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CHAPTER 1

INTRODUCTION

This thesis aims at studying geometric properties of large random combinatorial struc-
tures. In particular, we will speak about digraphs: namely, graphs with directed edges.
More specifically, we will be concerned with a slightly more general object, i.e., a so-
called multi-digraph. We will often use the word graph in order to refer to a multi-digraph.
The set of multi-digraphs on n vertices is in one-to-one correspondence with the set of
square matrices of size n with non-negative integer entries. Given a multi-digraph G on
n labeled vertices [n] = {1, . . . , n}, we associate to it the matrix A which we will refer to
as the adjacency matrix of G, such that A(x, y) is the number of directed links—or edges—
connecting vertex x to vertex y. The out-degree of a vertex x is the sum of the entries in
the x-th row of A, and will be denoted by d+

x . Similarly, the in-degree of x, d−x , is the sum
of the entries in the x-th column of A. We will call d− = (d−x )x∈[n] and d+ = (d+

x )x∈[n], the
in/out-degree sequences of G.

1.1 Sparse random digraphs ensembles

The results of this thesis concern what we will call (di)graph ensembles. A digraph ensem-
ble is a sequence of sets, G ≡ Gn, of multi-digraphs over the vertex set [n], equipped with
a sequence of probability measures over Gn, which we refer to as P ≡ Pn. By saying that
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G ≡ Gn is a graph from the ensemble we mean thatG is a random multi-digraph with vertex
set [n], sampled from the set G with the probability measure P. Since we will be interested
in the large volume asymptotic properties of the graph ensemble—in the sense that we will
consider the case in which n grows to infinity—the dependence on n is often omitted in
the notation.

The digraphs ensembles we are concerned with in this thesis are parametrised by the
degree sequences. More precisely, to every n ≥ 2 we associate one or more sequences of
length n, which we use to define the set Gn and the probability law Pn.

We first consider the set of multi-digraphs parametrised, for each n ≥ 2, by the in/out-
degree sequences

d− = (d−x )x∈[n], d+ = (d+
x )x∈[n].

In other words, the set G will be given by all the digraphs on the vertex set [n] in which
the degree sequences agree with d±. Notice that in order for the sequences to be sensible
we need to require that ∑

x∈[n]

d−x =
∑

x∈[n]

d+
x =: m.

Given that x ∈ [n] has degrees d−x and d+
x , we can represent this vertex has having d−x heads

and d+
x tails attached to it. If we call E the set of all the tails and F the set of all the heads,

we clearly have that |E| = |F| = m. We then consider ω a uniformly random bijection
ω : E → F . We will refer to the random bijection ω with the name configuration, we will
call C ≡ Cn the set of configuration and G(ω) the digraph induced by ω ∈ C. Notice that
each configuration ω specifies a multi-digraph G but, if we ignore the labels of heads and
tails, a given multi-digraphG can be obtained as the result of different configurations. We
will call Directed Configuration Model (DCM) the graph ensemble associated to the degree
sequences d− and d+ equipped with the probability measure P induced by the uniformly
random choice of the bijection ω ∈ C.

On the other hand, we can fix—for each n ≥ 2—only the out-degree sequence d+. We
consider the set G as given by the digraphs in which the number of connections between
any two vertices is constrained to be 0 or 1, and such that the out-degree sequence is in
agreement with d+. We will call Out Configuration Model (OCM) the digraph ensemble
on such a set G, equipped with the uniform measure. We remark that also in this case a
random graph G can be sampled similarly to the DCM case. We can equip each node x
with d+

x tails and pick for every x, independently, a uniformly random injective map ωx
from the set of tails of x to the set of all vertices. For all x, y ∈ [n], we add a directed edge
(x, y) if a tail from x is mapped into y through ωx. We write ω = (ωx)x∈[n] and, similarly to
the DCM, we will call ω a configuration and G(ω) the corresponding induced digraph.
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Both the DCM and the OCM are natural generalisations to the directed setting of the well-
known Configuration Model (CM) for undirected graphs, considered in the seminal paper
[11]. In the next sections we will recall the main achievements obtained in the analysis of
these two models in the last decades, and we will point out the main tools employed in
their study.

1.1.1 The Directed Configuration Model (DCM)

The DCM has been studied in [24], with few differences with respect to the definition
given above. The authors of [24] study the size of the largest strongly connected compo-
nent as a function of the degree sequences d− and d+, under full generalities of the latter
two.

For what concerns this thesis, instead, we will focus on the sparse irreducible regime; namely,
we will work under the following assumption.

Assumption 1 For every n ≥ 2

δ := min

{
min
x∈[n]

d+
x ,min

x∈[n]
d−x

}
≥ 2, and ∆ := max

{
max
x∈[n]

d+
x ,max

x∈[n]
d−x

}
= O(1).

The results in [24] imply that, under Assumption 1, the probability to sample a digraph
from the DCM(d±) ensemble which is strongly connected converges to 1 as n → ∞. In
what follows we will use the term with high probability, w.h.p., to mean that the probability
of a certain event displays such a behaviour.

We will call diameter of the graph the maximum directed distance between two different
vertices x and y, i.e., the length of the shortest directed path going from x to y. We can
rephrase the result in [24] by saying that for sufficiently large values of n, the diameter
is finite with probability near to one. We will present later a w.h.p. upper bound on the
diameter, that is therefore sufficient to recover the strong connectivity result of [24].

At the core of our study we analyze the statistical properties of in- and out-neighbourhoods
in the DCM. By in-neighbourhood of a vertex y of height hwe mean the subgraph induced
by the vertices which have a path of length at most h to y. On the other hand, the out-
neighbourhood of a vertex x of height h is the subgraph induced by the vertices which
are reachable by x in at most h steps. We will show that when we consider h = ε log(n) for
some small ε > 0, in the DCM the sizes of both in- and out-neighbourhoods are “asymp-
totically equal” for all vertices. More precisely, by making use of branching approximation
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techniques, we show that each in/out-neighbourhood of height h contains Θ̃(νh) vertices,
where

ν :=
∑

x∈[n]

d−x d
+
x

m
,

and the notation Θ̃ hides the poly-logarithmic corrections. As a consequence of this, it is
not surprising that the diameter of a digraph from the DCM ensemble is typically of size
logν(n).

Theorem 1.1 ([20]) Consider the DCM(d±) ensemble, and set d? = logν n. For every ε > 0

lim
n→∞

P ((1− ε) d? ≤ diam(G) ≤ (1 + ε) d?) = 1.

Moreover, for any x, y ∈ [n] with x 6= y

lim
n→∞

P ((1− ε) d? ≤ d(x, y) ≤ (1 + ε) d?) = 1.

Theorem 1.1 also shows that the diameter is actually the typical distance between two
vertices. By this we mean that the diameter is not realized by a special couple of vertices
but rather, fixed any two vertices x and y, w.h.p. we will have d(x, y) ∼ logν(n).

1.1.2 The Out Configuration Model (OCM)

Also in the case of the OCM ensemble, we will work in the sparse irreducible regime, i.e.,
under the following assumption.

Assumption 2 For every n ≥ 2

δ := min
x∈[n]

d+
x ≥ 2, and ∆ := max

x∈[n]
d+
x = O(1).

Notice that the assumption above does not imply that the random in-degree sequence
will enjoy the same bound as the out-degrees.

As far as we know, the Out Configuration Model has been introduced in [36], where
the author investigates the case in which all the out-degrees coincide. We will refer to
this special ensemble with the name regular Out Configuration Model, rOCM(d), where the
symbol d stays for d+

x = d, for every vertex x ∈ [n].
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In the rOCM the out-neighbourhood of most vertices will look like a d-regular directed
tree up to some relatively small height h. Nonetheless, if we focus on the in-neighbourhoods,
these are well approximated by Galton Watson trees with Poisson offspring distribution
of mean d. The first thing to notice is that the latter heuristics suggests that w.h.p. the
digraph will be not strongly connected. This fact can be seen clearly by realizing that the
probability that any given vertex y has in-degree zero is lower bounded by a constant
uniformly in n. The first rigorous result about connectivity in the regular OCM ensemble
comes with [36], where it is shown that w.h.p. the digraph has a unique strongly con-
nected component, having size approximately cdn, where the constant cd is related to the
survival probability of a Poisson(d) Galton-Watson tree, i.e.,

cd := max{x ∈ R | 1− x = e−dx}.

Theorem 1.2 ([36]) Fix ε > 0 and consider the a regular OCM with out-degree d. Then, called
G0 the largest strongly connected component of G, it holds

lim
n→∞

P ((1− ε)cdn ≤ |G0| ≤ (1 + ε)cdn) = 1, lim
n→∞

P
(
∀x ∈ [n], max

y∈G0

dist(x, y) <∞
)

= 1.

Henceforth, the intuition of the poissonian approximation is supported by rigorous quan-
titative results. It is worth noting that the second part of Theorem 1.2 ensures also that
the strongly connected component is unique and that it is globally attracting, in the sense
that w.h.p. every vertex admits a path toward G0.

On the same line of investigation, in [2], the authors show that the typical value of the
diameter is related to the same constant cd where, of course, here by diameter is meant
the diameter of the strongly connected componentG0. The heuristics suggests that among
the “poissonian in-neighbourhoods” of the cdn vertices in G0, there will be some that are
extremely thin up to a relatively large height. Clearly, these vertices will be “far” from most
of the origins, so that they give rise to a large value for the diameter. Let us remark, as a
benchmark, that by Theorem 1.1 the diameter of a typical graph in the d-out-regular DCM
ensemble is logd(n), independently on the prescribed in-degree sequence. In the case of
the rOCM, the presence of such thin in-neighbourhoods translates in a typical diameter of
(1 + c′d) logd(n), where c′d > 0 is defined by

c′d :=
log d

dcd − log d
≥ 0.

Theorem 1.3 ([2]) Consider the rOCM(d) ensemble. For every ε > 0 it holds

lim
n→∞

P ((1 + c′d − ε) logd(n) ≤ diam(G) ≤ (1 + c′d + ε) logd(n)) = 1.

7



1.2 Random walks on random digraphs

In this thesis we are mainly concerned with structural properties of typical graphs from
the two ensembles which can be better described through the lens of random walks. A
random walk on a directed graph is one of the easiest examples of Markovian stochastic
process. The latter can be thought of as a moving particle sitting on the vertex set of the
graph. At each discrete time step the particle chooses uniformly at random one of the
out-going links (tails) of the vertex it is currently visiting, and crosses it. It is clear that
any claim related to the law of a random walk on a given digraph can be translated in a
claim on the geometry of the digraph. Nonetheless, in our case the digraph is a random
object, so the law of the randomly moving particle will be a random object itself. In
the language of statistical physics the latter is an example of a so-called disordered system,
namely a random dynamical system evolving in a random geometry. The main difference
between the time evolution of the random walk on a directed graph with respect to the
undirected case is the irreversibility of the dynamics. The mathematical theory of reversible
systems is much richer, rooting its solid basis on the mathematics of self-adjoint operators
and spectral theory. Contrarily, irreversible disordered systems are less understood, and it is
nowadays a challenging task to design suitable setting and techniques that could help in
the mathematical understanding of the subject.

1.2.1 The stationary distribution

Much of the theory of finite Markov chains is concerned with the equilibrium properties
of the process under investigation. Given a transition matrix P , we will call stationary
distribution any probability (row) vector satisfying π = πP . It is classical that, if P is the
the transition matrix of a random walk on the directed graph G, the strong connectedness
of G yields the uniqueness of π. In the realm of undirected graphs, it is easy to check
that if π is unique then it must be proportional to the degree vector d, independently of
the other specifics of G. What makes undirected graphs specials in this sense is not the
reciprocity of the link structure, but rather the balancedness of in- and out-degrees. Indeed,
if the graph is directed but Eulerian, i.e., d−x = d+

x for every vertex x ∈ [n], then π ∝ d+

regardless of the other features of the digraph. As soon as an imbalanced vertex is present
in the graph, the stationary measure has to be though of as a global property of the digraph
geometry and there are no general procedures to compute the stationary measure π in a
local way.

In the case of digraphs from the DCM ensemble, the w.h.p. strong connectivity ensures
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that a typical digraph admits a unique stationary measure for the random walk. Nonethe-
less, the actual value of the vector π is random. In such a framework two natural ques-
tions that arise are: “how does the stationary distribution look like in the large n limit?”,
“is there any reasonable approximation of π in terms of local observables of the graph?”.
These questions have been addressed in [13, 14, 18, 20]. In particular in [13] the authors
analyze the bulk of the stationary measure of the random walk on the DCM. More pre-
cisely, they consider the (rescaled) empirical stationary distribution, which is simply the
random probability measure

1

n

∑

x∈[n]

δnπ(x)(·)

where we denote by δa the Dirac mass at a. The random measure above can be thought
of as the law of the stationary distribution of a uniformly sampled vertex. In [13] it is
shown that the empirical stationary distribution is well approximated by a determinis-
tic law in the Wasserstein-1 sense. The crucial idea underlying this result is the analy-
sis of an L2-bounded martingale which is related to the branching approximation of the
in-neighbourhood of a uniformly sampled vertex. The approximating deterministic dis-
tribution can be characterized as the unique solution, µ, of a distributional fixed point
equation. This equation has been intensively studied for other reasons e.g. in [44, 41, 43],
where the author provides detailed results on the absolutely continuity of the solution
and presents a precise analysis of its tails.

The case of the OCM ensemble can be carried out analogously, see [18]. In the special case
of the rOCM(d) ensemble the result is easier to read and can be, again, explained in terms
of Galton-Watson trees. In fact, in that case, the martingale approximating the empirical
stationary distribution is the classical martingale associated to a Galton-Watson process
of mean-offspring d, i.e., Zt/dt, where Zt is the population of the Galton-Watson process
at time t. This fact, in particular, can be read as an alternative proof of the first part of
Theorem 1.2. Indeed, the mass at zero of the empirical stationary distribution is exactly
the size of fraction of vertices which are not onG0, so that it follows from the convergence
result in [18] that the fraction of vertices in the strongly connected component is asymp-
totically equal to the probability that a Poisson Galton-Watson tree of mean offspring d
survives at infinity.

Unfortunately, the techniques used to study the typical entry of the stationary distribution,
do not automatically extend to recover results on the extremal values. In fact, even if the
convergence of the empirical distribution yields a limit distribution whose tail behaviour is
known, it is not clear how we could “bring this back” to the finite setting. In other words,
if for a large finite n we ask questions about the existence of a vertex with stationary
distribution smaller than some f(n) = o(n−1) or greater than some g(n) = ω(n−1), the
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answer cannot follow from the analysis of the limiting distribution. Nevertheless, the
latter could provide us with a reasonable guess about the correct answer. As mentioned
above, in [44, 41, 43] the author studies the tails of the limiting law µ, and one could be
tempted to use those results in the following, heuristic, way. We can solve with respect to
the variable x the equation

µ[0, x(n)) ≈ 1

n
where µ[0, x) denotes the probability mass associated to the interval [0, x) by the solution
of the distributional fixed point equation which approximates the empirical stationary
distribution. It turns out that the value predicted by this heuristics is indeed the right
answer. In fact, we show rigorously in [20] that the minimal entry of the stationary distri-
bution is of the form (n logC(n))−1 where the value of the exponent C coincides with the
prediction.

In order to state our result avoiding technicalities, let us focus on the special case in which
half of the vertices have degrees (δ,∆) whereas the other half share the degrees (∆, δ). We
will refer to this specific sub-model with the name binary Directed Configuration Model,
bDCM(δ,∆). We stress that is this specific case our results are sharper than in the general
scenario of Assumption 1. We call

γ =
log ∆

log δ
.

The results in [41] imply
log µ[0, x) ≈ x−

1
γ−1 ,

so that we can expect

nπmin

w.h.p.
≈ log1−γ(n).

The same argument applies to the case of the maximal entry of the stationary measure π.
One of the main results of this thesis, presented in [20], shows that the following holds
true.

Theorem 1.4 ([20]) Consider the bDCM(δ,∆) ensemble. Set πmin = minx∈[n] π(x) and πmax =
maxx∈[n] π(x) and call

γ =
log ∆

log δ
≥ 1.

There exists a constant C ≡ C(∆) > 0 such that

lim
n→∞

P
(
C−1 log1−γ(n) ≤ nπmin ≤ C log1−γ(n)

)
= 1.

lim
n→∞

P
(
C−1 log1−γ−1

(n) ≤ nπmax ≤ C log1−γ−1

(n)
)

= 1.
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For what concerns the rOCM, it has been shown in [2], as a byproduct of the tools used
in analyzing the diameter, that

nπmin

w.h.p.
≈ n−c

′
d ,

where the constant c′d is the same as in Theorem 1.3. This result can be predicted by a
heuristics similar to the one for the DCM.

1.2.2 Cover time

When studying the law of a random walk on a graph, it can be of interest to characterize
the latter by means of its extremal properties, such as the maximal hitting time or the cover
time. This can be somehow thought of as a line of investigation in the same spirit of the
study of the extremal values of the stationary distribution. Indeed, as we will see in a
moment, the three quantities are strongly related.

The problem of determining the cover time of a graph is a central one in combinatorics
and probability [6, 3, 39, 4, 45, 31, 32, 47, 48]. By definition, the cover time of a Markov
chain is the maximum over the starting states of the expected time needed to visit all
the states of the chain. In a couple of papers, [31, 32], Feige presents general tight upper
and lower bounds for the cover time in the undirected graph setting. In particular, he
shows that the cover time can be at most polynomial in the size of the vertex set for every
undirected graph. Nonetheless, the results do not extend to the directed case. In fact,
it is not hard to exhibit examples in which the cover time is exponential in the size of
the graph. A first—well known—result on the cover time for a general Markov chain is
the so called Matthews’ bound, [47]. By means of a coupon-collector argument, the author
shows that the cover time must lie within a logarithmic factor from the maximal hitting
time, which is defined as the maximum over the ordered couples (x, y) of the expected
hitting time of y starting at x.

Passing to the random graph setting, in recent years the cover time of random walks on
random graphs has been extensively studied [38, 27, 25, 28, 1]. All these works consider
undirected graphs, with the notable exception of the paper [28] by Cooper and Frieze,
where the authors compute the cover time of directed Erdős-Renyi random graphs in the
regime of strong connectivity, that is with a logarithmically diverging average degree.
The main difficulty in the directed case is that, in contrast with the undirected setting, the
graph’s stationary distribution is an unknown random variable.

The techniques developed by Cooper and Frieze—which are the same we adopted in [20],
where we study the cover time for the DCM ensemble—are crucially based on a lemma,
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which they named “First Visit Time Lemma” (FVTL). In our sparse and directed setting,
the FVTL claims that the random variable that counts the number of steps needed by the
walker to visit a given vertex x after a suitable notion of mixing time, has an exponential
right tail with rate given by the stationary measure of x. As we mentioned above, having
a precise control on the stationary measure is a challenging task. Clearly, a special role
is played by the subclass of Eulerian digraphs. We show in [20] that the cover time in
this case is of order Cn log(n), with the constant C depending mostly on the vertices of
low degree. More precisely, since in the sparse irreducible regime we can have at most a
finite number of classes of vertices with different degrees, we show that the constant C
depends on the single class of vertices in which a certain trade-off between degree and
size is optimal.

Theorem 1.5 ([20]) Consider an Eulerian DCM(d±) ensemble. Call Vd the set of vertices of
degree d, and write d̄ = m/n for the average degree. Assume

|Vd| = nαd+o(1) (1.1)

for some constants αd ∈ [0, 1], for each type d. Then, for every ε > 0

lim
n→∞

P ((β − ε)n log n ≤ Tcov ≤ (β + ε)n log n) = 1,

where βn ≡ β := d̄ maxd
αd
d

.

In the general case, we can exploit the results about the extremal values of the stationary
distribution in Theorem 1.4 to find asymptotic estimates of the cover time. Of course,
given that our estimates on the minimal entry of π are up to constant, we cannot expect to
have a result on the cover time that is able to recover the first order asymptotic. By using
the Cooper and Frieze’s recipe we can prove the following result.

Theorem 1.6 ([20]) Consider the binary DCM(δ,∆) ensemble. Then, there exists a constant
C ≡ C(∆) such that

lim
n→∞

P
(
C−1n logγ(n) ≤ Tcov ≤ Cn logγ(n)

)
= 1.

1.3 Mixing time: cutoffs and trichotomies

Consider a Markov chain on n states, with transition matrix P and stationary measure
π. A classical problem, see e.g. [40], is to determine the time at which—informally—the
process “forgets its starting state”. More precisely, given a starting distribution λ on [n],
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and a metric on the space of probability distributions over the n states, one is interested
in the time at which the distance between the measure λP and the stationary measure π
is below a given threshold. The total variation distance between two probabilities µ, ν on
[n] is defined as half of the `1 distance between the vectors µ and ν, namely

‖µ− ν‖TV :=
1

2

∑

x∈[n]

|µ(x)− ν(x)|.

For any ε ∈ (0, 1), the ε-mixing time is the first time at which the total variation distance
between λP and π is smaller than ε for every starting distribution λ. In formula

T
(n)
mix(ε) ≡ Tmix(ε) = inf

{
t ≥ 1

∣∣∣∣ max
x∈[n]
‖P t(x, ·)− π‖TV < ε

}
.

It is easy to show that for every measure λ the quantity ‖λP t − π‖TV is a non-increasing
function of t. In the seminal paper [5], the authors formalized for the first time such a
concept, presenting an example of a sequence of chains—parametrized by the size of the
state space—for which asymptotically, for every ε ∈ (0, 1),

lim
n→∞

Tmix(ε)

Tmix(1− ε)
= 1.

Notice that the insensitivity of the leading order of Tmix(ε) to the value of ε ∈ (0, 1) is
equivalent to say that the distance to equilibrium approaches a step function on a certain
time scale. This phenomenon is commonly referred to as cutoff. The number of examples
of chains exhibiting such a behaviour is constantly growing, see e.g. [29, 40] for a review.

In particular, for what concerns this thesis, we restrict to the following setting. Let G be a
random graph on n vertices, P t(x, ·) denotes the distribution after t steps of the random
walk started at x, and π represents the stationary distribution, which we assume to be
unique. We can therefore consider, for every starting point x ∈ [n], the random sequence

Dx(t) = ‖P t(x, ·)− π‖TV, ∀t ≥ 0.

If a graph from the ensemble admits a unique stationary distribution w.h.p., we are inter-
ested in showing claims of the following form: there exist some deterministic sequence
T? ≡ T?(n) such that for every ε > 0

lim
n→∞

P
(

max
x∈[n]
|Dx(sT?)− ϑ(s)| ≤ ε

)
= 1 , ∀s > 0, s 6= 1, (1.2)
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where ϑ denotes the step function ϑ(s) = 1 if s ≤ 1 and ϑ(s) = 0 if s > 1. We remark
that the definition in (1.2) is slightly different than the definition of cutoff given above,
since (1.2) requires the uniformity over the starting position. We refer to [46, 9] for similar
results in the case of undirected graphs.

The mixing properties for the models we focus on in this thesis have been studied by
Bordenave, Caputo and Salez in [13, 14]. In order to present their results in a unified
fashion, we need to introduce some quantities. Therefore, we shall adopt the following
unified notation. Let us define the in-degree distribution

µin(x) :=
1

n
×
{
d−x /d̄ DCM(d±)

1 OCM(d+)
(1.3)

where we use the notation
d̄ :=

1

n

∑

x∈V
d+
x =

m

n

for the average degree. Let the average row entropy H and the associated entropic time TENT

be defined by

H :=
∑

x∈V
µin(x) log d+

x , TENT :=
log n

H
.

Note that in the sparse irreducible regime the deterministic quantitiesH,TENT satisfyH =
Θ(1) and TENT = Θ(log n). By employing the same terminology as in (1.2), the main result
in [13, 14] is the following.

Theorem 1.7 ([13, 14]) Consider the DCM(d±) ensemble or the OCM(d+) ensemble. For every
ε > 0

lim
n→∞

P
(

max
x∈[n]
|Dx(sTENT)− ϑ(s)| ≤ ε

)
= 1 , ∀s > 0, s 6= 1.

We remark that, in the case of the DCM, by Jensen’s inequality the mixing time TENT =
logn
H

is always larger than the diameter d? = logν(n),

H =
n∑

x=1

d−x
m

log d+
x ≤ log

(
n∑

x=1

d−x
m
d+
x

)
= log ν,

with equality if and only if the sequence is out-regular, that is d+
x = d, for every x ∈ [n].

Thus, the analysis of convergence to stationarity requires investigating the graph on a
length scale that may well exceed the diameter. The cutoff phenomenon described in [13,
14] can be read in terms of a law of large number for the weight of the path followed by the
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random walk on the digraph. We will use the notation Px to denote the quenched law of the
random walk, namely the random probability law that is determined by the realization
of the digraph G. Bordenave, Caputo and Salez show that for every t = Θ(log(n)) w.h.p.
the walker will follow a path of weight approximately e−Ht. More explicitly

Theorem 1.8 ([13, 14]) Consider the DCM(d±) or the OCM(d+) ensemble. For every ε, ε′ > 0,
if t = Θ(log(n)) it holds

lim
n→∞

P

(
min
x∈[n]

Px

(
t−1∏

s=0

P (Xs, Xs+1) ∈
[
e−(1+ε)Ht, e−(1−ε)Ht]

)
> 1− ε′

)
= 1.

The theorem above implies that if t < TENT then the probability distribution P t(x, ·) will
be w.h.p. concentrated on a small number of vertices. Hence, one of the main ingredient
in proving the cutoff at the entropic time is such a law of large numbers. In [19] we extend
the result in Theorem 1.8 to the case in which the underlying random digraph is replaced
by an independent and identically distributed copy at some s ≤ t. In particular, we
show that in such a framework the complete cutoff phenomenology is preserved, w.h.p.
with respect to the joint sample. More formally, in [19] we prove the following theorem.

Theorem 1.9 ([19]) Consider the DCM(d±) or the OCM(d+) ensemble. Fix any C > 0 and set
t = CTENT and s ≤ t. Fixed any couple of configurations ω, ω′ ∈ C, we consider the probability
distribution

[Qt
s(x, y)](ω, ω′) ≡ Qt

s(x, y) :=
∑

z∈[n]

P s
ω(x, z)P t−s

ω′ (z, y).

Let ω and ω′ two uniformly random and independent configurations from DCM(d±) or from
OCM(d+) ensemble. Let P denote the probability law of the joint and independent sample. Then,
for every ε > 0

1. If C < 1:

lim
n→∞

P
(

min
x∈[n]
‖Qt

s(x, ·)− πω′‖TV > 1− ε
)

= 1.

2. If C > 1 and t− s = ω(1)

lim
n→∞

P
(

max
x∈[n]
‖Qt

s(x, ·)− πω′‖TV < ε

)
= 1.

In other words, the latter says that it is the rate at which the probability mass spreads in
the graph, rather than the particular geometry, to give rise to the cutoff phenomenon.
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Beside the cutoff phenomenon, in the very last years a new form of mixing appeared in
the probabilistic literature, see [8, 18, 19, 50]. In [8], the authors show an example of para-
metric (non-Markovian) stochastic process exhibiting a particular mixing phenomenon.
Such a behaviour can be thought of as an interpolation between a cutoff and an exponen-
tial decay for the total variation distance, depending on the value of the parameter. By
the title of the article [8], we refer to this kind of dependency of the mixing time on the
parameter of the model with the name of trichotomy phenomenon.

In [18, 19] we present three examples of Markovian and non-Markovian processes ex-
hibiting trichotomy in their total variation mixing. Each of these examples is related to
the particular underlying geometry, which is taken to be a digraph from the DCM or the
OCM ensemble.

The following two subsections are devoted to the presentation of the models we investi-
gated and the corresponding results.

1.3.1 Mixing time of the PageRank surfer

Given a directed graph G on n vertices and a parameter α ∈ (0, 1), the PageRank surf
on G with damping factor 1 − α is the Markov chain with state space [n] and transition
probabilities given by

Pα(x, y) = (1− α)P (x, y) +
α

n
, (1.4)

where P denotes the transition matrix of the simple random walk on G. The interpreta-
tion is that of a surfer that at each step, with probability 1− α moves as a simple random
walk, and with probability α moves to a uniformly random vertex. The surfer reaches
eventually a stationary distribution πα over [n], called the PageRank of G. Since its intro-
duction by Brin and Page in the seminal paper [17], PageRank has played a fundamental
role in the ranking functions of all major search engines; see e.g. [30, 35]. A common
generalisation is the so-called customised or generalised PageRank, where the uniform
resampling is replaced by an arbitrary probability distribution λ over [n], so that (1.4)
becomes

Pα,λ(x, y) = (1− α)P (x, y) + αλ(y).

The resulting stationary distribution πα,λ, characterised by the equation

πα,λ(y) =
∑

x∈[n]

πα,λ(x)Pα,λ(x, y),
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depends in a nontrivial way on the parameter α and the distribution λ. There have been
several investigations of the structural properties of πα,λ; see e.g. [37, 7, 16]; we refer in
particular to the recent works [22, 34] for cases where the graph G is a random.

We focus on the dynamical problem of determining the time needed for the surfer to
reach the equilibrium distribution πα,λ, namely we study the mixing time of the Markov
chain with transition matrix Pα,λ. Even for graphs where the mixing time of the simple
random walk is well understood, it is in general not immediate to deduce the influence
of the parameter α and of the resampling distribution λ on the speed of convergence to
equilibrium.

To obtain explicit asymptotic statements we shall assume that α ≡ αn ∈ (0, 1) is a se-
quence such that α→ 0 and that the limit

γ := lim
n→∞

αTENT ∈ [0,∞] (1.5)

exists, with possibly γ = 0 or γ =∞.

As for the simple random walk, for every vertex x ∈ [n] we can define the total variation
distance from stationarity as the sequence

Dxα,λ(t) :=
∥∥P t

α,λ(x, ·)− πα,λ
∥∥
TV
, ∀t ≥ 0.

Let us remark that when α = 0 we have, regardless of the probability distribution λ,
π0,λ ≡ π and Dx0,λ(t) ≡ Dx(t).

It is intuitively reasonable to guess that if the parameter α is suitably large compared to
the inverse of the mixing time of the graph G, then the time to reach stationarity will be
essentially the expected time needed to make the first λ-resampling transition, that is a
geometric random variable with parameter α. On the other hand, if α is suitably small
compared to the inverse of the mixing time of the graph G, then one should reach station-
arity well before the first λ-resampling, so that the speed of convergence to equilibrium
will be essentially that of the simple random walk on G. Moreover, one could expect that
when α is neither too small nor too large compared to the inverse of the mixing time of
the graph G, then some interpolation between the two opposite behaviours should take
place. In [18] we substantiate this intuitive picture for a typical graph from the DCM or
the OCM ensemble, under the assumption that λ is either not too strongly localized, or
that λ is very strongly localized, in the following sense.

On the one hand, the class of widespread probability measures is defined as follows.

Definition 1.1 (Widespread measure) A sequence of probability measures λ ≡ λn on [n] is
widespread if
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(i) There exists ε > 0 such that

|λ|∞ = max
x∈[n]

λ(x) = O(n−1/2−ε).

(ii) Has a bounded `2-norm, in the following sense:

n
∑

j∈[n]

λ(j)2 = O(1).

Note that there is no requirement on the minimum of λ(x), so that large portions of the
set of vertices are allowed to receive zero mass.

On the other hand, we consider also measures which are strongly localized.

Definition 1.2 (Strongly localized measure) A sequence of probability measures λ = λn on
[n] is strongly localized if it is the convex combination of a finite number of Dirac masses on
vertices. Namley, there exists a constant C > 0 independent of n, a set F ⊂ [n] with cardinality
|F | ≤ C and coefficients (az)z∈F such that az ∈ [0, 1],

∑
z∈F az = 1, and

λ =
∑

z∈F
az δz

where δz is the Dirac mass at vertex z.

The main result of [18] is the following.

Theorem 1.10 ([18]) Consider the DCM(d±) or the OCM(d+) ensemble. Let α ≡ α(n) ∈ (0, 1)
be parameters as in (1.5), and let λ ≡ λn be either widespread or strongly localized measures.
Then, for every ε > 0 according to the value of γ there are three scenarios:

(1) If γ = 0 then for all s > 0, s 6= 1:

lim
n→∞

P
(

max
x∈[n]

∣∣Dxα,λ(s TENT)− ϑ(s)
∣∣ < ε

)
= 1.

(2) If γ ∈ (0,∞) then for all s > 0, s 6= 1:

lim
n→∞

P
(

max
x∈[n]

∣∣Dxα,λ(s/α)− e−sϑ(s/γ)
∣∣ < ε

)
= 1.
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(3) If γ =∞ then for all s > 0:

lim
n→∞

P
(

max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ < ε

)
= 1.

where ϑ is the step function ϑ(s) = 1 if s ≤ 1 and ϑ(s) = 0 otherwise.

The trichotomy displayed in Theorem 1.10 reflects the competition between two distinct
mechanisms of relaxation to equilibrium: the simple random walk dominates in the first
scenario, while the λ-resampling dominates in the third; the intermediate scenario inter-
polates between the two extremes; see Fig. 1.1.
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Figure 1.1: On the right a plot of the TV-distance to πα,λ in the case γ = 0, on the scale Θ(log(n))
when H = log(5). In the middle, the case γ = 1 and the plot is on the scale Θ(α−1). On the right
the case γ =∞ on the scale Θ(α−1).

As mentioned above, essentially the same trichotomy was uncovered recently in [8] in
a model of random walk on dynamically evolving undirected graphs. In that case, the
role of the resampling is played by the underlying reshuffling of the graph edges. It is
interesting to observe that, in contrast with the undirected case considered in [8], in our
setting the two competing processes may well have very distinct goals, and the overall
stationary distribution πα,λ is the result of a nontrivial balance.

The fact that the above result holds in the two opposite regimes of widespread measures
or strongly localized measures may come as a surprise. Indeed, the behaviour of the
stationary distribution can be very different in these two cases. As we shall see, some
parts of the proof require rather different strategies for the two regimes.

Inspired by the results in [13, 14], in [18] we make use of a key fact to attack the case of a
general widespread measure λ, which we used also in the following works [20, 19]. The
observation is that, if we start with a widespread distribution λ, then the time needed
to reach stationarity for the simple random walk is much smaller than the entropic time
TENT. More precisely we established the following fact.
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Theorem 1.11 ([18]) Consider the DCM(d±) or the OCM(d+) ensemble. If λ ≡ λn is widespread,
then for any sequence t ≡ tn →∞, and every ε > 0

lim
n→∞

P
(∥∥λP t − π0

∥∥
TV
< ε
)

= 1.

In the special case where λ = µin, and only for DCM ensemble, a similar result was already
obtained in [13]. Following the same approach, the proof of Theorem 1.11 is based on the
construction of a martingale approximation for the distribution λP t. The latter rests on
the branching approximation mentioned in Section 1.1, which allows one to couple the
in-neighbourhood of a uniformly distributed random vertex of G with a marked Galton-
Watson tree up to depth t = o(log n).

1.3.2 Mixing time on regenerating dynamic digraphs

As mentioned above, the emergence of a trichotomy in the TV-mixing is due to the coex-
istence of two competing mixing mechanisms. In the same stream of [8] we study the
mixing of a joint chain on the product set of the digraphs from the ensemble and the ver-
tex set. Informally, we consider a simple random walk moving in an evolving graph. At
each time step the walker perform the usual step with probability (1 − α), while with
probability α the walker sticks on the vertex it is currently visiting and a new configura-
tion is sampled. Fixed the digraph ensemble DCM(d±) or OCM(d+), we will refer with
the symbol ω to the configuration inducing the digraph G(ω) from the ensemble under
consideration. Moreover, we use the notation u(ω) to denote the probability of sampling
configuration ω ∈ C, namely u(ω) = |C|−1, and the symbol PJ

ω,x to denote the law of joint
process when the starting state is (ω, x). The joint transition matrix is given by

Pα((ω, x), (ω′, y)) := (1− α)Pω(x, y)1ω(ω′) + αu(ω′)1x(y).

Clearly, the process described by the first coordinate is Markovian and mixes exponen-
tially fast on the scale Θ(α−1), yet, what can be said about the joint chain? It is easy to
see that the joint process admits a unique stationary distribution, which we will refer to
as πJα. If we consider the stochastic non-Markovian process obtained by projecting on the
second coordinate, what can be said about the asymptotic behaviour of the total variation
distance between the evolution of the walk and the marginal distribution of the second
coordinate of πJα? We answer to these questions in [19] where we show that both the quan-
tities exhibit a trichotomy in dependence of the limit quantity γ, defined in (1.5). The first
question we answer concerns the stationary distribution πJα. In [19] we show that, regard-
less on the specific sequence α ≡ αn satisfying α → 0, a good TV-proxy for πJα ≡ πJ is
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given by the measure
λ(ω, x) := u(ω)πω(x), (1.6)

where we called πω(·) the stationary measure of the random walk on ω if it exists unique,
and measure µin otherwise. Called (ξt, Xt)t≥0 the trajectory of the joint Markovian process,
we show the result just mentioned by presenting sharp bounds on the total variation
distance

DJ,α
ω,x(t) = ‖PJ

ω,x(ξt = ·, Xt = ·)− λ‖TV.

Theorem 1.12 ([19]) Consider in DCM(d±) or the OCM(d+) ensemble. Call P the law of the
starting configuration ξ0 ≡ ω. Then for every sequence α ≡ αn → 0 and for every ε > 0 it holds
the following trichotomy

1. If γ = 0 then for all s > 0:

lim
n→∞

P
(

max
x∈[n]

∣∣DJ,α
ω,x(sα

−1)− e−s
∣∣ < ε

)
= 1.

2. If γ =∞ then for all s > 0:

lim
n→∞

P
(

max
x∈[n]

∣∣DJ,α
ω,x(sα

−1)− (1 + s)e−s
∣∣ < ε

)
= 1.

3. If γ ∈ (0,∞) then for all s > 0, s 6= γ:

lim
n→∞

P
(

max
x∈[n]

∣∣DJ,α
ω,x(sα

−1)− ψγ(s)
∣∣ < ε

)
= 1.

where

ψγ(β) =

{
(1 + s)e−s if s < γ

e−s if s > γ
.

As one can suspect, the result in Theorem 1.9 plays a fundamental role in proving the
trichotomy in Theorem 1.12.

Finally, our last result concerns the marginal distribution of the position of the walk,
namely the non-Markovian process obtained by projecting the chain (ξt, Xt)t≥0 on the sec-
ond coordinate. As we will show below, the law of Xt, for t and n suitably large, should
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Figure 1.2: The asymptotic behavior on the scale α−1 of the quantity DJ,α
σ,x(t) for a typical starting

environment σ and arbitrary x ∈ [n] in the case γ = 0 (left), γ =∞ (center) and γ ∈ (0,∞) (right).
The transition point in this last scenario is t = γα−1 ∼ TENT, and we set γ = 1.

be well approximated by µin. The next result quantifies this statement by exhibiting once
again a trichotomy. Define

Drw,αω,x (t) := ‖PJ
ω,x(Xt = ·)− µin‖TV , q := E‖πω − µin‖TV.

We remark that if the sequences d± are Eulerian then πω = µin is stationary. Thus in this
case q = 0. On the other hand, results from [42, 44] imply that if the sequence is not
Eulerian then q is bounded away from zero and one.

Theorem 1.13 ([19]) Consider the DCM(d±) or the OCM(d+) ensemble. Fix a sequence α ≡
αn → 0. Then, for all s > 0

lim sup
n→∞

max
ω,x
Drw,αω,x (sα−1) ≤ e−s.

Moreover, for every ε > 0 the following trichotomy takes place

1. If γ = 0 then for all s > 0:

lim
n→∞

P
(

max
x∈[n]

∣∣Drw,αω,x (sα−1)− q e−s
∣∣ < ε

)
= 1.

Moreover, if s 6= 1 then

lim
n→∞

P
(

max
x∈[n]

∣∣Drw,αω,x (sTENT)− ϕ(s)
∣∣ < ε

)
= 1,

where

ϕ(s) :=

{
1 if s < 1

q if s > 1.
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2. If γ =∞, then for all s > 0:

lim
n→∞

P
(

max
x∈[n]

∣∣Drw,αω,x (sα−1)− e−s
∣∣ < ε

)
= 1.

3. If γ(0,∞) then for all s > 0, s 6= γ:

lim
n→∞

P
(

max
x∈[n]

∣∣Drw,αω,x (sα−1)− ϕ(s/γ)e−s
∣∣ < ε

)
= 1.
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Figure 1.3: The asymptotic behavior on the scale α−1 of the quantity Dασ,x(t) for a typical starting
environment σ and arbitrary x ∈ [n] in the case γ = 0 (left), γ =∞ (center) and γ ∈ (0,∞) (right).
The transition point in the latter case is t = γα−1 ∼ TENT. In this picture we take γ = 1 and
q = 1/2.

1.4 Organization of the thesis

This thesis contains the results I obtained during my PhD, jointly with my advisor Prof.
P. Caputo. These have been presented in the preprints [18, 19, 20]. The organization of
the rests of the thesis is the following.

In Chapter 2 we introduce the main ingredients for the analysis of the geometry of a di-
graph from one of the two ensembles. In particular, in Section 2.1 we give a more detailed
definition of the two ensembles, and we introduce the basic notation. In Section 2.2 we
analyze the property of the branching processes which are the candidate to approximate
the in/out-neighbourhoods of a vertex in each of the two models. Moreover, we consider
the martingales associated to these processes, highlighting their convergence properties.
In Section 2.3 we show how to couple the construction of the neighbourhoods with the
respective branching process in order to translate the convergence results in Section 2.2
into asymptotic results on the geometry of the digraph. Finally, in Section 2.4 we give an
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application of the approximation results above, presenting the proof of Theorem 1.1. The
material presented in this chapter is condenses the technical lemmata in [18, 20].

In Chapter 3 we study the mixing behaviour of the PageRank surfer, and present the proof
of Theorem 1.10 and Theorem 1.11. The material of this chapter is part of the preprint [18].

Chapter 4 is devoted to the analysis of the model with regenerating underlying graph.
The core of the chapter lies on the proofs of Theorem 1.12 and Theorem 1.13, which are
presented in Section 4.1 and Section 4.2, respectively. Then, in Section 4.3, we present a
proof of Theorem 1.9. The latter is an adaptation of the arguments used in [13, 14] in the
proof of Theorem 1.7. This chapter coincide with the work presented in [19].

In Chapter 5 we analyze the extremal values of the stationary distribution in the DCM
ensemble. In particular, we start in Section 5.1 by describing a local approximation of the
stationary distribution at a given vertex x. The rest of the chapter is devoted to the proof
of Theorem 1.4. This chapter is taken from the preprint [20].

Finally, in Chapter 6, we make use of the bounds obtained in Chapter 5 and of the strategy
developed by Cooper and Frieze to show the result in Theorem 1.6 and Theorem 1.5,
which are proved in Section 6.1 and Section 6.2, respectively. This last chapter is part of
the preprint [20].
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CHAPTER 2

STRUCTURAL PROPERTIES

2.1 Two models of sparse random digraphs

This section is devoted to the study of the structural properties of the DCM and the OCM
ensemble. We start with a formal definition of the two ensembles.

2.1.1 Directed configuration model

Let V be a set of n vertices. For simplicity we often write V = [n], with [n] = {1, . . . , n}.
For each n, we are given two finite sequences d+ = (d+

x )x∈[n] and d− = (d−x )x∈[n] of non
negative integers such that

m =
∑

x∈V
d+
x =

∑

x∈V
d−x . (2.1)

The directed configuration model DCM(d±), is the distribution of the random graph G ob-
tained as follows: 1) equip each node x with d+

x tails and d−x heads; 2) pick uniformly
at random one of the m! bijective maps from the set of all tails into the set of all heads,
call it ω; 3) for all x, y ∈ V , add a directed edge (x, y) every time a tail from x is mapped
into a head from y through ω. The resulting graph G may have self-loops and multiple
edges, however it is classical that by conditioning on the event that there are no multiple
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edges and no self-loops one obtains a uniformly random simple digraph with in degree
sequence d− and out degree sequence d+.

Structural properties of random graphs obtained in this way have been extensively stud-
ied in [24]. Here we shall consider the sparse case corresponding to bounded degree
sequences. Moreover, in order to avoid non irreducibility issues, we shall assume that all
degrees are at least 2. Thus, throughout this thesis it will always be assumed that

δ± = min
x∈[n]

d±x ≥ 2 ∆± = max
x∈[n]

d±x = O(1). (2.2)

We often use the notation ∆ = maxx∈[n] d
−
x ∨ d+

x . Under the first assumption it is known
that DCM(d±) is strongly connected with high probability. Under the second assumption,
it is known that DCM(d±) has a uniformly (in n) positive probability of having no self-
loops nor multiple edges. In particular, any property that holds with high probability
for DCM(d±) will also hold with high probability for a uniformly chosen simple graph
subject to the constraint that in and out degrees be given by d− and d+ respectively. For
what follows it is worth to introduce the quantity

ν =
1

m

n∑

y=1

d−y d
+
y . (2.3)

Notice that ν can be interpreted in two alternative ways. On the one hand, that is the
expected in-degree of the vertex connected to a uniformly random tail. On the other
hand, ν is the expected out-degree of a vertex connected to a uniformly random head.
Moreover, to discuss some of the forthcoming results it is convenient to introduce the
following notation.

Definition 2.1 We say that a vertex x ∈ [n] is of type (i, j), and write x ∈ Vi,j , if (d−x , d
+
x ) =

(i, j). We call C = C(d±) the set of all types that are present in the double sequence d±, that
is C = {(i, j) : |Vi,j| > 0}. The assumption (2.2) implies that the number of distinct types is
bounded by a fixed constant C independent of n, that is |C| ≤ C. We say that the type (i, j) has
linear size, if

lim inf
n→∞

|Vi,j|
n

> 0, (2.4)

and call L ⊂ C the set of types with linear size.

2.1.2 Out Configuration Model

To define the second model, for each n let d+ = (d+
x )x∈[n] be a finite sequence of non

negative integers and define the out-configuration model OCM(d+) as the distribution of
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the random graph G obtained as follows: 1) equip each node x with d+
x tails; 2) pick, for

every x independently, a uniformly random injective map from the set of tails at x to the
set of all vertices V , call it ωx; 3) for all x, y ∈ V , add a directed edge (x, y) if a tail from
x is mapped into y through ωx. Equivalently, G is the graph whose adjacency matrix is
uniformly random in the set of all n × n matrices with entries 0 or 1 such that every row
x sums to d+

x . Notice that G may have self-loops, but there are no multiple edges in this
construction. This is due to the requirement that the maps ωx be injective. The latter
choice is only a matter of convenience, and everything we say below is actually seen to
hold as well for the model obtained by dropping that requirement. We write ω = (ωx)x∈[n]

for the collection of maps. As before we shall make the assumptions

min
x∈[n]

d+
x ≥ 2, max

x∈[n]
d+
x = O(1), (2.5)

and use the notation ∆ = maxx∈[n] d
+
x . We remark that under the above assumptions there

can still be vertices with in-degree zero, and therefore in this case G is not necessarily
strongly connected.

In what follows, if not differently stated, G = G(ω) denotes a given realization of either
the directed configuration model DCM(d±) or the out-configuration model OCM(d+) and
all the results to be discussed will hold w.h.p. within these two ensembles.

2.2 Branching approximation

We start with the definition of the relevant branching processes and the associated mar-
tingales. These will later be used in a coupling argument to provide an approximate
description of the in-neighbourhood of a vertex in our random graphs. Since the con-
structions differ slightly for the two models DCM(d±) or OCM(d+) we will define two
distinct random trees T −(d±) and T −(d+).

2.2.1 Marked Galton-Watson trees

Given n ∈ N, and a double sequence d± of degrees satisfying (2.1) and (2.2), for each
i ∈ [n], we define the rooted random marked tree T −i (d±) recursively with the following
rules:

• the root is given the mark i;
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• every vertex with mark j has d−j children, each of which is given independently the
mark k ∈ [n] with probability d+

k /m.

On the other hand, given n ∈ N, and a sequence d+ of degrees satisfying (2.5), for each
i ∈ [n], the rooted random marked tree T −i (d+) is defined by:

• the root is given the mark i;

• regardless of its own mark every vertex has, for each j ∈ [n] independently with
probability d+

j /n, a child with mark j.

There are several differences between the two trees T −i (d±) and T −i (d+). In the first case
the number of children of a given vertex is a deterministic function of the vertex’ mark,
whereas in the second case it is a random variable D that can be written as

D =
∑

j∈[n]

Yj , Yj = Ber(d+
j /n), (2.6)

where the Yj are independent Bernoulli random variables with parameters d+
j /n. In par-

ticular, the average degree of any given vertex in T −i (d+) is

E[D] =
∑

j∈[n]

d+
j

n
=
m

n
=: d̄. (2.7)

Since D can be zero, in contrast with the tree T −i (d±), the tree T −(d+) is finite with posi-
tive probability. However, the two trees share several common features and we shall try
to treat the two cases in a unified fashion as much as possible.

We write o for the root and x,y for other vertices of the tree, with the notation y→ x if y is
a child of x. Each vertex x of the tree has a mark, which we denote by i(x). If I denotes an
independent uniformly random i ∈ [n], and the root is given the mark i(o) = I, then we
write T −(d±) = T −I (d±) and T −(d+) = T −I (d+). Notice that T −(d±) and T −(d+) have the
same average degree at the root, given by (2.7). We often write T − for short if this creates
no confusion. For each t ∈ N we let T −,t denote the set of vertices in the generation t of
the tree. Each vertex x ∈ T −,t has a unique path (xt,xt−1, . . . ,x1,x0) connecting it to the
root with xt = x and x0 = o. To any such x we associate the weight

w(x) =
t∏

u=1

1

d+
i(xu)

. (2.8)

The previous construction can be reversed to obtain the following random trees. For each
x ∈ [n], define the rooted random marked tree T +

x (d±) recursively with the following
rules:
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• the root is given the mark x;

• every vertex with mark y has d+
y children, each of which is given independently the

mark z ∈ [n] with probability d−z /m.

On the other hand, the rooted random marked tree T +
x (d+) is defined by:

• the root is given the mark x;

• every vertex with mark y has d+
y children, each of which is given independently the

mark z ∈ [n] with probability 1/n.

To have a unified notation we write T +
x,t for the first t generations of either T +

x (d±) or
T +
x (d+). Notice that this forward construction has bounded degrees for both models.

2.2.2 Martingale approximation

Given a function ϕ : [n] 7→ R, we define the process

Xt(ϕ) =
∑

x∈T −,t
ϕ(i(x))w(x), X0(ϕ) = ϕ(i(o)). (2.9)

We write Ft for the σ-algebra generated by the random tree T − up to and including gen-
eration t.

Lemma 2.1 Let T − be either T −(d±) or T −(d+), and write ϕ̄ =
∑n

i=1 ϕ(i). Then, for all t ∈ N:

E[Xt(ϕ)|Ft−1] = Xt−1(ϕ̄µin). (2.10)

Proof: If y→ x, then w(y) = w(x)/d+
i(y). Therefore,

E[Xt(ϕ)|Ft−1] =
∑

x∈T −,t−1

E

[∑

y→x

ϕ(i(y))w(y)|Ft−1

]

=
∑

x∈T −,t−1

w(x)E

[∑

y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
. (2.11)

For the tree T −(d±) we have

E

[∑

y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
= d−i(x)

n∑

j=1

d+
j

m

ϕ(j)

d+
j

= ϕ̄ µin(i(x)). (2.12)
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For the tree T −(d+) we have

E

[∑

y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
=

n∑

j=1

d+
j

n

ϕ(j)

d+
j

= ϕ̄ µin(i(x)). (2.13)

This proves (2.10). �
In particular, when ϕ = µin, then

E[Xt(µin)|Ft−1] = Xt−1(µin) , t ∈ N.

Therefore, Xt(µin) is a martingale with respect to the filtration Ft. It is convenient to
normalize it and consider instead the martingale defined as

Mt = nXt(µin) =
∑

x∈T −,t
nµin(i(x))w(x), M0 = nµin(i(o)). (2.14)

Notice that E[Mt] = E[M0] = nE[µin(I)] = 1. In the case of the DCM, the following
convergence result was already discussed in [13, Proposition 15].

Proposition 2.1 For every fixed n, as t → ∞ the martingale Mt converges to a limit M∞, both
almost surely and in L2, and for all t ∈ N:

E[(Mt −M∞)2] = Cρt (2.15)

where the constants ρ, C are given by

ρ =
n∑

j=1

µin(j)
1

d+
j

, C =





n
m(1−ρ)

∑n
j=1

(d−j −d
+
j )2

md+j
DCM(d±)

ρ−1/n
1−ρ OCM(d+)

(2.16)

Proof: Consider the increments

∆t = Mt+1 −Mt =
∑

x∈T −,t
nµin(i(x))w(x)ψ(x) , (2.17)

where

ψ(x) =
∑

y→x

µin(i(y))

µin(i(x))d+
i(y)

− 1 =
∑

y→x

[
µin(i(y))

µin(i(x))d+
i(y)

− 1

d−i(x)

]
. (2.18)
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As in Lemma 2.1 one has E[ψ(x) | Ft] = 0. Let us compute E[ψ(x)2| Ft]. For the tree
T −(d±) we have

E[ψ(x)2| Ft] = d−i(x)

n∑

j=1

d+
j

m

(
d−j

d−i(x)d
+
j

− 1

d−i(x)

)2

=
C1

d−i(x)

, (2.19)

where we use the notation

C1 =
n∑

j=1

(d−j − d+
j )2

md+
j

.

For the tree T −(d+) we have

E[ψ(x)2 | Ft] = E



(∑

y→x

1

d+
i(y)

)2

− 2
∑

y→x

1

d+
i(y)

+ 1




=
∑

j 6=j′

d+
j d

+
j′

n2

1

d+
j d

+
j′

+
∑

j

d+
j

n

1

(d+
j )2
− 2

∑

j

d+
j

n

1

d+
j

+ 1 = ρ− 1

n
, (2.20)

where a is as in (2.16). Since E[ψ(x)ψ(x′) | Ft] = 0 for all x,x′ ∈ T −,t with x 6= x′,

E[∆2
t | Ft] =

∑

x∈T −,t
n2µin(i(x))2w(x)2E[ψ(x)2 | Ft]. (2.21)

Therefore, combining (2.19) and (2.20) we have

E[∆2
t | Ft] = C(1− ρ)

∑

x∈T −,t
nµin(i(x))w(x)2 , (2.22)

where ρ, C are given by (2.16). Furthermore, observe that in both models one has

E[∆2
t | Ft−1] = E

[
E[∆2

t | Ft] | Ft−1

]

= C(1− ρ)
∑

x∈T −,t−1

nµin(i(x))w(x)2E

[∑

y→x

µin(i(y))

µin(i(x))(d+
i(y))

2
| Ft−1

]

= C(1− ρ)ρ
∑

x∈T −,t−1

nµin(i(x))w(x)2 = ρE[∆2
t−1 | Ft−1]. (2.23)

Thus, iterating we obtain

E[∆2
t ] = E[∆2

0]ρt = C(1− ρ)E[nµin(I)]ρt = C(1− r)ρt. (2.24)
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Since ρ ≤ 1/2, we see that Mt is a martingale bounded in L2, and therefore Mt → M∞
almost surely and in L2, for some M∞ ∈ L2. Using the orthogonality E[∆t∆t′ ] = 0 for all
t 6= t′, (2.15) follows by summing (2.24) from t to +∞. �

Remark 2.1 For each fixed n ∈ N, one can characterise the random variable M∞ as the solution
to a distributional fixed point equation. For the directed configuration model DCM(d±) this is
discussed in [13, Lemma 16]. With a similar reasoning, for the out-configuration model OCM(d+)
one obtains that

M∞
d
=

n∑

j=1

Yj
d+
j

M∞,j, (2.25)

where d
= stands for equality of distributions, M∞,j are i.i.d. copies of M∞ and Yj are independent

Bernoulli random variables with parameter d+
j /n.

The next result will be crucial for the analysis of convergence to stationarity when the
starting measure is widespread in the sense of Definition 1.1, see Section 3.2. Notice that
the constant γ(λ) appearing in the estimate below is bounded uniformly in n if and only
if λ is widespread.

Proposition 2.2 For any probability vector λ, and any t ∈ N:

E[(Mt − nXt(λ))2] ≤ γ(λ)ρt , (2.26)

where ρ ∈ (0, 1) is as in Proposition 2.1 and γ(λ) is defined as

γ(λ) =
n

2

n∑

j=1

(λ(j)− µin(j))2 (2.27)

Proof: Setting ϕ(j) = n(µin(j) − λ(j)), we write Mt − nXt(λ) = Xt(ϕ). Since ϕ̄ = 0,
Lemma 2.1 shows that E[Mt − nXt(λ)|Ft−1] = 0. We now compute

Γt := E[(Mt+1 − nXt+1(λ))2|Ft].
Using ϕ̄ = 0 one has

Γt = E[Xt+1(ϕ)2|Ft]

=
∑

x∈T −,t
w(x)2 E



(∑

y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft


 . (2.28)
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For the tree T −(d±) we have

E



(∑

y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft


 = d−i(x)

n∑

j=1

d+
j

m

ϕ(j)2

(d+
j )2

= µin(i(x))
n∑

j=1

ϕ(j)2

d+
j

. (2.29)

On the other hand for the tree T −(d+) we have

E



(∑

y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft


 =

∑

j 6=j′

ϕ(j)ϕ(j′)

n2
+
∑

j

ϕ(j)2

nd+
j

=
1

n

n∑

j=1

ϕ(j)2

d+
j

(
1−

d+
j

n

)
(2.30)

Summarising, we have shown that

Γt = C(λ)
∑

x∈T −,t
nµin(i(x))w(x)2 , C(λ) =

1

n





∑n
j=1

ϕ(j)2

d+j
DCM(d±)

∑n
j=1

ϕ(j)2

d+j

(
1− d+j

n

)
OCM(d+)

(2.31)

Thus, the same argument used in (2.23) implies that in both models

E[Γt | Ft−1] = ρΓt−1. (2.32)

Therefore,

E[Γt] = E[Γ0]ρt = C(λ)E[nµin(I)]ρt = C(λ)ρt. (2.33)

The desired bound follows from the fact that in both models C(λ) ≤ γ(λ). �

2.3 Neighbourhoods

The t-in-neighbourhood of a vertex v, denoted B−x (t), is defined as the subgraph of G
induced by the set of directed paths of length t in G which terminate at vertex x. In
this section we present algorithmic procedures to generate the in/out-neighbourhood if
a vertex. Moreover, we observe that for any fixed x ∈ [n], if t is a small multiple of log n
then with high probability B−x (t) can be coupled to the first t generations of the random
trees presented in Section 2.2.
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2.3.1 Neighbourhoods in the DCM(d±)

Each vertex x has d−x labeled heads and d+
x labeled tails, and we call E−x and E+

x the sets of
heads and tails at x respectively. The uniform bijection ω between heads E− = ∪x∈[n]E

−
x

and tails E+ = ∪x∈[n]E
+
x , viewed as a matching, can be sampled by iterating the following

steps until there are no unmatched heads left:

1) pick an unmatched head f ∈ E− according to some priority rule;

2) pick an unmatched tail e ∈ E+ uniformly at random;

3) match f with e, i.e. set ω(f) = e, and call ef the resulting edge.

This gives the desired uniform distribution over matchings ω : E− 7→ E+ regardless of
the priority rule chosen at step 1. The digraph G is obtained by adding a directed edge
(x, y) whenever f ∈ E−y and e ∈ E+

x in step 3 above.

We will use the notation

δ = min{δ−, δ+} , ∆ = max{∆−,∆+}. (2.34)

For any h ∈ N, the h-in-neighbourhood of a vertex y, denoted B−h (y), is the digraph de-
fined as the union of all directed paths of length ` ≤ h in G which terminate at vertex y.
In the sequel a path is always understood as a sequence of directed edges (e1f1, . . . , ekfk)
such that vfi = vei+1

for all i = 1, . . . , k − 1, and we use the notation ve (resp. vf ) for the
vertex x such that e ∈ E+

x (resp. f ∈ E−x ).

To generate the random variable B−h (y), we use the following breadth-first procedure.
Start at vertex y and run the sequence of steps described above, by giving priority to
those unmatched heads which have minimal distance to vertex y, until this minimal dis-
tance exceeds h, at which point the process stops. Similarly, for any h ∈ N, the h-out-
neighbourhood of a vertex x, denoted B+

h (x) is defined as the subgraph induced by the
set of directed paths of length ` ≤ h which start at vertex x. To generate the random
variable B+

h (x), we use the same breadth-first procedure described above except that we
invert the role of heads and tails. With slight abuse of notation we sometimes write B±h (x)
for the vertex set of B±h (x). We also warn the reader that to simplify the notation we often
avoid taking explicitly the integer part of the various parameters entering our proofs. In
particular, whenever we write B±h (x) it is always understood that h ∈ N.

Let us now describe a coupling of the in-neighbourhood B−h (x) and the marked tree
T −x,h(d±), where T −x,h(d±) stands for the marked tree T −x (d±) up to generation h; see Sec-
tion 2.2.1 for the definition of T −h (d±). Clearly, step 2 above can be modified by picking e
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uniformly at random among all (matched or unmatched) tails and rejecting the proposal
if the tail was already matched. The tree can then be generated by iteration of the same
sequence of steps with the difference that at step 2 we never reject the proposal and at
step 3 we add a new leaf to the current tree, with mark x if e+ ∈ E+

x , together with a
new set of d−x unmatched heads attached to it. Call τ the first time that a uniform random
choice among all tails gives e+ ∈ E+

x with x already in the tree. By construction, the in-
neighbourhood and the tree coincide up to time τ . At the k-th iteration, the probability
of picking a tail with a mark already used is at most k∆/m, where ∆ is the maximum
degree. Therefore, by a union bound,

P(τ ≤ k) ≤ k2∆

m
. (2.35)

Taking k = ∆t+1 steps, we have necessarily uncovered the whole in-neighbourhood
B−h (x). Thus, given the symmetry between in and out-neighbourhood, we have proved
the following statement.

Lemma 2.2 The h-in-neighbourhood B−h (x) and the marked tree T −x,h(d±) can be coupled in such
a way that

P
(
B−h (x) 6= T −x,h(d±)

)
≤ ∆2t+3

m
. (2.36)

The same result holds for the out-neighbourhood B+
h (x) and the tree T +

x,h(d
±) obtained by reversing

the role of head and tails in the procedure above.

More generally, in the generation process of the in-neighbourhood, say that a collision
occurs whenever a tail gets chosen, whose end-point x was already exposed, in the sense
that some tail in E+

x or head in E−x had already been matched. Since less than 2k vertices
are exposed when the kth tail gets matched, less than 2∆k of the m−k+1 possible choices
can result in a collision. Thus, the conditional chance that the kth step causes a collision,
given the past, is less than pk = 2∆k

m−k+1
. It follows that the number Zk of collisions caused

by the first k arcs is stochastically dominated by the binomial random variable Bin(k, pk).
In particular,

P (Zk ≥ `) ≤ k`p`k
`!

, ` ∈ N. (2.37)

The same applies to out-neighbourhoods simply by inverting the role of heads and tails.

For any digraph G, define the tree excess of G as

TX(G) = 1 + |E| − |V |,
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where E is the set of directed edges and V is the set of vertices of G. In particular,
TX(B±h (x)) = 0 iff B±h (x) is a directed tree, and TX(B±h (x)) ≤ 1 iff there is at most one
collision during the generation of the neighbourhood B±h (x). Define the events

Gx(h) =
{

TX(B−h (x)) ≤ 1 and TX(B+
h (x)) ≤ 1

}
, G(h) = ∩x∈[n]Gx(h). (2.38)

Set also
} =

1

5
log∆(n) . (2.39)

Proposition 2.3 There exists χ > 0 such that P (Gx(})) = 1 − O(n−1−χ) for any x ∈ [n]. In
particular,

P (G(})) = 1−O(n−χ). (2.40)

Proof: During the generation of B−h (x) one creates at most ∆h edges. It follows from
(2.37) with ` = 2 that the probability of the complement of Gx(}) is O(n−1−χ) for all x ∈ [n]
for some absolute constant χ > 0:

P (Gx(})) = 1−O(n−1−χ). (2.41)

The conclusion follows from the union bound. �

We will need to control the size of the boundary of our neighbourhoods. To this end, we
introduce the notation ∂B−t (y) for the set of vertices x ∈ [n] such that d(x, y) = t. Similarly,
∂B+

t (x) is the set of vertices y ∈ [n] such that d(x, y) = t. Clearly, |∂B±t (y)| ≤ ∆h for any
y ∈ [n] and h ∈ N.

Lemma 2.3 There exists χ > 0 such that for all y ∈ [n],

P
(
|∂B±h (y)| ≥ 1

2
δh±, ∀h ∈ [1, }]

)
= 1−O(n−1−χ). (2.42)

Proof: By symmetry we may restrict to the case of in-neighbourhoods. By (2.41) it is
sufficient to show that |∂B±h (y)| ≥ 1

2
δh±, for all h ∈ [1, }], if Gy(}) holds. If the tree excess

of the h-in-neighbourhood B−h (y) is at most 1 then there is at most one collision in the
generation of B−h (y). This collision can be of two types:

1. there exists some 1 ≤ t ≤ h and a v ∈ ∂B−t (y) s.t. v has two out-neighbours w,w′ ∈
∂B−t−1(y);
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Figure 2.1: The light-coloured arrow represents a collision of type (1a) (left) and a collision of type
(1b) (right).

2. there exists some 0 ≤ t ≤ h and a v ∈ ∂B−t (y) s.t. v has an in-neighbour w in B−t (y).

The first case can be further divided into two cases: a) w = w′, and b) w 6= w′; see Fig. 2.1.

In case 1a) we note that the (h− t)-in-neighbourhood of v must be a directed tree with at
least δh−t− elements on its boundary and with no intersection with the (h−t)-in-neighbourhoods
of other v′ ∈ ∂B−t (y). Moreover, B−t−1(y) must be a directed tree with |∂B−t−1(y)| ≥ δt−1

− ,
and all elements of ∂B−t−1(y) except one have disjoint (h− t+ 1)-in-neighbourhoods with
δh−t+1
− elements on their boundary. Therefore

|∂B−h (y)| ≥ (δt−1
− − 1)δh−t+1

− + (δ− − 1)δh−t− ≥ 1

2
δh−.

In case 1b) one has that t ≥ 2, B−t−1(y) is a directed tree with |∂B−t−1(y)| ≥ δt−1
− , and for all

z ∈ ∂B−t (y), the (h− t)-in-neighbourhoods of z are disjoint directed trees with at least δh−t−
elements on their boundary. Since |∂B−t (y)| ≥ δt− − 1 it follows that

|∂B−h (y)| ≥ (δt− − 1)δh−t− ≥ 1

2
δh−.

Collisions of type 2 can be further divided into two types: a) w ∈ ∂B−s (y) with s < t and
there is no path from v to w of length t− s, or w ∈ ∂B−t (y) and w 6= v, and b) w ∈ ∂B−s (y)
with s < t and there is a path from v to w of length t − s, or w = v. Note that in contrast
with collisions of type 2a), a collision of type 2b) creates a directed cycle within B−t (y); see
Fig. 2.2 and Fig. 2.3.

We remark that in either case 2a) or case 2b), ∂B−t (y) has at least δt− elements, and the
vertex v ∈ ∂B−t (y) has at least δ− − 1 in-neighbours whose (h− t− 1)-in-neighbourhoods
are disjoint directed trees. All other v′ ∈ ∂B−t (y) have (h − t)-in-neighbourhoods that are
disjoint directed trees. Therefore, in case 2):

|∂B−h (y)| ≥ (δt− − 1)δh−t− + (δ− − 1)δh−t−1
− ≥ 1

2
δh−.
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Figure 2.2: Two examples of collision of type (2a).

Figure 2.3: Two examples of collision of type (2b).
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2.3.2 Neighbourhoods in the OCM(d+)

Recall that each vertex x has d+
x tails, and call E+

x the sets of tails at x. Consider the
following exploration process of the in-neighbourhood at a fixed vertex x. The process is
defined as a triple (C`,A`, φ`) where C`,A` ⊂ [n] are respectively the completed set and the
active set at time `, and φ` : [n] 7→ Z+ is a map such that φ`(y) ∈ {0, . . . , d+

y } for each
y ∈ [n], ` ∈ Z+. At time zero we set C0 = ∅,A0 = {x}, and φ`(y) = 0 for all y ∈ [n]. The `-th
iteration of the exploration determines the triple (C`,A`, φ`) by executing the following
steps:

1) pick a vertex v ∈ A`−1 according to some priority rule;

2) for each y = 1, . . . , n independently, sample X`,y defined as the Bernoulli random vari-
able with parameter

p`(y) =
d+
y − φ`−1(y)

n− `+ 1
,

and call V` the set of y ∈ [n] such that X`,y = 1, and W` = (C`−1 ∪ A`−1)c ∩ V`;
3) define the new triple (C`,A`, φ`) as

C` = C`−1 ∪ {v} , A` = A`−1 \ {v} ∪W` , φ`(y) = φ`−1(y) + 1(y ∈ V`), y = 1, . . . , n.

Note that this process stops when A` becomes empty. Let us call τ∅ this random time:

τ∅ = min{` ≥ 1 : A` = ∅}. (2.43)

For instance, τ∅ = 1 with probability
∏n

y=1(1 − d+
y /n). We may construct a digraph Gx(`)

along with the above process by adding the directed edges (y, v) for all y ∈ V` at step
2. Notice that when the process stops Gv(τ∅) is a sample of the subgraph of G induced
by all directed paths in G that terminate at x. In particular, if the priority in step 1 is
given to v which have minimal distance to x, and if we stop the process as soon as all
active vertices have distance to x larger than h in the current graph Gx(`), we obtain the
in-neighbourhood of x at distance h, namely the digraph B−h (x) for the OCM(d+). More
formally, if τh denotes the minimal ` such that all v ∈ A` have distance to x at least h + 1
in Gx(`) then, B−h (x) is given by the subgraph of Gx(τh ∧ τ∅) induced by the completed set
Cτh∧τ∅ , where a ∧ b denotes the minimum of a, b.

39



Let us now describe a coupling of B−h (x) and the marked tree T −x,h(d+), where we write
T −x,h(d+) for the marked tree T −x (d+) up to generation h; see Section 2.2.1. First, observe
that the tree T −x (d+) is obtained by iterating the steps above with the difference that at
step 2 the probability p`,y must be taken always equal to d+

` /n, and that each y ∈ V` yields
a new child with mark y in the current tree. Let T −x (`) denote the tree obtained after `
iterations, and let ∆ = maxv d

+
v .

Lemma 2.4 The random variables Gx(`), T −x (`) can be coupled in such a way that for every
` ∈ N:

P(Gx(`) 6= T −x (`)) ≤ ∆2`2

n− `. (2.44)

Proof: Let E` = {Gx(`) 6= T −x (`)}. Since at time 0 one has Gx(0) = T −x (0) = {x}, the
event E` satisfies E` = ∪`k=1E

c
k−1 ∩ Ek, so that

P
(
Gx(`) 6= T −x (`)

)
≤
∑̀

k=1

P(Ec
k−1 ∩ Ek) (2.45)

Consider now the k-th iteration, and assume that Gx(k − 1) = T −x (k − 1). Thus, we
may pick the same v in step 1 for both samples. At step 2, let Xk,y denote the Bernoulli
random variables with parameter pk(y) used for the sampling of Gx(k) and let X̃k,y be
the Bernoulli random variables with parameter d+

y /n used for the sampling of T −x (k). For
each y independently we may couple (Xk,y, X̃k,y) with probability 1−|pk,y−d+

y /n|. Notice
that if Gx(k) 6= T −x (k), then either at least one of the pairs (Xk,y, X̃k,y) fails to couple, or at
least one of the y ∈ C`−1 ∪ A`−1 has X̃k,y = 1. Thus, on the event Ec

k−1, the probability of
Ek given the history up to the (k − 1)-th iteration is bounded above by

n∑

y=1

|pk,y − d+
y /n|+

n∑

y=1

d+
y

n
1(y ∈ Ck−1 ∪ Ak−1)

≤
n∑

y=1

(k − 1)d+
y

n(n− k + 1)
+

∆

n
|Ck−1 ∪ Ak−1|

≤ ∆

n− k (k + Zk−1) ,

where we use that for every y ∈ [n] one has (k − 1) ≥ φk−1(y), and we write Z` for the
number of edges in the tree T −x (`). Thus, letting F` denote the σ-algebra generated by the
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two processes up to time `, we have obtained

P(Ec
k−1 ∩ Ek) = E

[
E
[
1(Ec

k−1 ∩ Ek) | Fk−1

]]

≤ ∆

n− k (k + E[Zk−1]) . (2.46)

From (2.7) we deduce E[Zk−1] = (k−1)d̄ ≤ (k−1)∆. Therefore, the estimate (2.44) follows
from (2.45) and (2.46). �
The next lemma establishes the coupling estimate for the t-in-neighbourhoodB−v,t and the
tree T −v,t(d+). The estimate could be refined but (2.47) below will be more than sufficient
for our purposes.

Lemma 2.5 The random variables B−h (x) and the tree T −x,h(d+) can be coupled in such a way that
for every h ≤ logn

4 log ∆
, for all n large enough:

P
(
B−h (x) 6= T −x,h(d+)

)
≤ ∆3t(log n)4

n
. (2.47)

Proof: Let |T −x,h| denote the number of edges in the tree T −x,h = T −x,h(d+). Since at each
iteration the number of edges added is stochastically dominated by a binomial random
variable with parameters n and ∆/n, one has a large deviation bound for |T −x,h| of the
form: there exist absolute constants a,A > 0 such that

P
(
|T −x,h| > s∆h

)
≤ Ae−a s, s ≥ 1. (2.48)

The estimate (2.48) can be proved e.g. by repeating the argument in [15, Lemma 23]. Next,
observe that if |T −x,h| ≤ s∆h and B−h (x) 6= T −x,h, then there must exist ` = 1, . . . , s∆h such
that Gx(`) 6= T −x (`). The latter probability can be bounded via Lemma 2.4. Summarizing,

P
(
B−h (x) 6= T −x,h(d+)

)
≤ P

(
|T −x,h| > s∆h

)
+ P

(
B−h (x) 6= T −x,h(d+); |T −x,h| ≤ s∆h

)

≤ Ae−a s +
s∆h∑

`=1

P(Gv(`) 6= T −v (`)) ≤ Ae−a s +
s3∆3h+2

n− s∆h
. (2.49)

The estimate (2.47) follows by taking s = K log n for some large enough constant K, and
by taking n sufficiently large. �
Concerning the out-neighbourhoods, given that the maximum offspring is bounded, the
same argument of Lemma 2.2 proves that,

Lemma 2.6 For any fixed vertex x ∈ [n], for all t ∈ N, one has a coupling such that, for some
constant C > 0 independent of t, n holds

P
(
B+
t (x) 6= T +

x,t(d
+)
)
≤ C

∆2t

n
.

41



2.4 Diameter and typical distance in the DCM(d±)

In this section we analyze the diameter of a graph from the DCM(d±) ensemble. The
proof of Theorem 2.1 is a directed version of a classical argument for undirected graphs
[12]. It requires controlling the size of in- and out-neighbourhoods of a node, which in
turn follows ideas from [2] and [13]. The value d? = logν n can be interpreted as follows:
both the in- and the out-neighbourhood of a node are tree-like with average branching
given by ν, so that their boundary at depth h has typically size νh, see Lemma 2.7; if the
in-neighbourhood of y and the out-neighbourhood of x are exposed up to depth h, one
finds that the value h = 1

2
logν(n) is critical for the formation of an arc connecting the two

neighbourhoods.

Theorem 2.1 Set d? = logν n. There exists εn = O
(

log log(n)
log(n)

)
such that

P ((1− εn) d? ≤ diam(G) ≤ (1 + εn) d?) = 1− o(1). (2.50)

Moreover, for any x, y ∈ [n]

P ((1− εn) d? ≤ d(x, y) ≤ (1 + εn) d?) = 1− o(1). (2.51)

In particular, Theorem 2.1 shows that w.h.p. the digraph is strongly connected, so there
exists a unique stationary distribution π characterized by the equation

π(x) =
n∑

y=1

π(y)P (y, x) , x ∈ [n], (2.52)

with the normalization
∑n

x=1 π(x) = 1.

2.4.1 Controlling the size of the neighbourhoods

We shall need a bound for the size of ∂B±h (y) for values of h that are larger than }. Recall
the definition (2.3) of the parameter ν. We use the following notation in the sequel:

`0 = 4 logδ log(n), hη = (1− η) logν(n). (2.53)

Lemma 2.7 For every η ∈ (0, 1), there exist constants c1, c2 > 0, χ > 0 such that for all y ∈ [n],

P
(
νh log−c1(n) ≤ |∂B±h (y)| ≤ νh logc2(n) , ∀h ∈ [`0, hη]

)
= 1−O(n−1−χ). (2.54)
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Proof: We run the proof for the in-neighbourhood only since the case of the out-neighbourhood
is obtained in the same way. We generate B−h (y), h ∈ [`0, hη] sequentially in a breadth first
fashion. After the depth j neighbourhood B−j (y) has been sampled, we call Fj the set of
all heads attached to vertices in ∂B−j (y). Set

u = log−7/8(n).

For any h ≥ `0 define

κh := [ν(1− u)]h−`0 log7/2(n), κ̂h := [ν(1 + u)]h−`0∆`0 . (2.55)

We are going to prove

P (κh ≤ |Fh| ≤ κ̂h , ∀h ∈ [`0, hη]) = 1−O(n−1−χ). (2.56)

Notice that, choosing suitable constants c1, c2 > 0, (2.54) is a consequence of (2.56).

Consider the events
Aj = {|Fi| ∈ [κi, κ̂i] , ∀i ∈ [`0, j]} . (2.57)

Thus, we need to prove P(Ah) = 1−O(n−1−χ), for h = hη. From Lemma 2.3 and the choice
of `0, it follows that

P(A`0) = 1−O(n−1−χ). (2.58)

For h > `0 we write

P(Ah) = P(A`0)
h∏

j=`0+1

P(Aj|Aj−1). (2.59)

To estimate P(Aj|Aj−1), note that Aj−1 depends only on the in-neighbourhood B−j−1(y), so
if σj−1 denotes a realization of B−j−1(y) with a slight abuse of notation we write σj−1 ∈ Aj−1

if Aj−1 occurs for this given σj−1. Then

P(Aj|Aj−1) =

∑
σj−1

P(σj−1)P(Aj|σj−1)1σj−1∈Aj−1

P(Aj−1)
. (2.60)

Therefore, to prove a lower bound on P(Aj|Aj−1) it is sufficient to prove a lower bound
on P(Aj|σj−1) that is uniform over all σj−1 ∈ Aj−1.

Suppose we have generated the neighbourhood σj−1 up to depth j − 1, for a σj−1 ∈ Aj−1.
In some arbitrary order we now generate the matchings of all heads f ∈ Fj−1. We define
the random variable X(j)

f , f ∈ Fj−1, which, for every f evaluates to the in-degree d−z of
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the vertex z that is matched to f if the vertex z was not yet exposed, and evaluates to zero
otherwise. In this way

|Fj| =
∑

f∈Fj−1

X
(j)
f . (2.61)

Therefore,

P(Aj|σj−1) = P (ν(1− u)κj−1 ≤ |Fj| ≤ ν(1 + u)κ̂j−1 |σj−1) (2.62)

= 1− P
( ∑

f∈Fj−1

X
(j)
f < ν(1− u)κj−1 |σj−1

)
− P

( ∑

f∈Fj−1

X
(j)
f > ν(1 + u)κ̂j−1 |σj−1

)
.

To sample the variables X(j)
f , at each step we pick a tail uniformly at random among all

unmatched tails and evaluate the in-degree of its end point if it is not yet exposed. Since
σj−1 ∈ Aj−1, at any such step the number of exposed vertices is at most K = O(n1−η/2). In
particular, for any f ∈ Fj−1 and any d ∈ [δ,∆], σj−1 ∈ Aj−1:

P
(
X

(j)
f = d |σj−1

)
≥

[(∑n
k=1 d

+
k 1d−k =d

)
−∆K

]
+

m
=: p(d),

where [·]+ denotes the positive part. This shows that X(j)
f stochastically dominates the

random variable Y (j) and is stochastically dominated by the random variable Ŷ (j), where
Y (j) and Ŷ (j) are defined by

∀d ∈ [δ,∆], P(Y (j) = d) = P(Ŷ (j) = d) = p(d)

P
(
Ŷ (j) = ∆ + 1

)
= P

(
Y (j) = 0

)
= 1−

∆∑

d=δ

p(d).

Notice that

E
(
Y (j)

)
=

∆∑

d=δ

dp(d) ≥ ν − ∆2K

m
= ν −O(n−η/2). (2.63)

Similarly,

E
(
Ŷ (j)

)
≤ ν +

∆2K

m
= ν +O(n−η/2). (2.64)

Moreover, letting Y (j)
i and Ŷ

(j)
i denote i.i.d. copies of the random variables Y (j) and Ŷ (j)

respectively, since σj−1 ∈ Aj−1, the sum in (2.61) stochastically dominates
∑κj−1

i=1 Y
(j)
i , and
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is stochastically dominated by
∑κ̂j−1

i=1 Y
(j)
i . Therefore,

∑
f∈Fj−1

X
(j)
f < ν(1− u)κj−1 implies

that
κj−1∑

i=1

[
Y

(j)
i − E

(
Y (j)

)]
≤ −1

2
uκj−1, (2.65)

if n is large enough. Similarly,
∑

f∈Fj−1
X

(j)
f > ν(1 + u)κ̂j−1 implies that

κ̂j−1∑

i=1

[
Ŷ

(j)
i − E

(
Ŷ (j)

)]
≥ 1

2
uκ̂j−1. (2.66)

An application of Hoeffding’s inequality shows that the probability of the events (2.65)
and (2.66) is bounded by e−cu

2κj−1 and e−cu
2κ̂j−1 respectively, for some absolute constant

c > 0. Hence, from (2.62) we conclude that for some constant c > 0:

P(Aj|σj−1) ≥ 1− e−cu2κj−1 − e−cu2κ̂j−1 .

Therefore, using u2κ̂j−1 ≥ u2κj−1 ≥ u2κ0 ≥ log3/2(n),

P(Aj|σj−1) = 1−O(n−3), (2.67)

uniformly in j ∈ [`0, hη] and σj−1 ∈ Aj−1. By (2.60) the same bound applies to P(Aj|Aj−1)
and going back to (2.59), for h = hη we have obtained

P(Ah) = 1−O(n−1−χ).

�
We shall also need the following refinement of Lemma 2.7. Define the events

F±y = F±y (η, c1, c2) =
{
νh log−c1(n) ≤ |∂B±h (y)| ≤ νh logc2(n) , ∀h ∈ [`0, hη]

}
. (2.68)

Lemma 2.7 states that
P
(
(F±y )c

)
= O(n−1−χ).

Let G(}) be the event from Proposition 2.3.

Lemma 2.8 For every η ∈ (0, 1), there exist constants c1, c2 > 0, χ > 0 such that for all y ∈ [n],

P
(
(F±y )c;G(})

)
= O(n−2−χ). (2.69)
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Proof: By symmetry we may prove the inequality for the event F−y only. Consider the
setD−y of all possible 2-in-neighbourhoods of y compatible with the event G(}), that is the
set of labeled digraphs D such that

P(B−2 (y) = D ; G(})) > 0. (2.70)

Then
P
(
(F−y )c;G(})

)
≤ sup

D∈D−y
P
(
(F±y )c | B−2 (y) = D

)
. (2.71)

Thus it is sufficient to prove that

P
(
(F±y )c | B−2 (y) = D

)
= O(n−2−χ), (2.72)

uniformly in D ∈ D−y . To this end, we may repeat exactly the same argument as in the
proof of Lemma 2.7 with the difference that now we condition from the start on the event
B−2 (y) = D for a fixed D ∈ Dy. The key observation is that (2.58) can be strenghtened to
O(n−2−χ) if we condition on B−2 (y) = D. That is, for some χ > 0, uniformly in D ∈ Dy,

P
(
A`0 | B−2 (y) = D

)
= 1−O(n−2−χ), (2.73)

To prove (2.73) notice that if the 2-in-neighbourhood of y is given by B−2 (y) = D ∈ Dy
then the set F−2 (y) has at least 4 elements. Therefore, taking a sufficiently large constant
C, for the event |F−`0(y)| ≥ δ`0/C to fail it is necessary to have at least 3 collisions in the
generation of B−t (y), t ∈ {3, . . . , `0}. From the estimate (2.37) the probability of this event
is bounded by p3

kk
3 with k = ∆`0 , which implies (2.73) if χ ∈ (0, 1). Once (2.73) is estab-

lished, the rest of the proof is a repetition of the argument in (2.59)-(2.67). �

2.4.2 Upper bound on the diameter

The upper bound in Theorem 2.1 is reformulated as follows.

Lemma 2.9 There exist constants C, χ > 0 such that if εn = C log log(n)
log(n)

,

P (diam(G) > (1 + εn) d?) = O(n−χ). (2.74)
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Proof: From Proposition 2.3 we may restrict to the event G(}). From the union bound

P (diam(G) > (1 + εn) d?;G(})) ≤
∑

x,y∈[n]

P (d(x, y) > (1 + εn)d?;G(})) . (2.75)

From Lemma 2.8, for all x, y ∈ [n]

P (d(x, y) > (1 + εn)d?;G(})) = P
(
d(x, y) > (1 + εn)d?;F

+
x ∩ F−y

)
+O(n−2−χ). (2.76)

Fix
k =

1 + εn
2

logν n.

Let us use sequential generation to sample first B+
k (x) and then B−k−1(y). Call σ a realiza-

tion of these two neighbourhoods. Consider the event

Ux,y = {|∂B+
k (x)| ≥ νk log−c1(n) ; |∂B−k−1(y)| ≥ νk−1 log−c1(n)}.

Clearly, F+
x ∩ F−y ⊂ Ux,y. Moreover Ux,y depends only on σ. Note also that {d(x, y) >

(1 + εn)d?} ⊂ Ex,y, where we define the event

Ex,y = {There is no path of length ≤ 2k − 1 from x to y}. (2.77)

The event Ex,y depends only on σ. We say that σ ∈ Ux,y ∩ Ex,y if σ is such that both Ex,y
and Ux,y occur. Thus, we write

P
(
d(x, y) > (1 + εn)d?;F

+
x ∩ F−y

)
≤ P (d(x, y) > (1 + εn)d?;Ux,y ∩ Ex,y)
≤ sup

σ∈Ux,y∩Ex,y
P (d(x, y) > (1 + εn)d? |σ) . (2.78)

Fix a realization σ ∈ Ux,y ∩ Ex,y. The event Ex,y implies that all vertices on ∂B−k−1(y) have
all their heads unmatched and the same holds for all the tails of vertices in ∂B+

k (x). Call
Fk−1 the heads attached to vertices in ∂B−k−1(y) and Ek the tails attached to vertices in
∂B+

k (x). The event d(x, y) > (1 + εn)d? implies that there are no matchings between Fk−1

and Ek. The probability of this event is dominated by
(

1− |Ek|
m

)|Fk−1|
≤
(

1− n− 1
2

+ εn
4

)n 1
2+ εn4

≤ exp (−nεn/2) ,

if n is large enough and εn = C log log n/ log n with C large enough. Therefore, uniformly
in σ ∈ Ux,y ∩ Ex,y,

P (d(x, y) > (1 + εn)d? |σ) ≤ exp (−nεn/2) = O(n−2−χ).

Inserting this in (2.75)-(2.76) completes the proof. �
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2.4.3 Lower bound on the diameter

We prove the following lower bound on the diameter. Note that Lemma 2.9 and Lemma 2.10
imply Theorem 2.1.

Lemma 2.10 There exists C > 0 such that taking εn = C log log(n)
log(n)

, for any x, y ∈ [n],

P (d(x, y) ≤ (1− εn)d?) = o(1). (2.79)

Proof: Define
` =

1− εn
2

logν n.

We start by sampling the out-neighbourhood of x up to distance `. Consider the event

Jx =
{
|B+

` (x)| ≤ n
1−εn

2 logc2(n)
}
.

From Lemma 2.7, P(Jx) = 1−O(n−1−χ) for suitable constants c2, χ > 0, and therefore

P(y ∈ B+
` (x)) = P(y ∈ B+

` (x); Jx) +O(n−1−χ). (2.80)

If Jx holds, in the generation of B+
` (x) there are at most K := n

1−εn
2 logc2(n) attempts to

include y in B+
` (x), each with probability at most d−y /(m−K) ≤ 2∆/m of success, so that

P(y ∈ B+
` (x); Jx) ≤

2∆

m
K = O(n−

1
2 ). (2.81)

Once the out-neighbourhood B+
` (x) has been generated, if y /∈ B+

` (x), we generate the in-
neighbourhood B−` (y). If d(x, y) ≤ (1 − εn)d? then there must be a collision with ∂B+

` (x),
and

P(d(x, y) ≤ (1− εn)d? ; y /∈ B+
` (x)) = P(y /∈ B+

` (x) ; B−` (y) ∩ ∂B+
` (x) 6= ∅). (2.82)

Consider the event
Jy =

{
|B−` (y)| < n

1−εn
2 logc2(n)

}
.

From Lemma 2.7 it follows that P(Jy) = 1 − O(n−1−χ) for suitable constants c2, χ > 0. If
Jx and Jy hold, in the generation of B−` (y) there are at most K = n

1−εn
2 logc2(n) attempts to

collide with ∂B+
` (x), each of which with success probability at most ∆K/m, and therefore

P(y /∈ B+
` (x) ; B−` (y) ∩ ∂B+

` (x) 6= ∅) ≤ ∆K2

m
= O(n−εn/2) = o(1), (2.83)
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where we take the constant C in the definition of εn sufficiently large. In conclusion,

P (d(x, y) ≤ (1− εn)d?) ≤ P
(
y ∈ B+

` (x)
)

+ P
(
d(x, y) ≤ (1− εn)d? ; y /∈ B+

` (x)
)
,

and the inequalities (2.80)-(2.83) end the proof. �
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CHAPTER 3

MIXING TIME FOR THE PAGERANK
SURFER

In this chapter we study the model presented in Section 1.3.1. We start by briefly recalling
the definitions given in Chapter 1, then we present the strategy of proof of Theorem 1.10.

Given a directed graph G = (V,E), a parameter α ∈ (0, 1), and a probability measure λ
on V , the generalised PageRank surf on G with damping factor 1 − α and resampling λ is
the Markov chain

Pα,λ(x, y) = (1− α)P (x, y) + αλ(x). (3.1)

The resulting stationary distribution πα,λ, characterised by the equation

πα,λ(y) =
∑

x∈V
πα,λ(x)Pα,λ(x, y), (3.2)

depends in a nontrivial way on the parameter α and the distribution λ. Starting at a node
x the distribution of the PageRank surfer after t steps is P t

α,λ(x, ·), and the distance to
equilibrium is defined by

Dxα,λ(t) =
∥∥P t

α,λ(x, ·)− πα,λ
∥∥
TV
. (3.3)

This defines a non-increasing function of t ∈ N. It is convenient to extend it to a monotone
function of t ∈ [0,∞), e.g. by considering the integer part of the argument. Finally, for
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any ε ∈ (0, 1), the ε-mixing time is defined by

Tα,λ(ε) = inf

{
t ≥ 0 : max

x∈V
Dxα,λ(t) ≤ ε

}
. (3.4)

When α = 0, we write Dx0(t) and T0(ε) for the corresponding quantities.

As mentioned in Section 1.3.1, we shall assume that α = α(n) ∈ (0, 1) is a sequence such
that α→ 0 and such that the limit

γ = lim
n→∞

αTENT ∈ [0,∞] (3.5)

exists, with possibly γ = 0 or γ =∞.

Theorem 3.1 Let G be a random graph from either the directed configuration model DCM(d±)
or the out-configuration model OCM(d+). Let α = α(n) ∈ (0, 1) be parameters as in (3.5), and
let λ = λn be either widespread or strongly localized measures. Then, according to the value of γ
there are three scenarios:

(1) If γ = 0 then for all s > 0, s 6= 1:

max
x∈[n]

∣∣Dxα,λ(s TENT)− ϑ(s)
∣∣ P−→ 0. (3.6)

(2) If γ ∈ (0,∞) then for all s > 0, s 6= 1:

max
x∈[n]

∣∣Dxα,λ(s TENT)− e−γsϑ(s)
∣∣ P−→ 0. (3.7)

(3) If γ =∞ then for all s > 0:

max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ P−→ 0. (3.8)

where θ is the step function θ(s) = 1 if s ≤ 1 and θ(s) = 0 otherwise.

In terms of mixing times, Theorem 3.1 implies the following statements.

Corollary 3.1 In the setting of Theorem 3.1:

(1) If γ = 0 then for all ε ∈ (0, 1)
Tα,λ(ε)

TENT

P−→ 1, (3.9)
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(2) If γ ∈ (0,∞):
Tα,λ(ε)

TENT

P−→
{

1 if ε ∈ (0, e−γ)
1
γ

log(1/ε) if ε ∈ [e−γ, 1).
(3.10)

(3) If γ =∞ then for all ε ∈ (0, 1):

αTα,λ(ε)
P−→ log(1/ε). (3.11)

To give some guidelines, below we illustrate the main ideas involved in the proof.

The starting point is the observation that the distance to stationarity Dxα,λ(t) satisfies the
following general identity at all times t, for all choices of the parameter α and distribution
λ: ∥∥P t

α,λ(x, ·)− πα,λ
∥∥
TV

= (1− α)t
∥∥P t(x, ·)− πα,λP t

∥∥
TV
. (3.12)

Here we use the notation µP t(y) =
∑

x∈V µ(x)P t(x, y) for the distribution at time t of the
simple random walk started at a random vertex distributed according to some distribu-
tion µ. The relation (3.12) follows from a simple coupling argument; see Proposition 3.3
below. Moreover, the stationary distribution admits the power series expansion

πα,λ = α
∞∑

k=0

(1− α)kλP k , (3.13)

see Proposition 3.2 below. A particularly simple special case is when the resampling
distribution λ equals the stationary distribution π0. Indeed, in this case the stationary
distribution is the result of a trivial balance and πα,λ = π0, so that (3.12) becomes

Dxα,π0(t) = (1− α)tDx0(t) . (3.14)

Therefore, when λ = π0 the result of Theorem 3.1 is an immediate consequence of Theo-
rem 1.7.

The key observation to attack the case of a general widespread measure λ will be that,
if we start with such a distribution λ, then the time needed to reach stationarity for the
simple random walk is much smaller than the entropic time TENT. More precisely we
shall establish the following fact.

Lemma 3.1 Let G be a random graph from either the directed configuration model DCM(d±)
or the out-configuration model OCM(d+). If λ = λn is widespread, then for any sequence t =
t(n)→∞, ∥∥λP t − π0

∥∥
TV

P−→ 0. (3.15)
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Once Lemma 3.1 is available, the proof of Theorem 3.1 for the case of widespread mea-
sures is not difficult. Indeed, as we shall see, Lemma 3.1 and (3.13) imply that for all
widespread measures, for all three scenarios regarding the sequence α, the stationary
measures πα,λ and π0 become indistinguishable:

‖πα,λ − π0‖TV
P−→ 0. (3.16)

At this point Theorem 3.1 will follow directly from (3.12) and Theorem 1.7.

Let us now turn to the case of strongly localized λ. We will actually reduce the proof to
the fully localized case λ = δz for some vertex z. In this case, λP t = P t(z, ·) and therefore
(3.15) must fail for all t = sTENT, with s ∈ (0, 1) fixed, since by Theorem 1.7 we know that
in this case ∥∥P t(z, ·)− π0

∥∥
TV

P−→ 1. (3.17)

The approximation (3.16) can still be expected to hold for the scenario αTENT → 0, since in
that case the simple random walk has enough time to reach equilibrium between succes-
sive visits to the reference vertex z. However, if instead αTENT → γ > 0, then πα,λ should
be a nontrivial mixture of π0 and a localized distribution that is singular w.r.t. π0. We refer
to Lemma 3.4 below for the precise version of this statement. A key technical point for
the proof of Theorem 3.1 will be the following fact.

Proposition 3.1 LetG be a random graph from either the directed configuration model DCM(d±)
or the out-configuration model OCM(d+). If λ = δz for some vertex z, then for fixed γ > 0,
including γ =∞, and s ∈ (0, γ), for any sequence α→ 0, satisfying αTENT → γ,

inf
x∈[n]

∥∥P t(x, ·)− πα,δzP t
∥∥
TV

P−→ 1 , t = s/α . (3.18)

3.1 Preliminaries

In this section we collect some simple general facts about the PageRank surf. The state-
ments in the rest of this section do not depend on the graph G where the original walk
takes place. Therefore, we fix an arbitrary digraph G with vertex set V = [n], and let P
be the transition matrix in of the simple random walk on G. If d+

x = 0 for some x we may
define P (x, x) = 1 and P (x, y) = 0 for all y ∈ V \ {x}.
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3.1.1 The stationary distribution πα,λ

Proposition 3.2 For any α ∈ (0, 1), any probability vector λ, let Pα,λ be defined by (3.1). There
exists a unique probability vector πα,λ satisfying πα,λPα,λ = πα,λ. Moreover, πα,λ is given by

πα,λ = α
∞∑

k=0

(1− α)kλP k. (3.19)

Proof: The equation πα,λPα,λ = πα,λ is equivalent to

πα,λ(1− (1− α)P ) = αλ.

Since P is a stochastic matrix, the matrix 1− (1−α)P is strictly diagonally dominant, and
therefore invertible. Then (3.19) follows by expanding the expression πα,λ = αλ(1 − (1 −
α)P )−1. �
In particular, (3.19) and the triangle inequality imply that for any other probability vector
µ:

‖πα,λ − µ‖TV ≤ α
∞∑

k=0

(1− α)k‖λP k − µ‖TV. (3.20)

3.1.2 Walk vs. teleport

A trajectory of the PageRank surf can be sampled as follows. At each time unit indepen-
dently, we flip a α-biased coin: if heads (with probability α) then the surfer is teleported
to a new vertex, chosen according to λ; if tails (with probability 1 − α) then the surfer
walks one step according to the transition matrix P . The probability associated to this
construction will be denoted by P. If τα denotes the first time the surfer is teleported, then
for all t ∈ N:

P(τα > t) = (1− α)t. (3.21)

Proposition 3.3 For any α ∈ (0, 1), any probability vector λ, and all t ∈ N, x ∈ [n]:

‖P t
α,λ(x, ·)− πα,λ‖TV = (1− α)t‖P t(x, ·)− πα,λP t‖TV. (3.22)
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Proof: We use the construction introduced above, and write Xx
t for the position of the

surfer at time t with initial vertex x. By using the same sample of the teleporting distri-
bution λ we couple two trajectories Xx

t , X
z
t in such a way that Xx

t = Xz
t , for all t ≥ τα.

Therefore, letting E denote the expectation with respect to this coupling:

P t
α,λ(x, y)− P t

α,λ(z, y) = E [1(Xx
t = y)− 1(Xz

t = y)]

= E [1(Xx
t = y)− 1(Xz

t = y); τα > t] . (3.23)

Moreover,

E [1(Xx
t = y); τα > t] = P(τα > t)P(Xt = y|X0 = x, τα > t) = P(τα > t)P t(x, y). (3.24)

Therefore,

P t
α,λ(x, y)− P t

α,λ(z, y) = P(τα > t)(P t(x, y)− P t(z, y)). (3.25)

Multiplying by πα,λ(z), summing over z, and using (3.21) one obtains

P t
α,λ(x, y)− πα,λ(y) = (1− α)t

(
P t(x, y)− [πα,λP

t](y)
)
. (3.26)

It follows that

‖P t
α,λ(x, ·)− πα,λ‖TV =

1

2

∑

y∈V
|P t
α,λ(x, y)− πα,λ(y)|

= (1− α)t
1

2

∑

y∈V

∣∣P t(x, y)− [πα,λP
t](y)

∣∣

= (1− α)t‖P t(x, ·)− πα,λP t‖TV. (3.27)

�
Since the total variation distance is always bounded above by 1, Proposition 3.3 implies
the upper bound

Dxα,λ(t) = ‖P t
α,λ(x, ·)− πα,λ‖TV ≤ (1− α)t. (3.28)

The latter, in turn, gives the following upper bound on the mixing time.

Corollary 3.2 For any α ∈ (0, 1), any probability vector λ, and all ε ∈ (0, 1), the ε-mixing time
(3.4) satisfies

Tα,λ(ε) ≤
1

α
log(1/ε). (3.29)
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A further immediate consequence of Proposition 3.3 is that if λ is stationary for P , then
the distance to equilibrium Dxα,λ(t) takes a simple form.

Corollary 3.3 For any α ∈ (0, 1), for all x ∈ V and all t ∈ N, if π0 is a probability vector such
that π0P = π0, then taking λ = π0,

Dxα,π0(t) = (1− α)t ‖P t(x, ·)− π0‖TV. (3.30)

Proof: From Proposition 3.2 it follows that πα,π0 = π0, and therefore πα,π0P t = π0 for all
t. �

Finally, another useful consequence of Proposition 3.3 is that it allows us to control the
distanceDxα,λ(t) in terms of the distanceDxα,π0(t), for some stationary π0 as in Corollary 3.3,
by means of the distance between πα,λ and π0.

Corollary 3.4 For any α ∈ (0, 1), all t ∈ N, any probability vector λ, if π0 is such that π0P = π0,

max
x∈V

∣∣Dxα,λ(t)−Dxα,π0(t)
∣∣ ≤ ‖πα,λ − π0‖TV. (3.31)

Proof: From the triangle inequality and the fact that ‖µP t − νP t‖TV is monotone in t for
all distributions µ, ν, one has

∣∣‖P t(x, ·)− πα,λP t‖TV − ‖P t(x, ·)− π0‖TV
∣∣ ≤ ‖πα,λ − π0‖TV. (3.32)

The conclusion then follows from Proposition 3.3 and Corollary 3.3. �

3.2 Mixing from widespread measures

This section is devoted to the proof of Lemma 3.11. Recall that in both models DCM(d±)
and OCM(d+) one has w.h.p. a unique stationary distribution for the simple random walk
on G, which we denote π0. The starting point is a result that follows directly from [13, 14],
which allows us to replace the unknown distribution π0 with a local approximation.

Proposition 3.4 For any fixed ε > 0, taking h = εTENT, as n→∞ both models satisfy
∥∥µinP

h − π0

∥∥
TV

P−→ 0. (3.33)
1That is Theorem 1.11 in Chapter 1.
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Proof: From [13, Section 6] for the DCM and from [13, Section 4] for the OCM, it follows
that there exists ε0 > 0 such that for all fixed ε ∈ (0, ε0), setting h = εTENT, and t =
(1 + ε/2)TENT one has

max
x∈[n]

∥∥µinP
h − P t(x, ·)

∥∥
TV

P−→ 0. (3.34)

To prove (3.33), note that
∥∥µinP

h − π0

∥∥
TV

is monotone in h, and therefore it is not restric-
tive to assume that ε ∈ (0, ε0). Thus (3.33) is a consequence of (3.34) and the simple
inequality, valid for any t:

∥∥µinP
h − π0

∥∥
TV

=
∥∥µinP

h − π0P
t
∥∥
TV
≤ max

x∈[n]

∥∥µinP
h − P t(x, ·)

∥∥
TV
. (3.35)

�
To prove Lemma 3.1, by monotonicity of ‖λP t − π0‖TV as a function of t, we may restrict
to sequences t = t(n) → ∞ with t = o(log n). Thus, taking advantage of Proposition 3.4,
the conclusion of Lemma 3.1 is a consequence of the following result.

Proposition 3.5 There exists ε > 0 such that if h = εTENT, then for any t = t(n) → ∞ with
t = o(log n), for any widespread measure λ:

∥∥λP t − µinP
h
∥∥
TV

P−→ 0. (3.36)

Proof: The proof is divided into two steps. We first show that the random variable
appearing in (3.36) is concentrated around its average:

∥∥λP t − µinP
h
∥∥
TV
− E

[∥∥λP t − µinP
h
∥∥
TV

] P−→ 0. (3.37)

Define the random variable

Z(ω) =
∥∥λP t

ω − µinP
h
ω

∥∥
TV
, (3.38)

where ω denotes the map that defines the configuration model as in Section 2.1, and Pω
is the corresponding random walk transition matrix. We now compare the value of Z at
two different configurations ω, ω′. In the case of the DCM we assume that ω, ω′ differ by
a swap of two coordinates, namely that there exist tails e+

0 , e
+
1 and heads e−0 , e

−
1 such that

ω(e) = ω′(e) for all tails e 6= e+
0 , e

+
1 and ω(e+

i ) = e−i , ω′(e+
i ) = e−1−i, i = 0, 1. In the case of

the OCM we take ω = (ωx)x∈[n] and ω′ = (ω′x)x∈[n] such that ωx = ω′x for all x 6= x0 and
ωx0 6= ω′x0 for some fixed x0 ∈ [n]. Let us show that in either case one has

|Z(ω)− Z(ω′)| ≤ ∆|λ|∞max
v∈[n]
|B−,ωt (v)|+ ∆|µin|∞max

v∈[n]
|B−,ωh (v)|. (3.39)
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where |λ|∞ = maxz∈[n] λ(z) and |µin|∞ = maxz∈[n] µin(z). By the triangle inequality

|Z(ω)− Z(ω′)| ≤ Z1(ω, ω′) + Z2(ω, ω′) ,

Z1(ω, ω′) =
∥∥λP t

ω − λP t
ω′
∥∥
TV
, Z2(ω, ω′) =

∥∥µinP
h
ω − µinP

h
ω′
∥∥
TV
. (3.40)

Let Xλ,ω
t denote the position at time t of the random walk which starts with distribution

λ, so that λP t
ω(y) = P(Xλ,ω

t = y). One may couple exactly (Xλ,ω
s )s≥0 and (Xλ,ω′

t )s≥0 until
the first time τ that the trajectory (Xλ,ω

0 , . . . , Xλ,ω
t ) passes through one of the edges in the

symmetric difference of ω and ω′. Therefore, for all ω, ω′ as above

Z1(ω, ω′) ≤ P(τ ≤ t).

Notice that for both models there are at most ∆ edges in ω that are not in ω′, and that
for each such edge, say (u, v), the probability that the trajectory (Xλ,ω

0 , . . . , Xλ,ω
t ) passes

through (u, v) is always bounded above by λ(B−,ωt (v)), where B−,ωt (v) denotes the t-in-
neighbourhood of v in the configuration ω. Therefore,

Z1(ω, ω′) ≤ ∆λ(B−,ωt (v)) ≤ ∆|λ|∞max
x∈[n]
|B−,ωt (x)|.

The same argument shows that

Z2(ω, ω′) ≤ ∆µin(B−,ωh (v)) ≤ ∆|µin|∞max
x∈[n]
|B−,ωh (x)|.

This proves (3.39) for both models. We now apply this bound to obtain the desired con-
centration inequality. We start with the DCM, where one has deterministic upper bounds
on the size of the in-neighbourhoods, which makes the argument simpler.

In the case of the DCM we observe that maxx∈[n] |B−,ωt (x)| ≤ ∆t+1 for all t ∈ N, and all ω.
Therefore (3.39) implies

|Z(ω)− Z(ω′)| ≤ |λ|∞∆t+2 +
∆h+3

m
. (3.41)

By an application of the Azuma–Hoeffding inequality (see e.g. [49, Section 3.2]), (3.41)
implies that under the uniform measure over ω, the random variable ω 7→ Z(ω) satisfies
the following concentration inequality for all η > 0:

P (|Z − E[Z]| ≥ η) ≤ 2 exp

(
− η2

2mb2

)
, (3.42)
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where b = |λ|∞∆t+2 + ∆h+3

m
. We may now let n → ∞. If h = εTENT, with ε > 0 fixed but

small enough, we have ∆2h/m → 0, and using t = o(log n) and the assumption |λ|∞ =
O(n−1/2−δ) for some δ > 0, we have m∆2t|λ|2∞ = O(n−δ/2). In conclusion mb2 → 0, as
desired. This concludes the proof of (3.37) for the DCM.

In the case of the OCM, consider the event

E =

{
ω : max

x∈[n]
|B−,ωs (x)| ≤ ∆s(log n)2, ∀s = 1, . . . h

}
. (3.43)

The union bound implies

P(Ec) ≤ n
h∑

s=1

P
(
|B−s (1)| > ∆s(log n)2

)
. (3.44)

To estimate the probability in the right hand side of (3.44) we return to the coupling used
in Lemma 2.4 and Lemma 2.5. Instead of coupling the in-neighbourhood B−s (1) with
the tree T −,s1 , we use the slightly enlarged tree T̂ −,s1 obtained by replacing the random
variables X̃k,y in Lemma 2.4 by new variables X̂k,y defined as Bernoulli with parameter
d+
y /(n−

√
n). The point is that the new tree T̂ −,s1 obtained in this way is such that, as long

as |T̂ −,s1 | ≤ √n we also have |B−s (1)| ≤ |T̂ −,s1 |. Indeed, as long as the number of edges
added does not exceed

√
n then pk,y ≤ d+

y /(n−
√
n) for all y. Therefore,

P
(
|B−s (1)| > ∆s(log n)2

)
≤ P

(
|T̂ −,s1 | > √n

)
+ P

(
|T̂ −,s1 | > ∆s(log n)2

)
. (3.45)

Now we use the bound (2.48) adapted to the enlarged tree T̂ −,s1 . Since at each iteration
the number of edges added to the tree is stochastically dominated by a binomial random
variable with parameters n and ∆/(n−√n) ≤ 2∆/n, one has a large deviation bound as in
(2.48), with possibly different constants. In conclusion, for some new constants A, a > 0,
for all s ≤ h ≤ logn

3 log ∆
:

P
(
|B−s (1)| > ∆s(log n)2

)
≤ Ae−a(logn)2 . (3.46)

Therefore (3.44) implies

P(Ec) ≤ nhA e−a(logn)2 . (3.47)

From the bound in (3.39) we see that

|Z(ω)− Z(ω′)| ≤ |λ|∞∆t(log n)2 +
∆h(log n)2

n
, ω, ω′ ∈ E. (3.48)
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We can now apply the following modified version of the standard Azuma–Hoeffding
inequality from [23]. Setting b = |λ|∞∆t(log n)2+ 1

n
∆h(log n)2 and p = P(Ec), [23, Theorem

2.1] implies

P (|Z − E[Z |E]| ≥ η) ≤ 2

(
p+ exp

(
−2(η − npb)2

nb2

))
, (3.49)

where E[Z |E] denotes the expected value of Z conditioned on the event E. Notice that
if h = εTENT, with ε > 0 small enough, as before we have nb2 → 0. Moreover, npb → 0
by (3.47). Finally, since |Z| ≤ 1 we may estimate |E[Z |E] − E[Z]| ≤ p/(1 − p) → 0. This
concludes the proof of the concentration estimate (3.37) for the OCM.

The second step of the proof of Proposition 3.5 is to show that

lim
n→∞

E
[∥∥λP t − µinP

h
∥∥
TV

]
= 0. (3.50)

Observe that

E
[∥∥λP t − µinP

h
∥∥
TV

]
=

1

2

∑

j∈[n]

E
[∣∣λP t(j)− µinP

h(j)
∣∣]

≤ 1

2
E
[∣∣nλP t(I)− nµinP

t(I)
∣∣]] +

1

2
E
[∣∣nµinP

t(I)− nµinP
h(I)

∣∣]], (3.51)

where I denotes an independent uniformly random vertex in [n] and the expectation E
is understood to include the expectation over I as well. Consider the first term above.
We are going to use Lemma 2.2 for the DCM and Lemma 2.5 for the OCM. Notice that
since these estimates apply to any fixed vertex v, they apply just as well if the vertex v is
taken to be uniformly random in [n], i.e. if v = I as it is the case here. In particular, since
t = o(log n), as n→∞,

P
(
B−t (I) 6= T −t

)
→ 0, (3.52)

where we use the unified notation T −t for the first t generations of the tree T −I in either
DCM or OCM. Next, note that by definition, if B−t (I) = T −t , then

nλP t(I)− nµinP
t(I) = nXt(λ)−Mt ,

where we use the notation from (2.9) and (2.14). Therefore,

E
[∣∣nλP t(I)− nµinP

t(I)
∣∣] ≤ P

(
B−t (I) 6= T −t

)
+ E [|Mt − nXt(λ)|]

Using Schwarz’ inequality and Proposition 2.2 it follows that

E [|Mt − nXt(λ)|]2 ≤ γ(λ)ρt.
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Since t = t(n)→∞ as n→∞ and ρ ∈ (0, 1), using (3.52) we conclude that

lim
n→∞

E
[∣∣nλP t(I)− nµinP

t(I)
∣∣] = 0,

for all widespread measure λ. This settles the convergence of the first term in (3.51). To
handle the second term, reasoning as above we obtain

E
[∣∣nµinP

t(I)− nµinP
h(I)

∣∣] ≤ P
(
B−h (I) 6= T −h

)
+ E [|Mt −Mh|]

If h ≤ 1
5

log∆ n, Lemma 2.2 and Lemma 2.5 imply that both models satisfy

P
(
B−h (I) 6= T −h

)
→ 0. (3.53)

Moreover, Schwarz’ inequality and Proposition 2.1 imply

E [|Mt −Mh|]2 ≤ E[(Mt −Mh)
2]

≤ E[(Mt −M∞)2] = Cρt.

Since the constant C is bounded, letting n→∞ concludes the proof. �

3.3 Fully localized case

The goal of this section is to prove Proposition 3.1. Recall that we have λ = δz for a fixed
vertex z and we are assuming αTENT → γ > 0. We start with the simpler case γ = +∞.

Proof of Proposition 3.1: the case γ = +∞

Let B+
t (z) denote the t-out-neighbourhood of a vertex z, that is the subgraph ofG induced

by the set of directed paths of length t in G which start at vertex z. Since γ = +∞, there
exists a sequence u = u(n) such that u = u(n) = o(log n) and αu→ +∞. Next, set t = s/α
for some fixed s ∈ (0,∞), and notice that for all z, the measure πα,δz satisfies

lim
n→∞

πα,δzP
t(B+

u (z)) = 1, (3.54)
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with probability 1. Indeed, from Proposition 3.2, we see that

πα,δzP
t(B+

u (z)) = α

∞∑

k=0

(1− α)kP k+t(z,B+
u (z))

≥ α

u/2∑

k=0

(1− α)k = 1− (1− α)u/2 → 1, (3.55)

where we have used the obvious fact that P k+t(z,B+
u (z)) = 1 for all k such that k + t ≤ u,

and that u/2 + t ≤ u for n large enough. Thus, the proof of Proposition 3.1 would be
achieved if we could show that for all x:

P t
(
x,B+

u (z)
) P−→ 0. (3.56)

However, we need this estimate to hold uniformly in x ∈ [n] while the above statement
cannot hold if e.g. x = z, since P t(z,B+

u (z)) = 1. Thus, we shall actually prove the follow-
ing slightly different statement.

Lemma 3.2 Suppose αTENT → ∞. Fix z ∈ [n], t = s/α, s ∈ (0,∞), and a sequence u =
o(log n) such that αu → ∞. For each η > 0, with high probability: for each x there exists a set
Fx ⊂ B+

u (z) such that

max
x∈[n]

P t
(
x,B+

u (z) \ Fx
)
≤ η, min

x∈[n]
πα,δzP

t(B+
u (z) \ Fx) ≥ 1− η. (3.57)

Notice that Lemma 3.2 implies Proposition 3.1 in the case γ = +∞. The proof of Lemma 3.2
is broken into several steps. We first recall that by Section 2.2.1, B+

u (z) can be coupled to
a tree in both models. Next, we will introduce the notion of gates from a vertex x to the
set B+

u (z), which will be the basis of the construction of the sets Fx needed for the proof
of (3.57).

From Lemma 2.6, for our fixed vertex z, and for our choice of the sequence u, the event
Ez = {B+

2u(z) = T +
z,2u} satisfies

lim
n→∞

P(Ez) = 1. (3.58)

We will need the following definition.

Definition 3.1 For x ∈ [n], t ∈ N and a directed subgraph Γ ⊂ G with vertex set V (Γ), the set
of t-gates from x to Γ, denoted Gt(x,Γ) is defined as the subset of vertices y ∈ B+

t (x)∩V (Γ) such
that: either x = y ∈ V (Γ), or y ∈ B+

t (x) \ {x} and there exists a directed path (x0, x1, . . . , xs) in
G with 1 ≤ s ≤ t edges, such that x0 = x, xs−1 /∈ V (Γ) and xs = y ∈ V (Γ).
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Lemma 3.3 For any fixed vertex z, if t = o(u) and u = o(log n), then

lim
n→∞

P
(

max
x∈[n]
|Gt(x,B+

u (z))| ≥ 3

)
= 0. (3.59)

Proof: Fix x ∈ [n]. Recall the generation algorithm from Section 2.3.1. If we invert
the role of heads vs. tails and we use the priority rule given by the minimal distance
to vertex z, and we stop when the minimal distance exceeds u, the algorithm generates
the u-out-neighbourhood B+

u (z). Once the digraph B+
u (z) has been generated we turn to

the generation of the t-in-neighbourhood B+
x,t. Here we use the same algorithm, without

erasing the pairs already matched in the generation of B+
u (z). By definition of gate, if

y ∈ B+
x,t\{x} is a gate, there is a time in the generation ofB+

x,t where an arc (w, y) is formed
between a tail e+ ∈ E+

w with vertex w /∈ B+
u (z) and a head e− ∈ E−y with vertex y ∈ B+

u (z).
Given the realization of B+

u (z), at the k-th step of the generation of B+
x,t, conditioned on

the previous history of the generation process, the probability of forming such an arc is at
most

∆|B+
u (z)|

m− |B+
u (z)| − k ≤

∆u+2

m−∆u+1 −∆t+1
, (3.60)

where we use the fact that |B+
u (z)| ≤ ∆u+1 and k ≤ ∆t+1. From our assumptions on

t, u, one has that this probability is less that p := n−1+δ, for any fixed δ > 0. Thus, the
number of such arcs is stochastically dominated by the binomial random variable X with
parameters ∆t+1 and p. It follows that the number of gates is stochastically dominated by
1 + X , where the 1 takes into account the possibility that x itself is a gate, and therefore
for any K ∈ N:

P
(
|Gt(x,B+

u (z))| ≥ K
)
≤ P(X + 1 ≥ K) ≤ (p∆t+1)K−1. (3.61)

Since t = o(log n) we obtain that (p∆t+1)K−1 is o(1/n) already with K = 3. A union bound
over x ∈ [n] implies (3.59). �
We turn to the application of the notion of gates to our problem. Let us write Qx for the
law of the trajectory (X0, X1, . . . ) of the random walk started at X0 = x in the graph G, so
that

P t(x,A) = Qx(Xt ∈ A), (3.62)

Notice that if B+
x,t is a tree, then X0 = x and Xt ∈ B+

u (z) imply that the trajectory passes
through a t-gate from x to B+

u (z) and that for each gate y the first visit to y must occur, if
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ever, at a deterministic time ty, which is the height of y in T +
x,t. Therefore, if B+

2u(z) is also
a tree, then the measure

A 7→ Qx(Xt ∈ B+
u (z) ∩ A) , (3.63)

is supported on sets Lz,sy , where sy = hy + t − ty and we use the notation Lz,s for the set
of vertices at distance s from z in the tree B+

u (z), and hy is such that y ∈ Lz,hy . Note that
here we are using the fact that once the walk enters the set B+

u (z) ⊂ B+
2u(z) then it cannot

exit B+
u (z) and come back to it within time t ≤ u since B+

2u(z) is a directed tree. Thus, if
B+
x,t and B+

2u(z) are both trees, and we define the set

Ax,t = ∪y∈Gt(x,B+u (z))Lz,sy , (3.64)

then

P t
(
x,B+

u (z) \ Ax,t
)

= 0. (3.65)

Proof of Lemma 3.2

For h ∈ N, let V∗,h ⊂ V denote the subset of vertices x ∈ V such that B+
h (x) is a tree. As in

[13, Propositon 6] one shows that for both models, with high probability:

max
x∈V

Qx(X` ∈ V \ V∗,h) ≤ 2−`, ` ≤ h ≤ log n

10 log ∆
. (3.66)

From (3.58) and Lemma 3.3, we may assume that B+
2u(z) is a tree and that |Gt(x,B+

2u(z))| ≤
2 for all x ∈ [n]. For every x ∈ V∗,t let Ax,t denote the sets defined in (3.64). For any η > 0,
take ` such that 2−` < η. For every x ∈ [n], define

Fx = ∪w∈V∗,t−`∩B+` (x)Aw,t−`. (3.67)

From (3.65) and (3.66) it follows that with high probability

max
x∈[n]

P t
(
x,B+

u (z) \ Fx
)
≤ 2−` + max

w∈V∗,t−`∩B+` (x)
P t−`(w,B+

u (z) \ Aw,t−`
)

= 2−`. (3.68)

Note that Fx is the union of at most 2∆`+1 levels of the form Lz,s. Since B+
2u(z) is a tree,

for any fixed set Lz,s ⊂ B+
u (z), P k+t(z, Lz,s) can be nonzero for only one index k ≤ u/2.

Therefore, reasoning as in (3.55) and using α→ 0,

max
x∈[n]

πα,δzP
t(Fx) ≤ 2∆`+1α + (1− α)u/2 ≤ η, (3.69)

as soon as n is large enough. This ends the proof of Lemma 3.2. �
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Proof of Proposition 3.1: the case γ ∈ (0,∞)

We start by approximating the measure πα,δzP t by a convex combination of π0 and a more
localized probability vector µ. Afterwards we recall some key facts about the random
walk that were already established in [13, 14]. Later we combine these ingredients with a
strategy similar to that employed in the proof of Lemma 3.2 above to finish the proof.

Lemma 3.4 Fix γ ∈ (0,∞) and s ∈ (0, γ). Then there exists a constant C > 0 such that for all
η > 0 small enough, for αTENT → γ and t = s/α, with high probability:

‖πα,δzP t − aµ− (1− a)π0‖TV ≤ Cη, (3.70)

where a ∈ (0, 1) and the probability vector µ = µz,η are given by

a =

(1−η)TENT−t∑

k=0

α(1− α)k , µ =
1

a

(1−η)TENT−t∑

k=0

α(1− α)kP k+t(z, ·). (3.71)

Proof: For any a < b, define the probability vector

νa,b =
1

Za,b

bTENT−1∑

k=aTENT

α(1− α)kP k+t(z, ·) , Za,b =

bTENT−1∑

k=aTENT

α(1− α)k. (3.72)

Since t = s/α, s ∈ (0, γ), and αTENT → γ we may equivalently set t = κTENT, κ ∈ (0, 1).
Using Proposition 3.2, for any 0 < η < (1− κ) we write

πα,δzP
t = Z0,1−η−κ ν0,1−η−κ + Z1−η−κ,1+η−κ ν1−η−κ,1+η−κ + Z1+η−κ,∞ ν1+η−κ,∞ (3.73)

Using αTENT → γ ∈ (0,∞), by Riemann integration it follows that for all n large enough

Z1−η−κ,1+η−κ ≤
(1+η−κ)TENT∑

k=(1−η−κ)TENT

αe−kα ≤ Cη, (3.74)

for some constant C > 0. Next, using Theorem 1.7, w.h.p.

sup
k≥(1+η−κ)TENT

‖P k+t(z, ·)− π0‖TV ≤ η. (3.75)

It follows that w.h.p.

‖ν1+η−κ,∞ − π0‖TV ≤ η. (3.76)
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Taking a and µ as in (3.71) and adjusting the value of the constant C concludes the proof.
�

Let us recall the following key facts established in [13, Section 6] for the DCM and from
[14, Section 4] for the OCM. For every z, and every η > 0, there exists a directed tree
Tz(η) rooted at z such that the trajectory (X0, . . . , Xu) of the random walk started at z
satisfies with high probability (X0, . . . , Xu) ⊂ Tz(η) for all u ≤ (1 − η)TENT. Here the
notation (X0, . . . , Xu) ⊂ Tz(η) means that the directed path (X0, . . . , Xu) is a subgraph of
the directed tree. More precisely, fix

h = c log n, (3.77)

where c = η2/(4 log ∆), and recall the set V∗,h introduced in the proof of Lemma 3.2. Then,
with the notation Qx used in (3.62), one has2 : for all ηTENT ≤ u ≤ (1− η)TENT

max
z∈V∗,h

Qz ((X0, . . . , Xu) ⊂ Tz(η))
P−→ 1, (3.78)

see [14, Lemma 11]. Moreover, the number of vertices in the tree Tz(η) satisfies

|Tz(η)| ≤ n1−η2/2, (3.79)

see [14, Section 4.1]. The bound (3.79) can be used to establish another crucial fact, namely
that for a walk that is out of Tz(η) at some time, then it is very unlikely to get to Tz(η) at
some later time. The precise statement we need is as follows.

Lemma 3.5 For any fixed z ∈ V∗,h, all ηTENT ≤ u ≤ (1− η)TENT, with u ≥ h:

max
x∈[n]

Qx ((Xh, . . . , Xu) 6⊂ Tz(η) and Xu ∈ Tz(η))
P−→ 0. (3.80)

The proof of Lemma 3.5 follows the strategy introduced in [14, Section 2.4]. We omit the
details and refer the interested reader to [14, Lemma 12] for the proof of a very similar
statement.

The analogue of Lemma 3.2 in our present setting reads as follows.

2In [14] the notation Tz((1−η)TENT) is used instead of Tz(η), and the sequence h is defined as h = c log n,
with a constant c different from our choice c = η2/(4 log ∆). However, it can be checked that the choice of
c is not important for the result (3.78), and here it is convenient to work with c = η2/(4 log ∆) for reasons
that will be clear below.
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Lemma 3.6 Suppose αTENT → γ ∈ (0,∞). Fix z ∈ [n] and take t = κTENT with some κ ∈
(0, 1). For each η > 0, with high probability: for each x there exists a set Fx ⊂ Tz(η) such that

max
x∈[n]

P t(x, Tz(η) \ Fx) ≤ η, min
x∈[n]

µ(Tz(η) \ Fx) ≥ 1− η, (3.81)

where µ is the measure from Lemma 3.4.

Proof: Suppose A is a subset of vertices in Tz(η). If η > 0 is small enough, then ηTENT ≤
t ≤ (1− η)TENT and t ≥ h. Thus, using Lemma 3.5, w.h.p.:

P t(x,A) = Qx(Xt ∈ A)

= Qx ((Xh, . . . , Xt) 6⊂ Tz(η), Xt ∈ A) +Qx((Xh, . . . , Xt) ⊂ Tz(η), Xt ∈ A)

≤ η/2 +Qx((Xh, . . . , Xt) ⊂ Tz(η), Xt ∈ A). (3.82)

Consider the measure

A 7→ Q̄x(A) := Qx((Xh, . . . , Xt) ⊂ Tz(η), Xt ∈ A) . (3.83)

A trajectory started at X0 = x that satisfies (Xh, . . . , Xt) ⊂ Tz(η) must have entered the
set Tz(η) at a vertex y ∈ B+

h (x) that is also an h-gate from x to Tz(η); see Definition 3.1.
In particular, if x ∈ V∗,h, i.e. if B+

h (x) is a tree, then an h-gate y from x to Tz(η) has a
deterministic first visit time ty for the walk started at x and such that (Xh, . . . , Xt) ⊂ Tz(η).
It follows that Q̄x is supported on on sets Lz,sy , where sy = hy + t − ty, where Lz,s is the
set of vertices at distance s from z in the tree Tz(η), and hy is such that y ∈ Lz,hy . Thus, if
B+
h (x) is a tree, we define the set

Ax,t = ∪y∈Gh(x,Tz(η))Lz,sy . (3.84)

With these definitions one has

Q̄x (Tz(η) \ Ax,t) = 0 , x ∈ V∗,h. (3.85)

Next, take ` ∈ N such that 2−` ≤ η/2. For every x ∈ [n], define

Fx = ∪w∈V∗,h∩B+` (x)Aw,t−`. (3.86)

As in (3.68), using (3.82), we obtain that with high probability

max
x∈[n]

P t(x, Tz(η) \ Fx) ≤ 2−` + max
w∈V∗,h∩B+` (x)

P t−`(w, Tz(η) \ Aw,t−`) ≤ η. (3.87)
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This gives the desired bound in (3.81) for the measure P t(x, ·). Let us now turn to a proof
of the bound in (3.81) on the measure µ. We first give an estimate on the number of gates
Gh(x, Tz(η)). From the argument in the proof of Lemma 3.3, we know that |Gh(x, Tz(η))| is
stochastically dominated by 1 plus a binomial with parameters ∆h+1 and p given by

∆|Tz(η)|
m− |Tz(η)| −∆h+1

≤ ∆n−
1
2
η2 , (3.88)

where we have used (3.79). Therefore for any K ∈ N:

P (|Gh(x, Tz(η))| ≥ K) ≤ (∆h+2n−
1
2
η2)K−1. (3.89)

Since h = c log n with c = η2/(4 log ∆), we see that (3.89) is less than ∆2Kn−Kη
2/4. Thus, if

K = Kη is larger than say 5η−2, this probability is o(1/n) and then a union bound shows
that with high probability

max
x∈[n]
|Gh(x, Tz(η))| ≤ Kη. (3.90)

Thus from now on we assume that for all x one has |Gh(x, Tz(η))| ≤ Kη. Moreover, we
may assume that z ∈ V∗,h. Indeed, for fixed z this holds w.h.p. by Lemma 2.2 for the DCM
and by Lemma 2.5 for the OCM. Next, observe that the measure µ satisfies w.h.p.

µ(Tz(η)) ≥ 1− η/2. (3.91)

This follows from the expression (3.71) for µ and the fact (3.78) that the walk started at
z ∈ V∗,h stays in Tz(η) up to time (1− η)TENT with large probability. On the other hand,

max
x∈[n]

µ(Fx) ≤ α∆`+1Kη (3.92)

where we use the fact that there are at most ∆`+1 vertices in B+
` (x), that there are at most

Kη levels of the form Lz,s in a set Aw,t−` and that each of these levels contributes at most
α to the mass of µ. For each η > 0, using α → 0 the above bound is less than η/2 as soon
as n is large enough. Therefore,

µ(Tz(η) \ Fx) ≥ 1− η, (3.93)

which completes the proof of Lemma 3.6. �
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To finish the proof of Proposition 3.1, remark that by Theorem 1.7, since t = κTENT, κ ∈
(0, 1), we know that for all η > 0 with high probability: for all x there exists a set Bx such
that

π0(Bx) ≥ 1− η, P t(x,Bx) ≤ η. (3.94)

Therefore, taking B′x = Bx ∪ (Tz(η) \ Fx) and using Lemma 3.6 we obtain

aµ(B′x) + (1− a)π0(B′x) ≥ 1− η, P t(x,B′x) ≤ 2η, (3.95)

with a and µ from Lemma 3.4. In conclusion, if C is the constant in Lemma 3.4, we have
proved that for all η > 0, with high probability:
∥∥P t(x, ·)− πα,δzP t

∥∥
TV
≥
∥∥P t(x, ·)− aµ− (1− a)π0

∥∥
TV
− Cη

≥
(
aµ(B′x) + (1− a)π0(B′x)− P t(x,B′x)

)
− Cη ≥ 1− (C + 3)η.

(3.96)

Since η > 0 is arbitrary this completes the proof of Proposition 3.1. �

3.4 Proof of the trichotomy

In this section we show how to prove Theorem 3.1 from the facts established above. Thus,
G is a random graph from either the directed configuration model DCM(d±) or the out-
configuration model OCM(d+), where the degree sequences satisfy the assumptions (2.2)
and (2.5) respectively, and π0 denotes the (w.h.p.) unique stationary distribution for the
simple random walk on G.

Scenario 1, all λ’s

We begin with scenario 1, namely when αTENT → 0. In this case, we actually prove a
result that holds regardless of the resampling distribution λ. In particular, it will imply
the first part of the trichotomy in Theorem 3.1 for arbitrary λ.

Proposition 3.6 For any sequence α such that αTENT → 0,

sup
λ
‖πα,λ − π0‖TV

P−→ 0, (3.97)

where the supremum is over all possible probability vectors λ on [n].
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Proof: We need to show that, uniformly in λ, for any δ > 0,

‖πα,λ − π0‖ ≤ δ , w.h.p. (3.98)

The upper bound (3.20) shows that for all t ∈ N:

‖πα,λ − π0‖TV ≤ (1− (1− α)t) +
∑

k>t

α(1− α)k‖λP k − π0‖TV. (3.99)

Take t = sTENT, with some fixed s > 1, and observe that by Theorem 1.7 we know that for
all k > t, for all λ:

‖λP k − π0‖TV ≤ ‖λP sTENT − π0‖TV
≤ max

x∈V
‖P sTENT(x, ·)− π0‖TV ≤ δ/2 , w.h.p. (3.100)

In particular, using αt→ 0:

sup
λ
‖πα,λ − π0‖TV ≤ (1− (1− α)t) + δ/2 ≤ δ , w.h.p. (3.101)

�
The claim (3.6), for arbitrary λ, is thus a consequence of Corollary 3.3, Corollary 3.4 and
Theorem 1.7.

Scenario 2 and 3, widespread λ’s

We first show that if λ is widespread, then Lemma 3.1 ensures that ‖πα,λ − π0‖TV → 0 in
probability.

Lemma 3.7 If λ = λn is widespread, then for any sequence α = α(n)→ 0,

‖πα,λ − π0‖TV
P−→ 0. (3.102)

Proof: Take t = t(n)→∞ such that αt→ 0. From Lemma 3.1 we know that
∥∥λP t − π0

∥∥
TV

P−→ 0. (3.103)

As in (3.99), from the upper bound (3.20) we obtain:

‖πα,λ − π0‖TV ≤ (1− (1− α)t) + ‖λP t − π0‖TV. (3.104)

Using (3.103) and αt→ 0 we conclude the proof. �
Using the approximation (3.102), claims (3.7) and (3.8) of Theorem 3.1, for arbitrary widespread
λ, are a consequence of Corollary 3.3, Corollary 3.4 and Theorem 1.7.
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Scenario 3, strongly localized λ’s

When αTENT → +∞, t = s/α for some fixed s ∈ (0,∞), Proposition 3.1 shows that

inf
x∈[n]

∥∥P t(x, ·)− πα,λP t
∥∥
TV

P−→ 1 , (3.105)

whenever λ = δz for some vertex z. Let us show that (3.105) actually holds for all strongly
localized λ. From Proposition 3.1 we know that for every η > 0 and z ∈ [n], w.h.p. for all
x there is a set Bη

x,z such that

P t(x,Bη
x,z) ≤ η , πα,δzP

t(Bη
x,z) ≥ 1− η . (3.106)

If λ =
∑

z∈F azδz, then by Proposition 3.2 πα,λ =
∑

z∈F azπα,δz and therefore, taking Bη
x =

∪z∈FBη
x,z:

P t(x,Bη
x) ≤ |F |η , πα,λP

t(Bη
x) ≥

∑

z∈F
azπα,δzP

t(Bη
x,z) ≥ 1− η . (3.107)

It follows that for all η > 0 w.h.p.

inf
x∈[n]

∥∥P t(x, ·)− πα,λP t
∥∥
TV
≥ 1− (|F |+ 1)η. (3.108)

Since η is arbitrarily small, this implies (3.105).

Once we have (3.105), from Proposition 3.3 and the upper bound (3.28) we obtain:

max
x∈[n]

∣∣∣
∥∥P t

α,λ(x, ·)− πα,λ
∥∥
TV
− (1− α)t

∣∣∣ P−→ 0 . (3.109)

Equivalently,
max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ P−→ 0 . (3.110)

Scenario 2, strongly localized λ’s

Here αTENT → γ ∈ (0,∞). We take t = u/α, with fixed u ∈ (0,∞). We consider separately
the case u ∈ (γ,∞) and the case u ∈ (0, γ).

Suppose first u ∈ (γ,∞). By Proposition 3.3 and the triangle inequality

Dxα,λ(u/α) ≤
∥∥P t(x, ·)− πα,λP t

∥∥
TV

≤
∥∥P t(x, ·)− π0

∥∥
TV

+ max
y∈V

∥∥π0 − P t(y, ·)
∥∥
TV
. (3.111)
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If u ∈ (γ,∞), then for some ε > 0 we have t ≥ (1 + ε)TENT. Therefore, by Theorem 1.7 it
follows that

max
x∈[n]
Dxα,λ(u/α)

P−→ 0 , u ∈ (γ,∞). (3.112)

On the other hand, suppose that u ∈ (0, γ). Here we can apply Proposition 3.1 and the
argument in (3.107) above to obtain

inf
x∈[n]

∥∥P t(x, ·)− πα,λP t
∥∥
TV

P−→ 1 . (3.113)

Therefore, by Proposition 3.3 and the upper bound (3.28),

max
x∈[n]

∣∣∣
∥∥P t

α,λ(x, ·)− πα,λ
∥∥
TV
− (1− α)t

∣∣∣ P−→ 0 . (3.114)

Equivalently,
max
x∈[n]

∣∣Dxα,λ(u/α)− e−u
∣∣ P−→ 0 , u ∈ (0, γ). (3.115)

Combining (3.111) and (3.115), we have proved (3.7) for all strongly localized λ.
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CHAPTER 4

MIXING TIMES ON REGENERATING
DYNAMIC DIGRAPHS

In this chapter we obtain a precise description of the mixing times for the random walk
on dynamic digraphs undergoing a particularly simple evolution, namely for digraphs
with given degree sequences that are fully regenerated at independent geometrically dis-
tributed random time intervals.

We shall consider both families of directed graphs: DCM and OCM.

In what follows σ ∈ C denotes a given realisation of either the directed configuration
model DCM(d±) or the out-configuration model OCM(d+), and we write G(σ) for the
corresponding realisation of the digraph. We will treat both models on an equal footing
as much as possible, and when we need to distinguish between them we often refer to
these as model 1 and model 2 respectively. As usual, for a fixed configuration σ ∈ C, we
consider the transition matrix

Pσ(x, y) =
#(σ;x→ y)

d+
x

, x, y ∈ [n], (4.1)

where #(σ;x→ y) denotes the number of directed edges from x to y in G(σ). We use the
notation Pσ

x(·) for the law of the trajectory (X0, X1, . . . ) when X0 = x, so that in particular,
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for any x, y ∈ [n], and t ∈ N:
Pσ
x(Xt = y) = P t

σ(x, y). (4.2)

We now introduce the joint evolution of the digraph and the random walk. Given α ∈
(0, 1), we consider the Markov chain with state space C× [n] and with transition matrix

Pα((σ, x), (η, y)) = (1− α)Pσ(x, y)1σ(η) + αu(η)1x(y), (4.3)

where 1a(b) stands for 1 if a = b and 0 otherwise and u(η) = |C|−1 denotes the uniform
distribution over the set C. In words, at each time t ∈ N independently, we sample a
Bernoulli(α) random variable Jt; if Jt = 1 we pick a uniformly random η ∈ C and move
from the current state (σ, x) to the new state (η, x), while if Jt = 0 we move to the new
state (σ, y) where y is chosen uniformly at random among the out-neighbours of x in the
digraph G(σ). We write (ξt, Xt) for the trajectory of the Markov chain and write PJ

σ,x(·)
for its law when started at ξ0 = σ and X0 = x. It is not hard to check that (ξt, Xt)t≥0 is
an irreducible and aperiodic Markov chain and therefore it admits a unique stationary
distribution πJ. A consequence of our results, see Remark 4.1 below, is that πJ is well
approximated in total variation distance by the probability measure ν on C × [n] defined
by

ν(σ, x) = u(σ)πσ(x). (4.4)

We know that πσ is uniquely defined for all σ in a set Ωn ⊂ C with u(Ωn) → 1 as n → ∞.
To extend ν to all C× [n] we may define e.g. πσ = µin for σ ∈ C \ Ωn. We define

DJ,α
σ,x(t) = ‖PJ

σ,x(ξt = ·, Xt = ·)− ν‖TV. (4.5)

For each t ∈ N, the quantity DJ,α
σ,x(t) is regarded as a random variable with respect to the

uniform choice of the configuration σ ∈ C. Moreover, we extend DJ,α
σ,x(·) to all positive

reals by taking the integer part of the argument.

Theorem 4.1 Fix a sequence α = αn such that αn → 0 as n→∞. Then, for all β > 0

lim sup
n→∞

max
σ∈C,x∈[n]

DJ,α
σ,x(βα−1) ≤ (1 + β)e−β. (4.6)

Next, assume that
γ = lim

n→∞
αTENT ∈ [0,∞]. (4.7)

Then, according to the value of γ there are three scenarios:

1. If γ = 0 then for all β > 0:

max
x∈[n]

∣∣DJ,α
σ,x(βα−1)− e−β

∣∣ P−→ 0. (4.8)
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2. If γ =∞ then for all β > 0:

max
x∈[n]

∣∣DJ,α
σ,x(βα−1)− (1 + β)e−β

∣∣ P−→ 0. (4.9)

3. If γ ∈ (0,∞) then for all β > 0, β 6= γ:

max
x∈[n]

∣∣DJ,α
σ,x(βα−1)− ψγ(β)

∣∣ P−→ 0. (4.10)

where

ψγ(β) =

{
(1 + β)e−β if β < γ

e−β if β > γ
.

The trichotomy displayed in Theorem 4.1 can be interpreted as follows; see also Fig. 1.2.
On the time scale α−1 the regeneration times, that is the t ∈ N such that Jt = 1, converge
to a Poisson process of intensity 1. Then e−β and (1 + β)e−β represent the probability
of having no regeneration and at most one regeneration up to time βα−1 respectively.
Thus Theorem 4.1 essentially says that when the walk is far from being mixed within the
current digraph then two regenerations are necessary and sufficient for a complete loss
of memory of the initial state, whereas if the walk has already mixed within the current
digraph then all it is required to reach stationarity is one regeneration.

Remark 4.1 From Theorem 4.1 it follows that

lim
n→∞

‖ν − πJ‖TV = 0, (4.11)

which in turn implies that all statements in Theorem 4.1 holds with ν replaced by πJ. Indeed, to
prove (4.11) observe that for any t ∈ N

‖ν − πJ‖TV ≤ max
σ∈C,x∈[n]

DJ,α
σ,x(t).

Taking t = βα−1, (4.6) implies that lim supn→∞ ‖ν − πJ‖TV ≤ (1 + β)e−β , and letting β → ∞
we obtain (4.11).

The proof of Theorem 4.1 will be crucially based on Theorem 1.7 and Lemma 3.1. The
dynamic setting however requires an important extension of these results that can be
formulated as follows. For any (σ, η) ∈ C× C and integers 0 ≤ s ≤ t, define

Qs,t
σ,η(x, y) =

∑

z∈[n]

P s
σ(x, z)P t−s

η (z, y). (4.12)
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Theorem 4.2 (Cutoff on double digraphs) Fix β > 0 and set t = βTENT and 0 ≤ s ≤ t. Let
σ and η be two independent uniformly random configurations in C, and let P denote the associated
probability. Then for fixed β > 0:

1. If β < 1:
min
x∈[n]
‖Qs,t

σ,η(x, ·)− πη‖TV
P−→ 1.

2. If β > 1 and t− s→∞ as n→∞:

max
x∈[n]
‖Qs,t

σ,η(x, ·)− πη‖TV
P−→ 0.

Another key ingredient for the proof of Theorem 4.1 is the control of the annealed walk.
By this we mean the law

Pan
x (·) =

∑

η∈C
u(η)Pη

x(·), (4.13)

where Pη
x is defined before (4.2).

Lemma 4.1 The annealed law satisfies

lim
n→∞

sup
x∈[n],t≥1

‖Pan
x (Xt = ·)− µin‖TV = 0. (4.14)

Once Lemma 4.1 and Theorem 4.2 are available, we shall obtain Theorem 4.1 by a de-
composition of the law at time t according to the location of the regeneration times; see
Section 4.1.

Finally, our last main result concerns the marginal distribution of the position of the walk,
namely the non-Markovian process obtained by projecting the chain (ξt, Xt)t≥0 on the sec-
ond coordinate. According to Theorem 4.1 and Lemma 4.1 the law of Xt, for t and n suit-
ably large, should be well approximated by µin. The next result quantifies this statement
by exhibiting once again a trichotomy. Define

Dασ,x(t) := ‖PJ
σ,x(Xt = ·)− µin‖TV , q := E‖πσ − µin‖TV. (4.15)

We remark that if the sequences d± are eulerian, that is d+
x = d−x for all x ∈ [n], then πσ = µin

is stationary for all σ ∈ C. Thus in this case q = 0. On the other hand, results from [42, 44]
imply that if the sequence is not eulerian then q is bounded away from 0 and 1; see [13,
Theorem 4] and Remark 2.1 for more details.
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Theorem 4.3 Fix a sequence α = αn such that αn → 0 as n→∞. Then, for all β > 0

lim sup
n→∞

max
σ∈C,x∈[n]

Dασ,x(βα−1) ≤ e−β. (4.16)

Next, assume that
γ = lim

n→∞
αTENT ∈ [0,∞]. (4.17)

Then, according to the value of γ there are three scenarios:

1. If γ = 0 then for all β > 0:

max
x∈[n]

∣∣Dασ,x(βα−1)− q e−β
∣∣ P−→ 0. (4.18)

Moreover, if β 6= 1 then

max
x∈[n]

∣∣Dασ,x(βTENT)− ϕ(β)
∣∣ P−→ 0, (4.19)

where

ϕ(β) :=

{
1 if β < 1

q if β > 1.
(4.20)

2. If γ =∞, then for all β > 0:

max
x∈[n]

∣∣Dασ,x(βα−1)− e−β
∣∣ P−→ 0. (4.21)

3. If γ(0,∞) then for all β > 0, β 6= γ:

max
x∈[n]

∣∣Dασ,x(βα−1)− ϕ(β/γ)e−β
∣∣ P−→ 0. (4.22)

The above results can be roughly interpreted as follows. If we follow only the position of
the particle then after the first regeneration time the walk has the annealed law, and by
Lemma 4.1 this is given by µin. Thus, a complete loss of memory of the initial state with
relaxation to the limiting state µin occurs essentially at the time of the first regeneration of
the digraph. On the other hand, if no regeneration occurs then a partial loss of memory
occurs at time TENT because of the static mixing cutoff phenomenon, and this is quantified
by the drop by a factor q in total variation. The competition between these two effects
explains the above triad; see Fig. 1.3.
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4.1 Trichotomy for the joint process

We start with the proof of Lemma 4.1, and then prove Theorem 4.1 assuming the validity
of Theorem 4.2. The proof of the latter is given in Section 4.3 below.

Proof of Lemma 4.1

We divide the proof in two cases: t ≤ 2TENT, and t > 2TENT. If t ≤ 2TENT, in particular
one has t = O(log n), and we will see in Lemma 5.8 that

Pan
x (Xt = y) = µin(y)(1 + o(1)), Pan

x (Xt = x) = O
(
n−1 log(n)

)
, (4.23)

for t = O(log n), uniformly in x, y ∈ [n]. The proof of (4.23) is carried out in detail in
Lemma 5.8 for the DCM only, but the very same arguments imply the validity of the
statements for the OCM as well. The estimates in (4.23) are enough to conclude that
uniformly in x ∈ [n]:

‖Pan
x (Xt = ·)− µin‖TV =

1

2

∑

y∈[n]

|Pan
x (Xt = y)− µin(y)| = o(1) , t = O(log n). (4.24)

We now turn to the case t > 2TENT. By the triangle inequality we have

‖Pan
x (Xt = ·)− µin‖TV ≤ E‖P t

σ(x, ·)− πσ‖TV + ‖Eπσ − µin‖TV. (4.25)

Concerning the first term on the right hand side, we use Theorem 1.7 to obtain

E‖P t
σ(x, ·)− πσ‖TV = o(1) , (4.26)

uniformly in x ∈ [n], and t > 2TENT. The second term on the right hand side of (4.25) can
be bounded by a combination of the arguments in (4.24) and (4.26). Indeed, using again
the triangle inequality and setting s = b2TENTc:

‖Eπσ − µin‖TV ≤ E‖P s
σ(x, ·)− πσ‖TV + ‖Pan

x (Xs = ·)− µin‖TV = o(1). (4.27)

This ends the proof of Lemma 4.1. �
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Proof of Theorem 4.1

For every (η, y) ∈ C× [n] define

µσ,xt (η, y) = PJ
σ,x(ξt = η,Xt = y).

Recall that Js, s ∈ N are i.i.d. Bernoulli(α) random variables indicating the occurrence of
the regeneration event. For each t ≥ 1, consider the random variable τ = τ(t) defined by

τ = 1 (∃s ∈ {1, . . . , t} : Js = 1) sup{s ≤ t | Js = 1}. (4.28)

We may write

µσ,xt (η, y) =
t∑

s=0

PJ(τ = s)PJ
σ,x ((ξt, Xt) = (η, y) | τ = s)

= (1− α)t1σ(η)P t
σ(x, y) +

t∑

s=1

α(1− α)t−s
∑

z∈[n]

∑

ξ∈C
u(η)µσ,xs−1(ξ, z)P t−s

η (z, y).

Since µσ,xs−1(ξ, z) admits the same decomposition we obtain the expansion:

µσ,xt (η, y) = Aσ,xt (η, y) +Bσ,x
t (η, y) + Cσ,x

t (η, y),

where

Aσ,xt (η, y) = (1− α)t1σ(η)P t
σ(x, y),

Bσ,x
t (η, y) = α(1− α)t−1

t∑

s=1

∑

z∈[n]

u(η)P s−1
σ (x, z)P t−s

η (z, y),

Cσ,x
t (η, y) =

t∑

s=1

s−1∑

r=1

α2(1− α)t−1−r
∑

v,z∈[n]

∑

ξ,ω∈C
u(η)u(ξ)µσ,xr−1(ω, v)P s−1−r

ξ (v, z)P t−s
η (z, y),

Notice that for every choice of W = ν,Bσ,x
t , Cσ,x

t , for any fixed choice of σ ∈ C one has
∑

η: η 6=σ

∑

y∈[n]

W (η, y) =
∑

η∈C

∑

y∈[n]

W (η, y) +O
(
|C|−1

)
.
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Therefore,

2‖µσ,xt − ν‖TV =
∑

η∈C

∑

y∈[n]

|µσ,xt (η, y)− ν(η, y)|

=
∑

y∈[n]

|µσ,xt (σ, y)− ν(σ, y)|+
∑

η 6=σ

∑

y∈[n]

|µσ,xt (η, y)− ν(η, y)|

= (1− α)t +
∑

η∈C

∑

y∈[n]

|Bσ,x
t (η, y) + Cσ,x

t (η, y)− u(η)πη(y)|+ o(1). (4.29)

We may rewrite Cσ,x
t (η, y) = χu(η)Ĉσ,x

t (η, y), where

χ = 1− (1− α)t − αt(1− α)t−1 = α2

t∑

s=1

s−1∑

r=1

(1− α)t−r−1,

Ĉσ,x
t (η, y) =

1

χ
α2

t∑

s=1

s−1∑

r=1

(1− α)t−r−1
∑

z∈[n]

∑

v∈[n]

µσ,xr−1(v)Pan
v (Xs−1−r = z)P t−s

η (z, y),

and we use the notation µσ,xr−1(v) :=
∑

ω∈C µ
σ,x
r−1(ω, v). Notice that Ĉσ,x

t (η, ·) is a probability
on [n]. Define also the probability λη by

λη(y) =
1

χ
α2

t∑

s=1

s−1∑

r=1

(1− α)t−r−1µinP
t−s
η (y).

Lemma 4.1 implies that uniformly in η ∈ C:

‖Ĉσ,x
t (η, ·)− πη‖TV = ‖λη − πη‖TV + o(1). (4.30)

Moreover, Lemma 3.1 implies that whenever t− s→∞:
∑

η

u(η)‖µinP
t−s
η − πη‖TV = o(1). (4.31)

Since α→ 0, (4.31) implies
∑

η

u(η)‖λη − πη‖TV = o(1). (4.32)

Inserting (4.30) and (4.32) in (4.29) we obtain

2‖µσ,xt − ν‖TV = (1− α)t +
∑

η∈C

∑

y∈[n]

|Bσ,x
t (η, y) + (1− χ)u(η)πη(y)|+ o(1). (4.33)
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Let us now take t = βα−1, for some fixed constant β > 0. Since α → 0 we have 1 − χ →
e−β(1 + β) and

2‖µσ,xt − ν‖TV = e−β +
∑

η∈C
u(η)ψt(η) + o(1), (4.34)

where we define

ψt(η) =
∑

y∈[n]

∣∣∣βe−βB̂σ,x
t (η, y)− e−β(1 + β)πη(y)

∣∣∣ , (4.35)

with B̂σ,x
t (η, ·) the probability on [n] defined by

B̂σ,x
t (η, y) =

1

t

t∑

s=1

∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y).

We start by noting that

ψt(η) ≤ 2βe−β‖B̂σ,x
t (η, ·)− πη‖TV + e−β.

In particular, (4.34) shows that uniformly in (σ, x) ∈ C× [n]

‖µσ,xt − ν‖TV ≤ (1 + β)e−β + o(1),

which proves (4.6). At this point we split the analysis in four cases.

Scenario 1: αTENT → γ =∞

In this case we notice that t = o(log n). Therefore, for every σ ∈ C, x ∈ [n] there must exist
a set I ⊂ [n] such that for all s ≤ t:

P s−1
σ (x, I) = 1, |I| ≤ ∆t = no(1).

Moreover, for every η ∈ C and for every z ∈ [n] there exists a set Jz ∈ [n] such that for
every s ≤ t

P t−s
η (z,Jz) = 1, |Jz| = no(1).

Therefore, setting J = ∪z∈IJz,

|J | = no(1), B̂σ,x
t (η,J ) = 1− o(1).
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Moreover, w.h.p. with respect to η one has πη(J ) = o(1). Indeed, we know that for some
constant C > 0,

∑
x∈[n] π(x)2 ≤ Cn−1 by Lemma 4.3 below, and for any U ⊂ [n], Cauchy-

Schwarz implies
πη(U)2 ≤ |U |

∑

x∈[n]

π(x)2 ≤ C|U |n−1. (4.36)

It follows that w.h.p.

ψt(η) = 2βe−β + e−β + o(1).

In conclusion, (4.34) implies

‖µσ,xt − ν‖TV = (1 + β)e−β + o(1),

which proves (4.9). Note that because of the uniform average over η ∈ C the convergence
in (4.9) actually holds uniformly in σ ∈ C rather than in P-probability as stated.

Scenario 2: αTENT → γ = 0.

In this case it possible to find a sequence υ = υ(n) = o(1) that vanishes sufficiently slowly
that

υt = υβα−1 = ω(TENT).

If Êσ,x
t (η, ·) denotes the probability on [n]

Êσ,x
t (η, y) =

1

(1− 2υ)t

(1−υ)t∑

s=υt

∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y),

then
‖B̂σ,x

t (η, ·)− Êσ,x
t (η, ·)‖TV = O(υ).

Let us write ∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, ·) =: λP t−s
η (·),

and notice that
‖λP t−s

η − πη‖TV ≤ max
x∈[n]
‖P t−s

η (x, ·)− πη‖TV.

Since t− s = ω(TENT), from Theorem 1.7 we conclude that w.h.p. with respect to η:

‖Êσ,x
t (η, ·)− πη‖TV = o(1).
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Therefore, w.h.p.
‖B̂σ,x

t (η, ·)− πη‖TV = o(1).

By the triangular inequality and (4.34),

‖µσ,xt − ν‖TV = e−β + o(1).

This proves (4.8). As in the previous case, it is worth noting that the convergence in (4.8)
actually holds uniformly in σ ∈ C rather than in P-probability.

Scenario 3i: αTENT → γ ∈ (0,∞) and β < γ

We want to control ψt(η) as defined in (4.35). If β < γ then t = (1 − ε)TENT for some
ε ∈ (0, 1). We argue that w.h.p. with respect to the independent pair (σ, η),

‖B̂σ,x
t (η, ·)− πη‖TV = 1− o(1). (4.37)

Call Ys,t the set of y ∈ [n] such that
∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y) ≥ e−(1+ε)Ht

Summing over y ∈ Ys,t, we must have

|Ys,t| ≤ e(1+ε)Ht = n1−ε2

Lemma 4.5 below implies in particular that
∑

y∈Ys,t

∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y) = 1− o(1).

Setting Y = ∪ts=1Ys,t and noticing that |Y | ≤ TENT n
1−ε2 = o(n), we have

∑

y∈Y
B̂σ,x
t (η, y) ≥ 1

t

t∑

s=1

∑

y∈Ys,t

∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y) = 1− o(1).

Since |Y | = o(n), B̂σ,x
t (η, ·) is w.h.p. asymptotically singular with respect to πη; see the

argument in (4.36). This proves (4.37). Inserting this in (4.34)-(4.35), it follows that w.h.p.
with respect to σ ∈ C:

‖µσ,xt − ν‖TV = (1 + β)e−β + o(1).
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Scenario 3ii: αTENT → γ ∈ (0,∞) and β > γ.

By definition there must exist some ε > 0 such that

t = βα−1 =
β

Hγ
log(n) > (1 + ε)TENT.

For every υ ∈ (0, ε/2), at the price of an additive error O(υ) in total variation, we can
replace B̂σ,x

t (η, ·) by the probability B̂1(·) defined as

B̂1(y) =
1

(1− 2υ)t

(1−υ)t∑

s=υt

∑

z∈[n]

P s−1
σ (x, z)P t−s

η (z, y).

Since t > (1 + ε)TENT and t − s → ∞, we can use Theorem 4.2 to obtain that w.h.p. with
respect to the independent pair (σ, η),

‖B̂1 − πη‖TV = o(1) (4.38)

From (4.35),

ψt(η) = e−β
∑

y∈[n]

|βB̂1(y)− (1 + β)πη(y)|+O(υ) = e−β +O(υ) + o(1).

Since υ is arbitrarily small, from (4.34) we obtain that w.h.p. with respect to σ ∈ C:

‖µσ,xt − ν‖TV = e−β + o(1).

�

4.2 Trichotomy for the random walk

Here we prove Theorem 4.3. The main observation can be stated as follows.

Proposition 4.1 Let τ = τ(t) denote the random variable in (4.28). Then, uniformly in t ≥ 2:

lim
n→∞

max
σ,x
‖PJ

σ,x (Xt = · | 1 ≤ τ < t)− µin‖TV = 0

84



Proof: Observe that

PJ
σ,x (τ ∈ {0, t}) = 1−PJ

σ,x (1 ≤ τ < t) = (1− α)t + α(1− α)t−1 = (1− α)t−1. (4.39)

Moreover, if 1 ≤ s < t,

PJ
σ,x (Xt = y; τ = s) = α(1− α)t−s

∑

η∈C
u(η)λP t−s

η (y)

where λ is the probability measure

λ(z) = PJ
σ,x(Xs = z | τ = s).

We then compute the conditional probability

PJ
σ,x (Xt = y | 1 ≤ τ < t) =

1

1− (1− α)t−1

t−1∑

s=1

PJ
σ,x (Xt = y; τ = s) (4.40)

=
1

1− (1− α)t−1

t−1∑

s=1

α(1− α)t−s
∑

η∈C
u(η)λP t−s

η (y). (4.41)

Now we can rely on the uniform bound of Lemma 4.1 to conclude

‖PJ
σ,x (Xt = · | 1 ≤ τ < t)− µin‖TV

≤
t−1∑

s=1

α(1− α)t−s

1− (1− α)t−1
max
x∈[n]
‖Pan

x (Xt−s = ·)− µin‖TV = o(1).

�

Corollary 4.1 Uniformly in t ≥ 1:

‖PJ
σ,x(Xt = ·)− µin‖TV = (1− α)t‖P t

σ(x, ·)− µin‖TV + o(1).

Proof: Note that

PJ
σ,x(Xt = · | τ = 0) = P t

σ(x, ·) , PJ
σ,x(Xt = · | τ = t) = P t−1

σ (x, ·).
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Using Proposition 4.1, and α→ 0, the triangle inequality shows that

‖PJ
σ,x(Xt = ·)− µin‖TV
= ‖(1− α)t−1PJ

σ,x(Xt = · | τ ∈ {0, t}) + PJ
σ,x (1 ≤ τ < t)PJ

σ,x(Xt = · | 1 ≤ τ < t)− µin‖TV
= (1− α)t−1‖PJ

σ,x(Xt = · | τ ∈ {0, t})− µin‖TV + o(1)

= (1− α)t−1‖(1− α)P t
σ(x, ·) + αP t−1

σ (x, ·)− µin‖TV + o(1)

= (1− α)t‖P t
σ(x, ·)− µin‖TV + o(1).

�

Therefore, to prove Theorem 4.3 it is sufficient to prove the next lemma.

Lemma 4.2 If t = βTENT then for any fixed β > 0, β 6= 1:

max
x∈[n]

∣∣‖P t
σ(x, ·)− µin‖TV − ϕ(β)

∣∣ P−→ 0, (4.42)

where ϕ(β) = 1 if β < 1 and ϕ(β) = q for β > 1, and q is defined in (4.15).

Proof: From Theorem 1.7 it is sufficient to show that if t = βTENT with β < 1, then for
any ε > 0 w.h.p.

min
x∈[n]

∥∥P t
η(x, ·)− µin

∥∥
TV
≥ 1− ε, (4.43)

and that

q − ‖πη − µin‖TV P−→ 0. (4.44)

The concentration (4.44) has been already proved in [13, Lemma 17] (see also the proof of
Proposition 3.5). Concerning the estimate (4.43), we can use Lemma 4.5 below to show
that if t = βTENT with β < 1 then there exists a set Ux ⊂ [n] with |Ux| = o(n) such that
w.h.p.

P t
η(x, Ux) ≥ 1− o(1).

Since µin(Ux) = o(1), this ends the proof. �
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4.3 Cutoff in changing environment

This section is devoted to the proof of Theorem 4.2. In the proof we will make a crucial
use of the fact that the stationary distribution of a digraph from the DCM/OCM ensemble
is a widespread measure w.h.p.. This result is presented in the following subsection.

4.3.1 The stationary measure is widespread

Lemma 4.3 There exists a constant C ≡ C(∆) > 0 such that

lim
n→∞

P


n

∑

z∈[n]

π(z)2 ≤ C


 = 1.

Proof: Call Z = n
∑

z∈[n] π(z)2. Let t = log3(n) and consider the event

D =

{
max
x,z∈[n]

|π(z)− P t(x, z)| = o(n−3)

}
. (4.45)

A simple consequence of Theorem 1.7 (see Section 5.3) is that P(D) = 1− o(1). Therefore,

P(Z > C) ≤ P(Z > C;D) + o(1).

By Markov’s inequality

P (Z > C; D) ≤ E[ZK1D]

CK
, ∀K ≥ 1.
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Therefore, it is sufficient to show that E[ZK1D] ≤ (C/2)K for some K = ω(1). Choose for
example K = log(n),

E[ZK1D] ≤nKE




∑

z∈[n]

∑

x∈[n]

∑

y∈[n]

1

n2

(
P t(x, z) + o(n−3)

) (
P t(y, z) + o(n−3)

)


K
 (4.46)

≤nK

E




o(n−1) +

∑

z∈[n]

∑

x∈[n]

∑

y∈[n]

1

n2
P t(x, z)P t(y, z)



K


 (4.47)

≤(2n)K


E




∑

z∈[n]

∑

x∈[n]

∑

y∈[n]

1

n2
P t(x, z)P t(y, z)



K


+ o(1) (4.48)

=(2n)KPan
unif

(
X

(`)
t = Y

(`)
t , ∀` ≤ K

)
+ o(1) (4.49)

where Pan
unif denotes the law of the 2K annealed walks (X

(k)
s , Y

(k)
s )s≤t for k ≤ K, each

starting at a uniform and vertex independently on the others. The 2K walks are indepen-
dent conditionally on the environment, and the average is both over the walks and the
environment. For an explicit construction, we can generate recursively the walks and the
environment, letting the trajectories reveal the configuration σ, the `-th trajectory living
in the environment discovered by the previous `−1 trajectories; see Section 5.3 for a more
detailed argument. Therefore, it is sufficient to show that it is possible to find a constant
C > 0 such that for every sufficiently large n

Pan
unif

(
X

(`)
t = Y

(`)
t , ∀` ≤ K

)
≤
(
C

4n

)K
. (4.50)

We define the events

Bk =
⋂

`≤k
{X(`)

t = Y
(`)
t }, (4.51)

and callAk the set of vertices which have at least one tail/head revealed by the trajectories(
X(`), Y (`)

)
`≤k. We call Ξk a realization of the trajectories (X

(`)
s , Y

(`)
s )s≤t,`≤k satisfying Bk,

and compute the conditional probability

Pan
unif (Bk+1 | Ξk) =

∑

z∈[n]

∑

x∈[n]

∑

y∈[n]

1

n2
Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z | Ξk

)
. (4.52)
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We start by showing that if x, y, z are distinct and in [n] \ Ak then, uniformly in Ξk,

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z |Ξk

)
= O

(
1

n2

)
. (4.53)

Consider the event Ek that the trajectory X(k) has no collision with itself nor with the
environment previously discovered by X(1), Y (1) . . . , X(k−1), Y (k−1), while Yk will denote
the event that the walk X(k) does not discover y. At any given time, any given walk has
probability O(1/n) of hitting a given vertex by generating a fresh new edge. Thus, by a
union bound, the event Eck ∪ Yck has probability O(Kt2/n) uniformly in k ≤ K. We write

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z | Ξk

)
=Pan

x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Ek+1;Yk+1 | Ξk

)
+

+Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Eck+1;Yk+1 | Ξk

)
+

+Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Ek+1;Yck+1 | Ξk

)
+

+Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Eck+1;Yck+1 | Ξk

)
.

Consider first the case where X(k+1), before arriving in z at time t, passes through y and
visits at least once an already discovered vertex. The probability of visiting y ∈ Ack and
z ∈ Ack can be bounded by O(t2/n2), and the probability of visiting a discovered vertex
cannot exceed O(Kt2/n), uniformly in k ≤ K. Thus,

Pan
x,y

(
X

(k+1)
t = z; Eck+1;Yck+1 | Ξk

)
= O(t/n)O(t/n)O(Kt2/n) = o(n−2).

Similarly,

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Eck+1;Yk+1 | Ξk

)
= O(Kt2/n)O(t/n)O(Kt2/n) = o(n−2).

Indeed, the walk X(k+1) must visit z and also one of the previously discovered vertices,
which has probability O(Kt2/n) × O(t/n). Then, in order for the walk Y (k+1) to arrive in
z at t it is necessary to visit a vertex that was already discovered (e.g., z itself). The latter
event has probability O (Kt2/n).

Notice that under Ek+1 ∩ Yk+1, in order to realize the event X(k+1)
t = z, Y

(k+1)
t = z there

must be a time s ≤ t such that Y (k+1) collides at time s with the trajectory of X(k+1), then
Y (k+1) stays on this trajectory for t − s units of time, and then finally hits z at time t. On
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the event Ek+1 the probability of X(k+1)
t = z is bounded by d−z

m
(1 + o(1)), and the event that

Y (k+1) spends h units of time in the path X(k+1) is at most 2−h. Therefore,

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Ek+1;Yk+1 | Ξk

)
≤ d−z

m
(1 + o(1)) · ∆

m

t∑

h=1

2−h ≤ ∆2

n2
. (4.54)

Under X0 6= y and The event Ek+1 ∩ {X(k+1)
t = z} ∩ Yck+1 has probability O(t/n)×O(1/n).

Under this event, when the walk Y (k+1) starts at y the revealed in-neighborhood of z
consist of a unique path of length t from x to z and y is a vertex in this path. Since y 6= x,
to achieve Y (k+1) = z it is necessary that Y (k+1) exits and re-enters the path. This requires
hitting the path by creating a fresh edge, which has probability O(Kt2/n). Hence,

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z; Ek+1;Yck+1 | Ξk

)
= O(t/n)O(1/n)O(Kt2/n) = o(n−2).

In conclusion, we have proved (4.53). In particular,

∑

z∈Ack

∑

x∈Ack\z

∑

y∈Ack\z,x

1

n2
Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t = z | Ξk

)
≤ n3 1

n2

∆2

n2
=

∆2

n
. (4.55)

We now deal with the probability

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t | Ξk

)
,

when x ∈ Ak and y ∈ Ack or viceversa. By symmetry we can restrict to the former case.
We observe that

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t | Ξk

)
= O

(
Kt2

n

)
. (4.56)

Indeed,

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t ;Yk+1 | Ξk

)
= O

(
Kt2

n

)
, (4.57)

since the latter event requires that the walk Y
(k+1)
t visits a vertex that has been already

discovered by X(1), Y (1), . . . , X(k), Y (k), X(k+1). On the other hand

Pan
x,y

(
Yck+1 | Ξk

)
= O

(
t

n

)
. (4.58)
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Hence, using |Ak| ≤ Kt,
∑

x∈Ak

∑

y∈Ack

1

n2
Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t | Ξk

)
≤ Kt · n

n2
×O

(
Kt2

n

)
= o(n−1). (4.59)

We are left with considering two cases: x ∈ Ak and y ∈ Ak (and z ∈ [n] arbitrary), and
the case z ∈ Ak while x, y ∈ Ack. The probability of these two events are easy to bound.
Indeed, |Ak| ≤ Kt implies

∑

x∈Ak

∑

y∈Ak

1

n2
Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t | Ξk

)
≤ K2t2

n2
= o(n−1). (4.60)

Finally, if z ∈ Ak and x, y ∈ Ack then

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t ∈ Ak; Yk+1 | Ξk

)
= O

(
K2t4

n2

)
,

since both the walks have to discover the cluster Ak in order to visit z. On the other hand

Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t ∈ Ak; Yck+1 | Ξk

)
= O

(
Kt2

n
· t
n

)
,

since the X(k+1) needs to visit both y and the cluster Ak. Hence
∑

x∈Ack

∑

y∈Ack

1

n2
Pan
x,y

(
X

(k+1)
t = Y

(k+1)
t ∈ Ak | Ξk

)
= O

(
K2t4

n2

)
= o(n−1). (4.61)

Therefore, putting together the bounds (4.55), (4.59), (4.60) and (4.61), and reccaling (4.52),
we showed that

Pan
unif (Bk+1 | Ξk) ≤

∆2

n
+ o

(
n−1
)
≤ 2∆2

n
.

By the uniformity in k ≤ K and in Ξk of the previous argument, we conclude that

Pan
unif (BK) = Pan

unif (B1)
K−1∏

k=1

Pan
unif (Bk+1 |Bk) ≤

(
2∆2

n

)K
.

Therefore it is sufficient to choose C = 8∆2 to conclude that (4.50) holds.

�

Lemma 4.4 We have

lim
n→∞

P
(

max
z∈[n]

π(z) ≤ log8(n)

n

)
= 1. (4.62)
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Proof: For the DCM ensemble we may refer to Section 5.4 for a much more precise result,
where 8 is replaced by an optimal constant a ∈ [0, 1]. We give here an alternative proof of
the weaker bound (4.62) that holds for the OCM as well. We show that if t = log3(n), then
uniformly in z ∈ [n]

P


∑

x∈[n]

1

n
P t(x, z) ≥ log8(n)

2n


 = o(n−1). (4.63)

By the union bound, and the fact that the eventD in (4.45) occurs w.h.p., (4.63) is sufficient
to prove (4.62). Define

W :=
∑

x∈[n]

1

n
P t(x, z).

By Markov inequality, for every K ≥ 1

P
(
W ≥ log8(n)

2n

)
≤ 2KnK

log8K(n)
E
[
WK

]
.

As in the proof of Lemma 4.3, the term in the right hand side of the latter display can be
read in terms of the annealed walks. In conclusion, to prove (4.63) it is sufficient to show
that for K = log(n)

E
[
WK

]
= Pan

unif

(
X

(k)
t = z, ∀k ≤ K

)
≤
(
C log7(n)

n

)K
, (4.64)

for some constant C > 0, where the (X
(k)
s )s≤t, for k ∈ {1, . . . , K}, are K independent

walks conditionally on the environment and the average is both over the walks and the
environment. Reasoning as in the proof of Lemma 4.3, similarly to (4.51) we call

Bk =
⋂

`≤k
{X(`)

t = z}.

The proof is completed by observing that uniformly in k ≤ K,

Pan
unif (Bk+1 |Bk) = O

(
Kt2

n

)
= O

(
log7(n)

n

)
,

which is sufficient to prove (4.64). The above estimate simply follows by observing that
X

(k+1)
t = z implies that X(k+1) hits at some time s ∈ [0, t] for the first time a vertex already

discovered by the walks X(`), ` ≤ k. �
Lemma 4.3 and Lemma 4.4 provide the result mentioned at the beginning of the section.

Corollary 4.2 W.h.p. πσ is a widespread measure.
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4.3.2 Proof of the cutoff

We now turn to the proof of Theorem 4.2. Let σ, η two independent uniformly random
configurations in C. In this section we will assume that t ∈ Θ(TENT) and s ≤ t. Let
Qσ,η
x ≡ Qσ,η

x,s,t denote the quenched law of the walker that starts at X0 = x, goes for s steps
trough σ and then, starting at Xs, goes for t − s steps trough η. We will represent the
probability distribution on [n] for the position of the walker at time t by the symbol

Qt
s(x, y) = Qσ,η

x (Xt = y).

Definition 4.1 We define path of length t an arbitrary sequence of vertices p = (v0, . . . , vt). We
call weight of the path w(p) the product

w(p) =
s−1∏

j=0

Pσ(vj, vj+1)
t−1∏

i=s

Pη(vi, vi+1).

Lemma 4.5 If s ∈ [0, t] and t = Θ(log n), for every ε ∈ (0, 1)

min
x∈[n]

Qσ,η
x

(
w(X0, X1, . . . , Xt) ∈

[
e−(1+ε)Ht, e−(1−ε)Ht]) P−→ 1.

Proof: The case s = 0 is exactly [13, Proposition 8] for the DCM and [14, Theorem 4] for
the OCM. Since w is a product, if s, t − s = Θ(log n) the claim follows by these results in
[13, 14] and the independence of σ and η. It remains to consider the case s = o(log n) and
the case t− s = o(log n). If s = o(log n) then w.h.p. any path of length s has weight in the
window [∆−s, 2δ−s] = e−o(t) , see Chapter 2. Hence the result follows again by the case
s = 0. The same argument works also in the case t− s = o(log n). �

Proof of the Lower Bound of Theorem 4.2.

Let t = (1 − ε)TENT for some ε > 0. Fix any x ∈ [n] and call Ux the set of vertices y
such that Qt

s(x, y) > e−(1+ε)Ht = n−1+ε2 . By Lemma 4.5, uniformly in x, |Ux| = o(n) and
Qt
s(x, Ux) = 1 − o(1). Since πη is widespread by Corollary 4.2, from the argument in

(4.36) we have πη(Ux) = o(1). Hence, w.h.p. for every x ∈ [n] the measure Qt
s(x, ·) is

asymptotically singular with respect to πη. This concludes the proof of the lower bound
of Theorem 4.2. �
We now turn to proving the upper bound in Theorem 4.2, which is more involved. In fact,
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an adaptation of the arguments of [13, 14] is not straightforward in this case. Below we
present the details in the case of the DCM. The proof for the OCM is very similar.

Remark 4.2 For what concerns the upper bound, we can restrict to the case s, t− s = Θ(log(n))
because of the following argument. If s = o(log(n)) then the upper bound in Theorem 4.2 holds
as a trivial consequence of Theorem 1.7. In fact, if s = o(log(n)) and t = (1 + ε)TENT for some
ε > 0, we have t− s ≥ (1 + ε/2)TENT. Hence,

‖Qt
s(x, ·)− πη‖TV ≤ max

x∈[n]
‖P t−s

η (x, ·)− πη‖TV P→ 0.

If t− s = o(log(n)) then s ≥ (1 + ε/2)TENT. Therefore

‖Qt
s(x, ·)− πη‖TV ≤‖Qt

s(x, ·)− πσP t−s
η ‖TV + ‖πσP t−s

η − πη‖TV
≤‖P s

σ(x, ·)− πσ‖TV + ‖πσP t−s
η − πη‖TV P→ 0.

where we used that ‖P s
σ(x, ·)− πσ‖TV P→ 0 by Theorem 1.7 and by Corollary 4.2 πσ is widespread.

Then the result follows again by Theorem 1.7.

In what follow we will assume t, s, t − s = Θ(log(n)) and t = (1 + υ)TENT for some suffi-
ciently small υ > 0. The general case t = βTENT for any β > 1 follows by monotonicity of
the TV-distance with respect to t. Call

} :=
1

5
log∆(n), h := } ∧ t− s

2
= Θ(TENT), r := t− s− h = Θ(TENT),

and notice that there exists some ε ∈ (0, 1) such that

r + s ≤ (1− ε)TENT.

Strategy of proof

The general strategy of proof is the same as in [13, 14]. We recall here the main steps and
then give the details of its implementation in our general setting. We can replace πη by
µinP

h since we know by Lemma 3.1 that w.h.p.

‖µinP
h
η − πη‖TV = o(1). (4.65)

We will focus on a particular set of starting states. Fixed the realization σ we call Sσ?
the set of vertices for which the out-neighborhood in σ is a tree up to height h. By [13,
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Proposition 6] (or [14, Lemma 9]) w.h.p. with respect to the sampling of the configuration
σ, most of the vertices are in Sσ? , and the quenched probability that the walk is out of the
set Sω? vanishes exponentially fast in time. More precisely, fixed ` = log log n < s

max
x∈[n]

Qσ,η
x (X` 6∈ Sσ? ) ≤ 2−`.

Therefore, by the triangle inequality

max
x∈[n]
‖Qt

s(x, ·)− µinP
h
η ‖TV ≤ max

x∈[n]
Qσ,η
x (X` 6∈ Sσ? ) + max

x∈Sσ?
‖Qt−`

s−`(x, ·)− µinP
h
η ‖TV. (4.66)

Thus, in order to show the uniform upper bound in Theorem 4.2 it is sufficient to show
an upper bound that holds uniformly in the random set Sσ? .

We will define a set of nice paths for the trajectory of the walk. For every couple of vertices
x, y we letNx,y denote the set of nice paths from x to y of length t. Consequently, we define

Q̄t
s(x, y) :=

∑

p∈Nx,y
w(p)

the probability to go from x to y along a nice path. Notice that for arbitrarily small con-
stant ε > 0

‖µinP
h
η −Qt

s(x, ·)‖TV =
∑

y∈[n]

[
µinP

h
η (y)−Qt

s(x, y)
]

+

≤
∑

y∈[n]

[
µinP

h
η (y)(1 + ε) +

ε

n
− Q̄t

s(x, y)
]

+
. (4.67)

Therefore, if we can show that

µinP
h
η (y)(1 + ε) +

ε

n
≥ Q̄t

s(x, y), (4.68)

then the positive part in (4.67) can be neglected, and summing over y ∈ [n] one obtains

‖µinP
h
η −Qt

s(x, ·)‖ ≤
∑

y∈[n]

(
(1 + ε)µinP

h
η (y) +

ε

n
− Q̄t

s(x, y)
)

(4.69)

=Qσ,η
x

(
(X0, . . . , Xt) 6∈

⋃

y∈[n]

Nx,y
)

+ 2ε.
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At this point we are left with showing that the probability of following a path that is not
nice is arbitrarily small uniformly in the starting point x ∈ Sσ? , namely

max
x∈Sσ?

Qσ,η
x

(
(X0, . . . , Xt) 6∈

⋃

y∈[n]

Nx,y
)
< ε w.h.p. (4.70)

We first introduce the notation required to define the set of nice paths. Then we will
present a proof of the validity of (4.70) and (4.68).

We will start by constructing the subgraph Gσx (s) of σ spanned by the paths of length at
most s, starting at x, and with weight greater e−(1+υ)Hs. We will construct Gσx (s) together
with a spanning tree T σx (s) of Gσx (s) in the following way.

Definition 4.2 Construction of Gσx (s) and T σx (s).

• Call Gσx [0] the empty graph on {x} and Eσ
1 = E+

x .

• To every e1 ∈ Eσ
1 it is associated the weight ŵσ(e1) := (d+

x )−1.

• For every ` ≥ 1

1. Choose a tail e` ∈ Eσ
` with maximal weight and reveal σ(e`) = f`.

2. Add the edge (e`, f`) to Gσx [`− 1] and call the resulting graph Gσx [`].

3. Call the edge (e`, f`) open if v(f`) 6∈ Gσx [`− 1].

4. Call T σx [`] the open subgraph of Gσx [`].

5. If v(f`) 6∈ Gσx [` − 1], then we associate to any e′ ∈ E+
v(f`)

the weight ŵσ(e′) :=

ŵσ(e`)(d
+
v(f`)

)−1, and if

ŵσ(e′) ≥ e−(1+υ)Hs =: ŵmin,σ,

then let Eσ
`+1 = Eσ

` \ {e`} ∪ E+
v(f`)

. Otherwise, set Eσ
`+1 = Eσ

` \ {e`}.
6. Remove from Eσ

`+1 the tails e′ such that the vertex v(e′) is at distance greater than s
from x in T σx [`].

• Iterate the procedure up to the random time κσ at which Eσ
κσ = ∅, and call

T σx (s) := T σx [κσ], Gσ(s) := Gσx [κσ].

The definition given above of the subgraphs T σx (s) and Gσx (s) coincides with that given
in [13, 14]. It was shown in [13, 14] that the random walk on the static environment
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σ, starting at x ∈ Sσ? and of length s will stay on the tree T σx (s) w.h.p.. Hence, in the
double environment case, the walk will be w.h.p. in one of the leaves of T σx (s) at time s.
Call Lx,σs the set of leaves of T σx (s). We will now construct the subgraph Gη(r) of all the
paths in η which start at some z ∈ Lx,σs , have length r, and cumulative weight larger than
e−(1+υ/2)H(t−h). Similarly to the construction in Definition 4.2, together with Gη(r) we are
going to construct a collection of rooted directed trees T ηz (r), each rooted at z ∈ Lx,σs , with
depth r. The forest

Wη(r) :=
⋃

z∈Lx,σs

T ηz (r)

seen as a collection of edges, will be our candidate for the support of the second part of
the walk.

Definition 4.3 Construction of Gη(r) andWη(r).

• Call Gη[0] the empty graph on Lx,σs and call Eη
1 = ∪z∈Lx,σs E+

z .

• To every e1 ∈ Eη
1 we associate the weight

ŵ(e1) := ŵσ(e1),

of the unique path in T σx (s) joining x to v(e1) times the inverse of the out degree of v(e1).

• For every ` ≥ 1

1. Choose a tail in e` ∈ Eη
` with maximal weight and reveal η(e`) = f`.

2. Add the edge (e`, f`) to Gη[`− 1] and call the resulting graph Gη[`].
3. Call the edge (e`, f`) open if v(f`) 6∈ Gη[`− 1].

4. CallWη[`] the open subgraph of Gη[`].
5. If v(f`) 6∈ Gη[` − 1], then we associate to any e′ ∈ E+

v(f`)
the weight ŵ(e′) :=

ŵ(e`)(d
+
v(f`)

)−1, and if

ŵ(e′) ≥ e−(1+υ/2)H(t−h) =: ŵmin,

then let Eη
`+1 = Eη

` \ {e`} ∪ E+
v(f`)

. Otherwise, set Eη
`+1 = Eη

` \ {e`}.
6. Remove from Eη

`+1 the tails e′ such that the vertex v(e′) is at distance greater than r
from the corresponding root inWη[`].

• Iterate the procedure up to the random time κ′η at which Eη
κ′η

= ∅, and call

Wη(r) :=Wη[κ′η] = ∪z∈Lσ,xs T ηz [κ′η], Gη(r) := Gη[κ′η].
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We know by [13, 14] that the random number of edges revealed by the construction in
Definition 4.2, κσ, is a.s. o(n). We need an analogous result for the quantity κ′η in Defini-
tion 4.3.

Lemma 4.6 For any σ ∈ C and x ∈ [n], for all η ∈ C

ŵ(e`) ≤
r

`
, ∀` < κ′η.

In particular, recalling that t− h = r + s ≤ (1− ε)TENT, by choosing υ < ε

κ′η = O
(
log(n)n(1+υ/2)(1−ε)) = O(n1−ε2).

Proof: For each ` < κ′η we consider the forest

W̃η[`] := ∪z∈Lx,σs T̃ ηz [`]

constructed as in Definition 4.3, but if an edge (e`′ , f`′) for some `′ ≤ ` is not open, we
attach a fictitious leaf (with no future children) to e`′ , to which we assign the weight
ŵ(e`′). This construction ensures that for every ` both the graph Gη[`] and the forest W̃η[`]

have exactly ` edges. Call F` the set of leaves of W̃η[`]. By construction, for all v ∈ F`
there is a unique z ∈ Lx,σs and a unique path p(v) : z → v of length at most r in W̃ η[`]. The
weight of such a path is given by ŵ(ev) where ev is any tail in E+

u if (u, v) is the last edge
in the path p(v). It follows that

∑

z∈Lx,σs

∑

v∈F`

∑

p:z→v
ŵ(ev) ≤ 1.

Since all v ∈ F` are such that ŵ(ev) ≥ ŵ(e`), we obtain

|F`|ŵ(e`) ≤ 1.

By the absence of cycles in W̃η[`] we also have that

` ≤ r|F`|.

In conclusion
ŵ(e`) ≤

1

|F`|
≤ r

`
.
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If we replace ` = κ′η − 1 we get

κ′η − 1 ≤ r

ŵ(eκ′η−1)
≤ r

ŵmin

.

�
We are now in shape to define the set of nice paths.

Definition 4.4 We call nice a path p = (v0, . . . , vt) s.t.

1. w(p) ≤ e−(1−υ/2)Ht = n−1−υ/2−υ2/2 = O(n−1−υ/3).

2. p belongs to T σx (s) up to time s.

3. p belongs to T ηz (r) from time s to time t− h = r + s for some z ∈ Lx,σs .

4. (vt−h, . . . , vt) is the unique path of length at most h in the configuration η from vt−h to vt.

We now focus on proving (4.70), which will be a consequence of the law of large numbers
in Lemma 4.5 together with the forthcoming Lemma 4.7. The latter shows, via a martin-
gale argument, that w.h.p. the walk will pass along the edges of one of the trees of the
forestWη(r) for the time steps s, . . . , s+ r.

Fix σ ∈ C and x ∈ [n]. The set of leaves Lσ,xs is then determined, and we call Pσ,x the
law of the process defined in Definition 4.3. Consider the the σ-field (S`)`≥0 generated by
the first ` steps of the construction described in Definition 4.3. Call (M`)`≥0 the stochastic
process adapted to (S`)`≥0 defined recursively by M0 = 0 and

M`+1 = M` + 1`+1<κ′η1v(f`+1)∈Gη [`]ŵ(e`+1).

Lemma 4.7 For every ε > 0

Pσ,x
(
Mκ′η ≤ ε

)
= 1− o(n−1).

Proof: We follow [13, 14], where a very similar statement was proved for the walk on
a single environment. We compute the first two conditional moments of the increment
M`+1 −M`:

E [M`+1 −M` | S`] ≤ 1`+1<κ′η

ŵ(e`+1)∆|Gη[`]|
m− ` , (4.71)

E
[
(M`+1 −M`)

2 | S`
]
≤ 1`+1<κ′η

ŵ(e`+1)2∆|Gη[`]|
m− ` . (4.72)
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Fix any ¯̀= Θ(log(n)) and observe that since |Gη[`]| ≤ `, ŵ(e`) ≤ r
`
, we have

ŵ(e`+1)∆|Gη[`]| = O(log(n)),
∑

`≥¯̀

ŵ(e`) = O(log2(n)).

Set

a :=
∑

`≥¯̀

E [M`+1 −M` | S`] = O
(

log(n)n−ε
2
)

= o(1),

b :=
∑

`≥¯̀

E
[
(M`+1 −M`)

2 | S`
]

= O
(
log3(n)n−1

)
.

Fix any ε ∈ (0, 1) and define

Z`+1 =
4

ε
(M`+1 −M` − E [M`+1 −M` | S`]) .

We observe that E[Z`+1 |S`] = 0 and that |Z`+1| ≤ 1, since if ` ≥ ¯̀= ω(1), then w(e`+1)→ 0,
and in particular M`+1 −M` ≤ ε

4
. We now focus on the martingale

Wu =
u∑

`=¯̀+1

Z`, ∀u > ¯̀.

We notice that

Wκ′η =
4

ε

(
Mκ′η −M¯̀− a

)
and b′ :=

∑

`≥¯̀

Var(Z` | S`) ≤
16

ε2
b.

A martingale version of Bennett’s inequality introduced in [33, Theorem 1.6] ensures that,
for c > 0,

Pσ,x
(
∃u ≥ ¯̀s.t. Wu ≥ c

)
≤ ec

(
b′

c+ b′

)c+b′
.

In particular

Pσ,x
(
Mκ′η −M¯̀≥ ε

)
= Pσ,x

(ε
4
Wκ′η + a ≥ ε

)

≤ Pσ,x
(ε

4
Wκ′η ≥

ε

2

)
= Pσ,x

(
Wκ′η ≥ 2

)
= o(n−1).

We are left to show that for every ε > 0 it holds

Pσ,x (M¯̀≤ ε) = 1− o(n−1).
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It is easy to check that the probability of having 2 or more edges that are not open in the
construction of the first ` edges of η is o(n−1). Moreover, it trivially holds that for every
` ≥ 0, ŵ(e`) ≤ 2−s. Hence,

Pσ,x(M¯̀≥ 2−s+1) = o(n−1),

which is clearly enough to derive the desired conclusions. �
At this point, the proof of (4.70) is just a collection of the results obtained so far.

Proposition 4.2 For every ε > 0:

lim
n→∞

P
(

min
x∈Sσ?

Qσ,η
x

(
(X0, . . . , Xt) ∈ ∪y∈[n]Nx,y

)
> 1− ε

)
= 1.

Proof: We check the conditions in Definition 4.4 one by one:

1. follows from Lemma 4.5;

2. see [14, Proposition 13] and [13, Proposition 10];

3. The third requirement in Definition 4.4 follows from Lemma 4.7. Indeed, Mκ′η is
greater or equal than the probability that a random walk starting at x in σ and visit-
ing Lσ,xs at time s, exits the forestWη(r) in the time interval s, t− h;

4. Notice that in order to satisfy the fourth requirement of Definition 4.4 it is suffi-
cient that vt−h ∈ Sη? . Therefore we obtain the desired conclusion by noticing that
maxz∈[n] P

η
z(Xr 6∈ Sη? )

P→ 0, see [13, Proposition 6] and [14, Lemma 9].

�

We are now left with showing the validity of (4.68), which concludes the proof of the
upper bound. Such a result is achieved by the following lemma, which is based on the
constructions in Definitions 4.2 and 4.3 and on a variation of Azuma’s inequality.

Lemma 4.8 For every ε > 0

lim
n→∞

P
(
∀x, y ∈ [n], Q̄t

s(x, y) ≤ (1 + ε)µinP
h
η (y) + ε

n

)
= 1.

Proof: Fix x, y ∈ [n]. Construct, in the order, σ, Gη(r) as in Definition 4.3 and the in-
neighborhood of y up to distance h− 1. The latter can be constructed in the usual breadth
first way, see Chapter 2. Let S denote the σ-field generated by this construction. Clearly,
in the construction of the in-neighborhood of y we cannot reveal more than ∆h = o(n)
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edges. Therefore, by Lemma 4.6 at most o(n) edges of η have been revealed up to this
point. Let EW denote the tails of the leaves of Wη(r) and call Fy the set of heads of the
vertices v in the boundary of the in-neighborhood of y such that there is a unique path of
length at most h−1 to y in the configuration η. Associate to each head f ∈ Fy the quantity

ŵ′(f) = P h−1
η (v(f), y).

At this point we notice that by definition of nice paths,

Q̄t
s(x, y) =

∑

e∈EW
ŵ(e)

∑

f∈Fy
ŵ′(f)1ŵ(e)ŵ′(f)≤n−1−υ/31η(e)=f .

We remark that ∑

f∈Fy
ŵ′(f) ≤ µinP

h
η (y),

∑

e∈EW
ŵ(e) ≤ 1.

Since a matching η(e) = f of e ∈ EW and f ∈ Fy can only occur after the generation of
σ,Gη(r),Fy,

E[Q̄t
s(x, y) | S] ≤ µinP

h
η (y),

where we use E[1η(e)=f | S] = 1
m

(1 + o(1)). We rewrite Z := Q̄t
s(x, y) =

∑
e∈EW c(e, η(e)),

where
c(e, f) = ŵ(e)ŵ′(f)1ŵ(e)ŵ′(f)≤n−1−υ/3 ≤ n−1−υ/3 =: ‖c‖∞.

We can now invoke the concentration inequality (see [21, Proposition 1.1] and [13, Section
6.2])

P (Z − E[Z|S] > a | S) ≤ exp

(
− a2

2‖c‖∞(2E[Z|S] + a)

)

and by choosing a := ε
2
E[Z|S] + ε

n
we obtain a probability bounded by o(n−2) for every

fixed choice of x, y. Taking a union bound we conclude the desired result. �
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CHAPTER 5

EXTREMAL VALUES OF THE
STATIONARY DISTRIBUTION

This chapter is devoted to the study of the stationary distribution of the simple random
walk on a graph G from the DCM(d±) ensemble. As remarked in Chapter 1, our focus
in on give sharp bounds on the extremal values of the stationary distribution, which we
will refer to as πmin and πmax. The main results are reported in Theorems 5.1 and 5.2. To
discuss them, it is convenient to introduce the following notation.

Definition 5.1 Recalling the Definition 2.1, we define the parameters

γ0 :=
log ∆+

log δ−
, γ1 := max

(k,`)∈L

log `

log k
, κ1 := min

(k,`)∈L

log `

log k
, κ0 :=

log δ+

log ∆−
. (5.1)

Theorem 5.1 Set πmin = minx∈[n] π(x). There exists a constant C > 0 such that

P
(
C−1 log1−γ0(n) ≤ nπmin ≤ C log1−γ1(n)

)
= 1− o(1). (5.2)

Moreover, there exists β > 0 such that

P
(
∃S ⊂ [n], |S| ≥ nβ , nmax

y∈S
π(y) ≤ C log1−γ1(n)

)
= 1− o(1). (5.3)
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Remark 5.1 Notice that γ0 ≥ γ1 ≥ 1. If the sequences d± are such that (δ−,∆+) ∈ L, then
γ0 = γ1 =: γ, so in these cases Theorem 5.1 implies that

πmin �
1

n
log1−γ(n) w.h.p. (5.4)

In all other cases, the estimate (5.2) can be strengthened by replacing γ0 with γ′0 where

γ′0 :=
log ∆′+
log δ′−

, ∆′+ := max{` : (k, `) ∈ L0} , δ′− := min{k : (k, `) ∈ L0}, (5.5)

and L0 ⊂ C is defined as the set of (k, `) ∈ C such that

lim sup
n→∞

|Vk,`|
n1−a = +∞ , ∀a > 0. (5.6)

We refer to Remark 5.3 below for additional details on this improvement.

Concerning the maximal values of π we establish the following estimates.

Theorem 5.2 Set πmax = maxx∈[n] π(x). There exists a constant C > 0 such that

P
(
C−1 log1−κ1(n) ≤ nπmax ≤ log1−κ0(n)

)
= 1− o(1). (5.7)

Moreover, there exists β > 0 such that

P
(
∃S ⊂ [n], |S| ≥ nβ , nmin

y∈S
π(y) ≥ C−1 log1−κ1(n)

)
= 1− o(1). (5.8)

Remark 5.2 Notice that κ0 ≤ κ1 ≤ 1. If the sequences d± are such that (∆−, δ+) ∈ L, then
κ0 = κ1 =: κ, and in these cases Theorem 5.2 implies

πmax �
1

n
log1−κ(n) w.h.p. (5.9)

In analogy with Remark 5.1, if (∆−, δ+) /∈ L, then (5.7) can be improved by replacing κ0 with κ′0
where

κ′0 :=
log δ′+
log ∆′−

, δ′+ := min{` : (k, `) ∈ L0} , ∆′− := max{k : (k, `) ∈ L0}, (5.10)
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5.1 The local approximation

We saw in Chapter 2 that the stationary distribution at a typical vertex y admits an ap-
proximation in terms of the in-neighbourhood of y at a distance that is much smaller than
the mixing time. More precisely, we saw in Lemma 3.1 that for any sequence tn →∞

‖π − µinP
tn‖TV P−→ 0. (5.11)

While these facts are very useful to study the typical values of π, they give very poor in-
formation on its extremal values πmin and πmax, and to prove Theorem 5.1 and Theorem 5.2
we need a stronger control of the local approximation of the stationary distribution.

A key role in our analysis is played by the quantity Γh(y) defined as follows. Consider
the set ∂B−h (y) of all vertices z ∈ [n] such that d(z, y) = h, and define

Γh(y) :=
∑

z∈∂B−h (y)

d−z P
h(z, y). (5.12)

The definitions (5.12) is such that for any y ∈ [n] and h ∈ N

Γh(y) ≤ mµinP
h(y). (5.13)

If B−h (y) is a tree, then (5.13) is an equality. In any case, Γh(y) satisfies the following rough
inequalities.

Lemma 5.1 With high probability, for all y ∈ [n], for all h ∈ [1, }]:
(
δ−
∆+

)h
≤ Γh(y) ≤ 2∆−

(
∆−
δ+

)h
. (5.14)

Proof: From Proposition 2.3 we may assume that the event G(}) holds. From Lemma 2.3
we know that 1

2
δh− ≤ |∂B−h (y)| ≤ ∆h

−. Thus it suffices to show that for any z ∈ ∂B−h (y),
h ∈ [1, }]:

∆−h+ ≤ P h(z, y) ≤ 2δ−h+ . (5.15)

The bounds in (5.15) follow from the observation that any path of length h from z to y has
weight at least ∆−h+ and at most δ−h+ , and that there is at least one and at most two such
paths if z ∈ ∂B−h (y) and G(}) holds. The latter fact can be seen with the same argument
used in the proof of Lemma 2.3. With reference to that proof: in case 1) there are at most
two paths from z to y, see Fig. 2.1; in case 2) there is only one path from z to y; see Fig. 2.2
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and Fig. 2.3. �
Roughly speaking, in what follows the extremal values of π will be controlled by approx-
imating π(y) in terms of Γh(y) for values of h of order log log n, for every node y. The next
two results allow us to control Γh(y) in terms of Γh0(y) for all h ∈ [h0, }] where h0 is of
order log log n.

Lemma 5.2 There exist constants c > 0 and C > 0 such that:

P
(
∀y ∈ [n], ∀h ∈ [h0, }] , Γh(y) ≥ c log1−γ0(n)

)
= 1− o(1), (5.16)

where γ0 is the constant from Theorem 5.1 and h0 := logδ−log(n) + C.

Proof: From Lemma 2.3 we may assume that |∂B−h0(y)| ≥ 1
2
δh0− =: R for all y ∈ [n],

where h0 is as in the statement above with C to be fixed later. Once we have the in-
neighbourhood B−h0(y) we proceed with the generation of the (h − h0)-in-neghborhoods
of all z ∈ ∂B−h0(y). Consider the first R elements of ∂B−h0(y), and order them as (z1, . . . , zR)
in some arbitrary way. We sample sequentially B−h−h0(z1), then B−h−h0(z2), and so on. We
want to couple the random variables Zi := B−h−h0(zi), i = 1, . . . , R with a sequence of
independent rooted directed random trees Wi, i = 1, . . . , R, defined as follows. The tree
Wi is defined as the first h−h0 generations of the marked random tree Ti produced by the
following instructions:

• the root is given the mark zi;

• every vertex with mark j has d−j children, each of which is given independently the
mark k ∈ [n] with probability d+

k /m.

Consider the generation of the i-th variable Zi. This is achieved by the breadth-first se-
quential procedure, where at each step a head is matched with a tail chosen uniformly at
random from all unmatched tails; see Section 2.3.1. If instead we pick the tail uniformly
at random from all possible tails, then we need to reject the outcome if the chosen tail
belongs to the set of tails that have been already matched. Since the total number of tails
matched at any step of this generation is at most K := ∆} = O(n1/5), it follows that the
probability of a rejection is bounded by p := K/m = O(n−4/5). Let us now consider the
event of a collision, that is when the chosen tail belongs to a vertex that has already been
exposed during the previous steps, including the generation of B−h0(y) and of the Zj , j ≤ i.
Notice that the total number of exposed vertices is at mostK and therefore the probability
of a collision is bounded by p′ = ∆K/m = O(n−4/5). Since the generation of Zi requires
at most K matchings, we see that conditionally on the past, a Zi with no rejections and
no collisions is created with probability uniformly bounded from below by 1 − q, where
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q = O(n−3/5). We say that Zi is bad if its generation produced a rejection or a collision.
Once the Zi’s have been sampled we define a set I such that i ∈ I if and only if either
Zi is bad or there is a bad Zj such that the generation of Zj produced a collision with a
vertex from Zi. With this notation, Wi = Zi for all i /∈ I and

Γh(y) ≥ ∆−h0+

∑

i/∈I
Γh−h0(zi). (5.17)

The above construction shows that the cardinality of the set I is stochastically dominated
by twice the binomial Bin(R, q). Therefore,

P(|I| ≥ 10) ≤ P(Bin(R, q) ≥ 5) ≤ (Rq)5 = o(n−2). (5.18)

On the other hand, notice that for all i /∈ I:

Γh−h0(zi) = M i
h−h0 , (5.19)

where M i
t , t ∈ N, is defined as follows. Let Tt,i denote the set of vertices forming genera-

tion t of the tree Ti rooted at zi, and for x ∈ Tt,i, write

w(x) := w (x 7→ zi; Ti) =
t∏

u=1

1

d+
xu

, (5.20)

for the weight of the path (xt = x, xt−1, . . . , x1, x0 = zi) from x to zi along Ti. Then M i
t is

defined by
M i

t =
∑

x∈Tt,i
d−xw(x), M i

0 = d−zi . (5.21)

It is not hard to check (see Section 2.2) that for fixed n, (M i
t )t≥0 is a martingale with

E[M i
t ] = M i

0 = d−zi .

In particular, by truncating at a sufficiently large constant C1 > 0 one has M i
h−h0 ≥ Xi,

where
Xi := min{M i

h−h0 , C1}
are independent random variables with 0 ≤ Xi ≤ C1 and E[Xi] ≥ 1 for all i. Therefore,
Hoeffding’s inequality gives, for any k ∈ N:

P
( k∑

i=1

M i
h−h0 ≤ k/2

)
≤ e−c1k, (5.22)
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where c1 > 0 is a suitable constant.

Divide the integers {1, . . . , R} into 10 disjoint intervals I1, . . . , I10, each containing R/10
elements. If |I| < 10 then there must be one of the intervals, say Ij∗ , such that Ij∗ ∩ I = ∅.
It follows that if |I| < 10, then

∑

i/∈I
Γh−h0(zi) ≥

∑

i∈Ij∗
M i

h−h0 ≥ min
`=1,...,10

∑

i∈I`
M i

h−h0 . (5.23)

Using (5.18), and (5.22)-(5.23) we conclude that, for a suitable constant c2 > 0:

P
(∑

i/∈I
Γh−h0(zi) ≤ c2R

)
≤ P

(
min

`=1,...,10

∑

i∈I`
M i

h−h0 ≤ c2R
)

+ P(|I| ≥ 10)

≤ 10 exp (−c1R/10) + o(n−2). (5.24)

Since R = 1
2
δh0− = 1

2
δC− log n, the probability in (5.24) is o(n−2) if C is large enough. From

(5.17), on the event
∑

i/∈I Γh−h0(zi) > c2R one has

Γh(y) ≥ 1
2
c2δ

h0
− ∆−h0+ = c log1−γ0(n), (5.25)

where c = 1
2
c2(δ−/∆+)C . Thus the event (5.25) has probability 1− o(n−2), and the desired

conclusion follows by taking a union bound over y ∈ [n] and h ∈ [h0, }]. �

Lemma 5.3 There exists a constant K > 0 such that for all ε > 0, with high probability:

max
y∈[n]

max
h∈[h1,}]

∣∣∣ Γh(y)

Γh1(y)
− 1
∣∣∣ ≤ ε, (5.26)

where h1 := K log log(n).

Proof: For any h ≥ h1, let σh denote a realization of the in-neighbourhood B−h (y), ob-
tained with the usual breadth-first sequential generation. From Proposition 2.3 we may
assume that the tree excess of B−h (y) is at most 1, as long as h ≤ }. Call Etot,h,Ftot,h the
set of unmatched tails and unmatched heads, respectively, after the generation of σh. Let
also Eh ⊂ Etot,h denote the set of unmatched tails belonging to vertices not yet exposed,
and let Fh be the subset of heads attached to ∂B−h (y). By construction, all heads attached
to ∂B−h (y) must be unmatched at this stage so that Fh ⊂ Ftot,h. Moreover,

Γh(y) =
∑

f∈Fh
P h(vf , y), (5.27)
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where vf denotes the vertex to which the head f belongs. To compute Γh+1 given σh we
let ω : Etot,h 7→ Ftot,h denote a uniform random matching of Etot,h andFtot,h, and notice that
a vertex z is in ∂B−h+1(y) if and only if z is revealed by matching one of the heads f ∈ Fh
with one of the tails e ∈ Eh. Therefore,

Γh+1(y) =
∑

e∈Eh

d−e
d+
e

∑

f∈Fh
P h(vf , y)1ω(e)=f

=
∑

e∈Etot,h
c(e, ω(e)), (5.28)

where we use the notation d±e for the degrees of the vertex to which the tail e belongs, and
the function c is defined by

c(e, f) =
d−e
d+
e

P h(vf , y)1e∈Eh,f∈Fh . (5.29)

Since σh is such that TX(B−h (y)) ≤ 1, we may estimate P h(vf , y) as in (5.15), so that

‖c‖∞ = max
e,f

c(e, f) ≤ 2∆ δ−h−1. (5.30)

We now use a version of Bernstein’s inequality proved by Chatterjee ([21, Proposition
1.1]) which applies to any function of a uniform random matching of the form (5.28). It
follows that for any fixed σh, for any s > 0:

P (|Γh+1(y)− E [Γh+1(y) |σh] | ≥ s |σh) ≤ 2 exp

(
− s2

2 ‖c‖∞ (2E [Γh+1(y) |σh] + s)

)
. (5.31)

Taking s = aE [Γh+1(y) |σh], a ∈ (0, 1), one has

P (|Γh+1(y)− E [Γh+1(y) |σh] | ≥ s |σh) ≤ 2 exp

(
−a

2E [Γh+1(y) |σh]
6 ‖c‖∞

)
. (5.32)

Since the probability of the event ω(e) = f conditioned on σh is 1
|Etot,h| = 1

m
(1 +O(∆h/m)),

we have

E [Γh+1(y) |σh] =
1

|Etot,h|
∑

e∈Eh

d−e
d+
e

Γh(y)

=
1

m

(
1 +O(∆h/m)

)

m−

∑

e/∈Eh

d−e
d+
e


Γh(y)

=
(
1 +O(∆h/m)

)
Γh(y) =

(
1 +O(n−1/2)

)
Γh(y), (5.33)
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for all h ∈ [h1, }], where we use the fact that the sum over all tails e (matched or un-
matched) of d−e /d+

e equals m. In particular, from Lemma 5.2 it follows that for some con-
stant c > 0:

E [Γh+1(y) |σh] ≥ c log−γ0+1(n), (5.34)

and therefore, using (5.30), one finds

‖c‖−1
∞ E [Γh+1(y) |σh] ≥ log6(n), (5.35)

for all h ≥ h1, if the constant K in the definition of h1 is large enough. From (5.32), (5.33)
and (5.35) it follows that, letting

A := {|Γh+1(y)− Γh(y)| ≤ aΓh(y) , ∀h ∈ [h1, }]} ,

with a := log−2(n), then
P (A) = 1− o(1). (5.36)

Moreover, on the event A, for all h ∈ [h1, }]:

|Γh(y)− Γh1(y)| ≤
h−1∑

j=h1

|Γj+1(y)− Γj(y)| ≤ εΓh1(y).

�

5.2 Lower bound on πmin

If for some t ∈ N and a > 0 one has P t(x, y) ≥ a for all x, y ∈ [n], then

π(z) =
n∑

x=1

π(x)P t(x, z) ≥ a, (5.37)

and therefore πmin ≥ a. We will prove the lower bound on P t(x, y) by choosing t of the
form t = (1 + ε)TENT, for some small enough ε > 0. More precisely, fix a constant η > 0,
set η′ = 3η H

log δ
, and define

t? = hx + hy + 1 , hx = (1− η)TENT , hy = η′TENT. (5.38)

Note that η′ ≥ 3η and thus t? = t?(η) ≥ (1 + 2η)TENT.
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Lemma 5.4 There exists η0 > 0 such that for all η ∈ (0, η0):

P
(
∀x, y ∈ [n], P t?+1(x, y) ≥ c

n
Γhy(y)

)
= 1− o(1), (5.39)

for some constant c = c(η,∆) > 0.

From (5.37) and Lemma 5.4 it follows that w.h.p. for all y

π(y) ≥ c
n

Γhy(y). (5.40)

Lemma 5.2 thus implies, for some new constant c > 0

P
(
πmin ≥ c

n
log1−γ0(n)

)
= 1− o(1), (5.41)

which settles the lower bound in Theorem 5.1.

To prove Lemma 5.4 we will restrict to a subset of nice paths from x to y. This will allow
us to obtain a concentration result for the probability to reach y from x in t? steps.

5.2.1 A concentration result for nice paths

The definition of the nice paths follows a construction introduced in [13], which we now
recall. In contrast with [13] however, here we need a lower bound on P t?(x, y) and thus
the argument is somewhat different.

Following [13, Section 6.2] and [14, Section 4.1], we introduce the rooted directed tree
T (x), namely the subgraph of the hx-out-neighbourhood of x defined by the following
process: initially all tails and heads are unmatched and T (x) is identified with its root, x;
throughout the process, we let ∂+T (x) (resp. ∂−T (x)) denote the set of unmatched tails
(resp. heads) whose endpoint belongs to T (x); the height h(e) of a tail e ∈ ∂+T (x) is
defined as 1 plus the number of edges in the unique path in T (x) from x to the endpoint
of e; the weight of e ∈ ∂+T (x) is defined as

w(e) =

h(e)−1∏

i=0

1

d+
xi

, (5.42)

where (x = x0, x1, . . . , xh(e)−1) denotes the path in T (x) from x to the endpoint of e; we
then iterate the following steps:

• a tail e ∈ ∂+T (x) is selected with maximal weight among all e ∈ ∂+T (x) with h(e) ≤
hx − 1 and w(e) ≥ wmin := n−1+η2 (using an arbitrary ordering of the tails to break
ties);
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• e is matched to a uniformly chosen unmatched head f , forming the edge ef ;

• if f was not in ∂−T (x), then its endpoint and the edge ef are added to T (x).

The process stops when there are no tails e ∈ ∂+T (x) with height h(e) ≤ hx−1 and weight
w(e) ≥ wmin. Note that T (x) remains a directed tree at each step. The final value of T (x)
represents the desired directed tree. After the generation of the tree T (x) a total number
κ of edges has been revealed, some of which may not belong to T (x). As in [14, Lemma
7], it is not difficult to see that when exploring the out-neighbourhood of x in this way the
random variable κ is deterministically bounded as

κ ≤ n1− η2
2 . (5.43)

At this stage, let us call E∗(x) the set of unmatched tails e ∈ ∂+T (x) such that h(e) = hx.

Definition 5.2 A path p = (x0 = x, x1, . . . , xt? = y) of length t? starting at x and ending at y
is called nice if it satisfies:

1. The first hx steps of p are contained in T (x), and satisfy

hx∏

i=0

1

d+
xi

≤ n2η−1;

2. xhx+1 ∈ ∂B−hy(y).

To obtain a useful expression for the probability of going from x to y along a nice path,
we need to generate B−hy(y), the hy-in-neighbourhood of y. To this end, assume that κ
edges in the hx-out-neighbourhood of x have been already sampled according to the pro-
cedure described above, and then sample B−hy(y) according to the sequential generation
described in Section 2.3.1. Some of the matchings producing B−hy(y) may have already
been revealed during the previous stage. In any case, this second stage creates an addi-
tional random number τ of edges, satisfying the crude bound τ ≤ ∆hy+1. We call Ftot the
set of unmatched heads, and Etot the set of unmatched tails after the sampling of these
κ + τ edges. Consider the set F0 := Fhy ∩ Ftot, where Fhy denotes the set of all heads
(matched or unmatched) attached to vertices in ∂B−hy(y). Moreover, call E0 := E∗(x) ∩ Etot
the subset of unmatched tails which are attached to vertices at height hx in T (x). Finally,
complete the generation of the digraph by matching the m− κ− τ unmatched tails Etot to
the m − κ − τ unmatched heads Ftot using a uniformly random bijection ω : Etot 7→ Ftot.
For any f ∈ Fhy we introduce the notation

w(f) := P hy(vf , y), (5.44)
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where vf denotes the vertex v ∈ ∂B−hy(y) such that f ∈ E−v . With the notation introduced
above, the probability to go from x to y in t? steps following a nice path can now be
written as

P0,t?(x, y) :=
∑

e∈E0

∑

f∈F0

w(e)w(f)1ω(e)=f1w(e)≤n2η−1 . (5.45)

Note that, conditionally on the construction of the first κ+ τ edges described above, each
Bernoulli random variable 1ω(e)=f appearing in the above sum has probability of success
at least 1/m. In particular, if σ denotes a fixed realization of the κ+ τ edges, then

E [P0,t?(x, y) |σ] ≥ 1

m
Ax,y(σ)Bx,y(σ) , (5.46)

where
Ax,y(σ) :=

∑

e∈E0
1w(e)≤n2η−1w(e) , Bx,y(σ) :=

∑

f∈F0

w(f). (5.47)

Moreover, the probability of ω(e) = f for any fixed e ∈ E0, f ∈ F0 is at most 1/(m−κ− τ),
so that

E [P0,t?(x, y) |σ] ≤ (1 + o(1))

m
Ax,y(σ)Bx,y(σ) ≤ (1 + o(1))

m
Γhy(y), (5.48)

where we use Ax,y ≤ 1 and Bx,y ≤ Γhy(y). Consider the event

Yx,y =
{
σ : Ax,y(σ) ≥ 1

2
, Bx,y(σ) ≥ log−γ0(n) , TX(B−hy(y)) ≤ 1

}
, (5.49)

where the exponent −γ0 is chosen for convenience only and any exponent −c with c >
γ0 − 1 would be as good.

Lemma 5.5 There exists η0 > 0 such that for all η ∈ (0, η0), for any σ ∈ Yx,y, any a ∈ (0, 1):

P (|P0,t?(x, y)− E [P0,t?(x, y) |σ] | ≥ aE [P0,t?(x, y) |σ] |σ) ≤ 2 exp
(
−a2nη/2

)
(5.50)

Proof: Conditioned on σ, P0,t?(x, y) is a function of the uniform random permutation
ω : Etot 7→ Ftot,

P0,t?(x, y) =
∑

e∈Etot
c(e, ω(e)) , c(e, f) = w(e)w(f)1w(e)≤n2η−11e∈E0,f∈F0 . (5.51)

Since we are assuming TX(B−hy(y)) ≤ 1, we can use (5.15) to estimate w(f) ≤ 2δ−hy = n−3η

for any f ∈ F0. Therefore

‖c‖∞ = max
e,f

c(e, f) ≤ 2n−1−η. (5.52)
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As in Lemma 5.3, and as in [13], we use Chatterjee’s concentration inequality for uniform
random matchings [21, Proposition 1.1] to obtain for any s > 0:

P (|P0,t?(x, y)− E [P0,t?(x, y) |σ] | ≥ s |σ) ≤ 2 exp

(
− s2

2 ‖c‖∞ (2E [P0,t?(x, y) |σ] + s)

)
.

(5.53)
Taking s = aE [P0,t?(x, y) |σ], a ∈ (0, 1), one has

P (|P0,t?(x, y)− E [P0,t?(x, y) |σ] | ≥ s |σ) ≤ 2 exp

(
−a

2E [P0,t?(x, y) |σ]

6 ‖c‖∞

)
. (5.54)

Using (5.46), (5.49), and (5.52) one concludes that (5.50) holds for all σ ∈ Yx,y and for all n
large enough. �

Proof of Lemma 5.4

Let V∗ denote the set of all z ∈ [n] such that B+
} (z) is a directed tree. As observed in [13,

Proposition 6], it is an immediate consequence of Proposition 2.3 that with high probabil-
ity, for all x ∈ [n]:

P (x, V∗) =
∑

z∈V∗
P (x, z) ≥ 1

2
. (5.55)

Therefore,
P t?+1(x, y) ≥ 1

2
min
x∈V∗

P t?(x, y). (5.56)

Since P t?(x, y) ≥ P0,t?(x, y) it is sufficient to prove

P
(
∀x ∈ V∗,∀y ∈ [n], P0,t?(x, y) ≥ c

n
Γhy(y)

)
= 1− o(1), (5.57)

for some constant c = c(η,∆) > 0. The proof of (5.57) is based on Lemma 5.5 and the
following estimates which allow us to make sure the events Yx,y in Lemma 5.5 have large
probability.

Lemma 5.6 The event A1 = {∀x ∈ V∗,∀y ∈ [n] : Ax,y ≥ 1
2
} has probability

P (A1) = 1− o(1) .
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Proof: Let us first note that the event Â1 = {∀x ∈ V∗ :
∑

e∈E∗(x) w(e)1w(e)≤n2η−1 ≥ 0.9}
satisfies

P
(
Â1

)
= 1− o(1).

Indeed, this fact is a consequence of [13, 14], which established that for any ε > 0, with
high probability

min
x∈V∗

∑

e∈E∗(x)

w(e)1w(e)≤n2η−1 ≥ 1− ε, (5.58)

see e.g. [14, Theorem 4 and Lemma 11]. Thus, it remains to show that replacing E∗(x) with
E0 does not alter much the sum. Suppose the κ edges generating T (x) have been revealed
and then sample the τ edges generating the neighbourhood B−hy(y). Let K denote the
number of collisions between T (x) and B−hy(y). There are at most N := ∆hy = n3η log ∆/ log δ

attempts each with success probability at most p := κ/(m − κ). Thus K is stochastically
dominated by a binomial Bin(N, p), and therefore by Hoeffding’s inequality

P(K > Np+N) ≤ exp (−2N) ≤ exp
(
−n3η

)
.

Thus by a union bound we may assume that all x, y are such that the corresponding
collision count K satisfies K ≤ Np+N ≤ 2N . Therefore, on the event Â1

∑

e∈E0
w(e)1w(e)≤n2η−1 ≥ 0.9− 2N n2η−1 ≥ 1

2
,

if η is small enough. �

Lemma 5.7 Fix a constant c > 0 and consider the event A2 = {∀x, y ∈ [n] : Bx,y ≥ cΓhy(y)}.
If c > 0 is small enough

P (A2) = 1− o(1) .

Proof: By definition,
∑

f∈Fhy w(f) = Γhy(y). Thus, we need to show that if we replaceF0

byFhy the sum definingBx,y is still comparable to Γhy(y). For any constant T > 0, for each
z ∈ ∂B−hy−T (y), let Vz denote the set of w ∈ ∂B−hy(y) such that d(w, z) = T . Notice that if
the event G(}) from Proposition 2.3 holds then for each z ∈ ∂B−hy−T (y) one has |Vz| ≥ 1

2
δT .

Consider the generation of the κ + τ edges as above, and call a vertex z ∈ ∂B−hy−T (y) bad
if all heads attached to Vz are matched, or equivalently if none of these heads is in Ftot.
Given a z ∈ ∂B−hy−T (y), we want to estimate the probability that it is bad. To this end,
we use the same construction given in Section 5.2.1 but this time we first generate the
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in-neighbourhood B−hy(y) and then the tree T (x). Let K denote the number of collisions
between T (x) and the set Vz. Notice that |Vz| ≤ ∆T and that |T (x)| ≤ n1−η2/2, so that K is
stochastically dominated by the binomial Bin(N, p) where N = n1−η2/2 and p = ∆T+1/n.
Therefore,

P
(
K > 1

2
δT
)
≤ (Np)

1
2
δT ≤

(
∆T+1n−η

2/2
) 1

2
δT

.

Since |Vz| ≥ 1
2
δT , if z is bad then K > 1

2
δT and thus the probability of the event that z is

bad is at most O(n−δ
T η2/4). The probability that there exists a bad z ∈ ∂B−hy−T (y) is then

bounded by O(∆hyn−δ
T η2/4). In conclusion, if T = T (η) is a large enough constant, we can

ensure that for any y ∈ [n] the probability that there exists a bad z ∈ ∂B−hy−T (y) is o(n−2),
and therefore, by a union bound, with high probability there are no bad z ∈ ∂B−hy−T (y),
for all x, y ∈ [n]. On this event, for all z we may select one vertex w ∈ Vz with at least one
head f ∈ F0 attached to it. Notice that w(f) ≥ ∆−T−1P hy−T (z, y). Therefore, assuming
that there are no bad z ∈ ∂B−hy−T (y):

Bx,y(σ) =
∑

f∈F0

w(f)

≥ ∆−T
∑

z∈∂B−hy−T (y)

P hy−T (z, y) ≥ ∆−T−1Γhy−T (y).

From Lemma 5.3 we may finish with the estimate Γhy−T (y) ≥ 1
2
Γhy(y). �

We can now conclude the proof of (5.57). Consider the event

A = A1 ∩ A2 ∩ G(}). (5.59)

For any s > 0,

P
(
∀x, y ∈ [n], P0,t?(x, y) ≥ s

n
Γhy(y)

)
≥ P(A)−

∑

x,y∈[n]

P
(
P0,t?(x, y) < s

n
Γhy(y);A

)
. (5.60)

From Lemma 5.6, Lemma 5.7, and Proposition 2.3 it follows that P(A) = 1−o(1). LetWx,y

denote the event
E [P0,t?(x, y) |σ] ≥ c

2m
Γhy(y), (5.61)

where c is the constant from Lemma 5.7. From Lemma 5.2 we infer that

A ⊂ Wx,y ∩ Yx,y,
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for all x, y, and for all n large enough. Therefore,

P
(
P0,t?(x, y) < s

n
Γhy(y);A

)
≤ sup

σ∈Wx,y∩Yx,y
P
(
P0,t?(x, y) < s

n
Γhy(y) |σ

)
. (5.62)

Taking s > 0 a small enough constant and using (5.48) and (5.61), we see that P0,t?(x, y) <
s
n

Γhy(y) implies

|P0,t?(x, y)− E [P0,t?(x, y) |σ] | ≥ aE [P0,t?(x, y) |σ] ,

for some constant a > 0, and therefore from Lemma 5.5

sup
σ∈Wx,y∩Yx,y

P
(
P0,t?(x, y) < s

n
Γhy(y) |σ

)
= o(n−2). (5.63)

The bounds (5.60) and (5.63) end the proof of (5.57). This ends the proof of Lemma 5.4.

Remark 5.3 Let us show that if the type (δ−,∆+) is not in the set of linear types L one can
improve the lower bound on πmin as mentioned in Remark 5.1. The proof given above shows that
it is sufficient to replace γ0 by γ′0 in Lemma 5.2, where γ′0 is defined by (5.5). To this end, for any
ε > 0, let Lε denote the set of types (k, `) ∈ C such that

lim sup
n→∞

|Vk,`|
n1−ε = +∞ , (5.64)

where Vk,` denotes the set of vertices of type (k, `), and define

γ′ε :=
log ∆′ε,+
log δ′ε,−

, ∆′ε,+ := max{` : (k, `) ∈ Lε} , δ′ε,− := min{k : (k, `) ∈ Lε}. (5.65)

The main observation is that if (k, `) /∈ Lε, then w.h.p. there are at most a finite number of vertices
of type (k, `) in all in-neighbourhoods B−h0(y), y ∈ [n], for any h0 = O(log log n). Indeed, for
a fixed y ∈ [n] the number of v ∈ Vk,` ∩ B−h0(y) is stochastically dominated by the binomial
Bin

(
∆h0 , n−ε/2

)
, and therefore if K = K(ε) is a sufficiently large constant then the probability of

having more than K such vertices is bounded by (∆h0n−ε/2)K = o(n−1). Taking a union bound
over y ∈ [n] shows that w.h.p. all B−h0(y), y ∈ [n] have at most K vertices with type (k, `). Then
we may repeat the argument of Lemma 5.2 with this constraint, to obtain that for all ε > 0, w.h.p.
Γhy(y) ≥ c(ε) log1−γ′ε(n). Since the number of types is finite one concludes that if ε is small
enough then γ′0 = γ′ε and the desired conclusion follows.
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5.3 Upper bound on πmin

In this section we prove the upper bound on πmin given in (5.3). We first show that we can
replace π(y) in (5.3) by a more convenient quantity. Define the distances

d(s) = max
x∈[n]
‖P s(x, ·)− π‖TV , d̄(s) = max

x,y∈[n]
‖P s(x, ·)− P s(y, ·)‖TV. (5.66)

It is standard that, for all k, s ∈ N,

d(ks) ≤ d̄(ks) ≤ d̄(s)k ≤ 2kd(s)k, (5.67)

see e.g. [40]. In particular, defining

λt(y) =
1

n

∑

x∈[n]

P t(x, y) , (5.68)

for any k ∈ N, setting t = 2kTENT, one has

max
y∈[n]
|λt(y)− π(y)| ≤ d(2kTENT) ≤ 2kd(2TENT)k. (5.69)

From Theorem 1.7 we know that w.h.p. d(2TENT) ≤ 1
2e

so that the right hand side above
is at most e−k. If k = Θ(log2(n)) we can safely replace π(y) with λt(y) in (5.3). Thus, it
suffices to prove the following statement.

Lemma 5.8 For some constants β > 0, C > 0, and for any t = tn = Θ(log3(n)):

P
(
∃S ⊂ [n], |S| ≥ nβ , nmax

y∈S
λt(y) ≤ C log1−γ1(n)

)
= 1− o(1). (5.70)

Proof: Let (δ∗,∆∗) ∈ L denote the type realizing the maximum in the definition of γ1; see
(5.1). Let V∗ = Vδ∗,∆∗ denote the set of vertices of this type, and let α∗ ∈ (0, 1) be a constant
such that |V∗| ≥ α∗n, for all n large enough. Let us fix a constant β1 ∈ (0, 1

4
). This will be

related to the constant β, but we shall not look for the optimal exponent β in the statement
(5.70). Consider the first N1 := nβ1 vertices in the set V∗, and call them y1, . . . , yN1 . Next,
generate sequentially the in-neighbourhoods B−h0(yi), i = 1, . . . , N1, where

h0 = logδ∗ log n− C0, (5.71)

for some constant C0 to be fixed later. As in the proof of Lemma 5.2 we couple the B−h0(yi)
with independent random trees Yi rooted at yi. For each B−h0(yi) the probability of failing
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to equal Yi, conditionally on the previous generations, is uniformly bounded above by
p := N1∆2h0/m. Let A denote the event that all B−h0(yi) are successfully coupled to the Yi’s
and that they have no intersections. Therefore,

P(A) ≥ 1−O(N1p) ≥ 1−O(n3β1−1) = 1− o(1). (5.72)

Consider now a single random tree Y1. We say that Y1 is unlucky if all labels of the vertices
in the tree are of type (δ∗,∆∗). The probability that Y1 is unlucky is at least

q =

(
α∗n∆∗
m

)δh0∗
≥ n−η,

where η = δ−C0∗ log(∆/2α∗) if C0 is the constant in (5.71). We choose C0 so large that
0 < η ≤ β1/4. Call S1 the set of y ∈ {y1, . . . , yN1} such that Yi is unlucky. Since the Yi are
i.i.d. the probability that |S1| < nβ1/2 is bounded by the probability that Bin(N1, q) < nβ1/2,
which by Hoeffding’s inequality is at most

exp
(
−nβ1/3

)
(5.73)

Fix a realization σ of the in-neighbourhoods B−h0(yi), i = 1, . . . , N1. Say that yi is unlucky if
all vertices in B−h0(yi) are of type (δ∗,∆∗). Thanks to (5.72) we may assume that σ ∈ A, i.e.
B−h0(yi) = Yi for all i so that the set of unlucky yi coincides with S1, and thanks to (5.73) we
may also assume that σ is such that |S1| ≥ N̄ := nβ1/2. We call A′ ⊂ A the set of all σ ∈ A
satisfying the latter requirement. Let S̄ denote the first N̄ elements in S1. We are going to
show that uniformly in σ ∈ A′, for a sufficiently large constant C > 0, any t = Θ(log3(n)),

P
(∑

y∈S̄
λt(y) > CN̄

2n
log1−γ1(n)

∣∣∣σ
)

= o(1). (5.74)

Notice that (5.74) says that, conditionally on a fixed σ ∈ A′, with high probability
∑

y∈S̄
λt(y) ≤ CN̄

2n
log1−γ1(n),

which implies that there are at most N̄/2 vertices y ∈ S̄ with the property that λt(y) >
C
n

log1−γ1(n). Summarizing, the above arguments and (5.74) allow one to conclude the
unconditional statement that with high probability there are at least 1

2
nβ1/2 vertices y ∈ [n]

such that
λt(y) ≤ C

n
log1−γ1(n),

which implies the desired claim (5.70), taking e.g. β = β1/3.
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To prove (5.74), consider the sum

X =
∑

y∈S̄
λt(y).

We first establish that, uniformly in σ ∈ A′, for any t = Θ(log3(n)),

E (X |σ) = (1 + o(1))
δ∗
m
N̄∆−h0∗ δh0∗ . (5.75)

If y is unlucky then P h0(z, y) = ∆−h0∗ for any z ∈ ∂B−h0(y). Hence, for any y ∈ S̄:

λt(y) =
∆−h0∗
n

∑

x∈[n]

∑

z∈∂B−h0 (y)

P t−h0(x, z) = ∆−h0∗
∑

z∈∂B−h0 (y)

λt−h0(z).

Since |∂B−h0(y)| = δh0∗ , and since all z ∈ ∂B−h0(y) have the same in-degree d−z = δ∗, using
symmetry the proof of (5.75) is reduced to showing that for any z ∈ ∂B−h0(y), t = Θ(log3 n),

E (λt(z) |σ) = (1 + o(1))
d−z
m
. (5.76)

To compute the expected value in (5.76) we use the so called annealed process. Namely,
observe that

E (λt(z) |σ) =
1

n

∑

x∈[n]

E
(
P t(x, z) |σ

)
=

1

n

∑

x∈[n]

Pa,σx (Xt = z) , (5.77)

where Xt is the annealed walk with initial environment σ, and initial position x, and Pa,σx
denotes its law. This process can be described as follows. At time 0 the environment
consists of the edges from σ alone, and X0 = x; at every step, given the current environ-
ment and position, the walker picks a uniformly random tail e from its current position,
if it is still unmatched then it picks a uniformly random unmatched head f , the edge
ef is added to the environment and the position is moved to the vertex of f , while if e
is already matched then the position is moved to the vertex of the head to which e was
matched. Let us show that uniformly in x 6= z ∈ ∂B−h0(y), uniformly in σ ∈ A′:

Pa,σx (Xt = z) = (1 + o(1))
d−z
m
. (5.78)

Say that a collision occurs if the walk lands on a vertex that was already visited by using
a freshly matched edge. At each time step the probability of a collision is at most O(t/m),
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and therefore the probability of more than one collision in the first t steps is at most
O(t4/m2) = o(m−1). Thus we may assume that there is at most one cycle in the path of the
walk up to time t. There are two cases to consider: 1) there is no cycle in the path up to
time t or there is one cycle that does not pass through the vertex z; 2) there is a cycle and it
passes through z. In case 1) sinceXt = z the walker must necessarily pick one of the heads
of z at the very last step. Since all heads of z are unmatched by construction, and since the
total number of unmatched heads at that time is at least m−nβ1∆h0− t = (1−o(1))m, this
event has probability (1 + o(1))d−z /m. In case 2) since x 6= z we argue that in order to have
a cycle that passes through z, the walk has to visit z at some time before t, which is an
event of probability O(t/m), and then must hit back the previous part of the path, which
is an event of probability O(t2/m). This shows that we can upper bound the probability
of scenario 2) by O(t3/m2) = o(m−1). This concludes the proof of (5.78). Next, observe
that if x = z, then the previous argument gives Pa,σz (Xt = z) = O(t/m) which is a bound
on the probability that the walk hits again z at some point within time t. In conclusion,
(5.77) and (5.78) imply (5.76) which establishes (5.75).

Let us now show that
E
(
X 2 |σ

)
= (1 + o(1))E (X |σ)2 . (5.79)

Once we have (5.79) we can conclude (5.74) by using Chebyshev’s inequality together
with (5.75) and the fact that δh0∗ ∆−h0∗ ≤ C2 log1−γ1(n) for some constant C2 > 0. We write

E
(
X 2 |σ

)
=
∑

y,y′∈S̄
∆−2h0
∗

1

n2

∑

x,x′∈[n]

∑

z∈∂B−h0 (y)

∑

z′∈∂B−h0 (y′)

Pa,σx,x′(Xt−h0 = z,X ′t−h0 = z′), (5.80)

where Pa,σx,x′ is the law of two trajectories (Xs, X
′
s), s = 0, . . . , t, that can be sampled as

follows. Let X be sampled up to time t according to the previously described annealed
measure Pa,σx , call σ′ the environment obtained by adding to σ all the edges discovered
during the sampling of X and then sample X ′ up to time t independently, according to
Pa,σ

′

x′ .

Let also Pa,σu be defined by

Pa,σu =
1

n2

∑

x,x′∈[n]

Pa,σx,x′ .

Thus, under Pa,σu the two trajectories have independent uniformly distributed starting
points x, x′. With this notation we write

E
(
X 2 |σ

)
=
∑

y,y′∈S̄
∆−2h0
∗

∑

z∈∂B−h0 (y)

∑

z′∈∂B−h0 (y′)

Pa,σu (Xt−h0 = z,X ′t−h0 = z′). (5.81)
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Let us show that if z 6= z′, t = Θ(log3(n)):

Pa,σu (Xt = z,X ′t = z′) = (1 + o(1))
d−z d

−
z′

m2
. (5.82)

Indeed, let A be the event that the first trajectory hits z at time t and visits z′ at some time
before that. Then reasoning as in (5.78) the event A has probability O(t/m2). Given any
realization X of the first trajectory satisfying this event, the probability of X ′t = z′ is at
most the probability of colliding with the trajectory X within time t, which is O(t/m). On
the other hand, if the first trajectory hits z at time t and does visit z′ at any time before
that, then the conditional probability of X ′t = z, as in (5.78) is given by (1 + o(1))d−z′/m.
This proves (5.82) when z 6= z′.

If z = z′, t = Θ(log3(n)), let us show that

Pa,σu (Xt = z,X ′t = z) = O(1/m2). (5.83)

Consider the event A that the first trajectory X has at most one collision. The comple-
mentary event Ac has probability at most O(t4/m2). If Ac occurs, then the conditional
probability of X ′t = z is at most the probability that X ′ collides with the first trajectory at
some time s ≤ t, that is O(t/m). Hence,

Pa,σu (Xt = z,X ′t = z;Ac) = O(t5/m3) = O(1/m2). (5.84)

To prove (5.83), notice that to realize X ′t = z there must be a time s = 0, . . . , t such that
X ′ collides with the first trajectory X at time s, then X ′ stays in the digraph D1 defined
by the first trajectory for the remaining t − s units of time, and X ′ hits z at time t. On
the event A the probability of spending h units of time in D1 is at most 2δ−h, and for any
h ∈ [0, t] there are at most h + 1 points x which have a path of length h from x to z in D1.
Therefore

Pa,σu (Xt = z,X ′t = z;A) ≤ (1 + o(1))
d−z
m

t∑

h=0

2(h+ 1)

m
2δ−h = O(1/m2). (5.85)

Hence, (5.83) follows from (5.84) and (5.85).

In conclusion, using (5.82) and (5.83) in (5.81), and recalling (5.75), we have obtained
(5.79). �
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5.4 Upper bound on πmax

As in Section 5.3 we start by replacing π(y) with λt(y) = 1
n

∑
x P

t(x, y). In (5.69) we have
seen that if t = 2kTENT, then w.h.p.

max
y∈[n]
|λt(y)− π(y)| ≤ e−k. (5.86)

Thus, using a union bound over y ∈ [n], the upper bound in Theorem 5.2 follows from
the next statement.

Lemma 5.9 There exists C > 0 such that for any t = tn = Θ(log3(n)), uniformly in y ∈ [n]

P
(
λt(y) ≥ C

n
log1−κ0(n)

)
= o(n−1). (5.87)

Proof: Fix
h0 = log∆− log n,

and call σ a realization of the in-neighbourhood B−h0(y). Clearly,

λt+h0(y) =
∑

z∈B−h0 (y)

λt(z)P h0(z, y).

From (5.15), under the event Gy(}) from Proposition 2.3, we have P h0(z, y) ≤ 2δ−h0+ =
2 log−κ0(n) for every z ∈ B−h0(y). Define

X :=
∑

z∈B−h0 (y)

λt(z) = λt(B−h0(y)).

Then it is sufficient to prove that for some constant C, uniformly in σ and y ∈ [n]:

P
(
X > C

n
log n ; Gy(}) | σ

)
= o(n−1). (5.88)

By Markov’s inequality, for any K ∈ N and any constant C > 0:

P
(
X > C

n
log(n);Gy(}) |σ

)
≤ E

[
XK ;Gy(}) |σ

]
(
C
n

log n
)K . (5.89)

We fix K = log n, and claim that there exists an absolute constant C1 > 0 such that

E
[
XK ;Gy(}) |σ

]
≤
(
C1

n
log n

)K
. (5.90)
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The desired estimate (5.88) follows from (5.90) and (5.89) by taking C large enough.

We compute theK-th moment E
[
XK ;Gy(}) |σ

]
by using the annealed process as in (5.80).

This time we have K trajectories instead of 2:

E
[
XK ;Gy(}) |σ

]
=

1

nK

∑

x1,...,xK

E
[
P t(x1,B−h0(y)) · · ·P t(xK ,B−h0(y)) ; Gy(}) |σ

]

=
1

nK

∑

x1,...,xK

Pa,σx1,...,xK
(
X

(1)
t ∈ B−h0(y), . . . , X

(K)
t ∈ B−h0(y) ; Gy(})

)
, (5.91)

where X(j) := {X(j)
s , s ∈ [0, t]}, j = 1, . . . , K denote K annealed walks each with initial

point xj , and Pa,σx1,...,xK denotes the joint law of the trajectories X(j), j = 1, . . . , K, and the
environment, defined as follows. Start with the environment σ, and then run the first
random walk X(1) up to time t as described after (5.77). After that run the walk X(2) up to
time t with initial environment given by the union of edges from σ and the first trajectory,
as described in (5.80). Proceed recursively until all trajectories up to time t have been
sampled. This produces a new environment, namely the digraph given by the union
of σ and all the K trajectories. At this stage there are still many unmatched heads and
tails, and we complete the environment by using a uniformly random matching of the
unmatched heads and tails. This defines the coupling Pa,σx1,...,xK between the environment
and K independent walks in that environment, which justifies the expression in (5.91). It
is convenient to introduce the notation

Pa,σu =
1

nK

∑

x1,...,xK

Pa,σx1,...,xK ,

for the annealed law of the K trajectories such that independently each trajectory starts
at a uniformly random point X(j)

0 = xj . Let D0 = σ and let D`, for ` = 1, . . . , K, denote
the digraph defined by the union of σ = B−h0(y) with the first ` paths

{X(j)
s , 0 ≤ s ≤ t}, j = 1, . . . , `.

Call D`(}) the subgraph of D` consisting of all directed paths in D` ending at y with
length at most }. We define G`y(}) as the event TX(D`(})) ≤ 1. Notice that if the final
environment has to satisfy Gy(}), then necessarily for every ` the digraph D` must satisfy
G`y(}). Therefore,

E
[
XK ;Gy(}) |σ

]
≤ Pa,σu

(
X

(1)
t ∈ B−h0(y), . . . , X

(K)
t ∈ B−h0(y) ; GKy (})

)
. (5.92)
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Define
W` =

∑

x∈V (D`)

[d−x (D`)− 1]+, (5.93)

where V (D`) denotes the vertex set of D` and d−x (D`) is the in-degree of x in the digraph
D`. Define also the (`, s) cluster Cs` as the digraph given by the union of D`−1 and the
truncated path {X(`)

u , 0 ≤ u ≤ s}. We say that the `-th trajectory X(`) has a collision at time
s ≥ 1 if the edge (X

(`)
s−1, X

(`)
s ) /∈ Cs−1

` and X(`)
s ∈ Cs−1

` . We say that a collision occurs at time
zero if X(`)

0 ∈ D`−1. Notice that at least
∑

x/∈B−h0 (y)

[d−x (D`)− 1]+

collisions must have occurred after the generation of the first ` trajectories.

Let Q` denote the total number of collisions after the generation of the first ` trajectories.
Since |B−h0(y)| ≤ ∆ log n one must have

W` ≤ ∆ log n+Q`. (5.94)

Notice that the probability of a collision at any given time by any given trajectory is
bounded above by p := 2∆(Kt + ∆h0

− )/m = O(log4(n)/n) and therefore Q` is stochas-
tically dominated by the binomial Bin(Kt, p). In particular, for any k ∈ N:

P (QK ≥ k) ≤ (Ktp)k ≤ Ck
2

log8k(n)

nk
, (5.95)

for some constant C2 > 0. If A > 0 is a large enough constant, then

P (QK ≥ A log n) ≤ e−
A
2

log2(n). (5.96)

If A ≥ 2 then (5.96) is smaller than the right hand side of (5.90) with e.g. C1 = 1, and
therefore from now on we may restrict to proving the upper bound

Pa,σu

(
X

(1)
t ∈ B−h0(y), . . . , X

(K)
t ∈ B−h0(y) ; QK ≤ A log n ; GKy (})

)
≤
(
C1

n
log n

)K
, (5.97)

for some constant C1 = C1(A) > 0. To prove (5.97), define the events

B` = {X(1)
t ∈ B−h0(y), . . . , X

(`)
t ∈ B−h0(y) ; Q` ≤ A log n ; G`y(})}, (5.98)
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for ` = 1, . . . , K. Since B`+1 ⊂ B`, the left hand side in (5.97) is equal to

Pa,σu (B1)
K∏

`=2

Pa,σu (B` |B`−1) (5.99)

Thus, it is sufficient to show that for some constant C1:

Pa,σu (B` |B`−1) ≤ C1

n
log n , (5.100)

for all ` = 1, . . . , K, where it is understood that Pa,σu (B1 |B0) = Pa,σu (B1) .

Let us partition the event {X(`)
t ∈ B−h0(y)} by specifying the last time in which the walk

X(`) enters the neighbourhood B−h0(y). Unless the walk starts in B−h0(y), at that time it must
enter from ∂B−h0(y). Since the tree excess of B−h0(y) is at most 1, once the walker is in B−h0(y),
we can bound the chance that it remains in B−h0(y) for k steps by 2δ−k+ . Therefore,

Pa,σu (B` |B`−1) ≤ Pa,σu

(
X

(`)
t ∈ B−h0(y) |B`−1

)

≤ 2δ−t+ Pa,σu

(
X

(`)
0 ∈ B−h0(y) |B`−1

)
+

t∑

j=1

2δ
−(t−j)
+ Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) |B`−1

)

≤ 2tδ
−t/2
+ +

t∑

j=t/2+1

2δ−(t−j)Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) |B`−1

)

Since t = Θ(log3(n)), it is enough to show

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) |B`−1

)
≤ C1

n
log n, (5.101)

uniformly in j ∈ (t/2, t) and 1 ≤ ` ≤ K.

Let H`
0 denote the event that the `-th walk makes its first visit to the digraph D`−1 at the

very last time j, when it enters ∂B−h0(y). Uniformly in the trajectories of the first ` − 1

walks, at any time there are at most ∆−|∂B−h0(y)| ≤ ∆h0+1
− = ∆− log n unmatched heads

attached to ∂B−h0(y), and therefore

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

0 |B`−1

)
= O(|∂B−h0(y)|/m) ≤ C1

n
log n. (5.102)

Let H`
2 denote the event that the `-th walk makes a first visit to D`−1 at some time s1 < j,

then at some time s2 > s1 it exits D`−1, and then at a later time s3 ≤ j enters again the
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digraph D`−1. Since each time the walk is outside D`−1 the probability of entering D`−1 at
the next step is O(Kt/m), it follows that

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

2 |B`−1

)
= O(K2t4/m2) ≤ C1

n
log n. (5.103)

It remains to consider the case where the `-th walk enters only once the digraph D`−1 at
some time s ≤ j − 1, and then stays in D`−1 for the remaining j − s units of time. Calling
H`

1,s this event, and summing over all possible values of s, we need to show that

j−1∑

s=0

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

1,s |B`−1

)
≤ C1

n
log n. (5.104)

We divide the sum in two parts: s ∈ [0, j − } + h0] and s ∈ (j − } + h0, j). For the
first part, note that the walk must spend at least } − h0 ≥ }/2 units of time in D`−1(}),
which has probability at most 2δ

−}/2
+ = O(n−ε) for some constant ε > 0, because of the

condition G`−1
y (}) included in the event B`−1. Since the probability of hitting D`−1 at time

s is O(Kt/m) we obtain

j−}+h0∑

s=0

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

1,s |B`−1

)
= O(Kt2n−ε/m) ≤ C1

n
log n. (5.105)

To estimate the sum over s ∈ (j − } + h0, j), notice that the walk has to enter D`−1 by
hitting a point z ∈ D`−1 at time s such that there exists a path of length h = j− s from z to
∂B−h0(y) within the digraph D`−1. Call Lh the set of such points in D`−1. Hitting this set at
any given time s coming from outside the digraphD`−1 has probability at most 2∆|Lh|/m,
and the path followed once it has entered D`−1 is necessarily in D`−1(}) and therefore has
weight at most 2δ−h+ . Then,

j−1∑

s=j−}+h0+1

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

1,s |B`−1

)
≤

}−h0−1∑

h=1

2∆|Lh|
m

2δ−h+ , (5.106)
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Let Ah ⊂ Lh denote the set of points exactly at distance h from ∂B−h0(y) in D`−1. We have

|Ah| ≤
∑

x∈Ah−1

d−x (D`−1)

≤ |Ah−1|+
∑

x∈Ah−1

[d−x (D`−1)− 1]+

≤ |Ah−2|+
∑

x∈Ah−1∪Ah−2

[d−x (D`−1)− 1]+

≤ · · · ≤ |A0|+
∑

x∈A0∪....∪Ah−1

[d−x (D`−1)− 1]+

≤ |∂B−h0(y)|+W`−1.

Since h ≤ } = O(log n) and |∂B−h0(y)| ≤ log n, using (5.94) we have obtained

|Ah| ≤ C2 log n+Q`−1. (5.107)

On the event B`−1 we know that Q`−1 ≤ A log n, and therefore |Ah| ≤ C3 log n for some
absolute constant C3 > 0. In conclusion, for all h ∈ (0, }− h0)

|Lh| ≤
h∑

`=0

|A`| ≤ C3h log n. (5.108)

Inserting this estimate in (5.106),

j−1∑

s=j−}+1

Pa,σu

(
X

(`)
j ∈ ∂B−h0(y) ; H`

1,s |B`−1

)
≤ C4

n
log n. (5.109)

Combining (5.105) and (5.109) we have proved (5.104) for a suitable constant C1. �

5.5 Lower bound on πmax

Lemma 5.10 There exist constants ε, c > 0 such that

P
(
∃S ⊂ [n], |S| ≥ nε , nmin

y∈S
π(y) ≥ c log1−κ1(n)

)
= 1− o(1). (5.110)
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Proof: We argue as in the first part of the proof of Lemma 5.8. Namely, let (∆∗, δ∗) ∈ L
denote the type realizing the minimum in the definition of κ1; see (5.1). Let V∗ = V∆∗,δ∗
denote the set of vertices of this type, and let α∗ ∈ (0, 1) be a constant such that |V∗| ≥ α∗n,
for all n large enough. Fix a constant β1 ∈ (0, 1

4
) and call y1, . . . , yN1 the first N1 := nβ1

vertices in the set V∗. Then sample the in-neighbourhoods B−h0(yi) where

h0 = log∆∗ log n− C, (5.111)

and call σ a realization of all these neighbourhoods. As in the proof of Lemma 5.8, we
may assume that all B−h0(yi) are successfully coupled with i.i.d. random trees Yi. Next
define a yi lucky if B−h0(yi) has all its vertices of type (∆∗, δ∗). Then, if C in (5.111) is large
enough we may assume that at least nβ1/2 vertices yi are lucky; see (5.73). As before,
we call A′ the set of σ realizing these constraints. Given a realization σ ∈ A′, and some
ε ∈ (0, β1/2) we fix the first nε lucky vertices y∗,i, i = 1, . . . , nε. Since P(A′) = 1 − o(1),
letting S = {y∗,i, i = 1, . . . , nε}, it is sufficient to prove that for some constant c > 0

max
σ∈A′

P
(

min
i=1,...,nε

nπ(y∗,i) < c log1−κ1(n) |σ
)

= o(1). (5.112)

To prove (5.112) we first observe that by (5.40) and Lemma 5.3 it is sufficient to prove the
same estimate with nπ(y∗,i) replaced by Γh1(y∗,i), where h1 = K log log n for some large
but fixed constant K. Therefore, by using symmetry and a union bound it suffices to
show

max
σ∈A′

P
(
Γh1(y∗) < c log1−κ1(n) |σ

)
≤ n−2ε, (5.113)

where y∗ = y∗,1 is the first lucky vertex. By definition of lucky vertex, ∂B−h0(y∗) has exactly
∆h0∗ elements. For each z ∈ ∂B−h0(y∗) we sample the in-neighbourhood B−h1−h0(z). The
same argument of the proof of Lemma 5.2 shows that the probability that all these neigh-
bourhoods are successfully coupled to i.i.d. random directed trees is at least 1−O(∆2h1/n).
On this event we have

Γh1(y∗) = δ−h0∗

∆
h0∗∑

i=1

Xi, (5.114)

where Xi = M i
h1−h0 is defined by (5.21). Then (5.22) shows that

P
(
Γh1(y∗) <

1
2
∆h0
∗ δ
−h0
∗
)
≤ exp

(
−c1∆h0

∗
)
, (5.115)

for some constant c1 > 0. Since ∆h0∗ = ∆−C∗ log n and ∆h0∗ δ
−h0∗ = (δ∗/∆∗)C log1−κ1(n), this

shows that
max
σ∈A′

P
(
Γh1(y∗) < c2 log1−κ1(n) |σ

)
≤ n−2ε, (5.116)

for some new constant c2 > 0 and for ε = c1∆−C∗ /4. This ends the proof of (5.113). �
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CHAPTER 6

COVER TIME

In this chapter we present our results concerning the cover time of the simple random
walk on the DCM(d±). Let Xt, t = 0, 1, 2, . . . , denote the simple random walk on the
digraph G. Consider the hitting times

Hy = inf{t ≥ 0 : Xt = y} , τcov = max
y∈[n]

Hy. (6.1)

The cover time Tcov = Tcov(G) is defined by

Tcov = max
x∈[n]

Ex[τcov], (6.2)

where Ex denotes the expectation with respect to the law of the random walk (Xt) with
initial point X0 = x in a fixed realization of the digraph G.

Theorem 6.1 Let γ0, γ1 be as in Definition 5.1. There exists a constant C > 0 such that

P
(
C−1n logγ1(n) ≤ Tcov ≤ C n logγ0(n)

)
= 1− o(1). (6.3)

Remark 6.1 For sequences d± such that (δ−,∆+) ∈ L one has γ0 = γ1 = γ and Theorem 6.1
implies

Tcov � n logγ(n) , w.h.p. (6.4)

As in Remark 5.1, if (δ−,∆+) /∈ L, then Theorem 6.1 can be strengthened by replacing γ0 with
the constant γ′0 defined in (5.5).
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Finally, we observe that when the sequences d± are Eulerian, that is d+
x = d−x for all

x ∈ [n], then the estimates in Theorem 6.1 can be refined considerably, and one obtains
results that are at the same level of precision of those already established in the case of
random undirected graphs [27, 1].

Theorem 6.2 Suppose d−x = d+
x = dx for every x ∈ [n]. Call Vd the set of vertices of degree d,

and write d̄ = m/n for the average degree. Assume

|Vd| = nαd+o(1) (6.5)

for some constants αd ∈ [0, 1], for each type d. Then,

Tcov = (β + o(1))n log n , w.h.p. (6.6)

where β := d̄ maxd
αd
d

.

In particular, if all present types have linear size then αd ∈ {0, 1} for all d and (6.6) holds
with β = d̄/δ, where δ is the minimum degree. In any case it is not difficult to see that
β ≥ 1, since d̄ is determined only by types with linear size. For some general bounds on
cover times of Eulerian graphs we refer to [10].

6.1 Bounds on the cover time

In this section we show how the control on the extremal values of the stationary distri-
bution obtained in previous sections can be turned into the bounds on the cover time
presented in Theorem 6.1. To this end we exploit the full strength of the strategy devel-
oped by Cooper and Frieze [27, 25, 26, 28, 1].

6.1.1 The key lemma

Given a digraph G, write Xt for the position of the random walk at time t and write Px

for the law of {Xt, t ≥ 0} with initial value X0 = x. In particular, Px(Xt = y) = P t(x, y)
denotes the transition probability. Fix a time T > 0 and define the event that the walk
does not visit y in the time interval [T, t], for t > T :

ATy (t) = {Xs 6= y, ∀s ∈ [T, t]}. (6.7)
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Moreover, define the generating function

RT
y (z) =

T∑

t=0

ztPy(Xt = y), z ∈ C. (6.8)

Thus, RT
y (1) ≥ 1 is the expected number of returns to y within time T , if started at y. The

following statement is proved in [26], see also [28, Lemma 3].

Lemma 6.1 (First Visit Time Lemma) Assume that G = Gn is a sequence of digraphs with
vertex set [n] and stationary distribution π = πn, and let T = Tn be a sequence of times such that

(i) maxx,y∈[n] |P T (x, y)− π(y)| ≤ n−3.

(ii) T 2πmax = o(1) and Tπmin ≥ n−2.

Suppose that y ∈ [n] satisfies:

(iii) there exist K,ψ > 0 independent of n such that

min
|z|≤1+ 1

KT

|RT
y (z)| ≥ ψ.

Then there exist ξ1, ξ2 = O(Tπmax) such that for all t ≥ T :

max
x∈[n]

∣∣∣∣Px

(
ATy (t)

)
− 1 + ξ1

(1 + py)t+1

∣∣∣∣ ≤ e−
t

2KT , (6.9)

where
py = (1 + ξ2)

π(y)

RT
y (1)

. (6.10)

We want to apply the above lemma to digraphs from our configuration model. Thus, our
first task is to make sure that the assumptions of Lemma 6.1 are satisfied. From now on
we fix the sequence T = Tn as

T = log3(n). (6.11)

From Theorem 1.7 and the argument in (5.67) it follows that item (i) of Lemma 6.1 is
satisfied with high probability. Moreover, Theorem 5.1 and Theorem 5.2 imply that item
(ii) of Lemma 6.1 is also satisfied with high probability. Next, following [27], we define
a class of vertices y ∈ [n] which satisfy item (iii) of Lemma 6.1. We use the convenient
notation

ϑ = log log log(n). (6.12)
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Definition 6.1 We call small cycle a collection of ` ≤ 3ϑ edges such that their undirected pro-
jection forms a simple undirected cycle of length `. We say that v ∈ [n] is locally tree-like (LTL)
if its in- and out-neighbourhoods up to depth ϑ are both directed trees and they intersect only at x.
We denote by V1 the set of LTL vertices, and write V2 = [n] \ V1 for the complementary set.

The next proposition can be proved as in [27, Section 3].

Proposition 6.1 The following holds with high probability:

1. The number of small cycles is at most ∆9ϑ.

2. The number of vertices which are not LTL satisfies |V2| ≤ ∆15ϑ.

3. There are no small cycles which are less than 9ϑ undirected steps away.

Proposition 6.2 With high probability, uniformly in y ∈ V1:

RT
y (1) = 1 +O(2−ϑ). (6.13)

Moreover, there exist constants K,ψ > 0 such that with high probability, every y ∈ V1 satisfies
item (iii) of Lemma 6.1. In particular, (6.9) holds uniformly in y ∈ V1.

Proof: We first prove (6.13). Fix y ∈ V1 and consider the neighbourhoods B±ϑ (y) and
B−} (y). By Proposition 2.3 we may assume that B−} (y) and B+

ϑ (y) are both directed trees
except for at most one extra edge. By the assumption y ∈ V1 we know that B−ϑ (y),B+

ϑ (y)
are both directed trees with no intersection except y, so that the extra edge in B−} (y)∪B+

ϑ (y)
cannot be in B−ϑ (y) ∪ B+

ϑ (y). Thus, the following cases only need to be considered:

1. there is no extra edge in B−} (y) ∪ B+
ϑ (y);

2. the extra edge connects B−} (y) \ B−ϑ (y) to itself

3. the extra edge connects B−ϑ (y) to B−} (y) \ B−ϑ (y);

4. the extra edge connects B+
ϑ (y) to B−} (y) \ B−ϑ (y).

In all cases but the last, if a walk started at y returns at y at time t > 0 then it must exit
∂B+

ϑ (y) and enter ∂B−} (y), and from any vertex of ∂B−} (y) the probability to reach y before
exiting B−} (y) is at most 2δ−}. Therefore, in these cases the number of visits to y up to T is
stochastically dominated by 1 + Bin(T, 2δ−}) and

1 ≤ RT
y (1) ≤ 1 + 2Tδ−} = 1 +O(n−a),

for some a > 0. In the last case instead it is possible for the walk to jump from B+
ϑ (y) to

B−} (y)\B−ϑ (y). Let Ek denote the event that the walk visits y exactly k times in the interval
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[1, T ]. Let B denote the event that the walk visits y exactly ϑ units of time after its first
visit to ∂B−ϑ (y). Then Py(B) ≤ δ−ϑ. On the complementary event Bc the walk must enter
∂B−} (y) before visiting y, and each time it visits ∂B−} (y) it has probability at most 2δ−} to
visit y before the next visit to ∂B−} (y). Since the number of attempts is at most T one finds

Py(E1) ≤ Py(B) + Py(E1, B
c) ≤ δ−ϑ + 2Tδ−} ≤ 2δ−ϑ.

By the strong Markov property,

Py(Ek) ≤ Py(E1)k.

Therefore

RT
y (1) = 1 +

∞∑

k=1

kPy(Ek) = 1 +O(δ−ϑ).

To see that y ∈ V1 satisfies item (iii) of Lemma 6.1, take z ∈ C with |z| ≤ 1 + 1/KT and
write

|RT
y (z)| ≥ 1−

T∑

t=1

Py(Xt = y)|z|t ≥ 1− e1/K(RT
y (1)− 1) = 1−O(δ−ϑ).

�

6.1.2 Upper bound on the cover time

We prove the following estimate relating the cover time to πmin. From Theorem 5.1 this
implies the upper bound on the cover time in Theorem 6.1.

Lemma 6.2 For any constant ε > 0, with high probability

max
x∈[n]

Ex(τcov) ≤ (1 + ε)
log n

πmin

. (6.14)
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Proof: Let Us denote the set of vertices that are not visited in the time interval [0, s]. By
Markov’s inequality, for all t∗ ≥ T :

Ex[τcov] =
∑

s≥0

Px(τcov > s) =
∑

s≥0

Px(Us 6= ∅)

≤ t∗ +
∑

s≥t∗
Ex [|Us|] = t∗ +

∑

s≥t∗

∑

y∈[n]

Px(y ∈ Us)

≤ t∗ +
∑

s≥t∗

∑

y∈[n]

Px(ATy (s)). (6.15)

Choose
t∗ :=

(1 + ε) log n

πmin

,

for ε > 0 fixed. It is sufficient to prove that the last term in (6.15) is o(t∗) uniformly in
x ∈ [n].

From Proposition 6.2 we can estimate

Px(ATy (s)) =
(1 + ξ′)

(1 + p̄y)s+1
, (6.16)

where p̄y := (1 + ξ)π(y) with ξ, ξ′ = O(Tπmax) +O(δ−ϑ) = o(1) uniformly in x ∈ [n], y ∈ V1.
Therefore,

∑

s≥t∗

∑

y∈V1
Px(ATy (s)) = (1 + o(1))

∑

y∈V1

1

p̄y(1 + p̄y)t∗
. (6.17)

Using π(y) ≥ πmin, (6.17) is bounded by

(1 + o(1))n

p̄y(1 + p̄y)t∗
≤ 2n

πmin

exp (−πmint∗(1 + o(1))) ≤ 1

πmin

= o(t∗),

for all fixed ε > 0 in the definition of t∗.

It remains to control the contribution of y ∈ V2 to the sum in (6.15). From Proposition 6.1
we may assume that |V2| = O(∆15ϑ). In particular, it is sufficient to show that with high
probability uniformly in x ∈ [n] and y ∈ V2:

∑

s≥t∗
Px(ATy (s)) = o(t∗∆

−15ϑ). (6.18)
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To prove (6.18), fix y ∈ V2 and notice that by Proposition 6.1 (3), we may assume that there
exists u ∈ V1 s.t. d(u, y) < 10ϑ. If t1 = t0 + 10ϑ, t0 := 4/πmin, then

Px(ATy (t1)c) = Px(y ∈ {XT , XT+1, . . . , Xt1})
≥ Px(u ∈ {XT , XT+1, . . . , Xt0})Pu(y ∈ {X1, . . . , X10ϑ})
≥
(
1−Px(ATu (t0))

)
∆−10ϑ.

Since u ∈ V1, as in (6.16), for n large enough,

Px(ATu (t0)) ≤ 2

(1 + p̄y)t0+1
≤ 1

2
. (6.19)

Setting γ := 1
2
∆−10ϑ, we have shown that Px(ATy (t1)c) ≥ γ. Since this bound is uniform

over x, the Markov property implies, for all k ∈ N,

Px(ATy (s)) ≤ (1− γ)k, s > k(T + t1). (6.20)

Therefore,
∑

s≥t∗
Px(ATy (s)) ≤

∑

s≥t∗
(1− γ)bs/(T+t1)c ≤

∑

s≥t∗
(1− γ)s/2t1

≤ exp (−γt∗/2t1)

1− exp (−γ/2t1)
= O(t1/γ) = o(t∗∆

−15ϑ).

�

6.1.3 Lower bound on the cover time

We prove the following stronger statement.

Lemma 6.3 For some constant c > 0, with high probability

min
x∈[n]

Px(τcov ≥ c n logγ1 n) = 1− o(1). (6.21)

Clearly, this implies the lower bound on Tcov = maxx∈[n] Ex(τcov) in Theorem 6.1. The
proof of Lemma 6.3 is based on the second moment method as in [28]. If W ⊂ [n] is a set
of vertices, let Wt be the set

Wt = {y ∈ W : y is not visited in [0, t]} (6.22)
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Then

Px(τcov > t) ≥ Px(|Wt| > 0) ≥ Ex[|Wt|]2
Ex[|Wt|2]

. (6.23)

Therefore, Lemma 6.3 is a consequence of the following estimate.

Lemma 6.4 For some constant c > 0, with high probability there exists a nonempty set W ⊂ [n]
such that

max
x∈[n]

Ex[|Wt|2]

Ex[|Wt|]2
= 1 + o(1), t = c n logγ1 n. (6.24)

We start the proof of Lemma 6.4 by exhibiting a candidate for the set W .

Proposition 6.3 For any constant K > 0, with high probability there exists a set W such that

1. W ⊂ V1, where V1 is the LTL set from Definition 6.1, and |W | ≥ nα for some constant
α > 0.

2. For some constant C > 0, for all y ∈ W ,

π(y) ≤ C
n

log1−γ1(n). (6.25)

3. For all x, y ∈ W :
|π(x)− π(y)| ≤ πmin log−K(n). (6.26)

4. For all x, y ∈ W : min{d(x, y), d(y, x)} > 2ϑ.

Proof: From Theorem 5.1 we know that w.h.p. there exists a set S ⊂ [n] with |S| > nβ

such that (6.25) holds. Moreover, a minor modification of the proof of Lemma 5.8 shows
that we may also assume that S ⊂ V1 and that min{d(x, y), d(y, x)} > 2ϑ for every x, y ∈
W . Indeed, it suffices to generate the out-neighbourhoods B+

ϑ (yi) for every i = 1, . . . , N1

and the argument for (5.72) shows that these are disjoint trees with high probability. To
conclude, we observe that there is a W ⊂ S such that |W | > nβ/2 and such that (6.26)
holds. Indeed, using πmin ≥ n−1 log−K1(n) for some constant K1, for any constant K > 0
we may partition the interval

[n−1 log−K1(n), Cn−1 log1−γ1(n)]

in log2K(n) intervals of equal length and there must be at least one of them containing
nβ log−2K(n) ≥ nβ/2 elements which, if K is sufficiently large, satisfy (6.26). �
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Proof of Lemma 6.4

Consider the first moment Ex[|Wt|], where W is the set from Proposition 6.3 and t is fixed
as t = c n logγ1(n). For y ∈ W ⊂ V1 we use Lemma 6.1 and Proposition 6.2. As in (6.16) we
have

Px(ATy (t)) = (1 + o(1))(1 + p̄y)
−(t+1), (6.27)

where p̄y = (1 + o(1))π(y) ≤ pW := 2C n−1 log1−γ1(n), where C is as in (6.25). Therefore,

Ex [|Wt|] =
∑

y∈W
Px (y not visited in [0, t])

≥ −T +
∑

y∈W
P(ATy (t)) ≥ −T + (1 + o(1))|W |(1 + pW )−t.

Taking the constant c in the definition of t sufficiently small, one has pW t ≤ α/2 log n and
therefore

Ex [|Wt|] ≥ −T + (1 + o(1))|W |n−α/2 ≥ 1
2
nα/2, (6.28)

where we use T = log3(n) and |W | ≥ nα. In particular, since T = log3(n), (6.28) shows
that

∑

y∈W
P(ATy (t)) = (1 + o(1))Ex [|Wt|] . (6.29)

Concerning the second moment Ex[|Wt|2], we have

Ex

[
|Wt|2

]
=
∑

y,y′∈W
Px (y and y′ not visited in [0, t])

≤
∑

y,y′∈W
Px

(
ATy (t) ∩ ATy′(t)

)
.

From this and (6.29), the proof of Lemma 6.4 is completed by showing, uniformly in
x ∈ [n], y, y′ ∈ W :

Px

(
ATy (t) ∩ ATy′(t)

)
= (1 + o(1))Px

(
ATy (t)

)
Px

(
ATy′(t)

)
. (6.30)

We follow the idea of [28]. Let G∗ denote the digraph obtained from our digraph G by
merging the two vertices y, y′ into the single vertex y∗ = {y, y′}. Notice that y∗ is LTL
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in the graph G∗ in the sense of Definition 6.1. Moreover, G∗ has the law of a directed
configuration model with the same degree sequence of G except that at y∗ it has d±y∗ =
d±y + d±y′ . It follows that we may apply Lemma 6.1 and Proposition 6.2. Therefore, if P∗x
denotes the law of the random walk on G∗ started at x, as in (6.27) we have

P∗x(ATy∗(t)) = (1 + o(1))(1 + p̄y∗)
−t, (6.31)

uniformly in x ∈ [n], y, y′ ∈ W , where p̄y∗ = (1 + o(1))π∗(y∗), and π∗ is the stationary
distribution of G∗. In Lemma 6.5 below we prove that

max
v∈[n]:
v 6=y,y′

|π(v)− π∗(v)| ≤ a, |π(y) + π(y′)− π∗(y∗)| ≤ a, (6.32)

where a := πmin log−1(n). Assuming (6.32), we can conclude the proof of (6.30). Indeed,
letting P∗ denote the transition matrix of the graph G∗,

P∗x(ATy∗(t)) =
∑

v 6=y,y′
P T
∗ (x, v)P∗v(Xs 6= y∗, ∀s ∈ [1, t− T ])

=
∑

v 6=y,y′

(
π∗(v) +O(n−3)

)
P∗v(Xs 6= y∗, ∀s ∈ [1, t− T ])

On the other hand,

Px(ATy (t) ∩ ATy′(t)) =
∑

v 6=y,y′
P T (x, v)Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t− T ])

=
∑

v 6=y,y′

(
π(v) +O(n−3)

)
Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t− T ])

For all v 6= y, y′,

P∗v(Xs 6= y∗, ∀s ∈ [1, t− T ]) = Pv(Xs 6∈ {y, y′}, ∀s ∈ [1, t− T ])

≤ (1 + o(1))

πmin

P T (x, v)Pv(Xs 6∈ {y, y′}, ∀s ∈ [1, t− T ]),
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uniformly in x ∈ [n], where we have used condition (i) in Lemma 6.1. Therefore, using
(6.32)

∣∣Px

(
ATy (t) ∩ ATy′(t)

)
−P∗x

(
ATy∗(t)

)∣∣

≤
∑

v 6=y,y′
|π(v)− π∗(v) +O(n−3)|Pv(Xs 6∈ {y, y′}, ∀s ∈ [1, t− T ])

≤ (a+O(n−3))
(1 + o(1))

πmin

∑

v 6=y,y′
P T (x, v)Pv(Xs 6∈ {y, y′}, ∀s ∈ [1, t− T ])

≤ 2a

πmin

Px(Ay(t) ∩ Ay′(t)).

By definition of a we have a/πmin → 0 so that

Px(ATy (t) ∩ ATy′(t)) = (1 + o(1))P∗x(ATy∗(t)). (6.33)

Using (6.27), (6.31) and (6.32) we conclude that

Px

(
ATy (t) ∩ ATy′(t)

)
= (1 + o(1)) exp (−(1 + o(1))(π(y) + π(y′))t)

= (1 + o(1))Px

(
ATy (t)

)
Px

(
ATy′(t)

)
.

�
Lemma 6.5 The stationary distributions π, π∗ satisfy (6.32).

Proof: We follow the proof of Eq. (107) in [28]. The stochastic matrix of the simple ran-
dom walk on G∗ is given by

P∗(v, w) =





P (v, w) if v, w 6= y∗
1
2

(P (y, w) + P (y′, w)) if v = y∗

P (v, y) + P (v, y′) if w = y∗.

Let V ∗ denote the vertices of G∗. Define the vector ζ(v), v ∈ V ∗ via

ζ(v) =

{
π∗(v)− π(v) v 6= y∗

π∗(y∗)− (π(x) + π(y)) v = y∗

We are going to show that

max
v∈V ∗
|ζ(v)| = o(πmin log−1(n)), (6.34)
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which implies (6.32). A computation shows that

ζP∗(w) =
∑

v∈V ∗
ζ(v)P∗(v, w) =





ζ(w) if w 6∈ B+
1 (y) ∪ B+

1 (y′)

ζ(w) + π(y′)−π(y)
2

P (y, w) if w ∈ B+
1 (y)

ζ(w) + π(y)−π(y′)
2

P (y′, w) if w ∈ B+
1 (y′).

Therefore, the vector φ := ζ(I − P∗) satisfies

|φ(w)| ≤
{

0 if w 6∈ B+
1 (y) ∪ B+

1 (y′)
|π(y)−π(y′)|

2∆
otherwise .

Hence φ(v) = 0 for all but at most 2∆ vertices v, and recalling (6.26) we have

|φ(w)| ≤ (2∆)−1πmin log−K(n). (6.35)

Next, consider the matrix

M =
T−1∑

s=0

P s
∗ ,

and notice that
ζ(I − P T

∗ ) = φM.

Since P∗ and π∗ satisfy condition (i) in Lemma 6.1,

P T
∗ = Π∗ + E, with |E(u, v)| ≤ n−3, ∀u, v ∈ V ∗, (6.36)

where Π∗ denotes the matrix with all rows equal to π∗. We rewrite the vector ζ as

ζ = απ∗ + ρ,

where α ∈ R and ρ is orthogonal to π∗, that is

〈ρ, π∗〉 =
∑

v∈V ∗
ρ(v)π∗(v) = 0.

Therefore,

〈φM, ρ〉 = 〈ρ, (I − E)ρ〉.

Moreover,

|〈φM, ρ〉| ≤
T−1∑

s=0

|〈φ, P s
∗ρ〉| ≤ T

π∗max

π∗min

‖φ‖2‖ρ‖2, (6.37)
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where we use

〈P s
∗ψ, P

s
∗ψ〉 ≤

1

π∗min

∑

v

π∗(v)(P s
∗ψ)2(v)

≤ 1

π∗min

∑

u,v

π∗(v)P s
∗ (v, u)ψ2(u) =

1

π∗min

∑

u

π∗(u)ψ2(u) ≤ π∗max

π∗min

‖ψ‖2
2,

for any vector ψ : V ∗ 7→ R. On the other hand,

|〈ρ, (I − E)ρ〉| ≥ ‖ρ‖2
2 − n−3

(∑

v

|ρ(v)|
)2

≥ ‖ρ‖2
2(1− n−2). (6.38)

Using (6.35), from (6.37) and (6.38) we conclude that

‖ρ‖2 ≤ 2T
π∗max

π∗min

‖φ‖2 = 2T
π∗max

π∗min

×O(πmin log−K(n)).

From Theorem 5.1 applied to G∗ we can assume that π∗max

π∗min
= O(logK/3(n)) if K is a large

enough constant. Since T = log3(n), with K sufficiently large one has

‖ρ‖2 ≤ πmin log−K/2(n).

Next, notice that

0 = 〈ζ, 1〉 = 〈απ∗ + ρ, 1〉 = α + 〈ρ, 1〉.

Hence
|α| = |〈ρ, 1〉| ≤ √n ‖ρ‖2 ≤

√
nπmin log−K/2(n).

In conclusion,

ζ(v)2 ≤ 2α2π∗(v)2 + 2ρ(v)2 ≤ 2nπ2
min log−K(n)(π∗max)2 + 2‖ρ‖2

2

≤ 2nπ2
min log−K(n)(π∗max)2 + 2π2

min log−K(n) ≤ 4π2
min log−K(n),

which implies (6.34). �
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6.2 The Eulerian case

We prove Theorem 6.2. The strategy is the same as for the proof of Theorem 6.1, with some
significant simplifications due to the explicit knowledge of the invariant measure π(x) =
dx/m. For the upper bound, it is then sufficient to prove that, setting t∗ = (1 + ε)βn log n,

∑

y∈V1

∑

s≥t∗
Px(ATy (s)) +

∑

y∈V2

∑

s≥t∗
Px(ATy (s)) = o(n log n). (6.39)

Letting Vd denote the set of vertices with degree d, reasoning as in (6.17) we have

∑

y∈V1

∑

s≥t∗
Px(ATy (s)) ≤ (1 + o(1))

∆∑

d=δ

|Vd|
m

d(1 + (1 + o(1))d/m)t∗

Since |Vd| = nαd+o(1), m = d̄n, for any fixed ε > 0 we obtain

∑

y∈V1

∑

s≥t∗
Px(ATy (s)) ≤ 2m

δ

∆∑

d=δ

exp
(
−
(
dβ
d̄
− αd

)
log n

)
= O(n), (6.40)

since by definition dβ
d̄
− αd ≥ 0. Concerning the vertices y ∈ V2 one may repeat the

argument in (6.20) without modifications, to obtain
∑

y∈V2

∑

s≥t∗
Px(ATy (s)) = o(n log n). (6.41)

Thus, (6.39) follows from (6.40) and (6.41).

It remains to prove the lower bound. We shall prove that for any fixed d such that |Vd| =
nαd+o(1), αd ∈ (0, 1], for any ε > 0,

min
x∈[n]

Px

(
τcov ≥ (1− ε) d̄αd

d
n logγ1 n

)
= 1− o(1). (6.42)

We proceed as in the proof of Lemma 6.4. Here we choose W as the subset of Vd consist-
ing of LTL vertices in the sense of Definition 6.1 and such that for all x, y ∈ W one has
min{d(x, y), d(y, x)} > 2ϑ. Let us check that this set satisfies

|W | ≥ nαd+o(1). (6.43)
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Indeed, the vertices that are not LTL are at most ∆9ϑ by Proposition 6.1. Therefore there
are at least |Vd| − ∆9ϑ = nαd+o(1) LTL vertices in Vd. Moreover, since there are at most
∆2ϑ vertices at undirected distance 2ϑ from any vertex, we can take a subset W of LTL
vertices of Vd satisfying the requirement that min{d(x, y), d(y, x)} > 2ϑ for all x, y ∈ W
and such that |W | ≥ (|Vd| − ∆9ϑ)∆−2ϑ = nαd+o(1). From here on all arguments can be
repeated without modifications, with the simplification that we no longer need a proof of
Lemma 6.5 since a can be taken to be zero in (6.32) in the Eulerian case. The only thing to
control is the validity of the bound (6.29) with the choice

t = (1− ε) d̄αd
d

n log n.

As in (6.29), it suffices to check that with high probability
∑

y∈W
P(ATy (t))− T →∞. (6.44)

From (6.27) we obtain
∑

y∈W
P
(
ATy (t)

)
= (1 + o(1))|W | exp

(
− (1+o(1))d

m
t
)
. (6.45)

Using (6.43) and dt/m = (1−ε)αd log n, (6.45) is at least nεαd/2 for all n large enough. Since
T = log3(n) this proves (6.44).
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