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by Luca Amata

In this dissertation we study by a computational approach Hilbert functions and minimal

graded free resolutions of finitely generated graded modules over two significant graded K-

algebras, K being a field.

More precisely, if E is the exterior algebra of a finite dimensional K-vector space and F is

a finitely generated graded free E-module with a homogeneous basis, we characterize the

Hilbert functions of graded E–modules of the type F/M , with M graded submodule of

F , via the unique lexicographic submodule of F having the same Hilbert function as M .

Furthermore, we study projective and injective resolutions over E. In particular, we give

upper bounds for the graded Betti numbers and the graded Bass numbers of classes of E-

modules.

Moreover, we give a criterion to determine the extremal Betti numbers of a special class

of monomial ideals of a standard polynomial ring S known as the t-spread strongly stable

ideals, where t is an integer ≥ 0. We are able to find a complete numerical characterization

(positions as well as values) for the case t = 0 and t = 1. Instead, for the case t = 2 we

determine the structure of the t-spread strongly stable ideals with the maximal number of

extremal Betti numbers.

The approach to these topics is mainly computational because of the algorithmic nature of

the topic themselves.

Finally, we present some packages in order to work and manipulate specific objects in both

contexts.



iv

Acknowledgements

This work is the realization of a marvellous journey that was made possible by some

people I met.

Firstly, I would like to express my deepest thanks to my advisor, Marilena Crupi, for her

invaluable guidance on my research, for her motivation, enthusiasm, and immense knowledge.

Professor Crupi spent a lot of time helping me to improve my mathematical skills. Her

support and encouragement have been fundamental during all that time of my PhD study.

I could not have imagined having a better maestro.

Besides my advisor, I would like to thank Jürgen Herzog and Giancarlo Rinaldo for their

interest in my thesis. I learned a lot reading their work, and I will still have to learn from

them.

A special mention to Francesco Oliveri, thanks to which I could learn to appreciate the

many analogies between various areas of mathematics and beyond. In the many warm and

refreshing conversations, thanks also to Patrizia Rogolino, it was always a pleasure to learn

precious things.

My sincere thanks also goes to Rosa, Maria Vittoria and Matteo for their warm hospitality

at the beginning of my adventure in Messina. Rosa was a reference before the beginning,

she was during and she will be after. She believes in me more than I could.

Finally, I need to thank Salvatore, Teresa, Marco and Francesca, my family, from which

I tried to learn availability, strong work ethics, resourcefulness and endurance. Last but

not least, for moments of carefree and relaxing, I have to thank Davide, the Wikini’s and

TheFluox.



Contents

Declaration of Authority i

Abstract iii

Introduction 1

1 Basic notions 9

1.1 Graded Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Hilbert Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Minimal Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 On algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Generalizations of Kruskal–Katona’s Theorem 30

2.1 The Hilbert function of graded E-modules . . . . . . . . . . . . . . . . . . . . 30

2.2 A generalization of Kruskal–Katona theorem . . . . . . . . . . . . . . . . . . 32

2.3 The Lex–Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Macaulay2 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Bounds for Betti numbers 55

3.1 The generic initial module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 (Almost) Lexicographic submodules . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Graded Betti numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Graded Bass numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Macaulay2 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Extremal Betti numbers 77

4.1 A hierarchy of monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Algorithms for a FGBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



4.2.1 Admissible corner values sequences . . . . . . . . . . . . . . . . . . . . 90

4.2.2 CoCoa package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Squarefree strongly stable ideals . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 A numerical characterization . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Some relevant examples . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Corners of 2–spread strongly stable ideals . . . . . . . . . . . . . . . . . . . . 120

4.5 Macaulay2 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Final considerations 137

Bibliography 144

Copyrights 145



List of Tables

1.1 Betti diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Extremal Betti diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 List of admissible value for ai of I . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Squarefree corner sequences for n = 3. . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Squarefree corner sequences for n = 4. . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Tables of fundamental squarefree monomials for initial degree 2 . . . . . . . . 99

4.5 Tables of fundamental squarefree monomials for initial degree 3 . . . . . . . . 100

4.6 2–spread monomial generators for n = 7, 9, 11 . . . . . . . . . . . . . . . . . . 121

4.7 2–spread corner sequences for n = 5, 7, 9. . . . . . . . . . . . . . . . . . . . . . 124

4.8 2–spread monomial generators for n = 6, 8, 10, 12, 14 . . . . . . . . . . . . . . 128

4.9 2–spread corner sequences for n = 4, 6, 8, 10. . . . . . . . . . . . . . . . . . . . 130

vii



List of Algorithms

2.1 Lexicographic submodule computation . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Computation of A(k, d) or A(≤ k, d) . . . . . . . . . . . . . . . . . . . . . . . . 84
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1

Introduction

Classical problems in commutative algebra include the study of the Hilbert functions and

minimal graded free resolutions of finitely generated graded modules over graded algebras.

These topics represent important tools in algebraic geometry and are becoming increasingly

important both in combinatorics and computational algebra. Many authors have focused

their attention on such notions (see for instance [Mac27, Sta75, Hul95, Gas97, BH96, HH11,

Hoe11] and the references therein) both in the polynomial ring context and in the exterior

algebra one. Indeed, it is well known that, even if the exterior algebra is not commutative,

it behaves like a commutative local ring or *local ring ([BH96]) in many cases. Hence, many

notions and results that hold in one context can be translated to the other one with some

suitable modifications.

This dissertation aims to deepen the study of the above mentioned topics approaching some

open problems in order to integrate the existing literature and developing some packages

that can be useful in the framework of commutative algebra and algebraic geometry. All the

algorithms presented in this thesis have been implemented and some of them are included

in Macaulay2 version 1.14.

Let K be a field. The graded K-algebras we consider in this thesis are the standard

polynomial ring S = K[x1, . . . , xn] and the exterior algebra E = K 〈e1, . . . , en〉 of a K-

vector space with basis e1, . . . , en.

Let R ∈ {S,E}. Our work environment is M, the category of finitely generated Z-graded

left and right R-modules M , and we will denote by F ∈ M a finitely generated graded

free module with homogeneous basis g1, . . . , gr. In R one can introduce the notions of

monomial and monomial ideal and therefore that of monomial submodule of F . More in

details, a monomial submodule M of F is a submodule of the form M = ⊕ri=1Iigi, with Ii

(i = 1, . . . , r) monomial ideals in R, i.e., ideals generated by monomials of R. It is clear that

a monomial submodule is in the category M. Monomial modules over graded algebras are

the fulcrum of our interest.

The Hilbert function of a graded K-algebra computes the vector space dimension of its

graded components. It encodes important information on the graded K-algebra such as its

Krull dimension or its multiplicity [HH11]. The Macaulay’s key idea about the existence of

highly structured monomial ideals, the lexicographic ideals, which attain all Hilbert functions

of quotients of polynomial rings, has revealed crucial in the polynomial ring context. The

pivotal property is that a lexicographic ideal grows as slowly as possible. Macaulay’s theorem

has been the inspiration for many similar classifications. Stanley wrote Macaulay’s theorem
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in its modern form in [Sta75] (see also [BH96]). Kruskal proved a theorem on bounding the

f -vectors of simplicial complexes in a way similar to Macaulay’s theorem [Kal01]. Katona

independently proved an equivalent result phrased in terms of Sperner families [Kru63]. The

Kruskal–Katona theorem is the squarefree analogue of Macaulay’s theorem and may be also

interpreted as a theorem on Hilbert functions of quotients of exterior algebras in [AHH97].

Finally, Macaulay’s theorem was extended to modules by many authors, in particular by

Hulett [Hul95] and Gasharov in [Gas97]. In the polynomial ring context the Hilbert functions

are characterized both for ideals and modules, whereas in the exterior algebra context the

main results hold for ideals; therefore, in this thesis we have focused our attention on graded

modules over the exterior algebra.

In fact, we generalize the combinatorial Kruskal–Katona theorem [AHH97, Theorem 4.1] for

finitely generated modules over exterior algebras. More precisely, we describe the possible

Hilbert functions of graded E–modules of the form F/M , with M graded submodule of F .

Our result bounds the growth of Hilbert function of such a kind of modules via the class of

lexicographic submodules (Definition 1.2.16). The construction of such a submodule can be

realized by using the classical way (which involves suitable sets of monomials of F ). More in

details, if M is a graded submodule of F , the construction of the lexicographic submodule

M lex with the same Hilbert function of M proceeds as follows: for each graded component

Mj of M , let M lex
j be the K–vector space spanned by the (unique) lexicographic segment

Lj of F (Definition 1.2.14) with |Lj | = dimKMj . Then one defines M lex = ⊕jM lex
j .

Hereafter, we describe an alternative way for determining the lexicographic submodule we are

looking for. Our approach (Theorem 2.3.2) manipulates sequences of nonnegative integers.

More precisely, if M is a graded submodule of F = ⊕ri=1Egi, we associate to F/M the

sequence HsF/M = (HF/M (f1), HF/M (f1 + 1), . . . ,HF/M (fr + n)) ∈ Nfr+n−f1+1
0 , where

fi = deg gi, i = 1, . . . , r. We call HsF/M the Hilbert sequence of the graded E-module

F/M . Using the Kruskal–Katona theorem (Theorem 2.2.4) and operating on the given

Hilbert sequence by repeated subtractions, one obtains r suitable sequences which are the

Hilbert sequences of r graded K–algebras E/Ii, with Ii (i = 1, . . . r) lexicographic ideals of

E, and L = ⊕ri=1Iigi will be the unique lexicographic submodule of F with HF/L = HF/M .

Consequently, we get a new criterion (Criterion 2.3.3) able, given a sequenceH of nonnegative

integers (of a certain length), to find out if H determines the Hilbert function of a quotient

of the type F/M . We have also created a Macaulay2 package, ExteriorModules, in order to

manage monomial submodules of F , and in particular to compute the lex submodule M lex

associated to a submodule M .

As far as the minimal graded resolutions are concerned, many authors have been inter-

ested in the problem of giving upper bounds for the graded Betti numbers and the graded

Bass numbers of graded submodules of a finitely generated graded free module with ho-

mogeneous basis, both in the polynomial and in the exterior algebra context (see for in-
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stance [Big93, Bee07, AHH97, CM13, CU07, CF15, Hul93, Hul95, AH00, CF12, CF13, Par94,

Par96]).

If R ∈ {S,E} and M is a graded R-module, then M has a unique minimal graded free

resolution over R: F• : . . . → F2 → F1 → F0 → M → 0, where Fi = ⊕jR(−j)βi,j(M). The

integers βi,j(M) = dimK TorRi (M,K)j are called the graded Betti numbers of M , whereas

the numbers βi(M) =
∑
j βi,j(M) are called the Betti numbers of M . The problem to bound

the graded Betti numbers of a module M can be reformulated as follows: is it possible to

find a graded R-module L such that βi,j(L) ≥ βi,j(M) (for all i, j), for all graded R-modules

M with the same Hilbert function of L? In the case of modules over the polynomial ring and

ideals in the exterior algebra, the answer is positive and a fundamental tool is the class of

lexicographic submodules and the class of lexicographic ideals, respectively. More in details,

Bigatti [Big93] and Hulett [Hul93] showed independently that among all graded ideals in a

standard polynomial ring S with a given Hilbert function, the lexicographic ideal has the

largest graded Betti numbers in characteristic zero. Then Hulett [Hul95] extended the result

to graded submodules of a free module over S. The previous results were proved by Pardue

[Par94, Par96] in any characteristic. The result of Bigatti [Big93], Hulett [Hul93] and Pardue

[Par94, Par96] was generalized to the exterior algebra context by Aramova, Herzog and Hibi

in [AHH97]. In this dissertation we will show how the class of lexicographic submodules

reveals fundamental also in getting upper bounds for graded submodules of a free module

over the exterior algebra.

It is known that the R-module M has also a unique minimal graded injective resolution:

I• : 0 → M → I0 → I1 → I2 → . . . , where Ii = ⊕jR(n − j)µi,j(M). The integers

µi,j(M) = dimK ExtiR(K,M)j are called the graded Bass numbers of M [BH96, K1̈0].

Also for these invariants, the problem to find a bound (once the Hilbert function has been

fixed) for modules over the polynomial ring and ideals of the exterior algebra has been

solved ([AHH97, Bee07]). Hence, we will still focus on modules over the exterior algebra

E = K 〈e1, . . . , en〉. Our aim is to give upper bounds for such invariants in the class of all

graded submodules in F with the same Hilbert function, again via lexicographic modules.

An important role in the exterior algebra context is assumed by a special monomial submod-

ule of F , as in the polynomial ring context. Precisely, if M ∈ M is a graded submodule of

F , fixing a proper monomial order on F , there exists a monomial submodule of F called the

generic initial module, denoted by Gin(M), which contains some information related to M .

Indeed, if K is infinite then Gin(M) is strongly stable (see Definition 1.2.8) and the inequal-

ity βi,j(M) ≤ βi,j(Gin(M)) holds for all i, j (see [Gre98, AHH97]). So, for the solution of

our problem we can take into account, without loss of generality, strongly stable submodules.

In order to face the analogous problem on the graded Bass numbers, we need some further

remarks. Let M∗ be the right (left) E-module HomE(M,E). The duality between projec-

tive and injective resolutions implies the existence of a relation ([AHH97, Proposition 5.2])
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between the graded Bass numbers of a module and the graded Betti numbers of its dual:

βi,j(M) = µi,n−j(M∗), for all i, j. An important observation is that HomE(E/I,E) ' 0 : I

([AHH97]), where 0 : I is the annihilator of I. Furthermore, if I is lex than 0 : I is lex too.

In our study, the crucial point is to relate the submodules F/M lex with Hom(F/M,E)lex.

We have obtained a partial result in the case F = Er, as we will see later.

An important subset of the graded Betti numbers of a graded ideal of a polynomial ring is

the one consisting of the extremal Betti numbers. These invariants were introduced by Bayer,

Charalambous and Popescu in [BCP99], as a refinement of some important invariants of the

graded ideal I. More precisely, let S = K[x1, . . . , xn] be the standard polynomial ring in n

variables over a field K and let I be a graded ideal of S. A graded Betti number βk,k+`(I) 6= 0

is called extremal if βi, i+j(I) = 0 for all i ≥ k, j ≥ `, (i, j) 6= (k, `) [BCP99]. The pair (k, `) is

called a corner of I. If βki,ki+`i(I) (i = 1, . . . , r) are extremal Betti numbers of a graded ideal

I, then the set Corn(I) = {(k1, `1), (k2, `2), . . . , (kr, `r)} will be called the corner sequence

of I. In the Macaulay2 or CoCoA Betti diagram of I, the graded Betti number βi,j(I) is

plotted in column i and row j − i. Using such a notation, a graded Betti number βk,k+`(I)

is extremal if it is the only entry in the quadrant where it is the northwest corner (see

Figure 1.2). Projective dimension measures the column index of the easternmost extremal

Betti number, whereas regularity measures the row index of the southernmost one. Indeed,

the extremal Betti numbers are a generalization of such meaningful algebraic invariants.

Recently, Ene, Herzog, and Qureshi have introduced the notion of t–spread monomial ideal

[EHQ19] (see also [AEL19, AC19f]), where t is a nonnegative integer. More precisely, if t ≥ 0

is an integer, a monomial xi1xi2 · · ·xid with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n is called t–spread, if

ij − ij−1 ≥ t for 2 ≤ j ≤ d. A monomial ideal in S is called a t–spread monomial ideal, if

it is generated by t–spread monomials. Such a notion generalizes the notion of (squarefree)

monomial ideal. Indeed, it is clear that every monomial ideal of S is a 0–spread monomial

ideal, whereas every squarefree monomial ideal of S is a 1–spread monomial ideal.

We recall that a squarefree monomial ideal of S is a monomial ideal generated by squarefree

monomials. Such ideals are also known as Stanley–Reisner ideals, and quotients by them

are called Stanley–Reisner rings. The combinatorial nature of these algebraic objects comes

from their close connections to simplicial topology. Many authors have studied the class of

squarefree monomial ideals from the viewpoint of commutative algebra and combinatorics

(see, for example [AHH98, AHH00, CSW14, MS05, CU09], and the references therein). We

analyze the following problem.

Problem 1 Given three nonnegative integers t, n, r (n ≥ 2 and 1 ≤ r ≤ n − 1), r pairs of

positive integers (k1, `1), . . ., (kr, `r) such that n − 1 ≥ k1 > k2 > · · · > kr ≥ 1, 1 ≤ `1 <

`2 < · · · < `r, and r positive integers a1, . . . , ar, under which conditions does there exist a

t–spread ideal I of S = K[x1, . . . , xn] such that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are

its extremal Betti numbers?
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A positive answer to this problem has been given for K field of characteristic zero and t = 0

[CU00, CU03, HSV14]. Indeed, under these hypotheses, the generic initial ideal Gin(I), with

respect to the graded reverse lexicographic order induced by x1 > · · · > xn ([Eis95, HH11]),

of a graded ideal of S is a strongly stable ideal, and the extremal Betti numbers of I, as well

as their positions, are preserved by passing from I to Gin(I) [BCP99, Corollary 1]. A similar

result holds also in the squarefree case even if the fact that I is squarefree does not imply that

Gin(I) is squarefree. Indeed, in [AHH00], the authors have introduced a certain operator

σ which transforms Gin(I) to a squarefree monomial ideal of S. Such an ideal, denoted by

Gin(I)σ, is squarefree strongly stable [AHH00, Lemma 1.2.]. On the other hand, [AHH00,

Theorem 2.4.] assures that if I is a squarefree ideal, then the extremal Betti numbers are

preserved when we pass from I to Gin(I)σ. Hence, Problem 1 can be reformulated in terms

of strongly stable ideals for t = 0 and in terms of squarefree strongly stable ideals for t = 1.

In this thesis we analyze the behavior of the extremal Betti numbers of t–spread strongly

stable ideals for t ≥ 0 (Definition 4.1.1). This class of ideals is a natural generalization of

the class of (squarefree) strongly stable ideals [EK90, AHH98]. Hence, one can use similar

methods as in [AC19a, AC19e, Cru16, CU00, CU03, CU09, CF16] for establishing criteria

to determine their extremal Betti numbers. The discussion of this topic has been gradual.

Since for t = 0, i.e. in the case of monomial ideals of S, Problem 1 has been solved [CU03,

Theorem 3.1], [Cru16, Propositions 3.4, 3.5, Theorem 3.7] and [HSV14, Theorem 6.7], we

have created a package in CoCoA for “manipulating” the extremal Betti numbers in this case.

By using computer algebra systems, CAS, (for instance, CoCoA [AB, ABL] or Macaulay2

[GS]), given a graded ideal I of the polynomial ring S, functions for determining the extremal

Betti numbers of I are available. On the contrary, to the best of our knowledge, it seems

that packages for the inverse problem, i.e., Problem 1, have not been implemented yet. The

key idea is to identify appropriate segments of monomials to determine the extremal Betti

numbers for each degree. So, we have improved some known results and we have developed

a CoCoA package (ExtrBettiNumbers) for computing the smallest strongly stable ideal of

S solution of Problem 1 ([AC19a]). In particular, the package is able to determine all the

possible r-tuples of positive integers (a1, . . . , ar) for which such an ideal does exist.

For the case t = 1, i.e. squarefree ideals of S, the first result on the behavior of the extremal

Betti numbers of such a class of squarefree monomial ideals can be found in [CU03, Pro-

postion 4.1]. More precisely, the authors in [CU03] gave the following criterion to determine

whether a graded Betti number is extremal: let I be a squarefree strongly stable ideal of S.

βk, k+`(I) is an extremal Betti number if and only if k + ` = max{m(u) : u ∈ G(I)`} and

m(u) < k+ j, for all j > ` and for all u ∈ G(I)j (Theorem 4.1.12); G(I)` is the set of mono-

mials u of G(I) such that deg u = `. They did not give any numerical characterization of the

possible extremal Betti numbers of such a class of ideals. Later, such a criterion was gen-

eralized to the class of squarefree strongly stable submodules of a finitely generated graded
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free S–module with a homogeneous basis in [CF16, Theorem 4.3]. Moreover, a criterion for

determining their positions and their number was also given in [CF16, Section 5]. Differently

from the non–squarefree case, not much is known about the numerical characterization of

the possible extremal Betti numbers (values and positions) of the class of squarefree strongly

stable ideals. We are able to give such a characterization (Theorem 4.3.29). Our techniques

involve tools from enumerative combinatorics to detect some particular monomials that char-

acterize the positions of the extremal Betti numbers and hence some combinatorial formulas

to establish the bounds for their values.

For the case t = 2, i.e. the case of 2–spread ideals of S, we determine the maximal admissi-

ble number of extremal Betti numbers of a 2–spread strongly stable ideal. Many surprising

situations occur in such a case ([AC19b]). At the present time, it seems to be a difficult

combinatorial problem to determine such a number for all t ≥ 1 and solve Problem 1.

This thesis is structured in four chapters. Chapter 1 contains a brief sketch of the notions

which are intensively used along the thesis. Moreover, it fixes the notations and gives a short

overview on computational methods in commutative algebra.

In Chapter 2 we discuss in details the Hilbert functions of quotients of graded free E-

modules. The study of the behavior of these functions is crucial for the development of

the main result. We state a new expression for such Hilbert functions (Proposition 2.2.1),

and give their characterization (Theorem 2.2.4) via lexicographic submodules. Moreover,

we describe a new procedure for the construction of the unique lexicographic submodule

for a given Hilbert function (Theorem 2.3.2). A new criterion (Criterion 2.3.3) to verify if

a sequence of nonnegative integers determines the Hilbert function of quotients of graded

E–algebras is also given. After this, we show some examples illustrating our results and

procedures. Finally, we present two Macaulay2 packages, and show the use of their methods

by means of suitable examples. This chapter is based on the papers [AC18b, AC19c, AC20].

Chapter 3 is dedicated to minimal graded free resolutions, and in particular to devise

bounds for the graded Betti numbers and the graded Bass numbers in the exterior algebra

context. We start by analyzing the generic initial module of a graded module M ∈ M.

Generic initial modules preserve much information of the original module and, furthermore,

they are strongly stable (Proposition 1.2.7) if the base field K is infinite. Therefore, in many

situations it is a successful strategy to pass on to the generic initial module and then exploit

the nice properties of strongly stable submodules. After this, we discuss both the class of

almost lexicographic submodules (Definition 3.2.2) and the class of lexicographic submodules

of F . We prove that the almost lexicographic submodules provide a first upper bound for

the Betti numbers of all graded submodules of F with the same Hilbert function (Propo-

sition 3.2.3). Such a bound is not maximal in general. Finally, we give a characterization

of the class of lexicographic submodules (Definition 1.2.16). Indeed, if F = ⊕ri=1Egi is the

free E-module with homogeneous basis g1, . . . , gr, such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr,
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we show that the lexicographic submodules give upper bounds for the graded Betti numbers

of the class of graded submodules of F with the same Hilbert function (Theorem 3.3.9).

Our techniques generalize the ones discussed in [AHH97, AHH98]. Moreover, upper bounds

for the graded Bass numbers of the class of graded submodules of F ' Er with a given

Hilbert function, are stated. Indeed, in such a case, setting M lex = ⊕rt=1Jtgt ⊂ Er, we have

that Hom(Er/M,E)lex = ⊕rt=1(0 : Jr−t−1)gt (these are lex submodules of Er with the same

Hilbert function). This allows us to state that µi,j(E
r/M) ≤ µi,j(E

r/M lex), for all i, j.

Furthermore, some remarks on the annihilator of classes of monomial submodules in F are

given (Theorem 3.4.5). Finally, we present other functionalities of the Macaulay2 packages

introduced in the previous chapter and we show some explicative examples. This chapter is

based on the papers [AC18b, AC18a, AC19d].

In Chapter 4, we investigate the behavior of the extremal Betti numbers of t–spread

strongly stable ideals (Theorem 4.1.12, Corollary 4.1.13). A fundamental tool is the Ene,

Herzog, Qureshi formula [EHQ19] for computing the graded Betti numbers of such a class of

monomial ideals. We have approached the problem step by step, for low values of t, i.e., for

t ∈ {0, 1}. First, we study the possible extremal Betti numbers of a strongly stable ideal of

S (i.e., t = 0) with initial degree ≥ 2. Since the characterization of the extremal Betti num-

bers is obtained by a detailed description of suitable sets of monomials (Proposition 4.2.5,

Theorem 4.2.6), we exhibit two algorithms (Algorithm 4.1 and 4.2) for the computation of

all the sets of monomials involved in the characterization. As a final result, our procedure

returns the strongly stable ideal we are looking for (Algorithm 4.3). Moreover, we describe

a further algorithm (Algorithm 4.4) able to compute all the admissible values for the r-tuple

of positive integers (a1, . . . , ar) satisfying Problem 1. Hence, an example which illustrates

the implemented functions is given. We also describe in detail the CoCoA package ExtrBet-

tiNumbers (tested with CoCoA System, version 5.1.4) that has been built.

Furthermore, for t = 1, we identify the admissible corner sequences of a squarefree strongly

stable ideal of S for n = 2, 3, 4. Then, we determine the maximal number of corners

allowed for a squarefree strongly stable ideal I of S with a corner in its initial degree

(Propositions 4.3.7, 4.3.9). Moreover, given n − `1 (n ≥ 5) pairs of positive integers

(k1, `1), (k2, `2), . . ., (kn−`1 , `n−`1), with 1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n − 3 and

3 ≤ `1 < `2 < · · · < `n−`1 ≤ n − 1, we determine the conditions under which there exists a

squarefree lex ideal I of K[x1, . . . , xn] of initial degree `1 having βki,ki+`i(I), i = 1, . . . , r, as

extremal Betti numbers (Theorem 4.3.13). A complete description of the minimal system of

monomial generators of I is given. Next, we face Problem 1, and solve it when char(K) = 0

(Theorem 4.3.29). In such a case, the question is equivalent to the characterization of the

possible extremal Betti numbers of a squarefree strongly stable ideal of S as we have un-

derlined before. The idea behind Theorem 4.3.29 is to establish the bounds for the integers

ai (i = 1, . . . , r), starting with ar and then arriving to a1, by computing the cardinality of
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suitable sets of monomials. The key result in this case is Theorem 4.3.17. Let (k, `) be a

pair of positive integers and let As(k, `) be the set of all squarefree monomials u of S of

degree ` and such that max(u) = k+ `, with max(u) = max{i : xi divides u}, ordered by the

squarefree lex order ≥slex. If u ∈ As(k, `), Theorem 4.3.17 shows a method for determining

the cardinality of the set of all squarefree monomials w ∈ As(k, `) such that w ≥slex u. We

provide some examples illustrating the main obstructions to the issue.

For t = 2, we analyze the extremal Betti numbers of 2–spread strongly stable ideals in the

polynomial ring S = K[x1, . . . , xn]. More precisely, we face the following problem: given

the set S2,n of all 2–spread strongly stable ideals in S, what is the maximal number of ex-

tremal Betti numbers allowed for an ideal in S2,n? The study of this problem has led us

to distinguish the cases n odd and n even (Theorems 4.4.2, 4.4.9). Moreover, if n ≥ 11

is an odd integer, given r = n−3
2 pairs of positive integers (k1, `1), . . ., (kr, `r) such that

n− 3 ≥ k1 > k2 > · · · > kr ≥ 1 and 2 = `1 < `2 < · · · < `r, we determine the conditions un-

der which there exists a 2–spread strongly stable ideal I of S = K[x1, . . . , xn] of initial degree

`1 = 2 with βk1,k1+`1(I), . . ., βkr,kr+`r (I) as extremal Betti numbers (Theorem 4.4.6). A

similar result is proved for n ≥ 12 even integer (Theorem 4.4.12). We provide some examples

illustrating the main results. Finally, we present a Macaulay2 package, SquarefreeIdeals,

to manipulate squarefree monomial ideals. This package provides some methods to solve the

Problem 1 for t = 1; we are currently working to implement methods to face the general

problem where t ≥ 1. This chapter is based on the papers [AC19a, AC19e, AC19b].

All the examples in the dissertation are constructed by means of CoCoA or Macaulay2

packages, some of which developed by the author of this work.



Chapter 1

Basic notions

This chapter summarizes the fundamental notions about algebraic structures, and the ideas

to we will refer to in this dissertation. We illustrate classical definitions and properties

about graded algebras, monomial modules, Hilbert functions and minimal resolutions. These

objects and tools, here introduced theoretically, in the situations where it is possible, will be

investigated through an algorithmic and computational point of view in the next chapters.

The aspects here discussed can be found in any textbook about commutative algebra (see,

for instance, [BH96], [HH11], [Eis95], [Pee11], [Eis05]).

1.1 Graded Algebras

In this section, we discuss about rings and algebras which admit a decomposition of their

elements into homogeneous components. Throughout this thesis we assume that all rings

are Noetherian, commutative or skew-commutative and with identity. All modules involved

are finitely generated unless otherwise stated and we fix an infinite field K.

Definition 1.1.1 A graded ring is a ring R together with a decomposition R =
⊕

i∈ZRi

(as a Z–module) such that RiRj ⊂ Ri+j , for all i, j ∈ Z.

One calls Ri the i–th homogeneous (or graded) component of R. The elements x ∈ Ri are

called homogeneous of degree i.

According to this definition, the zero element is homogeneous of arbitrary degree. The

degree of x is denoted by deg x. An arbitrary element x ∈ R has a unique presentation

x =
∑
i xi as a sum of homogeneous elements xi ∈ Ri. The elements xi are called the

homogeneous components of x. Note that every ring R has the trivial grading given by

R0 = R and Ri = 0 for i 6= 0.

A (not necessarily commutative) R–algebra A is graded if, in addition to the definition,

AiAj ⊂ Ai+j . Let K be a field, A is called standard graded if it is a finitely generated

9
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K-algebra and all its generators are of degree 1. Any other standard graded K-algebra is

isomorphic to the polynomial ring modulo a graded ideal.

Proposition 1.1.2 Let R be a positively graded R0–algebra, and x1, . . . , xn homogeneous

elements of positive degree. Then the following are equivalent:

(i) x1, . . . , xn generate the ideal m =
∑∞
i=1Ri.

(ii) x1, . . . , xn generate R as an R0–algebra.

The last assertion of Proposition 1.1.2 holds for graded rings in general (see [BH96, Propo-

sition 1.5.4]).

Definition 1.1.1 can be generalized for modules over a graded ring.

A graded R–module is an R–module M together with a decomposition M =
⊕

i∈ZMi (as

a Z–module) such that RiMj ⊂ Mi+j , for all i, j ∈ Z. One calls Mi the i–th homogeneous

(or graded) component of M . The elements x ∈Mi are called homogeneous (of degree i).

According to this definition, the zero element is homogeneous of arbitrary degree. The

degree of x is denoted by deg x. An arbitrary element x ∈ M has a unique presentation

x =
∑
i xi as a sum of homogeneous elements xi ∈ Mi. The elements xi are called the

homogeneous components of x.

Note that R0 is a ring with 1 ∈ R0, all summands Mi are R0–modules, and so M =
⊕

i∈ZMi is a direct sum decomposition of M as an R0–module.

Let R be a graded ring. The category of graded R-modules, denoted by M0(R), has

as objects the graded R–modules. A morphism ϕ : M → N in M0(R) is an R–module

homomorphism satisfying ϕ(Mi) ⊂ Ni for all i ∈ Z. An R–module homomorphism which is

a morphism in M0(R) will be called homogeneous.

Let M be a graded R–module and N a submodule of M . N is called a graded submodule

if it is a graded module such that the inclusion map is a morphism in M0(R). This is

equivalent to the condition Ni ⊂ N ∩ Mi for all i ∈ Z. In other words, N is a graded

submodule of M if and only if N is generated by the homogeneous elements of M which

belong to N . In particular, if x ∈ N , then all homogeneous components of x belong to N .

Furthermore, M/N is graded in a natural way. If ϕ is a morphism in M0(R), then Kerϕ

and imϕ are graded.

The graded submodules of R are called graded ideals.

Remark 1.1.3 Let I be an arbitrary ideal of R. Then the graded ideal I∗ is defined to

be the ideal generated by all homogeneous elements a ∈ I. It is clear that I∗ is the largest

graded ideal contained in I, and that R/I∗ inherits a natural structure as a graded ring.
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In this thesis, due to their algorithmic structure, the focus of our arguments will be two

graded algebras with reference to the polynomial ring and the exterior algebra.

Example 1.1.4 (i) Let K be a field, and S = K[x1, . . . , xn] a polynomial ring over K.

Then for every choice of integers d1, . . . , dn there exists a unique grading on R such

that deg xi = di and deg a = 0 for all a ∈ K. The m–th graded component is the S–

module generated by all the products xα1
1 · · ·xαnn such that

∑
αidi = m. If one chooses

di = 1 for all i, then one obtains the grading of the polynomial ring corresponding to

the total degree of a product of indeterminates. Unless indicated otherwise, we will

always consider S to be graded in this way.

(ii) Let R be a ring, and M an R–module. We consider R as a graded ring by giving it

the trivial grading. Let M⊗i denotes the i–th tensor power of M , i.e., M
⊗ · · ·⊗M

of i factors of M for i > 0 and R for i = 0. The tensor power form a graded R–

module
⊗
M =

⊕∞
i=0M

⊗i. Defining the product of x1 ⊗ · · · ⊗ xn and y1 ⊗ · · · ⊗ ym
as x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym, one gives

⊗
M the structure of a graded associative

R–algebra (not commutative in general). Let us consider the two-sided graded ideal I

generated by the homogeneous elements x ⊗ x, x ∈ M . The exterior algebra
∧
M is

the graded R–algebra
∧
M =

⊗
M/I The product of x, y ∈ ∧M is denoted by x ∧ y.

One has

x ∧ y = (−1)(deg x)(deg y) y ∧ x for homogeneous x, y ∈ ∧M,

x ∧ x = 0 for homogeneous x ∈ ∧M, deg x odd.

Given x1, . . . , xn ∈M and a permutation π of Sn, then xπ(1)∧ . . .∧xπ(n) = sgn(π)x1∧
. . . ∧ xn (sgn : Sn → {−1, 1}, the sign of a permutation).

Remark 1.1.5 Throughout this thesis, if K is a field, we will denote by E = K 〈e1, . . . , en〉
the exterior algebra of a K-vector space V with basis e1, . . . , en.

For any subset σ = {i1, . . . , id} of {1, . . . , n} with i1 < i2 < · · · < id we write eσ =

ei1 ∧ . . . ∧ eid . We set eσ = 1, if σ = ∅. One can easily verify that the set of all products of

indeterminates in E forms a K-basis of E of cardinality 2n.

In order to simplify the notation, we put fg = f ∧ g for any two elements f and g in E. An

element f ∈ E is called homogeneous of degree j if f ∈ Ej , where Ej =
∧j

V .

Now, let R be a graded algebra and letM be the category of finitely generated Z–graded

left and right R-modules M .

It is possible to introduce graded free modules over a graded algebra. From now on we will

define and discuss graded free modules over a graded algebra R, when R is the polynomial

ring S = K[x1, . . . , xn] or the exterior algebra E = K 〈e1, . . . , en〉.
Let F ∈M be a graded free module with homogeneous basis g1, . . . , gr, where deg(gi) =

fi for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write F =
⊕r

i=1Rgi .
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The degree of an element of the form xgi, where x is homogeneous in R, is deg(xgi) =

deg(x) + deg(gi).

Definition 1.1.6 If M is a graded submodule of a finitely generated graded free module F ,

we denote by indeg(M) the initial degree of M , i.e., the minimum i such that Mi 6= 0.

1.2 Monomials

Special elements called monomials can be introduced in both graded algebras S and E. In

order to point out the differences between the polynomial ring and the exterior algebra, we

will proceed with some “splitted” definitions.

Definition 1.2.1 Let K be a field.

(i) Let us consider the polynomial ring S = K[x1, . . . , xn] as a Z-graded ring where

deg xi = 1, i = 1, . . . , n. Any product xα1
1 · · ·xαnn , with αi non–negative integers,

is called a monomial of S of degree
∑
αi.

(ii) If E = K 〈e1, . . . , en〉 is the exterior algebra of a K-vector space V with basis e1, . . . , en,

any product ei1 . . . eid , with 1 ≤ i1 < i2 < · · · < id ≤ n, is called a monomial of E of

degree d.

(iii) Let F be a graded free module with homogeneous basis g1, . . . , gr over R ∈ {S,E}.
We write F = ⊕ri=1Rgi. The elements of the form ugi, where u is a monomial of R,

are called monomials of F of degree deg(u) + deg(gi).

In the following we will refer to graded algebra R ∈ {S,E}. Indeed, in both these cases

the definition above can be given.

For a monomial 1 6= u ∈ R, we set

supp(u) = {i : xi divides u},

and we write

max(u) = max{i : i ∈ supp(u)}, min(u) = min{i : i ∈ supp(u)}.

Moreover, we set max(1) = min(1) = 0.

Definition 1.2.2 Let F be a finitely generated graded free R-module with homogeneous

basis g1, . . . , gr. A graded submodule M of F is a monomial submodule if M is a submodule

generated by monomials of F , i.e.,

M = I1g1 ⊕ · · · ⊕ Irgr,

with Ii a monomial ideal of R, for each i.
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One can easily observe that monomial modules are graded modules. Moreover, if r = 1

and deg g1 = 0 then every monomial submodule of F is a monomial ideal of R.

For a subset T of F , we denote by Mon(T ) (Mond(T ) , respectively) the set of all

monomials (monomials of degree d, respectively) of T , and by |T | its cardinality. It is clear

that Mon(F ) is a K-basis of F . In particular, if I is an ideal of R, then Mon(I) is a K-basis

of I.

There exist some special classes of monomial modules that have wide applications to

algebraic geometry, commutative algebra, and combinatorics.

Indeed, in several cases it is convenient to consider particular monomial modules associ-

ated to a graded module in order to obtain information on it. To this aim, it is necessary to

introduce the notion of monomial order.

Definition 1.2.3 Let F ∈ M be a free R-module with basis. A monomial order on F is

a total order > on the monomials of F such that if u, v ∈ Mon(F ) and w ∈ Mon(R), then

u > v implies wu > wv > v.

Now, it is possible to introduce the definition of initial monomial of an element of F .

Let y ∈ F and let > a monomial order on F . The initial monomial of y, written in>(y), is

the greatest monomial of y with respect to the monomial order >.

If M is a submodule of F , then the initial module of M indicated by in>(M) is the monomial

submodule of F generated by the monomials in>(y) for all y ∈M .

Fixed a monomial order, we will use to write in(y) and in(M), respectively.

Example 1.2.4 (i) Let S = K[x1, . . . , xn] and let xα = xα1
1 · · ·xαnn and xβ = xβ1

1 · · ·xβnn
be monomials of S with αi, βi nonnegative integers. We denote by>lex the lexicographic

order (lex order, for short) on Mon(S), i.e. xα >lex xβ (lexicographically greater than)

if either
∑n
i=1 αi >

∑n
i=1 βi or α1 = β1, . . ., αs−1 = βs−1 and αs > βs for some

1 ≤ s ≤ n.

(ii) Let E = K 〈e1, . . . , en〉 be the exterior algebra. Let eσ = ei1ei2 · · · eid and eτ =

ej1ej2 · · · ejd be monomials belonging to Mond(E) with 1 ≤ i1 < i2 < · · · < id ≤ n and

1 ≤ j1 < j2 < · · · < jd ≤ n. We denote by >lex the lexicographic order (lex order,

for short) on Mond(E), i.e. eσ >lex eτ (lexicographically greater than) if i1 = j1, . . .,

is−1 = js−1 and is < js for some 1 ≤ s ≤ d.

(iii) Let F = ⊕ri=1Sgi be a graded free module over S or E with a homogeneous basis.

Denote by Mon(F ) the set of all monomials of F . We order such a set by the ordering

>lexF defined as follows: if ugi and vgj are monomials of F , then ugi >lexF vgj (F -

lexicographically greater than) if deg(ugi) > deg(vgj) or if deg(ugi) = deg(vgj) and

either i < j or i = j and u >lex v.
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For instance, if E = K〈e1, e2, e3〉 and F = Eg1 ⊕ Eg2, with deg g1 = 2 and deg g2 = 3, then

Mon2(F ) g1

Mon3(F ) e1g1 >lexF e2g1 >lexF e3g1 >lexF g2

Mon4(F ) e1e2g1 >lexF e1e3g1 >lexF e2e3g1 >lexF e1g2 >lexF e2g2 >lexF e3g2

Mon5(F ) e1e2e3g1 >lexF e1e2g2 >lexF e1e3g2 >lexF e2e3g2

Mon6(F ) e1e2e3g2

Theorem 1.2.5 (Macaulay)

Let R be a graded algebra, F a free R-module with homogeneous basis, and M an arbitrary

submodule of F . For any monomial order > on F , the set B of all monomials not in in>(M)

forms a basis for F/M .

The initial module depends also on the choice of coordinates, but there is an object, the

initial module in generic coordinates, which is coordinate-independent both for variables of

S and for homogeneous free generators of F (see [Par96]). So, given a graded R-module

M , in generic coordinates, and a monomial order through the initial module in(M), we can

read off information about the module M , for example the depth of F/M or the regularity

of M . One can observe that is more convenient to handle initial modules with respect to a

given coordinates. So instead of making a generic transformation of them and considering

the initial module, it is suitable to transform a module by a generic linear transformation

and consider its initial module in the given coordinates.

The first result of Galligo about the generic initial ideals Gin(I) is referred to character-

istic 0. Bayer, Stillman worked about this idea and achieved the definition of generic initial

ideal in finite characteristic. Pardue ([Par94]) has extended the definition to the generic

initial modules.

More in details, let K be a field. The linear group GLn(K) = GL(n) is a Zariski open

subset of Mn(K). Let I ⊂ S be a graded ideal and < a monomial order on S. Then there

exists a nonempty open subset U ⊂ GL(n) such that in<(αI) = in<(α′I) for all α, α′ ∈ U .

This result leads out to the definition of Gin(I) = in<(αI) for α ∈ U . Let us denote by B(n)

the subgroup of GL(n) of all nonsingular upper triangular matrices. B(n) is called the Borel

subgroup of GL(n). The following result holds.

Theorem 1.2.6 (Galligo, Bayer and Stillman)[Gal74, BS87]

If I ⊂ S is a homogeneous ideal then Gin(I) is Borel-fixed in the sense that for all g ∈ B(n),

then g(Gin(I)) = Gin(I).

Let F be the graded free module over S with homogeneous basis. In order to generalize

Theorem 1.2.6, one can consider GL(F ) to be the group of S-linear graded automorphisms

of F . Since conjugation is an action of GL(n) on GL(F ), we can write G = GL(n)oGL(F ).
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This is an algebraic group that acts on F through K-linear graded automorphisms that

take submodules to submodules. Also in this case there exists an open subset U ⊂ G such

that in<(M) is invariant for all transformation in G. The subgroup B(F ) ⊂ GL(F ) of all

nonsingular upper triangular matrices is called the Borel subgroup of GL(F ). Then B(n)

acts on B(F ) and B = B(n) o B(F ) ⊂ G is called the Borel subgroup of G. The following

result holds.

Proposition 1.2.7 ([Par96, Proposition 6])

Let F = ⊕ri=1Sgi. A submodule M ⊂ F is fixed by the action of B on F if and only

(i) M = I1g1 ⊕ · · · ⊕ Irgr is a monomial submodule

(ii) for every monomial u ∈M , if x`j | u, x`+1
j - u and i < j then (xi/xj)

du ∈M for every

d ≤ `

(iii) mdj−diIj ⊆ Ii for every i < j.

Bayer proved Proposition 1.2.7 in the case of F = S ([Bay82]).

The previous result forced Pardue ([Par96]) to give the following definition.

Definition 1.2.8 A submodule N ⊆ F is a Borel-fixed submodule if N is fixed by B(F ).

A submodule N ⊆ F is a standard Borel-fixed submodule if N satisfies conditions (i) and

(iii) of Proposition 1.2.7 and furthermore for every monomial mgi ∈ N , if xj | m then

(xi/xj)mgi ∈ N for every i < j.

A standard Borel-fixed submodule is Borel-fixed. If the characteristic of K is zero, then

every Borel-fixed submodule is standard. A Borel-fixed submodule which is not standard is

called nonstandard.

One can observe that for r = 1 and deg(g1) = 0, a standard Borel-fixed submodule M

of F is a strongly stable ideal of S ([EK90]). We recall that a monomial ideal I ⊂ S =

K[x1, . . . , xn] is called strongly stable if for each monomial u ∈ I and each xj | u one has

(xi/xj)u ∈ I, for all i < j. For this reason, throughout the paper, a standard Borel-fixed

submodule of F will be called a strongly stable submodule. Hence, we give the following

definition.

Definition 1.2.9 A monomial submodule M = ⊕ri=1Iigi of F is a strongly stable submodule

if Ii is a strongly stable ideal of S, for each i, and (x1, . . . , xn)fi+1−fiIi+1 ⊆ Ii, for i =

1, . . . , r − 1.

In [EK90], next class of monomial ideals was introduced.

Definition 1.2.10 Let I be a monomial ideal of S = K[x1, . . . , xn]. I is called stable if for

each monomial u ∈ I and each j < m(u) one has (xj/xm(u))u ∈ I.
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Therefore, we give next definition.

Definition 1.2.11 Let F = ⊕ri=1Sgi. A monomial submodule M = ⊕ri=1Iigi is called stable

if Ii is a stable ideal of S, for each i, and (x1, . . . , xn)fi+1−fiIi+1 ⊆ Ii, for i = 1, . . . , r − 1.

The above definitions can be introduced also in the exterior algebra context with the

suitable modifications (see Section 3.1 in Chapter 3).

Example 1.2.12 We give an example of a (strongly) stable ideal of R and of a (strongly)

stable submodule of a graded free module F .

(i) Let S = K[x1, x2, x3]. The ideal I = (x2
1, x1x2, x

2
2, x2x3) is an example of stable ideal

which is not a strongly stable ideal. Indeed, x1x3 /∈ I. The ideal J = I ∪ {x1x3} =

(x2
1, x1x2, x

2
2, x1x3, x2x3) is the smallest strongly stable ideal containing I.

(ii) Let E = K〈e1, e2, e3, e4〉 and F = Eg1 ⊕ Eg2 ⊕ Eg3, with deg g1 = −2, deg g2 = −1

and deg g3 = 3. The submodule

M = (e1e3, e2e3, e1e2e4)g1 ⊕ (e1e2, e2e3, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3

is not a stable submodule of F . The smallest stable submodule containing M is

Ms = (e1e2, e1e3, e2e3)g1 ⊕ (e1e2, e1e3, e2e3, e2e4, e3e4)g2 ⊕ (e1e2e3, e2e3e4)g3.

Ms is not a strongly stable submodule of F , so we can compute the smallest one

containing it:

Mss = (e1e2, e1e3, e2e3)g1 ⊕ (e1e2, e1e3, e1e4,e2e3, e2e4, e3e4)g2

⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g3.

Remark 1.2.13 Some of the results discussed about generic initial ideals in S and generic

initial S-modules also hold in the context of the exterior algebra E and E-modules with

the appropriate modifications. Generic initial modules are defined exactly as before and the

analogues of Theorem 1.2.6 and Proposition 1.2.7 have been stated by Aramova, Herzog,

Hibi in [AHH97] (see also Green [Gre98].

A fundamental subclass of strongly stable modules is that one of the lexsegment modules.

Indeed, this modules have some properties useful to classify important geometrical invariants,

as we will see in the sequel.

Let R ∈ {S,E} and let us consider a graded free R-module F with homogeneous basis

endowed with a lexicographic order >lexF (Example 1.2.4).

Definition 1.2.14 A nonempty subset N of Mond(F ) is called a lexicographic segment of

F (lexF segment, for short) of degree d if for all v ∈ N and all u ∈ Mond(F ) such that

u >lexF v, then u ∈ N .
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Example 1.2.15 Let E = K〈e1, e2, e3〉 and F = E2. The subset N = {e1e2g1, e1e3g1,

e2e3g1, e1e2g2} is a lexF segment of degree 2 of F ; on the contrary, N ′ = {e1e2g1, e1e3g1,

e1e2g2} is not a lexF segment of degree 2. Indeed, the monomial e2e3g1 >lexF e1e2g2 does

not belong to N ′.

Definition 1.2.16 Let L be a monomial submodule of F . L is a lexicographic submodule

(lex submodule, for short) if for all u, v ∈ Mond(F ) with v ∈ L and u >lexF v, one has u ∈ L,

for every d, i.e., Mond(L) is a lexF segment of degree d, for each degree d.

Remark 1.2.17 A monomial submodule L of F is a lexicographic submodule if Mond(L) is

a lexF segment of degree d, for each degree d; Mond(L) is the set of all monomials of degree

d of L.

Example 1.2.18 Let E = K〈e1, e2, e3, e4〉 and F = Eg1 ⊕ Eg2 ⊕ Eg3, with deg g1 = −2,

deg g2 = −1 and deg g3 = 3. The submodule

L = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3, e1e4, e2e3)g2 ⊕ (e1e2e3, e1e2e4)g3

is a lex submodule of F .

It is easy to show the relations between the classes of stable, strongly stable and lexico-

graphic modules:

{lex modules} ( {strongly stable modules} ( {stable modules}

For instance, the submodule Ms in Example 1.2.12[(ii)] is stable but not strongly stable.

Moreover, the submodule Mss is strongly stable but not lexicographic. So, we can compute

the lexicographic submodule L of F that contains Mss.

L = (e1e2, e1e3, e1e4, e2e3)g1 ⊕ (e1e2, e1e3,e1e4, e2e3, e2e4, e3e4)g2

⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g3.

1.3 Hilbert Functions

Hilbert functions represent numerical invariants of projective algebraic sets. Invariant theory

has been of great importance after the second half of the nineteenth century and it originated

to obtain properties of geometric objects defined by equations, that were invariant under

some geometrically defined set of transformations.

Definition 1.3.1 Let M =
⊕

d∈ZMd be a finitely generated graded module over R, with

grading by degree. The numerical function HM : Z→ Z defined by

HM (d) = dimKMd

is called the Hilbert function of M .
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Note that the dimensions in the definition are all finite. Indeed, if Md were not finite

dimensional, then the submodule
⊕

d∈ZMd would not be finitely generated, contradicting

the fact that because R is Noetherian and M finitely generated then M is Noetherian.

If M is a finitely generated graded module over a standard graded algebra R (for instance

as S or E with n indeterminates) then HM (d) agrees, for large d, with a polynomial of degree

≤ n− 1.

This polynomial, denoted PM (d) is called the Hilbert polynomial of M .

Note that, if all variables of R have degree 1, then the Hilbert function agrees with a

polynomial function of d for large d. This is not true when the variables have different

degrees. In this case HM (d) still agrees with a periodic polynomial, but it is often more

convenient to use the Hilbert series instead.

The Hilbert series of M is defined to be the formal Laurent series in one variable t given by

hM (t) =
∑

d∈Z
HM (d)td.

The Hilbert series of a graded module, for large d, agrees with a rational function.

Now, let R be a graded algebras as well as S = K[x1, . . . , xn] or E = K 〈e1, . . . , en〉,
with K a field. Some fundamental properties about Hilbert functions can be stated using

Macaulay’s results. This approach take into account the theory of monomial orders.

Theorem 1.3.2 Let P be a finitely generated, graded R-module, given by generators and

relations as P = F/M , where F is a free module with a homogeneous basis and M is a

submodule generated by homogeneous elements. The Hilbert function of P is the same as the

Hilbert function of F/ in(M).

Since in(M) is a monomial submodule of F with the same Hilbert function as M , The-

orem 1.3.2 allows us to assume M itself to be a monomial submodule without changing

the Hilbert function. Indeed, as an immediate consequence of the theorem we obtain that

HF/M (d) = HF/ in(M)(d) for all d ∈ Z.

In order to quote other important results, we have to assume that K is a field of charac-

teristic 0. Assume S = K[x1, . . . , xn] endowed with the lexicographic monomial order >lex

induced by the order x1 > · · · > xn. The next well known properties concern graded ideals

of S. Some generalizations will be described later in this dissertation.

Theorem 1.3.3 [HH11, Theorem 6.3.1]

Let I ⊆ S be a graded ideal. Then there exists a unique lexsegment ideal, denoted by I lex,

such that S/I and S/I lex have the same Hilbert function.

Theorem 1.3.3 is a fundamental step to characterize the Hilbert functions of standard

graded K-algebras. An important tool in this context is the so-called Macaulay expansion

of a positive integer.
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Let a and i be two positive integers. Then a has the unique i-th Macaulay expansion

[HH11, Lemma 6.3.4]

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · ·+

(
aj
j

)

with ai > ai−1 > · · · > aj ≥ j ≥ 1.

We define

a<i> =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · ·+

(
aj + 1

j + 1

)
and

a(i) =

(
ai
i+ 1

)
+

(
ai−1

i

)
+ · · ·+

(
aj
j + 1

)
.

We also set 0(i) = 0<i> = 0 for all i ≥ 1.

Example 1.3.4 Let be a = 17 and i = 3. The integer 17 has the unique 3-rd Macaulay

expansion

17 =

(
5

3

)
+

(
4

2

)
+

(
1

1

)
.

Hence:

17<3> =

(
5 + 1

3 + 1

)
+

(
4 + 1

2 + 1

)
+

(
1 + 1

1 + 1

)
=

(
6

4

)
+

(
5

3

)
+

(
2

2

)
= 26,

17(3) =

(
5

3 + 1

)
+

(
4

2 + 1

)
+

(
1

1 + 1

)
=

(
5

4

)
+

(
4

3

)
+

(
1

2

)
= 9

Theorem 1.3.5 ([HH11, Theorem 6.3.8])

Let h : Z+ → Z+ be a numerical function. The following conditions are equivalent:

(i) h is the Hilbert function of a standard graded K-algebra;

(ii) there exists an integer n ≥ 0 and a lexsegment ideal I ⊂ S = K[x1, . . . , xn] such that

hd = HS/I(d) for all d ≥ 0;

(iii) h(0) = 1 and hi+1 ≤ h<i>i for all i > 0.

Example 1.3.6 Let us consider the function h : Z+ → Z+ defined as follows:

h(0) = 1, h(1) = 3, h(2) = 5, h(3) = 7, h(4) = 8

and h(i) = 0 for all integers i < 0 and i > 4. Then we have

h(1) =

(
3

1

)

h(2) =

(
3

2

)
+

(
2

1

)

h(3) =

(
4

3

)
+

(
3

2

)

h(4) =

(
5

4

)
+

(
3

3

)
+

(
2

2

)
+

(
1

1

)
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We note that h(0) = 1 and the following inequalities hold

h(2) = 5 ≤ 6 =

(
4

2

)
= h(1)<1>

h(3) = 7 ≤ 7 =

(
4

3

)
+

(
3

2

)
= h(2)<2>

h(4) = 8 ≤ 9 =

(
5

4

)
+

(
4

3

)
= h(3)<3>

Hence condition [(iii)] of Theorem 1.3.5 holds. Let n = 4 and S = K[x1, x2, x3, x4], then

I = (x1, x
2
2, x2x

3
3, x

5
4, x3x

4
4, x2x

4
4, x

2
3x

3
4, x2x3x

3
4, x

3
3x

2
4, x2x

2
3x

2
4, x

4
3x4, x

5
3)

is a lex ideal such that the Hilbert function of S/I is equal to h.

Theorem 1.3.5 holds also in the context of the exterior algebra and it is known as the

Kruskal–Katona theorem.

Theorem 1.3.7 ([AHH97, Theorem 4.1])

Let (h1, . . . , hn) be a sequence of non-negative integers. Then the following conditions are

equivalent:

(i) 1 +
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I;

(ii) 0 < hi+1 ≤ h(i)
i , 0 < i ≤ n− 1.

The proof of this theorem use the following idea. If I is a graded ideal of E, then there

exists a unique lex segment ideal of E, usually denoted by I lex, such that HE/I = HE/Ilex

(see also Theorem 1.3.3).

Example 1.3.8 Consider the sequence (h1, h2, h3, h4, h5) = (5, 9, 5, 1, 0). Then we have

h1 =

(
5

1

)

h2 =

(
4

2

)
+

(
3

1

)

h3 =

(
4

3

)
+

(
2

2

)

h4 =

(
4

4

)

h5 = 0
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We note that h1 ≤ 5. The following inequalities hold

h2 = 9 ≤ 10 =

(
5

2

)
= h

(1)
1

h3 = 5 ≤ 7 =

(
4

3

)
+

(
3

2

)
= h

(2)
2

h4 = 1 ≤ 1 =

(
4

4

)
+

(
2

3

)
= h

(3)
3

h5 = 0 ≤ 0 =

(
4

5

)
= h

(4)
4

The conditions in Theorem 1.3.7 are verified. Let n = 5 and E = K 〈e1, e2, e3, e4, e5〉, then

the lex ideal

I = (e1e2, e1e3e4, e1e3e5)

is such that the Hilbert series of E/I is 1 +
∑5
i=1 hit

i.

1.4 Minimal Resolutions

The minimal resolution of a module M is a good tool for extracting information about M .

Hilbert originally has studied free resolutions because their discrete invariants. The degrees

of the generators of its free modules, not only yield the Hilbert function (as would be true

for any resolution) but form a finer invariant.

If R is a graded ring, then a graded free R-module F is a direct sum of modules of the

form R(d), for various d. This notation indicates that the graded module R shift its grading

by d steps (d-th twist of R). Note that R(d) is isomorphic to R. So, if F is finitely generated,

then R(d) = Rgi for some i.

Note that R(d)e = Rd+e, then R(d)−d = R0. So R(d) has its generator in degree −d, not d.

Definition 1.4.1 A complex of R-modules is a sequence of modules Fi and maps Fi → Fi−1

such that the compositions Fi+1 → Fi → Fi−1 are all zero.

The homology of this complex at Fi is the module

Hi(F•) = ker(Fi → Fi−1)/im(Fi+1 → Fi).

A free resolution of an R-module M is a complex

F• : · · · → Fs
ϕs−→ · · · → F1

ϕ1−→ F0,

of free R-modules such that cokerϕ1 = M and is exact.
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In this thesis we will sometimes abuse this notation and use

F• : · · · → Fs
ϕs−→ · · · → F1

ϕ1−→ F0 →M → 0,

to say that an exact sequence F• is a resolution of M . The image of the map ϕi is called

the i-th syzygy module of M . Note that, F• is a free resolution if and only if Hi(F•) = 0 for

i 6= 0 and H0(F•) = M .

A resolution F• is a graded free resolution if R is a graded ring, the Fi are graded free

modules, and the maps are homogeneous maps of degree 0. If there exists a natural s such

that Fs+1 = 0 and Fi 6= 0 for 0 < i < s, then we shall say that F• is a finite resolution of

length s.

Recall also that given a complex F• of finitely generated free modules and a R-module

M , then F• ⊗R M , M ⊗R F•, HomR(F•,M) and HomR(M,F•) are still complexes with

complex maps induced by ϕ⊗RM , M ⊗R ϕ, HomR(ϕ,M) and HomR(M,ϕ).

Remark 1.4.2 Note that, to construct a free resolution for a module M one can begin by

taking a set of generators for M and map a free module onto M sending the free generators

of the free module to the given generators of M . Let M1 be the kernel of this map. After

that, one can repeat the procedure starting with Mi.

Hence, it is clear that every module has a free resolution and every graded module has a

graded free resolution (observe that only graded modules can have graded free resolutions).

Moreover, an important and useful result on commutative algebra has been given by

Hilbert.

Theorem 1.4.3 (Hilbert syzygy theorem)

If S = K[x1, . . . , xn], then every finitely generated graded S-module has a finite graded free

resolution of length < n, by finitely generated free modules.

Let M be a finitely generated graded S-module and let

F• : 0→ Fs
ϕs−→ · · · → F1

ϕ1−→ F0 →M → 0,

be a finite graded free resolution of M . Since the ϕi preserve degrees, we get an exact

sequence of finite dimensional vector spaces by taking the degree d part of each module in

this sequence. Thus the Hilbert function of M

HM (d) =

s∑

i=0

(−1)iHFi(d)

is a linear combination of the Hilbert functions of the free modules Fi.

A free resolution of M depends strongly on the choice of generators for M , as well as

the subsequent choices of generators of M1, and so on. If M is a finitely generated graded
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module, the operations described in Remark 1.4.2 can be replicated choosing a minimal set

of homogeneous generators mi for a finitely generated grade module M . So, map a graded

free module F0 onto M by sending a basis for F0 to the set of mi. Let M ′ be the kernel of the

map F0 → M , and repeat the procedure, starting with a minimal system of homogeneous

generators of M ′. In such a case, one obtains a minimal graded free resolution.

Formally, let us S = K[x1, . . . , xn]. We will use standard notation m to denote the

homogeneous maximal ideal (x1, . . . , xn).

Definition 1.4.4 A graded free resolution of S-module

F• : · · · → Fs
ϕs−→ · · · → F1

ϕ1−→ F0,

is called minimal if the image of ϕi is contained in mFi−1 for all i ∈ N.

This means, that no invertible elements (non-zero constants) appear in the matrices

representing the maps ϕi. This definition are related to the constructive method by a

graded version of the Nakayama’s Lemma. Moreover, some fundamental results following

the Lemma allow us to discuss some properties of minimal graded free resolutions.

Lemma 1.4.5 (Nakayama)[Eis05, Lemma 1.4] If M is a finitely generated graded S-module

and m1, . . . ,mn ∈M generate M/mM then m1, . . . ,mn generate M .

Corollary 1.4.6 If

F• : · · · → Fs
ϕs−→ · · · → F1

ϕ1−→ F0,

is a graded free resolution, then F• is minimal if and only if for the maps ϕi takes a basis of

Fi to a minimal set of generators of the image of ϕi, for all i ∈ N.

Theorem 1.4.7 Let M be a finitely generated graded S-module. If F• and G• are minimal

graded free resolutions of M , then there is a graded isomorphism of complexes F• → G• in-

ducing the identity map on M . Any free resolution of M contains the minimal free resolution

as a direct summand.

Example 1.4.8 Let S = K[x1, x2, x3] and let I = (x2
1x2, x1x2x

3
3, x2x

2
3, x1x

2
2) be a monomial

ideal of S. A minimal set of generators of I is G0 = {x2x
2
3, x1x

2
2, x

2
1x2}. We now compute a

set of generators for the syzygy module of G0. It can be represented as column vectors aij

such that aij1(x2x
2
3) + aij2(x1x

2
2) + aij3(x2

1x2) = 0. So, we obtain the following 3× 3 matrix

representing the map ϕ1 : F1 → F0

ϕ1 =



x1x2 x2

1 0

−x2
3 0 x1

0 −x2
2 −x2
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Now, let G1 a minimal set of generators for F1. We compute a set of generators for the

syzygy module of G1, hence a matrix representing the map ϕ2 : F2 → F1

ϕ2 =



−x1

x2

−x2
3




The next step is trivial. All this information is represented in the following free resolution

F• : 0→ F2
ϕ2−→ F1

ϕ1−→ F0 → I → 0.

By the construction, it is clearly a minimal free resolution. In order to verify that it is a

minimal graded free resolution we can write it more in detail

F• : 0→ S(−6)




−x1

x2

−x2
3




−−−−−−−→ S(−5)2 ⊕ S(−4)




x1x2 x2
1 0

−x2
3 0 x1

0 −x2
2 −x2




−−−−−−−−−−−−−−−−−→ S(−3)3 → S(0)→ 0.

An important consequence of the uniqueness of minimal free resolutions is the fact that,

if F• is the minimal graded free resolution of a finitely generated graded S-module M , then

the number of generators of each degree required for the free modules Fi depends only on

M . The easiest way to state a precise result is to use the functor Tor. If R is a graded

algebra over a field K and M,N are graded R-modules, then ([R0̈1])

TorRi (N,M) ∼= Hi(N ⊗ F•) and ExtiR(M,N) ∼= Hi(Hom(F•, N)).

Proposition 1.4.9 [Eis05, Proposition 1.7] If F• : · · · → Fs
ϕs−→ · · · → F1

ϕ1−→ F0, is

the minimal free resolution of a finitely generated graded S-module M , and K denotes the

residue field S/m then any minimal set of homogeneous generators of Fi contains precisely

dimK TorSi (K,M)j generators of degree j.

The previous results allow to define some important invariants.

Definition 1.4.10 Let F• be the minimal graded free S-resolution of a graded finitely gen-

erated S-module M :

F• : 0→ Fs → · · · → F1 → F0 →M → 0,

where Fi = ⊕j∈ZS(−j)βi,j . The integers βi,j = βi,j(M) = dimK Tori(K,M)j are called

the graded Betti numbers of M . Moreover, βi =
∑
j∈Z βi,j is said to be the ith-total Betti

number of M .
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The computer program Macaulay2 (see also CoCoA) displays the (graded) Betti numbers

in a table called the Betti diagram.

0 1 · · · i · · ·
· · · : · · · · · · · · · · · · · · ·
0 : β0,0 β1,0 · · · βi,i+0 · · ·
1 : β0,1 β1,2 · · · βi,i+1 · · ·
· · · : · · · · · · · · · · · · · · ·
j : β0,j β1,1+j · · · βi,i+j · · ·
· · · : · · · · · · · · · · · · · · ·

Table 1.1: Betti diagram

For instance, if we consider the minimal graded free resolution of I = (x2
1x2, x1x2x

3
3, x2x

2
3, x1x

2
2)

⊂ S = K[x1, x2, x3] in Example 1.4.8 the Betti diagram of S/I as S-module is:

0 1 2 3

0 : 1 − − −
1 : − − − −
2 : − 3 1 −
3 : − − 2 1

Next fundamental definition can be introduced.

Definition 1.4.11 [R0̈1] Let M be a graded submodule of a free module F over S =

K[x1, . . . , xn]. Then

pd(M) = sup{i ∈ Z : βi,j(M) 6= 0 for some j ∈ Z}

is said to be the projective dimension of M and

reg(M) = sup{j ∈ Z : βi,i+j(M) 6= 0 for some i ∈ Z}

is called the Castelnuovo-Mumford regularity of M .

Theorem 1.4.3 assures that pd(M) ≤ n and reg(M) ≤ ∞. Bayer, Charalambous and

Popescu introduced in [BCP99] the following refinement of the projective dimension and the

regularity.

Definition 1.4.12 Let M a graded submodule of the free module F over S = K[x1, . . . , xn].

A graded Betti number βi,i+j(M) 6= 0 is called extremal if βl, l+r(M) = 0 for all l ≥ i, r ≥ j,
(i, j) 6= (l, r).
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From the Betti diagram of the minimal graded free resolution of M one can observe that

the outside corners of the dashed lines give the positions of the extremal Betti numbers.

k

` βk,k+`

(k3, `3)

(k2, `2)

(k1, `1)

Table 1.2: Extremal Betti diagram

Note that, if βi1,i1+j1 , βi2,i2+j2 , . . . , βit,it+jt (i1 < · · · < it) are all the extremal Betti

numbers of a graded module M , then reg(M) = j1 and pd(M) = it.

Example 1.4.13 Let S = K[x1, x2, x3, x4, x5] and let

I = (x2
2x3, x2x

3
3, x2x

2
3x4, x2x

2
3x5, x

5
3)

be a graded ideal of S. The extremal Betti numbers of I are β3,3+4 = 1, β1,1+5 = 1, as the

Betti diagram of I shows:

0 1 2 3

3 : 1 − − −
4 : 3 6 4 1

5 : 1 1 − −

In particular, reg(M) = 5 and pd(M) = 3.

In this dissertation we analyze graded Betti numbers in some particular cases.

Remark 1.4.14 Note that, if we consider the exterior algebra E = K 〈e1, . . . , en〉 then it

can be proved an analogous version of Nakayama’s Lemma over E. Moreover, many results

for graded modules over a commutative local or ?local ring can be proved to modules over

an exterior algebra. For example, every projective E-module is free over E.

Every graded E-module M have a unique minimal graded free resolution and it can be

obtained as well as for graded S-modules. Moreover, it also preserves the property of graded

Betti numbers of M . These arguments can be found in [AAH00].

However, an important result does not hold: the Hilbert syzygies theorem. Indeed, the

minimal graded projective resolution of a non free E-module has always infinite length.

Therefore the projective dimension is not significant. Even though the projective dimension

of M is infinite (unless M is free) the regularity can be defined as is remarked in [AHH97].
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In the case of the exterior algebra E, an important role to compute the graded Betti

numbers is played by the Cartan complex C•(e1, . . . , en;E). It is defined by the complex

whose i-chains Ci(e1, . . . , en;E) are the elements of degree i of the free divided power al-

gebra E < x1, . . . , xn >. If M is a graded E-module, then C•(e1, . . . , en;M) = M ⊗E
C•(e1, . . . , en;E) and Hi(e1, . . . , en;M) = Hi(C•(e1, . . . , en;M)) is the i-th Cartan homology

module. An important result relates graded Betti numbers and Cartan homology complex,

indeed TorEi (M,K) ∼= Hi(e1, . . . , en;M), for each i ≥ 0. More details on this subject can be

found in [AHH97].

1.5 On algorithms

Computer Algebra is a subject of science devoted to methods for solving mathematically

formulated problems by symbolic algorithms, and to implementation of these algorithms.

It is based on the exact finite representation of mathematical objects and structures, and

allows for symbolic and abstract manipulation by a computer.

The interplay between computation and many areas of algebra is a natural phenomenon

in view of the algorithmic character of the latter. The existence of inexpensive but powerful

computational resources has enhanced these links by the opening up of many new areas of

investigation in algebra.

A frequent task in computational algebra is to certify that a given object has a certain

property, also providing rather elaborate examples. Moreover, they have contributed to a

new view of algorithmic methods not only as tools, but as new objects worthy of mathemat-

ical study. This concerns both the design, verification, and complexity analysis of computer

algebra algorithms, as well as non-algorithmic structural mathematics. In fact, an algorith-

mic approach to a classical problem may lead to a significant refinement of classical structure

theory irrespective of algorithmic considerations.

In the last years, the theory of Gröbner basis has become a major research area in compu-

tational algebra and computer science because of its usefulness in providing computational

tools which are applicable to a wide range of problems. Gröbner basis were introduced in

1965 by Buchberger. The basic idea behind the theory can be described as a generalization of

the theory of polynomials in one variable, indeed a Gröbner bases is the analogue of greatest

common divisors in the multivariate case. But the true significance of Gröbner bases is the

fact that they can be computed algorithmically.

Let I be an ideal of S = K[x1, . . . , xn], a Gröbner basis for I is a set of generators

with an additional property. Buchberger’s algorithm yields a simple and effective method

for computing Gröbner bases and syzygies. Through use of Gröbner bases, many questions

about ideals in polynomial rings can be reduced to questions about monomial ideals, which

are far easier.
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Definition 1.5.1 A Gröbner basis with respect to a monomial order > on a free module F

with basis is a set of elements h1, . . . , ht ∈ F such that if M is the submodule of F generated

by h1, . . . , ht, then in>(h1), . . . , in>(ht) generate in>(M).

Important well–known results from theory assure that every nonzero ideal I of S =

K[x1, . . . , xn] has a Gröbner basis. Such a basis can be obtained using Buchberger’s al-

gorithm as long as a system of generators of I is given. Moreover, if one imposes simple

conditions on in>(g1), . . . , in>(gt) then a minimal Gröbner basis for the ideal I can be com-

puted.

Many Computer Algebra Systems have a Gröbner basis package, for example CoCoa,

Macaulay2, Singular, Maple, and Mathematica. In particular, all the computations in the

examples in this dissertation were performed using Macaulay2 and CoCoA. These systems

allow the user to build customized packages in order to extend some features not yet included.

The algorithms presented in this thesis have been implemented (some of them is also included

with Macaulay2 version 1.14).

Here we collect some applications of Gröbner basis. The type of problems that can be

solved with Gröbner bases can be divided into two groups: constructive module theory and

elimination theory.

� Constructive module theory

Let F be a graded free S-module with homogeneous basis and let M be a graded

submodule of F endowed with a monomial order >. Let G = {h1, . . . , ht} be a Gröbner

basis for the module M .

– Module membership

Let f ∈ F be an element of the free module then a characterization for G is

that the remainder of the division of f by the elements in G is unique (with an

appropriate definition of division). So, f is in M if and only if the remainder

of the division of f by the elements in G is zero. Many other problems about

operations with ideals are related to this one.

– Compute Syzygies

It is possible to compute syzygies of M on a fixed set of its generators (using

Schreyer’s [Eis95, Theorem 15.10]). Indeed, the Buchberger’s algorithm is used

to obtain a Gröbner basis for M but also the syzygies on the Gröbner basis

elements. This process usually will not return a minimal set of syzygies: to replace

it with a minimal set (obtaining a minimal resolution of M) one can analyse the

nonminimal syzygies and using them to eliminate superfluous relations. Hence,

some other problems related to the minimal free resolution of M can be solved.

– Compute module of Homomorphisms

Let M,N be finitely generated graded submodules of F . It is possible to compute
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a presentation of Hom(M,N) given two explicitly presentations of M and N . As

direct consequence, all the previous observations can be used to give results on

free resolutions and the computation of TorSi (M,N) and ExtiS(M,N).

– Compute the Hilbert function

By the Definition 1.5.1 of G, it is immediate to compute a system of generators of

initial ideal in(M). Theorem 1.3.2 assures that to compute the Hilbert functions

of an arbitrary graded module M it is enough to compute the Hilbert function

of the initial module in(M) . The Hilbert functions of monomial modules are

characterized in [Hul95, Corollary 6].

� Elimination theory

– Elimination

Compute the intersection between an ideal I ⊂ K[x1, . . . , xn] with a subring

K[x1, . . . , xr]. From a geometric point of view, this represent a projection of a

variety of An defined by the vanishing polynomial in I to Ar. One of the main

use of elimination is finding solutions for a system of polynomial equations, i.e.

finding points of a variety.

– Closure

Compute the equations satisfied by given elements of an affine ring, i.e. compute

the closure of the image of an affine or projective variety under a morphism.

Remark 1.5.2 Gröbner basis theory for the exterior algebra E = K 〈e1, . . . , en〉 is very

similar to that for the polynomial ring S = K[x1, . . . , xn]. The fact that the exterior algebra

has zero divisors is responsible for modifications of some technical tools. All the results and

strategies on for S hold for E, too. Some of them can be found in [HH11] or are argument

of this dissertation.



Chapter 2

Generalizations of

Kruskal–Katona’s Theorem

Let K be a field, E the exterior algebra of a finite dimensional K-vector space, and F

a finitely generated graded free E-module with homogeneous basis g1, . . . , gr such that

deg g1 ≤ deg g2 ≤ · · · ≤ deg gr. We characterize the Hilbert functions of graded E–modules

of the type F/M , with M graded submodule of F . The existence of a unique lexicographic

submodule of F with the same Hilbert function as M plays a crucial role. This result is

obtained both through a classical theoretical approach and through a new algorithmic ap-

proach. Such an approach allows us to establish a criterion for determining if a sequence of

nonnegative integers defines the Hilbert function of a quotient of a free E–module only via

the combinatorial Kruskal–Katona’s theorem.

2.1 The Hilbert function of graded E-modules

In this Section, we discuss the Hilbert functions of quotients of free modules over the exterior

algebra.

Let K be a field and let E = K 〈e1, . . . , en〉 be the exterior algebra of a K-vector space V

with basis e1, . . . , en (Remark 1.1.5). Let M be the category of finitely generated Z-graded

left and right E-modules M satisfying am = (−1)deg a degmma for all homogeneous elements

a ∈ E, m ∈M . Note that if I is a graded ideal of E, then I ∈M and E/I ∈M.

Let F ∈ M be a free module with homogeneous basis g1, . . . , gr, where deg(gi) = fi

for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write F = ⊕ri=1Egi and when we

write F = Er, we mean that F is the free E-module F = ⊕ri=1Egi with homogeneous basis

g1, . . . , gr, where gi (i = 1, . . . , r) is the r-tuple where the unique non zero–entry is 1 in the

i–th position, and such that deg(gi) = 0, for all i.

30
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If a = (a1, . . . , ap) and b = (b1, . . . , bp) are two sequences of nonnegative integers, we

say that a > b if (a1, . . . , ap) > (b1, . . . , bp) in the lexicographic ordering, i.e., the difference

as − bs is positive for the first index 1 ≤ s ≤ p where it is not zero.

We make the following conventions:
(
m

k

)
= 0 if m < k or k < 0.

One can observe that if E = K〈e1, . . . , en〉, then HE(d) = Mon(Ed) =
(
n
d

)
, where

(
n
d

)
is

the number of monomials of degree d in E. Hence, if I is a graded ideal of E, it follows that

HE/I(d) +HI(d) =

(
n

d

)
.

Furthermore, if F = ⊕ri=1Egi, we have that

HF (d) =

r∑

i=1

HEgi(d) =

r∑

i=1

(
n

d− fi

)
,

and consequently, if M is a graded submodule of F , one has

HF/M (d) +HM (d) =

r∑

i=1

(
n

d− fi

)
,

where
(

n
d−fi

)
is the number of monomials of degree d− fi in F .

Important tools to proceed with the investigation are the definition of the Macaulay

expansion (Section 1.4 of Chapter 1) and the Kruskal–Katona theorem (Theorem 1.3.7)

which classifies Hilbert functions of quotients of exterior algebras

From now on, if 1+
∑n
i=1 hit

i is the Hilbert series of a graded K-algebra E/I, I ( E, the

sequence (1, h1, . . . , hn) is called the Hilbert sequence of E/I. We will denote it by HsE/I .

From the Kruskal–Katona theorem, one can deduce that a sequence of nonnegative inte-

gers (h0, h1, . . . , hn) is the Hilbert sequence of a graded K–algebra E/I, with I ( E graded

ideal of initial degree ≥ 1, if h0 = 1, h1 ≤ n and condition (b) in Theorem 1.3.7 holds. Note

that if I = 0, then HsE/I = HsE = (1, n,
(
n
2

)
, · · · ,

(
n
n

)
).

Finally, we set HsE/I = (0, . . . , 0︸ ︷︷ ︸
n+1

), if I = E.

Let us consider the graded E-module F = ⊕ri=1Egi. One can quickly verify that

HF (d) = dimK Fd = 0, for d < f1 and d > fr + n. (2.1.1)

Now, we discuss the Hilbert function of a graded E–algebra F/M , with M submodule of

F .

Discussion 2.1.1 Assume M is a monomial submodule of F . From (2.1.1), it follows that

HF/M (t) =

fr+n∑

i=f1

HF/M (i)ti,
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and we can associate to F/M the following sequence

(HF/M (f1), HF/M (f1 + 1), . . . ,HF/M (fr + n)) ∈ Nfr+n−f1+1
0 . (2.1.2)

Such a sequence is called the Hilbert sequence of F/M and it is denoted by HsF/M . The

integers f1, f1 + 1, . . . , fr + n are called the HsF/M -degrees. It is clear that HsF/M ≤ HsF
component-wise.

Moreover, we define

indegHsF/M = min{d : HF/M (d) 6= 0}, for d = f1, . . . , fr + n.

We use the standard notation [p] for the set {1, 2, . . . , p}.
Consider the sequence HsF/M defined in (2.1.2). The entries HF/M (fi) (i = 1, . . . , r) are

called the critical values of HsF/M . Moreover, we define

µfi = |{s ∈ [r] : fs = fi}|, for i = 1, 2, . . . , r,

and we call µfi the multiplicity of HF/M (fi).

Now, let us consider the case HF/M (f1) = 0. In such a situation, one has:

M = Eg1 ⊕ T2,

where T2 is a submodule of Eg2 ⊕ · · · ⊕Egr. Indeed, if HF/M (f1) = 0, then Mf1 = Ff1 and

so Mj = Fj , for j = f1, . . . , f2 − 1 (it is clear because 1Kg1 ∈M). Hence, HF/M (j) = 0, for

j = f1, . . . , f2 − 1.

Now, let us consider the critical value HF/M (f2).

If HF/M (f2) = 0, we can repeat the same reasoning done for HF/M (f1) = 0, i.e.,

HF/M (j) = 0, for j = f2, . . . , f3 − 1, and M = Eg1 ⊕ Eg2 ⊕ T3, where T3 is a submod-

ule of Eg3 ⊕ · · · ⊕ Egr. And so on.

Now, let k be the minimum integer such that HF/M (fk) 6= 0, i.e., indegHsF/M = fk.

Note that M = Eg1 ⊕ · · · ⊕ Egk−1 ⊕ Tk, where Tk is a submodule of Egk ⊕ · · · ⊕ Egr.We

have:

HF/M (fk) ≤ µfk ,
and

HF/M (fk + 1) ≤ nµfk + µfk+1.

The integer HF/M (fk) is called the initial critical value (of F/M) and fk the initial

critical degree (of F/M).

2.2 A generalization of Kruskal–Katona theorem

In this Section, we state a generalization of the Kruskal–Katona theorem. We characterize

the Hilbert functions of quotients of the fixed free E-module F = ⊕ri=1Egi.

Our first result gives a new expression for the Hilbert functions of graded E-modules.
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Proposition 2.2.1 Let M be a graded submodule of F = ⊕ri=1Egi and let HF/M the Hilbert

function of F/M . There exists an integer N ≤ r such that we have the unique expression

HF/M (d) =

r∑

i=N+1

(
n

d− fi

)
+

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)
,

where (
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)
<

(
n

d− fN

)

and a0 > a1 > · · · > as and ai ≥ d− fN − i, for all 0 ≤ i ≤ s.
Then,

HF/M (d+ 1) ≤
r∑

i=N+1

(
n

d− fi + 1

)
+

(
a0

d− fN + 1

)
+

(
a1

d− fN

)
+ · · ·+

(
as

d− fN − s+ 1

)
,

for d ≥ indegHsF/M + 1.

Proof. Since dimK Fd =
∑r
i=1

(
n

d−fi
)
, one has that

HF/M (d) ≤
r∑

i=1

(
n

d− fi

)
.

Let N be the greatest positive integer less than or equal to r such that

HF/M (d) =

r∑

i=N+1

(
n

d− fi

)
+ a =

r∑

i=N+1

HE(d− fi) + a, a <

(
n

d− fN

)
.

We may assume there exists a graded ideal I of E generated in degree d − fN such that

HE/I(d− fN ) = a. If

a =

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)

is the (d− fN )–th Macaulay representation of a, one has:

HF/M (d) =

r∑

i=N+1

(
n

d− fi

)
+

(
a0

d− fN

)
+

(
a1

d− fN − 1

)
+ · · ·+

(
as

d− fN − s

)
,

for d ≥ indegHsF/M + 1. Therefore, from Theorem 1.3.7, it follows that:

HF/M (d+ 1) =

r∑

i=N+1

HE(d+ 1− fi) +HE/I(d+ 1− fN )

≤
r∑

i=N+1

(
n

d+ 1− fi

)
+HE/I(d− fN )(d−fN ) =

r∑

i=N+1

(
n

d+ 1− fi

)
+ a(d−fN )

=

r∑

i=N+1

(
n

d+ 1− fi

)
+

(
a0

d− fN + 1

)
+

(
a1

d− fN

)
+ · · ·+

(
as

d− fN − s+ 1

)
.
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2

If T is a set of monomials of degree d < fr +n of F , we denote by Shad(T ) the following

set of monomials of degree d+ 1 of F :

Shad(T ) = {(−1)α(σ,j)ejeσgi : eσgi ∈ T, j /∈ supp(eσ), j = 1, . . . , n, i = 1, . . . r},

α(σ, j) = |{r ∈ σ : r < j}|. Such a set is called the shadow of T (see [CF15], for the r = 1

case). Moreover, let us define the i-th shadow recursively by Shadi(T ) = Shad(Shadi−1(T )),

Shad0(T ) = T .

Remark 2.2.2 Usually, the shadow of a set T of monomials of degree d of E, d < n, is

defined as follows:

Shad(T ) = {ejeσ : eσ ∈ T, j /∈ supp(eσ), j = 1, . . . , n}.

We observe that this definition is a little bit imprecise. In fact, if j < min(eσ), then ejeσ ∈
Mond+1(E). Suppose j > min(eσ) and eσ = ei1ei2 · · · eid . Since ehei = −eieh, i, h ∈
{1, . . . , n}, then ejeσ = (−1)tei1ei2 · · · eiteijeit+1

· · · eid , where t is the largest integer such

that it < j, that is, t = α(σ, j). Note that if t is odd, then ejeσ /∈Mond+1(E).

Furthermore, if M is a monomial submodule of F , and Md (d ≥ f1) is the K-vector space

generated by all monomials of degree d belonging to M , we set Shad(Md) = Shad(Mon(Md))

and by E1Md the K-vector space spanned by Shad(Md).

For p, q ∈ Z with p < q, let us define the following set:

[p, q] = {j ∈ Z : p ≤ j ≤ q}.

Remark 2.2.3 An important role in the next theorem is played by the class of lex sub-

modules of F (Definition 1.2.16) and some results about lex ideals (Theorem 1.3.7). For our

purpose, we state that the trivial ideals of E are monomial lex ideals.

Theorem 2.2.4 Let (f1, f2, . . . , fr) ∈ Zr be an r–tuple such that f1 ≤ f2 ≤ · · · ≤ fr and let

(hf1 , hf1+1, . . . , hfr+n) be a sequence of nonnegative integers. Set

s = min{k ∈ [f1, fr + n] : hk 6= 0},

and

r̃j = |{p ∈ [r] : fp = s+ j}|, for j = 0, 1.

Then the following conditions are equivalent:

(a)
∑fr+n
i=s hit

i is the Hilbert series of a graded E-module F/M , with F = ⊕ri=1Egi finitely

generated graded free E-module with the basis elements gi of degrees fi;
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(b) hs ≤ r̃0, hs+1 ≤ nr̃0 + r̃1, hi =
∑r
j=N+1

(
n

i−fj
)

+ a, where a is a positive integer less

than
(

n
i−fN

)
, 0 < N ≤ r, and hi+1 ≤

∑r
j=N+1

(
n

i−fj+1

)
+ a(i−fN ), i = s+ 1, . . . , fr +n;

(c) there exists a unique lexicographic submodule L of a finitely generated graded free E-

module F = ⊕ri=1Egi with the basis elements gi of degrees fi and such that
∑fr+n
i=s hit

i

is the Hilbert series of F/L.

Proof. (a)⇒ (b). It follows from Proposition 2.2.1 and Discussion 2.1.1. Note that s is the

initial critical degree, r̃0 = µs and r̃1 = µs+1.

(b)⇒ (c). We construct a lexicographic submodule L of F such that HF/L(t) =
∑fr+n
i=s hit

i.

Setting Lp = 〈Mon(Fp)〉 (p = f1, . . . , s− 1), let Ls+j be the K-vector space generated by

the lexF segment of length dimK Fs+j − hs+j , j = 0, 1, where hs ≤ r̃0 and hs+1 ≤ nr̃0 + r̃1.

Now, suppose Lk, s ≤ k ≤ i, has already been constructed.

By hypothesis, dimK Fi/Li = hi =
∑r
j=N+1

(
n

i−fj
)

+ a, where a is a positive integer less

than a <
(

n
i−fN

)
. Hence,

dimK Fi+1/E1Li =

r∑

j=N+1

(
n

i− fj + 1

)
+ a(i−fN )

and

hi+1 ≤ dimK Fi+1/E1Li. (2.2.1)

Let Li+1 be the K-vector space spanned by the lexF segment of length dimK Fi+1 − hi+1.

From (2.2.1), one has

dimF Li+1 = dimK Fi+1 − hi+1 ≥ dimK Fi+1 − dimK Fi+1/E1Li = dimK E1Li.

Hence E1Li ⊆ Li+1. It follows that L = ⊕dLd is a submodule of F . The uniqueness of L is

clear from the definition of lex submodules.

(c)⇒ (a). It follows immediately. 2

If M is a monomial submodule of a finitely generated graded free E-module F = ⊕ri=1Egi,

we will denote by M lex the unique lexicographic submodule of F with the same Hilbert

function of M . Such a monomial submodule will be called the lex submodule associated to

M .

Remark 2.2.5 We have obtained a generalization of Kruskal–Katona’s theorem (Theo-

rem 2.2.4) via results on ideals in an exterior algebra (Proposition 2.2.1). We believe that

such a characterization could also be obtained using the same techniques as in [AHH97], i.e.,

extending [AHH97, Theorem 4.2] to graded E–modules.
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2.3 The Lex–Algorithm

In this Section, fixed a graded submodule M of F , we give a new procedure for the construc-

tion of M lex. The algorithmic construction of the lex submodule is based on the additive

property of Hilbert functions and on Kruskal–Katona’s theorem. The idea dates back to the

computation of all admissible Hilbert sequences of quotients of exterior algebras in [AC18b]

and from the realisation that, given a Hilbert sequence HsF/M , there exist only r = rankF

Hilbert sequences of the type E/I (I graded ideal in E), which determine M lex. The choice

of such r sequence is forced by some restrictions, as next theorem will point out.

Let p, q ∈ Z such that p < q. A finite sequence H of nonnegative integers is called

[p, q]–sequence if it is indexed by the set [p, q]:

H = (hi)i∈[p,q] = (hp, hp+1, . . . , hq).

We set

H(j) = hj , for j ∈ [p, q];

the integers j are called H–degrees.

One can observe that the sequence HsF/M is a [f1, fr + n]–sequence, and the integers

j ∈ [f1, fr + n] are the HsF/M–degrees.

Moreover, if p = 0, then H is the (q + 1)–tuple (h0, h1, . . . , hq).

Example 2.3.1 Let p = −2 and q = 1. Then [−2, 1] = {−2,−1, 0, 1}. If H = (0, 2, 7, 3) is

a [−2, 1]–sequence, one has H(−2) = 0, H(−1) = 2, H(0) = 7, and H(1) = 3.

Theorem 2.3.2 (The Lex–Algorithm) Let (hf1 , . . . , hfr+n) be the Hilbert sequence of a graded

E– module F/M . Then, there exists a unique lex submodule L of F such that HF/L = HF/M .

Proof. Set HsF/M = (hf1 , . . . , hfr+n). We want to construct a lex submodule L = ⊕ri=1Iigi

of F such that HF/L = HF/M . Let us define

0p = (0, . . . , 0) ∈ Np, for p ≥ 1.

Step 1. Construction of Ir.

Let us consider the following subsequence of HsF/M :

(hfr , . . . , hfr+n) = (HF/M (fr), . . . ,HF/M (fr + n)). (2.3.1)

Define

- Hr(0) := min{1, HF/M (fr)},

- Hr(1) :=





min{n,HF/M (fr + 1)} if Hr(0) = 1

0 if Hr(0) = 0,
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- Hr(2) := min{Hr(1)(1), HF/M (fr + 2)},

- Hr(i) := min{Hr(i− 1)(i−1), HF/M (fr + i)}, for 3 ≤ i ≤ n.

Setting Hr = (Hr(0), . . . ,Hr(n)), if Hr(0) = 1, then Kruskal–Katona’s theorem (The-

orem 1.3.7) assures that such a sequence is the largest extractable Hilbert sequence from

(2.3.1) for which there exists a lex ideal Ir ( E such that

HsE/Ir = Hr;

on the contrary, if Hr(0) = 0, then the only admissible Hilbert sequence is the null sequence.

In such a case, the corresponding lex ideal is Ir = E.

Step 2. Construction of Ir−1.

Let us define

H̃r = 0fr−f1 ]HsE/Ir = (0, . . . , 0︸ ︷︷ ︸
fr−f1

, Hr(0), . . . ,Hr(n)),

and consider the [f1, fr + n]–sequence

HsF/M − H̃r = (hf1 , . . . , hfr−1, hfr −Hr(0), . . . , hfr+n −Hr(n)) =

= (hf1 , . . . , hfr−1, hfr −Hr(0), . . . , hfr−1+n −Hr(n− fr + fr−1), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

).

Note that if fr−1 < fr, then the last fr − fr−1 entries of HsF/M concern only the ideal Ir.

Furthermore, if f1 = f2 = . . . = fr, then H̃r = Hr.

Set

Hr = HsF/M − H̃r.

Starting from the (r−1)-th critical degree, we can repeat on Hr the same reasoning done

for HsF/M . More precisely, define

- Hr−1(0) := min{1, Hr(fr−1)},

- Hr−1(1) :=





min{n,Hr(fr−1 + 1)} if Hr−1(0) = 1

0 if Hr−1(0) = 0,

- Hr−1(2) := min{Hr−1(1)(1), Hr(fr−1 + 2)},

- Hr−1(i) := min{Hr−1(i− 1)(i−1), Hr(fr−1 + i)}, for 3 ≤ i ≤ n,

and let Ir−1 be the unique lex ideal of E such that

HsE/Ir−1
= Hr−1 = (Hr−1(0), . . . ,Hr−1(n)).
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Setting

H̃r−1 = 0fr−1−f1 ]HsE/Ir−1
] 0fr−fr−1 = (0, . . . , 0︸ ︷︷ ︸

fr−1−f1

, Hr−1(0), . . . ,Hr−1(n), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

),

let us consider the [f1, fr + n]–sequence

Hr−1 = Hr − H̃r−1 =
(
Hr(f1), . . . ,Hr(fr−1 − 1), Hr(fr−1)−Hr−1(0), . . .

. . . , Hr(fr−1 + n)−Hr−1(n), 0, . . . , 0︸ ︷︷ ︸
fr−fr−1

) =

= (hf1 , . . . , hfr−1−1, Hr(fr−1)−Hr−1(0), . . . ,Hr(fr−2 + n)−Hr−1(n− fr−1 + fr−2),

0, . . . , 0︸ ︷︷ ︸
fr−fr−2

).

Proceeding as before, we will get a Hilbert sequence Hr−2 and a lex ideal Ir−2 such that

Hr−2 = HsE/Ir−2
. Finally, iterating the previous procedure, after r steps, we will obtain r

lex ideals Ir, . . . , I1. The monomial submodule L = ⊕ri=1Iigi is the lex submodule we are

looking for. Indeed, the suitable choice of the r Hilbert sequences Hr, Hr−1, . . . ,H1 assures

that Ld is generated (as a K-vector space) by a lexF segment of monomials of degree d of

F .

Note that the r subtractions will return the (fr + n − f1 + 1)–tuple 0fr+n−f1+1, and

consequently HF/M = HF/L, i.e., HsF/M = HsF/L =
∑r
i=1 H̃i. 2

In order to outline the basic idea behind the Theorem 2.3.2, we present a sketch of the

algorithm as pseudocode in Algorithm 2.1.
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Algorithm 2.1: Lexicographic submodule computation

Input: Sequence hs, free E-module F

Output: Lexicographic submodule with Hilbert sequence hs

begin

n← number of indeterminates of the exterior algebra E;

r ← rank of F ;

degs← list of degrees of a basis of F ;

length← max{degs} −min{degs}+ n+ 1;

foreach j ∈ {1 . . r} do

ind← degs(r − j)−min{degs};
seq(0)← min{hs(ind), 1};
if seq(0) = 1 then

seq(1)← min{hs(ind+ 1), n};
else

seq(1)← 0;

end

foreach k ∈ {2 . . n} do

seq(k)← min{hs(ind+ k), seq(k − 1)(k−1)};
end

hs← hs− (0ind ] seq ] 0length−1−n−ind);

Ir−j ← lex ideal with Hilbert sequence seq;

end

if hs = 0length then

return M = ⊕ri=1Iigi;

else

Error: “expected a Hilbert sequence”;

end

end

Algorithm in Theorem 2.3.2

The procedure in Theorem 2.3.2, allows us to give a criterion for determining when a

sequence of nonnegative integers is the Hilbert function of a graded E–algebra of the type

F/M , with M graded submodule of F .

Criterion 2.3.3 Let F = ⊕ri=1Egi be a finitely generated graded free E-module and the

generators gi of degrees fi are ordered such that f1 ≤ f2 ≤ · · · ≤ fr.
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A sequence of nonnegative integers

H = (hf1 , . . . , hfr+n)

is the Hilbert sequence of graded E–module F/M , if applying the algorithm in Theorem 2.3.2,

after r steps, the repeated subtractions from H of the largest Hilbert sequences (in the sense

of the aforementioned theorem) of graded K–algebras of the type E/I, return the null

sequence 0fr+n−f1+1.

2.4 Examples

In this Section, we collect some examples in order to illustrate our results. In particular the

strategy used in Theorem 2.3.2.

Example 2.4.1 Let E = K〈e1, e2, e3, e4〉, F = E3, and consider the [0, 4]–sequence

H = (3, 11, 13, 3, 0) = (h0, h1, . . . , h4).

Using the procedure described in Theorem 2.2.4, we can guess if H is a Hilbert sequence of

a quotient F/M (M graded submodule of F ), and we can also construct the lex submodule

L of F such that HF/L = H.

With the same notations as in Theorem 2.2.4. We have s = f1 = 0, r̃0 = 3 and r̃1 = 0. In

fact, the initial critical value is the first element of the sequence and has multiplicity equal to

3, and there do not exist critical degrees different from it. Therefore, the first two conditions

in Theorem 2.2.4 (b) are realized:

h0 = 3 ≤ 3 = r̃0,

h1 = 11 ≤ 12 = nr̃0 + r̃1.

By Proposition 2.2.1, we have to verify the following inequalities

h1 = 11 =

(
4

1

)
+

(
4

1

)
+

(
3

1

)

a

⇒ h2 = 13 ≤ 15 =

(
4

2

)
+

(
4

2

)
+

(
3

2

)

a(1)

,

h2 = 13 =

(
4

2

)
+

(
4

2

)
+

(
2

2

)

a

⇒ h3 = 3 ≤ 8 =

(
4

3

)
+

(
4

3

)
+

(
2

3

)

a(2)

,

h3 = 3 =

(
3

3

)
+

(
2

2

)
+

(
1

1

)

a

⇒ h4 = 0 ≤ 0 =

(
3

4

)
+

(
2

3

)
+

(
1

2

)

a(3)

.

a is the integer defined in Proposition 2.2.1 (see its proof). Hence H is the Hilbert sequence

of a quotient of F .
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In order to assure this, we construct the lex submodule L = ⊕4
d=0Ld of F such that

HF/L = H; Ld is the K–vector space generated by a lex segment of length dimK Fd − hd,
for d = 0, . . . , 4.

Firstly, one can observe that dimK L0 = dimK F0 − h0 = 0. Hence L0 = 0.

Furthermore, dimK L1 = dimK F1 − h1 = 12− 11 = 1, and so

L1 = 〈e1g1〉.

In degree 2, we have dimK L2 = dimK F2− h2 = 3
(

4
2

)
− 13 = 5. Since, Shad(L1) = {e1e2g1,

e1e3g1, e1e4g1},
L2 = 〈u ∈ Shad(L1), e2e3g1, e2e4g1〉.

In degree 3, we have dimK L3 = dimK F3 − h3 = 3
(

4
3

)
− 3 = 9. Since |Shad(L2)| = 4

(eσg1 ∈ Shad(L2), for all eσ ∈ E3), one has

L3 = 〈u ∈ Shad(L2), e1e2e3g2, e1e2e4g2, e1e3e4g2, e2e3e4g2, e1e2e3g3〉.

Finally, we have dimK L4 = dimK F4 − h4 = 3
(

4
4

)
= 3 and all the monomials we need are in

Shad(L3), i.e., L4 = 〈u ∈ Shad(L3)〉.

Hence, we have constructed the unique lex submodule L = ⊕ri=1Iigi with HF/L =

(3, 11, 13, 3, 0). More in details:

L = (e1, e2e3, e2e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3)g3.

A more general example can be given if one considers a free-module F with a basis in

different degrees.

Example 2.4.2 Let E = K〈e1, e2, e3, e4〉, F = ⊕3
i=1Egi with f1 = −2, f2 = 0, f3 = 3, and

let us consider the [−2, 7]–sequence

H = (1, 4, 5, 4, 5, 2, 4, 3, 1, 0) = (h−2, h−1, . . . , h7).

As in Example 2.4.1, we will verify that H is a Hilbert sequence, and then we will construct

the lex submodule L of F such that HF/L = H.

Since s = f1 = −2, r̃−2 = 1 and r̃−1 = 0, we have:

h−2 = 1 ≤ 1 = r̃−2, h−1 = 4 ≤ 4 = nr̃−2 + r̃−1.

Moreover, next inequalities hold (Proposition 2.2.1):

h−1 = 4 =

(
4

−4

)
+

(
4

−1

)
+

(
4

1

)
⇒ h0 = 5 ≤ 7 =

(
4

−3

)
+

(
4

0

)
+

(
4

2

)

h0 = 5 =

(
4

−3

)
+

(
4

0

)
+

(
3

2

)
+

(
1

1

)

a

⇒ h1 = 4 ≤ 5 =

(
4

−2

)
+

(
4

1

)
+

(
3

3

)
+

(
1

2

)

a(2)
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h1 = 4 =

(
4

−2

)
+

(
4

1

)
⇒ h2 = 5 ≤ 6 =

(
4

−1

)
+

(
4

2

)

h2 = 5 =

(
4

−1

)
+

(
3

2

)
+

(
2

1

)

a

⇒ h3 = 2 ≤ 3 =

(
4

0

)
+

(
3

3

)
+

(
2

2

)

a(2)

h3 = 2 =

(
4

0

)
+

(
3

3

)

a

⇒ h4 = 4 ≤ 4 =

(
4

1

)
+

(
3

4

)

a(3)

h4 = 4 =

(
4

1

)
⇒ h5 = 3 ≤ 6 =

(
4

2

)

h5 = 3 =

(
3

2

)

a

⇒ h6 = 1 ≤ 1 =

(
3

3

)

a(2)

h6 = 1 =

(
3

3

)

a

⇒ h7 = 0 ≤ 0 =

(
3

4

)

a(3)

It is worthy of being stressed that in order to get the right expression for the hi’s (i =

−1, . . . , 6), we firstly compute the binomial coefficient
(

4
i−f3

)
, then the other admissible

ones.

For instance, h−1 = 4 =
(

4
−1−3

)
+
(

4
−1−0

)
+
(

4
−1+2

)
.

Now, we can construct the lex submodule L = ⊕7
d=−2Ld of F such that HF/L = H, where

Ld (d = −2, . . . , 7) is the K–vector space generated by a lex segment of length dimK Fd−hd,
for d = −2, . . . , 7.

At first, we observe that dimK L−2 = dimK F−2 − h−2 = 0. Moreover, dimK L−1 =

dimK F−1 − h−1 = 0. Hence L−2 = L−1 = 0.

In degree 0, dimK L0 = dimK F0 − h0 =
(

4
−3

)
+
(

4
0

)
+
(

4
2

)
− 5 = 2 and so

L0 = 〈e1e2g1, e1e3g1〉.

In degree 1, dimK L1 = dimK F1−h1 =
(

4
−2

)
+
(

4
1

)
+
(

4
3

)
−4 = 4. Since Shad(L0) = {e1e2e3g1,

e1e2e4g1, e1e3e4g1}, we choose

L1 = 〈u ∈ Shad(L0), e2e3e4g1〉.

In degree 2, dimK L2 = dimK F2 − h2 =
(

4
−1

)
+
(

4
2

)
+
(

4
4

)
− 5 = 2. Since Shad(L1) =

{e1e2e3e4g1}, we set

L2 = 〈u ∈ Shad(L1), e1e2g2〉.

In degree 3, dimK L3 = dimK F3 − h3 =
(

4
0

)
+
(

4
3

)
+
(

4
5

)
− 2 = 3. Since Shad(L2) =

Shad2(L1) ∪ {e1e2e3g2, e1e2e4g2} = {e1e2e3g2, e1e2e4g2}, we get

L3 = 〈u ∈ Shad(L2), e1e3e4g2〉.
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In degree 4, dimK L4 = dimK F4 − h4 =
(

4
1

)
+
(

4
4

)
+
(

4
6

)
− 4 = 1. Since Shad(L3) =

{e1e2e3e4g2}, we have that L4 = 〈u ∈ Shad(L3)〉.
In degree 5, dimK L5 = dimK F5 − h5 =

(
4
2

)
+
(

4
5

)
+
(

4
7

)
− 3 = 3. Since Shad(L4) is empty,

we have

L5 = 〈e1e2g3, e1e3g3, e1e4g3〉.

In degree 6, dimK L6 = dimK F6−h6 =
(

4
3

)
+
(

4
6

)
+
(

4
8

)
−1 = 3. Since Shad(L5) = {e1e2e3g3,

e1e2e4g3, e1e3e4g3}, we set L6 = 〈u ∈ Shad(L5)〉.
Finally, in degree 7, dimK L7 = dimK F7 − h7 =

(
4
4

)
+
(

4
7

)
+
(

4
9

)
− 0 = 1. Since Shad(L6) =

{e1e2e3e4g3}, we have L7 = 〈u ∈ Shad(L6)〉.
In so doing, we have determined the lex submodule L = ⊕ri Iigi with HF/L = (1, 4, 5, 4,

5, 2, 4, 3, 1, 0). More in details:

L = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2, e1e3, e1e4)g3.

Now, we show an example of a sequence of nonnegative integers H that is not a Hilbert

sequence of a quotient of a free E–module.

Example 2.4.3 Let E = K〈e1, e2, e3, e4〉, F = ⊕3
i=1Egi with f1 = −3, f2 = −2, f3 = 1 and

let us consider the [-2, 5]–sequence

H = (1, 3, 3, 4, 2, 4, 5, 1, 0) = (h−2, h−1, . . . , h5).

We proceed as in the previuos examples.

It is s = f1 = −3, r̃−3 = 1 and r̃−2 = 1, and consequently

h−3 = 1 ≤ 1 = r̃−3, h−2 = 3 ≤ 5 = nr̃−3 + r̃−2.

By Proposition 2.2.1, we can test the required bounds:

h−2 = 3 =

(
4

−3

)
+

(
4

0

)
+

(
2

1

)

a

⇒ h−1 = 3 ≤ 5 =

(
4

−2

)
+

(
4

1

)
+

(
2

2

)

a(1)

,

h−1 = 3 =

(
4

−2

)
+

(
3

1

)

a

⇒ h0 = 4 6≤ 3 =

(
4

−1

)
+

(
3

2

)

a(1)

The integer h0 does not satisfy the required inequality. We will see that there does not exist

the lex submodule L = ⊕5
d=−2Ld of F such that HF/L = H.

Indeed, dimK L−3 = dimK F−3 − h−3 = 0. Hence, L−3 = 0.

Moreover, in degree −2, dimK L−2 = dimK F−2 − h−2 =
(

4
−3

)
+
(

4
0

)
+
(

4
1

)
− 3 = 2. Hence,

L−2 = 〈e1g1, e2g1〉.
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In degree −1, we have dimK L−1 = dimK F−1 − h−1 =
(

4
−2

)
+
(

4
1

)
+
(

4
2

)
− 3 = 7. On the

other hand, Shad(L−2) = {e1e2g1, e1e3g1, e1e4g1, e2e3g1, e2e4g1}, then

L−1 = 〈u ∈ Shad(L−2), e3e4g1, e1g2〉.

In degree 0, we have dimK L0 = dimK F0−h0 =
(

4
−1

)
+
(

4
2

)
+
(

4
3

)
−4 = 6. Since, Shad(L−1) =

{e1e2e3g1, e1e2e4g1, e1e3e4g1, e2e3e4g1, e1e2g2, e1e3g2, e1e4g2}, then |Shad(L−1)| > 6. This

situation implies that it is not possible the construction of the lex submodule L with HF/L =

(1, 3, 3, 4, 2, 4, 5, 1, 0).

On the contrary, one can verify that for h0 = 3, there exists the lex submodule L = ⊕ri Iigi
of F with HF/L = (1, 3, 3, 3, 2, 4, 5, 1, 0).

In order to simplify the notation, once we fix a sequence of nonnegative integers H, when

we say that a graded ideal I of E has H as Hilbert sequence, or that H is the Hilbert

sequence of a graded ideal I, we mean that HsE/I = H. Moreover, in what follows, we refer

to Hilbert sequences of quotients of the type E/I (I graded ideal of E), whenever it is not

specified.

Example 2.4.4 Let E = K〈e1, e2, e3, e4〉, F = E3 and

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

a submodule of F . M is not a lex submodule of F . The Hilbert sequence of F/M is

HsF/M = (3, 12, 15, 4, 0).

Setting J1 = (e1e2, e3e4), J2 = (e1e2, e2e3e4) and J3 = (e2e3e4), one has

HsE/J1 = (1, 4, 4, 0, 0), HsE/J2 = (1, 4, 5, 1, 0), HsE/J3 = (1, 4, 6, 3, 0),

and HF/M (d) =
∑3
i=1HE/Ji(d), d ≥ 0, as the next table shows

Hs–degrees 0 1 2 3 4

HsE/J1 (1, 4, 4, 0, 0) +

HsE/J2 (1, 4, 5, 1, 0) +

HsE/J3 (1, 4, 6, 3, 0) =

HsF/M (3, 12, 15, 4, 0)

Now, we want to describe our new point of view.

Let us consider the sequence H = (3, 12, 15, 4, 0). The largest Hilbert sequence of a

graded ideal that can be extracted from H is H3 = (1, 4, 6, 4, 0). Indeed, there exists the lex

ideal I3 of E such that HsE/I3 = H3. It is I3 = (e1e2e3e4).

Using the same notations as in Theorem 2.3.2, let H3 = H − H̃3 = (3, 12, 15, 4, 0) −
(1, 4, 6, 4, 0) = (2, 8, 9, 0, 0). The largest Hilbert sequence that can be extracted from H3 is
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H2 = (1, 4, 6, 0, 0). In fact, H2 = HsE/I2 , with I2 = (e1e2e3, e1e3e4, e1e3e4, e2e3e4) lex ideal

of E.

Next, consider the sequence H2 = H3 − H̃2 = (2, 8, 9, 0, 0)− (1, 4, 6, 0, 0) = (1, 4, 3, 0, 0).

The largest Hilbert sequence that can be extracted from H2 is H1 = H2. The lex ideal

whose Hilbert sequence is H1 is I1 = (e1e2, e1e3, e1e4, e2e3e4).

We can observe that in such a case the sequence H1 = H2 − H̃1 = (1, 4, 3, 0, 0) −
(1, 4, 3, 0, 0) = 05.

Next table describes our procedure:

H–degrees 0 1 2 3 4

H (3, 12, 15, 4, 0) −
HsE/I3 (1, 4, 6, 4, 0) −
HsE/I2 (1, 4, 6, 0, 0) −
HsE/I1 (1, 4, 3, 0, 0) =

05 (0, 0, 0, 0, 0)

Observe that in our situation f1 = f2 = f3 = 0, and so H̃i = HsE/Ii (i = 1, 2, 3).

Finally, M lex = ⊕ri Iigi is the unique lex submodule with Hilbert sequenceH = (3, 12, 15, 4, 0).

More in details:

M lex = (e1e2, e1e3, e1e4, e2e3e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3e4)g3.

Remark 2.4.5 Note that, given a Hilbert sequence H of a quotient of a free E-module

F , rankF = r, if one applies to H r repeated subtractions by the non–largest admissible

Hilbert sequences of K-algebras E/Ti, with Ti lex ideals of E, for i = 1, . . . , r (in the sense of

Theorem 2.3.2 and according to Kruskal–Katona Theorem), then the submodule N = ⊕riTigi
is not a lex submodule.

Indeed, let us consider Example 2.4.4. We can subtract from H the Hilbert sequences

(1, 4, 6, 3, 0), (1, 4, 5, 1, 0), (1, 4, 4, 0, 0), and, consequently, we can get the corresponding lex

ideals T3 = (e1e2e3), T2 = (e1e2, e1e3e4), T1 = (e1e2, e1e3, e2e3e4). But, (e1, e2, e3, e4)indeg T2

= (e1, e2, e3, e4)2 * T1 and N = ⊕riTigi is not a lex submodule.

Example 2.4.6 Let E = K〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi with f1 = −2, f2 = 0, f3 = 2.

Consider the monomial submodule

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

of F . The Hilbert sequence of F/M is

HsF/M = (1, 4, 5, 4, 6, 5, 6, 3, 0).

Setting J1 = (e1e2, e3e4), J2 = (e1e2, e2e3e4) and J3 = (e2e3e4), one has

HsE/J1 = (1, 4, 4, 0, 0), HsE/J2 = (1, 4, 5, 1, 0), HsE/J3 = (1, 4, 6, 3, 0).
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and HF/M (d) =
∑3
i=1HE/Ji(d− fi), d ≥ −2, as shown in next table,

Hs–degrees −2 −1 0 1 2 3 4 5 6

H̃1 (1, 4, 4, 0, 0, 0, 0, 0, 0) +

H̃2 (0, 0, 1, 4, 5, 1, 0, 0, 0) +

H̃3 (0, 0, 0, 0, 1, 4, 6, 3, 0) =

HsF/M (1, 4, 5, 4, 6, 5, 6, 3, 0)

where H̃i = 0fi−f1 ]HsE/Ji ] 0fr−fi (i = 1, 2, 3). We have indicated the Hilbert sequences

HsE/Ji (i = 1, 2, 3) in bold.

Let us consider the [−2, 6]–sequence H = (1, 4, 5, 4, 6, 5, 6, 3, 0). The largest Hilbert

sequence of a graded ideal I that can be extracted from the subsequence (H(2), . . . ,H(6)) =

(6, 5, 6, 3, 0) is H3 = (1, 4, 6, 3, 0). Indeed, there exists the lex ideal I3 = (e1e2e3) of E such

that HsE/I3 = H3.

With the same notations as in Theorem 2.3.2. Set H3 = H−H̃3 = (1, 4, 5, 4, 6, 5, 6, 3, 0)−
(0, 0, 0, 0, 1, 4, 6, 3, 0) = (1, 4, 5, 4, 5, 1, 0, 0, 0), the largest extractable Hilbert sequence from

the subsequence (H3(0), . . . ,H3(4)) = (5, 4, 5, 1, 0) is H2 = (1, 4, 5, 1, 0) = HsE/I2 , with

I2 = (e1e2, e1e3e4).

Next, consider the sequence H2 = H3−H̃2 = (1, 4, 5, 4, 5, 1, 0, 0, 0)−(0, 0, 1, 4, 5, 1, 0, 0, 0)

= (1, 4, 4, 0, 0, 0, 0, 0, 0). The largest Hilbert sequence that can be extracted from the sub-

sequence (H2(−2), . . . ,H2(2)) = (1, 4, 4, 0, 0) is H1 = (1, 4, 4, 0, 0) = HsE/I1 , with I1 =

(e1e2, e1e3, e2e3e4).

We can observe that in such a case the sequence H1 = H2− H̃1 = (1, 4, 4, 0, 0, 0, 0, 0, 0)−
(1, 4, 4, 0, 0, 0, 0, 0, 0) = 09.

H–degrees −2 −1 0 1 2 3 4 5 6

H (1, 4, 5, 4, 6, 5, 6, 3, 0) −
H̃3 (0, 0, 0, 0, 1, 4, 6, 3, 0) −
H̃2 (0, 0, 1, 4, 5, 1, 0, 0, 0) −
H̃1 (1, 4, 4, 0, 0, 0, 0, 0, 0) =

09 (0, 0, 0, 0, 0, 0, 0, 0, 0)

H̃i = 0fi−f1 ] HsE/Ii ] 0fr−fi (i = 1, 2, 3), and we have indicated the Hilbert sequences

HsE/Ii (i = 1, 2, 3) in bold. Finally,

M lex = ⊕ri Iigi = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3.

The Hilbert sequence of a quotient of the form F/M can have zeros as initial values. The

number of such zeros is fk−f1, where fk is the initial critical degree of the Hilbert sequence,

as next example will show. Moreover, we can note that the existence of initial zeros implies
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the presence of some improper ideals as initial components in the direct decomposition. The

converse is not true.

Example 2.4.7 Let E = K〈e1, e2, e3, e4〉 and F = ⊕8
i=1Egi with f1 = −3, f2 = f3 =

−1, f4 = f5 = f6 = 2, f7 = f8 = 7. Let us consider the [−3, 7]–sequence

H = (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0).

By applying the algorithm in Theorem 2.3.2, as in the previous examples, we obtain by

repeated subtractions from H, the following Hilbert sequences Hi = HsE/Ii , with Ii lex

ideal of E (i = 1, . . . , 8):

H8 = (1, 4, 5, 2, 0), H7 = (0, 0, 0, 0, 0), H6 = (1, 4, 6, 1, 0), H5 = (1, 4, 1, 0, 0),

H4 = (1, 4, 0, 0, 0), H3 = (1, 4, 6, 4, 1), H2 = (0, 0, 0, 0, 0), H1 = (0, 0, 0, 0, 0).

and

I8 = (e1e2), I7 = E, I6 = (e1e2e3, e1e2e4, e1e3e4), I5 = (e1e2, e1e3, e1e4, e2e3, e2e4),

I4 = (e1e2, e1e3, e1e4, e2e3, e2e4, e3e4), I3 = (0), I2 = E, I1 = E.

H–degrees −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

H (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0) −
H̃8 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5, 2, 0) −
H̃7 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃6 (0, 0, 0, 0, 0, 1, 4, 6, 1, 0, 0, 0, 0, 0, 0) −
H̃5 (0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0, 0) −
H̃4 (0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃3 (0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃2 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) −
H̃1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

015 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(H̃i = 0fi−f1]HsE/Ii]0fr−fi (i = 1, . . . , 8), and the Hilbert sequences HsE/Ii (i = 1, . . . , 8)

are indicated in bold.)

By means of repeated subtractions, we obtain the null sequence 015. Hence, the sequence

H is the Hilbert sequence of a quotient of a free E–module. Indeed, there exists the lex

submodule

L = ⊕ri Iigi = Eg1 ⊕ Eg2 ⊕ (0)g3 ⊕ (e1e2, e1e3, e1e4, e2e3, e2e4, e3e4)g4⊕
(e1e2, e1e3, e1e4, e2e3, e2e4)g5 ⊕ (e1e2e3, e1e2e4, e1e3e4)g6 ⊕ Eg7 ⊕ (e1e2)g8.

such that H = HsF/L = (0, 0, 1, 4, 6, 7, 13, 7, 1, 0, 1, 4, 5, 2, 0) =
∑8
i=1 H̃i.
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We close this Section with an example of a sequence of nonnegative integers H that is

not a Hilbert sequence of a quotient of a free E–modules.

Example 2.4.8 Let E = K〈e1, e2, e3, e4〉 and F = ⊕3
i=1Egi with f1 = −3, f2 = −1, f3 = 2.

Let us consider the [−3, 2]–sequence

H = (1, 2, 2, 4, 3, 3, 4, 5, 2, 0).

By using the Lex–Algorithm and by repeated subtractions from H, we obtain the Hilbert

sequences Hi = HsE/Ii , with Ii lex ideal of E (i = 1, 2, 3):

H3 = (1, 4, 5, 2, 0), H2 = (1, 4, 3, 1, 0), H1 = (1, 2, 1, 0, 0),

I3 = (e1e2), I2 = (e1e2, e1e3, e1e4), I1 = (e1, e2).

Next table describes the construction.

H–degrees −3 −2 −1 0 1 2 3 4 5 6

H (1, 2, 2, 4, 3, 3, 4, 5, 2, 0) −
H̃3 (0, 0, 0, 0, 0, 1, 4, 5, 2, 0) −
H̃2 (0, 0, 1, 4, 3, 1, 0, 0, 0, 0) −
H̃1 (1, 2, 1, 0, 0, 0, 0, 0, 0, 0) =

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

At the end, we do not obtain the null sequence 010, and so H is not a Hilbert sequence

of a quotient of the given free E-module F according to Criterion 2.3.3.

On the other hand, it is relevant to analyze the second difference that comes into play

(according to the Lex–Algorithm):

H2 = H3 − H̃2 = (1, 2, 2, 4, 3, 2, 0, 0, 0, 0)− (0, 0, 1, 4, 3, 1, 0, 0, 0, 0) = (1, 2, 1, 0, 0, 1, 0, 0, 0, 0).

In this case, the largest Hilbert sequence of a graded K-algebra E/I is (1, 4, 3, 1, 0). In

fact, for the sequence (1, 4, 3, 2, 0) no ideal I of E with HsE/I = (1, 4, 3, 2, 0) does exist (see

Kruskal–Katona’s theorem). Finally, the submodule

N = ⊕3
i=1Iigi = (e1, e2)g1 ⊕ (e1e2, e1e3, e1e4)g2 ⊕ (e1e2)g3

has Hilbert sequenceHsF/N = (1, 2, 2, 4, 3, 2, 4, 5, 2, 0) < H. HsF/N is the largest extractable

Hilbert sequence from H attaining a submodule of F .

All the examples in this chapter have been constructed by such packages.
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2.5 Macaulay2 packages

The procedures described in this work are part of two Macaulay2 packages “ExteriorIde-

als.m2” [AC18b], “ExteriorModules.m2”, and tested with Macaulay 1.10. We believe that

these packages may reveal useful for further applications. Indeed, functions for computing

monomial ideals in a polynomial ring are available in many computer algebra systems, CAS,

(for instance, CoCoA [ABL], Macaulay2 [GS] and Singular [DGPS16]); on the contrary, to

the best of our knowledge, specific packages for manipulating classes of monomial ideals (or

monomial submodules) in an exterior algebra have not been implemented yet.

More precisely, in the package “ExteriorIdeals” we implement some algorithms in order

to easily check whether an (n+ 1)-tuple (1, h1, . . . , hn) (h1 ≤ n = dimK V ) of non–negative

integers is the Hilbert function of a graded K–algebra of the form E/I, with I graded ideal

of E, is given. In particular, if HE/I is the Hilbert function of a graded K-algebra E/I,

the package is able to construct the unique lexsegment ideal I lex such that HE/I = HE/Ilex .

Whereas in the “ExteriorModules” we extend these functions to modules.

In this Section, we collect some examples in order to describe the algorithms.

Example 2.5.1 Let E be an exterior algebra with n generators over a field K and h = (h0,

h1, . . . , hn) a sequence of nonnegative integers, we describe how one can verify if h is a Hilbert

sequence. The key tools in our package are the methods isHilbertSequence(list,exterior

algebra) and lexIdeal(list,exterior algebra). The first function verifies if a list of

nonnegative integers of length n+ 1 is a Hilbert function; the second one returns a lex ideal

of E if and only if the list is a Hilbert sequence. In more detail, if (h0, h1, . . . , hn) is a

Hilbert sequence, the lex ideal of E produced by the function lexIdeal({h0, . . . , hn}, E)

is the unique lex ideal I of E with HE/I(d) = hd (d = 0, . . . , n). The procedure for the

computation of the required lex ideal is based on the constructive proof of Theorem 1.3.7

(see [AHH97, Theorem 4.1, (b) ⇒ (a)]).

We start with some examples of sequences which are not Hilbert sequences. The property

is verified by using either isHilbertSequence(list,exterior algebra) or

lexIdeal(list,exterior algebra):

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorIdeals"

i2 : E=QQ[e_1..e_5,SkewCommutative=>true]

i3 : isHilbertSequence({2,4,3,0,0,0},E)

o3 = false
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i4 : isHilbertSequence({0,4,3,0,0,0},E)

o4 : false

i5 : lexIdeal({1,6,3,0,0,0,0},E)

stdio:24:1:(3): error: expected a Hilbert sequence

i6 : lexIdeal({1,5,10,10,5,1,0},E)

stdio:26:1:(3): error: expected a Hilbert sequence

Moreover, the next statements provide some examples of the lex ideal produced by a Hilbert

sequence. The length of the sequence can be at most n+ 1; if the length is less than n+ 1,

then the sequence will be completed by adding zeros on the right.

i6 : lexIdeal({1,4,3,0,0,0},E)

o6 = ideal (e_1, e_2e_3, e_2e_4, e_2e_5, e_3e_4e_5)

o6 : Ideal of E

i7 : lexIdeal({1,4,4},E)

o7 = ideal (e_1, e_2e_3, e_2e_4, e_3e_4e_5)

o7 : Ideal of E

i8 : lexIdeal({1,5,7,4,0,0},E)

o9 = ideal (e_1e_2, e_1e_3, e_1e_4, e_2e_3e_4e_5)

o9 : Ideal of E

The function lexIdeal(list,exterior algebra), above defined, plays a relevant role

also in the next algorithm.

Example 2.5.2 Given an exterior algebra E and a graded ideal I in E, we illustrate how

to obtain the unique lex ideal I lex with the same Hilbert function as I. In more detail, we

describe two different methods for computing such lex ideal.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorIdeals";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true]

i3 : I=ideal {e_1*e_2*e_3+e_3*e_4*e_5,e_1*e_3+e_4*e_5,e_2*e_3*e_4}

o3 = ideal (e_1e_2e_3+e_3e_4e_5, e_1e_3+e_4e_5, e_2e_3e_4)

o3 : Ideal of E

i4 : hilbSeq=hilbertSequence(I)

o4 = {1, 5, 9, 3, 0, 0}

o4 : List
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A first way for computing the lex ideal we are looking for is to use the function

lexIdeal(list,exterior algebra):

i5 : Ilex1=lexIdeal(hilbSeq,E)

o5 = ideal (e_1e_2, e_1e_3e_4, e_1e_3e_5, e_1e_4e_5, e_2e_3e_4)

o5 : Ideal of E

i6 : isLexIdeal Ilex1

o6 = true

i7 : hilbertSequence(Ilex1)

o7 = {1, 5, 9, 3, 0, 0}

o7 : List

and a second one is via the new function lexIdeal(ideal), which returns directly the

required lex ideal:

i8 : Ilex2=lexIdeal(I)

o8 = ideal (e_1e_2, e_1e_3e_4, e_1e_3e_5, e_1e_4e_5, e_2e_3e_4)

o8 : Ideal of E

i9 : hilbertSequence(Ilex2)

o9 = {1, 5, 9, 3, 0, 0}

o9 : List

Finally, last example is related to the algorithm for the computation of Hilbert sequences.

Example 2.5.3 Given an exterior algebra E, we illustrate how to get all the Hilbert se-

quences of quotients of E.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorIdeals";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true]

i3 : hilbSeqs=allHilbertSequences(E)

o3 = {{1, 4, 6, 4, 1}, {1, 4, 6, 4, 0}, {1, 4, 6, 3, 0}, {1, 4, 6, 2, 0},

---------------------------------------------------------------------

{1, 4, 6, 1, 0}, {1, 4, 6,0, 0}, {1, 4, 5, 2, 0}, {1, 4, 5, 1, 0},

---------------------------------------------------------------------

{1, 4, 5, 0, 0}, {1, 4, 4, 1, 0}, {1, 4, 4, 0, 0}, {1,4, 3, 1, 0},

---------------------------------------------------------------------

{1, 4, 3, 0, 0}, {1, 4, 2, 0, 0}, {1, 4, 1, 0, 0}, {1, 4, 0, 0, 0},
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---------------------------------------------------------------------

{1, 3, 3, 1,0}, {1, 3, 3, 0, 0}, {1, 3, 2, 0, 0}, {1, 3, 1, 0, 0},

---------------------------------------------------------------------

{1, 3, 0, 0, 0}, {1, 2, 1, 0, 0}, {1, 2,0, 0, 0}, {1, 1, 0, 0, 0},

---------------------------------------------------------------------

{1, 0, 0, 0, 0}}

o3 : List

i4 : transpose matrix hilbSeqs

o4 = | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 1 0 |

| 6 6 6 6 6 6 5 5 5 4 4 3 3 2 1 0 3 3 2 1 0 1 0 0 0 |

| 4 4 3 2 1 0 2 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 |

| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

o4 : Matrix ZZ^5 <--- ZZ^25

Note that the method allHilbertSequences returns an object of type List; for a more

compact view it could be displayed as a matrix.

Now, we extend to modules all can we have done for ideals.

Example 2.5.4 Given a graded submodule M of F , we illustrate how to obtain the unique

lex submodules M lex with the same Hilbert function as M . More in detail, we describe two

different methods for computing such lex submodule.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^3;

i4 : I_1=ideal {e_1, e_2*e_3*e_4};

i5 : I_2=ideal {e_1*e_2, e_1*e_3*e_4};

i6 : I_3=ideal {e_1*e_2*e_3};

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image|e_1 e_2e_3e_4 0 0 0 |

|0 0 e_1e_2 e_1e_3e_4 0 |

|0 0 0 0 e_1e_2e_3|

o7 : E-module, submodule of E^3
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i8 : isAlmostLexModule M

o8 = true

i9 : isLexModule M

o9 = false

Given a submodule M , a first way for computing the lex submodule we are looking for is to

use the function lexModule(module):

i10 : L=lexModule M

o10 = image|e_1 e_2e_3 0 0 0 0 0 |

|0 0 e_1e_2e_3 e_1e_2e_4 e_1e_3e_4 e_2e_3e_4 0 |

|0 0 0 0 0 0 e_1e_2e_3e_4|

o10 : E-module, submodule of E^3

i11 : hilbertSequence M

o11 = {3, 11, 14, 4, 0}

i12 : hilbertSequence M==hilbertSequence L

o12 = true

It is interesting get another similar computation in a more general situation:

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^{2,0,-1};

i4 : I_1=ideal {e_1*e_2, e_3*e_4};

i5 : I_2=ideal {e_1*e_2, e_2*e_3*e_4};

i6 : I_3=ideal {e_2*e_3*e_4};

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image {-2}|e_1e_2 e_3e_4 0 0 0 |

{0} |0 0 e_1e_2 e_2e_3e_4 0 |

{1} |0 0 0 0 e_2e_3e_4|

o7 : E-module, submodule of E^3

i8 : L=lexModule M

o8 = image {-2}|e_1e_2 e_1e_3 e_2e_3e_4 0 0 0 |

{0} |0 0 0 e_1e_2 e_1e_3e_4 0 |

{1} |0 0 0 0 0 e_1e_2e_3|
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o8 : E-module, submodule of E^3

i9 : hilbertSequence M

o9 = {1, 4, 5, 5, 9, 7, 3, 0}

09 : List

i10 : hilbertSequence M==hilbertSequence L

o10 = true

Example 2.5.5 Similarly to what has been done for ideals, there exists a second way to

obtain lex submodules given a sequence of nonnegative integers, if such a sequence is a

Hilbert sequence.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_4,SkewCommutative=>true];

i3 : F=E^3;

i4 : hs={3, 12, 16, 6, 0};

i5 : lexModule(hs,F)

o5 = image|e_1e_2 e_1e_3 e_2e_3e_4 0 0 0 |

|0 0 0 e_1e_2e_3 e_1e_2e_4 0 |

|0 0 0 0 0 e_1e_2e_3e_4|

o5 : E-module, submodule of E^3

i6 : F=E^{2,0,-2};

i7 : hs={1, 4, 5, 4, 6, 5, 6, 3, 0};

i8 : lexModuleBySequences(hs,F)

o8 = image {-2}|e_1e_3 e_1e_2 e_2e_3e_4 0 0 0 |

{0} |0 0 0 e_1e_2 e_1e_3e_4 0 |

{2} |0 0 0 0 0 e_1e_2e_3|

o8 : E-module, submodule of E^3

i9 : F=E^{3,1,-2};

i10 : hs={1, 2, 2, 4, 3, 3, 4, 5, 2, 0};

i11 : isHilbertSequence(hs,F)

o11 = false



Chapter 3

Bounds for Betti numbers

Let K be a field, V a finite n–dimensional K-vector space, E = K 〈e1, . . . , en〉 the exterior

algebra of V , and F a finitely generated graded free E-module with a homogeneous basis.

Let M the category of finitely generated Z-graded left and right E-modules M , satisfying

am = (−1)deg a degmma for all homogeneous elements a ∈ E, m ∈M .

We study projective and injective resolutions over E. More precisely, we give upper bounds

for the graded Betti numbers and the graded Bass numbers of classes of modules in M. In

order to do this, we firstly describe some classes of graded submodules of F , and finally we

state that the lexicographic submodules of F have the maximal Betti numbers among all

the graded submodules of F with the same Hilbert function. A similar result holds for the

Bass numbers. In this chapter Theorem 2.2.4 in Chapter 2 plays a crucial role.

3.1 The generic initial module

In this Section, we study the generic initial module of a graded module M ∈ M. Such a

module can be defined as in the polynomial case [AH00, Par94, Par96].

In order to point out some peculiarities of the exterior algebra, we rewrite some definitions

introduced in Section 1.2 of Chapter 1 and in Section 2.1 of Chapter 2.

Let K be a field, E = K 〈e1, . . . , en〉 the exterior algebra of a n–dimensional K-vector

space V , and Let F ∈ M be a free module with homogeneous basis g1, . . . , gr, where

deg(gi) = fi for each i = 1, . . . , r, with f1 ≤ f2 ≤ · · · ≤ fr. We write F = ⊕ri=1Egi.

Definition 3.1.1 Let I be a monomial ideal of E. I is called stable if for each monomial

eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I. I is called strongly stable if for each

monomial eσ ∈ I and each j ∈ σ one has eieσ\{j} ∈ I, for all i < j.

Definition 3.1.2 A monomial submodule M = ⊕ri=1Iigi of F is an almost (strongly) stable

submodule if Ii is a (strongly) stable ideal of E, for each i.

55
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Definition 3.1.3 A monomial submodule M = ⊕ri=1Iigi of F is a (strongly) stable sub-

module if Ii is a (strongly) stable ideal of E, for each i, and (e1, . . . , en)fi+1−fiIi+1 ⊆ Ii, for

i = 1, . . . , r − 1.

Example 3.1.4 Let E = K〈e1, e2, e3, e4〉 and F = E2. The submodule

M = (e1e2)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2

of F is an almost strongly stable submodule; whereas

N = (e1e2, e1e3)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2

is a strongly stable submodule.

If we consider the free E-module F ′ = Eg1 ⊕Eg2 with f1 = deg g1 = −2, f2 = deg g2 = −1,

the submodule M = (e1e2)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2 ⊂ F ′ is strongly stable, in fact

(e1, . . . , e4)−1+2I2 = (e1e2e3e4) ⊆ I1.

Now, order the monomials of F in the degree reverse lexicographic order, >degrevlexF , as

follows: let eσgi and eτgj be monomials of F , then eσgi >degrevlexF eτgj if

- deg(eσgi) > deg(eτgj), or

- deg(eσgi) = deg(eτgj), and either eσ >revlex eτ , or eσ = eτ and i < j;

>revlex is the usual reverse lexicographic order on E with e1 >revlex · · · >revlex en (see

[AHH97], for instance).

Now, let GL(n) be the group of n× n invertible matrices with entries in the field K, or

equivalently, the group of K-linear graded automorphisms of E.

If ϕ = (ai,j) ∈ GL(n), one can define the action of ϕ on E1 as follows:

ϕ(ej) =

n∑

i=1

ai,jei, ai,j ∈ K

and

ϕ(

n∑

i=1

aiei) =

n∑

i=1

aiϕ(ei), ai ∈ K.

Furthermore, such an action can be extended to Ed as follow:

ϕ(eσ) = ϕ(ei1) · · ·ϕ(eid), for eσ = ei1 · · · eid ∈ Mond(E).

The automorphism ϕ induces a natural compatible action on F = ⊕ri=1Egi by

ϕ(
r∑

i=1

figi) =

r∑

i=1

ϕ(fi)gi, fi ∈ E.



57

Now, let GL(F ) be the group of E-linear graded automorphism of F . An element of

GL(F ) sends gi to
∑r
j=1 fijgj , where fij ∈ Edi−dj . If ϕ1 ∈ GL(n) and ϕ2 ∈ GL(F ), then

ϕ1ϕ2ϕ
−1
1 is an E-linear graded automorphism of F and so we have an action of GL(n) on

GL(F ). Therefore, we can consider the semidirect product G = GL(n)oGL(F ). G acts on F

through graded K-vector space automorphisms; this action takes submodules to submodules.

Let B be the subgroup of G consisting of all automorphisms taking gi to a E-linear

combination of g1, . . . , gi and ei to a K-linear combination of e1, . . . , ei. B is the Borel

group of G and it is naturally realized by upper triangular matrices.

Definition 3.1.5 A submodule M of F is Borel-fixed if ϕ(M) = M , for every ϕ ∈ B.

The following result is the analogue of a general result of Galligo’s theorem [Eis95] on generic

initial ideals proved in [Par94]. Since its proof is quite similar to the one on submodules

of a finitely generated graded free module on a polynomial ring, we omit its proof (see also

[AHH97, Theorem 1.6] for the rank one case).

Proposition 3.1.6 Assume the base field K is infinite and let G and B as above. Then for

each graded submodule M of F there exists a nonempty open subset U ⊆ G such that

(1) there is a monomial submodule N of F such that N = in(ϕ(M)) for all ϕ ∈ U ;

(2) N is a Borel-fixed submodule of F , that is ϕ(N) = N for all ϕ ∈ B.

The monomial submodule N = in(ϕ(M)) of F is denoted by Gin(M) and called the

generic initial module of M .

Proposition 3.1.7 Let K be infinite and let M be a graded submodule of F . Then Gin(M)

is a strongly stable submodule of F with the same Hilbert function as M .

Proof. Since E is noetherian (see for instance [K1̈0]) using the same arguments as in [Hul95,

Lemmas 14, 15], we may assume that M = I1g1 ⊕ · · · ⊕ Irgr, is a monomial submodule of

F such that (e1, . . . , en)fi+1−fiIi+1 ⊆ Ii (i = 1, . . . , r − 1), where fi = deg(gi), for all i,

without changing the Hilbert function. Moreover, since in(P ) in(Q) ⊂ in(PQ), with P,Q

graded ideals of E, one has that (e1, . . . , en)fi+1−fi in(ϕ(Ii+1)) ⊆ in(ϕ(Ii)), for all ϕ ∈ B.

Hence, Gin(M) = ⊕ri=1Jigi, with Ji monomial ideal of E, for all i, and such that

(e1, . . . , en)fi+1−fiJi+1 ⊆ Ji, for i = 1, . . . , r − 1.

Now, we prove that every Ji (i = 1, . . . , r) is a strongly stable ideal of E.

Assume there exists an integer i ∈ {1, . . . , r} such that Ji is not a strongly stable ideal of

E. Hence, there exist a monomial eσ ∈ Ji and a pair (h, j) of positive integers with h < j,

j ∈ supp(eσ), such that eheσ\{j} /∈ Ji. Let ϕ ∈ GL(n) with ϕ(ej) = ej + eh and ϕ(ek) = ek

for k 6= j. Then, ϕ(eσ) = eσ + eheσ\{j} and consequently ϕ(Ji) * Ji. Therefore, ϕ(eσ)gi

does not belong to Gin(M). A contradiction.
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Finally, from (3.3.1), Gin(M) is a strongly stable submodule of F with the same Hilbert

function as M . 2

From now on, we will assume that the base field K is infinite.

3.2 (Almost) Lexicographic submodules

In this Section, we analyze two special classes of monomial submodules of F that will play a

fundamental role for the development of the work: the almost lexicographic submodules and

the lexicographic submodules.

Definition 1.2.16 in Chapter 1 is equivalent to the following one [AC18a, Proposition 3.12]

(see also [CF16, Proposition 3.8]).

Definition 3.2.1 Let L be a graded submodule of F . L is a lex submodule of F if L =

⊕ri=1Iigi, with Ii lex ideals of E (i = 1, . . . , r), and (e1, . . . , en)ρi+fi−fi−1 ⊆ Ii−1, for i =

2, . . . , r, with ρi = indegIi.

Now, we give the definition of a particular class of monomial submodules that includes

all lex submodules as subclass.

Definition 3.2.2 A monomial submodule M = ⊕ri=1Iigi of F is an almost lexicographic

submodule (almost lex submodule, for short) if Ii is a lex ideal of E, for each i.

Next result associates to a graded submodule M of F an almost lex submodule of F

which preserves the Hilbert function and provides an upper bound for the Betti numbers of

the class of all graded submodules of F with given Hilbert function.

For a monomial submodule M = ⊕ri=1Iigi of F , let us denote by D(M) the set of all the

monomial ideals Ii which appear in the direct decomposition of M .

Proposition 3.2.3 Let M be a graded submodule of F . Then there exists an almost lex

submodule L of F such that

(a) HF/M = HF/L;

(b) βp,q(F/M) ≤ βp,q(F/L), for all p, q.

Proof. First of all, from (3.3.1), (3.3.2), we may assume that M is a monomial submodule

of F .

Set M = ⊕rj=1Ijgj , with Ij monomial ideal of E, for all j. From Theorem 1.3.7 and [AHH97,

Theorem 4.1], for every Ij ∈ D(M) (j = 1, . . . , r) there exists a unique lex ideal I lex
j of E

such that HE/Ij = HE/Ilexj
and βp,q(E/Ij) ≤ βp,q(E/I lex

j ), for all p, q.
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Hence, setting L = ⊕rj=1I
lex
j gj , L is an almost lex submodule of F such that

HF/M (d) =

r∑

j=1

HEgj/Ijgj (d) =

r∑

j=1

HE/Ij (d− fi) =

r∑

j=1

HE/Ilexj
(d− fi) =

=

r∑

j=1

HEgj/Ilexj gj (d) = HF/L(d), for all d,

and

βp,q(F/M) =

r∑

j=1

βp,q(Egj/Ijgj) =

r∑

j=1

βp,q−fj (E/Ij) ≤

≤
r∑

j=1

βp,q−fj (E/I
lex
j ) =

r∑

j=1

βp,q(Egj/I
lex
j gj) = βp,q(F/L), for all p, q.

The assertions (a), (b) follow. 2

If M = ⊕rj=1Ijgj is a monomial submodule of F , we will denote by Malex the almost lex

submodule of F defined in Proposition 3.2.3, i.e., Malex = ⊕rj=1I
lex
j gj . Such a monomial

submodule will be called the almost lex submodule associated to M .

Note that Proposition 3.2.3 implies that if M is a graded submodule of F , we may assume

M itself to be an almost lex submodule (hence, an almost strongly stable submodule) without

changing the Hilbert function.

Example 3.2.4 Let E = K〈e1, e2, e3, e4〉 and F = E3. Consider the monomial submodule

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3

of F . Set I1 = (e1e2, e3e4), I2 = (e1e2, e2e3e4) and I3 = (e2e3e4).

If one considers the monomial ideal I1, one has HE/I1 = (1, 4, 4, 0, 0) and consequently

I lex
1 = (e1e2, e1e3, e2e3e4). Furthermore, HE/I2 = (1, 4, 5, 1, 0) and I lex

2 = (e1e2, e1e3e4);

whereas, HE/I3 = (1, 4, 6, 3, 0) and I lex
3 = (e1e2e3). Therefore,

Malex = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3,

and HF/Malex = (3, 12, 15, 4, 0) = HF/M . Finally, if we compare the Betti diagrams of M

and Malex

total 5 14 29 52 85 130

2 3 6 9 12 15 18

3 2 8 20 40 70 112

Betti diagram for M

total 6 18 38 68 110 166

2 3 7 12 18 25 33

3 3 11 26 50 85 133

Betti diagram for Malex

the inequalities on the Betti numbers of Proposition 3.2.3 (b) are verified.



60

Remark 3.2.5 It is worthy to be highlighted that if M is a graded submodule of F , then

almost lex submodules which are not equal to Malex but with the same Hilbert function as

M could exist. Indeed, let E = K〈e1, e2, e3, e4〉, F = E3 and

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3.

The almost lex submodule of F associated to M is

Malex = (e1e2, e1e3, e2e3e4)g1 ⊕ (e1e2, e1e3e4)g2 ⊕ (e1e2e3)g3,

and HF/Malex = (3, 12, 15, 4, 0) = HF/M . The following submodule

N = (e1e2, e1e3, e1e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2 ⊕ (e1e2e3, e1e2e4)g3,

of F is an almost lex submodule (different from Malex) such that HF/N = (3, 12, 15, 4, 0) =

HF/M .

We can observe that every lex submodule of F is a strongly stable submodule (see [CF16,

Proposition 3.9]). Moreover, it is clear that a lex submodule is an almost lex submodule.

The converse does not hold, as next example illustrates.

Example 3.2.6 (1) Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

M =(e1e2, e1e3, e1e4e5, e2e3e4e5)g1 ⊕ (e1e2, e1e3e4, e1e3e5, e2e3e4e5)g2⊕
(e1e2e3, e1e2e4, e1e3e4e5)g3

of F is not a lex submodule of F even if the ideals (e1e2, e1e3, e1e4e5, e2e3e4e5), (e1e2, e1e3e4,

e1e3e5, e2e3e4e5), (e1e2e3, e1e2e4, e1e3e4e5) are lex ideals of E. In fact, e1e2g2 ∈ M2 but

e2e3g1 >lexF e1e2g2 and e2e3g1 /∈ M2. Observe that (e1, e2, e3, e4, e5)2 * (e1e2, e1e3, e1e4e5,

e2e3e4e5). M is an almost lex submodule of F .

(2) Let E = K〈e1, e2, e3, e4, e5〉 and F = ⊕3
i=1Egi with deg g1 = −1, deg g2 = deg g3 = 1.

Let us consider the M of (1) as submodule M ′ ⊂ F . It is an almost lex submodule, indeed

this property remains true when the degrees of gi changes. In such a case, we observe

that e1e2g2 ∈ M ′3 and e1e2e3e4g1, . . . , e2e3e4e5g1 ∈ M ′3. In fact, (e1, e2, e3, e4, e5)2+1+1 ⊆
(e1e2, e1e3, e1e4e5, e2e3e4e5). But also in this case M ′ is not a lex submodule due to second

relation: (e1, e2, e3, e4, e5)3+1−1 * (e1e2, e1e3e4, e1e3e5, e2e3e4e5).

(3) Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

L =(e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5, e3e4e5)g1⊕
(e1e2e3, e1e2e4, e1e2e5, e1e3e4e5, e2e3e4e5)g2 ⊕ (e1e2e3e4, e1e2e3e5, e1e2e4e5, e1e3e4e5)g3

is a lex submodule of F .
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We have already shown in Chapter 2 that lexicographic submodules play a fundamental

role in the classification of the Hilbert functions of quotient of finitely generated graded free

E–modules. Theorem 2.2.4 points out that if M is a graded submodule of F , then there exists

a unique lex submodule of F with the same Hilbert function as M , i.e. HF/M = HF/M lex ,

among all almost lex submodules sharing this properties.

Example 3.2.7 Let E = K〈e1, . . . , e4〉. Consider the following submodule of E3:

M = (e1e2, e3e4)g1 ⊕ (e1e2, e2e3e4)g2 ⊕ (e2e3e4)g3.

M is a monomial submodule with HE3/M = (3, 12, 15, 4, 0). One has that

M lex = (e1e2, e1e3, e1e4, e2e3e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3e4)g3.

We can notice that HE3/M = HE3/M lex . Finally, one can observe that M lex 6= Malex (Ex-

ample 3.2.4).

3.3 Graded Betti numbers

In this Section we generalize the “higher” Kruskal–Katona Theorem [AHH97, Theorem 4.4].

We show that if H is a class of graded submodules of the free E –module F = ⊕ri=1Egi with

a given Hilbert function H, then the unique lex submodule belonging to H (Theorem 2.2.4)

gives upper bounds for the graded Betti numbers of any graded submodule in H.

Using the same arguments as in the polynomial case ([Eis95, Ch. 15], [MS05, Ch. 8.3],

[CR09, Her02]; see also [AHH97] for the rank one case), one has that

HF/M = HF/ in(M) (3.3.1)

and

βi,j(F/M) ≤ βi,j(F/ in(M)), for all i, j. (3.3.2)

Since in(M) is a monomial submodule of F with the same Hilbert function as M , we

may assume M itself is a monomial submodule without changing the Hilbert function.

Example 3.3.1 Let E = K〈e1, e2, e3, e4, e5〉 and F = E2. Consider the graded submodule

M = (e1e2e3 + e3e4e5, e1e3 + e4e5, e2e3e4)g1 ⊕ (e1e2 + e1e3, e4e5)g2

of F . M is not a monomial submodule and the initial module of M is

in(M) = (e1e3, e1e4e5, e2e3e4, e2e4e5, e3e4e5)g1 ⊕ (e1e2, e4e5)g2.

Note that HF/M = (2, 10, 17, 7, 0, 0) = HF/ in(M). Finally, by comparing the Betti diagrams

(as displayed by the computer program Macaulay2 [GS]) of M and in(M)
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total 5 20 56 123 234 404 650

2 3 4 6 8 10 12 14

3 2 16 50 115 224 392 636

Betti diagram for M

total 7 25 63 132 245 417 665

2 3 6 9 12 15 18 21

3 4 19 54 120 230 399 644

Betti diagram for in(M)

one can verify that the inequality in (3.3.2) is satisfied.

If M is a monomial submodule of F , we denote by G(M) the unique minimal set of

monomial generators of M , and by G(M)d the set of all monomials u ∈ G(M) such that

deg(u) = d, and by G(M)≥d the set of monomials u ∈ G(M) such that deg u ≥ d. For every

monomial submodule M = ⊕ri=1Iigi of F , we have

1. G(M) = {ugi : u ∈ G(Ii), i = 1, . . . , r},

2. G(M)d = {ugi : u ∈ G(Ii)d−fi , i = 1, . . . , r}.

3. G(M)≥d = {ugi : u ∈ G(Ii)≥d−fi , i = 1, . . . , r}.

For a monomial eσgi of F = ⊕ri=1Egi, setting

mF (eσgi) = m(eσ), 1 ≤ i ≤ r,

define

G(M : j) = {eσgi ∈ G(M) : mF (eσgi) = j},

and

mF
j (M) = |G(M : j)|, 1 ≤ j ≤ n, mF

≤t(M) =

t∑

j=1

mF
j (M), 1 ≤ t ≤ n.

One can observe that mF
≤n(M) = |G(M)|.

If M = ⊕ri=1Iigi is an (almost) stable submodule of F , then we can use the Aramova-

Herzog-Hibi formula [AHH97, Corollary 3.3] for computing the graded Betti numbers of

M :

βk,k+`(M) =

r∑

i=1

βk, k+`(Iigi) =
∑

u∈G(M)`

(
mF (u) + k − 1

mF (u)− 1

)
, for all k. (3.3.3)

Indeed, one can easily observe that

∑

u∈G(M)`

(
mF (u) + k − 1

mF (u)− 1

)
=

r∑

i=1


 ∑

u∈G(Ii)`−f`

(
m(u) + k − 1

m(u)− 1

)
 . (3.3.4)

As in the case when ideals of a polynomial ring are considered [AHH98, Lemma 3.6],

next characterization of an almost strongly stable submodule of F easily follows.
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Lemma 3.3.2 Let M be a monomial submodule of F . Assume M = M ′ +M ′′, with M ′ =

⊕ri=1I
′
igi, M

′′ = ⊕ri=1I
′′
i engi and I ′i, I

′′
i ideals of the exterior algebra Ẽ = K〈e1, . . . , en−1〉

i = 1, . . . , r. Set M̃ ′′ = ⊕ri=1I
′′
i gi. Then the following conditions are equivalent:

(i) M is an almost strongly stable submodule;

(ii) M ′, M̃ ′′ are almost strongly stable submodules, and I ′′i (e1, . . . , en−1) ⊂ I ′i, for all i.

Remark 3.3.3 One can quickly verify that if M is a strongly stable submodule of F , then

M admits a decomposition of the type defined in Lemma 3.3.2 with M ′ strongly stable

submodule of M , too; whereas M̃ ′′ could not be a strongly stable submodule.

Example 3.3.4 Let E = K〈e1, . . . , e4〉 and F = Eg1 ⊕ Eg2 with deg g1 = −2, deg g2 = 1.

M = (e1e2, e1e3, e1e4, e2e3)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2

is a strongly stable submodule of F . We can write M as follows

M = M ′ +M ′′,

where M ′ = (e1e2, e1e3, e2e3)g1 ⊕ (e1e2e3)g2 and M ′′ = (e1)e4g1 ⊕ (e1e2, e1e3, e2e3)e4g2.

One can observe that M ′ is a strongly stable submodule, whereas M̃ ′′ = (e1)g1 ⊕
(e1e2, e1e3, e2e3)g2 is an almost strongly stable submodule, which is not strongly stable.

Remark 3.3.5 One can observe that if I is a strongly stable ideal of the exterior algebra Ẽ =

K〈e1, . . . , en−1〉, then I is a strongly stable ideal of the exterior algebra E = K〈e1, . . . , en〉;
whereas, one can easily find a monomial ideal I which is lex in the exterior algebra Ẽ =

K〈e1, . . . , en−1〉, but not in E.

Following [AHH98], the following map can be defined

α : Mond(E)→ Mond(E),

with

- α(eσ) = eσ, if n /∈ supp(eσ);

- α(eσ) = (−1)α(σ,j)ejeσ\{n}, if n ∈ supp(eσ) and j is the largest integer < n which does

not belong to supp(eσ), α(σ, j) = |{t ∈ σ : t < j}|.

Such a map is order preserving [AHH98], i.e., if eσ, eτ ∈ Mond(E) and eσ ≥lex eτ , then

α(eσ) ≥lex α(eτ ). The map α can be extended to Mond(F ) as follows:

αF : Mond(F )→ Mond(F ), αF (eσgi) = α(eσ)gi, 1 ≤ i ≤ r.

The map αF is order preserving too.
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Let eσgi, eτgj ∈ Mond(F ) with eσgi ≥lexF eτgj . We distinguish two cases: i = j, i 6= j.

Let i = j. If eσgi ≥lexF eτgi, then eσ ≥lex eτ . Since αF (eσgi) = α(eσ)gi, αF (eτgi) =

α(eτ )gi and α is order preserving, then αF (eσgi) ≥lexF αF (eτgi).

Let i 6= j. If eσgi ≥lexF eτgj , then i < j. Hence, αF (eσgi) = α(eσ)gi ≥lexF α(eτ )gj =

αF (eτgj).

For a non empty subset M of Mon(F ), let us denote by min(M) the smallest monomial

of M with respect to ≤lexF .

Lemma 3.3.6 Let M = ⊕ri=1Iigi = M ′ + M ′′ be an almost strongly stable submodule

of F , with M ′ = ⊕ri=1I
′
igi, M

′′ = ⊕ri=1I
′′
i engi and I ′i, I

′′
i (i = 1, . . . , r) ideals of Ẽ =

K〈e1, . . . , en−1〉. Then αF (min(G(M)) = αF (min(G(M ′)).

Proof. Since min(G(M ′)) ≥lex min(G(M)), then min(G(M ′)) = αF (min(G(M ′)) ≥lexF

αF (min(G(M)). On the other hand, sinceM is almost strongly stable, then αF (min(G(M)) ∈
G(M ′) and min(G(M ′)) ≤lexF αF (min(G(M)). 2

Theorem 3.3.7 Let M and L be monomial submodules of F generated in degree s. Assume

(1) M is an almost strongly stable submodule,

(2) L is a lex submodule, and

(3) dimK Ls ≤ dimKMs.

Then

mF
≤i(L) ≤ mF

≤i(M) (3.3.5)

for all i.

Proof. Set Ẽ = K〈e1, . . . , en−1〉. We proceed by induction on n = dimK E1. By hypotheses,

mF
≤n(L) = dimK Ls ≤ dimKMs = mF

≤n(M). In order to prove the inequality in (3.3.5) for

i < n, we write M and L as follows:

M = ⊕ri=1Iigi = M ′ +M ′′,

with M ′ = ⊕ri=1I
′
igi, M

′′ = ⊕ri=1I
′′
i engi, and I ′i, I

′′
i (i = 1, . . . , r) ideals of E generated by

monomials in e1, . . . , en−1, i.e., monomial ideals of Ẽ, and

L = ⊕ri=1Jigi = L′ + L′′,

with L′ = ⊕ri=1J
′
igi, L

′′ = ⊕ri=1J
′′
i engi and J ′i , J

′′
i monomial ideals of Ẽ.

It is clear that M ′ is an almost strongly stable submodule and that L′ is a lex submodule.

Hence, if we prove that dimK L
′
s ≤ dimKM

′
s, from the inductive hypothesis the assertion

will follows.
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Set M̃ ′′ = ⊕ri=1I
′′
i gi. We can assume that M ′ and M̃ ′′ are lex submodules.

Indeed, let M̃ = ⊕ri=1Ĩigi (L̃ = ⊕ri=1J̃igi, respectively) be the lex submodules of F

generated by those monomials ugi with u monomial of Ẽ and such that dimK M̃s = dimKM
′
s

(dimK L̃s−1 = dimK M̃
′′
s−1, respectively).

Let N = M̃ + L̃ = ⊕ri=1Ĩigi + ⊕ri=1J̃igi. We prove that N is an almost strongly stable

submodule.

First of all note that Ĩi, J̃i are lex ideals and so strongly stable ideals, for all i. On the

other hand, by [AHH98, Lemma 3.7, Theorem 3.9], one can verify that J̃i(e1, . . . , en−1) ⊂ Ĩi,
for all i. Hence, N is an almost strongly stable submodule.

Now, we are in the following situation:

M = ⊕ri=1I
′
igi +⊕ri=1I

′′
i engi, L = ⊕ri=1J

′
igi +⊕ri=1J

′′
i engi

where M is an almost strongly stable submodule and L is a lex submodule, and in addition

M ′ = ⊕ri=1I
′
igi, M̃

′′ = ⊕ri=1I
′′
i gi are lex submodules. Assuming that dimK Ls ≤ dimKMs

we want to prove that

dimK L
′
s ≤ dimKM

′
s. (3.3.6)

Thanks to Lemma 3.3.6 we have

min(G(M ′)) = αF (min(G(M)) ≤lexF min(G(L′)) = αF (min(G(L′)).

Since the submodules L′ and M ′ are lex, the inequality (3.3.6) holds. Hence, by the inductive

hypothesis, the required inequality (3.3.5) follows. 2

By using combinatorial arguments one can quickly verify the following lemma.

Lemma 3.3.8 Let M be an almost strongly stable submodule of F generated in degree d. If

M〈d+1〉 is the submodule of F generated by the elements of Md+1, then

mi(M〈d+1〉) = m≤i−1(M)

for all i.

If M is a set of monomials of degree d < n of F , we denote by M{e1, . . . , en} the following

set of monomials of degree d+ 1 of F [AC18b, CF15]:

M{e1, . . . , en} = {(−1)α(σ,j)ejeσgi : eσgi ∈M, j /∈ supp(eσ), j = 1, . . . , n, i = 1, . . . r},

α(σ, j) = |{r ∈ σ : r < j}|. Such a set is usually called the shadow of M .

Theorem 3.3.7 and Lemma 3.3.8 yield the following result.
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Theorem 3.3.9 Let M be a graded submodule of F . Then

βi,j(M) ≤ βi,j(M lex),

for all i, j.

Proof. The proof is quite similar to [AC18a, Theorem 4] (see also [AHH97]). Due to (3.3.1)

and (3.3.2), from Proposition 3.1.7, we may assume that M is a strongly stable submodule.

From (3.3.3) we have:

βi,i+j(M) =
∑

u∈G(M)j

(
mF (u) + i− 1

mF (u)− 1

)
, for i ≥ 1. (3.3.7)

Since G(M)j = G(M〈j〉) − G(M〈j−1〉){e1, . . . , en}, the above sum can be written as a

difference βi,i+j(M) = C −D, with

C =
∑

u∈G(M〈j〉)

(
mF (u) + i− 1

mF (u)− 1

)

=

n∑

t=1

∑

u∈G(M〈j〉;t)

(
t+ i− 1

t− 1

)
=

n∑

t=1

mt(M〈j〉)

(
t+ i− 1

t− 1

)

=

n∑

t=1

(m≤t(M〈j〉)−m≤t−1(M〈j〉))

(
t+ i− 1

t− 1

)

= m≤n(M〈j〉)

(
n+ i− 1

n− 1

)

+

n−1∑

t=1

m≤t(M〈j〉)

[(
t+ i− 1

t− 1

)
−
(
t+ 1 + i− 1

t

)]

= m≤n(M〈j〉)

(
n+ i− 1

n− 1

)
−
n−1∑

t=j

m≤t(M〈j〉)

(
t+ i− 1

t

)

and

D =
∑

u∈G(M〈j−1〉){e1,...,en}

(
mF (u) + i− 1

mF (u)− 1

)

=

n∑

t=2

m≤t−1(M〈j−1〉)

(
t+ i− 1

t− 1

)
,

from Lemma 3.3.8. On the other hand, since the number of generators of M〈d〉 and M lex
〈d〉 are

equal for all d, we have m≤n(M〈d〉) = m≤n(M lex
〈d〉). Hence, from Theorem 3.3.7, m≤i(M lex

〈d〉)
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≤ m≤i(M〈d〉) for 1 ≤ i ≤ n, and consequently:

βi,i+j(M) = m≤n(M〈j〉)

(
n+ i− 1

n− 1

)
−
n−1∑

t=j

m≤t(M〈j〉)

(
t+ i− 1

t

)

−
n∑

t=2

m≤t−1(M〈j−1〉)

(
t+ i− 1

t− 1

)
≤

≤ m≤n(M lex
〈j〉 )

(
n+ i− 1

n− 1

)
−
n−1∑

t=j

m≤t(M
lex
〈j〉 )

(
t+ i− 1

t

)

−
n∑

t=2

m≤t−1(M lex
〈j−1〉)

(
t+ i− 1

t− 1

)
= βi,i+j(M

lex).

2

Finally, from Proposition 3.2.3 and Theorem 3.3.9, next result follows.

Corollary 3.3.10 Let M be a graded submodule of F . Then

βi,j(M) ≤ βi,j(Malex) ≤ βi,j(M lex), for all i, j.

Example 3.3.11 (1) Let E = K〈e1, e2, e3, e4, e5〉 and F = E3. The submodule

M = (e1e2, e1e4, e3e4e5)g1 ⊕ (e1e3, e1e4e5, e2e3e4)g2 ⊕ (e1e2e4, e1e3e5)g3

of F is not an almost lex submodule of F . It is sufficient to observe that the ideal (e1e2, e1e4,

e3e4e5) is not a lex ideals of E. Consider the almost lex submodule

Malex =(e1e2, e1e3, e1e4e5, e2e3e4e5)g1 ⊕ (e1e2, e1e3e4, e1e3e5, e2e3e4e5)g2⊕
(e1e2e3, e1e2e4, e1e3e4e5)g3,

which is not a lex submodule of F (see Example 3.2.6), and the lex submodule

M lex =(e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5, e3e4e5)g1⊕
(e1e2e3, e1e2e4, e1e2e5, e1e3e4e5, e2e3e4e5)g2⊕
(e1e2e3e4, e1e2e3e5, e1e2e4e5, e1e3e4e5)g3

One can quickly verify that HF/M = (3, 15, 27, 17, 1, 0) = HF/Malex = HF/M lex .

Moreover, using the computer program Macaulay2, if one compares the Betti diagrams

of the submodules above considered, one has the Corollary 3.3.10:

total 8 26 59 113 195 313 476

2 3 7 12 18 25 33 42

3 5 18 42 80 135 210 308

4 − 1 5 15 35 70 126
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Betti diagram for M

total 11 43 113 243 460 796 1288

2 3 7 12 18 25 33 42

3 5 21 56 120 225 385 616

4 3 15 45 105 210 378 630

Betti diagram for Malex

total 16 69 190 419 805 1406 2289

2 3 9 19 34 55 83 119

3 7 31 86 190 365 637 1036

4 6 29 85 195 385 686 1134

Betti diagram for M lex

(2) Now, let F ′ = ⊕3
i=1Egi with deg g1 = −1, deg g2 = 0 and deg g3 = 1. Now, let us

consider M of (1) as submodule M ′ ⊂ F ′. For the same reason as before, it is not an

almost lex submodule of F ′. Consider the almost lex submodule

M ′alex =(e1e2, e1e3, e1e4e5, e2e3e4e5)g1 ⊕ (e1e2, e1e3e4, e1e3e5, e2e3e4e5)g2⊕
(e1e2e3, e1e2e4, e1e3e4e5)g3,

which is not a lex submodule of F ′ (see Example 3.2.6), and the lex submodule

M ′lex =(e1e2, e1e3, e1e4e5, e2e3e4)g1⊕
(e1e2e3, e1e2e4, e1e2e5, e1e3e4, e1e3e5, e2e3e4e5)g2 ⊕ (e1e2e3, e1e2e4, e1e3e4e5)g3

One can quickly verify that HF/M ′ = (1, 6, 14, 18, 15, 8, 1, 0) = HF/M ′alex = HF/M ′lex .

Moreover, using the computer program Macaulay2, if one compares the Betti diagrams of

the submodules above considered, one has the Corollary 3.3.10:

total 8 26 59 113 195 313 476

1 2 5 9 14 20 27 35

2 2 6 13 24 40 62 91

3 2 8 20 40 70 112 168

4 2 6 12 20 30 42 56

5 − 1 5 15 35 70 126

Betti diagram for M ′
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total 11 43 113 243 460 796 1288

1 2 5 9 14 20 27 35

2 2 7 18 39 75 132 217

3 3 14 40 90 175 308 504

4 3 12 31 65 120 203 322

5 1 5 15 35 70 126 210

Betti diagram for M ′alex

total 13 52 136 289 540 923 1477

1 2 5 9 14 20 27 35

2 2 9 25 55 105 182 294

3 5 21 56 120 225 385 616

4 3 12 31 65 120 203 322

5 1 5 15 35 70 126 210

Betti diagram for M ′lex

3.4 Graded Bass numbers

In this section we analyze the graded Bass numbers of graded submodules of F . We are

interested in determining upper bounds for such invariants.

If M ∈M, we recall that M has a unique minimal graded injective resolution:

I• : 0→M → I0 → I1 → I2 → . . . ,

where Ii = ⊕jE(n − j)µi,j(M). The integers µi,j(M) = dimK ExtiE(K,M)j are called the

graded Bass numbers of M [BH96, K1̈0].

Let M∗ be the right (left) E-module HomE(M,E). The duality between projective and

injective resolutions implies the following relation ([AHH97, Proposition 5.2]) between the

graded Bass numbers of a module and the graded Betti numbers of its dual.

Proposition 3.4.1 Let M ∈M. Then

βi,j(M) = µi,n−j(M
∗), for all i, j.

For the reader’s convenience, we recall some notions and results from [AHH97, K1̈0]. Let

M ∈M and let M∗ be the right (left) E-module HomE(M,E).

We quote next result from [AHH97, Proposition 5.1].
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Lemma 3.4.2 Let M ∈M. Then

dimKM
∗
i = dimKMn−i, for all i.

Let us consider the dual module HomE(F/M,E), where M is a graded submodule of F .

If rankF = 1 with f1 = 0, i.e., F = E and M = I is a graded ideal of E, then

HomE(E/I,E) ' 0 : I, (3.4.1)

where 0 : I is the annihilator of I, i.e., the set of all elements b ∈ E such that ba = 0, for all

a ∈ I. Moreover, from Lemma 3.4.2 (see also [AHH97, Corollary 5.3])

dimK(E/I)i = dimk(0 : I)n−i for all i. (3.4.2)

Remark 3.4.3 The ideal 0 : I is spanned as K-vector space by all monomials eσ̄ such that

eσ /∈ I, where σ̄ is the complement of σ in the set {1, . . . , n} (see [AHH97, Proposition 5.7],

proof). Furthermore, if I is a lex ideal in E, then 0 : I is a lex ideal in E, too. Note that 0 : I

is the exterior version of the Alexander dual of a squarefree monomial ideal in a polynomial

ring.

The next example will be useful for describing our strategy in Theorem 3.4.5.

Example 3.4.4 Let E = K〈e1, e2, e3, e4〉 and F = E3. Let us consider the lex submodule

of F :

L = (e1e2, e1e3, e1e4, e2e3e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4, e2e3e4)g2 ⊕ (e1e2e3e4)g3.

Setting I1 = (e1e2, e1e3, e1e4, e2e3e4), I2 = (e1e2e3, e1e2e4, e1e3e4, e2e3e4) and I3 = (e1e2e3e4),

one has

0 : I1 = (e1e2, e1e3, e1e4, e2e3e4),

0 : I2 = (e1e2, e1e3, e1e4, e2e3, e2e4, e3e4),

0 : I3 = (e1, e2, e3, e4).

Even though the annihilators above are lex ideals, the submodule N = ⊕rt=1(0 : It)gt is not a

lex submodule of F (see for instance Proposition 3.2.1). Indeed, the monomial e2e4 /∈ 0 : I1.

Equivalently, e2e4g1 >lexF e2e4g2, but e2e4g2 ∈ N , whereas e2e4g1 ∈ F \N . Conversely,

Ñ = (0 : I3)g1 ⊕ (0 : I2)g2 ⊕ (0 : I1)g3

is a lex submodule in F . Note that (F/L)∗ ' N ' Ñ as E–graded modules (see (3.4.1))

and HF/N = (3, 8, 3, 0, 0) = HF/Ñ .

Theorem 3.4.5 Let M be a graded submodule of Er, r ≥ 1. Then

µi,j(E
r/M) ≤ µi,j(Er/M lex), for all i, j.
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Proof. Set F = Er. The case r = 1 has been proved in [AHH97, Corollary 5.8]. Assume

r > 1.

From Proposition 3.4.1 and Theorem 3.3.9, one has

µi,j(F/M) = βi,n−j(HomE(F/M,E)) ≤ βi,n−j((HomE(F/M,E))
lex

). (3.4.3)

Let us consider the lex submodule M lex. It is M lex = ⊕rt=1Jtgt, with each Jt lex ideal in

E and (e1, . . . , en)indegJt ⊆ Jt−1, for t = 2, . . . , r. Moreover, from (3.4.1),

µi,j(F/M
lex) = βi,n−j(⊕rt=1(0 : Jt)gt).

Now, consider the submodule ⊕rt=1(0 : Jt)gt of F . It is not a lex submodule in general

(see for instance Example 3.4.4), nevertheless the behavior of the ideals Jt, together with

the fact that deg gt = 0 for all t, assures that ⊕rt=1(0 : Jr−t−1)gt is a lex submodule of F

(see also Remark 3.4.3).

Moreover, it is clear that ⊕rt=1(0 : Jt)gt ' ⊕rt=1(0 : Jr−t−1)gt. Hence

µi,j(F/M
lex) = βi,n−j(⊕rt=1(0 : Jr−t−1)gt). (3.4.4)

Claim. The graded E–modules (HomE(F/M,E))
lex

and ⊕rt=1(0 : Jr−t−1)gt have the same

Hilbert function.

Set P = (HomE(F/M,E))
lex

and Q = ⊕rt=1(0 : Jr−t−1)gt. From Lemma 3.4.2 and

(3.4.2), we have

dimK Pi = dimK ((HomE(F/M,E))
lex

)i = dimK (HomE(F/M,E))i

= dimK(F/M)n−i = dimK(F/M lex)n−i

=

r∑

t=1

dimK(0 : Jt)i =

r∑

t=1

dimK(0 : Jr−t−1)i

= dimK Qi.

The claim follows.

Therefore, since P and Q are lex submodules of F with the same Hilbert function, then

they coincide. Finally, from (3.4.3) and (3.4.4),

µi,j(F/M) ≤ βi,n−j(P ) = βi,n−j(Q) = µi,j(F/M
lex),

for all i, j. 2

We close this Section discussing the annihilator of a submodule of F . The next proposition

generalizes some results in [AHH97] (Remark 3.4.3).

Proposition 3.4.6 Let M be a graded submodule of F .
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(1) If M is a (strongly) stable submodule, then 0 : M is a strongly stable ideal in E.

(2) If M is a lex submodule, then 0 : M is a lex ideal in E.

Proof. (1). Since M = ⊕ri=1Iigi is a monomial submodule of F , then

0 : M = ∩ri=1(0 : Iigi) = ∩ri=1(0 : Ii),

and each ideal 0 : Ii is strongly stable [CF13, Lemma 4.1]. The definition of a strongly stable

submodule assures us that the ideal 0 : M is not null and strongly stable.

Similarly, one can verify that (2) holds. 2

If I is a graded ideal of E, then 0 : I lex = (0 : I)lex [AHH97, Proposition 5.7]. The next

example shows that such a property does not hold if I is a graded submodule of F .

Example 3.4.7 Let E = K〈e1, e2, e3, e4, e5〉 and F = E2. Consider the following submod-

ules of F :

M = (e1e2, e1e3, e1e4e5, e2e3e4, e2e4e5, e3e4e5)g1 ⊕ (e1e2, e2e3e4)g2,

M lex = (e1e2, e1e3, e1e4, e2e3e4, e2e3e5, e2e4e5, e3e4e5)g1⊕(e1e2e3, e1e2e4, e1e2e5, e1e3e4e5)g2.

One has

0 : M = (e1e4, e1e2e3, e1e2e5, e1e3e5, e2e3e4, e2e3e5),

(0 : M)lex = (e1e2, e1e3e4, e1e3e5, e1e4e5, e2e3e4, e2e3e5),

0 : M lex = (e1e2e3, e1e2e4, e1e2e5, e1e3e4, e1e3e5, e1e4e5, e2e3e4).

Hence, 0 : M lex 6= (0 : M)lex.

3.5 Macaulay2 packages

In this Section, we describes other procedures of the packages “ExteriorIdeals.m2” and “Ex-

teriorModules.m2” introduced in the Section 2.5. We collect some examples in order to

describe the algorithms to easily compute stable, strongly stable and lexsegment ideals in E

and the (almost) stable, (almost) strongly stable and (almost) lex submodules of F .

Example 3.5.1 Given a monomial ideal I in an exterior algebra E, we illustrate how some

functions from our package allow one to check whether I is (strongly) stable or lex and to

produce (strongly) stable ideals containing I. The core of the algorithms is based on the fact

that the minimal monomial generators of a (strongly) stable ideal must satisfy the criterion

in Definition 3.1.1 (it is sufficient to apply it only on a set of generators of the ideal) and on

the fact that the shadow of a lexsegment of monomials is again a lexsegment [HH11].
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Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorIdeals"

i2 : E=QQ[e_1..e_5,SkewCommutative=>true]

i3 : I=ideal {e_2*e_3,e_3*e_4*e_5}

o3 = ideal (e_2e_3, e_3e_4e_5)

o3 : Ideal of E

i4 : isStableIdeal I

o4 = false

The ideal I is not stable. Indeed, the monomial e1e2 is not in I even though e2e3 is. Hence,

by the function StableIdeal(ideal), we compute the smallest stable ideal Is containing I:

i5 : Is=stableIdeal I

o5 = ideal (e_1e_2, e_1e_3e_4, e_2e_3, e_3e_4e_5)

o5 : Ideal of E

i6 : isStableIdeal Is

o6 = true

i7 : isStronglyStableIdeal Is

o7 = false

The ideal Is is stable but not strongly stable in E. Note that the monomial e1e3 is not in

Is even though e2e3 is. Using the function stronglyStableIdeal(ideal), we compute the

smallest strongly stable ideal (Iss) containing Is, and consequently I:

i8 : Iss=stronglyStableIdeal Is

o8 = ideal (e_1e_2, e_1e_3, e_1e_4e_5, e_2e_3, e_2e_4e_5, e_3e_4e_5)

o8 : Ideal of E

i9 : isStronglyStableIdeal Iss

o9 = true

i10 : Iss2=stronglyStableIdeal I

o10 = ideal (e_1e_2, e_1e_3, e_1e_4e_5, e_2e_3, e_2e_4e_5, e_3e_4e_5)

o10 : Ideal of E

i11 : Iss==Iss2

o11 = true

Now, we extend to submodules of F all can we have done for ideals.

Example 3.5.2 Let M be a monomial submodule of a graded free module F , we illustrate

functions from “ExteriorModules” package analogously to those for ideals: to check whether

M is (strongly) stable or lex and to produce (strongly) stable modules containing M .
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Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true];

i3 : F=E^2;

i4 : I_1=ideal {e_1*e_2, e_1*e_3, e_1*e_4*e_5};

i5 : I_2=ideal {e_1*e_2, e_2*e_3*e_4};

i6 : M=createModule({I_1, I_2},F)

o6 = image|e_1e_3 e_1e_2 e_1e_4e_5 0 0 |

|0 0 0 e_1e_2 e_2e_3e_4|

o6 : E-module, submodule of E^2

i7 : isStableModule M

o7 = false

The module M is almost stable but not stable: the monomial e2e3e4 is not in I1 (Defi-

nition 1.2.9). We can compute the smallest stable module containing M by the function

StableModule(module).

i8 : Ms=stableModule M

o8 = image|e_1e_2 e_1e_3 e_1e_4e_5 e_2e_3e_4 0 0 |

|0 0 0 0 e_1e_2 e_2e_3e_4|

o8 : E-module, submodule of E^2

i9 : isStronglyStableModule Ms

o9 = false

The ideal Ms is stable and but not either almost strongly stable and strongly stable. In

fact, the ideals (e1e2, e2e3e4) is not strongly stable. We compute the smallest strongly stable

module containing Ms by using the function stronglyStableModule(module):

i10 : Mss=stronglyStableModule Ms

o10 = image|e_1e_2 e_1e_3 e_1e_4e_5 e_2e_3e_4 0 0 0 |

|0 0 0 0 e_1e_2 e_1e_3e_4 e_2e_3e_4|

o10 : E-module, submodule of E^2

i11 : isStronglyStableModule Mss

o11 = true

i12 : Mss==stronglyStableModule M

o12 = true

The module Mss is not an almost lex submodule of F : the ideal (e1e3e4, e2e3e4) is not lex.

One can verify it and compute the almost lex submodule associated to Mss.
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i13 : isLexIdeal (getIdeals Mss)_1

o13 = false

i14 : isAlmostLexModule Mss

o14 = false

i15 : Al=almostLexModule Mss

o15 = image|e_1e_2 e_1e_3 e_1e_4e_5 e_2e_3e_4

|0 0 0 0

0 0 0 0 |

e_1e_2 e_1e_3e_4 e_1e_3e_5 e_2e_3e_4e_5|

o15 : E-module, submodule of E^2

Finally, we compute the Betti tables of the almost lex submodule and the lex submodules

associated to a monomial submodule M .

Example 3.5.3 Let M be a monomial submodule of a graded free module F , we illustrate

some functions from “ExteriorModules” package to compare the Betti diagrams of M , Malex

and M lex.

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "ExteriorModules";

i2 : E=QQ[e_1..e_5,SkewCommutative=>true];

i3 : F=E^{2,1,-1};

i4 : I_1=ideal({e_1*e_4,e_3*e_4*e_5});

i5 : I_2=ideal({e_1*e_4*e_5,e_2*e_3*e_4});

i6 : I_3=ideal({e_1*e_3*e_5});

i7 : M=createModule({I_1, I_2, I_3},F)

o7 = image {-2}|e_1e_4 e_3e_4e_5 0 0 0 |

{-1}|0 0 e_1e_4e_5 e_2e_3e_4 0 |

{1} |0 0 0 0 e_1e_3e_5|

o7 : E-module, submodule of E^3

i8 : isAlmostLexModule M

o8 = false

i9 : Malex=almostLexModule M

o9 = image {-2}|e_1e_2 e_1e_3e_4 0 0 0 0 |

{-1}|0 0 e_1e_2e_3 e_1e_2e_4 e_1e_3e_4e_5 0 |

{1} |0 0 0 0 0 e_1e_2e_3|

o9 : E-module, submodule of E^3
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i10 : isLexModule Malex

o10 = false

i11 : Mlex=lexModule M

o11 = image {-2}|e_1e_2 e_1e_3e_4 e_2e_3e_4e_5

{-1}|0 0 0

{1} |0 0 0

{-2} 0 0 0 0 |

{-1} e_1e_2e_3 e_1e_2e_4e_5 e_1e_3e_4e_5 0 |

{1} 0 0 0 e_1e_2e_3|

o11 : E-module, submodule of E^3

Now, we can compare the Betti diagrams of the submodules we have found.

i12 : minimalBettiNumbers M

0 1 2 3 4 5 6

o12 = total: 5 16 36 69 120 195 301

0: 1 2 3 4 5 6 7

1: 1 4 10 20 35 56 84

2: 2 6 12 20 30 42 56

3: . 1 5 15 35 70 126

4: 1 3 6 10 15 21 28

o12 = BettiTally

i13 : minimalBettiNumbers Malex

0 1 2 3 4 5 6

o13 = total: 6 21 50 99 175 286 441

0: 1 2 3 4 5 6 7

1: 1 4 10 20 35 56 84

2: 2 7 16 30 50 77 112

3: 1 5 15 35 70 126 210

4: 1 3 6 10 15 21 28

o13 = BettiTally

i14 : minimalBettiNumbers Mlex

0 1 2 3 4 5 6

o14 = total: 7 27 70 149 280 482 777

0: 1 2 3 4 5 6 7

1: 1 4 10 20 35 56 84

2: 2 8 21 45 85 147 238

3: 2 10 30 70 140 252 420

4: 1 3 6 10 15 21 28

o14 = BettiTally



Chapter 4

Extremal Betti numbers

LetK be a field and let S = K[x1, . . . , xn] be a polynomial ring over a fieldK of characteristic

0. We analyze the behavior of the extremal Betti numbers of special classes of monomial

ideals of S known as the t–spread strongly stable ideals, where t is an integer ≥ 0.

We focus our attention on the cases t = 0, 1, 2.

4.1 A hierarchy of monomial ideals

Let us consider the polynomial ring S = K[x1, . . . , xn] as an N-graded ring where deg xi = 1,

i = 1, . . . , n. Some definitions we will use in this chapter have been given in Chapter 1

(Section 1.2).

A monomial xi1xi2 · · ·xid ∈ S is squarefree if 1 ≤ i1 < i2 < · · · < id ≤ n. A graded ideal

I of S is a squarefree monomial ideal if I is generated by squarefree monomials.

Definition 4.1.1 Let I be a squarefree monomial ideal of S. I is called a squarefree stable

ideal if for all u ∈ G(I) one has (xju)/xmax(u) ∈ I for all j < max(u), j /∈ supp(u).

I is called a squarefree strongly stable ideal if for all u ∈ G(I) one has (xju)/xi ∈ I for all

i ∈ supp(u) and all j < i, j /∈ supp(u).

In [EHQ19], the notion of a t–spread monomial ideal has been introduced.

Let t ≥ 0 be an integer. A monomial xi1xi2 · · ·xid with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n is

called t–spread, if ij − ij−1 ≥ t for 2 ≤ j ≤ d. Note that, any monomial is 0–spread, while

the squarefree monomials are 1–spread.

For example, the monomial x2x5x8 ∈ K[x1, . . . , x8] is 3–spread.

Definition 4.1.2 A monomial ideal in S is called a t–spread monomial ideal, if it is gener-

ated by t–spread monomials.

It is clear that if t ≥ 1, then every t–spread monomial is a squarefree monomial ideal.

77
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Definition 4.1.3 A t–spread monomial ideal I of S is called t–spread stable, if for all t–

spread monomials u ∈ I and for all i < max(u) such that xi(u/xmax(u)) is a t–spread

monomial, it follows that xi(u/xmax(u)) ∈ I.

The ideal I is called t–spread strongly stable, if for all t–spread monomials u ∈ I, all

j ∈ supp(u) and all i < j such that xi(u/xj) is t–spread, it follows that xi(u/xj) ∈ I.

Every t–spread strongly stable ideal is also t–spread stable.

One can notice that the notion of t–spread (strongly) stable ideal generalizes the notion

of (strongly) stable ideal and of squarefree (strongly) stable ideal.

Remark 4.1.4 The defining property of a t–spread strongly stable ideal needs to be checked

only for the set of monomial generators. Indeed, if I is a t–spread monomial ideal of S, then

I is t–spread strongly stable if and only if the ideal I satisfies the following condition: for

u ∈ G(I) and j ∈ supp(u), if i < j and xi(u/xj) is a t–spread monomial, then xi(u/xj) ∈ I
[EHQ19, Lemma 1.2].

Let u1, . . . , um be t–spread monomials in S. The unique t–spread strongly stable ideal

containing u1, . . . , um will be denoted byBt(u1, . . . , um) [EHQ19]. The monomials u1, . . . , um

are called t– spread Borel generators.

In the sequel, we refer to Bt(u1, . . . , um) as the finitely generated t–spread Borel ideal. If

t = 0, we set B0(u1, . . . , um) = 〈u1, . . . , um〉. We will call such ideals finitely generated Borel

ideals (FGBI, for short). The ideal B0(u1) = 〈u1〉 is called a principal Borel ideal (PBI, for

short).

Example 4.1.5 Let S = K[x1, . . . , x8] and let us consider the set P = {x1x8, x2x6x8}. We

want to compute some finitely generated t-Borel ideals with the monomials in P as Borel

generators.

B0(x1x8, x2x6x8) = (x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x

3
2, x

2
2x3, x

2
2x4, x

2
2x5,

x2
2x6, x

2
2x7, x

2
2x8, x2x

2
3, x2x3x4, x2x3x5, x2x3x6, x2x3x7, x2x3x8,

x2x
2
4, x2x4x5, x2x4x6, x2x4x7, x2x4x8, x2x

2
5, x2x5x6, x2x5x7,

x2x5x8, x2x
2
6, x2x6x7, x2x6x8);

B1(x1x8, x2x6x8) = (x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x2x3x4, x2x3x5, x2x3x6,

x2x3x7, x2x3x8, x2x4x5, x2x4x6, x2x4x7, x2x4x8, x2x5x6, x2x5x7,

x2x5x8, x2x6x7, x2x6x8);

B2(x1x8, x2x6x8) = (x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x2x4x6, x2x4x7, x2x4x8, x2x5x7,

x2x5x8, x2x6x8).
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For an arbitrary monomial ideal I, we denote by Ij , the j–th graded component of I and

call the set of t–spread monomials in Ij , the t–spread part of Ij and denote it by [Ij ]t.

Now, let Mn,d,t be the set of all t–spread monomials of degree d in S and let N be a

non–empty subset of Mn,d,t. If T is a subset of S, we denote by Mond(T ) = Mn,d,0 ∩ T the

set of all monomials in T and by Monsd(T ) = Mn,d,1 ∩ T the set of all squarefree monomials

of degree d in T .

Let us define the following set:

Shadt(N) = {xiw : w ∈ N, i = 1, . . . , n} ∩Mn,d+1,t.

It is clear that Shadt(N) could be empty. The set Shadt(N) 6= ∅ will be called the t–shadow

of N .

A special class of t–spread strongly stable ideals consists of t-spread lex ideals, which are

defined as follows [AC19f].

Definition 4.1.6 (a) A subset L of Mn,d,t is called a t–spread lex set, if for all u ∈ L and

for all v ∈Mn,d,t with v >lex u, it follows that v ∈ L.

(b) Let I be a t–spread monomial ideal. Then I is called a t–spread lex ideal, if [Ij ]t is a

t–spread lex set for all j.

Example 4.1.7 Let S = K[x1, x2, x3, x4, x5]. The ideal I = (x1x2x3, x1x2x4, x1x2x5,

x1x3x4, x2x3x4x5) is a squarefree lexsegment ideal of S.

We recall the next definition from [AC19e].

Definition 4.1.8 Let u = xi1 · · ·xiq be a squarefree monomial of S of degree q < n. We

say that u has a j -gap if ij+1− ij > 1 for some 1 ≤ j < q. The positive integer ij+1− ij − 1

will be called the width of the j -gap.

The j -gap of a squarefree monomial u = xi1 · · ·xiq ∈ S will be denoted by j -gap(u),

whereas its width will be denoted by wd(j -gap(u)). Moreover, we define

Gap(u) := {j ∈ [q] : there exists a j -gap(u)}.

One can observe that for t ≥ 1, Shadt(N) 6= ∅ if there exists a squarefree monomial

u = xi1 · · ·xid ∈ N satisfying at least one of the following conditions:

(i) i1 > t;

(ii) wd(j -gap(u)) ≥ 2t, for 1 ≤ j < d;

(iii) id ≤ n− t.



80

For instance, if x3x5x9 ∈ M9,3,2, then Shad2({x3x5x9}) = {x1x3x5x9, x3x5x7x9} ⊂
M9,4,2; if x4x9 ∈ M12,2,3, then Shad3({x4x9}) = {x1x4x9, x4x9x12} ⊂ M12,3,3; whereas,

if x3x6x9 ∈M10,3,3, one has Shad3({x3x6x9}) = ∅.
Now, we study the extremal Betti numbers of t–spread strongly stable ideals.

For any graded ideal I of S, there is a minimal graded free S-resolution [BH96]

F• : 0→ Fs → · · · → F1 → F0 → I → 0,

where Fi = ⊕j∈ZS(−j)βi,j . The integers βi,j = βi,j(I) = dimK Tori(K, I)j are called the

graded Betti numbers of I.

If I is a t–spread strongly stable ideal, there exists a formula to compute the graded Betti

numbers of I [EHQ19, Corollary 1.12]:

βk, k+`(I) =
∑

u∈G(I)`

(
max(u)− t(`− 1)− 1

k

)
. (4.1.1)

Note that the formula in (4.1.1) becomes the well–known formula of Eliahou and Kervaire

[EK90] for (strongly) stable ideals for t = 0; whereas, if t = 1 then it coincides with the

formula stated by Aramova, Herzog and Hibi for the class of squarefree (strongly) stable

ideals [AHH98].

Definition 4.1.9 [BCP99] A graded Betti number βk,k+`(I) 6= 0 is called extremal if

βi, i+j(I) = 0 for all i ≥ k, j ≥ `, (i, j) 6= (k, `).

The pair (k, `) is called a corner of I.

Next results, that lead to a characterization of the extremal Betti numbers of a t–spread

strongly stable ideal, are quite similar to the ones in [CU00, CU03]. We include them in this

section for completeness of information.

Lemma 4.1.10 Let I be a t–spread strongly stable ideal of S. If βi,i+j(I) 6= 0, then

βk,k+j(I) 6= 0 for k = 0, . . . , i.

Proof. If βi,i+j(I) 6= 0, by (4.1.1) there exists u ∈ G(I)j such that max(u)− t(j− 1)− 1 ≥ i,
i.e., max(u) ≥ i + t(j − 1) + 1. It follows that max(u) ≥ k + t(j − 1) + 1, for k = 0, . . . , i,

and again from (4.1.1), the assertion follows. 2

From Definition 4.1.9, it follows:

Corollary 4.1.11 Let I be a t–spread strongly stable ideal. The following conditions are

equivalent:

(a) βk,k+`(I) is extremal;

(b)(b.1) βk,k+`(I) 6= 0;
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(b.2) βk,k+j(I) = 0, for j > `;

(b.3) βi,i+`(I) = 0, for i > k.

Lemma 4.1.10 and Corollary 4.1.11 yield the following characterization.

Theorem 4.1.12 Let I be a t–spread strongly stable ideal of S.

The following conditions are equivalent:

(1) βk, k+`(I) is extremal;

(2) k + t(` − 1) + 1 = max{max(u) : u ∈ G(I)`} and max(u) < k + t(j − 1) + 1, for all

j > ` and for all u ∈ G(I)j.

Proof. (1)⇒ (2). By (4.1.1) βk, k+`(I) 6= 0 if and only if there exists a monomial u ∈ G(I)`

such that max(u) ≥ k + t(`− 1) + 1. Hence max{max(u) : u ∈ G(I)`} ≥ k + t(`− 1) + 1.

Suppose j + t(` − 1) + 1 := max{max(u) : u ∈ G(I)`} > k + t(` − 1) + 1. Hence

βj,j+`(I) 6= 0, for j > k. This is a contradiction from Corollary 4.1.11, (b.3). Hence

k + t(`− 1) + 1 = max{max(u) : u ∈ G(I)`}.

Suppose there exist an integer j > ` and a monomial u ∈ G(I)j such that max(u) ≥
k+t(j−1)+1. From (4.1.1), then βk, k+j(I) 6= 0. Again a contradiction from Corollary 4.1.11,

(b.2).

(2)⇒ (1). Since k + t(` − 1) + 1 = max{max(u) : u ∈ G(I)`}, then βk, k+`(I) 6= 0 and

βi, i+`(I) = 0, for all i > k. On the other hand max(u) < k + t(j − 1) + 1, for all j > ` and

for all u ∈ G(I)j , implies βk, k+j(I) = 0. Hence from Corollary 4.1.11, we get the assertion.

2

As a consequence we obtain the following:

Corollary 4.1.13 Let I be a t–spread strongly stable ideal of S and let βk, k+`(I) an extremal

Betti number of I. Then

βk, k+`(I) = |{u ∈ G(I)` : max(u) = k + t(`− 1) + 1}|.

Now, let t ≥ 1 and let Mn,`,t be the set of all t–spread monomials of degree ` in S. From

[AC19f] (see also [EHQ19, Theorem 2.3]), one has

|Mn,`,t| =
(
n− (`− 1)(t− 1)

`

)
. (4.1.2)

Hence, if (k, `) is a pair of positive integers such that k + t(`− 1) + 1 ≤ n, one has

|{u ∈Mn,`,t : max(u) = k + t(`− 1) + 1}| =
(
k + t(`− 1) + 1− (`− 1)(t− 1)− 1

`− 1

)

(4.1.3)

=

(
k + `− 1

`− 1

)
. (4.1.4)
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As a consequence, if I is a t–spread strongly stable ideal of S and βk, k+`(I) is an extremal

Betti number of I, then from Theorem 4.1.12, we have the following bound:

1 ≤ βk,k+`(I) ≤
(
k + `− 1

`− 1

)
. (4.1.5)

4.2 Algorithms for a FGBI

In this Section, we examine the following problem.

Problem 4.2.1 Given two positive integers n, r, 1 ≤ r ≤ n− 1, r pairs of positive integers

(k1, `1), . . ., (kr, `r) such that n − 1 ≥ k1 > k2 > · · · > kr ≥ 1, 1 ≤ `1 < `2 < · · · < `r, and

r positive integers a1, . . . , ar, under which conditions does there exist a graded ideal I of S

such that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are its extremal Betti numbers?

An answer to Problem 4.2.1 can be found in [CU00, CU03, Cru16, Cru17, Cru19, HSV14].

In [HSV14] a crucial role is played by the class of piecewise lexsegment ideals. The notion

of piecewise lexsegment ideal has been introduced by Shakin in [Sha03] (see also [Mur07]).

A monomial ideal I ⊆ S is said to be piecewise lexsegment if for any monomial u ∈ G(I) of

degree d and for any monomial v ∈ S of degree d such that v > u and m(v) ≤ m(u) we have

that v ∈ I, or equivalently, if there exists lexsegment ideals Li of K[x1, . . . , xi] (i = 1, . . . , n)

such that L = L1S + . . .+ LnS [Sha03, Proposition 2.4].

We realize some procedures to construct FGBI’s of initial degree ≥ 2 with given extremal

Betti numbers (positions as well as values).

From now on, we assume S = K[x1, . . . , xn] endowed with the lexicographic order >lex

induced by the ordering x1 > x2 > · · · > xn.

For the reader’s convenience, we recall some notations from [Cru16].

For u, v ∈ Mond(S), u ≥lex v, define the set

L(u, v) = {z ∈ Mond(S) : u ≥lex z ≥lex v}.

LetM be a set of monomials of degree d of S. The set of monomials of degree d+ 1 of S

Shad(M) = {xiu : u ∈M, i = 1, . . . , n}

is called the shadow of M. We define the i-th shadow recursively by Shad0(M) = M,

Shadi(M) = Shad(Shadi−1(M)).

Moreover, we denote by min(M) (max(M), respectively) the smallest (the greatest,

respectively) monomial of M with respect to ≥lex. Setting w = min(M), if ` > d is an

integer, we define the following set of monomials of degree ` in S:

LexShad`−d(M) = L(x`1, wx
`−d
n ).
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We call such a set the lexicographic shadow of M.

Finally, given two positive integers k, d, with 1 ≤ k < n and d ≥ 2, we consider the

following sets of monomials:

A(k, d) = {u ∈ Mond(S) : m(u) = k + 1}, (4.2.1)

and

A(≤ k, d) = {u ∈ Mond(S) : m(u) ≤ k + 1}. (4.2.2)

Setting A(k, d) = {u1, . . . , uq}, we can suppose, after a permutation of the indices, that

u1 >lex u2 >lex · · · >lex uq. (4.2.3)

For the i-th monomial u of degree d with m(u) = k+1, we mean the monomial of A(k, d) that

appears in the i-th position of (4.2.3), for 1 ≤ i ≤ q. Note that u1 = xd−1
1 xk+1, uq = xdk+1,

and q = |A(k, d)| =
(
k+d−1
d−1

)
.

Furthermore, if ui, uj , i < j, are two monomials in (4.2.3), we will denote by [ui, uj ] the

subset of A(k, d) defined as follows:

[ui, uj ] = {w ∈ A(k, d) : ui ≥lex w ≥lex uj};

[ui, uj ] will be called a segment of A(k, d) of initial element ui and final element uj , and

its cardinality will be called the length of [ui, uj ]. Note that A(k, d) = [xd−1
1 xk+1, x

d
k+1]. If

i = j, we set [ui, uj ] = {ui}.

The sets in (4.2.1) and (4.2.2) are the first objects involved in the determination of the

ideal we are looking for.

In Algorithm 4.1 we give the pseudocode of the procedure for computing such sets of

monomials.
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Algorithm 4.1: Computation of A(k, d) or A(≤ k, d)

Input: Ring R, string s, index k and degree l

Output: Set of monomials: A(k, l)

begin

n← number of indeterminates of the ring R;

if k + 1 ≤ n then

M ← monomials of degree l ;

foreach i ∈ {k + 2 . . n} do // A(≤ k, d) computation

M ← list of monomials of M not divisible by xi ;

end

if s = ” = ” then // A(k, d) computation

M ← list of monomials of M divisible by xk+1 ;

end

end

return M ;

end

Now, for our purpose, we give a reformulation of the numerical characterization of all

possible extremal Betti numbers of any graded strongly stable ideal of S [Cru16, Proposition

3.4, Theorem 3.7].

For every subset M ⊆ Mond(S), d ≥ 1, and for every monomial u ∈ M, we introduce

the following set of monomials:

M,u = {v ∈M : v ≥lex u};

if M = {u}, then M,u =M.

Moreover, if (k1, `1), . . . , (kr, `r), with n− 1 ≥ k1 > k2 > · · · > kr ≥ 1 and 1 ≤ `1 < `2 <

· · · < `r, are the corners of a graded ideal I, according to [Cru16], the following notions can

be introduced:

Corn(I) = {(k1, `1), . . . , (kr, `r)}, a(I) = (βk1,k1+`1(I), . . . , βkr,kr+`r (I)).

Corn(I) is called the corner sequence of I, and a(I) the corner values sequence of I.

The next definition, introduced in [Cru16], was motivated by the fact that, for every

graded ideal I of S, Corn(I) defines a corner sequence.

Definition 4.2.2 [Cru16, Definition 4.1] Let (k1, . . . , kr) and (`1, . . . , `r) be two sequences

of positive integers such that n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and 1 ≤ `1 < `2 < · · · < `r.

The set C = {(k1, `1), . . . , (kr, `r)} is called a corner sequence and `1, . . . , `r are called the

corner degrees of C.
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Definition 4.2.3 [Cru16, Definition 4.3] A totally ordered corner sequence C = {(k1, `1),

. . . , (kr, `r)} is a corner sequence such that (k1, `1) � (k2, `2) � · · · � (kr, `r) where

(ki, `i) � (kj , `j) if and only if ki ≥ kj and `i ≤ `j ;

we refer to (ki, `i) as the i-th element of the ordered corner sequence.

From now on, when we refer to a corner sequence C, we assume that C is totally ordered

with respect to �.

Example 4.2.4 Let S = K[x1, x2, x3, x4, x5, x6] and let

I = (x1x2, x1x3, x1x4, x1x5, x2x3x4, x2x3x5, x2x3x6, x2x4x5, x2x4x6, x3x4x5x6)

be a squarefree strongly stable ideal of S. The extremal Betti numbers of I are β3,6(I) =

2, β2,6(I) = 1, as the Betti table of I shows:

0 1 2 3

2 : 4 6 4 1

3 : 5 11 8 2

4 : 1 2 1 −

Hence, the corner sequence and the corner values sequence of I are

Corn(I) = {(3, 3), (2, 4)}, and a(I) = (2, 1).

Proposition 4.2.5 Let n ≥ 4 be an integer. Let (k1, `1), (k2, `2) be two pairs of positive

integers such that n − 1 ≥ k1 > k2 ≥ 2 and 2 = `1 < `2, and let a1, a2 be two positive

integers. If K is a field of characteristic 0, then the following conditions are equivalent:

(1) there exists a graded ideal J ( S, with extremal Betti numbers βk1,k1+`1(J) = a1 and

βk2,k2+`2(J) = a2;

(2) there exists a strongly stable ideal I ( S, with extremal Betti numbers βk1,k1+`1(I) = a1

and βk2,k2+`2(I) = a2;

(3) the integers ai satisfy the conditions:

1 ≤ ai ≤ |Ai \ LexShad`i−`i−1(Ai−1)|, for i = 1, 2, (4.2.4)

where A0 = ∅,

(i) A1 = {u ∈ A(k1, `1 = 2) : u ≥lex xk2xk1+1};

(ii) A2 = {u ∈ A(k2, `2) : u ≥lex x
`2
k2+1}.
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and if a1 = |[u, v]|, with u, v ∈ A1, then 1 ≤ a2 ≤ |A2 \ LexShad`1−2([u, v])|.

Proof. (1) ⇔ (2). [Cru16, Proposition 3.4].

(2) ⇒ (3). The inequalities in (4.2.4) satisfied by the integers a1, a2 are proved in [Cru16,

Proposition 3.4]. Note that A1 = [x1xk1+1, xk2xk1+1] and A2 = [x`2−1
1 xk2+1, x

`2
k2+1].

From Characterization 4.1.12, a1 is the number of all monomials z ∈ A(k1, `1) which deter-

mine the corner (k1, `1). Furthermore, by (4.1.13), such monomials form a segment [u, v] of

A(k1, `1) of length a1; u = x1xk1+1, and v is the a1-th monomial of A1 with respect to ≥lex.

On the other hand, the existence of the extremal Betti number βk2,k2+`2(I) = a2, ensures

that there exist a2 monomials of A2 not belonging to LexShad`2−2([u, v])|. Hence, 1 ≤ a2 ≤
|A2 \ LexShad`2−2([u, v])|.
(3) ⇒ (2). A natural construction of a FGBI I of S with Corn(I) = {(k1`1), (k2, `2)} and

a(I) = (a1, a2) proceeds as follows.

Let m(a1) be the a1-th monomial of A1, and let m(a2) be the a2-th monomial of A2 \
LexShad`2−2(A1,m(a1)). Note that A1,m(a1) = [x1xk1+1,m(a1)] and a1 = |A1,m(a1)|.

We construct a strongly stable ideal I of S in degrees `1 = 2 < `2, using the following

criterion:

- G(I)2 = {v ∈ A(≤ k1, 2) : x2
1 ≥lex v ≥lex m(a1)},

- G(I)`2 = {z ∈ A(≤ k2, `2) : m(a1)x`2−2
n >lex z ≥lex m(a2)}, where m(a1)x`2−2

n is the

smallest monomial belonging to Shad`2−2(G(I)2).

I is the FGBI we are looking for. 2

Theorem 4.2.6 Given two positive integers n, r such that 1 ≤ r ≤ n−1, let (k1, `1), (k2, `2),

. . . , (kr, `r) be r pairs of positive integers with n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and

2 ≤ `1 < `2 < · · · < `r, and let a1, a2, . . . , ar be r positive integers.

If K is a field of characteristic 0, then the following conditions are equivalent:

(1) there exists a graded ideal J ( S, with extremal Betti numbers βki,ki+`i(J) = ai, for

i = 1, . . . , r;

(2) there exists a strongly stable ideal I ( S, with extremal Betti numbers βki,ki+`i(I) = ai,

for i = 1, . . . , r;

(3) set t = max{i : `i ≤ r − i}. The integers ai satisfy the conditions:

1 ≤ ai ≤ |Ai \ LexShad`i−`i−1(Ai−1)|, for i = 1, . . . , r, (4.2.5)

where A0 = ∅,

(i) A1 = {u ∈ A(k1, `1) : u ≥lex xkr−1xk1+1}, whenever `1 = 2;
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(ii) Ai = {u ∈ A(ki, `i) : u ≥lex xkrxkr−1
· · ·xkr−`i+3

xkr−`i+2−1xki+1}, for i =

1, . . . , t, whenever `1 ≥ 3, and for i = 2, . . . , t, whenever `1 = 2;

(iii) Ai = {u ∈ A(ki, `i) : u ≥lex xkrxkr−1
· · ·xki+1

x
`i−(r−i)
ki+1 }, for i = t+ 1, . . . , r − 1;

(iv) Ar = {u ∈ A(kr, `r) : u ≥lex x
`r
kr+1},

and if ai = |[u, v]|, with u, v ∈ Ai, then 1 ≤ ai+1 ≤ |Ai+1 \ LexShad`i+1−`i([u, v])|, for

all i = 1, . . . r − 1,

with 2 < r ≤ n− 2 (it has to be n ≥ 5), kr ≥ 2, whenever `1 = 2, and 1 ≤ r ≤ n− 1, kr ≥ 1,

whenever `1 ≥ 3.

Proof. (1) ⇔ (2). [Cru16, Proposition 3.5], [CU03, Theorem 3.1].

(2)⇒ (3). The proof is quite similar to Proposition 4.2.5. The inequalities in (4.2.5) satisfied

by the integers ai (1 ≤ i ≤ r) are proved in [Cru16, Proposition 3.5] and [CU03, Theorem

3.1] (see also, [Cru16, Theorem 3.7]).

From Characterization 4.1.12, ai is the number of all monomials z ∈ A(ki, `i) which de-

termine the corner (ki, `i) (1 ≤ i ≤ r). Such monomials form a segment [u, v] of A(ki, `i)

of length ai, with u, v ∈ Ai. More precisely, u is the greatest monomial of Ai not be-

longing to Shad`i−`i−1(Mon(I`i−1) (i = 1, . . . , r), where Mon(I`i−1) is the set of the mono-

mials of degree `i−1 belonging to I`i−1
, whereas v is the ai-th monomial of the segment

[u,max(Ai)], with respect to ≥lex. On the other hand, the existence of the extremal Betti

number βki+1,ki+1+`i+1(I) = ai+1 implies that there exist ai+1 monomials of Ai+1 not be-

longing to LexShad`i+1−`i([u, v])|. Hence, 1 ≤ ai+1 ≤ |Ai+1 \ LexShad`i+1−`i([u, v])|.
(3) ⇒ (2). Let m(a1) be the a1-th monomial of A1. Setting

- Ã1 = A1, and

- Ã2 = A2 \ LexShad`2−`1(Ã1,m(a1)) = A2 \ LexShad`2−`1(A1,m(a1)),

let m(a2) be the a2-th monomial of Ã2. Note that Ã1,m(a1) = A1,m(a1) = [x`1−1
1 xk1+1,m(a1)].

For i ≥ 3, let us denote bym(ai) the ai-th monomial of Ãi =Ai\LexShad`i−`i−1(Ãi−1,m(ai−1)).

We construct a FGBI I of S in degrees 2 ≤ `1 < `2 < · · · < `r as follows:

- G(I)`1 = {v ∈ A(≤ k1, `1) : x`11 ≥lex v ≥lex m(a1)};

- G(I)`i = {z ∈ A(≤ ki, `i) : m(ai−1)x
`i−`i−1
n >lex z ≥lex m(ai)}, with m(ai−1)x

`i−`i−1
n

the smallest monomial belonging to Shad`i−`i−1(Mon(I`i−1
)), for i = 2, . . . , r, where

Mon(I`i−1) is the set of the monomials of degree `i−1 belonging to I`i−1 .

One has that Corn(I) = {(ki, `i)}i=1,...,r, and a(I) = (a1, . . . , ar). 2

As we have underlined, a numerical characterization (different in nature from Proposi-

tion 4.2.5 and Theorem 4.2.6) of the possible extremal Betti numbers of a graded ideal in
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a polynomial ring over a field of characteristic zero has been given by Herzog, Sharifan and

Varbaro in [HSV14]. In their paper, the authors have introduced the following notion.

Definition 4.2.7 [HSV14, Definition 3.6] Let i = (i1, . . . , ik) and j = (j1, . . . , jk) be such

that 0 < i1 < i2 < · · · < ik < n, j1 > j2 > · · · jk > 0. We say that a graded ideal I of S is

a (i, j)-lex ideal if I =
∑k
p=1 LpS, where Lp is a lexsegment ideal generated in degree jp in

K[x1, . . . , xip+1].

Such an ideal is related to the FGBI defined in Theorem 4.2.6 (see also Proposition 4.2.5),

as the following result shows.

Corollary 4.2.8 Given two positive integers n, r such that 1 ≤ r ≤ n−1, let (k1, `1), (k2, `2),

. . . , (kr, `r) be r pairs of positive integers with n − 1 ≥ k1 > k2 > · · · > kr ≥ 1 and

2 ≤ `1 < `2 < · · · < `r, and let a1, a2, . . . , ar be r positive integers.

Let I be a graded ideal of S, then the following conditions are equivalent:

(1) I is the FGBI with extremal Betti numbers βk1,k1+`1(I) = a1, . . ., βkr,k1+`r (I) = ar;

(2) I is the smallest (k, `)-lex ideal with extremal Betti numbers βk1,k1+`1(I) = a1, . . .,

βkr,k1+`r (I) = ar, for k = (kr, . . . , k1) and ` = (`1, . . . , `r).

Proof. (1) ⇒ (2). Let I be the FGBI with extremal Betti numbers βki,ki+`i(I) = ai

(i = 1, . . . , r) constructed by the criterion in Theorem 4.2.6. One can note that I equals the

(k, `)-lex ideal L1S + L2S + · · ·+ LrS defined as follows:

- G(L1) = G(I)`1 = L(x`11 ,m(a1)) ∩K[x1, . . . , xk1+1];

- G(Li) = G(I)`i ∪
(

Shad`i−`i−1(Mon(I`i−1
)) ∩K[x1, . . . , xki+1]

)

= L(x`i1 ,m(ai)) ∩K[x1, . . . , xki+1], for i = 2, . . . , r.

Its structure assures that Condition (2) is satisfied.

(2) ⇒ (1). Let I = L1S + L2S + · · · + LrS be the smallest (k, `)-lex ideal with extremal

Betti numbers βki,ki+`i(I) = ai (i = 1, . . . , r), for k = (kr, . . . , k1) and ` = (`1, . . . , `r). With

the same notations as in Theorem 4.2.6, since a piecewise lex ideal is strongly stable [Sha03,

Proposition 3.5], one has that minLi = m(ai) (i = 1, . . . , r). Hence, if one minimises the set

of generators of I, the assertion follows. 2

Algorithm 4.2 shows the pseudocode of the procedure returning the sets Ãi (1 ≤ i ≤ r)

which arise in the construction of the strongly stable ideal we are interested to.

To simplify the notation, in the Algorithms 4.2 and 4.3, we set LSi = LexShad`i−`i−1(Ai−1),

and denote by Ãi[ai] the ai-th monomial of Ãi with respect to ≥lex, for i = 1, . . . , r.
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Algorithm 4.2: Ãi Computation

Input: Ring R, Corner sequence {(ki, `i)}i=1,...,r, r–tuple (ai)i=1,...,r

Output: Sets of monomials Ãi

begin

n← number of indeterminates of the ring R;

t← max ({i : `i ≤ r − i} ∪ {0});
foreach i ∈ {1 . . r} do

Akili ← A(ki, `i) ; // calling Algorithm 4.1

if (i = 1) ∧ (`1 = 2) then

m← xkr−1xk1+1 ;

if r = 2 then // Proposition 4.2.5
m← m · xkr

end

end

if ((i ∈ 1..t) ∧ (`1 ≥ 3)) ∨ ((i ∈ 2..t) ∧ (`1 = 2)) then

m← xkr · · ·xkr−`i+3
xkr−`i+2−1xki+1;

end

if (i ∈ t+ 1..r − 1) then

m← xkr · · ·xki+1
x
`i−(r−i)
ki+1

;

end

if (i = r) then

m← x`rkr+1;

end

Ali ← {u ∈ Akili : u ≥ m} ; // Ai computation

if (i = 1) then

LSi ← ∅ ;

else

mi← Ãi−1[ai−1] · x`i−`i−1
n ;

LSi ← {u ∈ Akili : m ≤ u ≤ x`i1 };
end

Ãi ← Ali \ LSi ; // Ãi computation

end

return list of Ã;

end

Finally, Algorithm 4.3 presents the pseudocode of the procedure giving the required

FGBI (or, equivalently the (k, `)-lex ideal, k = (kr, . . . , k1), ` = (`1, . . . , `r)), solution of

Problem 4.2.1.
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Algorithm 4.3: FGBI Computation

Input: Ring R, Corner sequence {(ki, `i)}i=1,...,r, r–tuple (ai)i=1,...,r

Output: FGBI I

begin

n← number of indeterminates of the ring R;

Ã← list of Ãi ; // calling Algorithm 4.2

foreach i ∈ {1 . . r} do

Cond← Cond ∨ (ai < 1) ∨ (ai > |Ãi|) ;

end

I ← (0);

if Cond then

Alk1l1 ← A(≤ k1, `1) ; // calling Algorithm 4.1

G1 ← {u ∈ Alk1l1 : Ã1[a1] ≤ u ≤ x`11 } ; // G(I)`1 computation

foreach i ∈ {2 . . r} do

Alkili ← A(≤ ki, `i) ; // calling Algorithm 4.1

max← Ãi−1[ai−1] · x`i−`i−1
n ;

Gi ← {u ∈ Alkili : Ãi[ai] ≤ u < max} ; // G(I)`i computation

end

foreach i ∈ {1 . . r} do

Li ← {u ∈ Alkili : Ãi[ai] ≤ u} ; // Li computation

end

I ← ideal spanned by monomials in the lists Gi;

end

return I;

end

4.2.1 Admissible corner values sequences

In this Section, we provide a procedure to determine the admissible corner values sequences

of a strongly stable ideal with a given sequence of corners.

Let r be a positive integer, and let B = [b1, . . . , br] a list of positive integers. Setting

N = max{b1, . . . , br}, let us consider the subset of the set D′(N, r) of all ordered selections

with repetition of r items from a set of size N [Ros00], say

D′(B, r) = {(y1, . . . , yr) : yi ≤ bi, i = 1, . . . , r}.

We will call D′(B, r) the set of list ordered selections.

Algorithm 4.4 gives the pseudocode of the procedure returning the admissible corner

values sequences.
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Admissible Values for ai

(5, 3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 a1

(4, 4) 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 6 7 1 1 2 3 a2

(3, 5) 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 1 1 1 2 1 1 a3

(1, 7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a4

Table 4.1: List of admissible value for ai of I

Algorithm 4.4: Admissible Corner Values Sequences Computation

Input: Ring R, Corner sequence {(ki, `i)}i=1,...,r

Output: Table of admissible values

begin

Ub← list of upper bounds ; // from (4.1.5)

repeat

a← next list ordered selections D′(Ub, r) ;

I ← FGBI(Corners, a) ; // calling Algorithm 4.3

if I is not NULL then

AV ← a ; // update list of admissible values

else

Ub← max consistent value for a ; // dynamic optimization

end

until a1 > Ub1 // a1 is the 1-st component of a;

return AV ;

end

Next example illustrates how our procedures work.

Example 4.2.9 Let S = Q[x1, . . . , x7]. Consider the corner sequence

C = {(5, 3), (4, 4), (3, 5), (1, 7)}.

All the admissible choices for the sequence of positive integers a = (a1, a2, a3, a4) for which

there exists a strongly stable ideal I of S such that Corn(I) = C and a(I) = a are (Algo-

rithm 4.4):

Let us consider the case where a = (1, 2, 5, 1). Use of Algorithm 4.2 yields:
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A1 x2
1x6, x1x2x6

LS1 ∅
Ã1 x2

1x6, x1x2x6

A2
x3

1x5, x2
1x2x5, x2

1x3x5, x2
1x4x5, x2

1x
2
5, x1x

2
2x5, x1x2x3x5, x1x2x4x5,

x1x2x
2
5, x1x

2
3x5, x1x3x4x5, x1x3x

2
5

LS2 x3
1x5, x2

1x2x5, x2
1x3x5, x2

1x4x5, x2
1x

2
5

Ã2 x1x
2
2x5, x1x2x3x5, x1x2x4x5, x1x2x

2
5, x1x

2
3x5, x1x3x4x5, x1x3x

2
5

A3

x4
1x4, x3

1x2x4, x3
1x3x4, x3

1x
2
4, x2

1x
2
2x4, x2

1x2x3x4, x2
1x2x

2
4, x2

1x
2
3x4,

x2
1x3x

2
4, x2

1x
3
4, x1x

3
2x4, x1x

2
2x3x4, x1x

2
2x

2
4, x1x2x

2
3x4, x1x2x3x

2
4, x1x2x

3
4,

x1x
3
3x4, x1x

2
3x

2
4, x1x3x

3
4, x1x

4
4

LS3
x4

1x4, x3
1x2x4, x3

1x3x4, x3
1x

2
4, x2

1x
2
2x4, x2

1x2x3x4, x2
1x2x

2
4, x2

1x
2
3x4,

x2
1x3x

2
4, x2

1x
3
4, x1x

3
2x4, x1x

2
2x3x4, x1x

2
2x

2
4, x1x2x

2
3x4, x1x2x3x

2
4

Ã3 x1x2x
3
4, x1x

3
3x4, x1x

2
3x

2
4, x1x3x

3
4, x1x

4
4

A4 x6
1x2, x5

1x
2
2, x4

1x
3
2, x3

1x
4
2, x2

1x
5
2, x1x

6
2, x7

2

LS4 x6
1x2, x5

1x
2
2, x4

1x
3
2, x3

1x
4
2, x2

1x
5
2, x1x

6
2

Ã4 x7
2

and, by using Algorithm 4.3, the minimal system of monomial generators of the desired

FGBI is obtained:

x3
1, x2

1x2, x2
1x3, x2

1x4, x2
1x5, x2

1x6, x1x
3
2,

x1x
2
2x3, x1x

2
2x4, x1x

2
2x5, x1x2x

2
3, x1x2x3x4, x1x2x3x5, x1x2x

3
4,

x1x
4
3, x1x

3
3x4, x1x

2
3x

2
4, x1x3x

3
4, x1x

4
4, x7

2,

where the underlined monomials are the Borel generators. Furthermore, it is easy to compute

I = L1S + L2S + L3S + L4S as a piecewise lex ideal (according to Definition 3.3):

L1 x3
1, x2

1x2, x2
1x3, x2

1x4, x2
1x5, x2

1x6

L2

x4
1, x3

1x2, x3
1x3, x3

1x4, x3
1x5, x2

1x
2
2, x2

1x2x3, x2
1x2x4,

x2
1x2x5, x2

1x
2
3, x2

1x3x4, x2
1x3x5, x2

1x
2
4, x2

1x4x5, x2
1x

2
5, x1x

3
2,

x1x
2
2x3, x1x

2
2x4, x1x

2
2x5, x1x2x

2
3, x1x2x3x4, x1x2x3x5

L3

x5
1, x4

1x2, x4
1x3, x4

1x4, x3
1x

2
2, x3

1x2x3, x3
1x2x4, x3

1x
2
3,

x3
1x3x4, x3

1x
2
4, x2

1x
3
2, x2

1x
2
2x3, x2

1x
2
2x4, x2

1x2x
2
3, x2

1x2x3x4, x2
1x2x

2
4,

x2
1x

3
3, x2

1x
2
3x4, x2

1x3x
2
4, x2

1x
3
4, x1x

4
2, x1x

3
2x3, x1x

3
2x4, x1x

2
2x

2
3,

x1x
2
2x3x4, x1x

2
2x

2
4, x1x2x

3
3, x1x2x

2
3x4, x1x2x3x

2
4, x1x2x

3
4, x1x

4
3, x1x

3
3x4,

x1x
2
3x

2
4, x1x3x

3
4, x1x

4
4

L4 x7
1, x6

1x2, x5
1x

2
2, x4

1x
3
2, x3

1x
4
2, x2

1x
5
2, x1x

6
2, x7

2

Finally, as a check of our procedures, we report the Betti table of the FGBI above defined,

computed by native functions of CoCoA:
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0 1 2 3 4 5

3 : 6 15 20 15 6 1

4 : 7 19 20 10 2 −
5 : 6 17 16 5 − −
6 : − − − − − −
7 : 1 1 − − − −

Remark 4.2.10 It is worth of being recalled that if I is a strongly stable ideal with given

extremal Betti numbers, then there does not always exist a unique finitely generated Borel

ideal with the same extremal Betti numbers (positions and values).

Example 4.2.11 Let S = K[x1, . . . , x6]. Consider the strongly stable ideal I = (x2
1, x1x2,

x1x3, x1x4, x1x5, x1x6, x
3
2, x

2
2x3, x2x

3
3, x2x

2
3x4, x2x

2
3x5, x

5
3). The extremal Betti numbers

of I are

β5,5+2(I) = β4,4+4(I) = β2,2+5(I) = 1, (4.2.6)

as the Betti table of I shows:

0 1 2 3 4 5

2 : 6 15 20 15 6 1

3 : 2 3 1 − − −
4 : 3 9 10 5 1 −
5 : 1 2 1 − − −

Note that I is not the finitely generated Borel ideal with the extremal Betti numbers de-

scribed in (4.2.6). Indeed, the finitely generated Borel ideal J such that Corn(J) = Corn(I)

and a(J) = a(I) is (Theorem 4.2.6):

J = (x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x

4
2, x

3
2x3, x

3
2x4, x

3
2x5, x

2
2x

3
3),

with the following Betti table

0 1 2 3 4 5

2 : 6 15 20 15 6 1

3 : − − − − − −
4 : 4 10 10 5 1 −
5 : 1 2 1 − − −

4.2.2 CoCoa package

Algorithms described in this section are part of a CoCoA package “ExtrBettiNumbers.cpkg5”,

and tested with CoCoA System 5.1.4. We are confident that this package may reveal useful

for further applications. The source code of the package can be requested directly to the

authors. The package contains two public functions:
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� “StronglyStableIdealEB(R, Corners, a, print)”,

� “AdmissibleValues(R, Corners)”.

The function “StronglyStableIdealEB(R, Corners, a, print)” requires as input parameters

a polynomial ring (R), a corner sequence (Corners), a corner values sequence (a), and a

boolean value to control the printing. The ring (R) may be defined by the user, and the

functions redefine the ring, forcing Q as base field, and the lex ordering as monomial ordering.

The sets Ai, Ãi, computed in Example 4.2.9, are not displayed, and only the minimal set

of monomial generators of the FGBI are printed. The function returns a FGBI, and so it

may be used for further computations. All results are written and returned in the variables

chosen by users.

The function “AdmissibleValues(R, Corners)” requires as input parameters a polynomial ring

(R), and a corner sequence (Corners). Let C = {(ki, `i)}i=1,...,r be a corner sequence. The

function computes the setD′(Ub, r), where Ub is the list whose i-th component is the binomial

coefficient
(
ki+`i−1
`i−1

)
, and r = |C|. Ub is the so called list of upper bounds. The structure of

the FGBI we are looking for allows us to dynamically update the list Ub by checking the

existence of the ideal by the function FGBI(Corners, a). Hence, setting a = (a1, . . . , ar), it

is possible to reach an optimal list of upper bounds for each ai. As a result, the procedure

returns a table whose columns are the admissible r-tuple a = (a1, . . . , ar).

As far as Example 4.2.9 is concerned, within CoCoA (with the “ExtrBettiNumbers.cpkg5”

package installed), the following statements provide the table of all admissible values:

use R::=QQ[x[1..7]];

Corners:=[[5,3],[4,4],[3,5],[1,7]];

av:=AdmissibleValues(R,Corners);

av;

furthermore, the following statements

use R::=QQ[x[1..7]];

Corners:=[[5,3],[4,4],[3,5],[1,7]];

a:=[1,2,5,1];

I:=StronglyStableIdealEB(R,Corners,a,1);

I;

IsStronglyStable(I);

PrintRes(I);

PrintBettiDiagram(I);

allow to compute the FGBI I with Corn(I) = {(5, 3), (4, 4), (3, 5), (1, 7)} and a(I) = a =

(1, 2, 5, 1).
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4.3 Squarefree strongly stable ideals

In this Section, we examine the possible extremal Betti numbers of squarefree strongly stable

ideals in S = K[x1, . . . , xn]. More precisely, we identify the admissible corner sequence of a

squarefree strongly stable ideal in S.

From now on, we assume Mon`
s(S) to be endowed with the squarefree lex order >slex

induced by x1 > x2 > · · · > xn .

At first, we analyze the simple cases occurring when n = 2, 3.

Case 1. Let n = 2 and S = K[x1, x2]. A squarefree strongly stable ideal I of S can have

at most one corner. More precisely, Corn(I) = {(1, 1)} with a(I) = (1), i.e., I = (x1, x2).

Case 2. Let n = 3 and S = K[x1, x2, x3]. Also in such a case, a squarefree strongly

stable ideal I of S can have at most one corner (k, `), k+ ` ≤ 3. Indeed, the only situations

that may occur are listed in Table 4.2.

Corner sequence Corner values Squarefree strongly stable ideal

Corn(I) = {(2, 1)} a(I) = (1) I = (x1, x2, x3)

Corn(I) = {(1, 1)} a(I) = (1) I = (x1, x2)

Corn(I) = {(1, 2)} a(I) = (1) I = (x1x2, x1x3)

Corn(I) = {(1, 2)} a(I) = (2) I = (x1x2, x1x3, x2x3)

Table 4.2: Squarefree corner sequences for n = 3.

Such easy cases allow us to yield the next result.

Proposition 4.3.1 Let S = K[x1, . . . , xn], n ≥ 2. If I is a squarefree strongly stable ideal

of S with (k, 1) ∈ Corn(I), then |Corn(I)| = 1. More precisely, I = (x1, x2, . . . , xk+1).

Proof. First of all one can observe that G(I)1 = {x1, . . . , xk+1}. If G(I)≥2 6= ∅, then there

exists a monomial u ∈ G(I) of degree ` ≥ 2 such that max(u) ≥ k + 2. A contradiction,

since (k, 1) is a corner of I. 2

Now, let us consider the case n = 4.

Case 3. Let n = 4 and S = K[x1, x2, x3, x4]. Assume I to be a squarefree strongly

stable ideal S of initial degree ≥ 2 (Proposition 4.3.1). Since a pair (k, `) ∈ Corn(I) must

satisfy the inequality k+ ` ≤ 4, the situations that can occur in such a case are described in

Table 4.3.
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Corner sequence Corner values Squarefree strongly stable ideal

Corn(I) = {(2, 2), (1, 3)} a(I) =(1,1) I = (x1x2, x1x3, x1x4, x2x3x4)

Corn(I) = {(1, 2)} a(I) = (1) I = (x1x2, x1x3)

Corn(I) = {(1, 2)} a(I) = (2) I = (x1x2, x1x3, x2x3)

Corn(I) = {(2, 2)} a(I) = (1) I = (x1x2, x1x3, x1x4)

Corn(I) = {(2, 2)} a(I) = (2) I = (x1x2, x1x3, x1x4, x2x3, x2x4)

Corn(I) = {(2, 2)} a(I) = (3) I = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4)

Corn(I) = {(1, 3)} a(I) = (1) I = (x1x2x3, x1x2x4)

Corn(I) = {(1, 3)} a(I) = (2) I = (x1x2x3, x1x2x4, x1x3x4)

Corn(I) = {(1, 3)} a(I) = (3) I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4)

Table 4.3: Squarefree corner sequences for n = 4.

Remark 4.3.2 All the squarefree strongly stable ideals described in Tables 4.2 and 4.3 are

the smallest strongly stable ideals with the given data.

Let T be a subset of Monsd(S), d < n. The set of squarefree monomials of degree d+ 1 of S

Shad(T ) = {xiu : u ∈ T , i /∈ supp(u), i = 1, . . . , n}

is called the squarefree shadow of T . Moreover, we define the i-th squarefree shadow recur-

sively by Shadi(T ) = Shad(Shadi−1(T )), i ≥ 1, with Shad0(T ) = T .

Next notion will be crucial for the further developments in this chapter.

Definition 4.3.3 Let u = xi1 · · ·xiq be a squarefree monomial of S of degree q < n. We

say that u has a j -gap if ij+1− ij > 1 for some 1 ≤ j < q. The positive integer ij+1− ij − 1

will be called the width of the j -gap.

The j -gap of a squarefree monomial u = xi1 · · ·xiq ∈ S will be denoted by j -gap(u),

whereas its width will be denoted by wd(j -gap(u)). Moreover, we define

Gap(u) := {j ∈ [q] : there exists a j -gap(u)}.

Definition 4.3.4 A squarefree monomial u = xi1 · · ·xiq of S will be said gap–free if Gap(u) =

∅.

Example 4.3.5 Let S = K[x1, . . . , x11]. The monomial u = x1x3x4x6x10 ∈ S has three

gaps. Indeed, Gap(u) = {1, 3, 4}, 1 -gap(u), 3 -gap(u) have both width equal to 1 and

4 -gap(u) has width equal to 3; on the contrary, the monomial v = x2x3x4x5x6 ∈ S is

gap–free.
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Lemma 4.3.6 Let u = xi1 · · ·xiq be a squarefree monomial of degree q < n−1 of S. Assume

u has a gap whose width is ≥ 2, or u has at least two gaps.

Then there exist at least two squarefree monomials v, w ∈ S of degree q+1 with v >slex w,

max(v) = max(w) = n and such that

(i) v is a multiple of u;

(ii) w is not a multiple of u.

Proof. If max(u) < n, we can choose v = uxn = xi1 · · ·xiqxn. Setting t = max Gap(v), the

greatest squarefree monomial following v in the squarefree lex order is

ṽ = xi1 · · ·xit−1
xit+1 · · ·xit+q−t+2.

If it + q − t + 2 = n, we choose w = ṽ, otherwise, if it + q − t + 2 < n, we choose w =

xi1 · · ·xit−1
xit+1 · · ·xit+q−t+1xn. Finally, v >slex w, u | v and u - w. Note that t ≤ q.

Now, assume max(u) = n. If t = max Gap(u), let

v = xi1 · · ·xitxit+1−1xit+1 · · ·xiq−1xiq = xi1 · · ·xitxit+1−1xit+1 · · ·xiq−1xn.

Furthermore, if p = max Gap(v), then the greatest squarefree monomial following v in the

squarefree lex order is

ṽ = xi1 · · ·xip−1
xip+1 · · ·xip+q−p+2.

Hence, if ip + q − p+ 2 = n, we choose w = ṽ, otherwise, if ip + q − p+ 2 < n, we choose w

= xi1 · · ·xip−1
xip+1 · · ·xip+q−p+1xn.

Note that the assumption on the gaps of the squarefree monomial u assures us that we

can construct both the monomials v and w. 2

Now, we recall some notations from [CF16] that will be useful in the sequel.

Let I be a squarefree stable ideal of S. If I is generated in one degree `, then I has a

unique extremal Betti number βm−`,m(I), where m = max{max(u) : u ∈ G(I)}.
Assume I to be generated in degrees 1 ≤ `1 < `2 < · · · < `r ≤ n, and denote by [r] the

set {1, . . . , r}.
Setting

m`j = max{max(u) : u ∈ G(I)`j}, for j = 1, . . . , r,

let us consider the following sequence of nonnegative integers associated to I:

ds(I) = (m`1 − `1,m`2 − `2, . . . ,m`r − `r). (4.3.1)

Such a sequence is called the degree-sequence of I.

One can observe that, if

m`1 − `1 > m`2 − `2 > · · · > m`r − `r, (4.3.2)
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then, from Characterization 4.1.12, βm`i−`i,m`i (I) is an extremal Betti number of I, for

i = 1, . . . , r. If (4.3.2) does not hold, one can construct a suitable subsequence of the degree-

sequence ds(I), say

d̂s(I) = (m`i1
− `i1 ,m`i2

− `i2 , . . . ,m`iq
− `iq ), (4.3.3)

with `1 ≤ `i1 < `i2 < · · · < `iq = `r, and such that, for j = 1, . . . , q, βm`ij−`ij ,m`ij
(I) is an

extremal Betti number of I.

The integer q ≤ r, denoted by dl(I) , and called the degree-length of I, gives the number of

the extremal Betti numbers of the squarefree stable ideal I.

For more details on this subject see [CF16].

Next results easily follow.

Proposition 4.3.7 Let I be a squarefree strongly stable ideal of S = K[x1, . . . , xn], n ≥ 4,

with initial degree 2 and with a corner in degree 2. Then

(1) I has at most n− 2 corners for n = 4;

(2) I has at most n− 3 corners for n ≥ 5.

Proof. (1). It follows from Case 3.

(2). Let n ≥ 5. An admissible degree–sequence of I is the following one

ds(I) = (n− 2, n− 3, · · · , n− (n− 2) = 2).

Indeed, setting w1 = x1xn, since 1 -gap(w1) has width n− 2, then Lemma 4.3.6 assures that

there exist at least n − 4 squarefree monomials w2, . . . , wn−3 in S of degrees 3, . . . , n − 2,

respectively, with max(wi) = n, and n − 4 squarefree monomials v2, . . . , vn−3 of degrees

3, . . . , n− 2, respectively, with max(vi) = n and such that vi >slex wi, wi−1 | vi, vi - wi, for

i = 2, . . . , n − 3. Using the same techniques as in Lemma 4.3.6, one can easily verify that

wi - wi+1 (i = 1, . . . , n− 4).

The monomials wi (i = 1, . . . , n− 3) will be called basic monomials.

w1 v2

w2 v3

w3 v4

w4 v5

w5 v6

w6 v7

. . .

Next tables list the basic monomials for n = 5, . . . , 9. For n ≥ 10, the construction of such

elements proceeds smoothly.
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vi wi

x1x5

x1x4x5 x2x3x5

(a) n = 5

vi wi

x1x6

x1x5x6 x2x3x6

x2x3x5x6 x2x4x5x6

(b) n = 6

vi wi

x1x7

x1x6x7 x2x3x7

x2x3x6x7 x2x4x5x7

x2x4x5x6x7 x3x4x5x6x7

(c) n = 7

vi wi

x1x8

x1x7x8 x2x3x8

x2x3x7x8 x2x4x5x8

x2x4x5x7x8 x2x4x6x7x8

x2x4x5x6x7x8 x3x4x5x6x7x8

(d) n = 8

vi wi

x1x9

x1x8x9 x2x3x9

x2x3x8x9 x2x4x5x9

x2x4x5x8x9 x2x4x6x7x9

x2x4x6x7x8x9 x2x5x6x7x8x9

x2x4x5x6x7x8x9 x3x4x5x6x7x8x9

(e) n = 9

Table 4.4: Tables of fundamental squarefree monomials for initial degree 2

Note that the construction of the basic elements ends up as soon as one gets a gap–free

monomial. 2

Example 4.3.8 Let S = K[x1, x2, x3, x4, x5, x6, x7, x8], and let

I = (x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8, x2x3x4, x2x3x5, x2x3x6, x2x3x7, x2x3x8,

x2x4x5x6, x2x4x5x7, x2x4x5x8, x2x4x6x7x8, x3x4x5x6x7x8)

be a squarefree strongly stable ideal of S. The degree-sequence of I is

ds(I) = (m2 − 2,m3 − 3,m4 − 4,m5 − 5,m6 − 6) = (6, 5, 4, 3, 2).

I has initial degree 2 and dl(I) = 5. The extremal Betti numbers of I are β8−2,8(I) =

β8−3,8(I) = β8−4,8(I) = β8−5,8(I) = β8−6,8(I) = 1, as the Betti table of I shows:

0 1 2 3 4 5 6

2 : 7 21 35 35 21 7 1

3 : 5 15 20 15 6 1 −
4 : 3 9 10 5 1 − −
5 : 1 3 3 1 − − −
6 : 1 2 1 − − − −
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Proposition 4.3.9 Let n ≥ 5 and let I be a squarefree strongly stable ideal of S = K[x1, . . . ,

xn] with initial degree ` ≥ 3 and with a corner in degree `. Then I has at most n− ` corners.

Proof. Using the same reasoning as in Proposition 4.3.7, an admissible degree–sequence of I

is the following one:

ds(I) = (n− `, n− (`+ 1), · · · , n− (n− 1) = 1),

with dl(I) = n− `.
Next tables show the basic monomials for n = 5, . . . , 8 and ` = 3. For n ≥ 8 (` = 3), the

construction of such elements proceeds smoothly.

vi wi

x1x2x5

x1x2x4x5 x1x3x4x5

(a) n = 5

vi wi

x1x2x6

x1x2x5x6 x1x3x4x6

x1x3x4x5x6 x2x3x4x5x6

(b) n = 6

vi wi

x1x2x7

x1x2x6x7 x1x3x4x7

x1x3x4x6x7 x1x3x5x6x7

x1x3x4x5x6x7 x2x3x4x5x6x7

(c) n = 7

vi wi

x1x2x8

x1x2x7x8 x1x3x4x8

x1x3x4x7x8 x1x3x5x6x8

x1x3x5x6x7x8 x1x4x5x6x7x8

x1x3x4x5x6x7x8 x2x3x4x5x6x7x8

(d) n = 8

Table 4.5: Tables of fundamental squarefree monomials for initial degree 3

Also in this case, the construction of the basic elements ends up as soon as one gets a

gap–free monomial. 2

Example 4.3.10 Let S = K[x1, x2, x3, x4, x5, x6, x7, x8] and let

I = (x1x2x3, x1x2x4, x1x2x5, x1x2x6, x1x2x7, x1x2x8, x1x3x4x5, x1x3x4x6, x1x3x4x7,

x1x3x4x8, x1x3x5x6x7, x1x3x5x6x8, x1x4x5x6x7x8, x2x3x4x5x6x7x8)

be a squarefree strongly stable ideal of S initial degree 3. The degree-sequence of I is

ds(I) = (m2 − 3,m3 − 4,m4 − 5,m5 − 6,m6 − 7) = (5, 4, 3, 2, 1).

The extremal Betti numbers of I are β8−3,8(I) = β8−4,8(I) = β8−5,8(I) = β8−6,8(I) =

β8−7,8(I) = 1, as the Betti table of I shows
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0 1 2 3 4 5

3 : 6 15 20 15 6 1

4 : 4 10 10 5 1 −
5 : 2 5 4 1 − −
6 : 1 2 1 − − −
7 : 1 1 − − − −

Betti Table of I

The next example considers a squarefree monomial ideal I of S without a corner in its

initial degree, and shows the construction of a squarefree monomial ideal J of S with a corner

in its initial degree and with the same extremal Betti numbers (positions and values) of I.

Example 4.3.11 Consider the following monomial ideal I of S = K[x1, . . . , x5]:

I = (x1x2, x1x3x4, x1x3x5, x2x3x4x5).

I is squarefree strongly stable of initial degree 2 and with Corn(I) = {(2, 3), (1, 4)}. From

the Betti table of I, one can note that there is no corner in its initial degree:

0 1 2

2 : 1 − −
3 : 2 3 1

4 : 1 1 −

Betti Table of I

Furthermore, we can construct a squarefree strongly stable ideal J in S with initial degree

3 and Corn(J) = {(2, 3), (1, 4)}. It is

J = (x1x2x3, x1x2x4, x1x2x5, x1x3x4x5).

Note that J is the smallest squarefree strongly stable ideal of S with corner sequence

{(2, 3), (1, 4)}:

0 1 2

3 : 3 3 1

4 : 1 1 −

Betti Table of J
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Remark 4.3.12 It is worthy to point out that a squarefree strongly stable ideal I of S =

K[x1, . . . , xn] (n ≥ 5) of initial degree ` ≥ 2 with a corner in degree ` and such that

ds(I) = (n− 2, n− 3, . . . , 2), for ` = 2,

ds(I) = (n− `, n− `− 1, . . . , 1), for ` ≥ 3

is a squarefree lex ideal of S.

Hence, one can observe that a squarefree lex ideal of the polynomial ring S of initial

degree ` ≥ 2 and with a corner in degree ` can have at most n − ` corners unlike the non–

squarefree case. Indeed, a non–squarefree lex ideal I of a polynomial ring can have at most

2 corners [CU00].

For u, v ∈ Monsd(S), u ≥slex v, let us define the following set of squarefree monomials:

L(u, v) = {z ∈ Monsd(S) : u ≥slex z ≥slex v}.

Theorem 4.3.13 Let n ≥ 5 and `1 ≥ 3 two integers. Given n− `1 pairs of positive integers

(k1, `1), (k2, `2), . . . , (kn−`1 , `n−`1), (4.3.4)

with 1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n − 3 and 3 ≤ `1 < `2 < · · · < `n−`1 ≤ n − 1, then

there exists a squarefree lex ideal I of S of initial degree `1 and with the pairs in (4.3.4) as

corners if and only if ki + `i = n, for i = 1, . . . , n− `1.

Proof. Set S = K[x1, . . . , xn]. If there exists a squarefree lex ideal I of K[x1, . . . , xn] of

initial degree `1 and with the pairs in (4.3.4) as corners, then Proposition 4.3.9 forces that

ki + `i = n, for i = 1, . . . , n− `1.

Conversely, assume there exist n− `1 pairs of positive integers

(k1, `1), (k2, `2), . . . , (kn−`1 , `n−`1), (4.3.5)

with 1 ≤ kn−`1 < kn−`1−1 < · · · < k1 ≤ n − 3, 3 ≤ `1 < `2 < · · · < `n−`1 ≤ n − 1 and

ki + `i = n, for i = 1, . . . , n− `1.

We prove that there exists a squarefree lex ideal I of S generated in degrees `1, `2, . . . , `n−`1
with Corn(I) = {(k1, `1), . . . , (kn−`1 , `n−`1)}.

Setting s = max{i : `1 +2i−3 ≤ n−2}, the required monomial ideal I can be constructed

as follows.

Step 1. For i = 1, . . . , s, let

- G(I)`1 = L (u1, v1), with u1 = x1x2 · · ·x`1 and v1 = x1x2 · · ·x`1−1xn;
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- G(I)`i = G(I)`1+i−1 = L (ui, vi), with

ui = x1x2 · · ·x`1−2

i−2∏

j=0

x`1+2jx`1+2(i−2)+1x`1+2(i−2)+2

= x1x2 · · ·x`1−2

i−2∏

j=0

x`1+2jx`1+2i−3x`1+2i−2

and

vi = x1 · · ·x`1−2

i−2∏

j=0

x`1+2jx`1+2(i−2)+1xn = x1 · · ·x`1−2

i−2∏

j=0

x`1+2jx`1+2i−3xn.

Step 2. Let us consider the squarefree monomial

vs = x1x2 · · ·x`1−2

s−2∏

j=0

x`1+2jx`1+2s−3xn.

Since, `1 + 2s− 3 ≤ n− 2, the smallest monomial belonging to the Shad(G(I)`s) is

ws+1 = x1x2 · · ·x`1−2

s−2∏

j=0

x`1+2jx`1+2s−3xn−1xn.

We distinguish two cases: `1 + 2s− 3 = n− 2, and `1 + 2s− 3 < n− 2.

Claim 1. If `1 + 2s− 3 < n− 2, then `1 + 2s− 3 = n− 3.

Indeed, by the meaning of s, `1 + 2(s+ 1)− 3 ≥ n− 1. Hence, `1 + 2s− 3 ≥ n− 3 and

n− 3 ≤ `1 + 2s− 3 < n− 2

and consequently `1 + 2s− 3 = n− 3. The claim follows.

Let us consider `1 + 2s− 3 = `1 + 2(s− 2) + 1 = n− 2. In such a case,

ws+1 = x1 · · ·x`1−2

s−2∏

j=0

x`1+2jx`1+2(s−2)+1xn−1xn = x1 · · ·x`1−2

s−3∏

j=0

x`1+2jxn−3xn−2xn−1xn.

Hence, the greatest squarefree monomial of S following ws+1 is

us+1 = x1x2 · · ·x`1−2

s−4∏

j=0

x`1+2jx`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+5.

Note that max(us+1) = `1 + 2(s− 3) + 5 = `1 + 2s− 3 + 2 = n− 2 + 2 = n, whereupon we

choose

G(I)`s+1
= {us+1}.
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The smallest squarefree monomial belonging to Shad(G(I)`s+1
) is

ws+2 = x1x2 · · ·x`1−2

s−4∏

j=0

x`1+2jx`1+2(s−3)x`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+5

= x1x2 · · ·x`1−2

s−4∏

j=0

x`1+2jxn−5xn−4xn−3xn−2xn−1xn.

Therefore, the greatest squarefree monomial of S following ws+2 is

us+2 = x1x2 · · ·x`1−2

s−5∏

j=0

x`1+2jx`1+2(s−4)+1x`1+2(s−4)+2 · · ·x`1+2(s−4)+7.

Note that max(us+2) = `1 + 2(s− 4) + 7 = `1 + 2s− 3 + 2 = n− 2 + 2 = n. Thus, we choose

G(I)`s+2
= {us+2},

and so on. In general,

G(I)`s+q = {us+q},

with

us+q = x1x2 · · ·x`1−2

s−2−(q+1)∏

j=0

x`1+2jx`1+2(s−2−q)+1x`1+2(s−2−q)+2 · · ·x`1+2(s−2−q)+2q+3,

for q = 1, . . . , t, where t is the positive integer such that s − 2 − (t + 1) = 0. It is easy to

verify that max(us+q) = n.

Claim 2. s+ t = n− `1 − 2.

Since, max(us+t) = n, and t+ 1 = s− 2 (t = s− 3), then

n = `1 + 2(s− 2− t) + 2t+ 3 = `1 + 2(t+ 1− t) + 2t+ 3 = `1 + 2t+ 5.

Hence,

n− `1 − 2 = `1 + 2t+ 5− `1 − 2 = 2t+ 3 = 2s− 3 = s+ t.

The claim follows.

Finally, we choose

G(I)`n−`1−1
= G(I)s+t+1 = {us+t+1} = {x1x2 · · ·x`1−2x`1+1 · · ·xn},

G(I)`n−`1 = G(I)s+t+2 = {us+t+2} = {x1x2 · · ·x`1−3x`1−1x`1 · · ·xn}.

Now, let us consider the case `1 + 2s− 3 = n− 3. In such a case, the smallest monomial

belonging to Shad(G(I)`s) is

ws+1 = x1x2 · · ·x`1−2

s−2∏

j=0

x`1+2jx`1+2(s−2)+1xn−1xn = x1x2 · · ·x`1−2

s−2∏

j=0

x`1+2jxn−3xn−1xn.
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Therefore, the greatest squarefree monomial of S following ws+1 is

us+1 = x1x2 · · ·x`1−2

s−2∏

j=0

x`1+2jxn−2xn−1xn.

Since max(us+1) = n, we choose

G(I)`s+1
= {us+1}.

By hypothesis, `1 + 2(s − 2) = n − 4, then the smallest squarefree monomial belonging to

Shad(G(I)`s+1
) is

ws+2 = x1 · · ·x`1−2

s−2∏

j=0

x`1+2jxn−3xn−2xn−1xn = x1 · · ·x`1−2

s−3∏

j=0

x`1+2jxn−4xn−3xn−2xn−1xn

and, consequently, the greatest squarefree monomial of S following ws+2 is

us+2 = x1x2 · · ·x`1−2

s−4∏

j=0

x`1+2jx`1+2(s−3)+1x`1+2(s−3)+2 · · ·x`1+2(s−3)+6.

Note that max(us+2) = `1 + 2(s− 3) + 6 = `1 + 2s = n, whence we choose

G(I)`s+2 = {us+2}.

In general,

G(I)`s+q = {us+q},

with

us+q = x1x2 · · ·x`1−2

s−2−q∏

j=0

x`1+2jx`1+2(s−2−(q−1))+1 · · ·x`1+2(s−2−(q−1))+2q+2,

for q = 1, . . . , t, where t is the positive integer such that s− 2− t = 0 (t = s− 2). It is easy

to verify that max(us+q) = n.

Also in such a case we can verify that s+ t = n− `1 − 2. Indeed, since max(us+t) = n,

and t = s− 2, then

n = `1 + 2(s− 2− (t− 1)) + 2t+ 2 = `1 + 2t+ 4,

and

n− `1 − 2 = `1 + 2t+ 4− `1 − 2 = 2t+ 2 = 2(s− 2) + 2 = s+ t.

Finally, as in the previous case, we can choose

G(I)`n−`1−1
= G(I)s+t+1 = {x1x2 · · ·x`1−2x`1+1 · · ·xn},
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and

G(I)`n−`1 = G(I)s+t+2 = {x1x2 · · ·x`1−3x`1−1x`1 · · ·xn}.

It is worthy observing that I is the smallest squarefree lex ideal of S with Corn(I) =

{(k1, `1), (k2, `2), . . . , (kr, `r)} and such that βki, ki+`i(I) = 1, for all i, i.e., a(I) = (1, . . . , 1).

2

4.3.1 A numerical characterization

In this Subection, we face the following problem.

Problem 4.3.14 Given three positive integers n ≥ 4, `1 ≥ 2 and 1 ≤ r ≤ n − `1, r pairs

of positive integers (k1, `1), . . ., (kr, `r) such that n − 3 ≥ k1 > k2 > · · · > kr ≥ 2 and

2 ≤ `1 < `2 < · · · < `r, ki + `i ≤ n (i = 1, . . . , r), and r positive integers a1, . . . , ar, under

which conditions does there exist a squarefree monomial ideal I of S = K[x1, . . . , xn] such

that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are its extremal Betti numbers?

For a pair of positive integers (k, `) such that k + ` ≤ n, we define the following set:

As(k, `) = {u ∈ Mons`(S) : max(u) = k + `}.

Setting As(k, `) = {u1, . . . , uq}, we can suppose, possibly after a permutation of the

indices, that

u1 >slex u2 >slex · · · >slex uq. (4.3.6)

For the i-th monomial u of degree ` with max(u) = k+ `, we mean the monomial of As(k, `)

that appears in the i-th position of (4.3.6), for 1 ≤ i ≤ q. Note that u1 = x1x2 · · ·x`−1xk+`,

uq = xk+1 · · ·xk+`, and q = |As(k, `)| =
(
k+`−1
`−1

)
.

Furthermore, if ui, uj , i < j, are two monomials in (4.3.6), we define the following subsets

of As(k, `):

[ui, uj ] = {w ∈ As(k, `) : ui ≥slex w ≥slex uj},

[ui, uj) = {w ∈ As(k, `) : ui ≥slex w >slex uj};

[ui, uj ] will be called the segment of As(k, `) of initial element ui and final element uj ,

whereas [ui, uj) will be called the left segment of As(k, `) of initial element ui and final

element uj . If i = j, we set [ui, uj ] = {ui}.

Remark 4.3.15 From (4.1.1), if (k, `) is a corner of a squarefree stable ideal I and βk,k+`(I) =

a, then there exists a segment [v1, va] of As(k, `) such that a = |[v1, va]|.

Next lemma will be crucial in the sequel.
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Lemma 4.3.16 Let n and q ≥ 1 be two positive integers such that n ≥ q. Then

(
n

q

)
=

(
n− 1

q − 1

)
+

(
n− 2

q − 1

)
+ · · ·+

(
q − 1

q − 1

)
.

Proof. Let Monsq(S) be the set of all squarefree monomials of degree q of S = K[x1, . . . , xn].

It is well–known that (
n

q

)
= |Monsq(S)|.

Setting,

bi = |{u ∈ Monsq(S) : min(u) = i}|,

one has (
n

q

)
=

n−q+1∑

i=1

bi.

On the other hand,

bi =

(
n− i
q − 1

)
, i = 1, . . . , n− q + 1.

The assertion follows. 2

Given a monomial u ∈ As(k, `), the next proposition shows a method, involving Lemma 4.3.16,

to count the number of monomials v ∈ As(k, `) such that v ≥slex u.

Theorem 4.3.17 Let (k, `) be a pair of positive integers, ` ≥ 2, and let u = xi1xi2 · · ·xi`−1
xi`

be a monomial of As(k, `). Setting ũ = xi1xi2 · · ·xi`−1
, then |[x1x2 · · ·x`−1xk+`, u]| is a sum

of t suitable binomial coefficients, where

t =





i1, if Gap(ũ) = ∅,

i1 +
∑p
s=1 wd(gs -gap(ũ)), if Gap(ũ) = {g1, . . . , gp} 6= ∅.

Proof. Set m = |[x1x2 · · ·x`−1xk+`, u]|. m is the number of all monomials w ∈ As(k, `)

such that w ≥slex u. By Lemma 4.3.16, the binomial coefficient
(
k+`−1
`−1

)
= |As(k, `)| can be

decomposed as a sum of k + 1 binomial coefficients, as follows:

(
k + `− 1

`− 1

)
=

k+1∑

j=1

(
k + `− 1− j

`− 2

)
=

(
k + `− 2

`− 2

)
+

(
k + `− 3

`− 2

)
+ · · ·+

(
`− 2

`− 2

)
. (4.3.7)

One can observe that
(
k+`−2
`−2

)
counts the monomials w ∈ As(k, `) such that min(w) = 1,

the binomial coefficient
(
k+`−3
`−2

)
counts the monomials w ∈ As(k, `) such that min(w) = 2.

In general, the binomial coefficient
(
k+`−i
`−2

)
counts the monomials w ∈ As(k, `) such that

min(w) = i − 1, for i = 4, . . . , k + 2. Note that
(
`−2
`−2

)
=
(
k+`−(k+2)

`−2

)
counts the monomials

w ∈ As(k, `) with min(w) = k + 1. Indeed, there exists only a monomial w of such a type.

It is w = xk+1xk+2 · · ·xk+` = minAs(k, `). It is clear that all monomials w ∈ As(k, `)
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with min(w) < i1 = min(ũ) = min(u) are greater than u. Hence, the first i1 − 1 binomial

coefficients in (4.3.7) give a contribute for the computation of m.

We need to distinguish two cases: Gap(ũ) = ∅, Gap(ũ) 6= ∅.
Note that Gap(ũ) = Gap(u), or Gap(ũ) = Gap(u)− 1.

Case 1. Let Gap(ũ) = ∅. In such a case, u is the greatest monomial of As(k, `) with

min(u) = i1. More precisely, the following sum of binomial coefficients

i1−1∑

j=1

(
k + `− 1− j

`− 2

)
(4.3.8)

gives the number of all monomials w ∈ As(k, `) greater than u. Since i1, i2, . . . , i` are

consecutive integers, then other monomials greater than u which are different from the w’s

counted by (4.3.8) do not exist. Hence,

m = |[x1x2 · · ·x`−1xk+`, u]| =
i1−1∑

j=1

(
k + `− 1− j

`− 2

)
+ 1.

On the other hand, 1 =
(

0
0

)
, and consequently m is the sum of t = i1−1+1 = i1 = min(ũ) =

min(u) binomial coefficients.

Case 2. Let Gap(ũ) = {g1, . . . , gp}, p ≥ 1. It is worthy to point out that the existence of the

gaps gj (j = 1, . . . , p) implies that igj+1−igj−1 > 0, i.e., supp(ũ)∩{q : igj < q < igj+1} = ∅,
for all j ∈ [p]. Thus, all monomials w ∈ As(k, `) of the type xi1xi2 · · ·xigj z, where z is a

monomial of degree `− gj and max(z) = k+ ` such that supp(z)∩{q : igj < q < igj+1} 6= ∅,
are greater than u.

It is clear that all these monomials make up the left segment [x1x2 · · ·x`−1xk+`, u).

Let us consider the i1–th binomial in (4.3.7):

(
k + `− 1− i1

`− 2

)
=

k+1∑

j=1

(
k + `− 1− i1 − j

`− 3

)
. (4.3.9)

In order to compute all monomials w of the type xi1xi2 · · ·xig1 z, we need to evaluate g1

successive binomial decompositions until the next one:

(
k + `− ig1 − 1

`+ i1 − ig1 − 2

)
=

k−i1+1∑

j=1

(
k + `− ig1 − 1− j
`+ i1 − ig1 − 3

)
. (4.3.10)

The sum of the first wd(g1 -gap)(ũ) = ig1+1 − ig1 − 1 binomial coefficients in (4.3.10) gives

the number of all monomials w ∈ As(k, `) we are looking for.

In order to compute all monomials w ∈ As(k, `) of the type xi1xi2 · · ·xig2 z, we consider the

(wd(g1 -gap)(ũ)− 1)–th binomial in (4.3.10):
(
k + `− ig1 − 1− wd(g1 -gap)(ũ)− 1

`+ i1 − ig1 − 3

)
=

(
k + `− ig1+1 − 1

`+ i1 − ig1 − 3

)
=

=

k−i1+ig1−ig1+1+2∑

j=1

(
k + `− ig1+1 − 1− j
`+ i1 − ig1 − 4

)
.
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Hence, evaluating the ig2 − ig1+1 successive binomial decompositions until

(
k + `− ig2 − 1

`+ i1 − ig1 − ig2 + ig1+1 − 3

)
=

k−i1+ig1−ig1+1+2∑

j=1

(
k + `− ig2 − 1− j

`+ i1 − ig1 − ig2 + ig1+1 − 4

)
,

(4.3.11)

the number of all required monomials w ∈ As(k, `) will be given by the sum of the first

wd(g2 -gap(ũ)) = ig2+1 − ig2 − 1 binomial coefficients in (4.3.11).

The procedure can be iterated for all gj ∈ Gap(ũ), j ≥ 3.

Finally, |[x1x2 · · ·x`−1xk+`, u)| = i1 − 1 +
∑p
s=1 wd(gs -gap)(ũ). Hence, in order to get

|[x1x2 · · ·x`−1xk+`, u]|, we must take into account the binomial
(

0
0

)
which counts the mono-

mial u:

t = i1 − 1 +

p∑

s=1

wd(gs -gap)(ũ) + 1 = i1 +

p∑

s=1

wd(gs -gap)(ũ).

The assertion follows. 2

Remark 4.3.18 Our choice to focus on the monomial ũ = xi1xi2 · · ·xi`−1
, instead of u, in

Theorem 4.3.17 is due to the fact that if i`−1 < k + ` − 1, i.e., Gap(ũ) = Gap(u) − 1, then

all monomials z ∈ As(k, `) such that k + ` − 1 ∈ supp(z) are smallest than u, with respect

to ≥slex.

Next example illustrates Theorem 4.3.17.

Example 4.3.19 Let S = K[x1, . . . , x9] and consider the monomial u = x2x5x7x8. Set

ũ = x2x5x7. From Equation 4.1.3, |As(4, 4)| =
(

7
3

)
= 35.

In order to compute m = |[x1x2x3x8, u]|, we consider the following binomial decomposition:
(

7

3

)
=

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

Since, min(u) = 2, then all monomials w ∈ As(4, 4) with min(w) = 1 are greater than u, so

we must take into account the binomial coefficient
(

6
2

)
= 15 for the computation of m.

Now, let us consider the following binomial decomposition:
(

5

2

)
=

(
4

1

)
+

(
3

1

)
+

(
2

1

)
+

(
1

1

)
.

Since Gap(ũ) = {1, 2} and wd(1 -gap(ũ)) = 2, the sum
(

4
1

)
+
(

3
1

)
= 7 gives the number

of all monomials of the type x2z ∈ As(4, 4), with z squarefree monomial of degree 3 and

max(z) = 8 such that supp(z) ∩ {q : 2 < q < 5} 6= ∅.
At this stage, we have 15 + 7 = 22 monomials.

The next decomposition we need to consider is
(

2

1

)
=

(
1

0

)
+

(
0

0

)
.
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Since 2 ∈ Gap(ũ), and wd(2 -gap(ũ)) = 1, we must take into account
(

1
0

)
= 1 .

Finally, we have obtained 22 + 1 = 23 monomials of As(4, 4) greater than u, and so m =

|[x1x2x3x8, u]| = 23 + 1 = 24.

The following scheme summarizes the previous calculations.

(
7
3

)
=
(
6
2

)
+
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)

(
5
2

)
=
(
4
1

)
+
(
3
1

)
+
(

2
1

)
+
(

1
1

)

(
2
1

)
=
(
1
0

)
+
(

0
0

)
.

Now, consider the monomial v = x3x4x7x8. Let ṽ = x3x4x7.

Proceeding as before, since Gap(ṽ) = {1}, then |[x1x2x3x8, u]| = 27 + 1, where 27 is given

by the sum of the highlighted binomial coefficients in the next scheme:

(
7
3

)
=
(
6
2

)
+
(
5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)
(

4
2

)
=
(

3
1

)
+
(

2
1

)
+
(

1
1

)
(

3
1

)
=
(
2
0

)
+
(
1
0

)
+
(

0
0

)
.

Here is the list of all monomials which come into play for u and v:

x1x2x3x8, x1x2x4x8, x1x2x5x8, x1x2x6x8, x1x2x7x8,

x1x3x4x8, x1x3x5x8, x1x3x6x8, x1x3x7x8,

x1x4x5x8, x1x4x6x8, x1x4x7x8,

x1x5x6x8, x1x5x7x8,

x1x6x7x8,

x2x3x4x8, x2x3x5x8, x2x3x6x8, x2x3x7x8,

x2x4x5x8, x2x4x6x8, x2x4x7x8,

x2x5x6x8,x2x5x7x8,

x2x6x7x8,

x3x4x5x8, x3x4x6x8,x3x4x7x8,

x3x5x6x8, x3x5x7x8,

x3x6x7x8,

x4x5x6x8, x4x5x7x8,

x4x6x7x8,

x5x6x7x8

Now, let u1, . . . ur be squarefree monomials of degree q of S. We denote by B(u1, . . . , ur)

the smallest squarefree strongly stable set of Monsq(S) containing the monomials u1, . . . , ur.
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It is well known that if q < n, Shad(B(u1, . . . , ur)) is a squarefree strongly stable set

of monomials of degree q + 1 of S, and consequently Shadi(B(u1, . . . , ur)) is a squarefree

strongly stable set of degree q + i, for 1 ≤ i ≤ n− q.

Now, let (k1, `1) and (k2, `2) be two pairs of positive integers such that k1 > k2, `1 < `2,

ki + `i ≤ n (i = 1, 2). If u1, . . . , ur ∈ Mons`1(S) are squarefree monomials of S such that

max(uj) = k1 + `1, j = 1, . . . , r, we define the following set:

BShad(u1, . . . , ur)(k2,`2) = {v ∈ Shad`2−`1(B(u1, . . . , ur)) : max(v) ≤ k2 + `2}.

One can quickly observe that BShad(u1, . . . , ur)(k2,`2) is a squarefree strongly stable set of

degree `2 of S.

Remark 4.3.20 It is worthy to underline that if one wants to compute the minimum of

BShad(u1, . . . , ur)(k2,`2), it is sufficient to determine min BShad(ur)(k2,`2). Furthermore, in

order to obtain such a monomial, one can suitably manage the integers in supp(ur), as we

will see in a while.

Definition 4.3.21 Let u be a squarefree monomial of degree q of S, q < n. Let p ≤ n a

positive integer such that [p] \ supp(u) 6= ∅ and {j1, . . . , jt} a subset of [p] \ supp(u), with

j1 < j2 < · · · < jt, q + t ≤ n. The monomial xj1 · · ·xjtu ∈ Monsq+t(S) is called the joint of

u with the variables xj1 , . . . , xjt .

Example 4.3.22 Let u = x1x3x6x8 ∈ K[x1, . . . , x9]. Let p = 7 and consider the set

{2, 4, 7} ⊂ [7] \ {1, 3, 6, 8}. The joint of u with x2, x4, x7 is the squarefree monomial

x1x2x3x4x6x7x8 ∈ Mons7(S).

With the same notations as before, we give the construction of min BShad(u)(k2,`2) for a

given squarefree monomial u ∈ As(k1, `1).

Construction 4.3.23 Let (k1, `1) and (k2, `2) be two pairs of positive integers such that

k1 > k2, 2 ≤ `1 < `2 and ki + `i ≤ n, for i = 1, 2. Let u = xi1 · · ·xi`1 be a squarefree

monomial of As(k1, `1). Assume it to be the greatest integer belonging to supp(u) such that

it < k2 + `2, and write

u = xi1 · · ·xit · · ·xi`1 .

Let us consider the monomial u = xi1 · · ·xit and let j1, . . . , j`2−t be the greatest integers

belonging to [k2 + `2] \ supp(u). Then,

min BShad(u)(k2,`2) = xj1 · · ·xj`2−tu ∈ A
s(k2, `2).

Example 4.3.24 Let S = K[x1, . . . , x10], (k1, `1) = (5, 4) and (k2, `2) = (3, 5). All the

conditions of Construction 4.3.23 hold. Now, let u = x1x4x8x9 ∈ As(5, 4).
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Hence, it = 4 and we can write u = x1x4. We have `2 − t = 3, so we can take the three

greatest variables of the set [8] \ supp(x1x4) = {2, 3, 5, 6, 7, 8}: j1 = 6, j2 = 7, j3 = 8. Then

min BShad(x1x4x8x9)(3,5) = x6x7x8u = x1x4x6x7x8 ∈ As(k2, `2).

Construction 4.3.23 assures the correctness of the next algorithm.

Algorithm 4.5: Computation of min BShad(u)(k,`)

Input: Polynomial ring S, monomial u, positive integer k, positive integer `

Output: monomial v

begin

j ← k + `;

t←| {i ∈ supp(u) : i < j} |;
v ← the first t variables of u;

q ← `− t;
while q > 0 do

if j /∈ supp(v) then

if j > 0 then

v ← v ∗ Sj ;
else

error no monomial ;

end

q ← q − 1;

end

j ← j − 1;

end

return v;

end

Lemma 4.3.25 Take two pairs of positive integers (k1, `1) and (k2, `2) such that k1 > k2,

2 ≤ `1 < `2 with ki + `i ≤ n, for i = 1, 2. Let u be a squarefree monomial of degree `1

with max(u) = k1 + `1 and let v = min BShad(u)(k2,`2). If Gap(v) 6= ∅, then there exists a

monomial w ∈ As(k2, `2) \ BShad(u)(k2,`2) .

Proof. Let v = min BShad(u)(k2,`2) = xr1 · · ·xr`2 . One has max(v) = k2 + `2.

Assume p = max Gap(v), then the greatest squarefree monomial following v in the squarefree

lex order is xr1 · · ·xrp−1xrp+1 · · ·xrp+`2−p+1, with rp + `2 − p + 1 ≤ k2 + `2. Hence, if

rp + `2 − p+ 1 = k2 + `2, we choose

w = xr1 · · ·xrp−1
xrp+1 · · ·xrp+`2−p+1.
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Otherwise, if rp + `2 − p+ 1 < k2 + `2, let

w = xr1 · · ·xrp−1
xrp+1 · · ·xrp+`2−pxk2+`2 .

2

Example 4.3.26 As in the Example 4.3.24, let S = K[x1, . . . , x10], (k1, `1) = (5, 4), (k2, `2) =

(3, 5), u = x1x4x8x9 ∈ As(5, 4), v = min BShad(x1x4x8x9)(3,5) = x1x4x6x7x8 ∈ As(k2, `2).

We have p = max Gap(x1x4x6x7x8) = max{1, 2} = 2, hence we consider the monomial

x1x5x6x7x8. Since max(x1x5x6x7x8) = k2 + `2 = 8 then the monomial desired is w =

x1x5x6x7x8 ∈ As(3, 5) \ BShad(x1x4x8x9)(3,5).

Next pseudocode describes the procedure in Lemma 4.3.25.

Algorithm 4.6: Computation of the next monomial smaller than u in As(k, `)

Input: Polynomial ring S, monomial u

Output: monomial w

begin

m← max supp(u);

`← deg(u);

if Gap(u) 6= ∅ then

t← max Gap(u);

w ← the first t− 1 variables of u;

j ← index of variable of u at position t;

foreach i ∈ {1 . . `− t} do

j ← j + 1 ;

w ← w ∗ Sj ;
end

w ← w ∗ Sm;

else

error no monomial ;

end

return w;

end

The discussion below is significant for solving Problem 4.3.14.

Discussion 4.3.27 Let (k1, `1) and (k2, `2) be two pairs of positive integers such that k1 >

k2, 2 ≤ `1 < `2 with ki + `i ≤ n (i = 1, 2) and let a1, a2 be two positive integers.

Let T be a segment of As(k2, `2) of cardinality a2 <
(
k2+`2−1
`2−1

)
. We want to determine

the admissible values for a1 ≤
(
k1+`1−1
`1−1

)
so that there exists a segment [u1, ua1 ] of As(k1, `1)
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of cardinality a1 and such that BShad([u1, ua1 ])(k2,`2) + T . It is clear that it should be

a1 <
(
k1+`1−1
`1−1

)
.

Now, set T = [z1, za2 ], and assume T * BShad([u1, ua1 ])(k2,`2). Let v1 ∈ As(k1, `1) be the

smallest monomial such that z1 /∈ BShad(v1)(k2,`2). Such a monomial allows us to determine

the bound on a1 for which there exists the segment T .

Indeed, we can compute the following cardinalities (Theorem 4.3.17):

n1 = |{u ∈ As(k1, `1) : u ≥ v1}| = |[x1x2 · · ·x`1−1xk1+`1 , v1]|,
p1 = |{v ∈ As(k1, `1) : v > u1}| = |[x1x2 · · ·x`1−1xk1+`1 , u1)|.

Hence, since [u1, ua1 ] ⊆ [x1x2 · · ·x`1−1xk1+`1 , v1], we get the following coarse bound for a1:

a1 ≤ n1;

then, we can refine such a bound via p1 as follows:

a1 ≤ n1 − p1.

One can notice, that if u1 = maxAs(k1, `1), then p1 = 0.

Example 4.3.28 Given S = K[x1, . . . , x10], let us consider the pairs of positive integers

(5, 4) and (2, 6), the positive integers a1 = 8 and a2 = 6, and the following segment of

As(5, 4) of cardinality a1 = 8:

[x1x3x4x9, x1x4x7x9] = {x1x3x4x9, x1x3x5x9, x1x3x6x9,x1x3x7x9, x1x3x8x9, x1x4x5x9,

x1x4x6x9, x1x4x7x9}.

We want to verify if there exists a segment of As(2, 6) of cardinality a2 = 6 not contained

in BShad([x1x3x4x9, x1x4x7x9])(2,6).

First, from Equation 4.1.3, we know that a1 ≤
(

8
3

)
= 56 and a2 ≤

(
7
5

)
= 21.

In order to determine p1 = |{v ∈ As(5, 4) : v > x1x3x4x9}| = |[x1x2x3x9, x1x3x4x9)|,
we need to consider a suitable sequence of binomial decompositions. The first binomial

decomposition that we have to examine is

(
8

3

)
=

(
7

2

)
+

(
6

2

)
+

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
.

Then, applying the procedure described in Theorem 4.3.17 (see also Example 4.3.19), we

obtain the following sequence of binomial decompositions,

(
8
3

)
=
(

7
2

)
+
(

6
2

)
+
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)

(
7
2

)
=
(
6
1

)
+
(

5
1

)
+
(

4
1

)
+
(

3
1

)
+
(

2
1

)
+
(

1
1

)
,
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whereupon p1 = 6.

In order to compute n1, we consider the set A2 consisting of the smallest a2 = 6 monomials

of As(2, 6):

A2 = {x2x3x4x5x6x8, x2x3x4x5x7x8,x2x3x4x6x7x8, x2x3x5x6x7x8,

x2x4x5x6x7x8, x3x4x5x6x7x8}.

These monomials can be found using the “reversal” of Algorithm 4.6.

The smallest monomial z of As(5, 4) such that maxA2 = x2x3x4x5x6x8 /∈ BShad(z)(2,6) is

z = x1x7x8x9. The number of all monomials w ∈ As(5, 4) greater than or equal to z is

determined by the following binomial sequences:

(
8
3

)
=
(

7
2

)
+
(

6
2

)
+
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)

(
7
2

)
=
(
6
1

)
+
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(

1
1

)

Hence, we have n1 = (6 + 5 + 4 + 3 + 2) + 1 = 21 monomials. Finally, we have a1 ≤
n1 − p1 = 21− 6 = 15. For a1 = 15, then a segment of As(2, 6) of length a2 = 6 is

A2 = [x2x3x4x5x6x8, x3x4x5x6x7x8].

Discussion 4.3.27 yields the following result.

Theorem 4.3.29 Consider three positive integers n ≥ 5, `1 ≥ 3 and 1 ≤ r ≤ n − `1, r

pairs of positive integers (k1, `1), . . ., (kr, `r) such that n− 3 ≥ k1 > k2 > · · · > kr ≥ 2 and

2 ≤ `1 < `2 < · · · < `r, ki + `i ≤ n (i = 1, . . . , r), and r positive integers a1, . . . , ar. Let K

be a field of characteristic zero. The following conditions are equivalent:

(1) There exists a squarefree graded ideal J of S = K[x1, . . . , xn] with βk1,k1+`1(J) = a1,

. . ., βkr,kr+`r (J) = ar as extremal Betti numbers.

(2) There exists a squarefree strongly stable ideal I of S = K[x1, . . . , xn] with βk1,k1+`1(I) =

a1, . . ., βkr,kr+`r (I) = ar as extremal Betti numbers.

(3) Setting

(i) vr = xkr+1 · · ·xkr+`r ,

Ar = [wr, vr], with wr ∈ As(kr, `r) and such that |Ar| = ar;

(ii) for i = 1, . . . , r − 1,

vr−i = min{u ∈ As(kr−i, `r−i) : maxAr−i+1 /∈ BShad(u)(kr−i+1,`r−i+1)},

Ar−i = [wr−i, vr−i], with wr−i ∈ As(kr−i, `r−i) and such that |Ar−i| = ar−i;
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(iii) for i = 1, . . . , r, ni = |{u ∈ As(ki, `i) : u ≥ vi}|, then the integers ai satisfy the

following conditions:

ai ≤ ni.

If ai = |[ui,1, ui,ai ]|, ui,j ∈ As(ki, `i) (j = 1, . . . , ai) and pi = |{v ∈ As(ki, `i) :

v > ui,1}|, then ai ≤ ni − pi, for i = 1, . . . , r.

Proof. (1) ⇔ (2). See [AHH00] and the introduction in this dissertation.

(2) ⇒ (3). It follows applying iteratively Discussion 4.3.27, for i = 1, . . . , r. Note that

vr = minAs(kr, `r), and consequently nr =
(
kr+`r−1
`r−1

)
; whereas p1 = 0.

(3) ⇒ (2). We construct a squarefree strongly stable ideal I of S generated in degrees

`1, . . . , `r as follows:

- G(I)`1 = B(u1,1, . . . , u1,a1);

- G(I)`2 = B(u2,1, . . . , u2,a2) \ BShad`2−`1(G(I)`1)(k2,`2);

- G(I)`i = B(ui,1, . . . , ui,ai) \ BShad`i−`i−1(Mons(I`i−1
))(ki,`i), for i = 3, . . . , r, where

Mons(I`i−1
) is the set of all squarefree monomials of degree `i−1 belonging to I`i−1

.

The monomials ui,1, . . . , ui,ai , for i = 1, . . . , r, are the basic monomials of I. 2

Remark 4.3.30 A similar statement can be formulated in the case `1 = 2 and n ≥ 5.

Theorem 4.3.29 assures the correctness of the next algorithm.
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Algorithm 4.7: Computation of the basic monomials for the given data

Input: Polynomial ring S, list of corners {(ki, `i)}, list of values (ai)

Output: list of monomials mons

begin

hyp← logical conditions required as hypotheses of the Theorem 4.3.29;

if hyp then

m← k0 + `0;

w ← S1 ∗ . . . ∗ S`0−1 ∗ Sm; // first corner

mons← {w};
foreach j ∈ {2 . . a0} do

w ←next monomial of w; // calling Algorithm 4.6

if no monomial then

error no ideal ;

else

mons← mons ∪ {w};
end

end

r ← number of corners; // successive corners

foreach i ∈ {2 . . r} do

w ← min BShad(mons)(ki−1,`i−1) ; // calling Algorithm 4.5

foreach j ∈ {1 . . ai} do

w ← next monomial of w; // calling Algorithm 4.6

if no monomial then

error no ideal ;

else

mons← mons ∪ {w};
end

end

end

end

return mons;

end

4.3.2 Some relevant examples

This subsection collects some nice examples on the theory developed in this Section.

Next example illustrates Theorem 4.3.29.

Example 4.3.31 Let n = 11, r = 4, C = {(8, 3), (4, 5), (3, 6), (2, 9)} and a = (a1, a2, a3, a4) =

(7, 5, 2, 2). We want to construct a squarefree strongly stable ideal I of S = K[x1, . . . , x11]

generated in degrees 3,5,6,9 and such that Corn(I) = C, a(I) = a.
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Before starting the construction of the ideal, we verify if the coarse bounds are satisfied

for each ai, i = 1, . . . , 4.

First of all, v4 = x3x4x5x6x7x8x9x10x11 and n4 = |[x1x2x3x4x5x6x7x8x11, v4]| =
(

10
8

)
=

45. Hence, a4 = 2 ≤ n4.

Moreover, A4 = {x2x4x5x6x7x8x9x10x11, x3x4x5x6x7x8x9x10x11}, v3 = x2x3x6x7x8x9,

and from the binomial decompositions

(
8
5

)
=
(
7
4

)
+
(

6
4

)
+
(

5
4

)
+
(

4
4

)
(

6
4

)
=
(

5
3

)
+
(

4
3

)
+
(

3
3

)
(

5
3

)
=
(
4
2

)
+
(
3
2

)
+
(

2
2

)

we obtain a3 = 2 ≤ n3 = |[x1x2x3x4x5x9, v3]| = 35 + (6 + 3) + 1 = 45.

Furthermore, A3 = {x2x3x5x7x8x9, x2x3x6x7x8x9} and v2 = x2x3x5x6x9. From the

binomial decompositions

(
8
4

)
=
(
7
3

)
+
(

6
3

)
+
(

5
3

)
+
(

4
3

)
+
(

3
3

)
(

6
3

)
=
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)
(

5
2

)
=
(
4
1

)
+
(

3
1

)
+
(

2
1

)
+
(

1
1

)

one has a2 = 5 ≤ n2 = |[x1x2x3x4x9, v2]| = (35 + 4) + 1 = 40.

Finally, we haveA2 = [x2x3x4x5x9, x2x3x5x6x9] = {x2x3x4x5x9, x2x3x4x6x9, x2x3x4x7x9,

x2x3x4x8x9, x2x3x5x6x9} and v1 = x1x10x11. The binomial decompositions

(
10
2

)
=
(

9
1

)
+
(

8
1

)
+
(

7
1

)
+
(

6
1

)
+
(

5
1

)
+
(

4
1

)
+
(

3
1

)
+
(

2
1

)
+
(

1
1

)
(

9
1

)
=
(
8
0

)
+
(
7
0

)
+
(
6
0

)
+
(
5
0

)
+
(
4
0

)
+
(
3
0

)
+
(
2
0

)
+
(
1
1

)
+
(

0
0

)

imply a1 = 7 ≤ n1 = |[x1x2x11, v1]| = 8 + 1 = 9.

Now, we proceed with the construction of the ideal I we are looking for, and so doing we

refine the previous bounds for the ai’s.

- The greatest monomial of As(8, 3) is x1x2x11. Since p1 must be equal to 0 and a1 =

7 ≤ n1 − p1 = 9, one can consider the greatest a1 = 7 monomials of As(8, 3). Such

monomials can be obtained by Algorithm 4.6. Hence, we set

G(I)3 = B(x1x2x11, x1x3x11, x1x4x11, x1x5x11, x1x6x11, x1x7x11, x1x8x11).

- Let us consider the corner (4, 5). By Algorithm 4.5, we compute the smallest monomial

of BShad2(G(I)3)(4,5), i.e., the monomial x1x6x7x8x9; whereas, by Algorithm 4.6, we

determine the greatest monomial of As(4, 5) \ BShad2(G(I)3)(4,5), i.e., x2x3x4x5x9.

Finally, from the binomial decomposition
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(
8
4

)
=
(
7
3

)
+
(

6
3

)
+
(

5
3

)
+
(

4
3

)
+
(

3
3

)

it follows that p2 = |[x1x2x3x4x9, x2x3x4x5x9)| = 35. Hence, n2 − p2 = 40 − 35 = 5

monomials are available. Therefore, since a2 = 5, we set

G(I)5 = B(x2x3x4x5x9, x2x3x4x6x9, x2x3x4x7x9, x2x3x4x8x9, x2x3x5x6x9).

- Let us consider the corner (3, 6). One has min BShad(G(I)5)(3,6) = x2x3x5x6x8x9 and

max(As(3, 6) \ BShad(G(I)5)(3,6) = x2x3x5x7x8x9, and from

(
8
5

)
=
(
7
4

)
+
(

6
4

)
+
(

5
4

)
+
(

4
4

)

(
6
4

)
=
(

5
3

)
+
(

4
3

)
+
(

3
3

)

(
5
3

)
=
(
4
2

)
+
(

3
2

)
+
(

2
2

)

(
3
2

)
=
(
2
1

)
+
(

1
1

)

we have p3 = |[x1x2x3x4x5x9, x2x3x5x7x8x9)| = 43. Hence, n3 − p3 = 45− 43 = 2.

Since a3 = 2, we set

G(I)6 = B(x2x3x5x7x8x9, x2x3x6x7x8x9).

- If one considers the corner (2, 9), since min BShad3(G(I)6)(2,9) = x2x3x5x6x7x8x9x10x11,

max(As(2, 9) \ BShad3(G(I)6))(2,9) = x2x4x5x6x7x8x9x10x11, from

(
10
8

)
=
(
9
7

)
+
(

8
7

)
+
(

7
7

)

(
8
7

)
=
(
7
6

)
+
(

6
6

)

it follows p4 = |[x1x2x3x4x5x6x7x8x11, x2x4x5x6x7x8x9x10x11)| = 43.

So n4 − p4 =
(

10
8

)
− p4 = 45− 43 = 2. Hence, since a4 = 2, we can set

G(I)9 = B(x2x4x5x6x7x8x9x10x11, x3x4x5x6x7x8x9x10x11).

The Betti table of the squarefree strongly stable I just constructed is the following one:

0 1 2 3 4 5 6 7 8

3 : 42 217 553 861 875 587 252 63 7

4 : − − − − − − − − −
5 : 13 39 45 24 5 − − − −
6 : 2 6 6 2 − − − − −
7 : − − − − − − − − −
8 : − − − − − − − − −
9 : 2 4 2 − − − − − −
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We close the Section with an example that illustrates a situation where the construction

of a squarefree strongly stable ideal is not possible.

Example 4.3.32 Let n = 10, r = 3, C = {(6, 2), (5, 4), (3, 7)} and a = (a1, a2, a3) = (2, 1, 4).

We have |As(3, 7)| =
(

9
6

)
= 84, so it is possible to manage a3 = 4 ≤ 84 monomials.

Let us consider the smallest four monomials of As(3, 7):

A2 = {x3x4x5x7x8x9x10, x3x4x6x7x8x9x10, x3x5x6x7x8x9x10, x4x5x6x7x8x9x10}.

Let us try to get the smallest monomial z ∈ As(5, 4) such that we have x3x4x5x6x8x9x10 /∈
BShad(z)(3,7). It is z = x2x7x8x9. Now, we compute |[x1x2x3x9, z]| as bound for a2:

(
8
3

)
=
(
7
2

)
+
(

6
2

)
+
(

5
2

)
+
(

4
2

)
+
(

3
2

)
+
(

2
2

)

(
6
2

)
=
(
5
1

)
+
(
4
1

)
+
(
3
1

)
+
(
2
1

)
+
(

1
1

)

So we have n2 = 21+(5+4+3+2)+1 = 36 monomials greater than z. Hence, a2 = 1 ≤ 36.

Note that if z does not exist, then it is clear that we can not go on.

Now, we try to verify the bound for a1 taking into account the previous results. Consider

the monomial z ∈ As(5, 4), and take the greatest monomial w of As(6, 2) such that z /∈
BShad(w)(3,7). It is w = x1x8. We can note that w is the smallest monomial of As(6, 2),

i.e., |[x1x8, w]| = 1.

Hence, we have that a1 ≤ 1. For this reason the requested value for a1 = 2 is not

admissible and there does not exist any squarefree monomial ideal I of K[x1, . . . , x10] such

that Corn(I) = C and a(I) = a.

Nevertheless, there exists a squarefree monomial ideal J of S such that Corn(J) = C and

a(J) = (1, 1, 4).

4.4 Corners of 2–spread strongly stable ideals

In this Section, we analyze the extremal Betti numbers of 2–spread strongly stable ideals

in the polynomial ring S = K[x1, . . . , xn]. If S2,n is the set of all 2–spread strongly stable

ideals in S, we determine the largest number of corners allowed for an ideal I ∈ S2,n. It is

worth to point out that if t ≥ 2, then a t–spread strongly stable ideal has initial degree ≥ 2.

For our purpose, we focus our attention on the ideals I ∈ S2,n such that all the entries

of their corner values sequence a(I) are equal to 1, i.e., every extremal Betti numbers of I

equals 1. The subset of S2,n consisting of such 2–spread strongly stable ideals will be denoted

by S2,n,1 .

The study of this problem has shown that one has to consider two cases:

n odd, n even.
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Firstly, we analyze the odd case.

Discussion 4.4.1 Let us consider S = K[x1, . . . , xn], with n ≥ 3 odd integer.

For n = 3, the only 2–spread strongly stable ideal I ∈ S2,n,1 is I = (x1x3) with Corn(I) =

{(0, 2)}.
For n = 5, the only 2–spread strongly stable ideal I ∈ S2,n,1 is I = B2(x1x5) with

Corn(I) = {(2, 2)}.
For n = 7, 9, 11, the monomials which determine the largest number of admissible corners

of a 2–spread strongly stable ideal in S2,n,1 with a corner in degree 2 are the bold highlighted

ones in Table 4.6 :

x1x7

x1x5x7 x2x4x7

(a) n = 7

x1x9

x1x7x9 x2x4x9

x2x4x7x9 x2x5x7x9

(b) n = 9

x1x11

x1x9x11 x2x4x11

x2x4x9x11 x2x5x7x11

x2x5x7x9x11 x3x5x7x9x11

(c) n = 11

Table 4.6: 2–spread monomial generators for n = 7, 9, 11

In each of these cases, the finitely generated 2–spread Borel ideal with the bold highlighted

monomials as generators is the ideal we are looking for.

For every 1 ≤ d ≤ n, let us denote by Monsd(S) the set of all squarefree monomials of

degree d of S. We can order Monsd(S) with the squarefree lexicographic order ≥slex [AHH98].

More precisely, let

u = xi1xi2 · · ·xid , v = xj1xj2 · · ·xjd ,

with 1 ≤ i1 < i2 < · · · < id ≤ n, 1 ≤ j1 < j2 < · · · < jd ≤ n, be squarefree monomials of

degree d in S, then

u >slex v if i1 = j1, . . . , is−1 = js−1 and is < js,

for some 1 ≤ s ≤ d.

From now on, we assume that the sets Monsd(S) (1 ≤ d ≤ n) are endowed with the

ordering ≥slex.

Theorem 4.4.2 Let n ≥ 11 be odd. A 2–spread strongly stable ideal S = K[x1, . . . , xn] of

initial degree 2 and with a corner in degree 2 can have at most n−3
2 corners.

Proof. We will prove the existence of a 2–spread strongly stable ideal I of S generated

in degrees 2, 3, . . . , n−1
2 such that |Corn(I)| = n−3

2 and a(I) = (1, 1, . . . , 1).
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Set G(I)2 = B2(x1xn). One can observe that the monomial

x3x5 · · ·xn−2xn

is a 2–spread monomial of the largest degree which is not multiple of x1xn. Moreover it is

also the smallest 2–spread monomial of Mn,n−1
2 ,2.

Claim 1. There exist 2–spread monomials wi ∈ S, i = 1, . . . , n−7
2 = n−3

2 − 2, such that

I = B2(x1xn, w1, . . . , wn−7
2
, x3x5 · · ·xn−2xn).

Proof of the Claim. We will verify that wd(1 -gap(x1xn)) = n− 2 ≥ 9 allows us to prove the

existence of the desired wi’s.

The greatest 2–spread monomial not belonging to Shad2(B2(x1xn)) is x2x4xn. Hence, we

choose w1 = x2x4xn. Therefore, since wd(2 -gap(w1)) = n − 5 ≥ 6, we set w2 = x2x5x7xn.

It is the greatest 2–spread monomial not belonging to Shad2(B2(x2x4xn)).

Now, wd(3 -gap(w2)) = n− 8 ≥ 3.

Let us distinguish the following cases:

n = 11, 13, 15 and n ≥ 17.

If n = 11, then x3x5x7x9x11 is the greatest 2–spread monomial of degree 5 = 11−1
2 not

belonging to Shad2(B2(x2x5x7x11)) and the smallest 2–spread monomial in M11,5,2. Hence,

I = B2(x1x11, w1, w2, x3x5x7x9x11) is the 2–spread strongly stable ideal we are looking for.

If n = 13, then w3 = x2x5x8x10x13 is the greatest 2–spread monomial of degree 5

not belonging to Shad2(B2(x2x5x7x13)). On the other hand, the greatest 2–spread mono-

mial of degree 6 = 13−1
2 not belonging to Shad2(B2(w3)) is x3x5x7x9x11x13. Hence, I =

B2(x1x13, w1, w2, w3, x3x5x7x9x11x13) is the wished 2–spread strongly stable ideal.

Similarly, if n = 15, then w3 = x2x5x8x10x15 is the greatest 2–spread monomial of degree

5 not belonging to Shad2(B2(x2x5x7x15)). Moreover, the greatest 2–spread monomial of

degree 6 not belonging to Shad2(B2(w3)) is w4 = x2x5x8x11x13x15. Finally, the greatest 2–

spread monomial of degree 7 = 15−1
2 not belonging to Shad2(B2(w4)) is x3x5x7x9x11x13x15.

Therefore, I = B2(x1x15, w1, w2, w3, w4, x3x5x7x9x11x13x15) is the 2–spread strongly stable

ideal we are looking for.

Now, it is worth to point out that in the case when n = 15 a monomial generator with

x2x5x8x11 as divisor appears for the first time. Such a monomial will play a crucial role for

the proof of the claim.

Let n ≥ 17. First of all, we set w3 = x2x5x8x10xn and w4 = x2x5x8x11x13xn. Then, one

can observe that the number q of all 2–spread monomials z with max(z) = n and x2x5x8x11

as a divisor depends on the integer n− 11. Indeed, one can quickly verify that q is bounded

by the integer m = bn−11−2−1
2 c . We will prove that q = m.

Since n − 14 ≥ 3 is odd, there exists a 5 -gap(w4) which allows us to get the smallest

monomial of Shad2(B2(w4)), i.e., x2x5x8x11x13xn−2xn.
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Let us distinguish two cases: n = 17, n > 17.

Let n = 17. Then n − 14 = 3 and bn−14
2 c = 1. Indeed the greatest monomial not

belonging to Shad2(B2(w4)) is w5 = x2x5x9x11x13x15x17. There exists only w4 which is

divisible by u.

Now, let n > 17. In such a case, the greatest monomial not belonging to Shad2(B2(w4))

is w5 = x2x5x8x11x14x16xn. Since wd(6 -gap(w5)) = n−17 = n−14−3 = wd(5 -gap(w4))−3

and wd(4 -gap(w5)) = 14 − 11 − 1 = 2 = wd(4 -gap(w4)) + 1, then bn−14−3+1
2 c = m − 1.

Hence, if m− 1 > 1 one obtains w6 = x2x5x8x11x14x17x19xn.

After m− 1 iterations, we have bn−14−2m+2
2 c = bn−12−(n−15)

2 c = b 3
2c = 1. This assures

that we can construct the last 2–spread monomial not belonging to Shad2(B2(w3+m−1)). It

is w3+m = x2x5x9x11x13x15 · · ·xn. It is the greatest 2–spread monomial not belonging to

Shad2(B2(w3+m−1)).

Finally, we can observe that the monomial x3x5x7x9 · · ·xn is the greatest 2–spread monomial

not belonging to the Shad2(B2(x2x5x9x11x13x15 · · ·xn)) and the smallest 2–spread monomial

in Mn,n−1
2 ,2.

Proceeding in this way at the end we get

1 + 3 +m+ 2 = 6 + bn− 14

2
c = 6 +

n− 15

2
=
n− 3

2

suitable monomials. The claim follows.

The construction of these monomials together with Theorem 4.1.12 guarantees that there

exists an ideal I ∈ S2,n,1 with a corner in degree 2 in S with |Corn(I)| = deg(x3x5x7x9 · · ·xn)−
2 + 1 = n−1

2 − 2 + 1 = n−3
2 .

More precisely,

Corn(I) =

{
(ki, `i) : ki = n− 2(`i − 1)− 1, `i = 2 + (i− 1), i = 1, . . . ,

n− 3

2

}
=

=

{
(n− 3, 2), (n− 5, 3), . . . , (2,

n− 1

2
)

}
.

The proof points out that there exist n−3
2 monomials of S of degrees 2, 3, . . . , n−1

2 each

of which determines a corner. Moreover, the structure of x3x5 · · ·xn assures that there does

not exist a 2–spread monomial of degree deg(x3x5 · · ·xn) + 1 that gives a contribution for

the computation of a corner. Hence, n−3
2 is the maximal admissible number of corners of a

2–spread strongly stable ideal of S of initial degree 2. 2

The monomial generators x1xn, w1, . . ., wn−7
2

, x3x5 · · ·xn−2xn will be called 2–spread

basic monomials.

For later use, we need to define a partial order � on the set Mons(S) of all squarefree

monomials of S. More precisely, let u, v be two squarefree monomials of S, we say that

u � v
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- if deg u = deg v and u ≥slex v, or

- if deg u < deg v and u = xiv/w, with i /∈ supp(v), w divides v and i < r, for some

r ∈ supp(w).

We set u � v if u � v and u 6= v.

For instance, if one considers the 2–spread monomials x1x8, x2x4x6, x2x6x8 ∈ K[x1, . . . , x8],

then x1x8 � x2x6x8. Indeed, deg x1x8 < deg x2x6x8 and x1x8 = x1(x2x6x8)/x2x6.

On the contrary, x1x8 � x2x4x6 and x2x4x6 � x1x8; whereas x2x4x6 � x2x6x8.

With the same notation as in Theorem 4.4.2, setting

A = {x1xn, w1, . . . , wn−7
2
, x3x5 · · ·xn−2xn},

then

x1xn � w1 � . . . � wn−7
2
� x3x5 · · ·xn−2xn.

Now, we give a nice explicit description of the finitely generated Borel 2–spread ideal of

S2,n,1 of initial degree 2 with the maximal number of corners, for all odd n ≥ 5. We will

denote it by B2,n,1 .

Discussion 4.4.3 Let S = K[x1, . . . , xn] be a polynomial ring, with n ≥ 5 odd integer. In

what follows both Discussion 4.4.1 and Theorem 4.4.2 (proof) will be crucial.

Firstly, let n = 5, 7, 9. In such cases, the finitely generated 2–spread Borel ideals B2,n,1

of S2,n,1 are described in Table 4.7.

n Corner sequence 2–spread strongly stable ideal

5 {(2, 2)} B2,5,1 = B2(x1x5) = (x1x3, x1x4, x1x5)

7 {(4, 2), (2, 3)} B2,7,1 = B2(x1x7, x2x4x7)

9 {(6, 2), (4, 3), (2, 4)} B2,9,1 = B2(x1x9, x2x4x9, x2x5x7x9)

Table 4.7: 2–spread corner sequences for n = 5, 7, 9.

One can observe that the monomial of the type x1xn (n = 5, 7, 9) appears as 2–spread

Borel generator in all three ideals B2,5,1, B2,7,1 and B2,9,1; the monomial x2x4xn (n = 7, 9)

appears as 2–spread Borel generator in the ideals B2,7,1 and B2,9,1; whereas the monomial

x2x5x7x9 appears only in the ideal B2,9,1 as 2–spread Borel generator.

For n ≥ 11, the monomials in the following set

{x1xn, x2x4xn, x2x5x7xn} (4.4.1)
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will be always 2–spread Borel generators for B2,n,1.

Let us consider the case n = 11. From Theorem 4.4.2 (proof) we have to introduce the

monomial x3x5x7x9x11 to complete the minimal system of monomial generators of B2,11,1.

Moreover, if n ≡ 11 (mod 6), we need to add r1 = n−11
6 + 1 monomials of the type

2k−1∏

i=0

x2+3ixj+2xj+4 · · ·xn−2xn, j = 6k + 1, k = 0, . . . , r1 − 1 (4.4.2)

to the set in (4.4.1) to get the minimal system of monomial generators of B2,n,1. We refer

to them as the right-form basic monomials.

Note that, setting
∏2k−1
i=0 x2+3i = 1 for k = 0, then

∏2k−1
i=0 x2+3ixj+2xj+4 · · ·xn−2xn =

x3x5x7x9 · · ·xn−2xn.

Hence, the monomials in

{x1xn, x2x4xn, x2x5x7xn,

2k−1∏

i=0

x2+3ixj+2 · · ·xn−2xn, j = 6k + 1, k = 0, . . . , r1 − 1} (4.4.3)

will belong to the minimal set of monomial generators of B2,n,1, for all odd integer n ≥ 11.

Let us consider n = 13. In such a case one has the monomial x2x5x8x10x13. Such a

monomial is smaller than all monomials in (4.4.1) and greater than the right–form ones,

with respect to �.

In general, if n ≡ 13 (mod 6), we need to add r2 = n−13
6 + 1 monomials of the type

x2x5x8

2k−1∏

i=0

x11+3ixjxn, j = 6k + 10, k = 0, . . . , r2 − 1 (4.4.4)

to the set in (4.4.3) to get the minimal system of monomial generators of B2,n,1. We refer

to them as the first-left-form basic monomials.

Note that, setting
∏2k−1
i=0 x11+3i = 1 for k = 0, then x2x5x8

∏2k−1
i=0 x11+3ixjxn = x2x5x8x10xn.

Hence, the monomials in (4.4.4) together with the ones in (4.4.3) will belong to the minimal

set of monomial generators of B2,n,1, for all odd n ≥ 13.

Now, let us consider n = 15. In such a case one has the monomial x2x5x8x11x13x15.

Such a monomial is greater than the right-form ones.

In general, if n ≡ 15 (mod 6) then r3 = n−15
6 + 1 monomials of the type

x2x5x8x11

2k−1∏

i=0

x14+3ixjxn, j = 6k + 13, k = 0, . . . , r3 − 1 (4.4.5)

will belong to the minimal set of monomial generators of B2,n,1. We refer to them as the

second-left-form basic monomials.

Note that, setting
∏2k−1
i=0 x14+3i = 1 for k = 0, then x2x5x8x11

∏2k−1
i=0 x14+3ixjxn =

x2x5x8x11x13xn.

Finally, the monomials in (4.4.5) together with the ones in (4.4.4) and the ones in (4.4.3)

will determine the minimal set of monomial generators of B2,n,1, for all odd n ≥ 15.
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Remark 4.4.4 One can notice, that given an odd integer n ≥ 15 in order to determine

the set A of the 2–spread basic monomials, one can firstly consider the values n, n− 2 and

n − 4. Then, if one writes down all the monomials (divisible by xn) described in (4.4.5),

(4.4.4), (4.4.2) via the integers n, n− 2 and n− 4 respectively, together with the monomials

in (4.4.1), one gets:

|A| = (
n− 15

6
+ 1) + (

n− 2− 13

6
+ 1) + (

n− 4− 11

6
+ 1) + 3 = 6 +

n− 15

2
=
n− 3

2

which is the number of the desired generators.

The next example will illustrate Remark 4.4.4.

Example 4.4.5 Let us consider the polynomial ring S = K[x1, . . . , x21]. We want to con-

struct the finitely generated 2–spread strongly stable ideal I ∈ S2,21,1 with the greatest

number of corners and such that indeg(I) = 2, i.e., I = B2,21,1 .

One has |Corn(I)| = n−3
2 = 9 and

Corn(I) = {(18, 2), (16, 3), (14, 4), (12, 5), (10, 6), (8, 7), (6, 8), (4, 9), (2, 10)}.

In order to determine the 2–spread basic monomials that determine the minimal system

of monomial generators G(I) we proceed as follows.

Step 1. At first, we consider the 2–spread basic monomials x1x21, x2x4x21 and x2x5x7x21.

Step 2. Since n = 21 ≡ 15 (mod 6), we have 21−15
6 + 1 = 2 second-left-form basic monomials

of the type

x2x5x8x11

2k−1∏

i=0

x14+3ixjxn,

with j = 6k + 13 for k = 0, 1. They are x2x5x8x11x13x21 (k = 0, j = 13) and

x2x5x8x11x14x17x19x21 (k = 1, j = 19).

Step 3. Let us consider n − 2 = 19. Since n − 2 = 19 ≡ 13 (mod 6), we have 19−13
6 + 1 = 2

first-left-form basic monomials of the type

x2x5x8

2k−1∏

i=0

x11+3ixjxn,

with j = 6k + 10 for k = 0, 1. They are x2x5x8x10x21 (k = 0, j = 10) and

x2x5x8x11x14x16x21 (k = 1, j = 16).

Step 4. Let us consider n−4 = 17. Since n−4 = 17 ≡ 11 (mod 6), then we have 17−11
6 +1 = 2

right-form basic monomials of the type

2k−1∏

i=0

x2+3ixj+2xj+4 · · ·xn−2xn,
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with j = 6k+ 1 for k = 0, 1. They are x3x5x7x9x11x13x15x17x19x21 (k = 0, j = 1) and

x2x5x9x11x13x15x17x19x21 (k = 1, j = 7).

Finally, ordering the monomials in Steps 1–4 with respect to �, we have the ideal

I = B2(x1x21, x2x4x21, x2x5x7x21, x2x5x8x10x21, x2x5x8x11x13x21, x2x5x8x11x14x16x21,

x2x5x8x11x14x17x19x21, x2x5x9x11x13x15x17x19x21, x3x5x7x9x11x13x15x17x19x21).

From Theorem 4.4.2 and Discussion 4.4.3, the next result follows.

Theorem 4.4.6 Let n ≥ 11 an odd integer and `1 = 2. Given n−3
2 pairs of positive integers

(k1, `1), (k2, `2), . . . , (kn−3
2
, `n−3

2
), (4.4.6)

with 1 ≤ kn−3
2
< kn−3

2 −1 < · · · < k1 ≤ n− 3 and 2 = `1 < `2 < · · · < `n−3
2
≤ n−1

2 , then there

exists a 2–spread strongly stable ideal I of S of initial degree `1 and with the pairs in (4.4.6)

as corners if and only if ki + 2(`i − 1) + 1 = n, for i = 1, . . . , n−3
2 .

Remark 4.4.7 For an arbitrary monomial ideal I, let Ij be the j–th graded component of

I. Following [AC19f], we call the set of t–spread monomials in Ij , the t–spread part of Ij

and denote it by [Ij ]t. A special class of t–spread strongly stable ideals consists of t-spread

lex ideals, which are defined as follows [AC19f].

A subset L of Mn,d,t is called a t–spread lex set, if for all u ∈ L and for all v ∈ Mn,d,t

with v >lex u, it follows that v ∈ L. A t–spread monomial ideal I is called a t–spread lex

ideal, if [Ij ]t is a t–spread lex set for all j.

It is clear that the 2–spread strongly stable ideal in Theorem 4.4.2 is a 2–spread lex ideal.

Now, we analyze the even case. The development will be very similar to the odd case.

We include it for completeness and for highlighting the differences with the odd case.

Discussion 4.4.8 Let us consider S = K[x1, . . . , xn], with n ≥ 4 even.

For n = 4, the only 2–spread strongly stable ideal I ∈ S2,n in S is I = B2(x1x4) with

Corn(I) = {(1, 2)}. For n = 6, 8, 10, 12, 14, the monomials which determine the maximal

number of admissible corners of a 2–spread strongly stable ideal in S2,n,1 with a corner in

degree 2 are the bold highlighted ones in Table 4.8:
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x1x6

x1x4x6 x2x4x6

(a) n = 6

x1x8

x1x4x8 x2x4x8

(b) n = 8

x1x10

x1x8x10 x2x4x10

x2x4x8x10 x2x5x7x10

(c) n = 10

x1x12

x1x10x12 x2x4x12

x2x4x10x12 x2x5x7x12

x2x5x7x10x12 x2x5x8x10x12

(d) n = 12

x1x14

x1x12x14 x2x4x14

x2x4x12x14 x2x5x7x14

x2x5x7x12x14 x2x5x8x10x14

x2x5x8x10x12x14 x2x6x8x10x12x14

(e) n = 14

Table 4.8: 2–spread monomial generators for n = 6, 8, 10, 12, 14

In each of the cases described in Table 4.8, the finitely generated 2-Borel ideal with the

bold highlighted monomials as generators is the wished ideal.

Theorem 4.4.9 Let n ≥ 14 be even. A 2–spread strongly stable ideal S = K[x1, . . . , xn] of

initial degree 2 and with a corner in degree 2 can have at most n−4
2 corners.

Proof. The proof is verbatim the same of Theorem 4.4.2.

We prove the existence of a 2–spread strongly stable ideal I of S generated in degrees

2, 3, . . . , n−2
2 such that |Corn(I)| = n−4

2 and a(I) = (1, 1, . . . , 1).

Set G(I)2 = B2(x1xn). One can observe that wd(1 -gap(x1xn)) = n − 2 ≥ 12. The

greatest 2–spread monomial not belonging to Shad2(B2(x1xn)) is x2x4xn. Hence, we set

w1 = x2x4xn.

Note that the monomial

x2x6x8 · · ·xn−2xn,

of degree n−2
2 is a 2–spread monomial of Mons(S) of the largest degree which is not multiple

both of x1xn and of w1.

Claim 2. We prove the existence of certain 2–spread monomials wi ∈ S, for i = 2, . . . , n−8
2 =

n−4
2 − 2, such that

I = B2(x1xn, w1, . . . , wn−8
2
, x2x6x8 · · ·xn−2xn).

Proof of the Claim. Firstly, since wd(2 -gap(w1)) = n − 5 ≥ 9, we set w2 = x2x5x7xn.

On the other hand, wd(3 -gap(w2)) = n − 8 ≥ 6. Then we set w3 = x2x5x8x10xn and

wd(4 -gap(w3)) = n− 11 ≥ 3. Let us distinguish the following cases:

n = 14, 16, 18 and n ≥ 20.
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If n = 14, then x2x6x8x10x12x14 is the greatest 2–spread monomial of degree 6 = 14−2
2 not

belonging to Shad2(B2(x2x5x8x10x14)). Hence, I = B2(x1x14, w1, w2, w3, x2x6x8x10x12x14)

is the 2–spread strongly stable ideal we are looking for.

If n = 16, then w4 = x2x5x8x11x13x16 is the greatest 2–spread monomial of degree 6

not belonging to Shad2(B2(x2x5x8x10x16)). Finally, we can construct the greatest 2–spread

monomial of degree 7 = 16−2
2 not belonging to Shad2(B2(w4)). It is x2x6x8x10x12x14x16.

Hence, I = B2(x1x16, w1, w2, w3, w4, x2x6x8x10x12x14x16) is the 2–spread strongly stable

ideal we are looking for.

If n = 18, then w4 = x2x5x8x11x13x18 is the greatest 2–spread monomial of degree 6

not belonging to Shad2(B2(x2x5x8x10x18)). Moreover, the greatest 2–spread monomial of

degree 7 not belonging to Shad2(B2(w4)) is w5 = x2x5x8x11x14x16x18. Finally, the greatest

2–spread monomial of degree 8 = 18−2
2 not into Shad2(B2(w5)) is x2x6x8x10x12x14x16x18.

Hence, I = B2(x1x18, w1, w2, w3, w4, w5, x2x6x8x10x12x14x16x18) is the desired 2–spread

strongly stable ideal.

Also in this case, the monomial generators with u = x2x5x8x11 as divisor will play a

crucial role in the proof. We note that when n = 18 u does not divide any monomial

generators.

Let n ≥ 20. We set w4 = x2x5x8x11x13xn and w5 = x2x5x8x11x14x16xn. We observe

that the number q of all 2–spread monomials z with max(z) = n and x2x5x8x11 as a divisor

depends on the integer n − 11. Indeed, in this case q is bounded by the integer m =

bn−11−2−2
2 c. We will prove that q = m. We can observe that n − 15 ≥ 5 is odd. This

assures the existence of a 6 -gap(w5) which allows us to obtain the smallest monomial of

Shad2(B2(w5)), i.e., x2x5x8x11x14x16xn−2xn.

Let n = 20. Then n−15 = 5 and bn−15
2 c = 2. Indeed the greatest monomial not belonging

to Shad2(B2(w5)) is w6 = x2x5x8x12x14x16x18x20. Hence there exist two monomials, w4 and

w5, that are divisible by u.

Now, let us consider n > 20. Hence the greatest monomial not belonging to Shad2(B2(w5))

is w6 = x2x5x8x11x14x17x19xn. One can observe that wd(7 -gap(w6)) = n−20 = n−17−3 =

wd(6 -gap(w5))− 3 and wd(5 -gap(w5)) = 17− 14− 1 = 2 = wd(5 -gap(w4)) + 1. This leads

that bn−15−3+1
2 c = m− 1.

Hence, if m− 1 > 1 we obtain the 2–spread monomial w7 = x2x5x8x11x14x17x20x22xn.

After m − 1 iterations we have bn−15−2m+2
2 c = bn−13−(n−16)

2 c = b 3
2c = 1. This assures

that we can construct the last 2–spread monomial not belonging to Shad2(B2(w3+m−1)). It

is w3+m = x2x5x8x12x14x16 · · ·xn which is the greatest 2–spread monomial not belonging

to this shadow.

Finally, we can observe that the monomial x2x6x8x10 · · ·xn−2xn is the greatest 2–spread

monomial not belonging to the Shad2(B2(x2x5x8x12x14x16 · · ·xn)).
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Proceedings in this way we are able to identify

1 + 3 +m+ 2 = 6 + bn− 15

2
c = 6 +

n− 16

2
=
n− 4

2

monomials which are the ones we are looking for.

The construction of these monomials together with Theorem 4.1.12 leads to the existence

of an ideal I ∈ S2,n,1 of initial degree 2 in S with |Corn(I)| = n−2
2 − 2 + 1 = n−4

2 . More in

details,

Corn(I) =

{
(ki, `i) : ki = n− 2(`i − 1)− 1, `i = 2 + (i− 1), i = 1, . . . ,

n− 4

2

}
=

=

{
(n− 3, 2), (n− 5, 3), . . . , (3,

n− 2

2
)

}

2

Now, we give an explicit description of the finitely generated Borel 2–spread ideal of

S2,n,1 of initial degree 2 with the maximal number of corners, for all even integer n ≥ 4. We

will denote it by B2,n,1 as in the case when n is odd.

Discussion 4.4.10 Let S = K[x1, . . . , xn] a polynomial ring, with n ≥ 4 even integer .

Firstly, let us consider n = 4, 6, 8, 10. In such cases, the ideals B2,n,1 are described in

Table 4.9.

n Corner sequence 2–spread strongly stable ideal

4 {(1, 2)} B2,4,1 = B2(x1x4) = (x1x3, x1x4)

6 {(3, 2), (1, 3)} B2,6,1 = B2(x1x6, x2x4x6)

8 {(5, 2), (3, 3)} B2,8,1 = B2(x1x8, x2x4x8)

10 {(7, 2), (5, 3), (3, 4)} B2,10,1 = B2(x1x10, x2x4x10, x2x5x7x10)

Table 4.9: 2–spread corner sequences for n = 4, 6, 8, 10.

One can observe that the monomial of the type x1xn (n = 4, 6, 8, 10) appears as 2–

spread Borel generators in all four ideals B2,4,1, B2,6,1, B2,8,1 and B2,10,1; the monomial

x2x4xn (n = 6, 8, 10) appears as 2–spread Borel generators in the ideals B2,6,1, B2,8,1 and

B2,10,1; whereas the monomial x2x5x7x10 appears only in the ideal B2,10,1, as 2–spread Borel

generator.

It is worth to underline a difference from the n odd case. Indeed for two consecutive even

values of n (n = 6, 8), one has the same type of Borel generators.

For n ≥ 12, the monomials in the following set

{x1xn, x2x4xn, x2x5x7xn} (4.4.7)
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will be always 2–spread Borel generators for B2,n,1.

Let us consider n = 12. From the Theorem 4.4.9 (proof) we have to introduce the

monomial x2x5x8x10x12 to complete the minimal system of monomial generators of B2,12,1.

Such a monomial is smaller than the monomials in (4.4.7), with respect to �.

Furthermore, if n ≡ 12 (mod 6), we need to add r1 = n−12
6 + 1 monomials of the type

x2x5x8

2k−1∏

i=0

x11+3ixjxn, j = 6k + 10, k = 0, . . . , r1 − 1

to the set in (4.4.7) to get the minimal system of monomial generators of B2,n,1, for all even

integer n ≥ 12. We refer to them as the first-left-form basic monomials.

Note that, setting
∏2k−1
i=0 x11+3i = 1 for k = 0, then x2x5x8

∏2k−1
i=0 x11+3ixjxn = x2x5x8x10xn.

Therefore, the monomials in

{x1xn, x2x4xn, x2x5x7xn, x2x5x8

2k−1∏

i=0

x11+3ixjxn, j = 6k + 10, k = 0, . . . , r1 − 1} (4.4.8)

will belong to the minimal set of monomial generators of B2,n,1, for all even integer n ≥ 12.

Let us consider n = 14. In such a case we introduce the monomial x2x6x8x10x12x14 as

Borel generator. For n ≥ 14, the monomial of the type x2x6x8x10 · · ·xn−2xn is the smallest

generator of the ideal, with respect to �.

In general, if n ≡ 14 (mod 6) then we need to add r2 = n−14
6 + 1 monomials of the type

x2

2k−1∏

i=0

x5+3ixj+2xj+4 · · ·xn−2xn, j = 6k + 4, k = 0, . . . , r2 − 1 (4.4.9)

to the set in (4.4.8) to get the minimal system of monomial generators of B2,n,1, for all even

integer n ≥ 14. We refer to them as the right-form basic monomials.

Note that, setting
∏2k−1
i=0 x5+3i = 1 for k = 0, then x2

∏2k−1
i=0 x5+3ixj+2xj+4 · · ·xn−2xn =

x2x6x8x10 · · ·xn−2xn.

Hence, the monomials in (4.4.9) together with the ones in (4.4.8) will belong to the

minimal set of monomial generators of B2,n,1, for all even n ≥ 14.

Now, let us consider n = 16. In such a case we need the monomial x2x5x8x11x13x16.

Such a monomial is greater than the right-form ones. In general, if n ≡ 16 (mod 6) then

r3 = n−16
6 + 1 monomials of the type

x2x5x8x11

2k−1∏

i=0

x14+3ixjxn, j = 6k + 13, k = 0, . . . , r3 − 1 (4.4.10)

will belong to the minimal set of monomial generators of B2,n,1, for all even n ≥ 16. We

refer to them as the second-left-form basic monomials.

Note that, setting
∏2k−1
i=0 x14+3i = 1 for k = 0, then x2x5x8x11

∏2k−1
i=0 x14+3ixjxn =

x2x5x8x11x13xn.
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Finally, the monomials in (4.4.10) together with the ones in (4.4.9) and the ones in (4.4.8)

will determine the minimal set of monomial generators of B2,n,1, for all even n ≥ 16.

The next example illustrates how given an even integer n ≥ 16 in order to get the set

of the generators of B2,n,1, one has to fix the the integers n, n − 2, n − 4. Reasoning as in

Remark 4.4.4, the number of the monomials we need is given by

3 +
n− 16

6
+ 1 +

n− 14− 2

6
+ 1 +

n− 12− 4

6
+ 1 = 6 +

n− 16

2
=
n− 4

2
.

and the 2–spread basic monomials can be obtained by (4.4.10), (4.4.9) and (4.4.8) via n,

n− 2, n− 4, respectively.

Example 4.4.11 Let us consider the polynomial ring S = K[x1, . . . , x20]. We want to

construct the 2–spread strongly stable ideal B2,20,1 of S. Setting I = B2,20,1, one has

|Corn(I)| = n−4
2 = 8 and

Corn(I) = {(17, 2), (15, 3), (13, 4), (11, 5), (9, 6), (7, 7), (5, 8), (3, 9)}.

In order to get the 2–spread basic monomials that determine the minimal system of

monomial generators G(I) we proceed as follows.

Step 1. Consider the three 2–spread basic monomials x1x20, x2x4x20 and x2x5x7x20.

Step 2. Since n = 20 ≡ 14 (mod 6), we have 20−14
6 + 1 = 2 right-form basic monomials of the

type

x2

2k−1∏

i=0

x5+3ixj+2xj+4 · · ·xn−2xn,

with j = 6k + 4 for k = 0, 1. They are x2x6x8x10x12x14x16x18x20 (k = 0, j = 4) and

x2x5x8x12x14x16x18x20 (k = 1, j = 10).

Step 3. Let us consider n − 2 = 18. Since n − 2 = 18 ≡ 12 (mod 6), we have 18−12
6 + 1 = 2

first-left-form basic monomials of the type

x2x5x8

2k−1∏

i=0

x11+3ixjxn,

with j = 6k + 10 for k = 0, 1. They are x2x5x8x10x20 (k = 0, j = 10) and

x2x5x8x11x14x16x20 (k = 1, j = 16).

Step 4. Let us consider n − 4 = 16. Since n − 4 = 16 ≡ 16 (mod 6), we have 16−16
6 + 1 = 1

second-left-form basic monomial of the type

x2x5x8x11

2k−1∏

i=0

x14+3ixjxn,

with j = 13 and k = 0. It is x2x5x8x11x13x20.
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Finally, ordering the monomials in Steps 1–4 with respect to �, we have the ideal

I = B2(x1x20, x2x4x20, x2x5x7x20, x2x5x8x10x20, x2x5x8x11x13x20, x2x5x8x11x14x16x20,

x2x5x8x12x14x16x18x20, x2x6x8x10x12x14x16x18x20).

From the Theorem 4.4.9 and Discussion 4.4.10, the next result follows.

Theorem 4.4.12 Let n ≥ 12 an even integer and `1 = 2. Given n−4
2 pairs of positive

integers

(k1, `1), (k2, `2), . . . , (kn−4
2
, `n−4

2
), (4.4.11)

with 1 ≤ kn−4
2
< kn−4

2 −1 < · · · < k1 ≤ n− 3 and 2 = `1 < `2 < · · · < `n−4
2
≤ n−2

2 , then there

exists a 2–spread strongly stable ideal I of S of initial degree `1 and with the pairs in (4.4.6)

as corners if and only if ki + 2(`i − 1) + 1 = n, for i = 1, . . . , n−4
2 .

Also in such a case the 2–spread strongly stable ideal in Theorem 4.4.12 is a 2–spread

lex ideal.

4.5 Macaulay2 package

The algorithms described in this chapter have been implemented in a Macaulay2 package:

“SquarefreeIdeals.m2” (tested with Macaulay 1.13). This package contains procedures to

handle squarefree (strongly) stable ideals and squarefree lex ideals. Moreover, the strongly

combinatorial nature of squarefree monomial ideals has allowed to create customized algo-

rithms to obtain the minimal generators for an ideal with given extremal Betti numbers.

More precisely, we implement some algorithms in order to compute, when possible, the

smallest squarefree strongly stable ideal with given extremal Betti numbers (values as well

as positions).

In this Section, we collect some examples in order to describe the principal algorithms in

this package.

Example 4.5.1 Let n and r < n be two positive integers. Let (k1, `1), . . ., (kr, `r), r pairs

of positive integers such that n − 3 ≥ k1 > k2 > · · · > kr ≥ 2 and 2 ≤ `1 < `2 < · · · < `r.

Moreover, let a1, . . . , ar, r positive integers.

We want to check if there exists a squarefree strongly stable ideal I of S = K[x1, . . . , xn] such

that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are its extremal Betti numbers. In positive

case we want to compute it.

Macaulay2, version 1.13

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
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i1 : loadPackage "SquarefreeIdeals";

i2 : n=10;

i3 : S=QQ[x_1..x_n];

i4 : g={x_2x_8, x_3x_4x_5, x_3x_4x_8x_9, x_3x_5x_7x_9,

x_4x_5x_6x_7x_8x_9x_10};

i5 : I=squarefreeStronglyStableIdeal ideal g

o5 = ideal (x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_2x_3,

x_2x_4, x_2x_5, x_2x_6, x_2x_7, x_2x_8, x_3x_4x_5, x_3x_4x_6x_7,

x_3x_4x_6x_8, x_3x_4x_6x_9, x_3x_4x_7x_8, x_3x_4x_7x_9,

x_3x_4x_8x_9, x_3x_5x_6x_7, x_3x_5x_6x_8, x_3x_5x_6x_9,

x_3x_5x_7x_8, x_3x_5x_7x_9, x_4x_5x_6x_7x_8x_9x_10)

o5 : Ideal of S

i6 : minimalBettiNumbersIdeal I

0 1 2 3 4 5 6

o6 = total: 26 94 154 139 71 19 2

2: 13 42 70 70 42 14 2

3: 1 2 1 . . . .

4: 11 47 80 68 29 5 .

5: . . . . . . .

6: . . . . . . .

7: 1 3 3 1 . . .

o6 : BettiTally

The functions extremalBettiCorners(ideal) compute the corner sequence of an ideal

using the definition of degree-sequence given in Equation 4.3.3. In this case, we want to

compute the smallest squarefree strongly stable ideal with this corners. The main func-

tion is extremalBettiMonomials(ring,integer,list,list) that returns (if possible) the

generators of the desired ideal. This procedure is based on the constructive proof of Theo-

rem 4.3.29 and uses two specific algorithms (see Algorithm 4.5 and 4.6) to compute two kind

of significant monomials.

i7 : corners=extremalBettiCorners I

o7 = {(6, 2), (5, 4), (3, 7)}

o7 : List

i8 : r=#corners;

i9 : a={2,5,1};
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i10 : Bg=extremalBettiMonomials(S,r,corners,a)

o10 = {x_1x_8, x_2x_8, x_3x_4x_5x_9, x_3x_4x_6x_9, x_3x_4x_7x_9,

x_3x_4x_8x_9, x_3x_5x_6x_9, x_4x_5x_6x_7x_8x_9x_10}

o10 : List

Now, we can compute the smallest squarefree strongly stable ideal containing the mono-

mials in the list. The existence of the fundamental Borel generators with given corners

assures that this ideal has the desired extremal Betti numbers (positions and values).

i11 : J=squarefreeStronglyStableIdeal ideal Bg

o11 = ideal(x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_2x_3,

x_2x_4, x_2x_5, x_2x_6, x_2x_7, x_2x_8, x_3x_4x_5x_6,

x_3x_4x_5x_7, x_3x_4x_5x_8, x_3x_4x_5x_9, x_3x_4x_6x_7,

x_3x_4x_6x_8, x_3x_4x_6x_9, x_3x_4x_7x_8, x_3x_4x_7x_9,

x_3x_4x_8x_9, x_3x_5x_6x_7, x_3x_5x_6x_8, x_3x_5x_6x_9,

x_4x_5x_6x_7x_8x_9x_10)

o11 : Ideal of S

i12 : minimalBettiNumbersIdeal J

0 1 2 3 4 5 6

o12 = total: 27 97 157 140 71 19 2

2: 13 42 70 70 42 14 2

3: . . . . . . .

4: 13 52 84 69 29 5 .

5: . . . . . . .

6: . . . . . . .

7: 1 3 3 1 . . .

o12 : BettiTally

Furthermore, we are trying to generalize some algorithms in order to manipulate t–spread

strongly stable ideals and to solve the problem related with given extremal Betti numbers

(values as well as positions).

Example 4.5.2 Let t = 2 and let two positive integers n and r < n. Let (k1, `1), . . .,

(kr, `r), r pairs of positive integers such that n − 3 ≥ k1 > k2 > · · · > kr ≥ 2 and 2 ≤
`1 < `2 < · · · < `r. We want to check if there exists a 2–spread strongly stable ideal I of

S = K[x1, . . . , xn] such that βk1,k1+`1(I) = 1, . . ., βkr,kr+`r (I) = 1 are its extremal Betti

numbers and in the positive case we want to compute it.

Macaulay2, version 1.13

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
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i1 : loadPackage "SquarefreeIdeals";

i2 : n=13;

i3 : S=QQ[x_1..x_n];

i4 : t=2;

i5 : indeg=2;

i6 : k=n-t*(indeg-1)-1

o6 : 10

i7 : tot=(k-k%t)//t

o7 : 5

i8 : corners=for i to tot-1 list (k-t*i,indeg+i)

o8 : {(10, 2), (8, 3), (6, 4), (4, 5), (2, 6)}

o8 : List

i9 : a=toList(#corners:1);

i10 : Bg=tspreadExtremalBettiMonomials(S,corners,a,t)

o10 = {x_1x_13, x_2x_4x_13, x_2x_5x_7x_13, x_2x_5x_8x_10x_13,

x_3x_5x_7x_9x_11x_13}

o10 : List

Now, we can compute the smallest squarefree strongly stable ideal containing the mono-

mials in the list. The existence of the fundamental Borel generators with given corners

assures that this ideal has the desired extremal Betti numbers (positions and values).

i14 : I=tspreadStronglyStableIdeal(t,ideal Bg)

o14 = ideal (x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_1x_7, x_1x_8, x_1x_9,

x_1x_10, x_1x_11, x_1x_12, x_1x_13, x_2x_4x_6, x_2x_4x_7,

x_2x_4x_8, x_2x_4x_9, x_2x_4x_10, x_2x_4x_11, x_2x_4x_12,

x_2x_4x_13, x_2x_5x_7x_9, x_2x_5x_7x_10, x_2x_5x_7x_11,

x_2x_5x_7x_12, x_2x_5x_7x_13, x_2x_5x_8x_10x_12,

x_2x_5x_8x_10x_13, x_3x_5x_7x_9x_11x_13)

o14 : Ideal of S

i15 : minimalBettiNumbersIdeal I

0 1 2 3 4 5 6 7 8 9 10

o15 = total: 27 120 294 496 610 553 367 174 56 11 1

2: 11 55 165 330 462 462 330 165 55 11 1

3: 8 36 84 126 126 84 36 9 1 . .

4: 5 20 35 35 21 7 1 . . . .

5: 2 7 9 5 1 . . . . . .

6: 1 2 1 . . . . . . . .

o15 : BettiTally
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Final considerations

In this dissertation we have faced some open problems related to Hilbert functions and

minimal free resolutions of graded submodules in the polynomial ring and in the exterior

algebra. As we have already observed, the relation between this two algebras is very strong

and most of the tools from commutative algebra can be used in both contexts. Our approach

has been above all computational: we have took advantage of the combinatorial features of

this structures to construct algorithms to manipulate ideals and submodules.

Our initial intent was to address some open problems and solve them in order to level

knowledge in both contexts, where possible.

In Chapter 2 we have characterized the Hilbert functions of graded E–modules of the

type F/M , with M graded submodule of F . A fundamental step was the construction of

the unique lexicographic submodule of F with the same Hilbert function as M . This result

is equivalent to what has already been done for the polynomial ring [Hul95].

In Chapter 3 we have proved the validity of the “higher” Kruskal–Katona’s Theorem for

E-submodules of a finitely generated graded free module F . Moreover, we have given upper

bounds for the graded Bass numbers of E–modules of the type Er/M , r ≥ 1 (see [AHH97]

for the rank one case).

Open 4.5.3 It would be nice to verify the inequality in Theorem 3.4.5 for quotients of the

type F/M , with F = ⊕ri=1Egi, when the basis elements g1, . . . , gr have different degrees.

We believe that such a statement should be proved by using a different approach, as next

example illustrates.

Example 4.5.4 Let E = K〈e1, e2, e3, e4〉 and F = ⊕ri=1Egi with deg g1 = deg g2 = −2,

deg g3 = −1. Let us consider the lex submodule of F

L = (e1e2, e1e3, e1e4, e2e3e4)g1 ⊕ (e1e2e3, e1e2e4, e1e3e4)g2 ⊕ (e1e2e3)g3,

Setting I1 = (e1e2, e1e3, e1e4, e2e3e4), I2 = (e1e2e3, e1e2e4, e1e3e4), I3 = (e1e2e3), one has

0 : I1 = (e1e4, e1e3, e1e2, e2e3e4),

0 : I2 = (e1, e2e3, e2e4, e3e4),

0 : I3 = (e1, e2, e3),

and N = ⊕rt=1(0 : It)gt is not a lex submodule of F . Proceeding as in Example 3.4.4, let us

consider the module

Ñ = (0 : I3)g1 ⊕ (0 : I2)g2 ⊕ (0 : I1)g3.
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It is not a lex submodule of F (e4 /∈ 0 : I3). Consider F ∗ = HomE(F,E). By using

Macaulay2, it is F ∗ = ⊕ri=1Eg̃i, with deg g̃1 = 1, deg g̃2 = deg g̃3 = 2 and one can quickly

verify that N = (0 : I3)g̃1 ⊕ (0 : I2)g̃2 ⊕ (0 : I1)g̃3 is a lex submodule of F ∗. Note that,

F ' F ∗ as E–modules, but not as graded E–modules. Indeed, HF 6= HF∗ . Hence, the

arguments given in Theorem 3.4.5 do not work in the case of quotients of a free module with

basis elements with different degrees.

In Chapter 4 we are in charge of analyzing the extremal Betti numbers of t–spread

strongly stable ideals of S, where t is an integer ≥ 0, in order to characterize the possible

extremal Betti numbers (values as well as positions). Also in this case, the approach has been

mainly algorithmic and constructive. Indeed, in the managed cases we have computed the

“fundamental” monomials to obtain the desired ideal, where possible, given an exhaustive

configuration of extremal Betti numbers.

For the case t = 0, i.e. monomial ideals of S, the Corollary 4.2.8 points out that the

main algorithm for FGBI is equivalent to the following:

Open 4.5.5 Given two positive integers n, r, 1 ≤ r ≤ n − 1, r pairs of positive integers

(k1, `1), . . ., (kr, `r) such that n− 1 ≥ k1 > k2 > · · · > kr ≥ 1, 1 ≤ `1 < `2 < · · · < `r, and r

positive integers a1, . . . , ar. Under which conditions does there exist a piecewise lexsegment

ideal L of S such that βk1,k1+`1(L) = a1, . . ., βkr,kr+`r (L) = ar are its extremal Betti

numbers?

As we have just underlined, the class of piecewise lexsegment ideals has played a relevant

role in [HSV14] in the numerical characterization of the possible extremal Betti numbers

(values as well as positions) of any homogeneous ideal in a polynomial ring over a field of

characteristic 0. Furthermore, [HSV14, Theorem 6.7 (iii)] states some conditions about the

Macaulay representation of the positive integers a1, . . . , ar which guarantee the existence of

a piecewise lexsegment ideal solution of Problem 4.5.5. Hence, we believe that it would be

nice to implement new algorithms which determine the associated smallest possible piecewise

lexsegment ideal via such conditions.

For the case t = 1, i.e. squarefree graded ideals of S, we have solved the problem of the

extremal Betti numbers positions as well as values giving numerical bounds for the number

of the corners and of the values. Moreover, for admissible corners sequences and values

some constructive algorithms returns the smallest squarefree strongly stable ideal with given

extremal Betti numbers.

For the case t = 2, i.e. 2–spread graded ideals of S, we have discussed the extremal Betti

numbers of t–spread strongly stable ideals and we have determined the maximal number of

the admissible corners of 2–spread strongly stable ideals. It would be nice to generalize the

results in Section 4.3.2 to t–spread strongly stable ideals for all t ≥ 2.
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The following questions are currently under investigation and the generalization of the

principal algorithms is in progress.

Open 4.5.6 Given an integer t ≥ 2, let St,n be the set of all t–spread strongly stable ideals

in S. What is the largest number of corners allowed for an ideal of St,n?

Open 4.5.7 Given three positive integers t ≥ 2, n and r < n, r pairs of positive integers

(k1, `1), . . ., (kr, `r) such that n − 3 ≥ k1 > k2 > · · · > kr ≥ 2 and 2 ≤ `1 < `2 < · · · < `r,

and r positive integers a1, . . . , ar, under which conditions does there exist a t–spread strongly

stable ideal I of S = K[x1, . . . , xn] such that βk1,k1+`1(I) = a1, . . ., βkr,kr+`r (I) = ar are its

extremal Betti numbers?
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Univ. “Ovidius” Constanţa Ser. Mat., 2019.
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