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ABSTRACT

Mathematical models are useful in epidemiological research to describe, explain or predict the development
and spread of infectious diseases. In addition they play a critical role in disease control, indicating interven-
tion strategies concerning public health such as vaccinations, isolation, treatments and so on.

The underlying theme of this Ph.D. thesis is the mathematical modeling and analysis of some aspects con-
cerning infectious diseases, in the absence and presence of infection. In fact, the control of a possible
epidemic can be carried out both by investigating aspects external to the infection, such as vaccination (as
was done in chapter 1) or alternative prevention methods, such as controlling the life cycle of carriers of
the virus (as presented in chapter 4) and by analyzing and studying models that describe the dynamics of
the infection itself (as we will see in chapters 2 and 3). Chapter 1 models epidemiological aspects when
the disease is not present in the population. Indeed it focuses mainly on the decision of individuals to be
vaccinated or not, in the absence of infection and based on information they receive from the outside on the
state of the disease and the side effects of the vaccine. This information is modeled through the introduction
of a spatial kernel that weighs the distance from which the information comes. The proposed new model
is based on the theory of the Imitation Game, in which the exchanges of opinions and contacts between
individuals are taken into consideration. The model is parabolic, since the Fickian diffusion is assumed to
be valid. In chapters 2 and 3 we investigate on the spread of two infectious diseases, which differ from each
other via different transmission vehicles of the virus. In particular, chapter 2 deals with a new model for
the transmission of cholera, a water-borne disease that involves host-environment interaction. The model
extends works featured in the published literature on the subject, including the possibility of water exchange
between two different aquatic environments, then the cohabitation of two populations of bacteria, different
from each other due to the position occupied within the aquatic system, is incorporated in the model. Instead,
chapter 3 is concerned with proposing a new model for host-vector diseases. The modeling carried out takes
into account the possible vertical transmission in the vector population, in addition to the presence of two
different types of host population. Furthermore, a maximum capacity is placed on the growth of the vector
population. In order to investigate the spatial dynamics of disease, both models presented in chapters 2 and
3 are extended to a PDE systems, considering the diffusion of the populations described by Fick’s law. For
both models an estimate of the Basic Reproductive Number R(If DE related to the spatial case is provided,
comparing it later with the one corresponding to the non-spatial model. The conditions are given for which

Rg DE constitutes a threshold value for the eradication of the infection also in the spatial case. Furthermore,
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for the PDE model presented in the chapter 2, traveling waves are studied. Finally, chapter 4, in order to
provide a possible prevention method against host-vector type diseases, proposes a new model for vector
population dynamics, in which slow and fast diffusion processes coexist, assuming that the diffusion flux
is consisting of a Fickian type part and a satisfactory part of an evolution equation of Maxwell-Cattaneo-
Vernotte type. The analysis of the corresponding ODE model is carried out, and traveling Wave solutions
are investigated. A section of the chapter is devoted to the limit case analysis of the presented model, in
which the Fickian diffusion is neglected, thus obtaining a strictly hyperbolic system. Numerical simula-
tions compare the model characterized by the coexistence of both diffusion processes (slow and fast), the
hyperbolic model characterized by slow diffusion only and the parabolic model, present in literature [151],

characterized by fast diffusion only.
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INTRODUCTION

This Ph.D. thesis deals with the modeling and mathematical analysis of some ODEs and PDEs systems,
deduced in the context of controlling the spread of some infectious diseases in humans. Mathematical
epidemiology is an important tool, through which one can predict the evolution of a system in situations that
cannot be experimentally verified. It is also possible to reconstruct real situations starting from experimental
data: think for example of the reconstruction of three-dimensional objects starting from cross-sections (CT
scan). Mathematical approaches can provide good knowledge of the biological or medical problem, since
they are simplified descriptions of reality and, if reasonably faithful, they have yielded the desired control
parameters. Mathematical modeling is today the basis of public health decisions regarding the control of
traditional and endemic diseases, emerging and re-emerging infections as well as the basis of the preventive
evaluation of the impact of diseases completely new. The mathematical models that describe the dynamics
of transmissible and epidemiological diseases certainly have a direct relationship with the choice of an
immunization program, the optimal allocation of scarce resources or the best combination of control or

eradication techniques, such as points out Bailey in the second edition of his book [11].

The first to use a mathematical model in the medical field was Daniel Bernoulli in 1760. He used it to
evaluate the effects of inoculation against smallpox. This episode can be considered the beginning of the
"Mathematics of epidemics". In fact, the decisive step is accomplished around 1920, with the modeling of
malaria by Ronald Ross (Nobel Prize for Medicine) and with the model of Kermack and McKendrick, which

is at the base of all the subsequent development of the theory.

This Ph.D. thesis presents several mathematical models, in order to control possible outbreak of infec-

tious epidemics. It is divided into 4 main chapters.

Chapter 1 investigates the problem of interplay between vaccination dynamics, spatial mobility and in-
formation, when the disease is not present in the population. Under voluntary vaccination, a critical role
in shaping the level and trends of vaccine uptake is played by the type and structure of information that is
received and used by parents of children eligible for vaccination. The chapter deals with the feedbacks of
spatial mobility and the spatial structure of information on vaccination dynamics, by extending to a contin-
uous spatially structured setting existing behavioral epidemiology models for the impact of vaccine adverse
events (VAEs) on vaccination choices. The simplest spatial setting is considered, namely the classical "Fick-
ian" diffusion, and focused on the noteworthy case where the infection is absent, for example imitating the

case of a population in which an infection previously preventable with a vaccine, it has been successfully
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eliminated, but for which it is necessary to maintain high-level immune coverage to prevent the risk of re-
emergence, as is the case of poliomyelitis in most countries wordwide. In such a situation, the dynamics of
VAE:s and of the related information arguably become the key determinant of vaccination decision and of
collective coverage. It was considered a problem of binary decision, that is a problem for which only two
mutually exclusive strategies are played: the first strategy, adopted by the subjects in favor of vaccination
and the second strategy, adopted by individuals against vaccination. It has also been assumed that individ-
uals can move from the strategy they are currently adopting to the alternative one by learning and imitating
after social encounters with subjects who adhere to the other strategy. The dynamics of individuals of a cer-
tain population who are likely to be vaccinated in the absence of infection and in three cases that differ from
each other due to the origin of the information received by individuals, has been described. In relation to this
"information issue", the effects of three main cases are compared: (i) the case of purely local information,
where agents react only to locally occurred events; (ii) a mix of purely local and global, country-wide, in-
formation due e.g., to countrywide media and the internet; (iii) a mix of local and non-local information. By
representing these different information options through a range of different spatial information kernels, we
supplied the conditions for the presence and stability of space-homogeneous, nontrivial, behavioral equilib-
ria; the existence of bifurcations; the existence of classical and generalized traveling waves; and the effects

of awareness campaigns enacted by the Public Health System to sustain vaccine uptake.

Chapter 2 presents a new model for the environment-host-environment transmission dynamics of V.
cholerae in a community with an interconnected pond-river water network. Some of the notable key fea-
tures of the model include accounting for the back-and-forth flow of water within the pond-river network, in
addition to sub-dividing the bacterial population based on location of residence (i.e., we allow different eco-
logical compartments for V. cholerae concentration in the pond and in the river) and monitoring the temporal
dynamics of the local interactions between the human host and the two V.cholerae populations. Rigorous
analysis of the resulting ecology-epidemiology-hydrology model shows that, for the case when the human
host is the sole target of anti-cholera control and the volume of water in the pond is maximum, the disease-
free equilibrium (DFE) of the model is globally-asymptotically stable whenever a certain epidemiological
threshold, known as the basic reproduction number (denoted by Rg) is less than unity. The epidemiologi-
cal implication of this result is that cholera can be eliminated from the community if the control strategies
implemented can bring (and maintain) R to a value less than unity, reducing for example the transmission
rates of the virus from bacteria in the aquatic environment to the host, the shedding rates of virus in the wa-
ter or increasing the mortality rate of the bacteria. Four scenarios were studied, that represent four different
interpretations of the role of the V. cholerea pathogen within the environment, i.e. bacterial (V. cholerea)
growth and shedding can, certainly, be interpreted both as new infections or as transitions into the bacterial
class. This is routinely done in models for the transmission dynamics of cholera in human-environment sys-
tems. For example, in the model in [166], shedding and bacterial growth are interpreted as new infections;
similarly, in the model in [155], the authors considered bacterial shedding as a transition into the bacterial
class. The corresponding basic reproduction numbers were shown to exhibit the same threshold property
with respect to the value unity (i.e., if one is less (equal, greater) than unity, then the three others are also
less (equal, greater) than unity. Further, it was shown that for the case where anti-cholera control is focused

on the human host population, the associated type reproduction number of the model (corresponding to each
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of the four transmission scenarios considered) is unique. The implication of this result is that the estimate of
the effort needed for disease elimination (i.e., the required herd immunity threshold) is unique, regardless of
which of the four transmission scenarios is considered. However, when any of the other two bacteria popu-
lations (i.e., in the pond or in the river) is the focus of the control efforts, this study shows that the associated
type reproduction number is not unique. Extensive numerical simulations of the model, using a realistic set
of parameters from the published literature, show that, the community-wide implementation of a strategy
that focus on improved water, sanitation and hygiene (known as WASH-only strategy) is unable to lead to
the elimination of the disease (owing to its low estimated coverage of 50% and efficacy of 60%). However, if
the coverage and efficacy can be increased (e.g., to 80% coverage and 90% efficacy), such elimination is in-
deed feasible using the WASH-only strategy. It was further shown that such elimination can also be achieved
using a strategy that focus on oral rehydration therapy and the use of antibiotics to treat infected humans
(i.e., treatment-only strategy), using a moderate and high effective levels of this strategy, for low coverage
in the range 50% to 70%. As expected, of course, the combined hybrid WASH-treatment strategy provides
far better population-level impact vis a vis disease elimination. This study ranks the three intervention in
the following order of population-level effectiveness: combined WASH-treatment, followed by treatment-
only and then WASH-only strategy. Overall, this study suggests that the prospect for the effective control
or elimination of cholera in a population is promising using relatively modest (and realistically-attainable)
coverages and efficacies of singular and combined anti-cholera control strategies. Moreover, traveling wave
solutions are investigated, providing an estimate of the minimal speed for which there can be monotone
waves that connect two constant states. Finally, By choosing one of the 4 scenarios studied, an estimate of
the threshold parameter, known as Rg’ DE " was provided in the spatially heterogeneous case. It has been
shown that this quantity, under appropriate hypotheses, coincides with the basic reproductive number R
associated with the corresponding spatially homogeneous case. Furthermore, if R(If DE appears to be below
1, then it is possible to eradicate the infection even in the spatial case, when the initial data are sufficiently

small.

Chapter 3, is concerned with a novel mathematical model of vector-borne infectious diseases. The
system, which generalizes the models present in the published literature, is characterized by 13 ordinary
differential equations and takes into account the local interactions between reservoirs and vectors, as well
as the transmission from vectors to dilution hosts. For both host populations, birds and humans, all the
epidemiological classes of a SEIR model are considered, in order to take into account incubation period
of virus and healing from the disease. The vector population is in turn divided into two sub-populations:
the aquatic phase, which includes eggs, larvae and pupae, and anchored in marshy and stagnant areas, and
the adult phase, capable of moving and spreading the virus. For the vectors of the aquatic phase a SI
model is adopted, while for the vectors in the adult phase it is assumed in the SEI model. In the model,
vectors possess the ability to keep the virus within their own population through vertical transmission. In
addition, due to the lack of the breeding sites for eggs, a carrying capacity was assumed for the aquatic phase;
moreover, a different carrying capacity was supposed for adult stage, since mosquitoes cannot survive at high
temperatures or altitudes. The analysis of the model shows the local stability of the DFE, if the threshold
parameter R is less than 1, in addition to the possibility of a bifurcation backwards, under appropriate

conditions. 3 sets of simulations were compiled to validate the analytical results. After having simplified
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the model, the simplest approximation for spatial diffusion, ie the Fickian one, is assumed: for the inferred

model, an estimate of the Basic Reproductive Number REP¥

, related to the spatial case is given. It provides
a threshold for the local stability of the DFE in the spatial case and is compared with the basic Reproductive
Number Ry associated with the non-spatial case.

In order to provide a control policy and an alternative prevention strategy to vaccines, Chapter 4 presents
a model for the control of the infestation of mosquitoes of the species Aedes Aegypty, main carriers of vector-
borne diseases. The system includes two main partial differential equations that describe the dynamics of
mosquitoes in the aquatic phase and in the adult phase. Adult mosquitoes are assumed to be carried by the
wind and diffuse. In the published literature the diffusive flux of adult mosquitoes satisfies Fick’s constitu-
tive law. The novelty of this chapter consists in proposing the coexistence of fast and slow diffusion fluxes,
then the total diffusion flux of adult mosquitoes is the sum of two contributions: one that obeys the classical
Fick’s law, the other satisfies an evolution equation of Cattaneo type. In the dissertation, a parameter plays
an important role, indicated by F'p, which involves the two diffusion coefficients, corresponding to the two
independent diffusion processes. By its definition, it has to strictly satisfy the bounds F)p € [0, 1]. The limit
value 0 leads to a hyperbolic model, characterized by slow diffusion and whose diffusive flow satisfies a
Maxwell-Cattaneo-Vernotte evolution equation. The limit value 1, leads to the parabolic model studied in
[151], characterized by fast diffusion and whose diffusion flow obeys Fick’s law. A detailed analysis of the
corresponding ODE system was carried out, showing the global stability of the Disease-Free Equilibrium,
if a threshold parameter O, remains below 1. Qy is the product between the average number of female
mosquitoes produced by one fertile mosquitoto survive the entire aquatic phase and the average number of
viable eggs laid by the emerging female mosquito during its entire lifespan. Traveling Wave type solutions
have been investigated, providing an estimate of the minimal speed for which there are monotone waves that
connect constant equilibria. The presented system admits as a special case the hyperbolic model obtained by
neglecting the contribution of the fast diffusion flow described by Fick’s law, which is analyzed in detail in
a particular section. This hyperbolic special system is able to overcome the paradox of infinite speed prop-
agation, typical of parabolic systems. Several numerical simulations compare the Fickian model present in
the literature with those presented in this chapter, i.e. the hyperbolic model obtained when fickian diffusion

is neglected, and the more general model in which the coexistence of both contributions is proposed.
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Chapter

SPATIO-TEMPORAL GAMES OF VOLUNTARY
VACCINATION IN THE ABSENCE OF THE
INFECTION: THE INTERPLAY OF LOCAL VERSUS
NON-LOCAL INFORMATION ABOUT VACCINE
ADVERSE EVENTS

This chapter has materialized in the following paper:

A. Lupica, P. Manfredi, V. Volpert, A. Palumbo and A. d’Onofrio. Spatio-temporal games of voluntary
vaccination in the absence of the infection: the interplay of local versus non-local information about vaccine

adverse events, Mathematical Biosciences and Engineering, Vol 17, n. mbe-17-02-058, pp. 1090, 2020.

1.1 Introduction

Mathematical epidemiology (ME), as the study of the transmission dynamics and control of infectious dis-
eases, not only represents one of the oldest and richest areas of mathematical biology [11, 35], but it is also
the area that probably had the largest impact on actual policy. Indeed, mathematical models of infections
are nowadays routinely applied by international and national public health institutions, ranging from the
design of immunization programs against vaccine preventable infectious diseases of childhood, up to the
preparedness plans against the threats from possible future influenza pandemics, see [115] and references
therein.

A limitation of classical ME is that its key assumptions are the legacy of classical Statistical mechanics. As

a consequence, the social contacts between agents at risk of spreading or acquiring the infection are treated
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as "encounters of particles" of a perfect gas. Pairwise, the contagion process is abstracted as it were a chem-
ical reaction. Consequently, transmission processes have been traditionally modelled by means of the mass
action law.

Treating human beings as "gas particles" implies that the spread of infectious diseases is totally unaffected
by the agents’ behaviour, and vice-versa, simply because behaviour is absent from the models of classical
ME. This means that e.g., models used to evaluate the impact and cost-effectiveness of vaccination programs
under voluntary immunization did not include neither the individuals risk perceptions about the disease nor
those about vaccine-related adverse events (VAEs). Similarly, ME models treat the social contact process
between individuals as a physical constant, implying that individuals continue contacting each other at the
same rate independently of the magnitude they perceived of the risk of contracting the infection.

Nowadays we know well that the above assumption are quite coarse, possible useful to depict "normal”
situations but totally inadequate to describe scenarios such as vaccine scares, where the perceived risk of
VAEs blows up for a while, or the course of a deadly epidemics [110, 167].

The pioneering work that first included the human behaviour in a simple ME model was [38], which ex-
tended the classical Kermack and McKendrick’s ODE epidemic model to account for behavioural responses.
However, this paper remained relatively isolated until the need of embedding human behaviour in ME mod-
els became increasingly urgent due to the onset of a range of new phenomena such as the increasing mistrust
and opposition towards vaccines [40, 68, 88, 126]. In [110, 167] it was argued that such phenomena are char-
acteristic of the current landscape of infection and public health in modern industrialised countries. Notably,
mistrust towards vaccination can be considered as part of the more global phenomenon known as post-trust
society [101].

This led in the last two decades to the birth of a new branch of ME that was termed the Behavioural Epi-
demiology of Infectious Diseases (BEID) [110, 167]. The very core of BEID aims at the proper modelling
of human behaviour in the transmission and control of infectious diseases integrating the classical mathe-
matical epidemiology tools with models and ideas from behavioral disciplines, ranging from psychology to
neural sciences, and from economics to sociology.

Most BEID models of vaccination behavior include the strategic behavior of agents, and therefore exten-
sively use Game Theory. In particular, Bauch [17] pioneered the applications of evolutionary games to
describe the dynamics of the vaccine propensity in a population by using what we will call Imitation Game
Dynamics (IGD) i.e., a model where the strategy perceived as better at a given time spreads in the population
through imitation. In his work [17], the perceived risk of infection is taken as linearly increasing with the
infection prevalence, whereas the perceived risk of VAE is assumed constant. Instead, in [64] the perceived
risk of suffering a vaccine side effect is modelled as an increasing function of the information of the present
and past incidence of VAEs.

As expected, in BEID a key role is played by the information that agents can access and use for evaluating
risks upon which to base their actions. The importance of both present and past information on infection
and vaccines, including VAEs, for BEID models was first stressed in [66, 110]. In [65], the first amendment
of the basic IGD vaccination model to include the effect of public intervention in communicating perceived
risks from vaccines and infection, was proposed.

Most previously cited BEID models [17, 31, 64, 65], and other works in the same line, are "simple" i.e.,
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they are based on simple ordinary differential equation (ODE) models, and disregard any type of structural
heterogeneity. In particular, they are "spatially homogeneous", which is a crude approximation from at
least two standpoints namely, (i) the wide and complicate population mobility patterns in both industrialised
countries and worldwide, (ii) the complicate role played by the spatial information network for behavior in
relation to health.

In relation to this, a still unexplored area in the BEID literature regards the incorporation of behavioral hy-
potheses within classical PDE models of spatial dynamics of the reaction-diffusion type. This represent a
worthwhile effort for two main reasons. The first one is substantive and relates to the critical role played by
information in behavioral epidemiology models. From this standpoint classical diffusion allows to subdi-
vide the type of information that can be accessed by vaccination decision makers into a few sharply distinct
types namely, "local" vs "global" vs "non-local" based on simple hypotheses on the underlying spatial in-
formation kernels. The second reason is technical and relates to the robust analytic techniques that classical
diffusion mathematics makes it available for the understanding of real world processes. And indeed, since
the sixties mathematical reaction-diffusion theory was extensively applied in ME models [35, 109, 122],
such as the pioneering paper by Noble [125] on European plague epidemics in the 14th century. Ducrot
and Giletti [69] showed that, under Fickian diffusion hypothesis, the Kermack-McKendrick epidemic model
with non-diffusive susceptible population can have pulsating travelling wave solutions. Very recently Magal
and coworkers [103] adopted Fickian diffusion with anysotropic diffusion coefficents to model the spread of
infectious diseases, with focus on the impact of diffusion on the basic reproduction number. They adopted
a similar approach [102] to model the spread of influenza in Puerto Rico, including also behavioural ef-
fects. They obtained a good match between their simulations and available spatiotemporal data. As far as
vector-borne infectious diseases are concerned, recently Fitzgibbon et al [76] proposed a model, where the
diffusion of hosts was described by Fickian diffusion. Zhao and colleagues [182] again adopted Fickian
diffusion to model the spread of a two—groups infectious diseases of SIR type, focusing in particular on the
onset of traveling waves.

Therefore, the aim in this chapter is to investigate the interplay between vaccination dynamics, spatial mobil-
ity and information. To do so, the behavioral epidemiology models for the impact of vaccine adverse events
(VAESs) on vaccination choices has been extended to a continuous spatially structured setting, that were first
introduced in [64, 65] and reformulated as a process of double ideational contagion in [31, 32, 167]. In
particular, voluntary immunization decisions were considered and the work is focused on the simplest but
important case in which the disease is absent in the population studied This case is not special at all as, e.g.,
it represents the case of a population where a previously endemic vaccine preventable infectious disease
of childhood has been successfully eliminated, so that prevalence is equal to zero, but there is the need to
maintain a high-coverage immunization policy in the post-elimination period to prevent the risk of infection
re-emergence. A major instance is that of poliomyelitis in industrialized countries, where herd immunity,
which was already achieved the 1970s, needed however to be sustained for several further decades until
(global) eradication will be achieved. In such a context, where the absence of the infection will remarkably
reduce the incentive to immunize thereby weakening the probability of switching from the "non-vaccinator"
to the "vaccinator" strategy , the dynamics of VAEs will arguably become the key determinant of vaccination

decision and collective coverage. To investigate the interplay with spatial mobility the resulting vaccination
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dynamics is set into the simplest possible framework for spatial mobility, namely classical diffusion based
on Fick’s law.

The consideration of the spatial effects i.e., the spatial distribution of VAEs, requires to carefully take into
account the information on VAEs that is handled by parents of children eligible for vaccination while form-
ing their perceptions of risk, that they will subsequently use to take their immunization decisions.

In relation to this "information issue", three scenarios were considered. In the first scenario, the information
that individuals access and use uniquely concerns VAEs occurred locally. In the second case, the information
used is both the local one and a global, nation-wide, average. Roughly speaking, this scenario corresponds
to the the case where agents take their decisions also based on national media such as national news or
the internet. The third scenario is an intermediate one and aims at taking into the account both the known
phenomenon of information attenuation [80], and the reasonable assumption that agents give less weight to
events occurred at far distant locations. We represented the latter scenario, where the information used is
not purely local but it is also not global, by resorting to a range of different spatial information kernels.

Of the vast resulting collection of inferred problems, we have examined (also distinguishing the nature of
space as limited by non-limited) (i) the presence and stability of homogeneous space balances, focusing
on non-trivial behavioral equilibrium; (ii) conditions for bifurcations; (iii) existence of mobile waves; (iv)
effects of awareness campaigns promoted by the public health system to effectively support the absorption
of the vaccine, as proposed for the first time by [65]. The chapter is organized as follow: the main model
is presented in section 1.2 while a list of possible kernels is given in section 1.3. Some key features of the
non-spatial model are exploded in section 1.4. Stability of homogeneous steady states and bifurcation anal-
ysis are placed in section 1.5 and 1.6, respectively. Traveling Wave and Generalized Traveling Wave of the
main model are investigated in section 1.7. The role of memory within the main model is studied in section
1.8, while intervention of public health campaigns is investigad in 1.9. Section 1.10 is constituted by a pre-
liminary simulation on the main model containing both memory and public health departmente intervation,

finally conclusions are placed in section 1.12.

1.2 The spatio-temporal imitation game for vaccination

To model the impact of human responses to VAEs on the overall dynamics of vaccine uptake in the newborn,
following [17, 64, 65], is assumed that vaccination is a binary decision problem, i.e. one for which only two
mutually exclusive strategies are played by parents: "vaccinator” (strategy 1) and "non-vaccinator” (strategy
2). Let us consequently denote by P(z,t) and A(x,t) the fractions of vaccination decision makers (e.g.,
parents of children eligible for vaccination) at location = and time ¢ that follow, respectively, strategy 1
and 2. The previously cited models of IGD [17, 64, 65] all relied on the concept of payoff. However,
it was noted [78] that many evolutionary game models belong to the class of urn models, a remarkably
wide family that includes both chemical kinetcs models as well as classical ME models. Thus, follow here
[31, 33, 167], where the vaccination IGD was derived as a model of "double contagion" of ideas between
the two involved groups namely, the group playing the "vaccinator” strategy and the one playing the "non-
vaccinator" strategy).

Thus, by extending to the present spatio-temporal setting the IGD in [33, 167], the following model is

24



obtained:

0P = DV?P +9(M;) AP — o M) AP, (1.2.1)
HA = DV?A —9(M;)AP + a(Ms.) AP,

where t > 0, z € Q, with Q a bounded subset of R™, n = 1, 2. If n = 1, then we assume that Q = [—L, L],
L > 0, while, if n = 2, then we assume that boundary of 2 (i.e. 012) is sufficiently smooth.

In particular, ¥(M;) and (M. ) represent the strategy-specific "transmission rates" following social con-
tacts with individuals playing the other strategy. They are assumed to be non-decreasing functions of the
variables M; and Mg.. The latter are information indices summarizing the available information about the
(current or past) state of the infection (M) and of VAEs (M,.), respectively, that are used by parents to
formulate evaluations of related risks.

Assuming a stationary population and normalizing with respect to its steady state, since A = 1 — P, system

(1.2.1) collapses into the following single equation:
0P = DV?P + P(1 — P)(9(M;) — o(Ms.)). (1.2.2)

Regarding the key quantities M; and M., given the assumption according to which the infection was elim-
inated, it is stated that the perceived risk related to the infection is only constant:

(M (1)) = 9. (1.2.3)

The previous formulation mimics the situation where the infection is absent, so the corresponding perceived
risk is prevalence- independent. It is assumed that 5 > 0 to reflect a positive perceived risk of infection even
in the absence of infection. This can be justified by the continued activity of an active public health system
that aims to keep a high degree of population awareness on the risk of reintroduction which is perceived as
homogeneous throughout the entire space. Moreover, it is assumed that the perceived risk of VAEs depends
on information on vaccine side effects occurring both locally but also non-locally, as follows:

a(Mg(P)) = ap + a1 P+ aa J(P), (1.2.4)
where
IP) = [ ola =Pty (125)
The function ¢(z) is non-negative with
/ ¢(z)dr =1, (1.2.6)
Q
and even
¢(x) = ¢(—x), forall x € Q. (1.2.7)

To sum up, the perceived risk of VAEs «(Mj.), has three components: (i) a baseline value « possibly
constant over space, mirroring a true underlying risk of VAEs, (ii) a strictly local component a1 P, possibly
reflecting local deviations in vaccine coverage and ensuing deviations in the local number of VAEs (as in

[64]), and (iii) a non-local component ioJ (P) tuning risk perceptions arising from differences in VAEs at
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different geographic sites, according to a suitable spatial information kernel. In particular, the functional
J(P) describes two mathematically equivalent scenarios, where individuals located at position x can: i)
receive information concerning the value of P at the space point y with a weight/attenuation ¢(z — y); ii)
receive full spatial information but, in taking their decisions, they assign a weight ¢(z — y) to P(y, t).

Setting ¥, = Y9 — g > 0, brings to the following model
;P = DV?P + P(1 — P)(¥ — a1 P — aaJ(P)), (1.2.8)

withz € Qandt > 0.
Let [ be a characteristic length of the domain €2; to mathematically simplify the analysis, the model is
reformulated in terms of the following variables:

t* =0,t, ¥ =zl7', D* = DY; 72,

of = a9, ob = and; (1.2.9)

where 1 / ¥, is time unit. The set derived from €2 by adimensionalization will be denoted as 2* (e.g. in 1D
O =[-L/l,L/1)).
Thus, the model (1.2.8) becomes (for the sake of simplicity we omit the stars):

P = DV?P + P(1 — P)(1 — a1 P — anJ(P)), (1.2.10)

withz € Qandt > 0.
Moreover, by imposing Neumann boundary conditions:

9P =0, on 99, if Q C R, or d,P = 0, on 99, if Q C R?, (1.2.11)

where n is the outer normal vector with respect to 0f2.
In the case in which the characteristic size of € is larger than the unit (for example in one dimension,

L/l > 1), then we can assume that the domain is unbounded, i.e. @ = R", n =1, 2.

1.2.1 The Fisher-Kolmogorov model as a particular case of (1.2.10)

In the special case where people do not take into account the spatial variation in VAEs, i.e. a( M. (P)) = vy,

model (1.2.10) reduces to the well-known Fisher-Kolmogorov (FK) equation
P = DV?P + P(1 — P), (1.2.12)

introduced in [75, 94]. The FK equation (1.2.12) in this case describes the spread (via traveling waves [122])
of the idealized state P = 1, where all people are in favor of the vaccination and the "recession" of the state

P = 0, where no subjects are in favor of vaccination.
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1.3 Modelling risk perceptions: global vs local vs non-local information

Arguably, the behaviour of (1.2.10) critically depends on the specific functional form of the spatial informa-
tion kernel ¢(x). Below, a list of relevant forms.

The simplest case is when the available information is purely local, that is

where (z) is the Dirac funtion. Then, equation (1.2.10) reads as:
P = DV?P + P(1 — P)(1 — aP), (1.3.1)
where, with slight abuse of notation, we set
a = a1 + as.

As mentioned in the introduction, by far the most important specific form for ¢(z) is the constant one,

namely
1
P(r) = —=5
=0
where () is the measure of 2; thus, the non-local term (1.2.5) yields:
J(P) = 1/ Py, t)dt (132)
p(€) Joo T o

This specific form models the noteworthy scenario where people are exposed to a global (average) infor-
mation e.g., by the media (including the internet) and the Public Health system, about the current state of

vaccine-side effects coming from the whole domain 2. Model (1.2.10) becomes
1
o,P = DV*P + P(1-P) (1 —o P — 042/ P(y,t)dy) . (1.3.3)
1($2) Jo

Another important scenario is when the information about VAEs comes from the whole €2 but it is either
attenuated with the distance (this was possibly true for diseases in historical epochs) or it is the individual
receiving the information that pays lesser and lesser weight depending on the distance.
Two reasonable functional forms that might well represent this scenario are:
i) Gaussian decay

o1(z) = Cge_‘””rz,

where a > 0 and 1/4/a is the characteristic attenuation length. In R"™ (n = 1, 2) the normalization constant
Cy is:

In this case, model (1.2.10) becomes:
P = DV?P + P(1 — P) <1 —a P — 042/ Cge—ay2P(y, t)dy) ;
Q
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ii) Exponential decay,
po(x) = Cee !,

where a > 0 and in R™ (n = 1, 2) the constant C, reads as follows

2
C.= g, inR, and C, = a—, in R?.
2 2

In this case, model (1.2.10) becomes:
8tP = DVQP + P(l — P) <1 — Oélp — 042/ C’ee_alyP(y,t)dy> .
Q

Another important class of spatial kernels is represent by non—local kernels boundedly supported, i.e. that

are null beyond a given distance. An example is:

2
¢3(x) =Cy <1 - )%‘ > Hev(N — |z|)
where Hewv(.) is the Heaviside function and

Cy = inR, and Cy = in R?.

3 2
4N’ TN2’
In this case, model (1.2.10) becomes:
2
0,P = DV2P + P(1 — P) <1 P - aQ/ On <1 - ’%‘ > Hev(N — yy\)P(y,t)dy> .
Q

Another example in R is
1

Oa(w) = o Heolh — Ja),
and in R?
¢a(x) = (1/(xh?))Hev(h — |z).

In this case, model (1.2.10) becomes:
P = DV*P+P(1—P) <1 — a1 P —ay / (1/(2h))Hev(h — |y)P(y,t)dy> , inR.
Q

As it is to be expected in the problem in study, the Fourier transform will be important in the mathematical
analysis of the problem.
We use the following definition of Fourier transform for a generic function f(x) : R” — R (n = 1, 2):

f©)= | flaede, (13.4)

where ¢ is the Fourier’s vector, £z = &1z in R or £z = &121 + &9 in R2. Here and further down £2 = &2
inRoré? =2 +¢&2inR2,
We have that: ,

51(5) = eiffa, inR"™ n=1,2;
~ a2 (n+1)/2
$2(8) = ( ) , inR", n=1,2;

a2+ €2
$3() = N;”é (sin[N¢] — N€ cos[N¢]), in R;
$a(€) = hlg sin(h€), in R.
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1.4 Properties of the spatially homogeneous model

In this section, it is briefly summarized the results in [64], concerning the behaviour of the spatially homoge-
nous model corresponding to (1.3.1). This is described by the ordinary differential equation (ODE)

P'(t) = P(1 — P)(1 — aP). (14.1)

A first equilibrium Py = 0 corresponds to the no vaccination scenario where no parent is favorable to
immunization. This non-vaccinator equilibrium, NVE is always unstable. If 1 < «, then there exists a

non-trivial behavioral equilibrium
1

P, =, (1.4.2)
o

that is globally attractive in (0,1). P is termed a behavioral equilibrium (BE) because its level is tuned by the
balance between the parents’ perceptions of risks based on the handling of available information. Finally,
there is a pure vaccinator equilibrium, PVE P, = 1 [17, 64], corresponding to the unrealistic scenario
where all parents are unanimously favorable to immunization. The PVE is unstable if 1 < «, and globally
attractive if 0 < o < 1.
Arguably, in the case of an infection that has been eliminated, one expects that at least in an initial phase it
holds P> > pc where pc = 1 — 1/Ry is the critical vaccination threshold allowing infection elimination,
and R is the basic reproduction number of infection. However, this does not need to be true at subsequent
times, and this is why it is important for the public health system to monitor the evolution of VAEs and
related information. Finally, if & = 0 then the model reduces to the well-known logistic model (see also

next section).

1.5 Stability Analysis of Homogeneous Steady State

The equilibria of the ODE model (1.4.1) described in section 1.4 are also homogenous equilibria of the
spatially structured model (1.3.1). In this section will be investigated their stability, focusing primarily on
the behavioral equilibrium P, defined in (1.4.2), since the other two equilibria (Fy = 0, i.e. no vaccinators,
and P} =, i.e. all vacciantors) do not correspond to realistic situations.

Will be explored multiple relevant cases depending on: i) the nature of the information used to make the
vaccination decision: local, global or non—local i.e., on the structure of the spatial information kernel; ii) the
nature of €2: bounded vs unbounded.

1.5.1 Local Information

Under purely local information i.e., equation (1.3.1) with boundary condition (1.2.11), the structure of the
local stability of the homogeneous equilibria is similar to the one characteristic of the ODE model (1.4.1).
We proved the following:

Theorem 1.5.1 The non-vaccinator equilibrium Py is always unstable.
If o > 1, the behavioral equilibrium P> is locally asymptotically stable (LAS) and the PVE P, is unstable.
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Moreover, if Q) is bounded then P is also globally asymptotically stable (GAS).
If0 < o < 1, P is not an admissible equilibrium and the PVE P is LAS. Moreover, if Q) is bounded then
P is also globally asymptotically stable (GAS).

Proof. 1t is reported the proof for the non-trivial parts. If {2 is bounded, from the linearized equation around

the behavioral equilibrium P, = 1/a,
oyw = DV?w — (1 — Py)w, (1.5.1)
it follows that the the m—th eigenvalue is given by:
An=—DE —(1-P) <0, (1.5.2)

where v,,, = —&2, is the m—th eigenvalue of the heat equation with Neumann conditions (1.2.11) in 2. For
example, if Q = [—L, L], then §,,, = mmw/L, m € N.
Similarly, if €2 is unbounded, then by applying the Fourier’s Trasform (1.3.4), we obtain the following
expression for the spectrum:

ME)=-D& —(1-PRy) <0. (1.5.3)

The global stability of P, and P; respectively, can both be demonstrated by adopting as Liapunov functional

the free energy:

Li(t) = / (D|VP]* +U(P)) dx, (1.5.4)
Q
where U (P) is the "potential" (associated to the "force” P(1 — P)(1 — aP)), given by:
U(P)=— / (P(1—P)(1—a«P))dP,

from which the claim easily follows. U

1.5.2 Global Information

Under global information i.e., when people are exposed to the average information on VAEs coming from

the whole domain (note this scenario only concerns the case where (2 is bounded):

J(P) = (P(z,1)) = u(lﬁ) /Q P(y. t)dy,

then the model (1.2.10) becomes:
1
o P = DV?*P + P(1 — P) (1 —aq P — a2/ P(y, t)dy> , (1.5.5)
() Jo

with Neumann conditions (1.2.11).

The linearized equation at P, = 1/« reads as follows

dyw = DV?w — Py(1— Py) (alw + agu(lm /Q w(y,t)dy) . (1.5.6)
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Setting w(x) = cos(&x) as eigenfunction, it is straightforward to show that the m—th corresponding eigen-

value is given by
M=-1-P)<0,ifm=0, Ay =D&, — a1 P, (1—P,) <0, it m > 1. (1.5.7)

Thus P» is LAS.

Interestingly, if m = 0, referring to expreessions (1.5.2) and (1.5.7), then Ay = XU. On the contrary, if
m > 1, comparing eigenvalues in (1.5.2) and (1.5.7), we can deduce that Xm > Ap,: therefore eigenvalues
in (1.5.7) are "less negative" than their counterparts for the local information model in (1.5.2). This indicates
a slower convergence to P in equation (1.5.5) compared to equation (1.3.1) for all modes m > 1.

As for the NVE Py = 0, the eigenvalues obey

5\Jm = —fon +1,

i.e. at least the mode 0 is unstable. Moreover, the linearized equation of (1.5.5) around the PVE P, = 1
gives the eigenvalues:
Am = —DE: +a—1.

Thus P is unstable, unless the unlikely event 0 < a: < 1 holds, implyig the LAS of P;.

1.5.3 Non-Local Information

At variance with the global information scenario, under non-local information it is necessary to distinguish

the case where 2 is unbounded from the one where it is bounded.

Stability of homogeneous equilibria: {2 unbounded
As noted above, assuming that L/l > 1, we can study the following equation deduced from (1.2.10)
oP = DV?*P + P(1 — P) (1 —aP — ag/ o(x — y)P(y, t)dy) : (1.5.8)
Q

withz € Q =R", n=1,2,¢ > 0 and Neumann condition (1.2.11) on the boundary (i.e. at infinity).
The associated linearized equation at a generic homogeneous steady state P* is:

O = DV2w+[(1 — 2P*)(1 — aP*) — a1 P*(1 — P*)] w—agP*(l—P*)/ S(a—y)w(y, H)dy. (159)
Q
The associated eigenvalue problem has the form:

DV2W 4 [(1 — 2P")(1 — aP*) — a1 P*(1 — P W — agP*(1 — P*) /Q bz — )W (y)dy = AW.
(1.5.10)

Let us now focus on the case of primary interest here namely when P* is given by the behavioral equilibrium
i.e. P, defined in (1.4.2). This yields:

DV2W — Py (1 — Py) (aaW + ag J(W)) = AW. (1.5.11)
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We consider the linearized operator £ on L?(R™) (n=1,2), such that
LW := —DV*W 4+ P, (1 — Py) (qW + an J(W)). (1.5.12)
The spectrum of this operator is denoted by o(L). The eigenvalue problem
LW = \W

is called spectrally stable if o(L) C [0,+00) and spectrally unstable if there exists A < 0 | A € (L), as
reported in [8]. Moreover, o (L) is spectrally stable iff the operator L is positive, i.e. (LW, W) > 0 for any
W [8]. Let us introduce the function

O(&) = DE* + Py (1 - Py) (a1 + a29(€)),

where ¢(€) is the Fourier transform (defined in formula (1.3.4)) of ¢(z), which is real since we assumed
symmetric ¢(x).
Noting that

$(0) = /ch(y)dy =1, (1.5.13)

we can state the following:

i) function ®(&) evaluated at £ = 0 is always positive, i.e.
O(0) =P (1 —P) (a1 +az)=1—P,>0;

ii) for any given continuous and bounded function b, ® () becomes strictly positive if D is sufficiently large.
Thus, for sufficiently large values of the diffusion coefficient the behavioral equilibrium P, will be stable
irrespective of the shape of the spatial information kernel.

On the contrary, if ¢(x) has bounded support, then its Fourier transform can take negative values that can
destabilize P.

Consider now the special cases of the spatial information kernel ¢(z) considered in section 1.3.

If §(z) = ¢1(x) = Cge“wQ then function ® takes the form:

d(¢) = D€2 + l <1 _ 1) <a1 + ozge_flz) . (1.5.14)
« a

As the latter expression is strictly positive, the behavioral equilibrium P is always locally stable.

Similarly, under the exponential kernel ¢(z) = ¢o(x) = Cee~*l, 2 € R® (n = 1 or 2):

1 1 a2 (n+1)/2
®(¢) = DE” + o <1 - a) (Oq + az <aQ+§2> ) . (1.5.15)

Therefore, also in this case function ®(§) is strictly positive and P is locally asymptotically stable.

These two examples suggest that kernels that are non-null over the whole space, and have a realistic shape
(i.e., are decreasing in the distance from the current site), always promote the local stability of the behavioral
equilibrium P».

To analyse the effects of the two proposed kernels with bounded support, we will only consider, for sake of
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Figure 1.1: Representation of function ®(¢) in the event ¢(z) = ¢3(z) with o3 = 0, ap = 1.2 and N = 10. Here
D =10""1n (a) and D = 1 in (b).

notation simplicity, the case (2 = R.
Under the kernel ¢(z) = ¢3(z) = Cn(N? — 2?)Hev(N — |x|), with N > 0, function @ is as follows:

(&) = DE? + é <1 — ;) <a1 + a2N§)€3 (sin[N¢] — N¢ cos[Ng])> . (1.5.16)
Depending on N and on the other parameters, ®(£) can be strictly positive or can change sign. As noted
before, ®(0) = 1 — 1/ > 0. Also in this case, if £ is large enough, the function ®(¢) is positive and
the equilibrium P> is locally stable. When the diffusion coefficient is large enough, the local stability in
ensured. The instability can appear if D is small enough and if the ratio p = ay/«; is large enough.

This type of behavior is illustrated in the Figure 1.1 in the particular case in which a; = 0.

We finally consider ¢(z) = ¢a(x) = 1/(2h)Hev(h — |z|), with h > 0. The function ®(¢) reads as follows:

®(¢) = DE + é (1 - ;) <a1 + agsm[hﬂ> . (1.5.17)

h¢

Depending on & and the other parameters, this function can be strictly positive or can change sign. Moreover,
(&) is positive for || sufficiently large. If the diffusion coefficient is large, then ®(§) is positive for all
&, and the behavioral equilibrium P is locally stable. The instability can appear if D is small enough and
p = ag/aq is large enough.

A possible form of function ®(¢) is given in Figure 1.2, in the special case in which a; = 0. So you can say
that in the examined examples, the stability of P, depends on whether or not the support of ¢(x) is bounded.
If it is bounded, then P, can become unstable depending on the parameters characterizing the kernel ¢(x),
i.e. on the features of the kernel. In this case some spatially heterogeneous solutions can appear.
Proceeding as above, it is an easy matter to show that replacing P* = Fy = 0 (the "no-vaccinators"
scenario) in eigenvalue problem (1.5.10), we obtain instability (since ®(£) = DE? — 1); moreover if a > 1

(that correspond to biological existence of P), also P; = 1 is unstable:
D(€) =DE2+1— (1.5.18)
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Figure 1.2: Representation of function ®(&) in the event ¢(z) = ¢4 () with parameters listed in Fig. 1.1 and h = 10.
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(a) (b)
Figure 1.3: Illustration of stability character of equilibrium P; in equation (1.2.10), with ¢(z)
a1 =0.6,a2=0.7,D=100and h =3. In(b) oy = 0.9, a0 =17, D =0.6and h =7

¢4(x). In (a)

In the unlikely event that o < 1, instead, the all-vaccinator homogeneous equilibrium P; = 1 is LAS.

In Figure 1.3 an illustration of stability analysis of equilibrium P is given for equation (1.5.8). The equation
(1.2.10) is simulated with the step function ¢4(z) = 1/(2h)Hev(h — |x|) as kernel. Choosing a small per-
turbation as initial data, in Figure 1.3-(a), the solution evolves in time approaching to the stable equilibrium
Ps; while in Figure 1.3-(b) the loss of stability of the constant equilibrium point P> and the convergence to
a periodic spatial structure is shown. The numerical results confirm the analytical ones: in the case where
D is sufficiently large and the step h small, P, is LAS, if D is small and & increases, we see convergence to
non-constant structures.
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Stability of uniform equilibria: (2 bounded

Assuming now that {2 is bounded, we obtain the following equation from (1.2.10)
P = DV?*P + P(1 — P) (1 —aqP— ag/ o(x — y)P(y,t)dy> ) (1.5.19)
Q

with ¢ > 0, x €  and Neumann conditions (1.2.11).
For the sake of notation simplicity we will consider here 2 = [—L, L].
The eigenvalues problem obtained as a result of the linearization about a generic steady state P* is given by

the equality

DW" +[(1 = 2P*)(1 — aP*) — a1 P*(1 — P*)]W — ap P*(1 — P¥) /L o(z —y)W(y)dy = AW.
o (1.5.20)
Since for both the NVE and the PVE equilibria P* = Fy = 0 and P* = P; = 1 the non-local term
disappears, the resulting local stability analisys is straightforward and it is omitted. Therefore, we will only
focus on the behavioral equilibrium P = 1/a.
Here, we make some assumptions. We will suppose that the function ¢(x) is defined on the whole axis and
that it is periodic with the period 2L:

d(x+2Lm)=¢(x), —-L<zx<L m==%l42 . (1.5.21)

Taking P* = P, brings to the eigenvalue problem

L
DW" — P(1-P) (OqW + oo /L o(x — y)W(y)dy> = AW,

in the form
mm

L
Note that the boundary conditions (1.2.11) are satisfied. Taking into account that function ¢ is periodic and

w(z) = cos (), &€m = ,m=0,1,2, ...

even, we obtain
L L
/L d(x — y) cos (&ny) dy = cos (1) /L @(2) cos (& z) dz.
Thus, we have that the m—th eigenvalue reads as follows:
Xy = =D& = Po (1 = o) (a1 + aadym), (15.22)
where
L
Om = / @(2) cos (&nz) dz. (1.5.23)
—L

We note that A}, is negative for m = 0, while, for m sufficiently large, it can be positive for some intermedi-
ate values of m depending on the function ¢ and on the values of parameters, similarly to what we observed
in the continuous spectrum analysis.

Let us now consider ¢(z) = ¢3(x) = (1/(2h))Hev(h — |z|), 0 < h < L. Then

1 .
Om = e sin (§,h) - (1.5.24)
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Consider the functions

Bp(h) = ~DE, — Py (1~ P) <a1 s <5mh>) m=12,.

If ®,,(h) is a positive function, then the corresponding eigenvalue A\, is also positive. Let us find the

conditions on parameters when the maximal eigenvalue is zero (stability boundary). From the conditions

where prime denotes the derivative with respect to h, we obtain
v=tany, m?Py(l— Py)(a1 + 22 Sin v) =0, (1.5.25)
v

where v = &,,h. The first relation in (1.5.25) allows us to find v, and the second relation determines the
stability boundary.

1.6 Bifurcation Analysis for nonlocal information in case of bounded

In the case of nonlocal information and bounded one-dimensional €2, it is possible to carry out the bifur-
cation analysis (a.k.a. weakly nonlinear analysis) for equation (1.5.19) under the assumption that D is the
bifurcation parameter [163].

The stationary non-homogenus solutions of the model solve

L
DP" + P(1 - P) <1 — P — a2/ bz — y)P(y,t)dy> =0, (1.6.1)
-L

with P/(—L) = P'(L) = 0 and assuming that conditions (1.5.21) for the kernel ¢(z) hold.

The equilibrium state P(z) = P» = 1/« is a solution of (1.6.1), independently from the values assumed by
D.

If D crosses a bifurcation value Dy, a simple real eigenvalue of the linearized problem crosses zero. In order

to study this bifurcation, we look for solutions of (1.6.1) in the form of the expansion
P(z) = Py + epi(z) + 2pa(z) + ...
where ¢ is a small parameter. We set
D =Dy+eD; +¢e*Dy + ...

1

Substituting these expansions into equation (1.6.1) and equating the terms in €, we get

L
Dopl{(z) — a1 Po(1 — Po)pi(x) — azPa(1 — Py) /L o(z — y)p1(y)dy = 0, (1.6.2)

with p;(—L) = pi(L) = 0. This problem coincides with eigenvalue problem (1.5.20) with P* = P;

and A = 0. Hence the value Dy should be chosen in such a way that this eigenvalue problem has a zero
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eigenvalue, p1(z) = cos () is the corresponding eigenfunction, with m an integer, m # 0.
Next, we equate the terms with £

L
Dopy(z) — a1 Pa(1 — Pa)pa(z) — asPa(1 — Py) /_L d(z — y)p2(y)dy = f, (1.6.3)

where pa(—L) = p2(L) = 0 and

L
;= —Dmﬂ@+%LHn—&h&—aﬂ@m@f+aﬂl—ﬂ%pww/LMx—wm@Myz
_ <_D1 n le(ipé)popl @)) Pl(x) + (1 + a1 — 301 Py — azPy + a1(2Py — 1)) p3 ().

In order to obtain solvability conditions for problem (1.6.3), let us note that problem (1.6.2) is self-adjoint

since the kernel ¢ is an even function. Indeed, it can be directly verified that [163]

L L
/‘1N$X£Hpﬂxﬁm=Z/¥f%$ﬂ£%@@@d%

—L

where L, is the operator which corresponds to the left-hand side of (1.6.2) and which acts on C? functions

satisfying the boundary conditions. Hence problem (1.6.3) is solvable if and only if [163]

L
/ f(@)p()dz = 0.
-L

Therefore I
3
d
Do(1 — 2P)) /Lpl(x) o .
L= _
P(1— P L ’
2 2) / %(:):)dac
L
and
p2(x) = A(1+ Bcos (2§,1)),
where
A= M B— (1-P)
2P2(P2 — 1)2 ’ 4Do§,2n + P2(1 — PQ)(al + O[2¢2m).

The terms with €3 give the problem

L
Dops(z) — a1 Po(1 — Po)p3(x) — aaPe(1 — Po) /L o(z — y)ps(y)dy = f1, (1.6.4)
where

fi = —Dop{ —aup} + (2+ 201 — 601 Py — 200 Po)p1 (z)p2(z) + a2 [(1 — 2P2)pa(z) — pi(2)] +

L L
T / Mx—wm@wy+wu—2&mmw/ oz — y)paly)dy =
L —L

(1-2Py)pa(x)  3PF 3P +1
Py(1— Py) P21 Py)?

1-2P

= —D D e /"
( 2+ Do Pl - P2)p1<33)p2

D1 (3?)2) P + Dy
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From the solvability condition [163]

-L
/ fi(x)p1(x)dx =0,
L

we obtain
A(2+5B)P§ —3[3+2A(2+5B)|Pi +[9+2A(2+5B)|P, — 3
4P3(1 — Pp)? ‘

If Dy # 0, then from the expansion for D we obtain

4
Dy = Dy

and up to the second-order terms,
P(z) = Py +ePi(x) + €” Py(2). (1.6.5)

The bifurcation is supercritical (D > Dg) for Dy > 0 and Py > % The bifurcation is subcritical (D < Dy)
if the ratio (2P — 1)/ D is negative.

1.7 Traveling Waves and Generalized Traveling Waves

Preliminarly, recall that in section 1.2, has been emphasized that in case of constant rate of transfer from the
strategy "vaccine" to the strategy "no-vaccine" (a(Ms.)), the model is equivalent to the most prototypical
equation generating traveling waves, the Fisher-Kolmogorov equation (1.2.12). However, this case can more
be considered as pathological than a realistic scenario.

In this section, it is investigated the non-pathological cases (from the epidemiological viewpoint) for the
onset of possible traveling waves [122, 123], i.e. heteroclinic connections between two equilibria.

In this section, we restrict the analysis to the case in which the domain €2 is one-dimensional and unbounded,
ie. Q =R

1.7.1 Local Information
Wave solutions for equation (1.3.1)
P =V?P + P(1 - P)(1 — aP),

are function of the form P(z —ct) = p(z), bounded on the whole axis and twice continuously differentiable.
The constant c is the speed of the wave, z = x — ct is the moving coordinate frame and

lim P(z)= Py (1.7.1)

T—300
with P_ and P, homogeneous in space equilibria of equation (1.3.1). After substitution of variable z in

equation (1.3.1), the following ordinary differential equation is obtained:
Dp” +cp' +p(1 —p)(1 —ap) =0. (1.7.2)

It is known that, a necessary condition for the existence of the solution is that the P_ must have an unstable

(departing) manifold and P, a stable (incoming) manifold. The following result holds [162]:
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Figure 1.4: Traveling wave for equation (1.3.1) with oy = 0.6, g = 0.7, D =2 and c = 2/2.
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Theorem 1.7.1 If o > 1, there exists a constant D) = 2\/ﬁ such thatV ¢ € [c(l), +oo[, there exists a
travelling wave solution of velocity c connecting equilibrium P;

= 1/« and equilibrium Py = 0, i.e. a
function P(x — ct), solution of equation (1.7.2) on the real line | — 0o, +o0] and satisfying equation (1.7.1)

with P_ = P and Py = Py. This solution is monotone decreasing and the derivatives P"(z) and P'(z)

tend to zero as x — +o0. Moreover, a traveling wave solution of velocity c conncecting equilibria P, and
Py cannot exist.

For bounded €1,it has been shown that the spatially homogenous equilibrium P, is GAS. In the above theo-
rem it is shown, roughly speaking, that the TW are such that the scenario where the value P = P, spreads
until it invades all the space.

The case 0 < a < 1 has here some further mathematical interest, since the equation can be read as a
modification of the Fisher-Kolmogorov equation. The following result holds [162]

Theorem 1.7.2 If0 < « < 1, there exists a constant W such thatV ¢ € [c(l), +0o0], there exists a travelling
wave solution of velocity ¢ connecting equilibrium Py, = 1 and equilibrium Py = 0, i.e. a function P(x—ct),
solution of equation (1.7.2) on the real line | — 0o, +00| and satisfying equation (1.7.1) with P_ = Py and

Py = Py. This solution is monotone decreasing and the derivatives P"(z) and P'(z) tend to zero as
T — doo.

Traveling wave solutions for the equation (1.3.1) are shown in Figure 1.4 in the case in which o > 1.

They connect the constant state P» at —oo and the constant state Py at +o0o , with the minimal speed
c=cl) = 2V D.

1.7.2 Non-local information

In previous section, it was demonstrated that, in the case of non—local information, the spatially homoge-
neous equilibrium solution P» = 1/« can lose its stability. Then some spatial structures can bifurcate from

it. Therefore, instead of travelling waves connecting Py and P», we can expect the existence of some other
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solutions connecting Fy at 400 with some structures at —oo. Such solutions are called generalized travel-
ling waves (GTW) and were first introduced in [160] for reaction-diffusion systems. Such solutions can be
characterized by two main properties:

(1) They exist for all ¢ € R. Moreover, under some conditions, such solution can be unique and stable.

(2) They are propagating solutions, which can be explained as follows: let ¢ be a constant, P, < ¢ < P_.
For each ¢ fixed consider the equation P(z,t) = ¢ with respect to . Denote by m,f () its maximal solution

®)

+
(if it exists) and by m, (¢) its minimal solution. If qu — cast — oo, then we say that this solution

propagates with the speed c. Thus, GTW are global propagating solutions.
Thus, we want to study GTW solution for the equation

P = DV?P + P(1 - P) <1 —a1P— ag/ o(x —y)P(y, t)dy) . (1.7.3)
Consider the Cauchy problem for the equation
9 oP e
P = DV*P + Cor +P(1-P)|1—ayP —ay o(x —y)P(y,t)dy |, (1.7.4)

with ¢ > 2v/D a given constant. Assume that the initial condition P(x,0) = P°(z) is non-negative and

less than 1. Then the solution P(x,t) exists and is also non-negative and less than 1 for all ¢ > 0. Consider

J(x,t) = /_OO o(x —y)P(y, t)dy > 0.

Hence
dz,t)=1— a1 P — agJ(z,t) < 1.

Equation (1.7.4) becames

P
P = DV?P + cg—x + P(1 — P)d(z,t). (1.7.5)
Consider also the equation
O = DV?v + cg” +v(1 —v). (1.7.6)
xXr

The following result holds:

Lemma 1 If ¢ > 2v/D, there exists a stationary solution v.(x) of (1.7.6) such that
P(x,0) < ve(x), r e R = P(x,t) <wve(x), x € R, t >0. (1.7.7)
Proof. Denoting z = v — P and taking the difference of equations (1.7.6) and (1.7.5), we obtain
dyz = DV?2 + C% +2(1—v—P)+P(1—-P)(1—dz,1). (1.7.8)

Since the last term in the right-hand side of equation (1.7.8) is non-negative, then from the inequality
z(x,0) > 0 for all z € R, it follows that z(x,¢) > 0 for all ¢ > 0 and x € R. Hence,

P(z,0) < v(z,0), z € R = P(z,t) <v(z,t), z €R, t >0. (1.7.9)
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Stationary solutions of equation (1.7.6) correspond to traveling waves for the KPP-equation [75, 94]. If
¢ > 2v/D, then they are monotone in space and stable, while for 0 < ¢ < 21/D they are nonmonotone and
unstable ([94]-[162]). These waves have limits at infinity: v(—o0) = 1, v(400) = 0.

Denoting by v.(x) a stationary solution of equation (1.7.6) for ¢ > 2v/D, the claim is proved. g
Thus, this is estimate from above of the solution of the Cauchy problem associated to (1.7.5). An estimate
is now provided from below. From the inequality (1.7.9),

+o0o
J(z,t) < P(x — y)ve(y)dy = K (). (1.7.10)
Assuming w < 1, consider the equation
2 aw
Oyw = DV w+c%+w(l—w)(l—alvc—agK(x)). (1.7.11)

Denoting s = P — w and taking the difference between equations (1.7.5) and (1.7.11), you obtain

0
Os = Dst—f—ca—S—i-s(l—P—w)(1—alvc—agj(x))—i—alP(l—P)(vc—P)+a2P(1—P)(K(:c)—J(:E,t)).
X
(1.7.12)
Since the last two terms in the right-hand side of this equation are non-negative, then

w(z,0) < P(x,0), z € R, = w(x,t) < P(x,t), z € R, t > 0. (1.7.13)
The following result holds:

Lemma 2 [f c > 2v/D, there exists a stationary solution w.(x) of (1.7.11) such that w.(xq) = 0 for some
xo, we(x) > 0 for x > 0, we(x) < 0 for x < xg and w.(x) ~ ve(x), when x — o0

Proof. Stationary solution of equation (1.7.11) are sought, i.e.
Duw" + cw' +w(1 — w)(1 — aqve — asK(x)) = 0. (1.7.14)

Since v, and K () tend to zero when © — oo, then 1 — ajv. — e K () is close to 1 in some right half-axis.
Then, for ¢ > 2\/5, solutions of (1.7.14) are close to functions v.(x) when z — cc.

Let us prove the existence of a solution which has a zero. Denote g(z) = 1 — ayv. — agK(z) and let
I = (—o0,w) be the interval where g(z) < 0: then any non-zero solution of (1.7.14) has at most one zero

in I. Indeed, let w(z) be solution of (1.7.14) and ¢ one of its zeros. Put
W (z) = e5 @20y (2w (z), z € I. (1.7.15)

Taking into account equation (1.7.14), we have
2

W'(z) = e @=20) <(w/)2 - %(1 - w)g(g;)> > 0. (1.7.16)

So W is nondecreasing on I. If W has another zero x; € I, then W (x) = 0 on [z, z1]. Thus w is constant
on [xg, x1], namely w = 0 (from (1.7.14)) on [z, z1] and consequently on I. The contradiction shows that

w has at most one zero in 1.
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Since w(z) converges to zero when z — oo, there exists «* large enough such that we can assum that
equation (1.7.14) becomes:
Duw" + cw' + g(x)w = 0. (1.7.17)

Letc > 2v/D. Since g(z) — 1 at infinity, there exist two linearly independent solutions of equation (1.7.17)
given by [130]

wi(z) ~ e M wy(x) ~ e 2T, (1.7.18)

where A; and )y are solution of the algebraic equation
DN —cA+1=0.
If A1 > Ao, then the general solution of (1.7.17) can be written as
w(z) = kywy (z) + kawa(x), x € R,

where k1 and ko are real constants. k1 < 0 and k2 > 0 can be choosen such that w(x) has an only zero xg
and w(z) < 0 for z < xq, w(x) > 0 for z > . In addition, w(x) behaves as v.(z) if ¢ > 2v/D: so that, it
can possible the estimation w(x) < P(x,0) < v.(z) for the initial condition.
If ¢ = 2¢/D, then \; = \o. Then the qualitative behavior of the solutions of equation (1.7.17) as x — oo is
determined by

w(z) = wi(x) (k1 + kox) , (1.7.19)

with k; and kj real constants. k; < 0 and k2 > 0 can be choosen such that w(z) has an only zero z( and
w(z) < 0 for z < xy, w(z) > 0 for z > xp. This result can be achieved choosing both the constants
k; and ks positive. In addition, w(z) behaves as v.(z) if ¢ = 2v/D: so that, it is possible the estimation
w(z) < P(z,0) < v.(x) for the initial condition. O

Lemma 3 Let z1(x) = max(0, w.(z)), and zo(x) = v.(z). If
21(x) < PYx) < z(x), z €R

then the solution of the Cauchy problem for equation (1.7.4) with the initial condition P°(x) satisfies the
estimate
z1(z) < P(z,t) < z2(x), z € R

forallt > 0.

Theorem 1.7.3 There exist positive GTW solutions of equation (1.7.3) for all ¢ > 2v/D. Positive GTW
converging to zero as x — oo do not exist for ¢ < 2v/D.

Proof. The existence of GTWs for all ¢ > 2v/D follows from the previous lemma. Indeed, consider solution
of equation (1.7.3) in the form P(z,t) = P(z — ct,t). Then

P = DV*P+cVP+ P(1 - P) (1 —a1P —ay /Oo o(x —y)P(y, t)dy> : (1.7.20)
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It follows from Lemma 3 that there exists an w-limit solution P.(x,t) of equation (1.7.20) such that
z1(x) < Po(x,t) < z9(x), (1.7.21)

for all ¢ € R. In order to construct this solution, consider the solution P(z,t) of equation (1.7.20) with an
initial condition P°(z) which satisfies the inequality z1(z) < P°(z) < zo(x) for all . Let ¢, — oo as
n — oo. Consider next solutions P, (x,t) with the initial conditions P = P(x,t,). Obviously, each of
them is defined for ¢ > —t¢,. A locally convergent subsequence of the sequence of functions P, (z,t) is a
solution of equation (1.7.20) defined for all ¢ € R. It satisfies inequality (1.7.21). It can be easily verified
that it is a GTW with the speed c.

Suppose now that there exists a positive GTW P.(z,t), converging to 0 as x — oo, with a speed ¢ < 2v/D.
Then P.(z — ct, t) satisfies equation (1.7.20). Let us take ¢ < co < 2v/D and consider the equation

DP" + ¢yP' + P(1 — P) = 0. (1.7.22)

It has a solution Py(x) that is non-monotone and unstable [94]. Moreover, when x tends to infinity, then
Py(z) ~ exp(—coz/2) sin(ax), where a = \/D|c3 /4 — 1|. Therefore, equation
P = DV*P +c¢VP + P(1 - P), (1.7.23)

has a solution P*(x,t) = ePy(x — (co — ¢)t), where ¢ is a positive constant. Let x = N; and x = N3 be
two consecutive zeros of the function Py(x) such that Py(x) is positive between them. Then P*(z,t) is a

solution of the boundary value problem for equation (1.7.23) in the domain
Ni+(co—c)t <z < Nag+ (co—c)t
with the zero boundary conditions. For € small enough, similarly to (1.7.9) we can obtain the inequality
P*(x,t) < Po(x —ct,t), Ni+ (co—c)t <z < Noy+(co— o)t (1.7.24)
If m,(t) is the maximal solution of the equation

Plz,t)=a, 0<a< max P*(a,1), (1.7.25)
Ni+(co—c)t<x<Na+(co—c)t

then .
Tim m‘;() > ¢ (1.7.26)

t—00
Since ¢y > ¢ and P.(z,t) converges to zero as x — oo, then the last inequality contradicts the assumption
that P,(x,t) is a GTW with the speed c.
This contradiction proves the theorem. ([l

Numerical Simulations
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(© d
Figure 1.5: Propagation of waves (a) and periodic wave (b)-(c)-(d) for equation (1.2.10). Solution P(x,t) as a function
of two variables. Here a; = 1.1, ap = 13.1, D = 1. Moreover h = 7in (a), h = 13in (b), h = 14in(c) and h = 16
in (d).

In Figure 1.5 the results of numerical simulations of equation (1.2.10) in one space dimensions are presented.
The kernel is the function ¢4 (). If the support of ¢ is suffciently small, then there is a usual travelling wave
propagating with a constant speed. Figure 1.5-(a) shows the solution P(x,t) of equation (1.2.10) with
the initial condition which has a bounded support. The solution represents two waves propagating in the
opposite directions. It is interesting to note that the wave is not monotone with respect to x. If you increase
the support of the function ¢, then the homogeneous in space stationary solution P; loses its stability and a
periodic in space structure appears. In this case it is easy to observe propagation of a periodic wave (Figure
1.5, (b)-(c)). Figure 1.5-(d) shows the solution P(x,t) with the exponentially decaying initial conditions.
Therefore, depending on the values of parameters equation (1.2.10) can have solutions of different types.
For all other parameters fixed, usual traveling waves (with a constant speed and profile) are observed for

sufficiently small values of h. Periodic traveling waves exist for sufficiently large h. Transition from simple
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to periodic waves occurs due to the essential spectrum crossing the imaginary axis. The stationary solution
homogeneous in space P loses its stability resulting in the appearance of a stationary periodic solution.
The traveling wave connects the constant value Py for z = 400 with this periodic solution for x — —o0
. The waves in (a)-(b)-(c) (in which the initial data has a bounded support) move at their minimal speed
¢ = 2v/D = 2 and this speed doesn’t depends on h; while, the speed of the wave (d) is greater than the
minimal speed ¢ > 2v/D and depends on /. Though in numerical simulations a finite interval is considered,

if it is suffciently large, then the solution can approach the corresponding GTW.

1.8 The role of the memory of past information

Here it is assumed that the information is not only spatially and but also temporally non—local: the subjects
take their decisions not only on the information on the current state of the system but also on the past states.
In other words, the memory of the subjects concerning the past information about vaccine side-effects is
included. We consider in this section the 1D unbounded domain, i.e. ) = R.

These assumptions yield:

+0o0

+oo
a(Mse(P)) = ap+aq W(T)P(x,tT)dTJrOéQ// o(x—y)W(r)P(y,t —7)drdy, (1.8.1)
0 QJO
+o0

with W (7) a delaying kernel, i.e. a positive function such that W (r)dr = 1. Using scaling (1.2.9),
0
previous equation becomes:

“+o0 “+o0
0,P = DV?P + P(1 - P) (1 —a W(r)P(x,t — 7)dT — an /Q/O o(x —y)W(r)P(y,t — T)dey) ,

(1.8.2)

0

witht > 0,z € Q.
Here, the so called acquisition—fading kernel (AFK) [67] is given:

W(r) = % (e_bT - e_dT) , (1.8.3)

with 0 < b < d. This memory kernel, which is such that W (0) = 0 (i.e. absence of information of
the current state of the process), models the process of temporal acquisition of information (with a rapid
timescale 1/d) followed by a fading of the memory (with a "slow" timescale 1/b).

By applying the linear chain trick (see the Appendix A) one gets the following equivalent system:

P = DV?P + P(1 — P)(1 — a1 M — . J (M),
0Z =b(P—-2), (1.8.4)
M = d(Z — M).

1.8.1 Stability of Stationary Solutions

Model (1.8.4) is remindful of systems generating complex self-organized patterns in biochemistry and in

population biology [116, 122], since only one of the involved state densities is endowed of diffusion. The
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aim of this section is to investigate the possible bifurcation from the homogenous equilibria of (1.8.4) of
such self-organized structures.

It is easy to verify that model (1.8.4) admits the following homogeneous in space stationary solutions

111
EQZ(O,O,O), Elz(]-a]-a]-)v EQZ (75)’
a o«
Also here, is the most significant is Es. Considering the case where € is unbounded and linearizing (1.8.4)
at E, yields the following eigenvalue problem:

1 1
DV?P — — <1 - > (M + asJ(M)) = MP,
o o
bP—-2) = MZ, (1.8.5)
d(Z—-M) = IM,
whose essential spectrum is given by:
~ 1 1 ~ .~ -
-Dg*p — = (1 - ) <a1M + ozquﬁ(f)) — AP =0,
o o
- bd -
M = ——F—F—-——P. 1.8.6
A+ b)(N+4d) ( )

Thus, one obtains the following £-family of A polynomials
q(X€) = X° + az(§)A? + ar(§)A + ao(§) =0, (1.8.7)
where

as(§) = b+d+ D& >0,

a1(6) = bd+ DE*(b+d) >0,

ap(§) = g DE2a® + (a — (a1 + azq“s’)} .

Thus E is stable iff ag(£) > 0 and

H1(§) = az(§)ai(§) — ao(§) >0,

that is:
Hy(€) = % {(d +b)D2%40? + (b+ d)2De%a® + bd | (b+ d)o® — (a — 1) (a1 + aQ&Z)} } >0. (18.8)

Recall that a change of sign of H; in non-spatial systems is associated to the onset of a Hopf bifurcation, a
change of sign in a spatiotemporal context give rise to a Hopf-Turing bifurcation [72] and finally the only
change of sign of a((§) would give rise to a "pure" Turing bifurcation [72, 158].

In this context, it is important to distinguish instabilities that genuinely involve the spatio—temporal model
(1.8.4) from those that would have been also found in the corresponding non—spatial model (NSM). As
regards the NSM, it is easy to observe that

bd
a0l p—g g=1 = - (—1) > 0.
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Thus, for Routh-Hurwitz criterion to be satisfied by the NSM, it must be:

HNSM — Hilp_g g1 = % [a(b+d—1)+1] >0.
Thus:
)ifb+d>1—1/a, then HfVSM > 0 and the equilirbium of the the NSM is LAS;
ii)if b+d < 1 — 1/a, then H¥SM < 0 and the equilibrium of the NSM is unstable via Hopf bifurcation.
The above result on H{VSM actually implies that H;(¢) > 0. Indeed from (1.8.8), we have that Hy (&) is
composed by three addenda: (d + b)D?*¢* > 0, (b + d)?DE? > 0 and

% {(b +d)a? = (a—1)(oq + 0425)}
- %[(b—i—d—l)az—i—a—(04—1)042(—14'&)}
- %( _1)[ i1(1+(b+d—1)a)+a2(1—q~5)}>0.

So no Turing-Hopf bifurcation can be generated if the equilibrium of the NSM is LAS.

Thus, apparently the only route to instability at Es is via changes of sign of ay(£). However it is easy matter
to verify that the condition ao(€) > 0 is nothing else that the LAS condition of the intermediate equilibrium
P, = 1/ defined in (1.4.2) of the model (1.2.10) without memory.

Summarizing, it may state that the introduction of temporal non-locality via the AFK does not make Eso
unstable unless:

)b+d>1—1/a,ie. the NSM is unstabilized at E5 by the memory effect;

ii) there exist £ such that ag(§) < 0, i.e. the original model without memory is unstable.

The above analysis, with simple changes, can also be repeated in the case of local and of global information.
In the Figure 1.6 we give an illustration of the stability character of the state of equilibrium E, for the
system (1.8.4), with ¢(z) = ¢4(x), choosing a small perturbation as initial data. In Figure 1.6- (a) we see
that the solutions evolve in time to reach the stable equilibrium E,, while in Figure 1.6- (b) the stability is
lost and we see the convergence to a periodic spatial structure. This depends on the diffusion coefficient D,
the ratio p = ay/ay and the parameter h. Even if the presence of GTW has not been proved analytically
for the system (1.8.4), in Figure 1.7 we provide an example of possible GTW in the case of system (1.8.4).
The kernel ¢(z) is the function ¢4(x) and the initial data is decay exponentially function at infinity. We
focus our attention on delay parameters b and d. If b and d are small enough, then spatial periodic structures

appear, while increasing the value of b and d, this kind of structure disappear.
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Figure 1.6: Tllustration of stability analysis of equilibrium E, for system (1.8.4) with ¢(z) = ¢4(x). In (a), the
parameters used are those listed in the Figure 1.3-(a) with b = 1, d = 2; in (b) we have a1 = 0.7, g = 1.2, h = 7.7,
D=0.1,b=3andd =5.

1.8.2 Traveling Wave with Local Information

Now, wave solutions for equation (1.8.4) are described, setting the Dirac delta 0(x) as kernel, i.e. solutions

of the following system

P = DV?P + P(1 — P)(1 — aM),
Z =b(P — Z), (1.8.9)
WM =d(Z — M).

LetE = (P, Z, M) be the variable vector of system (1.8.9) such that

lim E(z) =B (1.8.10)

r—F00

with E_ and E_ homgeneous in space equilibria of system (1.8.9). After substitution of the wave variable

z = x — ct in model (1.8.9), the following system of ordinary differential equations is obtained:

Dp" +cp' +p(1 —p)(1 —am) = 0,
cw +bp—w) = 0, (1.8.11)
em' +d(w—m) = 0,

where P(z —ct) = p(z), Z(x —ct) = w(z) and M (x — ct) = m(z). When a < 1, recall that E is unstable
and E; is stable with respect to the system (1.8.4). Thus, the following result holds [162]:

Theorem 1.8.1 If 0 < o < 1, there exists a travelling wave solution of velocity ¢ ¥ ¢ € [c(l), +o0],
connecting equilibrium E and equilibrium Ey, i.e. a vector function E(x — ct), solution of system (1.8.11)
on the real line | — 0o, +00| and satisfying equation (1.8.10) with E_ = Ey and E = E,.
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(c) (d)
Figure 1.7: Propagation of waves for equation (1.8.4). Solution P(x,t) as a function of two variables. Here the values
of parameters are as in Figure 1.5 with h = 7. Moreover b = 0.1, d = 0.2 in (a), b = 0.1, d = 0.78 in (b), b = 0.36,
d=0.78in(c)and b = 0.8, d = 1 in (d).

If @ > 1, then equilibrium E; becomes unstable while equilibrium E, is stable with respect to model (1.8.4).
Therefore, it can affirmed that [162]:

Theorem 1.8.2 If o > 1, there exists a travelling wave solution of velocity ¢V ¢ € [c(l), +0o0], connecting
equilibrium Eo and equilibrium Ey, i.e. a vector function E(x — ct), solution of system (1.8.11) on the real
line | — 0o, +oo[ and satisfying equation (1.8.10) with E_ = Ey and E,. = Ey; moreover, traveling wave

solution between Eq to Eq cannot exist.

In Figure 1.8, we show traveling wave solution for system (1.8.4) with minimal speed ¢ = ¢(!) = 2/D,

connecting the equilibrium E5 at —oco and equilibrium Eg at 4-oc0.
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Figure 1.8: Travelling wave solution for system (1.8.4) with ¢(z) = d(x): here the parameter used are those listed in
Figure 1.4 with b = 3 and d = 4. Waves travel at minimal speed ¢ = 2v/D.

1.9 Vaccine awareness campaigns: Stability Analysis of Homogeneous Steady
States

For the sake of simplicity, in this section a 1D spatial domain is considered.

With special focus on the case considered up to here, namely that of an infection which has been eliminated
but requires to keep high degrees of herd immunity, an especially relevant task of a Public Health System
(PHS) is that of investing to continuously sustain the vaccine uptake in the population. This is necessary in

view of the low incentive to immunization for parents due to the low perceived risk, which is mirrored by
the fact that J(M;) = 9.

The action of the PHS in enacting vaccine awareness campaigns was modelled in [65] by amending the

basic imitation dynamics of strategies. Briefly, they assumed that the action by the PHS allows a steadily
positive flux A switching per time unit from the "non-vaccinator" to the "vaccinator” strategy.

Extending this idea to the present spatiotemporal setting [31, 33, 65], yields the model:
0P = DV?P +9(M;) AP — a(Ms.) AP + vA,

(1.9.1)
Ot A = DV?A — 9(M;)AP + (M) AP — v A,
where 7y is a positive constant.

Keeping expressions (1.2.3) and (1.2.4), using A = 1 — P and scaling as (1.2.9), from (1.9.1) we obtain:

0P = DV?P + P(1 — P)(1 — a1 P — au J(P)) + ~v(1 — P),

(1.9.2)
with ¢ > 0, x € 2 and Neumann condition (1.2.11).

A first effect of public action can immediately be seen: the NVE Py = 0 is no more an equilibrium point.

Moreover, equation (1.9.2) has two spatially homogenous equilibria, namely the PVE P, = 1 and the
equilibrium P, € (1/c, 1) where P, is the solution of the quadratic:

v =aP?—P,
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1.€.

1+ 1T ¥dany
Pw:—+ 2; 4. (1.9.3)

It is easy to verify that:

i)if 0 <y < (a—1) then P, € (1/a,1);i.e., P, is epidemiologically meaningful;

i) itis d/dyP, > 0;

iii) itis Py = P> = 1/a, if v = 0. The previous results show that the new behavioral equilibrium P,, which
replaces the "old" equilibrium P, allows a higher vaccine uptake than P thanks to the univocal effect of

public intervention.

1.9.1 Local Information
Under purely local information (i.e. ¢(x) = §(x)), equation (1.9.2) becomes:

P =V?P+ P(1—P)(1—aP)+~(1—-P). (1.9.4)
Proceeding as in the case without vaccine awareness campaign, the following global stability results hold:

Theorem 1.9.1 Ifa > 1 and vy € (0, — 1) then P, is globally stable (and P, is unstable).
Ifa > 1and~y > o —1then P is globally stable.
In the trivial case where 0 < o« < 1 then P is globally stable independently of v > 0.

The previous results straightforwardly extend to the present spatially structured case the findings in [65],
showing that the behavioral equilibrium P, is always GAS whenever it exists, while when it disappears the
PVE inherits its global stability. As for possible heteroclinic connections between P, and P, introducing

the traveling variable z = x — ct, the following negative result is established [162]:

Theorem 1.9.2 There are no monotone decreasing travelling wave solutions for equation (1.9.4) connecting

equilibrium Py at equilibrium P, with positive speed.

1.9.2 Non-Local Information
The case of (2 unbounded
As noted above, assuming that L/l > 1, we have the following equation

o P = DV?P + P(1 - P) <1 —a1P —ay /Oo oz — y)P(y,t)dy) +~(1 - P), (1.9.5)

with x € Q = R, ¢t > 0 and Neumann condition (1.2.11).

The associated linearized equation at a generic homogeneous steady state P* reads

ow = DV?w+[(1 — 2P*)(1 — aP*) — ay P*(1 — P*) — A]w — ap P*(1 — P¥) /00 o(x—y)w(y,t)dy,
- (1.9.6)
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and the related eigenvalue problem has the form:

DV?*W +[(1 = 2P*)(1 — aP*) — a1 P*(1 — P*) — 4] W —aa P*(1 — P*) /00 d(x—y)W(y)dy = AW.

If P* = P,, then the following eigenvalue is obtained:
v(€) = =D& + (1 — 2P,)(1 — aPy) — a1 Py(1 — Py) — v — aa Py (1 — P,)o(£).
To determine the sign of the quantity

=1 -2P)(1 - aP,) ~ 7,

it is useful to take into the account that

aP?=~+P,,

yielding
Xy = 1- ap’y +7,
i.e.

1+ 2y —+/1+4ay
Xy = .
2

It is easy to show that if v < o — 1 then x < 0. Thus, eigenvalues (1.9.8) become

v(€) = —D&* + Xy — Py(1 = Py) (041 + (12(23(5)) .

Therefore, the following results are demonstrated :
i) since y, < 0, for both ¢(z) = ¢1(z) = Cye=" and ¢(z) = po(x) = Coel itis

v(§) <0,

so that P, is LAS;

ii) for ¢(&) = @3(x) = Cw(1 — (2l /N)2) Hev(N — [a]) and ¢(€) = ¢u(x) = (1/2h)Hev(h

equilibrium P, can be unstable.

Moreover, if P* = P; = 1, consider the eigenvalue problem (1.9.7), then we obtain
v(€)=-D&+a—1—7.

If v > a — 1, then v(&) is negative for any & and equilibrium P; is LAS.

The case of bounded (2

Assuming that the set €2 is bounded, from (1.9.2) the following equation is obtained :
P = DV?*P+ P(1 - P) (1 — o P — ag/ o(x — y)P(y,t)dy> +~(1 - P),
Q
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and Neumann conditions (1.2.11).
We will consider here 2 = [—L, L].

The eigenvalues problem associated at the linearization about a generic steady state P* is given by

DW" +[(1—=2P*)(1 — aP*) — a1 P*(1 — P*) — 4] W — apP*(1 — P*) /L oz — y)W (y)dy = AW.
" (1.9.11)

Since for the equilibrium P; = 1 the nonlocal term disappears, the ensuing local stability analisys is straight-

forward and it is omitted. Thus only focus on the equilibrium P, .

Assuming that the kernel ¢(z) satisfy conditions (1.5.21) and (1.2.7) i.e., function ¢ is periodic with period

2L, even and normalized, if P* = P,, solution of the following eigenvalue problem

L
DW" + [xy — a1 Py(1 — Py)] W — aaPy(1 — P,) /L o(x —y)W(y)dy = AW,

are searched in the form

w(@) = cos (Ene), &n = 7 m=0,1,2,...

Then the boundary conditions are satisfied. Taking into account that the function ¢ is periodic and even, the

m-th eigenvalue reads as follows:
Um = —DE% + [xy — a1 Ps (1 — P)] — aaPy(1 — P.) by, (1.9.12)

where ¢, is defined in (1.5.23). Note that v, is negative for m = 0 and for m sufficiently large.
If ¢,,, is a positive function, then the corresponding eigenvalue v, is also positive. If the kernel ¢ has a
bounded support, then, depending on the parameters, the corresponding eigenvalues can be negative and

stability is lost.

1.9.3 Global information
In case of global information, the equation deduced from (1.9.5), is
1
P = DV?P + P(1 — P) <1 —a P — agm / P(y,t)dy) +~(1 - P), (1.9.13)
Q

with z € 0 = R, ¢ > 0 and Neumann condition (1.2.11). It s trivial to show that P, is LAS. Indeed, setting

W (x) = cos(&,x) as eigenfunction of the problem:
DW" + [xy — a1 Py(1 = Py)] W — Py (1 — Pv)'u(lg) /Q W(y)dy = AW,
we get the following eigenvalues:
1 =xy —aPy(1—-Py) <0,
Um = —DE2 + xy — a1 Py (1 — P,) < 0.
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1.10 A preliminary simulation of the impact of Public Health System Action

Before investigating the effects of the awareness intervention by the PHS on the stability of the equilibria
of (1.9.2) (and its dependence on the distinct hypotheses on the spatial information kernel), by means of a
simulation, how the Public Health System intervention to favour vaccination can impact on the behaviour
of the system is illustrated. Is assumed that subjects make their decisions by taking into the account their
memory. In particular we choose the scenario depicted in the panel (a) of Figure 1.7: a GTW whose features
are deeply influenced by the temporal non—locality. It is assumed that initially there is not public health

intervention, which starts at about two third of the simulation interval and grows up to a maximal value

YMazx-

A(t) = ”54536 Heu(t — 100). (1.10.1)

Thus, we simulate the equation:

+oo

+o00
P = DV?P+P(1-P) (1 - ; W(r)P(z,t — 7)dT — @z /Q/O d(x —y)W(r)P(y,t — T)dey)

+ A{t)(1-P), (1.10.2)

where W () is the delay function defined in (1.8.3) and ~y(¢) the function defined in (1.10.1). Figures 1.9
and 1.10 (view from the top) show that initially the GTW pattern coexists with a rapidly increasing uniform
pattern. This pattern relatively soon destroys the GTW and, any case, it immediately increases the minimum
value attained by the GTW.

1.11 Comparison with the Theory of Diffusion of the Innovations

In this section we aim at highlighting similarities and key differences between our models (1.2.1) and (1.9.1)
and the Theory of Innovation Diffusion (TID) by Mahajan and others [104, 129]. For the sake of the notation
simplicity we mainly consider non-spatial models.
The TID models focus on the dynamics of the adoption of innovation. Defining Y (¢) as the fraction of
adopters of the innovation at time ¢, and U (¢) = 1 — Y (¢) the fraction of "non—adopters’ the basic family of
models is the following:

Y =gt)(1-Y), (1.11.1)

where g(t) > 0, which was initially interpreted as an ’hazard of adoption’ [16], has later been compared by
Capasso and Zonno to the force of infection of epidemic models [39], with whom it has striking analogies.
Thus, we will call it Force of Innovation Adoption’ (FIA)

The positivity of the FIA ¢(¢) has an important consequence for our comparison: all specific models be-
longing to the family (1.11.1) are such that Y (¢) — 17, i.e. there is a unique equilibrium point, which can
be termed ’all adopters’.

As a consequence, assuming ¥ = P, all possible analogies with our family of models is limited to the
unrealistic cases where the ’all vaccinators’ equilibrium is GAS. For example, the family of models (1.11.1)
for g(t) = ~y corresponds to our model in the trivial case where there is no contagion of ideas.

The positivity of g(¢) and its interpretation as a ’force’ of infection also stress the key difference between
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Figure 1.9: Solution P(x,t) as a function of two variables for equation (1.8.3) . Here a; = 1.1, ap = 13.1, D = 1,
h =17,b=0.1and d = 0.2. Moreover Ypsq, = 0.6375 in (), Yaraz = 3.05 in (b), Yarqe = 7.2375 in (c) and
Yraz = 10.602 in (d).

the family of models we investigated here and the family of model (1.11.1): in the scenario we investigated
there is a double contagion of ideas, i.e. a double flux: i) from A to P; ii) from P to A. On the contrary,
the family (1.11.1) implies an uni—directional contagion of ideas. This is a direct consequence of the deeply
different nature of the underlying ’social processes’.

However, it is of interest to investigate formal analogies between the two theories.

The specific instances of imitation game-like equations of TID [104, 129] are obtained phenomenologically
by assuming that g(¢) is an analytical function of Y [104]:

400
g(t) =ao+a1Y (t) + > a;Y7(t) (1.11.2)
j=2
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Figure 1.10: Top view of the images in Figure 1.9.

where a;, > 0 can also be function of time [36, 39]. For example, assuming that the non—linear terms are
null, g(t) = ap + a1Y (¢), yields the most popular popular model of the TID: the Bass model [16, 104],

which reads as follows:
Y':alY(l—Y)+ag(1—Y). (1.11.3)

The non-negativity of the coefficients ay would preclude formal analogies with our models. However,
maintaining the constraint of positivity of the FIA g(¢) > 0 but relaxing for £ > 2 the hypothesis that
ay > 0 yields the following g(¢) that allows a formal analogy with some models of the family of models
considered in this work:

g9(t) =Y () (6o — (Y (1))) (L.11.4)
with, however, the following sharp constraint (a(Y") is non—decreasing):
6o —a(l) >0
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that again leads to the global stability of the "all adopters’ ("all vaccinators’) model.
The important case of linear—affine «(y) can be expressed within the frame of the TDI family of models as
follows:

g(t) =y + (o — ap)Y —anY? (1.11.5)

Note that this generalized framework is such that: i) can be framed with the epidemiological theory by
Capasso where forces of infection can also be non—-monotone [38], which can also be applied to diffusion
of information [39]; ii) it remains a formal model of a uni-dimensional flow.

Namely, a FIA g(t) of the type (1.11.4) can be read in terms of TID as an initially beneficial effect of the
product qualities, possibly followed, for larger Y, by a partial mitigation of the ’enthusiasm’ for the product
due to the spread of information of its possible (real of presumed) defects. Thus, a reduced FIA is observed.
As far as the space is concerned, let us first consider the Fisher-Kolgomorov-like model (1.2.12), for which
the equilibrium ’all vaccinators’ is GAS. If we further assume oy = 0 then we have a unidirectional flux
from the group ’non-vaccinators’ to the group ’vaccinators’. In such a case our model (1.2.12) is equivalent
to the Mahajan spatiotemporal model of Innovation Diffusion [104].

More interestingly, in [36, 39] Capasso proposed, in the framework of an SIR-like diffusion of innovation
model, a family of non-local models of the FIA. This family of models is non-locally depending on the
adopters, again in the context of a uni-directional flux. In our case, instead, we have two fluxes and it is the

force of infections from the adopters towards non—adopters that is non—local.

1.12 Discussion and concluding remarks

The role played by the spatial structure of information used by vaccination decision makers is a main topic of
behavioral epidemiology. In this chapter, within a spatial framework based on classical diffusion, the effects
of three different structures of information ((i) purely "local" information, "local" plus a "global", country-
wide, average information, (iii) a mix of local and non-local information) on the dynamics of vaccine uptake
in absence of the infection have been investigated, so that - given the background of low incentive to im-
munization - the dynamics of VAEs emerge as the key determinants of vaccination decisions and collective
coverage. This possibly represents a main case of the current public health landscape in modern industri-
alized countries, where a number of vaccine preventable infectious disease were successfully eliminated
"locally" (think e.g, to polio which was locally eliminated long ago in most Europe), but there is still the
need to maintain a high-coverage immunization policy in the post-elimination period to prevent the risk of
infection re-emergence and consequent failure of global scale targets, such as eradication.

The analyzes focused on the pattern and properties - namely stability, bifurcation, existence of travelling
waves, effects of time memories, and the effects of awareness campaigns by the Public Health System - of
the key space-homogeneous equilibrium solutions, that are termed the "behavioral equilibria".

The main results were as follows.

As regards the stability properties of the behavioural equilibrium, these show a nice interplay between the
form of the spatial information kernel and the nature of the spatial domain (bounded vs unbounded). Under
"purely local information" the BE is always LAS (and GAS) whenever it exists. Under "local and global"

information the BE is always LAS whenever it exists. However, convergence is slower than in the case of
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purely local information. Under "mixed" information results are more articulated. For unbounded domains
stability will prevails independently of the shape of the spatial information kernel under large values of the
diffusion coefficients. In particular kernels that are strictly decreasing in the distance from the local position
are always stabilising independently of the spatial kernel. However, bounded-support kernels (e.g., strictly
positive up to some threshold distance and zero thereafter) can yield instability at low levels of the diffusion
coefficient when the strength of non-local information tend to prevail on local one.

Interestingly, the instability caused by the presence of non—local information can generate generalized trav-
eling waves characterised by more or less pronounced oscillations as well as other not static spatial patterns.
The onset of these travelling waves depends on the interplay between behavioral parameters and the struc-
ture of the spatial kernel. This means that the fraction of individuals favourable to vaccination can show
oscillations. As regards the effects of the presence of time memories i.e., the possibility that agents also
use past - and not only current - information about VAEs in forming their perceptions of risk, at least in the
realistic case of the acquisition—fading kernel, no further specific instability can arise. This result contrasts
with the fact, widely known in the dynamic system literature and first stressed in the behavioral epidemiol-
ogy debate in [66], that the presence of past information typically has destabilising effects on equilibria that
were at least locally stable in the absence of delays.

However, the presence of information memories can remarkably impact on the "shape" of the generalised
travelling waves. In particular, for certain combination of the characteristic times of the memory kernel, it
might happen that internally to the propagating front the oscillation are wild enough that, at each simulated
time, there are large zones where the proportion favorable to vaccination approaches zero, thereby compro-
mising the herd immunity of the population.

Remarkably, instabilities and emergence of generalised travelling waves are cleared out when vaccine aware-
ness campaign are enacted by the public health system, in line with the intuitions supplied in [65].

This work obviously has a number of limitations.

A key limitation lies in the basic hypotheses that at the macroscale the agents’ mobility can be approximated
by classical diffusion i.e., by random movements around geographic space. This clearly represents a coarse
approximation that makes it the present model essentially a benchmark for providing clear-cut baseline re-
sults, whose robustness will have to be grounded - in future work - against more robust hypotheses. In fact,
real patterns of mobility of human individuals are complex [83] and can introduce remarkable implications
for infection patterns, such as unexpected phase transitions [13]. A promising recent route towards the
modeling of human mobility - still within the PDE setting - is the one currently known as superdiffusion
[24, 144, 145, 146]. Superdiffusion allows flexible, and therefore potentially more realistic, representations
of spatial mobility while, at the same time, it keeps a good deal of analytical tractability. This makes it
superdiffusion as a natural candidate for future extensions of the present work. Remarkably indeed, Brock-
mann and Hufnagel [28] have modelled a double chemical reaction leading to an classical imitation game
in case of superdiffusive mobility of molecules and to follow this approach in a follow-up work is planned.
A second limitation of the present work lies in the specific case-study, namely a vaccination scenario in the
absence of the infection. As argued in the introduction, this case is a central one but pairwise importance is
played by those alternative scenarios - still in relation to vaccine preventable infections - where the disease

is continuously re-introduced, as is the case of measles, which has caused sizable epidemics all around Eu-
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rope and the US in the last few years (ECDC2019,WHO02019). Further forthcoming work will therefore be
devoted to the study of the spatio-temporal interplay between the vaccine opinion dynamics and infection

spread.
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Chapter

A MATHEMATICAL MODEL OF CHOLERA
ENVIRONMENT-HOST-ENVIRONMENT
TRANSMISSION DYNAMICS

Part of this chapter, concerning the exclusively non-spatial model, was presented at the International Con-
ference MathCompEpi 2018, held in Erice, Trapani, from 28/8 to 05/09 2018 and has materialized in the
following paper:

A. Lupica, A. B. Gumel and A. Palumbo. On the computation of reproduction numbers for the environment-

host-environment cholera transmission dynamics,

that is currently submitted in Journal of Biological Systems (the paper was recommended for publication

after minor revisions).

2.1 Introduction

Cholera, a bacterial disease that affects the intestinal track, is caused by the bacterium Vibrio cholerae.
Infection with the disease, which can be effectively treated using antibiotics if caught early (typically within
the first two days of onset of symptoms), can result in severe diarrthoea and (subsequently) dehydration,
which, if untreated, can be fatal. Cholera continues to be a major public health problem in many parts of
the world (most notably in the Indian sub-continent and some parts of Africa, Asia and Latin America)
[5, 172, 173, 175] (Figure 2.1). Figures from the World Health Organization (WHO) [173] show that, each
year, the disease accounts for between [1.3- 4] million cases and [21.000-143.000] fatalities globally. It is
noteworthy that many cholera-endemic countries are now pledging to end cholera outbreaks by 2030 [172].

Although a secondary (but less important) human-to-human mode of cholera transmission exist [82,
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139, 155], cholera is primarily transmitted to humans from the environment by ingesting food or water
contaminated with the bacterium V. cholerae [52, 84]. The disease has a short incubation period (ranging
from a few hours to five days [138]) and its common symptoms are diarrhoea (leading to severe dehydration),
vomiting, loss of skin elasticity, thirst, and muscle cramps [138, 184]. Most cholera-infected people (at least
80%) do not become ill, although they may carry the V. cholerae bacterium for weeks and slowly excreting
it into the water supply [15, 138, 173]. However, when illness does occur, about 80%-90% of episodes are
of mild or moderate severity and are difficult to distinguish clinically from other types of acute diarrhoea
[173].

Basic preventive measures, such as improvements in sanitation systems, effective and adequate drinking
water and sewage treatment, and improved food and personal hygiene, are generally adopted in cholera-
endemic areas to minimize human contact with V. cholorae-contaminated sources. In particular, the water,
sanitation and hygiene (WASH) strategy is widely implemented in endemic areas [79]. The disease can
be successfully treated, in most cases, using oral rehydration therapy [170, 177] (which is highly effective,
safe, and simple to administer) and antibiotics [95, 136, 170, 177]. Owing to the common and widespread
administration of antibiotics to treat cholera-infected humans, the emergence of antibiotic resistant strains
of V. cholerae is very well documented in the literature [93, 95, 138]. Furthermore, a number of safe
and effective anti-cholera vaccines have been developed for use in humans (see, for instance, Safi et al.
[81, 138] and some of the references therein). People infected with V. cholerae are generally treated using
fluid replacement therapy and antibiotics [138, 139]. Cholera-endemic regions around the world that do
not adhere to the aforementioned preventive measures, and provide access to treatment to infected people,

continue to experience cholera outbreaks [5, 172, 173, 175].
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Figure 2.1: Global cholera map: geographical patterns of annual number of cholera cases in endemic countries. [5].

Mathematical models, typically of the form of deterministic system of nonlinear differential equations,

have been used to gain insight into the transmission dynamics and control of cholera in endemic areas.
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For instance, Capasso and Paveri-Fontana [37] developed the earliest model to describe the 1973 cholera
epidemic in Bari, Italy [12]. Codeco [50] extended the two-dimensional model developed by Capasso and
Paveri-Fortana to include the dynamics of the susceptible population. More recently, Pascual et al. [128]
reviewed some quantitative facts about cholera and climate. In a short section, they proposed a model with
four variables, i.e. the number of susceptible individuals, the number of infected individuals, the number of
fomites (or bacterial abundance) and the water volume. Further, authors in [18, 19, 20, 21, 49, 111] explored
the problem of the spread of cholera, considering two or more populations of bacteria living in two different
but connected aquatic environments. Safi et al. [138] developed an 11-dimensional deterministic model for
assessing the combined impact of dose-structured cholera vaccination and treatment on the dynamics of two
cholera strains in a population.

The dynamics of the models developed for cholera transmission dynamics and control are generally
governed by an epidemiological threshold, known as the reproduction number (and generally denoted by
Ro). Epidemiologically-speaking, the quantity Ry measures the average number of secondary infections
generated by a typical infectious individual introduced into a completely susceptible population [7, 86]. In
general, the disease dies out when Ry < 1 and persists in the population when Ry > 1. The next generation
operator method (NGM), developed by Diekmann et al. [62, 61] and elaborated by van den Driessche and
Watmough [161], is popularly-used in the mathematical biology community to compute this epidemiological
quantity.

As noted by van den Driessche and Watmough [161], owing to the fact that cholera is an environment-
host-environment epidemic, different expressions for Rg can be obtained, depending on the interpretation
of the role of the environment. For example, Bani-Yaghoub et al. [14] highlighted the issue of calculating a
valid expression for R for diseases transmitting through the contaminated environment. This problem, of
computing the correct R for environmentally-transmitted diseases, can be overcome by using the notion of
type reproduction numbers [85, 133], which provides a unique threshold value, regardless of the interpre-
tations of the role of the environment.The concept of type reproduction number was further generalized by
Shuai et al. [141, 142], useful when the control strategies act on a part of the population or on the interactions
between the different populations.

The dynamics of cholera is greatly associated with environmental contamination (it is well-known that
the bacterium is autochthonous to the aquatic environment [52]). In particular, V. cholerae inhabits seas,
estuaries, brackish waters, rivers, and ponds of coastal areas of the tropical world [53, 119] (and surface
water in proximity to cholera-infected individuals is frequently contaminated with the V. cholerae agent
[147]). Further, the bacterium can survive long-term, perhaps for years, in such aquatic environments [52].
Hence, models for the transmission dynamics of the disease should incorporate the highly significant role
such environmental factors play in the disease dynamics (vis a vis the production and long-term survival of
V. chlorea in the aquatic habitat). Consequently, the aim of this study is to propose a new model for cholera
transmission dynamics that take into account the role of environmental factors on the disease dynamics in
addition to explicitly accounting for the impact of the hydrological fluctuations of the volume of available
drinking water in a cholera-endemic setting. In particular, a cholera-endemic community with a local pond-
river network as its source (reservoir) of available drinking water will be considered. The notion of the

type reproduction number will be used to assess the population-level impact of various anti-cholera control
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strategies.

Another challenge in current discussion is to take into account spatial heterogeneity, that usually is
rarely considered, giving a broader understanding of the phenomenon. Indeed, in the discussion so far
presented, it has been assumed that there is a unique community of people who interact and share the same
resources. However, the spatial distribution of communities and how they interact is crucial to understanding
the spatial spread of the epidemic in a disease-free region [18]. Furthermore, as reported in [19], [51],
[99], V. cholerae is a natural member of the coastal aquatic microbial community and can survive outside
the human host in the associated aquatic environment with chitinaceous zooplankton such as copepods,
molluscs and also with aquatic vegetation. Therefore, the disease can spread from the coastal region, where
it is indigenous, to the internal area through waterways and river networks. Similarly, the infection can
spread from the inner regions with epidemic explosions in the surrounding areas. On the other hand, authors
in [118], povide the basic reproduction numbers estimated for all 10 Zimbabwean provinces and the results
were highly heterogeneous, which implies that the underlying transmission model varied widely across the
country. Similarly, Tuite et al. [157] obtained very different reproduction numbers for the 10 administrative
departments of Haiti during the outbreak of cholera. Different models take into account spatial spreading of
cholera: for example, systems in [18, 19] consider a spatial network addressed by viewing the environmental
matrix as an oriented graph (i.e., a directed graph having no symmetric pair of directed edges). Nodes
represent human communities (cities, towns, and villages) in which the disease can be diffused and grow.
The edges represent links between the communities, typically hydrological links. Edge direction is chosen
accordingly to the flow direction. Authors in [165, 166] presented, under Fickian diffusion hypothesis, an
epidemic model for cholera transmission dynamics. In the present dissertation, the ODE model will then be
extended to the spatially heterogeneous case, using the simplest approximation, already presented by Noble
[125] for epidemic propagation: the Fickian diffusion.

The chapter is organized as follows. The ODE model is formulated in Section 2.2. Its basic qualitative
properties are also explored. Detailed computation of the basic reproduction numbers of the model, for all
possible transmission scenarios, is reported in Section 2.3. The associated types reproduction numbers of the
model are computed in Section 2.4. The developed model is used to assess the population-level of various
anti-cholera control strategies are carried out in Section 2.5. A qualitative study of endemic equilibrium
state is placed in Section 2.6. Section 2.7 presents the formulation of the PDE model: for this system a
qualitative study of traveling waves solutions in Section 2.8 was provided a qualitative study of the estimate
of the basic reproductive number related to the spatial model in the Section 2.9. The numerical simulations
on the PDE model are placed in Section 2.10.

2.2 Formulation of Mathematical Model

The model to be designed in this study is built on two basic components, namely an epidemiology com-
ponent for the disease dynamics in a human population and a hydrology component for the water balance
(within the local pond-river system) . Cholera is endemic in many countries in Africa and Asia (mainly in
India and Bangladesh), although a number of outbreaks have also occurred in Eastern Europe and Haiti. In

most of the rural areas of these countries, drinking water supply source (and reserve) mostly comes from
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ponds and small rivers that are often interconnected [131]. Thus, cholera dynamics in such settings is as-
sociated with the contamination of the two local water sources with V. cholerae (i.e., cholera ecology), the
inflow and outflow of water to and from the two interconnected water sources (i.e., water balance or hy-
drology), and V. cholerae transmission between humans due to human contact with the contaminated water
sources (i.e., cholera epidemiology). The model proposed for this setting captures the three main elements
(of ecology, epidemiology and hydrology). In particular, the ecology-epidemiology-hydrology model to
be designed in this study is that of the transmission dynamics of cholera in a cholera-endemic community
whose main source of drinking water is a local network of a pond (typically defined as a small basin con-
sisting of stagnant water) and a river (consisting of flowing water). Figure 2.2 depicts a schematic of a

pond-river water network system for a typical cholera-endemic community.

The total human population at time ¢, denoted by N (%), is split into mutually-exclusive compartments of
susceptible (S(t)) and infected (I(¢)) individuals, so that N (t) = S(t) + I(¢). Similarly, the total volume of
water available to the community is split into the volume of water in the local pond (denoted by V),(t) > 0)
and the volume of water in the river (V" > 0, assumed constant). Consequently, following [18, 19, 20, 21,
49, 111], the total V. cholerae bacteria population in the community at time ¢, is split into the total number
of bacteria in the pond (denoted by B, (t)) and the total concentration of V. cholerae bacteria in the river
(B, (t)). While it is assumed that the water volume in the river is constant, the water volume in the pond is

assumed to vary with time (as this is affected by rainfall, evaporation and/or drainage [21, 49, 132]).

(a) (b)
Figure 2.2: A pond-river network in a typical cholera-endemic setting. Figure 2.2(a) was adapted from [154], while
Figure 2.2(b) was adapted from [156].

The population of susceptible humans is increased by recruitment (due to birth or immigration) at a per

capita rate 11 and by the recover from cholera infection at a rate v*. This population is decreased following

the acquisition of cholera infection from the cholera-contaminated pond at a rate 3, , where 37

7P
KV + By
is the rate of cholera infection from bacteria in pond and k; is the minimum concentration of V. cholerae

in the pond that guarantees 50% chance of V. cholerae transmission per contact [128]. Similarly, infection

is acquired from the (contaminated) river reservoir at a rate B:ﬁ, where [} is the infection rate
T T

from bacteria in river to host and k, is the saturation parameter that accounts for the minimum V. cholerae

concentration in the river that guarantees 50% chance of cholera transmission. It is assumed that humans

in all epidemiological compartments die naturally at a rate p*. Thus (where a dot represents differentiation

65



with respect to time ¢):

. B B
S =T+~ - ( gf-—2 f— = | S = WS
T <5pk;vp+3p+5’”kr+BT) p

The population of infected individuals is generated by the acquisition of infection from the pond or the river.
It is decreased by recovery (at the rate v*), natural death (at the rate ;1*) and cholera-induced mortality at a

rate 0*. Hence,

| B B
P (g D) S (0
<5Pk;;vp+3p+ﬁrkr+3r> 0+ w45

It follows from the above two equations that the rate of change of the total human is given by:
N =11 — py*N — 61.

It is worth noting that, in the above formulation, the Michales-Menten (Holling type-II) incidence function
is used to model the cholera transmission rates above.
The bacterial population in the pond is increased by V. cholerae shedding by infected humans at a
rate 6, and by the natural reproduction of free-living V. cholerae bacteria in the pond at the logistic rate
B
r <1 — kp> (where 7 is the reproduction rate and &y, > B, (t) for all t is the carrying-capacity of free-

bp
living V. cholerae in the pond (i.e., kp), is the maximal capacity of free-living bacteria in the environment)).

This formulation is motivated by the fact that warmer temperatures (near the surface of the water body) are
known to favor the attachment, growth, and multiplication of V. cholerae [21] (this is accounted by assuming
that, within the pond, the bacterial concentration B,,() at time ¢ increases according to a logistic per-biomass
growth rate). The bacterial population in the pond is further increased by the influx of contaminated water
from the river, at a rate A}V, B, (where V,* is the constant volume of water in the river). This population is
decreased by the outflow of water from the pond to the river, at a rate A} B,, and by the natural death of the

bacterium at a rate u3;. Thus,

. B

B, =01 +1B, ( - k:) + N VIB, — X\ By — npBy.
P

Similarly, the bacterial population in the river is increased by shedding (at a rate 7 /V,*) and by the influx

of contaminated water from the pond, at the rate A\;B), /V.*. This population is decreased by the outflow of

water from the river to the pond (at the rate \y) and by natural death (at the rate u7;). Hence,

B, = WI+ Apv—;: — NB, — 3B,

Thus, denoting with B(t) = B,(t) + V,*B,(t) the total number of bacteria in the pond and the river, we
obtain the following equation:

: B
B = (65 +6;) + 7B, (1 — p) — wyB.
Kpb

66



Finally, the total volume of water in the pond is increased by precipitation at a rate p and by the inflow
of water from the river (at the rate \y). It is decreased by the outflow to the river (at the rate )\;) and by
drainage, at a rate d;. This gives:
Vo =0+ AVe — AV, — 42V

It is assumed that there is always a minimum amount of water V},(mm) > 0 in the pond, such that 0 <
Vp(mm) < V,(t) for all t > 0. This assumption guarantees water exchange between the pond and the river,
in addition to sustaining V. cholerae transmission to the human host via contact with the contaminated water
in the pond.

In summary, the ecology-epidemiology-hydrology model for the transmission dynamics of V. cholerae
in a population is given by the following deterministic system of nonlinear differential equations (Figure 2.3
depicts a general transmission schematic of the model. The state variables and parameters of the model are
described in Table 2.1):

. B B
S =1 I — |85 P . J S —u*s
+’Y (ﬁpk;%+Bp+/87kr+Br> w ’
. B B
I _ * yo * T S_ * * 5* I
(pk;;v;)+Bp+BTkr+Br> ('7 + e+ )7
. B
B, = 001+ [r <1 - p) P M*B] B, + \:V*B,, @.2.1)
Ep
B’I‘ = Vir*l + )\pW — (,UzB + AT) BT,

Vo = p+AVe— (A +d;) V.

The main assumptions in the formulation of the model (2.2.1) include:
1. Exponentially-distributed waiting times in each compartment of the model.

2. Recovery from cholera does not induce permanent (or partial) immunity against future V. cholerae

infection.

3. The total volume of water in the pond (V,,(¢)) equals or exceeds a certain minimum amount (denoted
by Vp(mm)) for all time ¢ > 0. This is the minimum amount needed to support water exchange between
the pond and the river, and sustain V. cholerae transmission to humans from the contaminated pond.

Further, the total volume of water in the river (V,*) is strictly positive for all time ¢ > 0.

4. Nonlinear (Michales-Menten) incidence functions are used to account for saturation in the infection
rates [21, 128].

5. No growth rate is assumed for the concentration of V. cholerae in the river (B,(t)) [18, 19, 20, 21, 49,
111].
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6. The two local water reservoirs (pond and river) are interconnected.

The model (2.2.1) is an extension of many of the models for cholera transmission dynamics, such as those
in [18, 19, 20, 21, 49, 111, 50, 128, 132, 139], by, inter alia:

1. incorporating the dynamics of V. cholerae in an interconnected pond-river water network (i.e., we
consider two different but interconnected aquatic environments for V. cholerae dynamics). A single

water source was considered in [50, 128, 139];

2. including the inflow and outflow of water between two different aquatic environments (pond and
river), not considered in ([50, 128, 139]);

3. using a nonlinear logistic function for the growth of bacteria in the pond (no bacterial growth rate
is considered in [21, 49, 132, 139]; further, a linear bacterial growth function was considered in
[50, 128]);

4. including an equation describing the dynamics of water volume in the pond, taking into account

precipitation, drainage and water transfer to and from the river (this was not considered in [50, 128]);

5. including the possibility that humans can become infected and can spread bacteria both in the pond
and in the river. Thus, we consider a dual V. cholerae transmission (from river and from pond) and
shedding (into the river and the pond) rates. These dual transmission and shedding pathways were not
taken into account in [18, 19, 20, 21, 49, 111, 50, 128, 132, 139].
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Figure 2.3: V. cholerae transmission scheme in an interconnected pond-river network

It is convenient to introduce the following change of variables and re-scaling on the model (2.2.1):
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State Variable

Description

S(t) Number of susceptible individuals at time ¢
1(t) Number of infected individuals at time ¢
By(t) V. cholerae number in the pond at time ¢
B (t) V. cholerae concentration in the river at time ¢
V() Volume of water in the pond at time ¢
Parameter Description Unit Baseline Value References
II Recruitment rate of humans (by birth or immigration) day™* 12.05 [14]
w Natural death rate of humans day 1 9x 1075 [14]
~y* Recovery rate for human day’l 0.2 [14, 49, 132]
o Disease-induced death rate for humans day™* 4 %1074 [49]
By (Br) Transmission rate in the pond (river) day ™1 5(5) [49]
ky (kr) Concentration of V. cholerae in the pond (river) m™® 10%(106) [139]
that yields 50% chance of being infected with cholera
7 Natural death rate for bacteria day 1 0.8 [14]
0;(67) Bacterial shedding rate in the pond (river) day~* 10* (10%) [49]
r Reproductive rate of free-living bacteria day ™! 0.3 [14, 89]
kbp Carrying-capacity of free-living bacteria in the pond - 10° [89]
P Precipitation (and river flow) rate into the pond m3day~ 0.02 [132]
dy Drainage rate of the water in the pond day 1 0.02 [132]
Ap (A7) Rate of inflow of water from pond (river) to river (pond) day™* 0.5 (10) Assumed
V;mm) Minimum amount of water in the pond (constant) needed ~ m® - -
to support water exchange and transmission
v Volume of water in the river (constant) m> 1.62 x 10° [49]

Table 2.1: Description of state variables and parameters of the model (2.2.1)
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where P = 2 ;’}3{; and H = #ﬂ* It should be noted that the growth rate of the bacterial population in
T D

the pond (r) is now re-scaled to 1 (i.e., 7 = 1 in the normalized model (2.2.3)). It follows from the above

re-scaling that the total human population, n, is now given by n = s 4 4. Using the change of variables and

re-scaling (2.2.2) in the model (2.2.1) gives the following equivalent normalized system:

(

b b
': 1_ — p r r y
§=p(l—s) (Bpkpvp+bp+61+br)s+w’
b

: b, . ,
= r - J )
i (ﬁpkpvp+bp+51+br)8 (y+ 0+ pi

; . (2.2.3)
by = 0,0+ (1= by — jus — Ap) by + A Vb,

br = 0,1+ Ap2 — (i + Ar) by,

Uy = (dr + Ap)(1 — vp).

\

The analysis in this study will be carried out on the normalized model (2.2.3). Since, like the original
model (2.2.1), the model (2.2.3) monitors the temporal dynamics of human and bacterial populations, all its
state variables and parameters are non-negative. In order to ensure substantial back-and-forth flow of water
between the pond and the river, it is assumed, from now on, that A, > 1 (i.e., )\; > r)and A\, > 1 (ie.,
Ar>).

2.2.1 Basic Properties of the Model

In this section, the basic qualitative properties of the normalized system (2.2.3) are explored. In particular,
results for the existence, uniqueness, boundedness and non-negativity of its solutions are established. It is
convenient to define the following sets:

Dy = {(s,i)eRI:0<s+i<1},
Dp = {(bp,by) ERE:0<b,+ Vib, <b*},
Dp = {vp€R+:0<v£mm)§vp§1},

0 97”‘/7" i min (i)
u>0and vé ):VPT>O.

uB
Let D = Dy x Dp x Dp. We claim the following result:

where b* =
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Theorem 2.2.1 The normalized model (2.2.3) with initial conditions in D has a unique solution that exists

and remains in D for all time t. Furthermore, the positively-invariant region D attracts all solutions in
2 2

RE x R xRy,

Proof. Since it is clear that, for all initial solutions of the normalized model (2.2.3) in the region D, the
functions in the right hand-sides of the system (2.2.3) are locally Lipschitz in (s, 4, by, by, Up)T. Hence, it
follows, by the Cauchy-Lipschitz theorem, that the normalized model (2.2.3) admits a unique local solution.
Furthermore, adding the first two equations of the system (2.2.3) gives (noting that n(t) = s(t) +i(t))

dn(t)
dt

= pl[l —n(t)] = §i(t), 2.2.4)
so that,

p et o0 < P <y (o)

Hence, it follows, by standard comparison theorem [87], that

0< —H <) <1, forallt > 0 if n(0) < 1.
T )
Furthermore, it follows from Equation (2.2.4) that dn(t)/dt < 0 whenever n(¢) > 1. Hence, the subsystem
of the model (2.2.3) containing the equations for the dynamics of the human populations (s(¢) and i(¢)) is

non-negative, bounded and invariant in Dp.

Let b(t) = by(t) + V;.b,(t). It follows then that the total bacterial population in the aquatic environment (i.e.,
bacterial populations in the pond and the river) satisfy the following equation:

db(t ,
D) — (0,4 0.30i0) + by 01— by(1)] — (). 225)
Since by, (t)[1 — b,(t)] < 1/4 for all ¢, and noting that i(¢) < 1 in Dy, Equation (2.2.5) can be written as:
db(t 1
d(t) < <9p +0,.V,. + 4) — upb(t). (2.2.6)

It follows, by solving the inequality (2.2.6), that (where by = b(0)):

1 1 1
b(t) < — [917 +6,V, + -+ (bOMB — 0, — 0,V — ) e—uBt] ’
UB 4 4

2.2.7)
1
= MP+MJWW%—m}

By applying a standard comparison theorem [87], the inequality (2.2.7) can be re-written as:
0<b(t)<b forallt >0if 0 < by < b*.

Further, it follows from (2.2.6) and (2.2.7) that db(t) /dt < 0 whenever b(t) > b*. Hence, the total bacterial

population in the aquatic environment, b(t), is bounded, non-negative and positively-invariant in Dp.
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Finally, it is clear from the last equation of (2.2.3) that dv,/dt < 0 whenever v,(t) > 1. Further,
integrating this equation gives:

Up<t) =1+ (Upo - l)ei(dﬂw\p)tv p(0) = vpy,

from which it follows that

. _ <13 < . 1
t_l}gloovp(t) L, 0<uy(t) <1if 0 < vy, <1, andhiriiljpvp(t) 1

Hence, the subsystem of the model (2.2.3) consisting of the equation for the dynamics of the water volume
in the pond (v)) is non-negative, bounded and invariant in Dp.

In summary, it follows from the above analyses that the region D is positively-invariant for the normal-
ized model (2.2.3), and all solutions of the normalized model are non-negative and bounded (since these

results hold for the three constituent subregions, Dy, Dp and Dp). O

2.3 Reproduction Numbers for Various Transmission Pathways

The disease-free equilibrium of the normalized model (2.2.3) is given by Eg = (s*, 1", b, by, v;) = (1,0,0,0, 1).
Its local stability can be analysed using the next generation operator method (NGM) [61, 62, 161]. This
method entails tracking the new infection terms as well as the linear transition terms in and out of infected
compartments. In particular, the method involves computing two associated matrices, F' (of the new infec-
tion terms) and V' (of the linear transition terms), and the associated basic reproduction number, denoted
by Ry, is then given by Ry = p(F'V 1) [61, 62, 161], where p is the spectral radius (the dominant eigen-
value of the next generation matrix, X = F'V 1), The consequence of this approach is that the disease can
be effectively controlled (or eliminated) if Rg < 1, and will persist in the community if Ry > 1. In other
words, the dynamics of the disease transmission model is (often) completely determined by the reproduction
number Ry. Epidemiologically-speaking, the threshold quantity R represents the average number of new
infections generated by a typical infected individual introduced into a completely susceptible population. In
the context of the normalized model (2.2.3), the reproduction number will represent the average number of
new cholera cases generated by a V. cholerae particle introduced the local pond-river network. It can also
be a measure of the average number of V. cholerae particles shedded into the environment (i.e., into the
pond-river network) by a typical cholera-infected human.

Thus, a control strategy (e.g., vaccinating a segment of the population) that can bring (and maintain) Rg
to a value less than unity may lead to effective control or elimination of the disease. However, for a disease
with multiple population types (e.g., cholera with V. cholerae residing in the human host as well as in the
aquatic environment (i.e., in either the local pond or river)), anti-cholera control measures can be directed
to, or focussed on one, population type. This leads to a different expression for the associated reproduction
number (Rg) corresponding to each population type targeted for anti-cholera control. For instance, in the
models considered in [43, 118, 155], the expressions for the associated reproduction number (Rg) is rep-

resented as a sum of two separate terms corresponding to the host-to-host and to the environment-to-host
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transmission paths. This could suggest the independence of these pathways in the disease transmission cy-
cle. Furthermore, the Ry for the model in [25] has a square root term that suggests a more complicated
interaction between host-to-host and environment-to-host transmission pathways. It is clear from the above
that, for a cholera model such as the one presented in the current study, the expression for the associated
reproduction number obtained will be dependent on how the role of the environment is interpreted vis a
vis cholera transmission dynamics (i.e., how the role of the environment is interpreted in transition be-
tween disease compartments and in transmission of secondary infectious hosts and free-living V. cholerae
[14]). As noted by Bani-Yaghoub et al. [14], the interpretation of this role has been controversial in the
literature. In particular, while numerous studies environment-host-pathogen interactions suggest that the
pathogen-contaminated environment serves as a reservoir of infectious free-living pathogens for infection
of various host populations (e.g., humans, other non-human animals and plants) [27, 55, 140], other studies
show that the environment plays only a somewhat marginal role on the complex dynamics of infectious dis-
eases [10, 58, 59, 108, 168] . Consequently ([14]), we hypothesize the following four scenarios where the
environment acts as a (1) Transition, (2) Transition-Reservoir case I, (3) Transition-Reservoir case II and (4)
Reservoir of V. cholerae in the environment-host-environment cholera transmission dynamics we consider
in this study . In other words, the following four possible interpretations (i.e., transmission pathways) of the
role the environment plays on cholera transmission dynamics will be considered for the normalized model
(see also Table 2.2):

Scenario 1 (the environment acts as Transition): in this scenario, both the shedding of V. cholerae into
the environment and the growth of V. cholerae within the environment are considered as transitions within
the initial infectious state of the host population. Therefore, the the parameters of the model related to the

shedding and growth rates of the bacteria are placed in the V' matrix.

Scenario 2 (the environment acts as Transition-Reservoir case I): for this scenario, the growth of bac-
teria in the environment is regarded as vertical transmission of an infectious pathogen (V. cholerae) from
the environment to the environment. Therefore, the parameter related to the growth rate of the bacteria in
the environment (i.e., in the pond) is counted as new infection generated in the environment, and is, conse-

quently, placed in the F' matrix.

Scenario 3 (the environment acts as Transition-Reservoir case II): the environment has a double role
under this scenario. In particular, while the shedding of bacteria by the host into the environment is counted
as new V. cholerae infection, the growth of bacteria within the environment is considered as transitions
within the initial infectious state of the host population (thus, the environment acts partially as reservoir
and partially as transition). Consequently, the parameters related to the shedding rates are placed in the ¥
matrix, while the parameter related to the bacteria growth in the environment (i.e., in the pond) is placed in

the V matrix.

Scenario 4 (the environment acts as Reservoir): in this scenario, the environment is assumed to act as a

reservoir. Hence, new infections are added into the environment both through bacteria growth (in the pond)
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and bacterial shedding by infectious humans. Hence, the parameters related to both bacterial shedding and
growth are placed in the F' matrix.

Cholera Transmission | Bacteria Shedding | Growth of Bacteria
Rates 3, and 3, Rates 6, and 6, | in the Pond (r = 1)
Scenario 1 v
Scenario 2 v v
Scenario 3 v v
Scenario 4 v v v

Table 2.2: Contributions of the various cholera transmission pathways (direct environment-host transmission and
bacterial shedding) into the next generation matrix of new infection terms (F’).

It is worth mentioning that Scenario 3 (where bacterial shedding rates are considered as new infections,
while bacterial growth is counted as transition term) is not included in the scenarios considered in the
cholera transmission model presented in [14].

It is convenient to define the following positive constants:

ay = Vi0p A\ + ep()\r + ,U'B)7 a2 = (ep + ‘/7”97‘))\]) + V0, 1B, 2.3.1)
ag =7y+0+p, ay = A\ + [iB-
The computation of the reproduction number of the normalized model (2.2.3), associated with each of the

aforementioned scenarios, is given below.

2.3.1 Scenario 1 (the environment acts as Transition): pathogen shedding into, and growth
within, the environment considered as transitions within the infected host population

For this setting, terms related to bacterial shedding and growth are included in the matrix V' of transition

terms. For this scenario, it can be shown that the associated matrices F' and V' are given, respectively, by

0 % Br as 0 0
P
= 0 0 0 and V= —9p up — 1+ )\p Vi |, (2.3.2)
A
0 O 0 _‘97’ _75) ay

so that,
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K, = F1V1‘1

Vrﬂpal + k?pﬁr(a2 - ‘/rer) kpﬁ?")\p + Vrﬁpazl ‘/rﬁp)\r + kpﬁ?"()\p + up — 1)
| asVikplaa(ps — 1) + Ayl Vikplaa(pp — 1) + pBAy] kplaa(pp — 1) + pnpAy]
o 0 0 0
0 0 0
(2.3.3)

It follows that the spectral radius of NGM (K )is given by the quantity:

ViBpar + kpBr [(0p + Vi0r) Ap + V20 (up — 1)]

R(l): K) =
0" = PUk) kpViazlas(up — 1) + ppAy

: (2.3.4)

that represents the average number of secondary infections through environment-to-host transmission caused
by one infectious individual in its infectious lifetime, regulated respect to the bacteria growth or decay rates
in the environment. It is worth noting from (2.3.4) that the condition ;g > 1 must be imposed to ensure that
Rél) > 0. Hence, it is assumed, from now on, that ug — 1 > 0. It should be mentioned that Bani et al. [14]
assumed the strict inequality up > 1 (however, for our normalized model (2.2.3), it is possible to extend
the strict inequality assumption in [14] to also include the case where g = 1 (there is no singularity in the
normalized model when pp is set to 1; this is due to the interconnected nature of the pond-river network we
considered in this study).

In the context of the normalized model (2.2.3), the assumption up > 1 means that the natural death
rate of bacteria (up) equals the growth rate of bacteria in the pond (1; recalling that, for the normalized
model (2.2.3), the growth rate r is re-scaled to 1). The ecological implication of this assumption is that
the bacterial population in the pond (b,(t)) is unable to maintain itself in the environment in the absence of
human shedding (represented by 6,,). We note that this also applies to the bacterial population in the river (in
fact, in the case of bacterial population in the river (b, ()), this assumption means that the up > 0, since, for
the normalized model, the bacterial growth rate in the river is 0). Therefore, considering the entire bacterial
population in the pond and in the river, the above assumption implies that the bacteria is unable to survive
in the absence of infection from the host (i.e., the bacteria cannot maintain itself in the environment). It is
important to underline that, with this assumption, all the entries of the NGM K are non-negative and the
well-posedness of 72(()1) is ensured.

It should be mentioned that the eigenvalues of the matrix of linearization of the entire ODE system

(2.2.3) around the disease-free equilibrium Eg (denoted by A\;; ¢ = 1, - - - , 5) satisfy the quintic polynomial:
A4 1) N4 dy 4 2p) (A2 + b2 A% + b1 A + bg) = 0, (2.3.5)
where,
bo=a3z+as+ A\ +pup—1, bo = aslas(up — 1) + ,LLB)\p] (1 — 7'\’,(()1)) ,
B0, (2.3.6)

b1 = (a3 + aq)(pup — 1) + az(as + Np) + ppAp — Brby — T
P
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It follows from the first two terms of (2.3.5) that the eigenvalues \; = —p < 0 and Ay = —(d, + \,) < 0.
Further, it follows from (2.3.6) that the coefficients by and by of the cubic in (2.3.5) are automatically positive
foryp—1 > 0and Rél) < 1. It can also be shown, with algebraic manipulations, that the coefficient b; > 0
whenever R((]l) < 1 (noting the assumption A\, > 1). Moreover, the associated Routh-Hurwitz condition
byby — by > 0 holds if and only if R{" < 1 (see Appendix Al). Hence, the roots of the cubic in (2.3.5)

have negative real part whenever R((]l) < 1. Thus, the disease-free equilibrium (Eg) of the normalized

model (2.2.3) is locally-asymptotically stable whenever R((Jl) < 1. In other words, the application of the
method of standard linearization (around the disease-free equilibrium of the normalized model) corresponds
to Scenario 1 of this study. It is noteworthy that the matrix F; (and also K1) is rank 1 (corresponding to the

associated single transmission pathway).

2.3.2 Scenario 2 (the environment acts as Transition-Reservoir case I): growth of bacteria
regarded as vertical transmission of V. cholerae in the environment

Here, the bacterial growth term is considered as a new infection of the environment. That is, the bacteria

growth rate is placed in the F' matrix. For this setting,

0o o5 as 0 0
kyp
o=y 1 o and %= =t uB+XN AV (2.3.7)
Ap
0 0 0 0y a4
Thus,
Vrﬁp(Vrer)\'ra40p)+kp5r(ep)\p+vr9r()\p+MB)) Vrﬁpa4+kpﬁr)\p VrﬂpAr'i'kpBr()\p‘i‘HB)
kpVrppas(aatip) kpVrpp(aa+Aip) kppp(astip)
— -1 _ Vi A +0pay Vidr
Ky =RV, = asri (@it ) Fp(astiy) e CrEYy
0 0 0
(2.3.8)
Therefore,
N
Réz) = p(K3) = N gl ha %2 (2.3.9)
where,
g1 = Wﬂpal + kp/BTQQ + ‘/;‘kpa3a4, 67“91" (2310)

kpVeppas(as + Ap) 2= ppas(as + Ap)

The expression for R(()z), given by (2.3.9), suggests a more complicated interaction of the environment-to-

host and host-to-host pathways (in comparison to R(()l) for Scenario 1). Further, it is worth noting that the
matrix F5 (and also K3) is rank 2 (corresponding to the two transmission pathways associated with Scenario

2).
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2.3.3 Scenario 3 (the environment acts as Transition-Reservoir case II): shedding of bacte-
ria considered as new infections but bacterial growth is a transition term

In this scenario, bacterial shedding rates are placed in the F' matrix, while the bacterial growth rate is placed

in the V' matrix. Here,

0 @ B, as 0 0
kp
Bs=lo o o|ad Va= 0 pp—14X% AV [ (2.3.11)
)‘p
6, 0 0 0 V. a4
so that,
0 ViBpaa + kpBrAp Ve BpArthipBr Op 5 —1)
kpvr[a4(NB — 1) + >\p,U/B] kplaa(up—1)+Apup]
e,
Ky=FRV;'=|2 0 0 , (2.3.12)
as
0,
- 0 0
as
and,
Vi, Bpar + kpfr [(9 + ‘/;07"))\ + V;“er(MB - 1)]
RY) = p(Ks3) = P pPr 17p 4 . (2.3.13)
0" = pUK) \/ kpViaslas(up — 1) + ppAp

It should be noted that the quantity R[(]g) > 0 (whenever ug — 1 > 0). Furthermore, it is clear that

2
R(()l) = (Ré?’)) . For this scenario, the associated matrix of new infections (F3) is rank 2 (corresponding to
the two associated transmission pathways; the matrix K3 is also rank 2).

2.3.4 Scenario 4 (the environment acts as Reservoir): the environment is assumed to act as
a reservoir

In this case, both bacterial growth and shedding are considered as new infections of the environment. Hence,
both the shedding and growth rates are placed in the F' matrix. For this scenario,

0 By B, as 0 0
kp
Fi=|, 1 o] and Vi= 0 pt+ry AV | (2.3.14)
p
)‘p
6, 0 0 o a4
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so that,

V;"ﬂpa4 + kpﬁr )\p

VerAr + kpBT(Ap + NB)

0
kpVienp(as + Ap) kppp(as + Ap)
_ 0 aa V.
K,=Fv =12 B S o 2.3.15
o as pB(as+ Ap) pp(as+ Ap) ( )
6,
— 0 0
as

Hence, it follows that R(()A‘) = p(K4) is the spectral radius of the following associated characteristic polyno-
mial (of K,):

P(A) = AP+ d2A? + di X + do, (2.3.16)
where,
a4 ‘/rﬁp(vrer)\r + Opa4) + kp/Br [ep)\p + VTHT()‘P + /LB)}
dQ:_W’ == kpasVepp(as + Ap) ’
T PRSI (2.3.17)
d _ Brer

" aspp(as+ Ap)
The discriminant of the cubic (2.3.16) is given by [159]:

A, = d3d3 + 18dydady — 4d3 — Adgdy — 27d2,

and it can be shown, after some algebraic manipulations, that A, > 0 (see Appendix A). Thus, all three
roots of the cubic (2.3.16) are real. Moreover, since the coefficients do < 0, di < 0 and dy > 0, it follows,
by the Descartes’s Rule of Signs ( [98]), that p(\) has two positive and one negative real roots. Therefore, its
largest root (i.e., Rgl)) is real and positive, and is given by (obtained from solving the cubic (2.3.16) [159]):

2 3 2 3
@_¢_ . Ja B g a_ i DB 2.3.18
Ro \/2+ 4+27+\/2 1 T ar (2.3.18)
where,
_ my + me
"= 27kausBa3(a4 + Ap)y
(2.3.19)
o = _ 3ViBppnlas + Ap)ar + kp(Vyasa? + 36,up(as + Ap)as)
? Bk Ve i3 (as + Ap)” ’
with,
my = 9V, Bpupas(as + Ap)a,
mz2 = kp(2vra3ai + 9Brpp(as + Ap) (OpApas + Vil (Ar(Ap — 208) — 2up(Ap + 18))))-
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The matrix F} (and also K) is rank 3 (corresponding to the associated three transmission pathways).

In summary, the analyses in this section reveal that, by considering multiple transmission pathways,
multiple reproduction numbers were obtained for the normalized model (2.2.3). The fact that these repro-
duction numbers are not unique may lead to the possible underestimation or overestimation of the control
efforts needed to effectively control or eliminate the disease. To address this problem (of lack of unique-
ness of the reproduction threshold associated with disease transmission dynamics), Roberts and Heesterbeek
[133] and Heesterbeek and Roberts [85] introduced the notion of type reproduction number, denoted by T .
This allows for the determination of a single threshold quantity that is valid for each of the four scenarios
described above (and listed in Table 2.2).

)

The four basic reproduction numbers (Réi ;0 =1,---,4) computed above are compared as follows. In
particular, a plot of each of the reproduction as a function of bacterial shedding rate in the river (6,) and
as a function of cholera transmission rate in the river (3,) are depicted in Figure 2.4 (left and right panels,
respectively). This figure shows that, with the assumption pp — 1 > 0, all four basic reproduction numbers

agree on the threshold value 1(i.e., unity). That is,

RV=1aRP=1rRP =1ar" =1.

Further, for a fixed set of parameter values, numerical simulations (Figure 2.4) suggest that the four repro-
duction numbers are all greater, equal or less than unity. It was further observed that when any of the basic

reproduction numbers exceeds unity, the following ordering always holds:

RY >R S RE > RW > 1.

The order is reversed if any of the basic reproduction numbers is less than unity (that is, R(()l) < R(()Q) <
R(()‘o’) < 72(()4) <.

L 1
R W R
—_ -~ 2
200 RY < —R{Y
g (3) b R{Y
= _R§ pu _R§
g g 1.2
£ €
3 =
2 =z

1.5 <
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k3] B
3 3
g -qg,_ 0.8
219 K]
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Figure 2.4: The plots represent the behaviours of the different expression of R derived: R((Jl) is the blue line, R((JQ)
magenta line, R(()S) the red line and R(()4) the green line. The parameter values used are listed in Table 2.1 with

0, = 103. Ry is a function of the parameter @, in graph (a) and of 3, in graph (b).
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2.4 Type Reproduction Number

First of all, it should be noted that the entry £;; of the NGM K is defined as the expected number of new cases
that a infected individual of type j causes among the susceptible individuals of type ¢, in a fully susceptible
population. To prevent or mitigate an outbreak of a disease, preventive intervention measures (such as
vaccination, quarantine, isolation, public health education etc.) are generally implemented, depending on
the type of the disease and availability of control resources. If these interventions are implemented to all
the sub-populations involved in the disease transmission cycle, regardless of their infection status, then the
quantity R also provides a measure of the minimum coverage level of the adopted control measures needed
to eliminate the disease [7, 61]. Otherwise, if a control strategy is aimed only at particular population
type, such as the use of chemical insecticides to control bacterial population in the aquatic environment
or vaccinating the human hosts, the so-called type reproduction number (denoted by 7, where s is the
population type) takes on the role of R (hence, it also has a direct relationship with the minimum coverage
level of the control strategy or strategies implemented) [85, 133]. In other words, the threshold quantity R
(or, in this case, equivalently, 7) provides a measure of the effort (or coverage level) required to achieve
population-wide elimination of the disease when the adopted control interventions are aimed at a particular
type of population.

In the context of the normalized model (2.2.3), let humans represent population of type 1. Further, let the
bacterial population in the pond and in the river represent bacterial populations of type 2 and 3, respectively.
Let k& be the number of disease transmission scenarios considered (i.e., k = 1, - - - , 4, as discussed in Section
2.3) . It then follows that, in most cases, a strategy that reduces the susceptibility to infection of humans
(type 1), for example, influences all the entries of the NGM that represents potentially infectious contacts
between the bacterium and a susceptible of type 1 (i.e., a susceptible human). Mathematically-speaking,
this strategy affects the entries of the first row of the NGM (K). Similarly, a strategy aimed at reducing the
infectiousness of infected humans (type 1) affects the entries of the first column of the NGM K [14, 85]. It
is worth recalling the following definition.

Definition 2.4.1 /85, 133] The type reproduction number () associated with the population type s is
defined by

T =T K[ — (I — POK;] e, j=1,--- ,k (2.4.1)

where K is a given NGM of order n related to Scenario j, I is the n X n identity matrix, es is an n-
dimensional column vector with all entries zero except that the s entry is equal to 1, and Ps is a projection

matrix with the (s, s) entry equal to 1 and all other entries equal to zero.

Using the notation in [14], let /; = Fi‘/;_l (i = 1,..., k) be the NGMs obtained from different epidemio-
logical scenarios. Further, assume (without loss of generality) that [14]

V; =Vi+ Upand Fj = F; + Uy, {i,j} € {1,...,k}, withi # j, (2.4.2)
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where U, is a matrix with m non-zero rows (say, rows [y, ..., l,,, which correspond to the m disease com-
partments above) and n — m zero rows. Furthermore, V; and F; are transition and transmission matrices
corresponding to Scenario ¢, respectively, while V; and F; are the transition and transmission matrices cor-

responding to Scenario j, respectively (with ¢ = j). It is convenient to recall the following result (proved in

[14]):

Theorem 2.4.1 [14] Let T and 77 be the type reproduction numbers associated with population type s
defined by (2.4.1) and, respectively, derived from the NGMs K; and K, with {i,j} € {1, ...k}, withi # j.
If s # ly, withw = 1,...,m and both T} and T are well defined, then T, = 72,

Theorem 2.4.1 will be used to determine whether or not the type reproduction number computed for each
of the three populations types will be unique for all four scenarios discussed in Section 2.3 (by showing
whether or not the hypotheses of the above theorem are satisfied for each case).

The normalized model (2.2.3) has n = 3 disease compartments (i.e., i(t), by(¢) and b,(t)) and, the
value of the parameter m (for the interactions within and between the disease compartments by, () and b, (t))
depends on the scenarios being compared. For example, if we consider Scenarios 1 and 2, only the role of
the compartment by, (¢) is interpreted differently (since, in Scenario 1, the bacteria growth parameter (r = 1)
is placed in the V matrix, while in Scenario 2 it is placed in the F5 matrix). Hence, in this case, m = 1. If
we, instead, compare Scenario 1 with Scenario 3 or Scenario 4, then m = 2 (since, in this case, both bp(t)
and b,.(t) are epidemiologically interpreted differently; for example, in Scenario 1 the parameters for the
shedding rate of bacteria, represented by ¢,, and 6,., are placed in the V; matrix, while in Scenario 3 they are

placed in the F3 matrix).

2.4.1 Targeting population of type 1 (humans)

In Section 2.3, we showed four different scenarios, leading to different NGM (k;, with i = 1,2, 3,4). For
the normalized model (2.2.3), the total number of V. cholerae transmission scenario considered is four (i.e.,
k = 4). Here, consider population of type s = 1 (that is, we consider the compartment i(¢)). Therefore, in
order to apply Definition (2.4.1) for the computation of the associated type reproduction numbers (7-1(j ); j=

1,---,4), the associated vector e; and projection matrix P; are introduced as follows:
1 1 00
ee=1|0|, A=]0 00 (2.4.3)
0 0 0 O

Considering Scenario 1 (i.e., = 1) and substituting 7 = 1 (and using K1, e; and P) into (2.4.1), one gives
the the following associated type reproduction number related to (targeting) the infected human population
i(t) (e, s = 1)

TV = el K\l — (I - P)Ki] ey,

(2.4.4)

Vrﬁpal + kpﬁr [(Hp + ‘/;‘QT))\p + Vrer(,UB - 1)}
kpVraslas(pp — 1) + ppAp]

)
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where K is the NGM of Scenario 1 given in (2.3.3). Now it is proved that the same expression for 71(1) is
obtained in the other three transmission scenarios. First of all, it can be shown that Assumption (2.4.2) holds
for the normalized model (2.2.3). Indeed, if i = 1 and j = 2 (i.e., if we compare Scenario 1 and Scenario
2), then it follows from (2.4.2) that ( note that m = 1 in this case):

Vo =Vi + Uy, and Fy = Fy + Uy,

where,

U =

o o O
o = O
o O O

In this case, we have [y = 2 (the second row of U, (or, equivalently, U;) corresponds to the compartment
by, that is interpreted differently).
Moreover, if ¢ = 1 and j = 3 (i.e., if Scenario 1 and Scenario 3 are compared), Equation (2.4.2) gives

(note that m = 2 in this case):

V3 =V1 + Us, and F3 = F| + Us,

where,
0 00
Uy=16, 0 0
6. 0 0

In this case, we have [y = 2 and I3 = 3 (the second and third rows of U,, (i.e., Us in this case) correspond to
the compartments b, and b,., that are interpreted differently). Finally, if i = 1 and j = 4 (i.e., we comparing
Scenario 1 and Scenario 4), it then follows from (2.4.2) that ( noting that m = 2 in this case):

Vi =V1+Us, and Fy = F; 4+ Us,

where,
0 0O
Uy = 9p 1 0
6, 0 0

In this case, [y = 2 and I3 = 3 (the second and third rows of U,,, correspond to the compartments b, and
by, that are interpreted differently). It should be mentioned that these can, of course, also be achieved by
comparing all other scenario permutations (i.e., comparing Scenario 2 with Scenario 3, or Scenario 2 with
Scenario 4 or Scenario 3 with Scenario 4).

Second, let 7 (i = 1,2, 3, 4) be the type reproduction numbers associated with population type s = 1
defined by (2.4.1) and, respectively, derived from the NGMs K; (¢+ = 1,2,3,4). It has just been pointed
out that there can be at most two compartments that are interpreted differently in the scenarios considered,
which are by,(t) (which corresponds to s = 2) and b,.(t) (which corresponds to s = 3). So the compartment
that is targeted here, i(¢) (which corresponds to s = 1), is interpreted the same way in all scenarios. It is easy

to see that the hypotheses of the Theorem 2.4.1 are verified. Since in this case with humans as the population
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type considered (i.e., s = 1), and for all the aforementioned scenarios we compared s = 1 always differs
from [; and [y (with [y = 2 and [y = 3), it follows from Theorem 2.4.1 that the associated type reproduction
number (77) is unique. Indeed, s = 1 is different from [/,, (w = 1, 2), when Scenario 1 is compared with the
other three scenarios. Hence, regardless of how the associated human-bacteria interactions are interpreted,
the type reproduction number related to the infected human host population (i(t)) is unique. That is, the
following result holds (by Theorem 2.4.1 [14]):

: 2
T = 7'1(3) — Rél) — (Rg”)) , for j=1,---,4. (2.4.5)

Noting that ug — 1 > 0, it follows from the expression of Rél) given in Section 2.3 that 7? is well defined

for j = 1,--- ,4 (corresponding, respectively, to Scenarios 1, 2, 3 and 4 in Section 2.3). The result below
follows from Theorem 2 of [161].

Theorem 2.4.2 The disease-free equilibrium point, Eq of the normalized model (2.2.3), is locally-asymptotically
stable if Ty < 1 (or, equivalently, R(()l) < 1), and unstable if Ty > 1 (or, equivalently, R(()l) > 1), where Ty

is the associated type reproduction number defined in (2.4.5).

The epidemiological implication of Theorem 2.4.2 is that a small influx of infected individuals (i.e., in the
basin of attraction of the disease-free equilibrium Eg) will not cause a major outbreak in the community. In
other words, cholera can be eliminated from the community if the initial number of individuals is not large
enough. To ensure that disease elimination is not dependent on the initial number of infected individuals,
a global asymptotic stability result must be established for the disease-free equilibrium Eg. This is done

below for a special case where the volume of water in the pond is maximum (i.e., v,(t) = 1).

Theorem 2.4.3 Consider the special case of the normalized model (2.2.3) with v,(t) = 1 for all t. The

disease-free equilibrium, Eq, of the model is globally-asymptotically stable in D if T1 < 1 (or, equivalently,
2 2

ifR(()l) = <R§)3)) < 1), and unstable if T1 > 1 (or, equivalently, ifRél) = (R(()3)> > 1).

The proof of Theorem 2.4.3, based on using a Lyapunov function theory and LaSalle’s Invariance Principle
[96], is given in Appendix C. It is worth mentioning that the results of Theorems 2.4.2 and 2.4.3 also hold
(but only with respect to the reproduction number, R(()j ); j =1,--- ,4) when the other population types (i.e.,
s = 2 or s = 3) are targeted (Bani et al. [14] also showed that the disease-free equilibrium of their cholera
model is globally-asymptotically stable whenever any of the constituent reproduction number of the model
is less than unity).

The epidemiological implication of Theorem 2.4.3 is that bringing (and maintaining) the Type reproduc-
tion number (7; or, equivalently, R(()l) or R(()3)) to a value less than unity is necessary and sufficient for the
elimination of cholera from the population. Further, following Bani et al. [14], this result can be expressed
in terms of the herd immunity threshold. In particular, a control strategy that targets the population type 1
(i.e., bacteria in the human host) can lead to the effective control or elimination of the disease if the control
is administered to at least the proportion

() 1 L (with j
=]1———=1— — (with :1;273747
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of the human host population. Using a simple model for the 2006 cholera epidemic in Angola (which
accounts for direct and indirect cholera transmission with a single V. cholerae compartment), Eisenberg et
al. [71] estimate R in the range R € [1.32,5.9]. Thus, based on this data (and estimates), our study shows
that, for the best-case scenario (with Ry = 1.32), the control need to be implemented to at least 24.2% of the
human host population. For the worst-case scenario (with Ry = 5.9), the control need to be administered to
at least 83% of the human host population. It should be emphasized that, for the purpose of disease control,
the herd immunity threshold can also be computed in terms of the basic reproduction number, and without
targeting any specific disease or environmental compartments, using the relation [91] (where the subscript
representing the population type considered is now omitted):

p=1- i=1,-- 4.

1
R

) to compute the herd immunity threshold is the fact that there will

The drawback associated with using Rg
now be a different threshold for each individual scenario (due to this reason, we exclusively use the type
reproduction number to compute the herd immunity threshold for each targeted population type).

It is worth emphasizing that the above theoretical results hold only when pg > 1. Otherwise ( i.e., if
up < 1), the environment becomes a reservoir of the pathogen and control measures acting on the host
human population will not be sufficient to eradicate the infection. Moreover, if up < 1, then additional
conditions need to be imposed on the model parameters to ensure the positivity of the associated threshold
quantities, R(()i) (with ¢ = 1,2,3,4). Similar conditions need to be imposed on 77 as well. The results
of Theorems 2.4.2 and 2.4.3 are numerically illustrated by simulating the normalized model (2.2.3) using
parameter values such that R(()i) <1@G=1,---,4) (equivalently, 73 < 1). The results obtained, depicted
in Figure 2.5, show convergence of initial conditions to the DFE Ej in all the four transmission scenarios

considered.

Proportion of Infectious Human Hosts (i(t))

Time (days)

(a)

Figure 2.5: Numerical simulations of the normalized model (2.2.3) showing convergence to 0 of multiple initial

conditions. Parameter values used are as given in Table 2.1 with 8, = B = 2 and 0, = 0} = 10? (so that,
R =71 =037, R =057, R = 0.61 and R(" = 0.68).
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2.4.2 Targeting population of type 2 (bacteria in the pond)

Suppose, now, that an anti-cholera control measure (e.g., the use of chemical insecticides) is implemented
only on population of type 2 (i.e., bacteria in the pond). In this case, it follows from Definition (2.4.1) that
the vector ey and projection matrix P, are given, respectively, by:

0 0 00
ee=|1land P,=(0 1 0. (2.4.6)
0 0 0O
Substituting j = 1 (and using the NGM K, e; and P») into (2.4.1) gives the following type reproduction

number for Scenario 1 (for s = 2):

75(1) _ e2TK1 I —(I- Pg)Kl]ileQ =0. 24.7)

Indeed, in Scenario 1, the growth rate of bacteria in the pond (r = 1) and the shedding rates (6, and 0,.) are
placed in the matrix V, as transitions within the populations. In fact, in Scenario 1, only the human host (and
not any of the other two population types) contribute to the matrix F' of new infection terms. Thus, targeting
the type 2 population (i.e., the pond) has no effect in hindering the generation of new infected individuals
(i.e., targeting by, (t) does not contribute to the matrix F' of new infections).

For Scenario 2, setting 5 = 2 (and using the NGM K3, e; and P) into (2.4.1) gives the following type

reproduction number for Scenario 2 (for s = 2):

Y = K[l — (I - P)Ky) e,
(2.4.8)
kp%(ﬁrer - CL3CL4)
ViBpar + kpBraz — Vipupkpas(as + Ap)’

provided ’7'2(2) > (. Similarly, setting 7 = 3 (and using the NGM K3, e; and P%) into (2.4.1) gives the

following type reproduction number for Scenario 3 (for s = 2):

T, = el ksl — (I - P)Ks) e,
(2.4.9)
HP[VTBPCM + k’pﬁr)‘p]
—ViBpVeriby 4 kpBr0r(Np + g — 1) — kpaz(aa(ps — 1) + Appp)]’

provided ’7'2(3) > 0. Finally, setting j = 4 (and using the NGM K}y, e; and F)) into (2.4.1) gives the

following type reproduction number for Scenario 4 (for s = 2):

Y = e Kill - (I- P)K] ey,
(2.4.10)
—Vi-BpOpas — kpBrApbp + kpVi(8r0r — azay)
W[ﬁpw)\rer + ]fpﬁrer(Ap + MB) - kpﬂBGS(a4 + )\p)] ’
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provided 7'2(4) > 0. Since the interactions between the compartment b,(¢) and the other compartments
of the normalized model are interpreted in different ways in each of the four scenarios, none of the type
reproduction numbers (7'2(j ); j = 1,2,3,4)) correspond to any of the reproduction numbers R(()j ) (j =
1,2,3,4). Hence, Theorems 2.4.2 and 2.4.3 do not automatically hold for Type Reproduction Number 7'2(j )
(7 = 1,2,3,4) corresponding to type 2 population. So in this case, the problem of underestimation or
overestimation of the efforts necessary to eliminate the epidemic is not overcome, since in each Scenario,
one must act on a different number of cholera particles b,(t). It is worth noting that, for this population
type, the associated type reproduction numbers are not unique. That is, each scenario considered has a type
reproduction number that differs from that of the other three scenarios. It should further be stated that, for
this population type (i.e., s = 2), the minimum threshold coverage needed for V. cholerae elimination in the

i 1 .
pondis given by p) =1 — —— (j =1,--- ,4) [14,91].
7-2(3)

2.4.3 Targeting population of type 3 (bacteria in the river)

Suppose, now, that a control measure is applied only to population of type 3 (i.e., bacteria in the river). For
this case, it follows from Definition (2.4.1) that the associated vector (e3) and projection matrix (Fs) are

given, respectively, by:

0 000
es=[0]and Ps=]|0 0 0. (24.11)
1 0 01

Setting j = 1, and using e3, P53 and the NGM K in Equation (2.4.1) gives:

75(1) _ egKl[I — (I — P3)K1] tes = 0. (2.4.12)

It has already been observed in Section 2.4.1 that comparing Scenario 1 to the Scenario 2, the assumption
(2.4.2) is satisfied. Moreover, it is easy to see that the hypotheses of the Theorem 2.4.1 are verified consid-
ering the population of type 3 and Scenarios 1 and 2. Since in this case with bacteria in river as the type
considered (i.e., s = 3), and for all the aforementioned scenarios we compared s = 3 always differs from [;
(with [y = 2), it follows from Theorem 2.4.1 that the associated type reproduction number is unique. That

is,

70— T _ (2.4.13)

Indeed, in Scenarios 1 and 2, no new infected bacterial particles are generated in the b, population. Setting
7 = 3 in Definition (2.4.1) (together with e3, P53 and the NGM K3) gives:

75(3) = ej K3l — (I — P3)K3) e,
(2.4.14)

V:0; [Bpw)‘r + kpﬂr()‘p + pp —1)]
- T/Bpepa4 - kpBTep)\p + kara3 [a4(MB - 1) + NB)\p]’
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provided 7},(3) > 0.
Comparing Scenarios 3 and 4, it is evident, first of all, that Assumption (2.4.2) holds. In particular (note

that m = 1 in this case):

Va=V3+ Uy, and Fy = F3 + Uy,

where,

U, =

o o O
o = O
o o O

In this case, we have [; = 2 (the second row of U, (or, equivalently, U;) corresponds to the compartment
by, that is interpreted differently). Moreover, it is easy to see that the hypotheses of the Theorem 2.4.1 are
verified considering the population type 3 and Scenarios 3 and 4. Since in this case with bacteria in river
as the type considered (i.e., s = 3), and for all the aforementioned scenarios we compared s = 3 always
differs from [y (with {; = 2), it follows from Theorem 2.4.1 that the associated type reproduction number is

unique. That is,

T =T, (2.4.15)

Further, none of 75(j ) (with j = 1,2, 3,4) coincide with R(()j ), (with j = 1,2,3,4). In other words, the
type reproduction numbers 7§(j ) (7 = 1,2,3,4) cannot be used to establish the local or global asymptotic
stability of the disease-free equilibrium, Eq. Furthermore, in this case, if the bacterial population in the river
(br(t)) is reduced by a fraction that exceeds pgj ) — 1-— T%”’ with j = 1,--- ,4, [14] (this can be achieved
by implementing strategies that minimize bacterial shedgding into the river, for instance, by vaccinating

susceptible humans and/or treating cholera-infected humans), the cholera epidemic will die out.

2.5 Assessment of Control Strategies

In this section, the normalized model (2.2.3) will be simulated to assess the population-level impact of
various anti-cholera control measures. Unless otherwise stated, the numerical simulations will be carried
out using the baseline parameter values given in Table 2.1. Further, the simulations are for the case where
the human population is targeted for control (i.e., we are simulating the normalized model for s = 1). The
values of the various reproduction numbers of the model (R(()l)

(pg), with ¢ = 1,--- ;4 and s = 1,2,3) are first computed. The results obtained, tabulated in Table

;2 =1,--- ,4) and herd immunity threshold

2.3, show that, for each of the four scenarios, the reproduction number exceeds unity (lying in the range
Réi) € [2.7,9.2]). Hence, in this case (with no anti-cholera intervention implemented in the community),
the disease will remain endemic.

Furthermore, this table shows that the amount of effort needed to reduce 77 to a value less than unity
increases with increasing values of R(()i). It is also seen that 7'1(i) =T, =1,---,4 (in line with Equation
(2.4.5)). Moreover, 7;(1) = 0 for s = 2,3, and 7})(2) = 0. This can be explained as follows: In Scenario

1, the bacterial populations in the aquatic environment (b, and b,, corresponding to s = 2 and s = 3,
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respectively) do not contribute to the generation of new cholera infections (i.e., they do not contribute to the
F matrix). Further, in Scenario 2, the population type 3 (i.e., bacteria in the river) does not contribute to the
F matrix. Consequently, pgl) = —oo and pg2) = —oo. The consequence of this result is that applying an
anti-cholera control measure on the population of types s = 2 and s = 3 in Scenario 1, or on population of
type s = 3 in Scenario 2, will not lead to the elimination of the disease (this result is consistent with that
reported in [14]).

Note also that, if the population of type s = 2, 3 is targeted, then none of the associated type reproduction
numbers (7;(i), s =2,3,1=1,---,4) behaves like R(()i), i =1,---,4. In particular, while 7;(i) < 1 for
s = 2 and s = 3, the reproduction numbers R((]i) >1(¢ =1,---,4). Hence, when targeting populations
of type 2 or 3, the use of type reproduction number (in all four scenarios) does not provide any useful
information on the state (endemic or not) of the disease. Further, it does not represent a good estimate of the
herd immunity effort needed to eliminate the disease.

Finally, note that, since R(()l) > R(()Q) > R[()g) > Rgl), it follows that, using R(()l) = 71 as a threshold
parameter to eliminate the infection, a greater effort is needed in Scenario 1, in comparison to the effort
needed in Scenarios 2, 3 and 4. It is worth mentioning that the above simulations results are sensitive to
the values of the bacterial shedding rates into the water environment (6, and 60,.). It should be recalled from
Table 2.3 that these parameters are fixed at a baseline value of 0 = 67 = 10* per day. This baseline value is
justified as follows. As noted by Feachem et al. [73], it is known that in asymptomatic cases of infection with
V. cholerae, an individual excrete from 102 to 10° bacteria per gram of feces, while in symptomatic cases
this value can rise to as high as 106 —10° per milliliter of rice-water stool. Further, data from [49] show that
a patient with severe cholera infection can produce between 500 to 1000 mL of stool per day (corresponding
to 10'2 V. cholerae particles a day, of which a very high fraction (given the reported challenging hygienic

conditions prevalent in the area) reaches the water reserve daily).

2.5.1 Assessment of Single Control Interventions

In this section, the population-level impact of the singular implementation of two anti-cholera interventions,
namely a basic control measure and treatment of humans infected with cholera, will be assessed. This is

described below.

Basic anti-Cholera control measures (WASH-only strategy)

Basic anti-cholera control entail the use of measures aimed at preventing or mitigating cholera outbreak
in the community. These measures typically include the implementation of the water, sanitation and hy-
giene (WASH) strategy [79]. The essential elements of the WASH strategy include the chlorination of water
sources, household water treatment and the promotion of personal hygienic precautions, use of chemical
insecticides, etc. Hence, in the context of the normalized model, the implementation of basic control mea-
sures will be associated with strategies that decrease the transmission rates (3, and 3,) and increase the
V. cholerae decay (natural death) rate (up). This is obtained by making the following replacements in the

model:
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Basic Reproductive | Target infective Target bacteria Target bacteria
Number Rg host #(¢) (s = 1) | in the pond b, () (s = 2) | in the river b, (t) (s = 3)
Scenario 1 RV =9.17 (T =9.17) (T =0) (T =0)
pH =0.89 pi" = 0.89 pt) = —o0 P = oo
Scenario 2 R{Y = 6.83 (T =9.17) (73 = 0.06) (T3P =0)
p®@ = 0.853551 P =0.89 »P <0 PP = —c0
Scenario 3 R =3.03 (T = 9.17) (7Y = 0.86) (TP < 0)
3 = 0.67 ¥ =0.89 ¥ <0 P >1
Scenario 4 R(()4) =27 (T1(4) =9.17) (7‘2(4) < 0) (73(4) <0)
p@ =0.63 Y =0.89 Y > 1 PP >1
Table 2.3: Basic reproduction numbers (R(()i); i = 1,---,4), type reproduction numbers ( S(i);i =1,---,4;s =

1,2, 3) and herd immunity thresholds (pgi); i =1,---,4; s = 1,2, 3) for the normalized model (2.2.3). Parameter
values used are as given by the baseline values in Table 2.1.

5]9 — 5]3 (1 —EBCB),

Br — pBr(1—epep), (2.5.1)

uB — UB (1 +5BCB)7

where 0 < ep < 1land 0 < ¢p < 1 represent, respectively, the efficacy and coverage of the WASH-
only control strategy. Although a clear consensus on the realistic estimate of the efficacy and/or coverage
of the basic control measures in cholera-endemic areas seems to be lacking, a number of studies have
provided some clues as to what these estimates should be. For instance, in a modeling study on assessing
the impact of WASH and oral cholera vaccine on the 2008 cholera epidemic in Haiti, Fung et al. [79]
reported that (in 2008) only 63% of the Haitian population had access to improved water and only 17% had
access to improved sanitation. Furthermore, after the 2010 earthquake in Haiti, the Haitian Directorate for
Potable Water and Sanitation reported that 26% of the rural population received improved water, while only
10% had improved sanitation (in particular, the coverage for improved water and sanitation in the urban
Port-au-Prince metropolitan area was 35% and 20%, respectively). Fung et al. [79] introduced non-linear
relationships between coverage and effectiveness of the aforementioned interventions. Based on all these, it
seems reasonable to assume that the WASH coverage lies in the range 30% and 50%, while its efficacy can

be anywhere between 10% and 60%.
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Replacing (3, 8, and pp in the normalized model (2.2.3) with the expressions in (2.5.1), it follows that

the associated basic type reproduction number (defined in (2.4.5)) now becomes (withi =1, --- | 4):
Tip = 7-1(;) _ ROB(l) (2.5.2)

ViBp(1 —epep)aip + kpBr(1 — epep) [(0p + Vi0r) Ny + Vo0, (up(1 + epep) — 1)]
kpVias[(A + up(1 +epep))(up(1+epep) — 1) + up(1 + epcp) M)

)

where,

arg = Vi A + 0p(\ + up(1 +epeg)).

Thus, the associated threshold herd immunity threshold becomes: pgi])g =1- 7-113 (i=1,---,4), with Tip
defined in (2.5.2).

For simulation purposes, the following effectiveness levels of the basic control measures (based on
reducing 3, and 3, and increasing u g, in comparison to the baseline values of the respective non-normalazed

parameters tabulated in Table 2.1) are considered:

1. Low effectiveness level of WASH-only strategy: involves reducing the baseline values of b, and b,
by 10% (i.e., B, = B, = 15, B, = B; = 4.5), and increasing the baseline value of p5 by 10% (i.e.,
uB = 2,93, up = 0.88).

2. Moderate effectiveness level of WASH-only strategy: involves reducing the baseline values of b,
and b, by 25% (i.e., B, = B, = 12.5, B, = 7 = 3.75) and increasing the baseline value of up by
25% (i.e., up = 3.33, up = 1).

3. High effectiveness level of WASH-only: involves reducing the baseline values of b, and b, by 50%
(i.e., Bp = By = 8.33, B, = B; = 2.5) and increasing the baseline value of up by 50% (i.e., up = 4,
pp = 1.2).

Figure 2.6 depicts the contour plots of R B(l) = T1p (defined in (2.5.2)), as a function of efficacy (¢) and
coverage (cp) of the basic anti-cholera control measures for the low, moderate and high effectiveness levels.
It follows from this figure ((a)) that even with the highest possible estimated efficacy and coverage of the
basic control measure (i.e., eg = 0.6 and cg = 0.5), none of the effectiveness levels of this basic control
strategy can lead to the elimination of the disease (albeit each will greatly decrease the disease burden).
The reason is that, with efficacy at 60% and coverage at 50%, none of the effectiveness levels can bring the
associated reproduction number to a value less than unity regardless of the level of coverage. If, however,
the efficacy of the basic control measure can be dramatically increased to 90%, then both the moderate and
high effectiveness levels of this strategy can lead to such elimination if the coverage level is high enough
(at least 80%) (Figures (b) and (c)). If the efficacy and coverage can further be increased to 100% each (the
study in Fung et al. [79] showed that 100% coverage is possible, over a 20-year period, in urban areas of

Haiti), then low effectiveness level can also achieve such elimination (Figure (a)).
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Figure 2.6: Simulations of the model (2.2.3) with low (a), moderate (b) and high (c) effectiveness level of the WASH-
only strategy. Contour plot of Rop(!) as a function of efficacy 5 and coverage cp. Parameter values used are as
given in Table 2.1, with a reduction (increase ) of the value of parameters 3, and ;7 (up) by: (a) 10%, (b) 25% (b)
and (c) 50%, in comparison to their baseline values given in Table 2.1.

Treatment-only strategy

In this section, a treatment-only strategy, targeting infected humans, is considered. Cholera can be suc-
cessfully treated, in most cases, using oral rehydration therapy [170, 177]. Although recovery from cholera
infection is feasible without taking antibiotics (if sufficient hydration is maintained) [170, 177], the WHO
recommends the use of antibiotic treatments (for one to three days), aimed at reducing the severity of the
disease symptoms [170, 177]. In particular, in patients with severe dehydration [170, 177], Doxycycline is
typically used as a first line drug ( although some strains of V. cholerae have shown resistance to it [136]).
Other antibiotics that have been proven to be effective againts V. cholerae infection include cotrimoxazole,
erythromycin, tetracycline, chloramphenicol, and furazolidone [170, 177]. Furthermore, Fluoroquinolones,

such as ciprofloxacin, may be used (but the ability of V. cholerae to resist the effects of this substance has
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also been reported in [95]). The use of antibiotics also reduces the need for fluid replacement therapy. It
is known that zinc supplementation reduces the duration and severity of diarrhea in Bangladeshi children
with cholera when given in combination with antibiotics and rehydration therapy as needed (in particular,
it reduced the duration of the disease (i.e., duration of cholera-related diarrheal illness) by eight hours, in
addition to reducing the amount of diarrhea stool by 10% [170, 177]).

The use of treatment against V. cholerae infection in the community affects the parameters related to the
shedding of bacteria by humans and the recovery of those who contracted the disease. In particular, the use
of treatment decreases the shedding rate parameters (6, and 6,), while increasing the recovery parameter
(7). Consequently, the treatment-only strategy is incorporated into the normalized model by replacing the

three associated parameters as follows:
Hp — Qp(l — €TCT),
9r — 97«(1 — ETCT), (253)

v = (1l +erep),

where e and cp are, respectively, the efficacy and coverage of the treatment-only strategy. Using data
for cholera epidemics in Bangladesh from 1985-1991, Siddique et al. [143] estimated that only 20% of
cholera-infected people were treated in government health facilities (with 80% of the infected population
treated at home). Furthermore, only about 23% of the cholera-infected people were actually treated by
qualified physicians (with 68% of the infected individuals treated by unqualified rural practitioners and 9%
had no access to any health care providers). Sack et al. [137] reported that rehydration treatment (which is
inexpensive and simple to implement) is approximately 100% successful (or effective).

Replacing 6, 0, and v in the normalized model (2.2.3) with the expressions in (2.5.3), it follows that

the associated basic type reproduction number (defined in (2.4.5)) now becomes (withi =1, --- | 4):
Tip = 7-1(%) _ ROT(I) 2.5.4)

ViBparr + kpBr [(0p(1 — erer) + V30, (1 — eper))Np + V30 (1 — erer)(pp — 1)]
kara?)T[CM(NB - 1) + /'LB)\p]

)

where,
arr = ViA0,(1 —eper) + Hp(l —erer)(Ar + 1B),
asy = y(1 +erer) + 6 + p.
; 1
Thus, the associated herd immunity threshold becomes: pgzr} =1- g (1 =1,---,4), with Ty defined in
1T
(2.5.4).

As before, we consider the following effectiveness levels of the treatment-only strategy (based on re-
ducing 0, and ¢, and increasing -y, in comparison to the baseline values of the respective non-normalized

parameters tabulated in Table 2.1):
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1. Low effectiveness level of treatment-only strategy: involves reducing the baseline values of ¢, and
0, by 10% (i.e., 0, = 0, = 3 x 10%, b, =07 =9 x 10%), and increasing the baseline value of by
10% (i.e., v = 0.73, v* = 0.22).

2. Moderate effectiveness level of treatment-only strategy: involves reducing the baseline values of
¢ and 0, by 25% (i.e., 0, = 0, = 2.5 x 104, 6;; =0 =T75x 10%) and increasing the baseline value
of v by 25% (i.e., v = 0.83, v* = 0.25).

3. High effectiveness level of treatment-only strategy: involves reducing the baseline values of 6 and
6, by 50% (i.e., 0, = 0, = 1.6666 x 104, 9;; =0F=5x 10%) and increasing the baseline value of
by 50% (i.e.,y = 1,~v* = 0.3).

Figure 2.7 depicts the contour plots of Ror™M = Tir (defined in (2.5.4)), as a function of efficacy (er)
and coverage (cr) of the treatment-only strategy for the low, moderate and high effectiveness levels of the
treatment-only strategy. It follows from Figure 2.7 that, with the 23% anti-cholera treatment coverage,
cholera elimination is not feasible no matter the efficacy level of the treatment used (this is because the
associated reproduction number remains above unity when cr = 0.23 and e = 1). However, if the
coverage can be significantly increased to at least 80%, this figure shows that even the low effectiveness
level of this strategy can lead to the elimination of the disease (requiring a treatment efficacy of at least
100%). Furthermore, such elimination can be achieved if the coverage is lowered to 70% using the moderate
effectiveness level of the treatment strategy (here, a minimum treatment efficacy of 100% would be needed).
Finally, for 50% treatment coverage, the high effectiveness level of the treatment-only strategy can lead to
disease elimination if its efficacy is at least 100%. In summary, these simulations suggest that a highly-
effective treatment-only strategy (with efficacy of at least 100%) can lead to the elimination of cholera if a

modest coverage level (of at least 50% can be attained and maintained).

2.5.2 Assessment of Combined WASH-Treatment Strategy

In this section, the population-level impact of a hybrid strategy that combines both the WASH-only and
the treatment-only strategy will be assessed. The essential elements of the combined strategy include a
reduction in both the transmission and shedding rates, in addition to an increase in both the natural bacterial
death rate and the recovery rate for humans. For this strategy, the associated parameters 3, 3;, 0p, 0, up
and + are replaced by the following relations:

Bp — PBp(l—epresr), 6, — 0,(1 —epresr),
Br — Br(1—eprepr), 0. — 0,(1—eprepr), (2.5.5)

pe — pe(l+eprepr), v — (1 +epresr),
where € g and cpr are efficacy and coverage of combined WASH-treatment strategy.
Replacing 3,, By, 0, 0, pp and v in the normalized model (2.2.3) with the expressions in (2.5.5), it

follows that the associated basic type reproduction number (defined in (2.4.5)) now becomes (with ¢ =
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Figure 2.7: Simulations of the model (2.2.3) with low (a), moderate (b) and high (c) effectiveness level of the treatment-

only strategy. Contour plot of Ro7(!) as a function of efficacy e7 and coverage cr. Parameter values used are as given
in Table 2.1, with a reduction (increase) of the value of parameters 6 and 0, (") by: (a) 10%, (b) 25% and (c) 50%,
in comparison to their baseline value given in Table 2.1.

1,

,4):

TiBr =

TIBT = RoBT

(1)

V;’Bp(l - SBTCBT)alBT + kpﬂr(l — 5BTCBT)CE7

kpViasprlas(ps(l+ eprepr) — 1) + up(1 + eprepr)Ap)’

where,

a7 = (Qp(l — 5BTCBT) + Vrer(l

a1pr = ViA0r(1 — eprepr) + 0p(1 — eprepr) (A + pp(1l + eresr)),

aspr = Y(1 +erer) +0 + p, as = A\ + (1 + epresr),

—eprepr)) Ay + V30, (1
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Thus, the corresponding threshold herd immunity becomes pgi]_);T =1- ﬁ, with 77 gt defined in (2.5.6).
We estimate the coverage and efficacy of this strategy by taking, for example, the mean of the coverages and
efficacies of the WASH-only and treatment-only strategies. Thatis, gy = (ep+e7)/2 = (0.6+1)/2 = 0.8
and cgr = (CB + CT)/2 = (0.5 + 0.23)/2 = 0.365.

We consider the following effectiveness levels of the combined strategy

1. Low effectiveness level of combined WASH-treatment strategy: involves reducing the baseline
values of 3, B, 0, and 0,by 10% (i.e., 3, = B, = 15, ﬁ; = fpr =450, =0, =3 x 104,
9; =0 =9x 10%), and increasing the baseline value of yup and v by 10% (i.e., up = 2.93,
pp = 0.88,v=0.73, v = 0.22).

2. Moderate effectiveness level of combined WASH-treatment strategy: involves reducing the base-
line values of 3, 3., ), and 0, by 25% (i.e. 8, = B, = 12.5, B = B = 3.75,0, = 0, = 2.5 x 10%,
0, =07 =75x 10%) and increasing the baseline value of u 5 and v by 25% (i.e., up = 3.33, ul = 1
and v = 0.83, v* = 0.25).

3. High effectiveness level of combined WASH-treatment strategy: involves reducing the baseline
values of 3, B, 0, and 0, by 50% (i.e..0p, = B, = 8.33, B, = By = 2.5, 6, = 0, = 1.6666 x 104,
0, =07 =5x 10%) and increasing the baseline value of 5 and v by 50% (.e..up = 4, ply = 1.2
andvy =1,4* =0.3).

Figure 2.8 depicts the contour plots of Rg BT(l) = Tipr (defined in (2.5.6)), as a function of efficacy
(e pr) and coverage (cpr) of the treatment strategy for the low, moderate and high effectiveness levels. This
figure shows that the high effectiveness level of this (combined) strategy will lead to cholera elimination
even for sufficiently small coverage and efficacy (Figure 2.8(c)). For the aforementioned 80% efficacy
and 36.5% coverage assumed for this strategy, it is shown that neither the low or moderate effectiveness
level of this intervention can lead to disease elimination. However, if the coverage is increased to 50%,
even the low effectiveness level of this intervention can lead to cholera elimination (Figure 2.8(a)). The
moderate effectiveness level at 80% efficacy can lead to elimination with even a 40% coverage (Figure
2.8(b))). Thus, it can be concluded that the combined strategy offers the best prospect for cholera elimination
in the community (since it requires the lowest minimum coverage needed to achieve such elimination). In
summary, this study ranks the three interventions (in order of their effectiveness, vis a vis their ability to

lead to cholera elimination) as follows:

‘ Combined Strategy > Treatment-only Strategy > WASH-only Strategy |.
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Figure 2.8: Simulations of the model (2.2.3) with low (a), moderate (b) and high (c) effectiveness level of the hybrid
strategy. Contour plot of 'R(()l) as a function of efficacy € pr and coverage cpr. Parameter values used are as given in
Table 2.1, with a reduction (increase ) of the value of parameters 3, 37, 67 and 0; (v* and up) by: (a) 10%, (b) 25%
and (c) 50%, in comparison to their baseline values given in Table 2.1.

2.6 Existence of Endemic Equilibrium

Let us denote by R any one of the expressions defined in (2.3.4), (2.3.9), (2.3.13) or (2.3.18).
In this section we study the dynamic of system (2.2.3) as the threshold R changes. The endemic equilibrium
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point is a steady state solution where cholera persists in the population and satisfy the following system:

( b .
p(l—s) — (Bpkpv:erp + Br 1?:17,«) s+7i=0,

b by -
(51) R + Br 1+br) s —azi =0,
Opi + (1 — b, — up — Ap) by + A Vpby = 0, (2.6.1)

0,i — aaby + Apiz =0,

k(e + X)) (1 —vp) = 0.
Solving in terms of b, we obtain

v (kptbp)(Vibrb2+(a2—Vi0:)bp+Viar) (vaabZ4+y(aa(pp—1)+1pAp)bptpar)
T ar[Vebr (Bp+Br+p)bi+asbi+(Ve (Bp+i)ar +kp(Br+up) (a2 —Vi0r) ) bp+kVrpai ]

it — bp(aabptaa(pp—1)+pupAp)
ay )

(2.6.2)
b — be(Vebrbytas—Vibr)
r Vyal )
v, =1,
where
a5 = Vi0r(Bp + Br + 1) (us — 1) + Ap(Bp + By + ) (bp + Vi0r) + Virky(Bp + 1), (2.6.3)
while b, is the positive solution of the following equation of fourth degree
f(bp) = ab, + bb + cb? + db, + e = 0, (2.6.4)

in which the expressions of the coefficients are reported in appendix D. The study of the solutions of (2.6.4)
implies the following result.

Theorem 2.6.1 Consider (2.6.4), with the coefficients a, b, ¢ and d reported in Appendix D. The model
(2.2.3) has:

1. no endemic equilibrium whenever Rg < 1,

2. a unique endemic equilibrium point when Rqg > 1.

Proof. A brief outline of the demonstration is provided.
Following [90], the study of the solutions of the quartic (2.6.4) implies introduction of the following quan-
tities [90]:

e 3b* — 16ab*c + 16a*c? + 16a%bd — 64a’e 5 Bac— 3b?

a* a*
Je T2ace — 2¢® + 9bcc§ —27ad? — 27b2€’ P ¢ - 3bd2+ 12%, (2.6.5)
a a
2 9 _ 3 - 3 _ 272
A, = b“c” + 18abcd 4aZ 4b°d — 27a°d 7 A, = AP3 _ J2,
a
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First of all, we observe that there are no parameter value for which the following system of inequalities
H >0,
Ag >0,

(2.6.6)

is satisfied. This implies that the quartic (2.6.4) admits always at least two real solutions [90].

It should be noted that the coefficients a and b are always negative.

If Ro < 1, then e < 0; moreover, many numerical tests suggest that coefficients ¢ and d are both negative
in this case. Therefore, when Ry < 1, it can be stated that the quartic (2.6.4):

i) does not admit positive roots, if they are all real,

i1) does not admit two positive real roots and two complex roots with positive real part, if they are two real
and two complex.

Therefore, when Rg < 1, there is no endemic equilibria.

If Rg = 1, then e = 0. In this case, (2.6.4) reduces to

bpf(by) = by(abl + bb. + cby, + d) = 0. (2.6.7)

If its discriminant A; (see [159]) defined in (2.6.5) is non-negative, then cubic f(b,) admits all real solutions;
instead, if A; < 0, the cubic admits two complex and one real solutions. Also in this case, the simulations
suggest that the coefficients ¢ and d are both negative. Therefore, is can be summarized that:
i) the cubic f(b,) does not admit positive solutions, if they are all real (A; > 0),
ii) the cubic f(b,) does not admit one real positive solution and two complex solutions with positive real
parte, if they are two complex and one real (A; < 0).
Thus, even if Ry = 1, there is no endemic equilibrium.
If Ry > 1, then e > 0. In this case the sign of the coefficients ¢ and d changes according to the values of
the parameters. First of all, note that in the case Ry > 1, there are no parameter values for which there are
four real solutions, of which three positive and one negative, i.e. the system

F>0 H<0,A; >0

(2.6.8)
c>0,d<0,e>0

is never satisfied. Moreover, the simulations suggest that all other the possibilities are:

i) if all the roots of the quartic (2.6.4) are real, then they are one positive and three negative roots,

ii) if the roots of the quartic (2.6.4) are two real and two complex, then thay are one with positive real part
and three with negative real part.

The results are summaized in Table 2.4.

Thus, when Ry < 1, then there is no endemic equilibrium, while if Ry > 1, system (2.2.3) admits only
one endemic equilibrium. O
Let us denote by E, the unique endemic equilibrium (EE) existing when Ry > 1.

Many numerical simulations suggest that the characteristic polynomial obtained with the linearization method
around the equilibrium point Eo admits solutions all with negative real part. This fact can be seen from the
figure 2.9, in which the numerical solution related to the infective people I obtained for parameters value
such that R > 1 and with different initial data is shown . The figure suggests the local stability of the

endemic equilibrium point.
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R value | Coefficients sign Existence Conditions Number of Real Solutions
Ro<1 c,d,e <0 A4 < 0 (two real solutions) = 2 negative
F >0, H<0, A; > 0 (all real solutions) = 4 negative
Ro=1 c,d<0,e=0 A; < 0 (one real solutions) = 1 negative
A > 0 (all real solutions) = 3 negative
Ro>1 c,d <0
c>0,d<0 A4 < 0 (two real solutions) = 1 positive, 1 negative
c,d >0
c<0,d>0
c,d <0
c,d >0 F >0, H<0, Ay > 0 (all real solutions) | = 1 positive, 3 negative
c<0,d>0

Table 2.4: All possibilities (regarding number of positive solutions) arising from the quartic equation (2.6.4).

e

Infective Host I(t)
’

75 G 75 700 55
Time t (days)

(@)
Figure 2.9: Numerical simulations of the normalized model (2.2.3) showing convergence to endemic equilibrium of
multiple initial conditions. Parameter values used are as given in Table 2.1 with 3% = 3} = 30 and 6}, = 0 = 5 x 10*
(so that, R{" = 77 = 19.0126, R{® = 15.2869, R(®) = 4.36035 and R{") = 3.9832).

2.7 Spatial Dynamics of Cholera

As already explained in the Introduction, the model for the transmission of cholera so far is extended to the
spatially heterogeneous case. Assuming that the simple Fickian diffusion approximation is valid, let D and
D7 be the diffusion coefficients related to the population of susceptible and infected people, respectively.
It is assumed that D > D7, as the disease could limit the mobility of individuals. Also the diffusion
coefficients linked to the population of the bacteria in the pond and in the water network, respectively, are
Dgp and Dy . Furthermore, it is taken into account that the vibrios can be transported through the drift of
the water flow both in the pond and in the river network. Therefore, the transport parameters v, and v, are
introduced for pond and river, respectively. They should not be thought of as physical parameters that reflect
only the hydrological transport, but rather they are conceptual parameters aimed at modelling all physical,

chemical and biological processes involved in the vibrios spreading. The model (2.2.1) can be extended to
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the spatial case by setting the following set of five partial differential equations:

B,
0,8 = DgVS+II—-pi——F 95— pr

. KV, + B, " +BS WS+

B * * *
S+ B S~ A O,

*

oI = D?vzf—l-,@pik*v —|—B

OBy, = Dy V°B,— 0y By + 051 +7By(1—

*

k—p) — By + XV B, — \yB,,  (27.1)
pb

* 2 * 9: * * *
0»5*BT = DBTV BT—Vrax*BT—le—,UJBB )\ B +>\pV*,

r

OVy = p—dVyt XV~ AV

*

Here z € Q* = [0, L] bounded domain of R, ¢ > 0 and V2 = 82 is the Laplacian operator in 1D. System

(2.7.1) is subject to following Neumann conditions
Ok, S =0x,1 =0¢,By=0x,B,=0, 2. =0, L. (2.7.2)

The new parameters and variables that appear in model (2.7.1) are described in Table 2.5. To mathematically

State Variable Description
S(z,t) Number of susceptible individuals at time ¢ and at location x
I(z,t) Number of infected individuals at time ¢ and at location x
By (x,t) V. cholerae number in the pond at time ¢ and at location
By (z,t) V. cholerae concentration in the river at time ¢ and at location x
Vi (t) Volume of water in the pond at time ¢
Parameter Description Unit Baseline Value References
Dg, Dy, D]’gp, Dgr Diffusion Coefficients of susceptibles and m2day*1 Dg = D7 =10, Assumed
infectives humans, bacteria in pond and river, respectively D =Dg =10
P ™
Vg, vy Advection Coefficients of bacteria in pond and river,respectively ~ mday " vy =1 =2 Assumed

Table 2.5: Description of state variables and new parameters of the model (2.7.1)

simplify the analysis, the model is reformulated in terms of normalized variables (2.2.2) plus the following

statments b
* D D* B,
T = €7D* DS = L25;.7 DI = 1*17217‘7 DBp = LT:’ (273)
D, =5, Wr=1ln V=1
The re-scaled model therefore reads as :
b, .
Oss = DgV?s 4+ p(1 — s) — (ﬁpkpvaerp + B 15):1») s+ i,
. ) b .
Ot = DrV%i+ By + Bl ) 5 — (7 + 0+ )i
Oy = Dprsz — VpOybp + 0,0 + (1 — by — g — Ap) by + AV, by, (2.7.4)

Oib, = Dy, V?b, — 13 0pby + 0,7 — b, — \pb, —I-)\pv,

Orvp = (dr + Ap)(1 — vp),
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with x € Q = [0, 1], ¢ > 0 and Neumann boundary conditions

D5 = Oyi = Oyby = Dby = 0, 2 =0, 1. (2.7.5)

2.8 Traveling Wave Solutions

Now, the conditions for the propagation of the epidemics in the population are investigated. To this aim, the
reaction-diffusion phenomena are considered and system (2.7.4) is taken into account. For the theoretical
study the space domain will be the entire real line | — 0o, +00| and for the numerical simulations it will be
the segment [0, L].

Such a phenomenon is not rigorously proved in the present dissertation but will be confirmed by many
numerical simulations.

Traveling wave solutions will be searched for in the following form:
s(z,t)
i(z,t)
W(z —ct) = | by(x,t) |, (2.8.1)

with c the positive speed of the wave and

lim W(z) =Wy, (2.8.2)

T—Fo00
where W are two homogeneous in space equilibria of system (2.7.4).
In this section, for mathematical tractability, it is assumed that Dy = Dg, = 0. Substituting Eq. (2.8.1) into
(2.7.4), the following system of ordinary differential equations is obtained:

b, by |
: _—
oo+, 1 1—|—br> st

b b
./ D . r . S O
ci +<Bpkpvp+bp+ﬁ 1—i—b7~>s asi ,

Dgs" + s’ + (1 —s) — (

Dg,by + (¢ — vp)by, + 0pi + by (1 — by — pup — Ap) + A Vpb, = 0, (2.8.3)
b
(¢ — vp)bl. + 0,0 — agb, + )\pvp = 0,
ey + (dr + X)) (1 —vp) = 0.

In the previous discussion, the existence of the spatially homogeneous equilibrium point DFE that always
exists and is globally stable if g < 1 and unstable if Ry > 1 is highlighted . Moreover, in last case
(Ro > 1), there exists an endemic equilibrium point EE which is locally stable. Therefore, it is assumed in
this section that Ry > 1.

Therefore, in this context, equilibrium Eqy admits a stable (incoming) manifold and E; an unstable (depart-

ing) manifold, with respect to the system (2.8.3). Thus, a trajectory linking the two equilibria, starting from
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E; and reaching Ej, may exist [162].

Given the biological meaning of our variables, the trajectories cannot oscillate around the state Eq. This is
equivalent to requiring that the solutions of the characteristic polynomial relative to the linearization of the
system (2.8.3) around the state Eg cannot be complex roots. By imposing this with algebraic method, we
estimate the minimal speed for which exist monotone waves [162].

Consider Jacibian matrix evaluated at the equilibrium Eg: the corresponding eigenvalues are roots of the

following c-family of £ polynomials

p(&,¢) = (=dr — Ay — &) (—p+ & + Ds&?)(§* 4 b3&® + ba&? + b1€ + ag), (2.8.4)
where
1
by = m [03 — Ay + vp) — c(asDp, + a4 Dp, — vyvp) + agDprr} ,
1
by = W{GS(MDBP — asvyplVp — DBpBrer + C[Vr(_l +asz + )\p + ,UB) + (CLS + a4)Vp]
— A(—1+az+as+ N+ pp)}, (2.8.5)
1
by = ————F—{—ckpfBibr + kpvp 3,6, — B0y + vrfpby — ckpAe Ny + asck,(—1+ A,

cDg,ky(c —vr)

+  pB) + askp[—aap —vp(=1+ X+ pp) + (=1 4+ as + Ap + 1))},
1

_ ODE\2 _
b = cDg,(c — v )kp Vi <(R0 ) 1) ’

All solutions of (2.8.4) must be real. Three solutions of (2.8.4) are always real, i.e.

dy + A 2+4D — VA +4D
fodth g cHVEEADsn o co VD g g
c 2DS 2DS

Then, it must be requested that the roots of the quartic in equation (2.8.4) must be reals. Following [90], we
write the following quantities (note that they are the quantities (2.6.5) written for the polynomial (2.8.4)):

H{(c) = 8by — 3b3, F(c) = 16b3 + 3b5 — 16b2b3 — 64by + 16b3by
P(c) = b3 + 12bg — 3bybs, J(c) = T2babg + 9b1babs — 2b3 — 27b3 — 27bob3, (2.8.7)
Ayc) =4P3 — J2

The solutions of equation (2.8.4) are real iff [90]

H(c) <0, F(c)>0, Ayc)>0. (2.8.8)

The leading coefficients of the functions H (c), and F'(c) are given by:

le(H(c)) =-3<0, le(F(c)) =kyV, >0. (2.8.9)
Thus, it can be easily deduced that lim H(c) = —oo and lim F(¢) = co. Moreover, depending on the
c— 00 Cc—00

model parameters, the leading coefficient of the quantity A,(c) can be positive or negative. If lc(Ay(c)) is

negative, monotone waves cannot exist. Therefore, to ensure the existence of non-oscillating waves, it is
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necessary to choose an appropriate set of model parameters such that lc(Ag4(c)) > 0. In this way, you will
have lim A,(c) = oo. Therefore, it can be defined:
c—>»00

1 = max{CjER+ : HzO},
J

¢ = max{¢; €eR" : F=0}, (2.8.10)
J

c3 = max{cj cRT : Aq:O}.
J
Finally, the solutions of the quartic in equation (2.8.4) are always real iff
¢ > Cmin = max{cy, co, c3}. (2.8.11)

Thus a possible range of speeds due to linearization at the stationary point is given. Note that Volpert et al
[162], concerning monotone parabolic systems without advection, proved that in monostable case (one of
the two equilibria is stable and the other unstable), monotone waves exist, for a half-interval or a half-axis
of speeds.
In this case, in correspondence with values of the speed c greater then the minimal value c¢,,;,, may exist
a vector valued funcion W(x — ct) solution of system (2.8.3), satisfying boundary conditions (2.8.2) with
W_ =E; and W, =Eg

In Fig. 2.10, we show the numerical solution of model (2.7.4) choosing as initial condition a vector
function with a bounded support, linking the two equilibria. Fig 2.10 shows that the initial data evolves in
time as an advancing wave front and the shape of each trace is unchanged during the propagation. These
waves move at minimal speed given by ¢, = 0.888548. We can deduce that cholera model (2.7.4)
approches traveling waves solutions and the infection can propagates downstream, for example from inland

to cost areas.
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Figure 2.10: Numerical solutions of system (2.7.4) for s(z, ) (a), i(z, t) (b), b,(z, t) (c) and b,.(x, t) (c) with bounded
support functions as initial data. Parameters used are listed in Table 2.1 with * = 9 x 1073, L = 100, By = By =30,
)\; = 0.5 and DS = DBp = 1, D[ = DBT =0.

2.9 Basic Reproductive Number associated to PDE model

The aim of this section is to extend the Basic Reproductive Number to the spatially non—homogeneous case,

following the idea exposed by the authors in [164]. This will provide a threshold for the eradication of the

infection even in the spatial case.

First of all, for mathematical tractability, we consider the special case of the model where exchange of

water between the two basins does not occur (i.e., A, = A, = 0). Based on these assumptions, the PDE



model (2.7.4) reduces to:

b b, ‘
os = DgV%s+pu(l—s)— < P + By >s—|—'yz,

Bp kp'l}p -+ bp 1 + br
b b
(9 , = D 2 P T . - .
") Y% z+<6pkpvp+bp+6 1+b7‘>8 ast,
Oby = Dp, Vb, — vp0uby + Opi + by (1 — by — pp), (2.9.1)
atbr = DBTVQbr - Vra:cbr + 97»2' - :U’Bbrv

Oy = dr(1—1vp),

witht > 0, z € Q = [0, 1] and Neumann condition (2.7.5) at the boundary 0.

In the section 2.3, the possible behaviors of the bacis reproductive number related to the corresponding
ODE model (2.2.3), deriving from different interpretations of the role of the environment in the transmission
dynamics were explored (see expressions (2.3.4), (2.3.9), (2.3.13) and (2.3.18)). It has been proved that all
agree on the same threshold value and retain their order of magnitude with respect to unity. Thus, without
loss of generality, Scenario 3, studied in subsection ??, is chosen for the extension to the spatial case: the
growth of bacteria in the pond (r = 1) is placed in the V' matrix, while the shedding rates (6, and 0,)
constitute a new infection. Thus, the transmission and transition matrices F' and V' of the NGM approach

[62, 61] in Scenario 3 for the reduced model (2.9.1) are given by:

0 % B, a3 0 0
F=1lo, o o, V=0 ug—1 0 |. (2.9.2)
0, 0 0 0 0  pup

Thus, it can be computed that, the basic reproduction number for the equivalent ODE model of system

(2.9.1) in Scanario 3 is given by:

RODE _ \//Bpep:“B + kpBrOr (1B — 1)_ (2.9.3)
kpaspp(pp —1)

It is worth to mentioning that the number ’Rég), given in (2.3.13), reduces to ROOD E above when Ap =\ =
0.

It should be stressed that, in the case we are dealing with, since there is no water flow between the pond and
the river, condition ;g = 1 constitutes a singularity for system (2.9.1) and for T\’,OOD E defined in (2.9.3). To
ensure positivity and well-position of (2.9.1) and (2.9.3), it is necessary to impose pp > 1.

Following the idea in [164], it is assumed that the state variables are near the disease-free steady state
Ey. Let ¢(z) = (i(z,0),by(x,0),b,.(x,0)) = (¢1(z), p2(z), $3(x)) be the distribution of initial infection.

Consider the reaction-advection diffusion model, consisting of only the equations relating to the disease and
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environmental compartments

b b
. 2. P . T .
ot = D;V*i+ <Bpk:pvp b, + 5 1 br) s — ast,

by = Dp,V?b, — 103y + Opi + (1 — by — pup) by, (2.9.4)
b, = Dg Vb, — 1,0;:b, + 0,i — upb,.

Wang and Zhao [164], extended the NGM method [62, 61], defining the basic reproductive number for
reaction-diffusion systems as follows
RyPE = p(L), (2.9.5)

where
L=—-FB' (2.9.6)

Matrix F' is the transmission matrix of the NGM approch, while B is an extension to the spatial case of the
transition matrix V' of the NGM approach, which in this case reads as [164],[165]

B=V(D-V)—uV -V, (2.9.7)

with D the diagonal matrix with diffusion coeffients and v the diagonal matrix of advection coefficients. For
the reduced cholera model (2.9.1), one gets D = Diag[Dy, Dg,, Dg,], v = Diag|0, vp, ;] and the matrix
B takes the form:

D;V? — a3 0 0
B= 0 Dg,V? — 1,0, — (up — 1) 0 : (2.9.8)
0 0 Dg,V? — 1,0, — B

Note that, if D — Oand v — 0, then B — —V and £ — FV 1, where FV ! is the NGM related to the
non-spatial model corresponding to (2.9.1).

From now on, suppose D # 0.

Following [166], [165], let us proceed to calculate B! by solving B(¢1, o, $3)T = (y1, 42, y3)" subject

to homogeneous Neumann boundary conditions. Let us first consider the equation

Blp1] := D;V?¢1(2) — azdi(z) = y1(z), (2.9.9)

with ¢, (0) = ¢, (1) = 0. This problem can be conveniently solved by using the Laplace transform. Denote
the Laplace transforms of ¢ () and y; (x) by ®1(s) and Y (s), respectively. Then,

Yi(s) sDr¢1(0)
P = 2.9.10
1(8) D[SQ—ag + D[Sz—(lg7 ( )

where the first boundary condition of ¢ is applied. The inverse Laplace transform then yields

b1(z) = Djag /O " sinh [\/g (z - T)] y1(7)dr + é1(0) cosh [\/Ex} . 2.9.11)
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Now differentiating ¢, and using the second boundary condition, one obtains

one) = 57l = e [T |\ [5G = ) myar

cosh |, [ 2 4 .
~ \/ms[ii%/%i ] /0 cosh {\/?”1(1_7)] yi (7)dr. (2.9.12)

In this expression, the second part represents the homogeneous solution, whereas the first part represents

a particular solution to the original non-homogeneous equation, as reported in [166]. In a similar way, the

boundary value problem

Blgs] := Dp,V>¢2(x) — vp0yha(z) — (up — 1)a(x) = ya (), (2.9.13)
with ¢ (0) = ¢5(1) = 0, can be solved. Denote the Laplace transforms of ¢(z) and yo(z) by ®(s) and
Ys(s), respectively. Then

Y, ¢2(0)(DBpS _ Vp)

Pols) —
2(5) Dg,s?> —vps — (up —1)  Dp,s?> —vps — (up — 1)’

(2.9.14)

where the first boundary condition of ¢ is applied. It is convenient to define the following positive constant

- \/Va+4Dp, (up—1)

2D, . The inverse Laplace transform then yields
v ST
do(x) = D;pe /Ox eﬁ(x_ﬂ sinh [e(x — 7)] ya(7)dT + qzs2(())(;Bp(cosh [ex]
- 3 D”;g sinh [e2)). (2.9.15)
Now differentiating ¢ and using the second boundary condition, one gets
o 1 [* ¢ T, )
d2(x) = By [y2] = Dnc /0 e "Bp sinh [e(z — 7)] y2(7)dT — m(cosh [ex]

1 Yp
_ Vp . g (1-7) Vp . _ _
2Dn sinh [ex]) /0 e Br T sinh [e(1 — 7)] + ecosh[e(1 — 7)] p y2(7)dT.  (2.9.16)

Finally, solving the equation

Bl¢s] := Dp,V?¢3(x) — v,0:03(x) — ppos(x) = ys(), (2.9.17)
with the boundary conditions ¢5(0) = ¢5(1) = 0, one finds that

v
— 2Dgr (1—=z)

(&

_ ol Bl Can B e B
o3(x) B3 " [ys] Do /0 e sinh [w(z — 7)] ys(7)d7 105 Sinb ] (cosh [wz] (2.9.18)
1 v
B Vr ) ﬁ(l—‘r‘) Ur . _ _ ;
3Dn.w sinh [wx])/o e {ZDBT sinh [w(1 — 7)] 4+ w cosh [w(1 T)]} ys(T)dT,
\/v2+4ppDg, . . . . .
where w = ~opg > 0. For consistence in notations, below ¢; and y; in Equation (2.9.12) are

exchanged, as well as ¢2 and g2 in Equation (2.9.16) and ¢3 and y3 in Equation (2.9.18). Now, the eigenvalue

problem which must be resolved turns out
—FB ' = \o. (2.9.19)
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The following three equations are obtained:

kil

kiZ

where

k11 = k12 = kog = koa = ko5 = 0,

/Ox sinh { %(m - T)] o1 (r)dr +

I

cost | [ o] [ " cosh [/ ma -] sr(ryar +

x 7’/1) r—T
/ ePBp (== sinh [e(x — 7)] 2 (7)dT +
0

67257;)(17:5) (cosh [ex] — ==~
ecosh [e(1 — 7)]}o2(7T)dT +

/' 5. 77 sinh [w(w — 7)] ps(r)dr +
0

L4

. 1 Vo —r -
¢ 205, 77 (cosh [wz] — 2Dul;w sinh [wx]) /0 205, ! ){ v

. (1*7'){

Vp . >
2Dp, sinh [ex] /Oe B

Vp

2Dn, sinh [e(1 — 7)] +

sinh lw(l —
5Ds. sinh [w( ]+

v/Dras sinh [ %3}] ’

0r

wcosh [w(l —7)|}ps(T)dr = Ay i=1,2,3
By
= — ki =
/CpDBPE 1
5, . b
D ) 16 — inh
B,W upsin
Op i
= - ) 22 —
\/D]ag
0, i
Y~ 32 =
vV D1a3

v/ Drag sinh [1 /%ir] ’

kog = k33 = k34 = k35 = k3g = 0.

2.9.1 Numerical Treatment of Eigenvalue Problem (2.9.20)

(2.9.20)

(2.9.21)

Analysis of the eigenvalue problem associated with the integral equations (2.9.20) appears difficult. Instead,

following the ideas in [166], some insights into the eigenvalue problem ((2.9.20) can be studied by looking

at its discrete form. Let us partition the interval [0, 1] uniformly with the nodes z; = Az, (0 < i < M),

where M Ax = 1. Evaluating Equation (2.9.20) at x; for i = 1,2, ..., M, and simply approximating each

integral by using the right endpoint of each subinterval (see [166]), the following matrix equation is obtained

AZ =\Z
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with Z = [p1(x1), ¢1(22), ., p1(2ar), d2(21), $2(22), oo, G2(2 1), $3(21), $3(22), -, d3(xar)]". The prob-
lem is now reduced to analysing the spectral radius, p(A), of the coefficient matrix A; in particular

Jim p(A) = p(L) = RGPP.
z—0

The coefficient matrix A in can be written as
A= Al + A2 + Ag + A4 + A5 + A6, (2923)

where each matrix 4; (1 < ¢ < 4), of dimension 3M x 3M, results from the discretization of the i-th

integral in equations (2.9.20). Specifically, A; can be represented by a block form

Op  Opp Opf
Al = Ax k21A1 OM OM 5 (2924)
ka1 A1 Op On

where 0 denotes the zero square matrix of dimension M x M, and A; = (a,glj)) isan M x M lower-

triangular matrix given by

sinh [ (@i — xj)} , ifi >y,

a; ;= (2.9.25)
0, otherwise.
Similarly,
O kizAs On
As=Azx |0y Op  Oum |, (2.9.26)

O O Op
®3)

where A3 = (aj ;) is also an M x M lower-triangular matrix:

2P (pi—x;
_ 2Dp,, ( 7) sinh [5(:61 — l‘j)] , ifi>7g, (2.9.27)

0, otherwise.

In a similar way,
Or On Ki3As
A5 = Az Op Op Onr s (2.9.28)

Orp On Om
(5)

where Ay = (a; ; ) is also an M x M lower-triangular matrix:

2, ) Gy w(z; —xy)], ifi>j,

_ (2.9.29)
0, otherwise.

The matrix As takes the form
O Oap Opg
Ay = Az | kooAs Opr Our | (2.9.30)
ks2Aa Opr O
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with the M x M block Ay = (ag?) for which

al(?j) = cosh [\/l%:ix’} cosh [\/gji(l — x])] , if 1 <4, < M. (2.9.31)

Then, the matrix A4 takes the form
O kuads On
A4 = AZL‘ OM OM OM 5 (2.9.32)

O Opr Op

with the M x M block A4 = (ag?) for which

Vp

— l—z;
a(4> = e 2DBP( ) {COSh [5331] -

/L?]

vYp 1—x;
sinh [eazz]} o7, 1779

Vp { Vp
2DBP5 2DBP
+ ecoshe(l —xy)]}, if 1<4,j<M. (2.9.33)

sinh [e(1 — z;)]

Finally, The matrix Ag takes the form

Or Onr kigAs
As=Az |0y Oar O |, (2.9.34)

Op Oy O
with the M x M block Ag = (a!”)) for which

Vr

2D

T

sinh [w(1 — z;)]

2y

© _ et 0o w ) ey
a e cosh [wz;] Do sinh [wx;] p e {

+ wecosh[w(l —x;)]}, if 1<i,j <M. (2.9.35)

There is no general relationship between p(A) and p(4;), (1 < i < 6). Nevertheless, if we assume 7> <1,
+ 5= L « 1and

+ << 1, then each entry of Ay, As and As is very small; it is bounded

4D2 4D2

between 0 and sinh [ %31] if in A1, between 0 and sinh [ 1 D2

+ “BB if in A3 and between 0 and
D

—|— ifin As. Thus, A1, A3 and A5 can be treated as small perturbation to Ao, A4 and Ag

sinh [ 1 D2

in this case, and
p(A) = p(A2 + Ag + Ag). (2.9.36)

2.9.2 Main Results on R}PE

The quantity RP DE

represents a threshold value for the eradication of the disease for the spatially non-
homogeneous model (2.9.1). Indeed, consider the spatially homogeneous equivalents of the equations
(2.9.1); and (2.9.1)5: let M be the matrix consisting of the derivatives of the right hand-side of these

equations with respect to the variables S and V), evaluated at DFE Eo, i.e.:

M=["" 0 . (2.9.37)
0 - (dr + )‘p)
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Since the off-diagonal entries are non-negative, M is cooperative. In addition, the opposite of the transition
matrix —V related to the model (2.9.1) and evaluated at the DFE E defined in (2.9.2), is also cooperative.

Let A a closed linear operator and o (.A) its spectrum. Let us denote its spectral bound with
s(A) =sup{Re(\) | A€ c(A)}. (2.9.38)

Thus, consider the following statements, introduced by Wang and Zhao [164] for reaction-diffusion systems

(without advection):
N(M)=5(V(DV)+M) <0, N (=V)=s(V(DV)-V)=s(B)<0. (2.9.39)

The following result, proved for reaction-diffusion model by Wang and Zhao [164], is an extension to the

spatial case of theorem for local stability of the DFE proved in [161]:
Theorem 2.9.1 [164] Assume that (2.9.39) holds. Then
o REPE — 1 has the same sign as \* = s (B + F).
. IfRéDDE < 1, then DFE E is asymptotically stable for system (2.9.1) if v, = v, = 0.

Thus, when assumptions (2.9.39) hold, R(I)D DE is a threshold quantity for model (2.9.1) without advection.

A natural extension for systems with advection of requests (2.9.39) seems to be
N (M)=s(V(DV)—vV+M)<0, N(=V)=s(V(DV)—vV-V)=s5(B)<0. (2.9.40)

Assuming that (2.9.40) are valid, the theorem 2.9.1 can apply to systems with advection, like the model
(2.9.1). Therefore, Rg) DE " greatest solutions of the eigenvalue problem (2.9.20), turns out to be a good
threshold for the eradication of the infection, as confirmed by many simulations (see next section).

To conclude this section, a result that compares the two reproduction numbers Rg) DE (given in (2.9.3)) and

ROP DE (greatest solutions of the eigenvalue problem (2.9.20)) is provided.
Theorem 2.9.2 Ifaz < Dy, vp +pp —1 < D, and v, + pp < Dg,, then

REPE = ROPE (2.9.41)

The proof is given in Appendix E.

The result in Theorem 2.9.2 indicates that when diffusion in the human and bacterial populations is large
enough, and convection is insigniticant, the spatial heterogeneity (reflected by the PDE model) tends to be
smoothed out so that the disease threshold is reduced to that for the homogeneous environments (represented
by the ODE model).

A similar result is obtained in [165], with a single bacteria population.
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2.10 Numerical Simulation associated to PDE Model

In this section, again we have \, = A, = 0 and ROOD E like in formula (2.9.3). Analytical results are now
verified by means of numerical simulation. In particular, the threshold dynamics based on our ODE and
PDE cholera models are compared. The main interest is to study the influence of the shedding of bacteria 0,
and the transmission parameter 3, of bacteria population in pond on ROP DE_Fig. 2.11 shows the difference
in the basic reproduction numbers of the PDE model (2.7.4) and the ODE model (2.2.3) with A, = A, = 0.
We observe, from Figure 2.11(a), that ‘Rg PE _ RED E‘ is nearly invisible when the diffusion coefficients

of the hosts and bacteria in pond and river (D, Dp, and Dg,, respectively) are getting large with respect
Uy

. . . v
to the advection coefficient v, and v,. This result confirms that Rg DE _, Rg) DE when —2- and D
By B

are getting small . When P and 1;)—r are getting large, Figure 2.11(b) illustrates that the difference
B, B,

— R(I)D D E‘ is quite large. This result is consistent with Theorem 2.9.2 and extends what has been
shown in [165, 166].

|ROODE

1.25

| 8x 10"
1.00

6x10"
0.75

1
0.50 4x10

Shedding Rate in Pond (6,,)
Shedding Rate in Pond (6,,)

1"
0.25 2x10

4 6
Transmission Rate in Pond (8,) Transmission Rate in Pond (B,) 0

4 6

(a) DBP > Up, DBr > vy (C) DBP < Up, DBT < U

Figure 2.11: The difference in the basic reproduction number between the PDE model (2.7.4) and the ODE model
(22.3) (with A, = A, = 0) [R{PE — REPF|. The thresholds RYPF and RPE are function of 3, and 6,,. The
value of parameters used in this simulation are those listed in Table 2.1 and Table 2.5 with 37 = 10 and L = 10. In
plot (a) D% = D3 = 102, Dy, =Dy, = 103, while in graph (b) D% = 1072, D; = 1073 and Dy, =Dy, = 1071

Figures 2.12 illustrates the number of infectious individuals based on the PDE model (2.7.4) with uniform
initial distribution, as a function of space and time when the associated Rg DE is lower or higher than the
unity. Other initial conditions with various distribution types have been tested, and they all lead to similar
patterns in terms of the extinction (when R(I)D DE < 1) and endemic state (when R(])D DE - 1) of cholera

infection. They verify that ROP DE is a disease threshold.
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Figure 2.12: Number of infected human hosts associated with the PDE model (2.7.4) vs. space and time, when
REPE = 0.767926 < 1 (a) and REPE = 23.9854 > 1 (b). The parameter value are those listen in Table 2.1 and
Table 2.5 A7 = A = 0 and L = 100. Moreover 3; = 37 = 6; = 67 = 0.01 and p* = 9 X 10~* in panel (a) and
By =PBr=0,=0;=1and p* =9 x 1073 in panel (b).

2.11 Conclusions and Future Scope

Cholera, a water-borne disease characterized by severe diarrhea, remains a major public health burden in
many parts of the world. In particular, the disease, caused by Vibrio cholerae, is endemic in parts of Asia,
Africa, and Latin America. Owing to the enormous public health burden associated with cholera disease,
there is now a concerted global effort to effectively control and/or eliminate the disease in endemic areas.
In particular, the Global Task Force on Cholera Control (GTFCC) has launched a laudable collaborative
initiative in 2017 with the dual aim of reducing cholera mortality by 90% in the existing 47 countries
affected by cholera and, subsequently, ending cholera as a threat to public health by 2030 [174]. The
essential elements of the laudable GTFCC initiative include intensifying anti-cholera control efforts (in
particular improved WASH strategy, safe drinking water, quick access to treatment, intravenous fluids and
antibiotic for severe cholera cases), enhancing preparedness of health case systems and building strong
capacity to effectively and rapidly contain cholera outbreaks [174]. The aforementioned global effort to
eliminate cholera necessitate the design and use of novel mathematical modeling framework for gaining
insight into cholera transmission dynamics and control, aimed at finding effective strategies for achieving
cholera elimination (vis a vis the 2030 elimination goal).

In this chapter, a novel ecology-epidemiology-hydrology model for the environment-host-environment
transmission dynamics and control of V. cholerae bacteria in a human host population having an intercon-
nected pond-river water network is proposed. The model, which takes the form of a deterministic system
of nonlinear differential equations, accounted for the back-and-forth flow of water within the pond-river
network. Further, the model stratified the total bacterial population in the community based on where the
bacteria reside. That is, the total bacterial population is split into sub-population for bacteria in the pond

and in the river. Other notable features of the novel model include the use of a nonlinear logistic growth
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rate for bacteria in the pond (and no such growth is considered for V. cholerae dynamics in the river) and
accounting for the temporal evolution of the volume of water in the pond (to account for the impact of
environmental factors, such as drainage, precipitation, evaporation etc., on V. cholerae concentration in
the pond). Humans acquire V. cholerae infection by coming in contact with contaminated water in either
the pond or river, and infected humans shed V. cholerae to the two water sources (thereby completing the
environment-host-environment cholera transmission cycle).

The developed model was rigorously analysed to gain insight into its dynamical features. In particular,
results for the non-negativity, invariance and boundedness of the model were derived (thereby establishing
the well-posedness of the developed model). The asymptotic stability of the disease-free equilibrium of the
model was shown to be governed by whether or not a certain epidemiological threshold, known as the basic
reproduction number (denoted by Ry), is less than unity. Explicit expressions for R of the developed model
were derived under four different anti-cholera control scenarios. The four control scenarios were formulated
based on using four different interpretations of the role of the environment in the transmission cycle.

For the special case of the model where the bacterial growth is less than the bacterial death, it was shown
that all the four expressions of R are well-posed. Further, the four constituent reproduction numbers exhibit
the same threshold property with respect to the value unity (i.e., if one is less(equal)(greater) than unity, then
the remaining three are all less(equal)(greater) than unity). In this context, each control scenario is associated
with its own (different) threshold quantity that governs its effectiveness vis a vis disease elimination or
persistence (i.e., each constituent reproduction number is associated with the amount of effort, in terms of
the associated herd immunity threshold, needed for the elimination of the disease). In order to overcome the
problem of having to deal with different estimates of the effort needed to eliminate the disease corresponding
to each of the aforementioned four scenarios considered, the associated type reproduction number [14, 85,
133, 141, 142] of the model was computed for each of the three populations type considered in the study (i.e.,
humans, pond and river). For the case where control efforts exclusively target the human host population,
it was shown that the associated type reproduction number (denoted by 77) was precisely the same for each
of the four control scenarios. The uniqueness of the target reproduction when the human hosts are targeted
(which plays a critical role in disease control) was, however, not maintained when the other two population
types (bacteria in pond and river) are targeted. It should be recalled from the computations in Section 2.3 that
the entries of the first row of the matrix F', of new infection terms, remain the same regardless of which of
the four transmission scenarios is considered. Thus, mathematically-speaking (in line with Theorem 2.4.1),
targeting population type corresponding to the first row of the matrix F' (i.e., the human host) guarantees the
uniqueness of the associated type reproduction number (77). Biologically-speaking, the type reproduction
number is unique if it corresponds to a population type that always assumes the same epidemiological role in
every scenario. In fact, targeting the bacterial population (in the pond and/or in the river), the corresponding
type reproduction number is not unique. This is owing to the fact that the two population types for the
bacterial populations (i.e., the pond and the river) assume different epidemiological roles depending on the
transmission scenario considered.

Using Lypapunov function theory and LaSalle’s Invariance Principle, it was shown that, for each of
the four control scenarios considered, the disease-free equilibrium of the model is globally-asymptotically

stable, for a special case where the volume of water in the pond is maximized, whenever the associated repro-

114



duction number of the model (Rg; or, equivalently, 77) is less than unity. The epidemiological implication
of this result is that cholera elimination can be achieved if the anti-cholera control strategies adopted can
bring (and maintain) R (or 7;) to a value less than unity. Mathematically-speaking, this result means that
bringing (and maintaining) R (or 77) to a value less than unity is necessary and sufficient for the elimina-
tion of the disease. This result enabled the determination of the herd immunity threshold (i.e., the minimum
proportion of the population that should be targeted for the control) needed for disease elimination.

The developed model was used to assess various effectiveness levels of singular and combined anti-
cholera control strategies. In particular, three strategies, namely WASH-only, treatment-only and combined
WASH-treatment strategies were considered. Further, for each of these strategies, three effectiveness levels
(low, moderate and high) were considered in the numerical simulations of the developed model. Extensive
numerical simulations of the model, using reasonably-realistic set of parameters obtained from the litera-
ture, showed that, with its current estimated efficacy (of 60%) and coverage (of 50%) [79], the WASH-only
strategy (i.e., a strategy that focus on improved water, sanitation and hygiene) is unable to lead to the elimi-
nation of cholera in the community, regardless of the effectiveness level (since none of its three effectiveness
levels can bring R to a value less than unity). However, our simulations show that such elimination can
be achieved, using either the moderate or high effectiveness level of this singular strategy, if the coverage
can be increased to 80% and efficacy of implementation greatly increased to 90%. This may not be realistic

targets in resource-challenged communities.

For the treatment-only strategy (i.e., a strategy based on using oral rehydration therapy and the admin-
istration of antibiotics), it was also shown that, with the current estimate of efficacy and coverage at 100%
and 23%, respectively [79, 136, 143], none of the effectiveness levels of this singular strategy can to cholera
elimination. Such elimination will, however, be achieved, using even the low effectiveness level, if the
coverage can be increased to 80%. In fact, while the implementation of the moderate effectiveness level
of this strategy can lead to such elimination with reduced coverage of 70%, the high effectiveness level of
this treatment-only strategy can lead to disease elimination even with 50% coverage. Thus, our simula-
tions suggest that treatment-based interventions may be more effective than WASH-based interventions. It
is probably plausible to surmise that treatment-based interventions may be more realistic (i.e., achieve the
required efficacy and coverage) than WASH-based interventions, particularly in resource-challenged rural

arecas.

Simulations of the model for the combined (hybrid) WASH-treatment strategy showed that, with the
estimated efficacy of 80% and coverage of 36.5% [136, 143], while the low and moderate effectiveness
levels of this hybrid strategy failed to eliminate the disease, the high effectiveness level of this strategy can
eliminate the disease. If the coverage is increased to 50%, even the low effectiveness level of this intervention
can lead to cholera elimination (in fact, the moderate effectiveness level can achieve such elimination even
with a 40% coverage). Hence, it can be concluded, based on our extensive numerical simulations, that the
anti-cholera control strategies considered in this study can be ranked in the following order of population-

level effectiveness:

Combined Strategy > Treatment-only Strategy > WASH-only Strategy |.
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The model was then extended to the spatial case using the Fickian approximation, considering the dif-

fusion both in the human population and in the bacterial population; furthermore, the fact that the vibrios
are transported by water is taken into account. For the new PDE model, monotone traveling wave solutions
have been studied, providing an estimate of the minimal speed at which this wave front can travel. These
trajectories connect the EE and the DFE: this suggests that, under appropriate conditions, the epidemic could
invade the territory, for example from inland areas (where the disease is present) to coastal regions (where
it is not present) and vice versa. Moreover, in order to provide a good threshold for the eradication of the
disease even in the heterogeneous spatial case, an estimate of the basic reproductive number in the spatial
case was provided, following the idea presented in [164]. The conditions for which the basic reproductive
numbers relating to the spatial and non-spatial case coincide have been found. Numerical simulations were
conducted to confirm the results obtained.
We intend to integrate this model with elements regarding vaccination. In fact, in addition to the anti-cholera
strategies shown in the previous sections, the published literature highlights how administering the vaccine
is the most effective method for the eradication of this infection. The new proposal will consist of the model
analyzed in this chapter, but including the component of the vaccine in the host population, thus obtaining
new results for a better understanding of this epidemic.
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Chapter

A MATHEMATICAL MODEL OF VERTICALLY
TRANSMITTED VECTOR DISEASES

Part of this chapter, concerning the exclusively non-spatial model,was presented at the International Con-
vention MM.SE.OR 2017, held in Giardini-Naxos, Messina, from 18 to 21/09 2017 and has materialized in
the following publication:

A. Lupica and A. Palumbo. A mathematical model of vertically transmitted vector diseases. Atti della
Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 96(S3):11, 2018.

3.1 Introduction

Vector-borne diseases are infectious diseases caused by pathogens which are transmitted by insects, bacteria
and protozoa (called vectors), infected by biological agents (anthropoids). Malaria, dengue, yellow fever, St
Louis Encephalitis and West Nile Fever (WNF) are examples of such vector-borne diseases whose vectors

are mosquitoes. Some of the main facts listed by WHO are [178]:

* vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700000

deaths annually,

* More than 3.9 billion people in over 128 countries are at risk of contracting dengue, with 96 million

cases estimated per year,

* malaria causes more than 400000 deaths every year globally, most of them children under 5 years of

age,

* other diseases such as Chagas disease, leishmaniasis and schistosomiasis affect hundreds of millions

of people worldwide.
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Mosquitoes are the best known disease vector. Others include ticks, flies, sandflies, fleas, triatomine bugs
and some freshwater aquatic snails. As reported in [176], their ability to carry and spread disease to humans
causes millions of deaths every year. In 2015 malaria alone caused 438000 deaths. The worldwide incidence
of dengue has risen 30-fold in the past 30 years, and more countries are reporting their first outbreaks of the
disease. Zika, dengue, chikungunya, and yellow fever are all transmitted to humans by the Aedes aegypti
mosquito. More than half of the world’s population live in areas where this mosquito species is present. The
figure 3.1 shows the probability of occurrence of dengue in 2015, reported by Messina et al [114]. These

Environmental suitability
for danguae (2015

(@)
Figure 3.1: Maps displaying global probability data of occurrence of dengue in 2015 [114].

infectious diseases can be transmitted to two types of host populations: reservoir (which in this discussion
will be the birds) and accidental (humans and horses in this discussion).

In these diseases, the primary cycle (endemic) of the virus is characterized by mosquito-bird-mosquito
transmission: adult mosquitoes become infected by biting viremic birds (reservoir) [6]. Once the virus is
ingested, it spreads within the mosquito organism and is subsequently transmitted to the host vertebrate.

The secondary epidemic cycle manifests itself when accidental hosts, such as humans or horses, enter
the transmission cycle and are affected by the infection [6]. The virus is not transmitted from person to
person or from horse to horse via mosquito bites due to the low level of virus concentration in the blood.

In addition to the horizontal transmission cycle (vector-host-vector), some species of mosquitoes trans-
mit the pathogen to their offspring (vertical transmission). Indeed, even in the absence of infected hosts,
the disease is transmitted by the adult mosquitoes to eggs that survive the dry season and evolve as adult
and infectious mosquitoes (see for example [4, 22, 45]). Vertical transmission is observed, for example, in
dengue virus transmitting mosquitoes such as Aedes aegypti, Aedes albopitus, the Culex species and other
mosquito-borne flavivirus.

In recent years, various epidemic models have been proposed to describe and control the spread of
infectious diseases such as malaria, dengue and WNF ([9]-[22] and related references). Models differ in the
description of the interaction between vectors and host populations. Furthermore some authors incorporate
the vertical transmission ([4, 22, 45]), others analyse the interaction of different species of birds with vectors

([106]), while others examine the effect of seasonality on disease transmission ([56]). These models describe
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the interaction between birds and mosquitoes and only a few studies have explored the transmission of WNF
between birds, mosquitoes and humans, see for example [26, 44].

In many mathematical models, the aquatic stage of the vector population consisting of eggs, larvae and
pupae is not included in the transmission of the virus (see for example [44, 106, 107]).

First in work [171], the classical SIR model for malaria transmission is extended to a model describing
WNF cross-infection between birds and mosquitoes, including the larval stage of vector population.

In order to incorporate the vertical transmission of the virus, in the model that is presented here, the
aquatic stage with its epidemiological classes is inserted. The exposed class for the adult stage, accidental
hosts, the exposed class in host populations, together with vertical transmission in vector populations are
also included. In this way, horizontal and vertical transmission of vector-borne diseases are investigated.
The model extends the Chen et al. proposal in [44].

Of course, it is easy to understand that, since mosquitoes are responsible for transmitting most of these
diseases, their movement plays a decisive role in spreading the epidemic and in creating reservoirs of viruses
[152]. Note that, only adult stage of mosquitoes can spread the vitus, while aquatic stage is immobile in the
marshes or stagnant environments. Moreover, experts recognize urbanization as one of the most important
drivers of global change, and predict that rapid increases in urban populations throughout the world will
have major implications for human health in general and vector-borne diseases specifically [30]. There are
reasons to believe that the spatial movement of humans may be important for the epidemiology of vector-
borne diseases. This is one of the factors contributing to the re-emergence of malaria is human migration, as
reported in [54] (and references therein). Empirical studies supporting the idea that travel outside urban areas
is an important factor in maintaining malaria in urban areas where transmission is low [63, 127, 135]. For
example Adams and Kapan [3] study a mathematical model to investigate the impact of human movement
and the viscosity of mosquitoes on the dynamics and persistence of the disease transmitted by vectors at
the level of city. Maidana et al [105] study a mathematical model considering only the movement of adult
mosquitoes, assuming hosts not subject to movement.

Thus, in this chapter, spatial models are used to examine how the movements of birds and mosquitoes
in heterogeneous environments affect the transmission of vector-borne diseases, using the simplest appsox-
imation of fickian propagation.

This chapter is organized as follows. In Section 3.2 a new mathematical model for vector-borne epi-
demics is derived, taking into account the interaction between birds and mosquitoes, mosquitoes and hu-
mans, as well as the transmission from adult mosquitoes and eggs. In Section 3.3 a linear stability analysis
around the steady states is investigated both analytically and numerically together with the possible exis-
tence of a backward bifurcation. The extension of the model to the spatial case is placed in the section
3.4. Section 3.5 contains some results regarding the Basic Reproductive Number related to the spatial case.
Finally, some concluding remarks are made in Section 3.6.

3.2 Mathematical Model

The populations involved in transmission are the vector population (mosquitoes) divided into aquatic (eggs,

larvae, pupae) and adult stages. The reservoir host population are birds while humans constitute the dilution
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host population. It is also assumed that only adult mosquitoes are able to spread the disease.

Due to the short duration of the aquatic phase [60], there is no incubation period and no healing from the
disease, so exposed and removed classes for the aquatic stage are not considered. For the same reason, the
removed class for the adult stage is also not examined. While, for host populations, all the epidemiological

classes of the SEIR model (susceptibles, exposed, infectives and removed) are taken into account.

Let Na(t) = Sa(t) + Ia(t) and Nps(t) = Sa(t) + En(t) + Ins(t) be the total number of mosquitoes
in the aquatic stage and adult stage, Ng(t) = Sg(t) + Ep(t) + Ig(t) + Rp(t) and Ny (t) = Su(t) +
En(t) + Ig(t) + Ry (t) the total number of birds and humans, respectively.

The host populations (birds and humans) have constant recruitment rates, v and g, and they decrease
by natural and disease-induced death rates, dp, df, dp and d 7, respectively. The vector population increases
through logistic growth, with r the intrinsic oviposition rate and - the intrinsic maturation rate from aquatic
stage to adult stage. The carrying capacity in the aquatic stage, k4, is defined as the available amount of
breeding sites [105], while the carrying capacity in the adult stage, kj;, takes into account the fact that the
mosquitoes cannot survive at high altitudes or temperatures [105]. Therefore, the per-capita oviposition rate

Na

is given by r (1 . H) and the per-capita growth rate in the adult stage is y (1 — %)

The vector populations (aquatic and adult stages) decrease by natural death rates, d4 and djs, by the
predation rate, m 4, and by chemical control rates, 4 and iy, respectively. The infectious mosquitoes
can transmit the virus to host populations and, via vertical transmission, to their eggs, but they can only be

infected by viremic birds.

It is assumed that the mosquito biting rate to host populations is constant and the validity of the "fre-
quency dependent law" for the infection force is accepted [92]. The cross-infection between birds or humans
and mosquitoes is modeled as ag Sy ]IV%S BOragfBu H]IV—AES I, where ap and az describe per capita biting
rate of mosquitoes on birds and humans, respectively. The probabilities of transmission from mosquitoes
to birds and humans are denoted by Sy/p and Brp, respectively. Similarly, the infection of mosquitoes
through biting infectious birds is described by apfSp M]%S M, wWhere Bp) is the probability of transmis-

sion from birds to mosquitoes.

To incorporate the vertical transmission, it is assumed that a fraction of newborns ¢, with 0 < ¢ < 1, is

already infectious at birth [9]. For this reason, the rate of newborns in the .S 4 class is

T ( — %) (Sam + Eyr + (1 — q)Iny), while the rate of newborns in 4 class is r ( - %) gl . Instead,

the rate of newborns in the Sy class is (1 — ],Z va‘jf ) S4 and similarly the rate of newborns in I, class is

ivenby v (1 — M) 1, Adult mosquitoes, birds and humans shift from the exposed class to the infectious
g y Teas q P

class with rates 7,7, 75 and 7, respectively. Furthermore, infectious birds and infectious humans migrate

into the corresponding removed class with rates wp and wpy, respectively.

Under these assumptions, the model is described by the following system of thirteen ordinary differential

equations

120



SA:T<1_%) [Svr + Enr+ (1= q)Iy] — @aSa,

e ( NA)qIM—aAIA,

Sp=~(1-22) 8y —apBemiESy — ausS
Ear A B BMNB M MO M,

E'M = QBBBM%SM —vmEy,

I =+ (1 - %) Ia+71mEM —apmly,

Sp =78 — apBus Nf Sp —dpSa,

Ep = apBus N{ Sp —apEp, G.2.D)
Iy =13Ep — vplp,
Rp = wplp — dpRp,
Su =i — agBuniL L-SH — duSH,
En = apBunit ~- Sy — anEw,
Iy =tuEy —vyly,
\RH =wylyg — dg Ry,
where, for the sake of simplicity, in (3.2.1) it is:
apg=7v+da+ma+pa, oy =dy+pn, VM =dy+ pa + T (322)

vp =dp +0p + ws, ap=dp+7, vyg=dy+déy+wy, ay=dyg+TH.
The model (3.2.1) is an extension of many of the models for vector-borne transmission dynamics, indeed:

* we incorporate the aquatic phase of mosquitoes together with its epidemiological classes (suscep-
tible and infectious), vartical transmission in vector population, the class of exposed for both adult
mosquitoes and both host populations, disease-induced mortality in host populations. These features

are not considered in [105];

* we include the aquatic phase of the mosquito population (together with the associated epidemiological
classes), vertical transmission in vector population and a non-constant growth (source of logistic type)

both for the aquatic state and for the adult state of mosquitoes compared to the work presented in [44]

* we include vertical transmission in vector population with a different functional form with respect to

[45], in addition to the dilution host population.
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Adding the appropriate equations in (3.2.1), it is possible to see that the growth of the whole populations
of aquatic mosquitoes, adult mosquitoes, birds and humans satisfy the following equations

NA:T‘< _%>NM_QANA;

Nur =’Y(1 - %f) Na —apNy,

(3.2.3)
Np =~y —dpNp — BB,

Ny =~y —dgNy — o ly.

Thus, all total populations may vary in time. In particular, in the absence of disease, the population size

Np and Ny converge to the equilibrium value }—g and g—z , respectively. Furthermore, from (3.2.3)3 4, it
YH
< —.

follows that lim sup Np(t) < 7B and lim sup N (t)
t—00 dB t—o0
Since the first nine equations are independent of the other four, the following two vectors can be defined:

X1(t) = (Salt), La(t), Su(t), Bar(t), In (t), Sg(t), En(t), Ip(t), RE (1)), (3.2.4)

Xo(t) = (Su(t), Eu(t), In(t), Ru ()", (3.2.5)

so system (3.2.1) can be recast in the following compact form:

X; = F (X)),
. (3.2.6)
Xy = Fo(X1, X2),

where F; and Fy can be easily deduced from system (3.2.1).
Now, denoting with R”} the positive orthant in R™ and with OR’} its boundary, the model (3.2.6); is

epidemiologically well-posed in the domain

Dy = {(Sa.1a,Su,En, Ing, S, Ep, Ip, Rp) € RS : Sa+ Ia < ka, Su+ En + In <k,
B B
———— < Sp+Eg+Ip+Rp<-—}, 3.2.7
A5+ o5 =B B+ 1Ip B < dB} ( )

while system (3.2.6)5 is epidemiologically well-posed in the domain

Dy = {(SH,EH,IH,RH) €eR;: T TH < Sy + Ey+1Iy+ Ry < W’}; (3.2.8)
H+0H dy

so the whole system (3.2.1) is biologically well-defined in D = D; X Ds.

3.3 Mathematical Analysis

In this section, we determine the equilibria permitted by the model and study local stability.
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3.3.1 Existence, unicity and boundedness of solutions

Theorem 3.3.1 For any initial condition which lies in D, system (3.2.1) has a unique solution that exists
and remains in D, ¥ t > 0. Furthermore, the compact D is a positively invariant set, which attracts all

positive orbits in R,

Proof. For all initial conditions belonging to D, the function F = (Fy,F2)T is locally lipschitzian in
X(t) = (Xq(t),X2(t))”, then the Cauchy-Lipschitz theorem ensures that system (3.2.1) admits a unique
local solution.

Furthermore, from (3.2.3)3 4, it is
vg — (dp +0B)Np < Ng < vp —dpNp, i — (dg +dg)Ng < Ny < vy — duy Ny,

by applying the standard comparison theorem [87], it follows

VB
dp + 6B

B YH YH
< Np(t) <=, ———— < Ny(t) <-—,
- B()_dB dig +6g — H()_dH
vVt > 0 and if initially Np(0) < Z—g and Ny (0) < Z—g. By standard arguments (see [1, 2, 117]), it follows
that the total population in acquatic phase is bounded by & 4 (from equation (3.2.3);) and the total population
in adult phase is bounded by kj; (from equation (3.4.6)2).

Then, D is positively invariant and all solutions of (3.2.1) are non-negative and bounded. g

3.3.2 Disease Free Equilibrium. Basic Reproduction Number

Theorem 3.3.2 Between all possible equilibria, model (3.2.6)1 admits the two equilibrium points with no
disease in the population on D1 N 8R3

T T
Eo=(0,0,0,0,0,22.0,0,0) , E1 = ( Ao,0, Mo,0,0,22.0,0,0) , (33.1)
dB dB

which are the trivial and non-trivial one, where

Ao _ MngOéM 0= k‘AkM(T"'y — aMaA)
Y(kar — Mo)’ r(vka + knanr)

(3.3.2)

The equilibrium E; exists if the condition 7y > a4a;s holds.

Theorem 3.3.3 The whole model (3.2.1) admits the following trivial and non trivial disease free equilibrium

points
v v T v v T

Py =(0,0,0,0,0,22.0,0,0,2%.0,0,0) , P, = ( Ag,0,Mp,0,0,-2.0,0,0,2%.0,0,0) , (33.3)
dp dr dp du

onDﬂﬁRf’.
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It follows directly by substituting the equilibria (3.3.1) of (3.2.6); into (3.2.6)s.

In the following, the more biologically realistic equilibrium P; is considered. Its character is related
to the basic reproduction number Ry, which is defined as the average number of new cases of an infection
caused by an infected individual, in a population consisting of susceptibles only and where the disease is
vertically transmitted.

Following [61, 62, 161], and linearizing system (3.2.1) around P, it is possible to compute the transmis-
sion matrix F, describing the production of new infections, and the transition matrix V, representing changes
in state (including removal by death or the acquisition of immunity). The spectral radius p of the matrix

K1, = FV~!is the basic reproduction number

1 AMya%d TRT 1
Ry— ! - \/q2+ 0a5dBBBMBMBTBTM _1 <th+ R%t+473ht>, (3.3.4)
YBOMOBVMVB 2
where )
apdpBeymTs MoBvBTM

Rut=¢q¢, Rm=RuRy= (3.3.5)

QBVB AN VM
Ro consists of two contributions: the first is due to vertical transmission, whereas the second is caused
by horizontal transmission. In particular, Ry, is the product of the number of new infections in the host
population and the number of new infections in the vector population. R contains only terms related to the
populations that spread and transmit the disease and not terms related to the human population that, in this

model, constitutes the accidental host population.

The following local stability result about Py holds [161]:

Theorem 3.3.4 The disease-free equilibrium point, P of the model (3.2.1), is locally asymptotically stable
if Ro < 1 and unstable if Rg > 1, where Ry is defined by (3.3.4).

Theorem 3.3.4 shows that in the case Ry < 1 the disease could be eliminated for a small initial value.

3.3.3 Endemic Equilibrium States. Bifurcation Analysis
Existence of endemic equilibria

In this part, the dynamic of system (3.2.1) is studied, as the threshold R changes. Let us start calculating
the endemic equilibrium points, which are solutions of the algebraic system

Fi(X;) =0,
(3.3.6)
F2(X1,X2) = 0.
Firstly, from (3.3.6); we deduce
Iy = gapdpAoBeMTMIB
(1 — @Q)amvm(ys — d8IB) + IpapdpBem((1 — @)anm + Tar)’
By = (1 —q)apdpMooriBemip

(1 —q)apmvm(ys —0pIg) + IpapdpBem((1 — @)an + Tar)’
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Iy = apdpMoBpmTmIB (3.3.7)
(1= q)amvm(ve — 0plp) + IpapdpBem((1 — @)an + )’ o

— I
Su=Ag—1Ia, Sar = Mo — Egg — Iny, Sp = BIBZOBYBIE o VB Rp="Bry
TBdRB B dp
while Ip is the positive solution of the following equation
f(Ip) = aplf + bylp + ¢ = 0, (3.3.8)
where
a, = apdprplapBemdp((1 —q)anm +7v) — (1 — @)anmvadsl, (3.3.9)
by = 2(1—q)apanypdprprr — apdpapBemysve((1 — q)an + Tar)
— a%dpBryMBuBTMaBYE M, (3.3.10)
o = —ypamaprmveys(l —q)(1—Ro).

Existence of endemic equilibrium requires that the roots of (3.3.8) are real and positive. Moreover, since

Sp must be positive, we also have to impose the further condition Ip < I5 = ;BB Z’; .

Let us denote with Ay the discriminant of (3.3.8). Solving A = 0 in terms of R we obtain the critical

value
c by
=1+ , (3.3.11)
0 4r(1 — q)abaBVB’y%aMuM(’ykA + karaoy)
so the following relations are verified:
Ay <0 & Ro<RG Ap=0¢& Ro=R5 Ap>0 < Ro>RG. (3.3.12)
The study of the solutions of (3.3.8) implies the following result.
Theorem 3.3.5 1. Let ap = 0. Equation (3.3.8) is a linear equation with a unique solution Ig = fg—l;.

Then the system (3.2.6)1 has a unique endemic equilibrium when Rg > 1 and by < 0 and has no

endemic equilibrium when Ry < 1.

2. Let ap # 0.
a) System (3.2.61) has a unique endemic equilibrium whenever Ry > 1
b) System (3.2.61) has a unique endemic equilibrium whenever Rog = 1, ap < 0 and bg > 0
c) System (3.2.61) has two endemic equilibria E; when R < Ro < 1, a, < 0 and b, > 0
d) System (3.2.61) has a unique endemic equilibrium of multiplicity 2 when Ro = R, ap < 0 and
by, >0
e) System (3.2.61) has no endemic equilibria whenever Ry < R§ or whenever Ry < 1 and a, > 0

Proof.. Evaluating f(Ip) at Ip = I;* we have f(I") < 0.

1. Let a, = 0. This case happens when the disease-induced death rate 5 = 0 or apfpymdp((1 —
q)anr +7ar) — (1 — q)anvardp = 0. Equation (3.3.8) has one positive solution Ip = —‘g—l’: if by < 0.
If Ry < 1, then f(0) < 0. In this case there are no positive real solutions in the interval [0, I7;"]. For
Ro = 1, from (3.3.7) we find the non-trivial DFE E;.
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2. Letay # 0.
If Rg > 1than f(0) > 0. In this case there is always a unique positive real solution in the interval
[0, I%]. This solution is Ip = %{Tb ifa, > 0and I = —bg%xb if ay < 0. If Ry = 1 there
is a positive solution Ip = —2—’; if and only if a5 < 0 and b, > 0 (otherwise there are no positive
solutions in the interval [0, I55]). If Ryp < 1 then f(0) < 0. When a; > 0 equation (3.3.8) has no
positive solutions in the interval [0, /7]. When a; < 0, b, > 0 and A, > 0 there are two positive real

solutions I}B = _Z’Z’Q_TZ/E’ and 1123 = _l’%\b/ﬁb of equation (3.3.8). These solutions coalesce if A, = 0.

O
To each endemic equilibrium state for the system (3.2.6);, solution of the equation (3.3.6), there is a
corresponding equilibrium state for system (3.2.6)2. Known 1 }w from Theorem 3.3.5 and solving equation

(3.3.6)2 in terms of I, we obtain the following relations

g, _ THYH — agvyly
H pu—
THAH

CEn =M1y Ry =M1y, (3.3.13)
TH dy

in which the endemic value [ is the positive solution of
9(In) = anlpy + bplp + cn =0, (3.3.14)

where
ap, = ogOHVH,

b, = —(apyuve + lyjagBuranve), (3.3.15)
ch = auBuutayvuly.

Put A, = b% — 4apcp, > 0 which ensures that the solutions of the equation (3.3.14) are real. Since Sy > 0,
then Iy < I} = % Because of a, > 0 and ¢, > 0, equation (3.3.14) has a unique positive solution

Iy = _bhz_T VA% in the interval [0, I
Now,denoting as P* = (5%, 1%, Sy, Exs Ihy S5y E, 15, Ry, St By, 17y, Ryy) a generic endemic

equilibrium point of system (3.2.1), Jacobian matrix evaluated at P* is given by

J(P,) = , 3.3.16
@, (Am Am) 3316

where A11 and Ags are the Jacobian matrices of the two partial systems in (3.2.6) evaluated at E* =
(Sh.Ih, Sap Erp, Iip S5 B I, Ry) and Ut = (S5, EY;, I}, Rj;) respectively, while Ag; is a ma-
trix that takes into account the interactions between the two partial systems.

Applying the Routh-Hurwith criterion to the matrix

dr — agBruly (Efq+I5;+Ry) agBuuly S agBuuly Sy agByuly Sy
(N§)? (Nj)? (Ng)? (Ng)?
agBuuly (Ey+15+Ry) . _aaBmuly Sy auBuuly Sy awBuuly Sk
Agp = (N )2 an (Nip)? (Nip)? Vip)? :
0 TH —vVyg 0
0 0 wH —dH
3.3.17)
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it is easy to prove that all eigenvalues of A2 have negative real parts. Following this, the stability of the
equilibrium P* depends only on the eigenvalues of the matrix Aj;. This means that the system (3.2.6)1,
which describes the primary transmission of disease between birds and mosquitoes, adult mosquitoes and
the aquatic stage, determines the stability of any arbitrary equilibrium point of the whole system (3.2.1). To
conclude this Section, it is good to mention that the stability of the endemic equilibria is determined by the
eigenvalues of the matrix A1;. However, since it is difficult to determine their signs analytically, in Section
3.3.4 the possible dynamical behaviors for the whole system (3.2.1) is examined by means of numerical

simulations.

Backward Bifurcation Analysis

In this section we use analytical and numerical techniques to assess the directions of bifurcations. Theorem
3.3.5 shows the possibility of backward bifurcation in model (3.2.1) when R < Ro < 1, a, < Oand b, > 0.
Backward bifurcation is a phenomenon where two endemic equilibria, one stable and the other unstable co-
exist along with the disease-free equilibrium for Ry < 1. The existence of a backward bifurcation indicates
that reduction of the epidemiology threshold, Ry, below unity is simply not a sufficient condition for disease
control. In this section it is established that once the epidemiology threshold R is reduced below a critical
value R, under some conditions, the disease could be eliminated for any initial size.

To do so, the transmission probability from mosquitoes to birds [}, is choosen as the bifurcation
parameter, obtained by solving for 5y/p from Ry = 1:

(1 —q)ypapanvpry
a%,dgMoBpMTBTM

Byp = (3.3.18)
Let J* be the Jacobian matrix of the system (3.2.6); evaluated at the DFE E; and at the bifurcation value
Bisp- It has a simple eigenvalue with zero real part and the other eigenvalues with negative real parts,
so it can be used the "center manifold theory" [61] to analyze the dynamics of the model (3.2.1) near the
criticality Sy = 3,5 and apply a theorem proved by Castillo-Chavez and Song in [41] that states the
conditions for the existence of backward bifurcation.

Let v = (v;) and w = (w;) be the left and right eigenvectors corresponding to the zero eigenvalue of the

Jacobian matrix J*, respectively,

_ _ Iuyam(rhpm+aaka) _
v =0, V2 = Trax(ykatankar) 0 V3T 0,

el
vg = vs = I, vg =0,

_ apdpBeMmTBTM MO _ apdpBemTvmMo _
v = apYBVBVM V8 = YBVBVM vo =0,

- _ _ _ _Alrkytaaka)((A-gap+7m]la
wy = —Ia, w2 = Iy, w3 = arta (Yka+ankar) ’
wy = VTkytaaka)la _ y(rkmtaaka)la we — — aBomysvErM(1-9)la

4 qrra (Yeatanrkar) 5 qr(vka+ankar) ? 6 qapds AoBBMTBTM
wo — oBYBYBYM(1=0)]4 we = 2BYBYM(1=a)]4 we = 2BYBVM(1—q)wpla
"~ qapdgAoBeMTBTM’ 8 = qapdpAofBrTi’ 9 qapdy AoBBMTM

127



Let fx(X1,¢) be the k-th component of vector Fy, zj the k-th component of vector state X; and ¢ =
BuB — Bysg- The model (3.2.1) exhibits a backward bifurcation at Rg = 1 (¢ = 0) if the following
coefficients [41]

a] = Zz’mzl vkwiwj%g’;j(El,O) = B; — By,

. 52 (3.3.19)
az = k-1 UkwiW&(Eh 0) = vrwsap,
are positive, where
Bl = —2vuwiwst — 2uswawz—— > 0, (3.3.20)
ka knr
r a d a d% M,
By = 2v2w2w5qf - 2v4w3wsM + 27}411}8%(106 + wy + wg + wy)
ka B 7B
apBrrd
+ 2v5w2kl(w4 + ws) + 2v7w5m(u}7 + wg + wy) > 0.
M
The coefficient as is always positive, but for the other coefficient the further condition
Bi > Bo, (3.3.21)

must be imposed. Thus, the following result is established.

Theorem 3.3.6 Model (3.2.1) exhibits a backward bifurcation at Ry = 1 (B = By;p) whenever the
inequality (3.3.21) holds. If the reversed inequality holds, then the bifurcation at Rg = 1 is forward.

Thus the backward bifurcation scenario involve the existence of a subcritical transcritical bifurcation at
Ro = R < 1. The qualitative bifurcation diagrams describing two types of bifurcation at Rg = 1 are
depicted in Fig.3.2.

3.3.4 Numerical Simulations

In the subsequent discussion observations are made on the nature of the stability of each fixed point through
numerical simulation. These simulations are made for both primary and secondary transmission cycle.

The case Ry < 1: system (3.2.1) has a disease-free equilibrium P;. Three numerical simulations
corresponding to different initial data sets are shown, with Ry = 0.854753.

Fig. 3.3 illustrates that each solution is close to the DFE. The occurrence of the backward bifurcation can

be also seen in Fig. 3.4, where R is less than the transcritical bifurcation threshold Ry = 1, but the solution
of the system (3.2.6); can approach either the endemic equilibrium point or the DFE point, depending on
initial condition values.
The case Ry > 1: system (3.2.1) has a endemic point when Ry > 1 which can be shown by simulation. The
endemic value is obtained using the parameter values listed in Fig.3.2-(b) with ap = 3.9. So an endemic
equilibrium point P* = (5%, Iy, Si/, Exy, Inp Sk B, I, Ry, St By, Iy, Ryp) is founded, with Ry =
6.31514. Alle the eigenvalues of the Jacobian matrix of model (3.2.1), evaluated in P*, have a negative real
part, so the local linear stability of the endemic equilibrium point is verified. The following figures show the
behavior of each population in the existing state of the disease.

We see that,after an initial oscillating trend, each solution riches its endemic value.
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Figure 3.2: Bifurcation diagram showing the equilibrium value of the Infective Birds as the Reproduction Number is varied. (a)
Backward bifurcation. Suitable set of parameters value for the exhibition of backward bifurcation d 4=0.056, k4=1000, » = 0.5,
q=0.2, ,U,A=0, mA=O, dM=0.0286, kM = 500, ’7=0.2, ™™ = 0.143, [1,1u=0, dB=0.003, ’YB=3-1, ﬂB]v[=0.9, 5}3:0.9, TB=0.6,
wp=0.3, ap=0.5. Two endemic equilibrium points coexist for value of Ry € (0.908433,1). (b) Forward bifurcation correspond-
ing to the parameters value d 4=0.056, k4=100, r = 0.1, ¢=0.1, pa=0, m 4=0, d»r=0.0286, knr=25, v=0.2, 7as = 0.143, =0,
dp=0.02, y=2.1, Bem=0.4, 65=0.1, 75=0.2, wp=0.3, ap=0.5, dg=9 x 10™*, vg=5 x 1072, Barg=0.5, §#=0.001, 75=0.25,
wi=0.143, ag=0.143.
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Figure 3.3: Evolution over time of the susceptible (a) and infective (b) classes of mosquito (magenta line), bird
(orange line) and human (blue line) populations, corresponding to different initial condition values and parameter
values listed in Fig.3.2-(b) with 8y, = 0.7. (a)-(b) show that system (3.2.1) has only one disease-free equilibrium
P, = (5,65771,0,15,3257,0,0,105,0, 0,0, 55.5556, 0,0, 0) and it is locally asymptotically stable

3.4 Spatial Dynamics

In this section, the vector-borne model (3.2.1) is extended to a PDE system, in order to investigate the spatial

dynamics of disease.
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Figure 3.4: Solutions regarding model (3.2.6); of the number of infectious adult mosquitoes, I, and the number
of infectious birds, Ip, for parameter values given in the bifurcation diagram (Fig.3.2-(a)), with 8y = 0.33, so
Ro = 0.971781 < 1, for two different sets of initial conditions. (a)-(b) show that system (3.2.6); has the bistable
equilibria: the DFE E; and an endemic equilibrium , and the other endemic equilibrium is unstable.
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Figure 3.5: Evolution over time of susceptible (a) and infective (b) classes of mosquito (magenta line), bird (orange

=)

line) and human (blue line) populations, corresponding to different initial data. We use the parameter values of Fig.3.2-
(b) with ag = 3.9 and By, = 0.7. (a)-(b) show that system (3.2.1) has a DFE Py, which is unstable, and an endemic
equilibrium P*, which is LAS.

It is assumed that the number difference of adult stage and birds at different location causes diffusion,
characterized by the diffusion coefficient D}, and D7, respectively. Meanwhile, it is supposed that the
adult mosquitoes can be transported by wind with speed v7,.

For mathematical tractability, some semplification are made with respect to the model (3.2.1). It is always
stressed that the human population is a dilution host population and does not contribute to transmission
dynamics. For this reason, from now on, only the population of birds is considered as a host population.
Furthermore, it is supposed that both the incubation period and the recovery period from the disease are
negligible: therefore, the population of birds and the adult stage are divided into susceptible and infectious
compartments. Therefore, let us denote with Sj(z,t), j = A, M, B, the number of susceptibles individuals

of mosquitoes in aquatic stage, mosquitoes in adult stage and birds, respectively, at location x and time ¢;
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in addition, denote with I;(z,t), j = A, M, B, the number of infective individuals of mosquitoes in aquatic
stage, mosquitoes in adult stage and birds, respectively, at location x and time ¢; thus, N;(z,t) = Sj(z,t) +
Ii(z,t), j = A, M, B, is the number of total population of mosquitoes in aquatic stage, mosquitoes in adult
stage and birds, respectively, at location x and time £.

Under these assumptions and using (3.2.2), the model is described by the following system of six partial

differential equations

0uSa =1 (1= 52 [Sur + (1= Q)] — aaSa,
Ola=r (1= 44) aly — aals,

oSy = D3, V2Sh — vh 05, Sar + (1 - M) Sa — apBpmit 2-Sm — oS,
(B.4.1)

Iy = Dy V2 Iy — v 0x, Iy + 7y ( - M) Iy+ aBﬁBM]%SM —ap Iy,

knr

OSp = DyV2Sp +vp — aBﬁMBfV%SB —dpSp +wplp,

Ol = DV2Ip + aBﬁMB]IV%SB —vplp,

where z € Q* = [0,L],t > 0 and V? = 82 the Laplacian operator in 1D. System (3.4.1) is subject to
the following Neumann condition on the boundary

Ox,SA = 0x, 1o =0x, S = 0x, Ing = 05,55 =0x,Ip =0, atx, =0, L. (3.4.2)

For mathematical tractability, the spatial variable is re-scaled, by introducing = = x,L~!. Thus, setting

D* D* ES
Dy M (3.4.3)

DM—LQ’ LQ’M:L’

model (3.4.1) reads as

;

0S4 =r ( - ;L;) [Sas + (1 — @) Ing] — aaSa,
Oda=r ( — M) gl —aaly

knt

OSv = Dy V2Sy — vndu S + ( - M) Sa— CLB,BBMN Sm — anSw,

(3.44)
I = DV — vpOndg + ( - %) Is+ GBBBMN Sy — anl,
9,5 = DpV*Sp + 7B — aBﬂMB]%SB —dpSp +wplp,
01 = DpV>Ip + apBup it MSp —vplp,
with ¢ > 0, z € = [0, 1] and Neumann condition
0pSA = 0pdlpa =05y = O0plpy = 0,5 =0:Ip =0, atx =0,1. (3.4.5)
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Adding the appropriate equations in (3.4.4) it is possible to see that the growth of the whole populations of
aquatic mosquitoes, adult mosquitoes and birds satisfy the following equations

N 4 :r< —%) Ny — agNy,

8 Nar = Dy V2Nas — vai9eNas + ( - M) Na — aaNas, (3.4.6)

kv
O Np = DBV2NB + v —dpNp — éplp.

Thus, the total aquatic stage of mosquitoes may vary in time and the adult stage of mosquitoes and birds
populations may vary in space and time.
Note that, model (3.4.4) admits two omogeneous in space equilibrium points with no disease in the

population, that are Uy = (0, 0,0,0, ;’—g, O)T and U; = (Ao, 0, My, 0, g—g, O)T, which are the trivial and
non-trivial one, and where Ay and M, are already defined in (3.3.2). The equilibrium U; exists if the
condition ry > a s s holds.

Consider the more biologically realistic equilibrium U;: the following result about its local stability

related to the associated ODE model of (3.4.4), holds [161]:

Theorem 3.4.1 The spatially homogeneous disease-free equilibrium point, Uy of the model (3.4.4), is lo-
cally asymptotically stable for the equivalent ODE system, if Ro < 1 and unstable if Ro > 1, where Ry is
the threshold value

1 4Moa2%d
Ro = RGPF = L (g4 fq2 4 2M0opIBOMBPBM | (34.7)
2 YBOMVB

3.5 Basic Reproductive Number

In this section, the Basic Reproductive Number given in (3.4.7) for the equivalent ODE model of sys-

tem (3.4.4) is compared with the Basic Reproductive Number, named Rg DE

, related to the spatial non-
homogeneous model (3.4.4).

In order to define R(If DE " as already explained in Section 2.9 of the Chapter 2, following [1641,it is as-
sumed that the state variables are near the non trivial DFE U;. Let us introduce the distribution of initial
infection described by ¢(z)? = (Ia(z,0), Ins(x,0), Ig(z,0)) = (¢1(x), p2(x), ¢3(x)). Consider the the

reaction-advection-diffusion system consisting only of equations related to the infected compartments

N
Ola = r <1 — A> qlyv — aala,
ka

N I
oy = DMVQIM — opm Oz s +y <1 — k]\/[> Ia+ aBBBMN—BSM —apyIyr, (3.5.1)
M B

I
ol = DBVQIB + CLB,BMBNil\;SB —vglpg.
The epidemiological threshold R{PE is giben by [164]
REPE = p(L), L=-FB7!, (3.5.2)
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where F' is the transmission matrix of the NGM approach [61], [62] and B = V(D - V) — vV — V with
D the diagonal matrix of diffusion coefficients and v the diagonal matrix of advection coefficients. For the
system (3.4.4), matrix I’ takes the form

A

0 qr ( - ﬁ) 0
F=1o 0 apBpmdp Mo , (3.5.3)

B

0  apBus 0

while, matrix B reads as
—ag 0 0
B = 7( —2/173) DM%—’UM%—CMM 0 , (3.54)
0 0 Dy —vp

where D = Diag|0, Dys, Dg| and v = Diag|0, vpz, 0] have been used for its computation.
Let us proceed to calculate B! by solving B(¢1, o, #3)7 = (y1,%2,y3)" subject to homogeneous

Neumann boundary conditions, following [166, 165]. Let us first consider the equation

B(p1] = —aadi(z) = yi(x). (3.5.5)
It can be easely obtained that
x
or(e) = ~ ) (3.5.6)
aq
Let us consider the second equation
M() 82¢2 ad)Q
Blgo] :==~ < k?M> ¢1(x) + Dm 92 M7, app2 = Y2, (3.5.7)

with ¢5(0) = ¢ (1) = 0. Plugging (3.5.6) in (3.5.7), this problem can be conveniently solved by using the
Laplace transform. Denote the Laplace transforms of ¢o(z), y1(x) and y2(z) by ®2(s), Y1(s) and Ya(s),
respectively. One obtains

B Ya(s) #2(0)(Dps —om) v My Yi(s)
Ba(s) = + L (1M
Dys?2 —vys —apy  Dys?2 —oys —ay  aa kay ) Dass? —uoys — apyg

. (3.5.8)

Vi +ADwm e > 0. The

where the first boundary condition of ¢s is applied. It is conveniente to define A =

2D
inverse Laplace transform then yields
- L[ e (1Mo
da(x) = DM)\/O e sinh [A(z — 7)] [aA <1 s y1(7) + yo (1) | dr
IMT VM .
+ 0)e?Pa | cosh [Az] — sinh [Az] | . 359
620065 (cosh [ra] ~ G sinh ) (:59)
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Now differentiating ¢ and using the second boundary condition, one gets

1 M (o g) v My
= 2D np h — ! 1 - —
oa(x) Dk /0 e sinh [A(z — 7)] LéA ( kM) (1) + y2(7’):| dr
’I)A{ (17x)

e 2Pm M R (1—7)
= (coshaa] — B[\ 2
ay sinh[ )] (COS ] 2DuA | x])/o o

{211)?]\11 sinh[A(1 — 7)] + Acosh[A(1 — T)]} {7 (1 - MO) yi(m) + 3/2(7)] dr.

aa ks
In this expression, the second part represents the homogeneous solution, whereas the first part represents a
particular solution to the original non-homogeneous equation [166]. In a similar way, it can be solved the

boundary value problem
&3

Bl¢s] := Dp 52

— vpP3, (3.5.10)
with ¢4(0) = ¢%5(1) = 0, obtaining

da(z) = \/ﬁ/; sinh[ %(x—f)} ya(7)dr — %Einﬁ%] /Olcosh {\/l‘;iiu —T)] ys(r)dr. (3.5.11)

For consistence in notations, below ot is switched ¢; with y; for i = 1, 2, 3.. Now, the eigenvalue problem

—FB ' = \o, (3.5.12)
should be solved, i.e.

xr /UIVI T—7
kir / 2837 ) Ginh [A(@ — )] g1 (r)dr +
0
xr UM (:l)—‘[‘) .
kio / e?Pm sinh [A(x — 7)] y2(7)d7 +
0

Y M
ki3 e 20w 7Y

1oy g
cosh[Az] — 2;];11)\ sinh[)\w}) /(; 20 (17T {% sinh [A(1 — 7)] + A cosh[A(1 — ‘r)}} y1(7)dr +

kia e 2Pm

UM (1
(1==) (cosh[)\;t] -
2D

L vm (1—7) UM
sinh[)\z}) / e?Pm {7 sinh [A(1 — 7)] + Acosh[A(1 — T)}} yo2(7)dr +
MA 0 2Dym

kis / sinh { A 7)} ys(r)dr (3.5.13)
0 Dp

[vB ! [vB )
kie cosh { —m} / cosh { —(1 - 7—)} y3(T)dT = A¢; i=1,2,3,

Dp 0 Dp

with
_ A M, _ A 1
ki = —qr ( B ﬁ) (1 o k}v(f)) C“AgIMA’ kiz = —qr ( B ﬁ) D\

- — Ao _ Moy v = _ Ao 1
kis = ar ( k-A) (1 k]u) apra g sinh[A]? kia = qr ( ka ) cprsinh[A]?

kos = _aB/J’BMdBM07 kog = apBpnmdpMo ___
WB\/m wamsinh[\/%} (3 5 14)
k31 = —apfmB ( - %) D k32 = —CLBﬁMBﬁ,
k33 = aBuB ( - %) m7 k3q = aBﬁMBm,
kis = k16 = kss = ks = 0, ko1 = koo = koz = kos = 0.
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3.5.1 Numerical Treatment of Eigenvalue Problem (3.5.13)

Please refer to the description of the method in the section 2.9.1 of the chapter 2.
The problem is reduced to analysing the spectral radius, p(A), of the coefficient matrix A, i.e.

dim p(A) = p(L) = RyPE.
z—0

where A satisfies the matrix equation,
AZ = \Z, (3.5.15)

with Z = [¢1(z1), ¢1(22), ..., 1 (zpmr), d2(21), P2(22), ..., P2(wnr), 3(1), d3(w2), ..., ¢3(2ar)]”. The co-

efficient matrix A in can be written as
A=A+ Ay + A3+ Ay + A5 + Ag, (3.5.16)

where each matrix 4; (1 < ¢ < 6), of dimension 3M x 3M, results from the discretization of the i-th

integral in equations (3.5.13). Specifically, A; can be represented by a block form

kinAr On On
Air=Ax | 0y Op Opr |, (3.5.17)
ksiAr On Onm
where 0); denotes the zero square matrix of dimension M x M, and A; = (ag}j)) isan M x M lower-
triangular matrix given by

M (g, —x;) . e .
e?Pum sinh [A(z; — x;)], ifi> 7,
aft) = Al =) ’ (3.5.18)
7 0, otherwise.
Similarly
On Kiods O
As=Az |0y Oy  Ou |, (3.5.19)

On kg2As Oy
where Ay = (aglj)), as defined in (3.5.18). The matrix A3 takes the form

ki3As Oy On
As=Az| Oy Oy Ourl. (3.5.20)
kssAs Op O

with the M x M block A3 = (a'*) for which

.3
aii) — 67 2DAJI\;<1*I«;) (COSh [)\mz] — 211;]\;)\ sinh [)\I,J) 62DAIIVI (17Ij)(2§)iM sinh [/\(1 _ w])]
+ Acosh[A(1—z;))) if 1<4d,j<M. (3.5.21)
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Similarly, the matrix A, takes the form:

O k1ady Oy
A4 = Az Opr Onr Oar | s (3.5.22)
Orr kasAs On

in which the M x M block A4 = (a!”)), as in (3.5.21). Then,

Op Oy Op
As=Az |0y Oy kosAs |, (3.5.23)

Op Opr Opg

where A5 = (ag?) is lower-triangular matrix given by:

sinh[ V—Bxi—x-] ifi >4,
o) Dy (%~ %) ’ (3.5.24)
0 otherwise.
Finally
Orpr Opr Onf
A=Az |0y On Kosds |, (3.5.25)

Op Op Op

where the M x M block Ag = (a(6)) is defined as:

1,7
agg) = cosh [ B—ixi} cosh [\/BIZ(I — x])} , if 1<, <M. (3.5.26)

There is no general relationship between p(A) and p(4;), (1 < i < 6). Nevertheless, if we assume B—i <1
and U%J + 4D)raps < 1, then each entry of fh, /12 and flg is very small; it is bounded between 0 and

sinh [ E—BB} if in A3 and between 0 and sinh [, /0]2\/[ + 4DMaM} ifin A; orin As. Thus, A;, Ao and As

can be treated as small perturbation to A4, A5 and Ag in this case, and

p(A) ~ p(As+ As + Ag). (3.5.27)

3.5.2 Main Results on RPF

The quantity 7363 DE represents a threshold value for the eradication of the disease for the spatially non-
homogeneous model (3.4.4). Indeed, consider the spatially homogeneous equivalents of the equations
(3.4.4)1, (3.4.4)3 and (3.4.4)5: let M be the matrix consisting of the derivatives of the right hand-side of
these equations with respect to the variables S4, Sys and Sp, evaluated at DFE Uy, i.e.:

—]‘g—zr—aA r(l—‘;—j) 0
M = 7( _2473) _(%JFQM) 0 . (3.5.28)
0 0 wB—dB
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Since the off-diagonal entries are non-negative, M is cooperative. Consider, in addition, the opposite of the
transition matrix —V of the NGM approach [62, 61] related to the model (3.4.4) and evaluated at the DFE
U, given by

—ag 0 0
—v=|, (1 . ,Q”—Ag) —ay 0 |. (3.5.29)
0 0 vp

This matrix is also cooperative. Thus consider the following statements:
A(M)=s(V(DV) —oV +M) <0, MN(=V)=s(V(DV)—-vV-V)=s5(B)<0, (3.5.30)

where s is the spectral abscissa defined in (2.9.38). These assumptions extend to the case in which the
advection is present, as in the model (3.4.4), those made by Wang and Zhao [164] for the validity of the

subsequent theorem for reaction-diffusion systems. The following result holds [164]:
Theorem 3.5.1 Assume that (3.5.30) holds with v = 0. Then

o RYPE — 1 has the same sign as \* = s (B + F).

o If ROP DE <1, then DFE Uy is asymptotically stable for system (3.4.4).

Thus, R{PE is an epidemioloical threshold for model (3.4.4) withut advection. Many nymerical simula-
tions suggest that this result hold even if v # 0 with assumptions (3.5.30).

Figures 3.6 illustrates the number of infectious birds based on the PDE model (3.4.4) with uniform initial
distribution, as a function of space and time when the associated Rg) DE is lower or higher than the unity.

Other initial conditions with various distribution types have been tested, and they all lead to similar patterns

in terms of the extinction (when R(If DE < 1) and endemic state (when ROP DE - 1) of vector-borne infec-
tion. They verify that ROP DE is a disease threshold.
The following result applies regarding the comparison between Rg DE and RIPE:
Theorem 3.5.2 Ifvg < Dpg and 1212\4 4+ 4Dpapy <K 1, then
REPE = ROPE, (3.5.31)

The proof is given in Appendix F.

A similar result has been obtained for the cholera epidemic in [165], but this is the only result of this type
existing for vector diseases.

The threshold dynamics based on ROOD E and RPPF are now compared. The influence of the transmission
probabilities S5 and By;p on ROP DE i studied. Fig. 3.7 shows the difference in the basic reproduction
number of the PDE model (3.4.4) and the reproduction number of the equivalent ODE model defined in

PDE SN R((J)DE

(3.4.7). Is is easy to observe, from Figure 3.7(a), that R when g—M is getting small . When
M

E—M is getting large, Figure 3.7(b) illustrates that the difference ‘ROOD E_ Rg DE ‘ increases and becomes
M

very large. This result is consistent with Theorem 2.9.2 and extends what has been shown in [165, 166].
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3.6 Conclusions

Most of the models in the published literature deal with the interaction between birds and mosquitoes.
Humans are considered dead-end hosts (as has been pointed out several times in this discussion) because
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infected humans do not further spread the virus in any species. Therefore it is reasonable to include only the
transmission of the virus between birds and mosquitoes in order to understand the transmission dynamics
of vector diseases. However, from the point of view of both public health and epidemiology, it is necessary
to include the human component in the models: in fact, these epidemics have caused significant deaths
throughout the world, in the absence of a specific treatment or vaccine; further research is therefore needed to
understand the epidemiology and pathology of vector-borne diseases. Furthermore, most of the experimental
data concerning these epidemics focus on the human cases reported by the Department of Public Health,
which have almost never been simulated in the literature. In addition, the entire life cycle of the mosquitoes
was considered, thus including their aquatic phase. This state has been divided into a class that is susceptible
and infectious, in order to incorporate vertical transmission into the vector population. In fact, vertical
transmission is observed in the dengue virus transmitted by mosquitoes of the species Aedes aegypti, Aedes
albopitus and Culex. Similarly, the survival of Rift Valley fever that causes the virus in infected Aedes
aegypti eggs is probably a key factor in the epidemic cycle following extreme weather and weather events.
(Although Rift Valley fever is transmitted by two species of mosquito, Culex and Aedes aegypti, only
the Aedes aegypti species transmit the pathogen to their offspring). Furthermore, vertical transmissions
of West Nile virus in Culex and Aedes aegypti mosquito species and yellow fever in Aedes aegypti are
known. For these purposes, an autonomous differential equation system for infectious diseases dynamics,
which incorporates vertical transmission, logistic growth for vector population, reservoirs and dilution host
is considered. An explicit formula for the basic reproductive number Ry is derived, the local stability of
DFE and the existence of an endemic equilibrium state are investigated. A detailed analysis of the model,
based on the use of center manifold theory, shows the presence of the phenomenon of backward bifurcation,
where two stable equilibria co-exist, when the associated basic reproduction number is less than unity. Three
parameter ranges are compiled: one representing the case Rg < 1, one representing the case Ry > 1 and
finally a suitable set of parameters for to exhibit backward bifurcation. The presence of vertical transmission
makes the model more realistic, as it takes into account that some eggs may already be infected at birth.
The introduction of carrying capacity in the vector population places a limit on the number of existing
mosquitoes: a lesser spread of the virus is evident and a reduction in the time necessary to reach equilibrium,
with respect to the results present in published literature. After some semplifications (that is, neglecting
the human guests and the exposed and removed classes), the model was then extended to the spatial case
including the spread of mosquitoes in adult phase and of the hosts, and transport of adult mosquitoes due
to the wind, using the Fickian approximation. An estimate of the basic reproductive number relative to the
spatial case was provided, obtaining the conditions for which it coincides with that corresponding to the
spatially homogeneous case. The simulations suggest that R{f DE constitutes a threshold for the eradication

of the infection also in the spatial case, under opportune hypotheses.
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Chapter n

THE COEXISTENCE OF FAST AND SLOW
DISSIPATIVE PROCESSES IN THE LIFE CYCLE OF
AEDES AEGYPTI MOSQUITOES

This chapter has materialized in the following paper:

A. Lupica and A. Palumbo. The coexistence of fast and slow dissipative processes in the life cycle of

Aedes Aegypti mosquitoes,

currently submitted in International Journal of Biomathematics.

4.1 Introduction

Vector-borne diseases are viral and are carried by vectors, such as mosquitoes. Aedes aegypti is one of
the most dangerous mosquito species as a vector of dengue, chikungunya, yellow fever, "Zika disease" and
other diseases [169]. It is native to Africa, but has been passively transported in maritime traffic in all
tropical and subtropical regions, while it cannot survive the winter temperatures of temperate zones. It is a
strongly anthropophilic species able to develop in water containers present in urban areas [169]. Figure 4.1
shows vector potential abundance during the decade 2000-2009 by seaseon, reported by Liu-Helmersson et
al. [100]. The A. aegypti mosquito lives mainly in human houses and bites at any time of the day, which
makes it a very efficient vector [151]. For oviposition, female A. aegypti mosquitoes need clear and undis-
turbed water to make their larvae proliferate, available mainly in unattended containers, natural as orchids
or artificial as old tires, flower pots, empty bottles. Thus, man-made environmental conditions are the main
reasons for A. aegypti infestation and, in view of this, the (presumably) most effective strategy to control its

proliferation should be a permanent civic vigilance attitude towards farmers unattended [151]. Infected in-
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Figure 4.1: | Potential for global distribution and abundance of female Aedes aegypti over the decade 2000-2009, by
season [100].

dividuals, human or mosquito, can very quickly start an epidemic in human populations if placed in a region
previously infested with A. aegypti [151]. In the absence of a vector disease vaccine, any viable strategy to
control their epidemiological dynamics must focus efforts on containing the population of A. aegypti, espe-
cially when an infection is detected. An effective and practical measures for controlling the population of A.
aegypti is the classic chemical attack against the mosquito or against its larval form, that is carried out by us-
ing strong organophosphorus, insecticides and pyrethroids (Fenitrothion, Malathion, Cypermethrin) [151].
For example, The Centers for Disease Control and Prevention traveler’s page on preventing dengue fever
suggests using mosquito repellents that contain DEET (N, N-diethylmetatoluamide, 20% to 30%) [169].
Insect repellants containing DEET (particularly concentrated products) or p-menthane-3,8-diol (from lemon
eucalyptus) were effective in repelling A. aegypti mosquitoes, while others were less effective or ineffective
in a scientific study [134]. The Centers for Disease Control and Prevention article on "Protection against
Mosquitoes, Ticks, & Other Arthropods" notes that "Studies suggest that concentrations of DEET above ap-
proximately 50% do not offer a marked increase in protection time against mosquitoes; DEET efficacy tends
to plateau at a concentration of approximately 50%" [124]. However, in order to obtain adequate results with
this strategy, it is necessary to apply and maintain a medium-high level of these toxic and costly chemicals
over the entire infested region, mostly occupied also by human houses [153, 180]. These conditions make
chemical control very difficult from a practical point of view and also dangerous from the point of view of
public health [151]. The second type of strategy emphasizes prevention. Mosquito control is currently the
best method for disease prevention. This primarily includes source reduction, pesticide spraying for larval
control and "fogging" for adult control, or the use of mosquito traps like the lethal ovitrap. [169]. Vector
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disease can become endemic in a region infested with a population of A. aegypti. Therefore, to develop
public prevention policies and strategies for the control of this disease it is essential to establish a solid and
treatable knowledge of the behavior and dynamics of the population of A. aegypti in order to find adequate
parameters for treatment through practical interventions. Mathematical models can provide this knowledge,
since they are necessarily simplified descriptions of reality and, if reasonably faithful, automatically produce
the desired control parameters. A. aegypti mosquitoes are constantly looking for human blood or places for
oviposition: this continuous movement is the main reason for the dispersion of the local population and the
slow progress of a mosquito infestation. On the other hand, the wind currents can also cause a movement of
advancing large masses of mosquitoes and consequently cause a rapid progression of the infestation. [151].
In addition to this, since A. aegypti is found mainly in urban regions, its movement is also largely influenced
by human activities. For example, the effect of human transport networks on the propagation of dengue
has been modeled by Takahashi [150]. Mathematical models already exist in the literature describing these
phenomena, such as [74, 121, 151, 179, 181], that take into account the spatial dispersion of mosquitoes
in the territory; in particular in [151] focuses his attention also on an urban scale of space, where a (local)
diffusion process two to autonomous and random search movements of winged A. aegypti are coupled to
a constant advection which may be interpreted as the result of wind transportation. The main defect of
these models is that they were deduced by assuming that the diffusive flux of adult mosquitoes obeys Fick’s
constitutive equation, according to the principles of Classical Thermodynamics (CT) [29]. This leads to
parabolic reaction-diffusion (PRD) equations characterized by instantaneous diffusive effects. On the other
hand, many application in biological population dynamics require an appropriate approximation for finite
propagation speed. In order to avoid the unphysical feature of infinite propagation speed in diffusion, hyper-
bolic reaction-diffusion (HRD) equations are successfully applied to many problems of biophysical interest
[70, 77, 112, 113, 148, 149]. In this paper the main assumption for the model we will derive is the simul-
taneous coexistence of the Fick-type fast processes and Cattaneo-type slow processes in the mechanism of
dispersion of adult mosquitoes, which are independent processes. A similar assumption was made in [183]
for heat conduction processes and in [34] for mass transport in polymers. Consequently, it is assumed that
the diffusive flux of adult mosquitoes is the sum of two contributions, one that satisfies Fick’s law and the
other that satisfies a Cattaneo evolution equation. This hypothesis is completely legitimate, since it was
obtained as the main result in [47, 48]. In fact, in the study of thermodiffusion phenomena in fluid mixtures,
Ciancio and Palumbo deduce the decomposition of dissipative fluxes (the heat conduction vector and the
mass diffusion flux) into two contributions: a first contribution governed by the Fourier-type law and Fick-
type law, respectively, and a second contribution that satisfies the Maxwell-Cattaneo-Vernotte equation, in
the framework of Classical Irreversible Thermodynamics (CIT) with Internal Variables.

A generalized model will be deduced, that reproduces the parabolic model present in the published literature
[151] and admits, as limiting case, a hyperbolic reaction-diffusion model, describing non Fickian behavior.
The paper is organized as follows: the model is proposed in section 4.2, while the analysis of the corre-
sponding ODE system is given in section 4.3. Traveling waves are investigated in section 4.4 while sections
4.5 and 4.6 are dedicated to the classical parabolic and hyperbolic limit cases, respectively. Numerical

simulations are placed in section 4.7 and concluding remarks in section 4.8.
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4.2 Mathematical model

In order to investigate biological invasions as a preventive method for the spread of infectious diseases, the
model investigated by Takahashi ef al [151] is extended in this section. Let us denote with A (z,t) the density
of the mosquitoes in aquatic stage (consisting in eggs, larvae and pupae) and M (z,t) the density of the
mosquitoes in adult stage. The population increases through logistic growth, with 7 the intrinsic oviposition
rate and 7 is the intrinsic maturation rate from aquatic stage to adult stage. Because of the presence of
logistic growth, there is a carrying capacity both in aquatic and adult stage. The carrying capacity in aquatic
stage %A is defined as the available amount of breeding sites [105], while the carrying capacity in the adult
stage %M takes into account the fact that the mosquitoes cannot survive at high altitudes or temperatures
[105]. So the per-capita oviposition rate is given by 7(1 — %) and the per-capita growth rate in the adult

M
~ . k]vl . .
and p, respectively. It is assumed that only the adult stage of mosquitoes can move and can be transported

stage is 7(1 — #%). The aquatic and adult stages of mosquitoes population decrease by natural death rate v/

by the wind. Let v be the velocity of wind. Under these hypotheses, the basic equations are

oA — ?(1_:4>z\7—<5+5)ﬁ,

ka
4.2.1)
—~ ~ B M)\ ~ _—
8t~M+v85M+8;5JA7 = F|(1—-—=— ] A—puM,
km
where t > 0,7 € Q = [~L, L] (L > 0) bounded set of R. jﬁ is the diffusive flux related to the adult

stage. Making the hypotheses that Fick-type fast processes that have infinite speed of propagation and
Cattaneo-type slow processes that have finite speed of propagation independently coexist simultaneously in

the diffusion process of adult mosquitoes, it is assumed that the diffusive flux of adult stage is given by
T__ ), F1
T = JO 4 O, 4.2.2)

where the first contribution J(© is governed by Fick’s law [29], and the second one J obeys Cattaneo
equation, in which a relaxation time is present [42].
As in the parabolic models, J© obeys at the most common constitutive equation for the flux (the Fick’s
law, describing fast processes)

Dod=M = —JO Dy >0, 4.2.3)

where D is the constant diffusion coefficient related to the fickian propagation. Moreover as in hyperbolic

model, the diffusive flux J() satisfies the transport equation (describing slow processes)
70:.JV 4 D19z M = —JV | Dy >0, (4.2.4)

where T is the constant relaxation time and 51 the constant diffusion coefficient related to the non-fickian
propagation. This equation was derived in different contexts related to the heat conduction, i.e. in the
theory of stochastic processes, phenomenologically, in the Extended Thermodynamics (ET) and Extended

Irreversible Thermodynamics (EIT) framework [77, 97, 120]. Equation of type (4.2.4) is a generalization
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of the classical Fourier/Fick law, which is valid under the assumption of local thermodynamic equilibrium,
i.e. for 7 = 0. Its physical meaning is that the heat/mass transport in local non-equilibrium systems has
inertial properties with a relaxation time 7. The assumption (4.2.2) expresses the fast and slow processes
coexistence.

Now, let D = l~)0 + D be the total diffusivity. Let us introduce the following adimensional parameter:
Fp=—. (4.2.5)

By its definition, it is clear that Fp lies between 0 and 1 (i.e. Fp € [0, 1]). Equations (4.2.3) and (4.2.4) can
be re-written in terms of the parameter Fp, i.e.:

DFpdzM = —JO 78.JY 1+ D(1 — Fp)dzM = —JV. (4.2.6)

Remarks.

The assumptions (4.2.2) and (4.2.6) were made by Camera-Roda and Sarti in [34] in order to overcome
the limitations of Fickian behavior and Cattaneo equation in the non-Fickian mechanisms of mass transfert
observed in polymeric materials. They are also compatible with the second principle of Thermodynamics.
In fact, Zhou et al [183], in their model for heat conduction in an elastic media , introduced a parameter,
that they call macroscale heat conduction model number Fr, analogous to (4.2.5) and related both to the
fast heat conduction (obedient to Fourier’s law), and to the slow heat conduction (obedient to Cattaneo’s
equation). They prove that the second principle of Thermodynamics is satisfied if and only if Fir € [0, 1].
The coexistence of independent diffusion flows also exists in other works, as a consequence of the second
principle of Thermodynamics. For example, Ciancio and Palumbo [47, 48], in the context of the Classical
Irreversible Thermodynamics Theory with internal variables, in models describing thermodiffusion in a
viscous fluid mixtures, find as a result that the dissipative fluxes are the sum of two flows, one fast and
the other slow. A similar result was also obtained in [46], where the dynamics of a generic population of
individuals is described by the introduction of an internal scalar variable. (|

So, by virtue of (4.2.2) and (4.2.6), the evolution equations (4.2.1) became

A\ - -
oA = 71— 2 ) M- @+7)4,
ka
~ - - o~ M\~ _—~
OM +T0:M +0:] = DFpV°M +7 (1~ = | A~ b, 42.7)
M
?&{j—l— 5(1—FD)855M = —j,

where £ > 0,7 € Q = [~L, L], (L > 0) bounded set of R and V2 = 92 the Laplacian operator in 1D.

Moreover, for sake of simplicity, JM has been replaced with J. Parameters and variables of model (4.2.7)
are described in Table 4.1.

The following scaled variables

t=7l, r=3|=, M=—= A=—) J=—"" (4.2.8)



State Variable Description Unit
E(%, %v) Density of the mosquitoes in aquatic stage at time ¢ and position Z ~m™2

M (7, tN) Density of mosquitoes in adult stage at time ¢ and position & m~?

J (z, tN) Diffusive flux of adult mosquitoes at time ¢ and position m~tday™
Parameter Description Unit

r Intrinsic oviposition rate day ™"
EA Carrying capacity of aquatic stage m~?

v Natural death rate of aquatic stage day !

~ Intrinsic maturation rate day™*
km Carrying capacity of adult stage m~2

m Natural death rate of adult stage dayf1

v Wind velocity mday !
50’ l~)1 Diffusion coefficients Ir12dauy71
T Relaxation time day™*

Table 4.1: Description of state variables and parameters of model (4.2.7).

and the dimensionless parameters

’]‘C' ~ ~ ~ . ~ " ~
k:,viM,y:Z’/,L:g,’}/:l,T:TT,U: UN7L:L ;a (429)
k4 r r r V7D D
are introduced. In terms of scaled variables and dimensionless parameters, model (4.2.7) becomes:
HA = kE(1-A)M— (v+7)A,
OM + 09 M + 0yd = FpV2M + % (1= M)A — uM, (4.2.10)
T&tJ—i—(l—FD)@zM = —J
witht > 0, z € Q = [—L, L] and Neumann condition on M (z, t) at the boundary OS2, i.e.
0. M =0, atx =—L, L. 4.2.11)

From now on, we will refer to this system as a "combined model".

Remarks

* Suppose that F')p = 0: system (4.2.10) becomes:
KA = k(1-A)M—-(v+7)A4,
M + vy M +9,J = L (1—M)A—uM,

k
TOJ + 0. M = —J,

which is an hyperbolic-reaction-diffusion (HRD) model. This system will be analyzed in Section 4.6
and its hyperbolic structure will allow to avoid the paradox of instantaneous propagation typical of

parabolic models.
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* Suppose Fp € (0,1): the combined representation of the Fick and Cattaneo model (4.2.10) is ob-
tained.

* Suppose Fp = 1 (and 7 = 0). Thus model (4.2.10) can be rewritten as:

O A E(1—A)M— (v+7)A,

&M+wﬂf—'WM+%ﬂ—MﬂhﬂM

This is the parabolic system of equations analyzed in [151] (Takahashi et al).

4.3 Analysis of Spatially Homogeneous Dynamics
Let us analyse the spatially homogeneous dynamics described by the following system

A = k(1—AM—(v+7)A,
M = %G—ADA—MM, 4.3.1)

rJ = —J

where the over-dot denotes the time derivative.

The last equation is independent of the others and its integration provides

1

—t
J(t) =Joe T, Jop= J(O), 4.3.2)

from which, it is easy to deduce that J(t) — 0 as t — oc.
In what follows, the following threshold parameter [151] will be used

i
, 433
%=t (4.3.3)

which clearly arises when equlibria are computed.

In terms of dimensional parameters, the ecological quantity is expressed by

v+yn’

Qo =

which gives the average number of female mosquitoes produced by one fertile mosquitoto survive the entire
aquatic phase and emerge a female mosquito, while the second term % is the average number of viable eggs
laid by the emerging female mosquito during its entire lifespan.

It is easy to prove the following result:

Propostion 1 System (4.3.1) always admits the Mosquitoes-Free Equilibrium
Ey = (0,0,0). 4.34)
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Moreover:
i)if Qo < 1, then system (4.3.1) has no other equilibria;

ii) if Qo > 1, then there is a unique endemic equilibrium given by

1 k v
Ei=(A;,M;,0)=(1—— , .0). 435
1= (41,M,0) ( Q0><k+’/+’7 ’y+ku> (*3-5)

Note that if the average number of female mosquitoes produced by one mosquito is higher than the unit

(Qp > 1), then the mosquito persist in the colonized region. Moreover, when i > 1, then Qp is always less
than 1, for each value of v and v. So, if > 1, then Qy < 1 and there can be no mosquito infestation (as
will be seen later). To avoid this case, it is assumed that 0 < p < 1. In this way, Qg depends on the value
assumed by the parameters v > 0,v > 0,0 < p < 1.

4.3.1 Stability of Equilibria

The local stability of equilibrium states (4.3.4) and (4.3.5) is given by the analysis of Jacoabian matrix of
system (4.3.1) evaluated at the generic steady state E* = (A*, M*,0), that is:

9l * *
—(E—l—k‘M) k(1 — A%) 0
J(E*) = 21— M) — (FA* + p) o |- (4.3.6)
0 0 -1
The characteristic polynomial of matrix (4.3.6) is given by:

p(A) = — (1+ ) [A +<u+uQO+kM +kA>>\+(kM +qu>(’”kA) y(1— A (1 J\j; .
437)

The polinomyal p(\) has always the negative root \y = —1.

Propostion 2 The Mosquitoes-Free Equilibrium Ey = (0,0,0) is Locally Asintotically Stable (LAS) iff
Qo < 1 and unstable if Qy > 1.

Proof. The polynomial (4.3.7), evaluated at E* = E(, admits the following other real roots

1 5 7\ ( 1 >
Aog = — | — —— | + _ 4 1—— 438
23 =5 (“’* ug()) \/(“+ qu> (=g )| (43.5)

which are negative if Qg < 1. Thus, in this case equilibrium Eg is LAS for system (4.3.1).

If Qp > 1, then polynomial (4.3.7) evaluated at E* = E admits one positive root, thus equilirium E is not

LAS.

If Qo =1,then Ay = 0and A3 = — (u + 7) < 0. Thus, Eg is LAS. O
I

Propostion 3 The Mosquitoes-Free Equilibrium Ey = (0,0,0) is Globally Asintotically Stable (GAS) iff
Q<1
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Proof. To prove that the Mosquitoes-Free Equilibrium Eg is GAS, the following Lyapunov function is
defined:
ViR SR V(A M, ) = %A kM (4.3.9)
vy

which verify the following conditions:

i) V(0,0,0) = 0;

i) V(A, M, J) >0V (A,M,J) € R3,
and admits the following orbital derivative:

V(A,M,J):—u[Qo(k+u+fy)A+k(1—Qo)}M—g.

It is easy to observe that YV <0if Qo < 1, while for Qg = 1, one obtains V=0ifJ=0andJ = A = 0.
Then the maximal invariant set of system (4.3.1) contained in V = 0 is the trivial equilibrium point Eg.
Then, the LaSalle-Lyapunov theorem [96] establishes that Eq is GAS for Qp < 1. ]
Consequently, once the mosquitoes colony is destroyed, even the introduction of a great amount of mosquitoes

does not allow the re-colonization.
Propostion 4 The Endemic Equilibrium E1 = (A1, My,0) is LAS.

Proof. The polynomial (4.3.7) evaluated at E* = E; (defined in (4.3.5)) becomes:

p(A) = =1+ (M +a1A+ag), (4.3.10)
where
L\ E(k+p+v+vy)+y
= vtvtpty(1- = :
wom T ”( Qo> (7 + k) (k + v+ )

1
= 1——.
o7y} ’Y( Qo)

Since Qg > 1, then o1 > 0 and o > 0. Thanks to Routh-Hurwitz criterion for second-degree polynomials,
we can state that E; is LAS. O
In conclusion, when Qg > 1, then the trivial equilibrium E is unstable and and the non trivial equilibrium
E; is LAS; the infestation by mosquitoes becomes the stable situation. This situation is showed in Figure
4.2.

Stability result is in agreement also with numerical solutions of system (4.2.10) shown in Fig. 4.3. Both
for aquatic and adult stage, the initial condition is taken as bounded support functions and zero Neumann
condition were used at boundary for adult mosquitoes and flux. The solutions evolve in time approaching to

the stable equilibrium E;. In particular three wind situations are considered.
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Figure 4.2: Numerical solutions of system (4.3.1) for A(t) (red line) and M (¢) (blue line) with parameters listedin
Table 4.1. In left panel Qy < 1; in right panel Qg > 1.

4.4 Traveling Waves in The Combined Model

Now, in order to study mosquito infestation process in an environment that lacks it, possible heteroclinic
connections between Eq and Eq are searched.

Traveling wave solutions will be searched for in the following form:
z=z—ct, a(z)=A(z,t), m(z)=M(xz,t), jz)=J(x,1), (4.4.1)

where c is the positive constant invasion velocity and a(z), m(z) and j(z) are the wave profiles. Substituting
Eq. (4.4.1) into (4.2.10), the following system of ordinary differential equations is obtained:

ca' + k(1 —a)ym—(v+7v)a = 0,
Fpm" + (c—v)m/ —j' + T(1—=m)a—pm = 0, (4.4.2)
Tej'+ (1 — Fp)m' —j = 0,

with the boundary conditions:

a(—0) = A, a(+o0) = 0,
m(—o0) = M, m(+o00) = 0, (4.4.3)
j(—) = 0, j(+o0) = 0.

In (4.4.2) the prime denotes derivative with respect to the 2 variable.

The boundary value problem (4.4.2) and (4.4.3) is defined in the interval (—oo, +00) and so its solutions
can be interpreted geometrically as heteroclinic trajectories of the dynamical system (4.4.2) in the three-
dimensional phase space (a,m, j) linking two different singular points. Let us suppose that the biological
parameter Qp > 1, for the existence of both equilibrium states. Of course, as can be deduced from the
previous section, in this case equilibrium Eg is stable and equilibrium E; is unstable with respect to the
model (4.4.2): thus, Ey admits a stable (incoming) manifold and E; an unstable (departing) manifold.

Therefore, a traveling wave solution starting from E; and reaching Eq may exist. It is known that, for
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Figure 4.3: Numerical solutions of system (4.2.10) M (z,t). Parameters value used are listed in Table 4.1 with

7 =10.04 and L = 200. Moreover v = 0 (a),v = 4 (b) and v = 7 (¢).

classical parabolic system (as described in [162]), in the monostable case (one stable equilibrium and the
other unstable), monotone waves exist for a right interval of velocity values. Now, the minimal speed for
which such waves exist for our model is estimated.

At the origin E the characteristic polynomial of the appropriate Jacobian matrix is given by:

po(€,c) =& + aze€® + ascé? + ar1c€ + aoc,
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where
Te(c—v) —T7Fp(y+v)—1

e = TcFp ’
. THvt el + (v +v)] = L+ T(y 4+ p )]
20 — B )
T Fp (4.4.5)
eyt ptrv—Tu(y+v)(Qo— 1) —v(y+v)
ailc = 2 )
Tc*Fp
p(y +v)
- BT 0, 1).
aoc oy (Qo—1)

Owing to the biological meaning of A, M and .J, we cannot expect any temporally oscillating solution
around Eg, then all solutions of (4.4.4) must be real. Thus, following [90], the following quantities are
defined

H = 8ayc — 3a3, F =164, + 3a3 — 16ascad, — 64agc + 16azcaic,

I= a%o + 12a9c — 3a1caszc, J = T2ascapc + Ya1ca2casc — 2a§c — 27&%0 — 27@0061;2:,0,

A =413 — J?,
(4.4.6)
The solutions of equation (4.4.4) are real iff [90]

H(c) <0, F(c)>0, A(c)>0. 4.4.7)
Simply noting that, the leading coefficients of the above quantities are given by:
le(H(c)) = —37% <0,
le(F(c)) =314 >0,
le(A(0)) = 277 [2 + (=) + 2y 2 = p+9)] [y (7 (= 1) = 1) + (= 1) (7 = 1)) >0,

then, it is easy to deduce that

lim H(c)=—-oc0, lim F(c¢) =00, lim A(c) = 0.

c—>00 c—00 c—>00

Therefore, ecologically realistic traveling wave fronts are possible only for

c>cc

— “min

= max{c(l), 2, 0(3)}, (4.4.8)

where
¢ =max; {¢c; € R | H(c;) = 0},

¢ = max; {¢c; € R| F(¢;) = 0}, (4.4.9)

C

If the restriction ¢ > c,,,,, for the speed c is satisfied, a travelling wave solution of velocity ¢ connect-
ing equilibrium E; and equilibrium E¢ may exist V ¢ € [¢C, | +oc], i.e. solutions of equations (4.4.2) on

the real line | — oo, +00] satisfying conditions (4.4.3) of the form a(x—ct), m(x—ct) and j(z—ct) may exist.
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Thus a possible range of speeds due to linearization at the stationary point is given. Note that Volpert
et al [162] demonstrated for parabolic systems without advection that monotone waves exist for a right in-
terval of speed value, in monostable case. Even for the combined case (4.2.10), monotone waves can exist
for a right interval of speed values. As with parabolic systems, the speed of waves can be infinite for the

combined model. The existence of this type of solutions is supported by extensive numerical simulations.

The numerical solution of model (4.2.10) is shown in Figure 4.4, obtained choosing as initial data
a bounded support function that link the two singular points. Note that each trace evolve in time as an
advancing wave front and the shape is unchanged during the propagation. The speed of these waves is

exactly the minimal. In Figure 4.5 the possible behaviour of the minimal wave speed c%m (defined in (4.4.8))

Adult Stage M(x,t )

250 300 350 400 450 500
Distance x

(a)
Figure 4.4: Wave propagation for Adult Mosquitoes M (x, t) for system (4.2.10) at different time steps. Parameters
value listed in Fig. 4.2(b) with Fp = 0.5 and v = 5.2 - 10~2 with minimal speed c¢ . = 0.455716.

min

is shown as function of coefficient Fp and velocity v, while in Figure 4.6 the speed cg“-n is a function of
the diffusion coefficients 50 and 51. For small values of v there is a sudden increase in the value of cfnm.
If v and Fp increase simultaneously, cTCnm also increases. From the graphs (a) and (b) in Figure 4.6 we
can deduce that the minimum velocity cC, decreases (very slowly) as the diffusion coefficients Dy, Dy
increase.
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Figure 4.5: Possible representation of minimal traveling wave speed c< ;. given in (4.4.8) as function of v and Fp.

Parameters value are listed in in Fig. 4.2(b).
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Figure 4.6: Possible representation of minimal traveling wave speed <., given in (4.4.8) as function of 50 and D.

Parameters value are listed in Fig. 4.2(b) with v = 5.2 - 1072,

4.5 The classical parabolic model

In this section, the limit case of system (4.2.10) in which Fp — 1 and 7 — 0 is analyzed: as already
observed in section 4.2, the total diffusive flux obeys at Fick’s law, according to the main idea of Classical

Thermodynamics.
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The resulting parabolic model

BA = k(1—A)M— (v +7)A, 4.5.1)
OM +vO, M = V2M+%(1—M)A—uM.

was studied by Takahashi et al. [151] Of course, the linear stability analysis of the corresponding spatially
omogeneous system of (4.5.1) has already been carried out in the section 4.3. Indeed, the numerical simu-
lations in Figure 4.7 show that the numerical solutions of system (4.5.1) approach the equilibrium state Eq
when Qg > 1. For both aquatic and adult phases, the initial conditions are function with a bounded support,

while zero Neumann condition at the boundary were taken for adult stage and flux. In particular three wind
situations are considered.
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Figure 4.7: Numerical solutions of system (4.5.1) for adult mosquitoes M (x,t) at different time steps. Parameters
value used are listed in Figure 4.2 with 7 = 0O and Fp =1 (f)l = 0).
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In this section, possible heteroclinic connections between Eg and E; are searched for the parabolic
system (4.5.1). Substituting Eq. (4.4.1) into (4.5.1), the following system of ordinary differential equations

is obtained:

cd' +k(1—a)ym—(v+v)a = 0,
FDm// + (C . U)m/ + % (1 _ m) a—pum = 0, 4.5.2)
(4.5.3)

Note that the system (4.5.2) just written can be obtained from the system (4.4.2) by placing Fp = 1 and
T=0.
At the origin Eq, Takahashi et al. in [151] found the characteristic polynomial of the appropriate Jacobian

matrix, that is given by the following c-family of A polynomials

pp(€,¢) = =€ + aap€? + a1p€ + agp, (4.5.4)
where
asp = 7+y+v—c,
c
+
ap = p—(@-o =k, 45.5)
Y y+v
aop = M :
c c

Note that both the polynomial (4.5.4) and the coefficients (4.5.5) just written turn out to be the special case
of (4.4.4) and (4.4.5) respectively, when Fip = 1 and 7 = 0. Indeed, from the characteristic polynomial

(4.4.4), we can write:
TcFppo(€,¢) = TeFp&* + reFpascé® + 1cFpascé?® + rcFpaicé + TcFpagc (4.5.6)
Therefore, in the limit Fp — 1 and 7 — 0, it follows that:

pp(&c)= lim 7cFppe(€,c) = azp€ + azp€® + a1pé + aop, (4.5.7)

FD —0,7—0

with

lim 7cFp = 0
FDHO,T*}O

= li F = -1
asp = lim  rcFpase ;
ap =  lim  reFpase = ¥ 4y—e (4.5.8)
Fp—0,7—0 C
. v+
= 1 F = u—(v—
aip FD_ggflT_}O TCEpaic p—(v—rc) c
. +v +v
aop = lim 7cFpagc = J_ ufy = ,ufy (Qo—1).
Fp—0,7—0 c c c



Through geometric methods, Takahashi et al. [151] provide an estimate of the minimal speed associated

with waves, solutions of the system (4.5.2).

By imposing that the polynomial (4.5.4) has all real roots, in particular one positive and two negative (from
agpp > 0) , they define as the minimal speed (denoted by c,, in their work and cﬁm in this paper) the
smallest root (if it exists) of the second degree polynomial obtained by (4.5.4) deriving with respect to c.

If c is greater than this value, then may exist waves that do not oscillate around E( and that bind the two
equilibria (as reported in Figure 4.8).

Adult Stage M(x,t )

0 20 40 60 80 100 120 140 160 180 200
Distance x

(a)
Figure 4.8: Wave propagation for Adult Mosquitoes M (z,t) for system (4.5.2) at different time steps. Parameters
value listed in Fig. 4.2 withv = 5.2 - 102, F5 = 0.5 and minimal speed ¢l =0.491748.

min
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4.6 The Limiting Hyperbolic Model

In this section, the limit case of system (4.2.10) in which Fp — 0 is analyzed: as already observed in section
4.2, the diffusive flux J is a new field variable satisfying a transport equation of Cattaneo type, according
to the main idea of ET [120] and EIT [97]. The Fickian propagation is completely negleted and the only
contribution to the diffusion flow is given by the equation of evolution assigned for .J.

The resulting model obtained is:

0A = k(1—A)M — (v+7v)A,
M + 0, M + 9,J = % (1— M)A — uM, 4.6.1)

TOJ + 0, M = —J,

witht > 0,z € Q = [-L, L], L > 0 and Neumann boundary conditions as defined in (4.2.11). The model
can be recast in the compact form

U; + GU, = B(U), (4.6.2)
where
A 00 0 k(L—A)M — (v +7)A
y
U= , G= 0 » 1 , B(U): E(l—M)A—uM ) (4.6.3)
1
J 0 - 0 _ZJ
T T

The characteristic velocities associated to the system (4.6.2) are given by:
1
M3 = oo <m F V(0 + 4)) , A2 =0, (4.6.4)
T

whose reality is ensured, while the corresponding right and left eigenvectors associated are:

0 1 0
dis=|7hiz|, d=1J=[0], Hs=[ 3], (4.6.5)
1 0 1

so the model (4.6.2) is strictly hyperbolic.

Of course, the linear stability analysis of the corresponding spatially omogeneous system of (4.6.2) has
already been carried out in the section 4.3. Indeed, the numerical simulations in Figure 4.9 show that the
numerical solutions of system (4.6.2) approach the equilibrium state E; when Qg > 1. For both aquatic and
adult phase, the initial conditions are function with a bounded support, while zero Neumann condition at the
boundary were taken for adult stage and and flux. In particular three wind situations are considered. The

comparison between Figure 4.3 and Figure 4.9 is shown in Figure 4.10.
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Figure 4.9: Numerical solutions of system (4.6.2) for adult mosquitoes M (x,t) at different time steps. Parameters
value used are listed in Figure 4.2 with F'p = 0 (Dg = 0).

4.6.1 Traveling Waves in the Limiting Hyperbolic Model

Now, possible heteroclinic connections between Eq and E; are searched for the hyperbolic system (4.6.1).

Substituting Eq. (4.4.1) into (4.6.1), the following system of ordinary differential equations is obtained:

ca +k(1—a)ym— (v+7v)a = 0,
g

(c—v)m' —j + P (I—=m)a—pm = 0, (4.6.6)

ety —=m/—j = 0.

Note that the system (4.6.6) just written can be obtained directly from the system (4.4.2) by placing F')p = 0.

If ¢ is different from the characteristic velocities defined in (4.6.4), the system (4.6.6) can be recast in the
compact form

U'(z) = (VF —cI) ' B(U(2)), (4.6.7)
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Figure 4.10: Numerical solutions of combined model (4.2.10) (blue line) and hyperbolic model (4.6.2) (brown line)
for M (z,t) at fixed time step. Comparison between Figure 4.3 and Figure 4.9.

where I is the identity matrix, F (2) = GU (z), V = 0y, with the boundary conditions

Egl U(z) =E;, lim, 1. U(z) = Eo, (4.6.8)
EIEI U(z) =0, lim,, U (2)=0. (4.6.9)

The equation

_ clre(e —wv) — 1]

¢(c) = det (VF — cl) =0, (4.6.10)

-
defines a locus of irregular singular points usually named singular barrier [57], along which the solutions

of (4.6.7) exhibit singularities. A smooth traveling wave connecting two equilibria may exist if they lie in

the interior of the region bounded by the singular barrier [23, 57]. Indeed, since

6(0) lead(0) g, = (C“C(C —) ”)2 >0,

T
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it can never happen that the barrier ¢(c) lies between the equilibria Eg and E; [23, 57]. Therefore, the
equilibria are always on the same side with respect to the barrier ¢(c). They lie in the inner region if
¢(c) < 0, i.e. if the speed c is lies between the characteristic speeds A2 and Az defined in (4.6.4), while the
two equilibria lie in the outer region if ¢(c) > 0, i.e. cis larger than A3. In addition, if A" is the greatest of
the characteristic velocities of the system (4.6.1), Boillat and Ruggeri [23] proved that a continous traveling
wave with velocity ¢ > A™* does not exist. So that, a continous shock wave structure propagating with
velocity c greater than the maximum characteristic speed A3 defined in (4.6.4) cannot exist, i.e. smooth
solutions may exist only if ¢ < As.

Thus, a C! traveling wave solution may exist for system (4.6.7) with boundary conditions (4.6.9) only if c is
less than the characteristic speed A3 defined in (4.6.4). Therefore, the value A3 defines the range of validity
of the hyperbolic model (4.6.1), so we assume ¢ < As.

Now, the minimal speed such that may exist a monotone traveling wave connecting equilibria Eg and E;, is
estimated. At the origin Eo, the characteristic polynomial of the appropriate Jacobian matrix is given by the
following c-family of A polynomials

pr(&,¢) = &+ aap€® + a1mé + aom, (4.6.11)

where

THvtewl+7(y+v)] = L+ T(y + p )]

e 76(c) |
oyt ptv—Tu(y+v)(Qo— 1) —v(y +v)

ap = — , (4.6.12)
B Qp—1

aoH = H(fy—’_y) Tqb(C) .

Note that both the polynomial (4.6.11) and the coefficients (4.6.12) just written turn out to be the special
case of (4.4.4) and (4.4.5) respectively, when Fp = 0 . Indeed, from the characteristic polynomial (4.4.4),

we can write:

FLC2 c Fpc .4  fer(c—v)—1—7 v ’
¢(c) pols,e) ¢5(C)£ +T¢(0){ ol
N (7—|—1/)+cv[1+7(’7+1/)]—02[1+T(7+V+M)]52
T9(c)
. c[’y+V+M—TM<7;F¢IEi§QO—1)]—U(’Y+V)£ (4.6.13)
W) g
t e @Y
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Therefore, in the limit Fp — 0 and DFp — 1, it follows that:

F 2
Jim 50 ——pc(&c) = pu(& o),
FDC2 E—
Fpoo olc)
. B Fpc®azc
FIDHOT(b( ){CT(c—v)—l—T(7+u Fpl|} = lll)rgow = 1,
(v el t Ty v -l r(y v +p)] o Fplaxe
FI;IEO T¢(c) B Flz;IEO o) 2
oy trvtp—Tp(y+v)(Q -] —v(y+v) Fpcaic  _
Fl,;rgo Té(c) B FlDHEO S ole) L

p(y +v) Fpc*age
lim —————=(Qp—1)= lim ———— = aoH.
A rge (V= Am T o
Owing to the biological meaning of A, M and .J, we cannot expect any temporally oscillating solution
around Eg, then all solutions of (4.6.11) must be real and this is ensured iff [159]

A(c) = a3yaiy + 18a1masgaoy — 4asy — daggasy — 27ady > 0. (4.6.14)
Since the leading coefficient of the above discriminant, i.e.
le(A(e)) = [V + (n— )2 + 74— 20+ 20)] [y7 (=1 + (=1 + )7) + (=1 + pr)(~1+v7)]* >0,

is always positive, it can be easily deduced that lim A(c) = co. Therefore, ecologically realistic traveling
c— 00

wave fronts are possible only for

c 2 an’n

= max{c; € RT | A(¢;) = 0}. (4.6.15)
J

Later simulations suggest that the value just deduced cmm is a special case of the value cgm defined in
(4.4.8) when Fp — 0.

Thus, a travelling wave solution of velocity ¢ may exist, V ¢ € [cZ.  \3], connecting equilibrium E;

Crmin>
and equilibrium Eg, i.e. functions a(x — ct), m(z — ct) and j(x — ct) solutions of equation (4.6.6) on the
real line | — 0o, +00[ and satisfying equation (4.4.3).

The hyperbolic structure of the system (4.6.2) allows to avoid the paradox of wave propagation at infinite
speed.

Figure 4.11 shows the numerical solution of model (4.6.1) obtained as initial data a function with bounded
support that link the two singular points. Propagation of monotone continuous waves at minimal speed can
be seen. Figure 4.12 shows the possible behaviour of the minimal wave speed % defined in (4.6.15) as

function of relaxation time 7 and velocity v. It is clear that cgm is an increasing function of 7, while if 7 is

fixed, it seems that cmm is a constant function in v.
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Figure 4.11: Numerical solutions of system (4.6.1) for adult mosquitoes M (z, t) at different time steps. Parameters
value are listed in Fig. 4.2 with v = 5.2- 1072 and F)p = 0.5. Propagation of waves at minimal velocity ¢, =

0.421655.
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Figure 4.12: Possible representation of minimal traveling wave speed %, given in (4.6.15) as function of v and 7.

Wind Velocity v

Parameters value are listed in Fig. 4.2 (Fp = 0).

4.7 Numerical Comparison

We now show the numerical solution obtained from the integration of system (4.2.10) for different values of
the parameter Fp.

The main feature of our model is the capability of reproducing both Fickian and non-Fickian behavior ac-
cording to the values of F'p: indeed both the numerical solution of the hyperbolic model corresponding to the
system (4.6.1) and the solution of the classical parabolic model ([151]) corresponding to the system (4.5.1)
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Figure 4.13: Comparison between numerical solutions of system (4.2.10) for the variable M (x,t) at fixed time step
with Fp = 0 (red line - hyperbolic limiting model corresponding to system (4.6.1)), Fp = 0.26 (magenta line),
Fp = 0.5 (green line), Fp = 0.76 (cyan line) and Fp = 1 (blue line - classical parabolic model correspoding to
(4.5.1)). Parameters value are listed in Fig. 4.2(b) withv = 5.2 - 1072,

can be obtained as limiting cases. As can be seen from Figure 4.13, when Fp is very small a non-Fickian
transport phenomenon is actually observed: slow diffusion process and relaxation appear. In this case, the
solution of the model (4.2.10) approaches the solution of the limiting hyperbolic model corresponding to
the system (4.6.1). For intermediate values of Fp, the model (4.2.10) represented a compromise between
the classical parabolic model and the limiting hyperbolic model, since both diffusion processes coexist and
overlap simultaneously. When the parameter Fp reaches its maximum value (Fp = 1) the model repro-
duces Fickian diffusion. In this case, the solution of the model (4.2.10) is very close to the solution of the

parabolic system in literature [151].

Figure 4.14 shows the numerical comparison between the minimal speed in the combined model cnc;m ob-
H

tained in (4.4.8), the minimal speed in the hyperbolic model c,;,;,, deduced in (4.6.15) and the minimal speed

in the parabolic model (that in this dissertation is denoted by cf;m), deduced in [151], as function of the wind
velocity v in (a) panel, of adult mosquitoes maturation rate y in (b) panel and of diffusion coeffient l~)1 in (c)
panel. The simulations suggest that, once all the other parameters have been set, these speeds are increasing
functions of both v and v and decreasing of D;. It seems that the minimal speeds always retain their order
of magnitude given by ¢, < cC. <P

As we have already observed in the previous figure in the case of trajectories, even the minimal speed cgu-n
(for which can exist monotone traveling wave solutions of system (4.2.10)) has the characteristic of repro-
ducing, for appropriate values of the parameter Fp, the classic parabolic case cnpu-n given in [151] and the

hyperbolic limit case Canm given in (4.6.15). The minimal speed ¢C . deduced for the combined case (4.4.8)

min
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Figure 4.14: Numerical comparison among minimal traveling wave speeds given in (4.6.15) (hyperbolic model - red
line - Fp = 0), in (4.4.8) (combined model - green line - Fp = 0.5) and in [151] (parabolic model - blue line -
Fp = 1) as functions of v ((a) panel), of v ((b) panel) and ﬁl ((c) panel). Parameters value are listed in Fig. 4.2 with
v =5.2-1072 for (b) graph.

seems to recover the two minimal speeds cgm (defined in (4.6.15)) and cﬁm (present in literarure [151])

deduced for the hyperbolic and classical cases, respectively. In fact, in Figure 4.15, in the case in which Fp

is very small, the velocity in the non-Fickian case is recovered (cgm), while when F'p reaches its maximum
. . C P . . . . .

value, the minimal speed c,,,,, reproduces the speed c, ... valid in the Fickian propagation.

The numerical results found on the minimal speeds ¢, and c/. extend those deduced by Takahashi et al.

[151] for the parabolic case.

Finally, in Figure 4.16, the plan is divided into 5 regions identified by the minimal speed in the three models
considered, using the values listed in Fig. 4.2 with v = 5.2 - 10~2. Moreover we plot the particular case in
which Fp = 0.5 (Do = D) for system (4.2.10).

* RegionI: ¢ < Cgm < cnc;m < cim. There are no monotone waves in any of the three models.

H

min

<ec< ., <cP. . There are monotone waves in the hyperbolic model but they do

* Region II: ¢

not exist in the other two cases.
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Figure 4.15: Representation of minimal traveling wave speed given in (4.4.8) as function of v with Fp = 0 (red line)
corresponding to the limiting hyperbolic system (4.6.1), F)p = 0.26 (magenta line), Fp = 0.5 (green line), Fp = 0.76
(cyan line) and Fp = 1 (blue line) corresponding to the classical parabolic model (4.5.1) ([151]). Parameters value
are listed in Fig. 4.2 withv = 5.2- 1072,

* Region III:cgm < ann <c< cf;m. There are monotone waves in the hyperbolic model and in the

combined model but they do not exist in the classical parabolic model.

H

min

<@ <P < c < \3with \3 the greatest characteristic velocity of hyperbolic

min min

* Region IV: ¢
model defined in (4.6.4). There are monotone waves in all three cases.

H

min

<. <P < A3 < c There are no monotone and continuous waves for the

* Region V: ¢
hyperbolic model while they continue to exist for the combined and classical and parabolic models.

4.8 Conclusion

Mathematical modeling of biological phenomena provides an efficient tool for describing many type of inva-
sive behaviour, such as the spread of epidemics. Biological invasion has a major impact on public health and
vaccinations are the most effective way to combact many serious and potentially deadly infectious diseases.
In the absence of vaccines, any other control policy to minimize the effects of the infestation can be taken
into consideration. The novel mathematical model presented in this paper deals with the dispersal popula-
tion of yellow fever mosquito A. aegypti, divided into two coupled sub-populations: the adult stage (that
can spread diseases) and the aquatic stage which includes egg, pupa, larva. The life cycle of this mosquito is
usually described through advection-reaction-diffusion equations [151], in which the diffusion mechanism
is expressed by Fick-type law. This assumption leads to parabolic models with consequent diffusion of

mosquito population at an infinite speed.
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Figure 4.16: Set of values of c¢ for which there are monotone waves in the hyperbolic model (red color), combined
model (green color), and in the classical parabolic model (blue color). Parameters value are listed in Fig. 4.2 with
v = 5.2-1072. Moreover Fp = 0.5 for system (4.2.10).

The motivation of this work is to provide a more realistic description of diffusion phenomena of the mosquito
population. The model presented here was deduced assuming that Fick-type fast processes, which have
infinite speed of propagation, and Cattaneo-type slow processes, which have finite speed of propagation, si-
multaneously and independently coexist in the adult mosquitoes diffusion process. This hypothesis suggests
to express the total diffusion flux as the sum of the fluxes corresponding to the fast and slow processes. The
resulting system is still of parabolic type but the speed of propagation is limited superiorly by that obtained
in [151] and represents a generalization of the classical parabolic model and the limiting hyperbolic model
deduced. The different type of behavior is due to the values assumed by a parameter, Fp, expressed in
terms of the two fast and slow diffusion coefficients. After analyzing the spatially homogeneous case, we
moved on to the study of traveling wave solutions. It has been deduced that monotone waves can exist for a
right interval of velocity values. An estimate of the minimum wavefront value has been provided. Several
numerical simulations confirm analytical results. The special case was then studied in which Fp — 0: the
system appears to be hyperbolic. Also in this case traveling wave solutions have been studied, but unlike
the previous case, it has been proved that continuous type solutions exist only for a right and finite range
of speed values. The simulations confirmed these results. The minimum speeds were plotted in terms of
biological parameters. Finally simulations have been conducted in order to compare the three models de-
duced in different contexts: it always results that the combined model proposed is a compromise between

the limiting hyperbolic model obtained and the classical parabolic model. This also applies to the respective
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speeds since ¢fI. < cC. < cP. A possible and important goal to be achieved in this study will be to
demonstrate the result of the existence and uniqueness of traveling waves, both in the hyperbolic model and

in the combined model and to provide an analytical expression of the respective minimal speeds, which will

be the subject of a future work.
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DISCUSSION AND CONCLUSION

The fundamental theme of this Ph.D. thesis was to model some infectious diseases and related aspects, such
as vaccination or prevention methods, through the construction of ODE and PDE systems. The basic concept
developed in the 4 chapters is the use of mathematical modeling approaches in the epidemiological field.
In Chapter 1, we study the interaction between the spatial mobility of individuals (based on classical diffu-
sion), the effects of three different information structures and the dynamics of vaccine intake in the absence
of infection. Evidence exists that there have been diseases that have been eradicated by the introduction
of the vaccine long ago, but it is necessary to maintain a high-coverage immunization policy in the post-
elimination period to prevent the risk of re-emergence of the infection. The mathematical analysis is the
classical one, and allowed to test the establishment of the homogeneous solution in correspondence with
particular types of kernel, the existence of generalized traveling waves. The study also focused on the influ-
ence of memory and campaigns in favor of vaccination on the phenomenon. The model is completely new
and extends those in literature.

Chapter 2 deals with a novel ecology-epidemiology-hydrology model for the cholera transmission dynamics
in a human host population having an interconnected pond-river water network. The novelty of the model
consists in subdividing bacteria in subpopulation (in pond and river) and taking into account the water ex-
change between the two water reservoirs. We include the use of a nonlinear logistic growth rate for bacteria
in the pond (and no such growth is considered for V. cholerae dynamics in the river) and accounting for the
temporal evolution of the volume of water in the pond. The global stability of DFE was proved and four
possible expressions of R are computed, showing the sensitivity of the model to different interpretations
of the role of the environment. The problem was overcome by introducing the Type Reproduction Number
T which is always unique. The model has been extended to the spatial case: for it an estimate of Ré’ DE
(comparing it to the time case) was provided and the traveling waves were investigated.

The model proposed in Chapter 3 brings together some of the main features of vector-borne infectious dis-
ease models, including vertical transmission in mosquitoes, incubation period and recovery period in both
host populations (reservoir and dead-end), a maximum capacity tolerable by the environment for the growth
of mosquitoes. The boundedness and positiveness of solutions have been demonstrated, in addition to the
local stability of the DFE, explicitly determining the expression of the threshold parameter. The existence of
a backward bifurcation has been proven, determining the critical value. The number provides is a threshold

value in the spatial case for the local and asymptotic stability of the homogeneous solution.
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The first 3 chapters deal with parabolic systems and spatial approximations assuming that the diffusion flow
obeys Fick’s law, in agreement with the main ideas of Classical Thermodynamics. In order to give a de-
scription of the population dynamics of mosquitoes of the species Aedes Aegypti, in order to control their
growth and provide a prevention method against vector-borne diseases, it is assumed that the diffusion flow
is the sum of two contributions, one fast obedient to the laws of Classical Thermodynamics and one slow,
considered as a new variable of the model and satisfying an equation of evolution of the Cattaneo type.
This hypothesis is obtained in the literature as a result. After testing the global asymptotic stability of the
MSE, traveling waves were numerically investigated, providing an estimate of the minimum velocity for
which there are monotone waves for the proposed generalized model and for its boundary case (hyperbolic)
obtained by setting the special parameter F'p null. The generalized model, the hyperbolic limit case and the
parabolic limit case (obtained by setting F'p = 1) have been compared numerically, showing that the speed
linked to the waves of the generalized model, even if parabolic, is limited superiorly by the speed of the
corresponding waves to the classic parabolic case, showing that the presence of the slow flow limits the
diffusion process of the population.

In conclusion, this thesis wanted to show different models related to the epidemiological field and related

techniques to be able to predict the outbreak or limit the damages related to a disease.
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APPENDICES

Appendix A: Reduction to two differential equations of the information model

with memory (system (1.8.4))

Here, it is shown that the integro—differential information model (1.8.2) is equivalent to the differential

system (1.8.4) with the delaying kernel W (1) defined in (1.8.3). First, consider the function
t
Z(z,t) = bebt/ e’ P(z,7)dr, (A-1)

—00

which is clearly the solution of the following linear differential equation:

7 +bZ = bP. (A-2)
Given W (7) defined in (1.8.3), consider
t
Mz, ) = / W(t — 7)P(x, 7)dr, (A-3)
ie.
bd —bt ! br —dt ! dr
M(x,t) = T \¢ e’"P(x,7)dT — e e’"P(x,T)dT | . (A-4)
Therefore,
t
oM + dM = dbe™" / e’ P(x, T)dr, (A-5)
ie.
M + dM = dZ. (A-6)
U
Appendix B

B1: Proof of Routh-Hurwitz Condition for the Cubic in Equation (2.3.5)

It should be recalled from Equation (2.3.6) that the coefficient, by, is given by:
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0
bi = (a3 + aa)(up — 1) + az(as + Ap) + A, — Br6, — %7
P

which can be re-written as:

ﬁpepv;"MB + Brerkar,uB

b = as(pp — 1) + Mppp +az(as + Ay +pp — 1) — (B-1)
kpw,LLB
Further, it follows from Equation (2.3.4) that:
Bl Vot + BebrkpVous = R askyVilaa(up — 1) + Appus] — VB Vibe Ay + 0]
(B-2)
- kpﬁr[‘gp)‘p + V?“er(Ap - 1)]
Substituting (B-2) into (B-1) gives:
bp = L {agkaruB(cu + )\p) (1 — R(()1)> + (a4 + a3) kar,UB(MB — 1)
k‘p‘/;",U/B
(B-3)

+ Ve (13 + a3aaRY)) + ViBy (Ve A, +6,0,)
+ kpBr[OpAp + Vil (Ap — 1]}

Recalling the assumption that A, > 1, it follows from (B-3) that b > 0 whenever Rél) < 1. Thus, the
associated Routh-Hurwitz condition, b1bs — by, can be re-written as:

az+as+ A, +pup—1 )
PRI {azkpVrpp(as + Ap) (1 R, )

+ (as+a3) kpVopp(pp — 1) + kpVa (,UQB)‘p + a3a47361)>

+ ViBo(Viledr + 0,00) + o Belfphp + Vol (A — 1]} (B-4)
azlas(pp — 1) + Apup] <1 — R(()l)>

> 0.

bab1 — by

Hence, it follows from (B-4) and the expressions for the coefficients bs and bg in (2.3.6), that the Routh-
Hurwitz condition b2b; — bg > 0 if and only if:

{(as +as+ Xy + pp — Das(as + Ay) — asfaa(un — 1)+ ppu]} (1-RE)

Fag+ A +pp -1
BT B {(as +a3) kpyVopup(pp — 1) (B-5)
kpv;“HB

+ kpvtr (,U'2BAp + a3a4R(()1)> + Vtrﬁp[v;"er)\r + Hp)\r] + kp/B'r [ep/\p + ‘/;97"()\13 - 1)]}

It should be noted from (B-5) that the right-hand side of the inequality is automatically negative (since all

the parameters of the model are nonnegative). The left-hand side of the inequality (B-5) can be written as

as [as(as + a1) + Ap(as + az + Ap) + A + 1 — 1)] (1 - ngU) , (B-6)
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which is always positive whenever Rél) < 1 (noting that up — 1 > 0). Hence, the Routh-Hurwitz condition

b1ba — by > 0 always holds when R(()l) < 1 (since the left-hand side of the inequality is always positive, and
the right-hand side of the same inequality is always negative). O

B2: Positivity of the Discriminant of Equation (2.3.16)

Recall that the discriminant of Equation (2.3.16) is given by:

A, = d3d3 + 18dydady — 4d3 — 4dody — 27d2, (B-7)

with dg, d; and dj as defined in Equation (2.3.17). The expression (B-7) (with (2.3.17)) can be simplified

to:

1
a3k VA (Ap + as)
Vi B (Vi A + 0y (0 + 1)) + askp Vi [V2 8203 (Viby Ar + Opa)?

2k, Vi, BpBraa(Vibp Ar + Opas) (OpApas + Vib,(10pupas + Ap( Ar + 1015)))
k2821020202 + 2V, 0,0, Apas (10ppas + M\p(Ar + 10up)) + V262 (—8p% a3
A2(AF +20A . — 8uB) + AXpup (BAZ + \oup — 4p)))]]} > 0.

>
s
Il

1 {4 agkg‘/rgﬁﬁrai +4ps(Ap + as)[kpBr (OpAp + V20r(Ap + 118))

+ o+ o+ o+

Appendix C: Proof of Theorem 2.4.3

Proof. Consider the normalized model (2.2.3) with v,(t) at its maximum value (v,(t) = 1) for all ¢ in D.

2
Further, let R(()l) = (R(()S)) < 1. Consider the following Lyapunov function (noting that, since up—1 > 0,
all coefficients of the Lyapunov function are positive):

ﬂpa4‘/r + ,BrkpAp b Bp)\rvr + Brkp(NB -1+ )\p)

L(i, by, b)) = RPi +
borbe) = Rt 3 faCs — 1)+ Agianl ? T Bplaa (s — 1) + dpiis]

b, (C-1)

with Lyapunov derivative given by:
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ﬁpaél‘/r + ﬁrkpAp
kpVilas(up — 1) + Apps]

_ B Bp Br o
= R Kk +bb+1+bb> a?’z]

(RD) (BpaaVi + Bk,

BpArVr + /Brkp(ﬂB -1+ >‘p) i

L = RO+ b,
0 kplas(ps — 1) + Appis]

by +

0,i+b,(1—0b,) — ugdb A Vibr — Apb
T Y Byar + ko, (B + ViBr) Ay + Vib (i — D) i Bp(1 = bp) = by + &2
2
Vr (R(()3)> (ﬁp)\rvr + Brkp(MB -1+ )‘P)) 0. b )\ b /\ b C2
+ rt — + -
Y B a1 + kB, [(9 Vi8N V0, (up — 1] { L pE 37 ©2)
3) /Bp /Brbr>
= a3(Ry’ —1 R —_—
3(Ry ) ( 0 Fpas | a3
b ks s
_ RO Bpbp 1— " b (1 —
0 [kp kp + bp o 1+b,
as (RO ) (BpaaVy + Brkpy) ;
Vrﬁpal =+ kpﬁr [(01) + V;“HT))‘p + Vrgr (:U/B - 1)] P
Since s(t) < 1 forall ¢ > 0 in D, it follows from (C-2) that s < 1and i < 1. Hence,
kp + by 14+ b,
5 (3) Bp ﬁr
< -
£<(RY -1) <R0 U R > (C-3)

It follows from (C-3) that £ < 1 whenever Rég) < 1. Furthermore, it follows from (C-2) and (C-3) that
£ = 0 if and only if:

(a) R((]?’) =lands(t) =1,or
(b) i(t) = bp(t) = by(t) = 0.
In either of the above two cases, the largest compact invariant subset of the set
G ={(s,i,bp, by, v) €D : L =0}

is the singleton {Eg}. In fact, suppose M is the largest compact invariant subset of G. To check for Case
(a), we need to require that s(¢) = 1 is the solution of the human component of the normalized model given
by:

. b by .
s=p(l—s)— (L2l + &%) s +i,

(C-4)
i = (kﬁpiip + f_’ﬁ:) s — azt,
from which it follows (by adding the two equations, and recalling that n(t) = s(¢) + i(¢))) that:
=p(l—s) = (64 pi. (C-5)
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Substituting s(¢) = 1 in (C-5) (and noting that, for solution of the form s(t) = 1, § = 0) gives:

P= (6 + i, (C-6)

so that tlim i(t) = 0. Substituting s(f) = 1 and i(¢) = 0 into the normalized model (2.2.3) shows that
—00

tlim (bp(t), br(t)) = (0,0). Hence, it follows from the above analyses that, for Case (a),

—00

%ir%(s(t), i(t), by(t), br(t)) = (1,0,0,0). Thus, for Case (a), M = {Ej} and all solutions in D converge to

%

the disease-free equilibrium (Eg) of the normalized model.

Similarly, for Case (b), requiring each solution in M to satisfy i(t) = by (t) = b,(t) = 0 leads to:

s=p(1—s), (C-7)

whose solution is (where sp = s(0) > 0and 0 < sg < 1)

s(t)=1—(1—sg)e M, (C-8)

Since p > 0and 0 < so < 1, it follows from (C-8) that tlgloao s(t) = 1. That is, in Case (b) (where
i(t) = by(t) = b.(t) = 0), like in Case (a), the largest compact invariant subset where £ = 0 is the single-
ton {Ep}. Thus, it follows from the LaSalle’s Invariance Principle [96] that the disease-free equilibrium of
the normalized model ({Eg}) is globally-asymptotically stable in D whenever R(()g) <1 O

It is worth mentioning that the above proof also works for the special case where v,(t) # 1, if the as-

sociated water balance condition, &, < 131; (;fgt)’ holds (for all time ¢ > 0).
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Appendix D: Coefficients of quartic (2.6.4)

a = =Vi0raq[(Bp + Br)(6 + p) + pas] <0,

b= =Abpaa[(By + B,)(0 + p) + pas] = Vi {Bp (0 + w)[2upas + Ar(2(up — 1) + Ap)] +
+ (Be(6 + ) + pag)[Me(2(us — 1) + ky + Ap) + 1B(2a6 + kp))]} <0,

c = aiﬂp’yV,ﬂp - Ar[@p + ﬁr)(VrQGTQ,U - ’YHp)‘gQa) - W’Ygr)‘p(ﬂp% + Br(as + kp))] +
= az{aiVelp(By + 1) — M dplOpAp(By + By + 1) + Vol (Bpas + (Br + 1) (a6 + kp))] +
+ as[VE0A(By + 1) + (OpAp + Vrbras) (Bpas + (Br + p)(a + kp))]} + aa{V,7Bpy0r A +
+  V0pAp[Bpas + Br(ag + kp)] + V20 [Bp(Opp + ’Yag) + Br(0p + pae(as + kp))l},

d = a3ViByybpas + a4{912,)\pu(ﬂp + Br) + V2B 0p Mg + Vil B0 piag + By(0rpas +
— WAN)] + kB [V0pApa6 + Vil (0p + vad)]} — as{aiV;?0,[Bpa + uas + kp)] +
- A [VrZ‘gr)‘r(er + 1) + kp(Br + ) (OpAp + Vibras)] + aa[ViAe (Bp + 1) (Vibrag — OpAp) +
+ kp(VEO0rAep + OpApa6 (Br + 1) + Vibrag (Br + m)]} + Ar{kp B (V2071 — 10,05 +
— Vi Apas] + Vi0r [0pApp(Bp + Br) + Vi (Brbrpas + Bp(0rpias — yArAp))1},

e = —parfas(pp — 1)+ Apup] (1 - Rél)) ,

where ag = A\, + pup — 1.
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Appendix E: Proof of Theorem 2.9.2

Proof. If a3 < Dr,vp+ (up — 1) < land v, + up < Dp, one obtains

(1) /0 &nh{\/»(xT}qﬁl de/ \/;IxT(;Sl )dr =0
(2)  cosh [&x] /0 " cosh [\/5(1—7)] 1 (7)dr = /O 1¢1(7)d7

(3)  e?E Dginhfe(z—7) =e(z—7) =0

1
(4) kise w5, (1) cosh [ex] — " ginh [ex] eQDBp - T){ % ginh [e(1—17)]
2D ; 2D

B,€ By
+ecosh [e(1 — 7)]}pa(T)dT (E-1)
. B v Yoo,
= e (1 2Dl,,> | <2DB (1) 2) ulrir = oy / Pa(r
(5) 75 ) ginh wxz-—1)]=wlx—-—7)=0

(6) kige 2y, (170) (cosh [wz] — sinh [w(1 — 7)]

1

Ur . (1=7), Up
h 2DB

Dpw [‘”"})/0 ¢ {QDB

T

+wcosh [w(1 — 7)]}p3(T)dT

= Br Ur ! Vp S 5r 1
- ppw (1 - QDBT> /o <2DBrw(1 —7) -l—w) ¢3(T)dT = E/o b (r)dr.

Substituting (E-1) to (2.9.20) yields

MB—l / Ga(T dT-i-/ ¢3(T = A1(z),
<15 (T)dr = Aga(x), (E-2)

a3
0, 2

— (l)l(T)dT = )\gb3(w)
as Jo

These equations imply that ¢1(z) = ¢1, ¢2(z) = c2 anf ¢3(x) = 3 for some constants ¢; # 0, co # 0 and
c3 # 0[165]. Let z; = % and 29 = 2—? . Thus, equations (E-2) give
/Bp ﬁr 0w 1 0, 1

2t —n=——=——. (E-3)

P -
kp(pp — 1) 0z; ag zy  az 2

Solving it directly, one finds that

kppp (s —1)
=446 P ) E-4
“ p\/a3 [BpepﬂB + kpﬁrer(:uB - 1)} ( )
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Plugging (E-4) into (E-3) yields

Al g = i\/ﬁpepMB + kpﬁrer(:uB - 1)

azkppp(p — 1)

Thus

REPE = sup{Ai, Ao} = R§PE.

Appendix F: Proof of Theorem 3.5.2

Proof. If ”12\4 +4Dpapy <€ 1and nup < Dpg, one obtains

(1) e ginh [AMe — 7)] = sinh[AM@ — 7)] = Az — 7) = 0

(2)  sinh {\/g(:c—'r)} = l%(x—f) =0
3)  cosh {\/;iix} /01 cosh {\/ZIZ(I - T)] a(r)dr = /01 b3(r)dr

VM

_ UM (1_g4 1 vwm o,
@ ke 2P0 7 (coshAa] — —M_ ginh [Aa] / e283 (177
2Dy A 0 2D

VM
2Dys

1
M1 —=7) + Ag1(1)dT = ¢i3 /0 o1 (7)dr

= Gi3 (1 _ M ) /l[
A 2Dnr ) Jo
v

_ VM (q_ 1 VL _
(5) kize 2PM (1-=) (COSh Ax] — UM inh \z] / e2Dp 177 {
2D A o 2D

1
ici4/ ¢a(T)dr, 1=1,2,3
0

ay (1 - 4o (1
apoa ka
—a (1_ 4
C14 = an (1 kA) ’

Substituting (F-1) to (3.5.13) yields

where
_ My
knr

C13 =

Co4 = 07

1 1
013/0 ¢1(T)d7‘+614/0 o1 (m)dr =
1
k26/0 5252(’7')617' =
1 1
C33/0 ¢1(7')d7+634/0 po(1) =

M

>, co3 =0, c33=

C34 =

(E-5)

(E-6)

(F-1)

sinh [A(1 — 7)] + Acosh [A(1 — T)}} ¢1(7)dr

sinh [A(1 — 7)] + Acosh [A(1 — T)}} @2 (T)dr

ACN

apBuBy (1 _ Mo
knv )0

apBumB
ang

)\¢1 ($),
Ap2(z), (F-2)

A3 ().

These equations imply that ¢ (z) = by, ¢2(x) = by and ¢3(x) = b3 for some constants by # 0, be # 0 and

bs # 0. Let z; = Z—f and z9 = Z—g . Thus, equations (F-2) give

33
A =ci13 + caz1 = kogzo = ——
2122
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C34
4+ 22

(F-3)
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After algebraic manipulations, one finds that z; satisfies the following cubic polynomial

v (ka — M) apan Brekaeck?
- a4k kag — Mo)) |22+ 1M — 200 .
P = ~ g, e+ 7= Mol [+ 2 - SR
Solving it directly, it gives
oY Mo—ka) 1 y(Mo—kn) (Mo~ kn) 2 4aB5MBk,240¢Mk26
! aaky 0 T 9 aakys aakys 212 (Ap — ka)
(F-4)
Plugging (F-4) into (F-3) yields
1 M,
A =0, Mg=- (qi \/q2 4 49BPMBOBM 0) . (E-5)
2 YBVBOM
Thus
REPE = sup{A1, Ao, A3} = ROPE. (F-6)
O
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