Gronwall Lemma to the quantity

|Xt −X ′t|+ |Vt − V ′t |+ ||ut − u′t||H1+2α(T2) ,

for α < 1
2
.

We start by computing the distance of velocities, recalling that V0 = V ′0 and Bt is
the same given function for the two solutions

|Vt − V ′t | ≤
∫ t

0

[(θ ∗ us)(Xs)− (θ ∗ u′s)(X ′s)] ds+

∫ t

0

|Vs − V ′s | ds

≤
∫ t

0

[(θ ∗ us)(Xs)− (θ ∗ u′s)(Xs)] ds+

∫ t

0

[(θ ∗ u′s)(Xs)− (θ ∗ u′s)(X ′s)] ds

+

∫ t

0

|Vs − V ′s | ds

.
∫ t

0

||us − u′s||H1+2α(T2) ds+

∫ t

0

|Xs −X ′s| ds+

∫ t

0

|Vs − V ′s | ds

where we have used both the Lipschitzianity and boundedness in L∞(T2) of θ ∗ us,
as well as the embedding H1+2α(T2) ↪→ C(T2).
Regarding the X component we simply have

|Xt −X ′t| ≤
∫ t

0

|Vs − V ′s | ds.
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The main difficulty consists in estimating ||ut − u′t||H1+2α(T2). As done in previous
sections we approach the problem through the vorticity formulation. Call ω and ω′
the vorticity associated to u and u′. As in Lemma 2.5.9, by the mild formulation
of ω − ω′ we have

||ωt − ω′t||H2α(T2) ≤
∫ t

0

∣∣∣∣(I −∆)αe(t−s)∆us · ∇(ωs − ω′s)
∣∣∣∣
L2(T2)

ds (2.26)

+

∫ t

0

∣∣∣∣(I −∆)αe(t−s)∆(us − u′s) · ∇ω′s
∣∣∣∣
L2(T2)

ds (2.27)

+

∫ t

0

∣∣∣∣
∣∣∣∣(I −∆)αe(t−s)∆∇⊥ · Λu,X,V (s)

∣∣∣∣
∣∣∣∣
L2(T2)

ds (2.28)

where

Λu,X,V (s) :=

[
((θ ∗ u)(Xs)− Vs) θ(x−Xs)− ((θ ∗ u′)(X ′s)− V ′s ) θ(x−X ′s)

]
.

We now deal with each of the terms above separately. We strictly follow the same
computation of Lemma 2.5.9, starting from (2.26):

(2.26) .
∫ t

0

||us||C(T2) ||ωs − ω′s||L2(T2)

|t− s|α+1/2
ds .

. ||u||∞
∫ t

0

||us − u′s||H1+2α(T2)

|t− s|α+1/2
ds,

(2.27) .
∫ t

0

||us − u′s||C(T2) ||ω′s||L2(T2)

|t− s|α+1/2
ds .

. ||ω′||L∞([0,T ];L2(T2))

∫ t

0

||us − u′s||H1+2α(T2)

|t− s|α+1/2
ds.

In the same way we have

(2.28) .
∫ t

0

||Λu,X,V (s)||L2(T2)

|t− s|α+1/2
ds

We proceed now by adding and subtracting the right quantities from Λu,X,V (s)
obtaining

∣∣∣
[
(θ ∗ us)(Xs)− Vs

]
θ(x−Xs)−

[
(θ ∗ u′s)(X ′s)− V ′s

]
θ(x−X ′s)

∣∣∣ ≤
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θ(x−Xs) |(θ ∗ us)(Xs)− (θ ∗ u′s)(Xs)|
+ θ(x−Xs) |(θ ∗ u′s)(Xs)− (θ ∗ u′s)(X ′s)|
+ (θ ∗ us)′(X ′s) |θ(x−Xs)− θ(x−X ′s)|
+ θ(x−Xs) |Vs − V ′s |
+ |V ′s | |θ(x−Xs)− θ(x−X ′s)|

. ||us − u′s||H1+2α(T2) + |Xs −X ′s|+ |Vs − V ′s |

by using the boundedness of u and u′, the Lipschitzianity of (θ∗u), the boundedness
of |Vs| and that of θ. Hence we obtained

(2.28) .
∫ t

0

||us − u′s||H1+2α(T2) + |Xs −X ′s|+ |Vs − V ′s |
|t− s|1/2+α

ds

We conclude by a standard Gronwall type inequality.

2.6.3 Proof of Theorem 2.2.3

We finally have all the ingredients to prove Theorem 2.2.3. Since the proof is
quite technical we first outline the general strategy.
From Proposition 2.5.1 we have obtained convergence in Law of the sequence
(uN,R, SN,R) to the unique weak solution of (V NS), call it (u, F ). We aim to obtain
the same result for the sequence (uN , SN), namely to prove Theorem 2.2.3. To do
so, we will apply the convergence criterion stated in Theorem 2.6.1, to transfer the
convergence from one sequence to another. However, Theorem 2.6.1 requires the
sequences of random variables involved, to converge almost surely in the appropriate
topology, while Proposition 2.5.1 grants us only convergence in law. Hence, to
overcome this problem, we will first appeal to a slight variation of Skorohod
representation Theorem, Lemma 2.6.4, applied to the sequence (uN,R, SN,R)N∈N
in order to obtain almost sure convergence from convergence in law. Let us omit
some technicalities concerning Skorohod Theorem, whose details will be clarified
later, and assume now that the sequence (uN,R, SN,R) is converging almost surely
to (u, F ). We will apply Theorem 2.6.1 by taking

XN = (uN,R, SN,R), YN = (uN , SN), x = (u, F ).

Still avoiding some technicalities we will chose

SXN (ω) = the set of path-by-path solutions of (PSR −NSR)
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and
SYN(ω) = the set of path-by-path solutions of (PS −NS).

With this choice we will see that conditions [1-4] stated in Theorem 2.6.1 will be
satisfied. We can now outline the reasoning behind the hypotheses of Theorem
2.6.1 in the following scheme:

Condition 1. corresponds to Proposition 2.5.1, that is the convergence of (uN,R, SN,R)
to the limit point (u, F );

Condition 2. resembles to the path-by-path uniqueness result, Proposition 2.6.3;

Condition 3. states that (uN,R, SN,R) is a path-by-path solution of (PSR −NSR)
and the analogue for (uN , SN);

Condition 4. expresses the fact that path-by-path solutions of (PSR −NSR) which
are also bounded from above, also satisfies (PS −NS) if the param-
eter R is large enough. This is the same idea used to prove Theorem
2.5.14 when we proved that two PDE systems coincide for large R.

We now remark the importance of dealing with path-by-path uniqueness. Imag-
ine to replace condition 2. in Theorem 2.6.1, with some condition that mimics the
idea of strong uniqueness for SDE, instead of that for path-by-path uniqueness. A
possible modification is the following:
Condition 2.bis : For all N ∈ N and for every Z E-valued random variable, if

P(Z(ω) ∈ SYN(ω)) = 1

then
P(Z(ω) = YN(ω)) = 1.

Now, following the proof of Theorem 2.6.1, we can proceed into the proof up to a
certain point. Specifically we can prove that the set

{
XN(ω) ∈ SYN(ω) ∀N > N(ω)

}

is of full measure with respect to P. However, there is no way to apply condition
2.bis, to conclude that

P(XN(ω) = YN(ω) ∀N > N(ω)) = 1

as it would be needed to end the proof.
We now recall and prove a small variation of Skorohod’s Theorem, that we will
need in the proof of Theorem 2.2.3.
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Lemma 2.6.4. Let (Ω,F ,P) be a probability space and let (XN , YN)N∈N be a
sequence of random variables defined on Ω, taking values on a separable metric
space E × F . Assume that F is also a Banach space and YN ∈ L1(Ω;F ) for each
N ∈ N. Let also X : Ω→ E be a random variable and assume further that

XN
Law→ X.

Then, there exist a probability space (Ω̃, F̃ , P̃) and random variables defined on the
new probability space (X̃N , ỸN)N∈N, X̃ such that

(X̃N , ỸN)
Law∼ (XN , YN), X̃

Law∼ X

and
X̃N→X̃ P̃-almost-surely.

Proof. The proof relies on the classical Skorohod’s Theorem, see [12].
Call cN := E [||YN ||F ], and introduce aN = NcN . Consider now the sequence
ZN := YN/aN and notice that

ZN
Law→ 0

since the convergence also holds in probability. Now, applying Skorohod’s Theorem
to the sequence (XN , ZN) we obtain that there exist a new probability space
(Ω̃, F̃ , P̃) and random variables (X̃N , Z̃N)N∈N, X̃ such that

(X̃N , Z̃N)
Law∼ (XN , ZN), X̃

Law∼ X

and
X̃N→X̃ P̃-almost-surely.

Introduce ỸN := aN Z̃N and observe that (X̃N , ỸN)
Law∼ (XN , YN). This concludes

the proof.

Proof of Theorem 2.2.3. As explained the above the proof is divided into three
steps: first we apply Lemma 2.6.4 to the sequence (uN,R, SN,R) to obtain almost sure
convergence on a new probability space. Second, we will see that the new random
variables obtained, on the new probability space satisfies the same equations as the
original one. Lastly, we apply the general principle Theorem 2.6.1 to transfer the
convergence from (uN,R, SN,R) to (uN , SN).
Step 1: Let us first introduce some notation. For each N ∈ N we first introduce
XN,R ∈ C([0, T ];T2)N and VN,R ∈ C([0, T ];R2)N defined as

XN,R(i) =

{
X i,N,R
· if i ≤ N ,

0 otherwise,
VN,R(i) =

{
V i,N,R
· if i ≤ N ,

0 otherwise.
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where 0 stands for the function which is identically zero. Roughly speaking XN,R

(respectively VN,R) is the sequence of functions, where the first N elements are the
particles trajectories X i,N,R

· , and all the others are identically zero. Now we apply
Lemma 2.6.4 to the sequence

(uN,R, SN,R, (Bi)i∈N,X
N,R,VN,R)N∈N

where
(uN,R, SN,R, (Bi)i∈N)

Law−−→ (u, F, (Bi)i∈N)

and we just need to verify that (XN,R,VN,R) is integrable with respect to P for
each N ∈ N. However this is true because

E
[∣∣∣∣XN,R

∣∣∣∣
L∞([0,T ];T2)N

]
= E

[
max
i≤N

sup
t∈[0,T ]

∣∣∣
∣∣∣X i,N,R

t

∣∣∣
∣∣∣
]

≤ NE

[
sup
t∈[0,T ]

∣∣∣
∣∣∣X i,N,R

t

∣∣∣
∣∣∣
]
≤ C ·N

by using exchangeability and by the fact that E
[
supt∈[0,T ]

∣∣∣
∣∣∣X i,N,R

t

∣∣∣
∣∣∣
]
≤ C due to

the presence of the cutoff in system of equations PSR − NSR. The same result
holds for every VN,R by using the same argument.
We can now apply Lemma 2.6.4. Hence there exists a new filtered probability space
(Ω̃, F̃ , {F̃t}, P̃) and new sequences of random variables

(ũN,R, S̃N,R, (B̃i,N)i≤N , X̃
N,R, ṼN,R)N∈N

that shares the same laws of the initial sequences

(ũN,R, S̃N,R, (B̃i,N)i≤N , X̃
N,R, ṼN,R)

Law∼ (uN,R, SN,R, (Bi)i≤N ,X
N,R,VN,R)

for all N ∈ N, and that satisfies
(
ũN,R, S̃N,R

)
N→∞−−−→ (u, F ) P̃-a.s.

Step 2: We now verify that the new random variables satisfies the same equations
as the original ones, namely system of equations (PSR −NSR). Moreover, in order
to apply Theorem 2.6.1 we also need to have on the new probability space an
analogue of (uN , SN), that still satisfies system of equations (PS −NS) and of
which we will prove the convergence. Namely:
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1. Denoting by X̃ i,N,R and Ṽ i,N,R the first N components of (X̃N,R, ṼN,R),
corresponding to those that are non zero, we need to check that, for every
N ∈ N

S̃N,Rt =
1

N

N∑

i=1

δ(X̃i,N,R
t ,Ṽ i,N,Rt ). (2.29)

To prove this, consider the functional ΦS,N defined as:

ΦS,N(SN,R, (X i,N,R)i≤N , (V
i,N,R)i≤N)

:= sup
ϕ∈Cb(T2×R2)

sup
t∈[0,T ]

∣∣∣∣∣
〈
SN,R, ϕ

〉
− 1

N

N∑

i=1

ϕ(X i,N,R
t , V i,N,R

t )

∣∣∣∣∣

which is a measurable functional, and note that this is identically zero by
definition of SN,R. Now, by the fact that the random vectors
(SN,R, (X i,N,R)i≤N , (V i,N,R)i≤N ) and (S̃N,R, (X̃ i,N,R)i≤N , (Ṽ i,N,R)i≤N ) share the
same law, we have

EP̃
[
ΦS,N(S̃N,R, (X̃ i,N,R)i≤N , (Ṽ

i,N,R)i≤N)
]

= EP
[
ΦS,N(SN,R, (X i,N,R)i≤N , (V

i,N,R)i≤N)
]

= 0.

Hence, we conclude that ΦS,N(S̃N,R, (X̃ i,N,R)i≤N , (Ṽ i,N,R)i≤N) is identically
zero P̃-almost surely, which implies (2.29).

2. To prove that the new object satisfies the same equation as the initial one,
for each N ∈ N we consider a bounded and measurable functional ΦN taking
as argument the function uN,R, the particles (X i,N,R)i≤N , (V i,N,R)i≤N and the
Brownian motions (Bi)i≤N , that vanishes in expected value on solutions of
system of equation (PSR −NSR). The measurability of ΦN follows by the
path-by-path formulation while the boundedness requirement can be dealt
with by considering a sequence ΦM,N := ΦN ∧M and passing to the limit in
M inside the expected value by monotone convergence. By the equality in
law of the new sequences with respect to the initial one, we have that the
functional ΦN vanishes also on the new objects, when averaged with respect
to P̃, namely (we omit some technical details of integrability)

EP̃

[
ΦN

(
ũN,R, (X̃ i,N,R)i≤N , (Ṽ

i,N,R)i≤N , (B̃
i,N)i≤N)

]
=

EP

[
ΦN

(
uN,R, (X i,N,R)i≤N , (V

i,N,R)i≤N), (Bi)i≤N

)]
= 0.
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Hence, (ũN,R, (X̃ i,N,R)i≤N , (Ṽ i,N,R)i≤N), (B̃i,N)i≤N) satisfies system of equa-
tion (PSR −NSR) in the new probability space (Ω̃, F̃ , {F̃t}, P̃) which ends
this part.

3. Consider now the sequence (uN , (X i,N)i≤N , (V i,N)i≤N))N∈N, associated with
system of equations (PS −NS), that is the particle system without the cut-
off. On the new probability space (Ω̃, F̃ , {F̃t}, P̃) consider the same system
of equations (PS −NS), i.e. the system of equation where the Brownian
motions (Bi)i≤N are replaced by the Brownian motions (B̃i,N )i≤N introduced
in Step 1. Call (ũN , (X̃ i,N)i≤N , (Ṽ i,N)i≤N))N∈N the solution of such system,
which can be seen as a random variable on (Ω̃, F̃ , {F̃t}, P̃). Since solutions
of system (PS −NS) are unique in law we conclude that for all N ∈ N

(ũN , (X̃ i,N)i≤N , (Ṽ
i,N)i≤N))

Law∼ (uN , (X i,N)i≤N , (V
i,N)i≤N)).

Also introduce the analogue of the empirical measure SN on the new space

S̃Nt :=
1

N

N∑

i=1

δ(X̃i,N
t ,Ṽ i,Nt ).

By the previous definition and by construction of ((X i,N)i≤N , (V i,N)i≤N) we
immediately have

(uN , SN)
Law∼ (ũN , S̃N), ∀N ∈ N.

Step 3: We can now apply Theorem 2.6.1. We have to define all the objects
needed in the Theorem and verify all the four conditions required. Let E =
C([0, T ]×T2)×C([0, T ];P1(T2×R2) and let x ∈ E be the couple (u, F ). Now we
take

XN := (ũN,R, S̃N,R), YN := (ũN , S̃N).

Now define, for ω̃ ∈ Ω̃

SRN(ω̃) =

{
(w, (xi)i≤N , (v

i)i≤N) ∈ C([0, T ]× T2)× C([0, T ];T2 × R2)N s.t.

(w, (xi)i≤N , (v
i)i≤N) solves (PSR −NSR) with additive noise (Bi

t(ω̃))i≤N

}
,

the set of path-by-path solutions for system of equations (PSR −NSR). We also
introduce the analogue for (PS −NS): call it SN(ω̃). Now we consider

SXN (ω̃) :=

{
(w, µ) ∈ E |µ =

1

N

N∑

i=1

δ(xi,vi) , (w, (xi)i≤N , (v
i)i≤N) ∈ SRN(ω̃)

}
,
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and

SYN(ω̃) :=

{
(w, µ) ∈ E |µ =

1

N

N∑

i=1

δ(xi,vi) , (w, (xi)i≤N , (v
i)i≤N) ∈ SN(ω̃)

}
.

Roughly speaking, SXN (resp. SYN ) are the set of couples (w, µ) where u is a function
and µ is a measure, such that µ is the empirical measure of a set of particles which,
together with u, are path-by-path solutions of (PSR −NSR). This is just a way
of rewriting sets of path-by-path solutions, which match the structure of the space
E where the converging objects belong.
Now we just need to verify rigorously all the four conditions stated in this Theorem:

1. In the first Step of this proof, we saw that
(
ũN,R, S̃N,R

)
N→∞−−−→ (u, F ) P̃-a.s.

which correspond exactly to condition 1.

2. Introduce

ΩB =
{
ω̃ ∈ Ω̃ | (B̃i,N(ω̃))i≤N,N∈N are continuous

}

and note that, since we are considering a countable set of Brownian Motions,
this set is of full measure with respect to P̃. Then, by Proposition 2.6.3, we
have that

]SN(ω̃) ≤ 1 ∀ω̃ ∈ ΩB.

Hence, the same result holds for the set SYN(ω̃).

3. Condition 3. states that (ũN,R, S̃N,R) belongs to the set SXN almost surely.
However, in Step 2. of this proof we have verified that on (Ω̃, F̃ , {F̃t}, P̃)

(ũN,R, (X̃ i,N,R)i≤N , (Ṽ i,N,R)i≤N), (B̃i,N)i≤N) satisfies system of equation
(PSR −NSR) in the sense of SDEs. This condition implies that for fixed
ω̃ ∈ Ω̃ the vector (ũN,R(ω̃), (X̃ i,N,R(ω̃))i≤N , (Ṽ i,N,R(ω̃))i≤N) ∈ SRN(ω̃). Since
in Step 2. we verified that S̃N,R is in fact an empirical measures on particle
solutions of (PSR −NSR) and by the definition of SXN , this imply the first
part of condition 3. The same result holds for (ũN , S̃N) and SYN by an
analogous argument.

4. Condition 4. is the most delicate. Take a couple (w, µ) ∈ SXN (ω̃)∩BE((u, F ), 1).
Since (w, µ) ∈ BE((u, F ), 1) we have that

||w||C([0,T ]×T2) ≤ ||u||C([0,T ]×T2) + 1.
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The couple (w, µ) also lies in SXN (ω̃), hence there exist ((xi), (vi))i≤N ∈
C([0, T ];T2 × R2) such that (w, (xi)i≤N , (vi)i≤N ) ∈ SRN (ω̃), which means that
is a path-by-bath solutions of (PSR −NSR). However, since w is uniformly
bounded by ||u||C([0,T ]×T2) + 1, which corresponds exactly to our choice of
R (see at the beginning of this section), we see that the cut off function
χR(w) ≡ 1 is identically one. Hence system of equation (PSR −NSR) reduce
to (PS −NS), which is the particle system without the cut-off. This implies
that (w, (xi)i≤N , (vi)i≤N) solves also (PS −NS), hence (w, µ) ∈ SYN(ω̃).

Since we verified all the necessary conditions, we can apply Theorem 2.6.1, obtaining
(
ũN , S̃N

)
N→∞−−−→ (u, F ) P̃-a.s.

Since almost sure convergence implies convergence in law, and since we verified in
Step 2. that

(uN , SN)
Law∼ (ũN , S̃N), ∀N ∈ N.

we can transport this type of convergence to the original probability space
(Ω,F , {Ft} ,P), hence the proof is ended.



Chapter 3

Self interacting network: the case of
the mycelium

3.1 Introduction
What is presented in this chapter is based on the work [21]. The study of

complex networks has seen a growing interest in the last few years. The nature of
such networks is not uniquely defined: some examples are informational networks,
(of relation between individuals, citation graphs,...), technological (power grids,
public transportation, computer network,...), or biological (vascular, biochemical,
neural network,...). In all the above mentioned phenomena, transformations arise
from individuals: being it the development of a new connection between existing
entities, as it often appears in neurons, or the introduction of a new individual into
the system. All these contributions sum up to the evolution of the network as a
unit at the macroscopic level. The mathematics of such intricate process, which
needs to be able to capture modifications at different scales, can be achieved by
linking microscopic objects, which describe individuals, with their collective mean
behavior.

Here we focus on the case of the spatial evolution of a complex biological
network, which evolves by means of the motions of its nodes. We consider a system
of second order SDEs

{
dX i,N

t = V i,N
t dt

dV i,N
t = −λV i,N

t dt+∇CN(t,X i,N
t )dt+ σdBi

t

t ∈ [T i,N ,Θi,N), (3.1)

where (X i,N
t , V i,N

t ) ∈ Rd×Rd represents the position of the nodes of the network on
the phase space. The processes (Bi

t)t≥0 are independent Brownian motions, which
affects the dynamics of the nodes at the microscopic level. Here CN represents a

79
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sort of “resource” expandable for the development, taking into account the cost
the network has to pay to expand towards a specific direction. The motion of the
particles is driven by the term ∇CN which couples the equations and describes the
fact that particles tend to move where more resources are available, and by the term
−λV i,N

t which represents the friction. Each of the equations in (3.1), describing
position and velocity of a node, is valid only for a limited life span [T i,N ,Θi,N),
denoting the time interval where the node can contribute to the evolution of the
network. Outside of this interval the particle is not moving.

We thus consider the network skeleton made of all the trajectories of the spatial
components of the nodes, i.e.

Nt :=

NN
t⋃

i=1

{X i,N
s | s ≤ t, s ∈ [T i,N ,Θi,N)} ⊆ Rd.

We allow the number of living nodes in the network to increase after a bifurcation
event, or to decrease when the node ceases to exist. Creation and destruction of
particles are provided according to Poisson point process: modifications in the
number of particles at time t are affected by the configuration of the system at all
times s ≤ t. Since the number of individuals is changing in time, we introduce the
total number of particles that are alive or appeared up to time t: call it NN

t . We
introduce the empirical measure of the particle system (3.1)

SNt =
1

N

NN
t∑

i=1

1[T i,N ,Θi,N )(t)δ(Xi,N
t ,V i,Nt )

which is a (random) finite positive measure. We allow a branching event to appear
at time t, in any point on the trajectory of the particles X i,N

s for s ≤ t, with a
uniform spatial distribution on the trajectory. Introduce δ

X
N
t
the uniform measure

on the trajectory of the particles up to time t:

δ
X
N
t

=
1

N

∫ t

0

NN
s∑

i=1

1[T i,N ,Θi,N )(s)
∣∣V i,N
s

∣∣δXi,N
s

(dx)ds. (3.2)

Note the presence of the term |V i,N
t | in the measure δ

X
N
t
: the scaling by the velocity

of each particle is of crucial importance in order to obtain the uniform measure
on the trajectory, see also appendix 3.A. The possibility to handle the uniform
measure on the particles path, as well as the coalescence events, was opened by the
choice of Langevin dynamics thanks to the more regularity of the spatial trajectory.
In the same spirit as branching, when a moving node hits the network structure
(i.e. they superimpose) coalescence occurs: the node stops moving and a loop is
created in the network.
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The function CN is itself influenced by particles, leading to a coupled (random)
PDE-SDEs system

∂tC
N =

σ2
C

2
∆CN − (KC ∗ δXNt )CN . (3.3)

The rationale behind the previous equation is the following: to contribute to the
development of the network, the particles need to spend (consume) some resources.
This absorption mechanism affects not only the sites where the network is expanding,
i.e. corresponding to the particles position, but is present along the entire trajectory.
Having in mind a biological framework we can imagine that the network absorbs
nutrients in order to sustain itself, along its entire length. Moreover, if we want
to consider the network as a solid structure, we cannot use directly the uniform
measure δ

X
N
t
, since the trajectories of the particles are one-dimensional objects and

hence are negligible for the d-dimensional Lebesgue measure. For this reason, we
introduce the convolution kernel KC into equation (3.3). The drift ∇CN(t,X i,N

t )
in the particles equations encodes one very important features of our model: self
avoidance, namely particles tend to avoid visiting sites which are close to their past
trajectories. The values of CN decrease in correspondence of the network structure
Nt, due to the term −(KC ∗ δXNt )CN in (3.3). Hence ∇CN (t, x) is pointing towards
the region of the space which are free, i.e. those which are far from Nt.
We are interested in the mean behavior of system of equation (3.1)-(3.3) when N
is large, and on the propagation of chaos property:

Theorem (Theorem 3.3.2). The couple (SN , CN) converges as N goes to infinity
to the unique measure solution of the following system of PDEs

∂tu+v·∇xu−λdivv(vu) =
σ2

2
∆vu−∇C ·∇vu+G(v)u+G(v)(K∗ρ)−(K∗ρ)u, (3.4)

∂tρ(t, x) =

∫

Rd
|v|u(t, x, v)dv, u(t, x) =

∫

Rd
u(t, x, v)dv,

∂tC =
σ2
C

2
∆C − (KC ∗ ρ)C. (3.5)

The strong coupling between all the elements, especially the interaction with the
past configuration, was the main issue when dealing with a priori estimates, see
section 3.1.1.

The literature of interacting diffusion is very extensive, ranging from the earlier
results [81], [84], [86], [89]. Many works, mostly applied to population dynamics or
more generally to biology, are devoted to the interplay between different species,
and to the discontinuity arising from creation or destruction of individuals. The
spatial component of such discontinuity plays a major role in the progression of the
system, and has been widely studied, [25], [26], [29], [83]. Because of its different
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features, for the analysis of a network organization it is essential to combine all the
effects of the existing connections with the evolution of the individuals: in some
cases the connections can also assume a physical meaning, affecting the structural
transformation. In [6], [7], [42] the case of self-interaction is analyzed, considering
the interaction of a stochastic process (Xt)t≥0 with his trajectory for s ≤ t. More
precisely in [42] self avoidance, which is also a key feature of our work, is treated.

We are also interested in a regularity result, showing that measure solutions of
(3.4) are actually regular function solutions.

Theorem (Theorem 3.3.3). If u is a measure solution of equation (3.4) u ∈
C([0, T ];Pr(Rd × Rd)) then, for all t0 > 0 u lies in C([t0, T ];C∞b (Rd × Rd)).

Following [39] we proved this result under some minor additional assumption
with respect to our convergence result, see Section 3.2 for the detailed hypothesis.

3.1.1 Difficulties

In this subsection we aim to highlight the difficulties we met in proving the
convergence from the discrete to the continuous model and the regularity of solutions.
The first problem we had to solve is the convergence of the empirical measure SNt .
In fact, since the total number of living particles changes over time, SN is not a
probability measure but only a finite positive measure. A proper tightness criterion
in the space of finite positive measure is thus required, [68]. In order to prove
tightness an a priori bound on the total mass, i.e. on the ratio

E

[
NN
t

N

]

is needed. This is not a simple task. Since proliferation can occur with an uniform
distribution at any point along the network Nt, the rate of proliferation depends on
the total length. However the rate of growth of the network, which corresponds to
how much the rate of proliferation increases, is influenced by the other elements of
the system. The velocity of each living particles V i,N

t , which affect the expansion,
is driven by the term ∇CN . Moreover particles velocity is also affected by the
noise, hence it has arbitrarily large fluctuations and can be controlled only in the
average. This intricacy leads to a very difficult coupled problem.
Note that the high complexity of the system is all due to the scaling term |V i,N

s |
in the uniform measure over Nt (3.2). In order to make this difficulty more clear
consider the following

δ̃
X
N
t

=
1

N

∫ t

0

NN
s∑

i=1

1[T i,N ,Θi,N )(s)δXi,N
s

(dx)ds,
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that is the same as δ
X
N
t
where the velocity term is neglected (hence is not uniform

on Nt). Integrating the function 1 and computing the expected value leads to

E
[〈
δ̃
X
N
t
, 1
〉]
≤
∫ t

0

E

[
NN
s

N

]
ds.

It is now clear that in this case it can be possible to obtain a close equation for the
average total mass, independently on CN or the particle velocity. By considering
δ
X
N
t
this last inequality is not immediate, since it involves the term |V i,N

s | that has
to be controlled separately.
We managed to solve this issue by closing a first a priori estimate independently
on the others (Lemma 3.4.3)

E

[
sup
t∈[0,T ]

∣∣∣∣∇CN(t, ·)
∣∣∣∣
∞

]
≤ C. (3.6)

Thanks to the previous estimate it is possible to obtain a control on the particle
velocity, that leads to the required bound on the total mass (Lemma 3.4.6).

Let us now focus on the tightness of CN . The coupling with the particles system
in the equation for CN has the form

(KC ∗ δXNt )CN . (3.7)

The analogous term in the equation satisfied by the empirical measure SN in its
weak formulation, see equation (3.12), takes the form

〈SNs ,∇vf · ∇CN〉,

where f is a test function. Since SN is converging only weakly as a probability
measure we see that is required uniform convergence of ∇CN to ∇C. The bound
in (3.6) is not enough to prove the convergence of the first derivatives of CN , hence
we had to refine this result. Thanks to the control on the total mass previously
discussed we prove (Corollary 3.4.8)

E

[
sup
t∈[0,T ]

∣∣∣∣D2CN(t, ·)
∣∣∣∣
∞

]
≤ C.

Moreover, from equation (3.7) we also understand that it is required to prove
the weak convergence in the sense of finite measure of δXN . The tightness of the
sequence {δXN}N∈N is proved in the same manner of that of {SN}N∈N (Theorem
3.4.9).
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Uniqueness is another difficult topic. Since we aim to prove the propagation of
chaos property at the level of bounded measures, it is required to prove uniqueness
at this level of regularity. We will first derive a formulation for system (3.4)-(3.5)
in Fourier space, and we will understand the solution in Fourier space in its Mild
formulation. Using the technique developed in [39] we will prove some hypoelliptic
estimates for the Fourier multiplier involved in the Fourier formulation. These
estimates will also be used when dealing with the regularity of solutions. Moreover,
we will us the fact that if u has (1 + β) moments along the velocity component, for
some β > 0 and uniformly in time

sup
t∈[0,T ]

∫

Rd

∫

Rd
|v|1+β u(t, dx, dv) ≤ C,

then we can have a control on the Fourier transform of u in the space of (1 + β)-
Holder continuous functions. By this last remark we will produce a Gronwall type
estimate in Fourier space, proving uniqueness.

In the following, we will specialize our work to the modeling of the Podospora
anserina, a filamentous fungus which has been widely used as a model organism
of research. We focused on the development of the Hyphae of the fungus, i.e. the
microscopic branching filaments which collectively form the mycelium. Many works
focused on the growth of single Tip of an Hypha, [56], while others focused on
the collective evolution of the mycelium using PDE approach, [13],[14],[15]. In our
work we directed our attention first on a proper description of the network on the
microscopic scale, taking into account the formation of new individuals (creation
of new Tips for the filament), the possibility of coalescence of existing branches,
and linking the above mentioned phenomena with the collective behavior at the
macroscopic scale.

This chapter is structured as follows: Section 3.2 is devoted to the rigorous
presentation of the model and to all the hypothesis we will need in order to prove
our main results. In Section 3.3 we introduce the mathematical tools that we will
need in the rest of the chapter and identify heuristically the limiting equation of the
microscopic model. We also give a precise statements of our main results Theorem
3.3.2 and Theorem 3.3.3. In Section 3.4 we isolate the a priori estimates needed
for the tightness of the particle system, that we will need in order to prove our
propagation of chaos results. Section 3.5 is devoted to the Fourier formulation
for the limiting equation and to a semi explicit formulation for the solution in
Fourier coordinates. In Section 3.6 we produce some uniform in time Hypoelliptic
estimates on the solution, while in Section 3.7 we prove uniqueness of measure
solutions. Finally in section 3.8 we prove our regularity result, applying the results
developed in the previous sections.
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3.2 Rigorous description of the model
Let us now introduce the model in detail: as stated in the introduction the

case we have in mind is the growth of hyphae. All our discussion is made in an
arbitrary dimension d, even if we are more interested in d = 2, 3.

The fundamental components of our model are the following:

• Tips : we describe the growth of a branch by the motion of its Tip, i.e. the
final portion of the branch, taken in the direction of growth. The motion is
described by a second order SDE, driven by a field of nutrients: position and
velocity of the i-th particle at time t is denoted by (X i,N

t , V i,N
t );

• Branching and coalescing distributions: At time t = 0 we assume to have
N0 = N particles: however the total number of tips can change, at random,
due to branching or coalescing events. Each tip is considered "active" for
t ∈ [T i,N ,Θi,N) denoting its time of birth and death. Branching can appear
either in the position of a tip (tip-branching), either uniformly on the set
of trajectories of the particles (network-branching). These events happen
accordingly to Poisson point process, specified below;

• Concentration of Nutrients: Tips move according to a field of nutrients,
shifting in the direction where the concentration is higher. The concentration
is absorbed, in the regions of space that are occupied by the path of the Tips
(i.e. where the filament is present). We indicate the field of nutrients by
the function CN (t, x) that is expressed by a PDE, coupled with the particles
SDEs.

Let us now detail all of the elements introduced above: We denote by NN
t the

total number of particle who are alive or lived up to time t. Note that with notation
we have NN

0 = N and that NN
t is an increasing process. Each of the particles

satisfies a second order SDE, valid for a limited time between its birth time (which
is zero if the particle is one of the N ancestors) and to its death:

{
dX i,N

t = V i,N
t dt

dV i,N
t = −λV i,N

t dt+∇CN(t,X i,N
t )dt+ σdBi

t

t ∈ [T i,N ,Θi,N),

with (X i,N
0 , V i,N

0 ) according to a pdf u0 on Rd × Rd, and where (Bi
t)t≥0 are inde-

pendent Brownian motions on Rd. In the previous λ > 0 represents the friction
coefficient, σ is the diffusion and CN is the concentration of nutrients introduced
above. Here the sign in front of the gradient of the nutrient field denotes the
tendency of the particle of leaving and avoiding the places where the potential field
is low. This will allow us to obtain the self-avoiding behavior, that is present in
spatial exploration phenomena.
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In order to specify the Point process for the branching and coalescence we have
to introduce the following empirical measures:

SNt (dx, dv) =
1

N

NN
t∑

k=1

1[T i,N ,Θi,N )(t)δXi,N
t ,V i,Nt

(dx, dv),

S̄Nt (dx) =
1

N

NN
t∑

k=1

1[T i,N ,Θi,N )(t)δXi,N
t

(dx),

δ
X
N
t

(dx) =

∫ t

0

1

N

NN
s∑

k=1

1[T i,N ,Θi,N )(s)|V i,N
t |δXi,N

s
(dx).

The measure δ
X
N
t

(dx) is the uniform measure on the network renormalized by the
number of initial particles (see curvilinear abscissa (3.48) in Appendix 3.A). A
new tip is created according to a Compound Poisson Point process Φ(dx× dv× dt)
defined by its compensator

G(v)dvS̄Nt (dx)dt+G(v)dv(K ∗ δ
X
N
t

)(x)dxdt

where G(v) is a pdf on Rd and K is a mollifier with compact support. The first part
of the previous correspond to tip-branching while the second to network-branching.
The reasoning is the following: a new tip can appear either on the spatial position
of an existing particle, with a starting velocity specified by the density G, or it can
appear, with an uniform distribution, on the network of the trajectories. However,
trajectories are 1-dimensional object: therefore the convolution of δ

X
N
t

(dx) with
the mollifier K has the purpose to take into account the (nonzero) thickness of the
hypha.

Concerning the coalescence: we introduce the Compound Poisson Point process
Ψ(dx× dv × dt), specified by the compensator

(K ∗ δ
X
N
t

)(x)SNt (dx, dv)dt.

As for the network-branching the rationale behind this is the following: coalescence
between a tip and an existing branch can only happen when the two superimpose.
The convolution with the kernel K is again to take into account for the thickness
of the branch.

Finally we discuss the equation for the potential field CN :

∂tC
N =

σ2
C

2
∆CN −KC ∗ δXNt (x)CN

with CN(0, x) = C0(x) and KC is mollifier with the property |∇KC(x)| ≤ KC(x).
The network of hyphae, consumes the nutrient field in order to stay alive and
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receive the proper sustain, hence the term −KC ∗ δXNt (x)CN . Since the hyphae are
not curves (as in the modeling) but have a dimension, the kernel KC reintroduce it.

Remark 3.2.1. Here the choice of KC is really the crux of the matter: the specific
hypothesis on KC will allow some a priori estimates to follows easily without
interlacing to each other. For a discussion without this hypothesis see [19].

We summarize all the hypothesis on the model: we split our hypothesis into
three blocks, separating the hypothesis needed for the tightness, uniqueness, and
the additional hypothesis needed for the regularity theorem 3.3.3.

Hypothesis 3.2.2. (Tightness and passage to the limit, Corollary 3.4.13, Theorem
3.4.14):

1. KC ∈ C2
b with the properties that |∇KC(x)| ≤ KC(x). Note that this

prevents to take KC with compact support;

2. K ∈ C2
b with compact support;

3. u0 probability density function on Rd × Rd;

4. G pdf on Rd s.t. G(v)dv ∼ u0(Rd, dv);

5. G and u0(Rd, dv) have finite 1 + β moments for some β > 0;

6. C0 ∈ C2
b .

Hypothesis 3.2.3. (Uniqueness, Theorem 3.7.1)

• The function C0 ∈ Hm+2 for some m > d
2
;

• The function u0 ∈ Hm for some m > d
2
;

• The Kernel KC ∈ Cm+2
b ∩H2m+2 for some m > d

2
.

Hypothesis 3.2.4. (Smoothness, Theorem 3.3.3): Denoting by f̂ the Fourier trans-
form of f

• For all N ≥ 0, supξ∈Rd |Ĝ(ξ)
∣∣(1 + |ξ|2)N <∞.

• For all N ≥ 0, supξ∈Rd |K̂(k)
∣∣(1 + |ξ|2)N <∞.

• For all m ≥ 0, C0, KC ∈ Hm and KC ∈ Cm
b .
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3.3 Limiting Fluid equations

3.3.1 Notation and function spaces

From now on we will denote byM+
f (Rd×Rd), the space of all the finite positive

measures over Rd×Rd. Given (ϕk)k∈N a countable dense subset of Cb(Rd×Rd) we
define

δ(µ, ν) =
∞∑

k=1

1

2k
|〈µ, ϕk〉 − 〈ν, ϕk〉|

1 + |〈µ, ϕk〉 − 〈ν, ϕk〉|

which makesM+
f (Rd×Rd) into a complete metric space, whose topology correspond

to weak convergence of measure. We will then denote by D([0, T ];M+
f (Rd × Rd))

the space of all the càdlàg functions from [0, T ] toM+
f (Rd × Rd), endowed with

the Skorohod topology.
We also denote by C1(Rd) the space of all C1(Rd) functions, endowed with the

topology of uniform convergence over compact sets. We recall that this topology is
generated by the following metric

d(f, g) =
∞∑

N=1

2−N ||f − g||
C1
(
B(0,N)

) ∧ 1.

We will also introduce the spaces

X̃ = D
(

[0, T ];M+
f (Rd × Rd)

)
×D

(
[0, T ];M+

f (Rd)
)
× C

(
[0, T ];C1(Rd)

)

endowed with the product metric introduced above, and

X = C
(

[0, T ];M+
f (Rd × Rd)

)
× C

(
[0, T ];M+

f (Rd)
)
× C

(
[0, T ];C1

b (Rd)
)

again with the product metric.

3.3.2 Itô formula and limiting equation

Let us remind that we are interesting by the convergence of the following
empirical measures :

SNt (dx, dv) =
1

N

NN
t∑

k=1

1[T i,N ,Θi,N )(t)δXi,N
t ,V i,Nt

(dx, dv), (3.8)

S̄Nt (dx) =
1

N

NN
t∑

k=1

1[T i,N ,Θi,N )(t)δXi,N
t

(dx), (3.9)
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δ
X
N
t

(dx) =

∫ t

0

1

N

NN
s∑

k=1

1[T i,N ,Θi,N )(s)|V i,N
t |δXi,N

s
(dx), (3.10)

for β ≤ β

δβ
X
N
t

(dx) =

∫ t

0

1

N

NN
s∑

k=1

1[T i,N ,Θi,N )(s)|V i,N
t |1+βδXi,N

s
(dx) (3.11)

and by the convergence of the function CN .
For every C2 function f : R2d → R, we finally have, by Itô formula, used for

the X i,N , V i,N and using the fact that branching and merging are encoded thanks
to Poisson Point Processes,

〈SNt , f〉 − 〈u0, f〉 =

∫ t

0

〈SNs , v · ∇xf〉ds
︸ ︷︷ ︸

kinetic equation

−
∫ t

0

〈SNs , λv · ∇vf〉ds
︸ ︷︷ ︸

friction

(3.12)

+

∫ t

0

〈SNs ,∇vf · ∇CN〉ds
︸ ︷︷ ︸

potential

+
σ2

2

∫ t

0

〈SNs ,∆vf〉ds
︸ ︷︷ ︸

noise on the velocity

+

∫ t

0

∫

R2d

f(x, v)G(v)dvS
N

s (dx)ds

︸ ︷︷ ︸
creation at the Apex

+

∫ t

0

∫

R2d

f(x, v)G(v)(K ∗ δXNs )(x)dxdvds

︸ ︷︷ ︸
creation on the network

−
∫ t

0

∫

R2d

f(x, v)(K ∗ δXNs )(x)SNs (dx, dv)ds

︸ ︷︷ ︸
anastomosis

+ M1,N,f
t︸ ︷︷ ︸

martingale remainder
of motion

+ M2,N,f
t︸ ︷︷ ︸

martingale remainder
of branching

+ M3,N,f
t︸ ︷︷ ︸

martingale remainder
of anastomosis

Where the explicit martingale terms are the following :

M1,N,f
t =

∫ t

0

σ

N

NN (s)∑

i=1

1[T i,N ,Θi,N )(s)∇vf(X i,N
s , V i,N

s ) · dBi
s

M2,N,f
t =

∫ t

0

∫

R2d

f(x, v)
[
Φ(dx×dv×ds)−G(v)S

N

s (dx)dvds−G(v)(K∗δXNs )(x)dxdvds
]
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M3,N,f
t = −

∫ t

0

∫

R2d

f(x, y)
[
Ψ(dx× dv × ds)− (K ∗ δXNs )(x)SNs (dx, dv)ds

]

and
∂tC

N =
σ2
C

2
∆CN −KC ∗ δXNCN

This gives us the wanted limiting equation :




∂tu+ v · ∇xu− λdivv(vu) =
σ2

2
∆vu−∇C · ∇vu

+G(v)u+G(v)(K ∗ ρ)− (K ∗ ρ)u

∂tρ(t, x) =

∫

Rd
|v|u(t, x, v)dv

u(t, x) =

∫

Rd
u(t, x, v)dv

∂tC =
σ2
C

2
∆C − (KC ∗ ρ)C

u(0, ·, ·) = u0, C(0, ·) = C0, ρ(0, ·) = 0.

(3.13)

3.3.3 Definitions of measure solutions and main Theorem

Definition 3.3.1. A measure solution of system of equation (3.13) is a triple
(u, ρ, C), where u ∈ C([0, T ];M+

f (Rd × Rd)), ρ ∈ C([0, T ];M+
f (Rd)) and C ∈

C([0, T ];C1
b (Rd)) are such that, for every test function ϕ ∈ C∞c (Rd × Rd) one has

∫

Rd×Rd
ϕ(x, v)u(t, dx, dv)−

∫

Rd×Rd
ϕ(x, v)u(0, dx, dv)

−
∫ t

0

∫

Rd×Rd
v · ∇xϕ(x, v)u(s, dx, dv)ds+ λ

∫ t

0

∫

Rd×Rd
∇vϕ(x, v) · vu(s, dx, dv)ds

=
σ2

2

∫ t

0

∫

Rd×Rd
∆vϕ(x, v)u(s, dx, dv)ds+

∫ t

0

∫

Rd×Rd
∇vϕ(x, v)·∇C(s, x)u(s, dx, dv)ds

+

∫ t

0

∫

Rd×Rd
ϕ(x, v)G(v)us(dx)dvds+

∫ t

0

∫

Rd×Rd
ϕ(x, v)G(v)(K ∗ρ(s, ·))(x)dxdvds

−
∫ t

0

∫

Rd×Rd
ϕ(x, v)(K ∗ ρ(s, ·))(x)u(s, dx, dv)ds,

u(t, dx) = u(t, dx,Rd),

the measure ρ satisfies, for every test function ϕ ∈ C∞c (Rd)
∫

Rd
ϕ(x)ρ(t, dx) =

∫

Rd
ϕ(x)ρ(0, dx) +

∫ t

0

∫

Rd
ϕ(x) |v|u(s, dx, dv)ds,
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and the function C satisfies
∫

Rd
C(t, x)ϕ(x)dx =

∫

Rd
C(0, x)ϕ(x)dx

+

∫ t

0

∫

Rd

σ2
c

2
C(s, x)∆ϕ(x)dxds−

∫ t

0

∫

Rd
C(s, x)(KC ∗ ρ(t, ·))(x)ϕ(x)dxds.

(3.14)

We end up this section by properly stating our main results:

Theorem 3.3.2 (Propagation of chaos). If the hypothesis 3.2.2 are satisfied, the
family of laws {QN}N∈N of the triple (SN , δXN , C

N)N∈N is tight on the space X̃.
Moreover {QN}N∈N converges weakly in X̃ to δ(u,ρ,C), where the triple (u, ρ, C) ∈ X
is the unique measure solution of system of equation (3.13).

We will prove the tightness of the sequences in Section 3.4. The proof concludes in
Section 3.7 by proving uniqueness for the limit system.

Theorem 3.3.3 (Smoothness of solutions). Under Hypothesis 3.2.2, 3.2.3 and
3.2.4, for all t0 > 0, u lies in L∞([t0, T ];C∞(Rd × Rd)).

The proof of this result can be found in Section 3.8.

Remark 3.3.4. The proof of Theorem 3.3.3 gives us a bit better, actually denoting
by û the Fourier transform of u, û(t, ·, ·) is decaying faster than any polynomials,
impliying for example the û(t, ·, ·) ∈ Hm for all m ∈ N.

3.4 A priori estimates on microscopic model and
tightness

We start by some a priori estimates on the microscopic model, needed for the
tightness, and thus the propagation of chaos.

3.4.1 A priori estimates

Lemma 3.4.1. Suppose that w(t, x) is of class C1,2([0, T ]× Rd) and satisfies the
following PDE:



∂tw(t, x) =

a2

2
∆w(t, x)− (K ∗ f(t, ·))(x)w(t, x) (t, x) ∈ [0, T ]× Rd

w(0, x) = w0(x)

(3.15)
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where f ∈ L∞([0, T ];M+
f (Rd)), K ∈ C2

b (Rd) is non negative and satisfies |∇K| .
K. Assume also that w0 ∈ C2

b (Rd). Then

sup
t∈[0,T ]

||w(t, ·)||C1
b
≤ C ||w0||C1

b
(3.16)

and
sup
t∈[0,T ]

||w(t, ·)||C2
b
.T (1 + ||w0||C2

b
) ||K||C2

b
sup
t∈[0,T ]

f(t,Rd) (3.17)

Proof. By Feynman-Kac representation we have

w(t, x) = E

[
exp

(
−
∫ t

0

(K ∗ f(s, ·))(x+ aWt − aWs)ds

)
w0(x+ aWt)

]
, (3.18)

where (Wt)t≥0 is a standard Brownian motion. Notice that, for every g ∈ C2
b (Rd)

with |∇g| . g one has
∇e−g = −∇ge−g

so that, using the hypothesis on the first derivative we have
∣∣∇e−g

∣∣ ≤ 1.

Moreover for each i, j
∣∣∂i∂je−g

∣∣ ≤ |∂ig|+ |∂i∂jg| . ||g||C2
b
.

Applying the previous computation in equation (3.18) we get to (3.16). Finally
∣∣∣∣D2w(t, ·)

∣∣∣∣
∞ ≤ ||w0||C2

b
||K||C2

b
sup
t∈[0,T ]

f(t,Rd)

which leads to (3.17).
Remark 3.4.2. Note that, thanks to the assumptions, the bound (3.16) of the
previous lemma is independent of K ∗ f . This uniform bound is in fact the main
reason for hypothesis (1) in 3.2.2.

Lemma 3.4.3. Under assumptions 3.2.2 we have

sup
t∈[0,T ]

∣∣∣∣CN(t, ·)
∣∣∣∣
C1
b

≤ C ||C0||C1
b

a.s. (3.19)

Proof. By the hypothesis 3.2.2 we haveK∗δXN ∈ C([0, T ];C∞(Rd)) and |∇(K ∗ δXN )|
= |(∇K) ∗ δXN | . K ∗ δXN almost surely. We can then apply the same strategy as
Lemma 3.4.1 and obtain the desired result.
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Lemma 3.4.4. There exist a sequence of i.i.d. random variables χi satisfying
E
[

exp (aχ2
i )
]
<∞ for some a > 0, such that, for all β ≤ β

sup
t∈[0,T ]

∣∣∣V i,N
t

∣∣∣
1+β

.T Z
i,β :=

∣∣∣V i,N
T i,N

∣∣∣
1+β

+ χ1+β
i + ||C0||1+β

C1
b

(3.20)

and ∣∣∣X i,N
t −X i,N

s

∣∣∣+
∣∣∣V i,N
t − V i,N

s

∣∣∣ . Zi,0 |t− s| 12−ε (3.21)

for all 0 < ε < 1
2
. Moreover for all β the variables (Zi,β)i∈N are i.i.d r.v.

Proof. For t ∈ [T i,N ,Θi,N)

V i,N
t = V i,N

T i,N
e−λ(t−T i,N ) +

∫ t

T i,N
e−λ(t−r)∇CN(r,X i,N

r )dr + σ

∫ t

T i,N
e−λ(t−r)dBi

r.

(3.22)
Call

U i
T i,N ,t =

∫ t

T i,N
e−λ(t−r)dBi

r

and notice that these are Gaussian random variables. Moreover there is constant
bλ depending on λ such that

Var(|U i
t,t′ − U i

s,s′ |) . bλ |t− s|+ |t′ − s′|

and, since the variables are Gaussian, we have

E



(
|U i

t,t′ − U i
s,s′|

|t− s|+ |t′ − s′|

)2k

 . bkλ(2k)!

2kk!
.

Hence, by the proof Kolmogorov regularity Theorem, there exists a random variable
χi, E

[
exp (aχ2

i )
]
<∞ for some a > 0 depending on λ, such that

|U i
t,t′ − U i

s,s′| . χi(|t− s|+ |t′ − s′|)
1
2
−ε (3.23)

a.s. for every ε ∈ (0, 1
2
). Note that the variables χi depends only on Bi

t and thus
are i.i.d. Plugging the last inequality into (3.22), and using (3.19) we obtain the
first part of the lemma. The fact that the variables Zi,β are independent is a
consequence of the independence of χi and of V i,N

T i,N
.

Remark 3.4.5. Notice that for all i ∈ N the random variable Zi,β is independent on
T i,N : in fact Zi,β depends only on the variables χi, which are independent on T i,N ,
and on V i,N

T i,N
which is distributed as G(v)dv. This fact will be crucial in the proof

of Lemma 3.4.6.
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Lemma 3.4.6. With the same notation of Lemma, 3.4.4 for all β ≤ β

E


 1

N

NN
t∑

i=1

∣∣∣V i,N
t

∣∣∣
1+β


 .T E



NN
t∑

i=1

Zi,β


 = E

[
Z1,β

]
E

[
NN
t

N

]
. (3.24)

Moreover, recall that NN
t is non decreasing, it holds

E

[
NN
T

N

]
.T 1. (3.25)

Proof.

Let us first start by proving the first part of the lemma. We can control

E



NN
t∑

i=1

∣∣∣V i,N
t

∣∣∣
1+β


 .T E



NN
t∑

i=1

Zi,β




using inequality (3.20) in Lemma 3.4.4. Recall that Zi,β is independent on T i,N :
we can now prove a variant of Wald identity.

E



NN
t∑

i=1

Zi,β


=

∞∑

k=1

k∑

i=1

E
[
Zi,β1NN

t =k

]
=
∞∑

i=1

∞∑

k=i

E
[
Zi,β1NN

t =k

]
=
∞∑

i=1

E
[
Zi,β1NN

t >i

]

=
∞∑

i=1

E
[
Zi,β1T i,N≤t

]
=
∞∑

i=1

E
[
Zi,β

]
E [1T i,N≤t] = E

[
Zi,β

]
E
[
NN
t

]
.

This proves the first part. Concerning the second, by applying Itô formula (3.12)
with f ≡ 1 we get

NN
t

N
=
NN

0

N
+

∫ t

0

NN
s

N
ds+

∫ t

0

∫ s

0

1

N

NN
r∑

i=1

1[T i,N ,Θi,N ]

∣∣V i,N
r

∣∣ drds

−
∫ t

0

∫

Rd
(K ∗ δXNs )(x)SNs (dx, dv)ds+M2,N,1

t +M3,N,1
t .

Taking the expected value and neglecting the indicator function, we obtain (3.25)
by applying the generalized Grönwall lemma of Appendix 3.B.

Remark 3.4.7. This part of the proof follows the same strategy as [19] regarding the
variant of Wald identity. The r.v. Zi,β are obtained by a different type argument,
using the a priori bound on ∇CN available in this case.



95

Corollary 3.4.8.

E

[
sup
t∈[0,T ]

∣∣∣∣D2CN(t, ·)
∣∣∣∣
∞

]
.T ||C0||C2

b
||K||C2

b
E

[
sup
t∈[0,T ]

NN
t

N

]

Proof. By Lemma 3.4.1 it’s enough to verify that δXN (·, dx) ∈ L∞([0, T ];M+
f (Rd))

almost surely. Note that δXN (·,Rd) is increasing in time, so that it’s enough to
bound δXN (T,Rd). Using Lemma 3.4.6 we have

E
[
δXN (T,Rd)

]
≤
∫ T

0

E


 1

N

NN
s∑

i=1

∣∣V i,N
s

∣∣

 ds .T CE

[
NN
T

N

]
,

which ends the proof.

3.4.2 Tightness of the laws and passage to the limit

Theorem 3.4.9. The sequence {QN
S }N∈N of the laws of the empirical measure

{SN· }N∈N is tight on D([0, T ];M+
f (Rd × Rd)). Moreover, the sequence {QN

δβ
X

}N∈N
of the laws of the empirical measure {δβ

X
N·
}N∈N, defined in (3.11), is tight on

D([0, T ];M+
f (Rd)) for every β ≤ β.

Proof. In order to prove the tightness of the laws of QN
S on D([0, T ];M+

f (Rd×Rd))

we will show that QN
S ◦Φk is tight on D([0, T ];R), for every function Φk in a dense

subfamily of Cb(Rd × Rd) (recall the definition of M+
f in the introduction). In

particular the functions Φk can be taken to be Lipschitz continuous. Thanks to
Aldous criterion ([68]), to prove the tightness of QN

S ◦ Φk it sufficient to verify the
following conditions:

∀t ∈ [0, T ],∀ε > 0,∃R s.t. sup
N∈N

QN
S (|〈πt,Φk〉| > R) < ε (3.26)

and
∀δ, lim

γ→0
lim sup
N∈N

sup
τ∈LT
θ≤γ

QN
S (|〈πτ+θ,Φk〉 − 〈πτ ,Φk〉| > δ) = 0 (3.27)

where LT is the family of all stopping times bounded by T . Notice that

QN
S (|〈πt,Φk〉| > R) = P

(∣∣〈SNt ,Φk

〉∣∣ > R
)
≤ 1

R
E
[∣∣〈SNt ,Φk

〉∣∣] ≤ 1

R
E

[
NN
t

N

]
||Φk||∞

so that condition (3.26) follows by Lemma 3.4.6. Concerning condition (3.27) we
have

QN
S (|〈πτ+θ,Φk〉 − 〈πτ ,Φk〉| > δ) = P

(∣∣〈SNτ+θ,Φk

〉
−
〈
SNτ ,Φk

〉∣∣ > δ
)
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furthermore

∣∣〈SNτ+θ,Φk

〉
−
〈
SNτ ,Φk

〉∣∣ ≤ 1

N

NN
τ+θ∑

i=NN
τ +1

∣∣∣Φk(X
i,N
τ+θ, V

i,N
τ+θ)− Φk(X

i,N
τ , V i,N

τ )
∣∣∣

≤ ||Φk||Lip
1

N

NN
τ+θ∑

i=NN
τ +1

(∣∣∣X i,N
τ+θ −X i,N

τ

∣∣∣+
∣∣∣V i,N
τ+θ − V i,N

τ

∣∣∣
)

≤ ||Φk||Lip
1

N

NN
τ+θ∑

i=NN
τ +1

Zi,0 θ
1
2
−ε

by Lemma 3.4.4. By Lemma 3.4.6 we have

E


 1

N

NN
τ+θ∑

i=NN
τ +1

Zi,0


 ≤ E


 1

N

NN
T∑

i=1

Zi,0


 = E

[
NN
T

N

]
E
[
Z1,0

]
.

and thus, by using Markov inequality

P
(∣∣〈SNτ+θ,Φk

〉
−
〈
SNτ ,Φk

〉∣∣ > δ
)
≤ ||Φk||Lip

C

δ
θ

1
2
−ε.

Letting γ → 0 ends the first part of the proof. For the second part, to prove the
tightness of QN

δβ
X

, we apply the same strategy: Thus we need to proove that for

every Lipschitz function Φk, in dense subset of Cb(Rd), we have

∀t ∈ [0, T ],∀ε > 0∃R s.t. sup
N∈N

QN

δβ
X

(|〈πt,Φk〉| > R) < ε (3.28)

and
∀δ, lim

γ→0
lim sup
N∈N

sup
τ∈LT
θ≤γ

QN

δβ
X

(|〈πτ+θ,Φk〉 − 〈πτ ,Φk〉| > δ) = 0 (3.29)

For the first condition we have

QN

δβ
X

(|〈πt,Φk〉| > R) = P
(∣∣∣
〈
δβ
X
N
t
,Φk

〉∣∣∣ > R
)

and

E
[∣∣∣
〈
δβ
X
N
t
,Φk

〉∣∣∣
]

= E



∫ t

0

1

N

NN
s∑

i=1

∣∣V i,N
s

∣∣1+β
Φk(X

i,N
s )ds



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≤ ||Φk||∞
∫ t

0

E


 1

N

NN
s∑

i=1

∣∣V i,N
s

∣∣1+β


 ds ≤ ||Φk||∞E

[
Zi,β

] ∫ t

0

E

[
NN
s

N

]
ds

≤ ||Φk||∞E
[
Z1,β

]
T · C

so that we can obtain condition (3.28) by Markov inequality and Lemma 3.4.6.
Furthermore

E
[ ∣∣∣
〈
δβ
X
N
t

(τ + θ),Φk

〉
−
〈
δβ
X
N
t

(τ),Φk

〉∣∣∣
]
≤ ||Φk||∞

∫ τ+θ

τ

E


 1

N

NN
τ+θ∑

i=NN
τ +1

∣∣V i,N
s

∣∣1+β


 ds.

Again, using Lemma 3.4.6

E


 1

N

NN
τ+θ∑

i=NN
τ +1

∣∣V i,N
s

∣∣1+β


 ≤ E


 1

N

NN
T∑

i=1

Zi,β


 = E

[
NN
T

N

]
E
[
Z1,β

]
.

leading to

E
[∣∣∣
〈
δβ
X
N
t

(τ + θ),Φk

〉
−
〈
δβ
X
N
t

(τ),Φk

〉∣∣∣
]
≤ ||Φk||∞E

[
NN
T

N

]
E
[
Z1,β

]
θ

This ends the proof of condition (3.29) and thus the proof of the lemma.

Lemma 3.4.10. For every ε > 0 there exists R such that

P
( ∣∣∣∣CN

∣∣∣∣
W 1,∞

(
[0,T ];C0(Rd)

) > R
)
< ε (3.30)

Proof. Let us first notice that

P
( ∣∣∣∣CN

∣∣∣∣
W 1,∞

(
[0,T ];C0(Rd)

) > R
)
≤ P

(
sup
t∈[0,T ]

∣∣∣∣∂tCN(t, ·)
∣∣∣∣
∞ >

R

2

)

+ P
(

sup
t∈[0,T ]

∣∣∣∣CN(t, ·)
∣∣∣∣
∞ >

R

2

)

and that the second term can be made arbitrary small by Markov inequality and
Lemma 3.4.3.

By a direct computation we also have

∣∣∣∣∂tCN(t, ·)
∣∣∣∣
∞ .T

σ2
C

2

∣∣∣∣D2CN(t, ·)
∣∣∣∣
∞ +

NN
t

N
||KC ||∞

∣∣∣∣CN(t, ·)
∣∣∣∣
∞ .
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Taking the supremum in time we obtain

sup
t∈[0,T ]

∣∣∣∣∂tCN(t, ·)
∣∣∣∣
∞ .T

σ2
C

2
sup
t∈[0,T ]

∣∣∣∣D2CN(t, ·)
∣∣∣∣
∞+

NN
T

N
||KC ||∞ sup

t∈[0,T ]

∣∣∣∣CN(t, ·)
∣∣∣∣
∞

thus

P
(

sup
t∈[0,T ]

∣∣∣∣∂tCN(t, ·)
∣∣∣∣
∞ >

R

2

)
.T

2σ2
C

R
E

[
sup
t∈[0,T ]

∣∣∣∣D2CN(t, ·)
∣∣∣∣
∞

]
+

2 ||KC ||∞√
R

E

[
NN
T

N

]
+

2√
R
E

[
sup
t∈[0,T ]

∣∣∣∣CN(t, ·)
∣∣∣∣
∞

]
.

By taking R sufficiently large we can conclude by Lemmas 3.4.3, 3.4.6 and Corollary
3.4.8.

Theorem 3.4.11. Denoting by BM the d-dimensional ball of radiusM we have that
∀M ∈ N the sequence {QN,M

C }N∈N of the laws of the function {CN
· }N∈N restricted

to BM , is tight on C
(

[0, T ];C1(BM)
)
.

Proof. By Simon’s lemma we have that

W 1,∞
(

[0, T ];C(BM)
)
∩ L∞

(
[0, T ];C2(BM)

)

is compactly embedded into

C
(

[0, T ];C1(BM)
)
.

Thus, the set

KM,R,S :=



f

∣∣∣∣ ||f ||
W 1,∞

(
[0,T ];C0(BM )

) ≤ R, ||f ||
L∞
(

[0,T ];C2(BM )

) ≤ S





is a compact subset of C
(

[0, T ];C1(BM )
)
with respect to the strong topology. We

have

QN,M
C

(
Kc
M,R,S

)
≤ P



∣∣∣
∣∣∣CN
|BM

∣∣∣
∣∣∣
W 1,∞

(
[0,T ];C0(BM )

) > R




+ P



∣∣∣
∣∣∣CN
|BM

∣∣∣
∣∣∣
L∞
(

[0,T ];C2(BM )

) > S



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≤ P


∣∣∣∣CN

∣∣∣∣
W 1,∞

(
[0,T ];C0(Rd)

) > R


+

1

S
E

[
sup
t∈[0,T ]

∣∣∣∣D2CN(t, ·)
∣∣∣∣
C(Rd)

]
.

(3.31)

By Lemma 3.4.10 and Corollary 3.4.8, choosing R and S big enough, we can make
(3.31) arbitrary small, ending the proof.

From the previous lemma we immediately get the following theorem:

Theorem 3.4.12. The sequence {QN
C }N∈N of the laws of the function {CN

· }N∈N
is tight on C

(
[0, T ];C1(Rd)

)
.

Proof. The thesis follows by the tightness of the sequence of the laws {QN,M
C }N∈N.

With a little abuse of notation we will refer to the laws of δXN as QN
δX

= QN
δ0
X

.
We will also denote by QN the measure

QN = QN
S ⊗QN

δX
⊗QN

C

defined on the product space X.
By Theorems 3.4.9 and 3.4.12 we immediately get the following corollary:

Corollary 3.4.13. The sequence {QN}N∈N of probability measure is tight on the
space X̃.

Theorem 3.4.14. Any limit point of any subsequence of the sequence {QN}N∈N,
is supported on the measure solutions of system of equation (3.13).

Sketch of the proof. The fact that limit objects satisfy system of equations (3.13)
is classical, see [68]. Hence we highlight only the main difficulties. Let us show that
all the reminders in the Itô formulations, the martingales Mk,N,f

t for k = 1, 2, 3,
vanish when N tends to infinity. For every test function ϕ ∈ C∞b (Rd×Rd) we have
to check that (recall Itô formula in section 3.3.2)

E

[
sup
t∈[0,T ]

∣∣∣Mk,N,f
t

∣∣∣
2
]
N→∞−→ 0 (3.32)

for k = 1, 2, 3. By using Burkholder inequality we will conclude by showing
that the quadratic variation of all these martingale goes to zero in L1(Ω). The
first martingale, coming from the Brownian motion is classical. Concerning the
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martingale M2,N,f , deriving from the branching process, we first note that we can
rewrite

M2,N,f
t =

1

N

NN
t∑

i=1

M i,2,N,f
t

where M i,2,N,f
t are martingales defined as the integral of f with respect to a

compensated Poisson point process Φi, whose compensator is the random measure

G(v)1s∈[T i,N ,θi,N )δXi,N
s

(dx)dvds+

∫ s

0

G(v)1s∈[T i,N ,θi,N )

∣∣V i,N
r

∣∣ δXi,N
r

(dx)dvdrds.

It follows that

[
M2,N,f
·

]
T

=
1

N2

NN
T∑

i,j=1

[
M i,2,N,f
· ,M j,2,N,f

·
]
T

=
1

N

∫ T

0

∫

Rd
f(x, v)2

[
G(v)S

N

s (dx)dvds−G(v)δXNs (dx)dvds
]

+
1

N2

∑

i 6=j

[
M i,2,N,f
· ,M j,2,N,f

·
]
T

It is now clear that, if we show that the terms corresponding to i 6= j vanish,
we will obtain the desired result. To do so, observe that for i 6= j, shortening the
notation to M i

t and M
j
t

[
M i
· ,M

j
·
]
T

= [(M i
· ), (M

j
· )]

c
T + ∆

[
M i
· ,M

j
·
]
T

= [(M i
· )
c, (M j

· )
c]T + ∆M i

T∆M j
T

where (M i)c denotes the continuous part of the variation. The continuous part
obviously vanish, being the motion of particles for i 6= j driven by independent
Brownian motions. For the jump part, notice that the probability of two birth or
coalescence events, corresponding to jumps, to happen at the same time is zero:
this is a consequence of the conditional independence with respect to Ft of M2,N,f

and M3,N,f , as well as that of the martingales M i and M j. The proof for the
martingale M3,N,f follows in the same manner.

Concerning the time regularity of the limit points we just remark the fact
that limits point are probability measures on X, thus are continuous in time, is a
consequence of the tightness criterion in the space D, [68].
Remark 3.4.15. In Theorem 3.4.9 we have seen that the for every β ≤ β the
sequence of the laws of δβ

XN
is tight. Starting from this fact, we consider the

following equation 


∂tρ

β(t, x) =

∫

Rd
|v|1+βu(t, x, v)dv

ρβ(0, x) = 0.

(3.33)
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We can then prove with small modification from Theorem 3.4.14, that the sequence
of laws of δβ

XN
is supported on the weak solutions of the previous PDE, and thus

that the whole sequence of laws {QN

δβ
X

}N∈N is converging in D([0, T ];M+
f (Rd)) to

the unique solution of (3.33). Hence we deduce the following fact:

Corollary 3.4.16. If the function u0 starting condition of the system (3.13) satis-
fying hypothesis (3),(4), satisfies also hypothesis (5), then the solution of system
(3.13) has the property

sup
t∈[0,T ]

ρβ(t,Rd) =

∫

Rd
|v|1+βu(t,Rd, dv) <∞

for all β ≤ β.

3.5 Fourier formulation

3.5.1 The coupled PDEs in Fourier space

In the previous section, we proved existence of measure solution of the system
of equations, when u0, ρ0 are bounded measures with moments of sufficiently high
order and C0 is regular enough :




∂tu(t, x, v)+v · ∇xu(t, x, v)− λdivv(vu(t, x, v)
)

=
σ2

2
∆vu(t, x, v) +∇C(t, x).∇vu(t, x, v)

+G(v)ū(t, x) +G(v)K ∗ ρ(t, x)− u(t, x, v)K ∗ ρ(t, x)

ρ(t, x) =

∫ t

0

∫

Rd
|v|u(s, x, v)dvds

ū(t, x) =

∫

Rd
u(t, x, v)dv

∂tC(t, x) =
σ2
C

2
∆C(t, x)−KC ∗ ρ(t, x)C(t, x).

(3.34)

The aim of this section is to prove uniqueness of such solutions. We will use
Fourier techniques from [39] and hypoelliptic estimates. The proof of uniqueness
will be decomposed in several steps. The first one is an a priori bound on C
in Sobolev spaces. The second one will be a reminder of the derivation of the
formulation of the system (3.34) in Fourier space, as long as a mild formulation
in the Fourier space. The third step will be the proof of hypoelliptic estimates
(following [39]) for the Fourier multiplier involved in the Fourier expression of
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(3.34). Finally, by using a Grönwall type argument, we will conclude about the
uniqueness of measure solutions. The hypoelliptic bound will also be useful in the
last subsection 3.8 to prove smoothness of the solutions.

3.5.2 A priori bound for C

Let us suppose that (u, ρ, C) is a measure solution of Equation (3.13), as in
Definition 3.3.1. To prove uniqueness, we will strongly use the smoothness of the
potential field C. This lemma is obviously an extension of Lemma 3.4.1, we state
it and prove it for the sake of the comprehension.

Lemma 3.5.1. Let m ∈ N, f ∈ L∞
(
[0, T ];M+

f (Rd)
)
, g ∈ L∞

(
[0, T ];Hm(Rd,R)

)

and K ∈ Cm
b (Rd;R+) and w0 ∈ Hm(Rd;R+). let w be the solution of the heat

equation

∂tw =
a2

2
∆w − (K ∗ f)w + g, w(0, ·) = w0.

Then w ∈ L∞
(
[0, T ];Hm(Rd;R)

)
, and one has for all t ∈ [0, T ],

‖w(t, ·)‖Hm .
(
1 + ‖K‖Cmb

)m(
1 + sup

s∈[0,T ]

f(s,Rd)
)m
(
‖w0‖Hm +

∫ t

0

‖g(s, ·)‖Hmds

)

Proof. Let W be a standard Brownian motion on [0, T ], as in Lemma 3.4.1, we
have the explicit formula

w(t, x) = E
[
e−

∫ t
0 K∗f

(
r,x+a(Wt−Wr)

)
drw0(x+ aWt)

+

∫ t

0

g
(
s, x+ a(Wt −Ws)

)
e−

∫ t
s K∗f(r,x+aWt−aWr)drds.

]
.

Hence, thanks to Faá di Bruno formula, for all multi-index α with |α| ≤ m, we
have

∂αw(t, x) =
∑

|β|+|γ|≤|α|
cα,β,γE

[
∂βw0(x+ aWt)∂γ

(
e−

∫ t
0 K∗f

(
r,·+a(Wt−Wr)

)
dr
)

(x)

+

∫ t

0

∂βg
(
s, x+ a(Wt −Ws)

)
∂γ

(
e−

∫ t
s K∗f(r,·+aWt−aWr)dr

)
(x)ds

]

Remark also that
∣∣∣∣∂γ
(
e−

∫ t
0 K∗f

(
r,·+a(Wt−Wr)

)
dr
)

(x)

∣∣∣∣ .
(
1 + ‖K‖Cmb

)m(
1 + sup

s∈[0,T ]

f(s,Rd)
)m
.
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Hence,

∫

Rd

∣∣∂αw(t, x)
∣∣2dx .

(
1 + ‖K‖Cmb

)m(
1 + sup

s∈[0,T ]

f(s,Rd)
)m

∑

|β|+|γ|≤|α|
E

[ ∫

Rd

∣∣∂βw0(x+ aWt)
∣∣2dx+

∫ t

0

∫

Rd

∣∣∣∂βg
(
s, x+ a(Wt −Ws)

)∣∣∣
2

dxds

]

which gives, by summing on α,

‖w(t, ·)‖Hm .
(
1 + ‖K‖Cmb

)m(
1 + sup

s∈[0,T ]

f(s,Rd)
)m
(
‖w0‖Hm +

∫ t

0

‖g(s, ·)‖Hmds

)
,

which is the wanted result.

3.5.3 The equation in Fourier space

Note that when u (and its associated ρ, see Definition 3.3.1) are finite positive
measure solutions, their associated Fourier transforms (respectively in space and
velocity) exist as bounded functions. Furthermore we have

û(t, k, ξ) =

∫

Rd

∫

Rd
e−ik·xe−iξ·vu(t, dx, dv),

ˆ̄u(t, k) =

∫

Rd×Rd
e−ik·xu(t, dx, dv) = û(t, k, 0).

and

ρ̂(t, k) =

∫ t

0

∫

Rd

∫

Rd
e−ik·x|v|u(t, dx, dv)ds.

Hence, as Schwartz distributions,

ρ̂(t, k) =

∫ t

0

(−∆)
1
2 û(s, k, 0)ds =

∫ t

0

Γ
(
d+1

2

)

π
d+1
2

P.V.

∫

Rd

û(s, k, 0)− û(s, k, ξ)

|ξ|d+1
dξds,

where P.V. denotes the principal value. By using Lemma 3.C.1 of the Appendix, a
way of controlling the sup norm of ρ̂(t, k) is to control the (1 + β)-Hölder norm of
ξ → û(t, k, ξ), uniformly in t, k. Finally, in Fourier space (as Schawrtz distributions),
Equation (3.34) becomes
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



∂tû(t, k, ξ)− k · ∇ξû(t, k, ξ) + λξ · ∇ξû(t, k, ξ)

= −|ξ|2σ
2

2
û(t, k, ξ) + iξ · ∇̂C ∗ û(t, k, ξ)

+ Ĝ(ξ)
(
û(t, k, 0) + K̂ρ̂(t, k)

)
−
(
K̂ρ̂
)
∗ û(t, k, ξ).

ρ̂(t, k) =

∫ t

0

(−∆)
1
2 û(s, k, 0)ds

∂tC(t, x) =
σ2
C

2
∆C(t, x)−F−1

(
K̂C ρ̂

)
(t, x)C(t, x).

(3.35)

We know that there exists a solution of the previous equation, seen as Schwarz
distribution (û, ρ̂, C). We can rewrite the previous system in its Mild formulation
(see Appendix 3.D). For k, ξ ∈ Rd let us define ξ(t) =

(
ξ − k

λ

)
e−λt + k

λ
, and one

have the following semi-explicit formula for the first equation of (3.35) :

û(t, k, ξ) =û0

(
k, ξ(t)

)
exp

(
− σ2

2

∫ t

0

|ξ(r)|2dr
)

+

∫ t

0

iξ(t− s) ·
(
∇̂C ∗ û

)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds

+

∫ t

0

G
(
ξ(t− s)

)(
û(s, k, 0) + K̂ρ̂(s, k)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds

−
∫ t

0

((
K̂ρ̂
)
∗ û
)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds.

(3.36)

3.6 Hypoelliptic estimates

Proposition 3.6.1. There exists two universal constants c > 0 such that for all
t ≥ 0 and all k, ξ ∈ Rd, we have

e−
σ2

2

∫ t
0 |ξ(r)|2dr ≤ e

−cσ2
2

(
∫ t
0

(
1−e−λr

λ

)2

dr|k|2+
∫ t
0 e
−2λrdr|ξ|2

)

(3.37)

and for all n ≥ 0,

|ξ(t)|
(∫ t

0

∣∣ξ(r)
∣∣dr
)n
e−

σ2

2

∫ t
0 |ξ(r)|2dr . t

n−1
2

σn
.
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Proof. Let us remark that

∫ t

0

|ξ(r)|2dr =|ξ|2
∫ t

0

e−2λrdr + |k|2
∫ t

0

(
1− e−λr

λ

)2

dr

+ 2ξ · k
∫ t

0

e−λr
(

1− e−λr
λ

)
dr

=
(
A(t)Ξ(t)

)
· Ξ(t)

where

Ξ(t) =




(∫ t
0
e−2λrdr

) 1
2
ξ

(∫ t
0

(
1−e−λr

λ

)2

dr

) 1
2

k




and

A(t) =

(
Id a(t)Id

a(t)Id Id

)

and

a(t) =

∫ t
0
e−λr

(
1−e−λr

λ

)
dr

(∫ t
0

(
1−e−λr

λ

)2

dr
∫ t

0
e−2λrdr

) 1
2

.

The matrix A(t) has two eigenvalues : 1 + a(t) and 1− a(t), hence
(
A(t)Ξ(t)

)
· Ξ(t) ≥

(
1− a(t)

)
|Ξ(t)|2.

Furthermore, by taking

g(x) =

∫ 1

x
1− udu

(∫ 1

x
udu

∫ 1

x
(1−u)2

u
du
)1/2

=
(1− x)

3
2

(
(1 + x)

(
− 2 log(x)− (1− x)(3− x)

))1/2
,

one has a(t) = g(e−λt). Furthermore g(0) = 0, g(x)→x→1

√
3

2
, and

g′(x) =
2(x+ 2)(1− x)

1
2h(x)

(
(1 + x)

(
− 2 log(x)− (1− x)(3− x)

))3/2
,

with h(x) = (1−x)(1+5x)
2x(x+2)

+ log(x). Finally h′(x) = − (1−x)3

x2(x+2)2
, and h(1) = 0, hence

h ≥ 0 and so does g′(x). Hence g is non-decreasing and a(t) = g(e−λt) ≤
√

3
2
, and
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the smallest egeinvalue of the matrix is greater than 1−
√

3
2
. Hence one have

e−
σ2

2

∫ t
0 |ξ(r)|2dr ≤ e−

(1−a(t))σ2
2

|Ξ(t)|2

≤ exp

(
− 1−

√
3

2

σ2

2

(∫ t

0

e−λ2rdr|ξ|2 +

∫ t

0

(1− e−λr
λ

)
dr|k|2

))

and (3.37) holds true with c = 1−
√

3
2
.

For the second inequality, notice that

|ξ(t)| ≤ |ξ|e−λt + |k|1− e
−λt

λ
.

Furthermore,
√∫ t

0
e−2λrdr ≥

√
te−λt and by convexity,

√∫ t

0

(1− e−λr
λ

)2

dr ≥ 1− e−λt
λ

√∫ t

0

r2

t2
dr =

√
t
1− e−λt√

3λ
.

Hence, there exists a constant such that

|ξ(t)| . 1

σ
√
t

(
σ2|Ξ(t)|2

)1/2

.

Using the fact that |Ξ| is increasing in time, we have by using Equation (3.37)

∣∣ξ(t)
∣∣
( ∫ t

0

|ξ(s)|ds
)n
e−

σ2

2

∫ t
0 |ξ(s)|2ds

. 1

σn+1
√
t
σn+1|Ξ(t)|n+1

(∫ t

0

1√
s
ds

)n
e−

cσ2

2
|Ξ(t)|2

which allows us to conclude easily.

3.7 Uniqueness of solutions
In order to prove uniqueness, we will use a Gronwall type argument.

Theorem 3.7.1. Let G, KC, K, C0 and u0 which satisfies the Hypothesis 3.2.2
and 3.2.3. Then there exists a unique measure solution for equation (3.34).

The proof is decomposed into three parts. We first obtain a priori bounds for
C, ρ and u for any measure solution. We then show how to control the difference
of the ρ and the C parts of two solutions by the difference of the u parts. Finally
we control the difference of the u part and use a Gronwall type argument to have
uniqueness.
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Proof. A priori bounds for the solutions:
Note first that when (u, ρ, C) is a measure solution, since ρ is a finite measure

and C0 ∈ Hm+2 (thanks to Lemma 3.5.1) , C ∈ C
(
[0, T ];Hm+2(Rd)

)
(take g = 0

and f = ρ) with a bound which depends only on supt∈[0,T ] ρ(t,Rd) and of ‖KC‖Cm+2
b

,
and since m > d

2
,

‖∇̂C(t, ·)‖L1 . ‖C(t, ·)‖Hm+2 .T,C0,KC

(
1 + sup

s∈[0,T ]

ρ(s,Rd)
)m+2

.

Finally, ρ(s,Rd) =
∫ s

0

∫
Rd×Rd |v|u(r, dx, dv)dr and u is a non negative measure

for all time, hence ρ is non-decreasing in time and sups∈[0,T ] ρ(s,Rd) = ρ(T,Rd).
Thanks to Young inequality, one have

‖∇̂C ∗ ρ̂(s, ·)‖L∞ .
(
1 + ρ(T,Rd)

)m+2‖ρ̂(s, ·)‖L∞ .

Furthermore, thanks to the hypothesis and Corollary 3.4.16, u has (1 +β) moments
(in v, uniformely in time and the x variable) which implies that ξ → û(t, k, ξ) is a
bounded and (1 + β)-Hölder continuous function, uniformely in t, k, and we have
thanks to Appendix 3.C.

∣∣ρ̂(t, k)
∣∣ ≤

∫ t

0

sup
k∈Rd
‖û(s, k, ·)‖C1+βb

ds.

Note also that

‖û(t, k, ·)‖C1+βb
. sup

t∈[0,T ]

∫

Rd×Rd

(
1 + |v|

)1+β
u(t, dv, dx),

and thanks to Remark 3.4.15 and Corollary 3.4.16 this is finite, as soon as the main
Hypothesis is satisfied.

Control of the second and third coordinates of the solutions by the first one.
Now, take two measures solutions (u1, ρ1, C1) and (u2, ρ2, C2) with the same initial
conditions u0 and C0. For now, we allow our bound in the . to depends on
‖C0‖Hm+2 , ‖KC‖H 3m

2
, ρi(T,Rd), supt∈[0,T ] ui(t,Rd,Rd) and supt∈[0,T ] ‖Ci(t, ·)‖Hm .

Remark that thanks to the previous discussion, we have

∥∥(ρ̂1 − ρ̂2)(s, ·)
∥∥
∞ .

∫ t

0

sup
k
‖(û1 − û2)(s, k, ·)‖C1+βb

ds. (3.38)

Remark that w = C1 − C2 satisfies the following equation :

∂tw =
σ2
C

2
∆w − (KC ∗ ρ1)w +

(
KC ∗ (ρ1 − ρ2)

)
C2, w0 = 0.
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Thanks to Lemma 3.5.1, we have
∥∥C1(t, ·)− C2(t, ·)

∥∥
Hm+2 .

(
1 + ‖KC‖Cm+2

b

)m+2(
1 + ρ1(T,Rd)

)m+2

×
∫ t

0

∥∥∥
(
KC ∗ (ρ1 − ρ2)

)
(s, ·)C2(s, ·)

∥∥∥
Hm+2

ds.

Furthermore
∥∥∥
(
KC ∗ (ρ1 − ρ2)

)
(s, ·)C2(s, ·)

∥∥∥
2

Hm+2
=

∫

Rd

(
1 + |k|2

)m+2
∣∣∣
(
K̂C(ρ̂1 − ρ̂2)

)
∗ Ĉ2(s, k)

∣∣∣
2

dk,

and by using the fact that for all k, k′,
(
1+|k|2

)m+2 ≤
(
1+|k′|2

)m+2(
1+|k−k′|2

)m+2,
by Young inequality,
∥∥∥
(
KC ∗ (ρ1 − ρ2)

)
(s, ·)C2(s, ·)

∥∥∥
Hm+2

.‖C2(s, ·)‖Hm+2

∫

Rd
|K̂C(k)|

(
1 + |k|2

)m+2
2 dk

×
∥∥ρ̂1(s, ·)− ρ̂2(s, ·)

∥∥
∞

. sup
t∈[0,T ]

‖C2(t, ·)‖Hm+2‖KC‖H2m+2

∥∥(ρ̂1 − ρ̂2)(s, ·)
∥∥
∞.

Finally, we have the following bound for C1 − C2,
∥∥C1(t, ·)− C2(t, ·)

∥∥
Hm .

∫ t

0

∫ s

0

sup
k∈Rd

∥∥(û1 − û2)(s, k, ·)
∥∥∥
C1+βb

drds. (3.39)

Gronwall type argument :
Thanks to Equation (3.36), we have

û1(t, k, ξ)− û2(t, k, ξ) =
∫ t

0

iξ(t− s) ·
(
(∇̂C1 − ∇̂C2) ∗ û1

)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds

(3.40)

+

∫ t

0

iξ(t− s) ·
(
∇̂C2 ∗ (û1 − û2)

)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds

(3.41)

+

∫ t

0

Ĝ
(
ξ(t− s)

)(
û1(s, k, 0)− û2(s, k, 0)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds (3.42)

+

∫ t

0

Ĝ
(
ξ(t− s)

)
K̂(k)

(
ρ̂1(s, k)− ρ̂2(s, k)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds (3.43)

−
∫ t

0

((
K̂(ρ̂1 − ρ̂2

)
∗ û1

)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds (3.44)

−
∫ t

0

((
K̂ρ̂2

)
∗ (û1 − û2)

)(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2drds. (3.45)
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Let us recall a basic inequality on Hölder norms : if f1 and f2 are two (1+β)-Hölder
continuous functions from Rd to Rd, then

‖f1 · f2‖C1+βb
. ‖f1‖C1+βb

‖f2‖C1+βb
.

When dealing with (3.40), by take f1(ξ) = ξ(t− s)e−
∫ t−s
0

∣∣ξ(r)
∣∣2dr, one has (since

Dξξ(r) = e−λrId),

Df1(ξ) = e−λ(t−s)e−
∫ t−s
0

∣∣ξ(r)
∣∣2drId+ σξ(t− s)⊗

∫ t−s

0

ξ(r)dre−
∫ t−s
0

∣∣ξ(r)
∣∣2dr

and

D2f1(ξ) = σ2e−λ(t−s)e−
∫ t−s
0

∣∣ξ(r)
∣∣2dr

∫ t−s

0

ξ(r)⊗ Iddr

+ σ2

∫ t−s

0

Id ⊗ ξ(r)dre−
∫ t−s
0

∣∣ξ(r)
∣∣2dr + σ2 1− e−λ(t−s)

λ
ξ(t− s)⊗ Id e−

∫ t−s
0

∣∣ξ(r)
∣∣2dr

+ σ4ξ(t− s)⊗
(∫ t−s

0

ξ(r)dr

)⊗2

e−
∫ t−s
0

∣∣ξ(r)
∣∣2dr.

Hence, thanks to the second inequality of Proposition 3.6.1 with n = 0, 1, 2, we
have

‖f‖C1+βb
. 1√

t− s.

Take
f2(ξ) =

(
(∇̂C1 − ∇̂C2) ∗ û1

)(
s, k, ξ(t− s)

)
,

by using the previous bound for C1 − C2, we have

‖f2‖C1+βb
. sup

k
‖û1(s, k, ·)‖C1+βb

∫ s

0

∫ r

0

sup
k
‖û1(τ, k, ·)− û2(τ, k, ·)‖C1+βb

dτdr

.
∫ s

0

∫ r

0

sup
k
‖û1(τ, k, ·)− û2(τ, k, ·)‖C1+βb

dτdr

Hence, we have the following bound for (3.40) :

sup
k

∥∥(3.40)
∥∥
C1+βb

.
∫ t

0

1√
t− s

∫ s

0

∫ r

0

sup
k
‖(û1 − û2)(τ, k, ·)‖C1+βb

dτdrds.

The proof for (3.41) when taking f1 to be the same and f2 =
(
∇̂C2 ∗ (û1 −

û2)
)(
s, k, ξ(t− s)

)
, since ‖f2‖C1+βb

. supk
∥∥û1(s, k, ·)− û2(s, k, ·)

∥∥
C1+βb

, and

sup
k

∥∥(3.41)
∥∥
C1+βb

.
∫ t

0

1√
t− s sup

k

∥∥(û1 − û2)(s, k, ·)
∥∥
C1+βb

ds.
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In (3.42) and (3.43), since G has finite (1 + β) moments, Ĝ is (1 + β)-Hölder

continuous. Take f1(ξ) = Ĝ
(
ξ(t − s)

)
e−

σ2

2

∫ t−s
0

∣∣ξ(r)
∣∣2dr, we have ‖f1‖C1+βb

. 1.

Furthermore take f2 = û1(s, k, 0)− û2(s, k, 0) + K̂(ξ)
(
ρ̂1(s, k)− ρ̂2(s, k)

)
. Thanks

to (3.38) we have ‖f2‖C1+βb
. supk ‖û1(s, k, ·)‖C1+βb

+
∫ s

0
supk ‖û1(s, k, ·)‖C1+βb

dr, and
we have

sup
k∈Rd
‖(3.42) + (3.43)‖C1+βb

.
∫ t

0

sup
k
‖û1(s, k, ·)− û2(s, k, ·)‖C1+βb

ds

+

∫ t

0

∫ s

0

sup
k
‖û1(s, k, ·)− û2(s, k, ·)‖C1+βb

drds.

In (3.44), take f1 = e−
σ2

2

∫ t−s
0 |ξ(r)|2dr and f2 =

((
K̂(ρ̂1 − ρ̂2

)
∗ û1

)(
s, k, ξ(t −

s)
)
.Remind that the convolution is in the k variable, hence thanks to Young

inequality,

‖f2‖C1+βb
.‖K̂m(ρ̂1 − ρ̂2)(s, ·)

∥∥
L1 sup

k∈Rd

∥∥û1(s, k, ·)
∥∥
C1+βb

.‖K‖Hm

∫ s

0

sup
k
‖û1(r, k, ·)− û2(r, k, ·)‖C1+βb

dr.

The same holds for (3.45) with f2 =
((
K̂ρ̂2

)
∗ (û1 − û2)

)
, and we have

‖f2‖C1+βb
. sup

k
‖û1(r, k, ·)− û2(r, k, ·)‖C1+βb

.

Hence, one have

sup
k∈Rd
‖(3.44) + (3.45)‖C1+βb

.
∫ t

0

sup
k
‖û1(s, k, ·)− û2(s, k, ·)‖C1+βb

ds

+

∫ t

0

∫ s

0

sup
k
‖û1(r, k, ·)− û2(r, k, ·)‖C1+βb

drds,

and finally

sup
k∈Rd

∥∥û1(t, k, ·)− û2(t, k, ·)
∥∥
C1+βb

.
∫ t

0

(
1 +

1√
t− s

)
sup
k
‖û1(s, k, ·)− û2(s, k, ·)‖C1+βb

ds

+

∫ t

0

∫ s

0

sup
k
‖û1(r, k, ·)− û2(r, k, ·)‖C1+βb

drds

+

∫ t

0

1√
t− s

∫ s

0

∫ r

0

sup
k
‖û1(τ, k, ·)− û2(τ, k, ·)‖C1+βb

dτdrds.
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We can conclude by using the Gronwall type lemma of Appendix 3.B, with A0 = 0,
and we have û1 = û2 for all t, k, ξ. using the bound for C1 − C2 and ρ̂1 − ρ̂2, we
can conclude that (u1, ρ1, C1) = (u2, ρ2, C2), which ends the proof.

Proof of Theorem 3.3.2. From the tightness of {QN}N∈N and Theorem 3.4.14 we
obtain the convergence of subsequences. By Theorem 3.7.1 we obtain the conver-
gence of the full sequence and thus the desired result.

3.8 Smoothness of the solution
We end by recalling the hypothesis and proving the theorem for the smoothness

of the solutions.

• For all N ≥ 0, supξ∈Rd |Ĝ(ξ)
∣∣(1 + |ξ|2)N <∞.

• For all N ≥ 0, supξ∈Rd |K̂(k)
∣∣(1 + |ξ|2)N <∞.

• For all m ≥ 0, C0, KC ∈ Hm and KC ∈ Cm
b .

Proof of Theorem 3.3.3. Following Desvillette and Villani [39], one only has to
prove that if there exists n ≥ 0 such that

sup
t∈[0,T ]

sup
k,ξ∈Rd

(
1 + |k|2 + |ξ|2

)n
6
∣∣û(t, k, ξ)

∣∣ < +∞, (3.46)

then for all t0 > 0,

sup
t∈[t0,T ]

sup
k,ξ∈Rd

(
1 + |k|2 + |ξ|2

)n+1
6
∣∣û(t, k, ξ)

∣∣ < +∞,

and then conclude by induction. Note first that

|k|2 + |ξ(r)|2 =




 e−2λr e−λr 1−e−λr

λ

e−λr 1−e−λr
λ

1 +
(

1−e−λr
λ

)2



(
ξ

k

)
 ·

(
ξ

k

)
.

Furthermore, the determinant of the previous matrix is equal to e−λr, hence there
exists a constant c > 0 (depending on T ) such that for all r ∈ [0, T ],

1

c

(
|k|2 + |ξ|2

)
≤ |k|2 + |ξ(r)|2 ≤ c

(
|ξ|2 + |k|2).

Since (3.46) is true for t = 0, one have
∣∣∣û0

(
t, k, ξ(t)

)∣∣∣ .
(

1 + |k|2 +
∣∣ξ(r)

∣∣2
)−n

6 .
(
1 + |k|2 + |ξ|2

)−n
6 .
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Furthermore, thanks to the hypoelliptic estimates, we have

exp

(
−σ

2

2

∫ t

0

|ξ(r)|2dr
)

. 1

t
2
3

(
1 + |k|2 +

∣∣ξ
∣∣2
)− 1

6 (3.47)

and this close the bound for the first term of (3.36). This also allows us to bound
the second last two terms of (3.36). Indeed, since G and K are decaying faster
than any polynomials, one has
∣∣∣G
(
ξ(t−s)

)∣∣∣
∣∣û(s, k, 0)

∣∣ .
(
1+ |ξ(t−s)|2

)−n
6
(
1+ |k|2

)−n
6 .

(
1+ |k|2 + |ξ(t−s)|2

)−n
6

and
∣∣∣G
(
ξ(t− s)

)∣∣∣
∣∣K̂(k)ρ̂(t, k)

∣∣ .ρ(T,Rd)

(
1 + |ξ(t− s)|2

)−n
6
(
1 + |k|2

)−n
6

.
(
1 + |k|2 + |ξ(t− s)|2

)−n
6 .

(
1 + |k|2 + |ξ|2

)−n
6 .

Thanks to the bound
(
1 + |k|2 + |ξ|2

)
.
(
1 + |k − k′|2 + |ξ|2

)(
1 + |k′|2 + |ξ(t− s)|2

)
,

we also have the following bound,
∣∣∣
(
K̂ρ̂
)
∗ û(s, ξ(t− s)

)∣∣∣
(
1 + |k|2 + |ξ|2

)n
6 .

∫ ∣∣K̂(k)
∣∣∣∣ρ̂(s, k)

∣∣(1 + |k|2
)n

6 dk

.1.

Hence using (3.47), one can bound the last to lines of (3.36) by a constant times

(
1 + |ξ|2 + |k|2

)−n+1
6

∫ t

0

(t− s)− 2
3ds.

Finally C0 and KC are regular enough, C ∈ Hm for all m ∈ N. One has
∣∣∣∇̂C ∗ û(s, k, ξ)

∣∣(1 + |k|2 + |ξ|2
)n

6 .
∫

Rd

∣∣∇̂C(t, k)
∣∣(1 + |k|2

)
dk

.‖C(t, ·)‖
H2+m+n3

for some m > d
2
, and one can conlcude by using Lemma 3.5.1. Finally, since

ξ(r) ≤ |ξ|+ r|k| One can bound the last line of (3.36) by

(
1 + |k|2 + |ξ|2

)−n
6

∫ t

0

(
|ξ|+ r|k|

)
e−

σ2

2

∫ s
0 |ξ(r)|drds

.
(
1 + |k|2 + |ξ|2

)−n
6

∫ t

0

(
|ξ|+ r|k|

)
e−cs

3|k|2+s|ξ|2ds.
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Following Desvillette and Villani [39] Lemma 5.3, one can conclude that the latter
is no greater than a constant times

(
1 + |k|2 + |ξ|2

)−n
6 ,

which ends the proof.

3.A Reminder on curvilinear abscissa
Let us remind that if X is a C1 curve in Rd, parametrized by t ∈ [0, T ]

s(t) =

∫ t

0

∣∣X ′(r)
∣∣dr,

is the curvilinear abscissa of X. Hence, let us define X̃ such that

X̃
(
s(t)
)

= X(t),

where X̃ is parametrized by t ∈
[
0, s(T )

]
. Hence, we have

s′(t)X̃ ′
(
s(t)
)

= X ′(t),

and finally for all t ∈ [0, s(T )],
|X̃ ′(t)| = 1,

and norm of the velocity of X̃ is 1. Finally, it is possible to parameterize the
following spatial set (independently of the speed of the curve) :

Xt = {X(s), s ∈ [0, t]} = {X̃
(
s(r)

)
, r ∈ [0, t]} = {X̃(r), r ∈ [0, s(t)]}.

Hence,

〈
f, δXt

〉
=

∫ s(t)

0

f
(
X̃(r)

)
dr

=

∫ s(t)

0

f
(
X
(
s−1(r)

))
dr

=

∫ t

0

f
(
X(r)

)∣∣X ′(r)
∣∣dr

=

〈
f,

∫ t

0

∣∣X ′(r)
∣∣δX(r)dr

〉
.

Which gives

δXt(dx) =

∫ t

0

∣∣X ′(r)
∣∣δX(r)(dx)dr (3.48)
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3.B A generalized Gronwall Lemma

Lemma 3.B.1. Let n ≥ 1. Let A0, A1, a1, · · · , An, an ∈ R+, q1, · · · , qn > 1 and
let f be a positive measurable function such that for all t ∈ [0, T ],

f(t) ≤ A0 + A1

∫ t

0

(
1 + a1(t− s1)

− 1
q1

)
f(s1)ds1 + · · ·

+ An

∫ t

0

(
1 + an(t− s1)−

1
qn

)∫ s1

0

· · ·
∫ sn−1

0

f(sn)dsn · · · ds1.

There exists a constant C > 0 which may depend on all the parameters such that
for all t ∈ [0, T ],

f(t) . A0e
Ct.

Proof. Let q < min1≤i≤n qi and let p > 1 such that 1
p

+ 1
q

= 1. By using Hölder
inequality, and Jensen Inequality, we have, for all 1 ≤ k ≤ n

∫ t

0

(
1 + ak(t− s1)−

1
qn

)∫ s1

0

· · ·
∫ sk−1

0

f(sn)dsk · · · ds1

.
(∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

f(sk)
pdsk · · · ds2ds1

) 1
p

There exists some constants B > 0 depending on T , A1, · · · , An and a1, · · · , an,
q, q1, · · · , qn and n such that

f(t) ≤ A0 +B

(∫ t

0

g0(s) + g1(s)p + · · · gn−1(s)pds

) 1
p

,

where g0(t) = f(t)p et g′k(t) = gk−1(t). Finally, since g1(t) + · · · + gn−1(t) =∫ t
0
g1(s) + · · ·+ gn−2(s)ds, there exists a constant c and a constant C > 0 such that

g0(t) + · · ·+ gn−1(t) ≤ cAp0 + pC

∫ t

0

g0(s) + · · ·+ gn−1(s)ds.

We conclude by the classical Hölder inequality, and we have

f(t) . A0e
Ct.
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3.C Toolbox on fractional Laplacian

Let us recall that we define the non local operator (−∆)
1
2 for sufficient regular

functions f by the formula

(−∆)
1
2f(x) =

Γ
(
d+1

2

)

π
d+1
2

V.P.

∫

Rd

f(x)− f(y)

|x− y|d+1
dy,

where V.P. denotes the principal value. We then have the following lemma :

Lemma 3.C.1. Let β > 0. The operator (−∆)
1
2 is well-defined on the space of

Hölder continuous functions C1+β
b (Rd;R) to the space of bounded functions, and for

f, g ∈ C1+β
b (Rd;R) we have

‖(−∆)
1
2f − (−∆)

1
2 g‖∞,Rd . ‖f − g‖C1+βb

.

Proof. First, let us remark that
∣∣∣∣
∫

Rd\B(x,1)

f(x)− f(y)

|x− y|d+1
dy

∣∣∣∣ . ‖f‖∞

since f is a bounded function. Furthermore, for all 1 > ε > 0, we have
∫

B(x,1)\B(x,ε)

Df(x)
y − x
|x− y|d+1

dy = 0.

Finally, remark that

∫

B(x,1)\B(x,ε)

f(x)− f(y)

|x− y|d+1
dy =

∫

B(x,1)\B(x,ε)

∫ 1

0

Df(l(y − x) + x)dl
x− y
|x− y|d+1

dy

=

∫

B(x,1)\B(x,ε)

∫ 1

0

(
Df(l(y − x) + x)−Df(x)

)
dl

x− y
|x− y|d+1

dy.

Hence, one can use the fact the Df is β-Hölder continuous, and one have
∣∣∣∣
∫

B(x,1)\B(x,ε)

f(x)− f(y)

|x− y|d+1
dy

∣∣∣∣ . ‖f‖C1+βb
.

By using the dominated convergence theorem, (−∆)
1
2f is well-defined, and we have

the wanted bound, since the operator is linear.
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3.D Duhamel formulation of kinetic
transport equation

Let f ∈ L∞
(
[0, T ]× Rd × Rd

)
, us look at the equations for the characteristics

lines starting from ξ̃, k̃ ∈ Rd of the first order equation

∂th(t, k, ξ)− k · ∇ξh(t, k, ξ) + λξ · ∇ξh(t, k, ξ) = −|ξ|
2σ2

2
h(t, k, ξ) + f(t, k, ξ).

We have {
ξ̃′(t) = −k̃′(t) + λξ̃′(t)

k̃′(t) = 0

Hence, ξ̃(t) =
(
ξ̃ − k̃

λ

)
eλt + k̃

λ
and k̃(t) = k̃ Finally, one have

∂th
(
t, k̃, ξ̃(t)

)
= −|ξ̃(t)|

2σ2

2
h
(
t, k̃, ξ̃(t)

)
+ f
(
t, k̃, ξ̃(t)

)

and by solving this ordinary differential equation, one have

h
(
t, k̃, ξ̃(t)

)
= h0(k̃, ξ̃)e−

σ2

2

∫ t
0 |ξ̃(r)|2dr +

∫ t

0

f
(
s, k̃, ξ̃(s)

)
e−

σ2

2

∫ t
s |ξ̃(r)|2drds.

Now, let us fix t ∈ [0, T ] and let us take k̃ = k and ξ̃ =
(
ξ − k

λ

)
e−λt + k

λ
, such that

ξ̃(t) = ξ and we have

h(t, k, ξ) = h0

(
k,
(
ξ − k

λ

)
e−λt +

k

λ

)
exp

(
− σ2

2

∫ t

0

∣∣∣
(
ξ − k

λ

)
e−λr +

k

λ

∣∣∣
2

dr

)

+

∫ t

0

f

(
s, k,

(
ξ − k

λ

)
e−λ(t−s) +

k

λ

)
exp

(
− σ2

2

∫ t−s

0

∣∣∣
(
ξ − k

λ

)
e−λr +

k

λ

∣∣∣
2

dr

)
ds

= h0

(
k, ξ(t)

)
e−

σ2

2

∫ t
0 |ξ(r)|2dr +

∫ t

0

f
(
s, k, ξ(t− s)

)
e−

σ2

2

∫ t−s
0 |ξ(r)|2dr

with ξ(r) =
(
ξ − k

λ

)
e−λr + k

λ
.
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Chapter 4

The ergodic McKean-Vlasov SDE

4.1 Introduction

The content of this chapter is based on [3]. Diffusion processes are at the core
of many algorithms used in statistics to sample from, typically high-dimensional,
distributions. These algorithms are often based on some variant of Langevin
stochastic dynamics [79]. Given a probability measure π (possibly known up to a
normalising constant), the key idea is to construct a diffusion process which admits
π as its invariant measure. Then one can run long-time simulations of that diffusion
to obtain samples from π. This ideas has been extensively studied in the context
of classical SDEs [92, 91, 74, 75, 80, 87, 34, 41].

Recently new promising classes of algorithms based on the theory of gradient
flows takes the form of McKean-Vlasov ODEs or SDEs [78, 9, 77]. To turn them
into practical algorithms one needs to approximate them with systems of interacting
diffusions also called stochastic interacting particle systems. The key challenge
is that, typically, with the increase of the dimension of the problem one needs
to consider large number N of particles. Because, for most models, the cost
of particle samples growths as N2 (as each particle interacts with others), the
computational cost for simulating the particle systems is prohibitive. Another
complication is that when using a single ensemble of particles the statistical error
due to the approximation of the measure creates biased dynamics. Put differently
bias is a non-linear function of the statistical error. In addition particles are not
independent. All of that renders classical variance reduction techniques not directly
applicable and consequently simulations of particle systems challenging. The high
computational cost is even more pronounced when the aim is to simulate particle
systems over a long-time horizon. This should not come as a surprise as particle
systems give rise to probabilistic numerical methods for highly non-linear PDEs
e.g Burgers or Navier-Stokes PDEs.
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In this work we leverage recent progress in weak convergence analysis of inter-
acting diffusions [28, 27, 71, 20]. With this new insight we propose several new
algorithms and analyse their errors and costs. The emphasis of the work is on
algorithmic side and we gloss over some theoretical bounds that will require further
research in future. As such we see this work as beacon that helps to identify the
most promising research directions in the area of simulations of the ergodic particle
systems.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space endowed with an Rk-valued
Wiener process w = (Bt)t≥0. Let b : Rd×P(Rd)→ Rd and σ : Rd×P(Rd)→ Rd×k.
We consider, for t ≥ 0, the McKean–Vlasov SDEs (McKV-SDE)




xt = x0 +

∫ t

0

b(xs, µs) ds+

∫ t

0

σ(xs, µs) dBs

µt is the law of xt,
(4.1)

where x0 is distributed according to a given Rd-measure µ0. The nonlinearity in
the McKean-Vlasov SDEs (4.1) appears through the dependence of its coefficients
on the law of the process. Existence of the unique solution to (4.1) has been
established under various conditions on (b, σ). See [89, 82] classical results on that
topic that mainly cover the case of finite time interval. For the infinite time horizon
we refer to [93, 62].

Furthermore, [53] gives conditions for the existence and uniqueness of the
invariant measure π for the equation (4.1). We refer to [43] for more complete
theory. In particular [43] gives fairly general conditions that guarantee that the
convergence to the invariant measure in the L2-Wasserstein distance is exponentially
fast for some λ > 0, i.e

W2(µt, π) ≤ exp (−λt)W2(µ0, π). (4.2)

One can also control the bias of ergodic averages
∣∣∣∣E
[

1

t

∫ t

0

f(xs)ds−
∫

Rd
f(x)π(dx)

]∣∣∣∣ . t−1. (4.3)

Consider the following system of N particles (x1,N , x2,N , ..., xN,N) defined as




xi,Nt = xi,N0 +

∫ t

0

b(xi,Ns , µNs ) ds,+

∫ t

0

σ(xi,Ns , µNs ) dBi
s

µNt =
1

N

N∑

i=1

δxi,Nt
,

(4.4)
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where (Bi)i are independent k-dimensional Brownian motions, (xi0)i are initial
i.i.d. variables independent of (Bi

t)i. The measure valued random variable µNt
is an empirical measure of the system at time t. For the purpose of computer
simulations one needs to introduce time discretisation to simulate (4.4). We will
do that in the forthcoming section. Under classical Lipschitz continuity conditions
the law, seen as element of P([0, T ],Rd), of every fixed subsystem of k particles
from (xi,N) converges, when N tends to infinity, to the law µ⊗k. This property is
called propagation of chaos phenomenon. Under strong convexity of the drift, a
time-uniform version of propagation of chaos has been established in [53]. In a
recent work, [40] it has been shown that in general only convexity at infinity is
needed.

Let f : Rd → R. The objective of this work is to derive, analyse and numerically
investigate, several novel particle representations that will allow to approximate:

∫

Rd
f(x)π(dx). (4.5)

To motivate our work, let’s temporarily assume that (b, σ) do not depend on
measure, i.e we are dealing with a classical SDEs. Then a typical strategy in
obtaining an approximation to (4.5) would be to set a finite time t and take N
i.i.d. trajectories to compute 1

t

∫ t
0

1
N

∑N
i=1 f(xis)ds (N = 1 corresponds to ergodic

estimator). The error of this estimator can be decomposed as follows

E



(∫

Rd
f(x)π(dx)− 1

t

∫ t

0

1

N

N∑

i=1

f(xis)ds

)2



1/2

≤ E

[(∫

Rd
f(x)(π(dx)− µt(dx))

)2
]1/2

+ E



(∫

Rd
f(x)µt(dx)− 1

t

∫ t

0

1

N

N∑

i=1

f(xis)ds

)2



1/2

.

The first term in the right hand side is the (weak) error of approximating the
invariant measure which decays to zero as exp (−λt) due to (4.2). The second term
is CLT type result and can be shown to decay to zero as (N · t)−1/2, see e.g [69,
22]). We see that both t and N have the same impact on the variance. In the
case of SDEs the cost of simulations is linear in t and N and hence one may be
indifferent whether to simulate one long trajectory (ergodic estimator) and many
shorter ones (space average). Of course if one uses parallel computer architecture,
taking more samples is much more efficient.
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The situation of McKean-Vlasov SDE (4.1) is dramatically different. The cost
of simulating interacting particles (4.4) is N2 while it still increases linearly with
time. As we will show it is possible to construct estimator that has one-order
of magnitude lower cost while maintains the same accuracy. Furthermore, we
will investigate ensemble version of interacting diffusions where we generate M
independent systems of particles with N particles in each system (ensemble). More
precisely we define





X
(i,N),(j,M)
t =X

(i,N),(j,M)
0 +

∫ t

0

b
(
X(i,N),(j,M)
s , SN,js

)
ds+

∫ t

0

σ
(
X(i,N),(j,M)
s , SN,js

)
dBi,j

s ,

SN,jt =
1

N

N∑

i=1

δ
X

(i,N),(j,M)
t

, i = 1, . . . , N, j = 1, . . . ,M.

(4.6)

where (Bi,j, i, j) are independent Brownian motions. That way particles within
each ensemble j∗ driven by (Bi,j∗)i,j∗ are interacting and are not independent.
The particle systems j and j′, j 6= j′, driven by (Bi,j)i,j and (Bi,j

′
)i,j respectively,

are independent. This idea for finite time simulations has been proposed in [60].
Another approach that we investigate are self-interacting diffusion

zt = x0 +

∫ t

0

(
1

s

∫ s

0

b(zs, zr)dr

)
ds+

∫ t

0

(
1

s

∫ s

0

σ(zs, zr)dr

)
dBs (4.7)

We expect that the law of zt approximates the law of xt for large t due to ergodic
property (4.2,4.3). This gives an alternative to the particle system. We will show
that the structure of the equation seems to play a crucial role in this set up.

The rest of the chapter is organised as follows. In Section 4.2, we recall some
classical methods to approximate (4.5) and give error estimations and computational
costs of the associated algorithms. In Section 4.3 we study several variants of
algorithms for ergodic interacting particle systems In Section 4.4, we present the
ensemble algorithm with ergodic average particle system. We end this chapter with
a general conclusion and some perspectives in Section 4.5.

4.2 Setup

4.2.1 Algorithms

As in this work we are interested in designing implementable algorithms for
(4.1), we need to introduce time discretisation for (4.4). Let us define tnk := k

n
,
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k = 0, 1, . . . and κn(t) = tnk for t ∈ [tnk , t
n
k+1). We introduce (continuous time) Euler

approximations for each i ≤ N , (yi,Nt , t ≥ 0), n ∈ N,




yi,Nt = yi,N0 +

∫ t

0

b(yi,Nκn(s), µ̄
N
κn(s)) ds+

∫ t

0

σ(yi,Nκn(s), µ̄
N
κn(s)) dB

i
s,

µ̄Nκn(t) =
1

N

N∑

i=1

δyi,N
κn(t)

.

(4.8)

One may approximate (4.5) by ergodic average estimator with fixed t,

1

t

∫ t

0

f(y1,N
κn(s))ds . (EA)

For error analysis one needs to choose N (number of particles) and n (number of
timesteps) to control the bias of the approximation of (4.1). While (EA) estimator is
a reasonable choice for computing approximation of (4.5) for the invariant measures
induced by classical SDEs as we already argued, the case of McKean-Vlasov SDEs
approximated with a particle system, (EA) estimator does not seem to be the best
choice. This is because when using particle system (4.4), one computes N particles
and therefore calculating ergodic average along one trajectory is not efficient. See
sections 4.3.1, 4.3.2 for more details. Hence, improvement can be obtained by
computing, averaged ergodic average estimator

1

N

N∑

i=1

(
1

t′

∫ t′

0

f(yi,Nκn(s))ds

)
. (AEA)

Of course one expects that t′ in (AEA) to be smaller than t in (EA) for fixed
accuracy. Alternative strategy for approximating (4.5) is to resort to the standard
Monte Carlo estimator where the average is taken only "over the space". More
precisely we compute Monte Carlo average

1

N

N∑

i=1

f(yi,Nt ). (MCA)

Of course, the above estimator is less efficient than (AEA), as we explain in the
coming section. The only reason we study it here is to warn practitioners that if
not careful with setting up particle estimators the cost might be huge.

Computational Cost.

By A(η) we denote an algorithm that outputs the approximation for the quantity
(4.5), where η denotes the set of all the parameters we need to choose to implement
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it. To be able to compare the algorithms we need to fix a measure of error. For
simplicity, we resort to the mean-square-error:

mse(A(η)) := E

[(∫

Rd
f(x)π(dx)−A(η)

)2
]1/2

. (4.9)

With the measure of error of a given estimator set up, the second equally important
quantity is the computation cost of algorithm A, denoted by cost(A). With both
quantities in place we can wonder about the optimal choice of parameters achieving
a prescribed tolerance. More precisely, for fixed error tolerance ε > 0, we need to
solve the following optimisation problem:




mse(A(η)) < ε ,

min
η

cost(A(η)) .

4.2.2 Assumptions

In this section we list all the assumptions needed for our considerations. The
only assumption that has not been yet established in the literature is uniform in
time particle error (HW) estimation below. To the best of authors knowledge only
finite time weak particle error has been studied. It is clear how to extend the weak
convergence to be uniform in time but this would require lengthy introduction of
heavy machinery of PDEs on measure spaces. This falls outside this chapter. All
other assumptions are established in literature under various level of generality and
we point out reader to the corresponding papers.

We label by xi a McKean-Vlasov SDE driven by ith Brownian motion, that is

xit = xi0 +

∫ t

0

b(xis, µs)ds+

∫ t

0

σ(xis, µs)dB
i
s . (4.10)

Assumption 4.2.1. Convergence rate to ergodic measure: there exists λ > 0 such
that

W2(µt, π) . exp (−λt)W2(µ0, π). (HE)

As we already mentioned this has been proved in [53] and [43] under fairly
general conditions.

Assumption 4.2.2. Convergence rate of ergodic average
(
E

[(∫

Rd
f(x)µt(dx)− 1

t

∫ t

0

f(xs)ds

)2
])1/2

.
(sups∈[0,t] Var[xs])1/2

√
t

. (HEA)
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This is classical CLT result. See [22].

Assumption 4.2.3. Uniform in time weak convergence of the particle system: for
sufficiently smooth f ,

sup
t≥0
|Ef(x1

t )− Ef(x1,N
t )| . 1

N
. (HW)

This type of bound is new in the literature. We refer a reader to [28, 27, 71,
20] for more details.

Assumption 4.2.4. Uniform in time strong propagation of chaos

sup
t≥0

(E|x1
t − x1,N

t |2)1/2 . 1√
N
. (HS)

See [40] for details.

Assumption 4.2.5. Uniform in time weak discretisation error: for sufficiently smooth
f ,

sup
t≥0
|Ef(x1

t )− Ef(y1,N
t )| . 1

N
. (HDW)

Uniform in time strong discretisation error

sup
t≥0

(E|x1
t − y1,N

t |2)1/2 . 1√
N
. (HDS)

One can refer to [53], where such results are proved.

4.3 Algorithms for Ergodic Interacting
Particle systems

4.3.1 Monte Carlo Average

For the Monte Carlo Average estimator we introduce the following notation
AMCA(t, n,N). The aim is to find the optimal allocation of the parameters (t, n,N)
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for fixed mean-square-error. We have

mse(AMCA(t, n,N)) = E



(∫

Rd
f(x)π(dx)− 1

N

N∑

i=1

f(yi,Nt )

)2



1/2

.
∣∣∣∣
∫

Rd
f(x)(π(dx)− µt(dx))

∣∣∣∣+
∣∣∣E[f(xt)]− E[f(x1,N

t )]
∣∣∣

+
∣∣∣E[f(x1,N

t )]− E[f(y1,N
t )]

∣∣∣+ E



(
E[f(y1,N

t )]− 1

N

N∑

i=1

f(yi,Nt )

)2



1/2

.

The four error terms are in order: bias (due to finite time simulation); weak particle
approximation error; weak time discretisation error; variance/propagation of chaos.
The first three error terms can be estimated directly from the Assumptions in
Section 4.2.2. The last variance error term requires extra comment, as the fact that
particles are not i.i.d does not allow to use classical central limit theorem (CLT).
Indeed

E[(E[f(y1,N
t )]− 1

N

N∑

i=1

f(yi,Nt ))2]1/2 =E[(E[
1

N

N∑

i=1

f(yi,Nt )]− 1

N

N∑

i=1

f(yi,Nt ))2]1/2

≤E[(
1

N

N∑

i=1

f(yi,Nt ))2]1/2.

Next, define (ỹi)i as the solution of the continuous Euler scheme:




ỹit = ỹi0 +

∫ t

0

b(ỹiκn(s),L (ỹκn(s))) ds+

∫ t

0

σ(ỹiκn(s),L (ỹκn(s))) dB
i
s ,

L (ỹt) = Law(ỹt) .

It is an easy exercise to show that strong propagation of chaos (HS) can be
established on the level of Euler discretisation. This together with Cauchy-Schwarz
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inequality gives

E



(

1

N

N∑

i=1

f(yi,Nt )− f(ỹit)

)2



= E

[
1

N2

N∑

i=1

(f(yi,Nt )− f(ỹit))
2 +

1

N2

N∑

i<j

(f(yi,Nt )− f(ỹit))f(yj,Nt )− f(ỹjt ))

]

≤ 1

N2

N∑

i=1

E
[
(f(yi,Nt )− f(ỹit))

2
]

+
1

N2

N∑

i<j

(E[(f(yi,N)− f(ỹi,Nt ))2])1/2(E[(f(yjt )− f(ỹjt ))
2])1/2 . 1

N
.

(4.11)

This, and the fact that (ỹit)i are i.i.d. allows to conclude that

E



(

1

N

N∑

i=1

f(yi,Nt )

)2

 = E



(

1

N

N∑

i=1

f(ỹit) + (f(yi,Nt )− f(ỹit)

)2



. E



(

1

N

N∑

i=1

f(ỹit)

)2

+ E



(

1

N

N∑

i=1

f(yi,Nt )− f(ỹit)

)2

 . 1

N
.

From here and Assumptions in Section 4.2.2 we have

mse(AMCA(t, n,N)) . e−λt +
1

N
+

1

n
+

1√
N
.

Notice that because of the term 1/
√
N , it is not clear how we can take advantage

of the assumption (HW). Fix ε > 0 and set mse(AMCA(t, n,N)) . ε. This leads to
the following choice of the parameters t ≈ λ−1 log(ε−1), N ≈ ε−2, n ≈ ε−1. As the
cost of simulating particle system at every step of the Euler scheme is N2 we have

cost(AMCA(t, n,N)) = tnN2 ≈ log(ε−1)ε−5.

This should be compared to tnN = log(ε−1)ε−3 for the simulation of standard
SDEs.
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4.3.2 Averaged Ergodic Average

As before, we denote by AAEA(t, n,N) the averaged ergodic average estimator
in (AEA). We have

mse(AAEA(t, n,N)) = E



(∫

Rd
f(x)π(dx)− 1

N

N∑

i=1

(
1

t

∫ t

0

f(yi,Nκn(s))ds

))2



1/2

.
∣∣∣∣
∫

Rd
f(x)(π(dx)− µt(dx))

∣∣∣∣+
∣∣∣E[f(xt)]− E[f(x1,N

t )]
∣∣∣

+
∣∣∣E[f(x1,N

t )]− E[f(y1,N
t )]

∣∣∣+E



(
E[f(y1,N

t )]− 1

N

N∑

i=1

(
1

t

∫ t

0

f(yi,Nκn(s))ds

))2



1/2

.

To estimate the variance term we note that

E[f(y1,N
t )]− 1

N

N∑

i=1

(
1

t

∫ t

0

f(yi,Nκn(s))ds

)

= E[
1

N

N∑

i=1

(yi,Nt )]−
(

1

t

∫ t

0

1

N

N∑

i=1

f(yi,Nκn(s))ds

)
.

Hence to estimate the variance we use (HEA) combined with the computation
(4.11). Therefore, by the Assumptions in Section 4.2.2, we have

mse(AAEA(t, n,N)) . e−λt +
1

N
+
t

n
+

1√
tN

.

We notice that comparing to the (MCA) case, the last term is multiplied by 1/
√
t.

The (asymptotic) cost of the algorithm is the same as before. Again we fix ε. The
following choice of the parameters ensures that mse(AAEA(t, n,N)) . ε2 is t ≈ ε−1,
N ≈ ε−1, n ≈ ε−1. The cost consists of two parts: the cost of simulating particle
system and the cost of computing averaged ergodic estimator. We have

cost(AAEA(t, n,N)) = tnN2 + tN ≈ ε−4 .

Which is an order of magnitude lower than for Monte Carlo average!
Notice that similar computation for ergodic average estimator gives

mse(AEA(t, n,N)) . e−λt + 1
N

+ 1
n

+ 1√
t
, leading to the same cost than Monte Carlo

average.
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4.3.3 ensemble AEA

For the ensemble version of the algorithm we generate M independent systems
of particles with N particles in each system. More precisely we define,




x
(i,N),(j,M)
t = x

(i,N),(j,M)
0 +

∫ t

0

b(x(i,N),(j,M)
s , µN,js ) ds+

∫ t

0

σ(x(i,N),(j,M)
s , µN,js ) dBi,j

s ,

µN,jt =
1

N

N∑

i

δ
x
(i,N),(j,M)
t

,

(4.12)

where (Bi,j, i, j) are independent Brownian motions. That way particle within
each cloud j∗ driven by (Bi,j∗)i,j∗ are interacting and are not independent. The
particle systems j and j′, j 6= j′, driven by (Bi,j)i,j and (Bi,j

′
)i,j respectively, are

independent. This idea has been proposed in [60] for the finite time simulations.

We consider ensemble version of AEA.

1

M

M∑

j=1

1

N

N∑

i=1

(
1

t

∫ t

0

f(y
(i,N),(j,M)
κn(s) )ds

)
. (C-AEA)

In fact, all algorithms that we study can have their ensemble versions. By denoting
AC-AEA the new method

mse(AC-AEA(t, n,N,M)) =

E



(∫

Rd
f(x)π(dx)− 1

M

M∑

j=1

1

N

N∑

i=1

(
1

t

∫ t

0

f(y
(i,N),(j,N)
κn(s) )ds

))2



1/2

.
∣∣∣∣
∫

Rd
f(x)(π(dx)− µt(dx))

∣∣∣∣+
∣∣∣E[f(xt)]− E[f(x1,N

t )]
∣∣∣+
∣∣∣E[f(x1,N

t )]− E[f(y1,N
t )]

∣∣∣

+ E



(
E[f(y1,N

t )]− 1

M

M∑

j=1

1

N

N∑

i=1

(
1

t

∫ t

0

f(y
(i,N),(j,M)
κn(s) )ds

))2



1/2

.

The Assumptions in Section 4.2.2 yield

mse(AC-AEA(t, n,N,M)) . e−λt + 1/N + 1/n+
1√
tNM

.

We notice that comparing to the previous case the last term is multiplied by 1/
√
M .

Crucially, the cost of the algorithm growths linearly in M . As the cost growths as
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N2, we are better off taking M ≈ N to balance the error in the last term (instead
of taking M = 1 and N2). To make it precise we fix ε. The following choice of the
parameters ensures that mse(AC-AEA(t, n,N)) . ε.

t ≈ λ−1 log(ε−1), N ≈ ε−1, n ≈ ε−1, M = (λ−1 log(ε−1))−1ε−1.

The cost of simulating particles and computing the estimator is

cost(AC-AEA(t, n,N)) = tnN2M + tNM ≈ ε−4.

This is the same as for averaged ergodic estimator. However the above computations
do not take under consideration the fact that ensemble algorithms can take full
advantage from the parallel computer architecture and therefore will be superior in
practice.

4.4 Algorithms for Sef-interacting Particle systems

In this section, we present the key ideas of improvement in the definition of
more efficient algorithm. From the decomposition of the mean square error, we
see that different algorithms that we considered only affected the “variance” of the
final estimator. Therefore, to improve the efficiency of the algorithm we need to
either modify particle system itself or consider different simulation strategies such
as Multilevel-Monte Carlo. Here we focus on the former.

Significance of the ergodic theorem is that one can approximate the integral
(4.5) by simulating only one path of the process (4.1) rather then the whole particle
system. From now on, we will keep the structural assumptions on the coefficients
of (4.1), namely




xt = x0 +

∫ t

0

b(xs,L (xs)) ds+

∫ t

0

σ(xs,L (xs)) dBs

L (xt) is the law of xt.

One may consider

zt = x0 +

∫ t

0

(
1

s

∫ s

0

b(zs, zr)dr

)
ds+

∫ t

0

(
1

s

∫ s

0

σ(zs, zr)dr

)
dBs . (4.13)

We expect that the law of zt approximates the law of xt for large t due to ergodic
property (4.2)

Processes of the form (4.13) are known in literature as self interacting diffusions.
We refer to [70] where the convergence to the invariant measure has been established.
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Notice that there is no need for the particle system any more as one could simply
simulate one path of the process to calculate ergodic integral (4.5).

However, motivated by computations in the previous section where mixed
ergodic/Monte Carlo average we introduce the corresponding mean self-interacting
SDE

zt = x0+

∫ t

0

(
1

s

∫ s

0

b(zs,L (zr))dr

)
ds+

∫ t

0

(
1

s

∫ s

0

Eσ(zs,L (zr))dr

)
dBs (4.14)

and its independent copies (zi) driven by Brownian motion (Bi). Note that "one-
particle" approximation of (4.14) is precisely a self-interacting diffusion.

To gain better insight, into the idea of using self-interacting diffusions to
approximate McKean-Vlasov SDEs we consider a simple example first.
Example 4.4.1. Consider a simple scalar McKean-Vlasov SDE x, together with its
mean self-integrated version y, and its self-interaction motion SDE z,

xt = x0 −
∫ t

0

αxsds+

∫ t

0

βE[xs]ds+Bt,

zt = x0 −
∫ t

0

αzsds+

∫ t

0

1

s

(∫ s

0

βE[zθ]dθ

)
ds+Bt.

We stress out that dissipativity comes from the part of the drift that does not
depend on measure. We assume α > β. To estimate the convergence rate to the
invariant measure we analyse the evolution of the difference of two solutions to the
above x SDE initiated at L2 random variables ξ1 and ξ2. With

E[(xξ1t − xξ2t )] = e−(α−β)tE[(ξ1 − ξ2)], (4.15)

we have

e2αtE[(xξ1t − xξ2t )2] =E[(ξ1 − ξ2)2] + 2β

∫ t

0

e2αs(E[xξ1s − xξ2s ])2ds

=E[(ξ1 − ξ2)2] + 2(E[ξ1 − ξ2])2β

∫ t

0

e2αse−2(α−β)sds

=E[(ξ1 − ξ2)2] + (E[ξ1 − ξ2])2(e2βt − 1).

Due to properties of W2 distance and the fact that the above calculation does not
depend on a particular choice of random variables ξ1 and ξ2, we have

W 2
2 (L (xξ1t ),L (xξ2t )) . e−2(α−β)tW 2

2 (L (ξ1),L (ξ2)) .

Furthermore, in this simple example we can take advantage from the explicit
solutions to calculate

E[xt]−
1

t

∫ t

0

E[xs]ds = E[x0]

(
e−(α−β)t − 1

t(α− β)
(1− e−(α−β)t)

)
.
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Hence if log t < (α− β)t then we have that

|E[xt]−
1

t

∫ t

0

E[xs]ds| ≤ c1/t .

Let us consider now process z. By integration by part we have that

E[zt] = E[z0]−
∫ t

0

αE[zθ]dθ + β

∫ t

0

log(t/θ)Ezθdθ

and

eαtE[zt] = E[z0] +

∫ t

0

eαs
1

s

∫ s

0

Ezθdθ .

Then we observe that if E[z0] > 0, then E[zt] stays non-negative and do not cross 0.
We observe also that t 7→ E[zt] is decreasing as for all t ≥ 0, for all s ∈ [te−α/β, t]

E[zt]− E[zs] =

∫ t

s

(β log(t/θ)− α)Ezθ dθ ≤ 0.

In particular

E[zt]− E[zs]

t− s =
1

t− s

∫ t

s

(β log(t/θ)− α)Ezθdθ ≤
1

t− s

∫ t

s

(β log(t/θ)− α) dθ.

Taking limit s→ t, we obtain after integration that

E[zt] ≤ E[z0] exp(−(α− β)t) . (4.16)

The following computation on z is a tentative to evidence the rate’s gain in
the convergence rate to equilibrium. To this aim, we analyse the evolution of the
difference of two solutions z initiated at L2 random variables ξ1 and ξ2.

Repeating the previous computation for E[ξ1 − ξ2] ≥ 0, we also obtain

0 ≤ E[(zξ1t − zξ2t )] ≤ e−(α−β)tE[(ξ1 − ξ2)],

and we use this weak estimation to derive the L2-norm bound. We have first that

e2αtE[(zξ1t −zξ2t )2] = E[(ξ1−ξ2)2]+2β

∫ t

0

e2αsE[zξ1s −zξ2s ]
1

s

(∫ s

0

E[zξ1θ − zξ2θ ]dθ

)
ds

≤ E[(ξ1 − ξ2)2] + 2β(E[ξ1 − ξ2])2

∫ t

0

e2αse−(α−β)s 1

(α− β)s
(1− e−(α−β)s)ds

≤ E[(ξ1 − ξ2)2] + 2β(E[ξ1 − ξ2])2

∫ t

0

1

(α− β)s
(e(α+β)s − e2βs)ds .
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As α > β, it is not difficult to check that for t big enough,

0 ≤
∫ t

0

1

s
(e(α+β)s − e2βs)ds ≤ 2

t

(
e(α+β)t

α + β
− e2βt

2β

)
− 2

t

(
1

α + β
− 1

2β

)
.

And we obtain the contraction inequality,

E[(zξ1t − zξ2t )2] ≤ e−2αtE[(ξ1 − ξ2)2] + c
e−(α−β)t

t
(E[ξ1 − ξ2])2,

which means that after a time t ≥ t0, the convergence in L2 is exponentially fast
with a rate α ∧ (α + log(t)− β)/2, that accelerates and becomes with time better
than the rate for process x (in α− β).

We have also to show that x and z have the same equilibrium measure. A
sufficient condition is the L2-convergence for z toward x in time. To not spend to
much time on this example, we make the following assumption from the previous
Wasserstein contraction for z and from what we obtain for x, that

|E[zt]−
1

t

∫ t

0

E[zs]ds| ≤ c1/t .

We consider now

e2(α−β)tE(xt − zt)2 ≤ e2(α−β)E(x1 − z1)2 − 2β

∫ t

1

e2(α−β)sE(xs − zs)2ds

+ 2β

∫ t

1

e2(α−β)sE(xs − zs)
(
E[xs]−

1

s

∫ s

0

E[zθ]dθ

)
ds.

But since |E(xs − zs)| ≤ |E(xs)|+ |E(zs)| ≤ ce−(α−β)s from (4.15) and (4.16),
∫ t

1

e2(α−β)sE(xs − zs)
(
E[xs]−

1

s

∫ s

0

E[zθ]dθ

)
ds

≤
∫ t

1

e2(α−β)sE(xs − zs)2 +

∫ t

1

e2(α−β)s|E(xs − zs)|
c

s
ds

≤
∫ t

1

e2(α−β)sE(xs − zs)2 +

∫ t

1

e(α−β)s c
′

s
ds

and we have obtained

e2(α−β)tE(xt − zt)2 ≤ e2(α−β)E(x1 − z1)2 + 2β

∫ t

1

e(α−β)s c
′

s
ds

E(xt − zt)2 ≤ e−2(α−β)(t−1)E(x1 − z1)2 + Ce−(α−β)t log(t) .

The convergence is then ensured. Hence, mean self-interacting version z of x is
converging to x in L2, which means that z convergence to the equilibrium measure
π and hence can used as an alternative model for sampling.
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Self-averaged ergodic averaged algorithm

By considering error decomposition studies in the previous section, we see that
the key ingredient that we ought to understand is the following rate of convergence

Key ideas: here we want to take part of a special structure, i.e



xt = x0 +

∫ t

0

V (xs) +W (xs,L (xs)) ds+

∫ t

0

σ dBs

L (xt) is the law of xt,

such that potential V is say convex andW has a small Lipschitz constant we should
obtain exponential "forgetting property", as we observed in Example 4.4.1.

For small time this will be bad approximation and because we average the error
the bad approximation from the initial time will prevail.

Further, we consider particle system of the form

zi,Nt = xi,N0 +

∫ t

0

1

N

N∑

j=1

(
1

s

∫ s

0

b(zi,Ns , zj,Nr )dr

)
ds

+

∫ t

0

1

N

N∑

j=1

(
1

s

∫ s

0

σ(zi,Ns , zj,Nr )dr

)
dBi

s (4.17)

for which the error to be investigated is
∣∣∣E
[
f(z1

t )
]
− E

[
f(z1,N

t )
]∣∣∣ ,

to have in place of (HW). According to our computation on example 4.4.1, we
impose the following assumption

The following bound gives a leading error term. We chose λ as a exponent for
simplicity as it particular value does not affect asymptotic cost/error analysis.
Assumption 4.4.2.

∣∣∣Ef(z1
t )− E[f(z1,Nt

t )]
∣∣∣ . e−λt

Nt

. (HEW)

The time-discretisation of the equation (4.17) reads as

ri,Ntt = xi,Nt0 +

∫ t

0

1

Nt

Nt∑

j=1

(
1

s

∫ s

0

b(ri,Ntκn(s), r
j,Nt
κn(θ))dθ

)
ds

+

∫ t

0

1

Nt

Nt∑

j=1

(
1

s

∫ s

0

σ(ri,Ntκn(s), r
j,Nt
κn(θ))dθ

)
dBi

s. (4.18)
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Let us introduce the corresponding estimator, an ensemble self-integrated version
of AEA.

1

M

M∑

j=1

1

Nt

Nt∑

i=1

(
1

t

∫ t

0

f(r
(i,Nt),(j,M)
κn(s) )ds

)
. (CS-AEA)

In what follows, we test (HEW) in the cost analysis. Notice that we cannot test it
directly, as we need to do Monte-Carlo approximation for the expectation. We first
observe that by exchangeability of the law of the particle systems,

E
[
f(z1

t )
]
− E

[
f(z1,N

t )
]

= E

[
1

N

N∑

i=1

f(zit)

]
− E

[
1

N

N∑

i=1

f(zi,Nt )

]
.

Next we consider M independent ensembles to approximate expectations that is

∣∣∣∣∣
1

M

M∑

j=1

1

N

N∑

i=1

f(zijt )− 1

M

M∑

j=1

1

N

N∑

i=1

f(z
(i,N),(j,M)
t )]

∣∣∣∣∣

≤
∣∣∣∣∣

1

M

M∑

j=1

1

N

N∑

i=1

f(zijt )− E[f(z1
t )]

∣∣∣∣∣

+
∣∣∣E[f(z1

t )]− E[f(z1,N
t )]

∣∣∣+

∣∣∣∣∣E[f(z1,N
t )]− 1

M

M∑

j=1

1

N

N∑

i=1

f(z
(i,N),(j,M)
t )

∣∣∣∣∣

. (
√
MN)−1 + (Nt)−1 + (

√
MN)−1

where the first and last error are standard MC estimates while the middle one is
given by (HEW).

4.4.1 Cost analysis

We analyse the cost of the self-averaged ergodic averaged estimator

mse(AES-AEA(t, n,N)) =E



(∫

Rd
f(x)π(dx)− 1

Nt

Nt∑

i=1

(
1

t

∫ t

0

f(ri,Ntκn(s))ds

))2



1/2

.
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The mean-square error decomposition reads

mse(AES-AEA(t, n,Nt))

.
∣∣∣∣
∫

Rd
f(x)(π(dx)− µt(dx))

∣∣∣∣+
∣∣∣E[f(yt)]− E[f(z1,Nt

t )]
∣∣∣

+
∣∣∣E[f(z1,Nt

t )]− E[f(r1,Nt
t )]

∣∣∣

+


E



(
E[f(r1,Nt

t )]− 1

Nt

Nt∑

i=1

(
1

t

∫ t

0

f(ri,Ntκn(s))ds

))2





1/2

Reasoning as before, with (HW) replaced by (HEW), we have

mse(AES-AEA(t, n,Nt)) . e−λt + e−λt(Nt)
−1 + 1/n+ 1/

√
tNt.

Note that because of the variance (last term) there is no benefit of exponential
decay in t assumed in HEW. Again we fix ε. The following choice of the parameters
ensures that mse(AES-AEA(t, n,Nt)) . ε:

t ≈ λ−1 log(ε−1), tNt ≈ ε−2, n ≈ ε−1.

Notice that the choice implies that tNt to be "constant". Hence we chose Nt = Nt−1.
Which in the case of t ≈ λ−1 log(ε−1) implies that N ≈ ε−2/ log(ε−1).

Now we study the computational cost of simulating self-interacting diffusions
(for the nonlinear interacting kernel). Note that, due nonlinear interactions at every
step of the Euler scheme, we have Nt particles and each particle interacts with
itself from all the past times-steps. Recall also that we take n time steps in each
unit time interval so that overall number of steps on the interval [0, t] is tn. With
that in mind and the fact that we take Nt = Nt−1 we have

cost(AES-AEA(t, n,N)) = N2
1/n1 +N2

2/n2 +N2
3/n3 + . . .+N2

tn/ntn

= (nN)2(1 + 1/2 + 1/3 + . . .+ 1/tn) = (nN)2

tn∑

k=1

1/k ≈ (nN)2 log(1 + tn).

Hence the cost for the set of parameters {t ≈ λ−1 log(ε−1), N ≈ ε−2/ log(ε−1), n ≈
ε−1} is

cost(AES-AEA(t, n,N)) ≈ ε−6

Note also that one can also take

t ≈ ε−2, (Nt = 1 =⇒ tNt = ε−2), n ≈ ε−1
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to ensure mse(AES-AEA(t, n,Nt)) . ε. This second choice, with Nt not varying with
time, leads to

cost(AES-AEA(t, n,N))

= N21 +N22 +N23 + . . .+N2tn = N2 1

2
tn(1 + tn) ≈ ε−6.

Let us consider ensemble implementation of the above algorithm. Reasoning as
before, by the Assumption HEW, we have

mse(AES-AEA(t, n,Nt)) . e−λt + e−λt(Nt)
−1 + 1/n+ 1/

√
tNtM.

To balance the first two terms on the right hand side we take Nt = 1. With that
choice we then choseM so that e−λt = (tM)−1/2, i.eM = e2λtt−1. With this choices
we have

mse(AES-AEA(t, n,Nt)) . e−λt + 1/n,

to make that error to be less then ε we take t = λ−1 log ε−1 and n = ε−1. Note that
this leads to M = elog(ε−2)(log(ε−1))−1 = ε−2(log(ε−1))−1. Reasoning as before the
cost with Nt = 1 is

cost(ACS-AEA(t, n,Nt,M)) ≈M(tn)2 ≈ ε−4 log(ε−1).

Hence one more time we achieved order better computational cost in comparison
to naive estimator. Note that the presented analysis implies that ensemble of M
independent self-interacting diffusions yields best result.

4.5 Conclusion and perspectives
We presented a number of different algorithms for the approximation of the

invariant measure of the McKean-Vlasov SDE. We have achieved one order better
computational costs comparing to naive particle based estimator. On algorith-
mic side possible extensions are that may consider fixed length window for self-
interacting diffusion and it also possible to study Multilevel Monte Carlo strategies
in this setup. Overall we anticipate that it will be possible to bring the cost of
simulating particle system to the same level as for standard independent copies of
SDEs.
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Chapter 5

A numerical approach to
Kolmogorov equation in high
dimension based on Gaussian
analysis

5.1 Introduction

The content of this chapter is based on the work [51]. Kolmogorov equations
are parabolic equations with a structure directly related to stochastic differential
equations (SDEs). The SDEs considered here are in a finite dimensional space
but they are inspired by the spatial discretization of stochastic Partial Differential
Equations (SPDEs). When the noise is additive and the nonlinearity is time-
independent, a general form of such SDEs is

{
dXt = (AXt +B (Xt)) dt+ σ

√
Q dWt,

X0 = x,
(5.1)

where x ∈ Rd, (Wt)t≥0 is a Brownian motion in Rd (namely Wt =
(
W 1
t , . . . ,W

d
t

)

where the W i
t ’s are independent real valued Brownian motions), defined on a

probability space (Ω,F ,P) with a filtration (Ft)t≥0, σ is a positive real number
measuring the strength of the noise, Q is a d× d positive definite symmetric matrix
(the so called covariance matrix of the noise) describing the spatial structure of
the noise and

√
Q is its square root, A is a d × d matrix and B : Rd → Rd is a

function with the degree of regularity specified below. Obviously we could include
the scalar σ2 inside the matrix Q but for certain practical arguments it is useful to
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distinguish between them. The solution Xt is a continuous adapted process in Rd.
The associated Kolmogorov equation is




∂tu(t, x) =

σ2

2
Tr
(
QD2u(t, x)

)
+ 〈Ax+B (x) , Du(t, x)〉 ,

u(0, x) = u0(x),

(5.2)

where u : [0, T ]×Rd → R, Du(t, x) and D2u(t, x) denote respectively the vector of
first partial derivatives and the matrix of second partial derivatives, Tr (QD2u(t, x))
is the trace of the d × d matrix QD2u(t, x) and 〈·, ·〉 denotes the scalar product
in Rd. Both for the SDE and the Kolmogorov equation we have used notations
which may be adapted to the infinite dimensional case, when Rd is replaced by
a Hilbert space (see Section 5.2 for the general theory); however, the aim of this
work is numerical and all objects in the introduction will belong to Rd. The link
between the Kolmogorov equation and the SDE is

u(t, x) = E [u0(Xx
t )] ,

where E denotes the mathematical expectation on (Ω,F ,P) and Xx
t is the solution

of the SDE above, where the initial condition x is explicitly indicated. Several
elements of theory both in finite and infinite dimensions for SDEs and associated
Kolmogorov equations can be found in many books, like [23, 31, 33, 67, 72].

Solving the Kolmogorov equation with suitable initial condition u0 is a way to
compute relevant expected values and probabilities associated to the solution of
an SDE. For instance, when u0(x) = 1{‖x‖>R}, u(t, x) is the probability that the
solution exceeds a threshold R:

u(t, x) = E
[
1{‖x‖>R} (Xx

t )
]

= P (‖Xx
t ‖ > R) .

The classical method of computing these expected values is the Monte-Carlo method
(with important variants, see for instance [54, 90, 17, 76]): several realizations of
the process Xx

t are simulated by solving the SDE – typically by Euler method
– and then the corresponding values of u0(X

x
t ) are averaged. Going beyond this

strategy is a fundamental issue, due to its limitations in relevant applications like
Geophysics and Climate change projections [66], especially concerning extreme
events. The question is whether Kolmogorov equation can be efficiently solved
numerically without using the simulation of the SDE. But the problem is that the
dimension d is extremely high in these examples and common numerical methods
for solution of parabolic equations already require strong computational power
when d = 3, [18, 73]. A grid of N points in R, repeated for all dimensions, give
rise to Nd grid points, numerically impossible when, for instance, N = 10, d = 10
(which still would be an extremely poor approximation). Spectral methods seem
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to meet the same restrictions: Nd is the cardinality of basis elements obtained by
tensorization of N basis elements for each space variable.

The problem of dimensionality, the limitations of present methodologies and
several motivations are recalled in two recent works [5, 65] which also aim to go
beyond Monte-Carlo and propose a method based on deep artificial neural networks.
We address to these brilliant works for other comments on the problem, see also
[30, Introduction]. The approach developed here is however completely different.

Our aim is to take advantage of the probabilistic structure of the problem
to devise numerical schemes for the Kolmogorov equation, in particular using
Gaussian analysis. We implement a perturbative scheme which links the solution of
Kolmogorov equation to a Gaussian process, the solution Zt of the linear stochastic
equation {

dZt = AZt dt+
√
Q dWt,

Z0 = 0.

The idea comes from the theoretical investigations of infinite dimensional Kol-
mogorov equations associated to SPDEs, see for instance [33, 32]. We modify and
adapt that idea giving an explicit formula in terms of a series of Gaussian integrals.
We provide here a first glance at the strategy by writing the final formula:

u(t, x) =
∞∑

n=0

vn(t, x),

where
v0(t, x) = E

[
u0

(
etAx+ σZt

)]

and for n ≥ 1

vn(t, x) =

∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

E

[
u0

(
etAx+ σZt

) n∏

i=1

〈
Ξσ(ri+1 − ri)B

(
eriAx+ σZri

)
, Zri+1

− e(ri+1−ri)AZri
〉
]
.

The matrix Ξσ(t) will be defined in the next sections, see (5.5); it is easily computed
by A and Q, and it depends on the parameters t and σ. A theoretical analysis of
this series is made, proving the following result.

Theorem 5.1.1. Assume that u0 and B are bounded. Then, under suitable condi-
tions on A and Q (see Hypothesis 5.2.1 for details), we have the following uniform
estimate:

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn
δ t

n(1−δ) Γ(1− δ)n
Γ(1 + n(1− δ)) , t > 0,
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where Γ(·) is the Gamma function, Cδ > 0 is a constant and δ ∈ (0, 1) the parameter
in (iv) of Hypothesis 5.2.1.

This theorem sustains the numerical method and stresses the independence
on the dimension of certain issues of the method (obviously others, like getting a
sample of Z, have a cost which increases with d). When Rd is replaced by a Hilbert
space H (and below we shall formulate the theorem with assumptions in a Hilbert
space) it contains also some theoretical novelties with respect to the literature,
especially because it provides an explicit formula.

The numerical evaluation of the terms vn(t, x) is made here, in this chapter,
by Monte-Carlo method based on a sample of the process Zt obtained by solving
the linear SDE by Euler method. These are the most obvious choices, but other
possibilities exist, since (Zt)t≥0 is a centered Gaussian process with known covariance
function. A main strategy invoked here is to store once for ever a large and accurate
sample of (Zt)t≥0 (this requires the pair (A,Q) to be given) and use it later in the
formula for different values of the other parameters, t, x, σ, u0 and even B.

This new method is aimed to replace direct Monte-Carlo simulations. We should
therefore accurately compare them. If the purpose is to make one single computation,
classical Monte-Carlo wins: the Gaussian method above still requires Monte-Carlo
simulations of the linear problem, which is less expensive than the nonlinear one
but then one has to compute possibly several terms vn(t, x); some experiments
clearly show that classical Monte-Carlo is less expensive for a comparable degree
of precision. The advantage comes when we want to vary parameters, since the
Gaussian method for given (A,Q) allows to store a possibly expensive sample of
the process Zt and reuse it for several values of the parameters, just having to
compute the averages over the Gaussian sample which give us the terms vn(t, x).
On the contrary, classical Monte-Carlo method requires to repeat the simulation of
the nonlinear problem for each new value of the parameters. By “parameters”, as
we have already mentioned above, we mean t, x, σ, u0, B. Let us comment on the
interest in changing them.

The interest in changing t is obvious. In certain applications it is necessary to
change the initial condition x and compare or collect the results. We have in mind
for instance the ensemble methods used in weather prediction where the initial
condition is uncertain, a first guess is made on the basis of physical observations,
but then the initial condition is perturbed in various directions and the final results
averaged by suitable methods. See also [5, 65], where the need to change (t, x) is
stressed.

Changing the strength σ of the noise is a very important issue, related also to
Large Deviation Theory. We have to advise that the precision of our simulations
degenerates as σ → 0, or the number of iterates needed to maintain a reasonable
precision blows-up, but at least one can detect some tendency by moving σ in a
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finite range without arriving to too small values.
Concerning the change of function u0, unfortunately the main comment is in

favor of Monte-Carlo: having at disposal a sample of the process Xx
t immediately

gives a way to compute E [u0(Xx
t )] for different functions u0. Hence the best we can

say on this issue is that our formula allows for such computations with a moderate
additional effort – but not with an improvement over Monte-Carlo.

Finally, changing the nonlinearity B is of theoretical interest for the investigation
of the performances of the method, and in applications it may be of interest in
those – very common – cases when some parameters of B are not precisely known
and different simulations may be useful for comparison or for ensemble averaging
methods performed over the range of those parameters.

Let us finally come to a brief description of numerical results. In Section 3,
we present some numerical results based on the method proposed here in the
finite dimensional settings with d ≥ 10. The results, even if not fully satisfactory
yet, should be compared with the fact that the innovative attempts to solve the
Kolmogorov equation in d > 3 by direct methods, see [30], are often restricted to
dimensions smaller than 10. Large dimension is therefore a very difficult problem
that deserves strong effort for improvement, and some of our results – although
not in all examples – are quite promising.

As a final comment, let us explicitly mention that the class of Kolmogorov
equations studied here is particular, because of the additive and very non-degenerate
noise and because we have treated only relatively mild nonlinearities. We have not
considered relevant cases from fluid mechanics which have more severe nonlinearities
and activation of more scales; after a few initial tests on dyadic models – we point in
particular to the recent models on trees which may be very relevant for turbulence
theory, see [4, 10, 11] – it was clear that covering these examples with this approach
requires further research and improvements. Extension to multiplicative transport
noises [49, 50] is another challenging open question.

5.2 The iteration scheme for Kolmogorov equations
on Hilbert spaces

In this section we work in an infinite dimensional separable Hilbert space H
and study the iteration scheme for the Kolmogorov equation:

∂tu(t, x) =
1

2
Tr
(
QD2u(t, x)

)
+
〈
Ax+B(x), Du(t, x)

〉
, u(0, ·) = u0. (5.3)

Here A : D(A) ⊂ H → H is an unbounded linear operator, Q is a nonnegative
self-adjoint bounded linear operator on H, B : D(B) ⊂ H → H is a nonlinear
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measurable mapping and u0 : H → R is a real valued measurable function. In this
section Q plays the role of σ2Q to simplify notation. In the following we write
L(H,H) for the Banach space of bounded linear operators on H with the norm
‖ · ‖L(H).

Throughout this section we assume the following conditions:

Hypothesis 5.2.1. (i) A : D(A) ⊂ H → H is the infinitesimal generator of a
strongly continuous semigroup etA.

(ii) Q is a nonnegative self-adjoint operator in L(H,H) satisfying Ker(Q) = {0},
and for any t > 0 the linear operator

Qt =

∫ t

0

esAQesA
∗

ds (5.4)

is of trace class.

(iii) We have etA(H) ⊂ Q
1/2
t (H) for any t > 0.

(iv) Letting Λ(t) = Q
−1/2
t etA, we assume there exist δ ∈ (0, 1) and Cδ > 0 such

that
‖Λ(t)‖L(H) ≤ Cδ/t

δ, t > 0.

The assumptions (i)–(iii) are quite standard in the literature, see for instance
[31, Hypothesis 2.1 and 2.24]. The operator Ξσ(t) appeared in the introduction has
the form

Ξσ(t) = σQ
−1/2
t Λ(t) = σQ−1

t etA; (5.5)

we remark that, in the setting of the introduction, the operator Q in (5.4) should
be replaced by σ2Q when computing Qt. The following example is taken from [31,
Example 2.5] which verifies all the assumptions.

Example 5.2.2. Let O = [0, π]d with d ∈ N. We choose H = L2(O), and

Ax = ∆x, x ∈ D(A) = H2(O) ∩H1
0 (O),

where ∆ is the Laplacian operator with Dirichlet boundary condition. A is a
self-adjoint negative operator in H, and

Aek = −|k|2ek, k ∈ Nd,

where for k ∈ Nd, |k|2 = k2
1 + · · ·+ k2

d and

ek(ξ) = (2/π)d/2 sin(k1ξ1) · · · sin(kdξd), ξ ∈ [0, π]d.
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Choose Q = (−A)−α, α ∈ [0, 1), so that

Qx =
∑

k∈Nd
|k|−2α〈x, ek〉ek, x ∈ H.

For any t > 0, if α > d/2− 1, then

Tr(Qt) =
∑

k∈Nd

1

2|k|2+2α

(
1− e−2t|k|2

)
<∞.

So (ii) is satisfied.
Next, (iii) can be checked by explicit computations. Moreover,

Λ(t)x =
∑

k∈Nd

√
2 |k|1+α

√
e2t|k|2 − 1

〈x, ek〉ek, x ∈ H.

From this we deduce that

‖Λ(t)‖L(H) ≤
√

2Cα
t(1+α)/2

,

where
Cα = sup

θ>0

θ1+α

e2θ − 1
< +∞.

Thus (iv) holds with δ = (1 + α)/2 ∈ [1/2, 1).
We also need the following technical conditions.

Hypothesis 5.2.3. The initial datum u0 : H → R and the nonlinear part B : H → H
in (5.3) are bounded and measurable.

This section is organized as follows. In Subsection 5.2.1, we recall some basic
facts in Gaussian analysis on Hilbert space and give the formula for the first term
v1(t, x) of the iteration (5.10). We give in Section 5.2.2 the details for calculating
the second term v2(t, x), which will help us to guess and prove the formula for
general terms vn(t, x) in Section 5.2.3. In the last part, we estimate the uniform
norm of vn(t, x) and show the convergence of the iteration scheme. The limit is
the unique mild solution of (5.3), see Theorem 5.2.14.

5.2.1 Some preparations

Let W be a cylindrical Brownian motion on H:

Wt =
∞∑

k=1

W k
t ek, t ≥ 0,
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where {ek}k≥1 is a complete orthonormal basis of H and {W k}k≥1 is a family
of independent one dimensional standard Brownian motions defined on some
probability space (Ω,F ,P). Under the conditions (i) and (ii) in Hypothesis 5.2.1,
the linear SDE

dZx
t = AZx

t dt+
√
Q dWt, Zx

0 = x ∈ H (5.6)

has a unique solution with the expression

Zx
t = etAx+WA(t), t > 0,

where WA(t) is the stochastic convolution:

WA(t) =

∫ t

0

e(t−s)A√Q dWs.

For any t > 0, WA(t) is a centered Gaussian variable on H with covariance
operator Qt. We denote its law by NQt(dy). Accordingly, the law of Zx

t is denoted
as NetAx,Qt(dy). Recall that for any h ∈ H,

〈
h,Q

−1/2
t WA(t)

〉
is a centered real

Gaussian variable with variance

E
〈
h,Q

−1/2
t WA(t)

〉2
= |h|2H .

We shall write B(H) for the space of bounded measurable functions on H
and C1

b (H) the space of Fréchet differentiable functions, bounded with bounded
derivatives. When f ∈ C1

b (H), its Fréchet derivative will be denoted by Df . For
any f ∈ B(H) and t ≥ 0, let

Stf(x) := Ef(Zx
t ) =

∫

H

f(y)NetAx,Qt(dy) =

∫

H

f
(
etAx+ y

)
NQt(dy).

This defines a Markov semigroup on H. We have the following important result
which implies St is strong Feller (see [31, Proposition 2.28] for a proof).

Proposition 5.2.4. Assume the conditions (i)–(iii) in Hypothesis 5.2.1. Then for
all f ∈ B(H) and t > 0, we have Stf ∈ C1

b (H) and for any h ∈ H,

〈h,DStf(x)〉 = E
[
f(Zx

t )
〈
Λ(t)h,Q

−1/2
t

(
Zx
t − etAx

)〉]
. (5.7)

Moreover,
‖DStf‖∞ ≤ ‖f‖∞‖Λ(t)‖L(H). (5.8)

Using the semigroup St, the mild formulation of the Kolmogorov equation (5.3)
is

u(t, x) = (Stu0)(x) +

∫ t

0

(
St−s〈B,Du(s)〉

)
(x) ds. (5.9)
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This suggests us to consider the iterative scheme:

un+1(t, x) = (Stu0)(x) +

∫ t

0

(
St−s〈B,Dun(s)〉

)
(x) ds

with u0(t, x) = (Stu0)(x) = Eu0(Zx
t ). We define v0(t, x) = u0(t, x) and

vn(t, x) = un(t, x)− un−1(t, x), n ≥ 1,

then the new functions satisfy the iteration procedure:




vn+1(t, x) =

∫ t

0

(St−sk
n
s )(x) ds,

kns (y) = 〈B(y), Dvn(s, y)〉,
v0(t, x) = Eu0(Zx

t ).

(5.10)

Before concluding this section, we show how to obtain the first term v1(t, x).
Since u0 ∈ B(H), Proposition 5.2.4 implies v0(t) ∈ C1

b (H) for any t > 0, and
thus 〈B,Dv0(t)〉 ∈ B(H). Denote by Ft the filtration generated by the cylindrical
Brownian motion Wt.

Lemma 5.2.5. It holds that
(
St−sk

0
s

)
(x) = E

[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s

(
Zx
t − esAZx

t−s
)〉]

.

Proof. Use the property of conditional expectation:

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉]

= E
{
E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉∣∣Ft−s

]}

= E
{
E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉∣∣Zx

t−s

]}
,

where the second step follows from the Markov property. Again by the Markov
property,

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉∣∣Zx

t−s

]

= E
[
u0(Zy

s )
〈
Λ(s)B(y), Q−1/2

s (Zy
s − esAy)

〉]
y=Zxt−s

= k0
s(y)

∣∣
y=Zxt−s

= k0
s(Z

x
t−s),

where the second step is due to (5.7). Substituting this equality into the previous
one we obtain the identity.
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The above lemma implies

Corollary 5.2.6. For any t > 0 and x ∈ H,

v1(t, x) =

∫ t

0

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s

(
Zx
t − esAZx

t−s
)〉]

ds. (5.11)

Moreover,

‖v1(t)‖∞ ≤ ‖u0‖∞‖B‖∞
∫ t

0

‖Λ(s)‖L(H) ds

and

‖Dv1(t)‖∞ ≤ ‖u0‖∞‖B‖∞
∫ t

0

‖Λ(t− s)‖L(H)‖Λ(s)‖L(H) ds.

Proof. The formula (5.11) follows directly from Lemma 5.2.5. Next, by the defini-
tion (5.10) of the iteration, for any s > 0 and y ∈ H,

∣∣k0
s(y)

∣∣ ≤ |B(y)| |Dv0(s, y)| ≤ ‖B‖∞|DSsu0(y)| ≤ ‖B‖∞‖u0‖∞‖Λ(s)‖L(H),
(5.12)

where the last inequality follows from (5.8). Therefore,

|v1(t, x)| ≤
∫ t

0

∣∣(St−sk0
s

)
(x)
∣∣ ds ≤

∫ t

0

∥∥k0
s

∥∥
∞ ds ≤ ‖u0‖∞‖B‖∞

∫ t

0

‖Λ(s)‖L(H) ds

which yields the estimate on ‖v1(t)‖∞. The inequality (5.12) implies that k0
s ∈ B(H)

for all s > 0, hence by Proposition 5.2.4, St−sk0
s ∈ C1

b (H) and

Dv1(t, x) =

∫ t

0

D
(
St−sk

0
s

)
(x) ds.

Finally, by (5.8),

‖Dv1(t)‖∞ ≤
∫ t

0

∥∥D
(
St−sk

0
s

)∥∥
∞ ds ≤

∫ t

0

∥∥k0
s

∥∥
∞‖Λ(t− s)‖L(H) ds,

which, together with (5.12), gives us the last estimate.

5.2.2 The term v2(t, x)

In this part, we compute the second term in the iteration to illustrate the ideas.
First we prove

Lemma 5.2.7. One has

k1
t (x) =

∫ t

0

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉

×
〈
Λ(t− s)B(x), Q

−1/2
t−s (Zx

t−s − e(t−s)Ax)
〉]

ds.
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Proof. By Corollary 5.2.6, for any t > 0, v1(t) ∈ C1
b (H) and

k1
t (x) =

〈
B(x), Dv1(t, x)

〉
=

∫ t

0

〈
B(x), D

(
St−sk

0
s

)
(x)
〉

ds.

Recall that (5.12) implies k0
s ∈ B(H), thus by Proposition 5.2.4,

k1
t (x) =

∫ t

0

E
[
k0
s(Z

x
t−s)
〈
Λ(t− s)B(x), Q

−1/2
t−s

(
Zx
t−s − e(t−s)Ax

)〉]
ds.

According to the proof of Lemma 5.2.5, we have

k0
s(Z

x
t−s) = E

[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q
−1/2
s (Zx

t − esAZx
t−s)
〉∣∣Ft−s

]
.

Note that
〈
Λ(t− s)B(x), Q

−1/2
t−s

(
Zx
t−s− e(t−s)Ax

)〉
is Ft−s-measurable. Substituting

this equality into the one above and using the property of conditional expectation,
we obtain the desired result.

Now we are ready to present the expression and estimates for the second
iteration.

Proposition 5.2.8. For any t > 0 and x ∈ H,

v2(t, x) =

∫ t

0

∫ s

0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q
−1/2
r (Zx

t − erAZx
t−r)
〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)
〉]

drds.

Furthermore,

‖v2(t)‖∞ ≤ ‖u0‖∞‖B‖2
∞

∫ t

0

∫ s

0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds

and

‖Dv2(t)‖∞ ≤ ‖u0‖∞‖B‖2
∞

∫ t

0

∫ s

0

‖Λ(t− s)‖L(H)‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds.

Proof. By Lemma 5.2.7, for any s > 0 and y ∈ H,

k1
s(y) =

∫ s

0

E
[
u0(Zy

s )
〈
Λ(r)B(Zy

s−r), Q
−1/2
r (Zy

s − erAZy
s−r)

〉

×
〈
Λ(s− r)B(y), Q

−1/2
s−r (Zy

s−r − e(s−r)Ay)
〉]

dr.
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We have

E
[
k1
s(Z

x
t−s)
]

= E
{∫ s

0

E
[
u0(Zy

s )
〈
Λ(r)B(Zy

s−r), Q
−1/2
r (Zy

s − erAZy
s−r)

〉

×
〈
Λ(s− r)B(y), Q

−1/2
s−r (Zy

s−r − e(s−r)Ay)
〉]

y=Zxt−s
dr

}

=

∫ s

0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q
−1/2
r (Zx

t − erAZx
t−r)
〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)
〉]

dr,

where the second step follows from the Markov property. Therefore,

v2(t, x) =

∫ t

0

(
St−sk

1
s

)
(x) ds =

∫ t

0

E
[
k1
s(Z

x
t−s)
]
ds

=

∫ t

0

∫ s

0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q
−1/2
r (Zx

t − erAZx
t−r)
〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)
〉]

drds.

Next, by the definition of k1
s and the last inequality in Corollary 5.2.6,

∥∥k1
s

∥∥
∞ ≤ ‖B‖∞‖Dv

1(s)‖∞ ≤ ‖u0‖∞‖B‖2
∞

∫ s

0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) dr.

(5.13)
This immediately implies

|v2(t, x)| ≤
∫ t

0

∥∥k1
s

∥∥
∞ ds ≤ ‖u0‖∞‖B‖2

∞

∫ t

0

∫ s

0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds,

and we obtain the estimate on ‖v2(t)‖∞. Moreover, by Proposition 5.2.4,

|Dv2(t, x)| ≤
∫ t

0

∣∣D
(
St−sk

1
s

)
(x)
∣∣ ds ≤

∫ t

0

∥∥k1
s

∥∥
∞‖Λ(t− s)‖L(H) ds,

which, combined with (5.13), gives us the second estimate.

5.2.3 The general terms vn(t, x)

In order to do further iteration, we rewrite the formula in Proposition 5.2.8 as

v2(t, x) =

∫ t

0

ds2

∫ s2

0

ds1 E
[
u0(Zx

t )
〈
Λ(s1)B(Zx

t−s1), Q
−1/2
s1

(Zx
t − es1AZx

t−s1)
〉

×
〈
Λ(s2 − s1)B(Zx

t−s2), Q
−1/2
s2−s1(Z

x
t−s1 − e(s2−s1)AZx

t−s2)
〉]
.
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Moreover, denoting by s0 = 0, then we have

v2(t, x) =

∫ t

0

ds2

∫ s2

0

ds1

E

[
u0(Zx

t )
2∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si
)〉
]
.

From this we can guess the general formulae.

Theorem 5.2.9. Let s0 = 0. For any n ≥ 1,

vn(t, x) =

∫ t

0

dsn

∫ sn

0

dsn−1 · · ·
∫ s2

0

ds1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si
)〉
]
.

(5.14)
Moreover,

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
∫ t

0

dsn

∫ sn

0

dsn−1 · · ·
∫ s2

0

ds1

n∏

i=1

‖Λ(si − si−1)‖L(H)

and, letting sn+1 = t,

‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
∫ t

0

dsn

∫ sn

0

dsn−1 · · ·
∫ s2

0

ds1

n+1∏

i=1

‖Λ(si − si−1)‖L(H).

Proof. We proceed by induction. Indeed, in view of the proofs in Section 5.2.2, we
shall also prove inductively the formula

knt (x) =

∫ t

0

dsn

∫ sn

0

dsn−1 · · ·
∫ s2

0

ds1

E

[
u0(Zx

t )
n+1∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si
)〉
]
,

where s0 = 0 and sn+1 = t. The discussions in Sections 5.2.1 and 5.2.2 show that
the assertions on v hold for n = 1, 2, and the above formula of k holds with n = 1.
Now we assume the assertions on v (resp. on k) hold for n (resp. for n− 1), and
try to prove them in the next iteration.
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By the induction hypotheses, we have vn(s) ∈ C1
b (H) for all s > 0 and thus, by

the definition of the iteration (5.10), kns ∈ B(H) with

∥∥kns
∥∥
∞ ≤ ‖B‖∞‖Dv

n(s)‖∞

≤ ‖u0‖∞‖B‖n+1
∞

∫ s

0

dsn

∫ sn

0

dsn−1 · · ·
∫ s2

0

ds1

n+1∏

i=1

‖Λ(si − si−1)‖L(H),

where sn+1 = s. Proposition 5.2.4 implies St−skns ∈ C1
b (H) for all s ∈ (0, t), and

from the formula

vn+1(t, x) =

∫ t

0

(
St−sk

n
s

)
(x) ds

we deduce readily the estimates on ‖vn+1(t)‖∞ and ‖Dvn+1(t)‖∞.
Next we prove the formula for knt (x) (note that the induction hypothesis gives

us the expression of kn−1
t (x)). We have

knt (x) = 〈B(x), Dvn(t, x)〉 =

∫ t

0

〈
B(x), D

(
St−sk

n−1
s

)
(x)
〉

ds

=

∫ t

0

E
[
kn−1
s (Zx

t−s)
〈
Λ(t− s)B(x), Q

−1/2
t−s (Zx

t−s − e(t−s)Ax)
〉]

ds, (5.15)

where we used Proposition 5.2.4 in the last step. By the induction hypothesis,

kn−1
s (y) =

∫ s

0

dsn−1

∫ sn−1

0

dsn−2 · · ·
∫ s2

0

ds1

E

[
u0(Zy

s )
n∏

i=1

〈
Λ(si − si−1)B(Zy

s−si), Q
−1/2
si−si−1

(
Zy
s−si−1

− e(si−si−1)AZy
s−si
)〉
]
,

(5.16)

where s0 = 0 and sn = s. Therefore, by the Markov property,

kn−1
s (Zx

t−s) =

∫ s

0

dsn−1

∫ sn−1

0

dsn−2 · · ·
∫ s2

0

ds1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si
)〉∣∣∣∣Ft−s

]
.

Inserting this identity into (5.15) and noticing that
〈
Λ(t−s)B(x), Q

−1/2
t−s (Zx

t−s−
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e(t−s)Ax)
〉
is measurable with respect to Ft−s, we obtain

knt (x) =

∫ t

0

ds

∫ s

0

dsn−1 · · ·
∫ s2

0

ds1 E

{
〈
Λ(t− s)B(x), Q

−1/2
t−s (Zx

t−s − e(t−s)Ax)
〉

×u0(Zx
t )

n∏

i=1

〈
Λ(si−si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

−e(si−si−1)AZx
t−si
)〉
}
.

Renaming s as sn gives us the formula of knt (x) in the new iteration for all t > 0
and x ∈ H.

Finally we prove the expression for vn+1(t, x). We have

vn+1(t, x) =

∫ t

0

(
St−sk

n
s

)
(x) ds =

∫ t

0

E
[
kns (Zx

t−s)
]

ds.

Using the formula we have just proved for kns (y) and the Markov property, we can
obtain the expression for vn+1(t, x) in a similar way as above.

We give a slightly different formula which is more appropriate for numerical
purpose.

Corollary 5.2.10. For any n ≥ 1,

vn(t, x) =

∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(ri+1 − ri)B

(
Zx
ri

)
, Q
−1/2
ri+1−ri

(
Zx
ri+1
− e(ri+1−ri)AZx

ri

)〉
]
,

(5.17)
where rn+1 = t. Accordingly,

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

‖Λ(ri+1 − ri)‖L(H)

and, setting r0 = 0,

‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=0

‖Λ(ri+1 − ri)‖L(H).

Proof. We change variables as follows:

ri = t− sn+1−i, 1 ≤ i ≤ n.
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The domain of integration becomes
{

(r1, · · · , rn) : 0 < r1 < · · · < rn < t
}

;

and si − si−1 = rn+2−i − rn+1−i, 1 ≤ i ≤ n. Therefore, by (5.14),

vn(t, x) =

∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(rn+2−i − rn+1−i)B

(
Zx
rn+1−i

)
,

Q
−1/2
rn+2−i−rn+1−i

(
Zx
rn+2−i − e(rn+2−i−rn+1−i)AZx

rn+1−i

)〉
]
.

In the product, letting j = n+ 1− i, we get the desired formula (5.17). The proofs
of the two estimates are similar.

Remark 6. Due to the convolution structure (5.10), it seems that (5.17) is not
suitable for the induction argument in the proof of Theorem 5.2.9.

5.2.4 Convergence of the iteration scheme (5.10)
We need the following technical result, where we use the Gamma function Γ(α):

Γ(α) =

∫ ∞

0

θα−1e−θ dθ, α > 0.

Lemma 5.2.11. Assume δ ∈ (0, 1) and n ≥ 1. Let r0 = 0 and rn+1 = t. One has

∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

1

(ri+1 − ri)δ
=

Γ(1− δ)n
Γ(1 + n(1− δ))t

n(1−δ)

and
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=0

1

(ri+1 − ri)δ
=

Γ(1− δ)n+1

Γ((n+ 1)(1− δ))t
n(1−δ)−δ.

Proof. First we prove
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

1

(ri+1 − ri)δ
= tn(1−δ)

n∏

i=1

B
(
1−δ, 1+(i−1)(1−δ)

)
,

(5.18)
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where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

θα−1(1− θ)β−1 dθ, α, β > 0.

We proceed by induction. For n = 1, noting that r2 = t, we change the variable
θ = r1/t and get
∫ t

0

dr1

(t− r1)δ
= t1−δ

∫ 1

0

dθ

(1− θ)δ = t1−δ
∫ 1

0

θ0(1− θ)−δ dθ = t1−δB(1− δ, 1).

Therefore the equality holds when n = 1. Now suppose the equality holds for n− 1,
we prove it for n. By the induction hypothesis,
∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n−1∏

i=1

1

(ri+1 − ri)δ
= r(n−1)(1−δ)

n

n−1∏

i=1

B
(
1− δ, 1 + (i− 1)(1− δ)

)
,

thus, noticing that rn+1 = t,
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

1

(ri+1 − ri)δ

=
n−1∏

i=1

B
(
1− δ, 1 + (i− 1)(1− δ)

) ∫ t

0

r
(n−1)(1−δ)
n

(t− rn)δ
drn.

We have, by changing variable θ = rn/t,
∫ t

0

r
(n−1)(1−δ)
n

(t− rn)δ
drn = tn(1−δ)

∫ 1

0

θ(n−1)(1−δ)(1−θ)−δ dθ = tn(1−δ)B
(
1−δ, 1+(n−1)(1−δ)

)
.

Substituting this result into the previous one gives us the identity (5.18).
Next, it is well known that

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

Therefore,
n∏

i=1

B
(
1−δ, 1+(i−1)(1−δ)

)
=

n∏

i=1

Γ(1− δ)Γ(1 + (i− 1)(1− δ))
Γ(1 + i(1− δ)) =

Γ(1− δ)n
Γ(1 + n(1− δ) .

Combining this with (5.18) we obtain the desired formula.
The proof of the second identity is similar, by first establishing the identity
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

1

(ri+1 − ri)δ
= tn(1−δ)−δ

n∏

i=1

B
(
1− δ, i(1− δ)

)
.

We omit the details here.
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As a consequence, we have the following estimates.

Corollary 5.2.12. Under the Hypotheses 5.2.1 and 5.2.3, for any n ≥ 0 and t > 0,

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn
δ t
n(1−δ) Γ(1− δ)n

Γ(1 + n(1− δ)) (5.19)

and
‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn+1

δ tn(1−δ)−δ Γ(1− δ)n+1

Γ((n+ 1)(1− δ)) .

Proof. The case n = 0 follows directly from (5.8). Combining Lemma 5.2.11 and
Corollary 5.2.10, we obtain the general cases.

Now we can prove the existence of limit for the iteration scheme (5.10).

Proposition 5.2.13. Assume the Hypotheses 5.2.1 and 5.2.3. For any T > 0, the
series ∞∑

n=0

vn(t, x)

converge uniformly on [0, T ]×H. Moreover, for any t0 ∈ (0, T ), the series

∞∑

n=0

Dvn(t, x)

converge uniformly on [t0, T ]×H.

Proof. We only prove the first assertion; the proof of the second one is similar. By
Corollary 5.2.12 and using the ratio test, it is sufficient to show that

lim
n→∞

Γ(1 + n(1− δ))
Γ(1 + (n+ 1)(1− δ)) = 0.

This follows from elementary calculations. Indeed, setting α = 1− δ for simplicity
of notation,

Γ(1 + nα)

Γ(1 + (n+ 1)α)
=

nα

(n+ 1)α
· nα− 1

(n+ 1)α− 1
· · · 1 + (nα)

1 + α + (nα)
· Γ((nα))

Γ(α + (nα))
,

where (nα) is the decimal part of nα. Using the simple inequality log(1 + x) < x
for all x ∈ (−1, 0), we have

log

(
nα− k

(n+ 1)α− k

)
= log

(
1− α

(n+ 1)α− k

)
< − α

(n+ 1)α− k .
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Hence,

log
Γ(1 + nα)

Γ(1 + (n+ 1)α)
<

− α
(

1

(n+ 1)α
+

1

(n+ 1)α− 1
+ · · ·+ 1

1 + α + (nα)

)
+ log

Γ((nα))

Γ(α + (nα))
.

Note that the first part on the right hand side tends to −∞ as n→∞, while the
last part is uniformly bounded in n, thus we conclude the result.

Thanks to Proposition 5.2.13, we can define the limit

u(t, x) = lim
n→∞

un(t, x) = lim
n→∞

n∑

i=0

vi(t, x);

moreover, for any t > 0, one has u(t) ∈ C1
b (H) and

Du(t, x) = lim
n→∞

Dun(t, x) = lim
n→∞

n∑

i=0

Dvi(t, x)

which holds uniformly on [t0, T ]×H for any 0 < t0 < T . Finally we can prove the
main result.

Theorem 5.2.14. The limit u(t, x) is the unique solution to the Kolmogorov
equation (5.3) in the following sense:

(a) for any T > 0, u(t, x) is uniformly bounded for (t, x) ∈ [0, T ] × H, and
u(t) ∈ C1

b (H) for any t > 0;

(b) for any T > 0, one has
∫ T

0
‖Du(t)‖∞ dt <∞;

(c) it satisfies the mild formulation (5.9) for any t > 0 and x ∈ H.

Proof. Obviously our limit verifies (a). Next,

‖Du(t)‖∞ ≤
∞∑

n=0

∥∥Dvn(t)
∥∥
∞ ≤ ‖u0‖∞

∞∑

n=0

‖B‖n∞Cn+1
δ tn(1−δ)−δ Γ(1− δ)n+1

Γ((n+ 1)(1− δ)) .

Therefore,
∫ T

0

‖Du(t)‖∞ dt ≤ ‖u0‖∞
∞∑

n=0

‖B‖n∞Cn+1
δ

Γ(1− δ)n+1

Γ((n+ 1)(1− δ))

∫ T

0

tn(1−δ)−δ dt

= ‖u0‖∞
∞∑

n=0

‖B‖n∞Cn+1
δ

Γ(1− δ)n+1

Γ((n+ 1)(1− δ))
T (n+1)(1−δ)

(n+ 1)(1− δ) ,

(5.20)
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which shows that (b) is also satisfied. Moreover, for any t > 0 and x ∈ H,
∣∣∣∣
∫ t

0

(
St−s〈B,Du(s)〉

)
(x) ds

∣∣∣∣ ≤
∫ t

0

‖〈B,Du(s)〉‖∞ ds ≤ ‖B‖∞
∫ t

0

‖Du(s)‖∞ ds.

This implies the integral in the signs of absolute value makes sense.
It remains to check that u(t, x) verify (5.9). By the iteration scheme (5.10), one

has, for any n > 1,

un(t, x) = u0(t, x) +

∫ t

0

(
St−s

〈
B,Dun−1(s)

〉)
(x) ds for all t > 0, x ∈ H. (5.21)

The left hand side converges uniformly to u(t, x) on [0, T ]×H for any T > 0. It
suffices to show the uniform convergence of the right hand side. We have

∣∣∣∣
∫ t

0

(
St−s

〈
B,Dun−1(s)

〉)
(x) ds−

∫ t

0

(
St−s〈B,Du(s)〉

)
(x) ds

∣∣∣∣

≤
∫ t

0

∥∥〈B,Dun−1(s)−Du(s)
〉∥∥
∞ ds ≤ ‖B‖∞

∞∑

i=n

∫ t

0

∥∥Dvi(s)
∥∥
∞ ds.

Similarly to the calculations in (5.20), we can show that the right hand side vanishes
as n goes to infinity. Therefore we let n→∞ on both sides of (5.21) and conclude
that u(t, x) satisfies (5.9) uniformly in (t, x) ∈ [0, T ]×H.

Finally we prove the uniqueness of solutions. Suppose u(t, x) and ũ(t, x) are
two solutions to (5.3) with the properties (a)–(c). Then, for any t > 0 and x ∈ H,

u(t, x)− ũ(t, x) =

∫ t

0

St−s
(
〈B,D(u(s)− ũ(s))〉

)
(x) ds.

Therefore,

|u(t, x)− ũ(t, x)| ≤ ‖B‖∞
∫ t

0

‖Du(s)−Dũ(s)‖∞ ds. (5.22)

Moreover, by Proposition 5.2.4,

|D(u(t, x)− ũ(t, x))| ≤
∫ t

0

∣∣DSt−s
(
〈B,D(u(s)− ũ(s))〉

)
(x)
∣∣ ds

≤
∫ t

0

∥∥〈B,D(u(s)− ũ(s))〉
∥∥
∞‖Λ(t− s)‖L(H) ds

≤ ‖B‖∞
∫ t

0

‖Du(s)−Dũ(s)‖∞‖Λ(t− s)‖L(H) ds.
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Hence,
∫ t

0

‖Du(s)−Dũ(s)‖∞ ds ≤ ‖B‖∞
∫ t

0

∫ s

0

‖Du(r)−Dũ(r)‖∞‖Λ(s− r)‖L(H) drds

= ‖B‖∞
∫ t

0

‖Du(r)−Dũ(r)‖∞ dr

∫ t

r

‖Λ(s− r)‖L(H) ds

≤
[
‖B‖∞

∫ t

0

‖Λ(s)‖L(H) ds

]∫ t

0

‖Du(r)−Dũ(r)‖∞ dr.

Under Hypothesis 5.2.1-(iv), there is some t1 > 0 such that ‖B‖∞
∫ t1

0
‖Λ(s)‖L(H) ds <

1. Then ∫ t

0

‖Du(s)−Dũ(s)‖∞ ds = 0 for all t ≤ t1.

Combining this with (5.22) we see that u(t, x) = ũ(t, x) for any (t, x) ∈ [0, t1]×H.
Next, by the semigroup property, it is easy to show that, for t ∈ (0, t1],

u(t+ t1, x) = Stut1(x) +

∫ t

0

St−s
(
〈B,Du(t1 + s)〉

)
(x) ds.

Repeating the above procedure we can prove the uniqueness on the interval [t1, 2t1]
and so on. Thus we complete the proof.

5.3 Numerical Simulations
In this section we propose some experiment of the iteration scheme (5.10)

studied in Section 5.2 in the finite dimensional setting. We have in mind the
framework of Example 5.2.2, i.e. A = ∆. Since we are in the finite dimensional
setting this choice corresponds to take A ∈ Rd ⊗ Rd as the diagonal matrix where
Ak,k = −k2, k = 1, . . . , d. Moreover we consider the matrix Q = σ2Id×d where Id×d
is the identity matrix over Rd, and the parameter σ will be specified below (see
Table 5.1 for reference parameters).

We will consider two main classes of examples as a benchmark for our approxi-
mation scheme. First, we consider the nonlinear vector field

B(x)i = sin(xi), i = 1, . . . , d, (5.23)

i.e. we apply the sine function to all the components. This nonlinearity will be the
easier one of our examples since it is close to linear, at least for small values of x.
We will also consider some variation of the previous example, made by

B(x)i = sin(xi)(Bmx)i, i = 1, . . . , d, (5.24)
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where Bm ∈ Rd × Rd is the skew symmetric matrix

(Bm)i,j =





1 if i < j;

−1 if i > j;

0 if i = j,

i.e. the Toeplitz matrix with all one above the diagonal and minus one below. This
example is more complex than the previous one. It is significant since it deals with
skew symmetric matrices, inducing rotations, which are a first simple step in the
direction of fluid dynamics. The vector field Bmx is also multiplied by the function
sin(x) in order to make example (5.24) nonlinear. Notice that this last example
is not covered by our present theory, since it does not satisfy Hypothesis 5.2.3.
However, even if (5.24) is not bounded, it satisfies a linear growth condition. We
hope to improve our theory and the generality of the assumptions in such direction
in a future research, and limit ourselves to some numerical experiments for the
present work.

Figure 5.1: Sine case (5.23). Left: trajectory of u(t, x) for t ∈ [0, T ], d = 10. Right:
difference between consecutive iterations and error with respect to the reference
case, X-axis number of iterations.

Second, we consider the following class of polynomial nonlinearities

B(x)i = ||y|| (yi − xi) |yi − xi|
p−1

||y||+ ||y − x||p , i = 1, . . . , d (5.25)
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where y ∈ Rd is fixed. Note that this example appeals to the one dimensional case

B(x) = (y − x) |y − x|p−1 ,

for which the dynamical system

ẋ(t) = B(x(t))

has the singleton {y} as a stable attractor. The reason behind the example (5.25) is
the following: it is close to a polynomial nonlinearity, so that it makes a significant
test case; at the same time, the normalization by the factor ||y|| /(||y||+ ||y − x||p)
makes it a bounded operator, so that it fulfills Hypothesis 5.2.3.

In all the examples above we adopt the following choice of initial condition

u0(x) = 1{||x||≥H},

where the parameter H is set to 1 (see Table 5.1).

5.3.1 Approximation schemes

Standard Monte-Carlo approach. Since an explicit solution for Equation
(5.2) is not available we will always compare to the solution obtained by means of
Monte-Carlo simulation of the nonlinear process Xx

t :

u(t, x) = E [u0(Xx
t )] ' 1

Ns

Ns∑

i=1

u0

(
Xx,i
t

)
, (5.26)

where Ns is the number of samples considered, and the processes Xx,i
t , i = 1, . . . , Ns

are independent copies of Xx
t . To compute samples of the process Xx,i

t we use
the Euler-Maruyama scheme with a very fine time step in order to get a good
approximation to be used as a comparison. The solution computed by (5.26) will
always be referred to in what follows as the reference case.

Numerical iteration scheme. Under our assumption, since A and Q are diag-
onal, we can rewrite the equations for the processes Zx

t and Zt in a simple way: for
k = 1, . . . , d, {

dZk
t = −k2Zk

t dt+ dW k
t ,

Zk
0 = 0

(5.27)

and
Zx,k
t = e−k

2txk + σZk
t .
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Figure 5.2: Polynomial bounded quadratic case (5.25) with p = 2, d = 10. Left:
trajectory of u(·, x) for t ∈ [0, T ]. The purple line is obtained by applying a moving
average smoothing to the last iteration. Right: difference between consecutive
iterations and error with respect to the reference case, X-axis number of iterations.

We remark that, differently from Zt, the process Zx
t depends also on the parameter

σ, but we do not explicitly write Zx,σ
t for ease of notation. Note that the process

Zt depends only on the operators A. This opens the possibility of computing Zx
t ,

and hence also u(t, x), for many values of x without repeating the computations
for Zt. The same reasoning holds for different values of σ, see Figure 5.6. Note
also that this strategy cannot be applied to the process Xx

t since in that case the
problem is nonlinear.

Once realizations of the process Zx
t are computed, we can proceed with the

iteration algorithm (5.10). In order to compute numerically the quantity vn(t, x)
appearing in Theorem 5.2.9 one needs to be able to compute first

〈
Λ (s)B

(
Zx
t−s
)
, Q−1/2

s

(
Zx
t − esAZx

t−s
)〉
. (5.28)

Since A and Q are diagonal and explicit (see the beginning of this section), one has

(Qt)k,k =

∫ t

0

(
esA
)
k,k
Qk,k

(
esA

∗)
k,k

ds =

∫ t

0

e−2sk2σ2 ds =
σ2

2k2

(
1− e−2tk2

)
,

(
Q
−1/2
t

)
k,k

=

√
2k

σ
√

1− e−2tk2
, (Λ (t))k,k =

√
2ke−tk

2

σ
√

1− e−2tk2
,
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and thus,
〈
Λ (s)B

(
Zx
t−s
)
, Q−1/2

s

(
Zx
t − esAZx

t−s
)〉

=
d∑

k=1

2k2e−sk
2

σ2(1− e−2sk2)
B
(
Zx
t−s
)
k

(
Zx,k
t − e−sk

2

Zx,k
t−s

)
.

Figure 5.3: Left block: Sine times skew-symmetric case (5.24) with d = 10. Right
block: Polynomial bounded cubic case (5.25) p = 3, d = 10. The purple line is
obtained by applying a moving average smoothing to the last iteration.

Hence, when integrating expression (5.28), by change of variable we have
∫ t

0

〈
Λ (s)B

(
Zx
t−s
)
, Q−1/2

s

(
Zx
t − esAZx

t−s
)〉

ds

=

∫ t

0

〈
Λ (t− s)B (Zx

s ) , Q
−1/2
t−s

(
Zx
t − e(t−s)AZx

s

)〉
ds

=

∫ t

0

d∑

k=1

2k2e−(t−s)k2

σ2(1− e−2(t−s)k2)
B (Zx

s )k

(
Zx,k
t − e−(t−s)k2Zx,k

s

)
ds. (5.29)

Changing variable provides a significant advantage when performing numerical
integration. In fact it is more complex to compute Zx

t−s than Λ(t− s)
(
resp. Q1/2

t−s
)

since Zx is random and hence we would have been obliged to reverse the time for
every sample of the process. On the other hand the matrix Λ(t− s)

(
resp. Q1/2

t−s
)

is deterministic so that changing time s 7→ t− s can be done once only.
Moreover, thanks to Corollary 5.2.10, it is possible to compute vn(t, x) with a

single time integration from the previous step. Introduce

In(t, x) =
∫ t

0

drn

∫ rn

0

drn−1 · · ·
∫ r2

0

dr1

n∏

i=1

〈
Λ(ri+1−ri)B

(
Zx
ri

)
, Q
−1/2
ri+1−ri

(
Zx
ri+1
−e(ri+1−ri)AZx

ri

)〉
,
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and notice that, due to Equation (5.17), we have

vn(t, x) = E
[
u0(Zx

t )In(t, x)
]
.

Since

In+1(t, x) =

∫ t

0

〈
Λ (t− s)B (Zx

s ) , Q
−1/2
t−s

(
Zx
t − e(t−s)AZx

s

)〉
In(s, x) ds,

once we have computed In, computing In+1 is a matter of a single integration.
This is really crucial because, otherwise, by using the direct expression (5.14)
in Theorem 5.2.9, to compute vn(t, x) one should have done an n-dimensional
numerical integration, independently on the previous iteration.

Stopping conditions. Since the numerical scheme is iterative and since an exact
solution is not available, we adopt a consecutive-iterations stopping condition. At
every step we measure the difference between consecutive iterations and stop when
this difference is below a certain threshold tol. Specifically we adopt two strategies
in different situations: when we compute the entire trajectory of u(t, x) for t ∈ [0, T ],
we measure

err(n) := sup
t∈[0,T ]

||vn(t, x)||

and stop the iterations if err(n) < tol (see Figures 5.1 and 5.2); when we are
interested only in u(T, x) for a fixed T , then

err(n) := |vn(T, x)|

and adopt the same stopping rule (Figures 5.6 and 5.7).
The entire procedure can be summarized in the following scheme:

Result: un(t, x) approximating solution after n iterations
Compute Ns samples of the process Zt;
Compute Ns samples for Zx

t starting from Zt;
Compute u0(t, x) = v0(t, x) = E[u0(Zx

t )] by Monte-Carlo average;
Set err = 1, n = 0;
while err > tol do

Compute vn+1(t, x) as in Corollary 5.2.10;
Set un+1(t, x) = un(t, x) + vn+1(t, x) ;
Set err = |vn+1(t, x)|;
Set n = n+ 1;

end
Algorithm 1: Iteration Scheme
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5.3.2 Examples

Here we collect the results obtained, and all the parameters involved in the
simulations. Parameters are divided into two categories: those related to the
mathematical problem, and those strictly related to the numerical approximations,
see Tables 5.1 and 5.2. Those are our reference parameters: we will specify each
time any modifications.

In all the figures below, when showing the entire trajectory of the solution
u(t, x) for t ∈ [0, T ], we also plot the 0-th order iteration. This corresponds to the
solution of the linear case for (5.2), i.e. the Kolmogorov equation with B ≡ 0. This
will allow us to compare with the linear case, in order to be sure to have introduced
a significant nonlinearity into the problem.

Parameter Value Description
d 10 dimension of the problem
y0 2e parameter of the nonlinearity B, Polynomial case
x e values where the solution u(t, x) is computed
σ 1 noise
T 1 final time of computation for u(t, x0)

H 1 threshold for the initial condition u0(x)

Table 5.1: Model parameters, e stands
for the vector with all components iden-
tically 1.

Parameter Value Description
∆t 10−4 time step for Euler scheme
dt 10−2 time step for numerical integration
Ns 105 number of samples averages
tol 10−3 tolerance for stopping iterations

Table 5.2: Numerical parameters.

Mixed-time-step strategy. To perform numerical simulation of SDEs and
numerical integration we adopt a mixed-time-step strategy. When we compute
the reference solution, through the simulation of the process Xx

t , as well as when
computing samples of the linear process Zt, we adopt a time step ∆t. On the other
hand when we perform numerical integration, to compute successive iterations,
we adopt a time discretization parameter dt� ∆t, see Table 5.2. This is due to
the fact that, in equation (5.1), as well as in (5.27), a coefficient −k2 is present
in the k-th component of the drift of the equation. This coefficient, and hence
the Lipschitz constant of the drift, is growing as the square of the dimension d of
the problem. This is caused by the intrinsic exponential decay of equation (5.27),
which require a high level of precision in computation. Differently, in equation
(5.29), part of this exponential decay is absorbed by the convolutional structure of
the integration. The limits and what is the proper ratio between ∆t and dt is a
difficult topic. A more precise investigation is needed: for the present chapter we
only highlight the numerical result obtained, and hope to improve the theoretical
counterpart in a future work.
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Figure 5.4: Left block: Sine case (5.23) in dimension d = 50, Ns = 104. The purple
line is obtained by applying a moving-average smoothing to the last iteration.
Right block: Polynomial bounded quadratic case (5.25) p = 2 in dimension d = 50,
Ns = 104.

Figure 5.5: Sine times skew symmetric matrix (5.24). Left dimension d = 20,
Ns = 104. Right dimension d = 50, Ns = 104.

Positive results. For the simpler test case, the sine case (5.23), see Figure 5.1,
convergence is obtained in five iterations. This is due to the simplicity of the
example, as sin(x) is almost linear near the origin. The situation is different when
dealing with some more concrete examples like the polynomial case. In Figure 5.2,
where we use formula (5.25) with p = 2, we see that the number of iterations to
convergence is much bigger (26 in our example). At the same time the difference
between the last iteration and the reference case is quite small, comparable to the
sine case. However, we notice that the oscillation of the solution computed via
our iteration scheme, related to the variance of the estimator, is a bit bigger than
that of the reference case. This discrepancy is not completely clear yet, even if we
expect it to be due to the low number of samples used to compute averages. In
Figure 5.2 we also add a moving-average smoothing of the solution, to make more
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perceivable this last intuition.
The same behavior is obtained in the variations of the previous examples. In

Figure 5.3 we see that the same fast convergence as in the sine case, is obtained
also in the sine times skew-symmetric case (5.24). The Polynomial cubic case (5.25)
with p = 3 has the same level of complexity as the case with p = 2, even if it
requires a higher number of iterations to obtain convergence, and presents the same
type of oscillations.

We also perform the same tests in much higher dimension. In Figure 5.4 we
show the results of the same examples, performed in dimension d = 50 with
Ns = 104 samples. We see that the number of iterations required to convergence
are comparable with result in d = 10: this confirms the estimate of Corollary 5.2.12
which is in the infinite dimensional framework and hence is independent of any
dimension. The small variations in the number of iterations, as well as the slight
increase of the oscillations in the quadratic case, can be explained by the reduction
in the number of samples used to compute empirical averages. It is also important
to remark that, in the current example, the estimate of Corollary 5.2.12 is still too
rough: by computing the right-hand side of (5.19) one finds that the number n
of iterations needed to have |vn(t, x)| < tol is far bigger than what we find in the
numerical test (in fact it should be bigger than one hundred).

In Figure 5.6 we followed a different approach: we fix the test case as the sine
times skew-symmetric matrix (5.24), and analyze what is the limit of u(1, x) as σ
goes to zero. Also in this case the solution computed through the iteration scheme
is quite close to the reference case. At the same time, on the right side of Figure
5.6, we can appreciate the great advantage in time-saving of the iteration scheme.
We remark that the plot on the right side is cumulative, meaning that it takes into
account the time spent to compute the solution multiple times. In particular, we
note that the reference case is a straight line, since the computational time does not
depend on the different values of σ. On the other hand, for the iteration scheme
there is a change in the number of iterations for different values of σ that justifies
the nonlinear shape. Moreover we see that, even including the time of computing
samples of the process Zt that can be done only once (since σ does not appear in
(5.27)), we still have a great advantage in time.

As remarked in the introduction, this kind of advantage is a main feature of the
new method proposed here and applies also to the variation of other parameters
than σ. In particular, it applies to the change of initial conditions x, one of the most
fundamental problems in weather and climate prediction, related to the ensemble
forecasting method, see [66, Chapter 6]. Again, Monte-Carlo pays linearly with the
number of variations of x, while our method pays the bulk (i.e. Zt in (5.27)) only
once and then (here for the initial conditions) roughly linearly in the number of
different x’s, but with a linear slope much smaller than the one of Monte-Carlo,
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Figure 5.6: Sine times skew symmetric matrix (5.24), d = 10. Left: Y-axis value of
u(1, x) for different values of σ. X-axis different values of σ in the reverse order.
Right: Y-axis computational time measured in seconds to compute the solution
u(1, x) for various values of σ. The measurement of time is cumulative: we give the
cost of computing u(1, x) for several values of σ, starting from σ = 1 in decreasing
order. X-axis different values of σ in the reverse order. The red line refers only to
the time to compute iterations. The yellow line includes also the time to compute
samples of Zt one time at the beginning of the simulation.

similarly to the initial slope of Figure 5.6 right side. We illustrate the interest in
varying x by Figure 5.7 right side, where it is illustrated the relative importance of
different variations.

Difficulties with small σ and high dimension. However, not every situation
is well behaved as those presented above: in Figure 5.7 left side, we present the plot
for different values of σ in the polynomial quadratic case. Here the approximation
tends to degenerate for smaller values of σ (already around 0.5). This is due to
the higher level of nonlinearity of the polynomial case with respect to (5.24). It is
also important to mention that the number of iterations to convergence is really
important for what concerns the computational time. In the polynomial quadratic
(and also cubic) case, since the number of iterations to convergence is much higher
than in the simpler case, the advantage in the computational time is less relevant.
Still for what concerns negative results we also show in Figure 5.5 that, when the
dimension grows (left d = 20, right d = 50), the sine times skew-symmetric case
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Figure 5.7: Polynomial quadratic bounded case (5.25), p = 2, d = 10. Left: Y-axis
Value of u(1, x) computed by the iteration scheme, with different values of σ. X-axis
Different values of σ in the reverse order. Right: Sine times skew symmetric matrix
(5.24), d = 10. Difference of u(1, x) with respect to u(1, x± ek) for k = 1, . . . , 10.
Blue positive values are obtained by comparing with u(1, x+ ek), orange negative
by comparing with u(1, x− ek). X-axis different values of k = 1, . . . , 10.

(5.24) tends to degenerate. Iterations are still converging but the limit is far from
the reference solution. This is definitively the most difficult of our examples since
it is the only one which mixes strongly all the components and produces a strong
energy flux between them. However we also remark that at present time this case
is not covered by our theory, but is still relevant since it has the rotational behavior
which appeals to fluid dynamics.
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