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Abstract

This thesis addresses the characterization of geometric properties for problems
in Partial Di�erential Equations (PDEs), geometric analysis and functional in-
equalities, with particular interest in the study of symmetry and quantitative
stability issues. The thesis consists in four chapters.

Chapter 1 is about symmetry and quantitative studies for hypersurfaces
embedded in space forms with some curvature close to a constant. The starting
point is the well-known Alexandrov Soap Bubble Theorem which asserts that
the distance spheres are the only embedded closed connected hypersurfaces in
space forms (i.e. the Euclidean space, the hyperbolic space and the hemisphere)
having constant mean curvature. Actually the theorem can be extended to more
general functions of the principal curvatures f(k1, . . . , kn−1) satisfying suitable
conditions. The main result in Chapter 1 are sharp quantitative estimates of
proximity to a single sphere for Alexandrov Soap Bubble Theorem in space forms
when the curvature operator f is close to a constant. Under an assumption that
prevents bubbling (the uniform touching ball condition), the proximity to a
single sphere is optimally quanti�ed in terms of the oscillation of the curvature
function f . Our approach provides a uni�ed picture of quantitative studies of
the method of moving planes, i.e. the original method introduced by Alexandrov
to prove its theorem, in space forms.

Chapter 2 is about symmetry results for Serrin-type overdetermined prob-
lems. Serrin's symmetry results asserts that if there exists a solution to an
overdetermined boundary value problem associated to the equation ∆u = −1
in an open domain of the Euclidean space, then the domain must be a ball.

The �rst result in Chapter 2 is a Serrin's symmetry result for an overdeter-
mined boundary value problem in a particular class of Riemannian manifolds,
the so-called model manifolds. We prove an Euclidean symmetry result under
a suitable compatibility assumption between the solution and the geometry of
the manifolds.

The second result in Chapter 2 is a Serrin's symmetry result for overde-
termined boundary value problems in convex cones for (possibly) degenerate
operators, such as the p-Laplace operator, in the Euclidean space as well as for
a suitable generalization of the problem for convex cones in space forms. We
prove symmetry results by showing that the existence of a solution implies that
the domain is a spherical sector.

Chapter 3 is about symmetry results for critical anisotropic p-Laplace equa-
tions in convex cones. Given 1 < p < n, we consider the critical p-Laplacian
equation ∆pu + up

∗−1 = 0, which is related to critical points of the Sobolev
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ABSTRACT

inequality and to the Yamabe problem. Exploiting the moving planes method,
it has been recently shown that positive and entire solutions to the ciritical p-
Laplacian equation are classi�ed and are given by the so-called Aubin-Talenti
bubbles. Since the moving planes method strongly relies on the symmetries
of the equation and the domain, in Chapter 3 we provide a new approach to
this Liouville-type problem that allows us to give a complete classi�cation of
solutions in an anisotropic setting and in convex cones. More precisely, we
characterize solutions to the critical p-Laplacian equation induced by a smooth
norm inside any convex cone of the Euclidean space. One can show that the
critical p-Laplace equation that we consider is related to the critical points of
the anisotropic Sobolev inequality in convex cones. Since a sharp Sobolev in-
equality was missing in this setting, in Appendix B, we prove a general class
of (weighted) anisotropic Sobolev inequalities inside arbitrary convex cones by
using the optimal transport approach.

Chapter 4 is about functional inequalities on a particular class of Rieman-
nian manifolds. In particular we consider the so-called Cartan-Hadamard man-
ifolds, i.e. complete, simply connected, non-compact Riemannian manifolds
with negative sectional curvatures everywhere. It is well-known that on every
Cartan-Hadamard manifold the Sobolev inequality holds true, moreover if the
sectional curvatures are bounded above by a negative constant then also the
Poincaré inequality holds true. In Chapter 4 we investigate the validity, as well
as the failure, of Sobolev-type inequalities on Cartan-Hadamard manifolds un-
der suitable bounds on the sectional and the Ricci curvatures. More speci�cally,
we prove that if the sectional curvatures are bounded from above by a negative
power of the distance from a �xed pole (times a negative constant), then all the
Lp-inequalities that interpolate between Poincaré and Sobolev hold in the ra-
dial setting; provided such power lies in the interval (−2, 0), except the Poincaré
inequality. If the power is equal to −2 then p must necessarily be strictly larger
(in a quantitative way) than 2. Upon assuming similar bounds from below on
the Ricci curvature, we show that the non-radial version of such inequalities
fails, except for the Sobolev one. Finally, we prove optimal smoothing e�ects
for a porous medium equation set up on the Cartan-Hadamard manifolds we
are considering which follows from the Sobolev-type inequalities that we prove.
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Introduction

This thesis addresses the characterization of geometric properties for solutions
to problems in Partial Di�erential Equations (PDEs), geometric analysis and
functional inequalities, with particular interest in the study of symmetry and
quantitative stability issues. The thesis is divided in four parts.

Part I is about symmetry and quantitative studies for hypersurfaces embed-
ded in space forms with some curvature close to a constant, for instance the
mean curvature, and overdetermined problems for PDEs. This part collects the
results obtained in [63, 65, 196].

Part II is about symmetry results for critical anisotropic p-Laplace equations
in convex cones and functional inequalities on a particular class of Riemannian
manifolds. Part II collects the results obtained in [57] and [174].

Part III contains the four appendixes of the thesis and Part IV collects the
bibliographic references of the thesis.

This is a �rst introduction to the topics and results contained in this thesis.
We refer to the introductions to Part I and to Part II for a more detailed descrip-
tion of the results contained in this thesis. We will start by describing classical
results about the isoperimetric inequality and the Sobolev inequality, which mo-
tivate most of the results contained in this thesis. Roughly speaking, we can
say that most of the problems that we will consider in the thesis are related to
the Euler-Lagrange equations associated to these two inequalities. Moreover we
will emphasize several similarities that arise when considering di�erent proofs
of these problems.

The isoperimetric problem goes back to the ancient Greece (the well-known
Dido's Problem) and it has been object of studies for generations of mathe-
maticians. The isoperimetric problem consists in minimizing the surface area
among all domains having �xed volume, or equivalently maximizing the volume
among all domains whose boundary surface has �xed (n− 1)-dimensional area.
It is well known that is that the unique extremal of these problems is the ball.
An equivalent and more analytic formulation of the isoperimetric problem is
the so-called isoperimetric inequality : if Ω ⊂ Rn is a bounded domain, and ∂Ω
denotes its boundary, then

|∂Ω| ≥ nω
1
n
n |Ω|1−

1
n , (1)

where ωn denotes the volume of the unit sphere in Rn and | · | denotes either the
n-dimensional (Lebesgue) measure or the (n − 1)-dimensional surface measure
of a subset of Rn. Moreover, the equality in (1) is attained if and only if the
domain is a ball (see [78] and also [179]).

vi



INTRODUCTION

The natural functional associated to (1) is the isoperimetric functional given
by:

P(Ω) :=
|∂Ω|n
|Ω|n−1

. (2)

We are interested in studying critical points of the functional P. The most direct
approach is to perform the methods of the calculus of variations in order to write
the Euler-Lagrange equation associated to (2). Let Ω ⊂ Rn be a critical domain
for the functional (2) and assume that Ω is bounded by a smooth hypersurface
S, i.e. S = ∂Ω. The idea is to compute the �rst variation of the functional P:
we take a smooth function h : S → R and we consider the normal variation of
S de�ned by ψt : S → Rn such that

ψt(p) = p+ th(p)ν(p) ,

where ν is the unitary exterior normal �eld to S. We denote by St the hy-
persurface given by ψt(St) and by Ωt the domain enclosed by St; observe that
St is nothing but the displacement of each point of S by the vector thν. For
simplicity of notation, we set

A(t) := |St| =
ˆ

St

dσ and V(t) := |Ωt| =
ˆ

Ωt

dx .

Then the �rst variation of the functional (2) above is given by (see e.g. [161]
and [208])

A′(0) = −(n− 1)

ˆ

S

hH dσ and V ′(0) =

ˆ

S

h dσ , (3)

where H is the mean curvature of S. Since Ω is a critical domain, we have that

d

dt

∣∣∣
t=0
P(Ωt) = 0 ,

or equivalently, from (2) and (3),
ˆ

S

h (n|Ω|H − |S|) dσ = 0 , for all h,

and this implies that S has constant mean curvature. Hence we prove that
the Euler-Lagrange equation associated to the functional (2) (and so to the
inequality (1)) is

H ≡ |∂Ω|
n|Ω| . (4)

Now the following characterization proved by Alexandrov in the 50's comes into
play:

Theorem A ([6]): let S be a C2-regular, connected, closed (i.e. compact and
without boundary) hypersurface embedded in the Euclidean space Rn. Then S
has constant mean curvature if and only if is a sphere.

Putting the previous computation and Theorem A together, we prove that
critical points of the functional (2) must be spheres, and in particular the equal-
ity in (1) is attained if and only if the domain is a ball.
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INTRODUCTION

We mention that the previous argument (in particular Alexandrov's Theo-
rem) works if we assume to work with smooth boundaries and this is not the
general situation where one wants to prove the isoperimetric inequality (we refer
to the theory of sets of �nite perimeter developed by Caccioppoli and De Giorgi
in the 30-50's, see also [163] for a recent reference). So we emphasize that in
this �rst part of the Introduction we only wanted to stress the link between the
isoperimetric inequality and Alexandrov's Theorem because this is, probably,
the most important motivation in order to study Alexandrov's Theorem. We
mention that Theorem A is stated in its simplest formulation, indeed Alexan-
drov's Theorem has been widely studied and extended in several directions.
Moreover, in the last years, also the quantitative version of the isoperimetric
inequality has been the object of several studies. In [104] the sharp quantitative
version of the isoperimetric inequality in Rn has been proved. Once one has a
quantitative result for the minimizers of (2) it is of strong interests to under-
stand the shape of critical points of (2) (see [58, 67]). In Chapter 1 we study
a quantitative version of Alexandrov Theorem for hypersurfaces embedded in
space forms with some curvature (not necessary the mean curvature) close to a
constant.

Alexandrov Theorem is also related to an important and well-known result
in the theory of elliptic PDEs, which is the following characterization of domains
which support a solution to an overdetermined problem.

Theorem B ([204]): let Ω ⊂ Rn be a bounded domain with boundary of class
C2 and let ν be the outward normal to ∂Ω. Then there exists a solution u ∈
C2(Ω) ∩ C1(Ω) to {

∆u = −1 in Ω

u = 0 on ∂Ω ,
(5)

such that, for some constant c,

∂νu = c on ∂Ω , (6)

if and only if Ω is a ball and u is a radial function.

Theorem B was proved by Serrin in 1971 by using the so-called method of
moving planes, which takes inspiration from the re�ection principle introduced
by Alexandrov to prove Theorem A. As we will show in Appendix D, a further
link between these two theorems is that they are "equivalent", in the sense that
we can prove Theorem A assuming Theorem B holds and viceversa (we mention
that the technique used to prove this equivalence takes inspiration from the
proof of Theorem B proposed by Weinberger in [215]).

Before giving an idea of the proofs of the two theorems, we mention that
Serrin's problem (5)-(6) is called an overdetermined boundary value problem
since the Dirichlet problem (5) already admits a unique solution; hence condition
(6) is an additional requirement and in general the whole problem (5)-(6) may
not admit a solution. Thus, the remaining data of the problem, the domain Ω,
cannot be given arbitrarly, i.e. there is a requirement also on the domain: this
phenomenon is called rigidity and it implies that the domain and the solution
itself satisfy some symmetry.

We emphasize that overdetermined boundary value problems like (5)-(6)
arise in many context. The following is one of the physical interpretations given
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INTRODUCTION

by Serrin in [204]: consider a viscous incompressible �uid moving in straight
parallel streamlines through a straight pipe of given cross sectional form Ω,
then it is standard that the velocity �ow u satis�es (5). In this context, Serrin's
result can be formulated as follows: the tangential stress on the pipe wall is the
same at all points of the wall if and only if the pipe has a circular cross section.

The same di�erential equation and boundary condition arise in the linear
theory of torsion of a solid straight bar of cross section Ω (see [204] for more
details), In this context, Serrin's result states that, when a solid straight bar is
subject to torsion, the magnitude of the resulting traction which occurs at the
surface of the bar is independent of position if and only if the bar has a circular
cross section. Moreover, overdetermined problems like (5)-(6) arise when one
study critical domains for the torsional rigidity.

Now we describe the proofs given by Alexandrov and Serrin for Theorems A
and B, respectively. The idea behind Alexandrov's proof is the following: under
the assumptions of Theorem A, S is a sphere if and only if for every ω ∈ Rn
there exists a hyperplane πω orthogonal to ω such that the hypersurface S is
symmetric about πω. In order to achieve this symmetry property, let ω ∈ Rn be
a �xed direction and let πλ be a 1-parameter family of hyperplanes orthogonal
to ω. We move these hyperplanes towards S until we touch S and we continue to
move them until we �nd a critical hyperplane π∗. In order to de�ne the critical
hyperplane π∗ we de�ne: T ∗ is the halfspace such that ∂T ∗ = π∗, S′ = S ∩ T ∗
is the part of S contained in T ∗ and S∗ is the re�ection with respect to π∗ of
S′. With these notations the critical hyperplane π∗ is de�ned in the following
way:

(i) either S∗ is tangent to S at a point p ∈ S \ π∗;

(ii) or π∗ is orthogonal to S at a point q ∈ S ∩ π∗.

Since S and S∗ are tangent to p (or q), we can locally write the two hypersurfaces
as graphs of function u and u∗, respectively, on the tangent space at p (or q).
Moreover, by construction u− u∗ has a sign, and u and u∗ satisfy the following
elliptic equation:

H =
1

n− 1
div

(
∇v√

1 + |∇v|2

)
, (7)

with H constant (equal to the value of the mean curvature) and where the right-
hand side is the expression of the mean curvature of the graph of a function v. At
this point the PDE's tools come into our help: by using the strong maximum
principle in case (i) and the Hopf's boundary point Lemma in case (ii) we
conclude that u = u∗, which implies that the hypersurface S and its re�ection
S∗ with respect to the plane π∗ coincide. Since the direction ω is arbitrary we
conclude that S must be spherically symmetric and hence S is a sphere.

The proof of Theorem B given by Serrin generalizes Alexandrov's re�ection
principle. Also in this case the goal is to prove that Ω is symmetric with respect
to the hyperplane πω orthogonal to ω ∈ Rn. As before, let T ∗ be the halfspace
such that ∂T ∗ = π∗, Ω′ = Ω ∩ T ∗ is the part of Ω contained in T ∗ and Ω∗

is the re�ection with respect to π∗ of Ω′. We consider the critical hyperplane
π∗ at the two critical positions (i) and (ii) with S = ∂Ω. We compare the
solution u to (5)-(6) to its re�ection v, de�ned in Ω∗. Since u − v is harmonic
and non negative either u − v > 0 in Ω∗ or u − v ≡ 0 in Ω∗. If u − v > 0

ix



INTRODUCTION

occurs, the Hopf's Lemma gives a contradiction in case (i). Case (ii) is more
delicate and one has to use Serrin's corner Lemma (see [204, Lemma 1]) to �nd
a contradiction. Hence u− v ≡ 0 in Ω∗ and Ω is symmetric about π∗.

Both Alexandrov's and Serrin's results and proofs originate a great interest
in geometric analysis and PDE's communities. Indeed the method of moving
planes is a powerful tool which has been used to prove several results in geometric
analysis, for elliptic and parabolic PDEs, Harnack's inequalities and many others
results (see e.g. [9, 23, 24, 36, 37, 38, 146, 155, 168, 192, 193, 202]). Moreover,
one of the most in�uencing application of the method of moving planes in the
theory of PDEs is the approach of Gidas-Ni-Nirenberg in [109] and [110] where
the authors prove symmetry results for positive solutions of elliptic PDEs.

As for Alexandrov Theorem, we mention that Theorem B is stated in its
simplest version and many generalizations have been studied. In Chapter 2
we will study symmetry results in the spirit of Theorem B in more general
Riemannian manifolds (see Section 2.1) and for quasilinear operators in convex
cones (see Section 2.2).

As already mentioned, the inequality that motivates the study in Part II
is the Sobolev inequality (see [210] and also [105, 177]) in Rn, n ≥ 2: given
1 < p < n there exists a constant Cn,p > 0 such that the following inequality

(
ˆ

Rn
|u|p∗ dx

)p/p∗
≤ Cn,p

ˆ

Rn
|∇u|p dx (8)

holds for every function u in the homogeneous space

D1,p(Rn) :=
{
u ∈ Lp∗(Rn) : ∇u ∈ Lp(Rn)

}
, (9)

where p∗ is the critical Sobolev exponent, i.e.

p∗ =
np

n− p . (10)

Sobolev inequality appears when one considers the embedding of the Sobolev
space in some Lp-space. Moreover it naturally appears in regularity theory for
PDEs and it is related to the isoperimetric inequality as well as to many other
important topics in mathematical analysis.

The natural functional associated to (8) is the Sobolev functional given by:

J (u) :=

´

Rn |∇u|p dx(´
Rn |u|p

∗ dx
)p/p∗ . (11)

We are interested in critical points of this functional J and we want to write
and study the Euler-Lagrange equation associated to (11). Let u be a (positive)
critical point of (11) and we compute the �rst variation of the functional. Let
ε > 0 and let ϕ ∈ C∞c (Rn) be a test function. Since u is a critical point we get

d

dε

∣∣∣
ε=0
J (u+ εϕ) = 0 ,

x



INTRODUCTION

or equivalently, from a direct computation,

ˆ

Rn
|∇u|p−2∇u · ∇ϕdx−

´

Rn |∇u|p dx
´

Rn |u|p
∗ dx

ˆ

Rn
up
∗−1ϕdx = 0 ,

for all ϕ ∈ C∞c (Rn). By multiplying u by an appropriate constant we may
assume that u satis�es
ˆ

Rn
|∇u|p−2∇u · ∇ϕdx−

ˆ

Rn
up
∗−1ϕdx = 0 , for all ϕ ∈ C∞c (Rn) . (12)

Equation (12) is the weak formulation of the following quasilinear PDE:

∆pu+ up
∗−1 = 0 in Rn,

where ∆pu is the usual p-Laplace operator, i.e.

∆pu = div (|∇u|p−2∇u) ,

and p∗ is the Sobolev critical exponent de�ned in (10). Hence we prove that the
Euler-Lagrange equation (for positive critical point) associated to the functional
(11) (and so to the inequality (8)) is the following critical p-Laplace equation in
Rn: {

∆pu+ up
∗−1 = 0 in Rn

u > 0 in Rn.
(13)

We observe some properties of (13) which will be useful in the following: if u is

a solution to (13) then also u(x+α), for α ∈ Rn, and λ
n−p
p u(λx), for λ ∈ R, are

solutions to (13). These two properties are called invariance under translations
and invariance under rescaling of (13).

As mentioned in [224], it is well known that the pro�le of solutions of the
equation

∆pu+ |u|p∗−2u = 0 in Rn ,

plays a central role in the blow-up theories of critical equations. Problem (13)
is also interesting from the point of view of the calculus of variations. Since
the embedding W 1,p(Rn) ↪→ Lp

∗
(Rn) is not compact, the classical tools of the

calculus of variatons (e.g. the Mountain Pass Lemma or the direct method of
the calculus of variations) do not apply to

E(u) =
1

p

ˆ

Rn
|∇u|p dx− 1

p∗

ˆ

Rn
up
∗
dx ,

which is the energy functional associated to (13).
Equation (13) is also related to the Yamabe problem. We recall that the

Yamabe problem (see [10, 201, 220, 226]) is the following: given a compact
Riemannian manifold (M, g0) of dimension n ≥ 3, is it possible to �nd a metric
g conformal to g0 such that its scalar curvature Rg is equal to a prescribed
constantR? One can show that this problem boils down to showing the existence
of a positive solution u to the nonlinear PDE

4(n− 1)

n− 2
∆g0u−Rg0u+Ru

n+2
n−2 = 0 , (14)

xi



INTRODUCTION

where ∆g0 is the Laplace-Beltrami operator of the metric g0 and Rg0 denotes
the scalar curvature of the metric g0. Indeed, if u solves (14) then the metric
g = u

4
n−2 g0 is such that Rg = R.

When (M, g0) is the round sphere then Rg0 = n(n− 1) and (14) can be read
on Rn by means of the stereographic projection. More precisely, consider the
inverse stereographic projection F : Rn → Sn. Then v : Sn → R solves (14) if
and only if the function

u(x) =

(
2

1 + |x|2
)n−2

2

v(F (x))

solves

∆u+
n− 2

4(n− 1)
Ru

n+2
n−2 = 0 ,

which is, up to a multiplicative constant, equation (13) with p = 2.
We mention that an important task related to the Sobolev inequality (8) is

the following: to compute the value of the best constant in (8), i.e. to obtain
the sharp Sobolev inequality. The value of the best constant was obtained inde-
pendently by Talenti [217] and Aubin [10]; moreover they showed that equality
in the sharp Sobolev inequality is achieved by the following Aubin-Talenti radial
functions (or bubbles):

U(x) =
a

(
b+ |x− x0|

p
p−1

)n−p
p

for some a, b > 0 and x0 ∈ Rn . (15)

The idea to prove this result is to minimize the functional (11) in D1,p(Rn).
By using the Schwarz symmetrization technique Talenti proved that the spher-
ically symmetric radial rearrangement of u preserves ||u||Lp∗ (Rn) and makes
||∇u||Lp(Rn) smaller. Hence, minimizers are forced to be spherically symmetric
radial functions and, by computing the Gateaux di�erential of the functional
J for these type of functions, one obtains that minimizers of J (we assume for
simplicity that they are positive) satisfy the following ode:

1

rn−1
(rn−1(u′)p−1)′ + up

∗−1 = 0 ,

where r = |x|. This yields to the Aubin-Talenti functions (15).
We observe that the results of Aubin and Talenti classify minima of the

functional (11). An interesting issue in PDE's community is to look for a char-
acterization of critical points of the functional (11), i.e. a characterization of
solutions to (13). The classi�cation of all solution to (13) started in the seminal
papers [110] (see also [178]) and [48] for p = 2 and it has been the object of
several studies. Recently in [224] and [203], solutions to (13) belonging to the
class D1,p(Rn) have been completely characterized. In particular, the following
Liouville-type theorem holds:

Theorem C ([224, 203]): let n ≥ 2, 1 < p < n and let u be a solution to (13)
such that u ∈ D1,p(Rn). Then there exist λ > 0 and x0 ∈ Rn such that

u(x) = Uλ,x0(x) =



λ

1
p−1n

1
p

(
n−p
p−1

) p−1
p

λ
p
p−1 + |x− x0|

p
p−1




n−p
p

. (16)
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We mention that the previous result is not true if u may change sign (see
e.g. [84, 79, 80]). Actually, in the semilinear case p = 2 a more general version
of Theorem C is available in literature, indeed the assumption u ∈ D1,p(Rn)
can be removed by using the Kelvin tranform. The other crucial ingredient to
prove Theorem C is a generalization of the method of moving planes introduced
by Serrin (see e.g. [27, 109]). In the quasilinear case p 6= 2 the problem is more
complicate because one has to tackle the nonlinear nature of the p-Laplace
operator and Kelvin type transform is not available. A �rst version of Theorem
C for 2n

n−2 ≤ p < 2 was proved in [76]; this result was extended to the range of
exponent 1 < p < 2 in [224]. Finally, in [203] the range 2 ≤ p < n was considered
and this concludes the picture. The key point in the proof of Theorem C is to
show that the solutions to (13) are radial and then, from [123] one knows that
the only positive, radially symmetric solutions of (13) are of the form (16).

Motivated by recent studies on the Sobolev inequality in convex cones and
on the anisotropic Sobolev inequality in Chapter 3 we prove a generalization
of Theorem C for critical anisotropic p-Laplace equations in convex cones. We
mention that the Kelvin transform and the method of moving planes are not
helpful neither for anisotropic problems nor inside cones. For this reason, in
Chapter 3, we provide a new approach to the characterization of solutions to
critical p-Laplacian equations, which is based on integral identities rather than
moving planes. This approach takes inspiration from [206] where non-existence
results are considered and also from [29, 30, 40, 215] where classical overde-
termined problems for PDEs are considered (see also [63, 180] for analogous
problems in convex cones). We mention that our approach is new also in the
Euclidean space with the Euclidean norm (see Appendix C)

In Chapter 4 we investigate the validity of Sobolev-type inequalities in a
particular class of Riemannian manifolds. The investigation of functional in-
equalities on Riemannian manifolds is a very wide and active research �eld (see
e.g. [131, 129] where the discussion is mainly devoted to the rigorous de�nition
of Sobolev spaces on Riemannian manifolds and the properties of the associated
embeddings or functional inequalities). As already mentioned the �rst result
dealing with the optimal constant of the Euclidean Sobolev inequality is due to
the celebrated papers [12] and [217]. Then, T. Aubin continued the investigation
of Sobolev-type inequalities as well as related optimality issues on Riemannian
manifolds: see [10] (in the case of compact manifolds with applications to the
Yamabe problem), [11] (where higher-order inequalities are also considered) and
[13] (for estimates of the best constants of subcritical Sobolev embeddings).
Some of the results of [12] were then improved in [130, 132], essentially by re-
quiring bounds on the Ricci curvature in place of the sectional curvatures.

Functional-analytic issues on the hyperbolic space Hn have drawn a lot of
interest recently, the latter being in a sense the simplest example of a noncom-
pact Riemannian manifold with negative curvatures. In this regard, we mention
[25], where an improved version of the Poincaré (or spectral-gap) inequality
is obtained with optimal remainder terms of Hardy type. In fact Hardy-type
inequalities were also considered in [50], for non-standard weights satisfying
suitable di�erential inequalities (with explicit applications to Cartan-Hadamard
manifolds). Finally, in [175] the author establishes an inequality on Hn yielding
the optimal Sobolev and Poincaré inequalities simultaneously.

For a rather complete survey dealing with connections between the Poincaré

xiii



INTRODUCTION

inequality, the logarithmic Sobolev inequality, measure-concentration issues and
isoperimetric bounds (not only on Riemannian manifolds actually), we refer to
[153], while in [18] the authors, starting from inequalities that interpolate be-
tween Poincaré and log-Sobolev, provide a method to obtain weighted inequal-
ities of the same type for weights complying with optimal growth conditions.

Most of the results we have mentioned above are focused on proving the va-
lidity of Sobolev (or Poincaré, or Hardy) inequalities. One can also investigate
topological consequences: in [51, 152] it is shown (under suitable curvature or
volume-growth assumptions, respectively) that a Riemannian manifold support-
ing a Sobolev inequality with Euclidean constant is necessarily isometric to Rn.
For similar problems, but rather di�erent methods of proof, see also [185].

More speci�cally, in Chapter 4 we study Sobolev-type inequalities on a par-
ticular class of Riemannian manifolds: the so-called Cartan-Hadamard man-
ifolds (i.e. Riemannian manifolds with negative sectional curvatures) under
curvature bounds. The situation is the following: given a Riemannian manifold
with everywhere nonpositive sectional curvatures then the Sobolev inequality
holds true. Moreover if the sectional curvatures are bounded above by a nega-
tive constant then also the Poincaré inequality holds true. Motivated by these
results in Chapter 4 we study what happens in between, explicitly we will as-
sume that the sectional curvatures of the Riemannian manifold are bounded
from above by a negative power of the distance from a �xed pole (times a neg-
ative constant), then all the Lp inequalities that interpolate between Poincarè
and Sobolev hold in the radial setting, provided such power lies in the interval
(−2, 0), except the Poincarè inequality. Moreover, if the power is equal to −2
then p must necessarily be strictly larger (in a quantitative way) than 2. Upon
assuming similar bounds from below on the Ricci curvature, we show that the
nonradial version of such Sobolev-type inequalities fails, except for the Sobolev
one. Finally, in Section 4.6 we prove optimal smoothing e�ects for a porous
medium equation.
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Introduction to Part I

Part I of this thesis deals with quantitative studies for hypersurfaces embedded
in space forms with some curvature close to a constant (in Chapter 1) and
symmetry results for overdetermined problems (in Chapter 2). This part collects
the results obtained in the following papers: [63, 65, 196].

In this Introduction we describe in more details the results contained in
Chapters 1 and 2.

Chapter 1. The �rst chapter of this thesis is dedicated to quantitative
studies for hypersurfaces with almost constant curvature. The starting point
that motivates the study in this chapter is Alexandrov's Theorem (Theorem A
in the Introduction). Alexandrov's Theorem has attracted a lot of interest in
the last decades and several possible generalizations have been considered. It
is well-known that Alexandrov's Theorem is in general false for non-embedded
submanifolds (see e.g. [139] and [216] for classical counterexamples in higher
dimension and in R3, respectively). However, for immersed hypersurfaces, one
can add some condition in order to guarantee that S is a sphere: in particular
Hopf proved in [136] that every constant mean curvature C2-regular sphere
immersed in the 3-dimensional Euclidean space is necessary a round sphere (see
also [1, 169, 170] for a very recent generalization of Hopf's theorem to simply-
connected homogeneous 3-manifolds), and Barbosa and DoCarmo [19] proved
that every compact, orientable and stable hypersurface immersed in Rn is a
round sphere (see also [20] for generalizations of this result). It is also well-known
that there exists non-closed constant mean curvature hypersufaces embedded
in R3 which are not di�eomorphic to a sphere, like for instance unduloids (see
[81] and [140] for a possible generalization to higher dimensions).

Another interesting generalization was provided by Alexandrov himself. In
[5] and [7] a generalization of Theorem A for hypersurfaces embedded in the
hyperbolic space Hn and in the hemisphere Sn+. Here and in the following, we
will indicate with Mn

+ the three spaces: Rn, Hn, Sn+ and we call them space
forms. Moreover the theorem holds true for a large class of curvature operators,
not only the mean curvature (see [7, 52, 125, 141, 145, 158, 199, 212, 227]).
This is the type of generalization that we are interested in. In order to properly
describe the result, we introduce some notation.

Let S be a C2-regular, connected, closed hypersurface embedded in Mn
+.

Then S is always the boundary of a relatively compact connected open set
Ω ⊂ Mn

+ and we orient S by using the normal vector �eld to S inward with
respect to Ω. Let {k1, . . . , kn−1} be the principal curvatures of S increasingly
ordered.

We denote by HS one of the following functions:

2



INTRODUCTION TO PART I

(I) the mean curvature H, with

H :=
1

n− 1

n−1∑

i=1

ki

(II) f(k1, . . . , kn−1), where

f : {x = (x1, . . . , xn−1) ∈ Rn−1 : x1 ≤ x2 ≤ · · · ≤ xn−1} → R ,

is a C2-function such that

f(x) > 0, if xi > 0 for every i = 1, . . . , n− 1

and f is concave on the component Γ of {x ∈ Rn−1 : f(x) > 0} contain-
ing {x ∈ Rn−1 : xi > 0}.

For instance, if Hr denotes the r-higher order curvature of S de�ned as the
elementary symmetric polynomial of degree r in the principal curvatures of S,
then H1/r

r satis�es (ii). By using this notation, Alexandrov's theorem can be
stated as follows:

Theorem I.A: let S be a C2-regular, connected, closed (i.e. compact and
without boundary) hypersurface embedded in Mn

+ and let HS be as in (I) or (II).
Then HS is constant if and only if S is a distance sphere.

The proof of this theorem can be done with the same technique introduced
by Alexandrov, but we mention that for particular choices of the function f
in (II) di�erent proofs, based on integral inequalities and geometric identi-
ties, are avaible in literature (see e.g. [30, 127, 128, 172, 194, 198, 197]). For
more recent generalizations of Alexandrov's Theorem we refer to [41], where
constant mean curvature hypersurfaces are studied in rotationally symmetric
Riemannian manifolds (e.g. the space forms, the Schwarzschild, the DeSitter-
Schwarzschild and Anti-DeSitter-Schwarzschild manifolds), to [82] where the
regularity assumptions on S are minimal and to [45, 56] where the non-local
version of Alexandrov's Theorem is proved.

Theorems A, B and I.A have the same conclusion: a solution exists if and
only if it is a sphere/ball. The rigidity of these problems is due to the following
overdetermined conditions: the curvature HS is constant in Alexandrov Theo-
rems and the normal derivative ∂νu is constant on ∂Ω in Serrin Theorem. In
view of this remark it is natural to investigate the stability of this results:

if the overdetermined condition is slightly perturbed, can we say that the
domain is close to a ball? Can we quantify the closedness?

Stated like that, the answer to the questions is in general negative. Indeed, it has
been showed in [39] for Serrin Theorem and in [58] for Alexandrov Theorem that
if the overdetermined condition is close to a constant then bubbling phenomena
can appear, i.e. the domain can be close to a bunch of balls connected by
small necks. We mention that both [39] and [58] do not use the moving planes
method and they perturb proofs based on integral identities. Nevertheless if
some hypothesis is introduced in order to prevent bubbling phenomena then
the moving planes method can be studied in a quantitative way to obtain sharp

3
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quantitative information of the proximity of the solution to a single ball. In
[67, 69] one condition that can prevent bubbling phenomena is the so-called
touching ball condition (we will comment a little bit on it after the theorem).
Our stability result related to Theorem I.A proved in [65] can be stated as
follows

Theorem I.B: let S be a C2-regular, connected, closed hypersurface embedded
in Mn

+ satisfying a uniform touching ball condition of radius ρ. There exist
constants ε, C > 0 such that if

osc(HS) := max
p∈S

HS(p)−min
p∈S

HS(p) ≤ ε , (I.1)

then there are two concentric balls Br and BR in Mn
+ such that

S ⊆ BR \Br (I.2)

and
R− r ≤ Cosc(HS) . (I.3)

The constants ε and C depend only on n, on upper bounds on ρ−1 and on the
area of S.

The uniform touching ball condition of radius ρ in the previous theorem
means that at any point of S there exist two balls of radius ρ tangent to S
one from inside and one from outside. Since the constant ρ is �xed, a bubbling
phenomenon can not appear as shown in [58, Theorem 1.1]. We emphasize
that in Theorem I.B the stability estimate (I.3) is optimal and it is new in
the general setting of Theorem I.B; moreover we mention that Theorem I.B
remarkably improves the previous stability results available in literature (see
Chapter 1 for a more detailed discussion).

Chapter 2. The second chapter of this thesis is dedicated to Serrin's overde-
termined problem and related issues. We mention that the celebrated moving
planes method introduced by Serrin can be used to prove a more general ver-
sion of Serrin's Theorem involving uniformly elliptic quasilinear equation (see
[204]). Moreover the moving planes method has been used to prove an ana-
logue result in space forms (see [150, 171]) and in a nonlocal setting (see [90]).
As for Alexandrov theorem, Serrin theorem can be proven by using di�erent
approaches, based on integral identities (see [215]). This allows to extend Ser-
rin's theorem to possibly degenerate quasilinear equations and to fully nonlinear
equations (see [3, 22, 29, 31, 33, 40, 42, 44, 55, 68, 70, 74, 75, 92, 102, 103, 106,
126, 133, 134, 135, 182, 190, 191, 196, 207, 209, 213]) and also for domains with
Lipschitz singularities or contained in a convex cone (see [63, 180, 188]).

We now review Serrin's original proof and some alternative proofs of Serrin
theorem, in particular the one due to Weinberger [215] and the more recent
integral approach due to Brandolini-Nitsch-Salani-Trombetti in [40] (see also
[164] and [176]).

The moving planes method. Let u be the solution to (5)-(6). For a �xed
direction ω ∈ Rn, the moving plane procedure gives a critical hyperplane π∗

such that

(i) either Ω∗ is tangent to Ω at a point p ∈ ∂Ω \ π∗,

4
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(ii) or π∗ is orthogonal to ∂Ω at some q ∈ ∂Ω ∩ π∗,

where we recall that Ω∗ is the re�ection with respect to π∗ of the cap Ω′. Now
we de�ne the re�ection of u with respect to π∗, i.e. v(x) = u(x∗), for x ∈ Ω∗,
where x∗ is the re�ection of x with respect to π∗. Is it easy to show that u− v
satis�es the following problem:





∆(u− v) = 0 in Ω∗

u− v = 0 on ∂Ω∗ ∩ π∗
u− v ≥ 0 on ∂Ω∗ \ π∗ ,

where the last inequality follows from the weak comparison principle. Then, by
the strong maximum principle we have that either u− v > 0 in Ω∗ or u− v ≡ 0
in Ω∗. The �rst case leads to a contradiction, indeed in case (i) by the Hopf
Lemma we have that

∂ν(u− v)(p) < 0 ,

but from (6) we have that ∂νu(p) = ∂νv(p). In case (ii) one shows that all the
�rst and second derivatives of u and v coincide at q, and this is in contradiction
with the so-called Serrin's corner Lemma [204, Lemma 1] (a re�nement of the
maximum principle).
Hence u ≡ v in Ω∗, i.e. Ω is symmetric with respect to π∗. This implies that
for every direction ω, Ω is symmetric with respect to the hyperplane orthogonal
to ω; moreover, by construction, Ω is simply connected, and then it has to be a
ball.

Weinberger's proof. Let u be the solution to (5)-(6) and consider the follow-
ing function:

P (u(x)) := |∇u(x)|2 +
2

n
u(x) . (I.4)

We compute the Laplacian of this function and, by using Cauchy-Schwarz in-
equality, we get ∆P (u) ≥ 0. Since P (u(x)) = c2 on ∂Ω (due to the boundary
conditions) from the strong maximum principle we conclude that either

P (u(x)) ≡ c2 in Ω , (I.5)

or
P (u(x)) < c2 in Ω . (I.6)

In the second case, by integrating (I.6) over Ω and by using the divergence
theorem, we get

n+ 2

n

ˆ

Ω

u dx < c2|Ω| . (I.7)

The classical Pohozaev identity (see e.g. [186]) yields

n− 2

n

ˆ

Ω

|∇u|2 dx+
c2

2

ˆ

∂Ω

x · ν dσ = n

ˆ

Ω

u dx , (I.8)

and from (5) and (6) we obtain

(n+ 2)

ˆ

Ω

u dx = c2n|Ω| , (I.9)
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which contradicts (I.7). This means that (I.5) holds true, hence P (u) is a har-
monic function and this implies that the equality in Cauchy-Schwarz inequality
holds, i.e.

∇2u = − 1

n
Id . (I.10)

Hence

u(x) =
1

2n

(
R2 − |x− x0|2

)
, (I.11)

for some R > 0 and x0 ∈ Rn; from (I.11) and since u = 0 on ∂Ω we immediately
conclude that Ω is the ball of radius R centred at x0.

We mention that the approach of Weinberger inspired several works in the
context of elliptic PDEs (see e.g. [48, 93, 181, 211]), in particular in [92, 103, 106]
Weinberger's argument is used to prove symmetry result for overdetermined
problems associated to more general PDE's.

An integral approach. Given a symmetric matrix A = {aij} ∈ Rn×n, for any
k = 1, . . . , n we denote by Sk(A) the sum of all the principal minors of A of
order k. Observe that

S1(A) = Tr (A) , S2(A) =
∑

1≤i1<i2≤n
λi1λi2 , Sn(A) = det(A) , (I.12)

where Tr (A) is the trace of A, det(A) is the determinant of A and λ1, · · · , λn
are the eigenvalues of A.

We are interested in S1 and S2: suppose Tr (A) ≥ 0, then the following
Newton's inequality for symmetric matrices (see e.g. [124]),

S2(A) ≤ n− 1

2n
(S1(A))2 (I.13)

holds, and the equality in (I.13) holds if and only if

A =
Tr (A)

n
Id . (I.14)

Newton's inequality (I.13) can be used to prove Serrin overdetermined Theo-
rem. Indeed, by taking A = ∇2u we have that S1(∇2u) = ∆u and a direct
computation shows that S2(∇2u) can be written in the following divergence
form

S2(∇2u) =
1

2
∂i(S

2
ij(∇2u)∂ju) where S2

ij(∇2u) = −∂2
iju+ δijTr (∇2u)

(I.15)
(here we are adopting the Einstein summation convention for repeated indices).
Let u be the solution to (5)-(6). First we observe that, from (I.15) via an
integration by parts,

ˆ

Ω

|∇u|2 dx = −2

ˆ

Ω

|∇u|2 dx+ 2(n− 1)

ˆ

Ω

H|∇u|2 dx+ c3|∂Ω| (I.16)

where we used the fact that the mean curvature H of a level set of u (at a
regular point) satis�es

−∆u = (n− 1)H|∇u| −
∂2
iju∂iu∂ju

|∇u|2 .
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From (I.16) and the fact that the constant c in (6) is given by −|Ω|/|∂Ω| we get

(n− 1)

ˆ

Ω

H|∇u|3 dx =
3

2

ˆ

Ω

|∇u|2 dx− c2

2
|Ω| , (I.17)

Then, from (I.9) and (I.17) we obtain

ˆ

Ω

H|∇u|3 dx =
c2|Ω|
n− 2

, (I.18)

where we used the divergence theorem and (5)-(6) to prove that
ˆ

Ω

|∇u|2 dx =

ˆ

Ω

u dx .

From (I.18) we get

c2|Ω|
n− 2

=
1

n− 1

ˆ

Ω

S2
ij(∇2u)∂iu∂ju dx , (I.19)

where we used the following pointwise identity

−(n− 1)H =
S2
ij(∇2u)∂iu∂ju

|∇u|3 .

Integrating by parts and by using (I.13), (5) (I.9) we obtain

c2|Ω|
n− 2

=
2

n− 1

ˆ

Ω

S2(∇2u)u dx ≤ 1

n

ˆ

Ω

u(∆u)2 dx =
c2|Ω|
n− 2

. (I.20)

The conclusion follows because (I.20) implies that equality holds true in (I.13)
so (I.10) holds true.

In Chapter 2 there are three symmetry results: the �rst one is contained
in [196] and is related to a generalization of Weinberger's proof to a particular
class of Riemannian manifolds; the remaining ones are contained in [63] and are
related to a Serrin-type result for domains inside convex cones of the Euclidean
space and in space forms. In what follows we will give the �avour of the results
that we are going to prove in Chapter 2 and we refer to Chapter 2 for the precise
de�nitions and statements.

Weinberger argument on Riemannian manifolds. The �rst symmetry re-
sult in Chapter 2 is a generalization of Weinberger's proof to the so-called model
manifolds with non-negative Ricci curvature. Model manifolds are rotationally
symmetric Riemannian manifolds (Mn

σ, gMnσ ), i.e. Mn
σ = [0, R)× Sn−1, for some

R > 0, and the metric is

gMnσ = dr ⊗ dr + σ2(r)gSn−1 ,

for some smooth function σ : [0, R)→ [0,+∞) and where gSn−1 is the usual met-
ric on the round sphere Sn−1 (see De�nition 2.1 for the precise de�nition). We
mention that important examples of model manifolds are the already celebrated
space-forms. In particular
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• the Euclidean space Rn is isometric to the model manifoldMn
σ with σ(r) =

r : [0,+∞)→ [0,+∞);

• the hyperbolic spaceHn is isometric to the model manifoldMn
σ with σ(r) =

sinh(r) : [0,+∞)→ [0,+∞);

• the standard sphere Sn \ {N}, where N is the north pole, is isometric to
the model manifold Mn

σ with σ(r) = sin(r) : [0, π)→ [0,+∞).

Under the assumption that the Ricci curvature of the model manifold is non-
negative and under a suitable �compatibility" assumption between the solution
of the overdetermined problem and the geometry of the model, in Section 2.1,
we will prove the following rigidity result

Theorem I.C: let (Mn
σ, gMnσ ) be a model manifold such that

RicMnσ ≥ 0 , and σ′ > 0 .

Let Ω ⊂Mn
σ be a smooth domain and assume that Ω supports a solution u of





∆u = −1 in Ω

u = 0 on ∂Ω

∂νu = c on ∂Ω .

(I.21)

(where ∆ is the Laplace-Beltrami operator). If u satis�es the following �com-
patibility� condition

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 ≥ 0 , (I.22)

then Ω is a Euclidean ball.

The proof of Theorem I.C is based on the Weinberger's approach. Explicitly
we consider the P -function (I.4), and we show that it is a subharmonic function.
The proof is achieved by using Bochner formula

∆ |∇u|2 = 2
∣∣∇2(u)

∣∣2 + 2g(∇(∆u),∇u) + 2Ric(∇u,∇u) , (I.23)

and the inequality
(∆u)2 ≤ n

∣∣∇2(u)
∣∣2 , (I.24)

which can be easily obtained by using Cauchy-Schwarz inequality. Moreover,
again by Cauchy-Schwarz inequality we have that the equality sign holds if and
only if

∇2(u) =
∆u

n
g . (I.25)

We mention that (I.23), (I.24) and (I.25) hold in every n dimensional Rieman-
nian manifolds (M, g) and for every C2-map u : (M, g)→ R.

Since P is subharmonic, the strong maximum principle yields that either
(I.5) or (I.6) holds. By using a suitable generalization of the Pohozaev identity
(2.58) we can exclude (I.6). Hence P is constant and harmonic, and from (I.25)
the conclusion follows.

Symmetry results in convex cones. The second result that we present in
Chapter 2 are two symmetry results for domains in convex cones. The starting
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observation that motivates our study is the following. Let Σ be an open cone
in Rn with vertex at the origin O, i.e.

Σ := {tx : x ∈ ω , t ∈ [0,+∞)} , (I.26)

for some open domain ω ⊆ Sn−1. We notice that if the point x0 in (I.11) is
chosen appropriately then u given by (I.11) is still the solution to the following
problem: 




∆u = −1 in BR(x0) ∩ Σ

u = 0 and ∂νu = c on ∂BR(x0) \ Σ

∂νu = 0 on BR(x0) ∩ ∂Σ .

(I.27)

More precisely, x0 may coincide with O or it may be just a point of ∂Σ \ {O}
and, in this case, BR(x0) ∩ Σ is half a sphere lying over a at portion of ∂Ω.
Hence, it is natural to look for a characterization of symmetry in this direction,
as done in [180]. In order to properly describe the results, we introduce some
notation. Given an open cone Σ such that ∂Σ \ {O} is smooth, we consider a
bounded domain Ω ⊂ Σ and denote by Γ0 its relative boundary, i.e.

Γ0 = ∂Ω ∩ Σ ,

and we set
Γ1 = ∂Ω \ Γ̄0 .

We assume that Hn−1(Γ1) > 0, Hn−1(Γ0) > 0 and that Γ0 is a smooth (n −
1)-dimensional manifold, while ∂Γ0 = ∂Γ1 ⊂ ∂Ω \ {O} is a smooth (n − 2)-
dimensional manifold. Following [180], such a domain Ω is called a sector-like
domain. In the following, we shall write ν = νx to denote the exterior unit
normal to ∂Ω wherever is de�ned (that is for x ∈ Γ0 ∪ Γ1 \ {O}). Under the
assumption that Σ is a convex cone, in [180] it is proved that if Ω is a sector-like
domain and there exists a classical solution u ∈ C2(Ω)∩C1(Ω∪ Γ0 ∪ Γ1 \ {O})
to 




∆u = −1 in Ω ,

u = 0 and ∂νu = c on Γ0 ,

∂νu = 0 on Γ1 \ {O} ,
(I.28)

and such that
u ∈W 1,∞(Ω) ∩W 2,2(Ω) ,

then
Ω = BR(x0) ∩ Σ

for some x0 ∈ Rn and u is given by (I.11). Di�erently from the original paper of
Serrin [204], the method of moving planes is not helpful (at least when applied in
a standard way) and the rigidity result in [180] is proved by using two alternative
approaches. One is based on integral identities and it is inspired from [40], the
other one uses a P -function approach as in [215].

In [63], we generalize the rigidity result for Serrin's problem in [180] in two
directions. The former is by considering more general operators than the Lapla-
cian in the Euclidean space, where the operators may be of degenerate type.
Here, the generalization is not trivial due to the lack of regularity of the solu-
tion (the operator may be degenerate) as well as to other technical details which

9



INTRODUCTION TO PART I

are not present in the linear case. The operator that we are going to consider
is the following:

Lfu = div

(
f ′(|∇u|)
|∇u| ∇u

)
, (I.29)

where f is a positive, convex and super-linear function (we mention that overde-
termined problems associated to the operator Lf has been considered in [92, 103,
106]).

The latter is by considering an analogous problem in space forms, i.e. the
hyperbolic space and the (hemi)sphere. The operator that we consider is linear
and it is interesting since it has been shown that it is a helpful generalization
of the torsion problem to space forms (see e.g. [68, 189, 190]).

The �rst problem that we are going to consider is the following mixed bound-
ary value problem: 




Lfu = −1 in Ω,

u = 0 on Γ0

∂νu = 0 on Γ1 \ {O},
(I.30)

where Lf is given by (I.29), Ω is a sector like domain in Rn and f : [0,+∞)→
[0,+∞) is such that

f ∈ C1([0,∞)) ∩ C3((0,∞)) with f(0) = f ′(0) = 0, f ′′(s) > 0 for s > 0

and lim
s→+∞

f(s)

s
= +∞ .

(I.31)
The key observation that motivates our study is the following: we notice that
the solution to Lfu = −1 in BR(x0) (a ball of radius R centered at x0) such
that u = 0 on ∂BR(x0) is radial and it is given by

u(x) =

ˆ R

|x−x0|
g′
( s
n

)
ds , (I.32)

where g denotes the Fenchel conjugate of f (see for instance [73] or [103]), i.e.

g = sup{st− f(s) : s ≥ 0}

(hence for us g′ is the inverse function of f ′).
With these prelimiaries, the second rigidity result in Chapter 2 is the follow-

ing

Theorem I.D: let f satisfy (I.31). Let Σ be a convex cone such that Σ \ {O}
is smooth and let Ω be a sector-like domain in Σ. If there exists a solution
u ∈ C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) ∩W 1,∞(Ω) to (I.30) such that

∂νu = −c on Γ0 (I.33)

for some constant c, and satisfying

f ′(|∇u|)
|∇u| ∇u ∈W

1,2(Ω,Rn) , (I.34)

then there exists x0 ∈ Rn such that Ω = Σ ∩ BR(x0) with c = g′(|Ω|/|Γ0|),
R = n|Ω|/|Γ0|. Moreover u is given by (I.32), where x0 is the origin or, if ∂Σ
contains �at regions, it is a point on ∂Σ.

10
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We refer to Section 2.2 for a detailed discussion on the hypothesis of the
Theorem. The proof of Theorem I.D s based on the integral approach introduced
in [40] (see also [180] and [29]). The idea is the following: we set V (ξ) = f(|ξ|)
and we de�ne the matrix W (x) = (wij(x))ij such that

wij(x) = ∂jVξi(∇u(x)) .

The matrix W is such that Lfu = Tr(W ); writing the operator as a trace has
the advantage that we can use Newton's inequality (I.13). By using a Pohozaev-
type identity, integral inequalities and the convexity of the cone we are able to
prove that the equality holds in (I.13) and this implies the rigidity result.

The second result in Section 2.2 deals with an overdetermined problem in
space forms: recall that a space form is a complete simply-connected Rieman-
nian manifold (M, g) with constant sectional curvature K. Up to homotheties
we may assume K = 0, 1, −1: the case K = 0 corresponds to the Euclidean
space Rn, K = −1 is the hyperbolic space Hn and K = 1 is the unitary sphere
with the round metric Sn. More precisely, in the case K = 1 we consider the
hemisphere Sn+. These three models can be described as warped product spaces
M = I × Sn−1 equipped with the rotationally symmetric metric

g = dr2 + h(r)2 gSn−1 ,

where gSn−1 is the round metric on the (n− 1)-dimensional sphere Sn−1 and

- h(r) = r in the Euclidean case (K = 0), with I = [0,∞);

- h(r) = sinh(r) in the hyperbolic case (K = −1), with I = [0,∞);

- h(r) = sin(r) in the spherical case (K = 1), with I = [0, π/2) for Sn+.

By using the warping structure of the manifold, we denote by O the pole of
the model and it is natural to de�ne a cone Σ with vertex at {O} as the set

Σ = {tx : x ∈ ω, t ∈ I}

for some open domain ω ⊂ Sn−1. Moreover, we say that Σ is a convex cone if
the second fundamental form II is nonnegative de�ned at every p ∈ ∂Σ.

The second problem that we are going to consider is the following mixed
boundary value problem





∆u+ nKu = −1 in Ω,

u = 0 on Γ0

∂νu = 0 on Γ1 \ {O},
(I.35)

where Ω is a sector-like domain in a smooth and convex cone Σ in the Euclidean
space (K = 0), in the hyperbolic space (K = −1) or in the hemisphere (k = 1).

With these preliminaries, the third rididi�ty result in Chapter 2 is the fol-
lowing

Theorem I.E: let (M, g) be the Euclidean space, hyperbolic space or the hemi-
sphere. Let Σ ⊂ M be a convex cone such that Σ \ {O} is smooth and let

11
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Ω be a sector-like domain in Σ. Assume that there exists a solution u ∈
C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) ∩W 1,∞(Ω) ∩W 2,2(Ω) to (I.35) such that

∂νu = −c on Γ0 (I.36)

for some constant c. Then Ω = Σ ∩ BR(x0) where BR(x0) is a geodesic ball of
radius R centered at x0 and u is given by

u(x) =
H(R)−H(d(x, x0))

nḣ(R)
,

with

H(r) =

ˆ r

0

h(s)ds

and where d(x, x0) denotes the distance between x and x0.

The strategy to prove Theorem I.E follows the Weinberger approach and
uses the following P -function, introduced in [68] and in [190],

P (x) = |∇u(x)|2 +
2

n
u(x) +Ku2(x) .

One can show that, if u solves (I.35)-(I.36) then P satis�es:





∆P (x) ≥ 0 in Ω,

P (x) = c2 on Γ0

∂νP (x) ≤ 0 on Γ1 \ {O}.

This implies that
P (x) ≤ c2 in Ω.

We can exclude the case P (x) < c2 in Ω, so

P (x) ≡ c2 in Ω.

In particular, ∆P (x) = 0 in Ω and this implies that

∇2(u) =

(
− 1

n
−Ku

)
g in Ω,

and this equation implies the rigidity result.
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Chapter 1

Quantitative stability for

almost constant mean

curvature hypersurfaces

The main result of this chapter is the following sharp stability estimate of prox-
imity to a single sphere for Alexandrov's theorem.

Theorem 1.1. Let S be a C2-regular, connected, closed hypersurface embedded
in Mn

+ satisfying a uniform touching ball condition of radius ρ. Let HS given by
(I) or (II). There exist constants ε, C > 0 such that if

osc(HS) ≤ ε, (1.1)

then there are two concentric balls Bdr and BdR of Mn
+ such that

S ⊂ B d

R \Bdr , (1.2)

and
R− r ≤ Cosc(HS). (1.3)

The constants ε and C depend only on n and upper bounds on ρ−1 and on the
area of S.

For the sake of clarity we mention that the balls in the statement of Theorem
1.1 are distance or geodesic balls in Mn

+, i.e. if we denote with d the distance
induced by the metric g of the space form then Bdr (p) denotes the ball centred
at p of radius r with respect to the distance d. The center of the two balls in
the statement will be speci�ed later.

We recall that the uniform touching ball condition of radius ρ in Theorem
1.1 means that at any point of S there exist two balls of radius ρ both tangent
to S one from inside and one from outside. As mentioned in the introduction
the assumption that ρ is �xed implies that a bubbling phenomenon can not
appear (see for instance [58]). As can be shown by a calculation for ellipsoids,
the estimate in (1.3) is optimal and it is new in the general setting of Theorem
1.1. In the Euclidean space, quantitative results, in the spirit of Theorem 1.1,
for constant mean curvature hypersurfaces are avalaible in literature only under
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the assumption that S bounds a convex domain. In particular, in [147, 151, 173]
the case when the domain is an ovaloid is considered. Moreover in [144], where
the results in [8, 200] are improved, an explicit Holder type stability estimate
like (1.3) is proved. We emphasize that, in Theorem 1.1 we do not consider any
convexity assumption and, as already mentioned, the estimate that we prove is
optimal; hence (1.3) remarkably improves the previous stability results.

Theorem 1.1 follows the research line initiated in [67] and pursued in [69]
and is contained in [65].

Theorem (1.1) has a quite interesting consequence which is a pinching result.
It is well-known that, in the Euclidean space (see for instance [121]), if every
principal curvature ki of S is pinched between two positive numbers, i.e.

1

r
≤ ki ≤

1 + δ

r
, for i = 1, . . . , n− 1,

then S is close to a sphere of radius r. One can ask if this happens when only
the mean curvature is pinched or, more in general if one consider the class of
curvatures HS de�ned in the introduction. As a consequence of Theorem 1.1 we
have the following

Corollary 1.1. Let ρ0, A0 > 0 and n ∈ N be �xed. There exists ε > 0,
depending on n, ρ0 and A0, such that if S is a connected closed C2 hypersurface
embedded in Mn

+ having area bounded by A0, satisfying a touching ball condition
of radius ρ ≥ ρ0, and such that

osc(HS) ≤ ε , (1.4)

then S is C1-close to a sphere and there exists a C2-regular map Ψ : ∂Bdr → R
such that

F (p) = expx(Ψ(p)Np)

de�nes a C2-di�eomorphism from Bdr to S and

‖Ψ‖C1(∂Bdr ) ≤ C osc(HS)1/2 , (1.5)

where N is a normal vector �eld to ∂Bdr .

Before explaining the proof of Theorem 1.1 and Corollary 1.1, we give a
couple of remarks on the bounds on ρ and on the Area of S in Theorem 1.1 and
Corollary 1.1. The upper bound on the Area of S is a control on the constants
ε and C, which clearly change under dilatations. The upper bound on ρ−1

controls the C2-regularity of the hypersurface, which is crucial for obtaining an
estimate like (1.3). Indeed, if we assume that ρ is not bounded from below in the
Euclidean case, it is possible to construct a family of closed surfaces embedded
in R3, not di�eomorphic to a sphere, with osc(H) arbitrarily small and such that
(1.3) fails to hold (see Figure 1.1).

As already mentioned in the introduction, we tackle the problem by doing a
quantitative study of the method of the moving planes, i.e. we study the original
proof of Alexandrov from a quantitative point of view. There are other possible
approaches for proving the symmetry result (i.e. of Alexandrov's Theorem)
which are based on integral and geometric identities. The interested reader can
refer to [172, 194, 197, 198], and to [41] for a recent generalization (see also
[82] for minimal assumptions on the regularity of S). The approach in [194] has
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Figure 1.1: counterexample obtained by gluing pieces of suitable small pertur-
bations of unduloids.

been exploited in [58] to tackle the problem of bubbling (see also [83] and [148]).
Symmetry and quantitative studies of proximity to a single sphere by using an
integral approach can be found in [30, 45, 56, 96, 127, 128, 164, 165, 166, 189].
Coming back to our approach, it is based on a quantitative analysis of the
method of moving planes and uses arguments from elliptic PDEs theory. Since,
as explained in the Introduction, the proof of symmetry (i.e. of Alexandrov's
Theorem) is based on the maximum principle, our proof of the stability result
will make use of Harnack's and Carleson's (or boundary Harnack) inequalities
and Hopf Lemma, which can be considered as the quantitative counterpart of
the strong and boundary maximum principles.

For the sake of completeness we have to say that a quatitative study of the
method of moving planes was �rst performed in [2], where the authors obtained
a stability result for Serrin theorem (see the introduction), and it has been
used in the following series of papers [60, 61, 62] to study the stability of radial
symmetry for Serrin's and other overdetermined problems (see also the survey
[64]).

In order to prove Theorem 1.1 we follow the approach of [2], but in our case
the setting is complicated by the fact that we have to deal with Riemannian
manifolds. As we will show in Section 1.4 the main task is to prove the ap-
proximate symmetry result for one direction. To prove this result we apply the
method of moving planes and show that the union of the maximal cap and of
its re�ection provides a set that �ts S well. This is done in Theorem 1.4; by
the method of moving planes we know that the hypersurface and the re�ected
cap are tangent (internally or at the boundary) at some point p0. We write the
two hypersurfaces as graphs of two functions in neighbourhood of p0. We set
w the di�erence of these two functions and we have that it satis�es an elliptic
equation

Lw = f ,

where ||f ||∞ is bounded by osc(HS). Then via Harnack's inequality and interior
regularity estimates we are able to prove a bound on the C1 norm of w, which
implies that the two surfaces are close in the following sense: not only the
distance between points is controlled by a constant times osc(HS), but also the
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two corresponding Gauss map are close (always by a constant times osc(HS))
in a neighbourhood of p0. To propagate this estimate we connect any point of
the re�ected cap with p0 via a chain of balls and by using careful estimates and
interior or boundary Harnack inequality we propagate the estimate (assuming
that osc(HS) is small).

The chapter is organized as follows. In Section 1.1 we review the method
of the moving planes in space forms and set up some notation. In Section 1.2
we give technical local quantitative estimates in space forms. In Section 1.3
we �nd estimates on curvatures of projected surfaces in conformally Euclidean
spaces. In Section 1.4 we prove the approximate symmetry in one direction. In
Section 1.5 we show how to prove global approximate symmetry result by using
the approximate symmetry in any direction. Finally, in Section 1.6 we complete
the proof of main results.

We will use the following models of space forms:

• Hn is the half-space {x ∈ Rn : xn > 0} with the Riemannian metric

gx = 1
xn
〈·, ·〉 , for every x ∈ Rn (1.6)

where 〈·, ·〉 is the Euclidean product on Rn; for simplicity of notation, we
will indicate it also with “ · ”;

• Sn is the n-dimensional unitary sphere {x ∈ Rn+1 : |x| = 1} with the
round metric g induced by the Euclidean metric in Rn+1. Here we recall
that if we consider the stereographic projection Sn\{one point} → Rn,
then g is projected to the Riemann metric

gx =
4

(1 + |x|2)2
〈·, ·〉 , for every x ∈ Rn . (1.7)

We recall that Mn denotes the space forms, i.e. the Euclidean space Rn, the
hyperbolic space Hn and the sphere Sn; while Mn

+ denotes the Euclidean space
Rn, the hyperbolic space Hn and the hemisphere Sn+. Moreover, in all the
chapter S denotes a C2-regular, connected, closed hypersurface embedded in
Mn

+ and Ω ⊂ Mn
+ denotes a relatively compact connected open set such that

∂Ω = S (such an Ω exists since S is an embedded hypersurface).

1.1 The method of the moving planes

In this preliminary section we recall the method of the moving planes in Mn
+.

We begin by recalling the de�nition of center of mass in the context of
Riemannian geometry (see e.g. [142] for more details).

Let (M, g) be an oriented complete Riemannian manifold and let Ω be a
bounded domain (i.e. a bounded connected open set). Let PΩ : M → R be the
function

PΩ(x) =
1

2 |Ω|g

ˆ

Ω

d(x, a)2 da ,
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where |Ω|g is the volume of Ω with respect to g. Then the gradient of PΩ takes
the following expression

∇PΩ(x) = − 1

|Ω|g

ˆ

Ω

exp−1
x (a) da , (1.8)

where expx : TxM →M denotes the exponential map of the Riemannian man-
ifold (M, g) at x ∈ M (TxM denotes the tangent space to the manifold M at
x ∈ M) and exp−1

x denotes its inverse. In some cases PΩ is a convex map and
it attains the minimum at only one point O, which is usually called the center
of mass of Ω. For instance this occurs in the following cases:

• all the sectional curvatures of M are non-positive;

• Ω is contained in a geodesic ball of radius r < 1
2 min

{
injM, π

2
√
K

}
, where

K is an upper bound on the sectional curvatures of M and injM is the
injectivity radius of M ;

• M = Sn and Ω is contained in Sn+.

We further recall that a Riemannian manifold (M, g) is a symmetric space
if for every p ∈M there exists an isometry f : M →M such that f(p) = p and
f∗|p = −Id.

Lemma 1.1. Let (M, g) be a symmetric space, Ω a bounded domain in M and
x ∈ M be such that ∇PΩ(x) = 0. Assume that for every hyperplane π in M
not containing x there exists a hyperplane π1 passing through x and such that
π ∩ π1 ∩ Ω = ∅. Then every hyperplane of symmetry for Ω contains x.

Proof. Assume by contradiction that there exists a hyperplane π of symmetry
for Ω not containing x. Let π1 be a hyperplane passing through x and disjoint
from π inside Ω, i.e. π∩π1 ∩Ω = ∅. Since π1 and π are disjoint, they subdivide
Ω in three disjoint subsets Ω1, Ω2 and Ω3, with |Ωi|g > 0, i = 1, 2, 3. Since Ω is
symmetric about π, we have that

|Ω1|g + |Ω2|g = |Ω3|g.

Moreover formula (1.8) implies
ˆ

Ω1

exp−1
x (a) da = −

ˆ

Ω2∪Ω3

exp−1
x (a) da . (1.9)

Let f : M →M be the isometry such that f(x) = x and f|∗x = −Id. Then

exp−1
x f(a) = − exp−1

x (a)

and

−
ˆ

Ω2∪Ω3

exp−1
x (a) da =

ˆ

f(Ω2∪Ω3)

exp−1
x (a) da .

Therefore (1.9) implies
|Ω1|g = |Ω2|g + |Ω3|g.

which gives a contradiction since |Ω2|g > 0.
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Lemma 1.1 can be in particular applied in space forms Mn
+, where we have

the uniqueness of the center of mass, to prove the following result

Proposition 1.1 (Characterization of the distance balls in Mn
+). Let S = ∂Ω

be a C2-regular, connected, closed hypersurface embedded in Mn
+, where Ω is a

relatively compact domain. Assume that for every geodesic path γ : R → Mn

there exists a hyperplane π orthogonal to γ such that S is symmetric about π.
Then S is a distance sphere about O.

The previous result is a generalization of the following characterization theo-
rem, due to H. Hopf, of the sphere in the Euclidean space (see also [136, Chapter
VII, Lemma 2.2])

Theorem 1.2. Let S = ∂Ω be a C2-regular, connected, closed hypersurface
embedded in Rn, where Ω is a relatively compact domain. If for every direction
ω ∈ Rn there exists a hyperplane of symmetry of Ω orthogonal to ω, then S is a
round sphere.

Proof of Proposition 1.1. In view of Lemma 1.1 any hyperplane of symmetry
of S contains the point O. Therefore S is invariant by re�ections about every
hyperplane passing through O. For all the three possible cases of space forms
we can choose a model where Mn

+ is a ball in Rn, O is the origin of Rn and the
hyperplanes passing through O are Euclidean hyperplanes. In such a model S is
invariant by re�ections about every Euclidean hyperplane passing through the
origin and hence it is an Euclidean ball, since every rotation in the Euclidean
space can be obtained as the composition of two re�ections about hyperplanes.
Hence S is a round sphere in Mn

+ as required.

We describe the method of the moving planes in Mn
+ and we introduce some

notation. The method consists in moving hyperplanes along a geodesic path
orthogonal to a �xed direction and it is similar in Rn, Hn and Sn+. The method
can be described in terms of a point o that we �x. Since Mn

+ is a homogeneous
space, the construction does not depend on the choice of the point we �x. In
particular we choose o to be:

• the origin in Rn;

• en in Hn;

• the north pole in Sn+.

For every direction v ∈ ToMn
+, we consider the geodesic path γv : I → Mn

+

satisfying γv(0) = o and γ̇v(0) = v. The domain of γv is I = R in Rn and Hn
and I = (−π2 , π2 ) in Sn+. For any s ∈ I we denote by πv,s the hyperplane passing
through γv(s) and orthogonal to γ̇v(s), and we de�ne

Sv,s = {p ∈ S : p ∈ πv,t for some t > s} .

We denote by Sπv,s be the re�ection of Sv,s about πv,s. Note that

• Sv,s = {p ∈ S : p · v > s}, if Mn
+ = Rn;

• Sv,s = {p ∈ S : p · γ̇v(s) > 0}, if Mn
+ = Sn+.
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In the hyperbolic case, giving an explicit description of Sv,s is more complicated,
but it can be simpli�ed by assuming v = e1. This assumption is not restrictive
since we can always rotate every direction v in e1 by using an isometry of Hn.
In this case we have

• Se1,s = {p ∈ S : p · e1 > s}, if Mn
+ = Hn.

Let
mv = inf{s ∈ I : Sπv,t ⊂ Ω for every t > s} .

The hyperplane πv := πv,mv is called the critical hyperplane. By construction
Sπv,mv is contained in Ω and S and Sπv,mv are tangent at some point p0 which
can be either interior to Sπv,mv , or on ∂S

π
v,mv (and in this last case p0 ∈ πv).

Now for the sake of completeness we recall the generalized version of Alexan-
drov's theorem (Alexandrov theorem II in the introduction) that we study in
this chapter and its proof in Mn

+ (see [5, 145, 172, 194, 197, 198]).

Theorem 1.3. The only closed C2-regular connected hypersurfaces embedded
in Mn

+ and such that HS is constant are the distance spheres.

Proof. The proof consists in showing that for every unitary vector v ∈ ToMn
+,

S is symmetric about πv. This is obtained by showing that S ∩ Sπv,mv is open
and closed in Sπv,mv . Note that S ∩ Sπv,mv is not empty since Sπv,mv is tangent
to S at some point and S ∩ Sπv,mv is closed in Sπv,mv . The only nontrivial step
is that S ∩ Sπv,mv is open, which is obtained by using maximum principles for
solutions to elliptic equations.

Let p0 ∈ S ∩ Sπv,mv . By construction we have that

Tp0S = Tp0S
π ,

where Sπ is the re�ection of S about πv. From the implicit function theorem, S
and Sπ are locally the Euclidean graph of C2-regular functions u and û, respec-
tively, de�ned in a (Euclidean) ball Br of radius r centered at the origin O in
Tp0S. The functions u and û satisfy the elliptic equation Lu(x) = HS(x, u(x))
for x ∈ Br; here the operator L is the mean curvature operator or, more gen-
erally, a fully nonlinear operator. The ellipticity of L is standard in the case
of the mean curvature operator and it follows from [145] for the other cases
considered.

Since HS is constant, the di�erence u− û satis�es an elliptic equation of the
form L(u− û) = 0 with u(O)− û(O) = 0.

If p0 is interior to Sπv,mv then we can choose r su�ciently small such that
u− û ≥ 0 in Br and by the strong maximum principle we obtain that u− û ≡ 0
in Br.

If p0 is on the boundary of Sπv,mv , then by construction u − û ≥ 0 in a half
ball B+

r , u(O) − û(O) = 0 and ∇u(O) = ∇u(O) = 0. By applying Hopf's
boundary point lemma at the point O we obtain that u− û ≡ 0 in B+

r .
Hence, we have proved that S∩Sπv,mv is open, and the conclusion follows.

1.2 Local quantitative estimates in space forms

In this section we prove some preliminary estimates which we will use in the
proof of Theorem 1.1. We have the following preliminary lemma about the local
equivalences of distances (we will denote the Euclidean norm with | · |).
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Lemma 1.2. • Let d be the distance induced by the hyperbolic metric (1.6) in
Hn and let q be such that d(q, en) ≤ R; then

c|q − en| ≤ d(q, en) ≤ C|q − en| , (1.10)

for some positive constants c and C depending only on R.

• Let d be the distance induced by the round metric (1.7) in Rn and let p, q
in Rn be such that |p|, |q| ≤ R . Then

2

1 +R2
|p− q| ≤ d(p, q) ≤ π|p− q| . (1.11)

Proof. •We recall that the hyperbolic distance induced by the hyperbolic metric
(1.6) is given, in terms of the Euclidean distance, by the following expression

d(p, q) = arccosh

(
1 +
|p− q|2
2pnqn

)
.

In particular
d(en, ten) = | log(t)| , for any t ∈ (0,∞).

This expression and the fact that d(q, en) ≤ R imply that

e−R ≤ qn ≤ eR . (1.12)

For simplicity, we set

t = 1 +
|q − en|2

2qn

hence, from (1.12),

1 +
e−R

2
|q − en|2 ≤ t ≤ 1 +

eR

2
|q − en|2 , (1.13)

and, since |q − en| ≤ R(eR − 1), then

t ≤ A , (1.14)

where A is a constant which depends only on R. Now we set φ(t) = arccosh(t),
for t ∈ [1,+∞). Since, from (1.14), 1 ≤ t ≤ A we have

1√
A+ 1

1√
t− 1

≤ φ′(t) ≤ 1√
t− 1

where we used the fact that φ′(t) = (t2 − 1)−1/2, hence

1

2
√
A+ 1

√
t− 1 ≤ φ(t) ≤ 1

2

√
t− 1 for every t ∈ [1, A]. (1.15)

The conclusion (1.10) follows combining (1.15) with

e−
R
2√
2
|q − en| ≤

√
t− 1 ≤ e

R
2√
2
|q − en|

which follows from (1.13).
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• We recall that the spherical distance induced by the round metric (1.7) is
given, in terms of the Euclidean distance, by the following expression

d(p, q) = 2 arcsin

(
|p− q|√

(1 + |p|2)(1 + |q|2)

)
.

Since |p|,|q| ≤ R and from the previous expression we get

2 arcsin

( |p− q|
1 +R2

)
≤ d(p, q) ≤ 2 arcsin(|p− q|)

i.e.
|p− q|
1 +R2

≤ sin

(
d(p, q)

2

)
≤ |p− q| . (1.16)

The conclusion (1.11) follows combining (1.16) with the following trivial prop-
erty of the sine function:

2t

π
≤ sin(t) ≤ t , for 0 ≤ t ≤ π

2
;

recall that, being on the sphere d(p, q) ≤ π.

Let us consider now, as in Alexandrov theorem, a C2-regular, connected,
closed hypersurface S = ∂Ω embedded in Mn

+, where Ω is a relatively compact
domain and denote by N the inward normal vector �led (inward with respect
to Ω). For p ∈ S we denote by ϕp : Mn

+ → Rn the following function whose
de�nition depends on the geometry of Mn:

• if Mn is Rn, ϕp ∈ SO(n) o Rn and it is such that ϕp(p) = 0 and
ϕp∗|p (TpS) = {xn = 0};

• if Mn is Hn, ϕp is an orientation preserving isometry of Hn such that
ϕp(p) = en and ϕp∗|p (TpS) = {xn = 0};

• if Mn is Sn, ϕp is the stereographic projection form the antipodal point
to p restricted to Sn+ composed with a rotation of Rn in order to have
ϕp∗|p (TpS) = {xn = 0}.

Note that in all the three cases we have that ϕp(S) is a hypersurface embedded
in Rn and

ϕp∗|p (TpS) = {xn = 0} .
For r > 0, we denote by Ur(p) the open neighbourhood of p in S such that
ϕp (Ur(p)) is the (Euclidean) graph of a C2-function u : Br → R de�ned in the
ball of radius r of Rn−1 centred at the origin. Even if we don't have a canonical
choice of ϕp, the subsets Ur(p) do not depend on the choice of ϕp. Moreover,
the implicit function theorem implies that any p ∈ S has a neighbourhood Ur(p)
for r su�ciently small. In order to establish the quantitative estimates we need
in the proof of the main Theorem, we have to show that r can be uniformly
bounded from below with a bound depending only on ρ. The following lemma
also introduces the quantity ρ1 which will be largely used in what follows.
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Lemma 1.3. Let S be a C2-regular closed hypersurface embedded in Mn
+ and

satisfying a touching ball condition of radius ρ and let ρ1 be de�ned in the
following way:

• ρ1 = ρ, if Mn = Rn;

• ρ1 = (1− e−ρ sinh ρ)e−ρ sinh ρ, if Mn = Hn;

• ρ1 =
ρ

π
, if Mn = Sn .

Then

(i) any point p ∈ S admits a neighbourhood Uρ1(p) and ϕp(Uρ1(p)) is the
graph of a C2-function u : Bρ1 → R satisfying

|u(x)− u(O)| ≤ ρ1 −
√
ρ2

1 − |x|2 , (1.17)

and

|∇u(x)| ≤ |x|√
ρ2

1 − |x|2
; (1.18)

where Bρ1 denotes the Euclidean ball of radius ρ1 centred at the origin O
of Rn−1.

(ii) There exists a universal constant C such that for any 0 < α < 1
2 min(1, ρ−1

1 )
and q in Uαρ1(p) we have

dS(p, q) ≤ αCρ1 , (1.19)

where dS is the geodesic distance on S.

Proof. We analyse each case separately and for every case we show that (i) holds
true.

• ρ1 = ρ, if Mn = Rn. By the implicit function theorem, we have that there
exist r > 0, u : Br → R and Ur(p) as in (i), i.e.

ϕp(Ur(p)) = {p+ x+ u(x)νp : x ∈ Br}

where νp denotes the (Euclidean) inward unitary normal vector at p to S.
Moreover we may assume r ≤ ρ. The bound (1.17) in Br follows easily
from the de�nition of the interior and exterior touching balls at p. We now
prove the estimate (1.18) in Br, which allows us to enlarge the domain of
u to Bρ. Let q ∈ ϕp(Ur(p)), then q = p+ x+ u(x)νp, with |x| < r. Since
Bρ(p+ ρνp) ∩Bρ(q − ρνq) = ∅, then

|p+ ρνp − q + ρνq| ≥ 2ρ .

Analogously, since Bρ(p− ρνp) ∩Bρ(q + ρνq) = ∅, then

|q + ρνq − p+ ρνp| ≥ 2ρ .

By adding the squares of the last two inequalities we get

|p− q|2 + 2ρ2νp · νq ≥ 2ρ2 ,
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and from (1.17) we get

νp · νq ≥
1

ρ

√
ρ2 − |x|2 and |νp − νq| ≤

√
2
|x|
ρ
. (1.20)

Moreover, since q = p+ x+ u(x)νp then

νq =
νp −∇u(x)√
1 + |∇u(x)|

,

and from (1.20) we get (1.18) in Br. Since |∇u| is bounded in Br, we can
extend u to a larger ball where (1.18) is still satis�ed. It is clear that we
can choose r = ρ and (1.17) and (1.18) hold.

• ρ1 = (1 − e−ρ sinh ρ)e−ρ sinh ρ, if Mn = Hn. It is enough to observe that
ϕp(S) satis�es an Euclidean touching ball condition of radius ρ1 (this
motivates the choice of ρ1). This can be easily deduced by using Lemma
1.2. Hence the statement follows from the Euclidean case.

• ρ1 =
ρ

π
, if Mn = Sn . Also in this case it is enough to observe that

ϕp(S) satis�es an Euclidean touching ball condition of radius ρ1 (by using
Lemma 1.2). Hence, as before, the statement follows from the Euclidean
case.

Now we show that (ii) holds true. Let q ∈ Uρ1(p). Then ϕp(q) = (x, v(x))
for some |x| < ρ1. Let γ : [0, 1] → ϕp(S) be the curve joining ϕp(p) to ϕp(q)
de�ned as γ(t) = (tx, v(tx)). Then

γ̇(t) = (x,∇v(tx) · x)

and the Cauchy-Schwarz inequality implies

|γ̇(t)| ≤ |x|
√

1 + |∇v(tx)|2 .
Then (1.17) yields

|γ̇(t)| ≤ ρ1|x|√
ρ2

1 − t2|x|2
≤ |x|√

1− α2
≤ 2√

3
|x|,

for 0 ≤ |x| ≤ αρ1. Since
dS(p, q) ≤ l(γ)

and

l(γ) =

ˆ 1

0

|γ̇| dt , in the Euclidean case,

l(γ) =

ˆ 1

0

|γ̇|
v(tx)

dt , in the hyperbolic case,

l(γ) =

ˆ 1

0

2

1 + |γ|2 |γ̇| dt , in the spherical case,

we obtain that
dS(p, q) ≤ C|x|

for a universal constant C and (1.19) follows.
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From Lemma 1.3 it follows the following

Corollary 1.2. Let S be a compact C2-regular embedded hypersurfaces in Mn
+

satisfying a touching ball condition of radius ρ. Let q ∈ Uαρ1(p), with 0 < α <
1
2 min(1, ρ−1

1 ). Then
dS(p, q) ≤ Cd(p, q) ,

where C depends only on ρ. In particular for every p ∈ S the geodesic ball Br(p)
centred at p and with radius r < 1

2 min(1, ρ−1
1 ) satis�es

Area(Br(p)) ≥ crn−1 , (1.21)

and c is a constant depending only on n.

1.2.1 Quantitative stability of the parallel transport

In this section we study quantitative estimates involving the parallel trans-
port which will be useful in the proof of the main result. We recall that the
parallel transport along a smooth curve α : [t0, t1] → Mn is the linear map
τ : Tγ(t0)Mn → Tγ(t1)Mn given by

τ(v) = X(t1)

where X : [t0, t1]→Mn is the solution to the following linear ODE:
{
Ẋk +

∑n
i,j=1Xjα̇jΓ

k
ij(α) = 0 k = 1, . . . , n

Xk(t0) = vk k = 1, . . . , n ,

where Ẋ(t) = (Ẋ1(t), . . . , Ẋn(t)), α̇(t) = (α̇1(t), . . . , α̇n(t)), v = (v1, . . . , vn) and
Γkij are the Christo�el symbol in Mn. In what follows we adopt the following
notation: given p, q ∈Mn

+ with p 6= q, we denote by

τ qp : TpMn → TqMn

the parallel transport along the unique geodesic path σ connecting p to q. We
further assume that τpp is the identity of TpMn. A direct computation shows
that:

• if Mn is Rn, then τ qp is the identity for every p, q;

• if Mn = Hn and if p and q belongs to the same vertical line, then we have

τ qp (v) =
qn
pn
v ;

moreover, if p and q do not belong to the same vertical line, then in the
following lemma we provide the expression of the parallel transport in this
general case (for simplicity we assume p = en).

Lemma 1.4. Let q ∈ Hn be such that q ∈ Span {en−1, en} and let v ∈ Rn.
Assume that qn−1 6= 0, then

τenq (v) =
1

qn
(v1, . . . , vn−2, ṽn−1, ṽn) ,
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where
(
ṽn−1

ṽn

)
=

1

1 + a2

(
a(a− qn−1) + qn a− qn−1 − aqn
−(a− qn−1 − aqn) a(a− qn−1) + qn

)(
vn−1

vn

)

and

a =
|q|2 − 1

2qn−1
.

Proof. Let α : [t0, t1]→ Hn be de�ned in the following way

α(t) = (
√

1 + a2 cos(t) + a)en−1 +
√

1 + a2 sin(t)en ,

such that α(t0) = q and α(t1) = en. Then, up to reparametrization, α is
a geodesic path connecting q to en. The parallel transport equation along
α yields

(τenq (v))k = vk , k = 1, . . . , n− 2 ,

while
(τenq (v))n−1 = Xn−1(t1) and (τenq (v))n = Xn(t1) ,

where the pair (Xn−1, Xn) solves the following system

(
Ẋn−1

Ẋn

)
=

(
cotan (t) −1

1 cotan (t)

)(
Xn−1

Xn

)

and (
Xn−1(t0)
Xn(t0)

)
=

(
vn−1

vn

)
.

Therefore, (
Xn−1(t)
Xn(t)

)
= A(t)A(t0)−1

(
vn−1

vn

)

where

A(t) :=

(
cos(t) sin(t) − sin2(t)

sin2(t) cos(t) sin(t)

)
;

and the claim follows.

• if Mn is Sn+, then τ qp = (Pq ◦ Rα)|TpSn , where Rα acts as the rotation of
the angle α = d(p, q) in the plane π containing σ and as the identity in
the orthogonal complement of π and Pq is the orthogonal projection onto
TqSn.

Moreover, we introduce the following notation:

• given p ∈Mn and v ∈ TpMn, |v|p := gp(v, v)1/2;

• if S = ∂Ω is a compact C2-regular embedded hypersurface in Mn
+, where

Ω is a relatively compact domain in Mn
+, N is the inward unitary normal

vector �eld on S.

The �rst result of this section is the following

25



1.2. LOCAL QUANTITATIVE ESTIMATES IN SPACE FORMS

Proposition 1.2. Let S be a compact C2-regular embedded hypersurface in Mn
+

satisfying a touching ball condition of radius ρ. There exists δ0 = δ0(ρ) such
that if p, q ∈ S with

dS(p, q) ≤ δ0 ,
then

gp(Np, τ
p
q (Nq)) ≥

√
1− C2dS(p, q)2 , (1.22)

and
|Np − τpq (Nq)|p ≤ CdS(p, q) , (1.23)

where C is a constant depending only on ρ.

Proof. We divide the proof in three parts where we consider the Euclidean,
the hyperbolic and the spherical case. Let δ0 = min(ρ1,

1
C ), where C will be

speci�ed later.

• If Mn
+ = Rn then (1.22) (1.23) follow immediately from (1.20).

• If Mn
+ = Hn, after applying the isometry ϕp we may assume that p = en

and q = ten. As already observed, from the de�nition of ρ1, we have
that S (actually ϕp(S)) satis�es an Euclidean touching ball condition of
radius ρ1. Let δ0 = min(ρ2,

1
C ), where ρ2 and C will be speci�ed later.

From Lemma (1.2) we get that there exists 0 < r2 < r2(ρ) such that if
d(en, q) ≤ r2 then |en − q| ≤ ρ1/2; this implies that, being

d(p, q) ≤ dS(p, q) ≤ r2 ,

we have
|1− t| = |p− q| ≤ ρ1

2
.

Hence we can apply the Euclidean estimates (1.20) (with r1 in place of ρ)
and we get

νp · νq ≥
√

1− |p− q|
2

ρ2
1

.

where, we recall that, ν denotes the Euclidean inward normal vector �eld
on S. Since d(p, q) ≤ ρ, from (1.10) we have that |p − q| ≤ C1d(p, q) ≤
C1dS(p, q) for some constant C1 = C1(ρ), and hence

νp · νq ≥
√

1− C2dS(p, q)2 , (1.24)

where C depends only ρ (actually C = C1/ρ1) and provided that dS(p, q) ≤
1
C (observe that this implies that d(p, q) ≤ 1

C ). Moreover the inward g-
unitary normal vector �eld N to S satis�es

Np = νp , νq =
1

t
Nq = τpq (Nq) ,

and (1.24) implies

gp(Np, τ
p
q (Nq)) ≥

1

2

√
1− C2dS(p, q)2 ,

which is (1.22). Inequality (1.23) follows by a direct computation.
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• If Mn
+ = Sn+ It is convenient to regard S as a hypersurface of Rn equipped

with the spherical metric (1.7). We may further assume that p is the
origin O of Rn and q belongs to a straight line passing through O. Let
δ0 = min(ρ1,

1
C ), where C will be speci�ed later. If d(p, q) ≤ ρ1 = ρ

π , then
we can apply the Euclidean estimates (1.20) and obtain

νp · νq ≥
√

1− |p− q|
2

ρ2
1

,

where, we recall that, ν denotes the Euclidean inward normal vector �eld
on S. Since, from

d(p, q) ≤ π|p− q| ,
we have

νp · νq ≥
√

1− C2dS(p, q)2 , (1.25)

where C depends only ρ. Moreover the inward g-unitary normal vector
�eld N to S satis�es

Np =
1

2
νp ,

2

1 + |q|2Nq = νq = 2τpq (Nq) ,

and (1.25) implies

gp(Np, τ
p
q (Nq)) ≥

1

2

√
1− C2dS(p, q)2 ,

which is (1.22). Inequality (1.23) follows by a direct computation and the
claim follows.

The last result of this section will be used several times in the proof of the
main result, for the sake of clarity we split the result in two lemmas: in the �rst
one we state and prove the result in the hyperbolic space while in the second one
we state its �spherical counterpart�; in the Euclidean space the result is trivial.

Lemma 1.5. Let Σ and Σ̂ be two compact embedded hypersurfaces in Hn sat-
isfying both a touching ball condition of radius ρ. Assume that en ∈ Σ and
TenΣ = {xn = 0} and that there exist two local parametrizations u, û : Br → R
of Σ and Σ̂, respectively, with 0 < r ≤ ρ1 and such that u− û ≥ 0.

Let p1 = (x1, u(x1)) and p̂∗1 = (x1, û(x1)), with x1 ∈ ∂Br/4, and denote by γ
the geodesic path starting from p1 and tangent to −νp1 at p1. Assume that

d(p1, p̂
∗
1) + |νp1 − νp̂∗1 | ≤ θ , (1.26)

for some θ ∈ [0, 1/2], where ν is the Euclidean unitary normal vector �eld to Σ.
There exists r̄ depending only on ρ such that if r ≤ r̄ we have that γ ∩ Σ̂ 6= ∅

and, if we denote by p̂1 the �rst intersection point between γ and Σ̂, then

d(p1, p̂1) + |Np1 − τp1p̂1 (Np̂1)|p1 ≤ Cθ ,

where C is a constant depending only on n and ρ, and provided that Cθ < 1/2.
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Proof. We �rst notice that, by choosing r small enough in terms of ρ, from
Lemma 1.3 we have that |νp1 − en| ≤ 1/4. Let B+ and B− be the exterior
and interior touching balls of Σ̂ at p̂0 = (0, û(0)), respectively. A standard
geometrical argument shows that it is possible to choose r̄ small enough in
terms of ρ such that γ intersects B+ and B− at points which are distant from
the origin less than r̄. This implies the existence of the point p̂1 in the assertion
for any r ≤ r̄.

Now we estimate the distance between p1 and p̂1 as follows. Let q be the
unique point having distance 2ε from p1 and lying on the geodesic path con-
taining p1 and p̂∗1. Let T be the geodesic right-angle triangle having vertices p1

and q and hypotenuse contained in the geodesic passing through p1 and p̂1 (see
Figure 1.2). Since the angle α at the vertex p1 is such that | sinα| ≤ 1/4, then
from the sine rule for hyperbolic triangles we have that

d(p1, p̂1) ≤ Cθ . (1.27)

Moreover, the cosine law in hyperbolic space gives that

d(p̂∗1, p̂1) ≤ Cθ (1.28)

for some constant C, and from Proposition 1.2 we obtain that

|Np1 − τp1p̂1 (Np̂1)|p1 ≤ |Np1 − τp1p̂∗1 (Np̂∗1 )|p1 + |τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 . (1.29)

Since p1 and p̂∗1 are on the same vertical line, we have that

|Np1 − τp1p̂∗1 (Np̂∗1 )|p1 = |νp1 − νp̂∗1 | ≤ Cθ . (1.30)

where the last inequality follows from (1.26). Now we show that

|τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 ≤ Cθ . (1.31)

We obtain (1.31) by showing that if q, q̂ and z in Hn are such that q and q̂
belong to the Euclidean ball centred at z of radius R, then

|τzq (v)− τzq̂ (w)|z ≤ C
(
d(z, q) + d(z, q̂) + d(q, q̂) + |v − τ qq̂ (w)|q

)
, (1.32)

for every v, w ∈ Rn with |v|q = |w|q̂ = 1, where the constant C depends only on
R. In order to prove (1.32) we may assume, up to apply the isometry ϕz, that
z = en, q and q̂ belong to the same vertical line and z, q and q̂ belong to the same
plane generated by en−1 and en. Note that, by construction, qn−1 = q̂n−1 6= 0.
Taking into account that

|v| = qn , |w| = q̂n , |τzq (v)| = 1 , |τzq̂ (w)| = 1 ,

where we used Lemma 1.4, and that

|v − τ qq̂ (w)|q =

∣∣∣∣v −
q̂n
qn
w

∣∣∣∣
q

=
1

qn

∣∣∣∣v −
qn
q̂n
w

∣∣∣∣ =

∣∣∣∣
1

qn
v − 1

q̂n
w

∣∣∣∣ ,
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where we used the fact that q and q̂ belong to the same vertical line, we have

|τzq (v)− τzq̂ (w)|z ≤
∣∣∣∣1−

1

qn

∣∣∣∣ |τzq (v)|+
∣∣∣∣τzq
(

1

qn
v − 1

q̂n
w

)∣∣∣∣

+
1

q̂n
|τzq (w)− τzq̂ (w)|+

∣∣∣∣
1

q̂n
− 1

∣∣∣∣ |τzq̂ (w)|

=
1

qn

(
|qn − 1|+

∣∣∣∣
1

qn
v − 1

q̂n
w

∣∣∣∣
)

+
1

q̂n
|τzq (w)− τzq̂ (w)|

+
|q̂n − 1|
q̂n

=
1

qn

(
|qn − 1|+ |v − τ qq̂ (w)|q

)
+

1

q̂n
|τzq (w)− τzq̂ (w)|

+
|q̂n − 1|
q̂n

.

Moreover, from Lemma 1.4 we have that

1

q̂n
|τzq (w)− τzq̂ (w)| ≤ Cd(q, q̂) ,

where C is a constant depending only on R, and from Lemma 1.2 we get (1.32).
Now we are ready to prove (1.31), indeed from (1.32) we get

|τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1
≤ C

(
d(p1, p̂1) + d(p1, p̂

∗
1) + d(p̂1, p̂

∗
1) + |Np̂1 − τ p̂1p̂∗1 (Np̂∗1 )|p̂1

)
,

and from (1.26), (1.27), (1.28) and (1.30) we obtain (1.31). By using (1.31) and
(1.30) in (1.29) we get

|Np1 − τp1p̂1 (Np̂1)|p1 ≤ Cθ ,

and therefore, from (1.27) we conclude.

Σ

Σ̂

en

π∞

p1

q

p̂1

p̂∗1

Figure 1.2: Proof of Lemma 1.5.

Lemma 1.6. Let Σ and Σ̂ be two compact embedded hypersurfaces in Rn with
the round metric (1.7) satisfying a touching ball condition of radius ρ. Assume
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O ∈ Σ and TOΣ = {xn = 0}, where O is the origin of Rn, and that there
exist two local parametrizations u, û : Br → R of Σ and Σ̂, respectively, with
0 < r ≤ ρ1 and such that u− û ≥ 0. Let p1 = (x1, u(x1)) and p̂∗1 = (x1, û(x1)),
with x1 ∈ ∂Br/4, and denote by γ the geodesic path starting from p1 and tangent
to −νp1 at p1. Assume that

d(p1, p̂
∗
1) + |νp1 − νp̂∗1 | ≤ θ . (1.33)

for some θ ∈ [0, 1/2]. where ν is the Euclidean unitary normal vector �eld to
Σ. There exists r̄ depending only on ρ such that if r ≤ r̄ we have that γ ∩ Σ̂ 6= ∅
and, if we denote by p̂1 the �rst intersection point between γ and Σ̂, then

d(p1, p̂1) + |Np1 − τp1p̂1 (Np̂1)|p1 ≤ Cθ ,

where C is a constant depending only on n and ρ, and provided that Cθ < 1/2.

Proof. We �rst notice that, by choosing r small enough in terms of ρ, from
Lemma 1.3 we have that |νp1 − en| ≤ 1/4. We observe that the geodesic γ is
almost �at, i.e., viewed as an Euclidean circle its radius R satis�es

R = O

(
1

|x1|2
)

as |x1| → 0 . (1.34)

Indeed, up to apply a rotation, we may assume that both p1 and νp1 belong to
the plane π1 spanned by {e1, e2}. In this way, the geodesic path γ belongs to the
plane π1 and we can work in a �bidimensional way�. We can write p1 = (x1, y1)
and νp1 = (ν1, ν2) and we compute the geodesic γ passing through p1 and
tangent to νp1 . We solve

{
(x1 + a)2 + (y1 + b)2 = 1 + a2 + b2

(x1 + a, y1 + b) · (ν1, ν2) = 0

and we �nd

a =
(1− |p1|2)ν2 + 2y1(p1 · ν)

2(x1ν2 − y1ν1)
, b =

−(1− |p1|2)ν1 − 2x1(p1 · ν)

2(x1ν2 − y1ν1)
.

If |x1| → 0, according to Lemma 1.3, we have that y1 = O(x2
1), ν1 = O(x1) and

ν2 = 1 + o(1); so we get that a ∼ 1
2x1

, b is bounded and (1.34) follows.

Let B+ and B− be the exterior and interior touching balls of Σ̂ at p̂0 =
(0, û(0)), respectively. A standard geometrical argument shows that it is possible
to choose r̄ small enough in terms of ρ such that γ intersects B+ and B− at
points which are distant from the origin less than r̄. This implies the existence
of the point p̂1 in the assertion for any r ≤ r̄.

Now we estimate the distance between p1 and p̂1 as follows. Let q be the
unique point having distance 2ε from p1 and lying on the geodesic path con-
taining p1 and p̂∗1. Let T be the geodesic right-angle triangle having vertices p1

and q and hypotenuse contained in the geodesic passing through p1 and p̂1 (see
Figure 1.3 and recall (1.34)). Since the angle α at the vertex p1 is such that
| sinα| ≤ 1/4, then from the cosine rule for spherical triangles we have that

d(p1, p̂1) ≤ Cθ . (1.35)
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Moreover, the triangle inequality gives that

d(p̂∗1, p̂1) ≤ Cθ (1.36)

for some constant C, and from (1.22) we obtain that

|Np1 − τp1p̂1 (Np̂1)|p1 ≤ |Np1 − τp1p̂∗1 (Np̂∗1 )|p1 + |τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 . (1.37)

Since p1 and p̂∗1 are on the same vertical line (1.33) implies

|Np1 − τp1p̂∗1 (Np̂∗1 )|p1 = |νp1 − νp̂∗1 | ≤ Cθ . (1.38)

As next step we show that

|τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 ≤ Cθ . (1.39)

We obtain (1.39) by showing that if p, q ∈ Rn belong to the Euclidean ball
centred at the origin and having radius s, then

2|τOp (v)− τOq (w)| ≤ (1 + s)2

4

(
d(p,O)2 + d(q,O)2

)

+ |v − τpq (w)|p +
9

2
d(p, q) .

(1.40)

for every v, w ∈ Rn, |v|q = |w|q̂ = 1. We have

τOp (v) =
1

1 + |p|2 v , τOq (w) =
1

1 + |q|2w.

and using Cauchy-Schwarz inequality and taking into account Lemma 1.2 we
have

||q|2 − |p|2| = |(q − p) · (q + p)| ≤ |q − p||q + p| ≤ s(1 + s2) d(p, q)

since

|w| = 1 + |q̂|2
2

we have

2

∣∣∣∣
1

1 + |q|2 τ
O
p (w)− 1

1 + |q|2 τ
O
q (w)

∣∣∣∣ = 2

∣∣∣∣
|q|2 − |p|2

(1 + |p|2)(1 + |q|2)

∣∣∣∣
≤ 2s(1 + s2) d(p, q) .

Now using
2
∣∣τOp (v)

∣∣ = 1 , 2
∣∣τOq (w)

∣∣ = 1;

and

|v| = 1 + |p|2
2

, |w| = 1 + |q|2
2

,
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we compute

2|τOp (v)− τOq (w)| ≤ 2

∣∣∣∣τOp (v)− 1

1 + |p|2 τ
O
p (v)

∣∣∣∣+ 2

∣∣∣∣
1

1 + |p|2 τ
O
p (v)− τOq (w)

∣∣∣∣

≤ 2

∣∣∣∣1−
1

1 + |p|2
∣∣∣∣
∣∣τOp (v)

∣∣+ 2

∣∣∣∣
1

1 + |p|2 τ
O
q (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣

+ 2

∣∣∣∣
1

1 + |q|2 τ
O
p (w)− 1

1 + |q|2 τ
O
q (w)

∣∣∣∣+ 2

∣∣∣∣1−
1

1 + |q|2
∣∣∣∣ |τOq (w)|

≤
∣∣∣∣1−

1

1 + |p|2
∣∣∣∣+ 2

∣∣∣∣
1

1 + |p|2 τ
O
q (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣

+ 4d(p, q) +

∣∣∣∣1−
1

1 + |q|2
∣∣∣∣

≤ |p|2 + 2

∣∣∣∣
1

1 + |p|2 τ
O
q (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣+ 4d(p, q) + |q|2

≤ (1 + s)2

4

(
d(p,O)2 + d(q,O)2

)

+ 2

∣∣∣∣
1

1 + |p|2 τ
O
p (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣+ 4d(p, q) .

Now we show that

2

∣∣∣∣
1

1 + |p|2 τ
O
p (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣ ≤ |v − τpq (w)|p +
1

2
d(p, q) .

Let σ be the geodesic path connecting p with q. Then σ is contained in a circle
of Rn and denotes by C its center and by α the angle between p−C and q−C.
Then

1 + |p|2
1 + |q|2w = Rατ

p
qw , for every w ∈ Rn ,

where Rα is the rotation (clockwise or anti-clockwise) about α in the plane
containing C and is the identity in the complement. Therefore we have

2

∣∣∣∣
1

1 + |p|2 τ
O
p (v)− 1

1 + |q|2 τ
O
p (w)

∣∣∣∣ =

∣∣∣∣
1

1 + |p|2 v −
1

1 + |q|2w
∣∣∣∣
p

≤
∣∣∣∣v −

1 + |p|2
1 + |q|2w

∣∣∣∣
p

=
∣∣v −Rατpqw

∣∣
p

≤
∣∣v − τpqw

∣∣
p

+
∣∣τpqw −Rατpqw

∣∣
p

and, consequently, we deduce,

∣∣τpqw −Rατpqw
∣∣
p
≤ |α| ≤ 1

2
d(p, q)

which implies (1.40).
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Therefore, by applying (1.40) to |τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 , we have

|τp1p̂∗1 (Np̂∗1 )− τp1p̂1 (Np̂1)|p1 ≤
(1 + Cθ)2

4

(
d(p1, p̂

∗
1)2 + d(p1, p̂1)2

)

+ |Np̂∗1 − τ
p̂∗1
p̂1

(Np̂∗1 )|p̂∗1
+

9

2
d(p̂1, p̂

∗
1)

≤Cθ ,

where the last inequality follows from (1.33),(1.35),(1.36) and (1.22). This last
inequality, (1.37) and (1.38) imply that

|Np1 − τp1p̂1 (Np̂1)|p1 ≤ Cθ ,

and therefore from (1.35) we conclude.

Σ

Σ̂

en

xn = 0

p1

p̂1
p̂∗1

γ

q

Figure 1.3: Proof of Lemma 1.6.

1.3 Curvatures of projected surfaces in confor-

mally Euclidean spaces

In this section we consider a connected open set Ω in Rn equipped with a
metric g(·, ·) = h2 〈·, ·〉 conformal to the Euclidean metric. We further assume
the existence of an Euclidean hyperplane π of Rn such that Ω ∩ π is a totally
geodesic hypersurface in Ω. This setting includes the Euclidean space, the
hyperbolic space and Rn with the round metric (1.7). For instance in the half-
space model of the hyperbolic space we can take as π any vertical Euclidean
hyperplane; in the spherical case we can consider Euclidean hyperplanes passing
through the origin.

For our purposes, we consider a hypersurface U of class C2 embedded in
Ω which intersects π transversally. The implicit function theorem implies that
U ′ = U ∩ π is a C2-submanifold of π. Furthermore if νq is an Euclidean unit
normal vector �eld to U and w is a unit normal vector to π, we have that

ν′q =
(−1)n ∗ (∗(νq ∧ w) ∧ w)

| ∗ (∗(νq ∧ w) ∧ w)| , q ∈ U ′,
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is an Euclidean unitary normal vector �eld to U ′ in π, where ∗ is the Euclidean
Hodge star operator in Rn. In particular U ′ is orientable in π. Let

Nq =
1

h(q)
νq , N ′q =

1

h(q)
ν′q

be the normal vectors with respect to the metric g and

ωp =
1

h(p)
w , p ∈ Ω .

Proposition 1.3. Let κj, j = 1, . . . , n−1 be the principal curvatures of U with
respect to metric g and to the orientation induced by N . Then the principal
curvatures κ′i of U

′ (viewed as submanifold of π) with respect to the orientation
induced by N ′ satisfy

1√
1− gq(ωq, Nq)2

κ1(q) ≤ κ′i(q) ≤
1√

1− gq(ωq, Nq)2
κn−1(q) , (1.41)

for every q ∈ U ′. Moreover, the principal curvatures κ̌′i of U
′ seen as a hyper-

surface of U satisfy

|κ̌′i(q)| ≤
|gq(ωq, Nq)|√

1− gq(ωq, Nq)2
max{|κ1(q)|, |κn−1(q)|} , (1.42)

for every q ∈ U ′.

Proof. Let v ∈ TqU ′ satisfy |v|q = 1 and

κq(v) = gq(∇vÑ , v) ,

where Ñ denotes an extension of N in Ω and ∇ is the Levi-Civita connection
of g. For p ∈ U ′, Nq is orthogonal to TqU ′ and consequently it lies on the plane
spanned by w and N ′q and hence

N = aw + bN ′ ,

where a is a function on U ′ and

b = g(N,N ′) .

If ã, b̃ and Ñ ′ are extensions of a, b and N ′ in Ω,

Ñ = ã w + b̃ Ñ ′

de�nes an extension of N and a direct computation yields

κp(v) = a(p) gp(∇vw, v) + b(p) gp(∇vÑ ′, v) = b(p) gp(∇vÑ ′, v) ,

where we used that π ∩ Ω is totally geodesic. Therefore

1

gq(Nq, N ′q)
κq(v) = gq(∇vÑ ′, v)
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and consequently

1

gq(Nq, N ′q)
κ1(q) ≤ κ′i(q) ≤

1

gq(Nq, N ′q)
κn−1(q)

for every q ∈ U ′ and i = 1, . . . , n− 2.
Now we show

gq(Nq, N
′
q) =

√
1− gq(ωq, Nq)2 , (1.43)

which implies (1.41). We have

νq · ν′q =
(−1)n ∗ (∗(νq ∧ w) ∧ w)

| ∗ (∗(νq ∧ w) ∧ w)| · νq

=
1

| ∗ (∗(νq ∧ w) ∧ w)| (−1)n ∗ (νq ∧ w) ∧ w · ∗νq .
(1.44)

Let {νq, e1, . . . , en−1} be a positive-oriented orthonormal basis of Rn such that

• {e1, . . . , en−1} is a positive-oriented Euclidean-orthonormal basis of TqU ;

• {e2, . . . , en−1} is a basis of TqU ′.

In this way w ∈ span{νq, e1},

∗(νq ∧ w) = (w · e1) e2 ∧ · · · ∧ en−1 , ∗νq = e1 ∧ · · · ∧ en−1,

and
| ∗ (∗(νq ∧ w) ∧ w)| = | ∗ (νq ∧ w) ∧ w| = w · e1 .

So, from (1.44) we get

νq · ν′q =
(−1)n

ω · e1
∗ (νq ∧ w) ∧ w · ∗νq

=
(−1)n

ω · e1
(ω · e1) e2 ∧ · · · ∧ en−1 ∧ w · e1 · · · ∧ en−1

= (−1)n(ω · e1) e2 ∧ · · · ∧ en−1 ∧ e1 · e1 ∧ · · · ∧ en−1

= (ω · e1) e1 ∧ · · · ∧ en−1 · e1 ∧ · · · ∧ en−1

=ω · e1 .

Since |w| = 1, we have w · e1 =
√

1− (w · νq)2 and so

νq · ν′q =
√

1− (w · νq)2 . (1.45)

Since
νq · ν′q = gq(Nq, N

′
q) , and w · νq = gq(ωq, Nq) ,

(1.43) follows.
Now we prove (1.42). In this case we regard U ′ as a submanifold of U .

Let q ∈ U ′, v ∈ TqU ′ such that |v|q = 1 and let α : (−δ, δ) → S be a unitary
speed curve satisfying α(0) = q and α̇(0) = v. Let Ñ ′ be a unitary normal
vector �eld of U ′ in U near q. We may complete v with an orthonormal basis
{v, v2, . . . vn−2} of TqU ′ such that

Ň ′q = ∗q(Nq ∧ v ∧ v2 ∧ · · · ∧ vn−2) ,
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where ∗q is the Hodge star operator at q in Ω with respect to g and to the
standard orientation. Let

κ̌′q(v) = gq(∗q(Ňq ∧ v ∧ v2 ∧ · · · ∧ vn−2), Dtα̇|t=0) ,

where Dt is the covariant derivative in (Ω, g). Since Dtα̇|t=0 ∈ π, we have
κ̌′q(v) = gq(Nq, ωq)gq(∗q(ωq ∧ v ∧ v2 ∧ · · · ∧ vn−2), Dtα̇|t=0) .

Now, ∗q(ωq ∧ v ∧ v2 ∧ · · · ∧ vn−2) is a normal vector to TqU ′ in π and so

κ̌′q(v) = gq(Nq, ωq)gq(∇vÑ , v) ,

where Ñ is an arbitrary extension of N in a neighbourhood of q. From (1.41)
we obtain

|κ̌′q(v)| ≤ |gq(Nq, ωq)|√
1− gq(ωq, Nq)2

max{|κ1(q)|, |κn−1(q)|} ,

as required.

Remark 1.1. It may be convenient to explain the meaning of (1.45) when n = 3.
In this case ∗(v ∧ w) is the vector product v × w, so

ν′q = − (νq × w)× w
|(νq × w)× w| and |(νq × w)× w| =

√
|νq|2|w|2 − (νq · w)2 .

So

(νq · ν′q) = − 1√
|νq|2|w|2 − (νq · w)2

(νq × w)× w · νq

= − 1√
|νq|2|w|2 − (νq · w)2

(νq × w) · (w × νq)

=
|νq × w|2√

|νq|2|w|2 − (νq · w)2

=
|νq|2|w|2 − (νq · w)2

√
|νq|2|w|2 − (νq · w)2

=
√

1− (νq · w)2 .

Now we focus in a di�erent setting. Let Ω̄ be the projection of Ω onto
{xn = 0} and let π ⊆ Ω be the graph of a C2 function F : A→ R, where A ⊆ Ω̄
is a open subset.

Proposition 1.4. Let U ′ be a C2 regular oriented hypersurface of π and let U ′′

be the orthogonal projection of U ′ onto {xn = 0}. Then the principal curvatures
of U ′′ satisfy

|κ′′i (q̄)| ≤ h(q)√
1 + |∇F (q̄)|2

(
(ν′q · en)2 +

1

1 + |∇F (q̄)|2
)−3/2

×
(

max{|κ′1(q)|, |κ′n−1(q)|}+ 4
|∇h(q)|
h(q)2

)
,

(1.46)

for every i = 1, . . . , n − 2, where {κ′′i } are the principal curvatures of U ′′ with
respect to the Euclidean metric, q ≡ (q̄, qn) ∈ U ′ and ν′q = h(q)N ′q.
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Proof. If X is a local positive oriented parametrization of U ′, then

X̄ = X − (X · en)en

is a local parametrization of U ′′, and we can orient U ′′ with

ν′′ ◦ X̄ := vers(∗(X̄1 ∧ X̄2 ∧ · · · ∧ X̄n−2 ∧ en)) , (1.47)

where X̄k is the kth derivative of X̄ with respect to the coordinates of its domain
and ∗ is the Hodge star operator in Rn with respect to the the Euclidean metric
and the standard orientation.

Now we prove inequalities (1.46). Fix a point q = (q̄, qn) ∈ U ′ and v̄ ∈ Tq̄U ′
be nonzero. Let β : (−δ, δ)→ U ′′ be an arbitrary regular curve contained in U ′′

such that
β(0) = q̄ , β̇(0) = v̄ .

Then

κ′′q̄ (v̄) =
1

|v̄|2 ν
′′
q̄ · β̈(0)

is the normal curvature of U ′′ at (q̄, v̄), viewed as hypersurface of {xn = 0} with
the Euclidean metric. We can write

κ′′q̄ (v̄) =
1

|v̄|2 ν
′′
q̄ · α̈(0)

where α = (β, αn) whose projection onto U ′ is β. From

X̄k = Xk − (Xk · en)en ,

and the de�nition of ν′′ (1.47) we have

κ′′q̄ (v̄) =
∗(X1(q) ∧ · · · ∧Xn−2(q) ∧ en) · α̈(0)

|β̇(0)|2|X1(q) ∧ · · · ∧Xn−2(q) ∧ en|
.

We may assume that {X1(q), . . . , Xn−2(q)} is an orthonormal basis of TqU ′ with
respect to the Euclidean metric. Let

Nq =
(−∇F (q̄), 1)√
1 + |∇F (q̄)|2

be the Euclidean normal vector to π at q and let

a =
√

1 + |∇F (q̄)|2 .

Therefore {X1(q), . . . , Xn−2(q), ν′q,Nq} is an Euclidean orthonormal basis of Rn
and we can split Rn in

Rn = TqU
′ ⊕ 〈ν′q〉 ⊕ 〈Nq〉 , (1.48)

and en splits accordingly into

en = e′n + e′′n + e′′′n .

Therefore

∗(X1(q) ∧ · · · ∧Xn−2(q) ∧ en) · α̈(0) = ∗(X1(q) ∧ · · · ∧Xn−2(q) ∧ e′′′n ) · α̈(0) ,
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i.e.

∗(X1(q) ∧ · · · ∧Xn−2(q) ∧ en) · α̈(0) =
1

a
∗ (X1(q) ∧ · · · ∧Xn−2(q) ∧ Nq) · α̈(0) .

Since
ν′q = ∗ (X1(q) ∧ · · · ∧Xn−2(q) ∧ Nq)

we obtain

κ′′q̄ (v̄) =
1

a|β̇(0)|2
ν′q · α̈(0)

|X1(q) ∧ · · · ∧Xn−2(q) ∧ en|
.

We may assume that α is parametrized by arc length with respect to the metric
g, i.e.

|α̇|2 = h(α)−2

and so
|β̇|2 = h(α)−2 − α̇2

n ,

which implies

κ′′q̄ (v̄) =
1

a(h(q)−2 − v2
n)

ν′q · α̈(0)

|X1(q) ∧ · · · ∧Xn−2(q) ∧ en|
. (1.49)

Since

X1(q) ∧ · · · ∧Xn−2(q) ∧ en
= X1(q) ∧ · · · ∧Xn−2(q) ∧ e′′n +X1(q) ∧ · · · ∧Xn−2(q) ∧ e′′′n

and

X1(q) ∧ · · · ∧Xn−2(q) ∧ e′′n = (ν′q · en)X1(q) ∧ · · · ∧Xn−2(q) ∧ ν′q ,

X1(q) ∧ · · · ∧Xn−2(q) ∧ e′′′n =
1

a
X1(q) ∧ · · · ∧Xn−2(q) ∧ Nq ,

we obtain

|X1(q) ∧ · · · ∧Xn−2(q) ∧ en| =
(

(ν′q · en)2 +
1

a2

)1/2

.

On the other hand
κ′q(v) = gq(N

′
q, Dtα̇|t=0)

where Dt is the covariant derivative in π. It is well-known that the Christo�el
symbols of g are given by

Γkij = δki ∂jf + δkj ∂if − δji ∂kf ,
where f = log h. We have

Dtα̇ = α̈+

n∑

i,j,k=1

Γkij(α)α̇iα̇j ek

=α̈+

n∑

i,j,k=1

(δki ∂jf(α) + δkj ∂if(α)− δji ∂kf(α))α̇iα̇j ek

= α̈+

n∑

i,k=1

(2∂if(α)α̇iα̇k − α̇2
i ∂kf(α)) ek +

n∑

k=1

∂kf(α)α̇2
k ek
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and

Dtα̇|t=0 = α̈(0) +

n∑

i,k=1

(2∂if(q)vivk − v2
i ∂kf(q)) ek +

n∑

k=1

∂kf(q)v2
k ek .

Therefore

κ′q(v) = gq


N ′q, α̈(0) +

n∑

i,k=1

(2∂if(q)vivk − v2
i ∂kf(q)) ek +

n∑

k=1

∂kf(q)v2
k ek




=h(q)ν′q · α̈(0) + h(q)

n∑

i,k=1

(2∂if(q)vivk − v2
i ∂kf(q)) ek · ν′q

+ h(q)

n∑

k=1

∂kf(q)v2
k ν
′
q · ek

=h(q)ν′q · α̈(0) +

n∑

i,k=1

(2∂ih(q)vivk − v2
i ∂kh(q)) ek · ν′q

+

n∑

k=1

∂kh(q)v2
kν
′
q · ek ,

and we get

ν′q · α̈(0) =
κ′q(v)

h(q)
− 1

h(q)

n∑

i,k=1

(2∂ih(q)vivk − v2
i ∂kh(q)) ek · ν′q

− 1

h(q)

n∑

k=1

∂kh(q)v2
k ν
′
q · ek .

From (1.49) we deduce

κ′′q̄ (v̄) =
1

a(h(q)−2 − v2
n)

(
〈ν′q, en〉2 +

1

a2

)−1/2

×

κ
′
q(v)

h(q)
− 1

h(q)

n∑

i,k=1

(2∂ih(q)vivk − v2
i ∂kh(q)) ek · ν′q −

1

h(q)

n∑

k=1

∂kh(q)v2
kν
′
q · ek


 ,

for every v ∈ TqU ′ such that gq(v, v) = 1. Therefore

κ′′1(q̄) =
1

ah(q)

(
(ν′q · en)2 +

1

a2

)−1/2

inf
v∈Sn−2

q

Aq(v) ,

κ′′n−2(q̄) =
1

ah(q)

(
(ν′q · en)2 +

1

a2

)−1/2

sup
v∈Sn−2

q

Aq(v) ,

where

Aq(v) =
1

h(q)−2 − v2
n

×

κ′q(v)−

n∑

i,k=1

(2∂ih(q)vivk − v2
i ∂kh(q)) ek · ν′q −

n∑

k=1

∂kh(q)v2
kν
′
q · ek
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and Sn−2
q = {v ∈ TqU ′ : |v|q = 1}. Since |v|2q = 1, then |v|2 = h(q)−2 and we

can rewrite Aq(v) as

Aq(v) =
1

h(q)−2 − v2
n

×
(
κ′q(v)− ν′q ·

(
2(∇h(q) · v)v − h(q)−2∇h(q) +

n∑

k=1

∂kh(q)v2
kek

))
.

Since |κ′′i (q̄)| ≤ max{|κ′′1(q̄)|, |κ′′n−2(q̄)|}, i = 1, . . . , n− 2, we obtain

|κ′′i (q̄)| ≤ 1

ah(q)

(
(ν′q · en)2 +

1

a2

)−1/2

sup
v∈Sn−2

q

|Aq(v)| . (1.50)

We have

|Aq(v)| =
1

h(q)−2 − v2
n

×
∣∣∣∣∣κ
′
q(v)− ν′q ·

(
2(∇h(q) · v) v − 1

h(q)2
∇h(q) +

n∑

k=1

∂kh(q)v2
kek

)∣∣∣∣∣

≤ 1

h(q)−2 − v2
n

×
(
|κ′q(v)|+

∣∣∣∣∣2(∇h(q) · v) v − 1

h(q)2
∇h(q) +

n∑

k=1

∂kh(q)v2
kek

∣∣∣∣∣

)

≤ 1

h(q)−2 − v2
n

×
(
|κ′q(v)|+ 2 |(∇h(q) · v) v|+ 1

h(q)2
|∇h(q)|+

∣∣∣∣∣
n∑

k=1

∂kh(q)v2
kek

∣∣∣∣∣

)

≤ 1

h(q)−2 − v2
n

×
(
|κ′q(v)|+ 2

h(q)2
|∇h(q)|+ 1

h(q)2
|∇h(q)|+ 1

h(q)2
|∇h(q)|

)

i.e.,

|Aq(v)| ≤ 1

h(q)−2 − v2
n

(
|κ′q(v)|+ 4

h(q)2
|∇h(q)|

)
.

Since Rn = TqU
′ ⊕ 〈Nq〉 ⊕ 〈ν′q〉, we can write

en = e′′n +
1

a
+ (νq · en) ν′q ,

where ẽn is the orthogonal projection of en onto TqU ′. Therefore

1− |e′n|2 =
1

a2
+ (ν′q · en)2 .

Since h(q)v lies in TqU ′ and it has unitary Euclidean norm, we have

|e′n|2 ≥ h(q)2(en · v)2 = h(q)2v2
n
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and so

1− h(q)2v2
n ≥

1

a2
+ (ν′q · en)2 ,

i.e.

h(q)−2 − v2
n ≥

(
1

a2
+ (ν′q · en)2

)
h(q)−2 .

Hence

|Aq(v)| ≤ (|κ′q(v)|+ 4h(q)−2|∇h(q)|)
(

1

a2
+ (ν′q · en)2

)−1

h(q)2 ,

which yields

|κ′′i (q̄)| ≤ h(q)

a

(
(ν′q · en)2 +

1

a2

)−3/2

sup
v∈Sn−2

q

(|κ′q(v)|+ 4h(q)−2|∇h(q)|) , (1.51)

which implies (1.46).

Now we use (1.46) in space forms.
In the Euclidean space we have Ω = Rn and h(q) = 1 and (1.46) reduces to

|κ′′i (q̄)| ≤ 1√
1 + |∇F (q̄)|2

max{|κ′1(q)|, |κ′n−1(q)|}
(
〈ν′q, en〉2 + 1

1+|∇F (q̄)|2
)3/2

. (1.52)

In particular, if π is an hyperplane and if we set ω1 = (∇F (q̄),−1)√
1+|∇F (q̄)|2

and ω2 = en

then we have

|κ′′i (q̄)| ≤ |ω1 · ω2|(
(ω1 · ω2)2 + (ω2 · ν′q)

)3/2 max{|κ′1(q)|, |κ′n−1(q)|} , (1.53)

for every i = 1, . . . , n− 2.
In the Hyperbolic space we have Ω = {qn > 0} and h(q) = 1

qn
and (1.46)

reduces to

|κ′′i (q̄)| ≤ 1

qn
√

1 + |∇F (q̄)|2

(
max{|κ′1(q)|, |κ′n−1(q)|}+ 4

)
(

(ν′q · en)2 + 1
1+|∇F (q̄)|2

)3/2
, (1.54)

In particular, if π is a half-sphere of radius R with center in π∞, then we have

|κ′′i (q̄)| ≤ 1

R

(
(ν′q · en)2 +

q2
n

R2

)− 3
2 (

max{|κ′1(q)|, |κ′n−1(q)|}+ 4
)
. (1.55)

for every i = 1, . . . , n− 2.
Now we focus on Rn equipped with the spherical metric. In this case h(q) =

2
1+|q|2 and (1.46) gives

|κ′′i (q̄)| ≤ 2

(1 + |q|2)
√

1 + |∇F (q̄)|2

(
max{|κ′1(q)|, |κ′n−1(q)|}+ 4|q|

)
(

(ν′q · en)2 + 1
1+|∇F (q̄)|2

)3/2
.
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In particular if π is the hemisphere of some hyperplane which does not contain
the origin, then we have

|κ′′i (q̄)| ≤ h(q)|(q −Oπ)n|
R

(
max{|κ′1(q)|, |κ′n−1(q)|}+ 4|q|

)
,

(
(ν′q · en)2 +

(q−Oπ)2n
R2

)3/2
, (1.56)

for every i = 1, . . . , n − 2, where Oπ and R are the center and the radius of π,
respectively.

1.4 Approximate symmetry in one direction

We consider the following set-up: let S = ∂Ω be a C2-regular connected closed
hypersurface embedded in Mn

+, where Ω is a bounded domain. Assume that S
satis�es a uniform touching ball condition of radius ρ > 0. We �x a direction v
in ToMn and we apply the method of the moving planes as described in Section
1.1. Let π = πv,mv be the critical hyperplane and in order to simplify the
notation we set

S+ = {p ∈ S : p ∈ πv,t for some t > mv} ,
S− = {p ∈ S : p ∈ πv,t for some t < mv} .

From the method of the moving planes we have that the re�ection Sπ+ of S+ with
respect to π is contained in Ω and it is tangent to S− at a point p0 (internally
or at the boundary). Let Σ and Σ̂ be the connected components of Sπ+ and S−
containing p0, respectively.

The main result in this section is the following

Theorem 1.4. There exists ε > 0 such that if

osc(HS) ≤ ε,

then for any p ∈ Σ there exists p̂ ∈ Σ̂ such that

d(p, p̂) + |Np − τpp̂ (Np̂)|p ≤ C osc(HS).

Here, the constants ε and C depend only on n, ρ and the area of S. In particular
ε and C do not depend on the direction v.

Moreover, Ω is contained in a neighbourhood of radius Cosc(HS) of Σ ∪ Σπ

(Σπ is the re�ection of Σ about π), i.e.

d(p,Σ ∪ Σπ) ≤ Cosc(HS) ,

for every p ∈ Ω.

Before giving the proof of Theorem 1.4, we provide two preliminary results
about the geometry of Σ. For t > 0 we set

Σt = {p ∈ Σ : dΣ(p, ∂Σ) > t} .

The following lemmas quantitatively show that Σt is connected for t small
enough.

Here we use the results in Section (1.3) and we consider the unitary normal
vector �eld ω to π directed as the geodesic γ in Mn

+ satisfying γ̇(0) = v.
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Lemma 1.7. Assume
gp(Np, ωp) ≤ µ (1.57)

for every p on the boundary of Σ, for some µ ≤ 1/2, and let t0 = ρ
√

1− µ2.
Then Σt is connected for any 0 < t < t0.

Proof. We can work in Rn for every space form considered, and we may assume
that π is an Euclidean hyperplane of Rn (in the spherical case we can consider
the projection from a point antipodal to a point inside π).

Let Σ′ be the subset of π obtained by projecting Σ onto π (for any point
p ∈ Σ we de�ne the projection of p onto π as the point on π which realizes the
distance d of p from π). Σ′ is an open set of π with ∂Σ′ = ∂Σ. Proposition 1.3
gives

|κ′i(p)| ≤
1√

1− (gp(Np, ωp))
2

max{|κ1(p)|, |κn−1(p)|} ,

for any p ∈ ∂Σ and i = 1, . . . , n − 1, where κ′i are the principal curvatures of
∂Σ viewed as a hypersurface of π. Since S satis�es a touching ball condition of
radius ρ, we have

max{|κ1(p)|, |κn−1(p)|} ≤ 1

ρ

and, consequently,

|κ′i(p)| ≤
1

ρ
√

1− (gp(Np, ωp))
2
, (1.58)

for i = 1, . . . , n−1. From (1.57) and (1.58) we have that ∂Σ′ satis�es a touching
ball condition of radius

ρ′ ≥ ρ
√

1− (gp(Np, ωp))
2 ≥ t0 .

Therefore if s < t0,
Cs = {z ∈ π : d(z, ∂Σ) < s}

is a collar neighbourhood of ∂Σ in Σ′ of radius s. Since π is a critical hyperplane
in the method of moving planes, if p belongs to the maximal cap S+ then any
point on the geodesic path connecting p to its projection onto π is contained in
the closure of Ω. It follows that the preimage of Cs via the projection contains
a collar neighbourhood of ∂Σ of radius s in Σ. This implies that Σ can be
retracted in Σt for any t ≤ s which completes the proof.

Lemma 1.8. There exists δ̄ > 0 depending only on ρ with the following property.
Assume that there exists a connected component Γδ of Σδ, for some 0 < δ ≤ δ̄,
such that one of the following two assumptions is ful�lled:

i) 0 ≤ gq(Nq, ωq) ≤ 1
8 for any q ∈ ∂Γδ,

ii) for any q ∈ ∂Γδ there exists q̂ ∈ Σ̂ such that

d(q, q̂) + |Nq − τ qq̂ (Nq̂)|q ≤ δ .

Then

0 ≤ gq(Nq, ωq) ≤
1

4
(1.59)

for any q ∈ ∂Σ and Σδ is connected.
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Proof. Case i). The crucial observation is that we can choose δ̄ small enough
such that δ̄ ≤ δ0, where δ0 is the bound appearing in Proposition 1.2, and the
set Σ \ Γδ is enclosed by π and the set obtained as the union of all the exterior
and interior touching balls to the re�ection of S about π, Sπ. This implies that
for any p ∈ Σ \Γδ there exists q ∈ ∂Γδ such that dΣ(p, q) ≤ δ and we can apply
the estimates in proposition 1.2. Indeed from (1.22) and (1.23) we have that

|Np − τpq (Nq)|p ≤ Cδ , and gp(Np, τ
p
q (Nq)) ≥

√
1− C2δ2 ,

where C = C(ρ). Therefore

gp(Np, ωp) = gp(Np − τpq (Nq), ωp) + gp(τ
p
q (Nq), ωp)

≤ Cδ + gp(τ
p
q (Nq), ωp)

and by using
gp(τ

p
q (Nq), ωp) = gq(Nq, τ

q
p (ωq))

we obtain

gp(Np, ωp) ≤ Cδ + gq(Nq, ωq) + gq(Nq, τ
q
p (ωp)− ωq)

≤ Cδ + gq(Nq, ωq) + |τ qp (ωp)− ωq|q .

Since
|τ qp (ωp)− ωq|q = 0 ,

we deduce
gp(Np, ωp) ≤ Cδ + gq(Nq, ωq) .

This last bound holds for every p ∈ ∂Σ and by choosing δ small enough in terms
of ρ we obtain (1.59), as required.

Case ii): Γδ satis�es ii). Let q ∈ ∂Γδ. By construction of the method of
moving planes, gq(Nq, ωq) ≥ 0. We denote by qπ the re�ection of q about π and
we have

d(qπ, q̂) ≤ d(qπ, q) + d(q, q̂) ≤ 3δ .

Up to consider a smaller δ in terms of ρ, from Corollary 1.2 we �nd C = C(ρ)
such that dS(qπ, q̂) ≤ Cδ and qπ ∈ Uρ1(q̂). Hence we can apply (1.22) and
obtain

gq̂(Nq̂, τ
q̂
qπ (Nqπ ) ≥

√
1− C2δ2 and |Nq̂ − τ q̂qπ (Nqπ )|q̂ ≤ Cδ .

Since Nqπ and qπ are the re�ection of Nq and q about π, respectively, we have
that

gq(Nq, ωq) = −g(τ qqπ (Nqπ ), ωq) ,

and hence

2gq(Nq, ωq) = gq(Nq − τ qqπ (Nqπ ), ωq)

= gq(Nq − τ qq̂ (Nq̂), ωq) + gq(τ
q
q̂ (Nq̂)− τ qqπ (Nqπ ), ωq) .

This implies that

0 ≤ 2gq(Nq, ωq) ≤ |Nq − τ qq̂ (Nq̂)|q + |τ qq̂ (Nq̂)− τ qqπ (Nqπ )|q .
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Next we observe that

|τ qq̂ (Nq̂)− τ qqπ (Nqπ )|q = |Nq̂ − τ q̂q τ qqπ (Nqπ )|q̂ ≤ c(δ)|Nq̂ − τ q̂qπ (Nqπ )|q̂

where c(δ)→ 0 when δ → 0. Hence for a suitable choice of δ̄ we get

0 ≤ 2gq(Nq, ωq) ≤
1

8
, (1.60)

and the claim follows from case i).

Now we can focus on the proof of the �rst part of Theorem 1.4, and show
that there exist constants ε and C, depending only on n, ρ and |S|g (the area
of S with respect to g), such that if

osc(HS) ≤ ε,

then for any p in Σ there exists p̂ in Σ̂ satisfying

d(p, p̂) + |Np − τpp̂ (Np̂)|p ≤ C osc(HS) . (1.61)

In the proof of Theorem 1.4 we are going to choose a number δ > 0 su�ciently
small in terms of ρ, n and |S|g. A �rst requirement on δ is that the assumptions
of Lemmas 1.7 and 1.8 are satis�ed. Other restrictions on the value of δ will be
done in the development of the proof. We subdivide the proof of the �rst part
of the statement in four cases depending on the whether the distances of p0 and
p from ∂Σ are greater or less than δ.

Case 1: dΣ(p0, ∂Σ) > δ and dΣ(p, ∂Σ) ≥ δ.
In this �rst case we assume that p0 and p are interior points of Σ, which are far
from ∂Σ more than δ. We �rst assume that p0 and p are in the same connected
component of Σδ; then, Lemma 1.8 will be used in order to show that Σδ is in
fact connected.

Let r0 > 0 be such that Ur0(pi) ⊂ Σ for every pi ∈ Σδ. The value of r0

follows from (ii), Lemma 1.3 by letting

r0 = min(r̄, αρ1) , (1.62)

where r̄ is given by Lemmas 1.5 and 1.6, α ∈ (0, 1
2 min(1, ρ−1

1 )) is such that
αCρ1 ≤ δ

4 , and C is the constant appearing in (1.19).

Lemma 1.9. Let ε0 ∈ [0, 1/2], p0 and p be in a connected component of Σδ and
ri = (1− ε2

0)ir0. There exist an integer J ≤ Jδ, where

Jδ := max

(
4,

2n−1|S|g
δn−1

)
, (1.63)

and a sequence of points {p1, . . . , pJ} in Σδ/2 such that

p0, p ∈
J⋃

i=0

Uri/4(pi) ,

Ur0(pi) ⊆ Σ, i = 0, . . . , J ,

pi+1 ∈ Uri/4(pi), i = 0, . . . , J − 1 .
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Proof. In view of Corollary 1.2, for every z in Σ and r ≤ ρ0, the geodesic ball
Br(z) in Σ satis�es

Area(Br(z)) ≥ crn−1

where c is a constant depending only on n. A general result for Riemannian
manifolds with boundary (see Proposition A.1) implies that there exists a piece-
wise geodesic path parametrized by arc length γ : [0, L] → Σδ/2 connecting p0

to p and of length L bounded by δJδ, where Jδ is given by (1.63).
We de�ne pi = γ(ri/4), for i = 1, . . . , J − 1 and pJ = p. Our choice of

r0 guarantees that Ur0(pi) ⊂ Σ, for every i = 0, . . . , J , and the other required
properties are satis�ed by construction.

Since p and p0 are in a connected component of Σδ, there exists a sequence
of points p1, . . . , pJ in the connected component of Σδ/2 containing p0, with
J ∈ N and pJ = p, and a chain of subsets {Ur0(pi)}{i=0,...,J} of Σ as in Lemma

1.9. We notice that Σ and Σ̂ are tangent at p0 and that in particular the two
normal vectors to Σ and Σ̂ at p0 coincide. Now we apply the map ϕp0 (see
section 1.2). Then ϕp0(Σ) and ϕp0(Σ̂) can be locally parametrized near ϕp0(p0)
as graphs of two functions u0, û0 : Br0 ⊂ {xn = 0} → R. Lemma 1.3 implies
that |∇u0|, |∇û0| ≤ M in Br0 , where M is some constant which depends only
on r0, i.e. only on ρ. Hence the di�erence u0 − û0 solves a second-order linear
uniformly elliptic equation of the form

L(u0 − û0)(x) = HGraph(u0)(x, u0(x))− HGraph(û0)(x, û0(x))

with ellipticity constants uniformly bounded by a constant depending only on
n and ρ. Since u0(0) = û0(0) and u0 ≥ û0, Harnack's inequality (see Theorems
8.17 and 8.18 in [112]) yields

sup
Br0/2

(u0 − û0) ≤ C osc(HS) ,

and from interior regularity estimates (see e.g. [112, Theorem 8.32]) we obtain

‖u0 − û0‖C1(Br0/4) ≤ C osc(HS), (1.64)

where C depends only on ρ and n. Now we use Lemmas 1.5 and 1.6. Since
p1 ∈ ∂ Ur0/4(p0), we can write ϕp0(p1) = (x1, u0(x1)), with x1 ∈ ∂Br0/4. Let

p̂∗1 ∈ Σ̂ be such that
ϕp0(p̂∗1) = (x1, û(x1)) ,

and let p̂1 be the �rst intersection point between Σ̂ and the geodesic path γ
starting from p1 and tangent to −Np1 at p1. From (1.64) we have

d(ϕp0(p1), ϕp0(p̂∗1)) + |νϕp0 (p1) − νϕp0 (p̂∗1)| ≤ C osc(HS) , (1.65)

which implies that the assumptions in Lemmas 1.5 and 1.6 are ful�lled, and we
obtain

d(p1, p̂1) + |Np1 − τp1p̂1 (Np̂1)|p1 ≤ C osc(HS) , (1.66)

where C depends only on n and ρ.
Now we apply ϕp1 . By de�nition of ϕp1 , we have ϕp1(p̂1) = ten for some t ∈

R (t depends on the geometry of the ambient space). A standard computation
yields

|νϕp1 (p1) − νϕp1 (p̂1)| = |Np1 − τp1p̂1 (Np̂1)|p1
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which in view of (1.66) implies

|νp1 − νp̂1 | ≤ Cosc(HS) ,

where C is a constant that depends only on ρ and n. Since osc(HS) ≤ ε then
|νp1 − νp̂1 | < Cε and by choosing ε such that Cε < 1, we can use the implicit
function theorem and obtain that Σ and Σ̂ are locally graphs of two functions

u1, û1 : Br1 → R+ ,

such that u1(0) = ϕp1(p1) and û1(0) = ϕp1(p̂1). Since both Σ and Σ̂ satisfy a
touching ball condition of radius ρ1 then r1 < ρ1; in particular one can show
that

r1 = (1− C2ε2)ρ < ρ1 .

Now, we can iterate the argument we did before. Indeed, since

0 ≤ inf
Br1/2

(u1 − û1) ≤ u1(0)− û1(0) ≤ Cosc(HS) ,

by applying Harnack's inequality we obtain that

sup
Br1/2

(u1 − û1) ≤ C osc(HS)

and from interior regularity estimates we �nd

‖u1 − û1‖C1(Br1/4) ≤ C osc(HS) , (1.67)

where C depends only on ρ and n. Hence, (1.67) is the analogue of (1.64), and
we can iterate the argument. The iteration goes on until we arrive at pJ = p
and obtain a point p̂J ∈ Σ̂ such that

d(p, p̂J) + |Np − τpp̂J (Np̂J )|p ≤ Cosc(HS) .

In view of Lemma 1.8 we have that Σδ is connected and the claim follows.

Case 2: dΣ(p0, ∂Σ) ≥ δ and dΣ(p, ∂Σ) < δ.

We extend the estimates found in case 1 to a point p which is far less than δ
from the boundary of Σ. Let q ∈ Σ and pmin ∈ ∂Σ be such that

dΣ(q, ∂Σ) = δ , dΣ(p, q) + dΣ(p, ∂Σ) = δ , and dΣ(p, pmin) = dΣ(p, ∂Σ) .

From case 1 we have that there exists q̂ in Σ̂ such that

d(q, q̂) + |Nq − τ qq̂ (Nq̂)|q ≤ C osc(HS) .

Lemma 1.8 (case (ii)) yields that

0 ≤ gz(Nz, ωz) ≤ 1
4 , (1.68)

for any z ∈ ∂Σ and Σδ is connected.
Let qπ ∈ S be the re�ection of q about π and �x r ≤ ρ1 in order to de�ne

Ur(qπ). We denote by Ur(q) the re�ection of Ur(qπ) ∩ S about π and U ′ =

47



1.4. APPROXIMATE SYMMETRY IN ONE DIRECTION

Ur(qπ) ∩ π. Proposition 1.3 implies that U ′ is a hypersurface of π with an
induced orientation and its principal curvatures κ′i satisfy the following bounds

1√
1− gz(Nz, ωz)2

κ1(z) ≤ κ′i(z) ≤
1√

1− gz(Nz, ωz)2
κn−1(z) ,

for every z ∈ U ′ and i = 1, . . . , n − 1. From (1.68) and since |κi(z)| ≤ ρ−1 for
any z ∈ S (this follows from the touching ball condition), we have

|κ′i(z)| ≤
2

ρ
, (1.69)

for any z ∈ U ′. Let U ′′ be the Euclidean orthogonal projection of ϕq(U ′) onto
{xn = 0}. In order to apply Carleson estimates in [26, Theorem 1.3], we need
to prove the following

Lemma 1.10. Let {κ′′1 , . . . , κ′′n−2} be the Euclidean principal curvature of U ′′

viewed as a hypersurface of Rn−1. Then

‖κ′′i ‖∞ ≤ C , i = 1, . . . , n− 2 , (1.70)

for some constant C = C(ρ).

Proof. Here we use the same notation as in Section 1.3 and we analyse each
case separately.

• Mn
+ = Rn. Up to apply ϕq we may assume that ϕq(q) = 0 and that the

normal vector to ϕq(S) at ϕq(q) is en. Hence Proposition 1.4 (actually
formula (1.53)) and (1.69) yield, for every i = 1, . . . , n− 2,

|κ′′i (z̄)| ≤ 2

ρ

|ω · en|
[(ω · en)2 + (en · ν′z)2]3/2

≤ 2

ρ

|ω · en|
(en · ν′z)3

, (1.71)

for every z = (z̄, zn) ∈ ϕq(U ′). Now we estimate en · ν′z in the following
way: by writing

en · ν′z = (en − νz) · ν′z + νz · ν′z ,
exploiting (1.45) and from (1.59) we get

νz · ν′z =
√

1− (ω · νz)2 ≥ 1

2
. (1.72)

Moreover, from (1.20) we get

|en − νz| ≤
1

4
, (1.73)

where we use the fact that z̄ ∈ U ′′ where U ′′ is the orthogonal projection
of ϕq(U ′) and U ′ = Ur(qπ)∩π with r ≤ ρ1 = ρ. So, from (1.72) and (1.73)
we obtain

en · ν′z ≥
1

2
. (1.74)

The conclusion now follows from (1.74), (1.68) and (1.71).
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1.4. APPROXIMATE SYMMETRY IN ONE DIRECTION

• Mn
+ = Hn. Up to apply the isometry ϕq we may assume that ϕq(q) = en

and the normal vector to ϕq(S) at ϕq(q) is en. It is clear that ϕq(π) is
either a vertical plane or a half-sphere intersecting ϕq(S). In the �rst case
we immediately conclude since the curvatures of U ′′ vanish. Thus, we may
assume that ϕq(π) is a half-sphere. A straightforward computation yields
that the radius of ϕq(π) is

R =
qn(Θ2 + 1)

2|Θ||aΘ + qn|
,

where

Θ = − sin(θ)

1 + cos(θ)
, cos(θ) = νq · en

and a is the Euclidean distance of q from π. It is easy to see that

a ≤ qn sinh(δ)

and so
1

R
≤ 2|Θ|(sinh(δ)|Θ|+ 1)

Θ2 + 1

which implies
1

R
≤ 1 + 2 sinh(δ) . (1.75)

Now we show (1.70). Proposition 1.4 (actually formula (1.55)), (1.69)
(1.75) imply

|κ′′i (z̄)| ≤ 1

R

(
(ν′z · en)2 +

z2
n

R2

)−3/2
4(1 + ρ)

ρ

≤ 4(1 + ρ)(1 + 2 sinh(δ))

ρ|ν′z · en|3
,

(1.76)

for every z = (z̄, zn) ∈ ϕq(U ′) and i = 1, . . . , n− 2. Now we show a lower
bound on ν′z · en. We write

ν′z · en = ν′z · (en − νz) + ν′z · νz = ν′z · (en − νz) + gz(N
′
z, Nz) . (1.77)

From (1.43) we get

gz(N
′
z, Nz) =

√
1− gz(ωz, Nz)2

and from (1.59) we obtain

gz(N
′
z, Nz) ≥

1

2
.

Since ϕq∗|q(νq) = en from (1.20) we have that |en−νz| ≤ 1/4, by choosing
r small enough in terms of ρ1. Hence

ν′z · en = ν′z · (en − νz) + gz(N
′
z, Nz) ≥

1

2
− |ν′z · (en − νz)| ≥

1

4
. (1.78)

Therefore (1.70) follows from (1.76) and (1.78).
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1.4. APPROXIMATE SYMMETRY IN ONE DIRECTION

• Mn
+ = Sn+. If we apply the stereographic projection ϕq then it is clear that

ϕq(π) is a hemisphere in Rn of center Oπ and radius R. We notice that
the radius of ϕq(π) is given by

R = 1
2a + a

2 ,

where a is the Euclidean distance between ϕq(π) and the origin of Rn.
This follows from the proof of lemma 1.6: indeed, up to apply a rotation,
we may assume that the point on π having minimal Euclidean distance
from the origin is (a, 0, . . . , 0), with a > 0, and that the normal to π in
(a, 0, . . . , 0) is e1. From a straightforward calculation we obtain the value
of R. Since d(q, π) < δ we have a < δ which implies

R >
1

2δ
. (1.79)

Since U ′ ⊂ Ur(q) and ϕq(q) = O, our choice of r implies that for any
z ∈ ϕq(U ′) we have

|z| ≤ ρ1 =
ρ

π
(1.80)

and
|z −Oπ| ≤ |z − q|+ |q −Oπ| ≤ δ +R ≤ 2R . (1.81)

Now we show (1.70). Proposition 1.4 (actually formula (1.56)), (1.79),
(1.80) and (1.81) yield

|κ′′i (z̄)| ≤ 8(ν′z · en)−3
(
max{|κ′1(z)|, |κ′n−1(z)|}+ 4ρ1

)
, (1.82)

for every z = (z̄, zn) ∈ ϕq(U ′) and for every i = 1, . . . , n− 2.

Now, as in the hyperbolic case, we give a lower bound of ν′z · en. We
can write (1.77) and arguing as before we obtain (1.78) (here we can
change con�guration by considering the stereographic projection from the
antipodal point to ϕ−1

q (z) in order to regard π as a vertical hyperplane of
Rn). Also in this case (1.70) follows from (1.82), (1.78) and (1.69).

We denote by x and Er the projections of ϕq(pmin) and ϕq(Ur(q)) onto
{xn = 0}, respectively. The Euclidean distance of x from ∂Er is less than Cδ
where C depends only on ρ and, up to chose a smaller δ in terms of ρ, the
projection of pmin stays close to U ′′ ⊂ ∂Er and we can apply Theorem 1.3 in
[26], Corollary 8.36 in [112] and Harnack's inequality (see e.g. [112, Corollary
8.36]) to obtain

sup
B2δC(x)∩Er

(u− û) ≤ C(u− û)(z) + osc(HS) (1.83)

with z = x + 4Cδν′′x , where ν
′′
x is the interior normal to U ′′ at x. Thanks to

(1.70) and by choosing δ small enough in terms of ρ, from (1.83) and Harnack's
inequality we obtain

0 ≤ ‖u− û‖C1(BCδ(x)∩Er) ≤ C((u(0)− û(0)) + osc(HS)) . (1.84)
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Since dΣ(q, ∂Σ) = δ, from Case 1 we know that

d(q, q̂) + |Nq − τ qq̂ (Nq̂)|q ≤ Cosc(HS) ,

and from (1.84) we obtain that

0 ≤ ‖u− û‖C1(BCδ(x)∩Er) ≤ Cosc(HS) . (1.85)

From Lemmas 1.5 and 1.6 we deduce

d(p, p̂) + |Np − τpp̂ (Np̂)|p ≤ Cosc(HS) ,

as required.

Case 3: 0 < dΣ(p0, ∂Σ) < δ.

We �rst prove the following preliminary lemma which implies via Lemma 1.7
that Σ is connected.

Lemma 1.11. By choosing δ small enough in terms of ρ, the following inequal-
ity holds

0 ≤ gp0(Np0 , ωp0) ≤ 1

4
. (1.86)

Proof. We �rst prove the statement in the Euclidean case: in this setting (1.86)
reads as follows

0 ≤ νp0 · ω ≤
1

4
. (1.87)

Since p0 is the tangency point, it is easy to show that the center of the interior
touching sphere of radius ρ to S at p0 lies in the half-space {q ∈ Rn : q ·ω ≤ m}
(see e.g. [61, Lemma 2.1]). From this and since

|p0 · ω −m| ≤ dΣ(p0, ∂Σ) < δ

we obtain (1.87). Indeed let pπ0 be the re�ection of p0 about π and let

t = νp0 · ω .

By construction of the moving planes, it is clear that t ≥ 0 and the �rst in-
equality in (1.87) follows. We denote by νpπ0 the inner normal vector to S at pπ0 .
Since νp0 · ω = −νpπ0 · ω and νp0 − νpπ0 = 2tω, we have

νp0 · νpπ0 = 1− 2t2 .

We notice that pπ0 and p0 both lie in S and |pπ0 − p0| ≤ 2δ, which implies that
p0 ∈ Uρ(pπ0 ), provided that 2δ < ρ. Hence, (1.20) yields

νp0 · νpπ0 ≥
√

1− 4δ2

ρ2
,

i.e.

1− 2t2 ≥
√

1− 4δ2

ρ2
;
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1.4. APPROXIMATE SYMMETRY IN ONE DIRECTION

and by choosing δ small enough in terms of ρ we obtain the second inequality
in (1.87).

Now we show how to deduce, from the Eulidean case, the claim in the hy-
perbolic and in the spherical case. We �rst consider the Hyperbolic case. Up
to apply an isometry we can assume that p0 = en and π = {x1 = 0}. Our
assumptions on S imply that its diameter is bounded in terms of ρ and |S|g (see
Proposition A.2 in Appendix A). Therefore S is contained in an Euclidean ball
about the origin and of radius depending only on ρ and |S|g. Up to choose δ
small enough in terms of ρ, we have that (1.87) holds, i.e.

0 ≤ νp0 · e1 ≤
1

4
.

Since νp0 · e1 = gp0(Np0 , ωp0), the claim follows. In the spherical case the
proof is analogue once the setting is modi�ed as follows: we work in (Rn, g),
where g is the round metric (1.7), assuming that p0 = O and π is an Euclidean
hyperplane.

Then we prove the existence of a point q ∈ Σ such that
{
d(q, q̂) + |Nq − τ qq̂ (Nq̂)|q ≤ Cosc(HS)

dΣ(q, ∂Σ) ≥ δ (1.88)

and we apply cases 1 and 2 to conclude.
In the same fashion as in case 2, we can locally write ϕp0(Σ) and ϕp0(Σ̂)

as graphs of function u, û : Er → R near ϕp0(p0), respectively. Without loss
of generality we can assume r < 1 (indeed r must be chosen small enough in
terms of δ). Let U ′′ ⊂ ∂Er be the projection of ϕp0(Ur(p0)∩ π) onto {xn = 0}.
Analogously to case 2, the Euclidean principal curvatures of U ′′ are bounded
by a constant K depending only on ρ. Then let x̄ ∈ U ′′ be a point such that

|x̄| = min
x∈U ′′

|x| .

Notice that |x̄| ≤ c∗dΣ(p0, ∂Σ) < c∗δ, where c∗ is 1 in the Euclidean and in the
spherical case, while it is the constant c appearing in (1.10) in the hyperbolic
case. Let ν′′x̄ be the interior normal to U ′′ at x̄, and set

y = x̄+ 2c∗δν
′′
x̄

(see Figure 1.4) By choosing δ su�ciently small in terms of ρ, we have 2c∗δ ≤
K−1 and the ball B2c∗δ(y) is contained in Er and it is tangent to U ′′ at x̄, with
νx̄ = −x̄/|x̄|. Since u(0) = û(0) from Harnack's inequality and from interior
regularity estimates we �nd that

||u− û||C1(BCδ/2(y)) ≤ Cosc(HS) ,

which implies that

d(w, ŵ∗) + |νw − νŵ∗ | ≤ Cosc(HS) ,

where w = (y, u(y)) and ŵ∗ = (y, û(y)). Up to choose a smaller δ, we can
assume that 2c∗δ ≤ r̄, so that Lemmas 1.5 and 1.6 yield

d(q, q̂) + |Nq − τ qq̂ (Nq̂)|q ≤ Cosc(HS) ,
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where q = ϕ−1
p0 (w), q̂∗ = ϕ−1

p0 (ŵ∗) and q̂ the �rst intersection point between Σ̂
and the geodesic path starting from q and tangent to −Nq at q.

Let z be a point on ∂Ur(p0) realizing d(q, ∂Ur(p0)). By construction and
from Lemma 1.2 we have

dΣ(q, ∂Σ) ≥ d(q, z) ≥ c∗|ϕp0(q)− ϕp0(z)| ≥ 2δ .

Since dΣ(q, ∂Σ) ≥ δ then q satis�es (1.88) and the claim follows.

π∞

Er

U ′′

2Cδ

O
x̄

yCδ

Figure 1.4: Case 3 in the proof of Theorem 1.4.

Case 4: p0 ∈ ∂Σ.

This is the limit con�guration of case 3 when dΣ(p0, ∂Σ)→ 0. Indeed, here Er
is a half-ball in Rn and the argument used in case 3 can be easily adapted. This
completes the proof of the �rst part of Theorem 1.4.

Last step: d(x,Σ ∪ Σπ) ≤ Cosc(HS) for every x ∈ Ω.

Assume by contradiction that

d(x,Σ ∪ Σπ) > Cosc(HS)

for some x in Ω. Since Ω is connected, it is possible to �nd y ∈ Ω, such that

y ∈ Ω− and Cosc(HS) < d(y,Σ) ≤ 2Cosc(HS) ,

where
Ω+ = {p ∈ Ω : p ∈ πv,t for some t > mv} ,
Ω− = {p ∈ Ω : p ∈ πv,t for some t < mv} .

Let p be a projection of y over Σ∪Σπ. If p ∈ Ω+, then y belongs to the exterior
touching ball of S at p, which gives a contradiction. The same contradiction is
obtained when p ∈ π since, in that case gp(Np, ωp) ≤ 1/4. If p ∈ Ω−, we can
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1.5. GLOBAL APPROXIMATE SYMMETRY

�nd a point p̂ ∈ S such that p̂ and p lies on the geodesic γ starting from p and
orthogonal to Σπ and such that

d(p, p̂) + |Np − τpp̂ (Np̂)| ≤ Cosc(HS) .

By the smallness of osc(HS) we obtain that y belongs to the exterior touching
ball of S at p, which is a contradiction.

�

1.5 Global approximate symmetry

From the previous section we have that if a C2-regular closed hypersurface
S = ∂Ω embedded in Mn

+ satis�es the assumptions of Theorem 1.4 then it
is almost symmetric with respect to any direction, with the almost symmetry
quanti�ed by the de�cit osc(HS). In this section we show how this result leads
to the almost radial symmetry of S. Such procedure is not peculiar of the kind
of de�cit considered, but it can be applied whenever one has the approximate
symmetry in any direction with respect to some de�cit. More precisely we
consider the following

De�nition 1.1. Let Υ be the space of open sets Ω in Mn
+ whose boundary

is a C2-regular connected closed embedded hypersurface, with the topology
induced by the Hausdor� distance. A de�cit function is any continuous function
def(Ω) : Υ→ [0,+∞) such that def(Ω) = 0 if and only if Ω is a ball.

Form now on we �x a de�cit function def.

De�nition 1.2. We say that a bounded open set Ω satis�es the approximate
symmetry property (ASP) if there exists a constant K > 0 satisfying the follow-
ing condition: for every direction v there exists a connected component Σ of the
maximal cap in the direction v such that

d(p,Σ ∪ Σπv ) ≤ K def(Ω) ,

for every p ∈ Ω.

The main theorem in this section is the following

Theorem 1.5. Let S = ∂Ω be a C2-regular closed hypersurface embedded in
Mn

+, with Ω satisfying (ASP) and

def(Ω) ≤ |Ω|g
4K . (1.89)

There exist O in Mn
+ and two balls Bdr (O) and BdR(O) centred at O of radius r

and R, respectively, with r ≤ R, such that

Bdr (O) ⊆ Ω ⊆ BdR(O)

and
R− r ≤ C def(Ω) , (1.90)

where C depends on n, ρ, |S|g and K.
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The following lemma is needed in order to prove Theorem 1.5; here we show
that if def(Ω) is small enough, then πv is close to a point O (we will call it the
approximate center of symmetry), for every direction v.

Lemma 1.12. Let S = ∂Ω be a C2-regular closed hypersurface embedded in
Mn

+, with Ω satisfying (ASP) and (1.89). Then there exists O in Mn
+ such that

d(O, πv) ≤ Cdef(Ω) , (1.91)

for every direction v in ToMn, where C depends on n, ρ, |S|g and K.

Before proving it, we observe that: given a direction v, let Ωv be the corre-
sponding maximal cap. If Ω satis�es (ASP ) then we have

|Ωv|g ≥
|Ω|g

2
− Cdef(Ω) , (1.92)

for some constant C depending only on n, ρ, |S|g and K. Moreover we have

|Ω4Ωπ|g = 2(|Ω|g − 2|Ωv|g) ≤ 4Cdef(Ω) , (1.93)

where Ω4Ωπ denotes the symmetric di�erence between Ω and Ωπ and, we re-
call that Ωπ denotes the re�ection of Ω about the critical hyperplane π in the
direction v.

Proof of Lemma 1.12. We �x an orthonormal basis {e1, . . . , en} of the tangent
space at the �origin� o and we consider the corresponding critical hyperplanes
πei . We de�ne an approximate center of symmetry O as follows:

O :=

n⋂

i=1

πei .

We notice that in the Euclidean case O is well-de�ned. In Sn+ the existence
of O is always guaranteed. Indeed every πei is given by the intersection of a
plane Πei of Rn+1 with Sn+ and the intersection of all the Πei 's is a straight
line r which, by construction, can not lie in the plane {xn+1 = 0}; hence O =
r ∩ Sn+ 6= ∅. Although in the hyperbolic space n orthogonal hyperplanes do not
always intersect, but we show that (1.89) implies the existence of O. Indeed it
is enough to show that

πei ∩ πej 6= ∅ for every i, j = 1, . . . , n. (1.94)

For simplicity, we may assume that en ∈ S. To simplify the notation we set,
accordingly to the notation introduced in Section 1.1,

πsk = πek,mek+s for k ∈ {1, . . . , n} and s ∈ R ,

so that the critical hyperplane in the direction ek is denoted by π0
k. We prove

(1.94) by contradiction. Assume that π0
i ∩ π0

j = ∅ for some i 6= j. Then π0
i and

π0
j divide Ω in three disjoint sets which we denote by Ω1, Ω2 and Ω3 and we

may assume that Ω1 is the maximal cap in the direction ei and Ω1 ∪ Ω2 is the
maximal cap in the direction ej (see �gure 1.5).

55



1.5. GLOBAL APPROXIMATE SYMMETRY

en

H2

γe2

γe1πe1
πe2

Ω1

Ω2

Ω3

S

π∞

Figure 1.5: a picture of the proof of (1.94) in H2. Here ej = e1 and ei = e2.

Moreover, in view of (1.92) we have that

|Ω1|g ≥
|Ω|g

2
− Cdef(Ω) , and |Ω1|g + |Ω2|g ≥

|Ω|g
2
− Cdef(Ω) .

From this, and since the re�ection Ω1 about π0
i is contained in Ω2 ∪Ω3 and the

re�ection of Ω1 ∪ Ω2 about π0
j is contained in Ω3 we have that

|Ω2|g ≤ 2Cdef(Ω) .

We notice that for every k = 1, . . . , n, we have that πs+tk and πs−tk are two
connected components of the set of points which are far t from πtk. We de�ne

` := min{d(π0
i ∩ Ω, π0

j ∩ Ω) : i, j = 1, . . . , n and i 6= j} .

Since π0
i and π0

j do not intersect S ⊂ Bddiam (S)(en), we have that ` > 0 and
Proposition A.2 implies that ` depends only on n, ρ and |S|g. Therefore

Ω2 ⊇ E1 :=
⋃

s∈(0,l)

Ω ∩ πsj ,

and hence |E1|g ≤ 2Cdef(Ω). By re�ecting E1 about π0
i we obtain that most of

the mass of Ω1 must be at distance more than ` from π0
i , i.e.

|Ωei,`|g ≥
|Ω|g

2
− Cdef(Ω) ,

where
Ωei,` :=

⋃

s∈(`,+∞)

Ω ∩ πsi .

Since d(Ωei,`, π
0
j ∩ Ω) ≥ 2`, we have that most of the mass of Ω3 is at distance

2` from π0
j . This implies that the set

E2 :=
⋃

s∈(−2`,`)

Ω ∩ πsi ,
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is such that |E2|g ≤ 4Cdef(Ω). By iterating the argument above we �nd m ∈ N
such that m` > diam (S) and

0 = |Ωei,m`|g ≥
|Ω|g

2
− (m+ 1)Cdef(Ω) .

This leads to a contradiction provided that Cdef(Ω) is small in terms of n, ρ
and |S|g. Therefore (1.94) holds true and the point O is well-de�ned also in the
hyperbolic case.

Now we prove (1.91). Let R be the re�ection about O. Note that

R(p) = πe1 ◦ · · · ◦ πen(p) ,

where we identify πei with the re�ection about the corresponding hyperplane.
Next we work as in [56, Lemma 4.1]. Here we only sketch the argument referring
to [56] for details.

Without lost of generalities, we may assume O ∈ πv,mv−µ, for some µ > 0
and for k ∈ N we de�ne

µk =
∣∣{p ∈ Ω ∩ πv,s : mv + (k − 1)µ < s < mv + kµ}

∣∣
g
,

here we use the notation introduced in Section 1.1. By construction µk is de-
creasing and, in particular,

µk ≤ µ0 :=
∣∣{Ω ∩ πv,s : mv − µ < s < mv}

∣∣
g
.

Moreover, µ0 is bounded by Cdef(Ω). Indeed, formula (1.92) yields

|Ω4R(Ω)|g ≤ Cdef(Ω) ,

and then we obtain

|Ω ∩R(Ωv)|g ≥ |Ωv|g − |Ω4R(Ω)|g ≥
|Ω|g

2
− Cdef(Ω) .

Since
R(Ωv) ⊂

⋃

s<0

πv,mv−s ,

we obtain that

µ0 :=
∣∣{Ω ∩ πv,s : mv − µ < s < mv}

∣∣
g
≤ Cdef(Ω) .

Therefore
µk ≤ Cdef(Ω) (1.95)

for every k in N. Again from (1.92) we get

|Ω|g
2
− Cdef(Ω) ≤ |Ωv|g

≤
k0∑

k=0

µk

≤ k0µ0

≤ diam (Ω)

mv
Cdef(Ω) ,
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where k0 is the integer part of diam (Ω)
mv

. From Proposition A.1 we have

mv ≤ Cdef(Ω) ,

where C depends only on n, ρ, |S|g and K, as required.

Proof of Theorem 1.5. Let O be as in Lemma 1.12 and de�ne

r = sup{s > 0 : Bds (O) ⊂ Ω} and R = inf{s > 0 : Bds (O) ⊃ Ω} ,

so that
Bdr (O) ⊆ Ω ⊆ BdR(O) .

Let p, q ∈ S be such that d(p,O) = r and d(q,O) = R. We can assume that
p 6= q (otherwise r = R and S is a round sphere). Let v ∈ ToMn be the direction

v :=
1

d(p, q)
τ op (exp−1

p (q))

and πv the critical hyperplane in the v-direction. We denote by γ the geodesic
path passing through p and q and let sp and sq in R be such that

γ(sp) = p and γ(sq) = q .

Let z ∈ πv be such that d(z,O) = d(O, πv). We have

p ∈ πv,sp , q ∈ πv,sq , sq = sp + t ;

see Section 1.1 for the de�nition of πv,sp and πv,sq . We �rst show that d(q, z) ≤
d(p, z). Assume by contradiction that d(q, z) > d(p, z). Since q and p belong to
a geodesic orthogonal to the hyperplanes πv,s and sp < sq, then sq > mv. Since
πv = πv,mv corresponds to the critical position of the method of the moving
planes in the direction v, we have that γ(s) ∈ Ω for any s ∈ (mv, sq). Since
sp < sq we have that |sp −mv| ≥ |sq −mv| and since γ is orthogonal to πv we
obtain d(q, z) ≤ d(p, z), which gives a contradiction. Since d(q, z) ≤ d(p, z) we
have

r ≥ R− d(O, z) = R− d(O, πv)
and Lemma 1.12 implies (1.90).

1.6 Proof of Theorem 1.1 and Corollary 1.1

We have all the ingredients to prove Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1. Let S = ∂Ω be a C2-regular, connected, closed hyper-
surface embedded in Mn

+ satisfying a uniform touching ball condition of radius
ρ, where Ω is a relatively compact domain. Theorem 1.4 implies that there exit
ε and C positive such that if

osc(HS) ≤ ε,
then

d(p,Σ ∪ Σπv ) ≤ Cosc(HS) ,

for every p ∈ Ω.
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Proof of Corollary 1.1. The proof consists in one more application of the method
of the moving planes and it is in the spirit of [56, Theorems 1.2 and 1.5]. Let
Bdr (O) and BdR(O) be as in Theorem 1.5 and let 0 < t < r − Cdef(Ω). We aim
at proving that for any p ∈ S, there exist two cones with vertex at p and of
�xed aperture, one contained in Ω and one contained in the complementary of
Ω. The �rst cone C−(p), is obtained by considering all the geodesic path con-
necting p to the boundary of Bdt (O) tangentially. The second cone C+(p) is the
re�ection of C−(p) with respect to p. We show that C−(p) is contained in Ω and
an analogous argument shows that C+(p) is contained in the complementary of
Ω. We assume, by contradiction, that p /∈ Bdr (O) (otherwise the claim is trivial)
and that there exists a point q ∈ C−(p) ∩ ∂Bdt (O) such that the geodesic path
γ connecting q to p is not contained in Ω. We apply the method of the moving
planes in the direction v de�ned by

v :=
1

d(p, q)
τ oq (exp−1

q (p)) .

Since γ is not contained in Ω, the method of the moving planes stops before
reaching q and one can prove that

d(O, πω) ≥ r − t .

Since 0 < t < r − Cdef(Ω), from Lemma 1.12, we obtain

Cdef(Ω) < r − t ≤ d(O, πω) ≤ Cdef(Ω) ,

which gives a contradiction. The argument above shows also that for any p ∈ S
the geodesic path connecting p to O is contained in Ω. This implies that there
exists a C2-regular map Ψ : ∂Bdr (O)→ R such that

F (p) = expx(Ψ(p)Np) ,

de�nes a C2-di�eomorphism from Bdr (O) to S. By choosing t = r −
√
Cdef(Ω)

we have that for any p ∈ S there exists a uniform cone of opening π−
√
Cdef(Ω)

with vertex at p and axis on the geodesic connecting p to O. This implies that Ψ
is locally Lipschitz and the bound (1.5) on ‖Ψ‖C1 follows (see also [56, Theorem
1.2]).

Remark 1.2. We observe that if HS = H is the mean curvature of ∂Ω, then
(1.5) can be improved and we can obtain the optimal linear bound

‖Ψ‖C1,α ≤ Cosc(H)

by using elliptic regularity. Indeed, let φ : U → ∂Bdr (O) be a local parametriza-
tion of ∂Bdr (O), where U is an open set of Rn−1. From the proof of Corollary
1.1, F ◦ φ gives a local parametrization of S. A standard computation yields
that

L(Ψ ◦ φ) = H(F ◦ φ)−HBr

where HBr is the mean curvature of ∂Br and L is an elliptic operator which,
thanks to the bounds on Ψ above, can be seen as a second order linear operator
acting on Ψ ◦φ. Then [112, Theorem 8.32] implies the bound on the C1,α-norm
of Ψ, as required.
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Chapter 2

Symmetry results for

Serrin-type overdetermined

problems

In this chapter we consider symmetry results for Serrin-type overdetermined
problems, in particular in Section 2.1 we prove a Serrin-type result for domains
inside the so-called model manifolds by using a generalization of Weinberger's
proof; in Section 2.2 we prove a Serrin-type result for domains inside convex
cones od the Euclidean space and in space forms.

2.1 A symmetry result in model manifolds

As already mentioned, in [204], J. Serrin proved the following celebrated result:
if there exists a positive solution u ∈ C2(Ω̄) to the following semilinear problem

{
∆u = f(u) in Ω,

u = 0 on ∂Ω ,
(2.1)

where Ω ⊂ Rn is a bounded domain with boundary of class C2 and f is a
function of class C1, such that

∂νu = c on ∂Ω, (2.2)

for some constant c, where ν denotes the outward unit normal to ∂Ω. Then Ω
must be a ball and u radially symmetric. We have also already mentioned that,
in [215], H. Weinberger provided a simpler proof in the case ∆u = −1 based on
what are nowadays called P -function and using integral identities.

In literature there are generalizations of Serrin's result for domains in the
so-called space forms, i.e. complete, simply connected Riemannian manifolds
with constant sectional curvature. Thanks to the Killing-Hopf theorem (see
[137, 143]) it is well-known that space forms are isometric to the Euclidean
space Rn, to the hyperbolic space Hn or to the sphere Sn. In particular in [150]
and [171] the moving planes method is used to prove the analogue of Serrin's
result for the problem (2.1)-(2.2) for domains in Hn and in Sn+ (we mention that
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2.1. A SYMMETRY RESULT IN MODEL MANIFOLDS

in Sn the theorem is not true, see e.g. [91]). In [196] we extend Weinberger's
approach to a particular class of Riemannian manifolds: the already cited model
manifolds, i.e. rotationally symmetric Riemannian manifolds. We recall the
precise de�nition of model manifolds:

De�nition 2.1. A n-dimensional Riemannian manifold (Mn
σ, gMnσ ) is called a

model manifold if

Mn
σ :=

[0, R)× Sn−1

∼ and gMnσ := dr ⊗ dr + σ2(r)gSn−1 ,

where R ∈ (0,+∞], ∼ is the relation that identi�es all the points of {0}× Sn−1

and σ : [0, R)→ [0,+∞) is a smooth function such that:

σ(r) > 0 , for all r > 0 , σ(2k)(0) = 0 , for all k = 0, 1, 2, . . . , σ′(0) = 1 .

The point o ∈Mn
σ corresponding to r = 0 is called the pole of the model and σ

is called the warping function.

The importance and the convenience of the model manifolds lies in the fact
that their geometry and some natural di�erential operators (such as the Lapla-
cian, see formula (2.8) below) have a particularly simple and explicit description.
In particular we will use the following explicit expression of the Ricci curvature
(see e.g. [184]): given x ∈Mn

σ and X ∈ ∇r(x)⊥ in TxMn
σ a unit vector we have

RicMnσ (X,X) = (n− 2)
1− (σ′)2

σ2
− σ′′

σ
,

and

RicMnσ (∇r,∇r) = −(n− 1)
σ′′

σ
.

With these preliminaries, the main Theorem of the �rst section is the following
(see also Theorem I.C in the introduction to Part I)

Theorem 2.1. Let Ω ⊂ Mn
σ be a smooth domain with o ∈ Ω. Assume that

Ω b BR̃(o) where the ray R̃ > 0 is such that the following conditions on σ are
satis�ed on the interval [0, R̃):

(a) RicMnσ ≥ 0, i.e. σ′′ ≤ 0 and (n− 2)
(
1− (σ′)2

)
− σ σ′′ ≥ 0;

(b) σ′ > 0.

If Ω supports a solution u ∈ C2(Ω) ∩ C1(Ω̄) of
{

∆u = −1 in Ω

u = 0 on ∂Ω ,
(2.3)

such that, for some constant c,

∂νu = c on ∂Ω , (2.4)

and u satis�es the following �compatibility� condition
ˆ

Ω

(σ′′σn−1)′

σn−1
u2 ≥ 0 (2.5)
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2.1. A SYMMETRY RESULT IN MODEL MANIFOLDS

then we have that Ω is a Euclidean ball of radius ρ centred in the pole o of the
model and u has the speci�c form:

u(r) =
1

2n
(ρ2 − r2) (2.6)

where r(x) = dist(x, o).

We brie�y analyse the hypothesis of the Theorem: the condition σ′ > 0
appears in other articles on the subject (see e.g. [66]). The �compatibility�
condition (2.5) describes a property of the solution in relation to the geometry
of the model. It is automatically satis�ed by any solution of (2.3)-(2.4) in the
case of the Euclidean space and it can not be reduced to a simple condition on
the model, like

(σ′′σn−1)′ ≥ 0.

Indeed, in this case, the three conditions are compatible only with the �at case:
consider f(r) := σ′′(r)σn−1(r). Then f(0) = 0 and if f ′(r) ≥ 0, i.e. f(r) is
non-decreasing, so f(r) ≥ 0 for r > 0. But σ′′(r) ≤ 0 according to (a), so we
have that σ′′(r) = 0. In this case the result is well known and is presented
in Weinberger's article. Moreover, an analogue condition can be found in [4]
where they consider a symmetry result for a overdetermined problem and they
assume a �compatibility� condition as an integral on the boundary of the domain
involving the solution and its gradient.

We mention that also in [189] and [68] a P -function approach is used to
prove a symmetry result in space forms for the following equation

∆u+ nKu = −1 (2.7)

where K = 0 in Rn, K = 1 in Sn+ and K = −1 in Hn. The big di�erence
between the conclusion of Theorem 2.1 and the results in [189] and [68] is that
in Theorem 2.1 the domain is a Euclidean ball, while in [189] and [68] the domain
is a geodesic ball.

2.1.1 Explicit computations towards the proof of Theorem

2.1

The Laplace-Beltrami operator ∆ of Mn
σ acts on C2-functions u : Mn

σ → R as
follows:

∆u = ∂2
ru+ (n− 1)

σ′

σ
∂ru+

1

σ2
∆̄u =

∂r(σ
n−1∂ru)

σn−1
+

1

σ2
∆̄u , (2.8)

where ∆̄ denotes the Laplacian on the standard sphere (Sn−1, gSn−1). Using this
expression we obtain:

Lemma 2.1. The following general formula holds:

∆(σ ∂ru) = σ ∂r∆u+ 2σ′∆u+ (2− n)σ′′ ∂ru. (2.9)
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2.1. A SYMMETRY RESULT IN MODEL MANIFOLDS

Proof. We compute

σ∂r(∆u) =σ

{
∂3
ru+ (n− 1)

σ′′σ − (σ′)2

σ2
∂ru+ (n− 1)

σ′

σ
∂2
ru− 2

σ′

σ3
∆̄u+

1

σ2
∂r(∆̄u)

}

=σ∂3
ru+ (n− 2)σ′′∂ru+ σ′′∂ru− 2(n− 1)

(σ′)2

σ
∂ru+ (n− 1)

(σ′)2

σ
∂ru

+ (n+ 1)σ′∂2
ru− 2σ′∂2

ru− 2
σ′

σ2
∆̄u+

1

σ
∂r(∆̄u) +

1

σ2
∆̄(σ∂ru)

− 1

σ2
∆̄(σ∂ru)

=∆(σ∂ru) + (n− 2)σ′′∂ru− 2σ′∆u+
1

σ
∂r(∆̄u)− 1

σ2
∆̄(σ∂ru),

i.e.
∆(σ∂ru) = σ∂r(∆u) + (2− n)σ′′∂ru+ 2σ′∆u.

Now we focus on the solution u of (2.3)-(2.4) and we show the following

Lemma 2.2. Let Ω and u as in Theorem 2.1. Then:

(n+ 2)

ˆ

Ω

uσ′ = nc2
ˆ

Ω

σ′ +
(n− 2)

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2. (2.10)

Remark 2.1. In particular, if σ(r) = r and, hence, Mn
σ = Rm, we obtain

(n+ 2)

ˆ

Ω

u = nc2|Ω|, (2.11)

which is (I.9).

Proof. First of all we observe that, in this setting, formula (2.9) becomes

∆(σ ∂ru) = −2σ′ + (2− n)σ′′ ∂ru.

So by Green's Theorem
ˆ

Ω

[−2σ′ u+ (2− n)σ′′ ∂ruu+ σ ∂ru] =

ˆ

Ω

[∆(σ ∂ru)u− σ ∂ru∆u]

=

ˆ

∂Ω

[∂ν(σ ∂ru)u− σ ∂ru ∂νu]

=−
ˆ

∂Ω

σ (∂νu)2∂νr

=− c2
ˆ

∂Ω

σ ∂νr

=− c2
ˆ

Ω

[
σ∆r + gMnσ (∇r,∇σ)

]

=− c2
ˆ

Ω

[
σ (n− 1)

σ′

σ
+ σ′

]

=− c2n
ˆ

Ω

σ′,
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2.1. A SYMMETRY RESULT IN MODEL MANIFOLDS

where we have used the fact that u = 0 on ∂Ω and that ∂νu = c on ∂Ω.
Now note that

ˆ

Ω

σ∂ru =

ˆ

Ω

gMnσ (∇u,∇(

ˆ r

0

σ(s)ds))

= −
ˆ

Ω

u∆(

ˆ r

0

σ(s)ds)

= −n
ˆ

Ω

uσ′.

Using this and the previous computation we have

(n+ 2)

ˆ

Ω

uσ′ = nc2
ˆ

Ω

σ′ + (2− n)

ˆ

Ω

σ′′ u∂ru. (2.12)

Finally we observe that
ˆ

Ω

σ′′ u∂ru =

ˆ

Ω

gMnσ (∇σ′,∇(
1

2
u2)) (2.13)

= −1

2

ˆ

Ω

∆σ′ u2

= −1

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2,

where the second and the third equations are obtained using the condition u = 0
on ∂Ω and the expression (2.8), respectively.

Remark 2.2. Observe that, by the Strong Maximum Principle, a solution u of
(2.3) is positive in Ω. Moreover since ∂νu = c 6= 0 on Ω we obtain that |∇u| 6= 0
on ∂Ω and the smooth hypersurface ∂Ω = {u = 0} has exterior normal given by

ν = − ∇u|∇u| |∂Ω .

This implies that
∂νu = − |∇u| on ∂Ω.

2.1.2 Proof of Theorem 2.1

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let u and Ω as in the statement of Theorem 2.1; by the
Bochner formula (I.23) and the Cauchy-Schwarz inequality (I.24) we get

∆

(
|∇u|2 +

2

n
u

)
= 2|∇2(u)|2 + 2RicMnσ (∇u,∇u) +

2

n
∆u (2.14)

≥ 2

(
|∇2u|2 +

1

n
∆u

)

= 2

(
|∇2u|2 − 1

n
(∆u)2

)

≥ 0 on Ω,
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and the equality holds if and only if

∇2(u) =
∆u

n
gMnσ

and
RicMnσ (∇u,∇u) = 0.

Since, according to Remark 2.2,

|∇u|2 +
2

n
u = c2 on ∂Ω, (2.15)

we conclude from the Strong Maximum Principle that either

|∇u|2 +
2

n
u < c2 on Ω (2.16)

or

|∇u|2 +
2

n
u ≡ c2 on Ω. (2.17)

By contradiction assume that condition (2.16) is satis�ed. According to (b) we
can multiply both the members of (2.16) by σ′ and integrate in order to obtain

n

ˆ

Ω

|∇u|2σ′ + 2

ˆ

Ω

uσ′ < nc2
ˆ

Ω

σ′. (2.18)

Now we use the identity (2.10) to deal with the second term i.e.

2

ˆ

Ω

uσ′ = nc2
ˆ

Ω

σ′ +
(n− 2)

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 − n

ˆ

Ω

uσ′. (2.19)

Note that, by the divergence theorem,

n

ˆ

Ω

σ′div(u∇u) = −n
ˆ

Ω

σ′′u ∂ru. (2.20)

Moreover,

n

ˆ

Ω

σ′div(u∇u) = n

ˆ

Ω

σ′|∇u|2 − n
ˆ

Ω

σ′u.

So

n

ˆ

Ω

σ′|∇u|2 = n

ˆ

Ω

σ′u− n
ˆ

Ω

σ′′u ∂ru. (2.21)

Substituting (2.19) and (2.21) in (2.18) we obtain

nc2
ˆ

Ω

σ′ >− n
ˆ

Ω

σ′′u ∂ru+ n

ˆ

Ω

σ′u+ nc2
ˆ

Ω

σ′

+
(n− 2)

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 − n

ˆ

Ω

uσ′ .

Lastly, we use the identity (2.13) to deduce

n

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 +

(n− 2)

2

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 < 0,
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i.e.

− (n− 1)

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 > 0; (2.22)

and this contradicts the �compatibility� condition (2.5).
Therefore (2.17) holds true and |∇u|2 + 2

nu must be constant in Ω. Since its
Laplacian then vanishes, we conclude from (2.14) that equality must hold in
Cauchy-Schwarz inequality, i.e. we have proved that u is a solution of (recall
that ∆u = −1 in Ω)

∇2(u) = − 1

n
gMnσ in Ω. (2.23)

Now, let ρ := dist(o, ∂Ω) and take Bρ(o) ⊂ Ω. Since ∂Ω is compact, there exists
p ∈ ∂Ω such that p ∈ ∂Ω ∩ ∂Bρ(o). In particular, since u = 0 on ∂Ω, we have
that

u(p) = 0.

If we prove that u is a radial function in Bρ(o) then

u = 0 on ∂Bρ(o).

On the other hand, by the Strong Maximum Principle,

u > 0 in Ω.

Therefore we can conclude that ∂Bρ(o) ∩ Ω = ∅ and, hence, Ω = Bρ(o).
So the key point is to prove that u : Bρ(o) → R, solution of (2.23), is a radial
function in Bρ(o). To this end, take x ∈ Bρ(o). Since Mn

σ is geodesically
complete there exist a minimizing and normalized geodesic γ ⊂ Bρ(o) from o to
x. Let y(t) := u ◦ γ(t) and note that, along γ, equation (2.23) implies

y′′(t) =
d2

dt2
(u ◦ γ)(t)

=
d

dt
gMnσ (∇u(γ(t)), γ̇(t))

= gMnσ (Dγ̇∇u(γ(t)), γ̇(t)) + gMnσ (∇u(γ(t)), Dγ̇ γ̇(t))

= gMnσ ((Dγ̇(t)∇u)(γ(t)), γ̇(t))

= ∇2(u) |γ(t) (γ̇(t), γ̇(t))

= − 1

n
.

The solutions of y′′(t) = − 1

n
are given by

y(t) = − 1

2n
t2 + αt+ β

where α, β ∈ R. Now taking t = r(x) we get

u(x) = u ◦ γ(r(x)) = y(r(x)) = − 1

2n
r(x)2 + αr(x) + β (2.24)
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which is radial. To determine the two constant in (2.24) we recall that u satis�es
the following {

u(ρ) = 0

u(r) > 0 for 0 < r < ρ

i.e., using the explicit formula of u we obtain




− 1

2n
ρ2 + αρ+ β = 0

− 1

2n

(ρ
2

)2

+ α
ρ

2
+ β > 0 for r =

ρ

2

substituting the expression β =
1

2n
ρ2 − αρ in the second equation we get

α <
3

4n
ρ.

But, since u must be a C2-function we have that α = 0; indeed, if we consider
the Euclidean case where r(x) = d(x, 0) = |x| the gradient of u becomes

∇u(x) = − 1

n
x+ α

x

|x| (2.25)

which is not a C1 function in the origin (i.e. the pole of the Euclidean space)
unless α = 0. In a generic model the expression (2.25) holds in a system of

normal coordinates in the pole. So the same conclusion holds and β =
1

2n
ρ2;

with this constants the function u becomes

u(r) = − 1

2n
r2 +

1

2n
ρ2

which is exactly the expression (2.6); observe that, since u is radial, ∂νu = u′(r)
and the condition ∂νu = constant in ∂Ω = ∂Bρ(o) is automatically satis�ed.
Moreover we recall that if f : Mn

σ → R is a smooth radial function, then its
Hessian takes the following expression

∇2(f) = f ′′dr ⊗ dr + f ′σσ′gSn−1 . (2.26)

Using this expression with the function u we get

∇2(u) = − 1

n
dr ⊗ dr − 1

n
rσσ′gSn−1 , (2.27)

and using this latter in (2.23) we obtain

− 1

n
dr ⊗ dr − 1

n
rσσ′gSn−1 = − 1

n
(dr ⊗ dr + σ2gSn−1)

i.e.

− 1

n
rσσ′gSn−1 = − 1

n
σ2gSn−1 .

It follows that σ(r) = r, so in the ball Bρ(o) not only the solution of (2.23) is
radial but also the metric gMmσ is the Euclidean metric. This implies that the
ball Bρ(o) is a Euclidean ball and the claim follows.
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Remark 2.3 (An alternative end of the proof). From the equality sign in the
Bochner inequality (2.14) we get

RicMmσ (∇u,∇u) = 0. (2.28)

From the explicit expression of u (formula (2.6)) we see that the only critical
point is in r = 0, i.e. in the pole o of the model. So the condition on the Ricci
curvature becomes

RicMnσ (∇r,∇r) = 0 in Bρ(o) \ {o}. (2.29)

From the explicit expression of RicMnσ (∇r,∇r) we get σ′′ = 0 in (0, ρ) and we
conclude that σ(r) = r, i.e. Bρ(o) is an Euclidean ball.

Remark 2.4. In [197] by Ros we can �nd a similar spirit where, using the Reilly's
formula, he obtained a generalization of Alexandrov theorem for compact hy-
persurfaces with constant higher order mean curvatures; in this article equation
(2.23) is used to prove a Euclidean symmetry result on a generic compact Rie-
mannian manifold of non-negative Ricci curvature with smooth boundary with
mean curvature positive everywhere.

Remark 2.5. In this remark we provide an example that shows that if the �com-
patibility� condition (2.5) is not satis�ed then we can not have Euclidean sym-
metry. According to the result of Kumaresan and Prajapat result [150] we know
that if we take a domain Ω ⊂ Sn such that Ω̄ ⊂ Sn+ and there exist a solution u
to the Serrin's problem (2.3)-(2.4) then Ω must be a geodesic ball and u must be
radially symmetric. We know that the hemisphere is isometric to the model Mn

σ

with σ(r) = sin(r) |[0,π/2]; so in this example conditions (a) and (b) of Theorem
2.1 are clearly satis�ed and the �compatibility� condition (2.5) becomes:

ˆ

Ω

(σ′′σn−1)′

σn−1
u2 =

ˆ

Ω

−n cos(r)u2(r),

which is negative due to the monotonicity of the integral and to the fact that
the function r 7→ cos(r)u2(r) is positive in Ω.
In conclusion the �compatibility� condition is not satis�ed and the symmetry
result is not Euclidean since the ball Ω is a geodesic ball, i.e. the metric in this
ball is the metric of the sphere.
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2.2 Symmetry results in convex cones

Before stating the results that we are going to prove, we bre�y recall some
notations that we already introduced in the introduction to Part I. Let Σ be an
open cone in Rn with vertex at the origin O, i.e.

Σ = {tx : x ∈ ω, t ∈ (0,+∞)}

for some open domain ω ⊂ Sn−1. Given an open cone Σ such that ∂Σ \ {O}
is smooth, we consider a bounded domain Ω ⊂ Σ and denote by Γ0 its relative
boundary, i.e.

Γ0 = ∂Ω ∩ Σ ,

and we set
Γ1 = ∂Ω \ Γ̄0 .

We assume that Hn−1(Γ1) > 0, Hn−1(Γ0) > 0 and that Γ0 is a smooth (n −
1)-dimensional manifold, while ∂Γ0 = ∂Γ1 ⊂ ∂Ω \ {O} is a smooth (n − 2)-
dimensional manifold. Following [180], such a domain Ω is called a sector-like
domain. In the following, we shall write ν = νx to denote the exterior unit
normal to ∂Ω wherever is de�ned (that is for x ∈ Γ0 ∪ Γ1 \ {O}).

As already mentioned, under the assumption that Σ is a convex cone, in
[180] it is proved that if Ω is a sector-like domain and there exists a classical
solution u ∈ C2(Ω) ∩ C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) to





∆u = −1 in Ω ,

u = 0 and ∂νu = −c on Γ0 ,

∂νu = 0 on Γ1 \ {O} ,
(2.30)

and such that
u ∈W 1,∞(Ω) ∩W 2,2(Ω) ,

then
Ω = BR(x0) ∩ Σ

for some x0 ∈ Rn and u is given by (I.11). Di�erently from the original paper of
Serrin [204], the method of moving planes is not helpful (at least when applied in
a standard way) and the rigidity result in [180] is proved by using two alternative
approaches. One is based on integral identities and it is inspired by [40], the
other one uses a P -function approach as in [215].

In this Section, we generalize the rigidity result for Serrin's problem in [180]
in two directions. The former is by considering more general operators than the
Laplacian in the Euclidean space, where the operators may be of degenerate
type. Here, the generalization is not trivial due to the lack of regularity of the
solution (the operator may be degenerate) as well as to other technical details
which are not present in the linear case.

The latter is by considering an analogous problem in space forms, i.e. the
hyperbolic space and the (hemi)sphere. The operator that we consider is linear
and it is interesting since it has been shown that it is a helpful generalization
of the torsion problem to space forms (see [68, 189, 190]).

Overdetermined problems for quasilinear and possible degenerate operators
have attracted a lot of interest in the last decades, see for instance [92, 103,
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106, 107, 192, 193]. As Fosdick and Serrin noticed in [204] and [100], Serrin's
overdetermined problem for quasilinear elliptic operators is also interesting for
possible applications to the study of steady rectilinear motion of viscous incom-
pressible �uids and incompressible non-Newtonian �uids (see also [106]), and in
the theory of torsion of a solid straight bar. Roughly speaking, a rigidity result
as the one given by Serrin proves that the tangential stress on the pipe wall is
the same at all points of the wall if and only if the pipe has a circular cross
section or that when a solid straight bar is subject to torsion, the magnitude
of the resulting traction which occurs at the surface of the bar is independent
of position if and only if the bar has a circular cross section. There are other
possible applications for Serrin's type rigidity results, and we refer to [103, In-
troduction] for connections to capillarity theory, torsional creep, Born-Infeld
theory and other applications to quantum-physics.

As explained in [180], the study of Serrin's overdetermined problem in convex
cones is related to relative isoperimetric inequality and Alexandrov soap bubble
theorem. In this manuscript we extend this study to non-Euclidean manifolds, in
particular to space forms. The study of isoperimetric inequality and Alexandrov
theorem in non-Euclidean manifolds has recently attracted a lot of interest in
the geometric analysis community (see [41, 156, 189] and references therein). We
believe that, by taking inspiration from our results and the ones in [156, 189],
one can study Alexandrov theorem and relative isoperimetric inequalities for
sector-like domains in more general Riemannian settings.

The study of rigidity problems in convex cones appears also in the context of
critical points for Sobolev inequality (which in turns can be related to Yamabe
problem), see [57, 160].

We also mention that the approach used in this paper originated from [40],
which in turns has been later used for proving quantitative estimates for Serrin's
overdetermined problem in [39]. As for the symmetry result, this approach is
also useful when considering quantitative versions of Alexandrov soap bubble
theorem, in particular to describe the appearance of bubbling [58].

More general operators in the Euclidean space. Let Ω be a sector like
domain in Rn and let f : [0,+∞)→ [0,+∞) be such that

f ∈ C1([0,∞)) ∩ C3((0,∞)) with f(0) = f ′(0) = 0, f ′′(s) > 0 for s > 0

and lim
s→+∞

f(s)

s
= +∞ .

(2.31)
We consider the following mixed boundary value problem





Lfu = −1 in Ω,

u = 0 on Γ0

∂νu = 0 on Γ1 \ {O},
(2.32)

where the operator Lf is given by

Lfu = div

(
f ′(|∇u|) ∇u|∇u|

)
, (2.33)

and the equation Lfu = −1 is understood in the sense of distributions
ˆ

Ω

f ′(|∇u|)
|∇u| ∇u · ∇ϕdx =

ˆ

Ω

ϕdx

70



2.2. SYMMETRY RESULTS IN CONVEX CONES

for any
ϕ ∈ T (Ω) := {ϕ ∈ C1(Ω) : ϕ ≡ 0 on Γ0}.

Notice that the operator Lf may be of degenerate type.
We notice that the solution to Lfu = −1 in BR(x0) (a ball of radius R

centered at x0) such that u = 0 on ∂BR(x0) is radial and it is given by

u(x) =

ˆ R

|x−x0|
g′
( s
n

)
ds , (2.34)

where g denotes the Fenchel conjugate of f (see for instance [73] or [103]), i.e.

g = sup{st− f(s) : s ≥ 0}

(hence for us g′ is the inverse function of f ′). Our �rst main result is the
following.

Theorem 2.2. Let f satisfy (2.31). Let Σ be a convex cone such that Σ \ {O}
is smooth and let Ω be a sector-like domain in Σ. If there exists a solution
u ∈ C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) ∩W 1,∞(Ω) to (2.32) such that

∂νu = −c on Γ0 (2.35)

for some constant c, and satisfying

f ′(|∇u|)
|∇u| ∇u ∈W

1,2(Ω,Rn) , (2.36)

then there exists x0 ∈ Rn such that Ω = Σ ∩ BR(x0) with c = g′(|Ω|/|Γ0|),
R = n|Ω|/|Γ0|. Moreover u is given by (2.34), where x0 is the origin or, if ∂Σ
contains �at regions, it is a point on ∂Σ.

When Lf = ∆ (i.e. f(t) = t2/2), Theorem 2.2 is essentially Theorem 1.1 in
[180]. Condition (2.36) holds locally in Ω for a large class of elliptic operators,
such as the mean curvature operator (f(t) =

√
1 + t2), and for the p−Laplace

operator (f(t) = tp/p, p > 1), see [14, Theorem 4.1] and [54, Theorem 2.1].
We stress that the validity of (2.36) up to the boundary is more subtle, since
it depends strongly on how Γ0 and Γ1 intersect. Some global results may be
obtained by following the approach in [54], where (2.36) is proved for Dirichlet
or Neumann boundary value problems of p-Laplace type in domains which are
convex or satisfying minimal regularity assumptions on the boundary.

We observe that the overdetermined problem (2.32) with the condition (2.35)
can be seen as a partially overdetermined problem (see for instance [94] and [95]),
since we impose both Dirichlet and Neumann conditions only on a part of the
boundary, namely Γ0, while a sole homogeneous Neumann boundary condition
is assigned on Γ1 (where, however, there is the strong assumption that it is
contained in the boundary of a cone).

We notice that the proof of Theorem 2.2 still works when Γ1 = ∅ (hence
∂Ω = Γ0). In this case we obtain the celebrated result of Serrin [204] for the
operator Lf (see also [29, 40, 59, 92, 103, 106, 196, 215]). Moreover, the proof is
also suitable to be adapted to the anisotropic counterpart of the overdetermined
problem (2.32) and (2.35) by following our approach and in [29] (see also [55]
and [213]). We also mention that rigidity theorems in cones are related to the
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study of relative isoperimetric and Sobolev inequalities in cones, and we refer
to [180] for a more detailed discussion (see also [21, 46, 97, 122, 160, 159]).

Serrin's problem in cones in space forms. A space form is a complete
simply-connected Riemannian manifold (M, g) with constant sectional curvature
K. Up to homotheties we may assume K = 0,1,−1: the case K = 0 corresponds
to the Euclidean space Rn, K = −1 is the hyperbolic space Hn and K = 1 is
the unitary sphere with the round metric Sn. More precisely, in the case K = 1
we consider the hemisphere Sn+. These three models can be described as warped
product spaces M = I × Sn−1 equipped with the rotationally symmetric metric

g = dr2 + h(r)2 gSn−1 ,

where gSn−1 is the round metric on the (n− 1)-dimensional sphere Sn−1 and

- h(r) = r in the Euclidean case (K = 0), with I = [0,∞);

- h(r) = sinh(r) in the hyperbolic case (K = −1), with I = [0,∞);

- h(r) = sin(r) in the spherical case (K = 1), with I = [0, π/2) for Sn+.

By using the warping structure of the manifold, we denote by O the pole of
the model and it is natural to de�ne a cone Σ with vertex at {O} as the set

Σ = {tx : x ∈ ω, t ∈ I}

for some open domain ω ⊂ Sn−1. Moreover, we say that Σ is a convex cone if
the second fundamental form II is nonnegative de�ned at every p ∈ ∂Σ.

Serrin's overdetermined problem for semilinear equations ∆u+ f(u) = 0 in
space forms has been studied in [150] and [171] by using the method of moving
planes. If one considers the corresponding problem for sector-like domains in
space forms, the method of moving planes can not be used and one has to
look for alternative approaches. As already mentioned, in the Euclidean space
these approaches typically use integral identities and P -functions (see [40, 215])
and have the common feature that at a crucial step of the proof they use the
fact that the radial solution attains the equality sign in a Cauchy-Schwartz
inequality, which implies that the Hessian matrix ∇2u is proportional to the
identity. Since the equivalent crucial step in space forms is to prove that the
Hessian matrix of the solution is proportional to the metric, then the equation
∆u = −1 is no more suitable (one can easily verify that in the radial case the
Hessian matrix of the solution is not proportional to the metric) and a suitable
equation to be considered is

∆u+ nKu = −1 (2.37)

as done in [68] and [189], [190]. It is clear that for K = 0, i.e. in the Euclidean
case, the equation reduces to ∆u = −1. For this reason, we believe that, in this
setting, (2.37) is the natural generalization of the Euclidean ∆u = −1 to space
forms.

A Serrin's type rigidity result for (2.37) can be proved following Weinberger's
approach by using a suitable P -function associated to (2.37) (see [68] and [190]).
This approach is helpful for proving the following Serrin's type rigidity result
for convex cones in space forms, which is the second main result of this section.
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Theorem 2.3. Let (M, g) be the Euclidean space, hyperbolic space or the hemi-
sphere. Let Σ ⊂ M be a convex cone such that Σ \ {O} is smooth and let
Ω be a sector-like domain in Σ. Assume that there exists a solution u ∈
C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) ∩W 1,∞(Ω) ∩W 2,2(Ω) to





∆u+ nKu = −1 in Ω,

u = 0 on Γ0

∂νu = 0 on Γ1 \ {O},
(2.38)

such that
∂νu = −c on Γ0 (2.39)

for some constant c. Then Ω = Σ ∩ BR(x0) where BR(x0) is a geodesic ball of
radius R centered at x0 and u is given by

u(x) =
H(R)−H(d(x, x0))

nḣ(R)
,

with

H(r) =

ˆ r

0

h(s)ds

and where d(x, x0) denotes the distance between x and x0.

The Section is organized as follows: in Subection 2.2.1 we introduce some
notation, we recall some basic facts about elementary symmetric function of a
matrix and prove some preliminary result needed to prove Theorem 2.2. Theo-
rems 2.2 and 2.3 are proved in Subsections 2.2.2 and 2.2.3, respectively.

2.2.1 Preliminary results for Theorem 2.2

In this section we collect some preliminary results which are needed in the proof
of Theorem 2.2. Let f satisfy (2.31) and consider problem (2.32)





Lfu = −1 in Ω,

u = 0 on Γ0

∂νu = 0 on Γ1 \ {O},

where the operator Lf is given by

Lfu = div

(
f ′(|∇u|) ∇u|∇u|

)
.

De�nition 2.2. u ∈ C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) is a solution to Problem (2.32) if

ˆ

Ω

f ′(|∇u|)
|∇u| ∇u · ∇ϕdx =

ˆ

Ω

ϕdx (2.40)

for any
ϕ ∈ T (Ω) := {ϕ ∈ C1(Ω) : ϕ ≡ 0 on Γ0}. (2.41)
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We observe some facts that will be useful in the following. Since the outward
normal ν to Γ0 is given by

ν = − ∇u|∇u| |Γ0
, (2.42)

then (2.35) implies that
|∇u| = c on Γ0. (2.43)

Moreover we observe that the constant c in the statement is given by

c = g′
( |Ω|
|Γ0|

)
, (2.44)

as it follows by integrating the equation Lfu = −1, by using the divergence
theorem, formula (2.43) and the fact that ∂νu = 0 on Γ1 \ {O}. We also notice
that

x · ν = 0 on Γ1. (2.45)

It will be useful to write the operator Lf as the trace of a matrix. Let
V : Rn → R be given by

V (ξ) = f(|ξ|) for ξ ∈ Rn, (2.46)

and notice that

∂ξiV (ξ) := Vξi(ξ) = f ′(|ξ|) ξi|ξ| and

∂2
ξiξjV (ξ) := Vξiξj (ξ) = f ′′(|ξ|)ξiξj|ξ|2 − f

′(|ξ|)
(
ξiξj
|ξ|3 −

δij
|ξ|

)
. (2.47)

Hence, by setting
W = (wij)i,j=1,...,N

where
wij(x) = ∂jVξi(∇u(x)) , (2.48)

we have
Lf (u) = Tr (W ). (2.49)

Notice that at regular points, where ∇u 6= 0, it holds that

W = ∇2
ξV (∇u)∇2u . (2.50)

Our approach to prove Theorem 2.2 is to write several integral identities and
just one pointwise inequality, involving the matrix W . Writing the operator
Lf as trace of W has the advantage that we can use the generalization of the
so-called Newton's inequalities, as explained in the following subsection.

Elementary symmetric functions of a matrix

Given a matrix A = (aij) ∈ Rn×n, for any k = 1, . . . , n we denote by Sk(A) the
sum of all the principal minors of A of order k. In particular, S1(A) = Tr (A) is
the trace of A, and Sn(A) = det(A) is the determinant of A. We consider the
case k = 2. By setting

S2
ij(A) = −aji + δijTr (A), (2.51)
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we can write

S2(A) =
1

2

∑

i,j

S2
ij(A)aij =

1

2
((Tr (A)2 − Tr (A2)) . (2.52)

The elementary symmetric functions of a symmetric matrix A satisfy the so
called Newton's inequalities. In particular, S1 and S2 are related by (cfr. (I.13)
in the Introduction to Part I)

S2(A) ≤ n− 1

2n
(S1(A))2 . (2.53)

When the matrix A = W , with W given by (2.50), we have

S2
ij(W ) = −Vξjξk(∇u)∂2

kiu+ δijLfu , (2.54)

and S2
ij(W ) is divergence free in the following (weak) sense

∂

∂xj
S2
ij(W ) = 0 . (2.55)

If V and u are su�ciently smooth, (2.55) was proved in [55, Equation (4.14)].
In Lemma 2.7 below we will prove (2.55) under weaker regularity assumptions
on V and u by approximation (notice that (2.55) is implicitly written in (2.70),
as follows from (2.52)).

We will need a generalization of (2.53) to not necessarily symmetric matrices,
which is given by the following lemma.

Lemma 2.3 ([55], Lemma 3.2). Let B and C be symmetric matrices in Rn×n,
and let B be positive semide�nite. Set A = BC. Then the following inequality
holds:

S2(A) ≤ n− 1

2n
Tr (A)2. (2.56)

Moreover, if Tr (A) 6= 0 and equality holds in (2.56), then

A =
Tr (A)

n
Id ,

and B is, in fact, positive de�nite.

Some properties of solutions to (2.32)

In this subsection we collect some properties of the solutions to (2.32). We
assume that the solution is of class C1(Ω)∩W 1,∞(Ω). From standard regularity
elliptic estimates one has that u is of class C1,α(Ω) and C2,α where ∇u 6= 0.

In the following two lemmas we show that u > 0 in Ω ∪ Γ1 \ {O} and we
prove a Pohozaev-type identity.

Lemma 2.4. Let f satisfy (2.31) and let u be a solution of (2.32). Then

u > 0 in Ω ∪ Γ1 \ {O}. (2.57)
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Proof. We write u = u+ − u− and use ϕ = u− as test function in (2.40):

0 ≥ −
ˆ

Ω∩{u<0}

f ′(|∇u|)
|∇u| |∇u

−|2 dx =

ˆ

Ω∩{u<0}
u− dx ≥ 0 ,

which implies that u ≥ 0 in Ω. Moreover, if one assumes that u(x0) = 0 at some
point x0 ∈ Ω∪Γ1 \{O}, then ∇u(x0) = 0. Since x0 ∈ Ω∪Γ1 \{O} and Γ1 \{O}
is smooth, there exists a ball Br ⊂ Ω such that x0 ∈ ∂Br. Let v be the solution
of {

Lfv = −1 in Br,

v = 0 on ∂Br .

By comparison principle we have that v ≤ u in Br; from ∇u(x0) = 0 and since
∇v(x0) 6= 0 we get a contradiction.

The following Pohozaev-type identity is a typical tool to prove symmetry
results. In a similar setting as the one in this paper, a Pohozaev identity was
proved in [106].

Lemma 2.5 (Pohozaev-type identity). Let Ω be a sector-like domain and as-
sume that f satis�es (2.31). Let u ∈ C1(Ω ∪ Γ0 ∪ Γ1 \ {O}) ∩W 1,∞(Ω) be a
solution to (2.32). Then the following integral identity
ˆ

Ω

[(n+ 1)u− nf(|∇u|)] dx =

ˆ

Γ0

[f ′(|∇u|)|∇u| − f(|∇u|)]x · ν dσ (2.58)

holds.

Proof. We argue by approximation. We �rst approximate f with functions fε
such that

fε ∈ C∞([0,∞)) with fε(0) = f ′ε(0) = 0, f ′′ε (s) > 0 for s ≥ 0 , (2.59)

and

fε → f and f ′ε → f ′ uniformly on compact sets of [0,+∞). (2.60)

We notice that such an approximation exists as shown in [106, Section 3].
We recall that V (ξ) = f(|ξ|) (see (2.46)) for ξ ∈ Rn, and we de�ne V ε :

Rn → R as
V ε(ξ) := fε(|ξ|).

We notice that ∇ξV ε and ∇ξV can be continuously extended to 0 at ξ = 0.
We approximate Ω by domains Ωδ obtained by chopping o� a δ-tubular

neighborhood of ∂Γ0 and a δ-neighborhood of O. For j ∈ N, we consider
ujδ ∈ C∞(Ωδ) ∩ C1(Ω̄δ) such that

ujδ → u in C1(Ωδ),

as j goes to in�nity (see for instance [43, Section 2.6]).
Since

div
(
x · ∇ujδ∇ξV ε(∇u

j
δ)
)

= x · ∇ujδdiv
(
∇ξV ε(∇ujδ)

)

+∇(x · ∇ujδ) · ∇ξV ε(∇u
j
δ)
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and from

∇(x · ∇ujδ) · ∇ξV ε(∇u
j
δ) =∇ujδ · ∇ξV ε(∇u

j
δ) + x∇2(ujδ) · ∇ξV ε(∇u

j
δ)

=div
(
ujδ∇ξV ε(∇u

j
δ)
)
− ujδdiv

(
∇ξV ε(∇ujδ)

)

+ div(xV ε(∇ujδ))− nV ε(∇u
j
δ) ,

we obtain

div
(
ϕj∇ξV ε(∇ujδ)− xV ε(∇u

j
δ)
)

= ϕjdiv
(
∇ξV ε(∇ujδ)

)
− nV ε(∇ujδ) , (2.61)

where
ϕj(x) = x · ∇ujδ(x)− ujδ(x) .

Moreover, from the divergence theorem we have
ˆ

Ωδ

∇ξV ε(∇ujδ) · ∇ϕj dx =−
ˆ

Ωδ

ϕjdiv
(
∇ξV ε(∇ujδ)

)
dx

+

ˆ

∂Ωδ

ϕj∇ξV ε(∇ujδ) · ν dσ .
(2.62)

We are going to apply the divergence theorem in Ωδ; to this end we set

Γ0,δ = Γ0 ∩ ∂Ωδ , Γ1,δ = Γ1 ∩ ∂Ωδ and Γδ = ∂Ωδ \ (Γ0,δ ∪ Γ1,δ) .

From (2.62) and by integrating (2.61) in Ωδ we obtain
ˆ

Ωδ

∇ξV ε(∇ujδ) · ∇ϕj dx =− n
ˆ

Ωδ

V ε(∇ujδ) dx

−
ˆ

Ωδ

div
(
ϕj∇ξV ε(∇ujδ)

)
dx

+

ˆ

Ωδ

div
(
xV ε(∇ujδ)

)
dx ,

and from x · ν = 0 on Γ1,δ, we �nd
ˆ

Ωδ

∇ξV ε(∇ujδ) · ∇ϕj dx =− n
ˆ

Ωδ

V ε(∇ujδ) dx

−
ˆ

Γ0,δ∪Γ1,δ

ϕj∇ξV ε(∇ujδ) · ν dσ

+

ˆ

Γ0,δ

V ε(∇ujδ)x · ν dσ

−
ˆ

Γδ

[ϕj∇ξV ε(∇ujδ)− xV ε(∇u
j
δ)] · ν dσ .

By taking the limit as ε→ 0 and then as j →∞, using that ∇u · ν = 0 on Γ1,δ
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(since ∂νu = 0 on Γ1), we obtain
ˆ

Ωδ

∇ξV (∇u) · ∇ϕdx =− n
ˆ

Ωδ

V (∇u) dx

−
ˆ

Γ0,δ

ϕ∇ξV (∇u) · ν dσ

+

ˆ

Γ0,δ

V (∇u)x · ν dσ

−
ˆ

Γδ

[ϕ∇ξV (∇u)− xV (∇u)] · ν dσ

(2.63)

where we let
ϕ(x) = x · ∇u(x)− u(x) . (2.64)

Now, we take the limit as δ → 0. Since u ∈ W 1,∞(Ω) and Hn−1(Γδ) goes to 0
as δ → 0, we have that the last term in (2.63) vanishes and we obtain
ˆ

Ω

∇ξV (∇u) · ∇ϕdx = −n
ˆ

Ω

V (∇u) dx

−
ˆ

Γ0

ϕ∇ξV (∇u) · ν dσ +

ˆ

Γ0

V (∇u)x · ν dσ ,

i.e. (in terms of f)
ˆ

Ω

f ′(|∇u|)
|∇u| ∇u · ∇ϕdx = −n

ˆ

Ω

f(|∇u|) dx

−
ˆ

Γ0

ϕ
f ′(|∇u|)
|∇u| ∂νu dσ +

ˆ

Γ0

f(|∇u|)x · ν dσ.

Since u satis�es (2.40), we get
ˆ

Ω

ϕdx = −n
ˆ

Ω

f(|∇u|) dx

−
ˆ

Γ0

ϕ
f ′(|∇u|)
|∇u| ∂νu dσ +

ˆ

Γ0

f(|∇u|)x · ν dσ. (2.65)

From (2.64) and since u = 0 on Γ0 and ∂νu = 0 on Γ1, we have
ˆ

Ω

ϕdx = −(n+ 1)

ˆ

Ω

u dx

and
ˆ

Γ0

ϕ
f ′(|∇u|)
|∇u| ∂νu dσ =

ˆ

Γ0

f ′(|∇u|)|∇u|x · ν dσ , (2.66)

where we used the expresion of the unit exterior normal on Γ0 given by (2.42).
From (2.66) and (2.65) we obtain

− (n+ 1)

ˆ

Ω

u dx+ n

ˆ

Ω

f(|∇u|) dx = −
ˆ

Γ0

f ′(|∇u|)|∇u|x · ν dσ

+

ˆ

Γ0

f(|∇u|)x · ν dσ.

which is (2.58), and the proof is complete.
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We conclude this subsection by exploiting the boundary condition ∂νu = 0
on Γ1. Before doing this, we need to recall some notation from di�erential
geometry (see also [88, Appendix A]). We denote by D the standard Levi-
Civita connection. Recall that, given an (n− 1)-dimensional smooth orientable
submanifold M of Rn we de�ne the tangential gradient of a smooth function
f : M → R with respect to M as

∇T f(x) = ∇f(x)− ν · ∇f(x)ν

for x ∈M , where ∇f denotes the usual gradient of f in Rn and ν is the outward
unit normal at x to M . Moreover, we recall that the second fundamental form
of M is the bilinear and symmetric form de�ned on TM × TM as

II(v, w) = Dν(v)w · ν ;

a submanifold is called convex if the second fundamental form is non-negative
de�nite.

Lemma 2.6. Let u be the solution to (2.32). Then

∇ξV (∇u) · ν = 0 on Γ1 , (2.67)

and
∇(∇ξV (∇u) · ν) · ∇u = 0 on Γ1 .

1 (2.68)

Proof. Since ∂νu = 0 on Γ1, we immediately �nd (2.67). By taking the tangen-
tial derivative in (2.67) we get

0 = ∇T (∇ξV (∇u) · ν) = ∇(∇ξV (∇u) · ν)− ν · ∇(∇ξV (∇u) · ν)ν on Γ1 .

By taking the scalar product with ∇u we obtain

0 = ∇(∇ξV (∇u) · ν) · ∇u− ν · ∇(∇ξV (∇u) · ν)∂νu ,

and since ∂νu = 0 on Γ1, we �nd (2.68).

Integral Identities for S2

In this Subsection we prove some integral inequalities involving S2(W ) and the
solution to problem (2.32).

Lemma 2.7. Let Ω ⊂ Rn be a sector-like domain and assume that f satis�es
(2.31). Let u ∈ W 1,∞(Ω) be a solution of (2.32) such that (2.36) holds. Then
the following inequality

2

ˆ

Ω

S2(W )u dx ≥ −
ˆ

Ω

S2
ij(W )Vξi(∇u)∂ju dx (2.69)

holds. Moreover the equality sign holds in (2.69) if and only if II(∇Tu,∇Tu) = 0
on Γ1.

1We remark that (2.68) is understood to be zero at points where ∇u = 0.
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Proof. We split the proof in two steps.
Step 1: the following identity

2

ˆ

Ω

S2(W )φdx = −
ˆ

Ω

S2
ij(W )Vξi(∇u)∂jφdx (2.70)

holds for every φ ∈ C1
0 (Ω).

For t > 0 we set Ωt = {x ∈ Ω : dist (x, ∂Ω) > t}. Let φ ∈ C1
0 (Ω) be a test

function and let ε0 > 0 be such that Ωε0 ⊂ Ω and supp(φ) ⊂ Ωε0 . For ε < ε0

su�ciently small, we set

ai(x) = Vξi(∇u(x)) for every i = 1, . . . , n, x ∈ Ω .

From (2.36) we have that ai ∈ W 1,2(Ω), i = 1, . . . , n. With this notation, the
elements wij = ∂jVξi(∇u) of the matrix W are given by

wij = ∂ja
i .

Let {ρε} be a family of molli�ers and de�ne aiε = ai∗ρε. LetW ε = (wεij)i,j=1,...,n

where wεij = ∂ja
i
ε, and notice that

aiε → ai in W 1,2(Ωε0) and W ε →W in L2(Ωε0) ,

as ε→ 0. Moreover, since

Tr W ε(x) =

ˆ

Rn
ρε(y)Tr W (x− y) dy

and Tr W = −1, we have that

Tr W ε(x) = −1 (2.71)

for every x ∈ Ωε.
Let i, j = 1, . . . , n be �xed. We have

wεjiw
ε
ij = ∂j(a

i
ε∂ia

j
ε)− aiε∂j∂iajε

= ∂j(a
i
ε∂ia

j
ε)− aiε∂i∂jajε

= ∂j(a
i
ε∂ia

j
ε)− aiε∂iwεjj ,

for every x ∈ Ωε, and by summing up over j = 1, . . . , n, using (2.71) (hence
∂i
∑
j w

ε
jj = 0), we obtain

∑

j

wεjiw
ε
ij =

∑

j

∂j(a
i
ε∂ia

j
ε)

= wεiiTrW ε −
∑

j

∂j(S
2
ij(W

ε)aiε), x ∈ Ωε.

By summing over i = 1, . . . , n, from (2.52) and (2.55) we have

2S2(W ε) =
∑

i,j

∂j(S
2
ij(W

ε)aiε) , x ∈ Ωε. (2.72)
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Since
ˆ

Ωε0

∂j(S
2
ij(W

ε)aiε)φdx+

ˆ

Ωε0

S2
ij(W

ε)aiε∂jφdx

=

ˆ

∂Ωε0

S2
ij(W

ε)aiενjφdσ = 0 ,

from (2.72) and by letting ε to zero, we obtain (2.70).
Step 2. Let δ > 0 and consider a cut-o� funtion ηδ ∈ C∞0 (Ω) such that

ηδ = 1 in Ωδ and |∇ηδ| ≤ C
δ in Ω \Ωδ for some constant C not depending on δ.

By taking φ(x) = u(x)ηδ(x) for x ∈ Ω in (2.70) we obtain

2

ˆ

Ω

S2(W )uηδ dx = −
ˆ

Ω

S2
ij(W )Vξi(∇u)∂juη

δ dx

−
ˆ

Ω

S2
ij(W )Vξi(∇u)u∂j(η

δ) dx . (2.73)

From (I.34) we have that W ∈ L2(Ω) and the dominated convergence theorem
yields

2

ˆ

Ω

S2(W )uηδ dx→ 2

ˆ

Ω

S2(W )u dx (2.74)

as δ → 0. Analogously,
ˆ

Ω

S2
ij(W )Vξi(∇u)∂juη

δ dx→
ˆ

Ω

S2
ij(W )Vξi(∇u)∂ju dx (2.75)

as δ → 0.
Now, we consider the last term in (2.73). We write Ω in the following way:

Ω = Aδ0 ∪Aδ1 , (2.76)

where
Aδ0 = {x ∈ Ω : dist (x,Γ0) ≤ δ} and Aδ1 = Ω \Aδ0.

Since u = 0 on Γ0, we get that

u(x) ≤ ||u||W 1,∞(Ω) dist (x,Γ0) ≤ ||u||W 1,∞(Ω) δ

for every x ∈ Aδ0 and we obtain
∣∣∣∣∣

ˆ

Aδ0

S2
ij(W )Vξi(∇u)u∂j(η

δ) dx

∣∣∣∣∣ ≤ C1|Aδ0| ,

where C1 is a constant depending on ||u||W 1,∞(Ω) and ‖W‖L2(Ω), which implies
that

lim
δ→0

ˆ

Aδ0

S2
ij(W )Vξi(∇u)u∂j(η

δ) dx = 0 . (2.77)

Now we show that

lim
δ→0

ˆ

Aδ1

S2
ij(W (x))Vξi(∇u(x))u(x)∂j(η

δ)(x) dx ≥ 0 . (2.78)
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By choosing δ small enough, a point x ∈ Aδ1 can be written in the following way:
x = x̄ + tν(x̄) where x̄ = x̄(x) ∈ Γ1 and t = |x − x̄| with 0 < t < δ. Moreover,
by using a standard approximation argument, ηδ can be chosen in such a way
that ηδ(x) = 1

δdist (x,Γ1) for any x ∈ Aδ1, so that

∇ηδ(x) = −1

δ
ν(x̄) , (2.79)

for every x ∈ Aδ1 \Ωδ. For simplicity of notation we set F = (F1, . . . , Fn), where

Fj(x) = u(x)S2
ij(W (x))Vξi(∇u(x)) (2.80)

for j = 1, . . . , n, and hence
ˆ

Aδ1

S2
ij(W )Vξi(∇u)u∂j(η

δ) dx =

ˆ

Aδ1

F (x) · ∇ηδ(x) dx . (2.81)

Since ∇ηδ = 0 in Ωδ and ∇ηδ(x) = − 1
δ ν(x̄), for every x ∈ Aδ1 \ Ωδ, we have

ˆ

Aδ1

F (x) · ∇ηδ(x) dx = −1

δ

ˆ

Aδ1\Ωδ
F (x) · ν(x̄) dx

= −1

δ

ˆ δ

0

dt

ˆ

{x∈Aδ1 : dist (x,Γ1)=t}
F (x) · ν(x̄) dσ

where we used coarea formula. Since we are in a small δ-tubular neighborhood
of (part of) Γ1, we can parametrize Aδ1 \ Ωδ over (part of) Γ1 as from [112,
Formula 14.98] we obtain that
ˆ

Aδ1

F (x) · ∇ηδ(x) dx = −1

δ

ˆ δ

0

dt

ˆ

Γ1

F (x̄+ tν(x̄)) · ν(x̄)|det(Dg)| dσ . (2.82)

We notice that, by using this notation, proving (2.78) is equivalent to prove

lim
δ→0

ˆ

Aδ1

F (x) · ∇ηδ(x) dx ≥ 0 , (2.83)

for δ > 0 su�ciently small.
From (2.79), (2.80) and the de�nition of S2

ij (2.51), we have

F (x) · ν(x̄) =− δijVξi(∇u(x))u(x)νj(x̄)− wji(x)Vξi(∇u(x))u(x)νj(x̄)

=− δijVξi(∇u(x))u(x)νj(x̄)

− u(x)
f ′(|∇u(x)|)
|∇u(x)| wji(x)∂iu(x)νj(x̄)

for almost every x = x̄+ tν(x̄) ∈ Aδ1 \ Ωδ, with 0 ≤ t ≤ δ. Since

wijνi∂ju = ∂j(Vξi(∇u)νi)∂ju− Vξi(∇u)∂jνi∂ju ,

we have

F (x) · ν(x̄) = −u(x)∇ξV (∇u(x)) · ν(x̄)− u(x)
f ′(|∇u(x)|)
|∇u(x)| ×{

∇(∇ξV (∇u(x)) · ν(x̄)) · ∇u(x)− f ′(|∇u(x)|)
|∇u(x)| ∂jνi(x̄)∂ju(x)∂iu(x)

}
(2.84)
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for almost every x = x̄+ tν(x̄) ∈ Aδ1 \ Ωδ, with 0 ≤ t ≤ δ. Let

Γδ,t1 = {x ∈ Aδ1 : dist (x,Γ1) = t} .

We notice that if x ∈ Γδ,t1 then ν(x̄) = νt(x) where νt(x) is the outward normal
to Γδ,t1 at x. Hence

∂jνi(x̄)∂ju(x)∂iu(x) = IIδ,tx (∇Tu(x),∇Tu(x)) (2.85)

where IIδ,tx is the second fundamental form of Γδ,t1 at x. Since Σ is a convex cone
then the second fundamental form of Γ1 \ {O} is non-negative de�nite. This
implies that the second fundamental form of Γδ,t1 is non-negative de�nite for t
su�ciently small (see e.g.[112, Appendix 14.6]) and hence

∂jνi(x̄)∂ju(x)∂iu(x) ≥ 0 . (2.86)

From (2.86) and (2.84) we obtain

F (x) · ν(x̄) ≥ −u(x)∇ξV (∇u(x)) · ν(x̄)

− u(x)
f ′(|∇u(x)|)
|∇u(x)| ∇(∇ξV (∇u(x)) · ν(x̄)) · ∇u(x) (2.87)

for almost every x = x̄+ tν(x̄) ∈ Aδ1 \ Ωδ, with 0 ≤ t ≤ δ. We use (2.87) in the
right-hand side of (2.82) and, by taking the limit as δ → 0, we obtain

lim
δ→0

ˆ

Aδ1

F (x) · ∇ηδ(x) dx

≥ −
ˆ

Γ1

u

(
∇ξV (∇u) · ν +

f ′(|∇u|)
|∇u| ∇(∇ξV (∇u) · ν) · ∇u

)
dσ .

From (2.67) and (2.68) we �nd (2.83), and hence (2.78). From (2.73), (2.74),
(2.75), (2.76), (2.77) and (2.78), we obtain (2.69).

2.2.2 Proof of Theorem 2.2

Proof of Theorem 2.2. We divide the proof in two steps. We �rst show that

W = − 1

n
Id a.e. in Ω. (2.88)

and
II(∇Tu,∇Tu) = 0 on Γ1 , (2.89)

and then we exploit (2.88) in order to prove that u is indeed radial.
Step 1. Let g be the Fenchel conjugate of f (in our case g′ = (f ′)−1), using

(2.47) we get that

div (g(|∇ξV (∇u)|)∇ξV (∇u)) =g′(|∇ξV (∇u)|)∇|∇ξV (∇u)|Vξ(∇u)

+ g(|∇ξV (∇u)|)Tr (W )

=g′(f ′(|∇u|)) Vξi(∇u)

|∇ξV (∇u)|∂j(Vξi(∇u))Vξj (∇u)

+ g(f ′(|∇u|))Tr (W ) ,
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a.e. in Ω, where we used (2.47). Since ∂jVξi(∇u) = wij and g′ = (f ′)−1, we
obtain

div (g(|∇ξV (∇u)|)∇ξV (∇u)) = ∂iuwijVξj (∇u) + g(f ′(|∇u|))Tr (W )

a.e. in Ω, and using again (2.47) we �nd

div (g(|∇ξV (∇u)|)∇ξV (∇u)) =
f ′(|∇u|)
|∇u| ∂iuwij∂ju+ g(f ′(|∇u|))Tr (W )

a.e. in Ω. Since
g(f ′(t)) = tf ′(t)− f(t) (2.90)

and Tr (W ) = −1, we obtain

div (g(|∇ξV (∇u)|)∇ξV (∇u)) =
f ′(|∇u|)
|∇u| ∂iuwij∂ju

+ f(|∇u|)− |∇u|f ′(|∇u|) (2.91)

a.e. in Ω.
Since (2.54), (2.47) and (2.49) yield

−S2
ij(W )Vξi(∇u)∂ju =

f ′(|∇u|)
|∇u| wji∂iu∂ju+ f ′(|∇u|)|∇u| ,

a.e. in Ω, from (2.91) we obtain

− S2
ij(W )Vξi(∇u)∂ju = div (g(|∇ξV (∇u)|)∇ξV (∇u))

+ 2f ′(|∇u|)|∇u| − f(|∇u|) , (2.92)

a.e. in Ω.
From Lemma 2.7 and (2.92), we obtain

2

ˆ

Ω

S2(W )u dx ≥−
ˆ

Ω

S2
ij(W )Vξi(∇u)∂ju dx

=

ˆ

∂Ω

g(|∇ξV (∇u)|)∇ξV (∇u) · ν dσ

+

ˆ

Ω

[2f ′(|∇u|)|∇u| − f(|∇u|)] dx .

From (2.47) and (2.67) we �nd

2

ˆ

Ω

S2(W )u dx ≥
ˆ

Γ0

g(|∇ξV (∇u)|)f
′(|∇u|)
|∇u| ∂νu dσ

+

ˆ

Ω

[2f ′(|∇u|)|∇u| − f(|∇u|)] dx .

From (2.47) and (2.35) we have

2

ˆ

Ω

S2(W )u dx ≥ −g(f ′(c))f ′(c)|Γ0|+
ˆ

Ω

[2f ′(|∇u|)|∇u| − f(|∇u|)] dx
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and from (2.90) we obtain

2

ˆ

Ω

S2(W )u dx ≥− [cf ′(c)− f(c)]f ′(c)|Γ0|

+

ˆ

Ω

[2f ′(|∇u|)|∇u| − f(|∇u|)] dx .
(2.93)

From the Pohozaev identity (2.58) and (2.43) we get

(n+ 1)

ˆ

Ω

u dx− n
ˆ

Ω

f(|∇u|) dx = (f ′(c)c− f(c))n|Ω| ;

which we use in (2.93) to obtain

2

ˆ

Ω

S2(W )u dx ≥− f ′(c)|Γ0|
n|Ω|

ˆ

Ω

[(n+ 1)u− nf(|∇u|)] dx

+

ˆ

Ω

[2f ′(|∇u|)|∇u| − f(|∇u|)] dx .
(2.94)

We notice that from (2.44) we have

|Ω| = f ′(c)|Γ0|,

and from (2.94) we obtain

2

ˆ

Ω

S2(W )u dx ≥ −n+ 1

n

ˆ

Ω

u dx+ 2

ˆ

Ω

f ′(|∇u|)|∇u| dx . (2.95)

By using u as a test function in (2.40) we have that
ˆ

Ω

u dx =

ˆ

Ω

f ′(|∇u|)|∇u| dx ,

and from (2.95) we �nd

2

ˆ

Ω

S2(W )u dx ≥ n− 1

n

ˆ

Ω

u dx . (2.96)

From (2.56) and using the fact that Tr (W ) = Lfu = −1, we get that also the
reverse inequality

n− 1

n

ˆ

Ω

u dx ≥
ˆ

Ω

2S2(W )u dx (2.97)

holds. From (2.96) and (2.97), we conclude that the equality sign must hold in
(2.96) and (2.97). From Lemma 2.3 we have that

W =
Tr (W )

n
Id

a.e. in Ω, and since Tr (W ) = −1 we obtain (2.88). Moreover, Lemma 2.7 yields
(2.89).

Step 2: u is a radial function. From (2.88) we have that

− 1

n
δij = ∂jVξi(∇u(x)) ,
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for every i, j = 1, . . . , n, which implies that there exists x0 ∈ Rn such that

∇ξV (∇u(x)) = − 1

n
(x− x0),

i.e. according to (2.47)

f ′(|∇u(x)|)
|∇u(x)| ∇u(x) = − 1

n
(x− x0) .

Hence

∇u(x) = −g′
( |x− x0|

n

)
x− x0

|x− x0|
in Ω .

Since u = 0 on Γ0, we obtain (2.34) and in particular u is radial with respect to
x0. Moreover, from (2.89) we �nd that x0 must be the origin or, if ∂Σ contains
�at regions, a point on ∂Σ.

2.2.3 Cones in space forms: proof of Theorem 2.3

The goal of this section is to give an easily readable proof of Theorem 2.3.
More precisely we assume more regularity on the solution than the one actually
assumed in Theorem 2.3 in order to give a concise and clear idea of the proof
in this setting, and we omit the technical details which are, in fact, needed. A
rigorous treatment of the argument described below can be done by adapting
the (technical) details in Section 2.2.2 and in [180].

Before starting the proof we declare some notations we use in the state-
ment of Theorem 2.3 and we are going to adopt in the following. Given a
n-dimensional Riemannian manifold (M, g), we denote by D the Levi-Civita
connection of g. Moreover given a C2-map u : M → R, we denote by ∇u the
gradient of u, i.e. the dual �eld of the di�erential of u with respect to g, and by
∇2u = Ddu the Hessian of u. We denote by ∆ the Laplace-Betrami operator
induced by g; ∆u can be de�ned as the trace of ∇2u with respect to g. Given a
vector �eld X on an oriented Riemannian manifold (M, g), we denote by divX
the divergence of X with respect to g. If {ek} is a local orthonormal frame on
(M, g), then

divX =

n∑

k=1

g(DekX, ek) ;

notice that, if u is a C1-map and if X is a C1 vector �eld on M , we have the
following integration by parts formula

ˆ

Ω

g(∇u, ν) dx = −
ˆ

Ω

udivX dx+

ˆ

∂Ω

ug(X, ν) dσ ,

where ν is the outward normal to ∂Ω and Ω is a bounded domain which is
regular enough. Here and in the following, dx and dσ denote the volume form
of g and the induced (n− 1)-dimensional Hausdor� measure, respectively.

Proof of Theorem 2.3. We divide the proof in four steps.

Step 1: the P -function. Let u be the solution to problem (2.38) and, as in [68],
we consider the P -function de�ned by

P = |∇u|2 +
2

n
u+Ku2 .
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Following [68, Lemma 2.1], P is a subharmonic function and, since u = 0 on Γ0

and from (2.43), we have that P = c2 on Γ0. Moreover,

∇P = 2∇2u∇u+
2

n
∇u+ 2Ku∇u . (2.98)

From the convexity assumption of the cone Σ, we have that

g(∇2u∇u, ν) ≤ 0 . (2.99)

Indeed, since ∂νu = 0 on Γ1 and by arguing as done for (2.68), we obtain that

0 = g(∇(∂νu),∇u) = g(∇2u∇u, ν) + II(∇u,∇u) ≥ g(∇2u∇u, ν) on Γ1 ,

which is (2.99). From (2.98) and (2.99) we obtain

∂νP = 2g(∇2u∇u, ν) +
2

n
∂νu+ 2Ku∂νu ≤ 0 in Γ1 \ {O} .

Hence, the function P satis�es:




∆P ≥ 0 in Ω,

P = c2 on Γ0

∂νP ≤ 0 on Γ1 \ {O} .

Moreover, again from [68, Lemma 2.1], we have that

∆P = 0 if and only if ∇2u =

(
− 1

n
−Ku

)
g . (2.100)

Step 2: we have
P ≤ c2 in Ω. (2.101)

Indeed, we multiply ∆P ≥ 0 by (P −c2)+ and by integrating by parts we obtain

0 ≥
ˆ

Ω∩{P>c2}
|∇P |2 dx−

ˆ

∂Ω

(P − c2)+∂νP dσ .

Since P = c2 on Γ0 and ∂νP ≤ 0 on Γ1 we obtain that

0 ≥
ˆ

Ω∩{P>c2}
|∇P |2 dx ≥ 0

and hence P ≤ c2.
Step 3: P = c2. By contradiction, we assume that P < c2 in Ω. Since ḣ > 0,
we have

c2
ˆ

Ω

ḣ dx >

ˆ

Ω

ḣ|∇u|2 dx+
2

n

ˆ

Ω

ḣu dx+K

ˆ

Ω

ḣu2 dx .

Since
div(ḣu∇u) = ḣ|∇u|2 + ḣu∆u+ ḧu∂ru

and
ḧ = −Kh ,
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and from u = 0 on Γ0 and ∂νu = 0 on Γ1 \ {O}, we have that

c2
ˆ

Ω

ḣ dx > −
ˆ

Ω

ḣu∆u dx−
ˆ

Ω

ḧu∂ru dx+
2

n

ˆ

Ω

ḣu dx+K

ˆ

Ω

ḣu2 dx

= (n+ 1)K

ˆ

Ω

ḣu2 dx+

(
1 +

2

n

)
ˆ

Ω

ḣu dx+K

ˆ

Ω

hu∂ru dx .

From div(h∂r) = nḣ we have

div(u2h∂r) = nḣu2 + 2hu∂ru ,

and from u = 0 on Γ0 and ∂νu = 0 on Γ1 \ {O} we obtain

c2
ˆ

Ω

ḣ dx >

(
1 +

2

n

)(
ˆ

Ω

ḣu dx−K
ˆ

Ω

hu∂ru dx

)
. (2.102)

Now we show that if u is a solution of (2.38) satisfying (2.39) then the equality
sign holds in (2.102). Indeed, let X = h∂r be the radial vector �eld and, by
integrating formula (2.8) in [66], we get

− c2

n

ˆ

∂Ω

g(X, ν) dσ +
n+ 2

n

ˆ

Ω

ḣu dx− (n− 2)K

ˆ

Ω

ḣu2 dx

+

(
2

n
− 3

)
K

ˆ

Ω

ug(X,∇u) dx = 0 . (2.103)

Since divX = nḣ we obtain

c2
ˆ

Ω

ḣ dx =
n+ 2

n

ˆ

Ω

ḣu dx− (n− 2)K

ˆ

Ω

ḣu2 dx

+

(
2

n
− 3

)
K

ˆ

Ω

ug(X,∇u) dx ,

i.e.

c2
ˆ

Ω

ḣ dx =

(
1 +

2

n

)(
ˆ

Ω

ḣu dx−K
ˆ

Ω

hu∂ru dx

)
,

where we used that u = 0 on Γ0, ∂νu = 0 on Γ1 \ {O} and g(X, ν) = 0 on Γ1.
From (2.102) we �nd a contradiction and hence P ≡ c2 in Ω.

Step 4: u is radial. Since P is constant, then ∆P = 0 and from (2.100) we �nd
that u satis�es the following Obata-type problem





∇2u =
(
− 1
n −Ku

)
g in Ω ,

u = 0 on Γ0 ,

∂νu = 0 on Γ1 \ {O} .
(2.104)

We notice that the maximum and the minimum of u can not be both achieved
on Γ0 since otherwise we would have that u ≡ 0. Hence, at least one between
the maximum and the minimum of u is achieved at a point p ∈ Ω ∪ Γ1. Let
γ : I → M be a unit speed maximal geodesic satisfying γ(0) = p and let
f(s) = u(γ(s)). From the �rst equation of (2.104) it follows

f ′′(s) = − 1

n
−Kf(s) .
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Moreover, the de�nition of f and the fact that ∇u(p) = 0 yield

f ′(0) = 0 and f(0) = u(p),

and therefore

f(s) =

(
u(p)− 1

n

)
H(s)− 1

n
.

This implies that u has the same expression along any geodesic strating from p,
and hence u depends only on the distance from p. This means that Ω = Σ∩BR
where BR is a geodesic ball and u depends only on the distance from the center
of BR.
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Introduction to Part II

Part II is about symmetry results for critical anisotropic p-Laplace equations in
convex cones (in Chapter 3) and functional inequalities on a particular class of
Riemannian manifolds (in Chapter 4). This part collects the results obtained
in the following papers: [57, 174].

In this Introduction we present the results that we are going to prove in the
Chapters 3 and 4.

Chapter 3. In the last years, Sobolev inequality (8) has been studied for
more general norms as well as in convex cones of Rn (see [15, 46, 97, 98, 159,
160]), where it takes the following form

(
ˆ

Σ

up
∗
dx

)p/p∗
≤ SΣ,H

ˆ

Σ

H(∇u)pdx , (II.1)

where H is a norm (i.e. H : Rn → R is convex, positively one-homogeneous and
positive) and Σ as in (I.26) is an open convex cone in Rn, i.e. Σ = Rk×C where
k ∈ {0, . . . , n} and C is a convex cone in Rn−k with only one vertex {O}.

As for the usual Sobolev inequality in Rn, the natural functional associated
to (II.1) is the following:

JH(u) =

´

Σ
H(∇u)pdx

(´
Σ
|u|p∗dx

) p
p∗
. (II.2)

We observe that (II.2) is the natural generalization of (11).
We are interested in critical points of the functional J . Let u be a (positive)

critical point of (II.2) and we compute the �rst variation of the functional. Let
ε > 0 and ϕ ∈ C∞c (Rn) be a test function, then

d

dε

∣∣∣
ε=0
JH(u+ εϕ) = 0 .

This condition leads to the following boundary value problem:




div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ ,

(II.3)

where ν is the outward normal to ∂Σ,

a(ξ) = Hp−1(ξ)∇H(ξ) ∀ ξ ∈ Rn . (II.4)
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We will sometimes write
∆H
p u = div (a(∇u)) ,

where ∆H
p is called the Finsler p-Laplace (or anisotropic p-Laplace) operator.

It is clear that when we consider the case Σ = Rn no boundary conditions are
given. In [57] we study problem (II.3) which is called critical anisotropic p-
Laplace equations in convex cones. In [57] we prove the sharp version of (II.1)
by suitably adapting the optimal transportation proof of the Sobolev inequality
[72] to the case of cones (see Appendix B). It is interesting to observe that our
proof applies also to the case of weighted Sobolev inequalities for the class of
weights considered in [46], thus generalizing [46, Theorem 1.3] to the full range
of exponents p ∈ (1, n).

Hence, as shown in Appendix B, the extremals of (II.1) are of the form

UHλ,x0
(x) :=




λ
1
p−1n

1
p

(
n−p
p−1

) p−1
p

λ
p
p−1 + H̃0(x− x0)

p
p−1




n−p
p

(II.5)

for some λ > 0 (see also [12, 72, 160, 217] and the references therein), where

H̃0(ζ) := H0(−ζ) ∀ ζ ∈ Rn , (II.6)

and H0 denotes the dual norm associated to H, namely

H0(ζ) := sup
H(ξ)=1

ζ · ξ ∀ ζ ∈ Rn.

Moreover, if Σ = Rn then x0 may be any point of Rn; if Σ = Rk × C with
k ∈ {1, . . . , n−1} and C does not contain a line, then x0 ∈ Rk×{O}; otherwise,
x0 = O.

The main result of Chapter 3 is to provide a complete classi�cation result for
critical anisotropic p-Laplace equations in convex cones with the hypothesis that
the solution belongs to the space D1,p(Σ) (as in Theorem C in the Introduction).
More precisely, we consider the problem





div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ

u ∈ D1,p(Σ) ,

(II.7)

the space D1,p(Σ) is de�ned as in (9) (with Rn replaced by Σ). The main goal of
this Chapter 3 is to classify the critical points for (II.2), i.e. the classi�cation of
the solutions to (II.3). In [57] we prove the following result (which is the main
result of Chapter 3)

Theorem II.A: let n ≥ 2, 1 < p < n , and let Σ = Rk × C be a convex cone,
where C does not contain a line. Let H be a norm of Rn such that H2 is of
class C2(Rn \ {O}) and it is uniformly convex and C1,1 in Rn, namely there
exist constants 0 < λ ≤ Λ such that

λId ≤ H(ξ)D2H(ξ) +∇H(ξ)⊗∇H(ξ) ≤ Λ Id , ∀ ξ ∈ Rn \ {O} . (II.8)

Let u be a solution to (II.3). Then u(x) = UHλ,x0
(x) for some λ > 0 and x0 ∈ Σ,

where UHλ,x0
is given by (II.5). Moreover,
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(i) if k = n then Σ = Rn and x0 may be a generic point in Rn;

(ii) if k ∈ {1, . . . , n− 1} then x0 ∈ Rk × {O};

(iii) if k = 0 then x0 = O.

As already mentioned, case (i) in the previous Theorem has been already
proved in [48, 76, 203, 224] when Σ = Rn and H is the Euclidean norm. In
that case, thanks to the symmetry of the problem, the authors can apply the
method of moving planes. In the Euclidean case and for p = 2, the classi�cation
of solutions in convex cones was proved in [160, Theorem 2.4] by using the Kelvin
transform and inspired by [108] and [178]. Unfortunately, the Kelvin transform
and the method of moving planes are not helpful neither for anisotropic problems
nor inside cones for a general p ∈ (1, n). In this case non-existence results
generalizing the one in [108] to p ∈ (1, n) are given in [206].

In Chapter 3 we provide a new approach to the characterization of solu-
tions to critical p−Laplacian equations, which is based on integral identities
rather than moving planes. This approach takes inspiration from [206] and also
from [29, 30, 40, 215] where classical overdetermined problems for PDEs are
considered (see also [63, 180] for analogous problems in convex cones).

The strategy of the proof can be explained as follows. First, using that
u ∈ D1,p(Σ) we show that u is bounded and satis�es certain decay estimates at
in�nity (in particular it behaves as the fundamental solution both from above
and below), so that one has optimal upper bounds on H(∇u) in terms of the
fundamental solution. We notice that, di�erently from [203], we do not need
asymptotic lower bounds on ∇u; instead, we use a Caccioppoli-type inequality
to prove some asymptotic estimates on certain integrals involving higher order
derivatives. Then we consider the auxiliary function v = u−

p
n−p . We �nd the

elliptic equation satis�ed by v and then, thanks to the asymptotic estimates
on u, we show that v and ∇v satisfy explicit growth conditions at in�nity. By
using integral identities, the convexity of Σ, and some suitable inequalities, we
are able to prove that ∇(a(∇v)) is a multiple of the identity matrix, from which
the symmetry result follows.

We mention that also in this case the hypothesis that u > 0 is fundamental,
indeed in [71] the authors construct a nonradial sign-changing solution when
p = 2 and H is the Euclidean norm.

Chapter 4. In Chapter 4 we focus on a particular class of Riemannian
manifolds: the so-called Cartan-Hadamard manifolds M of dimension n ≥ 3,
namely complete, noncompact, simply connected Riemannian manifold with
everywhere nonpositive sectional curvatures. On the one hand, it is well known
that the Sobolev inequality (8) with p = 2 holds also on any Cartan-Hadamard
manifold M ; explicitly the following Sobolev inequality holds

||u||L2∗ (M) ≤ C||∇u||L2(M) (II.9)

for every function u ∈ C1
c (M). On the other hand, if the sectional curvatures

are everywhere bounded from above by a negative constant k, then in addition
to (II.9) also the following Poincarè inequality

||u||L2(M) ≤ C||∇u||L2(M) (II.10)
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holds for every function u ∈ C1
c (M). We mention that (II.10) is equivalent to the

fact that the in�mum of the spectrum of (minus) the Laplace-Beltrami operator
on M is bounded from below by k(N − 1)2/4, i.e. ∆ has a spectral gap (see the
celebrated paper by McKeans [167]). For the sake of completness we mention
that, in contrast with McKean's Theorem, in [162] (see also references therein)
it was shown that, on any complete non-compact Riemannian manifold, the
essential spectrum of the Laplace-Beltrami operator starts from zero as soon
as the Ricci curvature vanishes at in�nity. This generalizes [214], where the
same thesis was established upon assuming an at-least-quadratic decrease of
the negative curvatures.

So, the situation is the following: if the sectional curvatures are bounded
from above by k ≡ 0 thenM supports (II.9), and as soon as such bound becomes
strictly negative M also supports (II.10). In other words, there is a �jump" of
the Lp exponent in the left-hand side of the inequality ||f ||Lp(M) ≤ C||∇u||L2(M)

which depends on the curvatures. So the natural question is the following: what
happens in between? That is, suppose that the sectional curvatures ofM satisfy
the following decay estimate

Sect(x) ≤ − K

r(x)β
for all x ∈M \BR0

, (II.11)

for some β ∈ (0, 2] and K,R0 > 0 where r(x) denotes the geodesic distance
from x to a �xed point o ∈ M (the pole of the manifold). Then, what kind
of inequalities does a Cartan-Hadamard manifold M with sectional curvature
satisfying (II.11) support? In [174] we �nd nontrivial answers and we will present
them in Chapter 4. First of all one has to distinguish between two cases: β ∈
(0, 2) and β = 2, the �rst case is called the sub-hyperbolic range and the second
is called the quasi-Euclidean range (this terminology was introduced in [120]).
Another distinction is between radial and nonradial functions. In [174] we focus
on the following Sobolev-type inequalities:

||u||Lp(M) ≤ Cp||∇u||L2(M) for some p ∈ (2, 2∗] . (II.12)

In the case β ∈ (0, 2) we show that (II.12) holds in the radial setting for all
p ∈ (2, 2∗], for a positive constant Cp = C(n, p,K,R0, β); moreover the result
is optimal with respect to the dependence on p. In case β = 2 we show that
(II.12) starts to holds in the radial setting from a certain exponent 2̃ ∈ (2, 2∗)
that depends on n and K, which tends to 2∗ as K → 0 and to 2 as K → 1;
also in this case the result is optimal with respect to p. Finally, we prove that
out of the radial setting all of the above results fail: it is enough to assume
that (II.11) is satis�ed with the reverse inequality to be able to construct a
sequence of nonradial functions that make the constant Cp in (II.12) blow up
for every p < 2∗. We mention that the case β > 2 is not interesting because it
is essentially Euclidean, i.e. the sole inequality of the type of (II.12) that holds,
even if restricted to radial functions, is the standard Sobolev one: this is an
immediate consequence of our results. The techniques of proof that we exploit
take advantage of two main ingredients: one-dimensional weighted functional
inequalities and Laplacian-comparison theorems; the idea is to �rst study the
radial inequalities on the already mentioned model manifolds.

The main motivation to study inequalities like (II.12) in Cartan-Hadamard
manifolds is related to the asymptotic behavior of nonnegative solutions of di�u-
sion equation. The link between the Sobolev inequality (or Gagliardo-Nirenberg
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and Nash inequalities in low dimensions) and a sharp decay estimate for the heat
kernel is a well-studied topic, which goes back to some pioneering works between
the 50s and the 80s: see the monograph [77]. In this regard, let us also men-
tion the recent paper [116], where the behaviour of Faber-Krahn inequalities
(which are strictly related to the Sobolev ones) on Riemannian manifolds under
removal of compact subsets or gluing of noncompact manifolds is investigated,
with applications to heat-kernel bounds.

In the last decades, several results that connect the validity of functional
inequalities of Sobolev, log-Sobolev or Poincaré type with smoothing e�ects for
nonlinear di�usion equations (mostly modeled on the porous medium equa-
tion) have been established: see [119] for weighted porous medium equations in
the presence of weights and Poincaré inequalities, [101, 117] for optimal short
and long-time smoothing estimates for porous medium equations (or the more
general �ltration equation) on Euclidean domains in the case of homogeneous
Neumann problems, and the above-mentioned paper [118] for similar analyses
focused on the consequences of the validity of families of Sobolev-type inequal-
ities of the type of (II.12). Previous results in this direction, having already
in mind the manifold case, can be found in [34]. As a general reference on
smoothing e�ects, we also quote [222]. It is worth pointing out that in order to
prove some of the main theorems of these papers, the authors often exploit a
very powerful equivalence tool between families of Gagliardo-Nirenberg-Sobolev
inequalities and one single inequality, which is due to [16].

Among recent works that take advantage of connections between functional
inequalities and fast di�usion �ows we refer to [86, 87], where the latter have
been thoroughly exploited in order to prove or disprove the achievement of op-
timality by radial functions in Ca�arelli-Kohn-Nirenberg inequalities. For a
functional-analytic investigation of fast di�usions on Cartan-Hadamard mani-
folds, see also [35]. Finally, the monograph [17] is devoted to a wide-scope dis-
cussion on the interplay between analytic, geometric and probabilistic features
of Markov di�usion semigroups, which involves functional inequalities related
to those treated here and curvature-dimension conditions in more general met-
ric frameworks. More explicitly, it is well-known that in Rn there is a close
connection between the Sobolev inequality (II.9) and the heat equation:

{
∂tu = ∆u in Rn × R+

u = u0 in Rn × {0}. (II.13)

Indeed, by classical results (mainly due to Nash, Varopoulos, Fabes and Stroock
between 1958 and 1986), the Sobolev inequality is equivalent to the following
smoothing estimate for solutions of (II.13):

||u(t)||∞ ≤ Ct−
n
2 ||u0||L1(Rn) . (II.14)

Similar results have recently been extended to suitable nonlinear di�usions like
the porous medium equation:

{
∂tu = ∆(um) in M × R+

u = u0 in M × {0}. (II.15)

for m > 1 and u0 ∈ L1(Rn). That is, if M = Rn then the Sobolev inequality
is equivalent to the smoothing estimate (see Bonforte, Grillo, Muratori between
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2006 and 2013)

||u(t)||∞ ≤ Ct−
n

2+n(m−1) ||u0||
2

2+n(m−1)

L1(Rn) . (II.16)

When M = Hn, the porous medium equation (II.15) had been also studied (see
[223]). In particular in [118], as a sole consequence of the Sobolev inequality
(II.9) and Poincaré inequality (II.10) which hold in Hn, the following smoothing
estimate is proved

||u(t)||∞ ≤ C
(

log(2 + t||u0||m−1
L1(Rn))

t

) 1
m−1

. (II.17)

Moreover, the porous medium equation (II.15) had been studied also whenM is
a Cartan-Hadamard manifold. In particular, since the Sobolev inequality (II.9)
holds on any Cartan-Hadamrd manifold then one can prove an estimate like
(II.16). In addition, if the sectional curvatures are negatively bounded away
from zero, then (II.10) holds true and (II.16) can be improved for large times
by an estimate like (II.17). A natural question is: what happens in between,
i.e. for vanishing curvatures? In [118] they prove that if the sectional curvature
of M satis�es (II.11) then, an estimate (II.17) does hold provided M supports
(II.12), i.e. a family of Sobolev-type inequalities. That's why we study these
type of inequality on Cartan-Hadamard manifolds and in [174] we have a partial
result.
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Chapter 3

Symmetry results for critical

anisotropic p-Laplacian
equations in convex cones

As mentioned in the introduction to Part II, in this chapter we consider the
following problem





div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ

u ∈ D1,p(Σ) ,

(3.1)

where: H is a norm1, Σ is a convex open cone in Rn given by

Σ = {tx : x ∈ ω, t ∈ (0,+∞)} , (3.2)

for some open domain ω ⊆ Sn−1, ν is the outward normal to ∂Σ,

a(ξ) := Hp−1(ξ)∇H(ξ) ∀ ξ ∈ Rn, (3.3)

and the space D1,p(Σ) is de�ned as follows

D1,p(Σ) :=

{
u ∈ Lp∗(Σ) :

ˆ

Σ

|∇u|p dx <∞
}
, (3.4)

where p∗ is the usual critical Sobolev exponent, i.e.

p∗ =
np

n− p . (3.5)

Since it will be useful, we mention that, in general (up to a change of coordinates)
every convex cone Σ of Rn is of the form

Σ = Rk × C ,
1By abuse of notation, we say that H : Rn → R is a norm if H is convex, positively

one-homogeneous (namely, H(`ξ) = `H(ξ) for all ` > 0), and H(ξ) > 0 for all ξ ∈ Sn−1. Note
that we do not require H to be symmetric, so it may happen that H(ξ) 6= H(−ξ).
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where k ∈ {0, . . . , n} and C ⊂ Rn−k is a convex cone containing no lines.
Moreover we will sometimes write

∆H
p u = div (a(∇u)) ,

where ∆H
p is called the Finsler p-Laplacian (or anisotropic p-Laplacian) opera-

tor.
As already observed if u ∈ D1,p(Σ) is a positive critical point for the Sobolev

functional

JH(u) =

´

Σ
H(∇u)pdx

(´
Σ
|u|p∗dx

) p
p∗
, (3.6)

then u satis�es (3.1). The main goal of this chapter is to classify the critical
points for (3.6), i.e. the classi�cation of the solutions to (3.1). The functional
(3.6) is related to the sharp anisotropic Sobolev inequality that we prove in
Appendix B where we also show that the analogue of the Aubin-Talenti bubbles
are the following functions:

UHλ,x0
(x) :=



λ

1
p−1

(
n

1
p

(
n−p
p−1

) p−1
p

)

λ
p
p−1 + H̃0(x0 − x)

p
p−1




n−p
p

(3.7)

for some λ > 0, where

H̃0(ζ) := H0(−ζ) ∀ ζ ∈ Rn , (3.8)

and H0 denotes the dual norm associated to H, namely

H0(ζ) := sup
H(ξ)=1

ζ · ξ ∀ ζ ∈ Rn.

Moreover, if Σ = Rn then x0 may be any point of Rn; if Σ = Rk × C with
k ∈ {1, . . . , n−1} and C does not contain a line, then x0 ∈ Rk×{O}; otherwise,
x0 = O (from now on, O denotes the origin).

The main result that we prove in this chapter is the following Liouville-type
Theorem (Liouville-type Theorem II.A in the introduction to part II)

Theorem 3.1. Let n ≥ 2, 1 < p < n , and let Σ = Rk × C be a convex cone,
where C does not contain a line. Let H be a norm of Rn such that H2 is of
class C2(Rn \ {O}) and it is uniformly convex and C1,1 in Rn, namely there
exist constants 0 < λ ≤ Λ such that

λId ≤ H(ξ)D2H(ξ) +∇H(ξ)⊗∇H(ξ) ≤ Λ Id ∀ ξ ∈ Rn \ {O} (3.9)

(note that D2(H2) = 2HD2H + 2∇H ⊗∇H).
Let u be a solution to (3.1). Then u(x) = UHλ,x0

(x) for some λ > 0 and
x0 ∈ Σ, where UHλ,x0

is given by (3.7). Moreover,

(i) if k = n then Σ = Rn and x0 may be a generic point in Rn;

(ii) if k ∈ {1, . . . , n− 1} then x0 ∈ Rk × {O};
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(iii) if k = 0 then x0 = O.

The strategy of the proof can be explained as follows. First, using that u ∈
D1,p(Σ) we show that u is bounded (see Subsection 3.1.1). Then, in Subsection
3.1.2 we prove that u satis�es certain decay estimates at in�nity (in particular
it behaves as the fundamental solution both from above and below), so that
one has optimal upper bounds on H(∇u) in terms of the fundamental solution.
We notice that, di�erently from [203], we do not need asymptotic lower bounds
on ∇u; instead, we use a Caccioppoli-type inequality to prove some asymptotic
estimates on certain integrals involving higher order derivatives (see Subsection
3.1.3).

Then, in Section 3.2 we consider the auxiliary function v = u−
p

n−p . We �nd
the elliptic equation satis�ed by v and then, thanks to the asymptotic estimates
on u, we show that v and ∇v satisfy explicit growth conditions at in�nity. By
using integral identities, the convexity of Σ, and some suitable inequalities, we
are able to prove that ∇a(∇v), recall that a is given by (3.3), is a multiple of
the identity matrix; from this fact the symmetry result follows.

In Appendix B we prove, via the optimal transport approach introduced by
[72], the sharp version of the following anisotropic Sobolev inequality in convex
cones (

ˆ

Σ

up
∗
dx

)p/p∗
≤ SΣ,H

ˆ

Σ

H(∇u)pdx , (3.10)

for general norms and cones, and even in a weighted setting (for the general
inequality, not the sharp one we refer to [46]).

Most of the chapter will focus on the case in which Σ is a convex cone with
nonempty boundary. Indeed our approach perfectly works also when Σ = Rn.
However, since the whole space case is simpler to be proven, we prefer to focus
the exposition to the case when Σ has boundary (the case when Σ = Rn can be
found in Appendix C).

3.1 Preliminary results

In this section we collect some results that are well established when Σ = Rn
and H is the Euclidean norm. Since we are dealing with problem (3.1) and some
modi�cations are needed, we report here their counterpart when Σ is a convex
cone and H a general norm, and provide a sketch of the proofs emphasizing the
main di�erences.

In the whole chapter we denote by Br(x) the usual Euclidean ball, and by
Br the ball Br(O) centered at the origin.

3.1.1 Boundeness of solutions

In the following lemma we prove that solutions to (3.1) are bounded. The result
holds for more general Neumann problems, in particular for problems with a
di�erential operator modelled on the p-Laplace operator.
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Lemma 3.1. Let Σ ⊆ Rn be a convex cone as in (3.2) and let u ∈ D1,p(Σ) be
a solution to 




div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ ,

(3.11)

where a : Rn → Rn is a continuous vector �eld such that the following holds:
there exist α > 0 and 0 ≤ s ≤ 1/2 such that

|a(ξ)| ≤ α(|ξ|2 + s2)
p−1
2 and ξ · a(ξ) ≥ 1

α

ˆ 1

0

(
t2|ξ|2 + s2

) p−2
2 |ξ|2 dt , (3.12)

for every ξ ∈ Rn. Then there exists δ > 0 with the following property: let ρ > 0
be such that

||u||Lp∗ (Bρ(x0)) ≤ δ ∀x0 ∈ Rn.

Then
||u||L∞(Σ∩BR/2(x0)) ≤ CR−

n
p ||u||Lp(Σ∩BR(x0)) ∀R ≤ ρ,

where C depends only on n, α, p and the Sobolev constant of Σ.

Proof. We closely follow [183, Theorem E.0.20] and [205, Theorem 1] and we
only give a sketch of the proof. We �rst prove that u ∈ Lqp

∗

loc (Σ) for any q < p∗/p.

Given l > 0 and 1 < q < p∗

p , we de�ne

F (u) =

{
uq if u ≤ l
qlq−1(u− l) + lq if u > l ,

(3.13)

and

G(u) =

{
u(q−1)p+1 if u ≤ l
((q − 1)p+ 1)l(q−1)p(u− l) + l(q−1)p+1 if u > l .

Let η ∈ C∞0 (Rn) and use
ξ = ηpG(u)

as a test-function in (3.11); then an integration by parts gives
ˆ

Σ

a(∇u) · ∇(ηpG(u)) dx =

ˆ

Σ

up
∗−1ηpG(u) dx . (3.14)

We aim at proving that

c

ˆ

Σ

ηpG′(u)|∇u|p dx ≤
ˆ

Σ

ηp−1G(u)|a(∇u) · ∇η| dx

+

ˆ

Σ

up
∗−1ηpG(u) dx

+ sp
ˆ

Σ

ηpG′(u) dx

(3.15)

holds for 0 ≤ s ≤ 1/2. We distinguish between the cases 1 < p < 2 and
2 ≤ p < n.
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If p ≥ 2, then (3.12) implies

ξ · a(ξ) ≥ 1

α
|ξ|p ,

and from (3.14) we get

1

α

ˆ

Σ

ηpG′(u)|∇u|p dx ≤ p
ˆ

Σ

ηp−1G(u)|a(∇u) · ∇η| dx+

ˆ

Σ

up
∗−1ηpG(u) dx ,

which implies (3.15).
If 1 < p < 2 then (3.15) is obtained by using a more careful argument. We

claim that
ˆ 1

0

(
t2|ξ|2 + s2

) p−2
2 |ξ|2 dt ≥ 1

2
(|ξ|p − sp) . (3.16)

To prove this we consider two cases. If s > |ξ| then the left-hand side of (3.16)
is negative, and so the result is clearly true. Otherwise, if s ≤ |ξ| then

t2|ξ|2 + s2 ≤ 2|ξ|2 for t ∈ [0, 1],

and therefore
ˆ 1

0

(
t2|ξ|2 + s2

) p−2
2 |ξ|2 dt ≥

ˆ 1

0

(
2|ξ|2

) p−2
2 |ξ|2 dt = 2

p−2
2 |ξ|p ≥ 1

2
|ξ|p,

that again implies (3.16).
Thanks to (3.14), (3.12), and (3.16), we obtain

1

2α

ˆ

Σ

ηpG′(u)|∇u|p dx ≤ p
ˆ

Σ

ηp−1G(u)|a(∇u) · ∇η| dx

+

ˆ

Σ

up
∗−1ηpG(u) dx+

sp

2

ˆ

Σ

ηpG′(u) dx ,

and the proof of (3.15) is complete.
Note now that, by Young's inequality and (3.12), for any ε ∈ (0, 1) we have

ηp−1|a(∇u) · ∇η| ≤ ε p
p−1u−1|a(∇u)| p

p−1 ηp + ε−pup−1|∇η|p

≤ C0ε
p
p−1u−1(|∇u|p + sp)ηp + ε−pup−1|∇η|p,

where C0 depends only on α and p. Thanks to this inequality and recalling
(3.15), since G(u) ≤ uG′(u) (note that G is convex and G(0) = 0), for any
ε ∈ (0, 1) we obtain

c

ˆ

Σ

ηpG′(u)|∇u|p dx ≤C0ε
p
p−1

ˆ

Σ

ηpG′(u)|∇u|p dx+ (C0 + 1)sp
ˆ

Σ

ηpG′(u) dx

+ ε−p
ˆ

Σ

G(u)up−1|∇η|p dx+

ˆ

Σ

up
∗−1ηpG(u) dx .

Hence, choosing ε small enough so that C0ε
p
p−1 = c/2, we deduce that

c′
ˆ

Σ

ηpG′(u)|∇u|p dx ≤ sp
ˆ

Σ

ηpG′(u) dx+

ˆ

Σ

G(u)up−1|∇η|p dx

+

ˆ

Σ

up
∗−1ηpG(u) dx , (3.17)
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where c′ > 0 depends only on n, α, and p. Using now that G′(u) ≥ c[F ′]p and
that up−1G(u) ≤ C[F (u)]p, we obtain

ĉ

ˆ

Σ

|∇(ηF (u))|p dx ≤ sp
ˆ

Σ

ηpG′(u) dx+

ˆ

Σ

|∇η|pF p(u) dx

+

ˆ

Σ

ηpup
∗−pF p(u) dx .

Hence, thanks to the Sobolev inequality (3.10) we get

c̄

(
ˆ

Σ

F p
∗
(u)ηp

∗
dx

) p
p∗

≤ sp
ˆ

Σ

ηpG′(u) dx+

ˆ

Σ

|∇η|pF p(u) dx

+

ˆ

Σ

ηpup
∗−pF p(u) dx , (3.18)

where c̄ > 0 depends only on n, α, p and the Sobolev constant for Σ.
Now, choose δ = (c̄/2)1/(p∗−p), so that for any R ≤ ρ it holds

||u||p
∗−p
Lp∗ (BR(x0))

≤ c̄

2
∀x0 ∈ Rn.

Then, if we choose η such that supp(η) ⊂ BR(x0), it follows from Holder's
inequality that we can reabsorb the last term in (3.18), and we get

c̄

2

(
ˆ

Σ

F p
∗
(u)ηp

∗
dx

) p
p∗

≤ sp
ˆ

Σ∩BR(x0)

ηpG′(u) dx

+

ˆ

Σ∩BR(x0)

|∇η|pF p(u) dx .

Hence, taking the limit as l → ∞ in the de�nition of F and G, by monotone
convergence we conclude

c̄

2

(
ˆ

Σ∩BR(x0)

ηp
∗
uqp

∗
dx

) p
p∗

≤ sp
ˆ

Σ∩BR(x0)

u(q−1)p dx

+ ||∇η||p∞
ˆ

Σ∩BR(x0)

uqp dx .

Since qp < p∗ it follows that the right hand side is �nite, hence by the inequality
above and the arbitrariness of x0 we conclude that u ∈ Lqp

∗

loc (Σ).
Thanks to this information, we can rewrite the equation satis�ed by u as

follows:
−div (a(∇u)) = f(x)up−1 + g(x)

where

f(x) =

{
0 if u < 1

up
∗−p if u ≥ 1 ,

and

g(x) =

{
0 if u > 1

up
∗−1 if u ≤ 1 .
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Since u ∈ Lqp
∗

loc we get that f ∈ Lr with r > n
p and g ∈ L∞. Hence, as in

the proof of [205, Theorem 1], a classical Moser iteration argument yields the
result.

Remark 3.1. As observed in the proof of [183, Theorem E.0.20], the Moser
iteration argument can also be used to show that u is uniformly C0,θ up to the
boundary.

3.1.2 Asymptotic bounds on u and ∇u
The main goal of this subsection is to prove Proposition 3.1 below. Proposition
3.1 is a generalization of [224, Theorem 1.1] to the conical-anisotropic setting.
The proof of Proposition 3.1 follows the one given in [224], although the lack of
smoothness of Σ creates some nontrivial extra di�culties.

Proposition 3.1. Let 1 < p < n and let u be a solution to (3.1). Then there
exist two positive constants C0 and C1 such that

C0

1 + |x|n−pp−1

≤ u(x) ≤ C1

1 + |x|n−pp−1

and |∇u(x)| ≤ C1

1 + |x|n−1
p−1

, (3.19)

for all x ∈ Σ.

Before giving the proof of Proposition 3.1, we �rst introduce a useful de�ni-
tion.

De�nition 3.1. Given L > 0, we say that a convex cone C is L-Lipschitz if for
any point x ∈ ∂C there exist rx > 0 and a unit vector νx such that

Brx(x+ Lrxνx) ⊂ C.

Note that, by convexity of C, also the convex hull of Brx(x + Lνx) ∪ {x} is
contained in C.

In the spirit of [224, Lemma 2.3], we now prove a general lower bound on the
Lp
∗
norms of solutions to our equation in convex cones, with a bound depending

only on the Lipschitz constant.

Lemma 3.2 (Lower bound on the mass). Let u be a nontrivial solution to





div (a(∇u)) + up
∗−1 = 0 in C

u > 0 in C
a(∇u) · ν = 0 on ∂C
u ∈ D1,p(C) ,

(3.20)

where C is a L-Lipschitz convex cone and a(ξ) is as in (3.3). Then there exists
a constant k0 > 0, depending only on n, p, L, and minSn−1 H, such that

‖u‖Lp∗ (C) ≥ k0.

Proof. As in [224, Lemma 2.3], the proof is based on the Sobolev inequality
in C, and on the integral identity that one obtains by multiplying (3.20) by u
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and integrating in C. However in this case a bit more carefulness is needed,
especially to quantify the dependencies.

First of all, up to a translation, we can assume that C has vertex at O.
Then, since C is L-Lipschitz, there exist r0 > 0 and a unit vector ν0 such that
Br0(Lr0ν0) ⊂ C. Therefore, since C is a convex cone, this implies that the cone

ĈL :=
⋃

r>0

Br(Lrν0)

is contained inside C.
We now want to estimate the Sobolev constant of C. To this aim we de�ne

the constant SL as

inf

{(´
Ω
|∇ϕ|pdx

)1/p
(´

Ω
|ϕ|p∗dx

)1/p∗ : Ω is convex, B1 ∩ ĈL ⊂ Ω ⊂ B1, ϕ ∈ C1(Ω), ϕ|∂B1∩ĈL = 0

}
.

Since the set of convex domains Ω ⊂ B1 containing B1 ∩ ĈL are uniformly
Lipschitz, standard arguments in the calculus of variations show that SL is
positive.

We now notice that, given any function ψ ∈ C1
c (C), there exists λ > 0

large such that ψλ(x) := ψ(λx) satis�es ψλ ∈ C1(C) and ψλ|∂B1∩ĈL = 0 (since

∂B1 ∩ ĈL ⊂ ∂B1 ∩ C). Hence, we can bound

(´
C |∇ψ|pdx

)1/p
(´
C |ψ|p

∗dx
)1/p∗ =

(´
C |∇ψλ|pdx

)1/p
(´
C |ψλ|p

∗dx
)1/p∗ ≥ SL.

Since ψ ∈ C1
c (C) is arbitrary, it follows by approximation that

(
ˆ

C
|∇ψ|pdx

)1/p

≥ SL
(
ˆ

C
|ψ|p∗dx

)1/p∗

∀ψ ∈ D1,p(C).

Applying this inequality to u and de�ning cH := min|ξ|=1H(ξ), we get

ˆ

C
H(∇u)pdx ≥ cpH

ˆ

C
|∇u|pdx ≥ (cHSL)p

(
ˆ

C
up
∗
dx

)p/p∗
.

On the other hand, multiplying (3.20) by u and integrating in C, we get
ˆ

C
H(∇u)pdx =

ˆ

C
up
∗
dx.

Combining the last two equations yield the desired lower bound.

Remark 3.2. An alternative proof of Lemma 3.2 can be obtained by computing
the optimal Sobolev constant of C (using Appendix B) and noticing that this
constant is bounded below in terms only of n, p, H0, and the volume of C ∩B1.
In particular, whenever C is L-Lipschitz then ĈL ⊆ C and |C ∩B1| ≥ |ĈL ∩B1|,
and one concludes that the Sobolev constant of C is controlled by (actually, it
is larger or equal than) the one of ĈL.
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We shall also need a doubling-type property on u which is proved in [187,
Lemma 5.1] (see also [224, Lemma 3.1]). Below we state a version of this
doubling property which is suitable for our setting.

Note that, by convexity, there exists a constant LΣ > 0 such that Σ is LΣ-
Lipschitz. Then we let k0 > 0 be the constant provided by Lemma 3.2 with
L = LΣ.

Lemma 3.3 (Doubling property [187]). Let u be a solution to (3.20), let LΣ be
the Lipschitz constant of Σ, and let k0 > 0 be the constant provided by Lemma
3.2 with L = LΣ.

Let k ∈ (0, k0), r > 0, and r′ ∈ (0, r) be �xed, and set

r′′ =
r + r′

2
.

Then for any x ∈ Σ \ Br′′ and α > 0 such that the distance d between x and
Σ ∩Br′′ satis�es

d(x,Σ ∩Br′′)u(x)
p

n−p > 2α , (3.21)

there exists a point y0 ∈ Σ \Br′′ such that

d(y0,Σ ∩Br′′)u(x)
p

n−p > 2α , u(x0) ≤ u(y0) , (3.22)

and
u(y) ≤ 2

n−p
p u(y0) for all y ∈ Σ ∩Br̄(y0) , (3.23)

where r̄ = αu(y0)−
p

n−p .

Proof of Proposition 3.1. We divide the proof of Proposition 3.1 in three steps.
In Step 1 we give a preliminary decay estimate on u (which is not sharp). In
Step 2 we prove that u ∈ Lp̂−1,∞(Σ) for a suitable p̂. Finally, in Step 3 we prove
(3.19).

• Step 1: Let u be a solution of (3.1), and for k ∈ (0, k0) de�ne

rk(u) := inf{r > 0 : ||u||Lp∗ (Σ\Br) < k} . (3.24)

Then, for any �xed k ∈ (0, k0) and r > rk(u), there exists a constant K0 such
that

|u(x)| ≤ K0H0(x)
p−n
p for all x ∈ Σ \Br . (3.25)

In order to prove the assertion, it su�ces to show the existence of a constant
K1 such that

d(x,Σ ∩Br′′)u(x)
p

n−p ≤ K1 for all x ∈ Σ \Br , (3.26)

where r′′ = (r+ r′)/2 and r′ ∈ (0, r) is �xed. We prove (3.26) by contradiction.
Suppose there exists a sequence of points {xα}α∈N ⊂ Σ \Br such that

d(xα,Σ ∩Br′′)u(xα)
p

n−p > 2α . (3.27)

Since Br′′ ⊂ Br, it follows from (3.27) and Lemma 3.3 that there exists a
sequence of points {yα}α∈N ⊂ Σ \Br′′ such that

d(yα,Σ ∩Br′′)u(yα)
p

n−p > 2α , u(xα) ≤ u(yα) , (3.28)
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and
u(y) ≤ 2

n−p
p u(yα) for all y ∈ Σ ∩Br̄(yα) . (3.29)

We observe that, since u is bounded, the sequences {xα}α∈N and {yα}α∈N are
both divergent as α→∞.

For any α ∈ N and y ∈ Σ, we de�ne

ũα(y) := u(yα)−1u(m−1
α y + yα) (3.30)

where mα := u(yα)
−p
n−p . From (3.1) we obtain





−∆H
p ũα = ũp

∗−1
α in Σα

ũα(O) = 1,

a(∇ũα) · ν = 0 on ∂Σα ,

(3.31)

where
Σα := mα(Σ− yα) = {y ∈ Rn : m−1

α y + yα ∈ Σ}
is a convex cone.

It is immediate to check that the cones Σα are LΣ-Lipschitz. Furthermore,
if we set µα := u(yα)−1, (3.29) and (3.30) yield that

ũα(−yαmα) = µαu(O) 6= 0 and ũα(y) ≤ 2
n−p
p for all y ∈ Σα∩Bα . (3.32)

At this point we consider the ratio

qα :=
mα

|yα|
.

Observe that (by (3.28)) qα → 0 as α→∞.
Since |yα| → +∞, the ratio between −yαmα and the scaling factor mα goes

to in�nity. Hence, one of the following two cases may occur as α→∞ :

(i) the sequence of cones {Σα}α∈N converges to Rn (this happens if the dis-
tance between mαyα and ∂Σα goes to in�nity);

(ii) the sequence of cones {Σα}α∈N converges to a LΣ-Lipschitz convex cone C,
not necessarily centered at the origin (this happens if the distance between
mαyα and ∂Σα remains bounded).

We now look in both cases at the behaviour of the functions {uα}α∈N. We
consider the two cases separately.

- Case (i): �x a ball BR. Then there exists α ∈ N such that Σα ∩BR = BR
for every α ≥ α; moreover ũα (for every α ≥ α) is a solution of (3.31) in BR.
From (3.9), (3.32), and [85], there exist a constant C > 0 and a real number
θ ∈ (0, 1) such that

||ũα||C1,θ(BR/2) ≤ C (3.33)

for any α ≥ α. Since R > 0 is arbitrary, Ascoli-Arzelà Theorem and a diagonal
argument imply that {ũα}α∈N converges (up to subsequence) in C1

loc(Rn) to
some function ũ∞. By construction we have that ũ∞ ∈ D1,p(Rn), ũ∞(O) = 1,
and ũ∞ is a weak solution of

−∆H
p ũ∞ = ũp

∗−1
∞ in Rn . (3.34)

106



3.1. PRELIMINARY RESULTS

- Case (ii): consider a ball BR. Then for every compact set K ⊂⊂ BR ∩ C
there exists α ∈ N such that K ⊂ Σα ∩ BR for every α ≥ α. As in Case (i),
for every α ≥ α the function ũα is a solution of (3.31) in K, and there exist a
constant C > 0 and a real number θ ∈ (0, 1) such that

||ũα||C1,θ(K′) ≤ C (3.35)

for any α ≥ α and K ′ ⊂⊂ K. In addition, it follows by Remark 3.1 that the
functions ũα are uniformly C0,θ inside BR ∩ C for any R > 0. Hence, again
Ascoli-Arzelà Theorem and a diagonal argument imply that {ũα}α∈N converges
(up to subsequence) in C0(BR ∩C)∩C1

loc(BR ∩C) to some function ũ∞, for any
R > 0. Taking the limit in the weak formulation of the equation, we obtain that
ũ∞ ∈ D1,p(C), ũ∞(O) = 1, and ũ∞ is a weak solution of

{
−∆H

p ũ∞ = ũp
∗−1
∞ in C

a(∇ũ∞) · ν = 0 on ∂C . (3.36)

We now notice that, in both cases, for any ρ > 0 we have

||ũα||Lp∗ (Σα∩Bρ) = ||u||Lp∗ (Σ∩Bρmα (yα)) . (3.37)

Also, by (3.28), since rk(u) < r′′ we get

Bρmα(yα) ∩Brk(u) = ∅ (3.38)

for α large. Thus, from (3.37), (3.38), and by de�nition of rk(u), we obtain

||ũα||Lp∗ (Σα∩Bρ) ≤ k (3.39)

for α large. Thus, taking the limit in (3.39) as α → ∞ and then as ρ → ∞,
yields

||ũ∞||Lp∗ (Rn) ≤ k or ||ũ∞||Lp∗ (C) ≤ k , (3.40)

in Case (i) or Case (ii), respectively. Since k < k0 with k0 > 0 as in Lemma 3.2,
it follows by (3.34) (resp. (3.36)) and (3.40) that ũ∞ ≡ 0 in Case (i) (resp. Case
(ii)), a contradiction to the fact that ũ∞(O) = 1. This completes the proof of
the assertion of Step 1.

• Step 2: Let u be a solution of (3.20). Then u ∈ Lp̂−1,∞(Σ) for p̂ := p(n−1)
n−p .

Recall that, given a set Ω and r ≥ 1, one de�nes the space Lr,∞(Ω) as the
set of all measurable functions v : Ω→ R such that

||v||Lr,∞(Ω) := sup
h>0

{
hmeas ({|u| > h})1/r

}
<∞ . (3.41)

Using the Sobolev inequality in cones, the proof of this step can be easily adapted
from the case of Rn (see [224, Lemma 2.2]) and for this reason is omitted.

• Step 3: Proof of (3.19).
The proof of this step closely follows the proof of [224, Theorem 1.1], which

in turn uses [220, Theorem 1.3] and [205, Theorem 5]. Even if [220, Theorem 1.3]
and [205, Theorem 5] are stated in a local setting, thanks to the homogeneous
Neumann boundary condition they can be easily extended to our setting. For
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this reason we only give a sketch of the proof, following the argument of [224,
Theorem 1.1].

Let k and r be as in Step 1. For any R > 0 and y ∈ Σ, we de�ne

uR(y) := R
n−p
p−1 u(Ry) . (3.42)

From (3.1) we obtain

−∆H
p uR = R−

p
p−1up

∗−1
R inΣ . (3.43)

Also, writing up
∗−1
R = up

∗−p
R up−1

R and using (3.25), we have

R−
p
p−1up

∗−1
R ≤ Kp∗−p

0 up−1
R inΣ \B1 , (3.44)

provided that R ≥ r. Thus, it follows from (3.43), (3.44), and [220, Theorem
1.3], that for any ε > 0 it holds

||uR||L∞(Σ∩(B4\B2)) ≤ Cε||uR||Lp−1+ε(Σ∩(B5\B1)) (3.45)

for some constant Cε > 0. We �x ε0 = ε0(n, p) such that 0 < ε0 < p̂− p, where
p̂ is as in Step 2. Since

||uR||Lp−1+ε0 (Σ∩(B5\B1)) ≤ C0||uR||Lp̂−1,∞(Σ∩(B5\B1)) ,

for C0 = C0(n, p), recalling Step 2 we obtain that

||uR||L∞(Σ∩(B4\B2)) ≤ C1 (3.46)

for some constant C1. Hence, by (3.43), (3.46), and elliptic regularity theory
for p-Laplacian type equations [85, 218], we get

||∇uR||L∞(Σ∩(B7/2\B5/2)) ≤ C2 (3.47)

for some constant C2. Here we notice that, even if (3.47) is proved in [85,
Section 3] in a local setting (see also [53], where the authors prove global Lip-
schitz regularity in convex domains for the case when H coincides with the
Euclidean norm), the argument easily extends to our setting by an approxima-
tion argument. Indeed, as in the proof of Proposition 3.2 below, one can work
in regularized domains and, because of the presence of the boundary, with re-
spect to [85, Section 3] it appears an extra boundary term. However, this can
be dropped since the second fundamental form of ∂Σ is nonnegative de�nite
(compare with (3.57)-(3.60) below, or with [53, Proof of Theorem 1.2, Step 1]).

Finally, for any x ∈ Rn \B3r, applying (3.46) and (3.47) with R = |x|/3 we
obtain

u(x) ≤ C3|x|
p−n
p−1 and |∇u(x)| ≤ C3|x|

1−n
p−1 (3.48)

for some constant C3. Since u and ∇u are uniformly bounded in B3r, (3.19)
follows. Finally, to prove the lower bound in (3.19) one argues as in [224, pages
159-160].
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3.1.3 Asymptotic estimates on higher order derivatives

By using a Caccioppoli-type inequality, in this subsection we prove Proposition
3.2 below which will be useful in the proof of Theorem 3.1. In particular it will
avoid the use of an asymptotic lower bound on |∇u|, which is crucial in [203].

Proposition 3.2. Let Σ be a convex cone, and let u be a solution to (3.1) with
a(·) given by (3.3), where H satis�es the assumptions of Theorem 3.1. Then
a(∇u) ∈W 1,2

loc (Σ), and for any γ ∈ R the following asymptotic estimate holds:
ˆ

Br∩Σ

|∇(a(∇u))|2uγ dx ≤ C
(

1 + r−n−γ
n−p
p−1

)
∀ r ≥ 1, (3.49)

where C is a positive constant independent of r.

Proof. The estimate (3.49) is obtained by using a Caccioppoli-type inequality.
We argue by approximation, following the approach in [14, 54].

We approximate Σ by a sequence of convex cones {Σk} such that Σk ⊆ Σ
and ∂Σk \ {O} is smooth. Also, we �x a point x̄ ∈ ∩kΣk, and for k �xed we let
uk be the solution of2





div (a(∇uk)) + up
∗−1 = 0 in Σk

uk(x̄) = u(x̄)

a(∇uk) · ν = 0 on ∂Σk .

(3.50)

Set
a`(z) := (a ∗ φ`)(z) for z ∈ Rn , (3.51)

where {φ`} is a family of radially symmetric smooth molli�ers. Standard prop-
erties of convolution and the fact a(·) is continuous imply a` → a uniformly on
compact subset of Rn. From [99, Lemma 2.4] we have that a` satis�es the �rst
condition in (3.12) with s replaced by s`, where s` → 0 as `→∞. In addition,
since

1

α̃
(|z|2 + s2

`)
p−2
2 |ξ|2 ≤ ∇a`(z)ξ · ξ , for every ξ, z ∈ Rn,

for some α̃ > 0, we obtain that a` satis�es also the second condition in (3.12).
Let uk,` be a solution of

{
div (a`(∇uk,`)) + up

∗−1 = 0 in Σk

a`(∇uk,`) · ν = 0 on ∂Σk
(3.52)

(this solution can be constructed analogously to uk).
We notice that uk,` is unique up to an additive constant. Also, because u

is locally bounded, the functions uk,` are C
1,θ
loc (Σk \ {O}) ∩C0,θ

loc (Σk), uniformly
in `. In particular, assuming without loss of generality that uk,`(x̄) = u(x̄) for

2The function uk can be found by considering �rst the minimizer vk,R of the minimization
problem

min
v

{
ˆ

Σk∩BR

[
1

p
H(∇v)p − up∗−1v

]
dx : v = 0 on Σk ∩ ∂BR

}
,

then setting uk,R(x) := vk,R(x) + u(x̄) − vk,R(x̄), and �nally taking the limit of uk,R as

R → ∞ (note that the functions ũk,R are uniformly C1,θ in every compact subset of Σ, and
uniformly Hölder continuous up to the boundary).
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some �xed point x̄ ∈ Σk, as ` → ∞ one sees that uk,` converges in C1
loc to the

unique solution ūk of




div (a(∇ūk)) + up
∗−1 = 0 in Σk

ūk(x̄) = u(x̄)

a(∇ūk) · ν = 0 on ∂Σk .

(3.53)

Since uk is also a solution of the problem above, it follows by uniqueness that
ūk = uk and therefore uk,` converges to uk as `→∞. Analogously, uk → u as
k →∞.

Given R > 1 large, we de�ne

Ωk := Σk ∩BR , Γk,0 := Σk ∩ ∂BR , Γk,1 := ∂Σk ∩BR .

Note that, since u is uniformly positive inside Σ (see Proposition 3.1), for k large
enough (depending on R) also uk is uniformly positive inside Ωk, and hence for `
large enough we have that uk,` is also uniformly positive inside Ωk. In the sequel
we shall always assume that k and ` are su�ciently large so that this positivity
property holds. We now �x k and deal with the functions uk,`. To simplify
the notation, we shall drop the dependency on k and we write u`,Σ,Ω,Γ0,Γ1

instead of uk,`,Σk,Ωk,Γk,0,Γk,1, respectively.
The idea is to prove a Caccioppoli-type inequality for u` and then let `→∞.

Since u` solves a non-degenerate equation, we have that u` ∈ C1 ∩W 2,2
loc (Σ) and

furthermore we have a`(∇u`) ∈W 1,2
loc (Σ). In addition, since Σ is smooth outside

the origin, u` is of class C2 in Ω away from Γ1 ∪ {O}.
Multiply (3.52) by ψ ∈ C∞c (BR \B1/R) and integrate over Ω to get

ˆ

Ω

div (a`(∇u`))ψ dx = −
ˆ

Ω

up
∗−1ψ dx,

that together with the divergence theorem gives

−
ˆ

Ω

a`(∇u`) · ∇ψ dx+

ˆ

∂Ω

ψa`(∇u`) · ν dσ = −
ˆ

Ω

up
∗−1ψ dx . (3.54)

Since
ˆ

∂Ω

ψa`(∇u`) · ν dσ =

ˆ

Γ1

ψa`(∇u`) · ν dσ +

ˆ

Γ0

ψa`(∇u`) · ν dσ ,

from the fact that ψ ∈ C∞c (BR \ B1/R) and from the boundary condition in
(3.52), we obtain that the second term in (3.54) vanishes; hence (3.54) becomes

−
ˆ

Ω

a`(∇u`) · ∇ψ dx = −
ˆ

Ω

up
∗−1ψ dx . (3.55)

Let ϕ ∈ C∞c (BR \B1/R), and for δ > 0 small de�ne the set

Ωδ := {x ∈ Ω : dist (x, ∂Ω) > δ} .

Since Ω∩ supp(ϕ) is smooth, for δ small enough we see that Ωδ \Ω2δ is of class
C∞ inside the support of ϕ. In particular, every point x ∈ (Ωδ \Ω2δ)∩ supp(ϕ)
can be written as

x = y − |x− y|ν(y)
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where y = y(x) ∈ ∂Ωδ is the projection of x on ∂Ωδ and ν(y) is the outward
normal to ∂Ωδ at y. Moreover the set (Ωδ \Ω2δ)∩ supp(ϕ) can be parametrized
on ∂Ωδ by a C1 function g (see [112, Formula 14.98]).

Let ζδ : Ω → [0, 1] be a cut-o� function such that ζδ = 1 in Ω2δ, ζδ = 0 in
Ω \ Ωδ, and

∇ζδ(x) = −1

δ
ν(y(x)) inside Ωδ \ Ω2δ .

Using ψ = ∂m(ϕζδ) in (3.55) with m ∈ {1, . . . , n} and integrating by parts, we
get

n∑

i=1

(
ˆ

Ω

∂ma
`
i(∇u`)ζδ∂iϕdx+

ˆ

Ω

∂ma
`
i(∇u`)ϕ∂iζδ dx

)

=

ˆ

Ω

∂m(up
∗−1)ϕζδ dx ,

where we use the notation a` = (a`1, . . . , a
`
n) to denote the components of the

vector �eld a`.
Observe that, from the de�nition of ζδ, we have

lim
δ→0

ˆ

Ω

∂ma
`
i(∇u`)ζδ∂iϕdx =

ˆ

Ω

∂ma
`
i(∇u`)∂iϕdx .

Also, if we set
f(x) = ∂ma

`
i(∇u`(x))ϕ(x) ,

by the coarea formula we have
ˆ

Ωδ\Ω2δ

f∂iζδ dx = −1

δ

ˆ

Ωδ\Ω2δ

νi(y(x))fdx

= −1

δ

ˆ 2δ

δ

dt

ˆ

∂Ωδ

νi(y(x))f(y − tν(y))|det(Dg)|dσ(y)

= −
ˆ 2

1

ds

ˆ

∂Ωsδ

f(y − sδν(y))νi(y)|det(Dg)|dσ(y) .

Since f ∈ C0, we can pass to the limit and obtain

lim
δ→0

ˆ

Ω

∂ma
`
i(∇u`)ϕ∂iζδ dx = −

ˆ

∂Ω

∂ma
`
i(∇u`)ϕνidσ .

Hence, we proved that

n∑

i=1

(
ˆ

Ω

∂ma
`
i(∇u`)∂iϕdx−

ˆ

∂Ω

∂ma
`
i(∇u`)ϕνidσ

)
=

ˆ

Ω

∂m(up
∗−1)ϕdx .

(3.56)
Now, let

Ωtδ := {x ∈ Ωδ : dist (x, ∂Ωδ) > t} .
We notice that, if x ∈ (Ωδ \ Ω2δ) ∩ supp(ϕ) with x = y − tν(y), then x ∈ ∂Ωtδ
and the outward normal to ∂Ωtδ at x coincides with the outward normal to ∂Ωδ
at y. Hence, by writing ν(x) in place of ν(y), we have

∂ma
`
i(∇u`(x))ϕ(x)νi(x) =ϕ(x)∂m(a`(∇u`(x)) · ν(x))

− ϕ(x)a`i(∇u`(x))∂mνi(x) .
(3.57)
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Now, we take a cut-o� function η ∈ C∞c (BR \B1/R), and for m ∈ {1, . . . , n} we
set ϕ = a`m(∇u`)uγ` η2 where γ ∈ R, and in (3.57) we obtain

∂ma
`
i(∇u`(x))ϕ(x)νi(x) = a`m(∇u`(x))uγ` (x)η2(x)∂m

(
a`(∇u`(x)) · ν(x)

)

− a`m(∇u`(x))uγ` (x)η2(x)a`i(∇u`(x))∂mνi(x) .
(3.58)

We notice that ∂mνi(x) is the second fundamental form IItx of ∂Ωtδ at x:

n∑

i,m=1

∂mνi(x)a`i(∇u`(x))a`m(∇u`(x)) = IItx(a`(∇u`(x)), a`(∇u`(x))) .

Since the cone Σ is convex then IItx is non-negative de�nite, which implies that

n∑

i,m=1

∂mνi(x)a`i(∇u`(x))a`m(∇u`(x)) ≥ 0 . (3.59)

Hence (3.58) becomes

n∑

i,m=1

∂ma
`
i(∇u`(x))ϕ(x)νi(x)

≤
n∑

i,m=1

a`m(∇un(x))uγ` (x)η2(x)∂m
(
a`(∇u`(x)) · ν(x)

)
, (3.60)

and so, with the choice ϕ = a`m(∇u`)uγ` η2, we obtain

n∑

i,m=1

ˆ

∂Ω

∂ma
`
i(∇u`)ϕνidσ ≤

n∑

i,m=1

ˆ

∂Ω

uγ` η
2a`m(∇u`)∂m

(
a`(∇u`) · ν

)
dx

=

n∑

i=1

ˆ

∂Ω

uγ` η
2 a`(∇u`) · ∇

(
a`(∇u`) · ν

)
dx = 0 ,

where the last equality follows from the condition a`(∇u`) · ν = 0 on ∂Σ. In-
deed, this condition implies that a`(∇u`) is a tangent vector-�eld and that the
tangential derivative of a`(∇u`) · ν vanishes on ∂Σ.

Hence, recalling (3.56), we proved that

n∑

i,m=1

ˆ

Ω

∂ma
`
i(∇u`)∂i

(
a`m(∇u`)uγ` η2

)
dx ≤ n

ˆ

Ω

|∇(up
∗−1)||a`(∇u`)|uγ` η2 dx .

(3.61)
Inequality (3.61) can be used in place of Equation (4.11) in [14, Proof of Theorem
4.1], and by arguing as in [14] we obtain

ˆ

Ω

|∇(a`(∇u`))|2η2uγ` dx ≤

C

ˆ

Ω

|∇(a`(∇u`))||a`(∇u`)|ηu
γ
2

` |∇(ηu
γ
2

` )| dx+C

ˆ

Ω

|∇(up
∗−1)||a`(∇u`)|uγ` η2 dx .
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From Hölder and Young inequalities, for any ε ∈ (0, 1) we can bound

C

ˆ

Ω

|∇(a`(∇u`))||a`(∇u`)|ηu
γ
2

` |∇(ηu
γ
2

` )| dx

≤ Cε
ˆ

Ω

|∇(a`(∇u`))|2η2uγ` dx+
C

ε

ˆ

Ω

|a`(∇u`)|2|∇(ηu
γ
2

` )|2 dx,

so choosing ε small enough such that Cε = 1/2, we obtain

ˆ

Ω

|∇(a`(∇u`))|2η2uγ` dx ≤ C
ˆ

Ω

|a`(∇u`)|2|∇(ηu
γ
2

` )|2 dx

+ C

ˆ

Ω

|∇(up
∗−1)||a`(∇u`)|uγ` η2 dx.

Recall that here η ∈ C∞c (BR \ B1/R). However, by approximation the same
property holds for any η ∈ C∞c (Rn).

Now, we recall that we were writing u` in place of uk,`. Then, since uk,` → uk
in C1

loc and a` → a locally uniformly, we can let `→∞ to deduce that

ˆ

Ωk

|∇(a(∇uk))|2η2uγk dx

≤ C
ˆ

Ωk

|a(∇uk)|2|∇(ηu
γ
2

k )|2 dx+ C

ˆ

Ωk

|∇(up
∗−1)||a(∇uk)|uγkη2 dx. (3.62)

In particular, taking γ = 0, (3.62) proves that a(∇uk) ∈W 1,2
loc (Σk), and {a(∇uk)}k∈N

is uniformly bounded in W 1,2
loc . Hence, letting k →∞ in (3.62) we obtain

ˆ

Ω

|∇(a(∇u))|2η2uγ dx

≤ C
ˆ

Ω

|a(∇u)|2|∇(ηu
γ
2 )|2 dx+ C

ˆ

Ω

|∇(up
∗−1)||a(∇u)|uγη2 dx.

Finally, the asymptotic estimate (3.49) follows from (3.19).

3.2 Proof of Theorem 3.1

As already mentioned in the introduction, we consider the auxiliary function

v = u−
p

n−p (3.63)

where u is a solution of (3.1). A straightforward computation shows that v > 0
satis�es the following problem

{
∆H̃
p v = f(v,∇v) in Σ

ã(∇v) · ν = 0 on ∂Σ ,
(3.64)

where ∆H̃
p v = div (ã(∇v)) with

ã(ξ) = H̃p−1(ξ)∇H̃(ξ) ∀ξ ∈ Rn , (3.65)
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and where we set

f(v,∇v) =

(
p

n− p

)p−1
1

v
+
n(p− 1)

p

H̃p(∇v)

v
, (3.66)

with
H̃(ξ) = H(−ξ) ∀ξ ∈ Rn . (3.67)

It is clear that v inherits some properties from u. In particular v ∈ C1,θ
loc , and it

follows from Proposition 3.1 that there exist constants C0, C1 > 0 such that

C0|x|−
p
p−1 ≤ v(x) ≤ C1|x|−

p
p−1 (3.68)

and
|∇v(x)| ≤ C1|x|−

1
p−1 (3.69)

for |x| su�ciently large. Higher regularity results for v are summarized in the
following lemma.

Lemma 3.4. Let v be given by (3.63). Then, for every σ ∈ R, the asymptotic
estimate

ˆ

Br∩Σ

|∇(ã(∇v))|2vσ dx ≤ C
(

1 + rn+ σp
p−1

)
∀ r ≥ 1 (3.70)

holds.

Proof. We notice that

ã(∇v) = −
(

p

n− p

)p−1

u−
n(p−1)
n−p a(∇u)

and

∇(ã(∇v)) = −
(

p

n− p

)p−1

×
[
u−

n(p−1)
n−p ∇(a(∇u))− n(p− 1)

n− p u
p(1−n)
n−p ∇u ⊗ a(∇u)

]
,

so it follows from Proposition 3.2 that

ã(∇v) ∈W 1,2
loc (Σ) . (3.71)

Finally, the asymptotic estimate (3.70) follows from (3.49) and (3.19).

3.2.1 An integral inequality

In this subsection, by using the convexity of the cone, we show that v satis�es
an integral inequality.

We recall that the second symmetric function S2(M) of a n × n matrix
M = (mij) is the sum of all the principal minors of A of order two, and we have

S2(M) =
1

2

∑

i,j

S2
ij(M)mij , (3.72)

114



3.2. PROOF OF THEOREM 3.1

where
S2
ij(M) = −mji + δijTr (M) .

As proved in [55, Lemma 3.2] (see also Lemma 2.3), given two symmetric ma-
trices B,C ∈ Rn×n with B positive semide�nite, and by setting M = BC, we
have the following Newton's type inequality:

S2(M) ≤ n− 1

2n
Tr (M)2 . (3.73)

Moreover, if Tr (M) 6= 0 and equality holds in (3.73), then

M =
Tr (M)

n
Id ,

and B is positive de�nite. As we will describe later, we will apply (3.73) to the
matrix M = ∇[ã(∇v)].

We start from the following di�erential identity (see [29]). We use the Ein-
stein convention of summation over repeated indices.

Lemma 3.5. Let v be a positive function of class C3 and let V : Rn → R+ be of
class C3(Rn) and such that V (∇v)div (∇V (∇v)) can be continuously extended
to zero at ∇v = 0. Let

W = ∇[∇ξV (∇v)] = Vξiξj (∇v)∂2
ijv . (3.74)

Then, for any γ ∈ R we have

2vγS2(W ) = div (vγS2
ij(W )Vξi(∇v))− γvγ−1S2

ij(W )Vξi(∇v)∂jv (3.75)

and

div
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)
)

= 2vγS2(W ) + γ(γ − 1)(p− 1)vγ−2V (∇v)Vξi(∇v)∂iv

+ γvγ−1 ((p− 1)V (∇v) + Vξi(∇v)∂iv) Tr (W )

+ γvγ−1
(
(p− 1)Vξi(∇v)Vξj (∇v)∂2

ijv + Vξjξl(∇v)∂2
livVξi(∇v)∂jv

)
.

(3.76)

In particular, if

V (ξ) =
H̃p(ξ)

p
for p > 1 and ξ ∈ Rn , (3.77)

where H̃ is a norm, then

2vγS2(W ) = div
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)∇ξV (∇v)
)

− γ(γ − 1)p(p− 1)vγ−2V 2(∇v)

− γ(2p− 1)vγ−1V (∇v)∆H̃
p v ,

(3.78)

where ∆H̃
p v = div (ã(∇v)) and ã(·) is given by (3.65). Observe that, in this

particular case,
W (x) := ∇[ã(∇v(x))] .

Proof. See [29, Lemma 4.1].
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The idea is to apply the above lemma to the function v solving (3.64) and
integrate the identity above on Σ. Due to the lack of regularity of v, Lemma
3.5 cannot be applied directly but we can still prove its integral counterpart.

Lemma 3.6. Let v be given by (3.63), let V be as in (3.77), andW as in (3.74).
Then, for any ϕ ∈ C∞c (Σ), we have
ˆ

Σ

(
2vγS2(W ) + γ(γ − 1)p(p− 1)vγ−2V 2(∇v) + γ(2p− 1)vγ−1V (∇v)∆H̃

p v
)
ϕdx

=−
ˆ

Σ

∂jϕ
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)
)
dx .

(3.79)

Proof. We argue by approximation. So, �rst we extend v as 0 outside Σ, and
then for ε > 0 we de�ne vε = v∗ρε and V ε = V ∗ρε, where ρε is a standard mol-
li�er. Also, we set ãε = ∇V ε andW ε = (wεij)i,j=1,...,n where wεij = ∂j(ã

ε
i (∇vε)).

Since V ∈ C1(Rn) then ãεi = ãi ∗ ρε for i = 1, . . . , n, where ã is given by
(3.65). Also, since ã(∇v) ∈W 1,2

loc (Σ), then ãεi (∇vε)→ ãi(∇v) and wεij → wij in
L2

loc(Σ). Moreover, since

H̃0(∇H̃(ξ)) = 1 ∀ξ ∈ Rn \ {0} ,

we have that
H̃0(ã(ξ)) = H̃p−1(ξ) ∀ξ ∈ Rn \ {0} ,

which implies that

pV (ξ) = H̃
p
p−1

0 (ã(ξ)) ∀ξ ∈ Rn \ {0} .

Since H̃
p
p−1

0 is locally Lipschitz and ã(∇v) ∈ W 1,2
loc (Σ) then V (∇v) ∈ W 1,2

loc (Σ)
and we have that

∂xj (V
ε(∇vε))→ ∂xj (V (∇v)) in L2

loc(Σ).

Now we write (3.76) for the approximating functions vε, V ε andW ε, we multiply
by ϕ ∈ C∞c (Σ) and integrate over Σ. Since ϕ has compact support inside Σ, it
follows from the divergence theorem that
ˆ

Σ

(
2(vε)γS2(W ε) + γ(γ − 1)(p− 1)(vε)γ−2V ε(∇vε)V εξi(∇vε)∂ivε

)
ϕdx

+

ˆ

Σ

γ(vε)γ−1
(
(p− 1)V ε(∇vε) + V εξi(∇vε)∂ivε

)
Tr (W ε)ϕdx

+

ˆ

Σ

γ(vε)γ−1
(

(p− 1)V εξi(∇vε)V εξj (∇vε)∂2
ijv

ε + V εξjξl(∇vε)∂2
liv

εV εξi(∇vε)∂jvε
)
ϕdx

=−
ˆ

Σ

∂jϕ
(
(vε)γS2

ij(W
ε)V εξi(∇vε) + γ(p− 1)(vε)γ−1V ε(∇vε)V εξj (∇vε)

)
dx .

(3.80)
Since V εξi(∇vε)∂2

ijv
ε = ∂xj (V

ε(∇vε)), recalling (3.78) we conclude easily by
letting ε→ 0.

Now we extend Lemma 3.6 to cut-o� functions de�ned on a ball centered at
the origin. Here, the convexity of Σ plays a crucial role.
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Lemma 3.7. Let v be given by (3.63), let V be as in (3.77), andW as in (3.74).
Consider a non-negative cut-o� function η ∈ C∞c (Rn). Then
ˆ

Σ

(
2vγS2(W ) + γ(γ − 1)p(p− 1)vγ−2V 2(∇v) + γ(2p− 1)vγ−1V (∇v)∆H̃

p v
)
η dx

≥−
ˆ

Σ

∂jη
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)
)
dx .

(3.81)

Proof. As in the proof of Proposition 3.2, this proof requires a regularization
argument considering the solutions of the approximating problems

{
div (ã`(∇vk,`)) = f(v,∇v) in Σk

ã`(∇vk,`) · ν = 0 on ∂Σk ,

where ã` are de�ned as in (3.51) with a replaced by ã given by (3.65) and
f(v,∇v) is given by (3.66). Note that, since v ∈ C1,θ

loc (Σ \ {O}), the functions
vk,` are of class C

2,θ
loc in Σk \ {O}, and this allows one to perform all the desired

computations on the functions vk,`, and then let ` and k to in�nity. Since this
approximation argument is very similar to the one in the proof of Proposition
3.2, to simplify the notation and emphasize the main ideas we shall work directly
with v, assuming that v is of class C2,θ

loc in Σ \ {O} in order to justify all the
computations.

Set

F = 2vγS2(W ) + γ(γ − 1)p(p− 1)vγ−2V 2(∇v)

+ γ(2p− 1)vγ−1V (∇v)∆H̃
p v (3.82)

and L = (L1, . . . , Ln) with

Lj = vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)

for j = 1, . . . , n. Then we apply Lemma 3.6 with ϕ = ηζδ, where η ∈ C∞c (Rn)
is a cut-o� function as in the statement, and ζδ ∈ C∞c (Σ) is a cut-o� function
of the distance from ∂Σ that converges to 1 inside Σ as δ → 0. In this way,
as in the proof of (3.56), letting δ → 0 the term involving ∇ζδ gives rise to a
boundary term: more precisely, we obtain

ˆ

Σ

Fη dx = −
ˆ

Σ

∇η · Ldx+

ˆ

∂Σ

ηL · νdσ . (3.83)

Now, to conclude the proof, we need to show that the last integral in (3.83) is
non-negative; indeed, for x ∈ ∂Σ \ {O}, by using the explicit expression of L
and of S2

ij(W ) we get

L(x) · ν(x) =

vγ(x)ã(∇v(x)) · ν(x)
[
Tr (W )(x) + γ(p− 1)v−1(x)V (∇v(x))

]

− vγ(x)∂i(ãj(∇v(x)))ãi(∇v(x))ν`(x) ,

(3.84)

where we used that wji(x) = ∂iãj(∇v(x)) and Vξi = ãi.
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We notice now that ∂iν`(x) is the second fundamental form of ∂Σ at x, which
is non-negative de�nite by the convexity of Σ. Hence

∂iν`(x)ãj(∇v(x))ãi(∇v(x)) ≥ 0. (3.85)

From (3.84) and (3.85) we get

L(x) · ν(x) ≥vγ(x)ã(∇v(x)) · ν(y)
[
Tr (W )(x) + γ(p− 1)v−1(x)V (∇v(x))

]

− vγ(x)∇(ã(∇v(x)) · ν(y)) · ã(∇v(x)).

Now, since ã(∇v) · ν = 0 on ∂Σ, the �rst term on the right-hand side vanishes.
Moreover, since the tangential derivative of ã(∇v) ·ν vanishes on ∂Σ and ã(∇v)
is a tangential vector-�eld, also the second term vanishes. This proves that
L · ν ≥ 0 on ∂Σ \ {O}, that together with (3.83) (recall that η ≥ 0) concludes
the proof.

Proposition 3.3. Let v be given by (3.63), let V be as in (3.77), and W as in
(3.74). Then

2

ˆ

Σ

vγS2(W ) dx+ γ(γ − 1)p(p− 1)

ˆ

Σ

vγ−2V 2(∇v) dx

+ γ(2p− 1)

ˆ

Σ

vγ−1V (∇v)∆H̃
p v dx ≥ 0 , (3.86)

for any γ < −n(p−1)
p .

Proof. From (3.64), (3.68), and (3.69) we know that |∆H̃
p v| ≤ C in Σ, and from

Newton's inequality (3.73) we also have |S2(W )| ≤ C (recall that Tr (W ) =

∆H̃
p v).
Now, let η be a non-negative radial cut-o� function such that η = 1 in BR,

η = 0 outside B2R, and |∇η| ≤ 2
R . Thanks to (3.68) and (3.69), we can take

the limit as R → ∞ in the left-hand side of (3.81) to obtain the left-hand side
of (3.86). Hence, in order to prove (3.86) it is enough to show that

lim
R→∞

ˆ

ER

∂jη
(
vγS2

ij(W )Vξi(∇v)+γ(p−1)vγ−1V (∇v)Vξj (∇v)
)
dx = 0 , (3.87)

where we set for simplicity

ER := Σ ∩ (B2R \BR) .

Since |S2
ij(W )| ≤ |W |, using Holder's inequality we get

∣∣∣∣
ˆ

ER

∂jηv
γS2

ij(W )Vξi(∇v) dx

∣∣∣∣ ≤
c(n)

R
‖W‖L2(ER)×

(
ˆ

ER

v2γ |∇V (∇v)|2 dx
) 1

2

.

Observe that (3.70) yields

‖W‖2L2(ER) ≤ CRn .
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Also, from (3.68) and (3.69) we have
ˆ

ER

v2γ |∇V (∇v)|2 dx ≤ CR 2γp
p−1 +n+2 .

Hence, since by assumption γ < −n(p−1)
p , this proves that

lim
R→∞

ˆ

ER

∂jηv
γS2

ij(W )Vξi(∇v) dx = 0 .

Analogously, using (3.68) and (3.69), the second term in (3.87) can be bounded
as ∣∣∣∣

ˆ

ER

∂jηv
γ−1V (∇v)Vξj (∇v) dx

∣∣∣∣ ≤ CR
pγ
p−1 +n , (3.88)

which also goes to zero as R → ∞ since γ < −n(p−1)
p . This proves (3.87) and

hence (3.86).

3.2.2 Conclusion

We multiply (3.64) by v−n and integrate over Σ. By using the divergence
theorem, the boundary condition in (3.64), and the decay estimates (3.68) and
(3.69), we get

(
p

n− p

)p−1 ˆ

Σ

v−n−1 dx− n

p

ˆ

Σ

v−n−1H̃p(∇v) dx = 0 . (3.89)

Now we use Newton's inequality applied to W in (3.86). More precisely, since
Tr (W ) = ∆H̃

p v, we have

2S2(W ) ≤ n− 1

n
(∆H̃

p v)2 , (3.90)

and from (3.86) we obtain

n− 1

n

ˆ

Σ

vγ(∆H̃
p v)2 dx+ γ(γ − 1)p(p− 1)

ˆ

Σ

vγ−2V 2(∇v) dx

+ γ(2p− 1)

ˆ

Σ

vγ−1V (∇v)∆H̃
p v dx ≥ 0 , (3.91)

for any γ < −n(p−1)
p . Since p < n we can choose γ = 1− n in (3.91), and using

(3.64), (3.66), and (3.77), we obtain

(
p

n− p

)p−1 ˆ

Σ

v−n−1 dx− n

p

ˆ

Σ

v−n−1H̃p(∇v) dx ≥ 0 . (3.92)

Recalling (3.89), this implies that the equality case must hold in (3.92). Hence
the equality case must hold in (3.90) a.e., which implies that

W (x) = λ(x)Id for a.e. x ∈ Σ , (3.93)

for some function λ : Σ→ R, where Id is the identity matrix.
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Now we show that the function λ is constant. Since

λ(x) =
1

n
Tr (W ) =

1

n
∆H̃
p v(x) =

1

n
f(v,∇v)

(see (3.64)), and since v ∈ C1,θ
loc (Σ), we get that λ ∈ C0,θ

loc (Σ). Moreover, elliptic
regularity theory yields that v ∈ C2,θ

loc (Σ ∩ {∇v 6= 0}), which implies that λ ∈
C1,θ

loc (Σ ∩ {∇v 6= 0}). From (3.93) we have that

∂i(ãj(∇v(x))) = λ(x)δij (3.94)

for i, j ∈ {1, . . . , n}, which implies that ã(∇v) ∈ C2,θ
loc (Σ ∩ {∇v 6= 0}).

Then, given i ∈ {1, . . . , n}, choosing j 6= i and using (3.94) we obtain

∂iλ(x) = ∂i
(
∂j(ãj(∇v(x)))

)
= ∂j

(
∂i(ãj(∇v(x)))

)
= 0

for any x ∈ Σ ∩ {∇v 6= 0}, which implies that λ is constant on each connected
component of Σ ∩ {∇v 6= 0}. Since λ is continuous in Σ and {∇v = 0} has no
interior points (this follows easily from (3.64)), we deduce that λ is constant.
In particular, recalling (3.93), we get

∇[ã(∇v(x))] = W (x) = λ Id in Σ .

Hence ã(∇v(x)) = λ(x−x0) for some x0 ∈ Σ, and from the boundary condition
in (3.64) we obtain that x0 ∈ ∂Σ. This implies that v(x) = c1+c2H̃0(x−x0)

p
p−1 ,

or equivalently (recalling (3.63)) u(x) = UHµ,x0
(x) for some µ > 0. Finally, it is

clear that:
- if Σ = Rn and x0 may be a generic point in Rn;
- if k ∈ {1, . . . , n− 1} then x0 ∈ Rk × {O};
- if k = 0 then x0 = O.

This completes the proof of Theorem 3.1.

120



Chapter 4

Sobolev-type inequalities on

Cartan-Hadamard manifolds

4.1 Statements of the main results

As already mentioned in the Introduction, in this Chapter we consider Sobolev-
type inequalities on Cartan-Hadamard manifold M of dimension n ≥ 3, namely
on complete, noncompact, simply connected Riemannian manifold with every-
where nonpositive sectional curvatures. The starting remark which motivates
our study is the following: from one hand it is well known that on any Cartan-
Hadamard manifold M the Euclidean Sobolev inequality

‖f‖L2∗(M) ≤ CS ‖∇f‖L2(M) ∀f ∈ C1
c (M) , 2∗ :=

2n

n− 2
(4.1)

holds. On the other hand, if the sectional curvatures are everywhere bounded
from above by a negative constant −k, then in addition to (4.1) also the Poincaré
inequality

‖f‖L2(M) ≤
2√

k (n− 1)
‖∇f‖L2(M) ∀f ∈ C1

c (M) (4.2)

holds, or equivalently the in�mum of the spectrum of (minus) the Laplace-
Beltrami operator on M is bounded from below by k(n − 1)2/4, i.e. ∆ has a
spectral gap. This is a celebrated result due to H.P. McKean [167], which we
discuss extensively in Section 4.4 (Theorem 4.4). Note that the spectral bound
is optimal since it is attained by the hyperbolic space Hn of curvature −k.

As already mentioned in the Introduction, in this Chapter, we suppose that
the sectional curvatures of the Cartan-Hadamard manifold satisfy a bound of
the following type

Sect(x) ≤ −K r−β ∀x ∈M \BR0 , (4.3)

for some β ∈ (0, 2] and K,R0 > 0, where r = r(x) := dist(x, o) denotes the
geodesic distance from x to a �xed point o (the pole of the manifold). Then the
question is:
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what kind of inequalities does M support?

The answers we show in the Chapter are nontrivial. First of all, one has to
distinguish between the so-called sub-hyperbolic range (β ∈ (0, 2)) and the quasi-
Euclidean range (β = 2), following a terminology originally introduced in [120].
Another crucial di�erence is between radial and nonradial functions. We shall
focus on the following Sobolev-type inequalities

‖f‖Lp(M) ≤ Cp ‖∇f‖L2(M) , (4.4)

where p is a suitable exponent belonging to the interval (2, 2∗].
Let us brie�y describe the results we prove, which are stated precisely later.

In the case β ∈ (0, 2) we show that (4.4) holds in the radial setting for all
p ∈ (2, 2∗], for a positive constant Cp of the form

Cp ≡
C p

2+β
2(2−β)

(p− 2)
β

2−β
, (4.5)

C being another positive constant that depends only on the constants n, β,K,R0

appearing in (4.3). The result is optimal with respect to the dependence on p
(see Theorem 4.1). In the case β = 2, namely negative curvatures that can decay
quadratically at in�nity, inequalities (4.4) (still in the radial setting) start to
hold from a certain exponent 2̃ ∈ (2, 2∗) that depends on n and K, which tends
to 2∗ as K → 0 and to 2 as K →∞. Hence, one is no more allowed to let p ↓ 2.
This result is also optimal with respect to p, see Theorem 4.2 for the details.
Finally, we prove in Theorem 4.3 that out of the radial setting all of the above
results fail : namely, it is enough to assume that (4.3) is satis�ed with reverse
inequality (in fact it su�ces to require the same bound on the Ricci curvature)
to be able to construct a sequence of nonradial functions that make the constant
Cp in (4.4) blow up for every p < 2∗. We point out that the case β > 2 is not
interesting because it is essentially Euclidean, i.e. the sole inequality of the type
of (4.4) that holds, even if restricted to radial functions, is the standard Sobolev
one: this is an immediate consequence of our results, see Remark 4.2.

The techniques of proof that we exploit take advantage of two main ingredi-
ents: one-dimensional weighted functional inequalities and Laplacian-comparison
theorems, which are recalled in Subsections 4.2.4 and 4.2.2, respectively. The
idea is to �rst study the radial inequalities onmodel manifolds, namely spherically-
symmetric Riemannian manifolds whose metric g can be written as

g ≡ dr2 + ψ(r)2 dθ2
Sn−1

for some regular �model� function ψ : R+ → R+ (see De�nition 4.7), where
dθ2

Sn−1 is the usual metric on the (n− 1)-dimensional unit sphere. In this con-
text, (4.4) becomes a family of one-dimensional weighted inequalities, where the
associated weight is just ψ(r)n−1. Then, by resorting again to Laplacian com-
parison, as well as to surface-measure comparison (see also Subsection 4.2.1),
one can extend the results to general Cartan-Hadamard manifolds.

As we mentioned in the Introduction an important motivation to study the
validity of (4.4) on Cartan-Hadamard manifolds under curvature bounds like
(4.3) came from the recent work [120], where the authors investigate the asymp-
totic behavior of nonnegative solutions to the porous medium equation (see the
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monograph [223]) {
ut = ∆(um) in M × R+ ,

u = u0 on M × {0} , (4.6)

where m > 1. They prove (in particular) that if Sect(x) ∼ r−β for some
β ∈ (0, 2) then solutions to (4.6) starting from nontrivial compactly-supported
data satisfy

u(x, t) ∼ t− 1
m−1

[
γ (log t)

2+β
2−β − r 2+β

2

] 1
m−1

+
as t→∞ ,

for a suitable positive constant γ. Such bounds are compatible with the L1-L∞

smoothing e�ects proved in [118] under the sole assumption that inequalities
(4.4) are satis�ed with a constant Cp as in (4.5). It was by combining these
results that we conjectured that, at least in the radial framework, the above
inequalities might hold indeed. Completely analogous connections can be es-
tablished in the quasi-Euclidean case. For more details on this discussion, we
refer to Section 4.6.

Concerning the organization, the Chapter is organized as follows: in Section
4.1 we state our main results, after a brief introduction to notations. Section
4.2 recalls some preliminary tools in Riemannian geometry and functional in-
equalities, which are key concepts in order to carry out our methods of proof.
In Section 4.3 we provide the proofs of the radial inequalities (Theorems 4.1
and 4.2), while in Section 4.4 we focus on the Poincaré case p = 2 and give an
alternative proof of McKean's Theorem, under somewhat weaker assumptions
(see Theorems 4.5 and 4.6). Section 4.5 deals with the nonradial case, namely
the disproof of the analogues of Theorems 4.1 and 4.2 for nonradial functions
(see Theorem 4.3 and Remark 4.2). The last section shows how the functional
inequalities established here yield optimal smoothing estimates for the (radial)
porous medium equation �ow on the manifold at hand (Theorems 4.7 and 4.8).

4.1.1 Basic notations

Given an n-dimensional (n ≥ 2) Riemannian manifold (M, g) and x ∈ M , we
shall denote by Sect(x) the sectional curvature w.r.t. any 2-dimensional tangent
subspace at x ∈M and by Ric(x) the Ricci curvature at x ∈M , as a quadratic
form on TxM , the latter being the tangent space at x.

We shall denote by C1
c:rad(M) the space of all C1 functions on M , with

compact support, which are radial with respect to some (�xed) point o ∈ M ,
i.e.

C1
c:rad(M) :=

{
f ∈ C1

c (M) : f(x) ≡ f(d(x, o)) ∀x ∈M
}
,

where r = r(x) := d(x, o) is the geodesic distance from o, which is called pole,
to x. Furthermore, for all 1 ≤ p <∞

‖f‖Lp(M) :=

(
ˆ

M

|f |p
) 1
p

,

where the integral is computed with respect to dν: the Riemannian measure
of M ; while ‖f‖L∞(M) stands for the essential supremum of |f |. The Sobolev
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critical exponent is, as usual,

2∗ :=

{
2n
n−2 if n ≥ 3 ,

∞ if n = 2 .

In many parts of the Chapter we shall need to deal with spherically symmet-
ric, complete and noncompact manifolds M for which the Riemannian metric
has the following special structure:

g ≡ dr2 + ψ(r)2 dθ2
Sn−1 ,

where dθ2
Sn−1 is the standard metric on Sn−1 and ψ : R+ → R+ is a function

belonging to the class A, which is de�ned as

A :=
{
ψ ∈ C∞((0,∞)) ∩ C1([0,∞)) : ψ(0) = 0 , ψ(r) > 0 ∀r > 0 , ψ′(0) = 1

}
.

(4.7)
Such Riemannian manifolds are referred to as model manifolds, and will be
denoted by Mn

ψ. For example, the Euclidean space corresponds to ψ(r) = r,
while the hyperbolic space corresponds to ψ(r) = sinh r.

By an n-dimensional Cartan-Hadamard manifold M ≡Mn we mean a com-
plete, noncompact, simply connected Riemannian manifold with everywhere
nonpositive sectional curvatures. First of all, we observe that on Cartan-Hadamard
manifolds the cut locus of any point o is empty; hence, for every x ∈ M \ {o}
one can de�ne polar coordinates with pole at o, namely r(x) = d(x, o) and
θ ∈ SN−1. We then denote by Br the Riemannian ball of radius r centered at o
and Sr := ∂Br. In the case of Cartan-Hadamard manifolds, we also denote by
Sectω(x) the sectional curvature w.r.t. to any 2-dimensional tangent subspace
ω at x containing a radial direction, and by Rico(x) the Ricci curvature at x
evaluated in the radial direction corresponding to the pole o.

4.1.2 The sub-hyperbolic radial case

In the �rst result of this paper, we prove that if the (radial) sectional curva-
tures of a Cartan-Hadamard manifold do not decay too fast at in�nity, namely
slower than an inverse-quadratic rate with respect to r, then a suitable family
of Sobolev-type inequalities holds in the radial framework. The terminology
sub-hyperbolic is borrowed from [120].

Theorem 4.1. Let Mn be a Cartan-Hadamard manifold such that

Sectω(x) ≤ −C0 r
−β ∀x ∈Mn \BR0

, (4.8)

for some β ∈ (0, 2) and C0, R0 > 0. Then there exists a positive constant
C, depending only on n, β, C0, R0, such that for every p ∈ (2, 2∗] ∩ (2,∞) the
following radial Sobolev-type inequalities

‖f‖Lp(Mn) ≤
C p

2+β
2(2−β)

(p− 2)
β

2−β
‖∇f‖L2(Mn) ∀f ∈ C1

c:rad(Mn) (4.9)

hold. Moreover, the dependence on p of the multiplying constant in (4.9) is
optimal, in the sense that for each β ∈ (0, 2) there exists a model manifold Mn

ψ,

124



4.1. STATEMENTS OF THE MAIN RESULTS

complying with (4.8), such that

inf
f∈C1

c:rad(Mnψ), f 6≡0

‖∇f‖L2(Mnψ)

‖f‖Lp(Mnψ)
≤ (p− 2)

β
2−β

C p
2+β

2(2−β)
∀p ∈ (2, 2∗] ∩ (2,∞) (4.10)

for another positive constant C depending on n, β, C0, R0.

4.1.3 The quasi-Euclidean radial case

In the case of curvatures that decay with a rate which is at most quadratic,
we still have radial Sobolev-type inequalities: however, in this case, they start
to hold from a certain exponent which is strictly larger than 2. Again, the
terminology quasi-Euclidean is in agreement with [120].

Theorem 4.2. Let Mn be a Cartan-Hadamard manifold such that

Sectω(x) ≤ −C1 r
−2 ∀x ∈Mn \BR0 (4.11)

for some C1 and R0 > 0. Then there exists a positive constant C, depending
only on n,C1, R0, such that for every p ∈

[
2̃, 2∗

]
∩
[
2̃,∞

)
the following radial

Sobolev-type inequalities

‖f‖Lp(Mn) ≤ C
√
p ‖∇f‖L2(Mn) ∀f ∈ C1

c:rad(Mn) (4.12)

hold, where

2̃ :=
2ñ

ñ− 2
, Ñ :=

n+ 1 +
√

1 + 4C1 (n− 1)

2
. (4.13)

Moreover, the result is optimal w.r.t. to the exponent p, in the sense that for
each C1 > 0 there exists a model manifold Mn

ψ, complying with (4.11), such that
(4.12) fails for all p ∈ [2, 2̃) and, in the case n = 2, the optimal constant in
(4.12) does behave like

√
p (up to multiplicative constants) as p→∞.

Remark 4.1 (Ricci bounds from above). It is worth pointing out that actually
the thesis of Theorem 4.1 still holds if one replaces Sectω(x) with Rico(x) in
assumption (4.8): this is due to the fact that Laplacian-comparison results with
model manifolds, which we exploit extensively throughout the paper, can also be
established under such a weaker hypothesis. The argument applies to Theorem
4.2 as well, except that in this case the analogue of exponent 2̃ in (4.13) is no
more optimal, just because one has (4.24) in place of (4.20). Same observations
can be made with regards to Theorems 4.5 (no optimal constant however) and
4.6, both dealing with the Poincaré inequality. The key result on which these
extensions rely can be found in the monograph [228]: see Subsection 4.2.2.

4.1.4 Failure of the nonradial inequalities

Surprisingly enough, all of the above inequalities (except the Euclidean Sobolev
inequality) fail in the nonradial framework under reverse curvature bounds.
Indeed, we have the following.
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Theorem 4.3. Let Mn be a Cartan-Hadamard manifold such that

Ric(x) ≥ −C2 r
−β ∀x ∈Mn \BR0

, (4.14)

for some β ∈ (0, 2) and R0, C2 > 0. Let p ∈ [2, 2∗). Then there exists no positive
constant C for which the following Sobolev-type inequality

‖f‖Lp(Mn) ≤ C ‖∇f‖L2(Mn) ∀f ∈ C1
c (Mn) (4.15)

holds.

Remark 4.2 (Optimality of the curvature bounds). It is plain that Theorem 4.3
implies that the conclusions of Theorems 4.1 and 4.2 cannot hold, in general,
in the nonradial framework: indeed, for each given β ∈ (0, 2], it is enough to
consider a Cartan-Hadamard manifold (e.g. a model) satisfying

Sect(x) ∼ r−β as r →∞ .

Any such a manifold clearly complies with both the assumptions of Theorem 4.1
(or Theorem 4.2 if β = 2) and the ones of Theorem 4.3, so that the thesis of the
latter prevents the validity of (4.9) (or (4.12)) extended to nonradial functions.

For analogous reasons, we do not treat the case β > 2: by following a
strategy similar to proof of optimality of Theorem 4.2, it is not di�cult to check
that for any β > 2 one can construct a model manifold such that Sect(x) ∼ r−β
as r → ∞, for which any of the radial inequalities (4.9) fails as long as p < 2∗

(we omit details and refer to [120, Section 2.3, Type IV]). Hence, in general no
inequality of the type of (4.9) di�erent from the classical Sobolev one can hold.

Remark 4.3 (Validity of the inequalities for more general functions). For sim-
plicity, we have stated the above results of Theorems 4.1�4.2 (as well as those
of Theorems 4.4, 4.5 and 4.6 below) for functions in C1

c (Mn). Nevertheless,
by means of standard density arguments, it is apparent that they also hold for
compactly supported Lipschitz functions or, more in general, for all functions
belonging to the closure of C1

c (Mn) w.r.t. the L2 norm of the gradient.

4.2 Geometric and functional preliminaries

In the following, we recall some basic facts in Riemannian geometry concern-
ing volume, surface and Laplacian comparison (Subsections 4.2.1�4.2.3), along
with a key result related to weighted one-dimensional Sobolev-type inequalities
(Subsection 4.2.4).

4.2.1 Notations from Riemannian geometry

We shall adopt the same notations as in Section 4.1.1. IfMn is an n-dimensional
Cartan-Hadamard manifold, then one the surface measure of spheres reads

meas (Sr) =

ˆ

Sn−1

A(r, θ) dθ , where dθ := dθ1 . . . dθn−1 (4.16)

and A(r, θ) is the weight associated with the volume measure of Mn w.r.t. polar
coordinates, which turns out to be the square root of the determinant of the
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metric matrix written in such coordinates (see e.g. [115, Section 3]). In particu-
lar, the latter is a nonnegative C∞(R+× Sn−1) function. Hence, if f is a radial
function as in (4.9) or in (4.12), then by Fubini's Theorem

‖f‖Lp(M) =

(
ˆ

M

|f |p
) 1
p

=

(
ˆ ∞

0

ˆ

Sn−1

|f(r)|pA(r, θ) dθ dr

) 1
p

=

(
ˆ ∞

0

|f(r)|p meas (Sr) dr

) 1
p

,

(4.17)

so that radial Sobolev-type inequalities can be rewritten as one-dimensional
weighted inequalities (see Subsection 4.2.4).

It is direct to see that the Laplace-Beltrami operator on Mn in polar coor-
dinates has the form

∆ =
∂2

∂r2
+ m(r, θ)

∂

∂r
+ ∆Sr ,

where ∆Sr is the Laplace-Beltrami operator on the submanifold Sr and

m(r, θ) =
∂

∂r
(logA(r, θ)) ∀x ≡ (r, θ) ∈ R+ ×

(
Sn−1 \ P

)
, (4.18)

where P is the (�nite) set of poles on Sn−1, namely all angles θ ∈ Sn−1 at which
A(r, θ) vanishes identically. Elsewhere, A(r, θ) is always strictly positive. Note
that m(r, θ) is just the Laplacian of the distance function x ≡ (r, θ) 7→ r. So, by
integrating (4.18) from a �xed r0 > 0 to r > r0 we deduce that

ˆ r

r0

m(s, θ) ds = logA(r, θ)− logA(r0, θ) ,

i.e.
A(r, θ) = e

´ r
r0

m(s,θ) ds+cθ

with cθ := logA(r0, θ). As a result, recalling (4.16), we get that

meas (Sr) =

ˆ

Sn−1

e
´ r
r0

m(s,θ) ds+cθ dθ .

4.2.2 Laplacian comparison

We recall here some classical results which allow one to compare the Laplacian
(as well as the Hessian in some cases) of the distance function of a Cartan-
Hadamard manifold with the Laplacian of the distance function of a suit-
able model manifold corresponding to the curvature bounds (as a reference see
e.g. [114, Section 2] or [115, Section 15]). More precisely, if

Sectω(x) ≤ −ψ
′′(r)
ψ(r)

∀x ≡ (r, θ) ∈M \ {o} (4.19)

for some function ψ ∈ A, then

m(r, θ) ≥ (n− 1)
ψ′(r)
ψ(r)

∀(r, θ) ∈ R+ × Sn−1 . (4.20)
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Similarly, if

Rico(x) ≥ −(n− 1)
ψ′′(r)
ψ(r)

∀x ≡ (r, θ) ∈M \ {o}

for another function ψ ∈ A, then

m(r, θ) ≤ (n− 1)
ψ′(r)
ψ(r)

∀(r, θ) ∈ R+ × Sn−1 .

Though we shall mostly use them in the Cartan-Hadamard setting, let us point
out that the above inequalities are true in more general Riemannian manifolds
(at least manifolds with a pole).

As a simple consequence of Laplacian comparison with the Euclidean space
(just use (4.19)�(4.20) with ψ(r) = r), on any Cartan-Hadamard manifold there
holds

m(r, θ) ≥ n− 1

r
∀(r, θ) ∈ R+ × Sn−1 . (4.21)

In particular, thanks to (4.18) and the fact that Mn is locally Euclidean, we
immediately deduce that

the function r 7→ A(r, θ) is nondecreasing for all θ ∈ Sn−1 \ P (4.22)

and
∂A

∂r
(0, θ) > 0 ∀θ ∈ Sn−1 \ P . (4.23)

Actually, in the special case of Cartan-Hadamard manifolds, a comparison
result similar to the �rst one can be deduced by replacing the (radial) sectional
curvatures Sectω(x) with the Ricci curvature evaluated in the radial direction
w.r.t. the pole o, which we denote Rico(x). Namely, if

Rico(x) ≤ −(n− 1)
ψ′′(r)
ψ(r)

∀x ≡ (r, θ) ∈Mn \ {o}

for some function ψ ∈ A, then

m(r, θ) ≥
√
n− 1

ψ′
(√
n− 1 r

)

ψ
(√
n− 1 r

) ∀(r, θ) ∈ R+ × Sn−1 . (4.24)

This is basically due to the fact that the Hessian of the distance function on
Mn has nonnegative eigenvalues: we refer to [228, Theorem 2.15].

By exploiting Laplacian comparison with carefully chosen model functions
ψ ∈ A, one can easily prove the following (for the details see e.g. [120, Lemma
4.1]).

Lemma 4.1. Let Mn be a Cartan-Hadamard manifold satisfying (4.8) for some
β ∈ [0, 2) and C0, R0 > 0. Then there exist r0 = r0(β,C0, R0) > 0 and c =
c(n, β, C0, R0) > 0 such that

m(r, θ) ≥ c r− β2 ∀(r, θ) ∈ [r0,∞)× Sn−1 .
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4.2.3 Geometric interpretation of the scalar curvature

Given a generic n-dimensional Riemannian manifold (M, g), it is well known
(see for instance [28, Introduction] or [49, p. 133]) that the scalar curvature Sg
is linked to the volume of balls: in particular, when Sg is positive the volume of
the balls in M is smaller than the volume of the balls of the same radius in the
Euclidean space. On the other hand, when Sg is negative we have the opposite
relation. This facts can be made quantitative, at least for small balls. More
precisely, the ratio between the volume of a ball Bε(p) ⊂ M of radius ε > 0
centered at p ∈M and the Euclidean volume of the corresponding ball Bε ⊂ Rn
centered at the origin is given by

Vol(Bε(p))

|Bε|
= 1− Sg

6(n+ 2)
ε2 +O(ε4) ,

where | · | stands for the Euclidean volume. Moreover, the boundaries of these
balls, i.e. ∂Bε(p) = Sε(p) and ∂Bε = Sε, are (n−1)-dimensional geodesic spheres
of radius ε > 0 whose ratio of the corresponding surface (or Hausdor�) measures
satis�es

meas (Sε(p))

meas (Sε)
= 1− Sg

6n
ε2 +O(ε4) . (4.25)

4.2.4 One-dimensional weighted inequalities

In the following, by a weight in R+ we simply mean any positive L1
loc([0,∞))

function, even though in the rest of the paper we shall in fact deal with more
regular functions. The techniques we exploit in Sections 4.3 and 4.4 take ad-
vantage of some results for one-dimensional weighted Sobolev-type inequalities
(or Hardy-type inequalities according to the terminology of [149]), which have
been known for a long time. In this regard, we shall mainly refer to the mono-
graph [149] by A. Kufner and P. Opic, which collects several results from this
perspective (not only in the one-dimensional framework by the way).

Proposition 4.1 ([149, Theorem 6.2]). Let w be a weight in R+. Let p ∈ [2,∞).
Then the Sobolev-type inequality
(
ˆ ∞

0

|g(r)|p w(r) dr

) 1
p

≤ C
(
ˆ ∞

0

|g′(r)|2 w(r) dr

) 1
2

∀g ∈ C1
c ([0,∞))

(4.26)
holds for some C > 0 if and only if

B(w, p) := sup
r∈(0,∞)

(
ˆ r

0

w(s) ds

) 1
p
(
ˆ ∞

r

1

w(s)
ds

) 1
2

<∞ , (4.27)

and the optimal constant C appearing in (4.26) satis�es the two-sided bound

B(w, p) ≤ C ≤
(

1 +
p

2

) 1
p

(
1 +

2

p

) 1
2

B(w, p) . (4.28)

4.3 Proofs of the radial results

We devote this section to the proof of Theorems 4.1 and 4.2, so that here we
shall focus only on radial functions. Nonradial issues will then be addressed in
Sections 4.4 and 4.5.
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4.3.1 The sub-hyperbolic case

We start this subsection by a key result showing that, under suitable assump-
tions on the weight w(r) ≡ ψ(r)n−1, where ψ ∈ A (recall (4.7)) is any function
corresponding to sub-hyperbolic model manifolds (according to the terminol-
ogy adopted in Subsection 4.1.2), the supremum appearing in the statement of
Theorem 4.1 can be bounded from above in a quantitative way.

Lemma 4.2. Let ψ ∈ A satisfy the following assumptions:

ψ(r) ≥ r ∀r ≥ 0 , ψ′(r) ≥ 0 ∀r ≥ 0 ,
ψ′(r)
ψ(r)

≥ c

rα
∀r ≥ r0 , (4.29)

for some α ∈ (0, 1) and c, r0 > 0. Let n ∈ N be larger than or equal to 2. Then
there exists a positive constant C, depending only on n, α, c, r0, such that for
every p ∈ (2, 2∗) there holds

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤ C p
1+α

2(1−α)

(p− 2)
α

1−α
. (4.30)

Proof. First of all, let us establish that the l.h.s. of (4.30) is �nite. To this end,
set

Q(r) :=

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

∀r > 0 . (4.31)

The integration of the last inequality in (4.29) from r0 to r > r0, along with the
�rst inequality, yields the bound from below

ψ(r) ≥ k e c
1−α r

1−α ∀r ≥ r0 , where k = k(α, c, r0) := r0 e
− c

1−α r
1−α
0 ,
(4.32)

which readily ensures that Q(r) is a smooth function on (0,∞). In addi-
tion, because ψ(r) ∼ r as r → 0 and p < 2∗, it is immediate to check that
limr→0Q(r) = 0. In order to deal with the behaviour of Q(r) at in�nity, we
need some more integral estimates. To this aim, upon rewriting the last in-
equality in (4.29) as

ψ(r)n−1 ≤ rα

c(n− 1)

d

dr

(
ψn−1

)
(r) ∀r ≥ r0

and integrating (by parts) between r0 and r > r0, we obtain:

ˆ r

r0

ψ(s)n−1 ds ≤ 1

c(n− 1)

ˆ r

r0

sα
d

ds

(
ψn−1

)
(s) ds

=
1

c(n− 1)

[
rα ψ(r)n−1 − rα0 ψ(r0)n−1 − α

ˆ r

r0

ψ(s)n−1

s1−α ds

]

≤ 1

c(n− 1)
rα ψ(r)n−1 .

(4.33)
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By plugging estimate (4.33) in (4.31), exploiting (4.32) and the fact that ψ(r)
is nondecreasing, we deduce that

Q(r) =

(
ˆ r0

0

ψ(s)n−1 ds+

ˆ r

r0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤
(
ˆ r0

0

ψ(s)n−1 ds+
1

c(n− 1)
rα ψ(r)n−1

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

=

(
1

rα ψ(r)n−1

ˆ r0

0

ψ(s)n−1 ds+
1

c(n− 1)

) 1
p

×
[(
rα ψ(r)n−1

) 2
p

ˆ ∞

r

1

ψ(s)n−1
ds

] 1
2

≤
(

1

rα ψ(r)n−1

ˆ r0

0

ψ(s)n−1 ds+
1

c(n− 1)

) 1
p




ˆ ∞

r

s
2α
p

ψ(s)
(n−1)(p−2)

p

ds




1
2

≤
(
e−

c(n−1)
1−α r1−α

kn−1 rα

ˆ r0

0

ψ(s)n−1 ds+
1

c(n− 1)

) 1
p

×




ˆ ∞

r

s
2α
p e−

c(n−1)(p−2)
(1−α)p

s1−α

k
(n−1)(p−2)

p

ds




1
2

for all r > r0, whence limr→∞Q(r) = 0. As a consequence, because Q(r) is
smooth and positive in (0,∞), it admits a maximum at some r > 0, which is a
critical point. Since

Q′(r) =
ψ(r)n−1

p

(
ˆ r

0

ψ(s)n−1 ds

) 1
p−1(ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

− 1

2ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2−1

,

at r = r we �nd the identity

ˆ ∞

r

1

ψ(s)n−1
ds =

p

2

1

ψ(r)2n−2

ˆ r

0

ψ(s)n−1 ds , (4.34)

so that

Q(r) =
(p

2

) 1
2 1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

. (4.35)

In particular,

sup
r∈(0,∞)

Q(r) ≤
(p

2

) 1
2

sup
r∈(0,∞)

1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

. (4.36)

Therefore, in order to establish (4.30), it is enough to prove an analogous upper
bound on the r.h.s. of (4.36). To this aim, �rst of all note that the �rst two
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inequalities of (4.29) entail

1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

≤ r
p+2
2p

ψ(r)
(n−1)(p−2)

2p

≤ r
(n−2)(2∗−p)

2p ,

that is, upon taking the supremum over (0, r0),

sup
r∈(0,r0)

1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

≤ r
(n−2)(2∗−p)

2p

0 , (4.37)

where in the case n = 2 we mean (n − 2)(2∗ − p) = 4. On the other hand, by
exploiting (4.32), (4.33), (4.37) and the fact that ψ is nondecreasing, we obtain:

sup
r∈(r0,∞)

1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

≤ sup
r∈(r0,∞)

(
1

ψ(r0)
2p(n−1)
p+2

ˆ r0

0

ψ(s)n−1 ds+
1

ψ(r)
2p(n−1)
p+2

ˆ r

r0

ψ(s)n−1 ds

) p+2
2p

≤ sup
r∈(r0,∞)

(
r

(n−2)(2∗−p)
p+2

0 +
rα

c(n− 1)ψ(r)
(n−1)(p−2)

p+2

) p+2
2p

≤ sup
r∈(r0,∞)

(
r

(n−2)(2∗−p)
p+2

0 +
rα

c(n− 1) k
(n−1)(p−2)

p+2 e
c(n−1)(p−2)
(p+2)(1−α)

r1−α

) p+2
2p

≤
(
r

(n−2)(2∗−p)
p+2

0 +
[α(p+ 2)]

α
1−α

[c(n− 1)]
1

1−α (p− 2)
α

1−α
r
− (n−1)(p−2)

p+2

0 e
c(n−1)(p−2)
(p+2)(1−α)

r1−α0 − α
1−α

) p+2
2p

,

(4.38)
where we have computed explicitly the last supremum in (4.38) (over the whole
R+ actually) recalling the de�nition of k given in (4.32). Hence, by combining
(4.36), (4.37) and (4.38), we end up with

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤
(p

2

) 1
2 ×

(
r

(n−2)(2∗−p)
p+2

0 +
[α(p+ 2)]

α
1−α

[c(n− 1)]
1

1−α (p− 2)
α

1−α
r
− (n−1)(p−2)

p+2

0 e
c(n−1)(p−2)
(1−α)(p+2)

r1−α0 − α
1−α

) p+2
2p

,

from which (4.30) easily follows just by letting p ↓ 2 and (in the case n = 2
only) p→∞.

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. We consider only the case p < 2∗ since, as recalled in
the Introduction, it is well known that the Euclidean Sobolev inequality holds
on any Cartan-Hadamard manifold.

Let us �rst establish the validity of (4.9) and then show optimality according
to (4.10). To our purposes, we introduce the following function:

ψ?(r) :=

(
meas (Sr)

ωn−1

) 1
n−1

∀r ≥ 0 , (4.39)

132



4.3. PROOFS OF THE RADIAL RESULTS

where ωn−1 is the Hausdor� measure of the Euclidean unit sphere Sn−1 and
Sr is the sphere of radius r in Mn centered at the pole o. It is an elementary
fact that ψ? ∈ A. Indeed, recalling (4.16), it is apparent that ψ? ∈ C∞((0,∞))
thanks to the regularity of A(r, θ) outside the pole (recall the corresponding
discussion in Subsection 4.2.1). On the other hand, by applying (4.25) with
ε = r, we easily deduce that ψ? ∈ C1([0,∞)), ψ?(0) = 0 and ψ′?(0) = 1. Now
we aim at showing that ψ? ful�lls the hypotheses (4.29) of Lemma 4.2 for some
positive r0 = r0(β,C0, R0), c = c(n, β, C0, R0) and α = β/2. Indeed, thanks to
(4.18), (4.21) and Lemma 4.1, the following inequalities hold:

∂
∂rA(r, θ)

A(r, θ)
≥ n− 1

r
∀(r, θ) ∈ (0,∞)× Sn−1 \ P (4.40)

and
∂
∂rA(r, θ)

A(r, θ)
≥ c r− β2 ∀(r, θ) ∈ [r0,∞)× Sn−1 \ P , (4.41)

for suitable constants r0, c > 0 as above. By integrating (4.40) from ε > 0 to
r > ε, we obtain:

A(r, θ) ≥ A(ε, θ)

εn−1
rn−1 ∀(r, θ) ∈ (ε,∞)× Sn−1 \ P ,

whence, upon integrating over Sn−1,

meas (Sr) ≥ ωn−1 r
n−1 meas (Sε)

meas (Sε)
= ωn−1 r

n−1
(
1 +O(ε2)

)
, (4.42)

where we have used (4.16) and again (4.25). If we let ε ↓ 0 in (4.42), we therefore
end up with

ψ?(r) ≥ r ∀r ≥ 0 .

The fact that ψ′?(r) ≥ 0 everywhere is a trivial consequence of (4.40), so that
we are left with establishing the last inequality of (4.29). To this aim, note that
the integration of (4.41) over Sn−1 yields

d

dr
meas (Sr) =

ˆ

Sn−1

∂

∂r
A(r, θ) dθ

≥ c r− β2
ˆ

Sn−1

A(r, θ) dθ

= c r−
β
2 meas (Sr) ∀r ≥ r0 ,

which readily entails

ψ′?(r)
ψ?(r)

≥ c

n− 1
r−

β
2 ∀r ≥ r0 ,

namely the last inequality of (4.29) with α = β/2, upon relabeling c. Hence, we
have proved that the function ψ? de�ned in (4.39) satis�es all of the assumptions
of Lemma 4.2, with α = β/2. Thus, as a consequence of (4.30), we deduce that

sup
r∈(0,∞)

(
ˆ r

0

ψ?(s)
n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ?(s)n−1
ds

) 1
2

≤ C p
2+β

2(2−β)

(p− 2)
β

2−β
(4.43)
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for a suitable C = C(n, β, C0, R0) > 0. Thanks to (4.43), we can apply Propo-
sition 4.1 with w(r) = ψ?(r)

n−1, which ensures the validity of the Sobolev-type
inequalities

(
ˆ ∞

0

|g(r)|p ψ?(r)N−1 dr

) 1
p

≤

(
1 +

p

2

) 1
p

(
1 +

2

p

) 1
2 C p

2+β
2(2−β)

(p− 2)
β

2−β

(
ˆ ∞

0

|g′(r)|2 ψ?(r)N−1 dr

) 1
2

∀g ∈ C1
c ([0,∞)) , ∀p ∈ (2, 2∗) .

(4.44)

Finally, we need to show how to pass from (4.44) to (4.9). To this purpose, it is
enough to observe that f ∈ C1

c:rad(Mn) implies r 7→ f(r) ∈ C1
c ([0,∞)), which,

along with Fubini's Theorem, allows us to apply (4.44) in the following way:

‖f‖Lp(Mn) =

(
ˆ ∞

0

ˆ

Sn−1

|f(r)|pA(r, θ) dθ dr

) 1
p

=

(
ωn−1

ˆ ∞

0

|f(r)|p ψ?(r)n−1 dr

) 1
p

≤ω
1
p

n−1

(
1 +

p

2

) 1
p

(
1 +

2

p

) 1
2 C p

2+β
2(2−β)

(p− 2)
β

2−β

(
ˆ ∞

0

|f ′(r)|2 ψ?(r)n−1 dr

) 1
2

=ω
1
p− 1

2

n−1

(
1 +

p

2

) 1
p

(
1 +

2

p

) 1
2 C p

2+β
2(2−β)

(p− 2)
β

2−β
×

(
ˆ ∞

0

ˆ

Sn−1

|f ′(r)|2A(r, θ) dθ dr

) 1
2

=ω
1
p− 1

2

n−1

(
1 +

p

2

) 1
p

(
1 +

2

p

) 1
2 C p

2+β
2(2−β)

(p− 2)
β

2−β
‖∇f‖L2(Mn) ,

(4.45)
namely (4.9) upon relabelling C.

Let us now deal with optimality. It is enough to consider any function ψ ∈ A
such that

ψ′′(r) ≥ 0 ∀r > 0 ,
ψ′′(r)
ψ(r)

= C0 r
−β ∀r ≥ R0 , (4.46)

which ensures that the associated model manifold MM
ψ is Cartan-Hadamard and

complies with (4.8). Indeed, following e.g. [120, Lemma 4.1], it is not di�cult
to prove that (4.46) implies

ψ′(r)
ψ(r)

∼
√
C0 r

− β2 as r →∞ , (4.47)

where by a(r) ∼ b(r) we mean that the ratio a(r)/b(r) tends to 1. In particular,
(4.47) entails
√
C0

2
r−

β
2 ≤ ψ′(r)

ψ(r)
≤ 2

√
C0 r

− β2 ∀r ≥ r0 =⇒ ψ(r) ≥ c1 ec2 r
2−β
2 ∀r ≥ r0 ,

(4.48)
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r0, c1, c2 > 0 being suitable constants that depend on ψ but not on p ∈ (2, 2∗]∩
(2,∞), whose exact values are not relevant to our purposes. Hence, (4.48) plus
a simple integration by parts in the same spirit as above, yield

ˆ ∞

r

1

ψ(s)n−1
ds ≥ r

β
2

2
√
C0(n− 1)ψ(r)n−1

∀r ≥ r0 . (4.49)

Similarly,
ˆ r

r0

ψ(s)n−1 ds ≥

1

2
√
C0(n− 1)

[
r
β
2 ψ(r)n−1 − r

β
2
0 ψ(r0)n−1 − β

2

ˆ r

r0

ψ(s)n−1

s
2−β
2

ds

]
∀r ≥ r0 ,

which implies, upon picking r0 so large that

β

4
√
C0(n− 1) r

2−β
2

0

≤ 1 ,

the validity of the estimate
ˆ r

r0

ψ(s)n−1 ds ≥ 1

4
√
C0(n− 1)

[
r
β
2 ψ(r)n−1 − r

β
2
0 ψ(r0)n−1

]
∀r ≥ r0 .

(4.50)
From (4.50), it is then apparent that one can select another r̂0 > r0 in such a
way that

ˆ r

r0

ψ(s)n−1 ds ≥ r
β
2 ψ(r)n−1

8
√
C0(n− 1)

∀r ≥ r̂0 . (4.51)

Hence, by combining (4.48), (4.49) and (4.51), we deduce that

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≥ C r
β(p+2)

4p

ψ(r)
(n−1)(p−2)

2p

≥ C r
β(p+2)

4p

ec2
(n−1)(p−2)

2p r
2−β
2

∀r ≥ r̂0 ,

(4.52)
where from here on C denotes a general positive constant that can be taken
independent of p ∈ (2, 2∗]∩ (2,∞), that we shall not relabel. A straightforward
calculation shows that the maximum over r ∈ (0,∞) of the last term in (4.52)
is attained at

r =

[
β(p+ 2)

c2(n− 1)(2− β)(p− 2)

] 2
2−β

,

which ensures that

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≥ C
(
p+ 2

p− 2

) β
2−β

(4.53)

provided [
β(p+ 2)

c2(n− 1)(2− β)(p− 2)

] 2
2−β
≥ r̂0 . (4.54)
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It is therefore clear that (4.53)�(4.54), together with (4.28), yield (4.10) at least
in the case n ≥ 3, where 2∗ < ∞. What is left in the case n = 2 is just the
correct estimate on the behaviour of the supremum in the l.h.s. of (4.53) as
p → ∞. To this aim, it is enough to observe that, as a simple consequence of
the fact that ψ(r) ∼ r as r → 0, there holds

sup
r∈(0,∞)

(
ˆ r

0

ψ(s) ds

) 1
p
(
ˆ ∞

r

1

ψ(s)
ds

) 1
2

≥ C sup
r∈

(
0, 1√

e

) r
2
p (− log r)

1
2 ≥ C p 1

2 ,

which, upon exploiting again (4.28), ensures the validity of (4.10) also as p →
∞.

4.3.2 The quasi-Euclidean case

Similarly to Subsection 4.3.1, we start by a crucial result showing that, for
appropriate weights w(r) ≡ ψ(r)n−1 (ψ ∈ A) associated with quasi-Euclidean
model manifolds (still according to the terminology of Subsection 4.1.2), one can
bound quantitatively the supremum appearing in the statement of Theorem 4.1.

Lemma 4.3. Let ψ ∈ A satisfy the following assumptions:

ψ(r) ≥ r ∀r > 0 , ψ′(r) ≥ 0 ∀r > 0 ,
ψ′(r)
ψ(r)

≥ c

r
− c′

rq
∀r ≥ r0 , (4.55)

for some c > 1, c′ > 0, q > 1 and r0 > 0. Let n ∈ N be larger than or equal to
2. Then

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤ C√p ∀p ∈
[

2ñ

ñ− 2
, 2∗
)
,

(4.56)
where ñ := ñ(n, c) := c(n − 1) + 1 and C is a positive constant depending only
on n, c, c′, q, r0.

Proof. The strategy relies on arguments close to the ones used in the proof
Lemma 4.2. Indeed, let Q(r) be de�ned by (4.31). By integrating the last
di�erential inequality in (4.55) from r0 to r > r0 (and taking advantage of the
�rst one as well), we obtain:

ψ(r) ≥ k rc ∀r ≥ r0 , where k = k(c′, q, r0) > 0 , (4.57)

which ensures that Q(r) is a smooth function of r > 0, given the �niteness of
the integrals involved. Moreover, because ψ(r) ∼ r as r → 0 and p < 2∗, it
is immediate to check that limr→0Q(r) = 0. In order to deal with the limit
at in�nity, we need again some integral bounds. Clearly, the last inequality of
(4.55) yields

ψ′(r)
ψ(r)

≥ c+ 1

2r
∀r ≥ r̃0 , for some r̃0 = r̃0(c′, q, r0) > r0 ; (4.58)

note that inequality (4.58) can be rewritten as

ψ(r)n−1 ≤ 2r

(c+ 1)(n− 1)

d

dr

(
ψn−1

)
(r) ∀r ≥ r̃0 . (4.59)
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Hence, if we integrate (by parts) (4.59) between r̃0 and r > r̃0, we deduce that
ˆ r

r̃0

ψ(s)n−1 ds ≤ 2

(c+ 1)(n− 1)

ˆ r

r̃0

s
d

ds

(
ψn−1

)
(s) ds

=
2

(c+ 1)(n− 1)

[
r ψ(r)n−1 − r̃0 ψ(r̃0)n−1 −

ˆ r

r̃0

ψ(s)n−1 ds

]

≤ 2r ψ(r)n−1

(c+ 1)(n− 1)
.

(4.60)
Let us now rewrite (4.58) as

1

ψ(r)n−1
≤ − 2r

(c+ 1)(n− 1)

d

dr

(
1

ψ(r)n−1

)
∀r ≥ r̃0 . (4.61)

The integration (by parts) of (4.61) between r > r̃0 and ∞ (along with (4.57))
ensures that

ˆ ∞

r

1

ψ(s)n−1
ds ≤−

ˆ ∞

r

2s

(c+ 1)(n− 1)

d

ds

(
1

ψ(s)n−1

)
ds

=
2

(c+ 1)(n− 1)

r

ψ(r)n−1

+
2

(c+ 1)(n− 1)

ˆ ∞

r

1

ψ(s)n−1
ds ,

whence
ˆ ∞

r

1

ψ(s)n−1
ds ≤ 2

(c− 1)(n− 1) + 2(n− 2)

r

ψ(r)n−1
∀r ≥ r̃0 . (4.62)

By plugging estimate (4.60) into (4.31), exploiting (4.57), the fact that ψ(r) is
nondecreasing and (4.62), we obtain:

Q(r) =

(
ˆ r̃0

0

ψ(s)n−1 ds+

ˆ r

r̃0

ψ(s)n−1 ds

) 1
p (ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤
(
ˆ r̃0

0

ψ(s)n−1 ds+
2r ψ(r)n−1

(c+ 1)(n− 1)

) 1
p (ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤
(

1

r ψ(r)n−1

ˆ r̃0

0

ψ(s)n−1 ds+
2

(c+ 1)(n− 1)

) 1
p

×

[(
r ψ(r)n−1

) 2
p

ˆ ∞

r

1

ψ(s)n−1
ds

] 1
2

≤
(

1

r ψ(r)n−1

ˆ r̃0

0

ψ(s)n−1 ds+
2

(c+ 1)(n− 1)

) 1
p
(

2 r
p+2
p ψ(r)−

(n−1)(p−2)
p

(c− 1)(n− 1) + 2(n− 2)

) 1
2

≤C r
p+2
2p

ψ(r)
(n−1)(p−2)

2p

≤C r p+2
2p −

c(n−1)(p−2)
2p ,
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for all r > r̃0, where from here on C stands for a general suitable positive
constant depending only on n, c, c′, q, r0 (that we shall not relabel). In particular,

lim sup
r→∞

Q(r) ≤ C

since

p ≥ 2ñ

ñ− 2
=⇒ p+ 2

2p
− c(n− 1)(p− 2)

2p
≤ 0 . (4.63)

There are two possibilities: either Q(r) does not admit an internal maximum,
in which case

Q(r) < C ∀r > 0 , (4.64)

or Q(r) does admit an internal maximum at some r > 0, which is a critical
point. Note that, in this case, by carrying out the same computations as in the
proof of Lemma 4.2, equations (4.34), (4.36) and (4.37) (with r0 replaced by r̃0)
are still true. On the other hand, by exploiting (4.37) (with r0 replaced by r̃0),
(4.57), (4.60) and the fact that ψ(r) is nondecreasing, we end up with

sup
r∈(r̃0,∞)

1

ψ(r)n−1

(
ˆ r

0

ψ(s)n−1 ds

) p+2
2p

≤ sup
r∈(r̃0,∞)

(
1

ψ(r̃0)
2p(n−1)
p+2

ˆ r̃0

0

ψ(s)n−1 ds+
1

ψ(r)
2p(n−1)
p+2

ˆ r

r̃0

ψ(s)n−1 ds

) p+2
2p

≤ sup
r∈(r̃0,∞)

(
r̃

(n−2)(2∗−p)
p+2

0 +
1

ψ(r)
2p(n−1)
p+2

2r ψ(r)n−1

(c+ 1)(n− 1)

) p+2
2p

≤ sup
r∈(r̃0,∞)

(
r̃

(n−2)(2∗−p)
p+2

0 +
2

(c+ 1)(n− 1)

r

ψ(r)
(n−1)(p−2)

p+2

) p+2
2p

≤ sup
r∈(r̃0,∞)

(
r̃

(n−2)(2∗−p)
p+2

0 + C r1− c(n−1)(p−2)
p+2

) p+2
2p

=

(
r̃

(n−2)(2∗−p)
p+2

0 + C r̃
1− c(n−1)(p−2)

p+2

0

) p+2
2p

,

where in the last line we have taken advantage of (4.63). Hence, by collecting
(4.36), (4.37) (with r0 replaced by r̃0) and (4.64), we �nally obtain

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤
(p

2

) 1
2

(
r̃

(n−2)(2∗−p)
p+2

0 + C r̃
1− c(n−1)(p−2)

p+2

0

) p+2
2p

∨ C ,

which establishes (4.56) up to relabelling C.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. We argue similarly to the proof of Theorem 4.1: our aim
is to show that the function ψ? de�ned by (4.39) satis�es the hypotheses of
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Lemma 4.3. In order to establish the validity of the �rst two inequalities of
(4.55), as well as the fact that ψ? ∈ A, one can reason exactly in the same way.
As concerns the third one, some adaptations have to be performed: we shall
mainly refer to [120, Subsection 8.1]. First of all, note that the general solution
of the di�erential equation

φ′′(r) = C1 r
−2 φ(r) ∀r ∈ R+

is explicit, i.e.
φ(r) = a1 r

q1 + a2 r
q2 ∀r ∈ R+

for arbitrary real constants a1 and a2, where q1,2 = (1±√1 + 4C1)/2. It is not
di�cult to show (just by following the same ideas as in [120, Subsection 8.1])
that one can construct a function ψ ∈ A such that

ψ′′(r) = C1 r
−2 ψ(r) ∀r ≥ 2R0 , ψ′′(r) ≤ C1 r

−2 ψ(r) ∀r ∈ (R0, 2R0) ,

ψ′′(r) = 0 ∀r ∈ [0, R0] ,

which therefore complies with (4.3.2) for every r ≥ 2R0 =: r0 and constants
a1 > 0, a2 ∈ R depending only on C1, R0. In view of (4.11), we are in position to
apply the Laplacian-comparison results of Subsection 4.2.2 (speci�cally (4.20)),
guaranteeing that

m(r, θ) ≥ (n− 1)
ψ′(r)
ψ(r)

≥ (n− 1)

(
q1

r
− h

r1+
√

1+4C1

)
(4.65)

for all r ≥ r0, where h is a suitable positive constant depending on a1, a2, q1, q2, r0.
Thanks to (4.65), we can now proceed as in the proof of Theorem 4.1, observing
that

ψ′?(r) =
1

ωn−1(n− 1)

(
meas (Sr)

ωn−1

) 1
n−1−1 ˆ

Sn−1

m(r, θ)A(r, θ) dθ

≥ 1

ωn−1(n− 1)

(
meas (Sr)

ωn−1

) 1
n−1−1

×

(n− 1)

(
q1

r
− h

r1+
√

1+4C1

)
ˆ

Sn−1

A(r, θ) dθ

=

(
q1

r
− h

r1+
√

1+4C1

)
ψ?(r)

for all r ≥ r0. Hence, the function ψ? satis�es the hypotheses of Lemma 4.3
with c = q1, c′ = h and q = 1 +

√
1 + 4C1. As a consequence, we deduce that

sup
r∈(0,∞)

(
ˆ r

0

ψ?(s)
n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ?(s)n−1
ds

) 1
2

≤ C√p p ∈
[
2̃, 2∗

)
,

(4.66)
where 2̃ is de�ned in (4.13) and C is a positive constant as in the statement.
Once (4.66) has been established, the conclusion follows as in the proof of Theo-
rem 4.1, i.e. by applying Proposition 4.1 and carrying out the same computations
that led to (4.45).
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Let us �nally deal with optimality. To this aim, it is enough to consider any
function ψ ∈ A such that

ψ′′(r) ≥ 0 ∀r > 0 and ψ(r) � r ñ−1
n−1 as r →∞ ,

where by a(r) � b(r) we mean that the ratios a(r)/b(r), a′(r)/b′(r), a′′(r)/b′′(r)
tend to some positive numbers and ñ is related to C1 by (4.13). This ensures
that the associated model manifold Mn

ψ is Cartan-Hadamard and complies with
(4.11). Recalling that ñ− 2 > 0, we therefore obtain

(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

� r− ñ−2
2 as r →∞ (4.67)

and (
ˆ r

0

ψ(s)n−1 ds

) 1
p

� r ñp as r →∞ , (4.68)

for all p ≥ 2. The combination of (4.67)�(4.68) then yields
(
ˆ r

0

ψ(s)n−1 ds

) 1
p
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

� r 2ñ−pñ+2p
2p as r →∞ . (4.69)

Clearly, the r.h.s. of (4.69) stays bounded as r →∞ if and only if 2ñ−pñ+2p ≤
0, namely p ≥ 2̃. Hence, thanks to Proposition 4.1, we can conclude that in this
case (4.12) fails for all p ∈ [2, 2̃). As for the behaviour of the optimal constant
as p→∞ (for n = 2), one reasons exactly as in the end of the proof of Theorem
4.1.

Remark 4.4 (On the Cartan-Hadamard assumption). It is worth pointing out
that, in Theorems 4.1 and 4.2, in general it is not possible to drop the assumption
that M is a Cartan-Hadamard manifold, i.e. it is not enough to require that
the sectional curvatures satisfy only (4.8) or (4.11). Indeed, consider a model
manifold Mn

ψ with ψ ∈ A such that ψ(r) � e−r
α

as r → ∞, where α = β/2 ∈
(0, 1). It is straightforward to check that such a manifold complies with (4.8);
however, it is apparent that all of the inequalities (4.9) fail, since the supremum
appearing in (4.27) in Proposition 4.1 is identically ∞ because of the second
integral. Similarly, with regards to Theorem 4.2, one can consider a model
manifold MN

ψ with ψ(r) = rq2 for large r, where q2 < 0 is the power appearing
in (4.3.2). It is plain that all such manifolds are not Cartan-Hadamard, since a
local change of sign of the second derivative of ψ necessarily occurs.

Remark 4.5 (The case p ∈ [1, 2)). Throughout the whole paper we have as-
sumed that p ≥ 2. In fact there is a simple reason for such a restriction: it
was proved in [118, Theorem 4.6] that on any Cartan-Hadamard manifold the
inequality ‖f‖p ≤ C ‖∇f‖2 always fails as soon as p is strictly smaller than
2. Moreover, since the argument used in the corresponding proof relies only on
radial functions, the inequality is false even if restricted to C1

c:rad(Mn).

4.4 The Poincaré inequality: McKean's Theorem

and related issues

As discussed in the Introduction, one of the main motivations for this work was
a celebrated paper by H.P. McKean [167], which is fully devoted to the proof of
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the following result.

Theorem 4.4 (McKean 1970, original statement). Consider a smooth, n-
dimensional, simply-connected Riemannian manifold M with negative sectional
curvatures Sect bounded away from 0: speci�cally, suppose Sect ≤ −k for some
constant k > 0. Then the spectrum of the corresponding Laplace-Beltrami op-
erator ∆ acting in L2(M) is also bounded from 0: speci�cally, the top of the
spectrum lies to the left of

−k (n− 1)
2

4
,

and this bound is sharp.

We point out that Theorem 4.4 can be rephrased equivalently by asserting
that on any Cartan-Hadamard manifold Mn with sectional curvatures bounded
from above by −k < 0, the following Poincaré inequality

‖f‖L2(Mn) ≤
2√

k (n− 1)
‖∇f‖L2(Mn) ∀f ∈ C1

c (Mn)

holds. This is the form of the statement that we shall refer to below.

The original proof of McKean is far from trivial. He had already under-
stood that it all amounted to establishing the inequality for radial functions,
since the extension from radial to nonradial in the pure Poincaré case (p = 2)
is straightforward, see the proof of Theorem 4.5 below. However, in order to
prove that the weight associated with the volume measure on Mn (recall Sub-
section 4.2.1) satis�es a di�erential inequality of the type of (4.70) (actually
of second order) w.r.t. the variable r, which is at the core of the problem, he
employs several technical tools that involve the second fundamental form, Ja-
cobi �elds and the so-called index form of Morse theory. Here we shall only use
elementary arguments related to weighted one-dimensional inequalities, in the
spirit of Section 4.3. Of course the main nontrivial result behind our methods
lies in the Laplacian-comparison Theorem recalled in Subsection 4.2.2, which
allows one to pass from model manifolds to general manifolds with very little
e�ort. Furthermore, through these techniques, we are able to slightly generalize
McKean's Theorem, by requiring that only the radial sectional curvatures are
negative away from zero.

In order to carry out our alternative proof, we need a preliminary lemma.

Lemma 4.4. Let ψ ∈ C1([0,∞))∩C∞((0,∞)) be a positive function on (0,∞)
such that ψ(0) = 0. Let n ∈ N be larger than or equal to 2. If

ψ′(r)
ψ(r)

≥
√
k ∀r > 0 , for some k > 0 , (4.70)

then

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
2
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤ 1√
k (n− 1)

. (4.71)

Proof. For convenience, let us assume that k = 1: the general case can be
obtained by a simple scaling argument, as we shall see in the end of the proof.
So, given any ε > 0, upon integrating (4.70) from ε to r we infer that

ψ(r) ≥ ψ(ε) er−ε ∀r ≥ ε . (4.72)
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On the other hand, inequality (4.70) can be rewritten as

ψ(r)n−1 ≤ 1

n− 1

d

dr

(
ψn−1

)
(r) ∀r > 0 ,

so that an integration between 0 and r yields (recall that ψ(0) = 0)
ˆ r

0

ψ(s)n−1 ds ≤ 1

n− 1
ψ(r)n−1 ∀r > 0 . (4.73)

Similarly, another way of rewriting (4.70) is

1

ψ(r)n−1
≤ − 1

n− 1

d

dr

(
ψ−n+1

)
(r) ∀r > 0 ; (4.74)

by integrating (4.74) from r to ∞ we obtain
ˆ ∞

r

1

ψ(s)n−1
ds ≤ 1

n− 1

1

ψ(r)n−1
∀r > 0 , (4.75)

where we have exploited the fact that limr→∞ ψ(r) =∞, trivial consequence of
(4.72). By combining (4.73) and (4.75), we �nally deduce that

ˆ r

0

ψ(s)n−1 ds

ˆ ∞

r

1

ψ(s)n−1
ds ≤ 1

(n− 1)2
∀r > 0 ,

namely (4.71) for k = 1. In order to deal with the general case, it is enough to
apply the just proved result to r 7→

√
k ψ
(
r/
√
k
)
.

We are now ready to give an elementary proof of McKean's Theorem, by tak-
ing advantage of Lemma 4.4 along with the basic facts in Riemannian geometry
recalled in Subsections 4.2.1�4.2.3.

Theorem 4.5 (McKean's Theorem revisited). Let Mn be a Cartan-Hadamard
manifold satisfying

Sectω(x) ≤ −k ∀x ∈Mn , (4.76)

where k > 0 and Sectω(x) denotes the sectional curvature w.r.t. any 2-dimensional
tangent subspace ω at x containing a radial direction. Then

‖f‖L2(Mn) ≤
2√

k (n− 1)
‖∇f‖L2(Mn) ∀f ∈ C1

c (Mn) . (4.77)

Proof. Thanks to (4.76), we can apply the Laplacian-comparison result recalled
in Subsection 4.2.2 with the explicit model function ψ(r) = sinh

(√
kr
)
, which

corresponds to the hyperbolic space of curvature −k and trivially satis�es

ψ′′(r)
ψ(r)

= k ∀r > 0 .

Hence, upon recalling identity (4.18), we deduce that

∂
∂rA(r, θ)

A(r, θ)
=m(r, θ)

≥(n− 1)
ψ′(r)
ψ(r)

=(n− 1)
√
k coth

(√
kr
)

≥(n− 1)
√
k ∀r > 0 , ∀θ ∈ Sn−1 \ P ,
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namely
∂
∂rψA(r, θ)

ψA(r, θ)
≥
√
k ∀r > 0 , ∀θ ∈ Sn−1 \ P , (4.78)

where ψA(r, θ) := A(r, θ)
1

n−1 .
Thanks to the basic properties of the function (r, θ) 7→ A(r, θ) described in

Subsection 4.2.1, in view of (4.78) we can apply Lemma 4.4 to ψ ≡ ψA(·, θ), for
every �xed θ ∈ Sn−1 \ P, which ensures that

sup
r∈(0,∞)

(
ˆ r

0

ψA(s, θ)n−1 ds

) 1
2
(
ˆ ∞

r

1

ψA(s, θ)n−1
ds

) 1
2

≤ 1√
k (n− 1)

∀θ ∈ Sn−1 \ P .
(4.79)

As a consequence, from Proposition 4.1 with p = 2 and w(r) ≡ ψA(r, θ) we
deduce that

ˆ ∞

0

g(r)2A(s, θ) dr ≤ 4

k (N − 1)
2

ˆ ∞

0

g′(r)2A(r, θ) dr

∀g ∈ C1
c ([0,∞)) , ∀θ ∈ Sn−1 \ P .

(4.80)

On the other hand, if f ∈ C1
c (Mn) then r 7→ f(r, θ) ∈ C1

c ([0,∞)) for every
θ ∈ SN−1, so that by exploiting (4.80) with g(r) ≡ f(r, θ), integrating over
Sn−1 and using Fubini's Theorem, we end up with

ˆ

Sn−1

ˆ ∞

0

f(r, θ)2A(r, θ) dr dθ ≤ 4

k (n− 1)
2

ˆ

Sn−1

ˆ ∞

0

∣∣∣∣
∂

∂r
f(r, θ)

∣∣∣∣
2

A(r, θ) dr dθ

≤ 4

k (n− 1)
2

ˆ

Sn−1

ˆ ∞

0

|∇f(r, θ)|2A(r, θ) dr dθ ,

namely (4.77), recalling (4.17).

As concerns the sharpness of the constant, which of course had already been
established by McKean, note that it is easily veri�ed e.g. by observing that the
r.h.s. of (4.79) is attained on hyperbolic space, i.e. when ψA(r, θ) ≡ sinh

(√
kr
)
.

4.4.1 Negative curvatures outside a ball

In fact the previous techniques allow us to obtain a McKean-type result under
the weaker assumption that curvatures are bounded above by a negative con-
stant only in the complement of a ball. To the best of our knowledge, this result
is new even if, in some sense, expectable.

We �rst establish the following lemma.

Lemma 4.5. Let ψ ∈ C1([0,∞))∩C∞((0,∞)) be a positive function on (0,∞)
such that ψ(0) = 0 and ψ′(0) > 0. Let n ∈ N be larger than or equal to 2. If

ψ′(r) ≥ 0 ∀r ≥ 0 and
ψ′(r)
ψ(r)

≥ c ∀r ≥ r0 (4.81)
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for some c, r0 > 0, then there exists a positive constant C, depending only on
N, c, r0, such that

sup
r∈(0,∞)

(
ˆ r

0

ψ(s)n−1 ds

) 1
2
(
ˆ ∞

r

1

ψ(s)n−1
ds

) 1
2

≤ C . (4.82)

Proof. First of all we observe that the integration of the last inequality in (4.81)
from r0 to r > r0, along with the fact that ψ is positive, yields the bound from
below

ψ(r) ≥ K ecr ∀r ≥ r0 , where K := ψ(r0) e−cr0 . (4.83)

We proceed similarly to the proof of Lemma 4.4. Upon rewriting the last in-
equality in (4.81) as

ψ(r)n−1 ≤ 1

c(N − 1)

d

dr

(
ψn−1

)
(r) ∀r ≥ r0

and integrating between r0 and r > r0, we obtain:
ˆ r

r0

ψ(s)n−1 ds ≤ 1

c(n− 1)

ˆ r

r0

d

ds

(
ψn−1

)
(s) ds

=
1

c(n− 1)

[
ψ(r)n−1 − ψ(r0)n−1

]

≤ 1

c(n− 1)
ψ(r)n−1 .

(4.84)

Another way of rewriting such an inequality is

1

ψ(r)n−1
≤ − 1

c(n− 1)

d

dr

(
ψ−n+1

)
(r) ∀r ≥ r0 , (4.85)

whence by integrating (4.85) from r to ∞ we infer that
ˆ ∞

r

1

ψ(s)n−1
ds ≤ 1

c(n− 1)

1

ψ(r)n−1
∀r ≥ r0 , (4.86)

where we have used the property limr→∞ ψ(r) =∞, consequence of (4.83). The
combination of (4.84), (4.86) and the �rst inequality of (4.81) yields

Q̂(r) :=

ˆ r

0

ψ(s)n−1 ds

ˆ ∞

r

1

ψ(s)n−1
ds

=

(
ˆ r0

0

ψ(s)n−1 ds+

ˆ r

r0

ψ(s)n−1 ds

)
ˆ ∞

r

1

ψ(s)n−1
ds

≤ 1

c(n− 1)

1

ψ(r)n−1

ˆ r0

0

ψ(s)n−1 ds+
1

c2(n− 1)2

≤ r0

c(n− 1)
+

1

c2(n− 1)2

for all r ≥ r0, namely

sup
r∈[r0,∞)

Q̂(r) ≤ r0

c(n− 1)
+

1

c2(n− 1)2
=: C2 . (4.87)
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We are left with bounding the analogous supremum for r ranging between 0
and r0. There are two possibilities: either supr∈(0,r0) Q̂(r) ≤ C2, in which case

(4.82) trivially follows, or supr∈(0,r0) Q̂(r) > C2, in which case there necessarily

exists r ∈ (0, r0) such that Q̂(r) = supr∈(0,∞) Q̂(r) (note that limr→0 Q̂(r) = 0).
In particular, we can reason exactly as in the proof of Lemma 4.2 to deduce the
analogue of (4.35) with p = 2:

√
Q̂(r) =

1

ψ(r)n−1

ˆ r

0

ψ(s)n−1 ds ≤ r ≤ r0 , (4.88)

where we have taken advantage again of the elementary fact that ψ(r) is non-
decreasing. Hence, as a consequence of (4.87)�(4.88),

sup
r∈(0,∞)

√
Q̂(r) ≤ C ∨ r0 ,

namely (4.82) up to relabelling C.

We are now ready to prove the following version of McKean's Theorem out-
side a ball.

Theorem 4.6 (McKean's Theorem outside a ball). LetMn be a Cartan-Hadamard
manifold such that

Sectω(x) ≤ −k ∀x ∈Mn \BR0

for some k,R0 > 0, where Sectω(x) denotes the sectional curvature w.r.t. any
2-dimensional tangent subspace ω at x containing a radial direction. Then there
exists a positive constant CP , depending only on k and R0, such that

‖f‖L2(Mn) ≤ CP ‖∇f‖L2(Mn) ∀f ∈ C1
c (Mn) . (4.89)

Proof. By applying Lemma 4.1 with β = 0, we infer that

m(r, θ) ≥ c ∀(r, θ) ∈ [r0,∞)× Sn−1 ,

for suitable positive constants r0 = r0(k,R0) and c = c(n, k,R0), that is

∂
∂rψA(r, θ)

ψA(r, θ)
≥ c ∀r > r0 , ∀θ ∈ Sn−1\P , where ψA(r, θ) := A(r, θ)

1
n−1 .

(4.90)
Thanks to (4.22) and (4.23), in view of (4.90) we can apply Lemma 4.5 to
ψ ≡ ψA(·, θ) at each �xed θ ∈ Sn−1 \ P, which ensures that

sup
r∈(0,∞)

(
ˆ r

0

ψA(s, θ)n−1 ds

) 1
2
(
ˆ ∞

r

1

ψA(s, θ)n−1
ds

) 1
2

≤ C ∀θ ∈ Sn−1 \ P ,

where C is the same constant as in (4.82). Hence, by Proposition 4.1 with p = 2
and w(r) ≡ ψA(r, θ), we end up with

ˆ ∞

0

g(r)2A(s, θ) dr ≤ 4C2

ˆ ∞

0

g′(r)2A(r, θ) dr

∀g ∈ C1
c ([0,∞)) , ∀θ ∈ Sn−1 \ P .

(4.91)

Once (4.91) has been established, inequality (4.89) follows with CP = 2C just
by reasoning as in the �nal part of the proof of Theorem 4.5.
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4.5 Failure of the inequalities in the nonradial

framework

In this section we prove Theorem 4.3 by constructing an explicit sequence of
nonradial functions that make the Rayleigh quotient associated with inequality
(4.15) blow up.

Proof of Theorem 4.3. For later convenience, we set λ := (2−β)/2 ∈ (0, 1). We
want to prove that the Sobolev-type inequality

(
ˆ

Mn
|f |p

) 1
p

≤ C
(
ˆ

Mn
|∇f |2

) 1
2

, (4.92)

supposed to be valid for all f ∈ C1
c (Mn), actually fails as soon as p < 2∗ under

the running assumptions on Mn. To this purpose, we provide the following
family of functions that we denote by fR, for which the Rayleigh quotient of
(4.92) blows up as R→ +∞:

fR(x) :=

(
1− d(x, oR)

R1−λ

)

+

∀x ∈Mn , (4.93)

where oR ∈ SR, namely R = d(oR, o). Note that each fR is in fact only Lipschitz
regular, but this is not an issue (one can always regularize it in order to obtain
a C1

c function close enough to fR, see also Remark 4.3). In view of (4.93), we
have:

|∇fR(x)| = 1

R1−λ χBR1−λ (oR)(x) ∀x ∈Mn , (4.94)

|fR(x)| ≥ 1

2
χB

R1−λ
2

(oR)(x) ∀x ∈Mn , (4.95)

Br(oR) being the Riemannian ball of radius r > 0 centered at oR. Thanks to
(4.95), the Lp norm of fR is readily estimated from below:

ˆ

Mn
|fR|p ≥

1

2p
ν
(
BR1−λ

2

(oR)
)
≥ ωn−1

2p+n n
R(1−λ)n , (4.96)

where in the last inequality we have used the simple fact that, because Mn

is Cartan-Hadamard, the volume of balls (w.r.t. any pole) grows at least with
Euclidean rate (recall that ωn−1 is the Hausdor� measure of the Euclidean unit
sphere of dimension n−1). This is just a consequence of Laplacian comparison,
see Section 4.2 (in particular Subsections 4.2.1�4.2.3). Let us now deal with the
L2 norm of the gradient. By (4.94), we have:

ˆ

MN
|∇fR|2 dν =

1

R2(1−λ)
ν(BR1−λ(oR)) ; (4.97)

in order to estimate the volume in the r.h.s. of (4.97), we need to exploit (4.14).
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First of all, note that in BR1−λ(oR) condition (4.14) can be rewritten as follows:

Ric(x) ≥− C2

d(x, o)2−2λ

≥− C2

[d(o, oR)− d(x, oR)]
2−2λ

≥− C2

(R−R1−λ)
2−2λ

≥− 2C2

R2−2λ
∀x ∈ BR1−λ(oR) ,

(4.98)

provided R is so large that (1−R−λ)2−2λ ≥ 1/2 and R −R1−λ ≥ R0. Thanks
to (4.98), we can then apply comparison with the surface measure of the balls
in the hyperbolic space with sectional curvature

− 2C2

(N − 1)R2−2λ
:= − Ĉ2

R2−2λ
,

which corresponds to the model function

ψ(r) =
R1−λ

Ĉ
sinh

(
Ĉ

R1−λ r

)

(recall again Subsections 4.2.1�4.2.3, here the reference �pole� is oR). To this aim
we take advantage, in particular, of the validity of (4.98) along radial directions
emanating from oR, which yields

ν(BR1−λ(oR)) ≤ ωn−1
R(1−λ)(n−1)

Ĉn−1

ˆ R1−λ

0

[
sinh

(
Ĉ

R1−λ r
)]n−1

dr

= ωn−1
R(1−λ)n

Ĉn

ˆ Ĉ

0

sinh(s)n−1 ds .

(4.99)

Hence, by virtue of (4.97) and (4.99), we obtain:

ˆ

Mn
|∇fR|2 dν ≤

ωn−1

´ Ĉ

0
sinh(s)n−1 ds

Ĉn
R(1−λ)(n−2) . (4.100)

So, if inequality (4.15) was true, in view of (4.96) and (4.100) we would end up
with

(
ωn−1R

(1−λ)n

2p+n n

) 1
p

≤ C


ωn−1

´ Ĉ

0
sinh(s)n−1 ds

Ĉn
R(1−λ)(N−2)




1
2

,

namely
R

1
p− 1

2∗ ≤ C(n, λ,C, p) ,

and the contradiction is achieved upon letting R→∞, since p < 2∗.
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4.6 The porous medium equation on Cartan-Hadamard

manifolds

Theorem 4.1 has some interesting consequences concerning smoothing e�ects for
the porous medium equation (4.6), at least when the initial datum belongs to
L1(Mn) and is radially symmetric with respect to the pole o. We shall denote
by L1

rad(Mn) the space constituted by all such functions.

Theorem 4.7. Let Mn be a Cartan-Hadamard manifold such that

Sectω(x) ≤ −C0 r
−β ∀x ∈Mn \BR0

, (4.101)

for some β ∈ (0, 2) and C0, R0 > 0. Then there exists a positive constant K > 0,
depending only on m,n, β, C0, R0, such that for any initial datum u0 ∈ L1

rad(Mn)
the solution u of (4.6) satis�es the smoothing estimate

‖u(t)‖L∞(Mn) ≤ K
[
log
(
t ‖u0‖m−1

L1(Mn) + e
)] 2+β

(m−1)(2−β)
t−

1
m−1 ∀t > 0 .

(4.102)
Moreover, the result is optimal w.r.t. long-time dependence, in the sense that
if (4.101) holds with reverse inequality and Sectω(x) replaced by Rico(x), then
there exist initial data u0 ∈ L1

rad(Mn) for which the analogue of (4.102) holds
with reverse inequality for large t.

The above result is a consequence of arguments that follow the lines of [118,
Theorem 3.1] and [120, Theorem 3.2]. For the reader's convenience here we
write down a concise proof (mostly borrowed from the proof of [118, Theorem
3.1]), which should allow one to realize how the Sobolev-type inequalities (4.9)
come into play.

Proof. Let q > 0 and σ = p/2 ∈ (1, 2∗/2], both being for the moment free
parameters. We can suppose with no loss of generality that u0 ∈ L1(Mn) ∩
L∞(Mn). In order to make rigorous the computations we shall carry out, one
needs some approximation procedures, which we skip because they are out of
the scope of this section: see [118] and references therein for more details. To
improve readability, throughout the proof we mean ‖ · ‖q ≡ ‖ · ‖Lq(Mn).

So, by multiplying the di�erential equation in (4.6) by uq, integrating by
parts and using (4.9), we obtain:

d

dt
‖u(t)‖q+1

q+1 =− 4q(q + 1)m

(m+ q)2

∥∥∥∇
(
u
q+m

2

)
(t)
∥∥∥

2

2

≤− 4q(q + 1)m

(m+ q)2 C2
σ

‖u(t)‖q+mσ(q+m) ,

(4.103)

where

Cσ :=
C p

2+β
2(2−β)

(p− 2)
β

2−β
(4.104)

and C is the same constant as in (4.9). Taking advantage of standard interpo-
lation and the well-known fact that the L1 norm does not increase along the
evolution, we infer that

‖u(t)‖q+1 ≤ ‖u(t)‖
σ(q+m)q

[σ(q+m)−1](q+1)

σ(q+m) ‖u0‖
σ(q+m)−(q+1)

[σ(q+m)−1](q+1)

1 ∀t > 0 . (4.105)
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For notational convenience, let us assume that ‖u0‖1 = 1 (the case of a general
L1 norm can be handled by a routine time-scaling argument). As a consequence,
from (4.103) and (4.105) there follows

d

dt
‖u(t)‖q+1

q+1 ≤ −
4q(q + 1)m

(m+ q)2 C2
σ

‖u(t)‖(q+1)
σ(q+m)−1

σq

q+1 . (4.106)

The integration of (4.106) yields

y(t)
σm−1
σq ≤ 1

1

y(0)
σm−1
σq

+ 4m(q+1)(σm−1)
σ(q+m)2C2

σ
t
∀t > 0 , y(t) := ‖u(t)‖q+1

q+1 ,

whence

‖u(t)‖q+1 ≤
[

σ(q +m)2C2
σ

4m(q + 1)(σm− 1)

] σq
(q+1)(σm−1)

t−
σq

(q+1)(σm−1) ∀t > 0 .

(4.107)
By previous results (see e.g. [117, Corollary 5.6] or [34, Theorem 1.5]), the
validity of (4.1) for a �xed p/2 = σ = σ0 ∈ (1, 2∗/2) entails the smoothing
estimate

‖u(t)‖∞ ≤ K t
− σ0

(σ0−1)(q+1)+σ0(m−1) ‖u0‖
(σ0−1)(q+1)

(σ0−1)(q+1)+σ0(m−1)

q+1 ∀t > 0 , (4.108)

where from here on by K we shall denote a general positive constant that
depends only on m,n, β, C0, R0 (which will not be relabelled). Therefore, the
combination of (4.107) (evaluated at time t/2) and (4.108) (with the time origin
shifted from 0 to t/2) yields

‖u(t)‖∞ ≤ K
[

σ(q +m)2C2
σ

4m(q + 1)(σm− 1)

] σq(σ0−1)

(σm−1)[(σ0−1)(q+1)+σ0(m−1)]

×

t
− σ0(σm−1)+σq(σ0−1)

(σm−1)[(σ0−1)(q+1)+σ0(m−1)] (4.109)

for all t > 0. Because q > 0 is a free parameter and (4.109) holds at any time
for any such q, we can let q = log(t+ e) in (4.109) to obtain

‖u(t)‖∞ ≤K
{

σ[log(t+ e) +m]2

4m[log(t+ e) + 1](σm− 1)

}− σ(σ0m−1)

(σm−1){(σ0−1)[log(t+e)+1]+σ0(m−1)}

× t
σ0−σ

(σm−1){(σ0−1)[log(t+e)+1]+σ0(m−1)}

{
σ[1 +m/ log(t+ e)]2

4m[1 + 1/ log(t+ e)](σm− 1)

} σ
σm−1

× C
− 2σ(σ0m−1)

(σm−1){(σ0−1)[log(t+e)+1]+σ0(m−1)}
σ

[
log(t+ e)C2

σ

] σ
σm−1 t−

σ
σm−1 ,
(4.110)

for all t > 0. If σ ∈ (1, σ0), it is apparent that the �rst two factors in the r.h.s. of
(4.110) can be bounded from above by another general positive constant K, so
that (4.110) reads

‖u(t)‖∞ ≤ K C
− 2σ(σ0m−1)

(σm−1){(σ0−1)[log(t+e)+1]+σ0(m−1)}
σ ×

[
log(t+ e)C2

σ

] σ
σm−1 t−

σ
σm−1 , (4.111)
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for all t > 0, which implies, upon recalling (4.104),

‖u(t)‖∞ ≤ K (σ − 1)
2βσ(σ0m−1)

(2−β)(σm−1){(σ0−1)[log(t+e)+1]+σ0(m−1)} ×
[
log(t+ e) (σ − 1)

− 2β
2−β
] σ
σm−1

t−
σ

σm−1 (4.112)

for all t > 0. We can now set

σ = 1 +
σ0 − 1

log(t+ e)
,

so that from (4.112) (using the fact that the �rst factor stays bounded) one
deduces that

‖u(t)‖∞ ≤K [log(t+ e)]
2+β

(m−1)(2−β)−
(2+β)(σ0−1)

[(m−1) log(t+e)+m(σ0−1)](m−1)(2−β)

× t−
1

m−1 +
σ0−1

[(m−1) log(t+e)+m(σ0−1)](m−1)

for all t > 0, i.e.

‖u(t)‖∞ ≤ K [log(t+ e)]
2+β

(m−1)(2−β) t−
1

m−1 ∀t > 0 ,

which is equivalent to (4.102) in the case ‖u0‖1 = 1.
As concerns optimality, it is enough to recall that [120, Theorem 3.2] en-

sures, provided the curvature assumption (4.101) holds with reverse inequality
and Sectω(x) is replaced by Rico(x), that any (nontrivial) bounded, compactly
supported and positive initial datum u0 gives rise to a solution of (4.6) satisfying
(in particular) the lower bound

‖u(t)‖m−1
∞ ≥ Ĉ (log t)

2+β
2−β

t
for large t , (4.113)

where Ĉ is a suitable positive constant depending on Mn,m, u0. It is plain that
(4.113) matches (4.102) (with respect to time behaviour) from below.

Remark 4.6 (The case β = 0). It is worth pointing out that Theorem 4.7 actually
holds for β = 0 as well: in fact in such case the result is true for all L1(Mn)
initial data, not only the radial ones. This is a direct consequence of Theorem
4.6 and [118, Theorem 2.1], whereas optimality follows from the sharp estimates
of [221].

Finally, in the quasi-Euclidean case, thanks to Theorem 4.2 we can obtain
the analogue of Theorem 4.7. The proof follows by combining [117, Corollary
5.6] (the fact that it is stated on Euclidean domains is inessential) and [120,
Theorem 6.2], so we shall omit it since the argument is just a simpli�ed version
of the one used in the proof of Theorem 4.7.

Theorem 4.8. Let Mn be a Cartan-Hadamard manifold such that

Sectω(x) ≤ −C1 r
−2 ∀x ∈Mn \BR0

(4.114)

for some C1 and R0 > 0. Then there exists a positive constant K > 0, depending
only on N,C1, R0, such that for any initial datum u0 ∈ L1

rad(Mn) the solution
u of (4.6) satis�es the smoothing estimate

‖u(t)‖L∞(Mn) ≤ K t
− ñ

2+ñ(m−1) ‖u0‖
2

2+ñ(m−1)

L1(Mn) ∀t > 0 , (4.115)
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where ñ is de�ned in (4.13).
Moreover, the result is optimal w.r.t. long-time dependence, in the sense that

if (4.114) holds with reverse inequality and Sectω(x) replaced by Rico(x)/(n−1),
then there exist initial data u0 ∈ L1

rad(Mn) for which the analogue of (4.115)
holds with reverse inequality for large t.
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Appendix A

A general result on

Riemannian manifolds with

boundary

In this appendix we prove a general result on Riemannian manifolds with bound-
ary, in particular let (M, g) be a n-dimensional orientable compact Riemannian
C2-manifold with boundary ∂M . For δ ∈ R+ we denote

Mδ := {p ∈M : dM (p, ∂M) > δ} ,

and for r ∈ R+ and z ∈M we denote by Br(z) the geodesic ball centred at z of
radius r, i.e.

Br(z) = {p ∈M : dM (z, p) < r} ,
where dM is the geodesic distance on M induced by g. Moreover we denote by
| · |g the Riemannian volume with respect to g.

Proposition A.1. Assume that there exist positive constants c and δ0 such that

|Br(z)|g ≥ crn , (A.1)

and Br(z) belongs to the image of the exponential map, for every z ∈ Mδ and
0 < r ≤ δ < δ0.

Fix p and q in a connected component of Mδ. Then there exists a piecewise
geodesic path γ : [0, 1] → Mδ/2 connecting p and q of length bounded by δNδ,
where

Nδ := max

(
4,

2n|M |g
cδn

)
. (A.2)

Proof. We proceed in three steps:

1. We observe that we can join p and q by a continuous path γ̃ : [0, 1]→Mδ

such that γ̃(0) = p and γ̃(1) = q.

2. We construct a chain of pairwise disjoint geodesic balls {B0, . . . ,BN+1} of
radius δ/2 such that:

� B0 is centered at p;
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� Bi is centered at γ̃(ti), where {ti} is an increasing sequence in [0, 1];

� BN+1 contains q;

� Bi is tangent to Bi+1 for any i = 0, . . . , N .

In order to construct this chain we consider the increasing sequence {t0, t1 . . . , tN}
in [0, 1] recursively de�ned as follows:

t0 = 0 ,

and

ti+1 := inf



t ∈ [0, 1] : Bδ/2(γ̃(s)) ∩

i⋃

j=0

Bδ/2(γ̃(tj)) = ∅ , ∀s ∈ [t, 1]



 , (A.3)

if the set in brackets is non-empty, and ti+1 = tN otherwise. Therefore, by
construction, {t0, t1 . . . , tN} is an increasing sequence in [0, 1] satisfying

Bδ/2(γ̃(ti)) ∩ Bδ/2(γ̃(tj)) = ∅ for i 6= j, i, j = 0, . . . , N , (A.4)

and
Bδ/2(γ̃(ti)) ⊂Mδ/2 i = 0, . . . , N .

We complete the sequence by adding tN+1 = 1 as the last term. Since
∣∣∣∣∣∣

N⋃

j=0

Bδ/2(γ̃(tj))

∣∣∣∣∣∣
g

≤ |M |g ,

from (A.1) and (A.4) we get
N + 1 ≤ Nδ . (A.5)

From (A.3) it is clear that

Bδ/2(γ̃(ti)) ∩
i−1⋃

j=0

Bδ/2(γ̃(tj)) 6= ∅ , for every i = 1, . . . , N .

3. We construct the piecewise geodesic path γ. The idea is the following: for
every i = 0, . . . , N we choose a tangency point pi between Bi and Bi+1. The
piecewise geodesic path γ is constructed by connecting γ̃(ti) with pi and pi with
γ̃(ti+1) by using geodesic radii, for i = 0, . . . , N − 1, and connecting γ̃(tN ) with
q by using a geodesic path contained in BN+1. Hence

length(γ) ≤ Nδ ≤ δNδ ,

as required.
In order to construct the path γ we set

σ(i) = max{j > i : Bδ/2(γ̃(ti)) ∩ Bδ/2(γ̃(tj)) 6= ∅} .

Then we set σ2(i) = σ(σ(i)), σ3(i) = σ(σ(σ(i))) and so on and �x τ ∈ N such
that στ (0) = N . We de�ne γ1 as a minimal geodesic joining p and γ̃(tσ(0)) and
such that

γ1 ⊂ Bδ/2(p) ∪ Bδ/2(γ̃(tσ(0))) ;
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for i = 2, . . . , τ , we let γi be a minimal geodesic joining γ̃(tσi(0)) and γ̃(tσi+1(0))
and such that

γi ⊂ Bδ/2(γ̃(tσi(0))) ∪ Bδ/2(γ̃(tσi+1(0))) .

Moreover, we let γτ+1 be a minimal geodesic joining γ̃(tN ) and q and such that

γτ+1 ⊂ Bδ/2(γ̃(tστ+1(0))) ∪ Bδ/2(q) .

Let γ be the piecewise geodesic obtained as the union of γ1, . . . , γτ+1. It is clear
that each γi has length δ for i = 1, . . . , τ , and ≤ δ for i = τ + 1. Since τ ≤ N ,
from (A.5) we obtain

length(γ) ≤ (τ + 1)δ ≤ δNδ ,

as required.

The second result of this appendix is the following Proposition in which we
give an upper bound of the diameter ofM when ∂M = ∅. The proof is analogue
to the one of Proposition A.1 and it is omitted.

Proposition A.2. Assume ∂M = ∅ and that there exist positive constants c
and δ such that

|Br(z)|g ≥ crn , (A.6)

for every z ∈M and 0 < r ≤ δ. Fix p and q in M , then there exists a piecewise
geodesic path γ : [0, 1] → M connecting p to q of length bounded by δNδ where
Nδ is given by (A.2).

In particular the diameter of M is bounded by δNδ.
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Appendix B

Sharp anisotropic Sobolev

inequalities with weight in

convex cones

In this appendix we prove a sharp version of the anisotropic Sobolev inequality
in cones by suitably adapting the optimal transportation proof of the Sobolev
inequality in [72, Theorem 2]. As we shall see, the proof not only applies to the
case of arbitrary norms, but it also allows us to cover a large class of weights. In
particular, our result extends the weighted isoperimetric inequalities from [46,
Theorem 1.3] to the full Sobolev range p ∈ (1, n) (note that the case p = 1 can
be recovered letting p→ 1+).

Theorem B.1. Let p ∈ (1, n). Let Σ be a convex cone and H a norm in Rn.
Let w ∈ C0(Σ) be positive in Σ, homogeneous of degree a ≥ 0, and such that
w1/a is concave in case a > 0. Then for any f ∈ D1,p(Σ) we have

(
ˆ

Σ

|f(x)|βw(x) dx

)p/β
≤ CΣ(n, p, a,H,w)

ˆ

Σ

Hp(∇f(x))w(x) dx (B.1)

where

β =
p(n+ a)

n+ a− p . (B.2)

Moreover, inequality (B.1) is sharp and the equality is attained if and only if
f = UH,aλ,x0

, where

UH,aλ,x0
(x) :=

(
λ

1
p−1 c(n, p, a,H,w)

λ
p
p−1 + H̃0(x− x0)

p
p−1

)n+a−p
p

(B.3)

with λ > 0 where
H̃0(ζ) := H0(−ζ) ∀ ζ ∈ Rn , (B.4)

and H0 denotes the dual norm associated to H, namely

H0(ζ) := sup
H(ξ)=1

ζ · ξ ∀ ζ ∈ Rn.
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Furthermore, writing Σ = Rk × C with k ∈ {0, . . . , n} and with C ⊂ Rn−k a
convex cone that does not contain a line, then:

(i) if k = n then Σ = Rn and x0 may be a generic point in Rn;

(ii) if k ∈ {1, . . . , n− 1} then x0 ∈ Rk × {O};

(iii) if k = 0 then x0 = O.

Proof. We aim at proving that for any nonnegative f, g ∈ Lβ(Σ) with ‖f‖Lβ(Σ) =
‖g‖Lβ(Σ) and such that ∇f ∈ Lp(Σ), we have that

ˆ

Σ

gγw dx ≤ γ

n+ a

(
ˆ

Σ

Hp(∇f)w dx

)1/p(ˆ

Σ

Hp′

0 g
βw dx

)1/p′

, (B.5)

with equality if f = g = UH,aλ,x0
. The value of γ will be speci�ed later. As shown

in [72], inequality (B.5) implies the Sobolev inequality (B.1).
Let F and G be probability densities on Σ and let T : Σ→ Σ be the optimal

transport map (see e.g. [225]).1 It is well known that, by the transport condition
T#F = G, one has

|det(DT )| = F

G ◦ T
(see for instance [?, Section 3]). Then, if we choose

F = fβw and G = gβw ,

the Jacobian equation for T becomes

|det(DT )| w ◦ T
w

=
fβ

gβ ◦ T .

We observe that, since
T#(fβw) = gβw ,

then for any 0 < γ < β we have

ˆ

Σ

gγw dx =

ˆ

Σ

(gγ−β ◦ T )fβw dx =

ˆ

Σ

[
|det(DT )| w ◦ T

w

] β−γ
β

fγw dx . (B.6)

We choose γ such that

β − γ
β

=
1

n+ a
i.e. γ =

p(n+ a− 1)

n+ a− p .

1 As explained in [97] (see also [98]), the argument that follows can be made rigorous using
the �ne properties of BV functions (we note that T belongs to BV , being the gradient of a
convex function). However, to emphasize the main ideas, we shall write the whole argument
when T : Σ → Σ is a C1 di�eomorphism, and we invite the interested reader to look at
the proof of [97, Theorem 2.2] to understand how to adapt the argument using only that
T ∈ BVloc(Σ; Σ).
Alternatively, arguing by approximation, one can assume that w is strictly positive in Σ\{0},

and that f and g are both strictly positive and smooth inside Σ. Then, if T : Σ→ Σ denotes
the optimal transport map from fβw to gβw, [?, Theorem 1 and Remark 4] ensure that
T : Σ → Σ is a di�eomorphism. This allows one to perform the proof of (B.5) avoiding the
use of the �ne properties of BV functions.
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Since T = ∇ϕ for some convex function ϕ, then DT is symmetric and nonneg-
ative de�nite. In particular det(DT ) ≥ 0, and it follows from Young and the
arithmetic-geometric inequalities that

[
|det(DT )| w ◦ T

w

] 1
n+a

≤ n

n+ a
det(DT )1/n +

a

n+ a

(
w ◦ T
w

)1/a

≤ 1

n+ a

[
div (T ) + a

(
w ◦ T
w

)1/a
]
.

Also, from the concavity of w1/a we have that

a

(
w ◦ T
w

)1/a

≤ ∇w · T
w

(see [46, Lemma 5.1]), hence

[
|det(DT )| w ◦ T

w

] 1
n+a

≤ 1

n+ a

(
div (T ) +

∇w · T
w

)
. (B.7)

(If a = 0 then w is just constant and (B.7) corresponds to the arithmetic-
geometric inequality.) Noticing that

div (T ) +
∇w · T
w

=
1

w
div (Tw) ,

combining (B.6) and (B.7) we have
ˆ

Σ

gγw dx ≤ 1

n+ a

ˆ

Σ

div (Tw)fγ dx

= − γ

n+ a

ˆ

Σ

wfγ−1T · ∇f dx+
1

n+ a

ˆ

∂Σ

wfγT · ν dσ .

Here we notice that, since T (x) ∈ Σ for any x ∈ Σ, the convexity of Σ implies
that T · ν ≤ 0 on ∂Σ. Thus we obtain
ˆ

Σ

gγw dx ≤ − γ

n+ a

ˆ

Σ

fγ−1T · ∇f w dx ≤ γ

n+ a

ˆ

Σ

fγ−1H̃0(T )H(∇f)w dx ,

where the last inequality follows from the de�nition of the dual norm H0 of H
and from the de�nition of H̃0 (B.4). Finally, setting p′ = p

p−1 , it follows by
Holder's inequality that

ˆ

Σ

fγ−1H̃0(T )H(∇f)w dx ≤
(
ˆ

Σ

f
p(γ−1)− pβ

p′ Hp(∇f)w dx

)1/p

×
(
ˆ

Σ

H̃p′

0 (T ) fβw dx

)1/p′

=

(
ˆ

Σ

Hp(∇f)w dx

)1/p(ˆ

Σ

H̃p′

0 g
βw dx

)1/p′

,

where we used the transport condition T#(fβw) = gβw and the identity

γ − 1− β

p′
= 0 .
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Hence, by this chain of inequalities we get (B.5).
In order to prove the sharpness of our Sobolev inequality we choose f = g =

UH,a1,O . In this particular case the transport map reduces to the identity map
T (x) = ∇ϕ(x) = x and det(DT ) = 1. Also the homogeneity of w implies that
∇w ·x = aw. This implies that all the inequalities in the previous computations
become equalities and we obtain (B.1).

Finally, to prove the characterization of the minimizers one can argue as in
[98, Appendix A] and [72, Section 4]. More precisely, choose g = UH,a1,O and let
f be a minimizer. As noticed in the proof of [72, Theorem 5], one can assume
that f ≥ 0.

First one shows that the support of f is indecomposable (this is a measure-
theoretic notion of the concept that {f > 0} is connected, see [98, Appendix A]
for a de�nition and more details). Indeed, otherwise one could write f = f1 +f2

with
ˆ

Σ

Hp(∇f)w(x)dx =

ˆ

Σ

Hp(∇f1)w(x)dx+

ˆ

Σ

Hp(∇f2)w(x)dx

and then by applying (B.1) and the fact that f is a minimizer, we would get

(
ˆ

Σ

fβw(x)dx

)p/β
≥
(
ˆ

Σ

fβ1 w(x)dx

)p/β
+

(
ˆ

Σ

fβ2 w(x)dx

)p/β
.

Since
ˆ

Σ

fβw(x)dx =

ˆ

Σ

fβ1 w(x)dx+

ˆ

Σ

fβ2 w(x)dx

(because f1 and f2 have disjoint support), by concavity of the function t 7→ tp/β

we conclude that either f1 or f2 vanishes.
Once this is proved, one can then argue as in the proof of [72, Proposition 6]

to deduce (from the fact that all the inequalities in the proof given above much
be equalities) that T must be of the form T (x) = λ(x− x0) for some λ > 0 and
x0 ∈ Σ, from which the result follows easily. Finally, properties (i)− (ii)− (iii)
on the location of x0 follow for instance from the fact that T has to map Σ onto
Σ.
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Appendix C

Symmetry results for critical

p-Laplace equation in Rn

The goal of this section is to revisit the proof of Theorem 3.1 when the cone Σ is
Rn and the norm H(·) is the Euclidean norm | · |, which is the simplest possible
case. In this case, a proof of Theorem 3.1 is already available in literature
[48, 203, 224] and asymptotic estimates on u and ∇u are already known (see
Lemma C.1 below). The knowledge of those asymptotic estimates allows us to
give a more readable version of the proof of Theorem 3.1 and to emphasize the
main ideas without entering in technical details.

The theorem that we are going to prove in this Appendix is the following:

Theorem C.1. Let n ≥ 2 and 1 < p < n. Let u be a solution to




∆pu+ up
∗−1 = 0 in Rn

u > 0 in Rn

u ∈ D1,p(Rn)

(C.1)

then u(x) = Uλ,x0
(x), for some λ > 0 and x0 ∈ Rn, where

Uλ,x0
(x) :=



λ

1
p−1

(
n

1
p

(
n−p
p−1

) p−1
p

)

λ
p
p−1 + |x− x0|

p
p−1




n−p
p

. (C.2)

We will need the following three preliminary results which are collected in the
following three lemmas: in the �rst lemma we prove explicit growth conditions
on u, ∇u and ∇2u, in the second lemma we recall the Newton's inequality and
in the third lemma we recall a general di�erential identity which holds in a very
general setting.

Lemma C.1. Let n ≥ 2, 1 < p < n and u be a solution to (C.1). Then

(i) there exist two constants C1 and C2 depending only on n, p and u such
that

C1

1 + |x|n−pp−1

≤ u(x) ≤ C2

1 + |x|n−pp−1

and |∇u(x)| ≤ C2

1 + |x|n−1
p−1

, (C.3)
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for every x ∈ Rn.

(ii) There exist a radius R0 and a constant C3 depending only on n, p and u
sucht that

|∇u(x)| ≥ C3

|x|n−1
p−1

, (C.4)

for every x ∈ Rn \BR0
.

(iii) There exists a costant C4 depending only on n, p and u sucht that such
that

|∇2u(x)| ≤ C4

|x|n−1
p−1 +1

, (C.5)

for every x ∈ Rn \BR0
.

Proof. (i) and (ii) are shown in [224, Theorem 1.1] and in [203, Theorem 2.2],
respectively. In order to prove (iii) we argue as in [29, Theorem 3.3]; let ρ > 4R0

be �xed. For y ∈ E = B4 \B1/4, we de�ne

ũ(y) = ρ
n−p
p−1 u(ρy) . (C.6)

We notice that, from (C.1),

−∆pũ =
1

ρ
p
p−1

ũp
∗−1 in E . (C.7)

Hence ũ satis�es an elliptic equation (thanks to (C.4)) of the form

n∑

i,j=1

aij∂
2
ij ũ = − 1

ρ
p
p−1

ũp
∗−1 ,

where the coe�cients aij are given by

aij(y) = |∇ũ(y)|p−2

{
(p− 2)

∂iũ(y)∂̃ju(y)

|∇ũ(y)|2 + ∂2
ij ũ(y)

}
.

From (C.3) and (C.4) we have that there exists γ depending only on n and p
such that

1

γ
|ξ|2 ≤ aij(y)ξiξj ≤ γ|ξ|2

for every y ∈ E and ξ ∈ Rn. Notice that interior Schauder's estimates (see e.g.
[112]) apply to ũ(y). This entails |∇2ũ| ≤ C4 for some positive constant C4,
that is

|∇2u(ρy)| ≤ C2ρ
p−n
p−1−2 ,

for y ∈ B2 \B1/2 and (iii) follows.

Lemma C.2 ([55], Lemma 3.2). Let B and C be symmetric matrices in Rn×n,
and let B be positive semide�nite. Set A = BC. Then the following inequality
holds:

S2(A) ≤ n− 1

2n
Tr (A)2. (C.8)
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Moreover, if Tr (A) 6= 0 and equality holds in (C.8), then

A =
Tr (A)

n
Id ,

and B is, in fact, positive de�nite.

Lemma C.3 ([29], Lemma 4.1). Let v be a positive function of class C3 and
let V : Rn → R+ be of class C3(Rn) and such that V (∇v)div (∇V (∇v)) can be
continuously extended to zero at ∇v = 0. Let

W = ∇[∇ξV (∇v)] = Vξiξj (∇v)∂2
ijv . (C.9)

Then, for any γ ∈ R we have

2vγS2(W ) = div (vγS2
ij(W )Vξi(∇v))− γvγ−1S2

ij(W )Vξi(∇v)∂jv (C.10)

and

div
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)
)

= 2vγS2(W ) + γ(γ − 1)(p− 1)vγ−2V (∇v)Vξi(∇v)∂iv

+ γvγ−1 ((p− 1)V (∇v) + Vξi(∇v)∂iv) Tr (W )

+ γvγ−1
(
(p− 1)Vξi(∇v)Vξj (∇v)∂2

ijv + Vξjξl(∇v)∂2
livVξi(∇v)∂jv

)
.

(C.11)
In particular, if

V (ξ) =
|ξ|p
p

for p > 1 and ξ ∈ Rn , (C.12)

then

2vγS2(W ) = div
(
vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)∇ξV (∇v)
)

− γ(γ − 1)p(p− 1)vγ−2V 2(∇v)

− γ(2p− 1)vγ−1V (∇v)∆pv .

(C.13)

Observe that, in this particular case,

W (x) := ∇[|∇v(x)|p−2∇v(x)] .

We are now ready to give the proof of Theorem C.1.

Proof of Theorem C.1. We consider the following auxiliary function:

v = u−
p

n−p . (C.14)

An easy computation shows that v is a positive solution to

−∆pv +

(
p

n− p

)p−1
1

v
+
n(p− 1)

p

|∇v|p
v

= 0 . (C.15)

By using Newton's inequality (C.8) we get

2vγS2(W ) ≤ n− 1

n
vγ(∆pv)2 , (C.16)
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for any γ ∈ R, where W is as in Lemma C.3. From (C.16) and from formula
(C.13) (here we can perform an approximation argument as in Subsection 3.2.1
which is simpler in this case because, thanks to Lemma C.1, we know that
u ∈ C2,α(Rn \BR0

)) we obtain

n− 1

n
vγ(∆pv)2 ≥div (vγS2

ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)∇ξV (∇v))

− γ(γ − 1)p(p− 1)vγ−2V 2(∇v)

− γ(2p− 1)vγ−1V (∇v)∆pv .
(C.17)

Observe that choosing γ = 1− n from Lemma C.1 we get that

vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)∇ξV (∇v) = o(|x|n−1) , (C.18)

as |x| → ∞. Hence, by integrating (C.17) in a ball of radius R, by using the
divergence Theorem and by sending R to in�nity (using (C.18) and recalling that
|∇u|p−2∇u ∈ W 1,2

loc (Rn), see Proposition 3.2) we obtain (here we can perform
an approximation argument as in Subsection 3.1.3)

n− 1

n

ˆ

RN
vγ(∆pv)2 dx ≥− γ(γ − 1)(p− 1)p

ˆ

RN
vγ−2V 2(∇v) dx

− γ(2p− 1)

ˆ

RN
vγ−1V (∇v)∆pv dx ,

(C.19)

and by using (C.15) (recall that γ = 1− n) we get

− (n− 1)

ˆ

Rn
v−n−1V (∇v) dx+

n− 1

n

(
p

n− p

)p−1 ˆ

Rn
v−n−1 dx ≥ 0 . (C.20)

Now we show that the equality holds in (C.20), indeed by multiplying (C.15)
by v−n and integrating by parts we obtain

− (n− 1)

ˆ

Rn
v−n−1V (∇v) dx+

n− 1

n

(
p

n− p

)p−1 ˆ

Rn
v−n−1 dx = 0 .

This implies that all the previous inequalities are equalities and then the equality
holds in Newton's inequality (C.16), that is (from Lemma C.2)

W (x) = λ(x)Id for a.e. x ∈ Rn , (C.21)

for some function λ : Rn → R. To conclude the proof, we show that the function
λ is constant. Since

λ(x) =
1

n
Tr (W (x))

=
1

n
∆pv(x)

=
1

n

(
p

n− p

)p−1
1

v(x)
+
p− 1

p

|∇v(x)|p
v(x)

,

and since v ∈ C1,α
loc (Rn), we get that λ ∈ C0,α

loc (Rn). Moreover, elliptic regularity
theory yields that v ∈ C2,α

loc (Rn \BR0
), which implies that λ ∈ C1,α

loc (Rn \BR0
).

From (C.21) we have that

∂j(|∇v(x)|p−2∂iv(x)) = λ(x)δij for i, j ∈ {1, . . . , n}, (C.22)
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which implies that |∇v|p−2∇v ∈ C2,θ
loc (Rn \ BR0

). Then, given i ∈ {1, . . . , n},
choosing j 6= i and using (C.22) we obtain

∂iλ(x) = ∂i(∂j(|∇v(x)|p−2∂jv(x))) = ∂j(∂i(|∇v(x)|p−2∂jv(x))) = 0 ,

for any x ∈ Rn \ BR0
, which implies that λ is constant on Rn \ BR0

. In order
to deduce that λ is constant in the whole Rn, we can argue as in Subsection
3.2.2. For this reason we omit the details and conclude that λ is constant. In
particular, recalling (C.21)

∇[|∇v|p−2∇v] = W = λId in Rn .

Hence |∇v(x)|p−2∇v(x) = λ(x− x0) for some x0 ∈ Rn; this implies that

v(x) = c1 + c2|x− x0|
p
p−1 ,

or equivalently (recalling (C.14)) u(x) = Uλ,x0
(x). This completes the proof of

Theorem C.1.
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Appendix D

Serrin vs Alexandrov

In this appendix we show that the celebrated theorems by Alexandrov and
Serrin (Theorem A and Theorem B in the Introduction) are in some sense
equivalent. In particular, one can use Serrin's Theorem to prove Alexandrov's
one and viceversa. The Appendix is divided in two sections: in the �rst one
we show how to deduce Serrin's Theorem from Alexandrov's Theorem, while
in the second one we show how to deduce Alexandrov's Theorem from Serrin's
Theorem.

We recall that Serrin's result is the following:

let Ω ⊂ Rn be a bounded domain with boundary of class C2. Then there exists
a solution u ∈ C2(Ω) ∩ C1(Ω̄) to





∆u = −1 in Ω

u = 0 on ∂Ω

∂νu = c on ∂Ω .

if and only if Ω is a ball.

While Alexandrov's result is the following:

the sphere is the only C2-regular, connected, closed hypersurface embedded in
the Euclidean space with constan mean curvature.

D.1 Serrin implies Alexandrov

Let S be a connected, C2-regular and closed hypersurface embedded in Rn with
constant mean curvature. Thanks to the embededness we may assume that
S = ∂Ω, where Ω ⊂ Rn is a bounded domain. We want to prove that ∂Ω is
a sphere. In order to do this, we consider the unique solution to the following
Dirichlet problem {

∆u = 1 in Ω

u = 0 on ∂Ω .
(D.1)

Our goal is to assume that H, the mean curvature of S, is constant and to show
that u satis�es

∂νu = c on ∂Ω. (D.2)
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D.1. SERRIN IMPLIES ALEXANDROV

Then according to Serrin's result, applied to −u, Ω must be a ball and we prove
Alexandrov's Theorem.

To prove (D.2), we follow the approach in [194, Theorem 5] (see also [30,
Appendix B]). Thanks to (I.15) and thanks to Newton's inequality (I.13) we
get, for all x ∈ Ω,

n− 1

2n
=
n− 1

2n
(∆u)2 ≥ 1

2
div(S2

ij(∇2u)∂iu) . (D.3)

By integrating over Ω, using the divergence theorem on the right hand side and
using that ν = ∇u/|∇u| we obtain

n− 1

2n
|Ω| ≥ 1

2

ˆ

∂Ω

S2
ij(∇2u)∂iuνj dσ

=
1

2

ˆ

∂Ω

S2
ij(∇2u)∂iu

∂ju

|∇u| dσ

=
n− 1

2
H

ˆ

∂Ω

|∇u|2 dσ ,

where we used the following formula (see e.g. [30, Formula 61])

S2
ij(∇2u)∂iu∂ju = (n− 1)H|∇u|3 ,

and the fact the mean curvature H of ∂Ω is constant. Hence we get
ˆ

∂Ω

|∇u|2 dσ ≤ |Ω|
nH

. (D.4)

On the other hand, from Holder's inequality, we have
(
ˆ

∂Ω

|∇u| dσ
)2

≤ |∂Ω|
ˆ

∂Ω

|∇u|2 dσ . (D.5)

Moreover, from the divergence theorem,

|Ω| =
ˆ

Ω

∆u dx =

ˆ

∂Ω

|∇u| dσ . (D.6)

Hence, from (D.5) and (D.6) we get

|Ω|2 ≤ |∂Ω|
ˆ

∂Ω

|∇u|2 dσ .

Recalling (D.4) we have proved that

|Ω|2 ≤ |∂Ω| |Ω|
nH

. (D.7)

Now, thanks to the Minkowski's identity (see e.g. [195])
ˆ

∂Ω

Hx · ν dσ = |∂Ω| ,

and the fact that, by assumption, the mean curvature H of ∂Ω is constant we
obtain that

H =
|∂Ω|
n|Ω| .

and hence the equality in (D.7) holds. This entails that equality holds in both
Newton and Holder inequalities and hence |∇u| must be constant on ∂Ω and
from this fact we immediately obtain that (D.2) holds true and we conclude.
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D.2 Alexandrov implies Serrin

Let Ω ⊂ Rn be a bounded domain with boundary of class C2 and suppose that
there exists a solution u ∈ C2(Ω) ∩ C1(Ω) to





∆u = −1 in Ω

u = 0 on ∂Ω

∂νu = c on ∂Ω .

(D.8)

If we show that the mean curvature H of ∂Ω is constant, then according to
Alexandrov's Theorem, ∂Ω must be a sphere.

To prove that the mean curvature of ∂Ω is constant, we argue as in [92, 215].
We use the already cited P -function introduced by Weinberger

P (x) = |∇u(x)|2 +
2

n
u(x) . (D.9)

We notice that P is subharmonic. Indeed

∆P = 2|∇2u|2 +
2

n
∆u = 2

(
n|∇2u|2 − 1

n
(∆u)2

)
,

and this is non-negative according to Cauchy-Schwarz inequality. Moreover, P
is constant on ∂Ω, hence from the strong maximum principle we obtain that
either

P ≡ c2 in Ω. (D.10)

or
P < c2 in Ω. (D.11)

Arguing as in Weinberger's proof of Serrin's theorem (see Introduction to Part
I) one can prove that (D.10) holds true. From (D.10) and (D.9) we get

|∇u(x)| =
√
c2 − 2u(x) := g(u(x)) , (D.12)

for all x ∈ Ω. Obviously g is a function of class C1 in (0,maxu). Moreover,
since the function t→

√
t is strictly monotone we have that ∇u ≡ 0 only where

u attains its maximum on Ω; then the vector �eld ν = −∇u/|∇u| is well-de�ned
on the set U := {x ∈ Ω : u(x) ∈ (0,maxu)}.

We observe that ∂νu = −|∇u| = −g(u) and that

∆u = ∂2
ννu+ (n− 1)H∂νu (D.13)

where H is the mean curvature of the level set of u. From (D.13) and (D.8)
we get that H depends only on u, actually on g(u) and on ∂2

ννu; moreover we
observe that, on the one hand

∂ν(|∇u|2) = 2∂νu∂
2
ννu ,

and on the other hand, from (D.12),

∂ν(|∇u|2) = 2g(u)g′(u)∂νu ,

so
∂2
ννu = g(u)g′(u) . (D.14)
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Hence, from (D.13) and (D.14), we get

H =
1 + g(u)g′(u)

(n− 1)g(u)
in U ,

and this identity says that the mean curvature of each level set of u at height
between 0 and maxu is constant. By Alexandrov's Theorem we deduce that the
connected components of each level set must be spheres. Since ∂Ω is connected
this implies that Ω must be simply connected (otherwise a particular level set
would contain two nested spheres of equal radius, which is a contradiction).
Therefore each level set consists of exactly one sphere, and because of (D.12)
these spheres are concentric and Ω is a ball.
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