
TESI DI DOTTORATO

Maria Chiara D’Autilia

Parameter Identification Problems in Differential Models:
numerical analysis and applications

Dottorato in Matematica ed Informatica, Salento (2019).

<http://www.bdim.eu/item?id=tesi_2019_DAutiliaMariaChiara_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2019_DAutiliaMariaChiara_1
http://www.bdim.eu/


Università del Salento

Dipartimento di Matematica e Fisica �E. De Giorgi�

Doctoral thesis in Mathematics and Computer Science

Parameter Identi�cation Problems

in Di�erential Models:

numerical analysis and applications

Tutor :

Chiar.ma Prof.ssa

Ivonne SGURA

Dottoranda:

Maria Chiara D'AUTILIA

Dottorato di ricerca in Matematica ed Informatica XXXI ciclo

Mathematics subject classi�cation: 65L09 - 65M32 - 65M06 - 35K57 - 65K10



2



Abstract

In many scienti�c �elds the experimental data are usually given by time series or

images, describing some chemico-physical phenomena of interest. One of the main

problem in science and engineering is to de�ne a mathematical model describing

these phenomena and depending on a set of parameters physically traceable in

the experimental processes. In this thesis we are interested in the Parameter

Identi�cation Problem (PIP) for di�erential models that can be formulated as a

constrained minimization problem, where the cost function measures a certain

distance between the data and the solution of the model. The constraints are

represented by a systems of Ordinary Di�erential Equations (ODEs) or Partial

Di�erential Equations (PDEs) and the unknowns are the parameters of the di�er-

ential model. The thesis is divided in two parts: at �rst we focus on the ODE-PIP

and then we examine the PDE-PIP. In particular, in the �rst case we deal with

time series with oscillatory behavior; in the second case we study images that

represent peculiar spatial structures.

For the ODE-PIP, since it can be seen as an optimal control problem, we

discuss the well known Direct and Indirect approaches for the approximation of

the optimal solution and we analyze the numerical issues involved at each step of

the discrete formulation. Then, we present an ODE-PIP based on an ODE system

with oscillatory dynamics. We show that the classical Direct approach, based

on the least-square norm as cost function, fails in the minimization due to the

presence of multiple minima. For this reason we propose a Fourier regularization

approach (Inverse Problem, 33(12), 2017), that is able to identify an iso-frequency

manifold S in the parameter space, such that for all parameters in S the ODE

solutions have the same frequency of the assigned data.

For the PDE-PIP, we consider as constraint a Reaction-Di�usion (RD) PDE

system, whose solutions include the Turing patterns with particular spatial struc-

tures like labyrinths, spots, etc. Since the numerical approximation of Turing

patterns is challenging from the computational point of view, we focus on the

e�cient discretization of the RD-PDEs, by analyzing the use of matrix-oriented

approach. At each time step we solve Sylvester-matrix equations that allows to

deal with signi�cantly smaller matrices, showing that the computational cost can

be made lower than that of the corresponding vector approaches, by working in



the reduced (spectral) space. Finally, we solve the PDE-PIP for the morphochem-

ical model for electrodeposition (DIB) (Journal of Solid State Electrochemistry,

17(2), 2013) describing the metal growth during the battery charging process for

synthetic and experimental images. We show that, by following the Direct ap-

proach based on the least-squares minimization, the model can �t a rich variety

of patterns arising in the experiments. Then, to further improve the search of the

optimal parameters, we present the �rst results of the extension of the Fourier

approach to the PDE case.
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Introduction

In many scienti�c �elds the experimental data are usually given by time series or

images, describing some chemico-physical phenomena of interest. One of the main

problem in science and engineering is to de�ne a mathematical model describing

these phenomena and depending on a set of parameters physically traceable in

the experimental processes. In this thesis we are interested in the Parameter

Identi�cation Problem (PIP) for di�erential models that can be formulated as

a constrained minimization problem, where the cost function measures a cer-

tain distance between the data and the solution of the model. The constraints

are represented by a systems of Ordinary Di�erential Equations (ODEs) or Par-

tial Di�erential Equations (PDEs) and the unknowns are the parameters of the

di�erential model. The parameter estimation related to ODEs and PDEs is ex-

tremely important in several scienti�c applications and it is widely studied, see

e.g.[7, 15, 23, 32, 48, 81].

For a given target ũ, a general PIP in the continuous framework can be for-

mulated as follows:

min
p∈Ω

J(u, ũ,p) (1)

where p ∈ Ω ⊂ Rm is the set of parameters to identify, u is the solution of a

di�erential model depending on the parameters p, in particular

u = u(t; p) t > 0

in ODEs case,

u = u(x, y, t; p) (x, y) ∈ D ⊂ R2, t > 0

in PDEs case and ũ in the �rst case is an assigned time-dependent function ũ(t),

in the second case is a space dependent function ũ(x, y); J is the cost function

to minimize, that measures a certain distance between u and ũ. Therefore the
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di�erential model represents the constraint of the PIP, and it is given by the

Cauchy problem: 



u′(t) = f(t,u; p), t ∈ [t0, T ]

u(t0) = u0

(2)

in ODE case, where u(t) : [t0, T ]→ Rd; or




∂u
∂t (x, y, t) = g(u,ux,uxx,uy,uyy; p), (x, y) ∈ D ⊂ R2, t ∈ [t0, T ]

u(t0) = u0,

(3)

with appropriate boundary conditions in the PDE case, and u(x, y, t) : D ×
[t0, T ]→ Rd.

The minimization problems (1)-(2) or (1)-(3) can be solved by using the Di-

rect or Indirect approach. The Direct approach transforms the continuous prob-

lem into a constrained nonlinear programming problem in �nite dimension, to be

solved numerically by using an optimization method [63]. The Indirect approach

uses the theory of the Optimal Control and the Pontryagin's maximum principle

[49, 87] to determine the so-called optimality conditions. These necessary con-

ditions are two di�erential equations (state and adjoint equations), which arises

from the di�erentiation of the Hamiltonian function associated to the problem;

generally, they are nonlinear and we do not have the analytic solutions, therefore

they must be approximated numerically. In both cases, the minimization problem

is discretized and solved numerically by using a suitable optimization algorithm.

Typically, in the literature the Direct approach has been applied, see for exam-

ple [24, 59, 92] for ODEs and [19, 32, 41, 60, 78] for PDEs. In the last years,

another method for the PIP has been explored: the so-called Bayesian approach

(see, for instance, [15, 43, 84]), that consists in a set of techniques built around

Bayes' theorem, which, roughly speaking, allows one to compute the conditional

probability of an event A given the probability of an event B, in terms of the

reverse conditional probability, i.e. the probability of B given A. In the param-

eter identi�cation framework, this will correspond to computing the probability

of the parameters given the data, in terms of the probability of the data given

the parameters. In this work we discuss the Direct and Indirect approaches and

we analyze the numerical issues involved at each step of the discrete formulation.

The thesis is divided in two parts: �rstly we focus on the ODE-PIP, and then we
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examine the PDE-PIP. In particular, in the �rst case we deal with time series with

oscillatory behavior; in the second case we study images that represent peculiar

spatial structures.

The resolution of a PIP implies di�erent numerical issues, for example: the

choice of the discrete cost, the suitable ODEs solver and the selection of an op-

timization algorithm. Hence, the multiple purposes of this thesis can be brie�y

summarized as follows:

• show the formulation of PIP for di�erential models;

• analyze the Direct and Indirect approaches from the numerical point of view;

• focus on the e�cient numerical methods for the di�erential models (both

ODEs and PDEs);

• provide examples and real applications of experimental interest for both

ODEs and PDEs cases.

To describe in detail the Direct and Indirect approaches, in Chapter 1 we

will refer to the PIP in the case of ODEs (ODE-PIP). We will formulate the

continuous problem and show the discrete forms derived from the application of

the two approaches by considering a simple case (Test Identi�cation Problem); we

will deduce some numerical issues for the discrete problem, that include: (i) the

(weighted) norm for the cost function in the Direct approach; (ii) the quadrature

formula for the approximation of the cost function in the Indirect approach (which

is usually given by an integral); (iii) the ODE solvers in both cases, and the method

for the adjoint equations to be solved backward in time and (iv) the optimization

algorithm for the minimization (e.g. gradient descent, Newton's method, etc,...) .

After a brief analysis of all of them, we present the numerical methods for ODEs

with oscillatory dynamics, by identifying the method that minimize the dispersion

error, and for the so-called partitioned systems (derived from the application of

the Indirect approach).

Then we will present an error analysis for both approaches; in particular, in

Chapter 3, we will demonstrate that the errors between the discrete costs (and

their gradients, usually required in the optimization algorithms) and the cost (and

9



gradient) of the continuous problem involves two di�erent contributions: one given

by the method used to de�ne the discrete cost functions and a second one given

by the method for the approximation of the ODEs solutions. We prove that, in

some cases, these errors do not vanish for h→ 0, where h represents stepsize for

approximation in time.

In Chapter 4 we will present an application of ODE-PIP, where the target data

and the solution of the ODEs have an oscillatory dynamics. In case of oscillating

data, we will show that the cost function inherits the oscillating data behavior

and has many di�erent �low� minima. To face this ill-posedness, the cost function

is usually corrected by a so-called regularization term in order to ensure the

convexity and well-posedness of the problem. We will show that adding a classical

regularization term actually does not improve the structure of the cost. Since in

this situation any optimization algorithm is liable to fail in the approximation of

a good solution, we propose a new approach which takes into considerations the

oscillating nature of the data. Therefore, we rewrite and solve the original ODE-

PIP in the Fourier space, by de�ning a new cost function based on the Discrete

Fourier Transform (DFT) (see Appendix A) that compares frequencies of data and

simulations. We present the results for simulated oscillatory data in the case of the

two-parameters Schnakenberg model, in the Hopf regime. As a true application,

we apply the Fourier-PIP regularization to follow original experimental data with

the morphochemical model for electrodeposition (DIB) [10] in the case of two and

three parameters. The results have been published in [20]. In the last Section

of the Chapter, we will study the behavior of zinc-air batteries anodes, whose

process can be rationalized within a mathematical model [8]. In particular, we

show that it is possible to follow the oscillating regimes of current identifying

the physical parameters in the zone of the so-called relaxation oscillation of the

parameters space.

In the second part of the thesis, starting from Chapter 5, we formulate the

PIP in case of PDEs. We will focus on a speci�c type of PDEs: the Reaction-

Di�usion model, well-known in describing pattern formation in several scienti�c

�elds, whose solution display a wide range of behaviors including the formation

of self-organized patterns like stripes or more intricate structures, the so-called

�Turing patterns� [89]. The PIP for these patterns is a recent �eld of appli-
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cation, and an increasing number of papers are devoted to this study, see e.g.

[15, 31, 32, 33, 81]. We will formulate the PDE-PIP for a generic RD-model, then

we will describe the numerical issues deriving from its discretization and optimiza-

tion. In particular, the e�cient approximation of the patterns will be studied in

depth: this is an important point because any optimization procedure to solve the

PIP-PDE will call several times the solver for the constraint given by the PDE

model and the Turing pattern approximation poses several numerical challenges

(longtime integration, high accuracy in space, etc..). For this reason, by exploring

the advantages of the matrix-oriented formulation of the semi-discretized prob-

lem in space, we report our results in [21] and show that the matrix formulation

provides a quite di�erent perspective at the time discretization level than classi-

cal approaches, allowing to signi�cantly reduce the memory and computational

requirements. In fact, we show that at each time step we do not solve anymore lin-

ear systems (usually of big dimensions), but a so-called Sylvester matrix equations

by means of the spectral decomposition of the coe�cient matrices that improves

the performance of the algorithm.

At least, we show a real application of PDE-PIP in case of a morphochemi-

cal reaction-di�usion model that describes the electrochemical pattern formation

(brie�y DIB model, from the name of the authors), studied in [10], starting from

experimental morphochemical distributions. For DIB-PIP we will present two

methods to localize the minimum in the parameters space: one is based on the

classical minimization in the least square sense [81]; the other, for which we will

show the �rst preliminary results, works in the Fourier space. In particular, we

show that by means of the 2 dimensional - DFT of the experimental map we

can obtain more information from the data and �nd admissible solutions in the

parameters space, otherwise unobservable with the classical 2-norm.

The thesis is structured as follows.

In Chapter 1 we de�ne the ODE-PIP, then we formulate a Test Identi�cation

Problem (TIP) and illustrate the Direct and Indirect approaches applied to this

problem. The discretization issues derived from both formulations are described

in Chapter 2. In particular, we focus on the suitable approximation of the ODEs

in case of oscillatory behavior and in case of partitioned systems. Chapter 3
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is focused on the analysis of the cost functions and gradients of the Direct and

Indirect approaches. Then, we deal with a ODE-PIP with oscillatory dynamics,

in Chapter 4. At �rst we show the usefulness of this approach in case of synthetic

data, then we apply the same procedure to an experimental case. In Chapter

5 we formulate the PIP in case the constraint is a RD model and we explain

the issues deriving from its the discretization. Then, we focus on the e�cient

approximation of the RD-PDEs solutions by introducing the matrix formulation

of the semi-discretized problem, and suitably adapting the well-known classical

vector method to this new formulation. In the Chapter 6, we show the application

of PDE-PIP to the DIB model for synthetic and experimental data. In the last

Chapter 7, we present some extensions and applications of our works, that could

be objects of future researches.
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Chapter 1

Parameter Identi�cation Problem

in di�erential equations

1.1 Formulation for ODEs

Let us consider the following minimization problem:

min
p∈Ω

J(y(t), ỹ(t),p) (1.1)

with 


y′(t) = G(t, y; p), t ∈ [t0, T ]

y(t0) = y0;

(1.2)

where y(t) = y(t; p) : [t0, T ] → Rd, d ≥ 1, is the solution of the system of

Ordinary Di�erential Equations (ODEs) in (1.2) depending on the parameter set

p ∈ Ω ⊂ Rm, m ≥ 1, G : [t0, T ]×Rd ×Ω→ Rd is Lipschitz continuous in y, such

that the solution y(t; p) of (1.2) exists and is unique for all p ∈ Ω. Generally the

parameter space is a hyper-rectangle Ω = Πm
i=1[p0

i , p
1
i ]. ỹ(t) ∈ Rd is a given target

function and J(y(t), ỹ(t),p) is a suitable cost function that measures a certain

distance between ỹ(t) and the ODEs solution y(t; p).

We de�ne (1.1)-(1.2) as an ODEs Parameter Identi�cation Problem (ODE-

PIP) for ỹ(t) and an optimal solution will be a set of parameters p∗ such that

y(p∗) = y∗ is the ODEs solution nearest to the target ỹ. The target function

represents some desired con�guration of the system and could be given, for exam-

ple, from the observation of some physical phenomena (for this reason also said

observation).
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In real applications, the target function is often given in discrete form, that is

in terms of some data set: (t, ỹ) = (ti, ỹi), i = 0, . . . Nt, ỹi ∈ Rd, on a given time

grid. If the solution y(t; p) ∈ Rd of the di�erential equations (1.2) is known in

analytic form and the cost function is chosen as the classical residual minimization

in the two norm, the ODE-PIP corresponds to an unconstrained (nonlinear) least

squares problem, given by

min
p∈Ω

J2norm(p) = min
p∈Ω

‖y(p)− ỹ‖22 =

Nt∑

i=1

d∑

k=1

(yki (p)− ỹki )2, (1.3)

where y(p) is the vector which contains the values yi(p) = y(ti; p) ∈ Rd for

i = 0, ..., Nt, that can be solved by well known literature methods such as Gauss-

Newton [6], Levenberg-Marquardt [28, 55], etc.

If the ODE solution y(t; p) is not known in analytic form, then a numerical

method must be used to approximate the ODE constraints in (1.2). This is the

basis of the so-called Direct Approach [87]: the optimization problem in (1.1)-

(1.2) can be written as a nonlinear constrained programming problem in Rm, in

the following discrete form:

min
p∈Ω

J2norm(p) = min
p∈Ω

‖u(p)− ỹ‖22 (1.4)

where



ui =M(h, ui−1, ui, ti−1, ti; p), ui ∈ Rd, i = 1, . . . , Nt

u0 = y0

(1.5)

with timestep h = T−t0
Nt

on the uniform grid ti = t0 + i h and where ui(p) ≈
y(ti; p) the numerical approximation of the ODE solution at the time ti. HereM
represents the (implicit, explicit or semi-implicit) numerical method used to solve

the ODEs system. The cost function is given by the least squares two norm, but

in general it may be another kind of weight norm, as follows:

min
p∈Ω

JWnorm(p) = ‖u(p)− ỹ‖2W = (u(p)− ỹ)TW (u(p)− ỹ)

where the matrix W is appropriately chosen according to the problem to be solved

(W = I yields the 2 norm). The Direct Approach is also indicated as discretize-

then-optimize approach: the continuous problem is �rst discretized, then an op-

timization algorithm is used to approximate the optimal solution.
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The Indirect Approach applied to ODE-PIP in continuous form (1.1)-(1.2)

instead uses the theory of the Optimal Control and the Pontryagin's maximum

principle [64, 87, 49] to determinate the so-called optimality conditions. The cost

function (1.1) is usually given by:

J(y(t), ỹ(t),p) = ‖y(p)− ỹ‖L2
[t0,T ]

=

∫ T

t0

(y(t; p)− ỹ(t))2dt. (1.6)

and by introducing the adjoint variable ψ ∈ Rm, the necessary conditions arise

from the di�erentiation of the following Hamiltonian function associated to the

problem (1.6)-(1.2):

H(t, y, ψ,p) = J(y, ỹ,p) + ψG(t, y; p). (1.7)

From the di�erentiation of theHamiltonian function wrt the parameters, the so-

called optimality condition can be derived:

Hp =
∂H
∂p

= 0⇒ Jp + ψGp = 0 (1.8)

solved in p.

The di�erentiation of theHamiltonian function wrt the the state and the ad-

joint variables yields two new constraints, that is the state and adjoint ordinary

di�erential equations given by:



y′(t) = ∂H

∂ψ , y(t0) = y0

ψ′(t) = ∂H
∂y , λ(T ) = 0

(1.9)

to be solved forward and backward in time, respectively. These equations are

often di�cult to solve analytically and they are approximated numerically, then

also in the Indirect Approach a constrained optimization problem must be solved:

min
p∈Ω

J(u, ỹ,p) (1.10)





ui =M(h, ui−1, ui, ti−1, ti; p), ui ∈ Rd

vi = N (h, vi+1, vi, ti+1, ti; p), vi ∈ Rm

u0 = y0, vN+1 = 0

i = 1, . . . , N (1.11)

where (1.10) is given by a quadrature method that approximates the integral in

(1.6),M and N describe the numerical methods used to approximate forward and

backward in time the ODEs in (1.9), with ui(p) ≈ y(ti; p) and vi(p) ≈ ψ(ti; p).
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The Indirect Approach is also called optimize-then-discretize approach: in fact,

at �rst the necessary optimality conditions are found and then proceed with the

discretization.

It is well known that the identi�cation problem is an inverse problem that

often can be ill-posed: solutions might not exist or might not be unique. To face

with the ill-posedness, the cost functions in (1.3) and (1.6) are usually corrected

by a so-called regularization term [27] in order to ensure the convexity and well

posedness of the problem, (see for example [38, 86, 13, 25, 42]). In our notations,

for example the classical Tikhonov regularization for (1.3) and (1.6) would be

given by:

J2norm(p) = ‖y(p)− ỹ‖22 + α‖p‖22 (1.12)

or

J(y(t), ỹ(t),p) =

∫ T

t0

(y(t; p)− ỹ(t))2dt+ βp2 (1.13)

with the regularization coe�cients α > 0 or β > 0 appropriately chosen.

Then in both Direct and Indirect approaches for PIP-ODE a (di�erently)

constrained minimization problem in �nite dimension must be solved numerically.

In the following Section we compare them applied to a Test Identi�cation Problem

and we will show the construction of the discretization problems derived from both

approaches in a simple case. Next we apply an optimization method to approach

the optimal solution.

1.2 ODE Test Identi�cation Problem

In this Section we consider a Test Identi�cation Problem (TIP) in order to il-

lustrate the two di�erent approaches applied to a simple case. Let us de�ne the

ODE-TIP as follows:

min
λ
J(λ) =

∫ 10

0
(y(t, λ)− ỹ(t))2dt (1.14)

with the constraint given by the ODE:



y(t)′ = λy(t) + 1

2

y(0) = 1

(1.15)

where λ ∈ R is the parameter to identify and ỹ is the target function:

ỹ(t) =
1

2
(e−t + 1), (1.16)
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Figure 1.1: Cost functional J(λ) in (1.19) for λ ∈ [−10,−0.4], that will be blow-up

in λ = 0.

the solution of the following system (1.15) with λ = −1:




ỹ(t)′ = −ỹ(t) + 1

2

ỹ(0) = 1.

(1.17)

Let us observe that we can obtain analytically the solutions of (1.15) as a function

of the parameter λ:

y(t, λ) =
(2λ+ 1)etλ − 1

2λ
. (1.18)

Furthermore, we know the exact solution of the problem: λ∗ = −1 is the global

minimum of (1.14), such that J(λ∗) = minλ J(λ).

Let us observe that we can derive explicitly the analytic form of the cost

function in (1.14) as a function of the parameter λ:

J(λ) =

∫ 10

0

(
(2λ+ 1)etλ − 1

2λ
− 1

2
(e−t − 1)

)2

dt =

=

(
8λ+

6

λ− 1
+ 2λ (λ+ 1)− (2λ+ 1)2

2λ
+

2

λ
+
λ2

2
+ 12

)
1

4λ2
+

+

(
20λ− e10λ−10

(
4λ+

6

λ− 1
+ 6

)
− λ2 e−20

2
+ 10λ2 − e10λ

(
4λ+

2

λ
+ 6

)
+

+
e20λ (2λ+ 1)2

2λ
− 2λ e−10 (λ+ 1) + 10

)
1

4λ2

(1.19)

In the Figure 1.1 we represent J(λ) for λ ∈ [−10,−0.4].

Moreover, it is possible to obtain the analytic form of the gradient ∇J(λ) as
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a function of λ, as follows:

∇J(λ) =
dJ(λ)

dλ
=

d

dλ

[∫ 10

0
(y(λ, t)− ỹ(t))2 dt

]
=

∫ 10

0

∂

∂λ

[
(y(λ, t)− ỹ(t))2

]
dt = 2

∫ 10

0

[
∂y(λ, t)

∂λ
(y(λ, t)− ỹ(t))

]
dt,

(1.20)

replacing the expressions of y(λ, t) and ỹ(t) in (1.18)-(1.16), yields:

∫ 10

0

∂

∂λ

[(
(2λ+ 1)etλ − 1

2λ
− 1

2
(e−t − 1)

)2
]
dt =

=

[
5λ− 6

(λ− 1)2
− 8λ+ 4

2λ
+

(2λ+ 1)2

2λ2
− 2

λ2
+ 10

]
1

4λ2
+

[
(20λ+

+ e10λ

(
2

λ2
− 4

)
− 2λe−10 − λe−20 − 2e−10(λ+ 1)− 10e10λ−10

(
4λ+

6

λ− 1
+ 6

)
+

+ e10λ−10

(
6

(λ− 1)2
− 4

)
− 10e10λ

(
4λ+

2

λ
+ 6

)
+
e20λ(8λ+ 4)

2λ
+

10e20λ(2λ+ 1)2

λ
+

− e20λ(2λ+ 1)2

2λ2
+ 20

]
1

4λ2
−
[
20λ− λ2e−20

2
− e10λ−10

(
4λ+

6

λ− 1
+ 6

)
+

+ 10λ2 − e10λ(4λ+
2

λ
+ 6) +

e20λ(2λ+ 1)2

2λ
− 2λe−10λ+ 1 + 10

]
1

2λ3
+

−
(

8λ+
6

λ− 1
+ 2λ(λ+ 1)− (2λ+ 1)2

2λ
+

2

λ
+
λ2

2
+ 12

)
1

2λ3
.

(1.21)

The gradient is shown in Figure 1.2 for λ ∈ [−10,−0.1].

The cost function J(λ) and its gradient have some important features of in-

terest for the minimization process:

• J(λ) has a global minimum in λ∗ = −1;

• In a right neighborhood of λ∗, for λ→ 0, the function increases very quickly,

and the gradient value is very large, as shown in Figure 1.2 on the right; in

fact, it is easy to verify from (1.21) that: limλ→0∇J(λ) ≈ 1
λ4 ;

• For λ < λ∗, J(λ) increases very slowly and it is �at; the gradient value

becomes very small and almost constant, Figure 1.2 on the left;

• J(λ) has an in�ection point in λF ≈ −1.51, as we can observe in Figure 1.1.

Some of these aspects imply several problems in the application of classical

optimization methods to �nd the absolute minimum λ∗ of the function J(λ). We

now describe brie�y the iterative optimization method we use below. It has the
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Figure 1.2: Gradient ∇J(λ) as functions of λ ∈ [−10,−1] (plot (a)) and as

functions of λ ∈ [−1,−0.1] (plot (b))

following structure:



λk+1 = λk − αkdk k = 0, 1, 2, ...

λ0 given

(1.22)

where:

- αk is called step length, computed by the Armijo conditions [63];

- dk is the descent direction chosen as steepest (gradient) direction: dk =

∇J(λk); another choice could be the Newton direction: dk = (∇2J(λk))
−1∇J(λk),

where ∇2J(λk) is the hessian of J(λ), [63].

The iterative algorithm stops when one of the following stopping criteria occurs,

where ε is called tolerance and is a �xed parameter:

- |J(λk)| < ε: the cost is �enough� small (residual criterion);

- |J(λk)−J(λk−1)| < ε: in order to stop the iteration if the cost value does not

change very much from one iteration to the next (cost increment criterion);

- |∇J(λk)| < ε: the gradient value is very small;

- |λk − λk−1| < ε: in order to stop the iteration if the parameter value does

not change very much from one iteration to the next (increment criterion).

Let us observe that in general ε can be assume a di�erent value for each criteria

[22].

As we expect from theory [63], the following issues were observed by using

di�erent dk:
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1. Steepest descent. We distinguish three di�erent cases:

- if λ0 < λF the convergence is very slow because the function J(λ) is

�at and the gradient value is very small;

- if λF ≤ λ0 < λ∗ the convergence behavior is good, even if this subregion

is very small;

- if λ0 > λ∗ d0 is very large and the �rst iterate λ1 = λ0 − α0d0 moves

on the left of λ∗. Moreover the distance of λ1 from λ∗ increases if λ0

is close to 0 and the convergence becomes even more slow.

2. Newton. We can distinguish two cases:

- if λ0 < λF the second order derivative is negative and dk < 0, so the

method depart from the minimum;

- if λ0 > λF Newton direction can be used and fast convergence arises.

In the following Sections we will apply the steepest descent method as opti-

mization algorithm. Other techniques could be considered, but the aim of this

Chapter is to focus on the approaches (Direct and Indirect) to build the discrete

optimization problem for the problem in the equations (1.14)-(1.15), rather then

on its �nal numerical minimization.

1.3 Direct approach: Discretize-then-Optimize

Let us consider the Direct Approach to solve the ODE-TIP. As we have observed

we need to discretize (1.15) by a numerical method for ODE. As an illustrative

case we choose the Explicit Euler (EE) method; let us �x h = T−t0
N as step size

for time discretization (N + 1 is the number of the discretization points of the

time integration interval). h will be our discrete parameter ; then it results:

un+1 = un + h

(
λun +

1

2

)
n = 0, ..., N − 1.
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If we call u = [u0, u1, ..., uN ] the vector which contains all the time approximation

of y, for the linearity of the equation we can derive the matrix form as follows:

u = (1 + hλ)




0 0 · · · 0

1 0 · · · 0

. . .
...

0 · · · 1 0




︸ ︷︷ ︸
A

u +




y0

h
2
...

h
2




︸ ︷︷ ︸
c

then:

M(λ, h)u = c(h) (1.23)

with:

M(λ, h) = (I − (1 + hλ)A) =

=




1 0 0 · · · 0 0

−1− hλ 1 0 · · · 0 0

0 −1− hλ 1 · · · 0 0
...

. . . . . .
...

0 · · · 1 0

0 · · · −1− hλ 1




where I ∈ R(N+1)×(N+1) is the identity matrix. Let us observe that by using

a di�erent method for the ODE approximation, the matrix formulation can be

derived in the same way but the matrix M(λ, h) is di�erent: for example, if we

chose an implicit method,M(λ, h) will be upper triangular.

The �nite N-dimensional problem becomes:

min
λ
JDIR(λ, h) = ‖u(λ)− ỹ‖22 (1.24)

subject to:

M(λ, h)u = c(h)

where ỹ = [ỹ(t0), ỹ(t1), ..., ỹ(tN )]T = [ỹ0, ỹ1, ..., ỹN ]T the solution of the system

(1.16) evaluated on the time grid.

We can observe the di�erence between the cost functional (1.14) and that one

used in this approach JDIR(λ, h). Let us de�ne

errDIR(λ, h) = |J(λ)− JDIR(λ, h)| (1.25)
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Figure 1.3: Direct Approach: errDIR(λ, h) in (1.25) for h = 10−3

represented in Figure 1.3 on the left. We have �xed the time step h = 1e − 03

and λ ∈ [−10,−0.1]. As we can observe, the error is very large: in fact, as we

will explain in detail in Chapter 3, the norm does not approximate the continuous

cost function in (1.14) for construction. Instead, if we compare J(λ) with respect

to hJDIR(λ, h), Figure 1.3 on the right, the order of error becomes almost h.

Further details will be explained in the Chapter 3.

Now let us apply the steepest descent method to solve (1.24), where the descent

direction dk is the gradient of JDIR(λ, h):

dk = ∇JDIR(λ) =
∂

∂λ
‖u(λ)− ỹ‖22 =

∂

∂λ

N∑

k=0

(uk(λ)− ỹk)2

= 2
N∑

k=0

(uk(λ)− ỹk)
∂

∂λ
uk(λ)

(1.26)

In this case (1.23) yields: u(λ) =M(λ)−1c, then it is possible to compute explic-

itly the gradient as follows:

dk =
∂

∂λ

[
(M(λ)−1c− ỹ)T (M(λ)−1c− ỹ)

]
=

= 2(hM(λ)−1AM(λ)−1c)T (M(λ)−1c− ỹ)

(1.27)

Let us observe that, if a non-linear ODE model is considered, the computation

of ∇JDIR(λ, h) may be not so immediate, because we can not derive the matrix

form and explicit M as in (1.23); therefore, the gradient could be computed by

using the automatic di�erentiation or approximated, for example, by using the

�nite di�erence.

Let us �x the parameters of the algorithm as follows: h = 1e−03 for the time

discretization, α0 = 1, ε = 1e−03 for the tolerance. The results are summarized in
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Table 1.1: we consider di�erent values for the starting parameter λ0 ∈ [−3,−0.7]

and report the number of the iterations k̄, the �nal value λk̄ which results from

the optimization, the type of convergence, the �nal cost and the absolute error

between the optimal solution and the approximation de�ned as follows: |λ∗−λk̄|.
Let us observe that for λ0 ≥ −0.4, the optimization stops far from the optimum

λ∗ = −1. This depends on the algorithm we are using for the optimization and

on the numerical method for the ODEs: in fact, the �rst iteration of the steepest

descent produces the new approximation of the parameter λ1 that is located on

the left of the minimum, because the gradient value d0 in λ0 is very large, then

λ1 = λ0−αd0 << λ0. From the stability analysis of EE [65] it is well known that

h must be chose in appropriate way to have the convergence of the method and

the bound is: h < −2
λ . After the �rst iteration this bound is not satis�ed, then

EE becomes unstable and does not produce any solution.

Remark 1.3.1. The problem becomes ill-conditioned when λ0 increases. Then

the choice of the numerical method for the ODEs is crucial for the numerical

optimization.

1.4 Indirect Approach: Optimize-then-Discretize

Let us use the Indirect approach to solve the ODE-TIP. In this approach, we

need the optimality conditions derived by Optimal Control theory [49] to solve

the constrained minimization problem in (1.14)-(1.15) as follows. We write the

Hamiltonian associated to (1.14)-(1.15):

H(y, λ, ψ) = y2 − 2yỹ + ỹ2 + ψ

(
λy +

1

2

)
(1.28)

where ψ is the adjoint variable that solves the following ODE:



ψ(t)′ = −∂H

∂y = −2y(t) + 2 ˜y(t)− ψ(t)λ

ψ(10) = 0

(1.29)

where ỹ(t) is given by (1.16). (1.29) is called adjoint equation. Let us note that

the adjoint equation has to be solved backwards in time.

The gradient of (1.28) [49] is:

dH
dλ

= H′(λ) =

∫ 10

0
ψ(t)y(t)dt. (1.30)
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First of all we construct the discrete �nite-dimensional problem associated

with (1.14)-(1.15)-(1.29) to be optimized with respect to λ, then we use the

steepest descent method to approximate the minimum. To obtain the �nite-

dimensional problem we need an ODE solver for the approximation of the con-

straints (forward in time for (1.15) and backward in time for (1.29)), and a quadra-

ture formula for the integrals in (1.14) and (1.30) (cost and gradient calculation).

As example, we choose the Explicit Euler method [65] as ODE solver and the

composite trapezoidal rule [65] as quadrature formula. For all schemes we �x

h = T−t0
N . Hence let JIND(λ, h) be the approximation of J(λ), u = [u0, ..., uN ]T

the numerical solution of the ODE (1.15) and v = [v0, ..., vN ]T the numerical

solution of the adjoint system (1.29). The �nite dimensional problem becomes:

min
λ
JIND(λ, h) =

N∑

n=0

wn(un − ỹn)2

u0 = 1, un+1 = un + h

(
λun +

1

2

)
n = 0, ..., N − 1

vn = 0, vn = vn+1 − h(−2un + 2ỹn − vnλ) n = N − 1, ..., 0

(1.31)

where wn, n = 0, ..., N , are the weights of the numerical quadrature method [44],

such that
∑N

n=0wn = T − t0, and ỹn = ỹ(tn) ∀n ∈ {0, ..., N}. Let us observe

that the adjoint equation is solved backward in time using a so-called re�ected

method, in particular in this case we use the re�ected Explicit Euler method (see

Section 2.2 for details).

Furthermore, H′(λ) is approximated by

H′(λ, h) =

N∑

n=0

wnvnun (1.32)

where we have chosen the same composite quadrature rule used for the approxi-

mation of the cost function in (1.31).

Let errIND(λ, h) be the di�erence between the cost function and its numerical

approximation:

errIND(λ, h) = |J(λ)− JIND(λ, h)|. (1.33)

In Figure 1.4 we can see the graphic representation of errIND(λ, h) as function

of λ, �xed the step h = 1e− 03.

Now let us solve the N-dimensional problem (1.31) applying the steepest de-

scent method, where the descent direction is dk = H′(λk, h). Let us �x the
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Figure 1.4: Indirect Approach: errIND(λ, h) in (1.33) for h = 1e− 03

parameters of the algorithm: h = 1e − 03 for the time discretization, α0 = 1,

ε = 0.001 for the tolerance. The results of the optimization algorithm are sum-

marized in the Table 1.2, where we consider di�erent values for the starting pa-

rameter λ0 ∈ [−3,−0.4] and report the number of iterations k̄, the �nal value λk̄

which results from the optimization, the type of convergence, the �nal cost and

the absolute error between the optimal solution and the approximation de�ned

as follows: |λ∗ − λk̄|.
Let us observe that for λ ≥ −0.2 the iterations stop after just one step: in

λ0 the gradient is very large as in the previous case, and the next iteration starts

from λ1 << λ0 where the gradient is small: d1 = −3.0739e − 04 < ε, then the

optimization arrests even if λ1 is far from the minimum λ∗ = −1.

Remark 1.4.1. The number of iterations k̄ becomes very large when λ0 increases,

and the convergence is slower and slower, as we have observed in Section 1.2.

To sum up, in this Sections we have shown that the two constrained opti-

mization problem (1.31) and (1.24) (arising by the indirect and direct approach

respectively) have the following features:

1. (1.31) and (1.24) are di�erent not equivalent discrete problems;

2. the optimization with respect to λ for �xed h > 0 by the steepest descent

method implies that
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λ0 k̄ iterations λk̄ convergence �nal cost absolute error

-3 6 -1.0004 cost 3.1874e-04 4.9898e-04

-2 4 -1.0002 cost 5.7109e-05 2.1116e-04

-1.5 6 -1.0006 cost 3.9511e-04 5.5559e-04

-1 1 -1 gradient 0 0

-0.9 5 -1.0005 cost 2.6235e-04 4.5268e-04

-0.7 4 -0.9994 cost 4.5598e-04 5.9623e-04

-0.6 7 -1.0005 cost 3.2108e-04 5.0081e-04

-0.5 5 -0.9996 cost 2.5847e-04 4.4895e-04

-0.4 1 -3.0782e+04 - - -3.078e+04

-0.2 1 -1.4915e+05 - - -1.492e+05

Table 1.1: Direct Approach: Results of the optimization algorithm with di�erent

starting value λ0, for h = 1e− 03

λ0 iterations k̄ λk̄ convergence �nal cost absolute error

-3 6 -1.0042 cost 2.2441e-05 0.0042

-2 4 -0.9937 cost 5.0201e-05 0.0063

-1.5 7 -1.0105 cost 1.3907e-04 0.0105

-1 1 -1 gradient 0 0

-0.9 2 -0.9813 cost 4.6381e-04 0.0187

-0.7 5 -1.0006 cost 5.9955e-07 6.3299e-04

-0.6 21 -0.9796 cost 5.5286e-04 0.0204

-0.5 222 -0.9875 cost 2.0273e-04 0.0125

-0.4 1559 -0.9922 cost 7.8176e-05 0.0078

-0.2 1 -149.3725 gradient 1.5395 148.3725

Table 1.2: Indirect Approach: Results of the optimization algorithm with di�erent

starting value λ0, for h = 1e− 03

� for (1.24) the problem become ill-conditioned for λ > c1, for some

c2 ∈ (0.5, 0.4]

� for (1.31) the number of iterations increases for λ0 > −1 and the

optimization fails for λ > c2, for some c2 ∈ (0.4, 0.2]

3. the optimization strongly depend on the numerical method chosen for the
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ODEs and the quadrature formula for the integral in the indirect approach.

1.5 Literature review

The comparison between the Direct and Indirect methods is widely discussed in

literature, see e.g. [5, 12, 18, 66, 67, 91, 85, 87, 88] and the choice of the approach

to use is often determined by problem to be solved and its complexity. As we

have seen, the Direct and Indirect methods originate from di�erent philosophies:

the direct approach �nds the optimal solution rewriting the in�nite-dimensional

problem as a �nite-dimensional problem to be solved by well-known optimization

techniques; the indirect approach solves the problem by converting the optimal

control problem to a boundary-value problem, then the optimal solution is found

by solving a ODEs system.

Remarkable surveys on the numerical methods for trajectory optimization are

in particular [5, 66, 87], where both indirect and direct methods are presented and

analyzed. Furthermore, in [66], the author discussed important computational

issues and described several di�erent software tools for solving optimal control

problems.

Each of the two methods have di�erent advantages and disadvantages com-

pared to the other, as studied mostly in [5, 67, 91, 87]. In particular, the direct

method presents the following advantage on indirect method: it does not require

any a-priori theoretical study, it is more robust and the model can be easily modi-

�ed; the method is less sensitive to the choice of the initial conditions [91, 87]. On

the contrary it is di�cult with the direct method to reach the precision provided

by the indirect approach. Furthermore, the direct method requires a large amount

of memory, and it becomes ine�cient if the dimension is too large [87]; sometimes

it converges to local minima, which are introduced by the discretization [91].

The advantage of the indirect method is its extremely good numerical accuracy

[91, 87]; but in general it is based on the maximum principle, that is just a nec-

essary condition for the optimality; it is not easy to introduce state constraints,

because this requires to apply a maximum principle with state constraints (and

it is more complicated respect to the standard maximum principle).

There is not a conventional answer for the choice of the method, and it should

be guided by the practical problem under consideration and by the experience
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[5]. In [12, 18, 91, 88] the authors proposed and demonstrated that a combination

of direct and indirect methods is a very promising way to obtain a numerical

solution, combining the advantages of both approaches.

The purpose of the thesis is not to decide which method to use for the solution

an optimization problem, but rather to provide an analysis of the two approaches

from a numerical point of view and to bring out the numerical problems linked

to their discretization.
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Chapter 2

Discretization issues: ODE case

We have seen the two di�erent well-known di�erent methodologies to solve the

ODE-PIP: the Direct Approach and the Indirect Approach. Brie�y the Direct

approach transforms the optimal control problem into a nonlinear programming

problem to be solved numerically by using an optimization method [63]. The

Indirect approach uses the theory of the Optimal Control and the Pontryagin's

maximum principle [49, 87] to determine the so-called optimality conditions, which

must be satis�ed by the optimal solution. The necessary conditions are two dif-

ferential equations which arise from the di�erentiation of a Hamiltonian function

associated to the problem: the state equation (to be solved forward in time) and

the adjoint equation (to be solved backward in time). These equations are of-

ten di�cult to solve: generally the problem is nonlinear and therefore do not

have analytic solutions. Hence the solutions are approximated numerically and

an optimization algorithm is used to approach the minimum. Therefore in both

cases a continuous minimization problem is discretized and solved numerically

and it is necessary to use numerical tools for the construction and resolution of

the �nite-dimensional problem:

• a (weighed) norm to de�ne the cost function in the Direct approach;

• a quadrature method for the cost functional in the Indirect approach;

• a numerical optimization algorithm;

• ODEs solver;

We brie�y analyze all of them, then we focus on the analysis of the ODEs solver
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in two particular cases as explained below.

(weighed) norm: For the Direct approach we have by construction a discrete

cost, de�ned by a norm. Given a PIP in continuous form the use of a (weighted)

norm as cost function is certainly the most immediate and easy method: we do

not need to approximate any integral and therefore we do not have to use any

quadrature formula. The accuracy of the norm can be improved by using, for

example, a suitable weighting matrix: in this way we can give more importance

to some elements of the experimental data, considered most signi�cant for the

identi�cation purposes. When we consider simulated data in the test problems,

where we know the exact solution of the parameter identi�cation, we use the

classical 2-norm (withW = I), because the aim will be to show the characteristics

of the problem and the issues derived from the discretization rather than the

e�ective minimization.

Quadrature formula: In this thesis we will not dwell on the choice of the

quadrature method for the approximation of the integrals (cost function and its

gradient) in the Indirect approach. We will refer to it only for the convergence

analysis in the next Chapter, in particular we will be interested in the convergence

order of the quadrature formula.

Optimization algorithm: In literature the crucial point in solving the PIP

is how to chose the optimization algorithm; in fact, a widely amount of papers

concern the numerical methods for optimization: see for example [71, 32, 39,

83]. Moreover, the optimization in the direct approach generally requires the

gradient value of the norm: when its value can not be provided exactly (and this

also depends, as we have seen, on the numerical method for ODEs), it can be

approximated by using the �nite di�erences or it can be generated through the

so-called automatic di�erentiation, see e.g. [34].

ODEs solver: As we have seen, in both approaches the di�erential equations

must be solved, then an suitable numerical method for ODEs must be provided.

The choice of the numerical method must be done carefully, since the optimization

process also depends on the accuracy of the ODEs solver. In fact, as an example,
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in the Direct Approach applied to the TIP, the chosen method determined the

failure of the convergence of the algorithm. In particular, we focus on the suitable

approximation of ODEs with oscillatory solutions which have an interesting re-

cent application in the electrodeposition process [47, 79]. It is worth noting that,

specially in the case of oscillating dynamics, the cost function strongly depends

on the accuracy of the numerical methodM in (1.5) that must be able to repro-

duce carefully the oscillations. In the following Chapters we will normalize both

data and simulations, therefore we are interested in methods that minimize the

dispersion (phase) error rather than dissipation error. Therefore in Section 2.1 we

report a dispersion error analysis for a selection of numerical schemes. Secondly,

if the Indirect approach is used, then the numerical resolution of (1.11) requires

two numerical methods for the approximation of the ODEs forward and backward

in time. In Section 2.2 we present the Re�ecting and Transposing Runge-Kutta

methods widely used for the so-called partitioned systems [73].

2.1 Numerical methods for oscillating solutions

In this Section we discuss the appropriate numerical method to solve the ODE

system with oscillating solution that is the constraint of the PIP in (1.1)-(1.2).

We start by considering the following linear test problem as prototype of ODE

with oscillating solution:

w′(t) = iβw, t ∈ [0, T ]. (2.1)

The exact solution in analytic form is:

w(t) = ceiβt (2.2)

with the parameter c that depends on the initial condition w(0) = w0. If w0 =

ρ0e
iφ0 , then

w(t) = ρ0e
i(βt+φ0) = ρ0(cos(βt+ φ0) + i sin(βt+ φ0)) (2.3)

β > 0 is referred to as the inner frequency [90], ρ0 is the amplitude of the solution

and φ0 is its phase. Let us de�ne u(t) = Re(w(t)) and v(t) = Im(w(t)) for all

t ∈ [0, T ]. Then the ODE in (2.1) can be written equivalently as the following
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linear ODE system:




u′(t) = −βv

v′(t) = βu

u(0) = u0 = ρ0 cos(φ0), v(0) = v0 = ρ0 sin(φ0)

(2.4)

and its analytical solution is:



u(t) = ρ0 cos(βt+ φ0)

v(t) = ρ0 sin(βt+ φ0)

⇔


 u(t)

v(t)


 =


 cos(βt) − sin(βt)

sin(βt) cos(βt)




 u0

v0


 (2.5)

Let us consider the time discretization tn = nh for all n = 0, 1, 2, ..., with h

time stepsize; let us de�ne the variable ν = βh ∈ R. Therefore the exact solution

(2.3) at each step tn = nh is given by:

w(tn) = w0e
inν = ρ0e

i(nν+φ0). (2.6)

Similarly, the solution in (2.5) evaluated at each tn is:

 u(tn)

v(tn)


 =


 cos(nν) − sin(nν)

sin(nν) cos(nν)




 u0

v0


 (2.7)

We consider the one-step methods for the approximation of (2.1) and (2.4).

We are interested in schemes that approximate with a certain degree of accuracy

the amplitude and the phase of oscillating solutions. The error on the modulus

is called dissipation error, and the error on the phase is called the dispersion

error according to [90]. Here we focus on the following methods: modi�ed Euler's

method, trapezoidal rule, explicit Runge-Kutta 4 and the symplectic Euler and

Stormer-Verlet methods [37, 36, 65].

The modi�ed Euler's method is a 2-stages Runge-Kutta method with order of

consistency p = 2 . The scheme, applied to (2.1), is:

wn+1 = wn + h

[
iβ

(
wn +

h

2
iβwn

)]
=

(
1 + iν − ν2

2

)
wn n = 0, 1, ... (2.8)

The term z(v) = 1− ν2

2 + iν is the so-called stability function of the method, that

de�ne the stability region where |z(ν)| < 1.

The trapezoidal rule is an implicit method; it is A-stable and its order of

consistency is p = 2. Applying the method to the equation (2.1):

wn+1 = wn +
h

2
(iβwn+1 + iβwn) = wn +

iν

2
(wn+1 + wn) n = 0, 1, ... . (2.9)
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we can make explicit wn+1:

wn+1 =
2 + iν

2− iν wn =
4− ν2 + 4iν

4 + ν2
wn n = 0, 1, ... . (2.10)

Hence its stability function is: z(ν) = 4−ν2

4+ν2 + i 4ν
4+ν2 .

Runge Kutta 4 is a 4-stages explicit method, and its order of consistency is

p = 4 [37]. The scheme applied to the equation (2.1) is:





k1 = iβyn,

k2 = iβ(yn + h
2k1),

k3 = iβ(yn + h
2k2),

k4 = iβ(yn + h
2k3),

wn+1 = wn + h
6 (k1 + 2k2 + 2k3 + k4)

⇒

⇒ wn+1 =

(
1 + iν − ν2

2
− iν

3

6
+
ν4

24

)
wn n = 0, 1, ...

(2.11)

with the stability function given by: z(ν) = 1− ν2

2 + ν4

24 + i(ν − ν3

6 ).

As we have seen the stability function can be written as: z(ν) = As(ν) +

iBs(ν), where As(ν) and Bs(ν) are polynomials in the variable ν de�ned by the

method.

Hence the numerical solution of (2.1) obtained by a one-step method can be

written in the form:

wn = z(ν)nw0 = ρ(ν)neinω(ν)w0 = ρ0ρ
nei(nω(ν)+φ0) (2.12)

where ρ = |z| is the modulus of the stability function z(ν) and ω = ω(ν) is its

argument.

The symplectic Euler method [37] is applied directly to the real system (2.4):




un+1 = un + h(βvn) = un − νvn

vn+1 = vn + h(βun+1) = νun + νun+1

⇒




un+1 = un − νvn

vn+1 = νun + (1− ν2)vn

(2.13)

then we can de�ne the matrix M(ν) associated to (2.13):

M(ν) =


 1 −ν
ν 1− ν2


 (2.14)
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and rewrite (2.13):

 un+1

vn+1


 =


 1 −ν
ν 1− ν2




 un

vn


 n = 1, 2, ... (2.15)

The Stormer-Verlet [36] scheme for the system (2.4) is given by:




vn+ 1
2

= vn + h
2 (βun) = vn + ν

2un

un+1 = un + h
2 (−2βvn+ 1

2
) = un − νvn+ 1

2

vn+1 = vn+ 1
2

+ h
2 (βun+1) = vn+ 1

2
+ ν

2un+1

⇒

⇒




un+1 = (1− ν2

2 )un − νvn

vn+1 = (ν − ν3

4 )un + (1− ν2

2 )vn

(2.16)

therefore the matrix M(ν) is:

M(ν) =


 1− ν2

2 −ν
ν
(

1− ν2

4

)
1− ν2

2


 . (2.17)

then:

 un+1

vn+1


 =


 1− ν2

2 −ν
ν
(

1− ν2

4

)
1− ν2

2




 un

vn


 n = 1, 2, ... (2.18)

Recursively the numerical solution of (2.4) can be written in matrix form as:

 un

vn


 = M(ν)n


 u0

v0


 n = 1, 2, ... (2.19)

where M(ν) ∈ R2×2 is the matrix associated to the method. Let us note that,

if the eigenvalues of the matrix M are (λM )(ν)+,− = ρMe
±ωM = ρM (cos(ωM ) ±

i sin(ωM )), then we have:

cos(ωM (ν)) =
trace(M(ν))

2
√
det(M(ν))

.

If the eigenvalues are real, the de�nition can be easily extended, as explained

in [76].

Let us introduce two errors that allows us to study the proprieties of the

numerical solutions: in particular we examine the dispersion and the dissipation

of the solutions. To study the dissipation we analyze the dissipation error de�ned

as follows [90], from (2.12):

δ(ν) = 1− ρ(ν) = 1−
√
A2
s(ν) +B2

s (ν). (2.20)
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To examine the dephasing in the solution, i.e. the dispersion,we recall the disper-

sion error [90]:

φ(ν) = ν − ω(ν) = ν − arctan

(
Bs(ν)

As(ν)

)
. (2.21)

If we consider the matrix form (2.15) or (2.18), it result [90]:

δ(ν) = 1− ρM (ν) = 1−
√
det(M(ν)). (2.22)

and

φ(ν) = ν − ωM (ν) = ν − arccos

(
trace(M(ν))

2
√
det(M(ν))

)
. (2.23)

De�nition 2.1.1. If φ(ν) = O(νq+1) the method is called dispersive of order q;

if δ(ν) = O(νr+1) the method is called dissipative of order r [90].

Let us analyze the methods for which we have already obtained the stability

functions z(ν).

Modi�ed Euler : Its stability function is z(ν) = 1+iν−ν2/2; therefore As(ν) =

1− ν2/2 and Bs(ν) = ν. Let us compute the errors in (2.21) and (2.20):

φ(ν) = ν − arctan

(
2ν

2− ν2

)
≈ ν −

(
ν +

1

6
ν3 + o(ν4)

)
= −1

6
ν3 +O(ν4)

δ(ν) = 1−
√

1 +
ν4

4
≈ 1−

(
1 +

3

24
ν4 + n(ν5)

)
= − 3

24
ν4 +O(ν5)

(2.24)

Therefore, the Modi�ed Euler method is dispersive of order q = 2 and dissipative

of order r = 3.

The trapezoidal rule: The stability function is z(ν) = 4−ν2

4+ν2 + iν 4
4+ν2 , then

As(ν) = 4−ν2

4+ν2 and Bs(ν) = 4ν
4+ν2 . From the de�nitions of the errors (2.21) and

(2.20), it results:

φ(ν) = ν − arctan

(
4ν

4− ν2

)
≈ ν −

(
ν − 1

12
ν3 + o(ν5)

)
=

1

12
ν3 +O(ν5)

δ(ν) = 1−
√

(4− ν2)2

(4 + ν2)2
+

16ν4

(4 + ν2)2
= 0.

(2.25)

Hence, the dispersion order is q = 2 and the method is zero-dissipative.

Runge-Kutta 4 : Its stability function is: z(ν) = 1 + iν − ν2

2 − iν3

6 + ν4

24 , then

As(ν) = 1− ν2

2 + ν4

24 and Bs(ν) = ν− ν3

6 . The dispersion error and the dissipative
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Table 2.1: Order of consistency p, order of dispersion q and order of dissipation r

of the methods.
p q r

Symplectic Euler 1 2 ∞
Modi�ed Euler 2 2 3

Stormer-Verlet 2 2 ∞
trapezoidal rule 2 2 ∞
Runge-Kutta 4 4 4 5

error are respectively:

φ(ν) = ν − arctan

(
24ν − 4ν3

24− 12ν2 + ν4

)
≈ ν −

(
ν − 1

20
ν5 +O(ν7)

)

=
1

20
ν5 +O(ν7)

δ(ν) = 1−
√(

1− ν2

2
+
ν4

24

)2

+ ν2

(
1− ν2

6

)2

≈ 5

6!
ν6 +O(ν7).

(2.26)

Clearly the order of dispersion is q = 4 and the order of dissipation is r = 5.

Symplectic Euler : by the matrix M(ν) in (2.14) we have: det(M(ν)) = 1 and

trace(M(ν)) = 2− ν2; hence:

φ(ν) = ν − arccos

(
2− ν2

2

)
≈ −ν

3

24
+O(ν5)

δ(ν) = 0.

(2.27)

Stormer-Verlet : for the matrix M(ν) associated to the method in (2.17) it

result: det(M(ν)) = 1 and trace(M(ν)) = 2− ν2; therefore

φ(ν) = ν − arccos

(
2− ν2

2

)
≈ −ν

3

24
+O(ν5)

δ(ν) = 0.

(2.28)

Hence both methods, Symplectic Euler and Stormer-Verlet are zero-dissipative

and dispersive of order q = 2.

Let us summarize the properties of the methods seen so far in Table 2.1,

where p is the order of consistency, q the order of dispersion and r the order of

dissipation.

The symplectic methods have no dissipation error, in fact for their preservation

proprieties [37] the amplitude of the oscillation in the solution is conserved. But
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the orders of dispersion of Symplectic Euler and Stormer-Verlet are less than that

of Runge-Kutta 4. As we will see in the next Sections, we will compare the data

with the numerical solutions of the ODEs normalizing the data values, such that

the amplitude of oscillations is always in [0, 1]. We are interested in minimizing

the dispersion error. Therefore we use Runge-Kutta 4 as ODE solver because it

is explicit and has the largest order of dispersion q.

2.2 Runge-Kutta methods for partitioned systems

In this Section we consider the Runge-Kutta method to solve an ODE system

and we de�ne the corresponding re�ected and transposed RK methods, examining

their construction and meaning.

Let us consider the following generic D-dimensional di�erential system:




y′(t) = F (t, y) t ∈ [t0, T ]

y(t0) = y0

(2.29)

with F : R× Rd → Rd, y0 ∈ Rd, d ≥ 1 (typically d = 2).

A RK method with s stages is speci�ed by s2 + 2s numbers [37]:

aij i, j = 1, ..., s bi, ci i = 1, ..., s (2.30)

and �nds the approximations yn of y(tn), n = 0, ..., N , tn = to + nh, h = T−t0
N ,

recursively as follows:

yn+1 = yn + hn

s∑

i=1

biKn,i

Kn,i = F (tn + cihn, Yn,i)

Yn,i = yn + hn

s∑

j=1

aijKn,j

(2.31)

The coe�cients bi, ci and aij can be collected in the following Butcher's Tableau:

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs
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Scherer and Türke [74] associated with the set of RK coe�cients two new sets

called the re�ection and the transposition of the original.

The re�ected RK has coe�cients given by:

arij = bj − aij , bri = bi, cri = 1− ci i, j = 1, ..., s (2.32)

and the transposed RK has coe�cients de�ned by:

atij = bjaji/bi, bti = bi, cti = 1− ci i, j = 1, ..., s (2.33)

The operations of re�ection and transposition commute, that is:

atr = artij = bj − bjaji/bi, btr = brti = bi, ctr = crti = ci i, j = 1, ..., s

(2.34)

and both the operation are involutions, that is:

(arij)
r = aij , (brj)

r = bj , (crj)
r = cj i, j = 1, ..., s

(atij)
t = aij , (btj)

t = bj , (ctj)
t = cj i, j = 1, ..., s

For example, here we construct the re�ected, transposed and re�ected-transposed

methods for the Explicit Euler, Crank-Nicolson, Runge-Kutta 3 and Runge-Kutta

4 methods [65, 72], reported in the Tables 2.2, 2.3, 2.4 and 2.5 respectively and

used for the numerical simulation in the following Chapter.

0 0

1

1 1

1

1 0

1

0 1

1

Table 2.2: Explicit Euler: Butcher's Tableau for original, re�ected, transposed

and re�ected-transposed.

0 0 0

1 1
2

1
2

1
2

1
2

1 1
2

1
2

0 0 0

1
2

1
2

1 0 1
2

0 0 1
2

1
2

1
2

0 1
2 0

1 1
2 0

1
2

1
2

Table 2.3: Crank-Nicolson: Butcher's Tableau for original, re�ected, transposed

and re�ected-transposed.

What does the re�ection and transposition mean?

The interpretation of re�ection is well known [37]: a step of length −h by the

re�ected RK method inverts the transform yn 7→ yn+1 performed with a step of
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0 0 0 0

1
2

1
2 0 0

1 −1 2 0

1
6

2
3

1
6

1 1
6

2
3

1
6

1
2 −1

3
2
3

1
6

0 7
6 −4

3
1
6

1
6

2
3

1
6

1 0 2 −1

1
2 0 0 1

2

0 0 0 0

1
6

2
3

1
6

0 1
6

4
3

7
6

1
2

1
6

2
3 −1

3

0 1
6

2
3

1
6

1
6

2
3

1
6

Table 2.4: Runge-Kutta 3: Butcher's Tableau for original, re�ected, transposed

and re�ected-transposed.

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

1 1
6

1
3

1
3

1
6

1
2 −1

3
1
3

1
3

1
6

1
2

1
6 −1

6
1
3

1
6

0 1
6

1
3 -2

3
1
6

1
6

1
3

1
3

1
6

1 0 1 0 0

1
2 0 0 1

2 0

1
2 0 0 0 1

2

0 0 0 0 0

1
6

1
3

1
3

1
6

0 1
6 −2

3
1
3

1
6

1
2

1
6

1
3 −1

6
1
6

1
2

1
6 −1

3
1
3 −1

3

1 1
6

1
3

1
3

1
6

1
6

1
3

1
3

1
6

Table 2.5: Runge-Kutta 4: Butcher's Tableau for original, re�ected, transposed

and re�ected-transposed.

length h by the original method. The re�ection preserves the covergence order of

the original method, as proved in [73].

The transposition is useful in order to construct a symplectic partitioned

Runge-Kutta out of a given RK method, as explained in [72]. In some appli-

cation the vector y in the ODE system (2.29) appears partitioned into two blocks:

y = [xT , zT ]T , x ∈ Rd−p, z ∈ Rp, d > p. As an example we can consider the Hamil-

tonian problems, where d = D/2. Let us denote by F = [fT , gT ]T , f ∈ Rd−p,

g ∈ Rp, the partitioning of F induced by the partitioning [xT , zT ]T of y, so that
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the ODE system in (2.29) is given by:

d

dt
x = f(x, z, t)

d

dt
z = g(x, z, t). (2.35)

In this case it may make sense to use a set of coe�cients (2.30) for the inte-

gration of the block x, and a second set

Aij i, j = 1, ..., s Bi, Ci i = 1, ..., s (2.36)

for the integration of z. The overall method is called Partitioned Runge-Kutta

(PRK) scheme. Therefore the PRK method, for the ODE system (2.35), becomes:

xn+1 = xn + h
s∑

i=1

bikn,i, zn+1 = zn + h
s∑

i=1

Biln,i, n = 0, ..., N − 1

kn,i = f(Xn,i, Zn,i, tn + cih), ln,i = g(Xn,i, Zn,i, tn + Cih),

Xn,i = xn + h
s∑

j=1

aijkn,j , Zn,i = zn + h
s∑

j=1

Cijln,j .

(2.37)

Clearly an RK scheme may be regarded as a particular case of PRK method

where the two sets (2.30)-(2.36) coincide.

Remark 2.2.1. It is important to note that, if the PRK scheme (2.30)-(2.36)

has order q, then the RK scheme with coe�cients (2.30) and the RK scheme

with coe�cients (2.36) have both order q. The converse is not true: if (2.30)

and (2.36) are coe�cient of two RK schemes of order q, then the combined PRK

scheme may have order less than q.

For a PRK scheme the following Theorem holds:

Theorem 2.2.1 ([72]). Assume that I(·, ·) is a real-valued bilinear map on Rp ×
Rd−p such that the solution y(t) = [x(t)T , z(t)T ]T of(2.29), (2.35), satis�es

d

dt
I(x(t), z(t)) ≡ 0 ∀t. (2.38)

If between the coe�cients of the PRK scheme hold:

bi = Bi i = 1, ..., s

ci = Ci i = 1, ..., s

biAij +Bjaij − biBj i, j = 1, ..., s

(2.39)

then, for each PRK trajectory, I(xn, zn) = cost is independent of n.
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Proof. Refer to [72]

It can be proved that for all I and all partitioned di�erential systems the con-

ditions (2.39) to preserve after the discretization the continuous invariant property

in (2.38).

Furthermore, for the preservation of a symplectic structure, the following the-

orem can be proved:

Theorem 2.2.2 ([72]). Assume that the system (2.35) is Hamiltonian. The re-

lations (2.39) garantee that the mapping (xn, zn) 7→ (xn+1, zn+1) is symplectic.

Proof. Refer to [72]

The conditions (2.39) are essentially necessary for symplectiness.

Let us observe that the conditions in (2.39) indeed coincide with the relations

in (2.34), that is the construction of the re�ected-transposed of a RK method. In

fact the relations of the coe�cients bi and ci is the same in (2.34) and in (2.39);

the relations of aij holds as follows:

Aij = Bj −Bjaij/bi i, j = 1, ..., s

⇓ (Bi = bi)

Aij = bj − bjaij/bi i, j = 1, ..., s

⇓ (2.34)

Aij = artij i, j = 1, ..., s

(2.40)

A Hamiltonian system is by de�nition a partitioned ODE system: it is com-

pletely described by a scalar function H(x, z). The evolution equations, that form

the partitioned ODE system, are given by the Hamilton's equations:




x′(t) = dx

dt = ∂H
∂z ,

z′(t) = dz
dt = −∂H

∂x .

(2.41)

It is well-known that the Hamiltonian function is a constant of the motion [73].

On the other hand, also an optimal control problem can be set in partitioned

form where the state equation and the adjoint equation, obtained in the indirect

approach, can be combine as a single partitioned system as (2.35).

In fact, as we can see the systems (1.9) and (2.41) are in the same form.

Therefore, we can use a RK method (2.30) to solve the state equation and a
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di�erent RK method (2.36) to solve the adjoint, so that together form a PRK

scheme. In order to preserve the Hamiltonian in (1.7), the coe�cients have to

satisfy the relations in (2.39), so that the method for the adjoint equation must

be the re�ected-transposed of the method used for the state equation.

But we have seen that the adjoint equation is to be solved backward in time,

hence the preservation requires that such backward integration of p be performed

with the transposition of the coe�cients used to propagate y forward in time, as

explained in [72].

In general, the result that the transposition does not preserve the order of

convergence, as proved in [74]. A necessary and su�cient condition to preserve

the order is that the original method satis�es a certain condition denoted D(k)

[14], which establishes a relation among the coe�cient of the Buthcher's tableau.
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Chapter 3

Comparison between Direct and

Indirect Approaches

The choice of the numerical method for the ODE changes the properties of the

cost function and its gradient of the �nite-dimensional problem deriving from

the discretizaion of the continuous PIP, as well as the quadrature formula for

the approximation of the integrals in the Indirect approach. In this Chapter we

study the convergence properties of the cost functions and the gradients to their

continuous counterpart, and we show the convergence results numerically for the

TIP studied in the Chapter 1.

3.1 Analysis of cost functions

As we have seen in Sections 1.3-1.4 for the TIP, the approaches yield two dif-

ferent discretization of the cost functional J(λ) (and two di�erent constrained

optimization problem in �nite dimension) as follows:

• The Direct approach is based on the minimization of the 2-norm:

JDIR(λ, h) = ‖u− ỹ‖22 . (3.1)

• In the Indirect approach we have approximated the integral in (1.14) by the

quadrature formula:

JIND(λ, h) =

N∑

k=0

wk(uk(λ)− ỹk)2. (3.2)
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Note that (1.14), the original minimization function, corresponds to the L2

norm of f(λ, t) = (y(λ, t) − ỹ(t)). By discretizing this continuous norm by the

composite rectangle rule we have:

J(λ) = ‖f(λ, t)‖2L2 ≈
N∑

n=0

hf2
i (λ) = h‖f(λ)‖22,h = hJDIRc (λ, t) (3.3)

where fi(λ) = f(λ, ti) and JDIRc (λ, t) = ‖y − ỹ‖22 is the discrete cost in (3.1)

with the exact solution of (1.15) evaluated on the mesh grid de�ned by h = T−t0
N .

Therefore JDIRc (λ, h) is the approximation of the cost in (1.14) divided by h. For

this reason when h→ 0, JDIR(λ, h) does not converge to the exact cost J(λ).

In Figure (1.4)-(1.3) we have seen the errors errIND and errDIR as function of

λ, �xing the discrete parameter h. Let us now analyze how these errors changes

when we use di�erent methods to solve the ODE system (1.15) and di�erent values

of the parameter h.

3.1.1 Cost in Direct Approach

Proposition 3.1.1. Let JDIR(λ, h) be the cost functional in the Direct approach

in (3.1) and h = T−t0
N . Let q be the convergence order of the numerical method

used to solve the ODE. For all λ0 it results:

errDIR(λ, h) = |J(λ)− JDIR(λ, h)| ≤

K(λ, T ) + Code(T )hq−1 + Code(T )h2q−1 + C2
odeh

2q.
(3.4)

Proof. Let JDIRc (λ, h) be the cost functional in the Direct approach, seen in

(3.3), where the solution of the system (1.15) is analytically computed and eval-

uated on the mesh grid: y = [y(t0), y(t1), ..., y(tN )]T = [y0, y1, ..., yN ]T . Let

ỹ = [ỹ(t0), ỹ(t1), ..., ỹ(tN )]T = [ỹ0, ỹ1, ..., ỹN ]T . It It results:

JDIR(λ, h)
(3.1)
=

N∑

k=0

(uk(λ)− ỹk)2 ≈
N∑

k=0

(yk(λ) + Codeh
q − ỹk)2 =

N∑

k=0

(yk(λ)− ỹk)2 + 2
N∑

k=0

Codeh
q(yk(λ)− ỹk) +

N∑

k=0

C2
odeh

2q =

JDIRc (λ, h) + 2

N∑

k=0

Codeh
q(yk(λ)− ỹk) +

N∑

k=0

C2
odeh

2q ≤

JDIRc (λ, h) + 2NCodeh
q ‖y(λ)− ỹ‖∞ + (N + 1)C2

odeh
2q =

JDIRc (λ, h) + 2(T − t0)Codeh
q−1 ‖y(λ)− ỹ‖∞+

(T − t0)Codeh
2q−1 + C2

odeh
2q.

(3.5)
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Therefore:

errDIR(λ, h) = |J(λ)− JDIR(λ, h)| =

|J(λ)− JDIRc (λ, h) + JDIRc (λ, h)− JDIR(λ, h)| ≤

|J(λ)− JDIRc (λ, h)|︸ ︷︷ ︸
En2: error “2−norm′′

+ |JDIRc (λ, h)− JDIR(λ, h)|︸ ︷︷ ︸
Eode: error numerical method

=

T − t0
2

K(λ) + 2(T − t0)Codeh
q−1 ‖y(λ)− ỹ‖∞+

(T − t0)Codeh
2q−1 + C2

odeh
2q.

(3.6)

where K(λ) is a constant that depends on the value of λ and the length of the

vectors.

Let us say:

En2(λ, h) =
T − t0

2
K(λ) (3.7)

denotes the error due to the L-2 discrete norm, and

Eode(λ, h) = 2(T − t0)Codeh
q−1 ‖y(λ)− ỹ‖∞+(T − t0)Codeh

2q−1 +C2
odeh

2q (3.8)

the contribution to the error of the ODEs method. As we can observe, the global

error depends on λ, the length of the integration interval and the value of the step

h. Furthermore, Errode(λ, h) vanish only if the convergence order of the ODEs

method is greater that 1. From this analysis we expect that if we use Explicit

Euler, this error do not vanish for h→ 0. Let us compute the errors for di�erent

values of λ and represent their behavior; the results are shown in Figure 3.1: as

we can see the errDIR(λ, h) does not vanish when h→ 0, as well as the error due

by the 2-norm En2(λ, h) and Eode(λ, h).

Let us use alternative methods to solve the ODE: for example we consider

Crank-Nicolson (of order q = 2) and Runge-Kutta 4 (of order q = 4). The results

are represented in the Figures 3.2-3.3 respectively. As we have shown the error

Eode goes to zero and the convergence order is that one of the numerical method

used minus 1.

As we expect En2 never goes to zero. If we take hJDIR(λ, h), that is we

multiply by h our cost function, we can observe that the covergence order of the

total error is 1 as the covergence order of the composite rectangle rule, as shown

in Figure 3.4.
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Figure 3.1: Direct Approach: The method used to solve the ODEs is Explicit

Euler. From the left to the right the plots represent: errDIR(λ, h) in (3.4),

Eode(λ, h) in (3.8) and Errn2(λ, h) in (3.7), for di�erent values of λ ∈ [−2,−0.1],

with λ 6= −1,−0.5. As we can observe ∀λ the total error grows as well as the

Errn2(λ, h), and this con�rms the theoretical results. Errode remains constant

∀ht, with the exception of the �rst value of ht for λ < −1. The errors values

depend on the λ: they decrease for λ→ −1.

Clearly the errors have di�erent behavior in the di�erent values of λ: as we

can see from the previous Figures, the error errDIR(λ, h) decreases when λ→ −1

but begins to increase when λ→ 0.

3.1.2 Cost in the Indirect Approach

Proposition 3.1.2. Let now JIND(λ, h) be the cost functional in the Indirect

approach in (3.2), h = T−t0
N . Let q be the convergence order of the numerical

method used to solve the ODE and r the convergence order of a composite quadra-

ture formula to approximate the integral. It results:

errIND(λ, h) = |J(λ)− JIND(λ, h)| ≤

Z(λ)hr + Code(T )hq + C2
ode(T )h2q.

(3.9)

Proof. Let JINDc (λ, h) be the cost functional in the Indirect approach where the

solution of the system (1.15) is analytically computed evaluated on the mesh grid:

y = [y(t0), y(t1), ..., y(tN )]T = [y0, y1, ..., yN ]T . Let ỹ = [ỹ(t0), ỹ(t1), ..., ỹ(tN )]T =
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Figure 3.2: Direct Approach: The method used to solve the ODE is Crank-

Nicolson, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the top left represents

errDIR(λ, h) in (3.4). Plot at the top right is Eode(λ, h) in (3.8); plot at the

bottom left represent the error due by the 2-norm in (3.7) and the plot on the

bottom right is the convergence order p of Eode. As we can observe, also in this

case the global error grows, following the behavior of Errn2. Errode decreases

and the convergence order re�ects the theoretical result.

[ỹ0, ỹ1, ..., ỹN ]T . It results:

JIND(λ, h)
(3.2)
=

N∑

k=0

wk(uk(λ)− ỹk)2 ≈
N∑

k=0

wk(yk(λ) + Codeh
q − ỹk)2 =

N∑

k=0

wk(yk(λ)− ỹk)2 + 2

N∑

k=0

wkCodeh
q(yk(λ)− ỹk) +

N∑

k=0

wkC
2
odeh

2q =

JINDc (λ, h) + 2

N∑

k=0

wkCodeh
q(yk(λ)− ỹk) +

N∑

k=0

wkC
2
odeh

2q ≤

JINDc (λ, h) + 2hq ‖y(λ)− ỹ‖∞
N∑

k=0

wk + C2
odeh

2q
N∑

k=0

wk =

JINDc (λ, h) + 2(T − t0)2Codeh
q ‖y(λ)− ỹ‖∞ + (T − t0)C2

odeh
2q.

(3.10)
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Figure 3.3: Direct Approach: The method used to solve the ODE is Runge-

Kutta 4, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the top left represents

errDIR(λ, h) in (3.4). Plot at the top right is Eode(λ, h) in (3.8); plot at the

bottom left represent the error due by the 2-norm in (3.7) and the plot on the

bottom right is the convergence order p of Eode. As we can observe, also in this

case the global error grows, following the behavior of Errn2. Errode decreases

and the convergence order re�ects the theoretical result.

Therefore:

errIND(λ, h) = |J(λ)− JIND(λ, h)| =

|J(λ)− JINDc (λ, h) + JINDc (λ, h)− JIND(λ, h)| ≤

|J(λ)− JINDc (λ, h)|︸ ︷︷ ︸
Equadr: error quadrature

+ |JINDc (λ, h)− JIND(λ, h)|︸ ︷︷ ︸
Eode: error numerical method

=

Z(λ)hr + 2(T − t0)2Codeh
q ‖y(λ)− ỹ‖∞ + (T − t0)C2

odeh
2q.

(3.11)

Let us call

Equadr(λ, h) = Z(λ)hr

and

Eode(λ, h) = 2(T − t0)2Codeh
q ‖y(λ)− ỹ‖∞ + (T − t0)C2

odeh
2q.

In this case the errIND(λ, h) coverges to zero and the covergence order will
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Figure 3.4: Direct Approach: λ ∈ [−2,−0.1], λ 6= −1,−0.5. The method used to

solve the ODE is Explicit Euler (left), Crank-Nicolson (center) and Runke-Kutta

4 (right). On the bottom the respective convergence orders are represented.

be

p = min{r, q}. (3.12)

In Figures (3.5), (3.6) and (3.7) we report the error errIND(λ, h) in logarithmic

scale and the covergence order p. The numerical method to solve the ODE are

Explicit Euler (q = 1), Crank-Nicolson (q = 2) and Runge Kutta 4 (q = 4)

respectively; in all case the quadrature formula used in composite trapezoidal rule

(r = 2). The �nal value of the convergence order p coincides with our estimation

(3.12).

Also in this case the error errIND(λ, h) has an evident dependence on the

parameter λ and its value increases when λ→ 0.

To sum up, in this Section we have studied the cost functions in the Direct

and Indirect approaches, by varying the parameters λ and h. In particular we

analyzed the two errors errDIR(λ, h) end errIND(λ, h) given by the di�erences

between the analytical cost J(λ) and its approximations JDIR(λ,h) and JIND(λ, h)

respectively. As we have seen that errors are the sum of two contributions: one

given by the numerical approximation of the integral in (1.14) and a second one

deriving from the use of a numerical solver for the ODE in (1.15):
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Figure 3.5: Indirect Approach: The method used to solve the ODE is Explicit Eu-

ler, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent errDIR(λ, h)

in (3.9). Plot on the right shows the covergence order p (3.12).
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Figure 3.6: Indirect Approach: The method used to solve the ODE is Crank-

Nicolson, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent

errDIR(λ, h) in (3.9). Plot on the right shows the covergence order p (3.12).

• errDIR(λ, h) = En2(λ, h) + Eode(λ, h);

• errIND(λ, h) = Equadr(λ, h) + Eode(λ, h).

In both the approaches Eode(λ, h) → 0 for h → 0∀λ, with a convergence order p

that depends on the convergence order q of the numerical method used for the

ODE:

• Direct approach: p = q − 1;

• Indrect approach: p = q.

Furthermore, the di�erent approximation of the cost in (1.14) implies:

1. Direct approach: En2 6→ 0 for h→ 0;

50



10
-1

10
-2

h

10
-3

err
IND

(λ,h)

10
-4-2λ

-1

10
-5

10
-10

10
-15

10
0

0

h

10
-4

10
-3

10
-2

10
-1

1.5

2

2.5

3

3.5

4

4.5
Convergence rate

Figure 3.7: Indirect Approach: The method used to solve the ODE is Runge-

Kutta 4, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent

errDIR(λ, h) in (3.9). Plot on the right shows the covergence order p (3.12).

2. Indirect approach: Equadr → 0 for h → 0 with a convergence order r.

Therefore, as we have seen the convergence order of errIND(λ, h) is p =

min{q, r} in (3.12): if the convergence order of the quadrature formula in

small, then the implementation of a ODE solver with high convergence order

is useless.

3.2 Gradient analysis

As we have seen, in the Direct and Indirect methods we had to solve a mini-

mization problem in �nite dimension and we used the steepest descent method to

search for the minimum. Therefore in both approaches the values of the gradients

were required for the minimization. For the test problem we know the analytical

form of the gradient of J(λ), given in (1.21). We analyze how the gradient is

computed in Direct and Indirect approach respectively, then we will study the

error between the gradient (1.21) and its discretizations.

3.2.1 Gradient in the Direct Approach

From the equation (1.26) and with similar argument in (3.3), it results:

dJ(λ)

dλ
=

∫ T

0
2(y(λ, t)− ỹ(t))

∂

∂λ
y(λ, t) ≈ h

N∑

k=0

2(yk(λ)− ỹk)
∂

∂λ
yk(λ) =

h
∂

∂λ
JDIRc (λ, h)

(3.13)
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then ∇JDIRc (λ, h) is the approximation of the gradient ∇J(λ) by the composite

rectangle rule divided by h. Therefore we expect that ∇JDIRc (λ, h) does not

converge to ∇J(λ) for h → 0, as we have seen in Section 3.1.1 for the cost

function.

Proposition 3.2.1. Let ∇JDIR(λ, h) be the gradient in the direct approach and

h = T−t0
N . Let q be the convergence order for the method used for the ODE. It

follows:

err∇JDIR(λ, h) = | ∇J(λ)−∇JDIR(λ, h)| ≤

K(λ, T ) +
d

dλ
Code(T )[hq−1 + Code(T )h2q−1] + Code(T )hq−1[1 + hq+1].

(3.14)

Proof. Let∇JDIRc (λ, h) be the approximation of the gradient, y(λ) = [y(t0), ..., y(tN )]T =

[y0, ..., yN ]T are analytically computed and evaluated on the mesh grid. Let

u(λ) = [u0, u1, ..., uN ]T be the numerical approximation of y. It result:

∇JDIR(λ, h) = 2

N∑

k=0

(uk(λ)− ỹk)
d

dλ
uk(λ) ≈

2
N∑

k=0

(yk(λ) + Codeh
q − ỹk)

d

dλ
(yk(λ) + Codeh

q) =

2

N∑

k=0

(yk(λ)− ỹk)
d

dλ
(yk(λ)) + 2

d

dλ
(Codeh

q)

N∑

k=0

(yk(λ)− ỹk)+

2Codeh
q
N∑

k=0

d

dλ
(yk(λ) + Codeh

q) ≤

∇JDIRc + 2Nhq‖y(λ)− ỹ‖∞
d

dλ
(Code)+

2Codeh
q
N∑

k=0

d

dλ
(yk(λ)) + 2Codeh

q(N + 1)
d

dλ
(Codeh

q) ≤

∇JDIRc + 2(T − t0)hq−1‖y(λ)− ỹ‖∞
d

dλ
(Code) + 2Codeh

q(N + 1)‖ d
dλ

y(λ)‖∞+

2Codeh
2q(N + 1)

d

dλ
(Code) =

∇JDIRc + 2
[
(T − t0)hq−1‖y(λ)− ỹ‖∞ + Code(T − t0)h2q−1 + Codeh

2q
] d
dλ

(Code)+

2Code(T − t0)hq−1‖ d
dλ

y(λ)‖∞.

(3.15)
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Therefore:

err∇JDIR(λ, h) = |∇J(λ)−∇JDIR(λ, h)|

|∇J(λ)−∇JDIRc +∇JDIRc −∇JDIR(λ, h)| ≤

|∇J(λ)−∇JDIRc |︸ ︷︷ ︸
En2: error “2−norm′′

+ |∇JDIRc −∇JDIR(λ, h)|︸ ︷︷ ︸
Eode: error numerical method

=

T − t0
2

K(λ) + 2[(T − t0)hq−1‖y(λ)− ỹ‖∞+

Code(T − t0)h2q−1 + Codeh
2q]

d

dλ
(Code)+

2Code(T − t0)hq−1‖ d
dλ

y(λ)‖∞.

(3.16)

We have proved that the gradient, as well as the cost function, does not

converge to its continuous counterpart. Moreover the error Eode does not vanish

if we use a �rst order method for ODE, like Explicit Euler. The numerical behavior

of the error for di�erent λ is quite similar to the case of the cost function. Then we

do not graphically represent these behaviors and we move on to study the gradient

in the Indirect approach that presents di�erent and interesting properties.

3.2.2 Gradient in Indirect Approach

As we have seen, the gradient used during the optimization in the Indirect ap-

proach is H′(λ, h) in (1.32), the discretization of (1.30) that we recall below:

H′(λ) =

∫ 10

0
ψ(t, λ)y(t, λ)dt. (3.17)

We can compute the analitical forms of ψ(λ, t), ψ(λ, t)y(λ, t) and H′(λ):

ψ(λ, t) =
e−λt

2λ2(λ− 1)

[
2λ2(e(λ−1)t − e10(λ−1))+

− 2(λ− 1)(2λ+ 1)(e2λt − e20λ) + 2(λ− 1)(λ+ 1)(eλt − e10λ)
]
,

(3.18)

ψ(λ, t)y(λ, t) = ψ(λ, t)
eλ t (2λ+ 1)− 1

2λ
, (3.19)
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H′(λ) = [e−10λ e−10 (4λ3 e10λ − 4λ4 e10λ + 9 e10λ e10 − 12 e20λ e10 + 3 e30λ e10+

− 4λ2 e10 e10λ−10 + 4λ3 e10 e10λ−10 + 38λ e10λ e10 + 40λ e20λ e10 − 18λ e30λ e10+

− 59λ2 e10λ e10 − 32λ3 e10λ e10 + 56λ4 e10λ e10 + 68λ2 e20λ e10 − 128λ3 e20λ e10+

− 48λ4 e20λ e10 + 80λ5 e20λ e10 − 49λ2 e30λ e10 + 60λ3 e30λ e10 + 84 a4 e30λ e10+

− 80λ5 e30λ e10 + 4λ2 e10λ e10 e10λ−10 − 48λ3 e10λ e10 e10λ−10 − 48λ4 e10λ e10 e10λ−10+

+ 80λ5 e10λ e10 e10λ−10)]
1

8λ4 (λ− 1)2 .

(3.20)

By a computer algebra program, we can verify that (1.21) and (3.20) indeed

coincide:

H′(λ) = ∇J(λ), ∀λ. (3.21)

We can prove that the discretization of H′(λ) coincides with the derivative of

the discrete cost JIND(λ, h) with respect to λ, that is

H′(λ, h) = ∇JIND(λ, h), (3.22)

where

∇JIND(λ, h) =
∂

∂λ
JIND(λ, h) =

N∑

k=0

wk
∂

∂λ
(uk(λ)− ỹk)2. (3.23)

In fact, let us de�ne the discretization of (1.20) ∇hJ(λ) as follows:

∇hJ(λ) = 2

N∑

k=0

wk
∂uk(λ)

∂λ
(uk(λ)− ỹk). (3.24)

It is easy to see that, if the composite quadrature formula used in (3.23) and

(3.24) coincide, it holds:

∇JIND(λ, h) = ∇hJ(λ)

therefore:

H′(λ) = ∇J(λ)⇒ H′(λ, h) = ∇hJ(λ)⇒ H′(λ, h) = ∇J(λ, h).

Error analysis We compute the error between H′(λ) and its numerical approx-

imation H′(λ, h) for λ ∈ [−2,−0.1] and calculate the covergence order p. Let us

de�ne:

errH′(λ, h) = |H′(λ)−H′(λ, h)|. (3.25)
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Figure 3.8: Indirect Approach: The method used to solve the ODE is Explicit Eu-

ler, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent errH′(λ, h)

in (3.25). Plot on the right shows the convergence order p.

In Figure 3.8 we can see a numerical simulation, where we have used Explicit

Euler and its re�ected scheme to solve the state equation and the adjoint equation

respectively, and the composite trapezoidal quadrature rule to approximate the

integral. In spite of the quadrature formula has convergence order r = 2, the

convergence order of the error is 1.

Let us analyze the theoretical di�erence between the gradients.

Proposition 3.2.2. Let H′(λ, h) be the approximation of the gradient H′(λ) and

h = T−t0
N . Let q be the convergence order for the method used for the state

equation, qa the convergence order of the method used to solve the adjoint equation

and r the convergence order of a composite quadrature formula to approximate the

integral. It results:

errH′(λ, h) = |H′(λ)−H′(λ, h)| ≤

≤ Z(λ)hr + C(T )hq + Ca(T )hqa + C(T )Ca(T )hqa+q−1.
(3.26)

Proof. Let H′c(λ, h) be the approximation of the gradient H′(λ) where ψ(λ) =

[ψ(t0), ..., ψ(tN )]T = [ψ0, ..., ψN ]T and y(λ) = [y(t0), ..., y(tN )]T = [y0, ..., yN ]T are

analytically computed and evaluated on the mesh grid. Let u(λ) = [u0, u1, ..., uN ]T

be the numerical approximation of y and v(λ) = [v0, v1, ..., vN ]T be the numerical
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approximation of p. It follows that:

H′(λ, h) =
N∑

k=0

wkvk(λ)uk(λ) ≈
N∑

k=0

wk(ψk(λ) + Cah
qa)(yk(λ) + Chq) =

N∑

k=0

wkψk(λ)yk(λ) +

N∑

k=0

wk(ψk(λ)Chq + yk(λ)Cah
qa + Cah

qaChq) =

H′c(λ, h) + Chq
N∑

k=0

wkψk(λ) + Cah
qa

N∑

k=0

wkyk(λ) + (T − t0)CCah
qa+q−1 ≤

H′c(λ, h) + (T − t0)Chq ‖ψ(λ)‖∞ + (T − t0)Cah
qa ‖y(λ)‖∞+

(T − t0)CCah
qa+q−1.

(3.27)

Therefore:

errH′(λ, h) = |H′(λ)−H′(λ, h)|

|H′(λ)−H′c(λ, h) +H′c(λ, h)−H′(λ, h)| ≤

|H′(λ)−H′c(λ, h)|︸ ︷︷ ︸
Equadr: error quadrature

+ |H′c(λ, h)−H′(λ, h)|︸ ︷︷ ︸
Eode: error numerical method

=

Z(λ)hr + (T − t0)Chq ‖ψ(λ)‖∞ + (T − t0)Cah
qa ‖y(λ)‖∞+

(T − t0)CCah
qa+q−1.

(3.28)

Let us call

Equadr(λ, h) = Z(λ)hr

and

Eode(λ, h) = (T−t0)Chq ‖ψ(λ)‖∞+(T−t0)Cah
qa ‖y(λ)‖∞+(T−t0)CCah

qa+q−1.

where the �rst term is due by the approximation of the state ODE equation and

the second one is due by the approximation of the adjoint ODE equation.

Therefore the covergence order p of errH′(λ, h) is given by:

p = min{r, q, qa}. (3.29)

If we use di�erent methods to solve the di�erential equations, we observe how

the covergence order of the error changes. For example, by using Crank-Nicholson

(q = 2) and Runge-Kutta 4 (q = 4) to solve the state ODE equation end their
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Figure 3.9: Indirect Approach: The method used to solve the ODE is Crank-

Nicolson, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent

errH′(λ, h) in (3.25). Plot on the right shows the convergence order p (3.29)
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Figure 3.10: Indirect Approach: The method used to solve the ODE is Runge-

Kutta 4, with λ ∈ [−2,−0.1], λ 6= −1,−0.5. The plot on the left represent

errH′(λ, h) in (3.25). The plot on the right shows the convergence order p (3.29)

re�ected for the adjoint equation, we obtain the following Figures 3.9 and 3.10,

where it is represented errH′(λ, h) and the covergence order p. Let us observe that

in these cases qa = q, because the re�ection preserves the order of the method (as

detailed in the 2.2).

Remark 3.2.1. As suggested by Sanz-Serna in [72], in optimal control problem

it would be necessary to use a Partitioned Runge-Kutta method because of the

structure of the problem. But a PRK for optimal control is obtained by the use

of a RK method for the state equation and its transposed to solve the adjoint, as

explained in Section 2.2. The problem is the follow: generally, the transposition

does not preserve the order of the method [74].
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3.3 Summary

In this Chapter we examined the cost functions derived from the two approaches

and their gradients. As we have seen, in both approaches the error between

the discrete costs (and gradients) and their continuous counterpart involve two

di�erent contributions: one given by the method used in de�ning the cost function

and a second one due by the method used for the ODE resolution.

In the Direct approach we have by construction a discrete cost, de�ned by

a norm and therefore structurally di�erent from the integral in the continuous

problem; then, mainly a suitable method for resolution of the ODE should be

provided. Furthermore, the error Errode does not vanish, for h → 0, if the

convergence order of the chosen method is 1.

The Indirect approach expects the minimization of a cost functional de�ned

by an integral, that is approximated by an suitable quadrature formula as well

as its gradient. Furthermore, it is necessary to provide suitable ODE methods

for the state and the adjoint equations. From the analysis we deduced that it is

useless to consider an ODEs method of high order if the quadrature formula has

a lower order: indeed the approximation of lower order will predominate in the

approximation.

In the following, we will analyze more complex problems, in terms of target

data and strongly non-linear di�erential models (which represent the constraints);

therefore we decide to consider the Direct approach and study the issues derived

from this discretization. In particular, we will compare the classical cost function

with another suitably de�ned, resulting from the analysis of experimental data of

interest. The Indirect approach, as we have seen, raises further di�erent issues

that would add to the complexity of the problems, and we expect that can be

object of future works.
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Chapter 4

ODE-PIP with oscillatory

dynamics

In this Chapter we will show that the cost function (1.3) for the ODE-PIP on

oscillating data inherits the oscillating data behaviour and has many di�erent

�low� minima, then we show that adding a classical regularization term as in

(1.13) actually does not improve this structure of the cost. Since in this situation

any optimization algorithm is liable to fail in the approximation of a good solution,

we propose a new approach which takes into considerations the oscillating nature

of the data. To avoid the bad features of the classical cost function, we propose

to rewrite and solve the original ODE-PIP in the Fourier space, by de�ning a new

cost function based on the discrete Fourier transform and comparing frequencies

of data and simulations. We will show that the multiple minima of the two norm

are correlated and indeed belong to a sub-manifold S of codimension-one in the

m-dimensional parameter space Ω ⊂ Rm. These results have been published in

[20].

PIP for periodic data were studied, for example, by S. Röblitz et al. [69] and

S.P. Ellner et al. [26]. In [69] a model of 33 di�erential equations is analyzed with

more then one hundred parameters and 14 of these parameters are identi�ed by a

Gauss-Newton method. In [26, 51] the so-called gradient matching is used, rather

than the most used trajectory matching: in a preliminary smoothing step, the time

series data are interpolated; then, in a second step, the parameters of the ODEs

are optimized, so as to minimize some metric measuring the di�erence between the

slopes of the tangents to the interpolants, and the time derivatives from the ODEs.
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In this way, the ODEs never have to be solved explicitly. Nevertheless in this

Chapter the questions related to the presence of multiple minima are addressed

only in terms of suitable numerical strategies such that the optimization method

can avoid local minima.

4.1 Test Identi�cation problem for oscillating data (TIP-

OD)

To present the problems derived from the study of oscillating data, in this Section

we propose a simple form of PIP, that we call Test Identi�cation Problem for

oscillating data (TIP-OD), such that: (i) the constraint is a linear ODE system

of two equations with known exact solution; (ii) only one component u(t) of the

solution system has to be compared with the target function; (iii) the target is

a given oscillating function, such that the cost function has one known global

minimum; (iv) only one parameter must be identi�ed. Hence, let us consider a

general linear PIP as follows:

min
p1∈Ω

J(y(t), ỹ(t), p1) (4.1)

y′(t) = A(p1)y, y(t0) = y0, (4.2)

where y = (u, v)T , p1 = β, A(β) =


 0 −β
β 0


. In particular, we consider the

TIP:

min
β∈[β0,βf ]

J(u(t), ũ(t), β) (4.3)





u′(t) = −βv

v′(t) = βu

u(t0) = u0, v(t0) = v0, t ∈ [t0, T ]

(4.4)

such that the exact solution of (4.4) is given by u(t;β) = u0 cos(βt), v(t;β) =

v0 sin(βt). Here β = 2πfe is the parameter to be identi�ed (fe is the frequency),

and ũ(t) = u0 cos(β̃t) is the assigned target function with �xed β̃ = 2πf̃e. By

following the direct approach [87], given a timestep h = T−t0
N and the time grid

ti = t0 + h i for i = 0, ..., N , if U(β) = [u(ti)] and Ũ = [ũ(ti)], the cost function is
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Figure 4.1: TIP: Least squares cost functions (left) and regularization (4.6) for

α ∈ [0.1, 10] (right).

given by:

J2norm(β) = ‖U(β)− Ũ‖22 =
N∑

i=0

(u0 cos(βti)− u0 cos(β̃ti))
2 =

=

N∑

i=0

4u2
0 sin2 (β + β̃)ti

2
sin2 (β − β̃)ti

2
,

(4.5)

that evidently inherits an oscillating behaviour and J2norm(β) = 0⇐⇒ β = β̃ or

β = −β̃ . For example, let us �x: t0 = 0, T = 2π, u0 = 1, v0 = 0, β̃ = 7 (then

f̃e ≈ 1.114) and h = 0.001, As usual, we can add some noise to the simulated

data such that Ũr = Ũ + 10−4rand, where rand is a random perturbation with

uniform distribution. For β ∈ [1, 20] the cost functions (4.5) without and with

noised data are shown in Figure 4.1. Clearly an optimization algorithm will fail

in the search of the global minimum, because these functions have many di�erent

local minima at (almost) the same level that cannot be easily avoided since, as

well known, the convergence depends on the starting point. It is easy to see that

the bad behaviour does not depend on the addition of noise to the data.

Let us try now to solve the problem of unconstrained optimization, looking

for the minimum of the cost in function in (4.5) by using the MATLAB [56]

command fminunc which �nd the minumum of unconstrained function given in

input. The used algorithm is the BFGS Quasi-Newton method with a cubic line

search procedure [11, 29] and the tolerance tol is de�ned by the default value

1e− 06 for all the stopping criteria. The results are summarize in Table 4.1. As

we expect the algorithm fails in the minimization when the starting point β0 is

not enough close to the minumum: the search stops in a local minimum.

Analogous behavior results by using the MATLAB [56] function lsqnonlin,
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β0 iterations k̄ βk̄ convergence �nal cost

2 2 1.85 gradient 78.03

5 5 4.80 gradient 76.02

6.9 2 6.999 cost 3.7e-06

7.1 1 6.999 cost 1.37e-8

9 5 9.26 gradient 76.01

15 5 15.28 gradient 78.20

Table 4.1: TIP-OD: Results of the optimization with fminunc and di�erent start-

ing values β0

β0 iterations k̄ βk̄ convergence �nal cost

2 22 -3.82 increment 77.67

5 19 4.80 increment 76.82

6.9 3 7 gradient 2.13e-13

7.1 3 7 gradient 1.34e-11

9 19 9.26 cost increment 76.01

15 24 15.28 increment 78.20

Table 4.2: TIP-OD: Results of the optimization with lsqnonlin and di�erent

starting values β0

preferred choice in the minimization of 2-norm. By default, lsqnonlin uses the

trust-region-re�ective algorithm described in [17, 16], and a tolerance tol = 1e−6.

The results are shown in the following Table 4.2.

If a classical regularization term is added to (4.5), as for example, the one

suggested in [42, 38], we have:

JR2norm(β) = ‖U(β)− Ũr‖22 + α‖β‖22, (4.6)

the plot of which (for noised data) in a neighborhood of β̃ is shown in Figure

4.1 (right) for α ∈ [0.1, 10]. It is clear also that the regularized cost function is

not convex and the occurrence of many local minima is not avoided. For this

reason and in order to take into account the features of the data, we introduce a

Fourier regularization approach based on the Fourier transformation of data and
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Figure 4.2: TIP: FFT power spectra P̃=|M̃ |2 for noised and unnoised data (left);

cost function (4.7) for β ∈ [0, 20] (right)

simulations as follows. Let us consider the new cost function

JFFT (β) =
|f(β)− f̃ |

f̃
, (4.7)

that is the relative error between the dominant frequencies f̃ and f(β) of the

(noised) data Ũr and of the numerical solutions (here known exactly) U(β),

respectively. f̃ and f(β) are obtained by the Discrete Fourier Transform (DFT)

of data and simulations as follows. Let

M̃ = fft(Ũ) Mβ = fft(U(β))

be the Fast Fourier Transforms (FFT) of Ũr and U(β), calculated by the MAT-

LAB [56] function fft (see appendix A for more details). The �rst dominant

frequency can be, as usual, extracted as the abscissa of the maximum of the cor-

responding power spectra P̃ = |M̃ |2 and Pβ = |Mβ|2. The spectrograms of the

noised and unnoised target data are shown in Figure 4.2, where in both cases

f̃ ≈ 1.114. Note that f̃ and f(β) are the numerical approximations of the exact

frequencies f̃e = β̃
2π and fe(β) = β

2π . Then for the calculated Fourier cost function

(4.7), shown in Figure 4.2 with the (obvious) global minimum in β∗ = β̃ = 7, we

have

JFFT (β) ≈ |fe(β)− f̃e|
f̃e

=
| β2π −

β̃
2π |

β̃
2π

=
|β − β̃|
β̃

. (4.8)

It is worth noting that (4.7) is not su�ciently regular to allow the use of methods

such as, for example, Newton-like ones, but other derivative-free algorithms could

be considered to approximate the global minimum. Nevertheless, our aim here

is not to minimize numerically (4.7), but rather to present the TIP as a toy
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parameter estimation problem showing that, working in the Fourier space (by

using the FFT), in the case of oscillating data we can devise a cost function

that avoids the drawbacks of usual least squares. Note that, in the construction

of the TIP, since we use as initial condition for the ODE system exactly u0 as

in the simulated target, we do not account for amplitude and phase di�erences

between data and simulations. The Fourier regularization for this simpli�ed TIP

is thus able to track only the (main) frequency present in the data. We will show

in the next Sections that for PIP with a nonlinear ODE system constraint and

more than one parameter to be identi�ed, the Fourier regularization approach will

provide a �tool� to minimize also the phase error between (normalized) data and

simulations.

4.2 Fourier regularization: simulated data

In this Section we apply our approach to solve a PIP where the constraint is given

by the ODE version of the well-known Schnackenberg model introduced in [75]

to describe an autocatalytic chemical reaction with possible oscillatory behaviors.

This PDE model is a prototype of nonlinear reaction-di�usion system with spatial

pattern formation due to Turing or di�usion-driven instability. As recent papers

[50, 68] show, this model receives great attention for the two following main

reasons: (i) it has a very simple structure; (ii) its patterns are qualitatively similar

to classical ones found in biological experiments. Here, we are interested in the

identi�cation of the reaction kinetic parameters of the model without the di�usion

terms.

Let us de�ne the Schnackenberg-PIP as follows:

min
(α,β)∈Ω

J(v(t), ṽ(t), α, β) (4.9)




u′(t) = a− u+ u2v,

v′(t) = b− u2v, t ∈]t0, T ]

(4.10)

where v(t) is a solution of the ODE system in (4.10) and ṽ(t) is a given oscillating

target. Let us observe that we decided to include only v(t) and not u(t) in the cost

function; this to have an analogous problem to the experimental case considered

in the next Section, where we will have the experimental data only for one of the
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two variables of the di�erential model.

The equilibrium point for (4.10) is given by Pe = (ue, ve) = (a + b, b
(a+b)2 ). Let

β = a + b and α = a − b, then the parameter assumption a > 0 and b > 0

is equivalent to β > 0 and −β < α < β. To have oscillating solutions, we

consider (α, β) in a neighbourhood of the Hopf line, where the eigenvalues λ1,2

of J(ue, ve), the Jacobian of the kinetics in (4.10) evaluated at the equilibrium

point, are complex conjugate with very small positive real part, such that a limit

cycle (u(t), v(t)) around Pe is expected as asymptotic solution. As detailed in

[50], this yields the following bound for the parameter space Ω: α 6= 0 small and

|α| � |β|. Hence, we will identify indirectly the parameters a and b by estimating

(α, β) ∈ Ω = [α0, αf ]× [β0, βf ] = [0.5, 1]× [0.5, 1] ∈ R2.

As before, we apply the direct approach to the ODE-PIP (4.9)-(4.10). We �x

t0 = 0 and the �nal time of integration to T = 150. We consider the timestep

h = 0.005 and the explicit RK4 to approximate (4.10). Let be V(α, β) = [Vi],

Vi(α, β) ≈ v(ti, α, β) the numerical approximation of v(t) on the uniform grid

ti = i h, i = 0, . . . , N . We generate simulated target data Ṽ on the same grid by

�xing α̃ = 0.88 and β̃ = 0.9. (We avoid to add noise for the reasons highlighted

in the previous Section on TIP.) In our analysis of the direct cost we decide to

consider Ṽ and V(α, β) only for t ∈ [t̄, T ] to avoid the comparison in the transient

dynamics and to focus only on the �asymptotic� standing oscillations. Moreover,

as anticipated above, we normalize both data and simulations, so that we do

not need to compare the amplitude of the oscillations. From now on, for abuse

of notations, let Ṽ,V(α, β) ∈ RN be the normalized vectors extracted from the

previous ones for t ∈ [t̄, T ], t̄ = 100. Hence, we want to study the behaviour of the

classical two-norm (without classical regularization, for the reasons highlighted in

the previous Section on TIP):

J2norm(α, β) = ‖V(α, β)− Ṽ‖22. (4.11)

To this aim, we discretise the parameter space Ω by using hα = hβ = 0.0025

and we evaluate (4.11) for each sample pair (αi, βj), i, j = 1, . . . , Nh. As we can

see in Figure 4.4 (left) the obtained approximation of (4.11) has di�erent very

low local minima and an optimization algorithm could fail in the search for the

global (simulated) one. For this reason, we apply our Fourier regularization and
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Figure 4.3: Schnackeberg-PIP: spectrogram of the simulated target data.

Figure 4.4: Schnackeberg-PIP: least squares (4.11) (left) and Fourier (4.12) (right)

costs

we de�ne the new Fourier cost function for Schnackeberg-PIP as:

JFFT (α, β) =
|f1(α, β)− f̃1|

f̃1

, (4.12)

where f̃1 is the �rst dominant frequency of Ṽ extracted from the power spectrum

P̃ = |M̃ |2, with M̃ = fft(Ṽ) the FFT of Ṽ. The corresponding spectrogram is

shown in Figure 4.3. Similarly, f1(α, β) is the �rst dominant frequency of the

numerical solutions V(αi, βj), for all (αi, βj) ∈ Ωh, computed in the same way

from the spectrogram Pα,β = |Mα,β|2. The Fourier cost (4.12) is shown in Figure

4.4 (right).

It is evident that the new cost presents a long valley of �correlated� minima

for the values (α, β) for which JFFT (α, β) = 0, that is where V(α, β) and Ṽ have

the same frequency. Computationally, we can de�ne the following discrete set:

ΩFFT
h = {(αi, βj) ∈ Ωh | JFFT (αi, βj) = 0} (4.13)

that is represented in Figure 4.5 (left, 'o' symbols): a single iso-frequency curve
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Figure 4.5: Schnackeberg-PIP. Left: the set ΩFFT
h in (4.13) and the interpolating

iso-frequency Hermite curve β = S(α). Right: the cost functions (4.14), (4.15),

(4.16) and (4.17) restricted to S(α).

in the plane α-β can be identi�ed. (Note that, since the frequencies correspond

to the abscissae in a spectrogram, JFFT is exactly zero because we compare the

spectrograms Pα,β and P̃ for numerical solutions and target on the same grid

points.) By numerical interpolation, we can �nd a continuous form of this curve,

say β = S(α), α ∈ [α0, αf ], for example by approximating the values in ΩFFT
h by

the piecewise cubic Hermite interpolating polynomial. To this aim, here we apply

the default MATLAB [56] command pchip: the result S(α) is shown in the same

Figure.

On the parametric curve (α,S(α)), that is a sub-manifold of co-dimension one

in the parameter space Ω ⊂ Rm, m = 2, we can evaluate di�erent cost functions

to complete the approximation of our two-parameters ODE-PIP. We consider

�global measures� like the original least-squares cost and the in�nity norm (i.e.

the maximum error) projected on S given by:

JS2 (α) = J2norm(α, β)|S = ‖V(α, β)− Ṽ‖22, α ∈ [α0, αf ], (4.14)

JS∞(α) = J∞(α, β)|S = ‖V(α, β)− Ṽ‖∞, α ∈ [α0, αf ]. (4.15)

To look for p = (p1, p2) = (α, β) ∈ S that yields the minimum phase errors, we

compute the so-called time-lags between the data and the simulations at the �rst

and the last times t1 and tN of the grid, that is:

JTL(α) = JT imeLag(α, β)|S = |V1(α, β)− Ṽ1|, α ∈ [α0, αf ], (4.16)

JTLE(α) = JT imeLagEnd(α, β)|S = |VN (α, β)− ṼN |, α ∈ [α0, αf ]. (4.17)
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Figure 4.5 (right) shows all these costs (4.14)�(4.17) for α ∈ [0.5, 0.95] and

t1 = 100, tN = 150 for time-lag errors. The exact simulated minimum α̃ = 0.88,

β̃ = S(α̃) = 0.9 is shared by all costs such that J∗(α̃, β̃) ≈ 1e-15: it is evidently

a global one for the two- and in�nity norms. Instead, the time-lag errors have

further few low minima.

The initial time-lag JTL(α) presents another very low minimum in (α1, β1) =

(α1,S(α1)) = (0.5463, 0.7525), where JTL(α1) = 2.5e-4 is very small, but the

global measures JS2 (α1) = 0.1546 and JS∞(α1) = 0.1727 are not. The comparison

between the target data and the corresponding numerical simulation V(α1, β1) is

shown in Figure 4.6(a): they start very near and then a dephasing develops.

Also the �nal time-lag JTLE(α) has some other �low� local minima: by inspec-

tion we look for the minima in correspondence of which also JS2 and JS∞ are low.

We �nd

(α2, β2) = (α2,S(α2)) = (0.8663, 0.8945), (α3, β3) = (α3,S(α3)) = (0.8150, 0.8738).

We have (JTLE(α2), JS2 (α2), JS∞(α2)) = (4.4e-4, 0.085, 0.3846), and |α2 −
α̃|/|α̃| = 1.5% and |β2 − β̃|/|β̃| = 0.61%, then this parameter set is indeed very

close to the simulated one.

On the other hand, (JTLE(α3), JS2 (α3), JS∞(α3)) = (1.91e-3, 1.151, 0.9201), but

|α3− α̃|/|α̃| = 7.39% and |β3− β̃|/|β̃| = 2.91%, such that a true minimum is iden-

ti�ed. The corresponding numerical solutions are shown in Figure 4.6(b) and (c):

simulations and data match well in the �nal time, but still present a dephasing.

In Figure 4.6(d) we report the time behaviour of the absolute errorsErr(αi, βi) =

|V(αi, βi)−Ṽ|, i = 1, 2, 3 for all the optimal parameter sets presented above. The

solution for (α2, β2) seems to be the better, but it produces high errors in the

points corresponding to the minima of the data. On the other hand, we can

extract a best approximation p∗ = (α∗, β∗) such that

J∗(p∗) = min
i=1,2,3

(max{JTL(αi), JTLE(αi), J
S
2 (αi), J

S
∞(αi)}) =

min
i=1,2,3

{JS∞(αi)}.

In this way we have that p∗ = (α1, β1) with J∗ = 0.1727 (see Figure 4.6(a)) can

be considered a good PIP-Fourier solution, di�erent from the simulated one.

The above Fourier procedure for the Schnackenberg-PIP could be used in a

similar way to solve any ODE-PIP with only two parameters to be identi�ed. In
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Figure 4.6: Schnackenberg-PIP: Numerical solutions for minima along the curve

S(α) obtained for (α1, β1) in (a), (α2, β2) in (b) and (α3, β3) in (c). (d): Corre-

sponding absolute errors Err(αi, βi), i = 1, 2, 3.

the next Section, we will present the Fourier-PIP approach for a recently proposed

model for electrodeposition used to model experimental oscillating data.

Remark 4.2.1. Looking at the spectrogram of the target data (see e.g. Figure 4.3),

in the Fourier cost we could consider also the contribution of a certain number

K of dominant frequencies fk, k = 2, 3, ..,K and de�ne a more general cost

accounting for more spectral information, that is:

JFFT (p) =

K∑

k=1

|fk(p)− f̃k|
f̃k

. (4.18)

Nevertheless, in the present investigation, in order to keep the computational com-

plexity of the problem to a minimum without loss of methodological power and to

handle numerical results in a way that allows a clear insight into the proposed

Fourier approach, we decide to take into consideration just the �rst ones (K=1).

In this respect it is worth noting that: (i) higher Fourier expansion terms can

be incorporated straightforwardly in (4.18), without need of further mathematical

development and (ii) the �rst Fourier component bears the most diagnostic in-

formation from the point of view of experimental physical chemistry. Of course,
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the key limitation of the present approach is that the information contained in the

�ne structure of the data oscillations is neglected. Nevertheless, the increment

in understanding of the physical problem achieved by identifying the dominant

harmonic is dramatic with respect to the state-of-the-art.

4.3 Fourier regularization: experimental data

In this Section we consider a PIP (1.1)-(1.2) where the constraint is the ODE

version of the morphochemical reaction-di�usion PDE system modeling an elec-

trodeposition process introduced in [10], for brevity also called DIB model from

the names of the authors. The DIB-PIP minimization problem is given by:

min
p∈Ω

J(θ(t), θ̃(t),p) (4.19)





η′(t) = f(η, θ)

θ′(t) = g(η, θ)

η(0) = η0, θ(0) = θ0, t ∈ [t0, T ]

(4.20)

where the kinetics are given by:

f(η, θ) = A1(1− θ)η −A2η
3 −B(θ − α), (4.21)

g(η, θ) = C(1 + k2η)(1− θ)(1− γ(1− θ))−D(θ(1− γθ) + k3ηθ(1 + γθ)). (4.22)

The key idea behind the reaction-di�usion model, proposed in [10], is the cou-

pling of one equation for the morphology η with one for the surface chemistry

θ. η ∈ R is adimensional and expresses the instantaneous increment of the elec-

trodeposit pro�le during the electrochemical process. 0 ≤ θ ≤ 1 is the surface

coverage with the functionally crucial adsorbed chemical species. The nonlin-

ear kinetics (4.21)-(4.22) account for generation (deposition) and loss (corrosion)

of the relevant material during an electrodeposition process. All parameters in

(4.21)-(4.22) are taken as real positive or equal to zero, with 0 < γ ≤ 1, k3 < k2,

D = C (1−α)(1−γ+γα)
α(1+γα) . Pe = (ηe, θe) = (0, α) is a spatially independent equilib-

rium for any choice of parameter values. Since Pe is characterized by ηe = 0, it

corresponds to a �at electrode surface, from which corrugation and morphology

can develop and for this reason it is relevant from the physical point of view.

In principle, the parameters for a DIB-PIP would be p = (C,B,A1, A2, α, k2, k3, γ,D) ∈
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Figure 4.7: Bifurcation diagram in the parameter space (C,B). The Hopf region

where oscillatory solutions are present is shown. (CTB, BTB) = (2.8061, 19.7979)

is the bifurcation point where transcritical and Hopf lines meet.

R9, but here �rst of all we consider p = (p1, p2) = (C,B) ∈ Ω ⊂ R2. In fact,

theoretical stability analysis [47] allows to describe the main properties of the

DIB model in terms of only two bifurcation parameters, such that stationary

(Turing pattern) and oscillatory solutions are present (Hopf and Turing-Hopf

instabilities). For this reason, we �x all the other parameters as in [47], that

is: α = 0.5, γ = 0.2, k2 = 2.5, k3 = 1.5, A1 = 10, A2 = 30. Since we

are interested in the ODE (spatially independent) model with oscillatory solu-

tions, we focus only on the Hopf instability, so that we shall consider parameters

p = (p1, p2) = (C,B) belonging to the Hopf region. In Figure 4.7, we report the

bifurcation diagram in the parameter space (C,B) showing the Hopf region for the

above choice of the other parameters. From the analysis in [47], the transcritical

and Hopf lines meet in (CTB, BTB) = (2.8061, 19.7979). Therefore, the analysis

reported in [47] suggests to study the DIB-PIP (4.19)�(4.22) in the parameter

space Ω = [C0, Cf ]× [B0, Bf ] = [1, 2.8]× [21, 80]. As before, the �classical� direct

approach uses the 2-norm:

Jnorm2(C,B) = ‖Θ(C,B)− Θ̃exp‖22 (4.23)

where Θ(C,B) = [Θ0, ...,ΘN ] is the numerical approximation of θ(t) in (4.20)

with timestep h = T−t0
N , that is Θk ≈ θ(tk), k = 0, .., N on tk = t0 + k h.

Θ̃exp is the vector of the target data. Here Θ̃exp represents experimental data,
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Figure 4.8: DIB-PIP: Left: Original experimental data of Θ̃exp for Zn dissolution

in systems relevant to alkaline metal-air batteries. Right: Normalized and reduced

data values Θ̃exp for t ∈ [20, 50].

such that Θ̃exp = [Θ̃0, ..., Θ̃Ñ
] ∈ RÑ+1 on the time interval t ∈ [0, T ] = [0, 50]

obtained every timestep hexp = 0.01. The initial conditions in (4.20) are chosen

as η0 = 0.1, θ0 = Θ̃0 = 0.4283. Figure 4.8 (left) reports a piece of these origi-

nal experimental data and is an anticipation of a more comprehensive numerical

and physico-chemical study in preparation on the dynamics of the oscillatory

behaviour of zinc (Zn) dissolution in systems relevant to alkaline metal-air bat-

teries. The speci�c case reported corresponds to a representative interval of the

current density oscillations obtained by �xing the electrode potential to −1070

mV vs Hg/HgO (mercury/mercury oxide electrode) for a mechanically polished

Zn electrode in contact with 3M NaOH (sodium hydroxide solution). In [46] we

have shown that the space-time dynamics of the electrochemical behaviour of Zn

in aqueous alkaline solution can be described within the framework of the DIB

model.

As in the previous Section dealing with simulated data, in the PIP we neglect

the transient dynamics and we focus on the asymptotic regular oscillatory behav-

ior of normalised data (maximum amplitude equal to one). We obtain Θ(C,B),

the numerical solutions of the DIB-ODE system, by RK4 method with timestep

h = 0.005, we normalize them and extract the values for t ∈ [t̄, T ] = [20, 50]. We

normalize also the data Θ̃exp and we interpolate them on the ODE grid, in order

to have in (4.23) vectors of same size (Figure 4.8, right). For abuse of notation,

we continue to call Θ(C,B), Θ̃exp ∈ RNs the reduced vectors.

We discretize the parameter space Ω by using hC = 0.025 and hB = 0.25 and
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Figure 4.9: DIB-PIP: Least squares cost function (4.23) (top) and Fourier cost

(4.24) (bottom)

we construct the discrete set Ωh where we evaluate the 2-norm (4.23), that is

shown in Figure 4.9 (left). Also in this case the cost function has many di�erent

low local minima. To apply the Fourier regularization we consider the following

Fourier cost

JFFT (C,B) =
|f1(C,B)− f̃1|

f̃1

, (4.24)

where f̃1 = 0.7599 is the �rst frequency of Θ̃exp calculated as before by the

FFT spectrogram of the true data shown in Figure 4.10, and f1(C,B) is the �rst

dominant frequency of the numerical solution Θ(C,B), (C,B) ∈ Ωh, computed

in the same way. JFFT (C,B), shown in Figure 4.9 (right), presents a valley of

(C,B) values in which JFFT (C,B) = 0: for these pairs of parameters it follows

that Θ(C,B) and the experimental data Θ̃exp have the same �rst frequency. Then

we can de�ne the discrete set:

ΩFFT
h = {(Ci, Bj) ∈ Ωh | JFFT (Ci, Bj) = 0}. (4.25)

The set ΩFFT
h is represented in Figure 4.11 (left, 'o' symbol): clearly we can

identify an iso-frequency curve in the C-B plane. By numerical interpolation we

�nd a continuous form of this curve: B = S(C), C ∈ [C0, Cf ]. For this goal

we calculate a cubic spline approximation by applying the default MATLAB [56]

command spline, S(C) is also reported in Figure 4.11, left. On the iso-frequency

curve (C,S(C)), we can evaluate di�erent cost functions: the original least squares

and the in�nity norms given by

JS∞(C) = J∞(C,B)|S = ‖Θ(C,B)− Θ̃exp‖∞, C ∈ [C0, Cf ], (4.26)
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Figure 4.10: DIB-PIP: spectrogram of the experimental data Θ̃exp in Figure 4.8.

The �rst dominant frequency is f̃1 = 0.7599.

Figure 4.11: DIB-PIP: The set ΩFFT
h in (4.25) and the interpolating spline B =

S(C) (left); cost functions (4.26)�(4.29) (right) for the (C,B) values on the spline.

Note that the value of JS2 (C) has been divided by its maximum value to make to

costs comparable.

JS2 (C) = J2norm(C,B)|S = ‖Θ(C,B)− Θ̃exp‖22, C ∈ [C0, Cf ], (4.27)

and the time-lag of the numerical solution with respect to the experimental data

in the �rst and in the last points of the interval given by

JTL(C) = JT imeLag(C,B)|S = |Θ1(C,B)− (Θ̃exp)1|, C ∈ [C0, Cf ], (4.28)

JTLE(C) = JT imeLagEnd(C,B)|S = |ΘN (C,B)− (Θ̃exp)N |, C ∈ [C0, Cf ].

(4.29)

All these costs are shown in Figure 4.11, where we can see that they grow as

the C value increases. (Note that the value of JS2 (C) has been divided by its maxi-

mum value to make the costs comparable.) All costs have an absolute minimum in

(C1, B1) = (C1,S(C1)) = (1.015, 60.2017) where (JS2 (C1, B1), JS∞(C1, B1), JTL(C1, B1)) =
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Figure 4.12: DIB-PIP: Left, experimental data Θ̃exp compared with the sim-

ulation Θ(C1, B1) for the Fourier-PIP optimal parameter set (C1, B1). Right:

corresponding absolute error Err1 = |Θ(C1, B1)− Θ̃exp|.

(27.1495, 0.9222, 0.5538). Figure 4.12, left, shows the corresponding numerical so-

lution Θ(C1, B1) compared with the experimental data. In Figure 4.12, right, we

report also the time behaviour of the absolute error Err1 = |Θ(C1, B1) − Θ̃exp|.
We note that the same frequency is present and the largest error is due to the

�shape� of oscillations.

In conclusion, the Fourier regularization for the DIB-PIP identi�es only a

unique optimal parameter set such that the maximum error wrt to the data is

max(Err1) = 0.9222 (see Figure 4.11, right). In principle, we could use (C1, B1)

as the starting guess of an optimization algorithm for DIB-PIP that minimizes the

classical 2-norm in (4.23), but this study would be beyond the scope of the present

paper that is focused on the advantages of the Fourier approach. Moreover,

we wish to show that the Fourier regularization can be naturally extended to

the case in which more than two parameters have to be identi�ed. In the next

subsection, we shall thus describe this extension on the DIB-PIP to the case of

m = 3 parameters.

4.3.1 DIB-PIP: Fourier regularization for m = 3 parameters

Considering the same experimental data in Figures 4.8-4.10, we wish to iden-

tify the parameters (C,B,A2) in (4.20)�(4.22). In particular, we shall relax the

constraint of setting A2 �xed to A2 = 30. The parameter space thus becomes

the following subset of the Hopf region Ω = [C0, Cf ] × [B0, Bf ] × [A0
2, A

f
2 ] =

[1, 1.6]× [51, 61]× [1, 40] (the intervals for C and B are smaller than before). We

apply the Fourier regularization as follows. We consider the set Ωh, the discretiza-
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Figure 4.13: DIB-PIP: The set ΩFFT
h (red points) and its interpolating surface

A2 = Φ(C,B).

tion of Ω with stepsizes hC = 0.025, hB = 0.25 and hA2 = 1, and we compute the

Fourier cost on Ωh:

JFFT (C,B,A2) =
|f1(C,B,A2)− f̃1|

f̃1

(4.30)

As in the previous Section, we obtain now

ΩFFT
h = {(Ci, Bj , A2,k) ∈ Ωh | JFFT (Ci, Bj , A2,k) = 0} ⊂ R3.

Figure 4.13 shows the points (triplets) Pl = (Xl, Yl, Zl) ∈ ΩFFT
h , l = 1, . . . , NP

(red symbols) and a 3D interpolating surface A2 = Φ(C,B), that we have approx-

imated by using the command griddata in MATLAB. Φ identi�es an iso-frequency

surface, that is a sub-manifold of codimension one in R3, such that data and sim-

ulations have the same frequency for triplets of parameters, that is points, on

Φ.

To solve the Fourier-PIP we have to evaluate the usual costs on the iso-

frequency manifold Φ. To extend the approach explained in the case of only two

parameters, we proceed as described below. We extract the points of ΩFFT
h at each

A2-level for �xed values A2,k, k = 1, . . . , NA and then we compute the parametric

interpolating 3D curve in the plane (C,B,Zk) for all k = 1, . . . , NA. Hence, we

calculate in MATLAB [56] the interpolating splines: B = S(C;A2,k) = Sk(C), in

the plane (C,B) at the level A2,k, for k = 1, . . . , NA (the curves are not shown).

Hence, for all k = 1, . . . , NA, we can evaluate the usual costs on each parametric
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Figure 4.14: DIB-PIP for m = 3 parameters: cost functions (4.33) (left) and

(4.32)(right) evaluated on the curves B = S(C,A2,k) for k = 1, . . . , NA, NA = 40

(increasing values ofA2). In each subplot, the cost function JSk which contains the

absolute minimum is emphasized in magenta. The blue one is that corresponding

to the value A2 = 30 studied in the previous Section.

curve Sk as follows :

JSk∞ (C) = J∞(C,B,A2)|Sk = ‖Θ(C,B,A2)− Θ̃exp‖∞ (4.31)

JSk2 (C) = J2norm(C,B,A2)|Sk = ‖Θ(C,B,A2)− Θ̃exp‖22 (4.32)

JkTL(C) = JT imeLag(C,B,A2)|Sk = |Θ1(C,B,A2)− (Θ̃exp)1| (4.33)

For simplicity of exposition, here we do not consider the time-lag error in the

last point. We represent the above projected costs as functions of C and A2 in

Figure 4.14, for k = 1, . . . , NA (NA = 40), that is for the chosen discrete values of

A2 in Ωh, (including the value A2 = 30 considered in the 2-parameter case). We

decided to not represent JSk∞ because it is analogous to JkTL for all k.

JS2 has a minimum in p′ = (C,B,A2) = (C,S(C,A2), A2) = (1.0442, 58.7684, 40),

where (JTL(p′), JS∞(p′), JS2 (p′)) = (0.5386, 0.9214, 26.26). In Figure 4.14, the cost

function JSk which contains the minimum is shown in magenta, while the cost

for A2 = 30 is reported in blue.

JTL (and JS∞) has a di�erent low minimum in p′′ = (C,B,A2) = (C,S(C,A2), A2) =

(1.0511, 58.4498, 39), where (JTL(p′′), JS∞(p′′), JS2 (p′′)) = (0.5363, 0.9196, 26.34).

We see that the parameter sets are di�erent, but the cost values (residuals) are

very similar. By calculating, for example, min{JTL(p′), JTL(p′′)} we can iden-

tify p∗ = p′′ as the PIP-Fourier optimal solution on three parameters that has
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Figure 4.15: DIB-PIP: Absolute errors wrt to data of the numerical solutions

Θ(C1, B1), A2 = 30 and Θ(p∗) obtained as PIP-Fourier optimal solutions in the

case of two and three parameters, respectively.

the minimum time-lag error. Note that the optimal values of (C∗, B∗) are dif-

ferent form those identi�ed by PIP-Fourier on two parameters and, in particular,

A∗2 6= 30 the value that was kept �xed in the two-parameter optimization.

Therefore, we would like to compare the numerical solutions of the DIB-ODE

model (4.20)�(4.22) corresponding to the optimal triplet p∗ and the optimal cou-

ple (C1, B1) = (1.015, 60.2017), A2 = 30. To this aim, in Figure 4.15 we compare

the corresponding absolute errors wrt to the data. Along the time interval the

errors for Θ(p∗) are sligthly lower than those for Θ(C1, B1), A2 = 30 �xed, even

if the maximum errors (0.9196 and 0.9222) are very similar (see the zoom inset

on the left). p∗ could be also used as starting guess in an optimization algorithm

to solve the original DIB-PIP in (4.19)-(4.20), but - as anticipated above - this is

beyond the scope of this paper.

Moreover, we believe that the PIP Fourier regularization presented in this

subsection could be applied recursively by choosing as third value to be identi�ed

by another parameter in the DIB-ODE model (4.20) di�erent from A2, so that

better data approximation could be obtained.

4.4 Application: Dynamics of zinc-air battery anodes

Electricity demand is growing systematically and fossil fuel production is not sus-

tainable. Renewable approaches, such as solar and wind power, could replace

fossil fuels, but it is crucial the availability of safe and e�cient systems for the

accumulation in the di�erent power requirements of settlements, transport and
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Figure 4.16: On the left a new set of experimental data is shown. On the right

we can observe the piece of the normalized data for t ∈ [37, 50].

industry. Research is actively engaged in identifying new strategies and in this

context electrochemical technologies play a key role. Therefore the metal-air zinc-

air batteries, in particular, constitute strategic alternatives that need the deepen-

ing of the relevant technologies. In [8] we present a dynamic study of the behavior

of anodes Zn in aqueous solution of 6M KOH (potassium hydroxide), based on

electrochemical techniques combined with measurements of spectral electromag-

nation visible in situ. Electrochemical measurements demonstrate a wide variety

of dynamic scenarios, comprising active-passive transitions and di�erent oscillat-

ing regimes, as shown in Figure 4.8 or in Figure 4.16, that shown another set

of experimental data. Dynamic processes have been rationalized within the DIB

mathematical model of the electrometallurgical phase formation process, based as

we have seen on a system of two equations ordinary physical di�erentials respec-

tively for the morphology and for the degree of coating with pseudopassive �lm.

The source terms of the model contain simple relative information electrocinetic

and adsorption electrochemical, formulated in terms of installments phenomeno-

logical equation. In particular, it is possible to follow the oscillating regimes of

current and re�ectivity with the model, reproducing the details of the structure

process dynamics and identifying the physical parameters. The parameters are

located between the Hopf line and the transcritical line in the absence of oscilla-

tion, in the Hopf region in the case of harmonic oscillations and �nally in the set

ΩKh , de�ned in the following Section, in the case of the so-called �relaxation oscil-

lations�. As explained in [46], the values of parameters B and C are physically

traceable to the operating conditions of the electrochemical process.
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4.4.1 Relaxation oscillations

As we can observe in the Figures 4.8-4.16, the exhibited oscillations seem to

be a kind of relaxation oscillation. The relaxation oscillation is a speci�c type

of oscillation and an oscillator that exhibits these kind of oscillations is called

relaxation oscillator. A relaxation oscillator is an oscillator based upon the be-

havior of a physical system's return to equilibrium after being disturbed. That

is, a dynamical system within the oscillator continuously dissipates its internal

energy. Normally, the system would return to its natural equilibrium; however,

each time the system reaches some threshold su�ciently close to its equilibrium,

a mechanism disturbs it with additional energy. Hence, the oscillator's behavior

is characterized by long periods of dissipation followed by short impulses [94]. In

the case of the relaxation oscillation the limit cycles shows a �sharp shape�; in

particular it changes its concavity along one period: the limit cycle is not elliptic

as is usual sinusoidal oscillations. Hence we look for a change of concavity in the

limit circle for the numerical solutions of (4.20) with the parameters (C,B) ∈ Ωh.

Let α(t) be the parametric equation of the limit cycle as a curve in the η − θ
plane:

α(t) = (η(t), θ(t)). (4.34)

To compute the algebraic curvature, as de�ned in (B.2), we need the second

derivative of η(t) and θ(t). Let us compute η′′(t) and θ′′(t), in terms of η(t), θ(t),

η′(t) and θ′(t) (we omit the dependence on time t to simplify the notation):




η′ = A1(1− θ)η −A2η

3 −B(θ − α)),

θ′ = C(1 + k2η)(1− θ)(1− γ(1− θ))−D(θ(1− γθ) + k3ηθ(1 + γθ)),

(4.35)

⇓




η′′ = A1(−θ′)η +A1(1− θ)η′ − 3A2η
2η′ −B(θ′),

θ′′ = C(1 + k2η
′)(1− θ)(1− γ(1− θ)) + C(1 + k2η)(−θ′)(1− γ(1− θ))+

+ C(1 + k2η)(1− θ)(γθ′)−D[θ′(1 + γθ) + θ(γθ′) + k3η
′θ(1 + γθ) + k3ηθ

′(1 + γθ)+

+ k3ηθ(γθ
′)].

(4.36)
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We do not have the explicit expression of η(t) and θ(t), but we can obtain

them numerically. Let H(C,B) = [H0, ...,HN ], Θ(C,B) = [Θ0, ...,ΘN ] ∈ RN+1

be the numerical approximations of η(t) and θ(t) with a timestep h = T−t0
N for

(C,B) ∈ Ωh and all the others parameters �xed as in Section 4.3. Therefore

we can compute the vectors H ′(C,B), Θ′(C,B), H ′′(C,B) and Θ′′(C,B) as the

approximations of η′, θ′, η′′ and θ′′ respectively from the analytic expressions in

(4.35)-(4.36). Then, from (B.2) in Appendix B, it results:

K(C,B) =
H ′(C,B)Θ′′(C,B)−H ′(C,B)Θ′′(C,B)

(√
H ′2(C,B) + Θ′2(C,B)

)3 . (4.37)

The limit cycle changes its trend for the values in Ω: we can search if there

are some parameters for which we have a type of �relaxation oscillation�. For

this purpose we extend the domain Ω for B < 21 and B > 80. For abuse of

notation let us denote Ω = [0, 2.8] × [0, 100] and Ωh the corresponding discrete

set computed by using hC = 0.025 and hB = 0.25. Let us now compute K(C,B)

for all (C,B) ∈ Ωh and look for the pairs for which K has an in�ection point. Let

ΩK ⊂ Ωh be the set that contains these pairs, that is:

ΩK = {(Ci, Bj) ∈ Ωh|K(Ci, Bj) has an in�ection point}. (4.38)

The set ΩK is shown in Figure 4.17, compared with the set ΩFFT
h of iso-frequency,

de�ned in Section 4.3 in (4.25) for the experimental data in Figure 4.8.

Let us observe that the iso-frequency manifold is disjointed from the set ΩKh :

that is, the relaxation oscillations in the C-B plane have di�erent frequency wrt the

experimental data. For this reason, in order to compare the �shape� of oscillation,

we decide to consider the last three periods of simulations and experimental data;

the piece of experimental data is shown in Figure 4.18 on the left. Since the

frequency of the simulations and data is di�erent, we rescale both in the time

interval [0, 1] and interpolate them in the same grid time in order to have vector

of the same size. Let Θ(C,B) = [Θ1, ...,ΘN ] ∈ RN and Θ̃exp = [Θ̃1, ..., Θ̃N ] ∈ RN

be the simulation and experimental pieces respectively, interpolated on the same

time grid in [0, 1]. Let us compute the two costs de�ned as follows:

J∞(C,B)|ΩK
= ‖Θ(C,B)− Θ̃exp‖∞ (4.39)

J2norm(C,B)|ΩK
= ‖Θ(C,B)− Θ̃exp‖22. (4.40)
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Figure 4.17: Set ΩKh de�ned in (4.38), and set ΩFFT
h in (4.25).

On the right of Figure 4.18 the minimum of (4.39) is shown for (C,B) = (1.05, 20)

and (C,B) = (0.45, 20) for the two experimental data respectively, compared with

the experimental pieces.

As we have seen, the search for parameters in the relaxation zone allowed

us to make a �rst optimization on the oscillations �form�, not considering their

frequency. In this way we found the parameters in the C-B plane that approxi-

mate the shape of the periods as much as possible. It is worth noting that the

experimental data exhibit a particular shape that the simulation can not �t by

using the DIB model as it is.

4.5 Summary

The Fourier regularization method presented in this Chapter is a useful tool for

PIP in ODE modelling of oscillating data. Our approach exhibits two key capa-

bilities:

(i) it is able to �nd an iso-frequency manifold S of co-dimension one in the m di-

mensional parameter space Ω where target oscillatory data and simulations have

the same frequency;

(ii) along this manifold the phase (time-lag) error and/or usual cost functions

(e.g. least squares) can be straightforwardly minimized.
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Figure 4.18: On the left the experimental pieces, on the right the comparison with

the minimum of (4.39) for the experimental data in Figure 4.8 or in Figure 4.16

respectively.

Our Fourier regularization approach can thus be implemented as a two-steps

algorithm for parameter identi�cation or localization. In Sections 4.2 and 4.3,

we have solved PIP for the Schnackenberg and the electrodeposition (DIB) ODE

models to identify the two physically crucial parameters p = (p1, p2) in the case

of simulated and experimental data. In both cases, we have shown that S is a

parametric curve in the plane p1−p2 obtained by (piecewise) interpolation. Then

we have found optimal Fourier-PIP solutions by evaluating the appropriate cost

functions along these curves. In Subsection 4.4.1, we have shown how to extend

the Fourier regularization to the problem with m = 3 parameters on true data for

the DIB-PIP model: in this case the manifold is an iso-frequency surface in R3.

Then we have proposed a computational approach handling the above steps (i)-

(ii) in an algorithmic way that projects the cost functions involved on a sequence

of 3D spline curves. This strategy could be generalized in a recursive way to

improve ODE-PIP data �tting including more parameters.

It is worth noting that the accuracy of the numerical method used for the

approximation of the ODEs in�uences the Fourier-PIP approach, since it is crucial
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to recognize the sub-manifold S in the parameters space. For this reason, here we

applied the RK4, that has good dispersion order properties. We believe that our

results show the e�ectiveness of our new regularization approach in comparision

with the classical PIP approach based on least-squares cost function. Moreover,

for problems in which a higher accuracy is required in the approximation, Fourier

regularization can be regarded as a dedicated tool for the localization of starting

guesses in classical numerical optimization algorithms.

In Section 4.4 we described a real application of the identi�cation for the

DIB model. Furthermore, in Subsection 4.4.1 we have �t the experimental data

by looking for oscillations of relaxation type in the parameters space. Since the

relaxation oscillations are not located in the iso-frequency manifold S, we have

extracted some periods of the experimental oscillation and found the simulation

with the most similar trend.

Recent experiments allowed us to have the dynamics of both the variables η

and θ of the model. This would imply that we could make a joint identi�cation

and formulate a �t of the experimental limit cycle for the ODE-PIP.
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Chapter 5

PDE-PIP

5.1 Formulation for PDEs

We are also interested in de�ning the Parameter Identi�cation Problem for Par-

tial Di�erential Equations (PDE-PIP). In particular we will consider the case of

time-dependent reaction-di�usion PDEs, whose solutions display a wide range of

behaviors, including the self-organized pattern like stripes, spirals..., the so-called

Turing patterns [89]. Parameter estimation in Turing system is an active �eld of

research and an increasing amount of paper deals with this topic: see for example

[15, 32, 93, 81].

Then the di�erential model in (1.2) (the constraint of the PDE-PIP) will

assume the following dimensional form:




ut = d1∆u+ f1(u, v,p),

vt = d2∆v + f2(u, v,p),

u(x, y, t0) = u0, v(x, y, t0) = v0 t ∈ [t0, Tf ], (x, y) ∈ D ⊂ R2

(5.1)

with appropriate boundary conditions, where ∆ is the Laplace operator, d1 and

d2 are the di�usion coe�cients, f1 and f2 contains the nonlinear reaction terms

and p represents the parameters set of the model. In case of PDE the target

is provided as a map on a given discretization of the space domain, at a �xed

time T . It will be a digital image given by a matrix of values which represents

a desired con�guration of the system. Hence in PDE-PIP we are not interested

in the time evolution of the pattern deriving from the time integration of (5.1),

but we consider the solution of (5.1) at a �xed time Tf and compare it with the
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target map. The �nal time Tf must be speci�ed a priori. Since we assume that

the data map corresponds to a steady-state solution then it is su�cient to specify

a �nal time that is long enough for the PDE steady state to be reached. We will

discard possible optimal solutions that are not steady-state PDE solutions.

In general, we can formulate the PDE-PIP as follows: given an experimental

map M̃ ∈ RNx×Ny , the time integration interval [0, Tf ] and the initial conditions

(u0, v0), we look for a suitable parameter set p∗ ∈ Rr for the model (5.1) such that

v(x, y, Tf ) ≈ M̃, where v is the solution of the reaction-di�usion PDEs system,

that is:

J(p∗) = min
p
J(p) (5.2)

where J(p) is an suitable cost function that depend on the experimental map M̃,

the solution of the system (5.1) v and implicitly on the parameters, and measures

a certain �distance� between M̃ and v:

J(p) =

∫

D
(v(x, y, Tf )− M̃)2dxdy (5.3)

To ensure the uniqueness of the solution, often a regularization term is added

[38], as we discussed in the PIP-ODE case and we show below in the description

of the discretization issues for the PIP-PDE. The Direct (and Indirect) approach

can be reformulated in terms of PDEs by suitable changes. In particular, the

numerical method M to de�ne the constraint in (1.5) is suitably substitutes by

a numerical method for PDEs. Then PDEs system (5.1) is solved numerically on

a spatial mesh-grid (xi, yj) i = 1, ..., Nx, j = 1, ..., Ny; we write the numerical

solution at discrete times tn = nht as Vn
ij ≈ v(xi, yi, tn). Then the PDE-PIP in

discrete formulation reads as follows: given an experimental map M̃ ∈ RNx×Ny ,

the initial conditions U0, V0 ∈ RNx×Ny , and the �nal integration time Tf > 0,

�nd the parameters p∗ ∈ Rr that minimize the cost functional

J(p) = ‖VTf (p)− M̃‖2W , (5.4)

subject to the discrete model

[UTf ,VTf ] = P(U0,V0,p) (5.5)

where P indicates the numerical method yielding the discrete version of the system

(5.1) and W is a suitable weighting matrix. The initial condition are taken as a
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perturbation of the equilibrium:

U0 = Ue + ceXu

V0 = Ve + ceXv

(5.6)

where Xu and Xv are random matrices and ce is a small scalar factor.

5.2 Discretization issues for PDE-PIP

The formulation of the discrete PDE-PIP by using the Direct approach introduces

similar issues as the ODE case; in fact for the numerical resolution of the PIP we

need:

• a PDEs solver

• a (weighted) norm for the cost function

• an optimization algorithm for the minimization.

PDEs solver: The PDEs solver P has to cope with problems that can be

computationally very expensive. First of all, we are interested in the station-

ary pattern reached by the model for long integration time Tf ; furthermore, the

structure of some type of patterns will not emerge if the domain is small, as we

will show next in details. Therefore we have to solve the PDEs on a large spatial

domain, which implies the need to consider a very �ne spatial grid, for long times.

For these reason it is crucial to have e�cient methods in terms on computational

time and accuracy for the numerical approximation of the PDE. In the following

Section 5.3 we report the results obtained in [21] and we study the resolution of

the RD-PDEs introducing the matrix formulation of the problem that allows us

to solve the di�erential model by using e�cient methods for the matrix equations,

based on the spectral decomposition of the coe�cient matrices.

Cost function: The choice of a suitable norm as cost function is crucial in

the construction of the discrete problem and in the optimization process. For

example, if we had information about the map, a weighted norm can be chosen:

as explained for example in [81], the weighting matrixW could allow the model to

�t some parts better than others. In fact, the weighting matrix is often diagonal,

87



in which case it gives di�erent relative emphasis to di�erent components of the

map. Furthermore, if the correlations between errors in di�erent parts of the

data map are known, then we can include these correlations in the o�-diagonal

elements of W . In [81] the authors present a �rst example of the �tting of an

experimental electrochemical morphochemical distribution with the DIB model,

introduced in [10, 47], and they investigated the use of a weighting matrix based

on the data values themselves, that is the choice of W as a diagonal matrix with

entries dependent on the values of the map M̃. By giving more importance to

the pixels of the map where the feature of the pattern are present, they aimed to

emphasize the �t to the patterns evident in the data.

Optimization algorithm: The numerical minimization of the cost function,

as well as the ODE case, requires the use of an optimization algorithm to ap-

proach the minimum. Similarly to the previous case, we remember that many

papers are focused on the choice of the optimization algorithm also in the PDE

case. As example, in [93] the authors present an iterative algorithm for solving a

parameter identi�cation problem relative to a system of di�usion, convection and

reaction equations, which solves a nonlinear least squares problem by means of a

sequence of constrained optimization problems. In [32] an algorithm for the pa-

rameter estimation in the Turing system was introduced, by applying the optimal

control theory; it is one of the �rst work that address parameter estimation for

the Turing reaction-di�usion model. A further work on estimating parameters in

Turing models is [81], where the authors proposed a two-step algorithm for the

optimization. It is well known that the Turing instability produces di�erent kind

of pattern in the parameter space. Therefore, they want to identify:

i. at �rst, the position in the parameter space of the given pattern class;

ii. then, the unique or an optimal solution in this class/ subregion.

To tackle the point (i), they proposed to use the classical 2-norm cost function

such that its lowest values can identify numerically the minimum value (C0, B0)

into a sub-region of the Turing space where qualitatively similar solutions are

present. They named this procedure PIP(i). To solve the above point (ii), they

added a classical Tikhonov regularization term (see [38]) to the cost function (5.4),
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centered on values (C0, B0) found by PIP(i). Thus, the original cost function was

replaced by:

J(C,B) = ‖VTf (p)− M̃‖2W + γB‖B −B0‖+ γC‖C − C0‖ (5.7)

where γB and γC are weighting suitable chosen parameters. In solving this opti-

mization problem, called PIP(ii), they used the Polack-Ribiere �avor of a conju-

gate gradient method [63]. As the authors in [81] clearly explained, this gradient-

based method requires the gradient of the objective function with respect to the

parameters on each iteration, that clearly depend on the numerical method P cho-

sen for the numerical approximation of the PDEs. In practice, it can be derived

from the source code of the nonlinear model, in a process known as automatic

di�erentiation (e.g. [34]).

5.3 Matrix-oriented methods for the approximation of

RD-PDEs

In this work, we are interested in solutions of (5.1) due to the di�usion-driven

or Turing instability. In this case where the di�usion is present, the spatially

homogeneous solution of (5.1) (ue, ve) such that f1(ue, ve) = f2(ue, ve) = 0 (stable

in absence of di�usion) can force a spatial instability and asymptotically tends

towards a so-called Turing pattern characterized by interesting spatial structures

like spots, worms, labyrinths, etc. Moreover, in [61, 62], the authors prove that

the transient dynamics is important for pattern formation. In particular, the

concept of reactivity describing the short-term transient behavior, is necessary

for Turing instabilities. Let be w = (u, v) and J = J(ue, ve) =


f1,u f1,v

f2,u f2,v



we

the Jacobian of the linearized ODE system associated to (5.1) evaluated at the

spatially homogeneous solution we = (ue, ve). For the Turing theory, the spatially

homogeneous solution we = (ue, ve) is stable if the eigenvalues of J all have

negative real parts, but we it is not necessarily stable for the RD-PDE. In [61],

the authors de�ned we as reactive equilibrium if the largest eigenvalue of the

symmetric part of J is positive:

λ1(H(J)) > 0, H(J) = (J + JT )/2.

89



If the initial conditions in (5.1) are a small (random) perturbation to we, the RD-

PDE solution in the initial transient, say v(x, y, t), is governed by the linearization

vt = D∆v + Jv, D = diag(d1, d2),

that applying the Fourier transform ṽ(k, t) =
∫∞
−∞ e

i(kxx+kyy)tv(x, y, t)dxdy be-

comes the linear ODE system

ṽ′ = J̃ ṽ, J̃ = J − ‖k‖22D, .

where k = (kx, ky) and ‖k‖22 = k2
x + k2

y = (πνx/Lx)2 + (πνy/Ly)
2 account for the

spatial frequencies νx, νy. Let λ1(J̃) be the eigenvalue of J̃ with largest real part;

Turing theory implies that ifRe(λ1(J̃)) > 0 for some values of k, the perturbations

with this spatial frequency will grow and produce spatial patterns, then we is

destabilized by di�usion. The Turing conditions on the model parameters identify

a range of spatial modes such that pattern formation arises for ‖k‖22 ∈ [k2
1,k

2
2]

(see e.g. [3]). In [62], the authors show that the largest eigenvalue of H(J) must

be positive for there to be an eigenvalue of J̃ with positive real part. Reactivity

is therefore a prerequisite for pattern formation via Turing instability. It would be

desiderable that numerical methods for approximation of Turing patterns account

not only for the asymptotic stability, but also for reactivity features during the

initial transient regime.

To sum up, the numerical approximation of Turing pattern solutions is chal-

lenging for the following reasons: (i) longtime integration is needed to identify

the �nal pattern as asymptotic solution of the PDE system; (ii) the time solver

would account for reactivity at short times; (iii) a large domain D of integration

is required to carefully identify the spatial structures of the Turing pattern and

then an accurate spatial discretization with large meshsizes Nx, Ny is needed.

For these reasons, stemming on the appealing computational savings reported in

[21] for the test case of the semilinear Heat equation, here we show the matrix-

oriented approach to a nonlinear RD-PDEs models. We will apply the well-known

ADI method often used in literature (e.g. [80]) and matrix-methods studied be-

low. We will focus our numerical tests highlighting the above points (i) and (ii)

for the Schackenberg model, well studied in literature as a prototype with Turing

solutions [3]. To deal with the point (iii), we propose to apply these approaches

to solve the morpho-chemical DIB model. All these results are reported in [21].
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In order to present the results in this Section for simplicity we refer to the

R-D equation with zero Neumann boundary condition of the type:





ut = d∆u+ f(u),

u(x, y, 0) = u0(x, y),

(n · ∇u)|∂D = 0 with (x, y) ∈ D ⊂ R2, t ∈]0, T ],

(5.8)

where ∆ is the Laplace operator and n denotes the (typically exterior) normal to

the boundary ∂D. Then we show the analogous formulation for the RD system

in (5.1).

It is well known that the Method of Lines (MOL) based on classical semi-

discretizations in space (e.g. �nite di�erences, �nite elements) rewrites (5.8) as

an ODE system. For the numerical treatment, we consider a �nite di�erence

approximation for spatial derivatives based on the Extended Central Di�erence

Formulas (ECDFp) [1, 80]. These schemes consider the approximation of the

Neumann BCs with the same order of schemes used in the interior domain, so that

no reduction of order arises near the boundaries. In particular, we apply ECDF

of order p = 2 as follows. Let us discretize the domain D = [0, `x]× [0, `y] with Nx

and Ny interior points, giving step sizes hx = `x/(Nx + 1) and hy = `y/(Ny + 1).

Let Tx ∈ RNx×Nx and Ty ∈ RNy×Ny be the usual tridiagonal matrices cor-

responding to the approximation of the second order derivatives by central dif-

ferences (order p = 2), along the x and y directions, and zero Neumann BCs

approximation. More precisely, Tx = diag(1,−2, 1) + B, and similarly for Ty,

with corresponding dimensions, where the BCs term (see [80, 77]) is given by

B =
2

3




2 −1
2 · · · 0 0

0 0 · · · · · · 0
...

...

0 · · · −1
2 2



. (5.9)

Therefore, the semi-discretization of (5.8) in vector form is given by

u̇ = Au + f(u) u(0) = u0, (5.10)

with

A = d∆̃ (5.11)
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and

∆̃ =
1

h2
x

(Iy ⊗ Tx) +
1

h2
y

(Ty ⊗ Ix) ∈ RNxNy×NxNy (5.12)

where ⊗ is the Kronecker operator. Let us observe that at each time t ∈ [0, T ]

it is possible to explicitly employ the matrix U(t) ∈ RNx×Ny containing the same

components of u(t), with Ui,j(t) ≈ u(xi, yj , t), that is, the rows and columns of

U explicitly re�ect the space grid discretization of the given problem. We shall

consider that the vector u corresponds to the vec operation of the matrix U , where

each column of U is stuck one after the other. In a �nite di�erence discretization

this corresponds to a lexicographic order of the nodes in the rectangular grid.

With this notation, for A in (5.11) we recall the property that Au = vec(T1U +

UT2). Then (5.8) can be written as the following di�erential matrix equation




U̇ = T1U + UT2 + F (U),

U(0) = U0

(5.13)

where

T1 =
d

h2
x

Tx, T2 =
d

h2
y

T Ty , (5.14)

whit F being nonlinear vector function f(u) evaluated componentwise, and vec(U0) =

u0 is the initial condition. This matrix form provides a quite di�erent perspective

at the time discretization level than classical approaches, allowing to signi�cantly

reduce the memory and computational requirements.

5.3.1 Classical vector methods and their matrix formulation

Vector form For the time stepping of (5.10) we can consider the following

methods, where for the sake of simplicity we consider a constant timestep ht > 0

and the time grid tn = nht, n = 0, 1, . . . , Nt so that (un)ij ≈ u(xi, yj , tn) in each

point (xi, yj) of the discretized space:

1. IMEX methods.

i) First order Euler: We discretized in time as un+1 − un = ht(Aun+1 +

f(un)), so that

(I − htA)un+1 = un + htf(un), n = 0, . . . , Nt, (5.15)
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where u0 is given by the initial condition in (5.8); the linear part

is treated implicitly, while the reaction (nonlinear) part f is treated

explicitly [70, 2, 30].

ii) Second order SBDF. The widely used IMEX 2-SBDF method [70, 2]

applied to (5.10) yields

3un+2−4un+1+un = 2htAun+2+2ht(2f(un+1)−f(un)), n = 0, 1, . . .

(5.16)

As usual, u0 is known, while a step of the �rst order IMEX-Euler

scheme can be used to determine u1 ([70, 2]).

2. Exponential integrator. Exponential �rst order Euler method [40]:

un+1 = ehtAun + htϕ1(htA)f(un) (5.17)

where ehtA is the matrix exponential, and ϕ1(z) = (ez − 1)/z is the �rst

�phi� function [40].

3. ADI method [58]. We consider the two-stage explicit time stepping when

∆u = uxx + uyy is the Laplace operator:

u
n+ 1

2
ij − unij
ht/2

= (uxx)
n+ 1

2
ij + (uyy)

n
ij + f(unij)

un+1
ij − un+ 1

2
ij

ht/2
= (uxx)

n+ 1
2

ij + (uyy)
n+1
ij + f(unij),

(5.18)

Let Un ≈ U(tn) ∈ RNx×Ny . After discretization we obtain:
(
I − ht

2
T1

)
Un+ 1

2
=

(
I +

ht
2
T1

)
Un +

ht
2
F (Un)

Un+1

(
I − ht

2
T T2

)
= Un+ 1

2

(
I +

ht
2
T T2

)
+
ht
2
F (Un).

(5.19)

We remark that the ADI method naturally treats the approximation in

matrix terms, therefore it is the closest to our approach.

Matrix form In this Section we reformulate the time steppings in matrix terms,

by exploiting the Kronecker sum in (5.12). We then provide implementation

details to make the new algorithms more e�cient. We shall see that the matrix-

oriented approach leads to the evaluation of matrix functions and to the solution

of linear matrix equations with small matrices, instead of the solution of very large
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vector linear systems. We stress that the matrix formulation does not a�ect the

convergence and stability properties of the underlying time discretization method

[21]. Rather, it exploits the structure of the linear part of the operator to make the

computation more a�ordable. For instance, high accuracy in space is of interest

in certain PDE models with Turing solution patterns, which are characterized by

the presence of labyrinths, stripes, spots and worms structures. In the following

we derive the iteration associated with the single di�erential equation (5.8). A

completely analogous iteration will be obtained for the system (5.1). The matrix-

oriented versions of the IMEX methods rely on the Kronecker form of A and on

its property, transforming the vector linear system into a matrix linear equation

to be solved, of much smaller size. The matrix-oriented formulation of the IMEX-

methods is the natural transposition of the vector formulation in matrix form,

taking into account the equalities already seen and summarized below:

u = vec(U)

Au = vec(T1U + UT2).

Let us consider the discretized times tn = nht, n = 0, . . . Nt with timestep

ht > 0.

1. IMEX methods.

i) First order Euler: Adapting the on-step discretization scheme leading

to (5.15), to the di�erential matrix form (5.13), yields

Un+1 − Un = ht(T1Un+1 + Un+1T2) + htF (Un),

which, after reordering, gives the following linear matrix equation,

called the Sylvester equation,

(I − htT1)Un+1 + Un+1(−htT2) = Un+htF (Un),

n = 0, . . . , Nt − 1.
(5.20)

Therefore, to obtain the next iterate Un+1 the approach requires the

solution of a Sylvester equation at each time step, with coe�cient

matrices (I − htT1), (−htT2) and right-hand side Un + htF (Un). The

numerical solution of this equation is described in Section 5.3.2.
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ii) Second order 2SBDF. For the matrix form, given the initial condition

U0, and a further approximation U1 � obtained for instance by the

IMEX Euler method � at each time step tn+2 the method determines

the following matrix equation

3Un+2 − 4Un+1 + Un = 2ht (T1Un+2 + Un+2T2 + 2F (Un+1)− F (Un)) ,

which, after reordering, leads once again to the solution of a Sylvester

equation, this time in the unknown matrix Un+2,

(3I − 2htT1)Un+2 + Un+2 (−2htT2)

= 4Un+1 − Un + 2ht(2F (Un+1)− F (Un)), n = 0, . . . , Nt − 2.

The coe�cient matrices are 3I − 2htT1, (−2htT2) and the right-hand

side is 4Un+1 − Un + 2ht(2F (Un+1)− F (Un)).

2. Exponential integrator. A matrix-oriented version of the exponential Euler

approach can exploit (5.12) in the computation of both the exponential and

the phi-function. In particular, the following property of the exponential

matrix is crucial [4]

ehtA = eht(I⊗T1+TT2 ⊗I) = ehtT
T
2 ⊗ ehtT1 .

Therefore, for u = vec(U) we have

ehtAu =
(
ehtT

T
2 ⊗ ehtT1

)
u = vec(ehtT1UehtT2).

Moreover, the operation v = htϕ1(htA)f = A−1(ehtAf − f) can be per-

formed by means of a two step procedure which, given F such that f =

vec(F ) delivers V such that v = vec(V ):

- Compute G = ehtT1FehtT2

- Solve T1V + V T2 = G− F for V

Therefore, the Exponential Euler method �rst computes the matrix expo-

nential of multiples of T1 and T2 once for all. Then, at each time step

the method obtains the approximation Un+1 by solving a Sylvester matrix

equation. More precisely,
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(a) Compute E1 = ehtT1 , E2 = ehtT
T
2

(b) For each n

Solve T1Vn + VnT2 = E1F (Un)ET2 − F (Un) (5.21)

Compute Un+1 = E1UnE
T
2 + Vn.

Several implementation suggestions are given in the next Section. It is im-

portant to realize that to be able to solve (5.21) the two matrices T1 and −T2

must have disjoint spectra. Unfortunately, Neumann boundary conditions

imply that both T1 and T2 are singular, leading to a zero common eigen-

value. To cope with this problem with employed the following di�erential

matrix equation, mathematically equivalent to (5.13),

U̇ = (T1 − σI)U + UT2 + (F (U) + σU), (5.22)

with σ ∈ R, σ 6= 0, opportunely chosen as explained in the next Section.

With this simple �relaxation� procedure the matrix T1 − σI is no longer

singular, and has no common eigenvalues with −T2, at the small price of

including an extra linear term to the nonlinear part of the equation. We

note that adding and subtracting the term σU to the ODE may be bene�cial

� though not strictly necessary � also for the other methods; thus in [21]

we have included the stability analysis for all considered time integration

strategies based on the relaxed matrix equation (5.22).

The matrix equation above should be compared with the vector form, requiring

the solution of a linear system of size NxNy ×NxNy at each time step. It is im-

portant to realize that for a two-dimensional problem on a rectangular grid, the

number of nodes required in each direction need not exceed a thousand, even in the

case a �ne grid is desired to capture possibly pathological behaviors. Hence, while

the Sylvester equation above deals with, say, matrices of size 500×500, the vector

form deals with matrices and working vectors of size 250 000×250 000. Arguably,

these latter large matrices are very sparse and structured, so that strategies for

sparse matrices can be exploited; nonetheless, the Sylvester equation framework

allows one to employ explicit factorizations, also exploiting the fact that the ma-

trices do not change with the time steps. Algorithmic details will be given in the

following Section 5.3.2.
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5.3.2 Implementation details

Whenever the matrix sizes are not too large, say up to a thousand, the previously

described matrix methods can be made more e�cient by computing a-priori a

spectral decomposition of the coe�cient matrices involving T1 and T2. In the

following we shall assume that the two matrices are diagonalizable, so that their

eigenvalue decompositions can be determined. Let them be Tk = XkΛkX
−1
k ,

k = 1, 2, with Xk nonsingular and Λk = diag(λ
(k)
1 , λ

(k)
2 , . . .) diagonal. Let us

�rst consider the IMEX Euler iteration in (5.20). Compute the Nx ×Ny matrix

Li,j = 1/((1− htλ(1)
i ) + (−htλ(2)

j )). Hence, at each iteration n we can proceed as

follows

1. Compute Ûn = X−1
1 Q(Un)X2;

2. Compute Un+1 = X1(L ◦ Ûn)X−1
2

where Q(Un) = Un + htF (Un) and ◦ is the Hadamard (element by element)

product. The second step performs the solution of the Sylvester equation by

determining the solution entries one at the time, in the eigenvector bases, and then

the result is projected back onto the original space to get Un+1 [82]. Proceeding

in the same manner, the corresponding version for IMEX-2SBDF can be derived.

Letting this time Li,j = 1/((3− 2htλ
(1)
i ) + (−2htλ

(2)
j )) and at each iteration n we

have:

1. Compute Ûn = X−1
1 Q(Un, Un+1)X2;

2. Compute Un+1 = X1(L ◦ Ûn)X−1
2 .

where Q(Un, Un+1) = 4Un+1 − Un + 2ht(2F (Un+1) − F (Un)). In the follow-

ing numerical experiments we will call these methods: reduced IMEX-Euler

(rEuler) and reduced 2SBDF (rSBDF). Whenever the PDE problem is lin-

ear, that is f(u) = αu+β, the computation further simpli�es, since all time steps

can be performed in the eigenvector basis, and only at the �nal time of integration

the approximate solution is interpolated back to the physical basis.

In a similar way, the exponential Euler integrator described in Section can be

rewritten as

1. Compute êi = diag(ehtλ
(i)
1 , ehtλ

(i)
2 , . . .), i = 1, 2; Ê = ê1ê

∗
2 and L̂i,j =

(htλ
(1)
i + htλ

(2)
j )−1, with Ê, L̂ ∈ CNx×Ny .
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2. For each n,

Compute F̂n = X−1
1 F (Un)X2 (Project F (Un) on the eigenbases)

Compute G = Ê ◦ F̂n − F̂n (Apply exp and form the Sylvester

eqn rhs)

Compute V = L̂ ◦G (Solve the Sylvester eqn)

Compute Un+1 = X1(Ê ◦ (X−1
1 UnX2) + V )X−1

2 (Compute the next

iterate)

In the following numerical experiments we will call this method reduced Exp

(rExp). It is worth noting that, if the �relaxation� approach corresponding to

(5.22) is considered, all above procedures in points (1)-(2) can be extended simply

by considering Fσ(U) = F (U) + σU and the spectral decomposition of T1(σ) =

T1 − σI, for a �xed value of σ.

5.3.3 RD-PDE systems: matrix approach

In this Section, we present the application of the matrix approach to the reaction-

di�usion model with non-linear reaction-terms and zero Neumann boundary cond-

tions, given in (5.1). By using the Method of Lines for the space discretization, the

matrix formulation of (5.1) yields a system of ODE matrix equations as follows:





U ′ = d1(T1U + UT2) + F1(U, V )

V ′ = d2(T1 V + V T2) + F2(U, V )

U(0) = U0, V (0) = V0.

(5.23)

The matrix form of the classical ODE methods can be derived for (5.23), such

that at each timestep tn, the solution of the following Sylvester matrix equations

is required:




S1Un+1 + Un+1S2 = Qn1 ,

R1Vn+1 + Vn+1R2 = Qn2 , n = 0, . . . , Nt − 1 U0, V0 given
(5.24)

where Qnj = Qnj (Un, Vn), j = 1, 2 in the case of a one step method (like IMEX

Euler method in the previous Sections) and Qnj = Qnj (Un−1, Vn−1, Un, Vn) (U0, U1
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given) for a two-step scheme. Recalling the procedure of Section 5.3.1, for IMEX-

Euler we have

S1 = I − htd1T1, S2 = −htd1T2,

R1 = I − htd2T1, R2 = −htd2T2,

Qn1 = Un + htF1(Un, Vn), Qn2 = Vn + htF2(Un, Vn),

while for IMEX-2SBDF we have

S1 = 3I − 2htd1T1, S2 = −2htd1T2,

R1 = 3I − 2htd2T1, R2 = −2htd2T2,

Qn1 = 4Un − Un−1 + 2ht(F1(Un, Vn)− F1(Un−1, Vn−1)),

Qn2 = 4Vn − Vn−1 + 2ht(F2(Un, Vn)− F2(Un−1, Vn−1)).

Also the matrix-oriented version of the exponential approach can be derived for

the RD systems. In particular, letting once again E1,1 = ehtd1T1 , E1,2 = ehtd1TT2 ,

and E2,1 = ehtd2T1 , E2,2 = ehtd2TT2 we obtain

Un+1 = E11UnE
T
12 + Yn, where (d1T1 − σI)Yn + Yn(d1T2) =

E11F̃1(Un, Vn)ET12

Vn+1 = E21VnE
T
22 + Zn, where (d2T1 − σI)Zn + Zn(d2T2) =

E21F̃2(Un, Vn)ET22,

(5.25)

where σ is as described in Section 5.3.2, while F̃1(Un, Vn) = F1(Un, Vn)+σUn and

F̃2(Un, Vn) = F2(Un, Vn) + σVn. In particular, the approach requires the solution

of two Sylvester equations per step, which is the same cost as for the IMEX

procedure, together with matrix-matrix multiplications with the exponentials.

As already discussed for the single equation case, these costs can be signi�cantly

reduced by working in the eigenvector basis of T1 and T2.

Schnakenberg model The RD-PDEs for the Schnakenberg non-dimensional

model are given by




ut = ∆u+ γ(a− u+ u2v), (x, y) ∈ D ⊂ R2, t ∈]0, Tf ]

vt = d∆v + γ(b− u2v),

(n∇u)|∂D = (n∇v)|∂D = 0

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y)

(5.26)
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As a great number of recent papers show (see e.g. [50, 68]), this model receives

great attention because it has a very simple nonlinear structure and its patterns

are qualitatively similar to classical ones found in biological experiments. The

parameters model a, b, d, γ are positive constants and a unique stable equilibrium

exists which undergoes the Turing instability, given by ue = a + b, ve = b
(a+b)2 .

We consider the literature choice:

D = [0, 1]× [0, 1], d = 10, γ = 1000, a = 0.1, b = 0.9

yielding a cos-like spotty pattern ≈ cos(νxπx) cos(νyπy) with the selected modes

(νx, νy) = (3, 5), (5, 3) [3]. (see Figure 5.1). We consider the initial conditions

u0(x, y) = ue + 10−5rand(x, y), v0(x, y) = ve + 10−5rand(x, y) where rand

is the default MATLAB [56] function, where we �x the seed of the generator

(rng('default')) at starting of each simulation. To study the time dynamics in our

simulations we will calculate the space mean value

〈Un〉 = mean(Un) ≈ 〈u(tn)〉 =
1

|D|

∫

D
u(x, y, tn) dx dy tn = nht, n = 0, . . . , Nt

(5.27)

that if a stationary pattern is attained would tend to a constant value for t →
Tf = Nt ht. We report also the behaviour of the increment δn = ‖Un+1 − Un‖F
(Frobenius norm) that will tend to zero (a certain tolerance) if the steady state

is reached. These two indicators will be useful also to describe the numerical

behaviors of the methods in the initial transient and then to study their reactivity

features. We present two tests as follows when Tf = 2, Ny = Nx.

Test (a). Let us �x Nx = 100 and variable ht = 0.5e-4, 1e-4, 2e-4, 3e-4.

In the simulations reported in Figure 5.2, it is possible to see that all methods

share the same qualitative behavior and we can distinguish two time regimes I1 =

[0, τ ] and I2 =]τ, Tf ]. In I1 the reactivity holds: the solution oscillating departs

from the spatially homogeneous pattern due to the superimposed (small random)

perturbations and becomes unstable, in I2 the solution starts to stabilize towards

the steady Turing pattern. Numerically the value of τ can be approximated by

τn the time of the maximum of the increment δn. Let us discuss in more details

the characteristics of the di�erent methods.

I1-reactivity zone: Figure 5.2, top sub�gure, for the increments δn shows that
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Figure 5.1: Schnackenberg model. Left plot: Turing pattern solution for γ = 1000

(Nx = 400). Center plot: CPU times (sec) for Test (a), Nx = 100 variation of

ht. Right plot: CPU times (sec) for Test (b), ht = 10−4, increasing values of

Nx = 50, 100, 200, 300, 400.

there exists an initial phase of oscillations which size depends on the method and

for ht → 0 this period tends to a certain time value τ0. Then for τ0 ≤ tn ≤ τ

the solution must be unstable as the necessary condition for Turing instability re-

quires. Looking at Figure 5.2, bottom sub�gure, for < Un > the passage between

I1 and I2 is related to the steep part of the curve 〈U(t)〉 that connects the very
short-term and the �nal states of the system and the value of τ can be related

to the in�ection point of this curve. In our numerical experiments it seems that

both τ0 = τ0(hpt ) and τ = τ(hpt ). In fact, as also the zoom insets show, for ht → 0

rEuler and ADI have the same behavior, rExp has curves < Un > with di�erent

slopes depending from ht, rSBDF identi�es the best approximation of τ0, τ also

for larger value of ht (as expected because it is a 2nd order method). In [52, 53]

similar studies were done, with also di�erent numerical methods including the

fractional step θ-methods [35].

I2-stabilizing zone: for ht < hcrt , �xed Nx, for all methods the asymptotic

pattern is reached. Here for hcrt ' 3e-4 rEuler and ADI do not attain any pattern

(the oscillations of < Un > are shown only in the zoom insets of Figure 5.2), while

rExp attains the �nal pattern after a fully oscillating transient behaviour (see the

(red) oscillations in upper (top) subplots in Figure 5.2). We could say this ht is

a critical value for �reactive stability � of rExp. In Figure 5.1, central plot, we

report the computational cost for all methods: note that we are solving here an

increasing number of Sylvester matrix equations in (5.23) of the same dimension.

rEuler and rSBDF have almost the same cost and are cheaper than the other
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Figure 5.2: Schnackenberg model- Test (a). For all methods with Nx = 100 and

varying ht = 0.5e-4, 1e-4, 2e-4,3e-4 we show the time behaviours of the increments

δn = ‖Un+1−Un‖F (top sub�gure) and of the space mean values < Un > (bottom

sub�gure).
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methods. rExp is more expensive than ADI. It is worth noting that the IMEX

schemes in vector form are typically more expensive than ADI method (see e.g.

[77]).

Test (b): we �x ht = 1e-4 and let vary Nx = 50, 100, 200, 400, such that the

matrix methods solve the same number of Sylvester equations of increasing sizes.

All methods have the same time dynamics in I1 and I2, then we show in Figure 5.3

the increments and the mean values found by rSBDF. In Figure 5.3, right plot, we

note that: the �nal value of < Un >, say σ = σ(Nx), changes with Nx as expected.

Moreover, looking at the left plot, τ = τ(ht, Nx) seems to be an increasing function

of Nx. In some sense, this can be expected because we are indeed solving discrete

problems with di�erent initial conditions (that include di�erent, even if small,

random perturbations). This sensitivity wrt to the choice of the initial conditions

is well known in literature about pattern formation (see e.g. [54]). This is the

main reason why we do not propose to apply a low rank approximation method

for (5.23), like the KPIK proposed in [57] to solve matrix di�erential equations

of Lyapunov/Riccati type. In fact, it can be shown that projecting the Turing

solution on a low-rank manifold especially during the transient time dynamics

can induce the selection of speci�c Fourier modes in the �nal pattern. This topic

will be object of future investigations. In the right plot of Figure 5.1 we report

the computational costs of all methods. We recall that by varying Nx Sylvester

matrix equations in (5.23) of increasing size are solved by the reduced spectral

approach. rEuler, ADI and rSBDF have almost the same cost and are cheaper

than rExp. For largest spatial dimensions rEuler becomes the more economic. It

is worth noting, that for the larger values of Nx this test could not be performed

by classical vector-oriented version of the same schemes due to the prohibitive

computational load.

DIB model In this Section, we show the importance of the matrix-oriented

approach to carefully approximate the spatial structure of Turing patterns on �ne

meshgrids and large domains with reasonable computational cost and accessible

amount of required memory, otherwise not attainable by the classical vector-

oriented approach. We consider the RD-PDE model studied in [47] describing an

electrodeposition process for metal growth, where the kinetics in (5.1) are given

103



Figure 5.3: Schnackenberg model-Test (b). For ht = 1e-4 and increasing values

of Nx = 50, 100, 200, 400 we show the time behaviour of the increment δn =

‖Un+1−Un‖F (left plot) and of the space mean value < Un > (right plot). These

results are those of the rSBDF method, all other schemes exhibit essentially the

same trends (see comments in the main text).

by

f1(u, v) = ρ
(
A1(1− v)u−A2 u

3 −B(v − α)
)
,

f2(u, v) = ρ (C(1 + k2u)(1− v)[1− γ(1− v)]−Dv(1 + k3u)(1 + γv)) .
(5.28)

u(x, y, t) represents the morphology of the metal deposit, v(x, y, t) its surface per-

centual chemical composition, the nonlinear source terms account for generation

and loss of relevant material during the process. In particular in [46], this model

has been proposed to study pattern formation during the charge-discharge process

of batteries. In [46] it has been also proved that for a given parameter choice of

the RD-PDE model there exists an intrinsic pattern type that only can emerge if

an e�ective domain size of integration is considered given by A = ρ|D|, where |D|
= area(D). Hence, if the scaling factor in (5.28) is ρ = 1, a large domain D must

be chosen to �see� the Turing pattern. For this reason, the number of meshpoints

Nx, Ny that is the size of the Sylvester equations (5.23) must be su�ciently large.

In Figure 5.4 we report two typical situations: the left plot refers to a too small

domain to be able to identify the morphological class, which is instead clearly

visible in the right plot, determined with a much larger domain. Note that the

�ne grid allows us to clearly recognize the spot-worms pattern in its full granu-

larity that is not otherwise obtained on the rough grid with Nx = 50, as shown

in the lower plot. These solutions have been obtained by solving (5.1)-(5.28) on
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Figure 5.4: Spot-worms Turing pattern of DIB Model. Left: Ω = [0, 20]× [0, 20]

and Nx = 50(hx = 0.4). Right: Ω = [0, 100] × [0, 100] and Nx = 250(hx = 0.4).

Below: Ω = [0, 100]× [0, 100] and Nx = 50(hx = 2)

a square domain Ω = [0, `x]× [0, `x] and with the following parameter choice for

which a spot-worms pattern is expected ([47]): d1 = 1, d2 = d = 20, ρ = 1, A1 =

10;A2 = 5; k2 = 2.5; k3 = 1.5;α = 0.5; γ = 0.2;D = 2.4545, B = 28, C = 8.

We apply again ADI and the matrix methods rEuler, rExp, rSBDF until

Tf = 100, with ht = 1e-2. In Figure 5.5 we show the dynamics of the increment

‖Un+1−Un‖F and of the mean value < Un > for the simulations corresponding to

the full spot and worms in Figure 5.4 (upper right). For the chosen ht the methods

exhibit di�erent reactivity and stabilizing properties. The rSBDF method seems

to display the best performance.

In the Table 5.1 we reports the computational time of all numerical methods

for obtaining the patterns in Figure 5.4, that is for the two cases (i) Nx = 50, `x =

20, (left) and (ii) Nx = 250, `x = 100 (right), including that of the vector formu-

lation (LU with pivoting) only for the IMEX Euler method. Note that the cost

in the case Nx = 50, `x = 100 (Figure 5.4- lower) is the same as for the case (i),

for this reason it is not reported.

As it can observed, for Nx = 50, that is when the pattern is not well identi�ed,
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Figure 5.5: Spot-worms Turing pattern of DIB Model. Time dynamics of the

increment ‖Un+1−Un‖F (left plot) and of the mean value < Un > (right plot) for

all methods in the case Ω = [0, 100]× [0, 100], Tf = 100, ht = 10e− 2, Nx = 250.

Methods `x = 20, Nx = 50 `x = 100, Nx = 250

IMEX Euler (vector form) 5.6 s 191.9 s

rEuler 3.2 s 66.2 s

rSBDF 5.5 s 98.3 s

rExp 5.6 s 121.2 s

ADI 4.2 s 69.2 s

Table 5.1: DIB model: computational time for all methods to obtain the patterns

in Figure 5.4 Nx = 50, `x = 20 (left plot), Nx = 250, `x = 100(right plot).

all methods display similar computational performances. In the other case, the

vector form signi�cantly su�ers from dealing with much larger dimensional data,

with respect to the matrix-oriented schemes. rEuler exhibits the best compu-

tational times for both dimensions. The other matrix-based schemes are almost

equivalent, with ADI being slightly less expensive. These preliminary experiments

seem to indicate that the matrix formulation is a competitive methodology for the

numerical solution of the RD-PDE systems when a �ne spatial grid is necessary

to capture the morphological features of the pattern.

5.4 Summary

In the previous Section we have shown that the classical semi-discretization in

space of reaction-di�usion PDEs can be seen as a system of matrix ODE equa-
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tions. By using the matrix formulation, the time dicretization by an ODE solver

yields a sequence of Sylvester matrix equations to be solved at each iteration in

time. Therefore we have considered the well-known IMEX schemes (Euler and

2SBDF) and the Exponential Euler method and we have solved the correspond-

ing Sylvester equations in the spectral space, by de�ng the corresponding reduced

schemes. Comparing the reduced schemes with the classical vector approach allow

us to deal with signi�cantly smaller discrete problems and to reduce the compu-

tational costs. We have shown that both features are important for the numerical

approximation of Turing pattern solutions. For the Schnackenberg model, we

have solved the two complementary cases when (Test a) an increasing number

Nt of Sylvester equations of the same size Nx are solved and when (Test b) we

�x the same number Nt of problems of Sylvester equations of increasing size Nx.

We found that rEuler is the more economic solver, but rSBDF is a good compro-

mise between accuracy (second order) and cost. rSBDF is also the best scheme

to track carefully the reactivity phase of Turing systems at short times. For the

DIB-morphochemical model we have shown that a matrix-oriented approach is

mostly important when a large �nely discretized space domain ⊗ is required to

well identify the spatial structures of the Turing pattern. In the literature, to

avoid the huge computational load of the vector-IMEX methods, this challenge

has been often faced by the using ADI approach, but our comparisons show that

the new reduced schemes can be a valid alternative to it.
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Chapter 6

Application: PDE-PIP for a

morphochemical model

In this Chapter we show a real application of the PDE-PIP by estimating the

parameters for the DIB model for experimental data, studied for the �rst time

in [10, 47]. We describe the di�erential model and illustrate the types of solu-

tions expected for di�erent values of the parameters as reported in [81]; then we

formulate the identi�cation problem (DIB-PIP) and show two di�erent approach:

the classical least square minimization realized in [81] and the �rst results in the

extension of the Fourier approach to the PDE case.

6.1 DIB model: description and formulation of DIB-

PIP

The morphochemical model for electrodeposition (DIB) was studied for the �rst

time in [10, 47] and it is given by (5.1), where the coupling equations involves two

variables with the following meaning: the adimensional u(x, y, t) that describes

the morphology, and 0 ≤ v(x, y, t) ≤ 1 which account for the surface chemistry

and expresses the instantaneous increment of the electrodeposit pro�le; d1 = 1,

d2 = d := d1
d2

is the ratio of the di�usion coe�cients and the nonlinear source

terms are given by (5.28), and account for the generation (deposition) and loss

(corrosion) of relevant material. The model is accompanied by zero Nuemann

boundary conditions and the following initial condition: u(x, y, t0) = u0(x, y),

v(x, y, t0) = v0(x, y) (x, y) ∈ D. The (C,B)-bifurcation diagram associated to
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Figure 6.1: Bifurcation diagram in the parameter space (C,B) for the di�usion

coe�cient d = 20. The values for the other parameters are �xed as follows: ±α =

0.5, γ = 0.2, k2 = 2.5, k3 = 1.5, A1 = 10. For this choice of the parameters the two

bifurcation points TH and TB have coordinates (CTH , BTH) = (2.8061, 109.13)

and (CTB, BTB) = (2.8061, 19.7979).

the RD model is reported in Figure 6.1, bounded by the following inequalities

[47]:

CH < C < dCH , Btr < B < BT (6.1)

where

Btr =
A1(1− α)F2(α, γ)

(k2 − k3)F1(α, γ)
,

CH =
A1(1− α)

F2(α, γ)
,

BT =
d2A2

1(1− α)2 + CF2(α, γ)[2A1d(1− α) + CF2(α, γ)]

4dC(k2 − k3)F1(α, γ)
,

(6.2)

with

F1(α, γ) = (1− α)(1− γ + αγ),

F2(α, γ) =
2αγ(1 + αγ − γ) + 1− γ

α(1 + αγ)
.

Let us observe that the Turing region R, shown in Figure 6.1, does not depend

on the values of A2 and ρ.

Information collected from simulations with parameters in R reported in [81]

show interesting features, that we synthesize below. In Figure 6.2 a segmenta-

tion of the Turing region in signi�cant parts is shown. Six sub-regions could be
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identi�ed, named R0, R1, ..., R5, that are highlighted in Figure 6.2 with di�erent

colours. The authors in [81] considered a selection of parameter values (C,B) in

each sub-region to describe the di�erent kinds of patterns present and reported

these choices by di�erent symbols associating a small letter from a to m to each of

them. Each letter identi�es the corresponding (stationary) pattern shown on the

right. Hence, by following the description reported in [81], for decreasing values

of B the Ri, i = 0, ..., 5, the sub-regions are given by:

• R0: is all the zone above the Turing boundary. Here the solutions tend to

the homogeneous equilibrium equal to ve and Turing instability disappears.

• R1 mixed-spots-stripes: is the interior zone of the Turing region near its

boundary. Here, the stationary solutions are mixed spot-stripe patterns.

There is a predominance of spots near the boundary (see pattern a) and

more stripes far from the boundary (see patterns b,c).

• R2 labyrinths: this zone is full of solutions similar to labyrinth. Patterns

d,e,f show labyrinths with di�erent arrangements of their arms that tend to

be longer and better aligned for increasing values of C.

• R3 reversed spots and worms: this zone is between the labyrinth and holes

regions. This is like a transition zone where for decreasing values of B the

labyrinths are �attened and the arms are fragmented in reversed spots and

worms that are in fact holes of these particular shapes. The worms become

longer and predominant for increasing values of C (patterns g, h, i).

• R4 reversed spots/holes: the simulated pattern is reported in the small

picture on the left of the Hopf line (bottom). These spots are indeed holes

on a �at surface. The number of holes increases for increasing values of C

(patterns j, k)

• R5: this region is just above the transcritical line. Here even if inside

the Turing region, the stationary solution is not a Turing pattern, but the

destabilization of the equilibrium ve leads to another spatially homogeneous

equilibrium. For (C,B) values on the boundary shared with the R4 zone,

we show the pattern m corresponding to an almost �at surface with few

spots entering `from' the border.

110



Figure 6.2: Segmentation of the Turing region: six subregions R0, R1, ..., R5 from

top to bottom are identi�ed in the bifurcation diagram of Figure 6.1. In each

subregion we report a selection of parameter pairs (C,B), indicated by a symbol

and a letter. Each letter from a to m identi�es the corresponding (stationary)

pattern shown on the right. Taken from [81]

As we have seen, in the Turing zone there are sub-regions where parameters can

describe several types of structured data. Furthermore, these sub-regions are

found to be contiguous and topologically simply connected. In [81], the authors

pointed out that: (1) the segmentation has been obtained for A2 = 1 and Nx =

Ny = 70 meshpoints in all simulation snapshots; (2) each pattern snapshot has

been obtained for a �nal time T such that the steady state of the PDE model has

been reached; (3) for increasing values of A2 the scenario in the lower part of the

Turing region changes, that is regions R3, R4, R5 disappear and the R2 region of

labyrinths of di�erent shapes englobes them. A theoretical analysis on the role of

the parameter A2 deserves further studies; a qualitative discussion on this point

was already given in [47].

To de�ne our PIP-DIB, we assume that all the parameters of the model are

�xed except C and B, which are more meaningful parameters from the electro-

chemical point of view [47]. Given an experimental map, we wish to associate

its a couple (C,B) ∈ R, which is located in the sub-region that best identi�es

his structure. Then, the DIB-PIP can be expressed as follows: �nd (C∗, B∗) ∈ Ω
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such that

J(C∗, B∗) = min
(C,B)

J(C,B) (6.3)

where Ω is a �xed subset of the Turing region R, which contains the simulation

with the same `type' of spatial structure of the given map.

6.2 DIB-PIP: numerical results

In this Section we report two example of PDE-PIP with simulated and experi-

mental data reported in [81], in order to present the �rst parameters identi�cation

for the DIB model and the optimization procedure introduced in [81]. For this

purpose the authors �xed all the parameters except C and B, as described above,

and they referred to the Turing region R shown in Figure 6.1. They chose the

values of the parameter A2 and of the �nal time Tf according to the typology of

data, as reported in the discussion below and the scaling factor ρ = 1. In each

case the data map M̃ was normalized, because they are interested in the shape

of the experimental pattern independently from its numerical values, so the com-

parisons was made with the model solution v(x, y, Tf ) normalized between 0 and

1 which, with a slight abuse of notation, we continue to refer to as v, obtained by

using the ADI method as PDEs solver.

Simulated data Let us consider a simulated pattern obtained in [81] forA2 = 1,

(C,B) = (3, 66) and Tf = 20 of labyrinth-type, and the domain of integration

�xed to be Ω = [0, 50] × [0, 36]. To show the convergence properties of the op-

timization algorithm, the authors solved the PIP(i) and PIP(ii) steps, de�ned in

Section 5.2, in the case of this simulated labyrinth with noisy data. The synthetic

observation was generated by added a random Gaussian noise shown in Figure 6.3

on the top left, where the standard deviation of the noise is taken to be 0.1, repre-

senting 10% of the maximum value of the �eld. The corresponding cost function

(5.4), with W = I, in shown in Figure 6.3 on the top right. By the inspection of

the cost they were able to �nd a sub-region of the parameter space, around the

exact minimum, yielding labyrinth-like structures. The cost function for the noisy

data shown has a very similar pattern to the perfect observation case, with one

zone of low cost function values. They chose as initial guess (C0, B0) = (2.9, 80),
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Figure 6.3: PDE-PIP-DIB: On the top: on the left the simulated labyrinth for

(C,B) = (3, 66) normalized patter with 10% noise; on the right the cost function.

On the bottom the �st guess for the optimization and the result pattern of the

minimization. Taken from [81].

a point far from the minimum value; we show the corresponding numerical so-

lution of the model used as the �rst guess pattern in Figure 6.3 on the bottom

left. The optimized pattern attained by the descent algorithm is shown in Figure

6.3 on the bottom right, and the relative error on the parameters are given by

relerrB = |B∗ − B|/|B| = 0.008 and relerrC = |C∗ − C|/|C| = 0.0175. Since

the zone of minimum values is well de�ned even with the noisy data, the authors

deduced that the algorithm is able to �nd a solution that is much better than the

initial starting point, in terms of both error norm and pattern produced.

Experimental data Let us consider an experimental map in Figure 6.4 on the

top left reported in [81] and reprinted with permission from [45], whose structure

is classi�ed as mixed-spot-stripes. By �xing A2 = 30 and Tf = 20, the authors

constructed the cost function (5.4) in the region R = [2, 10] × [20, 80] of the

parameter space, shown in Figure 6.4 on the top right. We note that there are

now two distinct and clearly de�ned zones of low cost-function values. Here

it is evident that there exists a minimum near (C0, B0) = (5, 20) far from the

Turing curved boundary but in the lower part of the bifurcation diagram. The

corresponding pattern v∗(x, y, Tf ) generated using these parameter values results
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Figure 6.4: PDE-PIP-DIB: Top line: experimental stripes (left) and cost function

in (5.4) (right). Bottom line: simulated solution for the minimun value (C∗, B∗) =

(4.7914, 19.5127) and absolute error map. Taken from [81].

in a relative error in the Frobenius norm of rel∗err = 0.438. Then the authors in

[81] solved PIP(ii) by using (C0, B0) = (5, 20) as the �rst guess of the optimization

algorithm without regularization; the algorithm converged to values of (C∗, B∗) =

(4.7914, 19.5127), with a small improvement in the solution. The corresponding

pattern v∗(x, y, Tf ) is shown in Figure 6.4 on the bottom left, and on the bottom

right the absolute error is represented.

6.3 Fourier approach for DIB-PIP

The target patterns we examined are experimental images which represent elec-

trochemical distributions, that can be described as a linear combination of sines

and cosines in space. For this reason we start to extend with appropriate changes

the Fourier approach to the PDE case: we show that by using the classical 2-norm

as cost function in the PIP(i) we could lose some important information deriving

from the model. Therefore we compare the classical approach of �tting the model

in a least-square sense, where the cost function is de�ned as usual as:

JN2(C,B) = ‖VTf (C,B)− M̃‖2 (6.4)
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Figure 6.5: Example of image reconstruction by magnitude and phase spectra:

on the left the original pattern obtained by the DIB model with the parameters

setting as indicated in the main text, in the center the magnitude-only recon-

struction, on the right the phase-only reconstruction.

where VTf (C,B) and M̃ are de�ned as in (5.4), with a new approach that develops

in the Fourier space. In particular we de�ne di�erent cost functions which take

into account the spectral properties of the pattern. To de�ne the Fourier costs

we need the FFT in 2-D of the �nal pattern VTf (see Appendix A for details).

Hence, by using the MATLAB [56] function fft2, we de�ne:

F = fft2(VTf ),

P = |F |,

Φ = tan−1 Im(M)

Re(M)
,

where F ∈ CNx×Ny , P ∈ RNx×Ny is the so-called magnitude and Φ the phase of

FFT. Now we can not avoid considering the phase of FFT, because its essential

information in the position of the image features. To give an example of the

importance of the phase in the images reconstruction, let us consider the pattern

shown in Figure 6.5 on the left, obtained as numerical solution of the DIB model

get by setting C = 3, B = 66, A1 = 10, A2 = 1, α = 0.5, γ = 0.2, k2 = 2.5,

k3 = 1.5,d = 20, ρ = 1 and Tf = 50. The phase values determine the shift in

the sinusoidal components of the pattern. With zero phase, all the sinusoidal

are centered at the same position and by reconstructing the image without phase

information we obtain a symmetric image whose structure has no correlation with

the original pattern at all, as shown in Figure 6.5 in the center. Being centered

at the same location means that the sinusoidal are a maximum at that location,

and is why there is a big white patch in the middle of pattern. When we do a

phase-only reconstruction, we set all the magnitude to one: it changes the shape
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of the features but not their location, as shown in 6.5 on the right.

Therefore we de�ne di�erent Fourier cost functions, in order to consider dom-

inant frequencies in both spatial directions, the magnitude and the phase in-

formation. In particular we de�ne the FFT-cost, the two phase-costs and the

module-cost respectively:

JFFT (C,B) =

√
(fx(C,B)− f̃x)2 + (fy(C,B)− f̃y)2 = ‖f(C,B)− f̃‖2, (6.5)

Jφ(C,B) = ‖Φ(C,B)− Φ̃‖2, (6.6)

Jφ+π(C,B) = ‖Φπ(C,B)− Φ̃‖2, (6.7)

JP (C,B) = ‖P (C,B)− P̃‖2, (6.8)

where f̃x and f̃y are the �rst dominant frequencies in x and y direction respectively

of the target pattern M̃, fx(C,B) and fy(C,B) are the frequencies of V(C,B)

for (C,B) ∈ Ωh, f̃ = [f̃x f̃y]
′ and f(C,B) = [fx(C,B) fy(C,B)]′. Let us note

that we compare also Φπ(C,B) = Φ(C,B) + π with the experimental phase:

this because we admit the pattern where the maxima and minima are reversed as

acceptable solution. These kinds of pattern are admissible solutions for the model

and the presence of one of them is caused by the initial conditions, in particular

the structure of Xu and Xv in 5.6. JFFT (C,B) is able to �nd the area in the

parameters space where the patterns have the same �rst dominant frequencies in

both directions. Let ΩFFT
h be this set, de�ned as follows:

ΩFFT
h = {(C,B) ∈ Ωh|JFFT (C,B) = 0}. (6.9)

In the following numerical example we use rSBDF (see Section 5.3) as PDEs

solver.

6.3.1 Simulated data: Square-patterns

In this �rst case let us consider a simulated patterns for which we know the

analytic approximation given by a particular choice of parameters of the DIB

model. In [9], the authors used a speci�c nonlinear bifurcation technique to

characterize the shape and amplitude of the pattern close to the boundary of

the Turing bifurcation threshold of the physically relevant equilibrium. By �xing

A1 = 54, A2 = 50, B = 65, C = 12, k2 = 9.42, k3 = 1, α = 0.2, β = 0.2,
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Figure 6.6: Square-patterns: On the left the map Z1, on the right the map Z2.

D = 38.7692 and d = dc(1+ε2), with dc = 6.9503 and ε = 0.1, the Turing pattern

stationary solution u(x, y, Tf ) could be well approximated by:

w(x, y) = 0.082172 cos(3x) cos(3y) +O(ε2). (6.10)

Let us consider two di�erent target maps, chosen as follows:

Z1(x, y) = 0.082172 cos(3x) cos(3y),

Z2(x, y) = 0.082172 cos(3x+ π) cos(3y), (x, y) ∈ [0, π]× [0, π],
(6.11)

where Z2 has a shift of π along the x direction wrt respect to Z1: the shift of

π reverses the pattern exchanging the maxima and the minima. We normalize

both the patterns and represent them in Figure 6.6. Then we compute the cost

functions de�ned in (6.4)-(6.8), for (C,B) ∈ Ωh = [10, 14]×[55, 75], by �xing hC =

0.2 and hB = 0.5 as discretization steps in the C and B directions respectively

to obtain the discrete set, Tf = 100, ht = 1e − 03 for the time integration and

Xu and Xv as random perturbation matrices. Let us indicate as J1, J2 the cost

functions referred to Z1 and Z2 respectively. In Figure 6.7 we can observe and

compare the J i, i = 1, 2. The curves represent the boundary of the Turing region

R.
The 2-norms are clearly di�erent: as we expect, J1

2 (C,B) individuates a min-

imun in (C,B) = (12, 65.5), but when we look for the reversed pattern the cost

has a zone of maxima along the boundary of the Turing region; therefore we can

deduce that the model does not admits as solution this kind of pattern, since we

known that the technique used in [9] is able to approximate the solution on the

boundary of the Turing region. The magnitude costs are essentially the same for

Z1 and Z2; J iP (C,B), i = 1, 2, individuates the minimum in (C,B) = (12, 65.5),
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Figure 6.7: Square-patterns: On the top line the two 2-norms and the magnitude

cost (which is the same for both pattern). On the bottom line the phase costs.

and seems that the comparison of the magnitudes includes more information with

respect to the classical 2-norm: although the starting pattern is inverted, the

magnitude is able to identify the pattern that has the same spatial structure.

JP (C,B) contains also the information deriving from phase costs: J1
Φ(C,B) indi-

viduates the solutions with the nearest phase of Z1 and J2
Φ+π(C,B) individuates

the solutions with the nearest phase of Z2. Both this information are in JP (C,B)

that localize the minima in a smaller area.

This can be very useful in case of experimental map, in which case we do not

know a priori if the PDEs model admits the pattern we are looking for, its reversed

form or both. Then the study of the magnitude cost can give us more information

than the study of the classical 2-norm. We will observe these advantages in the

following Sections where we consider two experimental maps, and show the lose

of information that can emerge from studying only the 2norm.

6.3.2 Experimental data

Stripes Let us consider the experimental pattern examined in Section 6.2,

shown in Figure 6.8 on the top left and �x the parameters of the model as fol-

lows: A1 = 10, α = 0.5, γ = 0.2, k2 = 2.5, k3 = 1.5, d = 20 and ρ = 1. Let

Ω = [2, 10]× [20, 80] be the subset of the C−B plane where we construct the cost
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Figure 6.8: Experimetal stripes: On the top: the experimental pattern (left), the

2-norm (center) and the FFT-cost (right). In bottom row the Fourier costs for

the magnitude and the phase.

functions, and hC = 0.2, hB = 1 the discretization steps in the C and B direction

respectively to obtain the discrete set Ωh. Let us �x the A2 = 30, Tf = 20, and

Xu and Xv as the normalize experimental map. In Figure 6.8 we observe the cost

functions: the 2-norm de�ned as in (6.4), the magnitude cost (6.8), the FFT-cost

in (6.5) and the phase-costs de�ned as in (6.6)-(6.7).

The FFT-cost identi�es two areas included in the set ΩFFT
h , where the sim-

ulations have the same �rst dominant frequencies of the experimental pattern,

which correspond to the zones of maxima and minima in JN2. Instead JP has

both zones of minima that are included in ΩFFT
h : again the information that are

in the magnitude does not compare by using in the classical 2-norm.

We can identify two minima of JP in the intersection of the Turing region

R and the set ΩFFT
h . The value of parameters are shown with the datatips in

the Figure 6.8; their values are: (C,B) = (2.8, 36) (which is on the boundary of

the Turing region) and (C,B) = (3.4, 20) and the corresponding simulations are

shown in Figure 6.9. The minimum in (C,B) = (2.81, 36) of JP seems to be very

similar to the reversed experimental map: it is located in the area of maxima

of the 2-norm and is also in the zone of minima of JΦ+π. If the model admits

reversed-solution, we can not �nd them by using the 2-norm, but we realize their
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Figure 6.9: Experimetal stripes: minima of the magnitude cost indicated by the

data-tips in Figure 6.8, obtained for (C,B) = (2.81, 36) and (C,B) = (3.4, 20)

presence by looking the magnitude-cost. An alternative could be to use the 2-

norm by computing the simulations with the �reversed� initial condition: but in

this way we have to compute the simulation twice and store two di�erent cost

functions. JP not only gives us additional information but also includes all the

information that we can derived by studying the other cost function: it localizes

the minima of JN2 in a smaller area and individuates the simulations that have

both the same frequencies (in JFFT ) and the same phase (or reversed phase) of

the experimental map (in JΦ and JΦ+π).

Labyrinths Let us consider a new experimental map shown in Figure 6.10 on

the top left. Let Ω = [2, 10] × [20, 80] be the subset of the C − B plane where

we construct the cost functions, and hC = 0.2, hB = 1 the discretization steps in

the C and B direction respectively to obtain the discrete set Ωh. Let us �x the

A2 = 30, Tf = 30, and Xu and Xv as the normalize experimental map. In Figure

6.10 the cost functions are displayed: the 2-norm (6.4), the magnitude cost (6.8),

the FFT-cost in (6.5) and the phase-costs (6.6)-(6.7).

From the magnitude cost we can deduce that also in this case the model admits

both the pattern and its reversed form: the minima in the two di�erent zone of

JP are shown by the datatips in the Figure 6.10. One of them, (C,B) = (10, 20)

is also in the minima areas of JN2 and JΦ, the other one; (C,B) = (2.8, 31) is in

zone of maxima of the 2-norm and the minima of JΦ+π and corresponds to the

reversed pattern. The corresponding simulations are shown in Figure 6.11.
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Figure 6.10: Experimetal labyrinths: On the top: the experimental pattern (left),

the 2-norm (center) and the FFT-cost (right). In bottom row the Fourier costs

for the magnitude and the phase.

6.4 Summary

The Fourier approach for the DIB-PIP described above proves to be an e�ective

tool for the localization of the zone in the Turing region where the simulated

patterns exhibit the same spatial feature of the experimental map. It can be used

not only for the PIP(i), but the magnitude cost could be a more accurate tool and

interesting choice for minimization in the PIP(ii) as an alternative to the classical

2-norm. In fact, by including also the phase information, the magnitude allows

us to realize the presence of (admissible) reversed patterns in the model and �nd

them in the Turing region.
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Figure 6.11: Experimetal labyrinths: minima of the magnitude cost indicated by

the data-tips in Figure 6.10, obtained for (C,B) = (2.81, 31) and (C,B) = (10, 20)
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Chapter 7

Future work

In this thesis we studied di�erent numerical aspects involved in the discretization

of a PIP, by using both the Direct and the Indirect approaches. Due to the

complexity of the examined problems, after analyzing the two approaches in detail,

it was decided to consider only the Direct approach. A future extension could

concern the use of the Indirect approach for the same problems with some suitable

changes.

Then we introduced the so-called Fourier regularization approach for the ODE-

PIP with oscillating data, which is able to identify the sub manifold of the param-

eter space that contains the solution with the same frequency of the experimental

data. In the present work we have con�ned the application of our original method

to the �rst dominant frequency, but future extensions will consider a more general

cost function including higher frequencies to better account for the �ne structure

of the oscillating phenomena under investigation. This will further improve the

results described, leading to a stronger tool for ODE control problems.

In Section 5.3 we solved numerically the RD-PDEs which represent the con-

straints for the PDE-PIP, by introducing the matrix-oriented formulation of the

semi-discretized equations. Future work may involve the implementation of higher

order methods in space and time for the problem in matrix form. For example,

by using the Extended Central Di�erence Formulae (ECDFs) of high order [1], we

can improve the spatial approximation of the second order derivatives, and this

would change the structure of the coe�cient matrices T1 and T2. Then, an high

order IMEX-methods for the time integration will modify the Sylvester equations

to solve at each ht. The stability analysis, the convergence and the computa-
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tional time will be object of future studies. Moreover, an interesting future work

could concern the implementation of the so-called fractional step θ-method [35]

in matrix form, studied in [53] for the RD-PDE system.

In the Chapter 6, after the description of the morphochemical model (DIB),

we presented the �rst results in the extension of the Fourier approach to the

PDE case. As we have seen, the use of the classical 2-norm may imply the

loss of some important features of the data and consequently some admissible

solutions in the parameters space might not be found. Instead, the magnitude

cost, which requires the two-dimensional Fourier transform of the patterns, not

only give us the information already present in the 2-norm, but it also contains

the spectral information that is indispensable in identifying at the same time

the pattern and its �reversed�. Future work will concern the implementation

of an optimization algorithm whose cost function can be the magnitude cost in

(6.8). At last, a future further extension will consider the DIB-PIP where the

solutions have an oscillating behavior both in space and time. In fact, in [47]

the authors showed that near the Turing-Hopf (TH) bifurcation point (see Figure

6.1) a class of spatio-temporal patterns emerges, due the interaction between the

formation of inhomogeneous stationary patterns caused by Turing instabilities

with the homogeneous oscillations caused by a Hopf bifurcation. A �rst map

identi�cation was done in [78], where the authors looked for the time t∗ belonging

to the transient dynamics, such that the PDE solution approximates a given

experimental map for a �xing set of parameters. An extension of this work could

concern the minimization of a cost function that depends both from parameter p

and the time: J = J(t,p).
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Appendix A

Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm that compute the Discrete

Fourier Transform (DFT), and its inverse, of a sequence of values which repre-

sent a equally-spaced samples of a periodic signal. DFT is a one-to-one trans-

form, which converts the signal from its domain to a representation in the fre-

quency domain. Given the sequence of complex numbers {xn} = x0, ..., xN−1

that represents the input signal, then the DFT is a sequence of complex numbers

{Xk} = X0, ..., XN−1, de�ned as follows:

Xk =
1

N

N−1∑

n=0

xne
− i2π

N
kn k = 0, ..., N − 1 (A.1)

In matrix form (A.1) can be formulated as:

X =
1

N
V Hx (A.2)

where V is the Vandermonde matrix whose entries are vkj = ωkjn , with ωn the

complex nth root of unity, and V H is its conjugate transpose. If the vector

x is real, then the entries of the vector X are: X0 real and Xj = XN−j for

j = 1, ..., N − 1.

The inverse of the DFT (IDFT), is given by:

xn =

N−1∑

k=0

Xke
i2π
N
kn n = 0, ..., N − 1. (A.3)

Evaluating the de�nitions(A.1) and (A.3) directly requires O(N2) operations.

The FFT takes advantage of the special properties of the complex roots of unity

to compute DFT(x) and IDFT(x) in time O(NlogN).
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Fourier transform is de�ned not only for one-dimensional signal, but for func-

tions of arbitrary dimensions. In particular, for a two dimensional periodic signal

g (e.g. an image) of dimension N ×M , the 2D-DFT is de�ned as:

G(n,m) =
1

NM

N−1∑

u=0

M−1∑

v=0

g(u, v)e−i2π(
nu
N

+mv
M ) n = 0, ..., N − 1, m = 0, ...,M − 1

(A.4)

where G is again a two-dimensional function of the same dimension (N ×M) as

the original signal. The 2D-IDFT is de�nes as:

g(u, v) =
N−1∑

n=0

M−1∑

m=0

G(n,m)ei2π(
nu
N

+mv
M ) u = 0, ..., N − 1, v = 0, ...,M − 1. (A.5)

Given a matrix g of dimension N×M , the algorithm corresponds to �rst perform-

ing the FFT of all the rows, grouping the resulting transformed rows together as

another N ×M matrix, and then performing the FFT on each of the columns of

this second matrix, and similarly grouping the results into the �nal result matrix.
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Appendix B

Algebraic curvature

Let us consider a parametric curve de�ned as follows:

α(t) = (x(t), y(t)), t ∈ R+
0 . (B.1)

The algebraic curvature is de�ned as follows:

K(t) =
x′(t)y′′(t)− x′′(t)y′(t)

(
√
x′(t)2 + y′(t)2)3

(B.2)

The algebraic curvature gives us information about the direction of rotation

of the tangent. K(t) can be either positive or negative, in particular it results:

if K(t) > 0 the curve traces out in a counterclockwise direction, if K(t) < 0 the

curve traces out in a clockwise direction. Hence when K(t) changes sign there is

a so-called in�ection point.

127



Acknowledgements

I would like to express my deep gratitude to Professor Ivonne Sgura, my aca-

demic supervisor, for her patient guidance and enthusiastic encouragement of my

research and thesis. It would not have been possible to succeed at a work like this

one without her great contribution and advice.

I would also like to thank Professor Benedetto Bozzini, for his assistance and

support in the work we have done together.

I am particularly grateful to Professor Valeria Simoncini for her valuable and

constructive suggestions and useful critiques; she gave me also warm encourage-

ment.

I would also like to extend my thanks to Prof Giuseppe Notarstefano and his

research team for their help and interest in my work.

Special thanks to my colleagues and friends for their precious support.

Finally, I wish to thank my parents for their unconditional love, help and

encouragement throughout my study.

128



Bibliography

[1] P Amodio and I Sgura. High order �nite di�erence schemes for the solution

of second order bvps. J. Comput. Appl. Math., 176(1):59�76, 2005.

[2] U M Ascher, S J Ruuth, and B T R Wetton. Implicit-explicit methods for

time dependent pde's. J. Numerical Analysis, 32(3):797�823, 1995.

[3] C H L Beentjes. Pattern formation analysis in the schnakenberg model.

Technical Report, University of Oxford, Oxford, UK, 2015.

[4] M Benzi and V Simoncini. Approximation of functions of large matrices with

kronecker structure. Journal Numerische Mathematik, 135(1):1�26, 2017.

[5] J T Bett. Survey of numerical methods for trajectory optimization. Journal

of Guidance Control and Dynamics, 21(2):193�207, 1998.

[6] A Björck. Numerical methods for least squares problems. Discrete & Con-

tinuous Dynamical Systems-A, 51, 1996.

[7] K N Blazakis, A Madzvamuse, and CC Reyes-Aldasoro. Whole cell tracking

through the optimal control of geometric evolution laws. J of Computational

Physics, 297:495�514, 2015.

[8] B Bozzini, M C D'Autilia, C Mele, and I Sgura. Dynamics of zinc-air battery

anodes: an electrochemical and optical study complemented by mathematical

modelling. Memory n 37.009, Proceeding 37◦ AIM Congress, 2018.

[9] B Bozzini and G Gambini. Weakly nonlinear analysis of turing patterns in a

morphochemical model for metal growth. Comp. & Math. App, 70(8):1948�

1969, 2015.

129



[10] B Bozzini, D Lacitignola, and I Sgura. Spatio-temporal organization in alloy

electrodeposition: a morphochemical mathematical model and its experi-

mental validation. Journal of Solid State Electrochemistry, 17(2):467�479,

2013.

[11] C G Broyden. The convergence of a class of double-rank minimization algo-

rithms. Journal Inst. Math. Applic., 6:76�90, 1970.

[12] R Bulirsch, E Nerz, HJ Pesch, and O von Stryk. Combining direct and

indirect methods in optimal control: Range maximization of hang glider.

Optimal control, pages 327�288, 1993.

[13] M Burger and W Mühlhuber. Iterative regularization of parameter identi-

�cation problems by sequential quadratic programming methods. Inverse

Problem, 18:943�969, 2002.

[14] J C Butcher. Implicit runge-kutta processes. Math. Comp, 18:50�64, 1964.

[15] E Campillo-Funollet, C Venkataraman, and A Madzvamuse. Bayesian pa-

rameter identi�cation for turing systems on stationary and evolving domains.

Bulletin of mathematical biology, 81(1):81�104, 2019.

[16] T F Coleman and Y Li. On the convergence of re�ective newton methods

for large-scale nonlinear minimization subject to bounds. Mathematical Pro-

gramming, 67(2):189�224, 1994.

[17] T F Coleman and Y Li. An interior, trust region approach for nonlinear

minimization subject to bounds. Journal on Optimization, 6:418�445, 1996.

[18] O Cots, J Gerguard, and D Goubinat. Direct and indirect methods in opti-

mal control with state constraints and the climbing trajectory of an aircraft.

Optim. Control Appl. Meth, pages 1�22, 2017.

[19] W Croft, C M Elliott, and G Ladds. Parameter identi�cation problems in

the modelling of cell motility. J of Mathematical Biology, 71:399�436, 2015.

[20] M C D'Autilia, I Sgura, and B Bozzini. Parameter identi�cation in ode

models with oscillatory dynamics: a fourier regularization approach. Inverse

Problem, 33(12):124009, 2017.

130



[21] M C D'Autilia, I Sgura, and V Simoncini. Matrix-oriented discretiza-

tion methods for reaction-di�usion pdes: comparisons and applications.

arXiv:1903.05030, 2019.

[22] J E Dennis and R B Schnabel. Numerical methods for unconstrained opti-

mization and nonlinear equations. Englewood Cli�s, NJ Prentice-Hall, 1983.

[23] P Deu�hard and S Röblitz. A guide to numerical modelling in systems

biology. Springer, 12, 2015.

[24] T Dierkes, S Röblitz, M Wade, and P Deu�hard. Parameter identi�cation in

large scale kinetic networks with bioparkin. CoRR, abs/1303.4928, 2013.

[25] H Egger, T Kugler, and N Strogies. Parameter identi�cation in semilinear

hyperbolic system. Inverse Problem, 33, 2017.

[26] S P Eller, Y Seifu, and R H Smith. Fitting population dynamic models to

time-series data by gradient matching. Ecology, 83:2256�2270, 2002.

[27] H Engl, M Hanke, and A Neubauer. Regularization of inverse problems.

Mathematics and Its Applications, Vol. 375, 1996.

[28] F Feng, P Edström, and M Gullikssone. Levenberg-marquardt methods for

parameter estimation problems in the radiative transfer equation. Inverse

Problem, 23:879�891, 2007.

[29] R Fletcher. A new approach to variable metric algorithms. Computer Jour-

nal, 13:317�322, 1970.

[30] J Frank, W Hundsdorfer, and J G Verwer. On the stability of implicit-explicit

linear multistep methods. Appl. Numer. Math., 25:193�205, 1997.

[31] M R Garvie, P K Maini, and C Trenchea. A methodology for parameters

identi�cation in turing systems. 2009.

[32] M R Garvie, P K Maini, and C Trenchea. An e�cient and robust numerical

algorithm for estimating parameters in turing systems. J. of Computational

Physics, 229:7058�7071, 2010.

131



[33] M R Garvie and C Trenchea. Identi�cation of space-time distributed pa-

rameters in the gierer-meinhardt reaction-di�usion system. J Appl Math.,

74(1):147�166, 2014.

[34] R Giering and T Kaminski. Recipes for adjoint code construction. ACM

Trans Math Softw., 24:437�474, 1998.

[35] R Glowinski. Finite element methods for incompressible viscous �ow. Hand-

book of Numerical Analysis, 9, 2003.

[36] E Hairer, C Lubich, and G Wanner. Geometric numerical integration illus-

trated by the störmer verlet method. Acta Numerica, 12:399�450, 2003.

[37] E Hairer, S P Nø rsett, and G Wanner. Solving ordinary di�erential equation

i, nonsti� problems. Springer, Berlin, 2nd ed., 1993.

[38] P J Hansen. Rank-de�cient and discrete ill-posed problems: numerical as-

pects of linear inversion. SIAM, 4, 1998.

[39] J Hauser. A projection operator approach to the optimization of trajectory

functionals. IFAC world congress, 15, 2002.

[40] M Hochbruck and A Ostermann. Exponential integrators. Acta Numerica,

19:209�286, 2010.

[41] C Hogea, C Davatzikos, and G Biros. An image-driven parameter estimation

problem for a reaction-di�usion glioma growth model with mass e�ects. J of

Mathematical Biology, 56:793�825, 2008.

[42] B Jin and P Maass. Sparsity regularization for parameter identi�cation prob-

lems. Inverse Problem, 28, 2012.

[43] J Kaipio and E Somersalo. Statistical and computational inverse problems.

Springer, New York, 2006.

[44] E A Kendall. An introduction to numerical analysis. John Wiley & Sans,

1988.

[45] I Krastev and M T M Koper. Pattern formation during the electrodeposition

of a silver-antimony alloy. Phys A., 2013:199�208, 1995.

132



[46] D Lacitignola, B Bozzini, M Frittelli, and I Sgura. Turing pattern formation

on the sphere for a morphochemical reaction-di�usion model for electrode-

position. Communications in Nonlinear Science and Numerical Simulation,

48:484�508, 2017.

[47] D Lacitignola, B Bozzini, and I Sgura. Spatio-temporal organization in a mor-

phological electrodeposition model: Hopf and turing instabilities and their

interplay. European Journal of Applied Mathematics, 26:143�173, 2015.

[48] A S Lawlwss, M J P Cullen, M A Freitag, S Kindermann, and R Scheichl.

Variational data assimilation for very large environmental problems. Large

Scale Inverse Problems: Computational Methods and Applications, 13:55�90,

2013.

[49] S Lenhart and J T Workman. Optimal control applied to biological mod-

els. Chapman & Hall/CRC Mathematical and Computational Biology Series,

2007.

[50] P Liu, J Shi, Y Wang, and X Feng. Bifurcation analysis of reaction-di�usion

schakenberg model. J Math Chem, 51:2001�2019, 2013.

[51] B Macdonald and D Husmeier. Gradient matching methods for computa-

tional inference in mechanistic models for systems biology: A review and

comparative analysis. Frontiers in bioengineering and biotechnology, 3:180,

2015.

[52] A Madzvamuse. Time-stepping schemes for moving grid �nite elements ap-

plied to reaction-di�usion systems on �xed and growing domains. Journal of

Computational Physics, 214:239�263, 2006.

[53] A Madzvamuse and AHW Chung. Fully implicit time-stepping schemes and

non-linear solvers for systems of reaction-di�usion equations. Applied Math-

ematics and Computation, 244:361�374, 2014.

[54] P Maini and H Othmer. Mathematical models for biological pattern forma-

tion. The IMA Volumes in Mathematics and its Applications - Frontiers in

application of Mathematics, 2001.

133



[55] D W Marquardt. An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial and Applied Mathematics,

11:431�441, 1963.

[56] MATLAB. R2015a. The MathWorks Inc., Natick, Massachusetts, 2015.

[57] H Mena, A Ostermann, L M Pfurtscheller, and C Piazzola. Numerical low-

rank approximation of matrix di�erential equations. J. Comp.Applied Math-

ematics, 340:602�614, 2018.

[58] K W Morton and D F Mayers. Numerical solution of partial di�erential

equations. Cambridge University Press, 2005.

[59] D P Moualeu-Ngangue, R Röblitz, R Ehrig, and P Deu�hard. Param-

eter identi�cation in a tuberculosis model for cameroon. PLoS ONE,

10(4):e0120607, 2015.

[60] I M Navon. Practical and theoretical aspects of adjoint parameter estima-

tion and identi�ability in meteorology and oceanography. Dynamics of At-

mospheres and Oceans, 27:55�79, 1988.

[61] M G Neubert and H Caswell. Alternatives to resilience for measuring the

responses of ecological systems to perturbations. Ecology, 78:653, 1997.

[62] M G Neubert, H Caswell, and Murray J D. Alternatives to resilience for

measuring the responses of ecological systems to perturbations. Math. Bio-

sciences, 175:1�11, 2002.

[63] J Nocedal and S J Wright. Numerical optimization. Springer-Verlag, New

York, 1999.

[64] L S Pontryagin, V Boltyanskii, R Gamkrelidze, and E Mishchenko. The

mathematical theory of optimal control processes. L. W. Neustadt, Inter-

science, New York, 1962.

[65] A Quarteroni, R Sacco, and F Saleri. Numerical mathematics. Springer-

Verlag, New York, 2000.

[66] A V Rao. A survey of numerical method for optimal control. Advances in

the Astronautical Sciences, 135(1):497�528, 2009.

134



[67] K Ratkovic. Limitations in direct and indirect methods for solving optimal

control problems in growth theory. Industrija, 44:19�46, 2016.

[68] M R Ricard and S Mischler. Turing instabilities and hopf bifurcation. J

Nonlinear Sci, 19:476�496, 2009.

[69] S Röblitz, C Stötzel, P Deu�hard, H M Jones, D O Azulay, P H van der Graaf,

and S W Martin. A mathematical model of human menstrual cycle for the

administration of gnrh analogues. Journal of theoretical Biology, 321:8�27,

2013.

[70] J Ruuth. Implicit-explicit methods for reaction-di�usion problems in pattern

formation. J. Math. Biol., 34:148�176, 1995.

[71] A Saccon, J Hauser, and A P Aguiar. Optimal control on lie groups: The

projection operator approach. IEEE Transactions on Automatic Contro,

58(9):2230�2245, 2013.

[72] J M Sanz-Serna. Symplectic runge-kutta schemes for adjoint equations, au-

tomatic di�erentiation, optimal control and more. Automatic Di�erentiation,

Optimal Control, and More, 58(1):3�33, 2016.

[73] J M Sanz-Serna and M P Calvo. Numerical hamiltonian problems. Chapman

and Hall, London, 1994.

[74] R Scherer and H Turke. Re�ected and transposed runge-kutta methods. BIT,

23:262�266, 1983.

[75] J Schnakenberg. Simple chmical reaction system with limit cycle behaviour.

J Theor Biol, 81:389�400, 1979.

[76] G Settanni and I Sgura. Devising e�cient numerical methods for oscillating

patterns in reaction�di�usion systems. Journal of Computational and Applied

Mathematics, 292:674�693, 2016.

[77] G Settanni and I Sgura. Devising e�cient numerical methods for oscillating

patterns in reaction-di�usion system. J. Comput. Appl. Math., 292:674�693,

2016.

135



[78] I Sgura and B Bozzini. Xrf map identi�cation problems based on a pde

electrodeposition model. J. Phys. D: Appl. Phys., 50(15):154002, 2017.

[79] I Sgura, B Bozzini, and D Lacitignola. Numerical approximation of Turing

patterns in electrodeposition by ADI methods. Journal of Computational

and Applied Mathematics, 236(16):4132�4147, 2012.

[80] I Sgura, B Bozzini, and D Lacitignola. Numerical approximation of tur-

ing patterns in electrodeposition by adi methods. J. Comput. Appl. Math.,

236(16):4132�4147, 2012.

[81] I Sgura, A S Lawless, and B Bozzini. Parameter estimation for a mor-

phochemical reaction-di�usion model of electrochemical pattern formation.

Inverse Problems in Science and Engineering, pages 1�30, 2018.

[82] V Simoncini. Computational methods for linear matrix equations. SIAM

Review, 58(3):377441, 2016.

[83] M Stoll, J W Pearson, , and Maini P K. Fast solvers for optimal control

problems from pattern formation. Journal of Computational Physics, 304:27�

45, 2016.

[84] A M Stuart. Inverse problems: a bayesian perspective. Acta Numer., 19:451�

559, 2010.

[85] S Subchan and R �bikowski. Computational optimal control, tools and prac-

tice. John Wiley & Sons Ltd, 2009.

[86] A Tarantola. Inverse problems theory and methods for model parameter

estimation. SIAM, 89, 2005.

[87] E Trélat. Contrôle optimal: théorie et applications. Collection �Mathéma-

tiques Concrètes�. Vuibert Paris (In French), 2005.

[88] E Trélat. Optimal control and applications to aerospace: some result and

challenges. Journal of Optimization Theory and Applications, 154(3):713�

758, 2012.

136



[89] A M Turing. The chemical basis of morphogenesis. Philosophical Trans-

actions of the Royal Society of London. Series B, Biological Sciences,

237(641):37�72, 1952.

[90] P J Van Der Houwen and B P Sommeijeir. Explicit runge-kutta(-nystrom)

methods with reduced phase errors for computing oscillating solution. Jour-

nal on Numerical Analysis, 24:595�617, 1987.

[91] O von Stryk and R Bulirsch. Direct and indirect methods for trajectory

optimization. Annals of Operation Research, 37:357�373, 1992.

[92] MWöbbekind, A Kemper, C Büskens, and M Schollmeyer. Nonlinear param-

eter identi�cation for ordinary di�erential equations. Proceedings in Applied

Mathematics and Mechanics, 13:457�458, 2013.

[93] F Zama. Numerical parameters estimation in models of pollutant transport

with chemical reaction. IFIP Conference on System Modeling and Optimiza-

tion, pages 574�556, 2011.

[94] T Zhou, W Dubitzky, O Wolkenhauer, K H Cho, and H Yokota. Relaxation

oscillation. Encyclopedia of Systems Biology. Springer, New York, 2013.

137


