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Abstract

It is widespread since the beginning of KAM Theory that, under “sufficiently small”
perturbation, of size €, apart a set of measure O(4/¢), all the KAM Tori of a non—-degenerate
integrable Hamiltonian system persist up to a small deformation. However, no explicit,
self-contained proof of this fact exists so far. In the present Thesis, we give a detailed
proof of how to get rid of a logarithmic correction (due to a Fourier cut—off) in Arnold’s
scheme and then use it to prove an explicit and “sharp” Theorem of integrability on
Cantor-type set. In particular, we give an explicit proof of the above-mentioned measure
estimate on the measure of persistent primary KAM tori. We also prove three quantitative
KAM normal forms following closely the original ideas of the pioneers Kolmogorov, Arnold
and Moser, computing explicitly all the KAM constants involved and fix some “physical
dimension” issues by means of appropriate rescalings. Finally, we compare those three
quantitative KAM normal forms on a simple mechanical system.
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Notational conventions

e denotes the Neper’s number i.e. exp(1)

N=1{1,2,3,--}and Ny = {1,2,3,- -}

R and C are respectively the set of real and complex numbers
vVi=u!ygland vy =v + -+, forany v = (v, 1) € Nd

y? =yt gy for any y, B € RY

(W, s ya)l = max{unl, -+ fyal}  and - |(yr, - ya)la = VYT + 0+
(o1 20) ) = (@ 2) (e a)) = T+ Taa
dist denotes the distance function

A denotes the closure of A

0A denotes the “boundary” of A

conv (A) denotes the convex—hall of A

C™(A, B) (resp. C*(A, B)) denote respectively the set of functions of class C™ (resp.
C™ with compact supports) from A into B

meas 4 denotes the d—dimensional Lebesgue—measure

dom (f) denotes the domain of f

supp (f) denotes the support of f

B.(p) (resp. D,(p)) denotes the ball centered at p with radius r in R? (resp. in C%)
B,.(A) (resp. D,(A)) denotes the r—neighborhood of A in R (resp. in C%)

AT denotes the set of («, 7)-Diophantine vectors

T? denotes the strip of width s around T? in C?

{f) denotes the average of f on T?

avpe 0 f oy . .
fo=20,f= = Ty denotes derivative of order v of f



Iso(V) denotes the set of isomorphisms from V' onto itself

M, (C?) the set of n—by—m matrices with entries in C? and S,,(C%) = M,,(C?) =
M,, ,(C?) the set of symmetric square matrices of order n

Adj (A) denotes the adjoint of A
det(A) denotes the determinant of A
AT denotes the transposed of A

NM and T'M are respectively the normal and tangent bundle of the manifold M
I'(M) denotes the space of smooth vector field on M
§(M) denotes the space of smooth functions on M

minfoc (M) denotes the minimal focal distance of the manifold M



1 Introduction

In the solar system framework, Celestical Mechanics, a branch of astronomy, consists
ultimately in the study of the n—body problem. The n—body problem is the dynamical
system that governs the motion of n planets interacting according to Newton’s gravitation
law. A holy—grail question in Celestical Mechanics was and remains the stability of the
solar system, i.e. whether the current configuration of the planets will stay unchanged
forever under their interaction, or whether some planets will be kicked out of the system or
have their trajectories be drastically affected to eventually collapse and give rise to unpre-
dictable behaviors. Across the history of Mathematics, most of the great figures devoted
some part of their works to this question. Laplace (1773), Lagrange (1776), Poisson
(1809), and Dirichlet (1858) used series expansion techniques to study the question of
stability of the solar system and claimed all to have proved it. Then Bruns (1887) proved
that, from quantitative point of view, the only method which could solve the n—body
problem is the series expansions. But, the works of Haretu (1878) and Poincaré (1892)
(see [ ]) show that all those series expansion techniques fail as the series expansions
they use diverge (see | , , , : | for more historical details).

A new viewpoint is thus undeniably needed to overcome this embarrassing fact. The
change of paradigm was made by Poincaré. Indeed, Poincaré introduced a completely
revolutionary qualitative approach to Mechanics (see | , |). The point is that,
for question such as stability, one needs to study the entire phase portrait, and in partic-
ular the asymptotic time behavior of the solutions.

The phase portrait is the family of solutions curves, which fill up the entire phase space.
The phase space is a symplectic manifold (a differentiable manifold together with a sym-
plectic structure). Dynamical system is then just given by a Hamiltonian vector field;
this is the Mathematical model for the global study in Mechanics that Poincaré gave in
his qualitative theory. With his new geometrical methods, Poincaré discovered the non-
integrability of the three body problem. In fact, the small divisor problem was well-known
to Poincaré, who was aware that, because of this problem, nearly—integrable Hamiltonian
systems are, in general, not integrable (analytically). Poincaré and his successors then



speculate that most of the classical systems were chaotic, and ergodic. There were even
a gaped proof of the ergocity of a generic Hamiltonian system by E. Fermi in the 1920’
(see | , , , ]). This ergodic hypothesis was accepted by many,
including some of the brightest mind of those times, till the discoveries by Kolmogorov
and his followers.

At the 1954 International Congress of Mathematician in Amsterdam, against any expec-
tation, Kolmogorov (see | : |) presented a four—pages note where he sketched
the proof of the persistence of the majority of tori for a nearly—integrable Hamiltonian
system. Then, his former student Arnol’d (see | : ]) completed the proof in
the analytic category, and Moser (see | , , ]) in the smooth category,
whence the acronym KAM Theory.

The object of KAM Theory is the construction of quasiperiodic trajectories, which are sets
of perpetual stability, in Hamiltonian dynamics. A KAM scheme is essentially based on
the Newcomb idea of successive constructions of change of variable through a Newton—
like method. Those successive changes of variables are carried out to eliminate, in a
super—exponentianlly increasing manner, the fast phase variables. A KAM scheme of
course encounters the small divisor problem that Poincaré faced. Netherless, the super—
exponentianlly decay make the whole scheme converge.

Formally, one is given a symplectic manifold (M, w), a (smooth) Hamiltonian H: T*M —
R. To the Hamiltonian H, is associated a (unique!) smooth vector field, the Hamiltonian
vector field, say Xy, given by the equation

w(Xpy,) =—dH .
The smooth vector field Xy then generates a flow, say ¢!, by the relation

d ¢

%¢H = Xpgooy . (1.0.1)
In particular, if M = RYxT¢ and @ = dy; Adxy+- - - +dyq Adzg, then Xy = (—0,H, 0,H)

and, therefore, the equation (1.0.1) reads

{yj S = 0,50, (102)

Then, to construct quasi—periodic trajectories for the Hamiltonian system (1.0.1), one
looks for a change of variable ¢': (v, 2’) — (y,x) = ¢'(¢/, 2'), with the following properties

(a) ¢ preserves the Hamiltonian structure of (1.0.1). More precisely, ¢ preserves the
symplectic form i.e. ¢*w = w;



(b) ¢ conjugates ¢; to a linear flow:
¢t ol o by, r) = (y,wt + 1), with  w:=0,H(y, ). (1.0.3)

However, one does not solve directly (1.0.3). Instead, one conjugates the Hamiltonian
itself 7.e. construct ¢ in such away that

Hoo(y,x') = He(y) , (1.0.4)

as the latter is much easier to carry out than the former. Once (1.0.4) holds, by the
property (a), (1.0.3) follows (see for instance | ] for details).

The numerical property of the frequency or winding number w plays a crucial role in
the construction of the invariant tori. The most common assumption is the Diophantine
property. A vector w € R? is said («, 7)-Diophantine if

«

w - k| = i vV k e Z4\{0}, (1.0.5)
1
where |k§|1 = “{?1| + -+ |k§d|
Facts Let
AT = {weRd w - k| = |/§T : VkeZd\{O}} :
1
and

A=Ay,

a>0

be the set of all («, 7)-Diophantine vectors. Thus
(1) If T <d—1, then AT = ¢F (see | 1);

(#7) If 7 = d—1, then the set A™ has zero Lebesgue—measure, but is of Hausdorff dimen-

sion d. In particular, the intersection of A” with any open set has the cardinality of
R (see [ , 1)

(iii) If 7 > d — 1, then the Lebesgue-measure of RA\AT is zero. In fact,

244/d
2

k[T

meas (Br(0)\A?) < R« VR, a>0. (1.0.6)

keZd\ {0}

As soon as the existence of invariant tori is established, one can speak of Kolmogorov
sets, which turn out to be very big. A Kolmogorov set associated to a Hamiltonian H



is an union of its invariant maximal KAM tori. A maximal KAM torus for H is an
embedded, Lagrangian, Kronecker torus with Diophantine frequency w. A Kronecker
torus with frequency w is an embedded torus on which the H-flow is conjugated to the
linear flow

R x T3 (t,z) — x + wt .

In this thesis, we are mainly concerned with “sharp” measure estimates of Kolmogorov
sets, with emphasize on the dependence of those measure estimates upon the geometry of
the domain.

Moser introduced in | | the original idea of parametrizing a non—degenerate quasi—
integrable Hamiltonian by the frequency vectors and then apply the KAM technics (see
also | : ). In | ], the author made a short discussion of the measure of
the complement of Kolmogorov set. Then, very recently, Biasco and Chierchia | ],
give a detailed proof of the measure estimate result in | | and show how this measure
estimate depends upon the domain. We revisit the paper | | in this thesis and
our computation in particular fixes a small gap in the statement of | | (see §4. of
Remark 2.1.5 below).

Arnold’s scheme | , | can be summarized as follows. Let K and P be real-
analytic in Dy := D, (yo) x T? , with K integrable and such that

K,(yo) = we Al and det K, (v0) # 0,

with @ > 0 and 7 > d — 1. Thus, the torus 7, = {yo} x T? is a KAM torus for K on
which its flow ¢k is linear:

O (Yo, ) = (Yo, wt + ).

Then, the idea of Arnold is to construct a near—to—identity symplectic change of variables
(bli D1 = _D,n1 (yl) X T(Sil — D() s
with Dy < Dy such that

{H1:=H0¢1=K1+52P1, Lo

0y K1(y1) = w, det &K (y1) # 0.

And for € small enough, one can iterate the process and build a sequence of symplectic
transformations (j = 1)

¢j: Dj = Drj (y]> X T(si] — Djfl s D] C Djfl y



and satisfying

H :=Ho¢; =K, +e*P
I co =kt ety (1.0.8)
Oy K;(y;) = w, detd, K;(y;) #0.
In performing this construction, one is first attempt to solve the linear PDE
0y,K;(y) - 0ug; + P;(y, x) = function of y exclusively, (1.0.9)

where g; is a generating function for ¢;. But (1.0.9) does not admit solution, because of
small divisor problem (see | | for more discussion). The key idea of Arnold is then to
solve only a truncated version of (1.0.9), with the order of truncation large enough so that
the error one commits by solving approximately (1.0.9) is of order the square of the size of
the perturbation. The truncation is the origin of the logarithmic correction in the small-
ness condition required in order to iterate infinitely many times the Arnold process. In
particular, the Lebesgue—measure estimate of the complementary of the Kolmogorov set
one gets from Arnold’s scheme is O(4/g (loge~1)3("+1)/4), This estimate is not the optimal
one, which is O(y/¢) (see for instance | |, where the constant in front of /¢ in the
optimal measure estimate is computed explicitly and the proof uses the KAM Theorem a
la Moser). The task of getting rid of the logarithmic correction in the Arnold’s scheme is
not obvious. The first paper in this direction is the sketchy 7-pages paper | ], where
Neishtadt outlines how to overcome the logarithmic correction. The approach we adopt
here is essentially equivalent to the one in [ | though conceptually different. Indeed,
in our scheme we fix the frequencies of the tori we build up from the beginning once for
all. Instead, in [ | as well as in the original paper by Arnold | |, the tori as
well as their respective frequencies are constructed iteratively.

Moreover, in our approach, we focus on the smallest possible «v i.e. the situations where the
square—root of the sizes of the perturbations are proportional to the Diophantine constant
a of the frequency of the tori. We then discuss the measure estimate of the Kolmogorov
set we build up. The sharpness of the measure of the Kolmogorov set is in fact intimately
related to the power of the Diophantine constant « in the smallness condition under
which one performs the KAM scheme. Recently, Villanueva [ | revisited the classical
Kolmogorov scheme and succeed to cut down the power of « in the smallness condition,
from 4 to the optimal which is 2; but with no measure estimate of Kolmogorov set
discussion. See also | ] where he got the exponent 2 for « in the smallness condition,
in the framework of exact symplectic maps in Euclidean spaces of even dimensions.



1.1 Main results

As a basic rule in this thesis, we compute explicitly all the KAM constants. Investigat-
ing the explicit dependence of the “KAM constants” upon the parameters in a quasi—
integrable Hamiltonian system is of great interest, not only in view of its applications
(for instance to the n—body problem | |, to geodesic flows on surfaces, etc ) but also
for the discussion of explicit measure estimates of Kolmogorov sets. The content of this
thesis can be described very roughly as follows:

(1) We prove three quantitative KAM normal forms following closely the original ideas
of the pioneers Kolmogorov, Arnold and Moser. We compute in particular explicitly
all the KAM constants in them and fix physical dimension issues by rescaling
conveniently various quantities. Then, we compare those three quantitative KAM
normal forms on a simple mechanical system.

(1) We give detailed proof of how to get rid of the logarithmic correction in the Arnold’s
scheme and then use it to prove an explicit and “sharp” Theorem of integrability
on Cantor-type set.

(1ii) We prove three types of sharp measure estimate of Kolmogorov sets. In the first
one, we adopt the global approach which consists in constructing the Kolmogorov set
in a given bounded domain and then estimate its measure. In the two others, we slice
the domain into relatively small cubes with equilength sides. In each of those cubes,
we construct a  Kolmogorov set associated to the restriction of the Hamiltonian to
such a cube and estimate its measure. Then, we sum up the local Kolmogorov sets
constructed.

One of the local approaches follows the idea in | | and recover its result.

In the second local approach, we introduce a geometric integer constant of a set
which is the minimal number of cubes one needs to cover the set by cubes with the
same side—length, centered on the set and with total “volume” not exceeding some
fized amount. This third approach is somehow more intrinsic.

(i) More precisely, we prove in Theorem 2.1.1 (following Kolmogorov’s proof in | 1,
scheme to which a complete proof was given in | , ]) that for any small enough
perturbation of a non—degenerate Kolmogorov normal form, there exists a symplectic
change of variables such that in the new variables, the Hamiltonian reduced to a Kol-
mogorov normal form.

We prove in Theorem 2.1.2 (following Arnold | ] and basing on | : 1)
that, under a sufficiently small perturbation, with size say e, of a non—degenerate inte-

10



grable Hamiltonian system, the majority ( 1 — O(y/z (loge™')*/4) of the total Lebesgue-
measure) of the invariant, Lagrangian, Kronecker tori with Diophantine frequencies of the
integrable system persist, being only slightly deformed.

In Theorem 2.1.4, we prove (following Moser| ] and basing on | ]) that on a
bounded domain, the totality of the invariant maximal KAM tori of the linear normal
form, whose frequencies are far enough from the boudary persist under any small enough
perturbation. These tori are just a little bit deformed and persist as invariant maximal
KAM tori, not of the perturbed Hamiltonian itself, but of the perturbed Hamiltonian plus
a small shift of the frequency.

In Chapter 3, we compare the explicit KAM mormal forms on a simple mechanical
Hamiltonian and compute the numerical values of the thresholds within these Theorems
in a concrete case.

In Theorem 4.2.1, we prove an explicit Theorem of integrability on a Cantor—like
set. Namely, for any given sufficiently small perturbation of a non—degenerate integrable
Hamiltonian on a bounded domain, we construct a C'°—symplectomorphism which con-
jugates the perturbed Hamiltonian to an integrable Hamiltonian on a Cantor-like set.
The Cantor-like set is equipotent to the set of phase points which are at some minimal
distance from the boundary and such that their image by the Jacobian of the unperturbed
part are Diophantine vectors, with fixed Diophantine parameters. Moreover, the ratio of
their respective Lebesgue-measures minus 1 is small with the size of the perturbation.

(ii) In Theorem 5.2.1, we prove a refinement of the Arnold’s Theorem by overcoming the
logarithmic correction looming from the original scheme. Indeed, we prove that, for any
small enough perturbation of a non—degenerate integrable Hamiltonian system, most of
(1 —O(+4/¢) of the total Lebesgue-measure, where ¢ is the size of the perturbation) of the
invariant maximal KAM tori of the integrable system persist, up to a small deformation.
To do so, we isolate the smallness parameter € from the super—exponential parameter
so that, and this is the whole point, as soon as ¢ is chosen conveniently to perform the
scheme one time, one can iterate infinitely many times without any other requirement
and, in particular, ¢ “disappears” once for all from the second step on.

In Theorem 6.2.1, we prove an explicit, intrinsic and sharp integrability Theorem on
a Cantor-like set. Namely, given any small enough, real-analytic perturbation of a non—
degenerate integrable Hamiltonian on a bounded domain, we build-up a transformation,
C® in the Whitney sense and symplectic. Actually, the two Cantor—like sets are lipeo-

11



morphic!. In those new variables, the nearly-integrable Hamiltonian becomes integrable
on a Cantor—like set. The Cantor-like set is equipotent to the set of phase points which
are far enough from the boundary and which images through the Jacobian of the un-
perturbed part are («,7)-Diophantine, for some o > 0 and 7 a number larger than the
half-dimension minus one. In particular, we get a family of invariant maximal KAM torus
which complement has a Lebesgue—measure bounded from above by a constant propor-
tional to a.

(iii) The novel part of the present thesis consists mainly in Part I1 and, in particular and
more interestingly, the various “sharp” and geometric measure estimates of the unstable
sets within a Hamiltonian system we provide.

1.1.1 Measure estimate 1

Then, we derive in Theorem 6.2.2 the following. Let 2 < R be a non-empty bounded
domain with smooth boundary 02 and a small enough o > 0, depending on the geometry
of the hypersurface 02. Let H be a sufficiently small perturbation, of order O(a?), of a
non—degenerate integrable Hamiltonian K. Then, the set .# left out of the H— invariant
maximal KAM tori is bounded in measure by

meas (&) < (37‘(‘)(132-;0 (2 HTN0D) a + C(d, 09, T, R?) a* + meas (@5\@5@))
0o
(1.1.1)

— 0(a), (1.1.2)

where? H4"1 denotes the (d — 1)-dimensional Hausdorff measure (or equivalently, the
(d—1)-surface area), R%” denotes the curvature tensor of 02, oy is the loss of analyticity,
Ty is the norm of the inverse of the Hessian K, of the unperturbed part,

. aTg

" 32doy
D5 ={ye 2 : dist(y,092) = 0},
Do = (ye T+ K,(y) e AL} .

(] y
o T koi(R??)
d T Raj — 0 2] 52]—1
O( y00, 10, ) 16d0'0 ]Z_:l 13(27"‘1) )

1i.e. there exists a bijective Lipschitz continuous function from one onto the other.
2See Appendix F for the definitions.

12



with ky;(R??), the (2j)-th integrated mean curvature of 02 in R<.

Remark 1.1.1 (i) The first two terms of the r.h.s. of (1.1.1) arise from the estimation of the
d—strip around 09, Z\%;s, out of which we construct the family of invariant KAM tori. Notice
that the last term meas (Z5\%; ) is of order O(«) by (1.0.6), whence (1.1.2) holds.

(ii) The estimate (1.1.1) might be seen as a “sharp” version of the measure estimate of the
invariant set in the Two—scale KAM Theorem of | ].

The following is proven in Theorem 6.4.2. Let H = K(y) + ¢ P(y,x) be a perturbation
of a non—degenerate integrable Hamiltonian K, where ® a non—empty, bounded subset of
R? and K, P two real analytic function on © x T with bounded extension to Dy, (D) x T¢ ,
for some rp > 0 and 0 < s < 1. We prove that, for a sufficiently small ¢ (with explicit
upper—bound), one can construct by “localization” argument a family of H-invariant
maximal KAM torus, say ., which complement has a Lebesgue-measure of order O(«)

and estimated in two ways as follows.

1.1.2 Measure estimate 11

More specifically, we show one hand that the Kolmogorov set .2 is bounded in measure
from above (in the spirit of | ]) by

meas ((D x T)\#¢) < C p; (diam®D + 0%,

with C' a positive universal constant depending only upon the dimension d and 7,

In? T
p1 = 7 )
0o Io
. fo
0= Foagpe
n=TK>1,
Kd
VP=—2=>=1,
0

0= ;gif) | det Ky (y)| > 0,

0<o9g<2%dsg,
T :=sup ”Kyy(y)il” )
YyeD

K= HKyy|

ro,® -

13



This provides an alternative proof to the result in | | (alternative in the sense that the

proof in | | is based upon Moser’s idea while here, we use Arnold’s scheme) and our
proof is somehow more complete as we compute explicitly all the constants while | ]
refers to | ], where the constants are left implicit.

1.1.3 Measure estimate III

On the other hand, in a more intrinsic way, we build up (under the same basic assumptions
as above) a family #" of H— invariant maximal KAM torus such that

9T 1 -

meas (D x T)\#) < C' — n2 meas (D)7

0o

a )

with op, ¥, T as in §1.1.2, C' a positive universal constant depending only upon the
dimension d and 7, and ng € N a “covering number” of © defined morally as follows.
Given R > 0, define the set € of coverings of © by cubes as follows: F' € €5 if and only

if there exists ngp € N and ng cubes, say F;, 1 <1 < np, of equal side-length 2R, centered
at a point y; € ® and such that

F={Fi:1<i<np} and @CGE.
i=1
Then define
K = {R >0:%r # J and Fél%gR np(2R)* < 2¢meas (@)}
and

Ny = %g}min {np :Fe%r and npR®< meas (@)} :
60

Remark 1.1.2 In the above definition of “covering number”, one could replace the coefficient
2% in front of meas (D) in the definition of Z by k > 1, leading to

Ry = {R >0:%r # & and Fmgf npR? < 27% - meas (@)}
€Cr

and

ng = gi{gmin {nF :Fe%r and npR?Y<2 % meas (@)} :
E(/

14



1.2 Notations and set up

Fix® d e N\{1}. Let Q < R? be non-empty and bounded domain with piecewise smooth
boundary and T? := R¢/27Z%, the d-dimensional torus.

Given h, 1, s, a, €9, T > 0, n,p e N, yy € C? and a non-empty A = C?, A’ = R?, we define
the following. Let*

A;::{weRd:|w.k|>“{O},voqckezd}, (1.2.1)
1
d
be the set of («, 7)-Diophantine numbers, where |k|; = Z |k;| is the 1-norm on® C? and
j=1

Q= {weQnA;: dist (w, Q) == min |w — wy| 204},

wx €O
where | - | is some norm on C%; everywhere in this thesis, we shall use
[#| = max |z,
the sup-norm on C%, except in §2.1.4 where we shall use |- | = | - |;. Let"

_ (0 —14
()
Df(yo) = {yECd:’y—yo‘l <7“} )

Di(yo) = {ye C*: |y —yo| <r} ,
i) = | D)

yoeA
BY(A") := R~ DY(A),
T¢ = {zx e C*: |Imz| < s} /27Z*
Di (yo) = {yeC: ly—yo| <r} x T7,

Dg,s = Dg,s(o) )
th = U Dh(U)) y
weN

Wyseo = D% x{ceC:le| <&},

TS,

3Forus, N:=={1,---}, Ng:=1{0,1,---}.

tAs usual w -k == wiky + - - + waky.

5And in general on C? as well as on all its subsets (R™, Z™, N™| etc).

6We shall nevertheless drop the dimension d as it is fixed once for all, and write B, (yo) instead of
Bl(yo), etc .
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where 1, := diag (1) is the unit matrice of order d.

C? x C? will be equipped with the canonical symplectic form @ = dy A dz = dy; A dx; +
oo+ dyg A dxg.

Given a linear operator L£: (Vi, |- |) — (Va, ]| - |), its “operator—-norm” is given by

| £z

sevinioy [zl

IL]| == so that |Lz| < |L|||z| for any =z e V.
Let A, s(yo) (resp. Brs(Yo), Arshd, Brse,) be the set of real-analytic functions f on

D, (yo) xT? (vesp. Dy % Qo n, Wi 5.2,) With finite norm \Hfmm’yo (resp. | flrsw0 1fllrspas |f
defined below. Let

Ir.s.20);

AL) = {1 € Aoalom) 0 = g [ o) do =0, ¥y e Dot}

AP paand BY, _ are defined analogously. Given w € R* and f € A, (y0) U Arsn.a | Brs.co
we define

d
Dwf =we fa: = ijij7
j=1

write’ ' ‘
F=2 fee™™ = > fne™(y—u),
keZd keZd,leNd
1 )
where  fj := ) f f(z)e ™ dox = Z fix (—1w0)', keZ® define
T Jm leNd

T.f := Z fx e** reN

lkli<k

and define on A, ¢(yo) (resp. Bys(v0), Arsnds Brse,), the norms®

£ lago = D, [l eFirlit fresp. | gy == sup |f],
k,lezd Dr,s(y0)
” : ”T’,s,h,d = sup |f|a H ’ |7‘,s,50 ‘= Ssup |f|> .
D'r,s XQa,h Wr,s,so
d
"As usual, (y — yo)! = n(yj — ygj)lf. Here, and henceforth, e := exp(1) denotes the Neper number
j=1
and i a complex—square-root of —1: 32 = —1.

8Notice that the above definitions apply also to vector-valued real analytic functions i.e. f :=
(fh e 7fn) with {f] ?:1 o= -Ar,s(yO)) etc.
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Moreover, for a matrix—valued periodic functions £(y, x), we define’

‘H‘C‘Hr,&yo = sup H|£(7 ')&‘HT,SJ/O ’

a1 =1
and for a given f € A, s,,, the Fourier’s norm of the 3-tensor 02 f is given by

s
szléxjéxkéml

bick

Il

d
o =y S D
=1

bla=lels =1 §

7,8,90
Given a map ¢: A < C" — CP, its Lipschitz constant is defined by

lploai= sup 2=

< 0.
z,yeAzHy |z —y|

1.3 General remarks

1. We have chosen the norms for simplicity but any others'® “

be used.

algebra norms” maybe

2. As we are going to compare the four theorems on a concrete Hamiltonian and since
we use two different norms, we need a kind of equivalence between them. Indeed,
we have, forany r > 0,0 <o < s

Hf r,8—0,Y0 < ‘HfH?ZS—U,yo = Z |fm,n|1 6(S—U)\nllr|ml1
n,meza
< Z W e_s‘n‘l 6(5—0')|7L‘1r|m|1
n,mezd r
= dHfHT,S,yO Z 67‘7|n|1
neZzd
d
= d| fllrsuo (Z 6—a|k|>
keZ

92 d
= d) flrsgo (14 ——
£l ( — 1)

— d||f].s.p, tanh (%) .

9With an analogous definitions with the other norms. For instance, | L] sy, = sup [L£(:,")alrs.yo-

a|=1

10An algebra norm is a norm satisfying |z - y| < |z|||y], for any = and y.
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3. Through the present thesis, we shall denote by C' (resp. ¢), at any place (with index
or not), a constant depending (eventually) only on d, 7 and v (see below) and greater
(resp. less) or equal than 1 i.e. C' = C(d,7,v) =1 (resp. ¢ = ¢(d, 1,v) < 1).

18



Part 1

Classical KAM Theorems and
Quantitative normal forms
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2 Quantitative KAM normal forms

2.1 Statement of the explicit KAM normal forms
theorems

2.1.1 Kolmogorov’s normal form

2.1.1.1 Assumptions

Let a,7,60>0, 7>2d—-1, 0<20<s<1 and
Sy = S — 20.
Let’s consider a hamiltonian H € B, s, such that K (y,z) := H(y, z;0) has the form"!
K=K+w-y+Q(y,x) with Q=0(y]*), KeR, and (2.1.1)

weAl e w is (a,7)-diophantine. (2.1.2)

Furthermore, assume that K in (2.1.1) is non—degenerate in the sense that'?
det (32Q(0,-)) # 0 .

Write

|H =K +¢cP|

and set
1

M = Pz, T = <a§Q(o, )

HAs usual, w -y = w1y + - + waya; @ = O(Jy|?) means that 0y Q(0,2) = 0 for all m € N? with

Imly
|m[1 < 1, where 0" = ;mﬁ and |m|; =mq + -+ + mg.
yy 0y,

12(.) being the average over T¢.
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Finally define
E = 2E := 2max (r]w|, Q5.0 |W|QHTH) ;
W = diag (|w| Ly, ro|w| 1g),

Ty =1(s — 20),

B, = B,,(0),
Co = 291727 /T(21 + 1),
Cy:=2-37Cy,

Cy = 2dC; + 27+,

Cy = dCy + 27+2)
Cy:=Cy+277C,

Cs == 37dCy (2dCy + 279 |
Cg = 2"""ICy + Cs,

C, = §azc5 +81-27)PBC, +9.27CmH) g2,

2
Cg = 1807,
Cy 1= 9d2C2 + 3 - 2779y,
v =41 + 10,
vi=41 4+ 12,
C = max (2_(2T+5)Cg, Cg) ,
C = d (3dC + 2779¢;) |
9d - 24T+23 _
Cy = Cy(d,7) = ———— (3dC + 27 +9C;) |
1
p— d = —
c=cld )= g
~  6d, -
Ci=— (3dC +27C79Cy)
C
C=C(d,T1)=—,
B 3C
L:=CE o "r Ta Yw/ M,
L= CE o "r 3o *|w| ™M,
6 5 272 Ci 510 v 10 4, 16
L= _—r 2w/ "LE*= —E % "r Va *w| "M,

"5 3.9v
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2.1.1.2 Statement of the KAM Theorem

Theorem 2.1.1 (Komogorov | |, pg. 52) Under the assumptions in §2.1.1.1,

the following hold. There exists a real-analytic symplectomorphism ¢y : B, x T¢ intg
B.(0) x T, depending analytically also on € € (—¢e, €x), with

€4 = min (50, c E’904T“37°100¢4|w]6]\/[’1) :

such that ¢.|.—o is the identity map and, for any |e| < e,

Ho ¢*(y/>$/) = K*(y/ax/§5) = K*(g) tw- ?Jl + Q*(y’,x';s), with Q. = O(|y/]2)

and
CE? le| L
7W *_'drssa K_K*€7 - * || T ,S%,E% 9 QT_T* gi
AoV Oe = Dlresnee s K= Kalers Q= Qulrvisnes  WlIT =Tl < 15
(2.1.3)

2.1.2 KAM Theorem apres Arnold

2.1.2.1 Assumptions

Let a,79 > 0,7 > d—1,0 < 200 < s9g < 1, 99 € R? and consider the Hamiltonian
parametrized by € € R

H(y,z;¢) = K(y) + eP(y, x),

with
K, Pe BTOJO(yO) .
such that
w = K,(yo) € A, det Ky (yo) + 0. (2.1.4)
Set

T= Kyy(yo)_l’ My = HPHT01807y07 KO = HKyyHro,ym TO = HT”
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Finally, for a given ¢ + 0, define'®

Ko 1
Wy := diag <max {O, } 14, ﬂd) ;
a Ty

no = ToKo ,
v=1t+1,
3 2u+d
Com V2 (5) [ ol + ) ey

3 v+d
com2(5) [ e
2 Rd

C2 = d438(d_1) )

Cy = d*C? +6dCy + 1,

Cy == max {Cy, C3} ,

Cs = 92(v+d)+11325-2 2

Cs := max {32d, 107 Cr} |
C; = max{Cy , Cy},

Cs=3-5"Cq,
L F2u+1 2
o Ve
8
Co5-d\ i
Cio = max{l , <3d2) } ,
5
i — CgC?nglo 7

Sy = Sg — 2090,

p1 = C8 Mo 06(3V+2d+1) maX{L 2 } s
roKo

17
. T _—(4v+24d)
p2 = Ciing' 0y ;

1
. 1 (o) 12\/§ OZTO v
€ﬁ = min e , eXpP —E ?TO y

_ K0|6|MO

a2

d
13Notice that J ly|T e Whdy > J ly|T e Whdy > d f e vildy, | =
R4 {lyj|=1:5=1, ,d} {lya=1}

d
=d’ (2 e_l)d > q4-1 (2 e‘l)d = ds-1 (2\/&6_1) > 1 because 7 =>d— 1= 1. Thus, Cyg > 1 and C; > 1.

Ho -
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2.1.2.2 Statement of the KAM Theorem

Theorem 2.1.2 (Arnold | 1) Under the assumptions in §2.1.2.1, the following
hold. For any given € satisfying

Ho < €t
(2.1.5)
P -max{l, P2 Lo (logﬂal)zy} " Ho (logﬂal)y <1,

there exist y. € By, (yo) and an embedding ¢, : T — Dy o (y0), real-analytic on T¢  and
close to the trivial embedding

QbO: T e Td - (y*7l’> € DTO750(y0>7

such that the d-torus

Toe = ¢« (TY) (2.1.6)
is a non-degenrate invariant Kronecker torus for H i.e.
O © Pu(2) = P + wit). (2.1.7)
Moreover,
Wo (s —id)| < ag*t, (2.1.8)

uniformly on {y.} x T¢ .

Remark 2.1.3 It is not difficult to see that Theorem 2.1.2 is stronger than Theorem 2.1.1.
Indeed, let the assumptions in §2.1.1.1 hold. Then, Taylor’s expansion yields H(y,z) = K*(y) +
Pi(y, z), where

1
K'(y) =Ktwy+5(T7)y,

1 L1 —1¢)?
Piy,z) = = ((33Q(0,2) =T V)y) -y +3 ). yﬂf St oQ(ty,x) dt + eP(y,x) .
2 |8]1=3 0 6‘
Thus,
Ki0)=weA], detKi (0)=detT'+0 and  |P¥,sc =O(?) +O(e) .

Consequently, by choosing r proportional to /e, one can apply Theorem 2.1.2 and recover
Theorem 2.1.1.
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2.1.3 KAM Theorem apres J. Moser (following J. Pdschel)

2.1.3.1 Assumptions

Let r,Ah >0, 0 < s <1 and consider the hamiltonian parametrized by w
H(y,z,w) = N(I,w) + P(y,x,w) where N(y,w) := Ko(w) +w -y, with Ko, P€ A, spna ,

and Xy and Xy the hamiltonian vector fields associate to H and N respectively with
respect to the canonical symplectic form w. Let ¢4 and ¢ be the hamiltonian flow
associate to H and N respectively. We have then, ¢%(y,x) = (y,z + w - t). Let'*

V—v

r,s,h,d 5 B =1~ —
14%

a>0, v>v=1+1>d, e:=|P

¢ := min (1, —— e) . B=B.(0), W= diag (r 1,205 '1,),

W = diag (20 7as"r 14,20 Tas 14, 1,)

NI

4Notice that one could use any 1 > 8 >1—1 + %
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and define'®

Cy = 2071727 /T(2r + 1),

4
Ol = 6,

3
B B (e )]
Cr = Z(d—l—j)!(d—1)j+17

7=0
C; = 4(d + 1)00 ,

04 = 16<d + ]->OO s
Cs = 16(6C, +1)C;
Cs = 24, 3 2723 1)
7=0
Cr = 36d(d + 1)(6C, + 1) exp  ONLFDOAED) §ry-o(e(3)5-2) )
Ch Z

0 3\J . .
Cg = C7Z 2_’7<2(§) _]_2>—J’

7=0
Cy = max (1, 6021(;(: 1> ,

Cio = 947 (max {48d(d + 1)*Cp, 4%(d + 1)Cs})*,

1(/20\"" 1
011 = exXp 5 <<C> +20>),
LG ", 1
P9 6o, 11 20

BT(z) = § t*"te7'dt, Rez > 0 is the Euler’s gamma function. Notice that if 7 > d — 1 then
Cy = 29+17271/4[271-3 . 6 > /3, where [27] denotes the integer part of 27.

Cis
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andl(i

C =C(d,7) = enC,
Cy = Cy(d, 7) == max (CsCy, Cy) ,

1 20%ew et 20”
4”010’011’012’013> '

(2.1.9)

¢ =c(d,7,v) :=20"" min (
Finally, let
®o: (z,w) e T x R — (0,2) € B x T,
be the trivial embedding.

2.1.3.2 Statement of the KAM Theorem

Theorem 2.1.4 (P6schel | ) Let H, @y, ¢, v, v, C, Cy and ¢ as in §2.1.3.1 and
assume that

(@)
Q>
—_

ei=—<cs” and Ce< — < — (2.1.10)

U )
2Kg

where

[ 40log e — 1]
Ko = |——————|.

s
Then, there exist a Lipeomorphism ¢: 2 — € close to the identity and a Lipschitz contin-
wous family of real analytic Lagrangian torus embeddings ®: T¢ x Q — B x T¢ closed to
the trivial embedding ®o such that the following hold. For any w € Qn, ®(T% w) is a La-

grangian submanifold and an invariant Kronecker torus for Hywy with Hyu)(y, v,w) =
H(y,z, p(w)), i.e.
G, © D1, w) = Bz + wt;w), Vo e T (2.1.11)

Moreover, ®(T% w) is a Lagrangian submanifold and the maps x — ®(x,w) is real analytic
on T‘é for each given w € €2 and one has uniformly on T‘é x €0 and ) respectively, the

following estimates'”

|P

r,8,h
W@ @)l A W@ o) < O (21.12)
P r,Ss
lo—idl. hlp—idl,, < et (2.1.13)

16Notice that C1y > Cs. Moreover, if & < e min(20¥C;}, Cpt)o” then kFol e 0% < e < 1/(2CskE)

and therefore kgo > d — 1; compare Appendix A, with ¥ = % and ¢ replaced by © e,

"Here and in §2.3.3 as well, we shall denote by ||f|z 4, the uniform Lipschitz’ semi-norm of the
function f w.r.t the w—argument (parameter) varying in the set A.
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Remark 2.1.5

1. If one chooses h = ?, then the assumption (2.1.10) in Theorem 2.1.4 reduced to

e < cras”.
2. Notice that we have some freedom in the choice of Cg. Indeed, one just needs to chose
Cs . i o2 —i=2) (2.1.14)
=0

>
2Chlog 2 o

3. To be precise, in Theorem 2.1.4,

P: {0} x T x Q — B x T

4. Notice that the v in Theorem 2.1.4 is larger than the v = 7+ 1 Pdschel uses in Theorem A

and B in | ]. In fact the Theorem A and B are not valid for v = 7 + 1. Indeed'®,
assuming the contrary, then for any ¢ = -~ < vs”, there would exists xo € N such that
kool e "7 < e < 1 with o= — (2.1.15)
0 T 20° "

But then'?, e < ¢ i.e. kgo = loge™!. Hence, we would have, if we take ¢ = vs” in
particular, for any 0 < s < 1,

1 g¥ (2.1.15)
2w > erbo’ > e (loge™)” =8 (log(ys) )"

i.e.
1>2-20"y (log(vs”)_l)y, V 0 < s < 1; contradiction.

2.1.4 KAM Theorem apreés Salamon—Zehnder

2.1.4.1 Assumptions
Let

. _ 5— 35
0<s<s<s<l1, o:= 5 r,o,E By >0, 7>d—1,

where j,k € N. Let’s consider a hamiltonian H € A, 5(yo), for some y, € R? and a pair of
real-analytic functions (u,v) on T? such that

) ey < B NlE0yH], S, < Bos

7,5,90

18We are using here the same notations as in | ]
YBecause koo = 1.
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for any 7,k € N and
llully, < U, lvll, <V and - pi= o —woll, <,

for some
0<U<s-—s and V >0,

M =14+uy, and H, (0):= Hy, (v(6),0 + u(0))

are invertible for each given # € T¢ and, defining®”,
T =M'H M,
(T is invertible. Let w € A7 and define f and g by

{w+Dwu—Hy(v,id+U) = f (2.1.16)

D,v+ H,(v,id+u) = g
Futhermore, assume that

IMIl, <, IMT <B lell, <V, lIfI < E gl <G KT <T,

for some V,F,G > 0 and M,M, T > 0. Finally, define

Vo= max{v, r—p},
Ay = Jw|, Ay:=max{A;, El,l}a
A3 = max {E2,1 ) EE1,2A2 ) E2E073A§},
A, = max {E370 , EEg 1Ay, E2E1,2A%} ’
A5 = max {A4 s EA1A2}, A6 = max {A5 ) ‘7A3} )
A; = max {EE[)Q , EOQT} - max {04—2E0,2A6 ; CV_lAs},
A\2T EA2 T T T
Ay = (s—8) max{l, —— EgoT", E1oT , EEy38T ¢,
r—p
Ay = max{A7, A} ,
A, = max {EE(),Q ; EOQ%} - max {Oé_lF ; CY_QEOQ‘A/F ’ a_QEO’QG}'

20 A=T stands for the transpose of the inverse of A: A= := (Afl)T.
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2.1.4.2 Statement of the KAM Theorem

Theorem 2.1.6 (Celletti—Chierchia | 1) Under the assumptions in §2.1.4.1, the
following holds. There exists a polynomial = in (s,0) satisfying
5 1
ZSE(a,b)<21+88a<109, VO<a<1,VO<b<§, (2.1.17)

such that, if

A AMTM (s — §) 72T+ =(5 ) < 1| (2.1.18)

then there exists (i, 9), real-analytic on T4, A,—close to (u,v) and solving

{ w+ Dyt — Hy(v,id+a) = 0 (2.1.19)

D, o+ H,(v,id+u) = 0

Futhermore, (&) = (uy and the solution (U, v) is uniquely determined in the A,—neighborhood
of (u,v) by the condition () = {u).

For a proof, see | ].

Remark 2.1.7 Notice that instead of the bound V on vy used in | | to define the param-
eters, here we use V. The point is that, with this change, one is then allowed to chose V = 0
when v is constant.

2.2 Some preliminary facts

As we are going to use the same idea as in | ] to extend maps obtained through the
KAM step in the proof of Theorem 2.1.4, we will need a cut—off function.

Lemma 2.2.1 (Cut—Off) Then, for any n € N, there exists a constant C,, > 0 such that

for any given R > 0 and a non-empty A <= R?, there exists x € C(C?) n C*(R?) with

0< x <1, suppx € Agr = U Dr(w), x=1 on Ag and for any m € N with |m|, < n,
weA

def (|ml: +2)!

105Xl = sup [0x] < Co™pry (2.2.1)

Proof Let a,b > 0 such that 0 < a < 7 and % +a<b<1-a. Consider

1
4

eTE | <1

teRm— t) = ,
u () { 0 if |f =1
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o (o)

X(w) = JRd Xoyr (W) Xa(w — y)dy.

Define?!

Thus, x € C(C%) n C*(R?) and

e suppx < Apg. Indeed, for any w € R? y(w) > 0 implies that xa,,(y) > 0 and
Xa(w —y) > 0 for a.e. y € R? (with respect to the Lebesgue measure on R?); which
implies in particular that there exist 3o € R? and w, € A such that |yo — ws| < bR
and |w — yo| < aR, so that |w —w,| < (a +b)R < R i.e. suppx < Ag.

e Y=1on A%' Indeed, let w € A§ Pe |w—ws| < g, for some w, € A. Then, for any
y € RY,

1
lw—1y| <aR = |y—w*|<|y—w|+|w—w*|<(a+§)R<bR = y € Ayg.

Hence,

d
1> x(w) = J Xa(w —y)dy = N, (af xl(t)dt) =1
B, (w) R
Moreover, for any w € Ay and for any n € N, we have??

Op X(w) = L Xapr (¥) 00, Xa(w — y)dy = J Xapr (¥) 00, Xa(w — y)dy
R

BgR(w)

d
_ n o _ p—d n w1 — Wi —Yj
a de ( )aled(w y>dy & Na Ld lel ( aR > ]:__‘[Xl ( aR >dy
aR\¥ ]*2
n d—1
_ RN, ((aR)”“J d;“n(t)dt) (aRf Xl(t)dt)
R t R

— <(QR)" JR dn;(t;(t)dg <JR Xl(t)dt)_l (aR JR Xl(t)dt>deNa

~ ) (] m(t)dzs)l [ 3y

d21XAbR denotes the characteristic function of the set Ayg, i.e. xa,, = 1 on Ayg and xa,, = 0 on
R \AbR.
221n fact, one checks easily that for any m e N¢ | ||0™y|o < Hé’mhxﬂo == ||6L’Z'1XH0.
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One checks easily that for any t € R and n € N,

dnxl
dtm

(11?52%961(?5),

(t) =

with  FPy:=1, Pi(t):=—-2t andforanyn=>1

24P,

Poi1i= (=2 +4n(1 — )P, (t) + (1 — ) 7

and one has, for any n > 1,
deg(P,) = 3n — 2.

(t),

The existence of the sequence (C,), then follows easily and in particular, by choosing

a = 1 and, then, b = 2, we can take”

Cl::i,!ej . d;tl (zt)dzf:436
and
2 9 ) .
2!22 R dd;;l (B)d < 4§ ' SL (1—115)4 ¢~ 207
= 32 e? st‘*e‘;ds _ 832ez
1 3
i

(2.2.2)

The following lemma establishes a bound on the Lipschitz constant of a map obtained as
the composition of infinetly many Lipschitz maps and will be used to prove the Lipschitz
continuity of the map in Theorem 2.1.4, obtained through the infinite iterative KAM

scheme.

Lemma 2.2.2 Let (X, | - |) be a real or complex normed vector space, L;: X — X be a
sequence of invertible linear operators and (g;);=0 be a sequence of Lipschitz continuous

maps from X to itself. Define
L= 11£5(g5 — i) Lo 1.
Ly = [Lo(Gj —id) L5 | p.x

24/6
23We have 513 < f x1(t)dt < \—[
R

GO = ld7

and assume that
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0
4 1
6 :=sup||L;L7L]| <o and Z M < = (2.2.3)
520

=0

[\]

Then (G;);j=0 is a sequence of Lipschitz continuous maps and for any j =0,
1L£0(Gji1 —id) Ly na < 2 2 51y (2.2.4)

Proof For any j > 0, we have
Livyi = |Lo(Gy —id) Ly {(LoLy) -+ (L5m1 L) L£4(g; —id) Ly +id} +
T (LoLr) - (L5 L57) L9 =1L,
< (L+ 0L + 81

J
Hence, we get, inductively, that for any j > 0, L1 < L; + 2071; < 2 Z .. 1

We recall the very famous Cauchy estimate used to control the derivatives of an
analytic function.

Lemma 2.2.3 (Cauchy’s estimate) Let pe N, f € A, 4. Then, for any multi-index
(I,k) e N4 x N with |l|y + |k|; < p and for any 0 <1’ <7, 0 < s < s,

H&zl/al;fHT’,S’,h,n < P flrspn(r — T,)”ll(‘s - S/>|kll-

In the next lemma, we recall some properties of the Fourier’s coefficients of an analytic
function.

Lemma 2.2.4 Let k€N, feArshd,O<0<swzth/€> . Then

(Z) |fk(ya )| < e_lkhs”ershd ) VkEZd yEDr(O), weQa,ha
(”) ”f T, f”rs crhd 4d02’f € HUHershd

Proof
(i) Let ke Z¢, y e D,(0), w € Qup. Then

1
(2m)

24 As usual, 65 —LL VyeRe [eZd.

1 g
oyt -y

fr(y,w) = er fly,z,w) e da.
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But, for any given 3 € R? such that |3| < s, by periodicity of v in each argument
and Cauchy’s theorem, we get

1 . .
fily,w) = f fly,x —iB,w) e da.
(27)? Jrpa
Now, we choose = (s — o) (sign (ki1),- -, sign (kg)) with 0 < o < s. Thus, we get

[fily,w)| < e it f

and letting o — 0", we get the desired inequality.

‘r,s,h,d )

(77) We have

Hf_THf rs—ohd S ”f r,8,h,d Z €_|k|10
|k‘|1>l€
o0
= | flrsna Z Z o lklio
l=k+1 kez
|k|1=1
0
< Nflrsha D) 4% e
l=k+1
0
< ”f r,s,h,df gdpd=1 e=to ¢
K
0
< 4%k 6—’W||f r,s,h,df (t—l— 1)d—1 o td=1) gy
0

= 4d02l€d€_KUHer757h’d.

In the following lemma, we recall some facts about the homological equation.

Lemma 2.2.5 (]| ) Letpe N, we A} and f e A, 4 Then, for any 0 < o <'s,
the equation

Dwg:f

has a unique solution in A, ., , and there ewist constants B, = B,(d,7) = 1 and
k, = ky(d,7) =1 such that for any multi-index k € N® with |k|; <p

r,s—ao,h,d < Bpi“ f”r,s,h,d Uikp .

|okg

In particular, one can take By = Cy (see [ , /).
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Now, we recall the classical implicit function theorem, in a quantitative framework.

Lemma 2.2.6 (Implicit Function Theorem I 1) Letr,s >0, n,meN, (yo,20) €
C* x C™ and *°

F: (y,z) € D(yo) x DI*(xy) €« C"*"™ — F(y,x) e C"

be continuous with continuous Jacobian matriz F,. Assume that F,(yo,xo) is invertible
with inverse T = F,(yo, o)~ such that

1—
sup 11, —TF,(y,z)| <c<1l and sup |[F(yo,-)| < (1=cr
Dy (y0) x D1 (w0) Dy (x0) Il

(2.2.5)

Then, there ezists a unique continuous function g: DT (xo) — D(yo) such that the fol-
lowing are equivalent

(1) (y,2) € D(yo) x D (o) and F(y,x) = 0;
(i7) x € DM(xo) and y = g(x).
Moreover, g satisfies

T
sup g0l < 10 sup [Flyo, )| (2:2.6)
Dy (o) — € Dy (xo)
Finally, we recall some inversion function theorems.
Taking n = m, ¢ = ¢ = % and F(y,z) = f(y) — 2 in Lemma 2.2.6, for a given f €
CH(D"(yo),C"), then the following holds.
Lemma 2.2.7 (Inversion Function Theorem I) Let f: D" (yo) — C" be a C' func-
tion with invertible Jacobian f,(yo) and assume that
1 _
sup L, —Tf,| < 2 T = fy(yo) g

D7 (yo)

Then, there exists a unique C' function

g: DY (z0) = D} (y0), x0:= f(y0), s: 2T
such that
fogle) =z, gofly)=y, VaeDi(xo), Vyeg(D(x)).
Moreover,
sup ||g.|| < 2T . (2.2.7)
D (o)

25Let us point out that any other norm (different!) may be used on C", C™ and C"*™.
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Remark 2.2.8 (i) Notice that in Lemmata 2.2.6 and 2.2.7 if, in addition, F' is periodic in
x (resp. analytic, real on reals) then so is g.

(73) Notice that Lemmata 2.2.6 and 2.2.7 still hold if, everywhere therein, open balls are
replaced by closed balls or complex—balls by real-balls.

Another consequence of the Implicit Function Theorem is the following version of Inversion
Function Theorem.

Lemma 2.2.9 (Inversion Function Theorem II | 1) Assume that f is a real
analytic function from Qg into C* such that

If —id| <0 <

NS

Then f has a real analytic inverse g defined on Qa& and on which it satisfies

, h
lg—id],  71Dg—1d| <.

Remark 2.2.10 Notice that, all the Lemmata above are valid if one replace (A, s p.d, || [r.5.n.d)
by (Bhsﬁm |- |7",S,P0) or (BT,S(yO)v H ’

7"7572,!0)'

2.3 Proofs

2.3.1 Proof of Theorem 2.1.1

The proof is essentially the one in | | though one needs to re—scale various quantities;
therefore we shall skip some details. First of all, notice that K, P € B, .,. For simplicity,
sometimes, the explicit dependence on r or £y, €, will not be denoted in the norm ||- |, s,
or in the B-spaces, etc, as r, €y and €, will not be changed during the iteration. We begin
by describing completely one step of the scheme, namely the KAM step, which will be
then iterated infinitely many time to compute the symplectic change of variable.

KAM step Kolmogorov’s idea is to construct a near—to—the—identity symplectic trans-
formation ¢q, such that

Hi=Hod =K +P, Ki=Ki+w-y+Qy.2),Q=0(yP: (23.1)

if this is achieved, the Hamiltonian K; has the same basic properties of K (the linear
part in y is the same and, being ¢; close to the identity, K is non—degenerate) and the
procedure can be iterated.
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For, Kolmogorov considers the generating function of ¢; of the form?°

9 z) =y -z +e(b-z+s(z)+y -alz)), (2.3.2)

where, s and a are (respectively, scalar and vector-valued, e-dependent) real-analytic
functions on T? with zero average and b € R?. Define®”

uy = up(x) :=b+s,, A=A(r):=a, and u=u(y,z):=u+ Ay .
Then ¢, is implicitely defined by
y=y +euly,z) =y +e(uo(z) + Alx)y')
¥ =x+ecea(x) .

Moreover, for ¢ small, x € T — z + ea(z) € T¢ defines a diffeomorphism of T? with
inverse
r =) =2 +ep(a;e),

for a suitable real-analytic function @. Thus ¢, is explicitly given by

y=y +euly, (@)
o1 (Y, 2') — (2.3.3)
r = ).

To determine b, s and a, observe that by Taylor’s formula
Hy' +eu,z) =K+w -y +Q(y, ) +5[w-u+Qy(y', ) -u+P(y’,x)] +e?P'(y,x) (2.3.4)

where P’ := P'(y,z;¢) := PM + P® with

1
PO .= E%[Q(y’ +cu,z) — QY , ) —eQy(vy, ) - u] = f (1 —=8)Qyy (Y + teu, ) u - udt
0
1
P@ = YP(y +eu,x) - Py, z)] = J P,(y' + teu, ) - udt .
0

(2.3.5)

26Compare | , | for generalities on symplectic transformations and their generating func-
tions. For simplicity, we do not report in the notation the dependence of various functions on e, but, in
fact, P = P(y,x;¢), s = s(x;¢), a = a(x;€), etc.

27As usual, we denote s; = 0,8 = (Sgy, ..., Sz, ) and a, denotes the matrix (ay)i; := %Z, as above, we
often do not report in the notation the dependence upon e (but ug, A and u do depend also on ¢).
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Note that
Qy(y', ) - (asy') = QY x) = Oy ) , (2.3.6)
and that (again by Taylor’s formula)

1
Qu(Y,x) - ug = Quy(0,2)y - up + QP (Y, z) , Q¥ = f (1= )Quyy(ty', 2)y -y - ug dt
0

1
P(y',x) = P(0,z) + P,(0,z) -y + QO x), QO .= f (1—=t)Py,(ty,x)y -y dt .

’ (2.3.7)
Thus, since® w-u = w-b+ Dys + Dya -y, we find

Hy +eu,2) =K+w -y +Q,2) +eQ (v, x) + eF' (¢, x) + *P'(y/,x)  (2.3.8)
with P’ as in (2.3.4)(2.3.5) and
QY ) ==QW+ Q% + Q¥ =0(y')
F'(y,z):=w-b+ D,s+ P(0,x) + {Dwa + Qyy(0,2)b + Qyy (0, z)s, + P,(0, y’)} -y
(2.3.9)

By Lemma 2.2.5, there exist a unique constant b and unique functions s and a (with zero
average) such that F’ is constant. In fact, if

5= —D;1<P(o,x) - P0(0)> S -
bi= —(Qu(0,)) 7 (@Quul0,)5) + (R(0, )
a:=—D;! (ny(O, z)(b+s;) + P,(0, x))

then F' = w-b+ Py(0). Thus, with this determination of g in (2.3.2), recalling (2.3.3), we
find that (2.3.1) holds with

~

K =K+ ¢K, K:=w-b+ P (0)

- 1
Qo) = Q. ) + 0y x), 0= f Quly, o + tea(@)) - adt + Q) o))
Pl(ylv'x/) = Pl(yla(p(x,)) .

Clearly, for £ small enough <8§,Q1(O, )> is invertible and, if T := {(Q,,(0, ')>_1, we may
write

Ty = (3%Qu(0,)) =T +eT . (2.3.10)

Z8Recall that w - s, = D,,s and w - (a,y") = (Dya) - y'.
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Next, we provide the KAM step with carefull estimates. Actually, we shall do the estimates
in term of a lower bound of |w| instead of |w|, so that, by taking this lower bound equal
to |w|, we shall get the estimates in Theorem 2.1.1%. Thus, we fix, for the remainder of
the proof,

0<w<|w. (2.3.11)

Recall the definition in §2.1.1; in particular®’
rlwl, 1Qscos WP T] < E (2.3.12)

Finally, fix?!
2
0<a<§ and define §:=s—§a, si=s5—0.

Lemma 2.3.1 Then*
wl(sq s, w[b], (K|, row|als, rw]az|s, wluols, wluls, |Q's. r*0*|05Q'(0, ) o < L (2:3.13)
Furthermore, if e, < € satisfies

exr tolw L < (2.3.14)

e
3 )
then B
|P'|s <r o lw LM . (2.3.15)
and the following hold. For |e| < e, the map ¢Y-(x) := x + ca(x) has an analytic inverse

o(a') = 2" +ep(a’;e) such that, for all |e] < e,

gy ST o 'wTL and \V |g| <&y, @=id+ed:T% - T?: (2.3.16)

7

for any (v, x,e) € Wi, |y +euly’,x)| < rs; the map ¢y is a symplectic diffeomorphism
and

o1 = (v +euly, ¢(2), (") : Wy, = Dy x TS, and [Woloe, <L, (2.3.17)

29The point is that, if we replace |w| by w everywhere in §2.1.1, except in the expressions of E and f),
then, Theorem 2.1.1 holds for any w such that |w| > w.

30 The notation in Eq. (2.3.12) means that each term on the Lh.s. is bounded by the r.h.s.

31The parameter s’ will be the size of the domain of analyticity of the new symplectic variables (1, '),
domain on which we shall bound the Hamiltonian H; = H o ¢, while s is an intermediate domain where
we shall bound various functions of ¢’ and z. Note that o < %

2Here | - s = | -

5,60
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where ¢ is defined by the relation ¢y =: id + £¢.
Finally, if >

ep <3 (2.3.18)

then N N N ~

Kl @l » [wlPITI, Wy, < L

(2.3.19)

[Prllse, < 555
Proof We begin by estimating |s,[s. Actually these estimate will be given on a larger
intermediate domain, namely, W,_¢ ., allowing to give the remaining bounds on the
smaller domain Wy .,. Let f(x) := P(0,2) — (P(0,-)). By definition of | - |, and M, it
follows that |f]s < |P(0,z)[s + [{P(0,-))] < 2M. By Lemma 2.2.5 with p = 1 and

/o o
s = s — 3, one gets

2M

stHS_% < C'o? 370" =Cio Ta "M < L,

so that ) B
wlls,|| < 27 HOCET e Ta w M < L

Next, we estimate b. By definitions and Lemma 2.2.3, we have®*

d
bl < I7] (mxz @iy ls-olse, o3 + puax IR, |H>
]:
< w’E (2dEr_20_QCla_Toz_1M + Mr_la_l)
< (2dC1E + a”lra) W Eo T2
< (2dCl + 2—(7‘+1)) Q_2E20'_(T+2)7"_204_1M

C2E20_7(T+2)T72a71g72M7

so that i B
Q|b| < 2_(3T+8)CQE7O'_VT_7OZ_4Q_3M < L

3Notice that L > (r~'|w|'E)?L = L > r~'o~'|w|'LC > L since r|w| < E, so that (2.3.18) implies
(2.3.14).
31Remember that o < 1/2, |T| < |w|™?E < w™?E and ra < r|w| < E.
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Next, we estimate K. We have
K] dlw] - 6] + [ P

dwCoE2= 22071y 2JW—i—]W

(dg_lCQEQ + 0_T+2T2a) (T+2) —1M

INCINCIN N

C3E20_7(T+2)7,720671Q71M

2B CLE e r Ta WM < L.

N

Next, we estimate ug. We have

luols < [b] + salls—g < CoE?0™ 207w M + Cio Ta ™' M
< (CE2w ™2 4 oo 20t M
< (CoE?w? + 272C17’2]w\2g72)07(7+2)r*2a*1M
< (Cy4272C)E2 0 2071w 2 M

C4E2U_(T+2)T_2OC_IQ_ZM,

so that i B
QHUOHE < 2_(37—+8)C4E7O'_VT’_7O[_4@_3M < L

(dg_ngEQ + 2_(T+2)@_ 7~2|w|2> (7'+2) 20,10/

Next, we estimate a and a,. Let f(z) = Q,,(0, z)(b+s,)+P,(0, z). Then, by Lemma 2.2.32.2.5,

we have

Iflos < mxz [Quy oo (Il + I, ) + oo 17,
< {Q%ZHQWHS o (bl + sz s-g) + max |15,
< 2dBo %r 2. QuE20 U207 W M + o M
< (2dC4E3g +UT+3TSC¥)U (T+4) =41 0f
< (2dC4E3Q72 + O_T+3,r3’w|3g72) 0,7(7'+4)T74Oé71M
< (2dC4 + 2—(T+3)) ESO'_(T+4)’I"_4OZ_1Q_2M
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Thus, by Lemma 2.2.5, we obtain®’
cMes

N

lals, laz|s
< 37dCy (2dC4 + 2_(T+3)) Bl G402, "2 1

_ CE)E3O.7(2T+4)7,740672Q72M’

so that

rowl|als, rwl|ag|s < 27 OCETe " r Tatw M < L

Next, we estimate u. We have

lulls < Jluolls + |Ay'lls < lluofs + max Z | Auslsrs
< C4E2 r+2)7, o w 2M+d(il5E3 7(27+4)r73&72g72M
< ( —(742) C47”Oé + C5E)E2 7(2T+4)T73a72g72M
< ( (7+2) C +C )Ed 2T+4)7”_3Oé_2g_2M

CGESO' (2T+4)7’_3a—2g_2M,

so that ) 7
wluls < 27FTOCE T r "ot w M < L

Next, we estimate @’. To do this, we need to estimate Q. Q® and Q®. By definitions
and Lemma 2.2.3, we have

10 < 35 IQulslAulrs
1<l,5<d
o3 1 1 Csra (or1a) 3 2 o
< dPESo Y . FE o T r Pt w M
: w

_ ;dC5E4O_—(2T+5)T—4a—2w—2M

35The factor d comes from the fact  [a.[s = [Als < max Z [ A5
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1
1Q®]s < J(l—t) D 1Quuuw sl suillsl (o) st
0

1<)l k<d
3
< 26E287 3?52 CuE20 20 w2 M
3
_ 81d C4E307(r+5)7ﬁ3a71£72M
3
< 81d C4E407(r+5)7ﬁ4a72£72M
< 81- 27(T+3)d3C4E40_7(27+5)T74O[72Q72M
and
1
1QP]s < J (L=) Do Py, sl sllyil st
0 1<j,l<d
d? 9
< 52]\440*2 2. 252
9d?
< TO'72M
Thus
1Qs < 1QW s + QP ]s + Q¥ < CrE'e~ T 02w M,
so that

Qs < 27*CE e r Ta ' w M < L.
Finally, we estimate 62/62’ (0, -). We have, once again by Lemma 2.2.3,

102,Q'(0, )]0 < [02Q'(0, )] s—0 < 2C; B o040 722 M 957272 = CyBro~ 0020,

so that
20_2”6;/Q/<0’ )HO < 2_(2T+5)08E70_ —7 —3M L
Now, under the assumption (2.3.14), we prove (2.3.15). For (v/, z;¢) € W5, and 0 < t < 1,
by (2.3.13) one has
ly' + teu(z)| < r5+efuls <75 +e.w 'L <75+ ’I“% =7rs— r% <rs, (2.3.20)

so that

1
1PVls < J(l—t) D7 1Quu, =2 g5l st
0 1<j,l<d
2

d
< EQE 9o~ 22 (CGE3U—(QT+4)T—3O[—2@—2M)2

_ 9dZC§E7O_—(4T+lO)7,, o~ Cd_4M2
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and

1P < f [Py lls—g s st
0 1<J<d

dM - 307 'r™t . CgE20~ )32 2 V1
3dC6E3J_(27+5)7"_4a_2w_2M2

< 3. 2— (27+5) dc E3 4 2|w|2 (47+10) _SOZ_4W_2M2
< 32 (27+5) dC E7 4T+10),’,, a 4w 4M2.
Thus
|P'|ls < [PY]s + [PP]s < CoE o™ W10 804w M? < v o™ 'w LM,

Next, we show how (2.3.14) implies the existence of the inverse of 1. satisfying (2.3.16).
The defining relation 1. o ¢ = id implies that @(z') = —a(2’ + ep(z’)), where (') is
short for @(z';¢) and such relation is a fixed point equation for the non—linear operator
f:u— f(v) := —a(id+ev). To find a fixed point for this equation one can use a standard
contraction Lemma (see | ]). Let Y denote the closed ball (with respect to the sup—
norm) of continuos functions v : T¢ x {|¢| < e,} — C? such that |[v]y., <r o 'w L.
By (2.3.14), |Im (2’ + ev(2'))| < ' + exrlo'w 'L < s’ + ¢ =5, for any v € Y, and any
z' € TY; thus, | f(v)]ree, < la|s < 7 ' 'w 'L by (2.3.13), so that f : Y — Y notice
that, in particular, this means that f sends z—periodic functions into x—periodic functions.
Moreover, (2.3.14) implies also that f is a contraction: if v;,ve € Y, then, by the mean
value theorem and (2.3.13), | f(v1) — f(v2)| < |laz|s |g| [v1 —vo| < r~to 'w ™ Lig| vy — vyl
so that, by taking the sup-norm, one has | f(v1) — f(v2)|¢ < exr o lw 1L||1)1 — Uylly <
&llvr — 2|y showing that f is a contraction. Thus, there exists a unique $ € Y such that
f(®) = @. Furthermore, recalling that the fixed point is achieved as the uniform limit
lim,, o f"(0) (0 € Y) and since f(0) = —a is analytic, so is f"(0) for any n and, hence, by
Weierstrass Theorem on the uniform limit of analytic function, the limit ¢ itself is analytic.
In conclusion, ¢ € By, and (2.3.16) holds. Next, (2.3.16) and (2.3.20) imply (2.3.17) and
therefore, ¢; defines a symplectic diffeomorphism®® satisfying (2.3.17) and the fourth
inequality in the first line of (2.3.19). It remains to show the other estimates in (2.3.19).

Since L > L, the bound on |E| follows (2.3.13). By (2.3.15), (2.3.17) and (2.3.20), one
has | P v.e, < |Plse, <7 'o'w ' LM < LM/E. Now, by Cauchy estimates, (2.3.13),

36Notice, in particular that the matrix 14+ ca, is, for any z € TY, invertible with inverse 14+ &S (z;¢);
in fact, since |ea,|s < e+ L/E < 0/3 < 1/6 the matrix 14 + €a, is invertible with inverse given by the
“Neumann series” (]ld—&-s%)__l = 1g+X 5. (—Dk(eaz)* =: 1g+eS(w;€), so that [ S|s.c, < ([as|ls,e)/(1—

lelllazlz.eq) < 67”_10_1g_1L.
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(2.3.14) and (2.3.17), it follows that

Qe < [ 2 10u 15t + 121
< dE20 r o T L 4 || s
< ;dCEsa_(””)r Sa™ WM + C,Ee~ ) =402 2 M
< <;dCE4w—2 + 2_(2”7)7“404207) Elo"H2p=8q4 2
< (2(1@02 + 2(27+7)C7w2) E3g— 72 =8q 4,2 M
= §EBJ’(D”)T’SOF‘IM <L
2d =
and?’
) ~
H@/Q(O; ')HO,é* < 1H<lla<}ilz ||ny Hs’—o,a*
< QdQCdES (V+2)T_8Oé_4M . 0,—27,—2
= CRESo— 210441 = p2T
so that?® 6
1@l 20 B [05Q(0, Mo, < 6w *LE?/5 = L, (2.3.21)
Thus,

3010,y = (2Q0,)) +2(20(0.) ) = T (14 +eT(2Q(0.) )
— 7714+ ¢R), (2.3.22)
and, in view of (2.3.12) and (2.3.21), we have

17l < 712200, )]
5L

< wBIEA0, o, < o

3TRecall that 0 < 20 < s so that s’ — o0 = s — 20 > 0.
381t is only here that a constant L > r~1o~!|w| "L LE is needed; the (irrelevant) factor 6w=2E?/5 has
been introduced for later convenience.
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Therefore, by (2.3.18), e,|R| < 0/3 < 1/6 < 1, implying that (1 + eR) is invertible and
(1g+eR)™! = 1d+2 Ve RF =1+ eD

with | D| < |R|/(1—|e| |R|) < L/E. In conclusion, by (2.3.22), and the estimate on || D],
L

Ty = (14eR)'T =T+eDT = T+eT,  |wP|T| < |D||w]?|T] < |DJE < sE=L.

proving last estimate in (2.3.19) and, hence, Lemma 2.3.1. |

Next Lemma shows that, for |¢] small enough, Kolmogorov’s construction can be iterated

and convergence proved.

Lemma 2.3.2 Fiz 0 < s, < s and, for j =0, let*’

Sg = S O'":@
j A
27
S — S
0g = =S — O = o0
0 9 Sj41 = 85 — 05 = Sy + 35

Let also Hy = H, Ko =K, Qy:= Q, Ko := K, Py:= P, with W, C, C, E, L and v as
in §2.1.1 and assume that e, < g¢ satisfies

Exy dy |Plse, <1 where e, := = 3C o VTV EY 1004y 6 | g, = 2Vt (2.3.23)

Then, one can construct a sequence of symplectic transformations

Oj: Wasyspe0 = Doy x T (2.3.24)
so that '

Hj:=H; 10¢;=K; +c”P;, (2.3.25)
converges uniformly to a Kolmogorov’s normal form. More precisely, 52ij, ®; = ¢ 0

pp0---00;, K;, K;, Q; converge uniformly on W, ., to, respectively, 0, ¢., Ky, Ky, Qx,
which are real-analytic on W, ., and Ho ¢, = K, = Ky + w -y + Q. with Q. = O(|y|?).
Finally, the following estimates hold for any |e| < e, and for any i = 0:

(leles d*M)zi

91

|€ 21‘2\41. = |€ _Pi”,si’&‘* < o d il s (2326)
CE? le| L
S K - K* 9 - *||Ssx 9 2 T - T* < e 2 2
WG i) (KKl 1Q - Quley WPIT T < EE L 2327)

where T, := <&2Q* >_

39Notice that s; | sx.
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Proof Notice that (2.3.23) implies (2.3.18) (and, hence, (2.3.14)). For ¢ > 0, define
W; = diag (wlg,rowly) and L; = CE o, 7r Ta *w ™M, .

Let us assume (inductive hypothesis) that we can iterate j = 1 times Kolmogorov trans-
formation obtaining j symplectic transformations ¢;1 @ Wy, |, Sl e = Drg, ¥ 'I[‘;li, for
0<i<j—1,and j Hamiltonians H; ., = H; 0 ¢y 11 = K;41 + €2 1Pzﬂ real-analytic on
W, such that, for any 0 <7 < j — 1,

Si+1,E%
7’|(,U|, ||Q'L||517 |W‘ZHT'ZH < E
(2.3.28)

i PN _ s _ .
*'L; := [e]* CEYoy” 2"r 0™ M; < EZ .

e

Observe that for j = 1, it is ¢ = 0 and (2.3.28) is implied by the definition of E and by
condition (2.3.23).

Because of (2.3.28), (2.3.18) holds for H; and Lemma 2.3.1 can be applied to H; and one
has, for 0 <i < j — 1 and for any |¢| < €, (compare (2.3.19)):

“Li, NQisilsiyy < 1Qills + e Li,  |wP|Tisal <
<|e*L;, My < M;LE™". (2.3.29)

K| <
[Wil¢i1 —id)

Observe that, by definition of e,, d, in (2.3.23) and of L; in (2.3.28), one has [¢|¥ L;(307'E7Y) =
ey d j|5\2j ]/d*, so that L;E™' <e.d « M;, thus by last relation in (2.3.29), for any

0< My < e dy' (M;|e|*)? d.e. 0,41 < 62, which iterated, yields (2.3.26)
26«9 92 forO 1< .

Next, we show that, thanks to (2.3.23), (2.3.28) holds also for ¢ = j. In fact, by (2.3.28)

and the definition of E in §2.1.1, we have

3R]

Si+1

j—1
i : 1
1Qills, < 1Qls + > eX Li < |Qs + EZ@<HQH + EZQ D = Qs + sE<E.
i=0

=0 =0

The bound for ||T;| is proven in an identical manner. Now, by (2.3.26),_; and (2.3.23),
0;/d = |e|¥ L;j(307'E7Y) = e dI e M < es di (ex due, M) J(end ™) < 1/dy < 1,

which implies the second inequality in (2.3.28) with ¢ = j; the proof of the induction
is finished and one can construct an infinite sequence of Kolmogorov transformations
satisfying (2.3.28), (2.3.29) and (2.3.26) for all ¢ = 0.

To check (2.3.27), we observe that

- =3 2 e dyi|e* M; <

|elex d*M)iJrl

g (e o < - (22

1
2i+1,
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and therefore

i E d. M L
MNefLi< Y] (‘5’6* ) clesar — ELE
i=0 dy i>1 2 309
Thus,
i X i ’€|L
HQ*Q*HS*< |82 Qz si< |52Li<7§
; ; 300

and analogously for |K — K|, and ||T — Ty].
Next, we prove that ®; is convergent by proving that it is Cauchy. For any j > 1, we
have™’

Wo(®j — @5 1)[see = [WoPj1 005 = Wo®jillsyen

< Wod®; Wz, V(85 — 1d)] s, e

< Wod®jisuro/3.00 W05 — 1) sy e

< Wod®ja, _n, ., e L
6 o

< ﬁHWO(I)ijHSj,l,s*O'jjl max (Tﬁlg 1 , T IO'J llwil) €2J le,1
6 1

< THWo@oHso,s* e e T L

< T (rsow, rogwso) 52j71Lj_1E_1

- 6 1

< g Tsw 0ot

Therefore, for any n >0, j > 1,

ntj n+j

”(I)?’H-j - (I)ann+j75* < Z ”(I)H-l - q)i”SzvS* = TSOW Z 0;-

i=n

Hence ®; converges uniformly on W, ., to some ¢,, which is then real-analytic function

on W,

Sk Ex

To estimate |[Wy(¢x —id)||s,, observe that

%€ 3%

[Wo(®; —id) |5, < [Wo(®io1 06 — )5, + [Wol(di —id) s, < [Wo(®iy —id)|s,, + |e* Ly

4ONotice that ®¢ = id, for any j > 0, L; > r_10;2g_1l_/jE and, by (2.3.13), (2.3.14), (2.3.16) and
(2.3.23), we have,

11
—0j—1-

ji= ¢y —id: Wey e = W, 16,32, and sy +0;/3 =51~ 5
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which iterated yields

IWo(P; — |2kLk —E 33’ Z Eka Lo < =E 33w ele, Mo}

M

Q)\ Q1

3,3 3 riw’
E™ Loy =

rwilelloo = 3o
Therefore, taking the limit over ¢ completes the proof of (2.3.27), Lemma 2.3.2 and,

whence, of Kolmogorov’s Theorem. 1

———|e|Lo.

|
ol Qg

2.3.2 Proof of Theorem 2.1.2

Lemma 2.3.3 (KAM step) Let r > 0,0 < 20 < s < 1 and consider the hamiltonian

parametrized by € € R
H(y,z;¢) == K(y) + eP(y, v),

with
K,PeB,(y).
Assume that*'-*? B
det Kyy(y) # 0, T = Kyly),
[ Kyyllry < K, IT|<T, (2.3.30)
HP”m,y <M, W= Kyy(y) € A; .
Fiz e £ 0 and let
4 o o 5 T
)\ > 71 v+d & — 5 —1)\ — < . 20
5 08 (U ye\MK) TR A TSI 90Kk 24d TK [ (2.331)
5 3.
§:=s—§a, s=s—0,

Finally, define*

L:= S max {1 } MK g~ rd)
rK ’

a2
L = M max gg—(wd) , G max {1’ ﬂ} £0—2(u+d)
rr V2 rK) o2

= M max 8T o Hd) 1 G max{l Q}KU%’M) )
rv T K2’ \f "rKJ a2

4Tn the sequel, K and P stand for generic real analytic hamiltonians which, later on, will respectively
play the roles of K; and P;, and y, r, the roles of y;, r; in the 1terat1ve step.

“Notice that TK > THKyy( ) = 1Ky W] = ITIT) >

43Notice that L > oL > L since o < 1.
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Then, there exists a generating function g € By 5(y) with the following properties:

M
ng”T 5y S Cl o) )
|9y 1175y, 10 IQHrsy <L, (2.3.32)
|05 K7y <
where N
K(y') =<Py, )
If, in addition,
e| <& and |e|L < % (2.3.33)
then, there exists y' € R? such that
Oy K'(y) = w, det 62 K'(y') # 0,
r 8le|TM
ellgsllrsy < 35 Y —y| < el : (2.3.34)
r
ellT] < TlelL, | Py l7sy < LM,
where
K'=K+eK, (K() =T+eT,  Puy.2)= Py +eq(y.a)a).

and the following hold. For y' € Di(y), the map ¢.(v) := x + gy, (y', x) has an analytic
inverse o(x') = o' + ep(y', x'; €) such that
|8y <L and @ =1id+e@: Drpy(y) — T ; (2.3.35)
for any (y', ) € Di5(y), [y +eg.(y', x)—y| < 2r; the map ¢/ is a symplectic diffeomorphism
and
¢ = (v +egz (v 0y, 2), 0y, 2")) : Drpa(¥') — Darjas(y), (23.36)
with )
IW @72,y < 0L, (2.3.37)
where ¢ is defined by the relation ¢ =: id + €,
max{¥ 1} 1, 0
W =
0 1y

and
[P 72,60y < LM, (2.3.38)

with
P'(y,a") == Py(y, p(z") = Pog'(y,2") .
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Proof
Step 1: Construction of the Arnold’s transformation We seek for a near—to-the—

identity symplectic transformation

¢/: Dr1751 (y,) - Dr,s(y)>

with D, 5, (Y") € D, s(y), generated by a function of the form ¢ - x + £g(y/, z), so that

= /+ x /7
g | 4=V Tealo) (2.3.39)
¥ =x+egy(y, ),
such that
H :=Ho¢ =K'+ 2P,
o 2 1ot (2.3.40)
Oy K'(y) =w, detd, K'(y)+#0.

By Taylor’s formula, we get**

H(Y + 2g.(y, @), 2) =K () + 2R (y)) + 2 [ Kyy)) - 9. + TP(y ) = R(y) | +
+e2 (PW + PO 1+ PO (¢, )
—K'() + ¢ |[Ky(y)) - g0 + TP, ) = K(W)| + 2Py 0),
(2.3.41)
with & € N, which will be chosen large enough so that P®) = O(e) and

(P, :=PY 4+ p@ 4 pO
. 1
PW = S [K(Y +egs) — K(y) — eK,(y)) - ga] = J (1 =) Kyy(etga) - go - gadt
€ 0
J 1 : '
P® = S [P +ege ) = Py, 2)] = | Py(y' +etge,x) - godt
0
1 ]. in-T
PO = P - TP - L S R
L Inj1>k

(2.3.42)
By the non-degeneracy condition in (2.3.30), for £ small enough (to be made precised
below), det 02, K'(y) # 0 and, therefore, by Lemma 2.2.6, there exists a unique y’ € D,.(y)
such that the second part of (2.3.40) holds. In view of (2.3.41), in order to get the first

44 Recall that (-) stands for the average over T%.

o1



part of (2.3.40), we need to find g such that K,(y') - g, + T, P(v',-) — K (') vanishes; such
a ¢ is indeed given by

_Pn(y/) in:
g = ) ina (2.3.43)
0<%1:<H K,(y)-n
provided that
K,y) - n#0, VO<|nl1<k, VyeD,) (cD.ly)). (2.3.44)

But, in fact, since K,(y) is rationally independent, then, given any x € N, there exists
r < r such that
K,(y) - n#0, VO0<|n|i <k, Vy €Dsy). (2.3.45)

The last step is to invert the function x — = + g, (¥, z) in order to define P’. But, by
Lemma 2.2.6, for € small enough, the map z — x + €g¢,/(y, z) admits an real-analytic
inverse of the form

oy, a'se) =a" +ep(y, s e), (2.3.46)

so that the Arnod’s symplectic transformation is given by

/ / / /
y=y +egy, ey, 1))
¢/: (y/,l‘/) — . A o ~co . (2347)
Tr = QD(y,ZE,€> =z +5§0<y,$,€>-
Hence, (2.3.40) holds with
P'(y,2') = P (v, o(y, 2)). (2.3.48)
Step 2: Quantitative estimates
First of all, notice that*’
or r
r<——— < — . 2.3.4
'S 94dTK T 2 (2.3.49)

We begin by extending the “diophantine condition w.r.t. K,” uniformly to Dz(y) up to
the order k. Indeed, by the Mean Value Inequality and K,(y) = w € A7, we get, for any
0 < |n|; < k and any ¥’ € Di(y),

IKyylry, | -
)0l = o+ () = Koo ol > ol (1 al 28
dK dK
> (1 - |ny;+1f) > <1 - m*%) > (2.3.50)
In|7 « In|7 o 2|n|]

45Recall footnote *2.
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so that, by Lemma 2.2.4—(i), we have

€ Pn ! ; Pn 7.8 _2
19275,y = sup ) /(y) e Z 7H H/ Yy o(5=30)Inh
Drs() |o<jn], <x Ky(y ) n o<inh <k |Ky<y ) - n|
< Z Mefs|n|1M e(s—%o)\nh < % Z ’n‘llfefga\nh
0<|n|1<k « a neZd
< WJ IyITe_%‘ﬂy'ldy
(6] R4
3 v+d INM
= = - ve—lylig
(o) 2] ey
_ Mo
a )
def OyPa(y') N Kyy(y)n ina
loygliay e sup ( Pyt
Y Y Di,§(Y) 0<%<,€ Ky(y/) "n (Ky(y/) ’ n)2

H(P n HK ”7"7 |n|1 s—20)|n|1
< Z sup <| Y + dHPnHr,s,y |Ky(yy/7)y. ’I’L‘Q 6( 3 )' |
Yy

‘ f787
0<‘n‘1<’{D;(y) ,) ' n|

e , N2
(2-3-50)£(2-5-00) Z ( M e—sln\12|n‘1 +dM€—S|n\1K|n|1 <2|n|1) > 6(5*%‘7)‘71\1
(0]

r—r a
0<|nj1<k
(2.3.49) AM

~

ST (nlfor+ drKjnzret) emiolni
0<|n|i<k

4M 2
< max {a, 7K} —— Z (In|] + dln|7™*") e~ 30k

0<|nl1<k

a ) 4MK .
W} JRd (Jyl] + dly|7™") e73 Wl dy

3 274+d+1 o AMK _ _ ~
() e {u Sl ) by

a?r

<max{1, 5
«

20 K a2
< S max {1 g} —MKJ’(%*‘HI)
V2 "rK) a2
<L,
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and, analogously,
Kyy(y/)n ) . nein-m

def ayPn(y/) /
|glrsy < sup ( ~ Py
y y Drs(y) 0<§<H K,(y)-n (K, (y') - n)?
HKyyHr,y’nh ) ‘TL|1 e(sf§0)|n|1

sup
0<|nl1<k Dx(y)

H( ) Hrsy
(|K<> nf T WEnlnss 1z oy e

< max{a, rK}ij\fk;@ (Inl7 + dn2*1) [nfy e ~20n)y
< max {1, W} 4](\52K f (|y|1 n d’y|2T+1) vl e%alyhdy
B (2?;>2T+d+2 max{l,%} 4];/[2KJ (Il + dly27+2) e~y
= ) max {1, R} ]\(g(a@”*d)

V2

and, for |e| < e,

~ M 2M

1Ky lr2y = [1E] 2y < [Byllrosy < 5 < —
r—3 T

M 4M

15 K2y = 1 TP 2y < 1Pyl ms < <KL
(r—3?
Next, we prove the existence and uniqueness of y’ in (2.3.40). Consider then
F: Di(y) x D2|5|<0) - c
(y,m)  — Ky(y) +nky(y) — Ky(y).
Then
F(y,0) =0, Fy(y,0) ! Kyy(Y)il =T;
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e For any (y,n) € Dx(y) x Dy(0),

110 = TF,(y, )| < |La = TEyy|l + [0l |T] 05K /2

] AM
< AT Eyyyllry™ + 2lelT-—5
r M
<atk—" 4 g7l
r—r r
(2.9 P 8TM

) 9
< dTK= + |e|
T T

Pl
< 2dTK. + Z|elL
r 2

(2.3.49)+(2.3.33) 5 o

< - —
216
5+1_1.

T12 012 27

e Recalling o < %, we have

2[TU[FCy, z2ero = 2[T] sup |nKy (y)]
4|e|M
T
< 7olle|L (2.3.51)
(2.3.33) O
< r—=
3

< 2T

DO | 3

Therefore, Lemma 2.2.6 applies. Hence, there exists a function g: D, (0) — Ds(y) such
that its graph coincides with F~1({0}). In particular, y' := g(g) is the unique y € D;(y)
satisfying 0 = F(y,e) = 0,K'(y) — w i.e. the second part of (2.3.40). Moreover,

8|e|TM (2:3.51)

_ T
Y =yl < 2[T[[E(y, )l2rer0 < < 7ol < 2 (2.3.52)

so that
(y') = Dx(y). (2.3.53)
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Next, we prove that (9§K '(y") is invertible. Indeed, by Taylor’ formula, we have
1 ~
&;K’(y’) = Ky,(y) + J Kyyy(y + tep) - eydt + e Ky, (Y')
=77} <11d +eT (J (Y + ted) - Jdt + f(yy(y')))
=T (]ld + EA),
and, by Cauchy’s estimate,
1Al < 171 (@Kl el =1+ 12K 2,

dHK ”r >
<|7| (Tyyy! 1Y =yl + [el| Kyl /2y

2

(2.3.52) (2dK8|€|TM 4|5|M>
< T +

= 2

T T T
4)e[TM
< MM 1
T

20d|e| T2KM
< =t T

~X

7”2
(2.3.49) 25 |TM
E: P
6d
lelL

~

Hence 02, K'(y’) is invertible with
BK(Y) " = (Lg+eA) T =T+ Y (=) AT = T + T,
k>1

and

~ 1A o
el T < el 1T < 2[el|ANT] < |eltT < 22T =T
1= le]]A] 6

Next, we prove estimate on P,. We have,

o
3
lelllgallrsy < |€|C1

—(7+d+1) |€|§L < gi <
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so that, for any (v, z) € D7 5(y),

|y'+6g(y’x)—y|<f+f<—+f<—<r
S = 3 8 3 3 ’

and thus

M .0\
POl < 1y, < K (G120

2
:d2C%K]\§ 0_—2(1/+d)’
(6]

6M M _,
[PP sy < dIPyl 5z 5,192 ]7,5y < d——Ci—o v+
M2
= 6dC170’7(V+d)
ar
and by Lemma 2.2.4—(7), we have,
e Dln _olnly
PP rsgy < X [Pallrye® DM <M Y e 2
Inli >k Inji>k
<Me 7 Z e_alzll < Me 7 2 6_%
|n|1>k [n]1>0
d _g
=Me 7 (Z e_allkl> —1|=Me 7 <<1+2€ i
keZ l—e

2 \? o 2\ ?
<<1+ - ) —1><Me—4 (<1+a)
ez —1 1

<o M F ((0 +8)t - ad> < d8to~dM e F

_ _5
= Coo M e~

(2'3<'31) C o_—dMO_—(2l/+d) ‘E|MK
S 2 a2
— CoM |5|MKU_2(y+d)

a? ’
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Hence®,

1Pillrsy < I1PDVrsy + PP sy + 1PP 55y
2 2
< d2c2 KM O_—2(l/+d) + 6dC M O_—(u+d) +C M|€|MKO_—2(V+d)
= L2 Yar 2 o?
M2
= (d2C%rK + 6dCiac” T + CQTK) ?0_2(7”“)
a?r

M?
< (d*C? + 6dCy + Cy) max {a, 7K} ——o 2+
a’r

. 2
(2230) & max {17 ﬁK} M KUfZ(qud)
r

V2
<LM.

a2

The proof of the claims on ¢’ and P’ are proven in a similar way as in Lemma 2.3.1. 1

Finally, we prove the convergence of the scheme by mimicking Lemma 2.3.2.

Lemma 2.3.4 Let Hy .= H, Ky := K, Py := P, ¢° = ¢ := id, and 7o, S0, S«, 00, fo,

46Recall that o < 1.
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W, Mo, Ko, To and g; be as in §2.1.2. For a given ¢ % 0, define'

0o
0j _E,
00
Sj+1 = Sj O'j—S*—FE,
_ 20;
8j = 8; 3
O e
K1 :KOH(1+§)<K06 Y < Kov/2,

k=0 3
Ao = log ",
Aj =270,
Kj = 50;1/\j ,
. I} 5 1
7.1 = min , - >
ok 4dv/2KorY " 96d g
d* = C5 77(2) >
Ko —(aw
e, = C9CTSUO (4v+2d+1) )\3” 7

f. == Cg max {1, a }770 00_(3V+Qd+1) Ho Ag -

70Ko

Assume that € 1s such that

C 1
po < ey and f*max{l, =0 50 nd e, d2 ¢ Mo} <1.

3

Then, one can construct a sequence of symplectic transformations

05+ Drys; (45) = Dry_ysyn (Y1)

so that '
Hj = j—lo¢j IIKj+52].Pj s

(2.3.54)

(2.3.55)

(2.3.56)

converges uniformly. More precisely, 52ij, ¢ = godropyo---09;, K;, y; converge
uniformly on {y,} x Tj* to, respectively, 0, ¢y, K, y. which are real-analytic on ']I'gl* and

“TNotice that s; | s and r; | 0.
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Ho ¢, = K, with det é’sK* (y«) # 0. Finally, the following estimates hold for any i = 1:

(%Uof*e*di |€’M0) 2

21'

’8 P’L T3,8:,Yi = e* d*i+1 3 (2357)
(W(gs —id)| < o™ on {y.} x T . (2.3.58)
Proof For ¢ > 0, define
K, 1
W, := diag (max {, } 14 ,]1d> ,
a T
- MKy _(a
L; := Comax< 1, a 7001, (2v+d) ,
TiKi (Jé2
4+4/2Ty _ Ko _
L; :== M; max V2 0 ) Comax {1, a o 2v+d)
TiTit1 riKi ) o
4Tz —(v 4 K —2(v
> M; max { ——o; ( +d), 5, Crmax {1, a —002- 2vrd) L
TiTie1 Kir; r.K; ) a?

Let us assume (inductive hypothesis) that we can iterate 7 > 1 times the KAM step
obtaining j symplectic transformations®®

¢i+1 : Dri+1,si+1(yi+1) - D2Ti/315i(yi)7 for 0 <1 < j — 1, (2359)

and j Hamiltonians H; 1 = H; 0 ¢;j41 = K11 + 52”1PH1 real-analytic on D, ., (Yis1)
such that, for any 0 <7 < j — 1,

(02K

ri,Yi < Ki?

< |‘HHT1'751'7?J2' < M, (2360)

2

) 4 2v+d o
)\Z 2 5 lOg <UZ ‘E‘QleKl) 9

[ [ePLi<% .

Observe that for j = 1,it is7 = 0 and (2.3.60) is implied by the definitions of Ko, To, Ao, My
and by condition (2.3.54).

48Compare (2.3.36).
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Because of (2.3.54) and (2.3.60), (2.3.33) holds for H; and Lemma 2.3.3 can be applied to
H; and one has, for 0 <7< j — 1 (see (2.3.32), (2.3.34), (2.3.37) and (2.3.38)):

( [Yir1 — yi| < 207 e 2L, ,
| Ta]l < T3+ Tilel*Ls
< ”K2i+1 oYl S HKZ ;zwyi + ‘E TMZ' y (2.3.61)
”ayKH—l Tit1,Yi+1 < ”ayKZ TiyYi + Kl|‘€| Ll )
”Wz(¢1+1 - id)”"'i+175i+17yi+l < O-g |5|21Li ’
L ”PZHLI Ti+1,Si4+1,Yi+1 < Mi+1 = M’LLl .
Let 0 < i< j— 1. Since
_ le' 5 19
S &y — ~ R
Ho = & 42K 96d 10
then
o
= )
YT 4dy2Kok
and therefore
. « 5 r;
rip1 = min , —
o 4d~/2Kok? " 96d 1
. o ) « ) 2
= min , ) Ti—
Adv/2Kor? " 96dng 4dv/2KokY "\ 96dno !
, a 5 a 5 \'
= min , e =) r
Adv/2Kor? " 96dng 4dr/2KokY_, 96dn, ) "
o 5 5\
= —min<1l, ———, -, | =———
4t 24d’l70 24d770
5 i
= r.
96dn, )
Thus, since
o <& = po< e ! = Ky =hoy' =10, (2.3.62)
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we have

42Ty _@ Ko o
|5“—0(300_1)=3]€\M0max{ V2 000(+d),C7max{1 o } 0 _—2( +d)}

— 0,
ToT "roKo | a?

™ TOKO 042

Comrar—1 Kole| M,
<3max{4\/§T0aa, Cmax{l,i‘(}}ao?( +a-1 Kole[ Mo
ToRo

, « _o(v+d)—1 Kolg| Mo
= 3max {32dn0/<;0r0K0, C; max {1, ToKo}} o (v+d) —
—ow+a)—1 Kole| M,
< 3max {32d, 10_”C7} - max {1, 7”0aK0} Mo To 2Av+d) IOELORS
= Cg max {1, < }770 ag P oy
ToKO
(2.3.54)
=f, < 1.
Now, fix © = 1. We have
(2.362)
K <rmKogv2 < 2.3.
riKi < 1iKov2 T < (2.3.63)
so that
’ i 42Ty Ko —ow _
le]* Li(30;1) = 3|¢)? Mimax{ V2 Ooi ( +d), C7max{1, a }Oa. A +d)}a. 1

i1

42Ty 1 o

NG) OUz‘ ( +al)7 Cro 2 +d)} 1
TiTi+1 ar;

@ C, } O—f2(1’+d)*1 w

= 3le|* M; max{

1

Ti+1 ar;

96dn, \ " lad)
= 3max {32d7}0/£6 (5770> , C7} o2+ 1]e

< Bmax{

2
2 M,

ar;

96dm; ' Y S Vs
< 3max {32d, 10*”C7} < 770) Mo KL 0 2(vtd)-1]€
5 ar;
_ 96dn, \ > a1 Kolg 2 M,
< 12d+v/2 max {32d, 10 ”C7} < 5770) no k& 0; 2(v+d) 10|a2
Ko - v % i
_ CQOTSUO (4v+2d+1) >\(2)l/ (22(u+d)+1132572d277(2)> |€‘2 M,

2 0;
= e, di|e[* M; =: T

*

)
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so that
L, < e d,M,;,

thus by last relation in (2.3.61), for any 1 <i < j — 1,
e

i.e. 0.1 < 02 which iterated, yields 6; < 02" for 1 <4 < j. Next, we show that, thanks
to (2.3.54), (2.3.60) holds also for ¢ = j. In fact, by (2.3.60) and (2.3.61), we have

2i+1 i 2i+1 2
Mi+1 < e*d*\&t Ml

[Tl < [Tl + Tile

QiLi < T+ Ti% =Tiq1,

and similarly for [0} K| Now, by (2.3.57)

Tit1,Yi+1" i=j )

; 0. 1 i 1 2971 (2.3.54) 1
|€|2 Lj(30';1) < df] < d—(e* di€2M1)2 < di (%f*e*dﬂdMg) < di <1 s

which implies the last inequality in (2.3.60) with ¢ = j.
Next, we check the fourth inequality in (2.3.60) for i = j. We have®

)\j = 2/\j—1
(2.3.60),_,_1 4 2(2v+d) o'
> -1 - '
508 (U] b e MR
4 2(2v+d) ot ~a+d)_C1Ko
> 1 A\ . o
 log (Uj e Mo K2 e L
4 1 2v aQ C7K0
= —]0 g H ’
5 B\ P K
4 o’
-3 vdd____ T )
e (5 )

The proof of the induction is then finished and one can construct an infinite sequence of
Arnold’s transformations satisfying (2.3.60), (2.3.61) and (2.3.57) for all i > 0.
Next, we prove that ¢’ is convergent by proving that it is Cauchy. For any j > 3, we have,

Notice that L; > MiC7%0;2(V+d), Viz=0.
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using again Cauchy’s estimate,”

Wi (™ = sy = Wi 20050 = Wi,

W, 1 DWW o,y j3s; 1y W1 (-1 = id) ] 6,0,
(e Y W02

)
rji—1 2O'j_1

x[|Wi—1(@j—1 —id) |7, 5,0,

—~
o
»
t
=

~

INE N

3 . .
= 201 HWj—lqu 2||7'j—175j—1:yj—1 ‘|Wj—1<¢j—1 - 1d>‘ 75,85,Y;5
G
1 - i—1 _
< I s 0 (16T 30
1
< 5“Wj*1¢1“T2782,y2 ’ Ujo‘lfl 91*1

1 (5 )
S 5 <H HWlJFle 1’) HW1¢1H7"2,82,y2 : U]C-l_l 9j,1
=1

(2.3.63) 1 = d
= 5 H HW1¢1HT27S2,y2'0’j71 9j,1

ie1 T+l

1
= 2Tj—1 HWl(ﬁIHTmSz,w : 0?71 ejfl |
48d 3d 257‘1770 ]_3 9
= ?Ug 10 [Wi61/lrs,50,0. - ( E > 07
484 3d- 257\ 2
< ot Wil (STE) 6t
d d.95-d\ i v
48 3d-2°7*\* 1
= ?Og Mo HW1¢1HT2,82,y2 ’ (( 5 ) 7761 01)
212

1
= ?02 Mo HW1¢1HT2,S2,ZJ2 ' (CIO 773 81)

*0Notice that (2.3.63) = W, = diag (% 1g,14),VYi>1 and recall that 2071 > i, Vi > 0.
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Therefore, for any n > 1, 57 = 0,

n+j
”Wl <¢n+]+1 - ¢n)‘|Tn+j+275n+j+27yn+j+2 < Z HWl ((le - le) Ti4+2,5i42,Yi+2

i=n

n+j )

Z (l_[ Wka+1|> HWz-&-l(ng_l - ¢Z)H7"z+2751+27yz+2

i=n \k=1

(5.3.46) . Th+1 A .

2 1_[ max { } HWi-i-l(ng_l - ¢Z)||7'i+215i+27yi+2
1=n k=1

n+j

Ti+2,5i4+2,Yi+2

= 3 Wira (6™ = o)

48d H 2
< —05 10 [Wi1 rs.50.9 Z (Clo o 91)
and
1 (2.3.54)
Ciomng 01 <

Hence, ¢/ converges uniformly on {y.} x T¢_ to some ¢*, which is then real-analytic map
inze ’]I‘gl*.
To estimate |[Wo(¢* —id)| on {y.} x T¢ , observe that , for i > 1,>!

d+1 921'*1 d+1 d+1 01

d .12 99 1 90 i _ 9 . :
of |el” L < 3.92id+]) < 3.21(d+1)d*01 N 3d., <2d+1)

and therefore
d+1 ‘91

- d+1 .
2 %9 o 0 @359 1 4,
L; < ( > < < = .
3d. 2 2it1) = 3.2d4, 2 70
Moreover, for any i > 1,

HWl <¢Z - id) Ti41,Si+1,Yi+1 < HWl (¢i71 © ¢l - ¢l) Ti41,Si4+1,Yi+1

i—1
< HWl (¢Z_1 - ld) risiyi T (H ||WJW]_-:1|> HWZ(¢1 - ld)

7=0

Tit1,8i4+1,Yi+1 + HWl (¢z - id)

Ti+1,5i4+1,Yi+1

= HWl (¢i—1 - ld) 7i,8i,Yi + HWZ<¢Z - ld) Ti4+1,Si4+1,Yi+1
= le(gbz_l - id)HTi,Smyi + HW(¢1 — i )Hri+178i+1,yi+1
< HW1(¢Z'_1 — id) s, + 0F [P L

51Recall that 28 > i+ 1, Vi >
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which iterated yields

[Wi(¢" —id)

1—1
d |2k
T3,54,Yi < Z O |5| Lk
k=1

< Yot e L

k=1

1
< 5 O'(C)H_l.

Therefore, taking the limit over i completes yields, uniformly on {y,} x T¢

Wi(¢® —id)| < 5 a5t

Now, to complete the proof of the Lemma and, consequently, of the Theorem, just set
G« = ¢ 0 ¢* and observe that, uniformly on {y,} x ’I[“gl*,

Wolge —id)] < [Wo(gp o ¢ — ¢%)| + [Wo(6* —id)]
< Wolp — id) s g + [WeW; | Wi (6% — id)|
) Ko r . .
_ |vvo<¢o—1d>|m,sl,y1+max{ L 1}|vv1<¢ _id)]
(0% To
G W (o — id) [y argn + [Wa (6% — id)]
1
< O'g |€|L0+§O'g+1
(2.3.54) 1 1
g g O-(CJH_I =+ 5 O'g+1
< odt!

2.3.3 Proof of Theorem 2.1.4

As usual, the proof is inductive: at each step j € N, a small perturbation of some normal
form N; = e;(w) + w - v,
H; = N;+ P;

is considered. Then, a coordinates and parameter transformation F; is constructed so that

HjoFj = Nji1+ P

66



with another normal form Nj;, some much smaller error term P;,; satisfying
3
[Pl < ClB

for some constant C' > 0 and the sequence F/*! := Fyo---oF; converges to an embedding
of an invariant Kronecker torus.

The first step, called KAM step, will be then to describe one cycle of this iterative scheme
in which, for readability, we drop the subscribe j and consider a generic hamiltonian
H = N + P. First of all, instead of H, we consider the hamiltonian H obtained from H
by first linearizing the perturbation P in y and then truncating its Fourier series in x at
some suitable high order .

The transformation F is of the form

~

Fi= (P, p) = (QI’ o (1, ma; p 0 T3), P © 7r3> ) (5(1/,96; p(w)), s@(w)> :
where @ is obtained as the time—1-map of the flow ®% of some hamiltonian F' and

T CixCI'xC'—-C% j=1,23:my,z,w) =y, myzw) =z myz,w) =w.
(2.3.64)
In particular, ® is then symplectic for w fixed®?. Then, we iterate this cycle and prove the
convergences.
In all this section, the sup—norm on D, s x Q, 5 will be denoted by |- |,sn = || |r.s.n.4
while on D, s x C? (resp. D, x R?), it will be denoted by || - |50 (resp. |« [rs0)-

2.3.3.1 KAM step
Lemma 2.3.5 (KAM step) Assume that | P, s, < € with

(a) € < =anra”,

1
Cy

(b) € < &hr,

1
Cs

2Indeed, denoting the Lie derivative by £ and the contraction operator by ¢, we have

*

d
£(¢%)*w:(¢})*ﬁxpw:(¢})* LXp d(’l)ﬂ tdix,@w | =0 = (¢p)
—dF

w = (qb%)*w =id*w = w.
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for some 0 < n < 1/8,0 < 0 < s/10 and sufficiently large Kk > %. Then there exist
¢0: RY — R4 q C®—diffeomorphism with ¢(Q) = Q and ¢ =id on R\Q , d: D,y 550 %
C? — D, a (w-) family of symplectic transformations parametrized over C?, each being
real-analytic with holomorphic extention to Dy, s_5, and C* in w on R? and such that, if

Fi=(D,p) = (&J o (m1,ma;p 0mg), P o 773> , the following hold: its restriction map
Fn = ((I), 90) Dnr,s—So X Qa& - D'r,s X Qa,h

is well-defined, real-analytic (in all arguments), H o F, = N, + P, with another normal
form Ny =e,(w) +w-y and

C €2
P, Vo (

777‘,8—50’,% = 3 . 217

+ (n* + K" e“”)e) .

aro?
Moreover™,
|W(F = id)] 5400 < (‘;O)QH max <403a;0_5, gz;h) , (2.3.65)
[W(DF —1ayW ], ., < (‘;")QH . max <dC5O;UV, ngEh> , (2.3.66)
lp—id|,, h|Dg - 1d], < fcfoj (2.3.67)

for a given oy = o, with

— 1 1 2v—1 1
W = diag (]ld, - <UO> ]ld, ﬂd) .
r o\o h

Proof For convenience, we will follow the scheme of the proof in | | and add two
more steps allowing us, later, as we said, to estimate the Lipschitz’ semi-norm of the
symplectic transformation we are going to build—up without invoking the Whitney’s ex-
tension theorem.

1. Truncation. Let Q(z,w) = P(0,z,w) + P,(0,z,w) - y, the linerization of P and
R :=T,Q. Then by Cauchy’s estimate we get

HP |r,s,h

| Qs <[P

r,s,h +d < (d + 1)6,

%3We denote by D® and Dy, respectively, the jacobian of ® with respect to (y,z,w) and of ¢ with
respect to w.
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And

1
1P~ Qlapan = || (1= 0P (t..0) (0. )i
0 2n7r,s,h
1
< sup J (1 —=1)|23.,, P(ty, x, @) ly; || vl at
1<]7l<d (yvxzw)EDZUT',sXQa,h 0
! P71
< (1 —t) 220 (2nr)2dt
1<j,l<dJ0 (r = 2nr)?
2n%d?
S —
(1—2n)?
_ %,
< €.
9 n

By Lemma 2.2.4, we have
IR — Q”'r,s—a,h < 4d02ffd €_MHQHr,s,h < 4d(d + 1)02/<0d e ",
and therefore

||RH7“,5—0',}1 < HR - QHT,S—U,h + HQHr,s—o,h
C
< (49CoK%e™ +1) (d+ 1)e < 2(d + 1)e = ~ ¢,
2Cy
because Cy < Oy and, later, x will be chosen so that k% e < (4”Cyy) L.
2. Extending the Diophantine condition. The Diophantine condition (compare (1.2.1))

is assumed to hold only on ,. Nevertheless, given w € €1, , there exits w, € €, such
that |w — ws| < h, so that, for any |k|; < &

© « o)
Eo(w—we)| <k |w—ws| < kD < <
(=) < bl - o =] < o € 52 < ot
and thanks to (1.2.1), we get, for any w € Q,,
a
k- w| = -, V0 # |k <k (2.3.68)
2|k[7

3. Finding the hamiltonian F by solving a homological equation. We have

H=H+P-Q)+(Q—-R)with H=N+R



Let’s remind that we are looking at for a hamiltonian F such that its flow ¢} satisfies™
Ho¢p =Ny + Py,

for some hamiltonian Ni closed to a normal form and much smaller error term P}r. We
have

Hodp=Hopp+(P—Q)o¢p+(Q—R)o¢p.
Next we expend H o ¢t around t = 0 to get™

Hogh - Nogh+Rogh
1

d LTI
= N g Nodk o+ L (=8N o, dt+

1
d S
+R + L %Ro ¢F\8=t dt
1

_ N+{N,F}+J

1
(l—t){{N,F},F}qu}dt—l—RvLJ {R,F}o ¢ dt
0 0

= N+ |[R]+{N,F}+ (R—[R]) + Jl{(l —t){N,F}+ R,F}o¢.dt
\_\/_J \0 ,

— 1
=Nl -~

.— pO
=P

Since @ is affine in the variable y , then so is R and a fortiori [ R]; moreover [R] does not

depend on z. Therefore, there exist analytic functions €% : w — €% (w) and v: w — v(w)

such that [R](y,w) = €% (w) + v(w) - y (in fact v = [R,]) so that

N} =e(w) + € (w) + gw + v(w)) y (2.3.69)
::e}T(w) :::’?W)
Let
Pl:=P'+(P—-Q)o¢k+(Q— R)oodr (2.3.70)

The main point is then to determine F' by solving the homological equation

{N,F} + (R—[R]) =0

n fact, rigorously, one should write H o (¢L.,id) and so on.
% Given a function K and denoting the Poisson bracket by {-,-}, we have

d d
K 00 = dK(9)) - 0% = dK(0}) - 1dF(0}) = (K, F} o g}
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i.e. (recall that N =e(w) +w - y)
F={F,N}=R-[R] (2.3.71)
so that we have

(1-t){N,F}+R=(1-t)([R]—R)+ R=(1—1t)[R] +tR,

1
= J {(1 —=t)[R] + tR, F} o ¢ dt, (2.3.72)
0
and
Ho¢p=N!+PL (2.3.73)

Since [R — [R]] = 0, [[E][;r < [R]rs—0n and |R — [R]|rs—on < 2|R|rs—0n < o,
Lemma 2.2.5 applies to (2.3.71) and we find F' with

2 C() 4610

N

”FHrs 20,h < [ ]Hrs o,h < r,s—ao,h < 2037 (2374)
Then by Cauchy’s estimate we get
F r,s—20 €
TN i s o,
o ao
2|1F r,s—20 €
(JA P~ M <4C;——
r arc
e 21|
F, < A me2oh g0y~ 2.3.75
H Hrs 20'7 h 3OéO'Th ( )
so that ]
*HF:EH%,sf?)J,M HF H, s—30,h 403
r ro?
and by using assumption (a), we get
20 r
| Fellrs—s0n < 03"7" << g (2.3.76)
4C!
Iy < o <0 (2.3.77)

4. Extending the hamiltonian F'. Thanks to Lemma 2.2.1, there exists a cut—off x; €
C(CHNCP(RY) with 0 < x1 < 1, suppx; © Q%% and x; =1 on Qa&. Now we extend F,

witch we call ', as follows: F' = 0 on D, 4 4 X (Cd\Qa%) and F(y, z,w) = x1(w)F(y, z,w)
on D, s 9, X Qa’@. Thus
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(1) F concide with F on D, s 95 X, 1, is continuous on D, ¢ o, x C?, C® on D, 5o, X
74 -
R? and for any w € C¢ given, the map (y,z) — F(y,z,w) is real-analytic with
holomorphic extention to D, s_o,.

(i)

1B lstoe ™ sup | <[ Fls2on < 2C5—— (2.3.78)
Dy s—25x
1Byl 5.0-2000 < IFy 5020 < 4Ch—— < (2.3.79)
- € r
HFxHT,S—?)J,OO < "Fa}“r,s—i’)a,h < 20371—/ < - (2380)
oo 8
and by using (2.2.1), (2.3.74) and (2.3.75), we get
|Follrs—200 < H@wxlﬂo-HFHrsﬂo—thHF (B (2.3.81)
05 €
< 24 : 2.3.82
CICS + 4Cs aTh 4 ao™h (23.82)

5. Transforming coordinates. As we said, the coordinates transformation ® is obtained
as the time—1-map of the flow qb% of the hamiltonian F' with equations of motion

. . r- d i
y=—F,, x=F,orequivalently %@3 = JdF(Cb%)-

By using (2.3.79) and (2.3.80), we deduce that, given w € C%, the flow ¢’ is well-defined,

real-analytic with holomorphic extention to Di,s_zw and C* in won R? forany 0 <t < 1,
with
¢%3 D%,s—4a - D%75—30' (2383)
and, setting ® = = (U, V), we have
|U —id]z s—s00 < [ Fallz 5-30.00 < (2.3.84)
|V —idllz 5100 < [Fyl 268000 < 4C5 (2.3.85)

aro”

Moreover, since R is affine in the variable y, then so is F' and then F so that F'y and V
do not depend on y, therefore the jacobian of ® is of the form

~ (U, U,
Dd = <o v> : (2.3.86)
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with, by using Cauchy’s estimate, the following bounds

8|U — id| z s—40.0
Uy = 1d|z «—500 < d L < 16dC3 (2.3.87)
T
”U - idH£,s—4U,0
|Usllz 5500 < d 04 < 2dCy—— —T (2.3.88)
V—id|r s 4
Hvx—lduz,s,wgd” I3.0-400 < 4dCy—— (2.3.89)
8 o aro?
HFwHT s—20,0 dOS €
Uollz s—10 Erpllrs—s00 < d = — 2.3.90
Usl55-100 < | Futlrs-so0 < A7 FR— (2.3.90)
2HF Hrs 20,0 dC5 €
Volzs—10 Eoylz s 200 < < . 2.3.91
Vallg s-t00 < | Ful5.5-200 Y (2:3.91)

6. New error term estimate. To estimate P! (compare (2.3.70)), we need to estimate
{R, F'}. By Cauchy’s estimate, we have

,s—20,h

N

|yl

h
5,8—30,5

2 HRHr,sf?m,h
T

d
I{R, F}H%,s—?)m% < Z | Rz s 3ah||ijHg,s—3a,g + ||Ryj||%,s—3o,hHsz“%78_3U7g
;1
Z HFx”g,szag
N

2036 4C, € 2036 203

— 2Cho aro™ 26’0 r ao?
4dC3 €

Co aro?’

N

HIRL FYlyagos = Bl Eulls sgos = IR Foly

AR amson |Fely osors

N

< d|Bylgs-son - |1 Fells 550
2HRHT,S—30',h 2dC’§ 62
e T
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and therefore

1
2.3.72
Py 5 [0 OLR) R F) o o
0 nr,s—BJ,%
(2.3.76)+(2.3.77) ('t
N N L R T
0
1
< [ MO0 R
0
3dC2 €
< —_
Cy aro?
Hence
(2.3.70)
Hp-il—Hm',sf‘So,% = HP-‘? + (P - Q) © ¢11‘7‘ + (Q B R) © ¢}7‘Hnr75750,%
(2.3.76)+(2.3.77) 0
S HPJer',s—&T,% + ”P o Q‘|27’]7‘,8—40’,% + HQ - RHQ?’]T,S—4O’,%
3dC2 ¢ 32d* , d
< =+ +44d + 1)Cor? e
Co aro? 9776 ( JCak" e e
3dC? €2
< 4%(d + 1)C _ 2 d g—ko
mx (P8 a0 06 ) (S5 (P )
VCi [ € o a4
= — - " . 2.3.92
3,21/ araz/Jr(T/ thre )E ( )

7. Transforming frequencies. In view of (2.3.69), we need to invert the map
prww+vw) =w+ [Ry]

But we have

>

. CgE(b) 03 h
—id|lp = |[Ry]ln S IRy z.5—0n < —— < h < < -
lo = idl = IR < I1Rylz.0mon < G20 < oh < 575 <

Therefore, we apply Lemma 2.2.9 and get a real analytic map ¢: n— Qa,% , inverse of

p and satisfies

~ . h ~ 036
Ip —idls, 315 —1d]s < £

Now we extend @: by Lemma 2.2.1, there exists a cut—off x, € C(C?) n C*(R?) with
0<x2 <1, suppxs < Qa&, X2 =1 on Qa%. Then let ¢ :=id + (¢ — id)x2 on Qm% and
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=id on Cd\Qa&. Thus, setting

Ny (y,wy) = Ni(y, p(wy)) = ey 0 pwy) +wy -9,
Fo= (q),QO) = <&) o <7T177T27SOO7T3)79007T3> )

P+ = P |D’V‘ 574U><Qa h
’8

we have HoF = Ny + P, on D 545 X2, e with all the required properties. Moreover,

C3 € (b) h

- - < = 2.3.93
OO r 64\/§ ( )

lo —idlleo < @ —id]x <

and

403 036 2401
Dy —1d Do —1d dfn (D < ~
D ~1dlo < 1Dp ~ Ty + 16~ idl 1 Dorelo < oo+ Goe
05 € (b) 05 1

T A hr S 4C,Cy

(2.3.94)

So, in particular, @ga is C“~diffeomorphism from R? onto itself and since®® ¢ = id outside
of {2 then ¢ is C*~diffeomorphism from (2 onto itself.

8. Estimating ®. By (2.3.84), (2.3.85) and (2.3.93), we have®’

) | oo\27-1 O €
— T < .
[W(F —id)[ 5 s-400 < max <603 aro? ( > " Gy Th)

g

00\ 271 € Cs €
< (;) ax (60300"0” Co rh) '

|4 .
Now’®, since

ayq) = ayq)‘(rrl,wz;gomrg,)a aazq) = axq)‘(wl,ﬂ'g;goowg)a aw(q) - 1d) = awq)‘ D@‘ﬂy

(m1,m2;30073)

~ 2v—1 ~ ~
,-1a (2) <20, %Uw
_ . )
W(D./—"—Id)W = 0 V., —1d (0)2 ng )
0 0 o — 1d

because Qq < Q, dist (g, Q) = a and h will be chosen (just below) in such away that h < § so
that Q, a N R? < Q.

57Recall that o > 0.
*8Recall that D® denotes the Jacobian of ® w.r.t (y,z), Dy the Jacobian of ¢ w.r.t w and ® — id
means & — (71, m2).
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with ® =: (U, V), then by (2.3.87)(2.3.91) and (2.3.94), we have

|W(DF —1d)W~

aro?’

dC'5 € (o) 2v—1 05
4 (=22
(ng 2 )ara”(a) Corh}
oo\27-1 O ¢
< max (dC5 arc? (;) e Th)

0o 2v—1 € C5
s (;) ax <d050z7"cr” Co Th) '

Since D: s 50 2 Dyps—50, then the estimates on ® are proven. |

d
! r 56.0 < max { <16d03 + 2d03 + 6’5) ‘
§:5790, 4

2.3.3.2 Iteration of the KAM step

Since we are going to iterate the KAM step infinitely many times, we need to choose the
sequences 7;, s;j, hj, K;, 0;, 1; conveniently so that at each step, all the assumptions in
the KAM step hold. See | ], for details on how those sequences are choosen. First,
we set up the sequences, then we prove that at each step they meet all the assumptions
in KAM step and then we prove the iterative lemma.

Let then y := 2 and (recall ')

O0<sp<1 oy = %8 Eo < 20”60’671’
> ) L )
— _ 9 — (B H
Sj+1 = S5 — 5Uj Ojr1 = ?] Ej+1 = ClO E
Ko — [_4010%_1} aCe < ho< 3%
; and
Boo, =M
Rj+1 = 4lij Jj+1 T g
O<rg<1

77]2 = Ej, Ti+1 = N1y and €; = Cl{EjT’jO';_/
Thus the following hold
Lemma 2.3.6 For any j € N,

((z; € < éanj'r]af

10 € < ahjrj

(i17) h; < 2?;’.

(iv) €41 = YL (e E; + (03 + k4 e™9%)¢;)

(v)  Kjo; >d—1, 0<un, <1/8, and 0 <o; <s;/10
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Proof (i) As Ej; is decreasing (super—exponentially) and (i) < C7E; < 1 then it is enough
to check it for 5 = 0. But by definitions, we have

1 1
- < —.
7Cy S C3

A\

Ey <

(i1) + (74i) By definitions, it follows®

T 5 1 €0 ho 1
Kkyog e "7 < Eyog = —— < — < =
arg  aCs — 2Cskg

Now let j € N and assume

ko > leg h; 1
KjoY e % < Eiot = =L < —L- <

NI
NI

<
<

Then, by using the above definitions we get

v v —Kj+10j+1 _ v, U _U —2K;0;
Kjt10j41€ = 4'wjoj, e
U —KjO; v 2 v
< (kjem) ol < Ejojy,
< OW'BloT., = Ejpol,, = L9
S Lo 504 §+19 41
A Tjt1
= i .
_ ClOE]Ejﬁ < fEJO_]
_ byl
< - =
064’/06 0406
1 1
< —

which ends the proof of (i7) and (4ii).
(1v) We have

VCio

3o (6B + (F + 5 e™P)e) < =0 (6E; + (B + E))e;)
C C ;
= Q;OEJ»E] QDloozEJ?rja;’

aCli BVE ()
J

— v _
= 047”j+10j+1Ej+1 = €j+1-

59See Appendix A.
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(v) We have '
ij'j = 2]/4100'() = KoOg > d— 1,
1 1 1

E w < - —
010(010 0) <

O0<n?=EF,; = < — ,
TIJ J 01041/“] 43

sj—100j:%>0.

i
Now we arrive to the iterative lemma. Given j € N, let®
. . 1P T -1 i(2-1) 1 1
Dj =Dy, O;=Qun, W;:=diag (r;'ls, 2% Vo1, h;'Ly),
S
T'jhj ’

Then, by the definitions, we have u; 1 = 27u;,/v; and v;41 = v4. Thus,

Uj; = vj = ClOEj-

. _ - i 1 U; UQ 25 i
V5 = ’Ug], Vo = CIOEO < 471/, U; = 2]1/’&0@8] l, Uy < 6 and # = h7023jy?]6ﬂ 1.
6 j 0
In particular for any j > 0,
. iy U u iy
uj < 27 g - 477D, hi < 2%7. hi G (2.3.95)
J 0

Lemma 2.3.7 Suppose Hy := N + Fy is real analytic on Dy x Oy with

[ Pollro,s0,n0 < €0 = aEigroo.
Then for each j € N, there exist a normal form N; and a transformation
FI = (®4;¢7) = Fgo---0F;_1: Dj x RY > Dy x R? such that

(i) ¢’ R — R? is a C*~diffeomorphism with ¢’ =id on Q and ®¥: D; x R* — D,
is a (w—) family of real-anatylitic, symplectic transformations parametrized over R?
and C* in w;

(ii) F? is Lipschitz—continuous in w with

€0

Wo (F/ —id) okl

e < Co (2.3.96)

uniformly on D; x R?.

50Notice that og/o; = 27.
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(iii) The restriction F7 = ]-"|ij><0]_ is real-analytic with holomorphic extension to D; x O;
for each given w € O; and satisfies F7: D; x Oj — Dy x Oy, Ho FI = N; + P; with

HPjHTjaSjyhj < € = ak; i3T5 ;7

Furthermore

[Wo(F* = F) 15400 < 07% QP BID4S (2.3.97)

Proof For j = 0 we take F! = Fy =id, N; = N, P, = P, and we are done.

Next we pick 7 > 0 and we assume that it holds at the step j. Then we have to check it
for the step j + 1. But, thanks to lemma 2.3.6, we can apply the KAM step to H; to get a
transformation F; = (®;;p;): Dji1 x R? — D; x R? for which every properties in KAM
step hold. So, its restriction

Fj = Fiinsax0551t Djrr X O — Dj x O;

1t
and there exists a normal form N;,; such that H;,, = H; o .7:“] = Nji1 + Pj4q with

Cho .
||P]+1||7~J+1,5J+1’ J+1 \ 3 21/ (EJEJ + (7]‘]2 + K/;ie Kj ]) 6]) .

i

Then we apply (iv) of lemma 2.3.6 to obtain
P +1H7‘g+1,sg+1,h3+1 < €41 = QEJ+1TJ+1 G4+1-
Therefore
Fitl = Fyo- o Fj = (@jo(éj,gpj);gpjogoj) : Dy x RT — Dy x R

is a transformation such that H o F/*!' = H; o F; = N;;; + Pj1 with all the required
properties in (i) and ().
It remains the estimates on F7. By (2.3.65) and (2.3.66) we have®!

HWJ(*FJ - jd)“""j+175j+170 ) ”V_V](D‘F] - Id)Wj_1||7’j+175j+170 <

oo\t e; Cs €
< <0> - max (dC5 j_ 25 4 >
of ozr]a] "Corjh,

o dC'2
40004 ( )
2
SR B R (2:3.99)
40004 TOhO
61Notice that }LJ = a}?o ‘o7 < ah;ﬂ S 4CC0504'
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Thus

[Wo(F* = F9)| [Wo(F? 0 Fj = F)lryr.551.0

< HWOD-FJW]'ilH?"]‘,Sj,O ’ HWJ<'FJ - id)”’“j+1»3j+1,0
(2.3.99) dC’g €o
40()04 Toho

Tj+1:55+1,0

. 2_17(2uj+j—2)+j . “WOD]:jI/_[/j_l\|rj,s]-,o-

Next, we need to bound |[WoDF/W; | uniformly on D; x R%. But for any j > 0, we
have®?

T rT— . Tj+1 1 o5 hji1
;7240 = g (20, i M0 B0, )|

Tj h;
riv1 o 1ooje1 hyn
— max ( J J J

79201 ) .
ri 2 of h;

1
one(13)

1

=5 (2.3.100)
and
WoDF'W; " = WoDFyo---oDF; W
= (MoDFRWg ") (WaWy ') -+ (Wi DFaWiy) (Wi W)
so that,

IWoDFW | < [WoDFW5  [IWoWi |- -« [Woa DF; W WY

< |WoDF WG Wi DF Wi

3.9C j—1 2
=0 40004 ’I“Qho
- dC? (2,
< 47 1+ _ "5 2—V(2/L +k—2)+k
,H) ( 4CoCyCy
2 0
< 4—jl7 exp & 2—17(2,uk+k—2)+k
1CyCiCy &
| elGCicn
dC?

52Recall that any j = 0, n; < v/c < 1/1/47Chp < 1/(3 - 47).
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Cs :
6 C
Cr e dC? dC? iQ DI +j—2)+j
40004 4000406
Therefore, |
W (Fi+t ]—“J)HTMSMO\C?T 07217 +3j-2)+j
0

Finally, using again (2.3.98) and (2.3.100), we get

[Wo (DF*H —1d) WA | = [Wo (DF o DF; —1d) W A |
HWO(DPfId)W o W;DF;W; o W,W L+
Wo (DF; —1d) W4 |
< |[Wo (DF —1d) W |WiDFW; | |WW 2 |+
| (WoWit) - (W W) Wy (DF; = 1d) Wit o W WY |

1, .- . - 1 dC?
_ ] fl
<7 |Wo (DF? —1d) W | <1 t e Ac,C, Y ) +

1 1 dC?
4(]+1)y 2_7 (2v-1) 40004

Therefore, letting

= , - 1 1 dC’2
= log (WO (DF —1d) W, | + ._) ,  Zj = j=0,
we get, for any j > 1,

1 1
wj1 < wj + log (41, (1+ Z])) and  w; = log (4u> '
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so that, for any j > 1,

Jj—1 1
w; < ) log (;7 (1+ zk)>
k=0 4
1=
< log El_[(lvhzk)
k=0
1 Q0
< log (4JV + log <;H) (1+ zk)>
)y
< log (5) + 2k
4 k=0
1
< log (4117) + Cgug ,
i.€. !
Cgu
|[Wo (DF —1d) W, < E(e sw — 1)

In particular, for any j > 1,

hi|Wo (0,F —1d) | < [Wo (DF? —1d) W

Csu
< E (6 8% ].) s
ie. 93
hOHWO ((3wfj — Id) H < 608“0 —1 < CgUO nguo < Cg GCB/CGUO CgUO y
i.e.
Wo (F/ —id) |ppe < Co—r oho uniformly on  D; x R? .
i

2.3.3.3 Deduction of Theorem 2.1.4

Weset Py =P, so=s, ro=7r, ho=h, and e =¢e=|P|ss; thus Lemma 2.3.7
applies. Hence, by (2.3.97), (F;); is a Cauchy sequence and therefore converges uniformly
to some F = (P, ) on

ﬂ Dj x R* = T, x RY, where T} := {0} x ']I‘%l,

§=0

63Recall that ug < 1/Cs and e® — 1 < ae?, Va = 0.
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with the map z — ®(0, z,w) real analytic on ']I‘% for each given w € R¢ (by Weierstrass’s
theorem) and for any j > 1,

HWO(FJ - id)HTj,Sjﬁj < HWO(FJ - ‘Fjil)HTj,Sj,hj R HVT/O('F2 - ‘FO)HTmSo,ho
< Chouo,
i .
010 — 07 2—5(2u]+3j—2)+j
7=0

and letting j — o0, we get, uniformly on 7T}, x R,

IWo(F —id)| < Oloih. (2.3.101)
r
Moreover, by letting j — oo in (2.3.96), we get, uniformly on T}, x R?,
[Wo(F — id)| e < 09%. (2.3.102)

Let’s prove that ¢ is a lipeomorphism from 2 onto itself. Indeed, for any j > 0,

| Dt —1d]o + 1 = (D¢’ —1d)Dg; + (D —1d)o + 1
< |De’ —1do (| Dgp; —Tdfo + 1) + | Dg; — 1d)o + 1
= (|D¢’ —1d[jo + 1) (| Dep; = 1dlJo + 1) ,
so that%
J
| Dt —1d]o < =1+ (| D" = Td[o + 1) [ [ (I D — Id]g + 1)

< exp G i2’7(2*‘kk2) —1
2C0Cs

k=0

éelog(g)—1:;<1

64Recall that ¢! = ¢o = id, so that |Dp! —1Id|o = 0.
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Hence, ¢ is a lipeomorphism (Lipschitz continuous bijection with inverse Lipschitz con-
tinuous as well) from R? onto itself closed to the identity. Furthermore, ¢ = id outside of
(2 since each ¢, is so, so that ¢ restricted to €2 is a lipeomorphism from 2 onto itself.
Next, we prove that for each w € Q,, ®(0,z,w) is an invariant Kronecker torus for
Hpw)(y,x) = H(y,z,p(w)). Indeed, by letting j — oo in Iterative Lemma, (iii), we
obtain
Hipwy o @(y,z,w) = Ho F(y,z,w) = exn(w) +w -y,
on ﬂDj x 05 =T, x (.
Jj=0

Thus,
O 0 b 0 By, W) = (gt +0) Dl G, 0 Oy ziw) = B(y,wt+ w3w),

on T, x Q.
It remains just to prove that the tori are Lagragian. Indeed, since T( )T = {0} x C? for
any x € T% , each ®7 is symplectic and = is smooth, then we have, for any w € R,

O*w |+ = lim (®)*w|p+ = @[+ = 0.
j—w

Remark 2.3.8 Notice that one could apply Lemma 2.2.2 as well to prove that ¢ is a lipeo-
morphism, provided that Cg is chosen a little bigger. In fact, by (2.3.67), we have®

Cs

—u.

2C)h J

lpj —id||f e <
Thus, for

Cs N (20 —j-2)
) o—7(2p7 —j—2
06 CO ZO )

—_

0
: : — i C : C —o(2u7 —j—2
by taking With £; = id, g; = ¢;, 6 = 1, lj = 55-u;, since Z;O:O lj < 36565 Z 2772 =i=2) < 2
§=0
for any j > 0 so that we apply again Lemma 2.2.2 to get

” i H < Cs = < 1
@ — 1(1 X —— E U & —.
LR 2CH fr K 2

Therefore
lp —id||p ga <

65Recall the notations in the proof of Iterative Lemma.
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3 Comparison of the KAM theo-
rems on a mechanical Hamiltonian

We consider the simple mechanical Hamiltonian®

2 2 d—1
Hy(y, x;e) = % +ePy(z) = % + € <cosm1 + > cos(xji1 — x])> )

j=1

and we choose

 10s, 103
9

§s=3S5

Moreover, we have

Ho(y + yo, x;€) = % +w-y+ % + ePy(z) = H(y,x;w;e). (3.0.1)

3.1 Application of Theorem 2.1.1
By (3.0.1), we have

Ko =
7

Hence®

~ w? dr?
M = |P|,ss = coshs+ (d—1)cosh(2s), E = max ?,r]w|, —, |wl ¢,

6Asusual, y? =y -y=yi+ - +y2
67See §3.3 for an idea to compute | P s c,-
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Ci~
I = %Ewr’wa’ﬂwrﬁM,
¢ E-9547 1311044 [0
cosh s + (d — 1) cosh(2s) -

£y = ¢ B 004131004150 A1 =

Therefore, Theorem 2.1.1 holds for

E-9547+13,.10,4| |6
le] < &4 = ¢ Rl : (3.1.1)
coshs + (d — 1) cosh(2s)
3.2 Application of Theorem 2.1.2
By the very definition of Hy, we have
y?
P=F, Ky)=7. Ky =y, T=Eyy) =1L,
so that®
de
M = || Pollrgo = coshs + (d— 1) cosh(2s), | Ky < ,5up lyl =7+ [yo| =7+ |wl,
Y—Yo|<T
def
[ K yy o sup [ Kyy()allryo = sup  sup  [Kyy(y)al = sup sup |af =1,
al= la|=1|y—yo|<r la|=1ly—yo|<r
IT| =1, E = max {r(r+ |wl]), |w]?}.
Therefore, Theorem 2.1.2 holds for
2
where
—1\2v —1\V
[y = maX{O <p<g : pl-max{l, Po 1 (logp, 1) }-u (log,u 1) < 1} ,
- 1 o (1242
= min< e xp| —— | ———
| EPNTE U ’
py = Cq (3V+2d+1) max{l, g} 7
r
ps = Ciy 0y —(4v+2d) 7
58See §3.3 for an idea to compute |Py|.s.y, and |Ky |y, y0; for the later, writing yo = (Yo1,- - » Yod),
one can just choose the family y, == (yo1 + asign (yo1), -, Yoa + asign (yoq)), 0 < a < 7.
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3.3 Application of Theorem 2.1.4

By (3.0.1), we have

w y?
Ko(w) DR P(%l";w):?ﬂLdDo( ).
We choose
2cas” eC
0<r< , =—
d r
with ¢, C asin (2.1.9) and € = | P|, 5. Next, we compute e.
dr? d—1
e= sup |P|<-— +suple|||cosaz|+ Z | cos(zj41 — ;)]
D%SXQi’h 2 xe'ﬂ"f j=1
dr?
< -

5+ le|(cosh s + (d — 1) cosh(2s)),
Now, choosing

Yo i= (a il_ségm,a z'l_s;gns, ea il_ségn€> , O<a<r
and
= bi,—bi, - (=1 b, (=D i ]|, 0<b<s,
(S
jth term
we get
da?® o,
|P(Ya, Tp; w)| = |——sign () + ¢ | coshb+ » cosh(2b)
2 =
da?
= — +|e| (cosh b + (d — 1) cosh(2b)) .
Therefore,

€= sup |P(yq, 2p;w)|
O<a<r
0<b<s

d 2
sup % + || (cosh b + (d — 1) cosh(20))

O<a<r
0<b<s

B dr?

+ || (cosh s + (d — 1) cosh(2s)) .
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Thus
dr 2
e=—+ le|(cosh s + (d — 1) cosh(2s))
1
= gear + le|(cosh s + (d — 1) cosh(2s)).

Consequently, if

2cas” — dr?
<e, = , 3.3.1
el < e 2(cosh s + (d — 1) cosh(2s)) ( )
then Theorem 2.1.4 holds.
3.4 Application of Theorem 2.1.6
We choose
u=0, v=y =w
Thus,
Hyy = ILd; M = lda T = ldv f = 07 g = 6V:vPO'
Therefore, we can take
E=1, E;,=0 if jk>0 or k=3, En=1 p=U=V=0,,
T=1 V=, M=FN=1, F=0.
Next, we compute G = [¢| ||V, ]|, ,,,- We have,
elCE1 — 67'$2 6Z(wd+l xd) — e 7'(:EdJrl md)
G = - — + i — a;
el e [l =g+ (e — ) 5
7,5,Y0
e’ 25 4 6
= || |S|UP1 <|a1| Z |a; — ag+1|
ali=
d—1
- 1| sup <|a1| e+ Y (laj] + lagal e )
a 1— j—l

< |e|min(e® + (d — 1) e*, 2¢€%) .
But then, taking ay = (1,0) if d = 2 and

ao = (0,1,0,---,0) if d=>3,
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we obtain

G = [el IIVaPo()aoll s, = el min(e® + (d 1) €, 2¢%).
Hence

= |e|min(e® + (d —1)e*, 2¢*) = [¢|G .
It remains the choice of E5,. Writting

) . 1 _ .
PO _ i(ele + e—z;m 5 z_: Z (zj41—x5) +e —i(zj11—x5) — Z POm ezm-axy (341)
we have, for any 7, k, [ =1,--- ,d,
03P,

S : Py €™, 4.2
E T i 2 mmymy Poy, € (3.4.2)

meZd

so that
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d d
?*PR,
03P, def sup Z sup ——(abrg
H‘ T H‘r,s,yo \b\1=|c|1=1j:1 laj =1 Py 6x]8xké’xl() J
5 78,90
d d
PP,
= sup Z sup %(')ajbjcl +
pli=1 S lah=1 | || 0xF0x
le|1=1 7,5,%0
P3P, 0* P,
25— ()ajbic; + —— 5 (Jajbick
1<k<d aa:j axk 1<k<d ax]amk
k#j 5,50 k#j 7,8,90
(3.4.2) 4 2 c s|m/|
= sup Z sup | |a;lb Z |m;| chml | Py | €1t +
bli=leli=1 =7 Jal =1 mez =1
lajllesl D5 myl* | D] brm| [Pom| ™+
meZd 1<k<d
k+#j
jaj| D5 Imgl| >, brcwmi||Pom| e
meZa 1<k<d
k#j
d d
< X [Poml €™ sup [ Y7 1b1lmy[* | com| +
mezd blhi=1 1 ;=1 =1
leji=1
d d
Mleillms | Y e + D Il | Y. breem}
j=1 1<k<d j=1 1<k<d
k) k#j

< 2 | Py es|m|1(|m\3 + [m|? + |m||m|?)
meZa

3.41) 1

(B4D 25 (3¢ +4(d 1) ¢*)

=3e’ + 4(d — 1) 625 = E370.
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Therefore

A~

V=r, A=Ay = |wl, As =0, Ay =3e* +4(d—1)e*,
As = Ag = max {3¢’ + 4(d — 1), |w|*}, A7 = a?max {3e° +4(d — 1) e* | [w]*},
Ag = (5 — 8)*" max {1 , |w|}7 Ag = max {A; , Ag}, . = a_2|5|@.

r

Therefore, Theorem 2.1.6 holds for

2w 2\2(27+1)
le| < ey = (s —$) ~ . (3.4.3)
109 - 287+ 1371400 G

In particular, for d = 2, we have the following.

Corollary 3.4.1 Consider the hamiltonian H(y1,ys, 1, T2;€) = @v%(cos x1+cos(zy—

x1)) and w = (*@71, 1). Then, for any |e| < e, there exists a Kronecker’s invariant torus
Tyow for H i.e.

KAM theorem Parameters Ex
Kolmogorov r=1, c=1/20 9.18337 x 10730
Arnold r=1, 0=1/20 2.02258 x 10~%°
r=1.73502 x 105, o =1/20 .
Moser h = 2.53148 x 10-10 1 4.46141 x 10%¢| | 012208 < 10
Salamon-Zehnder r=1,s=1, §=1/10 7.38385 x 10?7

Table 3.1: Values of ¢, according to the KAM theorem

91



4 Global symplectic extension of Arnold’s
theorem

4.1 Assumptions

Let a,m9 > 0, 7>d—1,0 < 59 < 1, 2 = R? be a non—empty, bounded domain® and
consider the Hamiltonian parametrized by € € R

H(y, x;e) == K(y) + eP(y, x),
where K, P are real-analytic functions with bounded holomorphic extensions to™

DTO,SO(-@) = U DT‘O,SO(yO) )

YoEYD
the norm being
|+ lros0.2 = sup |-
Dry,50(2)

Assume that

|det K,y (y)| £0, Vye2. (4.1.1)

Define

Q

AT — {weRd: |w - k| = ik Vkezd\{o}}7

«

Droor = {yo € 2. dist(y,09) = % and K, (y) € A;} ,

T: -@m,a 3 Yo — Kyy(yO)_l € ISO(Rd) :

694 e. open and connected.

"ORecall the notations in §1.2

92



Finally, for € & 0 given, let™
MO = HP||’707507»@1”0,(1 )

K() = HKyyHro,@ro,a )
L K0|€|M0
€= —F
052
To= Tls,. = sup [Tl
yoe-@ro,a
Koo = KO 6% )
TOO = TO 6% ’
3 27+d+2 . . _
Cp =4 <2> J (Il + dlyli?) e Wy,
R4
3 T+d+1 1ol
Ci=2 B i e dy ,
Rd
Cy = 2344,
C3 := d°C} +6dC, + Cy
24
C4 = CO + Tecl )
C max { 4d T oK 3 C
= X a3-17
5 OO o3r47 (0

0 < 09 < min {5—20, 272(7*1)C5\/§} ,

Sy == Sg — 200 ,

¢, — 16C54/2 |

g0

C7 = IIlaX{C3, C4} s

1 \¢
Cs = (1+363> -1,
R :=4aT,,
Ao == loge™ !,
R
r =

16C5 (4og " Ao)

a, = 3- 227+gaa(3T+2d+4>C5 max {22(T+2)06l+1 7 C7A8(T+1)\/§} ’

To

b, = 3- 22(T+1)C5 O_Q—(3’T+2d+4) s { 16T 4 N

C

*

(o) R %H
= exX — | —
p 4 000 ’

. 027+2d+3 2
d, =2 2,

"IRecall from footnote'® that Co, Cq > 1.

0

, C; max {1,

roKoo

«

f



)\g(T+1)

€y = Oé2Too ©dy
)\T+1
fo= "2 .p, ,
Ty
. b*
g* T TwKO 9
h, = o
3T2 K5
1 4 1 . 1 -
f1i= g o0 e| My + §f*e*d*00]5\2M02 = 38 oft! e (loge™) Ty gh* ¢’ (log 6_1>3( ) )
1 4 1 a1 ;
€9 1= gf*ao|€|Mo + §f*e*d*00|6|2M3 = 38«00 ¢ (loge™) s §h* e’ (log 6_1)3( ) :
gy i=cC 7042
P KoMy

4.2 Statement of the extension Theorem

Theorem 4.2.1 Under the assumptions in §4.1, we have the following. For any given &
such that™

3(7+1)

)T+1

€ < Cy gy € (log et <1, hy € (log e_l) <1, (4.2.1)

there exist 9, = 9 having the same cardinality as Dy, o, a lipeomorphism G: Dy, o ontg

Dy, a O map K.: 2 — R and a C*-symplectomorphism ¢,: 2 x T¢ O, real-analytic
mxe ']Tg* and such that the following hold.

Oy K 0 Gy = Oy K on Drya, (4.2.2)
65*H0¢*(y*,x) :(95*[(*(3/*), v(y*al')e-@* XTd> VBENBI
and
| meas (%) — meas (Zr,.0)| < Cs g2 €2 meas (Zy.a), (4.2.4)
(Wo(¢s —id)| < &1 on 2, xT¢
where .
Wy = diag | —14,14]) .
47’1
Notice  that  (4.2.1)  equivals  to: ¢ < eis  |elfa [ Pllro.so. 2, o <
1 and 4[e|?fierd2 oo HPH%O-,S()y-@rO‘a < 3.
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Remark 4.2.2 From (4.2.3), on deduces that the d—tori

Towe =0 (U6 T) B € Do, o= Oy Kl (4.2.6)
are non-degenrate invariant Kronecker tori for H i.e.

Oy © Gu (Y, 1) = Gu(yur T+ wit),  VaeTw (4.2.7)

4.3 Proof of Theorem 4.2.1

KAM step Given r, s, K, P, 9, 9; satistying the assumptions 4.1, we seek for r; <7, s; <

s, aset Z; = D, (%) having the same cardinality as % and a near—to-the-identity real-
analytic symplectic transformation ¢, : Z x T¢ © satisfying

(251: DTLSl(‘@é) - DT,S(‘@IO?

with Dy, i, (Z;) © D, (%) and ¢, generated by an extension y'-z +¢g(y’, x) of a function
of the form ¢/ -z + eg(v/, x) i.e.

(4.3.1)

b1 y=vy +eg.(, )
b ¥=x+egy(y, ),

such that

H =Ho¢ =K +°P, K, =K), on D, 5,(Z;),
det é’;Kl(yl) 0, Vy e, (4.3.2)
Oy K1(Z;) = 0,K(Zy) .

By Taylor’s formula, we get™

H(Y +eg.(y,2),2) =K(y) +ePo(y') + e [K,(Y) - g + TP (Y, ) — Po(y)] +
+e2 (PW + P® 4+ PO (¢, ) (4.3.3)
=Ki(y) +e[Ky(y') - 9 + TPy, -) — Po(y)] + €2 P'(y/, ),

"Recall that {-) stands for the average over T¢.
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with x € N, which will be chosen large enough so that P®) = O(e), Py(y) :== (P(y',-))
and

-

K =K(@)+eR(y) = K(y)+eK(y)
p = pW 4 p@ 4 p®

1 1
P = S KW +e0) = K() = eKy () - 9] = J (1= ) Kyy(etgs) - go - gudt

) 0
1 1
pP® .= . [P(y +egs,z) — Py, x)] = ) P,y + etgy, x) - g.dt
1 1 in-x
PO =~ [Py, 2) = TP, ) = = ), Paly)e
L Inji>k

(4.3.4)
By the non—degeneracy condition in (4.1.1) and Lemma 2.2.7, for € small enough (to be
made precised below), there exists 7 < r such that for each yy € Z;, there exists a unique
y1 € Di(yo) satistying 0, K1 (y1) = 0,K (yo) and det 6§,Kl(y1) + 0; Z; is precisely the set
of those y; when yo runs in ;. More precisely, Z; and % are “diffeomorphic”™, say via
G, and, for each y; € Z;, the matrix 85,[( 1(y1) is invertible with inverse of the form

Ti(y1) = 05 K1 (y) " = T(yo) + eT(y1), v =Glwo).
Write
yi=tyo+ey, yn=Gw), Yye (4.3.5)

In view of (4.3.3), in order to get the first part of (4.3.2), we need to find g such that
Ky,(y') -9 + T.P(y',-) — Py(y') vanishes; such a g is indeed given by

—P.(y)
g = — ", (4.3.6)
0<%1:§Fi Ky<y/) N
provided that
K,(y) n+0, YO<Inh <k, VyeD, (%) (cD(%)). (4.3.7)

But, in fact, since K,(yo) is rationally independent, for each yo € %, then, given any
k € N, there exists ' < r such that

Ky(y/) 'n =+= 0, V0< |7’L|1 < K, \ y/ € Dr/(_@ﬁ). (438)

Tj.e. there a exits a bijection from %y onto 9& which extends to a diffeomorphism on some neighbor-

hood of %;.
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Then we invert the function x — x+¢§, (v, z) in order to define P;. But, by Lemma 2.2.6,
for € small enough, the map z — x + g, (v, z) admits an real-analytic inverse of the
form

oy, 2'se) =a" + @y, a; e), (4.3.9)

so that the Arnod’s symplectic transformation is given by

/ ~ / / /
y=y +eg.(y, ey, "))
¢ (') >0 T T (4.3.10)
=y, a’se) =2 +egy, a'se).
Hence, (4.3.2) holds with
Py, 2') == P'(y, oy, 2")). (4.3.11)

Finally, we extend Kj;.

Next, we make a quantitative evaluation of the above construction. Assume that™ H(y, x;¢) =
K(y) + eP(y,z), where K, P are real-analytic functions with bounded holomorphic ex-
tensions to D, s(Z) and

9, {yo € 2 dist (yo,02) = —_ and K,(y) € A;} :

~ 32d
det Kyy(y) + 0, T(y) =Ky (y) " Vye % (4.3.12)
1K yyllrz, < K <K T2, <T<Tw,
Hpr,s,_@ngM, WEA;, 7“<7”0,

Fix 0 < 20 < s <1 and fix € # 0 in such away that,

2 1 R
)\ = log (K|§‘M) > 1) KR = 40__1)\, = Emln <K/T+1 s 7"0’) s

4313
s 5 , ( )
Ti=— S§i=8—= s =s—
4C5’ 3Ua o,
so that 7° o - . .
Fe 10 < " and 8. 43.14
"SUCG T 16dTLK, S32d T2 M7 ( )

"In the sequel, K and P stand for generic real analytic Hamiltonians which, later on, will respectively
play the roles of K; and P;, and yo, 7, the roles of y;, r; in the iterative step.
"6Recall footnote *2.
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Lemma 4.3.1 Let’”
_ M
L:=C4 max{oz,rK}—fa’(Q”d”) :

16T 1
L= Mmax{ Lo~ Comax{a, TK}202(T+C”1)}
a7

T
16T 4 1
= Mmax{—"0 T | Crmax(a, 7K) —=0o 2T
rr Kr2 27
Then
192 7,5,92, < C1 g~ (Tt
”gy/HF,E,%a ”ay/xgHF@@ﬁ < E, (4315)

)
102K 5.9, < KL.

If e, > 0 satisfies

€. <&y and el < (4.3.16)

o
3
then, for any |e| < e, there exists a diffeomorphism G: Di(%;)—G(D#(%y)), 0y K10G =
0y K and such that 7 .= G(%;) < B:(%;),

r : r
|8|||ngF’§7“@ﬁ < g; HG — ]_d”f’@’:1 < 5 s
el Tl < TlelL, 10.G — 4], < [e]L, (4.3.17)
[P, < LM, Bry(2;) < Brjo(Z4) € 9

and the following hold. g has and extension §: RYx T — R and, for any |e| < e, and y' €
Di/o(Dy), the map Ve (x) := x +Gy (Y, x) has an analytic inverse p(z') = &' +e@(y', 2'; €)
such that, for all |e| < e,

|3)l7/a.5 o < L and ¢ =id+e@: Drjyv(Z;) — T¢ ; (4.3.18)

for any yo € Zy and (y,x,€) € Dys(yo) x DL (0), |y + eg.(y', x) — yo| < 2r; the map ¢
is a symplectic diffeomorphism and

o1 = (y' +eg. (v, (v, 7)), (v, 90/)) : Dy, (2;) — Doz (%), (4.3.19)

with

IW llsa,,9 < L, (4.3.20)

"TNotice that L > ¢~?L > L since o < 1. Notice also that TK > 1, so that 16T“ —(r+d+1) 5 1T62T > KTQ
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where ¢ is defined by the relation ¢y =: id + £¢,
1
_(=1a O
W= ( ! ﬂd)

| Prl7/a,,97 < LM . (4.3.21)

and

Moreover, K possesses a C'*—extensions }A(l: R? — R such that for any n € Ny, there
exists C, € N and for any By, B € N& with |81]1 + |Ba|1 < n,

f\ﬁl\lglﬁzll||55,155,2W(¢1 —id) 0.0 < ChlelL, (4.3.22)
P02 (R — K)o < CalelM (43.23)
Proof We begin by extending the “diophantine condition w.r.t. K,” uniformly to Dz(%)

up to the order . Indeed, for any yo € Z;, 0 < |n|; < k and ¥’ € Dz (yo),

Ko,
() - nl = w-n+ (K (y)) = Ky(o)) -nl > [ -m (1 -

> aT (1 — dK|n|{+1T> > ozT (1 - dKHTHT) > iT (1 _ e I€T+1T)
n[] o |3 o n[g o

(4.3.24)

so that, by Lemma 2.2.4—(i), we have

def Pn(y/) n-x
HQHM,% = sup X ( />'ne
% O<|n|i<k = Y Yy

7,5(%y
< Z Me—S\nllMe<s—§U)ln\1 < % Z In|] 6—%0\71\1
« Q

0<|nj1<k nezd

3 NPulrsz,(s-20)pl

b 0<|n|1 <k ‘Ky(y'> ’ 7/L|

2M
<20 [ ety
(% Rd

3 T+d IM
— _ _ T *|y|1d
(5) 2] blremay

< Cl %O_—(T-i-d)
(0%
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and analogously,

nbuy) e > |2 H”ju|| |, els=3)Inh

d
HgmHﬁg,% <! sup

Dr 5(2) 0<|nl1<k Ky(y/) 'n 0<|n|1<r | ( )
+1
< Z Me—s|n|12‘n|-{ ( g )\nh <= 2M Z ’n‘T-‘rl —7U|n|1
0<|n|1<k a nezd

N

« Rd

3 T+d+1 oM o
_ T —lylig
(20> o fRd lyli e Y

Cl T+d+l)

def a (y/) / KZ/?J(y/)n in-x
|0y 9lrs2, = sup < ~ ) s ) @
! g Dr,5(%) 0<n21</< ( ) n (Ky<y,) 'n)Q

1Bl 1Kyl nh (o2
< 4 d| Py s gy Ze T (5= o) Inh
2 S“p<|f<<> o TP ey R ) €

0<|n|1<k

. Q< T 2
(4~3-12)£(4~3-24) Z < Miefsm\12|n|1 L dM fS\n\1K| R <2|n|1) > e(s_%”)\nll
(0]

r—r
0<|n|1<k

(4.3.14) 4M
< 5 2 (|n|{o¢ + dTK|n|%T+1) e~3onh
asr 0<|n|1<k

AM 2
< max(a, 7K)—— Z (In|] + dln|7™*") e~ 3%k

2
0<|n|1<k

4M _2,
< max(a,rK) S | (0l -+ dlyfr ) e iy

27 +d+1
o max(a, TK)4MJ (\y|1 + d|y|2T+1) e_|y|1dy
20 o?r

M
< Comax(a, rK) ——g~ G+
a?r

I

<

Y
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) def ay (y/) / Kyy(y,)n in-x
|2 lrssy " sup ( () Y e
Y : Dr,5(%) 0<|nf1<x K (y) n (Ky(y/) 'n)Q

1Bl Kyym!nh)
S su +d Pn 7,8,9 — n 6(8 30)|n|1
2 DT2<|K<> n T WPl ey e ) I

0<‘n‘1<l€

AM

2

S (1l + ) fnly e el

0<|nl1<k

M .
aX(OéaTK)azrf (lyl5 + dly[i™) |yl e 37 dy

m
3 274+d+2 AM
= () max(a, rK)—— J \y\”l + d|y|f”2) e Wiy

M
= Comax(a, TK)TU
o?r

< max(a, 7K)——

—(27+d+2)

and, for |e] < e,

”a KHT%_”[ ]HT%\HPHTS%< S

~ M 4M
|’a§/KHF7-@ﬂ = ” [Pyy] Hf,@ﬁ < HPyyHF,E,?jﬁ < (7” — f)Q <

Now, we extend the generating function and K; to R? x T¢ and R? respectively, by making
use of a cut—off function. Let then y; € C(C%) n C*(RY), with 0 < x; < 1, suppx; <

Di(%), x1 = 1 on D;j5(%;) and satisfying (2.2.1). Thus, given z € TY, set §(y',2") =
x1(v¥)g(y, ) K, = K +x1- (K - K) it y € D(%), 3(y,2) =0, K, =Kify e
(cd\DT(.@ﬁ)) P and K; = K =0 on CA\ (D:(%;) u 9).

M
|3lo0 < lglks2, < Ci—o™ 7, (4.3.25)
M —(7T
|3zll00 < 192752 < C1 o™ F Y, (4.3.26)
(2 2.1) M o
19y llo0 < [0yxalolglesz + 19y lrsg, < Comax(a, rK) o™ @redth) < T, (4.3.27)
(21 M 7
19yzlloo < [0yxalollgslrsg +19yalrsg, < Comax(a, rK)—-o™ (@r+d+2) <

(4.3.28)
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And generally, for any n € Ny, there exists C,, € N and for any 3, 3, € Nd with |3;]; +

B2l < m,
7:\61\10|,82|1—1||5ﬂ1352gy loo < C,L. (4.3.29)

(4.3.23) is a straightforward consequence of Leibniz’s rule.
Next, we construct Z; in (4.3.2) for |e| < e,. For, fix |¢| < &4, yo € %4 and consider

F: Di(yo) x Di(yo) — C?
(y,2) — K,(y) +cK,(y) — K,(2).

Then
o Fylyo,90) = 2K (yo) +0% R (y0) = T(yo) ™ (1a + =T (90) 22 K (0) ) = T(y) ™" (La+
8A0) and
~ Ale|M (:3.14) =~ 2T, M 1 (4.3.16) o 1
Aol < |T 2K <T < el < — <<
ool < [T ()23 K ()| < T U g 22l < 2 7 <3
Hence, F),(yo, o) is invertible, with inverse
Ty = (L +Ao) ' T(yo) = (Ll + Z(—g)kAk> T (yo)
k=1
satisfying
T
1Tyl < M < 2T. (4.3.30)

— Ao
e For any (v, 2) € Dz(yo) x D#(yo),

120 = ToFy (y, 2)| < [Tol 105K (o) — Kyylrg, + |l 1Toll |05 K (yo)| + [e] 1 To]l 05 K 7.2

AM
<d-2T|K yyHT 9, T +4|6|T—
M
< 24T K., + 16T, |€|
T — T
(1:3.10) C5 27 ’ ‘16TOOM
= rr

e
< C5* + €*|_
r

(4.3.13)+(4.3.16) 1 o
< —_— J—
173
< 1 + L = ;
X 4 4 - 2 )
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e For any 2z € Dx(y),

2| Toll[F'(yo, 2)| < ATy (2) — Ky(yo)| + 4Tlel| Ky 7.2,

2le|M
< 4THKyny,@u +4T—— r
8le| T M
< AT K 7 + BlelToo M
r

Cs r r
x ;T ~ %k I—

d 4C, | 7%
(4.3.16) 7

77
< - )

4

i.€.
2| ol 1F (yo, )l o <

=1 =3

Therefore, Lemma 2.2.6 applies. Hence, there exists a real-analytic map G : Dx(yy) —
Di(yo) such that its graph coincides with F~1({0}) i.e. y1 = y1(z, yo,&) == G¥(2) is the
unique y € Dy(yo) satisfying 0 = F(y, z) = 0,K:(y)—K,(2), for any z € D;(yo) . Moreover,
V z € Dx(y),

,F
G (2) = yol < 2| Tol1E Yo, v < 7 » (4.3.31)
P
(G (2) = 2l < 1G™(2) —gol + 1o —2[ < J +7 < 5, (4.3.32)
so that
Diy4(G*(2)) = Dy2(vo). (4.3.33)

Next, we prove that ¢, K (y1) is invertible, where y; = G¥°(2) for some given z € Dz(yo).
Indeed, by Taylor’s formula, we have,

02 K1(y1) = Kyy(yo) J wus (Yo + tW1 — ¥0)) (1 — yo)dt + 0% K (1)

=T(yo)~" (]ld + T'(yo) (Ll Kyyy (Yo + tyr — yo)) (y1 — yo)dt + 55/?((?;1)))
= T(yo) "' (La + €4),

103



and, by Cauchy’s estimate, for any™ |e] < ,,
AL < 1T o) (Al K yunlelon = vol + 1¢1162 K 15,5,
d| Kyl -
< 7 (T2 o + 1 R,

T 2dK77+4M
= r 2 72

(4.3.14) o 1
T
(16Too AT )

(4-3<-16‘)_|_ o n 1 o
= 16T, 4T, 3

<

o= o Q

<
Hence 07, K1 (y1) is invertible with

Oy Ki(y) ™ = (La+A) " T(yo) = Tyo) + Y (—e)* A T (yo) == T(y0) + T (1),

k=1

~ A g (o
T < lel—————|T 2 < 2|e||A||T| 5 <2=T =T-=.

Similarly, from

Kyy(2) = Kyy(yo) <]ld + T'(yo) L Kyyy(yo +t(z — v0)) (2 — yO)dt)

and

r dK r 1

< TIK r ~sSsl—70=<3
1K gyl r/2.50 Cs r—r/2Cs 2

r/Cs,90

1
’T(yo) [ Koo + 4z = 90) = — ot
0
one has that, for any z € D, c, (vo),

K

vy

. _ _ 1
() exists and Ky (2) 7 < [Kyu(2) " =T(ao) |+ [T (30)] < 25T+T = 2T (4334

"8Recall footnote *2 .
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Now, differentiating F'(G¥(z), z) = 0, we get, for any z € Dz(yo),
ﬁi,Kl(GyO(z)) - 0,G"(2) = Kyy(2) .
Therefore G*° is a local diffeomorphism, with
0.6 () = BB (GP () Ko(2)
= (K2 (Kpl2) + el R(gw ()
= (L + Ky () BR (@ ()

and

142 —1 2% ’5“- g 1
H‘L:Kyy ay K”F,yo < HKyy ”F,yO”‘gay’ | 2T4T 2|€“— < 6 < 5
so that
[0-G2 — Talsyy < 20K 02 R g < JelL (43.35)

Now, we show that the family {G*}, s, is compatible so that, together, they define
a global map on Dz(%;), say G and that, in fact, G is a real-analytic diffeomorphism.
For, assume that z € Dz(yo) () D#(Jo), for some yo,Jo € Z;. Then, we need to show that
GY(2) = G%(z). But, we have

X X . A (4.3.3
G (2) = yol <[G"(2) = Gol + [0 — 2 + |z —wo| <
Hence, z € Dx(yo), G%(2) € Dx(yo) and, by definitions, F(G%(2),2) = 0 = F(G%(z), 2).
Then, by unicity, we get G¥(z) = G%(z). Thus, the map
G: Di(2;) — C* such that Gip.) = G*, Vyoe %,

is well-defined and, therefore, is a real-analytic local diffeomorphism. It remains only
to check that G is injective to conclude that it is a global diffeomorphism. Let then
z € Di(yo), 2 € Di(9o) such that G(z) = G(2), for some yo, o € Z;. Then, we have
-2l < & -7
z—Z < =T
Cs
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Indeed, if not then

0=1[G(2) —G(E)| = —|G(2) — 2| + |z = 2| = [ = G(2)|

(4.3.32) r

>z I+ —=——7r—-r

5

r

> — —3r

“c 7
(4.3.14) r

> - -

Cs 4C5

>0,

contradiction. Therefore,

Thus,
12 —yo| <

Hence, 2,2 € D,c,(yo). But G(z) =

0= K,(z

Thus, it is enough to show that f

LK

—2))dt =

(4.3.34)

=K,

vy

ey

f J yyyz—i—tt

12—z + |z —yo| <

(2

23l < = — 7.
Cs

r P r
- =T r=—_—.
Cs Cs

is equivalent to K,(z)

G(3)

y(2) J K, (2

(2 4+ t(z — 2))dt is invertible. But

—2))dt(z — 2) .

f J w2+t (z = 2)tdt'dt - (= — 2)

)(ILdJr JJ yuy (2 4+t (2

) | (339 1
—INtdt'dt - (z — 2)|| < 2T-—HK

(4.3.36)

2dK
T2k

r

-
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yyyHr/Z

(4.3.36)

K, (%) and then,

— 2)tdt'dt - (z — 2))

yo‘z_’%’
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1

Therefore, J K, ,(24+t(z— 2))dt is invertible and then we get z—2 = 0 i.e. G is injective.

Next, we estimate P’. We have, for any |e] < e,

M (4.3.16) ro 7T
s C ’T+d+1)< L < —=—<-—
llgslrsz < lelCr el 33 ~3
so that, for any yo € &4 and (v, x) € Dﬁg(yo),
5
Y + 0oy, m) —pol ST+ <D= <,
3 2 3 6
and thus
u 2
|POgy < @Ky o025, < PK (Cla"_(”‘””>
KMm? .
_ dQCf7U 2Ar+d+l)
P 6M . M g (Td+1)

|F,§7@ < d”Pny’l 5,9, ||9a: 759 S dicl
# 6 2t #

2

_ 6dC1%O_—(T+d+1)
or

and, by Lemma 2.2.4—(i), we have

_a _alnly
e[| P Fs—2.7 S Z nll7,2, els=2llnh < pp Z e 2
nl1>k [n|i>x
_ ko 70\"\1 _ ko 7U|"|1
e 4 Z e 1 < Me 4 2 e 1
|'r7,|1>l€ |n|1>0
d d

_ ko alk| ko Q¢ 1

—Me T (D e | —1|=Me T |1+ — ] -1
keZ I—ema

=Me ¢

(0o w63

<o Me T ((0 +8)" — 0d> < d8lo M e 7T
= C20'7dM 67%’

(4.3.13) Kle| M
< CQO’ M ‘€|
a?

Kle|M?
o ©.
a

-G,
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C
Hence,™

1P’|l75,2, < HP(I)HF@% + HP(Q)HF,E,% + HP(?’)”f,E,@u
2 2
< d2c2 KM 0—2(r+d+1) + 6dC %0.7(7'+d+1) +C
h e Yar 2 a2

KM?

M?
= (dzC%rK + 6dC a4 CQTKU2T+d+2) — g 2(T+d+1)
o’r
M?
< (d2C2 + 6dC; + CQ) max(q, rK)70*2(T+d+1)
' a?r

)%20_—2(T+d+1)
2

= Cymax(a, rK
a?r

Now, we need to invert z — x + g, (y',x). But, thanks to (4.3.27), (4.3.28), (4.3.29)
and (4.3.16), we can apply Lemma B.1 (see Appendix B), to conclude that for any given
y' € C? the map ¥.(v/,-): T¢ 3 x — 9.(y/, z) has an inverse p(y/,2') = 2’ + (v, 2'; €),
C* on R? x T? and real analytic on Dy (%) such that (4.3.18) holds and (4.3.22) as
well, using the multivariate Faa Di Bruno formula (see | |, Theorem 2.1) and the

real-analyticity of g,. 1

"Recall that r < ro and o < 1.
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Finally, we prove the convergence of the scheme by mimicking Lemma 2.3.2.

Lemma 4.3.2 Let Hy := H, Ky = K, Py := P, ¢° = ¢y := id, and 1o, S0, S«, 00, Ao,
Wy, My, Ko, K, To, Too, du, e, fi, €1, €2 and g4 be as in §4.1 and for a given € + 0,
sequence of non-negative numbers (M;); and j = 0, define®

0o
O'j = E,
0o
Sj+1 = §j O'j—S*—FE,
_ 20'1'
Sj = Sj— 3 s
’ Ok 299
Kj+1 = KOH(1+ §> < Kpes < Koo,
k=0
d Ok 290
T ::Ton(l—l—?)gToes <To,
k=0
. ) o’
A =200 =2 log [
! ’ Og<K0|€\M0) ’

2

— ] ] - &
Kj = 40; "\, =4k = 4oy log (Kl)”3|]\/[0> )

1 (R
rj+1 = 16C5 min W, 7"]0—] y

Fooam it
]+1 . C5 .
Assume that €, satisfies
e <&, Eufu|Plrgsz,. <1 and 4e2 f, e, d2 0 ||P|\207807%07a < 3. (4.3.37)

where

. 027+2d+3 2
d, =2 2,

ATy _(r Cr 1 _o
e, = 6max Lo TH I g G
Cert 4 ary
4T _(r C 1 —(2s
fo = 3max | —20y T T max(a, roKo,) ——ag T L
ToT1 4 a2r,

80Notice that s; | s and r; | 0.
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Then, for any |e| < ey, one can construct a sequence of diffeomorphisms
Gj+1 : ij+1 (@j)_)Gj+1(D7’,j+1 (@J))
and of C*—symplectomorphisms

¢;: D x TT 8 9 x T

such that
ﬁij+1 9 Gj+1 = 6ij s (4338)
Gjr1: Drjty i1 (Dis1) — Dy, s, () is real-analytic, (4.3.39)

+1

Hjy = Hjopiy = K; 1 +e2 Py on Dy, 5501 (Dj41) (4.3.40)
and converge uniformly. More precisely, given any |e| < ., we have the following:

(i) the sequence G'*! = G141 0G0 -0 Gy converges uniformely on Dy, o to a lipeo-

morphism Gy: Dryo = Di = Gi(Drya) € D ;
(i1) ¥ 65PJ converges uniformly on 9D, x ']I"Si* to 0, for any € Ng ;

iii) @) = Pppogiop0---0p; converges uniformly on 2 xT? to a C* —symplectomorphism
j
bu: D x T4 28 @ x T, with ¢.(y,-): T 3z — ¢.(y,x) holomorphic, for any
Sk
ye 9,

(iv) K; converges uniformly on 2 to a C*-map K, with
Oy K0 Gy = 0, K on D0,
35*H © ¢*(y*,$) = 55*K*(y*), V(y*,l') € Dy X T VB € Ng .
Finally, the following estimates hold for any |e| < . and for any i > 1:

(|2¢]?e, d201)2

[el* M = || P

(4.3.41)

16,81, D; X i1 )
e, d,
| meas (Zx) — meas (Zr,.0)| < Csez e meas (Zrya) » (4.3.42)
IW(p, —id)| < &4 on P xT¢ . (4.3.43)
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Proof For 7 > 0, define

1
Wi = dlag (47" l]ld, ﬂd) s
1+

T C M’L —(27
L, = — max{a, Ko} g, BT
4 a?ripy

7 ) 2 )
TiTi+1 QTi41

AT, . C 1
Li = MZ max {OOO-‘ (T+d+1) fmaX{Oz,TiKoo}ia- 2( +d+1)}

AT —(r 4 C 1 _o(r
> M;max{ —2>-0, (r+d+1) - = max{a, K} . 2r+d+1) |
TiTiy1 Kir7 = 4 21

Let us assume (inductive hypothesis) that we can iterate j > 1 times the KAM step,
obtaining j diffeomorphisms

Gz‘+1i D <@i)_)Gi+l<D7~‘i+1(@j>)

Tit1
and j C*-symplectomorphisms
Giv1: D x T8 9 % T, (4.3.44)

satisfying (4.3.38);_; + (4.3.40),_;, for 0 <i < j — 1, with

j=i

( HaZKl”n,@z < Ki>

|7

@Z<T17

< le risinz; < Mi, (4.3.45)

Observe that for j = 1, it is ¢ = 0 and (4.3.45) is implied by the definitions of Ko, To, My
and by condition (4.3.37).
Because of (4.3.37) and (4.3.45), (4.3.16) holds for H; and Lemma 4.3.1 can be applied to
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H; and one has, for 0 < i < j—1 and for any |¢| <

€4 (see (4.3.15), (4.3.17) and (4.3.21)):

|Giv1 —id]7 2 < 27041 (4.3.46)
HazGi-i-l — 14 Tit1,%; < |5|2Z i (4347)
IKisilrisn, 201 < [Killrig, + el Mi (4.3.48)
HasKH-l ri+1,%i+1 < Ha2 illri,2; + Ki |5‘2 i (4349)
I T 20 < ITilg, + Tilel”Li (4.3.50)
IWi(is1 —id) ]y rs0ir.200s < lE*'T (4.3.51)
||Pi+1||7"i+175i+179i+1 < Mi+1 = MZLZ . (4352)
Let 0 <7 < 7 — 1. Then, by definition,
R R o
< — 4.3.53
" 16Crs T S 16C, Ko (43.53)
and, since o9 < 2720"DC54/2 i.e.
16C5+/2
22(T1)0_0 > 1 ) (4.3.54)
we have
Tiv1 = min Tl "9
16 C K; 16C5
Ro; Ti—107—10;
= min
16Csk7 17 (16C5)2R11 7 (16Cs5)2
. RO'Z' roq1---0;
B 16C; /<f+1 T (16C5)2kITET T (16Cs)i
. RO’i RO'1 ]
B kiU (16C5)2k10 T 7 (16Cs) it kg !
L i LN i—1 1\ O
o; , 16Cs - 220+1) 16Cs - 23° 16Cs - 23
(4.3.54) Roy---0;
(16C )H-l T+1
= 2_‘7C6_1T1 .
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Thus,

4T —(r C 1 (2
le|Lo(305") = 3|e| My max 70000( +d+2)’ JmaX(Oé,ToKoo)iao (2r+2d+3)
ToT1 4 a2r,

(4.3.37)
= f*|€|M0 < 1

and for 7 > 18!,

i 3.5: ; AT C: 1
|€|2 Lz’(30i_1) (45:3) 3|€|2 M, max < o0 o; ( +d+2)7 ~7 o; (2 +2d+3)>
TiTi+1 4 ariy

i 4T (1 %
= 3|e|* M; max ( COO\F A2 o (27HCE)”
671

& 1 o —(27+2d+3) 2 (227'+2d+3c ))

4 ary 0
i 4Ty — C; 1 _

<3 927+2d+3 (2 212 © —(t4+d+2) ~7 L —(2742d+3)

( 6) Cw%gﬁ "4 arlgo
= e,d’ 27" i
< e.dl|2e]" M; = — |

d.
so that ‘
L; <e.d,M

thus by (4.3.52), forany 1 <i<j—1,

5

i.e. 0.1 < 02, which iterated, yields 6; < 62" for 1 <4 < j. Next, we show that, thanks
0 (4.3.37), (4.3.45) holds also for i = j. In fact, by (4.3.45) and (4.3.5()), we have

2i+1 i ~20F g r2
M’i+1 < e*d*‘é Ml

| Tis

Dit+1 < ”Tl

“L <Ti+Ti%:Ti+l-

Dit+1

and similarly for |02 Kiy1|r,,,.,,, - Now, we check the last relation in (4.3.45) for i = j.

But, by definitions, for any 7 = 0,

M; M2K
M; 1 = M;L; > M; max{a,r; OO}a2r > (;2 ¢,
i+1

81 Notice that 2! > i2 — 1, Vi e Ny.
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i.e.
) X 2
27,+1 2t
|€ MZ‘+1K0 |€ MZKO
T (U B

a2 o2

which iterated yields, for any ¢ > 0,

e

QiMiKO > (|5|M0K0)21 ‘

o? o?

a? 2 o?
=1 _ > 1 _ .
- (QerMoKo) ) ot (Lrime)

i.e.

Now, by (4.3.41)

=37

; 0, 1 - 1 (4337 1
B0 ) < L < 0 < —(dendielMy)” < - <1,
d. ds d. d,

which implies the fourth inequality in (4.3.45) with ¢ = j; the proof of the induction is fin-
ished and one can construct an infinite sequence of diffeomorphisms G;11: Dy,,, (%) —Gis1(Dy,,, (Z))
and symplectomorphisms ¢;: Z x T? © satisfying (4.3.45), (4.3.46) = (4.3.52), (4.3.41)
and (4.3.38),_; + (4.3.40),_; for all i > 0.
Next, we show that G’ converges. For any j > 1,
. . . . _ _ (4.3.46)
IG7 =G g0 = |Gir10G =G g, , <|Gjp1 —id|g, < |Gjp1 —id]s, 92, < 2740
Thus, G is Cauchy and therefore converges uniformly on Z,,, to a map G,.

Next, we prove that ¢; is convergent by showing that it is Cauchy as well. For any j > 3,
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we have, using again Cauchy’s estimate,
||Wj—1(¢j - ¢j_1)H7‘j7Sj1@j = HWj—lgbj_l © ¢j - Wj_1¢j_1||7'i,5i7@i
(4.3.44) oo )
W1 D¢ Wiy oy 3.6, 0,95_0 (Wi (95 —id) |, 5.2,

<
(4.3.51) 3 3 . o
<o ) 095a6 P,

T’j_17 20’j_1
3 . .
N 20, 1HWJ;1¢] IHTJ‘flej—l’@jfl ' |5‘2] L
i
3 —
20_4 1HWj_1¢OHT075079T0,04 : |€|2j|—]
j—
3 T 1 29T
< g ([ TTIWara W) 1Wo@o sy - T,
7i-1 \i=o
3 =2 r; j—
= 1_[ Woo -el?'L;
3o ( ) ool €T
37"[) -
T Ty Mool 6L
Jj—1%35-

115



Therefore, for any n > 0, j > 1,

n+j
HWO((bn+J - ¢n>“rn+j:3n+j:~@n+j < Z HWO(Qle - le) Tit 1,541, %i+1
i=n
n+j ) 4 )
< Z (H Wk’WI;-il-1|> HWi(qu_l - ¢l> Ti+1,5i+1,%i+1
i=n \ k=0
. H : Tk+1 W
= Z HT H i<¢i+1 - ¢l) Tit1,5i+1,%i+1
i=n \k=0 'k
i
S — g
i Ti+1,8i+1,%i+1
i=n To
1 n+j r o
< §HW0¢0||ro,so,%0,a Z e 307!
i=n T
1 n+j r , ~
< §HW0¢0”T07507-@TO,0¢ Z Llyf 21+1|—i+130i !
i=n T
1 n+j
< §HW0¢0||ro,so,%0,a Z 011
i=n
1 ntj
X3
= 5 IWobollro,50,7:4 D67
i=n

Hence ¢; converges uniformly on %, x 11“5* X (—€4,€4) to some ¢y, which is then real-
analytic function on 2, x T¢ x (=&, &)

To estimate |Wq(¢, — id)|\@*ng*, observe that , for 7 > 1,**

00

2=
3-2i

e d*i|5\2iMi <

e

i1 1 /4]elPe, d2 M\
(e, 2oy < L (HEEe Al

3. 2id, = 3d, 2

and therefore

i 1 4lel?es d2MiNG 1 1
¥, < (— )<f4 2, d My < — .
;M D 5 glleled. M < o

82Notce that 271 > i, Vi > 0.
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Moreover,

||Vv0<¢Z - ld)‘ 75,84, %i < HWO(qSi_l © sz - ¢i)|m78¢7% + HWO(QSZ - id)|"'i75i7@i
i—2
< HW0(¢2_1 - 1d) ric1,8i-1,%i-1 1 (1_[ WJWJ_J}1”> ||Wl—1(¢l - ld) 74,84, %i
=0
1—2 Fiit
i— . 1+ .
= HWO(gb t— ld)”""i—hsi—la@i—l + (1_[ J) HWZ—l(QbZ - ld)H"’iaSi»—@i
j=0 "J
i . i1 .
= HW0(¢ t— ld)”'f’iflﬁiflv@ifl + To HWZ—l(QbZ - 1d) 74,81, %;
i— . i—1—
< HWO(¢ t— 1d) rio1,8io1,%1 T |5 2 Li—l )
which iterated yields
‘ =
HWO(QSZ - jd)|7“i,8i,@i < Z ‘6|2 Lk
k=0
< el + D le* L
k=1
_ 4 9
< |€“_0 + 5‘5’ e*d*Ml
My o 1
= |e|Co maX(a,TOKOO)QQ:OUO (2r+d+2) §|5|2f*e*d*aoM02

1 4
< §‘€’M0f*0'g+l + §‘€’2f*e*d*0'0M02
=£&1.

Therefore, taking the limit over ¢ completes the proof of (4.3.43).
Next, we show that |G, —id|z,g, . < 1, which will imply that*® G.: Z,,0 =5 2, is a
lipeomorphism. Indeed, for any j > 1, there exists #; > 0 such that the restricted maps

83See Proposition I1.2. in [ ]
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Gi: G"YDi,(Drya)) — C, 1 < i < j with G° := id, are well-defined®* and, therefore,

|0.G7 — Laf#;, 2.0 < |0.G7 — .G P00 T 10.G7~t — Lal#;,2vg 0
- HaZGJ' © aszil - aszil‘ 75, Drg + ”aszfl - :n-dH’f'Ajv.Oﬁro,a
<[0:Gj = Lals, 9, 10:G"~" P, Drga T |0.G7 " — Lall#;,2r
< [0.G; — Lals, .9, (10-G"" = Lalls; 9,0 + 1) + |0.G7" = 1]

= (10:G; = Lall7; 9, + D(0:G7" = Lalls 9,00 +1) — 1

(4.3.47) . .
< (el Lo+ D)([0.677 — 14

75, Drg,

75, Prg + 1) —1

which iterated leads to®

|0.G7 — 1] 2L+ )

0
TAj,@ro,a < _1 + H(’E
i=1

o0
< —1+exp <Z |5|21LZ~>

1=0
(X) .
= —1+exp <|5|L0 + Z |e|21L,~>
=1
go 1 2
< -1+ exp ?f*|€|MO + §4|€| e.d. M
=—1+ €7
€2

Thus, G, is Lipschitz continuous, with

. 1 1
|Gy —id| 1,2, . <E2e” < gexp (3) <1,

844 e. Gi_l(ij (@rg,a)) (e foi(@ifl) = dom (G,), V1<ie<j.
85Recall that e —1 < ze®, YV > 0.
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so that, by®® Lemma D.1 (see Appendix D), we get

d
| meas (Z,) — meas (Zry.0)| < ((1 + il))exp (;)) — 1) g9 €2 meas (Zry.0)
= Cgeg e meas (Zrya),

which proves (4.3.42), Lemma 4.3.2 and, whence, the extension Theorem. 1

86With § 1= 9 €2 < %exp (%)
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5 A “sharp” version of Arnold’s the-
orem

5.1 Assumptions

Letrg>0,7>d—1,0 < s, < 59 <1, 1o € R and consider the hamiltonian parametrized
by e e R
Ho(% x; 8) = KO(y) + SPO(ya Qf),

with

Ko, Py € B,y s, (yo) -
such that

det (07 Ko(yo)) + 0. (5.1.1)
Set

T = Koo)', Mo=[Plusose: Ko=E2Kolrpsee  To=IT].
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Finally, define®”

vi=1+1,
§:= 89— Sy,
S

0-0 = 5 y
no = ToKo ,

3 2u+d
Co = 4v2 (2) f (lyly + dlyl?) e ¥rdy

R’i
3 V+d
Ci =2 (2) J ‘y‘ll’eﬂyhdy :
Rd

CQ = 23dd,

C3 == (d’C} + 6dCy + Co) V2,
Cs == max {Cy, C3} ,
.95
Cg¢ := max {22", 35d} ;
Cy:=3d- 20V +2d+3. /9 max {640d2 , C4} ,

Cs 1= (27Co)°

 GeCiCy
Co 1= 2wtT g
ClO 123'2dC8,

17 v
[Ly ‘= Max {0 <pu< el GG 00_(4V+2d+1) 1 (log u’1)2 < 1} .

5.2 Statement of the KAM Theorem

Theorem 5.2.1 Under the assumptions in §5.1, the following holds. Let

To
a < — 5.2.1
TO ( )

and assume that
«

e VReZ0) (5.2.2)

w = 0,Ko(yo) € AL, de. |w-k[=

87Recall from footnote'® that Cy, C; > 1.
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Assume

062

SO My

Then, there exist y, € R? and an embedding ¢.: T — D,y (v0), real-analytic on Tg*
and close to the trivial embedding

¢0: T e Td - (y*71]> € D"'0750(y0>’

el < (5.2.3)

and such that the d—torus

= ¢, (T9) (5.2.4)
is a non-degenerate invariant Kronecker torus for H i.e.
¢§LI © ¢*(x) = ¢*($ + Wt)- (5.2.5)
Moreover,
1 4, o
9+ = wol < =00 e (5.2.6)
) Koo’
) 1
(W(¢s —id)| < ——, (5.2.7)
Cio 79

uniformly on {y.} x ’]l‘gl* , where

K
W = diag <°1d,1d) :
(6%

5.3 Proof of Theorem 5.2.1

Lemma 5.3.1 (KAM step) Letr > 0,0 < 20 < s < 1 and consider the hamiltonian
parametrized by € € R
H(y,z;¢) == K(y) + eP(y, x),

with
K,PeB,ly).
Assume that®®8?
det Ky (y) # 0, T = Kyy(yyl )
1K yyllry < K 7| <T, (5.3.1)
|P|rsy < M w = K,,(y) e A}, .

88In the sequel, K and P stand for generic real analytic hamiltonians which, later on, will respectively
play the roles of K; and P;, and y, r, the roles of y;, r; in the 1terat1ve step.
%Notice that TK > THKyy( = 711K,y ()] = HTHHT =
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Fiz e # 0 and assume that

2
A = log <02”+d|€|am<) >1. (5.3.2)
Let 5
r a
S I PL EL S SN |
pe=de A TS o R TSI g (5.33)
5 3.
523—50, s =s5—0,
and”
chomax{l a}MK ~(2v+d)
V2 rKJ) a? ’
' 40dT*K .0 4 C4 oy K onia
L.:MmaX{7120(+)7w7\/§m}({1,m}0[20' (v+d)

2
= M max 40T KU_(”+d) < {1 g} 5a_z(l”“d) .
r2 " V2 "rK

Then, there exists a generating function g € By 5(y) with the following properties:

M —(v
|92 ll75y < Clga v
9y 15 1 xgnmy <L, (5:3.4)
103 K|y <
where N
K@) =P, -)
If, in addition,
elL < % , (5.3.5)
then, there exists y' € R? such that
oy K'(y) =w, det 02, K'(y') # 0,
T , 8le|TM
<7 _yl < , 5.3.6
ellgalrsy < 3 Y =l . (5.3.6)
el < TlelL, | Py |75y < LM,

9ONotice that L = 0~ ¢L > L and 40dT2K o= wtd) 5 4T > Kr2
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where
K = K +ckK , (6§,K’(y'))71 =T+eT , P.(y,x) =Py +¢eg.(v,x),x) .

and the following hold. For y' € Dz(y), the map .(z) := x + g, (', x) has an analytic
inverse p(z') = ' + @y, a'; €) such that
|27y <L and @ =id+e@: Dypo(y’) — T¢ ; (5.3.7)
forany (y', ) € Di5(y), [y +eg. (v, x)—y| < 2r; the map ¢/ is a symplectic diffeomorphism
and
¢ = (y +eg, 0y, 2), 0y, 7)) : Drppw(y') = Darjs(y), (5.3.8)

with )
W @lls/,5y < oL, (5.3.9)

where ¢ is defined by the relation ¢ =: id + ¢,

max{¥ 1} 1, 0

W =
0 1,
and
HP’HF/Q’SIJI < LM, (5.3.10)
with
P'(y,2") == Py (y,p(z') = Pog'(y,2') .
Proof

Step 1: Construction of the Arnold’s transformation We seek for a near—to—the—

identity symplectic transformation

@' Dr1751(y/> - DT,SQ’)’

with D, 5, (Y") € D, s(y), generated by a function of the form ¢’ - x + eg(v/, z), so that

=y +eq.(y, @
TR (y, ) (5.3.11)
' =x+egy(y, ),
such that
H :=Ho¢ =K'+ 2P,
! / 2 !/ / (5312)
oy K'(y') =w, detd,K'(y') #0.
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By Taylor’s formula, we get”!

H(y + 20,y ). 2) =K () + eR () + 2 | K'(6) - 9. + TP ) = K(y) | +
+e2 (PW + P® + PO ()
~K') + 2 |[K() - 9.+ TPl ) = R(y) | + &Py ),

(5.3.13)
with & € N, which will be chosen large enough so that P®) = O(e) and

(P, :=pPY 4 p@ 4 pO
1 1
PO = S [K(y +eg,) - K(y) —eK'(y) - 9] = f (1 =) Kyy(etga) - go - gudt
€ 0
3 1 !
P& i~ [Py + cge,2) — Py 0)] = | Py + ctge,2) - gudh
0
1 1 nea
PO = [Py, 2) = TP, )] = - Paly') e™
L nji1>k

(5.3.14)
By the non-degeneracy condition in (5.3.1), for € small enough (to be made precised
below), det 02 K'(y) # 0 and, therefore, by Lemma 2.2.6, there exists a unique y’ € D, (y)
such that the second part of (5.3.12) holds. In view of (5.3.13), in order to get the first
part of (5.3.12), we need to find g such that K,(y/) - gz + T P(y/,-) — K (¢/) vanishes; such
a ¢ is indeed given by

_Pn(y/) in-
g = ) i (5.3.15)
0<%}<n K,(y)-n
provided that
K,(y) n#0, YO<|n1 <k, VyeD,) (cDly)). (5.3.16)

But, in fact, since K,(y) is rationally independent, then, given any x € N, there exists
7 < r such that

K,(y) - n#0, VO<|n|i <k, Vy €Dsy). (5.3.17)

The last step is to invert the function x — = + g, (¥, z) in order to define P’. But, by
Lemma 2.2.6, for € small enough, the map z — x + €g,/(y/, z) admits an real-analytic
inverse of the form

oy, a'se) =a" +ep(y', 2'; e), (5.3.18)

91Recall that {-) stands for the average over T¢.
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so that the Arnod’s symplectic transformation is given by

y=vy +eq.y oy, 2)) (5.3.19)
! ! / ~ ! ! R
r=oy, 2e) =2 +e@(y, s €).

Hence, (5.3.12) holds with
Py, ') = Py, 9y, 2)). (5.3.20)

Step 2: Quantitative estimates
First of all, notice that °?

or r
P < 3.21
PSSty (5:3.21)

We begin by extending the “diophantine condition w.r.t. K,” uniformly to Dz(y) up to
the order x. Indeed, by the Mean Value Inequality and K,(y) = w € A7, we get, for any
0 < |n|; < k and any ¥’ € Di(y),

M Hlry
Ky (y) -l = o+ (K () — Kyy)) -l > o ( Twen] IPhT
. 1_%’n’r+1— 5 @ 1_%#“? , @ ’ (5:322)
Inli a Il a 2[nl7

so that, by Lemma 2.2.4—(i), we have

def nP’n (y/) n-x
[gellrsy = sup | Y, o e <
’ Ky(y') - n

Z HP’H«HFagay ’Tl| e(s—%0)|n|1
n

Dr,5(y) 0<|n|i<k 0<|n|1<k | y(?/)
< Z Me 7s|n|12|n|1 (s— J)\nh < 2M Z ’n‘ye 20|n)y
0<|n|1<k neZd

N

2M
2] ey
(% R4

3\ oM
N -/ v —lylld
(20> o fRd |?J|1 € Yy

_ Cl%af(l/+d)’
(8%

92Recall footnote *2.
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def
||5y'9Hf,§ y &f sup

Ds5(y) Y

B (i el o

(Py ”‘7‘5}’ HKZJ?J”TY|n‘1 (s—ga)|n|
sup + d| Pl sy 72— | e\F 37/
0<\n\1<n ( K y) ’ |Ky(y/) nf?

5.3. 5.3.2: N\ 2
( 31)+<( 3.22) 2 <Mesn|12|n|1 + dM e K|l (2|n|1> ) o (5=30)lnl;
«

0<|nli<k r=r
(5.3.21) AM
Oé —= Z (|n|{a+ drK!nﬁT“) e~ 30Inh
a’r
0<|nl1<k
4M
< max {a, TK}— Z (‘nH_‘_d‘nﬁT-&-l) e~ 30l

0<|nl1<k

(0] 4MK r r —240yly
o {1, S Ky iy

3 27+d+1 AMK
= () max{l,%} J (\y|T Jrd|y|27+1) e_|y|1dy

20 2
< & max {1 &} %U—(Zf—kd-kl)
V2 "rK) a2
<L,

and, analogously,

d
102,905y < sup
Dr5(y)

oyPa(y') _ N Kyy(y)n e
2, (Kyu/) @ ) n>2)

0<|n|1<n

< Z sup (()|r5y +d|P,| Kyy|TY|n|1> ‘n|1€(5—%0>|n|1

0T < e \ [y (y') - 7 YK () - nl?
4M
< max{a, rK}—— Z (Inlf + dn2*1) [nfy e ~2gnly
0<|n|1<k
(0 4MK r —2450yly
< max{l,ﬁ} = f (|y|1 +dy|3 +1) ly|y e~ 37Wh gy
3 27+d+2 o AMK 7. . - -

_ Comax{l, ﬁ} %07(2%(1)

V2 rK) o2
=L,
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and, for |e] < e,
M
HK ||r/2y =[P, ] Hr/2y HP ”r‘/ZSy r_ % < P
M 4M
2
Ha K”T/Zy = H[ yy] Hr/Qy ” y||r/2sy (T’ — %)2 =2 < KL
Next, we prove the existence and uniqueness of y’ in (5.3.12). Consider then
F: Di(y) x Dy (0) — c?
(y,m)  — Ky(y) + iy (y) — Ky(y).
Then
o F(y,O) = 07 Fy(yuo)_l = Kyy(Y)_l = T7
e For any (y,n) € Dx(y) x D%M(O)
10 = TF,(y,n)| < [1Ta = TKyyl + [l 1T 105K /2y
AM
dHTHHKyyyHryT +2leT—5
M
B e
r—r r
(5.3.21) o ™
< dTKl \5]8
< 2dTK— + f|€|L
ro 2
(5.320)+(535) 5 o
< - J—
12 6
5 1
T2 12 27
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e Recalling o < %, we have

2TECy ateo = 2|71 sup [nKy(y)|
2|e|
Ale|M
o HEM
-
5.2vtd
<—
8d TK
=3-2% (20)" 7 0|l
<3247 o%elL (5.3.23)

V+d|6|L

xR

5.3.5)
<37 (2000

N
DN | =3¢

Therefore, Lemma 2.2.6 applies. Hence, there exists a function g: D%M(O) — D;(y) such
that its graph coincides with F~1({0}). In particular, y' := g(g) is the unique y € D;(y)
satisfying 0 = F(y,e) = 0,K'(y) — w i.e. the second part of (5.3.12). Moreover,

8le|TM (o 325

3277 ole|L < (5.3.24)

Y =yl < 2[T[[E(y,)]2e0 <

l\D\ﬁ(

so that
Dg(y’) < Di(y). (5.3.25)

Next, we prove that 65[( '(y') is invertible. Indeed, by Taylor’ formula, we have

85[(’( = J sy + tey) - eydt + sf(yy(y’)
=T (]1d +eT (J yyy (Y + t€7) - ydt + [N(yy(y’)>)
=T (ﬂd + SA),
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and, by Cauchy’s estimate,
NI < IT1 (A pullorzslelly’ = yI+ lel102 K2y )

dHK ”r >
<7 (T2 el -yl + el Rl

2

(5.3.24) (2dK8|€|TM 4|5|M>
<'T +

= 2

T r T

4)e[TM
< MMy 4y
T'

20d|e| T2KM
< - -

2

T
1
< ZlelL
2!6\
(5.3.5) o
T 6

<

DN | —

Hence 07, K'(y’) is invertible with
ZK(Y) " = (Lg+ed) T =T+ Y (—e) AT = T + T,
k=1

and

> 1A o
E|T] < lel—— I T < 2lelAJT] < [eLT<2-T=T
1= ] A] 6

Next, we prove estimate on P.. We have,

5.3.
lelllgallrsy < !€\C1 Sy \8! <

so that, for any (v, x) € D7 3(y),

|y +eg.(y, ) —y| < T+ = <L+i<2—r<r

and thus

M o)
1Py < Pyl < K (€0

2
=d2C%K]\;[ 0'_2(V+d),
«
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6M M __,
[PDsy < dIPylse sy 92 55y < d==Cr o™

2

M
= 6dC,— o ¥td
ar

and by Lemma 2.2.4—(7), we have,

z o|n|
|€||‘P(3)vas—%7y< Z | Pallry e~ 2 < M Z e 2

[n|i1>k In|i1>k

_ Ko _olnly __ Ko _oalnhy
6426 4<M6426 1

In|i>k [n]1>0

= Cyo Me
(022 oMo 2Hd)|e|MK
a?
—C, |€|]\24KU (v+d)
«
Hence”,

|P+lrsy < 1PWlrsy + 1PP sy + PP rsy

K2 M2 MK
<SPG5 4 6dC,—0 ) 4+ M |€‘720_2(”+d)
« ar
M?
— (d2C3K + 6dCa0” " + CyrK) o o(rtd+1)
T

M2
< (d°CY + 6dCy + Co) max {a, K} EUJ(T”H)

. 2
(d%l) & max {1’ g} M KU_2(V+d)
rK) o2

V2
<LM.

93Recall that o < 1.
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The proof of the claims on ¢’ and P’ are proven in a similar way as in Lemma 2.3.1. [}

Finally, we prove the convergence of the scheme by mimicking Lemma 2.3.2.
Let Hy := H, Ky = K, Py := P and rq, So, S«, 09, Wo, My, Ko, To, 1o be as in §5.1 and
for a given € # 0 and j > 0, define”*

05 = E,
0o
Sj+1 = §j O'j—8*+§,
. 202'
Sj = Sj 3 s
Kj+1 = KO H(l + %) < KO 6% < Ko\/?,
k=0 3
d Ok 290
Tj+1 :Ton(1+7)<—r0€3 <T0\/§,
k=0 3
Xo = log g,

o o2u42d+1 (2 2
d, =2 Cs 15

kj =4 Ko,
~ «
Q= ,

Vel
N To
Ty ==

) 1 a 5 7
7,11 = —min , - >
A 2dv/2KorY " 48d g

Tip1 = Fjr1v el

9Notice that s; | s and r; | 0.
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_ KoM?
o 7j—1 J
Kol

:u] T az )
— J
Qj = €y d* Ky,

K 1/
W; = diag (max{aj, 7“‘8’} ]ld7\/gjld> ;

J

80dv2 T —w Ko 2w
L; := M, max {\Coﬁogj ( +d), Cs max {1, a} —(2]0]- A +d)}
rj TjKj (0%
80d~/2 T v 4 Ko —20
= Mjmax{\/;zonoaj ( +d), K2’ C4max{1,7ﬁK} a—gaj 2 +d)} .
j 3" FANY)
Thus, for any j > 0,
. KoM, Ky KoM o
O = ex di iy = e, AV — e A S ed] T 0 = (e dl ) = 6
i.€e. _
0; =02 .

The very first step being quite different from all the others, it has to be done separately.
Hence,

Lemma 5.3.2 Under the above assumptions and notations, if

2
le] < (1?) and max {epy, 6} <1, (5.3.26)
alo

then, there exist y; € & and a real-analytic symplectomorphism
$0 2 Dry sy (Y1) = Dro,so(90) (5.3.27)

such that, for Hy = Hg o ¢g , we have

{ Hy= I+ 2Py (5.3.28)

OpKi(p) =w, 02 Ki(y1) #0
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and

8|e| To M,
Y1 — Yol < M, (5.3.29)
To
HKlHﬁ,m < Kl ) HTlH < Tl 5 Tl = 5§1K1(y1)_1 s (5330)
My = | Py 00 < le|M, (5.3.31)
HWO(¢0 - id)HT1,81,y1 < U(C)l ‘5“—0 : \/ﬁ . (5332)
Proof By
(5:326)
ko = 4dog =8 (5.3.33)
and R
« (5.3.33) 1 70 70
—— < <2
2d+/2Koky 2d - 8"v/2Ko Ton/Je]  4Cs
we get
1 Q To Q
71 = 5 min , = 5.3.34
b {Qd\/QKO/{(’; 4c5} Adn/2K kY ( )
and, thus
_ 80dv2 To 10 —(v+d a | Ko opra)|
le[Lo(30y 1) < 3le[ Mo maX{T%UO( - ), Cymax <1, oK ?0—0 (v+d) (701
T _ _1 KoM,
< J3max {SOd\/inoa Oi, C4max{1, < }}UOQ(Hd) i
ro T0oKo roKo a2

(5.3.26) o)
< 3max {80d\/§, C4} ot 2v+d) 1,u0 Mo

=0, < 1 (5.3.35)
Therefore, Lemma 5.3.2 is a straightforward consequence of Lemma 5.3.1. |1

Once the first step is completed, all the following steps do not need any other condition.
Actually, they are “completely” independent upon ¢, and, therefore, the first condition in
(5.3.26) is useless. To be precise, the following holds.

Lemma 5.3.3 Assume (5.3.28) + (5.3.31) with some € # 0 and

1
max { e o , Cgnd 90} <1. (5.3.36)
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Then, one can construct a sequence of symplectic transformations

¢j—1 : DT]',S]' (y]) - D'I“j—hsj—l (yj—l) ) J= 2 (5337)

so that '
Hj:=H; 10¢; = K;+c*P; (5.3.38)
converges uniformly. More precisely, 82j71Pj,1, Pl =gropyo0di, Kisi, yj1

converge uniformly on {y.} x Tf* to, respectively, 0, ¢*, Ky, y. which are real-analytic
on Tg* and Hy o ¢* = K, with det é’;K* (y+) # 0. Finally, the following estimates hold for
any © = 1:

|6 QiMi = ‘5 z Pi”?”i,SMIi < |€|j/\ZZ ) (5339)
8/2Tole|* M;
yir1 — yil < ?ﬂ’ , (5.3.40)
02 )

Proof First of all, notice that, for any ¢ > 1,

X , a 5 7
Fip1 = min , —
o 4d~/2Kor? " 96d ng
75

4 96dn, ”}

N 5\,
=min<{ — ; Tl
Vi’ 96dny 4401 " \ 96dn, !

I 5\,
417 96dny 46D (96dno> Tl}
Mo 5-47\" 5.4v\'
B 4””“”{(96@0) T (96d7]0> }
P (54
zﬁmm {%dn()’l}

.1 5
=7rmin < —, ———
! 2207 96dn,

1

7:7
aj
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where

d d
ay = max{22”, 965770} < max {221', 9?} 10 = Ce 1o - (5.3.42)

For a given j > 2, let (£?7) be the following assertion: there exist j — 1 symplectic
transformations”

Gi : Dy oo Wis1) = Daoryss (i), for 1<i<j—1, (5.3.43)

and j — 1 Hamiltonians H;,q = H;0¢; = K;.1 +% ' Pr; real-analytic on Dy osiir (Yit1)
such that, for any 1 <i<j — 1,

(02K,

TisYi < Ki’

0 Ki(yi) =w, O3Ki(y:) # 0,
X . N (5.3.44)
|€ o R T'i,86,Yi < |‘€|Mi7

ki = 4oy tlog (a7 )

9 Compare (5.3.8).
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and )
OyKit1(Yiv1) =w,  0yKiy1(Yiv1) # 0,

8v/2To|e* M;
[Yir1 — yil < - .

|Tosal < T3l + Tale*'La

(5.3.45)

| K 7'M,

< |K;
Tit+1,Yi+1 T KZ

rigi T e

‘|65K1+1 2 Ll )

Tit1,Yi+1 < HaiKZ

Ti,Yi + Ki|5

HWZ((bl - id) Tit1,8i+1,Yi+1 < U;i IS‘TL%" V ’€| )

(| M1 = | P < ML .
Assume (£77), for some j > 2 and let’s check (£7*1). Fix then 1 < ¢ < j — 1. Thus

Ti4+1,8i+1,Yi+1

(

Ti+1,Yi+1

)

9 5.3.45) 9 oi (5.3.44
‘|ayKi+1 < HayKl i Ys + K2|€| Ll <

Ki + Ki% = Kip1 < Kov2

and, similarly,
ITi1] < Tiga,

which prove the two first relations in (5.3.44) for i = j. Also

=)

—~
o
o
w
w

g

«Q o 30
> = =ddr; > "1, 5.3.46
rKi T rKov2  HKey/2 0 ( )
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so that

‘5‘2i|-i(30'_1) = 2 M; max 780d\/§T07700'_(,,+d)’ Cymax {1, “ &J-_Q(Hd) ot
: r? ’ riK; | a2’ ’

—2(v+d)—

Qar;

(5.3. 46) { 80d\/§T07}0
M;max { ——————,
= 3max {SOd\/iTono? , C4} 0;2('/”)_

C4

i

7
%

|5\&fZ

= 3max {640d%n2a’ kY, Cy} oy VY 1'7‘ @ L4dv/2Kgrbai ™!
gl

()333) o z
12d\fmax{640d2 C4} Koo, +d)— 1|5| 77(2);12(1 1)/10

ela?

(0342) 2 ; i
12dv/2 max {640d> , Cy} Koo 20707 |€’| @ el
20
— 3 - 25v+24+3, /9 ax {640d C4} Kooy (dv+2d+1) (22y+2d+lc2 2)% 1 |5|‘ @ (1 og i )21, 773
(5.3.44) . y K ]/\4\
< Croy —(4v+2d+1) (log _1)2 2dz 1 %2
= € dz*_lluz‘
_ U
“ 4
_ 0%
=
(5.3.36) 1 .
< — <
d.
Moreover, _ A
e]¥'Li < e d@—lm ,
thus by last relation in (5.3.45), for any 1 <@ < j — 1,
i ; ; : (5.3.44) , —~ _
|€ 2 +1M' e 2 L,L ‘€|2 Mz < e*dﬁfl o7 P < e*dzjl i ’€| MZ = ‘8’ Mi+1 ,

which proves the fourth relation in (5.3.44) for i = j. Hence, by exactly the same compu-
tation as above, one gets

+1 0,01 02

2° —1 ? 0

|Ef Li+1(30'2-+1) < d = d <1 s
* *
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which proves the last relation in (5.3.44) for ¢ = j. It remains only to check that the fifth
relation in (5.3.44) holds as well for 7 = j in order to apply Lemma 5.3.1 to H;, 1 <i < j
and get (5.3.45) and, consequently, (£771). But in fact, we have”

405 log (o2 ") < 4o tlog (1)

J J
_ I o
:4Jj110g (e* dieOQ)

To finish the proof of the induction 7.e. one can construct an infinite sequence of Arnold’s
transformations satisfying (5.3.44) and (5.3.45) for all i > 1, one needs only to check
(22?). Thanks to”" (5.3.28) = (5.3.31), we just need to check the two last inequalities in
(5.3.44),_,. But, in fact, one proves those two relations by exactly the same computation
as above. Then, we apply Lemma 5.3.1 to H; to get (5.3.43),_; and (5.3.45),_,, which
achieves the proof of (£?).

Next, we prove that ¢’ is convergent by proving that it is Cauchy. For any j > 3, we have,

(5.3.36)
96 Notice that, since op < 1 thene, > C;> 1.

970bserve that for j = 2, i = 1.
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. . . C
using again Cauchy’s estimate,”®

”Wj—l (gbj_l - ¢j_2) HTjasjayj

—
ot

NE NS

w
o~
<o

=

N

N

[Wj1¢? ™2 0 dj1 = W17 2|0 5,
||W]'_1D¢j_2wj_—11H27"j—1/373j—17yj71 HWj—l(ij—l - id)Hijsjvyj
3 3 -
max (TJ 17 2> HWj—lqb] 2||Tj—1,sj—1,yj—1 X
rji—1 Oj—1

XHWJ 1(¢J 1= )|T17$J Yj
HWJ lﬁbj 2||rj 1,8j—1,Yj—1 HW] 1<¢J 1= )Hijsjvyj

2051

W51 ot (1P 3ot ) V]
1

iuwjfl(blHTg,SQ,yg ' 0-?,1 9_]'71 . \/E

1 (4 B

5 <H HWlJFlWl 1’) le(ble,sz,yg : O']C'l_l 9]',1 . \/@
=1

1 (= ;

S LTI ) a6 ssnn - 0 B2 Ve

i=1 Tl+1

T
3 W10l - 7 051 V]
j—

]. j—1
503 C6 Mo HWl(blH?"z,S%?ﬁ (2 C6 770) 62 V |€‘

1 _ 2J—4 i1
503 Co 0o [Wi1lrssgn - (27Com0)” - 05 /Il

(¢
(<

211

dC6770 > /el
i o) V.

1
50(21 C6 Mo HW1¢1HT2,527ZJ2

1
Egg CG To HW1¢1HT2,827y2

98Recall that 2071 > i, Vi > 0.
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Therefore, for any n > 1, 57 = 0,

n+j

HWI <¢n+j+1 - (bn)HTn+j+27Sn+j+2,yn+j+2 < Z HWI (¢i+1 - le)

i=n

n+j i
< Z (H WleZ—il-1|> [Wisa (7! = ')

i=n \k=1

o210 Z Hmax{ ) kﬂ} Wi (o™ —¢')

1=n k=1

Ti4+2,8i+2,Yi+2

Ti+2,5i+2,Yi+2

Ti+2,5i4+2,Yi+2

+

n

= HWH—1<¢Z+1 ¢')

n

Ti+2,8i+2,Yi+2

-,
Il

n-+j 2i+1

C6 Mo HW1¢1HT2,527Z/2 ’ ’5‘ Z <C8 770 90)

[\:)M—t

Hence, by (5.3.36), ¢’ converges uniformly on {y,} x ’]I“si* to some ¢*, which is then real—
analytic map in z € T¢ .

To estimate |Wo(¢* —id)| on {y.} x T¢ , observe that , for i > 1,%

2

) d+1 2t ] i+1
O".i ’821Li<007dl€i< y } — 6+1:1<§01>
3 - 2id+1) d, 3 - 20d+D(+)d, 3d, \ 24+

and therefore

+1 92
d 2l
ZU |€| i S 3d Z <2d+1> = 3.92d+1 d,

=1 * =1

Moreover, for any ¢ > 1,
1—1
Ti41,8i+1,Yi+1 < HWl ((ﬁl © (bl - (bl) Tit1,8i4+1,Yi+1

i—1
< HWl (¢Z_1 - ld) risiyi T (H ”WJW]_-:1‘> HWZ(¢Z - ld)

7=0

[Wi(¢" —id)

Tit1,8i4+1,Yi+1 + HWl (¢1 - id)

Ti+1,5i4+1,Yi+1
= Wi (¢! —id)|ry0,0 + [Wiles —id)|
= Wi (¢! —id) |00 + [Wilgs —id)|
< [Wi(¢h —id)

Ti+1,5i4+1,Yi+1

Ti+1,5i4+1,Yi+1

7'i,84,Yi + Uz‘Ul |8’2iLi |8’ )

P Recall that 28 > i+ 1, Vi > 0 and op < %
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which iterated yields

[Wi(¢" —id)

Fosiyi S |€ Z Uk |5|2 Ly

Vel Zak le|* L,

k=1
0%
< el.
g VI

Therefore, taking the limit over i completes the proof of (5.3.41), Lemma 5.3.3.
Now, to complete the proof of the Theorem, just set ¢, = ¢y o ¢* and observe that,
uniformely on {y,} x T¢

(Wo(¢x —id)| < [Wo(go © % — ¢%)| + [Wo(¢* —id)|
|

(g~ )+ [WoWE | W6 — i)
< ot Lo/l + 5tV

< (3 ;dJrl 0o + 3. 22961(1 d*) \/H

3 Qd\/E
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Moreover, for any i >

L,

— 0| < Z!yﬂ il

(5. 340)

8v2T OZ
5.3.39) 8\/ﬁ1r0 :E] i—

S

N

(@)

g

QL

=

St

o
s =
QE

=

N

- o s
CeCs Ko
v+2d+1 X
17

Kong®

_ I g i0a41 @
- JO 7

17
Kong®

and then passing to the limit, we get

1 Q
3v+2d+1
\y*—yo\\cao —7 -

9 Kong®
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Part 11

“Sharp” measure estimates of
Kolmogorov’s sets
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6 “Explicit” integrability on a Cantor—
like set and a “sharp” measure esti-
mate

6.1 Assumptions

Let 7>d—12>1 and set'"’

vi=1+1,

3 2u+d
Co = 4\/5 <2> fd (|y|lf + d|y|%y) e_whdy )
R

3 v+d
C, =2 () [ ptresinay
2 Rd

C2 = 23dd R

Cy == (d°C] +6dCy + C2) V2,

C4 = maX{Co, C3} N

Cs = 32 . 26724411 o {2761\/5 : 8*"C4} ,

Cp = 2u+%d+%d% ,
3 d—1
C7 =2ed < s
2
Cs
Cs =
8 3. 2d )

Cy =281 4 /2 Cq .

100Notice that each C; is greater than 1 and depends only upon d and 7.
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6.2 Statement of the extension Theorem

Theorem 6.2.1 Under the assumptions and notations in §6.1, we have the following. Let
2 < R? be a non-empty, bounded domain."’" Consider the Hamiltonian parametrized by
celR

H(y,z;¢) == K(y) + eP(y, x),

where K, P are real-analytic functions defined on 2 x T with bounded holomorphic ea-
tensions to'"?

Dro,so(‘@> = U Dro,so(yo)v

YoEY

for some rg > 0 and 0 < sy < 1, the norm being

| llos0.2 = sup | -].
DrO,SO (9)

Let o > 0, § > 0 and'®

(6]
k[T

A;::{weRd; w - k| = : VkeZd\{O}},

s ={ye 2 : Bs(y) < 9},
Dso ={Yo€ D5 Ky(yo) € AL} .

)

Assume that

|det Kyy(y)| #0, Yye Ds,. (6.2.1)
Fix
(1 d
0 < o0p < min 5 o7 So

1015 ¢, open and connected.

102Recall the notations in §1.2
103Notice that %5 is closed, connected, with non—empty interior of 25 provided that § is small enough.
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and define'"

221/—7
Sy 1= so—maX{Q,}JO,

o := min {rg, 32dd} ,

My = ||Pllry,s0,2 »

Ko = [Kyylro,2 ,

To = |T[g = sup [T'(y)] .
Yoed

no = ToKo ,

Jot

o 00 (G0 @
* Cy Mo Ko’

v 1B 13 v
[bs = Sup {,u <et:2C5C 03 T2 o' 1 (log/fl)2 < 1} ,
where T(y) == K,,(y)~". Finally, assume
2
o000 (0%
< — d < fls o 6.2.2
< and el < pege e (6.2.2)

Then, there exist P, < YDs_,, having the same cardinality as Dso, a lipeomorphism
G*: Dsa 8 9P,, a function K, € Ci (24, R) and a Cf)—symplectic transformation'”
Gs: D X T4 = H = ¢po(Di x T?) < 2 x T and real-analytic in x € T¢ , such that'"

Oy Ko 0 G* = 0,K on Dsa (6.2.3)
0p (Ho¢u)(yu,x) = 0) Kulys), ¥V (ys,2) € Zu xT¢, ¥V BeN] (6.2.4)
and
|G* —id] g, <7+, (6.2.5)
eoytd

IG* —id| 1,9, < (6.2.6)

o
meas (7 x TA\%) < (1 + C6>d <meas ((Bsoo(2)\2) x T) +

+ meas ((2\%Zs) x T) + meas ((Z5\Zs.) * ’]I‘d)> . (6.2.7)

104Notice that ng > 1.
105Which means that the Whitney-gradient V¢, = 0¢4/0(ys, ) satisfies (Vg )J(Vps)T = J uniformly
on Py x T?, where J = (f _(])ld>.
d
106Notice that the derivatives are taken in the sense of Whitney.
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Now, by applying Theorem F.1 (see Appendix F) to (6.2.7), we get the following measure
estimate of the unstable set 2 x T\¥'.

Theorem 6.2.2 Let the notations and assumptions in Theorem 6.2.1 hold, with

2

2d
0<a< 3T000 min {3;061, R(S-@)’ minfoc (&@)} : le| < M*KoaMo : (6.2.8)
in place of (6.2.2) and
5= OéTO
T 32dog
where'

R(2) :=sup{R > 0: Bgr(y) € Z, for someye P} .
Futhermore, assume that the boundary 02 of 2 is a smooth hypersurface of R%. Then,
the conclusions in Theorem 6.2.1 still hold. Moreover,
To
32d0’0

meas (2 xTN\#") < (3m)¢ (27-[‘1_1(8@) a+C(d, o9, To, R%) o+ meas (@5\@5@) :

(6.2.9)
where'® R denotes the curvature tensor of 09, ka;(R9?), the (25)-th integrated mean
curvature of 02 in R% and

d
T 09 25—1
k2 R ) CYTO
C(d, o9, To, R?) = i
(d, 90, To, 16d00 Z (2j 1 1) (320100)

Remark 6.2.3 (i) Notice that (6.2.7) is mainly a consequence of (6.2.5); the crucial part of
the proof is that one can actually extend a Lipschitz continuous function to a global Lipschitz
continuous function without increasing neither the Lipschitz constant nor the sup—norm (see
Theorem C.1 in Appendix C).

(ii) The following estimates hold as well:

Cr  v4d+d -3

| meas (Z5) — meas (Z5,q)| < 3Co oy ' ng*meas(Dsa), (6.2.10)
5
. 1 ] d
|W0(¢* — 1d)| 32d7+lc6 < ) on .@* X TS* y (6211)
107Notice that the first condition in (6.2.8) then reads 0 < § < min {3— (3@), minfoc (0.@)}. The

condition § < R(?’@) ensures that the interior of %5 is non—empty.
108Gee Appendix F for the definitions.
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where K
WU = diag <0]1d, ]ld> .
«

Notice that the constant in (6.2.10) is of order 1 and not «; that is why we need Minty’s Theorem
(see (i) above).
(iii) Notice that the Theorem is consistent for o = 0. In fact, in that case

€=« (622) 0.

Hence, the Hamiltonian H is integrable. Moreover,

(6.2:11)i

Dsa=25, G "2id, 4. d.

Thus,
D = G(Dsa) = Dsa = Ds -

Therefore, we get # = ¢u(PDy x T) = D5 x T?, for any & > 0, as expected.

6.3 Proof of Theorem 6.2.1

Lemma 6.3.1 (KAM step) Let r > 0, 0 < 20 < s < 1 and consider the Hamiltonian
parametrized by € € R

H(y,x;¢e) == K(y) + eP(y, ) ,

where K, P are real-analytic functions with bounded holomorphic extensions to D, (%;).

Assume that'"”
det Ky, (y) 0, T(y) = Kyy(y)il , Yye,,
Kl <K, Tlo, <. (63.1)
1Pz, < M, K, (%) < AL .

Fiz e # 0 and assume that

2
A= log (02”+d|€|(;wK) >1. (6.3.2)
Let o o
=407 '\, 7<mi { }
PR A TS T Kk 16dTK S 633
f ; 633
f::m, 5::3—50, s=s5—0,

1091 the sequel, K and P stand for generic real analytic Hamiltonians which, later on, will respectively
play the roles of K; and P;, and yo, 7, the roles of y;, r; in the iterative step.

149



andl 10

[ Co {1’ o } KoM _ (o 1a

= —max<{1, — o
rKJ) a2 ’

V2

L := M max 16T0 (v+d) G max {17 g} £072(u+d)
rT V2 rKJ a2
16T (g 4 G

a K —2(v+d
—Mmax{wa KQ’fmaX{l W}ﬁa (+)}.

Then, there exists a generating function (y',x) — y' - x + g(y', x), with g € By 5(Z;) and
satisfying the following inequalities:

M
192 |7.5.2, < ClEU*(Ver) 7

oy lr5.9: 12520155 < T (6:34)
|0y K7z, < KL,
where N
K(y) = (Py,-))
If, in addition,
o
L< = 6.3.5
<l (6.35)
then, there ezists a diffeomorphism G: Di(Z)—G (D (%)), such that
( 0y K' oG =0,K , (02K')oG#0 on %y,
r , .
lellgzllrsz < 3 |G —id]rg < Pl
N 3 ) (6.3.6)
el Tl < TlelL, 10:G = Lalg, < 0™ |€\|-
\ HPJrHF,E,%i < LM, Bf/Q(.@é) o= BF(.@ﬁ
where ) N
9, = G(%) , K =K+ ¢eK ,
(2K'(Y) " = ToGYy) +eT(Y), vy e 7,

P.(y,x) =P +eg.(v,x),x) .
and the following hold. For any y' € Di(Z;), the map ¢.(x) := x + €9y (y',x) has an
analytic inverse p(z') = 2’ + ey, 2';€) such that

P75, <L and ¢ =1id + &P : Drpo(Zy) — T¢ ; (6.3.7)

110Notice that L = ¢~?L > L since ¢ < 1. Notice also that TK > 1, so that 16T o= wtd) > 16T = KT2

150



Jor any yo € Z: and (y',x) € Dz 5(yo), [y +e9.(y,x) —yo| < 3r; the map ¢' is a symplectic
diffeomorphism and

¢/ _ <y/ + 5gx(y/, @(y/7:€/))7 @(y/7x/)) : D7_‘/273/<‘@é) — D27‘/3,§(‘@ﬂ>7 (638)
with .
IW /2,697 < oL, (6.3.9)

where ¢ is defined by the relation ¢ =:1id + 6(5,

max{¥ 1} 1, 0

W =
0 1,
and
| P ll7/2,, 9y < LM, (6.3.10)
with
P'(y',2") = P(y,p(z) = Pod'(y,2') .
Proof

Step 1: Construction of the Arnold’s transformation We seek for r; < r/2, s; < s,

a set I, < Dy, (%;) having the same cardinality as %; and a near—to-the-identity real-
analytic symplectic transformation ¢, : Z x T¢ © satisfying

¢/: DT‘1,S1(-@£) - Dr,8(9ﬁ>v
with D, 5, (%) € D, s(%;) and ¢' generated by y' - v + eg(y/, ) i.e.

¢ { y=y+eal) (6.3.11)

o =x+egy(y,x),

such that
H :=Ho¢ =K' +*P' on Drlysl(‘@é)’

det 02 K'(y') + 0, Vy e, (6.3.12)
oy K'(D}) = 0,K () .
By Taylor’s formula, we get!'!!
H(Y +2g.(y 2),2) =K(f) + =R () + 2 |[K,(0) - 0o + TePW, ) = K | +
+e2 (PW + P® + PO ()
=K'(y) +e¢ [Ky(y’) “gx + TPy, ) — f((y’)] + &Py, x),
(6.3.13)

HIRecall that {-) stands for the average over T¢.
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with x € N, which will be chosen large enough so that P®) = O(e) and

(P, =PV 4+ P? 4 pO
1 1
PY = S [K(Y +eg2) — K(y) — €K, (¥) - 9a] =:‘[ (1= 1) Kyy(ctgs) - g - gudlt
€ 0
X 1 !
P? .= . [P(y' + ege,z) — P(y,2)] = | P,(y + etge, ) - gudt
0
1 / / 1 / mn-xr
PO = [Pl )~ TP = - 3] Paly)e
L nl1>k

(6.3.14)
By the non—degeneracy condition in (4.1.1) and Lemma 2.2.7, for ¢ small enough (to be
made precised below), there exists r < 7 such that for each y € Z;, there exists a unique
y' € D;(y) satisfying 0, K'(y") = 0,K(y) and det 5§,K’(y') + 0; Z; is precisely the set of
these y" when y runs in Z. More precisely, Z; and % are “diffeomorphic”"?, say via G,
and, for each y' € Z;, the matrix 85,[( 1(71) is invertible with inverse of the form

T'(y) = 2K'(y)™ = T(yo) +T(y), vy =Gly).

In view of (6.3.13), in order to get the first part of (6.3.12), we need to find g such that
Ky,(y') - 9. + T.P(y',-) — K(y') vanishes; such a g is indeed given by

—Puy)
9y, z) = : e (6.3.15)
0<|;1:<n K,(y)-n
provided that
Ky(y) n+0, YVO<nh <k, VyeD. (%) (cD.(%)). (6.3.16)

But, in fact, since K(y) is rationally independent, for each y € %, then, given any « € N,
there exists " < r such that

K,(y)-n£0, VO<|n|1 <k, Vy eD.(%). (6.3.17)

Then we invert the function x — z+eg, (v, z) in order to define P’. But, by Lemma 2.2.6,
for € small enough, the map z — x + g, (¥, ) admits an real-analytic inverse of the
form

oy, 2'se) =2 +ep(y, s e), (6.3.18)

112 e. there a exits a bijection from % onto @é which extends to a diffeomorphism on some neighbor-

hood of %;.

152



so that the Arnod’s symplectic transformation is given by

y=vy +eqy oy 2)) (6.3.19)
! ! / ~ ! / R
r=oy, 2e) =2 +e@(y, s €).

Hence, (6.3.12) holds with
Py, 2") = P'(y, oy, 2)). (6.3.20)

Step 2 Above all, notice that!!?

ro r r
K -——<=.
16dTK ~ 32d 2

r<

(6.3.21)

We begin by extending the “diophantine condition w.r.t. K,” uniformly to Dz(%;) up to
the order . Indeed, for any y € Z;, 0 < |n|; < k and ¥’ € Dx(y),

| Kyl (-
[Ky(y') - nl = |w-n+ (Ky(y) = Ky(y)) - nl| = |w-nl (1 - d%lnlﬂ’

n|
dK dK
> &T (1 - |n|{+177) > &T (1 - liT-Hf)
[n[i a Inli a

@ (6.3.22)

so that, by Lemma 2.2.4—(i), we have

/
Pn(y ) ein-az <
Ky(y')-n

def
lgl75.2, = sup
D;yg(@ﬁ)

Z | Pnllr.5.2, o(s=30)Inh
1Ky (') - nl

0<|nl1<k 0<|nl1<k

< Z Me—S\nh%e(S—%a)lnh < % Z ’n‘ﬂl' 6—%0\71\1
« Q

0<|nj1<k nezd

2M
2| wlre ety
« R4

3\ am
_ T e~y
(20> a fRd |y|1 € Yy

< C1 %Ui(Ter)
(0%

N

H3Recall footnote 2.
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and analogously,

nbuy) e > NPullrsz ], e(s=37)inh
n|

d
HgmHﬁg,% <! sup

Dr 5(2) 0<|nl1<k Ky(y/) 'n 0<|n|1<r | ( )
+1
< Z Me—s|n|12‘n|-{ ( g )\nh <= 2M Z ’n‘T-‘rl —7U|n|1
0<|n|1<k a nezd

N

« Rd

3 T+d+1 oM o
_ T —lylig
(20> o fRd lyli e Y

Cl T+d+l)

def a (y/) / KZ/?J(y/)n in-x
|0y 9lrs2, = sup < ~ ) s ) @
! g Dr,5(%) 0<n21</< ( ) n (Ky<y,) 'n)Q

| (By)nll7.s.2, [ Kyyllrzn\ (52
< sup < + d| Py s, ~ o(5=30)Inlx
Ky (y') - FIE(y') - nf?

0<\n|1<fi

A 3 33 13 T 2
(03-1)2(0-&22) Z ( M7678|n|12|n|1 1 dM e~slnh K|nl|; (2|n|1> ) 6(5_§U)|n|1
(0] «

r—r
0<|n|1<k

6.3.21) 4M
< — 2 (Inlia + drK|n|i™") g0l

S oalr
0<|n|1<k
4M
< max(a, rK)— Z (In|] + dln|7™*") o

0<|n|1<k

4M _2,
< max(a, rK)—— 2 Jd (|?/|I + d|y|%7'+1) e~ 37l gy

3 27+d+1 AM -
(2) max(a, rK)a TJ (\y|1 + d|y|2T+1) e |y|1dy

{1 7} KM —(27+d+1)
o2 ¢

7
<L,

154



ja) def ay (y/) / Kyy(y,)n in-x
12 glrso % sup ( ()l
Y g Dr5(Z8) |o<jn|, <x K (y) no (Ky(y/)'n)2
[(Py)ulras, 1Kyl
S b < [Py gy ALY (=) ol
ZD o \ K, (y) 7l K, () - nf?

4M
2

S (1l + ) fnly e el

0<|nl1<k

4M _24
< max(a,rK) 5 [ (olf i) o ey

3 27+d+2 AM
= ( ) max(a, rK)—— J \y\”l +d|y|f”2) e"yhdy

S {1, 7} Kﬂa—<2u+d>
rK

< max(a, 7K)——

V2 ao?
L,
and
~ M 2M
10y K72, = <P lr2 < |1Plrsg < ——= < —,
r—r r
~ M AM
2
125 R 13, = KB, < | Puless, < (g < Y <KL

Next, we construct & in (6.3.12). For, fix y € %; and consider
F: Di(y) x Di(y) — c
(y,2)  — Ky(y) + eKy(y) — Ky(2).
Then

o Fy(y,y) = 2K(y) + 02 K(y) = T(y)™ (11d +aT(y)5§f((y)) = T(y) " (La + cAo)
and

4le|M 6321  2TM 1 (6.3.5
O 2 < L 2
,

~ 1
Aol < ||IT PKy|<T < g2
ledo]| < | T(y)lllecy K (y)| — <3 =<5

Hence, F,(y,y) is invertible, with inverse

Ty = (14 +¢eA)™" (]1d + Z kAk) (y)

k=1
satisfying

IT(y)ll
Th|| < ———— < 2T. 3.2
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e For any (y, z) € D:(y) x Di(y),
[1a = ToFy(y, 2 < Tl 5K (y) = Kplleg, + ] [Tl 105 K)] + el [1Tol] 105K v,

i AM

< d- 2—|_H[(yyy||7:7@’j T+ 4|E|T7
F M

<2dTK—"— 1 16T

r—rT T

) oF 16T

2dTK + || ——

rr

(6.3.21
<

(6.3.21)+(6.3.5) o
< + 3

_l_
IO,

<

N N

P

e For any z € D;(y),

2TollF(y, 2)| < ATIK,(2) = Ky (y)| + 4Tl [ Ky |72,
2le|M
T

<AT|Kyylsq, -7+ 4T

T M
< 4Tk 4 SETM

i.€.

=~ 3

2[To [ F(y, )7y <

Therefore, Lemma 2.2.6 applies. Hence, there exists a real-analytic map GY: Dz(y) —
Di(y) such that its graph coincides with F~1({0}) i.e. ¥ = 9/(2,y,¢) = GY(2) is the
unique y € D;(y) satistying 0 = F(y, z) = 0,K'(y) — K,(z), for any z € D;(y) . Moreover,

V z € Dz(y),
(6.3.24)

<

I

=~ =3

|F,y

G¥(2) =yl < 2[To[ | F(y, -)

47 < (6.3.25)

Y

B~ =3
DN 3

G¥(2) = 2 < |G (2) =yl + 1y — 2] <
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so that
D;/4(Gy(z)) = D;/Q(y). (6326)

Next, we prove that 02 K'(y/') is invertible, where ¢/ = GY(2) for some given z € D;(y).
Indeed, by Taylor’s formula, we have,

&K (y) f oy 1 — Y)Y — y)dt + 2R ()

T(y)™ (Jld+T (f (Y + (Y —y))(y’—y)dH@il?(y’)))
= T(y)"'(1q +cA),

and, by Cauchy’s estimate,'*
AL < 1T o) (Al Kpuylrly’ =1+ Il 2 K 7.2,

dHK HT@ >
<7l (T2 vl + 1R s,

T 2dKF+4M
= r 2 r2

(6.3.21) o 1
S o (R ]
(16T ol )

_7
6
1
< -
2
Hence 02 K'(y') is invertible with
2K (y) " = (1g+eA)! )+ Do (—e)F AT (y) = T(y) + <T(y),
k>1
" 41
~ o o
T < lel———1T 2 <2lel|A|T | <2=T=T-.
1T < el Tla, < 26l1AlTls, <257 = T3

Similarly, from

Kl2) = Kly) (10470 f Kn(y-+1( =)~ )t

H4Recall footnote 42 .
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r dK T 1

(y +t(z —y)(z —y)dt < TN Kyyylvrzy e < T—5 17 =
H f vy dTR) woltBY4qTK S —r24dTK 2

one has that, for any z € D, uqti)(y),
K, (2)7" exists and | Ky, (2) 7| < | Ky (2) ' =T(y) |+ T(y)| < 2;T~|—T =2T . (6.3.27)
Now, differentiating F'(G¥(z), z) = 0, we get, for any z € Dx(y),
05 K'(GY(2) - 0:GY(2) = Kyy(2) .
Therefore GY is a local diffeomorphism, with
0.GY(2) = 0L K'(G(2)) ' Kyy(2)
= (K2 (Blo) + 22 (@(2))

— (Le+ K ()RR @)

and
142 2 7> le|L ot L ia o 1
Hc‘nyy ay KHTY || Hﬁy”gay’KHF,Jﬁ 2T— 4T < 50’ ‘€|L < g < 5
so that
|0.GY ry < 2[eK 102K |7y < 0 elL. (6.3.28)

Now, we show that the family {G"},c4, is compatible so that, together, they define a global
map on D;(%;), say G and that, in fact, G is a real-analytic diffeomorphism. For, assume
that 2z € D;(y) () D(§), for some y,§ € Z;. Then, we need to show that G¥(z) = G¥(z).
But, we have

. . R R (6.3.2
G7(2) =y <[GV(2) =3[+ [V = 2| + |z —y|] <

Hence, z € D:(y), G%(z) € Di(y ) and, by definitions, F(GY(2),2) = 0 = F(GY(2), 2).
Then, by unicity, we get G¥(z) = G¥(z). Thus, the map

G: Di:(2;) — C* such that Gip.y) =G, Vye D,
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is well-defined and, therefore, is a real-analytic local diffeomorphism. It remains only
to check that G is injective to conclude that it is a global diffeomorphism. Let then
z € D;i(y), 2 € D;(y) such that G(z) = G(2), for some y,y € Z;. Then, we have

~ r -
F= A= R

Indeed, if not then

0=1[G(2) =G(2)| = =|G(2) — z[ + |z = 2| = [2 = G(2)]

(6.3.21) r r

contradiction. Therefore,

— — — 7. 3.2
|z Z‘<4dTK T (6.3.29)

Thus,
r r

1tk T ke
Hence, z, 2 € D, juqti)(y). But G(2) = G(2) is equivalent to K, (z) = K,(2) and then,

Z-yl<[Z—z[+]z -yl <

0= K,(2) — K,(2) = L K,y (2 + t(z — 2))dt(z — 2) .

1
Thus, it is enough to show that J Ky, (2 +t(z — 2))dt is invertible. But
0

1 1 1
f Ky (2 +t(z—2))dt = Ky (2) + f J Ky (2 +tt'(z = 2))tdt'dt - (z — 2)
0 0 JO
632D pe (3) (ﬂd LK, (2 f J (2 4 11 (2 — 2))tdi'dt - (= — 2))
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(6.3.27) .
< §|‘KyyyH7‘/27y|Z - Z|

HKy (2)” f f yyy(Z + ' (z = 2))tdt'dt - (z — 2)

(6.3.29) 2dK< r )

= r \4dTK
2dTK
r 4dTK
1
)

Therefore, J y(Z2+t(z—2))dt is invertible and then we get 2 — 2 = 0 7.e. G is injective.

Next, we estimate |G —id||z 4,. The strategy is to show that the expression (K, —H—tKy/)*l o
K, defines a map on D;(y) by means of the Inversion Function Lemma 2.2.7; hence, we
will get an explicit formula for G:

G=(K,+eK,) 'oK, on Diy). (6.3.30)

But, the proof is part of the above computation: for any y € Dz(y),

N | —

11a = ToF,(y,y)| <

implies, using Lemma 2.2.7, that K, + 5[~(y/ admits an inverse defined on D, (K,(y) +

5}~(y/ (y)), where
Po_T
Ty = - :
FAT 2T

Moreover, for any y € Dz (y),

1Ky (y) = (Ky(y) + eKy ()] < [Kyylrg, - 7+ [eKy g
T 2le|M
_l’_
16dTK 7

<K
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and thus, (6.3.30) is proven. Hence, for any y € D;(y),

G(y) =yl = (0, K") M (E,(y)) — (0 K') 7 (K, (y) + ey (y))]

Ja (O ') (K (y) + teKy (y)) |t [eKy 7.9,
2le|M
r

< [0 K) sz
16TM
<

e]
< o el .

Now, we estimate P,. We have,

M (6.3.5)
’d”%”ﬁg,@ﬁ < |5|C170-—(l/+d 5 ro

so that, for any y € %; and (v, x) € D5 5(y),

2
1y + eg.(y/, :v)—y|\7’+f T +L<—T<r,
3 32d 12 3

and thus

M 2\
L e Y CE-rat)

KM?
= dQC%7O'

2(v+d)

6M M (v
POl s, < AP s orlrns, < aom €, M gtev

M2
= 6dC,— o )

ar
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and, by Lemma 2.2.4—(i), we have

s,, n _alnly
‘€|HP 7,s—% Ty S 2 ”P H,«jﬂ )Inh <M Z ezt
1>k |n|1>k
<Me 7 Z 6_0‘2‘1 <Me 7 Z e_%ﬂl
[n|1>r |n|1>0
d 0ot d
KO g KO 4
= Me ¥ (Ze—f> 1| =Me T <<1+ ‘ _g) —1)
k_ ]_ - 6 4
€7
d 9 d
:M@T<(1+ = ) —1><M6_T<(1+0> —1)
ed — g
<o Me <(a+8)d—ad> < d8lo  Me %
= C2U dMe A
(6.3.2) _ o Kle| M
< Coo Mo +d)|OJ2
_ C2A4f9§%@{0—2w+d>‘
«Q
Hence,''®
| P RS ‘ 75,95 T HP(2) 75,95 T HP(?’) ‘FE]u

KA
< dPCl—-0 72 4 60C, o) 4 ¢,y ST
07 ar

!é‘IM K —2+a)
M?
_ (dQC%TK i 6dcla/0_1/+d + CQTK) TO.—Q(V-Fd)
ar
M2
< (d°C} + 6dCy + Cp) max {a, rK} TU_Q(V+d)
ar
S q 2
(621) & max {1, ﬁ} M KU_Q(”er)
rK

V2 a?
<LM .

The proof of the claims on ¢’ and P’ are proven in a similar way as in Lemma 2.3.1.

I5Recall that 7 < rg and o < 1.
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Let Hy:= H, Ky := K, Py := P, ¢° = ¢ := id and ry, s¢, 5+, 09, My, Ko, T and 7y be as
in §6.1. For a given € # 0 and j > 0, define''®

0o
O'j = E’
00
Sj+1 = Sj O'j—S*-i-E,
20
S5 = 85 — ?]7
’ O 209
KjJrl = KOH(1+ g) < Koe 3 < Koﬁ,
k=0
’ Ok 209
T =To[ [0+ 3) <Toe® <Tov2,
k=0
A0 = logﬂ(;l)
e, = C50'0_(4V+2d+2)778)\(2)y :
* O_g 9

7 ‘—lmin a L
AR 2dv/2KorY " 32dmo [

i1 =i/ |el,

7 . Tj+1

T RAT K
]/\ZO - MO7

—~ Ko M2
Ml =2 % 0652 0 R

H6Notice that s; | s« and r; | 0.
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Ko M2

Jj+1

Mo = 8e,(4d, )

az
_ Kb
My = a2
6; == 8e, (4dy)’ pj,
-@0 = 96,017

K
W, = diag (;Hd,1d> ,

K 1
W;,, = diag (max {J ,} ]ld,]ld) ,
a Ty

2¢/2Ty _ Ko -
I—] = M] max{g \f OO']' (Ver); C4maX{1,a} 00'-2(”+d)}

TjTjJrl TjKj ? J
24/2Ty _ 4 Ko _
’I"j?”jJrl Kj?"j TjKj [0
Thus,
KoM, Ko = KoM
0, = 8e, (4d,) p1 = 32, dy—at = 32e, dy—o 26— = d, (Se, j10)” = dy 62

* ~No ~
a2 a2 a2

and, for any 7 > 1,
. KoM,
01 = Be. (10" pyn = Se (dd,) 1022
K . KOJT/[\-Q . 2
= Be. (4d. ) 5 Se (4, T ) = (Seu(4dh) )" = 65

&2 J

i.e.
0, =67 = (\/d, 6)% .

The very first step being quite different from all the others, it has to be done separately.
Hence,

Lemma 6.3.2 Under the above assumptions and notations, if

2
le] < (@) and max { e g, 16dny 0o} <1, (6.3.31)
aly

then, there exist 21 < 9, a real-analytic diffeomorphism
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such that

and

Proof By

and

we get

Gl(@&a) = -91 )

G’(1 : Dﬁ (.@57,1)—’6:1 (Dfl(‘@(ia))

and a real-analytic symplectomorphism

(bl : DT1,S1 (-@1) - DT‘O,SO(‘@O)

8y1K1 9) G1 = @KO s
Hl = H00¢1 = K1+€2P1

@1C9T17

| K |00 < K,
262 M, = 262\ Pr|yy 51,0 < |€| M
|Gy —id|r,9,, <2711 057 [e]Lo
10.G1 — 1dl|7,,9;., < oy te|Lo

HW1(¢1 - id)Hrl,Sly-@l < U(C]l |€|L0 :

~

(0
2dKo/2k}

o1

r = <

2

HTlH.@l < Tl )

(6.3.31)

Ko = 4oyt =8

(6.3.42)+(6.3.31) 1

min {

on Dy, s, (D)

Tl = (82 Kl)_l

91

T000 P00

< )
2d - 8"Kov2 Tor/Je]  32dno

A~

(0] f()O'o

A~

«

2dv/2KorkY " 32dng
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"~ 4dyv2Kok

(6.3.32)

(6.3.43)



and, thus

_ 32v2Ty —(v4a a | Ko —apta)|
\6]L0(3001)<3\5]M0max{ — UO(+)’C4maX{1’7’0KO}a2% (+d) oyt

_ 1 KoM
< Jmax 32\/§Tog&, C, max LL 002(V+d) 12200
K roKo

1 ToNo 062

(6.3.31) o (ytd)—
< 3max {32\/§T0a , C4} o 2v+d) 1,uo
1

= 3max {256dnokg , Cy4} o 2D

(6.3.42) o(prd)
< 3max {256d, 8_”C4} Noko 0 20v+d) l,uo

<e* ,UO
(6.3.31)
—0, "< (6:3.44)

Therefore, Lemma 6.3.2 is a straightforward consequence of Lemma 6.3.1. I

Lemma 6.3.3 Assume (6.3.35) + (6.3.38) with some € # 0 and
max { e 1o , 2Cq n§ 00_% 90} <1. (6.3.45)
Then, one can construct a sequence of real-analytic diffeomorphisms
Gj: D7 (2j-1)—G;(D7(Z-1)) ,  J =2
and of real-analytic symplectic transformations
¢j : Dy s;(Z5) = Dr,_y s, (D) (6.3.46)
such that

Gi(Zj1) = %5 < Dr;

OyKjr10Gi = 0K,

}I‘7 = j—10 ¢j = K] + €2ij on DT‘j,SJ <9J) 5
converge uniformly. More precisely, we have the following:

i) the sequence G7 = G; 0 Gy o---0Gy oGy converges uniformly on D5, to a
J J >
lipeomorphism G*: Dso — Dy = G*(Ds0) <€ P and G* € C3)(Ds.0) -
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(i7) e? ang converges uniformly on P, X '1[*;1* to 0, for any € Ng ;

(iii) ¢/ = g0 ---0d; converges uniformly on Dy x T to a symplectic transformation

¢*: Dy x T4 ™8 B, (2) x T¢

with ¢* € CX(ZD, x T) and ¢*(y,-): ’]1"‘51* >z — ¢*(y,x) holomorphic, for any

ye-@*;

(iv) K; converges uniformly on 9, to a function K, € Cy(Zs), with

8y*K* 9 G* = ayK[)

65*(]{1 0 ") (Yu, ) = ag*K*(y*> , V(Ys, ) € Dy X T VB e Ng .

Finally, the following estimates hold for any i = 2:

HGZ —id Ti,Di—1 <27 O—;‘/—+1d |€
< U;/jld e

HaZGZ -1y T, D1 X
2i2|5 2N = 2i2]€ 2P

0o

IWa(¢* —id)| < 3. 9d

Proof First of all, notice that

N A 010 2,£ 00
Tiv1 = T17 2

64d+/2nq

" 6adn)i

Indeed, for any 7 > 1, we have

Ul DTS O'] O'l j (
— < <
(64dno)? 64dno

so that

” . { Q P01 } ~ . {
To = 1ININ > = 71 min
2 Ad~/2KokY " 64dng !

and if

o105

(64d7]0)Z ’

Tit1 =T

167

on Dsa

27L71

I—i—l 3
2i—1

Lifl )
risi 7 S ‘EIMZ )

| meas (Z,) — meas (Z5.)| < Cr o4 0y meas (%s,) ,

d
on YD, x TS, -

)fl, Vi=0.

47 64dno

6.3.47
6.3.48

6.3.49
6.3.50

6.3.51

~—  ~— — ~— —

(6.3.52)

(6.3.53)



then

7Qz‘+1<7i+1
4d\/§K0;<Z 1 " 64dng

"Oi41
z+1) ’ 64d770)1+1

(6.3.53) “Oit1

(64d770)1+1

Tiro = Min {

and (6.3.52) is proven.

For a given j > 2, let (£7) be the following assertion: there exist j — 1 real-analytic
diffeomorphisms

Gi-&-l: Dfi+1 (-@i>_)Gi+1(D7:i+1 (91)) ) for 1<i< ] -1 )
j — 1 real-analytic symplectic transformations
¢i+1 : Dri+1,si+1(9i+l) - D2r¢/3,si(9i)a (6354)

and j—1 Hamiltonians H;,, = Hyogiy1 = K142 P, real-analytic on Dy.y o501 (Disa)
such that, for any 1 <7< j — 1,

( Gi(.@z‘q) =9, c 97“2'7
”éﬁKZHT’u% < Ki,

|Tillo, < T
4 (6.3.55)
21 | ‘2 HP'L 73,8,%; ’€|MZ ’

40_ 110g( 2V+d,uz_1> ,

20 o
Li< %

L e
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and
( ayKi-&-l oGiy = ayKi )

|Gip1 —id z L; ,

v+d
P, 7 S 27410} ’6

10.Giy1 — 1g vrd|e L, ;

Fir1, % S O

HTi+1 Piv1 S HTl 7; + Ti’€|2i|-i )
! (6.3.56)
HKi+1 QZMi )

ri11,%i+1 < HKZ ri,7; t ‘g

HazKH-l r3,%; + K7J|€|21Lz )

Dit1 < Ha;Kl

Ti+1,

IWii1(dip1 —id) <ol e]¥L,; ,

7“i+1,8i+1,~@i+1

{ M1 = | P
Assume (£77), for some j > 2 and let us check (£7!). Fix then 1 <i < j — 1. Thus

Ti+1,8i+1,%i+1

(6.3.56) i (6.3.55) 0;
|’85Ki+1“7’i+1,%’+1 < HaEKan,% + Ki|5|2 LZ < K’L + Klgz = Ki"‘l < \/§K0

and, similarly,
| T

i1 < Tig,
which prove the second and third relations in (6.3.55) for ¢ = j. Therefore

~

(0%

Qo Q
> —
Tiv1Kiv 1 Ko\/E flKo\/§

= ddr¥ > 1 (6.3.57)
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so that

; i 324/2Toy _(, Ko —20
le|*'Li (307 1) = 3|e|* M; max{ V2 O, " C,max {1 a } 2052 +d)} ot
TiTi+1 TiKi o?
(6.3. )7) ' 32\fT0 1 O_'—2(1/+d)—1
! TiTisn ar; | °
= 3max {32\/71_0 AOC C4} Uz 2Av+d)=
Ti+1 ar;
64d 2 M,
(6.3.52) 3 max {128(1\/»770/% ( \f770> C4} 2v+d)—
o) ar;
(6.3.42) v M 2 [ 64dr/2 '
< 3max{128d\f 87y } (vtd)= el ‘2% (M> Mok
ar; 0o

v i—1
= 3d - 24V+2d+7\/§max{128d\f 87VC, } —(3v+2d+2) (22 +2d+7dﬁ770)

00
22 ’€|2 i 2)\u

ar;

(6:3.52) 3d? . 26v+2d+10 o {128d\@, 8_”C4} K005(4y+2d+2) <

221/+2d+ 14d2 2

i—1
770) %

2
g0
(i— 1)
27 e+ M; 2 2
X — 0Ny
lela?
v 2l %
— C50' (4v+2d+2) 2)\2le IKO
Isl
(6.3.55) (4 K M
< C500 (4v+2d+2) 2)\21/d2 1 02
' o
= € dzjlﬂz
= q.
_ (Vd* 90)21
d.
(6.3.45) 1
< —<1. (6.3.58)
d.

Moreover,
2¢ i—1
|8’ Li<e* d* M
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thus by last relation in (6.3.56), for any 1 <i < j —1,

i ; i (6.3.55) . —~ —~
L)% M) < (8en(4dh) Y ) (le] M) = |e| Moy

which proves the fourth relation in (6.3.55) for ¢ = j. Hence, by exactly the same compu-
tation as above, one gets

2i+1

2(i+1)2 |€

Mi-{-l < (22i+1|€

b1 (Vdi 60)*"
de d.
which proves the last relation in (6.3.55) for ¢ = j. It remains only to check that the fifth
relation in (6.3.55) holds as well for 7 = j in order to apply Lemma 6.3.1 to H;, 1 <i < j
and get (6.3.56) and, consequently, (£7!). But in fact, we have, for any i > 1,

|2i+1 L

N

e i+1(3034) <1,

1 oL Y i i
d? < e, = 4d?’ < (8e.)’ < (8e,)¥ ! = Se.(4d.)’ < (8e,)¥d?’ < (8e,)?d?” =
8e,(4d,)id; 2" < (8e )Td = < (8e,)?,

so that
do;  log (07 i t) < dojtlog (pit)

= 40; ! log (Se* \/7 6o)~ >

< 4o; ' log ( )

= 40! log Mo
=K - (6.3.59)

= 4" 4o, log (Mo )

To finish the proof of the induction 7.e. one can construct an infinite sequence of Arnold’s
transformations satisfying (6.3.55) and (6.3.56) for all i > 1, one needs only to check
(22%). But,''" (6.3.35) + (6.3.38), (6.3.58),_, and (6.3.59),_, imply (6.3.55),_,. Thus, we
apply Lemma 6.3.1 to H; to achieve the proof of (£2?).

Next, we show that G’ converges. For any j > 1,

|G7* = Gz = |G 0 G = G ]g

= |Gjs1 = idlg,
< HGj-i-l - idH’Fj_'_l,@'
(6.3. 5@)
2rj 0 e PL. (6.3.60)

170bserve that for j = 2,3 = 1.
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Thus, GY is Cauchy and therefore converges uniformly on %5, to a map G*.

Next, we prove that ¢/ is convergent by showing that it is Cauchy as well. For any j > 4,
we have, using again Cauchy’s estimate,

||Wj—1(¢j_1 - ¢j_2)|‘7'j73ja-@j = ‘|Wj—1¢j_2 © ¢j—1 - Wj—1¢j_2||7‘j—1,sj—1,-@j—1
‘|Wj_1D¢j_2Wj_—11H27'j—2/375j72:@j72 ”Wj—l(gbj—l - id)HT’j—l,Sj—h@j—l

3 3 -
A <TJ 17" 1 2) HWjil(b] 2””*1’3%17%—1 x
J— 0j—1
X HWJ—l((bJ—l - ld)”Tj—l,Sj—h@j—l
3 . .
= f”wj—l(éj QHTj—l,Sj—l,@j—l HWj—l(qu—l - 1d)H7‘j—1,Sj—1,-@j—1
0j—-1
1 . j—2 _
< SIW g o ([ L30T )
1
< 5IWimaef sz -0y 052
1 i 1 d
S 5 H Wit Wi || ) [IWaa|lry 50,2, - 055 02
6.357) 1 Ti1
= 5 (H > HW2¢2HT2,82,92 : 0]'72
o Ti
Tl d
= 27,].72 ” 2¢2Hr2,52,92 0,2 9
1 ddv\/2 — i
- 201 ||W2¢2H7“2,82 7 22(] i ( nO) ( d* HO)QJ ’
o]
1 s [(2674d\/2 -
< 50l [Wats|ry sz - 27 (n) (Vda 60)”
2 o)
2012
1 28=dd\/2
= §Uf HW2¢2HT2,82,@2 ’ ((770) \/ 90
22

1 5 _5
= 50l IWaalrazn - (Comory 00)
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Therefore, for any n > 2, 7 > 0,

n+j
||W2(¢n+J+1 - ¢n) Trntj+1,Sn+i+1,Pn+5+1 < Z H ¢Z+1 z) Tit+1,8i+1,%i+1
< Z (1_[ |Wle:i1> HWH—1<¢Z+1 - ¢Z) Tit1,8i+1,Zit1
i=n \k=2
6.3.57 nﬂ - Tkl
57 )
- Z Hmax{ ) - } ”WH-l( L ¢Z) Tit1,8i4+1,Zi+1
i=n k=2
n+j

Tit1,8i+1,Zi+1

= Z |‘Wi+1(¢i+l - ¢i)
n+j

1 5 _5
W rsisn.2: Y (Cond g 160 )

1=n

2i+1

(6.3.61)

Hence ¢’ converges uniformly on Z, x T to some ¢*, which is then real-analytic function
inze ']I‘g*.
To estimate |Wy(¢* —id)| on 2, x T¢ , observe that , for i >

d+1 20 ;
. ol (vdy 6) i 1 Vs Opy i+
< (Ve 60)™ = 3d*< )

274
o lel"Li < 3. 9i(d+1) d, = 3. d+1)(z+1 9d+1

1 118

and therefore

NERIE Z(f%)M <Ll %

= x = 2 6 d, 6’
o6t g 2 () < e = g
= 3d 2d+1 3. 22d+1 d 3 . 22d+1

Moreover, for any 7 > 2,

IWa(¢" = id) [, 5,2, < [Wa(@'™" 0 i — §i) [rs,50,2, + [Wa(g; —id)

rio1si1? (]_[ [W; Wj+1|) [Wi(ei —id)

74,84, %;

< |[Wa(p' —id)

ri,54,%i

= HW2(¢ 1d) ric1,8io1,%i-1 T H (¢l - ) 7i,8i,%i
= HWQ(QZSZ ! ld)H"‘z 1,8i-1,%i-1 + H ( i id)’ri75i,@i
< HW2(¢1 ! ld Ti—1,8i— 17 i—1 + UZ 1 ’8 2171 Li*l ?

H8Recall that 2 > i + 1, Vi > 0 and 0g < %
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which iterated yields

[Wa (o' —

k
7"17517 i Z Uk |5’2 Lk?
< Z ol [e]?Ly

k=1

2
%
3. 22d+1 :

~

Therefore, taking the limit over ¢ completes the proof of (6.3.51).
Next, we show that |G* —id|.,9,, < 1, which will imply that'"? G*: P, N P, is a
lipeomorphism. Indeed, for any j > 2, we have

|G7 —id|pg,, +1=(Gj—id) o G + (G7~! —id) +1

< ||Gj - |l + |G —id|p,g,, +1
< |G - V|G —id| g, + 1) + |G —id| g, +1
= (”GJ - Dj—1 + 1)(HGJ_1 - idHL7-@5,a + 1)
< ([0:G; = Lal7,,9,, + (|G — +1)
(6.3.48)+(6.3.40)
< (e L+ (|6 - +1)

which iterated leads to'?"

|67 "L+ )

< -1+ 1_[ vid|e
w .

< —1+exp <Z 0;’+d|5|21Li)
i=0

< —1+exp <00+d|e|Lo + 0 +d2 le|*'L )
02
< —1+exp <06’+d90 + ag“lg)

< —1 + exp (2047)

< 2080, exp (200+d00)

(6.345) e g Td
<

Co

<1. (6.3.62)

19Gee Proposition I1.2. in | ].
120Recall that e* —1 < ze®, Va = 0.
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Thus, letting n — o0, we get that G* is Lipschitz continuous, with

v+d
G* —id|L 9. < 20810y exp (208790,) < 2e o210, < €%~ 1,
I Ts,0 0 0 0

6

so that, by'?! Lemma D.1 (see Appendix D), we get

d
meas (Z,) — meas (Ys5,)| < 1 + 202+, exp (204146, — 1| meas (Ys.,
, 0 0 :

< d - 208"y exp (2087%0)) (1 + 2040 exp (205”90))&1 meas (Zs.q)
3
2

= C; 04 0y meas (Zs.0),

d—1
<2ed < ) ot 0 meas (Zs..)

which proves (6.3.50).
Next, we show that ¢* € C% (2, x T?). For any n,j > 1, we have
' ) n+j—1
16" = Glgy, < )5 16 =G,
=

+j—1
(6.3.60) " A
v+d| .12
< 2 Z Tk+10g ‘5’ Lk
k=j
v d)_|2*
< 27n]'+]_0—j Z O—k‘|€‘ Lk
k=1
2
< ) v __ 70
== 2TJ+1UJ 3. 92d+1
(6.3.45) T
J ]_6d7’]0

Vo~
<Uj Ti+1 -

Now, letting n — oo, we get

: R 7
|G* — G|\ g,., < 0% i1 < JT“ . (6.3.63)

Hence,'?? for any j = 1,
(6.3.62) (6.3.63)

Gj(DFjTH(-@&a)) - D%(Gj(-@&a)) < " D1 (Z4) & Dy, (Z5) < Dy (Z;)

2

L21With § == 200y exp (2041 ,).
122Recall that, by definition, G7(%s.4) = Z; and G*(Zs,0) = Dx.
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Therefore, for any n > 1, we have

. . Fivi\ (6.3.64) .
S W = 6z, () 0 gy Y W~ ey,
j=3 Jj=3
(6.3.61)+(6.3.52) . .
< 2 +3d Mo O-lli 1 HW2¢2HT2,S2,J2 X
5 5 N\ 64d
Z (C67761 4(90) 2n ( \/77]0)
Jj=3 g0
< 0,
since, for j sufficiently large,
5 _5 \2 64d 5 _5 N2 RN 340) 1
<C6n040-0400> o'y ( [n[)) <\fC6n6‘ *0 ) and V/2Cs 770 oyt 0y < 75 < 1.
0o

Thus, writing ' ‘ .
¥ == )+ H (=07, =3,
and invoking Lemma E.2 (see Appendix E), we conclude that ¢* € C2(Z, x T9).

Finally, we prove G* € Cy;(%s ) analogously. For any j > 2 and n > 1, we have

G = (-G )+ +(G-GY,

and
~ —n
i i Tj+1 . i o
DG = Gl (B2) =8 D Gs — )0 Clr s, 75
=1 i>1
(6 %6 . p—
8 Z HGJ-H ldHT;Jrh j ]+1
j=2
< 23n+1 Z Tii1 T]+1 O_V+d|€|2ﬂ
Jj=1
< o0,

which proves that G* € O} (Zs.0)-
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Now, to complete the proof of Theorem 6.2.1, observe that, uniformly on Z, x Tgl*,

(Wi(¢y —id)] < [Wi(¢1 00" — ¢%)[ + [Wi (0" —id)]
[Wi(d1 = id) [y 0,20 + [WiW5 | [Wa(g* — id)]

0
3. 92d+1
d+1 2
o 0
< 3 fo + 3. 92d+1
1 62
< 3. 9d+1 0o + 3. 92d+1
<
3.2d

Moreover, setting G := id, we have for any i > 3,

NN

< 0'8Z |8||_0 +

|G" ~id|g,,, < IG”+1 Gl
7=0
i—1

‘Gj - id‘@j—l

S,

|
=}

J
. i—1
(6.3.47)4(6.3.39) & ;
v+d| |27
< Z Tj+10; ’€| L]
Jj=0
w .
v d| |27
< 204 11 Z olel* Ly
§=0
2 0'6/ 90
<
3.2d

r,

and then passing to the limit, we get

5
2 o8 by oy (o0 1«
G*_.d/ :G*_d/ < 0 < O _— = .
| id]g;., = | id|,., 3.2d E Co \ 1m0 Ko "

Finally, we prove (6.2.7). By Theorem C.1, G* —id can be extended to a global Lipschitz
continuous function f: R? <, with'??

sup | f|2 = sup |G* —id|> , (6.3.65)
R4 Ds.a
_ / G* —id —(G* —id ’
sup W) f/(y)la _ sy G ZH0) (/ id)(y)l2 (6.3.66)
y,y'eR? ly = v/l Y.y €50 v =yl
vAY y#y

123Where |y|o := \/y} + - + 42 , and recall that |y| < |y|> < V/d |y|, for any y € RY.
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Hence,

def
[ fllra = sup | £|
Rd

<sup |fl2
Rd

(64D sup |G* — id|s
96,&

< Vdsup |G* —id|
65,&

(6.2.5)
< dr,

(6.2.2) LTOUO
32d n
< dog (6.3.67)

and

def f Yy _f y/
flige e sup LW =S
y,y eR? |y_y|

y#y’
_ ’
< sup |f(y) = f()la
y,y'eR? |y—y’]2/\/E

y#y’

050 g UE = i) = (G~ id) )

VY €Ds o ‘?J - y/|2
y#y’
i sy VAlGT = i) = (G id) ()
yvy/e-@é,a |y - y/|
y#y'
= d|G* —id|1,,
(6.2.6) vtd
< ds Z(; <3 (6.3.68)

Set g :== f +id. Then, by Lemma G.1,

9 < g(Bsoy(2)) - (6.3.69)
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Notice also that, by (6.3.68),'** ¢ is a homeomorphism of R?. Consequently,

meas (2 x T\#) =

(6.3.69)
<

NN

(6.3.68)

A

meas (2 x T%) — meas (¢x(Zs x T?))

meas (2 x T%) — meas (2, x T?)

meas (9(Bsq, (2)) x T?) — meas (2, x T%)

(2m)* meas (9(Bsoy (2))\9(Zs.0))

(27)* meas (g(Bsoy (2)\%s,0)) (because ¢ is injective)
(2m)* gl g meas (Bsoy (2)\Zs.a)

2m) (1 + [ f] pre)? meas (Bsoy (2)\Zs.0)

(2m)! <1 + W)d meas (Bsoy(2)\Zs0)

v+d

(2m)! <1 i d”O)d <meas (Bios(2)\7) + meas (2\%5) +

+ meas (%\%,Q))

6.4 Sharp measure estimate of the complement of 7
in an arbitrary set

The strategy here is to localize the Kolmogorov set and then sum them up. Thus, we start

by examining the cube case.

6.4.1 Local analysis: the case where ¥ is a cube

Theorem 6.4.1 Let

9 = Br(yo) , R>0

124Gee | , Proposition I1.2.].
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and let the assumptions in Theorem 0.2.1 hold, with

1d\/&+21

Ci=_-+ o
32 G 0kezd [kl
. TO ro R
5 < , o 2L
i {32d00 “ 3247 4 }

Furthermore, assume that

K,: 92— Q=K,92)

1s a diffeomorphism. Then,

Do T
meas (2 x T\#) < C (67)" 220 Rty
Jo
with'*
PR £ [ det K,y(y)] > 0
=-2>1, = inf |de :
0 % Qo * ye% Yy
Proof We shall denote the Fuclidean norm by'?°
SN

Recall that

75 Br_5(yo) wf {yeR? : |y —yo| = max |y; — yo;| < R — 6}

i<j<d
and ¢y (2, x T¢) = 2 x T Therefore,

meas (2 x TN\¢.(Z, x T?)) = meas (2 x T?) — meas (¢.(Z. x T%))
meas (.@ X ']I‘d) — meas (.@* X ’]I‘d)

= (2m)%(meas (2) — meas (2,))
< (2m)%(meas (2\%s) + meas (Z5\Zx))
= (2m)*((2R)" = (2R — 26)" + meas (Z5\G+(D)))
< (2m)%(2% RY'6 + meas (25\G+(%)))
125Indeed, pick any matrix A = [a;j]1<ij<a- Then |A] = lrg?écdmﬂ\ + -+ + |aq| and |det A] =
| See =, 16 -+ Q)| < See =, larel - aag@] < TTi—y(lan| + -+ + |aia) < |A|4, where S is the
set of permutations of {1,- - ,d}.

126Recall that |y| < |ylo < V/d |y|, for any y € RY.
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It remains to estimate meas (Z5\G«(2%)). Firstly, thanks to Theorem C.1 (see Appendix C)

G — id can be extended to a global Lipschitz continuous function f: R? <, with
sup | fla = sup |G, —id|y , (6.4.1)
R4 o

* d - * d !

(G = id)w) = (o= id) ) (g

. /
W) f/(y N2 _ sup :
y,y'eR? |y -y |2 v,y €% |y -y |2
y#y' y#y’

Hence,

| £l = Suplf|
\sup|f]2
(641 sup |G, — id|s
%

< Vdsup |G, —id|
(6.4.3)

and
def 1fy) — f(y)]

HfHL,Rd = sup ;
ly — ']

y,y'€R?
y#y'

/

< aup HO =S

ly — ')2/Vd

y#y
642 3 oo [(Gx —id)(y) — (Gx —id)(y)]2
Y =2

v,y €%
y#y'

Vi sup Vd|(G, —id)(y) — (G, —id)(y)]
ly =]

URTESZ
y#y’
= d|Gs —id| 1,4

(626) eoyt 1

= Cs 2

(6.4.4)

Set g := f +id. Then, by Lemma G.1,
s < g (Bi(2)) = 9 (Brsrsw)) - (6.4.5)
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Notice also that, by (6.4.4),'?" g is a homeomorphism of R¢. Consequently,

(6.4.5)
meas (25\G«(%)) <  meas (9 (Brs+i(v0)) \G+(%))
f
b eas (g (BR 5+7(10)) \g(%0))
= meas (g (Bg- 5+T( 0)\%)) (because ¢ is injective)
< |9l pemeas (Br-si7(y0)\%)
< (14 |flre) <meas (Br-s+#(40)\%Zs) + meas (@5\@0))
(6.2.6) d
< (2) (Qd(R — 6+ 7= 24R —6)* + meas (@5\@0))
3\ 1
< 2 9d JRd-1 oy (0o \*' a
(2) ( Vd 22 & \m ) K + meas (Z5\%)
L 3tdvda o (31
< R 1C79K70 + (2> meas (Z5\%) .
Finally,
.
meas (Z5\%) = dy
JDs\%0
.
= dy
J{yeZs : Ky(y)¢AL}
.
= | det K|~ 'dz
J{zeKy(Br-s(yo)) : z¢ A%}
1
< — dz
Qo {ZGB(Rf&)HKyyHTO’@O (Ky (o)) : Z¢AE}
1
_ dz
00 U {ZEB(R—(S)KO(K< )) |k§ Z| |k‘|1}
0#£keZd
1
< — J dz
00 o Sz H 7By (K0 : 2| <pir |
1 2a
<Y Rk
Q0 ¢ thezd k[
=a;, 2 (R—¢§)"!
127See [ , Proposition I1.2.].

182



where

% 0#kezd
Putting all together, we get
3¢ d~/d
meas (7 x T\6,(2, x T)) < <27r>d(2dd BT+ BT cf ot s (R—o)"! ‘“)
9 0
Kod  3¢d+/d R a
= (2m)? ( 29d = K
( 7T) < o + Cg + 3Ko ay KO
ds d+d 1) Kt
< (6m) [ Ky — + c Z k;|’f) 0 pd-1,
“ 9 b KT o0
1 Kd—l
< (67T)d o n d+d n Z ; 0 pd-1,
3200 C9 0£keZd |k|1 0o
1 d+d 1\ ToKd
< (67T)d — + i + — 0 ORdfla
32 Cg 0#£keZd |k|l 0000
YT
= C (6m)" —" R
00

6.4.2 Global analysis

Let ® be any non—empty, bounded subset of R?. Consider the Hamiltonian parametrized

by e e R
H(y,z;e) == K(y) +eP(y, ),

where K, P are real-analytic functions defined on ® x T¢ with bounded holomorphic

extensions to'%®

Drmso(@) = U Dro,s()(yO)?

YoeD

for some ry > 0 and 0 < sg < 1, the norm being

| lro.s00 == sup _[-].
Dry,s(D)

128Recall the notations in §1.2
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Assume that

¢ = inf|det Kyy(y)| > 0.

Fix 0 < s, < 5o and define'?’

o0 = 2""d(s9 — 54) ,

M = HPHrO,so,’D ’
T = |T|o = sup |T(y)] ,
ye®
K:= HKyyHro,i) )
77 = TK > 1 )
Kd
Y= — = 1 )
0
T
0=
32doy
o
Ry =
O 6ddn?’

L ::sup{u< e1:2C Cso

where T'(y) = K,,(y)~'. Let

1
C=—

3
C=64dC.

w (logu™t)™

(6.4.6)

Given R > 0, define the set € of coverings of © by cubes as follows: F' € € iff there
exists np € N and ng cubes, say F;, 1 < i < np, of equal side-length 2R, centered at a

point y; € ® and such that

np
Fz{E-:1<z'<nF} and @CUE-.
i=1

Then define

XA = {O <R< Ry:%r+# J and Fn%)f np(2R)* < 24 meas (@)}
EOR

129Recall footnote!??.
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and

nyp = %%mm {nF :Fe%r and npR? < meas (”D)} : (6.4.9)
Pick any R € #Z and F° € €, such that npo = np. Then

FO={F}:= B (pj), forsome p;e®, 1<i<np}.
Thus, the following holds.

Theorem 6.4.2 Let the above assumptions and notations hold. Assume

R..o0y a?

a < 8d T and |6|<M*KM,

(6.4.10)

where Ry € {Ro, R}
Part I: Description of the local Kolmogorov’s sets %"
There exists ny, € N and and p; € ©, 1 < i < ny, such that

Dc Lj BR*<pi) )
i=1

and the following holds. Pick any 1 < i < ny. Define

H':= K'+eP":= Hyp, (p)x1¢
2 Vke Zd\{O}} ,
|k[T

D5 = {yo € Br,—s(pi) - Ky(yo) € AL} .

(07

AT = {weRd: lw - k| =

Then, there exist D < Br,_sir,(Pi) having the same cardinality as 9%, a lipeomor-
phism G*': Qi 28 @i with (G*)~' € CX(Z1), a function Ki € CL(Z:,R) and a
C% —symplectic transformation’™® ¢l P8 x T¢ — H# = ¢i(Di x T?) < Bg, (pi) x T? and
real-analytic in x € T? , such that'

Oy KL o G* = 0,K’ on 9, (6.4.11)

130Which means that the Whitney-gradient Vi = 0¢% /0(yx, ) satisfies (V¢L)J (V)T = J uniformly
on 7 x T4, where J = <]10 _(])ld)
d
131Notice that the derivatives are taken in the sense of Whitney.
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and

|G™ —id| g < 7, (6.4.13)
v+d
|G¥ —id| g < =20 (6.4.14)
»Z0 C6
Part II: Sharp measure estimate of the complement of 7
Set .
H =\ | H" < B, 51, (D) x T,
i=1
Case 1: R, = R,.
In that case,'*
di d
1< n, < q 1am©] n 1> (6.4.15)
Ry
and
N 9t T r d
~ . 0
meas ((Z_L'Jl Br,(pi) % ']I‘d> \%) < C (6m)¢ p— (dlam© + 2605772) a. (6.4.16)
Case 2: R, = R;,.
In that case, n, = ny, p; = p; and
e / d a 30T a1
meas | | || Br(p}) x T* )\~ | < C (127)* n} — meas (D)7 a. (6.4.17)
i=1 0

We shall need the following elementary Lemmas in the proof.

Lemma 6.4.3 (Covering Lemma) For any R > 0, there exist'*

diam ® d
1< NK 1

and p; € ®, 1 <1< N such that

N
D c UBR(pZ) .
i=1

132y, = N and p; = p;, where N and p; are the ones appearing in Lemma 6.4.3, with R = Ry.
133[2] denotes the integer part function max{n € Z : n < z}, while [z] denotes the "ceiling function”
min{n € Z: n > x}.
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Proof Let p = diam® and z; := inf{y; : y € E}. Then ©® < z + B,(0). Now, let
0 < R’ < R close enough to R so that

B[] +1-5

[ Cl=|5]rr=8.

Then, ® can be covered by N closed, contiguous cubes A;, 1 < j < N , of equal side—
length 2R'. Let 4; those indices such that A; (® and pick p; € A ﬂ@ let N be the

number of such cubes. But then, one has A;, < Bg(p;), for each 1 < j < N < N. The
Lemma is therefore proved.

Lemma 6.4.4 Let'** A: Dgr(yo) — S4(C%) be a matriv—valued function. Assume that

a= sup [A(y)| <1
y€DRr(yo)

Then, for any y € Dgr(yo), the eigenvalues 14+ A(y) are bounded in modulus from below
by 1 — a. hence, in particular,

|det (Lg + A(y))| = (1 —a)?, V' y e Dgr(yo) - (6.4.18)

Proof Let y € Dg(yo) and v # 0 an eigenvector of 1, + A(y) with associated eigenvalue
A. Then

Aol = [l + Aly)o]
[vll = [ACy)vl

>
= o] = [A)[v]
> (1—a)lv]>0.

Thus, the Lemma is proven since the determinant is equal to the product of the eigenval-
ues, counted with multiplicities. |}

Proof of Theorem 6.4.2 Set
o := min{rg , 32dd} .

Then,

1345,(C%) denotes the symmetric matrices of order d, with entries in C?.
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Hence,

T ro R*
§ = mi — 4.1
mm{32d00 3247 4 } ’ (6.4.19)
T = 32d6 y
so that e
o= % : (6.4.20)

Thus, thanks to (6.4.19) and (6.4.20), we need only to check that K, is injective on F}
in order to apply Theorem 6.4.1 to H;. But, for any y € Dy, /an)(pi),

[Ta =T (pi) Ky (y) | < T/ Eyy (y) — Ky (pi)]

o
< THKyyy pi;ro/2 %

[ Ky li,ro o
r0/2 477

1
< TK—
2n

<T

1

5
Thus, by Lemma 2.2.7, g := (K,) ! is a real analytic diffeomorphism on D,(z;), where
/. ro 1 ro

zi = K,(p;) and r= < —;.
! 80T~ 2[T(ps)| 4n

Furthermore,
sup [ g:| < 2|T(ps)| < 2T . (6.4.21)

! zZi

Set T" := g.(z) "' = Kyy(p;). Then, for any z € D, /sy (2),

|10 = T'g-(2) < 1T"[lg:(2) — g=(z:)]

T/

< K zz ||z 2 5
ool 3

ng i, L/
/2 8n

(6.4.21) 1

4n

~

~

DN | —
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Thus, again by Lemma 2.2.7, the inverse of g, i.e. K, is a real analytic diffeomorphism
on D,»(p;) (since g(z;) = p;), where

ro r’ 1 r

— < —
64n2  16nK ~ 2|77| 8n

/
R, < Ry<nr":=

Moreover, in exactly the same way as above, one gets

11— T(p) Ky ()] < 2Ty “” L ] (6.4.22)
su — i < N < — — . 4.
yeDRf(pi) ¢ P/ B fo/2 0 32dn 2

Hence,

inf )|det K, (y)| = inf

yeDRq (P y€DRq (pi)

det (Kyy(p,-){lld — (L — T(pi)Kyy(y))}) l

—  inf )\det Ky (pi)]

yeD R (Pi

det (L1 (L= TR K) )

(6.4.22)+(6.4.18

) 1\*
= | det Kyy(Pi)‘ (1 - 2)

>2 50, (6.4.23)

9d

The estimates (6.4.17) and (6.4.16) then follow easily. For instance, let us treat the sec-
ond case i.e. R, = Rj. The case R, = Ry is proved in a similar way by firstly using
Lemma 6.4.3, with R = Ry; then setting p;, = p;, n. = N and thus applying Theo-
rem 6.4.1 to each H*.

Let then R, = Rj). Thus, we can apply Theorem 6.4.1 to H*. Hence, there exists a Kol-
mogorov set

Hc F)x T4, (6.4.24)
associated to H*, with all the desired properties and satisfying'®
0 rmd VT i
meas (F; x T\J;) < C(121)° — Ry "« . (6.4.25)
0o

135Where, g is replaced by /2%, thanks to (6.4.23); To and Ko by T and K respectively.

189



Therefore

meas (D x Td\%) < meas ((UFO X Td) \ (O%’))
64<24 Z meas (F} x T\¢")

(6.4.25)

< Z R/d 1
1T T
= C (12m)% ng . <n0 Rgd) a
(6.4.9) 1 T d—1

C (127)* ng Cal (measD) © «.

0o
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Appendices

A On the initial order of truncation k; of the Fourier series in
Theorem 2.1.4

Let

1 1 1
@>O,0<19<1,0<a<%,u>D>d>2,B::1—t+—,0<5<(1—6)e,
1% 1%

with!3¢ _
v
Vs cld—1)8
~ | log®©
o 1—9)o|
=\ 1/8
~ v 1
011 = exp ((1 — 19) <<&9> + 20)) 5
6_12—019 —v/v
Ciz = ( 5C: (1 =7)e) ) ,
~ 20, \"" 1
013 = exp ((1 - 79) << 05 > 20)) .
Then

Lemma A.1

136 Notice that - - L
%% v v

d—1F " w—)e @=1PF  (—1)Fe

N

> > >

)

ol

2
e

N =

so that one can choose ¥ = % and in that case, if one chooses in addition ¢ = ¢, then Ky = kg, C11 =

011, 612 = 012 and 513 = O13, with E, 011, 012 and 013 as in §2.1.3.1 and §??
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(i) If © <min(20"Cy;',C Yo" then

o 19 1
kao'e "7 < @e0 < ——, Koo >d— 1.
0 A
206’10

(i) If ©<20°Ciplo” and 2horl < a  then

4Chy - Cs

— x .
ao? Co

Proof Above all, notice that (for any 0 < 5 < 1)

t
Vi>1, —— = (1-pB)et’ =P,
logt
Let ¢t := kgo.

Let’s prove (i). Assume that © < min(20C5;!, C3')o”. Then

log © log ((200)”0{11) 1 log(éﬂl) 1
t> — —0 07 19 2
1— 0 1-9 20 N

Therefore t > 1 and t > (%)1/5’ so that
A3 Y _
L N S Y
logt )

; - —1- _ 19
e t< e (1-9)t < elog®+(1 9o < Oem

On the other hand, since © < (200)”6’{11 < 5’1_11 <1 then

_ 1 “1\? (a3 @l-7(1-8)
Or! < @( 0¢© > ©

@I?/V
< — = —
1—0)o (1—9)a)  ((1-0)0)
(6’;210'1/)17/1/ B 67%

(1 =)o) 205
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Finally we prove (ii). If © <20"Czle”  and 2hokg < o then

404@0 < 2(3‘
ao? tv )
log © -
2 _ _
< 04 ( 11— 9 U)
» log ((200)”(71_31) 1
< 4| — - —
1—-9 20
< 20 log <51_3’1) 1 Cs
< W\ ] T

B Smooth contraction mapping Lemma

Let 7, s, 0, 0, L > 0. Let u € C*(R? x T, T¢), with  — z + u(y, ) holomorphic on T?, ,
for any given y € R%. Assume,

1 1
EHUHO,S-HS’ HuxHO,S-‘r(S < L < ) < 5 s (B].)
where
| losts == sup |-].
RIXTE, 5

Assume also that for any n € N there exists a constant C,, > 0 with the following property:
for any £y, B € N§ with |31y + B2 < n,

r\51\10-|52|171"05185216"078 < Cu,nL .. (B2)

Lemma B.1 Under the above assumptions, there exists a unique map v € C®(R? x
T4, T4, with x — x + u(y, ) holomorphic on T? such that for any given y € RY, the map
x— x+v(y,x) is the inverse of © — x+u(y,x). Moreover, for anyn € N there a constant
C,, > 0 such that for any Bi, Bs € N& with |B1]1 + |Ba|1 < n,

Pl glB2li=1) B oy |, < O, L (B.3)
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and

Hux 0,5+0
Lelisd (B.4)

Furthermore, 6’” can be expressed in term of C,,, for any n € Ny.

HU|0,5 < ||U 0,540 > Hvx|0,s <

Proof Let F be the set of w e C°(R? x T¢,C?) such that
Jwllos <6
Then, (F, || - |os) is a Banach space and for any w € F,
[Tm (z + w(y, x))]os < s+ |w]os < s+ 0.

Hence the map
F:Foww— —u(m,m™+w)eF

is well-defined. Notice that
T+ ’U(y,(l}) + U(y,.l: + U(y,I)) =T <= v(y,x) = —U(y,ﬂj‘ + ,U(y7$)) U= F(U)
Hence, we have to show that F' admits a unique fixed point. But

[ F(w1) = F(w2)

0.5 < | uzllosto|wr — wallos < 8|wy —wallos, YV wi,wyeF

i.e. , F'is a contraction. Therefore, by the Banach’s Fixed Point (or contraction mapping)
Theorem, F' admits a unique fixed point, say v, and v is obtained as the uniform limit of
the sequence (F™(0)),. Thus, by Weierstrass’s Theorem, x — z + v(y, z) is holomorphic
on T¢, for each y € R Moreover

0.s = [F(v)

and, by differentiating v = F(v) w.r.t z, we get

vy = —(Lg + up) Ty = — (Z(—ux)”) Uy,

|| 0,5 < [[ullo,s+s

so that

e

)
u ,540
0,5 S <Z ’um’g,s-i-é) HuxHO,5+5 < ||1$||_056+ ’

n=0

which conclude the proof of (B.4). Next, we shall proceed inductively for the remainder

of the proof. We have
1 1
—[vllos < —lu
o o

0,546 <L )
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which proofs (B.3),_,. Set w(y,z) =

multivariate Faa Di Bruno’s formula (see |
for any § =

—lA’BaﬁU _lAﬁaﬁlaﬁzv
o o V7

1

— AP (v)
ag

STCTIE
A1eNd A2eNg
>\1<B1 1< A2 [1<](B1—=A1,62) 1

J
(B1—A1,82—X2)
A ((61 )\1752 ‘ H k

1 m+1— |)\1\1
-y eay
o ”
A=(A1,A2)eNg xNd Jj=1
A <p1
1< AL sm+1
1 m+1—|)\1\1
-y eay
o ¢
A=(A1,A2)eNg xNg Jj=1

A1<p
A1#0 or |)\2|1751
1A <Sm+1

1
o ey )
(Al,)\g)ENgXNg Jj=1 (kvl):()‘2718
)\1:07 ‘)‘2|1:1

1 m+1—|)\1\1
L LD
o ,
A=(A1,A2)eNg xNg Jj=1

A1<p1
A1#0 or |)\2|1751
1A <Sm+1

1
+ uy - —ANPOP (my + v)
o

137With the convention 0° = 1.
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(x + v(y,x) i.e. w = my + v. Now, fix m € Ny and
assume that v € C™(R? x T?,C%) and (B.3),, holds, for any 0 < n <

m. Then, using the
|, Theorem 2.1) to differentiate v = F'(v),

(61, Ba) € N§ x Nf, with |8], = m + 1, we have'*"

[(B1—A1,82)[1
0,02) AA2 A\
AR gy Y
Jj=1 (k,D)e” (3,(B1—X1,B82),A2)
((ﬂlw ki
(1) kil1
J (lAlialiw)ki
_ 13,1 o - 7
, (B, AM-H i (1;1) il
(k;vl)ey(.jvﬁ_()‘lyo)vkz) i=1
(LAl Qha)e

> (61—

(k,1)e” (4,6—(A1,0),A2)

J
A1)!Bo! H

LRI R

L (LAl Qi)

E Kl (1;1) kil

> (5

(k,1)e7 (4,6—(A1,0),A2)

J (lAlialiwyﬂi
_ )\1)!52! H 7&!(@!)"‘“‘1 +



i.e.

1 1 1 mi b
APy = —(Lg+ up) "t | =APuy Py + Z AN M Z
7 g A=(A1,A2)eNd xNd j=1 (k,1)e(4,8—(A1,0),\2)

A1<B1
A #0 or |>\2|17&1
1A <mA+1

Al 6l Ty + v
(Br = A1)! 52! H( kzl(i!)k i ) ;

=1
where
.A:(T,' ,7’,0,"',0’),
—_——— ——

.y(j7ﬁ_(>\170)7>‘2) = {(k>l):(k1>"'7kj7l17"'7l) (Nd Ngd H|k|l>0

0<l<--<1j, Z]:k:iz Ay and Z\k‘\l— (A1, )},
i—1
oVkeN, (a,0) e N xNf [ (a<be=a; <b; ,V1<j<k),
and, for all k € N, (a,b) € Nf x NE a < b if and only if one of the following holds
(i) |aly < |b|; or

(17) |al; = |bly and there exists 1 < j < k such that a; = b; forall 1 <i < j— 1 and
a; < bj .

Therefore, v € C™(R? x T%,C?). Moreover, since [(14 + u,) || < 15 < 2, by the
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inductive hypothesis, (B.1) and (B.2), we have

1
~AP|Pulo, < 2
g

(B =)t |

A
DO

A~

< Om-i—lL )

luzo,s+5 + Z

A=(A1,A2)eNd xNg

L+

A1<p1
A1#0 or ‘)\2|1;ﬁ1
I<|A[ism+1

J (1 + CA*ML)

m+1—|>\1|1

Ca, L

K|

m+17|)\1|1
2. CGwl )
/\=()\1,>\2)€NgXNg j=1

A1<p1
A1#0 or ‘)\2|1#1
1< ism+1

2

j:l (k’l)e‘y(jvﬁf()‘lyo)v)ﬂ)

(k7l)ey(jvﬂ_(>\170)vk2)

(51 - )\1)'52'<1 + 6’m)\)\2|1

where émﬂ > 0 is an universal constant, independent upon j. Finally, notice that 6’m+1
can be expressed in term of C,,,; if C,, can be expressed in term of C,,. These concludes
the proof of the Lemma. |}
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C Extension of Lipschitz—Holder continuous functions with con-
trol on the sup—norm

We aim to recall here a very deep Extension Theorem for Lipschitz—Ho6lder continuous
function, following closely | ].1%8

Theorem C.1 (G. J. Minty| 1) Let (V,{-,-)) be a separable inner product space,
B#ACV, b>0,0<a<1andg: A— R a (a,b)-Lipschitz—Hdlder continuous
function on A i.e. %

lg(x1) — g(x2)|2 < b |21 — 22|, Va,rpeA. (C.1)

Then, there exists a global (a,b)—Lipschitz—Hélder continuous function'® G: V — R? such
that G|a = g. Futhermore, G can be chosen in such away that G(V') is contained in the
closed convex hull of g(A). Hence, in particular,

|G (1) — G(x2)] lg(x1) — g(2)|

sup |G ()| = sup|g(z)| and  sup =
xeV x€A 17TV ||$1 - x2H x1#T2€A Hl'l - x?”

We need some preliminaries to prove the Theorem. Given n € N, we shall denote

Y= A= A e[0,1]" ¢ A+ + Ay =1} .

Definition C.2 (Kirszbraun function) Let Vi be a R-vector space and X a non—
empty set. A function f: Vi x X x X — R is called Kirszbraun function (K-function)

if:

(1) f is convex and for any x1,x2 € X and for any finite-dimensional subspace S of V1,
the function f(-,x1,72): S 3y — f(y,x1,22) is Lower semicontinuous'*';

(17) for any n € N, for any (y1,21), + , (Yn,xn) € Vi x X, for any x € X and for any
(A1, -, A\n) € Xy, the inequality

Z NN [ (Y — g, @i, 5) = 22 ANif (Yi =y, @i @) Y= Z AjY; (C.3)
i=1 j=1

1<i,j<n
holds.

138Recall that, Kirszbraun’s Theorem (see [Fed], §2.10.43) asserts only that one can extend a Lipschitz
continuous function without increasing the Lipschitz constant.

139Recall that | - |2 denotes the Euclidean norm on R9.

1404 e. satisfying (C.1) on V.

1414 e. for any t € R, the sublevel set {y € S : f(y, 71, z2) < t} is closed in S endowed with the canonical
topology.
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Then, the following holds.

Theorem C.3 (G. J. Minty]| ) Let f: RIxV xV — R be a K-function, n € N,
(y1,21), -, (Yn, 2n) € RY x V. Assume that f is continuous and for any 1 <1i,j < n,

Then, given any x € V', there exists y in the conver hull of {y1,--- ,yn} such that f(y; —
Y,z x) <0, for any 1 <i < n.

Proof Consider the function

F:Y,xY,3\pu — ZAf(yl Zu]y],xl,>.

Then, it is clear that F' is convex and lower semicontinuous in u, concave and upper
semicontinuous in A. Thus, since T, is compact and thanks to the von Neumann’s Minimax
Theorem, there exists (A°, u°) € T,, x T, such that

F\%, 1) < {\naXF()\ ©°) = min max F(\, 1) = max min F(\, ) = min F(A°, u) < F(\°, 1%) .

peYy ey, AEY,, peYy, peYy,
Hence,
FOp) < FO, 1) < FON%, ) Y\pueX,. (C.5)

But,

" " (C.3) (C.4)

2F()\0’ )\0) — 22 )\?f (yl — 2 A?yj, Z;, l‘) < Z )\Z)\]f(yz — Yj, Ty, Q?j) < 0.

i=1 j=1 1<ij<n

Set

= >y
j=1

Therefore, for any 1 < i < n,

. (C.5)
f(yz - y07$i7x) = F(ézlwuo) < F()‘O7)‘O) < 0

where &} is the Kronecker delta: 67 = 1 if i = j and 0 otherwise. I

We shall need also the following.

Lemma C.4 Let z1, -+ ,x, € RY Then,

199



(i) given any B,ay,- -+ ,a, > 0, we have'*

<l‘7;, £L'j> . 1 ®©
Zgn (ai +a;)® F(ﬁ)L

1<i,g

n

=1

(17) given any (A1, ,An) € Ty and any 0 < a < 1,

Z Nidjlz; — a3 < Z i (|2l + Ja5]3)°

1<i,j<n I<i,j<n

77t = 0 . (C.6)
< 22)\1‘1’2 ga . (C?)
i=1

Proof (i) is trivial. Let us prove (ii). Above all, we recall the Bernoulli inequality:

l+2)" <l+rx, Ve=>—-1,Y0<r<1. (C.8)

The case a = 1 is obvious. Let then 0 < a < 1. By the continuity of the norm, up to
approximating the zero vector by a sequence of non—zero vectors, we can assume that

1421 being the Euler’s Gamma function.
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each x; #0,¢=1,--- ,n. Thus, we have

Z )\Z/\]|JZZ — fL’j %a = Z /\Z)\J<£L'Z — l’j, T; — fL’j>a

1<i,j<n 1<i,j<n
2<I‘1 LE> “
= 3 el + st (1- 2E )
1<i,j<n ERA T | + |53
(C.8) 20{x; , x;
S (el + Ry (1—”)
1<i,j<n |zil5 + |73
= D0 AN (w3 + )t — 20 )] el
1<ij<n e e 1<ig<n (|3 + [z513)
(C.6)
< > Al e
1<i,j<n

max{|z;]s, [2;]2}2\*
= 3 A maxffaily, |2} <1+ il |2|J’2})

1<ij<n max{|z;[2, [;]2}?

(C.8) il [2:]5] \2
<), Aymax{|zl, |15} <1+a<m1n{|x 2 |xj|2}> )

max{|z;z, |9Uj\2}

1<ij<n
min{|z;s, |z;]2} ) *
< Z >\’L)\j max{\:cl-b, |£Cj‘2}2a 1+ ( e )
1<i,j<n max{|z;[2, [;]2}
= Z )\1)\] (|CEZ %a + ‘iL‘j %a)
1<ij<n

n
= 22/\1 |J]Z ga .
i=1
i

Now, we are in position to prove Theorem C.1.

Proof of Theorem C.1 The proof is divided into three steps.
Step 1 We show that

FiRYXV XV 3 (y, 21, 2) = |yl3 — bz — o>

is a K—function. f is obviously continuous (actually, C*) and convex in y. Now, let n € N,
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(v, 21), WY, 2n) EREXV, x eV and (A, -+, \,) € Ty, and set y == Z Ajy;. Then

=1

DOANFw ) = Y ANl —y) = w0 > AN - 2) — (x5

1<i,j<n 1<ij<n 1<i,j<n
= > ANy =yl + ly = il + 2 — vy — ) -
1<ij<n
=0 D N[ — )
1<i,j<n

22)\¢’yi—y|§+252 Z)V( ’ZAJ (y—y >
=1 i=1

i=1

— b2 Z )\1>\]‘xz — Ij|2a

1<i,5<n
—QZAIyz yls =0 ) Al — ) = (a5 — @)
1<z,j<n
QZM%—y|§—2522)\i“%—1’“2a
i=1 i=1

i=1

Step 2 We want to show that we can extend g to A J{zo} in such away that the image
of zy by the extension lies in closed convex hull conv (g(A)) of g(A), for any xy € V. If
xg € A, there is nothing to do. Let then zq € V\A. Set'*

€ (x) :== conv ( ﬂ{yeRd g(x) =y, x,x9) <0}, reA.

Then, for any x € A, € (z) is a compact convex subset of R%. Now pick any @1, -+ , 1441 € A
and set y; == g(z;), 1 <i<d+ 1. Thus, (C.1) implies

fyi —yj,xi,25) <0, Vi<i<d+1.

Thanks to Step 1, we can apply Theorem C.3. Therefore, there exists gy, in the convex
hull of {y1, -, yn} such that f(y; — yo,xs, o) <0, for any 1 <i < d + 1. Hence,

dt1
ﬂ C(x;) # I (since it contains ).

143Notice that, for any = € A, bl|z — x0[* > 0 and {y € R? : f(g(x) — y,,20) < 0} is the closed ball
(with respect to the Euclidean norm) centered at g(x) with radius b|a — x|
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Thus, by Helly’s Theorem'**, there exists

Yoo € [ | €(2) -

reA

Consequently, the extension g,, of g to A J{zo} is obtained by setting g.,(xo) = Yu,-
Step 3 Pick any countable dense subset D of V. Then, by Step 2, we can extend g
inductively to A(JD. Denote by gp such an extension and notice that gp(AlJD) <
conv (g(A)) and satisfies (C.1) on A J D, by construction. Now, pick any 2%, ! € V\A
and sequences {z!} = D converging to z’, i = 0, 1. Fix i = 0, 1. Then, for any n,m € N,

l9p(23) — gp(x3,)|2 < bllay, — 2, [1* -
Hence, the sequence {gp(z¢)} = R? is Cauchy and, therefore, converges to a ' € R and

y* does not depend upon the sequence chosen but only upon z‘. Now, by

9o(@3): gp(x,) € gp(D) = conv (9(A))
l9p(2;,) — g(@)|2 < bllay, —z|*,  VaeA

and
l9p(25) — gp(zy)l2 < bllah — 2",
for all n = 0, we get, by passing to the limit,

4.yt e conv (g(A)),
Iy — g(z)]2 < blla" — ||, VreA
and
1° — y'ls < bja® — 2.

Then, a desired extension is obtained by just setting

for x € A and
f(z) =limgp(x,) ,

for x € V\A and {z,} = D any sequence converging to z. |

L44Gee | ]

203



D Lebesgue measure and Lipschitz continuous map

Lemma D.1 Let & + A < R? be a Lebesque—measurable set and f: A — R? be Lipschitz
continuous with

If —id|z,4 = sup \f(x)—:f(yﬂ <9. (D.1)
vyed |7 =yl
TFY
Then
| meas (f(A)) — meas (A)| < ((1 +)* — 1) meas (A) . (D.2)

Remark D.2 Notice that the inequality (D.2) is sharp as shown by the example f = (1+49) id.

Proof By Theorem C.1 (see Appendix C), f—id can be extended to a Lipschitz continuous
g: R © with

lglrre = [f —id|ra <6
Now, by Rademacher’s Theorem, there exists a set N < R? with meas (N) = 0 and such
that g is differentiable on R\ N. Then'*

Lraw < [glepe <0

lgylran = Il
Now pick y € RA\N. Then,

" d
det(La + g, ) 11 = | [ 5 der(ta + e
0

fol tr (Adj (La + tgy)gy) dt’

1
<fﬂM+%Wﬂmﬁ
0

1
< J d (1 + 6t)* " sdt
0

=(1+6)7%—1

145Let’s point out that R?\N is non—convex if N is non-empty. Netherless, one can just approximate
a segment by curves contained in R\ N and with length arbitrarily close to the length of the segment.
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Thus, by the change of variable (or area or coarea) formula

| meas (f(A)) — meas (A)|

146See | ], §3.3
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146 we have

| meas (g(A)) — meas (A)]

Juaeo

(id+g)(A) A

[ e
(id+g)(A\N) A\N

f [ det(Ly + gy)ldy j dy\
AN AN

<[ ettt g) - tlay
AN

<

(14 6)% — 1) meas (A) .



E Whitney’s smoothness

Definition E.1 Let A = R? be non-empty and n € Ny, m € N. A function f: A — R™
is said C™ on A in the Whitney sense, with Whitney derivatives (f,,)l,eNng,hgn , fo=f,
and we write f € Cji,(A,R™), if for any € > 0 and yo € A, there exists 0 > 0 such that,
for any y,y' € A n Bs(yo) and v € N&, with |v]; < n,

R = X el =y < el = (E.1)

MGNS
luli<n—|vh

The following is proven in [ , §2.7, pg. 58] for d = 1.

Lemma E.2 Let A < R? be non—empty and n € Ny. For m € N, let f,, be a real-analytic
function with holomorphic extension to D, (A), with r,, | 0 as m — oo. Assume that

0

a = Z | fllrm,a 7 < o0, | fllrm,a =" sup [fml. (E.2)
i (A)

m=1 B

0 o0
Then f := Z fm € Ch (A, R) with Whitney’s derivatives f, := Z Oy fm-
m=1

m=1

Proof Let v € N&, with |v|; < n. We start showing that

fo=> 0 fn

is well-defined on A. Indeed, for any m > 1, f,, € C*(A) and, by Cauchy’s estimate,

—_ n—\v — 3
I fla < D108 frnlza <273 Wfunllra 1 < 207N | fllroa i < 0
m=1 m=1 m=1 m=1
where
|- Ja:=sup|-|.
A

Finally, we show that (7} f),eng, v/, <n are the Whitney’s derivatives of f. Fix then yo € A,

0 <e<aandveNd with [v]; <n. Set

b:=2"a Z 1.

,ueNg
|[u|1=n+1
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Let m; € N such that'*"

. 0 . EnJrl
2 3 alewa ol < e (<9) (£3)
Letl48
€
0= I Ty
and

= f k>1.

Now, pick y,vy" € A n Bs(yo), with y # v/. Let then'* my > m; such that
piek y, y

€ €
op [mat1 <y —yl< op "M (E.4)
Notice that fl™2! is holomorphic on D, (A) and
O<r'=|y,_y|<£7“ < gy, < me
' 26 "™ T 2a ™ T 2
Moreover, for any 1 < m < msg,
(E.4) b b b
| e e e i T <€—1) ' =yl > Iy —yl,
(E.5)

/ 'm / 'm € / T'm (E4) T'm
o=y = ol = (=l —ul) + 5= (g rme =l —9l) + S

Therefore, by Taylor-Lagrange’s formula and Cauchy’s estimates, we have (for some 0 <

147Such a m exists by (E.2).

148T et us point out that § does not depend upon v. These is crucial! Actually, § does not even depend
upon yo.

9Notice that such a my exists since |y —y| < |y’ — yo| + |yo — y| < 26 = 57y, and the sequence
(rm)m is strictly decreasing.
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Ay - Y SRR -y =] D) 0 My + Y - )y — )"
peNg ’ pueNd )
ul<n—lvlx il = +1
ma2
< Z Z H%Jr“mer,A rleh
ueNg m=1

|pli=n—|v|1+1

m2
SR YD W IS
m=1

peNg
|pli=n—|v|1+1

b m2
< 277"”*‘1414*1 Z | follrna (7o — r)—(n+1)
a )

(E5) b X roN-" (b -1
< n—lvli+1 ) <ﬂ) 2l —
grg” T L la (5) (W

(Ili+leh)

Tm,A (rm - r)_

I A

=& Tn_IVh a Z Hfm“rm,ATm_n
m=1
<ernivh (E.6)
Furthermore, for any p € Nd, with |u|; < n,
S 1aufula € S 1ol gens
m>mso m>ma
I —\#\1
< 2 Mlgra ()
m>mso
€ -n /g n—|ul1
= 3 Wnlgrna () (g57m)
2

15 n—luli /2H\" n n
<(groe) " (2) 2 T Uabar

m>mi
: no n+l
BOED |y (D) e
£ (2b)n

=€ 74"_|N|1 . (E?)
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1

— S =) <
ueNg He

luli<sn—|vh

+

(E-6)
<

A
=
~

2

+ o+ A

<

£ (y) — fIm ()] +

[y - Y ;fV[TZ](y)(y’—y)“ i

d
peNG
[l <n—|v|1

Y (50 = feest) 0 =

d
HeNG
luli<n—|v|1

Z Hal/fm”A +
m>mso
eV 4

2 Z ||au+umeA T|M|1

MENg m>msa
luli<n—|v

eIV 4

eIV 4

et 3 g
,uENg
luli<n—|vh

2+ m+1)Yely —ym M,

which concludes the proof, by the arbitrariness of 0 <& <a. |

Remark E.3

1. Actually, we proved something stronger. Namely, for any € > 0, there

exists & > 0 such that, for any y,%’ € A and v € N&, with |y —y| < ¢ and |v|; < n,

L) —

,u,eNg
|uli<n—|v|1
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2. In fact, f satisfies the following “uniform” Whitney’s condition, provided n > 1: for any
v,y € A and v e N¢, with |y —y| <rgand 0 < |v|; <n—1,

1
fy) — —foin @)@ — )| <a(2"+2€) |y —ym M. (E.9)
4l
eNd ’
ph<n -l

Indeed, for such given y,y',v, let m € Ny such that r,,4+1 < |y — y| < rm,. Then, by
similar computations as above, we have

1
PVAEIDY il 9| < ) = Fm )] +
,ueNg )
luli<n—1—|v|1
m 1 m
+ (el - Zd mhﬁ(y)(y'—mu
neNG

lul1<n—1—|v|;

Y (e - ) 6w

,ueNg
|plisn—1—|v)
2" a ,
< oy -y
(=] Yy =yl
1
+ 2 Z E Z Hall+umeA |y/_y|\ll\1
,UENg m>ms
lpli<n—1—|v|
2™ q 1 _
S oy P20 2 | W o
! i 7

= a (2” + 262) ly — y|"_|”‘1 .
Finally, we recall the very deep Whitney’s extension theorem.

Theorem E.4 (Whitney | ) Let A < R and f € C},(A,R), n € No. If A is
closed, then there exists f € C"(R%, R), real-analytic on RNA and such that f, = f, on
A, for any v e N&, with |v|; < n.
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F  Generalized Steiner’s formula

We aim here to recall the generalized Steiner’s formula to compute the volume of the two
halves tubes that composes a (uniform) tubular neighborhood of an embedded hypersur-
face without boundary of R%.1%0

Let & be a smooth, bounded, orientable hypersurface without boundary of R¢ (equipped
with the Euclidean metric). Fix the orientation given by a smooth unit normal vector
field of &

n=(n, - ,ng):6->N&=(T&", |np=n’+ - +n2=1.

Let dy := dy; A - - - A dyg be the volume form on R? (which induces the Lebesgue-measure
meas on RY) and V be the Levi-Civita connection on R?. Then, let d& be the induced
area—form on &, defined by

d6(X1, T 7Xd—1) = dy(Xlﬂ e 7Xd—17n) )

for any Xy, -+, Xy 1 € I'(&), where I'(&) denotes the Lie algebra of smooth vector fields
on &. Define the shape operator S: I'(&) — I'(&) by

SX =—-Vxn.

Define the map e.: {(y,u) : y € &,u = +n(y)} — [0, 0] by'"

ec(y,u) == sup{t > 0 : dist (y + tu, &) =t} .
Then, define the minimal focal distance

minfoc (&) = inf{e.(y,u) : y € &, u = +tn(y)}.

Given ¢ > 0, define the two half-tubes about &

TH6,6)={yttn(y):ye &, 0<t <6}
and the d—tubular neighborhood of &

7(8,0) = 7(8,0)| T (6,9).

150For a genralization to a non—uniform tubular neighborhood, see | ].
15le.(y,u) is the distance from y € & to its cut-focal point in the direction u if such a cut—focal point
exists; otherwise e.(y,u) = 0.
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152

The contraction operators C7 on the space of double forms of type'®? (p,q) are defined

inductively as follows: C°(A) = A and, for j > 1
CHA) X, X ) (Vi Yory) = D T A (X oo Xy B (Vi Yoy B

where {Fy, -, E;_1} is any orthonormal frame field of &. Let R® be the curvature tensor
of &. R® being a double form of type (2,2), one can then take the wedge product of R®
with itself j times to get the double form (R®)7 of type (2j,2j). Set CO((R®)%)) =1
and define the (2)-th and (2j + 1)-th integrated mean curvatures of & in R? as follows
(7=0):

ko (R®) = CH((R®Y) d6 |

k2j+1(R6, S) =

S
— o
<
\‘_/
——

{tr S) C¥((R®)) — 25 tr (SC¥H((R®)"))}d& .

M

Thus, the foolowing holds.

Theorem F.1 (] |, pg. 224)
T k RG §2i+1 [%_1 k RS Q) §2i+2
meas ( - Z 2” ) F 2j1( - ) _ , (F.1)
=1 (27 +1) = 1-3---(2j+1)(2j+2)

for any 0 < § < minfoc (&).

152 A double form of type (p, q) is a §(&)-linear map A: I'(&)? x'(&)? — F(&), which is antisymmetric
in the first p variables and in the last ¢ as well, where F(&) denotes the space of smooth functions on &.
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G Some others facts on Lipschitz continuous functions

In the following, we prove that any set is contained in some enlargement of itself through
any contracting mapping which is bounded on the former set.

Lemma G.1 Let g: C? — C? be Lipschitz continuous function. Assume that
d:=suplg—id| < o0, (G.1)
Rd
lg —id|pre < 1. (G.2)

Then, for any & # A < C%,153
Acy <D5(A)> .

Proof Set f = ¢ —id and let y € A. It is enough to show that there exists |y| < d such
that y = g(y + y) i.e. y = —f(y + y) i.e. y is a fixed point of the map

h: Ds(0) 3y — —f(y + 7).

But, for any y € Ds(0),

_ (G.1)
L) = 1fly+ D <[flee < 9,

G.2
i.e. h: Ds(0) — D5(0). Moreover, h is a contraction since [hf; 5 < [f]rre Y

Thus, we can apply the Banach’s fixed point Theorem to complete the proof. |}

153Where Ds(A) denotes the closed 6-neighborhood of A in C9.
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