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In this dissertation we study by a computational approach Hilbert functions and minimal
graded free resolutions of finitely generated graded modules over two significant graded K-
algebras, K being a field.

More precisely, if E is the exterior algebra of a finite dimensional K-vector space and F' is
a finitely generated graded free E-module with a homogeneous basis, we characterize the
Hilbert functions of graded E—modules of the type F/M, with M graded submodule of
F', via the unique lexicographic submodule of F' having the same Hilbert function as M.
Furthermore, we study projective and injective resolutions over E. In particular, we give
upper bounds for the graded Betti numbers and the graded Bass numbers of classes of F-
modules.

Moreover, we give a criterion to determine the extremal Betti numbers of a special class
of monomial ideals of a standard polynomial ring S known as the t-spread strongly stable
ideals, where ¢ is an integer > 0. We are able to find a complete numerical characterization
(positions as well as values) for the case t = 0 and ¢t = 1. Instead, for the case t = 2 we
determine the structure of the t-spread strongly stable ideals with the maximal number of
extremal Betti numbers.

The approach to these topics is mainly computational because of the algorithmic nature of
the topic themselves.

Finally, we present some packages in order to work and manipulate specific objects in both

contexts.
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Introduction

Classical problems in commutative algebra include the study of the Hilbert functions and
minimal graded free resolutions of finitely generated graded modules over graded algebras.
These topics represent important tools in algebraic geometry and are becoming increasingly
important both in combinatorics and computational algebra. Many authors have focused
their attention on such notions (see for instance [Mac27, Sta75, Hul95, Gas97, BH96, HH11,
Hoell] and the references therein) both in the polynomial ring context and in the exterior
algebra one. Indeed, it is well known that, even if the exterior algebra is not commutative,
it behaves like a commutative local ring or *local ring ([BH96]) in many cases. Hence, many
notions and results that hold in one context can be translated to the other one with some
suitable modifications.

This dissertation aims to deepen the study of the above mentioned topics approaching some
open problems in order to integrate the existing literature and developing some packages
that can be useful in the framework of commutative algebra and algebraic geometry. All the
algorithms presented in this thesis have been implemented and some of them are included

in Macaulay2 version 1.14.

Let K be a field. The graded K-algebras we consider in this thesis are the standard
polynomial ring S = KJz1,...,z,] and the exterior algebra E = K (e1,...,e,) of a K-
vector space with basis eq,...,e,.

Let R € {S,E}. Our work environment is M, the category of finitely generated Z-graded
left and right R-modules M, and we will denote by F' € M a finitely generated graded
free module with homogeneous basis gi1,...,g,. In R one can introduce the notions of
monomial and monomial ideal and therefore that of monomial submodule of F. More in
details, a monomial submodule M of F' is a submodule of the form M = @]_;I;g;, with I;
(¢ =1,...,7) monomial ideals in R, i.e., ideals generated by monomials of R. It is clear that
a monomial submodule is in the category M. Monomial modules over graded algebras are

the fulcrum of our interest.

The Hilbert function of a graded K-algebra computes the vector space dimension of its
graded components. It encodes important information on the graded K-algebra such as its
Krull dimension or its multiplicity [HH11]. The Macaulay’s key idea about the existence of
highly structured monomial ideals, the lexicographic ideals, which attain all Hilbert functions
of quotients of polynomial rings, has revealed crucial in the polynomial ring context. The
pivotal property is that a lexicographic ideal grows as slowly as possible. Macaulay’s theorem

has been the inspiration for many similar classifications. Stanley wrote Macaulay’s theorem



in its modern form in [Sta75] (see also [BH96]). Kruskal proved a theorem on bounding the
f-vectors of simplicial complexes in a way similar to Macaulay’s theorem [Kal01l]. Katona
independently proved an equivalent result phrased in terms of Sperner families [Kru63]. The
Kruskal-Katona theorem is the squarefree analogue of Macaulay’s theorem and may be also
interpreted as a theorem on Hilbert functions of quotients of exterior algebras in [AHH97].
Finally, Macaulay’s theorem was extended to modules by many authors, in particular by
Hulett [Hul95] and Gasharov in [Gas97]. In the polynomial ring context the Hilbert functions
are characterized both for ideals and modules, whereas in the exterior algebra context the
main results hold for ideals; therefore, in this thesis we have focused our attention on graded
modules over the exterior algebra.

In fact, we generalize the combinatorial Kruskal-Katona theorem [AHH97, Theorem 4.1] for
finitely generated modules over exterior algebras. More precisely, we describe the possible
Hilbert functions of graded E-modules of the form F/M, with M graded submodule of F'.
Our result bounds the growth of Hilbert function of such a kind of modules via the class of
lexicographic submodules (Definition 1.2.16). The construction of such a submodule can be
realized by using the classical way (which involves suitable sets of monomials of F'). More in
details, if M is a graded submodule of F', the construction of the lexicographic submodule
M'** with the same Hilbert function of M proceeds as follows: for each graded component
M; of M, let M}ex be the K—vector space spanned by the (unique) lexicographic segment
L; of F (Definition 1.2.14) with |L;| = dimg M;. Then one defines M = @jM}eX.
Hereafter, we describe an alternative way for determining the lexicographic submodule we are
looking for. Our approach (Theorem 2.3.2) manipulates sequences of nonnegative integers.
More precisely, if M is a graded submodule of F' = @®]_; Eg;, we associate to F/M the
sequence Hsp/nyy = (Hp/m(f1), Hppu(f1 + 1), ..., Hpy (fr + 1)) € Ng'”+"_f1+1, where
fi = deggi, i = 1,...,7. We call Hsp/py; the Hilbert sequence of the graded E-module
F/M. Using the Kruskal-Katona theorem (Theorem 2.2.4) and operating on the given
Hilbert sequence by repeated subtractions, one obtains r suitable sequences which are the
Hilbert sequences of r graded K-algebras F/I;, with I; (i = 1,...r) lexicographic ideals of
E, and L = ®]_,I;g; will be the unique lexicographic submodule of F' with Hp,;, = Hp ;.
Consequently, we get a new criterion (Criterion 2.3.3) able, given a sequence H of nonnegative
integers (of a certain length), to find out if H determines the Hilbert function of a quotient
of the type F//M. We have also created a Macaulay2 package, ExteriorModules, in order to
manage monomial submodules of F, and in particular to compute the lex submodule M'*

associated to a submodule M.

As far as the minimal graded resolutions are concerned, many authors have been inter-
ested in the problem of giving upper bounds for the graded Betti numbers and the graded
Bass numbers of graded submodules of a finitely generated graded free module with ho-

mogeneous basis, both in the polynomial and in the exterior algebra context (see for in-



stance [Big93, Bee07, AHHO7, CM13, CU07, CF15, Hul93, Hul95, AH00, CF12, CF13, Par94,

Par96]).
If R € {S,E} and M is a graded R-module, then M has a unique minimal graded free
resolution over R: Fy : ... — Fy — I — Fy — M — 0, where F; = @jR(—j)ﬁM(M). The

integers §; ;(M) = dimg Torf*(M, K); are called the graded Betti numbers of M, whereas
the numbers 3;(M) = >, B, ;(M) are called the Betti numbers of M. The problem to bound
the graded Betti numbers of a module M can be reformulated as follows: is it possible to
find a graded R-module L such that 3; ;(L) > B, ;(M) (for alli,j), for all graded R-modules
M with the same Hilbert function of L? In the case of modules over the polynomial ring and
ideals in the exterior algebra, the answer is positive and a fundamental tool is the class of
lexicographic submodules and the class of lexicographic ideals, respectively. More in details,
Bigatti [Big93] and Hulett [Hul93] showed independently that among all graded ideals in a
standard polynomial ring S with a given Hilbert function, the lexicographic ideal has the
largest graded Betti numbers in characteristic zero. Then Hulett [Hul95] extended the result
to graded submodules of a free module over S. The previous results were proved by Pardue
[Par94, Par96] in any characteristic. The result of Bigatti [Big93], Hulett [Hul93] and Pardue
[Par94, Par96] was generalized to the exterior algebra context by Aramova, Herzog and Hibi
in [AHH97]. In this dissertation we will show how the class of lexicographic submodules
reveals fundamental also in getting upper bounds for graded submodules of a free module
over the exterior algebra.

It is known that the R-module M has also a unique minimal graded injective resolution:
Io: 0 - M - I° - ' - I? - ..., where I' = @;R(n — j)*(M)_ The integers
i (M) = dimg Exth(K, M); are called the graded Bass numbers of M [BH96, K10].
Also for these invariants, the problem to find a bound (once the Hilbert function has been
fixed) for modules over the polynomial ring and ideals of the exterior algebra has been
solved ([AHH97, Bee07]). Hence, we will still focus on modules over the exterior algebra
E = K {e1,...,ey). Our aim is to give upper bounds for such invariants in the class of all
graded submodules in F' with the same Hilbert function, again via lexicographic modules.
An important role in the exterior algebra context is assumed by a special monomial submod-
ule of F', as in the polynomial ring context. Precisely, if M € M is a graded submodule of
F, fixing a proper monomial order on F', there exists a monomial submodule of F' called the
generic initial module, denoted by Gin(M), which contains some information related to M.
Indeed, if K is infinite then Gin(M) is strongly stable (see Definition 1.2.8) and the inequal-
ity 8;;(M) < f,; ;(Gin(M)) holds for all ¢,j (see [Gre98, AHHI7]). So, for the solution of
our problem we can take into account, without loss of generality, strongly stable submodules.
In order to face the analogous problem on the graded Bass numbers, we need some further
remarks. Let M* be the right (left) E-module Hompg (M, E). The duality between projec-

tive and injective resolutions implies the existence of a relation ([AHH97, Proposition 5.2])



between the graded Bass numbers of a module and the graded Betti numbers of its dual:
Bij (M) = pt; n—;(M*), for all 4,j. An important observation is that Homg(E/I,E) ~0: I
([AHH97]), where 0 : I is the annihilator of I. Furthermore, if I is lex than 0 : I is lex too.
In our study, the crucial point is to relate the submodules F/M!'** with Hom(F/M, E)'*.

We have obtained a partial result in the case F' = E", as we will see later.

An important subset of the graded Betti numbers of a graded ideal of a polynomial ring is
the one consisting of the extremal Betti numbers. These invariants were introduced by Bayer,
Charalambous and Popescu in [BCP99], as a refinement of some important invariants of the
graded ideal I. More precisely, let S = K[xz1,...,2,] be the standard polynomial ring in n
variables over a field K and let I be a graded ideal of S. A graded Betti number Sy j4¢(I) # 0
is called extremalif §; ;4;(I) =0foralli >k, j > ¢, (3,5) # (k, £) [BCP99]. The pair (k, ) is
called a corner of I. If By, k,+e¢,(I) (i = 1,...,7) are extremal Betti numbers of a graded ideal
I, then the set Corn(l) = {(k1, 1), (k2,£2), ..., (kr,¢-)} will be called the corner sequence
of I. In the Macaulay2 or CoCoA Betti diagram of I, the graded Betti number f; ;(I) is
plotted in column ¢ and row j — 4. Using such a notation, a graded Betti number Sy x+¢(I)
is extremal if it is the only entry in the quadrant where it is the northwest corner (see
Figure 1.2). Projective dimension measures the column index of the easternmost extremal
Betti number, whereas regularity measures the row index of the southernmost one. Indeed,
the extremal Betti numbers are a generalization of such meaningful algebraic invariants.
Recently, Ene, Herzog, and Qureshi have introduced the notion of ¢t—spread monomial ideal
[EHQ19] (see also [AEL19, AC19f]), where t is a nonnegative integer. More precisely, if ¢ > 0
is an integer, a monomial x;, x;, - - ;, with 1 <4y <19 <--- <4g < n is called t-spread, if
ij —ij_1 >t for 2 < j < d. A monomial ideal in S is called a t-spread monomial ideal, if
it is generated by t—spread monomials. Such a notion generalizes the notion of (squarefree)
monomial ideal. Indeed, it is clear that every monomial ideal of S is a 0—spread monomial
ideal, whereas every squarefree monomial ideal of S is a 1-spread monomial ideal.

We recall that a squarefree monomial ideal of S is a monomial ideal generated by squarefree
monomials. Such ideals are also known as Stanley—Reisner ideals, and quotients by them
are called Stanley—Reisner rings. The combinatorial nature of these algebraic objects comes
from their close connections to simplicial topology. Many authors have studied the class of
squarefree monomial ideals from the viewpoint of commutative algebra and combinatorics
(see, for example [AHH98, AHH00, CSW14, MS05, CU09], and the references therein). We

analyze the following problem.

Problem 1 Given three nonnegative integers t,n,r (n > 2 and 1 < r < n — 1), r pairs of

positive integers (k1,¢1), ..., (kr,¢r) such that n — 1>k > ko > - >k, > 1,1 < {; <
ly < -+ < {., and 7 positive integers ai, ..., a,, under which conditions does there exist a
t-spread ideal I of S = K{z1,...,x,] such that By, k,+6, (L) = a1, - .., Bk, ko+e.(I) = a, are

its extremal Betti numbers?



A positive answer to this problem has been given for K field of characteristic zero and t = 0
[CU00, CU03, HSV14]. Indeed, under these hypotheses, the generic initial ideal Gin([), with
respect to the graded reverse lexicographic order induced by 27 > --- > z,, ([Eis95, HH11)),
of a graded ideal of S is a strongly stable ideal, and the extremal Betti numbers of I, as well
as their positions, are preserved by passing from I to Gin(I) [BCP99, Corollary 1]. A similar
result holds also in the squarefree case even if the fact that I is squarefree does not imply that
Gin([) is squarefree. Indeed, in [AHHO00], the authors have introduced a certain operator
o which transforms Gin(I) to a squarefree monomial ideal of S. Such an ideal, denoted by
Gin(I)?, is squarefree strongly stable [AHHO00, Lemma 1.2.]. On the other hand, [AHHO0,
Theorem 2.4.] assures that if I is a squarefree ideal, then the extremal Betti numbers are
preserved when we pass from I to Gin(/)?. Hence, Problem 1 can be reformulated in terms

of strongly stable ideals for t = 0 and in terms of squarefree strongly stable ideals for ¢ = 1.

In this thesis we analyze the behavior of the extremal Betti numbers of t—spread strongly
stable ideals for ¢ > 0 (Definition 4.1.1). This class of ideals is a natural generalization of
the class of (squarefree) strongly stable ideals [EK90, AHH98]. Hence, one can use similar
methods as in [AC19a, AC19e, Crul6, CU00, CU03, CU09, CF16] for establishing criteria
to determine their extremal Betti numbers. The discussion of this topic has been gradual.
Since for ¢t = 0, i.e. in the case of monomial ideals of S, Problem 1 has been solved [CU03,
Theorem 3.1], [Crul6, Propositions 3.4, 3.5, Theorem 3.7] and [HSV14, Theorem 6.7], we
have created a package in CoCoA for “manipulating” the extremal Betti numbers in this case.
By using computer algebra systems, CAS, (for instance, CoCoA [AB, ABL] or Macaulay?2
[GS]), given a graded ideal I of the polynomial ring S, functions for determining the extremal
Betti numbers of I are available. On the contrary, to the best of our knowledge, it seems
that packages for the inverse problem, i.e., Problem 1, have not been implemented yet. The
key idea is to identify appropriate segments of monomials to determine the extremal Betti
numbers for each degree. So, we have improved some known results and we have developed
a CoCoA package (ExtrBettiNumbers) for computing the smallest strongly stable ideal of
S solution of Problem 1 (J[AC19al]). In particular, the package is able to determine all the
possible r-tuples of positive integers (ay,...,a,) for which such an ideal does exist.

For the case t = 1, i.e. squarefree ideals of S, the first result on the behavior of the extremal
Betti numbers of such a class of squarefree monomial ideals can be found in [CU03, Pro-
postion 4.1]. More precisely, the authors in [CU03] gave the following criterion to determine
whether a graded Betti number is extremal: let I be a squarefree strongly stable ideal of S.
B, k+e(I) s an extremal Betti number if and only if k + ¢ = max{m(u) : v € G(I),} and
m(u) < k+j, for all j > £ and for alluw € G(I); (Theorem 4.1.12); G(I), is the set of mono-
mials u of G(I) such that degu = £. They did not give any numerical characterization of the
possible extremal Betti numbers of such a class of ideals. Later, such a criterion was gen-

eralized to the class of squarefree strongly stable submodules of a finitely generated graded



free S—module with a homogeneous basis in [CF16, Theorem 4.3]. Moreover, a criterion for
determining their positions and their number was also given in [CF16, Section 5]. Differently
from the non—squarefree case, not much is known about the numerical characterization of
the possible extremal Betti numbers (values and positions) of the class of squarefree strongly
stable ideals. We are able to give such a characterization (Theorem 4.3.29). Our techniques
involve tools from enumerative combinatorics to detect some particular monomials that char-
acterize the positions of the extremal Betti numbers and hence some combinatorial formulas
to establish the bounds for their values.

For the case t = 2, i.e. the case of 2-spread ideals of S, we determine the maximal admissi-
ble number of extremal Betti numbers of a 2—spread strongly stable ideal. Many surprising
situations occur in such a case ([AC19b]). At the present time, it seems to be a difficult

combinatorial problem to determine such a number for all ¢ > 1 and solve Problem 1.

This thesis is structured in four chapters. Chapter 1 contains a brief sketch of the notions
which are intensively used along the thesis. Moreover, it fixes the notations and gives a short
overview on computational methods in commutative algebra.

In Chapter 2 we discuss in details the Hilbert functions of quotients of graded free E-
modules. The study of the behavior of these functions is crucial for the development of
the main result. We state a new expression for such Hilbert functions (Proposition 2.2.1),
and give their characterization (Theorem 2.2.4) wia lexicographic submodules. Moreover,
we describe a new procedure for the construction of the unique lexicographic submodule
for a given Hilbert function (Theorem 2.3.2). A new criterion (Criterion 2.3.3) to verify if
a sequence of nonnegative integers determines the Hilbert function of quotients of graded
FE—algebras is also given. After this, we show some examples illustrating our results and
procedures. Finally, we present two Macaulay2 packages, and show the use of their methods
by means of suitable examples. This chapter is based on the papers [AC18b, AC19¢c, AC20].

Chapter 3 is dedicated to minimal graded free resolutions, and in particular to devise
bounds for the graded Betti numbers and the graded Bass numbers in the exterior algebra
context. We start by analyzing the generic initial module of a graded module M € M.
Generic initial modules preserve much information of the original module and, furthermore,
they are strongly stable (Proposition 1.2.7) if the base field K is infinite. Therefore, in many
situations it is a successful strategy to pass on to the generic initial module and then exploit
the nice properties of strongly stable submodules. After this, we discuss both the class of
almost lexicographic submodules (Definition 3.2.2) and the class of lexicographic submodules
of F. We prove that the almost lexicographic submodules provide a first upper bound for
the Betti numbers of all graded submodules of F' with the same Hilbert function (Propo-
sition 3.2.3). Such a bound is not maximal in general. Finally, we give a characterization
of the class of lexicographic submodules (Definition 1.2.16). Indeed, if F = ®!_, Eg; is the
free E-module with homogeneous basis g1, ..., g, such that degg; < deggs < --- < degg,,



we show that the lexicographic submodules give upper bounds for the graded Betti numbers
of the class of graded submodules of F' with the same Hilbert function (Theorem 3.3.9).
Our techniques generalize the ones discussed in [AHH97, AHH98]. Moreover, upper bounds
for the graded Bass numbers of the class of graded submodules of F' ~ E” with a given
Hilbert function, are stated. Indeed, in such a case, setting M'** = @7_, J;g; C E", we have
that Hom(E" /M, E)'** = @F_,(0 : J._;_1)g: (these are lex submodules of E” with the same
Hilbert function). This allows us to state that u; ;(E"/M) < p, j(E"/M™), for all i,j.
Furthermore, some remarks on the annihilator of classes of monomial submodules in F' are
given (Theorem 3.4.5). Finally, we present other functionalities of the Macaulay2 packages
introduced in the previous chapter and we show some explicative examples. This chapter is
based on the papers [AC18b, AC18a, AC19d].

In Chapter 4, we investigate the behavior of the extremal Betti numbers of ¢—spread
strongly stable ideals (Theorem 4.1.12, Corollary 4.1.13). A fundamental tool is the Ene,
Herzog, Qureshi formula [EHQ19] for computing the graded Betti numbers of such a class of
monomial ideals. We have approached the problem step by step, for low values of ¢, i.e., for
t € {0,1}. First, we study the possible extremal Betti numbers of a strongly stable ideal of
S (i.e., t = 0) with initial degree > 2. Since the characterization of the extremal Betti num-
bers is obtained by a detailed description of suitable sets of monomials (Proposition 4.2.5,
Theorem 4.2.6), we exhibit two algorithms (Algorithm 4.1 and 4.2) for the computation of
all the sets of monomials involved in the characterization. As a final result, our procedure
returns the strongly stable ideal we are looking for (Algorithm 4.3). Moreover, we describe
a further algorithm (Algorithm 4.4) able to compute all the admissible values for the r-tuple
of positive integers (aq,...,a,) satisfying Problem 1. Hence, an example which illustrates
the implemented functions is given. We also describe in detail the CoCoA package FxtrBet-
tiNumbers (tested with CoCoA System, version 5.1.4) that has been built.

Furthermore, for ¢ = 1, we identify the admissible corner sequences of a squarefree strongly
stable ideal of S for n = 2,3,4. Then, we determine the maximal number of corners
allowed for a squarefree strongly stable ideal I of S with a corner in its initial degree

(Propositions 4.3.7, 4.3.9). Moreover, given n — ¢; (n > 5) pairs of positive integers

(]{31,61), (kg,gg), Cee (kn—élagn—ll), with 1 < kn—él < kn—£1—1 < - < ki <n-—3and
3<l <y <+ < ly_y, <n—1, we determine the conditions under which there exists a
squarefree lex ideal I of K[z1,...,z,] of initial degree ¢1 having By, k,+¢,(I),i=1,...,r, as

extremal Betti numbers (Theorem 4.3.13). A complete description of the minimal system of
monomial generators of I is given. Next, we face Problem 1, and solve it when char(K) =0
(Theorem 4.3.29). In such a case, the question is equivalent to the characterization of the
possible extremal Betti numbers of a squarefree strongly stable ideal of S as we have un-
derlined before. The idea behind Theorem 4.3.29 is to establish the bounds for the integers

a; (i =1,...,r), starting with a, and then arriving to a1, by computing the cardinality of



suitable sets of monomials. The key result in this case is Theorem 4.3.17. Let (k,£) be a
pair of positive integers and let A%(k,¢) be the set of all squarefree monomials u of S of
degree £ and such that max(u) = k+ ¢, with max(u) = max{i : z; divides u}, ordered by the
squarefree lex order >gex. If u € A%(k,{), Theorem 4.3.17 shows a method for determining
the cardinality of the set of all squarefree monomials w € A®(k,£) such that w >gex u. We
provide some examples illustrating the main obstructions to the issue.
For t = 2, we analyze the extremal Betti numbers of 2—spread strongly stable ideals in the
polynomial ring S = Klz1,...,z,]. More precisely, we face the following problem: given
the set Sa of all 2-spread strongly stable ideals in S, what is the maximal number of ex-
tremal Betti numbers allowed for an ideal in Sz ,?7 The study of this problem has led us
to distinguish the cases n odd and n even (Theorems 4.4.2, 4.4.9). Moreover, if n > 11
is an odd integer, given r = "T*B pairs of positive integers (k1,¢1), ..., (kr, ) such that
n—3>k >ky>--->k.>1land2=1/{; </ly <--- </, we determine the conditions un-
der which there exists a 2-spread strongly stable ideal I of S = K|z, ..., x,] of initial degree
0y = 2 with B, ky+6,(I), -+, Bryk,+¢.(I) as extremal Betti numbers (Theorem 4.4.6). A
similar result is proved for n > 12 even integer (Theorem 4.4.12). We provide some examples
illustrating the main results. Finally, we present a Macaulay2 package, SquarefreeIdeals,
to manipulate squarefree monomial ideals. This package provides some methods to solve the
Problem 1 for ¢ = 1; we are currently working to implement methods to face the general
problem where ¢ > 1. This chapter is based on the papers [AC19a, AC19e, AC19b].

All the examples in the dissertation are constructed by means of CoCoA or Macaulay2

packages, some of which developed by the author of this work.



Chapter 1

Basic notions

This chapter summarizes the fundamental notions about algebraic structures, and the ideas
to we will refer to in this dissertation. We illustrate classical definitions and properties
about graded algebras, monomial modules, Hilbert functions and minimal resolutions. These
objects and tools, here introduced theoretically, in the situations where it is possible, will be
investigated through an algorithmic and computational point of view in the next chapters.

The aspects here discussed can be found in any textbook about commutative algebra (see,
for instance, [BH96|, [HH11], [Eis95], [Peell], [Eis05]).

1.1 Graded Algebras

In this section, we discuss about rings and algebras which admit a decomposition of their
elements into homogeneous components. Throughout this thesis we assume that all rings
are Noetherian, commutative or skew-commutative and with identity. All modules involved

are finitely generated unless otherwise stated and we fix an infinite field K.

Definition 1.1.1 A graded ring is a ring R together with a decomposition R = @,, R;
(as a Z-module) such that R;R; C R;y;, for all i,j € Z.
One calls R; the i—th homogeneous (or graded) component of R. The elements x € R; are

called homogeneous of degree i.

According to this definition, the zero element is homogeneous of arbitrary degree. The
degree of z is denoted by degz. An arbitrary element x € R has a unique presentation
T = ZZ x; as a sum of homogeneous elements x; € R;. The elements x; are called the
homogeneous components of x. Note that every ring R has the trivial grading given by
Ry =R and R; =0 for i # 0.

A (not necessarily commutative) R-algebra A is graded if, in addition to the definition,
AiA; C Aiyj. Let K be a field, A is called standard graded if it is a finitely generated
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K-algebra and all its generators are of degree 1. Any other standard graded K-algebra is

isomorphic to the polynomial ring modulo a graded ideal.

Proposition 1.1.2 Let R be a positively graded Rg-algebra, and x1,...,x, homogeneous

elements of positive degree. Then the following are equivalent:
(i) x1,...,xy, generate the ideal m = | R;.
(#) x1,...,x, generate R as an Ro—algebra.

The last assertion of Proposition 1.1.2 holds for graded rings in general (see [BH96, Propo-
sition 1.5.4]).

Definition 1.1.1 can be generalized for modules over a graded ring.

A graded R-module is an R-module M together with a decomposition M = @, ., M; (as
a Z-module) such that R;M; C M;;, for all 4, j € Z. One calls M; the i~th homogeneous
(or graded) component of M. The elements x € M; are called homogeneous (of degree 7).

According to this definition, the zero element is homogeneous of arbitrary degree. The
degree of x is denoted by degxz. An arbitrary element x € M has a unique presentation
x = ) .x; as a sum of homogeneous elements x; € M;. The elements z; are called the
homogeneous components of x.

Note that Ry is a ring with 1 € Ry, all summands M, are Rop—modules, and so M =
@,z M; is a direct sum decomposition of M as an Ro-module.

Let R be a graded ring. The category of graded R-modules, denoted by Mgy(R), has
as objects the graded R—modules. A morphism ¢ : M — N in My(R) is an R—module
homomorphism satisfying ¢(M;) C N; for all i € Z. An R—module homomorphism which is
a morphism in My (R) will be called homogeneous.

Let M be a graded R—module and N a submodule of M. N is called a graded submodule
if it is a graded module such that the inclusion map is a morphism in My(R). This is
equivalent to the condition N; C N N M; for all ¢ € Z. In other words, N is a graded
submodule of M if and only if N is generated by the homogeneous elements of M which
belong to N. In particular, if x € N, then all homogeneous components of x belong to V.
Furthermore, M/N is graded in a natural way. If ¢ is a morphism in My(R), then Ker

and imyp are graded.

The graded submodules of R are called graded ideals.

Remark 1.1.3 Let I be an arbitrary ideal of R. Then the graded ideal I* is defined to
be the ideal generated by all homogeneous elements a € I. It is clear that I* is the largest

graded ideal contained in I, and that R/I* inherits a natural structure as a graded ring.
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In this thesis, due to their algorithmic structure, the focus of our arguments will be two

graded algebras with reference to the polynomial ring and the exterior algebra.

Example 1.1.4 (i) Let K be a field, and S = K[x1,...,2,] a polynomial ring over K.
Then for every choice of integers d,...,d, there exists a unique grading on R such
that degz; = d; and dega = 0 for all « € K. The m-th graded component is the S—
module generated by all the products z{* - - - 2% such that > a;d; = m. If one chooses
d; = 1 for all 4, then one obtains the grading of the polynomial ring corresponding to
the total degree of a product of indeterminates. Unless indicated otherwise, we will

always consider S to be graded in this way.

(i) Let R be a ring, and M an R-module. We consider R as a graded ring by giving it
the trivial grading. Let M®? denotes the i—th tensor power of M, i.e.. M@ ---Q M
of i factors of M for ¢ > 0 and R for ¢ = 0. The tensor power form a graded R—
module @ M = ;2 , M®". Defining the product of z1 ® --- ® z, and y; @ - -+ @ Y,
as T Q- QLy QY @+ Q Y, one gives K M the structure of a graded associative
R-algebra (not commutative in general). Let us consider the two-sided graded ideal I
generated by the homogeneous elements x ® z, x € M. The exterior algebra A\ M is
the graded R-algebra A M = @ M /I The product of z,y € A\ M is denoted by z A y.

One has
x Ay = (—1)dee2)degy) o A g for homogeneous x,y € A\ M,
Az =0 for homogeneous x € A M, degx odd.
Given z1,...,r, € M and a permutation 7 of S,,, then 2,1y A... AZr(,) = sgn(m)zy A

.. ANy (sgn: S, — {—1,1}, the sign of a permutation).

Remark 1.1.5 Throughout this thesis, if K is a field, we will denote by E = K (e, ..., e,)
the exterior algebra of a K-vector space V with basis ey, ..., e,.

For any subset ¢ = {i1,...,iq} of {1,...,n} with i; < iy < -+ < ig we write e, =
e, N...Nei,. Weset e, =1, if 0 = ). One can easily verify that the set of all products of
indeterminates in F forms a K-basis of E of cardinality 2.

In order to simplify the notation, we put fg = f A g for any two elements f and g in E. An
element f € E is called homogeneous of degree j if f € E;, where E; = /\j V.

Now, let R be a graded algebra and let M be the category of finitely generated Z—graded
left and right R-modules M.

It is possible to introduce graded free modules over a graded algebra. From now on we will
define and discuss graded free modules over a graded algebra R, when R is the polynomial
ring S = K|[z1,...,x,] or the exterior algebra E = K (ey,...,e,).

Let F € M be a graded free module with homogeneous basis g1, . .., g., where deg(g;) =
fiforeachi=1,...,r, with fi < fo <--- < f,. We write F = @,_, Rg; .
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The degree of an element of the form zg;, where x is homogeneous in R, is deg(zg;) =
deg(x) + deg(g:)-

Definition 1.1.6 If M is a graded submodule of a finitely generated graded free module F',
we denote by indeg(M) the initial degree of M, i.e., the minimum ¢ such that M; # 0.

1.2 Monomials

Special elements called monomials can be introduced in both graded algebras S and E. In
order to point out the differences between the polynomial ring and the exterior algebra, we

will proceed with some “splitted” definitions.
Definition 1.2.1 Let K be a field.

(i) Let us consider the polynomial ring S = K[zy,...,2,] as a Z-graded ring where

Qn
n

degz; = 1, ¢ = 1,...,n. Any product z7' - -z with «; non—negative integers,

is called a monomial of S of degree Y «;.

(i) If E = K (e1,...,e,) is the exterior algebra of a K-vector space V with basis e, ..., e,
any product e;, ...e;,, with 1 <14y <ig < --- < ig < n, is called a monomial of E of
degree d.

(7i1) Let F be a graded free module with homogeneous basis g1,...,9, over R € {S, E}.
We write F' = @]_;Rg;. The elements of the form ug;, where u is a monomial of R,

are called monomials of F' of degree deg(u) + deg(g;).

In the following we will refer to graded algebra R € {S, E}. Indeed, in both these cases
the definition above can be given.

For a monomial 1 # u € R, we set
supp(u) = {i : ; divides u},
and we write
max(u) = max{i : ¢ € supp(u)}, min(u) = min{i : ¢ € supp(u)}.
Moreover, we set max(1) = min(1) = 0.

Definition 1.2.2 Let F' be a finitely generated graded free R-module with homogeneous
basis g1,...,9,. A graded submodule M of F' is a monomial submodule if M is a submodule

generated by monomials of F, i.e.,
MZIlgl@"'@Irgm

with I; a monomial ideal of R, for each <.
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One can easily observe that monomial modules are graded modules. Moreover, if r = 1
and deg g1 = 0 then every monomial submodule of F' is a monomial ideal of R.

For a subset T of F, we denote by Mon(T) (Mong(T) , respectively) the set of all
monomials (monomials of degree d, respectively) of T', and by |T'| its cardinality. It is clear
that Mon(F') is a K-basis of F. In particular, if I is an ideal of R, then Mon(I) is a K-basis
of I.

There exist some special classes of monomial modules that have wide applications to
algebraic geometry, commutative algebra, and combinatorics.

Indeed, in several cases it is convenient to consider particular monomial modules associ-
ated to a graded module in order to obtain information on it. To this aim, it is necessary to

introduce the notion of monomial order.

Definition 1.2.3 Let F € M be a free R-module with basis. A monomial order on F is
a total order > on the monomials of F' such that if u,v € Mon(F') and w € Mon(R), then

u > v implies wu > wv > v.

Now, it is possible to introduce the definition of initial monomial of an element of F.
Let y € F and let > a monomial order on F'. The initial monomial of y, written ins (y), is
the greatest monomial of y with respect to the monomial order >.

If M is a submodule of F', then the initial module of M indicated by ins (M) is the monomial
submodule of F' generated by the monomials ins (y) for all y € M.

Fixed a monomial order, we will use to write in(y) and in(M), respectively.

Example 1.2.4 (i) Let S = K[z1,...,2,] and let x* = 28 - .. 29 and x# = 2" ... zf»
be monomials of S with «;, 8; nonnegative integers. We denote by >« the lexicographic

order (lex order, for short) on Mon(S), i.e. X% >0, x? (lexicographically greater than)

if either Y0 ja; > > B or a1 = B, ..., as—1 = Bs—1 and ay > B, for some
1 <s<n.
(15) Let E = K {e1,...,e,) be the exterior algebra. Let e, = e;€;, - -€;, and e, =

€j,€j, -+ - €, be monomials belonging to Mong(E) with 1 <4y <is < --- <ig < n and
1 <41 <jo<- < jag<n. Wedenote by >jx the lexicographic order (lex order,
for short) on Mong(E), i.e. e, >10x e, (lexicographically greater than) if i; = jp, ...,

is—1 = Js—1 and igs < j, for some 1 < s < d.

(7i1) Let F' = @®]_1S5¢; be a graded free module over S or E with a homogeneous basis.
Denote by Mon(F') the set of all monomials of F'. We order such a set by the ordering
>iex, defined as follows: if ug; and vg; are monomials of F', then ug; >iex, vg; (F-
lexicographically greater than) if deg(ug;) > deg(vg,;) or if deg(ug;) = deg(vg;) and

either 1 < j or ¢ = j and u >1ex V.
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For instance, if E = K{ej,ea,e3) and F = Eg; ® Fgo, with deg g1 = 2 and deg g = 3, then

MOD2 F
Mong(F'

g1

€141 >lexF €201 >leXF €301 >lexF 92

MOD5 F
Mong(F'

€1€2€3701 Zlexp €1€292 >lexp €1€392 lexy €2€302

(F)
(F)
Mony(F) | e1€291 >lexp €1€391 >lexp €2€391 >lexy €192 >lexp €292 >lexp €392
(F)
(F)

€1€2€372

Theorem 1.2.5 (Macaulay)

Let R be a graded algebra, F a free R-module with homogeneous basis, and M an arbitrary
submodule of F'. For any monomial order > on F, the set B of all monomials not in ins (M)
forms a basis for F/M.

The initial module depends also on the choice of coordinates, but there is an object, the
initial module in generic coordinates, which is coordinate-independent both for variables of
S and for homogeneous free generators of F (see [Par96]). So, given a graded R-module
M, in generic coordinates, and a monomial order through the initial module in(M), we can
read off information about the module M, for example the depth of F/M or the regularity
of M. One can observe that is more convenient to handle initial modules with respect to a
given coordinates. So instead of making a generic transformation of them and considering
the initial module, it is suitable to transform a module by a generic linear transformation
and consider its initial module in the given coordinates.

The first result of Galligo about the generic initial ideals Gin(I) is referred to character-
istic 0. Bayer, Stillman worked about this idea and achieved the definition of generic initial
ideal in finite characteristic. Pardue ([Par94]) has extended the definition to the generic
initial modules.

More in details, let K be a field. The linear group GL,(K) = GL(n) is a Zariski open
subset of M, (K). Let I C S be a graded ideal and < a monomial order on S. Then there
exists a nonempty open subset U C GL(n) such that inc(al) = inc(a/I) for all o, 0’ € U.
This result leads out to the definition of Gin(I) = in<(al) for a € U. Let us denote by B(n)
the subgroup of GL(n) of all nonsingular upper triangular matrices. B(n) is called the Borel

subgroup of GL(n). The following result holds.

Theorem 1.2.6 (Galligo, Bayer and Stillman)[Gal74, BS87]
If I C S is a homogeneous ideal then Gin(I) is Borel-fized in the sense that for all g € B(n),
then g(Gin(I)) = Gin(I).

Let F be the graded free module over S with homogeneous basis. In order to generalize
Theorem 1.2.6, one can consider GL(F) to be the group of S-linear graded automorphisms
of F'. Since conjugation is an action of GL(n) on GL(F'), we can write G = GL(n) x GL(F").
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This is an algebraic group that acts on F' through K-linear graded automorphisms that
take submodules to submodules. Also in this case there exists an open subset U C G such
that in< (M) is invariant for all transformation in G. The subgroup B(F) C GL(F) of all
nonsingular upper triangular matrices is called the Borel subgroup of GL(F). Then B(n)
acts on B(F) and B = B(n) x B(F) C G is called the Borel subgroup of G. The following
result holds.

Proposition 1.2.7 ([Par96, Proposition 6])
Let F = ®]_,5g;. A submodule M C F is fixed by the action of B on F if and only

(i) M=5Lg1 ®- - ®I.g, is a monomial submodule

(i) for every monomial u € M, if x? | u, xﬁ“ Yuand i < j then (x;/x;)% € M for every
d</

(i4d) m%i—4i[; C I for everyi < j.

Bayer proved Proposition 1.2.7 in the case of F' = S ([Bay82]).
The previous result forced Pardue ([Par96]) to give the following definition.

Definition 1.2.8 A submodule N C F'is a Borel-fized submodule if N is fixed by B(F).
A submodule N C F' is a standard Borel-fized submodule if N satisfies conditions (7) and
(#43) of Proposition 1.2.7 and furthermore for every monomial mg; € N, if ; | m then

(x;/xj)mg; € N for every i < j.

A standard Borel-fixed submodule is Borel-fixed. If the characteristic of K is zero, then
every Borel-fixed submodule is standard. A Borel-fixed submodule which is not standard is
called nonstandard.

One can observe that for r = 1 and deg(g1) = 0, a standard Borel-fixed submodule M
of F is a strongly stable ideal of S ([EK90]). We recall that a monomial ideal I C S =
Klz1,...,xy,] is called strongly stable if for each monomial u € I and each z; | u one has
(x;/xj)u € I, for all ¢ < j. For this reason, throughout the paper, a standard Borel-fixed
submodule of F' will be called a strongly stable submodule. Hence, we give the following

definition.

Definition 1.2.9 A monomial submodule M = @]_,1;g; of F is a strongly stable submodule
if I; is a strongly stable ideal of S, for each i, and (x1,...,z,)f+ = fil,,, C I;, for i =
1,...,r—1.

In [EK90], next class of monomial ideals was introduced.

Definition 1.2.10 Let I be a monomial ideal of S = K[x1,...,z,]. I is called stable if for

each monomial u € I and each j < m(u) one has (/% ))u € 1.
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Therefore, we give next definition.

Definition 1.2.11 Let F' = ®]_, Sg;. A monomial submodule M = ®]_,I;g; is called stable
if I; is a stable ideal of S, for each i, and (1, ..., z,)f 1~ fil, . C I, fori=1,...,r — 1.

The above definitions can be introduced also in the exterior algebra context with the

suitable modifications (see Section 3.1 in Chapter 3).

Example 1.2.12 We give an example of a (strongly) stable ideal of R and of a (strongly)

stable submodule of a graded free module F'.

(i) Let S = Klx1, 72, x3]. The ideal I = (22,2129, 73, z273) is an example of stable ideal
which is not a strongly stable ideal. Indeed, x5 ¢ I. The ideal J = T U {xj23} =

(22, 2179, 73, 1173, Tox3) is the smallest strongly stable ideal containing I.

(ii) Let E = K(e1,eq,e3,e4) and F = Eg; ® Egs @ Egs, with degg; = —2, deggo = —1
and deg gs = 3. The submodule

M = (ejes, ezes, e162e4)g1 @ (e1€2, €263, €2e4, €3€4)g2 D (e1€2€3, €2€3€4) 73
is not a stable submodule of F'. The smallest stable submodule containing M is
Ms = (e1e2,e1€3,e2e3)g1 @ (e1e2, e1€3, e2€3, €2€4, €3e4)g2 B (€1€2€3, €2€3€4)73.

Ms is not a strongly stable submodule of F', so we can compute the smallest one

containing it:

Mss = (erea, e1e3,eae3)g1 D (e1ea, e1€3, €1€4,69€3, €2€4, €3€4) G2

@ (e1e2€3, e16264, €1€3€4, €2€3€4) 3.

Remark 1.2.13 Some of the results discussed about generic initial ideals in S and generic
initial S-modules also hold in the context of the exterior algebra F and E-modules with
the appropriate modifications. Generic initial modules are defined exactly as before and the
analogues of Theorem 1.2.6 and Proposition 1.2.7 have been stated by Aramova, Herzog,
Hibi in [AHH97] (see also Green [Gre98|.

A fundamental subclass of strongly stable modules is that one of the lexsegment modules.
Indeed, this modules have some properties useful to classify important geometrical invariants,
as we will see in the sequel.

Let R € {S,E} and let us consider a graded free R-module F' with homogeneous basis

endowed with a lexicographic order >jex,. (Example 1.2.4).

Definition 1.2.14 A nonempty subset N of Mony(F) is called a lexicographic segment of
F (lexp segment, for short) of degree d if for all v € N and all v € Mony(F') such that
U >lexp U, then u € N.
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Example 1.2.15 Let E = K({ej,ez,e3) and F = E2. The subset N = {eje291, e1e391,
es€39g1, €1€2g2} s a lexp segment of degree 2 of F'; on the contrary, N’ = {ejea2g1, e1e3g1,
eresga} is not a lexp segment of degree 2. Indeed, the monomial ese3g) >1ex, €1€292 does
not belong to N'.

Definition 1.2.16 Let L be a monomial submodule of F. L is a lexicographic submodule
(lex submodule, for short) if for all u,v € Mong(F') with v € L and © >jex, v, one has u € L,

for every d, i.e., Mong(L) is a lexp segment of degree d, for each degree d.

Remark 1.2.17 A monomial submodule £ of F' is a lexicographic submodule if Mong(L) is
a lexp segment of degree d, for each degree d; Mon,(£) is the set of all monomials of degree
dof L.

Example 1.2.18 Let E = K({ej,es,e3,e4) and F = Eg; & Egs @ Egz, with degg; = —2,
deg go = —1 and deg g3 = 3. The submodule

L= (6162, €1€3, 626364)91 D (6162, €1€3,€1€4, 6263)92 @ (6162637 616264)93
is a lex submodule of F'.

It is easy to show the relations between the classes of stable, strongly stable and lexico-

graphic modules:
{lex modules} C {strongly stable modules} C {stable modules}

For instance, the submodule Ms in Example 1.2.12[(ii)] is stable but not strongly stable.
Moreover, the submodule M ss is strongly stable but not lexicographic. So, we can compute
the lexicographic submodule L of F' that contains M ss.

L = (ejez,e1e3, €164, e263)91 @ (e1€2, e1€3,€1€4, €263, €264, €3€4) 92

@ (e1e2€3, e1€2€4, €1€3€4, €2€3€4)g3.

1.3 Hilbert Functions

Hilbert functions represent numerical invariants of projective algebraic sets. Invariant theory
has been of great importance after the second half of the nineteenth century and it originated
to obtain properties of geometric objects defined by equations, that were invariant under

some geometrically defined set of transformations.

Definition 1.3.1 Let M = P ., Ma be a finitely generated graded module over R, with
grading by degree. The numerical function Hy; : Z — Z defined by

H]y](d) = dimK Md

is called the Hilbert function of M.
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Note that the dimensions in the definition are all finite. Indeed, if M, were not finite
dimensional, then the submodule ,., M4 would not be finitely generated, contradicting
the fact that because R is Noetherian and M finitely generated then M is Noetherian.

If M is a finitely generated graded module over a standard graded algebra R (for instance
as S or E with n indeterminates) then H);(d) agrees, for large d, with a polynomial of degree
<n-—1.

This polynomial, denoted Pys(d) is called the Hilbert polynomial of M.

Note that, if all variables of R have degree 1, then the Hilbert function agrees with a
polynomial function of d for large d. This is not true when the variables have different
degrees. In this case Hps(d) still agrees with a periodic polynomial, but it is often more
convenient to use the Hilbert series instead.

The Hilbert series of M is defined to be the formal Laurent series in one variable ¢ given by

har(t) = Har(d)t".

dez
The Hilbert series of a graded module, for large d, agrees with a rational function.
Now, let R be a graded algebras as well as S = Klxy,...,2,] or E = K {e1,...,ey),
with K a field. Some fundamental properties about Hilbert functions can be stated using

Macaulay’s results. This approach take into account the theory of monomial orders.

Theorem 1.3.2 Let P be a finitely generated, graded R-module, given by generators and
relations as P = F/M, where F is a free module with a homogeneous basis and M is a
submodule generated by homogeneous elements. The Hilbert function of P is the same as the
Hilbert function of F/in(M).

Since in(M) is a monomial submodule of F' with the same Hilbert function as M, The-
orem 1.3.2 allows us to assume M itself to be a monomial submodule without changing
the Hilbert function. Indeed, as an immediate consequence of the theorem we obtain that
Hp y(d) = Hpjin(a(d) for all d € Z.

In order to quote other important results, we have to assume that K is a field of charac-
teristic 0. Assume S = K[z1,...,z,] endowed with the lexicographic monomial order >y
induced by the order 1 > --- > z,. The next well known properties concern graded ideals

of S. Some generalizations will be described later in this dissertation.

Theorem 1.3.3 [HHI11, Theorem 6.3.1]
Let I C S be a graded ideal. Then there exists a unique lexsegment ideal, denoted by I'*,
such that S/I and S/I'** have the same Hilbert function.

Theorem 1.3.3 is a fundamental step to characterize the Hilbert functions of standard
graded K-algebras. An important tool in this context is the so-called Macaulay expansion

of a positive integer.
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Let a and ¢ be two positive integers. Then a has the unique i-th Macaulay expansion

[HH11, Lemma 6.3.4]
(1) = (=) e )
a= )+ (T ) (5
) i —1 J

with a; >a;—1 >--->a; > 7> 1.
We define
< Sl 41 41
a<t> — a. + + a 1.+ + .t a.J_‘_ and
1+1 1 j+1

40 = <.a¢ >+(ai‘1)+._.+<‘aj )
1+ 1 ) J+1

We also set 000 = 0<*> =0 for all 7 > 1.

Example 1.3.4 Let be a = 17 and ¢ = 3. The integer 17 has the unique 3-rd Macaulay
17 = b + 4 + !
S \3 2 1)

5+1 441 1+1 6 5 2

17<3> _ = =26

Gh) i)+ () =)+ () () -
5 4 1 5 4 1

() ) ) =)+ () G) =

Theorem 1.3.5 ([HH11, Theorem 6.3.8])

Let h: Z4 — Zy be a numerical function. The following conditions are equivalent:

expansion

Hence:

(i) h is the Hilbert function of a standard graded K -algebra;

(1) there exists an integer n > 0 and a lexsegment ideal I C S = K[x1,. .., 2] such that
ha = Hg/r(d) for all d > 0;

(#33) h(0) =1 and hiy1 < b for all i > 0.
Example 1.3.6 Let us consider the function h: Z; — Z, defined as follows:
h(0)=1, h(1) =3, h(2) =5, h(3) =7, h(4) =8
and h(i) = 0 for all integers 4 < 0 and ¢ > 4. Then we have
@
3 n 2
2 1

W

ot W

4
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We note that h(0) = 1 and the following inequalities hold

h(2)=5<6= <;L) = h(1)<*>
)+
(3)+(5) =ne

Hence condition [(¢44)] of Theorem 1.3.5 holds. Let n =4 and S = K|x1,z2, x3, x4], then

h(3)=7<7
9

<3>

2 3 .5 4 4 .23 3 .3,2 2.2 4 5
I = (11,5, Tawy, Ty, T3Xy, Toky, T3Ly, TaT3Ty, T3Ly, ToX3Ly, TaXa, T3)
is a lex ideal such that the Hilbert function of S/I is equal to h.

Theorem 1.3.5 holds also in the context of the exterior algebra and it is known as the
Kruskal-Katona theorem.

Theorem 1.3.7 ([AHH97, Theorem 4.1])
Let (hyi,...,hy) be a sequence of non-negative integers. Then the following conditions are

equivalent:
(i) 14 Y7, hit" is the Hilbert series of a graded K -algebra E/I;
(i) 0 < hig1 <hY, 0<i<n-—1.

The proof of this theorem use the following idea. If I is a graded ideal of E, then there
exists a unique lex segment ideal of E, usually denoted by I'°*, such that Hp /1 = Hp)pex
(see also Theorem 1.3.3).

Example 1.3.8 Consider the sequence (hq, ha, h3, ha, hs) = (5,9,5,1,0). Then we have

()

4
hy =

_|_

N\ 7N
NN =W
N~

>
Ny
Il
SN

5
|

T ERERTR

S—— —
_|_

>
ot
I
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We note that h; < 5. The following inequalities hold

The conditions in Theorem 1.3.7 are verified. Let n = 5 and F = K (ej, ea, e3, €4, €5), then

the lex ideal

I = (e1e2,e1e3€4, €1€3€5)

is such that the Hilbert series of E/I is 1 + Z?zl hitt.

1.4 Minimal Resolutions

The minimal resolution of a module M is a good tool for extracting information about M.
Hilbert originally has studied free resolutions because their discrete invariants. The degrees
of the generators of its free modules, not only yield the Hilbert function (as would be true
for any resolution) but form a finer invariant.

If R is a graded ring, then a graded free R-module F is a direct sum of modules of the
form R(d), for various d. This notation indicates that the graded module R shift its grading
by d steps (d-th twist of R). Note that R(d) is isomorphic to R. So, if F' is finitely generated,
then R(d) = Ry, for some 1.

Note that R(d)e = Rgte, then R(d)_4 = Ry. So R(d) has its generator in degree —d, not d.

Definition 1.4.1 A complex of R-modules is a sequence of modules F; and maps F; — F;_1
such that the compositions F; 1 — F; — F;_; are all zero.
The homology of this complex at F; is the module

Hi(F.) = ker(Fi — Fl‘,l)/im(File — Fz)
A free resolution of an R-module M is a complex
®s

Fo:oo s F 2 oo 5 L2 Ry,

of free R-modules such that cokerp; = M and is exact.
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In this thesis we will sometimes abuse this notation and use
Fo: o omF, 2 . 5 R 2S5 Ry M—0,

to say that an exact sequence F, is a resolution of M. The image of the map ¢; is called
the i-th syzygy module of M. Note that, F, is a free resolution if and only if H;(F,) = 0 for
i # 0 and Ho(F,) = M.
A resolution F, is a graded free resolution if R is a graded ring, the F; are graded free
modules, and the maps are homogeneous maps of degree 0. If there exists a natural s such
that Fsy1 = 0 and F; # 0 for 0 < i < s, then we shall say that F, is a finite resolution of
length s.

Recall also that given a complex F, of finitely generated free modules and a R-module
M, then Fy @ g M, M ®p Fo, Hompg(F,, M) and Hompg (M, F,) are still complexes with
complex maps induced by ¢ ®r M, M ®g ¢, Hompg(p, M) and Homg(M, ¢).

Remark 1.4.2 Note that, to construct a free resolution for a module M one can begin by
taking a set of generators for M and map a free module onto M sending the free generators
of the free module to the given generators of M. Let M; be the kernel of this map. After
that, one can repeat the procedure starting with M;.

Hence, it is clear that every module has a free resolution and every graded module has a

graded free resolution (observe that only graded modules can have graded free resolutions).

Moreover, an important and useful result on commutative algebra has been given by
Hilbert.

Theorem 1.4.3 (Hilbert syzygy theorem)
If S = K[x1,...,x,], then every finitely generated graded S-module has a finite graded free

resolution of length < n, by finitely generated free modules.
Let M be a finitely generated graded S-module and let
Fo:05F, 2. .. 5 R 25 Fy— M —0,

be a finite graded free resolution of M. Since the ¢; preserve degrees, we get an exact
sequence of finite dimensional vector spaces by taking the degree d part of each module in

this sequence. Thus the Hilbert function of M

S

Hy(d) =) (=1)"Hp,(d)
i=0
is a linear combination of the Hilbert functions of the free modules Fj.
A free resolution of M depends strongly on the choice of generators for M, as well as

the subsequent choices of generators of M;, and so on. If M is a finitely generated graded
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module, the operations described in Remark 1.4.2 can be replicated choosing a minimal set
of homogeneous generators m; for a finitely generated grade module M. So, map a graded
free module Fy onto M by sending a basis for Fj to the set of m;. Let M’ be the kernel of the
map Fy — M, and repeat the procedure, starting with a minimal system of homogeneous
generators of M’. In such a case, one obtains a minimal graded free resolution.

Formally, let us S = K[z1,...,2,]. We will use standard notation m to denote the

homogeneous maximal ideal (z1,...,x,).
Definition 1.4.4 A graded free resolution of S-module
Fo: - F, 2 5B 2SRy,
is called minimal if the image of ; is contained in mF;_; for all ¢ € N.

This means, that no invertible elements (non-zero constants) appear in the matrices
representing the maps ;. This definition are related to the constructive method by a
graded version of the Nakayama’s Lemma. Moreover, some fundamental results following

the Lemma allow us to discuss some properties of minimal graded free resolutions.

Lemma 1.4.5 (Nakayama)[Eis05, Lemma 1.4] If M is a finitely generated graded S-module

and my,...,m, € M generate M/mM then mq,...,m, generate M.

Corollary 1.4.6 If
Fo: - = F, 25 . 5 B 25 Ry,

is a graded free resolution, then Fy is minimal if and only if for the maps @; takes a basis of

F; to a minimal set of generators of the image of w;, for all i € N.

Theorem 1.4.7 Let M be a finitely generated graded S-module. If Fy and G4 are minimal
graded free resolutions of M, then there is a graded isomorphism of compleres Fo — G4 in-
ducing the identity map on M. Any free resolution of M contains the minimal free resolution

as a direct summand.

Example 1.4.8 Let S = K[z, 22,23] and let I = (l’%$271'1$21’§,$2$§,$1$%) be a monomial
ideal of S. A minimal set of generators of I is Gy = {wox3, 123, 2322 }. We now compute a
set of generators for the syzygy module of Gg. It can be represented as column vectors a;;
such that a;j1(2223) + aij2(r123) + aij3(x2x2) = 0. So, we obtain the following 3 x 3 matrix

representing the map 1 : Fi; — Fp

o1 =| —a% 0 1

0 -3 —m
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Now, let G; a minimal set of generators for F;. We compute a set of generators for the

syzygy module of GG1, hence a matrix representing the map @y : Fy — F}

2
Y2 = T2

—l‘%
The next step is trivial. All this information is represented in the following free resolution
Fo:05F 2 F 25 Fy—1—0.

By the construction, it is clearly a minimal free resolution. In order to verify that it is a

minimal graded free resolution we can write it more in detail

—x1 Ty @2 0
T9 —x% 0 T
—z3 0 —x3  —xo

Fy:0— S(—6) ———= S(~5)? @ S(—4) S(—3)3 = S(0) — 0.

An important consequence of the uniqueness of minimal free resolutions is the fact that,
if Fy is the minimal graded free resolution of a finitely generated graded S-module M, then
the number of generators of each degree required for the free modules F; depends only on
M. The easiest way to state a precise result is to use the functor Tor. If R is a graded
algebra over a field K and M, N are graded R-modules, then ([R01])

Tor®(N,M) =~ Hy(N ® F,) and Exth(M,N) = H'(Hom(F,,N)).

Proposition 1.4.9 [Eis05, Proposition 1.7] If Fy : -+ — F, 25 ... & F| 25 Fy, s
the minimal free resolution of a finitely generated graded S-module M, and K denotes the
residue field S/m then any minimal set of homogeneous generators of F; contains precisely

dimg Tor; (K, M); generators of degree j.

The previous results allow to define some important invariants.

Definition 1.4.10 Let F, be the minimal graded free S-resolution of a graded finitely gen-
erated S-module M:

Fo:0—Fy— .- —=F —-F—>M-=0,
where F; = @®jez5(—j)% 7. The integers f;; = (M) = dimg Tor;(K, M); are called
the graded Betti numbers of M. Moreover, 3; = Zjez Bi,; is said to be the ith-total Betti

number of M.
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The computer program Macaulay2 (see also CoCoA) displays the (graded) Betti numbers
in a table called the Betti diagram.

0 1 . i
0 : Boo Bio - Biito
1 Box Pz - Biist
Jjo Boj Britv; 0 Bii+g

Table 1.1: Betti diagram

For instance, if we consider the minimal graded free resolution of I = (z3xq, 712223, 1223, x123)

C S = K[z1,x2,x3] in Example 1.4.8 the Betti diagram of S/I as S-module is:

0 1 2 3
0 - -
1 : - - - =
2 - 3 1 -
3 - - 2 1

Next fundamental definition can be introduced.

Definition 1.4.11 [R01] Let M be a graded submodule of a free module F over S =
Klzy,...,2,]. Then

pd(M) =sup{i € Z : B;;(M) # 0 for some j € Z}
is said to be the projective dimension of M and
reg(M) =sup{j € Z : [, ;+;(M) # 0 for some i € Z}
is called the Castelnuovo-Mumford regularity of M.

Theorem 1.4.3 assures that pd(M) < n and reg(M) < co. Bayer, Charalambous and
Popescu introduced in [BCP99] the following refinement of the projective dimension and the

regularity.

Definition 1.4.12 Let M a graded submodule of the free module F over S = K|z1,...,z,).
A graded Betti number §; ;4 (M) # 0 is called extremal if §; j4,(M) =0 for alll >4, r > j,
(,5) # (L,7).
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From the Betti diagram of the minimal graded free resolution of M one can observe that

the outside corners of the dashed lines give the positions of the extremal Betti numbers.

,,,,,,,,,,,,,,,

Table 1.2: Extremal Betti diagram

Note that, if Bi, i, 41> Bissiotjer -+ » Birsie+je (11 < --- < i) are all the extremal Betti
numbers of a graded module M, then reg(M) = j; and pd(M) = ;.

Example 1.4.13 Let S = K[x1, 29, %3, 24,5 and let
I = (2dx3, 003 woxiny, xoxias, 23)

be a graded ideal of S. The extremal Betti numbers of I are 83344 =1, 81,145 = 1, as the
Betti diagram of I shows:

01 2 3
3 1 - - -
3 6 4 1
11 - -

In particular, reg(M) = 5 and pd(M) = 3.
In this dissertation we analyze graded Betti numbers in some particular cases.

Remark 1.4.14 Note that, if we consider the exterior algebra E = K (eq,...,e,) then it
can be proved an analogous version of Nakayama’s Lemma over E. Moreover, many results
for graded modules over a commutative local or xlocal ring can be proved to modules over
an exterior algebra. For example, every projective E-module is free over E.

Every graded E-module M have a unique minimal graded free resolution and it can be
obtained as well as for graded S-modules. Moreover, it also preserves the property of graded
Betti numbers of M. These arguments can be found in [AAHOO].

However, an important result does not hold: the Hilbert syzygies theorem. Indeed, the
minimal graded projective resolution of a non free EF-module has always infinite length.
Therefore the projective dimension is not significant. Even though the projective dimension
of M is infinite (unless M is free) the regularity can be defined as is remarked in [AHH97].
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In the case of the exterior algebra F, an important role to compute the graded Betti
numbers is played by the Cartan complex Ce(eq,...,e,; E). It is defined by the complex
whose i-chains Cj(eq,...,e,; E) are the elements of degree i of the free divided power al-
gebra £ < x1,...,2, >. If M is a graded E-module, then Ce(e1,...,en; M) = M Qp
Cele1,...,en; E)and Hi(eq,...,en; M) = Hi(Colen, ..., en; M)) is the i-th Cartan homology
module. An important result relates graded Betti numbers and Cartan homology complex,
indeed Tor? (M, K) = H;(ey, ..., en; M), for each i > 0. More details on this subject can be
found in [AHH97].

1.5 On algorithms

Computer Algebra is a subject of science devoted to methods for solving mathematically
formulated problems by symbolic algorithms, and to implementation of these algorithms.
It is based on the exact finite representation of mathematical objects and structures, and
allows for symbolic and abstract manipulation by a computer.

The interplay between computation and many areas of algebra is a natural phenomenon
in view of the algorithmic character of the latter. The existence of inexpensive but powerful
computational resources has enhanced these links by the opening up of many new areas of
investigation in algebra.

A frequent task in computational algebra is to certify that a given object has a certain
property, also providing rather elaborate examples. Moreover, they have contributed to a
new view of algorithmic methods not only as tools, but as new objects worthy of mathemat-
ical study. This concerns both the design, verification, and complexity analysis of computer
algebra algorithms, as well as non-algorithmic structural mathematics. In fact, an algorith-
mic approach to a classical problem may lead to a significant refinement of classical structure
theory irrespective of algorithmic considerations.

In the last years, the theory of Grébner basis has become a major research area in compu-
tational algebra and computer science because of its usefulness in providing computational
tools which are applicable to a wide range of problems. Groébner basis were introduced in
1965 by Buchberger. The basic idea behind the theory can be described as a generalization of
the theory of polynomials in one variable, indeed a Grébner bases is the analogue of greatest
common divisors in the multivariate case. But the true significance of Grébner bases is the
fact that they can be computed algorithmically.

Let I be an ideal of S = Klx1,...,2,], a Grobner basis for I is a set of generators
with an additional property. Buchberger’s algorithm yields a simple and effective method
for computing Grobner bases and syzygies. Through use of Grébner bases, many questions
about ideals in polynomial rings can be reduced to questions about monomial ideals, which

are far easier.
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Definition 1.5.1 A Grébner basis with respect to a monomial order > on a free module F’
with basis is a set of elements hq, ..., h; € F such that if M is the submodule of F' generated
by hi,...,hs, then ins (hy),...,ins (hy) generate ins (M).

Important well-known results from theory assure that every nonzero ideal I of S =
Klxy,...,x,] has a Grobner basis. Such a basis can be obtained using Buchberger’s al-
gorithm as long as a system of generators of I is given. Moreover, if one imposes simple
conditions on ins(g1),...,ins(g:) then a minimal Grébner basis for the ideal I can be com-
puted.

Many Computer Algebra Systems have a Grdébner basis package, for example CoCoa,
Macaulay2, Singular, Maple, and Mathematica. In particular, all the computations in the
examples in this dissertation were performed using Macaulay2 and CoCoA. These systems
allow the user to build customized packages in order to extend some features not yet included.
The algorithms presented in this thesis have been implemented (some of them is also included
with Macaulay2 version 1.14).

Here we collect some applications of Grébner basis. The type of problems that can be
solved with Grobner bases can be divided into two groups: constructive module theory and

elimination theory.

e Constructive module theory
Let F' be a graded free S-module with homogeneous basis and let M be a graded
submodule of F endowed with a monomial order >. Let G = {hq,...,h;} be a Grébner
basis for the module M.

— Module membership
Let f € F be an element of the free module then a characterization for G is
that the remainder of the division of f by the elements in G is unique (with an
appropriate definition of division). So, f is in M if and only if the remainder
of the division of f by the elements in G is zero. Many other problems about
operations with ideals are related to this one.

— Compute Syzygies
It is possible to compute syzygies of M on a fixed set of its generators (using
Schreyer’s [Eis95, Theorem 15.10]). Indeed, the Buchberger’s algorithm is used
to obtain a Grobner basis for M but also the syzygies on the Grébner basis
elements. This process usually will not return a minimal set of syzygies: to replace
it with a minimal set (obtaining a minimal resolution of M) one can analyse the
nonminimal syzygies and using them to eliminate superfluous relations. Hence,

some other problems related to the minimal free resolution of M can be solved.

— Compute module of Homomorphisms

Let M, N be finitely generated graded submodules of F'. It is possible to compute
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a presentation of Hom(M, N) given two explicitly presentations of M and N. As
direct consequence, all the previous observations can be used to give results on
free resolutions and the computation of Tor;9 (M,N) and Exts(M, N).

— Compute the Hilbert function
By the Definition 1.5.1 of G, it is immediate to compute a system of generators of
initial ideal in(M). Theorem 1.3.2 assures that to compute the Hilbert functions
of an arbitrary graded module M it is enough to compute the Hilbert function
of the initial module in(M) . The Hilbert functions of monomial modules are

characterized in [Hul95, Corollary 6].

e Elimination theory

— Elimination
Compute the intersection between an ideal I C Klxi,...,2,] with a subring
Klx1,...,z.]. From a geometric point of view, this represent a projection of a

variety of A" defined by the vanishing polynomial in I to A". One of the main
use of elimination is finding solutions for a system of polynomial equations, i.e.

finding points of a variety.

— Closure
Compute the equations satisfied by given elements of an affine ring, i.e. compute

the closure of the image of an affine or projective variety under a morphism.

Remark 1.5.2 Grobner basis theory for the exterior algebra F = K (ej,...,e,) is very
similar to that for the polynomial ring S = K[x1,...,2,]. The fact that the exterior algebra
has zero divisors is responsible for modifications of some technical tools. All the results and
strategies on for S hold for F, too. Some of them can be found in [HH11] or are argument

of this dissertation.



Chapter 2

Generalizations of

Kruskal-Katona’s Theorem

Let K be a field, F the exterior algebra of a finite dimensional K-vector space, and F
a finitely generated graded free E-module with homogeneous basis ¢i,...,¢, such that
deggs < deggs < --- < degg,. We characterize the Hilbert functions of graded E-modules
of the type F//M, with M graded submodule of F. The existence of a unique lexicographic
submodule of F' with the same Hilbert function as M plays a crucial role. This result is
obtained both through a classical theoretical approach and through a new algorithmic ap-
proach. Such an approach allows us to establish a criterion for determining if a sequence of
nonnegative integers defines the Hilbert function of a quotient of a free E—module only via

the combinatorial Kruskal-Katona’s theorem.

2.1 The Hilbert function of graded E-modules

In this Section, we discuss the Hilbert functions of quotients of free modules over the exterior
algebra.

Let K be a field and let E = K (ey, ..., e,) be the exterior algebra of a K-vector space V
with basis ey, ..., e, (Remark 1.1.5). Let M be the category of finitely generated Z-graded
left and right E-modules M satisfying am = (—1)4¢&@4¢e™mq for all homogeneous elements
a € E, m € M. Note that if I is a graded ideal of E, then I € M and E/I € M.

Let FF € M be a free module with homogeneous basis ¢1,...,¢,, where deg(g;) = f;
for each ¢ = 1,...,r, with f; < fo < --- < f.. We write ' = ®]_, Fg; and when we
write I’ = E", we mean that F' is the free E-module F' = @]_; E¢g; with homogeneous basis
g1,---,9r, where g; (i =1,...,r) is the r-tuple where the unique non zero-entry is 1 in the

i—th position, and such that deg(g;) = 0, for all i.

30
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If a = (a1,...,ap) and b = (b1,...,by) are two sequences of nonnegative integers, we
say that a > b if (a1,...,ap) > (b1,...,bp) in the lexicographic ordering, i.e., the difference
as — bg is positive for the first index 1 < s < p where it is not zero.

We make the following conventions:

(T:):O if m<k or k<O.

One can observe that if E = K(e1,...,e,), then Hg(d) = Mon(Eq) = (1), where (1) is

the number of monomials of degree d in E. Hence, if I is a graded ideal of E, it follows that

Hp,r(d) + Hy(d) = (Z)

Furthermore, if F' = &®]_, E'g;, we have that

Hp(d) = gHE“”(d) -y (d ff),

i=1
and consequently, if M is a graded submodule of F', one has

n

Hipne(d) + Hasld) = 3 (")

i=1
where ( 0 fi> is the number of monomials of degree d — f; in F.

Important tools to proceed with the investigation are the definition of the Macaulay
expansion (Section 1.4 of Chapter 1) and the Kruskal-Katona theorem (Theorem 1.3.7)
which classifies Hilbert functions of quotients of exterior algebras

From now on, if 1+ " | h;t" is the Hilbert series of a graded K-algebra E/I, I C E, the
sequence (1,hy,...,hy,) is called the Hilbert sequence of E/I. We will denote it by Hsg s .

From the Kruskal-Katona theorem, one can deduce that a sequence of nonnegative inte-
gers (hg, hi, ..., hy) is the Hilbert sequence of a graded K—algebra E/I, with I C E graded
ideal of initial degree > 1, if hg = 1, hy < n and condition (b) in Theorem 1.3.7 holds. Note
that if / = 0, then Hsg,; = Hsp = (1,n, (g), cee (Z))

Finally, we set Hsg/r = (0,...,0), if I = E.

o
Let us consider the graded E-module F' = @]_,; E'g;. One can quickly verify that
Hp(d) =dimg F3 =0, for d< f; and d> f.+n. (2.1.1)

Now, we discuss the Hilbert function of a graded E-algebra F/M, with M submodule of
F.

Discussion 2.1.1 Assume M is a monomial submodule of F. From (2.1.1), it follows that

frdn
Hp/u(t) = Z Hpn (i)t
i=f1
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and we can associate to F//M the following sequence

(Hpae(f1)s Hepar (1 +1)s o Hppnr (fr +n)) € Nyttt (2.1.2)

Such a sequence is called the Hilbert sequence of F//M and it is denoted by Hsp/p;. The
integers f1, f1 +1,..., fr + n are called the Hsp/y-degrees. It is clear that Hsp/y < Hsp
component-wise.

Moreover, we define
indegHsp/p = min{d : Hp/pr(d) # 0}, ford= fi,..., fr +n.

We use the standard notation [p] for the set {1,2,...,p}.
Consider the sequence Hsp/y; defined in (2.1.2). The entries Hp/p(fi) (1 = 1,...,7) are

called the critical values of Hsp/p. Moreover, we define

pr,=Hselrl: fs=fi}, for i=1,2,...,r

and we call juy, the multiplicity of Hp/a(f;)-

Now, let us consider the case HF/M(fl) = 0. In such a situation, one has:
M = Egl S T27

where T3 is a submodule of Egy @ --- @® Eg,. Indeed, if Hp/p(f1) = 0, then My, = Fy, and
so Mj = I}, for j = fi,..., fa — 1 (it is clear because 1xg; € M). Hence, Hp/p;(j) = 0, for
i=fi,...,fo—1.

Now, let us consider the critical value Hp/pr(f2).

If Hp/p(f2) = 0, we can repeat the same reasoning done for Hp/n(f1) = 0, i.e.,
Hp/p(j) = 0, for j = fa,...,fs =1, and M = Eg; © Egy © T3, where T3 is a submod-
ule of Eg3 & --- & Eg,. And so on.

Now, let k& be the minimum integer such that Hp/p(fx) # 0, d.e., indegHsp/nr = fr.
Note that M = Eg; @ --- ® Egip_1 @ Tk, where Ty, is a submodule of Fg @ --- & Eg,.We
have:

Hpn(fe) < g
and
Hppne(fre +1) < npg + fig41.

The integer Hp,p(fx) is called the initial critical value (of F/M) and f; the initial

critical degree (of F/M).

2.2 A generalization of Kruskal-Katona theorem

In this Section, we state a generalization of the Kruskal-Katona theorem. We characterize
the Hilbert functions of quotients of the fixed free F-module F' = ®;_, Eg;.

Our first result gives a new expression for the Hilbert functions of graded E-modules.
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Proposition 2.2.1 Let M be a graded submodule of F' = @&;_, Fg; and let Hg/n; the Hilbert

function of F/M. There exists an integer N < r such that we have the unique expression

Hp/(d) = i <dffi>+(dfofN>+(d_}l;—1)+m+<d—;zsv—3>’

i=N+1

() o) () < ()
d— fn d— fnv—1 d— fn—s d— fn

andag >ay >--->as and a; >d— fy —1, for all 0 <i<s.
Then,

r n ag a1 as
Hpjp(d+1) < Z (d—fi+1)+<d—fN+1>+<d—fN>+”.+(d_fN_s+1>7

i=N+1

where

for d > indegHsp/p + 1.

Proof. Since dimg Fy =Y ;_, (dffi% one has that

Hpyp(d) < ; (d nf)

Let N be the greatest positive integer less than or equal to r such that
. n . n
H d) = = Hg(d— f; s < .
F/M( : i:%;rl (d_fi> e i:zN;rl o f)a ! (d_fN)

We may assume there exists a graded ideal I of E generated in degree d — fy such that

o apn aq Qg
‘T (d—fN>+<d—fN—1)+m+<d—fN—S>

is the (d — fn)-th Macaulay representation of a, one has:

Hp/(d) = zr: <dffi>+(dfOfN>+<d—;;—1>+m+<d—;;—s>’

i=N+1

for d > indegH sp/p; + 1. Therefore, from Theorem 1.3.7, it follows that:

Hppa(d+1)= Y Hp(d+1- fi) + Hg/r(d+ 1~ fn)

i=N+1
T n " n
< Hp(d— fa)@v) = (d—fn)
_i:%;rl <d+1—f¢)+ m/r(d— fn) i:%;rl d+1—f +a

= - " o ke as
=2 <d+1f¢)+(di+1>+(di>+ +<dis+1)'

i=N+1
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If T is a set of monomials of degree d < f,. +n of F'; we denote by Shad(T") the following

set of monomials of degree d + 1 of F":
Shad(T) = {(-1)*“Dejeqngi - eogi €T, j ¢ supp(es), j=1,...,n,i=1,...7},

a(o,j) = |{r € o : r < j}|. Such a set is called the shadow of T (see [CF15], for the r =1
case). Moreover, let us define the i-th shadow recursively by Shad’(T") = Shad(Shad*~*(T)),
Shad’(T) = T.

Remark 2.2.2 Usually, the shadow of a set T' of monomials of degree d of F, d < n, is

defined as follows:
Shad(T) = {ejes : ex €T, j ¢ supples), j=1,...,n}.

We observe that this definition is a little bit imprecise. In fact, if j < min(e,), then eje, €
Mong11(E). Suppose j > min(e,) and e, = e;,€;,---€;,. Since epe; = —eep, i,h €
{1,...,n}, then eje, = (—1)%e; e, - - €5,€4,€i,,, -+ €i,, where t is the largest integer such
that 4, < j, that is, t = a(o, j). Note that if ¢ is odd, then eje, ¢ Mongi1(E).

Furthermore, if M is a monomial submodule of F', and My (d > f1) is the K-vector space
generated by all monomials of degree d belonging to M, we set Shad(M,) = Shad(Mon(My))
and by Ey M, the K-vector space spanned by Shad(My).

For p,q € Z with p < ¢, let us define the following set:
p.ad={j€Z:p<j<q}

Remark 2.2.3 An important role in the next theorem is played by the class of lex sub-
modules of F' (Definition 1.2.16) and some results about lex ideals (Theorem 1.3.7). For our

purpose, we state that the trivial ideals of E' are monomial lex ideals.

Theorem 2.2.4 Let (f1, fa,..., fr) € Z" be an r—tuple such that f1 < fo <--- < f,. and let

(hfr, hpid1, -5 hypqn) be a sequence of nonnegative integers. Set

s =min{k € [f1, fr + n] : by # 0},
and
ri=Hpelr]:fp=s+j}, for j=0,L

Then the following conditions are equivalent:

(a) Zlf;':" hit* is the Hilbert series of a graded E-module F/M, with F = ®&I_, Eg; finitely

generated graded free E-module with the basis elements g; of degrees f;;
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(b) hs < 7g, hsy1 < nrg+ 71, hy = Z;:N_H (i_”fj) + a, where a is a positive integer less
than (; " ), 0< N <r, and hj1 < > ieNt1 ( J+a IV i =s+ 1, frtny

n
i—fn i—fi+1

(c) there exists a unique lexicographic submodule L of a finitely generated graded free E-
module F = ®]_, Eg; with the basis elements g; of degrees f; and such that Z{;Jg" hit?
is the Hilbert series of F/L.

Proof. (a)= (b). It follows from Proposition 2.2.1 and Discussion 2.1.1. Note that s is the
initial critical degree, 79 = pus and 71 = p541.
(b)= (c). We construct a lexicographic submodule L of F' such that Hp,r(t) = sz;::" h;tt.
Setting L, = (Mon(F})) (p = fi1,...,s—1), let Lsy; be the K-vector space generated by
the lexp segment of length dimg Fsi; — heij, j = 0,1, where hy < 79 and he1 < nfg + 7.
Now, suppose L, s < k < i, has already been constructed.
By hypothesis, dimg F;/L; = h; = Z;:NH (%"fj) + a, where a is a positive integer less
than a < ( ’;N) Hence,

17—

T

n )
dlm Fl EL1: . +a(2*fN)
D Y
Jj=N+1

and

Let L;11 be the K-vector space spanned by the lexp segment of length dimg Fyi1 — hiq1.
From (2.2.1), one has

dimF Li-i—l = dlmK Fi-i—l - hi+1 Z dlmK Fi+1 - dlmK Fi+1/E1Li = dlmK ElLl

Hence E1L; C L;y;. It follows that L = &4L4 is a submodule of F'. The uniqueness of L is
clear from the definition of lex submodules.

(c)= (a). It follows immediately. O

If M is a monomial submodule of a finitely generated graded free E-module F' = ®]_, F'g;,
we will denote by M!* the unique lexicographic submodule of F' with the same Hilbert
function of M. Such a monomial submodule will be called the lex submodule associated to
M.

Remark 2.2.5 We have obtained a generalization of Kruskal-Katona’s theorem (Theo-
rem 2.2.4) via results on ideals in an exterior algebra (Proposition 2.2.1). We believe that
such a characterization could also be obtained using the same techniques as in [AHH97], i.e.,
extending [AHH97, Theorem 4.2] to graded E-modules.
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2.3 The Lex—Algorithm

In this Section, fixed a graded submodule M of F', we give a new procedure for the construc-
tion of M'®*. The algorithmic construction of the lex submodule is based on the additive
property of Hilbert functions and on Kruskal-Katona’s theorem. The idea dates back to the
computation of all admissible Hilbert sequences of quotients of exterior algebras in [AC18b]
and from the realisation that, given a Hilbert sequence Hsp/ys, there exist only r = rank
Hilbert sequences of the type E/I (I graded ideal in F), which determine M'*. The choice
of such r sequence is forced by some restrictions, as next theorem will point out.

Let p,q € Z such that p < ¢. A finite sequence H of nonnegative integers is called
[p, g]-sequence if it is indexed by the set [p, q]:

H = (hi)ie[p,q] = (hpa hp+17 sy hq)

‘We set
H(j)=h;, for jelpq;

the integers j are called H-degrees.

One can observe that the sequence Hsp/ys is a [f1, fr + n]-sequence, and the integers
Jj € [f1, fr +n] are the Hsp/p—degrees.

Moreover, if p = 0, then H is the (¢ + 1)-tuple (ho, b1, .., hq).

Example 2.3.1 Let p = —2 and ¢ = 1. Then [-2,1] = {-2,-1,0,1}. If H = (0,2,7,3) is
a [—2, 1]-sequence, one has H(—2) =0, H(—1) =2, H(0) =7, and H(1) = 3.

Theorem 2.3.2 (The Lez-Algorithm) Let (hy,, ..., hy, 1) be the Hilbert sequence of a graded
E—module F/M. Then, there exists a unique lex submodule L of F such that Hp/;, = Hp /.

Proof. Set Hspyar = (hygy, ..., hy,+n). We want to construct a lex submodule L = @©j_, I;g;
of F' such that Hp/;, = Hp/p. Let us define

0, =(0,...,0) € NP, for p > 1.

Step 1. Construction of I,.

Let us consider the following subsequence of Hsg/p:
(Apeseeshppin) = Heppa (1) - o Hepnr (fr + 1)) (2.3.1)
Define
- H,(0) := min{1, Hp/p(fr)},

min{n, Hp/ (fr + 1)} if H.(0) =1
0 if H,(0) =0,

- Hr(l) =
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- H,(2) := min{H, ()N, Hp/p(fr +2)},
- H,(i) == min{H, (i — 1) Hp)pr(fr +14)}, for 3<i < n.

Setting H, = (H.(0),...,H,(n)), if H.(0) = 1, then Kruskal-Katona’s theorem (The-
orem 1.3.7) assures that such a sequence is the largest extractable Hilbert sequence from
(2.3.1) for which there exists a lex ideal I,, C F such that

Hsg/r, = Hy;

on the contrary, if H,.(0) = 0, then the only admissible Hilbert sequence is the null sequence.

In such a case, the corresponding lex ideal is I,. = F.

Step 2. Construction of I,._1.
Let us define

Hy, =04, WHsg/, = (0,...,0, H.(0),..., Hq(n)),
fr=f
r—J1

and consider the [fi, f, + n]-sequence

HSF/M - I;r = (h’f17' . .,hfrfl,hfr - HT(O), .. .7hfr+n - Hr(n)) =

= (hf17~ . .,hfrfl,hfr — HT(O), .. .,th71+n — H,,(n — fr + fr,l),O,. .. ,0).
fr=Ff

Note that if f._1 < f.., then the last f. — f._1 entries of Hsp/y; concern only the ideal I,.
Furthermore, if fi = fo = ... = f,, then H, = H,.
Set
H, = Hspjv — E[,«.

Starting from the (7 — 1)-th critical degree, we can repeat on H, the same reasoning done

for Hspypr. More precisely, define
- rfl(o) = min{laﬁr(frfl)},

min{n, H,(f,—1 + 1)} if H,_1(0) =1
0 if H,_1(0) =0,

- Hrfl(l) =

- H,—1(2) = min{H, ()", H.(fr-1 +2)},
- Hy_1(i) == min{H,_1(i — 1)V H,(f,_1 +1)}, for 3 <i <,

and let I,._1 be the unique lex ideal of E such that

HSE/IT,l = r—1 = (Hr_l(O),...,Hr_l(n)).
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Setting

H,._1 = Ofr,~71—f1 G| HSE/1T71 ©] Ofr_fr—l = (07 - ,O,Hr_l(O), . ;Hr—l(n); 0,... ,O),
f f fr=1F
r—1—f1 r—fr_1

let us consider the [f1, f. + n]-sequence

Fr—l = Hr - F[r—l = (Fr(fl)y- .. 7Fr(fr—1 - 1)3Er(fr—1) - HT—1(0)7' ..
T (fr 4 ) = Hyq(n),0,..,0) =
——
fr—=fr—1
= (hf17 .. -ahfr,-flflaﬁr<fr71) - Hr71(0)7 .. 7ﬁ’r(fr72 + n) - Hrfl(n - frfl + fr72)a

0,...,0).
—
fv‘_fr—2

Proceeding as before, we will get a Hilbert sequence H,_s and a lex ideal I,._5 such that
H, 9 = Hsgyy,_,. Finally, iterating the previous procedure, after r steps, we will obtain r
lex ideals I,,...,I;. The monomial submodule L = ®]_,I;g; is the lex submodule we are
looking for. Indeed, the suitable choice of the r Hilbert sequences H,., H,_1,..., H; assures
that L, is generated (as a K-vector space) by a lexp segment of monomials of degree d of
F.

Note that the r subtractions will return the (f, +n — fi + 1)-tuple Of, 4pn—f,+1, and
consequently Hp/ny = Hpyp, i.e., Hspyy = Hspyp = > H;,. O

In order to outline the basic idea behind the Theorem 2.3.2, we present a sketch of the

algorithm as pseudocode in Algorithm 2.1.
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Algorithm 2.1: Lexicographic submodule computation

Input: Sequence hs, free F-module F
Output: Lexicographic submodule with Hilbert sequence hs
begin
n < number of indeterminates of the exterior algebra F;
r < rank of F;
degs < list of degrees of a basis of F;
length < max{degs} — min{degs} +n + 1;
foreach j € {1..r} do
ind < degs(r — j) — min{degs};
seq(0) < min{hs(ind), 1};
if seq(0) =1 then
‘ seq(1) + min{hs(ind + 1), n};
else
‘ seq(1) « 0;
end
foreach k € {2..n} do
‘ seq(k) « min{hs(ind + k), seq(k — 1)(*=1};
end
hs < hs — (0ing W seq W Oength—1—n—ind);

I,._; < lex ideal with Hilbert sequence seq;

end
if hs = Ojengtn, then
‘ return M = ®]_,1;g;;
else
‘ Error: “expected a Hilbert sequence”;

end

end

Algorithm in Theorem 2.3.2

The procedure in Theorem 2.3.2, allows us to give a criterion for determining when a
sequence of nonnegative integers is the Hilbert function of a graded E—algebra of the type
F/M, with M graded submodule of F.

Criterion 2.3.3 Let F' = @]_;Eg; be a finitely generated graded free E-module and the
generators g; of degrees f; are ordered such that f; < fo <--- < f..



40

A sequence of nonnegative integers

H=(hp,. s hyin)

is the Hilbert sequence of graded E—module F//M, if applying the algorithm in Theorem 2.3.2,
after r steps, the repeated subtractions from H of the largest Hilbert sequences (in the sense
of the aforementioned theorem) of graded K-algebras of the type E/I, return the null

sequence Of, 4n—f 4+1.

2.4 Examples

In this Section, we collect some examples in order to illustrate our results. In particular the

strategy used in Theorem 2.3.2.
Example 2.4.1 Let E = K{ej, e, e3,e4), F = E3, and consider the [0, 4]-sequence
H = (3,11,13,3,0) = (ho, h1, ..., hy).

Using the procedure described in Theorem 2.2.4, we can guess if H is a Hilbert sequence of
a quotient F//M (M graded submodule of F), and we can also construct the lex submodule
L of F such that Hp/;, = H.

With the same notations as in Theorem 2.2.4. We have s = f; = 0,79 =3 and 71 = 0. In
fact, the initial critical value is the first element of the sequence and has multiplicity equal to
3, and there do not exist critical degrees different from it. Therefore, the first two conditions

in Theorem 2.2.4 (b) are realized:
ho=3<3=ry,

h1:11§12:nf0+f1

By Proposition 2.2.1, we have to verify the following inequalities

wen= () () ) = e = -6+ 6)+0)
e Qe ()efo) < mer <0 ()06) )
w0 ) - mee = o-()-0)-0)

a is the integer defined in Proposition 2.2.1 (see its proof). Hence H is the Hilbert sequence

of a quotient of F'.
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In order to assure this, we construct the lex submodule L = &3_ Ly of F such that
Hp/, = H; Lq is the K—vector space generated by a lex segment of length dimg Fy — hq,
ford=0,...,4.

Firstly, one can observe that dimy Lo = dimg Fy — hg = 0. Hence Ly = 0.
Furthermore, dimg L1 = dimg F; — hy = 12— 11 =1, and so

Ly = {e101)-

In degree 2, we have dimy Ly = dimg F> — hy = 3(3) — 13 = 5. Since, Shad(L1) = {e1ea01,

€1€391, 616491},

Ly = (u € Shad(Ly), eaeszg1, €2e491).

In degree 3, we have dimg L3 = dimg F3 — hg = 3(;1) —3 = 9. Since [Shad(Ls)| = 4
(esg1 € Shad(Ls), for all e, € E3), one has

Ly = <U € Shad(Lz),€1€2€392, €1€2€402, €1€3€4G2, €2€3€472, 61626393>~

Finally, we have dimg Ly = dimg Fy — hy = 3(3) = 3 and all the monomials we need are in
Shad(Lg), i.@., L4 = <u S Sh&d(Lg»

Hence, we have constructed the unique lex submodule L = ®[_,I;g; with Hp, =
(3,11,13,3,0). More in details:

L = (e1,e2e3,e2e4)g1 B (e1€2€3, e1€2€e4, €1€3€4, €2€3€4) g2 B (€1€2€3)73.

A more general example can be given if one considers a free-module F' with a basis in

different degrees.

Example 2.4.2 Let E = K(eq,ea,e3,e4), F = ®>_,Eg; with f; = -2, f =0, f3 = 3, and

let us consider the [—2, 7]-sequence
H= (1743 95,4,5,2,4,3, 170) - (h—27 hoy,..., h7)

As in Example 2.4.1, we will verify that H is a Hilbert sequence, and then we will construct
the lex submodule L of F' such that Hp,;, = H.

Since s = f; = =2, 7_92 =1 and 7_; = 0, we have:
h o=1<1=7_9, ho1=4<4=nr_o+4+7r_1.

Moreover, next inequalities hold (Proposition 2.2.1):

s ()0 e = (5) ()0
per (3 (0 0) =m0+ 0

a a(?)
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a a(2)
3 3

| I— | I—
a a3

It is worthy of being stressed that in order to get the right expression for the h;’s (i =
—1,...,6), we firstly compute the binomial coefficient (i74f3), then the other admissible
ones.

For instance, h_1 =4 = (_ 4 ) + (_ ! ) + (_14+2)'

Now, we can construct the lex submodule L = @2:72Ld of F'such that Hr/;, = H, where
Ly (d=—-2,...,7) is the K—vector space generated by a lex segment of length dimy Fy— hg,
ford=-2,...,7.

At first, we observe that dimyg L_o = dimg F_9 — h_o = 0. Moreover, dimg L_1 =
dlmK F_1 - h_1 = 0. Hence L_2 = L_1 =0.

In degree 0, dimg Lo = dimg Fy — hg = (_g) + (3) + (;l) —5 =2 and so

Lo = (e1e291, e1€391)-

In degree 1, dimg Ly = dimg F1—hy = (é) —i—(il) +(§) —4 = 4. Since Shad(Lg) = {e1ea2e391,

€1€2€441, 616364g1}, we choose
= (u € Shad(Lo),€2€364gl>.

In degree 2, dimg Lo = dimg Fy — hy = (_Li) + (3) + (j) —5 = 2. Since Shad(L;) =

{e1eae3e491}, we set
Ly = (u € Shad(L1), e1e292).

In degree 3, dimg L3 = dimgx F3 — hg = (5) + (5) + () —2 = 3. Since Shad(Ls) =

Shad2(L1) U {€1€2€3g2, 61626492} = {61626392, 61626492}, we get

L3 = <U € Shad(Lz), 616364gg>.
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In degree 4, dimg Ly = dimg Fy — hy = (}) + (3) + (5) —4 = 1. Since Shad(L3) =
{e1e2e3e4g2}, we have that Ly = (u € Shad(Ls)).

In degree 5, dimg Ls = dimg F5 — hs = (;l) + (g) + (‘71) — 3 = 3. Since Shad(Ly) is empty,
we have

Ls = (e1e293, 16393, €1€403).

In degree 6, dimg Lg = dimg Fg—hg = (ﬁ) + (é) + (g) —1 = 3. Since Shad(Ls) = {e1e2€393,

e1€2€e493, €1€3€493}, we set Lg = (u € Shad(Ls)).
Finally, in degree 7, dimg Ly = dimg Fy — hy = (§) + (3) + (§) — 0 = L. Since Shad(Lg) =
{e1eae3e4g3}, we have Ly = (u € Shad(Lg)).

In so doing, we have determined the lex submodule L = &} I;g; with Hp,;, = (1, 4, 5, 4,
5,2, 4,3,1,0). More in details:

L = (e1e2, e1e3, e2e3€4)g1 P (€162, €163€4) g2 P (€162, €163, €1€4)73.

Now, we show an example of a sequence of nonnegative integers H that is not a Hilbert

sequence of a quotient of a free F—module.

Example 2.4.3 Let £ = K<61,62,63,64>, F = @?:1Egl with f1 = 73, f2 = 72,f3 =1 and

let us consider the [-2, 5]-sequence
H=(1,3,3,4,2,4,5,1,0) = (h_o,h_1,..., hs).
We proceed as in the previuos examples.
Itiss=fi =—-3,7_3=1and 7_y = 1, and consequently
h_s=1<1=7r_3, h_9=3<5=nr_g+7_o.

By Proposition 2.2.1, we can test the required bounds:

s (D)) = s < = (+()-0)

a a(l)
4 3 4 3
n=3= () +(3) = -1 £ 3-(1)+(})
a a(l)

The integer hg does not satisfy the required inequality. We will see that there does not exist
the lex submodule L = @3:72Ld of I such that Hp,;, = H.

Indeed, dimg L_3 = dimg F_3 — h_3 = 0. Hence, L_3 = 0.

Moreover, in degree —2, dimg L_o =dimg F 9 — h_o = (_é) + (é) + ( 14) — 3 = 2. Hence,

L_5 = (e191,€201)-
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In degree —1, we have dimg L1 = dimg F_1 — h_; = (_3) + (;L) + (;1) —3 =7. On the

other hand, Shad(L_2) = {e1e2g1, e1€391, €1€401, €2€391, €2€4g1 }, then
L_; = (u € Shad(L_2),e3e491, €192)-

In degree 0, we have dimg Ly = dimg Fo—hg = (fi) + (‘21) + (é) —4 = 6. Since, Shad(L_1) =
{e1e2e301, e1e2e401, €1€3€401, €2€3€401, €1€292, €1€372, €1€492 +, then [Shad(L_1)| > 6. This
situation implies that it is not possible the construction of the lex submodule L with Hp,/j, =
(1,3,3,4,2,4,5,1,0).

On the contrary, one can verify that for Ay = 3, there exists the lex submodule L = @] I, g;

of F with Hp/p, = (1,3,3,3,2,4,5,1,0).

In order to simplify the notation, once we fix a sequence of nonnegative integers H, when
we say that a graded ideal I of E has H as Hilbert sequence, or that H is the Hilbert
sequence of a graded ideal I, we mean that Hsp,;r = H. Moreover, in what follows, we refer
to Hilbert sequences of quotients of the type E/I (I graded ideal of E), whenever it is not
specified.

Example 2.4.4 Let E = K(e1,eq,e3,€4), F = E? and
M = (e1eg,e3e4)g1 @ (e1e2, eaezeq)ga @ (e2e3e4)g3
a submodule of F. M is not a lex submodule of F. The Hilbert sequence of F/M is
Hspyy = (3,12,15,4,0).
Setting J; = (e1e2, ezeq), Jo = (erea, eseseq) and J3 = (ezezey), one has
Hspyy, = (1,4,4,0,0), Hsgyy, = (1,4,5,1,0), Hsg,y, = (1,4,6,3,0),

and Hp/p(d) = Zle Hpgyj,(d), d >0, as the next table shows

Hs—degrees 0 1 2 3 4
Hsgry, | (1, 4, 4, 0, 0)| +
HSE/J2 (1, 4, 57 ]_, 0) +
HSE/Jg (1, 47 67 3, 0) ==
HSF/M (3, 12, 15, 4, 0)

Now, we want to describe our new point of view.

Let us consider the sequence H = (3,12,15,4,0). The largest Hilbert sequence of a
graded ideal that can be extracted from H is Hs = (1,4,6,4,0). Indeed, there exists the lex
ideal I3 of E such that Hspr, = Hs. Itis I3 = (e1esezeq).

Using the same notations as in Theorem 2.3.2, let Hy = H — Hs = (3,12,15,4,0) —
(1,4,6,4,0) = (2,8,9,0,0). The largest Hilbert sequence that can be extracted from Hj is
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Hy; = (1,4,6,0,0). In fact, Hy = Hsgr,, with Iy = (e1eqe3, e1e364, 1634, €2e3€4) lex ideal
of .

Next, consider the sequence Hy = H3z — Hy = (2,8,9,0,0) — (1,4,6,0,0) = (1,4, 3,0,0).
The largest Hilbert sequence that can be extracted from Hy is H; = H. The lex ideal
whose Hilbert sequence is Hy is I1 = (ejes, e1€3,€1€4, €2e3€4).

We can observe that in such a case the sequence H, = Hoy — I;fl = (1,4,3,0,0) —
(1,4,3,0,0) = 0s.

Next table describes our procedure:

H-degrees | 0 1 2 3 4
H (3, 12, 15, 4, 0) | —
Hspy, | (1, 4, 6, 4, 0)| —
Hsg, | (1, 4, 6, 0, 0)
Hsg, | (1, 4, 3, 0, 0)|=
05 (0, 0, 0, 0, 0)

Observe that in our situation f; = fo = f3 =0, and so H; = Hspp, (1=1,2,3).
Finally, M'e* = @71, g; is the unique lex submodule with Hilbert sequence H = (3,12,15,4,0).

More in details:
lex
M = (e1e2,e1e3, €164, €2e3€4)g1 B (e1€2€3, €1€2€4, €1€3€4, €2€3€4) 72 B (e1€2€3€4)73.

Remark 2.4.5 Note that, given a Hilbert sequence H of a quotient of a free E-module
F, rank F' = r, if one applies to H r repeated subtractions by the non-largest admissible
Hilbert sequences of K-algebras E/T;, with T; lex ideals of E, for i = 1,...,r (in the sense of
Theorem 2.3.2 and according to Kruskal-Katona Theorem), then the submodule N = ¢ T;g;
is not a lex submodule.

Indeed, let us consider Example 2.4.4. We can subtract from H the Hilbert sequences
(1,4,6,3,0), (1,4,5,1,0), (1,4,4,0,0), and, consequently, we can get the corresponding lex
ideals T3 = (eyeqes), Th = (e1e, e1ezeq), T = (e1ea, e1€3, eae3e4). But, (eq, e, €3, e4) 48 T2

= (e1, €2, €3, €4)®> ¢ T1 and N = @7T;g; is not a lex submodule.

Example 2.4.6 Let E = K{ej,e,e3,¢e4) and F = @3_; Eg; with f; = =2, fo = 0, f3 = 2.

Consider the monomial submodule
M = (e1e2,e3e4)g1 @ (€162, €2e3€4)g2 D (€2€3€4)93
of F. The Hilbert sequence of F/M is
Hspnm = (1,4,5,4,6,5,6,3,0).
Setting J; = (e1ea, eseq), Jo = (erea, ezeseq) and J3 = (ezeszey), one has

Hspyy, =(1,4,4,0,0), Hsgyy, = (1,4,5,1,0), Hsg,y, = (1,4,6,3,0).
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and Hp/p(d) = Z?:1 Hpgyj,(d— fi), d > —2, as shown in next table,

Hs—degrees | —2 —1 0 1 2 3 4 5 6
H  |(1, 4, 4, 0, 0, 0, 0, 0, 0)| +
ﬁQ (Oa 0> 17 47 5’ 17 0; 07 0) +
H; (0, 0, 0, 0, 1, 4, 6, 3, 0)|=
H'SF/M (la 47 5a 4a 67 57 67 37 0)

where H; = Of,— 5, WHsg,;, W0y, 5, (i =1,2,3). We have indicated the Hilbert sequences
Hspgyy, (i=1,2,3) in bold.

Let us consider the [—2,6]-sequence H = (1,4,5,4,6,5,6,3,0). The largest Hilbert
sequence of a graded ideal I that can be extracted from the subsequence (H(2),..., H(6)) =
(6,5,6,3,0) is H3 = (1,4,6,3,0). Indeed, there exists the lex ideal I3 = (ejeze3) of E such
that Hsp,1, = Hs.

With the same notations as in Theorem 2.3.2. Set Hs = H*f‘j’g =(1,4,5,4,6,5,6,3,0)—
(0,0,0,0,1,4,6,3,0) = (1,4,5,4,5,1,0,0,0), the largest extractable Hilbert sequence from
the subsequence (H3(0),...,Hs(4)) = (5, 4, 5, 1, 0) is Hy = (1,4,5,1,0) = Hsgp,, with
I, = (e1e2,e1€364).

Next, consider the sequence Hy = H3 —Hy, = (1,4,5,4,5,1,0,0,0)—(0,0,1,4,5,1,0,0,0)
= (1,4,4,0,0,0,0,0,0). The largest Hilbert sequence that can be extracted from the sub-
sequence (Ha(—2),...,H2(2)) = (1,4,4,0,0) is H; = (1,4,4,0,0) = Hsgyp,, with I} =
(e1e2, e1e3, eae3€y).

We can observe that in such a case the sequence Hy = Hy — Hy = (1,4,4,0,0,0,0,0,0) —
(1,4,4,0,0,0,0,0,0) = Og.

H—degrees —2 —1 0 1 2 3 4 5 6
H (1, 4, 5, 4, 6, 5 6, 3, 0| —
Hj (0, 0, 0, 0, 1, 4, 6, 3, 0)| —
H, (0, 0, 1, 4, 5, 1, 0, 0, 0)| —
H, (1, 4, 4, 0, 0, 0, 0, 0, 0)|=
09 (0, 0, 0, 0, 0, 0, 0, 0, 0)

H; = Of,—p, W Hspyr, W0y, _y, (i = 1,2,3), and we have indicated the Hilbert sequences
Hsgyr, (1 =1,2,3) in bold. Finally,

M = @71,g; = (e1e2, e1e3, eae3e4)g1 ® (e1€2, e1€3€4)g2 ® (e1€2€3)g3.

The Hilbert sequence of a quotient of the form F'/M can have zeros as initial values. The
number of such zeros is fr — f1, where fj is the initial critical degree of the Hilbert sequence,

as next example will show. Moreover, we can note that the existence of initial zeros implies
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the presence of some improper ideals as initial components in the direct decomposition. The

converse is not true.

Example 2.4.7 Let E = K{ej,ea,e3,e4) and F = ®8_Eg; with fi = —3,fa = f3 =
—1,fa=fs = fo =2, f7 = fs = 7. Let us consider the [—3, 7]-sequence

H=1(0,0,1,4,6,7,13,7,1,0,1,4,5,2,0).

By applying the algorithm in Theorem 2.3.2, as in the previous examples, we obtain by
repeated subtractions from H, the following Hilbert sequences H; = Hsg/,, with I; lex
ideal of £ (i =1,...,8):

H8 = (1’4757270)a H7 = (07070a050)7 Hﬁ = (174767 1a0)a H5 = (1a4a 17070)a
Hy = (1,4,0,0,0), Hy = (1,4,6,4,1), Hy = (0,0,0,0,0), H, = (0,0,0,0,0).

and

Is = (e1e2), It = E, I = (e1eze3, e1e0eq, e1€3€4), Is = (e1€2, €163, e1€4, €263, €2€4),

Iy = (e1ez,e1e3, €104, €263, €264, €3¢4), I3 = (0), [ = E, I, = E.

H—degrees -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

H (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5 2, 0)|—
Hy |(, 0o, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5 2, 0)]| —
H; |(, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 0, 0, 0)| —
Hg |(, 0o, 0, 0, 0, 1, 4 6, 1, 0, 0, 0, 0, 0, 0)| —
Hs |(© 0 0 0 0 1, 4 1, 0, 0, 0, 0, 0, 0, 0)]| —
Hy |(, o0 0 0 0 1, 4 0, 0, 0, 0, 0 0, 0, 0)]—
H; (0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0)| —
H, (o, 00 0, 0, 0, 0, O, 0O, 0, 0, 0, 0, 0, 0, 0)|—
H, |( o0 0 0 0 0 0 0 0 0 0 0 0, 0 0)|=
05 | (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(Hi =0y, _ 5, WHsp/,60 5, (i=1,...,8), and the Hilbert sequences Hsg;, (i =1,...,8)
are indicated in bold.)

By means of repeated subtractions, we obtain the null sequence 0,5. Hence, the sequence
H is the Hilbert sequence of a quotient of a free E—module. Indeed, there exists the lex

submodule
L=&[1;9; = Eg1 ® Egs ® (0)g3 © (e1e2, €163, €164, €263, €2€4, €3€4) 4D
(61627 €1€3, €164, €2€3, 6264)95 S (616263, €1€2€4, 616364)96 ®Egr @ (6162)9&

such that H = Hsp/p, = (0,0,1,4,6,7,13,7,1,0,1,4,5,2,0) = 35| H;.
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We close this Section with an example of a sequence of nonnegative integers H that is

not a Hilbert sequence of a quotient of a free E—modules.

Example 2.4.8 Let F = K{ej,es,€e3,e4) and F = EB?zlEgi with fi = =3, fo = -1, f3 = 2.

Let us consider the [—3, 2]-sequence
H=(1,2,2,4,3,3,4,5,2,0).

By using the Lex—Algorithm and by repeated subtractions from H, we obtain the Hilbert
sequences H; = Hsg/y,, with I; lex ideal of F (i = 1,2, 3):

Hs = (1,4,5,2,0), Hy = (1,4,3,1,0), H1 = (1,2,1,0,0),

Ig = (6162), IQ = (6162,6163,6164), Il = (61,62).

Next table describes the construction.

H-degrees | -8 -2 -1 0 1 2 3 4 5 6
H (1, 2, 2, 4, 3, 3, 4, 5 2 0] -
Hy |(, 0, 0, 0 0, 1, 4 5 2 0)]|—
Hy (0, 0, 1, 4, 3, 1, 0, 0, 0, 0)| —
H, (1, 2, 1, 0, 0, 0, 0, 0, 0, 0)|=

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

At the end, we do not obtain the null sequence 019, and so H is not a Hilbert sequence
of a quotient of the given free F-module F' according to Criterion 2.3.3.
On the other hand, it is relevant to analyze the second difference that comes into play

(according to the Lex—Algorithm):
Hy=Hs— H, = (1,2,2,4,3,2,0,0,0,0) - (0,0,1,4,3,1,0,0,0,0) = (1,2,1,0,0,1,0,0,0,0).

In this case, the largest Hilbert sequence of a graded K-algebra E/I is (1,4,3,1,0). In
fact, for the sequence (1,4,3,2,0) no ideal I of E with Hsgp,; = (1,4,3,2,0) does exist (see

Kruskal-Katona’s theorem). Finally, the submodule
N = &}_1Ligi = (e1,2)g1 ® (€12, €13, €104)g2 ® (€1€2)93

has Hilbert sequence Hsp/y = (1,2,2,4,3,2,4,5,2,0) < H. Hsp/y is the largest extractable

Hilbert sequence from H attaining a submodule of F.

All the examples in this chapter have been constructed by such packages.
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2.5 Macaulay2 packages

The procedures described in this work are part of two Macaulay2 packages “Exteriorlde-
als.m2” [AC18b], “ExteriorModules.m2”, and tested with Macaulay 1.10. We believe that
these packages may reveal useful for further applications. Indeed, functions for computing
monomial ideals in a polynomial ring are available in many computer algebra systems, CAS,
(for instance, CoCoA [ABL], Macaulay2 [GS] and Singular [DGPS16]); on the contrary, to
the best of our knowledge, specific packages for manipulating classes of monomial ideals (or
monomial submodules) in an exterior algebra have not been implemented yet.

More precisely, in the package “Exteriorldeals” we implement some algorithms in order
to easily check whether an (n + 1)-tuple (1,h1,...,h,) (b1 <n =dimg V) of non—negative
integers is the Hilbert function of a graded K-algebra of the form E/I, with I graded ideal
of E, is given. In particular, if Hg,; is the Hilbert function of a graded K-algebra E/I,
the package is able to construct the unique lexsegment ideal I'°* such that Hp /1 = Hpgpex.
Whereas in the “ExteriorModules” we extend these functions to modules.

In this Section, we collect some examples in order to describe the algorithms.

Example 2.5.1 Let E be an exterior algebra with n generators over a field K and h = (hyg,
hi, ..., hy) asequence of nonnegative integers, we describe how one can verify if h is a Hilbert
sequence. The key tools in our package are the methods isHilbertSequence(list,exterior
algebra) and lexIdeal(list,exterior algebra). The first function verifies if a list of
nonnegative integers of length n + 1 is a Hilbert function; the second one returns a lex ideal
of E if and only if the list is a Hilbert sequence. In more detail, if (hg, h1, ..., hy) is a
Hilbert sequence, the lex ideal of E produced by the function lexIdeal({hg,...,hn}, E)
is the unique lex ideal I of E with Hg,/;(d) = hq (d = 0,...,n). The procedure for the
computation of the required lex ideal is based on the constructive proof of Theorem 1.3.7
(see [AHH97, Theorem 4.1, (b) = (a)]).

We start with some examples of sequences which are not Hilbert sequences. The property
is verified by using either isHilbertSequence(list,exterior algebra) or

lexIdeal(list,exterior algebra):

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorIdeals"
i2 : E=QQ[e_1..e_5,SkewCommutative=>true]
i3 : isHilbertSequence({2,4,3,0,0,0},E)

03 = false
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i4 : isHilbertSequence({0,4,3,0,0,0},E)

o4 : false

i5 : lexIdeal({1,6,3,0,0,0,0},E)

stdio:24:1:(3): error: expected a Hilbert sequence
i6 : lexIdeal({1,5,10,10,5,1,0},E)

stdio:26:1:(3): error: expected a Hilbert sequence

Moreover, the next statements provide some examples of the lex ideal produced by a Hilbert
sequence. The length of the sequence can be at most n + 1; if the length is less than n 4 1,
then the sequence will be completed by adding zeros on the right.

i6 : lexIdeal({1,4,3,0,0,0},E)

06 = ideal (e_1, e_2e_3, e_2e_4, e_2e_5, e_3e_4e_5)
06 : Ideal of E

i7 : lexIdeal({1,4,4},E)

o7 = ideal (e_1, e_2e_3, e_2e_4, e_3e_4e_5)

o7 : Ideal of E

i8 : lexIdeal({1,5,7,4,0,0},E)

09 = ideal (e_le_2, e_1le_3, e_le_4, e_2e_3e_4e_b)
09 : Ideal of E

The function lexIdeal(list,exterior algebra), above defined, plays a relevant role

also in the next algorithm.

Example 2.5.2 Given an exterior algebra E and a graded ideal I in E, we illustrate how
to obtain the unique lex ideal I'® with the same Hilbert function as I. In more detail, we

describe two different methods for computing such lex ideal.

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorIdeals";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true]

i3 : I=ideal {e_l*e_2*e_3+e_3*e_4xe_b,e_1*xe_3+e_4%e_5,e_2*xe_3*e_4}
03 = ideal (e_le_2e_3+e_3e_4e_b5, e_le_3+e_4e_5, e_2e_3e_4)

03 : Ideal of E

i4 : hilbSeg=hilbertSequence(I)

o4 = {1, 5, 9, 3, 0, 0%}

o4 : List



o1

A

first way for computing the lex ideal we are looking for is to use the function

lexIdeal(list,exterior algebra):

i5

o5

o5 :
i6 :

06

i7

o7

o7 :

Ilexl=lexIdeal(hilbSeq,E)

= ideal (e_le_2, e_le_3e_4, e_le_3e_5, e_le_4e_5, e_2e_3e_4)
Ideal of E

isLexIdeal Ilex1

= true

hilbertSequence(Ilex1)

={1, 5, 9, 3, 0, 0}

List

and a second one is via the new function lexIdeal(ideal), which returns directly the

required lex ideal:

i8 :

08

o8 :
i9 :

09

09 :

Ilex2=1lexIdeal (I)
ideal (e_le_2, e_le_3e_4, e_le_3e_b5, e_le_4e_b5, e_2e_3e_4)
Ideal of E

hilbertSequence (Ilex2)
{1, 5, 9, 3, 0, 0}
List

Finally, last example is related to the algorithm for the computation of Hilbert sequences.

Example 2.5.3 Given an exterior algebra E, we illustrate how to get all the Hilbert se-

quences of quotients of E.

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorIdeals";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true]

i3 : hilbSeqgs=allHilbertSequences(E)

o3 = {{1, 4, 6, 4, 1}, {1, 4, 6, 4, 0}, {1, 4, 6, 3, 0}, {1, 4, 6, 2, 0},

{1’ 4) 5’ 0, O}, {1) 4’ 4, 1’ O}’ {1’ 4’ 4’ 0, O}, {1)4, 3) 1’ 0}’

{1, 4, 3, 0, 0}, {1, 4, 2, 0, 0}, {1, 4, 1, 0, 0}, {1, 4, 0, 0O, O},
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o3 :

i4
o4

o4 :

{1, 0, 0, 0, O}}
List

: transpose matrix hilbSegs

/111111111111 111111111111
| 4 44444444444444433333221
| 66 6666555443321033210100
| 443210210101000010000000
| 100000000000000000000000
Matrix ZZ°5 <--- ZZ"25

o O O O

Note that the method allHilbertSequences returns an object of type List; for a more

compact view it could be displayed as a matrix.

Now, we extend to modules all can we have done for ideals.

Example 2.5.4 Given a graded submodule M of F, we illustrate how to obtain the unique

lex submodules M'** with the same Hilbert function as M. More in detail, we describe two

different methods for computing such lex submodule.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il

i2

i7

o7

o7 :

loadPackage "ExteriorModules";

: E=QQ[e_1..e_4,SkewCommutative=>true];
i3 :
i4 :
i5 :
i6

F=E"3;

I_1=ideal {e_1, e_2*e_3*e_4};
I_2=ideal {e_1*e_2, e_l*e_3*e_4};
I_3=ideal {e_1*e_2%e_3};

M=createModule({I_1, I_2, I_3},F)

imagele_1 e_2e_3e_4 0 0 0 |
[0 0 e_le_ 2 e_1le_3e_4 0
[0 O 0 0 e_le_2e_3|

E-module, submodule of E~3
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i8 :

o8

i9 :

09

isAlmostLexModule M

true

isLexModule M

false

Given a submodule M, a first way for computing the lex submodule we are looking for is to

use the function lexModule (module):

i10 :

010 =

010 :
i1l

i12 :

0l2 =

L=lexModule M

imagele_1 e_2e_3 0 0 0 0 0 |
[0 O e_le_2e_3 e_le_2e_4 e_le_3e_4 e_2e_3e_4 0
[0 0 0 0 0 0 e_le_2e_3e_4|

E-module, submodule of E~3

: hilbertSequence M
oll =

{3, 11, 14, 4, 0}
hilbertSequence M==hilbertSequence L

true

It is interesting get another similar computation in a more general situation:

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il :

i2
i3

i4 :
i5 :
i6 :

i7

o7

o7 :

i8 :

08

loadPackage "ExteriorModules";

: E=QQ[e_1..e_4,SkewCommutative=>true] ;
: F=E~{2,0,-1};

I_1=ideal {e_1*e_2, e_3*e_4};
I_2=ideal {e_1*e_2, e_2*e_3*e_4};
I_3=ideal {e_2%e_3*e_4};

M=createModule({I_1, I_2, I_3},F)

= image {-2}le_le_2 e_3e_4 0 0 0 |
{0} 10 0 e_le_2 e_2e_3e_4 0 |
{1} |0 0 0 0 e_2e_3e_4|

E-module, submodule of E~3

L=lexModule M

= image {-2}le_le_2 e_le_3 e_2e_3e_4 0 0

{0} 10 0 0 e_le_2 e_le_3e_4
{1} 10 0 0 0 0

0 |
0 |
e_le_2e_3|
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08 : E-module, submodule of E~3

i9 : hilbertSequence M

o9 ={1, 4, 5,5, 9,7, 3, 0}

09 : List

i10 : hilbertSequence M==hilbertSequence L

010 = true

Example 2.5.5 Similarly to what has been done for ideals, there exists a second way to
obtain lex submodules given a sequence of nonnegative integers, if such a sequence is a

Hilbert sequence.

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];
i3 : F=E~3;

i4 : hs={3, 12, 16, 6, 0};

i5 : lexModule(hs,F)

o5 = imagele_le_2 e_le_3 e_2e_3e_4 0 0 0 |
[0 0 0 e_le_2e_3 e_le_ 2e 4 0
[0 0 0 0 0 e_le_2e_3e_4]|

o5 : E-module, submodule of E~3

i6 : F=E~{2,0,-2};
i7 : hs={1, 4, 5, 4, 6, 5, 6, 3, 0};
i8 : lexModuleBySequences (hs,F)

08 = image {-2}le_le_3 e_le_2 e_2e_3e_4 0 0 0 |
{0} 10 0 0 e_le_2 e_le_3e_4 0
{2} 10 0 0 0 0 e_le_2e_3|

08 : E-module, submodule of E~3

i9 : F=E~{3,1,-2};

i10 : hs={1, 2, 2, 4, 3, 3, 4, 5, 2, 03};
i11 : isHilbertSequence(hs,F)

oll = false



Chapter 3

Bounds for Betti numbers

Let K be a field, V a finite n—dimensional K-vector space, E = K (e, ...,e,) the exterior
algebra of V, and F a finitely generated graded free E-module with a homogeneous basis.
Let M the category of finitely generated Z-graded left and right E-modules M, satisfying
am = (—1)deeede8mpq for all homogeneous elements a € E, m € M.

We study projective and injective resolutions over E. More precisely, we give upper bounds
for the graded Betti numbers and the graded Bass numbers of classes of modules in M. In
order to do this, we firstly describe some classes of graded submodules of F', and finally we
state that the lexicographic submodules of F' have the maximal Betti numbers among all
the graded submodules of F' with the same Hilbert function. A similar result holds for the

Bass numbers. In this chapter Theorem 2.2.4 in Chapter 2 plays a crucial role.

3.1 The generic initial module

In this Section, we study the generic initial module of a graded module M € M. Such a
module can be defined as in the polynomial case [AH00, Par94, Par96].

In order to point out some peculiarities of the exterior algebra, we rewrite some definitions
introduced in Section 1.2 of Chapter 1 and in Section 2.1 of Chapter 2.

Let K be a field, E = K (ey,...,e,) the exterior algebra of a n—dimensional K-vector
space V, and Let FF € M be a free module with homogeneous basis ¢1,...,g,, where
deg(g;) = fi foreach i =1,...,r, with f1 < fo <--- < f,.. We write F = ®]_, Egy,.

Definition 3.1.1 Let I be a monomial ideal of E. I is called stable if for each monomial
e, € I and each j < m(e,) one has eje,\ (m(e,)} € I. I is called strongly stable if for each

monomial e, € I and each j € o one has e;e\ ;3 € I, for all i < j.

Definition 3.1.2 A monomial submodule M = @®_,I;g; of F is an almost (strongly) stable
submodule if I; is a (strongly) stable ideal of E, for each i.

55
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Definition 3.1.3 A monomial submodule M = @®!_,I;g; of F is a (strongly) stable sub-
module if I; is a (strongly) stable ideal of E, for each 4, and (e1, ..., e, )+ ~fil; 1 C I, for

i=1,....r—1.
Example 3.1.4 Let £ = K{ej,es,e3,e4) and F = E2. The submodule

M = (e1e2)g1 @ (e1€2e3, e1€2€4, €1€3€4) 92

of F'is an almost strongly stable submodule; whereas
N = (e1e2,e1e3)91 D (e1e2e3, €1e2€4, €1€3€4)92

is a strongly stable submodule.
If we consider the free E-module F' = Fg; @ Ego with fi = degg; = —2, fo =deggs = —1,
the submodule M = (eje2)g1 @ (e1ezes, e1e2eq, e1€3e4)g2 C F’ is strongly stable, in fact

(e1,...,e4) 12 = (erezezeq) C Ih.

Now, order the monomials of I in the degree reverse lexicographic order, >qegreviexy as

follows: let e,g; and e;g; be monomials of F, then e,g; >degreviex, €rgj if
- deg(eqg;) > deg(erg;), or
- deg(erg:) = deg(erg;), and either e, >ieviex €r, OF €, =€, and ¢ < j;

>leviex 18 the usual reverse lexicographic order on E with €1 >yeviex *** >reviex €n (S€€
[AHH97], for instance).

Now, let GL(n) be the group of n x n invertible matrices with entries in the field K, or
equivalently, the group of K-linear graded automorphisms of E.

If ¢ = (a; ;) € GL(n), one can define the action of ¢ on E; as follows:
go(ej) = Zai7jei, a; ;€ K
i=1
and
@(Z ae;) = Zaigo(ei), a; € K.

i=1 i=1

Furthermore, such an action can be extended to E4 as follow:
oles) = @ley) - ple,), fore, =e; e, € Mong(E).

The automorphism ¢ induces a natural compatible action on F' = @;_; Eg; by

o> fig) =3 e(f)g,  ficE.
=1 i=1
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Now, let GL(F') be the group of E-linear graded automorphism of F. An element of
GL(F) sends g; to Z;zl fij95, where fi; € Eg,_q,. If o1 € GL(n) and @3 € GL(F), then
gplgog(pfl is an FE-linear graded automorphism of F' and so we have an action of GL(n) on
GL(F). Therefore, we can consider the semidirect product G = GL(n) xGL(F'). G acts on F
through graded K-vector space automorphisms; this action takes submodules to submodules.

Let B be the subgroup of G consisting of all automorphisms taking g; to a FE-linear
combination of ¢1,...,¢9; and e; to a K-linear combination of ej,...,e;. B is the Borel

group of G and it is naturally realized by upper triangular matrices.
Definition 3.1.5 A submodule M of F' is Borel-fixed if o(M) = M, for every ¢ € B.

The following result is the analogue of a general result of Galligo’s theorem [Eis95] on generic
initial ideals proved in [Par94]. Since its proof is quite similar to the one on submodules
of a finitely generated graded free module on a polynomial ring, we omit its proof (see also
[AHH97, Theorem 1.6] for the rank one case).

Proposition 3.1.6 Assume the base field K is infinite and let G and B as above. Then for
each graded submodule M of F' there exists a nonempty open subset U C G such that

(1) there is a monomial submodule N of F such that N = in(p(M)) for all p € U;

(2) N is a Borel-fixred submodule of F', that is o(N) = N for all ¢ € B.

The monomial submodule N = in(p(M)) of F is denoted by Gin(M) and called the

generic initial module of M.

Proposition 3.1.7 Let K be infinite and let M be a graded submodule of F. Then Gin(M)

is a strongly stable submodule of F' with the same Hilbert function as M.

Proof. Since E is noetherian (see for instance [K10]) using the same arguments as in [Hul95,
Lemmas 14, 15], we may assume that M = I1g; & --- & I,.g,, is a monomial submodule of
F such that (eq,...,e,) 1L,y C I (i =1,...,r — 1), where f; = deg(g;), for all i,
without changing the Hilbert function. Moreover, since in(P)in(Q) C in(PQ), with P,Q
graded ideals of E, one has that (eq,...,e,) = in(p(l;41)) C in(p(L;)), for all ¢ € B.

Hence, Gin(M) = &®]_,J;g;, with J; monomial ideal of E, for all ¢, and such that
(e1,... en)fin=fiJy CJ fori=1,....r — 1.

Now, we prove that every J; (i = 1,...,r) is a strongly stable ideal of E.

Assume there exists an integer 7 € {1,...,r} such that J; is not a strongly stable ideal of
E. Hence, there exist a monomial e, € J; and a pair (h,j) of positive integers with h < j,
J € supp(es), such that epeq ;3 ¢ Ji. Let ¢ € GL(n) with p(e;) = e; + ex and @(ex) = ex
for k # j. Then, ¢(e;) = €, + eneq ;3 and consequently p(J;) € J;. Therefore, ¢(es)g;
does not belong to Gin(M). A contradiction.
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Finally, from (3.3.1), Gin(M) is a strongly stable submodule of F' with the same Hilbert

function as M. O

From now on, we will assume that the base field K is infinite.

3.2 (Almost) Lexicographic submodules

In this Section, we analyze two special classes of monomial submodules of F' that will play a
fundamental role for the development of the work: the almost lexicographic submodules and
the lexicographic submodules.

Definition 1.2.16 in Chapter 1 is equivalent to the following one [AC18a, Proposition 3.12]
(see also [CF16, Proposition 3.8]).

Definition 3.2.1 Let L be a graded submodule of F. L is a lex submodule of F if L =
®r_,1;g;, with I; lex ideals of E (i = 1,...,7), and (ey,...,e,)Pt/i=fi-x C I | fori =
2,...,r, with p; = indegl;.

Now, we give the definition of a particular class of monomial submodules that includes

all lex submodules as subclass.

Definition 3.2.2 A monomial submodule M = &®]_,I;g; of F' is an almost lexicographic

submodule (almost lex submodule, for short) if I; is a lex ideal of E, for each 3.

Next result associates to a graded submodule M of F' an almost lex submodule of F
which preserves the Hilbert function and provides an upper bound for the Betti numbers of
the class of all graded submodules of F' with given Hilbert function.

For a monomial submodule M = @®]_,I;g; of F', let us denote by D(M) the set of all the

monomial ideals I; which appear in the direct decomposition of M.

Proposition 3.2.3 Let M be a graded submodule of F. Then there exists an almost lex
submodule L of F such that

(a) Hpym = Hpyrs
(b) 5p,q(F/M) < 6p,q(F/£)¢ for all p,q.

Proof. First of all, from (3.3.1), (3.3.2), we may assume that M is a monomial submodule
of F.

Set M = &}_,1;g;, with I; monomial ideal of £, for all j. From Theorem 1.3.7 and [AHH97,
Theorem 4.1], for every I; € D(M) (j = 1,...,r) there exists a unique lex ideal Ijl-ex of £
such that Hg/r, = HE/I}CX and B, 4(E/I;) < ﬂp,q(E/IJI-e")7 for all p, q.
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Hence, setting £ = @71 }ngj, L is an almost lex submodule of F' such that
Hpm(d) = ZHEgj/z,-gJ (d) = ZHE/Ij (d—fi) = ZHE/I;EX(d - fi) =
j=1 j=1 j=1
=> Hpg, ynexg, (d) = Hpye(d),  for all d,
j=1
and
Bp,q(F/M) = Zﬁnq(Egj/[jgj) = Zﬁp,q—fj (E/1;) <
j=1 j=1
<D Boa-p,(B/L™) =) Bpa(Bj/11%9;) = py(F/L),  for all p,q.
Jj=1 j=1
The assertions (a), (b) follow. O

If M = &®j_,1;9; is a monomial submodule of F', we will denote by M alex the almost lex
submodule of F defined in Proposition 3.2.3, i.e., M = @7_, [*g;. Such a monomial
submodule will be called the almost lex submodule associated to M.

Note that Proposition 3.2.3 implies that if M is a graded submodule of F', we may assume
M itself to be an almost lex submodule (hence, an almost strongly stable submodule) without

changing the Hilbert function.
Example 3.2.4 Let F = K(ej,es,€e3,e4) and F = E3. Consider the monomial submodule
M = (e1ez,e3e4)g1 @ (€162, €2e3€4)g2 © (e2€3€4)93

of F. Set I} = (ejeq, ezeq), Iy = (e1ea, esezeq) and I3 = (egezey).

If one considers the monomial ideal I, one has Hg/;, = (1,4,4,0,0) and consequently
I** = (ejeq,e1e3,e2e3e4). Furthermore, Hgr, = (1,4,5,1,0) and IF* = (ejeq, ere3e4);
whereas, Hg,/r, = (1,4,6,3,0) and I = (ereze3). Therefore,

Mpalex _ (e1e2, e1e3,eae3e4)g1 D (e1€2, e1e3€4)g2 P (€1€2€3)g3,

and Hp/praex = (3,12,15,4,0) = Hpjp. Finally, if we compare the Betti diagrams of M
and Mgalex

total | 5 14 20 52 85 130 total [ 6 18 38 68 110 166

2 |3 6 9 12 15 18 2 |3 7 12 18 25 33

3 |2 8 20 40 70 112 3 13 11 26 50 85 133
Betti diagram for M Betti diagram for M2lex

the inequalities on the Betti numbers of Proposition 3.2.3 (b) are verified.
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Remark 3.2.5 It is worthy to be highlighted that if M is a graded submodule of F', then
almost lex submodules which are not equal to M?°* but with the same Hilbert function as
M could exist. Indeed, let E = K (e1, €2, e3,e4), F = E3 and

M = (e1e2,e3e4)g1 @ (e1e2, eae3e4)g2 @ (e2e3€4)93.
The almost lex submodule of F associated to M is
M™ = (e1eq, €163, e2e3€4)g1 D (€162, €163€4)g2 ® (e1€2€3)g3,
and Hp)ppaex = (3,12,15,4,0) = Hp/pr. The following submodule
N = (e1ez,e1e3,e164)91 @ (e1€2e3, €1e2e4, €1€364)g2 D (€1€2€3, €1€2€4)73,

of F is an almost lex submodule (different from M?*'®*) such that Hp/y = (3,12,15,4,0) =
HF/M~
We can observe that every lex submodule of F is a strongly stable submodule (see [CF16,

Proposition 3.9]). Moreover, it is clear that a lex submodule is an almost lex submodule.

The converse does not hold, as next example illustrates.
Example 3.2.6 (1) Let E = K(ey,es,e3,¢e4,e5) and F = E?. The submodule

M =(e1e2,e1e3, e1€4€5, e2e3€4€5)g1 D (€162, e1€3€4, €1€3€5, E2€3€4€5)goP

(616263, €1€2€4, 61636465)93

of F' is not a lex submodule of F even if the ideals (e1eq, e1es, e1e4e5, eaeseqes), (e1ea, e1e3ey,

ereses, eaezeqes), (e1ese3, e1eseq, e1ezeqes) are lex ideals of E. In fact, ejeagy € My but
2

€2€301 >lexy €1€292 and esezgr ¢ Mo. Observe that (eq,e2,e3,¢e4,¢5)% € (e1e2, €163, e1€e465,

eseseqes). M is an almost lex submodule of F'.

(2) Let E = K{e1,e2,e3,64,65) and F = &?_| Fg; with degg; = —1, deggs = deggs = 1.
Let us consider the M of (1) as submodule M’ C F. It is an almost lex submodule, indeed
this property remains true when the degrees of g; changes. In such a case, we observe
that ejeage € M} and ejesezeqqi, ..., eaezeqesgr € Mh. In fact, (eq,eq,e3,eq,e5)>T1T C

(e1e2, e1e3, e1eq4€5, e2ezeqes). But also in this case M’ is not a lex submodule due to second

. 3+1-1
relation: (e, ez, e3,¢€4,e5)3 T 71 & (e1eq, e1e364, €1€3€5, €2€3€4€5).
(3) Let E = K(eq,ea,e3,€e4,e5) and F = E3. The submodule

L :(6162, €1€3,€1€4, €2€3€4, €2€3€5, €2€4€5, 636465)91@

(616263, €1€2€4,€1€2€5,€1€3€4€5, e2636465)92 S (616263647 €1€2€3€5, €1€2€4€5, e1636465)93

is a lex submodule of F'.
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We have already shown in Chapter 2 that lexicographic submodules play a fundamental
role in the classification of the Hilbert functions of quotient of finitely generated graded free
E-modules. Theorem 2.2.4 points out that if M is a graded submodule of F', then there exists
a unique lex submodule of F* with the same Hilbert function as M, i.e. Hp/pr = Hpyppes,

among all almost lex submodules sharing this properties.
Example 3.2.7 Let E = K{ey,...,e4). Consider the following submodule of E3:
M = (6162,6364)91 D (6162, 626364)92 S2) (626364)93-
M is a monomial submodule with Hgs/ys = (3,12,15,4,0). One has that
M'™ = (e1e9, e1€3, €164, e2e34) 91 © (1693, €169€4, €1€3€4, €2¢3€4) g2 D (e1e2e3€4) g3

We can notice that Hgs/ny = Hps/ppex. Finally, one can observe that M lex £ ppalex (Ex-
ample 3.2.4).

3.3 Graded Betti numbers

In this Section we generalize the “higher” Kruskal-Katona Theorem [AHH97, Theorem 4.4].
We show that if H is a class of graded submodules of the free £ —~module F' = ®]_; Eg; with
a given Hilbert function H, then the unique lex submodule belonging to H (Theorem 2.2.4)

gives upper bounds for the graded Betti numbers of any graded submodule in H.

Using the same arguments as in the polynomial case ([Eis95, Ch. 15], [MS05, Ch. 8.3],
[CR09, Her02]; see also [AHH97] for the rank one case), one has that

Hpjv = Hryin(u) (3.3.1)

and
ﬁZJ(F/M) S 61,J(F/ IH(M)), for allz,j (332)

Since in(M) is a monomial submodule of F with the same Hilbert function as M, we

may assume M itself is a monomial submodule without changing the Hilbert function.
Example 3.3.1 Let E = K{eq,ea,€3,¢€4,¢5) and F = E2. Consider the graded submodule
M = (e1eae3 + ezeqes, e1e3 + eqes, eaezeq) g1 @ (e1e2 + e1e3, e4e5)92
of F. M is not a monomial submodule and the initial module of M is
in(M) = (eres3, e1e4€5, eae3ey, €aeqes, e3ese5)g1 D (e1€2, e4€5)g2.

Note that Hp/ps = (2,10,17,7,0,0) = Hp/in(ar)- Finally, by comparing the Betti diagrams
(as displayed by the computer program Macaulay2 [GS]) of M and in(M)
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total‘f) 20 56 123 234 404 650 total‘? 25 63 132 245 417 665

2 3 4 6 8 10 12 14 2 3 6 9 12 15 18 21
3 |2 16 50 115 224 392 636 3 |4 19 54 120 230 399 644
Betti diagram for M Betti diagram for in(M)

one can verify that the inequality in (3.3.2) is satisfied.

If M is a monomial submodule of F, we denote by G(M) the unique minimal set of
monomial generators of M, and by G(M), the set of all monomials u € G(M) such that
deg(u) = d, and by G(M)>q the set of monomials u € G(M) such that degu > d. For every

monomial submodule M = ®]_, I;g; of I, we have
1. GIM)={ug; - ue G;),i=1,...,1},
2. G(M)g ={ug; : we G(I;)g—yf,, i=1,...,1r}.
3. G(M)>qg={ug; : ve€ G(L;)>q—y,, 1 =1,...,7}.

For a monomial e,g; of F' = ®]_, Fg;, setting

define

and

mf (M) =|G(M :j)|, 1<j<n, mE(M)=> mf(M), 1<t<n.
One can observe that m%, (M) = |G(M)].

If M = &]_,1,g; is an (almost) stable submodule of F', then we can use the Aramova-
Herzog-Hibi formula [AHH97, Corollary 3.3] for computing the graded Betti numbers of
M:

> (mF(u) e 1), forall k. (3.3.3)

weG(M), mr(u) — 1

Brkre(M) =" Br nae(Tigi) =
i=1
Indeed, one can easily observe that
mp(u)+k1> zr: Z (m(u)+k1>
Z = . (3.3.4)
weG (M), mp(u) =1 i=1 |ueG(I;)e_y, m(u) -1

As in the case when ideals of a polynomial ring are considered [AHH98, Lemma 3.6],

next characterization of an almost strongly stable submodule of F' easily follows.
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Lemma 3.3.2 Let M be a monomial submodule of F'. Assume M = M’ + M", with M' =
®r_ Ilg;,, M" = @&f_I'eng; and I/, I/ ideals of the exterior algebra E = Klep,...,en_1)

i=1,...,r. Set M" = r_1Il'g;. Then the following conditions are equivalent:
(i) M is an almost strongly stable submodule;
(ii) M’, M" are almost strongly stable submodules, and I'(e1,...,en—1) C If, for alli.

Remark 3.3.3 One can quickly verify that if M is a strongly stable submodule of F', then
M admits a decomposition of the type defined in Lemma 3.3.2 with M’ strongly stable

submodule of M, too; whereas M" could not be a strongly stable submodule.
Example 3.3.4 Let F = K{ey,...,e4) and F = Eg; ® Ego with deg g = —2, deggs = 1.
M = (erez, e1e3, e1eq, €2e3)g1 © (€1€2€3, €1€2€4, €1€3€4, €2€3€4)92
is a strongly stable submodule of F. We can write M as follows
M=M +M",

where M’ = (e1e2, e1€3, e2e3)g1 @ (e1e2e3)g2 and M” = (e1)esgr ® (e1€2, e1e3, €2e3)eago.
One can observe that M’ is a strongly stable submodule, whereas M"” = (e1)g1 ®

(e1e2, e1e3, eae3)gs is an almost strongly stable submodule, which is not strongly stable.

Remark 3.3.5 One can observe that if [ is a strongly stable ideal of the exterior algebra E=
K{ey,...,en—1), then I is a strongly stable ideal of the exterior algebra E = K{eq,...,ey);
whereas, one can easily find a monomial ideal I which is lex in the exterior algebra E =
K{ey,...,en—1), but not in F.

Following [AHH98], the following map can be defined
a : Mony(E) — Mong(FE),
with
- ale,) = ey, if n ¢ supp(ey);

- ales) = (—1)*@Deje (ny, if n € supp(e,) and j is the largest integer < n which does
not belong to supp(es), a(o,j) = |{t € o : t < j}|.

Such a map is order preserving [AHH9S], i.e., if e,,e; € Mong(F) and e, >jex €r, then

afes) >lex a(er). The map « can be extended to Mong(F') as follows:
ap : Mong(F) = Mong(F), ar(erg;) = ales)gi, 1 <i<r.

The map ap is order preserving too.
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Let ex9;,e-g; € Mong(F) with e59; >1ex, €rg;. We distinguish two cases: i = j, ¢ # j.

Let ¢ = j. If €59 Zlexp €r0i, then e, >jex €,. Since ap(e,g;) = ales)gi, ar(erg;) =
a(e;)g; and « is order preserving, then ar(€sg;) Zlexy @r(€rgi).

Let ¢ # j. If €g; >lexy €rgj, then i < j. Hence, ap(e,g;) = ales)gi Ziexp aer)g; =

ar(ergj).
For a non empty subset M of Mon(F'), let us denote by min(M) the smallest monomial
of M with respect to <jexp-

Lemma 3.3.6 Let M = @®!_,I,g; = M' + M" be an almost strongly stable submodule
of F, with M' = @®}_,Ilg;, M" = @®I_,Il'epg; and I[, I/' (i = 1,...,r) ideals of E =
Klei,...,en—1). Then ap(min(G(M)) = ap(min(G(M')).

Proof. Since min(G(M')) >jex min(G(M)), then min(G(M')) = arp(min(G(M’)) iexp
ap(min(G(M)). On the other hand, since M is almost strongly stable, then ap (min(G(M)) €
G(M') and min(G(M")) <iexp ap(min(G(M)). O

Theorem 3.3.7 Let M and L be monomial submodules of F' generated in degree s. Assume
(1) M is an almost strongly stable submodule,
(2) L is a lex submodule, and
(3) dimg Lg < dimg M.

Then
F F
mg;(L) < mg, (M) (3.3.5)
for all .
Proof. Set E = K{ey,...,en—1). We proceed by induction on n = dimg F;. By hypotheses,

mgn(L) =dimg L < dimg M = mgn(M) In order to prove the inequality in (3.3.5) for

1 < n, we write M and L as follows:
M =@} Ig; = M+ M",

with M’ = @f_,Ilg;, M" = ®I_,I'eng;, and I, I’ (i = 1,...,r) ideals of E generated by

monomials in ey, ...,e,_1, i.€., monomial ideals of E, and
g ! 1
L:@;:ljigi:L + L7,

with L' = @7_, J!g;, L = @&I_,Jeng; and J!, J! monomial ideals of E.
It is clear that M’ is an almost strongly stable submodule and that L’ is a lex submodule.
Hence, if we prove that dimg L, < dimg M], from the inductive hypothesis the assertion

will follows.
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Set, M = r_1I”g;. We can assume that M’ and M" are lex submodules.

Indeed, let M = lejigi (L = @lejigi, respectively) be the lex submodules of F
generated by those monomials ug; with v monomial of E and such that dim Ms = dimg M!
(dimg Ly_1 = dimg M”_,, respectively).

Let N=M+ L = @lefigi + @ jzgZ We prove that N is an almost strongly stable
submodule.

First of all note that I:v, jz are lex ideals and so strongly stable ideals, for all . On the
other hand, by [AHH98, Lemma 3.7, Theorem 3.9], one can verify that ji(el, cesln_1) C fi,
for all 7. Hence, N is an almost strongly stable submodule.

Now, we are in the following situation:
M =& Ligi + &1 llengi, L= &1 Jigi+ &1 S engi

where M is an almost strongly stable submodule and L is a lex submodule, and in addition
M' = @&"_I'gi, M" = ®"_,I"g; are lex submodules. Assuming that dimg L, < dimg M,
we want to prove that

Thanks to Lemma 3.3.6 we have
min(G(M")) = ap(min(G(M)) <jexp min(G(L")) = ap(min(G(L")).

Since the submodules L’ and M’ are lex, the inequality (3.3.6) holds. Hence, by the inductive
hypothesis, the required inequality (3.3.5) follows. O

By using combinatorial arguments one can quickly verify the following lemma.

Lemma 3.3.8 Let M be an almost strongly stable submodule of F' generated in degree d. If
Mq41y is the submodule of F' generated by the elements of May1, then

m; (May1y) = m<i—1(M)
for all i.

If M is a set of monomials of degree d < n of F', we denote by M{ey,...,e,} the following
set of monomials of degree d + 1 of F' [AC18b, CF15]:

M{ela o '7671} = {(_l)a(ayj)ejeagi P €00 € M7 .7 ¢ Supp(ea), .] = 17 R t= 17' . 'T}a

ao,j) = |{r € o : r < j}|. Such a set is usually called the shadow of M.

Theorem 3.3.7 and Lemma 3.3.8 yield the following result.
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Theorem 3.3.9 Let M be a graded submodule of F'. Then
Bi i (M) < B (M),
for alli,j.

Proof. The proof is quite similar to [AC18a, Theorem 4] (see also [AHH97]). Due to (3.3.1)

and (3.3.2), from Proposition 3.1.7, we may assume that M is a strongly stable submodule.

From (3.3.3) we have:

Biivi(M) = Z (mF(u) i 1), for i > 1. (3.3.7)

weG (M), mp(u) -1

Since G(M); = G(Mjy) — G(M(j_1y){e1,...,en}, the above sum can be written as a
difference f; ;1;(M) = C' — D, with

o= 2 (")

n

Y > (Th)-gmoen()

t=1 ueG(My;t)

j (m<i (M) — mee—1 (M) (t e 1)

et t—1

n+1—1
ZmSn(M<j>)< "1 >

n—1 . .
t+1—1 t+1+1—-1
St [(77) (77
t=1
. n—1 .
n+1—1 t+i1—1
mén(M<j>)< no1 >Zmét(M<j>)< ; )
t=j
and

b= 2 <mi(:<)uj: 1)

u€G(M;_1y){er,--en}

- t+i—1
Zm<tl(M(j1))( P )
t=2

from Lemma 3.3.8. On the other hand, since the number of generators of M4 and M %g’)‘ are

equal for all d, we have m<,, (M) = mgn(M%Z’;). Hence, from Theorem 3.3.7, mgi(M%Z’;)
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< mei(Mg) for 1 <i < n, and consequently:

n—1

- t+i—1
Ym0 <
t=2
. n—1 .
wfn+i—1 W ft+i—1
<me, (i) (" 71T - Dmatart ()
t=j

- o\ [tHi—1 N
—Zm<t1(M<1§1>)( t—1 )Zﬁfviﬂ‘(Mle ).

. n—1 -
Biji+i (M) = m<n(M<j>)(n e 1) - > ma(M) (t . 1_ 1)
=

Finally, from Proposition 3.2.3 and Theorem 3.3.9, next result follows.
Corollary 3.3.10 Let M be a graded submodule of F'. Then
Big(M) < B3 (M™*) < i j(M'™),  for all i,].
Example 3.3.11 (1) Let E = K(ey, e, e3,¢e4,e5) and F = E3. The submodule
M = (e1ea, e1e4, e3e4€5)g1 @ (€163, e1€4€5, €2e3€4)g2 © (16264, €1€3€5)73

of F is not an almost lex submodule of F'. It is sufficient to observe that the ideal (ejeq, e1eq,

eseqes) is not a lex ideals of E. Consider the almost lex submodule

alex
M =(e1eg, e1€3,e1€4€5, e2e3€4€5)g1 B (€162, €1€3€4, €1€3€5, €2€3€4€5) G2 P

(e1e2e3, €1€2€4, €1€3€4€5)73,
which is not a lex submodule of F' (see Example 3.2.6), and the lex submodule

le
M® =(e1ea, e1e3, €164, €2€3€4, €2€3€5, €2€4€5, €3€4€5) 1D
(616263, €1€2€4, €1€2€5, €1€3€4€5, 62636465)92@

(61626364, €1€2€3€5, €1€2€4€5, 61636465)93

One can quickly verify that Hp/n = (3,15,27,17,1,0) = Hp)pparex = Hpyppiex.
Moreover, using the computer program Macaulay2, if one compares the Betti diagrams

of the submodules above considered, one has the Corollary 3.3.10:

total ‘ 8 26 59 113 195 313 476
2 3 7 12 18 25 33 42
3 5 18 42 80 135 210 308
4 - 1 5 15 35 70 126
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Betti diagram for M

total | 11 43 113 243 460 796 1288
2 3 7 12 18 25 33 42
3 5 21 56 120 225 385 616
4 3 15 45 105 210 378 630

Betti diagram for Malex

total | 16 69 190 419 805 1406 2289
2 39 19 34 55 83 119
3 7 31 8 190 365 637 1036
4 6 29 8 195 385 686 1134

Betti diagram for M!'e*
(2) Now, let F' = @3_, Eg; with deg g = —1, deg g2 = 0 and deg g3 = 1. Now, let us
consider M of (1) as submodule M’ C F’. For the same reason as before, it is not an

almost lex submodule of F’. Consider the almost lex submodule

ralex
M =(e1e2, €163, €1€4€5, €2e3€4€5)g1 B (€162, €1€3€4, €1€3€5, €263€4€5)G2P

(e1e2e3, €1€2€4, €1€3€4€5)73,
which is not a lex submodule of F’ (see Example 3.2.6), and the lex submodule

Ilex
M"® =(e1ez, e1e3, e1e4€5, €2€3€4) 91D

(616263, €1€2€4,€1€2€5, €1€3€4, €1€3€E5, 62636465)92 S (616263, €1€2€4, 61636465)93

One can quickly verify that Hg/p = (1,6,14,18,15,8,1,0) = Hpjppmex = Hpjppnex.
Moreover, using the computer program Macaulay2, if one compares the Betti diagrams of

the submodules above considered, one has the Corollary 3.3.10:

total | 8 26 59 113 195 313 476
1 2 5 9 14 20 27 35
2 2 6 13 24 40 62 91
3 2 8 20 40 70 112 168
4 2 6 12 20 30 42 56
) - 1 5 15 35 70 126

Betti diagram for M’
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total | 11 43 113 243 460 796 1288
1 2 9 14 20 27 35
2 2 8 39 75 132 217
3 3 14 40 90 175 308 504
4 3 12 31 65 120 203 322
5 1 5 15 35 70 126 210

Betti diagram for M//alex

total | 13 52 136 289 540 923 1477
1 2 5 9 14 20 27 35
2 2 9 25 55 105 182 294
3 5 21 56 120 225 385 616
4 3 12 31 65 120 203 322
5 1 5 15 35 70 126 210

Betti diagram for M//1ex

3.4 Graded Bass numbers

In this section we analyze the graded Bass numbers of graded submodules of F. We are
interested in determining upper bounds for such invariants.

If M € M, we recall that M has a unique minimal graded injective resolution:
Io:0>M—1°—>T1' 1% — ...,

where I' = @;E(n — j)*+ M) The integers j; ;(M) = dimy Ext’; (K, M); are called the
graded Bass numbers of M [BH96, Ki0].

Let M* be the right (left) E-module Hompg (M, E). The duality between projective and
injective resolutions implies the following relation ([AHH97, Proposition 5.2]) between the

graded Bass numbers of a module and the graded Betti numbers of its dual.

Proposition 3.4.1 Let M € M. Then
Bij (M) = psn—j(M"), for alli,j.

For the reader’s convenience, we recall some notions and results from [AHH97, K10]. Let
M € M and let M* be the right (left) E-module Homg (M, E).
We quote next result from [AHH97, Proposition 5.1].
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Lemma 3.4.2 Let M € M. Then
dimg M} = dimg M,,—;, for alli.

Let us consider the dual module Hompg (F/M, E), where M is a graded submodule of F.
If rank FF =1 with f; =0, i.e., F = E and M = [ is a graded ideal of F, then

Hompg(E/I,E)~0:1, (3.4.1)

where 0 : I is the annihilator of I, i.e., the set of all elements b € E such that ba = 0, for all
a € I. Moreover, from Lemma 3.4.2 (see also [AHH97, Corollary 5.3])

dimg (E/I); = dimg(0: I),—; for all 3. (3.4.2)

Remark 3.4.3 The ideal 0 : I is spanned as K-vector space by all monomials ez such that
ey ¢ I, where & is the complement of o in the set {1,...,n} (see [AHH97, Proposition 5.7,
proof). Furthermore, if I is a lex ideal in E, then 0 : I is a lex ideal in E, too. Note that 0 : I
is the exterior version of the Alexander dual of a squarefree monomial ideal in a polynomial

ring.
The next example will be useful for describing our strategy in Theorem 3.4.5.

Example 3.4.4 Let E = K{e1,e,e3,¢4) and F = E3. Let us consider the lex submodule
of F

L = (e1ez,e1e3, €104, €263¢4)g1 © (€1€2€3, €1€2€4, €1€3€4, €263€4)G2 D (€1€2€3€4)73.
Setting I1 = (e1ez, e1e3,e1e4, e2e3€4), Io = (e1e2e3, e1€2e4, €103€4, €2€3€4) and I3 = (e1eze3ey),
one has

0: Il = (6162, €1€3,€1¢€4, 626364),

0: Iy = (ejez, e1e3, €164, €263, €2€4, €3€4),

0: I3 = (e1,e2,e3,e4).
Even though the annihilators above are lex ideals, the submodule N = @7_,(0 : I})g; is not a
lex submodule of F' (see for instance Proposition 3.2.1). Indeed, the monomial eseq ¢ 0 : I.

Equivalently, ese4g1 >1exp €2€492, but esesgo € N, whereas eseqg; € F'\ N. Conversely,

N=(0:13)g1©(0: I2)g2 ® (0 : I1)g3

is a lex submodule in F. Note that (F/L)* ~ N ~ N as E—graded modules (see (3.4.1))
and HF/N = (3,8,3,0,0) = HF/]V

Theorem 3.4.5 Let M be a graded submodule of E™, r > 1. Then

i j(E" /M) < p; j(E" /M), for alli,j.
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Proof. Set F = E". The case r = 1 has been proved in [AHH97, Corollary 5.8]. Assume
r> 1.
From Proposition 3.4.1 and Theorem 3.3.9, one has

pi j(F/M) = Bi i (Homp(F/M, E)) < B n—; (Homg(F/M, E))'). (3.4.3)

Let us consider the lex submodule M'°*. Tt is M'e* = Bi_1Jigt, with each J; lex ideal in

E and (eq,...,e,)mde8)t C J, | for t =2,...,r. Moreover, from (3.4.1),

Ni,j(F/Mlex) = Bin—j(®1=1(0 : Ji)ge).

Now, consider the submodule @}_;(0 : J;)g: of F. It is not a lex submodule in general
(see for instance Example 3.4.4), nevertheless the behavior of the ideals J;, together with
the fact that degg; = 0 for all ¢, assures that ®}_;(0 : J,_;—1)g: is a lex submodule of F’
(see also Remark 3.4.3).

Moreover, it is clear that @}_;(0: J¢)g: ~ ®}_1(0 : Jr—¢—1)g:. Hence

i i (F/M') = Bi i (D71 (0 Jr—1—1)g1). (3.4.4)

Claim. The graded E-modules (Homp(F/M, E))"™ and @7_,(0 : J,_;_1)g; have the same

Hilbert function.

Set P = (Homp(F/M,E))™ and Q = @&7_,(0 : J,_;_1)g;. From Lemma 3.4.2 and
(3.4.2), we have

dimg P; = dimg ((Hompg(F/M, E))'); = dimg (Hompg(F/M, E)),
= dimg (F/M),,_; = dimg (F/M"),,_;

= dimg(0: Jp)i =Y _dimg(0: Jo_o1)s

t=1 t=1

The claim follows.
Therefore, since P and @ are lex submodules of F' with the same Hilbert function, then
they coincide. Finally, from (3.4.3) and (3.4.4),

pi i (F/M) < Bin—j(P) = Bin—j(Q) = Mi,j(F/MlCX)’
for all 7,j. O

We close this Section discussing the annihilator of a submodule of F'. The next proposition
generalizes some results in [AHH97] (Remark 3.4.3).

Proposition 3.4.6 Let M be a graded submodule of .
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(1) If M is a (strongly) stable submodule, then 0 : M is a strongly stable ideal in E.
(2) If M is a lex submodule, then 0: M is a lex ideal in E.

Proof. (1). Since M = &]_,1,¢; is a monomial submodule of F', then
0: M=n_4(0:ILg;)=n;_1(0:1I;),

and each ideal 0 : I; is strongly stable [CF13, Lemma 4.1]. The definition of a strongly stable
submodule assures us that the ideal 0 : M is not null and strongly stable.

Similarly, one can verify that (2) holds. O

If I is a graded ideal of E, then 0 : I'®* = (0 : I)!** [AHH97, Proposition 5.7]. The next
example shows that such a property does not hold if I is a graded submodule of F.

Example 3.4.7 Let E = K{ej,ea,e3,¢4,65) and F = E2. Consider the following submod-
ules of F:

M = (e1eq, e1e3, e1e4e5, eae3€4, €2€4€5, €3€4€5) g1 B (e1€2, €2e3€4) 72,

lex
M = (61627 €1€3,€1€4,€2€3€4,€2€3€5, €2€4€5, 636465)91@(616263, €1€2€4, €1€2€5, 61636465)92~
One has

0: M = (e1e4, €1€2€3, €1€2€5, €1€3€5, €2€3€4, €2€3€5),
. lex __
(0: M) = (e1e2, e1e3€4, €1€3€5, €1€4€5, €2€3€4, €2€3€5),

. lex _
0: M = (e1eze3, €162€4, €1€2€5, €1€3€4, €1€3€5, €1€4€5, €2€3€4).

Hence, 0 : M 2 (0 : M)'ex,

3.5 Macaulay?2 packages

In this Section, we describes other procedures of the packages “Exteriorldeals.m2” and “Ex-
teriorModules.m2” introduced in the Section 2.5. We collect some examples in order to
describe the algorithms to easily compute stable, strongly stable and lexsegment ideals in

and the (almost) stable, (almost) strongly stable and (almost) lex submodules of F'.

Example 3.5.1 Given a monomial ideal I in an exterior algebra FE, we illustrate how some
functions from our package allow one to check whether I is (strongly) stable or lex and to
produce (strongly) stable ideals containing I. The core of the algorithms is based on the fact
that the minimal monomial generators of a (strongly) stable ideal must satisfy the criterion
in Definition 3.1.1 (it is sufficient to apply it only on a set of generators of the ideal) and on

the fact that the shadow of a lexsegment of monomials is again a lexsegment [HH11].
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Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorIdeals"

i2 : E=QQ[e_1..e_5,SkewCommutative=>true]
i3 : I=ideal {e_2*e_3,e_3*e_4*e_5}

03 = ideal (e_2e_3, e_3e_4e_b)

03 : Ideal of E

i4 : isStableldeal I

o4 = false

The ideal I is not stable. Indeed, the monomial e;es is not in I even though eses is. Hence,

by the function StableIdeal(ideal), we compute the smallest stable ideal I's containing I:

i5 : Is=stableldeal I

05 = ideal (e_le_2, e_le_3e_4, e_2e_3, e_3e_4e_b)
o5 : Ideal of E

i6 : isStableldeal Is

06 = true

i7 : isStronglyStableldeal Is

o7 = false

The ideal Is is stable but not strongly stable in E. Note that the monomial ejes is not in
Is even though eses is. Using the function stronglyStableIdeal (ideal), we compute the

smallest strongly stable ideal (Iss) containing Is, and consequently I:

i8 : Iss=stronglyStableldeal Is

08 = ideal (e_le_2, e_le_3, e_le_4e_5, e_2e_3, e_2e_4e_5, e_3e_4e_5)
08 : Ideal of E

i9 : isStronglyStableldeal Iss

09 = true

110 : Iss2=stronglyStableldeal I

010 ideal (e_le_2, e_le_3, e_le_4e_ 5, e_2e_3, e_2e_4e_5, e_3e_4e_b)
010 : Ideal of E

i1l : Iss==Iss2

oll = true
Now, we extend to submodules of F' all can we have done for ideals.

Example 3.5.2 Let M be a monomial submodule of a graded free module F', we illustrate
functions from “ExteriorModules” package analogously to those for ideals: to check whether

M is (strongly) stable or lex and to produce (strongly) stable modules containing M.
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Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true];

i3 : F=E"2;

i4 : I_1=ideal {e_1%e_2, e_1%e_3, e_l*e_4xe_b};

i5 : I_2=ideal {e_1*e_2, e_2%e_3%e_4};

i6 : M=createModule({I_1, I_2},F)

06 = imagele_le_3 e_le_2 e_le_4e 5 0 0 |
[0 0 0 e_le_2 e_2e_3e_4|

06 : E-module, submodule of E~2

i7 : isStableModule M

o7 = false

The module M is almost stable but not stable: the monomial esesey is not in Iy (Defi-
nition 1.2.9). We can compute the smallest stable module containing M by the function
StableModule (module).

i8 : Ms=stableModule M

08 = imagele_le_2 e_le_3 e_le_4e_5 e_2e_3e_4 0 0 |
[0 0 0 0 e_le_2 e_2e_3e_4|

08 : E-module, submodule of E~2

i9 : isStronglyStableModule Ms

09 = false

The ideal Ms is stable and but not either almost strongly stable and strongly stable. In
fact, the ideals (ejea, eaesey) is not strongly stable. We compute the smallest strongly stable

module containing M s by using the function stronglyStableModule (module)

i10 : Mss=stronglyStableModule Ms

010 = imagele_le_2 e_le_3 e_le_4e_ 5 e_2e_3e_4 0 0 0 |
|0 0 0 0 e_le_2 e_le_3e_4 e_2e_3e_4|

010 : E-module, submodule of E~2

i1l : isStronglyStableModule Mss

ol1

i12 : Mss==stronglyStableModule M

true

012 = true

The module M ss is not an almost lex submodule of F: the ideal (ejeszey, eseseq) is not lex.

One can verify it and compute the almost lex submodule associated to Mss.
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i13 : isLexIdeal (getIdeals Mss)_1

013 = false
i14 : isAlmostLexModule Mss
0l4 = false

i15 : Al=almostLexModule Mss
015 = imagele_le_2 e_le_3 e_le_4e_5 e_2e_3e_4
|0 0 0 0
0 0 0 0
e_le_2 e_le_3e_4 e_le_3e_5 e_2e_3e_4e_5|
015 : E-module, submodule of E~2

Finally, we compute the Betti tables of the almost lex submodule and the lex submodules

associated to a monomial submodule M.

Example 3.5.3 Let M be a monomial submodule of a graded free module F', we illustrate

some functions from “ExteriorModules” package to compare the Betti diagrams of M, M2x

and M'ex,

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

il : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true];
i3 : F=E"{2,1,-1};

i4 : I_1=ideal({e_1*e_4,e_3*e_4*e_51});

i5 : I_2=ideal({e_1*e_4*e_5,e_2%e_3*e_4});
i6 : I_3=ideal({e_1%e_3*e_5});

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image {-2}le_le_4 e_3e_4e_5 0 0 0
{-1}10 0 e_le_4e_5 e_2e_3e_4 0
{1} 10 0 0 0 e_le_3e_5]|

o7 : E-module, submodule of E~3
i8 : isAlmostLexModule M

08 = false

i9 : Malex=almostLexModule M

09 = image {-2}|le_le_2 e_le_3e_4 O 0 0 0 |
{-1}10 0 e_le_2e_3 e_le_2e_4 e_le_3e_4e 5 0
{1} |0 0 0 0 0 e_le_2e_3|

09 : E-module, submodule of E~3
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i10 :
010
i1l
ol1

ol1l

isLexModule Malex

false

: Mlex=lexModule M

image {-2}le_le_2 e_le_3e_4 e_2e_3e_4e_5
{-1}l0
|0

{13}

0 0
0 0
{-2r 0 0 0 0 |
{-1} e_le_2e_3 e_le_2e_4e_5 e_le_3e_4e 5 0 |
{1+ o 0 0 e_le_2e_3|

: E-module, submodule of E~3

Now, we can compare the Betti diagrams of the submodules we have found.

i12

ol2

ol2
i13

ol3

ol3
il4

ol4

ol4d

: minimalBettiNumbers M

0

1 2

3 4 5 6

= total: 5 16 36 69 120 195 301

0:
1
2:
3

4:

1
1

1

2 3

4 5 6 7

4 10 20 35 56 84
2 612 20 30 42 56
1 515 35 70 126
3 610 15 21 28

= BettiTally

: minimalBettiNumbers Malex

= total:

w N = O

4:

0
6

= N R e

1

1 2

3 4 5 6

21 50 99 175 286 441

2 3

4 5 6 7

4 10 20 35 56 84
7 16 30 50 77 112
5 15 35 70 126 210
3 610 15 21 28

= BettiTally

: minimalBettiNumbers Mlex

= total:

w N = O

0

1 2

3 4 5 6

7 27 70 149 280 482 777

1
1
2

2

1

2 3
4 10
8 21
10 30
3 6

= BettiTally

4 5 6 7
20 35 56 84
45 85 147 238
70 140 252 420
10 15 21 28



Chapter 4

Extremal Betti numbers

Let K be afield and let S = KJz1,...,z,] be a polynomial ring over a field K of characteristic
0. We analyze the behavior of the extremal Betti numbers of special classes of monomial
ideals of S known as the t—spread strongly stable ideals, where ¢ is an integer > 0.

We focus our attention on the cases t = 0,1, 2.

4.1 A hierarchy of monomial ideals

Let us consider the polynomial ring S = K|[x1,...,x,| as an N-graded ring where degx; = 1,
i = 1,...,n. Some definitions we will use in this chapter have been given in Chapter 1
(Section 1.2).

A monomial x;, x;, - - x;, € S'is squarefree if 1 <4y <ig < -+ <1iqg <n. A graded ideal

I of S is a squarefree monomial ideal if I is generated by squarefree monomials.

Definition 4.1.1 Let I be a squarefree monomial ideal of S. I is called a squarefree stable
ideal if for all u € G(I) one has (7;u)/Tmax(u) € I for all j < max(u), j ¢ supp(u).

I is called a squarefree strongly stable ideal if for all u € G(I) one has (z;u)/z; € I for all
i € supp(u) and all j < i, j & supp(u).

In [EHQ19], the notion of a t—spread monomial ideal has been introduced.

Let t > 0 be an integer. A monomial z;, 2, ---2;, with 1 <43 <o < --- < i3 < nis
called t-spread, if i; —i;_1 >t for 2 < j < d. Note that, any monomial is O-spread, while
the squarefree monomials are 1-spread.

For example, the monomial zozsag € K|x1,...,x5] is 3—spread.

Definition 4.1.2 A monomial ideal in S is called a t—spread monomial ideal, if it is gener-

ated by t—spread monomials.

It is clear that if ¢ > 1, then every t—spread monomial is a squarefree monomial ideal.

7
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Definition 4.1.3 A t-spread monomial ideal I of S is called t—spread stable, if for all ¢-
spread monomials v € I and for all i« < max(u) such that z;(u/Tmax(w)) i a t-spread
monomial, it follows that 2;(u/Zmaz(w)) € 1.

The ideal I is called t—spread strongly stable, if for all t—spread monomials v € I, all
j € supp(u) and all ¢ < j such that z;(u/z;) is t-spread, it follows that z;(u/z;) € I.

Every t—spread strongly stable ideal is also t—spread stable.
One can notice that the notion of t-spread (strongly) stable ideal generalizes the notion

of (strongly) stable ideal and of squarefree (strongly) stable ideal.

Remark 4.1.4 The defining property of a t—spread strongly stable ideal needs to be checked
only for the set of monomial generators. Indeed, if I is a t—spread monomial ideal of .S, then
I is t—spread strongly stable if and only if the ideal I satisfies the following condition: for
u € G(I) and j € supp(u), if # < j and x;(u/x;) is a t-spread monomial, then z;(u/x;) € I
[EHQ19, Lemma 1.2].

Let uq,...,u,, be t—spread monomials in S. The unique t—spread strongly stable ideal
containing u1, . . ., Uy, will be denoted by By (u1, . .., un,) [EHQ19]. The monomials uy, . .., U,
are called ¢— spread Borel generators.

In the sequel, we refer to B;(u1, ..., u,) as the finitely generated t—spread Borel ideal. If
t =0, we set Bo(ug,...,umn) = (u1,...,Uny). We will call such ideals finitely generated Borel
ideals (FGBI, for short). The ideal By(u1) = (u1) is called a principal Borel ideal (PBI, for
short).

Example 4.1.5 Let S = K[z1,...,2s] and let us consider the set P = {zzs,x0z625}. We
want to compute some finitely generated ¢-Borel ideals with the monomials in P as Borel

generators.

_ (2 3 .2 2 2
Bo(x128, wow628) = (27, 122, X103, L1284, T1T5, T1T6, T1L7, T1T8, Ty, ToL3, ToT4, T3Ts,
2 2 2 2
LoXgy, Lol7,Lalg, L2X3, L2L3L4, L2XL3L5, T2LILE, L2LILT, L2XILS,
2 2
L2Lyy L2LALE ) XL2TALEG, L2LALT, L2L4XG, 2L 5, L2X5LE, L2L5LT,

2 .
ToT5T8, Lok, LaLeLT, LaT6Ls);

B1($1$8,9€2$6$8) = (351362,351%3»961%4,SE1$57$1$67$1$7,$1$8,$2$3$4,$2$3$5,$2$3$6,
L2XZLT, L2XL3LG, L2LALE, L2LALEG, L2LALT, L2L4XG, L2XL5X6, L2L5LT,

ToT5T8, TaTeLT, TaLGLR);

32(151308,902%6568) = (55190375513347501%5,%1%6,£U1CE7,$1CE8,IE2$4CE6,$2$4$7,$2$4$879€2$5$7,

T2T5T8, 172$6x8)~
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For an arbitrary monomial ideal I, we denote by I;, the j-th graded component of I and
call the set of ¢t-spread monomials in I;, the ¢-spread part of I; and denote it by [I;];.

Now, let M, 4+ be the set of all ¢-spread monomials of degree d in S and let NV be a
non-empty subset of M, 4;. If T' is a subset of S, we denote by Mong(T") = M,, 40 N T the
set of all monomials in T and by Monj(T) = M,, 4.1 NT the set of all squarefree monomials
of degree d in T.

Let us define the following set:

Shad;(N) ={zjw:we N,i=1,...,n} N My dg+1,-

It is clear that Shad:(IV) could be empty. The set Shad;(N) # @) will be called the t—shadow
of N.

A special class of t—spread strongly stable ideals consists of t-spread lex ideals, which are
defined as follows [AC19f].

Definition 4.1.6 (a) A subset L of M, 4, is called a ¢t—spread lex set, if for all v € L and
for all v € My, g+ With v >ex u, it follows that v € L.
(b) Let I be a t-spread monomial ideal. Then I is called a t—spread lex ideal, if [I;]; is a

t—spread lex set for all j.

Example 4.1.7 Let S = Klx1, 29,23, 24, 25]. The ideal I = (212923, 212224, T12T2T5,

T1T3T4, TaT3T4Ts5) 18 a squarefree lexsegment ideal of S.

We recall the next definition from [AC19e].

Definition 4.1.8 Let u = x;, ---z;, be a squarefree monomial of S of degree ¢ < n. We
say that u has a j-gap if ¢j41 —¢; > 1 for some 1 < j < g. The positive integer ;41 —4; — 1
will be called the width of the j-gap.

The j-gap of a squarefree monomial u = x;, ---x;, € S will be denoted by j-gap(u),
whereas its width will be denoted by wd(j-gap(u)). Moreover, we define

Gap(u) := {j € [q] : there exists a j-gap(u)}.

One can observe that for ¢ > 1, Shad;(N) # 0 if there exists a squarefree monomial

u=ua; - -x;, €N satisfying at least one of the following conditions:
(1) 11 >t
(ii) wd(j-gap(u)) > 2t, for 1 < j < d;

(iii) ig <n—t.
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For instance, if zszszg € Mg g2, then Shads({zszsze}) = {w1x32529, T3252729} C
Mg 495 if zaxg € Mig o3, then Shads({zaze}) = {12429, Tax912} C Mio 33; whereas,
if zgzexg € Mo 3,3, one has Shads({zszzezg}) = 0.

Now, we study the extremal Betti numbers of t—spread strongly stable ideals.

For any graded ideal I of S, there is a minimal graded free S-resolution [BH96]
Fo:0=Fs—- = F =>F—=1-=0,

where F; = ®;ez5(—7)+i. The integers 3;; = B;;(I) = dimg Tor;(K,I); are called the
graded Betti numbers of I.

If I is a t—spread strongly stable ideal, there exists a formula to compute the graded Betti
numbers of I [EHQ19, Corollary 1.12]:

Brrre) = 3 (m"(“) S 1)- (4.1.1)
weG(I),

Note that the formula in (4.1.1) becomes the well-known formula of Eliahou and Kervaire
[EK90] for (strongly) stable ideals for t = 0; whereas, if ¢ = 1 then it coincides with the
formula stated by Aramova, Herzog and Hibi for the class of squarefree (strongly) stable
ideals [AHH9S].

Definition 4.1.9 /[BCP99] A graded Betti number By x1e(I) # 0 is called extremal if
Bi,i+;(I)=0foralli >k, j > ¢, (i,7) # (k,0).
The pair (k,¢) is called a corner of I.

Next results, that lead to a characterization of the extremal Betti numbers of a t—spread
strongly stable ideal, are quite similar to the ones in [CU00, CU03]. We include them in this

section for completeness of information.

Lemma 4.1.10 Let I be a t-spread strongly stable ideal of S. If Biiy;(I) # 0, then
Brkti (1) #0 fork=0,....,i.

Proof. If B;.i4;(I) # 0, by (4.1.1) there exists u € G(I); such that max(u) —t(j —1)—1 >,
i.e., max(u) > i +t(j — 1) + 1. It follows that max(u) > k+¢(j — 1)+ 1, for k =0,...,4,

and again from (4.1.1), the assertion follows. O

From Definition 4.1.9, it follows:

Corollary 4.1.11 Let I be a t—spread strongly stable ideal. The following conditions are

equivalent:

(a) Brp+e(I) is extremal;

(b)(b.1) Brxre(I) #0;
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(b.2) Brk+;(I) =0, forj > ¢;
(b.3) Biite(I) =0, fori>k.
Lemma 4.1.10 and Corollary 4.1.11 yield the following characterization.

Theorem 4.1.12 Let I be a t—spread strongly stable ideal of S.

The following conditions are equivalent:
(1) Br, k+e(I) is extremal;

(2) k+t(l —1)4+ 1 = max{max(u) : v € G(I)¢} and max(u) < k+¢(j — 1)+ 1, for all
Jj > L and for all u € G(I);.

Proof. (1)= (2). By (4.1.1) B, k+e(I) # 0 if and only if there exists a monomial u € G(I),
such that max(u) > k +¢(£ — 1) + 1. Hence max{max(u) : v € G(I)¢} > k+t({—1)+ 1.

Suppose j + t(£ — 1) + 1 := max{max(u) : v € G(I)g} > k+t({ — 1)+ 1. Hence

Bjj+e(I) # 0, for j > k. This is a contradiction from Corollary 4.1.11, (b.3). Hence
E+t(l—1)4+1=max{max(u) : u € G(I)s}.

Suppose there exist an integer j > ¢ and a monomial v € G(I); such that max(u) >
k+t(j—1)+1. From (4.1.1), then By x+;(I) # 0. Again a contradiction from Corollary 4.1.11,
(b.2).

(2)= (1). Since k+t({ — 1) + 1 = max{max(u) : v € G(I)¢}, then By r+e(I) # 0 and
Bi,ire(I) =0, for all ¢ > k. On the other hand max(u) < k+¢(j — 1) +1, for all j > ¢ and

for all w € G(I);, implies By, x+;(I) = 0. Hence from Corollary 4.1.11, we get the assertion.
O

As a consequence we obtain the following:

Corollary 4.1.13 Let I be at-spread strongly stable ideal of S and let By, k+¢(I) an extremal
Betti number of I. Then

5k,k+€(1) = |{u eG(I),: max(u) =k —l—t(f -1)+ 1}|

Now, let t > 1 and let My, ¢+ be the set of all ¢-spread monomials of degree ¢ in S. From
[AC191] (see also [EHQ19, Theorem 2.3]), one has

n—L-1)(t—-1
My, 04| = ( ( ’ ) )> (4.1.2)
Hence, if (k,¢) is a pair of positive integers such that k 4+ ¢(¢{ — 1) + 1 < n, one has
k+t(£—1)+1—(€—1)(t—1)—1)

|{ueMn,é,timaX(U)=k+t(€—1)+1}|:( ¢

(4.1.3)
_ (k Zf; 1). (4.1.4)
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As a consequence, if I is a t—spread strongly stable ideal of S and Sy, x+¢(I) is an extremal

Betti number of I, then from Theorem 4.1.12, we have the following bound:

1 < Brpete(l) < (k+€—1)'

i (4.1.5)

4.2 Algorithms for a FGBI

In this Section, we examine the following problem.

Problem 4.2.1 Given two positive integers n,r, 1 < r <n — 1, 7 pairs of positive integers

(k1,01), ..., (kpy b)) such that n — 1> kg > ko> - > k. > 1,1 <) <y < -+ < L., and
r positive integers aq, ..., a,, under which conditions does there exist a graded ideal I of S
such that B, k46, (I) = a1, - .., Bk ko+e.(I) = a, are its extremal Betti numbers?

An answer to Problem 4.2.1 can be found in [CU00, CU03, Crul6, Crul7, Crul9, HSV14].
In [HSV14] a crucial role is played by the class of piecewise lexsegment ideals. The notion
of piecewise lexsegment ideal has been introduced by Shakin in [Sha03] (see also [Mur07]).
A monomial ideal I C S is said to be piecewise lexsegment if for any monomial u € G(I) of
degree d and for any monomial v € S of degree d such that v > v and m(v) < m(u) we have
that v € I, or equivalently, if there exists lexsegment ideals L; of K[x1,...,2;] (i=1,...,n)
such that L = LS + ...+ L,,S [Sha03, Proposition 2.4].

We realize some procedures to construct FGBI’s of initial degree > 2 with given extremal
Betti numbers (positions as well as values).

From now on, we assume S = K[z1,...,z,] endowed with the lexicographic order >
induced by the ordering x1 > z9 > -+ > x,,.

For the reader’s convenience, we recall some notations from [Crul6].

For u,v € Mong(S), u >1ex v, define the set
L(u,v) ={z € Mong(S) : u >jex 2 Zlex V}-

Let M be a set of monomials of degree d of S. The set of monomials of degree d+1 of S
Shad(M) ={zu: ueM, i=1,...,n}

is called the shadow of M. We define the i-th shadow recursively by Shad’(M) = M,
Shad’(M) = Shad(Shad"~!(M)).

Moreover, we denote by min(M) (max(M), respectively) the smallest (the greatest,
respectively) monomial of M with respect to >jex. Setting w = min(M), if £ > d is an

integer, we define the following set of monomials of degree ¢ in S:

LexShad‘~%(M) = L£(z!, wz’™9).
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We call such a set the lexicographic shadow of M.
Finally, given two positive integers k,d, with 1 < k < n and d > 2, we consider the

following sets of monomials:

A(k,d) = {u € Mong(S) : m(u) = k + 1}, (4.2.1)

and
A(< k,d) = {u € Mong(5) : m(u) < k+1}. (4.2.2)
Setting A(k,d) = {u1,...,uq}, we can suppose, after a permutation of the indices, that
UL lex U2 >lex *** >lex Uq- (4.2.3)

For the ¢-th monomial u of degree d with m(u) = k+1, we mean the monomial of A(k,d) that
appears in the i-th position of (4.2.3), for 1 < i < q. Note that u; = x‘li_lka, Ug = xg_H,
and ¢ = |A(k,d)| = (k'gle).

Furthermore, if u;,u;, ¢ < j, are two monomials in (4.2.3), we will denote by [u;, ;] the

subset of A(k,d) defined as follows:
[uivuj] = {U) S A(kvd) LUy Zlex w Zlex uj}?

[ui, u;] will be called a segment of A(k,d) of initial element u; and final element u;, and
its cardinality will be called the length of [u;, u;]. Note that A(k,d) = [z§ ' ogy1, af ] If

i =7, we set [u;, u;] = {u;}.

The sets in (4.2.1) and (4.2.2) are the first objects involved in the determination of the

ideal we are looking for.

In Algorithm 4.1 we give the pseudocode of the procedure for computing such sets of

monomials.
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Algorithm 4.1: Computation of A(k,d) or A(< k,d)
Input: Ring R, string s, index k and degree [
Output: Set of monomials: A(k,1)
begin

n < number of indeterminates of the ring R;

if k+1<n then

M + monomials of degree [ ;

foreach i€ {k+2..n} do // A(< k,d) computation
‘ M < list of monomials of M not divisible by z; ;

end
if s=" =" then // A(k,d) computation
‘ M < list of monomials of M divisible by xx11 ;
end
end
return M;

end

Now, for our purpose, we give a reformulation of the numerical characterization of all
possible extremal Betti numbers of any graded strongly stable ideal of S [Crul6, Proposition
3.4, Theorem 3.7].

For every subset M C Mongy(S), d > 1, and for every monomial v € M, we introduce

the following set of monomials:
Mau: {1) eEM:v Zlex u};

if M = {u}, then M,,, = M.
Moreover, if (k1,£€1),...,(kr,br), withn—1>ky > ko> - > k. >1land 1 </ </ly <
-+ < L, are the corners of a graded ideal I, according to [Crul6], the following notions can

be introduced:

COI"H(I) = {(klvgl)a LR (kTng)}v a(I) = (ﬁk’hkr‘rh (I)7 s 7/8kr,k7‘+ér (I))

Corn([I) is called the corner sequence of I, and a(I) the corner values sequence of I.
The next definition, introduced in [Crul6], was motivated by the fact that, for every

graded ideal I of S, Corn(I) defines a corner sequence.

Definition 4.2.2 [Crul6, Definition 4.1] Let (k1,...,k.) and (¢1,...,¢,) be two sequences
of positive integers such that n — 1> ky > ko > - > k. > 1land 1 < {; < /ly < -+ < {,.
The set C = {(k1,41),...,(kr, £.)} is called a corner sequence and /1, ..., £, are called the

corner degrees of C.
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Definition 4.2.3 [Crul6, Definition 4.3] A totally ordered corner sequence C = {(k1,41),
..y (kr,€r)} is a corner sequence such that (k1,¢1) > (k2,02) > -+ > (kr, {,) where

(k“gl) ~ (k‘j,gj) if and only if kz 2 ]{Ij and gz S Ej;
we refer to (k;, ¢;) as the i-th element of the ordered corner sequence.

From now on, when we refer to a corner sequence C, we assume that C is totally ordered

with respect to >.
Example 4.2.4 Let S = K|x1, 29,23, 24, x5, x¢) and let
I = (z172, 2173, 2174, 15, TaT3T4, T2T3T5, T2X3T6, TaT4Ts, T2T4T6, T3T4T5T6)

be a squarefree strongly stable ideal of S. The extremal Betti numbers of I are f5¢(I) =
2, fB2,6(I) = 1, as the Betti table of I shows:

0 1 2 3
4 6

5 11 8
1 2 1 -

Hence, the corner sequence and the corner values sequence of I are

Corn(I) = {(3,3), (2,4)}, and a(I) = (2,1).

Proposition 4.2.5 Let n > 4 be an integer. Let (k1,¢1), (ko,l2) be two pairs of positive
integers such that n —1 > ky > ko > 2 and 2 = {1 < {2, and let ay,as be two positive

integers. If K is a field of characteristic 0, then the following conditions are equivalent:

(1) there exists a graded ideal J C S, with extremal Betti numbers Bi, iy +¢, (J) = a1 and

Bk2,k2+52 (J) = a2y

(2) there exists a strongly stable ideal I C S, with extremal Betti numbers By, ky+¢ (1) = a1

and Br, ka+e, (1) = a2;
(3) the integers a; satisfy the conditions:
1 <a; <|A;\ LexShad“ %=1 (A, )|, for i=1,2, (4.2.4)
where Ay = 0,

(1) A = {u S A(kl,fl = 2) DU Zlex $k2xk1+1},'

(i) A ={u€ Ak, l2) s u >1ex 7)2 1 }-
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and if a1 = |[u, ]|, with u,v € Ay, then 1 < ay < |Ay \ LexShad® ~2([u, v])|.

Proof. (1) < (2). [Crul6, Proposition 3.4].
(2) = (3). The inequalities in (4.2.4) satisfied by the integers ai, as are proved in [Crul6,
Proposition 3.4]. Note that A; = [#12, 41, Tk, Tr, 41] and Ay = [#27 ey, 1, 33£2;+1]~
From Characterization 4.1.12, a; is the number of all monomials z € A(k, 1) which deter-
mine the corner (k1,¢1). Furthermore, by (4.1.13), such monomials form a segment [u, v] of
A(ky,£1) of length a1; u = 212k, 41, and v is the a;-th monomial of A; with respect to >jex.
On the other hand, the existence of the extremal Betti number Sk, k,+¢,(I) = a2, ensures
that there exist az monomials of Ay not belonging to LexShad® 2 ([u,v])|. Hence, 1 < ay <
|Ag \ LexShad> =2 ([u, v])|.
(3) = (2). A natural construction of a FGBI I of S with Corn(l) = {(k141), (ke,¢2)} and
a(I) = (a1, as) proceeds as follows.
Let m(a1) be the a;-th monomial of A;, and let m(az) be the as-th monomial of As \
LexShadzz_z(ALm(al)). Note that Ay ¢4,y = [Z1Zk,+1,m(a1)] and a1 = |Aq (0]
We construct a strongly stable ideal I of S in degrees {1 = 2 < {5, using the following

criterion:
- Gz ={v € A(< k1,2) : 2% >1ex v >1ex m(a1)},

- G, = {2 € A(L ko, l) : m(a1)xf272 >1ex 2 >1ex m(az)}, where m(ay)xf2~2 is the
smallest monomial belonging to Shad“>~2(G(I),).

I is the FGBI we are looking for. O

Theorem 4.2.6 Given two positive integers n,r such that 1 <r <n—1, let (ky, 1), (ka2, l2),
ooy (kr ) be r pairs of positive integers with n —1 > ki > ky > -+ > k. > 1 and
2<l <ty <<ty and let a1, aq,...,a, ber positive integers.

If K is a field of characteristic 0, then the following conditions are equivalent:

(1) there exists a graded ideal J C S, with extremal Betti numbers By, i, +¢,(J) = a;, for

1=1,...,7;

(2) there exists a strongly stable ideal I C S, with extremal Betti numbers B, k,+e¢;, (1) = ai,

fori=1,....r;
(3) sett =max{i: {; <r—i}. The integers a; satisfy the conditions:
1 <a; <|A; \ LexShad“ %=1 (A4;_1)|, for i=1,...,r, (4.2.5)
where Ay = 0,

(i) A1 ={ue€ A(k1,01) : U Zlex Tk, —1Tk,+1}, whenever b1 = 2;
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(i) A; = {u € A(ki,li) @+ U Ziex Th,Thy y * Thy 4 5Tk 4, 12— 1Tki+1}, fOr @ =
1,...,t, whenever £1 > 3, and fori=2,...,t, whenever {1 = 2;

(iil) A; ={u € A(ki, l;) : U >1ex Tk, Tk, ---xki+1xi'i;(lr_i)}, fori=t+1,...,r—1;

(IV) Ar = {U S A(kragr) Lu Zlex xi:+1}7

and if a; = |[u,v]|, with u,v € A;, then 1 < a;41 < |A;j41 \ LexShad“+* =% ([u, v])|, for
alli=1,...r—1,

with 2 <r <n—2 (it has to be n > 5), k. > 2, whenever {;y =2, and 1 <r <n-1,k. > 1,

whenever £1 > 3.

Proof. (1) < (2). [Crul6, Proposition 3.5], [CU03, Theorem 3.1].

(2) = (3). The proof is quite similar to Proposition 4.2.5. The inequalities in (4.2.5) satisfied
by the integers a; (1 < i < r) are proved in [Crul6, Proposition 3.5] and [CU03, Theorem
3.1] (see also, [Crul6, Theorem 3.7]).

From Characterization 4.1.12, a; is the number of all monomials z € A(k;, ¢;) which de-
termine the corner (k;,¢;) (1 <4 < r). Such monomials form a segment [u,v] of A(k;,¥;)
of length a;, with u,v € A;. More precisely, u is the greatest monomial of A; not be-
longing to Shad®~%-*(Mon(I, ) (i = 1,...,r), where Mon(I;, ,) is the set of the mono-

mials of degree ¢;_; belonging to I, whereas v is the a;-th monomial of the segment

i—19
[u, max(A;)], with respect to >jex. On the other hand, the existence of the extremal Betti
number Bi,. .\ k1464, (I) = aip1 implies that there exist a;4; monomials of A;1; not be-
longing to LexShad®+* =% ([u,v])|. Hence, 1 < a;41 < |A;+1 \ LexShad‘+ =% ([u, v]).

(3) = (2). Let m(ay) be the a;-th monomial of A;. Setting
- A/l = Al, and
- Ay = Ay \ LexShad® ™ (4 u(a,)) = A2 \ LexShad® ™ (41 ,(a1)):

let m(az) be the ay-th monomial of Ay. Note that Avl,m(al) = A1 (ay) = [z g, 1, m(ar)).
For i > 3, let us denote by m(a;) the a;-th monomial of A; = A;\LexShad® ~-1 (gi—l,m(ai,l))-
We construct a FGBI I of S in degrees 2 < /1 < {5 < --- < ¢, as follows:

- Gy, = {v € A(S k1, 1) : 28 Z1ex 0 >10 mlar) };

- Gy, ={z € A(< ki, 4;) - m(ai,l)xff*zi’l Slex 2 Zlex M(a;)}, with m(ai,l)xff&’l
the smallest monomial belonging to Shad“~“~*(Mon(I, ,)), for i = 2,...,r, where

Mon(Iy,_,) is the set of the monomials of degree ¢;_; belonging to Iy, ..

One has that Corn(I) = {(k;,4;)}i=1,...r, and a(I) = (a1, ...,a,). O

.....

As we have underlined, a numerical characterization (different in nature from Proposi-

tion 4.2.5 and Theorem 4.2.6) of the possible extremal Betti numbers of a graded ideal in
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a polynomial ring over a field of characteristic zero has been given by Herzog, Sharifan and

Varbaro in [HSV14]. In their paper, the authors have introduced the following notion.

Definition 4.2.7 [HSV14, Definition 3.6] Let i = (i1,...,4) and j = (j1,...,jx) be such
that 0 < iy < ido < -+ < i <m, j1 > jo > ---jr > 0. We say that a graded ideal I of S is
a (i, j)-lex ideal if I = 22:1 L,S, where L, is a lexsegment ideal generated in degree j, in

Klz1, ... zi,41].

Such an ideal is related to the FGBI defined in Theorem 4.2.6 (see also Proposition 4.2.5),

as the following result shows.

Corollary 4.2.8 Given two positive integers n,r such that 1 < r < n—1, let (k1,¢1), (k2,{2),
ooy (kpy£y) be T pairs of positive integers with n — 1 > ki > kg > -+ > k. > 1 and
2< ¥l <ly <+ <4ty and let ay,ao,...,a, ber positive integers.

Let I be a graded ideal of S, then the following conditions are equivalent:
(1) I is the FGBI with extremal Betti numbers Bi, ky+6,(I) = a1, .., Br, ky+0.(I) = ar;

(2) I is the smallest (k, £)-lex ideal with extremal Betti numbers B, ky+¢,(I) = a1, ...,
Bher iy +e, (L) = ap, fork = (kp,..., k1) and £= ({1,...,¢,).

Proof. (1) = (2). Let I be the FGBI with extremal Betti numbers By, k,+¢,(I) = a;
(¢t=1,...,r) constructed by the criterion in Theorem 4.2.6. One can note that I equals the
(k, £)-lex ideal L1 S + L2S + - - - + L,.S defined as follows:

- G(Ly) = G(I)e, = L@, m(ar)) VK w1, ap, 415
- G(L;) = G(I),, U (Shadei*e“l(Mon(IgFl)) NKl[z1,... ,%H])
= L(a% m(a) N K[zy,... 2541, fori=2,...,r.

Its structure assures that Condition (2) is satisfied.

(2) = (1). Let I = L1S + LaS + -+ + LS be the smallest (k, £)-lex ideal with extremal
Betti numbers B, g, +¢,(I) = a; (i =1,...,r), fork = (k,,..., k1) and £ = (¢1,...,¢,). With
the same notations as in Theorem 4.2.6, since a piecewise lex ideal is strongly stable [Sha03,
Proposition 3.5], one has that min L; = m(a;) (i = 1,...,r). Hence, if one minimises the set

of generators of I, the assertion follows. O

Algorithm 4.2 shows the pseudocode of the procedure returning the sets A (1<i<r)
which arise in the construction of the strongly stable ideal we are interested to.
To simplify the notation, in the Algorithms 4.2 and 4.3, we set LS; = LexShad® %=1 (4;_,),

and denote by ZZ [a;] the a;-th monomial of /L with respect to >y, for i =1,... 7.
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Algorithm 4.2: A, Computation
Input: Ring R, Corner sequence {(k;, ¢;)}i=1

,,,,,

Output: Sets of monomials fL

begin

n < number of indeterminates of the ring R;

t < max ({i: {; <r—i}U{0});

foreach i € {1..r} do

Ak;l; < Ak, 4;) 5 // calling Algorithm 4.1
if (i=1) A (¢, =2) then

m < Tk, —1Tk+1 5

if r =2 then // Proposition 4.2.5
| M m- T,
end
end

i (€ 1) A (6> 3))V (i € 2..6) A (¢4 = 2)) then
‘ M= Tl Thy g, 13Tk g, 42—1Tk;+15
end

if (i €t+1.r—1) then

Ci—(r—i
‘ m < T, Tk x (r Z);

i1V

end

if (i =r) then

‘ m <— fihﬁ
end
Al = {u € Akili tu > m} ; // A; computation
if (i =1) then

| LS+ 0;
else

. e Ci—L;—
mi <— Ai,l[ai,ﬂ +In 1;

LS; + {ue Akil; :m <u < x{”};
end
A, — Al \LS; ; /] A computation

end

return list of ﬁ;

end

Finally, Algorithm 4.3 presents the pseudocode of the procedure giving the required
FGBI (or, equivalently the (k, £)-lex ideal, k = (k,..., k1), £ = (¢1,...,£.)), solution of
Problem 4.2.1.
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Algorithm 4.3: FGBI Computation
Input: Ring R, Corner sequence {(k;,¥;)}i=1,...r, T—tuple (a;)i=1, . r
Output: FGBI I
begin

n <— number of indeterminates of the ring R;
A+ list of A; ; // calling Algorithm 4.2
foreach i € {1..7} do
‘ Cond + Cond V (a; < 1)V (a; > |A;]) ;
end
I« (0);
if Cond then
Alkqly  A(< ki, 0) // calling Algorithm 4.1
G+ {u € Alkly : /Nh[aﬂ <u< xlf} ; // G(I)g, computation
foreach i € {2..7} do
Alkil; +— A< ki b;) 5 // calling Algorithm 4.1

= 0—0;
max < A;_1[a;—1] - xn Y

G+ {u € Alkl; : Ajla;] < u < max} ; // G(I)s, computation
end
foreach i € {1..7} do
‘ Li < {u € Alkil; : Aifa;] < u} ; // L; computation
end

I < ideal spanned by monomials in the lists G;;

end

return [;

end

4.2.1 Admissible corner values sequences

In this Section, we provide a procedure to determine the admissible corner values sequences
of a strongly stable ideal with a given sequence of corners.

Let r be a positive integer, and let B = [b1,...,b,.] a list of positive integers. Setting
N = max{by,...,b.}, let us consider the subset of the set D'(N, ) of all ordered selections

with repetition of r items from a set of size N [Ros00], say
D'(B,r)={(y1,---,yr) : 4y <b,i=1,...,7}

We will call D'(B,r) the set of list ordered selections.
Algorithm 4.4 gives the pseudocode of the procedure returning the admissible corner

values sequences.
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Admissible Values for a;
(5753 10 1 " e e e e e e e e e e O O A I O I O I I I R
(44 |11 |11 |1|{1|1]2]2]2[2]2(3[3[3|3|4[4[4[4|5|5|6|7|1|1|2]|3]a
(3,5) | 1234|5671 |2]3|4|5[1|2(3[4]|1]2|3|41|2|1|1|1|2]|1]|1]|as
9% T e e A A e e e e e e A B 1
Table 4.1: List of admissible value for a; of I
Algorithm 4.4: Admissible Corner Values Sequences Computation
Input: Ring R, Corner sequence {(k;, ¢;)}i=1,...r
Output: Table of admissible values
begin
Ub + list of upper bounds ; // from (4.1.5)
repeat
a + next list ordered selections D' (Ub,r) ;
I + FGBI(Corners,a) ; // calling Algorithm 4.3
if I is not NULL then
‘ AV —a; // update list of admissible values
else
‘ Ub <+ max consistent value for a ; // dynamic optimization
end
until a; > Ub; // a1 is the 1l-st component of a;
return AV

end

Next example illustrates how our procedures work.

Example 4.2.9 Let S = Q[z1,...,z7]. Consider the corner sequence

C={(5,3),(4,4),(3,5),(1,7)}.

All the admissible choices for the sequence of positive integers a = (ay, as, a3, aq) for which
there exists a strongly stable ideal I of S such that Corn(I) = C and a(I) = a are (Algo-
rithm 4.4):

Let us consider the case where a = (1,2,5,1). Use of Algorithm 4.2 yields:
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A | 23xg, x1m276

LS| 0

A1 x%xG, T1T2T¢
$3.’13r $2$ T5 .’I)2$ Is $2JT Is IQLUQ €T .’I)2l'r' T1X2X3T5 L1X2XT4T5

AQ 145, 14245, 14345, 14445, 145, 14945, 1424345, 1424445,
.Ill‘ng, $1I§$5, L1345, iEll’g.Tg

LSy | x3zs, zimoxs, ziwsxs, zimaxs, xial

AQ $1£C%Z‘5, T1T2X3X5, T1X2X4T5, Ill‘gl‘%, :E11‘§I5, L1345, 1‘11731%
IE%ZL‘4, Z‘?CL’QIE;;, 17?1’3%4, {E‘;)Z'?l, "E%ZL'%.’L'AL, x%$2$3$4, l‘%l’g%i, fE%(E%(L@,

A3 J)%.Tg;xi, JJ%IE, I1$g$4, .1’1%%133.1’4, l‘ll‘%l’i, $1$2$§$4, .73’1517233‘3.1’421, xlachi,
$1I§$4, LEll’gl‘i, il?lxgwi, LEll’i

LS\; 525411.73472 I?ZQ.:zl, x?x§x4, Ii.’lﬁ‘?h x%x%mi, I%JZQIzl‘;h l‘%xzf?l; l‘%f%l‘;}d
T1X3Ty, T1Ty, T1ToTy4, T1T3X3T4, X1T3Ty, IL1T2X3T4, T1T2X3Ty

Z; xlmgxi, LE11’§1‘4, zlxgsci, 1’1$3$27 -T1l'§

Ay | aSmo, 2823, 2ixd, a3xd, 23l xa§, 2l

LSy | 2829, a}a3, xfad, 2303, 2223, 2128

Ay | af

and, by using Algorithm 4.3, the minimal system of monomial generators of the desired

FGBI is obtained:

3
x1,
2
1'1$2$3,

4
.%'1333,

2
TiT2,
2
T1T5T4,

3
x1x3x4,

2
TiT3,

2
$1$21'5,

2
T1T4,

2
T1X2x3,

2.2 3
.%'13333;‘4, $1$31‘4,

2
T1Ts,

T1X2X3L4,

4
$1x47

2 3
16, T1T9,
3
T1XT2X3X5, T1T2Ty,
7
3,

where the underlined monomials are the Borel generators. Furthermore, it is easy to compute
I=1L115+4 L3S+ L3S+ LyS as a piecewise lex ideal (according to Definition 3.3):

Ly | 23, zixo, 2lxs, 2ixy, 2335, 2376
.1‘411, i’?xg, 1‘?%’3, .7}?(734, .77?.7}5, T%l’%, .I‘%%’ng, .7}%732334,

L2 I%IQIS, l’%Ig, x%x3x4, x%:ch& I%Ii, I%ZB41}5, z’%l’%, zlxg’,
Ill‘%wg, IE1I%I4, .13113%.T5, 1‘1CE2$§, L1X2X3L4, X1X2X3T5
x“?, (L‘%(EQ, 1'[111'3, .1'4111'47 .CL%:L% (E:{’xgl'g, (L‘%(EQ%;;, x‘fx%,
m§x3x4, ‘T%IZ, .Z'%{L'%? xfx%;rg, x%x%m, I%iL‘Ql’%, 1‘%1‘2%3374, .’L'%’EQIZ,

L3 m%x%, 1%131’4, 1’%1‘3%3, .Z'%:L‘i .2311'%7 $1$§$37 $1$§$4, 1‘1%%%%,
581])%.1731‘47 5611)%1}421, .I'l.’l‘g.iﬂg, $1.Z'2£L‘:25584, l‘lle'gﬁ?l, l‘lxgl'i J)ll‘%, xlxgau,
xll‘%ﬂ?i, Jilxgl‘i, .1‘11‘21

Ly (EI, 95?.772, SL‘?(E%, lel‘r; xi’m%, x%x% xlmg: .735

Finally, as a check of our procedures, we report the Betti table of the FGBI above defined,

computed by native functions of CoCoA:
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0o 1 2 3 )
3 6 15 20 15 1
4 7 19 20 10 -
) 6 17 16 5 — -—
6 - - - - - _
7 11 - - —

Remark 4.2.10 It is worth of being recalled that if I is a strongly stable ideal with given

extremal Betti numbers, then there does not always exist a unique finitely generated Borel

ideal with the same extremal Betti numbers (positions and values).

Example 4.2.11 Let S = K|z, ..

.,g]. Consider the strongly stable ideal I = (2%, z122,

T1T3, T1T4, T1T5, T1Tg, x%, 1]%373, $2x§7 x2x§x4, x2x§x5, .1'5). The extremal Betti numbers

of I are

Bs.542(I) = Baaya(I) = Paos(I) =1,

as the Betti table of I shows:

01 2 3 4 5
2 6 15 20 15 6 1
3 23 1 - - =
4 39 10 5 1 -
5 12 1 - - -

(4.2.6)

Note that I is not the finitely generated Borel ideal with the extremal Betti numbers de-
scribed in (4.2.6). Indeed, the finitely generated Borel ideal J such that Corn(J) = Corn(I)

and a(J) = a(I) is (Theorem 4.2.6):

2 4 3 3 3 2.3
J = (21, 2122, 173, T1 T4, T175, T1T6, Ty, ToT3, TyTa, TyTs, TT3),

with the following Betti table

4.2.2 CoCoa package

0 1 2 3 4 5
2 6 15 20 15 6 1
3 - - - - - _
4 4 10 10 5 1 -
5 2 1 - - -

Algorithms described in this section are part of a CoCoA package “ExtrBettiNumbers.cpkgh”,

and tested with CoCoA System 5.1.4. We are confident that this package may reveal useful

for further applications. The source code of the package can be requested directly to the

authors. The package contains two public functions:
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e “StronglyStableldealEB(R, Corners, a, print)”,
e “AdmissibleValues(R, Corners)”.

The function “StronglyStableldealEB(R, Corners, a, print)” requires as input parameters
a polynomial ring (R), a corner sequence (Corners), a corner values sequence (a), and a
boolean value to control the printing. The ring (R) may be defined by the user, and the
functions redefine the ring, forcing QQ as base field, and the lex ordering as monomial ordering.
The sets A;, Zi, computed in Example 4.2.9, are not displayed, and only the minimal set
of monomial generators of the FGBI are printed. The function returns a FGBI, and so it
may be used for further computations. All results are written and returned in the variables
chosen by users.

The function “AdmissibleValues(R, Corners)” requires as input parameters a polynomial ring
(R), and a corner sequence (Corners). Let C = {(k;, ¢;)}i=1,...» be a corner sequence. The
function computes the set D' (Ub, 1), where Ub is the list whose i-th component is the binomial

ki+l;—1
l;—1

the FGBI we are looking for allows us to dynamically update the list Ub by checking the

coefficient ( ), and 7 = |C|. Ub is the so called list of upper bounds. The structure of
existence of the ideal by the function FGBI(Corners, a). Hence, setting a = (a1, ..., a,), it
is possible to reach an optimal list of upper bounds for each a;. As a result, the procedure
returns a table whose columns are the admissible r-tuple a = (a1, ..., a,).

As far as Example 4.2.9 is concerned, within CoCoA (with the “ExtrBettiNumbers.cpkgb”

package installed), the following statements provide the table of all admissible values:

use R::=QQ[x[1..711;
Corners:=[[5,3],[4,4],[3,5],[1,7]1];
av:=AdmissibleValues(R,Corners);

av;
furthermore, the following statements

use R::=QQ[x[1..71];
Corners:=[[5,3],[4,4]1,[3,5],[1,7]1]1;
a:=[1,2,5,1];
I:=StronglyStableIdealEB(R,Corners,a,1);
I;

IsStronglyStable(I);

PrintRes(I);

PrintBettiDiagram(I);

allow to compute the FGBI I with Corn(I) = {(5,3),(4,4),(3,5),(1,7)} and a(I) = a =
(17 27 5’ 1)'
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4.3 Squarefree strongly stable ideals

In this Section, we examine the possible extremal Betti numbers of squarefree strongly stable
ideals in S = K[z1,...,z,]. More precisely, we identify the admissible corner sequence of a
squarefree strongly stable ideal in S.

From now on, we assume Mon,*(S) to be endowed with the squarefree lex order >gjex

induced by ©1 > xo > -+ >z, .
At first, we analyze the simple cases occurring when n = 2, 3.

Case 1. Let n = 2 and S = K[z1,x2]. A squarefree strongly stable ideal I of S can have
at most one corner. More precisely, Corn(I) = {(1,1)} with a(I) = (1), i.e., I = (x1,22).

Case 2. Let n = 3 and S = Klz1,22,23]. Also in such a case, a squarefree strongly
stable ideal I of S can have at most one corner (k,¢), k4 ¢ < 3. Indeed, the only situations

that may occur are listed in Table 4.2.

Corner sequence | Corner values | Squarefree strongly stable ideal
Corn(I) = {(2,1)} | a(d) =(1) I = (21,23, 3)

Corn(I) ={(1, D)} | a(d) = (1) I = (x1,22)
Corn(I) ={(1,2)} | a(d)=(1) I = (z129,2123)
Corn(I) ={(1,2)} | a(l) = (2) I = (2122, 1173, 2273)

Table 4.2: Squarefree corner sequences for n = 3.

Such easy cases allow us to yield the next result.

Proposition 4.3.1 Let S = K[z1,...,x,], n > 2. If I is a squarefree strongly stable ideal
of S with (k,1) € Corn(I), then |Corn(I)| = 1. More precisely, I = (x1,T2,...,Tpt+1)-

Proof. First of all one can observe that G(I)1 = {1,..., 2541} If G(I)>2 # 0, then there
exists a monomial v € G(I) of degree ¢ > 2 such that max(u) > k + 2. A contradiction,

since (k,1) is a corner of I. O
Now, let us consider the case n = 4.

Case 3. Let n = 4 and S = K|[x1,22,23,24]. Assume I to be a squarefree strongly
stable ideal S of initial degree > 2 (Proposition 4.3.1). Since a pair (k,¢) € Corn(J) must
satisfy the inequality k 4 ¢ < 4, the situations that can occur in such a case are described in
Table 4.3.
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Corner sequence Corner values | Squarefree strongly stable ideal
Corn(I) ={(2,2),(1,3)} | a(I) =(1,1) I = (2129, 2123, X124, ToT324)

Corn(I) = {(1,2)} a(l) = (1) I = (2172, 1173)

Corn(I) ={(1,2)} a(I) = (2) I = (2122, 2123, 7203)

Corn(I) = {(2,2)} a(l) = (1) I = (2172, 1123, 7124)

Corn(1) ={(2,2)} a(l) = (2) I = (z122, 7173, 7174, 273, T2T4)
Corn(Z) = {(2,2)} a(l) = (3) I = (2129, 2173, X174, T2T3, T2T4, T3T4)
Corn(I) = {(1,3)} a(l) = (1) I = (212223, 212274)

Corn(1) = {(1,3)} a(l) = (2) I = (v12923, 117224, L1737 4)

Corn(I) = {(1,3)} a(l) = (3) I = (v12923, 7170274, T1 7374, ToT3T4)

Table 4.3: Squarefree corner sequences for n = 4.

Remark 4.3.2 All the squarefree strongly stable ideals described in Tables 4.2 and 4.3 are
the smallest strongly stable ideals with the given data.

Let T be a subset of Monjj(S), d < n. The set of squarefree monomials of degree d + 1 of S
Shad(T) ={zu:ueT,i¢supp(u),i=1,...,n}
is called the squarefree shadow of T. Moreover, we define the i-th squarefree shadow recur-
sively by Shad’(T") = Shad(Shad*~*(T)), i > 1, with Shad®(T) = T
Next notion will be crucial for the further developments in this chapter.

Definition 4.3.3 Let u = w;, ---z;, be a squarefree monomial of S of degree ¢ < n. We
say that u has a j-gap if i;,1 —¢; > 1 for some 1 < j < ¢. The positive integer 741 —i; — 1
will be called the width of the j-gap.

The j-gap of a squarefree monomial u = x;, ---x;, € S will be denoted by j-gap(u),
whereas its width will be denoted by wd(j-gap(u)). Moreover, we define

Gap(u) := {j € [q] : there exists a j-gap(u)}.

Definition 4.3.4 A squarefree monomial u = x;, - - - ;, of S will be said gap-free if Gap(u) =

0.

Example 4.3.5 Let S = K[x1,...,211]. The monomial v = z1z32426219 € S has three
gaps. Indeed, Gap(u) = {1,3,4}, 1-gap(u), 3-gap(u) have both width equal to 1 and
4-gap(u) has width equal to 3; on the contrary, the monomial v = xozzxszs26 € S I8

gap—free.
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Lemma 4.3.6 Letu = x;, - - x;, be a squarefree monomial of degree ¢ < n—1 of S. Assume
u has a gap whose width is > 2, or u has at least two gaps.
Then there exist at least two squarefree monomials v,w € S of degree q+1 with v >glex W,

max(v) = max(w) = n and such that
(i) v is a multiple of u;
(ii) w is not a multiple of w.

Proof. If max(u) < n, we can choose v = uw, = x;, -+~ &;,Tn. Setting t = max Gap(v), the

greatest squarefree monomial following v in the squarefree lex order is
V= Tiy o Tiy  Tig+1 " Tigpg—t+42-

Ifis +q—t+ 2 = n, we choose w = v, otherwise, if iy + ¢ — t + 2 < n, we choose w =
Tiy  Tip  Tiygd1 - Tiybget+1Tn- Finally, v >gex w, w | v and w{ w. Note that ¢ < q.

Now, assume max(u) = n. If ¢t = max Gap(u), let

U =Ty - Ty Lip g —1%i5 01 " Tig 1 Tig = Lig " LiyLip 1 —1%i41 " Lig 1 Tn-

Furthermore, if p = max Gap(v), then the greatest squarefree monomial following v in the
squarefree lex order is

U= Tiy - Tiy Ty 1" Tiphq—pt2-
Hence, if i, + ¢ — p + 2 = n, we choose w = ¥, otherwise, if i, + ¢ — p + 2 < n, we choose w

= Liy o Lip 1 Lip4+1 " Tiphq—p+1Tn-
Note that the assumption on the gaps of the squarefree monomial u assures us that we

can construct both the monomials v and w. O

Now, we recall some notations from [CF16] that will be useful in the sequel.
Let I be a squarefree stable ideal of S. If I is generated in one degree ¢, then I has a
unique extremal Betti number 8,,—¢, m(I), where m = max{max(u) : v € G(I)}.
Assume I to be generated in degrees 1 < ¢ < {3 < -+ < ¢, < n, and denote by [r] the
set {1,...,7}.
Setting
mg; = max{max(u) : ue€ G(I)g,}, forj=1,...,n

let us consider the following sequence of nonnegative integers associated to I:
dS(I) = (mgl —él,mgQ —fg,...,’/ﬂ,gr —gr). (431)

Such a sequence is called the degree-sequence of I.

One can observe that, if

my, — > My, — by > - > my, — by, (432)
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then, from Characterization 4.1.12, By, —¢;, m., (I) is an extremal Betti number of I, for
i=1,...,r. If (4.3.2) does not hold, one can construct a suitable subsequence of the degree-

sequence ds([I), say

—Eil,m% —fiz,...,mgiq

—4i,), (4.3.3)

with ¢y < 0;, <, <--- </{;, =¥, and such that, for j =1,...,q, BW%_@WWZ_ (I) is an
extremal Betti number of I. ' ’

The integer ¢ < r, denoted by dl(I) , and called the degree-length of I, gives the number of
the extremal Betti numbers of the squarefree stable ideal I.

For more details on this subject see [CF16].

Next results easily follow.

Proposition 4.3.7 Let I be a squarefree strongly stable ideal of S = K[z1,...,2,], n > 4,

with initial degree 2 and with a corner in degree 2. Then
(1) I has at most n — 2 corners for n = 4;

(2) I has at most n — 3 corners for n > 5.

Proof. (1). It follows from Case 3.

(2). Let n > 5. An admissible degree—sequence of I is the following one
ds(I)=(n—2,n—3,--- ,n—(n—2)=2).

Indeed, setting wy = x1xy,, since 1-gap(w;) has width n — 2, then Lemma 4.3.6 assures that

there exist at least n — 4 squarefree monomials wo, ..., w,_3 in S of degrees 3,...,n — 2,
respectively, with max(w;) = n, and n — 4 squarefree monomials vs,...,v,_3 of degrees
3,...,n — 2, respectively, with max(v;) = n and such that v; >gex w;, wi—1 | v;, v; 1 w;, for
i =2,...,n — 3. Using the same techniques as in Lemma 4.3.6, one can easily verify that
wifwiﬂ (7;2 1,...,’)’L—4).
The monomials w; (i =1,...,n — 3) will be called basic monomials.
W] weeeeennny Vo WG wnreennes K Wy wemvenennsd > Vg
W +venvnenned Vg Wy weenemnens > Us WG ++eeneened VT

Next tables list the basic monomials for n = 5,...,9. For n > 10, the construction of such

elements proceeds smoothly.
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(%3 w;
Vg Ws
Vi w; X1X7
X1Xe
X1X5 T1X6X7 XoX3X7
T1T5T6 X2X3Xe
14,5 X2X3Xp ToX3Tely XoX4X5X7
T2XT3T5Te X2X4X5Xe
(a)n=>5 LoTyX5Tel7 X3XaX5XeX7
(b)n=26
(c)n="7
V; W;
Vi W;
X1X9
X1X8
T1X8T9 X2X3Xg
178 X2X3Xsg
T2XL3TZLY X2X4X5Xg
L2X3T7Lg X2X4X5Xg
L2X4T5T8LY X2X4X6X7X9
T2T4T5T 7T X2X4XgX7X8
ToXATELTLILY X2X5XeX7X8X9
T2T4T5TeL7LY X3X4Xp5XgX7X8
ToX4T5TeL7LILY X3X4X5XeX7X8X9
(d)n=28
(e)n=29

Table 4.4: Tables of fundamental squarefree monomials for initial degree 2

Note that the construction of the basic elements ends up as soon as one gets a gap—free

monomial. O

Example 4.3.8 Let S = K|[z1, 22, T3, 24, T5, Ts, T7, Ts), and let

I= ($1$2,$1$3,$19€4,$1$5»T/1$6,$19€775513087552533%4,$2$3$57$2$3$6,$2$3$77$2$3$8,

T2X4X5X6, L2X4L5L7, LQL4T5L8, L2LALELTLS, I3$4$5I6I7$8)

be a squarefree strongly stable ideal of S. The degree-sequence of I is

ds(I) = (mg —2,mg — 3,mgq —4,ms — 5,mg — 6) = (6,5,4,3,2).

I has initial degree 2 and dI(I) = 5. The extremal Betti numbers of I are fs_o3(I) =
5873,8(1) = ﬁ874,8(1) = 5875,8(1—) = ﬁgfg’g(l) = 1, as the Betti table of I shows:

01 2 3 4 5 6
2 7T 21 35 35 21 7
3 5 15 20 15 6 -
4 39 10 5 1 — -
5 13 3 1 - - -
6 12 1 - - - -
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Proposition 4.3.9 Letn > 5 and let I be a squarefree strongly stable ideal of S = K|x1, ...

)

Xy ] with initial degree £ > 3 and with a corner in degree £. Then I has at most n—{ corners.

Proof. Using the same reasoning as in Proposition 4.3.7, an admissible degree—sequence of I

is the following one:
ds(I)=(n—4,n—(¢(+1),---,n—(n—-1)=1),

with dI(I) =n — ¢.
Next tables show the basic monomials for n =5,...,8 and £ = 3. For n > 8 (£ = 3), the

construction of such elements proceeds smoothly.

Vi W;
Vi W;
X1X2Xe
X1X2X5
LT1T2X5T6 X1X3X4Xg
L1245 X1X3X4Xp

T1T3T4T5T6 X2X3X4X5Xg

(ayn=5
b)n=26
e W
Vs Wy
X1X2X8g
X1X2X7
T1T2X7X8 X1X3X4X8g
T1XT2T6L7 X1X3XgX7
T1T3T4T7T8 X1X3X5XeXg
T1T3T4T6L7 X1X3X5XeX7
T1T3T5TeL7Tg X1X4X5XgX7X8
T1T3T4T5T6L7 X2X3X4X5XeX7
T1XZ3T4T5L6LT7LY  X2X3XyX5XeX7X8

(c)n="7 @ n—s

Table 4.5: Tables of fundamental squarefree monomials for initial degree 3

Also in this case, the construction of the basic elements ends up as soon as one gets a

gap—free monomial. O

Example 4.3.10 Let S = K|z, 2, x5, 24, T5, Tg, T7, 23] and let

I= (2515525637 L1T2X4, T1X2X5, L1X2T6, L1L2XT7, L1X2X8, L1XL3L4L5, L1X3XL4L6, L1L3L4X 7,

T1T3T4T8, T1T3T5T6T7, T1TZT5T6L, T1T4T5T6TT T8, T2T3T4T5T6LT L)
be a squarefree strongly stable ideal of .S initial degree 3. The degree-sequence of I is
dS(I) = (mg - 3,m3 - 4,m4 - 5,m5 - 6,m6 - 7) = (574,3,2, 1)

The extremal Betti numbers of I are 68—3,8(1) = 68—4,8(1) = ﬂ8—578(1) = /88—6,8(1) =
Bs—7s(I) =1, as the Betti table of I shows
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01 2 3 5
3 :6 15 20 15 6 1
4 : 410 10 5 1 -
5 ¢ 02 4 - -
6 : 1 - - -
7 001 -

Betti Table of I

The next example considers a squarefree monomial ideal I of S without a corner in its
initial degree, and shows the construction of a squarefree monomial ideal J of S with a corner

in its initial degree and with the same extremal Betti numbers (positions and values) of I.
Example 4.3.11 Consider the following monomial ideal I of S = K[x1,...,x5]:
I = (2122, 21734, T123T5, T2T3T4T5).

I is squarefree strongly stable of initial degree 2 and with Corn(I) = {(2,3), (1,4)}. From

the Betti table of I, one can note that there is no corner in its initial degree:

Betti Table of I

Furthermore, we can construct a squarefree strongly stable ideal J in .S with initial degree
3 and Corn(J) = {(2,3),(1,4)}. It is

J = (x1@223, T1T2% 4, T1X2T5, T1TIT4T5).

Note that J is the smallest squarefree strongly stable ideal of S with corner sequence

{(2,3), (1, 4)}:

= WO
— W |
[ L

Betti Table of J
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Remark 4.3.12 It is worthy to point out that a squarefree strongly stable ideal I of S =
Klzy,...,2,] (n > 5) of initial degree ¢ > 2 with a corner in degree ¢ and such that

ds(I)=(n—2,n—3,...,2), for £ =2,
ds(I)=(n—¢n—¢—1,...,1), for £ >3
is a squarefree lex ideal of S.
Hence, one can observe that a squarefree lex ideal of the polynomial ring S of initial
degree ¢ > 2 and with a corner in degree ¢ can have at most n — ¢ corners unlike the non—

squarefree case. Indeed, a non—squarefree lex ideal I of a polynomial ring can have at most
2 corners [CUO0O].

For u,v € Monjj(S), u >gex v, let us define the following set of squarefree monomials:
L(u,v) = {z € Mon3(S) : u Zglex Z Zslex V}-
Theorem 4.3.13 Let n > 5 and {1 > 3 two integers. Given n — {1 pairs of positive integers
(k1,01), (k2,02), ..., (kn—ty, bn—s,), (4.3.4)

with 1 < kp_yp, <kpp—1<---<k1<n—-3and3 <l <ly <--+-<Ulyp_y <n-—1, then
there exists a squarefree lex ideal I of S of initial degree {1 and with the pairs in (4.3.4) as

corners if and only if k; +4; =n, fori=1,....n—{;.

Proof. Set S = Klx1,...,2,]. If there exists a squarefree lex ideal I of K[zq,...,x,] of
initial degree ¢; and with the pairs in (4.3.4) as corners, then Proposition 4.3.9 forces that
ki+t4;=n,fori=1,...,n—{1.

Conversely, assume there exist n — ¢1 pairs of positive integers

(klv gl)? (kQa 62)7 ceey (kn—fl?gn—h)v (435)

with 1 < Ky, <kpopy-1 < -+ <k <n—-3,3</0 <ly<- - <lpy <n—1and
ki+4l;=n,fori=1,...,n—/{.
We prove that there exists a squarefree lex ideal I of S generated in degrees ¢1, %o, ..., 0, _¢,
with Corn(I) = {(k1,01),..., (kn—e,,ln—s,)}-

Setting s = max{i : £1 +2i—3 < n—2}, the required monomial ideal I can be constructed

as follows.

Step 1. Fori=1,...,s, let

- G(D)g, = L(ug,v1), with ug = z129 -z, and v1 = T1x2 -+ Ty, —1Tp;
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- C:(I)gZ = G(I)gl+i_1 = /.:(u,-,vi), with

i—2
Ui = T1T2 " Ty —2 H L1425 L0 4+2(i—2)+1L 0 +2(i—2)+2
Jj=0
i—2
=T1x2 Ty -2 H Loy 425L0142i—3T0y +2i—2
Jj=0
and
i—2 =2
Vi =21 Tpy—2 H Loy +25L0142(i—2)+1Tn = L1 " Tpy—2 H Loy +25L01+2i—3Tn-
Jj=0 Jj=0

Step 2. Let us consider the squarefree monomial

s—2

Vg = T1T2 - ‘1"(172 H $€1+2jx€1+2573xn-
=0

Since, £1 + 25 — 3 < n — 2, the smallest monomial belonging to the Shad(G(I),,) is

s—2
Ws41 = L1X2 "+ " Ty —2 H Lp1425LL14+25—3Tn—1Ln -

§=0
We distinguish two cases: /1 +2s—3=n—2,and {1 +2s—3 <n— 2.
Claim 1. If /{ +2s —3<n—2,then {; +2s —3=n—3.
Indeed, by the meaning of s, #1 +2(s+1) —3 >n — 1. Hence, 1 +2s —3 > n — 3 and
n—3</{¢+2s—3<n-—-2

and consequently ¢ + 2s — 3 = n — 3. The claim follows.

Let us consider £; +2s —3 = {1 + 2(s —2) +1 =n — 2. In such a case,

s—2 s—3
Ws41 = T1 Ty —2 H x€1+2jxél+2(572)+1xn—lxn =T1" " Tp—-2 H Tl142jCn—3Tn—2Tn—1Tn-
j=0 j=0

Hence, the greatest squarefree monomial of S following w41 is
s—4

Us+1 = T1X2 " Ty -2 H Loy +25L014+2(5—3)+1T 01 +2(s—3)+2 " Ll +2(5—3)+5-
J=0

Note that max(usy1) = €1 +2(s—3)+5=14¢; +2s—3+2=n—2+ 2 =n, whereupon we

choose
G(I)ZS+1 = {u5+1}'
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The smallest squarefree monomial belonging to Shad(G(I),,,) is
s—4

Ws42 = T1T2 "+~ Tpy—2 H Lo1425L014+2(5—3) Ll +2(5—3)+1Ll +2(s—3)+2 "~ " L1 42(s—3)+5
j=0
s—4
=T1X2 Ty —2 H Ll 42jCn—5Tn—4Ln—-3TLn—2Tn—1Tn-
Jj=0
Therefore, the greatest squarefree monomial of S following wso is
s—5
Us+2 = T1T2 " Ty -2 H Loy +25L0142(s—4)+1T 0 +2(s—4)+2 " Tl +2(s—4)+7-
j=0

Note that max(usyo) = €1 +2(s—4) +7 =01 +25s—3+2 =n—2+42 = n. Thus, we choose

G(I)fs+2 = {u8+2}7

and so on. In general,

G(I)Zs+q = {u8+q}7

with
s—2—(q+1)
Us4q = T1L2 " Tgy—2 H Loy 42501 4+2(5—2—q)+1T0 +2(s—2—q)+2 " " " Ll +2(s—2—q)+2¢+3>
Jj=0

for ¢ = 1,...,t, where t is the positive integer such that s —2 — (¢ + 1) = 0. It is easy to

verify that max(ustq) = n.

Claim 2. s+t=n—4{; — 2.
Since, max(usyt) =n, and t +1 =5 —2 (t = s — 3), then

n=>0+2(s=2—-t)+2t+3=0+20t+1—-1)+2t+3 =14, +2t +5.
Hence,
nfﬂl72:€1+2t+5—€172:2t+3:2373:3+t

The claim follows.

Finally, we choose
Gty = GU)stt41 = {tisper} = {122 2g, 2,41 - 0},

G(I)En_el = G(I)s+t+2 = {Us+t+2} = {:U1$2 ©r Ly 3T 1Ty, xn}

Now, let us consider the case ¢ + 2s — 3 = n — 3. In such a case, the smallest monomial
belonging to Shad(G(I)e,) is

s
s—2 s—2

Ws41 = T1L2 "+ Ty —2 H L1 +2j%0,+2(s—2)+1Tn—1Tn = T1L2 "+ " T4 -2 H Tt +2j¥n—3Tn—1Tn-
j=0 j=0
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Therefore, the greatest squarefree monomial of S following wsy1 is

s—2

Us41 = T1X2 "+ Ty -2 H T142jLn—2TLn—1Tn-
j=0

Since max(us41) = n, we choose
G(De,yr = {usyr}-

By hypothesis, ¢; + 2(s — 2) = n — 4, then the smallest squarefree monomial belonging to
Shad(G(I)e,,,) is

s—2 s—3
Ws42 = L1 Tpy—2 H Loy +42jTn—3Tn—2Tn—1Tp = L1 Ll -2 H L0142§Cn—-4Tpn—-3Tn—2Tn—-1Tn
Jj=0 =0

and, consequently, the greatest squarefree monomial of S following w49 is

s—4

Us42 = T1X2 Ty -2 H Loy +25L0142(5—3)+1T 01 +2(s—3)+2 """ Ll +2(5—3)+6-
Jj=0

Note that max(usy2) = €1 + 2(s — 3) + 6 = ¢1 + 2s = n, whence we choose

G(I)Zs+2 = {u8+2}'
In general,

G)e,r, = {ustql;
with

s—2—q
Usyq = T1X2 - Ty —2 H L1420 42(s—2—(g—1))+1 """ Ll 4+2(s—2—(q—1))+2¢+2>
3=0
for ¢ =1,...,t, where t is the positive integer such that s —2 —t =0 (t = s — 2). It is easy

to verify that max(us4q) = n.

Also in such a case we can verify that s +t = n — ¢; — 2. Indeed, since max(us1¢) = n,
and t = s — 2, then

n="L+2(s—2—(t—1))+2t+2 =10, +2t +4,

and
n—»F0 —2=0+2t+4—0, —2=2t+2=2(s—2)+2=s+t.

Finally, as in the previous case, we can choose

G,y = GU)ste4r = {z1m2 - @0 20,41+ - 20},
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and

Gty = GU)shiv2 = {z122 - @0, —3T0, 1T0, -~ Tn}.

It is worthy observing that I is the smallest squarefree lex ideal of S with Corn(I) =
{(k1,01), (k2,2), ..., (K, L)} and such that Bk, k,+¢,(I) =1, for all ¢, i.e., a(l) = (1,...,1).
O

4.3.1 A numerical characterization

In this Subection, we face the following problem.

Problem 4.3.14 Given three positive integers n > 4, £1 > 2 and 1 < r < n — {1, r pairs

of positive integers (k1,¢1), ..., (k,¢;) such that n —3 > k; > ko > -+ > k. > 2 and
2< i <ly < - <l ki+4;<n(i=1,...,r), and r positive integers ay,...,a,, under
which conditions does there exist a squarefree monomial ideal I of S = K|[zq,...,x,] such
that B, k46, (I) = a1, - .., Br, k.+¢.(I) = a, are its extremal Betti numbers?

For a pair of positive integers (k, ¢) such that k 4+ ¢ < n, we define the following set:

A®(k,£) = {u € Mon;(S) : max(u) = k + £}.

Setting A°(k,¢) = {u1,...,uq}, we can suppose, possibly after a permutation of the
indices, that
UL >slex U2 Zslex " slex Ug- (436)

For the i-th monomial u of degree ¢ with max(u) = k + ¢, we mean the monomial of A*(k,¥)
that appears in the i-th position of (4.3.6), for 1 <4 < g. Note that w3 = 122 - Ty_1Tk1s,
Ug = Ty Tpr, and g = [A%(k, 0)] = (V7).
Furthermore, if u;, u;, i < j, are two monomials in (4.3.6), we define the following subsets
of A%(k,¥):
(i, uj) = {w € A%(k, ) : u; >glex W Zglex Uj ),

(i, u;) = {w € A°(k,€) : U; Z>glex W >elex Uj};

[ui, u;] will be called the segment of A°(k,¢) of initial element w; and final element wu;,
whereas [u;,u;) will be called the left segment of A®(k,¢) of initial element u; and final

element u;. If i = j, we set [u;, u;] = {u;}.

Remark 4.3.15 From (4.1.1), if (k, ¢) is a corner of a squarefree stable ideal I and Sy, p1¢(I) =

a, then there exists a segment [v1, v,] of A%(k,¢) such that a = |[v1, v4]|.

Next lemma will be crucial in the sequel.
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Lemma 4.3.16 Let n and g > 1 be two positive integers such that n > q. Then

(=G (D)0

Proof. Let Mon; (S) be the set of all squarefree monomials of degree g of S = K[zy,...,,].

(1) = o1

q

It is well-known that

Setting,
bi = |[{u € Mon(S) : min(u) = 7}|,

()-%-

i=1

one has

On the other hand,

b = (n_l) i=1,...,n—q+1.
qg—1

The assertion follows. O

Given a monomial u € A*(k, ¢), the next proposition shows a method, involving Lemma 4.3.16,

to count the number of monomials v € A%(k,£) such that v >, u.

Theorem 4.3.17 Let (k,¢) be a pair of positive integers, £ > 2, and let u = 3, 4, * - Tiy_, T4,
be a monomial of A®(k,?). Setting G = x;, iy -+ Ti,_,, then |[x122 - To_1Xp1e, u]| 15 a SUM

of t suitable binomial coefficients, where

i1, if Gap(a) =0,
t =
i1 + Z§:1 wd(gs-gap(a)), if Gap(a)={g1,...,9p} #0.
Proof. Set m = |[x1x2 - Xy_1Zk+e,u]|l. m is the number of all monomials w € A*(k,¢)

such that w >, u. By Lemma 4.3.16, the binomial coefficient (kﬁzl) = |A%(k, £)| can be

decomposed as a sum of k£ + 1 binomial coefficients, as follows:

k+1 )
k+0-1 k+0—1—3 k+40—-2 k+40—3 {—2

— — . (4.3.
() =2 () = () (0 107) e (20) s

One can observe that (*7°7?) counts the monomials w € A*(k,£) such that min(w) = 1,

kjfg?’) counts the monomials w € A*(k, ) such that min(w) = 2.
In general, the binomial coefficient (kﬁ;i) counts the monomials w € A®(k,¢) such that
min(w) = ¢ — 1, for i = 4,...,k + 2. Note that (g:g) = (k+l;7(l2€+2)) counts the monomials

w € A%(k,¢) with min(w) = k + 1. Indeed, there exists only a monomial w of such a type.

the binomial coeflicient (

It is w = Tp41Tpyo - Thre = min A%(k,£). It is clear that all monomials w € A%(k, /)
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with min(w) < 43 = min(@) = min(u) are greater than u. Hence, the first 4 — 1 binomial
coefficients in (4.3.7) give a contribute for the computation of m.
We need to distinguish two cases: Gap(u) = 0, Gap(a) # 0.
Note that Gap(a) = Gap(u), or Gap(a) = Gap(u) — 1.
Case 1. Let Gap(u) = 0. In such a case, u is the greatest monomial of A*(k,¢) with
min(u) = ;. More precisely, the following sum of binomial coefficients
k-1
; ( .o > (4.3.8)
gives the number of all monomials w € A%(k,¢) greater than u. Since i1,ia,...,7 are
consecutive integers, then other monomials greater than v which are different from the w’s
counted by (4.3.8) do not exist. Hence,
-1 .
= [rras e = 3 (’”jj; ‘J) i1

j=1
On the other hand, 1 = (8), and consequently m is the sum of t = i; — 141 = 4; = min(a) =
min(u) binomial coefficients.
Case 2. Let Gap(a) = {g1,.-.,9p}, p > 1. It is worthy to point out that the existence of the
gaps g; (j =1,...,p) implies that iy, ;1 —iy, —1 > 0, i.e., supp(a)N{q : iy, < q <ig, 41} =0,

for all j € [p]. Thus, all monomials w € A®(k,¢) of the type ;@ -+ 2; , % where z is a

monomial of degree £ — g; and max(z) = k + £ such that supp(z) N {q : iy, < q <ig, 41} # 0,
are greater than wu.
It is clear that all these monomials make up the left segment [x1z9 - Tp—1Tkte, u).
Let us consider the i;—th binomial in (4.3.7):
k4l—1—i)\ SR (k+l—1—ip—j

( ' >:;< P 9). (4.3.9)
In order to compute all monomials w of the type x;, i, -~ z;, 2, we need to evaluate g;
successive binomial decompositions until the next one:

(écfz—i.gl—l) Zk_ifrl <k+€-—igl.—1—j>. (4.3.10)

+i1— g —2 = O+ —ig, —3
The sum of the first wd(g: -gap)(@) = ig, 41 — iy, — 1 binomial coefficients in (4.3.10) gives
the number of all monomials w € A®(k, £) we are looking for.
In order to compute all monomials w € A%(k, ¢) of the type x;, x4, - - - x;
(wd(g1-gap)(@) — 1)—th binomial in (4.3.10):

k+l—ig —1—wd(gi-gap)(a) —1\  [(k+L—ig 1 —1)
(+iy —ig, —3 N\ l+ii—ig, -3 )

k—i1+ig, —1 2
1+glz:91+1+ k—l—é—igl_H—l—j
C+iy —ig —4 '

j=1

4, 2> We consider the
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Hence, evaluating the iy, — 44, 11 successive binomial decompositions until
k—iidig) —igy 4142
( k-l—f—igz—l )_ 21 7«91§:'Lgl+1 ( ]f—‘ré—i”—l—j )
€+i1_i91_ig2+i91+1_3 =1 Z—"_il_igl_Z'92_|_7;£]1-i-1_4 7
(4.3.11)

the number of all required monomials w € A*(k,¢) will be given by the sum of the first
wd (g2 -gap(@)) = ig,4+1 — tg, — 1 binomial coefficients in (4.3.11).
The procedure can be iterated for all g; € Gap(a), j > 3.

Finally, |[z122 - 2o— 1240, u)| =41 — 1+ > 7_, wd(gs-gap)(@). Hence, in order to get
[z122 - - Xp_1Zk10, u]|, we must take into account the binomial (8) which counts the mono-
mial u:

P P
t=ir—1+) wd(gs-gap)(@) + 1 =i1 + Y  wd(gs-gap)(@).
s=1 s=1

The assertion follows. O

Remark 4.3.18 Our choice to focus on the monomial @ = x;,x;, - - - z;,_,, instead of u, in
Theorem 4.3.17 is due to the fact that if i,y < k+ ¢ —1, i.e., Gap(u) = Gap(u) — 1, then
all monomials z € A®(k,¢) such that k + ¢ — 1 € supp(z) are smallest than u, with respect

t0 >giex-

Next example illustrates Theorem 4.3.17.

Example 4.3.19 Let S = K[xy,...,29] and consider the monomial u = zozsx72s. Set
@ = x2x527. From Equation 4.1.3, |A%(4,4)| = (;) = 35.
In order to compute m = |[z1x2237s, u]|, we consider the following binomial decomposition:

(6) = () () () )+ C)

Since, min(u) = 2, then all monomials w € A°(4,4) with min(w) = 1 are greater than u, so

we must take into account the binomial coefficient (g) = 15| for the computation of m.

Now, let us consider the following binomial decomposition:

(N4 (3 () (!

2)  \1 1 1 1)
Since Gap(u) = {1,2} and wd(1-gap(u)) = 2, the sum (‘11) + (i’) = 7| gives the number
of all monomials of the type zoz € A®(4,4), with z squarefree monomial of degree 3 and
max(z) = 8 such that supp(z) N{g:2 < ¢ <5} #0.

At this stage, we have | 15 + 7 = 22 | monomials.

The next decomposition we need to consider is

()= () )
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Since 2 € Gap(a), and wd(2-gap(@)) = 1, we must take into account ((1)) =1

Finally, we have obtained |22 + 1 = 23 | monomials of A®(4,4) greater than «, and so m =
[z1222328, u]| = 23 + 1 = 24.

The following scheme summarizes the previous calculations.
O=[O+O+O+0+0

G =[O+O]+&+0
&) =[6)]+ Q).

Now, consider the monomial v = xgzsx728. Let © = x3x4207.

Proceeding as before, since Gap(v) = {1}, then |[zi222325, u]| = 27 4+ 1, where 27 is given

by the sum of the highlighted binomial coefficients in the next scheme:

(6) =@ +E)|+E+E+06)
G =0+0+06)
() =16 + () |+ ()

Here is the list of all monomials which come into play for « and v:

T1X2T3T8, L1X2T4Xg, L1X2L5L8, L1L2LeL, L1L2L 7L,
T1T30478, L1T3T5L8, L1X3X6XS, T1LILTLS,
T1T4T508, T1T4LELY, L1 TALTLY,
T1T5T6X8, L1T5L7XS,

L1TeT7L8,

T2X3T4T8, L2X3T5L, L2X3LELY, L2L3LTLS,
L2X4X5L, L2L4LELY, L2L4TTLY,
Tol5Telg, X2X5X7XSg,

L2X6eT7Ls,

T3T4T5L8, L3T4TELS, X3Xg4X7X]g,
T3T5LEXg, L3T5LT7LY,

T3TeT7Iy,

T4l5TeXg, L4T5L7XS,

L4TeT7ILy,

T5TeL7Ly

Now, let w1, ... u, be squarefree monomials of degree ¢ of S. We denote by B(uq,...,u,)

the smallest squarefree strongly stable set of Mon;(S) containing the monomials uy, ..., u.
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It is well known that if ¢ < n, Shad(B(u,...,u,)) is a squarefree strongly stable set
of monomials of degree ¢ + 1 of S, and consequently Shad’(B(ui,...,u,)) is a squarefree

strongly stable set of degree ¢+, for 1 <i<mn —q.

Now, let (k1,¢1) and (ka,¢2) be two pairs of positive integers such that k1 > ko, {1 < {3,
ki+4; <n(i=1,2). If ug,...,u, € Mong (S5) are squarefree monomials of S such that

max(u;) =k +¥¢1, j =1,...,r, we define the following set:
BShad(ui, ..., Ur)(ky,e) = 1V € Shad®2=“ (B(uy,...,u,)) : max(v) < kg + £3}.

One can quickly observe that BShad(u, ..., u,)(k,,e,) is a squarefree strongly stable set of

degree /5 of S.

Remark 4.3.20 It is worthy to underline that if one wants to compute the minimum of
BShad(ui, ..., Up)(ky,e,), it is sufficient to determine min BShad(u, )k, ¢,). Furthermore, in
order to obtain such a monomial, one can suitably manage the integers in supp(u,), as we

will see in a while.

Definition 4.3.21 Let u be a squarefree monomial of degree ¢ of S, ¢ < n. Let p < n a
positive integer such that [p] \ supp(u) # 0 and {ji,...,5:} a subset of [p] \ supp(u), with
J1 <Jja <+ <ji, ¢+t <n. The monomial xj, ---x;,u € Mony,(S) is called the joint of

u with the variables z;,,...,z;,.

Example 4.3.22 Let u = zyz32628 € K|r1,...,29]. Let p = 7 and consider the set
{2,4,7} < [7]\ {1,3,6,8}. The joint of u with x9,xz4,27 is the squarefree monomial

T12223T4Tex7xs € Mon3(S).

With the same notations as before, we give the construction of min BShad(u), ¢,) for a

given squarefree monomial u € A®(ky,¢7).

Construction 4.3.23 Let (k1,/¢1) and (k2,¢2) be two pairs of positive integers such that
ki > ko, 2 <l < lyand k; +¢; <n, fori=1,2 Letu=ux; -2

monomial of A%(kq,¢1). Assume i; to be the greatest integer belonging to supp(u) such that

,, be a squarefree
“1

iy < ko + ¥, and write

Let us consider the monomial @ = x;, ---x;, and let ji,...,jr,—+ be the greatest integers

t

belonging to [ke + ¢2] \ supp(@). Then,
min BShad (u) (r,,e,) = @5, = Tj,, U € A°(ka, £2).

Example 4.3.24 Let S = Klx1,...,210], (k1,¢1) = (5,4) and (k2,¢2) = (3,5). All the
conditions of Construction 4.3.23 hold. Now, let u = zyz42829 € A%(5,4).
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Hence, iy = 4 and we can write © = x1x4. We have {5 —t = 3, so we can take the three

greatest variables of the set [8] \ supp(z124) = {2,3,5,6,7,8}: j1 = 6,52 = 7,j3 = 8. Then
min BShad(z12428%9)(3,5) = Te2708U = 2104262708 € A% (K2, l2).

Construction 4.3.23 assures the correctness of the next algorithm.

Algorithm 4.5: Computation of min BShad(u) ¢

Input: Polynomial ring S, monomial u, positive integer k, positive integer ¢

Output: monomial v
begin
je—k+4
b {i € supp(u) ¢ i < g} ;
v < the first ¢ variables of wu;
g+ V{—t;
while ¢ > 0 do
if j ¢ supp(v) then
if j > 0 then
‘ v v *Sj;
else
‘ error no monomial;

end

g<q—1
end

Jj<i-1

end

return v;

end

Lemma 4.3.25 Take two pairs of positive integers (ky1,41) and (ka, f2) such that ki > ko,
2 <ty < by with ki +4; < n, fori =1,2. Let u be a squarefree monomial of degree {1
with max(u) = ky + £1 and let v = min BShad(u) 4, ¢,). If Gap(v) # 0, then there exists a
monomial w € A*(ky,{2) \ BShad(u)x,,e,) -

Proof. Let v = min BShad(u), ¢,) = Tr, -+ Tr,,. One has max(v) = ka2 + .

Assume p = max Gap(v), then the greatest squarefree monomial following v in the squarefree
lex order is @y, * -+ Ty, Ty, 41 Tpprty—pt1, With 75 + 6o —p + 1 < ko + £, Hence, if
rp + 0o —p+ 1= ks + la, we choose

W=Tp; "Ly, 1 Tr,4+1" " Lr,4+lo—p+1-
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Otherwise, if r, + o —p+1 < ko + {3, let

W= Tpy = Lr,_ 1 Trp+1 " Lrplo—pLhotLy -

Example 4.3.26 Asinthe Example4.3.24,1et S = K[z1,...,210], (k1,¢1) = (5,4), (ka,l2) =
(3,5), u = 124879 € A*(5,4), v = min BShad(z12478%9)(3,5) = T17426T778 € A*(k2,{2).
We have p = max Gap(z1zax6x72s) = max{l,2} = 2, hence we consider the monomial
T1T5Tex7Ts. Since max(r1x5rex72s) = ko + o = 8 then the monomial desired is w =

T1T5LeL7L8 € AS(?), 5) \BShad($1$4$8$9)(375).

Next pseudocode describes the procedure in Lemma 4.3.25.

Algorithm 4.6: Computation of the next monomial smaller than w in A®(k, ¢)

Input: Polynomial ring S, monomial u
Output: monomial w
begin
m < max supp(u);
£« deg(u);
if Gap(u) # () then
t < max Gap(u);
w < the first ¢ — 1 variables of u;
j + index of variable of u at position ¢;
foreach i € {1../—t} do
Jg+1;
w 4= w * Sy;
end

W 4 W * Spy;

else
error no monomial;

end

return w;

end

The discussion below is significant for solving Problem 4.3.14.

Discussion 4.3.27 Let (k1,¥¢1) and (kg,¢2) be two pairs of positive integers such that k1 >

ko, 2 <0y < ly with k; + ¢; <n (i =1,2) and let a1, as be two positive integers.

Let T be a segment of A%(ky,/5) of cardinality as < (kzz; e_zf 1). We want to determine

k1+4£6,—1

the admissible values for a; < ( 021

) so that there exists a segment [u1, uq,] of A%(ky, /1)
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of cardinality a; and such that BShad([u1, ua,])(ky,e,) 2 T- It is clear that it should be

a; < (klzl_e_ll_l).

Now, set T' = [21, 2q,], and assume T ¢ BShad([u1, ta,]) (ky,e,)- Let v1 € A%(k1,£1) be the
smallest monomial such that z; ¢ BShad(v1)x,,¢,). Such a monomial allows us to determine
the bound on a; for which there exists the segment 7.

Indeed, we can compute the following cardinalities (Theorem 4.3.17):

ny = [{u € A%(k1, 1) :u > v1}| = |[x122 - Tp, 1Tk 40y, V1],

p1=|{ve A%k, 01) :v>u}] = |[z1xe - To, 1Tk, 10y, U1)]-
Hence, since [u1, g, ] C [T122 - To, — 1Tk, +¢,, V1], We get the following coarse bound for ay:
ay < ny;
then, we can refine such a bound via p; as follows:
ay < ny—pr.
One can notice, that if u; = max A°(kq, ¢1), then p; = 0.

Example 4.3.28 Given S = Klz1,...,x10], let us consider the pairs of positive integers
(5,4) and (2,6), the positive integers a; = 8 and as = 6, and the following segment of
A%(5,4) of cardinality a; = 8:

(1232429, T124T7T9] = {T123T42T9, T1T3X5%9, T1T3TET9,L1T3T7LY, L1L3LYTY, T1L4T5L9,

T1T4TTy, T1L4T7Tg }.

We want to verify if there exists a segment of A%(2,6) of cardinality as = 6 not contained
in BShad([z1232479, T1247729])(2,6)-

First, from Equation 4.1.3, we know that a; < (2) =56 and ay < (g) = 21.

In order to determine p; = [{v € A%(5,4) : v > zyxzxax9}| = |[T122T3%9, T1T3T4T9)],
we need to consider a suitable sequence of binomial decompositions. The first binomial

decomposition that we have to examine is

(6)= () () )+ )+ )+ ()

Then, applying the procedure described in Theorem 4.3.17 (see also Example 4.3.19), we

obtain the following sequence of binomial decompositions,

6=+ +C+G)+6)+06)
() =@+ +EO+O+6+0),
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whereupon p; = 6.
In order to compute nq, we consider the set Ay consisting of the smallest as = 6 monomials
of A°(2,6):

Ay = {$2$3$4$5$6$8,$2$3$4$5x7$8,352%3554336967%87562153%5556137%8,

ToX4T5X6L7LS, $3$4$5I6$7$8}-

These monomials can be found using the “reversal” of Algorithm 4.6.
The smallest monomial z of A®(5,4) such that max Ay = wox3r4w52678 ¢ BShad(z)(26) is
z = x1T7x8x9. The number of all monomials w € A%(5,4) greater than or equal to z is

determined by the following binomial sequences:

)]+ 6)

Hence, we have ny = (6 + 5+ 4+ 3+ 2) + 1 = 21 monomials. Finally, we have a; <
ny —p1 = 21 — 6 = 15. For a; = 15, then a segment of A*(2,6) of length as = 6 is

A2 = [x2$3x4x5w6x8,x3x4a:5x6x7acg].
Discussion 4.3.27 yields the following result.

Theorem 4.3.29 Consider three positive integers n > 5, {1 > 3 and 1 < r < n—4{y, r
pairs of positive integers (k1,01), ..., (kr,€.) such thatn —3 > k1 > ko > -+ > k. > 2 and
2< i <ly < <l ki +6;<n (i=1,...,r), and r positive integers ai,...,a,. Let K

be a field of characteristic zero. The following conditions are equivalent:

(1) There exists a squarefree graded ideal J of S = Klz1,...,%n] with Bi, k+e (J) = a1,

ooy Bry ke, (J) = ar as extremal Betti numbers.

(2) There exists a squarefree strongly stable ideal I of S = K[z, ..., %] with Bi, ky+e,(I) =

a1, - Brkote,(I) = ar as extremal Betti numbers.
(3) Setting

(i) vr = Tp, 41 Th, 4o,

Ay = [wy,v], with w, € A%(ky, L) and such that |A;| = ar;
(i) fori=1,...,r—1,

vp—; = min{u € A%(k, i, lr—;) : max A, ;1 ¢ BShad(u)p, 110, i)}

Ap_i = [wp—i, vp—y], with we—; € A%(kr—;, lr—;) and such that |A,—;| = ap—;;
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(iil) fori=1,...,7, n; = [{u € A%(k;,4;) : uw > v;}|, then the integers a; satisfy the
following conditions:
a; < n;.
]f a; = |[ui71,ui7ai]\, Ui, j S Ag(k‘z,fz) (j = 1,...,6%) and pi = |{1} S A“(kzl,é,) :
v>u; 1}, then a; <n; —p;, fori=1,...,7.

Proof. (1) < (2). See [AHHO00] and the introduction in this dissertation.

(2) = (3). It follows applying iteratively Discussion 4.3.27, for i« = 1,...,r. Note that

vy = min A*(k,, £,.), and consequently n, = (krfzjfl); whereas p; = 0.

(3) = (2). We construct a squarefree strongly stable ideal I of S generated in degrees

ly,..., L, as follows:
- G(I)gl :B(U171,...,ul7al);
- G(I)Zz = B(u2,1a s 7u2,a2) \ BShadéz_ll (G(I)fl)(km@’z);

- GI)e, = Buia, .. Uig,) \ BShadei_e“l(MonS(Igi_l))(k“gi), for i = 3,...,r, where

Mon?®(Iy, ,) is the set of all squarefree monomials of degree ¢;,_; belonging to I, ;.

The monomials ; 1,...,U;q,, for it =1,...,7, are the basic monomials of I. O

Remark 4.3.30 A similar statement can be formulated in the case /1 = 2 and n > 5.

Theorem 4.3.29 assures the correctness of the next algorithm.
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Algorithm 4.7: Computation of the basic monomials for the given data

Input: Polynomial ring S, list of corners {(k;, ¢;)}, list of values (a;)

Output: list of monomials mons

begin

if hyp then
m <+ ko + £o;
w 4= S1 % % Spo_1 % Sy
mons + {w};
foreach j € {2..a¢} do
w <—next monomial of w;
if no monomial then
‘ error no ideal;
else
‘ mons < mons U {w};

end

end
r < number of corners;
foreach i € {2..7} do
w < min BShad(mons)k,_, ¢,_,) 3
foreach j € {1..q;} do
w 4 next monomial of w;
if no monomial then
‘ error no ideal;
else

‘ mons < mons U {w};

end

end

end

end

return mons;

end

hyp < logical conditions required as hypotheses of the Theorem 4.3.29;

// first corner

// calling Algorithm 4.6

// successive corners

// calling Algorithm 4.5

// calling Algorithm 4.6

4.3.2 Some relevant examples

This subsection collects some nice examples on the theory developed in this Section.

Next example illustrates Theorem 4.3.29.

Example 4.3.31 Letn =11,7=4,C ={(8,3),(4,5),(3,6),(2,9)} and a = (a1, az,a3,a4) =
(7,5,2,2). We want to construct a squarefree strongly stable ideal I of S = K{z1,...,z11]
generated in degrees 3,5,6,9 and such that Corn(I) = C, a(I) = a.
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Before starting the construction of the ideal, we verify if the coarse bounds are satisfied
for each a;, 1 =1,...,4.

First of all, vy = x3xax5x62728T9T10211 and Ny = |[X1T223T4T5T6L7TsT11, Va]| = (180) =
45. Hence, a4 = 2 < ng4.

NIOI‘GOVGI"7 A4 = {$2$4$5$6$7$8$91‘101‘11,£E31?4335£E621775L‘8$9213101711}, V3 = T2X3TLeX7X8ITY,

and from the binomial decompositions

(5) =@ ]+ O+ @+
@ =E+G+6
(5) =G+ )|+

we obtain a3 = 2 < ng = |[x12223T475T9, v3]| = 35 + (6 + 3) + 1 = 45.
Furthermore, A3z = {zox3250728T9, Tol3Terrxsxg} and vy = TawzTsxexg. From the

binomial decompositions

one has ay =5 < ng = |[z122232429,v2]| = (35 +4) + 1 = 40.
Finally, we have Ay = [2223242529, T2T325262T9] = {X2X3T4T5T9, ToX3T4TeTy, TaX3LaLr Ty,

ToT3T4XTg, ToL3TsTele} and vy = x1x10211. The binomial decompositions

G)=O+Q+O+Q+O+O+O+E+0)
() =@+ ) +©)+ )+ 6+ +6+6) |+

imply a1 =7 < ny = |[z122211,11]] =8+ 1=09.

Now, we proceed with the construction of the ideal I we are looking for, and so doing we

refine the previous bounds for the a;’s.

- The greatest monomial of A%(8,3) is x1x9211. Since p; must be equal to 0 and a1 =
7 <n; —p; =9, one can consider the greatest a; = 7 monomials of A%(8,3). Such

monomials can be obtained by Algorithm 4.6. Hence, we set

G(I)S = B($1$25E11, T1X3211,T104X11,L1T5211,L1T6L11, L1L7T11, xlxsmn).

- Let us consider the corner (4,5). By Algorithm 4.5, we compute the smallest monomial
of BShadz(G(I)g)(&g,), i.e., the monomial x,x¢r7r8T9; Whereas, by Algorithm 4.6, we
determine the greatest monomial of A®(4,5) \ BShadQ(G(I)g)(4,5), i.€., ToT3T4T5Tg.

Finally, from the binomial decomposition
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@ =G +E+E+E+6)

it follows that ps = |[x1222324%g, TawsTsx529)| = 35. Hence, ng —py =40 —-35 =15

monomials are available. Therefore, since as = 5, we set

G(I)5 = B(x2x324%5%9, TaT3T4TTY, T2TITATTLTY, T2T3T4TTg, L2L3T5LET9 ).

- Let us consider the corner (3,6). One has min BShad(G(1)s)3,6) = T22325T628T9 and
max(A°(3,6) \ BShad(G(1)s)s,6) = T2r375277879, and from

) =@+ O +0

() =]+ Q)

we have p3 = |[21222324T529, ToT3x5272829)| = 43. Hence, ny — p3 = 45 — 43 = 2.

Since az = 2, we set
G(I)6 = B($2.Z‘3$U5{E7.’L'gl'9, $2$3$6$7$8$9).

- If one considers the corner (2, 9), since min BShadB(G(I)ﬁ)(Zg) = ToXT3T5TELTLILYLIOL11,

max(A4%(2,9) \ BShadB(G(I)G))(Zg) = ToT4T5TET7TIT9T10T11, from
) =@+ +G)
3 =@ [+

it follows P4 = |[SC1I21‘3$4.T51’6I71'81’11,I2$4I5$5$7I8$9I101‘11)| =43.

Song —ps = (180) — pg = 45 — 43 = 2. Hence, since a4 = 2, we can set
G(I)g = B($2I4I5~T6I7I8$91’10$11, I3$4I5I6~T7I8I9$10$11)-

The Betti table of the squarefree strongly stable I just constructed is the following one:

0 1 2 3 4 5 6 7 8
42 217 553 861 875 587 252 63

EN(

13 39 45 24 5 - - — -
2 6 6 2 - - - — -

© 00 N O Ut k= W
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We close the Section with an example that illustrates a situation where the construction

of a squarefree strongly stable ideal is not possible.

Example 4.3.32 Letn = 10,7 = 3,C = {(6,2), (5,4),(3,7)} and a = (a1, az2,a3) = (2,1,4).
We have |A%(3,7)| = (J) = 84, so it is possible to manage a3 = 4 < 84 monomials.

Let us consider the smallest four monomials of A%(3,7):
Ag = {$3x4$5$7$8$9$10a L3T4LELTLLIL10y L3L5LELTLLIL10, x4x51’6$7$8x9x10}o

Let us try to get the smallest monomial z € A*(5,4) such that we have z3x4x50628T9T10 ¢

BShad(z)(3,7). It is 2 = za272879. Now, we compute |[z1227379, 2]| as bound for as:
3 =G+ +E)+G)+6)+(6)

G =O+D+Q+E|+0)

So we have ny = 21+ (54+4+3+2)+ 1 = 36 monomials greater than z. Hence, az = 1 < 36.

Note that if z does not exist, then it is clear that we can not go on.

Now, we try to verify the bound for a; taking into account the previous results. Consider
the monomial z € A%(5,4), and take the greatest monomial w of A%(6,2) such that z ¢
BShad(w)s,7). It is w = z128. We can note that w is the smallest monomial of A%(6,2),
i.e., |[r1xs,w]| = 1.

Hence, we have that a; < 1. For this reason the requested value for a; = 2 is not
admissible and there does not exist any squarefree monomial ideal I of K[z1,...,210] such
that Corn(f) = C and a(I) = a.

Nevertheless, there exists a squarefree monomial ideal J of S such that Corn(J) = C and
a(J) = (1,1,4).

4.4 Corners of 2—spread strongly stable ideals

In this Section, we analyze the extremal Betti numbers of 2-spread strongly stable ideals
in the polynomial ring S = K[z1,...,2,]. If So,, is the set of all 2-spread strongly stable
ideals in S, we determine the largest number of corners allowed for an ideal I € Sy ,,. It is
worth to point out that if t > 2, then a t—spread strongly stable ideal has initial degree > 2.

For our purpose, we focus our attention on the ideals I € Sy, such that all the entries
of their corner values sequence a(l) are equal to 1, i.e., every extremal Betti numbers of I
equals 1. The subset of Sy ,, consisting of such 2-spread strongly stable ideals will be denoted
by S2.n1 -

The study of this problem has shown that one has to consider two cases:

n odd, n even.
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Firstly, we analyze the odd case.

Discussion 4.4.1 Let us consider S = K|[x1,...,z,], with n > 3 odd integer.

For n = 3, the only 2-spread strongly stable ideal I € Sy .1 is I = (z123) with Corn(I) =
{(0,2)}.

For n = 5, the only 2-spread strongly stable ideal I € Sy 1 is I = Ba(z125) with
Corn(I) = {(2,2)}.

For n = 7,9,11, the monomials which determine the largest number of admissible corners
of a 2-spread strongly stable ideal in S ;, 1 with a corner in degree 2 are the bold highlighted

ones in Table 4.6 :

X1X11
X1X9
X1X7 T1T9T11 X2X4X11
T1T7TY X2X4Xg
T1TsX7  X2X4Xr7 T2L4T9X11 X2X5X7X11
TaX4X7xy X2X5X7Xg
(a)yn="7 L2T5T7T9l11  X3X5X7X9X11
(b)yn=9
(c)n=11

Table 4.6: 2-spread monomial generators for n = 7,9, 11

In each of these cases, the finitely generated 2—spread Borel ideal with the bold highlighted

monomials as generators is the ideal we are looking for.

For every 1 < d < n, let us denote by Monj(S) the set of all squarefree monomials of
degree d of S. We can order Monjj(S) with the squarefree lezicographic order >qeox [AHH98].
More precisely, let

u:xilzi2...’rid7 U:l‘jlzj2...zjd7

with 1 <1 <ig < <ig<n,1<j <jo<--+<jg<n, be squarefree monomials of
degree d in S, then

U >glex U if 11 = J1,---,05-1 :js—l and is < Js,

for some 1 < s <d.

From now on, we assume that the sets Monj(S) (1 < d < n) are endowed with the

ordering >gjex-

Theorem 4.4.2 Let n > 11 be odd. A 2-spread strongly stable ideal S = Klz1,...,x,] of

initial degree 2 and with a corner in degree 2 can have at most ans corners.

Proof. We will prove the existence of a 2—-spread strongly stable ideal I of S generated

in degrees 2,3, ..., %5% such that [Corn(I)| = %52 and a(I) = (1,1,...,1).
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Set G(I)2 = Ba(x12,). One can observe that the monomial
T3T5 " Tp—2Tn

is a 2—spread monomial of the largest degree which is not multiple of xyx,. Moreover it is
also the smallest 2-spread monomial of Mn’ no1g
n—"7

Claim 1. There exist 2-spread monomials w; € S, 1 =1,..., %5 = "de — 2, such that

I = By(zy2p, w1, . .. y W1, T35 - Tp—2Ty).

Proof of the Claim. We will verify that wd(1-gap(z1z,)) = n—2 > 9 allows us to prove the
existence of the desired w;’s.

The greatest 2—spread monomial not belonging to Shads(Ba(x12y,)) is x2242,. Hence, we
choose wy = wax42,. Therefore, since wd(2-gap(wy)) =n —5 > 6, we set we = Tox5T72y,.
It is the greatest 2—spread monomial not belonging to Shads(Bs(zex4xy,)).

Now, wd(3-gap(wsz)) =n — 8 > 3.

Let us distinguish the following cases:

n=11,13,15 and n > 17.

If n = 11, then z3zsx729711 is the greatest 2-spread monomial of degree 5 = %

not
belonging to Shads(Bz(zexsx7211)) and the smallest 2-spread monomial in My, 52. Hence,
I = By(x1211, w1, we, 3T527T9x11) is the 2—spread strongly stable ideal we are looking for.
If n = 13, then wsy = woxszrgri9T13 is the greatest 2—spread monomial of degree 5
not belonging to Shads(Ba(z2zs5z7213)). On the other hand, the greatest 2-spread mono-
mial of degree 6 = % not belonging to Shads(Ba(ws)) is zsxsrrrexiiz13. Hence, I =
Bs(z1213, w1, wa, w3, T3x5T7Tex11213) is the wished 2—spread strongly stable ideal.
Similarly, if n = 15, then w3 = xox5x8210215 is the greatest 2—spread monomial of degree
5 not belonging to Shads(Ba(zexsz7215)). Moreover, the greatest 2-spread monomial of
degree 6 not belonging to Shads(Ba(ws)) is wy = xawsxsr11213215. Finally, the greatest 2—

% not belonging to Shads(Ba(wy)) is X3T527L9x11213%15.

spread monomial of degree 7 =
Therefore, I = Bo(x1215, w1, Wa, W3, Wa, T3T5L7T9T11213%15) 1s the 2-spread strongly stable
ideal we are looking for.

Now, it is worth to point out that in the case when n = 15 a monomial generator with
Toxsrgr11 as divisor appears for the first time. Such a monomial will play a crucial role for
the proof of the claim.

Let n > 17. First of all, we set w3 = xoxs5x8T10%, and wy = Tox5T8T11L13%,. Then, one
can observe that the number ¢ of all 2-spread monomials z with max(z) = n and zozsz8211

as a divisor depends on the integer n — 11. Indeed, one can quickly verify that ¢ is bounded

n—11-2-1
2

Since n — 14 > 3 is odd, there exists a 5-gap(w4) which allows us to get the smallest

by the integer m = | | . We will prove that ¢ = m.

monomial of Shads(Bz(wy)), i.€., TaTsx8T11T13Tn—2Tn.
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Let us distinguish two cases: n =17, n > 17.

Let n = 17. Then n — 14 = 3 and [25] = 1. Indeed the greatest monomial not
belonging to Shads(Ba(wy)) is ws = xox5T9r11213%15217. There exists only wy which is
divisible by u.

Now, let n > 17. In such a case, the greatest monomial not belonging to Shads(Ba(ws))
is ws = ToT5T8T11T14%16%,. Since wd(6-gap(ws)) =n—17 =n—14—3 = wd(5-gap(w4))—3
and wd(4-gap(ws)) = 14 — 11 — 1 = 2 = wd(4-gap(wa4)) + 1, then [2=14=3+L | — 4y — 1,

Hence, if m — 1 > 1 one obtains wg = XoX5T8%11T14T17X19%n -

n714722m+2J _ I.n71272(n715)J _ I.%

that we can construct the last 2-spread monomial not belonging to Shada(Ba(ws4m—1)). It

After m — 1 iterations, we have | | = 1. This assures
IS Ws4m = T2T5T9T11213%15 - - - Tpn. 1t is the greatest 2-spread monomial not belonging to
Shadg (BQ (w3+m,1)).

Finally, we can observe that the monomial z3zsx7xg - - - ,, is the greatest 2-spread monomial
not belonging to the Shady(Ba(xox5x9211213%15 + - - 5, )) and the smallest 2—spread monomial
in annT—l 12.

Proceeding in this way at the end we get
n— 14 n—15 n-3

:6 =
J * 2 2

1+34+m+2=6+|

suitable monomials. The claim follows.

The construction of these monomials together with Theorem 4.1.12 guarantees that there
exists an ideal I € Sa 5,1 with a corner in degree 2 in S with |Corn(I)| = deg(zszszrg - - - T ) —
241 =271 241 =122

More precisely,

COI‘H(I):{(k‘i,gi): k‘iZ’I’L—Q(&—l)—L &‘:24—(7;—1), 7;:1’“"71—3}:

{32,059, 7).

The proof points out that there exist ”Tf?’ monomials of S of degrees 2,3, ..., an each

of which determines a corner. Moreover, the structure of xsxs - - - x,, assures that there does
not exist a 2-spread monomial of degree deg(zsxs---x,) + 1 that gives a contribution for
n—3

the computation of a corner. Hence, “5* is the maximal admissible number of corners of a

2-spread strongly stable ideal of S of initial degree 2. O

The monomial generators xix,, wi, ..., Wn-1, T3T5" - Tp_oT, Will be called 2—spread
2

basic monomials.

For later use, we need to define a partial order = on the set Mon®(S) of all squarefree

monomials of S. More precisely, let u,v be two squarefree monomials of S, we say that

U=
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- if degu = degv and u >gex v, O

- if degu < degv and u = z;v/w, with i ¢ supp(v), w divides v and i < r, for some

r € supp(w).

We set u > v if u = v and u # v.

For instance, if one considers the 2-spread monomials x1xs, Tox 426, Taxexs € Klx1,. .., xg],
then z1xg > zoxgrs. Indeed, degxizs < degzoxers and xixg = x1(x2x6s)/T2T6.
On the contrary, xixs % ToxaTe and ToTyxg i T1xg; whereas ToxsTe = ToxgTs.

With the same notation as in Theorem 4.4.2, setting
A= {xlxnv Wiy - .- ,'wnT—7,CC3£L'5 e x’n72xn}v

then

1Ty > W1 > ... > wn;7 = T3T5 Tp—2Tn.

Now, we give a nice explicit description of the finitely generated Borel 2—spread ideal of
Sa.n,1 of initial degree 2 with the maximal number of corners, for all odd n > 5. We will

denote it by Ba .1 -

Discussion 4.4.3 Let S = K[z1,...,z,] be a polynomial ring, with n > 5 odd integer. In
what follows both Discussion 4.4.1 and Theorem 4.4.2 (proof) will be crucial.

Firstly, let n = 5,7,9. In such cases, the finitely generated 2-spread Borel ideals By 1
of 83 .1 are described in Table 4.7.

n | Corner sequence | 2—spread strongly stable ideal

5 | {(2,2)} By 5.1 = Ba(x125) = (2123, 2124, 7125)
71 {(4,2),(2,3)} By 71 = Ba(z127, Toxa%7)

9

{(6,2),(4,3),(2,4)} | B2 = Ba(r129, xoxay, T2T527%9)

Table 4.7: 2-spread corner sequences for n = 5,7,9.

Omne can observe that the monomial of the type x12, (n = 5,7,9) appears as 2-spread
Borel generator in all three ideals Bs 51, Ba,71 and Bs g 1; the monomial xezsx, (n=7,9)
appears as 2-spread Borel generator in the ideals By 71 and B3 g 1; whereas the monomial
ToxsT7xy appears only in the ideal B g 1 as 2-spread Borel generator.

For n > 11, the monomials in the following set

{z120, T2TaTp, T2X5T7Ty } (4.4.1)
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will be always 2-spread Borel generators for By ,, 1.
Let us consider the case n = 11. From Theorem 4.4.2 (proof) we have to introduce the

monomial z3xsT7x9211 to complete the minimal system of monomial generators of Bs 11 1.

Moreover, if n =11 (mod 6), we need to add rq = "?511 -+ 1 monomials of the type
2k—1
H T243iTj12Tjqd " " Tn_2Tp, J= 6k+1, k=0,...,mm—1 (442)
i=0

to the set in (4.4.1) to get the minimal system of monomial generators of By, 1. We refer
to them as the right-form basic monomials.
Note that, setting Hfial Zoys; = 1 for k = 0, then Hfﬁgl To43iLj42%jqd - Tp—olp =
T3THLTLY * * * Ty 2L,
Hence, the monomials in
2k—1

{2120, 24Ty, ToT5T7 Ty, H To13iTj42 Tp_olp,j =0k+1,k=0,...,r —1} (4.4.3)
=0

will belong to the minimal set of monomial generators of Bs ,, 1, for all odd integer n > 11.
Let us consider n = 13. In such a case one has the monomial xoxsx3210713. Such a
monomial is smaller than all monomials in (4.4.1) and greater than the right—form ones,

with respect to .

In general, if n = 13 (mod 6), we need to add ro = ”’613 + 1 monomials of the type
2k—1
ToT5T8 H T114-3iL5Tn, ] = 6k + 107 k= 07 ey — 1 (444)
i=0

to the set in (4.4.3) to get the minimal system of monomial generators of Bz, 1. We refer
to them as the first-left-form basic monomials.
Note that, setting H?ﬁgl Z1143; = Lfor k = 0, then zox528 Hfigl T1143iT;Tn, = T2T5L8L10Ln, -
Hence, the monomials in (4.4.4) together with the ones in (4.4.3) will belong to the minimal
set of monomial generators of By 5, 1, for all odd n > 13.

Now, let us consider n = 15. In such a case one has the monomial xox5xg2x11213%15.

Such a monomial is greater than the right-form ones.

In general, if n = 15 (mod 6) then r3 = "’Tm + 1 monomials of the type
2k—1
ToT5T8T11 H T1443iTjTn, j = 6k + 13, k= 0, ey T3 — 1 (445)
i=0

will belong to the minimal set of monomial generators of B, 1. We refer to them as the
second-left-form basic monomials.

Note that, setting H?ial Z1443; = 1 for k = 0, then zoxsrs211 Hfial T1443iT; Ty =
ToX5T8L11XL13%n -

Finally, the monomials in (4.4.5) together with the ones in (4.4.4) and the ones in (4.4.3)

will determine the minimal set of monomial generators of Bs j, 1, for all odd n > 15.
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Remark 4.4.4 One can notice, that given an odd integer n > 15 in order to determine
the set A of the 2—spread basic monomials, one can firstly consider the values n, n — 2 and
n — 4. Then, if one writes down all the monomials (divisible by x,,) described in (4.4.5),
(4.4.4), (4.4.2) via the integers n, n — 2 and n — 4 respectively, together with the monomials
in (4.4.1), one gets:

n—15 n—2-—13 n—4-11 n—15 n-3
|A| = ( +)+(—+ 1)+ (——+1)+3=6+ =
6 6 2 2
which is the number of the desired generators.
The next example will illustrate Remark 4.4.4.
Example 4.4.5 Let us consider the polynomial ring S = K|[zy,...,22;]. We want to con-

struct the finitely generated 2-spread strongly stable ideal I € S321,1 with the greatest
number of corners and such that indeg(I) = 2, i.e., I = Ba21.1 -
One has |Corn(I)| = 252 = 9 and

Corn(I) = {(18,2),(16,3), (14,4), (12,5), (10,6), (8,7), (6,8), (4,9), (2,10) }.

In order to determine the 2—spread basic monomials that determine the minimal system

of monomial generators G(I) we proceed as follows.
Step 1. At first, we consider the 2—spread basic monomials x1x21, 224221 and ToxsT7o1.

Step 2. Since n = 21 = 15 (mod 6), we have % + 1 = 2 second-left-form basic monomials

of the type
2k—1

T2L5X8L11 H L144-3iLjTn,
i=0

with j = 6k + 13 for k = 0,1. They are xowsxgri1x13221 (K = 0, j = 13) and

T2X5T8T11L14X17X19T21 (k =1,j5= 19)~

Step 3. Let us consider n — 2 = 19. Since n — 2 = 19 = 13 (mod 6), we have 12213 41 =2
first-left-form basic monomials of the type

2k—1

ToX5Ts H T11+43i L5 Tn,;
i=0

with j = 6k + 10 for ¥ = 0,1. They are xoxszrsxriore; (K = 0, j = 10) and

Tox578T11 014216721 (B =1, j = 16).

Step 4. Let us consider n—4 = 17. Since n—4 = 17 = 11 (mod 6), then we have 2751 +1 =2
right-form basic monomials of the type
2k—1

H T243iTj+2%j+4 " Tn—2Tn,
i=0
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Wlth] =6k+1 for k = 0, 1. They are ryrsTrr9r11X13X15L17L19T21 (/{ = O, ] = 1) and

TT5T9T11713T15017T19%21 (K =1, =T).
Finally, ordering the monomials in Steps 1-4 with respect to >, we have the ideal

I= B2 (.%‘1.%'21, T2X4221, L2T5L7L21, L2L5L8L10L21, L2L5L8L11L13T21, L2T5L8L11L14L16L21

T2X5L8L11X14L17L19L21, L2X5L9L11L13L15L17L19T21, $3$5$7$9$11$13$15!E17$19$21)~

From Theorem 4.4.2 and Discussion 4.4.3, the next result follows.

Theorem 4.4.6 Let n > 11 an odd integer and {1 = 2. Given ”7_3 pairs of positive integers
(k:hzl)a(k2v€2)7~'~7(k"T*37£%)3 (446)

withlgkn%s <kn2;3_1 < - <ki<n—-3and2 =01 <{ly < --- <€nT—3 < ”7_1, then there
exists a 2—spread strongly stable ideal I of S of initial degree €1 and with the pairs in (4.4.6)
as corners if and only if k; +2(0; — 1)+ 1=mn, fori=1,..., %53

Remark 4.4.7 For an arbitrary monomial ideal I, let I; be the j—th graded component of
I. Following [AC19f], we call the set of ¢-spread monomials in I;, the ¢t-spread part of I;
and denote it by [I;];. A special class of t-spread strongly stable ideals consists of t-spread
lex ideals, which are defined as follows [AC19f].

A subset L of My, 4. is called a t-spread lex set, if for all v € L and for all v € M, 4
with v >y u, it follows that v € L. A t—spread monomial ideal [ is called a t—spread lex

ideal, if [I;]; is a t-spread lex set for all j.

It is clear that the 2—spread strongly stable ideal in Theorem 4.4.2 is a 2—spread lex ideal.

Now, we analyze the even case. The development will be very similar to the odd case.

We include it for completeness and for highlighting the differences with the odd case.

Discussion 4.4.8 Let us consider S = K[x1,...,%,], with n > 4 even.

For n = 4, the only 2-spread strongly stable ideal I € Sy, in S is I = Ba(x124) with
Corn(I) = {(1,2)}. For n = 6,8,10,12,14, the monomials which determine the maximal
number of admissible corners of a 2-spread strongly stable ideal in &3, 1 with a corner in
degree 2 are the bold highlighted ones in Table 4.8:
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X1X10
X1Xe X1X8g
T1X8X10 X2X4X10
T1T4Te X2XyXg T1X4T8 X2X4X8g
T2X4T8T10 X2X5X7X10
(a)n=26 (b)n=28
(¢)n=10
X1X14
X1X12
T1T12714 X2X4X14
T1T10T12 X2X4X12
T2X4X12T14 X2X5X7X14
T2X4T10T12 X2X5X7X12
L2X5L7X12T14 X2X5X8X10X14
T2XT5T7X10T12 X2X5X8X10X12
T2X5T8L10T12L14 X2XeXg8X10X12X14

(n=12 (e)n=14

Table 4.8: 2-spread monomial generators for n = 6, 8,10,12,14

In each of the cases described in Table 4.8, the finitely generated 2-Borel ideal with the

bold highlighted monomials as generators is the wished ideal.

Theorem 4.4.9 Let n > 14 be even. A 2-spread strongly stable ideal S = Klx1,...,2,] of

inatial degree 2 and with a corner in degree 2 can have at most "7_4 corners.

Proof. The proof is verbatim the same of Theorem 4.4.2.

We prove the existence of a 2-spread strongly stable ideal I of S generated in degrees
2,3,..., 252 such that |Corn(I)| = 252 and a(I) = (1,1,...,1).

Set G(I)2 = Bz(x1x,). One can observe that wd(1-gap(ziz,)) = n —2 > 12. The
greatest 2-spread monomial not belonging to Shads(Bs(z12y)) is zexsx,. Hence, we set
W1 = ToTyTy,.

Note that the monomial

T2XeXG * "+ Tp—2Tn,

of degree 52 is a 2-spread monomial of Mon®(S) of the largest degree which is not multiple
both of 1z, and of w;.

Claim 2. We prove the existence of certain 2—spread monomials w; € S, fori =2,..., 2= =
”7_4 — 2, such that

I = By(z12p, w01, . .. s Wn_s, Tolels - - Tp—2Tn).

Proof of the Claim. Firstly, since wd(2-gap(wy)) = n—5 > 9, we set wy = XoXs5TrLy.
On the other hand, wd(3-gap(ws)) = n — 8 > 6. Then we set w3 = zaxs5x8T10%, and

wd(4-gap(ws)) =mn — 11 > 3. Let us distinguish the following cases:

n = 14,16, 18 and n > 20.
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If n = 14, then xoxgx8T10T12%14 is the greatest 2—spread monomial of degree 6 = % not

belonging to Shads(Ba(zexsrsriox14)). Hence, I = Bo(x1214, w1, W, W3, TaTeXgT10L12L14)
is the 2—spread strongly stable ideal we are looking for.

If n = 16, then wy = xox5x8T11T13%16 is the greatest 2—spread monomial of degree 6
not belonging to Shads(Ba(z2zs528%10716)). Finally, we can construct the greatest 2-spread
monomial of degree 7 = % not belonging to Shads(Ba(wy)). It is xoxexsT10T12214216-
Hence, I = Ba(x1216, w1, W, W3, Wy, ToXeTsT10L12L14%16) 18 the 2—spread strongly stable
ideal we are looking for.

If n = 18, then wy = xox5x8T11T13218 is the greatest 2—spread monomial of degree 6
not belonging to Shads(Bs(xawsx3T10718)). Moreover, the greatest 2-spread monomial of
degree 7 not belonging to Shads(Ba(wy)) is ws = xoxsrsr11214216218- Finally, the greatest
2-spread monomial of degree 8 = 182—_2 not into Shads(Ba(ws)) is x2TeTsX10T12T14T16T18-
Hence, I = Ba(x1218, w1, W, W3, W4, W5, T2XeXgL10L12T14T16%18) 18 the desired 2-spread
strongly stable ideal.

Also in this case, the monomial generators with u = zoxsxgx1 as divisor will play a
crucial role in the proof. We note that when n = 18 u does not divide any monomial
generators.

Let n > 20. We set wy = Tox528211213%, and ws = ToXs5TgT11L14T16Ln. We observe
that the number ¢ of all 2-spread monomials z with max(z) = n and zez528211 as a divisor
depends on the integer n — 11. Indeed, in this case g is bounded by the integer m =
|2=11=2=2 | We will prove that ¢ = m. We can observe that n — 15 > 5 is odd. This
assures the existence of a 6-gap(ws) which allows us to obtain the smallest monomial of
Shads(Ba(ws)), i.e., ToXs5X8T11L14T16Ln—2%n.

Let n = 20. Then n—15 = 5 and L"*ij = 2. Indeed the greatest monomial not belonging
to Shads (Ba(ws)) is we = xex5T8x12T14T16218T20- Hence there exist two monomials, w4 and
ws, that are divisible by w.

Now, let us consider n > 20. Hence the greatest monomial not belonging to Shads(Bz(ws))
is wg = XoX5T8T11L14%17219%,. One can observe that wd(7-gap(wg)) =n—20=n—17-3 =
wd(6-gap(ws)) — 3 and wd(5-gap(ws)) = 17— 14 — 1 = 2 = wd(5-gap(wy)) + 1. This leads

that [2=15=3+L | = — 1.

Hence, if m — 1 > 1 we obtain the 2-spread monomial wy; = ToX5T8T11L14T17T20T22% .

no15-2mt? | _ L"*13*2(”’16)J = [2] = 1. This assures

that we can construct the last 2-spread monomial not belonging to Shada(Ba(ws4m—1)). It

After m — 1 iterations we have |

IS Ws4m = T2T5T8T12%14%16 - - - T, Which is the greatest 2-spread monomial not belonging
to this shadow.

Finally, we can observe that the monomial xoxgxsx1g - - - Th_2xy, is the greatest 2—spread

monomial not belonging to the Shads(Ba(zexs5xs212014%16 - Tp))-
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Proceedings in this way we are able to identify

n—215J:6+n—16:n—4

1+3+m+2=6+| 5 5

monomials which are the ones we are looking for.

The construction of these monomials together with Theorem 4.1.12 leads to the existence
of an ideal I € Sy, 1 of initial degree 2 in S with |Corn(I)| = 252 — 241 = 2%, More in
details,

COI‘H(I):{(ki,&;)Z kZ:n—2(€Z—1)—1, €Z:2+(Z—1), 2‘21’.“7”_4}:

— {(n3,2),(n5,3),...,(3,n22)}

Now, we give an explicit description of the finitely generated Borel 2-spread ideal of
Sa.n,1 of initial degree 2 with the maximal number of corners, for all even integer n > 4. We

will denote it by Bs ;1 as in the case when n is odd.

Discussion 4.4.10 Let S = K[x1,...,2,] a polynomial ring, with n > 4 even integer .
Firstly, let us consider n = 4,6,8,10. In such cases, the ideals Bj , 1 are described in
Table 4.9.

Corner sequence | 2—spread strongly stable ideal

By a1 = Ba(7174) = (2173, 7174)
{ 3, 2)7 (173)} 32,6,1 = Bz($19€6,$2$4$6)
2),(3,3)} By g1 = Ba(x1xs, Toxaxs)

2)

,(5,3),(3,4)} | Ba101 = Ba(z1210, Z224T10, T2Z527210)

||| B
~
—
“)—‘
)
N
——

Table 4.9: 2-spread corner sequences for n = 4,6, 8, 10.

One can observe that the monomial of the type zix, (n = 4,6,8,10) appears as 2—
spread Borel generators in all four ideals B2 41, B2g,1, B2s1 and B j,1; the monomial
TaxaZy (n = 6,8,10) appears as 2-spread Borel generators in the ideals By g1, B2 g1 and
B3 10,1; whereas the monomial zox527210 appears only in the ideal Bs 19,1, as 2-spread Borel
generator.

It is worth to underline a difference from the n odd case. Indeed for two consecutive even
values of n (n = 6,8), one has the same type of Borel generators.

For n > 12, the monomials in the following set

{z120, T2TaTp, T2X5T7Ty } (4.4.7)
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will be always 2-spread Borel generators for By ,, 1.
Let us consider n = 12. From the Theorem 4.4.9 (proof) we have to introduce the
monomial zex52821012 to complete the minimal system of monomial generators of B3 121.

Such a monomial is smaller than the monomials in (4.4.7), with respect to .

Furthermore, if n = 12 (mod 6), we need to add r = ”’le + 1 monomials of the type
2k—1
ToT5T8 H T1143iTjTn, J=6k+10, k=0,...,r1 -1
i=0

to the set in (4.4.7) to get the minimal system of monomial generators of Bs ., 1, for all even
integer n > 12. We refer to them as the first-left-form basic monomials.
Note that, setting H?ﬁgl Z1143; = Lfor k = 0, then zox5258 H?igl T1143iTj Ty = T2L5TZT10Tn -
Therefore, the monomials in
2k—1
{2120, XoX4Tp, ToX5T7Ty, T2X5T8 H T1143iTjTn, j =6k +10, k=0,...,7 —1} (4.4.8)
i=0
will belong to the minimal set of monomial generators of Bs ,, 1, for all even integer n > 12.
Let us consider n = 14. In such a case we introduce the monomial xoxgrgr19x12214 a8
Borel generator. For n > 14, the monomial of the type xoxgxs®ig - - - Tn_ox, is the smallest

generator of the ideal, with respect to .

n—14
6

In general, if n = 14 (mod 6) then we need to add ro = + 1 monomials of the type

2k—1
vy [ wsssiwjsonjia- - wn 0w, j=6k+4, k=0,...,12—1 (4.4.9)
i=0
to the set in (4.4.8) to get the minimal system of monomial generators of Bs ,, 1, for all even
integer n > 14. We refer to them as the right-form basic monomials.
Note that, setting Hfﬁgl 543, = 1 for k =0, then x5 Hfﬁgl L5 43iTj42Lj4d Loy =
ToXELYL10 "+ * Tr—2Tp.
Hence, the monomials in (4.4.9) together with the ones in (4.4.8) will belong to the
minimal set of monomial generators of By, 1, for all even n > 14.
Now, let us consider n = 16. In such a case we need the monomial xox5x3211213216.
Such a monomial is greater than the right-form ones. In general, if n = 16 (mod 6) then

rg = "=1% 4 1 monomials of the type

2k—1
LoX5T8T11 H x14+3ixjxn, j = 6k + 13, k= 0, e,y — 1 (4410)
i=0
will belong to the minimal set of monomial generators of B3, 1, for all even n > 16. We
refer to them as the second-left-form basic monomials.
Note that, setting H?iall‘14+3i =1 for k = 0, then T2Ts5T8T11 Hfial L1443iLjTn =

T2X508L11X13Tn -
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Finally, the monomials in (4.4.10) together with the ones in (4.4.9) and the ones in (4.4.8)

will determine the minimal set of monomial generators of By , 1, for all even n > 16.

The next example illustrates how given an even integer n > 16 in order to get the set
of the generators of By, 1, one has to fix the the integers n, n — 2, n — 4. Reasoning as in
Remark 4.4.4, the number of the monomials we need is given by
n—16+1+n—14—2+1+n—12—4+1:6+n—16 _ n—4.

6 6 2 2

and the 2-spread basic monomials can be obtained by (4.4.10), (4.4.9) and (4.4.8) via n,

n — 2, n — 4, respectively.

3+

Example 4.4.11 Let us consider the polynomial ring S = K[xy,...,2]. We want to
construct the 2-spread strongly stable ideal Bg 291 of S. Setting I = Bj 29,1, one has
|Corn(I)| = 2% =8 and

Corn(I) = {(17,2), (15, 3), (13,4), (11, 5), (9,6), (7,7), (5,8), (3,9) }.

In order to get the 2-spread basic monomials that determine the minimal system of

monomial generators G(I) we proceed as follows.
Step 1. Consider the three 2—spread basic monomials x1xsg, oT4Too and ToxsT7T20.

Step 2. Since n = 20 = 14 (mod 6), we have 2014 4 1 = 2 right-form basic monomials of the

type
2k—1

T2 H L54-3iLj42L 544 " " Tp—2Tn,
i=0

with j = 6k +4 for k = 0,1. They are zaxrsT10C12T1416Z18%20 (K =0, j = 4) and

ToT5T8T12L14T16218T20 (kK =1, j = 10).

Step 3. Let us consider n — 2 = 18. Since n — 2 = 18 = 12 (mod 6), we have 1812 41 =2
first-left-form basic monomials of the type

2k—1

T2T5T8 H L114-3iL5Ln,
i=0

with j = 6k + 10 for k¥ = 0,1. They are xozszgxigreg (K = 0, j = 10) and

ToT578T11 14216720 (kK =1, j = 16).

Step 4. Let us consider n — 4 = 16. Since n — 4 = 16 = 16 (mod 6), we have 16216 41 =1
second-left-form basic monomial of the type

2k—1
T2T5T8L11 H T1443iLjLn,
i=0

Wlth] =13 and £=0. It is ToX5X8L11X13X20-
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Finally, ordering the monomials in Steps 1-4 with respect to =, we have the ideal

I = By(z1220, T2Zal20, L2L5L7L20, L2L5L8LT10L20, L2L5LTL11L13L20, L2L5LL11T14L16L20,

T2X5TL8L12L14L16L18L20, 332936338331035125614331633185620)-

From the Theorem 4.4.9 and Discussion 4.4.10, the next result follows.

Theorem 4.4.12 Let n > 12 an even integer and {1 = 2. Given "T_‘l pairs of positive
integers

(ky, 00), (k2. £2), . (ks ), (4.4.11)

wz’thlgk%ﬂ <knT—4_1 < - <ki<n—-3and2=01 <{ly < --- <€% < "7_2, then there
exists a 2—spread strongly stable ideal I of S of initial degree ¢1 and with the pairs in (4.4.6)
as corners if and only if k; +2(4; — 1) + 1 =n, fori= 1,...,”774.

Also in such a case the 2—spread strongly stable ideal in Theorem 4.4.12 is a 2-spread

lex ideal.

4.5 Macaulay2 package

The algorithms described in this chapter have been implemented in a Macaulay?2 package:
“Squarefreeldeals.m2” (tested with Macaulay 1.13). This package contains procedures to
handle squarefree (strongly) stable ideals and squarefree lex ideals. Moreover, the strongly
combinatorial nature of squarefree monomial ideals has allowed to create customized algo-
rithms to obtain the minimal generators for an ideal with given extremal Betti numbers.

More precisely, we implement some algorithms in order to compute, when possible, the
smallest squarefree strongly stable ideal with given extremal Betti numbers (values as well
as positions).

In this Section, we collect some examples in order to describe the principal algorithms in

this package.

Example 4.5.1 Let n and r < n be two positive integers. Let (k1,£1), ..., (kn, ¢.), r pairs
of positive integers such that n —3 > ky > ko > - > k. >2and 2 < ¥ < ly < --- < ¥,
Moreover, let aq,...,a,, r positive integers.

We want to check if there exists a squarefree strongly stable ideal I of S = K|[zy,...,x,] such
that Bg, k,+0,(I) = a1, ..., Bk, k.+e,(I) = a, are its extremal Betti numbers. In positive

case we want to compute it.

Macaulay2, version 1.13
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
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il : loadPackage "Squarefreeldeals";

i2 : n=10;

i3 : S=QQ[x_1..x_n];

i4 : g={x_2x_8, x_3x_4x_5, x_3x_4x_8x_9, x_3x_5x_7x_9,
x_4x_5x_6x_T7x_8x_9x_10};

i5 : I=squarefreeStronglyStableldeal ideal g

05 = ideal (x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_2x_3,
x_2x_4, x_2x_5, x_2x_6, x_2x_7, x_2x_8, x_3x_4x_5, x_3x_4x_6x_7,
x_3x_4x_6x_8, x_3x_4x_6x_9, x_3x_4x_7x_8, x_3x_4x_7x_9,
x_3x_4x_8x_9, x_3x_bx_6x_7, x_3x_bx_6x_8, x_3x_5bx_6x_9,
x_3x_5x_7Tx_8, x_3x_5x_7x_9, x_4x_5x_6x_7x_8x_9x_10)

o5 : Ideal of S

i6 : minimalBettiNumbersIdeal I
01 2 3 4 56
06 = total: 26 94 154 139 71 19 2
2: 13 42 70 70 42 14 2
3 1 2 1 e
4: 11 47 80 68 29 b5 .
5
6

7: 1.3 3 1
06 : BettiTally

The functions extremalBettiCorners(ideal) compute the corner sequence of an ideal
using the definition of degree-sequence given in Equation 4.3.3. In this case, we want to
compute the smallest squarefree strongly stable ideal with this corners. The main func-
tion is extremalBettiMonomials(ring,integer,list,list) that returns (if possible) the
generators of the desired ideal. This procedure is based on the constructive proof of Theo-
rem 4.3.29 and uses two specific algorithms (see Algorithm 4.5 and 4.6) to compute two kind

of significant monomials.

i7 : corners=extremalBettiCorners I
o7 = {(6, 2), (5, 4, (3, T}

o7 : List

i8 : r=#corners;

i9 : a={2,5,1};
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i10 : Bg=extremalBettiMonomials(S,r,corners,a)

010 = {x_1x_8, x_2x_8, x_3x_4x_5x_9, x_3x_4x_6x_9, x_3x_4x_T7x_9,
x_3x_4x_8x_9, x_3x_5x_6x_9, x_4x_5x_6x_7x_8x_9x_10}

010 : List

Now, we can compute the smallest squarefree strongly stable ideal containing the mono-
mials in the list. The existence of the fundamental Borel generators with given corners

assures that this ideal has the desired extremal Betti numbers (positions and values).

i1l : J=squarefreeStronglyStableldeal ideal Bg
oll = ideal(x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_2x_3,
x_2x_4, x_2x_5, x_2x_6, x_2x_7, x_2x_8, x_3x_4x_5x%_6,
x_3x_4x_5x_7, x_3x_4x_5x_8, x_3x_4x_bx_9, x_3x_4x_6x_7,
x_3x_4x_6x_8, x_3x_4x_6x_9, x_3x_4x_7x_8, x_3x_4x_7x_9,
x_3x_4x_8x_9, x_3x_bx_6x_7, x_3x_bx_6x_8, x_3x_5bx_6%x_9,
x_4x_bx_6x_7x_8x_9x_10)
011 : Ideal of S
i12 : minimalBettiNumbersIdeal J
01 2 3 4 56
012 = total: 27 97 157 140 71 19 2
13 42 70 70 42 14 2

2
3: .. . e
4: 13 52 84 69 29 5 .
5
6

7: 1.3 3 1
012 : BettiTally

Furthermore, we are trying to generalize some algorithms in order to manipulate t—spread
strongly stable ideals and to solve the problem related with given extremal Betti numbers

(values as well as positions).

Example 4.5.2 Let ¢ = 2 and let two positive integers n and r < n. Let (ki,41), ...,
(k., L), r pairs of positive integers such that n —3 > k; > ko > -+ > k. > 2 and 2 <
b < by < -+ < {.. We want to check if there exists a 2—spread strongly stable ideal I of
S = Klz1,...,xy,] such that Bk, gy4e,(I) = 1, ..., Bk, +e.(I) = 1 are its extremal Betti

numbers and in the positive case we want to compute it.

Macaulay2, version 1.13
with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
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il : loadPackage "Squarefreeldeals";

i2 : n=13;

i3 : S=QQ[x_1..x_n];
i4 : t=2;

i5 : indeg=2;

i6 : k=n-t*(indeg-1)-1
o6 : 10

i7 @ tot=(k-k%t)//t

o7 : b5

i8 : corners=for i to tot-1 list (k-t*i,indeg+i)

o8 : {(10, 2), (8, 3), (6, 4), (4, 5), (2, 6)}

o8 : List

i9 : a=tolList(#corners:1);

i10 : Bg=tspreadExtremalBettiMonomials(S,corners,a,t)

010 = {x_1x_13, x_2x_4x_13, x_2x_5x_7x_13, x_2x_bx_8x_10x_13,
x_3x_bx_Tx_9x_11x_13}

010 : List

Now, we can compute the smallest squarefree strongly stable ideal containing the mono-
mials in the list. The existence of the fundamental Borel generators with given corners

assures that this ideal has the desired extremal Betti numbers (positions and values).

i14 : I=tspreadStronglyStableIdeal(t,ideal Bg)

014 = ideal (x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_1x_9,
x_1x_10, x_1x_11, x_1x_12, x_1x_13, x_2x_4x_6, x_2x_4x_T7,
X_2x_4x_8, x_2x_4x_9, x_2x_4x_10, x_2x_4x_11, x_2x_4x_12,
X_2x_4x_13, x_2x_bx_7x_9, x_2x_5x_7x_10, x_2x_5x_7x_11,
x_2x_5x_T7Tx_12, x_2x_5x_T7x_13, x_2x_5x_8x_10x_12,
x_2x_5x_8x_10x_13, x_3x_5x_7x_9x_11x_13)

014 : Ideal of S

115 : minimalBettiNumbersIdeal I

0 i 2 3 4 5 6 7 8 910

015 = total: 27 120 294 496 610 553 367 174 56 11 1

11 55 165 330 462 462 330 165 55 11 1

8 36 84 126 126 84 36 9 1

5 20 35 35 21 7 1

2 7 9 b 1

6: 1 2 1
015 : BettiTally

g b W N
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Final considerations

In this dissertation we have faced some open problems related to Hilbert functions and
minimal free resolutions of graded submodules in the polynomial ring and in the exterior
algebra. As we have already observed, the relation between this two algebras is very strong
and most of the tools from commutative algebra can be used in both contexts. Our approach
has been above all computational: we have took advantage of the combinatorial features of
this structures to construct algorithms to manipulate ideals and submodules.

Our initial intent was to address some open problems and solve them in order to level
knowledge in both contexts, where possible.

In Chapter 2 we have characterized the Hilbert functions of graded E—modules of the
type F/M, with M graded submodule of F'. A fundamental step was the construction of
the unique lexicographic submodule of F' with the same Hilbert function as M. This result
is equivalent to what has already been done for the polynomial ring [Hul95].

In Chapter 3 we have proved the validity of the “higher” Kruskal-Katona’s Theorem for
FE-submodules of a finitely generated graded free module F'. Moreover, we have given upper
bounds for the graded Bass numbers of E—modules of the type E" /M, r > 1 (see [AHHI7]

for the rank one case).

Open 4.5.3 It would be nice to verify the inequality in Theorem 3.4.5 for quotients of the
type F/M, with F' = @[_,Eg;, when the basis elements g1, ..., g, have different degrees.
We believe that such a statement should be proved by using a different approach, as next

example illustrates.

Example 4.5.4 Let E = K(ej,e2,€e3,e4) and F = ®_; Eg; with degg1 = degga = —2,
deg g3 = —1. Let us consider the lex submodule of F’

L = (eqe9,e1e3, €164, €2€3€4) g1 D (16263, €1€2€4, €1€3€4)92 B (€1€2€3)93,
Setting I) = (e1ez,e1e3,€1e4, €2e3e4), Iz = (e1€2€3, €124, €1€3¢4), I3 = (€1€2€3), one has

0:1; = (e1eq, e1€3, €162, €2€3€4),
0: Iy = (e1,ee3,e2e4, €3€4),

0:1I3 = (e, e2,e3),

and N = @]_,(0: I)g: is not a lex submodule of F. Proceeding as in Example 3.4.4, let us

consider the module

N = (O : Ig)gl S7] (O : Ig)gg Y (0 . Il)gg.
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It is not a lex submodule of F' (e4 ¢ 0 : I3). Consider F* = Hompg(F, E). By using
Macaulay?2, it is F* = ®]_, EFg;, with degg; = 1, deg g = deggs = 2 and one can quickly
verify that N = (0 : I3)g1 @ (0 : I3)go @ (0 : I1)g3 is a lex submodule of F*. Note that,
F ~ F* as F-modules, but not as graded F-modules. Indeed, Hr # Hpg~. Hence, the
arguments given in Theorem 3.4.5 do not work in the case of quotients of a free module with

basis elements with different degrees.

In Chapter 4 we are in charge of analyzing the extremal Betti numbers of ¢-spread
strongly stable ideals of S, where t is an integer > 0, in order to characterize the possible
extremal Betti numbers (values as well as positions). Also in this case, the approach has been
mainly algorithmic and constructive. Indeed, in the managed cases we have computed the
“fundamental” monomials to obtain the desired ideal, where possible, given an exhaustive
configuration of extremal Betti numbers.

For the case t = 0, i.e. monomial ideals of S, the Corollary 4.2.8 points out that the

main algorithm for FGBI is equivalent to the following;:

Open 4.5.5 Given two positive integers n,r, 1 < r < n — 1, r pairs of positive integers
(k1,01)y -y (kpylp)such that n — 1>k > ko> - > k. > 1, 1<l <ly<---<L.,and r
positive integers aq,...,a,. Under which conditions does there exist a piecewise lexsegment
ideal L of S such that Sk, ky+¢, (L) = a1, ..., Bk, k.+e.(L) = a, are its extremal Betti

numbers?

As we have just underlined, the class of piecewise lexsegment ideals has played a relevant
role in [HSV14] in the numerical characterization of the possible extremal Betti numbers
(values as well as positions) of any homogeneous ideal in a polynomial ring over a field of
characteristic 0. Furthermore, [HSV14, Theorem 6.7 (iii)] states some conditions about the
Macaulay representation of the positive integers aq, ..., a, which guarantee the existence of
a piecewise lexsegment ideal solution of Problem 4.5.5. Hence, we believe that it would be
nice to implement new algorithms which determine the associated smallest possible piecewise
lexsegment ideal via such conditions.

For the case t = 1, i.e. squarefree graded ideals of S, we have solved the problem of the
extremal Betti numbers positions as well as values giving numerical bounds for the number
of the corners and of the values. Moreover, for admissible corners sequences and values
some constructive algorithms returns the smallest squarefree strongly stable ideal with given
extremal Betti numbers.

For the case t = 2, i.e. 2—spread graded ideals of S, we have discussed the extremal Betti
numbers of t—spread strongly stable ideals and we have determined the maximal number of
the admissible corners of 2-spread strongly stable ideals. It would be nice to generalize the

results in Section 4.3.2 to t—spread strongly stable ideals for all ¢ > 2.
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The following questions are currently under investigation and the generalization of the

principal algorithms is in progress.

Open 4.5.6 Given an integer ¢ > 2, let S; ,, be the set of all ¢-spread strongly stable ideals

in S. What is the largest number of corners allowed for an ideal of S; ;7

Open 4.5.7 Given three positive integers ¢ > 2, n and r < n, r pairs of positive integers
(k1,01), ..., (ke ly) such that n =3 > k1 > ko > - > k. >2and 2 <l < ly < -+ < L,
and 7 positive integers a1, . . ., a,, under which conditions does there exist a t—spread strongly
stable ideal I of S = K{z1,..., %] such that Bk, k,+¢,(I) = a1, - ., Bi, ko+0.(I) = a, are its

extremal Betti numbers?
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