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i

“Pure mathematics and physics are becoming ever more closely connected, though their methods
remain different. One may describe the situation by saying that the mathematician plays a game
in which he himself invents the rules while the physicist plays a game in which the rules are
provided by Nature, but as time goes on it becomes increasingly evident that the rules which
the mathematician finds interesting are the same as those which Nature has chosen”1.

Paul Adrien Maurice Dirac

1P.A.M. Dirac. “The Relation between Mathematics and Physics”. In: Proceedings of the Royal Society
of Edinburgh, 59 (1940), pp. 122–129. doi:10.1017/S0370164600012207
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1

Introduction

During the last years, there has been a growing interest towards low dimensional ma-
terials, and considerable effort has been made to succeed in the ambitious goal of re-
ducing the size of new electronic devices. Graphene has peculiar physical properties
that make it one of the most prominent and widely studied low dimensional materials.
It was experimentally isolated in 2004 by A. K. Geim and K. S. Novoselov who, for that
discovering [38], have been awarded with the Nobel prize in 2010. Graphene has been
the object of intense theoretical and experimental research. About its properties [50,
19] we mention that a graphene layer is the thinnest object ever obtained, this material
is also the strongest one, it is very elastic and impermeable to any molecule, it is ex-
tremely electrically and thermally conductive, charge carriers moves inside it as mass-
less Dirac fermions. The latter makes graphene a wonderful laboratory to study rela-
tivistic properties in a classical framework. Moreover, exceptional quantum phenom-
ena were predicted and experimental demonstrated in graphene, e.g, Klein paradox
[51, 108] and Veselago lensing [20, 54]. Because of its extraordinary features, graphene
is considered to potentially be the revolutionary new material in future development
of nano-electronic [19] and optoelectronic devices [109].

We will focus on the electronic properties of graphene. In this framework several
studies have been done [7, 56, 73]. We will introduce new results on mathematical
modeling and numerical simulation of charge transport. One of the most accurate
model for charge transport in graphene is represented by the semiclassical Boltzmann
equations for electrons, in the conduction band, and for holes, in the valence band.
These Boltzmann equations are coupled through the collision terms, and include sev-
eral physical effects, such as scatterings between electrons and phonons, between elec-
trons and impurities in the presence of a substrate and between electrons themselves.
A new Direct Simulation Monte Carlo (DSMC) method, where the Pauli exclusion prin-
ciple is correctly included, has been successfully developed in the unipolar space ho-
mogeneous case for suspended graphene [89] and for graphene on substrate [25]. In
both cases comparisons with numerical solution obtained by a discontinuous Galerkin
(DG) approach have addressed the accuracy of the proposed DSMC. To include ther-
mal effects, Boltzmann equations for the phonon dynamic have been also taken into
account in [26, 30]. The numerical solutions of the models mentioned above require a
high computational effort. Therefore, macrosopic models have been formulated, e.g.,
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drift-diffusion, energy-transport or hydrodynamical. For graphene a hydrodynamical
model based on the maximum entropy principle (MEP) has been formulated in [18, 58,
59] using a set of field variables which proved to be successful for traditional semicon-
ductors as silicon [69, 88, 87, 92, 91, 76, 66], gallium arsernide [69, 68], silicon carbide
[2].

All the above cited papers refer to the space homogeneous case, however industrial
applications require solutions in non homogeneous cases. Among electronic devices,
Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the backbone of the
modern integrated circuits. For the case in which the active area is made of traditional
materials like, for example, silicon or gallium arsenide, a lot of analysis and simula-
tions have been performed in order to optimize the design. Lately, graphene is getting
a great attention on account of its peculiar features and, in particular, from the point
of view of nano-electronics, for the high electrical conductivity. It is highly tempting
trying to replace the traditional semiconductors with graphene in the active area of
electronic devices such as the MOSFETs. The main reason is that industry requires
smaller and smaller components for advanced integrated circuits. A Field Effect Tran-
sistor (FET) having the active area made of graphene is called Graphene Field Effect
Transistor (GFET). In the hierarchy of electronic devices modeling the ground level is
represented by the drift-diffusion equations, usually coupled with a Poisson equation
for the electric potential. The mobility expressions are essential for the drift-diffusion
equations to correctly predict the amount of current flowing through the device. A mo-
bility model for highly doped monolayer graphene has been presented in [62], where
the fitting curves have been obtained through numerical solutions of the semiclassical
Boltzmann equation.

In this thesis we present original results extending the models introduced above.
In particular, to quantify the inter-band effects, numerical solutions for the semiclas-
sical Boltzmann equations in the homogeneous and suspended low doped case, have
been published in the paper: A. Majorana, G. Nastasi, and V. Romano, “Simulation of
Bipolar Charge Transport in Graphene by Using a Discontinuous Galerkin Method”,
Commun. Comput. Phys. 26.1 (2019), pp. 114–134.

The simulations have also been extended to the case of graphene on substrate and
presented in the paper: M. Coco and G. Nastasi, “Simulation of bipolar charge trans-
port in graphene on h-BN”, COMPEL (2020), doi: 10.1108/COMPEL-08-2019-0311.
Moreover a comparison in terms of current flow efficiency by means of DSMC can
be found in M. Coco, A. Majorana, G. Nastasi, and V. Romano, “High-field mobility in
graphene on substrate with a proper inclusion of the Pauli exclusion principle”, Atti
Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 97.S1 (2019), A6.

An enhancement of the mobility model in [62] which includes the bipolar transport,
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has been presented in: G. Nastasi and V. Romano, “Improved mobility models for
charge transport in graphene”, Commun. Appl. Ind. Math. 10.1 (2019), pp. 41–52.

Concerning the development of a drift-diffusion model for GFET, numerical sim-
ulations based on finite difference schemes adopting the mobility model of [33] have
been obtained in G. Nastasi and V. Romano, “Simulation of graphene field effect tan-
sistors”, Proceedings of SCEE 2018, Mathematics in Industry, Springer (in press). A
further improvement based on the mobility model of [81] have been proposed in the
submitted paper: G. Nastasi and V. Romano, “A full coupled drift-diffusion-Poisson
simulation of a GFET”.

Part of this thesis has been written during some research stay in other institutions.
A first topic, regarding the classical-quantum drift diffusion model of charge transport
in graphene, has been investigated during two visiting periods at the Institut de Math-
ématiques de Toulouse, Université Toulouse III - Paul Sabatier, under the supervision
of Prof. C. Negulescu, and one visiting period at the Dipartimento di Matematica e
Informatica “Ulisse Dini”, Università degli Studi di Firenze, under the supervision of
Prof. Luigi Barletti. The results of this collaboration are in preprint form [8] and they
are partially illustrated in this thesis. A second topic concerns the optimal control the-
ory of charge transport in graphene. The preliminary results presented in this thesis
have been developed during a visiting period at the Institut für Mathematik, Julius-
Maximilians-Universität Würzburg, under the supervision of Prof. A. Borzì. During
this period, we began our analysis about the Boltzmann equation with a study of an
optimization problem involving the Keilson-Storer master equation, solved by a Monte
Carlo approach. The collaboration has led to the preprint [11] not mentioned in this
thesis in detail because it does not concern the charge transport in graphene.

Finally, we would like to mention two ongoing works. The first one regards the
electron-electron interaction in the semiclassical Boltzmann model [28], the second one
proposes a non homogeneous numerical solution of the semiclassical Boltzmann equa-
tion with the DG method to simulate the current in a GFET [79]. Both the works are still
in a preprint version and they have been presented at the 26th International Congress
on Transport Theory (ICTT-26), held in Paris in September 2019.

The plan of the thesis is as follows. In Chapter 1 we describe some basic aspects
about charge transport in graphene and introduce in detail the physical models we
will adopt. In Chapter 2 we describe all the numerical methods chosen to get our
simulations. Different approaches have been adopted depending on the cases to treat.
Chapter 3 is devoted to the bipolar charge transport in graphene, where both the con-
tributions to the current due to electrons and holes and the inter-band transitions of
carriers are taken into account [63, 27]. In Chapter 4 we focus first on the improve-
ments of mobility models in suspended monolayer graphene [81] and then in the case
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of graphene placed on a substrate [79]. Since a crucial parameter is the distance be-
tween the graphene layer and the impurities of the substrate, some simulations based
on stochastic models have been performed by means of DSMC [24]. Finally a Graphene
Field Effect Transistor (GFET) is simulated by solving the drift-diffusion equations
adopting a mobility model based on experimental data [82] and the ones mentioned
above based on the semiclassical Boltzmann equation [79]. Chapter 5 regards the
classical-quantum drift diffusion model of charge transport in graphene. In Chap-
ter 6 we present the optimal control theory of charge transport in graphene. Chapter 7
consists of two short parts regarding subjects still under investigation, the first one
regarding the electron-electron interaction in the semiclassical Boltzmann model, the
second one proposing numerical solution of the semiclassical Boltzmann equation for
a GFET by means of a DG approach.



5

Chapter 1

Charge transport in graphene

Low dimensional materials are widely investigated to reduce the size of new elec-
tron devices. One of the most prominent is graphene because of its singular electronic
properties, such as the very high conductivity. The main idea is to adapt mathematical
models already developed for Si and GaAs based electron devices to graphene ones.
One of the most accurate is the semiclassical Boltzmann equations where quantum
aspects are also taken into account. Since numerical solutions of the Boltzmann equa-
tions require a high computational effort, macrosopic models have been formulated
such as drift-diffusion, energy-transport or hydrodynamical. They constitute a more
useful tool to design, improve and optimize new graphene based electron devices.

In this chapter we present the physical properties of graphene and the mathemati-
cal models adopted to simulate the charge transport. For a more exhaustive discussion
regarding the charge transport in low dimensional structures see [17]. In Section 1.1 we
introduce some basic notions about solid state physics and in Section 1.2 we present the
structure of graphene. As mathematical model we introduce the semiclassical Boltz-
mann equation, treated in Section 1.3, and the drift-diffusion model, outlined in Sec-
tion 1.4.

1.1 Solid state physics basic concepts

Solid state physics is the branch of physics that studies physical properties of solid mat-
ter resulting from the distribution of electrons in metals, semiconductors, and insula-
tors. Solid materials are formed from high concentrated atoms interacting each other.
These interactions produce the mechanical, thermal, electrical, magnetic and optical
properties of solids. Crystals constitute a particular class of solids material formed by
identical building blocks of atoms or group of atoms. Such periodic structure allows a
more detailed mathematical description. However, for our purpose we concentrate on
the conductivity property.

In this section we focus on the basic definitions in solid state physics and on electron
transport in solids from the microscopic description to the statistical one. For further
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informations the reader is referred to some classical textbooks about solid state physics
[4, 52, 110, 44].

1.1.1 Crystal lattices

Solid state materials satisfy two more major properties: distances between atoms are
small (about 10−10m) and equilibrium positions of atoms are fixed. Depending on the
shape of equilibrium configurations, the solid has or has not a regular structure. In a
crystal all the points related by specific translation vectors rn are equivalent. More in
details, if

r′ = r + rn,

then r′ ≡ r and all physical quantities assume the same value both in r and in r′.
We define crystal lattice a countable subset R of Rd, with d = 1, 2, 3, spanned by d

independent vectors a1, . . . , ad, that is

R =
{︂

a ∈ Rd | a = n1a1 + . . . + ndad, n1, . . . , nd ∈ Z
}︂

. (1.1)

Moreover the set {a1, . . . , ad} is called basis of R, and the vectors ai per i = 1, . . . , d are
called primitive vectors generating R.

We define primitive cell of R a subset DR of Rd containing only one element of R
(usually the origin) such that its translations covers Rd.

We define unit cell the primitive cell defined only by minimal length vectors, that
is explicitly

D = {x = α1a1 + . . . + αdad, with α1, . . . , αd ∈ [0, 1[} .

We define Wigner-Seitz primitive cell the region DWS around the origin whose
points are nearer to the origin with respect to every other lattice point, that is

DWS =
{︂

x ∈ Rd | |x| ≤ |x + a|, ∀a ∈ R
}︂

.

To better clarify the previous definition we consider the Figure 1.1.
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FIGURE 1.1: Representation of the Wigner-Seitz primitive cell for a two-
dimensional crystal lattice (see [4]).

Crystal lattices are classified in relation of their translation properties. Let we con-
sider a translation Ta : Rd → Rd defined by

Ta(x) = x + a.

Therefore we have that Ta(R) = R, ∀a ∈ R and, on the other hand, a lattice is trans-
lation invariant if and only if it is translated with respect to an own element. It is
possible to prove that there exists a finite number of types of translation lattices, called
Bravais lattices. In one dimensional case there exists only one Bravais lattice, in two
dimensions there are 5 and in three dimensions there exists 14 (see [4]).

Given a translation lattice R having basis {a1, . . . , ad}, we define the reciprocal lat-
tice G having basis {b1, . . . , bd} where these vectors defined by

bi · aj = 2πδij, (1.2)

with δij the Kronecker symbol.
We remark that b1, . . . , bd are d vectors each of one is orthogonal to all the element

of R basis except one. Therefore {b1, . . . , bd} is a basis of Rd and the set

G =
{︂

x ∈ Rd | x = m1b1 + mdbd, with m1, . . . , md ∈ Z
}︂

define another crystal lattice. We remark that if R is a Bravais lattice then also G it is.
We define the first Brillouin zone the Wigner-Seitz primitive cell of the reciprocal

lattice, that is
B =

{︂
k ∈ R3 | |k| ≤ |k + b| ∀b ∈ G

}︂
. (1.3)

The center of the first Brillouin zone is called Γ point.
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1.1.2 Electrons and phonons

A free atom consists of a nucleus surrounded by closed shells of electrons and one or
more valence electrons around them. The mass of the atom is assumed to be concen-
trated at its nucleus and the closed shells form a halo of charge around the core. The
valence electrons move by effect of the electric field generated by the nucleus particles.
If we bring the atoms together to make a crystalline lattice, the valence electrons move
under the electric field generated by all the ions. The valence electrons are not bounded
to their original atom but they can move in all the lattice and they are responsible for
the electrical conduction.

Nuclei of atoms constituting the crystal lattice are not fixed, but they oscillate around
their equilibrium positions. These oscillations propagate into the lattice as waves. The
oscillation modes are called phonons, whose frequency is indicated by ω. They can
assume only discrete values of energy,

εn = (n + 1/2)h̄ω, n = 0, 1, 2, . . . , (1.4)

where h̄ is the reduced Planck constant. If an electron interacts with a phonon a scat-
tering occurs and its state changes. If it happens a transition from the state εn to εn−1

then an absorption occurs, if there is a transition from εn to εn+1 then there is an emis-
sion. Vibration modes in crystals are classified in two main classes: optical waves and
acoustic waves.

In the Debye approximation, acoustic waves have a linear dispersion relation, that
is

h̄ωac(|k|) ≈ csh̄|k|, (1.5)

where cs is the sound speed in the crystal. In the Einstein approximation, Optical
waves have a constant dispersion relation, that is

h̄ωop(|k|) ≈ h̄ωop. (1.6)

1.1.3 Electron transport in solids

Let us suppose to have a system composed by N electrons. To determine the eigen-
states of the system, we need to find a function Ψ of the coordinates xi, i = 1, 2, . . . , N
such that
{︄

∑
i

1
2m

p2
i + ∑

i
U (xi) + ∑

i,j

e2

|xi − xj|

}︄
Ψ(x1, x2, . . . , xN) = EΨ(x1, x2, . . . , xN), (1.7)
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being m the electron mass, pi the momentum of each electron and e the elementary
charge. The momentum is related to the wave vector by pi = h̄ki. In the left hand side,
the first term represents the kinetic energy, the second one the potential energy due to
the ions and the third one the interaction energy. In quantum mechanics the kinetic
energy term can be written as an operator by means of

1
2m

|pi|2 −→ − h̄2

2m
∇2

i . (1.8)

The full description of an electronic state requires also a knowledge of the spin of the
electron. This properties classifies electrons in two classes: those that have spin 1/2
and those having spin −1/2.

The equation (1.7) is extremely complicated to solve, in particular for the presence
of the interaction term. A first rough approximation consists to take into account only
kinetic energy and neglect the other terms. This is called free electron model. In this
way the system is described as a gas of free electrons. This model can be suitable for
alkali metals in which there is only one valence electron outside the closed shell that
behaves as free.

To have a deeper knowledge of the structure of solids it is necessary to consider
also the potential energy in (1.7). By neglecting the interaction term we remark that
the wave function of the system can be separate into factors, each corresponding to the
coordinates of a single electron. This fact leads to the single Schrödinger equation

{︄
− h̄2

2m
∇2 + U (x)

}︄
ψ(x) = Eψ(x). (1.9)

In general no exact solutions are known but one must resort to numerical procedures.
Since in a crystal ions are arranged in a periodic structure we can assume that the
potential U (x) is periodic, that is

U (x + T) = U (x), (1.10)

for all translation vectors T. Under the previous hypothesis, Bloch’s theorem states
that the eigenstates of the Hamiltonian appearing in (1.8), that we indicate by H0 from
now on, can be chosen to have the form of a plane wave times a function with the
periodicity of the lattice, that is

ψn,k(x) = eik·xun,k(x),
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where
un,k(x + T) = un,k(x),

for all translation vectors T. For a proof of Bloch’s theorem see [4]. The quantum num-
ber k characterizes the translation symmetry of the potential. Due to the periodicity,
it can be thought as confined in the first Brillouin zone. If multiplied by h̄ it is called
crystal momentum. The index n appears because given k there are many solution of
the equation (1.8). This index varies discretely. In terms of eigenvalues we remark that
the levels of an electron in a periodic potential are described by a family of continuous
functions En(k), each one called band and all of them together constitute the electronic
band structure of the solid. Moreover an electron of wavevector k belonging in an
energy level labeled by n has a mean velocity given by

vn(k) =
1
h̄
∇kEn(k).

We can characterize insulators by the energy gap, that is the difference between the
top of the highest filled bands and the bottom of the lowest empty bands. Let us sort
the bands by increasing energies. At zero absolute temperature a solid with an en-
ergy gap is nonconducting. When the temperature is not zero there is a nonvanishing
probability that some electrons will be thermally excited across the energy gap into the
lowest unoccupied bands, which are called, in this context, the conduction bands, leav-
ing behind unoccupied levels in the highest occupied bands, called valence bands. If
the gap is much higher than kBT, where kB is the Boltzmann constant and T is the room
temperature, the material is an insulator. If the energy gap is comparable with kBT, the
material is an intrinsic semiconductor. If the last occupied band is only partially occu-
pied, the material is a metallic conductor. The energy of the topmost filled orbital at
absolute zero is called Fermi energy and indicated by εF. The points in k-space where
carriers have minimum energy are called valleys.

Now let we suppose to have a field of force with Hamiltonian H′ acting on elec-
trons. The motion governed by the combined Hamiltonian H0 and H′ satisfies the
time-dependent Schrödinger equation

(H′ +H0)ψ(x, t) = ih̄
∂

∂t
ψ(x, t) (1.11)

or equivalently (see [110])

{︁
H′ + E(−i∇)

}︁
ψ(x, t) = ih̄

∂

∂t
ψ(x, t). (1.12)

We remark that a wave-packet solution of (1.12) has exactly the same trajectory as
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a particle obeying the equations derived from the appropriate classical Hamiltonian.
The latter is obtained by replacing the operator −ih̄∇ by the classical momentum p,

H(x, p) = H′(x, p) + E
(︂p

h̄

)︂
. (1.13)

Let we assume that the external force is due to a space dependent electrostatic potential
V(x), than we have

H′(x, p) = −eV(x),

being e the elementary charge in absolute value. Moreover, if we assume that p is the
crystal momentum we get the so called semiclassical approximation, leading to the
following equations of motion

ẋ = vn(k), k̇ =
e
h̄
∇xV(x). (1.14)

The above mentioned assumption is not properly physically justified. The interested
reader is referred to [49] for example. Let us consider a gas of semiclassical electrons
each one satisfying (1.14). From the Liouville evolution equation for the phase space
distribution function, by adapting the well known procedure for rarefied gas, see [65],
we get the semiclassical Vlasov equation

∂ f
∂t

+ v(k) · ∇x f − e
h̄

E(t, x) · ∇k f = 0, (1.15)

being E(t, x) = −∇xV(t, x) and where distribution function f (t, x, k) is defined in such
a way that f (t, x, k)dxdk indicates the number of particles with positions in the volume
dx around x and wavevector in dk around k, at time t.

To incorporate in the equation the quantum effects of the semiconductor crystal
lattice, such as electron-phonon, electron-substrate and electron-electron scatterings,
we include on the right hand side a collision term Q( f ), whose expression will be
given in details in the next, leading to the semiclassical Boltzmann equation

∂ f
∂t

+ v(k) · ∇x f − e
h̄

E(t, x) · ∇k f = Q( f ). (1.16)

1.1.4 Equilibrium distributions

To describe a gas of identical particles in quantum terms, we must consider the statis-
tical ensemble of systems formed by the entire gas. For a gas of bosons, there is the
possibility to find any number of particles in the same quantum state. The average oc-
cupation number in a single-particle state with energy εi is given by the Bose-Einstein
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distribution
ni =

1

exp
(︂

εi−µ
kBT

)︂
− 1

, (1.17)

where µ is the chemical potential. If the particles are fermions, by the Pauli exclusion
principle, we know that two particles cannot occupy the same state. The average oc-
cupation number in a single-particle state with energy εi is given by the Fermi–Dirac
distribution

ni =
1

exp
(︂

εi−µ
kBT

)︂
+ 1

. (1.18)

In this case the chemical potential µ is also called Fermi level [44], indicated by εF.

1.2 Graphene structure

The last years have witnessed a great interest in 2D-materials for their promising appli-
cations. The most investigated one is graphene which is considered as a potential new
semiconductor material for future applications in nano-electronic [7, 19, 56, 73] and
optoelectronic devices [109]. Graphene is a material having many interesting physi-
cal properties (see [19], [99], [38]). Electrons in graphene behave as relativistic mass-
less particles (Dirac fermions). This fact furnishes many peculiar properties such as
the quantum anomalous Hall effect and the absence of localization. Further graphene
properties are the high electron mobility at room temperature (250 000 cm2/Vs), the
elevated thermal conductivity (5000 Wm−1K−1) and the unique mechanical properties
with a Young modulus of 1 TPa.

In order to have a complete setting it is fundamental to describe the crystal structure
and the energy band of graphene.

Graphene is a single layer of carbon (C) atoms arranged in a two dimensional hon-
eycomb lattice (see [38]). Graphene is the basic element for other materials deriving
from graphite: it can be wrapped in fullerene (0D), rolled in carbon nanotube (1D)
or piled in graphite (3D). Moreover another possible configuration is the graphene
nanoribbon (GNR) consisting of a strip having a sufficiently small width such that
electrons are confined in one direction.

Graphene is composed by carbon atoms. Carbon is a chemical element with 6 pro-
tons and 6 electrons, 2 core and 4 valence electrons. The electron configuration of car-
bon is given by 1s and 2s orbitals completely filled and two 2p orbitals containing one
electron. In compact form the fundamental state of carbon is 1s2 2s2 2p1. In graphene
each atom has a covalent bond with other two carbon atoms. Thus each atom has three
hybrid orbitals sp2 staying on the same plane e forming angles of 120◦. The fourth
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electron stays in a 2pz orbital, which axis is perpendicular with respect to the plane of
the three others. It generates the electronic bands (see [19]).

1.2.1 The honeycomb lattice

Graphene is described by a two dimensional honeycomb lattice in whose vertices are
arranged the carbon atoms. The crystal structure and the electronic energy band have
been first studied by [105] and then summarized by [19]. The honeycomb net is clas-
sified as a triangular Bravais lattice with a two-point basis [4]. In this way it can be
considered as composed by two interpenetrating nonequivalent sublattices, usually
indicated by A and B. The primitive vectors are

a1 =
a
2
(3,

√
3), a2 =

a
2
(3,−

√
3), (1.19)

where a ≈ 1.42Å is the nearest neighbor distance. Since we have a two-point basis this
is not the lattice constant, that is a

√
3 ≈ 2.46Å. Regarding the sublattice A, the nearest

neighbors are located throw the vectors

δ1 =
a
2
(1,

√
3), δ2 =

a
2
(1,−

√
3), δ3 = −a(1, 0) (1.20)

and, similarly, for sublattice B they are

γ1 = − a
2
(1,

√
3), γ2 =

a
2
(−1,

√
3), γ3 = a(1, 0). (1.21)

In the Figure 1.2 the above mentioned properties are depicted, where the sublattices
A and B are colored in yellow and red respectively and the unit cell is highlighted in
blue. The primitive reciprocal vectors of are

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3). (1.22)

They define an hexagonal Brillouin zone, represented in Figure 1.3. Let we consider a
reference frame whose origin is the Γ point, that is the center of the Brillouin zone. The
vertices of the latter, indicated by K e K′ and called Dirac points, are located in

K =

(︃
2π

3a
,

2π

3
√

3a

)︃
, K′ =

(︃
2π

3a
,− 2π

3
√

3a

)︃
. (1.23)
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FIGURE 1.2: Structure of graphene honeycomb lattice.

FIGURE 1.3: The Brillouin zone.
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1.2.2 The electronic band structure

The energy bands are derived from the tight-binding Hamiltonian for electrons in
graphene, considering that electrons can hop to both nearest- and next-nearest-neighbor
atoms. They have the form (see [19])

E±(k) = ±γ1

√︂
3 + f (k)− γ2 f (k), (1.24)

with

f (k) = 2 cos
(︂√

3kya
)︂
+ 4 cos

(︄√
3

2
kya

)︄
cos

(︃
3
2

kxa
)︃

, (1.25)

where γ1 ≈ 2.8 eV is the nearest-neighbor hopping energy and γ2 ≈ 0.1 eV is the next
nearest-neighbor hopping energy. We remark that the coordinates of k are expressed
with respect to the Γ point. In the Equation (1.24) the plus sign corresponds to the
conduction band π∗ and the minus sign refers to the valence band π. If we neglect the
next nearest-neighbor hopping energy, that is we assume γ2 = 0, the two bands appear
to be symmetrical. In this case by simple calculation we can assert that the two energy
bands touches at the Dirac points. It means that there is no energy gap in graphene.
Moreover, by expanding the full band structure (1.24) close to K (or K′) the dispersion
relation reduces to

E±(k) ≈ ±h̄vF|k|+O(|k|2), (1.26)

where vF is the Fermi velocity, given by

vF =
3γ1a
2h̄

, (1.27)

with a value of vF ≈ 106m/s. Therefore we remark that the dispersion relation shape
is conic near the Dirac points. A plot is shown in Figure 1.4.

FIGURE 1.4: Electronic dispersion in the honeycomb lattice. The full ex-
pression is reproduced on the left, the zoom in close the Dirac points in

shown on the right.
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1.3 The semiclassical Boltzmann equation

The first kinetic equation for particle distribution function in dilute classical gases has
been devised by [13]. To describe the electron transport in solids a variant, based on
the assumption of particles obeying to the Fermi-Dirac distribution, has been proposed
the first time by [102]. Thereafter, the semiclassical Boltzmann model has been refined
by taking into account many effects.

In a semiclassical kinetic setting, the charge transport in graphene is described, in
general, by four Boltzmann equations, one for electrons in the valence (π) band and
one for electrons in the conduction (π∗) band, that in turn can belong to the K or K′

valley. By assuming the K and K′ valleys as equivalent, then we can consider only the
two equations

∂ fs

∂t
+ vs · ∇x fs −

e
h̄

E · ∇k fs = Q( fs, f−s) (s = ±1) , (1.28)

where fs = fs(t, x, k) represents the distribution function of charge carriers in the con-
duction band (CB), for s = 1, or in the valence band (VB), for s = −1, at position
x ∈ U ⊂ R2, time t and wave-vector k ∈ R2. We denote by ∇x and ∇k the gradients
with respect to the position and wave vector, respectively. In the sequel, for simplify-
ing the notation, we write also f+ and f− to indicate the distributions of electrons in
the conduction and valence bands.

The group velocity vs is related to the energy band εs by

vs =
1
h̄
∇k εs .

As said, with a very good approximation, in [19], a linear dispersion relation holds
for the energy bands εs around the Dirac points; so that, choosing the origin of the
reference frame in the k-space coinciding with a Dirac point, we have εs = s h̄ vF |k|,
where vF is the (constant) Fermi velocity and h̄ the Planck constant divided by 2 π. The
elementary (positive) charge is denoted by e. The electric field E(t, x) is related to the
electrostatic potential ϕ(t, x) through

E = −∇xϕ, (1.29)

where ϕ(t, x) might be external or recovered by coupling (1.28) with a Poisson equa-
tion. The right hand side of Eq. (1.28) is the collision term due to several kinds of
scatterings. It can be thought as

Q( fs, f−s) = Q(el−ph)( fs, f−s) + Q(el−sub)( fs, f−s) + Q(el−el)( fs, f−s)
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where Q(el−ph) represents the interaction of electrons with acoustic, optical and K pho-
nons; Q(el−sub) describes the scatterings of electrons with optical phonons and im-
purities of a substrate where the graphene layer is placed on; Q(el−el) represents the
electron-electron interaction.

In the valence band, instead of electrons, it is possible to consider holes. If we
indicate with ke the state of a missing electron in the VB and with kh and εh(kh) the
state and the energy of the corresponding hole, they are related by the conditions [52,
44]

kh = −ke, εh(kh) = −ε−(ke).

Removing the labels to avoid unnecessarily complicated notation, the dispersion rela-
tion for the energy of holes writes

εh(k) = h̄vF|k|.

The distribution function of holes in the VB is defined by

fh(t, x, k) = 1 − f−(t, x,−k).

We close the description of the semiclassical Boltzmann equation by presenting a spe-
cial case. Let we consider the ideal physical situation, depicted in Fig. 1.5, of a graphene
sheet of length L and infinitely large with two parallel metallic contacts placed at the
extremities of its length. If a fixed bias voltage Vb is applied then a linear electrostatic

FIGURE 1.5: Schematic representation of a suspended monolayer
graphene with metallic contacts.

potential is generated between the two contacts and therefore the corresponding elec-
tric field reads

E = −Vb
L

u,

being u the unit vector directed perpendicularly to the contacts. Since the electric field
is constant, the dependence on x disappears in the Boltzmann equation, which be-
comes

∂ fs

∂t
− e

h̄
E · ∇k fs = Q( fs, f−s) (s = ±1) , (1.30)
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where now fs = fs(t, k) and we will refer to this situation as spatially homogeneous
case.

About analytic results on the semiclassical Boltzmann equation space homogeneous
solutions to the Cauchy problem have been obtained in [61], a result on global existence
and uniqueness of smooth solutions in two dimensions and locally in three dimensions
can be found in [78]. In [84] global existence and uniqueness of smooth solutions in
any dimension for a system when the wave vector belongs to the bounded Brillouin
zone has been shown. In [57] even the electric field is controlled and in [3] the collision
term and the dependence of the energy band diagram is also taken into account.

1.3.1 Electron-phonon interactions

Acoustic phonon scattering (ac) is intra-valley and intra-band. Optical phonon scat-
tering is intra-valley and can be longitudinal optical (LO) and transversal optical (TO);
it can be intra-band, that is leaves the electron in the same band, or inter-band push-
ing the electron from an initial band to the other one. Scattering with optical phonon
of type K pushes electrons from a valley to a neighbor one (inter-valley scattering).
Hence, the general form of Qel−ph can be written as

Q(el−ph)( fs, f−s)(t, x, k) =∑
s′

[︃∫︂

R2
S(el−ph)

s′,s (k′, k) fs′(t, x, k′) (1 − fs(t, x, k)) dk′

−
∫︂

R2
S(el−ph)

s,s′ (k, k′) fs(t, x, k)
(︁
1 − fs′(t, x, k′)

)︁
dk′
]︃

where the total transition rate is given by the sum of the contributions of the several
types of scatterings

S(el−ph)
s′,s (k′, k) = ∑

ν

⃓⃓
⃓G(ν)

s′,s(k
′, k)

⃓⃓
⃓
2 [︂(︂

n(ν)
q + 1

)︂
δ
(︂

εs(k)− εs′(k
′) + h̄ ω

(ν)
q

)︂

+ n(ν)
q δ

(︂
εs(k)− εs′(k

′)− h̄ ω
(ν)
q

)︂]︂
. (1.31)

The index ν labels the νth phonon mode,
⃓⃓
⃓G(ν)

s′,s(k
′, k)

⃓⃓
⃓ is the matrix element, which

describes the scattering mechanism, due to phonons of type ν, between electrons be-
longing to the band s′ and electrons belonging to the band s. The symbol δ denotes
the Dirac distribution, ω

(ν)
q is the the νth phonon frequency, n(ν)

q is the Bose-Einstein
distribution for the phonon of type ν

n(ν)
q =

1

eh̄ ω
(ν)
q /kBT − 1

,
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kB is the Boltzmann constant and T is the graphene lattice temperature. We assume that
phonons are at thermal equilibrium, then the lattice temperature will be kept constant.
When, for a phonon ν∗, h̄ ω

(ν∗)
q ≪ kBT, then the scattering with the phonon ν∗ can be

assumed elastic. In this case, we eliminate in Eq. (1.31) the term h̄ ω
(ν∗)
q inside the delta

distribution and we use the approximation n(ν∗)
q + 1 ≈ n(ν∗)

q .
Now we write explicitly the transition rates used in our simulations.

For acoustic phonons, usually one considers the elastic approximation, and

2 n(ac)
q

⃓⃓
⃓G(ac)(k′, k)

⃓⃓
⃓
2
=

1
(2 π)2

π D2
ac kB T

2h̄ σm v2
p

(1 + cos ϑk ,k′) , (1.32)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene,
σm the graphene areal density, and ϑk ,k′ is the convex angle between k and k′.
There are three relevant optical phonon scatterings: the longitudinal optical (LO), the
transversal optical (TO) and the K phonons. The matrix elements are

⃓⃓
⃓G(LO)(k′, k)

⃓⃓
⃓
2
+
⃓⃓
⃓G(TO)(k′, k)

⃓⃓
⃓
2
=

2
(2 π)2

π D2
O

σm ωO
(1.33)

⃓⃓
⃓G(K)(k′, k)

⃓⃓
⃓
2
=

1
(2 π)2

2π D2
K

σm ωK
(1 − cos ϑk ,k′) , (1.34)

where DO is the optical phonon coupling constant, ωO the optical phonon frequency,
DK is the K-phonon coupling constant and ωK the K-phonon frequency. Physical pa-
rameters for the collision terms are summarized in Table 1.1.

vF 108 cm/s vp 2 × 106 cm/s

σm 7.6 × 10−8 g/cm2 Dac 6.8 eV

h̄ ωO 164.6 meV DO 109 eV/cm

h̄ ωK 124 meV DK 3.5 × 108 eV/cm

TABLE 1.1: Physical parameters for the (el-ph) collision term.

1.3.2 Electron-substrate interactions

Remote optical phonon scattering is intra-valley and can be longitudinal optical (LO-
sub) and transversal optical (TO-sub); it can be also intra-band or inter-band. Remote
impurity scattering (imp) is intra-valley and intra-band.
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Regarding the electron substrate scatterings, the collision term Q(el−sub) has the
same form of Q(el−ph) and the total transition rate (1.31) is given by

S(el−sub)
s′,s (k′, k) = S(O−sub)

s′,s (k′, k) + S(imp)
s′,s (k′, k) (1.35)

where

S(O−sub)
s′,s (k′, k) =

⃓⃓
⃓G(O−sub)(k′, k)

⃓⃓
⃓
2 [︂(︂

n(O−sub)
q + 1

)︂
δ
(︂

εs(k)− εs′(k
′) + h̄ ω

(O−sub)
q

)︂

+n(O−sub)
q δ

(︂
εs(k)− εs′(k

′)− h̄ ω
(O−sub)
q

)︂]︂
,

being

⃓⃓
⃓G(O−sub)(k′, k)

⃓⃓
⃓
2
=
⃓⃓
⃓G(LO−sub)(k′, k)

⃓⃓
⃓
2
+
⃓⃓
⃓G(TO−sub)(k′, k)

⃓⃓
⃓
2
=

2
(2 π)2

π D2
O−sub

σm ωO−sub
.

Moreover, concerning S(imp)
s′,s , we assume that the remote impurities stay in a plane at

distance d from the graphene sheet. The definition of the scattering rate for electron-
impurity scattering is highly complex; so many approximate models are proposed.
Following [43], we adopt the expression

S(imp)
s′,s (k, k′) =

2π

h̄
ni

(2 π)2

⃓⃓
⃓⃓Vi(|k − k′|, d)

ϵ(|k − k′|)

⃓⃓
⃓⃓
2 (1 + cos ϑk ,k′)

2
δ
(︁
εs(k′)− εs′(k)

)︁
,

where

a) ni is the number of impurities per unit area.

b) Vi(|k − k′|, d) = 2 πe2 exp(− d |k − k′|)
κ̃ |k − k′|

– d is the location of the charged impurity measured from the graphene sheet

– κ̃ is the effective dielectric constant, defined by 4πϵ0
(︁
κtop + κbottom

)︁
/2, where

ϵ0 is the vacuum dielectric constant and κtop and κbottom are the relative di-
electric constants of the medium above and below the graphene layer.

c) ϵ(|k−k′|) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
qs

|k − k′| −
π qs

8 kF
if |k − k′| < 2 kF

1 +
qs

|k − k′| −
qs

√︂
|k − k′|2 − 4 k2

F

2 |k − k′|2 − qs

4 kF
asin

(︃
2 kF

|k − k′|

)︃
otherwise

is the 2D finite temperature static random phase approximation (RPA) dielectric
(screening) function appropriate for graphene;
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– qs =
4 e2 kF

κ̃ h̄ vF
is the effective Thomas-Fermi wave-vector for graphene; it can

be rewritten in terms of the dimensionless Wigner-Seitz radius rS as qs =

4rSkF;

– kF =
εF

h̄vF
is the Fermi wave-vector. We remark that if εF = 0 the dielectric

function is not defined than according to [31] we adopt the approximate
expression kF =

√︂
4πn
gsgv

, being n the 2D carrier density, gs = 2 and gv = 2 the
spin and valley degeneracy. Hence the adopted threshold value in terms of
Fermi level where the two expression switches is |εF| = 0.04 eV.

We remark that in (1.35), since the scattering is elastic and due to the presence of the
delta function the only admissible cases are given by s = s′. The physical parameters
adopted in our simulations are summarized in Table 1.2 and regard the silicon dioxide
(SiO2) and the hexagonal boron nitride (h-BN).

SiO2 h-BN
h̄ωop−ac 55 meV 200 meV

D f 5.14 ×107 eV/cm 1.29 ×109 eV/cm
ni 2.5 ×1011 cm−2 2.5 ×1010 cm−2

κbottom 3.9 3

TABLE 1.2: Physical parameters for the (el-sub) collision term.

1.3.3 Electron-electron interaction

The collision term including electron-electron interactions reads (see [101, 1]):

Q(el−el)( fs, f−s) = ∑
s′

∑
k′

1,k2,k′
2

[︁
fs′(k

′
1) fs′(k

′
2)see(k′

1, k′
2, k1, k2)(1 − fs(k1))(1 − fs(k2))+

− fs(k1) fs(k2)see(k1, k2, k′
1, k′

2)(1 − fs′(k
′
1))(1 − fs′(k

′
2))
]︁

,

where the only dependence on k is written to avoid an annoying notation. sα(k, k′)
is the transition rate from the state k to k′ due to the interaction with the αth phonon
branch while see(k1, k2, k′

1, k′
2) is the transition rate among the states k1 → k′

1 e k2 →
k′

2.
Following [55], the transition rate see, obtained by means of the Fermi golden rule,

is given by

see(k1, k2, k′
1, k′

2) =
2π

h̄
|M|2δ(ε(k′

1)) + ε(k′
2))− ε(k1))− ε(k2))),
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where the dispersion relation around the Dirac points of the first Brillouin zone is as-
sumed to be ε(k) = h̄vF|k|. The generic element of the interaction matrix, is

|M|2 =
1
2

[︂
|V(q)|2 + |V(q′)|2 − V(q)V(q′)

]︂
,

with

V(q) =
2πe2

ϵ(q)qA

1 + cos(ϕk1,k′
1
)

2

1 + cos(ϕk2,k′
2
)

2
,

where q = |k1 − k′
1|. In the above expressions ϕk,k′ indicates the angle between k and

k′. For further details see [36], [93] e [14].
Under the hypothesis of random-phase approximation (valid for density n ≥ 1012cm−2),

the dielectric function ϵ(q) is given by ( [34]):

ϵ(q) = 1 + vc(q)Π(q),

where vc(q) = 2πe2/κq, with κ (background lattice dielectric constant) which satisfies
the relation rs = e2

κγ

√︂
4

gsgv
, Here γ = h̄vF, where gs and gv are the spin and valley

degeneracy, and rs a dimensionless constant (the Wigner-Seitz radius). If we introduce
the function ˜︁Π(q) = ˜︁Π−(q) + ˜︁Π+(q), with

˜︁Π−(q) =
πq
8kF

and

˜︁Π+(q) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − πq
8kF

se q < 2kF

1 −

√︂
q2 − 4k2

F

2q
− q

4kF
arcsin

(︃
2kF

q

)︃
altrimenti

,

where kF =
√︁

4πn/gsgv, n being the electron density, one has Π(q) = D(EF)˜︁Π(q).

D(ε) =
gvgs|ε|
2πγ2 is the density of state. A more detailed discussion about the physical

aspects can be found in [19] e [31].

1.4 The drift-diffusion-Poisson model

The resolution of the semiclassical Boltzmann equation requires a huge computational
effort. For that reason macroscopic models have been formulate. For graphene a hy-
drodynamical model based on the maximum entropy principle (MEP) has been formu-
lated in [18] using a set of field variables which proved to be successful for traditional
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semiconductors as silicon [69, 88, 87, 92, 91, 76, 66], gallium arsernide [69, 68], silicon
carbide [2].

The drift-diffusion equations constitute a very popular model to describe semicon-
ductor devices. The success of such a model is due to its practically use in engineering
to design electronic devices. The drift-diffusion equations were first derived by van
Roosbroeck in 1950 [90]. A derivation using a simple collision operator can be found
in [49], while in [83] there was presented a rigorous derivation employing low-density
operator. A result on existence and uniqueness of transient solutions can be found in
[48]. In this section we describe the basics of the drift-diffusion model for graphene
based electron devices.

1.4.1 The drift-diffusion equation

The bipolar drift-diffusion model for charge transport in graphene in the 1D case reads

∂n
∂t

− 1
e

∂

∂x

(︃
µnkBTL

∂n
∂x

− enµn
∂ϕ

∂x

)︃
= −R + G,

∂p
∂t

+
1
e

∂

∂x

(︃
−µpkBTL

∂p
∂x

− epµp
∂ϕ

∂x

)︃
= −R + G,

(1.36)

where n(t, x), p(t, x) are the graphene electron density and hole density respectively,
e is the positive elementary charge, kB is the Boltzmann constant, TL is the lattice tem-
perature (kept constant), µn(x) and µp(x) are the mobility models for electrons and
holes respectively, ϕ(x, y) is the electric potential and R and G are the recombination
and generation terms respectively.

The crucial issue is to devise appropriate models for the mobilities and the recom-
bination-generation terms. A mobility model based on experimental data is presented
in [33], while a new one based on numerical solutions of the semiclassical Boltzmann
equation has been introduced in [62]. In [81] an improvement due to the bipolar charge
transport including inter-band scatterings is presented. Finally in [79] the effects of the
substrate where graphene is placed on are taken into account.

Usually the characteristic times of the recombination-generation terms are much
longer than the typical evolution times. Moreover, for a Fermi energy greater than 0.2
eV, R − G is essentially negligible because the Pauli exclusion principle prevents the
formation of electron-hole couples. For a Fermi energy less than −0.2 eV practically
there are not electrons around the Dirac point and again R − G is essentially negligible
[63].
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1.4.2 The Poisson equation for the electric potential

In general the electric potential is coupled with the drift-diffusion equations by a 2D
Poisson equation

∇ · (ϵ∇ϕ) = h(x, y), (1.37)

where

h(x, y) =

{︄
e(n(x)− p(x))/tgr if y = ygr

0 if y ̸= ygr

being ygr the y-coordinate of the graphene sheet, tgr the thickness of the graphene layer
and ϵ is given by

ϵ(x, y) =

{︄
ϵgr if y = ygr

ϵox if y ̸= ygr

where ϵgr and ϵox are the dielectric constants of the graphene and oxide respectively.
The geometry of the problem depends on the particular device is taking into ac-

count. More details will be furnished in Chapter 4, where numerical simulation of a
graphene based electron device will be showed.
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Chapter 2

Numerical methods

A reasonable and physically accurate model for charge transport is based on semiclas-
sical Boltzmann equations (quantum effects have also been included in the literature,
e.g. see [6, 74]). Usually, the available solutions have been obtained by direct Monte
Carlo simulations, e.g. a new Direct Simulation Monte Carlo (DSMC) procedure has
been devised in [89, 25, 64] in order to properly take into account the Pauli exclusion
principle. Direct solutions of the electron transport equations with finite difference
methods have been obtained in [56] while a Discontinuous Galerkin (DG) method has
been used in [89, 26, 62]. See [22, 21] for application of the DG method to traditional
semiconductors, while numerical schemes for the Wigner equation can be found in
[77].

On the other hand macroscopic models, such as drift-diffusion, have been formu-
lated and frequently adopted in electronic engineering to simulate electron devices. A
drift-diffusion model for graphene based electronics has been outlined in the previous
chapter. To numerically solve it we adopt a strategy based on the Scharfetter-Gummel
[94] scheme suitably adapted to the case under consideration. It belongs in the class
of finite difference methods and furnishes a second order approximation in space and
first order in time. For further details see [96].

This chapter is structured as follows: in Section 2.1 we devise the DG approach
and in Section 2.2 we introduce the DSMC method both adopted for the solution of
the semiclassical Boltzmann equation, in Section 2.3 we outline the finite difference ap-
proach for the numerical solution of the drift-diffusion system coupled with the Pois-
son equation.

2.1 The Discontinuous Galerkin method for treatment of

the semiclassical Boltzmann equation

Discontinuous Galerkin (DG) methods are a class of finite element methods in which
discontinuous basis functions, which are usually chosen as piecewise polynomials, are
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used. Due to the above mentioned discontinuity, these methods presents many advan-
tages: they can be used for arbitrary decomposition, in each element the polynomial
degree can be chosen independent of that in the neighbors, to get the accuracy of the
scheme elements only communicate with immediate neighbors [98].

The first DG method was introduced in 1973 to numerically solve the neutron trans-
port equation [86]. A very important development consisted to get a general method
to solve non-linear time-dependent problems using high order Runge–Kutta time dis-
cretizations and DG discretization in space with exact or approximate Riemann solvers
as interface fluxes [23].

To get direct solutions of the semiclassical Boltzmann equation DG methods have
been adopted by the applications to conventional semiconductors, like silicon [22, 21].
Recently this approach was extended to graphene to obtain numerical solutions of the
spatially homogeneous Boltzmann equation for electrons in n-doped graphene both
suspended [89] and on a substrate [25, 64]. Here a further extension to the bipolar case,
contemplating intrinsic or low-doped situations, has been outlined first for suspended
graphene [63] and also when it is placed on an oxide substrate [27]. In this section we
are going to describe the DG method for the spatially homogeneous case (1.30).

2.1.1 Numerical discretization

Let we consider the bipolar semiclassical Boltzmann equation in the spatially homoge-
neous case,

∂ fs

∂t
− e

h̄
E · ∇k fs = Q( fs, f−s) (s = ±1) , (2.1)

where fs = fs(t, k) represents the distribution function of charge carriers in the con-
duction band (CB), for s = 1, or in the valence band (VB), for s = −1, at time t and
wave-vector k ∈ R2.

Since we expect an exponential decay of f+ and 1 − f−, as |k| → +∞, it is reason-
able to choose a compact domain Ω ⊆ R2, such that f+(t, k) ≈ 0 and 1 − f−(t, k) ≈ 0,
for every k /∈ Ω, and for every x and t > 0.

Now we introduce a finite decomposition {Cα : α = 1, 2, . . . , N} of the domain Ω,
with the Cα’s open sets such that

Cα ⊆ Ω ∀ α , Cα ∩ Cβ = ∅ ∀ α ̸= β ,
N⋃︂

α=1

Cα = Ω .
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We assume a constant approximation for each distribution function fs in every cell Cα.
If we denote by χα the characteristic function relative to the cell Cα, then

fs(tk) ≈ f α
s (t), ∀k ∈ Cα ⇐⇒ fs(t, k) ≈

N

∑
α=1

f α
s (t) χα(k), ∀k ∈

N⋃︂

α=1

Cα .

A set of partial differential equations is now derived from the Boltzmann equations
(1.28). The new unknowns are the f α

s (t)’s instead of the distribution functions fs(t, k).
Formally integrating Eq. (1.28) over each cell Cα, we obtain

∫︂

Cα

∂ fs

∂t
dk −

∫︂

Cα

e
h̄

E · ∇k fs dk =
∫︂

Cα

Q( fs, f−s) dk . (2.2)

2.1.2 Numerical flux

The first integral of Eq. (2.2) can be approximated easily; in fact we have

∫︂

Cα

∂ fs

∂t
(t, k) dk ≈ meas(Cα)

∂ f α
s

∂t
(t)

where meas(Cα) is the measure (area) of the cell Cα.
The integral involving the electric field is transformed by using the Gauss theorem,

− e
h̄

E ·
∫︂

Cα

∇k fs dk = − e
h̄

E ·
∫︂

∂Cα

fsn dσ.

Since the approximation of fs is not defined on the boundary of the cells, we must
introduce a numerical flux, that furnishes reasonable values of fs on every ∂Cα, de-
pending on the values of the approximation of fs in the nearest neighbors of the cell
Cα and on the sign of E · n. We have used a reconstruction of the fluxes based on a
Min-Mod slope limiter, as in [25].

The numerical flux used is the Min-Mod slope limiter. The following is a description
in a 1D case. We want to approximate the function g(z) at the grid vertex zn+ 1

2
, known

the averages of the cells centered at zn−1, zn, zn+1 and zn+2. Fixed a wind velocity a

gn+ 1
2

gn−2 gn−1 gn+1 gn+2

FIGURE 2.1: Stencil of the Min-Mod flux limiter in the 1D case.
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and a spatial step ∆z, the value of gn+ 1
2

is

gn+ 1
2
≈

⎧
⎪⎨
⎪⎩

gn +
∆z
2

g′n if a > 0

gn+1 +
∆z
2

g′n+1 if a < 0

where, for a > 0 (by instance), we have

g′n ≈
{︄

min {|d−|, |d+|} sgn(d−) if d−d+ > 0

0 otherwise

being

d− =
gn − gn−1

∆z
, d+ =

gn+1 − gn

∆z
.

For a < 0 a similar formula holds. This choice assures the second order in space [41].
We remark that the spatial gradient ∇x fs(t, x, k) of (1.28) can be discretized in the

same way as the drift one. In this case the discretization depends on the geometry of
the spatial domain and boundary conditions (see for instance [22, 21]). Since in this
paper we consider only space homogeneous solutions, the details are skipped.

2.1.3 Collision term

The treatment of the term arising from the collision operator is straightforward. If
k ∈ Cα, then we have

Q( fs, f−s) =∑
s′

[︃
(1 − fs(t, k))

∫︂
Ss′,s(k

′, k) fs′(t, k′) dk′

− fs(t, k)
∫︂

Ss,s′(k, k′)
(︁
1 − fs′(t, k′)

)︁
dk′
]︃

≈∑
s′

N

∑
β=1

[︄
(1 − f α

s (t))
∫︂

Cβ

Ss′,s(k
′, k) fs′(t, k′) dk′

− f α
s (t)

∫︂

Cβ

Ss,s′(k, k′)
(︁
1 − fs′(t, k′)

)︁
dk′
]︄

≈∑
s′

N

∑
β=1

[︄
(1 − f α

s (t)) f β
s′ (t)

∫︂

Cβ

Ss′,s(k
′, k) dk′

− f α
s (t)

(︂
1 − f β

s′ (t)
)︂ ∫︂

Cβ

Ss,s′(k, k′) dk′
]︄

.
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So, defining

Aα,β
s,s′ =

∫︂

Cα

[︄∫︂

Cβ

Ss,s′(k, k′) dk′
]︄

dk , (2.3)

it is immediate to verify that

∫︂

Cα

Q( fs, f−s) dk ≈ ∑
s′

N

∑
β=1

[︂
Aβ,α

s′,s (1 − f α
s (t)) f β

s′ (t)− Aα,β
s,s′ f α

s (t)(1 − f β
s′ (t))

]︂
. (2.4)

In order to complete the numerical treatment of the Boltzmann equation it is neces-
sary to specify the numerical domain in the k-space. We choose the circle |k| ≤ kmax,
where kmax is a fixed maximum value such that f+ and 1 − f− are negligible for all k
such that |k| > kmax. The parameter kmax is checked a posteriori by means of numerical
experiments.

We use modified polar coordinates by setting k =
√

p (cos ϑ, sin ϑ), and we in-
troduce a regular decomposition (see Fig. 2.2). Hence the cell Cα is defined by the
inequalities

0 ≤ pα < p < pα + ∆p ≤
√︁

kmax and 0 ≤ ϑα < ϑ < ϑα + ∆ϑ ≤ 2 π,

where ∆p and ∆ϑ are constant for every cell Cα.

k

k

x

y

FIGURE 2.2: Grid in polar coordinates used for the discretization of the
k-domain.

The use of the variable
√

p instead of the modulus of k is aimed to having integrable
parameters arising from the force term of the Boltzmann equation. Now, one can obtain
the explicit expression of the numerical parameters Aα,β

s,s′ . Since the transition matrix
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elements
⃓⃓
⃓G(ν)

s,s′ (k, k′)
⃓⃓
⃓ depend only on the convex angle between k and k′, we can write

Aα,β
s,s′ =

1
4 ∑

ν

Γ(ν)
s,s′(α, β)

∫︂ pα+∆p

pα

∫︂ pβ+∆p

pβ

[︂(︂
n(ν)

q + 1
)︂

δ
(︂

s′ h̄ vF
√︁

p′ − s h̄ vF
√

p + h̄ ω
(ν)
q

)︂

+ n(ν)
q δ

(︂
s′ h̄ vF

√︁
p′ − s h̄ vF

√
p − h̄ ω

(ν)
q

)︂]︂
dp′ dp, (2.5)

where

Γ(ν)
s,s′(α, β) =

∫︂ ϑα+∆ϑ

ϑα

∫︂ ϑβ+∆ϑ

ϑβ

⃓⃓
⃓G(ν)

s,s′ (k, k′)
⃓⃓
⃓
2

dϑ′ dϑ . (2.6)

The integrals in Eq. (2.6) are elementary. The integrals in Eq. (2.5) can be solved ana-
lytically, taking into account that

I(α, β, s, s′, ± ω
(ν)
q ) =

1
4

∫︂ pα+∆p

pα

∫︂ pβ+∆p

pβ

δ
(︂

s′ h̄ vF
√︁

p′ − s h̄ vF
√

p ± h̄ ω
(ν)
q

)︂
dp′ dp

=
1

|s′| h̄ vF

∫︂ √
pα+∆p

√
pα

∫︂ √
pβ+∆p

√pβ

δ

(︄
r′ − s

s′
r ± ω

(ν)
q

s′ vF

)︄
r r′ dr′ dr

=
1

h̄ vF

∫︂ √
pα+∆p

√
pα

[︄∫︂

R
χ[√pβ,

√
pβ+∆p](r

′) δ

(︄
r′ − s

s′
r ± ω

(ν)
q

s′ vF

)︄
r′dr′

]︄
r dr

=
1

h̄ vF

∫︂ √
pα+∆p

√
pα

(︄
s
s′

r ∓ ω
(ν)
q

s′ vF

)︄
χ[√pβ,

√
pβ+∆p]

(︄
s
s′

r ∓ ω
(ν)
q

s′ vF

)︄
r dr ,

where χ[√pβ,
√

pβ+∆p] is the characteristic function in the interval
[︂√︁

pβ,
√︂

pβ + ∆p
]︂
.

Now, we define the set

{︄
r ∈ R such that

√
pα ≤ r ≤

√︁
pα + ∆p and

√︁
pβ ≤ s

s′
r ∓ ω

(ν)
q

s′ vF
≤
√︂

pβ + ∆p

}︄
,

which is the empty set or an interval [a, b]. In the first case the integral vanishes, and
in the last case, we have

I(α, β, s, s′, ± ω
(ν)
q ) =

1
h̄ vF

∫︂ b

a

(︄
s
s′

r2 ∓ ω
(ν)
q

s′ vF
r

)︄
dr ,

that is an elementary integral. The integrals involving the electric field are derived by
means of the same technique used in [25].



Chapter 2. Numerical methods 31

2.1.4 Macroscopic quantities

We observe that considering the distribution fh of holes in the VB instead of the one
of electrons, one gets that also fh ≈ 0 for all k /∈ Ω, similarly to f+, and this helps the
numerical approach that we use for the integration of the transport equations.

From the approximation of the distribution functions, the average values of density,
velocity and energy are reconstructed as follows

ρe(t) :=
2

(2 π)2

∫︂
f+(t, k) dk ≈ 2

(2 π)2

N

∑
α=1

meas(Cα) f α
+(t) ,

< ve > (t) :=
1

ρe(t)
2

(2 π)2

∫︂
f+(t, k) v+(k) dk

≈ 1
ρe(t)

2
(2 π)2

N

∑
α=1

[︃∫︂

Cα

v+(k) dk
]︃

f α
+(t) ,

< εe > (t) :=
1

ρe(t)
2

(2 π)2

∫︂
f+(t, k) ε+(k) dk

≈ 1
ρe(t, x)

2
(2 π)2

N

∑
α=1

[︃∫︂

Cα

ε+(k) dk
]︃

f α
+(t),

ρh(t) :=
2

(2 π)2

∫︂
(1 − f−(t,−k)) dk ≈ 2

(2 π)2

N

∑
α=1

meas(Cα) (1 − f α
−(t)) ,

< vh > (t) :=
1

ρh(t)
2

(2 π)2

∫︂
fh(t, k) vh(k) dk

=
1

ρh(t)
2

(2 π)2

∫︂
(1 − f−(t,−k)) vh(k) dk

=
1

ρh(t)
2

(2 π)2

∫︂
(1 − f−(t,−k)) v+(k) dk

≈ − 1
ρh(t)

2
(2 π)2

N

∑
α=1

[︃∫︂

Cα

v+(k) dk
]︃
(1 − f α

−(t)) ,

< εh > (t) :=
1

ρh(t)
2

(2 π)2

∫︂
(1 − f−(t,−k)) ε+(k) dk

≈ 1
ρh(t)

2
(2 π)2

N

∑
α=1

[︃∫︂

Cα

ε+(k) dk
]︃
(1 − f α

−(t)) .
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The above integrals are easily evaluated by taking into account that

meas(Cα) =
1
2

∆p ∆ϑ,
∫︂

Cα

vs dk = s vF ∆p
(︃

cos
(︃

ϑ +
∆ϑ

2

)︃
sin

∆ϑ

2
, sin

(︃
ϑ +

∆ϑ

2

)︃
sin

∆ϑ

2

)︃
,

∫︂

Cα

εs(k) dk =
1
3

s vF h̄ ∆ϑ

[︃√︂
(pα + ∆p)3 −

√︂
(pα)3

]︃
.

Regarding the current density J, it is given by the sum of the contribution from
electrons in the CB and holes in the VB

J = Je + Jh.

The term Je is given by −eρe < ve > while

Jh = e
2

(2 π)2

∫︂
(1 − f−(t,−k)) vh(k) dk = −e

2
(2 π)2

∫︂
(1 − f−(t, k)) vh(k) dk.

2.2 The Direct Simulation Monte Carlo approach to nu-

merically solve the semiclassical Boltzmann equation

To numerically solve the Boltzmann equation an important role is played by stochastic
simulations. Monte Carlo methods identify a group of techniques using random vari-
ables, artificially generated by a computer, to solve mathematical problems. The name
Monte Carlo appeared the first time in a paper written by N.C. Metropolis and S. Ulam
in 1949 [71]. Direct Simulation Monte Carlo method is referred to a numerical proba-
bilistic Monte Carlo technique to model rarefied gas flows. It was introduced the first
time by G.A. Bird in 1970 [12]. Thirty years later it was proved that DSMC converges
to the solution of the Boltzmann equation [104]. About the charge transport, DSMC
simulates the dynamics of charge carriers inside the crystal. The approach is described
in [46, 44].

A crucial point is the correct inclusion of the Pauli Exclusion Principle (PEP). The
approach proposed in [60] allows an occupation number greater than one with an ev-
ident violation of PEP. About the simulation of charge transport in graphene, in [89]
a new approach is employed. It predicts occupation numbers consistent with PEP
and therefore is physically more accurate. Moreover, in presence of an oxide substrate
where graphene is placed on, scatterings with remote impurities are treated in [25] and
[24]. Furthermore, thermal effects are also taken into account in [26, 30].
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In this section we are going to describe the adopted DSMC algorithm for the semi-
classical Boltzmann equation for electrons in CB where electron-phonon and electron-
substrate interactions are taken into account.

2.2.1 Numerical settings

The k-space is approximated by the set [−kx max, kx max] × [−ky max, ky max] with kx max

and ky max such that the number of electrons with a wave-vector k outside such a set is
practically negligible. The k-space is partitioned into a uniform rectangular grid. We
shall denote by Cij the generic cell of the grid centered at the kij wave-vector.

The distribution function is approximated with a piecewise constant function in
each cell. At time t = 0 the nP particles used for the simulation are distributed in each
cell according to the equilibrium Fermi-Dirac distribution.

The maximum number n∗
ij of simulated particles accommodated in each cell is eas-

ily evaluated (see [60]). Let Nij be the number of real particles in the cell Cij and let nij

be the number of simulated particles in the same cell. Let A be the area of the sample
and let N be the number of real particles in the sample, N = ρA. By observing that
N/nP is the statistical weight of each particle entering the simulation and taking into
account the condition 0 ≤ f ≤ 1, one has

nij =
Nij

N
nP =

nP

N
2

(2π)2 A
∫︂

Cij

f d k ≤ nP

N
2

(2π)2 A
∫︂

Cij

d k

=
2

(2π)2 meas(Cij)
nP

N
A =

2
(2π)2 meas(Cij)

nP

ρ
= n∗

ij, (2.7)

where meas(Cij) is the measure of the cell Cij. Of course n∗
ij is not in general an inte-

ger, therefore rounding errors are introduced. Usually the problem is solved by using
a number of simulated particles nP great enough to make such errors negligible. The
convergence of the procedure is often checked just by comparing the results with dif-
ferent nP.

2.2.2 The DSMC method

In the standard approach the motion of each particles is described alternating free-
flight, that is governed by the semiclassical equation of motion

h̄k̇ = −e E, (2.8)

and scattering, that changes the wavevector of particles according to the collision term.
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The main concern with the procedure delineated above is that, according to the
semiclassical approximation, the compatibility with Pauli’s exclusion principle of the
positions occupied during the free flight is not checked. It may occur that the particle
at the end of the free-flight reaches a cell in the k-space already fully occupied making the
occupation number greater than one (see [89]).

It is of course nonphysical the fact that, for high values of the Fermi energy, the
maximum occupation number can greatly exceed the maximum one, although the av-
erage quantities could be acceptable according to the law of large numbers. Even if the
scattering can redistribute the particles among the cells, in general it is not possible to
eliminate the presence of anomalous occupation numbers.

For overcoming the problem, in [100] it has been proposed to apply the rejection
technique not only to the scattering events but also at the end of each free-flight. How-
ever, even implementing this variant, the same drawbacks are still present as shown in
[89].

In order to avoid such a difficulty, in [89] the following approach has been pro-
posed. The crucial point in the previous procedure is the step concerning the free-
flight. If we go back to the original transport equation, we can use a splitting scheme
to avoid nonphysical results. The basic idea is to reformulate the splitting method in
terms of a particle method.

In a time interval ∆t, first we solve the drift part of the equation corresponding to
the free-flight in the analogous DSMC approach,

∂ f (t, k)
∂t

− e
h̄

E · ∇k f (t, k) = 0, (2.9)

taking as initial condition the distribution at time t, and then the collision part

∂ f (t, k)
∂t

= Q( f )(t, k) , (2.10)

taking as initial condition the solution of Eq. (2.9).
The collision term is the most involved and delicate part and it is particularly im-

portant to include PEP to describe charge transport in graphene correctly. This implies
a heavy computational cost and requires an update of the distribution function at each
time step.

Now we describe the numerical scheme for the electron-phonon and electron-substrate
collision term. The time interval ∆t is chosen for each particle in a random way by
means of

∆t = − ln ξ

Γtot(ε(t))
, (2.11)
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where ξ is a random number with uniform distribution in the interval [0, 1] and Γtot

being the total scattering rate of the particle, having energy ε at time t.

Γtot(ε(t)) = ∑
ν

Γν(ε(t)) + Γss(ε(t)).

The generic scattering rate Γν is defined by

Γν(k) =
∫︂

R2
S(ν)(k, k′) dk′

depending on k through the energy, that is Γν(k) = Γν(ε). The symbol ν identifies the
scattering type, ac, TO, K, for the electron-phonon collision term and TO-sub, imp for
the electron-substrate collision term. The function Γss, called self-scattering rate, is the
scattering rate associated to a fictitious scattering that does not change the state of the
electron. The self-scattering rate is determined by considering the sum ΓM = ∑ν Γν.
Hence Γss is fixed in such a way Γtot = αΓM, where α > 1 is a tuning parameter. We set
α = 1.1 in our simulations. This method differs from the standard one (see for instance
[45]).

The scattering is selected randomly according to the values of the transition rates,
and PEP is taken into account as in [60]. Once the state after the scattering has been
determined, denoted by k′ its wave-vector, the initial state is changed or left the same
according to the rejection technique. It consists to choose a random number ξ gener-
ated uniformly in [0, 1] and, if ξ < 1 − f (k′) the transition is accepted, otherwise it is
rejected. Then, according to the angular distribution of the scattering rate, a rejection
method allows to select the angular dependence of the wave-vector after the scattering
event.

At fixed times the momentum, velocity, energy of each electron are stored and the
mean values are evaluated in order to follow the time evolution of the system.

The global procedure gives a numerical approximation of f (t + ∆t, x, k) up to first
order in ∆t. The solution of Eq. (2.9) is just a rigid translation of the distribution function
along the characteristics and can be reformulated from a particle point of view as a free-
flight of the same time step for each electron. In this way, the cells in the k-space are
moved of the displacement vector h̄∆k = −e E ∆t but without changing the occupation
number of the cells themselves. To avoid considering a computational domain too
large, we adopt a Lagrangian approach and move the grid by adapting it to the new
position of the cells, instead of moving the cells themselves.

Eq. (2.10) is solved by a sequence of collision steps for each particle during the
time interval [t, t + ∆t] in a standard way. Since the collision mechanisms take into
account PEP, the occupation number cannot exceed the maximum occupation number
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in this second step as well. Hence, neither the drift nor the collision step give rise to
the possibility of having, in a single cell, more particles than the maximum occupation
number.

The overall scheme is a hybrid approach which furnishes a first order in time ap-
proximation of the distribution function. Average quantities can be evaluated as well
by taking the mean values of the quantities of interest, e.g. velocity and energy.

2.3 Finite difference method for the drift-diffusion-Poisson

system

The drift-diffusion system (1.36), which forms the basic semiconductor equations, to-
gether with appropriate boundary conditions cannot be solved explicitly in general.
Therefore, the solution must be calculated by means of numerical approaches.

The most successfully adopted are the finite difference method, the finite box method
which indeed is just a more general finite difference method and the finite element
method [96].

2.3.1 Discretization of the drift-diffusion system

Let we consider the one dimensional drift-diffusion equations (1.36) and introduce a
uniform mesh of Nx grid points and size ∆x in the simulation space interval [x2, x3]

along with a constant time step ∆t. The numerical approximation of a generic function
u(x, t) at the node j and time k∆t will be denoted by uk

j .
By introducing the Slotboom variables

sn = n exp(−ϕ/UT), sp = p exp(ϕ/UT)

and by observing that

∂sn

∂x
=

∂n
∂x

exp(−ϕ/UT)−
n

UT
exp(−ϕ/UT)

∂ϕ

∂x
=

exp(−ϕ/UT)

UT

(︃
UT

∂n
∂x

− n
∂ϕ

∂x

)︃
,

∂sp

∂x
=

∂p
∂x

exp(ϕ/UT) +
p

UT
exp(ϕ/UT)

∂ϕ

∂x
=

exp(ϕ/UT)

UT

(︃
UT

∂p
∂x

+ p
∂ϕ

∂x

)︃
,
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one can put the current the currents in the following form

Jn = eµnUT exp(ϕ/UT)
∂sn

∂x
,

Jp = −eµnUT exp(−ϕ/UT)
∂sp

∂x
.

Let us rewrite the previous relations as follows

eµnUT
∂sn

∂x
= Jn exp(−ϕ/UT),

eµpUT
∂sp

∂x
= −Jp exp(ϕ/UT).

(2.12)

In each interval [xi, xi+1] we suppose that the mobilities and the currents are constants,
that is ∀x ∈ [xi, xi+1]

µn(x) ≈ µn
i+ 1

2
, µp(x) ≈ µ

p
i+ 1

2
, Jn(x) ≈ Jn

i+ 1
2
, Jp(x) ≈ Jp

i+ 1
2
,

while we approximate ϕ in [xi, xi+1] by a piecewise linear function

ϕ(x) ≈ ϕi +
x − xi

∆x
(ϕi+1 − ϕi).

By integrating equations (2.12) in [xi, xi+1] one obtains

eµn
i+ 1

2
UT

∫︂ xi+1

xi

∂sn

∂x
dx = Jn

i+ 1
2

∫︂ xi+1

xi

exp
{︃
− 1

UT

[︃
ϕi +

x − xi

∆x
(ϕi+1 − ϕi)

]︃}︃
dx

wherefrom

eµn
i+ 1

2
UT(sn

i+1 − sn
i ) = − UT∆x

ϕi+1 − ϕi
Jn
i+ 1

2

[︃
exp

{︃
− 1

UT

[︃
ϕi +

x − xi

∆x
(ϕi+1 − ϕi)

]︃}︃]︃xi+1

xi

= − UT∆x
ϕi+1 − ϕi

Jn
i+ 1

2
[exp(−ϕi+1/UT)− exp(−ϕi/UT)] .

which gives the following expression of Jn
i+ 1

2

Jn
i+ 1

2
= −eµn

i+ 1
2

ϕi+1 − ϕi

∆x
sn

i+1 − sn
i

exp(−ϕi+1/UT)− exp(−ϕi/UT)

= −eµn
i+ 1

2

ϕi+1 − ϕi

∆x
ni+1 exp(−(ϕi+1 − ϕi)/2UT)− ni exp((ϕi+1 − ϕi)/2UT)

exp(−(ϕi+1 − ϕi)/2UT)− exp((ϕi+1 − ϕi)/2UT)
.

By setting

σi+ 1
2
=

ϕi+1 − ϕi

2
,
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the electron current can be rewritten in a compact form

Jn
i+ 1

2
= e

µn
i+ 1

2

∆x
σi+ 1

2

2ni+1 exp(−σi+ 1
2
/UT)− 2ni exp(σi+ 1

2
/UT)

exp(σi+ 1
2
/UT)− exp(−σi+ 1

2
/UT)

= e
µn

i+ 1
2

∆x

σi+ 1
2

exp(σi+ 1
2
/UT)− exp(−σi+ 1

2
/UT)

·
{︂

ni+1

[︂
exp(σi+ 1

2
/UT) + 2 exp(−σi+ 1

2
/UT)− exp(σi+ 1

2
/UT)

]︂

−ni

[︂
exp(−σi+ 1

2
/UT) + 2 exp(σi+ 1

2
/UT)− exp(−σi+ 1

2
/UT)

]︂}︂

= e
µn

i+ 1
2

∆x
σi+ 1

2

[︄
(ni+1 − ni)

exp(σi+ 1
2
/UT) + exp(−σi+ 1

2
/UT)

exp(σi+ 1
2
/UT)− exp(−σi+ 1

2
/UT)

+ (ni+1 + ni)
exp(−σi+ 1

2
/UT)− exp(σi+ 1

2
/UT)

exp(σi+ 1
2
/UT)− exp(−σi+ 1

2
/UT)

]︄

= e
µn

i+ 1
2

∆x
σi+ 1

2

[︂
(ni+1 − ni) coth(σi+ 1

2
/UT))− (ni+1 + ni)

]︂
.

Similarly for the hole current we find

Jp
i+ 1

2
= −e

µ
p
i+ 1

2

∆x
σi+ 1

2

[︂
(pi+1 − pi) coth(σi+ 1

2
/UT)) + (pi+1 + pi)

]︂
.

We discretize equations (1.36) with respect to time by the forward Euler scheme and
with respect to space, in the interior grid points, by central finite differences

nk+1
i − nk

i
∆t

− 1
e

(︃
Jn
i+ 1

2

)︃k
−
(︃

Jn
i− 1

2

)︃k

∆x
= 0

pk+1
i − pk

i
∆t

+
1
e

(︃
Jp
i+ 1

2

)︃k
−
(︃

Jp
i− 1

2

)︃k

∆x
= 0

for i = 2, . . . , Nx − 1. Then, by substituting the previous expressions of the current, the
explicit scheme for the densities is obtained

nk+1
i = nk

i +
∆t

∆x2

{︂
µn

i+ 1
2
σi+ 1

2

[︂
(nk

i+1 − nk
i ) coth(σi+ 1

2
/UT))− (nk

i+1 + nk
i )
]︂

−µn
i− 1

2
σi− 1

2

[︂
(nk

i − nk
i−1) coth(σi− 1

2
/UT))− (nk

i + nk
i−1)

]︂}︂
, (2.13)
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pk+1
i = pk

i −
∆t

∆x2

{︃
µ

p
i+ 1

2
σi+ 1

2

[︂
(pk

i+1 − pk
i ) coth(σi+ 1

2
/UT)) + (pk

i+1 + pk
i )
]︂

−µ
p
i− 1

2
σi− 1

2

[︂
(pk

i − pk
i−1) coth(σi− 1

2
/UT)) + (pk

i + pk
i−1)

]︂}︃
. (2.14)

The variable without temporal index must be considered evaluated at the time step k.

2.3.2 Numerical discretization for the Poisson equation

To solve the Poisson equation (1.37) numerically a uniform two-dimensional mesh is
adopted with mesh size along the y direction ∆y while the mesh size along the x di-
rection is still ∆x, the same used for the equations (1.36). Moreover the graphene layer
lies on a row of the 2D mesh. The Poisson equation is discretized by finite differences
at the internal points with the standard five point stencil

(︂
ε

∂ϕ
∂x

)︂
i+ 1

2

−
(︂

ε
∂ϕ
∂x

)︂
i− 1

2

∆x
+

(︂
ε

∂ϕ
∂y

)︂
j+ 1

2

−
(︂

ε
∂ϕ
∂y

)︂
j− 1

2

∆y
= hi,j,

for all i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1, where Ny is the number of grid point
in the y direction which depends on the x variable according to the geometry of the
device, and

(︃
ε

∂ϕ

∂x

)︃

i+ 1
2

= εi+ 1
2 ,j

ϕi+1,j − ϕi,j

∆x
,

(︃
ε

∂ϕ

∂x

)︃

i− 1
2

= εi− 1
2 ,j

ϕi,j − ϕi−1,j

∆x
,

(︃
ε

∂ϕ

∂y

)︃

j+ 1
2

= εi,j+ 1
2

ϕi,j+1 − ϕi,j

∆y
,

(︃
ε

∂ϕ

∂y

)︃

j− 1
2

= εi,j− 1
2

ϕi,j − ϕi,j−1

∆y
.

The overall second order discretization is obtained

εi+ 1
2 ,jϕi+1,j − (εi+ 1

2 ,j + εi− 1
2 ,j)ϕi,j + εi− 1

2 ,jϕi−1,j

∆x2

+
εi,j+ 1

2
ϕi,j+1 − (εi,j+ 1

2
+ εi,j− 1

2
)ϕi,j + εi,j− 1

2
ϕi,j−1

∆y2 = hi,j

The scheme is completed with appropriate boundary conditions.
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Chapter 3

Bipolar charge transport in monolayer
graphene

Charge transport in monolayer graphene is simulated by a numerical deterministic ap-
proach, based on a discontinuous Galerkin (DG) method, for solving the semiclassical
Boltzmann equation for electrons. Both the conduction and valence bands are included
and the interband scatterings are taken into account.

The use of a Direct Simulation Monte Carlo (DSMC) approach, which properly de-
scribes the interband scatterings, is computationally very expensive because the va-
lence band is very populated and a huge number of particles is needed. Also the choice
of simulating holes instead of electrons does not overcome the problem because there
is a certain degree of ambiguity in the generation and recombination terms of electron-
hole pairs. Often, direct solutions of the Boltzmann equations with a DSMC neglect
the interband scatterings on the basis of physical arguments. The DG approach does
not suffer from the previous drawbacks and requires a reasonable computing effort.

In the following chapter the importance of the interband scatterings is accurately
evaluated for several values of the Fermi energy, addressing the issue related to the va-
lidity of neglecting the generation-recombination terms. Both the cases of suspended
graphene and that one of graphene placed on a substrate are investigated. It is found
out that the inclusion of the interband scatterings produces huge variations in the av-
erage values, as the current, with zero Fermi energy while, as expected, the effect of the
interband scattering becomes negligible by increasing the absolute value of the Fermi
energy.

We remark that the contents of this chapter are original and presented in Ref.s [63,
27].
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3.1 Holes description

In general both electrons in the conduction and valence bands contribute to charge
transport in graphene and the zero gap energy band allows for the creation of electron-
hole pairs by scattering with phonons around the Dirac points. Therefore, one has
also to include interband electron-phonon scatterings. However, if a gate voltage is
applied, it is possible to modify the value of the Fermi energy εF creating a kind of
doping as in conventional semiconductors. If εF is positive and high enough, one has
a kind of n-doping and the only relevant contribution to the current is due to the elec-
trons in the conduction band. Analogously, if εF < 0 one has a kind of p-doping.
The use of DSMC in the bipolar case is rather heavy from a computational point of
view because the valence band is very populated and a huge number of simulation
particles are needed. A viable way to overcome the problem could be to simulate, in
the valence band, holes instead of electrons. Unfortunately, this introduces a certain
degree of ambiguity in the generation and recombination terms of electron-hole pairs
and makes the approach rather questionable, as explained in the next section. For such
a reason, often the interband scattering is neglected. The DG method does not suf-
fer from the previous difficulties and keeps the computational effort to a reasonable
level. In the present paper, by performing an extensive numerical simulation with the
DG method of the system of Boltzmann equations for electrons in the conduction and
valence bands, the importance of the interband scatterings is accurately evaluated for
several values of the Fermi energy in the case of suspended monolayer graphene un-
der a constant external electric field. It is addressed the issue related to the validity
of neglecting the generation-recombination terms. It is found out that the inclusion
of the interband scatterings induces huge variations in the average values, as the cur-
rent, with zero Fermi energy while, as expected, the effect of the interband scatterings
becomes negligible by increasing in absolute value the Fermi energy.

3.1.1 Deduction of the Boltzmann equation for holes

Starting from the Boltzmann equation for the distribution function of electrons in VB
f− one has

∂t f−(t, x, k) + v−(k) · ∇x f−(t, x, k)− e
h̄

E · ∇k f−(t, x, k) = Q( f−, f+)(t, x, k), (3.1)

where
v−(k) =

1
h̄
∇kε−(k) = −1

h̄
h̄vF∇k|k| = −vF

k
|k|
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and

Q( f−, f+) =
∫︂

R2

[︁
S−,−(k′, k) f−(k′)(1 − f−(k))− S−,−(k, k′) f−(k)(1 − f−(k′))

]︁
dk′

+
∫︂

R2

[︁
S+,−(k′, k) f+(k′)(1 − f−(k))− S−,+(k, k′) f−(k)(1 − f+(k′))

]︁
dk′.

We would like to get the distribution of missing electron states, that are the holes. For
these quasi-particles the following definitions hold

kh = −ke, εh(kh) = −ε−(ke).

Thus the dispersion relation and the distribution function for holes can be written re-
spectively as

εh(k) = h̄vF|k|, fh(t, x, k) = 1 − f−(t, x, k),

and the group velocity is

vh(k) =
1
h̄
∇kεh(k) = vF

k
|k| .

Relabeling the variable k of equation (3.1) with −k, the Boltzmann equation for the
distribution function of missing electrons is

∂t(1 − f−(t, x,−k)) + v−(−k) · ∇x(1 − f−(t, x,−k))− e
h̄

E · ∇−k(1 − f−(t, x,−k))

= −Q( f−, f+)(t, x,−k).

After observing that

v−(−k) = −vF
−k
| − k| = vh(k),

we have

∂t fh(t, x, k) + vh(k) · ∇x fh(t, x, k) +
e
h̄

E · ∇k fh(t, x, k) = −Q( f−, f+)(t, x,−k).
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Regarding the collisional term, we have

−Q( f−, f+)(t, x,−k) =

=−
∫︂

R2

[︁
S−,−(k′,−k) f−(k′)(1 − f−(−k))− S−,−(−k, k′) f−(−k)(1 − f−(k′))

]︁
dk′

−
∫︂

R2

[︁
S+,−(k′,−k) f+(k′)(1 − f−(−k))− S−,+(−k, k′) f−(−k)(1 − f+(k′))

]︁
dk′

=−
∫︂

R2

[︁
S−,−(k′,−k)(1 − fh(−k′)) fh(k)− S−,−(−k, k′)(1 − fh(k)) fh(−k′)

]︁
dk′

−
∫︂

R2

[︁
S+,−(k′,−k) f+(k′) fh(k)− S−,+(−k, k′)(1 − fh(k))(1 − f+(k′))

]︁
dk′

=−
∫︂

R2

[︁
S−,−(−k′,−k) fh(k)(1 − fh(k′))− S−,−(−k,−k′) fh(k′)(1 − fh(k))

]︁
dk′

−
∫︂

R2

[︁
S+,−(k′,−k) f+(k′) fh(k)− S−,+(−k, k′)(1 − fh(k))(1 − f+(k′))

]︁
dk′,

where the last step is obtained by performing a change of variables k′ → −k′. Defi-
nitely the collisional term writes

−Q( f−, f+)(t, x,−k) = Qhh( fh, fh)(t, x, k) + Qhe( fh, f+)(t, x, k),

where, omitting the dependencies on t and x,

Qhh = −
∫︂

R2

[︁
S−,−(−k′,−k) fh(k)(1 − fh(k′))− S−,−(−k,−k′) fh(k′)(1 − fh(k))

]︁
dk′,

Qhe = −
∫︂

R2

[︁
S+,−(k′,−k) f+(k′) fh(k)− S−,+(−k, k′)(1 − fh(k))(1 − f+(k′))

]︁
dk′.

Let us consider the particular case where only intraband transitions are taken into ac-
count. The equation writes

∂t fh(t, x, k) + vh(k) · ∇x fh(t, x, k) +
e
h̄

E · ∇k fh(t, x, k) = Qhh(t, x, k). (3.2)

It is possible to prove that S−,−(−k′,−k) = S−,−(k′, k) by using geometrical consid-
erations on the involved angles and, therefore, the relation S−,−(k′, k) = S+,+(k, k′)
holds.

Summarizing, the distribution function of holes fh(t, x, k) satisfies the Boltzmann
type equation

∂t fh(t, x, k) + vh(k) · ∇x fh(t, x, k) +
e
h̄

E · ∇k fh(t, x, k) = Qh( fh, f+)(t, x, k),

where vh is the group velocity of holes, that it can be shown to take the expression

vh(k) =
1
h̄
∇kεh(k),
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and Qh is the collisional term for holes, which splits into

Qh( fh, f+) = Qhh( fh, fh) + Qhe( fh, f+). (3.3)

Here (by omitting the explicit dependence on t and x)

Qhh = −
∫︂

R2

[︁
S−,−(−k′,−k) fh(k)(1 − fh(k′))− S−,−(−k,−k′) fh(k′)(1 − fh(k))

]︁
dk′

gives the intraband hole interactions (with phonons), while

Qhe = −
∫︂

R2

[︁
S+,−(k′,−k) f+(k′) fh(k)− S−,+(−k, k′)(1 − fh(k))(1 − f+(k′))

]︁
dk′

represents the interband scatterings (with phonons).
At the equilibrium the distribution function of electrons in both bands is the Fermi-

Dirac distribution, given by

f±FD(t, x, k) =
1

1 + exp
(︂

ε±−εF
kBT

)︂ ,

where εF is the Fermi energy and the sign ± indicates the CB (+) or the VB (−). There-
fore, the equilibrium distribution of holes is given by

f h
FD(t, x, k) = 1 − f−FD(t, x,−k) = 1 − 1

1 + exp
(︂

ε−−εF
kBT

)︂ =
1

1 + exp
(︂

εh+εF
kBT

)︂ , εh > 0,

that goes to 0 when εh ↦→ +∞. We remark that, instead, f−FD ↦→ 1 when ε− ↦→ −∞.

3.1.2 Possibility to adopt a DSMC approach

If we take into account only intraband transitions, the equations are uncoupled, that is
each particle belongs to the same population during the simulation. On the contrary, if
we have also interband transitions it can happen for a particle to change energy band
and thus population.

In the first case a DSMC algorithm can be construct by solving two Boltzmann equa-
tions: one for electrons in CB and one for holes in VB. In particular, the following
relations

S−,−(−k′,−k) = S−,−(k′, k) = S+,+(k, k′) (3.4)

hold.
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Thus, the Boltzmann equation for holes in VB, in the case when only intraband
transitions occur, is the same of that of electrons in CB, except for the sign in front of
the elementary charge.

The fact that the valence band is populated with a huge number of electrons (recall
that f− ≈ 1 when |k| ≫ 1), requires in a DSMC the introduction of a prohibitive
number of particles. To overcome the problem one can consider holes in the valence
band. However, such a choice has the drawback to make ambiguous the interband
scattering mechanism, as explained below.

Let us consider an electron having energy ε. If it happens that 0 < ε < h̄ω(ν) and an
emission of a νth phonon occurs, where ν is OP or K, then an interband scattering event
takes place. After the transition the electron will have a state determined according to
the νth transition rate (see [89]) and the new energy.

If we try to rewrite this interband scattering in terms of holes, instead of electrons,
in the valence band, then the electron recombines with a hole. In order to have a
recombination we need to find a hole having exactly the energy h̄ω(ν) − ε and this can
be achieved only in an approximate, often roughly, way.

The treatment of the case when a hole has an energy 0 < ε < h̄ω(ν) is even worse.
After the scattering event the considered hole can disappear through two different
mechanisms: an electron coming from the conduction band recombines with a hole
or an electron of the valence band occupies the position of the hole leaving behind an
other hole. The only viable approach to discriminate between the two occurrences is
to describe both electrons and holes in the valence band and again we have to face the
question related to the huge number of required simulation particles.

A similar ambiguity arises for the description of electron-hole pair creation.
The above considerations clearly indicate that the deterministic methods, as the DG

adopted in [63, 27], are the only reasonable ones for solving the transport equations for
charge carriers in graphene in the presence of interband scatterings.

3.2 Numerical results for suspended case

The physical situation we are going to simulate is that of a strip of graphene which is
infinitely long in the transversal direction with respect to that of the electric field (see
Fig. 3.1). This allows us to look for solutions which are not depending on space and to
avoid any effect related to the boundary conditions.

We have considered several values of the Fermi energy and different applied elec-
tric fields.
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FIGURE 3.1: Schematic representation of a suspended monolayer
graphene. In the direction parallel to the contacts the material is infinitely

long. In each contact there is a constant electrostatic potential.

Case εF = 0 eV

This case represents a pristine graphene and it is the most challenging for the correct
evaluation of the role of the interband scattering. In Fig.3.2 there is shown the density
versus time (in logarithmic scale). During a long transient of a few hundreds of pi-
coseconds, the concentration of both charge carriers increases up to saturation values
depending on the applied electric field. The effect is that of carrier multiplications and
it is due to the fact that the generation term overcomes for a long time that of recom-
bination with the results of the creation of electron-hole pairs. Only after about 200
picosecond the conduction band is populated enough so that Pauli’s exclusion princi-
ple becomes so efficient to prevent the formation of additional electron-hole pairs. A
similar phenomenon had have been observed for example in [85] and in [107] analyz-
ing the optical properties of graphene in view of possible applications to solar cells.
We remark that when εF = 0 eV, the electron and hole densities are the same. For this
reason only the electron density is plotted. Of course, neglecting the interband scatter-
ings, the densities do not change with time. For comparison, also the densities without
interband scattering are reported in the figures.

In Fig.3.3 the total current (electrons plus holes) is plotted versus time. Similarly
to the density, the current increases with time, apart an initial transient. The carrier
multiplication leads to a considerably higher current with respect to the case when
only intraband scatterings are included. The steady total current versus the electric
field is reported in Fig.3.4. Note that neglecting the interband scatterings introduces
an error of about 400% for the highest electric field considered in the simulation (10
kV/cm).

Case εF = 0.1 eV

In order to assess the influence of the Fermi level, the case with εF = 0.1 eV has been
also analyzed. The results are shown in Fig.s 3.5,3.6,3.7. First we note that the electron
and hole densities are no longer equal. Moreover, as expected, the difference is about
two orders of magnitude because electrons are the majority carriers when the Fermi
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FIGURE 3.2: Electron density versus time when εF = 0 eV under an ap-
plied electric field of 1, 3, 5, 7 kV/cm with (A) and without (B) interband

scatterings.

energy is positive. The maximum change obtained in the simulations with respect to
the case without interband scatterings is less than 1% for electrons and more than 90%
for holes. This means that neglecting the interband effects leads to severely underesti-
mate the hole density. Regarding the discrepancy in the current, for the electric field of
10 kV/cm one has a relative difference of about 22%.

If the reverse sign of Fermi energy is considered, we have the same results by inter-
changing the role of electrons and holes.

Case εF = 0.2 eV

Finally, the case with εF = 0.2 eV has been analyzed. The results are shown in Fig.s
3.8,3.9,3.10. The transient is shorter: the Pauli exclusion principle drastically reduces
the formation of electron-hole pairs already after few picoseconds. The electron den-
sity remains practically unchanged, while that of holes increases more than one order
of magnitude. However, the difference between the majority and minority charges



Chapter 3. Bipolar charge transport in monolayer graphene 48

0.01 1   100 
Time (ps)

0

0.2

0.4

0.6

0.8

1

1.2

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 1 kV/cm

A
B

0.01 1   100 
Time (ps)

0

0.5

1

1.5

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 3 kV/cm

A
B

0.01 1   100 
Time (ps)

0

0.5

1

1.5

2

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 5 kV/cm

A
B

0.01 1   100 
Time (ps)

0

0.5

1

1.5

2

2.5

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

)

Electric field: 7 kV/cm

A
B

FIGURE 3.3: Total current versus time when εF = 0 eV under an applied
electric field of 1, 3, 5, 7 kV/cm with (A) and without (B) interband scat-

terings.
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FIGURE 3.4: Steady total current versus electric field when εF = 0 eV with
(A) and without (B) interband scatterings.

is so high that, for Fermi levels greater or equal to 0.2 eV, the simulation can be per-
formed with a good accuracy disregarding the interband effects. If the reverse sign of
Fermi energy is considered, we have again the same results by interchanging the role
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FIGURE 3.5: Electron density (left column) and hole density (right col-
umn) versus time when εF = 0.1 eV under an applied field of 1, 3, 5 kV/cm

with (A) and without (B) interband scatterings.

of electrons and holes.
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FIGURE 3.6: Total current versus time when εF = 0.1 eV under an ap-
plied electric field of 1, 3, 5, 7 kV/cm with (A) and without (B) interband

scatterings.
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FIGURE 3.7: Steady total current versus electric field when εF = 0.1 eV.
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FIGURE 3.8: Electron density (left column) and hole density (right col-
umn) versus time when εF = 0.2 eV under an applied electric field of 1, 3,

5 kV/cm.
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FIGURE 3.9: Total current versus time when εF = 0.2 eV under an applied
electric field of 1, 3, 5, 7 kV/cm.
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FIGURE 3.10: Steady total current versus electric field when εF = 0.2 eV.
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3.3 Numerical results for graphene on h-BN

The physical setting consists of a strip of graphene which is infinitely long in the
transversal direction with respect to that of the electric field, placed on an oxide sub-
strate made of h-BN (see Fig. 3.11). As already shown in [25], the distance d is crucial
for a correct prediction of the electron velocity, and therefore, in turn, of the electron
mobilities. In [24] some numerical experiments have been performed in the unipolar
case assuming that d is a random variable. In the present paper we assume that d is
constant; in fact in [24] the results obtained with a random d are practically the same
of those obtained with average values of such a parameter. This allows us to look

FIGURE 3.11: Schematic representation of a monolayer graphene on a h-
BN substrate. In the direction parallel to the contacts the material is in-

finitely large. In each contact there is a constant electrostatic potential.

for solutions which are not depending on space and to avoid any effect related to the
boundary conditions. As initial condition a Fermi-Dirac distribution is assumed.

Other materials have been used as substrate in the literature (see [24]), for example
SiO2 but one of the best performance is that of the h-BN on account of the lower mo-
bility degradation. We consider several values of the Fermi energy, different applied
electric fields and three choices for the parameter d, d = 0, 0.5, 1 nm. In Fig.s 3.12, 3.13,
3.14 we have compared the total steady current density J versus the electric field for
Fermi energy εF = 0, 0.05, 0.1 eV. Note that by increasing εF the effect of the inclusion
of the inter-band scattering reduces and the percentage of variation is less sensible to
the value of d.

In the case εF = 0 eV apparently when the inter-band scatterings are taken into
account the total current has a Ohmic behaviour, that is almost linear with respect
to the electric field. This can be explained by the fact that the inter-band interaction
promotes the formation of additional current due to the minority charge. At higher
absolute values of the Fermi energy this effect vanishes, probably because the inter-
band mechanism becomes weaker.

In the remaining figures the the transient solutions are shown. The steady solution
is reached in about 100 picoseconds. In Fig. 3.15 the total current density is plotted
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FIGURE 3.12: Steady total current versus the electric field when εF = 0
eV with (A) and without (B) inter-band scatterings in the case d = 0 nm

(top-left), d = 0.5 nm (top-right) and d = 1 nm (bottom).

versus time for applied electric fields of 2,4,8 kV/cm. Note that for low electric fields
the current obtained neglecting the inter-band transition is higher than that obtained
by including it. At about 4kV/cm no difference appears while for high fields we find
again a considerable variation which increases with the intensity of electric fields but
now the current obtained with the inclusion of the inter-band scattering is greater and
reaches the steady regime later.

In Fig. 3.16 the behaviour of the electron density versus time is reported. The
behaviour of the hole density and current density is exactly the same with respect
to electrons because of the symmetry in the collision operator (see [63]). Of course
when the inter-band scattering is neglected the densities of both electron and holes
remain constant. If εF = 0.1 eV the current has no longer a Ohmic behaviour and the
characteristic curves are more similar to that of a semiconductor. In Fig. 3.17 the total
current density versus time is plotted for applied electric fields of 2,4,8 kV/cm. The
influence of the inter-band scattering are almost negligible for low and moderate field.
An appreciable difference is detected only for electric fields higher than 8 kV/cm. In
Fig. 3.18 the behaviour of the electron density and hole density versus time is reported.
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FIGURE 3.13: Steady total current versus the electric field when εF = 0.05
eV with (A) and without (B) inter-band scatterings in the case d = 0 nm

(top-left), d = 0.5 nm (top-right) and d = 1 nm (bottom).

The behaviour of the hole density is no longer the same of that of electrons. Since the
Fermi energy is positive the majority carriers are electrons. If we reverse the sign of the
Fermi energy the role of electrons and holes swaps.

3.4 Conclusions

Charge transport in monolayer graphene has been simulated by a numerical deter-
ministic approach, based on a discontinuous Galerkin (DG) method, for solving the
semiclassical Boltzmann equations for electrons and holes. Both the conduction and
valence bands have been included and the interband scatterings have been taken into
account. The importance of the interband scatterings has been accurately evaluated for
several values of the Fermi energy.

In Section 3.2 numerical simulations of a suspended monolayer graphene have been
performed. It is found out that the inclusion of the interband scatterings produces,
with zero Fermi energy, huge variations in the current, while, as expected, the effect
of the interband scatterings becomes negligible by increasing the absolute value of the
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FIGURE 3.14: Steady total current versus the electric field when εF = 0.1
eV with (A) and without (B) inter-band scatterings in the case d = 0 nm

(top-left), d = 0.5 nm (top-right) and d = 1 nm (bottom).

Fermi energy. When εF is greater than 0.2 eV, the interband effects can be eliminated
without any significant consequence in the simulations.

In Section 3.3 an evaluation of the importance of the inter-band scattering in mono-
layer graphene on a h-BN substrate has been performed by adopting the same tech-
nique in the case of suspended graphene. Several values of the Fermi energy have
been considered in a realistic range of applied electric fields. The inter-band interac-
tion is relevant for values of the Fermi energy around zero eV and becomes negligible
for Fermi energies in absolute value greater than 0.1 eV. The steady state is reached in
about 100 picoseconds at variance of the case when the inter-band scatterings are not
taken into account which requires few picoseconds to get the stationary regime. This
could play a role for the on/off switching times in the application to GFETs.

As possible further improvements, the authors are investigating the inclusion of
thermal effects along the results obtained for suspended monolayer graphene [26, 30]
and the extraction of mobility models starting from the DG numerical results as in [62,
81].
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FIGURE 3.15: Total current versus time at fixed values of electric field in
the case εF = 0 eV with (A) and without (B) inter-band scatterings in the

case d = 0.5 nm.
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FIGURE 3.16: The electron density versus time at fixed values of electric
field in the case εF = 0 eV with (A) and without (B) inter-band scatterings

in the case d = 0.5 nm. The solutions for holes are exactly the same.
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FIGURE 3.17: Total current versus time at fixed values of electric field in
the case εF = 0.1 eV with (A) and without (B) inter-band scatterings in the

case d = 0.5 nm.
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FIGURE 3.18: The electron density (left) and hole density (right) versus
time at fixed values of electric field in the case εF = 0.1 eV with (A) and
without (B) inter-band scatterings in the case d = 0.5 nm. The solutions

for holes are exactly the same.
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Chapter 4

Mobility models and applications to
GFETs

Charge transport in graphene is crucial for the design of a new generation of nanoscale
electron devices. As already discussed in Chapter 3, a reasonable model is represented
by the semiclassical Boltzmann equations for electrons in the valence and conduction
bands. As shown in [89], the discontinuous Galerkin methods are a viable way to
tackle the problem of the numerical integration of these equations, even if efficient
DSMC with a proper inclusion of the Pauli principle have been also devised. One of
the advantages of the solutions obtained with deterministic approach is of course the
absence of statistical noise. This fact is crucial for an accurate estimation of the low field
mobility as proved in the case of a unipolar charge transport in a suspended graphene
sheet under a constant electric field [62].

The mobility expressions are essential for the drift-diffusion equations which con-
stitute the most adopted models for charge transport in CAD. In Section 1 we present
an improvement with respect to the analysis of [62]. New models of mobility are ob-
tained and, in particular, relevant improvements of the low field mobility are achieved
[81]. If graphene is placed on a substrate a crucial parameter is the distance between
the graphene layer and the impurities due to the substrate. Measurements demon-
strate that this distance is of the order of a few angstroms. The first choice can be to
set this parameter constant while another choice consists to model the impurity dis-
tribution with a random variable and include it in a DSMC simulation. In Section 2
we show numerical results of this second choice, presented in [24]. However the main
conclusion is that the expected value of the distribution is the dominant parameter
and this suggests that the constant choice is accurate enough. In Section 3 a mobility
model which takes into account the presence of a double layer (top and bottom) of
oxide substrate is outlined. The last part of this chapter is devoted to the GFET simula-
tions. A GFET is a field effect transistor where the active area is made of a monolayer
graphene. In Section 4 we present numerical simulation of a GFET first exploring the
mobility model proposed in [33] and next adopting the mobility model based on the
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Boltzmann equation [79].
We remark that the results of this chapter are original and presented in Ref.s [81,

24, 79, 82].

4.1 The mobility model in the case of suspended mono-

layer graphene

The mobility expressions are essential for the drift-diffusion equations which consti-
tute the most adopted models for charge transport in CAD. Here the analysis in [62]
is improved in two ways: by including the charge transport both in the valence and
conduction bands, and by taking into account the presence of an oxide as substrate for
the graphene sheet.

In this section a new mobility model is presented in the case of suspended mono-
layer graphene and comparisons with other models already existing in the literature
are performed. In Section 4.3 a further extension is presented for graphene on a sub-
strate made of silicon dioxide.

4.1.1 Model and method description

For applications in electronic device modeling, in order to reduce the computational
effort, macroscopical models are mostly adopted. The simplest and most popular ones
are the drift-diffusion (DD) models. They have been already described in Section 1.4,
where was remarked that the mobility models are crucial for the correct determination
of the current.

The mobilities are definite through the relations (in the one dimensional case)

vn = µn(E, n)E, vh = µp(E, p)E, (4.1)

where E, vn and vp are the significant components of the the electric field, the average
electron velocity and the average hole velocity. The velocities are related to the currents
as follows

vn = Jn/n, vh = Jp/p.

First we analyze the low field mobility µ0, that is defined as

µ0(n) = lim
E→0

µn(E, n). (4.2)

In principle the low field mobilities of electron and holes are different. In suspended
graphene they take the same values.
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The main concern regarding the low field mobility is that its determination from
experimental data is rather cumbersome on account of the intrinsic statistical noise.
A similar issue arises if the results obtained by DSMC are employed. The use of the
results given by the DG approach avoids such difficulties because reduces (practically
avoids) the effects of the statistical noise.

For the determination of the mobility curves it is enough to consider homogeneous
solutions of the semiclassical Boltzmann equation numerically solved by means of
the DG method. In this section we examine the case of a suspended single sheet of
graphene, as reported in Figure 1.5. We suppose that the contacts are deeply infinite
and the potential is constant in each of them. Therefore, the electric field is constant
and transversal with respect to the contact. Thus the system can be solved in the inter-
val [0, L] with Dirichlet boundary conditions

n|x=0 = n0, n|x=L = nL, p|x=0 = p0, p|x=L = pL.

The solution does not depend on space.
For several values of n corresponding to a Fermi level between 0 eV and 0.4 eV, the

low field mobility is extrapolated, by a linear regression model, computing the mobil-
ity at different low values of electric field, between 0.0005 V/µm and 0.0025 V/µm, by
using the values of the currents obtained by a direct solution of the Boltzmann equa-
tion with the DG method outlined in previous chapters. One observes (see Figure 4.1)
that the low field mobility behaviour versus the density (or equivalently the Fermi en-
ergy) is similar to the log-normal distribution and therefore we assume the following
expression

µ0(n) = µ̃0

exp
(︃
− (log(n/nre f )−m)2

2σ2

)︃

√
2πσn/nre f

, (4.3)

where µ̃0, nre f , m and σ are fitting parameters. The behaviour is the same for holes on
account of the symmetry between the hole and electron distributions.

We have estimated the parameters by means of the least squares method. The ob-
tained values are reported in Table 4.1.

µ̃0 nre f m σ

217.07 µm2/V ps 8951.4 µm−2 -0.0027671 1.3423

TABLE 4.1: Low field mobility parameters.
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FIGURE 4.1: Comparison between the low field mobility simulated with
the DG method and the fitted one.

As second step, we include the electric field dependence by proposing the same
model of Ref. [62]

µ(E, n) =
µ0(n) +

vF
E

(︂
E

Ere f

)︂β1

1 +
(︂

E
Ere f

)︂β2
+ γ

(︂
E

Ere f

)︂β3
, (4.4)

where Ere f , β1, β2, β3 and γ are fitting parameters. In this case we evaluated the mobil-
ity by means of the DG results of the transport equations at different densities, cor-
responding to the Fermi levels of 0.2 eV, 0.3 eV, 0.4 eV, and for a range of electric
fields between 0.025 V/µm and 10 V/µm. The obtained parameters are reported in
Table 4.2. A comparison between fitted and simulated values of mobility models and

Ere f β1 β1 β1 γ

0.0421 V/µm 1.2898 1.4050 0.9627 5.0918

TABLE 4.2: Mobility model parameters.

corresponding current densities are plotted in Figure 4.2

4.1.2 Comparison with other mobility models

There are available in the literature several expressions of the mobilities. Most of them
are based on heuristic considerations or experimental data. A widely used model is
that of Dorgan et al. [33]

µ(x) =
ν

[1 + (νE/vsat)γ]1/γ
,

where vsat is the saturation velocity, γ ≈ 2 and

ν(x) =
µ0

(1 + n/nre f )α
,
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FIGURE 4.2: On the left comparison between the mobility simulated with
the DG method and the fitted one. On the right the comparison of the sim-
ulated and fitted current densities for several values of the Fermi energy.

with µ0 the low field mobility, nre f = 1.1 × 105 µm−2 and α = 2.2.
In [33] the value µ0 = 0.4650 µm2/V ps is taken while the saturation velocity is

evaluated as

vsat =
2
π

ωOP√
πn

√︄
1 − ω2

OP
4πnv2

F

1
NOP + 1

, (4.5)

where h̄ωOP is the energy of optical phonons, that here takes the value of 160 meV, and

NOP =
1

exp
(︂

h̄ωOP
kBT

)︂
− 1

(4.6)

is the phonon occupation number. The previous expressions, written for the electron
density n, are still valid for the hole density p. Here for the saturation velocity the
values reported in Table 4.3 have been adopted.

eF vsat
0.2 eV 0.5841 µm/ps
0.3 eV 0.4393 µm/ps
0.4 eV 0.3426 µm/ps

TABLE 4.3: Adopted saturation velocity values.

In Ref. [62] the authors used the model given by the equation (4.4) but with a
different expression of the low field mobility

µ0 = µ0(n) =
µ̃

1 +
(︁
n/nre f

)︁α , (4.7)

(a similar expression can be introduced also for holes) with nre f = 0.5 × 104 µm−2,
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α = 1.2916 and µ̃ = 2µ0(nre f ) = 373.4306 µm2/V ps. The reader is referred to [62] for
the specific values of the parameters.

In Figure 4.3 we have compared the different mobility curves among them and with
the results of the direct solution of the transport equations in the case of a Fermi energy
0.2 eV (top left). In the figure we have also included a modified Dorgan model (MDM)
where the low field mobility is taken as that given by relation (4.3).

The model of Dorgan et al. underestimates the mobility, in particular for low fields.
MDM and the model in [62] are in good agreement between them but there is a consid-
erable discrepancy with the results given by the Boltzmann equation. Apparently the
inclusion of the interband scattering, neglected in [62], has a relevant role for a correct
determination of the low field mobility. At high fields all the mobility curves become
closer.

In Figure 4.3 (top right and bottom) Fermi energies of 0.3 eV and 0.4 eV are con-
sidered. In these plots the original model of Dorgan et al. is not reported because of
the high discrepancy. In the case of a Fermi energy of 0.3 eV the model in [62] is more
accurate than MDM for low fields. In the case of a Fermi energy of 0.4 eV the model in
[62] is more accurate than MDM for low fields but less accurate for high fields.

4.1.3 The mobility model in the case of graphene on substrate

In order to include the presence of a substrate as depicted in Figure 4.4, a further gen-
eralization of the mobility model is required. In this situation usually one observes
a degradation of the current due to the additional scatterings of the charges in the
graphene with the phonons and impurities in the substrate. We have considered the
case of graphene on SiO2 (silicon dioxide) and again used a DG method for solving the
transport equations (the interested reader is referred to [25, 24] for details).

A crucial parameter, entering the expression of the collision term, is the average
distance d between the graphene and the impurities. The value of d is considered to
lie in the range between 0 and 1 nm. We have obtained the mobility curves for some
values of d by using again relations (4.3) and (4.4).

The fitted parameters are reported in Table 4.4. The obtained mobilities and current
densities are shown in Figures 4.5, 4.6 and 4.7 considering d = 0, 0.5, 1 nm and several
values of the Fermi energy.

d Ere f β1 β1 β1 γ

0 nm 0.4879 V/µm 2.0736 0.8672 1.6147 4.9884
0.5 nm 0.3875 V/µm 1.9923 2.3816 1.2336 4.8663
1 nm 0.3626 V/µm 1.8753 2.0545 1.1854 5.6979

TABLE 4.4: Mobility model parameters on SiO2.
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FIGURE 4.3: Comparison among the mobility models of Ref. [62] (MMR)
and Ref. [33] (MDM) and the fitted one with respect to the DG simulations
at a Fermi level of 0.2 eV (top left), 0.3 eV (top right) and 0.4 eV (bottom).
At the Fermi level of 0.2 eV it is also shown the original model of Ref. [33]

(DBP).

As expected we have a degradation of the mobility which reduces by increasing d.
The latter effect is easily explained because there is a reduction of the scattering rate
with impurities as the distance increases between the graphene sheet and the impuri-
ties in the oxide.

4.2 DSMC simulations of graphene on substrate

In this section we present the simulation of charge transport in a monolayer graphene
on different substrates. This requires the inclusion of the scatterings of charge carri-
ers with impurities and phonons of the substrate, besides the interaction mechanisms
already present in the graphene layer. As mathematical model, the semiclassical Boltz-
mann equation is assumed and the results are based on Direct Simulation Monte Carlo
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FIGURE 4.4: Schematic representation of a graphene sheet on a substrate.
The dots stand for the impurities in the oxide.

d µ0 (eF = 0.2 eV) µ0 (eF = 0.3 eV) µ0 (eF = 0.4 eV)
0 nm 2.867 µm2/V ps 1.252 µm2/V ps 0.676 µm2/V ps

0.5 nm 4.106 µm2/V ps 2.123 µm2/V ps 1.353 µm2/V ps
1 nm 5.704 µm2/V ps 3.345 µm2/V ps 2.366 µm2/V ps

TABLE 4.5: Low field mobility on SiO2.

(DSMC) method. A crucial point is the correct inclusion of the Pauli Exclusion Prin-
ciple (PEP). Most simulations use the approach proposed in [60] which, however, al-
lows an occupation number greater than one with an evident violation of PEP. Here
the Monte Carlo scheme devised in [89] is employed. It predicts occupation numbers
consistent with PEP and therefore is physically more accurate.

Two different substrates are investigated: SiO2 and hexagonal boron nitride (h-
BN). We adopt the model for charge-impurities scattering described in Ref. [43]. In
such a model a crucial parameter is the distance d between the graphene layer and the
impurities of the substrate. Usually d is considered constant [25]. Here we assume that
d is a random variable in order to take into account the roughness of the substrate and
the randomness of the location of the impurities.

The results confirm that h-BN is one of the most promising substrate also for the
high-field mobility on account of the reduced degradation of the velocity due to the
remote impurities. This is in agreement with results shown in [42] where only the
low-field mobility has been investigated.

We remark that the results presented in this section are included in [24].

4.2.1 Numerical results

In this section the semiclassical Boltzmann equation with the inclusion of electron-
substrate interaction is solved for high values of the Fermi level that allow us to neglect
the contribution of electrons in the valence band. The adopted DSMC procedure has
been already described in Section 2.2. The simulations are performed at several values
of the electric field and Fermi energy.
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FIGURE 4.5: On the left comparison between the simulated by DG and
the fitted mobility models in the case of graphene on SiO2 with a distance
between the graphene sheet and impurities of d = 0 nm. On the right the

same for the densities.

In order to validate the simulation approach, we numerically solve, in the case of
constant d, the Boltzmann equation by using a DG method (see [25] for the details),
obtaining an excellent agreement.

The parameter d should be of the order of few angstroms. In the literature a range
from 0 to 1 nm is considered. At variance with [25], d is considered a random variable.
Therefore, in the simulation whenever a scattering with impurities occurs, d is gener-
ated according to the chosen distribution. We compare DSMC results, considering d
both constant and random, with the numerical solutions of the Boltzmann equation
obtained by using DG method with a constant d only.

Conservation of the number of electrons implies that the charge density ρ, given by

ρ =
2

(2 π)2

∫︂

R2
f (t, k) dk , (4.8)

is constant in time.
We choose a reference frame such that only the x−component of the electric field is

different from 0; therefore only the x−component of the mean velocity is relevant. 105

particles have been used in the DSMC method.
In Figs. 4.8-4.10, we show the numerical results of the average velocity v defined as

v(t) =
2

(2 π)2 ρ

∫︂

R2
f (t, k)

1
h̄
∇k ε(k) dk , (4.9)

and is related to the mobility µ(E) as follows

v = µ(E)E.
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FIGURE 4.6: On the left comparison between the simulated by DG and
the fitted mobility models in the case of graphene on SiO2 with a distance
between the graphene sheet and impurities of d = 0.5 nm. On the right

the same for the densities.

The current J is given by
J = −eρv.

From the analysis of the average velocity, it is possible to estimate the effect of the
impurities on the mobility. It is expected that the scattering with the remote impurities
leads to a degradation of the mobility depending on the specific material.

First, we have assessed the general performance of the different materials by a com-
parison of the average velocity for three different constant values of d.

We observe that the values of the average velocity and energy become lower by
reducing the distance d from the impurities in the oxide, confirming the degradation
of the mobility due to the substrate as a direct consequence of the additional scatter-
ings with the remote impurities. For the highest value of d, which is very close to the
pristine case, both SiO2 and h-BN produce of course the same effect, with a compara-
ble electron velocity. For the intermediate value of d, h-BN performs better than SiO2

and this behavior is even more evident for d = 1 nm. Therefore, h-BN gives a better
high-field mobility, in qualitative agreement with the low field analysis in [42].

The previous results, however, do not take into account the intrinsic noise in the lo-
cation of the impurities. In order to assess its effect on the high-field mobility, we have
performed some simulations with a random d generated, in each scattering involving
impurities, according to a prescribed probability distribution (see Fig. 4.10). First we
have considered a uniform distribution in the interval [0, 1] (in nm). The results are
similar to those of the case with constant d = 0.5 nm and this can be explained by
observing that 0.5 is the expectation value. Afterwards, we have considered a Γ(α, λ)
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FIGURE 4.7: On the left comparison between the simulated by DG and
the fitted mobility models in the case of graphene on SiO2 with a distance
between the graphene sheet and impurities of d = 1 nm. On the right the

same for the densities.

distribution

f (x) =

⎧
⎨
⎩

1
λΓ(α)

xα−1ex/λ x > 0

0 x ≤ 0

where Γ(α) is the Euler gamma function. We have used the values λ = 0.5 and α =

2, 3, 4 (see Fig. 4.11) and rescaled d by a factor 0.2 in order to have values less than 1
with very high probability, as confirmed by the simulation.

In order to validate our findings, the results obtained by using the DG method in
[25] but with a value of d set equal to the mean values of the considered distribution
(the mean value of Γ(α, λ) is αλ) rescaled by the factor 0.2. The agreement is still excel-
lent.

We would like to remark by observing that both the materials seem only slightly
influenced by the stochastic effect related to the randomness of the impurity positions.
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FIGURE 4.8: Comparison of the average velocity versus time for d equal to
0 nm (top-left) , 0.5 nm (top-right), 1 nm (bottom) in the case of an applied
electric field of 5 kV/cm and Fermi energy εF = 0.4 eV. Both the results

obtained by using the DSMC and the DG method are reported.
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FIGURE 4.9: Comparison of the average velocity versus time for d equal to
0 nm (top-left) , 0.5 nm (top-right), 1 nm (bottom) in the case of an applied
electric field of 10 kV/cm and Fermi energy εF = 0.4 eV. Both the results

obtained by using the DSMC and the DG method are reported.
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FIGURE 4.10: Comparison of the average velocity versus time in the case
of an applied electric field of 10 kV/cm and Fermi energy εF = 0.4 eV by
considering different distribution for d: uniform (top left), Γ(2, 0.5) (top
right), Γ(3, 0.5) (bottom left), Γ(4, 0.5) (bottom right). In the results ob-
tained with the DG method we have assumed d equal to the mean value

of the corresponding distribution rescaled by the factor 0.2.
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Note that the probability to generate a number greater than 5 is practically
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Chapter 4. Mobility models and applications to GFETs 75

4.3 The mobility model in the case of monolayer graphene

between two layers of oxide substrate

To determine the analytical expression of the mobility in the case of graphene placed
between two layers of oxide (SiO2) substrate we adopt the same approach in [81]. By
using a numerical scheme based on Discontinuous Galerkin (DG) method, we solve
the Boltzmann equations for charge transport in graphene and get the characteristic
curves; from these the expressions of the mobilities are fitted. At variance with sim-
ilar procedures based on DSMC results, the numerical solutions obtained by the DG
method are free from statistical noise. This is particularly important for an accurate
evaluation of the low field mobility. Here all the details relative to the DG scheme
are skipped. The interested reader is referred to [25, 63]. We only mention that there
have been included electron-phonon scatterings, electron-impurities scatterings and
scattering with the remote phonon of the substrate, taking into account both intra and
inter-band interactions (see Section 1.3). Even in this situation, if the distance d be-
tween the graphene layer and the remote impurities present in the substrate is high
enough, about 1 nm, the influence of the remote impurities reduces and the results are
similar to the suspended case.

First we determine the low field mobility µ0, which is defined as

µ0(n) = lim
E→0

µn(E, n). (4.10)

For several values of charge density corresponding to a Fermi level between 0 eV and
0.4 eV, the low field mobility is extrapolated, by a linear regression model, computing
the mobility at different low values of electric field, between 0.0005 V/µm and 0.0025
V/µm, by using the values of the currents obtained by the direct solution of the Boltz-
mann equation with the DG method, as explained in [81]. One observes (see Figure 4.1)
that in the case of graphene on substrate the low field mobility behaviour versus the
density (or equivalently the Fermi energy) is similar to the suspended one but with two
main differences: the peak is a minimum and for high values of density the mobility
still increases.

On the basis of the previous considerations, we assume the following trial expres-
sion

µ0(n) = µ̃1 − µ̃0

exp
(︃
− (log(n/nre f )−m)2

2σ2

)︃

√
2πσn/nre f

⎛
⎝a

(︄
n

nre f

)︄2

+ b
n

nre f
+ c

⎞
⎠ , (4.11)

where µ̃0, µ̃1, nre f , m, σ, a, b and c are fitting parameters. The behaviour is the same
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for holes on account of the symmetry between the hole and electron distributions. We
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FIGURE 4.12: Comparison between the low field mobility simulated with
the DG method and the fitted one at distance d = 0 nm (top left), d = 0.5

nm (top right) and d = 1 nm (bottom).

have estimated the parameters by means of the least squares method. The obtained
values are reported in Table 4.6. Observe that at variance with [24] a double strip of
oxide has been considered. This enhances the effects of the remote impurities with
respect to the case of graphene on a single substrate .

As second step, we include the electric field dependence by proposing a modified
version of the model described in Ref. [81],[62]

µ(E, n) =
µ0(n) + µ̃

(︂
E

Ere f

)︂β1

1 +
(︂

E
Ere f

)︂β2
+ γ

(︂
E

Ere f

)︂β3
, (4.12)

where Ere f , µ̃, β1, β2, β3 and γ are fitting parameters. In this case we evaluated the
mobility by means of the DG results of the transport equations at different densities,
corresponding to the Fermi levels of 0.1 eV, 0.2 eV, 0.3 eV, 0.4 eV, 0.5 eV and for a range
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µ̃0 (µm2/Vps) µ̃1 (µm2/Vps) nre f (µm−2) m σ

d = 0 nm 2.235e-02 3.871e+00 2.206e+02 1.406e-01 2.247e+00
d = 0.5 nm 2.978e-01 4.223e+00 3.769e+02 -2.838e-01 2.216e+00
d = 1 nm 4.300e-04 4.743e+00 7.019e+07 5.542e+00 4.255e+00

a b c
d = 0 nm 4.548e+01 8.332e+02 4.324e+01

d = 0.5 nm 4.820e+00 6.834e+01 2.372e+00
d = 1 nm -2.8538e+03 2.4217e+03 3.202e+03

TABLE 4.6: Estimated parameters for the low field mobility.

of electric fields between 0.025 V/µm and 1 V/µm. The distance d has set 0.5 nm which
seems physically appropriate.

For each value of the electron density we calculate the coefficients Ere f , β1, β2,
β3, γ and µ̃ by means of least square method. We obtaining the data reported in
Tab. 4.7. Then in each interval [ni, ni+1] a third degree polynomial interpolation has

n Ere f β1 β2 β3 γ µ̃

4471.0 (εF = 0.1 eV) 0.05265 1.034 2.135 1.059 14.53 12.78
15500.0 (εF = 0.2 eV) 0.02126 0.4615 1.584 0.4276 21.77 33.3
33877.0 (εF = 0.3 eV) 0.1096 1.344 2.52 1.457 4.595 6.579
59588.0 (εF = 0.4 eV) 0.1776 2.304 3.099 1.335 1.395 1.251
92644.0 (εF = 0.5 eV) 0.05047 1.988 2.661 1.109 0.8816 1.915

TABLE 4.7: High field mobility parameters at d = 0.5 nm. For each density
the relative Fermi energy is also indicated.

been adopted for the parameters Ere f , β1, β2, β3, γ and µ̃

a3(n − ni)
3 + a2(n − ni)

2 + a1(n − ni) + a0, i = 1, . . . , 4 (4.13)

The coefficients are listed in Tab.s 4.8 - 4.13.

a3 a2 a1 a0
-2.182e-16 2.629e-10 -5.719e-6 0.05265
-1.823e-14 5.968e-10 0 0.02126
-2.756e-15 3.882e-11 3.47e-6 0.1096
1.78e-16 -1.222e-10 0 0.1776

TABLE 4.8: Coefficients in the interpolation of Ere f .

A comparison between fitted and simulated values of mobility models and corre-
sponding current densities are plotted in Figure 4.13.
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a3 a2 a1 a0
1.183e-13 2.095e-9 -8.94e-5 1.034
-1.594e-13 5.544e-9 0 0.4615
-4.898e-14 1.066e-9 4.232e-5 1.344
-8.768e-15 1.034e-25 0 2.304

TABLE 4.9: Coefficients in the interpolation of β1.

a3 a2 a1 a0
9.934e-14 2.337e-9 -8.781e-5 2.135
-2.075e-13 6.586e-9 0 1.584
-1.983e-14 1.441e-10 3.192e-5 2.52
-6.294e-15 -1.919e-10 0 3.099

TABLE 4.10: Coefficients in the interpolation of β2.

a3 a2 a1 a0
1.211e-13 2.517e-9 -9.972e-5 1.059
-3.322e-13 9.152e-9 0 0.4276
5.897e-15 -3.353e-10 0 1.457
9.58e-17 -4.249e-11 -5.548e-6 1.335

TABLE 4.11: Coefficients in the interpolation of β3.

a3 a2 a1 a0
-4.867e-13 -4.876e-8 0.001253 14.53
4.863e-12 -1.402e-7 0 21.77
-1.364e-14 4.433e-9 -0.0002295 4.595
2.301e-15 3.172e-10 -2.852e-5 1.395

TABLE 4.12: Coefficients in the interpolation of γ.

a3 a2 a1 a0
-5.07e-12 -5.689e-8 0.003105 12.78
7.506e-12 -2.171e-7 0 33.3
5.425e-14 5.269e-9 -0.0003785 6.579
1.837e-14 0 0 1.251

TABLE 4.13: Coefficients in the interpolation of µ̃.
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FIGURE 4.13: On the left the comparison of the simulated and fitted cur-
rent densities for several values of the Fermi energy. On the right compar-
ison between the mobility simulated with the DG method and the fitted

one for several values of the Fermi energy.

4.4 A full coupled drift-diffusion-Poisson simulation of

a GFET

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the backbone of the
modern integrated circuits. In the case when the active area is made of traditional
materials like, for example, silicon or gallium arsenide, a lot of analysis and simula-
tions have been performed in order to optimize the design. Lately a great attention
has been devoted to graphene on account of its peculiar features, and in particular,
from the point of view of nano-electronics, for the high electrical conductivity. It is
highly tempting to try to replace the traditional semiconductors with graphene in the
active area of electron devices like the MOSFETs. In fact as quoted in [95] “Graphene
has changed from being the exclusive domain of condensed-matter physicists to be-
ing explored by those in the electron-device community. In particular, graphene-based
transistors have developed rapidly and are now considered an option for post-silicon
electronics. However, many details about the potential performance of graphene tran-
sistors in real applications remain unclear."

Device engineers devote considerable effort to developing transistor designs in
which short-channel effects are suppressed and series resistances are minimized. Scal-
ing theory predicts that a FET with a thin barrier and a thin gate-controlled region will
be robust against short-channel effects down to very short gate lengths. The possibility
of having channels that are just one atomic layer thick is perhaps the most attractive
feature of graphene for its use in transistors. Main drawbacks of a large-area single
monolayer graphene are the zero gap and, for graphene on substrate, the degradation
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of the mobility. Therefore accurate simulation are warranted for the set up of a viable
graphene field effect transistor.

A standard mathematical model is given by a drift-diffusion-Poisson system. Usu-
ally the GFETs are investigated by adopting reduced one dimensional models of the
Poisson equation with some averaging procedure [47, 103]. Here a full two-dimensional
simulation is presented.

A crucial point is the determination of the mobilities entering the drift-diffusion
equations. A rather popular model is that proposed in [33]. Here a different approach
is adopted. Thanks to the discontinuous Galerkin (DG) scheme developed in [89, 25,
24, 63], we have performed, for graphene on a substrate, an extensive numerical sim-
ulation based on the semiclassical Boltzmann equations, including electron-phonon
scatterings, electron-impurities scatterings and scattering with the remote phonon of
the substrate, taking into account both intra and inter-band scatterings. From the nu-
merical solutions of the semiclassical Boltzmann equation a model for the mobility
functions has been deduced, similarly to what already done in [62] and in [81] in the
case of suspended monolayer graphene.

Note that the solutions furnished by deterministic methods, like DG ones, are noise
free and allow us to determine in an accurate way the low field mobility. Similar results
obtained starting from the DSMC results are quite questionable because of the intrinsic
statistical noise.

In this section we describe the mathematical model and present the numerical re-
sults of the simulation of a top-gated GFET by means of both the mobility model of
Section 4.3 and the one of Ref. [33]. It is confirmed the critical issue of the GFET re-
lated to the restricted current off region due to the zero gap which produces a relevant
current due to the minority charges when the gate voltage decreases below a threshold
value. It is likely that other type of GFET must be tried to improve the performance of
a device made of a single layer graphene.

4.4.1 Mathematical model

For our purpose let us consider a section of the device like that depicted in Fig. 4.14.
The active zone is made of a single layer of graphene which is between two strips of
insulator, both of them being SiO2. The source and drain contacts are directly above
the graphene. The two gate contacts (up and down) are attached to the oxide.

On the considered section we solve a 2D Poisson equation, assuming that the charge
is concentrated on the volume occupied by the atoms composing the graphene layer.
Accordingly, the surface charge density of graphene is supposed to be spanned on its
thickness which experimental measurements refer between 0.4 nm and 1.7 nm [97].
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In order to simulate the current flowing in the channel we adopt the 1D bipolar drift-
diffusion model, coupled to the Poisson equation for the electrostatic potential in the
whole section. A special attention is required by the initial carrier density profiles that
have to be determined compatibly with the electric potential, leading to a nonlinear
Poisson equation as will be discussed in the following.

FIGURE 4.14: Schematic representation of a GMOSFET.

The bipolar drift-diffusion model is adopted in [x2, x3]× {ygr} and it reads

∂n
∂t

− ∂

∂x

(︃
µnUT

∂n
∂x

− nµn
∂ϕ

∂x

)︃
= 0, (4.14)

∂p
∂t

+
∂

∂x

(︃
−µpUT

∂p
∂x

− pµp
∂ϕ

∂x

)︃
= 0, (4.15)

where n(t, x), p(t, x) are the electron and hole densities in graphene respectively, UT =

kBT/e is the thermal voltage, being e the positive elementary charge, kB is the Boltz-
mann constant, T is the lattice temperature (kept constant). The functions µn(x) and
µp(x) are the mobilities for electrons and holes respectively and ϕ(x, y) is the electric
potential, here evaluated on y = ygr, ygr being the y-coordinate of the graphene sheet
(see Fig. 4.14). The generation and recombination terms are set equal to zero[81]. In-
deed, this relation is strictly valid at the steady state but here will be assumed during
the transient as well. We expect that the stationary solutions is not affected by such
an approximation. A typical behaviour of the total generation and recombination term
versus time, obtained with the DG method in [89, 25, 24, 63], is reported in Fig. 4.15.
Initially there is the creation of electron-hole pairs with a rate which depends on the
Fermi energy but after a transient of several tens of picoseconds the Pauli principle pre-
vents the formation of new electron-hole pairs and one has a stationary regime with
zero generation-recombination term.
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FIGURE 4.15: Production term −R + G, with R and G recombination and
generation respectively, versus time in homogeneous graphene with zero
Fermi energy (left) and with a Fermi energy 0.1 eV (right). In both cases an
applied electric field of 5 kV/cm has been considered. A similar behaviour

is found by varying the Fermi energy and the electric field.

The system is solved in the interval [x2, x3] augmented with Dirichlet boundary
conditions

n|x=x2 = n0, n|x=x3 = nL, p|x=x2 = p0, p|x=x3 = pL.

How to fix the values n0, nL, p0, pL depends on the modelling of the contacts and will
be explained below.

The electric potential solves the 2D Poisson equation

∇ · (ϵ∇ϕ) = h(x, y), (4.16)

where

h(x, y) =

⎧
⎨
⎩

e(n(x)− p(x))/tgr if y = ygr, x ∈ [x2, x3]

0 otherwise

and ϵ is given by

ϵ(x, y) =

{︄
ϵgr if y = ygr

ϵox if y ̸= ygr

Here ϵgr = 3.3 ϵ0 and ϵox3.6 ϵ0 are the dielectric constants of the graphene and oxide
(SiO2) respectively, ϵ0 being the dielectric constant in the vacuum. tgr is the width of
the graphene layer which is assumed to be 1 nm. The charge in the graphene layer is
considered as distributed in the volume enclosed by the parallelepiped of base the area
of the graphene and height tgr. Recall that n and p are areal densities. Dirichlet condi-
tions are imposed on the gate contacts and homogeneous Neumann conditions on the
external oxide edges. A major issue is to model the source and drain regions where
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metal and graphene touch. We assume that source and drain are thermal bath charge
reservoirs following a Fermi-Dirac distribution. The injection of charges is determined
by a work function WF. Indeed it depends on the specific material the contacts are
made of. We set WF = 0.25V which is appropriate for Cu; in fact, this is within the
experimentally observed range of 0.20 eV [37] and 0.30 eV [106].

As summary the following boundary conditions for the electric potential are im-
posed

ϕ = WF at y = ygr, x ∈ [x1, x2]

ϕ = WF + Vb at y = ygr, x ∈ [x3, x4]

ϕ = WF + VGu at y = y1, x ∈ [x2, x3]

ϕ = WF + VGd at y = y4, x ∈ [x1, x4]

∇νϕ = 0 at the remaining part of the boundary.

(4.17)

Vb is the bias voltage, VGu is the upper gate-source potential, VGd is the down gate-
source potential. We have denoted by ∇ν the normal derivative.

In standard doped semiconductors the initial carrier densities are equal to the dop-
ing profile and the boundary conditions are given by the charge neutrality and the
Ohmic (alternatively Shottcky) contact conditions. On the contrary in graphene a sort
of doping is induced if an electric field perpendicular to the layer is applied [53] due to
a shift of the Fermi energy. Assuming thermal equilibrium, the initial carrier densities
are related to the electric potential by

n0(x) =
2

(2π)2

∫︂

R2
fFD(k; eϕ(x, ygr)) dk, x ∈ [x2, x3],

p0(x) =
2

(2π)2

∫︂

R2
fFD(k;−eϕ(x, ygr)) dk, x ∈ [x2, x3],

(4.18)

being fFD the Fermi-Dirac distribution

fFD(k, εF) =
1

1 + exp
(︂

ε(k)−εF
kBT

)︂ , (4.19)

where εF is the Fermi level (in pristine graphene εF = 0), ε(k) is the graphene disper-
sion relation (strictly valid around the Dirac points)

ε(k) = h̄vF|k|, (4.20)

which is the same for electrons and holes (see [44, 52]), h̄ is the reduced Planck constant
and vF is the Fermi velocity. The crystal momentum of electrons and holes is assumed
to vary all over R2.
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Therefore boundary conditions at the contacts are given by

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n0(x2) =
2

(2π)2

∫︂ 1

1 + exp
(︂

ε(k)−eWF
kBT

)︂ d k,

p0(x2) =
2

(2π)2

∫︂ 1

1 + exp
(︂

ε(k)+eWF
kBT

)︂ d k,
(4.21)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n0(x3) =
2

(2π)2

∫︂ 1

1 + exp
(︂

ε(k)−eWF−eVb
kBT

)︂ d k,

p0(x3) =
2

(2π)2

∫︂ 1

1 + exp
(︂

ε(k)+eWF+eVb
kBT

)︂ d k.
(4.22)

In the second relation the definition of hole distribution has been taken into account
along with the fact that the energy band is a even function of the modulus of the wave
vector.

Altogether, in order to get the initial density profile as function of the electric po-
tential, we must solve the following nonlinear Poisson equation

∇ · (ϵ∇ϕ) = g(ϕ), (4.23)

where

g(ϕ(x, y)) =

{︄
e(n0(ϕ(x, y))− p0(ϕ(x, y)))/tgr if y = ygr, x ∈ [x2, x3]

0 otherwise
(4.24)

augmented with the boundary conditions (4.17).

4.4.2 Numerical method for the drift-diffusion-Poisson system

To solve the drift-diffusion-Poisson system we employ the strategy already discussed
in Section 2.3, based on the Scharfetter-Gummel scheme together with the standard
finite difference scheme for the Poisson equation.

Since the initial condition is given by the non linear Poisson equation (4.23), in order
to get it we adopt the following iterative scheme.

1. Set an initial guess n(1) = nini(x), p(1) = pini(x) and get ϕ(1) through (4.16).

2. For each r > 1:



Chapter 4. Mobility models and applications to GFETs 85

(a) solve the Poisson equation

∇ · (ϵ∇ϕ(r+1)) = g(ϕ(r))

to get ϕ(r+1);

(b) find n(r+1)(x), p(r+1) = (x) by using (4.18);

3. Iterate step 2 until convergence.

In order to improve the convergence, the Poisson equation is solved by means of the
Gummel method (see [40]) adding a term in the diagonal elements of the scheme

εi+ 1
2 ,jϕ

r
i+1,j − (εi+ 1

2 ,j + εi− 1
2 ,j)ϕ

r
i,j + εi− 1

2 ,jϕ
r
i−1,j

∆x2

+
εi,j+ 1

2
ϕr

i,j+1 − (εi,j+ 1
2
+ εi,j− 1

2
)ϕr

i,j + εi,j− 1
2
ϕr

i,j−1

∆y2

− nr−1
i + pr−1

i
ε0tgrrBT

ϕr
i,j = gr−1

i,j − nr−1
i + pr−1

i
ε0tgrrBT

ϕr−1
i,j .

4.4.3 Numerical results for the G-MOSFET with the mobility based

on the Boltzmann equation

The GFET of Fig. 4.14 has been intensively simulated. We have set the length 100 nm,
the width of the lower and upper oxide (SiO2) 10 nm. The source and drain contacts
are long 25 nm. The two gate potentials are considered as equal.

We considered a mesh of 40 grid points along the x-direction. Along the y-axis,
between the gate contacts we have 23 grid points while in the region below source and
drain we have 12 grid points. In the graphene layer a single row of 40 nodes has been
employed. The steady state is reached in about one ps.

In order to get the solution the following strategy has been adopted:

1. first the Poisson equation is solved by keeping the charge in the graphene layer
equal to n0 and p0 for electron and holes, respectively;

2. then the nonlinear Poisson problem (4.23)-(4.24) is solved with the iterative scheme
described in Sec.4.4.2, by taking as initial guess the solution of step 1;

3. once the initial data for the electron and hole density have been determined the
full transient drift-diffusion-Poisson system is solved

The electrostatic potential is plotted in Fig. 4.16. The characteristic curves are shown
in Fig.s 4.17, 4.18. The behaviour is qualitatively similar to other results existing in
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FIGURE 4.16: 2D electrostatic potential (left) in the case VG = 0.6 V, Vb =
0.4 V. The upper gate is at y = 0. Similar results have been obtained in the
other cases. The electric potential along the graphene is plotted on the left.

the literature. Note the presence of kinks which have been already discussed in [70].
Moreover, as shown by Fig. 4.18, apart the cases of low gate voltage, the current is not
always a monotone function of the bias voltage showing in some range the effects of
negative differential mobility. However, at variance with other results, see for example
the review in [95], apparently the characteristic curve as function of the source-drain
voltage present a sort of saturation effect.

Above the inversion gate voltage (about -0.5 V) the majority carriers are the elec-
trons while below the inversion voltage the majority carriers are the holes. The critical
issue is the difficulty of fixing the off state which requires an accurate calibration of
the gate voltages, although an acceptable current-on over current-off ratio as shown in
Fig.s 4.17 (left).

When the gate voltage changes sign, the current due to the minority charge is trig-
gered. As a consequence the GFET presents only a limited off region around the gate
voltage −0.5 V. Even with the new mobility model and a simulation of the full 2D
Poisson equation, we have a further confirmation of this feature which makes GFET
not the optimal device for post-silicon nanoscale electron technology. Other attempts,
like multi-layer GFETs or, probably better, double gate GFETs must be tested.

4.4.4 Numerical results for the G-MOSFET with the mobility of Dor-

gan et al.

The simulated device is again the one depicted in Fig. 4.14. The length is 100 nm. The
width of the lower and upper oxide (SiO2) is 10 nm. The source and drain contacts are
long 25 nm. The mobility model is the one of Ref. [33], already introduced in Section
4.1.2. The two gate potentials are set as equal. At the metallic contacts the total voltage
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FIGURE 4.17: Total current versus gate voltage at fixed bias in a linear
scale (left) and a semi-logaritmic scale (right).
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FIGURE 4.18: Total current versus bias at fixed gate voltages.

includes also the work function which depends on the specific material the contacts are
made of. Different values of the work function will be considered in the simulations.

In Fig. 4.19 the shape of the electrical potential is plotted when the gate-source
potential is 0.6 V and the source-drain-potential is 0.3 V, with a work function of 0.25
V. The impurity charge is neglected. Similar results are obtained in the other cases.

Fig. 4.20 (left) shows the characteristic curves of current versus gate voltage with
work function equal to 0 V for several values of the source-drain voltage, neglecting
the impurities. In Fig. 4.20 (right) the current versus gate voltage are plotted as in
Fig. 4.20 (left), including also the presence of an impurity density of 3.5 ×103 µm−2,
for several values of the gate voltage. The presence of the impurities produces a small
degradation of the current. The crucial issue is that the range of gate voltage where
the current is off is bounded at variance with traditional semiconductors. This is due
to the gapless nature of monolayer graphene. As a consequence, a fine tuning of the
gate voltage is required to have an acceptable field effect transistor and in this respect
accurate simulations are needed.
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FIGURE 4.19: Electrostatic potential when the gate-source potential is 0.6
V and the source-drain-potential is 0.3 V. The work function potential is

0.25 V.

In Fig. 4.21 the previous characteristic curves are shown by considering a work
function of 0.25 V. Again the presence of the impurities leads only to a small degrada-
tion of the current. Note that above the inversion voltage (0.25 V) the majority carriers
are the electrons while below the inversion voltage the majority carriers are the holes.
The behaviour of the current is very different from the traditional semiconductors like
Si or GaAs on account of the zero gap in the energy band. The major issue is the dif-
ficulty of fixing the off state which requires an accurate calibration of the voltage. To
complete the analysis, in Fig. 4.22 we show the current versus the source-drain voltage
for several gate-source voltages with a work function at the graphene-metal interface
equal to 0.25 V.

4.5 Conclusions

In Section 1 and 3, new mobility models for charge transport in graphene have been
obtained by resorting to an extensive numerical simulation of the Boltzmann transport
equations with a DG method. Both the cases of suspended graphene and graphene
on substrate have been considered. Comparisons with other models present in the lit-
erature show a considerable improvement. Further developments could include the
effects of crystal heating and quantum effects in the mobility models. Although the
subject is still in an early stage, attempts in this direction can be found in [67, 30] re-
garding the thermal influence on the electric performance, and in [72, 59] regarding the
inclusion of quantum corrections.
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FIGURE 4.20: Current versus gate voltage with a work function at the
graphene-metal interface equal to 0V without impurities (left) and includ-

ing an impurity density of 3.5 ×103 µm−2 (right).
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FIGURE 4.21: Current versus gate voltage with a work function at the
graphene-metal interface equal to 0.25V without impurities (left) and in-

cluding an impurity density of 3.5 ×103 µm−2 (right).

In Section 2, an analysis of the high-field mobility has been performed for graphene
on a substrate by a new DSMC approach, which properly takes into account the Pauli
exclusion principle. The same substrates as in [42] have been considered but including
the more accurate model for the charge-impurities scattering (see [43]). Moreover, also
the random distribution of the depth of the impurities implanted in the oxide has been
taken into account and described with several theoretical probability distributions. The
differences among the average velocities for the considered substrates are in agreement
with the expected effects and confirm a degradation of the mobility. As already found
out in [42] for the low field mobility, h-BN reveals a better substrate than SiO2, because
it produces a smaller degradation also in the high-field mobility.

In Section 3, top-gated GFETs have been simulated and the characteristic curves
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FIGURE 4.22: Current versus source-drain voltage with a work function at
the graphene-metal interface equal to 0.25 V including an impurity density
of 3.5 ×103 µm−2. Negative (left) and positive (right) gate-source voltages

are considered.

have shown. The current-voltage curves present a behaviour different from that of
devices made of classical semiconductors, like Si or GaAs, because of the zero gap
in monolayer graphene. A full numerical solution of a drift-diffusion-Poisson model
have been included. First we have been adopted mobility expression of ref. [33], next
the mobilities have been deduced from the direct solution of the Boltzmann equations
for charge transport in graphene by a DG method, as explained in Section 3. The
results confirm the main features of such a devices. In particular the limited range of
gate-source voltages for the current-off state.
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Chapter 5

Classical-quantum drift-diffusion
model of charge transport in graphene

Very peculiar quantum phenomena were predicted and experimentally demonstrated
in graphene, such as Klein paradox (see [51, 108]) and Veselago lensing (see [20, 54]).
They offer interesting opportunities to nano-electronics and opto-electronics.

The above mentioned phenomena are related to the chiral nature of electrons in
graphene [19] and take place in the presence of steps or barriers of the electric potential,
that can be realized by suitable electric gates or doping profiles.

In [9, 10] a hybrid model has been proposed. It couples a thin active quantum region,
containing the rapid potential variations, with two classical regions, where the trans-
port regime is diffusive and incoherent. The coupling is firstly described at the kinetic
level, where the classical-quantum matching is more natural, and then the diffusive
limit is analyzed by means of the Hilbert expansion method. In [59] a hydrodynamical
model based on the maximum entropy principle (MEP), which includes also quantum
effects, has been formulated.

In this chapter we introduce some preliminary results, in preprint form [8], con-
cerning the numerical solutions of the model proposed in [9, 10]. In Section 5.1 we
show how to get the coupling system in the two dimensional case; in Section 5.2 we
propose a simplified one dimensional and unipolar system, in order to simulate the
device of ref. [108].

The results of this chapter has been obtained during two visiting periods at the
Institut de Mathématiques de Toulouse, Université Toulouse III - Paul Sabatier, under
the supervision of Prof. C. Negulescu, and one visiting period at the Dipartimento di
Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, under the
supervision of Prof. Luigi Barletti.
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5.1 Model description

First we briefly recall that in [10] the following results have been obtained. Assume that
a graphene sheet is described by the coordinates x = (x, y) and that a potential step, or
barrier, is localized at x = 0. More precisely, we assume that the electric potential has
the form

V(x) + U(x, y),

where V(x) represents the step/barrier profile, which is assumed to have variations
localized around x = 0 and to take constant values V1 and V2 at the left and at the
right, respectively. The “smooth” part of the potential, U(x, y) is assumed to vary on a
much larger (macroscopic space scale). Accordingly, the graphene sheet is divided in
two “classical” regions (x < 0 and x > 0), where the charge transport is described by
the drift-diffusion equation

divjs = 0, js = −τv2
F

2
[∇ns + sβn0 ϕ1(As)∇U] . (5.1)

Here, ns(x, y) denote the densities of electrons (s = +1) and holes (s = −1), τ is the
typical electron-phonon collision time, and the constants n0 and β are given by

β =
1

kBT
, n0 =

2π

(2πh̄vFβ)2 =
(kBT)2

2πh̄2v2
F

(where, as usual, kB is the Boltzmann constant, T is the temperature of the phonon
bath, vF is the Fermi velocity). Moreover,

ϕk(z) :=
1

Γ(k)

∫︂ ∞

0

tk−1

et−z + 1
dt

is the Fermi integral of order k, and As are the chemical potentials, related to the den-
sities by

As = A(ns) := ϕ−1
2

(︂ns

n0

)︂
. (5.2)

The right and left regions are linked through diffusive transmission conditions (DTC)
which, at first order in τ read as follows:

sA(n1
s + τn1,∞

s ) = s′A(n2
s′ + τn2,∞

s′ ) + βδV . (5.3)
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Here, δV = V2 −V1 is the overall potential variation across the barrier, the upper index
i = 1, 2 denotes the left and right sides with respect to the barrier, namely

n1
s = lim

x→0−
ns, n2

s′ = lim
x→0+

ns′ .

The relation (5.3) is assumed to hold for all couples of left and right electron/hole
labels, s = ±1, s′ = ±1, such that the conservation of energy

sc|p| = s′c|p′|+ δV, (5.4)

is satisfied for some left and right pseudomomentum p = (px, py) ∈ R2 and p′ =

(p′x, p′y) ∈ R2. The possible couples (s, s′) are:

(++), (+,−), (−,−) if δV > 0,

(++), (−,−) if δV = 0,

(++), (−,+), (−,−) if δV < 0.

The four constants ni,∞
s (possibly functions of y), s = ±1, i = 1, 2, are the most im-

portant parameters in the theory. They are obtained as the asymptotic values of the
electron/hole left/right densities of the solutions of the four Milne-like equations

px

|p|
∂ f i

s
∂x

= Li
s⟨ f i

s⟩ − f i
s , (−1)ix > 0, (5.5)

for the boundary layer correctors f i
s , where

⟨ f i
s⟩ :=

1
(2πh̄)2

∫︂

R2
f i
s dp

and

Li
s(p) :=

1
n0ϕ1(A(ni

s))

eβvF|p|−A(ni
s)

(eβvF|p|−A(ni
s) + 1)2

. (5.6)

The four Milne equations are coupled at x = 0 by the non-homogeneous quantum
transmission conditions

⎧
⎪⎨
⎪⎩

f 1
s (px)− f 1

s (−px) + T2
s′(p′)

(︂
f 1
s (−px)− ss′ f 2

s′(p′x)
)︂
= h1

s (p), px, p′x < 0,

f 2
s′(p′x)− f 2

s′(−p′x) + T1
s (p)

(︂
f 2
s′(−px)− ss′ f 1

s (p′x)
)︂
= h2

s′(p′), p′x, px > 0,
(5.7)
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where Ti
s(p) is the transmission coefficient (which can be obtained by solving the sta-

tionary Schrödinger equation for the potential V) and

⎧
⎪⎨
⎪⎩

h1
s (p) := G1

s (px)− G1
s (−px) + T2

s′(p′)
(︂

G1
s (−px)− ss′G2

s′(p′x)
)︂

, px, p′x < 0,

h2
s′(p′) := G2

s′(p′x)− G2
s′(−p′x) + T1

s (p)
(︂

G2
s′(−px)− ss′G1

s (p′x)
)︂

, p′x, px > 0,
(5.8)

with
Gi

s(p) =
2

v2
F

Li
s(p)

p
|p| · ji

s .

It can be proven that, asymptotically far from the interface x = 0, the solution has the
form

f i
s(x, y, p) ≈ Li

s(p) ni,∞
s (y), as x → (−1)i∞

where ni,∞
s are the parameters eq. (5.3) depends on. We notice that all the information

coming from quantum mechanics is codified in these four parameters.

In the Mawell-Boltzmann limit (βvF|p| ≫ A(n)), the model outlined above takes a
simplified form: the drift-diffusion equation (5.1) becomes

divjs = 0, js = −τv2
F

2
[∇ns + sβns∇U] , (5.9)

the DTC (5.3) becomes

(︂n1
s + τn1,∞

s

n0

)︂s
=
(︂n2

s′ + τn2,∞
s′

n0

)︂s′
eβδV , (5.10)

and the distribution (5.6) becomes a Maxwellian-like distribution

Li
s(p) ≈ M(p) :=

e−βvF|p|

n0
. (5.11)

Note, in particular, that M does not depend on ni
s while Li

s does.

The DTC (5.3) or (5.10) must be complemented with the current conservation relations

j1+,x − j1−,x = j2+,x − j2−,x if δV > 0,

j1+,x = j2+,x,

j1−,x = j2−,x

}︄
if δV = 0,

(where j1s,x and j2s,x denote, respectively, the left and right values of the x-component of
the drift-diffusion current js at x = 0).
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We finally remark that, still at first-order in τ, the DTC (5.3) are equivalent to the fol-
lowing relation

sA(n1
s )− s′A(n2

s′)− βδV =
τ

n0

(︄
s′n2,∞

s′

c2
s′

− s n1,∞
s

c1
s

)︄
(5.12)

where we put
ci

s := ϕ1(A(n1
s ))

and we recall that
A(n) = ϕ−1

2

(︃
n
n0

)︃
.

5.1.1 Application to a prototype graphene device

We consider a device constituted by a graphene sheet and represented by the rectangle
(x, y) ∈ (−L, L) × (−l, l). At boundaries x = −L and x = L there are placed two
metallic Ohmic contacts and at boundaries y = −l and y = l there are insulators.
We suppose that an external electric field ∇U is applied and a steep potential with
amplitude δV is concentrated at x = 0. We remark that in this chapter all potentials are
indeed energies (δV = e ˜δV, U = eŨ with ˜δV and Ũ physical potentials). Let us split
the domain in two classical regions

Ω1 = (−L, 0)× (−l, l), Ω2 = (0, L)× (−l, l)

and a quantum interface at x = 0.
If we define as ns the charge concentration for electrons (+) or holes (−), the result-

ing hybrid diffusive-quantum model reads as follows:

• in the semiclassical region Ω1 ∪ Ω2

{︄
∇ · js = 0

js = −(∇ns + sβns∇U)
(5.13)

where β = 1/kBT

• at the Ohmic boundary x = ±L

ns = n±L
s (5.14)

• at the insulating boundary y = ±l

js,y = 0 (5.15)
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• across the quantum interface x = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n1
+ − eβδVn2

+ = τ
(︂

eβδVn2,∞
+ − n1,∞

+

)︂

n1
+n2

− + τ
(︂

n1
+n2,∞

− + n2
−n1,∞

+

)︂
= eβδV(n0)

2

n1
− − e−βδVn2

− = τ
(︂

e−βδVn2,∞
− − n1,∞

−
)︂

j1+,x − j1−,x = j2+,x − j2−,x

(5.16)

where τ is the typical collision time and n0 = 2π/(hcβ)2 with β = 1/kBT is
the intrinsic graphene concentration being c the Fermi velocity and h the Planck
constant.

Finally the current densities are given by

Js = −eτ
c2

2
js.

If we make the following assumptions on the electric potential energy

1. V = V(x) depends only on the variable x (which implies that it conserves py);

2. V(x) → 0 on the left and V(x) → δV on the right of a quantum strip around x = 0,
having a vanishing strip on a macroscopic length scale,

then we obtain a scattering problem, providing us the transmission and reflection co-
efficients. We denote by Ti

s(p) and Ri
s(p) the transmission and reflection coefficients

from the left (i = 1) to the right (i = 2). They satisfy the following properties

1. unitarity: Ti
s(p) ≥ 0 and Ri

s(p) ≥ 0, with Ti
s(p) + Ri

s(p) = 1;

2. energy-dependence: Ti
s(p) and Ri

s(p) depend on p and s only throw the energy
sc|p|;

3. reciprocity: T1
s (p) = T2

s′(p
′) whenever the conservation of energy sc|p| = s′c|p′|+

δV holds.

For example, for a potential step of height δV the transmission coefficient for an elec-
tron incident from the left, with energy E = sc|p|, to the right, with energy E′ =

s′c|p′| = sc|p| − δV, is given by

T1
s (p) =

⎧
⎪⎨
⎪⎩

2ss′ cos(ϕ) cos(θ)
1 + ss′ cos(ϕ + θ)

if |E sin(ϕ)| < |E − δV|

0 otherwise
(5.17)
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where ϕ ∈ (−π
2 , π

2 ) is the incidence angle and θ ∈ (−π
2 , π

2 ) is the transmission angle.
Since p = (px, py) the energy condition

|sc|p| sin(ϕ)| < |sc|p| − δV|

becomes
|py| < |s|p| − δV/c|

and therefore the incidence angle determines the quantities

cos(ϕ) =
px

|p| , px > 0

sin(ϕ) =
py

|p| .

In order to find explicit expressions for the transmission coefficient we need to distin-
guish two cases with respect to s. If s = + we have two possibilities: if E > δV then
s′ = + else s′ = −. In this second case the electron is replaced by an hole and its
wave-vector is opposite. This leads to the expressions

sin(θ) =
s′cpy

c|p| − δV
, cos(θ) = s′

√︂
1 − sin2(θ)

obtaining finally

T1
+(p) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 cos(ϕ) cos(θ)
1 + cos(ϕ + θ)

if |py| < ||p| − δV/c| and |p| > δV/c

− 2 cos(ϕ) cos(θ)
1 − cos(ϕ + θ)

if |py| < ||p| − δV/c| and |p| < δV/c

0 otherwise

(5.18)

If s = − the only one possibility is s′ = − and an hole is still an hole and the transmis-
sion angle is given by [10]

sin(θ) =
cpy

c|p|+ δV
, cos(θ) =

√︂
1 − sin2(θ)

and explicitly we have

T1
−(p) =

⎧
⎪⎨
⎪⎩

2 cos(ϕ) cos(θ)
1 + cos(ϕ + θ)

if |py| < ||p|+ δV/c|

0 otherwise
(5.19)
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For i = 2, because of the various symmetries of the problem, we have

T2
+(p) = T1

−(p) and T2
−(p) = T1

+(p).

5.1.2 Milne problem

Across the quantum interface the quantities ni,∞
s , appearing in (5.16), can be obtained

in the following way. Let us consider the Milne problem

⎧
⎪⎨
⎪⎩

µ
∂θi

s
∂ξ

= F′
ni

s
⟨θi

s⟩ − θi
s, (−1)iξ > 0

θi
s,in −Ki(θi

s,out, θ
j
s,out) = Gi

s,in −Ki(Gi
s,out, Gj

s,out), ξ = 0
(5.20)

where

F′
ni

s
(p) =

Fni
s
(p)2eβc|p|−A(ni

s)

n0ϕ1(A(ni
s))

(5.21)

with

• Fni
s
(p) = 1

eβc|p|−A(ni
s)+1

;

• A(ni
s) = ϕ−1

2

(︂
ni

s
n0

)︂
;

• ϕk(z) = 1
Γ(k)

∫︁ +∞
0

tk−1

et−z+1 dt,

and
Ki( f i

s,out, f j
s,out)(p) = Ri

s(p) f i
s,out(∼ p) + ss′T j

s′(p
′) f j

s′,out(p
′), (5.22)

with ∼ p = (−px, py). To prove this we consider the operator

Bi( f i
s,out, f j

s,out)(p) = Ri
s(p) f i

s,out(∼ p) + T j
s(p′)

(︂
ss′ f j

s,out(p
′) + ϵss′

)︂
(5.23)

where

ϵss′ =

{︄
0, if s = s′

1, if s ̸= s′
(5.24)
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and apply it to ( f + g)i
s,out obtaining

Bi(( f + g)i
s,out, ( f + g)j

s,out)(p) =Ri
s(p)( f + g)i

s,out(∼ p) + T j
s(p′)

×
(︂

ss′( f + g)j
s,out(p

′) + ϵss′
)︂

=Ri
s(p) f i

s,out(∼ p) + Ri
s(p)gi

s,out(∼ p)

+ T j
s(p′)

(︂
ss′ f j

s,out(p
′) + ss′gj

s,out(p
′) + ϵss′

)︂

=Ri
s(p) f i

s,out(∼ p) + T j
s(p′)

(︂
ss′ f j

s,out(p
′) + ϵss′

)︂

+ Ri
s(p)gi

s,out(∼ p) + ss′T j
s(p′)gj

s,out(p
′)

=Bi( f i
s,out, f j

s,out)(p) +Ki(gi
s,out, gj

s,out)(p).

We remark that quantities p, p′, s and s′ are related by

s′c|p′| = sc|p|+ (−1)iδV (5.25)

(expressing the conservation of energy) and the left and right densities at interface are
constrained by

sA(ni
s) = s′A(nj

s′) + (−1)jβδV. (5.26)

Now let us substitute (5.22) in (5.20)2 and consider the relation Ri
s(p) = 1 − Ti

s(p)
obtaining

θi
s,in − (1 − Ti

s(p))θ
i
s,out(∼ p)− ss′T j

s′(p
′)θ j

s′,out(p
′) = hi

s(p), (5.27)

where
hi

s(p) = Gi
s,in −Ki(Gi

s,out, Gj
s,out). (5.28)

The next step is to introduce some approximation techniques for the solution of the
Milne problem. The so-called Albedo approximation consists in finding solutions of
the form

θi
s,out = Ls(p)ρi

s (−1)i px < 0

where ρi
s are unknown outflow densities satisfying a condition of vanishing total flux

at interface. We shall adopt a further simplification, named Marshak approximation,
which consists in assuming

ρi
s = ni,∞

s

The meaning of Marshak approximation is that one identifies the outflow density with
the asymptotic density, which is indeed reached exponentially fast away from the in-
terface. The interested reader is referred to [32] for further information. From equation
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(5.21) we have that
F′

ni
s
(∼ p) = F′

ni
s
(p), (5.29)

then Li
s(∼ p) = Li

s(p) and by using reciprocity property, T j
s′(p

′) = Ti
s(p), we obtain

θi
s,in − Li

s(p)ρ
i
s + Ti

s(p)[L
i
s(p)ρ

i
s − ss′Lj

s′(p
′)ρj

s′ ] = hi
s(p). (5.30)

Now we consider (5.21) and by using (5.25), (5.26) we can calculate

ϕ1(A(ni
s))F′

ni
s
(p) =

1
n0

Fni
s
(p)2eβc|p|−A(ni

s) =
1
n0

eβc|p|−A(ni
s)

(eβc|p|−A(ni
s) + 1)2

=

=
1
n0

exp
(︂

β
(︂

s′
s c|p′| − (−1)i

s δV
)︂
− s′

s A(nj
s′)−

(−1)j

s βδV
)︂

(︂
exp

(︂
β
(︂

s′
s c|p′| − (−1)i

s δV
)︂
− s′

s A(nj
s′)−

(−1)j

s βδV
)︂
+ 1
)︂2 =

=
1
n0

exp
(︂

s′
s

(︂
βc|p′| − A(nj

s′)
)︂)︂

(︂
exp

(︂
s′
s

(︂
βc|p′| − A(nj

s′)
)︂)︂

+ 1
)︂2 =

=
1
n0

exp
(︂

βc|p′| − A(nj
s′)
)︂

(︂
exp

(︂
βc|p′| − A(nj

s′)
)︂
+ 1
)︂2 =

=
1
n0

F
nj

s′
(p′)2eβc|p′|−A(nj

s′ ) = ϕ1(A(nj
s′))F′

nj
s′
(p′),

where the terms with δV disappear because i ̸= j and also s′/s because

eh

(eh + 1)2 =
e−h

(e−h + 1)2 .

This leads to the relation
ci

sLi
s(p) = cj

s′L
j
s′(p

′) (5.31)

being ci
s := ϕ1(A(ni

s)) = ϕ1(ϕ
−1
2 (ni

s/n0)). By using this relation in (5.30) we have
finally

θi
s,in − Li

s(p)ρ
i
s + Ti

s(p)Li
s(p)

[︄
ρi

s − ss′
ci

s

cj
s′

ρ
j
s′

]︄
= hi

s(p), (5.32)

that holds on R
2,i
in :=

{︁
p ∈ R2 | (−1)i px > 0

}︁
. Now we multiply (5.32) by µ = µ(p) =

cpx/|p| and integrate over R
2,i
in obtaining

∫︂

R
2,i
in

θi
s,inµ dp−

∫︂

R
2,i
in

Li
s(p)ρ

i
sµ dp+

∫︂

R
2,i
in

Ti
s(p)Li

s(p)

[︄
ρi

s − ss′
ci

s

cj
s′

ρ
j
s′

]︄
µ dp =

∫︂

R
2,i
in

hi
s(p)µ dp.

(5.33)
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By performing the change of variables px → −px on the second integral we obtain

∫︂

R
2,i
in

θi
s,inµ dp −

∫︂

R
2,i
in

Li
s(p)ρ

i
sµ dp =

∫︂

R
2,i
in

θi
s,inµ dp +

∫︂

R2
out

Li
s(p)ρ

i
sµ dp = 0, (5.34)

because both the Albedo and the Marshak approximations are constructed so that the
x-flow of θi

s at ξ = 0 vanishes. Then we have

∫︂

R
2,i
in

Ti
s(p)Li

s(p)

[︄
ρi

s − ss′
ci

s

cj
s′

ρ
j
s′

]︄
µ dp = Hi

s, (5.35)

where
Hi

s =
∫︂

R
2,i
in

hi
s(p)µ dp. (5.36)

Let us write these cases explicitly

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)L1

+(p)
[︃

ρ1
+ − c1

+

c2
+

ρ2
+

]︃
µ dp

+
∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)L1

+(p)
[︃

ρ1
+ +

c1
+

c2
−

ρ2
−

]︃
µ dp = H1

+ (i = 1, j = 2, s = +, s′ = ±)

∫︂

{p∈R2|px<0}
T1
−(p)L1

−(p)
[︃

ρ1
− − c1

−
c2
−

ρ2
−

]︃
µ dp = H1

− (i = 1, j = 2, s = −, s′ = −)

∫︂

{p∈R2|px>0}
T2
+(p)L2

+(p)
[︃

ρ2
+ − c2

+

c1
+

ρ1
+

]︃
µ dp = H2

+ (i = 2, j = 1, s = +, s′ = +)

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)L2

−(p)
[︃

ρ2
− +

c2
−

c1
+

ρ1
+

]︃
µ dp

+
∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)L2

−(p)
[︃

ρ2
− − c2

−
c1
−

ρ1
−

]︃
µ dp = H2

− (i = 2, j = 1, s = −, s′ = ±)

Next we choose different unknowns by setting

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X++ = ρ1
+ − c1

+

c2
+

ρ2
+

X+− = c2
−ρ1

+ + c1
+ρ2

−

X−− = ρ1
− − c1

−
c2
−

ρ2
−

(5.37)
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and then we can rewrite the previous equations as

X++

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)L1

+(p)µ dp (5.38)

+ X+−
∫︂

{p∈R2|px<0, c|p|<δV}
1

c2
−

T1
+(p)L1

+(p)µ dp = H1
+ (5.39)

X−−
∫︂

{p∈R2|px<0}
T1
−(p)L1

−(p)µ dp = H1
− (5.40)

− X++

∫︂

{p∈R2|px>0}
c2
+

c1
+

T2
+(p)L2

+(p)µ dp = H2
+ (5.41)

X+−
∫︂

{p∈R2|px>0, c|p|>δV}
1

c1
+

T2
−(p)L2

−(p)µ dp (5.42)

− X−−
∫︂

{p∈R2|px>0, c|p|<δV}
c2
−

c1
−

T2
−(p)L2

−(p)µ dp = H2
− (5.43)

We consider the first three equations

⎧
⎪⎪⎨
⎪⎪⎩

AX++ + BX+− = H1
+

CX−− = H1
−

− DX++ = H2
+

(5.44)

leading to the solution ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X++ = −H2
+

D

X−− =
H1
−

C

X+− =
H1
+

B
+

AH2
+

DB

(5.45)

The next step is to introduce the Maxwell-Boltzmann approximation that is

ci
s = ϕ1

(︃
ϕ−1

2

(︃
ni

s
n0

)︃)︃
≈ ni

s
n0

. (5.46)

In this way we obtain ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X++ ≈ ρ1
+ − n1

+

n2
+

ρ2
+

X+− ≈ n2
−ρ1

+ + n1
+ρ2

−
n0

X−− ≈ ρ1
− − n1

−
n2
−

ρ2
−

(5.47)
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and since the relations n1
s = esβδVn2

s , with s = ±, hold at order τ we have

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X++ ≈ ρ1
+ − eβδVρ2

+

X+− ≈ n2
−ρ1

+ + n1
+ρ2

−
n0

X−− ≈ ρ1
− − e−βδVρ2

−

(5.48)

Therefore we have

Li
s(p) =

1
n0ci

s

eβc|p|−A(ni
s)

(︂
eβc|p|−A(ni

s) + 1
)︂2 ≈ 1

n0ci
s

eβc|p|−A(ni
s)

(︂
eβc|p|−A(ni

s)
)︂2 =

1
n0ci

s

1

eβc|p|−A(ni
s)

(5.49)

=
1

n0ci
s
e−βc|p|eA(ni

s) ≈ e−βc|p|

n0
=: M(p). (5.50)

In this way the quantities A, B, C and D writes

A =
∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)L1

+(p)µ dp

≈
∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)M(p)

cpx

|p| dp

= −
∫︂

{p∈R2|px>0, c|p|>δV}
T1
+(p)M(p)

cpx

|p| dp

B =
∫︂

{p∈R2|px<0, c|p|<δV}
1

c2
−

T1
+(p)L1

+(p)µ dp

≈
∫︂

{p∈R2|px<0, c|p|<δV}
n0

n2
−

T1
+(p)M(p)

cpx

|p| dp

= −
∫︂

{p∈R2|px>0, c|p|<δV}
n0

n2
−

T1
+(p)M(p)

cpx

|p| dp

C =
∫︂

{p∈R2|px<0}
T1
−(p)L1

−(p)µ dp

≈
∫︂

{p∈R2|px<0}
T1
−(p)M(p)

cpx

|p| dp

= −
∫︂

{p∈R2|px>0}
T1
−(p)M(p)

cpx

|p| dp
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D =
∫︂

{p∈R2|px>0}
c2
+

c1
+

T2
+(p)L2

+(p)µ dp

≈
∫︂

{p∈R2|px>0}
n2
+

n1
+

T2
+(p)M(p)

cpx

|p| dp

Next we consider the source term

hi
s(p) = Gi

s,in −Ki(Gi
s,out, Gj

s,out)

= Gi
s,in(p)− Gi

s,out(∼ p) + Ti
s(p)[G

i
s,out(∼ p)− ss′Gj

s′,out(p
′)]

where
Gi

s(p) = cLi
s(p)

p
|p| · ji

s. (5.51)

Since ji
s does not depend on p and the quantity Li

s(p) only depends on |p| we can
remove labels in and out, then we obtain

hi
s(p) = cLi

s(p)
p
|p| · ji

s − cLi
s(∼ p)

∼ p
| ∼ p| · ji

s + cTi
s(p)

[︃
Li

s(p)
∼ p
|p| · ji

s − ss′Lj
s′(p

′)
p′

|p′| · jj
s′

]︃

= cLi
s(p)

[︃
p
|p| −

∼ p
| ∼ p|

]︃
· ji

s + cTi
s(p)Li

s(p)

[︄
∼ p
| ∼ p| · ji

s − ss′
ci

s

cj
s′

p′

|p′| · jj
s′

]︄

= 2cLi
s(p)

px

|p| jis,x + cTi
s(p)Li

s(p)

[︄
∼ p
|p| · ji

s − ss′
ci

s

cj
s′

p′

|p′| · jj
s′

]︄
,

where it was used that Lj
s′(p

′) = ci
s

cj
s′

Li
s(p) and p− ∼ p = (2px, 0).

Now we apply the same procedure by multiplying the previous expression for µ

and integrating on R
2,i
in obtaining

∫︂

R
2,i
in

hi
s(p)µ dp = 2c

∫︂

R
2,i
in

Li
s(p)

px

|p| jis,xµ dp

+ c
∫︂

R
2,i
in

Ti
s(p)Li

s(p)

[︄
∼ p
|p| · ji

s − ss′
ci

s

cj
s′

p′

|p′| · jj
s′

]︄
µ dp

= 2c2
∫︂

R
2,i
in

Li
s(p)

(︃
px

|p|

)︃2

jis,x dp + c2
∫︂

R
2,i
in

Ti
s(p)Li

s(p)

[︄
∼ p
|p| · ji

s − ss′
ci

s

cj
s′

p′

|p′| · jj
s′

]︄
px

|p| dp

= c2
∫︂

R2
Li

s(p)
(︃

px

|p|

)︃2

jis,x dp + c2
∫︂

R
2,i
in

Ti
s(p)Li

s(p)

[︄
−px

|p| jis,x − ss′
ci

s

cj
s′

p′x
|p′| jj

s′,x

]︄
px

|p| dp
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where in the first term we considered the symmetry with respect to x and in the second
one the terms with py jis,y disappear because of symmetry. By setting

Hi
s =

∫︂

R
2,i
in

hi
s(p)

px

|p| dp (5.52)

and by splitting different cases we have

H1
+ = c2 j1+,x

∫︂

R2
L1
+(p)

(︃
px

|p|

)︃2

dp + c2 j1+,x

∫︂

{p∈R2|px<0}
T1
+(p)L1

+(p)
[︃−px

|p|

]︃
px

|p| dp

− c2 c1
+

c2
+

j2+,x

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)L1

+(p)
p′x
|p′|

px

|p| dp

+ c2 c1
+

c2
−

j2−,x

∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)L1

+(p)
p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = +, s′ = ±)

H1
− = c2 j1−,x

∫︂

R2
L1
−(p)

(︃
px

|p|

)︃2

dp + c2 j1−,x

∫︂

{p∈R2|px<0}
T1
−(p)L1

−(p)
[︃−px

|p|

]︃
px

|p| dp

− c2 c1
−

c2
−

j2−,x

∫︂

{p∈R2|px<0}
T1
−(p)L1

−(p)
p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = −, s′ = −)

H2
+ = c2 j2+,x

∫︂

R2
L2
+(p)

(︃
px

|p|

)︃2

dp + c2 j2+,x

∫︂

{p∈R2|px>0}
T2
+(p)L2

+(p)
[︃−px

|p|

]︃
px

|p| dp

− c2 c2
+

c1
+

j1+,x

∫︂

{p∈R2|px>0}
T2
+(p)L2

+(p)
p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = +, s′ = +)

H2
− = c2 j2−,x

∫︂

R2
L2
−(p)

(︃
px

|p|

)︃2

dp + c2 j2−,x

∫︂

{p∈R2|px>0}
T2
−(p)L2

−(p)
[︃−px

|p|

]︃
px

|p| dp

+ c2 c2
−

c1
+

j1+,x

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)L2

−(p)
p′x
|p′|

px

|p| dp

− c2 c2
−

c1
−

j1−,x

∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)L2

−(p)
p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = −, s′ = ±)
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The next step consists to introduce the Maxwell-Boltzmann approximation, that is

ci
s ≈

ni
s

n0
, Li

s(p) ≈ M(p), (5.53)

leading to

H1
+ = c2 j1+,x

∫︂

R2
M(p)

(︃
px

|p|

)︃2

dp + c2 j1+,x

∫︂

{p∈R2|px<0}
T1
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
+

n2
+

j2+,x

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)M(p)

p′x
|p′|

px

|p| dp

+ c2 n1
+

n2
−

j2−,x

∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)M(p)

p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = +, s′ = ±)

H1
− = c2 j1−,x

∫︂

R2
M(p)

(︃
px

|p|

)︃2

dp + c2 j1−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
−

n2
−

j2−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = −, s′ = −)

H2
+ = c2 j2+,x

∫︂

R2
M(p)

(︃
px

|p|

)︃2

dp + c2 j2+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n2
+

n1
+

j1+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = +, s′ = +)

H2
− = c2 j2−,x

∫︂

R2
M(p)

(︃
px

|p|

)︃2

dp + c2 j2−,x

∫︂

{p∈R2|px>0}
T2
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

+ c2 n2
−

n1
+

j1+,x

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)M(p)

p′x
|p′|

px

|p| dp

− c2 n2
−

n1
−

j1−,x

∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)M(p)

p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = −, s′ = ±).
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Now we compute the integral

∫︂

R2
M(p)

(︃
px

|p|

)︃2

dp =
∫︂

R2

e−βc|p|

n0

(︃
px

|p|

)︃2

dp. (5.54)

Then by performing the change of variables

{︄
px = ρ cos ϑ

py = ρ sin ϑ
(5.55)

where ρ = |p| it becomes

∫︂ 2π

0
dϑ
∫︂ +∞

0

e−βcρ

n0

ρ2 cos2 ϑ

ρ2 ρ dρ =
∫︂ 2π

0
cos2 ϑ dϑ

∫︂ +∞

0

e−βcρ

n0
ρ dρ (5.56)

and by setting βcρ = t we have

∫︂ 2π

0
cos2 ϑ dϑ

∫︂ +∞

0

e−βcρ

n0
ρ dρ =

1
n0(βc)2

∫︂ 2π

0
cos2 ϑ dϑ

∫︂ +∞

0
e−tt dt =

π

n0(βc)2 =
h2

2
.

(5.57)
In this way the source terms write

H1
+ = c2 j1+,x

h2

2
+ c2 j1+,x

∫︂

{p∈R2|px<0}
T1
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
+

n2
+

j2+,x

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)M(p)

p′x
|p′|

px

|p| dp

+ c2 n1
+

n2
−

j2−,x

∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)M(p)

p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = +, s′ = ±)

H1
− = c2 j1−,x

h2

2
+ c2 j1−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
−

n2
−

j2−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

p′x
|p′|

px

|p| dp

(i = 1, j = 2, s = −, s′ = −)
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H2
+ = c2 j2+,x

h2

2
+ c2 j2+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n2
+

n1
+

j1+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = +, s′ = +)

H2
− = c2 j2−,x

h2

2
+ c2 j2−,x

∫︂

{p∈R2|px>0}
T2
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

+ c2 n2
−

n1
+

j1+,x

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)M(p)

p′x
|p′|

px

|p| dp

− c2 n2
−

n1
−

j1−,x

∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)M(p)

p′x
|p′|

px

|p| dp

(i = 2, j = 1, s = −, s′ = ±).

Finally by imposing the interface conditions and computing p′x/|p′| as

ν±(p) =

√︂
|c|p| ± δV|2 − c2p2

y

|c|p| ± δV| (5.58)

we have

H1
+ = c2 j1+,x

h2

2
+ c2 j1+,x

∫︂

{p∈R2|px<0}
T1
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
+

n2
+

j2+,x

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)M(p)ν−(p)

px

|p| dp

+ c2 n1
+

n2
−

j2−,x

∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)M(p)ν−(p)

px

|p| dp

(i = 1, j = 2, s = +, s′ = ±)

H1
− = c2 j1−,x

h2

2
+ c2 j1−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n1
−

n2
−

j2−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)ν+(p)

px

|p| dp

(i = 1, j = 2, s = −, s′ = −)
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H2
+ = c2 j2+,x

h2

2
+ c2 j2+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− c2 n2
+

n1
+

j1+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)ν+(p)

px

|p| dp

(i = 2, j = 1, s = +, s′ = +)

H2
− = c2 j2−,x

h2

2
+ c2 j2−,x

∫︂

{p∈R2|px>0}
T2
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

+ c2 n2
−

n1
+

j1+,x

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)M(p)ν−(p)

px

|p| dp

− c2 n2
−

n1
−

j1−,x

∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)M(p)ν−(p)

px

|p| dp

(i = 2, j = 1, s = −, s′ = ±).

5.1.3 Approximation of interface conditions

The quantities ni
s/nj

s can be approximated as follows:

n1
+

n2
+

=
eβδVn2

+ + O(τ)

n2
+

= eβδV(1 + O(τ)) = eβδV + O(τ), (5.59)

n2
+

n1
+

=
n2
+

eβδVn2
+ + O(τ)

= e−βδV 1
1 + O(τ)

≈ e−βδV + O(τ), (5.60)

n1
−

n2
−

=
e−βδVn2

− + O(τ)

n2
−

= e−βδV(1 + O(τ)) = e−βδV + O(τ), (5.61)

n2
−

n1
−

=
n2
−

e−βδVn2
− + O(τ)

= eβδV 1
1 + O(τ)

≈ eβδV + O(τ). (5.62)

By using the previous relations and by canceling a factor c appearing in all quantities
A, B, C, D and Hi

s we obtain the final expressions

A = −
∫︂

{p∈R2|px>0, c|p|>δV}
T1
+(p)M(p)

px

|p| dp

B = − n0

n2
−

∫︂

{p∈R2|px>0, c|p|<δV}
T1
+(p)M(p)

px

|p| dp

C = −
∫︂

{p∈R2|px>0}
T1
−(p)M(p)

px

|p| dp

D = e−βδV
∫︂

{p∈R2|px>0}
T2
+(p)M(p)

px

|p| dp
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H1
+ = cj1+,x

h2

2
+ cj1+,x

∫︂

{p∈R2|px<0}
T1
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− ceβδV j2+,x

∫︂

{p∈R2|px<0, c|p|>δV}
T1
+(p)M(p)ν−(p)

px

|p| dp

+ c
n1
+

n2
−

j2−,x

∫︂

{p∈R2|px<0, c|p|<δV}
T1
+(p)M(p)ν−(p)

px

|p| dp

(i = 1, j = 2, s = +, s′ = ±)

H1
− = cj1−,x

h2

2
+ cj1−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− ce−βδV j2−,x

∫︂

{p∈R2|px<0}
T1
−(p)M(p)ν+(p)

px

|p| dp

(i = 1, j = 2, s = −, s′ = −)

H2
+ = cj2+,x

h2

2
+ cj2+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

− ce−βδV j1+,x

∫︂

{p∈R2|px>0}
T2
+(p)M(p)ν+(p)

px

|p| dp

(i = 2, j = 1, s = +, s′ = +)

H2
− = cj2−,x

h2

2
+ cj2−,x

∫︂

{p∈R2|px>0}
T2
−(p)M(p)

[︃−px

|p|

]︃
px

|p| dp

+ c
n2
−

n1
+

j1+,x

∫︂

{p∈R2|px>0, c|p|>δV}
T2
−(p)M(p)ν−(p)

px

|p| dp

− ce−βδV j1−,x

∫︂

{p∈R2|px>0, c|p|<δV}
T2
−(p)M(p)ν−(p)

px

|p| dp

(i = 2, j = 1, s = −, s′ = ±),

where

ν±(p) =

√︂
|c|p| ± δV|2 − c2p2

y

|c|p| ± δV| (5.63)
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and the quantities written above are related to the corrections at first order in τ through

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1
+ − n1

+

n2
+

ρ2
+ = −H2

+

D

ρ1
− − n1

−
n2
−

ρ2
− =

H1
−

C

n2
−ρ1

+ + n1
+ρ2

−
n0

=
H1
+

B
+

AH2
+

DB

(5.64)

5.1.4 Evaluation of the asymptotic densities for electrons

Solving the Milne problem (5.5)-(5.7) in order to obtain the asymptotic densities ni,∞
s

implies that a “kinetic” stage is still needed in our diffusive model. This is not very
appealing, when looking for a simple and numerically light model. Then, we should
resort to some kind of approximation of the Milne problem [32, 39].

The simplest possible approach is the the already mentioned Marshack approxi-
mation, which amounts to assuming that the solution of (5.5) has approximately the
asymptotic form

f i
s ≈ Li

s ni,∞
s ,

so that the parameters ni,∞
s are simply obtained by imposing the conditions (5.7).

Let us consider the case δV = 0, which is our case of interest [108]. Then, the DTC
for electrons and holes get decoupled and the DTC (5.12) reduce to

A(n1
s )− A(n2

s ) =
τ

n0

(︄
n2,∞

s

c2
s

− n1,∞
s

c1
s

)︄
, (5.65)

and we recall that the conservation of the x-flow through the interface hols separately
for electrons and holes:

j1s,x = j2s,x = js,x, s = ±1

(here, js,x is intended to be evaluated at the interface x = 0). Focusing on electrons
(s = +1) it turns out that, in the Marshack approximation,

A(n1
+)− A(n2

+) =
τ

n0

(︄
n2,∞
+

c2
+

− n1,∞
+

c1
+

)︄
= τ j+,x q+ (5.66)

where

q+ =
vF

n0

∫︂
L2
+ µ2dp − 2

∫︂

px>0
T1
+ L2

+ µ2dp

c2
+

∫︂

px>0
T1
+ L2

+µ dp
. (5.67)
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and we have put
µ = µ(p) :=

px

|p| .

Note that q+ (which may depend on y) is the equivalent of the interpolation constant
of Ref. [32] which in turn, is the analogous of the extrapolation constant of neutron
transport [5].

In the Maxwell-Boltzmann case the above formulas reduce to the following:

n1
+ − n2

+ = τ
(︂

n2,∞
+ − n1,∞

+

)︂
= τ j+,x q+ , (5.68)

q+ = vF

h2

2
− 2

∫︂

px>0
T1
+ M µ2dp

∫︂

px>0
T1
+ M µ dp

, (5.69)

where h is the Planck constant and M is the Maxwellian (5.11).

We remark that in the y-homogeneous case, the DD equations are 1-dimensional and
the currents js,x, s = ±1, are (separately) constant throughout the device.

5.2 Device modelling

In this section we would like to adopt the model described above for illustrating a
more physical situation. In [108] the authors experimentally demonstrated the Klein
tunneling effects in graphene. They proposed a device is a graphene heterojunction
composed by a back gate, a SiO2 substrate where the graphene layer is placed on, a
layer of HfO2, a thin top gate and two metallic source and drain contacts. The situation
is depicted in Fig. 5.1. We summarize the model in the case suitable for our application,

FIGURE 5.1: Schematic representation of a typical graphene heterojunc-
tion device.

i.e. δV = 0 and 1-dimensional (y-homogeneous). Following [108], the form of the
potential barrier is determined by two parameter, the top gate voltage Vtg and the back
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gate voltage Vbg. The top gate is strip-shaped, which determines the barrier width D
(approximately independent on the value Vtg). The barrier height is then given by

Vh = Vtg − Vbg ,

while Vbg is the potential outside the barrier and determines the equilibrium carrier
concentrations [35].

For the transmission coefficient of a sharp potential barrier let we consider the
model proposed in [19]

T(φ) =

⎧
⎪⎨
⎪⎩

cos2 θ cos2 φ

[cos(D
√

K) cos φ cos θ]2 + sin2(D
√

K)(1 − ss′ sin ϕ sin θ)2
, if K > 0

0 if K < 0
(5.70)

where
p = |p|(cos(φ), sin(φ)), (5.71)

θ = arctan
(︃

py

h̄
√

K

)︃
, (5.72)

s = sgn(vF|p|), s′ = sgn(vF|p| − Vh), (5.73)

K =

(︃
vF|p| − Vh

h̄vF

)︃2

−
(︃ |p| sin(φ)

h̄

)︃2

. (5.74)

The parameter D indicates the barrier width. According to [51], an approximation for
high values of the barrier is therefore given by

T =

⎧
⎪⎨
⎪⎩

cos2(φ)

1 − cos2(D
√

K) sin2(φ)
, if K > 0,

0, if K < 0.

(5.75)

The model to be solved numerically is therefore structured as follows. Since we focus
on electrons, the subscript + is dropped everywhere.

1. The 1-dimensional stationary DD equation

∂x j = 0, j = −τv2
F

2
[∂xn + βn0 ϕ1(A(n))∇U] ,

holds separately in the space intervals (−L, 0) and (0, L).

2. The smooth potential U(x) can be considered to be linear, representing an applied
voltage (external bias). In a more refined model, U could be self-consistently related
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to the density n+ through the Poisson equation (in this case the bias is imposed as
boundary conditions for the Poisson equation).

3. At x = 0 we impose the interface conditions

⎧
⎨
⎩

j1 = j2 (:= j)

A(n1)− A(n2) = τ j q,

where, as usual, the upper index denotes the left/right values at x = 0, and where
q ≡ q+ is given by (5.67) and (5.75).

4. At x = ±L standard nonhomogeneous Dirichlet conditions are imposed (i.e. we
assign the value of n(L) and n(−L).

In the Maxwell Boltzmann approximation, the DD equation reduces to

∂x j = 0, j = −τv2
F

2
[∂xn + βn∇U] ,

and the interface conditions become
⎧
⎨
⎩

j1 = j2 (:= j)

n1 − n2 = τ j q,

where now the interpolation constant is given by (5.69).

A last possible approach is to use the chemical potential A as unknown, instead of the
density. In this case the DD equation to be solved is

∂x j = 0, j = −τv2
Fn0

2
[∂xϕ2(A) + β ϕ1(A)∇U] ,

that can also be written as

∂x j = 0, j = −τv2
Fn0

2
ϕ1(A) [∂x A + β∇U] ,

(since ϕ′
k = ϕk−1). The interface conditions are

⎧
⎨
⎩

j1 = j2 (:= j)

A1 − A2 = τ j q,
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(where A1 and A2 denote the left and right limit at x = 0 of the electron chemical
potential) and q is still given by (5.67) and (5.75) but now

Li(p) :=
1

n0ϕ1(Ai)

eβvF|p|−Ai)

(eβvF|p|−Ai
+ 1)2

.

depends on Ai and not A(ni) (remember that here s = +1 everywhere and so we
omitted the index s).
Of course, the values of A at x = ±L must be specified instead of the values of n.

5.2.1 Numerical method

In the Maxwell-Boltzmann approximation, let we consider the DD equation

∂x j = 0, j = −τv2
F

2
[∂xn + βn∂xU] (5.76)

with the interface conditions {︄
j1 = j2

n1 − n2 = τ jq
(5.77)

Now we apply the derivative with respect to x to the current expression getting

∂xxn + β∂xn∂xU = 0 (5.78)

If we choose to decompose the domains Ω1 and Ω2 in Nx cells with ∆x spatial step in
x direction by taking index i varying in x direction we obtain the following system of
linear equations

ni−1 − 2ni + ni+1

∆x2 + β∂xU
ni+1 − ni−1

2∆x
= 0, (5.79)

with i = 2, . . . , Nx − 1, and i = Nx + 1, . . . , 2Nx − 1. At x = ±L we impose Dirichlet
boundary conditions

n1 = n−L, n2Nx = nL. (5.80)

At the interface x = 0 we need to include relations (5.77). By approximating

j2 ≈ −3nNx+1 + 4nNx+2 − nNx+3

2∆x
+ β∂xUnNx+1 (5.81)

with forward second order finite differences, the second relation becomes

nNx − nNx+1 − τq
[︃−3nNx+1 + 4nNx+2 − nNx+3

2∆x
+ β∂xUnNx+1

]︃
= 0 (5.82)
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and, by approximating

j1 ≈ nNx−2 − 4nNx−1 + 3nNx

2∆x
+ β∂xUnNx (5.83)

and

j2 ≈ −3nNx+1 + 4nNx+2 − nNx+3

2∆x
+ β∂xUnNx+1 (5.84)

by means of backward and forward second order finite differences respectively we get

nNx−2 − 4nNx−1 + 3nNx

2∆x
+ β∂xUnNx − −3nNx+1 + 4nNx+2 − nNx+3

2∆x
− β∂xUnNx+1 = 0

(5.85)
Moreover we need to calculate the coefficient q, that is

q = vF

h̄2

2 − 2
∫︁

px>0TMµ2 dp
∫︁

px>0TMµ dp
. (5.86)

For the transmission coefficient, in our simulations we adopt the expression (5.70). We
remark that the integration domain is

B =
{︂

p ∈ R2 | px > 0
}︂

Since M(p) → 0 when |p| → +∞ we can define

px,max, py,max, pmax =
√︂

p2
x,max + p2

y,max.

In order to evaluate the coefficients numerically we can approximate

B ≈ [0, px,max]× [−py,max, py,max]

and we discretize the domain in N × M cells, indicate with pij the center of the (i, j)
cell and set ∆x = px,max/N, ∆y = 2py,max/M. Finally we obtain

∫︂

B
g(p) dp ≈ ∆x∆y

N

∑
i=1

M

∑
j=1

g(pij),

being g the function to be integrated.

5.2.2 Numerical results

In this section we show some numerical simulation regarding the model described
above. In order to get the charge density at contacts we remark that in graphene it is
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related to the applied voltage and consists of the sum of a work function, due to the
metal-graphene contact, that shifts the potential at contacts by Vw f , and a bias applied
in one of the contacts,

VS = Vw f , VD = Vw f + Vbias. (5.87)

Following [53], the electron densities are given by

n−L = ϕ1(qVS), nL = ϕ1(qVD). (5.88)

In [108] is presented a device in which a quantum barrier is obtained by applying a
thin metallic gate on the graphene layer of gate voltage VTG. Moreover a back gate
of the dimensions of all the device of voltage VBG determines the doping. The reason
is the property of quantum capacitance of graphene (see [108, 53]). The effect due to
the gate is related to the distance between the gate and the graphene layer and also
to the materials adopted as substrates. They present also a reduced mode to quantify
the effect under consideration. To have more physically accurate simulation we need
to couple the above presented model with a Poisson equation solved in the device
domain. Here some preliminary numerical results are obtained by modulating the top
gate voltage with a tuning parameter in order to reproduce a reasonable value of the
voltage applied on the graphene layer, that is Vh = cVTG, being c a constant. Similarly,
for the back gate we have adopted Vb = dVBG, being d a constant. In our simulations
we have chosen d = 12.8, according to [108]. Moreover the electric field is approximate
to Vbias/2L, neglecting the effect due to the small gate.

In Figure 5.2 we show the numerical results reproducing the conductance versus
the top gate voltage, obtained at different values of VBG = 0, 0.5 and 1 V. The value
of the work function is Vw f = 0.25V and the bias is Vbias = 0.001. The device total
length is 2L = 8 µm, the width is W = 1 µm, the barrier length is 50 nm, the tem-
perature is T = 40 K, τ = 0.1 ps and c = 0.05. As in [108], Fig. 1c, we observe the
presence of oscillations in the conductance and the behavior in terms of period looks
similar while the conductance values differ for a constant factor (we remark that our
simulations refer to the top left area of the plot, due to a different sign convention).
In our simulations for low values of the top gate voltage the conductance steeply in-
crease but, at variance with experiments of [108], it does not saturate near the zero
value. We hypothesize that this effect is not accurately described because a different
model of barrier is needed, e.g., a gradual ascent instead of a sharp one. We remark
that the barrier model is determinant in the calculation of the transmission coefficient.
On the contrary a correct prediction of the values of conductance requires an inclu-
sion of a more physical mobility model (see [62, 81]) and an accurate determination of
the electric field by a Poisson equation (see [82, 79]). A more detailed analysis will be
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FIGURE 5.2: Conductance versus top gate voltage at VBG = 0 V (top-left),
0.5 V (top-right) and 1 V (bottom).

performed together with a complete model implementation. In conclusion the quan-
tum drift diffusion model proposed in this chapter appears to be able to reproduce the
Klein tunneling effect in the above described situation.
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Chapter 6

Optimal control theory of charge
transport in graphene

Nowadays optimization with partial differential equation is a very important research
field in applied mathematics for its applications in engineering, industry and social
sciences. The purpose of PDE optimization consists to decide how to optimally change
features of systems modeled by PDEs. A typical optimal control problem consists of an
evolutionary or equilibrium system including a control mechanism and of a functional
modeling the purpose of the control. These problems are usually solved considering
a Lagrange framework that exploits first-order optimality conditions that are formu-
lated in terms of the governing model, its adjoint counterpart, and a gradient equation
(or inequality). Other important classes of optimization problems are shape design,
topology, and parameter optimization. For further information about optimal control
problems see [15].

In this chapter we explore the possibility to define and numerically solve an opti-
mal control problem involving the semiclassical Boltzmann equation for charge trans-
port in graphene. Numerical approaches based on the Direct Simulation Monte Carlo
(DSMC) and on the Discontinuous Galerkin (DG) methods have been formulated, for
example, in [89, 25, 24, 63]. An optimal control problem for the Keilson-Storer master
equation has been formulated in and solved by means of the DSMC method in [11].

We propose to control the electric field acting on a graphene device in order to force
the electrons to obey a target distribution.

The preliminary results included here and the study presented in Ref. [11] have
been obtained during a visiting period at the Institut für Mathematik, Julius-Maxim-
ilians Universität Würzburg, under the supervision of Prof. A. Borzì.
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6.1 Model description

Let we consider the semiclassical Boltzmann equation for electrons belonging to the
conduction band in the homogeneous case

∂ f (t, k)
∂t

+ u(t) · ∇k f (t, k) = C[ f , f ](t, k),

being f (t, k) the distribution function of electrons at time t and wave-vector k, u(t) a
time depending function, related to an external electric field E(t) by

u(t) = − e
h̄

E(t), (6.1)

playing the role of an optimization variable. The parameter e is the positive elementary
charge, h̄ is the reduced Planck constant and

C[ f , f ](t, k) =
∫︂

R2
S(k, k′) f (t, k′)(1 − f (t, k)) dk′ −

∫︂

R2
S(k′, k) f (t, k)(1 − f (t, k′)) dk′

is the collision term. More details about the semiclassical Boltzmann equation have
been already discussed in Chapter 1.

We would like to define an optimization problem in which the electron distribu-
tion is forced to assume a given probability density φ(k) at the final time T, in the
meanwhile it is also constrained to follow, in average, a certain trajectory θ(t, k) and
minimizing also the cost of the control. More precisely, we would like to minimize the
functional

J( f , u) =
∫︂ T

0

∫︂

R2
θ(t, k) f (t, k) dk dt +

∫︂

R2
φ(k) fT(k) dk dt +

ν

2
∥u∥H1

T
,

where

∥u∥H1
T
=
∫︂ T

0
|u(t)|2 dt +

∫︂ T

0

⃓⃓
⃓⃓ d
dt

u(t)
⃓⃓
⃓⃓
2

dt

subject to the above mentioned differential constraint with the initial condition

f (0, k) = f0(k).

The functional J represents the purpose of the optimization problem. This functional
arises from the minimum attention control notion, see for example [16]. We call the first
term the tracking term, the second term represents the final observation, and the last
term denotes the costs of the control with a control weight ν > 0. About the tracking
term, the function θ represents an attracting potential for the electrons wave vectors.
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Specifically, let us denote with kd(t) a (time-dependent) desired profile confining the
wave vectors of electrons. Then, we may choose θ(k, t) = Θ(|k − kd(t)|) such that the
global minimum of the tracking part is achieved when all particles have wave vectors
kd. Similarly, the final observation term can be defined as φ(k) = Φ(|k − kT|), which
may correspond to the requirement that, in average, the wave vectors of the particles
at final time is close to kT. In general, we require that θ and φ are bounded from below
and locally convex in the neighbourhood of kd and kT , respectively.

6.1.1 The optimality system

In this section, we discuss the optimality system using the Lagrange framework. If we
assume Fréchet differentiability, we can introduce the Lagrangian of the system, that
writes

L( f , u, q) = J( f , u) +
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃

q(t, k) dk dt

The Gateaux derivative with respect to q writes

∇qL = lim
h→0+

1
h
[L( f , u, q + hδq)−L( f , u, q)]

= lim
h→0+

1
h

[︃∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃
(q + hδq) dk dt

−
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃

q dk dt
]︃

=
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃

δq dk dt

By imposing it has to be zero ∀δq(t, k) then

∂ f
∂t

+ u · ∇k f − C[ f , f ] = 0.

The Gateaux derivative with respect to u writes

∇uL = lim
h→0+

1
h
[L( f , u + hδu, q)−L( f , u, q)]

= lim
h→0+

1
h

[︂ν

2
∥u + hδu∥H1

T
− ν

2
∥u∥H1

T

+
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ (u + hδu) · ∇k f − C[ f , f ]
)︃

q dk dt

−
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃

q dk dt
]︃
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Since

∥u + hδu∥H1
T
=
∫︂ T

0
|u(t) + hδu(t)|2 dt +

∫︂ T

0

⃓⃓
⃓⃓ d
dt
(u(t) + hδu(t))

⃓⃓
⃓⃓
2

dt

=
∫︂ T

0
u(t)2 + 2hu(t) · δu(t) + h2δu(t)2 dt +

∫︂ T

0

⃓⃓
⃓⃓ d
dt

u(t)
⃓⃓
⃓⃓
2

dt

+ 2h
du(t)

dt
· dδu(t)

dt
+ h2

⃓⃓
⃓⃓ d
dt

δu(t)
⃓⃓
⃓⃓
2

dt

we get

∇uL = ν
∫︂ T

0
u · δu dt + ν

∫︂ T

0

du(t)
dt

· dδu(t)
dt

dt +
∫︂ T

0

∫︂

R2
(δu · ∇k f )q dk dt

= ν
∫︂ T

0
u · δu dt + ν

∫︂ T

0

d
dt

(︃
du
dt

· δu
)︃

dt

− ν
∫︂ T

0

d2u
dt2 · δu dt +

∫︂ T

0

∫︂

R2
(δu · ∇k f )q dk dt

= ν
∫︂ T

0
u · δu dt + ν

[︃
du
dt

· δu
]︃T

0
− ν

∫︂ T

0

d2u
dt2 · δu dt +

∫︂ T

0

∫︂

R2
(δu · ∇k f )q dk dt

=
∫︂ T

0
δu ·

(︃
νu − ν

d2u
dt2 +

∫︂

R2
q∇k f dk

)︃

because we have set δu(0) = δu(T) = 0.
By imposing it has to be zero ∀δu(t) then

νu − ν
d2u
dt2 +

∫︂

R2
q∇k f dk = 0

The Gateaux derivative with respect to f writes

∇ fL = lim
h→0+

1
h
[L( f + δ f , u, q)−L( f , u, q)]

= lim
h→0+

1
h

[︃∫︂ T

0

∫︂

R2
θ(t, k)( f (t, k) + hδ f (t, k)) dk dt −

∫︂ T

0

∫︂

R2
θ(t, k) f (t, k) dk dt

+
∫︂ T

0

∫︂

R2

(︃
∂ f + hδ f

∂t
+ u · ∇k( f + hδ f )− C[ f + hδ f , f + hδ f ]

)︃
q dk dt

−
∫︂ T

0

∫︂

R2

(︃
∂ f
∂t

+ u · ∇k f − C[ f , f ]
)︃

q dk dt
]︃

.
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Since:

∫︂ T

0

∫︂

R2

∂δ f
∂t

q dk dt =
∫︂

R2
[qδ f ]T0 dk −

∫︂ T

0

∫︂

R2

∂q
∂t

δ f dk dt

=
∫︂

R2
q(T, k)δ f (T, k) dk −

∫︂

R2
q(0, k)δ f (0, k) dk −

∫︂ T

0

∫︂

R2

∂q
∂t

δ f dk dt

=
∫︂

R2
q(T, k)δ f (T, k) dk −

∫︂ T

0

∫︂

R2

∂q
∂t

δ f dk dt

where the last step is obtained because δ f (0, k) = 0.

∫︂ T

0

∫︂

R2
(u · ∇δk f )q dk dt = −

∫︂ T

0

∫︂

R2
(u · ∇kq)δ f dk dt

because of the exponential decay of f for |k| → +∞.
By putting everything together we have

∇ fL =
∫︂ T

0

∫︂

R2
θ(t, k)δ f (t, k) dk dt

+
∫︂

R2
q(T, k)δ f (T, k)k −

∫︂ T

0

∫︂

R2

∂q
∂t

δ f dk dt −
∫︂ T

0

∫︂

R2
(u · ∇kq)δ f dk dt

− lim
h→0+

1
h

[︃∫︂ T

0

∫︂

R2
(C[ f + hδ f , f + hδ f ]− C[ f , f ]) q dk dt

]︃
.

Let we expand the collision term

C[ f + hδ f , f + hδ f ]− C[ f , f ]

=
∫︂

R2
S(k, k′)( f + hδ f )(t, k′)(1 − ( f + hδ f )(t, k)) dk′

−
∫︂

R2
S(k′, k)( f + hδ f )(t, k)(1 − ( f + hδ f )(t, k′)) dk′

−
∫︂

R2
S(k, k′) f (t, k′)(1 − f (t, k)) dk′ +

∫︂

R2
S(k′, k) f (t, k)(1 − f (t, k′)) dk′

=
∫︂

R2
S(k, k′)( f (k′)(1 − f (k))− h f (k′)δ f (k) + hδ f (k′)(1 − f (k))− h2δ f (k′)δ f (k)) dk′

−
∫︂

R2
S(k′, k)( f (k)(1 − f (k′))− h f (k)δ f (k′) + hδ f (k)(1 − f (k′))− h2δ f (k)δ f (k′)) dk′

−
∫︂

R2
S(k, k′) f (t, k′)(1 − f (t, k)) dk′ +

∫︂

R2
S(k′, k) f (t, k)(1 − f (t, k′)) dk′

=
∫︂

R2
S(k, k′)(−h f (k′)δ f (k) + hδ f (k′)(1 − f (k))− h2δ f (k′)δ f (k)) dk′

−
∫︂

R2
S(k′, k)(−h f (k)δ f (k′) + hδ f (k)(1 − f (k′))− h2δ f (k)δ f (k′)) dk′.
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Then

lim
h→0+

1
h
[C[ f + hδ f , f + hδ f ]− C[ f , f ]] q

=

[︃∫︂

R2
S(k, k′)(− f (k′)δ f (k) + δ f (k′)(1 − f (k))) dk′

−
∫︂

R2
S(k′, k)(− f (k)δ f (k′) + δ f (k)(1 − f (k′))) dk′

]︃
q

=

[︃∫︂

R2
S(k, k′)(− f (k′)δ f (k)− δ f (k′) f (k)) dk′

−
∫︂

R2
S(k′, k)(− f (k)δ f (k′)− δ f (k) f (k′)) dk′

+
∫︂

R2
S(k, k′)δ f (k′) dk′ −

∫︂

R2
S(k′, k)δ f (k) dk′

]︃
q

Now let us consider the quantity

∫︂

R2

[︃∫︂

R2
S(k, k′)(− f (k′)δ f (k)− δ f (k′) f (k)) dk′

−
∫︂

R2
S(k′, k)(− f (k)δ f (k′)− δ f (k) f (k′)) dk′

+
∫︂

R2
S(k, k′)δ f (k′) dk′ −

∫︂

R2
S(k′, k)δ f (k) dk′

]︃
q(t, k) dk

and manipulate it obtaining

∫︂

R2

[︃∫︂

R2
S(k, k′)(− f (k′)δ f (k)− δ f (k′) f (k)) dk′

−
∫︂

R2
S(k′, k)(− f (k)δ f (k′)− δ f (k) f (k′)) dk′

+
∫︂

R2
S(k, k′)δ f (k′) dk′ −

∫︂

R2
S(k′, k)δ f (k) dk′

]︃
q(t, k) dk

=
∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k′)(− f (k′)) dk′ −

∫︂

R2
S(k′, k)(− f (k′)) dk′

−
∫︂

R2
S(k′, k) dk′

]︃
q(t, k) dk

+
∫︂

R2

[︃∫︂

R2
S(k, k′)(−δ f (k′) f (k)) dk′ −

∫︂

R2
S(k′, k)(− f (k)δ f (k′)) dk′

+
∫︂

R2
S(k, k′)δ f (k′) dk′

]︃
q(t, k) dk
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Now in the first integral we relabel k′ = k and in the second one k′ = k, k = k getting

∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k)(− f (k)) dk −

∫︂

R2
S(k, k)(− f (k)) dk −

∫︂

R2
S(k, k) dk

]︃
q(t, k) dk

+
∫︂

R2

[︃∫︂

R2
S(k, k)(−δ f (k) f (k)) dk −

∫︂

R2
S(k, k)(− f (k)δ f (k)) dk

+
∫︂

R2
S(k, k)δ f (k) dk

]︃
q(t, k) dk

=
∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k)(− f (k))q(t, k) dk −

∫︂

R2
S(k, k)(− f (k))q(t, k) dk

−
∫︂

R2
S(k, k)q(t, k) dk

]︃
dk

+
∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k)(− f (k))q(t, k) dk −

∫︂

R2
S(k, k)(− f (k))q(t, k) dk

+
∫︂

R2
S(k, k)q(t, k) dk

]︃
dk

=
∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k)(− f (k))q(t, k) dk −

∫︂

R2
S(k, k)(− f (k))q(t, k) dk

−
∫︂

R2
S(k, k)q(t, k) dk +

∫︂

R2
S(k, k)(− f (k))q(t, k) dk

−
∫︂

R2
S(k, k)(− f (k))q(t, k) dk +

∫︂

R2
S(k, k)q(t, k) dk

]︃
dk

=
∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k)(− f (k))q(t, k) dk −

∫︂

R2
S(k, k)(1 − f (k))q(t, k) dk

+
∫︂

R2
S(k, k)(1 − f (k))q(t, k) dk −

∫︂

R2
S(k, k)(− f (k))q(t, k) dk

]︃
dk,

relabeling back k = k′ we have

∫︂

R2
δ f (k)

[︃∫︂

R2
S(k, k′)(− f (k′))q(t, k) dk′ −

∫︂

R2
S(k′, k)(1 − f (k′))q(t, k) dk′

+
∫︂

R2
S(k′, k)(1 − f (k′))q(t, k′) dk′ −

∫︂

R2
S(k, k′)(− f (k′))q(t, k′) dk′

]︃
dk,

=
∫︂

R2
δ f (k)

[︃
−
∫︂

R2
S(k, k′) f (k′)(q(t, k)− q(t, k′)) dk′

−
∫︂

R2
S(k′, k)(1 − f (k′))(q(t, k)− q(t, k′)) dk′

]︃
dk,
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Finally we have

∇ fL =
∫︂ T

0

∫︂

R2
θ(t, k)δ f dk dt

+
∫︂

R2
q(T, k)δ f (T, k)k −

∫︂ T

0

∫︂

R2

∂q
∂t

δ f dk dt −
∫︂ T

0

∫︂

R2
(u · ∇kq)δ f dk dt

−
∫︂ T

0

∫︂

R2
δ f (t, k)

[︃
−
∫︂

R2
S(k, k′) f (k′)(q(t, k)− q(t, k′)) dk′

−
∫︂

R2
S(k′, k)(1 − f (k′))(q(t, k)− q(t, k′)) dk′

]︃
dk

=
∫︂ T

0

∫︂

R2

[︃
θ(t, k)− ∂q

∂t
− u · ∇kq +

∫︂

R2
S(k, k′) f (k′)(q(t, k)− q(t, k′)) dk′

+
∫︂

R2
S(k′, k)(1 − f (k′))(q(t, k)− q(t, k′)) dk′

]︃
δ f dk dt

+
∫︂

R2
[β( f (T, k)− fT(k)) + q(T, k)] δ f (T, k) dk.

Then by imposing ∇ fL = 0 for all δ f (t, k) we obtain the adjoint equation

− ∂q
∂t

− u · ∇kq +
∫︂

R2
S(k, k′) f (k′)(q(t, k)− q(t, k′)) dk′

+
∫︂

R2
S(k′, k)(1 − f (k′))(q(t, k)− q(t, k′)) dk′ + θ(t, k) = 0

or equivalently

−∂q
∂t

− u · ∇kq + C∗[ f , q](t, k) + θ(t, k) = 0

with

C∗[ f , q](t, k) =
∫︂

R2
S(k, k′) f (k′)(q(t, k)− q(t, k′)) dk′

+
∫︂

R2
S(k′, k)(1 − f (k′))(q(t, k)− q(t, k′)) dk′.

6.2 Numerical method

We suppose that u is directed along kx, that is

u(t) =
(︂
− e

h̄
E(t), 0

)︂
. (6.2)
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Than the optimality system writes

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ f
∂t

− e
h̄

E(t)
∂ f
∂kx

= C[ f , f ]

− ∂q
∂t

+
e
h̄

E(t)
∂q
∂kx

+ C∗[ f , q](t, k) + θ(t, k) = 0

d2E(t)
dt2 − E(t) = − h̄

e
1
ν

∫︂

R2
q

∂ f
∂kx

f dk

(6.3)

where the first equation is called forward equation, the second equation is the adjoint
and the last one is the gradient. As initial condition for f we take the Fermi-Dirac
distribution

f (0, k) =
1

1 + exp
(︂

ε(k)−εF
kBT

)︂ (6.4)

where ε(k) = h̄vF|k|. And as terminal condition for q a shifted Fermi-Dirac

φ(k) =
1

1 + exp
(︂

ε(k−kT)−εF
kBT

)︂ (6.5)

About θ we may set for example

θ(t, k) =
1

1 + exp
(︂

ε(k−kd(t))−εF
kBT

)︂ (6.6)

with
kd(t) = at2 + bt + c (6.7)

satisfying kd(0) = 0 and kd(T) = kT.

6.2.1 The discontinuous Galerkin method

Since we expect an exponential decay of f , as |k| → +∞, it is reasonable to choose a
compact domain Ω ⊆ R2, such that f (t, k) ≈ 0, for every k /∈ Ω and t > 0.

As in , let we introduce a finite decomposition {Cα : α = 1, 2, . . . , N} of the domain
Ω, with the Cα’s open sets such that

Cα ⊆ Ω ∀α, Cα ∩ Cβ = ∅ ∀α ̸= β,
N⋃︂

α=1

Cα = Ω.
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We assume a constant approximation for each distribution function f , q in every cell
Cα. If we denote by χα the characteristic function relative to the cell Cα, then

f (t, k) ≈ f α(t), ∀k ∈ Cα ⇐⇒ f (t, k) ≈
N

∑
α=1

f α(t) χα(k), ∀k ∈
N⋃︂

α=1

Cα

q(t, k) ≈ qα(t), ∀k ∈ Cα ⇐⇒ q(t, k) ≈
N

∑
α=1

qα(t) χα(k), ∀k ∈
N⋃︂

α=1

Cα

A set of partial differential equations is now derived from the Boltzmann equations.
The new unknowns are the f α(t) and qα(t) instead of the distribution functions f(t, k)
and q(t, k). Formally integrating over each cell Cα, we obtain

∫︂

Cα

∂ f
∂t

dk −
∫︂

Cα

e
h̄

E · ∇k f dk =
∫︂

Cα

C[ f , f ] dk. (6.8)

−
∫︂

Cα

∂q
∂t

dk +
∫︂

Cα

e
h̄

E · ∇kq dk +
∫︂

Cα

C∗[ f , q] dk +
∫︂

Cα

θ(t, k) dk = 0. (6.9)

6.2.2 Numerical flux

The first integral of Eq.s (6.8),(6.9) can be approximated easily; in fact we have

∫︂

Cα

∂ f
∂t

(t, k) dk ≈ meas(Cα)
∂ f α

∂t
(t)

∫︂

Cα

∂q
∂t
(t, k) dk ≈ meas(Cα)

∂qα

∂t
(t)

where meas(Cα) is the measure (area) of the cell Cα.
The integral involving the electric field is transformed by using the Gauss theorem,

− e
h̄

E ·
∫︂

Cα

∇k f dk = − e
h̄

E ·
∫︂

∂Cα

f n dσ.

e
h̄

E ·
∫︂

Cα

∇kq dk =
e
h̄

E ·
∫︂

∂Cα

qn dσ.

Since the approximation of f and q is not defined on the boundary of the cells, we
must introduce a numerical flux, that furnishes reasonable values of fs on every ∂Cα.
We have used a reconstruction of the fluxes based on a Min-Mod slope limiter, as in
[25].
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We conclude this section with the treatment of the term arising from the collision
operator. If k ∈ Cα, then we have

C( f , f ) = (1 − f (t, k))
∫︂

S(k, k′) f (t, k′) dk′

− fs(t, k)
∫︂

Ss,s′(k
′, k)

(︁
1 − f (t, k′)

)︁
dk′

≈
N

∑
β=1

[︄
(1 − f α(t))

∫︂

Cβ

S(k, k′) f (t, k′) dk′

− f α(t)
∫︂

Cβ

S(k′, k)
(︁
1 − f (t, k′)

)︁
dk′
]︄

≈
N

∑
β=1

[︄
(1 − f α(t)) f β(t)

∫︂

Cβ

S(k, k′) dk′

− f α(t)
(︂

1 − f β(t)
)︂ ∫︂

Cβ

S(k, k′) dk′
]︄

.

So, defining

Aα,β =
∫︂

Cα

[︄∫︂

Cβ

S(k′, k) dk′
]︄

dk, (6.10)

it is immediate to verify that

∫︂

Cα

C( f , f ) dk ≈
N

∑
β=1

[︂
Aβ,α (1 − f α(t)) f β(t)− Aα,β f α(t)(1 − f β(t))

]︂
. (6.11)

Analogously, for the collision term of the adjoint equation, we get

∫︂

Cα

C∗( f , q) dk ≈
N

∑
β=1

[︂
Aα,β f β(t)(qα(t)− qβ(t)) + Aβ,α (1 − f β(t))(qα(t)− qβ(t))

]︂
.

(6.12)

6.2.3 Numerical optimization procedure

In this section, we present the optimization algorithm, we use to solve (6.3). We adopt
a non-linear conjugated gradient method, see [15] for references. In Algorithm 6.2.1,
the main structure of the procedure is given.

To initiate the optimization, the first guess u0(t) of the control which is usually
u0(t) ≡ 0, the initial condition of the forward equation f0(k), the potential correspond-
ing to the terminal condition φ(k) and the tracking potential θ(k, t), are required.
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The quantities tol, nmax are both positive and used for termination criteria. Since
we do not impose constraints on the control function, we know from the first order op-
timality condition that the norm of the gradient has to be zero at the optimum. There-
fore, we stop the algorithm, if ∥gn∥H1

T
is smaller than a threshold tol, which is close to

zero. An additional termination criterion is a maximum number of iterations nmax.

Algorithm 6.2.1 Non-linear conjugated gradient scheme (ncg)

Require: u0(t), f0(k), φ(k), θ(k, t)
Ensure: Optimal solution u∗(t) and corresponding state f ∗(k, t)

1: n = 0
2: Assemble gradient ψ0(t) using Algorithm 6.2.2
3: while ∥gn∥H1

T
> tol and n < nmax do

4: Assemble reduced gradient ψn(t) using Algorithm 6.2.2
5: Use ncg-scheme for calculating new descent direction dn (see [15])
6: Apply an appropriate line-search algorithm to obtain suitable step-size αn along

dn

7: Update control: un+1 = un + αndn

8: Set n = n + 1
9: end while

10: return (un, f n)

In Algorithm 6.2.2, the procedure to calculate the gradient, needed in Algorithm
6.2.1, is given. It requires the current control u(t), the initial condition of the forward
equation and the potentials φ, θ. During the calculation of the gradient, the forward
and backward equations have to be solved by means of the DG method described
in Section 6.2.1. Keep in mind that while solving the backward equation, the time
reversing has to be taken into account.

Algorithm 6.2.2 Calculating gradient of reduced cost functional

Require: control u(t), f0(k), φ(k), θ(k, t)
Ensure: reduced gradient ∇Jr(t)

1: Solve forward equation by the DG method with inputs: f0(k), u(t)
2: Solve backward equation by the DG method with inputs: −φ(k), u(T − t),

aθ(k, T − t)
3: Assemble reduced gradient.
4: return ψ(t)



Classical-quantum drift-diffusion model 131

We remark that just a theoretical study has been done. To complete the work, the
proposed method have to be implemented and numerical results have to be examined.
It will be part of a forthcoming publication.
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Chapter 7

Further developments

In this chapter we would like to introduce two ongoing works. In Section 7.1 we
present the problem of considering electron-electron interaction in the semiclassical
Boltzmann equation. Some numerical results are obtained by means of Direct Simula-
tion Monte Carlo approach [28]. In Section 7.2 we outline the problem of simulating
a graphene based electron device modeling the charge transport with the semiclassi-
cal Boltzmann equation in the non homogeneous case. Some preliminary numerical
results are obtained by the Discontinuous Galerkin method [80].

Both the works are still in preprint version and they have been presented at the
26th International Congress on Transport Theory (ICTT-26), held in Paris in September
2019.

7.1 The effect of electron-electron scattering in graphene

Charge transport in graphene may be described with good accuracy by the semiclas-
sical Boltzmann equation. If f (t, r, k) is the distribution of electrons in the conduction
band, by taking into account also the electron-electron interaction, it reads (see [101]):

∂ f (k1)

∂t
+ v · ∇r f (k1)−

e
h̄

E · ∇k1 f (k1) =

= ∑
α,k1

[︁
f (k′

1)sα(k′
1, k1)(1 − f (k1)− f (k1)sα(k1, k′

1)(1 − f (k′
1))
]︁
+

+ ∑
k′

1,k2,k′
2

[︁
f (k′

1) f (k′
2)see(k′

1, k′
2, k1, k2)(1 − f (k1))(1 − f (k2))+

− f (k1) f (k2)see(k1, k2, k′
1, k′

2)(1 − f (k′
1))(1 − f (k′

2))
]︁

,

where the only dependence on k is written to avoid an annoying notation. sα(k, k′)
is the transition rate from the state k to k′ due to the interaction with the αth phonon
branch while see(k1, k2, k′

1, k′
2) is the transition rate among the states k1 → k′

1 e k2 →
k′

2.



Chapter 7. Further developments 133

Following [55], the transition rate see, obtained by means of the Fermi golden rule,
is given by

see(k1, k2, k′
1, k′

2) =
2π

h̄
|M|2δ(ε(k′

1)) + ε(k′
2))− ε(k1))− ε(k2))),

where the dispersion relation around the Dirac points of the first Brillouin zone is as-
sumed to be ε(k) = h̄vF|k|. The generic element of the interaction matrix, is

|M|2 =
1
2

[︂
|V(q)|2 + |V(q′)|2 − V(q)V(q′)

]︂
,

with

V(q) =
2πe2

ϵ(q)qA

1 + cos(ϕk1,k′
1
)

2

1 + cos(ϕk2,k′
2
)

2
,

where q = |k1 − k′
1|. In the above expressions ϕk,k′ indicates the angle between k and

k′. For further details see [36], [93] e [14].
Under the hypothesis of random-phase approximation (valid for density n ≥ 1012cm−2),

the dielectric function ϵ(q) is given by ( [43]):

ϵ(q) = 1 + vc(q)Π(q),

where vc(q) = 2πe2/κq, with κ (background lattice dielectric constant) which satisfies
the relation rs = e2

κγ

√︂
4

gsgv
, Here γ = h̄vF, where gs and gv are the spin and valley

degeneracy, and rs a dimensionless constant (the Wigner-Seitz radius). If we introduce
the function ˜︁Π(q) = ˜︁Π−(q) + ˜︁Π+(q), with

˜︁Π−(q) =
πq
8kF

and

˜︁Π+(q) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − πq
8kF

se q < 2kF

1 −

√︂
q2 − 4k2

F

2q
− q

4kF
arcsin

(︃
2kF

q

)︃
otherwise

where kF =
√︁

4πn/gsgv, n being the electron density, one has Π(q) = D(EF)˜︁Π(q).

D(ε) =
gvgs|ε|
2πγ2 is the density of state. A more detailed discussion about the physical

aspects can be found in [19] e [31].
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7.1.1 Numerical results

The complexity of the electron-electron scattering makes very difficult the use of deter-
ministic methods like finite difference approaches, e.g. WENO schemes, or discontin-
uous Galerkin methods, which provided very efficient when only the electron-phonon
scattering is taken into account [25, 63]. The main issue to be tackled is the evaluation
of the delta’s present into the scattering rate.

The most viable method remains that based on a Direct Simulation Monte Carlo
(DSMC). However in the presence of degeneracy effects, the standard DSMC approach
fails to take into account properly the Pauli exclusion principle. A way to overcome
such a problem has been proposed in [89, 25]. By using this approach we performed
some preliminary numerical simulations with different values of the Fermi energy (and
as consequence the electron density) in a range where the unipolar description is jus-
tified. Bipolar simulations require major improvements into the scheme and will be
performed in the future.

As appears from the plots, the electron-electron scattering makes the mean veloc-
ity lower and the relative importance of the electron-electron interaction reduces by
increasing the Fermi energy. The latter has a simple explanation: at high density the
Pauli principle considerably reduces the frequency of the electron-electron scatterings.

Similarly, the average energy per electron has a lower value when the electron-
electron scattering is included.
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FIGURE 7.1: Mean velocity versus time at Fermi level 0.15 eV and electric
field 1kV/cm, 3kV/cm, 5kV/cm.
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FIGURE 7.2: Mean energy versus time at Fermi level 0.15 eV and electric
field 1kV/cm, 3kV/cm, 5kV/cm.
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FIGURE 7.3: Mean velocity versus time at Fermi level 0.25 eV and electric
field 1kV/cm, 3kV/cm, 5kV/cm.
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FIGURE 7.4: Mean energy versus time at Fermi level 0.25 eV and electric
field 1kV/cm, 3kV/cm, 5kV/cm.
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7.2 Discontinuous Galerkin approach for the simulation

of charge transport in graphene in the non homoge-

neous case

In the last years an increasing interest has been devoted to graphene field effect transis-
tors (GFETs) as potential candidates for high-speed analog electronics, where transistor
current gain is more important than ratio current ON/current OFF [70]. Several types
of GFETs have been considered in the literature [95]: top-gated graphene based transis-
tors, obtained synthesizing graphene on silicon dioxide wafer, and double gate GFETs.
The current-voltage curves present a behaviour different from that of devices made
of classical semiconductors, like Si or GaAs, because of the zero gap in monolayer
graphene. The current is no longer a monotone function of the gate voltage but there
exists an inversion gate voltage corresponding to which the type of majority carriers
changes. This introduces a certain degree of uncertainty in the determination of the
current-off regime which requires a rather well tuning of the gate-source voltage. Usu-
ally the considered type of devices are investigated by adopting reduced one dimen-
sional models with some averaging procedure [47, 103] and by describing the charge
transport with drift-diffusion models, e.g. that given in [33]. Here we solve directly the
semiclassical Boltzmann equation for electrons in graphene by using a discontinuous
Galerkin (DG) method. If we consider for simplicity the unipolar and single valley
case, the semiclassical Boltzmann equation for electrons in graphene reads

∂ f
∂t

+ v · ∇x f − q
h̄

E · ∇k f = C[ f ], (7.1)

where the distribution function f = f (t, x, k), for any t, is defined on D × R2 with

D ⊂ R3. E is the electric field while the group velocity is given by v(k) =
1
h̄
∇kε,

being ε(k) = h̄vF|k| the dispersion relation in graphene around the Dirac points in the
Brillouin zone. The collision term is given by

C[ f ](t, x, k) =
∫︂

S(k′, k) f (t, x, k′)(1 − f (t, x, k)) dk′

−
∫︂

S(k, k′) f (t, x, k)(1 − f (t, x, k′)) dk′,
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where the total transition rate S(k, k′) is given by the sum of the contributions of the
several types of scatterings

S(k′, k) =∑
ν

⃓⃓
⃓G(ν)(k′, k)

⃓⃓
⃓
2 [︂(︂

n(ν)
q + 1

)︂
δ
(︂

ε(k)− ε(k′) + h̄ ω
(ν)
q

)︂

+n(ν)
q δ

(︂
ε(k)− ε(k′)− h̄ ω

(ν)
q

)︂]︂
.

The index ν labels the νth phonon mode,
⃓⃓
⃓G(ν)

s′,s(k
′, k)

⃓⃓
⃓ is the matrix element, which

describes the scattering mechanism, due to phonons of type ν, between electrons be-
longing to the band s′ and electrons belonging to the band s. The symbol δ denotes the

Dirac distribution function, ω
(ν)
q is the the νth phonon frequency, n(ν)

q =
1

eh̄ ω
(ν)
q /kBT − 1

is the Bose-Einstein distribution for the phonon of type ν, kB is the Boltzmann constant
and T is the graphene lattice temperature which will be kept constant.

For several geometries of graphene field effect transistors the charge flow is along
a one dimension. If we assume that the motion is along the x-axis, then the Boltzmann
equation writes

∂ f
∂t

+ vF
kx

|k|
∂ f
∂x

− q
h̄

Ex
∂ f
∂kx

= C[ f ], (7.2)

where Ex = Ex(t, x) and f (t, ·, ·) is now defined on [0, L]× R2.
We adopt a DG method for solving Eq. (7.2), augmented with suitable initial con-

ditions and boundary data. By requiring that f (t, x, k) tends to zero as k ↦→ ∞, we
assume that f (t, x, ·) ≈ 0 on R2 \ Ω where Ω ⊂ R2 is a compact set and introduce the
decomposition

Ciα = Ii × Bα =]xi− 1
2
, xi+ 1

2
[×Bα, i = 1, . . . , M, α = 1, . . . , N, (7.3)

being Bα ⊂ Ω open disjoint sets, such that [0, L]× Ω =
⋃︁M

i=1
⋃︁N

α=1 Ciα.
In each cell Ciα we approximate the solution with an element of the finite dimen-

sional functional space spanned by φ1(t, x) = 1, φ2(t, x) = x−xi
|Ii| , ∀x ∈ Ii, ∀t >

0, ∀k ∈ Bα, that is in each cell Ciα f (t, x, k) ≈ aiα(t) + biα(t)
x−xi
|Ii| .

In order to get a system of evolution equations for the coefficients aiα(t) and biα(t),
we test the equation (7.2) against the two basis elements φ1 e φ2. The main issue arises
in the treatment of the numerical flux at the interface between adjacent cells. As al-
ready done for the homogenous case [89, 25, 63], a uniform non oscillatory (UNO)
reconstruction is used.
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7.2.1 Numerical simulations

As test case we simulate the charge transport in the GFET represented in Figure 7.5.
The length is 40 nm, the total height is 21 nm. The graphene is placed between two
layers of oxide (SiO2), having width 10 nm each one. At the bottom and on the top
there are two metallic gate contacts with applied voltages, VGd and VGu respectively.
The source and drain contacts, each one long 10 nm, are placed over the graphene
layer with applied voltages VS and VD. As discussed in [82], the electric potential,

FIGURE 7.5: Schematic representation of a GFET.

see Figure 7.6, is obtained by a special treatment of the Poisson equation in which the
charge in the graphene sheet is distributed in a strip having a thickness of 1 nm, and, at
the contacts, it is determined by employing the peculiar relations between the electric
potential and the carrier density in terms of a work function (see [53]). Moreover, we
take, at the metallic contacts, voltages which are high enough to neglect the motion of
holes.

For the preliminary results a time-independent electric field, deduced from the elec-
tric potential plotted in Figure 7.6, is considered. Such a potential has been obtained
by simulating the charge transport with a drift-diffusion model [82]. In Figures 7.7 we
report the steady solution obtained after 1 ps by numerically solving the Boltzmann
equation with the DG method. In the present simulations the scatterings with the im-
purities and the optical phonons of the substrate have been neglected but they can be
easily included. A major issue is the setting of the boundary conditions at source and
drain because, at variance with standard semiconductor devices, there is no doping
and the contact is directly over the graphene. We model the contacts as charge reser-
voirs. Inside them we assume that the electron distribution is a Fermi Dirac at a room
temperature. Therefore the mean values of the electron velocity is zero inside the con-
tacts even if it is nonzero in the channel. As a consequence a boundary layer in the
current appears at the interfaces contact/graphene which is plotted in Fig. 7.7 (left) as
a dashed line.
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Conclusions

The topic of modeling and simulation of charge transport in graphene has been tack-
led from various points of view. In monolayer graphene the bipolar charge transport
has been simulated by a numerical deterministic approach, based on a discontinuous
Galerkin (DG) method [63, 27]. The semiclassical Boltzmann equations have solved
numerically. Both the conduction and valence bands have been included and the inter-
band scatterings have been taken into account. The importance of the interband scat-
terings has been accurately evaluated for several values of the Fermi energy. Both sus-
pended graphene and graphene on an h-BN substrate have been considered and nu-
merical results have been discussed in Chapter 3. The interband interaction is relevant
for values of the Fermi energy around zero eV and it becomes negligible by increasing
the absolute value of the Fermi energy. For the suspended case if εF is greater than 0.2
eV, the interband effects can be eliminated without any significant consequence in the
simulations. If an h-BN substrate is included this value reduces to 0.1 eV. Moreover
the time at which the steady state is reached depends on the interband interaction and
on the presence of a substrate.

In Chapter 4 new mobility models for charge transport in graphene have been ob-
tained by a fitting procedure based on data derived from the numerical solutions of
the Boltzmann transport equations by means of the DG approach [81]. Both the cases
of suspended graphene and graphene on substrate have been considered. Compar-
isons with other models present in the literature show a considerable improvement.
An analysis of the high-field mobility has been performed for graphene on a substrate
by the new DSMC approach of ref. [89], which properly takes into account the Pauli
exclusion principle. Moreover, also the random distribution of the depth of the impu-
rities implanted in the oxide has been taken into account and described with several
theoretical probability distributions. Section 4.4 has been devoted to the simulation of a
graphene based field effect transistor, proposing a full coupled drift-diffusion-Poisson
simulation based on finite differences schemes. At first instance the model has been
developed adopting the mobility model of ref. [33] and numerical results have been
shown in [82]. Such a device suffers from the difficult determination of the current-off
state because, due to the capacitance effects of graphene, the holes population becomes
dominant and led to an increasing total current by decreasing the gate voltages. A more
detailed analysis has been presented in [79] where the new mobility models including
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the effects of a substrate, introduced in the first part of the chapter, have been adopted.
The results confirm the limited range of gate-source voltages for the current-off state.

As possible further improvements, which are in part under investigation could be
the inclusion of thermal effects, along the results obtained for suspended monolayer
graphene [26, 30, 29], and the introduction of quantum corrections, as in [72, 7, 75,
59]. Two forthcoming researches have been discussed in Chapter 7 regarding the sim-
ulation of the electron-electron interaction by a DSMC approach and the numerical
solutions of the Boltzmann transport equation in non homogeneous case by a DG ap-
proach.

In Chapter 5 a study on quantum-drift-diffusion model have been outlined in two
dimensional case, based on [9, 10], with the idea to be able to describe the Klein tunnel-
ing effect in graphene. Numerical simulations have been performed for the device of
ref. [108]. We have found the presence of oscillations in the conductance and their be-
havior in terms of period looks qualitatively similar to the experimental data of [108].
A further improvement of the agreement requires a more physically accurate model. A
possible development will be the mobility models and the coupling with the Poisson
equation.

In Chapter 6 we have explored the possibility to define and numerically solve an
optimal control problem involving the semiclassical Boltzmann equation for charge
transport in graphene. We proposed to minimize the discrepancy of the electron distri-
bution function with respect to a prescribed probability density to reach at final time,
to confine the electron wave vectors in average during the evolution, keeping the elec-
tric field the minimum in modulus. A system of integro-differential partial differential
equations have been obtained and a discretization based on a DG approach has been
proposed. Numerical results are postponed to forthcoming papers.

To conclude we remark that the studies performed during the three years of PhD
have led to several papers of which four published [24, 27, 63, 81], one in press [82]
and five submitted or in preprint version [8, 11, 28, 79, 80].
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