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Thirty-one years ago, Dick Feynman told me about his “sum over histo-
ries” version of quantum mechanics. “The electron does anything it likes,”
he said. “It just goes in any direction at any speed, forward or backward
in time, however it likes, and then you add up the amplitudes and it gives
you the wave-function.” I said to him, “You’re crazy.” But he wasn’t.

Freeman John Dyson
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by Nicolò Cangiotti

Feynman path integrals introduced heuristically in the 1940s are a powerful tool
used in many areas of physics, but also an intriguing mathematical challenge. In
this work we used techniques of infinite dimensional integration (i.e. the infinite
dimensional oscillatory integrals) in two different, but strictly connected, directions.
On the one hand we construct a functional integral representation for solutions of a
general high-order heat-type equations exploiting a recent generalization of infinite
dimensional Fresnel integrals; in this framework we prove a a Girsanov-type formula,
which is related, in the case of Schrödinger equation, to the Feynman path integral
representation for the solution in presence of a magnetic field; eventually a new phase
space path integral solution for higher-order heat-type equations is also presented.
On the other hand for the three dimensional Schrödinger equation with magnetic
field we provide a rigorous mathematical Feynman path integral formula still in the
context of infinite dimensional oscillatory integrals; moreover, the requirement of
independence of the integral on the approximation procedure forces the introduction
of a counterterm, which has to be added to the classical action functional (this is
done by the example of a linear vector potential). Thanks to that, it is possible to
give a natural explanation for the appearance of the Stratonovich integral in the path
integral formula for both the Schrödinger and the heat equation with magnetic field.
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Introduction

It’s many years since R. Feynman introduced in his pioneering paper [40] the concept
of path integral as different approach to quantum mechanics, and they are still an
important challenge in theoretical physics as much as in mathematics. Just to give a
brief historical introduction we quote above the two postulates that Feynman gives
in [40] to summarize his idea.

If an ideal measurement is performed, to determine whether a particle has
a path lying in a region of space-time, then the probability that the result
will be affirmative is the absolute square of a sum of complex contributions,
one from each path in the region.

With this first postulate Feynman defines, somehow, the space of paths and the rule to
determine the probability to find an hypothetical particle in a region of the spacetime.
As Feynman himslef noticed, the postulate lacks of a precise mathematical meaning
as we shall deepen in the following. With the second postulate, he explains the nature
of the contribution of each path relating it with the classical action.

The paths contribute equally in magnitude. but the phase of their contri-
bution is the classical action (in units of h̄); i.e., the time integral of the
Lagrangian taken along the path.

These axioms led to the Feynman’s heuristic formula

ψ(t, x) = C−1
∫

Γ
e

i
h̄ S(γ)ψ0(0, γ(0))dγ (1)

for the solution to the time dependent Schrödinger equation (we fix m = 1)

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) + V(x)ψ(t, x), x ∈ Rd, t ∈ R, (2)

describing the time evolution of the state ψ ∈ L2(Rd) of a non-relativistic quantum
particle moving in the d-dimensional Euclidean space under the action of the force
field associated to a real valued potential V. According to Feynman’s postulates, the
state of the particle should be given by an heuristic integral of the form (1) on the
space Γ of continuous paths γ : [0, t] → Rd with fixed end point γ(t) = x. The
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integrand in (1), namely the function

S(γ) =
∫

L(γ(τ), γ̇(τ))dτ =
∫ t

0

( |γ̇(τ)|2
2

− V(γ(τ))

)
dτ,

is the classical action functional evaluated along the path γ, where L denotes the
Lagrangian. Here, γ̇(τ) is the derivative of γ at τ, and | · | is the norm in Rd. The
symbol dγ stands for a heuristic Lebesgue-type measure on Γ and

C =
∫

Γ
e

i
2h̄

∫ t
0 |γ̇(s)|2dsdγ,

plays the role of a normalization constant. Formula (1), as it stands, lacks of a well
defined mathematical meaning, however it has been widely applied in many areas of
quantum physics, providing in fact a quantization procedure and allowing, at least
heuristically, to associate a quantum dynamics to any classical Lagrangian. Feynman
himself was aware of the lack of a sound mathematical theory for its formula as he
says in a comment of his thesis [24].

There are very interesting mathematical problems involved in the attempt
to avoid the subdivision and limiting processes. Some sort of complex
measure is being associated with the space of functions x(t). Finite re-
sults can be obtained under unexpected circumstances because the measure
is not positive everywhere, but the contributions from most of the paths
largely cancel out. These curious mathematical problems are sidestepped
by the subdivision process. However, one feels as Cavalieri must have felt
calculating the volume of a pyramid before the invention of calculus.

In fact, neither the normalization constant C, nor the Lebesgue type measure dγ are
well defined.

In the physical literature, in most cases Feynman’s formula is interpreted as the
limit of a finite dimensional approximation procedure. Indeed, if we divide the time
interval [0, t] into n equal parts of amplitude t/n, and if for any path γ : [0, t] → R

we consider its approximation by means of a broken line path γn in Rd defined as:

γn(s) := xj +
(xj+1 − xj)

t/n
(s − jt/n), s ∈

[
jt
n

,
(j + 1)t

n

]
,

where xj := γ(jt/n) and j = 0, . . . , n − 1, formula (1) can be interpreted as the limit
for n → ∞ of the following approximation:

(2πh̄i)−nd/2
∫

Rnd
ψ0(x0)e

i
h̄ ∑n−1

j=0
|xj+1−xj |2

2t/n − i
h̄ ∑n

j=1 V(xj)
t
n dx0 . . . dxn−1. (3)
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Indeed, under rather general assumption on the potential V and the initial datum ψ0,
the limit for n → ∞ of the sequence of finite dimensional integrals (3) converges to the
solution of (2) (see, e.g., [89, 90, 105, 68, 111, 62] for a discussion of this approach).

A rigorous mathematical construction of an integration theory allowing to realize
Feynman’s formula in terms of a Lebesgue integral with respect to a well defined
(σ-additive) complex measure on the infinite dimensional space of paths Γ, presents
severe problems and it is in fact in most cases impossible (see, for instance, [25, 109,
12, 83, 53] for a discussion of this issue). Several approaches have been proposed,
relying, e.g., on analytic continuation of Wiener integrals [25, 35], or on an infinite
dimensional distribution theory [27, 57], or on suitable approximation procedures
[3, 2, 38, 44, 75, 89, 112, 45, 72]. The same techniques have also been applied to
the construction of generalized Feynman-Kac formulae for higher-order heat type
equations of (which we see below), see, e.g. [19, 60, 73, 59, 47, 81, 78, 76, 22, 21, 99].
We shall focus on the infinite dimensional oscillatory integral approach, originally
proposed by K. Itô in the 1960s [66, 65] and further developed by S. Albeverio and R.
Høegh-Krohn [9, 10] in the 1970s. The main idea is the generalization of the classical
theory of oscillatory integrals on finite dimensional vector space due to L. Hörmander
[60] and J. J. Duistermaat [36] to the case where the integration is performed on an
infinite dimensional real separable Hilbert space [38, 85]. It is important to point out
that this approach allows for a systematic implementation of an infinite dimensional
version of the stationary phase method and the corresponding application to the
study of the semiclassical limit of quantum mechanics [9, 102], that is the analysis
of the detailed asymptotic behavior of the solution of the Schrödinger equation when
the Planck constant h̄ is regarded mathematically as a small parameter allowed to
converge to 0.

The main aim of this work regards the Schrödinger equation for a non-relativistic
quantum particle moving under the influence of a magnetic field B associated to a
vector potential a

ih̄
∂

∂t
ψ(t, x) =

1
2
(−ih̄∇− λa(x))2 ψ(t, x),

where a(x) ∈ Rd and λ ∈ R plays the role of a coupling constant. As we shall deepen
in Chpt. 3, the above mentioned theory of infinite dimensional oscillatory integrals is
used to construct a rigorous mathematical definition for the corresponding Feynman
path integral formula

ψ(t, x) =
∫

γ(t)=x
e

i
2h̄

∫ t
0 |γ̇(s)|2ds+ i

h̄

∫ t
0 λa(γ(s))·γ̇(s)dsψ0(γ(0))dγ.

Let us dwell now on the relation between probability theory, in particular the
theory of mathematical stochastic processes, and the study of partial differential
equations, which has a fundamental role in the thesis. The most is provided by the
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Feynman-Kac formula (4), which gives a representation of the solution of the heat
equation with (real-valued) potential V

{
∂
∂t u(t, x) = 1

2 ∆u(t, x)− V(x)u(t, x), x ∈ Rd, t ∈ [0,+∞)
u(0, x) = u0(x)

for a suitable initial condition u0, in terms of an integral of the form

u(t, x) =
∫

Ct

e−
∫ t

0 V(ω(s)+x)dsu0(ω(t) + x)dP(ω), (4)

where P is the Wiener probability measure on the Borel σ-algebra in the Banach
space Ct of continuous paths ω : [0, t] → Rd starting at the origin, endowed with
the sup-norm. The process X with paths ω and distribution P is, as well known,
the realization of the (standard) Wiener process (also called mathematical Brownian
motion), see, e.g., [70]. In fact, the connection between heat equation and Wiener
process is just a particular case of a general theory connecting Markov processes with
parabolic equations associated to second order elliptic operators (see, e.g., [34, 42]).
This rich and extensively developed theory does not apply to more general PDEs, in
particular those which do not satisfy a maximum principle such as, for instance, the
Schrödinger equation (2).

However, another interesting example, outside the proper range of the mentioned
theory of Markov process, is provided by heat-type equations associated to higher-
order differential operators, such as, for instance, the parabolic equation associated
to the bilaplacian:

∂

∂t
u(t, x) = −∆2u(t)− V(x)u(t, x), (5)

or, more generally, p-order equations, which we shall study in Chpt 2, of the form:

∂

∂t
u(t, x) = (−i)pα

∂p

∂xp u(t, x) + V(x)u(t, x), t ∈ [0,+∞), x ∈ R, (6)

where p ∈ N, p > 2, α ∈ C is a complex constant and V : R → C is a continuous
bounded function.

The main reason for the impossibility to construct an analogue of formula (4) for
equations (2) and (6) relies in the lack of a maximum principle for the solution of
these equations. This fact actually forbids a probabilistic representation formula for
the solution of the form

u(t, x) = Ex[e−
∫ t

0 V(X(s))dsu0(X(t))] (7)

=
∫

Ω
e−
∫ t

0 V(ω(s))dsu0(ω(t))dP(ω),

given in terms of the expectation with respect to a probability measure P on Ω :=
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R[0,t], the probability distribution of a stochastic X(s) (with real valued paths). In-
deed, a representation formula of the form (7) would imply a maximum property for
the solutions (at least for V = 0), which does not hold for Eq. (2) and Eq. (6).

A proof of Feynman-Kac formula (4), as well as a derivation of Feynman heuristic
path integral representation seen above can be obtained by an argument relying on
the Trotter product formula1. We present it shortly here below in a general case
which can cover also the case of high order heat-type equations, with the aim of
pointing out why the arguments which work in the case of the heat equation fail in
the case of equations (2) (and also in the case of higher order heat-type equations). In
the following, for notational simplicity, we limit our considerations to the case where
d = 1.

Let us consider the evolution semigroup Tt : L2(R) → L2(R) (with L2(R) the
Hilbert space of Lebesgue square integrable complex-valued functions) generated by
an operator A : D(A) ⊂ L2(R) → L2(R) given on C∞

0 functions u ∈ L2(R) by

Au(x) := α(−i)p dp

dxp u(x), α ∈ C, p ∈ N, x ∈ R, (8)

where α ∈ C satisfies the condition Re (αyp) ≤ 0 for all y ∈ R. Let Kt( · , · ), t ≥ 0,
denote the kernel of Tt, namely:

Ttu(x) =
∫

R
Kt(x, y)u(y)dy. (9)

In fact Kt, for t > 0, has the form

Kt(x, y) =
1

2π

∫

R
eiκ(x−y)eακptdκ.

In particular, if p = 2 and α = − 1
2 , Kt is the fundamental solution of the heat

equation:

Kt(x, y) = (2πt)−1/2 exp
(
− (x − y)2

2t

)
, t > 0,

while if p = 2 and α = − ih̄
2 , Kt is the fundamental solution of the Schrödinger

equation:

Kt(x, y) = (2πih̄t)−1/2 exp
(

i
(x − y)2

2h̄t

)
, t > 0.

1It is curious to remark that M. Kac obained is celebrated formula after being isepired by a lecture
of R. P. Feynman at Cornell University [69].
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Furthermore, by the semigroup property of Tt the Chapman-Kolmogorov equation
follows:

∫

R
Kt(x, y)Ks(y, z)dy = Kt+s(x, z),

and vice versa. Given a continuous bounded function V : R → R , let us also
denote by V the associated linear multiplication operator acting on L2(R) defined
on the vectors u ∈ C∞

0 (R) by (Vu)(x) = V(x)u(x). Let β ∈ C and let A as in (8).
Consider the operator sum A + βV : D(A) ⊂ L2(R) → L2(R). Then let TV(t) :
L2(R) → L2(R) be the associated semigroup, written formally as TV(t) = e(A+βV)t.
By the Trotter product formula [110]2, the perturbed semigroup is given by the strong
L2(R)-limit

e(A+βV)tu = lim
n→∞

(
eA t

n eβV t
n

)n
u, u ∈ C∞

0 (R).

By taking a subsequence and using (9), the evaluation of both sides at almost every
x ∈ R yields

e(A+βV)tu(x) = lim
n→∞

(
eA t

n eβV t
n

)n
u(x) (10)

= lim
n→∞

∫

Rn
u(x0)e

β t
n ∑n

j=1 V(xj)
n−1

∏
j=0

Kt/n(xj+1, xj)dxj,

where xn ≡ x. In the case where Tt is the heat semigroup and its kernel Kt( · , · )
is, for t > 0, the density of a Gaussian probability measure on R, the limit of the
sequence of finite dimensional integrals appearing in Eq. (10) can be interpreted as
an integral with respect to the Wiener measure, obtaining, when β is a real negative
constant, Eq. (4). In the case of Schrödinger equation (2) or the high order heat
type equation (6), the kernel Kt( · , · ) is no longer real and positive and cannot be
interpreted as the density of a probability measure. In particular the Green function
Kt(x, y) of the Schrödinger equation is complex, while for the higher-order heat-type
equation (5) Kt(x, y) is real and attains both positive and negative values [59]. As a
troublesome consequence, the complex (resp. signed) finitely-additive measure µ on
Ω = R[0,t] defined on the algebra of “cylinder sets”C ⊂ Ω of the form

C := {ω ∈ Ω : ω(tj) ∈ Ij, j = 1, . . . k},

for some k ∈ N, 0 = t0 < t1 < · · · < tk and I1, . . . , Ik intervals in R, by

µ(C) =
∫

I1

· · ·
∫

Ik

k−1

∏
j=0

Ktj+1−tj(xj+1, xj)dx1 . . . dxk,

2For generalizations of Trotter product formula, see also, e.g., [89, 105, 88].
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does not extend to a corresponding σ-additive measure on the generated σ-algebra.
As a matter of fact, if this measure existed, it would have infinite total variation even
in “bounded nice regions” [25, 73, 109, 12].

This problem was addressed in 1960 by R. Cameron [25] for the Schrödinger
equation and by V. Krylov [73] for Eq. (5). Their results are in fact particular
cases of a general theorem later established by E. Thomas [109], which generalizes
Kolmogorov existence theorem to the case of projective systems of signed or complex
measures, instead of probability ones. These no-go results forbid a functional integral
representation of the solution of Eq. (2) or Eq. (5) in terms of a Lebesgue-type
(infinite dimensional) integral with respect to a σ-additive complex or signed measure
with finite total variation.

The thesis is organized as follows. In Chapter 1 we give an overview about infi-
nite dimensional oscillatory integration with some classical results. In Chapter 2 we
apply the techniques of infinite dimensional integration to the construction of a func-
tional integral representation of a general class of high-order heat-type equation. In
Chapter 3 we give a rigorous formulation (in terms of infinite dimensional oscillatory
integrals) of a Feynman path integral for the Schr̈odinger equation with magnetic
field; moreover we prove that the requirement of the independence of the integral
on the approximation procedure requires the introduction of a counterterm, which
has to be added to the classical action functional. In Chapter 3.3 we conclude with
possible future developments and generalizations. The three appendices concern re-
spectively a brief background on the abstract Wiener spaces (A), the Ogawa integral
with a generalization on the multidimensional case (B) and the proof on a important
stochastic lemma used in Chapter 3 (C).
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Chapter 1

General Framework: Infinite
Dimensional Fresnel Integrals

In this chapter we introduce a characterization of the infinite dimensional oscillatory
integrals. In finite dimension, we consider an object of the following form

∫

Rn
e

i
ϵ Φ(x) f (x)dx, (1.1)

where ϵ ∈ R \ {0} is a real parameter, f : Rn → C and Φ : Rn → R are Borel
functions. There are many examples of this kind of integral as the Airy’s integrals
in the theroy of rainbows [1] and the Fresnel integral introduced in optics and in the
theory of wave diffraction [43]. The latter, namely the classical Fresnel integrals have
a quadratic form as a phase function Φ: in the simplest case Φ(x) = ‖x‖2, where
‖x‖2 = 〈x, x〉. This case gives rise to an integral of the form

∫

Rn
e

i
ϵ ‖x‖2

f (x)dx. (1.2)

For our purpose we outline that the Fresnel integrals are extensively studied in con-
nection with the theory of Fourier integral operators (see [60]). Moreover, a mathe-
matical particular interest has been devoted to the study of their asymptotic behavior
when ϵ ↓ 0 [36, 60].

If the function f is not summable the integral (1.1) is not defined in Lebesgue
sense. In [60], Hörmander proposes and exploits an alternative definition which can
handle the case where f /∈ L1(Rn). We present here a formulation of Hörmander’s
definition of oscillatory integral, which was applied to the mathematical construction
of Feynman path integrals in [38, 3]. We shall emphasise that infinite dimensional
integration theory (in particular the functional integration) is a powerful tool in the
study of dynamical system [29, 31, 34, 37, 39].



10 Chapter 1. General Framework: Infinite Dimensional Fresnel Integrals

1.1 Definitions and properties
As stated above, the integrals (1.1) can be computed even when the function f is
not summable. According with [60], we compute them as the limit of a sequence of
regularized integrals.

Definition 1.1. Let f : Rn → C be a Borel function and Φ : Rn → R a phase
function. If for each Schwartz test function ϕ ∈ S(Rn) such that ϕ(0) = 1 the
integrals

Iδ( f , ϕ) :=
∫

Rn
ei Φ(x)

ϵ f (x)ϕ(δx)dx

exist for all ϵ > 0, δ > 0 and limδ→0 Iδ( f , ϕ) exists and is independent of ϕ, then the
limit is called the oscillatory integral of f with respect to Φ and denoted by

∫ o

Rn
ei Φ(x)

ϵ f (x)dx ≡ I
Φ
ϵ ( f ).

We notice that the convergence of the oscillatory integral (1.1) for f /∈ L1(Rn)
can be obtained by exploiting the cancellations due to the oscillatory behavior of the
integrand. Moreover, a particular technique of asymptotic analysis, the stationary
phase method, allows the study of their asymptotic behavior in the limit when the
parameter ϵ converges to 0 [36, 60, 87].

As mentioned above, we shall focus on the Fresnel integral, that is the oscillatory
integral with a quadratic form as the phase function. Thus we set Φ(x) = ‖x‖2

2 .
In the 70s, S. Albeverio and R. Høegh-Krohn introduced in [9] a generalization of

this integration technique to the case where Rn is replaced by a real separable infinite
dimensional Hilbert space (H, 〈 , 〉). These studies have been further developed in
[38, 3, 10]. For our main purpose, it is convenient to define an infinite dimensional
oscillatory integral with quadratic phase function (also called infinite dimensional
Fresnel integral) as the limit of sequences of finite dimensional approximations.

Definition 1.2. A function f : H → C is said to be Fresnel integrable if for any
sequence {Pn}n of projectors onto n-dimensional subspaces of H, such that Pn ≤ Pn+1
and Pn → I strongly as n → ∞ (I being the identity operator in H), the oscillatory
integrals ∫ o

PnH
ei ‖Pn x‖2

2ϵ f (Pnx)d(Pnx),

are well defined (in the sense of Def. 1.1) and the limit

lim
n→∞

(2πiϵ)−n/2
∫ o

PnH
ei ‖Pn x‖2

2ϵ f (Pnx)d(Pnx) (1.3)
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exists and is independent of the sequence {Pn}n. In this case the limit is called infinite
dimensional oscillatory integral of f and is denoted by

∫̃ o

H
ei ‖x‖2

2ϵ f (x)dx.

Let us observe that for Schwartz test functions f ∈ S(Rn), the Fresnel integral
(1.2) can be computed in terms of the following Parseval’s identity:

∫

Rn

e
i

2ϵ ‖x‖2

(2πiϵ)n/2 f (x)dx =
∫

Rn
e−

iϵ
2 ‖x‖2

f̂ (x)dx, x ∈ Rn, (1.4)

f̂ being the suitably normalized Fourier transform of f . Let us denote by F (Rn)
the space of complex-valued functions f , which can be written in the form of Fourier
transform of some complex measure µ f (depending on f ) such that

f (x) =
∫

Rn
ei〈x,y〉dµ f (y), x ∈ Rn.

Then for f ∈ F (Rn), the approximation procedure described in definition (1.1) allows
to generalize (1.4) obtaining

∫ o

Rn

e
i

2ϵ ‖x‖2

(2πiϵ)n/2 f (x)dx =
∫

Rn
e−

iϵ
2 ‖x‖2

dµ f (x), f (x) =
∫

Rn
ei〈x,y〉dµ f (y). (1.5)

Formula (1.5) is the fundamental tool for the definition of Fresnel integrals in the
case where H is a real separable infinite dimensional Hilbert space. Indeed, if the
dimension n of H is no longer finite, the left hand side of (1.5) is meaningless (due to
the lack, e.g., of an Lebesgue measure on H) but the right hand side is still meaningful
and can be taken as the definition of a linear continuous functional on the space of
Fourier transform of complex (bounded) Borel measures on H [10].

In the following we shall denote by F (H) the space of functions f : H → C that
are Fourier transform of complex (bounded) Borel measures on H, namely functions
of the form:

f (x) =
∫

H
ei〈x,y〉dµ f (y), x ∈ H, (1.6)

where µ f is a complex bounded Borel measure of finite total absolute variation
|µ f |(H) :=

∫
H d|µ f | on H. The space F (H) is a Banach algebra, where the product

is the pointwise one and the norm ‖ f ‖F (H) of a function f is defined as the total
variation of the associate measure µ f . Indeed, the Banach space M(H) of complex
Borel measures on H with finite total variation, endowed with the total variation
norm (denoted by ‖µ‖M(H)) is a commutative Banach algebra under convolution,
where the unit is the δ point measure concentrated at 0. By introducing on F (H)
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the norm ‖ f ‖F (H) := ‖µ‖M(H), the map

f (x) =
∫

H
e〈x,y〉dµ(y), x ∈ H,

becomes an isometry and F (H) endowed with the norm ‖ · ‖F (H) becomes a commu-
tative Banach algebra of continuous functions [10].

This construction, based on a Fourier transform approach, is the original proposal
to the study of infinite dimensional oscillatory integrals and it is due to K. Itô [66, 65]
and S. Albeverio and R. Høegh-Krohn [9, 10] as we also said in the introduction. Now,
it seems appropriate to provide the following definition for the functions f ∈ F (H)
(that it will be used in Chpt. 2).

Definition 1.3. A function f ∈ F (H). The F -integral of f is defined as:
∫̃

H
e

i
2ϵ ‖x‖2

f (x)dx :=
∫

H
e−

iϵ
2 ‖x‖2

dµ f (x), (1.7)

where f (x) =
∫
H ei〈x,y〉dµ f (y), µ f ∈ M(H).

Remark 1.1. The right hand side of (1.7) is a well defined (absolutely convergent)
Lebesgue integral. Moreover, by the inequality

∣∣∣∣
∫̃

H
e

i
2ϵ ‖x‖2

f (x)dx
∣∣∣∣ ≤ ‖µ f ‖M(H) = ‖ f ‖F (H)

the application f 7→
∫̃

e
i

2ϵ ‖x‖2
f (x)dx is a linear continuous functional on F (H).

The relation between the class of integrable functions in the sense of Def. 1.2 and
in the sense of Def. 1.3 is given thanks to the following theorem. In particular, it
shows that the class of Fresnel integrable function in the sense of Def. 1.2 includes
the class of integrable function in the sense of Def. 1.3, i.e. it includes F (H). A
complete intrinsic characterization of the class of all Fresnel integrable function in
the sense of Def. 1.2 constitutes an open problem of harmonic analysis, even in finite
dimension.

Theorem 1.1. Let L : H → H be a self adjoint trace class operator, such that (I − L)
is invertible and let f ∈ F (H). Then the function g : H → C defined by

g(x) = e−
i

2ϵ 〈x,Lx〉 f (x), x ∈ H (1.8)

is Fresnel integrable and its infinite dimensional Fresnel integral is given by the fol-
lowing Parseval-type equality:

∫̃ o

H
e

i
2ϵ 〈x,(I−L)x〉 f (x)dx = (det(I − L))−1/2

∫

H
e−

iϵ
2 〈x,(I−L)−1x〉dµ f (x) (1.9)
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where det(I − L) is the Fredholm determinant of the operator (I − L) (that is the
product of the eigenvalues of (I − L)) and µ f is the complex bounded Borel measure
on H related to f by (1.6).

For the proof see Theorem 10.1 in [10].
Remark 1.2. It is interesting to point out that the class of Fresnel integrable functions
contains elements different from the ones described by eq (1.8). As remarked in [38],
Def. 1.2 allows to handle, e.g., unbounded functions f : H → C of the form:

f (γ) = ei〈γ,v〉〈γ, w1〉 · · · 〈γ, wn〉, γ ∈ H, (1.10)

with v, w1, . . . , wn ∈ H.
Remark 1.3. Theorem 1.1 has been extended in [4] to the case where the operator
L is Hilbert-Schmidt but it is not trace-class. In [84] the definition of infinite di-
mensional oscillatory integrals has been generalized to polynomial phase functions
and applied to the construction of Feynman-Kac type formulae for the high-order
heat-type equations (see also [6]).

1.2 Representation for the solution of the Schrödinger
equation

The heuristic Feynman path integral representation for the solution of the Schrödinger
equation in three dimensions can be rigorously mathematically realized as an infinite
dimensional oscillatory integral on a suitable Hilbert space of continuous “paths”.
Indeed, let us set ϵ ≡ h̄ and let us consider the so-called Cameron-Martin space
Ht, that is the Hilbert space of of absolutely continuous paths γ : [0, t] → R3 with
γ(0) = 0 and square integrable weak derivative

∫ t
0 |γ̇(s)|2ds < ∞, endowed with the

inner product
〈γ1, γ2〉 =

∫ t

0
γ̇1(s) · γ̇2(s)ds.

In the case where the potential V in the Schrödinger equation
{

ih̄ ∂
∂t ψ(t, x) = − h̄2

2 ∆ψ(t, x) + V(x)ψ(t, x), x ∈ R3, t ∈ R,
ψ(0, x) = ψ0(x)

(1.11)

is the sum of an harmonic oscillator term and a bounded perturbation v belonging
to the space F (R3)

V(x) =
1
2

xΩ2x + v(x), x ∈ R3, (1.12)
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and if the initial datum ψ0 belongs to L2(R3) ∩F (R3), it has been proved (see, e.g.,
[10, 38, 84]) that the function f : Ht → C given by

f (γ) = e−
i
h̄

∫ t
0 V(γ(s)+x)dsψ0(γ(0) + x), x ∈ R3, γ ∈ Ht,

is Fresnel integrable. Further, its infinite dimensional oscillatory integral, namely
∫̃

Ht

e
i

2h̄ 〈γ,γ〉 f (γ)dγ ≡
∫̃

Ht

e
i

2h̄

∫ t
0 |γ̇(s)|2dse−

i
h̄

∫ t
0 V(γ(s)+x)dsψ0(γ(0) + x)dγ,

provides a representation for the solution in the (complex) L2(R3) space of the
Schrödinger equation (1.11).
Remark 1.4. This result, valid also for R3 replaced by Rd, for any d ∈ N, has
been generalized in [4] to the case where d = 2 and a constant magnetic field is
present, providing a formula valid in the Coulomb gauge for the vector potential
a(x, y) = (−By/2, Bx/2), (x, y) ∈ R2.

For a detailed proof of these results as well as for their applications to the Feynman
path integral representation of the solution of the Schrödinger equation, see, e.g.[38, 3,
10, 85]. For other approaches to the mathematical theory of Feynman path integrals
see, e.g., [57, 68, 44, 72].

1.3 The Feynman map
In the context of (1.12) a particular class of finite dimensional approximations plays
an important role and has been introduced in an alternative definition of infinite
dimensional oscillatory integrals on the Cameron-Martin space. For fixed n ∈ N, let
Hn ⊂ Ht be the finite dimensional subspace of piecewise linear paths of the form

γ(s) =
n

∑
k=1

χ[tk−1,tk)(s)
(

γ(tk−1) +
γ(tk)− γ(tk−1)

tk − tk−1
(s − tk−1)

)
, (1.13)

where s ∈ [0, t], tk = kt
n and k = 0, . . . , n. Let Pn : Ht → Ht the projector operator

onto Hn, whose action on a generic vector γ ∈ Ht is given by the right hand side
of (1.13). In fact the sequence of operators {Pn}n converges strongly to the identity
operator I as n → ∞ [111].

In this context the definition of Feynman map has been proposed [112]. It is
defined as a linear functional IF whose action on functions f : Ht → C is defined by

IF( f ) = lim
n→∞

∫ o
PnHt

ei ‖Pnγ‖2
2h̄ f (Pnγ)d(Pnγ)

∫ o
PnHt

ei ‖Pnγ‖2
2h̄ d(Pnγ)

, (1.14)

whenever the limit on the right hand side exists.
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In the case where f ∈ F (Ht) then its Feynman map is well defined and coincides
with its infinite dimensional oscillatory integral:

IF( f ) =
∫̃

Ht

e
i

2h̄ 〈γ,γ〉 f (γ)dγ.

Remark 1.5. In the general case, i.e. for f /∈ F (Ht), the two alternative definitions
of the Feynman integral can yield different results.

It is interesting to outline that the integrability condition required by Def. 1.2
holds if the limit (1.3) is independent of the particular sequence of finite dimensional
projection operators {Pn}n, whereas the definition of Feynman map (1.14) relies upon
the piecewise-linear approximations.

0 t1 t2 T

γ(0)

γ(T)

γ(0)

γ(T)

n → ∞

A schematic representation of piecewise linear approximations.
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Chapter 2

Generalized Feynman path
integrals∗

This chapter is devoted to the study of p-order heat-type equations of the form:

∂

∂t
u(t, x) = (−i)pα

∂p

∂xp u(t, x) + V(x)u(t, x), t ∈ [0,+∞), x ∈ R, (2.1)

where p ∈ N, p > 2, α ∈ C is a complex constant and V : R → C is a continuous
bounded function. For notational convenience we studied the one dimensional case,
but the corresponding general case could be treated.

The main idea is the replacement of the concept of integral with the (more general)
concept of linear continuous functional on a suitable space of “integrable functions”.
More precisely, the integral with respect to a σ-additive measure µ has to be replaced
by a linear (continuous) functional L : D(L) → C defined on a domain D(L) which
contains the cylinder functions, i.e. the functions f : Ω → C of the form:

f (ω) := F(ω(t1), . . . , ω(tn)) (2.2)

for some n ∈ N, 0 < t1 < · · · < tn < ∞ and a Borel function F on Rn. The
action of the functional L on a function f of the form (2.2) must be given by a (finite
dimensional) integral on the space Rn of the form:

L( f ) =
∫

Rn
F(xn, . . . , x1)Ktn−tn−1(xn, xn−1) . . .

. . . Kt2−t1(x2, x1)Kt1(x1, x)dx1 . . . dxn.
(2.3)

with, xj ∈ R for j = 1, . . . , n and where Kt, for t > 0, has the form seen in the
introduction:

Kt(x, y) =
1

2π

∫

R
eiκ(x−y)eακptdκ,

∗The results of this chapter are collected in [6].
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with x, y ∈ R and κ ∈ R. In fact this particular view of infinite dimensional integra-
tion allows to unify both probabilistic and oscillatory integrals on infinite dimensional
spaces, as discussed in [15, 13, 12, 11]. Despite the successful application of these
techniques to Feynman integration as well as to the study of the semiclassical asymp-
totic behavior of quantum mechanics [3, 9, 10, 18] is well known since the 70s, the
generalization to a wider class of PDEs such as the higher-order heat-type equations
is rather recent [84].
Here we shall use of the theory and applications of infinite dimensional Fresnel inte-
grals to the construction of functional integral representation of the solution of PDEs
of the form (2.1).

Section 2.1 presents a recent generalization of infinite dimensional Fresnel inte-
grals which covers the case of polynomial phase functions and the application to the
representation of the solution of higher-order equation (2.1). In section 2.2 we prove
a Girsanov type formula for the higher-order equation (2.1). Eventually section 2.3
presents a phase space path integral solution formula for equation (2.1).

2.1 Infinite dimensional Fresnel integrals with polyno-
mial phase function

The Def. 1.3 of F -integral has been recently generalized to cover the case where
the quadratic phase function is replaced by an higher-order polynomial [84]. This
new functional, named infinite dimensional Fresnel integral with polynomial phase
function (or shortly generalized Fresnel integrals) can be applied to the construction
of a functional integral representation for the solution of a general class of higher-order
heat-type equations of the form

{
∂
∂t u(t, x) = (−i)pα ∂p

∂xp u(t, x) + V(x)u(t, x), t > 0, x ∈ R,
u(0, x) = u0(x)

(2.4)

where p ∈ N is a positive integer, α ∈ C a complex constant satisfying the following
condition

Re(αyp) ≤ 0, ∀y ∈ R. (2.5)

and V is a complex-valued function. In the case where p = 2 and α is purely negative
imaginary Eq. (2.4) reduces to the Schrödinger equation with potential iV, while if
p = 4 and α = −1 Eq. (2.4) is the higher-order heat-type equation (5).

The generalization of Def. 1.3 relies upon the replacement of the Hilbert space
H where the integration is performed by a real separable Banach space B with norm
‖ · ‖. Let us denote by B∗ its topological dual. Let F (B) denote the space of complex
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valued functions f : B∗ → C of the form

f (x) =
∫

B
ei〈x,y〉dµ f (y), x ∈ B∗ (2.6)

for some complex Borel measure µ f on B. The space F (B) is a Banach algebra of
functions, where the product is the pointwise one f · g(x) = f (x)g(x) and the norm
‖ f ‖F of an element f ∈ F (B) is defined as the total variation ‖µ f ‖ of the associated
Borel bounded measure µ f (see Eq (2.6)), namely ‖ f ‖F := ‖µ f ‖, where

‖µ f ‖ :=
∫

B
d|µ f |(y).

Definition 2.1. Let let Φ : B → C be a continuous function such that Re(Φ(x)) ≤ 0
for all x ∈ B.

The infinite dimensional Fresnel integral on B∗ with phase function Φ is the
functional LΦ : F (B) → C, given by

LΦ( f ) :=
∫

B
eΦ(x)dµ f (x), f ∈ F (B), x ∈ B,

f (x) =
∫

B
ei〈x,y〉dµ f (y), x ∈ B∗.

(2.7)

By its definition, it is straightforward to see that the functional LΦ : F (B) → C

is linear and continuous in the F (B)-norm. Indeed:

|LΦ( f )| ≤
∫

B
|eΦ|d|µ f |(x) ≤ ‖µ f ‖ = ‖ f ‖F , f ∈ F (B).

Furthermore the functional L is normalized, i.e. its value on the constant function
f (x) = 1 ∀x ∈ B∗ is equal to LΦ(1) = 1 ( f being the Fourier transform of the δ
point measure at x = 0). In particular the functional LΦ generalizes the infinite
dimensional integrals of Def. 1.3 in the sense that if B ≡ H and Φ(x) = −ih̄‖x‖2

2 then

LΦ( f ) =
∫̃

H
e

i
2h̄ ‖x‖2

f (x)dx.

Let us consider now a particular example of a functional of the form (2.7) on a
suitable Banach space B. Given a positive integer p ∈ N, with p ≥ 2, let us consider
the Banach space Bp of absolutely continuous paths ξ : [0, t] → R such that ξ(t) = 0
and weak derivative ξ̇ belonging to Lp([0, t]), endowed with the norm

‖ξ‖Bp =

(∫ t

0
|ξ̇(s)|pds

)1/p

.
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The dual space B∗
p is isomorphic to Bq, with 1

p +
1
q = 1, and the pairing between

an element γ ∈ B∗
p and ξ ∈ Bp is given by:

〈γ, ξ〉 =
∫ t

0
γ̇(s)ξ̇(s)ds γ ∈ Bq, ξ ∈ Bp.

A function f : Bq → C belonging to the Banach algebra F (Bp) has the form

f (γ) =
∫

Bp

ei
∫ t

0 γ̇(s)ξ̇(s)dsdµ f (ξ), γ ∈ Bq (2.8)

for some complex Borel measure µ f on Bp.
Let us introduce a homogeneous phase function Φp : Bp → C of the form

Φp(ξ) := (−1)pα
∫ t

0
ξ̇(s)pds, ξ ∈ Bp

where α ∈ C is a complex constant such that Re(α) ≤ 0 if p is even and Re(α) = 0
if p is odd. The corresponding generalized infinite dimensional Fresnel integral LΦp :
F (Bp) → C is defined as

LΦp( f ) =
∫

Bp

e(−1)pα
∫ t

0 ξ̇(s)pdsdµ f (ξ), (2.9)

for f ∈ F (Bp) given by Eq. (2.8).

The following lemma is fundamental as it shows that the functional LΦp defined
above provides a rigorous definition of the “path integral” associated to the higher-
order heat-type equation (2.1).

Lemma 2.1. Let f : Bq → C be a cylindrical function of the following form:

f (γ) = F(γ(t1), γ(t2), . . . , γ(tn)), γ ∈ Bq,

with 0 ≤ t1 < t2 < · · · < tn < t and F : Rn → C, F ∈ F (Rn):

F(x1, . . . , xn) =
∫

Rn
ei ∑n

k=1 ykxk dνF(y1, . . . , yn),

for some bonded complex measure µF with Fourier transform F on Rn. Then f ∈
F (Bp) and its infinite dimensional Fresnel integral with phase function Φp is given
by

LΦp( f ) =
∫

Rn
F(x1, . . . , xn)

n

∏
k=1

Kp
tk+1−tk

(xk+1, xk)dx1 . . . dxn, (2.10)
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where xn+1 ≡ 0, tn+1 ≡ t and Kp
s is the fundamental solution of the high order

heat-type equation ∂
∂t u(t, x) = (−i)pα ∂p

∂xp u(t, x):

Kp
t (x, y) =

1
2π

∫

R
eiκ(x−y)eακptdκ

See [84] for the proof.

According to formula (2.10), the functional LΦp provides a mathematical definition
of the “path integral” associated to the non positive kernel Kp

t , i.e. it enjoys the
property (2.3) described in the introductory section.

A direct consequence of the previous lemma is the proof of the following functional
integral representation of the solution to the higher-order heat-type equation (2.4).

Corollary 2.1. Let u0 ∈ S(R) be a Schwartz test function. Then for all x ∈ R

the function f : Bq → C defined by f (γ) = u0(x + γ(t)) belongs to F (Bp) and the
function u : R+ × R → R defined by u(t, x) = LΦp( f ) is a representation for the
solution of the Cauchy problem

{
∂
∂t u(t, x) = (−i)pα ∂p

∂xp u(t, x)
u(0, x) = u0(x), x ∈ R, t ∈ [0,+∞)

Analogously it is possible to prove (see [84] for the details) the following Feynman-
Kac formula.

Theorem 2.1. Let u0 ∈ F (R)∩ L2(R) and V ∈ F (R). In particular let us consider
u0(x) =

∫
R

eixydµ0(y) and V(x) =
∫

R
eixydν(y), with µ0, ν bounded complex measures

on R. Then the functional ft,x : Bq → C defined by

ft,x(γ) := u0(x + γ(0))e
∫ t

0 V(x+γ(s))ds, x ∈ R, γ ∈ Bq,

belongs to F (Bp) and its infinite dimensional Fresnel integral with polynomial phase
function Φp provides a representation for the solution of the Cauchy problem (2.4).

2.2 Girsanov-type formula for generalized Fresnel inte-
grals

In this section we prove a Girsanov-type formula for higher-order heat-type equation
of the form (2.4). To the best of our knowledge, in the existing literature on the
argument this result is still lacking. We shall show how it can be obtained as a direct
consequence of the formalism introduced in the previous section.
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Let us consider the p-order heat-type equation




∂

∂t
u(t, x) = α(−i∂x − a(x))pu(t, x)

u(0, x) = u0(x), x ∈ R, t ∈ [0,+∞)
(2.11)

where α ∈ C and p ∈ N satisfy the assumption (2.5) and let a : R → R be a
Cp−1(R) function. We are going to construct a functional integral representation
of the solution of (2.11) by means of the functional LΦp introduced in the previous
section.

Let us denote by A : R → R a primitive of a, i.e. a(x) = d
dx A(x), x ∈ R. In the

following we shall assume that A belongs to F (R), i.e. A is the Fourier transform of
a complex bounded variation measure ν on R such that the associated total variation
measure has finite p-moments:

A(x) =
∫

R
eixydν(y), x ∈ R,

∫

R
|y|pd|ν|(y) < ∞. (2.12)

By (2.12), A is a Cp(R) function. Furthermore, let us consider an initial datum
u0 ∈ F (R):

u0(x) =
∫

R
eixydµ(y), x ∈ R.

Let us note that
∫ t

0 a(γ(s)+ x)γ̇(s)ds is well defined for γ ∈ Bq, since γ 7→ a(γ(s)+ x)
is in F (Bp).

Theorem 2.2. Under the assumption above, the map f : Bq → C defined as

f (γ) := u0(γ(0) + x)ei
∫ t

0 a(γ(s)+x)γ̇(s)ds, γ ∈ Bq,

belongs to F (Bp) and its infinite dimensional Fresnel integral with phase function
Φp on Bq (in the sense of Def. 2.1) provides a representation of the solution of the
Cauchy problem (2.11):

u(t, x) = LΦp( f ).

Proof. Under the assumption above we have that the maps g : Bq → C and
f0 : Bq → C defined as

g(γ) =
∫ t

0
a(γ(s) + x)γ̇(s)ds − A(x) = −A(γ(0) + x) (2.13)

f0(γ) = u0(γ(0) + x)
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belong to F (Bp). Indeed, denoted by v0 ∈ Bp the vector defined by v0(s) = t − s,
s ∈ [0, t], we have

〈γ, v0〉 = γ(0), ∀γ ∈ Bq.

where Ht was defined in Chpt. 1. Hence:

A(γ(0) + x) =
∫

R
eiyxeiyγ(0)dν(y)

=
∫

R
eiyxeiy〈γ,v0〉dν(y)

=
∫

R
eiyx

∫

Bp

ei〈γ,ξ〉δyv0(γ)dν(y)

=
∫

Bp

ei〈γ,ξ〉dµA(ξ),

where µA ∈ M(Bp) (the space of bounded complex measure on Bp) is defined by
∫

Bp

F(ξ)dµA(ξ) :=
∫

R
eiyxF(yv0)dν(y), (2.14)

for all Borel bounded F : Bp → R. Analogously u0(γ(0) + x) =
∫
Bp

ei〈γ,ξ〉dµ0(ξ),
where µ0 ∈ M(Bp) defined by a formula corresponding to (2.14) with ν replaced by µ.
By the Banach algebra properties of F (Bp), we have that f0 exp(ig) = f0 ∑∞

n=0
(i)ngn

n!
is an element of F (Bp). The generalized Fresnel integral of f (cfr. the beginning of
this section) is given by

LΦp( f ) = eiA(x)LΦp( f0 exp(ig)) = eiA(x)
∞

∑
n=0

in

n!
LΦp( f0gn),

where the series is absolutely convergent and we have used that LΦp is continuous.
By Lemma 2.1 the latter is given by

LΦp( f ) = eiA(x)
∫

R
Kt(x, y)u0(y)e−iA(y)dy. (2.15)
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Denoted by u(t, x) the right hand side of (2.15), by Corollary 2.1 in Sect. 2.1 we have
u(0, x) = u0(x) and

∂tu(t, x) = eiA(x)∂t

∫

R
Kt(x, y)u0(y)e−iA(y)dy

= (−ip)αeiA(x)∂
p
x

∫

R
Kt(x, y)u0(y)e−iA(y)dy

= (−ip)αeiA(x)∂
p
x(e−iA(x)u(t, x))

= (−ip)α(∂x − ia(x))pu(t, x)
= α(−i∂x − a(x))pu(t, x).

Remark 2.1. In the case of the Schrödinger equation, i.e. for p = 2 and α = − ih̄
2 , the

generalization of Theorem 2.2 to the case where the space variable x is d-dimensional,
with d = 3, allows to construct a Feynman path integral representation for the
solution in the presence of magnetic field (the function a playing the role of the
vector potential); for this topic see, for instance, [54, 105]. In this case the technique
used in the proof above does no longer work (since equality (2.13) is no longer valid).
This issues will be investigated in the next chapter.

2.3 Hamiltonian and Lagrangian path integrals
In its original formulation [40, 41], Feynman’s approach to quantum dynamics was
essentially of Lagrangian type. On the other hand an Hamiltonian formulation could
be preferable from many points of view. For instance the discussion of the approach
from quantum mechanics to classical mechanics, i.e the study of the behavior of phys-
ical quantities taking into account that h̄ is small, is more natural in an Hamiltonian
setting. In other words the “phase space” rather then the “configuration space” is
the natural framework for classical mechanics.

Consequently, many attempts to introduce and exploit a “phase space Feynman
path integral” formula have been proposed (see, e.g. [28, 104, 32, 20]), namely a
representation for the solution of the Schrödinger equation, of the (heuristic) form
seen in the introduction

u(t, x) = Const
∫

q(t)=x
e

i
h̄ S(q,p)u0(q(0))dqdp. (2.16)

The integral in the heuristic formula (2.16) is meant on the space of paths q(s), p(s),
s ∈ [0, t] in the phase space of the system (q(s)s∈[0,t] is the path in configuration space
and p(s)s∈[0,t] is the path in momentum space) and S is the action functional in the
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Hamiltonian formulation:

S(q, p) =
∫ t

0
(q̇(s)p(s)− H(q(s), p(s)))ds, (2.17)

(H being the classical Hamiltonian of the system). Despite formula (2.16) has been
extensively used in the physical literature, from a strictly mathematical point of
view just a few results have been obtained [27, 32, 76, 8, 7], providing a rigorous
definition of formula (2.16). In particular, F -integrals (Def. 1.3) have been applied
to the rigorous mathematical construction of a phase-space Feynman path integral
formula for the solution of Schrödinger equation in [8] (see also [7] for an interesting
application to the theory of continuous quantum measurements).

The aim of this section is the application of the infinite dimensional Fresnel inte-
gral with polynomial phase function (Def. 2.1) to the construction of a phase-space
Feynman path integral representation for the solution of higher-order heat-type equa-
tions (2.1). For an alternative definition of phase space functional integrals for the
solution of (2.1) see [74, 76].

Let us consider the Banach space B = Bq × Lp (where Lp is the space of p-
integrable functions) and its dual B∗ = Bp × Lq. The space F (Bq × Lp) will be the
space of complex valued functions of the form

f (γ, η) =
∫

Bp×Lq

ei〈γ,ξ〉+i〈η,ζ〉dµ(ξ, ζ), (γ, η) ∈ Bq × Lp (2.18)

for some complex bounded Borel measure µ on Bp × Lq.
Let Φ : Bp × Lq → C be the phase function defined by

Φ(ξ, ζ) := (−1)pα
∫ t

0
ξ̇(s)pds + i

∫ t

0
ζ(s)ξ̇(s)ds, (ξ, ζ) ∈ Bp × Lq.

According to Def. 2.1 the infinite dimensional Fresnel integral with polynomial phase
Φ is the functional LΦ : F (Bq × Lp) → C defined as

LΦ( f ) =
∫

Bp×Lq

e(−1)pα
∫ t

0 ξ̇(s)pds+i
∫ t

0 ζ(s)ξ̇(s)dsdµ(ξ, η) (2.19)

with f ∈ F (Bq × Lp) of the form (2.18).
Remark 2.2. If f ∈ F (Bq × Lp) of the form (2.18) does not depend explicitly on the
variable η ∈ Lp then LΦ( f ) reduces to (2.9). In particular, under the assumption
of theorem 2.1, the solution of the Cauchy problem associated to the higher-order
heat-type equation (2.4) is given by LΦ( ft,x), where LΦ is the functional (2.19) and
ft,x is the function in F (Bq × Lp) defined by

ft,x(γ, η) := u0(x + γ(0))e
∫ t

0 V(x+γ(s))ds, x ∈ R, (γ, η) ∈ Bq × Lp.
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Given 0 ≤ t1 < · · · < tn < t, let us consider for any j = 1, . . . , n the vector
vtj ∈ Bp defined as

vtj(s) = (t − tj)χ[0,tj](s) + (t − s)χ(tj,t](s), s ∈ [0, t]. (2.20)

Analogously, for any j = 1, . . . , n we shall denote by wj ∈ Lq the vector defined by

wj(s) = −(tj+1 − tj)
−1χ[tj,tj+1](s), s ∈ [0, t]. (2.21)

Theorem 2.3. Let f : Bq × Lp → C be a cylinder function of the following form:

f (γ, η) = F

(
γ(t1), γ(t2), . . . , γ(tn),−

∫ t2
t1

η(s)ds

t2 − t1
, . . . ,−

∫ t
tn

η(s)ds)
t − tn

)

= F(〈γ, vt1〉, 〈γ, vt2〉, . . . , 〈γ, vtn , 〉, 〈η, w1〉, . . . , 〈η, wn〉)

with F ∈ F (R2n), namely

F(x1, . . . , xn, p1, . . . , pn) =
∫

R2n
ei ∑n

k=1 ykxk+i ∑n
k=1 zk pk dνF(y1, . . . , yn, z1, . . . , zn),

with νF ∈ M(R2n). Then f ∈ F (Bq × Lp) and LΦ( f ) is given by

LΦ( f ) =
1

(2π)2n

∫ o

R2n
ei ∑n

k=1 pk(xk+1−xk)+α ∑n
k=1 pp

k (tk+1−tk)

×F(x1, . . . , xn, p1, . . . , pn)dx1 . . . dxndp1 . . . dpn,
(2.22)

where xn+1 ≡ 0, tn+1 ≡ t. The integral on the right hand side of (2.10) is an
oscillatory integral on Rn in the sense of Def. 1.1.

Proof. The proof that f ∈ F (Bq × Lp) follows from the explicit form of the
function

f (γ, η) = F(〈γ, vt1〉, 〈γ, vt2〉, . . . , 〈γ, vtn , 〉, 〈η, w1〉, . . . , 〈η, wn〉)
=
∫

R2n
ei ∑n

k=1 yk〈γ,vtk 〉+i ∑n
k=1 zk〈η,wk〉dνF(y1, . . . , yn, z1 . . . , zn)

and the identity

eiyk〈γ,vtk 〉+izk〈η,wk〉 =
∫

Bp×Lq

ei〈γ,ξ〉+i〈η,ζ〉δykvtk
(ξ)δzkwk(ζ).
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By the definition of the functional LΦ we have

LΦ( f ) =
∫

R2n
e(−1)pα

∫ t
0 (∑n

k=1 yk v̇tk (τ))
p
dτ+i ∑n

j,k=1 yjzk
∫ t

0 wk(s)v̇tj (s)dsdνF(y1, . . . , yn, z1, . . . , zn)

=
∫

R2n
eα ∑n

k=1(∑
k
j=1 yj)

p(tk+1−tk)ei ∑n
k=1 zk ∑k

j=1 yj dνF(y1, . . . , yn, z1, . . . , zn) (2.23)

On the other hand the last line of Eq. (2.23) coincides with the oscillatory integral

1
(2π)n

∫ o

R2n
F(x1, . . . , xn, p1, . . . , pn)ei ∑n

k=1 pk(xk+1−xk)+α ∑n
k=1 pp

k (tk+1−tk)dx1 . . . dxndp1 . . . dpn

Indeed, taken an arbitrary test function ϕ ∈ S(R2n) such that ϕ(0) = 1, by Fubini
theorem and a change of variable argument we have, for any ϵ > 0:

1
(2π)n

∫

R2n
ϕ(ϵx1, . . . , ϵxn, ϵp1, . . . , ϵpn)F(x1, . . . , xn, p1, . . . , pn)

×ei ∑n
k=1 pk(xk+1−xk)+α ∑n

k=1 pp
k (tk+1−tk)dx1 . . . dxndp1 . . . dpn =

=
1

(2π)n

∫

R2n×R2n
ϕ(ϵx1, . . . , ϵxn, ϵp1, . . . , ϵpn)ei ∑n

j=1 xjyj+i ∑n
j=1 zj pj

×ei ∑n
k=1 pk(xk+1−xk)+α ∑n

k=1 pp
k (tk+1−tk)dx1 . . . dxndp1 . . . dpndνF(y1, . . . , yn, z1, . . . , zn) =

=
1
ϵn

∫

R2n

∫

Rn
ϕ̃(

y1 − p1

ϵ
,

y2 + p1 − p2

ϵ
, . . . ,

yn + pn−1 − pn

ϵ
, ϵp1, . . . , ϵpn)

ei ∑n
j=1 zj pj eα ∑n

k=1 pp
k (tk+1−tk)dp1 . . . dpndνF(y1, . . . , yn, z1, . . . , zn) =

=
∫

R2n

∫

Rn
ϕ̃(p1, p2, . . . , pn, ϵ(y1 + ϵp1), ϵ

2

∑
j=1

(yj + ϵpj), . . . , ϵ
n

∑
j=1

(yj + ϵpj))

×ei ∑n
k=1 zk(ϵ ∑k

j=1 pj+∑k
j=1 pj)eα ∑n

k=1(tk+1−tk)(ϵ ∑k
j=1 pj+∑k

j=1 pj)
p

dp1 . . . dpndνF(y1, . . . , yn, z1, . . . , zn),

where

ϕ̃(p1, . . . , pn, k1, . . . , kn) :=
1

(2π)n

∫

Rn
ei ∑n

j=1 xj pj ϕ(x1, . . . , xn, k1, . . . , kn)dx1 . . . dxn.

In particular, since
∫

Rn ϕ̃(p1, . . . , pn, 0, . . . , 0)dp1 . . . dpn = 1, by taking the limit for
ϵ ↓ 0 of (2.3) we obtain the last line of (2.23).

The right hand side of (2.22) admits an Hamiltonian interpretation. Let us denote
by P a partition t0 = 0 < t1 < · · · < tn = t of the interval [0, t] into n sub-intervals,
let us denote by BP the finite dimensional subspace of Bq × Lp of paths (γ, η) that
are respectively piecewise linear and piecewise constant on the subintervals [ti, ti+1)
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of the partition, namely of the form:

γ(s) =
n

∑
j=1

χ[tj−1,tj)(s)
(

γ(tj−1) +
γ(tj)− γ(tj−1)

tj − tj−1
(s − tj−1)

)

η(s) =
n

∑
j=1

χ[tj−1,tj)(s)η(tj−1) s ∈ [0, t].

(2.24)

Let S : Bq × Lp → C be the map defined as

S(γ, η) :=
∫ t

0
η(s)γ̇(s)ds − iα

∫ t

0
η(s)pds, (γ, η) ∈ Bq × Lp.

If the path (γ, η) belongs to BP then S(γ, η) reduces to a finite sum, namely to

S(γ, η) =
n

∑
k=1

pk−1(xk − xk−1)− iα
n

∑
k=1

pp
k−1(tk − tk−1),

where pk ≡ η(tk) and xk ≡ γ(tk), k = 0, . . . , n, and xn ≡ 0. In particular, for a
purely imaginary constant α, i.e. α = −iβ, β ∈ R, the function S can be interpreted
as the action functional in the Hamiltonian formulation (2.17) in the case where the
classical Hamiltonian is the polynomial function H(Q, P) = βPp.

In fact, in analogy with the approach developed in [113, 38] for the Feynman path
integrals, it is possible to prove that the functional LΦ can also be constructed as
the the limit of suitable finite dimensional approximations. Let Pn be a partition
t0 = 0 < t1 < · · · < tn = t of the interval [0, t] into n sub-intervals with tj := jt

n .
Let Bn be the finite dimensional subspace of Bp × Lq of piecewise linear - piecewise

constant paths (γ, η) of the form (2.24), with tj := jt
n . Furthermore, let Tn : Bp ×

Lq → Bp × Lq be the linear map defined by

Tn(ξ, ζ) = (ξn, ζn)

with

ξn(s) =
n

∑
j=1

χ[ (j−1)t
n , jt

n

)(s)


ξ

(
(j − 1)t

n

)
+

ξ
(

jt
n

)
− ξ

(
(j−1)t

n

)

t/n

(
s − (j − 1)t

n

)
;

ζn(s) =
n

∑
j=1

χ[ (j−1)t
n , jt

n

)(s)
∫ jt/n
(j−1)t/n ζ(s)ds

t/n
, s ∈ [0, t].

(2.25)
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Lemma 2.2. The linear operators Tn are bounded with operator norm ‖Tn‖ = 1 and
for any (ξ, ζ) ∈ Bp × Lq the following holds:

lim
n→∞

‖(ξ, ζ)− Tn(ξ, ζ)‖Bp×Lq = 0

Proof. The boundedness of Tn follows easily by Hölder inequality, indeed:

‖Tn(ξ, ζ)‖Bp×Lq =

=




n

∑
j=1




∣∣∣ξ
(

jt
n

)
− ξ

(
(j−1)t

n

)∣∣∣
t/n




p

t/n




1/p

+




n

∑
j=1




∣∣∣
∫ jt/n
(j−1)t/n ζ(s)ds

∣∣∣
t/n




q

t/n




1/q

≤

≤
(∫ t

0
|ξ̇(s)|pds

)1/p

+

(∫ t

0
|ζ(s)|qds

)1/q

,

and Tn(ξ, ζ) = (ξ, ζ) for any (ξ, ζ) ∈ Bp × Lq of the form (2.25), hence ‖Tn‖ = 1.
Let us introduce the linear subspace V ⊂ Bp × Lq defined as

V :=
{
(ξ, ζ) ∈ Bp × Lq : lim

n→∞
‖(ξ, ζ)− Tn(ξ, ζ)‖Bp×Lq = 0

}
.

By direct check, it is simple to prove that V is a closed subspace of Bp × Lq and
it contains the dense set of trigonometric polynomials, hence V coincides with the
whole Banach space Bp × Lq.

Remark 2.3. In the case where p = q = 2, the operators Tn are orthogonal projections,
see [113, 8].

Further, the following approximation theorem holds.

Theorem 2.4. For any f ∈ F (Bq × Lp) the Fresnel integral LΦ( f ) defined by (2.19)
is given by:

LΦ( f ) = lim
n→∞

∫ o
Bn

eiS(γ,η) f (γ, η)dγdη
∫ o
Bn

eiS(γ,η)dγdη
, (2.26)

where Bn is the finite dimensional subspace of Bp × Lq defined above. The integrals
appearing on the right hand side are oscillatory integrals in the sense of Def. 1.1 and
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dγdη stands for the volume measure associated to the inner product on Bn defined by

〈(γ, η), (γ′, η′)〉 =
∫ t

0
γ̇(s)γ̇′(s)ds +

∫ t

0
η(s)η′(s)ds

=
n

∑
j=1

(γ(tj)− γ(tj−1))(γ
′(tj)− γ′(tj−1))

tj − tj−1

+
n

∑
j=1

η(tj−1)η
′(tj−1)(tj − tj−1).

Proof. By definition, for f ∈ F (Bq × Lp) the functional LΦ( f ) is equal to

LΦ( f ) =
∫

Bp×Lq

e(−1)pα
∫ t

0 ξ̇(s)pds+i
∫ t

0 ζ(s)ξ̇(s)dsdµ(ξ, ζ)

where
f (γ, η) =

∫

Bp×Lq

ei〈γ,ξ〉+i〈η,ζ〉dµ(ξ, ζ), (γ, η) ∈ Bq × Lp.

Furthermore, by Lemma 2.2, the continuity of the function Φ : Bp × Lq → C and
dominated convergence theorem:

LΦ( f ) = lim
n→∞

∫

Bp×Lq

eΦ◦Tn(ξ,ζ)dµ(ξ, ζ) (2.27)

Let us recall the finite dimensional subspace Bn ⊂ Bp × Lq of paths (ξ, ζ) of the form
(2.25) and let us introduce the complex bounded Borel measure µn on Bn defined
as the image measure of µ under Tn, namely µn(I) := µ(T−1

n (I)) for any Borel set
I ⊂ Bn. The right hand side of (2.27) is equal to

LΦ( f ) = lim
n→∞

∫

Bn

eΦ|Bn (ξ,ζ)dµn(ξ, ζ).

Let us now consider in the finite dimensional subspace Bn the coordinates (y1, . . . , yn,
z1, . . . , zn), where ξ = ∑n

j=1 yjvtj , ζ = ∑n
j=1 zjwj and the vectors vtj and wj, j = 1, . . . , n

are defined by (2.20) and (2.21). Let Un : Bn → R2n be the isomorphism defined as
Un(ξ, ζ) = (y1, . . . , yn, z1, . . . , zn) and let νn be the Borel measure on R2n image of µn
under the map Un. We obtain:

LΦ( f ) = lim
n→∞

∫

R2n
e(−1)pα

∫ t
0 (∑n

k=1 yk v̇tk (τ))
p
dτ+i ∑n

j,k=1 yjzk
∫ t

0 wk(s)v̇tj (s)ds

dνF(y1, . . . , yn, z1, . . . , zn)

= lim
n→∞

∫

R2n
eα ∑n

k=1(∑
k
j=1 yj)

p(tk+1−tk)ei ∑n
k=1 zk ∑k

j=1 yj dνF(y1, . . . , yn, z1, . . . , zn)



2.3. Hamiltonian and Lagrangian path integrals 31

Then, by Theorem 2.3 the latter is equal to

LΦ( f ) = lim
n→∞

1
(2π)2n

∫ o

R2n
ei ∑n

k=1 pk(xk+1−xk)+α ∑n
k=1 pp

k (tk+1−tk)

× F(x1, . . . , xn, p1, . . . , pn)dx1 . . . dxndp1 . . . dpn,

with

F(x1, . . . , xn, p1, . . . , pn) =
∫

R2n
ei ∑n

k=1 ykxk+i ∑n
k=1 zk pk dνF(y1, . . . , yn, z1, . . . , zn).

On the other hand, by introducing in the finite dimensional subspace Bn ⊂ Bq × Lp

of piecewise linear - piecewise constant paths (γ, η) of the form (2.24), with tj := jt
n ,

the coordinates (x1, . . . , xn, p1, . . . , pn) with xj = γ(tj) and pj =

∫ tj
tj−1

η(s)ds

tj−tj−1
, we obtain

∫ o
Bn

eiS(γ,η) f (γ, η)dγdη
∫ o
Bn

eiS(γ,η)dγdη
=

=
1

(2π)2n

∫ o

R2n
ei ∑n

k=1 pk(xk+1−xk)+α ∑n
k=1 pp

k (tk+1−tk)

f (γx1,...,xn , ηp1,...,pn)dx1 . . . dxndp1 . . . dpn,

where
γx1,...,xn(s) =

n

∑
j=1

χ[tj−1,tj)(s)
(

xj−1 +
xj − xj−1

tj − tj−1
(s − tj−1)

)
,

ηp1,...,pn(s) =
n

∑
j=1

χ[tj−1,tj)(s)pj, s ∈ [0, t].

Eventually, we obtain the final result, namely the Eq. (2.26), by noting that

f (γx1,...,xn , ηp1,...,pn) = F(x1, . . . , xn, p1, . . . , pn).
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Chapter 3

A path integral for the
Schrödinger equation with
magnetic field∗

In this chapter we focus on the Schrödinger equation for a non-relativistic quantum
particle moving under the influence of a (rather general) magnetic field B associated
to a vector potential a

ih̄
∂

∂t
ψ(t, x) =

1
2
(−ih̄∇− λa(x))2 ψ(t, x), (3.1)

where a(x) ∈ Rd and λ ∈ R plays the role of a coupling constant. We construct a
rigorous mathematical definition for the corresponding Feynman path integral formula

ψ(t, x) =
∫

γ(t)=x
e

i
2h̄

∫ t
0 |γ̇(s)|2ds+ i

h̄

∫ t
0 λa(γ(s))·γ̇(s)dsψ0(γ(0))dγ, (3.2)

in terms of infinite dimensional oscillatory integrals. In the physical literature [46,
48, 49, 104] the problem of the definition of Feynman path integrals in the presence
of magnetic field has been extensively investigated. As we said before, the traditional
procedure relies upon a time slicing approximation of the form

∫
e

i
2h̄ ∑i

|γ(ti+1)−γ(ti)|2
ti+1−ti

+ i
h̄ ∑i λa(γ(t̃i))·(γ(ti+1)−γ(ti))ψ0(γ(0))∏

i

dγ(ti)

(2πih̄(ti+1 − ti))1/2 , (3.3)

where 0 = t0 < t1 < t2 < · · · < tn = t and t̃i ∈ [ti, ti+1], i = 0, . . . , n − 1. However
this procedure presents some ambiguities since different choices of the point t̃i ∈
[ti, ti+1] lead to different results. The correct choice relies on the so-called mid-point
rule which requires that in the formula (3.3) the vector potential a is evaluated at
the point t̃i ≡ ti+1+ti

2 . In the Euclidean version of Feynman formula, namely the
Feynman-Kac-Itô formula [105] for the solution of the corresponding heat equation

∗The results of this chapter are collected in [5].
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in a magnetic field, this procedure yields the Wiener integral representation

u(t, x) = E
[
u(x + ω(t))e−i

∫ t
0 λa(ω(s)+x)◦dω(s)

]
, (3.4)

where ◦dω(s) denotes the Stratonovich stochastic integraland E is the expectation
with respect to the Wiener measure for the standard Brownian motion. In fact other
choices for the point t̃i ∈ [ti, ti+1] in Eq. (3.3) would lead to different stochastic
integrals but, as pointed out in [105, 104], the mid point rule, or, equivalently, the
Stratonovich stochastic integration, is the only one yielding the gauge invariance of
formulas (3.2) and (3.4). In fact, this particular approximation procedure can be
obtained by means of Trotter product formula [49]. Other approaches were proposed
in the work by Z. Haba [56], relying in principle on an analytic continuation of Wiener
integrals, and by W. Ichinose [63, 61], based on particular time-slicing approximations.
Rigorously defined infinite dimensional oscillatory integrals have been applied in [4]
to the case of a constant magnetic field in the Coulomb gauge.

Our aim in this chapter is twofold. First of all, for general vector potentials a, we
prove that the finite dimensional approximation procedure associated to the definition
of infinite dimensional oscillatory integrals provides the correct construction of the
Feynman integral for the magnetic field without any additional prescription. We shall
show that the mid-point rule has not to be postulated but it is a direct consequence of
our construction (for a discussion of these issues as well as the inclusion of magnetic
fields in path integral formulas see, e.g., [44, 17, 114, 71, 80]).

The second result concerns the dependence of the Feynman path integral on the
sequence of finite dimensional approximations introduced in the construction. We
show that the requirement of the independence of the particular form of the approx-
imation procedure leads to the introduction of a counterterm in the classical action
functional. In the case of a constant magnetic field we provide a formula that is
gauge-independent, generalizing a similar result proposed in [4] . It is worthwhile to
recall that the case of the uniform magnetic was also studied in [64] for Wiener path
integrals in relation with the Van Vleck-Pauli formula. Let us also mention that the
study of heat semigroup with magnetic field via Feynman-Kac-Itô formula [105, 107]
has been extended to the case of fractals, e.g. [58], graphs [55], and manifolds [23,
50, 108, 30].

In Section 3.1 we present some functional analytical results on the Schrödinger
equation (3.1) with magnetic field and, under suitable assumptions on the vector
potentials a and the initial datum ψ0, we prove that the series expansion of the
solution in powers of the coupling constant has a finite radius of convergence. In
Section 3.2 we study the Schrödinger equation (3.1) for analytic vector potentials a
and construct a Feynman path integral representation for its solution in terms of a
particular class of infinite dimensional oscillatory integrals. In Section 3.3 we consider
the particular case of a constant magnetic field and provide a renormalized Feynman
path integral formula which allows to obtain the independence of the construction
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procedure of the particular choice of finite dimensional approximations.
Let us remark that all our results extend to the case where a potential term V is

added on the right hand side of (3.1) (see remarks 3.4, 3.6, and 3.10).

3.1 Schrödinger equation with magnetic field
Let us consider the dynamics of a non-relativistic quantum particle moving in a
magnetic field B = rot a, where a is a vector potential associated to B. The quantum
Hamiltonian operator for this system is given on a smooth compactly supported vector
ψ ∈ C∞

0 (R3) by

Hψ =
1
2
(−ih̄∇− λa(x))2 ψ, ψ ∈ C∞

0 (R3)

(where, for notational simplicity, we set equal to 1 the parameters mass m, velocity
of light c, and elementary charge e). The parameter λ ∈ R stands for a coupling
constant. In the following we shall assume that the components aj, j = 1, 2, 3, of the
vector potential a are real valued functions and belong to the space Fc(R3) of Fourier
transforms of complex Borel measures µj on R3 with compact support, i.e. they are
functions of the form

aj(x) =
∫

R3
eiy·xdµj(y), x ∈ R3, j = 1, 2, 3, (3.5)

with µj of compact support.
Remark 3.1. For later use we point out that aj ∈ Fc(R3), j = 1, 2, 3 implies that aj
has an analytic continuation to a function on C3, denoted by the same symbol.

Under this assumption, it is possible to prove (see, e.g. [100, 105, 30, 79, 23])
that H defined on C∞

0 (R3) is positive, symmetric and, a being bounded, has a unique
self-adjoint extension H : D(H) ⊂ L2(R3) → L2(R3), with domain

D(H) =

{
ψ ∈ L2(R3) :

∫

R3
|y|4|ψ̂(y)|2dk < ∞

}
, (3.6)

where ψ̂ ∈ L2(R3) denotes the Fourier transform of the vector ψ ∈ L2(R3) and |y| is
the norm of the vector y ∈ R3.

By Stone’s theorem, H generates a one-parameter group U(t) = e−
i
h̄ Ht, t ∈ R, of

unitary operators on L2(R3), solving the Schrödinger equation in the following sense:

ih̄∂tU(t)ψ0 = HU(t)ψ0, ψ0 ∈ D(H), (3.7)

(where the derivation on the left is a strong one in L2(R3)).
We shall assume, without loss of generality, that the vector potential a satisfies

the Coulomb gauge, namely that div a = 0. In this case the Hamiltonian operator
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H can be written as H = H0 + W, where H0 is the free Hamiltonian, namely the
operator H0 = − h̄2

2 ∆ on D(H0) = D(H) (defined by (3.6)) and W = λA + λ2B,
where A = ih̄a · ∇ and B is the multiplication operator associated to the function
1
2 |a2| (both well-defined on D(H0)).

Under the assumption that the initial datum ψ0 ∈ L2(R3) has a compactly sup-
ported Fourier transform, i.e. ψ0 ∈ Fc(R3) ∩ L2(R3), the Dyson series expansion
(in powers of the coupling constant λ for the vector U(t)ψ0 has a finite radius of
convergence as the following theorem shows. The arguments used in its proof are
similar in spirit to the results of the Paley-Wiener theorem [103]. For related results
by purely analytic methods see [100]).

Theorem 3.1. Let us assume that the Fourier transform ψ̂0 of the vector ψ0 ∈ L2(R3)
has a compact support included in the ball Bρ ≡ {x ⊂ R3 : |x| < ρ} and that the
component aj, j = 1, . . . , 3, of the vector potentials a are of the form (3.5), with µj ,
j = 1, . . . , 3, bounded Borel measures with support contained in the ball BR, for some
R ∈ R+. Then the expansion in powers of the coupling constant λ for the vector
U(t)ψ0, namely U(t)ψ0 = ∑m λmϕm(t), with

ϕm(t) = ∑
(n,k)∈N2 : 2n−k=m, k≤n

(
− i

h̄

)n

ϕn,k

and ϕn,k given by Eq. (3.10) on page 38, converges in L2(R3) for |λ| < λ∗, with

λ∗ =
(

2α2t
h̄
(
2r2th̄ + 1

))−1/2

, (3.8)

where α = supx∈R3 |a(x)| and r = max{ρ, R}.

Remark 3.2. Correspondingly as in remark 3.1, we point out for later use that the
assumption on ψ0 in Theorem 3.1 implies that ψ0 has a unique extension to an analytic
function on C3, denoted by the same symbol.

At first we prove the following lemma.

Lemma 3.1. Under the assumptions of Theorem 3.1, the following holds:

‖U0(t1)O1U0(t2)O2 · · ·U0(tn)OnU0(tn+1)ψ0‖ ≤

≤ h̄kαk
(

α2

2

)n−k k−1

∏
j=0

(ρ + 2R(n − k) + jR)‖ψ0‖,

where U0(t) = e−
i
h̄ H0t, A = ih̄a · ∇, B = 1

2 |a|2, Oj ∈ {A, B}, j = 1, . . . , n, k =
#{j : Oj = A} and α = supx∈R3 |a(x)|.
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Proof. Let ϕ ∈ L2(R3) be a function whose Fourier transform ϕ̂ has support in
a ball Bρ centered at the origin with radius ρ ∈ R+.

Then the following holds.

• For any t ∈ R, the vector U0(t)ϕ ∈ L2(R3) has a Fourier transform with support
contained in Bρ. Indeed Û0(t)ϕ is simply given by

Û0(t)ϕ(y) = e−
i
h̄ |y|2tϕ̂(y), y ∈ R3.

• The vector Bϕ ∈ L2(R3) has a Fourier transform with support contained in
Bρ+2R. Indeed, under the assumptions on the components aj of the vector field
a, the function x 7→ a2 ≡ |a(x)|2 is Fourier transform of a Borel measure µa2 on
R3 with support contained in the ball B2R, with µa2 = ∑3

j=1 µj ∗ µj, where the
symbol µ ∗ ν stands for the convolution of the measures µ and ν. It is simple
to verify that if the supports of the measures µj is contained in BR, then the
support of the convolution µj ∗ µj is contained in B2R. Correspondingly, the
Fourier transform of Bϕ is given by

B̂ϕ(y) =
1
2

∫

R3
ϕ̂(y − y′)dµa2(y′), y ∈ R3,

and its support is contained in Bρ+2R.

• The norm of the vector Bϕ is bounded by

‖Bϕ‖ ≤ 1
2
‖a2‖∞‖ϕ‖,

where ‖a2‖∞ = supx∈R3 |a(x)|2, which is finite by the assumptions on the com-
ponents aj, j = 1, . . . , 3.

• The vector Aϕ ∈ L2(R3) (with A as in Lemma 3.1) has a Fourier transform
with support contained in Bρ+R, given by

Âϕ(y) = −h̄
3

∑
j=1

∫

R3
(yj − y′j)ϕ̂(y − y′)dµj(y′), k ∈ R3.

Moreover, the norm of Aϕ satisfies the following bound

‖Aϕ‖ ≤ h̄
√
‖a2‖∞ ρ ‖ϕ‖.
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Now it is straightforward to verify that, if #{j : Oj = A} = k:

‖U0(t1)O1U0(t2)O2 · · ·U0(tn)OnU0(tn+1)ψ0‖ ≤
≤ ‖U0(t1)AU0(t2) · · ·U0(tk)AU0(tk+1)B · · ·U0(tn)BU0(tn+1)ψ0‖ ≤

≤ h̄kαk
(

α2

2

)n−k k−1

∏
j=0

(ρ + 2R(n − k) + jR)‖ψ0‖.

Proof [of Theorem 3.1]. By the classical Dyson-Phillips expansion for the vector
U(t)ψ0 [100], we have

U(t)ψ0 =
∞

∑
n=0

(
− i

h̄

)n ∫

∆n(t)
e−

i
h̄ H0(t−sn)We−

i
h̄ H0(sn−sn−1) · · ·

· · ·We−
i
h̄ H0(s2−s1)We−

i
h̄ H0s1 ψ0ds1 . . . dsn

=
∞

∑
n=0

(
− i

h̄

)n ∫

∆n(t)
U0(t − sn)(λA + λ2B)U0(sn − sn−1) · · ·

· · · (λA + λ2B)U0(s1)ψ0ds1 . . . dsn,

where ∆n(t) ⊂ Rn is the n-dimensional simplex defined as ∆n(t) = {(s1, . . . , sn) ∈
Rn : 0 ≤ s1 ≤ · · · ≤ sn ≤ t} and W = λA + λ2B. The dependence on the coupling
constant λ can be made explicit as

U(t)ψ0 =
∞

∑
n=0

(
− i

h̄

)n n

∑
k=0

λk(λ2)n−kϕn,k, (3.9)

where the term ϕn,k ∈ L2(R3) is a sum of (n
k) terms of the form

∫

∆n(t)
U0(t − sn)O1U0(sn − sn−1)O2 · · ·OnU0(s1)ψ0ds1 . . . dsn,

where we recall that Oj = A, B, j = 1, . . . , n and #{j : Oj = A} = k. More precisely:

ϕn,k = ∑
E∈Cn

k

∫

∆n(t)
U0(t − sn)OE

1 U0(sn − sn−1)OE
2 · · ·OE

n U0(s1)ψ0ds1 . . . dsn, (3.10)

where the sum is taken over the set Cn
k of all possible subsets E ⊂ {1, . . . , n} with k

elements and the map OE : {1, . . . , n} → {A, B} is defined as OE
i := A if i ∈ E and

OE
i := B if i /∈ E.



3.1. Schrödinger equation with magnetic field 39

By Lemma 3.1 we have

‖ϕn,k‖ ≤
(

n
k

)
tn

n!
h̄kαk

(
α2

2

)n−k k−1

∏
j=0

(ρ + 2R(n − k) + jR)‖ψ0‖.

In particular, by setting r := max{ρ, R}, we obtain:

‖ϕn,k‖ ≤ tn

(n − k)!
h̄kα2n−k

(
1
2

)n−k

rk
(

2n − k
k

)
‖ψ0‖. (3.11)

Now, the sum appearing in (3.9) can be written as:

U(t)ψ0 =
∞

∑
m=0

λm ∑
(n,k)∈N2 : 2n−k=m, k≤n

(
− i

h̄

)n

ϕn,k

= ∑
m

λmϕm. (3.12)

where

ϕm =

(
− i

h̄

)m/2 m/2

∑
h=0

(
− i

h̄

)h

ϕh+m
2 ,2h, m even;

ϕm =

(
− i

h̄

)(m+1)/2 (m−1)/2

∑
h=0

(
− i

h̄

)h

ϕh+m+1
2 ,2h+1, m odd.

(3.13)

By estimate (3.11) we have for m even, namely m = 2M, M ∈ N:

‖ϕ2M‖ ≤
(

α2t
2h̄

)M M

∑
h=0

(
2r2th̄

)h 1
(M − h)!

(
2M
2h

)
‖ψ0‖

≤
(

α2t
2h̄

)M (
2r2th̄ + 1

)M
max

h∈{0,...,M}
h!
M!

(
2M
2h

)
‖ψ0‖

≤
(

2α2t
h̄
(
2r2th̄ + 1

))M

‖ψ0‖;

analogously, for m odd, namely m = 2M + 1, M ∈ N we get

‖ϕ2M+1‖ ≤ 2rtαh̄
(

2α2t
h̄
(
2r2th̄ + 1

))M

‖ψ0‖.

Hence, the series (3.12) converges in L2(Rd) for |λ| <
(

2α2t
h̄

(
2r2th̄ + 1

))−1/2
.

�
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Remark 3.3. Since the Hamiltonian operator H is self-adjoint and positive, as pointed
out at the beginning of this section, it generates an analytic semigroup. Hence, for
z ∈ C belonging to the closure D̄ of the open sector D ⊂ C of the complex plane
defined as

D = {z ∈ C : Re(z) > 0},

it is possible to define the operator V(z) = e−zH yielding for z = i
h̄ t and t ∈ R the

Schrödinger group and for z ∈ R+ the heat semigroup. In both cases, under the
assumptions of Theorem 3.1 the perturbative Dyson expansion for the vector V(z)ψ0
has a positive radius of convergence (depending on |z|). Indeed, if z ∈ D, the Dyson
expansion can be written as

e−zHψ0 =
∞

∑
n=0

(−z)n
∫

∆n

e−zH0(1−sn)We−zH0(sn−sn−1) · · ·

· · ·We−zH0(s2−s1)We−zH0s1 ψ0ds1 . . . dsn,
(3.14)

with ∆n ≡ ∆n(1) = {(s1, . . . , sn) ∈ Rn : 0 ≤ s1 ≤ · · · ≤ sn ≤ 1} and W = λA + λ2B.
By collecting in the sum (3.14) all the terms associated to the same power of the
coupling constant λ, we get

e−zHψ0 = ∑
m

λmϕm(z) (3.15)

where ϕm(z) = ∑(n,k)∈N2 : 2n−k=m, k≤n(−z)nϕn,k(z) with

ϕn,k(z) = ∑
E∈Cn

k

∫

∆n

e−zH0(t−sn)OE
1 e−zH0(sn−sn−1)OE

2 · · ·OE
n e−zH0s1 ψ0ds1 . . . dsn, (3.16)

where, analogously to Eq. (3.10), the sum is taken over the set Cn
k of all possible

subsets E ⊂ {1, . . . , n} with k elements and the map OE : {1, . . . , n} → {A, B} is
defined as OE

i := A if i ∈ E and OE
i := B if i /∈ E.

By repeating the arguments in the proof of Theorem 3.1, it is now easy to verify
that the expansion (3.15) converges in L2(R3) for |λ| < λ∗(z), with

λ∗(z) =
(

2α2|z|
(

2r2h̄2|z|+ 1
))−1/2

, z ∈ D. (3.17)

Remark 3.4. The results of Theorem 3.1 and remark 3.3 can easily be extended to
the case where a (bounded) scalar potential V is added to the Hamiltonian. Indeed,
let us consider the following

Hψ(x) =
1
2
(−ih̄∇− λa(x))2 ψ(x) + λV(x)ψ(x), ψ ∈ C∞

0 (R3), (3.18)
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where V ∈ Fc(R3), i.e. V : R3 → R a function of the form:

V(x) =
∫

eixydµV(y), x ∈ R3, (3.19)

with µV complex Borel measure with support contained in the ball BR. Under the
assuptions of Theorem 3.1, Lemma 3.1 still holds. In particular, by setting A =
ih̄a · ∇+ V, B = 1

2 |a|2, α = ‖a‖∞ and α̃ = 2 max{h̄‖a‖∞, |V|∞}, we get:

‖U0(t1)O1U0(t2)O2 · · ·U0(tn)OnU0(tn+1)ψ0‖ ≤
≤ α̃k

(
α2

2

)n−k
∏k−1

j=0 (ρ + 2R(n − k) + jR)‖ψ0‖,
(3.20)

where U0(t) = e−
i
h̄ H0t, Oj ∈ {A, B}, j = 1, . . . , n, k = #{j : Oj = A}. By using (3.20)

it is now possible to repeat the proof of Theorem 3.1, obtaining the convergence in
L2(R3) of the perturbative Dyson expansion for the vector e−

i
h̄ Htψ0 for λ < λ̃, where

λ̃ =

(
2α̃2t

h̄

(
2r2t

h̄
+ 1
))−1/2

. (3.21)

3.2 Feynman path integral for magnetic field
The present section is devoted to the construction of the Feynman path integral
representation of the solution to the time dependent Schrödinger equation (3.7) in
terms of Feynman maps on the Cameron-Martin space Ht defined in Chpt. 1, i.e.

ψ(t, x) =
∫

Ht

e
i

2h̄

∫ t
0 ‖γ̇(s)‖2ds− i

h̄

∫ t
0 λa(γ(s)+x)·γ̇(s)dsψ0(γ(t) + x)dγ. (3.22)

Remark 3.5. Formula (3.22) differs from (3.2) for the sign in front of the term∫ t
0 λa(γ(s)+ x) · γ̇(s)ds. This is due to the fact that in the heuristic Feynman formula

(3.2) the paths γ are pointed at the final time (i.e. γ(t) = x), while in Eq. (3.22) the
path γ ∈ Ht satisfy the condition γ(t) = 0.

First of all, it is interesting to point out that the existing techniques of infinite
dimensional oscillatory integration based on a Parseval-type equality (see Theorem
1.1) do not work in the case where the classical action functional contains the term∫ t

0 a(γ(s)) · γ̇(s)ds (as the term in the exponent of (3.22)).
In fact the function f : Ht → C defined on vectors γ belonging to the Cameron-

Martin space Ht as

f (γ) :=
∫ t

0
a(γ(s)) · γ̇(s)ds, (3.23)

cannot in general belong to the Banach algebra F (Ht), even under rather strong
assumption on the vector potential a, unless in the trivial case where a would be
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a conservative vector field (hence the associated magnetic field rot a would vanish
identically!). In this case indeed it is simple to prove that one has f ∈ F (Ht) and
f (γ) :=

∫ t
0 a(γ(s)) · γ̇(s)ds = U(γ(t))− U(γ(0))). This particular case has already

been studied in the previous chapter (see also [6]). However, in the physically more
interesting case where rot a 6≡ 0, even if any of the three components ai, i = 1, 2, 3, of
the vector potential a belongs to F (R3), it is not possible to prove that f ∈ F (Ht).
In fact, the oscillatory integration of the function f in (3.23) involves most of the
problems arising in stochastic integration theory [70]. Indeed, since any γ ∈ Ht is
a bounded variation function, it is easy to show that the function f is the pointwise
limit of sequence of cylinder functions of the form

fn(γ) :=
n−1

∑
j=0

a(γ(tj)) · (γ(tj+1)− γ(tj)), γ ∈ Ht

or, equivalently, of

gn(γ) :=
n−1

∑
j=0

a(γ(tj+1)) · (γ(tj+1)− γ(tj)), γ ∈ Ht,

where tj ≡ jt/n. Furthermore, if ai ∈ F (Ht), then the cylinder functions { fn}n and
{gn}n are Fresnel integrable since they are both finite linear combinations of functions
of the form (1.10). Indeed , if for any i = 1, . . . , 3 ai = µ̂i, with µi bounded complex
Borel measures on R3, then

fn(γ) :=
n−1

∑
j=0

3

∑
α=1

∫

R3
ei〈γ,vtj k〉〈γ, (vtj+1 − vtj)êα〉dµα(k)

and

gn(γ) :=
n−1

∑
j=0

3

∑
α=1

∫

R3
ei〈γ,vtj+1 k〉〈γ, (vtj+1 − vtj)êα〉dµα(k),

where êα, α = 1, . . . , 3 are the vectors of the canonical basis of R3, while for s ∈ [0, t]
the function vs : [0, t] → R is defined by

vs(r) = χ[0,s](r)r + χ(s,t](r)s, r ∈ [0, t].

By direct computation, one has
∫̃ o
Ht

e
i

2h̄ 〈γ,γ〉 fn(γ)dγ = 0 for all n ∈ N, while

∫̃ o

Ht

e
i

2h̄ 〈γ,γ〉g̃n(γ)dγ = −h̄
n−1

∑
j=0

3

∑
α=1

∫

R3
e−

ih̄
2 tj+1|k|2(tj+1 − tj)kαdµα(k),

the latter converging, for n → ∞ to −h̄ ∑3
α=1
∫

R3

∫ t
0 e−

ih̄
2 s|k|2 kαdµα(k)ds.
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Since the Parseval type equality (1.9) cannot be directly applied, we have to
implement a different technique, based on analyticity assumptions, in order to show
that the limit in definition (1.14) exists, i.e. that the Feynman map of the function
f given by (3.23) is well-defined.

In the following we shall denote with Ct := C([0, t]; R3) the Banach space of
continuous paths ω : [0, t] → R3, endowed with the sup-norm ‖ · ‖∞. Let P be
the Wiener measure on the Borel σ-algebra B(Ct) of Ct. Since for γ ∈ Ht we have
‖γ‖∞ ≤

√
t · ‖γ‖, the Cameron-Martin Hilbert space Ht is densely embedded in Ct.

Denoted with C∗
t the topological dual of Ct, we have the following chain of dense

inclusions:

C∗
t ⊂ Ht ⊂ Ct. (3.24)

With an abuse of notation we shall denote 〈η, ω〉 the dual pairing between two ele-
ments η ∈ C∗

t and ω ∈ Ct. Let µ be the finitely additive standard Gaussian measure
defined as

µ(CPn,D) =
∫

D

e−
‖x‖2

2

(2π)n/2 dx,

on the cylinder sets CPn,D ⊂ Ht of the form

CPn,D := {γ ∈ Ht : Pnγ ∈ D},

for some finite dimensional projection operator Pn : Ht → Ht and some Borel set
D ⊂ Ht. The measure µ does not extend to a σ-additive measure on the generated
σ-algebra, see e.g. [77]. Defining the cylinder sets in Ct by

C̃η1,...,ηn;E := {ω ∈ Ct : (〈η1, ω〉, . . . , 〈ηn, ω〉) ∈ E},

for some n ∈ N, η1, . . . , ηn ∈ C∗
t and E a Borel set of R3, we have that the intersection

C̃η1,...,ηn;E ∩ Ht is a cylinder set in Ht. According to the fundamental results by L.
Gross [51, 52], the finite additive measure µ̃ defined on the cylinder sets of Ct by

µ̃(C̃η1,...,ηn;E) := µ(C̃η1,...,ηn;E ∩Ht)

extends to a σ-additive Borel measure on Ct that coincides with the standard Wiener
measure P, in such a way that for any γ ∈ Ht such that γ is an element of C∗

t the
following holds ∫

ei〈γ,ω〉dP(ω) = e−
1
2 ‖γ‖2

.

Thanks to the results above it is possible to define, for any η ∈ C∗
t , a centered

Gaussian random variable nη on (Ct,B(Ct), P) given by nη(ω) := 〈γ, ω〉, ω ∈ Ct,
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γ ∈ C∗
t . In particular, for η, γ ∈ C∗

t , the following holds

E[nηnγ] =
∫ t

0
η̇(s) · γ̇(s)ds = 〈η, γ〉,

the pairing on the r.h.s. coinciding with the scalar product in Ht. This shows that the
map n : C∗

t → L2(Ct, P) can be extended, by the density of C∗
t in Ht, to an unitary

operator n : Ht → L2(Ct, P). In particular, given a projector operator Pn : Ht → Ht
of the form Pn(γ) = ∑n

j=1〈en, γ〉en, where {e1, . . . , en} orthonormal vectors in Ht, it
is possible to define the random variable P̃n : Ct → Ht as

P̃n(ω) =
n

∑
i=1

nei(ω)ei, (3.25)

nei ∈ L2(Ct, P).
Now we shall show how Feynman maps (defined by Eq. (1.14)) of all powers

of the function f defined in (3.23) can be computed in terms of Wiener integrals.
For analogous results see [14]. Let us consider now in Ht the sequence of projection
operators {Pn}n onto the subspaces of piecewise linear paths, i.e. for γ ∈ Ht the
vector Pn(γ) is defined by the right hand side of (B.4). Let {P̃n}n be the corresponding
sequence of random variables P̃n : Ct → Ht given by

P̃n(ω)(s) =
n

∑
k=1

χ[tk−1,tk)(s)
(

ω(tk−1) +
ω(tk)− ω(tk−1)

tk − tk−1
(s − tk−1)

)
, (3.26)

with s ∈ [0, t], ω ∈ Ct and tk = kt/n, k = 1, . . . , n as above. Let a : R3 → R3

be a vector field fulfilling the assumptions of Theorem 3.1. Since any component
aj : R3 → R, j = 1, . . . , 3, can be written as the Fourier transform of a complex
measure µj with compact support according to formula (3.5), the map a can be
extended to an holomorphic function on C3 with components given by

aj(z) =
∫

R3
eikzdµj(k), z ∈ C3, (3.27)

the integral on the r.h.s. of (3.27) being well-defined and finite since

∫

R3
|eikzd|µj|(k) ≤

∫

R3

3

∏
l=1

e|kl ||I(zl)|d|µj|(k) ≤ eR ∑3
l=1 |I(zl)|,

where R denotes the radius of the sphere containing the supports of the measures µj.
In particular, for x ∈ R3 and z ∈ C the components of the vector a(zx) are given by
aj(zx) =

∫
R3 eizkxdµj(k). The following lemma shows the convergence of a particular

sequence of random variables defined on the Wiener space.
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Lemma 3.2. Let a be a three dimensional vector field fulfilling the assumptions of
Theorem 3.1. Let { fn} be the sequence of random variables fn : Ct → C defined by

fn(ω) =
∫ t

0
a
(√

ih̄ωn(s)
)
· ω̇n(s)ds,

where ωn(s) ≡ Pn(ω)(s) and Pn(ω) is defined by the right hand side of (3.26). Then
for any p ∈ N, 1 ≤ p ≤ ∞, fn converges, as n → ∞, in Lp(Ct, P) to the random
variable f defined as the Stratonovich stochastic integral

f (ω) =
∫ t

0
a(
√

ih̄ω(s)) ◦ dω(s).

Proof. We will consider for notational simplicity the 1-dimensional case. The
proof in all dimensions, in particular in the 3-dimensional case is analogous. Let us
first remark that by remark 3.1 on the analyticity of the extension of a(·) from R to
C, the integral on the right hand side of fn is well-defined. Further, by (3.27) the
random variables fn are given by:

fn(ω(s)) =
n−1

∑
j=0

∫ t
n

0

∫

R
ei
√

ih̄kω(sj)ei
√

ih̄k
(ω(sj+1)−ω(sj))s

t/n · (ω(sj+1)− ω(sj))

t/n
dµ(k)ds =

=
n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)
(

ei
√

ih̄k(ω(sj+1)−ω(sj)) − 1
)
· 1

i
√

ih̄k
dµ(k).

with sj =
jt
n . By setting ∆j := ω(sj+1) − ω(sj) and by a Taylor expansion (to

second order with remainder), the last line becomes

n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)

(
∆j +

1
2

i
√

ih̄k∆2
j +

1
2
(i
√

ih̄k)2∆3
j

∫ 1

0
(1 − u)2ei

√
ih̄k∆judu

)
dµ(k).
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Hence the function fn can be written as the sum of three contributions, namely
fn = gn + hn + rn, where

gn(ω) =
n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)(ω(sj+1)− ω(sj))dµ(k) =

=
n−1

∑
j=0

a(
√

ih̄ω(sj))(ω(sj+1)− ω(sj));

hn(ω) =
1
2

n−1

∑
j=0

∫

R
i
√

ih̄kei
√

ih̄kω(sj)(ω(sj+1)− ω(sj))
2dµ(k)

=
n−1

∑
j=0

1
2
· a′(

√
ih̄ω(sj))(ω(sj+1)− ω(sj))

2;

rn(ω) =
n−1

∑
j=0

1
2

∫ 1

0

∫

R

(
i
√

ih̄
)2

k2ei
√

ih̄k(ω(sj)+(ω(sj+1)−ω(sj))u)

(ω(sj+1)− ω(sj))
3(1 − u)2dµ(k)du,

(a′ standing for derivative of a). By computation based on BDG inequalities and
Gaussian integration we obtain

gn
Lp(Ω,P)−−−−→

∫ t

0
a(
√

ih̄ω(s))dω(s);

hn
Lp(Ω,P)−−−−→ 1

2

∫ t

0
a′(

√
ih̄ω(s))ds;

rn
Lp(Ω,P)−−−−→ 0,

eventually obtaining:

fn
Lp(Ω,P)−−−−→

∫ t

0
a(
√

ih̄ω(s))dω(s) +
1
2

∫ t

0
a′(

√
ih̄ω(s))ds =

∫ t

0
a(
√

ih̄ω(s)) ◦ dω(s).

For further details see Appendix C.

Theorem 3.2. Let the vector field a and the function ψ0 ∈ L2(R3) satisfy the as-
sumptions of Theorem 3.1. Then the Feynman map of the function g : Ht → C given
by g(γ) := ψ0(γ(t) + x)

∫ t
0 a(γ(s) + x) · γ̇(s)ds for any x ∈ R3, is well-defined and

equal to the following Wiener integral

IF(g) =
∫

Ct

(√
ih̄
∫ t

0
a
(√

ih̄ω(s) + x
)
◦ dω(s)

)
ψ0(

√
ih̄ω(t) + x)dP(ω).
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Moreover for any m ≥ 0, the Feynman map of the function gx
m : Ht → C defined as

gx
m(γ) := ψ0(γ(t) + x)

(∫ t

0
a(γ(s) + x) · γ̇(s)ds

)m

is given by

IF(gx
m) =

∫

Ct

(√
ih̄
∫ t

0
a
(√

ih̄ω(s) + x
)
◦ dω(s)

)m

ψ0

(√
ih̄ω(t) + x

)
dP(ω),

where P is the Wiener measure on (Ct,B(Ct)).

Proof. For Fixed n ∈ N and m ≥ 1, let us consider the finite dimensional
oscillatory integral

(∫ o

PnHt

ei ‖Pnγ‖2
2h̄ d(Pnγ)

)−1 ∫ o

PnHt

ei ‖Pnγ‖2
2h̄ gm(Pnγ)d(Pnγ) =

=
∫ o

R3n

(
n

∑
j=1

(xj − xj−1)

t/n
·
∫ tj

tj−1

a
(

xj−1 +
(xj − xj−1)

t/n
(s − tj−1) + x

)
ds

)m

ψ0(xn + x)e
i

2h̄t/n ∑n
j=1(xj−xj−1)

2 dx1 · · · dxn

(2πih̄t/n)3n/2 =

=
∫ o

R3n

(
n

∑
j=1

ξ j ·
∫ tj

tj−1

a

(
x +

(
j−1

∑
k=1

ξk

)
t
n
+ ξ j(s − tj−1)

)
ds

)m

ψ0

(
x +

(
n

∑
j=1

ξ j

)
t
n

)

×e
it/n
2h̄ ∑n

j=1 ξ2
j

dξ1 · · · dξn

(2πih̄(t/n)−1)3n/2 .

By the stated assumption on a and ψ0 the latter is equal to

∫ o

R3n

(
n

∑
j=1

3

∑
α=1

ξ j,α ·
∫ tj

tj−1

∫

Rd
exp

[
ik ·
(

x +

(
j−1

∑
l=1

ξl

)
t
n
+ ξ j(s − tj−1)

)]
dµα(k)ds

)m

×
∫

R3
eih·(x+∑n

j=1 ξ jt/n)dµ0(h)e
it/n
2h̄ ∑n

j=1 ξ2
j

dξ1 · · · dξn

(2πih̄(t/n)−1)3n/2 , (3.28)

where µ̂0 = ψ0, i.e for any Borel set I ⊂ R3, µ0(I) = 1
2π

∫
I ψ0(x)dx. Let us consider

the open sector Dπ/2 = {z ∈ C : z = |z|eiθ , θ ∈ (0, π/2)} of the complex plane and
function F : D̄π/2 → C defined by

F(z) =
∫

R3n

(
n

∑
j=1

3

∑
α=1

zξ j,α ·
∫ tj

tj−1

∫

R3
exp

[
ik ·
(

x +

(
j−1

∑
l=1

zξl

)
t
n
+ zξ j(s − tj−1)

)]
dµα(k)ds

)m

×
∫

R3
eih·(x+z ∑n

j=1 ξ jt/n)dµ0(h)e
it/n
2h̄ ∑n

j=1 z2ξ2
j

dξ1 · · · dξn

(2πih̄z−1(t/n)−1)3n/2 ,
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for z ∈ R, z > 0, by the classical change of variable formula, F(z) is a constant func-
tion equal to the finite dimensional oscillatory integral (3.28). Further F is analytic
on Dπ/2, as one can prove by applying Fubini and Morera’s theorems. Indeed, for
z ∈ Dπ/2, the integral defining F(z) is absolutely convergent since:

∫

R3n

(
n

∑
j=1

3

∑
α=1

|zξ j,α|
∫ tj

tj−1

∫

R3

∣∣∣∣∣exp

[
ik ·
(

x +

(
j−1

∑
l=1

zξl

)
t
n
+ zξ j(s − tj−1)

)]∣∣∣∣∣ d|µα|(k)ds

)m

∫

R3

∣∣∣eih·(x+z ∑n
j=1 ξ j

t
n )
∣∣∣ d|µ0|(h)e

it/n
2h̄ ∑n

j=1 z2ξ2
j | dξ1 · · · dξn

(2πh̄|z|−1(t/n)−1)3n/2 ≤

≤
∫

R3n

(
n

∑
j=1

3

∑
α=1

|z||ξ j,α|
∫ t/n

0

∫

R3
exp

[
−|z| sin θk ·

(
j−1

∑
l=1

ξl
t
n
+ ξ js)

)]
d|µα|(k)ds

)m

∫

R3

∣∣∣e−|z| sin θh·∑n
j=1 ξ j

t
n

∣∣∣ d|µ0|(h)e−
|z|2 sin(2θ)t/n

2h̄ ∑n
j=1 z2ξ2

j
dξ1 · · · dξn

(2πh̄|z|−1(t/n)−1)3n/2 =

=
∫

R3n

(
n

∑
j=1

3

∑
α=1

|ξ j,α|
∫ t/n

0

∫

R3
exp

[
− sin θk ·

(
j−1

∑
l=1

ξl
t
n
+ ξ js)

)]
d|µα|(k)ds

)m

∫

R3

∣∣∣e− sin θh·∑n
j=1 ξ j

t
n

∣∣∣ d|µ0|(h)e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)3n/2 ≤

≤
( ∫

R3n

(
n

∑
j=1

3

∑
α=1

|ξ j,α|
∫ t/n

0

∫

R3
exp

[
− sin θk ·

(
j−1

∑
l=1

ξl
t
n
+ ξ js)

)]
d|µα|(k)ds

)2m

×e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)3n/2

)1/2

(3.29)

(∫

R3n

(∫

R3

∣∣∣e− sin θh·∑n
j=1 ξ j

t
n

∣∣∣ d|µ0|(h)
)2

e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)3n/2

)1/2

.

In the second step above we have got rid of the term |z| in the integral because of
classical (finite dimensional) change of variables formula.

For notational simplicity, in the following we shall describe in detail the one di-
mensional case but similar arguments work also in three dimension. The second factor
in the product of integrals above is bounded by

∫

Rn

(∫

R

∣∣∣e− sin θh·∑n
j=1 ξ j

t
n

∣∣∣ d|µ0|(h)
)2

e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)n/2 =

= (sin(2θ))−n/2
∫

R

∫

R
e

h̄t sin2 θ(h1+h2)
2

2 sin(2θ) d|µ0|(h1)d|µ0|(h2) ≤

≤ (sin(2θ))−n/2e
2h̄t sin2 θR2

sin(2θ) |µ0|2,



3.2. Feynman path integral for magnetic field 49

where R ∈ R+ is such that the support of µ0 is contained in [−R, R].
Concerning the first factor on the right hand side of (3.29) we have the following
upper bound, again written for simplicity of notations for the 1-dimensional case

∫

Rn

(
n

∑
j=1

|ξ j|
∫ t/n

0

∫

R
exp

[
− sin θk ·

(
j−1

∑
l=1

ξl
t
n
+ ξ js

)]
d|µ|(k)ds

)2m

×e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)n/2 =

=
n

∑
j1,...,j2m=1

∫

Rn
|ξ j1 · · · ξ j2m |

∫ t/n

0
· · ·

∫ t/n

0

∫

R
· · ·

∫

R
exp

[
− sin θk1 ·

(
j1−1

∑
l1=1

ξl1
t
n
+ ξ j1 s1

)]
· · ·

· · · exp

[
− sin θk2m ·

(
j2m−1

∑
l2m=1

ξl2m

t
n
+ ξ j2m s2ms

)]
ds1 · · · ds2md|µ|(k1) · · · d|µ|(k2m)

×e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)n/2 ≤

≤
n

∑
j1,...,j2m=1

(∫

Rn
|ξ j1 · · · ξ j2m |2e−

sin(2θ)t/n
2h̄ ∑n

j=1 ξ2
j

dξ1 · · · dξn

(2πh̄(t/n)−1)n/2

)1/2

( ∫

Rn

( ∫ t/n

0
· · ·

∫ t/n

0

∫

R
· · ·

∫

R
exp

[
− sin θk1 ·

(
j1−1

∑
l1=1

ξl1
t
n
+ ξ j1 s1)

)]
· · ·

· · · exp

[
− sin θk2m ·

(
j2m−1

∑
l2m=1

ξl2m

t
n
+ ξ j2m s2ms)

)]
ds1 · · · ds2md|µ|(k1) · · · d|µ|(k2m)

)2

×e−
sin(2θ)t/n

2h̄ ∑n
j=1 ξ2

j
dξ1 · · · dξn

(2πh̄(t/n)−1)n/2

)−1/2

.

The first factor in the sum above is finite since it is equal to the moment of a Gaussian
measure, i.e.
∫

Rn
|ξ j1 · · · ξ j2m |2e−

sin(2θ)t/n
2h̄ ∑n

j=1 ξ2
j

dξ1 · · · dξn

(2πh̄(t/n)−1)n/2 = (sin(2θ)−n/2) · E
[∣∣Xj1 · · · Xj2m

∣∣2
]

,

where Xj, j = 1, . . . , n are i.i.d centered Gaussian random variables with covariance
σ = h̄(sin(2θ)t/n)−1. Analogously the second factor is an absolutely convergent
integral since it is of the form
∫ t/n

0
· · ·

∫ t/n

0

∫

R
· · ·

∫

R
E
[
e∑n

j=1 aj(k1,...,k4m,s1,...,s4m)Xj
]

ds1 · · · ds4md|µ|(k1) · · · d|µ|(k4m) =

=
∫ t/n

0
· · ·

∫ t/n

0

∫

R
· · ·

∫

R
e

1
2 sin(2θ)t/n ∑n

j=1(aj(k1,...,k4m,s1,...,s4m))
2

ds1 · · · ds4md|µ|(k1) · · · d|µ|(k4m),
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where aj are linear functions of the variables k1, . . . , k4m, s1, . . . , s4m and the last inte-
gral is finite since µ is by assumption compactly supported. Hence we can conclude
that F is analytic on Dπ/2. Further, by a classical change of variables formula, it
is simple to see that F is constant on any ray of the form rθ := {z ∈ C : z = |z|
eiθ , |z| ∈ R+

}
with θ ∈ [0, π/2], hence by analyticity it is constant on D̄π/2, giving

for any n ∈ N

(∫ o

PnH
ei ‖Pnγ‖2

2h̄ d(Pnγ)

)−1 ∫ o

PnHt

ei ‖Pnγ‖2
2h̄ gm(Pnγ)d(Pnγ) = F(eiπ/4) =

=
∫

R3n

(
n

∑
j=1

√
ih̄

(xj − xj−1)

t/n
·
∫ tj

tj−1

a
(√

ih̄ xj−1 +
√

ih̄
(xj − xj−1)

t/n
(s − tj−1) + x

)
ds

)m

×ψ0

(√
ih̄ xn + x

)
e−

1
2t/n ∑n

j=1(xj−xj−1)
2 dx1 · · · dxn

(2πh̄t/n)3n/2 =

= E

[
ψ0

(√
ih̄ ωn(t) + x

)(√
ih̄
∫ t

0
a
(√

ih̄ωn(s) + x
)
· ω̇n(s)ds

)m]
, (3.30)

where ωn stands for the piecewise linear approximation of Brownian motion defined
above, namely:

ωn(s) =
n

∑
k=1

χ[tk−1,tk)(s)
(

ω(tk−1) +
ω(tk)− ω(tk−1)

tk − tk−1
(s − tk−1)

)
,

with s ∈ [0, t], tk = k/n. Thanks to the result of Lemma 3.2, the right side of (3.30)
converges for n → ∞ to

E

[
ψ0(

√
ih̄ ω(t) + x)

(√
ih̄
∫ t

0
a
(√

ih̄ω(s) + x
)
◦ dω(s)

)m]
.

The last step is the proof that the integral provides a representation of the solution
to the Schrödinger equation by the Dyson series expansion.

Theorem 3.3. Under the assumption of Theorem 3.1, the solution of the Schrödinger
equation with magnetic field

ih̄∂tψ(t) = Hψ(t, x), ψ(0, x) = ψ0(x), H =
1
2
(−ih̄∇− λa(x))2

can be expressed by the perturbative Dyson series expansion as

e−
i
h̄ Htψ0 =

∞

∑
m=0

λmψm(t),
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where the vector ψm can be expressed by a Feynman map of the form

ψm(t, x) =

=
1

m!

(
− i

h̄

)m ∫̃ o

Ht

(∫ t

0
a(γ(s) + x) · γ̇(s)ds

)m

e
i

2h̄

∫ t
0 ‖γ̇(s)‖2dsψ0(γ(t) + x)dγ =

=
1

m!

(
− i

h̄

)m

E

[(√
ih̄
∫ t

0
a
(√

ih̄ω(s) + x
)
◦ dω(s)

)m

ψ0

(√
ih̄ω(t) + x

)]
. (3.31)

The expansion is convergent in L2(R3) for λ ∈ C, with |λ| < λ∗, λ∗ given by (3.8).
The integral under the expectation is to be understood as a Stratonovich stochastic
integral.

Proof. By Theorem 3.1 for |λ| < λ∗ the vector ψ(t) = e−
i
h̄ Htψ0 in L2(R3) is

given by the convergent power series expansion (3.12). Hence, we are left to prove
that for any m ∈ N the term ϕm in (3.13) is equal to ψm as given in (3.31).

By remark 3.3, the Hamiltonian operator H generates an analytic semigroup
e−zH : L2(R3) → L2(R3), where z ∈ C, Re(z) ≥ 0, with a convergent Dyson expan-
sion of the form e−zHψ0 = ∑m λmϕm(z) with a radius of convergence λ∗(z) depending
on |z| (see Eq. (3.17)). In particular, for z ∈ R+, namely z = t

h̄ , the family of op-
erators T(t) = e−

t
h̄ H, t ∈ R+, yields the heat semigroup generated by H (described

in Section 3.1). In this case, by Feynman-Kac-Itô formula [105] the vector e−
t
h̄ Hψ0 is

given by the Wiener integral

e−
t
h̄ Hψ0(x) = E

[
ψ0(

√
h̄ω(t) + x)e−

iλ
h̄

∫ t
0 a(

√
h̄ω(s)+x)◦dω(s)

]
. (3.32)

For any ϕ ∈ L2(R3) the inner product 〈ϕ, e−zHψ0〉 is an analytic function of z ∈ D,
D = {z ∈ C : Re(z) ≥ 0}, continuous in the closure D̄ of D and admitting the
expansions

〈ϕ, e−zHψ0〉 =
∞

∑
m=0

λm〈ϕ, ϕm(z)〉.

By formula (3.16) each term 〈ϕ, ϕm(z)〉 is an analytic function of z ∈ D, continuous
in the closure D̄ and for z = t/h̄, t ∈ R+, by formula (3.32) it is equal to

〈ϕ, ϕm(t/h̄)〉 =
(
− i

h̄

)m ∫

R3
ϕ̄(x)

×E

[
ψ0(

√
h̄ω(t) + x)

(√
h̄
∫ t

0
a(
√

h̄ω(s) + x) ◦ dω(s)
)m]

dx.
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By replacing t with tξ, with ξ ∈ R+, the expression above assumes the following
form:

〈ϕ, ϕm(tξ/h̄)〉 =
(
− i

h̄

)m ∫

R3
ϕ̄(x)

×E

[
ψ0(

√
h̄ω(tξ) + x)

(√
h̄
∫ tξ

0
a(
√

h̄ω(s) + x) ◦ dω(s)
)m]

dx,

and thus

〈ϕ, ϕm(tξ/h̄)〉 =
(
− i

h̄

)m ∫

R3
ϕ̄(x)

×E

[
ψ0(
√

h̄ξω(t) + x)
(√

ξ h̄
∫ t

0
a(
√

h̄ξω(s) + x) ◦ dω(s)
)m]

dx,
(3.33)

and since by the discussion above, both the right hand side and the left hand side of
(3.33) are analytic for ξ ∈ D and continuous for ξ ∈ D̄, by setting ξ ≡ i we obtain
the required equality, namely:

〈ϕ, ϕm(it/h̄)〉 =
(
− i

h̄

)m ∫

R3
ϕ̄(x)

×E

[
ψ0(

√
ih̄ω(t) + x)

(√
ih̄
∫ t

0
a(
√

ih̄ω(s) + x) ◦ dω(s)
)m]

dx.

Remark 3.6. Theorem 3.3 can be generalized to the case where a scalar potential
V is added to the right hand side of (3.1). Indeed, let us consider an Hamiltonian
operator of the form (3.18), with V ∈ Fc(R3). By remark 3.4, under the assumptions
of Theorem 3.3 the vector e−

i
h̄ Htψ0 admits for λ < λ̃ (λ̃ defined as in (3.21)) a

convergent perturbative expansion:

e−
i
h̄ Htψ0 =

∞

∑
m=0

λmψm(t),

where the generic vector ψm can be expressed by a Feynman map of the form

ψm(t, x) =
1

m!

(
− i

h̄

)m ∫̃ o

Ht

(∫ t

0
a(γ(s) + x) · γ̇(s)ds

+
∫ t

0
V(γ(s) + x)ds

)m

e
i

2h̄

∫ t
0 ‖γ̇(s)‖2dsψ0(γ(t) + x)dγ,
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which can be expressed in terms of the Wiener integral

1
m!

(
− i

h̄

)m

E

[(√
ih̄
∫ t

0
a
(√

ih̄ω(s) + x
)
◦ dω(s)

+
∫ t

0
V(

√
ih̄ω(s) + x)ds

)m

ψ0

(√
ih̄ω(t) + x

)]
.

Remark 3.7. All results in Theorems 3.1, 3.2, 3.3 have been formulated and proved
for underlying 3-dimensional space, but corresponding results and proofs hold for all
space dimensions.

3.3 Independence of the approximation and renormal-
ization term

In the previous section we provided a convergent constructive expansion for the Feyn-
man path integral representation for the solution of the Schrödinger equation with
magnetic field. This was made by using a particular class of finite dimensional ap-
proximations, namely the ones related to piecewise linear path (see Eq. (1.13)). This
last section is devoted to the question, whether the independence of the construc-
tion of the Feynman path integral representation is independent of the chosen type
of approximation. In particular, in the case of a constant magnetic field, we show
that the definition of the Feynman path integral (3.2) in terms of infinite dimensional
oscillatory integral (in the sense of Def. 1.2), i.e. requiring the independence of the
limit of the sequence of finite dimensional approximations, requires the introduction
of a natural renormalization term. This result is a further development of a similar
one obtained in [4], the latter being only valid in the Coulomb gauge div a = 0.
On the contrary, our main results (Theorem 3.5 and Corollary 3.1) provide a gauge-
independent construction of the renormalization term as well as of the Feynman path
integral, yielding a rigorous construction of the solution of the Schrödinger equation
with vector potential a.

Let a : R3 → R3 be a linear vector potential corresponding to a constant magnetic
field B = rot a. More precisely, we assume that the vector field a is given by

a(x1, x2, x3) = (α1
1x1 + α1

2x2 + α1
3x3, α2

1x1 + α2
2x2 + α2

3x3, α3
1x1 + α3

2x2 + α3
3x3), (3.34)

where (x1, x2, x3) ∈ R3 and αi
j ∈ R, i, j = 1, . . . , 3 are real constants. We are going to

study the Fresnel integrability (in the sense of Def. 1.2) of the function f : Ht → C,
defined on the Cameron-Martin space Ht as

f (γ) := e−
i
h̄

∫ t
0 a(γ(s))·γ̇(s)ds, γ ∈ Ht.
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For any sequence {Pn}n of projectors onto n-dimensional subspaces of Ht, such
that Pn ≤ Pn+1 and Pn → I strongly as n → ∞, we have to study the limit of the
sequence of finite dimensional oscillatory integrals

lim
n→∞

(2πih̄)−n/2
∫ o

PnHt

ei ‖Pnγ‖2
2h̄ f (Pnγ)d(Pnγ).

As we shall see, the limit above cannot be independent of the sequence {Pn}. In fact
it is necessary to renormalize the term f (Pnγ) ≡ e−

i
h̄ g(Pnγ) by replacing the exponent

g(Pnγ) =
∫ t

0 a(Pnγ(s)) · Ṗnγ(s)ds by g(Pnγ) − rn, where rn is a suitable constant
depending on the projector Pn as well as on the magnetic field B.

First of all, let us consider the linear operator G : Ht → Ht defined by

G(γ)(s) :=
∫ s

0
a(γ(r))dr, γ ∈ Ht, s ∈ [0, t], (3.35)

in such a way that the function f : Ht → C can be written as f (γ) = e−
i
h̄ 〈G(γ),γ〉, i.e.

the function g : Ht → C, with g(γ) = 〈G(γ), γ〉 can be represented as the quadratic
form associated to G. Note that G is bounded in Ht due to our assumptions on a.
The following lemma provides some properties of G.

Lemma 3.3. The operator G : Ht → Ht is Hilbert-Schmidt . The eigenvalues of
the positive symmetric operator G†G, are given by λm,j =

4ajt2

π2(1+2m)2 , with j = 1, 2, 3,
m ∈ N and aj ∈ R+ eigenvalues of the matrix (3.37) below.

Proof. Let us consider the positive symmetric operator L ≡ G†G : Ht → Ht (†
standing for the adjoint), whose matrix elements are given by

〈η, Lγ〉 = 〈Gη, Gγ〉

=
∫ t

0
η(s)Aγ(s)Tdt, η, γ ∈ Ht, (3.36)

where A is the 3 × 3 symmetric matrix with real elements given by

Aij =
3

∑
l=1

αl
iα

l
j, i, j = 1, ..., 3. (3.37)

Hence, for γ ∈ Ht the vector L(γ) ∈ Ht is given by

L(γ)(s)T = −
∫ s

0

∫ r

t
Aγ(τ)Tdτdr,

T stands for transpose. L is a compact operator in Ht and has a discrete spectrum.
Indeed, by introducing in R3 an orthonormal basis {û1, û2, û3} of eigenvectors of the
symmetric matrix A, with corresponding eigenvalues a1, a2, a3 ∈ R+, the eigenvectors
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{γm} of L can be represented as linear combination of û1, û2 and û3 by γm = ηm,1û1 +
ηm,2û2 + ηm,3û3, with ηm,j : [0, t] → R. Recalling the form of the scalar product in
Ht, for the expression (3.36) we get that the components {ηm,j} of the eigenvectors
(with eigenvalues λm,j) are the solutions of





λm,jη̈m,j + ajηm,j = 0
η̇m,j(t) = 0
ηm,j(0) = 0

j = 1, 2, 3,

with

λm,j =
4ajt2

π2(1 + 2m)2 , m ∈ N, j = 1, 2, 3. (3.38)

Remark 3.8. From (3.38) we see easily that the operator G is not of trace class on
Ht.

Lemma 3.4. Let a be the linear vector potential (3.34) and let ψ0 ∈ L2(R3) be such
that its Fourier transform ψ̂0 has compact support. Let {ej}j be an orthonormal basis
of the Cameron-Martin space Ht and let Pn be the projection operator onto the span
of the first n vectors. Let gx

exp : Ht → C be the function defined by

gx
exp(γ) = ψ0(γ(t) + x) exp

(
− i

h̄

∫ t

0
a(γ(s) + x) · γ̇(s)ds

)
, γ ∈ Ht,

and let ā ∈ R+ be the constant defined as ā = max
j=1,2,3

{aj}, where aj, j = 1, 2, 3 are the

eigenvalues of the (positive semidefinite) matrix A defined in (3.37). Then, for fixed
n and for

t < t∗ :=
π

4
√

ā
, (3.39)

the finite dimensional oscillatory integral

(2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ ‖Pnγ‖2
gx

exp(Pnγ)dPnγ

is equal to the Wiener integral:
∫ o

PnHt

e
i

2h̄ ‖γ‖2
gx

exp(γ)dγ = E
[
ψ0(

√
ih̄ωn(t) + x)e−

i
h̄

√
ih̄
∫ t

0 a(
√

ih̄ωn(s)+x)·ω̇n(s)ds
]

, (3.40)

where ωn := P̃n(ω) is defined by (3.25).
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Proof. For fixed n, by setting γn ≡ Pnγ, we have:

(2πih̄)−n/2
∫ o

PnHt

ei ‖γn‖2
2h̄ gx

exp(γn)dγn =

= (2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ ‖γn‖2
e−

i
h̄

∫ t
0 a(γn(s)+x)γ̇ndsψ0(γn(t) + x)dγn =

= (2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ 〈γn,(I−2G)γn〉e−
i
h̄ a(x)·γn(t)ψ0(γn(t) + x)dγn.

Let us consider the function F : R+ → C defined by

F(z) = (2πih̄)−n/2 zn
∫ o

PnHt

e
iz2
2h̄ 〈γn,(I−2G)γn〉e−z i

h̄ a(x)·γn(t)ψ0(zγn(t) + x)dγn.(3.41)

By the classical change of variable formula, for z ∈ R+ the function F is a constant
equal to the finite dimensional oscillatory integral above. In fact, if t < t∗, with t∗

given by (3.39), F can be extended to an analytic function defined on the open sector
Dπ/2 = {z ∈ C : z = |z|eiθ , θ ∈ (0, π/2), |z| > 0} of the complex plane. Indeed, for
any γ ∈ Ht, if condition (3.39) is fulfilled, we have

〈γ, (I − 2G) γ〉 ≥ ϵ‖γ‖2,

where ϵ > 0 is given by ϵ = 1 − 2t
√

ā
π . Indeed:

〈γ, (I − 2G) γ〉 = 〈γ, Iγ〉 − 〈γ, 2Gγ〉
= 〈γ, γ〉 − 〈γ, 2|G|Uγ〉,

where, by the polar decomposition formula, G = |G|U, with |G| =
√

G†G and U a
unitary operator. Furthermore

|〈γ, 2|G|Uγ〉| ≤ 2‖γ‖‖Uγ‖‖|G|‖ ≤ 2‖γ‖2 sup
m

λ̃m,

where ‖|G|‖ denotes the operator norm of the positive operator|G|, while {λ̃m}m are
its eigenvalues, namely λ̃m =

√
λm,j, with λm,j given by (3.38). Hence, we get

|〈γ, 2|G|Uγ〉| ≤ 4t
√

ā
π

‖γ‖2,
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hence, for t < t∗, we have, using the Fourier transform ψ̂0 of ψ, the following bound
on the oscillatory integral in (3.41):

∫ o

PnHt

∣∣∣ez2 i
2h̄ 〈γn,(I−2G)γn〉e−z i

h̄ a(x)·γn(t)ψ0(zγn(t) + x)
∣∣∣ dγn ≤

≤
∫ o

PnHt

∫

R3
e− sin(2θ) |z|

2
2h̄ ϵ‖γ‖2+sin θ |z|

h̄ a(x)·γn(t)−k|z|γn(t) |ψ̂0(k)|
(2π)3 dkdγn < ∞,

where the convergence of the integral in the second line is assured by the conditions
θ ∈ (0, π/2), ϵ = 1 − 2t

√
ā

π > 0 and ψ̂0 is compactly supported. Hence, by applying
Fubini and Morera’s theorems, it is simple to check that the function F : D̄π/2 → C is
analytic on Dπ/2 and continuous up to R+. Since by the classical change of variables
formula the value of F(z) does not depend on |z|, i.e. F is constant along rays
{z ∈ Dπ/2 : z = |z|eiθ , |z| ∈ R+}, by analyticity F is constant on Dπ/2 and by
continuity up to R+ we obtain in particular, F(1) = F(

√
h̄eiπ/4), namely:

(2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ ‖γn‖2
e−

i
h̄

∫ t
0 a(γn(s)+x)γ̇ndsψ0(γn(t) + x)dγn =

= (2π)−n/2
∫ o

PnHt

e−
1
2 ‖γn‖2

e−
i
√

i√
h̄

∫ t
0 a(

√
ih̄γn(s)+x)γ̇nds

ψ0(
√

ih̄γn(t) + x)dγn

and the last line is equal to the r.h.s. of (3.40), namely to:

E
[
ψ0

(√
ih̄ωn(t) + x

)
e−

i
h̄

√
ih̄
∫ t

0 a(
√

ih̄ωn(s)+x)·ω̇n(s)ds
]

.

The next step is the study of the convergence of the Wiener integrals on the r.h.s.
of (3.40) which can be written as

E
[
ψ0

(√
ih̄ωn(t) + x

)
e−

i
h̄

√
ih̄a(x)ωn(t)eg̃n(ω)

]
,

where, given an orthonormal basis {en} of Ht, the random variables g̃n : Ct → C are
defined by

g̃n(ω) :=
∫ t

0
a(ωn(s)) · ω̇n(s)ds, ω ∈ Ct, (3.42)

with Ct is as in (3.24). Further, let us consider the sequence {gn} of real random
variables on (Ct,B(Ct), P) defined as

gn(ω) :=
∫ t

0
a(ω(t)) · ω̇n(t)dt, ω ∈ Ct, (3.43)

where ωn is given by ωn := P̃n(ω) and P̃n is defined in (3.25).
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Consider the linear operator G : Ct → Ht defined by

G(ω)(s) =
∫ s

0
a(ω(r))dr, ω ∈ Ct, s ∈ [0, t], (3.44)

with its help the functions {gn} and {gn} can be represented by the inner products:

gn(ω) = 〈G(ω), P̃n(ω)〉, g̃n(ω) = 〈G(P̃nω), P̃n(ω)〉.

For our purpose, it is useful to introduce the definition of H-differentiable function,
following, e.g., [101]:

Definition 3.1. A function G : Ct → Ct with G(Ct) ⊂ Ht is said to be Ht-
differentiable if for any ω ∈ Ct the function Gω : Ht → Ht defined as Gω(γ) =
G(ω + γ), γ ∈ Ht, is Fréchet differentiable at the origin in Ht. Its Fréchet deriva-
tive, namely the linear operator DGω(0) ∈ L(Ht;Ht), will be denoted with the symbol
DG(ω) and called the Ht-derivative of G at ω.

Lemma 3.5. Let G : Ct → Ht be a linear operator such that its restriction GHt

on Ht is Hilbert-Schmidt. Let {Pn}n be a sequence of finite dimensional projection
operators in Ht converging strongly to the identity. Then the sequences of random
variables {gn} and {g̃n} on Ct defined as:

gn(ω) = 〈G(ω), P̃n(ω)〉, ω ∈ Ct,
g̃n(ω) = 〈G(P̃n(ω)), P̃n(ω)〉, ω ∈ Ct,

satisfy

lim
n→∞

E[|gn − g̃n|2] = 0. (3.45)

Proof.
E[|gn − g̃n|2] =

∫
|〈G(ω)− G(P̃n(ω)), P̃n(ω)〉|2dP(ω)

=
∫

|〈G(ω − P̃n(ω)), P̃n(ω)〉|2dP(ω)

=
∫

|〈G(
∞

∑
j=n+1

ejnej(ω)),
n

∑
i=1

einei(ω)〉|2dP(ω)

=
∞

∑
j,j′=n+1

n

∑
i,i′=1

〈Gej, ei〉〈Gej′ , ei′〉E[nej nej′ nei nei′ ]

=
∞

∑
j=n+1

n

∑
i=1

(〈Gej, ei〉)2

=
∞

∑
j=n+1

〈PnGej, PnGej〉,
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where in the third step we have applied Itô-Nisio theorem. By using the assumption
that GHt is an Hilbert-Schmidt operator we obtain (3.45).

Remark 3.9. The random variables gn(ω) are a rewriting of the Ogawa integral in the
context of abstract Wiener spaces. In general the Ogawa integral (i.e. not necessarily
linear) is not useful to describe our problem, in fact Lemma 3.5 holds for G linear.

For further details on the Ogawa integral and for a generalization to the multidi-
mensional case, see Appendix B and [26].

In this setting and with a given by (3.34) the map G : C → Ht, as defined by
(3.44), is given by

G(ω)(s) =
(

α1
1I(ω1) + α1

2I(ω2) + α1
3I(ω3), α2

1I(ω1) + α2
2I(ω2) + α2

3I(ω3),

α3
1I(ω1) + α3

2I(ω2) + α3
3I(ω3)

)

where
I(ωk) =

∫ s

0
ωk(r)dr, k = 1, 2, 3,

and ω = (ω1, ω2, ω3) ∈ Ct. Thus, in this case, the Ht-derivative DG(ω) for any
ω ∈ Ct is the linear operator given by DGω(γ) = Gγ, where G : Ht → Ht is defined
in (3.35). In particular, according to lemmas 3.5 and 3.3 the sequences of random
variables {g̃n} and {gn} defined respectively by (3.42) and (3.43) share the same
convergence properties in L2(Ct, P).

The following result is a direct consequence of Lemmas 4.2 and 4.3 in [101].

Theorem 3.4. Let G : Ct → Ct, with G(Ct) ⊂ Ht, be a Ht-differentiable map
such that for any ω ∈ Ct the Ht-derivative DG(ω) ∈ L(Ht,Ht) is an Hilbert-
Schmidt operator. Let us assume furthermore that the maps ‖G‖ : Ct → R and
‖DG‖2 : Ct → R, where ‖DG(ω)‖2 denotes the Hilbert-Schmidt norm of DG(ω),
belong to L2(Ct, P). Let {ei} be an orthonormal basis of Ht and let {Pn} and {P̃n}
be the sequence of finite dimensional projectors on the span of e1, . . . , en and their
stochastic extensions to Ct respectively. Then the sequence of random variables {hn}
defined as

hn(ω) := 〈G(ω), P̃n(ω)〉 − Tr(PnDG(ω)), ω ∈ Ct,

converges in L2(Ct, P) and the limit does not depend on the basis {ei}, i = 1, . . . , n.

The previous theorem applied to our particular case provides actually a no-go
result on the convergence of the sequence of random variables {g̃n} given by (3.42).
Indeed, since in our particular case DG(ω) = G and by remark 3.8 the operator
G : Ht → Ht is not trace class, the sequence of real numbers Tr(PnDG(ω)) ≡
Tr(PnG) does not in general converge independently on the choice of finite dimensional
approximations {Pn}. Hence, by Theorem 3.4 and Lemma 3.5 neither the random
variables {gn} nor {g̃n} admit a well-defined limit in L2(Ct, P) independent on the
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sequence {Pn}n of finite dimensional projectors. The following theorem provides a
suitable renormalization term, namely a sequence {rn} of real numbers such that the
renormalized random variables hn : Ct → R given by hn(ω) := g̃n(ω)− rn converge
in Lp(Ct, P) for all p ≥ 1 and in probability to the Stratonovich stochastic integral
h(ω) =

∫ t
0 a(ω(s)) ◦ dω(s).

Theorem 3.5. Let a : R3 → R3 be a linear vector field, let {ek} be an orthonormal
basis of Ht and let {Pn}n and {P̃n}n be the sequence of finite dimensional projectors
on the span of e1, . . . , en in Ht and their stochastic extensions to Ct respectively. Then
by setting

rn := B · 1
2

n

∑
k=1

∫ t

0
ek(s) ∧ ėk(s)ds (3.46)

with B = rot a, the sequence of random variables hn : Ct → R defined as:

hn(ω) :=
∫ t

0
a(ωn(s)) · ω̇n(s)ds − rn, ω ∈ Ct,

where ωn := P̃n(ω), converges in L2(Ct, P), independently of {Pn}n, to
∫ t

0
a(ω(s)) ◦ dω(s).

Proof. Let us set

Xn(ω) =
∫ t

0
a(ωn(s)) · ω̇n(s)ds

=
∫ t

0
a1(ωn(s))ω̇n,1(s) ds +

∫ t

0
a2(ωn(s))ω̇n,2(s)ds +

∫ t

0
a3(ωn(s))ω̇n,3(s)ds

where ωn = (ωn,1, ωn,2, ωn,3) ∈ Ht. By Stokes theorem:

Xn =
∫∫

Sn

B · n dS −
∫

Λn

a · dr

where Λn is the (oriented) segment joining ωn(t) with 0, while
∫

Λn
a · dr is the line

integral of a along Λn. The symbol Sn denotes any regular oriented surface with
oriented boundary given by the close path union of ωn and Λn, n denotes the normal
unit vector and

∫∫
Sn

B · n dS is the surface integral of B on Sn. Our study can be
restricted to ∫∫

Sn

B · n dS,
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as we can immediately see that the second term converges in L2(Ct, P) independently
of {Pn}n. Indeed: ∫

Λn

a · dr =
∫ 1

0
a(uωn(t))du · ωn(t),

and for any sequence of finite dimensional projection operators {Pn}n such that Pn →
I we have

ωn(t) → ω(t),
∫ 1

0
a(u ωn(t))du →

∫ 1

0
a(uω(t))du, ∀t ≥ 0.

0

ωn,i(t)
Sn,i

ωn,i

Λn,i = u · ωn,i(t)

Two dimensional projection of stochastic surface Sn.

Let us consider now the surface integral
∫∫

Sn
B · n dS. Since by the assumption on

a the magnetic field B is constant, by the Gauss-Green formula we get
∫∫

Sn

B · n dS = B
∫∫

Sn

n dS = B · 1
2

∫ t

0
ωn(s) ∧ ω̇n(s)ds.

Let us define for any i = 1, 2, 3 the sequence of random variables hi
n : Ct → R by

hi
n(ω) := êi ·

∫ t

0
ωn(s) ∧ ω̇n(s) ds = 〈Hi(ωn), ωn〉, ω ∈ Ct,

where êi, i = 1, 2, 3, are the vectors of the canonical basis of R3 and the linear
operators Hi : Ct → Ht are defined by

(Hi(ω)(s))T :=
∫ s

0
Jiω(u)Tdu,
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with T denoting the transpose and Ji, i = 1, 2, 3, are the matrices:

J1 =




0 0 0
0 0 −1
0 1 0


 , J2 =




0 0 1
0 0 0
−1 0 0


 , J3 =




0 −1 0
1 0 0
0 0 0


 .

Actually the operators Hi, i = 1, . . . , 3 have the form (3.35) and by Lemma 3.3 are
Hilbert-Schmidt. Further, by Lemma 3.5 and Theorem 3.4, the renormalized random
variables

hi
n(ω)− ri

n = 〈Hi(ωn), ωn〉 − Tr[PnHi] =
∫ t

0
(γn(s) ∧ γ̇n(s))i ds −

n

∑
k=1

∫ t

0
(ek(s) ∧ ėk(s))i ds

converge in L2(Ct, P) and the limit does not depend on the sequence {Pn}n. By
combining these results we obtain the convergence of the sequence

∫ t

0
a(ωn(s)) · ω̇n(s)ds − B · 1

2

n

∑
k=1

∫ t

0
ek(s) ∧ ėk(s)ds

and the limit is independent of the sequence {Pn}n. Eventually, by choosing the
sequence {Pn}n of piecewise linear approximations (1.13), where the elements en of
the corresponding basis {en} satisfy

∫ t
0 en(s) ∧ ėn(s)ds = 0, and by applying Lemma

3.2 we complete the proof.

Example 3.1. The renormalization term given in Theorem 3.5 contains, besides the
magnetic field B, the area integrals of the elements {en} of the orthonormal basis
spanning the finite dimensional Hilbert space PnHt. This term is gauge independent.
However, for a general orthonormal basis in Ht, it does not converge to a well-defined
limit as the following example shows.

Let us fix t ≡ 1 and let us consider two sequences of real valued functions {un}n≥0,
{vn}n≥1 defined on the interval [0, 1] by u0(s) = s and for n ≥ 1

un(s) =
cos(2πns)

2πn
, vn(s) =

sin(2πns)
2πn

, s ∈ [0, 1],

and the sequences of vectors in Ht defined by: en,1 := (un, vn, 0), en,2 := (un,−vn, 0),
en,3 := (vn, un, 0), en,4 := (vn,−un, 0), en,5 := (0, 0, un), en,6 := (0, 0, vn), that together
with the vectors e0,1 := (u0, 0, 0), e0,2 := (0, u0, 0) and en,3 := (0.0, u0) provide an
orthonormal basis of Ht.

Given the linear the vector field a : R3 → R3

a(x, y, z) =
(

z − y
2

,
x − z

2
,

y − x
2

)
.
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with B = rot a = (1, 1, 1), and taking the vectors ek,1 and ek,4, k = 1, . . . , n, we get

B · 1
2

n

∑
k=1

∫ t

0
ek,1 ∧ ėk,1 = B · 1

2

n

∑
k=1

∫ t

0
ek,4 ∧ ėk,4 =

n

∑
k=1

1
4πk

.

On the other hand, considering the vectors ek,2 and ek,3, k = 1, . . . , n, we have

B · 1
2

n

∑
k=1

∫ t

0
ek,2 ∧ ėk,2 = B · 1

2

n

∑
k=1

∫ t

0
ek,3 ∧ ėk,3 = −

n

∑
k=1

1
4πk

,

while the other vectors of the orthonormal basis give vanishing area integrals. Hence,
the renormalization term rn given by (3.46) is not absolutely convergent as n → ∞.

A direct consequence of Lemma 3.4 and Theorem 3.5 is the following result.

Corollary 3.1. Under the assumptions of Lemma 3.4, the sequence of finite dimen-
sional renormalized oscillatory integrals

(2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ ‖γn‖2
e−

i
h̄ (
∫ t

0 a(γn(s)·γ̇n(s)ds−rn)ψ0(γn(t) + x)dγn,

with the renormalization term rn given by (3.46), converges as n → ∞ to the Wiener
integral

E
[
ψ0(

√
ih̄ω(t) + x)e−

i
h̄

√
ih̄
∫ t

0 a(
√

ih̄ω(s)+x)◦dω(s)
]

(3.47)

and the limit is independent of the sequence {Pn}n of finite dimensional approxima-
tions. In addition, it provides the solution of the Schrödinger equation with magnetic
field

{
ih̄∂tψ(t, x) = 1

2 (−ih̄∇− a)2 ψ(t, x)
ψ(0, x) = ψ0(x)

, t ∈ R+, x ∈ R3. (3.48)

Proof. The first part of the theorem follows from Lemma 3.4 and Theorem 3.5.
The second part can be proved by using the analyticity properties of the semigroup
generated by the quantum Hamiltonian operator H = 1

2 (−ih̄∇− a)2. More precisely
for t ∈ R+ the action of the heat semigroup on the vector ψ0 is given by the Feynman-
Kac-Itô formula:

e−
t
h̄ Hψ0(x) = E

[
ψ0(

√
h̄ω(t) + x)e−

i√
h̄

∫ t
0 a(

√
h̄ω(s)+x)◦dω(s)

]
.

For any ϕ ∈ L2(R3) the inner product 〈ϕ, e−z t
h̄ Hψ0〉 is an analytic function of z ∈ D,

D = {z ∈ C : Re(z) ≥ 0}, continuous on D̄, giving for z = i the inner product
between ϕ ∈ L2(Rd) and the solution of the Schrödinger equation (3.48). For z ∈ R+,
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by the change of variables formula we have

〈ϕ, e−z t
h̄ Hψ0〉 =

∫

R3
ϕ̄(x)E

[
ψ0(

√
zh̄ω(t) + x)e−

i
√

z√
h̄

∫ t
0 a(

√
zh̄ω(s)+x)◦dω(s)

]
dx.

By the assumptions on t, a, and ψ0, both sides of the equality above are analytic for
z ∈ D, continuous in D̄ and coincide on R+. Hence, for z = i we obtain that the
solution in L2(R3) of (3.48) is given by (3.47).

Remark 3.10. The results of Corollary 3.1 can be generalized to the case where a
scalar potential V ∈ Fc(R3) is added to the Hamiltonian, i.e. H = H0 + V with
H0 = 1

2 (−ih̄∇− a)2. Indeed, in this case, since the function V : R3 → R has the
form (3.19), it is bounded and can be extended to an analytic function V : C3 → C.
It is easy to verify that the multiplication operator associated with V is bounded,
i.e. ‖Vψ‖ ≤ supx∈R3 |V(x)|‖ψ‖L2(R3) hence the perturbative Dyson expansion for
the vector e−

it
h̄ (H0+V)ψ0 is convergent. We have

e−
it
h̄ (H0+V)ψ0 = ∑

m

(
− i

h̄

)m

ϕm,

where

ϕm =
∫

∆m(t)
e−

i
h̄ H0(t−sm)Ve−

i
h̄ H0(sm−sm−1) · · ·Ve−

i
h̄ H0(s2−s1)Ve−

i
h̄ H0s1 ψ0ds1 . . . dsm

with ∆m(t) = {(s1, . . . , sm) ∈ Rm : 0 ≤ s1 ≤ · · · ≤ sm ≤ t}.
By exploiting the analyticity for the semigroup generated by H0, the Dyson ex-

pansion for heat semigroup e−
t
h̄ (H0+V)ψ0 as well as the techniques used in the proof

of Corollary 3.1, it is simple to prove that for any m ∈ N the vector ϕm can be
represented in terms of the limit of the following sequence of finite dimensional renor-
malized oscillatory integrals:

ϕm(t, x) = lim
n→∞

(2πih̄)−n/2
∫ o

PnHt

e
i

2h̄ ‖γn‖2
e−

i
h̄ (
∫ t

0 a(γn(s)·γ̇n(s)ds−rn)

×
(∫ t

0
V(γn(s) + x)ds

)m

ψ0(γn(t) + x)dγn.

The limit does not depend on the choice of the sequence {Pn}n of finite dimensional
approximations and it is equal to the Wiener integral

E

[
ψ0(

√
ih̄ω(t) + x)

(∫ t

0
V(

√
ih̄ω(s) + x)ds

)m

e−
i
h̄

√
ih̄
∫ t

0 a(
√

ih̄ω(s)+x)◦dω(s)
]

.

Remark 3.11. Similarly as in Remark 3.7 we point out that all the results in Sect.
3.3 can be extended to the case where the space dimension d is arbitrary.
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Conclusions

In the foregoing pages, a Feynman path integral formula for the three dimensional
Schrödinger equation with magnetic field has been rigorously realized. Once defined
the infinite dimensional oscillatory integrals and their context, we used these tools
to develop a mathematically consistent approach to that issue. In the previous part
we show also as the techniques of finite dimensional integration can be generalized
providing a functional integral representation for the solution of a general class of
high-ordered heat-type equations. Back to our main aim, it should be noted that
the independence of the approximation procedure in the construction of a Feynman
path integral for the solution of the Schrödinger equation by adding a renormaliza-
tion term, is proved in the case of a constant magnetic field. For a generic magnetic
field the theory lacks of a closed form for the counterterm, which leads to the Strato-
novich integral in the probabilistic representation. Some hypothesis about the form
of the cunterterm in the general case could be done. For instance, we can suppose
the appearance of the curl of the magnetic field and the stochastic area integrals. In
fact we expect that, if one of these two quantities is zero, then the counterterm is
null. However, several problems, which can’t be solved as in the constant case, arise
from the computation. Probably, a different way to complete the theory has to be
undertaken. By rewriting the problem through the formalism of differential forms, it
is interesting to point out the connection with a further generalization to the case of
oriented manifolds. A rigorous mathematical definition of a infinite dimensional inte-
gral on manifolds represents an inspiring challenge ahead, as well as the completion of
the theory regarding the Schrödinger equation with a generic magnetic field. Never-
theless, this work lays out how the first fundamental step (i.e. the case of a constant
magnetic field) can be rigorously done, by using several mathematical techniques.





67

Appendix A

Abstract Wiener Spaces

In this appendix we give an overview on the theory of abstract Wiener space, which
are used in many points of this work. For a more exhaustive study, see [52, 51].

Let B be a Banach space endowed with the norm | · | and let B∗ be its dual.
Moreover, let H be a real separable Hilbert space endowed with the scalar product
〈 · 〉 and the norm ‖ ‖. In the following we introduce some definitions.
Definition A.1. A subset B ⊂ B is called cylindric if it can be described by the
following form:

B = {x ∈ B : (〈y1, x〉, . . . , 〈yd, x〉) ∈ E} ,

with y1, . . . , yn ∈ B∗ and E is a Borel set of Rd.
A subset H ⊂ H is called cylindric if it can be described by the following form:

H = {x ∈ H : Px ∈ F}

with P : H → H is an orthogonal projection onto the finite dimensional subspace PH
(such that PH ≡ Rd, for some d ∈ R) and F ∈ B(PH) is a Borel set in PH.
Definition A.2. A cylinder measure on H is a positive and finitely additive set
function defined on the σ-algebra of cylinder sets.

Let us consider the measure µ on the cylindrical sets of H given by

µ ({x ∈ H|Px ∈ F}) =
∫

F

e−
‖x‖2

2

(2π)d/2 dx, F ∈ B(PH).

We shall call µ standard Gaussian measure associated with H.
The following theorem holds [77].

Theorem A.1. Let H infinite dimensional. Then the measure µ does not extend to
a σ-additive measure on the generated σ-algebra.
Definition A.3. A measurable norm on H is a norm | · | with the property that for
every ϵ > 0 there exists Pϵ : H → H finite-dimensional projection such that, for all
P ⊥ Pϵ, holds

µ ({x ∈ H : |P(x)| > ϵ}) < ϵ.
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Remark A.1. It is easy to verify that | · | is weaker than ‖·‖. In fact for all x ∈ H
there exists k ∈ R+ such that |x| ≤ k‖x‖.

Now, denoting by B the completion of H respect to the measurable norm ‖ · ‖,
we can consider the canonical inclusion i of H into B that, thanks to Remark A.1,
is continuous. Analogously, by duality the inclusion i∗ of B∗ into H∗ is continuous
(it is given by the restriction i∗(x) = x|H). By the identification H ≡ H∗we get the
following sequence of embedding

B∗ ↪→i∗ H ↪→i B.

Definition A.4. The triple (B,H, i), with B, H and i defined as above, is called
abstract Wiener space.

According to by L. Gross [51, 52], we have this fundamental result.

Theorem A.2. There exists a unique finite additive measure µ̃ defined on the cylinder
sets B of B by

µ̃(B) := µ(B ∩H),

such that for any y ∈ H, which is an element of B∗, the following holds
∫

B
eiy(x)dµ̃(x) = e−

1
2 ‖y‖2

.

This results allow us to define for any y ∈ B∗, a centered Gaussian random variable
ny on (B, µ̃) such that for any y1, y2 ∈ B∗ we have

∫

B
ny1 ny2 dµ̃ = 〈y1, y2〉.

This shows that the we can extend the map n : B∗ → L2(B, µ̃) by the density of B∗

in H, to an unitary operator, which, with an abuse of notation, we denote with same
symbol n : H → L2(B, µ̃).

Let us consider a complete orthonormal system {ei} in H. Then, for any h ∈ H
the sequence of random variables

d

∑
i=1

〈ei, h〉nei

converges in L2(B, µ) to the random variable nh. In particular, given a projection
operator P : H → H of the form

P(x) =
d

∑
i=1

〈ei, x〉ei,
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where {e1, . . . , ed} orthonormal vectors in H, it is possible to define the random
variable P̃ : B → H as

P̃(·) =
n

∑
i=1

nei(·)ei, nei ∈ L2(B, µ̃).

More generally we have the following definition.

Definition A.5. A function F : H → E (with E is a Banach space) is said to admit
a stochastic extension F̃ : B → E if for any sequence {P} of finite dimensional
orthogonal projectors P : H → H converging strongly to the identity operator I, the
sequence of random variables {F ◦ P̃} converges in probability to a random variable F̃
on B and the limit does not depend on the sequence {P}.

Example A.1. The most common example of abstract Wiener space is the space of
continuous paths called classical Wiener space. In this space we consider the following
Sobolev space:

H := W1,2([0, t], Rd) = {γ : [0, t] → Rd | γ(0) = 0, γ abs. cont., γ̇ ∈ L2([0, t])}

endowed with the inner product

〈γ1, γ2〉 =
∫ t

0
γ̇1γ̇2ds

where γ̇ stands for the distributional derivative of the path γ. It is possible to prove
that H is dense in the Banach space

B := C0([0, t], Rd) = {ω : [0, t] → Rd | ω(0) = 0, ω cont.}

endowed with the supremum norm

|ω| := sup
s∈[0,t]

|ω(s)|.

The triple is completed by the inclusion map i : H → B.
For further information and examples about abstract Wiener spaces and stochastic

extensions see, for instance, [77, 16].
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Appendix B

The Ogawa integral∗

After the introduction of stochastic integral in the 1940s due to K. Itô the interest
to construct a new stochastic theory independently from causality conditions began
to take hold. In particular A. Skorokhod defined, in 1970s, the so-called Skorokhod
integral [106] and introduced the anticipative calculus. A few years later, in 1979, S.
Ogawa independently introduced the so-called Ogawa integral and the corresponding
noncausal calculus [97].

The Ogawa integral was extensively studied also in relation with the Skorohod
integral and the Stratonovich integral [92, 93]; its has been extended even to the case
of random fields [91, 96, 33]; however a detailed study of the case where the integrand
function is d-dimensional (with d ≥ 2) is still lacking. In this appendix, the definition
of Ogawa integral has been reformulated in the framework of abstract Wiener spaces
and we show that in the multidimensional case the condition of universal integrability
cannot be fulfilled, even in rather simple cases. Nevertheless, that condition can be
recovered thanks to the introduction of a renormalization term obtained by exploiting
Ramer’s functional.

A short survey on Ogawa integral
In the following, we shall adopt Ogawa’s recent notations [95, 94]. Let us set a
probability space (Ω,F , P) and let (Wt)t∈[0,1] be the standard Wiener process with
natural filtration {Ft}. We define H as the set of real valued functions f : [0, 1]×
Ω → R which are measurable with respect to B[0,1] ×F and such that the following
condition holds:

P

(∫ 1

0
| f (t, ω)|2dt < ∞

)
= 1.

∗The results of this chapter are collected in [26].
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Given an orthonormal basis {ϕn} of the Hilbert space L2([0, 1], dt), let us consider
the following formal random series

Sϕ( f ) ≡
∞

∑
n=1

( f , ϕn)(ϕn, Ẇ), (B.1)

where ( f , ϕn) =
∫ 1

0 f (t)ϕ̄n(t)dt is inner product in L2([0, 1], dt) and (ϕn, Ẇ) :=∫ 1
0 ϕn(t)dWt. Now we can define a noncausal stochastic integral, i.e. the Ogawa

integral.

Definition B.1. A function f ∈ H is said to be ϕ-integrable (i.e. integrable with
respect to the basis {ϕn}) if the random series (B.1) converges in probability. In
this case this sum is denoted

∫ 1
0 f dϕWt and it is called the Ogawa integral of f with

respect to the basis {ϕn}. A function integrable with respect to the basis {ϕn} is
called ϕ-integrable.

In Def. B.1 the orthonormal basis {ϕn} plays an important role. The requirement
of the independence of the existence as well as of the value of the sum (B.1) from the
basis {ϕn} leads naturally to the definition of universal integrability.

Definition B.2. Let f ∈ H. If f is integrable in the sense of Def. B.1 with respect
to any orthonormal basis and the value of the integral does not depend on the basis,
then the function is called universally integrable (u-integrable).

A different way to characterize the Ogawa integral, which comes directly from the
Itô-Nisio theorem [67], is the following. We can consider the sequence of approximated
processes as follows

Wϕ
n (t) =

n

∑
i=1

∫ t

0
ϕi(s)ds

∫ 1

0
ϕi(s)dWs.

According to the Itô-Nisio theorem we have that the sequence {Wϕ
n } converges uni-

formly in t ∈ [0, 1] to Wt with probability 1. Hence, the Ogawa integral can also be
defined as the limit of a sequence of Stieltjes integrals. In fact the following holds.

Proposition B.1. Let f ∈ H; then f is ϕ-integrable if and only if the sequence
∫ 1

0
f dWϕ

n (t)

of Stieltjes integrals converges in probability. In particular we get

lim
n→∞

∫ 1

0
f dWϕ

n (t) =
∫ 1

0
f dϕWt.

It is important to introduce the definition of regularity of an orthonormal basis.
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Definition B.3. An orthonormal basis {ϕn} in L2([0, 1], dt) is called regular if

sup
n

‖un‖L2 < ∞,

where
un(t) = ∑

i≤n
ϕi(t)

∫ t

0
ϕi(s)ds.

Remark B.1. Two examples of regular basis are trigonometric functions and Haar
functions.
Remark B.2. The existence of a non-regular basis was proved by P. Majer and M. E.
Mancino in [82].
Remark B.3. The results concerning the integrability with respect regular bases and
with respect any orthonormal basis were studied by Ogawa [98] and then, in the
context of Malliavin calculus, by D. Nualart and M. Zakai [92].

A renormalization term for multidimensional Ogawa in-
tegral
In this section, we are going to present an equivalent definition of Ogawa integral with
respect to Wiener process in the framework of abstract Wiener spaces (see Appendix
A and [51, 52, 77]).

In fact, in the framework of abstract Wiener spaces, the definition of Ogawa
integral can be reformulated. Let us consider the d-dimensional canonical Wiener
process, where (Ω,F ) = (C,B(C)) and Wt(ω) = ω(t), ω ∈ C. Here C denotes
the space of continuous paths ω : [0, 1] → Rd. Let f : [0, 1] × C → Rd be a
function in H. For any orthonormal basis {ϕn} of L2([0, 1]; Rd) we can construct
a corresponding orthonormal basis {en} of H as en(s) =

∫ s
0 ϕn(u)du. In fact the map

U : L2([0, 1]; Rd) → H defined by

U(ϕ)(s) =
∫ s

0
ϕ(u)du, ϕ ∈ L2([0, 1]; Rd), (B.2)
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is unitary with inverse given by U−1(γ) = γ̇, γ ∈ H. The finite dimensional approx-
imations of the formal series (B.1) can be equivalently written as

n

∑
i=1

∫ 1

0
f (t, ω)ϕi(t)dt

∫ 1

0
ϕi(t)dWt

=
n

∑
i=1

nei(ω)
∫ 1

0
f (t, ω)ėi(t)dt

=
∫ 1

0
f (t, ω) · γ̇n(ω)(t)dt (B.3)

where

γn(ω) := P̃n(ω) =
n

∑
i=1

einei(ω), ω ∈ C. (B.4)

According to this notation, we can say that f is ϕ-integrable if the sequence (B.3)
converges in probability. Analogously f is defined to be universally Ogawa integrable
if the limit does not depend on the sequence ϕn (or, equivalently, on the sequence
{en}).

In the following we shall show that in the case d ≥ 2 the condition of universal
integrability is too strong and cannot be fulfilled even in the simplest cases.

Let us consider a C1 vector field α : Rd → Rd and let f : [0, 1]×C → Rd defined as
f(t, ω) := α(ω(t)), t ∈ [0, 1]. Given an orthonormal basis {en} of H, let us consider
the sequence {gn} of real random variables on (C,B(C), P) defined as

gn(ω) :=
∫ 1

0
α(ω(t)) · γ̇n(ω)(t)dt, ω ∈ C, (B.5)

where γn is defined in (B.4). Considered the function G : C → H defined as

G(ω)(t) =
∫ t

0
α(ω(s))ds, ω ∈ C, t ∈ [0, 1], (B.6)

the functions {gn} can be represented by the following inner product

gn(ω) = 〈G(ω), P̃n(ω)〉. (B.7)

For ω ∈ C, let DG(ω) denote the Fréchet differential of G evaluated in ω, given
by:

DG(ω)(γ)j(t) =
∫ t

0
∇αj(ω(s)) · γ(s)ds, (B.8)
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where γ ∈ H, and αj are the components of α, with j = 1, . . . , d.

We require now two more hypothesis on α and ∇αj that will be necessary here-
inafter:

(H1)
∫ 1

0

∫

Rd
|α(x)|2 e−

|x|2
2t

(2πt)d/2 dxdt < ∞;

(H2)
∫ 1

0

∫

Rd
|∇αj(x)|2 e−

|x|2
2t

(2πt)d/2 dxdt < ∞, ∀j = 1, . . . d.

We can now state the main result.

Theorem B.1. For any orthonormal basis {en} of H, the sequence of renormalized
finite dimensional approximations of the Ogawa integral, namely the sequence of real
random variables {hn} on (C,B(C), P) defined as

hn(ω) = gn(ω)− rn(ω)

= 〈G(ω), P̃n(ω)〉 −
n

∑
i=1

〈ei, DG(ω)ei〉, (B.9)

converges in L2(C, P) and the limit is independent on the orthonormal basis {en}.

The proof relies upon the following lemmas.

Lemma B.1. Let f : Rn → Rn be a C1 map such that | f | and ‖J f ‖2 belong to
L2(Rn, µ), with ‖J f ‖2 denoting the Hilbert-Schmidt norm of the Jacobian of f and µ
is the standard centered Gaussian measure on Rn. Then

∫

Rn
( f (x) · x − Tr(J f (x)))2 dµ(x) ≤

∫

Rn

(
| f (x)|2 + ‖J f (x)‖2

2
)2

dµ(x),

where Tr(J f (x)) is the trace of the Jacobian of f .

For a detailed proof of Lemma B.1 see [101], where also the following definition is
introduced.

Proof [of Theorem B.1]. It is straightforward to verify that the map G : C → C
defined by (B.6) is H-differentiable and its H-derivative DG is given by (B.8). Fur-
thermore, for any ω ∈ C, the operator DG(ω) is Hilbert-Schmidt. Indeed DG(ω) :
H → H is unitary equivalent to the linear operator T : L2([0, 1]; Rd) → L2([0, 1]; Rd)
defined as

T = U−1 ◦ DG(ω) ◦ U, (B.10)
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where U : L2([0, 1]; Rd) → H is the unitary operator defined in (B.2). By direct
computation it is simple to see that T is explicitly given in terms of a kernel K ∈
L2([0, 1]× [0, 1]), i.e. for ϕ ∈ L2([0, 1]; Rd) and t ∈ [0, 1],

(Tϕ)j(t) =
∫ 1

0
Kj(t, t′) · ϕ(t′)dt′, j = 1, . . . , d,

where Kj(t, t′) = ∇αj(ω(t))χ[0,t](t′), t, t′ ∈ [0, 1]. By formula 4.32 in [86], the Hilbert-
Schmidt norm of T is equal to:

‖T‖2
2 =

∫

[0,1]×[0,1]
|K(t, t′)|2dtdt′ =

d

∑
j=1

∫ 1

0

∫ 1

0
|∇αj(ω(t))|2χ[0,t](t

′)dtdt′ :

=
d

∑
j=1

∫ 1

0
t|∇αj(ω(t))|2dt ≤

d

∑
j=1

∫ 1

0
|∇αj(ω(t))|2dt < ∞,

where the boundedness of the last expression follows by the continuity of the maps
t 7→ ∇αj(ω(t)). By the unitary equivalence of T and DG(ω), we get

‖DG(ω)‖2
2 =

d

∑
j=1

∫ 1

0
t|∇αj(ω(t))|2dt < ∞.

Moreover, by the hypothesis (H1) and (H2), we have that

E[‖G‖2] =
∫ 1

0
E[|α(ω(t))|2]dt =

=
∫ 1

0

∫

Rd
|α(x)|2 e−

|x|2
2t

(2πt)d/2 dxdt < ∞

E[‖DG‖2
2] ≤

d

∑
j=1

∫ 1

0
E[|∇αj(ω(t))|2]dt =

=
d

∑
j=1

∫ 1

0

∫

Rd
|∇αj(x)|2 e−

|x|2
2t

(2πt)d/2 dxdt < ∞.

By Theorem 3.4 the sequence of random variables {hn} given by

hn(ω) = 〈G(ω), P̃n(ω)〉 − Tr(PnDG(ω))

converges in L2(C, P) an the limit does not depend on the orthonormal basis {ei}.
Furthermore, by direct computation, the “renormalization term” Tr(PnDG(ω)) is
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given by

Tr(PnDG(ω)) =
n

∑
i=1

〈ei, DG(ω)ei〉 =
n

∑
i=1

∫ 1

0
ėi(t) · (ei(t) · ∇)α(ω(t))dt.

�

Corollary B.1. For any orthonormal basis {en} of H, the sequence hn defined in
Theorem B.1 converges in probability and the limit is independent of the basis {en}.

Examples
According to Theorem B.1, the condition of existence of the limit in probability of the
sequence of random variables {gn} defined in (B.5), i.e. the Ogawa integrability of the
function f ∈ H, with f (t, ω) := α(ω(t)), t ∈ [0, 1], with respect to the orthonormal
basis {ϕn} of L2([0, 1]; Rd) (with ϕn = ėn) is equivalent to the existence of the limit
in probability of the “renormalization term” rn(ω) = Tr(PnDG(ω)). Analogously,
the universal Ogawa integrability of f is equivalent to the convergence in probability
of rn to a limit which does not depend on the basis {en} of H. In particular, if the
linear operator DG(ω) ∈ L(H,H) is not trace class, then the convergent of sequence
Tr(PnDG(ω)) is not guaranteed and, in general, its value depends on the orthonormal
basis {en}. We are going to show that this problem occurs even in very simple cases.

We recall the linear case studied in Sect. 3.3, but here with d = 2. Thus, let
α : R2 → R2 be a linear vector field of the form

α(x, y) = (h1x + k1y, h2x + k2y). (B.11)

In this case the map G : C → H is given by

G(ω)(t) =
(

h1

∫ t

0
ω1(s)ds + k1

∫ t

0
ω2(s)ds, h2

∫ t

0
ω1(s)ds + k2

∫ t

0
ω1(s)ds

)
,

where ω = (ω1, ω2) ∈ C. The H-derivative DG(ω) for any ω ∈ C is the linear
operator DG : H → H simply given by

DG(γ)(t) =
(

h1

∫ t

0
γ1(s)ds + k1

∫ t

0
γ2(s)ds, h2

∫ t

0
γ1(s)ds + k2

∫ t

0
γ2(s)ds

)
,

with γ = (γ1, γ2) ∈ H.
We can compute explicitly the spectrum of the self-adjoint operator |DG| =√

DG∗DG. Indeed, setting for notational simplicity L ≡ DG∗DG we have, for η, γ ∈
H:

〈η, Lγ〉 = 〈DGη, DGγ〉 =
∫ 1

0
(η1(t), η2(t))A(γ1(t), γ2(t))Tdt,
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with
A =

(
h2

1 + h2
2 h1k1 + h2k2

h1k1 + h2k2 k2
1 + k2

2

)
.

Hence, for γ ∈ H the vector L(γ) ∈ H is given by

L(γ)(t)T = −
∫ t

0

∫ s

1
Aγ(r)Tdrds.

L is a compact operator and has a discrete spectrum. By introducing in R2 an
orthonormal basis {u1, u2} of eigenvectors of the symmetric matrix A, with corre-
sponding eigenvalues a1, a2 ∈ R+, the eigenvectors {γn} of L can be represented as
linear combination of u1 and u2, namely γn = ηn,1u1 + ηn,2u2, with ηn,j : [0, 1] → R.
The components {ηn,j} of the eigenvectors (with eigenvalues λ) are solutions of





λn,jη̈n,j + ajηn,j = 0
η̇n,j(1) = 0
ηn,j(0) = 0

j = 1, 2,

which yields in the non-trivial case where aj > 0 the solutions λn,j =
4aj

π2(1+2n)2 ,
with corresponding eigenvectors γn,j(t) = sin

((
π
2 + nπ

)
t
)

uj, where j = 1, 2. Hence,
we can conclude that |DG| =

√
L is not trace class and in general the limit of

rn = Tr(PnDG) does not necessary exist and, if it exists, its value depends on the
sequence of projectors {Pn} or, equivalently, on the choice of the orthonormal basis
{en} of H.

It is interesting to investigate the value that the “renormalization term” assumes
for different choices of the orthonormal basis {en}, in order to understand the role it
plays in a few particular cases.

Let us consider L2([0, 1]; R2) and the following orthonormal basis

{ψn} : =
{
(1, 0), (0, 1),

√
2(cos(2πnt), 0),

√
2(sin(2πnt), 0),

√
2(0, cos(2πnt)),

√
2(0, sin(2πnt))

}
=

= {ψ0,x, ψ0,y, ψn,1, ψn,2, ψn,3, ψn,4},

with n ∈ N \ {0}. Rewriting formula (B) explicitly, we can compute

〈ψn, Tψn〉 =
∫ 1

0
ψn(t) ·

(∫ t

0
ψn(s)ds · ∇

)
α(ω(t))dt,

where α : R2 → R2 is given by (B.11) and T : L2([0, 1]; R2) → L2([0, 1]; R2) is defined
by (B.10). For the vectors of the form ψn,j with j = 1, . . . , 4 we have:

〈ψn,j, Tψn,j〉 = 0;
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while for the two constant vectors

〈ψ0,x, Tψ0,x〉 =
h1

2
;

〈ψ0,y, Tψ0,y〉 =
k2

2
.

This gives for the basis {ψn} the following “renormalization term” (depending on the
divergence of α):

rn = Tr(PnDG) =
n

∑
i=1

〈ψi, Tψi〉 =
1
2
∇ · α.

Let us now consider a different basis in L2([0, 1]; R2):

{ξn} : = {(1, 0), (0, 1), (cos(2πnt), sin(2πnt)), (sin(2πnt), cos(2πnt)),
(− cos(2πnt), sin(2πnt)), (− sin(2πnt), cos(2πnt))} =

= {ξ0,x, ξ0,y, ξn,1, ξn,2, ξn,3, ξn,4},

with n ∈ N \ {0}. We use the same argument as before for the vectors

ξn,1 = (cos(2πnt), sin(2πnt)).

We obtain:

〈ξn,1, Tξn,1〉 =
∫ 1

0

(
k1

sin2(πnt) cos(2πnt)
πn

+ h1
sin(2πnt) cos(2πnt)

2πn

+k2
sin(2πnt) sin2(πnt)

πn
+ h2

sin2(2πnt)
2πn

)
dt =

=
h2 − k1

4nπ
=

∇× α

4nπ
.

Analogously

〈ξn,2, Tξn,2〉 =
∫ 1

0

(
h2

sin2(πnt) cos(2πnt)
πn

+ k2
sin(2πnt) cos(2πnt)

2πn

+h1
sin(2πnt) sin2(πnt)

πn
+ k1

sin2(2πnt)
2πn

)
dt =

=
k1 − h2

4nπ
= −∇× α(ω(t))

4nπ
,

and
〈ξn,3, Tξn,3〉 =

k1 − h2

4πn
= −∇× α

4πn

〈ξn,4, Tξn,4〉 =
−k1 + h2

4πn
=

∇× α

4πn
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In this case the series ∑n
i=1〈ξi, Tξi〉 cannot converge absolutely and and the value

of the “renormalization term” depends on the order of the terms in the sum.
At last we consider in the Hilbert space H the sequence of orthogonal projection

operators onto the finite dimensional subspaces Hn of piecewise linear paths of the
form

γ(t) =
n−1

∑
i=0

χ[ i
n , i+1

n )(t) (γ(i/n) + n (γ(i + 1/n)− γ(i/n)) (t − i/n)) , (B.12)

with t ∈ [0, 1]. An orthonormal basis of Hn is provided, e.g., by the vectors

{(zn,i, 0), (0, zn,i)}i=0,...,n−1, (B.13)

where
zn,i(t) =

√
nχ[ i

n , i+1
n )(t)

(
t − i

n

)
+

1√
n

χ[ i+1
n ,1)(t),

with i = 0, . . . , n − 1. We also notice that:

żn,i(t) =
√

nχ[ i
n , i+1

n )(t).

It is not difficult to compute

〈(zn,i, 0), DG(zn,i, 0)〉 = h1

2n
, 〈(0, zn,i), DG(0, zn,i)〉 =

k2

2n
,

Thereby we get

lim
n→∞

Tr(PnDG) =
1
2
∇ · α. (B.14)

This last example is particularly interesting since in the case where {Pn} are the
projectors on the subspaces of piecewise linear path described above, the limits of the
sequences {gn} and {rn} (defined respectively by (B.7) and (B.9)) can be computed
explicitly. This provides a possible technique for the computation of the limit of
the sequence {hn} for linear vector fields α and, by Theorem (B.1), this limit is
independent on the sequence of projectors. We remark that this toy model can be
studied also by applying different techniques, such as, for instance, Malliavin calculus
[92].

The following lemma provides a useful tool in the proof of theorem B.2, which
shows that Ogawa integral with respect the basis (B.13) coincides with Stratonovich
Integral.
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Theorem B.2. Let α be the linear vector field given by (B.11) and G : C → H the
linear operator (B.6). Then the sequence of random variables {gn} defined by

gn(ω) = 〈G(ω), P̃n(ω)〉, ω ∈ C,

where {Pn} is the sequence of orthogonal projectors onto the subspaces Hn of piecewise
linear paths (B.12), converges in L2(C, P) to the Stratonovich integral

∫ 1

0
α(ω(t)) ◦ dω(t).

Proof. By lemma 3.5 the sequence {gn} has the same limit of the sequence {g′n},
where

g′n(ω) = 〈G(P̃n(ω)), P̃n(ω)〉, ω ∈ C

if such a limit exists. Moreover the random variables {g′n} assume the following form

g′n(ω) =
∫ 1

0
α(ωn(t)) · ω̇n(t)dt,

where ωn = P̃nω ∈ H. By Wong-Zakai approximations results [115], in the case
where {Pn} are projectors on piecewise linear paths, the sequence {g′n} converges in
L2(C, P) to the Stratonovich integral

∫ 1
0 α(ω(t)) ◦ dω(t).

Theorem B.3. Let α be the linear vector field given by (B.11) and G : C → H
the linear operator (B.6). Then the sequence of random variables {hn} defined in
Theorem B.1, namely

hn(ω) = gn(ω)− rn,

with rn = Tr(PnDG), converges to the Itô integral.
∫ 1

0
α(ω(t))dω(t)

and the limit does not depend on the sequence {Pn}.

Proof. By Theorem B.1 the sequence {hn} converges in L2(C, P) and the limit
is independent of {Pn}. In the case where {Pn} are projectors onto subspaces of
piecewise linear paths, we can compute explicitly the limit of both {gn} and {rn}.
Indeed, by Theorem B.2 and formula (B.14), we obtain

lim
n→∞

hn(ω) = lim
n→∞

gn(ω)− lim
n→∞

rn

=
∫ 1

0
α(ω(t)) ◦ dω(t)− 1

2
∇ · α,



82 Appendix B. The Ogawa integral

where the limits are meant in L2(C, P). By the conversion formula between Itô and
Stratonovich integral we obtain the final result:

∫ 1

0
α(ω(t)) ◦ dω(t) =

∫ 1

0
α(ω(t))dω(t) +

1
2

∫ 1

0
∇ · α(ω(t))dt.



83

Appendix C

Proof of Lemma 3.2

In this appendix we give a complete proof of Lemma 3.2 of Chpt. 3 quoted below.
We notice that we shall use the same notations as in Chpt. 3

Lemma 3.2. Let a be a three dimensional vector field fulfilling the assumptions of
Theorem 3.1. Let { fn} be the sequence of random variables fn : Ct → C defined by

fn(ω) =
∫ t

0
a
(√

ih̄ωn(s)
)
· ω̇n(s)ds,

where ωn(s) ≡ Pn(ω)(s) and Pn(ω) is defined by the right hand side of (3.26). Then
for any p ∈ N, 1 ≤ p ≤ ∞, fn converges, as n → ∞, in Lp(Ct, P) to the random
variable f defined as the Stratonovich stochastic integral

f (ω) =
∫ t

0
a(
√

ih̄ω(s)) ◦ dω(s).

Proof. We will consider for notational simplicity the 1-dimensional case. The
proof in all dimensions, in particular in the 3-dimensional case is analogous. By (3.27)
the random variables fn are given by:

fn(ω(s)) =
n−1

∑
j=0

∫ t
n

0

∫

R
ei
√

ih̄kω(sj)ei
√

ih̄k
(ω(sj+1)−ω(sj))s

t/n · (ω(sj+1)− ω(sj))

t/n
dµ(k)ds =

=
n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)
(

ei
√

ih̄k(ω(sj+1)−ω(sj)) − 1
)
· 1

i
√

ih̄k
dµ(k).

By setting ∆j := ω(sj+1)−ω(sj) and by a Taylor expansion (to second order with
remainder), the last line becomes

n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)

(
∆j +

1
2

i
√

ih̄k∆2
j +

1
2
(i
√

ih̄k)2∆3
j

∫ 1

0
(1 − u)2ei

√
ih̄k∆judu

)
dµ(k).
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Hence the function fn can be written as the sum of three contributions, namely
fn = gn + hn + rn, where

gn(ω) =
n−1

∑
j=0

∫

R
ei
√

ih̄kω(sj)(ω(sj+1)− ω(sj))dµ(k)

=
n−1

∑
j=0

a(
√

ih̄ω(sj))(ω(sj+1)− ω(sj));

hn(ω) =
1
2

n−1

∑
j=0

∫

R
i
√

ih̄kei
√

ih̄kω(sj)(ω(sj+1)− ω(sj))
2dµ(k)

=
n−1

∑
j=0

1
2
· a′(

√
ih̄ω(sj))(ω(sj+1)− ω(sj))

2;

rn(ω) =
n−1

∑
j=0

1
2

∫ 1

0

∫

R

(
i
√

ih̄
)2

k2ei
√

ih̄k(ω(sj)+(ω(sj+1)−ω(sj))u)

× (ω(sj+1)− ω(sj))
3(1 − u)2dµ(k)du,

(a′ standing for derivative of a).

Let us consider, at first, the sequence of random variables {gn} defined by

gn(ω) =
n−1

∑
j=0

a(
√

ih̄ω(sj))
(
ω(sj+1)− ω(sj)

)
, ω ∈ Ct

and the stochastic integral

G(ω) =
∫ t

0
a(
√

ih̄ω(s))dω(s),

where sj =
jt
n and a is the Fourier transform of a complex bounded measure on R

with compact support contained in the ball BR with radius R ∈ R+:

a(
√

ih̄ω(s)) =
∫

R
ei
√

ih̄ξω(s)dµ(ξ).

Without loss of generality, we can restrict ourselves to prove the convergence of gn
to G in Lp(Ct, P) for p even.

By the BDG inequalities (see, e.g. [70]) we have

E
[
|G − gn|2p] ≤ C2p · E

[(
n−1

∑
j=0

∫ sj+1

sj

∣∣∣a(
√

ih̄ω(s))− a(
√

ih̄ω(sj))
∣∣∣
2

ds

)p]
, (C.1)
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with C2p a positive constant. Moreover we have:
∣∣∣a(

√
ih̄ω(s))− a(

√
ih̄ω(sj))

∣∣∣
2
=

= (ω(s)− ω(sj))
2
∣∣∣∣
∫ 1

0

√
ih̄a′

(√
ih̄
(
ω(sj) + u(ω(s)− ω(sj))

))
du
∣∣∣∣
2

=

= (ω(s)− ω(sj))
2
∣∣∣∣i
√

ih̄
∫ 1

0

∫

R
ξei

√
ih̄ξ(ω(sj)+u(ω(s)−ω(sj)))dµ(ξ)du

∣∣∣∣
2

≤

≤ h̄(ω(s)− ω(sj))
2 · G(ω(s), ω(sj)), (C.2)

where

G(ω(s), ω(sj)) =

=
∫ 1

0

∫ 1

0

∫

R

∫

R
|ξ1||ξ2|e−

√
2

2 ξ1(ω(sj)+u1(ω(s)−ω(sj)))

×e−
√

2
2 ξ1(ω(sj)+u2(ω(s)−ω(sj)))d|µ|(ξ1)d|µ|(ξ2)du1du2.

(C.3)

Using (C.2), we can rewrite the expectation (C.1) as follows

E
[
|G − gn|2p

]
≤ C2ph̄pE

(
n−1

∑
j=0

∫ sj+1

sj

(ω(s)− ω(sj))
2G(ω(s), ω(sj))ds

)p

=

= C2ph̄p · E




n−1

∑
j1,...,jp=0

∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

(ω(s1)− ω(sj1))
2 · · · (ω(sp)− ω(sjp))

2

×G(ω(s1), ω(sj1)) · · · G(ω(sp), ω(sjp))ds1 · · · dsp


 ≤

≤ C2ph̄p I1
n I2

n, (C.4)

where in the latter inequality we used Schwarz inequality, with

I1
n =

√√√√√E




n−1

∑
j1,...,jp=0

(∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

(ω(s1)− ω(sj1))
4 · · · (ω(sp)− ω(sjp))

4ds1 · · · dsp

)
, (C.5)

I2
n =

√√√√√E




n−1

∑
j1,...,jp=0

(∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

G(ω(s1), ω(sj1))
2 · · · G(ω(sp), ω(sjp))

2ds1 · · · dsp

)
. (C.6)

We will show that I1
n → 0 for n → ∞ and that I2

n is uniformly bounded for all n.
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Let us consider the integral I1
n given by (C.5). All the expectations

E
[
(ω(s1)− ω(sj1))

4 · · · (ω(sp)− ω(sjp))
4
]

can be computed taking into account the coincidences of the indices jr, with r =
1, . . . , p in the following way:

∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

E
[
(ω(s1)− ω(sj1))

4 · · · (ω(sp)− ω(sjp))
4
]

ds1 · · · dsp =

=
∫ t

n

0
· · ·

∫ t
n

0
E
[
ω(s1)

4 · · ·ω(sp1)
4
]

ds1 · · · dsp1

∫ t
n

0
· · ·

∫ t
n

0
E
[
ω(sp1+1)

4 · · ·ω(sp1+p2)
4
]

dsp1+1 · · · dsp1+p2 · · ·

· · ·
∫ t

n

0
· · ·

∫ t
n

0
E
[
ω(spi−1+1)

4 · · ·ω(spi−1+pi)
4
]

dspi−1+1 · · · dspi−1+pi , (C.7)

with p1 + p2 + · · ·+ pi = p and we have used that in distribution ω(s)− ω(sj) ∼
ω(s − sj). Further, the generic term containing p̃ factors, for any p̃ = 1, . . . , p, can
be computed as

∫ t
n

0
· · ·

∫ t
n

0
E
[
ω(s1)

4 · · ·ω(s p̃)
4
]

ds1 · · · ds p̃ =

p̃!
∫

· · ·
∫

0<s1<···<s p̃<t/n

E
[
ω(s1)

4 · · ·ω(s p̃)
4
]

ds1 · · · ds p̃.

By a straightforward calculation we can represent E
[
ω(s1)

4 · · ·ω(s p̃)4] as a homo-
geneous polynomial P(s1, s2 − s1, . . . , s p̃ − s p̃−1) with deg(P) = 2p̃. We can rewrite it
as Q(s1, s2, . . . , s p̃), with deg(Q) = 2p̃ (its coefficients depending only on p̃). Thanks
to the change of variables ti =

si
t/n , we have

∫
· · ·

∫

0<s1<···<s p̃<t/n

Q(s1, s2, . . . , s p̃)ds1 · · · ds p̃ =

=
∫

· · ·
∫

0<t1<···<t p̃<1

(
t
n

)3p̃

Q(t1, t2, . . . , t p̃)dt1 · · · dt p̃ = C ·
(

t
n

)3p̃

,

with
C =

∫

0<t1<···<t p̃<1
Q(t1, t2, . . . , t p̃)dt1 · · · dt p̃.
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Applying the same argument for all terms in (C.7) we get
∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

E
[
(ω(s1)− ω(sj1))

4 · · · (ω(sp)− ω(sjp))
4
]

ds1 · · · dsp =

= C1 · · ·Ci ·
(

t
n

)3(p1+···+pi)

= C̃ ·
(

t
n

)3p

,

with C̃ = C1 · · ·Ci. Thus all the contributions can be estimated by K̃p ·
( t

n

)3p, where
K̃p is the maximum of the constants computed as C̃. Eventually, using ∑n−1

j1,...,jp=01 = np

we get

I1
n ≤

√√√√
n−1

∑
j1,...,jp=0

K̃p ·
(

t
n

)3p

=

√(
t
n

)3p

· K̃p · np = K̃p ·
t

3p
2

np
n→∞−−−→ 0.

Concerning I2
n, recalling the definition (C.3) of G, we have to study

I2
n =

√√√√
n−1

∑
j1,...,jp=0

(∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

E
[
G(ω(s1), ω(sj1))

2 · · · G(ω(sp), ω(sjp))
2
]

ds1 · · · dsp

)
.

By writing explicitly the functions G(·, ·), we get the following bound:

(
I2
n
)2 ≤

n−1

∑
j1,...,jp=0

(∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

∫ 1

0
· · ·

∫ 1

0

∫

R
· · ·

∫

R
E

[
p

∏
i=1

|ξi||ξ̃i||ζi||ζ̃i|

e−
√

2
2 ξi(ω(sji ))+ui(ω(si)−ω(sji )) · e−

√
2

2 ξ̃i(ω(sji ))+ũi(ω(si)−ω(sji )) · e−
√

2
2 ζi(ω(sji ))+vi(ω(si)−ω(sji ))

e−
√

2
2 ζ̃i(ω(sji ))+ṽi(ω(si)−ω(sji ))

]
d|µ|(ξi)d|µ|(ξ̃i)d|µ|(ζi)d|µ|(ζ̃i)duidũidvidṽi

)
.

Since by assumption the support of the measure µ is contained in a ball BR of radius
R, we can bound |ξi||ξ̃i||ζi||ζ̃i| ≤ R4 on the support of µ obtaining :

(
I2
n
)2 ≤ R4p

n−1

∑
j1,...,jp=0

(∫ sj1+1

sj1

· · ·
∫ sjp+1

sjp

∫ 1

0
· · ·

∫ 1

0

∫

R
· · ·

∫

R
E

[
p

∏
i=1

e−
√

2
2 ω(si)(ξi+ξ̃i+ζi+ζ̃i)

e−
√

2
2 (ω(si)−ω(sji ))(ξiui+ξ̃i ũi+ζivi+ζ̃i ṽi)

]
d|µ|(ζi)d|µ|(ζ̃i)duidũidvidṽi

)
.

We notice that the term under the expectation can be computed as

exp
[

P(s1, sj1 , . . . , sp, sjp , ξ1, ξ̃1, . . . , vp, ṽp)
]

,
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where P is a polynomial function, which maximum MP for si, ski ∈ [0, t], ui, ũi, vi, ṽi ∈
[0, 1], and ξi, ξ̃i, ζi, ζ̃i ∈ supp(µ), for all i = 1 . . . p. Finally, by integrating and
summing with respects to all variables, we get a finite term of the order tp · |µ|4p · M,
proving a uniform bound for I2

n. Hence

gn(ω)
L2p(Ct,P)−−−−−→

∫ t

0
a(
√

ih̄ω(s))dω(s), ω ∈ Ct.

Let us consider now the sequence of random variables {hn} given by

hn(ω) =
n−1

∑
j=0

1
2
· a′(

√
ih̄ω(sj))(ω(sj+1)− ω(sj))

2, ω ∈ Ct,

and set a′(
√

ih̄ω(s)) ≡ ϕ(ω(s)), for any s ∈ [0, t]. Let H be the random variable
defined by

H(ω) =
1
2

∫ t

0
ϕ(ω(s))ds, ω ∈ Ct.

We have:

H(ω)− hn(ω) =
1
2

n−1

∑
j=0

(∫ sj+1

sj

ϕ(ω(s))ds − ϕ(ω(sj))
(
ω(sj+1)− ω(sj)

)2
)
=

=
1
2

n−1

∑
j=0

( ∫ sj+1

sj

ϕ(ω(sj))ds +
∫ sj+1

sj

ϕ′(ω(sj))(ω(s)− ω(sj))ds

+
∫ sj+1

sj

∫ 1

0

(
ω(s)− ω(sj))

2ϕ′′(ω(sj) + u(ω(s)− ω(sj)))(1 − u)
)

duds

−ϕ(ω(sj))
(
ω(sj+1)− ω(sj)

)2

)
.

Hence

‖H − hn‖Lp(Ct,P) ≤
1
2

(
‖J1

n‖Lp(Ct,P) + ‖J2
n‖L2p(Ct,P) + ‖J3

n‖Lp(Ct,P)

)
,
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where:

J1
n(ω) =

n−1

∑
j=0

ϕ(ω(sj))
(
(sj+1 − sj)− (ω(sj+1)− ω(sj))

2) ;

J2
n(ω) =

n−1

∑
j=0

ϕ′(ω(sj))
∫ sj+1

sj

(ω(s)− ω(sj))ds;

J3
n(ω) =

n−1

∑
j=0

∫ sj+1

sj

∫ 1

0

(
ω(s)− ω(sj))

2ϕ′′(ω(sj) + u(ω(s)− ω(sj)))(1 − u)
)

duds.

Without loss of generality we can consider the case where the function ϕ : R →
C is real valued, since the general case follows easily by the inequality ‖J1

n‖Lp ≤
‖Re(J1

n)‖Lp + ‖Im(J1
n)‖Lp . The Lp norm of the function J1

n can be estimated as:

E[|J1
n|2p] =

n−1

∑
j1,...,j2p=0

E

[
ϕ(ω(sj1)) · · · ϕ(ω(sj2p))

(
(sj1+1 − sj1)− (ω(sj1+1)− ω(sj1))

2)

· · ·
(
(sj2p+1 − sj2p)− (ω(sj2p+1)− ω(sj2p))

2
) ]

≤

≤ (2p)! ∑
0≤j1≤...≤j2p≤n−1

E

[
ϕ(ω(sj1)) · · · ϕ(ω(sj2p))

(
(sj1+1 − sj1)− (ω(sj1+1)− ω(sj1))

2)

· · ·
(
(sj2p+1 − sj2p)− (ω(sj2p+1)− ω(sj2p))

2
) ]

.

Since E[((sj+1 − sj)− (ω(sj + 1)− ω(sj))
2)] = 0, the sum above contains only the

n2p−1terms where j1 ≤ · · · ≤ j2p−1 = j2p. Indeed, if j1 ≤ · · · ≤ j2p−1 < j2p:

E

[
2p

∏
i=1

ϕ(ω(sji))
(
(sj1+1 − sj1)− (ω(sj1+1)− ω(sj))

2)
]
=

= E

[
2p−1

∏
i=1

ϕ(ω(sji))
(
(sj1+1 − sj1)− (ω(sj1+1)− ω(sj))

2) ϕ(ω(sjp))

]
·

E

[ (
(sj2p+1 − sj2p)− (ω(sj2p+1)− ω(sj2p))

2
) ]

= 0.

Direct computation shows that all the terms in this sum are of order O((sj+1 −
sj)

2p) = O(1/np) or less. Indeed, taking into account the possible coincidences of
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indexes, all the terms are of the form

E

[
ϕ(ω(sk1))

p1
(
(sk1+1 − sk1)− (ω(sk1+1)− ω(sk1))

2)p1 · · ·

· · · ϕ(ω(skr))
pr
(
(skr+1 − skr)− (ω(skr+1)− ω(skr))

2)pr

]
, (C.8)

where p1 + · · ·+ pr = 2p and k1 < k2 < · · · < kr. By writing ϕ(x) =
∫

ei
√

iξxdν(ξ),
x ∈ R with ν complex Borel measure on R supported in the ball BR, the integral
(C.8) can be estimates as:

∫

R2p
E
[(
(skr+1 − skr)− (ω(skr+1)− ω(skr))

2)pr
] r−2

∏
α=0

(
E

[
ei
√

i(ω(skr−α
)−ω(skr−α−1+1))∑

∑α
β=0 pr−β

l=1 ξl

])

(
r−1

∏
α=1

E

[
ei
√

i(ω(skr−α+1)−ω(skr−α
))∑

∑α
β=0 pr−β

l=1 ξl
(
(skr−α+1 − skr−α

)− (ω(skr−α+1)− ω(skr−α
))2)pr−α

])

E
[
ei
√

iω(sk1
)∑

2p
l=1 ξl

]
dν(ξ1) . . . dµ(ξ2p).

Now, since ω(t1)− ω(t2) has the same law as (t1 − t2)
1
2 X, with X a standard normal

random variable and for all ζ ∈ R, 0 ≤ t1 ≤ t2, k ∈ N, we have:

E
[
ei
√

iζ(ω(t1)−ω(t2))
]
= e−

i
2 (t−s)ξ2

,

E
[
ei
√

iζXX2k
]
= H2k(

√
iζ)e−

i
2 ζ2

,

with Hn denoting the nth Hermite polynomial. Hence:
∣∣∣∣∣E
[

ei
√

i(ω(skr−α
)−ω(skr−α−1+1))∑

∑α
β=0 pr−β

l=1 ξl

] ∣∣∣∣∣ = 1

∣∣∣∣∣E
[

ei
√

i(ω(skr−α+1)−ω(skr−α
))∑

∑α
β=0 pr−β

l=1 ξl
(
(skr−α+1 − skr−α

)− (ω(skr−α+1)− ω(skr−α
))2)pr−α

] ∣∣∣∣∣ ≤

≤ (skr−α+1 − skr−α
)pr−α Pα,pr−α(ξ1, . . . , ξ2p),

with Pα,pr−α : R2p → R suitable polynomial functions. By setting

M := max
r,p1,...pr

r−1

∏
α=1

max
ξ1,...ξp∈BR

|Pα,pr−α(ξ1, . . . , ξp)|,
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we get E
[
|J1

n|2p] ≤ M t2p

n |ν(BR)|2p, obtaining the required convergence result:

lim
n→∞

E
[
|J1

n|2p
]
→ 0.

The same argument produces an analogous estimate for E[|J2
n|2p]. Indeed, always

assuming without loss of generality that the function ϕ is real valued, we get:

E[|J2
n|2p] =

n−1

∑
j1,...,j2p=0

E

[
ϕ′(ω(sj1)) · · · ϕ′(ω(sj2p))

∫ sj1+1

sj1

(ω(u1)− ω(sj1))du1

· · ·
∫ sj2p+1

sj2p

(ω(u2p)− ω(sj2p))du2p

]

≤ (2p)!
n−1

∑
0≤j1≤···≤j2p≤n−1

E

[
ϕ′(ω(sj1)) · · · ϕ′(ω(sj2p))

∫ sj1+1

sj1

(ω(u1)− ω(sj1))du1 · · ·
∫ sj2p+1

sj2p

(ω(u2p)− ω(sj2p))du2p

]
.

Again, since E[
∫ sj+1

sj
(ω(u) − ω(sj))du] = 0, we can consider only the n2p−1 terms

with j1 ≤ · · · ≤ j2p−1 = j2p. All terms have the same structure as the integrals
appearing in (C.4) and by using the same arguments applied for the estimates of
integrals (C.5) and (C.6), we obtain limn→∞ E

[
|J2

n|2p] = 0. Furthermore, the same
argument applies also to the term J3

n, yielding

lim
n→∞

E
[
|J3

n|2p] = 0.

Thus
hn

Lp(Ω,P)−−−−→
∫ t

0
ϕ(ω(s))ds.
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We estimate the last term rn by the Cauchy-Schwarz inequality as follows

|rn|2p ≤ E

[(
n−1

∑
j=0

∫ 1

0

∫ 1

0

∫

R

∫

R
|κ1||κ2|e−

√
2

2 κ1(ω(sj)+(ω(sj+1)−ω(sj))u1)e−
√

2
2 κ2(ω(sj)+(ω(sj+1)−ω(sj))u2)

(ω(sj+1)− ω(sj))
6(1 − u1)

2(1 − u2)
2du1du2d|µ|(κ1)d|µ|(κ2)

)p

 ≤

≤

√√√√√E




n−1

∑
j1,...,jp=0

(ω(sj1+1)− ω(sj1))
12 · · · (ω(sjp+1)− ω(sjp))

12




√√√√√E




n−1

∑
j1,...,jp=0

F (ω(sj1+1), ω(sj1))
2 · · · F (ω(sjp), ω(sjp+1))2


, (C.9)

where

F (ω(sj), ω(sj+1)) =
∫ 1

0

∫ 1

0

∫

R

∫

R
|κ1||κ2|e−

√
2

2 κ1(ω(sj)+(ω(sj+1)−ω(sj))u1)

e−
√

2
2 κ2(ω(sj)+(ω(sj+1)−ω(sj))u2)(1 − u1)

2(1 − u2)
2du1du2d|µ|(κ1)d|µ|(κ2).

Both factors appearing in the last line of (C.9) can be estimated by the same tech-
niques applied in the study of the terms (C.5) and (C.6), obtaining rn

Lp(Ω,P)−−−−→ 0.
Eventually, we conclude that the sequence of random variables fn defined as

fn(ω) =
∫ t

0
a
(√

ih̄ωn(s)
)
· ω̇n(s)ds,

converges, as n → ∞, in Lp(Ω, P) to the random variable f defined as the Stratono-
vich stochastic integral

f (ω) =
∫ t

0
a(
√

ih̄ω(s)) ◦ dω(s).
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