
TESI DI DOTTORATO

Alice Gatti

Special almost-Kähler geometry of some homogeneous manifolds

Dottorato in Matematica, Pavia (2019).

<http://www.bdim.eu/item?id=tesi_2019_GattiAlice_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2019_GattiAlice_1
http://www.bdim.eu/


Università degli Studi di Pavia

DIPARTIMENTO DI MATEMATICA

Corso di Dottorato di Ricerca consortile in Matematica
Università degli Studi di Pavia - Università degli Studi di Milano-Bicocca -

Istituto Nazionale di Alta Matematica

XXXII Ciclo

Special almost-Kähler geometry of some
homogeneous manifolds

Alice Gatti

Relatore: Dr. Alberto Della Vedova

Dicembre 2019



Contents

Abstract 3

Aknowledgments 4

Introduction 5

1 Geometry of almost-Kähler manifolds 10
1.1 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Almost-complex manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Almost-Kähler manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Homogeneous symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Symplectic T 2-bundles over T 2 25
2.1 Compact solvmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 T 2-bundles over T 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Chern-Ricci flatness condition on symplectic unimodular Lie algebras . . . . . . 30

2.3.1 Geometric type Nil3 × E1 . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Geometric type Sol3 × E1 . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Geometric type Sol31 × E1 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Geometric type Nil4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Adjoint orbits of semisimple Lie groups 39
3.1 Adjoint orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The Lie algebra structure of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 The canonical almost-complex structure . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Speciality condition for the canonical almost-complex structure . . . . . . . . . 54
3.5 Geometric formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Hermitian scalar curvature . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Nijenhuis tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Compact quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Vogan diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Conclusions and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A The classification algorithm 82
A.1 The algorithm and the theory behind it . . . . . . . . . . . . . . . . . . . . . . 82
A.2 The code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 Examples and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1



B Vogan diagrams with special φ 94
B.1 Special classical adjoint orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Special exceptional adjoint orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 121

2



Abstract

In this thesis we study metrics with special curvature properties on some homogeneous almost-
Kähler manifolds. More precisely, given a symplectic manifold (M,ω) equipped with a compat-
ible almost-complex structure J , we consider the homogeneous equation ρ = λω, where ρ is the
Chern-Ricci form of J , that we call speciality condition. In particular, we focus on two classes
of symplectic manifolds: symplectic T 2-bundles over T 2 and adjoint orbits of semisimple Lie
groups.

Symplectic T 2-bundles over T 2 are distributed in five classes. We prove that the ones be-
longing to four of these classes admit a special (Chern-Ricci flat) locally homogeneous compat-
ible almost-complex structure, while the ones in the remaining class do not admit Chern-Ricci
flat locally homogeneous compatible almost-complex structures. It is an open problem whether
they admit non-locally homogeneous special compatible almost-complex structures.

Adjoint orbits of non-compact semisimple Lie groups turn out to be naturally almost-Kähler
manifolds endowed with the Kirillov-Kostant-Souriau symplectic form and a canonically defined
almost-complex structure. We give explicit formulae for the Chern-Ricci form, the Hermitian
scalar curvature and the Nijenhuis tensor in terms of root data and we discuss the speciality
condition, which may be translated in terms of root data as well. Moreover, we examine when
compact quotients of these orbits are Kähler manifolds.
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Introduction

One of the fundamental question that has been driving the research in the area of Riemannian
geometry for years is the one formulated by René Thom in 1958, but probably older, “Are there
any best Riemannian structures on a smooth manifold?” [10, Pg. 1]. It is an extremely vague
question since there is no a precise meaning for the word best in this context. A motivation for
examining this problem is that metrics with privileged structure should give information about
topology or other geometric properties of a manifold. In dimension 2 the problem was solved
in virtue of the Uniformization theorem, proved by Poincaré and Koebe independently in the
first decade of the 900 [51, 70]. The theorem states that a compact Riemann surface admits
a unique Riemannian metric of unit volume with constant Gauss curvature, or, equivalently,
the universal cover of a Riemann surface is conformally equivalent to the unit disk, C or the
Riemann sphere. Thus, a Riemann surface always has a canonical Riemannian metric: the
one with constant Gauss curvature. In higher dimension, the situation is quite different and
there are no general results. From the uniformization theorem, we can grasp that a preferred
metric on a manifold should have special curvature properties, in particular its curvature needs
to be constant. But which curvature? Saying just “curvature” makes sense for surfaces since
all curvature tensors coincide with the Gauss curvature, which is a scalar. However, in higher
dimension, a Riemannian metric induces many curvature tensors, each capturing different fea-
tures of the metric, and it is not clear which one to choose. The constancy of the Riemann
tensor or the sectional curvature imposes many constraints on the metric, producing few man-
ifolds admitting this kind of metrics, the so-called space forms [49, Chapter 5, Section 3].
Three typical examples of space forms are the hyperbolic space Hn, the Euclidean space Rn
and the sphere Sn, with negative, zero and positive sectional curavature respectively. Since
many other curvature tensors may be defined from the Riemann curvature, one may try to
consider these ones. For the scalar curvature, one has that it is always possible to find a metric
with constant scalar curvature on a compact manifold, as a consequence of the solution to the
Yamabe problem [5,80,84]. In addition, in dimension greater than 3, the moduli space of met-
rics with constant scalar curvature is infinite-dimensional. From this, we infer that the scalar
curvature gives a quite weak geometric characterization of the manifold. Taking the traceless
component of the Riemann tensor gives the Weyl tensor, and manifolds in dimension greater
than 3 having vanishing Weyl tensor are said locally conformaly flat. However, the vanishing
of the Weyl tensor is quite hard to check in general. In the very special case of dimension 4,
by Hodge duality, one may loosen the vanishing condition on the Weyl tensor and consider
metrics having vanishing self-dual or antiself-dual part of the Weyl tensor. These metrics are
called antiself-dual and self-dual respectively and they have been extensively studied [4]. In-
teresting intermediate candidates seem to be metrics with constant Ricci tensor, the Einstein
metrics [10]. Actually, Einstein metrics are one of the central subjects in modern Riemannian
geometry. Thus, a suitable condition for canonical metrics seems to be the Einstein condition.

When a manifold carries further structure beyond the Riemannian one, it is quite natu-
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ral to look for best metrics which are also compatible with the existing structure. An im-
portant example of this situation is Kähler geometry, which has been a fruitful area about
advancements on canonical metrics. This is due mostly to the Calabi’s conjecture [14], which
became a theorem after Yau’s proof [85]. The Calabi-Yau theorem implies that a compact
complex manifold of Kähler type admits a Ricci-flat Kähler metric if and only if it has vanish-
ing first Chern class and that there is a unique Ricci-flat metric in each Kähler class. Hence
Ricci-flat Kähler manifolds, the Calabi-Yau manifolds, are good examples of manifolds admit-
ting preferred metrics which preserve the underlying geometric structure. Actually, canonical
metrics in the Kähler case have been deeply studied, and there are many cornerstones theo-
rems which say whether a manifold admits a Kähler-Einstein metric, i.e., with constant Ricci
form, [6,20–22,77–79,86] together with more recent works concerning Kähler metrics with con-
stant scalar curvature [17–19]. In particular, the existence of Kähler-Einstein metrics imposes
strong restrictions on the topology of a manifold as it gives a relation between the first two
Chern numbers of the manifold [10, Chapter 2, Section E]. This constraint extends to the
broader class of general type manifolds and, in this context, it takes the name of Bogomolov-
Miyaoka-Yau inequality [11, 63,85,86].

Leaving the context of Kähler manifolds, a quite natural and interesting question is to ask
what is the right condition that a best metric needs to satisfy on a symplectic manifold. In
other words, what is a canonical metric on a symplectic manifold? More precisely, given a
symplectic manifold, we ask if it admits a preferred metric which, at the same time, preserves
the symplectic structure. This area is quite unexplored at the moment and, there are very few
examples of symplectic manifolds admitting metrics with distinguished curvature properties,
thus it seems significant to find new ones. On the contrary, in Kähler geometry, projective
manifolds provide a wide class of examples of manifolds admitting metrics with special curva-
ture properties. A convenient way of choosing a metric on a symplectic manifold is by picking
the metric induced by the symplectic structure and a selected compatible almost-complex
structure on it. Notice that finding a compatible almost-complex structure is not a big deal, as
compatible almost-complex structures exist in abundance on each symplectic manifold. These
triple structures consisting of a symplectic form, a compatible almost-complex structure and
a metric, take the name of almost-Kähler structures and they have been previously considered
in [37, 38, 74]. Manifolds carrying an almost-Kähler structure are called almost-Kähler mani-
folds. Observe that the chosen compatible almost-complex structure needs not to be integrable,
thus this class of structures is quite more general than the ones of Kähler structures. In ad-
dition, very often there cannot exist Kähler structures at all on such symplectic manifolds. A
suitable curvature tensor on a symplectic manifold that ties-up the properties of the symplectic
form and the compatible almost-complex structure is the Chern-Ricci form, which generalizes
the usual Ricci form on a Kähler manifold. Thus, given an almost-Kähler structure on a sym-
plectic manifold, what may we say about its Chern-Ricci form? Is the symplectic topology
of the manifold constrained by the existence of a metric having Chern-Ricci form equal to a
multiple of the symplectic form? At the moment, answers to these questions are still partial
and incomplete, mostly because of the fact that examples of symplectic non-Kähler manifolds
are rare in literature. The first known example of non-Kähler compact symplectic manifold is
the celebrated Kodaira-Thurston manifold [76]. This example has been generalized allowing to
produce examples of simply-connected symplectic non-Kähler manifolds [25,59]. Note that the
condition on the Chern-Ricci form to be a multiple of the symplectic form may be considered
as a natural generalization of the Kähler-Einstein condition to the non-integrable case.

In this thesis, we will focus on symplectic manifolds admitting compatible almost-complex
structures whose Chern-Ricci form si a multiple of the symplectic form. More precisely, given
a symplectic manifold (M,ω) equipped with a compatible almost-complex structure J and
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induced Riemannian metric g, define the Chern-Ricci form of J as ρ = tr(JR) ∈ Ω2(M,R),
with R the curvature tensor of the Chern connection associated with J . We then say that
the almost-complex structure is special [3, 27] if it has constant Chern-Ricci form, i.e., its
Chern-Ricci form satisfies ρ = λω, for some λ ∈ R. In analogy with the Kähler case, (M,ω) is
symplectic general type, symplectic Calabi-Yau and symplectic Fano when λ is negative, zero or
positive respectively. In particular, special almost-complex structures have constant Hermitian
scalar curvature, thus they are zeros of the moment map on the space of compatible almost-
complex structures of a compact symplectic manifold acted on by the group of Hamiltonian
diffeomorphisms introduced by Donaldson [29]. In connection with the problem of finding
non-integrable zeros of this moment map, Lejmi showed that the complex structure of any lo-
cally toric Kähler-Einstein surface can be deformed to a non-integrable special almost-complex
structure [56]. More recently, a moment map picture tailored specifically for Kähler-Einstein
metrics has been proposed by Donaldson [30] and extended by García-Prada, Salamon and
Trautwein [34] to non-integrable almost-complex structures. Even within this framework, one
may see the problem of finding special almost-complex structures on a symplectic manifold as
the problem of finding zeros of a moment map. Notice that metrics associated with such special
(non necessarily integrable) almost-complex structures fit in the picture described above about
canonical metrics since they provide preferred metrics for symplectic manifolds. The main goal
of this thesis is to provide new classes of examples of compact symplectic manifolds admit-
ting special compatible almost-complex structures, also pointing out some of their geometric
and topological properties. In particular, all our examples turn out to be locally homogeneous
manifolds, i.e., compact quotients of manifolds carrying a transitive action of a Lie group. This
assumption allows to handle both geometric and algebraic tools to explore the problem. In this
context, a systematic approach to the issue of finding symplectic manifolds admitting special
compatible almost-complex structures has been provided by [2, 27]. The final hope is to shed
some light on the topic of canonical metrics on symplectic manifolds.

The contents are developed as follows. The first chapter is preliminary and contains the
tools and the notations we are going to use throughout the thesis. In particular, we review
in some detail symplectic manifolds (Section 1.1) and almost-complex manifolds (Section 1.2)
and we provide examples of them. Then we focus on the differential geometry of almost-Kähler
structures (Section 1.3). We introduce all the geometric objects that we are going to study
in the subsequent chapters and we discuss the main equation of the thesis: the speciality
condition ρ = λω. Then we specialize all the given definitions to homogeneous symplectic
manifolds (Section 1.4). In the second chapter we study the homogeneous speciality condition
on 4-dimensional symplectic torus bundles. In the first Section 2.1, we introduce symplectic
Lie groups and compact solvmanifolds, and in the second one (Section 2.2) we concentrate
on particular 4-dimensional solvmanifolds, which are torus bundles over T 2. These come in
five classes and for each of them we study the homogeneous speciality condition (Section 2.3).
We discover that manifolds belonging to four of these classes admit Chern-Ricci flat compat-
ible almost-complex structures, i.e., special with λ = 0, while for manifolds belonging to the
remaining one, we prove that in each cohomology class there exists a symplectic form not ad-
mitting Chern-Ricci flat locally homogeneous compatible almost-complex structures (Theorem
2.3.5, Corollary 2.3.6). It would be interesting to understand whether there exist non-locally
homogeneous special compatible almost-complex structures, especially for a comparison with
the Calabi-Yau theorem in Kähler geometry. We plan to come back on this point in the
future. The subject of the last chapter is concerned with the study of a different class of ho-
mogeneous manifolds: adjoint orbits of semisimple Lie groups. The results are all contained in
the work [28]. In the first Section 3.1 we set up the theoretical background on adjoint orbits,
while in the second one (Section 3.2) we describe the Lie algebra structure of the Lie algebra
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underlying an adjoint orbit. Section 3.3 and Section 3.4 are dedicated to the definition of a
canonical homogeneous almost-complex structure on adjoint orbits and to the reformulation
of the speciality condition in this precise context. We find a necessary and sufficient condition
for an adjoint orbit to admit special canonical compatible almost-complex structure (Corollary
3.4.8) and other results concerning uniqueness and finiteness of such adjoint orbits (Proposi-
tion 3.4.2, Proposition 3.4.3). In Section 3.5 we provide explicit formulae for the Hermitian
scalar curvature (Lemma 3.5.1) and the Nijenhuis tensor associated with the canonical almost-
complex structure (Lemma 3.5.3, Theorem 3.5.5), while in Section 3.6 we describe the locally
homogeneous almost-Kähler structure induced by the canonical almost-complex structure on
compact quotients of adjoint orbits. In Section 3.7 we translate the speciality condition in a
combinatorial condition on the Vogan diagram of a real semisimple Lie algebra. This allows
to find many infinite families of adjoint orbits of classical simple Lie groups admitting spe-
cial canonical almost-complex structure (Theorem 3.7.5). More generally, it is possible to list
algorithmically all adjoint orbits of simple Lie groups admitting special canonical compatible
almost-complex structure. In particular, we implemented an algorithm that is able to do it
(Appendix A) and we ran it for Vogan diagrams up to rank 8 (Appendix B), hence all adjoint
orbits of exceptional simple Lie groups admitting special canonical almost-complex structure
are classified (Section B.2). The intricate combinatorics of root systems prevented us to grasp a
more direct way of checking whether an adjoint orbit admits special canonical almost-complex
structure, but one may control it by following the steps of the algorithm in each case. In the
last part of the section, we discuss integrability of the canonical almost-complex structure on
adjoint orbits of classical simple Lie groups (Theorem 3.7.15) and exceptional ones (Theorem
3.7.16). Finally, we sum up the contents of the chapter and we discuss a couple of problems
that are missing to complete this broad picture (Section 3.8).

8



Unless otherwise specified, the results presented in this thesis are original. In particular, the
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Chapter 1

Geometry of almost-Kähler
manifolds

In this chapter we collect definitions, results and examples concerning symplectic, almost-
complex and homogeneous manifolds in order to set up the background for future chapters.
The first Section 1.1 is dedicated to symplectic manifolds. Examples and properties about the
local structure of symplectic manifolds are given. Section 1.2 deals with almost-complex struc-
tures, important geometric objects which are closely related to symplectic structures. The in-
terplay between symplectic and almost-complex structures leads to the notion of almost-Kähler
manifold, treated in Section 1.3. As we are interested in homogeneous structures, Section 1.4 is
about homogeneous symplectic manifolds and homogeneous almost-Kähler structures on them.

1.1 Symplectic manifolds
Symplectic geometry is concerned with the geometry of a closed differential 2-form on a smooth
manifold. It arose in the classical mechanics of Hamilton and Lagrange, for the phase space
of a closed system is naturally equipped with a symplectic structure. In the recent years, it
has become an independent research area within differential geometry and topology, carrying
many links to other branches of mathematics and theoretical physics. Despite the definition
requires a smooth background, symplectic geometry turns out to be quite different from the
Riemannian geometry we are used to. Indeed, the characterizing properties of a symplectic
manifold are basically topological and free of the differential structure of the manifold. In this
section we recall basic definitions, examples and results concerning symplectic manifolds and
their geometric properties.

Let M be a smooth connected manifold of dimension m without boundary. A symplectic
form on M is a 2-differential form ω ∈ Ω2(M) which is closed, i.e., dω = 0, and non- degenerate,
meaning that ω(X,Y ) = 0, for every vector field X ∈ X(M), implies Y = 0. A manifold M
equipped with a symplectic form is called a symplectic manifold. Some examples of symplectic
manifolds are the following.

Example 1.1.1. The Euclidean space R2n with coordinates (x1, . . . , x2n) is a symplectic man-
ifold with symplectic form

ω0 =

n∑

i=1

dxi ∧ dxi+n. (1.1)
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The symplectic form ω0 is often called standard.

Example 1.1.2. Cotangent bundles make up a class of symplectic manifolds which is funda-
mental in classical mechanics. Indeed, they may be seen as phase spaces with coordinates p
and q corresponding to momentum and position respectively. More precisely, given a smooth
manifold M , its cotangent bundle T ∗M is the vector bundle having as sections the 1-forms
on M and it carries a canonical 1-form θ ∈ Ω1(T ∗M), called the Liouville form. It is defined
in local coordinates by θ =

∑dimM
i=1 pidqi and it has the property that, called π the projection

π : T ∗M →M and chosen x ∈M and α ∈ T ∗
xM , one has

θ|(x,α)= π∗α. (1.2)

A symplectic form on T ∗M is then defined by ω = −dθ and, in local coordinates, it has the
expression

ω =

dimM∑

i=1

dqi ∧ dpi. (1.3)

Further details on this topic may be found in [60, Chapter 3].

Example 1.1.3. Every orientable surface is a symplectic manifold with symplectic form given
by the volume form.

Example 1.1.4. The 2-sphere S2 is the unique symplectic sphere. In other words, the 2n-
sphere S2n admits a symplectic structure if and only if n = 1. To see this, let ω ∈ Ω2(S2n) be
a symplectic form on S2n and consider the integral

∫

S2n

ωn 6= 0, (1.4)

by non-degeneracy of ω. Since ω is closed, it represents a 2-cohomology class in H2
dR(S

2n,R).
In particular,

0 6=
∫

S2n

ωn =

∫

S2n

[ω]n, (1.5)

showing that 0 6= [ω] ∈ H2
dR(S

2n,R). However, H2
dR(S

2n,R) is non-trivial only for n = 1 and
this shows that ω may be a symplectic form only for n = 1, as an exact symplectic form on
a compact manifold would produce a vanishing volume. In local coordinates (x, y) on S2, the
symplectic form is defined by

ω = 2
dx ∧ dy

(1 + x2 + y2)2
. (1.6)

Example 1.1.5. The complex projective space CPn is a symplectic manifold with the Fubini-
Study form, defined in local affine coordinates z = (z1, . . . , zn) by

ωFS = i∂∂̄ log(1 + |z|2). (1.7)

Observe that, for n = 1, CP1 is diffeomorphic to S2 and the Fubini-Study form coincides
exactly with (1.6).

Some properties of symplectic manifolds may be immediately deduced from the definition.
Non-degeneracy of the symplectic form implies that a symplectic manifold is even-dimensional
and orientable, for the top exterior power of the symplectic form is a volume form. Thus,
in the following we will always assume that the dimension of M is even m = 2n. Moreover,
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non-degeneracy of the symplectic form provides a canonical identification between tangent and
cotangent bundle via the map

TM → T ∗M, X 7→ ι(X)ω = ω(X, ·). (1.8)

On the other hand, closedness of ω reads that ω represents a 2-cohomology class a = [ω] ∈
H2(M,R). In particular, one may see from Example 1.1.4 that a compact symplectic man-
ifold cannot have exact symplectic form. Indeed, the cohomology class an ∈ H2n(M,R) is
represented by the volume form ωn and, if ω is exact, its integral over M vanishes, leading
to a contradiction. This fact shows that a smooth compact manifold needs to have the right
topology in order to be symplectic. For example, the second Betti number of M needs to
satisfy b2 ≥ 1.

Two symplectic manifolds may be considered “the same” from the symplectic point of
view if there exists a diffeomorphism between them that preserves the symplectic structure.
More precisely, a symplectomorphism of a symplectic manifold (M,ω) is a diffeomorphism
ψ ∈ Diff(M) such that ψ∗ω = ω. The symplectomorphisms of (M,ω) form a group

Symp(M,ω) = {ψ ∈ Diff(M) | ψ∗ω = ω}, (1.9)

which is generally infinite-dimensional. As we have seen above, the map (1.8) establishes a
one-to-one correspondence between vector fields and 1-forms, and a vector field X ∈ X(M)
is said to be symplectic if ι(X)ω is closed. Observe that this is equivalent to require that
LXω = 0, where L denotes the Lie derivative, as a consequence of the Cartan formula

LXω = ι(X)dω + d(ι(X)ω). (1.10)

Among the symplectic vector fields we find Hamiltonian vector fields, for which the associated
1-form is not just closed, but exact. More precisely, a vector field XH ∈ X(M) is said to be
Hamiltonian if there exists a smooth function H, called the Hamiltonian function, such that

ι(XH)ω = dH. (1.11)

The Hamiltonian vector fields generate the subgroup of Hamiltonian symplectomorphisms

Ham(M,ω) ⊂ Symp(M,ω). (1.12)

A feature of symplectic manifolds is that they locally look all the same, or, in other words,
they have no local invariants. Globally the situation is slightly different as there exist global
invariants, such as the cohomology class [ω] ∈ H2

dR(M,R) or the first Chern class c1 of (M,ω)
in H2

dR(M,R). The key point for the lack of local invariants is Moser’s argument, which says
that for every family of symplectic forms ωt ∈ Ω2(M) satisfying

d

dt
ωt = dσt, (1.13)

there exists a family of diffeomorphisms ψt ∈ Diff(M) such that ψ∗
t ωt = ω0. Among the

consequences of Moser’s argument, we find Darboux’s Theorem [60, Theorem 3.2.2] which
states that symplectic manifolds are modeled on (R2n, ω0), hence they have no local invariants.

Theorem 1.1.6 (Darboux). Every symplectic form ω on M is locally diffeomorphic to the
standard symplectic form ω0 on R2n.
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As a corollary, we have that every symplectic manifold (M,ω) may be covered by charts
(Uα, α : Uα → α(Uα))α such that α∗ω0 = ω. Charts with this property are called Darboux
charts and their transition maps consists of symplectic matrices,

d(β ◦ α−1)(x) ∈ Sp(n,R), x ∈ α(Uα ∩ Uβ), (1.14)

where
Sp(n,R) = {A ∈ GL(2n,R) | AtJ0A = J0} (1.15)

and J0 =

(
0n −1n
1n 0n

)
. Darboux’s theorem says also that the tangent bundle of a symplectic

manifold carries a reduction of the structure group to Sp(n,R).
The next section is concerned with almost-complex structures, which are geometric objects

highly related with symplectic structures.

1.2 Almost-complex manifolds
Almost-complex geometry is the geometry of an endomorphism of the tangent bundle of a
manifold which squares to −id. This endomorphism may be thought as a generalization of the
multiplication by the imaginary unit performed fiber by fiber on the tangent bundle. Generally
the existence of almost-complex structures finds some obstructions which are topological in
nature. Nevertheless, on symplectic manifolds there is plenty of almost-complex structures.
Not only that, many of them also satisfy a compatibility relation with the symplectic form.

An almost-complex structure on a smooth manifold M is an endomorphism of the tangent
bundle J ∈ End(TM) satisfying J2 = −id. A manifold M equipped with an almost-complex
structure is called an almost-complex manifold. As in the symplectic case, almost-complex
manifolds are orientable and have even dimension. In addition, the tangent bundle of an
almost-complex manifold is a complex vector bundle, hence its structure group reduces to
GL(n,C) = {A ∈ GL(2n,R) | AJ0 = J0A}.

Example 1.2.1. The Euclidean space R2n with coordinates (x1, . . . , x2n) and equipped with
the almost-complex structure

J0

(
∂

∂xi

)
=

∂

∂xi+n
, J0

(
∂

∂xi+n

)
= − ∂

∂xi
, i = 1, . . . , n, (1.16)

is an almost-complex manifold. We often call the almost-complex structure J0 standard.

Actually each even-dimensional smooth manifold may be equipped with an almost-complex
structure defined in local charts, for example as in (1.16). When these charts may be patched
together to give a globally defined almost-complex structure, we say that the almost-complex
structure is integrable and the couple (M,J) is a complex manifold. Notice that the notion of
almost-complex structure is weaker than the one of complex structure, for which each complex
manifold is also almost-complex, but the vice versa is false, as the following example shows.

Example 1.2.2. A famous theorem of Borel and Serre [13] states that among the spheres S2n,
the only admitting an almost-complex structure are S2 and S6. Observe that S2 carries the
usual almost-complex strcture of the Riemann sphere, hence it is actually a complex manifold.
On the other hand, S6, which may be thought as the unitary sphere in the imaginary octonions
ImO

S6 = {x ∈ ImO | |x|2 = 1}, (1.17)
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inherits an almost-complex structure from the octonion algebra O, which is non-integrable.
Whether if admits an integrable almost-complex structure is an open problem [1]. For more
details about the proof of the result about S6 see the self-contained paper [52].

Given an almost-complex manifold (M,J), one may associate with J a (2, 1) skew-symmetric
tensor NJ defined by

NJ(X,Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]) , (1.18)

for X,Y ∈ X(M), which takes the name of Nijenhuis tensor of J . A celebrated theorem by
Newlander and Niremberg [66] relates the integrability of an almost-complex structure with
its Nijenhuis tensor.
Theorem 1.2.3 (Newlander-Niremberg). Let (M,J) be an almost-complex manifold. Then J
is integrable if and only if NJ = 0.

Given a symplectic manifold (M,ω) equipped with an almost-complex structure J , we say
that J is ω-compatible (or, simply, compatible when there is no ambiguity) if it satisfies two
conditions: ω is J-invariant, i.e., ω(JX, JY ) = ω(X,Y ) for every X,Y ∈ X(M), and

ω(X, JX) > 0, ∀X ∈ X(M) \ {0}. (1.19)

Condition (1.19) allows to define a Riemannian metric g on M by putting

g(X,Y ) = ω(X, JY ). (1.20)

Notice that the induced metric g is J-orthogonal, meaning that g(JX, JY ) = g(X,Y ) for every
X,Y ∈ X(M).
Example 1.2.4. On R2n, the standard symplectic form ω0 defined in (1.1) and the standard
almost-complex structure J0 (1.16) are compatible. The induced Riemannian metric coincides
with the identity.

Actually, compatible almost-complex structures are very common in symplectic geometry.
Indeed, it holds that the space J (M,ω) of ω-compatible almost-complex structures on M is
always non-empty.
Lemma 1.2.5. J (M,ω) is non-empty and contractible.

In short, non-emptiness of J (M,ω) follows by the existence of a Riemannian metric on M
and non-degeneracy of ω. For contractibility, note that J (M,ω) is the space of sections of
a fiber bundle on M with fiber at each point x ∈ M the space of compatible linear complex
structures on TxM , called the Siegel half-space. Moreover, each fiber turns out to be isomorphic
to Sp(n,R)/U(n), which, in turns may be identified with the space of 2n × 2n symmetric
complex matrices with positive definite imaginary part via the map

{X + iY | X,Y symm, Y > 0} → Sp(n,R)/U(n)

X + iY →
(
XY −1 −(XY −1X + Y )
Y −1 −Y −1X

)
.

(1.21)

This explains the reason for the name “half-space”. However, Sp(n,R)/U(n) is contractible,
as U(n) is a maximal subgroup of Sp(n,R) and the Cartan polar decomposition [48, Theo-
rem 6.31(c)] induces the U(n)-equivariant diffeomorphism

p → Sp(n,R)/U(n),

X 7→ eX
(1.22)
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where p is a U(n)-invariant subspace of u(n) in sp(n,R). This shows that the fiber is con-
tractible, hence J (M,ω) is contractible.

A symplectic manifold (M,ω) together with a compatible almost-complex structure J is
said to be an almost-Kähler manifold. An almost-Kähler manifold with an integrable almost-
complex structure turns out to be a Kähler manifold. For a couple of decads from the discovery
of almost-Kähler manifolds, it was an open problem whether each symplectic manifold was
actually Kähler. However, Thurston provided the first examples of symplectic non-Kähler
manifolds [76], among which we find the well-known Kodaira-Thurston manifold. The class of
almost-Kähler manifolds is the subject of the next section.

1.3 Almost-Kähler manifolds
At the intersection between symplectic, almost-complex and Riemannian geometry we come
across almost-Kähler manifolds, which were firstly introduced in [74]. These manifolds turn out
to be rich of structure and many interesting properties arise from the fact of being symplectic,
Riemannian and almost-complex. In this class we find the well known Kähler manifolds,
which share many properties but carry a more rigid framework. This section is a little survey
about the differential geometry of almost-Kähler manifolds. In the final part, we will focus the
attention on almost-Kähler manifolds admitting special compatible almost-complex structures,
which are the main theme of this thesis.

A symplectic manifold (M,ω) of dimension 2n equipped with a compatible almost-complex
structure J and induced Riemannian metric g is said to be an almost-Kähler manifold. The
presence of a symplectic structure together with a compatible almost-complex structure allows
to further reduce the structure group of TM to U(n) = {A ∈ GL(n,C) | AA∗ = id}, since
Sp(n,R) ∩ GL(n,C) = U(n) (see for example [60, Lemma 2.2.1]). When the almost-complex
structure is integrable, M turns out to be a Kähler manifold. Notice that a wide class of ex-
amples of Kähler manifolds is the one of complex projective manifolds. On the other hand, for
strictly almost Kähler manifolds, i.e., with non-integrable compatible almost-complex struc-
ture, such a rich class of examples is not known. One of the best known examples of symplectic
non-Kähler manifold is the Kodaira-Thurston manifold, a torus-bundle over a 2-dimensional
torus discovered by Thurston in 1976 [76]. We recall its construction below and we will use
this example as a guide as the various concept are introduced.

Example 1.3.1 (Kodaira-Thurston manifold). Let Heis(3,R) be the 3-dimensional Lie group
defined by

Heis(3,R) =







1 x z
0 1 y
0 0 1




∣∣∣∣∣ x, y, z ∈ R



 ⊂ GL(3,R) (1.23)

and consider its central extension

G =








et 0 0 0
0 1 x z
0 0 1 y
0 0 0 1




∣∣∣∣∣ x, y, z, t ∈ R





⊂ GL(4,R). (1.24)

The discrete subgroup Γ = G∩GL(4,Z) of G acts by left multiplication on G. In coordinates,
if γ = (a, b, c, d) ∈ Γ and h = (x, y, z, t) ∈ G, with a, b, c, d ∈ Z and x, y, z, t ∈ R, then

γ · h = (a+ x, b+ y, c+ ay + z, d+ t). (1.25)
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We define the Kodaira-Thurston manifold as the quotient M = Γ \G of G by the left action of
Γ. By identifying the 2-torus T 2 with the quotient T 2 = Z2 \R2, we may give M the structure
of a T 2-bundle over T 2 through the projection

π :M → T 2, [x, y, z, t] 7→ [y, t], (1.26)

where (x, y, z, t) are local coordinates on M . Indeed, π is well defined and the fibers are
diffeomorphic to T 2. Define the local basis of vector fields

(e1, e2, e3, e4) = (∂x, ∂y + x∂z, ∂t, ∂z), (1.27)

and observe that these vector fields are left-invariant, meaning that (dLg)(ei) = ei, 1 ≤ i ≤ 4,
for every g ∈ G, where Lg denotes the left multiplication by g. Moreover, the unique non-
vanishing commutator is [e1, e2] = e4. A dual coframe is then given by

(φ1, φ2, φ3, φ4) = (dx,dy, dt,dz − xdy). (1.28)

An almost-Kähler structure on M may be defined by the symplectic form

ω = φ1 ∧ φ3 + φ2 ∧ φ4, (1.29)

the compatible almost-complex structure

J = e3 ⊗ φ1 − e1 ⊗ φ3 + e4 ⊗ φ2 − e2 ⊗ φ4, (1.30)

and the induced Riemannian metric

g = φ2
1 + φ2

2 + φ2
3 + φ2

4. (1.31)

The almost-Kähler structure defined in this way is G-invariant, in a sense that will be made
more precise in Section 1.4.

Almost-Kähler manifolds carry three compatible structures and it would be useful to have
connections which are compatible with all three of them. As shown below, this happens only
if the almost-complex structure is integrable, hence the almost-Kähler manifold is actually a
Kähler manifold, showing that this condition is too strong to be required on generic almost-
Kähler manifold. Thus, some properties should be relaxed. In particular, on an almost-Kähler
manifold one may define a connection which takes into account not only the metric g but also
the almost-complex structure J . This connection is called Chern connection and it was firstly
introduced by Gauduchon in [35].

Definition 1.3.2. The Chern connection ∇ on TM is the unique metric connection having
as torsion tensor T∇ the Nijenhuis tensor NJ . More explicitly, denoted by D the Levi-Civita
connection of g and given two vector fields X,Y ∈ X(M), ∇ is defined by

∇XY = DXY − 1

2
J(DXJ)Y. (1.32)

The reason for defining this new connection is that, in general, the Levi-Civita connection
on an almost-Kähler manifold does not behave very well with respect to J . Indeed, J is parallel
with respect to the Levi-Civita connection only in the Kähler case.

Theorem 1.3.3 ( [50, Chapter IX, Corollary 3.5] ). DJ = 0 if and only if NJ = 0.
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Since T∇ = NJ , the above definition shows that the Levi-Civita connection coincides with
the Chern connection if and only if the manifold is Kähler. Thus, on a Kähler manifold, the
geometry of the Chern connection is the same as the usual Riemannian geometry of the induced
metric. On the other hand, both J and ω are parallel with respect to the Chern connection
(see for example [67, Proposition 1.4.4]).

Lemma 1.3.4. ∇J = 0 and ∇ω = 0.

Proof. Let X,Y, Z ∈ X(M) be three vector fields on M . Then

(∇XJ)Y =∇X(JY )− J∇XY

=DX(JY )− 1

2
J(DXJ)JY − JDXY − 1

2
(DXJ)Y

=DX(JY )− 1

2
(DXJ)Y − JDXY − 1

2
(DXJ)Y

=DX(JY )− JDXY − (DXJ)Y

=0

(1.33)

where in the in the first and last equalities we used the formula for the covariant derivative of a
(1, 1)-tensor (DXJ)Y = DX(JY )−JDXY , and in the second equality the fact that J2 = −id,
hence J anticommutes with DXJ .

For the symplectic form, the connection ∇ acts on ω as follows

(∇Zω)(X,Y ) = Z(ω(X,Y ))− ω(∇ZX,Y )− ω(X,∇ZY ). (1.34)

By the definition of ω in terms of g, ω(X,Y ) = g(JX, Y ), and the fact that ∇J = 0, one gets

(∇Zω)(X,Y ) =Z(ω(X,Y ))− ω(∇ZX,Y )− ω(X,∇ZY )

=Z(g(JX, Y ))− g(J∇ZX,Y )− g(JX,∇ZY )

=Z(g(JX, Y ))− g(∇Z(JX), Y )− g(JX,∇ZY ),

(1.35)

which vanishes as ∇ is a metric connection.

The curvature of the Chern connection is defined as usual by

R∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] (1.36)

for every X,Y ∈ X(M). Observe that, by Lemma (1.3.4),

JR∇ = R∇J. (1.37)

Example 1.3.5 (continued). By expanding Example 1.3.1, with some computations one may
get the Nijenhuis tensor of J

NJ =
1

4
(e2 ⊗ (φ23 − φ14) + e4 ⊗ (φ34 − φ12)) , (1.38)

where φij is a short notation for φi ∧φj . The Chern connection is given by ∇ = d+A, where
the connection 1-form A ∈ Γ(o(4)⊗ T ∗M) has the form

A =
1

4




0 φ4 0 φ2

−φ4 0 φ2 −2φ1

0 −φ2 0 φ4

−φ2 2φ1 −φ4 0


 , (1.39)
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while the Chern curvature R∇ is

R∇ =
1

8




0 −3φ12 −φ24 φ14

3φ12 0 φ14 φ24

φ24 −φ14 0 −3φ12

−φ14 −φ24 3φ12 0


 . (1.40)

The presence of multiple structures on an almost-Kähler manifold allows to define tensors
which tie-up the properties of J and ω. One of them is the Chern-Ricci form ρ ∈ Ω2(M),
defined by

ρ = trR(JR
∇). (1.41)

More explicitly, given two vector fields X,Y ∈ X(M) and an orthonormal basis e1, . . . , en, we
may write

ρ(X,Y ) =

2n∑

i=1

g(R∇(X,Y )Jei, ei), (1.42)

by (1.37). If J is integrable, ρ(X,Y ) coincides with 2Ric(JX, Y ), the usual Ricci form on a
Kähler manifold. Observe that ∇ is a complex linear connection on TM , hence by Chern-Weil
theory, the Chern classes of TM may be expressed in terms of the curvature R∇. In particular,
the first Chern class c1 ∈ H2

dR(M,R) is defined as

c1 =

[
1

2π
trC(iR

∇)

]
. (1.43)

Since 2trC(iR∇) = trR(JR∇),

c1 =

[
1

4π
trR(JR

∇)

]
=

1

4π
[ρ]. (1.44)

Thus the Chern-Ricci form ρ represents 4πc1 ∈ H2
dR(M,R). Another object which comes with

the Chern connection is a function called the Hermitian scalar curvature s ∈ C∞(M,R),
defined by

sωn = nρ ∧ ωn−1. (1.45)
Our main interest in this thesis is the study of almost-complex structures inducing some

specific curvature properties of the Chern connection. We will focus mainly on the following
condition, which has been considered previously by Apostolov and Drăghici [3].

Definition 1.3.6. A compatible almost-complex structure J on (M,ω) is said to be special if
there exists a constant λ ∈ R such that

ρ = λω. (1.46)

Condition (1.46) is sometimes called Chern-Einstein condition [2] or Hermite-Einstein con-
dition [57]. The reason for the last terminology is the analogy with Hermite-Einstein metrics
on holomorphic vector bundles. However, we prefer to avoid the terms “Hermite” or “Einstein”
in our definition since metrics on symplectic manifolds satisfying (1.46) are neither Hermite
nor Einstein in general. Indeed, it was proved first by Sekigawa [72] and then by Drăghici [31]
that if a special compatible almost-complex structure J on a closed symplectic manifold has
λ ≥ 0, then the metric being Einstein implies that J is integrable. The general case is still open
and it is called the Goldberg conjecture. Since we are principally interested in special almost-
complex structures on strictly almost-Kähler manifolds, our manifolds will be neither Kähler
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nor Einstein in general. In addition, when J is integrable, M is Kähler-Einstein, thus condition
(1.46) may be considered as the natural generalization of the Kähler-Einstein condition to the
non-integrable case.

The existence of a special almost-complex structure on a symplectic manifold (M,ω) has
some immediate topological consequences. First, if J is such that ρ = λω, then the first Chern
class c1 of M and [ω] must satisfy

4πc1 = λ[ω], (1.47)

as elements of H2
dR(M,R). According to the sign of λ, (M,ω) is special symplectic general

type if λ < 0, symplectic Calabi-Yau if λ = 0 and symplectic Fano if λ > 0. Moreover, if J is
special with constant λ, it follows from the definition of Hermitian scalar curvature (1.45) that
s = nλ.

Example 1.3.7 (continued). By computing explicitly the trace of the endomorphism JR∇ for
the G-invariant almost-Kähler structure on the Kodaira-Thurston manifold defined in Example
1.3.5, one gets that ρ = 0 and so also the Hermitian scalar curvature vanishes. Thus, the
almost-complex structure J on the Kodaira-Thurston manifold is special, with constant λ = 0.
In particular, the Kodaira-Thurston manifold is special symplectic Calabi-Yau. When the
constant λ is equal to 0, we will often say that J is Chern-Ricci flat. Actually, all G-invariant
almost-Kähler structures are Chern-Ricci flat on the Kodaira-Thurston manifold, being it a 2-
step nilmanifold [82]. More generally, we will explore Chern-Ricci flatness condition on certain
solvmanifolds in Chapter 2.

Examples of Kähler-Einstein manifolds are numerous in the Kähler context. On the other
hand, strictly almost-Kähler manifolds with special compatible almost-complex structure are
quite rare in literature, thus having new examples turns out to be notable. The main goal of
this thesis is to study new examples of symplectic manifolds admitting non-integrable special
compatible almost-complex structures. In particular, all our examples will be compact quo-
tients of almost-Kähler homogeneous manifolds, that is, manifolds carrying a transitive Lie
group action and an invariant almost-Kähler structure. They will be the subject of the next
section.

1.4 Homogeneous symplectic manifolds
Homogeneous manifolds constitute a class of important spaces both in mathematics and physics
because of the large number of symmetries they have. They carry the action of a group which
preserves some geometric structure, thus they “look the same” from each point. Because of
this property, geometry and algebra are highly intertwined so that many geometric questions
may be answered in an algebraic way and vice versa. In this section we review the geometric
features of homogeneous manifolds, focusing on homogeneous symplectic manifolds equipped
with a compatible almost-complex structure. We follow [10, Chapter 7] and [27, Section 3] for
this discussion.

A smooth manifold M is said to be a G-homogeneous manifold, or, simply, homogeneous
manifold, if there is a closed and connected Lie group G acting transitively on it. For example,
when M is a Riemannian manifold G may be its group of isometries. Fix once for all a point
x ∈ M . Transitivity of the action together with the orbit-stabilizer theorem imply that M is
diffeomorphic to the quotient G/Stab(x). Notice that the stabilizer V = Stab(x) is a closed
subgroup of G, thus compact as G is closed. We will often call it the isotropy of M . Before
specializing our definitions to homogeneous symplectic manifolds, we give few of examples of
homogeneous spaces.
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Example 1.4.1. A Lie group is trivially a homogeneous manifold, as it acts transitively on
itself by left multiplication and the stabilizer of each point is trivial.

Example 1.4.2. One of the typical examples of homogeneous space if the n-sphere Sn. The
group SO(n+1) acts transitively and by isometries on the n-sphere Sn with stabilizer of a point
SO(n). Hence Sn may be viewed as the homogeneous manifold SO(n+ 1)/SO(n). Similarly,
Rn may be identified with the quotient of E(n), the group of isometries of the Euclidean space,
by O(n), and the hyperbolic space Hn with SO(n, 1)/SO(n).

Example 1.4.3 ( [26] [33, Section 2.3.3] [27, Section 4.2.1]). By extending the previous ex-
ample, the group SO(2n, 1) acts transitively on the twistor space of H2n, that is, the space of
all orthogonal ortientation-preserving complex structures on TxH2n for x ∈ H2n, with isotropy
U(n). Thus, the twistor space of the hyperbolic space turns out to be diffeomorphic to the
homogeneous space SO(2n, 1)/U(n).

Example 1.4.4 ( [10, Example 7.15] ). The group SU(n+1) acts transitively on the projective
space CPn with stabilizer of a point S(U(1)× U(n)). Therefore

CPn = SU(n+ 1)/S(U(1)× U(n)). (1.48)

Example 1.4.5. The Grassmannian Gr(k, n) is defined as the set of all k-dimensional linear
subspaces of an n-dimensional vector space V . We may give the Grassmannian Gr(k, n) the
structure of homogeneous space via the quotient O(n)/O(k) × O(n − k). Indeed O(n) is the
group of isometries of V endowed with the Euclidean scalar product, while O(k) and O(n− k)
stabilize a k-dimensional vector subspace and its orthogonal complement respectively.

Remark 1.4.6 ( [10, Note 7.12] ). For the above definition of homogeneouos manifold to make
sense, the group G needs to act effectively on G/V , i.e., V contains no non-trivial normal
subgroups of G. However, in general, G does not necessarily act on G/V in an effective
way. Denoted by C the maximal normal subgroup of G contained in V , then G/C acts on
G/V effectively with isotropy V/C. Usually, in the examples it is not given the group acting
effectively, as it is always possible to determine it. In the cases treated in this thesis, the action
of G on G/V will be almost-effective on G/V , meaning that V contains no non-discrete normal
subgroups of G. In this case, the Lie algebras of G and G/C are the same.

Let now (M,ω) be a G-homogeneous symplectic manifold endowed with a compatible
almost-complex structure J and denote by g the induced Riemannian metric. We say that
ω and J are homogeneous, or G-invariant, if G acts on M by symplectic and holomorphic
transformations, i.e., for every element h ∈ G,

h∗ω = ω, Jdh = dhJ. (1.49)

By compatibility, also h∗g = g, hence h acts also as an isometry of M .
Homogeneous structures are quite important in the context of homogeneous manifolds, as

they are completely determined from their value at a subspace of the Lie algebra of the acting
Lie group. We make more precise this statement in the next lines. Notice that the Lie algebra
g = TeG of G may be identified with a subalgebra of the Lie algebra X(M) of vector fields on
M , as each element X ∈ g naturally induces a vector field on M in the following way. Let
X ∈ g and let ϕt be the one-parameter group of diffeomorphisms of M

ϕt :M →M, ϕt(y) = etXy. (1.50)
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The infinitesimal generator of the flow ϕt defines a vector field

XM (y) =
d

dt

∣∣∣∣
t=0

etXy, (1.51)

called the induced vector field. Then the map

g → X(M), X 7→ XM (1.52)

defines an antihomomorphism of Lie algebras, meaning that [X,Y ]g = −[XM , YM ]. From now
on we will identify X ∈ g with the induced vector field XM ∈ X(M).

Let now v ⊂ g be the Lie algebra of V in g. With the identification of g with a subalgebra of
X(M), v is isomorphic to the Lie subalgebra of vector fields which are symplectic, holomorphic,
Killing and vanish at x. Then V acts on g via the adjoint representation, that we recall here
below. Let G be a Lie group with Lie algebra g and observe that G acts on itself by conjugation

Φk = Lk ◦Rk−1 : G→ G, h 7→ khk−1, (1.53)

where Lk and Rk−1 are the left and right multiplication by k ∈ G and k−1 respectively. Define
the homomorphism Adk as the differential of Φk at the identity e ∈ G : Adk = deΦk : g → g.
Then the adjoint representation of G is defined as the representation

Ad : G→ Aut(g), k 7→ Adk. (1.54)

Taking again the derivative of Ad at the identity e ∈ G one may define the adjoint represen-
tation of the Lie algebra g,

deAd = ad : g → Der(g)

X 7→ adX : Y 7→ [X,Y ],
(1.55)

where Der(g) is the set of derivations of g. As V is a subgroup of G, it acts on g by restriction
of the adjoint representation on it, that we denote AdV : V → Aut(g). Moreover, as V
is compact, AdV is completely reducible [40, Theorem 4.28] and there exists a V -invariant
complement m ⊂ g satisfying

g = v⊕m, (1.56)

since v is V -invariant by definition. Fix once for all the complement m. Then, it may be
identified with the tangent space to the orbit M at x in a canonical way. Indeed, consider the
map which evaluates at x the induced vector field of an element X ∈ g,

g → TxM, X 7→ XM (x). (1.57)

Since g decomposes as g = v ⊕ m and the vector fields induced by elements in v vanish at x,
the evaluation (1.57) descends to an isomorphism between m and TxM . As a consequence, by
evaluating the symplectic form ω and the compatible almost-complex structure J at x, one
may define a linear symplectic form σ and a linear complex structure H on m as

σ(X,Y ) = ωx(X,Y ), HX = JxX, (1.58)

with X,Y ∈ m. Notice that closednenss of ω implies that σ satisfies the following relation

σ([X,Y ]m, Z) + σ([Y, Z]m, X) + σ([Z,X]m, Y ) = 0, (1.59)
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for X,Y, Z ∈ m. By compatibility, it is also defined the scalar product 〈X,Y 〉 = gx(X,Y )
on m such that 〈X,Y 〉 = σ(X,HY ). The key point about σ and H is that they are V -
invariant, for x is fixed by K = Stab(x), m is V -invariant and ω and J are homogeneous.
Again by compatibility, the induced scalar product is V -invariant too. Summing up, given an
homogeneous almost-Kähler structure on a homomgeneous manifold (M,ω, J, g), one is allowed
to study it just by looking at a suitable subspace of the Lie algebra of the acting Lie group.
On the other hand, given a connected Lie group G and an even-dimensional compact subgroup
V ⊂ G, a homogeneous almost-Kähler structure on the coset space G/V is fully determined
by a suitable linear structure on the Lie algebra g. This statement is summarized rigorously
in the following theorem.

Theorem 1.4.7 ( [27, Theorem 20] ). Let G be a connected Lie group and let V ⊂ G be
an even dimensional compact subgroup of G which contains no non-discrete normal subgroups
of G. Let M be the coset space G/V and denote by g and v the Lie algebras of G and V
respectively. Fix a V -invariant subspace m ⊂ g such that g = v⊕m. Then, given a V -invariant
linear symplectic form σ on m satisfying

σ([X,Y ]m, Z) + σ([Y, Z]m, X) + σ([Z,X]m, Y ) = 0, (1.60)

for X,Y, Z ∈ m and a V -invariant compatible complex structure H on m, it is defined a
homogeneous almost-Kähler structure on M by letting

ω(u, v) = σ(dLh−1u,dLh−1v), Ju = dLhHdLh−1u, (1.61)

for all u, v ∈ T[h]M .

Recall that the subgroup V as in the above theorem is called the isotropy of G/V .
Up to now, we have learnt that dealing with invariant objects allows to treat problems in

an algebraic way, as all the geometric quantities related to the almost-Kähler structure may
be studied at the Lie algebra level. More precisely, invariance of ω and J implies invariance
of the Nijenhuis tensor NJ and the Chern-curvature R∇. Thus, all tensors involving R∇, J
and ω may be completely written in terms of the Lie algebra g, the symplectic form σ and
the complex structure H. Since we are principally interested in the study of the speciality
condition (1.46) on homogeneous almost-Kähler manifolds, we recall formulae for the objects
we are going to compute in the next chapters: the Chern-Ricci form, the Hermitian scalar
curvature and the the Nijenhuis tensor of J for homogeneous almost-Käher structures. For the
details about the proofs see [27, Section 3].

Proposition 1.4.8. Let X,Y ∈ m. Then

ρx(X,Y ) = tr(adH[X,Y ]g −Had[X,Y ]g). (1.62)

Note that the above formula for the Chern-Ricci form at the Lie algebra level is completely
analogous to the one for the homogeneous Ricci form in case the almost-complex structure
induced by H is integrable [53]. Formula (1.62) may be written in terms of the Lie algebra
cohomology of the acting group G. Following [47, Chapter IV, Section 3], we recall briefly few
definitions and properties concerning the cohomology theory for Lie algebras, as we will use
these tools for computations in the next chapters. Let g be a finite dimensional Lie algebra
over R. Define the vector space of n-cochains Cn(g,R) as

Cn(g,R) = HomR(Λ
ng,R), (1.63)
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where Λng is the n-th exterior power of g, and the coboundary operator δn : Cn(g,R) →
Cn+1(g,R) by

(δnα)(X1, . . . , Xn+1) =

n+1∑

l=1

(−1)l+1Xlα(X1, . . . , X̂l, . . . , Xn+1)+

+
∑

r<s

(−1)r+sα([Xr, Xs], X1, . . . , X̂r, . . . , X̂s, . . . , Xn+1), (1.64)

where X̂j denotes that the j-th entries is omitted. The coboundary operator δn is often
called Chevalley-Eilenberg differential. Then define the spaces of n-cocycles and n-coboundaries
respectively by

Zn(g,R) = ker(δn)

Bn(g,R) =Im(δn−1).
(1.65)

Since δnδn−1 = 0, Bn(g,R) ⊂ Zn(g,R), hence it makes sense to define the quotient

Hn(g,R) = Zn(g,R)/Bn(g,R), (1.66)

called the n-th cohomology group of g with coefficients in R. In small dimension, the cohomol-
ogy groups of g are

H0(g,R) =R
H1(g,R) =(g/[g, g])∗, (1.67)

where equality (1.67) comes from the fact that δ1 : g∗ → C2(g,R) is simply (δ1α)(X,Y ) =
−α([X,Y ]). In the next chapter, we will repeatedly use formula (1.67) for studying the topology
of certain torus bundles.

Coming back to the Chern-Ricci form, let ζ ∈ g∗ be the linear form defined by

ζ(X) = −tr(adHX −HadX). (1.68)

Then, by the discussion above, the Chern-Ricci form ρx at a point x turns out to be the
Chevalley-Eilenberg differential of ζ, that is

ρx = δ1ζ. (1.69)

Expression (1.69) of ρx as differential of a linear form will be useful in the theory developed in
the next chapters.

The Hermitian scalar curvature s, defined by sωn = nρ∧ωn−1, may be treated in a proper
way in the context of homogeneouos spaces, since it has an explicit expression by mean of
symplectic basis. Thus, let e1, . . . , en, en+1, . . . , e2n be a symplectic basis for σ, i.e., a basis of
TxM such that σ(ei, ej) = σ(ei+n, ej+n) = 0 and σ(ei, ej+n) = δij , for 1 ≤ i, j ≤ n. At a point
x ∈M , s has the following expression in terms of σ and ρ

sσn = nρx ∧ σn−1. (1.70)

In order to find s explicitly, we plug the symplectic basis into expression (1.70) getting

sσn(ei1 , ei1+n, ei2 , ei2+n, . . . , ein , ein+n) = nρ(ei1 , ei1+n)σ
n−1(ei2 , ei2+n, . . . , ein , ein+n),

(1.71)
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which, by definition of symplectic basis, simplifies as

s = nρ(ei1 , ei1+n). (1.72)

Summing over all indices reads the formula

s =

n∑

i=1

ρ(ei, ei+n). (1.73)

This explicit expression of s will be useful in the computations in Chapter 3.
The remaining geometric object that will come into our computations is the Nijenhuis tensor

of J . The following proposition gives the formula of the Nijenhuis tensor for homogeneous
almost-Kähler structures.

Proposition 1.4.9. Let X,Y ∈ m. Then NJ(X,Y )x = NH(X,Y ), where

NH(X,Y ) =
1

4
([HX,HY ]−H[HX,Y ]−H[X,HY ]− [X,Y ]) (1.74)

defines the Nijenhuis tensor of the complex structure H.

To conclude this section, we stress that the aim of this thesis is to study the equation
ρ = λω on compact symplectic manifolds endowed with a compatible almost-complex structure.
However, in our context, homogeneous manifolds G/V are not compact in general. A way of
making them compact, is to take the quotient of G/V by the action of a discrete co-compact
subgroup Γ ⊂ G (or lattice), i.e., a discrete subgroup of G without torsion such that the quotient
Γ\G/V is compact. Notice that not all Lie groups admit such kinds of subgroups. Indeed, a
necessary condition for G to admit lattices is to be unimodular [61, Lemma 6.2], meaning that
the Haar measure on G is both left-invariant and right-invariant. Equivalently, G is unimodular
if its Lie algebra g satisfies tr(adX) = 0 ∀X ∈ g. Among the unimodular Lie groups we find
nilpotent and semisimple ones, which exhaust almost completely the classes of Lie groups we
are going to examine.

Given a homogeneous space G/V , with G unimodular, equipped with a homogeneous
almost-Kähler structure (ω, J, g), and a lattice Γ ⊂ G, the homogeneous almost-Kähler struc-
ture descends to an almost-Kähler structure (ωΓ, JΓ, gΓ) on the quotient, which is called locally
homogeneous. Also the quotient Γ\G/V takes the name of locally homogeneous manifold. Ob-
serve that (ωΓ, JΓ, gΓ) is not homogeneous, as the action of Γ does not commute with the action
of G in general. Since, by G-invariance of the almost-Kähler structure, also the Chern-Ricci
form ρ is homogeneous on G/V , in order to study the speciality condition on locally homoge-
neous compact symplectic manifold, it suffices to study the homogeneous equation ρ = λω on
G/V . Indeed, if it is satisfied on the covering G/V , then the induced equation ρΓ = λωΓ is
satisfied on the quotient Γ\G/V . This will be the strategy to follow in the subsequent chapters.

Summing up, in the following chapters we will study the speciality condition on locally
homogeneous compact symplectic manifolds of the form Γ\G/V by studying the homogeneous
equation ρ = λω on the covering G/V .

24



Chapter 2

Symplectic T 2-bundles over T 2

The first class of compact symplectic manifolds that we consider is made of certain 4-dimensional
fiber bundles having both base space and fiber diffeomorphic to the 2-torus T 2. They may
be obtained by the action of a lattice on a 4-dimensional solvable Lie group, thus they are
4-dimensional solvmanifolds. In Section 2.1, we give basic definitions and results concerning
symplectic Lie groups and solvmanifolds. In Section 2.2, we describe the geometries of symplec-
tic T 2-bundles over T 2, which turn out to be distributed in five classes. Finally, in Section 2.3,
we study the existence of special locally homogeneous compatible almost-complex structures
for each of the aforementioned classes.

2.1 Compact solvmanifolds
In this section we introduce the manifolds on which we are going to study the speciality
condition. They are compact symplectic manifolds that may be obtained as quotients of
solvable Lie groups by discrete subgroups, and they are called solvmanifolds. We will see later
on that they also admit a further bundle structure which is intertwined with the symplectic
structure. For the first algebraic part we refer to [48, Chapter I].

We start with some algebraic background. A Lie algebra g is said to be solvable if its derived
series

g ⊇ g1 ⊇ g2 ⊇ · · · , (2.1)

where gk = [gk−1, gk−1] and g0 = g, terminates, i.e., there exists an integer k such that
gk = {0}. The Lie algebra g is said to be nilpotent if its lower central series

g ⊇ g(1) ⊇ g(2) ⊇ · · · , (2.2)

where g(k) = [g, g(k−1)] and g0 = g, terminates, i.e., there exists an integer k such that
g(k) = {0}. A nilpotent Lie algebra having lower central series terminating at step k is called
a k-step nilpotent Lie algebra. Observe that a nilpotent Lie algebra is solvable, but the vice
versa is false in general. Moreover, note that an abelian Lie algebra is nilpotent, as its lower
central series terminates at the first step. A Lie group G is said to be solvable (respectively
nilpotent or k-step nilpotent, if k is specified) if its Lie algebra g is solvable (resp. nilpotent
or k-step nilpotent).

Example 2.1.1. The Lie group G whose quotient gives the Kodaira-Thurston manifold (see
Example 1.3.1) is a 4-dimensional 2-step nilpotent Lie group. Indeed, its Lie algebra rh3 turns
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out to be the central extension R⊕ h3, where

h3 =







0 x z
0 0 y
0 0 0




∣∣∣∣∣ x, y, z ∈ R



 . (2.3)

The generators of rh3 may be chosen as

e1 = E23 , e2 = E34 , e3 = E11 , e4 = E24 , (2.4)

where Eij denotes the matrix having 1 in the entry (i, j) and 0 elsewhere. One may check that
the unique non-trivial commutation relation is

[e1, e2] = e4, (2.5)

showing that the Lie algebra rh3 is nilpotent, as its lower central series terminates at step 2.

After this algebraic round up, we may introduce our principal objects of study: compact
quotients of symplectic Lie groups. The goal is to study the speciality condition for compatible
almost-complex structures on these manifolds. We start by setting the background. A sym-
plectic Lie group G is a connected Lie group equipped with a G-invariant symplectic form ω.
In particular, it is a homogeneous space with trivial isotropy. As we discussed in Section 1.4,
the symplectic form ω is then completely determined by the linear symplectic form σ on the
Lie algebra g of G that satisfies

σ([X,Y ]g, Z) + σ([Y, Z]g, X) + σ([Z,X]g, Y ) = 0. (2.6)

Symplectic unimodular Lie groups have been extensively studied by Chu in [23]. He proved
that unimodular symplectic Lie groups are solvable, and moreover that in dimension 4 the
same result holds even without unimodularity assumption on G.
Remark 2.1.2. Since Lie groups are parallelizable, a symplectic Lie group has trivial first Chern
class.

In order to get compact manifolds, we need a discrete lattice Γ ⊂ G making the quotient
Γ\G compact, as we explained in Section 1.4. Hence the group G needs to be unimodular.
Recall that a Lie group G is unimodular if its Lie algebra g satisfies

tr(adX) = 0 forall X ∈ g. (2.7)

In particular, as we observed in Section 1.4, nilpotent Lie groups are unimodular. Indeed, a
nilpotent Lie group has a nilpotent Lie algebra that, by Engel’s Theorem [48, Theorem 1.35],
embeds in the Lie algebra of strictly upper-triangular matrices, which have vanishing trace.
By Chu’s results [23, Theorem 9, Corollary to Theorem 11], we may restrict our attention to
compact quotients of solvable Lie groups. Quotients Γ\G of connected and simply-connected
solvable Lie groups by lattices are called solvmanifolds, or nilmanifolds if the Lie group is
nilpotent.
Remark 2.1.3. The original definition of solvmanifold is slightly different from the one given
above. Indeed, a solvmanifold is usually defined as the quotient of a connected solvable Lie
group by a closed subgroup [7, 64]. However, since we will consider only solvmanifolds of the
form Γ\G, we decided to include the more restrictive definition in this presentation. Notice
that the original definition is not equivalent to the one involving just discrete co-cocompact
subgroups, as not all solvmanifolds may be written as the quotient of a solvable Lie group by
a lattice. A counterexample is given by the Klein bottle [7, Chapter 3]. On the other hand,
the two definitions are equivalent for nilmanifolds [58].
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Nilmanifolds were introduced by Mal’cev in the seminal paper [58], while solvmanifolds
appeared few years later in Mostow’s work [64]. Compact solvmanifolds and nilmanifolds are
very rigid from the topological point of view, since they are completely determined, up to
diffeomorphism, by their fundamental group [64], which is isomorphic to Γ. Moreover, they
are aspherical spaces, meaning that their homotopy groups πn vanish for n ≥ 2. This may
be seen from the long exact sequence in homotopy induced by the couple (G,Γ), by using
connectedness and simply-connectedness of G and discreteness of Γ. For more details, a good
survey concerning the structure of solvmanifolds and nilmanifolds is Auslander’s work [7].

We conclude this section with a couple of examples.

Example 2.1.4. The n-dimensional torus Tn is a compact nilmanifold. Indeed, Tn may be
defined as the quotient Zn\Rn and Rn is an abelian, hence nilpotent, Lie group.

Example 2.1.5. The Kodaira-Thurston manifold (Example 1.3.1) is defined as the quotient
of a nilpotent Lie group G by the action of a discrete co-compact subgroup Γ, thus it is a
nilmanifold. Actually, as the commutation relation (2.5) shows, it is a 2-step nilmanifold, as
G is a 2-step nilpotent Lie group.

2.2 T 2-bundles over T 2

Compact solvmanifolds and nilmanifolds are examples of geometries in the sense of Thurston.
Such a geometry is a pair (X,G) where X is a complete and simply connected Riemannian
manifold and G is a group of isometries acting transitively on X that contains a discrete
subgroup Γ such that Γ\X has finite volume. A manifold Γ\X is then called a geometric
manifold modelled on the geometry X. In our cases, X = G is a connected and simply-
connected solvable Lie group, Γ is a discrete co-compact subgroup of G and so Γ\G is a compact
geometric manifold modelled on G. In particular, this chapter is dedicated to study these
geometries in dimension 4, which is the smallest non-trivial dimension to consider. Geometries
in dimension 4 have been classified in nineteen families by Filipkiewicz [32] and, among these,
the ones that model symplectic manifolds are the ones listed in [36] and that we report below.

(a) X = E4, the Euclidean space, with G = R4 ⋉ SO(4), the rigid motions of R4.

(b) X = Nil3 × E1, G = X, where Nil3 × E1 is the 2-step nilpotent Lie group defined in
Example 1.3.1

Nil3 × E1 =








et 0 0 0
0 1 x z
0 0 1 y
0 0 0 1




∣∣∣∣∣ x, y, z, t ∈ R





⊂ GL(4,R). (2.8)

Notice that the Kodaira-Thurston manifold is a geometric manifold modelled on Nil3 ×
E1.

(c) X = Sol3 × E1, G = X, where Sol3 × E1 is the solvable Lie group

Sol3 × E1 =








ez 0 0 0
0 ex 0 y
0 0 e−x t
0 0 0 1




∣∣∣∣∣ x, y, z, t ∈ R




. (2.9)
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Given x0, x ∈ Sol3 × E1, x0 = (x0, y0, z0, t0), x = (x, y, z, t), the left multiplication in
coordinates is given by

x0 · x = (x0 + x, y0 + yex0 , z0 + z, t0 + te−x0). (2.10)

(d) X = Sol31 × E1, G = X, where Sol31 × E1 is the solvable Lie group

Sol31 × E1 =








ez 0 0 0
0 cos(x) − sin(x) y
0 sin(x) cos(x) t
0 0 0 1




∣∣∣∣∣ x, y, z, t ∈ R




. (2.11)

Actually, this geometry does not appear in Geiges’ list, but it needs to be considered in the
aim of finding homogeneous Chern-Ricci flat almost-complex structures on symplectic Lie
groups. However, geometries modelled on this group are all diffeomorphic to the 4-torus
T 4, as we will see in Section 2.3.3.

(e) X = Nil4, G = X, where Nil4 is the 3-step nilpotent Lie group

Nil4 =








1 t t2

2 y
0 1 t z
0 0 1 x
0 0 0 1




∣∣∣∣∣ x, y, z, t ∈ R




. (2.12)

Given x0, x ∈ Nil4, x0 = (x0, y0, z0, t0), x = (x, y, z, t), the coordinates for the left
multiplication are

x0 · x =

(
x0 + x, y0 + y + t0z +

1

2
t20x, z0 + z + t0x, t0 + t

)
(2.13)

Observe that the Lie algebras of the Lie groups itemized above correspond to the 4-
dimensional symplectic unimodular Lie algebras classified by Ovando in [69]. We list them
in Table 2.1, following the notation of the paper.

Lie algebra Geometry Relations Type

R4 (a) trivial abelian

rh3 (b) [e1, e2] = e4 2-step nilpotent

rr3,−1 (c) [e1, e2] = e2, [e1, e4] = −e4 solvable

rr′3,0 (d) [e1, e2] = −e4, [e1, e4] = e2 solvable

n4 (e) [e4, e1] = e3, [e4, e3] = e2 3-step nilpotent

Table 2.1: Unimodular symplectic Lie algebras of dimension 4. In column 2 we specify to
which of the geometries listed above the Lie algebra corresponds to, while in column 3 we find
the non-trivial commutation relations of the Lie algebra. The last column indicates whether
the Lie algebra is abelian, solvable or nilpotent and in the last case we also write the step at
which the lower central series vanishes.
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R4 is the 4-dimensional abelian Lie algebra and we will not consider this case in our analysis,
as compact quotients are all diffeomorphic to the 4-torus T 4. The Lie algebra rh3 has been
discussed in Example 2.1.1 and is the Lie algebra of the Lie group giving the Kodaira-Thurston
manifold. rr′3,0 is the central extension of the Lie algebra of the rigid motions of R2, while n4
is often reffered in literature as filiform Lie algebra [46, Section 2].

Geometric manifolds modelled on the geometries (a), (b), (c), (d), (e) admit the structure
of orientable T 2-bundle over T 2 and, except for (d), they have been classified in [81] through
the classification of T 2-bundles over T 2 [71]. For the sake of completeness, we recall briefly
the technical construction of T 2-bundles over T 2 [71]. Let A,B ∈ GL(2,Z) be two commuting
matrices and let m,n be two integers. A T 2-bundle over T 2 denoted by π : {A,B, (m,n)} → S

is constructed as follows. Let
[
x
y

]
be the point of the torus T 2 = Z2\R2 corresponding to

(
x
y

)
∈ R2. Let F = T 2, S = T 2 and define {A,B, (0, 0)} to be F × R2/ ∼, where

([
s
t

]
,

(
x+ 1
y

))
∼
([
A

(
s
t

)]
,

(
x
y

))

([
s
t

]
,

(
x

y + 1

))
∼
([
B

(
s
t

)]
,

(
x
y

))
.

(2.14)

Denote the point of {A,B, (0, 0)} corresponding to
([
s
t

]
,

(
x
y

))
by

[
s, x
t, y

]
. Then

π : {A,B, (0, 0)} → S (2.15)

is a T 2-bundle over T 2, with projection π defined by π
[
s, x
t, y

]
=

[
x
y

]
. Now let D be a small

disk in S of radius ε centered at
[
1/2
1/2

]
and define {A,B, (m,n)} by

{A,B, (m,n)} = ({A,B, (0, 0)} \ π−1(Int(D)) ∪ (F ×D), (2.16)

where F × ∂D is glued to π−1(∂D) via the homeomorphism

π−1(∂D) →F × ∂D
([
s
t

]
, ε(θ)

)
7→

([
s+mθ/2π
t+ nθ/2π

]
, [ε(θ)]

)
,

(2.17)

where ε(θ) =
(
1/2 + ε cos(θ)
1/2 + ε sin(θ)

)
. The projection π : {A,B, (m,n)} → S is then defined as

π

[
s, x
t, y

]
=

[
x
y

]
if

[
x
y

]
/∈ D

π

([
s
t

]
,

[
x
y

])
=

[
x
y

]
if

[
x
y

]
∈ D.

(2.18)

Then π : {A,B, (m,n)} → S is a T 2-bundle over T 2. A and B are called the monodromy
matrices of the bundle, while (m,n) is the Euler class.
Remark 2.2.1. As we will see in Section 2.3.3, geometries of type (d) are all diffeomorphic to
the 4-torus T 4, thus T 2-bundles over T 2 modelled on Sol31 × E1 are all equivalent to the ones
modelled on R4. This is why the geometry Sol31 × E1 does not appear in Ue’s classification.
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The reason why we are interested in orientable torus bundles is that they are compact
manifolds admitting a symplectic structure [36, Theorem 1], hence they are suitable spaces for
studying the speciality condition. In addition, these bundles have further geometric structure.
Indeed most of them turn out to be symplectic fibrations, meaning that the symplectic structure
on the total space restricts to a symplectic form on each fiber. More precisely, except for
cases (b) and (e), the fibration as torus bundle is unique and it may always be chosen to be
symplectic. In case (b) there are two distinct ways of writing the torus bundle and one of these
is a symplectic fibration. Finally, if the total space is modelled on the geometry (e), then it
may not be written as symplectic fibration. On the contrary, the torus fibration is always a
Lagrangian fibration, meaning that the symplectic form vanishes on each fiber.

2.3 Chern-Ricci flatness condition on symplectic unimod-
ular Lie algebras

Now that we have introduced our objects and described their structure, we may study the
speciality conditions on them. Let M = Γ\G be an orientable T 2-bundle over T 2, where G
is a connected and simply-connected solvable Lie group and Γ ⊂ G is a discrete co-compact
subgroup. As we observed in Section 1.4, in order to study the speciality condition for locally
homogeneous almost-Kähler structures, it suffices to study the homogeneous equation ρ =
λω on the covering. More precisely, given ω a homogeneous symplectic structure and J a
homogeneous compatible almost-complex structure on G with Chern-Ricci form ρ, it holds that
ρ is homogeneous too. Hence the condition ρ = λω on G descends to a locally homogeneous
equation ρΓ = λωΓ on Γ\G, and if it is satisfied on the cover G, then it is satisfied also on
the quotient. In addition, by G-invariance, the homogeneous equation ρ = λω on G may be
studied as an algebraic equation on the Lie algebra g of G. More precisely, there is an explicit
formula for the Chern-Ricci form for homogeneous almost-Kähler structures (1.62) that we
recall in a while. Following the notation of Section 1.4, call σ and H the symplectic linear form
and the linear complex structure on TxG ∼= g respectively obtained by evaluating at x ∈ G the
symplectic form ω and the almost-complex structure J . The Chern-Ricci form at the point x
may be written as

ρx(X,Y ) = tr(adH[X,Y ] −Had[X,Y ]), (2.19)

for all X,Y ∈ g. If in addition G is assumed to be unimodular, by (2.7), the Chern-Ricci form
simplifies to

ρx(X,Y ) = −tr(Had[X,Y ]). (2.20)

Observe that a solution to equation ρ = λω on G may exist only with λ = 0. Indeed, by
Remark 2.1.2, ρ is an exact 2-form, hence its cohomology class is trivial in H2

dR(G,R). If
ρ = λω is satisfied, then also ω is exact on G. However, by G-invariance, also its projection
on the locally homogeneous compact manifold Γ\G is exact, a contradiction as a symplectic
form on a compact symplectic manifold cannot be exact. We are then reduced to study the
homogeneous equation ρ = 0 on connected and simply-connected solvable Lie groups, or, in
other words, the equation

tr(Had[X,Y ]) = 0 (2.21)

on symplectic unimodular Lie algebras, which are the ones reported in Table 2.1. We often
call Chern-Ricci flat the symplectic manifolds having identically zero Chern-Ricci form.
Remark 2.3.1. Observe that all symplectic linear forms σ on the Lie algebra g of G are linearly
symplectomorphic, as one may always find a σ-standard basis [60, Theorem 2.1.3]. In order
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words, one may always find an isomorphism ψ : g → g such that ψ∗σ = ω0, where ω0 is the
linear standard symplectic form (1.1). However, not all the symplectic forms induced on the
quotient Γ\G are symplectomorphic, as ψ does not commute with action of Γ in general.

In the following sections, for each T 2-bundle over T 2 of geometric type (b), (c), (d), (e), we
first describe the underlying Lie algebra and the de Rham cohomology of the bundle. Then we
discuss whether, in each 2-cohomology class of the compact symplectic manifold Γ\G, there
exists a locally homogeneous almost-Kähler structure for which ρ = 0. In other words, we
discuss whether in each 2-cohomology class of the given Lie group, there is a symplectic form ω
and a ω-compatible almost-complex structure J , such that their corresponding evaluation σ and
H satisfy the equation tr(Had[X,Y ]) = 0. Finally, we make some remarks about integrability
of compatible almost-complex structures.

2.3.1 Geometric type Nil3 × E1

We amply discussed the geometry of Nil3 × E1, mostly through examples. However, for the
sake of clarity, we repeat definitions and results. The Lie algebra underlying the geometry
(Nil3 × E1, Nil3 × E1) is rh3, the 4-dimensional 2-step nilpotent Lie algebra generated by
e1, e2, e3, e4 with non-trivial commutation relation

[e1, e2] = e4. (2.22)

The generators may be represented through the matrices

e1 =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 e2 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




e3 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 e4 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 .

(2.23)

Let Γ ⊂ Nil3 × E1 be a lattice. For the topology of Γ\Nil3 × E1 notice that

H0
dR(Γ\Nil3 × E1) ∼= R, H4

dR(Γ\Nil3 × E1) ∼= R, (2.24)

as Γ\Nil3 × E1 is connected and orientable, thus the 0-th and 4-th Betti numbers are b0 =
b4 = 1. The cohomology group H1

dR(Γ\Nil3 × E1,R) may be understood in terms of the Lie
algebra cohomology of rh3. Indeed, by Nomizu’s results [68], the de Rham cohomology of the
nilmanifold Γ\Nil3 × E1 is isomorphic to the Lie algebra cohomology of rh3. So, by identity
(1.67),

H1(rh3,R) = (rh3/[rh3, rh3])
∗ ∼= (span{e1, e2, e3})∗ ∼= R3, (2.25)

which implies H1
dR(Γ\Nil3 × E1) ∼= R3 and b1 = 3. By Poincarè duality, also b3 = 3, as

Γ\Nil3 × E1 is compact and orientable. Finally, since the quotient Γ\Nil3 × E1 is a T 2-
bundle over T 2, the Euler characteristic χ(Γ\Nil3 × E1) of Γ\Nil3 × E1 turns out to be the
product χ(Γ\Nil3×E1) = χ(T 2)χ(T 2), by the fibration property of the Euler characteristic [62,
Section 9]. However, the Euler characteristic of the torus vanishes, implying χ(Γ\Nil3×E1) =
0. By definition,

0 = χ(Γ\Nil3 × E1) =

4∑

i=0

(−1)ibi = b2 − 4, (2.26)
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hence b2 = 4.
For what concerns Chern-Ricci flatness, notice that a result of Vezzoni [82] says that any

homogeneous compatible almost-complex structure on a symplectic 2-step nilmanifold is Chern-
Ricci flat. As Γ\Nil3 × E1 is a 2-step nilmanifold, every locally homogeneous compatible
almost-complex structure on it is Chern-Ricci flat. Recall that, for Γ = (Nil3 × E1) ∩ Z4, the
manifold Γ\Nil3 × E1 is the Kodaira-Thurston manifold discussed in Example 1.3.1.

Finally, as we proved above, the first Betti number b1 of Γ\Nil3 × E1 is equal to 3, hence
Γ\Nil3×E1 cannot be a Kähler manifold. This shows that there are no integrable compatible
almost-complex structures once we have fixed the symplectic form on Γ\Nil3 × E1. On the
other hand, it is well known [8, Chapter V, Section Fibre bundles] that the Kodaira-Thurston
manifold admits integrable complex structures, but they cannot be compatible with a chosen
symplectic form.

2.3.2 Geometric type Sol3 × E1

The Lie algebra underlying the geometry (Sol3 × E1, Sol3 × E1) is rr3,−1, the 4-dimensional
solvable Lie algebra generated by e1, e2, e3, e4 with commutation relations

[e1, e2] = e2, [e1, e4] = −e4. (2.27)

The generators may be represented as

e1 =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 e2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




e3 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 e4 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 .

(2.28)

and the adjoint representation of an element Z ∈ g, Z =
∑4
i=1 Z

iei, has the form

adZ =




0 0 0 0
−Z2 Z1 0 0
0 0 0 0
Z4 0 0 −Z1


 . (2.29)

The topology of Γ\Sol3 × E1 may be fully understood in terms of the Lie algebra rr3,−1.
Indeed, the Lie algebra rr3,−1 is split-solvable, thus by the result of Hattori [43], the de Rham
cohomology of the solvmanifold Γ\Sol3 × E1 is isomorphic to the Lie algebra cohomology
of rr3,−1. First, a Lie algebra g is said to be split-solvable, or completely solvable, if the
eigenvalues of adZ are real numbers for each Z ∈ g. In our case, the adjoint of an element
Z =

∑4
i=1 Z

iei in rr3,−1 has matrix representation (2.29) which has eigenvalues {0,±Z1} ⊂ R.
As this holds for each Z, rr3,−1 is split-solvable. Actually, we know that H0

dR(Γ\Sol3 ×E1,R)
and H4

dR(Γ\Sol3 × E1,R) are isomorphic to R as Γ\Sol3 × E1 is connected and symplectic,
hence orientable, so b0 = b4 = 1. For the first cohomology group we need the Lie algebra
cohomology of rr3,−1. By the results of Hattori, H1

dR(Γ\Sol3 × E1,R) ∼= H1(rr3,−1,R), so, by
(1.67),

H1(rr3,−1,R) = (rr3,−1/[rr3,−1, rr3,−1])
∗ ∼= (span{e1, e3})∗ ∼= R2, (2.30)
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which implies H1
dR(Γ\Sol3 × E1,R) ∼= R2 and b1 = 2. Since Γ\Sol3 × E1 is compact and

orientable, Poincarè duality reads b1 = b3. Finally, as we argued for Γ\Nil3 × E1, the Euler
characteristic χ(Γ\Sol3×E1) vanishes as Γ\Sol3×E1 is a T 2-bundles over T 2 and the 2-torus
has vanishing Euler characteristic. Then

0 = χ(Γ\Sol3 × E1) =

4∑

i=0

(−1)ibi = b2 − 2, (2.31)

reads b2 = 2.
Now we may discuss Chern-Ricci flatness condition. First we need to parametrize the

homogeneous symplectic forms for varying the 2-cohomology class in H2
dR(Γ\Sol3×E1,R). In

order to do this, observe that a basis of Sol3 ×E1-invariant 1-forms on Sol3 ×E1 is given by

e1 = e−tdx, e2 = dy, e3 = etdz, e4 = dt, (2.32)

where the coordinates are as in (2.9). Then

e1 ∧ e3 = dx ∧ dz, e2 ∧ e4 = dy ∧ dt (2.33)

are Sol3 × E1-invariant closed 2-forms whose cohomology classes generate H2
dR(Γ\Sol3 ×

E1,R) ∼= R2. Thus, a cohomology class a ∈ H2
dR(Γ\Sol3 × E1,R) may be written as

a = α[e1 ∧ e3] + β[e2 ∧ e4], (2.34)

and it contains a symplectic form if and only if a2 6= 0, that is, αβ 6= 0. Hence, the generic
homogeneous symplectic form may be written as

σ = αe1 ∧ e3 + βe2 ∧ e4, (2.35)

with α and β different from 0.
Choose the standard linear complex structure on rr3,−1

H = e3 ⊗ e1 − e1 ⊗ e3 + e4 ⊗ e2 − e2 ⊗ e4, (2.36)

and observe that it is compatible with σ and the induced scalar product on rr3,−1 is

〈 , 〉 = αe1 ⊗ e1 + βe2 ⊗ e2 + αe3 ⊗ e3 + βe4 ⊗ e4. (2.37)

Then, one may compute tr(Had[X,Y ]) and observe that it vanishes identically for each X,Y ∈
rr3,−1, showing that the homogeneous almost-complex structure J induced by H on the Lie
group Sol3×E1 is Chern-Ricci flat. Thus, also the induced structure on the quotient Γ\Sol3×
E1, for a lattice Γ ⊂ Sol3 × E1, is Chern-Ricci flat. As this result holds for each α and β
different from 0, we have found that in each cohomology class of H2

dR(Γ\Sol3 × E1,R) for
which αβ 6= 0 there exists a symplectic form ω admitting a Chern-Ricci flat ω-compatible
almost-complex structure.

As regards integrability, since rr3,−1 is a split-solvable Lie algebra, we say that Γ\Sol3×E1 is
a solvmanifold of completely solvable type. A compact solvmanifold of completely solvable type
has a Kähler structure if and only of it is a complex torus [42]. Thus, by Geiges’ classification
[36], Γ\Sol3 × E1 is not a complex torus and so it cannot be a Kähler manifold.

33



2.3.3 Geometric type Sol31 × E1

The Lie algebra underlying the geometry (Sol31 × E1, Sol31 × E1) is rr′3,0, that is, the 4-
dimensional solvable Lie algebra generated by e1, e2, e3, e4 with commutation relations

[e1, e2] = −e4, [e1, e4] = e2. (2.38)

The generators may be represented as

e1 =




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


 e2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




e3 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 e4 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 .

(2.39)

The adjoint representation of an element Z ∈ g, Z =
∑4
i=1 Z

iei, takes the form

adZ =




0 0 0 0
−Z4 0 0 Z1

0 0 0 0
Z2 −Z1 0 0


 , (2.40)

while the commutator of two elements X,Y ∈ g, X =
∑4
i=1X

iei, Y =
∑4
i=1 Y

iei has coordi-
nates

[X,Y ] = (X1Y 4 −X4Y 1)e2 + (−X1Y 2 +X2Y 1)e4. (2.41)
Let now e1, e2, e3, e4 be the dual basis of e1, e2, e3, e4 and consider the standard symplectic

form σ = e1 ∧ e3 + e2 ∧ e4 defined in [69] and the compatible linear complex structure

H = e3 ⊗ e1 − e1 ⊗ e3 + e4 ⊗ e2 − e2 ⊗ e4 (2.42)

on rr3,−1. With some standard computations involving the formula in Proposition 1.4.9, one
may check that the Nijenhuis tensor of H vanishes identically. So the almost-complex structure
J induced by H on Sol31 ×E1 descends to an integrable almost-complex structure on Γ\Sol31 ×
E1, making it a Kähler manifold. In particular, Γ\Sol31 ×E1 turns out to be diffeomorphic to
the product T 2 × T 2. This follows from Wall’s result [83] (and the correction [54]) which says
that the unique compact homogeneous Kähler solvmanifolds are complex tori. By concluding,
Γ\Sol31 × E1 is diffeomorphic to the Kähler manifold T 4, and its Betti numbers are given by
bi =

(
4
i

)
: b0 = b4 = 1, b1 = b3 = 4 and b2 = 6.

For Chern-Ricci flatness, choose the standard linear complex structure H which is compat-
ible with the standard linear symplectic form σ. Then

tr(HadZ) = 2Z1, (2.43)

but one may check from (2.41) that the commutator of two elements has vanishing first com-
ponent, so

tr(Had[X,Y ]) = 0, ∀X,Y ∈ g. (2.44)
Thus, H is a Chern-Ricci flat linear complex structure inducing a locally homogeneous Chern-
Ricci flat integrable complex structure on Γ\Sol31 × E1, which is diffeomorphic to the 4-torus
T 4.
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2.3.4 Geometric type Nil4

The Lie algebra underlying the geometry (Nil4, Nil4) is n4, the 4-dimensional 3-step nilpotent
Lie algebra generated by e1, e2, e3, e4 with commutation relations

[e4, e1] = e3, [e4, e3] = e2. (2.45)

Therefore, the only non-trivial structure constants are

c341 = 1, c243 = 1. (2.46)

The generators may be represented as

e1 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 e2 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




e3 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 e4 =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 ,

(2.47)

while the commutator of two elements X,Y ∈ g, X =
∑4
i=1X

iei, Y =
∑4
i=1 Y

iei has coordi-
nates

[X,Y ] = (X4Y 3 −X3Y 4)e2 + (X4Y 1 −X1Y 4)e3. (2.48)
As for Nil3×E1, the topology of the nilmanifold Γ\Nil4 may be understood in terms of the

Lie algebra cohomology of n4. Actually, we know thatH0
dR(Γ\Nil4) ∼= R andH4

dR(Γ\Nil4) ∼= R
as Γ\Nil4 is connected and orientable. Thus, b0 = b4 = 1. In order to compute b1, notice that

H1(n4,R) = (n4/[n4, n4])
∗ ∼= (span{e1, e4})∗ ∼= R2, (2.49)

so H1
dR(Γ\Nil4) ∼= R2, by Nomizu’s result [68], and b1 = 2. By Poincarè duality, also b3 = 2,

since Γ\Nil4 is compact and orientable. For b2, as in the previous cases, the Euler characteristic
χ(Γ\Nil4) of Γ\Nil4 vanishes and equation

0 = χ(Γ\Nil4) =
4∑

i=0

(−1)ibi = b2 − 2, (2.50)

reads b2 = 2.
Remark 2.3.2. By Theorem [36, Theorem 1], Nil4 is the unique geometry such that torus
bundles modelled on it do not admit the structure of symplectic fibrations.

Now we discuss Chern-Ricci flatness condition. We anticipate that n4 does not admit σ-
compatible linear complex structures that are Chern-Ricci flat, for σ varying in the cohomology
classes of H2

dR(Γ\Nil4,R). In order to prove this fact, we have to show that for each σ-
compatible linear complex structure H on n4, the quantity tr(Had[X,Y ]) is non zero for each
X,Y ∈ n4. First, as above, we need to parametrize the homogeneous symplectic structures
on Nil4, for varying the cohomology class. To do this, observe that a basis of Nil4-invariant
1-forms on Nil4 is given by

e1 = dx, e2 =
t2

2
dx+ dy − tdz, e3 = −tdx+ dz, e4 = dt, (2.51)
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where the coordinates are as in (2.12). Then

e1 ∧ e3 = dx ∧ dz, e2 ∧ e4 =

(
t2

2
dx+ dy − tdz

)
∧ dt (2.52)

are Nil4-invariant closed 2-forms whose cohomology classes generate H2
dR(Γ\Nil4,R) ∼= R2.

Thus, a cohomology class a ∈ H2
dR(Γ\Nil4,R) may be written as

a = α[e1 ∧ e3] + β[e2 ∧ e4], (2.53)

and it contains a symplectic form if and only if a2 6= 0, that is, αβ 6= 0. Thus, the generic
homogeneous symplectic form may be written as

σ = αe1 ∧ e3 + βe2 ∧ e4, (2.54)

with α and β different from 0. By performing the change of coordinates (we always take the
positive result of the square root)

e1 =
sgn(α)√

|α|
f1, e2 =

sgn(β)√
|β|

f2, e3 =
1√
|α|

f3, e4 =
1√
|β|
f4, (2.55)

σ takes the standard form
σ = f1 ∧ f3 + f2 ∧ f4. (2.56)

Moreover, the basis of n4 and the commutation relations change as

e1 =

√
|α|

sgn(α)
f1, e2 =

√
|β|

sgn(β)
f2, e3 =

√
|α|f3, e4 =

√
|β|f4 (2.57)

and
[f4, f1] =

sgn(α)√
|β|

f3, [f4, f3] =
1

sgn(β)
√
|α|

f2, (2.58)

so that the new structure coefficients are

c341 =
sgn(α)√

|β|
, c243 =

1

sgn(β)
√
|α|

. (2.59)

A suitable parametrization for compatible linear complex structures on a vector space is
given by the one of the Siegel half-space (1.21). More precisely, a σ-compatible linear complex
structure H ∈ J (n4, σ) may be written as

H =

(
XY −1 −(XY −1X + Y )
Y −1 −Y −1X

)
, (2.60)

where X and Y are 2 × 2 symmetric matrices and Y is positive-definite. A fitting way of
expressing X and Y is via the following matrices

X =

(
x1 x2
x2 x3

)

Y =es
((

cosh(r) 0
0 cosh(r)

)
+ sinh(r)

(
cos(t) sin(t)
sin(t) − cos(t)

))
,

(2.61)

36



with x1, x2, x3, s, t ∈ R and r ≥ 0. In order to write Y , we used the fact that a matrix is
positive definite if and only if it may be written as the exponential of another matrix, together
with further computations.

Let ζ ∈ n∗4 be the linear form defined by ζ(X) = −tr(HadX), as in Section 1.4 (up to
change the sign), and observe that

ρ(X,Y ) = ζ([X,Y ]) =
1

sgn(β)
√
|α|

(X4Y 3 −X3Y 4)ζ(f2) +
sgn(α)√

|β|
(X4Y 1 −X1Y 4)ζ(f3),

(2.62)
by the form of the structure coefficients (2.59) in the new basis. In the basis of the fi’s the
linear form ζ takes the values

ζ(fi) =− tr(Hadfi)

=−
4∑

j=1

f j(Hadfi(fj))

=−
4∑

j,k=1

f j(Hckijfk)

=−
4∑

j,k,l=1

ckijf
j(H l

k fl)

=−
4∑

j,k=1

ckijH
j
k .

(2.63)

By (2.62), in order to compute ρ(X,Y ) we need just to compute ζ(f2) and ζ(f3). However,
ζ(f2) = 0 and

ζ(f3) = −c234H4
2 =

1

sgn(β)
√
|α|

H4
2 . (2.64)

Hence
ρ(X,Y ) =

sgn(α)

sgn(β)
√
|αβ|

(X4Y 1 −X1Y 4)H4
2 , (2.65)

which is zero for each X,Y if and only if H4
2 = 0. However, the coefficient H4

2 turns out to
be

H4
2 = (Y −1)

2

2 = e−s(cosh(r) + cos(t) sinh(r)), (2.66)

which never vanishes, as equation

tanh(r) = − 1

cos(t)
(2.67)

has no real solutions. This shows that n4 does not admit Chern-Ricci flat σ-compatible lin-
ear complex stuctures, thus neither Γ\Nil4 admits locally homogeneous Chern-Ricci flat ω-
compatible almost-complex structures. As this result holds for each α, β 6= 0 and in each such
cohomology class of H2

dR(Γ\Nil4,R) there exists a locally homogeneous symplectic form [36,
Theorem 2], we have proved that in each such cohomology class of H2

dR(Γ\Nil4,R) there ex-
ists a locally homogeneous symplectic form which does not admit Chern-Ricci flat compatible
almost-complex structures.
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Remark 2.3.3. An interesting problem is to establish whether the symplectic forms considered
above on Γ\Nil4 admit non locally homogeneous Chern-Ricci flat compatible almost-complex
structures. As there are no locally homogeneous ones, we are pushed to suspect that neither
there are non locally homogeneous Chern-Ricci flat compatible almost-complex structures on
Γ\Nil4. In other words, that there exist symplectic structures not admitting Chern-Ricci flat
compatible almost-complex structures at all. This should be compared with the Kählerian
case, in which the Calabi-Yau theorem [85] guarantees that condition c1 = 0 is equivalent to
have Ricci-flat compatible complex structures. We plan to come back on this point in the
future.
Remark 2.3.4. Since there are no homogeneous special compatible almost-complex structures
on Γ\Nil4, it is quite natural to ask whether there exist some other related objects on this
manifold, namely Chern-Einstein solitons. A Chern-Einstein soliton is a compatible almost-
complex structure J for which there exists a holomorphic vector field X (i.e., a real vector field
satisfying LXJ = 0) such that equation

ρ− λω = LXω (2.68)

is satisfied for a constant λ ∈ R. Notice that in the case under examination the constant
λ has to be 0. The answer to this question is again no if X is a holomorphic vector field
generated by a derivation of n4, which is a natural characteristic to require [55]. In this case,
once a compatible complex structure H is fixed on n4, the differential condition (2.68) may be
translated in the following two algebraic equations on n4:

ρ(X,Y ) = σ(D(X), Y ) + σ(X,D(Y )), (2.69)
[H,D] = 0, (2.70)

where X,Y ∈ n4 and D is a derivation of n4. With similar computations to the ones above,
one may show that any derivation satisfying (2.69) actually does not satisfy condition (2.70),
i.e., they are not compatible with H.

Finally, remember that a nilmanifold with a G-invariant almost-complex structure is a
Kähler manifold if and only if it is a complex torus [9,41]. As Γ\Nil4 is a non-trivial bundle by
Geiges’ classification, compatible almost-complex structures on Γ\Nil4 cannot be integrable.

To conclude, we sum up the main results of this chapter.

Theorem 2.3.5. Let G be a symplectic unimodular Lie group of dimension 4 and let ω be
a symplectic form on it. If G 6= Nil4, then there exist a homogeneous special compatible
almost-complex structure on (G,ω). If G = Nil4 there exist no homogeneous special compatible
almost-complex structures on (G,ω).

Corollary 2.3.6. Let (M,ω) be a symplectic T 2-bundle over T 2. Then (M,ω) admits a special
locally homogeneous compatible almost-complex structure if it admits the structure of symplectic
fibration.
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Chapter 3

Adjoint orbits of semisimple Lie
groups

A wide class of symplectic manifolds admitting a special compatible almost-complex structure is
the one of adjoint orbits of semisimple Lie groups. The homogeneous almost-Kähler geometry of
these manifolds is entirely determined by the geometry of a suitable vector that depends on the
real Lie algebra structure of the underlying Lie algebra. In particular, all geometric quantities,
such as the Chern-Ricci form, the Hermitian scalar curvature and the Nijenhuis tensor, may be
expressed in terms of root data. This allows to deduce many properties about the geometry of
adjoint orbits and algorithmically establish which ones admit a special homogeneous compatible
almost-complex structure. Even if the intricate combinatorics of root systems prevents to spot
a full classification of orbits admitting a special compatible almost-complex structure, many
infinite families of adjoint orbits and all the exceptional ones have been classified.

The contents of this chapter are contained in [28] and are organized as follows. In Section
3.1 and Section 3.2, we recall the homogeneous almost-Kähler geometry of adjoint orbits and
the structure properties of the underlying Lie algebra. In Section 3.3 and Section 3.4, we define
a canonical compatible almost-complex structure on adjoint orbits of semisimple Lie groups
and we discuss the speciality condition for it. Section 3.5 is dedicated to explicit formulae
for the Hermitian scalar curvature and the Nijenhuis tensor of the canonical almost-complex
structure, while in Section 3.6, we study compact quotients of adjoint orbits of semisimple Lie
groups, with an eye on the integrability of the canonical almost-complex structure. Section
3.7 contains the main classifications results, while in Section 3.8 we sum up the results of the
chapter and we discuss some open problems.

3.1 Adjoint orbits
In this section we recall some definitions and facts concerning adjoint orbits of semisimple Lie
groups, mostly to introduce the main objects of study and to set up the notations. For this
part we refer principally to [27].

Let G be a connected Lie group with Lie algebra g. Then G acts on the dual g∗ by coadjoint
action Ad∗, defined by

Ad∗gθ = θ ◦Ad−1
g (3.1)

for all θ ∈ g∗, where g ∈ G and Ad is the adjoint representation of G on g (see Section 1.4 for
the defintion of adjoint action). Fix θ ∈ g∗ and consider its coadjoint orbit, that is, the orbit
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of θ under the coadjoint action. Observe that, by the orbit-stabilizer theorem, the coadjoint
orbit of θ is diffeomorphic to the coset space G/Stab(θ), with Stab(θ) the stabilizer of θ under
the coadjoint action. The important feature of coadjoint orbits is that they carry a canonically
defined homogeneous symplectic form making them homogeneous symplectic manifolds. More
precisely, let σ ∈ Λ2(g) be the skew-symmetric bilinear form defined by

σ(X,Y ) = θ([X,Y ]). (3.2)

The canonical symplectic form ω ∈ Ω2(G/Stab(θ)) on G/Stab(θ) is then defined as the homo-
geneous symplectic form induced by σ and it is called the Kirillov-Kostant-Souriau symplectic
form on G/Stab(θ). Coadjoint orbits constitute an extensively studied class of manifolds and
they are especially important in representation theory and geometric quantization. Moreover,
they play an important role in the context of finding examples of homogeneous symplectic
manifolds admitting special compatible almost-complex structures. Indeed, under certain hy-
potesis on the Lie group G and the isotropy, coadjoint orbits admit a homogeneous special
ω-compatible almost-complex structure.

Theorem 3.1.1 ( [27, Theorem 27]). Let G be a connected semisimple Lie group and let
M ⊂ g∗ be a coadjoint orbit equipped with the Kirillov-Kostant-Souriau symplectic form ω.
Assume that the isotropy of M is compact and contains no non-discrete normal subgroups of
G. If the first Chern class of (M,ω) satisfies 4πc1 = λω for some λ ∈ R, then there exists a
homogeneous special compatible almost-complex structure on (M,ω).

In the following, we discuss some parts of the proof of Theorem 3.1.1, mostly to introduce
some objects and results that we are going to use in the next sections. For more details, see
the complete proof in [27, Theorem 27]. Recall that, a semisimple Lie group G is a Lie group
having semisimple Lie algebra g, meaning that it splits as a direct sum of simple Lie algebras,
i.e., non-abelian Lie algebras having no non-trivial ideals. Let G be a connected semisimple Lie
group with Lie algebra g and let (M,ω) be the coadjoint orbit of an element θ ∈ g∗ equipped
with the Kirillov-Kostant-Souriau symplectic form ω. Assume that the isotropy V = Stab(θ)
of M is compact. Remind that Lie algebras carry the G-invariant symmetric bilinear form
defined by

B(X,Y ) = tr(adXadY ), (3.3)
for X,Y ∈ g, that takes the name of Killing form. This bilinear form plays an important role
in the context of semisimple Lie algebras. Indeed, by Cartan’s criterion, the Killing form B is
non-degenerate on g, hence g may be canonically identified with its dual g∗. Thus, one may
associate with θ a unique element v ∈ g such that

θ(X) = B(v,X), (3.4)

for all X ∈ g. By G-equivariance of this identification, the coadjoint action turns out to
coincide with the adjoint one. Therefore, V is the isotropy subgroup of v with respect to the
adjoint representation and its Lie algebra coincides with v = {X ∈ g | [v,X]g = 0}. Being the
Lie algebra of a compact Lie group, v is a compact Lie algebra. Moreover, by the existence of
the Cartan decomposition explained in Section 3.2, the Killing form B restricts to a negative-
definite scalar product on it (see also [10, Lemma 7.36]). On the other hand, as we explained
in Section 1.4, the orthogonal V -invariant complement

m = {X ∈ g | B(X,Y ) = 0 ∀Y ∈ v} (3.5)

is canonically isomorphic to the tangent space at the identity coset e ∈ G/V of the adjoint
orbit G/V of v. Observe that v is V -invariant by definition and, by compactness of V , also m
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is V -invariant. In the next sections, we will always refer to adjoint orbits instead of coadjoint
ones.

Let 2n be the dimension of m and consider the induced splitting g = v⊕m. We will denote
by σ both the 2-form defined by (3.2) and its restriction to m. By the identification (3.4), σ
may be expressed as σ(X,Y ) = B(v, [X,Y ]g) or as

σ(X,Y ) = B([v,X]m, Y ), (3.6)

for X,Y ∈ m, by G-invariance of the Killing form. In particular, by V -invariance, the adjoint
representation adv restricts to an endomorphism of m which is also invertible, by definition of
v. Thus B is non-degenerate on m too. Let T ⊂ V be the torus generated by the center of V .
Since adv is invertible on m and T is abelian, thus it has only irreducible representations of
real dimension 2, the action of T on m via adv induces the decomposition

m = m1 ⊕ · · · ⊕mn, (3.7)

where each mi is a T -invariant symplectic subspace of dimension 2. In addition, B restricts
to a definite symmetric bilinear form on each mi. Put εi = 1 if B is positive-definite on
mi and εi = −1 otherwise. Moreover, let {ui, vi} be an orthogonal basis of mi such that
B(ui, ui) = B(vi, vi) = εi. By skew-symmetry of adv with respect to B, one may find λi 6= 0
such that

[v, ui] = λivi, [v, vi] = −λiui. (3.8)

Up to exchange the role of ui and vi, we may assume that λi > 0. At this point, the endomor-
phism H of m defined by

HX =

n∑

i=1

εi
λi

adv(Xi), (3.9)

where X ∈ m and each Xi is the component of X along mi, is a V -invariant σ-compatible
complex structure on m. In addition, the basis defined by ei = (1/

√
λi)ui, ei+n = (εi/

√
λi)vi,

for 1 ≤ i ≤ n, is a symplectic basis of m satisfying Hei = ei+n, Hei+n = −ei. Then,
by Theorem 1.4.7, H induces a homogeneous almost-complex structure J on M which is
compatible with ω.
Remark 3.1.2. The homogeneous almost-complex structure J induced by H has been recently
studied also by Alekseevsky and Podestà [2]. In that work, the authors classify special com-
patible almost-complex structures on adjoint orbits of the form G/L, with G a non-compact
classical simple Lie group and L a maximal torus. In our notation, this means that the weight
φ associated with the orbit lies in a general position, i.e., does not belong to any wall of the
dominant Weyl chamber. In particular, they found that special compatible almost-complex
structures on such orbits exist only when the Lie algebra g of G is sl(2,R), and λ < 0, or
su(p + 1, p) with p ≥ 1, and λ = 0 [2, Theorem 1.1]. Interestingly, they also proved that J is
the unique homogeneous almost-complex structure that is compatible with ω.

As we showed in Section 1.4, the Chern-Ricci form ρ of J is determined by the linear
form ζ ∈ g∗ defined by ζ(X) = tr(adHX − HadX). By semisimplicity assumption of G, g
is unimodular, that is, tr(adX) = 0 for each X ∈ g, and this implies that tr(adHX) = 0.
Thus, the form ζ reduces to ζ(X) = −tr(HadX), X ∈ g. Using the symplectic basis {ei}, by
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G-invariance of the Killing form and the definitions of {ui, vi} one has

ζ(X) =−
n∑

i=1

σ([X, ei]m, ei) + σ([X,Hei]m,Hei)

=−
n∑

i=1

B([v, [X, ei]m]m, ei) +B([v, [X,Hei]m]m,Hei)

=−
n∑

i=1

B(X, [[v, ei]m, ei]g) +B(X, [[v,Hei]m,Hei]g)

=−
n∑

i=1

1

λi
(B(X, [[v, ui]g, ui]g) +B(X, [[v, vi]g, vi]g))

=2

n∑

i=1

B(X, [ui, vi]g).

(3.10)

Hence the form ζ may be written as ζ(X) = B(v′, X), with

v′ = 2

n∑

i=1

[ui, vi]. (3.11)

Observe that, by V -invariance of ζ and G-invariance of B, v′ belongs to the center of v.
At this point, if v′ = λv for some λ ∈ R, then ζ = λθ and so, by the relation between

ρ and ζ (1.69) (up to a sign), it holds that ρ = λω, showing that J is a special compatible
almost-complex structure on (M,ω). On the other hand, if J satisfies ρ = λω, semisimplicity
of g together with compactness of V , reads that v′ = λv.

Summing up, the condition for the existence of a homogeneous special compatible almost-
complex structure is translated in checking whether v′ is a multiple of the given vector v:

ρ = λω ⇔ v′ = λv, (3.12)

for some λ ∈ R. Thus, as in the previous chapter, we have rewritten the speciality condition
as a pure algebraic equation on the Lie algebra g of the semisimple Lie group G. In order to
study this equation, we need to understand the structure of g, that is the topic of the next
section.

3.2 The Lie algebra structure of g

The present section is a brief summary of the main important facts concerning the Lie algebra
structure of g and the structure theory of real semisimple Lie algebras. The contents we treat
are discussed in [44, Chapter 3] and [48, Chapter II, Chapter VI] and we principally follow [39].
Even if the theory we develop covers the extensively studied case in which the Lie group G is
compact (see for example [10, Chapter 8]), we will focus on real non-compact semisimple Lie
groups.

Let G be a real non-compact semisimple Lie group with Lie algebra g. Then G acts on g by
adjoint action and let v ∈ g be a chosen element with compact stabilizer V ⊂ G. The adjoint
orbit G/V of v comes equipped with the Kirillov-Kostant-Souriau symplectic form ω. Observe
that compactness of V ensures that the orbit G/V is not compact, thus it is not forced to be
a Kähler manifold a priori. Indeed, orbits of compact semisimple Lie group turns out to be

42



Kähler manifolds by a result of Borel and Weil [73]. On the other hand, as semisimple Lie
groups are unimodular, one may always get compact manifolds by modding out the orbit G/V
by a discrete co-compact subgroup of G. Compact quotients of adjoint orbits will be treated
extensively in Section 3.6.

In what follows, we are going to study the real Lie algebra structure of g. Let gC be the
complex Lie algebra obtained from g by complexification, that is

gC = g⊗ C. (3.13)

Being g a real form of gC, it is fixed by a unique complex conjugation τ on gC. Let k ⊂ g be
the maximal compact subalgebra of g such that v ⊂ k. Then g splits as

g = k⊕ p, (3.14)

where p = pC ∩ g, with pC the ad(kC)-invariant complement of the complexification kC. The
decomposition (3.14) is called Cartan decomposition of g and the subspaces k and p satisfy the
following relations

[k, k] ⊆ k, [p, p] ⊆ k, [k, p] ⊆ p. (3.15)

A compact real form of gC, i.e., a real form on which the restriction of the Killing form is
negative definite, is given by

g0 = k⊕ ip. (3.16)

Indeed, by maximality of k, B is positive definite over p. Let τ0 be the complex conjugation
induced on gC by g0 and let h0 be a maximal abelian subalgebra of k such that v ∈ h0. As
the stabilizer V of v is compact, k and g have the same rank, thus complexifying h0 provides
a τ0-invariant Cartan subalgebra hC of gC.

The adjoint representation of hC on gC induces a decomposition

gC = hC ⊕
⊕

α∈∆

gαC (3.17)

where the set of roots ∆ ⊂ h∗C is a finite subset of the dual h∗C and the root spaces

gαC = {X ∈ gC | [h,X] = α(h)X ∀h ∈ hC} (3.18)

have complex dimension 1. The decomposition (3.17) is called root space decomposition. In
addition, for two roots α, β ∈ ∆, [gαC, g

β
C] = gα+βC if α+ β ∈ ∆, and [gαC, g

β
C] = 0 otherwise.

By compactness of g0, all roots assume real values on the real vector space hR = ih0 [48,
Corollary 6.49], hence one may regard ∆ as a subset of h∗R instead of the full dual space h∗C.
Since hR is a purely imaginary subspace of hC with respect to the conjugation τ0, the root
spaces satisfy

τ0(g
α
C) = g−αC , α ∈ ∆. (3.19)

Before proceeding, we recall a couple of properties concerning the conjugations τ and τ0
that will be useful to explain compact and non-compact roots.

Lemma 3.2.1. The conjugations τ and τ0 commute, hence θ = ττ0 is an involutive automor-
phism of gC. Its 1 and −1 eigenspaces are kC and pC respectively. Moreover the adjoint action
of the Cartan subalgebra hC commutes with θ.
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Proof. Let a1, b1 ∈ k and a2, b2 ∈ p. Put

A = a1 + a2 + i(b1 + b2) = a1 + ib2 + i(b1 − ia2) ∈ gC, (3.20)

according to the real forms g and g0. Then

ττ0(A) =ττ0(a1 + ib2 + i(b1 − ia2))

=τ(a1 + ib2 − i(b1 − ia2))

=a1 − a2 + i(b1 − b2).

(3.21)

On the other hand

τ0τ(A) =τ0τ(a1 + a2 + i(b1 + b2))

=τ0(a1 + a2 − i(b1 + b2))

=τ0(a1 − ib2 − i(ia2 + b1))

=a1 − ib2 + i(ia2 + b1)

=a1 − a2 + i(b1 − b2).

(3.22)

Thus, τ0τ = ττ0. The commutativity of τ and τ0 together with the fact that they are involutions
yields that the composition θ = ττ is involutive too. Hence its eigenvalues are {±1}. In order
to compute the eigenspaces, take A defined as above. Then, it holds that θ(A) = A if and only
if

a1 − a2 + i(b1 − b2) = a1 + a2 + i(b1 + b2), (3.23)

hence if and only if a2 + ib2 = 0. Since a2 + ib2 ∈ pC, θ(A) = A if and only if A ∈ kC, showing
that the 1-eigenspace of θ coincide with kC.

Similarly, θ(A) = −A if and only if

−a1 + a2 − i(b1 − b2) = a1 + a2 + i(b1 + b2), (3.24)

hence if and only if a1+ ib1 = 0. Since a1+ ib1 ∈ kC, θ(A) = −A if and only if A ∈ pC, showing
that the −1-eigenspace of θ coincide with pC.

For the last part of the statement, recall that hC ⊂ kC and let h ∈ hC. We prove that θ
commutes with adh on kC and pC separately, as this implies that they commute on gC. Let
X ∈ kC. Then θ(X) = X and

adh(θ(X)) = adhX ∈ kC (3.25)

since kC is a subalgebra of gC. But kC is the 1-eigenspace of θ, so adhX = θ(adhX). This shows
that adh(θ(X)) = θ(adh(X)). Now, let X ∈ pC. Then θ(X) = −X and

adh(θ(X)) = −adh(X) ∈ pC, (3.26)

by the properties of the Cartan decomposition (3.15). Since pC is the −1-eigenspace of θ,
adh(θ(X)) = θ(adhX), and this concludes the proof.

The involution θ defined in Lemma 3.2.1 is called the Cartan involution of g. With the
previous results at hand, one has that each root space is contained in one of the eigenspaces
of θ.

Proposition 3.2.2. Each root space gαC is contained in either kC or pC.
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Proof. Let X be a vector inside the root space gαC, α ∈ ∆, so that adh(X) = α(h)X for every
h ∈ hC. By Lemma 3.2.1, adh commutes with θ, thus

adhθ(X) =θ(adh(x))

=θ(α(h)X)

=ττ0(α(h)X)

=α(h)ττ0(X)

=α(h)θ(X).

(3.27)

This shows that θ(X) is a root vector with respect to α. Since gαC is 1-dimensional, θ(X) = µX,
implying µ = ±1, being θ an involution. As a consequence, X belongs to either kC or pC.

A root α ∈ ∆ is said to be compact if its root space gαC is contained in kC and non-compact
if its root space is contained in pC. Thus, to each root α ∈ ∆ one may associate a coefficient
εα defined to be equal to −1 if α is compact and 1 otherwise. From the fact that θ is a Lie
algebra automorphisms, we have that εα = ε−α and εα+β = −εαεβ , for α, β, α+ β ∈ ∆.

A positive root system is a subset ∆+ ⊂ ∆ satisfying:

1. For all α ∈ ∆, either α or −α belongs to ∆+;

2. If α, β ∈ ∆+ and α+ β ∈ ∆, then α+ β ∈ ∆+.

A positive root is called simple if it cannot be written as a sum of positive roots and we call
Σ+ the set of such roots. It turns out that Σ+ is a basis of hR, once we have fixed a positive
root system ∆+. In addition, each root α ∈ ∆ may be written as

α =
∑

γ∈Σ+

nγγ, (3.28)

with nγ ∈ Z all positive if α is positive and all negative if α is negative. The compactness
of a root α expressed as in (3.28) is entirely determined by the compactness of γ ∈ Σ+ and
the coefficients nγ . More precisely, it holds a formula for determining if a root is compact or
non-compact.

Lemma 3.2.3. Let α ∈ ∆+ be a positive root expressed as α =
∑
γ∈Σ+ nγγ, nγ ∈ Z positive.

Then
εα = (−1)1+

∑
γ∈Σ+ nγ

∏

γ∈Σ+

εnγ
γ . (3.29)

Proof. We prove the result by induction on the sum α =
∑
γ∈Σ+ nγγ. Thus, for α = γi + γj

εγi+γj = −εγiεγj = (−1)1+nγi
+nγj εγiεγj , (3.30)

as stated. Now suppose that the formula (3.29) holds for α =
∑
γ∈Σ+ nγγ and we want to

compute the coefficient ε for the root ζ +
∑
γ∈Σ+ nγγ, with ζ ∈ Σ+ and nζ = 1. Then

εζ+α =− εζεα = −εζ(−1)1+
∑

γ∈Σ+ nγ
∏

γ∈Σ+

εnγ
γ

=(−1)1+nζ+
∑

γ∈Σ+ nγεζ
∏

γ∈Σ+

εnγ
γ ,

(3.31)

as stated.
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Observe that compactness of simple roots induces a splitting

Σ+ = Σ+
c ∪ Σ+

n , (3.32)

where Σ+
c = {γ ∈ Σ+ | εγ = −1} is the set of simple compact roots and Σ+

n = {γ ∈ Σ+ | εγ = 1}
is the set of simple non-compact roots. As the product

∏

γ∈Σ+
n

εnγ
γ = 1, (3.33)

formula (3.29) reduces to the following one.

Lemma 3.2.4. A root α of the form α =
∑
γ∈Σ+ nγγ has

εα = (−1)
1+

∑
γ∈Σ

+
n
nγ . (3.34)

More explicitly, lemma above says that in order to determine the compactness index of a
root it suffices to count how many simple non-compact roots there are in its epression (3.28).
If they come in an even number, the root is compact, otherwise it is non-compact.

By compactness of h0, the Killing form restricts to a positive scalar product on hR. Indeed,
for X,Y ∈ h0, iX and iY belong to hR and so

B(iX, iY ) = −B(X,Y ) > 0, (3.35)

as B is negative definite on h0. Therefore, one may define a positive scalar product on h∗R by
letting

(ψ,ψ′) = B(hψ, hψ′), (3.36)
where hψ and hψ′ are the elements in hR corresponding to ψ and ψ′ via the canonical isomor-
phism defined by the Killing form. The set of hyperplanes Pα = {ψ ∈ h∗R | (ψ, α) = 0}, for
α ∈ ∆, divides h∗R into a finite number of closed convex cones, called Weyl chambers. Moreover,
each positive root system ∆+ corresponds bijectively to a dominant Weyl chamber defined by

C = {ψ ∈ h∗R | (ψ, α) ≥ 0 ∀α ∈ ∆+}. (3.37)

We have chosen v inside h0, so that iv ∈ hR, hence there exists a unique co-vector φ ∈ hR
such that hφ = −iv. Moreover, one may always choose a positive root system ∆+ such that
φ belongs to the dominant Weyl chamber C. From now on, we will always assume to have
picked the dominant Weyl chamber in such a way that it contains φ.

A proper way of expressing the elements in the fundamental Weyl chamber is through the
fundamental dominant weights, which we are going to recall in a while. Denote by ℓ the rank
of g, i.e., the dimension of the Cartan subalgebra h0, so that one may label the simple roots
such that Σ+ = {γ1, . . . , γℓ}. Let A = (Aij) be the Cartan matrix associated with the root
system of g, defined by

Aij = 2
(γi, γj)

(γi, γi)
. (3.38)

The fundamental dominant weights φ1, . . . , φℓ are the linear forms on hR determined by

φj =

ℓ∑

i=1

Aijγi, (3.39)

where (Aij) = A−1, and they constitute a basis of hR with a nice property.
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Lemma 3.2.5. Fundamental dominant weights and simple roots satisfy the following relation

2
(φj , γi)

(γi, γi)
= δij . (3.40)

Proof. By definition, φj =
∑ℓ
k=1A

kjγk. Therefore

(φj , γi) =

ℓ∑

k=1

Akj(γk, γi) =
1

2

ℓ∑

k=1

AkjAik(γi, γi) =
1

2
δij (γi, γi) (3.41)

and the thesis follows.

Actually, the basis of fundamental dominant weights turns out to be well suited to our
purposes.

Lemma 3.2.6. Let ψ ∈ h∗R and write it as ψ =
∑ℓ
i=1 w

jφj, for some reals w1, . . . , wℓ.
Then (ψ, α) ≥ 0 for each α ∈ ∆+ if and only if wi ≥ 0 for every i. Moreover ∆+ \ ψ⊥ =
span{γj | wj 6= 0} ∩∆+.

Proof. For each α ∈ ∆+ of the form α =
∑ℓ
i=1 n

iγi, for appropriate non-negative integers ni,
using Lemma 3.2.5, one computes

(ψ, α) =

ℓ∑

i,j=1

winj(φi, γj) =
1

2

ℓ∑

i=1

wini|γi|2, (3.42)

which is non-negative if and only if all the wi’s are non-negative.

As a consequence of the above lemma, the dominant Weyl chamber C turns out to be the
closed convex cone spanned by the fundamental dominant weights φ1, . . . , φn, and co-vectors
belonging to it are called dominant weights. In particular, our element φ such that hφ = −iv
turns out to be a dominant weight, as it may be written as

φ =

ℓ∑

i=1

viφi, (3.43)

with vi ≥ 0 for every i = 1, . . . , ℓ.
To conclude this part, we recall the following properties which will be useful in the subse-

quent sections (see for Example [48, Theorem 6.6], [39, Section 3]).

Theorem 3.2.7. For each root α ∈ ∆ one may choose vectors eα ∈ gαC such that:

1. [eα, e−α] = hα;

2. B(eα, eβ) = δα,−β ;

3. B(hα, h) = α(h) for every h ∈ hC;

4. [eα, eβ ] = 0 if α+ β 6= 0 and α+ β /∈ ∆;

5. [eα, eβ ] = Nα,β eα+β if α+ β ∈ ∆, where Nα,β ∈ R are non-zero and satisfy

Nβ,α = −Nα,β = N−α,−β = N−β,α+β = Nα+β,−α ; (3.44)
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6. τ0(eα) = −e−α;

7. τ(eα) = εαe−α.

A basis with these properties is sometimes reffered as Weyl basis [44, Chapter IX, Section 5].
Note that one may define Nα,β = 0 whenever α + β 6= 0 and α + β /∈ ∆, so that, by abuse of
notation, one may write [eα, eβ ] = Nα,β eα+β for all α, β ∈ ∆ even when α + β is not a root
(so eα+β is not defined). This is going to be useful in some subsequent computations.

We end this section by recalling the definitions of some tools which are quite handy for
studying real Lie algebras and that we will use extensively: Vogan diagrams. However, in
order to define these diagrams, we need other graphs associated to Lie algebras, called Dynkin
diagrams. For this part we refer to [48, Chapter II, Section 5 and Chapter VI, Section 8]. Let
gC be a complex semisimple Lie algebra with root system ∆, set of simple roots Σ+ and let A
be the associated Cartan matrix. We equip gC with a graph defined as follows. To each simple
root γi we associate a vertex of a graph and we attach to that vertex a weight proportional
to |γi|2. Two vertices, say γi, γj , are connected by AijAji edges. The resulting graph is said
to be the Dynkin diagram of (gC,∆). Often we will draw an arrow above multiple edges, with
the tip pointing towards the shortest root. Such diagrams played an important role in the
classification of complex simple Lie algebras, as they determine completely the associated Lie
algebra. The list of connected Dynkin diagram which led to the classification of complex simple
Lie algebra may be found in [48, Chapter II, Figure 2.4]

Let now g be a real semisimple Lie algebra with Cartan involution θ and let g = k ⊕ p be
the associated Cartan decomposition. A Cartan subalgebra h ⊂ g is said to be θ-stable if

h = (h ∩ k)⊕ (h ∩ p), (3.45)

and in this case we put t = h ∩ k and a = h ∩ p. A θ-stable Cartan subalgebra h is said to be
maximally compact if the dimension of t is as large as possibile. So let h ∈ g be a maximally
compact θ-stable Cartan subalgebra, denote by hC = tC ⊕ aC ∈ gC its complexification and
let ∆ be the associated root system. Let ∆+ be a set of positive roots chosen such that it
takes it before aC and call Σ+ the set of simple roots. By definition of maximally compact θ-
stable Cartan subalgebra, there are no real roots in ∆. Moreover, θ permutes the simple roots,
hence it fixes the roots which are purely imaginary and permutes in 2-cycles the complex ones.
The Vogan diagram of (g, h,Σ+) is then defined as the Dynkin diagram of ∆+ with the 2-
element orbits under θ so labeled and the 1-element orbits painted or not, according as the
corresponding imaginary simple root is non-compact or compact.

Example 3.2.8. Let g = su(p, q) with negative conjugate transposition as Cartan involution
and take h0 = t0 be the diagonal subalgebra. Then θ is 1 on all the roots. With the standard
ordering, the positive roots are ei−ej with 1 ≤ i < j ≤ p+q, where e1, . . . , ep+q is the standard
orthonormal basis of Rp+q. A positive root is compact if both i and j belong to {1, . . . , p} or
{p + 1, . . . , p + q} and non-compact if i is in {1, . . . , p} and j is in {p + 1, . . . , p + q}. Thus,
among the simple roots ei − ei+1, ep − ep+1 is non-compact while all the others are compact.
Thus the Vogan diagram of su(p, q) is

e1 − e2 ep − ep+1 ep+q−1 − ep+q

Actually each Vogan diagram is equivalent to a Vogan diagram with one painted node. This
result is known as the Borel and de Siebenthal Theorem [48, Theorem 6.96].
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Example 3.2.9. Consider the Vogan diagram of G2

γ1 γ2

Thus, γ1 is non-compact and γ2 is compact. Then, by Lemma 3.2.4, the compact and
non-compact positive roots are respectively

∆+
c ={γ2, 2γ1 + γ2}

∆+
n ={γ1, γ1 + γ2, 3γ1 + 2γ2, 3γ1 + γ2}.

(3.46)

The root system of G2 together with compact and non-compact roots is depicted in Figure 3.1.

hγ1

hγ1+γ2

h3γ1+2γ2

h2γ1+γ2 h3γ1+γ2hγ2

5π/6

Figure 3.1: The root diagram of G2. Thick black arrows represent the positive non-compact
roots, while the red arrows represent the compact ones. The names at the end of each arrow
indicates the vector corresponding to the given root. The negative roots are identified with
dashed black arrows.

Now that we have set the necessary algebraic background, we are ready to study the almost-
Kähler geometry of adjoint orbits, starting with the definition of a canonical almost-complex
structure.

3.3 The canonical almost-complex structure
In this section we specialize some definitions given in Section 3.1 and we provide a homogeneous
almost-complex structure for adjoint orbits which turns out to be compatible with the Kirillov-
Kostant-Souriau symplectic form ω.
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For each root α ∈ ∆ one may define the real number

λα = sα(α, φ), (3.47)

where sα is the signum of α, meaning that sα = 1 if α is a positive root and sα = −1 if it is
negative. Remember that we have chosen φ inside the dominant Weyl chamber, thus λα ≥ 0
for every α and, in particular, λα = 0 when α is orthogonal to φ. Then, define the vectors

uα =
i
1−εα

2√
2

(eα + e−α), vα =
i
3−εα

2√
2
sα(eα − e−α) (3.48)

and notice that uα = u−α and vα = v−α. Moreover, these vectors satisfy some useful relations.

Lemma 3.3.1. For all roots α, β ∈ ∆ the following hold:

1. B(uα, uβ) = B(vα, vβ) = (δα,β + δα,−β )εα;

2. B(uα, vβ) = 0;

3. uα, vα ∈ g;

4. [v, uα] = λαvα and [v, vα] = −λαuα.

Proof. The statements are consequences of Theorem 3.2.7. More precisely:

1. By item 2 of the theorem on has

B(uα, uβ) =
i
2−εα−εβ

2

2
B(eα + e−α, eβ + e−β)

=
i
2−εα−εβ

2

2
(δα,−β + δα,β + δ−α,−β + δ−α,β )

=i
2−εα−εβ

2 (δα,β + δα,−β )

=(δα,β + δα,−β )εα

(3.49)

and similarly for the scalar product of vα and vβ .

2. Likewise the previous point,

B(uα, vβ) =
i
4−εα−εβ

2

2
(δα,−β − δα,β + δ−α,−β − δ−α,β ) = 0. (3.50)

3. In order to check whether uα and vα belong to g it suffices to show that they are invariant
under the conjugation τ . By point 7 of Theorem 3.2.7 one may write

τ(uα) =
i
1−εα

2√
2

(εαe−α + εαeα), τ(vα) =
i
3−εα

2√
2
sα(εαe−α − εαeα) (3.51)

and the result follows by considering separately the cases εα = 1 and εα = −1.

4. Finally, by writing explicitly uα, one has

[v, uα] =
i
1−εα

2√
2

[v, eα + e−α]. (3.52)
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Since v ∈ h0, by definition of root space, v satisfies [v, eα] = α(v)eα. Moreover, by item
3 of Theorem 3.2.7 and recalling that hφ = −iv,

λα = sα(α, φ) = sαB(hα, hφ) = −isαB(hα, v) = −isαα(v). (3.53)

Putting everything together we get

[v, uα] = α(v)
i
1−εα

2√
2

(eα − e−α) = iλαsα
i
1−εα

2√
2

(eα − e−α) = λαvα. (3.54)

Similar computations prove that also [v, vα] = −λαuα.

As a consequence of the lemma above, g has the B-orthogonal decomposition

g = h0 ⊕
⊕

α∈∆+

span{uα, vα}. (3.55)

Observe that this decompositon may be refined by splitting the set of positive roots as

∆+ = (∆+ ∩ φ⊥) ∪ (∆+ \ φ⊥) (3.56)

where (∆+ ∩ φ⊥) is the set of positive roots which are orthogonal to φ and (∆+ \ φ⊥) is the
set of roots which are not orthogonal to φ. By the definition of λα (3.47), a root α belongs to
∆+ \ φ⊥ if λα > 0, while it belongs to ∆+ ∩ φ⊥ if λα = 0. Hence, by item 4 of Lemma 3.3.1,
the Lie algebra v of the stabilizer V of v decomposes as

v = h0 ⊕
⊕

α∈∆+∩φ⊥

span{uα, vα}. (3.57)

Since V is compact, all roots belonging to ∆+ ∩ φ⊥ must be compact, while

m =
⊕

α∈∆+\φ⊥

span{uα, vα}. (3.58)

Notice that the subspaces span{uα, vα}, for α ∈ ∆+ \ φ⊥, play the role of the mi’s in Section
3.1. Putting together the last observations, we deduce a formula for the dimension of the
adjoint orbit G/V of v in terms of φ and the positive roots.

Proposition 3.3.2. The summands of the B-orthogonal decomposition g = v ⊕ m are given
by

v = h0 ⊕
⊕

α∈∆+∩φ⊥

span{uα, vα}, m =
⊕

α∈∆+\φ⊥

span{uα, vα}. (3.59)

Moreover, all roots of ∆+ ∩ φ⊥ are compact and the dimension of G/V is given by

dimG/V = dim g− ℓ− 2|{α ∈ ∆+ | (α, φ) = 0}|, (3.60)

where ℓ = dim h0 is the rank of g.
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At this point we are able to define a canonical homogeneous almost-complex structure J
on G/V . In order to do this, let H be the complex structure on h⊥0 = span{uα, vα | α ∈ ∆+}
defined on the basis by

Huα = εαvα, Hvα = −εαuα, (3.61)

for α ∈ ∆+. Note that H makes complex the splitting

h⊥0 = span{uα, vα | α ∈ ∆+ ∩ φ⊥} ⊕ span{uα, vα | α ∈ ∆+ \ φ⊥}, (3.62)

where the second summand is exactly m. Then we define the canonical almost-complex structure
J on G/V as the homogeneous almost-complex structure induced by H on m.
Remark 3.3.3. By decomposing X ∈ m as X =

∑
α∈∆+\φ⊥ Xα, where Xα ∈ span{uα, vα}, and

by using item 4 of Lemma 3.3.1, one has

HX =
∑

α∈∆+\φ⊥

εα
λα

[v,Xα]. (3.63)

Hence J on the orbit G/V coincides with the almost-complex structure defined in Section 3.1.
The basis {uα, vα}, α ∈ ∆+ \φ⊥, on m defined in (3.48), turns out to be useful as it allows

to define a symplectic orthonormal basis for m.

Lemma 3.3.4. The vectors (1/
√
λα)uα, (εα/

√
λα)vα, for α ∈ ∆+\φ⊥, constitute a symplectic

basis of m which is also orthonormal with respect to the scalar product induced by H and σ.

Proof. Put eα = (1/
√
λα)uα and fα = (εα/

√
λα)vα. Recall that the basis {eα, fα}, for α ∈

∆+ \ φ⊥ is symplectic if σ(eα, eβ) = σ(fα, fβ) = 0 and σ(eα, fβ) = δα,β , for α, β ∈ ∆+ \ φ⊥.
Some computations together with Lemma 3.3.1 read

σ(eα, eβ) =
1√
λαλβ

σ(uα, uβ) =
1√
λαλβ

B([v, uα], uβ) =
λα√
λαλβ

B(vα, uβ) = 0. (3.64)

And similar computations show that σ(fα, fβ) = 0. Then

σ(eα, fβ) =
εβ√
λαλβ

σ(uα, vβ) =
εβ√
λαλβ

B([v, uα], vβ) =
εβλα√
λαλβ

B(vα, vβ) = δα,β , (3.65)

since α and β are both positive roots. This shows that the basis {eα, fα} is symplectic.
For the orthonormality, we compute

〈eα, eβ〉 = σ(eα,Heβ) =
1√
λαλβ

σ(uα,Huβ) =
εβ√
λαλβ

σ(uα, vβ) = σ(eα, fβ) = δα,β , (3.66)

as the basis is symplectic. Similarly 〈fα, fβ〉 = δα,β . We are left with the mixed terms

〈eα, fβ〉 =
εβ√
λαλβ

σ(uα,Hvβ) = − 1√
λαλβ

σ(uα, uβ) = 0, (3.67)

again since the basis is symplectic.

We end this section by showing some results concerning fibrations of adjoint orbit. First,
the canonical almost-complex structure is compatible with the projections of adjoint orbits.
More precisely, one has the following property.
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Proposition 3.3.5. Let φ̃ ∈ h∗R such that for all roots α ∈ ∆ it holds that (α, φ̃) = 0
whenever (α, φ) = 0. Then the stabilizer Ṽ of ṽ = ihφ̃ contains V and the induced projection
π : G/V → G/Ṽ is pseudo-holomorphic with respect to the almost-complex structures J and J̃
induced by the canonical complex structures on the adjoint orbits of v and ṽ.

Proof. As a consequence of Proposition 3.3.2, the Lie algebra of the stabilizer of ṽ is given by

ṽ = h0 ⊕
⊕

α∈∆+∩φ̃⊥

span{uα, vα} (3.68)

and it contains v since all roots which are orthogonal to φ are orthogonal also to φ̃. Therefore
V ⊂ Ṽ . The induced projection π : G/V → G/Ṽ is G-equivariant, being defined at the Lie
algebra level. We are left with proving that π is pseudo-holomorphic, i.e., its differential is a
complex linear map between the two complex vector bundles T G/V and T G/Ṽ . Since π is
G-equivariant, it suffices to prove that the differential deπ at the identity coset e ∈ G/V is
complex linear. To this end, observe that

m̃ =
⊕

α∈∆+\φ̃⊥

span{uα, vα} (3.69)

is contained in m and the differential deπ is by definition the B-orthogonal projection f : m →
m̃, defined as

f


 ∑

α∈∆+\φ⊥

Xα
u uα +Xα

v vα


 =

∑

α∈∆+\φ̃⊥

Xα
u uα +Xα

v vα (3.70)

with
∑
α∈∆+\φ⊥ Xα

u uα +Xα
v vα ∈ m an element expressed on the basis of m. Then

fH


 ∑

α∈∆+\φ⊥

Xα
u uα +Xα

v vα


 =

∑

α∈∆+\φ⊥

Xα
u fH(uα) +Xα

v fH(vα)

=
∑

α∈∆+\φ̃⊥

Xα
u εαvα −Xα

v εαuα

=H


 ∑

α∈∆+\φ̃⊥

Xα
u uα +Xα

v vα




=Hf


 ∑

α∈∆+\φ⊥

Xα
u uα +Xα

v vα


 .

(3.71)

Thus f commutes with H, showing that the differential dπ is complex linear.

In the situation of the previous proposition, choosing φ̃ ∈ C being orthogonal to no roots,
yields the following corollary.

Corollary 3.3.6. There exists an element w ∈ g whose stabilizer is a maximal torus T ⊂ G
such that T ⊂ V . Then the natural projection

G/T → G/V (3.72)

is pseudo-holomorphic, where the orbit G/T is equipped with the homogeneous almost-complex
structure induced by H.
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Observe that, in general, the element w as in the statement above is far from being unique
as it corresponds to the choice of φ̃ in an open dense subset of C. Instead, choosing φ̃ ∈ C in
a very special position gives the next result.

Corollary 3.3.7. If there exists a non-zero φ̃ ∈ C which is orthogonal to all compact roots,
then there exists ṽ ∈ g whose stabilizer is a maximal compact subgroup K ⊂ G such that
V ⊂ K. Then the natural projection

G/V → G/K (3.73)

is pseudo-holomorphic, where the orbit G/K is equipped with the homogeneous almost-complex
structure induced by H.

At this point, we are ready to discuss the speciality condition for the canonical almost-
complex structure J on adjoint orbits.

3.4 Speciality condition for the canonical almost-complex
structure

Along this section we consider adjoint orbits G/V equipped with the homogeneous almost-
Kähler structure defined by the canonical almost-complex stucture J and the Kirillov-Kostant-
Souriau symplectic form ω. The main goal is to characterize when J is special, i.e., its Chern-
Ricci form ρ satisfies ρ = λω.

As shown in Section 3.1, as the symplectic form ω is determined by σ and v, so the Chern-
Ricci form ρ of J is determined by the 2-form on m defined by B(v′, [·, ·]), where

v′ = 2
∑

α∈∆+\φ⊥

[uα, vα]. (3.74)

By writing explicitly uα and vα and by item 1 of Theorem 3.2.7, one may compute

v′ =2
∑

α∈∆+\φ⊥

i
4−2εα

2

2
[eα + e−α, eα − e−α]

=− 2
∑

α∈∆+\φ⊥

i2−εα [eα, e−α]

=− 2
∑

α∈∆+\φ⊥

i2−εαhα

=− 2i
∑

α∈∆+\φ⊥

εαhα.

(3.75)

Thus v′ = −2i
∑
α∈∆+\φ⊥ εαhα, hence the co-vector

φ′ = −2
∑

α∈∆+\φ⊥

εαα ∈ h∗R (3.76)

defines an element of the root lattice such that hφ′ = −iv′. As we discussed in Section 3.1,
the speciality condition for the Chern-Ricci form ρ = λω is equivalent to v′ = λv, hence also
to φ′ = λφ:

ρ = λω ⇔ φ′ = λφ. (3.77)
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Notice that φ′ depends only discretely on φ, in the sense that it depends on which roots φ is
orthogonal to, but not on the distance between φ and those roots.

The equation φ′ = λφ turns out to be quite complicated from the combinatorial point of
view. However, it becomes more tractable by introducing the element of the root lattice η ∈ h∗R
defined as the sum of all positive roots weighted by their compactness index

η = −2
∑

α∈∆+

εαα. (3.78)

Observe that the element η depends on the semisimple Lie algebra g and on the chosen set
of positive roots only. Since the roots which are orthogonal to φ are necessarily compact,
expressing φ′ as

φ′ = −2
∑

α∈∆+\φ⊥

εαα = η − 2
∑

α∈∆+∩φ⊥

α, (3.79)

allows to rewrite the condition ρ = λω as

η − 2
∑

α∈∆+∩φ⊥

α = λφ. (3.80)

Equation (3.80) permits to deduce the sign of λ, for it is entirely determined by the scalar
product between φ and η.

Lemma 3.4.1. If φ′ = λφ, then λ = (η, φ)/|φ|2.

Proof. Taking the scalar product of φ with equation (3.80), one gets

(η, φ)− 2
∑

α∈∆+∩φ⊥

(α, φ) = λ(φ,φ) (3.81)

but the second summand on the left-hand side vanishes since the sum is performed over the
roots which are orthogonal to φ.

Up to now we have considered a fixed element v, hence a fixed φ. However, the main goal
of this thesis is to solve the equation ρ = λω, that is, to find φ such that φ′ = λφ. The next
lemma shows that the sign of λ is uniquely determined by the semisimple Lie algebra g, hence
by the group G, and by the choice of the dominant Weyl chamber, hence by the choice of the
set of positive roots ∆+.

Proposition 3.4.2. Let ψ,φ ∈ h∗R be elements belonging to the dominant Weyl chamber C.
Suppose that both ihφ, ihψ ∈ g have compact isotropy and that φ′ = λφ, ψ′ = µψ for some real
constants λ, µ. Then λ and µ have the same sign. Moreover, φ and ψ are one multiple of the
other whenever λ, µ < 0.

Proof. By (3.80) one may write conditions φ′ = λφ, ψ′ = µψ as

η − 2
∑

α∈∆+∩φ⊥

α = λφ, η − 2
∑

α∈∆+∩ψ⊥

α = µψ. (3.82)

By Lemma 3.4.1, taking the scalar products of the previous equations with ψ and φ respectively
reads

µ|ψ|2 − λ(φ,ψ) = 2
∑

α∈∆+∩φ⊥

(α, ψ), λ|φ|2 − µ(ψ,φ) = 2
∑

α∈∆+∩ψ⊥

(α, φ). (3.83)
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Since φ and ψ are dominant, (α, φ) ≥ 0 and (α, ψ) ≥ 0 for each positive root α and (φ,ψ) > 0.
Thus the right-hand sides of the above equations are non-negative, implying

µ|ψ|2 − λ(φ,ψ) ≥ 0, λ|φ|2 − µ(ψ,φ) ≥ 0, (3.84)

which gives a contradiction as soon as λ and µ have different signs.
Finally, by taking a linear combination of the equations in (3.83), one gets

∑

α∈∆+∩φ⊥

2µ(α, ψ) +
∑

α∈∆+∩ψ⊥

2λ(α, φ) = |λφ− µψ|2 (3.85)

and this shows that λφ = µψ when λ and µ are both negative.

In particular, the above lemma says that if the equation φ′ = λφ is satisfied with λ < 0,
then it has a unique solution up to scaling. However, this is a special feature of the case λ < 0.
Indeed when λ > 0 the set of solutions is just finite up to scaling, as the following proposition
and the examples in the Appendix B show.

Proposition 3.4.3. The set of all φ ∈ h∗R belonging to the dominant Weyl chamber C, such
that v = ihφ has compact isotropy and satisfying φ′ = λφ for some λ 6= 0 is finite up to scaling.

Proof. Given φ as in the statement, after having rescaled it to |λ|φ, by (3.80) one may write
φ′ = λφ in the form

η − 2
∑

α∈∆+∩φ⊥

α = ±φ (3.86)

and this shows that φ belongs to the root lattice. As a consequence, since no non-compact
roots may be orthogonal to φ, triangle inequality reads

|φ| ≤ |η|+ 2
∑

α∈∆c

|α|, (3.87)

where ∆c ⊂ ∆ is the set of compact roots. Since the right-hand side depends on g only, we
may conclude that φ belongs to a bounded subset of the root lattice, hence finite.

Collecting together the results stated up to now, we get the following two results that give
necessary and sufficient conditions for the existence of elements φ having orbits admitting
special canonical almost-complex structure.

Theorem 3.4.4. An element φ ∈ h∗R belongs to the dominant Weyl chamber C, the stabilizer
of v = ihφ is compact and φ′ = λφ for some λ 6= 0 if and only if there exists a non-empty
subset S ⊂ {1, . . . , ℓ} such that:

1. all non-compact simple roots of Σ+ belong to {γi | i ∈ S};

2. The element
1

λ


η − 2

∑

α∈span{γi|i∈Sc}∩∆+

α


 (3.88)

belongs to the open convex cone spanned by {φi | i ∈ S};

3. The co-vector φ has the form

φ =
1

λ


η − 2

∑

α∈span{γi|i∈Sc}∩∆+

α


 . (3.89)
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Proof. Assume that φ belongs to the dominant Weyl chamber C ⊂ h∗R, the stabilizer of v = ihφ
is compact and φ′ = λφ for some λ 6= 0. Since φ is dominant, it belongs to the convex cone
spanned by φ1, . . . , φℓ. In particular, φ =

∑ℓ
i=1 v

iφi for suitable non-negative coefficients vi.
Notice that the coefficients vi must be non-zero whenever γi is non-compact, by our assumption
on the compactness of the stabilizer of v. The set S constituted by all indices 1 ≤ i ≤ ℓ such
that vi 6= 0 is non-empty, satisfies the first item of the statement and reads φ =

∑
i∈S v

iφi.
On the other hand, Lemma 3.2.6 implies that ∆+ ∩ φ⊥ = span{γi | i ∈ Sc}. Hence, using
expression (3.79) for φ′, we have that the equation φ′ = λφ may be written as in the third
item of the statements and the second one follows.

Conversely, if φ ∈ h∗R and there is a set S ⊂ {1, . . . , ℓ} satisfying all three items of the
statement for some real λ 6= 0, then (φ, α) ≥ 0 for any positive root α, so φ ∈ C. In addition,
v = ihφ has compact stabilizer and the relation φ′ = λφ holds.

In a similar fashion, the set of all φ’s such that their φ′ vanish may be described in terms
of certain subsets of {1, . . . , ℓ}. However, in contrast with the case λ 6= 0, such a set is very
often infinite even up to scaling. More precisely, this happens when the set S in the statement
below has cardinality bigger than one.

Theorem 3.4.5. An element φ ∈ h∗R belongs to the dominant Weyl chamber C, the stabilizer
of v = ihφ is compact and φ′ = 0 if and only if there exists a non-empty subset S ⊂ {1, . . . , ℓ}
such that:

1. all non-compact simple roots of Σ+ belong to {γi | i ∈ S};

2. φ =
∑
i∈S v

iφi with vi > 0 for every i ∈ S;

3. η − 2
∑
α∈span{γi|i∈Sc}∩∆+ α = 0.

Proof. Assume that φ belongs to the dominant Weyl chamber C ⊂ h∗R, the stabilizer of v = ihφ
is compact and φ′ = 0. Since φ is dominant, it belongs to the convex cone spanned by
φ1, . . . , φℓ. In particular, φ =

∑ℓ
i=1 v

iφi for suitable non-negative coefficients vi. Notice
that the coefficient vi must be non-zero, hence positive whenever γi is non-compact, by our
assumption on the compactness of the stabilizer of v. The set S constituted by all indices
1 ≤ i ≤ ℓ such that vi 6= 0 is non-empty, satisfies the first two items of the statement. By
(3.80), the condition φ′ = 0 may be written as

η − 2
∑

α∈span{γi|vi=0}∩∆+

α = 0, (3.90)

and by definition of S, we have that vi = 0 if and only if i ∈ Sc. Thus, also the third item of
the statement is satisfied.

On the other hand, if φ ∈ h∗R and there is a set S ⊂ {1, . . . , ℓ} satisfying all three items of
the statement, then (φ, α) ≥ 0 for any positive root α, implying φ ∈ C. In addition, v = ihφ
has compact stabilizer and φ′ = 0.

Putting together Theorem 3.4.4 and Theorem 3.4.5, one has a summary result, which needs
the following lemma.

Lemma 3.4.6. The reflection σγ with respect to a compact simple root γ preserves compactness
of the roots.
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Proof. Let α ∈ ∆ be a root and let γ ∈ Σ+ be a compact simple root. Then

σγ(α) = α− 2
(α, γ)

(γ, γ)
γ (3.91)

and it is a root as reflections with respect to simple roots permute the roots [45, Section 10.2,
Lemma B]. If α is compact, σγ(α) is the sum of two compact roots, hence it is compact as
a consequence of Lemma 3.2.4. Using the same result, if α is non-compact, then σγ(α) is the
sum of a non-compact and a compact root, thus it is non-compact.

Corollary 3.4.7. For any φ ∈ h∗R and any real λ ∈ {−1, 0, 1}, the following conditions are
equivalent:

• φ belongs to the dominant Weyl chamber C, the stabilizer of v = ihφ is compact and
φ′ = λφ.

• There exists a subset S ⊆ {1, . . . , ℓ} such that i ∈ S if γi is a non-compact simple root,
and

φS = η − 2
∑

α∈span{γi|i∈Sc}∩∆+

α (3.92)

satisfies (φS , γi) = λ|(φS , γi)| for all i ∈ S. Moreover

φ =

{
λφS if λ = ±1∑
i∈S v

iφi for some vi > 0 if λ = 0
. (3.93)

Proof. First, we show that, given S ⊆ {1, . . . , ℓ} such that i ∈ S whenever γi is a non-compact
simple root, the element φS belongs to the span of φi, i ∈ S. To see this, let φS =

∑ℓ
j=1 w

iφi
and notice that, by equation (3.42), wj = 2(φS , γj)/|γj |2. We are then reduced to prove that
(φS , γj) = 0 for each j ∈ Sc. In order to do this, we will show that, for every j ∈ Sc, φS is
fixed by the reflection σγj with respect to the hyperplane orthogonal to γj . Observe that, by
definition of η, one has

η = 2
∑

α∈∆+

α− 4
∑

α∈∆+
n

α. (3.94)

Since any root is either positive or negative and the reflection of a root by σγj is still a root, one
may conclude that the reflection σγj (α) of a positive root α is a positive root, unless α = γj .
On the other hand, by Lemma 3.4.6, a reflection with respect to a compact root preserve
compactness, in particular σγj (α) has the same compactness as α. Hence

σγj (η) = η − 4γj . (3.95)

By the properties of root systems, the vector 2
∑
α∈span{γi|i∈Sc}∩∆+ α is twice the δ-vector

associated with the root subsystem span{γi | i ∈ Sc}∩∆+, where the δ-vector of a root system
is defined as the half sum of all positive roots. Similarly as for η, one has

σγj


2

∑

α∈span{γi|i∈Sc}∩∆+

α


 = 2

∑

α∈span{γi|i∈Sc}∩∆+

α− 4γj . (3.96)
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Putting everything together,

σγj (φS) =σγj


η − 2

∑

α∈span{γi|i∈Sc}∩∆+

α




=η − 4γj − 2
∑

α∈span{γi|i∈Sc}∩∆+

α+ 4γj

=η − 2
∑

α∈span{γi|i∈Sc}∩∆+

α

=φS .

(3.97)

This proves that φS belongs to span{φi | i ∈ S}. The condition (φS , γi) = λ|(φS , γi)| for all
i ∈ S, is then equivalent to φS ∈ λC if λ = ±1 and to φS = 0 if λ = 0. With all this at hand,
the statement follows by Theorem 3.4.4 and Theorem 3.4.5.

Actually, the statement of Corollary 3.4.7 may be slightly refined. Indeed, in order to
establish whether there exists a vector having orbit with special canonical almost-complex
structure, it suffices to check the second condition of the above statment for S the set of
indices of simple non-compact roots.

Corollary 3.4.8. For any φ ∈ h∗R and any real λ ∈ {−1, 0, 1}, the following conditions are
equivalent:

• φ belongs to the dominant Weyl chamber C, the stabilizer of v = ihφ is compact and
φ′ = λφ;

• for S = {i | γi ∈ Σ+
n }, φS = η − 2

∑
α∈span{γi|i∈Sc}∩∆+ α satisfies (φS , γi) = λ|(φS , γi)|

for all i ∈ S. Moreover

φ =

{
λφS if λ = ±1∑
i∈S v

iφi for some vi > 0 if λ = 0
(3.98)

Proof. In order to simplify the notation, put P = {i | γi ∈ Σ+
n }. We discuss the cases λ = −1, 0

and λ = 1 separately. In the first case we will prove that if there exists a set S ⊇ P such that
(φS , γi) = λ|(φS , γi)| for all i ∈ S, then S = P . For the case λ = 1, we will prove that if there
exists a set S ⊇ P such that (φS , γi) = λ|(φS , γi)| for all i ∈ S, then the same condition is
satisfied also for P and φP , thus it suffices to prove it for P . The statement then follows by
Corollary 3.4.7.

Assume that there exists a set S ⊇ P such that the vector

φS = η − 2
∑

α∈span{γi|i∈Sc}∩∆+

α (3.99)

satisfies (φS , γi) = λ|(φS , γi)|, for each i ∈ S, with λ = −1, 0. Thus, by Corollary 3.4.7, the
adjoint orbit of φS is special symplectic general type or special symplectic Calabi-Yau. Choose
an index i ∈ S \P , so that the simple root γi is compact and consider the reflection of φS with
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respect to γi

σγi(φS) =σγi


η − 2

∑

α∈span{γi|i∈Sc}∩∆+

α




=η − 4γi − 2
∑

α∈span{γi|i∈Sc}∩∆+

α+ 4
∑

α∈span{γi|i∈Sc}∩∆+

(α, γi)

(γi, γi)
γi

=φS −


4− 4

∑

α∈span{γi|i∈Sc}∩∆+

(α, γi)

(γi, γi)


 γi.

(3.100)

From the explicit formula for reflections, one has

2− 2
∑

α∈span{γi|i∈Sc}∩∆+

(α, γi)

(γi, γi)
=

(φS , γi)

(γi, γi)
, (3.101)

which simplifies as
|γi|2 −

∑

α∈span{γi|i∈Sc}∩∆+

(α, γi) =
1

2
(φS , γi). (3.102)

By writing the second summand of left-hand side in (3.102) in terms of simple roots
∑

α∈span{γi|i∈Sc}∩∆+

α =
∑

j∈Sc

ajγj (3.103)

one has

 ∑

α∈span{γi|i∈Sc}∩∆+

α, γi


 =


∑

j∈Sc

ajγj , γi


 =

∑

j∈Sc

aj(γj , γi) ≤ 0 (3.104)

since j ∈ S and the aj ’s are positive. Thus

(φS , γi) = 2|γi|2 − 2
∑

α∈span{γi|i∈Sc}∩∆+

(α, γi) > 0, (3.105)

a contradiction by the assumption that the orbit is special symplectic general type or special
symplectic Calabi-Yau. This shows that S \ P = ∅, hence S = P .

Assume now that there exists a set S ⊇ P such that the vector φS as above satisfies
(φS , γi) = λ|(φS , γi)|, for each i ∈ S, with λ = 1. Hence, by Corollary 3.4.7, the adjoint orbit
of φS is special symplectic Fano. Notice that, since Sc ⊆ P c, one has

φP =η − 2
∑

α∈span{γi|i∈P c}∩∆+

α

=η − 2
∑

α∈span{γi|i∈Sc}∩∆+

α− 2
∑

α∈span{γi|i∈P c\Sc}∩∆+

α

=φS − 2
∑

α∈span{γi|i∈P c\Sc}∩∆+

α. (3.106)
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By writing
∑
α∈span{γi|i∈P c\Sc}∩∆+ α in terms of simple roots

∑

α∈span{γi|i∈P c\Sc}∩∆+

α =
∑

i∈P c\Sc

biγi (3.107)

and arguing as above, it turns out that for j ∈ P

(φP , γj) = (φS , γj)− 2
∑

i∈P c\Sc

bi(γi, γj) > 0. (3.108)

This shows that P and φP satisfy (φP , γi) = λ|(φP , γi)| for all i ∈ P , hence the adjoint orbit
of φP is special symplectic Fano too.

Corollary 3.4.8 shows that the condition for a vector to admit adjoint orbit with special
compatible almost-complex structure does not depend on the choice of the set S, but on the
algebraic structure of the underlying Lie algebra g. In particular, it depends on the Vogan
diagram of g only, in a sense that will be more clear in Section 3.7. Notice that corollary above
gives a further proof of uniqueness for special symplectic general type adjoint orbits.

One may give a geometric flavour to Corollary 3.4.8. Let φP and φS be two distinct vectors
belonging to the dominant Weyl chamber such that there exist ψP , ψS satisfying ψP = λPφP
and ψS = λSφS , with S ⊇ P . Called VP and VS their respective stabilizers, the adjoint
orbits G/VP and G/VS of ψP and ψS respectively admit special canonical almost-complex
structures. The inclusion P ⊂ S induces an inclusion VS ⊂ VP which, in turn, induces a
fibration G/VS → G/VP with compact fibers VS/VP . In particular, the fibers are compact
homogeneous complex manifolds admitting a Kähler-Einstein metric, by the result of Borel
and Weil [73]. Moreover, they are compact and homogeneous of Fano type. If the associated
metric on G/VS is special, then the basis of the fibration should be symplectic Fano, that is
λS > 0, since the metric on G/VS is locally a product of the ones on G/VP and VS/VP .

The next section is concerned with some geometric objects attached to an almost-complex
structure. In particular, we study them in case the almost-complex structure is special.

3.5 Geometric formulae
In this section we provide formulae for the Hermitian scalar curvature and the Nijenhuis tensor
of the canonical almost-complex structure in terms of root data, as they are quite natural
objects arising in the study almost-complex structures. We are going to use these formulae for
computations on explicit examples (Appendix B).

3.5.1 Hermitian scalar curvature
In this section we give a formula for the Hermitian scalar curvature associated with the canon-
ical almost-complex structure on the adjoint orbit G/V of φ. Since, in our context, both the
symplectic form ω and the almost-complex structure J are homogeneous onG/V , the Hermitian
scalar curvature s of J is constant. Thus, it suffices to compute it at the identity coset e ∈ G/V .
By Lemma 3.3.4, a symplectic basis of m is given by (1/

√
λα)uα, (εα/

√
λα)vα, for α ∈ ∆+\φ⊥.

As we have seen at the end of Section 1.4, the Hermitian scalar curvature has a very explicit
expression once one has a symplectic basis (1.73). So let e1, . . . , en, Je1, . . . , Jen ∈ Te(G/V )
be a symplectic basis at the identity coset e ∈ G/V . Then the Hermitian scalar curvature at
e is given by

s(e) =

n∑

i=1

ρ(ei, Jei). (3.109)
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We observed in Section 3.4 that the Chern-Ricci form of J is defined by ρ(X,Y ) = B(v′, [X,Y ])
where v′ = 2

∑
α∈∆+\φ⊥ [uα, vα]. Thus, the Hermitian scalar curvature is given by

s =
∑

α∈∆+\φ⊥

1

λα
ρ(uα, εαvα) =

∑

α∈∆+\φ⊥

1

λα
B(v′, [uα, εαvα]). (3.110)

Collecting all the terms inside B, one has s = B(v′, z), where

z =
∑

α∈∆+\φ⊥

εα
λα

[uα, vα]. (3.111)

By the definition of uα and vα (3.48), the expression of z may be simplified as

z = −
∑

α∈∆+\φ⊥

i

λα
hα. (3.112)

However, writing the Hermitian scalar curvature in terms of weights is more suitable for our
purposes.
Lemma 3.5.1. The Hermitian scalar curvature of J is given by

s = −2
∑

α,β∈∆+\φ⊥

εα
(α, β)

(φ, β)
. (3.113)

Proof. Write z = ihζ and v′ = ihφ′ where ζ, φ′ ∈ h∗R are defined by

ζ = −
∑

α∈∆+\φ⊥

1

λα
α, φ′ = −2

∑

α∈∆+\φ⊥

εαα. (3.114)

Then
s = B(v′, z) = −(φ′, ζ). (3.115)

By writing explicitly φ′ and ζ

s = −(φ′, ζ) = −2
∑

α,β∈∆+\φ⊥

εα
λβ

(α, β). (3.116)

Then the formula follows by recalling the definition of λβ = (φ, β), if β is a positive root.

When an almost-complex structure on a symplectic manifold satisfies ρ = λω, the Hermitian
scalar curvature is constant and equal to s = nλ, where 2n is the dimension of the manifold.
In particular, in our context, we have the following dimension formula.
Proposition 3.5.2. If φ′ = λφ with λ 6= 0, then

dim G/V = − 4|φ|2
(η, φ)

∑

α,β∈∆+\φ⊥

εα
(α, β)

(φ, β)
. (3.117)

Proof. Since φ′ = λφ, J satisfies ρ = λω and, by the observation above, s = nλ. Thus,
dim G/V = 2n = 2s/λ. By Lemma 3.4.1, λ = (η,φ)

|φ|2 , so that

dim G/V = − 4

λ

∑

α,β∈∆+\φ⊥

εα
(α, β)

(φ, β)
= − 4|φ|2

(η, φ)

∑

α,β∈∆+\φ⊥

εα
(α, β)

(φ, β)
. (3.118)
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3.5.2 Nijenhuis tensor
In this section we provide some formulae expressing quantities related to the Nijenhuis tensor
of the canonical almost-complex structure in terms of root data. Recall that the Nijenhuis
tensor of an almost-complex structure J on a manifold M is a skew-symmetric (2, 1)-tensor
defined by

N(X,Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]) . (3.119)

We recall the following identities

N(JX, Y ) = N(X, JY ) = −JN(X,Y ), (3.120)

that will be useful in the next computations.
If J is compatible with a symplectic form ω, then the pointwise norm |N |2 of N with respect

to the induced Riemannian metric defines a smooth function on M . Moreover, J is integrable
if and only if |N |2 = 0. In order to compute |N |2 at a point p ∈M , choose a symplectic basis
of the form e1, Je1, . . . , en, Jen of TpM so that

|N |2(p) = 2

n∑

i,j=1

|N(ei, ej)|2. (3.121)

In our context, the almost-complex structure J is homogeneous on the adjoint orbit G/V , thus
its Nijenhuis tensor is homogeneous as well. In particular, it is completely determined by its
value at the identity coset e ∈ G/V , where it may be described by the skew-symmetric bilinear
map

NH : m×m → m. (3.122)

As the symplectic form ω is homogeneous too, the squared norm |N |2 is a constant function
on G/V . In what follows, we compute NH and |N |2 in terms of root data.

Recall that we defined the basis {uα, vα} on m by (3.48) and the almost-complex structure
H by (3.61). So, by Proposition 1.4.9, NH is given by

NH(uα, uβ) = εαεβ [vα, vβ ]m − εαH[vα, uβ ]m − εβH[uα, vβ ]m − [uα, uβ ]m, (3.123)

where the subscript m denotes the projection of the commutator onto m. In addition, by the
identities (3.120), NH satisfies

NH(uα, vβ) = −εβHNH(uα, uβ), NH(vα, vβ) = −εαεβNH(uα, uβ). (3.124)

Identities (3.124) together with skew-symmetry of NH imply that NH is entirely determined by
NH(uα, uβ), for α, β ∈ ∆+ \ φ⊥, which has an explicit formula as the following lemma shows.

Lemma 3.5.3. For all α, β ∈ ∆+ \ φ⊥ one has

NH(uα, uβ) =
(εα + 1)(εβ + 1)

4
√
2

Nα,β vα+β +
(εαεβ − 1)sα−β + εα − εβ

4
√
2

Nα,−β (vα−β)m,

(3.125)
where (vα−β)m denotes the component of vα−β along m according to the decomposition g = v⊕m
and the constants Nα,β , Nα,−β are as in Theorem 3.2.7.
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Proof. The component NH(uα, uβ) has the explicit form

NH(uα, uβ) =
1

4
([Huα,Huβ ]m −H[Huα, uβ ]m −H[uα,Huβ ]m − [uα, uβ ]m)

=
1

4
(εαεβ [vα, vβ ]m − εαH[vα, uβ ]m − εβH[uα, vβ ]m − [uα, uβ ]m) . (3.126)

We compute separately all summands of (3.126). Let α, β ∈ ∆+ \ φ⊥. In the computations
several identities are used: the definintion of uα and vα, the identities characterizing the
coefficients Nα,β and εα+β = −εαεβ .

[vα, vβ ]m =− i
−1−εα−εβ−εαεβ

2√
2

(Nα,βvα+β − sα−βNα,−β(vα−β)m)

[vα, uβ ]m =− i
−1−εα−εβ−εαεβ

2√
2

(Nα,βuα+β +Nα,−β(uα−β)m)

[uα, vβ ]m =− i
−1−εα−εβ−εαεβ

2√
2

(Nα,βuα+β −Nα,−β(uα−β)m)

[uα, uβ ]m =
i
−1−εα−εβ−εαεβ

2√
2

(Nα,βvα+β + sα−βNα,−β(vα−β)m)

(3.127)

Before continuing, we make a couple of observations which clarify the notation. First, for
α, β ∈ ∆+ \ φ⊥, the sum α + β may not be a root. In this case, Nα,β = 0 so that we do not
have to care about vα+β . On the other hand, if α+ β is a root, then it belongs to ∆+ \φ⊥, as
φ belongs to the dominant Weyl chamber and

(φ, α+ β) = (φ, α) + (φ, β) > 0. (3.128)

Then, for all α, β ∈ ∆+ \ φ⊥, the difference α − β is not necessarily a positive root and,
moreover, it may be orthogonal to φ. The former is not a big deal, as Nα,β vα−β is invariant
under switiching α and β and it vanishes when α − β is not a root. On the other hand, one
has

(φ, α− β) = (φ, α)− (φ, β), (3.129)
thus one among α − β and β − α belongs to ∆+ \ φ⊥ precisely when (φ, α) 6= (φ, β). In this
case sα−β(φ, α − β) > 0. Hence, either (vα−β)m = 0 and (φ, α − β) = 0, or (vα−β)m = vα−β
and (φ, α− β) 6= 0.

Plugging all summands in identity (3.126), we get

NH(uα, uβ) =
i
−1−εα−εβ−εαεβ

2

4
√
2

(Nα,βvα+β(−εαεβ + εαεα+β + εβεα+β − 1)+

+Nα,−β(vα−β)m(sα−βεαεβ + εαεα−β − εβεα−β − sα−β))

=
i
−1−εα−εβ−εαεβ

2

4
√
2

(Nα,βvα+β(−εαεβ − εβ − εα − 1)+

+Nα,−β(vα−β)m(sα−βεαεβ − εβ + εα − sα−β))

=
i
−1−εα−εβ−εαεβ

2

4
√
2

(−Nα,βvα+β(εα + 1)(εβ + 1)+

+Nα,−β(vα−β)m((εαεβ − 1)sα−β + εα − εβ).

(3.130)
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Hence

NH(uα, uβ) =
i
−1−εα−εβ−εαεβ

2

4
√
2

(−Nα,βvα+β(εα + 1)(εβ + 1)+

+Nα,−β(vα−β)m((εαεβ − 1)sα−β + εα − εβ)).

(3.131)

The first summand is non-zero only if both α and β are non-compact and, in this case, the

coefficient i
−1−εα−εβ−εαεβ

2

4
√
2

is equal to −1. On the other hand, the second summand may
be non-zero if α and β have different compactness indices and, in this case, the coefficient
i
−1−εα−εβ−εαεβ

2

4
√
2

is equal to 1. This concludes the proof.

Remark 3.5.4. As we have seen in the above proof, the coefficients (εα + 1)(εβ + 1) vanish as
soon as one root among α and β is compact. In a similar way, (εαεβ − 1)sα−β + εα − εβ = 0
when α and β are both compact or non-compact. Summing up, we have

NH(uα, uβ) =





0 if α, β ∈ ∆+
c

1√
2
Nα,β vα+β if α, β ∈ ∆+

n
εα−sα−β

2
√
2

Nα,−β (vα−β)m otherwise
(3.132)

where ∆+
c and ∆+

n are set set of positive compact and non-compact roots respectively.
At this point we may express the squared norm of N in terms of root data. Recall that, by

Lemma 3.3.4, there is a symplectic orthonormal basis on m constituted by {(1/
√
λα)uα, (εα/

√
λα)vα}.

Thus, by Lemma 3.5.3 and the formula for the norm of N at a point (3.121), one may compute
explicitly the squared norm of N as follows.

Theorem 3.5.5. The squared norm of the Nijenhuis tensor of J is given by

|N |2 =
∑

α,β∈∆+
n

(φ, α+ β)

(φ, α)(φ, β)
N2

α,β +
∑

α∈∆+
c \φ⊥

β∈∆+
n

(1 + sα−β)
(φ, α− β)

(φ, α)(φ, β)
N2

α,−β (3.133)

where the coefficients N2
α,β are as in Theorem 3.2.7.

Proof. Recalling the definition of λα = (φ, α), for α ∈ ∆+ \ φ⊥, by identity (3.121) and the
defintion of the symplectic basis {(1/

√
λα)uα, (εα/

√
λα)vα} one has

|N |2 = 2
∑

α,β∈∆+\φ⊥

|NH(uα, uβ)|2
λαλβ

= 2
∑

α,β∈∆+\φ⊥

|NH(uα, uβ)|2
(φ, α)(φ, β)

. (3.134)

Thus, by Lemma 3.5.3 and Remark 3.5.4, one gets

|N |2 =
∑

α,β∈∆+
n \φ⊥

N2
α,β |vα+β |2

(φ, α)(φ, β)
+

∑

α∈∆+
c \φ⊥

β∈∆+
n \φ⊥

(1 + sα−β)2

4(φ, α)(φ, β)
N2

α,−β |(vα−β)m|2+

+
∑

α∈∆+
n \φ⊥

β∈∆+
c \φ⊥

(1− sα−β)2

4(φ, α)(φ, β)
N2

α,−β |(vα−β)m|2.
(3.135)
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By the identities N2
α,−β = N2

β,−α , vα−β = vβ−α, sα−β = −sβ−α and (1 + sα−β)2 = 2(1 +
sα−β), one may sum the last two summands in (3.135) to obtain

|N |2 =
∑

α,β∈∆+
n \φ⊥

N2
α,β |vα+β |2

(φ, α)(φ, β)
+

∑

α∈∆+
c \φ⊥

β∈∆+
n \φ⊥

1 + sα−β
(φ, α)(φ, β)

N2
α,−β |(vα−β)m|2. (3.136)

To conclude, observe that, by Lemma 3.3.1 and the definitions of σ and H, one has

|vα+β |2 =σ(vα+β ,Hvα+β)

=− εα+βB([v, vα+β ], uα+β)

=εα+βλα+βB(uα+β , uα+β)

=λα+β

=(φ, α+ β)

(3.137)

and, similarly, |(vα−β)m|2 = sα−β(φ, α− β). The thesis follows by substituting these norms in
(3.136) and observing that ∆+

n \ φ⊥ = ∆+
n , since non-compact roots cannot be orthogonal to

φ.

Remark 3.5.6. As we observed in the proof of Lemma 3.5.3, sα−β(φ, α−β) ≥ 0, since φ belongs
to the dominant Weyl chamber C. This shows that all summands of the formula for |N |2 in
Theorem 3.5.5 are positive. In particular, the almost-complex structure J turns out to be
non-integrable as soon as there are two non-compact positive roots α and β such that α+ β is
a root.

3.6 Compact quotients
As in the previous sections, let v ∈ g be an element with compact stabilizer V ⊂ G and
consider its adjoint orbit G/V endowed with the Kirillov-Kostant-Souriau symplectic form and
the canonical almost-complex structure J . This section is concerned with locally homogeneous
compact manifolds of the form

M = Γ\G/V, (3.138)
where Γ ⊂ G is a discrete co-compact subgroup without torsion, whose existence is guaranteed
by a theorem of Borel [12]. Since ω and J are G-invariant, they descend to a symplectic
form and an almost-complex structure on M , that we denote ωΓ and JΓ respectively. Thus
(M,ωΓ, JΓ) is a compact almost-Kähler manifold. Leaving out for a moment the almost-
complex structure JΓ we, ask the following question.

Question 3.6.1. Does the compact symplectic manifold (M,ωΓ) admit a (non-necessarily
locally homogeneous) compatible complex structure?

In other words, we ask if, on M , there exists an integrable almost-complex structure, say
J ′, among all almost-complex structures which are compatible with ωΓ. This would make
(M,ωΓ, J

′) a Kähler manifold.
The aim of this section is to give some partial answers to Question 3.6.1. Notice that all

geometric objects on G/V such as the Chern-Ricci form, the Hermitian scalar curvature and
the Nijenhuis tensor of J , descend to the corresponding objects on (M,ωΓ, JΓ), as they are
G-invariant, hence Γ-invariant. In particular, answer to Question 3.6.1 is affirmative when J
is yet integrable on G/V , so that (M,ωΓ, JΓ) is a Kähler manifold.
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On the other hand, under certain hypothesis involving just the Lie group, answer to Ques-
tion 3.6.1 is negative, as a consequence of the theorem due to Carlson and Toledo [15, Theo-
rem 8.2].

Theorem 3.6.2. Let K ⊂ G be a maximal compact subgroup. If G/K is not Hermitian
symmetric, then (M,ωΓ) is not of the homotopy type of a compact Kähler manifold.

Observe that, in order to fit with the statement of Theorem 3.6.2, one has to drop the
symplectic form ωΓ and to endow G/V with a homogeneous complex structure, say J̃ , which
always exists by the hypothesis on G and V [39, Section 2]. The key point is that J̃ is integrable,
but it is not compatible with ωΓ, as positiveness of the associated Riemannian metric fails.

Coming back to our adjoint orbit (G/V, ω, J), assume that J satisfies ρ = λω, so that the
same equation holds on the quotient M . Then one may conclude that the first Chern class c1
of (M,ωΓ), which is represented by ρΓ/4π (see identity (1.44) or [27, Section 2]), satisfies

4πc1 = λ[ωΓ] ∈ H2
dR(M,R). (3.139)

Therefore, if the canonical almost-complex structure J is special on G/V , i.e., ρ = λω for some
λ ∈ R, then the compact symplectic manifold (M,ωΓ) turns out to be:

• symplectic general type if λ < 0,

• symplectic Calabi-Yau if λ = 0,

• symplectic Fano if λ > 0.

In the symplectic general type case, it might be that J itself is integrable. Hence JΓ is
integrable as well, providing many instances of positive answer to Question 3.6.1. In particular,
this happens when G/V is Hermitian symmetric. We refer to Section 3.7 for many examples in
the case G is simple. On the other hand, answer to Question 3.6.1 is always negative whenever
M is special symplectic Fano. The obstruction has topological nature also in this case.

Lemma 3.6.3. If (M,ωΓ) is special symplectic Fano, then it is not of Kähler type.

Proof. If J ′ were an integrable almost-complex structure compatible with ωΓ, then (M,ωΓ, J
′)

would be a compact Kähler manifold with positive Ricci curvature. Thus, by Myers’s Theorem
[65], it would have finite fundamental group, contradicting the fact that M is covered by G/V ,
which is non-compact.

With the techniques discussed in Section 3.7, we were able to produce several examples
of adjoint orbits (G/V, ω, J) with G a non-compact simple Lie group. After having examined
these examples, we are pushed to suspect that the answer to Question 3.6.1 is that a compact
quotient (M,ωΓ) is of Kähler type if and only if JΓ is integrable. This proposal should be
compared with the result of Carlson and Toledo [16, Theorem 0.1]. In that work, they consider
a homogeneous complex structure J̃ on G/V (which always exists but it is rarely compatible
with ω) and establish when the complex manifold (M, J̃Γ), with M = Γ\G/V , admits a Kähler
metric. Unfortunately, their approach seems to be hardly adaptable to our situation. We plan
to come back to Question 3.6.1 in the future.

With the results developed through the previous sections, we are ready to give explicit
examples of adjoint orbits admitting special canonical almost-complex structure. This is the
goal of the next section.
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3.7 Vogan diagrams
Vogan diagrams are combinatorial tools by which one may classify real semisimple Lie algebras
[48, Chapter VI]. As we will see, they turn out to be useful objects for studying (and hopefully
classify) adjoint orbits (G/V, ω, J) of non-compact simple Lie groups satisfying ρ = λω. This
final section is entirely dedicated to this purpose.

Let g be a real semisimple Lie algebra. Recall that the Vogan diagram of g is the Dynkin
diagram of g with some painted vertices (including no one and all) and some pairs of unpainted
vertices related by an automorphism of order two that intertwines the elements of the pair. A
vertex is painted when the corresponding simple root is non-compact, while paired unpainted
vertices correspond to roots that are exchanged by the Cartan involution θ. Actually, not all
Vogan diagrams are well behaved for our analysis. Indeed, the ones with non-trivial automor-
phism, meaning that there is at least one couple of automorphism-related vertices, will be ruled
out form our study because of the following result.

Lemma 3.7.1. Elements of a real semisimple Lie algebra having Vogan diagram with non-
trivial automorphism cannot have compact isotropy.

Proof. Let g be a real semisimple Lie algebra with Cartan involution θ and corresponding
Cartan decomposition g = k⊕p. The strategy is to prove that if g has Vogan diagram with non-
trivial automorphism, then its Cartan subalgebras are not contained in a maximally compact
subalgebra. By [48, Proposition 6.59], it suffices to consider θ-stable Cartan subalgebras h ⊂ g,
i.e., such that h = (h ∩ k) ⊕ (h ∩ p). In this case, we put t = h ∩ k, a = h ∩ p and, by
Proposition [48, Proposition 6.70], purely imaginary roots are contained in t, while real ones
are contained in a. So, assume that the Vogan diagram of g has non-trivial automorphism and
let v ∈ g such that it is contained in a θ-stable Cartan subalgebra h = t ⊕ a. Then, a 6= {0},
as the Cartan involution acts non-trivially on the diagram, hence h cannot be contained in a
maximally compact subalgebra of g. Since h is contained in the Lie algebra v of the stabilizer
of v, v cannot be compact and so neither V .

In view of our applications, by lemma above, we are reduced to consider Vogan diagrams
with trivial automorphism. For this reason, from now on, a Vogan diagram will be simply a
Dynkin diagram with some painted vertices. Moreover, dealing with adjoint orbits or Vogan
diagrams is equivalent in this context, due to the following result.

Lemma 3.7.2. Let G be a real semisimple Lie group with Lie algebra g and let ℓ be the rank
of g. To any v ∈ g with compact stabilizer, one may associate a Vogan diagram and a vector
(v1, . . . , vℓ) ∈ Rℓ with vi ≥ 0. Moreover, vi > 0 if the i-th node of the Vogan diagram is
painted.

Proof. As we explained in Section 3.2, given v as in the statement, it is possible to find a Cartan
subalgebra h0 ∈ g containing v. Since the Killing form B restricts to a positive-definite scalar
product on hR = ih0 ⊂ gC, one may define φ ∈ h∗R by φ(h) = −B(iv, h), for all h ∈ hR. At
this point one may choose a positive root system ∆+ ⊂ h∗R so that φ belongs to the associated
dominant Weyl chamber C or, equivalently, so that (φ, α) ≥ 0 for all α ∈ ∆+. The dominant
Weyl chamber also determines the set of simple roots Σ+ ⊂ ∆+, which splits as Σ+ = Σ+

c ∪Σ+
n ,

where Σ+
c is the set of compact simple roots and Σ+

n is the set of non-compact ones. With all
this at hand, one may define a Vogan diagram by taking the Dynkin diagram associated with
Σ+ and painting all the nodes corresponding to elements in Σ+

n .
Actually, one may label the simple roots from 1 to ℓ, Σ+ = {γ1, . . . , γℓ}, since the rank

of g is exactly ℓ. Denoted by A = (Aij) the Cartan matrix of gC, the fundamental dominant
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weights φ1, . . . , φℓ are given by

φj =

ℓ∑

i=1

Aijγi, (3.140)

where (Aij) = A−1. As φ belongs to the dominant Weyl chamber C, by Lemma 3.2.6, one
may write φ as

φ =

ℓ∑

i=1

viφi (3.141)

with all vi ≥ 0 for i = 1, . . . , ℓ and vi > 0 whenever γi ∈ Σ+
n , by compactness assumption on

the stabilizer of v. Thus, the vector (v1, . . . , vℓ) ∈ Rℓ is the one claimed in the statement, and
the thesis follows by the rule for painting the nodes in a Vogan diagram.

Observe that one may associate different Vogan diagrams to the same element v. Indeed,
by the above proof, the choice of a Cartan subalgebra containing v and the dominant Weyl
chamber are not canonical at all. More precisely, uniqueness of the associated Vogan diagram
fails when φ belongs to some walls of the dominant Weyl chamber C, so that there exists a
different Weyl chamber C ′ that contains φ. Nevertheless, the vector (v1, . . . , vℓ) is uniquely
determined once the Vogan diagram is chosen and the simple roots are labelled.

The correspondence established in Lemma 3.7.2 may be reversed. Indeed, starting with a
connected Dynkin diagram, one may algorithmically find a positive root system ∆+ for the
associated complex Lie algebra. In a similar way, by Lemma 3.2.4, starting with a connected
Vogan diagram for a real Lie algebra g, one may algorithmically find a positive root system
∆+ and determine for each root α ∈ ∆+ whether it is compact or not. Thus, denote by C the
dominant Weyl chamber associated with ∆+ and choose φ ∈ C of the form φ =

∑ℓ
i=1 v

iφi,
where the φi’s are the fundamental dominant weights and vi ≥ 0. Since we consider only
Vogan diagrams with trivial automorphism, the element v = ihφ ∈ g has compact stabilizer
V for the action of any Lie group having g as Lie algebra. Actually, one may be more precise
about the Lie algebra v of the stabilizer V of v.

Proposition 3.7.3. Up to isomorphism, the Lie algebra v of the stabilizer of v decomposes as

v = v1 ⊕ · · · ⊕ vr ⊕ Rm, (3.142)

where v1 ⊕ · · · ⊕ vr is the compact Lie algebra associated with the Vogan diagram obtained
by removing from the original Vogan diagram all vertices corresponding to the coefficients vi
that are non-zero, while m is the number of removed vertices. Moreover, r is the number of
connected components of the obtained Vogan diagram and all the vi’s are simple.

Proof. By Proposition 3.3.2, the Lie algebra of the stabilizer of v is given by

v = h0 ⊕
⊕

α∈∆+∩φ⊥

span{uα, vα}. (3.143)

Consider the splitting
∆+ ∩ φ⊥ = ∆+

1 ∪ · · · ∪∆+
r (3.144)

as union of irreducible positive root systems. It induces a decomposition of v as in (3.142),
where each vi is the Lie algebra corresponding to ∆+

k and Rm is the center of v. Since no
non-compact root is orthogonal to φ, each vk is compact. We are left with proving that the
dimension m of the center z(v) of v is the same as the number of vi’s that are non-zero. Note
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that z(v) is a subalgebra of the Cartan subalgebra h0. Thus, as a vector space, one may
identify it with a subspace of h∗R, by mapping each element z ∈ z(v) to the co-vector ψ defined
by z = ihψ. By definition of uα and vα (3.48), item 3 of Theorem 3.2.7 and the fact that
z(v) ∈ h0, one gets

[z, uα] =
i
1−εα

2√
2

[z, eα + e−α]

=
i
1−εα

2√
2
α(z)(eα − e−α)

=
i
3−εα

2√
2

(ψ, α)(eα − e−α)

=(ψ, α)vα.

(3.145)

for α ∈ ∆+ ∩ φ⊥. Thus, with similar computations for [z, vα],

[z, uα] = (ψ, α)vα, [z, vα] = −(ψ, α)uα. (3.146)

Since both commutators above have to be zero when z belongs to z(v), the center z(v) turns
out to have the same dimension as the orthogonal complement to ∆+ ∩φ⊥. As φ is expressed
as a sum of fundamental dominant weights φi’s which satisfy 2

(φi,γj)
(γj ,γj)

= δij , one may write

∆+ ∩ φ⊥ = span{γi | vi = 0} ∩∆+. (3.147)

Thus, the orthogonal complement of ∆+ ∩ φ⊥ coincides with span{φi | vi 6= 0}, which has
cardinality equal to the number of nodes which have been removed from the Vogan diagram.

At this point, we may consider the adjoint orbit G/V of v equipped with the Kirillov-
Kostant-Souriau symplectic form ω and the canonical almost-complex structure J . As we
discussed in Section 3.4, deciding whether J satisfies ρ = λω reduces to a combinatorial
problem on φ (see Theorem 3.4.4 and Theorem 3.4.5) that may be treated at the Lie algebra
level. In order to simplify the results below, we define φ to λ-special (or just special) if the
orbit (G/V, ω, J) of v = ihφ ∈ g satisfies ρ = λω. Hence, for any real non-compact simple
Lie group G, all adjoint orbits G/V endowed with the Kirillov-Kostant-Souriau symplectic
form ω and the canonical almost-complex structure J satisfying ρ = λω, for some λ, may be
algorithmically listed up to isomorphism and scaling. Indeed, by what we said above, this is
equivalent to list (up to scaling) all special φ’s for all possible connected Vogan diagrams.

As one may expect, the number of such φ’s grows quite fast with the rank ℓ of the Vogan
diagram. However, it is possible to implement an algorithm on a computer which lists all Vogan
diagrams admitting a special φ. We did it and we ran the algorithm on a standard computer
for Vogan diagrams of rank up to 11, thus including all diagrams of exceptional type. Actually,
the program turned out to be extremely useful in order to make predictions and to understand
which direction to follow. By making experiments, we learnt many aspects concerning the
relations between special φ’s and their Vogan diagrams that we were able to prove at a later
time. All the details of the algorithm, including the flow chart and the full code, may be found
in Appendix A, while in Appendix B we list all special φ’s for all connected Vogan diagrams
up to rank ℓ = 8.

Even if the general pattern is still unclear, leaving little hope for a complete classification,
some general existence and non-existence results may be red off directly from the Vogan dia-
gram. The first result in this direction says that, under precise hypothesis, the fundamental
dominant weights φ1, . . . , φℓ are special.
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Proposition 3.7.4. Given a Vogan diagram with a unique painted node, let Σ+ = {γ1, . . . , γℓ}
be the associated set of simple roots. Assume that the unique painted node corresponds to the
simple root γp. Then φp is special.

Proof. Let C be the dominant Weyl chamber associated with Σ+. By definition, φp belongs to
C, as φp lies in a wall of C. Moreover, by Lemma 3.2.6, the set ∆+ \ φ⊥ of all positive roots
that are not orthogonal to φp is constituted by all positive roots α =

∑ℓ
i=1 n

iγi, with np > 0.
Since the unique painted node is the p-th one, all simple roots γi with i 6= p are compact. So
let i 6= p and call σγi the reflection with respect to the hyperplane orthogonal to γi. For any
ψ ∈ h∗R one has

(φp, σγi(ψ)) = (φp, ψ)− 2
(ψ, γi)

(γi, γi)
(φp, γi) = (φp, ψ) (3.148)

since and (φp, γi) vanishes when i 6= p. Thus for all α ∈ ∆+ \ φ⊥
p

σγi(α) ∈ ∆+ \ φ⊥
p . (3.149)

Consider now the co-vector φ′ = −2
∑
α∈∆+\φ⊥

p
εαα and observe that, by (3.149), for i 6= p,

σγi(φ
′) = −2

∑

α∈∆+\φ⊥
p

εασγi(α) = −2
∑

α∈∆+\φ⊥
p

εαα = φ′. (3.150)

This shows that φ′ is orthogonal to all compact simple roots, as the above equality holds for
each i 6= p. As a consequence of Lemma 3.2.5, φ′ must be a multiple of φp, thus φp is special
by (3.77).

Proposition 3.7.4 shows that Vogan diagrams with one painted node always admit a special
φ. In addition, one may classify all the corresponding adjoint orbits. Here we prove this facts
for adjoint orbits of classical non-compact simple Lie groups, while in Section B.2 one may
find adjoint orbits of non-compact exceptional Lie groups corresponding to Vogan diagrams
with one painted node. Recall that a simple Lie group is said to be classical if the underlying
Dynkin diagram of its Lie algebra is of type Aℓ, Bℓ, Cℓ, Dℓ and exceptional if the underlying
Dynkin diagram if of type G2, F4, E6, E7, E8.

Theorem 3.7.5. Let G be a real non-compact simple classical Lie group. There exists orbits
(G/V, ω, J) satisfying ρ = λω if the Lie algebras of G and V and the constant λ are as in the
following table

g v λ

su(p, q) su(p)⊕ su(q)⊕ R −1 p, q ≥ 1

so(2p, q) su(p)⊕ so(q)⊕ R p− q − 1 p, q ≥ 1

so∗(2ℓ) su(ℓ)⊕ R −1 ℓ ≥ 4

sp(p, q) su(p)⊕ sp(q)⊕ R p− 2q + 1 p, q ≥ 1

sp(ℓ,R) su(ℓ)⊕ R −1 ℓ ≥ 3

Proof. By Proposition 3.7.4, we know that Vogan diagrams with one painted node admit a
special vector. In order to understand which Lie algebra corresponds to a Vogan diagram it
suffices to look at the diagrams in [48, Page 414], while for the stabilizers we use Lemma 3.7.3.
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For the coefficients λ some work is required. Observe first that su(p, q), so∗(2ℓ) and sp(ℓ,R)
have the property that the quotient of their associated Lie groups by a maximal compact
subgroup is Hermitian symmetric [48, Appendix C.3], hence λ < 0 (see for Example [50,
Chapter XI, Section 9]). For the other real forms, some computations involving roots are
necessary and in the following we show the ones made for sp(p, q). The other cases may be
treated similarly. By the diagrams in [48, Page 414], the Vogan diagram of sp(p, q) corresponds
to the Dynkin diagram of Cp+q with the p-th node painted and q > 1. The element providing
the adjoint orbit is φp (up to scaling), by Proposition 3.7.4. By Lemma 3.2.5 and Lemma 3.4.1,
λ may be determined from the equation

λ =
(η, φp)

|φp|2
= − 2

|φp|2
∑

α∈∆+

εα(α, φp) = − 2

|φp|2
∑

α∈∆+

εαn
p
α

(γp, γp)

2
, (3.151)

where α =
∑ℓ
i=1 n

i
αγi. If one chooses the simple roots and φp to be normalized with unitary

norm, the equation simplifies further to

λ = −
∑

α∈∆+

εαn
p
α = −

∑

α∈∆+\φ⊥
p

εαn
p
α, (3.152)

as npα = 0 if α ∈ ∆+ ∩ φ⊥
p . Since sp(p, q) has an underlying diagram of type Cp+q, its set of

positive roots is of the form

∆+ = {ei−ej | 1 ≤ i < j ≤ p+q}∪{ei+ej | 1 ≤ i < j ≤ p+q}∪{2ei | 1 ≤ i ≤ p+q}, (3.153)

where e1, . . . , ep+q denotes the orthonormal basis of Rp+q (see for example [48, Chapter II,
Section 5]). The set of simple roots is {γi = ei − ei+1 | 1 ≤ i ≤ p+ q− 1} ∪ {2ep+q}. Thus the
roots may be written in terms of simple roots as

ei − ej =

j−1∑

k=i

ek − ek+1 =

j−1∑

k=i

γk,

ei + ej =

p+q−1∑

k=i

γk +

p+q−1∑

k=j

γk + γp+q,

2ei =2

p+q−1∑

k=1

γk + γp+q

(3.154)

so that
∆+ \ φ⊥

p = R1 ∪R2 ∪R3, (3.155)

where

R1 ={ei − ej | 1 ≤ i ≤ p < j ≤ p+ q},
R2 ={ei + ej | i ≤ p or i < j ≤ p},
R3 ={2ei | 1 ≤ i ≤ p}.

(3.156)

Notice that, by Lemma 3.2.4, R1 ⊂ ∆+
n , R3 ⊂ ∆+

c , while

Rc2 =R2 ∩∆+
c = {ei + ej | 1 ≤ i < j ≤ p},

Rn2 =Rn2 ∩∆+
n = {ei + ej | 1 ≤ i ≤ p < j ≤ p+ q}.

(3.157)
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Moreover, roots α belonging to R1 and Rn2 have npα = 1, while they have npα = 2 if they belong
to R3 or Rc2. Putting all these information together one gets

λ =−
∑

α∈R1

1 +
∑

α∈Rc
2

2−
∑

α∈Rn
2

1 +
∑

α∈R3

2

=− pq + 2

p∑

k=1

(p− k)− pq + 2p

=− 2pq + 2

(
1

2
p2 − 1

2
p

)
+ 2p

=p(p− 2q + 1).

(3.158)

Hence, up to scaling, λ = p− 2q + 1.

We highlight that the statement of Theorem 3.7.5 cannot be reversed. First of all, because
rescaling the orbit has the effect of rescaling λ in a consistent way. In addition, a non-compact
simple Lie group may have more than one orbit satisfying ρ = λω in general (see tables in
Appendix B). In the general case of V being a torus, a classification of all orbits (G/V, ω, J)
has been provided by Alekseevsky and Podestà [2, Theorem 1.1].

Many well known examples appearing in the general theory, are included in the table of
Theorem 3.7.5, thus they are adjoint orbit with special almost-Kähler structure.

Example 3.7.6 (Hyperbolic Riemann surfaces). The hyperbolic plane H2 may be represented
as the adjoint orbit SO(2, 1)/U(1), so it sits in the class represented by the second line of the
table. Since SO(2, 1) is semisimple, it admits lattices Γ ⊂ SO(2, 1) and the Riemann surfaces of
genus strictly greater than 1 may be obtained as quotients Γ\SO(2, 1)/U(1), as a consequence
of the uniformization theorem. Due to dimensional reasons, the canonical almost-complex
structure is always integrable on these manifolds. As an example, if Γ = SL(2,Z) ⊂ SO(2, 1),
then Γ\SO(2, 1)/U(1) is the modular curve.

Example 3.7.7 (The Siegel half space). Another space that we have seen throughout the
thesis, is the Siegel half space Sp(n)/U(n). This space turns out to be an adjoint orbit belonging
to the class of the last line of the table, as u(n) ∼= su(n). The quotient of Sp(n)/U(n) by the
lattice Sp(n,Z) is the moduli space of principally polarized abelian varieties. Observe that, for
n = 1, this moduli space is exactly the modular curve defined above. We will prove later that,
also in this case, the compatible almost-complex structure is always integrable.

Example 3.7.8 (Twistor space of H2n). The twistor space of the hyperbolic space H2n turns
out to be diffeomorphic to the adjoint orbit SO(2n, 1)/U(n) (see Example 1.4.3), so it sits in
the class represented by the second line of the table, for p = n, q = 1. The almost-complex
structure on these adjoint orbits is integrable only for p = q = 1, as we will see at the end of
the section. Moreover, taking compact quotients Γ\H2n, for a lattice Γ ∈ H2n, one gets the so
called hyperbolic manifolds. Then the twistor space of the hyperbolic manifold Γ\H2n is the
quotient Γ\SO(2n, 1)/U(n).

Example 3.7.9 (Period domains of weight 2 [27, Section 4.2.2]). More generally, Griffiths
period domains of weight 2, i.e., homogeneous manifolds of the form SO(2p, q)/U(p)× SO(q),
belong to the class represented by the second line of the table, for p and q greater than 1.
The canonical almost-complex structure on these manifolds is not integrable in general. Notice
that, for p = q = 1, one recovers the twistor space of the hyperbolic space discussed above.
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Example 3.7.10 (G2(2)/U(2)). The non-compact split real form G2(2) of the complex Lie
group G2 may be seen as the automorphism group of the split-octonions Os. In particular
G2(2) = Aut(Os) is contained in SO(3, 4) and it has dimension 14. A possible representation

of the Lie algebra g2(2) of G2(2) is through the 7× 7 matrices
(
A B
Bt C

)
with

A =




0 x10 − x14 x12 + x13
−x10 + x14 0 x11 − x9
−x12 − x13 −x11 + x9 0


 ,

B =



x4 − x7 −x8 − x3 x2 + x5 x6 − x1
x1 x2 x3 x4
x5 x6 x7 x8


 ,

C =




0 x9 x12 x14
−x9 0 x10 x13
−x12 −x10 0 x11
−x14 −x13 −x11 0


 .

(3.159)

This construction is similar to the one given in [45, Section 19.3], but we use split-octonions
instead of octonions, as we are dealing with the split real form of G2. The element v =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), written in coordinates, has stabilizer isomorphic to U(2), since
the matrices in the Lie algebra of the stabilizer have the form




0 0 a+ b 0 0 0 0
0 0 0 0 0 0 0

−a− b 0 0 0 0 0 0
0 0 0 0 c a d
0 0 0 −c 0 d b
0 0 0 −a −d 0 c
0 0 0 −d −b −c 0




, (3.160)

for a, b, c, d ∈ R. Thus, the orbit of v is isomorphic to G2(2)/U(2) and it carries a special
compatible almost-complex structure. To see this, one has to choose the positive roots of g2
such that the weight φ satisfying v = ihφ belongs to the dominant Weyl chamber. Then one
has to compute the vectors uα and vα, for each positive root α that is not orthogonal to v, and
the canonical linear complex structure H. At this point the vectors v and −2

∑
α∈∆+\φ⊥ εαα

turn out to be one multiple of the other, thus the canonical almost-complex structure is special
on the adjoint orbit of v, by (3.77).

The next lemma shows that when the canonical almost Kähler structure of an adjoint orbit
satisfies ρ = λω, the sign of λ is determined a priori by the Vogan diagram. Moreover, it gives
an effective criterion for deciding whether a Vogan diagram admits no special φ.

Lemma 3.7.11. Let a Vogan diagram admitting a λ-special element φ be given and let Σ+ =
{γ1, . . . , γℓ} be the associated set of simple roots. Assume that φ belongs to the dominant Weyl
chamber. If γi ∈ Σ+

n , then (η, φi) has the same sign as λ.

Proof. Recall that the vector η ∈ h∗R is defined by

η = −2
∑

α∈∆+

εαα (3.161)
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and it depends on the Vogan diagram only. By Theorem 3.4.4 and Theorem 3.4.5, the hypoth-
esis of φ being λ-special may be rewritten as

η − 2
∑

α∈span{γj |j∈Sc}∩∆+

α = λφ, (3.162)

where S ⊂ {1, . . . , ℓ} is the subset of indices such that φ =
∑
i∈S v

iφi with vi > 0. Let now
γi ∈ Σ+

n , so that i ∈ S, since indices of non-compact simple roots belong to S. Consider the
scalar product of equation (3.162) with φi

(η, φi)− 2
∑

α∈span{γj |j∈Sc}∩∆+

(α, φi) = λ(φ,φi). (3.163)

The second summand of the left-hand side in (3.163) vanishes, as φi with i ∈ S is orthogonal
to all roots belonging to span{γj | j ∈ Sc}, thus we are left with (η, φi) = λ(φ,φi). However,
(φ,φi) is always positive since φ belongs to the dominant Weyl chamber, hence the sign of
(η, φi) coincides with the one of λ.

Observe that the statement of theorem above cannot be reversed for special diagrams of
type symplectic general type or symplectic Fano, as there exist many Vogan diagrams of these
types for which (η, φi) have the same sign for each i ∈ {j | γj ∈ Σ+

n }, but admitting no special
vectors. On the other hand, Vogan diagrams such that (η, φi) = 0, for i ∈ {j | γj ∈ Σ+

n },
always admit special vectors.

Corollary 3.7.12. A Vogan diagram admits 0-special elements belonging to the dominant
Weyl chamber if and only if (η, φi) = 0 for i ∈ {j | γj ∈ Σ+

n }.

Proof. The “only if” part is exactly the content of Lemma 3.7.11. For the other implication,
if (η, φi) = 0 for all i ∈ P = {j | γj ∈ Σ+

n }, then η is a linear combination of simple compact
roots. Hence, the vector

φP = η − 2
∑

α∈span{γj |j∈P c}
α, (3.164)

lies in the subspace spanned by the simple compact roots. Moreover, as we proved in Corollary
3.4.7, all simple compact roots belong to the stabilizer v of φP , as it may be written as a linear
combination of φi, with i ∈ P . Thus, φP is a vector belonging to the subspace spanned by
the simple compact roots and it is orthogonal to each of them. As the Killing form is negative
definite on v, φP must be 0. By Corollary 3.4.8, each φ =

∑
i∈P v

iφi, with vi > 0, admits a
special symplectic Calabi-Yau adjoint orbit.

In the remaining part of this section, we consider adjoint orbits (G/V, ω, J) satisfying
ρ = λω and we discuss integrability of the canonical almost-complex structure J . Again, by
Theorem 3.5.5, to establish whether J is integrable or not reduces to a problem on the special
co-vector φ. In order to simplify the statements of the next results, we give the following
definition.

Definition 3.7.13. An element φ is integrable if the orbits (G/V, ω, J) of v = ihφ has inte-
grable canonical almost-complex structure J .

Actually, adjoint orbits of semisimple Lie groups may be built from simple ones just by
taking the product, as a semisimple Lie group decomposes as the product of simple ones. The
canonical almost-complex structure on an adjoint orbit of a real non-compact semisimple Lie
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group is then integrable if and only if it is integrable on each factor. Moreover, it is special
if and only if it is special on each factor, with the same constant λ. Hence, in order to study
the canonical almost-complex structure on adjoint orbits of real non-compact semisimple Lie
groups it suffices to study it on adjoint orbits of real non-compact simple Lie groups.

Remember that a Vogan diagram is said to be classical if the underlying Dynkin diagram
is of type Aℓ, Bℓ, Cℓ or Dℓ. The next result says that integrable φ’s for such diagrams appear
quite seldom.

Theorem 3.7.14. Given a Vogan diagram of classical type heaving at least two painted nodes,
any φ belonging to the associated dominant Weyl chamber is not integrable.

Proof. First, observe that the integrability of the canonical almost-complex structure depends
quite weakly from φ itself. Indeed, by Theorem 3.5.5, the norm of the Nijenhuis tensor of
the canonical almost-complex structure on G/V is non-zero as soon as there are two non-
commuting non-compact roots. We are then reduced to show that classical Vogan diagrams
with at least two painted nodes always admit a couple of non-commuting non-compact roots.
The proof of this fact is done case-by-case. The explicit form of the roots has been taken
from [48, Chapter II, Section 5].

• Aℓ: the roots of Aℓ are ∆ = {ei−ej | i 6= j}, where e1, . . . , eℓ+1 form an orthonormal basis
of Rℓ+1. In particular, {ei − ei+1 | 1 ≤ i ≤ ℓ} form a basis for ∆+ and γi = ei − ei+1,
1 ≤ i ≤ ℓ, are the simple roots of ∆+. Let P = {i1, . . . , im} be the (ordered) set of
painted nodes of the given Vogan diagram, with |P | ≥ 2, and put

α =

i2−1∑

j=i1

γj =

i2−1∑

j=i1

ej − ej+1 = ei1 − ei2 ∈ ∆+. (3.165)

Observe that, by Lemma 3.2.4, α is non-compact since the sum of the coefficients relative
to non-compact simple roots is just the coefficient of γi1 which is 1. Then the linear
combination

β =

i2∑

j=i1

γj =

i2∑

j=i1

ej − ej+1 = ei1 − ei2+1 ∈ ∆+ (3.166)

gives a root such that β = α+γi2 . This shows that [gαC, g
γi2
C ] ⊆ gβC and [α, γi2 ] 6= 0. Thus

the commutator of the non-compact roots α and γi2 is non-zero.

• Bℓ: the roots of Bℓ are ∆ = {±ek, ±(ei ± ej) | i 6= j} and a basis is given by Σ+ =
{ei − ei+1 | 1 ≤ i ≤ ℓ − 1} ∪ {eℓ}. As above, put γi = ei − ei+1, 1 ≤ i ≤ ℓ − 1, and
γℓ = eℓ and let P = {i1, . . . , im} be the (ordered) set of painted vertices of the given
Vogan diagram, with |P | ≥ 2. We have to distinguish two cases.

– i1, i2 ∈ {1, . . . , ℓ− 1}: it holds the same argument as for Aℓ;
– i1 ∈ {1, . . . , ℓ− 1}, i2 = ℓ: put

α =

ℓ−1∑

j=i1

γj =

ℓ−1∑

j=i2

ej − ej+1 = ei1 − eℓ ∈ ∆+ (3.167)

and observe that α is non-compact by Lemma 3.2.4. Then

β = α+ γℓ = ei1 − eℓ + eℓ = ei1 ∈ ∆+ (3.168)

and so, as above, [α, γℓ] 6= 0.
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• Cℓ: the roots of Cℓ are ∆ = {±2ek, ±(ei ± ej) | i 6= j} and a basis is given by Σ+ =
{ei − ei+1 | 1 ≤ i ≤ ℓ − 1} ∪ {2eℓ}. As above, put γi = ei − ei+1, 1 ≤ i ≤ ℓ − 1, and
γℓ = 2eℓ and let P = {i1, . . . , im} be the (ordered) set of painted nodes of the given
Vogan diagram, with |P | ≥ 2. Again, we have to distinguish two cases.

– i1, i2 ∈ {1, . . . , ℓ− 1}: it holds the same argument as for Aℓ;
– i1 ∈ {1, . . . , ℓ− 1}, i2 = ℓ: put

α =

ℓ−1∑

j=i1

γj =

ℓ−1∑

j=i2

ej − ej+1 = ei1 − eℓ ∈ ∆+ (3.169)

and observe that α is non-compact by Lemma 3.2.4. Then

β = α+ γℓ = ei1 − eℓ + 2eℓ = ei1 + eℓ ∈ ∆+, (3.170)

thus [α, γℓ] 6= 0.

• Dℓ: the roots of Dℓ are ∆ = {±(ei ± ej) | i 6= j} and a basis is given by Σ+ =
{ei − ei+1| 1 ≤ i ≤ ℓ− 1} ∪ {eℓ−1 + eℓ}. As above, put γi = ei − ei+1, 1 ≤ i ≤ ℓ− 1, and
γℓ = eℓ−1 + eℓ and let P = {i1, . . . , im} be the (ordered) set of painted vertices of the
given Vogan diagram with |P | ≥ 2. We have to consider four cases.

– i1, i2 ∈ {1, . . . , ℓ− 1}: it holds the same argument as for Aℓ;
– i1 ∈ {1, . . . , ℓ− 2}, i2 = ℓ− 1: put

α =

ℓ−2∑

j=i1

γj =

ℓ−2∑

j=i2

ej − ej+1 = ei1 − eℓ−1 ∈ ∆+ (3.171)

and observe that α is non-compact by Lemma 3.2.4. Then

β = α+ γℓ−1 = ei1 − eℓ−1 + eℓ−1 − eℓ = ei1 − eℓ ∈ ∆+, (3.172)

hence [α, γℓ−1] 6= 0;
– i1 ∈ {1, . . . , ℓ− 2}, i2 = ℓ: put

α =

ℓ−2∑

j=i1

γj =

ℓ−2∑

j=i2

ej − ej+1 = ei1 − eℓ−1 ∈ ∆+ (3.173)

and observe that α is non-compact by Lemma 3.2.4. Then

β = α+ γℓ = ei1 − eℓ−1 + eℓ−1 + eℓ = ei1 + eℓ ∈ ∆+, (3.174)

so, as above, [α, γℓ] 6= 0;
– (i1, i2) = (ℓ− 1, ℓ): put

α = γℓ−2 + γℓ = eℓ−2 − eℓ−1 + eℓ−1 + eℓ = eℓ−2 + eℓ ∈ ∆+ (3.175)

and observe that α is non-compact by Lemma 3.2.4. Then

β = α+ γℓ−1 = eℓ−2 + eℓ + eℓ−1 − eℓ = eℓ−2 + eℓ−1 ∈ ∆+ (3.176)

and this shows that [α, γℓ] 6= 0.
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As a consequence of Theorem 3.7.14, a classical Vogan diagram may admit an integrable
element φ only when it has one painted node. If in addition φ is special, we can state which
are the Vogan diagrams having integrable φ.

Theorem 3.7.15. Given a Vogan diagram of classical type having only one painted node,
assume that there exists φ belonging to the associated Weyl chamber that it is special and
integrable. Then the Vogan diagram is one of the following:

Aℓ all diagrams

Bℓ γ1 γ2 γℓ−1 γℓ

Cℓ γ1 γ2 γℓ−1 γℓ

Dℓ
γ1 γ2 γℓ−2

γℓ−1

γℓ

γ1 γ2 γℓ−2

γℓ−1

γℓ

Moreover, up to scaling, φ coincides with the fundamental dominant weight corresponding
to the painted node.

Proof. By Theorem 3.7.14, the considered Vogan diagram has a single painted node. So,
assume that the unique painted node is the p-th one and the Lie algebra has rank ℓ. Since φ
belongs to the dominant Weyl chamber, it is a non-negative linear combination of fundamental
dominant weights φ =

∑ℓ
i=1 v

iφi, with vp > 0. Suppose that φ is not a multiple of φp. As φ
is special, Proposition 3.4.2 and Theorem 3.4.5 force the orbit to be special symplectic Fano,
contradicting the integrability condition by Lemma 3.6.3. Thus, φ is a multiple of φp. Finally,
consider a maximal compact subgroup K of G. By Theorem 3.6.2, the integrability assumption
of the canonical almost-complex structure on the orbit forces G/K to be Hermitian symmetric.
The thesis follows by the fact that Vogan diagrams having G/K Hermitian symmetric are
classified [48, Appendix C.3].

Theorem 3.7.15 classifies all classical Vogan diagrams admitting integrable and special φ. In
the remaining part of the section, we treat the exceptional cases. Let g be a real non-compact
exceptional Lie algebra with trivial automorphism, that is, one among

g2(2), f4(4), f4(−20), e6(2), e6(−14), e7(7), e7(−5), e7(−25), e8(8), e8(−24), (3.177)

where we follow the notation of [44]. Let v ∈ g be an element having compact stabilizer V ⊂ G,
define v = ihφ and suppose that φ is integrable. Then the canonical complex structure J on
G/V descends to an integrable almost-complex structure JΓ on M = Γ\G/V , for Γ ⊂ G a
discrete co-compact subgroup, making M a Kähler manifold. Hence, in force of Theorem 3.6.2,
the quotient G/K, with K a maximal compact subgroup, has to be Hermitian symmetric. In
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particular, the only possibilities for g are g = e6(−14) and g = e7(−25) [48, Appendix C.4]. By
the Borel and the Siebenthal Theorem [48, Theorem 6.96], in order to find exceptional Vogan
diagrams admitting special and integrable φ, it suffices to look at the ones equivalent to the
Vogan diagrams of g = e6(−14) and g = e7(−25). To do this, we look at the tables of E6 and
E7 in Section B.2 and we consider each case. In order to determine the equivalence class of a
Vogan diagram, i.e., to which diagram with one painted node a Vogan diagram is equivalent
to, we used the rules discussed in [24].

• g = e6(−14): there are three Vogan diagrams equivalent to the one of g = e6(−14). First,
the diagram with γ3 and γ5 painted is excluded from our analysis since the associated
orbit is special symplectic Fano, hence it cannot admit integrable complex structure by
Lemma 3.6.3. For the diagram with γ1 and γ6 painted, observe that the roots

γ1 + γ2 + γ3 + γ4 + γ5, γ6 (3.178)

are both non-compact and their sum
∑6
i=1 γi is a root. Thus, we have found two non-

compact non-commuting roots and, by Theorem 3.5.5 and Remark 3.5.6, the canonical
almost-complex structure is not integrable. We are left with the Vogan diagram of e6(−14)

which is special symplectic general type. Uniqueness of the special vector then follows by
Theorem 3.7.4 and Proposition 3.4.2, while integrability follows from the fact that G/K
is Hermitian symmetric.

• e7(−25): in this case there is only one diagram to consider. As above, since the Vogan
diagram is special symplectic general type, the special vector is unique by Theorem 3.7.4
and it is integrable as G/K is Hermitian symmetric.

Summing up, we have the following result.

Theorem 3.7.16. Given a Vogan diagram of exceptional type, assume that there exists φ
belonging to the associated dominant Weyl chamber that is special and integrable. Then the
Vogan diagram is one of the following

γ1 γ3 γ4 γ5 γ6

γ2

γ1 γ3 γ4 γ5 γ6 γ7

γ2

Moreover, up to scaling, φ coincides with the fundamental dominant weight corresponding to
the painted node.

In the next section we sum up the main results proved through this long chapter and we
point out some remaining open problems.

3.8 Conclusions and open problems
In this chapter, we learnt how to understand whether an adjoint orbit of a real non-compact
semisimple Lie group admits a special compatible homogeneous almost-complex structure. The
speciality condition is encoded in the geometry of a particular vector which depends on the
underlying Lie algebra only. More precisely, there is a canonically defined compatible almost-
complex structure on these orbits (3.3, precisely (3.61)). We have necessary and sufficient
conditions for an adjoint orbit to admit canonical special compatible almost-complex structure
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(Theorem 3.4.4 and Theorem 3.4.5) which, put together, lead to Corollary 3.4.7 and Corollary
3.4.8. They say that speciality of the canonical almost-complex structure depends on the
signs of the coefficients of a certain vector φP , determined by the Lie algebra. If some precise
coefficients of φP , with respect to the basis of fundamental dominant weights, are all negative,
zero or positive, then the orbit is special symplectic general type, symplectic Calabi-Yau and
symplectic Fano respectively. Moreover, special vectors belonging to the same Lie algebra are
of the same type (Proposition 3.4.2) and they come in a finite number (Proposition 3.4.3).
Since knowing special adjoint orbits of simple Lie groups permits to build special adjoint
orbits of semisimple Lie groups, just by taking products of special adjoint orbits of simple Lie
groups having the same constant λ, it is quite natural to restrict the concrete analysis to real
non-compact adjoint orbits of simple Lie groups. By using some combinatorial tools, such as
Vogan diagrams, we were able to detect many infinite families of non-compact simple classical
special adjoint orbits (Theorem 3.7.5) and to classify all the exceptional ones (see Section B.2
of the appendix). Actually, one may algorithmically list all special non-compact adjoint orbits,
however, in practice, it is not possible to find a pattern among the examples of low rank. This
suggests that the classification of all such orbits is quite complicated and very likely some
new ideas are required in order to complete it. Nevertheless, there is an algorithmic method
which allows to understand if a simple Lie algebra admits special vectors (see Section A.1),
thus drawing us up to a classification. For convenience of the reader, we collect altogether the
existence results obtained so far.

Theorem 3.8.1. Let G be a real non-compact simple Lie group. If G is classical, there exists
orbits (G/V, ω, J) satisfying ρ = λω if the Lie algebras of G and V and the constant λ are as
in the following table

g v λ

su(p, q) su(p)⊕ su(q)⊕ R −1 p, q ≥ 1

so(2p, q) su(p)⊕ so(q)⊕ R p− q − 1 p, q ≥ 1

so∗(2ℓ) su(ℓ)⊕ R −1 ℓ ≥ 4

sp(p, q) su(p)⊕ sp(q)⊕ R p− 2q + 1 p, q ≥ 1

sp(ℓ,R) su(ℓ)⊕ R −1 ℓ ≥ 3

If G is exceptional, then there exists orbits (G/V, ω, J) satisfying ρ = λω if the Lie algebras of
G and V are as in the tables in Appendix B.2 and the sign of the constant λ is determined by
the sign of the Hermitian scalar curvature s.

Notice that, among the simple classical special adjoint orbits we find also the compact
ones, which are Kählerian as the formula for the norm of the Nijenhuis tensor (Theorem 3.5.5)
and Remark 3.5.6 show. On the other hand, in the non-compact case, we recover many well
known examples coming from the general theory (see the examples right after Theorem 3.7.5).
The non-compact Kählerian special adjoint orbits of simple Lie groups, i.e., the ones for which
the canonical almost-complex structure is integrable, are in a small number beside the non-
Kähler ones (Theorem 3.7.15 and Theorem 3.7.16), thus many special adjoint orbits of real
non-compact simple Lie groups provide examples of symplectic non-Kähler manifolds carrying
a “best metric”.

To complete this wide picture, we are led to consider few problems. First, we know that
special symplectic Fano adjoint orbits come in a finite number on a Vogan diagram, but we do
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not know exactly how many they are, neither which they are. From (3.87), one may deduce
just a very rough estimate on the number of special symplectic Fano adjoint orbits

|φ| ≤ |η|+ 2
∑

α∈∆+
c

|α|, (3.179)

but it would be useful to know a more precise upper bound on it and to understand the form
of the special vectors. This number should be related to the number of fibrations such that
both the base and the fiber may be combined to give a total space which is a special symplectic
Fano adjoint orbit. However, the intricate combinatorics of Lie algebras prevented us to clarify
this relation.

For what concerns Vogan diagrams, in Section 3.7 we stressed out that Vogan diagrams
for which the scalar products (η, φi) have the same signs for each i in the indices of simple
non-compact roots, are not necessarily associated with special vectors, as this happens only for
Vogan diagrams of type symplectic Calabi-Yau (Corollary 3.7.12). Still, there is an algorithmic
method to know if a Vogan diagram has the above property, but a more direct rule would be
preferable. It would be handy to shed some light on this point, since understanding the above
property for Vogan diagrams may help to understand whether there exist special vectors.

Finally, Theorem 3.7.15 and Theorem 3.7.16 say which special adjoint orbits are Kähler
manifolds and the remaining ones carry a non-integrable canonical almost-complex structure.
However, it is not known whether they admit a non necessarily homogeneous compatible in-
tegrable almost-complex structure making them Kähler manifolds. Notice that adjoint orbits
G/V for which the quotient G/K by a maximal compact subgroup is not Hermitian symmet-
ric are ruled out from this discussion by Theorem 3.6.2. In particular, all special symplectic
Fano and symplectic Calabi-Yau adjoint orbits need not to be considered in this context, as
integrability of the almost-complex structure forces G/K to be Hermitian symmetric, thus to
have negative curvature [50, Chapter XI, Proposition 9.7]. On the other hand, the question is
completely open for special symplectic general type adjoint orbits for which G/K is Hermitian
symmetric. It would be interesting to give an answer to this question and compare it to the
results of Carlson and Toledo [16, Theorem 0.1]. A possible way to work out the problem may
be to find some topological obstructions related to the first two Chern classes.

81



Appendix A

The classification algorithm

This appendix is dedicated to the explanation of the algorithm that we used to produce the
tables in Appendix B. After we have coded it, we were able to make experiments and to
understand many facts that we have proved at a later time. In the following, we give few
technical details about the code and we explain the algorithm in general. Then we examine
the original Code A.1 and we discuss a couple of examples.

A.1 The algorithm and the theory behind it
The program that we used to produce examples of adjoint orbits admitting special canonical
almost-complex structure is called specialAdjointOrbits.sage and it is written in the Sage-
Math sintax. SageMath is a free open-source mathematics software system licensed under the
GNU GPL [75]. The code may be run as a SageMath script. Once the script is executed, one
is asked to insert the Lie algebra type of the adjoint orbit (so one among the letters A, B,
C, D, E, F , G) and the rank of the Lie algebra. Then, for each vector v = ihφ admitting a
special adjoint orbit, the script prints:

• The normalized vector φ expressed in the basis of the fundamental dominant weights;

• The set of indices of simple non-compact roots and the set S of Theorem 3.4.4 and
Theorem 3.4.5;

• The symplectic type of the special orbit, so symplectic general type, symplectic Calabi-Yau
and symplectic Fano. If the canonical almost-complex structure on the orbit is integrable,
then the word “symplectic” is omitted;

• The dimension of the stabilizer V and the orbit G/V of v = ihφ;

• Whether φ is a root;

• The Hermitian scalar curvature of the canonical almost-complex structure (computed
with the formula in Lemma 3.5.1);

• The Lie algebra g and the Lie algebra of the stabilizer v.

The heart of the algorithm lies in Corollary 3.4.8. The key point is that a Vogan diagram
DP of a simple real Lie algebra, with P the set of indices of painted nodes, admits a special

82



vector if and only if the vector

φP = η − 2
∑

α∈span{γi|i∈P c}∩∆+

α, (A.1)

written as φP =
∑
i∈P w

i
Pφi in the basis of fundamental dominant weights, with wiP = 2 (φP ,γi)

(γi,γi)
,

satisfies one of the following conditions:

1. wiP < 0 for all i ∈ P ;

2. wiP > 0 for all i ∈ P ;

3. φP = 0.

In case 1, the diagram admits a unique (up to scaling) special symplectic general type adjoint
orbit associated with φ = −∑

i∈P w
i
Pφi. In case 2, the diagram admits a finite number (up

to scaling) of special symplectic Fano adjoint orbits. In the last case, the diagram admits a
continuous family of special symplectic Calabi-Yau adjoint orbits with special vectors of the
form v = ihφ, with φ =

∑
i∈P v

iφi. In particular, if |P | = 1, the diagram admits a unique (up
to scaling) special symplectic Calabi-Yau adjoint orbit.

Corollary 3.4.8 gives then a practical way of finding special vectors once the Vogan diagram
is given. Indeed, the compact and non-compact roots, the vector η and P come with the Vogan
diagram. Hence, one is reduced to check whether the coefficients of the vector φP , expressed
on the basis of the fundamental dominant weights, satisfy one of the conditions 1, 2, 3 above.
In case 2, there may be more special vectors associated with the given Vogan diagram. In
order to find them all, for each set S ⊇ P one needs to check whether

φS = η − 2
∑

α∈span{γi|i∈Sc}∩∆+

α =
∑

i∈S
wiSφi (A.2)

has wiS > 0 for each i ∈ S. If this happens,
∑
i∈S w

i
Sφi gives a special vector. The flow chart

of the algorithm is illustrated in Figure A.1 and it gives the idea of how the algorithm works.

A.2 The code
In the following, we comment briefly the lines of the Code A.1. We tried to keep the same
notation as in the theory developed up to now.

1-171 : Two definitions of functions, one for determining the Lie algebra and the other for
computing the isotropy of the orbit, are defined. More explicitly, the first function
determines the equivalence class of the Vogan diagram through the rules in [24], while
the second determines the stabilizer of the orbit using Proposition 3.7.3.

172-182 : The lieType and the rank of the Lie algebra are inserted by the user and the
corresponding Dynkin diagram is printed (so the Vogan diagram without painted nodes).
Then the positive roots positiveRoots, the Cartan matrix C and the scalar product
between simple roots B are defined. Finally, the dimension of the Lie algebra of type
lieType and rank rank is printed.

183-188 : A for cycle over the all possible Vogan diagrams of type lieType and rank rank is
defined and, up to the end, the code sits inside the cycle. The compact and non-compact
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roots compactroots, noncompactroots, the compactness index epsilon and the η vector
eta are defined. Then the vector phiP is defined as

phiP = C ∗


η − 2

∑

α∈span{γi|i∈P c}∩∆+

α


 . (A.3)

Notice that phiP is expressed in the basis of fundamental dominant weights, as the Cartan
matrix changes the basis.

189-201 : If phiP=0, the adjoint orbit is special symplectic Calabi-Yau. Then, the continu-
ous family of special vectors is printed (in the basis of fundamental dominant weights),
together with the set of non-compact simple roots. After that, the dimensions of the sta-
bilizer and the adjoint orbit, whether varphiP is a root, the Hermitian scalar curvature,
the Lie algebra and the Lie algebra of the stabilizer of the orbit are printed.

202-224 : If the coordinates of phiP corresponding to the indices in P are all negative, then
the orbit is special symplectic general type and, as in the symplectic Calabi-Yau case, all
the information are printed. Notice that the special vector phiP is printed normalized.
Since this is the unique case for which the compatible almost-complex structure may be
integrable, in the lines 205-215, using Remark 3.5.6, integrability is checked.

225-240 : If the coordinates of phiP corresponding to the indices in P are all positive, the orbit
is special symplectic Fano. Then, another for cycle over the possible sets S containing P
starts and, if the vector

phiS = C ∗


η − 2

∑

α∈span{γi|i∈Sc}∩∆+

α


 , (A.4)

has positive coefficients corresponding to the indices in S, its orbit is special symplectic
Fano and all the information as above are printed.

241 : The time required for the computation is printed in seconds.

A.3 Examples and discussion
In this section we give some examples of how the algorithm works together with few comments
about the outputs.

Suppose that we want to compute all Vogan diagrams of type A3 admitting special vectors.
The output of the program will be as follows.

Type: A
Rank: 3
O---O---O
1 2 3
A3
Dimension: 15

(1, 0, 0) Non-compact simple roots: [0] general type
Dimension V: 9 Dimension G/V: 6
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Is phi a root? No
Hermitian scalar curvature: -24
Lie algebra: su(1,3)
Stabilizer: su(3) x R1

(0, 1, 0) Non-compact simple roots: [1] general type
Dimension V: 7 Dimension G/V: 8
Is phi a root? No
Hermitian scalar curvature: -32
Lie algebra: su(2,2)
Stabilizer: su(2) x su(2) x R1

(0, 0, 1) Non-compact simple roots: [2] general type
Dimension V: 9 Dimension G/V: 6
Is phi a root? No
Hermitian scalar curvature: -24
Lie algebra: su(1,3)
Stabilizer: su(3) x R1

(1, 0, 1) Non-compact simple roots: [0, 2] symplectic general type
Dimension V: 5 Dimension G/V: 10
Is phi a root? Yes
Hermitian scalar curvature: -10
Lie algebra: su(2,2)
Stabilizer: su(2) x R2

0.916521

There are 3 general type adjoint orbits with integrable canonical almost-complex structure
corresponding to the diagrams with one painted node. By the symmetries of the Dynkin
diagram of A3, orbits associated with diagrams having painted nodes in symmetric position
are diffeomorphic. Then there is one orbit corresponding to the Vogan diagram with two
symmetric painted nodes which is special symplectic general type. The special vector φ is a
root only in the last case. The Lie algebras are all of type su(p, q), p + q = 4, which are the
real forms of sl(4,C). Overall, the computations requires 0.916521 seconds to be completed.

Now suppose that we want to compute all Vogan diagrams of exceptional type G2 admitting
special vectors. The output will be as follows.

Type: G
Rank: 2

3
O=<=O
1 2
G2
Dimension: 14

(1, 0) Non-compact simple roots: [0] symplectic general type
Dimension V: 4 Dimension G/V: 10
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Is phi a root? Yes
Hermitian scalar curvature: -30
Lie algebra: g2(2)
Stabilizer: su(2) x R1

(0, 1) Non-compact simple roots: [1] symplectic general type
Dimension V: 4 Dimension G/V: 10
Is phi a root? Yes
Hermitian scalar curvature: -10
Lie algebra: g2(2)
Stabilizer: su(2) x R1

0.788584

In this case there are just two orbits corresponding to Vogan diagrams with one painted
node and they are not of Kähler type. Notice that, despite they have the same dimension and
they are both diffeomorphic to G2(2)/U(2), where G2(2) is the split real form of G2, they are
not diffeomorphic as the two stabilizers correspond to two non-conjugate copies of su(2) in
g2(2).

We conclude with special adjoint orbits of type B4. The output is

Type: B
Rank: 4
O---O---O=>=O
1 2 3 4
B4
Dimension: 36

(1, 0, 0, 0) Non-compact simple roots: [0] general type
Dimension V: 22 Dimension G/V: 14
Is phi a root? Yes
Hermitian scalar curvature: -98
Lie algebra: so(2,7)
Stabilizer: so(7) x R1

(0, 1, 0, 0) Non-compact simple roots: [1] symplectic general type
Dimension V: 14 Dimension G/V: 22
Is phi a root? Yes
Hermitian scalar curvature: -88
Lie algebra: so(4,5)
Stabilizer: so(5) x su(2) x R1

(0, 0, 1, 0) Non-compact simple roots: [2] symplectic general type
Dimension V: 12 Dimension G/V: 24
Is phi a root? No
Hermitian scalar curvature: -24
Lie algebra: so(6,3)
Stabilizer: su(3) x su(2) x R1
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(0, 0, 0, 1) Non-compact simple roots: [3] S: [3] symplectic Fano
Dimension V: 16 Dimension G/V: 20
Is phi a root? No
Hermitian scalar curvature: 80
Lie algebra: so(8,1)
Stabilizer: su(4) x R1

(2, 0, 0, 1) Non-compact simple roots: [3] S: [0, 3] symplectic Fano
Dimension V: 10 Dimension G/V: 26
Is phi a root? No
Hermitian scalar curvature: 52
Lie algebra: so(8,1)
Stabilizer: su(3) x R2

0.956499

There are four special adjoint orbits corresponding to Vogan diagrams with one painted node.
The first one, corresponding to the Vogan diagram with the first node painted, is Kähler-
Einstein general type and it is one of the cases appearing in Theorem 3.7.15. Notice that the
stabilizer is obtained by removing the first node of the Vogan diagram and considering the re-
maining Dynkin diagram, which in this case is of type B3. The remaining ones are symplectic
general type and symplectic Fano. Notice that there are two symplectic Fano adjoint orbits
corresponding to the Vogan diagram with the 4-th painted node, one having S = P = {4} and
the other having S = {1, 4}. In particular, the latter is fibered over the first. The Lie algebras
are all of type so(2p, q), with 2p+ q = 9, as they are real forms of so(9,C). The time required
is less than a second.

The runtimes depends strongly from the type and the rank of the chosen Lie type. Up to
rank 8, the computations require less than 11 seconds on a 1.80 GHz 64-bit Intel Kaby Lake R
processor. This allows to classify all special adjoint orbits carrying special canonical almost-
complex structure up to rank 8. In particular, as one may see from the tables in Appendix
B, all orbits of exceptional type are classified. However, the runtimes and also the number of
special orbits grow very fast with the rank. Unfortunately, the outputs are often unpredictable
and it is hard to catch a glimpse of a possible pattern.

87



Vogan diagram DPCartan matrix

Fund. dom. weights
{φ1, . . . , φℓ}

Simple roots {γ1, . . . , γℓ}
and compactness

Positive roots ∆+

and compactness

φP = η − 2
∑
α∈span{γi|i∈P c}∩∆+ α =

∑
i∈P w

i
Pφi

φP = 0? v = ihφ, φ =
∑
i∈P v

iφi, ∀vi > 0
has a sCY adjoint orbit

yes

wiP < 0 ∀i ∈ P?

no

v = ih−φP
has sGT adjoint orbit

yes

wiP > 0 ∀i ∈ P?

no

DP does not admit
special φ’s

v = ihφP
has a sF adjoint orbit

no

Choose S ⊆ {1, . . . , ℓ}
such that P ⊆ S

yes

φS = η − 2
∑
α∈span{γi|i∈Sc}∩∆+ α =

∑
i∈S w

i
Sφi

wiS > 0 ∀i ∈ S?

v = ihφS
has a sF adjoint orbit

yes

no

Figure A.1: Flow chart of the algorithm for the classification of Vogan diagrams admitting
special adjoint orbits.
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1 def lieAlgebraType(lieType,rank,P):
2 lieAlgebra=''
3 if lieType=='A':
4 equivclass=sum((-1)^(len(P)-s)*(P[s-1]+1) for s in range(1,len(P)+1))
5 if equivclass<=((rank+1)/2).floor():
6 eqclass=equivclass
7 else:
8 eqclass=rank+1-equivclass
9 lieAlgebra='su('+str(eqclass)+','+str(rank+1-eqclass)+')'

10 elif lieType=='B':
11 eqclass=sum((-1)^(len(P)-s)*(P[s-1]+1) for s in range(1,len(P)+1))
12 lieAlgebra='so('+str(2*eqclass)+','+str(2*rank-2*eqclass+1)+')'
13 elif lieType=='C':
14 if rank-1 in P:
15 lieAlgebra='sp('+str(rank)+',R)'
16 else:
17 N=sum((-1)^(len(P)-s)*(P[s-1]+1) for s in range(1,len(P)+1))
18 if N<= rank/2:
19 eqclass=N
20 else:
21 eqclass=rank-N
22 lieAlgebra='sp('+str(eqclass)+','+str(rank-eqclass)+')'
23 elif lieType=='D':
24 if (rank-2 in P and rank-1 not in P) or (rank-2 not in P and rank-1 in P) :
25 lieAlgebra='so*('+str(2*rank)+')'
26 elif Set([rank-2,rank-1]) in P:
27 N=sum((-1)^(len(P)-s)*(P[s-1]+1) for s in range(1,len(P)-1))
28 if N<=rank/2:
29 eqclass=N-1
30 else:
31 eqclass=rank-N-1
32 lieAlgebra='so('+str(2*eqclass)+','+str(2*rank-2*eqclass)+')'
33 else:
34 N=sum((-1)^(len(P)-s)*(P[s-1]+1) for s in range(1,len(P)+1))
35 if N<=rank/2:
36 eqclass=N
37 else:
38 eqclass=rank-N
39 lieAlgebra='so('+str(2*eqclass)+','+str(2*rank-2*eqclass)+')'
40 elif lieType=='G':
41 lieAlgebra='g2(2)'
42 elif lieType=='F':
43 if Set(P).intersection(Set([0,1]))!=Set([]):
44 lieAlgebra='f4(4)'
45 else:
46 lieAlgebra='f4(-20)'
47 elif lieType=='E' and rank==6:
48 II=[j for j in P if j<=3 and j!=1]
49 JJ=[j for j in P if j>3]
50 if 1 in P:
51 s=1
52 else:
53 s=0
54 if II!=[] or JJ!=[]:
55 if II!=[] and 0 not in II:
56 I=sum((-1)^(len(II)-a-1)*(II[a]) for a in range(len(II)))
57 elif 0 in II:
58 I=(-1)^(len(II)-1)+sum((-1)^(len(II)-a)*(II[a]) for a in range(len(II)))
59 else:
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60 I=0
61 J=sum((-1)^(len(JJ)-a-1)*(JJ[a]) for a in range(len(JJ)))
62 if P==[0] or P==[5] or P==[2,4] or P==[0,3,4] or P==[0,1] or P==[1,2] or P==[1,4] or P==[1,5] or

P==[1,3,5] or (len(JJ)!=1 and J==2-I and (I+s)%2==1) or (len(JJ)!=1 and J==4-I and (I+s)%2==0)
or (len(JJ)!=1 and J==1-I) or (len(JJ)==1 and ((J==4+I and (I+s)%2==1) or J==1+I)):

↪→
↪→

63 lieAlgebra='e6(-14)'
64 else:
65 lieAlgebra='e6(2)'
66 else:
67 lieAlgebra='e6(2)'
68 elif lieType=='E' and rank==7:
69 II=[j for j in P if j<=3 and j!=1]
70 JJ=[j for j in P if j>3]
71 if 1 in P:
72 s=1
73 else:
74 s=0
75 if II!=[] or JJ!=[]:
76 if II!=[] and 0 not in II:
77 I=sum((-1)^(len(II)-a-1)*(II[a]) for a in range(len(II)))
78 elif 0 in II:
79 I=(-1)^(len(II)-1)+sum((-1)^(len(II)-a)*(II[a]) for a in range(len(II)))
80 else:
81 I=0
82 J=sum((-1)^(len(JJ)-a-1)*(JJ[a]) for a in range(len(JJ)))
83 if P==[0] or P==[3] or P==[5] or P==[3,5] or P==[3,4,6] or P==[1,4] or P==[1,6] or P==[1,2,4] or

P==[0,1,3,4] or (len(JJ)!=1 and (((J==1-I or J==3-I) and (I+s)%2==1) or ((J==2-I or J==4-I) and
(I+s)%2==0) )) or (len(JJ)==1 and (((J==1+I or J==2+I or J==3+I or J==5+I) and (I+s)%2==0) or
(J==4+I and (I+s)%2==1))):

↪→
↪→
↪→

84 lieAlgebra='e7(-5)'
85 elif P==[6] or P==[2,4] or P==[0,3,4] or P==[0,1] or P==[1,2] or P==[1,5] or P==[1,3,5] or

P==[1,3,4,6] or P==[1,3,4,5,6] or (len(JJ)!=1 and ((J==1-I and (I+s)%2==0) or (J==2-I and
(I+s)%2==1))) or (len(JJ)==1 and ((J==1+I or J==2+I or J==5+I) and (I+s)%2==1)):

↪→
↪→

86 lieAlgebra='e7(-25)'
87 else:
88 lieAlgebra='e7(7)'
89 else:
90 lieAlgebra='e7(7)'
91 elif lieType=='E' and rank==8:
92 II=[j for j in P if j<=3 and j!=1]
93 JJ=[j for j in P if j>3]
94 if 1 in P:
95 s=1
96 else:
97 s=0
98 if II!=[] or JJ!=[]:
99 if II!=[] and 0 not in II:

100 I=sum((-1)^(len(II)-a-1)*(II[a]) for a in range(len(II)))
101 elif 0 in II:
102 I=(-1)^(len(II)-1)+sum((-1)^(len(II)-a)*(II[a]) for a in range(len(II)))
103 else:
104 I=0
105 J=sum((-1)^(len(JJ)-a-1)*(JJ[a]) for a in range(len(JJ)))
106 if P==[7] or P==[2] or P==[3] or P==[0,2] or P==[1,2] or P==[1,5] or P==[1,6] or (len(JJ)!=1 and

((J==1-I or J==5-I) and (I+s)%2==0)) or (len(JJ)!=1 and (J==3-I and (I+s)%2==1)) or (len(JJ)!=1
and (J==2-I or J==6-I)) or (len(JJ)==1 and ((J==1+I or J==5+I) and (I+s)%2==1)) or (len(JJ)==1
and ((J==3+I and (I+s)%2==0) or J==2+I or J==6+I)):

↪→
↪→
↪→

107 lieAlgebra='e8(-24)'
108 else:
109 lieAlgebra='e8(8)'
110 else:
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111 lieAlgebra='e8(8)'
112 return lieAlgebra
113 def stabilizer(lieType,rank,P):
114 stabiliz=''
115 if len(P)<rank:
116 st=str(CartanType([lieType,rank]).subtype([i+1 for i in range(rank) if i not in P])).translate(None,

"[]',' '")↪→
117 stab=''
118 for i in range(len(st)):
119 if st[i] in ['A','B','C','D','E']:
120 if st[i]=='A':
121 stab=stab+'su('
122 for j in range(i,len(st)):
123 if st[j]=='r' or st[j]=='x' or j==len(st)-1:
124 if j==len(st)-1:
125 stab=stab+str(int(st[i+1:len(st)])+1)+') x '
126 break
127 else:
128 stop=j
129 stab=stab+str(int(st[i+1:stop])+1)+') x '
130 break
131 if st[i]=='B':
132 stab=stab+'so('
133 for j in range(i,len(st)):
134 if st[j]=='r' or st[j]=='x' or j==len(st)-1:
135 if j==len(st)-1:
136 stab=stab+str(int(st[i+1:len(st)])*2+1)+') x '
137 break
138 else:
139 stop=j
140 stab=stab+str(int(st[i+1:stop])*2+1)+') x '
141 break
142 if st[i]=='C':
143 stab=stab+'sp('
144 for j in range(i,len(st)):
145 if st[j]=='r' or st[j]=='x' or j==len(st)-1:
146 if j==len(st)-1:
147 stab=stab+str(int(st[i+1:len(st)]))+') x '
148 break
149 else:
150 stop=j
151 stab=stab+str(int(st[i+1:stop]))+') x '
152 break
153 if st[i]=='D':
154 stab=stab+'so('
155 for j in range(i,len(st)):
156 if st[j]=='r' or st[j]=='x' or j==len(st)-1:
157 if j==len(st)-1:
158 stab=stab+str(int(st[i+1:len(st)])*2)+') x '
159 break
160 else:
161 stop=j
162 stab=stab+str(int(st[i+1:stop])*2)+') x '
163 break
164 if st[i]=='E':
165 if st[i+1]=='6':
166 stab=stab+'e6 x '
167 elif st[i+1]=='7':
168 stab=stab+'e7 x '
169 return stab[:-2]+'x R'+str(len(P))+'\n'
170 else:
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171 return 'R'+str(len(P))+'\n'
172 [lieType,rank]=[raw_input('Type: '),input('Rank: ')]
173 print DynkinDiagram([lieType,rank])
174 W=WeylGroup([lieType,rank],implementation='permutation')
175 positiveRoots=W.positive_roots()
176 C=CartanMatrix([lieType,rank])
177 if lieType=='F':
178 B=(1/36)*matrix([[4,-2,0,0],[-2,4,-2,0],[0,-2,2,-1],[0,0,-1,2]])
179 else:
180 B=matrix(QQ,gap('BilinearFormMat(RootSystem(SimpleLieAlgebra("'+lieType+'",'+str(rank)+',Rationals)))'))
181 print "Dimension:",2*len(positiveRoots)+rank
182 print ' '
183 for P in [q for q in Combinations(range(rank)) if q!=[]]:
184 compactroots=[root for root in positiveRoots if sum(root[k] for k in P)%2==0]
185 noncompactroots=[root for root in positiveRoots if sum(root[k] for k in P)%2!=0]
186 epsilon={root: (1 if root in noncompactroots else -1) for root in positiveRoots}
187 eta=-2*sum(epsilon[alpha]*alpha for alpha in positiveRoots)
188 phiP=(C)*(eta-2*sum(root for root in positiveRoots if all(root[k]==0 for k in P)))
189 if all(phiP[k]==0 for k in range(len(phiP))):
190 print [var('v'+str(k)) if k in P else 0 for k in range(len(phiP))],' for all vi>0 Non-compact

simple roots:',P,' ','symplectic Calabi-Yau'↪→
191 print "Dimension V:",(2*sum(all(root[k]==0 for k in P) for root in positiveRoots)+rank),"

Dimension G/V:",2*(len(positiveRoots)-sum(all(root[k]==0 for k in P) for root in positiveRoots))↪→
192 if len(P)==1:
193 if C.inverse()*vector([1 if i in P else 0 for i in range(rank)]) in W.roots():
194 print 'Is phi a root? Yes'
195 else:
196 print 'Is phi a root? No'
197 else:
198 print 'Is phi a root? No'
199 print "Hermitian scalar curvature:",0
200 print 'Lie algebra: '+lieAlgebraType(lieType,rank,P)
201 print 'Stabilizer: '+stabilizer(lieType,rank,P)
202 elif [sgn(phiP[k]) for k in range(len(phiP))]==[-1 if k in P else 0 for k in range(len(phiP))]:
203 Omega0=[root for root in Set(positiveRoots).difference(Set([root for root in positiveRoots if

all(root[k]==0 for k in P)]))]↪→
204 Omega0nc=[root for root in Set(Omega0).intersection(Set(noncompactroots))]
205 typeOrbit=''
206 if len(P)>1:
207 typeOrbit='symplectic general type'
208 else:
209 for alpha in Omega0nc:
210 for beta in Omega0nc:
211 if alpha+beta in Omega0:
212 typeOrbit='symplectic general type'
213 break
214 if typeOrbit!='symplectic general type':
215 typeOrbit='general type'
216 print -phiP/(gcd(phiP)) ,' ','Non-compact simple roots:',P,' ',typeOrbit
217 print "Dimension V:",(2*(len(positiveRoots)-len(Omega0))+rank)," Dimension G/V:",2*len(Omega0)
218 if C.inverse()*(-phiP/(gcd(phiP))) in W.roots():
219 print 'Is phi a root? Yes'
220 else:
221 print 'Is phi a root? No'
222 print "Hermitian scalar

curvature:",4*gcd(phiP)*sum(sum(epsilon[alpha]*((alpha*B*beta)/(sum(phiP[z]*beta[z]*B[z,z] for z
in range(rank)))) for alpha in Omega0) for beta in Omega0)

↪→
↪→

223 print 'Lie algebra: '+lieAlgebraType(lieType,rank,P)
224 print 'Stabilizer: '+stabilizer(lieType,rank,P)
225 elif [sgn(phiP[k]) for k in range(len(phiP))]==[1 if k in P else 0 for k in range(len(phiP))]:
226 T=Combinations([i for i in range(rank) if i not in P])
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227 for i in range(T.cardinality()):
228 S=T[i]+P
229 phiS=(C)*(eta-2*sum(root for root in positiveRoots if all(root[k]==0 for k in S)))
230 if [sgn(phiS[k]) for k in range(len(phiS))]==[1 if k in S else 0 for k in range(len(phiS))]:
231 print phiS*(1/gcd(phiS)),' ','Non-compact simple roots:',P,' ','S:',S,' ','symplectic

Fano'↪→
232 Omega=[root for root in Set(positiveRoots).difference(Set([root for root in positiveRoots if

all(root[k]==0 for k in S)]))]↪→
233 print "Dimension V:",(2*(len(positiveRoots)-len(Omega))+rank)," Dimension

G/V:",2*len(Omega)↪→
234 if C.inverse()*(phiS/(gcd(phiS))) in W.roots():
235 print 'Is phi a root? Yes'
236 else:
237 print 'Is phi a root? No'
238 print "Hermitian scalar

curvature:",-4*gcd(phiS)*sum(sum(epsilon[alpha]*((alpha*B*beta)/(sum(phiS[z]*beta[z]*B[z,z]
for z in range(rank)))) for alpha in Omega) for beta in Omega)

↪→
↪→

239 print 'Lie algebra: '+lieAlgebraType(lieType,rank,P)
240 print 'Stabilizer: '+stabilizer(lieType,rank,S)
241 print(cputime())

Code A.1: Source code of the classification algorithm.
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Appendix B

Vogan diagrams with special φ

In this appendix we classify all special φ’s associated with connected Vogan diagrams having
rank at most ℓ = 8, where notations and terminology are as in Section 3.7. This classification
is a consequence of the results discussed in Chapter 3. In particular, we have the following
result.

Proposition B.0.1. Let G be a non-compact real simple Lie group with rank ℓ ≤ 8 and let
(G/V, ω, J) be an adjoint orbit of G endowed with the canonical almost-Kähler structure. If
(G/V, ω, J) satisfies ρ = λω, then it is isomorphic up to scaling to the orbit of v = ihφ for
some φ contained in the following tables.

Few comments for reading the tables are in order. For each Lie algebra type, we specify
the dimension and its real forms together with the fundamental dominant weights φ1, . . . , φℓ
written in terms of simple roots γ1, . . . , γℓ. For each Vogan diagram we list all special φ’s
expressed as a sum of fundamental dominant weights φi’s and for each of them we provide the
following data.

• Whether φ is a root;

• The symplectic type of the special orbit of v such that v = ihφ and the integrability of
the canonical almost-complex structure J . More precisely, we write sGT, sCY, sF if the
orbit satisfies ρ = λω with λ < 0, λ = 0, λ > 0 respectively and we remove the ‘s’ when
J is integrable;

• The Hermitian scalar curvature s of the canonical almost-complex structure J . Note that
from s one may compute λ through the identity s = λ

2 dim G/V ;

• The dimension of the stabilizer v of V and of the orbit G/V ;

• The Lie algebras of G and V .

The choice of the acronyms at the second point is motived as follows. Given an adjoint
orbit (G/V, ω, J) satisfying ρ = λω and a discrete co-compact subgroup Γ ⊂ G, the quotient
(Γ\G/V, ωΓ, JΓ) is a compact almost-Kähler manifold satisfying ρΓ = λωΓ as soon as Γ\G/V is
smooth. Thus, as discussed in Section 3.6, (Γ\G/V, ωΓ, JΓ) is special symplectic general type,
symplectic Calabi-Yau or symplectic Fano according to the sign of λ. In other words, sGT,
sCY, sF denote the symplectic type of any compact quotient of (G/V, ω).
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B.1 Special classical adjoint orbits
Rank 2
A2

Dimension of g = 8
One non-compact real form with trivial automorphism: su(1, 2).
Fundamental dominant weights: φ1 = 2

3γ1 +
1
3γ2

φ2 = 1
3γ1 +

2
3γ2

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2
φ1 no GT −12 4 4 su(1, 2) su(2)⊕ R

γ1 γ2
t1φ1 + t2φ2

for all t1, t2 > 0
no sCY 0 2 6 su(1, 2) R2

B2

Dimension of g = 10
Two non-compact real forms: so(4, 1), so(2, 3).
Fundamental dominant weights: φ1 = γ1 + γ2

φ2 = 1
2γ1 + γ2

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2

2 1
φ1 yes GT −18 4 6 so(2, 3) su(2)⊕ R

γ1 γ2

2 1
φ2 no sCY 0 4 6 so(4, 1) su(2)⊕ R

Rank 3
A3

Dimension of g = 15
Two non-compact real forms with trivial automorphism: su(1, 3), su(2, 2).
Fundamental dominant weights: φ1 = 3

4γ1 +
1
2γ2 +

1
4γ3

φ2 = 1
2γ1 + γ2 +

1
2γ3

φ3 = 1
4γ1 +

1
2γ2 +

3
4γ3

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3
φ1 no GT −24 9 6 su(1, 3) su(3)⊕ R

γ1 γ2 γ3
φ2 no GT −32 7 8 su(2, 2) (su(2))2 ⊕ R

γ1 γ2 γ3
φ1 + φ3 yes sGT −10 5 10 su(2, 2) su(2)⊕ R
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B3

Dimension of g = 21
Three non-compact real forms: so(6, 1), so(4, 3), so(2, 5).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3

φ2 = γ1 + 2γ2 + 2γ3

φ3 = 1
2γ1 + γ2 +

3
2γ3

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3

2 2 1
φ1 yes GT −50 11 10 so(2, 5) so(5)⊕ R

γ1 γ2 γ3

2 2 1
φ2 yes sGT −28 7 14 so(4, 3) (su(2))2 ⊕ R

γ1 γ2 γ3

2 2 1
φ3 no sF 24 9 12 so(6, 1) su(3)⊕ R

C3

Dimension of g = 21
Two non-compact real forms: sp(1, 2), sp(3,R).
Fundamental dominant weights: φ1 = γ1 + γ2 +

1
2γ3

φ2 = γ1 + 2γ2 + γ3

φ3 = γ1 + 2γ2 +
3
2γ3

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3

1 1 2
φ1 no sGT −20 11 10 sp(1, 2) so(5)⊕ R

γ1 γ2 γ3

1 1 2
φ2 yes sF 14 7 14 sp(1, 2) (su(2))2 ⊕ R

γ1 γ2 γ3
φ3 no GT −48 9 12 sp(3,R) su(3)⊕ R

γ1 γ2 γ3

1 1 2
φ1 + φ3 no sGT −16 5 16 sp(3,R) su(2)⊕ R2
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Rank 4
A4

Dimension of g = 24
Two non-compact real forms with trivial automorphism: su(1, 4), su(2, 3).
Fundamental dominant weights: φ1 = 4

5γ1 +
3
5γ2 +

2
5γ3 +

1
5γ4

φ2 = 3
5γ1 +

6
5γ2 +

4
5γ3 +

2
5γ4

φ3 = 2
5γ1 +

4
5γ2 +

6
5γ3 +

3
5γ4

φ4 = 1
5γ1 +

2
5γ2 +

3
5γ3 +

4
5γ4

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 φ1 no GT −40 16 8 su(1, 4) su(4)⊕ R

γ1 γ2 γ3 γ4 φ2 no GT −60 12 12 su(2, 3) su(2)⊕ su(3)⊕ R

γ1 γ2 γ3 γ4 φ1 + φ4 yes sGT −28 10 14 su(2, 3) su(3)⊕ R2

γ1 γ2 γ3 γ4 φ2 + φ3 no sF 16 8 16 su(1, 4) (su(2))2 ⊕ R

γ1 γ2 γ3 γ4

∑4
i=1 tiφi

for all ti > 0
no sCY 0 4 20 su(2, 3) R4

B4

Dimension of g = 36
Four non-compact real forms: so(8, 1), so(6, 3), so(4, 5), so(2, 7).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4

φ2 = γ1+2γ2+2γ3+2γ4

φ3 = γ1+2γ2+3γ3+3γ4

φ4 = 1
2γ1+ γ2+

3
2γ3+2γ4

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4

2 2 2 1
φ1 yes GT −98 22 14 so(2, 7) so(7)⊕ R

γ1 γ2 γ3 γ4

2 2 2 1
φ2 yes sGT −88 14 22 so(4, 5) su(2)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4

2 2 2 1
φ3 no sGT −24 12 24 so(6, 3) su(3)⊕ su(2)⊕ R

γ1 γ2 γ3 γ4

2 2 2 1
φ4 no sF 80 16 20 so(8, 1) su(4)⊕ R

2φ1 + φ4 no sF 52 10 26 so(8, 1) su(3)⊕ R2
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C4

Dimension of g = 36
Three non-compact real forms: sp(1, 3), sp(2, 2), sp(4,R).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 +

1
2γ4

φ2 = γ1 + 2γ2 + 2γ3 + γ4

φ3 = γ1 + 2γ2 + 3γ3 +
3
2γ4

φ4 = γ1 + 2γ2 + 3γ3 + 2γ4

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4

1 1 1 2
φ1 no sGT −56 22 14 sp(1, 3) sp(3)⊕ R

γ1 γ2 γ3 γ4

1 1 1 2
φ2 yes sGT −22 14 22 sp(2, 2) su(2)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4

1 1 1 2
φ3 no sF 48 12 24 sp(1, 3) su(3)⊕ su(2)⊕ R

3φ1 + φ3 no sF 28 8 28 sp(1, 3) (su(2))2 ⊕ R2

γ1 γ2 γ3 γ4

1 1 1 2
φ4 no GT −100 16 20 sp(4,R) su(4)⊕ R

D4

Dimension of g = 28
Two non-compact real forms with trivial automorphism: so(2, 6), so(4, 4).
Fundamental dominant weights: φ1 = γ1 + γ2 +

1
2γ3 +

1
2γ4

φ2 = γ1 + 2γ2 + γ3 + γ4

φ3 = 1
2γ1 + γ2 + γ3 +

1
2γ4

φ4 = 1
2γ1 + γ2 +

1
2γ3 + γ4

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2

γ3

γ4

φ1 no GT −72 16 12 so(2, 6) su(4)⊕ R

γ1 γ2

γ3

γ4

φ2 yes sGT −54 10 18 so(4, 4) (su(2))3 ⊕ R

γ1 γ2

γ3

γ4

t1φ1 + t3φ3

for all t1, t2 > 0
no sCY 0 10 18 so(2, 6) su(3)⊕ R2

γ1 γ2

γ3

γ4

φ1 + φ3 + φ4 no sGT −22 6 22 so(4, 4) su(2)⊕ R3
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Rank 5
A5

Dimension of g = 35
Three non-compact real forms with trivial automorphism: su(1, 5), su(2, 4), su(3, 3).
Fundamental dominant weights: φ1 = 5

6γ1 +
2
3γ2 +

1
2γ3 +

1
3γ4 +

1
6γ5

φ2 = 2
3γ1 +

4
3γ2 + γ3 +

2
3γ4 +

1
3γ5

φ3 = 1
2γ1 + γ2 +

3
2γ3 + γ4 +

1
2γ5

φ4 = 1
3γ1 +

2
3γ2 + γ3 +

4
3γ4 +

2
3γ5

φ5 = 1
6γ1 +

1
3γ2 +

1
2γ3 +

2
3γ4 +

5
6γ5

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 φ1 no GT −60 25 10 su(1, 5) su(5)⊕ R

γ1 γ2 γ3 γ4 γ5 φ2 no GT −96 19 16 su(2, 4) su(2)⊕ su(4)⊕ R

γ1 γ2 γ3 γ4 γ5 φ3 no GT −108 17 18 su(3, 3) (su(3))2 ⊕ R

γ1 γ2 γ3 γ4 γ5 φ1 + φ3 yes sGT −54 17 18 su(2, 4) su(4)⊕ R2

γ1 γ2 γ3 γ4 γ5
t2φ2 + t4φ4

for all t2, t4 > 0
no sCY 0 11 24 su(2, 4) (su(2))3 ⊕ R2
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B5

Dimension of g = 55
Five non-compact real forms: so(2, 9), so(4, 7), so(6, 5), so(8, 3), so(10, 1).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5

φ2 = γ1 +2γ2 +2γ3 +2γ4 +2γ5

φ3 = γ1 +2γ2 +3γ3 +3γ4 +3γ5

φ4 = γ1 +2γ2 +3γ3 +4γ4 +4γ5

φ5 = 1
2γ1 + γ2 +

3
2γ3 +2γ4 +

5
2γ5

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
φ1 yes GT −162 37 18 so(2, 9) so(9)⊕ R

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
φ2 yes sGT −180 25 30 so(4, 7) su(2)⊕ so(7)⊕ R

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
φ3 no sGT −180 19 36 so(6, 5) su(3)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
φ4 no sCY 0 19 36 so(8, 3) su(4)⊕ su(2)⊕ R

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
φ5 no sF 180 25 30 so(10, 1) su(5)⊕ R

5φ1 + 4φ5 no sF 38 17 38 so(10, 1) su(4)⊕ R2

5φ2 + 2φ5 no sF 42 13 42 so(10, 1) su(2)⊕ su(3)⊕ R2

φ1 + 2φ2 + φ5 no sF 88 11 44 so(10, 1) su(3)⊕ R3

γ1 γ2 γ3 γ4 γ5

2 2 2 2 1
2φ1 + φ4 no sGT −42 13 42 so(6, 5) su(3)⊕ su(2)⊕ R2
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C5

Dimension of g = 55
Three non-compact real forms: sp(1, 4), sp(2, 3), sp(5,R).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 +

1
2γ5

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + γ5

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 +
3
2γ5

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 2γ5

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 +
5
2γ5

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5

1 1 1 1 2
φ1 no sGT −108 37 18 sp(1, 4) sp(4)⊕ R

γ1 γ2 γ3 γ4 γ5

1 1 1 1 2
φ2 yes sGT −90 25 30 sp(2, 3) su(2)⊕ sp(3)⊕ R

γ1 γ2 γ3 γ4 γ5

1 1 1 1 2
φ3 no sCY 0 19 36 sp(2, 3) su(3)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4 γ5

1 1 1 1 2
φ4 no sF 108 19 36 sp(1, 4) su(4)⊕ su(2)⊕ R

2φ1 + φ4 no sF 84 13 42 sp(1, 4) su(3)⊕ su(2)⊕ R2

4φ2 + φ4 no sF 44 11 44 sp(1, 4) (su(2))3 ⊕ R2

φ4 + 2φ5 no sF 38 17 38 sp(1, 4) su(4)⊕ R2

2φ1 + 3φ2 + φ4 no sF 46 9 46 sp(1, 4) (su(2))2 ⊕ R3

γ1 γ2 γ3 γ4 γ5

1 1 1 1 2
φ5 no GT −180 25 30 sp(5,R) su(5)⊕ R
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D5

Dimension of g = 45
Three non-compact real forms with trivial automorphism: so(2, 8), so(4, 6), so∗(10).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 +

1
2γ4 +

1
2γ5

φ2 = γ1 + 2γ2 + 2γ3 + γ4 + γ5

φ3 = γ1 + 2γ2 + 3γ3 +
3
2γ4 +

3
2γ5

φ4 = 1
2γ1 + γ2 +

3
2γ3 +

5
4γ4 +

3
4γ5

φ5 = 1
2γ1 + γ2 +

3
2γ3 +

3
4γ4 +

5
4γ5

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3

γ4

γ5

φ1 no GT −128 29 16 so(2, 8) so(8)⊕ R

γ1 γ2 γ3

γ4

γ5

φ2 yes sGT −130 19 26 so(4, 6) su(2)⊕ su(4)⊕ R

γ1 γ2 γ3

γ4

γ5

φ3 no sGT −60 15 30 so(4, 6) su(3)⊕ (su(2))2 ⊕ R

γ1 γ2 γ3

γ4

γ5

φ4 no sGT −160 25 20 so∗(10) su(5)⊕ R

γ1 γ2 γ3

γ4

γ5

φ4 + φ5 no sF 28 17 28 so(2, 8) su(4)⊕ R2
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Rank 6
A6

Dimension of g = 48
Three non-compact real forms with trivial automorphism: su(1, 6), su(2, 5), su(3, 4).
Fundamental dominant weights: φ1 = 6

7γ1 +
5
7γ2 +

4
7γ3 +

3
7γ4 +

2
7γ5 +

1
7γ6

φ2 = 5
7γ1 +

10
7 γ2 +

8
7γ3 +

6
7γ4 +

4
7γ5 +

2
7γ6

φ3 = 4
7γ1 +

8
7γ2 +

12
7 γ3 +

9
7γ4 +

6
7γ5 +

3
7γ6

φ4 = 3
7γ1 +

6
7γ2 +

9
7γ3 +

12
7 γ4 +

8
7γ5 +

4
7γ6

φ5 = 2
7γ1 +

4
7γ2 +

6
7γ3 +

8
7γ4 +

10
7 γ5 +

5
7γ6

φ6 = 1
7γ1 +

2
7γ2 +

3
7γ3 +

4
7γ4 +

5
7γ5 +

6
7γ6

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 φ1 no GT −84 36 12 su(1, 6) su(6)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 φ2 no GT −140 28 20 su(2, 5) su(2)⊕ su(5)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 φ3 no GT −168 24 24 su(3, 4) su(3)⊕ su(4)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 φ1 + 4φ5 no sGT −28 20 28 su(3, 4) su(4)⊕ su(2)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 φ1 + φ6 yes sGT −88 26 22 su(2, 5) su(5)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 φ2 + φ4 no sGT −32 16 32 su(3, 4) (su(2))2 ⊕ su(3)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 φ3 + φ4 no sF 60 18 30 su(1, 6) (su(3))2 ⊕ R2

3φ1 + φ3 + 2φ4 no sF 34 14 34 su(1, 6) su(2)⊕ su(3)⊕ R3

3φ1 + φ3 + φ4 + 3φ6 no sF 38 10 38 su(1, 6) (su(2))2 ⊕ R4

γ1 γ2 γ3 γ4 γ5 γ6

∑6
i=1 tiφi

for all ti > 0
no sCY 0 6 42 su(3, 4) R6
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B6

Dimension of g = 78
Six non-compact real forms: so(2, 11), so(4, 9), so(6, 7), so(8, 5), so(10, 3), so(12, 1).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6

φ6 = 1
2φ1 + φ2 +

3
2φ3 + 2φ4 +

5
2φ5 + 3φ6

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ1 yes GT −242 56 22 so(2, 11) so(11)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ2 yes sGT −304 40 38 so(4, 9) su(2)⊕ so(9)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ3 no sGT −240 30 48 so(6, 7) su(3)⊕ so(7)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ4 no sGT −104 26 52 so(8, 5) su(4)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ5 no sF 50 28 50 so(10, 3) su(5)⊕ su(2)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ6 no sF 336 36 42 so(12, 1) su(6)⊕ R

φ1 + φ6 no sF 312 26 52 so(12, 1) su(5)⊕ R2

3φ3 + φ6 no sF 120 18 60 so(12, 1) (su(3))2 ⊕ R2

3φ2 + 2φ6 no sF 116 20 58 so(12, 1) su(2)⊕ su(4)⊕ R2

2φ1 + 5φ2 + 4φ6 no sF 60 18 60 so(12, 1) su(4)⊕ R3

3φ1 + 5φ3 + 2φ6 no sF 64 14 64 so(12, 1) su(2)⊕ su(3)⊕ R3

3φ2 + 4φ3 + 2φ6 no sF 64 14 64 so(12, 1) su(2)⊕ su(3)⊕ R3

φ1 + φ2 + 2φ3 + φ6 no sF 132 12 66 so(12, 1) su(3)⊕ R4

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1
φ2 + φ5 no sGT −62 16 62 so(6, 7) (su(2))2 ⊕ su(3)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6

2 2 2 2 2 1 t4φ4 + t6φ6

for all t4, t6 > 0
no sCY 0 20 58 so(4, 9) su(4)⊕ su(2)⊕ R2
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C6

Dimension of g = 78
Four non-compact real forms: sp(1, 5), sp(2, 4), sp(3, 3), sp(6,R).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 +

1
2γ6

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + γ6

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 +
3
2γ6

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 2γ6

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 +
5
2γ6

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 3γ6

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ1 no sGT −176 56 22 sp(1, 5) sp(5)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ2 yes sGT −190 40 38 sp(2, 4) su(2)⊕ sp(4)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ3 no sGT −96 30 48 sp(3, 3) su(3)⊕ sp(3)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ4 no sF 52 26 52 sp(2, 4) su(4)⊕ so(5)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ5 no sF 200 28 50 sp(1, 5) su(5)⊕ su(2)⊕ R

5φ1 + 3φ5 no sF 58 20 58 sp(1, 5) su(4)⊕ su(2)⊕ R2

5φ2 + 2φ5 no sF 62 16 62 sp(1, 5) (su(2))2 ⊕ su(3)⊕ R2

5φ3 + φ5 no sF 62 16 62 sp(1, 5) su(3)⊕ (su(2))2 ⊕ R2

φ5 + φ6 no sF 104 26 52 sp(1, 5) su(5)⊕ R2

φ1 + 2φ2 + φ5 no sF 128 14 64 sp(1, 5) su(3)⊕ su(2)⊕ R3

3φ1 + 4φ3 + φ5 no sF 66 12 66 sp(1, 5) (su(2))3 ⊕ R3

5φ1 + φ5 + 2φ6 no sF 60 18 60 sp(1, 5) su(4)⊕ R3

3φ2 + 3φ3 + φ5 no sF 66 12 66 sp(1, 5) (su(2))3 ⊕ R3

2φ1 + 2φ2 + 3φ3 + φ5 no sF 68 10 68 sp(1, 5) (su(2))2 ⊕ R4

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ6 no GT −294 36 42 sp(6,R) su(6)⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2 t1φ1 + t4φ4

for all t1, t4 > 0
no sCY 0 20 58 sp(3, 3) su(3)⊕ so(5)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
2φ2 + φ6 no sGT −58 20 58 sp(6,R) su(2)⊕ su(4)⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6

1 1 1 1 1 2
φ3 + φ5 no sF 62 16 62 sp(2, 4) su(3)⊕ (su(2))2 ⊕ R2
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D6

Dimension of g = 66
Three non-compact real forms with trivial automorphism: so(2, 10), so(4, 8), so∗(12).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 +

1
2γ5 +

1
2γ6

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + γ5 + γ6

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 +
3
2γ5 +

3
2γ6

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 2γ5 + 2γ6

φ5 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

3
2γ5 + γ6

φ6 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 + γ5 +

3
2γ6

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4

γ5

γ6

φ1 no GT −200 46 20 so(2, 10) so(10)⊕ R

γ1 γ2 γ3 γ4

γ5

γ6

φ2 yes sGT −238 32 34 so(4, 8) su(2)⊕ so(8)⊕ R

γ1 γ2 γ3 γ4

γ5

γ6

φ3 no sGT −168 24 42 so(6, 6) su(3)⊕ su(4)⊕ R

γ1 γ2 γ3 γ4

γ5

γ6

φ4 no sGT −44 22 44 so(4, 8) su(4)⊕ (su(2))2 ⊕ R

γ1 γ2 γ3 γ4

γ5

γ6

φ5 no GT −300 36 30 so∗(12) su(6)⊕ R

γ1 γ2 γ3 γ4

γ5

γ6

φ5 + φ6 no sF 80 26 40 so(2, 10) su(5)⊕ R2

5φ1 + φ5 + φ6 no sF 48 18 48 so(2, 10) su(4)⊕ R3
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Rank 7
A7

Dimension of g = 63
Four non-compact real forms with trivial automorphism: su(1, 7), su(2, 6), su(3, 5), su(4, 4).
Fundamental dominant weights: φ1 = 7

8γ1 +
3
4γ2 +

5
8γ3 +

1
2γ4 +

3
8γ5 +

1
4γ6 +

1
8γ7

φ2 = 3
4γ1 +

3
2γ2 +

5
4γ3 + γ4 +

3
4γ5 +

1
2γ6 +

1
4γ7

φ3 = 5
8γ1 +

5
4γ2 +

15
8 γ3 +

3
2γ4 +

9
8γ5 +

3
4γ6 +

3
8γ7

φ4 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

3
2γ5 + γ6 +

1
2γ7

φ5 = 3
8γ1 +

3
4γ2 +

9
8γ3 +

3
2γ4 +

15
8 γ5 +

5
4γ6 +

5
8γ7

φ6 = 1
4γ1 +

1
2γ2 +

3
4γ3 + γ4 +

5
4γ5 +

3
2γ6 +

3
4γ7

φ7 = 1
8γ1 +

1
4γ2 +

3
8γ3 +

1
2γ4 +

5
8γ5 +

3
4γ6 +

7
8γ7

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ1 no GT −112 49 14 su(1, 7) su(7) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ2 no GT −192 39 24 su(2, 6) su(2) ⊕ su(6) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ3 no GT −240 33 30 su(3, 5) su(3) ⊕ su(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ4 no GT −256 31 32 su(4, 4) (su(4))2 ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7
2ϕ1 + 5ϕ6 no sGT −34 29 34 su(3, 5) su(5) ⊕ su(2) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ1 + ϕ7 yes sGT −130 37 26 su(2, 6) su(6) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ2 + ϕ6 no sGT −80 23 40 su(4, 4) (su(2))2 ⊕ su(4) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7
5ϕ2 + 2ϕ7 no sGT −34 29 34 su(3, 5) su(2) ⊕ su(5) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7
4ϕ3 + ϕ4 no sF 38 25 38 su(1, 7) su(3) ⊕ su(4) ⊕ R2

3ϕ1 + 3ϕ3 + ϕ4 no sF 42 21 42 su(1, 7) su(2) ⊕ su(4) ⊕ R3

3ϕ2 + 2ϕ3 + ϕ4 no sF 42 21 42 su(1, 7) su(2) ⊕ su(4) ⊕ R3

2ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4 no sF 44 19 44 su(1, 7) su(4) ⊕ R4

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ3 + ϕ5 no sF 42 21 42 su(2, 6) (su(3))2 ⊕ su(2) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7
ϕ4 + 4ϕ5 no sF 38 25 38 su(1, 7) su(4) ⊕ su(3) ⊕ R2

ϕ4 + 2ϕ5 + 3ϕ6 no sF 42 21 42 su(1, 7) su(4) ⊕ su(2) ⊕ R3

ϕ4 + 3ϕ5 + 3ϕ7 no sF 42 21 42 su(1, 7) su(4) ⊕ su(2) ⊕ R3

ϕ4 + 2ϕ5 + 2ϕ6 + 2ϕ7 no sF 44 19 44 su(1, 7) su(4) ⊕ R4
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B7

Dimension of g = 105
Seven non-compact real forms: so(2, 13), so(4, 11), so(6, 9), so(8, 7), so(10, 5), so(12, 3), so(14, 1).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6 + γ7

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6 + 2γ7

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6 + 3γ7

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6 + 4γ7

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6 + 5γ7

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 6γ7

φ7 = 1
2φ1 + φ2 +

3
2φ3 + 2φ4 +

5
2φ5 + 3φ6 +

7
2γ7

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ1 yes GT −338 79 26 so(2, 13) so(13) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ2 yes sGT −460 59 46 so(4, 11) su(2) ⊕ so(11) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ3 no sGT −420 45 60 so(6, 9) su(3) ⊕ so(9) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ4 no sGT −272 37 68 so(8, 7) su(4) ⊕ so(7) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ5 no sGT −70 35 70 so(10, 5) su(5) ⊕ so(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ6 no sF 132 39 66 so(12, 3) su(6) ⊕ su(2) ⊕ R

6ϕ1 + ϕ6 no sF 76 29 76 so(12, 3) su(5) ⊕ su(2) ⊕ R2

ϕ6 + 2ϕ7 no sF 68 37 68 so(12, 3) su(6) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ7 no sF 560 49 56 so(14, 1) su(7) ⊕ R

7ϕ1 + 8ϕ7 no sF 68 37 68 so(14, 1) su(6) ⊕ R2

7ϕ2 + 6ϕ7 no sF 76 29 76 so(14, 1) su(2) ⊕ su(5) ⊕ R2

7ϕ3 + 4ϕ7 no sF 80 25 80 so(14, 1) su(3) ⊕ su(4) ⊕ R2

7ϕ4 + 2ϕ7 no sF 80 25 80 so(14, 1) su(4) ⊕ su(3) ⊕ R2

ϕ1 + 3ϕ2 + 3ϕ7 no sF 156 27 78 so(14, 1) su(5) ⊕ R3

3ϕ1 + 6ϕ3 + 4ϕ7 no sF 84 21 84 so(14, 1) su(2) ⊕ su(4) ⊕ R3

2ϕ1 + 3ϕ4 + ϕ7 no sF 172 19 86 so(14, 1) (su(3))2 ⊕ R3

3ϕ2 + 5ϕ3 + 4ϕ7 no sF 84 21 84 so(14, 1) su(2) ⊕ su(4) ⊕ R3

4ϕ2 + 5ϕ4 + 2ϕ7 no sF 88 17 88 so(14, 1) (su(2))2 ⊕ su(3) ⊕ R3

2ϕ3 + 2ϕ4 + ϕ7 no sF 172 19 86 so(14, 1) (su(3))2 ⊕ R3

2ϕ1 + 2ϕ2 + 5ϕ3 + 4ϕ7 no sF 86 19 86 so(14, 1) su(4) ⊕ R4

2ϕ1 + 3ϕ2 + 5ϕ4 + 2ϕ7 no sF 90 15 90 so(14, 1) su(2) ⊕ su(3) ⊕ R4

3ϕ1 + 3ϕ3 + 4ϕ4 + 2ϕ7 no sF 90 15 90 so(14, 1) su(2) ⊕ su(3) ⊕ R4

3ϕ2 + 2ϕ3 + 4ϕ4 + 2ϕ7 no sF 90 15 90 so(14, 1) su(2) ⊕ su(3) ⊕ R4

ϕ1 + ϕ2 + ϕ3 + 2ϕ4 + ϕ7 no sF 184 13 92 so(14, 1) su(3) ⊕ R5

γ1 γ2 γ3 γ4 γ5 γ6 γ7

2 2 2 2 2 2 1
ϕ1 + 2ϕ5 no sGT −78 27 78 so(8, 7) su(4) ⊕ so(5) ⊕ R2
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C7

Dimension of g = 105
Four non-compact real forms: sp(1, 6), sp(2, 5), sp(3, 4), sp(7,R).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6 +

1
2γ7

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6 + γ7

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6 +
3
2γ7

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6 + 2γ7

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6 +
5
2γ7

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 3γ7

φ7 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 +
7
2γ7

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ1 no sGT −260 79 26 sp(1, 6) sp(6) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ2 yes sGT −322 59 46 sp(2, 5) su(2) ⊕ sp(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ3 no sGT −240 45 60 sp(3, 4) su(3) ⊕ sp(4) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ4 no sGT −68 37 68 sp(3, 4) su(4) ⊕ sp(3) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ5 no sF 140 35 70 sp(2, 5) su(5) ⊕ so(5) ⊕ R

5ϕ1 + ϕ5 no sF 78 27 78 sp(2, 5) su(4) ⊕ so(5) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ6 no sF 330 39 66 sp(1, 6) su(6) ⊕ su(2) ⊕ R

3ϕ1 + 2ϕ6 no sF 152 29 76 sp(1, 6) su(5) ⊕ su(2) ⊕ R2

2ϕ2 + ϕ6 no sF 246 23 82 sp(1, 6) (su(2))2 ⊕ su(4) ⊕ R2

3ϕ3 + ϕ6 no sF 168 21 84 sp(1, 6) (su(3))2 ⊕ su(2) ⊕ R2

6ϕ4 + ϕ6 no sF 82 23 82 sp(1, 6) su(4) ⊕ (su(2))2 ⊕ R2

3ϕ6 + 2ϕ7 no sF 68 37 68 sp(1, 6) su(6) ⊕ R2

2ϕ1 + 5ϕ2 + 3ϕ6 no sF 84 21 84 sp(1, 6) su(4) ⊕ su(2) ⊕ R3

3ϕ1 + 5ϕ3 + 2ϕ6 no sF 88 17 88 sp(1, 6) (su(2))2 ⊕ su(3) ⊕ R3

4ϕ1 + 5ϕ4 + ϕ6 no sF 88 17 88 sp(1, 6) su(3) ⊕ (su(2))2 ⊕ R3

3ϕ1 + ϕ6 + ϕ7 no sF 156 27 78 sp(1, 6) su(5) ⊕ R3

3ϕ2 + 4ϕ3 + 2ϕ6 no sF 88 17 88 sp(1, 6) (su(2))2 ⊕ su(3) ⊕ R3

4ϕ2 + 4ϕ4 + ϕ6 no sF 90 15 90 sp(1, 6) (su(2))4 ⊕ R3

6ϕ2 + ϕ6 + 2ϕ7 no sF 84 21 84 sp(1, 6) su(2) ⊕ su(4) ⊕ R3

4ϕ3 + 3ϕ4 + ϕ6 no sF 88 17 88 sp(1, 6) su(3) ⊕ (su(2))2 ⊕ R3

ϕ1 + ϕ2 + 2ϕ3 + ϕ6 no sF 180 15 90 sp(1, 6) su(3) ⊕ su(2) ⊕ R4

2ϕ1 + 3ϕ2 + 4ϕ4 + ϕ6 no sF 92 13 92 sp(1, 6) (su(2))3 ⊕ R4

2ϕ1 + 5ϕ2 + ϕ6 + 2ϕ7 no sF 86 19 86 sp(1, 6) su(4) ⊕ ⊕R4

3ϕ1 + 3ϕ3 + 3ϕ4 + ϕ6 no sF 92 13 92 sp(1, 6) (su(2))3 ⊕ R4

3ϕ2 + 2ϕ3 + 3ϕ4 + ϕ6 no sF 92 13 92 sp(1, 6) (su(2))3 ⊕ R4

2ϕ1 + 2ϕ2 + 2ϕ3 + 3ϕ4 + ϕ6 no sF 94 11 94 sp(1, 6) (su(2))2 ⊕ R5

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ7 no GT −448 49 56 sp(7, R) su(7) ⊕ R
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Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
ϕ2 + 2ϕ7 no sGT −76 29 76 sp(7, R) su(2) ⊕ su(5) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7

1 1 1 1 1 1 2
2ϕ4 + ϕ6 no sF 82 23 82 sp(2, 5) su(4) ⊕ (su(2))2 ⊕ R2

4ϕ1 + ϕ4 + ϕ6 no sF 88 17 88 sp(2, 5) su(3) ⊕ (su(2))2 ⊕ R3

D7

Dimension of g = 91
Four non-compact real forms with trivial automorphism: so(2, 12), so(4, 10), so(6, 8), so∗(14).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 +

1
2γ6 +

1
2γ7

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + γ6 + γ7

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 +
3
2γ6 +

3
2γ7

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 2γ6 + 2γ7

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 +
5
2γ6 +

5
2γ7

φ6 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

5
2γ5 +

7
4γ6 +

5
4γ7

φ7 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

5
2γ5 +

5
4γ6 +

7
4γ7

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ1 no GT −288 67 24 so(2, 12) so(12) ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ2 yes sGT −378 49 42 so(4, 10) su(2) ⊕ so(10) ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ3 no sGT −324 37 54 so(6, 8) su(3) ⊕ so(8) ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ4 no sGT −180 31 60 so(6, 8) (su(4))2 ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ5 no sCY 0 31 60 so(4, 10) su(5) ⊕ (su(2))2 ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ6 no GT −504 49 42 so∗(14) su(7) ⊕ R

γ1 γ2 γ3 γ4 γ5

γ6

γ7

3ϕ1 + ϕ5 no sGT −68 23 68 so(6, 8) su(4) ⊕ (su(2)2) ⊕ R2

γ1 γ2 γ3 γ4 γ5

γ6

γ7

ϕ6 + ϕ7 no sF 162 37 54 so(2, 12) su(6) ⊕ R2

3ϕ1 + ϕ6 + ϕ7 no sF 128 27 64 so(2, 12) su(5) ⊕ R3

6ϕ2 + ϕ6 + ϕ7 no sF 70 21 70 so(2, 12) su(2) ⊕ su(4) ⊕ R3

2ϕ1 + 5ϕ2 + ϕ6 + ϕ7 no sF 72 19 72 so(2, 12) su(4) ⊕ R4
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Rank 8
A8

Dimension of g = 80
Four non-compact real forms with trivial automorphism: su(1, 8), su(2, 7), su(3, 6), su(4, 5).
Fundamental dominant weights: φ1 = 8

9γ1 +
7
9γ2 +

2
3γ3 +

5
9γ4 +

4
9γ5 +

1
3γ6 +

2
9γ7 +

1
9γ8

φ2 = 7
9γ1 +

14
9 γ2 +

4
3γ3 +

10
9 γ4 +

8
9γ5 +

2
3γ6 +

4
9γ7 +

2
9γ8

φ3 = 2
3γ1 +

4
3γ2 + 2γ3 +

5
3γ4 +

4
3γ5 + γ6 +

2
3γ7 +

1
3γ8

φ4 = 5
9γ1 +

10
9 γ2 +

5
3γ3 +

20
9 γ4 +

16
9 γ5 +

4
3γ6 +

8
9γ7 +

4
9γ8

φ5 = 4
9γ1 +

8
9γ2 +

4
3γ3 +

16
9 γ4 +

20
9 γ5 +

5
3γ6 +

10
9 γ7 +

5
9γ8

φ6 = 1
3γ1 +

2
3γ2 + γ3 +

4
3γ4 +

5
3γ5 + 2γ6 +

4
3γ7 +

2
3γ8

φ7 = 2
9γ1 +

4
9γ2 +

2
3γ3 +

8
9γ4 +

10
9 γ5 +

4
3γ6 +

14
9 γ7 +

7
9γ8

φ8 = 1
9γ1 +

2
9γ2 +

1
3γ3 +

4
9γ4 +

5
9γ5 +

2
3γ6 +

7
9γ7 +

8
9γ8

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ1 no GT −144 64 16 su(1, 8) su(8) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ2 no GT −252 52 28 su(2, 7) su(2) ⊕ su(7) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ3 no GT −324 44 36 su(3, 6) su(3) ⊕ su(6) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ4 no GT −360 40 40 su(4, 5) su(4) ⊕ su(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ1 + 2ϕ7 no sGT −120 40 40 su(3, 6) su(6) ⊕ su(2) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ1 + ϕ8 yes sGT −180 50 30 su(2, 7) su(7) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ2 + ϕ7 no sGT −144 32 48 su(4, 5) (su(2))2 ⊕ su(5) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ3 + ϕ6 no sCY 0 26 54 su(3, 6) (su(3))3 ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ϕ4 + ϕ5 no sF 144 32 48 su(1, 8) (su(4))2 ⊕ R2

4ϕ1 + 2ϕ4 + 3ϕ5 no sF 54 26 54 su(1, 8) su(3) ⊕ su(4) ⊕ R3

4ϕ2 + ϕ4 + 3ϕ5 no sF 56 24 56 su(1, 8) (su(2))2 ⊕ su(4) ⊕ R3

2ϕ1 + 3ϕ2 + ϕ4 + 3ϕ5 no sF 58 22 58 su(1, 8) su(2) ⊕ su(4) ⊕ R4

4ϕ1 + 2ϕ4 + ϕ5 + 4ϕ7 no sF 62 18 62 su(1, 8) su(3) ⊕ (su(2))2 ⊕ R4

2ϕ1 + ϕ4 + ϕ5 + 2ϕ8 no sF 120 20 60 su(1, 8) (su(3))2 ⊕ R4

4ϕ2 + ϕ4 + ϕ5 + 4ϕ7 no sF 64 16 64 su(1, 8) (su(2))4 ⊕ R4

4ϕ2 + ϕ4 + 2ϕ5 + 4ϕ8 no sF 62 18 62 su(1, 8) (su(2))2 ⊕ su(3) ⊕ R4

3ϕ4 + ϕ5 + 3ϕ7 + 2ϕ8 no sF 58 22 58 su(1, 8) su(4) ⊕ su(2) ⊕ R4

2ϕ1 + 3ϕ2 + ϕ4 + ϕ5 + 4ϕ7 no sF 66 14 66 su(1, 8) (su(2))3 ⊕ R5

2ϕ1 + 3ϕ2 + ϕ4 + 2ϕ5 + 4ϕ8 no sF 64 16 64 su(1, 8) su(2) ⊕ su(3) ⊕ R5

2ϕ1 + 3ϕ2 + ϕ4 + ϕ5 + 3ϕ7 + 2ϕ8 no sF 68 12 68 su(1, 8) (su(2))2 ⊕ R6

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
∑8

i=1 tiϕi for all ti > 0 no sCY 0 8 72 su(4, 5) R8

111



B8

Dimension of g = 136
Eight non-compact real forms: so(2, 15), so(4, 13), so(6, 11), so(8, 9), so(10, 7), so(12, 5), so(14, 3),
so(16, 1).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6 + γ7 + γ8

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6 + 2γ7 + 2γ8

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6 + 3γ7 + 3γ8

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6 + 4γ7 + 4γ8

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6 + 5γ7 + 5γ8

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 6γ7 + 6γ8

φ7 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 7γ7 + 7γ8

φ8 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

5
2γ5 + 3γ6 +

7
2γ7 + 4γ8

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ1 yes GT −450 106 30 so(2, 15) so(15) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ2 yes sGT −648 82 54 so(4, 13) su(2) ⊕ so(13) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ3 no sGT −648 64 72 so(6, 11) su(3) ⊕ so(11) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ4 no sGT −504 52 84 so(8, 9) su(4) ⊕ so(9) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ5 no sGT −270 46 90 so(10, 7) su(5) ⊕ so(7) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ6 no sCY 0 46 90 so(12, 5) su(6) ⊕ so(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ7 no sF 252 52 84 so(14, 3) su(7) ⊕ su(2) ⊕ R

7ϕ1 + 2ϕ7 no sF 96 40 96 so(14, 3) su(6) ⊕ su(2) ⊕ R2

7ϕ2 + ϕ7 no sF 104 32 104 so(14, 3) (su(2))2 ⊕ su(5) ⊕ R2

ϕ7 + ϕ8 no sF 172 50 86 so(14, 3) su(7) ⊕ R2

2ϕ1 + 6ϕ2 + ϕ7 no sF 106 30 106 so(14, 3) su(5) ⊕ su(2) ⊕ R3

7ϕ1 + ϕ7 + 2ϕ8 no sF 98 38 98 so(14, 3) su(6) ⊕ R3

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
ϕ8 no sF 864 64 72 so(16, 1) su(8) ⊕ R

4ϕ1 + 5ϕ8 no sF 172 50 86 so(16, 1) su(7) ⊕ R2

ϕ2 + ϕ8 no sF 768 40 96 so(16, 1) su(2) ⊕ su(6) ⊕ R2

4ϕ3 + 3ϕ8 no sF 204 34 102 so(16, 1) su(3) ⊕ su(5) ⊕ R2

2ϕ4 + ϕ8 no sF 416 32 104 so(16, 1) (su(4))2 ⊕ R2

4ϕ5 + ϕ8 no sF 204 34 102 so(16, 1) su(5) ⊕ su(3) ⊕ R2

2ϕ1 + 7ϕ2 + 8ϕ8 no sF 98 38 98 so(16, 1) su(6) ⊕ R3

3ϕ1 + 7ϕ3 + 6ϕ8 no sF 106 30 106 so(16, 1) su(2) ⊕ su(5) ⊕ R3

4ϕ1 + 7ϕ4 + 4ϕ8 no sF 110 26 110 so(16, 1) su(3) ⊕ su(4) ⊕ R3

5ϕ1 + 7ϕ5 + 2ϕ8 no sF 110 26 110 so(16, 1) su(4) ⊕ su(3) ⊕ R3

ϕ2 + 2ϕ3 + 2ϕ8 no sF 318 30 106 so(16, 1) su(2) ⊕ su(5) ⊕ R3

2ϕ2 + 3ϕ4 + 2ϕ8 no sF 224 24 122 so(16, 1) (su(2))2 ⊕ su(4) ⊕ R3
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Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

4ϕ3 + 5ϕ4 + 4ϕ8 no sF 110 26 110 so(16, 1) su(3) ⊕ su(4) ⊕ R3

5ϕ3 + 5ϕ5 + 2ϕ8 no sF 114 22 114 so(16, 1) (su(3))2 ⊕ su(2) ⊕ R3

5ϕ4 + 4ϕ5 + 2ϕ8 no sF 110 26 110 so(16, 1) su(4) ⊕ su(3) ⊕ R3

ϕ1 + ϕ2 + 3ϕ3 + 3ϕ8 no sF 216 28 108 so(16, 1) su(5) ⊕ R4

2ϕ1 + 3ϕ2 + 6ϕ4 + 4ϕ8 no sF 114 22 114 so(16, 1) su(2) ⊕ su(4) ⊕ R4

ϕ1 + 2ϕ2 + 3ϕ5 + ϕ8 no sF 232 20 116 so(16, 1) (su(3))2 ⊕ R4

3ϕ1 + 3ϕ3 + 5ϕ4 + 4ϕ8 no sF 114 22 114 so(16, 1) su(2) ⊕ su(4) ⊕ R4

3ϕ1 + 4ϕ3 + 5ϕ5 + 2ϕ8 no sF 118 18 118 so(16, 1) (su(2))2 ⊕ su(3) ⊕ R4

2ϕ1 + 2ϕ4 + 2ϕ5 + ϕ8 no sF 232 20 116 so(16, 1) (su(3))2 ⊕ R4

3ϕ2 + 2ϕ3 + 5ϕ4 + 4ϕ8 no sF 114 22 114 so(16, 1) su(2) ⊕ su(4) ⊕ R4

3ϕ2 + 3ϕ3 + 5ϕ5 + 2ϕ8 no sF 118 18 118 so(16, 1) (su(2))2 ⊕ su(3) ⊕ R4

4ϕ2 + 3ϕ4 + 4ϕ5 + 2ϕ8 no sF 118 18 118 so(16, 1) (su(2))2 ⊕ su(3) ⊕ R4

2ϕ3 + ϕ4 + 2ϕ5 + ϕ8 no sF 232 20 116 so(16, 1) (su(3))2 ⊕ R4

2ϕ1 + 2ϕ2 + 2ϕ3 + 5ϕ4 + 4ϕ8 no sF 116 20 116 so(16, 1) su(4) ⊕ R5

2ϕ1 + 2ϕ2 + 3ϕ3 + 5ϕ5 + 2ϕ8 no sF 120 16 120 so(16, 1) su(2) ⊕ su(3) ⊕ R5

2ϕ1 + 3ϕ2 + 3ϕ4 + 4ϕ5 + 2ϕ8 no sF 120 16 120 so(16, 1) su(2) ⊕ su(3) ⊕ R5

3ϕ1 + 3ϕ3 + 2ϕ4 + 4ϕ5 + 2ϕ8 no sF 120 16 120 so(16, 1) su(2) ⊕ su(3) ⊕ R5

3ϕ2 + 2ϕ3 + 2ϕ4 + 4ϕ5 + 2ϕ8 no sF 120 16 120 so(16, 1) su(2) ⊕ su(3) ⊕ R5

ϕ1 + ϕ2 + ϕ3 + ϕ4 + 2ϕ5 + ϕ8 no sF 244 14 122 so(16, 1) su(3) ⊕ R6

5ϕ2 + 6ϕ5 + 2ϕ8 no sF 114 22 114 so(16, 1) su(2) ⊕ (su(3))2 ⊕ R3

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

2 2 2 2 2 2 2 1
4ϕ1 + ϕ6 no sGT −100 36 100 so(10, 7) su(5) ⊕ so(5) ⊕ R2
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C8

Dimension of g = 136
Five non-compact real forms: sp(1, 7), sp(2, 6), sp(3, 5), sp(4, 4), sp(8,R).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6 + γ7 +

1
2γ8

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6 + 2γ7 + γ8

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6 + 3γ7 +
3
2γ8

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6 + 4γ7 + 2γ8

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6 + 5γ7 +
5
2γ8

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 6γ7 + 3γ8

φ7 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 7γ7 +
7
2γ8

φ8 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 7γ7 + 4γ8

Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ1 no sGT −360 106 30 sp(1, 7) sp(7) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ2 yes sGT −486 82 54 sp(2, 6) su(2) ⊕ sp(6) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ3 no sGT −432 64 72 sp(3, 5) su(3) ⊕ sp(5) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ4 no sGT −252 52 84 sp(4, 4) su(4) ⊕ sp(4) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ5 no sCY 0 46 90 sp(3, 5) su(5) ⊕ sp(3) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ6 no sF 270 46 90 sp(2, 6) su(6) ⊕ so(5) ⊕ R

3ϕ1 + ϕ6 no sF 200 36 100 sp(2, 6) su(5) ⊕ so(5) ⊕ R2

6ϕ2 + ϕ6 no sF 106 30 106 sp(2, 6) su(2) ⊕ su(4) ⊕ so(5) ⊕ R2

2ϕ1 + 5ϕ2 + ϕ6 no sF 108 28 108 sp(2, 6) su(4) ⊕ so(5) ⊕ R3

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ7 no sF 504 52 84 sp(1, 7) su(7) ⊕ su(2) ⊕ R

7ϕ1 + 5ϕ7 no sF 96 40 96 sp(1, 7) su(6) ⊕ su(2) ⊕ R2

7ϕ2 + 4ϕ7 no sF 104 32 104 sp(1, 7) (su(2))2 ⊕ su(5) ⊕ R2

7ϕ3 + 3ϕ7 no sF 108 28 108 sp(1, 7) su(3) ⊕ su(4) ⊕ su(2) ⊕ R2

7ϕ4 + 2ϕ7 no sF 108 28 108 sp(1, 7) su(4) ⊕ su(3) ⊕ su(2) ⊕ R2

7ϕ5 + ϕ7 no sF 104 32 104 sp(1, 7) su(5) ⊕ (su(2))2 ⊕ R2

2ϕ7 + ϕ8 no sF 172 50 86 sp(1, 7) su(7) ⊕ R2

ϕ1 + 3ϕ2 + 2ϕ7 no sF 212 30 106 sp(1, 7) su(5) ⊕ su(2) ⊕ R3

ϕ1 + 2ϕ3 + ϕ7 no sF 336 24 112 sp(1, 7) (su(2))2 ⊕ su(4) ⊕ R3

2ϕ1 + 3ϕ4 + ϕ7 no sF 228 22 114 sp(1, 7) (su(3))2 ⊕ su(2) ⊕ R3

5ϕ1 + 6ϕ5 + ϕ7 no sF 112 24 112 sp(1, 7) su(4) ⊕ (su(2))2 ⊕ R3

7ϕ1 + 3ϕ7 + 2ϕ8 no sF 98 38 98 sp(1, 7) su(6) ⊕ R3

3ϕ2 + 5ϕ3 + 3ϕ7 no sF 112 24 112 sp(1, 7) (su(2))2 ⊕ su(4) ⊕ R3

4ϕ2 + 5ϕ4 + 2ϕ7 no sF 116 20 116 sp(1, 7) (su(2))3 ⊕ su(3) ⊕ R3

5ϕ2 + 5ϕ5 + ϕ7 no sF 116 20 116 sp(1, 7) (su(2))3 ⊕ su(3) ⊕ R3

7ϕ2 + 2ϕ7 + 2ϕ8 no sF 106 30 106 sp(1, 7) su(2) ⊕ su(5) ⊕ R3

2ϕ3 + 2ϕ4 + ϕ7 no sF 228 22 114 sp(1, 7) (su(3))2 ⊕ su(2) ⊕ R3

5ϕ3 + 4ϕ5 + ϕ7 no sF 116 20 116 sp(1, 7) su(3) ⊕ (su(2))3 ⊕ R3

7ϕ3 + ϕ7 + 2ϕ8 no sF 110 26 110 sp(1, 7) su(3) ⊕ su(4) ⊕ R3
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Vogan diagram ϕ ϕ ∈ ∆ Type s dimV dimG/V g v

5ϕ4 + 3ϕ5 + ϕ7 no sF 112 24 112 sp(1, 7) su(4) ⊕ (su(2))2 ⊕ R3

2ϕ1 + 2ϕ2 + 5ϕ3 + 3ϕ7 no sF 114 22 114 sp(1, 7) su(4) ⊕ su(2) ⊕ R4

2ϕ1 + 3ϕ2 + 5ϕ4 + 2ϕ7 no sF 118 18 118 sp(1, 7) (su(2))2 ⊕ su(3) ⊕ R4

2ϕ1 + 4ϕ2 + 5ϕ5 + ϕ7 no sF 118 18 118 sp(1, 7) (su(2))2 ⊕ su(3) ⊕ R4

ϕ1 + 3ϕ2 + ϕ7 + ϕ8 no sF 216 28 108 sp(1, 7) su(5) ⊕ R4

3ϕ1 + 3ϕ3 + 4ϕ4 + 2ϕ7 no sF 118 18 118 sp(1, 7) (su(2))2 ⊕ su(3) ⊕ R4

3ϕ1 + 4ϕ3 + 4ϕ5 + ϕ7 no sF 120 16 120 sp(1, 7) (su(2))4 ⊕ R4

3ϕ1 + 6ϕ3 + ϕ7 + 2ϕ8 no sF 114 22 114 sp(1, 7) su(2) ⊕ su(4) ⊕ R4

4ϕ1 + 4ϕ4 + 3ϕ5 + ϕ7 no sF 118 18 118 sp(1, 7) su(3) ⊕ (su(2))2 ⊕ R4

3ϕ2 + 2ϕ3 + 4ϕ4 + 2ϕ7 no sF 118 18 118 sp(1, 7) (su(2))2 ⊕ su(3) ⊕ R4

3ϕ2 + 3ϕ3 + 4ϕ5 + ϕ7 no sF 120 16 120 sp(1, 7) (su(2))4 ⊕ R4

3ϕ2 + 5ϕ3 + ϕ7 + 2ϕ8 no sF 114 22 114 sp(1, 7) su(2) ⊕ su(4) ⊕ R4

4ϕ2 + 3ϕ4 + 3ϕ5 + ϕ7 no sF 120 16 120 sp(1, 7) (su(2))4 ⊕ R4

4ϕ3 + 2ϕ4 + 3ϕ5 + ϕ7 no sF 118 18 118 sp(1, 7) su(3) ⊕ (su(2))2 ⊕ R4

ϕ1 + ϕ2 + ϕ3 + 2ϕ4 + ϕ7 no sF 240 16 120 sp(1, 7) su(3) ⊕ su(2) ⊕ R5

2ϕ1 + 2ϕ2 + 3ϕ3 + 4ϕ5 + ϕ7 no sF 122 14 122 sp(1, 7) (su(2))3 ⊕ R5

2ϕ1 + 2ϕ2 + 5ϕ3 + ϕ7 + 2ϕ8 no sF 116 20 116 sp(1, 7) su(4) ⊕ R5

2ϕ1 + 3ϕ2 + 3ϕ4 + 3ϕ5 + ϕ7 no sF 122 14 122 sp(1, 7) (su(2))3 ⊕ R5

3ϕ1 + 3ϕ3 + 2ϕ4 + 3ϕ5 + ϕ7 no sF 122 14 122 sp(1, 7) (su(2))3 ⊕ R5

3ϕ2 + 2ϕ3 + 2ϕ4 + 3ϕ5 + ϕ7 no sF 122 14 122 sp(1, 7) (su(2))3 ⊕ R5

2ϕ1 + 2ϕ2 + 2ϕ3 + 2ϕ4 + 3ϕ5 + ϕ7 no sF 124 12 124 sp(1, 7) (su(2))2 ⊕ R6

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
ϕ7 no GT −648 64 72 sp(8, R) su(8) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

1 1 1 1 1 1 1 2
3ϕ5 + ϕ7 no sF 104 32 104 sp(2, 6) su(5) ⊕ (su)2 ⊕ R2

5ϕ1 + 2ϕ5 + ϕ7 no sF 112 24 112 sp(2, 6) su(4) ⊕ (su(2))2 ⊕ R3

5ϕ2 + ϕ5 + ϕ7 no sF 116 20 116 sp(2, 6) (su(2))3 ⊕ su(3) ⊕ R3

2ϕ1 + 4ϕ2 + ϕ5 + ϕ7 no sF 118 18 118 sp(2, 6) su(3) ⊕ (su(2))2 ⊕ R4
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D8

Dimension of g = 120
4 non-compact real forms with trivial automorphism: so(2, 14), so(4, 12), so(6, 10), so∗(16).
Fundamental dominant weights: φ1 = γ1 + γ2 + γ3 + γ4 + γ5 + γ6 +

1
2γ7 +

1
2γ8

φ2 = γ1 + 2γ2 + 2γ3 + 2γ4 + 2γ5 + 2γ6 + γ7 + γ8

φ3 = γ1 + 2γ2 + 3γ3 + 3γ4 + 3γ5 + 3γ6 +
3
2γ7 +

3
2γ8

φ4 = γ1 + 2γ2 + 3γ3 + 4γ4 + 4γ5 + 4γ6 + 2γ7 + 2γ8

φ5 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 5γ6 +
5
2γ7 +

5
2γ8

φ6 = γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6 + 3γ7 + 3γ8

φ7 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

5
2γ5 + 3γ6 + 2γ7 +

3
2γ8

φ8 = 1
2γ1 + γ2 +

3
2γ3 + 2γ4 +

5
2γ5 + 3γ6 +

3
2γ7 + 2γ8

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ1 no GT −392 92 28 so(2, 14) so(14) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ2 yes sGT −550 70 50 so(4, 12) su(2) ⊕ so(12) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ3 no sGT −528 54 66 so(6, 10) su(3) ⊕ so(10) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ4 no sGT −380 44 76 so(8, 8) su(4) ⊕ so(8) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ5 no sGT −160 40 80 so(6, 10) su(5) ⊕ su(4) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ6 no sF 78 42 78 so(4, 12) su(6) ⊕ (su(2))2 ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ7 no GT −784 64 56 so∗(16) su(8) ⊕ R

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
2φ2 + φ6 no sGT −94 26 94 so(8, 8) (su(2))3 ⊕ su(4) ⊕ R2

γ1 γ2 γ3 γ4 γ5 γ6

γ7

γ8
φ7 + φ8 no sF 280 50 70 so(2, 14) su(7) ⊕ R2

7φ1 + 3φ7 + 3φ8 no sF 82 38 82 so(2, 14) su(6) ⊕ R3

7φ2 + 2φ7 + 2φ8 no sF 90 30 90 so(2, 14) su(2) ⊕ su(5) ⊕ R3

7φ3 + φ7 + φ8 no sF 94 26 94 so(2, 14) su(3) ⊕ su(4) ⊕ R3

φ1 + 3φ2 + φ7 + φ8 no sF 184 28 92 so(2, 14) su(5) ⊕ R4

3φ1 + 6φ3 + φ7 + φ8 no sF 98 22 98 so(2, 14) su(2) ⊕ su(4) ⊕ R4

3φ2 + 5φ3 + φ7 + φ8 no sF 98 22 98 so(2, 14) su(2) ⊕ su(4) ⊕ R4

2φ1 + 2φ2 + 5φ3 + φ7 + φ8 no sF 100 20 100 so(2, 14) su(4) ⊕ R5
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B.2 Special exceptional adjoint orbits
G2

Dimension of g = 14
One non-compact real form: g2(2) = G.
Fundamental dominant weights: φ1 = 2γ1 + γ2

φ2 = 3γ1 + 2γ2

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2

1 3
φ1 yes sGT −30 4 10 g2(2) su(2)⊕ R

γ1 γ2

1 3
φ2 yes sGT −10 4 10 g2(2) su(2)⊕ R

F4

Dimension of g = 52
Two non-compact real forms: f4(4) = FI, f4(−20)= FII.
Fundamental dominant weights: φ1 = 2γ1+3γ2+4γ3+2γ4

φ2 = 3γ1+6γ2+8γ3+4γ4

φ3 = 2γ1+4γ2+6γ3+3γ4

φ4 = γ1 + 2γ2 + 3γ3 + 2γ4

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ2 γ3 γ4

2 2 1 1
φ1 yes sGT −180 22 30 f4(4) sp(3)⊕ R

γ1 γ2 γ3 γ4

2 2 1 1
φ2 no sGT −40 12 40 f4(4) su(2)⊕ su(3)⊕ R

γ1 γ2 γ3 γ4

2 2 1 1
φ3 no sF 120 12 40 f4(−20) su(3)⊕ su(2)⊕ R

3φ1 + φ3 no sF 44 8 44 f4(−20) (su(2))2 ⊕ R2

φ3 + φ4 no sF 84 10 42 f4(−20) su(3)⊕ R2

γ1 γ2 γ3 γ4

2 2 1 1
φ4 yes sF 90 22 30 f4(−20) so(7)⊕ R

γ1 γ2 γ3 γ4

2 2 1 1
φ1 + 2φ4 no sGT −40 12 40 f4(4) so(5)⊕ R2

γ1 γ2 γ3 γ4

2 2 1 1
φ3 + φ4 no sF 84 10 42 f4(−20) su(3)⊕ R2
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E6

Dimension of g = 78
Two non-compact real forms with trivial automorphism: e6(2) = EII, e6(−14)= EIII.
Fundamental dominant weights: φ1 = 4

3γ1 + γ2 +
5
3γ3 + 2γ4 +

4
3γ5 +

2
3γ6

φ2 = γ1 + 2γ2 + 2γ3 + 3γ4 + 2γ5 + γ6

φ3 = 5
3γ1 + 2γ2 +

10
3 γ3 + 4γ4 +

8
3γ5 +

4
3γ6

φ4 = 2γ1 + 3γ2 + 4γ3 + 6γ4 + 4γ5 + 2γ6

φ5 = 4
3γ1 + 2γ2 +

8
3γ3 + 4γ4 +

10
3 γ5 +

5
3γ6

φ6 = 2
3γ1 + γ2 +

4
3γ3 + 2γ4 +

5
3γ5 +

4
3γ6

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ3 γ4 γ5 γ6

γ2

φ1 no GT −384 46 32 e6(−14) so(10)⊕ R

γ1 γ3 γ4 γ5 γ6

γ2

φ2 yes sGT −378 36 42 e6(2) su(6)⊕ R

γ1 γ3 γ4 γ5 γ6

γ2

φ3 no sGT −150 28 50 e6(2) su(2)⊕ su(5)⊕ R

γ1 γ3 γ4 γ5 γ6

γ2

φ4 no sGT −58 20 58 e6(2) (su(3))2 ⊕ su(2)⊕ R

γ1 γ3 γ4 γ5 γ6

γ2
t1φ1 + t6φ6

for all t1, t6 > 0
no sCY 0 30 48 e6(−14) so(8)⊕ R2

γ1 γ3 γ4 γ5 γ6

γ2

φ3 + φ5 no sF 62 16 62 e6(−14) (su(2))2 ⊕ su(3)⊕ R2

118



E7

Dimension of g = 133
Three non-compact real forms: e7(7) = EV, e7(−5)= EVI, e7(−25)= EVII
Fundamental dominant weights: φ1 = 2γ1 + 2γ2 + 3γ3 + 4γ4 + 3γ5 + 2γ6 + γ7

φ2 = 2γ1 +
7
2γ2 + 4γ3 + 6γ4 +

9
2γ5 + 3γ6 +

3
2γ7

φ3 = 3γ1 + 4γ2 + 6γ3 + 8γ4 + 6γ5 + 4γ6 + 2γ7

φ4 = 4γ1 + 6γ2 + 8γ3 + 12γ4 + 9γ5 + 6γ6 + 3γ7

φ5 = 3γ1 +
9
2γ2 + 6γ3 + 9γ4 +

15
2 γ5 + 5γ6 +

5
2γ7

φ6 = 2γ1 + 3γ2 + 4γ3 + 6γ4 + 5γ5 + 4γ6 + 2γ7

φ7 = γ1 +
3
2γ2 + 2γ3 + 3γ4 +

5
2γ5 + 2γ6 +

3
2γ7

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ1 yes sGT −990 67 66 e7(−5) so(12)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ2 no sGT −504 49 84 e7(7) su(7)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ3 no sGT −94 39 94 e7(−5) su(2)⊕ su(6)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ4 no sCY 0 27 106 e7(−5) su(3)⊕ su(2)⊕ su(4)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ5 no sGT −200 33 100 e7(7) su(5)⊕ su(3)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ6 no sGT −252 49 84 e7(−5) so(10)⊕ su(2)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

φ7 no GT −972 79 54 e7(−25) e6 ⊕ R
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E8

Dimension of g = 248
Two non-compact real forms: e8(8) = EVIII, e8(−24)= EIX.
Fundamental dominant weights: φ1 = 4γ1 + 5γ2 + 7γ3 + 10γ4 + 8γ5 + 6γ6 + 4γ7 + 2γ8

φ2 = 5γ1 + 8γ2 + 10γ3 + 15γ4 + 12γ5 + 9γ6 + 6γ7 + 3γ8

φ3 = 7γ1 + 10γ2 + 14γ3 + 20γ4 + 16γ5 + 12γ6 + 8γ7 + 4γ8

φ4 = 10γ1+15γ2+20γ3+30γ4+24γ5+18γ6+12γ7+6γ8

φ5 = 8γ1 +12γ2 +16γ3 +24γ4 +20γ5 +15γ6 +10γ7 +5γ8

φ6 = 6γ1 + 9γ2 + 12γ3 + 18γ4 + 15γ5 + 12γ6 + 8γ7 + 4γ8

φ7 = 4γ1 + 6γ2 + 8γ3 + 12γ4 + 10γ5 + 8γ6 + 6γ7 + 3γ8

φ8 = 2γ1 + 3γ2 + 4γ3 + 6γ4 + 5γ5 + 4γ6 + 3γ7 + 2γ8

Vogan diagram φ φ ∈ ∆ Type s dimV dimG/V g v

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ1 no sGT −1404 92 156 e8(8) so(14)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ2 no sGT −552 64 184 e8(8) su(8)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ3 no sF 196 52 196 e8(−24) su(2)⊕ su(7)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ4 no sF 212 36 212 e8(−24) su(3)⊕ su(2)⊕ su(5)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ5 no sGT −208 40 208 e8(8) su(5)⊕ su(4)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ6 no sGT −388 54 194 e8(8) so(10)⊕ su(3)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ7 no sGT −166 82 166 e8(−24) e6 ⊕ su(2)⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ8 yes sGT −3078 134 114 e8(−24) e7 ⊕ R

γ1 γ3 γ4 γ5 γ6 γ7

γ2

γ8

φ3 + φ8 no sGT −208 40 208 e8(8) su(2)⊕ su(6)⊕ R2
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