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Introduction

The original results that I present in this thesis can be mainly divided
in two parts. In the first one I study rational curves on varieties which
admits a fibration such that the canonical bundle of a generic fiber is
trivial. In the second part I study the twists of the cotangent sheaf of
a Hyperkähler manifold. More precisely I look for conditions such that
the twists have some positivity properties. The second part is a joint
work with Andreas Höring.

Rational curves on Calabi–Yau fiber spaces

Finding rational curves in a projective variety X is useful to understand
the geometry of X because these curves are strongly related to many in-
variants. Rational curves on Calabi–Yau varieties are particularly use-
ful but the existence of such curves in full generality on these varieties
is proven only in dimension two by Bogomolov–Mumford [MM83].
On K3 surfaces there are rational curves in any ample linear series.
This leads to define Beauville–Voisin class as the zero-cycle class of
a point on a rational curve [BV04]. In higher dimension doing this

is more difficult because it is hard to find an ample divisor H
i→ X

with i∗(CH0(H)) = Z, but many things can be said in the case of Hy-
perkähler manifolds [CMP19]. Let me briefly give a couple of other
motivations: finding a rational curve on a variety implies that the vari-
ety is not hyperbolic in the sense of Kobayashi in a very strong way; a
rational morphism to a manifold without rational curves is everywhere
defined; rational curves play an important role in many parts of theo-
retical physics, for example see [CXGP91] [AM93]. This list can be
made much longer.

In some sense a variety with no rational curves has very special proper-
ties. Indeed if one suppose that X is a projective variety with mild sin-
gularities and no rational curves, then by the Cone Theorem the canon-
ical bundle of X is numericallly effective. In this situation Abundance
Conjecture predicts that the canonical bundle is semiample, hence some

power of the canonical bundle gives a well-defined fibration X
f−→ B

such that dim(B) = k(X) is the Kodaira dimension of X, B is of log-
general type and KX ∼Q f

∗L for some ample line bundle L on B. By
adjunction formula the general fiber of f has trivial canonical bundle.
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Assuming that X has no rational curves has some strong consequences
on the geometry of the fibration. Clearly there are some cases where
one cannot say anything only with this fibration: if the canonical bun-
dle is ample then f is an isomorphism and if the Kodaira dimension is
zero then B is a point. In the second case one can say something for
example studying other fibrations. For this reasons it is very natural

to focus on the rational curves that are vertical for a fibration X
f−→ B

such that KX ∼Q f
∗L.

The experience with minimal model program suggests that even if one
is mainly interested in smooth varieties, the natural setting is to allow
at least log-terminal singularities. With this idea in mind I started my
thesis trying to extend the results proven in [DFM19] in a singular
setting typical of the minimal model program. In their paper, Dive-
rio, Fontanari and Martinelli, proved, among the others, the following
theorem.

0.1. Theorem. [DFM19, Theorem 1.1.] Let X be a smooth projective
manifold with finite fundamental group. Suppose there exists a projec-
tive variety B and a morphism f : X → B such that the general fiber
has dimension one. Suppose, moreover, that there exists a line bundle
L on B such that KX ∼ f ∗L. Then X does contain a rational curves.

The first positive result in this direction is the following theorem.

0.2. Theorem. Let X be a normal projective variety of dimension
n with at most log terminal singularities and vanishing augmented ir-
regularity, i.e. the irregularity of any quasi-étale cover of X is zero.

Suppose that there exists a surjective morphism X
f−→ B to a variety

of dimension n− 1. If there exists a Cartier divisor L on B such that
f ∗L ∼ KX , then there exists a subvariety of codimension one in X that
is covered by rational curves contracted by f .

The assumption on the fundamental group made in [DFM19] is re-
placed by the condition on the augmented irregularity. Also in the
smooth case, the finiteness of the fundamental group is stronger than
the vanishing of the augmented irregularity.

The condition f ∗L ∼ KX is quite unpleasant, but in the case where
the canonical bundle of X is itself trivial it is automatically satisfied.
When the Kodaira dimension is zero, passing to an index one cover,
this result can be easily generalized to the following:

0.3. Theorem. Let X be a normal projective variety of dimension n
with at most log terminal singularities, numerically trivial canonical
bundle and vanishing augmented irregularity. Suppose that there exists
a morphism f : X → B whose general fiber is a curve. Then there
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exists a uniruled subvariety of codimension one in X that is covered by
rational curves contracted by f .

This results led me, following the ideas in [DFM19], to study also the
case of a fibration over a curves. More precisely starting from a ratio-
nal point p in the Néron–Severi group with some numerical properties
and assuming there are no rational curves on X, I prove the existence
of another rational point in the Néron–Severi that is the class of a
line bundle that induces a genus one fibration. The existence of such
fibration and no rational curves gives a contradiction to Theorem 0.3.

Genus one fibrations can be divided in two main families, formed by
generically isotrivial fibrations and the others. If f is not generically
isotrivial then it is well-known to the experts that X does contain
rational curves. Roughly speaking because the moduli space of elliptic
curves is A1 and over the boundary of its compactification there are
always rational curves. In the case of a generically isotrivial genus one

fibration X
f−→ B one needs to add some hypothesis in order to have

some vertical rational curves in X.

As explained before, a reasonable condition is that f is relatively min-
imal, i.e. KX ∼Q f

∗L for some Q-Cartier Q-divisor on B. Under this
assumption I proved the following result that gives a precise description
of relatively minimal genus one fibrations which contains divisors cov-
ered by vertical rational curves, and also characterizes the case where
there are no vertical rational curves at all.

0.4. Theorem. Let X be a projective variety with at most log-terminal
singularities. Suppose there is a fibration X → B such that the general
fiber is a genus one curve and there exists a Q-Cartier Q-divisor L on
B such that f ∗L ∼Q KX . Then

• The variety X does not contain a divisor covered by vertical
rational curves if and only if X is isomorphic in codimension
one to a variety Y which has a finite cover, étale in codimen-
sion two, isomorphic to B̃ × E over B, for some cover B̃ of
B.
• The variety X does not contain vertical rational curves if and

only if there is a finite globally étale cover of X isomorphic to
B̃ × E over B, for some cover B̃ of B.

This theorem is a satisfactory answer in the case of relatively minimal
genus one fibration. At this point it is natural to ask how the condition
to be relatively minimal may fail and what happens in this case. A
genus one fibration kay fail to be relatively minimal for two reasons:
the presence of some exceptional components in the canonical bundle
of X, or the canonical bundle does not exists at all as a Q-Cartier
divisor. The first solution I found for these problems is the following:
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0.5. Proposition. Let (X,∆) be a klt pair such that there exists a
surjective morphism f : X → B to a variety of dimension n − 1 that
is not a quasi-product over B, i.e. isomorphic in codimension one
to the quotient of a product, see Definition 3.21. Suppose moreover
KX + ∆ ∼Q f ∗L +

∑
aiEi for some Q-Cartier Q-divisor L on B,

some f -exceptional divisor Ei and whose coefficients are not all strictly
negative. Then, X does contain rational curves.

Although not optimal, this proposition shows when and how one can
apply a result of Kawamata on the uniruledness of the exceptional lo-
cus to control the exceptional divisors. Then I prove some statements
strictly linked to the previous one, obtained mixing the result of Kawa-
mata with some tricks in birational geometry. After that, I figured
out that I could use some results by Hacon and McKernan to control
in the general case the exceptional locus. After some technical work I
proved the following theorem that has the same spirit of Theorem 0.4,
but where I relax some of the hypothesis.

0.6. Theorem. Let X
f−→ B be a genus one fibration. Assume that

there exists an effective Weil Q-divisor ∆ on B such that (B,∆) is klt.
Then

• If X is not a quasi-product, then X contains a uniruled divisor.
• If X is not an orbibundle, then X contains a vertical rational

curve.

More precisely:

• The variety X does not contain a divisor covered by vertical
rational curves if and only if X is isomorphic in codimension
one to a variety which has a finite cover, étale in codimension
two, isomorphic to B̃ × E over B, for some cover B̃ of B.
• The variety X does not contain vertical rational curves if and

only if there is a finite globally étale cover of X isomorphic to
B̃ × E over B, for some cover B̃ of B.

In the case the relative dimension is more than one, I have some quite
satisfactory results in the generically isotrivial case as the following:

0.7. Theorem. Let X
f−→ B be a generically isotrivial fibration and

denote by F the generic fiber. Suppose that X is smooth and does not
contain rational curves. Suppose moreover that there exists a Q-Cartier
divisor on B such that KX ∼Q f

∗L. Then X is a finite étale quotient

of B̃ × F , for some cover B̃ of B.
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The twisted cotangent sheaf of a Hyperkähler manifold
(joint work with Andreas Höring)

Let X be a compact Kähler manifold, and let ΩX be the cotangent
bundle of X. If the canonical bundle KX = det ΩX is positive (e.g.
pseudoeffective or nef) we can use stability theory to describe the pos-
itivity of ΩX . The most famous result in this direction is Miyaoka’s
theorem [Miy87] which says that for a projective manifold that is not
uniruled, the restriction ΩX |C to a general complete intersection curve
C of sufficiently ample general divisors is nef. However this result only
captures a part of the picture: denote by ζ → P(ΩX) the tautological
class on the projectivised cotangent bundle π : P(ΩX) → X. If X is
Calabi-Yau or a projective Hyperkähler manifold the tautological class
ζ is not pseudoeffective [HP19, Thm.1.6]. In particular X is covered
by curves C such that ΩX |C is not nef.

Our goal is to measure this defect of positivity by considering polarised
manifolds (X,H). This has been accomplished for infinitely many fam-
ilies of projective K3 surfaces in a beautiful paper of Gounelas and
Ottem:

0.8. Theorem. [GO18, Thm.B] Let (X,H) be a primitively polarised
K3 surface of degree d and Picard number one. Denote by π : P(ΩX)→
X the projectivisation of the cotangent bundle, and by ζ → P(ΩX) the
tautological class.

Suppose that d
2

is a square and the Pell equation

x2 − 2dy2 = 5

has no integer solution. Then ζ + 2√
d
2

π∗H is pseudoeffective and ζ +

( 2√
d
2

− ε)π∗H is not pseudoeffective for any ε > 0.

In the situation above one has ( 2√
d
2

H)2 = 8, so we see that, under these

numerical conditions, the class ζ+π∗H is pseudoeffective for an ample
R-divisor class H of degree at least eight. In view of this observation
we make the following

0.9. Conjecture. Fix an even natural number 2n. Then there exists
only finitely many deformation families of polarised Hyperkähler man-
ifolds (X,H) such that dimX = 2n and H is ample Cartier divisor on
X such that ζ + π∗H is not pseudoeffective.

This conjecture should be seen as an analogue of the situation for
uniruled manifolds: in this case ΩX is not even generically nef in the
sense of Miyaoka, but ΩX⊗H is generically nef unless X is very special
( [Hör14, Thm.1.1], see [AD17, Cor.1.3] for a stronger version).



6 INTRODUCTION

In this paper we give a sufficient condition for the pseudoeffectivity of
twisted cotangent bundles for Hyperkähler manifolds. Since deforma-
tions to non-projective Hyperkähler manifolds are crucial for the proof
we state the result in the analytic setting:

0.10. Theorem. Let X be a (not necessarily projective) Hyperkähler
manifold of dimension 2n, and denote by q(·) its Beauville-Bogomolov
form. Denote by π : P(ΩX) → X the projectivisation of the cotangent
bundle, and by ζ → P(ΩX) the tautological class. There exists a con-
stant C ≥ 0 depending only on the deformation family of X such that
the following holds:

• Let ωX be a nef and big (1, 1)-class on X such that q(ωX) ≥ C.
Then ζ + π∗ωX is pseudoeffective.
• Suppose that X is very general in its deformation space, and

let ωX be a nef and big (1, 1)-class on X. Then q(ωX) ≥ C if
and only if ζ + π∗ωX is nef.

The proof of the second statement is a combination of Demailly-Pǎun’s
criterion for nef cohomology classes with classical results on the coho-
mology ring of very general Hyperkähler manifolds: we show in Lemma
19.1 that all the relevant intersection numbers are in fact polynomials in
one variable, the variable being the Beauville-Bogomolov form q(ωX).
The largest real roots of these polynomials turn out to be bounded from
above, this yields the existence of the constant C. The first statement
then follows by a folklore degeneration argument that was explained to
me by my advisor S. Diverio. A detailed explanation can be founded
in Section 9.

As an immediate consequence we obtain some good evidence for Con-
jecture 0.9:

0.11. Corollary. Let X0 be a differentiable manifold of real dimension
4n. Then there exist at most finitely many deformation families of

polarised Hyperkähler manifolds (X,H) such that X0

diff.' X and H is
an ample Cartier divisor on X such that ζ+π∗H is not pseudoeffective.

While Theorem 0.10 is quite satisfactory from a theoretical point of
view, it it is not clear how to compute the constant C in practice. We
therefore prove a more explicit version under a technical assumption:

0.12. Theorem. Let X be a (not necessarily projective) Hyperkähler
manifold of dimension 2n. Suppose that a very general deformation of
X does not contain any proper subvarieties. Let ωX be a Kähler class
on X.

• Suppose that

(ζ + λπ∗ωX)4n−1 > 0 ∀ λ > 1.
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Then ζ + π∗ωX is pseudoeffective.
• Suppose that X is very general in its deformation space. Then
ζ + π∗ωX is nef if and only if

(ζ + λπ∗ωX)4n−1 > 0 ∀ λ > 1.

We also prove in Proposition 20.2 that for very general X, the class
ζ + π∗ωX is pseudoeffective if and only if it is nef. Thus Theorem 0.12
is optimal at least for very general X. Since (ζ + λπ∗ωX)4n−1 can be
expressed as a polynomial depending only on the Segre classes of X (see
equation (5)), the sufficient condition can be written down explicitly.

If ωX is the class of an ample divisor, the condition in Theorem 0.12
essentially says that the leading term of the Hilbert polynomial

χ(P(ΩX),OP(ΩX)(l(ζ + π∗ωX)))

is positive. It is however possible that the higher cohomology of
OP(ΩX)(l(ζ + π∗ωX)) grows with order 4n− 1, so it is not obvious that
ζ + π∗ωX is pseudoeffective.

Let S be a K3 surface, and denote by X := S[n] the Hilbert scheme
parametrizing 0-dimensional subschemes of length n. Then X is Hy-
perkähler [Bea96], and by a theorem of Verbitsky [Ver98, Thm.1.1]
a very general deformation does not contain any proper subvarieties.
Thus the technical condition in Theorem 0.12 is satisfied for a Hy-
perkähler manifold of deformation type K3[n]. We compute the con-
stant C for Hilbert schemes of low dimension. In particular we obtain

0.13. Corollary. Let S be a (not necessarily projective) K3 surface.
Let ωS be a nef and big (1, 1)-class on S such that ω2

S ≥ 8. Then
ζ + π∗ωS is pseudoeffective.

The theorem of Gounelas and Ottem shows that this result is optimal
for infinitely many 19-dimensional families of projective K3 surfaces.
Their results also show that for certain families, e.g. general smooth
quartics in P3, our estimate is not optimal [GO18, Cor.4.2]. In these
cases the obstruction comes from the projective geometry of X [GO18,
Sect.4.2].

In higher dimension the situation becomes much more complicated.
We show in Corollary 21.3 that for a nef and big class ωX on a Hilbert
square X := S[2] such that

q(ωX) ≥ 3 +

√
21

5
,

the class ζ + π∗ωX is pseudoeffective. This bound is optimal for a very
general deformation of X. However a Hilbert square S[2] deforms as a
complex manifold in a 21-dimensional space, while its deformations as
a Hilbert square only form a 20-dimensional family. In Section 21 we
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study in detail very general elements of the family of Hilbert squares:
since the Hilbert square always contains an exceptional divisor, it is
obvious that the nef cone and the pseudoeffective cone of P(ΩS[2]) do
not coincide. It is much more difficult to decide if ζ + π∗ωX is nef if
it is pseudoeffective. For this purpose we construct in Subsection 21.D
a “universal” subvariety Z ⊂ P(ΩS[2]) that surjects onto S[2] and is an
obstruction to the nefness of ζ + π∗ωX (cf. Proposition 21.10).

Structure of the thesis.

Part one. This part is mainly devoted to introduce some facts use-
ful for the subsequent parts. In order to make the second part more
readable, most of the theory needed to study Calabi–Yau fiber spaces
is developed in this part.

In Section 1, I fix some notations about the singularities that will ap-
pear in Part 2 and prove an easy lemma to detect the singularities of
a relatively minimal pair.

In Section 2, I recall some well-known facts about reflexive sheaves.
Then I focus on some properties of the cotangent sheaf and recall some
facts on the tautological line bundle.

In Section 3, I introduce some useful terminology, I recall two lemmas
needed for the study of degenerate divisors and then I focus on orbi-
bundles. Some of the key lemmas of the results in Part 2 are in this
section.

In Section 4, I recall a result of Kawamata and two results of Hacon
and McKernan useful to control the exceptional locus of a morphism.
A minor generalization to rational map is introduced.

In Section 5, I give two proofs of Fischer–Grauert Theorem in the étale
topology under some assumption on the fibers.

In Section 6, I recall the definition of augmented irregularity and prove
some properties of this invariant.

In Section 7, I explain how some facts about Chern classes that are
well-known for smooth varieties can be extended to varieties with mild
singularities.

In Section 8, I proved some facts of the cones inside the Néron–Severi
group needed in Section 15.

In Section 9, I recall some notions on the positivity of real cohomology
classes of Hodge type (1, 1) for compact Kähler manifolds. I explain
why the relative pseudoeffective cone of a proper submersion is locally
closed.
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Part two. This part is devoted to find some conditions such that a
Calabi–Yau fiber space contains rational curves. The first five sections
of this part are about the case of genus one fibrations, the subsequent
two sections are about, respectively, fibrations over curves and over a
base of arbitrary dimension. The last section is a collection of examples.

In Section 10, I prove Theorem 0.2 and explain the consequences in the
case KX ≡num 0.

In Section 11, I focus on the case of relatively minimal genus one fibra-
tions. In particular there is the proof of Theorem 0.4.

In Section 12, I study the case of non relatively minimal fibrations. I
prove, among the others, Theorem 0.6.

In Section 13, I talk about some particular cases and some application
for smooth varieties.

In Section 14, I recall some necessary and sufficient numerical condi-
tions to have a relatively minimal genus one fibration.

In Section 15, I study the case the base of the fibration has dimension
one.

In Section 16, I explain which are the problems in the general case of
Calabi–Yau fiber spaces, and prove Theorem 0.7.

In Section 17, I collect all the examples of the first two parts.

Part three. This part is devoted to the study of the Kähler and
pseudoeffective cones of the projectivised cotangent bundle of a Hy-
perkähler manifold. All the results in this part are proved in collabo-
ration with Andreas Höring.

In Section 18, I fix the notation for the third part. After that, I recall
some facts about the geometry of Hyperkähler manifolds, their moduli
spaces and some of their invariants that are needed in the subsequent
sections.

In Section 19, I study some properties of particular cohomology classes
of P(ΩX), prove Theorem 0.10 and Corollary 0.11. I conclude this
section studying some subvarieties of P(ΩX).

In Section 20, I prove Theorem 0.12 and compute the pseudoeffective
threshold for K3 surfaces. As an application I explicitly describe the
Kähler cone of P(ΩX) is some cases.

In Section 21, I describe in details the situation if X ∼def K3[2]. If X
is the Hilbert scheme of length two points on a K3 surface I construct
an obstruction for a pseudoeffective class to be Kähler.

In Section 22, I write down the computations for the pseudoeffective
threshold in the case X ∼def K3[3].
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Part 1. Preliminary results 13
1. Singularities 14
2. Reflexive sheaves 16
3. Fibrations 18
4. Rational curves on exceptional locus 26
5. Fischer–Grauert Theorem 27
6. Augmented irregularity 30
7. Chern classes of singular varieties 34
8. Properties of cones 36
9. Positivity properties of real (1,1)-classes 37

Part 2. Rational curves in Calaby–Yau fiber spaces 45
10. Linearly relatively minimal genus one fibration 46
11. Relatively minimal genus one fibrations 51
12. Non relatively minimal genus one fibrations 55
13. Particular cases and consequences 59
14. Conditions to have minimal genus one fibration 60
15. Fibration over curves 61
16. Calabi–Yau fiber spaces, the general case 63
17. Examples 66

Part 3. Twisted cotangent bundles of Hyperkähler
manifolds (joint work with A. Höring) 71
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Part 1

Preliminary results



We assume the reader knows the basic properties of algebraic geometry.
The general notations we use can be found in [Har77]. We assume that
the reader is familiar with the basic notions on the singularities that
appear in birational geometry. The reader can find all the unreferenced
notations about the singularities that we will use in [KM98].

1. Singularities

Let Y be a normal projective variety. A boundary on Y is an effective
Weil Q-divisor on Y . We say that Y is potentially klt, i.e. potentially
kawamata log-terminal, if there exists some boundary on Y such that
the pair (Y,∆) is klt.

The pushforward of a divisor is intended to be as Weil divisor, i.e. the
direct image as cycle. The pushforward as Cartier divisor, and hence
as a locally free sheaf is different.

Let f : Y ′ → Y be a finite cover of normal projective varieties. Un-
der the finiteness assumption one can pullback arbitrary Weil divisors
in the following way. The preimage of the singular locus f−1(Ysing)
has codimension at least two. Hence to a Weil divisor D on Y one
can associate the Cartier divisor DYreg on Yreg. Then one consider the
pullback as a Cartier divisor to f−1(Yreg) that, by the condition on
the codimension, has a well defined extension f ∗D to a Weil divisor in
Y ′. This construction is clearly equivalent to the standard one if D is
a Q-Cartier divisor. With this preliminary explanation we recall the
following proposition.

1.1. Proposition. Let f : Y ′ → Y be a finite cover of normal projec-
tive varieties. Let ∆ and ∆′ be Q-Weil divisors respectively on Y and
Y ′ such that KY ′ + ∆′ = f ∗(KY + ∆). Then

• The divisor KY + ∆ is Q-Cartier if and only if KY ′ + ∆′ is.
• The pair (KY ,∆) is klt if and only if (KY ′ ,∆

′) is.

Proof. See Proposition [KM98, Proposition 5.20]. �

As an application of the results in the minimal model program we have
the following fact that that can be found in [BCHM06, Corollary
1.4.3].

1.2. Proposition. Let (Y,∆) be a klt pair. Let E be a finite collection
of exceptional divisors over Y with non positive discrepancies. Then
there is birational morphism f from a Q-Cartier klt variety Y ′ nef over
Y such that KY ′ + Γ = f ∗(KY + ∆) and the contracted divisors are
exactly the divisors in E.
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If E = ∅ then the map f is small and Y ′ will be denoted by YQ and
it is called Q-factorialization. The opposite extremal case, where E is
given by all the divisors with negative discrepancies, will be denoted
by Yterm and it is called terminalization.

Suppose that the pair (Y,∆) is klt and that Y ′ is isomorphic in codi-
mension one to Y . Unfortunately we cannot say that (Y ′,∆′) is klt for
some boundary ∆′ because there is no reasons to expect KY ′ + ∆′ to
be Q-Cartier. This phenomenon happens for example taking a small
contraction of an extremal ray with non zero intersection with the
canonical bundle. However we can prove the following lemma that will
be useful.

1.3. Lemma. Let X1, X2 be normal projective varieties which are
isomorphic in codimension one via a rational map f over a base B

X1
g //

f1 !!

X2

f2}}
B.

Suppose that there exists a boundary ∆1 such that (X1,∆1) is klt and
f ∗1L ∼Q KX1 + ∆1 for some Q-Cartier divisor on B. Then, denoting
with ∆2 := g∗∆1, also (X2,∆2) is klt and f ∗2L ∼Q KX2 + ∆2.

Proof. Let Z be any common log-resolution of Xi.

Z
ν1

}}

ν2

!!
X1

g //

f1 !!

X2

f2}}
B.

Since X1 and X2 are isomorphic in codimension one the exceptional di-
visors for the two varieties are the same. In order to write the canonical
bundle of Z respect the two resolutions to compute the discrepancies,
we should firstly check that the KX2 + ∆2 is Q-Cartier. Let m be an
integer such that mL is Cartier. Then

m(KZ + (ν1)−1
∗ ∆1 −

∑
ajEj) ∼ mν∗1(KX1 + ∆1) ∼

∼ ν∗1(f ∗1 (mL)) ∼ ν∗2(f ∗2 (mL))

Let us spend few words explaining in which sense the Q-Cartier divi-
sor f ∗2L is equal to (ν2)∗(ν∗2(f ∗2L)). The Cartier divisor f ∗2 (mL) can
be pulled back as line bundle and then one choose a non necessarily
effective Weil divisor as rational section of ν∗2(f ∗2 (mL)), and then push
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it forward as cycle to get a Weil divisor on X2. We obtain a Weil divi-
sor (ν2)∗(ν∗2(f ∗2 (mL))) that is a rational section of f ∗2 (mL) and hence
is also Cartier. In conclusion we can write

f ∗2 (mL) ∼ (ν2)∗ν
∗
2(f ∗2 (mL)) ∼ (ν2)∗(m(KZ + (ν−1

1 )∗∆1 −
∑

ajEj))

that is also equal to m(KX2 + ∆2).

The discrepancies of (X1,∆1) and (X2,∆2) are the same by a direct
computation of the canonical bundle of Z. �

With the notations that we will introduce later the conditions on
(Xi,∆i) mean that they are relatively minimal log Calabi–Yau fiber
spaces. In other words we proved that a variety which is isomorphic in
codimension one to a relatively minimal log Calabi–Yau fiber space is
itself a relatively minimal log Calabi–Yau fiber space.

2. Reflexive sheaves

For the missing proofs of this section the interested reader can see
[Har80].

Let Y be a quasi-projective variety and F a coherent sheaf on it. One
can associate to F its dual and we denote it by F∗ := hom(F ,OY ).
Iterating this process we get a natural map from F to F∗∗.
2.1. Definition. With the above notations the sheaf F is reflexive if
the natural map F → F∗∗ is an isomorphism of sheaves on Y . The
sheaf F∗∗ is called reflexive hull of F .

There are many observations that we can do. The kernel of the map
F → F∗∗ is exactly the torsion subsheaf of F . In particular the reflexive
sheaves are torsion free. A locally free sheaf is a reflexive sheaf. So the
reflexive sheaves form a wider class than the locally free sheaves, but
are not as general as all torsion free sheaves. The reflexive hull of a
coherent sheaf is reflexive. More generally one can prove that the dual
of a coherent sheaf is reflexive. If we suppose Y to be smooth then
any reflexive sheaf is locally free in codimension two. In particular a
reflexive sheaf on a smooth surface is nothing but a locally free sheaf.
Since we will work with singular varieties, the previous observation is
not enough. However we have the following explicative result.

2.2. Proposition. Assume Y is a normal variety and F a coherent
sheaf on Y . Then the following conditions are equivalent:

• F is reflexive.
• F is torsion free, and for each open U ⊂ Y and each closed

subset Z ⊂ U of codimension greater or equals than two, de-
noting by j : U − Z → U the inclusion map, it induces an
isomorphism of sheaves FU ' j∗FU−Z.
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This result tells us that the sections of a reflexive sheaf doesn’t see the
geometry of the variety in codimension at least two. This is particu-
larly useful if we know that F is locally free over an open set whose
complementary has codimension at least two, e.g. the cotangent sheaf
on the smooth locus of Y .

2.A. The cotangent sheaf. Suppose for simplicity that Y is a
normal variety. The cotangent sheaf of a Y can be defined in several
equivalent ways. One can consider Y embedded via the diagonal mor-
phism ∆ in the product Y × Y . The closed subvariety ∆(Y ) is defined
by a sheaf of ideals J .

2.3. Definition. With the above notation the cotangent sheaf of Y is
the coherent sheaf Ω1

Y := ∆∗(J /J 2). The reflexive cotangent sheaf of

Y is Ω
[1]
Y := (Ω1

Y )∗∗. The p-reflexive exterior power of the cotangent

sheaf is Ω
[p]
Y := (ΛpΩ1

Y )∗∗.

The cotangent sheaf is locally free is and only if Y is smooth. More
precisely it is locally free exactly over the smooth locus of Y . By
this observation and by Proposition 2.2 the sections of the p-reflexive
exterior powers of the cotangent sheaf on Y are exactly the sections
of the cotangent sheaf on the regular part of Y . This implies that

denoting by i : Yreg → Y the inclusion we have Ω
[p]
Y = i∗Ω

p
Yreg

.

If Y is smooth then we denote ΩY := Ω1
Y that is a locally free sheaf of

rank n = dim(Y ). One can consider the projectivised cotangent bundle

P(ΩY ) that comes with a natural projection P(ΩY )
π−→ Y . This object

is a projective bundle over Y that encodes a lot of informations on Y .
To understand some of these informations we recall some definitions
that we will use for an arbitrary vector bundle and not only ΩY .

For this part see also [Har77, Section II.7] and [Laz04b, Chapter
6]. Let F be a locally free sheaf on Y . The projectivisation of F is

denoted by P(F)
π−→ Y . It comes with the tautological line bundle that

is z := OP(F)(1) and its first Chern class is the tautological class that
will be denoted with ζ := c1(OP(F)(1)). Let L be a line bundle on
Y . The global sections of the sheaf z⊗k ⊗ π∗L are in correspondence
with the global sections of Symk F ⊗ L. This remark is useful for the
following characterization of pseudoeffective vector bundle: a vector
bundle F , i.e. a locally free sheaf, is pseudoeffective if the tautological
class ζ is. Equivalently it is pseudoeffective if for any ample line bundle
on X and any small rational ε > 0 the locally free sheaf Symk(F⊗A⊗ε)
has global sections for k >> 0 enough divisible.
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3. Fibrations

In this section we collect some definitions and some results from the
literature as Lemma 3.6, Lemma 3.7 and Theorem 3.18. The rest
of the section is devoted to some preliminary results that are needed
in the subsequent sections. In particular we do a careful analysis of
orbibundles. We denote by n the dimension of Y .

3.1. Definition. A fibration is a proper surjective morphism Y → B
between normal quasi-projective varieties with connected fibers.

An interesting geometrical object associated to a fibration is the locus
of singular values. Let us recall its definition.

3.2. Definition. Let f : X → Y be a surjective projective morphism
of normal variety. The subset of singular values of f is the following
subset of Y

Sv(f) = {y ∈ Y | dim(f−1(y)) > dim(X)−dim(Y )∨f−1(y) is singular}.
3.3. Remark. The singular values of f is the image of the singular
locus of f . For the interested reader the definition of singular locus of
a morphism can be found at the following link: http://stacks.math.
columbia.edu/tag/01V5. We do not give the definition of singular
locus of a morphism because we just need the given characterization of
the image of the singular locus.

3.4. Definition. A fibration is generically isotrivial if any two general
fibers are isomorphic. A fibration is of maximal variation if a fixed
general fiber is isomorphic only to finitely many other fibers.

3.A. Degenerate divisors. To understand the geometry of the
fibration in the case of higher dimensional algebraic varieties, the first
thing one should do is to understand some properties of Q-divisors. In
order to do that we introduce the following:

3.5. Definition. Let f : Y → B be a fibration between normal projec-
tive varieties and let D be a prime Weil divisor on Y . We say that D is
exceptional if codB(f(D)) ≥ 2. We say that D is of insufficient fiber
type if codB(f(D)) = 1 and there exists another prime Weil divisor
D′ 6= D such that f(D′) = f(D). In either of the above cases, we say
that D is degenerate.

These divisors are very useful because of the following versions of the
negativity lemma:

3.6. Lemma. Let Y
f−→ B be a fibration between projective varieties.

Let D be an effective, irreducible and exceptional Q-Cartier divisor on
Y . Then the support of D is covered by curves contracted by f and
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intersecting D negatively. More precisely these curves are obtained as
general element in D ∩Hn−2 for some very ample divisor H on Y .

Proof. Let H be a very ample line bundle on Y and S ⊂ X be a
surface obtained as a complete intersection of n−2 general elements in
|H|. Since there is an exceptional divisor the dimension of B is at least
two. Hence the map f |S is generically finite over its image and D ∩ S
is contracted to a point. By the Hodge index Theorem D2 ·Hn−2 < 0.
This means that the curves obtained as a complete intersection of n−2
general elements in |H| and D are curves contained in D, that have
negative intersection with D. �

With minor changes this lemma can be found in [Kol15, Lemma 18]
and [Lai10, Lemma 2.9].

3.7. Lemma. [Lai10, Lemma 2.9] Let Y
f−→ B be a fibration between

projective varieties. Suppose that Y is Q-factorial. For an effective
insufficient type Weil divisor D on Y we can always find a component
F ⊆ Supp(D) which is covered by curves contracted by f and intersect-
ing D negatively. More precisely these curves are obtained as general
element in F ∩Hn−2 for some ample divisor H on Y .

3.8. Remark. If we suppose that there exists a small Q-factorialization
of Y , e.g. Y is potentially klt, then the assumption on the Q-factoriality
can be ignored working on a small Q-factorialization.

The following lemma will be useful.

3.9. Lemma. Let Y and Y ′ be projective varieties with two fibrations f
and f ′ to a normal variety B of dimension n−1. Suppose both fibrations
have no degenerate divisors and they are birational via a map g. Then
g contracts some divisors if and only if g−1 does.

Proof. Suppose D ⊂ Y is a prime divisor contracted in Y ′ by g
and that f has no degenerate divisors. Let us observe that a rational
map between normal varieties is always defined in codimension one,
so we can decide if a divisor is contracted also for rational map. If
f(D) = B then by dimensional reasons dim(g(D)) = n−1. The divisor
D is not f -exceptional, so f(D) is a divisor in B. By dimensional
reasons its preimage f ′−1 in X ′ contains a Weil divisor W . This divisor
is not the image of a Weil divisor of Y because we are supposing the
only divisor in f−1(f(D)) is D that is contracted by g. With this in
mind it follows easily that g−1 contracts W . �
3.10. Remark. The previous lemma is false without the assumption
on the dimension of the base because it may exist a divisor contracted
by g that dominates the base. However this hypothesis can be replaced
in the following way.
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3.11. Lemma. Let Y and Y ′ be projective varieties with two fibrations
f and f ′ onto a normal variety B of dimension d. Suppose both fibra-
tions have no degenerate divisors and they are birational via a map g
that is an isomorphism over a non-empty open subset of B. Then g
contracts some divisors if and only if g−1 does.

Proof. Let D ⊂ Y be a prime divisor contracted in Y ′, i.e.
dim(g(D)) < n − 1. Since the map g is an isomorphism over an
open subset of B, if a divisor dominates the base it cannot be con-
tracted in Y ′, i.e. f(D) ( B. Since Y has no f -exceptional divisor
dim(f(D)) = d − 1, and hence dim((g(D)) = n − 2. The scheme
f ′−1(f(D)) contains some variety of dimension n− 1 that cannot be in
the image of g, and hence is contracted by g−1. �

3.B. Calabi–Yau fiber spaces. Now we fix some notations
about the fibrations.

3.12. Definition. A normal projective variety Y (resp. a pair (Y,∆))

together with a fibration Y
f→ B is a Calabi–Yau fiber space (resp. a

log Calabi–Yau fiber space) if the generic fiber Yt of f (resp. the pair
(Yt,∆t)) has numerically trivial canonical bundle (resp. KYt +∆t ≡num

0).

We are mainly interested in the case where the boundary ∆ does not
intersect the general fiber. Indeed if this intersection is non-trivial then
Y is uniruled. Let us also fix the following convention.

3.13. Definition. A variety with at most log-terminal singularities Y
(resp. a klt pair (Y,∆)) is a Calabi–Yau variety (resp. a log Calabi–
Yau) if KY ≡num 0 (resp. KY + ∆ ≡num 0) and q̃(Y ) = 0.

In our Definition 3.13 we include also products of Calabi–Yau and
irreducible holomorphic symplectic varieties in the sense of [GKP16c].
However we do not allow quotients of abelian varieties. In particular
a Calabi–Yau fiber space over a point is not necessarily a Calabi–Yau
itself.

3.14. Definition. A genus one fibration is a fibration such that the
general fiber is a smooth genus one curve. An elliptic fibration is a
genus one fibration with a fixed section.

A particular case of Calabi–Yau fiber space is the following.

3.15. Definition. A Calabi–Yau fiber space Y
f→ B (resp. a log

Calabi–Yau fiber space (Y,∆)
f→ B) is called a relatively minimal (resp.

log) Calabi–Yau fiber space if Y is log-terminal (resp. the pair (Y,∆)
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is klt) and KY ∼Q f ∗L (KY + ∆ ∼Q f ∗L) for some Q-Cartier Q-
divisor on B. A Calabi–Yau fiber space is linearly relatively minimal
if KY ∼ f ∗L for some line bundle on B.

In particular when we say that genus one fibration is relatively minimal
we are saying that X has at most log-terminal singularities.

3.16. Remark. Suppose that the general fiber is contained in the
smooth locus of Y . In this context we claim that the conditions
KY ≡num f ∗L and KY ∼Q f ∗L are equivalent. Indeed suppose that
KY ≡num f ∗L. By adjunction formula the canonical bundle of a gen-
eral fiber is numerically trivial and by [Amb05, Theorem 0.1] also
Q-linearly trivial. The exponential exact sequence on X gives us

H1(Y,OY )→ Pic(Y )
c1−→ H2(Y,Z).

Hence under our assumption c1(KYt − f ∗L) ∈ H2(X,Z)tors there exists
a positive integer m such that m · c1(KYt − f ∗L) = 0. By exactness
this means that KYt−f ∗L|Yt lies in Pic0(Y ). By [Lan19, Chapter VIII
Theorem 13] there is an exact sequence of abelian varieties

0→ J(B)
f∗−→ Pic0(Y )

α−→ P → 0

where P is a part of the Jacobian of the general fiber. Essentially P is
composed by those line bundles on the generic fiber that extend to the
variety Y . By our assumption m · α(KYt − f ∗L|Yt) = 0. This means
that m · c1(KYt − f ∗L) is in the image of f ∗ that proves our claim.

3.C. Orbibundles. An important class of examples of Calabi–
Yau fiber spaces is given by orbibundles. We recall the construction
of orbibundles because they are very useful example af Calabi–Yau
fiber spaces. Let B̃ be a normal variety, F a variety with at most log-
terminal singularities, KF ≡num 0 and Ỹ := B̃ × F their product. Let
G be a finite group and ρB : G → Aut(B̃), ρF : G → Aut(F ), two
faithful representations.

3.17. Definition. An orbibundle is the fibration

(Y → B) := Ỹ /G→ B̃/G

obtained as the quotient with respect to the diagonal representation of
G.

Since both the representations of G are faithful, the quotient map is
quasi-étale, hence in the case of genus one curve the augmented irreg-
ularity of an orbibundle is always at least one. Moreover they provide
many examples of complete, generically isotrivial families of varieties
with numerically trivial canonical bundle. One of the key point is that
every generically isotrivial family of such varieties is birational to an
orbibundle:
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3.18. Theorem. [Kol15, Theorem 44] Let Y
f→ B be a projective,

generically isotrivial Calabi–Yau fiber space. There is a unique orbi-
bundle Yorb → B birational to Y .

More precisely it follows from the proof of this theorem that the bira-
tional map from the orbibundle to Y is an isomorphism over the points
where the fibers of f are isotrivial.

3.19. Remark. In [Kol15, Theorem 44] Kollár claims that under some
further assumptions Y is isomorphic to Yorb. More precisely under the
assumptions that Y and B are Q-factorial, f is relatively minimal and
has no exceptional divisors, then he claims that Y is an orbibundle over
B. Unfortunately it is not clear to us how he excludes the case of some
divisorial contractions KY -trivial. Also with the further assumption
that Y , B are smooth and f is equidimensional there are some coun-
terexamples to his statement. Such examples are isotrivial relatively
minimal Calaby–Yau fiber spaces which have a divisorial contraction of
insufficient fiber type divisors onto an orbibundle. For such examples
see below.

3.20. Example. Let E be an elliptic curve. The quotient (E × E)/±
under the diagonal action with the projection onto a factor is an ex-
ample of orbibundle

Y := (E × E)/± f−→ E/± = P1.

A minimal resolution S of Y is a smooth K3 surface with a generically
isotrivial genus one fibration over P1. The generically isotrivial genus
one fibration S → P1 is birational to the orbibundle Y → P1 but they
are not isomorphic.

This construction has a natural generalization for Hyperkähler man-
ifolds of dimension n > 2. Let S be a K3 surface with a generi-
cally isotrivial fibration. The Hilbert scheme of lenght d = n/2, 0-
dimensional subschemes of S is a Hyperkäler manifold that comes with
a generically isotrivial morphism to Pd. Moreover f is equidimensional
and relatively minimal. The fibration S[n] → Pn is birational to the
orbibundle S(n) → Pn but they are not isomorphic.

For more details see Example 17.4.

For our purpose it will be useful to understand when an isotrivial genus
one fibration is isomorphic in codimension one to an orbibundle. For
convenience we introduce the following terminology.

3.21. Definition. A Calabi–Yau fiber space Y → B is a quasi-product
if Y is isomorphic in codimension one over B to an orbibundle.
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Some criteria to prove that a fixed variety is isomorphic in codimension
one to an orbibundle are proven in the previous section (see Lemma
3.9). In order to apply such criteria we need also the following useful
lemma.

3.22. Lemma. The orbibundle Xorb has no degenerate divisors.

Proof. By definition of the fiber of an orbibundle

B̃ × F π //

��

Xorb

f

��
B̃ // B

the fiber of f over a point where the orbit for the action to B is maximal
is isomorphic to F . Over a point of ramification of the map B̃ → B
the fiber is a quotient of F . Let us be more precise: a point in B is a
class b for b ∈ B̃. Its fiber in Xorb is by definition {(b, t)}, and in the
orbibundle the equivalence relation is

(b, t) = (b′, t′)⇔ ∃g ∈ G s.t. g(b) = b′ and g(t) = t′.

Let G′ be the subgroup of G of elements that fix b. By definition the
fiber over b is F/G′ with the induced action. In particular all the fibers
are irreducible, hence there are no insufficient type divisors. Since
the acting group is finite then there are no exceptional divisors. By
definition this means that there are no degenerate divisors in Xorb. �

One cannot control a priori the singularities of an orbibundle. Indeed
if the singularities of B or the singularities of the fibers are bad, then
also the singularities of Xorb are bad. For an example of this situation
see Example 17.5. The previous lemma is useful, among the others, to
control the singularities of orbibundles. In particular it is useful for the
proof of the following lemma.

3.23. Lemma. Suppose that an orbibundle Yorb is birational to a rela-

tively minimal log Calabi–Yau fiber space (Y,∆)
f−→ B. Suppose more-

over the general fiber F of f is smooth. Then there exists a boundary
such that the pair (Yorb,∆

′) is klt.

Proof. Since (Y,∆) is klt there exists a boundary D on B such
that (B,D) is klt. More precisely f ∗(KB +D) ∼Q KY + ∆. By Propo-

sition 1.1 also (B̃, D̃) is klt and then (B̃ × F, D̃ × F ) is also klt. Then
applying again Proposition 1.1 we conclude the proof. �

The hypothesis of this lemma can be relaxed. What we actually need
is only that there exists a boundary ∆ on B̃ × F such that the pair
(B̃ × F,∆) is klt.



24

Now we provide a characterization of those orbibundles which contain
a divisor covered by rational curves.

3.24. Lemma. Let Yorb := (E × B̃)/G be an orbibundle of relative
dimension one, that is a genus one fibration. Then Yorb contains a
divisor covered by vertical rational curves if and only if the quotient
map E × B̃ π−→ (E × B̃)/G is not étale in codimension two.

Proof. By definition of the orbibundle the quotient map π fails
to be étale in codimension two if and only if there exists an element
e 6= g ∈ G that fixes a divisor DB in B̃ and a divisor DE in E. Hence
if π is not étale in codimension one then for any point over the image
of DB in B there is the image of a genus one curve under a finite map
which ramifies, that is a rational curve by Hurwitz formula.

For the converse, if π is étale in codimension two then there are two
possibilities: if it does not exist an element e 6= g ∈ G which fixes a
divisor, this means that the map B̃ → B is quasi-étale. Where this
map is étale the fibers are isomorphic to E. The other case is when
the action of G on E is free, in this case all the fibers of π are genus
one curve. This concludes the converse. In the last case the fibers over
the locus of ramification of the map B̃ → B are multiple genus one
curves. �

This lemma will be very useful for the study of rational curves in genus
one fibrations. The following is an example where this situation ap-
pears.

3.25. Example. Let E be an elliptic curve and denote by X := (E ×
E)/± the quotient of the product of two copies of E by the involution.
This surface comes with a natural genus one fibration X → P1 with
four singular fibers sitting above the branch points of E → P1 and each
singular fibre consists of a rational curves with multiplicity two. This
is an example of an orbibundle such that its quotient map is not étale
in codimension two, and hence has some uniruled divisors. For further
details see Example 17.3.

Another example of this situation in higher dimension is Example 17.4.

3.D. The j-invariant. One can associate to any elliptic curve
a complex number called its j-invariant. This association is modular,
which means that an elliptic fibration f : Y → B comes with a rational
map j : B 99K P1 called j-map that is at least defined over the smooth
values of f . For some standard facts about the j-map of an elliptic
fibration the references can be found in [Kod63] or [Har10].



3. FIBRATIONS 25

3.26. Remark. The j-invariant is well-defined also for genus one curve,
i.e. without fixing the origin. Indeed different choices of the origin does
not change the j-invariant because the translation of the origin is an
isomorphism of elliptic curves. In particular, as for elliptic curves, two
genus one curves are isomorphic if and only if they have the same j-
invariant.

A genus one fibration X
f−→ B gives a rational map that we call the

j-map as in the case of elliptic fibrations. To show this consider an
open subset U of B contained in the smooth values of f and in the
regular part of B. Let Σ be a general element in a very ample linear
series on X restricted over U . The pullback Σ×B X → Σ is a smooth
elliptic fibration. Up to shrink U out of the ramification of Σ over U ,
we can suppose that Σ→ U is a finite étale cover. If necessary we can
consider a further finite étale cover Σ′ of Σ such that the composition
Σ′ → U is Galois. Since X ×U Σ′ → Σ′ is an elliptic fibration it is
well-defined the j-function Σ′ → C. The regular functions on U are
the regular functions on Σ′ that are invariant under the Galois group.
All the fibers in an orbit of the Galois group are isomorphic, so the
j-map on Σ′ descends to a regular function on U , that is a rational
map on B.

3.27. Remark. Consider the following two different definitions of
generic isotriviality for a flat family. One can ask that two general
fibers are isomorphic, or that the smooth fibers are isomorphic. In
the general setting the first definition is strictly more general than the
second one. An example of this situation is given by a degeneration
of an Hirzebruch surface Fn into an Fm with m > n, [Ser06, See Ex-
ample 1.2.11(iii)]. For elliptic fibrations these two definitions coincide.
Indeed a smooth degeneration of an elliptic curve is again elliptic by
Kodaira’s table [BHPVdV04]. Since the j-invariant is constant on a
dense subset of the base it is constant. We can conclude that every
smooth fiber is a smooth elliptic curve with the same j-invariant, so
the smooth fibers are isomorphic. Since a smooth projective morphism
étale-locally admits a section, the same statement holds for a smooth
genus one fibration.

Also if all the fibers of a fibration are genus one curves, this does not
mean that all of them are isomorphic. Indeed it is easy to construct
some (non reduced) fibers isogenus to the general fiber.

The following lemma is essentially stated in [DFM19].

3.28. Lemma. Let X
π→ B be a genus one fibration. If the subvariety

of singular values Z := Sv(π) has codimension at least two then the
family π is generically isotrivial.
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Proof. Since B is normal it is smooth in codimension one and also
the subvariety Z∪Bsing has codimension at least two. We denote B0 :=
Zc ∩ Breg. The j-map B 99K P1 is well-defined on B0. Moreover the
image of B0 under this map is contained in A1

C. Since B is normal and
(B0)c has codimension at least two, this map extends to a holomorphic
function j : B → C. This function must be constant because B is
projective and this means that π is generically isotrivial. �

4. Rational curves on exceptional locus

In this section we collect some useful tools to find rational curves on
the exceptional locus of a morphism.

A classical result in the literature that is useful for our purpose is the
following result of Kawamata:

4.1. Theorem. [Kaw91, Theorem 2] Let Y
f−→ B be a fibration be-

tween normal projective varieties. Suppose there exists a boundary on
Y such that (Y,∆) is klt and −(KY +∆) is f -nef. Then any irreducible
component of the f -exceptional locus is covered by rational curves con-
tracted in B.

In the statement of Kawamata it is not explicitly said that the rational
curves are contracted, but it is clear from his proof.

In the case the morphism is birational there are several other useful
results. In particular we need the following result due to Hacon and
McKernan.

4.2. Theorem. [HM+07, Corollary 1.6] Let (Y,∆) be a divisorially

log-terminal pair. If Z
g−→ Y is any birational morphism, then the fibers

of g are rationally chain connected.

A version of this result holds also if we assume the map to be rational.

4.3. Corollary. Let Y , Y ′ be normal projective varieties of dimension
n. Suppose there is a birational map g : Y 99K Y ′. Assume more-
over that Y ′ is potentially divisorially log-terminal. Then the divisors
contracted by g are covered by rational curves contracted by g.

Proof. Since we are working with normal varieties any rational
map can be extended to a domain whose complementary has codimen-
sion at least two. So it makes sense to ask if a divisor is contracted or
not.
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Consider a resolution of g

Ỹ
h

~~
h′
��

Y
g // Y ′.

Suppose by contradiction that there is a divisor D ⊂ Y contracted in
Y ′, i. e. dim(g(D)) < n − 1. By Theorem 4.2 the strict transform
(h−1)∗D in Ỹ is covered by rational curves contracted in Y ′. Since the
diagram commutes and the image of rational curves is again a rational
curve or a point, the divisor D is covered by rational curves contracted
by f . �

As an application of this theorem one find rational curves in the inde-
terminacy locus of a rational morphism.

4.4. Definition. Let f : Y 99K W be a rational morphism between
normal proper varieties. Let Z ⊂ Y ×W be the closure of the graph of
f and denote by p and q the two projections from Z respectively to Y
and W . The indeterminacy locus of y is q(p−1(y)) ⊂ W .

4.5. Theorem. [HM+07, Corollary 1.7] Let f : Y 99K W be a rational
morphism of normal proper varieties such that (Y,∆) is a divisorially
log terminal pair for some effective divisor ∆. Then, for each closed
point y ∈ Y , the indeterminacy locus of y is covered by rational curves.

In particular a rational map from a potentially divisorially log-terminal
pair to a variety with no rational curves can be extended globally.

5. Fischer–Grauert Theorem

A well-known theorem proved by Fischer and Grauert [FG65] tells us
that a proper holomorphic submersion with isomorphic fibers is locally
a product in the complex topology. This means that given a proper
holomorphic submersion f : X → B between complex manifolds such
that for any t, s ∈ B the fibers Xt and Xs are isomorphic, then for any
p ∈ B there exists a neighborhood Up ⊂ B open in complex topology
such that the family XUp ' Xp × Up splits in a product over the base.
The same statement does not hold in the Zariski topology as we can
see in the following example.

5.1. Example. Let f : X ′ → X be any finite unramified (hence étale)
morphism between varieties of degree d > 1. For example f can be a
finite unramified morphism of degree d from a smooth curve of genus
d(g−1) to a smooth curve of genus g. For any p ∈ X, the fiber over p is
a scheme given by d distinct reduced points. In particular any two fibers
are isomorphic. However for any U ⊆ X open in the Zariski topology,
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the preimage U ′ := f−1(U) is a non-empty Zariski-open subset of X ′.
In particular since U ′ is connected it is not isomorphic to the product
between d points and U that has d connected components.

For the general philosophy about the relation between complex topol-
ogy and étale topology one can expect that the same statement of
Fischer–Grauert Theorem holds for the étale topology. A strong solu-
tion in the case KF ≡num 0 is Theorem 3.18. Since we were unable to
find a neat reference in the case of curves, for the reader’s convenience
we prove some statements that will be useful for what follows.

5.2. Proposition. Let Y → B a smooth proper morphism between
normal quasi-projective varieties such that for any t ∈ B the variety
Yt is a smooth curve of genus g ≥ 1. Suppose moreover that for any
s, t ∈ B the curves Yt and Ys are isomorphic. Then there exists a finite
étale morphism B̃ → B such that the pullback YB̃ ' Yt×B̃ is a product.

Proof. Fix a point 0 ∈ B. By GAGA’s principle we can consider
B and Y0 as complex manifolds, in this way we can study the mon-
odromy around zero as follows. Fix an integer number n greater than
three and consider the action of the fundamental group of the base
on the first cohomology group of the central fiber with coefficient in
Zn := Z/(n)

φ : π1(B, 0)→ Aut(H1(Y0,Zn)).

Since Y0 is a complete curve of genus g the group H1(Y0,Zn) ' (Zn)2g

is finite. This implies that Aut(H1(Y0,Zn)) is finite and hence the
kernel Ker(φ) E π1(B, 0) is a normal subgroup of finite index of the
fundamental group of the base. By the standard correspondence be-
tween subgroup of index d of π1(B, 0) and étale cover of B of degree d,
the subgroup Ker(φ) corresponds to a finite étale cover B̃ of B. More-
over the action of π1(B̃, 0̃) is trivial on the first cohomology group with
coefficients in Zn of the pullback family Y ×B B̃. This construction,
called Jn-rigidification, is useful because for n ≥ 3 there are no auto-
morphisms of a curve with positive genus acting in a trivial way on
H1(C,Zn). In particular there exists a fine moduli space with a uni-
versal family Ug,n →Mg,n (see for example [Bea96]). The classifying

morphism B̃ → Mg,n is constant because the morphism B → Mg is
constant (this morphism is constant since all the fibers are pairwise
isomorphic). It follows that there is a pullback diagram as follows

Y ×B B̃ = B̃ ×Mg,n Ug,n

��

// Ug,n

��
B̃ //Mg,n
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and since the classifying morphism B̃ →Mg,n is constant, the variety

YB̃ is isomorphic to the product B̃ × Y0. �

We need the previous result only for genus one fibrations. Since the
previous proof uses many topological tools, we give another proof more
algebraic in spirit of the following statement, that is essentially Propo-
sition 5.2 for curves with genus one.

5.3. Proposition. Let Y → B be a smooth projective morphism be-
tween normal varieties such that for any t ∈ B the variety Yt is iso-
morphic to a fixed curve of genus g = 1, i.e. a smooth isotrivial genus
one fibration. Suppose moreover B is smooth. Then there exists a fi-
nite étale morphism B̃ → B such that the pullback YB̃ ' Yt × B̃ is a
product.

To prove this proposition we need two results.

5.4. Lemma. If f : Y → B is a smooth isotrivial elliptic fibration,
then there exists a finite étale map B̃ → B such that the pullback family
Y ×B B̃ is isomorphic to the trivial family.

This result is [Har10, Corollary 26.5]. The difference between Propo-
sition 5.3 and Lemma 5.4 is that in the lemma the family of genus
one curves has a section. So we have to combine this result with the
following.

5.5. Lemma. Let f : Y → B be a projective morphism between normal
varieties. Assume that B is smooth and f is étale locally trivial and the
generic fiber F has numerically trivial canonical bundle. Then there is
a finite étale cover B′ → B such that the pull back YB′ ' F × B′ is
globally trivial.

This lemma is stated and proved in [KL09, Lemma 17]. Finally we
can give an algebraic proof of Proposition 5.3.

Proof of 5.3. We have to prove that f is étale locally trivial, i.e.
for any p ∈ B there exists an étale neighborhood U of p such that YU '
U×Yp. Choose a point p ∈ B. The morphism is smooth and projective
so locally around p there exists a multi-section Σ of f that is étale at
p. Indeed the local structure of smooth morphism can be described in
the following way: for any point y ∈ Y and t = f(y) there exist open
neighborhood Vt and Uy with Uy ⊂ f−1(Vt) such that f |Ut factorizes as
an étale morphism g : Uy → Ad

Vt
followed by the canonical projection

Ad
Vt
→ Vt. Consider a section s of Ad

Vt
→ Vt and the associated fiber

product U ×Ad
V
s(Vt). The image of this fiber product in Uy is the

desired étale multi-section. Shrinking Σ we can suppose that the fiber
product YΣ → Σ is a family of smooth elliptic curves and the fibers
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are pairwise isomorphic, so by Lemma 5.4 YΣ ' Σ × Yp. This proves
that f is étale locally trivial. We can apply Lemma 5.5 and the proof
is completed. �

6. Augmented irregularity

In this section we introduce the augmented irregularity. This invari-
ant has been recently introduced by many authors because it carries
some informations on the one forms on the covers of a fixed vari-
ety. In particular it has been studied in order to characterize the
universal cover of varieties with trivial canonical bundle, see for ex-
ample [Dru18], [GGK19], [HP19] and related papers.

6.1. Definition. A morphism f : Z → Y between normal quasi-
projective varieties is called quasi-étale if f is quasi-finite and étale
in codimension one. If f is finite we call it a cover.

6.2. Remark. The above definition of quasi-étale morphism is not the
same of [Cat07].

6.3. Remark. A quasi-étale morphism to a smooth variety is globally
étale by standard arguments on purity of the branch locus.

6.4. Definition. The irregularity of a normal projective variety Y is
the non negative integer q(Y ) := h1(Y,OY ). The augmented irregular-
ity of Y is the following, not necessarily finite, positive integer

q̃(Y ) := sup{q(Z) | Z → Y is a finite quasi-étale cover}.

For any variety the inequality q̃(Y ) ≥ q(Y ) holds. In general the
equality does not hold. Moreover it may happen that this supremum is
not achieved; this is exactly the case when the augmented irregularity
is infinite. This can happen also in dimension one, as we see in the
following example.

6.5. Example. The augmented irregularity of a genus zero curve is
zero. Any finite étale cover of a genus one curve has irregularity one, so
if g(C) = 1 then q̃(C) = 1. A curve C with g(C) ≥ 2 has étale covers
of arbitrary large irregularity, hence q̃(C) = ∞. For a more accurate
explanation see Example 17.1.

It may also happen that a smooth projective variety has zero irregu-
larity but its augmented irregularity does not vanish. For an example
of this situation see Example 17.3.

It is natural to ask whether there exists some manageable conditions
for the vanishing of the augmented irregularity of a variety. The first
basic observation is the case Y has finite fundamental group.
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6.6. Remark. The augmented irregularity of a smooth projective va-
riety Y with finite fundamental group is trivial.

proof of the remark. A quasi-étale cover Ỹ of Y is an étale
cover for purity of branch locus. The fundamental group of Ỹ is a
subgroup of the fundamental group of Y , so it is finite. The first Betti
number of a variety with finite fundamental group is zero, so by Hodge
theory also H1(Ỹ ,OỸ ) = 0, and hence q̃(Y ) = 0. �
6.7. Remark. It is not difficult to show that the augmented irregu-
larity is a birational invariant for smooth projective varieties. To show
this fact we take two smooth birational projective varieties X and X ′.
We can suppose, considering a resolution of the birational map, that
there is a well-defined morphism X ′ → X. Any quasi-étale cover Z of
X (hence globally étale) can be pulled back to an étale cover Z ′ of X ′.
These two covers are smooth and birational, so q(Z) = q(Z ′). Since
this argument works for any quasi-étale cover taking the sup we get

q̃(X) ≥ q̃(X ′). For the converse let Z ′
h′−→ X ′ any quasi-étale cover.

By purity of the branch locus h′ is globally étale. Consider the Stein

factorization of the composition Z ′
g−→ Z

h−→ X. Since h and h′ are
étale Z and Z ′ are smooth and moreover they are birational, hence
q(Z) = q(Z ′). As before this implies that q̃(X) ≤ q̃(X ′) that proves
our remark.

6.8. Remark. Since log-terminal singularities are always rational,
passing throught a resolution one can show that the irregularity is
a birational invariant for projective varieties with log-terminal singu-
larities.

However the augmented irregularity is not a birational invariant for
projective varieties with canonical singularities. Indeed the standard
construction of a Kummer surface is a counterexample:

6.9. Example. Let E be an elliptic curve and denote by X := (E ×
E)/± the quotient of the product of two copies of E by the involution.
One can easily check that q̃(X) = 2. However a minimal resolution
X̃ of X is a K3 surface. In particular q̃(X̃) = 0. The variety X is
thus also an example of a variety with zero irregularity but non trivial
augmented irregularity. For more details on this example see Example
17.3.

6.10. Remark. Let X ′ → X be a birational morphism of log-terminal
projective varieties. As we have seen in the previous example the irregu-
larity X and X ′ may be different. However we always have the inequal-
ity q̃(X ′) ≤ q̃(X). Indeed let Z ′ be a quasi-étale cover of X ′. Let Z be
the Stein factorization of Z ′ → X. By construction the map Z → X is
quasi-étale. The varieties Z and Z ′ are birational and log-terminal by
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Proposition 1.1. Hence we have q̃(X ′) ≥ q(Z ′) = q(Z) ≤ q̃(X) where
we use Remark 6.8. If the augmented irregularity of X ′ is finite we can
conclude choosing a quasi-étale cover Z ′ such that q(Z ′) = q̃(X ′). If
q̃(X ′) = ∞ then the above argument shows that there is an sequence
of quasi-étale cover of X with unbounded irregularity, i.e. q̃(X) =∞.
This remark should be compared to [Dru18, Lemma 4.4].

In the other direction we can prove this lemma that will be useful in
the following.

6.11. Lemma. Let Y , Y ′ be projective varieties with at most log-
terminal singularities. Suppose they are isomorphic in codimension
one, then q̃(Y ) = q̃(Y ′).

Proof. By symmetry it is sufficient to show q̃(Y ) ≥ q̃(Y ′). We
claim that any quasi-étale cover of Y is isomorphic in codimension
one to a quasi-étale cover of Y ′. Let U ⊆ Y and U ′ ⊆ Y ′ be the
subsets where there exists an isomorphism f : U → U ′. Let Z → Y be
any quasi-étale cover of Y . The restriction over U gives a quasi-étale

morphism ZU
fU−→ Y whose image is U ′. By Zariski’s Main Theorem

[Gro67] the quasi-finite morphism fU is always the composition of an

open immersion ZU
i−→ W and a finite morphism W

f−→ Y ′. It turns out
that the compactification f of fU is a quasi-étale cover of Y . Indeed f
is finite and étale outside the subset of U ′ where f ◦ fU ramifies. By
construction W and Z are isomorphic in codimension one, that proves
the claim.

By Proposition 1.1 a quasi-étale cover of a variety with log-terminal
singularities has the same kind of singularities. To conclude we need
to prove that the irregularity is an invariant for projective varieties
with log-terminal singularities isomorphic in codimension one. By
[GKP16c, Proposition 6.9] the irregularity of a projective log-terminal

variety X is the dimension of the space of global sections of Ω
[1]
X . By

definition Ω
[1]
X is a reflexive sheaf, so its sections are not affected by

any codimension two subset. Applying this argument to Z and W we
conclude the proof. �
6.12. Remark. In the previous lemma one can be interested in the
case one of the two varieties is not log-terminal. This may happens
if one of the two is not Q-Gorenstein. In this case one can say the
following. Let Y , Y ′ be projective varieties isomorphic in codimension
one. Suppose Y has most log-terminal singularities. We claim that

q̃(Y ) ≥ H0(Ỹ ,Ω
[1]

Ỹ
) for any quasi-étale cover Ỹ of Y ′. Indeed by the

argument of the above lemma, any quasi-étale cover Ỹ of Y ′ is iso-
morphic in codimension one to a quasi-étale cover Z of Y . As above

the global sections of Ω
[1]

Ỹ
correspond to the global sections of Ω

[1]
Z ,
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that since Z has klt singularities we can apply duality and obtain our
statement.

For varieties with numerically trivial canonical divisor an interesting
characterization is given in [GGK19, Theorem 11.1], where the authors
proved that, in this setting, q̃(X) = 0 if and only if for any k > 0 there

are no non-trivial symmetric reflexive forms, i.e. H0(X, Sym[k] Ω1
X) = 0

∀k > 0. We prove that an implication still holds without the assump-
tion on the canonical bundle: the following is a sufficient condition
for the vanishing of the augmented irregularity which does not rely on
computations of invariants on quasi-étale covers, but only on invariants
of the variety under investigation.

6.13. Proposition. Let X be a projective variety with at most log
terminal singularities. If H0(X, Sym[k] Ω1

X) = 0 for every k > 0, then
q̃(X) = 0.

Proof. Suppose by contradiction that there is a quasi-étale cover
X̃ → X with H1(X̃,OX̃) 6= 0. The variety X̃ is log-terminal Propo-
sition 1.1 and by [GGK19, Proposition 6.9] there is a non-zero re-

flexive form ω ∈ H0(X̃,Ω
[1]

X̃
). By definition the sections of a reflexive

sheaf are exactly the sections on the regular part of X. So to con-
struct a non-zero global section of Sym[k] Ω1

X we construct an element
in H0(Xreg, Symk Ω1

Xreg
). Now we consider just the restriction to the

regular locus of X:

Y := X̃ ×X Xreg → Xreg.

This is a finite étale cover, so we can find a further finite étale cover
over the regular part Ỹ → Xreg, that is Galois. Let G be the group

of deck transformations of Ỹ over Xreg. By abuse of notations we call

again ω the pullback to Ỹ of ω. Now consider the section

α̃ :=
∑

τ∈G

⊗

ρ∈G
τ ∗ρ∗ω ∈ H0(Ỹ , (Ω1

Ỹ
)⊗N)

where N = |G|. This section is invariant under the action of the deck
trasformations, so it descends to a section α of H0(Xreg, (Ω

1
Xreg

)⊗N).
By construction it is easy to check that this section is symmetric, i.e.
ω belongs to H0(Xreg, SymN(Ω1

Xreg
)). It is less trivial to prove that α̃,

and hence α, is non-zero.

For any non-zero element γ ∈ H0(Ỹ ,Ω1
Ỹ

) and a generic point p ∈ Ỹ
the space Ker(γ) ⊂ TỸ ,p is a proper subspace. Since ω 6= 0 and the
elements ρ ∈ G are automorphisms (and we are working over C), also
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ρ∗ω are non-zero elements in H0(Ỹ ,Ω1
Ỹ

). So for generic p ∈ Ỹ we can
choose a tangent vector

0 6= v ∈ TỸ ,p \
⋃

ρ∈G
Ker((ρ∗ω)p).

Now we can evaluate our section α̃ at the vector v⊗N . The computa-
tions are the following:

α̃(v⊗N) =
∑

τ∈G

⊗

ρ∈G
τ ∗ρ∗ω(v) =

∑

τ∈G

∏

ρ∈G
τ ∗ρ∗ω(v) = N

∏

ρ∈G
ρ∗ω(v) 6= 0.

So we have constructed a non-zero section of H0(Xreg, SymN Ω1
Xreg

))

that corresponds to a non-zero section of H0(X, Sym[N ] Ω1
X). �

6.14. Remark. The sections of the symmetric powers of the cotangent
bundle correspond to the sections of the powers of the tautological class
ζ := c1(OP(Ω1

X)). In particular the vanishing of H0(X, Sym[k] Ω1
X) for

any positive k is equivalent to say that no multiple of ζ is effective.

7. Chern classes of singular varieties

One of the difficulties of singular varieties respect the smooth ones
is that it is in general more difficult to use Riemann–Roch formula.
Restricting the kind of singularities that we allow, we can work without
problems in the following parts.

We start spending some words about the Chern classes for singular
varieties. The Todd and Chern classes of an arbitrary algebraic scheme
are defined in [Ful84, Section 18.3].

7.1. Remark. Let π : X̃ → X be a proper birational morphism that
is an isomorphism outside Z ⊂ X. Then

Td(X) = π∗Td(X̃) + α ∈ A∗(X)Q

where α is a class supported in Z. In particular this tells us that if X is
a variety smooth in codimension two, the definition c2(X) := π∗c2(X̃)
for some resolution π : X̃ → X agrees with the definition in [Ful84].
We want to prove that this two definitions agrees also for varieties with
rational singularities.

7.2. Remark. Using the definitions in [Ful84] the Hirzebruch-
Riemann-Roch Theorem [Ful84, Corollary 18.3.1] holds for any com-
plete scheme. Let X be a projective variety with rational singularities,
e.g. with at most dlt singularities, and π : X̃ → X a resolution of sin-
gularities. By definition of rational singularities for any line bundle L
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on X we have χ(X,L)) = χ(X̃, π∗L). Applying Hirzebruch-Riemann-
Roch to X and to X̃ we get∫

X

ch(L) · Td(X) =

∫

X̃

ch(π∗L) · Td(X̃) =

∫

X

ch(L) · π∗Td(X̃)

where the last equality follows from the projection formula [Ful84,
Proposition 2.5 (c)]. Since this equality holds for any line bundle L,
this tells us that c2(X) = π∗c2(X̃) as elements in N2(X). In particular
for a variety Y with at most klt singularities we can take as definition
c2(Y ) = π∗c2(Ỹ ) for some resolution of the singularities of Y .

The pseudo-effectiveness of the second Chern class proved by Miyaoka
holds also in our setting.

7.3. Lemma. Let X be a normal projective variety with canonical
singularities and KX ≡num 0. For any D1, . . . , Dn−2 nef divisors on X
we have c2(X) ·D1 · · ·Dn−2 ≥ 0.

Proof. Let ν : X̃ → X be a terminalization of X. The canonical
bundle of X̃ is still numerically trivial and X̃ is smooth in codimension
two. The divisors ν∗D1, . . . , ν

∗Dn−2 are nef, so applying [Miy87, The-
orem 6.6] and the projection formula we get c2(X̃) · D1 · · ·Dn−2 ≥ 0.
The conclusion follows applying another time the projection formula
to ν. �

In our setting to prove that the second Chern class of X is trivial it is
sufficient to show that c2(X) ·Hn−2 = 0 for some ample divisor H.

7.4. Lemma. Let X be a normal projective variety with canonical
singularities and KX ≡num 0. Then c2(X) = 0 in N2(X) if and only
if there exist H1, . . . , Hn−2 ample line bundles on X such that c2(X) ·
H1 · · ·Hn−2 = 0. In particular if c2(X) 6= 0 in N2(X) then for any
ample line bundle c2(X) ·Hn−2 > 0.

Proof. The proof of this lemma is an adaptation of the proof
of [GKP16a, Proposition 4.8]. We start proving that if there exist
ample line bundle H1, . . . , Hn−2 on X such that c2(X) ·H1 · · ·Hn−2 = 0
then for any line bundle L1, . . . , Ln−2 we have c2(X) · L1 · · ·Ln−2 = 0,
i.e. c2(X) = 0 in N2(X). Since the ample cone is open in N1(X) and
the intersection product is multilinear it is enough to prove that the
intersection is trivial for Li ample line bundle.

Up to taking large multiples of the divisors Hi we can also assume that
Hi ± Li are ample divisors in X. We prove by induction on k that

c2(X) · (H1 + L1) · · · (Hk + Lk) ·Hk+1 · · ·Hn−2 = 0.

For k = 0 this is the hypothesis. Suppose it is true for k, we have

0 = c2(X) · (H1 + L1) · · · (Hk + Lk) ·Hk+1 · · ·Hn−2 =
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= c2(X) · (H1 + L1) · · · (Hk + Lk) · (Hk+1 ± Lk+1) · · ·Hn−2.

Both the summands are non negative by Lemma 7.3, so they must be
zero. For k = n− 2 and expanding the product we get

0 =
∑

c2(X) · A1 · · ·An−2

where Ai ∈ {Hi, Li}. Since Ai is nef, this is a zero sum of non-negative
numbers whose sum is zero, so every summand must be zero. In par-
ticular we get c2(X) · L1 · · ·Ln−2 = 0.

To conclude we have to prove that if c2(X) is non-zero then for any
ample divisor H the number c2(X) · Hn−2 is positive, but this is im-
mediate since it is a non zero number by the above arguments, and it
is non-negative by Lemma 7.3. �
7.5. Remark. The second Chern class of a Calabi–Yau variety X
is non-zero. This is well-known under the further assumption that
X is smooth in codimension two. This is proved under the further
assumption that X is canonical and Q-factorial in [GKP16b, Theorem
1.4]. In a very recent paper it is proved that a normal projective variety
with at most log-terminal singularities, trivial canonical bundle and
trivial second Chern class is a quasi-étale quotient of an abelian variety
[LT18, Theorem 1.2 and Remark 1.5], so the augmented irregularity is
equal to the dimension. Note that the converse does not hold because
c2((E × E)/±) = 24. Using only the results in [GKP16b] we cannot
prove that the second Chern class of a Calabi–Yau variety is non-zero
because X is not Q-factorial, and a priori the second Chern class of a
Q-factorialization can be contracted in X.

8. Properties of cones

In this section there are some results that are well-known to the experts.
For the reader convenience let me recall the following.

8.1. Definition. Let Y be a normal variety. The numerical dimension
of a nef class x ∈ N1(Y ) is the maximum integer k such that xk 6= 0
as element in Nk(Y ).

8.2. Remark. By definition Nk(Y ) is the set of codimension k cycles
on Y modulo numerical equivalence. An element in Nk(Y ) is 0 if and
only if its intersection with any k dimensional cycle is 0. This definition
is not the same of [Ful84, Definition 19.1] but in the smooth cases they
are equivalent.

The well-known statement for Q-divisors that a nef divisor is big if and
only if it has positive top self-intersection [Laz04a, Theorem 2.2.13]
holds also for R-divisors. This fact is certainly well-known to the ex-
perts and an exercise for others.
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8.3. Lemma. Let Y be a normal projective of dimension n and D ∈
N1(Y ) a nef R-divisor. Then D is big if and only if Dn > 0.

This lemma can be easily deduced by [DP04, Theorem 0.5], but invoke
this result to prove this statement is certainly unnecessary.

A detailed direct proof of this fact can be found on the web page
of professor A. Lopez at http://ricerca.mat.uniroma3.it/users/

lopez/Note.html.

The following is an interesting consequence for varieties with no rational
curves and numerically trivial canonical bundle.

8.4. Proposition. [DF14, Proposition 2.1] Let X be a projective vari-
ety with at most log-terminal singularities, numerically trivial canonical
bundle and no rational curves. Then the ample cone and the big cone
coincide.

Proof. Let D be any effective Q-divisor. For small positive and
rational ε the pair (X, εD) is klt. Since there are no rational curves in
X, the cone theorem [KM98, Theorem 3.7] tells us that εD is also nef.
It follows that the effective cone is contained in the nef cone. Passing
to the interior of such cones we get the thesis. �

Now following [Laz04a] we define two cones that help us to study nef
divisors that are not ample.

8.5. Definition. The null cone NX ⊂ N1(X) is the set of classes of
divisors D such that Dn = 0. The boundary cone BX ⊂ N1(X) is the
boundary of the nef cone.

Note that these cones are not convex cones. The following corollary
that is already known by the experts explains the relation between
these cones in our context.

8.6. Proposition. Let X be a variety with log-terminal singularities,
numerically trivial canonical bundle and no rational curves. The bound-
ary of the ample cone is contained in the null cone, i.e. BX ⊂ NX .

Proof. In the boundary of the ample cone there are nef R-divisors
that by Proposition 8.4 are not big R-divisors. These R-divisors has
trivial top self-intersection and so they are in the null cone. �

9. Positivity properties of real (1,1)-classes

In this section we recall some basic facts about the positivity of (1, 1)
real cohomology classes that generalize the corresponding notions for
classes of divisors. A complete treatment on this subject would be to
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burdensome in this thesis and we claim no originality on this part. For
a detailed explanation we refer to [Dem12].

On a smooth projective variety X the ampleness of the class of a line
bundle can be checked, by Kleiman’s criterion [Deb01, Theorem 1.27],
computing its intersection with the curves (and the limits of classes
represented by sums of effective one cycles) contained in X. In the more
general context of compact Kähler manifold this is no longer sufficient.
This happens because a non projective manifold may contain no curves
at all. The situation gets even worst for the definition of pseudoeffective
line bundles. For projective varieties a line bundle is pseudoeffective
if it is limit of effective line bundles, i.e. which have some sections. If
there are no divisors in X, what does it mean for a line bundle to be
pseudoeffective?

For a line bundle L on a smooth projective manifold, the standard
definitions of numerically effective, ample, pseudoeffective and big, can
be characterized in terms of positivity conditions on the metrics that
one can put on L. More precisely in the following way:

9.1. Proposition. [Dem12, Chapter 6] Let L be a line bundle on a
projective manifold X, on which a hermitian metric ω is given. Then

• The line bundle L is ample if and only if there is a smooth
metric h on L such that iΘL,h > 0.
• The line bundle L is nef if and only if for every ε > 0, there

is a smooth metric hε on L such that iΘL,hε > −εω.
• The line bundle L is pseudoeffective if and only if can be

equipped with a singular hermitian metric h with T = i
2π

ΘL,h ≥
0 as a current.

These characterizations for line bundles on projective varieties make
sense in the general setting of real (1, 1) classes on a compact Kähler
manifold, and this can be taken as definition.

9.2. Definition. Let X be a compact Kähler manifold and α ∈
H1,1(X,R). The class α is a Kähler class if it can be represented by a
smooth real form of type (1, 1) that is positive definite at every point.
The class α is pseudoeffective if it can be represented by a closed real
positive (1, 1)-current.

The cone generated by the Kähler forms is the open convex cone K(X)
in H1,1(X,R) called Kähler cone. The cone generated by closed positive
real (1, 1)-currents is a closed convex cone denoted by E(X) called
pseudoeffective cone. The closure of the Kähler cone is the nef cone
and the interior of the pseudoeffective cone is the big cone. Clearly the
pseudoeffective cone contains the Kähler cone, and hence its closure
that is the nef cone.
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Suppose now that X is a projective manifold. Inside the real vector
space H1,1(X,R) there is the group of real divisors modulo numerical
equivalence or real Néron–Severi space

NSR(X) =
(
H1,1(X,R) ∩H2(X,Z)tf

)
⊗Z R

Then we have

K(X) ∩ NSR(X) = Nef(X), E(X) ∩ NSR(X) = Eff(X)

where Nef(X) (resp. Eff(X)) is the nef cone (resp. pseudoeffective
cone) well-known to algebraic-geometers (cf. [BDPP13] for more de-
tails).

As we noted before in the analytic context it is difficult to characterise
the positivity of a (1, 1)-class via intersection numbers, however we have
the following easy consequence of the Demailly-Pǎun criterion [DP04,
Theorem 0.1]:

9.3. Lemma. Let X be a compact Kähler manifold, and let V be a
vector bundle over X. Denote by π : P(V )→ X the natural morphism,
and by ζ the tautological class on P(V ). Let ωX be a Kähler class on
X such that for all λ ≥ 1 we have

(ζ + λπ∗ωX)dimZ · Z > 0 ∀ Z ⊂ P(V ) irreducible.

Then ζ + π∗ωX is a Kähler class.

Proof. By assumption the class ζ + λπ∗ωX is an element of the
positive cone P ⊂ H1,1(P(V )) of classes having positive intersection
with all subvarieties. By the Demailly-Pǎun criterion [DP04, Theorem
0.1] the Kähler cone K is a connected component of P . Since ζ is a
relative Kähler class, we know that (ζ+λπ∗ωX) ∈ K for λ� 0 [Voi02,
Proof of Prop.3.18]. Conclude by connectedness. �

9.A. The limit of pseudoeffective classes. It is not difficult
to show, using the relative Hilbert scheme, that a line bundle that is
effective on the general fiber of a projective family is still effective on
the central fiber. It seems to be well-known to the experts that the
same statements holds in the case of real (1, 1) pseudoeffective classes
on a family of compact Kähler manifolds. We didn’t found a neat
reference in the literature, but a detailed proof of this fact was given
to us by my advisor, Simone Diverio. For the sake of completeness we
write his proof that is the following.

Let π : X→ ∆ be a proper holomorphic submersion onto the complex
unit disc of relative complex dimension n, and call Xt = π−1(t) the
compact complex manifold over the point t ∈ ∆.

Suppose also that π is a weakly Kähler fibration, i.e. there exists a real
2-form ω on X such that its restriction ωt = ω|Xt is a Kähler form on
Xt, for each t ∈ ∆.
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By Ehresmann’s fibration theorem, π it is a locally trivial fibration in
the smooth category. Thus, after possibly shrinking ∆, we may suppose
that we are given a smooth compact real manifold F of real dimension
2n and a smooth diffeomorphism θ : X→ F×∆ such that the following
diagram commutes:

X
θ //

π   

F ×∆

pr2{{
∆.

Next, call θt := θ|Xt : Xt −→'C∞
F . For any t ∈ ∆, given a real (1, 1)-

cohomology class αt ∈ H1,1(Xt,R), we can then think of it as an ele-
ment βt of H2(F,R), by pulling-back via θ−1

t , that is βt :=
(
θ−1
t

)∗
αt.

Now, suppose that we are given a class α0 ∈ H1,1(X0,R) with the
following property: there is a sequence of points {tk} ⊂ ∆ converging
to 0, for each k it is given a (1, 1)-class αtk ∈ H1,1(Xtk ,R) which is
pseudoeffective and the corresponding classes βtk converge to β0 in the
finite dimensional vector space H2(F,R). Then we have the following
statement.

9.4. Theorem. The class α0 is also pseudoeffective.

Proof. To start with, we select for each k a closed, positive (1, 1)-
current Tk ∈ D′+n−1,n−1(Xtk) representing the cohomology class αtk .
Each of these, being a positive current, is indeed a real current of
order zero.

Now, set Θk :=
(
θtk
)
∗Tk. This is a closed, real 2-current of order zero

on the compact real smooth manifold F .

The first step is to produce a weak limit Θ of the sequence Θk on F . In
order to to this, by the standard Banach–Alaoglu theorem, it suffices
to show that for every fixed test form g ∈ D2n−2(F ) we have that the
sequence 〈Θk, g〉 is bounded. By definition, we have

〈Θk, g〉 =
〈(
θtk
)
∗Tk, g

〉
=
〈
Tk,
(
θtk
)∗
g
〉
,

and of course
〈
Tk,
(
θtk
)∗
g
〉

= 〈Tk, fk〉, where fk is the (n − 1, n − 1)

component of
(
θtk
)∗
g on the complex manifold Xtk . The (n−1, n−1)-

forms fk are real, since
(
θtk
)∗
g is so.

9.5. Lemma. Let (X,ω) be a compact Kähler manifold, T be a closed
positive current of X, and f be a real smooth (n−1, n−1)-form. Then,
there exists a constant C > 0 depending continuously on f and ω such
that we have

|〈T, f〉| ≤ C [T ] · [ω]n−1,

where the right hand side is intended to be the intersection product in
cohomology.
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Proof. Since f is real, we are enabled to define the following (pos-
sibly indefinite) hermitian form on T ∗X :

(ξ, η)f 7→
f ∧ iξ ∧ η̄

ωn
.

We also have the positive definite hermitian form given by

(ξ, η)ω 7→
ωn−1 ∧ iξ ∧ η̄

ωn
.

It is positive because (ξ, ξ)ω = 1
n

trω(i ξ ∧ ξ̄). By compactness of the
bundle of (·, ·)ω-unitary (1, 0)-forms on X, we can define

C ′ := − min
(ξ,ξ)ω=1

{(ξ, ξ)f},

and we have that (ξ, η)′ 7→ (ξ, η)f + C ′ (ξ, η)ω is positive semidefinite.
This constant C ′ depends manifestly continuously on f and ω. We
can do the same job with −f in the place of f thus obtaining another
constant C ′′, still depending continuously on f and ω such that

(ξ, η)′′ 7→ −(ξ, η)f + C ′′ (ξ, η)ω

is positive semidefinite. Now set C := max{C ′, C ′′} ≥ 0, which again
depends continuously on f and ω. This means exactly that both f +
C ωn−1 and −f + C ωn−1 are positive (n− 1, n− 1)-forms.

But then, begin T positive on positive forms,

〈T, f〉 = 〈T, f + C ωn−1 − C ωn−1〉
≥ −C 〈T, ωn−1〉 = −C [T ] · [ω]n−1,

and
〈T, f〉 = 〈T, f − C ωn−1 + C ωn−1〉

= −〈T,−f + C ωn−1〉+ 〈T,C ωn−1〉
≤ C 〈T, ωn−1〉 = C [T ] · [ω]n−1.

�

Now, we apply the above lemma with (X,ω) = (Xtk , ωtk), T = Tk and
f = fk. We therefore obtain positive constants Ck such that

|〈Tk, fk〉| ≤ Ck [Tk] · [ωtk ]n−1.

The right hand side is equal to Ck βtk ·Ωn−1
tk

, where Ωt ∈ H2(F,R) is the

cohomology class of
(
θ−1
t

)∗
ωt. It converges to the quantity C0 α0 · Ω0,

where C0 is the constant obtained if one applies the above lemma with
(X,ω) = (X0, ω0), and f the (n− 1, n− 1) component of

(
θ0

)∗
g. Thus,

the left hand side is uniformly bounded independently of k.

We finally come up with a real 2-current Θ on F which is a weak limit
of the Θk’s. By continuity of the differential with respect to the weak
topology we find also that Θ is closed and of course its cohomology
class is β0. Being Θ trivially with compact support since it lives on
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the compact manifold F , by [dR84, Corollary on p. 43], it is of finite
order, say of order p.

9.6. Remark. We can then look at the whole sequence {Θk} together
with its weak limit Θ as a set of currents of order p. In particular, this
is a set of continuous linear functionals on the Banach space pD2n−2(F )
which are pointwise bounded. By the Banach–Steinhaus theorem this
set is uniformly bounded in operator norm, i.e. there exists a constant
A > 0 such that for each positive integer k and each g ∈ pD2n−2(F ) we
have

|Θk(g)| ≤ A ||g||pD2n−2(F ).

This remark will be crucial in what follows.

Next, set T :=
(
θ−1

0

)
∗Θ. It is a real current of degree 2 on X0. We are

left to show that T is indeed a (1, 1)-current which is moreover positive.

9.7. Proposition. The current T is of pure bidegree (1, 1).

Proof. If not, there exists a (n, n − 2)-form h on X0 such that
〈T, h〉 6= 0. Fix a finite open covering of X0 by coordinate charts and
a partition of unity {ϕj} relative to this covering. Since

0 6= 〈T, h〉 =
〈
T,
∑

j

ϕjh
〉

=
∑

j

〈T, ϕjh〉,

there exists a j0 such that 〈T, ϕj0h〉 6= 0. Thus, we may assume that
h is compactly supported in a coordinate chart (U, z). Without loss of
generality, we can also suppose that such a coordinate chart is adapted
to the fibration π, i.e. U = U ∩X0, where U is a coordinate chart for
X with coordinates (t, z) such that π(t, z) = t.

In this way, we can extend h “constantly” on the nearby fibres of π:
call this extension h̃ and write h̃t for h̃|U∩Xt . If we set ut :=

(
θ−1
t

)∗
h̃t

we obtain a family of test form on F such that, for k sufficiently large,
we have

〈Tk, h̃tk〉 = 〈Θk, utk〉.
By Remark 9.6, we have

|〈Tk, h̃tk〉 − 〈T, h̃〉| = |〈Θk, utk〉 − 〈Θ, u0〉|
≤ |〈Θk, utk − u0〉|+ |〈Θk, u0〉 − 〈Θ, u0〉|
≤ A ||utk − u0||pD2n−2(F )︸ ︷︷ ︸

→ 0, by construction

+ |〈Θk, u0〉 − 〈Θ, u0〉|︸ ︷︷ ︸
→ 0, by weak convergence

.

Being the Tk’s of bidegree (1, 1) and h̃tk of bidegree (n, n− 2), we have

that 〈Tk, h̃tk〉 ≡ 0 and we deduce then that 〈T, h〉 = 0, contradiction.
�

9.8. Proposition. The current T is positive.
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Proof. The proof is almost identical to that of the above propo-
sition. We want to show that for any positive (n − 1, n − 1)-form h
on X0 we have that 〈T, h〉 ≥ 0. As before the question is local, so we
can suppose that h is compactly supported in U as above. Now the
“constant” extensions h̃t are again positive (n− 1, n− 1)-forms on Xt,

so that 〈Tk, h̃tk〉 ≥ 0 and we still have convergence to 〈T, h〉. But then
〈T, h〉 ≥ 0. �

This concludes the proof of the theorem, since we have represented α0

by a closed positive (1, 1)-current, i.e. α0 is a pseudoeffective class. �





Part 2

Rational curves in Calaby–Yau
fiber spaces



In this part we denote by X a normal projective variety of dimension
n ≥ 2. In the following three sections we study the case X admits
a genus one fibration onto a normal base B. Section 10 is taken from
[Ane18a], the sections 11 and 12 has some ideas of [Ane18b] but with
much extra work. Then in Section 13 we discuss some consequences
of the results we achieved and in Section 14 we present some results
of Kollár that gives necessary and sufficient numerical conditions on a
line bundle on X to have a genus one fibration. Then in Section 15
we study the case the canonical bundle of X is trivial and the base of
the fibration is a curve. This section is taken from [Ane18a]. Then I
conclude in Section 16 with some results in the general case.

10. Linearly relatively minimal genus one fibration

The following theorem is one of the main results in [Ane18a]. It will
be generalized in the following but we want to give the proof in this
easier case to make the comparison between the proofs.

10.1. Theorem. Let X be a projective variety with at most log-
terminal singularities that admits a surjective morphism : X → B
to a variety of dimension n− 1. Suppose moreover that q̃(X) = 0 and
there exists a Cartier divisor L on B such that f ∗L ∼ KX , then there
exists a subvariety of codimension one in X that is covered by rational
curves contracted by f .

Proof. The proof is divided in several steps some of which might
be already known to the experts. In particular Step 1, Step 3 and Step
5 adapt arguments used in [DFM19].

Step 1 : the morphism f : X → B is a genus one fibration. We
can suppose, by taking the normalization of B and passing to Stein
factorization, that the morphism f has connected fibers and the base
B is normal. For dimensional reasons the generic fiber is a curve. Since
X is normal Xsing ⊂ X has codimension at least two, so f(Xsing) ⊂ B
has positive codimension. The restriction on the regular part of X is a
morphism from a smooth variety, so there is a non-empty open subset
U ⊂ B where the morphism f : X ∩ f−1(U) → U is smooth [Har77,
III.10.7]. Let Z ⊂ B be the union of the singular locus of B and
the singular values of f , i.e. Z := Bsing ∪ Sv(f). Now B0 := Zc

and B0 ∩ f(Xsing)c are non-empty open sets and the morphism f0 :
X0 := f−1(B0)→ B0 is a smooth proper surjective morphism. Taking
the determinant of the relative cotangent bundle sequence restricted
to a fiber that is in the regular part of X, we get the isomorphism
KE ∼ KX0|E. It follows that KE ∼ KX0|E ∼ f ∗L|E ∼ OE. A smooth
curve with trivial canonical bundle is a genus one curve and a smooth
degeneration of a genus one curve has again genus one [BHPVdV04,
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See Section V.7], so every fiber of f0 : X0 → B0 is a smooth genus one
curve.

Step 2: we reduce to the case where the subvariety Z has codimension
one in B. Suppose every irreducible component of Z has codimension
at least two. By Lemma 3.28 the family f is isotrivial, so by Proposition
5.2 or 5.3 there exists a variety C0 and a finite étale cover C0

τ→ B0 such

that the pullback C0×B0X0 is globally trivial, i.e. C0×B0X0

ψ∼= C0×E.
The morphism induced by the following diagram

C0 × E
ψ−1

// X0 ×B0 C0

��

τ ′ // X0

��
C0

τ // B0

given by the composition α0 := ψ−1 ◦ τ ′ : C0 × E → X0 is finite étale
because τ is the pullback of a finite étale morphism. In particular the

composition of the morphisms C0 × E α0→ X0
i→ X is quasi-finite and

étale. By Zariski’s Main Theorem [Gro67] a quasi-finite morphism is
always the composition of an open immersion and a finite morphism,
so there is a commutative diagram

C0 × E
α0 //

i′
��

X0

i
��

Y
α // X

where i′ is an open immersion and α is a finite morphism. The excep-
tional locus of f is by definition Exc(f) = {x ∈ X | dim(f−1(f(x))) >
1}. The variety Xc

0 = XZ can be splitted as a disjoint union

XZ = (XZ ∩ Exc(f)) t (XZ ∩ Exc(f)c).

Since the subvarietyXZ∩Exc(f)c has dimension at most dim(Z)+1 and
we are assuming that codB(Z) ≥ 2, the dimension of XZ is bounded
by dim(XZ ∩ Exc(f)c) ≤ n − 2. Since KX ∼ f ∗(L) the anticanonical
bundle −KX is f -nef, hence by Theorem 4.1 the f -exceptional locus is
covered by rational curves contracted by f (in the cited reference Kawa-
mata didn’t say explicitly that the rational curves are contracted by f ,
however this is clear from his proof). This implies that if the excep-
tional locus of f has codimension one in X, it is a uniruled subvariety
of codimension one of X. This allows us to assume that codX(XZ) ≥ 2.

Since α is finite, also i′(C0×E)c has codimension at least two in Y . In
particular since α is étale in i′(C0×E) ⊂ Y , this argument proves that
α is a finite quasi-étale cover of X, so by hypothesis H1(Y,OY ) = 0. By
[KM98, Proposition 5.20] Y has log-terminal singularities. As proved

in [GKP16c, Proposition 6.9] there is an isomorphism H0(Y,Ω
[1]
Y ) '
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H1(Y,OY ). By definition Ω
[1]
Y is a reflexive sheaf, so it is isomorphic to

the sheaf of one forms on the regular part. The variety C0 is smooth

because it is a finite étale cover of B0, so Ω
[1]
Y = i′∗Ω

1
C0×E. Since

0 = H1(Y,OY ) ' H0(Y,Ω
[1]
Y ) ' H0(C0 × E,Ω1

C0×E) =

= H0(C0,Ω
1
C0

)⊕H0(E,Ω1
E) 6= 0

we reach a contradiction, so if there are no uniruled divisors on X then
Z has codimension one in B. This last part can be also done applying
Lemma 6.11.

Step 3: restriction to a fibration onto a curve with some singular values.
Let H be a very ample divisor on B such that (n− 2)H +L is globally
generated. The pullback f ∗H is a globally generated Cartier divisor.
Moreover there is an isomorphism

H0(X, f ∗H) ' H0(B, f∗(f
∗H)) ' H0(B,H)

because f has connected fibers. This isomorphism implies that general
elements in |H| are general also in |f ∗(H)|. So we can choose n − 2
general divisors D1, . . . , Dn−2 ∈ |H| such that C := D1 ∩ . . . ∩ Dn−2

is a smooth irreducible curve in Breg not contained in Z and S :=
f−1(D1) ∩ . . . ∩ f−1(Dn−2) is a normal surface. We call again f the
morphism f |S. Since Z has codimension one, it must intersect C.
Indeed Z · C = Z ·D1 · . . . ·Dn−2 = Z ·Hn−2 > 0 because H is ample
in B. This means that f must have some singular fiber. To prove the
existence of a uniruled divisor in X it is sufficient to find a rational
curve in the general S.

Step 4: the case where f−1(pi) ∩ sing(S) 6= ∅. Let S be a minimal
resolution of S

S
β

��
ν
��
S

f // C.

We can assume β is relatively minimal. Indeed if there is a (−1)-curve
on S contracted by β, the image of such a curve is again a rational curve
in S because it cannot be contracted to a point by minimality of the
resolution. If there are (−1)-curves in the general surface S constructed
above, then the union of such rational curves cover a divisor of X. Let
p1, . . . , pk be the points of C ∩ Z. The singular curves f−1(pi) ⊂ S
are exactly f−1(pi) = ν(β−1(pi)). Since β is a minimal genus one
fibration, by Kodaira’s table [BHPVdV04, Section V.7] a fiber of β
can be a smooth genus one curve, a sum of (possibly non reduced)
rational curves or a non reduced genus one curve. If f−1(pi) contains
some singular point of S, then β−1(pi) = ν−1(f−1(pi)) contains an
exceptional divisor of ν, in particular β−1(pi) must be a sum of rational
curves. Since not every rational curve of β−1(pi) can be contracted in
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S, the curve f−1(pi) = ν(β−1(pi)) must be a sum of rational curves in
S.

Step 5: the case where f−1(pi) ⊂ Sreg. The curve f−1(pi) is the central

fiber of a family S0
f→ ∆ of genus one curves. Since f−1(pi) is not

smooth, by Kodaira’s table it is a rational curve or a non reduced
irreducible genus one curve. We need to exclude the last possibility.

By adjunction formula the canonical bundle of Sreg is base point free.
Indeed

KSreg ∼ (KX + (n− 2)f ∗H)|Sreg ∼ f ∗(L+ (n− 2)H)|Sreg

the canonical bundle is the restriction of the pullback of a base point
free divisor.

By [BHPVdV04, V.12.3] the canonical bundle of Sreg can be com-
puted using the formula

KSreg ∼ f ∗D +
∑

(mi − 1)Fi

for some divisor D on the base and the sum runs over all the multiple
fiber Fi with multiplicity mi. The restriction of the canonical bundle
of Sreg to Fi is base point free because KSreg is base point free. By the
above formula for any i the canonical bundle restricted to Fi is

KSreg|Fi
∼ (f ∗D +

∑
(mi − 1)Fi)|Fi

= OFi
((mi − 1)Fi).

that in particular has some sections because it is the restriction of a
base point free line bundle. The line bundle OF i(Fi) is torsion of order
mi by [BHPVdV04, Lemma III.8.3]. A non-trivial torsion line bundle
has no sections, so for any i the line bundle OFi

((mi − 1)Fi) must be
trivial, hence the multiplicity of the fiber mi is one for any i and this
is a contradiction. �

This Theorem is inspired to [DFM19] where they proved a similar
result in the case X is a smooth projective manifold with finite fun-
damental group. Remark 6.6 implies that Theorem 10.1 is stronger
than [DFM19, Theorem 1.1] also for smooth varieties.

The proof is somehow constructive: if the family of genus one curves
varies in moduli then there is a vertical divisor over j−1(∞) that is
covered by rational curves; if the family is generically isotrivial then
there is an exceptional divisor covered by rational curves. We used the
linear condition KX ∼ f ∗L instead KX ∼Q f ∗L only to exclude the
case of multiple fibers. We will see in the following that we can unroll
these fibers relaxing this hypothesis.

It is not sufficient the assumption q(X) = 0 instead of the vanishing
q̃(X) = 0. Indeed the following is a counterexample.
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10.2. Example. Let V ⊂ PN be a smooth variety of dimension k ≥ 3
with cyclic fundamental group of order 2q. Consider in this projective
space PN a generic hypersurface Z of degree d′ ≥ 2N − 1. By [Cle86,
Theorem 1.1] there are no rational curves in Z. We denote by B :=
Z ∩ V their intersection. Let B̃ be the universal cover of B.

Consider an elliptic curve E and an automorphism η of order 2q that
does not fix ωE the generator of Ω1

E and the diagonal action of G :=

Z/(2q) induced on the product Y := B̃ × E. The quotient of Y under

this action gives a genus one fibration X := Y/G
π−→ B. The variety

X has zero irregularity but does not contain rational curves at all. A
detailed explanation of this example can be found in Example 17.6.

An interesting application of Theorem 10.1 is the following corollary,
already observed in their context in [DFM19].

10.3. Corollary. A variety X with at most log-terminal singularities,
q̃(X) = 0, κ(X) = n−1 and whose canonical bundle is nef of exponent
one does contain a uniruled divisor.

The condition on the exponent is needed because we need to assume
in Theorem 10.1 that the canonical bundle of X is linearly equivalent
to the pullback of a line bundle on B. This hypothesis can be relaxed
as we will see in Corollary 13.2. In particular for the proof of this
corollary we refer to Corollary 13.2.

10.A. Trivial canonical bundle. For Calabi–Yau varieties we
can improve Theorem 10.1 proving the following result.

10.4. Theorem. Let X be Calabi–Yau variety. Suppose that there ex-
ists a morphism f : X → B whose general fiber is a curve. Then there
exists a uniruled subvariety of codimension one in X that is covered by
rational curves contracted by f .

Proof. By global index one theorem [GGK19, Proposition 2.18]
there is a variety X ′ with canonical singularities and a finite quasi-étale
morphism α : X ′ → X such that KX′ ∼ 0. A finite quasi-étale cover
Y → X ′ is also (after composition with α) a finite quasi-étale cover
of X. This proves that q̃(X ′) ≤ q̃(X) and so q̃(X ′) = 0. If there is
a subvariety V ⊂ X ′ of dimension n − 1 that is covered by rational
curves, then also the variety α(V ) ⊂ X is covered by rational curves.
Since the canonical bundle of X ′ is linearly equivalent to the trivial line
bundle it is automatically the pullback of the trivial line bundle. The
hypotheses of Theorem 10.1 are satisfied, so the theorem is proved. �

To preserve the dichotomy given by Beauville–Bogomolov decompo-
sition between irreducible symplectic varieties and Calabi–Yau vari-
eties in the singular setting, a useful definition is given for example
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in [GGK19], [Dru18], [HP19] and related papers. In particular,
in [HP19], they prove that there exists a version of the Beauville–
Bogomolov decomposition for varieties with canonical singularities and
smooth in codimension two. In these definitions of Calabi–Yau vari-
eties and irreducible symplectic varieties there are some conditions on
the reflexive exterior algebra of forms, that in particular imply that
such varieties must have vanishing augmented irregularity.

Being a Calabi–Yau variety as in Definition 3.12 means that in the
Beauville–Bogomolov decomposition [HP19, Theorem 1.5] the abelian
factor is trivial. Without the assumption on the smoothness in codi-
mension two an analogous statement is [GGK19, Theorem B]. In par-
ticular Theorem 10.4 can be applied to any product of Calabi–Yau’s
and irreducible symplectic varieties with such a definition. But let us
be more precise.

Let X be a variety with at most log-terminal singularities. Suppose
moreover KX ≡num 0 and that there is a surjective morphism f : X →
B to a variety of dimension n−1. By [GGK19, Theorem B] there is a
quasi-étale map g : A×Y → X with A an abelian variety of dimension
q̃(X), and q̃(Y ) = 0. Passing through the Stein factorization of f ◦ g
we get a genus one fibration α : A× Y → B̃. If the restriction of α to
{t}× Y for generic t is a family of curves, then we can apply Theorem
10.4 and find a uniruled divisor on {t} × Y . This implies that there is
also a uniruled divisor on A× Y and hence its image under g is again
a uniruled subvariety of codimension one in X.

10.5. Remark. We can’t expect that we can always apply Theorem
10.4 to the restriction of the fibration to {t}×X̃ because it may happen
that α is a projection, i.e. X = E × Y → Y for some genus one curve
E.

Also for smooth varieties, Theorem 10.4 seems more general than
[DFM19, Corollary 1.2] because in their context a Calabi–Yau va-
riety must have finite fundamental group. Such finiteness condition
is a priori stronger than the vanishing of the augmented irregularity
(see Remark 6.6). However one can see as consequences of Beauville–
Bogomolov decomposition for smooth varieties that this two conditions
are equivalent: a smooth projective variety with numerically trivial
canonical bundle and vanishing augmented irregularity has finite fun-
damental group. It is conjectured that the same implication holds also
in the singular case, at least for varieties with mild singularities.

11. Relatively minimal genus one fibrations

In this section we generalize the results of the previous one. The key
ingredient for this generalization is Theorem 3.18 of Kollár that leads
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us to relax the condition KX ∼ f ∗L. However some of the results
we obtain in this section can be obtained directly with a semistable
reduction and the results of Section 5.

11.A. Singular fibers of genus one fibrations. Now we study
the general fibers over the singular values of an genus one fibration.

11.1. Lemma. Let f : X → B be a genus one fibration and Z :=
Sv(f). Suppose that codB(Z) = 1, then a general fiber over Z is mE+∑
miRi where E is a genus one curve and Ri are rational curves.

Proof. We can study the restriction of f to a surface as follows.
Let H be a very ample divisor on B such that (n− 2)H +L is globally
generated. The pullback f ∗H is a globally generated Cartier divisor.
Moreover there is an isomorphism

H0(X, f ∗H) ' H0(B, f∗(f
∗H)) ' H0(B,H)

because f has connected fibers. This implies that general elements in
|H| are general also in |f ∗(H)|. So we choose n − 2 general divisors
D1, . . . , Dn−2 ∈ |H| such that C := D1 ∩ . . . ∩ Dn−2 is a smooth irre-
ducible curve in Breg not contained in the locus of singular values of
f and S := f−1(D1) ∩ . . . ∩ f−1(Dn−2) is a normal surface. Looking
at the Kodaira’s table [BHPVdV04, Section V.7] it is easy to check
that the singular fibers of f |S are mE +

∑
miRi where E is an elliptic

curve and Ri are rational curves. The condition on the dimension of
Z insures that a general point in Z lies on a curve obtained as general
intersection of hyperplane sections. �
11.2. Remark. If X contains no uniruled codimension one subvarieties
but Sv(f) has codimension one in B, then the fibers over any general
point of Sv(f) of dimension n− 2 are multiple genus one curves.

11.3. Remark. It follows from Lemma 11.1 and from Theorem 4.1
of Kawamata that a relatively minimal genus one fibration with no
uniruled codimension one subvarieties has no degenerate divisors.

Lemma 11.1 can be seen as a soft version of Kodaira’s table in higher
dimension. With the same strategy of the proof of this lemma one
can certainly do a better classification of singular fibers. Using the
techniques of Lemma 11.1 we can control only the general singular
fiber in codimension one.

Now we can merge together these lemmas and prove the following re-
sult.

11.4. Proposition. Let X
f→ B be a genus one fibration between

normal projective varieties such that X does not contain codimension

one subvarieties that are uniruled. Then the family X
f→ B is isotrivial.
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This proposition should be compared with [LP18, Proposition 6.5]
and [V+03, Proof of Corollary 3.34].

Proof of Proposition 11.4. We can assume by Lemma 3.28
that Z := Sv(f)) has codimension one in B. The general fiber over Z
is classified by Lemma 11.1. Since there are no uniruled codimension
one subvarieties, in the general fiber over Z there are only multiple
genus one curves.

Now we can proceed cutting with hyperplane sections as in the proof
of Lemma 11.1. In this way we get many curves C in B with only
genus one fibers (possibly multiple) over them. Up to consider a finite
possibly ramified base change we can assume this map has a section.
The j-invariant for multiple elliptic curves is well-defined as one can
easily check with a semistable reduction. Since the curve C is complete
this implies that the j-map is constant, i.e. the family π restricted over
C is isotrivial.

For each curve C obtained in this way we get an isotrivial family. From
this fact it follows that the all the family over B is isotrivial. Let us
prove this fact by induction on the dimension of B.

There is nothing to prove if the dimension is one. By induction we
can suppose that the family is isotrivial when restricted to an ample
subvariety H ⊂ B. The fibers over curves that are general complete
intersections are pairwise isomorphic and these curves must intersect
H. The union of these curves dominates B. This implies that the

family X
f→ B is isotrivial. �

Another way to prove this lemma is to consider the j-map and the
semistable reduction directly from B.

11.B. Relatively minimal genus one fibrations. Here we
present the first generalization of Theorem 10.1 based on a result of
Kollár which allows us to face the case the singular locus of the fibra-
tion has codimension one, but there are only multiple genus one curves
over it.

11.5. Theorem. Let X
f−→ B be a relatively minimal genus one fibra-

tion.

• The variety X does not contain a divisor covered by vertical
rational curves if and only if X is isomorphic in codimension
one to a variety which has a finite cover, étale in codimension
two, isomorphic to B̃ × E over B, for some cover B̃ of B.
• The variety X does not contain vertical rational curves if and

only if there is a finite globally étale cover of X isomorphic to
B̃ × E over B, for some cover B̃ of B.
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Proof. It follows from standard arguments that a general fiber
of f is a smooth curve contained in the smooth locus of X, so by
adjunction formula KXt ∼ KX |Xt . This implies that KXt ∼ 0 and
hence the general fiber has genus one.

If the fibration is not generically isotrivial then there exists a uniruled
divisor in X by Proposition 11.4. In particular all the implications are
satisfied. So we can assume that f is generically isotrivial. Under these
assumption by Theorem 3.18 X is birational over B via a rational map

g to a unique orbibundle Xorb
f ′−→ B. By uniqueness the orbibundle is

the only candidate to be a quotient of a product.

If there are some degenerate divisors on X then by Remark 11.3 they
are covered by rational curves contracted by f , and by Lemma 3.22
these divisors must be contracted in Xorb. In particular also in this
case all the implications are satisfied.

We can also assume by Lemma 3.9 that g is an isomorphism in codi-
mension one between X and Xorb.

Let us focus on the first equivalence. Since we can assume that X and
Xorb are isomorphic in codimension one over B, and one contains a
divisor covered by vertical rational curves if and only if the other does,
we can replace in the statement X with Xorb. Then the conclusion
follows from the characterization in Lemma 3.24.

Now let us focus on the second characterization. By Lemma 1.3 also
Xorb is log-terminal. Hence we can apply Theorem 4.5 to g−1. The
indeterminacy locus of g−1 is covered by rational curves. We claim
that such curves must be vertical. Indeed consider a resolution of the
morphism

Z
α

||

β

  
Xorb

g−1

//

""

X

~~
B.

If the β-exceptional locus contains the α-exceptional locus then g−1 is
globally defined by [Deb01, Lemma 1.15]. Suppose this inclusion does
not hold and denote by p ∈ Xorb a point in the image of Exc(α)\Exc(β).
By Theorem 4.2 α−1(p) is rationally connected. Choose two points in
α−1(p) that maps into different points of X and take a rational curves
R passing through these points. Its image β(R) is a rational curve in
X and, since the diagram above commutes, it must be contracted in
B.
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Assume that X does not contain vertical rational curves. Then by the
above argument there is a diagram

Xorb
g−1

//

f ′

!!

X
f

��
B

and since all the fibers of the orbibundle are irreducible curves, by
dimensional reasons g−1 cannot contract anything, and hence X is

isomorphic to Xorb. If the finite map B̃ × E
h−→ X ramifies at some

point (b, z) then the map restricted to the fiber b× E → X is a finite
ramified map from a genus one curve onto its image, that by Hurwitz
formula is a genus zero curve that is contracted in B. Hence h is
globally étale.

Assume that there is a finite globally étale cover of X isomorphic to
B̃ ×E over B, then all the fibers are the image of the genus one curve
E under a finite unramified map, that by Hurwitz formula is again a
genus one curve. �

In particular an immediate consequence of this theorem is the following.

11.6. Corollary. In the setting of the previous theorem, if B does
contain no rational curves, then X contains rational curves if and only
if does not exists a finite étale cover of the form B̃ × E → X over B.

The proof of Theorem 11.5 essentially is in the same spirit of the proof
of Theorem 10.1. The key points for this generalization are Theorem
3.18, the uniruledness of the divisors of X contracted in the orbibundle
and a careful analysis of orbibundles.

12. Non relatively minimal genus one fibrations

It is natural to ask what happens if we do not assume the fibration is
relatively minimal. There are several obstruction to be minimal. The
first one is that the canonical bundle is not a Q-Cartier divisor. The
second one is that the canonical bundle has some exceptional compo-
nent, i.e. KX ∼Q f

∗L+
∑
aiEi for some exceptional divisors Ei.

12.A. Log relatively minimal fibration. One way to face off
the first problem is to add an effective boundary ∆ to make KX + ∆
a Q-Cartier divisor. This case can be treated exactly as the case of
Theorem 12.2:

12.1. Theorem. Let (X,∆)
f−→ B be a relatively minimal log Calabi–

Yau fiber space of relative dimension one. Then
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• The variety X does not contains a divisor covered by vertical
rational curves if and only if X is isomorphic in codimension
one to a variety which has a finite cover, étale in codimension
two, isomorphic to B̃ × E over B, for some cover B̃ of B.
• The variety X does not contain vertical rational curves if and

only if there is a finite globally étale cover of X isomorphic to
B̃ × E over B, for some cover B̃ of B.

Proof. Since KX + ∆ ∼Q f ∗L, the restriction of (KX + ∆) to a
general fiber of f , i.e. (KX + ∆)|Xt is numerically trivial. A general
fiber of f is a smooth curve contained in the smooth locus of X, so
by adjunction formula KXt ∼ KX |Xt ∼Q −∆|Xt and hence the general
fiber has genus at most one. If the genus is zero the variety X is unir-
uled, so we can suppose f is a genus one fibration. Note that even if ∆
and KX are not Q-Cartier Q-divisors their restrictions on a neighbor-
hood of a general fiber Xt are Q-Cartier. Then follows verbatim the
proof of Theorem 12.2. �

12.B. Genus one fibrations with exceptional locus. In the
general case it is not easy to control the exceptional locus. As in
Example 17.5 there are cases where one cannot find rational curves on
the exceptional locus also if we assume X to be smooth. The main tool
we can use is the the result of Kawamata Theorem 4.1.

12.2. Proposition. Let (X,∆) be a klt pair such that there exists
a surjective morphism f : X → B to a variety of dimension n − 1
that is not a quasi-product over B. Suppose moreover KX + ∆ ∼Q
f ∗L+

∑
aiEi for some Q-Cartier Q-divisor L on B, some f -exceptional

divisor Ei and whose coefficients are not all strictly negative. Then X
does contain rational curves.

Proof. Let us start assuming that X is Q-factorial. We can write
KX+∆ ∼Q f

∗L+D−D′ with D and D′ f -exceptional effective divisors
with no common components. If there are no exceptional divisors this is
Theorem 11.5. Otherwise it follows from Lemma 3.7 that there exists a
component E of the divisor D that is covered by curves that intersect
negatively KX + ∆ . By Cone Theorem this implies that there are
rational curves in X.

If X is not Q-factorial, in order to apply Lemma 3.7, we consider a
Q-factorialization XQ → X and with the same argument we get that
there exists a divisor in XQ covered by curves that intersect negatively
KXQ + ∆Q. Since a Q-factorialization is small, not all these curves can
be contracted in X. By projection formula we get curves in X with
negative intersection with KX + ∆. The conclusion follows again by
the Cone Theorem. �
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12.3. Remark. Up to consider the new pair KX + ∆ + εEi one can
prove that there exists rational curves, provided that not every −ai is
bigger than the log-canonical threshold of Ei.

With the same strategy we can find a uniruled divisor with a further
assumption on the singularities of X.

12.4. Corollary. In the setting of Theorem 12.2 with the further con-
dition that X is smooth in codimension two, e.g. X has terminal sin-
gularities. Then X contains an uniruled divisor.

Proof. Since we are looking for a uniruled divisor and a Q-
factorialization is small, we can assume that X is Q-factorial. By
the proof of Theorem 12.2 there exist some very ample line bun-
dles Hi on X and an irreducible component E of D such that
E · H1 · . . . Hn−2 · (KX + ∆) < 0. Since X is smooth in codimension
two, the general complete intersection of elements in |Hi| is contained
in Xreg, so the general curve obtained as intersection E∩H1∩· · ·∩Hn−2

is contained in the regular part of X and intersects negatively KX +∆.
Moreover, by the construction of Hi, these curves cover E. To conclude
it is sufficient to apply Bend and Break Theorem [Deb01, Theorem
3.6]. �

With a different strategy we can find a uniruled divisor also in the case
X is singular in codimension two.

12.5. Proposition. Let X
f−→ B be a genus one fibration that is not a

quasi-product and KX ∼Q f
∗L+

∑
aiEi. If we suppose that some ai is

non-negative, then X does contain a uniruled divisor.

Proof. If there are no exceptional divisors we can apply Theorem
12.2 to conclude. Since we are looking for a uniruled divisor and a
Q-factorialization is small we can assume that X is Q-factorial. We
can write KX ∼Q f

∗L+
∑
aiEi−

∑
biFi with Ei 6= Fj the exceptional

divisors and with all the coefficients non-negative. The divisor
∑
aiEi

has a component E1 covered by curves Ct contracted in B such that∑
aiEi · Ct < 0 by Lemma 3.7. Moreover the curves Ct are complete

intersections of the form E1 ∩ H1 ∩ · · · ∩ Hn−2 for some very ample
divisors Hi in X.

Take a terminalization X̃
ν−→ X. The canonical bundle of this partial

resolution is KX̃ ∼Q ν
∗KX −

∑
ciGi for some non negative number ci.

A component of the divisor ν∗E1, that is (ν−1)∗E1, is covered by the
strict transforms C̃t and satisfies

∑
aiν
∗Ei·C̃t < 0. The family of curves

C̃t is not contained in the other components of the support of KX̃ , so

we have KX̃ · C̃t < 0. Since X̃ is terminal, it is smooth in codimension

2. The curves C̃t are contained in the intersection ν∗H1∩ · · ·∩ ν∗Hn−2.



58

The divisors ν∗Hi are base point free, so the general element of this
family does not intersect the singular points of X̃. This means that for
a general point in (ν−1)∗E1 there is a curve contained in the regular part
of X that intersects negatively the canonical bundle KX̃ , hence we can
apply [Deb01, Theorem 3.6] and get a family of rational curves that
covers (ν−1)∗E1. Since the image of a rational curve is again rational,
this implies that also E1 is covered by rational curves. �

Another strong way to control the exceptional locus is Theorem 4.2.
Using much of the theory we developed so far we can prove the follow-
ing:

12.6. Theorem. Let X
f−→ B be a genus one fibration. Assume the

base B is potentially klt. Then

• If X is not a quasi-product, then X contains a uniruled divisor.
• If X is not an orbibundle, then X contains a vertical rational

curve.

More precisely:

• The variety X does not contains a divisor covered by vertical
rational curves if and only if X is isomorphic in codimension
one to a variety which has a finite cover, étale in codimension
two, isomorphic to B̃ × E over B, for some cover B̃ of B.
• The variety X does not contain vertical rational curves if and

only if there is a finite globally étale cover of X isomorphic to
B̃ × E over B, for some cover B̃ of B.

Proof. By Proposition 11.4 we can assume that f is a generically
isotrivial fibration. By Lemma 11.1 we can assume that there are no
degenerate divisors. Since we have no hypothesis on the canonical
bundle of X we cannot apply Theorem 4.1.

Let E be a general fiber of f . By Theorem 3.18, X is birational via a

rational map g to a unique orbibundle Xorb
f ′−→ B. Since B is poten-

tially klt, by Proposition 1.1 also the cover B̃ is potentially klt. Since
E is a smooth curve also the product E × B̃ is potentially klt and
applying again Proposition 1.1 Xorb has the same singularities.

We can apply Corollary 4.3 to all the divisors contracted by g. This
implies that we can assume there are no divisors contracted by g. In
particular by Lemma 3.22 all the divisors f -exceptional are contracted
by g and hence are uniruled. We can apply Lemma 3.9 and obtain
that X and Xorb are isomorphic in codimension one. This proves that
if there are no uniruled divisor inX then it is isomorphic in codimension
one to an orbibundle. At this point the first equivalence is given by our



13. PARTICULAR CASES AND CONSEQUENCES 59

characterization of those orbibundles with divisors covered by vertical
rational curves given in Lemma 3.24.

For the second point we apply Lemma 1.3 that tells us that f is a log
relatively minimal genus one fibration for some boundary. Then we get
the conclusion following verbatim the last part of the proof of Theorem
11.5. �

This result is more general than Theorem 12.1 because the base of a rel-
atively minimal Calabi–Yau fiber space is potentially klt by [Amb05,
Theorem 0.2]. The only assumption that we make on the singulari-
ties of B is needed: if B has only log-canonical singularities that are
non log-terminal, the thesis fails. The following is an example of this
situation:

12.7. Example. Let B := {x3
0 + x3

1 + x3
2} ⊂ P3 be a cone over a genus

one curve and E an elliptic curve. Consider the product X := B × E
and its minimal resolution X̃. The variety X̃ has a generically isotrivial
genus one fibration with an exceptional divisor. There are no vertical
rational curves in X̃ because the exceptional locus is isomorphic to the
product of two elliptic curve, and the other fibers are genus one curves.
This is because B has log-canonical but non divisorially log-terminal
singularities. For further details see Example 17.5.

13. Particular cases and consequences

We mention some particular cases and prove some interesting conse-
quences.

13.1. Corollary. Let X be a projective variety of dimension n with at
most canonical singularities, κ(X) = n − 1 and q̃(X) = 0. Then X
does contain rational curves.

Proof. If the canonical bundle ofX is not nef, then there are ratio-
nal curves in X by the Cone Theorem. The numerical dimension of KX

is greater than the Kodaira dimension of X that is n−1. If ν(KX) = n
then KX is a nef Q-Cartier divisor with positive self-intersection, hence
by Riemann–Roch Theorem k(X) = n, that is a contradiction. So
ν(KX) = n − 1 = κ(KX) and following the definition of Kawamata
this means that X is a good minimal model. By [Kaw85, Theorem
1.1] the canonical divisor is semi-ample, hence the Iitaka fibration of
the canonical bundle gives a genus one fibration ϕmKX

: X → B with
KX ∼Q ϕ∗mKX

(H) for an ample Q-Cartier Q-divisor H on B. In par-
ticular we can apply Theorem 11.5 and get the thesis. �

For smooth varieties we can do slightly better. The key point for this
improvement is a very nice work on varieties covered by elliptic curves
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by Lazic and Peternell [LP18]. For smooth varieties we can prove,
using their results, the following corollary.

13.2. Corollary. Let X be a smooth projective variety of dimension
n ≥ 2 that is not a quasi-product, e.g. q̃(X) = 0. If X is covered by
genus one curves, then it contains a rational curve.

Proof. Suppose by contradiction that X does not contain rational
curves. We can apply [LP18, Theorem 6.12] and find an equidimen-
sional fiber space X → W . This fibration is relatively minimal and
then by Theorem 12.2 we can conclude. �

More precisely we can also apply the last part of Theorem 12.2 proving
the following.

13.3. Corollary. Let X be a smooth projective variety covered by ellip-
tic curves but with no rational curves. Then X is a finite étale quotient
of E × B̃. In particular the fundamental group of X is infinite.

Proof. As before by [LP18, Theorem 6.12] under our assumption
there exists a relatively minimal genus one fibration X → B. Then we
can apply Theorem 12.2 to f to get the conclusion. �

14. Conditions to have minimal genus one fibration

Here we state an useful criterion to find genus one fibration due to
Kollár.

14.1. Theorem. Let X be a projective variety with at most log-
terminal singularities of dimension n, nef canonical bundle and L a
Cartier divisor on X. Assume moreover

1) Ln−2 · Td2(X) > 0.
2) L is nef.
3) L− εKX is nef for 0 ≤ ε << 1.
4) Ln = 0.
5) Ln−1 6= 0 in H2n−2(X,Q).

Then X with the Iitaka fibration associated to L is a relatively minimal
genus one fibration.

This result is [Kol15, Theorem 10]. In the same article there is also a
log version of this theorem.

14.2. Remark. In [Kol15, Theorem 10] there is the further hypothesis
Ln−1 · KX = 0, but this condition actually follows from the others.
Indeed if L− εKX is nef then

0 ≤ (L− εKX)n = Ln − nεLn−1 ·KX + ... = −nεLn−1 ·KX + ...
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The divisors L and KX are nef, hence Ln−1 ·KX ≥ 0. It follows that
Ln−1 ·KX = 0.

The conditions 2), 3) and 4) mean that L is a line bundle whose class
is contained in an extremal face of the nef cone, and this face contains
the class of the canonical bundle of X.

It follows from Theorem 14.1 the following result.

14.3. Corollary. Let X be a variety with log terminal singularities
and q̃(X) = 0. If there exists a line bundle L on X such that the
conditions from 1) to 5) of Theorem 14.1 are satisfied, then X does
contain rational curves.

In [Kol15] Kollár provides also a log version of Theorem 14.1.

15. Fibration over curves

In this section we study the dual case of a genus one fibration: the case
of a surjective morphism π : X → C to a curve. Passing through the
Stein factorization we can assume π has connected fibers and since X is
normal we can assume that C is smooth. So it is sufficient to study the
geometry of a morphism with connected fibers onto a smooth curve. A
fiber of a morphism onto a curve is a semiample divisor with numerical
dimension one. So it is a priori more general to work only with a
nef divisor with numerical dimension one than with a fibration onto a
curve.

In this section we prove the following statement.

15.1. Theorem. Let X be a Calabi–Yau variety. Suppose there exists a
nef Q-divisor D with numerical dimension one such that c2(X) ·D = 0
in N3(X). Then X does contain rational curves.

15.2. Remark. Theorem 15.1 is a generalization of [DFM19, Theo-
rem 1.6] also for smooth varieties. Indeed for smooth varieties with
trivial canonical bundle with a fibration onto a curve with general
fiber an abelian variety F , the class of F in N1(X) has numerical
dimension one and intersect in zero the second Chern class of X, i.e.
F · c2(X) = 0 [DFM19, Section 3]. Moreover a divisor with numerical
dimension one which intersects in zero the second Chern class of X is
just conjecturally semiample.

The geometric meaning of Theorem 15.1 is clear if the divisor is also
semiample. In this case the Itaka fibration associated to D is a fibration
onto a curve. A general fiber F of such a morphism intersects trivially
c2(X), i.e. c2(F ) = F · c2(X) = 0. If F is contained in the regular part
of X, then by adjunction formula F has automatically trivial canonical
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bundle. This in particular implies that there is an abelian variety with
a finite quasi-étale cover to F .

15.3. Proposition. Let X be a variety with log terminal singularities,
numerically trivial canonical bundle and without rational curves. Let
H and D be two divisors on X that are respectively ample and nef of
numerical dimension one. There is a (unique) rational number t0 such
that the Q-divisor N(D,H) = H − t0 · D is nef and has numerical
dimension n− 1.

Proof. The line in N1(X) for t ∈ R
Nt = H + t ·D

gives us an interesting divisor in the intersection with the null cone.
This line is parallel to the extremal ray of the nef cone generated by
[D]. The divisor D is nef so the line Nt is contained in the nef cone for
t ≥ −Hn

nHn−1·D and intersect the null cone when there is the equality. The

divisor in the intersection N = H − Hn

nHn−1·DD is a Q-divisor because

H and D are Q-divisors and Hn

nHn−1 ∈ Q. The divisor N has numerical

dimension n−1 because N
n−1 ·D = Hn−1 ·D 6= 0 and it is not big. �

In particular this proposition implies the following corollary.

15.4. Corollary. Let X be a variety with canonical singularities,
numerically trivial canonical bundle and with no rational curves. If
c2(X) 6= 0 as element in N2(X) but c2(X) ·D = 0 in N3(X) for some
nef Q-divisor D with ν(D) = 1, then there exists an ample Q-divisor
H such that the Q-divisor N(D,H) constructed in Proposition 15.3
satisfies c2(X) ·N(D,H)n−2 > 0.

Proof. By Proposition 15.3, X contains a Q-divisor N of numer-
ical dimension n− 1. By Lemma 7.3 we know that the intersection of
c2(X) with n − 2 nef divisors is non negative. By Lemma 7.4 for any
ample divisor H we have Hn−2·c2(X) > 0. By hypothesis c2(X)·D = 0,
so c2(X) ·(N(D,H))n−2 = c2(X) ·(H− Hn

nHn−1·DD)n−2 = c2(X) ·Hn−2 >
0. �

15.A. Proof of Theorem 15.1. Now the proof of Theorem 15.1
follows from the results obtained in this section and by Theorem 10.4.

Proof of Theorem 15.1. If the singularities of X are not
canonical then X is uniruled by [KL09, Theorem 11], so we can sup-
pose that X has canonical singularities. Moreover by Remark 7.5 we
now that c2(X) 6= 0. Suppose by contradiction that there are no ra-
tional curves in X. Thanks to Corollary 15.4 we can find a nef Q-

divisor N such that 0 < c2(X) · Nn−2
= 12 Td2(X) · Nn−2

. So apply-
ing [Kol15, Theorem 10] the divisor N induces an genus one fibration
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X → B. Thus we can apply Theorem 10.4 to find rational curves in
X, which gives a contradiction. �

The idea of Theorem 15.1 is to find a nef divisor D in X with Itaka
dimension n − 1. In the proof of Theorem 15.1 we explained that in
our setting it is sufficient to find a nef Q-divisor D with numerical
dimension n − 1 such that Dn−2 · c2(X) > 0. A careful analysis in
dimension three can be found in [DF14]. They work with smooth
varieties but their proofs works verbatim also for Calabi–Yau varieties
as in Definition 3.12.

16. Calabi–Yau fiber spaces, the general case

The case where the dimension of the fibers is intermediate is much
more difficult. In the case of non-isotrivial fibrations the main new
problem is the existence of complete families of abelian varieties. In
the case of isotrivial fibrations we can say something, however many
cases are completely open, e. g. F×B → B where F is a Calabi–Yau of
dimension at least 3. Many of the results that we are going to present
in this section can be adapted to the case X has mild singularities, but
we will state everything in the smooth case.

We start proving an analogue of Lemma 11.1 in the case the dimension
of the fibers is at least two.

16.1. Lemma. Let X
h−→ B be a smooth relatively minimal Calabi–Yau

fiber space. Then all the degenerate divisors are uniruled.

Proof. Since the canonical bundle of X is relatively trivial we can
directly apply Theorem 4.1 to all the h-exceptional divisors of X. Let
D be an insufficient fiber type divisor. Cutting with general hyperplane
sections of the base we can assume the base to be a smooth curve and X
is still smooth. Over this locus we can apply [Tak08] to conclude. �

16.2. Remark. In this lemma we do not use that X is smooth but
only that it has canonical singularities. A more careful analysis can
also be done in the case the singularities of X are not canonical. We
decide to work in the smooth case to avoid technicalities.

16.A. Isotrivial relatively minimal fibrations. In the case of
isotrivial fibrations using the orbibundles we can prove the following.

16.3. Theorem. Let X
f−→ B be a relatively minimal Calabi–Yau fiber

space which is generically isotrivial. Denote by F the generic fiber.
Suppose that X is smooth and does not contain rational curves. Then
X is isomorphic to an orbibundle.
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Proof. Under these hypothesis we know by Theorem 3.18 that
there exists a birational map

Xorb
g //

""

X
f

~~
B.

Since X is smooth, by generic smoothness of f [Har77, Corollary 10.7]
the generic fiber of f is smooth, hence we can apply Lemma 3.23 that
tells that Xorb is potentially klt. Hence we can apply Theorem 4.5 to

obtain that h extends to a morphism Xorb
g−→ X over B. By Lemma

3.22 Xorb has no degenerate divisors, so we can apply Lemma 3.11
to get that g is an isomorphism in codimension one. This implies
that g is a small globally defined morphism. Suppose that g is not
an isomorphism, and hence contracts a curve C ⊂ Xorb. Chose an
ample line bundle H̃ on Xorb and define H := g∗H̃. If H would be
Q-Cartier then H̃ ≡num g∗H but this is impossible because H̃ is ample
but C · g∗H = 0. This is a contradiction because X is smooth and
hence the Q-Weil divisor H is also a Q-Cartier. As conclusion g is an
isomorphism. �

16.4. Remark. By purity of branch locus, being the map B̃×F g−→ X
quasi étale, it is globally étale.

16.5. Remark. In this situation we have q̃(X) = q̃(Xorb) ≥ H0(B̃ ×
F,Ω

[1]

B̃×F ) ≥ q(F ). In particular a Hyperkähler or a Calabi–Yau mani-

fold with a generically isotrivial fibration contains rational curves.

16.6. Corollary. Let X be a projective Hyperkähler manifold with ad-
mits an isotrivial fibration. Then X does contain rational curves.

One can construct many explicit examples of Hyperkähler manifolds
with an isotrivial lagrangian fibration, see Example 17.7 and 17.8

For more details on these examples and in isotrivial lagrangian fibra-
tions the interested reader can see the paper of Sawon [Saw14].

16.B. Non-isotrivial relatively minimal fibrations. Lets con-
sider as before the case X is a smooth projective variety. Suppose that
there exists a fibration f : X → B relatively minimal, i.e. KX ∼Q f

∗L.
By generic smoothness [Har77, Corollary 10.7] and adjunction formula
the generic fiber Xt is a smooth variety with trivial canonical bundle.
Suppose that f is non-isotrivial, i.e. two generic fibers Xt and Xs are
not isomorphic. Since we already studied the case of genus one fibration
we can suppose in this section dim(Xt) = d ≥ 2.
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In the smooth fibers it can be very difficult to find rational curves:
if q̃(Xt) = d it never contains rational curves. Indeed by Beauville–
Bogomolov decomposition there exists a finite étale cover A→ Xt that
is an abelian variety, hence the universal cover of Xt is isomorphic to
Ad. Since P1 is simply connected, a rational curve P1 → Xt lifts to a
map P1 → Ad that must be constant. If q̃(Xt) < d it is conjectured
that the answer is positive, but certainly non trivial. Indeed using the
same trick one can proves that this is equivalent to the existence of
rational curves in Calabi–Yau or Hyperkähler projective manifolds.

16.7. Remark. By the construction of the Satake compactification
of the moduli space of abelian varieties, one can find complete non-
isotrivial families of projective abelian varieties. This phenomenon does
not appear for d = 1 because to compactify the moduli space of elliptic
curves A1 one need to add a codimension one object to get P1. In higher
dimension one can compactify Ad with subsets of greater codimension,
so one can find subvarieties of Ad contained in Ad that gives smooth
non-isotrivial families of abelian varieties. In this case one can use the
hyperbolicity of the base for families with maximal variation to study
the problem. In particular this gives a lot of examples with no rational
curves at all.

However in some sense one can find conditions on X such that the
fibration f must have some singular fibers. For example if the general
fiber is an abelian variety and f is smooth in codimension one then the
fundamental group of X cannot be finite.

16.8. Lemma. Let X
f−→ B be an equidimensional relatively minimal

Calabi–Yau fiber space. Assume the generic fiber is an abelian variety.
Assume moreover that X is smooth and its fundamental group of X
is finite. Then there exists some codimension one component of the
singular values Sv(f) in B.

Proof. Suppose by contradiction codB(Sv(f)) ≥ 2. Then an easy
adaptation of the proof of [DFM19, Lemma 2.3] works also in this
context. �

With this technique one can focus on the singular fibers that appear
in codimension one. The main tool to control the central fiber is the
following result of Takayama.

16.9. Theorem. [Tak08] Let X
f−→ C be a projective surjective mor-

phism with connected fibers, from a normal variety X with canoni-
cal singularities to a smooth curve with a fixed point 0 ∈ C. Let
X0 =

∑
miFi be the irreducible decomposition of the central fiber as

a Weil divisor. Assume that a general fiber Xt has numerically trivial
canonical divisor. Then
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• Every component Fi is either uniruled or the Kodaira dimen-
sion k(Fi) is zero. In addition there exists at most one com-
ponent Fi with k(Fi) = 0.
• Assume the central fiber F is irreducible (possibly non reduced).

If F is non-normal or contains a codimension 2 singular locus
of X, then it is uniruled.
• Assume the central fiber F is irreducible (possibly non reduced),

but it is normal and does not contain any codimension 2 sin-
gular locus of X. In this case its canonical bundle is torsion
KF ∼Q 0 and in particular it is uniruled if and only if F has
non canonical singularities.

This is not the complete original statement of Takayama but only the
part that is useful for our aims. This is a beautiful theorem but it is
not sufficient because if all the singular fibers have mild singularities
we can expect that they contain no rational curves.

In the case the general fiber is a Calabi–Yau the situation is not clear,
but there is an interesting example in the case of abelian fibrations:
Pirola proved in [P+89, Theorem 2] that the Kummer associated to a
very general principally polarized abelian variety of dimension q ≥ 3
does not contain curves of geometric genus at most q − 3. This leads
us to construct examples of abelian fibration with some singular fibers
but no rational curves, see Example 17.9. Unfortunately we are able
only to construct generically isotrivial examples.

17. Examples

17.1. Example. The behaviour of the augmented irregularity for
smooth curves is easy to describe using Riemann–Hurwitz formula.
The augmented irregularity of a genus zero curve is zero. Indeed P1

is simply connected. Any finite étale cover of a genus one curve is
again a genus one curve by Riemann–Hurwitz formula, so q̃(C) = 1.
A curve C with g(C) ≥ 2 has a cover of degree d from a curve C ′ of
genus g(C ′) = d · (g(C)− 1) + 1. Indeed its fundamental group is the
free group generated by 2g elements, that has subgroups of index d
arbitrary large. This subgroup corresponds to an étale cover C̃ of de-
gree d, whose genus is given by Riemann–Hurwitz formula and equals
g(C̃) = d(g− 1) + 1. So we can find an étale cover of C with arbitrary
large irregularity. Hence q̃(C) =∞.

17.2. Example. Fix two integer numbers r ≥ 1 and d ≥ 2. Con-
sider a smooth hypersurface X3,r ⊂ P2 × Pd given by the zero locus of
a bihomogeneous polynomial of bedegree (3, r). Consider the natural
projection π : X3,r → Pd. The augmented irregularity of X3,r is zero
because it is simply connected by Lefschetz hyperplane theorem. By
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Grothendieck–Lefschetz Theorem the Picard group of X3,r is isomor-
phic to Pic(P2 × Pd) and by adjunction formula the canonical bundle
is KX3,r ∼ OX3,r(0, r − d− 1). In particular KX3,r ∼ π∗OPd(r − d− 1).
So we can apply Theorem 10.1: it follows that this kind of family of
genus one curves can’t be everywhere smooth but it degenerates over
a divisor of the base in (singular) rational curves.

17.3. Example. Let E be an elliptic curve and denote by X := (E ×
E)/± the quotient of the product of two copies of E by the involution.
This surface comes with a natural genus one fibration X → P1 with
four singular fibers sitting above the branch points of E → P1 and
each singular fibre consists of a rational curves with multiplicity two.
This is an example of an orbibundle such that its quotient map is not
étale in codimension two, and indeed has some rational curves, that
are uniruled divisors (see Lemma 3.24).

The quotient map E × E → X is a quasi-étale cover so q̃(X) ≥ 2,
moreover by [Dru18, Remark 4.3] it holds the equality. However a
minimal resolution X̃ of X is a K3 surface. In particular X̃ is simply
connected, hence q̃(X̃) = 0. The variety X is thus also an example of
a variety with zero irregularity but non trivial augmented irregularity.

17.4. Example. Let E be an elliptic curve. The quotient (E × E)/±
under the diagonal action with a projection to a factor gives the easiest
example of orbibundle

Y := (E × E)/± f−→ E/± = P1.

A minimal resolution S of Y is a smooth K3 surface with an induced
generically isotrivial genus one fibration over P1. It is obtained by
blowing up the 16 singular points of Y , and in particular it is simply
connected and it is not an orbibundle. This construction has a natural
generalization for Hyperkähler manifolds of dimension n > 2. Let S
be a K3 surface with a generically isotrivial fibration as before. The
Hilbert scheme of lenght d = n/2, 0-dimensional subschemes of S is an
Hyperkäler manifold that comes with a generically isotrivial morphism
to Pd. Indeed a natural way to construct Hilbd(S) is as resolution of
Symd S:

Y := Hilbd S
HC−−→ Symd S → Symd P1 ' Pd

where HC is the Hilbert-Chow morphism that is essentially the blow-
up of the diagonals. Outside the diagonal the fibers of the composition

Y
f−→ Pd is by construction E × · · · × E d times. By the results of

Matsushita [Mat99], [Mat00, Corollary 2] f is an equidimensional
lagrangian fibration. In particular where f is non-isotrivial there are
some insufficient fiber type divisors obtained by blowing-up the singular
locus. These divisors are not exceptional for f but are exceptional for
the birational map to the orbibundle. A divisor contracted in the



68

orbibundle must be of insufficient fiber type and this is one way to fix
the second statement of [Kol15, Theorem 44].

17.5. Example. Let B be a cone over a genus one curve and E any
elliptic curve. For an explicit example take B := {x3

0 + x3
1 + x3

2} ⊂
P3. Consider the product X := B × E and its minimal resolution
X̃. The variety X has a trivial genus one fibration onto B that gives
a trivial orbibundle structure and, composing with the resolution of
singularities, also X̃ has a generically isotrivial genus one fibration
with an exceptional divisor. There are no vertical rational curves in
X̃ because the exceptional locus is isomorphic to the product of two
elliptic curve. This is because X has log-canonical but non divisorially
log-terminal singularities. Indeed the exceptional locus of a minimal
resolution of B is a genus one curve. In this case X̃ is not isomorphic
in codimension one to an orbibundle over B, but it is itself a trivial
orbibundle over a minimal resolution B̃ of B.

17.6. Example. Let V be a smooth projective variety of dimension
k ≥ 3 with finite, but non trivial, fundamental group. An easy way
to obtain such variety is considering the quotient V of the Fermat
Y = {yd0 + · · · + ydk+1} ⊂ Pk+1 by a cyclic group of order 2q for some
divisor of d acting by multiplication on the coordinates for the 2q-roots
of the unity. In order to make this action free we need to assume
k < 2q. In this way V is smooth, its fundamental group is cyclic of
order 2q and can be embedded in PN for some N . Consider in this
projective space PN a generic hypersurface Z of degree d′ ≥ 2N − 1.
By [Cle86, Theorem 1.1] there are no rational curves in Z. We denote
by B := Z ∩ V their intersection. By Lefschetz Hyperplane Theorem
[Laz04a, Theorem 3.1.19] the fundamental group of B is isomorphic
to the fundamental group of V . Let B̃ be the universal cover of B.

Consider an elliptic curve E and an automorphism η of order 2q that
does not fix ωE the generator of Ω1

E. For example one can consider
E = C/(Z⊕ τ · Z) and the automorphism η(z) = −z + τ/q. Consider
the diagonal action of G := Z/(2q) induced on the product Y := B̃×E.
The quotient of Y under this action gives a genus one fibration X :=
Y/G

π−→ B. The quotient map Y → X is globally étale because the map
is globally étale on the first component. Indeed the action of G is free
on Y and hence it is free on the product. The holomorphic one forms
on X are exactly the holomorphic one forms on Y that are invariant
under the action of G. Since B̃ is simply connected a one form ω on Y
is exactly a one form on E. By the choice of the automorphism on E
we see that a generator of G acts as minus one on the holomorphic one
forms of Y , hence q(X) = 0. Since all the vertical curves have genus
one and an horizontal rational curve gives a rational curve on B, there
are no rational curves on X. So this is an example of a variety with
admits a genus one fibration but has zero irregularity and contains no
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rational curves. The augmented irregularity is one, so this does not
contradict Theorem 10.1.

17.7. Example. If S → P1 is an isotrivial elliptic K3 surface whose
general fiber is isomorphic to E, than S[n] has a natural lagrangian
fibration onto Symn P1 ' Pn whose general fiber is isomorfic to En. In
this case there are clearly many rational curve in S[n] beacause of the
exceptional divisor of the Hilbert–Chow morphism. With our language
the exceptional divisors are of insufficient fiber type for the lagrangian
fibration S[n] → Pn.

17.8. Example. Let E and F two complex tori and let A = E ×
F . Then the generalized Kummer variety Kn(A) admits an isotrivial
lagrangian fibration [Saw14, Lemma 10] and hence contains rational
curves by Theorem 16.3.

17.9. Example. Let A be an abelian variety such that A/± has no
rational curves. By [P+89, Theorem 2] a very general polarized abelian
variety of dimension at least 3 satisfies this condition. Consider a genus
two curve B̃ with an automorphism of order two which is free outside
two points. Consider the associated orbibundle (A× B̃)/± → B = E.
Outside the points of ramification the fibers are isomorphic to A and
the two singular fibers are A/± that has no rational curves.

In particular consider the quotient X := (A× E)/G where G = Z/(2)
and the action induced on E is free. It has a generically isotrivial
fibration over E/G whose generic fiber is an abelian variety and has
some singular fiber. However X has no rational curves at all. Indeed
no rational curves are contained in any fiber, and the base is a genus
one curve.





Part 3

Twisted cotangent bundles of
Hyperkähler manifolds (joint work

with A. Höring)



18. Notation and basic facts

We work over C, for general definitions we refer to [Har77,Dem12].
Manifolds and normal complex spaces will always be supposed to be
irreducible. We will not distinguish between an effective divisor and
its first Chern class.

A (not necessarily projective) Hyperkähler manifold is a simply con-
nected compact Kähler manifold X such that H0(X,Ω2

X) is spanned by
a symplectic form σ, i.e. an everywhere non-degenerate holomorphic
two form. The existence of the symplectic form σ implies that dimX
is even, so we will write dim(X) = 2n. The symplectic form defines an
isomorphism TX → ΩX , so the odd Chern classes of X vanish.

The second cohomology group with integer coefficients H2(X,Z) is a
lattice for the Beauville-Bogomolov quadratic form q = qX [Bea96,
Sect.8]. Somewhat abusively we denote by q(·, ·) the associated bilinear
form. If X is projective it follows from the Bochner principle that
all the symmetric powers SlΩX are slope stable with respect to any
polarization H on X [Kob80, Thm.6].

We will frequently use basic facts about the deformation theory of Hy-
perkähler manifolds, as explained in [Bea96, Sect.8] [Huy99, Sect.1].
In particular we use that a very general point of the deformation space
corresponds to a non-projective manifold, but the projective manifolds
form a countable union of codimension one subvarieties that are dense
in the deformation space. A very general deformation of X is a man-
ifold Xt which corresponds to a very general point t in the Kuranishi
space of X.

The Picard group Pic(X) is by definition the group of isomorphism
classes of line bundles on X. Since H1(X,OX) = 0 and H2(X,Z) is
torsion-free, the Lefschetz (1, 1)-theorem [Huy05, Prop.3.3.2] gives an
isomorphism

H2(X,Z) ∩H1,1(X,R) ' Pic(X).

18.1. Remark. By Hodge theory a class α ∈ H2(X,Z) is of type
(1, 1) if an only if it is orthogonal to the symplectic form σX . If σX is
not orthogonal to any non zero element of the lattice H2(X,Z) then
there are no integral cohomology classes of type (1, 1) in X. For any
0 6= α ∈ H2(X,Z) the orthogonal α⊥ ⊂ H2(X,C) is a proper hyper-
plane because the Beauville form q is non degenerate. By local Torelli
Theorem [Bea96, Théorème 5] the moduli space of the deformations
of X is locally an open inside the quadric {q(β) = 0} ⊂ P(H2(X,C)).
So a very general Hyperkähler manifold can be taken outside all the
hyperplanes α⊥ such that 0 6= α ∈ H2(X,Z), hence has trivial Picard
group.
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18.2. Remark. For any very general Hyperkähler X we have by
[Huy03a, Cor.1]

E0(X) = K(X) = C(X)

where C(X) is the connected component of {α ∈ H1,1(X,R) | q(α) >
0} that contains K(X). In particular the classes in the boundary of
the Kähler cone cannot be in the interior of the pseudoeffective cone
because they have trivial top self intersection. Thus a big class, being
in the interior of E(X), is in fact Kähler.

Finally let us recall that for a vector bundle of rank r over a com-
pact Kähler manifold M , the k-th Segre class is defined as π∗ζr+k =
(−1)ksk(V ), where π : P(V ) → M is the projectivisation and ζ the
tautological class.

19. The projectivised cotangent bundle

Let X be a compact Kähler manifold, and let V → X be a vector
bundle over X. Denote by ζ := c1(OV (1)) the tautological class on
P(V ) and by π : P(V ) → X the projection. By [Kob87, Chapter 2]
the cohomology ring with integral coefficients is

H•(P(V ),Z) = H•(X,Z)[ζ]/p(ζ)

where p(ζ) = ζn + ζn−1π∗c1(V ) + . . .+ π∗cn(V ).

Passing to complex coefficients we get that any class α ∈ H2k(P(V ),C)
can be uniquely written as

α =
k∑

p=0

ζp · π∗β2k−2p

where β2k−2p ∈ H2k−2p(X,C).

Since X is Kähler we can consider the Hodge decomposition of
H2k(P(V ),C) and obtain a decomposition

Hk,k(P(V )) =
k⊕

i=0

Cζk−i ⊗ π∗H i,i(X).

Using the canonical inclusion Hk,k(P(V )) ⊂ H2k(P(V ),C) we can com-
pare the two decompositions and obtain

(1) Hk,k(P(V ))∩H2k(P(V ),Z) =
k⊕

i=0

Zζk−i⊗π∗(H i,i(X)∩H2i(X,Z)).

In particular the cohomology class of a codimension k subvariety Z of
P(V ) can be uniquely written as

(2) [Z] = β0ζ
k + ζk−1 · π∗β1 + ζk−2 · π∗β2 + . . .+ π∗βk

where βi ∈ H i,i(X) ∩H2i(X,Z) and β0 ∈ Z.
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In this section we will first use this decomposition to establish Theorem
0.10, see Subsection 19.A. Then we will prove an additional restriction
on the component β1 that allows us to describe the varieties Z ⊂ P(ΩX)
in some cases, see Subsection 19.B.

19.A. Proof of the main result. It is well-known that the coho-
mology ring of a very general Hyperkähler manifold X is governed by
its Beauville-Bogomolov form. We start by showing a similar property
for the cohomology ring of P(ΩX):

19.1. Lemma. Let X be a Hyperkähler manifold of dimension 2n, and
denote by q(·) its Beauville-Bogomolov form. Let

Θ ∈ Hk,k(P(ΩX)) ∩H2k(P(ΩX),Z)

be an integral class of type (k, k). Suppose that the class Θ is of type
(k, k) for every small deformation of X. Then there exists a polynomial
pΘ(t) ∈ Q[t] such that for any (1, 1)-class ω on X, one has

(ζ + π∗ω)4n−1−k ·Θ = pΘ(q(ω)).

Proof. Observe first that both sides of the equation are polyno-
mial functions on H1,1(X). In particular they are determined by their
values on an open set and we can assume without loss of generality
that ω is Kähler. Let

(3) Θ =
k∑

i=0

ζk−iπ∗βi

be the decomposition of Θ according to (1) where βi ∈ H i,i(X) ∩
H2i(X,Z). By our assumption, for any small deformation X→ ∆, the
class Θ deforms as an integral class Θt of type (k, k). Thus we can
write

Θt =
k∑

i=0

ζk−it π∗βi,t

with βi,t ∈ H i,i(Xt)∩H2i(Xt,Z). Since the family P(X)→ ∆ is locally
trivial in the differentiable category, we can consider the classes βi as
elements of H2i(Xt,Z) for t 6= 0. The integral cohomology class Θt ∈
H2k(P(ΩXt ,Z) does not depend on t, so (3) induces a decomposition

Θt =
k∑

i=0

ζk−it π∗βi.

By uniqueness of the decomposition we have βi = βi,t, in particular the
classes βi are of type (i, i) in Xt.

We have

(ζ + π∗ω)4n−1−k =
4n−1−k∑

j=0

(
4n− 1− k

j

)
ζ4n−1−k−jπ∗ωj,
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so

(ζ + π∗ω)4n−1−k ·Θ =
4n−1−k∑

j=0

(
4n− 1− k

j

) k∑

i=0

ζ4n−1−j−iπ∗(βi · ωj).

By the projection formula and the definition of Segre classes one has
for i+ j ≤ 2n

ζ4n−1−j−iπ∗(βi · ωj) = (−1)i+js2n−j−i · βi · ωj.
Since the odd Segre classes of a Hyperkähler manifold vanish, we can
implicitly assume that i + j is even. In particular (−1)i+j = 1. We
claim that we can also assume that j is even.

Proof of the claim. Note that f(ω) := s2n−j−i · βi ·ωj defines a polyno-
mial on H1,1(X). Thus, up to replacing ω by a general Kähler class, we
can assume that s2n−j−i · βi ·ωj = 0 if and only if s2n−j−i · βi · (ω′)j = 0
for every (1, 1)-class ω′. As we have already observed at the start of the
proof, we can make this generality assumption without loss of general-
ity. If s2n−j−i · βi · ωj = 0, the term is irrelevant for our computation.
If s2n−j−i · βi · ωj 6= 0, then by [Ver96, Thm.2.1] the degree of the
cohomology class s2n−j−i · βi is divisible by 4 (here we use that ω is a
Kähler class). Since s2n−j−i · βi ∈ H4n−2j(X,R), the claim follows.

Thus we obtain

(ζ + π∗ω)4n−1−k ·Θ =
4n−1−k∑

j=0

(
4n− 1− k

j

) k∑

i=0

s2n−j−i · βi · ωj.

We have shown above that the classes s2n−j−i · βi are of type (2n −
j, 2n − j) on all small deformations of X. Since j is even, we know
by [Huy97, Theorem 5.12] that there exist constants di,j ∈ Q such
that for any δ ∈ H1,1(X,R) we have

s2n−j−i · βi · δj = di,jq(δ)
j/2

The polynomial

pΘ(t) :=
4n−1−k∑

j=0

(
4n− 1− k

j

) k∑

i=0

di,jt
j/2

has the claimed property. �

Proof of Theorem 0.10. Suppose first that X is very general
in its deformation space. Let Z ⊂ P(ΩX) be a subvariety. Since X
is very general, we know that for any small deformation X → ∆, the
variety Z deforms to a variety Zt ⊂ P(ΩXt) (by countability of the
parameter space). In particular its cohomology class [Z] is of type
(k, k) for every small deformation. Thus Lemma 19.1 applies and there
exists a polynomial pZ(t) = p[Z](t) such that

(ζ + π∗ω)4n−1−k · [Z] = pZ(q(ω))
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for any (1, 1)-class ω on X. Since intersection numbers are invariant
under deformation and the cycle space has only countably irreducible
components, we obtain a countable number of polynomials (pm(t))m∈N
such that for every subvariety Z ⊂ P(ΩX) there exists a polynomial pm
such that

(ζ + π∗ω)4n−1−k · [Z] = pm(q(ω)).

Denote by cm the largest real root of the polynomial pm. We claim
that

sup
m∈N
{cm} <∞.

Indeed fix a Kähler class η on X such that ζ +π∗η is a Kähler class on
P(ΩX). Then ζ + λπ∗η is a Kähler class for all λ ≥ 1, so

pm(λ2q(η)) = (ζ + λπ∗η)4n−1−k · [Z] > 0

for all λ ≥ 1. In particular cm ≤ q(η), and hence supm∈N{cm} ≤ q(η).
This shows the claim and we denote the real number supm∈N{cm} by
C.

Proof of the second statement. Since X is very general, we know by
Remark 18.2 that the nef and big class ωX is Kähler. If q(ωX) > C
then by construction of the constant C one has

(ζ + λπ∗ωX)4n−1−k · [Z] = pm(λ2q(ωX)) > 0

for every subvariety Z. By Lemma 9.3 this implies that ζ + π∗ωX is
Kähler. If q(ωX) ≥ C then q((1 + ε)ωX) > C, so ζ + (1 + ε)π∗ωX is
Kähler. Thus ζ + π∗ωX is nef.

Vice versa suppose that ζ + π∗ωX is nef. Then ζ + λπ∗ωX is nef for all
λ ≥ 1. Thus

pm(λ2q(ωX)) = (ζ + λπ∗ωX)4n−1−k · [Z] ≥ 0

for all λ ≥ 1. Since limλ→∞ λ2q(ωX) =∞, this implies cm ≤ q(ωX) for
all m ∈ N. Hence we obtain q(ωX) ≥ C.

Proof of the first statement. We claim that we can assume that ωX is
a Kähler class with q(ωX) > C. Indeed let δ be any Kähler class on X,
then ωX + δ is Kähler. Moreover one has

q(ωX + δ) = q(ωX) + q(δ) + 2q(δ, ω) > q(ωX) ≥ C

Thus if ζ+π∗(ωX+δ) is pseudoeffective for every δ, then the closedness
of the pseudoeffective cone implies the statement by taking the limit
δ → 0. This shows the claim.

We denote by 0 ∈ Def(X) the point corresponding to X in its Ku-
ranishi family. By [Huy16, Proposition 5.6] we can assume that in
a neighborhood U of 0 ∈ Def(X) the Kähler class ωX deforms as a
Kähler class (ωXt)t∈U . In order to simplify the notation we replace
U with a very general disc ∆ centered at 0 and consider the family
X → ∆. Since the Beauville–Bogomolov form is continuous we have,
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up to replacing ∆ by a smaller disc, that q(ωXt) > C for every t ∈ ∆.
By the second statement this implies that for t ∈ ∆ very general the
class ζt+π∗tωXt is nef, in particular it is pseudoeffective. Now we apply
Theorem 9.4 to the family P(ΩX)→ ∆ and the classes ζt + π∗ωXt : this
shows that ζ + π∗ωX is pseudoeffective. �

Proof of Corollary 0.11. By [Huy03b, Theorem 2.1] there
exist at most finitely many different deformation families of irreducible
holomorphic symplectic complex structures on X0. For any such de-
formation type, Theorem 0.10 gives a constant Ck such that ζ + π∗ωX
is pseudoeffective for every Kähler class ωX such that q(ωX) > Ck.
Let C be the maximum among the constants Ck. Since the differen-
tiable structure on X is fixed, the constant of proportionality between
the Beauville–Fujiki form q(ωX) and the top intersection ω2n

X is fixed.

Thus the polarised Hyperkähler manifolds (X,H) such that X0
diff.' X

and ζ+π∗H is not pseudoeffective satisfy H2n ≤ b for some constant b.
By a theorem of Matsusaka-Mumford [MM64] there are for any fixed
0 < i ≤ b only a finite number of deformation families of polarised Hy-
perkähler manifolds (X,H) such that H2n = i. Thus the cases where
ζ + π∗H is not pseudoeffective belong to one of these finitely many
families. �

19.B. Subvarieties of the projectivised cotangent bundle.
We start with a technical observation:

19.2. Lemma. Let X be a projective Hyperkähler manifold of dimen-
sion 2n. Let Z be an effective cycle on P(ΩX) of codimension k > 0
such that π(SuppZ) = X. Denote by

[Z] = β0ζ
k + ζk−1 · π∗β1 + ζk−2 · π∗β2 + . . .+ π∗βk

the decomposition (2) of its cohomology class. Then we have β1 6= 0.

Proof. We argue by contradiction and suppose that β1 = 0. Let
C ⊂ X be a general complete intersection of sufficiently ample divisors
Di ∈ |H| so that the Mehta–Ramanathan theorem [MR84, Thm.4.3]
applies for ΩX . Then the restriction ΩX |C is stable, and by a result
of Balaji and Kollár [BK08, Prop.10] its algebraic holonomy group
is Sp2n(C). Thus not only ΩX |C , but also all its symmetric powers
SlΩX |C are stable. Denote by ZC the restriction of the effective cycle
Z to P(ΩX |C). Since π(SuppZ) = X the effective cycle ZC is not zero.
Then its cohomology class is

[ZC ] = (β0ζ
k + ζk−2 · π∗β2 + . . .+ π∗βk) · π∗H2n−1 = β0ζ

k
C

where ζC is the restriction of the tautological class. In particular, since
c1(ΩX |C) = 0, we have ζ2n−k

C · [ZC ] = β0ζ
2n
C = 0. Yet this is a contra-

diction to [HP19, Prop.1.3]. �
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19.3. Remark. Lemma 19.2 also holds if X is a Calabi-Yau manifold
(in the sense of [Bea96]): the cotangent bundle ΩX is also stable and
the algebraic holonomy is SLdimX(C) [BK08, Prop.10]. Thus the proof
above applies without changes.

In [COP10, Cor.2.6] it is shown that a very general Hyperkähler man-
ifold is not covered by proper subvarieties. We show an analogue for
the projectivised cotangent bundle ΩX :

19.4. Lemma. Let X be a Hyperkähler manifold of dimension 2n.
Suppose that X is very general in the following sense: we have

1.) Pic(X) = 0;
2.) if X → ∆ is a deformation of X = X0, then every irreducible

component of the cycle space C(P(ΩX0)) deforms to C(P(ΩXt))
for t 6= 0.

Let Z ( P(ΩX) be a compact analytic subvariety. Then π(Z) ( X.

By countability of the irreducible components of the relative cycle space
[Fuj79, Thm.] and by Remark 18.1 we know that for a very general
choice of X the hypothesis of the lemma are satisfied.

Proof. We argue by contradiction, and suppose that Z is a sub-
variety of P(ΩX) of codimension k > 0 such that π(Z) = X. Denote
by

[Z] = β0ζ
k + ζk−1 · π∗β1 + ζk−2 · π∗β2 + . . .+ π∗βk

the decomposition (2) of its cohomology class. Since Pic(X) = 0 we
know that β1 = 0.

Projective Hyperkähler manifolds are dense in the deformation space
of any Hyperkähler manifold [Bea96, Sect.9] [Buc08, Prop.5], so we
can consider a small deformation of X

X //

��

X

��
0 // ∆

such that Xt0 is projective for some point t0 ∈ ∆. This deformation
comes naturally with a deformation of the cotangent bundle, so we
have a diagram

P(ΩX) //

π

��

P(ΩX/∆)

��
X //

��

X

��
0 // ∆
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By the second assumption the subvariety Z ⊂ P(ΩX) deforms in a
family of subvarieties Zt ⊂ P(ΩXt) having cohomology class

[Zt] = β0ζ
k + ζk−2 · π∗β2 + . . .+ π∗βk.

Since the cycle space is proper over the base ∆ [Bar75, Théorème 1]
we obtain in particular that the class β0ζ

k + ζk−2 · π∗β2 + . . .+ π∗βk is
effectively represented on P(ΩXt0

). This contradicts Lemma 19.2. �

19.5. Corollary. Let X be a Hyperkähler manifold of dimension 2n.
Suppose that X is very general in the sense of Lemma 19.4. Suppose
also that X contains no proper compact subvarieties. Let Z ( P(ΩX)
be a compact analytic subvariety. Then π(Z) is a point.

Proof. By Lemma 19.4 we have π(Z) ( X for every subvariety
Z ( P(ΩX). By our assumption this implies that π(Z) is a point. �

19.6. Remark. A very general deformation of Kummer type does not
satisfy the assumptions of the corollary ( [KV98, Sect.6.1])

20. The positivity threshold

In view of the results from Subsection 19.B, we will deduce Theorem
0.12 from the main result:

20.1. Proposition. Let X be a Hyperkähler manifold of dimension
2n. Suppose that a very general deformation of X contains no proper
compact subvarieties. Let pX(t) be the polynomial defined by applying
Lemma 19.1 to [P(ΩX)]. Then the constant C appearing in Theorem
0.10 is the largest real root of pX(t).

Proof. Since C only depends on the deformation family we can
assume that X is very general in its deformation space. In the proof
of Theorem 0.10 we defined the constant C as supm∈N{cm} where cm
is the largest real root of the polynomials pm(t), and the family of
polynomials (pm(t))m∈N is obtained by applying Lemma 19.1 to the
classes of all the subvarieties Z ⊂ P(ΩX).

By our assumption and Corollary 19.5 we know that a proper subvariety
Z ( P(ΩX) is contained in a fibre. Thus for any Kähler class ωX the
restriction

(ζ + π∗ωX)Z = ζ|Z = c1(OP2n−1(1))|Z
is ample. Hence the corresponding polynomial pm(t) is constant and
positive. In particular there is no real root to take into account for the
supremum. �
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Proof of Theorem 0.12. By Proposition 20.1 the constant C in
Theorem 0.10 is the largest real root of the polynomial pX(t) defined
by

pX(q(ω)) = (ζ + π∗ω)4n−1.

Thus the condition q(ωX) ≥ C is equivalent to

(ζ + λπ∗ω)4n−1 > 0

for all λ > 1. Conclude with Theorem 0.10. �

We have already observed that for a very general Hyperkähler manifold
the pseudoeffective cone and the nef cone coincide. This also holds for
the projectivised cotangent bundle:

20.2. Proposition. Let X be a Hyperkähler manifold of dimension 2n.
Suppose that X is very general in the sense of Lemma 19.4. Suppose
also that X contains no proper compact subvarieties.

Let C ≥ 0 be the constant from Theorem 0.10. Then we have

(4) E(P(Ω1
X)) = {aζ + π∗δ| a ≥ 0, δ ∈ K(X), q(δ) ≥ a2C}

and
E(P(Ω1

X)) = K(P(Ω1
X)).

Proof. We start proving the last statement. We recall the defini-
tion of the Null cone of P(Ω1

X) that is the following set

N := {x ∈ H1,1(P(Ω1
X),R) |

∫

P(Ω1
X)

x2n−1 = 0}.

For any class γ ∈ ∂K(P(Ω1
X)) there exists a subvariety V of P(Ω1

X) such
that

∫
V
γdim(V) = 0. Since we are assuming that there are no proper

subvarieties in X, by Lemma 19.4 we know that the proper subvarieties
of P(Ω1

X) are contracted to points in X. Since P(Ω1
X) is a projective

bundle the integral along a contracted subvariety V has the following
property ∫

V

(aζ + π∗δ)dim(V ) = 0⇔ a = 0.

This implies using [DP04, Theorem 0.1] that

∂K(P(Ω1
X)) ⊆ N ∪ {a = 0}.

A (1, 1) form in the hyperplane {a = 0} is in the null cone. This
tells that the Kähler cone is one of the connected component of
H1,1(P(Ω1

X),R) \ N . Hence the classes in the boundary of the Kähler
cone are nef classes with trivial self intersection, so they are also in the
boundary of the pseudoeffective cone [DP04, Thm.0.5]. This proves
that the closure of the Kähler cone is the pseudoeffective cone.

For notation’s convenience we call A := {aζ + π∗δ| a ≥ 0, δ ∈
K(X), q(δ) ≥ a2C}. The inclusion E(P(Ω1

X)) ⊇ A follows from the first
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statement of Theorem 0.10. To prove the other inclusion we argue as
follows. The points of ∂A are contained in the set {a = 0∨q(δ) = a2C}.
By definition of the constant C the self intersection of the classes
aζ + π∗δ vanishes. We also have (π∗δ)2n−1 = 0, hence

∂A ⊂ N .
Moreover there are no points in the interior of A contained in the null
cone, so A◦ must be a connected component of H1,1(P(Ω1

X),R) \ N .
Since the intersection of E(P(Ω1

X)) and A is non-empty and both are
closed convex cones the conclusion follows. �
20.3. Remark. The rest of the paper is devoted to giving more explicit
expressions of the conditions in Theorem 0.10 and Theorem 0.12, so for
clarity’s sake let us write down the polynomial pX(t) from Proposition
20.1: let X be a Hyperkähler manifold of dimension 2n, and denote by
ζ the tautological class of π : P(ΩX)→ X. Recall that by definition of
the Segre classes we have π∗ζ2n+i = (−1)isi(X). Since the odd Chern
classes of a Hyperkähler manifold are trivial, the odd Segre classes
vanish. Note also that (π∗ωX)i = 0 if i > 2n. The top self-intersection
is thus

pX(λq(ωX)) = (ζ + λπ∗ωX)4n−1 =
2n∑

i=0

(
4n− 1

i

)
ζ4n−1−i · π∗ωiXλi

= ζ2n−1

n∑

i=0

(
4n− 1

2i

)
ζ2n−2i · π∗ω2i

Xλ
2i

=
n∑

i=0

(
4n− 1

2i

)
s2n−2i(X) · ω2i

Xλ
2i.

(5)

Recall also that by [Fuj87, Remark 4.12] there exist constants d2i ∈ R
that depend only on the family such that

(6) s2n−2i(X) · ω2i
X = d2iq(ωX)i

for any (1, 1)-class ωX . Note that s0(X) · ω2n
X = ω2n

X = d2nq(ωX)n, so
d2n > 0.

20.4. Example. For n = 1 we obtain

(ζ + λπ∗ωX)3 = −c2(X) + 3ω2
Xλ

2.

For n = 2 we obtain

(ζ + λπ∗ωX)7 = (c2(X)2 − c4(X))− 21c2(X) · ω2
Xλ

2 + 35ω4
Xλ

4.

Proof of Corollary 0.13. By Proposition 20.1 we only have
to compute the largest real root of pX(t). By Formula (5) and Example
20.4 the constant C is the largest root of −c2(X) + 3t = 0. Since
c2(X) = 24 the result follows. �
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20.5. Definition. Let X be a Hyperkähler manifold of dimension 2n,
and let ωX be a nef and big class on X. The positivity threshold of
(X,ωX) is defined as

γp(ωX) := inf{λ0 ∈ R| (ζ + λπ∗ωX)4n−1 > 0 ∀λ > λ0}.
20.6. Remark. Since (ζ + λπ∗ωX)4n−1 ∼ λ2nω2n

X for t � 0 we have
γp(ωX) < +∞. It seems unlikely that (ζ+λπ∗ωX)4n−1 > 0 for all λ ∈ R.
If (a very general deformation of) X contains no proper subvarieties,
this can be seen as follows: since X has no subvarieties, the nef and
big class ωX is Kähler. By Corollary 19.5, the class ζ +λπ∗ωX satisfies
the condition of Lemma 9.3 for any λ ∈ R, so ζ + λπ∗ωX is Kähler for
any λ ∈ R. But K(P(ΩX)) does not contain any lines.

Let X be a Hyperkähler manifold, and let ωX be a Kähler class on X.
We define the pseudoeffective threshold

γe(ωX) := inf{t ∈ R| ζ + tπ∗ωX is big/pseudoeffective}
and the nef threshold

γn(ωX) := inf{t ∈ R| ζ + tπ∗ωX is Kähler/nef}.
Since ζ + tπ∗ωX is Kähler for t� 0, both thresholds are real numbers.

20.7. Proposition. Let X be a (not necessarily projective) Hyperkähler
manifold of dimension 2n. Suppose that a very general deformation of
X does not contain any proper subvarieties. Let ωX be a Kähler class
on X. Then we have

γe(ωX) ≤ γp(ωX) ≤ γn(ωX).

For a very general deformation of X these inequalities are equalities
for any Kähler class ωX .

Proof. The top self-intersection of a Kähler class is certainly pos-
itive, so the inequality γp(ωX) ≤ γn(ωX) is trivial. The inequality
γe(ωX) ≤ γp(ωX) follows from Theorem 0.12. For a very general defor-
mation of X we can apply Proposition 20.2, so the nef cone and the
pseudoeffective cone coincide. Thus we have γe(ωX) = γn(ωX). �

We will show in Section 21 that for the Hilbert square of a K3 surface
the second inequality is strict.

21. Hilbert square of a K3 surface

21.A. Setup. We recall the basic geometry of the Hilbert square,
using the notation and results of [Bea96, Sect.6]: let S be a (not

necessarily algebraic) K3 surface, and let ρ : S̃ × S → S × S be the
blow-up along the diagonal ∆ ⊂ S × S. We denote the exceptional
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divisor of this blowup by E. The natural involution on the product
S × S lifts to an involution

i
S̃×S : S̃ × S → S̃ × S,

and we denote by η : S̃ × S → X the ramified two-to-one covering
defined by taking the quotient with respect to this involution. It is
well-known that X is smooth and Hyperkähler. Finally we denote
by π : P(ΩX) → X the natural projection, and by ζ → P(ΩX) the
tautological divisor.

Recall that X is isomorphic to the Hilbert scheme of length two zero
dimensional subschemes S[2], and denote by

ε : S[2] → S(2)

the natural map to the symmetric product. We denote by EX ⊂ X the
exceptional divisor of this contraction, and observe that η|E induces an
isomorphism E ' EX . Since ρ is the blowup of the diagonal one has
E ' P(ΩS), and we denote by

πS := ρ|E ' η|EX
: P(ΩS)→ S

the natural map. Denote by ζS → P(ΩS) the tautological divisor.

By [Bea96, Sect.6, Prop.6] we have a canonical inclusion of groups
i : H2(S,Z) ↪→ H2(X,Z) inducing a morphism of Hodge structures

H2(X,Z) ' H2(S,Z)⊕ Zδ
where δ is a primitive class such that 2δ = EX . This decomposition
is orthogonal with respect to the Beauville–Bogomolov quadratic form
q [Bea96, Sect.9, Lemma 1] and one has q(δ) = −2 [Bea96, Sect.1,
Rque.1]. By construction of the inclusion i [Bea96, Sect.6, Prop.6] we
have

(7) αX |EX
= 2π∗SαS,

and by [Bea96, Sect.9, Rque. 1] one has q(αX) = α2
S.

Since E is the ramification divisor of the two-to-one cover η, we have
η∗EX = 2E. Since E|E = −ζS and 2δ = E, we obtain

(8) δ|EX
= −ζS.

By [Bea96, Sect.9, Lemma 1] we have

(9) α4 = 3q(α)2

for any α ∈ H1,1(X). If αS is any (1, 1)-class on S, we set αX :=
(i⊗ idC)(αS).

The second Chern class c2(X) is a multiple of the Beauville–Bogomolov
form. More precisely we have

(10) c2(X) · α2 = 30q(α)
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for any α ∈ H1,1(X) [Ott15, Section 3.1].

21.B. Intersection computation on X. Denote by pi : S×S →
S the projection on the i-th factor. The composition of pi with the
blow-up ρ defines a submersion

pi ◦ ρ : S̃ × S → S,

the fibre over a point x ∈ S being isomorphic to the blow-up of S in x.
We denote by Fi a pi ◦ ρ-fibre and by S̄ = η(Fi) its image1 in X. We

will denote by S̄x the image of the fibre pi ◦ ρ−1(x) ⊂ S̃ × S in X.

The tangent sequence for ρ

0→ ρ∗ΩS×S → Ω
S̃×S → OE(2E)→ 0

immediately yields
(11)
c1(Ω

S̃×S) = E, c3(Ω
S̃×S) = E3 + 24(F1 + F2) · E,

c2(Ω
S̃×S) = 24(F1 + F2)− E2 c4(Ω

S̃×S) = −E4 − 24(F1 + F2) · E2 + 576.

From tangent sequence for η

0→ η∗ΩX → Ω
S̃×S → OE(−E)→ 0

one deduces

(12)
c1(η∗ΩX) = 0, c3(η∗ΩX) = 0,
c2(η∗ΩX) = 24(F1 + F2)− 3E2, c4(η∗ΩX) = 648.

We can then deduce the Segre and Chern classes of X :

(13)
s1(X) = 0 = c1(X), s3(X) = 0 = c3(X)
s2(X) = −24S̄ + 3δ2 = −c2(X), s2(X)2 = 828 = c2(X)2

s4(X) = 504, c4(X) = 324.

More precisely these formulas follow from (12), the projection formula
and the following lemmas.

21.1. Lemma. In the setup of subsection 21.A, one has

S̄ · δ = l

where l is the class of a fibre of ε|EX
: EX → S. Moreover one has

S̄ · δ · αX = 0, S̄ · δ2 = −1, S̄2 = 1, S̄ · α2
X = α2

S.

Proof. The first statement is equivalent to S̄ · EX = 2l. Since
S̄ = η∗F1 and η∗EX = 2E we know by the projection formula that

S̄ · EX = η∗F1 · EX = F1 · η∗EX = 2F1 · E.
Now recall that Fi is the blow-up of p×S in the point (p, p). Thus the
intersection F1 ·E is the exceptional divisor of the blowup Fi → p×S.

1Note that the involution i
S̃×S

maps F1 onto F2, so S is well-defined.
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This exceptional P1 maps isomorphically onto a fibre of ε|EX
. This

shows the first statement.

The equalities S̄ · δ · αX = 0, S̄ · δ2 = −1 now follow from (7) and (8).
Since η∗S̄ = F1 + F2 the projection formula implies

S̄2 =
1

2
(η∗S̄)2 =

1

2
(F1 + F2)2 = F1 · F2 = 1,

where the last equality is due to the fact that the strict transform of
p× S and S × q intersect exactly in (p, q) if p 6= q.

Finally the equality S̄ · α2
X = α2

S follows from the construction of αX
[Bea96, Sect.6, Prop.6] and observing that if F1,x is the fibre of p1 ◦ ρ
over x ∈ S, then αX |µ(F1,x) = ρ∗xαS where ρx : F1 × S is the blow-up in
x. �
21.2. Lemma. In the setup of subsection 21.A, one has

α4
X = 3(α2

S)2, α3
X · δ = 0, α2

X · δ2 = −2α2
S, αX · δ3 = 0, δ4 = 12

Proof. A standard intersection computation based on (9), (7), (8)
and q(δ) = −2. �

21.C. Positive threshold. Using the preceding section we can
easily compute the positive threshold:

21.3. Corollary. Let X be a four-dimensional Hyperkähler manifold
of deformation type K3[2]. Let ωX be a nef and big (1, 1)-class on X
such that

q(ωX) ≥ 3 +

√
21

5
∼ 5.0493.

Then ζ + π∗ωX is pseudoeffective. This bound is optimal for a very
general deformation of X.

Proof. By Proposition 20.1 we only have to compute the largest
real root of pX(t). By Formula (5) and Example 20.4 we have to com-
pute the largest solution of

d0 + 21d2t+ 35d4t
2 = 0,

where the constants d2i are defined by (6). By (9) and (10) we have

c2(X)α2 = 30q(α), α4 = 3q(α)2

for any element α ∈ H1,1(X,R). By (13) we have c4(X) = 324, c2
2 =

828. Thus we obtain the quadratic equation

504− 630t+ 105t2 = 0.

Its largest solution is

C =
630 + 42

√
105

210
= 3 +

√
21

5
.

�
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21.4. Remark. Let X be a four-dimensional Hyperkähler manifold,
not necessarily deformation equivalent to a Hilbert square. In this case
the coefficients di are not known. However, if a very general deforma-
tion of X does not contain any subvarieties, we can use Example 20.4
to show that for a Kähler class ωX the positivity threshold is

γp(ωX) =

√
21ω2

Xc2 +
√

(21ω2
Xc2)2 − 140(ω4

X)(c2
2 − c4)

70ω4
X

.

21.D. A subvariety of P(ΩX). Denote by pi : S × S → S the

projection on the i-th factor. Then pi ◦ ρ : S̃ × S → S is a submersion,
the fibre over a point x ∈ S being isomorphic to the blow-up of S in x.
Thus we obtain rank two foliations

KerTpi◦ρ =: Fi ⊂ T
S̃×S

In view of the description of the Fi-leaves it is clear that the natural
map F1⊕F2 → T

S̃×S has rank 4 in the complement of the exceptional
divisor E, but

F1|E ∩ TE = TE/S = F2|E ∩ TE.
21.5. Lemma. The composition of the inclusion Fi ⊂ T

S̃×S with the
tangent map T

S̃×S → η∗TX is injective in every point. Thus Fi ↪→ η∗TX
is a rank 2 subbundle.

Proof. Since Tη is an isomorphism in the complement of E, it is
sufficient to study the restriction to E. Note also that

T
S̃×S|E → (η∗TX)|E

has rank three in every point, since η|E induces an isomorphism E →
EX . Arguing by contradiction we assume that there exists a point
x ∈ E such that the map

Fi,x → T
S̃×S,x → (η∗TX)x

has rank at most one for some i ∈ {1, 2}. Since η◦i
S̃×S = η this implies

that

F3−i,x → T
S̃×S,x → (η∗TX)x

also has rank at most one. Yet KerTη,x has dimension one, so we obtain

KerTη,x ∩ F1,x = KerTη,x = KerTη,x ∩ F2,x.

In particular we have

KerTη,x = F1,x ∩ F2,x = TE/S,x.

Yet η induces an isomorphism E → EX , so TE/S,x ⊂ TE,x is not in the
kernel. �
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By Lemma 21.5 we have an injection Fi ↪→ η∗TX . The corresponding
quotient η∗TX → Qi defines a subvariety P(Qi) of πη : P(η∗TX) →
S̃ × S that is a P1-bundle over S̃ × S. Since η ◦ i

S̃×S = η the involution

i∗
S̃×S acts on P(η∗TX) and maps P(Q1) to P(Q2). Thus if we denote by

Z ⊂ P(TX) the image of Qi under the two-to-one cover η̃ : P(η∗TX)→
P(TX), we have

η̃∗[Z] = [Q1] + [Q2].

21.6. Proposition. In the situation of Subsection 21.A, denote by
Z ⊂ P(TX) ' P(ΩX) the subvariety constructed above. Then we have

(14) [Z] = 2ζ2 + 2π∗δ · ζ + π∗(24S̄ − 6δ2).

Proof. Consider the exact sequence

0→ Fi → T
S̃×S → (pi ◦ ρ)∗TS → 0.

The Chern classes of (pi ◦ ρ)∗TS and T
S̃×S are known, cf. (11). An

elementary computation then yields

(15) c1(Fi) = −E, c2(Fi) = 24F3−i − 3E2.

Denote by ζη the tautological bundle on P(η∗TX). Since Qi = η∗TX/Fi
we have

[Qi] = ζ2
η − ζη · π∗ηc1(Fi) + π∗ηc2(Fi) = ζ2

η + ζη · π∗ηE + π∗η(24F3−i− 3E2).

Since η̃∗[Z] = [Q1] + [Q2] and

η∗S̄ = F1 + F2, η∗δ = E, η̃∗ζ = ζη

the claim follows. �

21.7. Remark. The geometry of Z can be understood as follows: on

S̃ × S we have two distinct families of surfaces ((pi ◦ ρ)−1(x))x∈S. The
images in X of these two families coincide and form a web of surface
(S̄x)x∈S. For a point x ∈ X that is not in EX there are exactly two
members of the web passing through x and they intersect transversally.
The projectivisation of their normal bundle defines a projective line
in P(ΩX,x). Since the intersection is transversal, the general fibre of
Z → X is thus a pair of disjoint lines.

For a point x ∈ E ⊂ X, the involution i∗
S̃×S acts on P((η∗TX)x) and

identifies P(Q1,x) with P(Q2,x). Thus the fibre of Z → X over a point
in x ∈ EX ' E is a double line. Hence Z ∩ π∗E is non-reduced
with multiplicity two. In fact since (η∗TX)|E ' TX |EX

we can identify
(Z ∩π∗E)red to the quotient defined by the inclusion Fi|E → (η∗TX)|E.
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21.E. The intersection computation. We will now compute
some intersection numbers on P(ΩX).

21.8. Lemma. In the situation of Subsection 21.A, let αS be a (1, 1)-
class on S and αX = (i⊗ idC)(αS) ∈ H1,1(X,R). Then one has

ζ7 = 504,

ζ5 · π∗δ2 = 60, ζ5 · π∗(δ · αX) = 0, ζ5 · π∗α2
X = −30α2

S,

ζ3 · π∗δ4 = 12, ζ3 · π∗(δ3 · αX) = 0, ζ3 · π∗(δ2 · α2
X) = −2α2

S,

ζ3 · π∗(δ · α3
X) = 0, ζ3 · π∗α4

X = 3(α2
S)2.

Proof. Observe first that ζ7 = s4(X), so the first statement is
included in (13). Also note that by (13) one has

π∗ζ
5 = s2(X) = −24S̄ + 3δ2,

so the second statement follows from Lemma 21.1 and Lemma 21.2.
The intersections with ζ3 are simply a restatement of Lemma 21.2. �

In order to compute the intersection numbers with π∗S̄, note that by
Lemma 21.1 one has

c1(ΩX |S̄) = 0, s2(ΩX |S̄) = s2(ΩX) · S̄ = (−24S̄ + 3δ2) · S̄ = −27.

Thus we have ζ5 · π∗S̄ = −27 and

(16) ζ3 · π∗S̄ · δ2 = −1, ζ3 · π∗S̄ · αX · δ = 0, ζ3 · π∗S̄ · α2
X = α2

S.

The intersections with ζ4 and ζ6 are all equal to zero: the Segre classes
s1(X) and s3(X) vanish, so the statement follows from the projection
formula.

Let now S be a very general K3 surface such that Pic(S) = 0, in par-
ticular S does not contain any curves. The subvarieties of the product
S × S are exactly S × x, x× S and the diagonal ∆: the case of curves
and divisors is easily excluded. For a surface Z ⊂ S × S we first ob-
serve that the projection on S is étale, since S does not contain any
curve. Since S is simply connected, we obtain that Z is the graph of an
automorphism of S. Yet a very general K3 surface has no non-trivial
automorphisms [Ogu08, Cor.1.6].

21.9. Lemma. In the situation of Subsection 21.A, let S be a very
general K3 surface such that Pic(S) = 0.

• The subvarieties of X are exactly (S̄x)x∈S, the exceptional di-
visor EX and the fibres of EX ' P(ΩX)→ S.
• Let αS be a Kähler class on S. Then αX − δ is a Kähler class

if and only if α2
S > 2.
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Proof. Since η is finite, any subvariety of X corresponds to a

subvariety of S̃ × S. By the discussion above and Corollary 19.5 we
know the subvarieties of S×S and P(ΩS), so the first statement follows.

We know that tαX − δ is Kähler for t � 0, so by the Demailly-Pǎun
theorem it is enough to check when αX − δ is in the positive cone. By
Lemma 21.1 and Lemma 21.2 we have

(αX − δ)4 = 3((α2
S)2 − 4α2

S + 4), (αX − δ)3 · E = 12(α2
S − 2)

(αX − δ)2 · S = α2
S − 1, (αX − δ) · l = 1,

which are all positive for α2
S > 2. �

21.10. Proposition. In the situation of Subsection 21.A, let αS be
a Kähler class on S such that ω := αX − δ is a Kähler class. Let
Z ⊂ P(TX) ' P(ΩX) be the subvariety constructed in Subsection 21.D.
Then we have

(ζ + π∗ω)5 · [Z] = 15
(
(α2

S)2 − 8α2
S − 56

)
.

In particular we have

(ζ + π∗ω)5 · [Z] ≥ 0

if and only if α2
S ≥ 8+

√
288

2
≈ 9, 6569.

Proof. The class [Z] is given by (14) and all the intersection num-
bers are determined in Subsection 21.E. The statement follows from an
elementary, but somewhat lengthy computation. �

We can summarise our computations on X = S[2] as follows: since
α2
S = q(αX) we know that for a very general K3 surface, the class
αX−δ is Kähler if q(αX) > 2 (Lemma 21.9). The class ζ+π∗(αX−δ) is

pseudoeffective if q(αX) ≥ 5+
√

21
5

(Corollary 21.3). If q(αX) < 8+
√

288
2

,

the class ζ+π∗(αX−δ) is not nef (Proposition 21.10). In particular we
see that for the Hilbert square of a K3 surface polarised by an ample
line bundle L of degree eight, the integral class ζ + π∗(c1(L)X − δ) is
big but not nef.

21.F. Remark on subvarieties of X. By [Ver98, Thm.1.1] a
very general deformation of the Hilbert scheme S[n] does not contain
any proper subvarieties. Verbitsky’s proof is rather involved, but for the
case n = 2 general arguments are sufficient: a very general deformation
satisfies satisfies Pic(X) = 0, so there are no divisors and by duality
there are no curves on X. The vector space

H4(X,Q) ∩H2,2(X)

is one dimensional by [Zha15, Table B.1] and thus generated by the
non-zero class c2(X). If X contains a surface S, we obtain that c2(X) is
represented by an effective Q-cycle forX very general. By properness of
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the relative Barlet space [Fuj78, Theorem 4.3] this implies that c2(X)
is effectively represented for every member in the deformation family.
Yet this contradicts [Ott15, Proposition 2].

22. Hilbert cube of a K3 surface

Now we compute explicitly the positivity threshold for n = 3.

22.1. Corollary. Let X be a six-dimensional Hyperkähler manifold of
deformation type K3[3]. Let ωX be a nef and big (1, 1)-class on X such
that

q(ωX) ≥ 2

21
(18+

3

√
6(1875− 7

√
4233)+

3

√
6(1875 + 7

√
4233)) ≈ 5.9538

Then ζ + π∗ωX is pseudoeffective. This bound is optimal for a very
general deformation of X.

The proof is based on the following proposition, communicated to us
by Samuel Boissière :

22.2. Proposition. (S. Boissière) Let X be a six-dimensional Hy-
perkähler manifold of deformation type K3[3]. Then for any (1, 1)-class
α on X one has

α6 = 15q(α), c2α
4 = 108q(α)2

c2
2α

2 = 1848q(α), c4α
2 = 2424q(α).

Proof. By [Fuj87, Remark 4.12] or [Huy97, Theorem 5.12] we
know that for any element γ ∈ H i,i(X,R) that deforms to a very general
deformation of X as element of type (i, i), its intersection with a class in
H2(X,R) satisfies γ ·α = C(γ)q(α)n−i for any α ∈ H2(X,Z). We need
to compute these constants for varieties that are deformation equivalent
to K3[3] and γ in the subalgebra generated by the Chern classes. By
abuse of notations we will denote by ci the Chern classes of X. The
constants C(γ) are invariant by deformations, so we can assume that
X is isomorphic to S[3] for a projective K3 surface S. As we mention
before in the case of S[2], there is an isometric inclusion i : H2(S,Z) ↪→
H2(X,Z). Geometrically this inclusion is realized sending a line bundle
L on S to the line bundle L3 := detL[3]. By Riemann–Roch formula
and by [EGL01, Lemma 5.1] we have

∫

X

ec1(L3) Todd(X) = χX(L3) =

(
χS(L) + 2

2

)
.

From now on we by abuse of notation we will confuse line bundles with
their first Chern class. We recall that the Todd class for six dimensional
Hyperkähler manifolds is

(17) Td(X) = 1+
1

12
c2+

1

240
c2

2−
1

720
c4+

1

6048
c3

2−
1

6720
c2c4+

1

30240
c6
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and χS(L) = L2 + 2 = q(L3) + 2. Putting the Todd class and the
characteristics in the equation above we get

1

720
L6

3+
1

288
c2L

4
3+(

1

480
c2

2−
1

1440
c4)L2

3+
1

6048
c3

2−
1

6720
c2c4+

1

30240
c2c4 =

=
1

6
χS(L)(χS(L) + 1)(χS(L) + 2) =

1

48
q(L3)3 +

3

8
q(L3)2 +

13

6
q(L3) + 4

that by homogeneity tells us that

L6
3 = 15q(L3)

c2L
4
3 = 108q(L3)2.

The quadratic term is not sufficient to gives us the other constants but
tells only that

(18) 3c2
2L

2
3 − c4L

2
3 = 3120q(L3).

We are going to use a consequence of a formula due to Nieper that can
be found in [Huy03b, Theorem 4.2]:

(19)

∫

X

√
Td(X)ex = (1 + λ(x))3

∫

X

√
Td(X)

for a quadratic form λ : H2(X,C) → C and any x ∈ H2(X,C). One
can deduce directly by (17) that
√

Td(X) = 1+
1

24
c2+

7

5650
c2

2−
1

1440
c4+

31

967680
c3

2−
11

241920
c2c4+

1

60480
c6.

By the terms of degree 4 and 6 of (19) we deduce that λ(x) = 1
3
q(x).

This fact with the degree two component of (19) gives

(20)
7

4
c2

2x
2 − c4x

2 = 810q(x).

Finally the solution of the system given by (18) and (20) is

c2
2L

2
3 = 1848q(L3), c4L

2
3 = 2424q(L3).

�

Proof of Corollary 22.1. By Proposition 20.1 we only have
to compute the largest real root of pX(t). By Formula (5) we have to
compute the largest solution of(

11

6

)
d6t

3 +

(
11

4

)
d4t

2 +

(
11

2

)
d2t+ d0 = 0,

where the constants d2i are defined by (6). Using Proposition 22.2
we can compute the constant d2i in our setting, one obtains the cubic
equation

6930t3 − 35640t2 − 31680t− 10560. = 0.

This polynomial has only one real solution, the one from the statement.
The last statement is the second part of Theorem 0.10. �
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[HP19] Andreas Höring and Thomas Peternell. Algebraic integrability of
foliations with numerically trivial canonical bundle. Invent. Math.,
216(2):395–419, 2019.

[Huy97] Daniel Huybrechts. Compact hyperkähler manifolds. Habilitationss-
chrift Essen, page 65, 1997.

[Huy99] Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results.
Invent. Math., 135(1):63–113, 1999.

[Huy03a] Daniel Huybrechts. Erratum: “Compact hyper-Kähler manifolds:
basic results” [Invent. Math. 135 (1999), no. 1, 63–113; MR1664696
(2000a:32039)]. Invent. Math., 152(1):209–212, 2003.

[Huy03b] Daniel Huybrechts. Finiteness results for compact hyperkähler man-
ifolds. J. Reine Angew. Math., 558:15–22, 2003.

[Huy05] Daniel Huybrechts. Complex geometry. Universitext. Springer-
Verlag, Berlin, 2005. An introduction.

[Huy16] Daniel Huybrechts. Lectures on K3 surfaces, volume 158 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2016.

[Kaw85] Y. Kawamata. Pluricanonical systems on minimal algebraic varieties.
Invent. Math., 79(3):567–588, 1985.



96 BIBLIOGRAPHY

[Kaw91] Yujiro Kawamata. On the length of an extremal rational curve. In-
vent. Math., 105(3):609–611, 1991.

[KL09] János Kollár and Michael Larsen. Quotients of Calabi-Yau varieties.
In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol.
II, volume 270 of Progr. Math., pages 179–211. Birkhäuser Boston,
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