
TESI DI DOTTORATO

Nicola Felice Capece

Image processing in 2D/3D Computer Graphics
with Deep Supervised Learning

Dottorato in Matematica ed Informatica, Salento (2019).

<http://www.bdim.eu/item?id=tesi_2019_CapeceNicolaFelice_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi
di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte
le copie di questo documento devono riportare questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2019_CapeceNicolaFelice_1
http://www.bdim.eu/

Image processing in 2D/3D
Computer Graphics with Deep

Supervised Learning

Nicola Felice Capece

University of Salento and University of Basilicata

This dissertation is submitted for the degree of
Doctor of Philosophy in Mathematics and Computer Science

University of Salento and
University of Basilicata April 2019

Advisor:
Dr Ugo Erra

Abstract

Supervised learning is a learning paradigm derived from different Machine
Learning algorithms. The idea of this approach is based on the mechanisms
facilitating the functioning of the human brain. Human beings learn and
recognize objects and their details from birth, through observation and associ-
ation to specific categories to which they belong. In a similar way, supervised
learning seeks to train intelligent systems using ideal examples, which consist
of desired input and output coupled, through which the system learns to
recognize and classify the objects that belong to the same domain. Today
such learning paradigms are extensively used in Deep Learning contexts.
This thesis presents a multi-layered study of the use of supervised learning,
focusing particularly on Multilayer Perceptrons and Convolutional Neural
Network, but due attention is also given to other approaches. The goal is to
demonstrate how the use of this paradigm and deep learning can tackle and
simplify different computer graphics problems, from the rendering field to
computational photography. All this is represented from a unique common
denominator, the Graphics Processing Unit (GPU), which is the basis of the
success and the evaluations of deep learning and all its aspects.
Several studies and experiments performed at the University of Basilicata and
the National Research Council of Pisa are presented. The obtained results
suggest how this technology can play a leading role in the future progress of
computer graphics and more generally, computer science.

Table of contents

List of figures xi

List of tables xvii

1 Introduction 1
1.1 Motivations . 6

2 Background 9
2.1 Deep Learning . 9

2.1.1 Artificial Neural Network 10
2.1.2 Feed-Forward Neural Network 10
2.1.3 Convolutional Neural Network (CNN) 12
2.1.4 U-Net . 17

2.2 Learning Paradigms . 19
2.2.1 Supervised Learning Paradigm 19
2.2.2 Unsupervised Learning Paradigm 20
2.2.3 Reinforcement Learning Paradigm 21

2.3 GPU Authority . 22

3 Coin Recognition System 25
3.1 Overview . 25

3.1.1 Implementation Details 26
3.1.1.1 Dataset and Classification Model definition 29

viii Table of contents

3.1.1.2 Creation of the Classification Model . . . 30
3.1.1.3 Inferences 31

3.2 Client Server REST Architecture 31
3.3 Training Phase . 34

3.3.1 Results . 35
3.4 Discussion . 37

3.4.1 Details on AlexNet and Training Configuration . . . 38

4 Ambient Occlusion Baking 41
4.1 Overview . 41
4.2 Feed Forward Neural Network Approach 45

4.2.1 Representation . 45
4.2.2 Training . 47
4.2.3 Rendering . 48

4.3 Experimental Results . 49
4.4 Discussion . 52

4.4.1 The Z-Buffer problem 54

5 Night time to Day time Approach 57
5.1 Overview . 57
5.2 Fully Convolutional Neural Network 58
5.3 Experimental Results . 64
5.4 Discussion . 70

5.4.1 Details on VGG Convolutional Network 70
5.4.2 Details on Residual Learning Network 71

6 Deep Flash face photos 75
6.1 Overview . 75
6.2 Turning a Flash Selfie into a Studio Portrait 77

6.2.1 Deep Neural Network 77
6.2.2 Training . 79

Table of contents ix

6.2.3 Problem Encoding 81
6.2.4 Loss Function . 83

6.3 Experimental Setup - Dataset Creation 85
6.4 Results . 86

6.4.1 Comparison with reconstructed Ground Truth 87
6.4.2 Comparison with other approaches 90

6.4.2.1 Comparison with HDRNet 92
6.4.2.2 Comparison with Pix2Pix 94

6.4.3 Comparisons with Style Transfer 98
6.5 Discussion . 99

6.5.1 Limitations . 101

7 Deep Chroma Key 103
7.1 Overview . 103
7.2 U-Shape Convolutional Neural Network Architecture 106

7.2.1 Decoder . 107
7.3 Deep Neural Network for the Chroma Key 108

7.3.1 Dataset Collection 111
7.4 Training Step . 114
7.5 Results . 115

7.5.1 Evaluation methods 115
7.5.2 Unfiltered Dataset Results 116
7.5.3 Filtered Dataset Indoor Results 121
7.5.4 Filtered Dataset Outdoor Results 125
7.5.5 Improvements . 127

7.6 Comparisons and Applications 129
7.7 Discussion . 134

7.7.1 Advantages . 135
7.7.2 Limitations and Directions 136

x Table of contents

8 Overall Discussion 137
8.1 Generalization and Training Problems 137

8.1.1 Rules of Dataset definition 139
8.1.2 Overfitting and Underfitting 141
8.1.3 Vanishing gradient problem 143

8.2 Future Research Directions 145
8.2.1 Generative Adversarial Networks 145

9 Related Work 147
9.1 Deep Learning . 147
9.2 Coin Classification . 148
9.3 Real-Time Ambient Occlusion 149
9.4 Global Illumination and Neural Networks 150
9.5 Day Time to Night Time Translation 150
9.6 Computational Photography and Deep Learning trend 152

9.6.1 Flash Photography 152
9.6.2 Deep Learning and Computational Photography . . . 152

9.7 Deep Chroma Key . 153
9.7.1 Chroma Key Effect 153
9.7.2 Deep Learning and Image Semantic Segmentation . 154

10 Conclusion 157

Appendix A Comprehensibility of the Deep Learning Terminology 161

References 171

Index 193

List of figures

2.1 A basic example of feed-forward neural network and the
comparison between the biological and artificial neuron. . . 11

2.2 A classifier based on Convolutional Neural Network. 12
2.3 Convolutional Neural Network concepts. 13
2.4 Typical non-linear activation functions used in convolutional

neural network. 15
2.5 Logistic Sigmoid and Hyperbolic Sigmoid activation function 16
2.6 The max and average pooling operations. 17
2.7 An example of U-Net convolutional neural network. 18
2.8 Supervised Learning Paradigm structure and work flow. . . . 19
2.9 Unsupervised Learning Paradigm work flow. 20
2.10 Reinforcement Learning schema of its behind mechanism. . 21
2.11 Diagram and the graphic representation of a generic neural

network through the Tensorflow framework. 22

3.1 The architecture of AlexNet, a convolutional neural network
proposed by Alex Krizhevsky et al. [86]. 27

3.2 A coin recognition system proposed architecture. 32
3.3 The use of the mobile app. A very simple interface that enable

the user to classify coins in real-time. 33
3.4 Loss training, accuracy validation and loss validation for the

best obtained classification model. 36

xii List of figures

3.5 The partial euro coins used to test the neural network. 37

4.1 Occlusion maps computed through Screen Space Ambient
Occlusion and Offline Ambient Occlusion algorithms 42

4.2 Raytraced Ambient Occlusion: a most used method to solve
the Ambient Occlusion integral. 43

4.3 Real-Time Ambient Occlusion: a very used method is Screen
Space Ambient Occlusion. 43

4.4 The acyclic feed-forward neural network, which defines a
mapping from 16 sample normals in object space to the output
Ambient Occlusion. 46

4.5 An example of normals and Ambient Occlusion values sam-
pling operation. 47

4.6 Rendering phase by using a trained feed-forward neural network 49
4.7 A visual comparison of Happy Buddha among the different

hidden neurons configuration 50
4.8 A visual comparison of Stanford Bunny among the different

hidden neurons configuration 50
4.9 Visual comparison of Dragon 3D model among the different

neural network configurations. 50
4.10 Stanford Lucy 3D model and the comparison among the three

different neural network configurations 51
4.11 Close-up of ambient occlusion results. 51
4.12 The effect of the introduction of the depth-buffer in the dataset

and in the training of the neural network 54

5.1 The architecture of our own Fully Convolutional Neural Net-
work. 59

5.2 Details on the proposed residual learning net 61
5.3 The plotted graph of truncated normal distribution with a

classic bell curve shape. 64

List of figures xiii

5.4 Example of the night-to-day conversion on the real environment. 65
5.5 Comparison between 1,000 and 6.6 million of iterations. . . 66
5.6 Another example of inferences results obtained after 1,000

and 6.6 million of iterations. 66
5.7 Results of the Unreal Engine outdoor scene. 68
5.8 Other results obtained by using Unreal Engine outdoor scene. 68
5.9 Results obtained by using the Unreal Engine indoor scene. . 69
5.10 Other results obtained by using Unreal Engine on the same

indoor scene. 69
5.11 The figure shows the residual block. 72

6.1 Two examples from our flash no flash approach. 76
6.2 Our neural network architecture for transforming a flash im-

age into a non-flash image. 78
6.3 Each row of the table shows a possible (and tested) encoding

of the problem. 81
6.4 Accuracy trend in the validation set at the end of training the

convolutional neural network. 87
6.5 Samples of validation data: original flash, bilateral filtered

flash, reconstructed and ground truth reconstructed images. . 90
6.6 Training set example: original input, image reconstructed and

ground truth reconstructed are shown. 91
6.7 Test set example: original input, image reconstructed and

ground truth reconstructed are shown. 92
6.8 Two example of a real images. 93
6.9 A comparison between HDRNet end-to-end training and our

approach. 95
6.10 An example of comparisons between HDRNet (combined

with our problem encoding) and our approach. 95
6.11 A comparison between Pix2pix end-to-end training and our

approach. 97

xiv List of figures

6.12 An example of comparisons between Pix2Pix (with our prob-
lem encoding) and our approach. 98

6.13 An example of visual comparisons between the Portrait Style
transfer and our approach. 100

7.1 Some examples of functioning and results obtained with our
approach. 104

7.2 The used U-shape Net, developed from the SegNet [6] archi-
tecture. 107

7.3 A label overlay of a training image. The background pixels
(light blue), are more frequent with respect to the foreground
pixels (red). The frequency of foreground pixels in the train-
ing dataset is 11.16%, and the frequency of background pixels
is 88.84%. 110

7.4 Example of pre-processing phase. 111
7.5 Comparison between an unfiltered image and the correspond-

ing image filtered with the bilateral filter. 113
7.6 Results related to the test dataset after training using the

unfiltered dataset. 119
7.7 Results of real images, taken directly with a camera, querying

the network after training with the unfiltered dataset. 120
7.8 Results of the filtered test dataset for the chosen indoor area. 123
7.9 Results of real images, taken directly with a camera, querying

the network after training with the filtered dataset related to
the chosen indoor area. 124

7.10 Results of the filtered test dataset for the chosen outdoor area. 126
7.11 Results of real images, taken directly with a camera, querying

the network after training with the filtered dataset for the
chosen outdoor area. 127

7.12 Improvements in the neural network result. 128

List of figures xv

7.13 The images show the results obtained with Adobe Photoshop
Select Subject on a subset of our filtered test dataset for the
indoor area. 131

7.14 The images show our results on the same test set by using
Adobe Photoshop Select Subject 7.13 132

7.15 Results obtained with Select Subject on real images taken
directly with a camera. 133

7.16 The trimap generated through our network output. 134

8.1 The graph represents: Underfitting, Good Model and Overfitting142
8.2 A visual interpretation of the vanishing gradient problem. . . 144
8.3 The classical architecture of the Generative Adversarial Net-

work. 146

A.1 The gradient descent algorithm. 162
A.2 The application of bilinear interpolation. 168
A.3 The bilinear interpolation. 169

List of tables

3.1 Training dataset and classification models with their related
parameters of our approach. 34

3.2 Test performed on the trained classification models. The best
model is shown. 35

4.1 Structural Similarity Index between three neural network output 52
4.2 Comparison between the three neural networks, Mara et al.

[100], and vertex attributes rendering 52

6.1 Loss validation and loss test after 62 epochs. This table also
shows the maximum accuracy achieved in both phases. . . . 89

6.2 The Structural Similarity Index of the reference images. . . . 89
6.3 Comparisons on samples of the training, validation, and test

sets (HDRNet). 96
6.4 Comparisons on samples of the training, validation, and test

sets (Pix2Pix). 99

7.1 The metric values of the whole test dataset for the network
trained with the unfiltered dataset. 117

7.2 The metrics obtained by considering each class with respect
to the unfiltered test dataset. 117

7.3 Results of the test carried out on the network after training
with the unfiltered dataset. 117

xviii List of tables

7.4 The metric values of the whole test dataset for the network
trained with our filtered dataset for an indoor area. 121

7.5 The metrics obtained by considering each class with respect
to the filtered test dataset for an indoor area. 121

7.6 The confusion matrix related to the test carried out on the
network after training with the filtered dataset for an indoor
area. 121

7.7 The metric values of the whole test dataset for the network
trained with our filtered dataset for the chosen outdoor area. . 125

7.8 The metrics obtained by considering each class with respect
to the filtered test dataset for the chosen outdoor area. 125

7.9 The confusion matrix related to the test carried out on the
network after training with the filtered dataset for the chosen
outdoor area. 125

7.10 The first row shows the metric values obtained using the
results of Photoshop Select Subject on a subset of our filtered
test dataset for the indoor area. The second row shows the
results of our network using the same test subset. 129

7.11 The metrics for each class obtained using the results of Photo-
shop Select Subject and our results on a subset of our filtered
test dataset for the indoor area 130

7.12 The confusion matrix related to the test carried out using
the results of Photoshop Select Subject and our results on a
subset of our filtered test dataset for the indoor area. 130

Chapter 1

Introduction

Machine learning is a set of methods that explores the study and construction
of algorithms that can learn from input data and perform predictions on
them. Deep Learning represents a subset of such methods containing learning
models inspired by the structure and functioning of the human brain. As in the
human brain, deep learning algorithms can process data at non-linear levels
allowing computers to learn and perfect increasingly complex functionality.
The goal of deep learning is to develop computational models, which consist
of multiple processing layers used to learn data representation at multiple
abstraction layers based on a hierarchy of concepts [56].

In recent years, deep learning has been used in more applicative contexts,
e.g., obstacle detection in the automotive field [125], [38]; in the medical field
to identify cancer cells [49],[30],[32]; industrial automation to avoid accidents
at work [49],[30],[32]; electronic field, auditory and vocal translations [37].
However, the use of deep learning has been growing more and more in all
aspects of the Computer Graphics field, such as computational photography,
real-time rendering, semantic segmentation and so on, where deep learning is
taking on an increasingly crucial role [6], [53], [42], [45], [112].

Typically an Artificial Intelligence system needs to manually extract fea-
tures from data. These features are then used in the next steps to create a

2 Introduction

predictive model (e.g., image objects classification). For many tasks, it is not
easy to determine the best features to extract, especially in images analysis,
because they are affected by highlights such as lighting variations, shadows,
reflects, etc. In deep learning instead, the features are extracted automatically
and an end-to-end learning is performed, through which the Artificial Intelli-
gence learns how to process data and perform tasks automatically. However
this mechanism suffers from a complex and difficult to eradicate problem i.e.,
the need for significant amounts of training data.

Deep Learning is often approached to the Big Data concept because the
main limitation of the deep learning algorithms is the requirement of a huge
amount of training data which allows a correct convergence. In general, the
Big Data term refers to a collection of so extensive data in terms of volume,
speed an variety, requiring technology and specific analytic methods to ex-
tract values and knowledge [36]. Big Data life cycle is composed of principal
processes that can be grouped into two main categories: (i) Big Data Manage-
ment, which includes processes and technologies for acquisition and storage
of Big Data and the preparation and recovery of themselves; (ii) Big Data
Analytics, which includes the used processes for information analysis and
acquisition useful from huge dataset to interpret and describe the past through
a descriptive analytics process, predict the future through predictive analytics
process or recommend actions through prescriptive analytics process [47].
Deep Learning plays an important role in the Big Data analytics solutions,
in which deep and refined architectures are required to process large amount
of data in real-time, with high accuracy and effectiveness. Traditional tech-
niques have different limitations in a wide amount of data processing. In the
last years, through the social media notoriety such as Facebook, Twitter and
YouTube, a huge amount of data are collected, through the billions of users’
contribution [72]. In the Big Data Analytics context, it is necessary a good
data representation in order to allow high performance of traditional machine
learning algorithms, even if they are simple algorithms. On the other hand, a

3

poor data representation can cause performance decreasing also with complex
learning algorithms. The traditional machine learning algorithms are based on
fundamental feature engineering concept [114], which represents the usage
process of the knowledge domain in order to create features which allow the
work of machine learning algorithms. This concept is very important but
represents a very hard and expensive process and can be avoided through the
feature learning concept [10]. Such concept describes a set of techniques
which allow the system to discover automatically data representations and
correlations. Deep learning fits perfectly in this context because it is able
to learn and extract automatically data representation using supervised or
non-supervised learning techniques. For this reason, it is used to deal with
Big Data problems in an efficient way, such as the encoding and indexing
of themselves, information retrieval, etc. Thanks to computational power
and data size, deep learning finds considerable benefits in this area, indeed
through the recent GPU-based framework, the training time for complex deep
learning models is noticeably reduced, from several weeks to less than a day.

L.Y. Prat in 1993 [126] conceived of the concept of Transfer Learning,
which permits the exploitation of the "knowledge" obtained from Artifi-
cial Intelligence in specific tasks and its reuse in similar but different tasks
(e.g., Artificial Intelligence knowledge that performs face classification can
be applied to another Artificial Intelligence for face segmentation). More
and more approaches based on deep learning use the transfer learning con-
cept [150] [42] [117] [131] [83]. The advantage of this method is its capacity
to train Artificial Intelligence systems using limited amounts of data, by
exploiting the obtained knowledge as a training base [119].

All discussions of deep learning also indirectly refer to a neural network,
called in more appropriate terms deep neural network. A deep neural net-
work is a neural network that consists of several depth layers. A particular
type of deep neural network often used in image recognition tasks is called
convolutional neural network, whose spatial architecture is structured to take

4 Introduction

advantages from the use of multidimensional data (tensors) such as images.
Generally, neural networks consist of different layers, each of them composed
of numerous artificial neurons. Each neuron is connected to the others through
weighted arches called synapses, defining a fully connected neural network.
Convolutional Neural Network’s layers are composed of data volumes called
tensors. In this type of neural network, each neuron is not connected to
all those of the subsequent layer as in fully connected neural networks, but
groups of them, called receptive fields are connected to the neurons of the
next layer. In this case, neurons of one layer are connected to the neuron of
the next layer through local connectivity. In general, neural networks analyse
the input and recognize and classify it through automatic learning algorithms.

In this thesis, we investigate the use of deep learning through supervised
learning paradigms in the 2D and 3D computer graphics field, addressing
classification and regression problems. In particular, a first task concerns the
deep learning application for coin recognition [21]. In this task, we show how
a convolutional neural network can recognize and classify coins starting from
image analysis. During the training phase, we determinate the optimum di-
mension of the training dataset needed to achieve high classification accuracy
and low variance. Such a system is contextualized within the mobile world,
where we propose a client-server architecture RESTful based that allows the
users to identify the coins by taking pictures of them using smartphone cam-
eras. The image provided by the user is processed through the neural network
on a remote server and a prediction is performed based on the classification
model obtained in the training phase. This application is a test that can be
useful for numismatic experts in the complex coin classification tasks and it
is useful to quantify the amount of coins needed to achieve optimal results.

A second supervised learning task concerns real-time rendering. In partic-
ular, we propose an Ambient Occlusion baking method via a feed-forward
neural network [45]. The idea is based on the implementation of a multi-layer
perceptron that allows a general encoding via regression and an efficient

5

decoding through a simple GPU fragment shader. The non-linear nature
of multi-layer perceptrons makes them adaptable and efficient in capturing
non-linearities described through ambient occlusion values. Moreover, a
multi-layer perceptron is also random-accessible, it has a compact shape and
can be evaluated efficiently on GPU. Our approach is shown on Screen-Space
ambient occlusion based on a neural network taking into consideration its
quality, dimension and speed.

Based on previous works, we investigate the ability of deep learning
concerning variation in the lighting scheme on images. In particular, we show
how a convolutional neural network enables the simulation of artificial and
ambient light on images, addressing a case study that concerns the conversion
of night-time images to day-time images [22]. In this work, we illustrate
the architecture of the convolutional neural network and some preliminary
results of a real indoor environment and two virtual environments (indoor
and outdoor) rendered with a 3D engine. The experimental results confirmed
that a convolutional neural network is an interesting approach in the image
processing field.

Since the results were encouraging we deepened the study of the lighting
scheme on images. In this case, the focus is shifted to a huge problem in
the photographic field i.e., conversion of a flash photo to no flash photo. In
particular, the aim was to turn a flash selfie into a studio portrait [20]. The
proposed method uses a convolutional encoder-decoder neural network (see
U-Shape Network in Section 2.1.4) trained on a dataset composed of pairs of
photos taken in an ad-hoc acquisition campaign. Each pair consists of one
photo of a subject’s face taken with a smartphone camera flash ad another
one of the same subject in the same pose illuminated using a studio-lighting
setup. Our aim is to demonstrate that the proposed method can amend defects
introduced by a close-up camera flash, such as specular highlights, shadows,
skin, shine, and flattened images.

6 Introduction

In the previous work, we encountered the problem of the extraction of the
piece of the image that contains the shape of the actor in order to provide an
input for the convolutional neural network which is as precise as possible. The
idea is to identify the edges of the actor in images through the convolutional
neural network, in order to perform the Semantic Segmentation and the
Chroma Key effect. Although Chroma Key is a technique mainly used in
Cinema and TV, it has limitations, because it is not achievable easily and
quickly. In particular, it is necessary to maintain a separate illumination of
the uniform background and of the subject and avoid as far as possible some
shadows ending up in the frame. We propose a deep learning method to
overcome these limits.

1.1 Motivations

One of the goals of this thesis was to demonstrate the use of deep learning in
contexts where this technology had not been used yet. Thinking about the con-
text of offline global illumination, in applications such as Ray Tracing [76],
Photon Mapping [73], Ray-Traced Ambient Occlusion [88], [104] and oth-
ers techniques [135] which require geometric information of the rendered
scene and therefore a large amount of calculations and long computational
times. Moreover, these algorithms also need a high availability of memory
and computational resources to achieve high levels of photorealism. These
limits increase the difficulty of applying such algorithms in the real-time
field where fast calculations are necessary to obtain optimal results both in
terms of performance and computational resources. In general, a compro-
mise between quality and performance is often sought. In this context, deep
learning can play a decisive role generating the quality and the photoreal-
ism of offline algorithms with real-time performance [45], [112]. In the last
years there was a great increase in deep learning applications, especially
in the context of image-to-image translation. The use of deep learning has

1.1 Motivations 7

lead to obtain algorithms that allow to change the lighting scheme of im-
ages, improving their graphic quality. Thinking about removing flash effects
from images, there are many applications developed in pre-deep learning
era [123], [43] [4] and, although these applications have achieved excellent
results, the rise of deep learning has clearly exceeded their quality and their
limits [20], [149], [143], [68], [27][66], [176]. Remaining in the context of
image-to-image translation, it is possible to focus on the translation from
black and white images to colour images [28] or from night time images to
day time images [22] or to change the lighting of an image based on sunlight
at certain times of the day [95]. In this context the deep learning allowed to
obtain results that were unimaginable in the pre-deep learning era. In addition
to the purposes described above, our main motivations focus on the current
limits of deep learning, among which the development of optimal datasets
adapted to specific contexts (see Section 3). In fact, many of the works pro-
posed in this thesis have the aim to find the correct dimensions of the dataset
(see Section 3), to obtain optimal data quality and to use typology and data
pre-processing methods contextualized to the application field (see Sections 6
and 7). Another motivation concerns the difficulty to use the deep neural
network, in particular regarding the parameters and hyperparameters con-
figuration of the deep neural networks and the optimization algorithms (see
Appendix A) etc.

Thesis Structure. Chapter 2 provides an overview of the deep learning
core concepts and the supervised learning paradigm. Starting from the deep
learning definition in the Section 2.1 the focus will move to the different types
of Neural Networks 2.1.1, the different type of Learning Paradigms 2.2 and
the role of GPU through the more used deep learning frameworks.

Chapter 3 presents the coin classification problem, which helped us to
study how to structure a good dataset and the basics of convolutional neural
networks. Chapter 4 presents the application of deep learning for real-time

8 Introduction

computer graphics. In this case, the focus is on neural network performance in
terms of computational cost, memory space and the validity of deep learning
for the approximation of global illumination and image or scene colours.

Chapters 5, 6 and 7 show deep learning application to image processing.
In particular Chapters 5 and 6 show two approaches to solving image-to-
image translation. The first one is based on generic indoor and outdoor images
while the second one is used for specific images of faces.

An overall discussion on the unsolved or partially solved research ques-
tions is carried out in Chapter 8. In particular Section 8.1 presents the
generalization and training problems, Section 8.1.1 shows some rules for a
good dataset definition and the Sections 8.1.2 and 8.1.3 show the principal
problems that afflict deep neural networks. The last Section of Chapter 8
shows future deep learning directions 8.2, and also offers a brief overview of
the generative adversarial network. (see Section 8.2.1).

Chapter 9 shows the state of the art related to our presented applications
and finally, Chapter 10 shows the conclusion and the research questions we
tried to answer throughout this thesis.

Chapter 2

Background

In this chapter, we show some background information about the core con-
cepts of deep learning and supervised learning paradigm. An overview is
also shown on the other training paradigms and on the role of the GPU in the
context of deep learning.

2.1 Deep Learning

Deep Learning refers to a set of technique which learns multiple levels of
representation with a high level of features that represent multiple abstrac-
tion aspects of the data. A key concept of deep learning is definitely the
one concerning the feature learning algorithms, who deal with identify the
common patterns, to use them as the discriminant between the classes, both
for classification and regression problems. In deep learning, the convolutional
layers are excellent to extract automatically the features of images to the
next layer in order to form the hierarchy of non-linear features that grow in
complexity as it goes deep. To describe such process is possible to define
two steps: the first step consists in the non-linear features extraction by using
multiple levels, while the second step consists in passing these levels for
example to a classifier, which combines all features to perform a prediction.

10 Background

2.1.1 Artificial Neural Network

A basically neural network consists of connected nodes called artificial neu-
rons that are modeled on biological neurons. These simple nodes are often
called processing elements or units. Each neuron produces a sequence of
real-value activation [142]. Within the neural network, artificial neurons are
organized into layers. Artificial neurons in each layer are connected to upper
and lower layers through weighted arcs called synapses. A standard neural
network consists of three types of layer: input, hidden, and output. A layer is a
container that receives a weighted sum over the inputs, transforms it with a set
of non-linear functions, and passes these values as input to the next layer [11].
The first and last layers are called input and output layer respectively, while
all layers in between are called hidden layers. Input neurons are activated
by data provided through an external system. In contrast, output and hidden
neurons are activated by data provided from already activated neurons [142].
Each neuron is activated by an activation function, which receives weighted
data (matrix multiplication between input data and weights) and outputs a
non-linear transformation of it. Through the repetition of these steps, the
artificial neural network can learn multiple layers of non-linear features and
combine them to the last layer in order to perform a prediction. The learning
of the neural network is due to a loss signal, which is obtained from the
difference between the prediction and the corresponding real value, often
called ground truth. The loss is used to update the weights in order to get a
more accurate prediction, for this reason, it is an adaptive system.

2.1.2 Feed-Forward Neural Network

A Feed-Forward Neural Network is an artificial neural network where the
connections between the neurons of each layer do not create cycles. In this
type of network, the information crosses through a unique direction, from
the input layer forward to the output layer. It is able to resolve supervised

2.1 Deep Learning 11

learning problem, in fact after the training step a mapping is established, that
allows associating a set of possible input values to a set of output values, by
creating a mathematical relationship that is stored inside the weights of the
network. Such neural network is able to work in a continuous set of output
values, by performing regression tasks, or in discrete set of output values,
by performing classification tasks. As can be seen in the Figure 2.1, each
branch of the network is composed of weighted arcs, that allow generating a
priority relationship for the data computation inside the network. Typically
the weights are initialized in a random way and their values are modified
during the training step thought the backpropagation algorithm [91].

Fig. 2.1 A basic example of feed-forward neural network and the compar-
ison between the biological neuron and artificial neuron. In the figure is
represented a neural network with three layers, input, hidden and an output
layer. Inside the artificial neuron is represented a tansig non-linear activation
function.

Feed-forward neural network is also called Multilayer Perceptron which
is defined as the quintessential example of a deep learning model by I. Good-
fellow et al. [56]. Through the supervised learning paradigm it is able to learn
a mathematical function f : Rn → Ro, using a dataset which has n as input
dimension and o as output dimension. This algorithm has to be provided

12 Background

of a set of features X = x1,x2,x3, ...,xn and of a ground truth t, and learns a
non-linear function that binds both[54].

2.1.3 Convolutional Neural Network (CNN)

Feed Forward Neural Networks can be used also with a single hidden layer,
but when they are composed of several hidden layers the discussion focuses
on deep learning. However feed-forward neural networks do not take into
account the spatial structure of the input, especially in the image processing
context, where the spatial structure is crucial. Convolutional Neural Network
is specifically designed to address tasks that involve the images although it
can also be used in other contexts.

Fig. 2.2 A classifier based on Convolutional Neural Network. In this figure
is represented an example of the classifier of animals, each group of blocks
represent the feature maps and between one group and another, a convolutional
operation is performed.

Unlike the feed-forward neural network, the neurons of convolutional
neural network are organized in the width, height, and depth as dimensions.
In this case, depth means the dimension of the activation volume (activation
tensor) and not the depth of the network. Each layer of convolutional neural
network transforms an input tensor in an activation tensor formed by neurons.
In image processing task the input tensor is the image to be processed and the

2.1 Deep Learning 13

depth is represented through the R G B channels while the width and height
are the spatial dimensions of the Figure 2.2. Each neuron that belongs to the
hidden layers is only connected to a small, localized region of the previous
layer 1, called local receptive field 2.3.

Fig. 2.3 Convolutional Neural Network concepts: green matrix represent the
input tensor (e.g., image), the red square is the kernel size and the yellow
sub-tensor is a first local receptive field connected to the first hidden neuron.
When the convolution was performed then the kernel moving toward by left
to right until it reaches the last one. In each hidden neuron was performed
the non-linear activation function (e.g., Rectified Linear Unit). The right part
of the figure shows the basic feature of an input image that is the R G B
channels.

The local receptive fields are local in the width and height but complete
on the entire depth of input tensor. As can be seen in the figure 2.3, the
local receptive field is a small window of the previous layer that is moved
by one or more neurons based on a parameter called stride length and the
resulting local receptive field is connected to next hidden neuron of the
current hidden layer. Such movement continues until the current hidden
layer is built. Each connection learns a weight, while each hidden neuron
learns an overall bias. To be more precise, for all hidden neurons, are used

1 The previously layer can be the input layer, and in this case, the localized regions contain
the pixels.

14 Background

the same weights and biases, in order to allow the neurons to detect the
same features, but in different positions of the previous layer. This property
makes the convolutional neural network invariant to translation, allowing
to recognize the same image even if it is translated. Convolutional neural
network architecture can vary based on a type and number of layers, due
to the application context. Typically [90] a convolutional neural network
consists of a first part where the convolution2 and pooling are interchanged.
These operations gradually decrease the spatial dimension (width and height)
and increase the depth of activation tensor. Finally, at the end of this pyramid,
often some fully connected layers are staked. Convolutional neural network is
characterized by a predominant operation called convolution. The aim of this
operation is to extract the principal features from the image provided as input.
In particular, element-wise matrix multiplication between the input image
and a kernel 3 and the sum of the multiplication output are performed. The
kernel moves by as many pixels as indicated by the stride and the output of
convolution is called feature map or activation map. If the kernel has smaller
dimension than the input matrix, a sub-matrix which has the same dimension
of the kernel is considered step-by-step. If e.g., we consider an input with
dimension N×N and a kernel K with dimension m×m, the output dimension
of convolution will be (N −m+1)× (N −m+1) and the operation can be
summarized as follows:

yl
i, j = σ(xl

i, j), xl
i, j = b j +

m−1

∑
s=1

m−1

∑
t=1

Ks,tyl−1
(i+t)(j+s) (2.1)

Where xl
i, j is the input of the current layer, and yl−1

(i+t)(j+s) is the output of
the previous layer, due to the sum of its all elements, in particular, b j is the
shared bias and Ks,t is the shared weights that belong at the local receptive
field and σ is the non-linear activation function.

2 Convolution is often followed by activation function such as Rectified Linear Unit.
3 Kernel is often called convolutional filter.

2.1 Deep Learning 15

Fig. 2.4 Typical non-linear activation functions used in convolutional neural
network. The left image shows a standard Rectified Linear Unit and the right
image shows a Leaky Rectified Linear Unit.

A convolution is a linear operation, and since deep learning creates the
increasingly complex function for each layer, it needs to use a non-linear
activation function in order to create a new relationship between the elements.
A most used non-linear activation function in the convolutional neural network
is the rectified linear unit and its variants, which is applied to each non-
activated element of the feature map and replace the negative values with
zero values. In our applications we used the standard rectified linear unit and
a variant called Leaky Rectified Linear Unit [55], which are shown in the
Figure 2.4.

Although there are several type of non-linear activation functions(see
Figure 2.5), the rectified linear unit and its variants are the best choice in
more contexts, in particular for the image processing tasks, because they
proved to be the most efficient [111].

Another fundamental basic operation used in the convolutional neural
network is the Pooling function (see Figure 2.6). This operation generally
follows the convolutional layer and performs a spatial decrease of each feature

16 Background

Fig. 2.5 The left image shows the logistic sigmoid activation function and
the right image shows the hyperbolic tangent sigmoid activation function.
Such type of activation functions are more used in the binary classification
problems on the last layer and they can avoid exploding gradient problem.

map by keeping only the important information without decrease the depth of
activation tensor. There are several types of pooling: max, average, sum, [175]
etc. The most used is the max-pooling, which consists in the definition of a
preset size moving window on the input matrix, in order to keep the maximum
activation of each step of moving window. Among the advantages of max-
pooling there are following: (i) the dimension of the feature maps are smaller
and easier to manage; (ii) it decreases the amount of the parameters and
the computations of the network by controlling the overfitting problem; (iii)
the network is invariant to small transformations, distortions, translations of
the input images; (iv) it help to get an invariant scaled representation of the
images.

2.1 Deep Learning 17

Fig. 2.6 As can be seen, the image shows two examples of Max-Pooling and
Average-Pooling. The Max-Pooling is performed by sampling the maximum
value for each 2×2 window and the Average-Pooling performs the average
for each window of same dimension.

2.1.4 U-Net

A particular type of fully convolutional neural network is called U-Net (Figure
2.7) 4, which architecture was proposed from O. Ronneberger et al. [136]
for bio-medical image segmentation. Convolutional neural network can be
used in classification and regression tasks: in the first case, given an input
image, the corresponding output is a label that represents the belonging class;
in the second case, especially in the image processing tasks, the output results
are localized and are applied on each pixel. In particular, the authors of the
U-Net have extended the J. Long et al. [97] approach, by replacing pooling
operations with up-sampling operations, in order to increase the resolution of
the output. In this way, the convolutional neural network takes the U-shape
based on the well known encoder-decoder architecture. As can be seen in
the figure 2.7, the network is composed of two sub-networks, encoder and

4 U is due to the U-shape of the network architecture.

18 Background

decoder: the first sub-network consists of convolutional layers followed by
max-pooling operations, in order to perform the encoding of the image into
feature representations; the second sub-network, consists of up-sampling,
which can include the unpooling and deconvolution [6],[115] operations
followed by convolution operations.

Fig. 2.7 An example of U-Net convolutional neural network. The figure shows
the typical encoder-decoder structure: the left blocks framed in red, represent
the encoder sub-network; the right blocks framed in blue, represent the
decoder sub-network. The image shows also the operations performed inside
each sub-network. The yellow arrows represent the shortcut connections,
used to recover information from the encoder sub-network.

The main idea based on up-sampling operations can be explained as
an expansion of the feature size in order to adapt them to the dimensions
of the encoding blocks. In this way is also possible to recover the infor-
mation lost during the encoding phase by concatenating the feature map
obtained from each convolutional block in the encoding phase with the cor-
responding decoder block. The up-sampling operations issue was studied
enough [170][172], in particular, another interesting method was proposed
from V. Badrinarayanan et al. [6] which reuse the pooling indices in order
to reduce the computational costs without losing accuracy and obtaining
the high resolution output. In this thesis, for an easy understanding, we

2.2 Learning Paradigms 19

refer to U-shape Net for all used convolutional neural networks based on
encoder-decoder architecture due to their U shape.

2.2 Learning Paradigms

In this section will be shown an overview of the main learning paradigms
which characterize the deep learning. There are three main categories of learn-
ing paradigms: supervised learning, unsupervised learning and reinforcement
learning. Such paradigms are based on the type of experience obtained in the
training phase using an appropriate dataset which contains many examples.

2.2.1 Supervised Learning Paradigm

Fig. 2.8 The figure is divided into two parts: first part shows the training phase,
in particular the training dataset and labels are provided to the algorithm that
performs future extraction, training and evaluation of the model; the second
part shows the inference phase, where feature extraction is performed based
on new data and the result is obtained from the prediction.

As humans learn to distinguish objects from the real world through the
association of images, the supervised learning paradigm (Figure 2.8) allows

20 Background

neural networks to learn a function that is able to predict the correct output
value for each valid input provided to them, based on input-target pairs of
examples that represent a dataset experience. In more specific terms, in
the training phase, the neural network is provided with a series of inputs
which the outputs called targets or labels are known. The aim of super-
vised learning is to develop a function also called inductive hypothesis that
can replicate results obtained in the training phase using similar, but new,
structured input [139].

2.2.2 Unsupervised Learning Paradigm

Fig. 2.9 An unsupervised learning algorithm flow. Training performed by
using only training dataset without labels. The result is obtained in the
inference phase through the model prediction.

Such paradigm consists of providing neural network an input whose target
is not known a priori. In this case, the dataset consists of only input examples
and the learning algorithm has the aim of finding hidden structures not labelled
inside the input data. In more specific terms, the neural network take the
inputs that are provided and reclassifies and organizes them according to a

2.2 Learning Paradigms 21

set of shared features, in order to reason and make a prediction about any
subsequent input [41].

2.2.3 Reinforcement Learning Paradigm

Fig. 2.10 The schema shows the mechanism behind the reinforcement learning
paradigm. The agent performs an action at that influence the environment in
which is immersed. The agent is able to learn the mutation in the environment
due to the action through the reward rt , which consists of its performance
evaluations. The state st represents the current situation of the agent and the
rt+1 and st+1 represent the future reward whenever the agent performs an
action in a particular state.

Reinforcement Learning is based on the premise to receive feedback from
the external environment that influence the choices of the neural network.
In more specific terms, the neural network aims to identify a certain modus
operandi, starting with a process of observing the external environment. Each
action has an impact on the ambient, and it produces a feedback that drives
the algorithm itself in the learning process. Unsupervised learning algorithms
attempt to determine a policy aimed at maximizing the cumulative incentives
received during the training phase. These algorithms are different from
supervised learning algorithms because no input-target pairs are used in the

22 Background

training phase, but explicit interventions are performed during the training
process [75] [155].

2.3 GPU Authority

Today, GPU computing leverages the architecture parallelism to perform
mathematically compute-intensive operations that the CPU is not designed
well to handle [46]. In particular, GPUs definitely can be used to speed up
neural networks training. For this reason, several frameworks are developed
for training and use of deep neural networks. Most of them exploit GPU
acceleration and include Tensorflow [2], Caffe [74], Torch7 [31], Theano [12],
and others5.

Fig. 2.11 Diagram and the graphic representation of a generic neural network
through the Tensorflow framework. Rectangles represent the variables and
arrows the tensors.

5 Most popular Deep Learning Frameworks: https://developer.nvidia.com/deep-learning-
frameworks

2.3 GPU Authority 23

Tensorflow is a library written in C++ and CUDA6 and provided APIs for
Python, C++, Java and GO. For some of our applications, we used Python
programming language. To use Tensorflow, there are two main phases: (i) A
first phase, called construction phase, regarding the creation of the graph that
defines the training model and the task that the neural network has to perform;
(ii) A second phase, called run-time phase, in which the operations defined
in the previous phase are performed. Figure 2.11 shows a simple graph of a
classifier based on a feed-forward neural network. The ellipse-shaped icons
represent the mathematical operations that are performed on the tensors. The
rectangle-shaped icons represent the variables in the model and the arrows are
the tensors and their values that cross the graph in calculations. Starting from
the input tensor that can be seen from the first ellipsoid to the left of the Figure
2.11, which represents an image, there is a subsequent operation of reshaping
that transforms the image into a vector. The larger grey rectangles represent
the layers of the neural network in which the rectified linear unit activation
functions is defined. The final part of the graph represents the computing of
the loss function through the mean squared error, given from the prediction
of the neural network and the expected data. Subsequently the optimization
algorithm is performed, in the Figure 2.11 Stochastic Gradient Descent [14]
is represented. The last layer of the graph is responsible for updating the
weights using information provided by the gradient. This operation will be
repeated until the error will not be sufficiently small, or it will reach a number
of iterations defined a priori. Tensorflow is supported by front-end libraries
with a higher level of abstraction, like Keras7, Tensorlayer8 and others. In
particular, we used Tensorlayer for the case study described in Chapter 6.

Another most used deep learning framework is Caffe (Convolutional Ar-
chitecture for Fast Feature Embedding). Caffe introduces the blobs concept

6 Compute Unified Device Architecture, an hardware architecture for parallel processing
developed by NVIDIA: https://developer.nvidia.com/cuda-zone

7 Keras: https://keras.io/
8 Tensorlayer: https://tensorlayer.readthedocs.io/en/stable/

24 Background

that is a 4-dimensional data array which provides holding batches of images
and other data, unified memory interface, parameters or parameter update [74].
The main advantage of blobs is to hide the information exchange between
CPU and GPU by synchronizing the host CPU and GPU when necessary.
In this way, there is a considerable increase in the efficiency of memory
management. Caffe support C++ and Python programming languages and
use Google Protocol Buffer to store the models 9. We use Caffe for the case
study described in the Chapter 3, in particular as a module of the NVIDIA
Deep Learning GPU Training System (see Section 3.1.1). Also, the MATLAB
computing environment offers different solutions to build and train neural net-
works. In fact, we used the Deep Learning Toolbox™ provided by MATLAB
to address the case studies proposed in Chapters 4 and 7. Such tool benefits
of the parallel computing of single or clustered GPU and cloud.

Finally, other two important frameworks are Torch7 [31] and Theano [12].
The first one is a scientific framework, developed by using the Lua program-
ming language. Torch7 supports two parallelization methods: OpenMP10

and CUDA that allow to take advantage from the GPU parallel computing.
Theano is an open source library based on Python programming language and
also benefits of the GPU parallel computing by using CUDA and the NumPy
syntax11 to simplify the construction of mathematical expressions.

9 Protobuf: https://github.com/protocolbuffers/protobuf
10 OpenMP is a cross-platform API for creating parallel applications on shared memory

systems: https://www.openmp.org/
11 NumPy is an extension on Python programming language to support the vector, multi-

dimensional matrix and mathematical expressions: http://www.numpy.org/

Chapter 3

Coin Recognition System

Coin Recognition is the first task we addressed [21] using a supervised
learning paradigm and convolutional neural network. This chapter shows an
overview of numismatic and image processing and as deep learning can be
embedded within this relationship. The rest of the chapter shows our proposed
approach to solve coin recognition task and an application that can support
the numismatics experts in the coin classification operation. Finally, there is a
discussion of the possible future works and the research trends.

3.1 Overview

Numismatics is the scientific study of all forms of currency. Various criteria
are used to classify a coin, including its history, geography, and market value.
In recent decades, image recognition techniques was investigated for the
identification and classification of coins, as currently these procedures still rely
on expensive human intervention. In [169], the authors survey numismatic
research into the classification, identification, and segmentation of coins based
on image recognition. Numismatics research can be divided into different
historical periods: ancient, medieval, modern, and contemporary. Here, a
contemporary numismatics was considered, which focuses on coins from the

26 Coin Recognition System

17th century onward. In particular, we have addressing the classification of
euro coins. The advantage of studying this category is that any engravings
can still be clearly seen by the human eye, and there is a plentiful supply
of coins, which is useful in machine learning approaches. Recent studies
of coin classification are based on image recognition techniques. Several
families of algorithms was developed, based on neural networks [51], decision
trees [34], edge detection [116], gradient directions [132], and contour and
texture features [158][168]. In this work an implementation of a system
for automatic coin recognition based on deep learning was developed. In
particular, the representation of coins is learned in a training phase, through
a well-known convolutional neural network, proving that is a valid choice
for coin identification. In particular, we determine the optimum size of the
training dataset that is necessary to achieve high classification accuracy with
low variance. Based on a set of 8320 images of euro coins, we trained the
convolutional neural network using different-sized training samples and tested
the resulting system. Using this data, we employ a learning curve approach to
predict classification accuracy for a given training sample size. Furthermore,
we propose a client-server architecture that makes it possible to query the
classification model obtained from the neural network training set, and allows
a user to identify a coin by photographing it with, for instance, a mobile
device camera. A coin is identified when the image provided by the user can
be matched with the neural network on a remote server.

3.1.1 Implementation Details

The coin recognition task is included in the wider category of the image
recognition tasks. As mentioned in Chapter 1, in the context of deep learning,
neural network are often called deep neural network, as they are distinguished
from the more common neural networks by their depth. In deep neural
network, each layer of neurons is trained on a distinct set of features based
on the output of the previous layer. Deeper layers of the neural network can

3.1 Overview 27

recognize more complex features, as they reprocess features from the previous
layer. This concept is known as feature hierarchy1. Image recognition requires
a very deep neural network composed of multiple layers. It must be able to
extract non-linear features and pass them to a classifier that can combine all
of the features and make predictions. As mathematically shown by NVIDIA1,
for image processing, the best features of a single layer are edges and blob.
This is because they contain the most information that can be extracted from a
single, non-linear transformation. It was shown that the human brain does the
same thing. The first hierarchy of visual cortex neurons is sensitive to specific
edges and blobs, while deeper regions of the brain that are further down the
visual pipeline are sensitive to more complex structures, such as faces.

Fig. 3.1 AlexNet, a convolutional neural network proposed by Alex
Krizhevsky et al. [86] that consists of eight layers where the first five are
convolutional layers and the last three are fully-connected layers. To train
the originally proposed convolutional neural network they were based on the
use of two GPUs and outlined the responsibility of both, the communication
of such GPUs occurred only at certain layers. The figure shows the origi-
nal configuration of AlexNet, through the input dimensions, the kernels and
strides size of each convolutional layer; where the pooling operations were
performed and finally, the last two fully connected layers which consist of
4096 neurons each one and last output layer fed to a 1,000-way softmax.

1 NVIDIA Deep Learning: https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-
core-concepts

28 Coin Recognition System

Convolutional Neural Network is often used in image recognition, also
because a basic principle of such type of feed-forward neural network is
that the connectivity pattern between neurons is inspired by the specific
organization of the brain’s visual cortex. The architecture of a convolutional
neural network is designed to take advantage of the spatial bi-dimensional
structure of an input image. Every image is a matrix of pixel values that
describes intensity at that point. The range of values that can be encoded in
each pixel is a function of its bit size. Convolutional Neural Networks are
given an array of intensities as input and the output are numbers that describe
the probability of the image belonging to a certain class. One benefit of the
convolutional neural network is that they are easier to train and there are
fewer parameters than fully-connected networks with the same number of
hidden units. For coin recognition, we used the most popular convolutional
neural network created by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton, which is called AlexNet [86]. The input to the AlexNet is a resized
image, while the output is a class-label probability. AlexNet includes object
recognition steps such as local feature extraction, feature coding, and learning
(see Figure 3.1). The advantage of such a convolutional neural network is that
it can adaptively estimate optimal feature representations for datasets, which
is a feature that is lacking in the conventional, hand-crafted approach. The
effectiveness of the AlexNet was proven for large-scale object recognition
at the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC-
2012). In addition, AlexNet has already been tested on image recognition in
several contexts including, for instance, face detection [50], maritime vessel
identification [33], food recognition [80], and playing video games [107].

As explained in Section 2.3, there are several framework for the training
and use of deep neural networks. Here, we used the NVIDIA DIGITS version
4.0 2, the first interactive software for deep neural network training using

2 Deep Learning GPU Training System: https://developer.nvidia.com/digits. Our used
version included Caffe, Torch7, Theano, and CUDA-Convnet2 frameworks. Today the last
version is 6.1.1, which include others frameworks such as Tensorflow.

3.1 Overview 29

the GPU. It makes possible to develop, train, and visualize the deep neural
network. The interface is browser-based, and neural network behaviour can
be viewed in real-time. For training, DIGITS uses the popular Caffé Deep
Learning Framework and GPU capabilities to reduce training time. Using
DIGITS requires two steps. The first step consists in the definition of the
dataset and classification model and the second step concerns the creation of
such classification model and the defining of the model parameters.

3.1.1.1 Dataset and Classification Model definition

Starting of first step, a set of folders are provided to the system: each contains
a series of images of the same class. Then, a text file is defined that contains
the labels belonging to each class. The overall dataset is divided into three
subsets: training, validation, and testing. The training set is a collection of
data for which both the input and the output are known. It is used in the
neural network training phase and for the creation of the related classification
model. The validation set is similar to the training set, but is used in the
validation step, i.e., a step useful to evaluate how much the neural network is
generalized (see Section 8.1). In more specific terms, the validation set was
designed to evaluate if the classification model is or not in overfitting through
the comparison neural network performance on a different dataset from the
training one. Training and validation set allow to obtain evaluation metrics
such as prediction accuracy and loss training and loss validation. Accuracy
is the reliability of the prediction based on validation data provided in the
training phase. Loss training is the error on the training set computed on
each batch size3. Loss validation is the error after running the validation set
through the neural network. Generally as epochs4 increase, both validation
and training error fall. Training error can continue to fall even after many

3 Batch Size: the number of examples used in each iteration (see Appendix A).
4 The epoch is a forward and backward pass of all training data in the neural network (see

Appendix A).

30 Coin Recognition System

epochs, allowing the neural network to improve its learning. In this case, the
validation error can increases, eventually leading to overfitting. Finally, the
test set is a collection of data used to test and evaluate the performance of the
classification model after the training phase.

3.1.1.2 Creation of the Classification Model

After the creation of dataset in the previous step, we need to define the
training parameters such as the epochs4. In more specific terms, backprop-
agation learning algorithms (see Appendix A) involve two steps. The first
step, the forward propagation, consists of passing the training data to the
neural network in order to generate the activation output. The second step,
the backward propagation, consists of the loss value computation obtained
through the activation output of the neural network and the target data and its
backpropagation in all hidden neurons. Loss value is provided using a loss
function called also objective function, which represents the function to be
minimized in order to obtain a good convergence of the neural network. The
most used loss functions are the cross-entropy and mean squared error, the
first one is often used in classification problems and the second one is often
used in regression problems [137] (see Appendix A). In this work we used
cross-entropy loss function.

DIGITS allows to set some useful parameters such as snapshot interval that
represents the number of epochs of training between two snapshots (whenever
a snapshot take place, the model is stored separately and can be used after
training e.g., to classify the image); validation interval, that represents the
number of epochs of training, running through one pass of the validation
data; batch size3 and solver type, which represents the gradient descent
optimization method and can be the stochastic gradient descent, the adaptive
gradient, or Nesterov’s accelerated gradient [90] [93] [113] [40]. DIGITS
makes it possible to edit the pre-configured neural network; it is possible
to change parameters, add layers, change the bias, etc. Once the dataset

3.2 Client Server REST Architecture 31

was created, training can begin. In the training phase, DIGITS provides
a visualization of the data used and the training state. It also provides an
accuracy chart and loss value in real time.

3.1.1.3 Inferences

As DIGITS runs on a web server, the dataset and the network configuration
can be easily shared with the client. Once the neural network was trained,
its related model can be queried by providing an image in HTTP request
form. DIGITS web service responds with predictions that take the form of
couple labels (classes) and percentage accuracy. Messages can be exchanged
between a client (e.g., a web or mobile application) and DIGITS through the
Representational State Transfer (REST) architecture.

3.2 Client Server REST Architecture

The architecture of our own system is structured as client-server. DIGITS is
installed on the server side and provides services through the Digits Rest Api5.
The interface makes it possible to query a classification or regression model
that was trained on a neural network. Such API can be used to create dataset
and models, or make predictions using a trained model. The interface is based
on the REST architecture that consists of a set of components, connectors,
and other data within a distributed system, where the focus is on the role
of components rather than implementation details. REST uses the HTTP
protocol [96] to transmit data, while the network allows components to ex-
change representations of resources [122] [19] [44]. Connection elements are
connectors that handle communication between components. A component
can be a client or a server, and it acts as a mediator, making it possible for
the application to interact with a resource, given the identifier of the resource

5 Digits Rest API: Digits Representational State Transfer Application Programming Inter-
face.

32 Coin Recognition System

itself, and the action to perform. The application must interpret the response,
and be able to represent the information. DIGITS includes a server-side
component that, once a request is accepted by a client, provides a response in
JSON6 format. In particular, it makes it possible to create a classification (or
regression) model and a dataset, to classify an element or an inference using a
previously-trained model, and to remove a classification or regression model.

Fig. 3.2 The architecture of our system: the left side shows a client application
and the photograph taken with the mobile camera; the right side shows a
server application where the digits based web server is running and performs
inferences on trained coin classification model; in the center is shown the
HTTP request and FTP transaction and finally the bottom part in the figure
shows the coin classes.

In our work, we focus on the classification of an image of a coin using
a trained model. To exploit the remote classification model, we developed
a client-side mobile application for Android devices (see Figure 3.2). This
application uses the device camera to take a photograph of a coin to classify.
The resulting image is sent by the client over FTP to the server, then an
HTTP POST request that contains the query string is sent to the web service
(DIGITS). This query contains the address of the server, the id of the trained

6 JSON: JavaScript Object Notation.

3.2 Client Server REST Architecture 33

classification model, and the location and name of the image to classify.
Although it is possible to use a HTTP POST multipart request [101] to
send the image directly to the server (together with the parameters specified
above); FTP was chosen because the protocol is generally considered faster
for sending individual files such as photographs. Afterwards, the web service
response (in JSON format) is interpreted by the client.

Fig. 3.3 The mobile app in use: the interface is very simple and enables the
user to take a photograph using the smartphone camera, or select an image
from a local folder and send it to the server. Once the server-side model
performs the recognition, the best five relevant results are highlighted.

The response consists of a list of predictions, each composed of a pair of
labels (class), and a percentage accuracy (reliability) of the prediction. This
response is displayed on the mobile device running the client application as
shown in figure 3.3. In order to be as precise as possible, an example follows
that will help to demonstrate the procedure: the user takes a photograph
of the coin and the client software sends it to the server via FTP; it sends
an HTTP request specifying the query string name and the location of the
image, together with the id of the classification model that should be used.
The server processes the image given in the query string, classifies it using
the named model, and sends the client a list of predictions in JSON format.
These predictions include the membership classes of the coin and prediction
accuracy percentage sorted from the most to least accurate. The application
presents the user with the results of the classification.

34 Coin Recognition System

3.3 Training Phase

Input images consist of 500×500 pixels, giving an input dimensionality of
250,000. There are eight classes that correspond to 0.01 C, 0.02 C, 0.05 C,
0.10 C, 0.20 C, 0.50 C, 1 C, and 2 C coins. It should be noted that here
we only take into account the reverse side of the coin which contains the
portraying map of Europe. For each of the eight classes, the training dataset
consisted of 80 images taken with a camera at a distance of 10cm. To increase
the number of coins images, we performed 13, 2D transformations in order
to perform a very used operation in deep learning based applications called
data augmentation. In particular, coins were rotated by 60° around their
center, mirrored, then and rotated again by 60°. In general, as mentioned by
I. Goodfellow et al. [56], classifiers can benefit from geometric operations
such as random translation, flipping and rotation but also through other types
of transformation such as the random colours perturbation and other types
of image distortion [86][92]. The our own final dataset consisted of 1,040
images for each coin, and a total of 8,320 coin images.

DATASET Euro1 Euro2 Euro3 Euro4 Euro5
MODEL M1 M2 M3 M4 M5
TRAINING 60% 50% 55% 60% 59%
VALIDATION 35% 45% 37% 37% 38%
TEST 5% 5% 8% 3% 3%
EPOCH 10 10 10 10 10
ACCURACY 62.93% 42.65% 71.09% 75% 77.21%
LOSS TRAIN 0.63% 1.11% 0.51% 0.47% 0.30%
LOSS VAL 0.65% 1.10% 0.53% 0.45% 0.41%

Table 3.1 Training dataset and classification models with their related parame-
ters. The first row shows the dataset denominations and the second row shows
the related classification models. We performed numerous training tests with
different configurations and we estimated that the M5 model configuration
returns the lowest validation and test loss.

3.3 Training Phase 35

To obtain the best model, we performed several experiments on the input
images using five different datasets. Each dataset had a different percentage
of training, validation, and test data. The number of epochs was set to 10,
and the batch size was set to 24. This approach is a useful way to establish
the minimum number of input images needed to produce a useful model.
Table 3.1 shows how the datasets and classification models were divided. The
first and second row specify respectively the name of the dataset, while the
other rows represent, in order, the percentage of training data, validation data,
test data, the number of epochs, percentage accuracy, loss training, and loss
validation.

3.3.1 Results

COIN M1 M2 M3 M4 M5
0.01 C 0% 0% 100% 100% 100%
0.02 C 100% 100% 100% 100% 100%
0.05 C 100% 0% 100% 100% 90.3%
0.10 C 5.7% 21.2% 48.2% 32.3% 96.8%
0.20 C 50% 24.7% 89.2% 19.3% 77.4%
0.50 C 0% 53.8% 62.6% 22.6% 80.6%
1.00 C 100% 90.4% 90.4% 90.3% 100%
2.00 C 92.31% 90.4% 84.3% 100% 100%

Table 3.2 Test performed on the trained classification models. Model M5
performs best in the classification of test images according to the training
results shown in table 3.1.

Results are shown in the table 3.2 through the tests that were performed
on all of the classification models. These tests consisted of passing the test
image folder to the respective classification model. Each test image folder is
composed of a percentage of images defined in the dataset creation step as
can be seen in Table 3.1. As Table 3.2 shows, each test is associated with a

36 Coin Recognition System

class of coin that is defined in the first column. If the percentage for each coin
is greater than 50% the test is passed, otherwise it is failed. Table 3.2 shows
that the model M5 provided the most accurate classification. Therefore, for
our input image dataset, this is the optimal recognition model.

Fig. 3.4 Loss training, accuracy validation and loss validation for model M5.
Figure shows the trend of such functions for each metrics, highlighting the
convergence of the network and the stability of accuracy after the fourth
epoch.

In more detail, the accuracy of model M5 is 72.21%. Figure 3.4 shows
trends for each epoch in the training phase. The blue line indicates loss value
trends, the orange line indicates accuracy trends, while the green line presents
the loss value trend for the validation set. It should be noted that from the
fourth epoch onward, accuracy percentage is stable at around 80%, and loss
value remains low. Training and testing were performed on a NVIDIA 6GB
TITAN GPU, which significantly improves response and training time of the
deep learning classifier.

We also evaluated the response of the optimal model M5 on partial images
of 1.0 e, 0.05 e, and 0.20 e coins as shown in Figure 3.5. This test was
not exhaustive, but did give an indication of performance in the wide range

3.4 Discussion 37

of production conditions associated with coin recognition. The percentage
accuracy of the prediction was 77.25%, 100%, and 49.7% for 1.0 e, 0.05 e,
and 0.20 e coins respectively. It should be noted that the accuracy of the test
on 0.20 e coins was 49.7%, which is highest percentage compared to other
accuracies obtained from the same image.

Fig. 3.5 The partial euro coins used to test the neural network. The results
shown that the network is able to recognize with more accuracy pieces of
coin images as can be seen on the percentage shown in the figure.

3.4 Discussion

However, deep neural network cannot used in contexts in which there are
few available data, especially in supervised learning based applications where
the collection of sufficient data is tedious and difficult, and in some cases
impossible to obtain. For example, if we consider a network that must
recognize cancer from an X-ray, this requires a training dataset labeled by
an expert and that can not be obtained immediately. Generally deep neural
network needs a lot of data to achieve comparable or better performance
than conventional, local feature-based methods. In our preliminary coin
recognition experiments, we trained a deep neural network on an already
prepared dataset of images, which confirmed that the amount of training
data was enough. The performance of the best model shown that 70-80 coin
images for each class are needed in the training phase. More specifically, coins
had medium to light overall wear, and all details were visible. The software

38 Coin Recognition System

architecture that we implemented proved to have substantial advantages: these
include an immediate response to the client, and the ability to use GPUs for
training, validation and testing of the neural network in order to classify
models quickly. We developed an application for Android-based mobile
devices that provide a visualization of the results of the prediction based on an
image of a coin, obtained using the device camera. In the future, we will use
the Android-based application and a serious game to create a large training
dataset [29]. Our discussion supports that through the embedded devices such
as the NVIDIA Jetson Embedded Systems7 this approach can be used in other
contexts. These could include, for instance, a currency detector for retail
kiosks, self-checkout machines, or gaming machines to detect counterfeit
coins. The basic principle of the application is to test the physical properties
of the coin. With respect to future work, we plan to use the approach for
recognizing ancient coins. The challenge in this field mainly concerns the
reconstruction of worn coins. In this case, the neural network can be applied
to the partial recognition of images, by isolating the best-preserved parts of
an ancient image. As deep learning techniques continue to progress, we are
confident that this technology could be applied to ancient numismatics [141]
with important results.

3.4.1 Details on AlexNet and Training Configuration

AlexNet is a deep neural network proposed by Alex Krizhevsky et al. [86], to
classify 1.2 million of images for the ImageNet Large-Scale Visual Recog-
nition Challenge 2010 (and 2012 with a variant of the model) contest to
perform optimal results on 1,000 different classes. The architecture of this
neural network can be seen in the Figure 3.1 and provide and well-optimized
implementation on GPU of the convolution and other operations useful to
train a deep neural network. The original neural network was trained on down-

7 NVIDIA Jetson: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/

3.4 Discussion 39

sampled ImageNet images aligned with a 256×256 constant resolution. An
interesting feature is the training on multiple GPUs through the proposal of
a parallelization scheme in which the half of the kernels are processed of
each GPU, allowing the GPUs to interact each other only in certain layers. In
particular, the second, fourth and fifth convolutional layers have their kernels
connected to the previous kernel maps, which share the same GPU, while
the third convolutional layer has its kernels connected to all the kernel maps
of the second convolutional layer. This feature is due to the ability of GPU
to interact with each other directly without passing in the host machine’s
memory and in this way the time of the training is dramatically decreased.
Finally, the fully connected layers are composed of neurons connected to all
neurons of the previous layer.

AlexNet was trained using stochastic gradient descent with 0.9 as mo-
mentum, 128 as batch size dimension, 0.01 as learning rate (see Appendix
A) and 0.0005 as weight decay as regularization method (see Chapter 8.1.1,
Equation 8.6). The weights are initialized by using Gaussian distribution
(see Equation 5.2) with zero mean and standard deviation of 0.01. The bias
of the second, fourth, fifth convolutional and all fully connected layers are
initialized using the constant value 1. For our training experiments we use the
same configuration proposed by the AlexNet authors, however as explained
in Section 3.3 we used 10 as batch size value that increase the number of
backpropagation steps and, in our case, it gives us optimal results.

Chapter 4

Ambient Occlusion Baking

A different task, which we addressed, concerns the deep learning and the
real-time computer graphics using the supervised learning paradigm. In
particular we perform the ambient occlusion baking via feed-forward neural
network. This chapter shows an overview of the state of the art of the shading
and the use of deep learning in such context and our proposed method. Our
proposal is based on implementing a multilayer-perceptron that allows a
general encoding via regression and an efficient decoding via a simple GPU
fragment shader [45]. We illustrate our approach of screen-space ambient
occlusion based on neural network including its quality, size, and run-time
speed.

4.1 Overview

Shadowing of ambient light is called ambient occlusion. It was shown in [87]
that ambient occlusion offers a better perception of the 3D shape of displayed
objects, and its effectiveness is evident in its popularity in video-game en-
gines [106]. Without the aid of shadows, such objects would appear flat, and
in several cases suspended in the balance or both. The shadow understanding
is directly connected to the number of shadows created by the light on a

42 Ambient Occlusion Baking

(a) (b)

Fig. 4.1 The left image shows the occlusion map computed in real-time
which characterize the rendered portion of the scene. A most famous real-
time ambient occlusion was proposed in Crysis [106] video game, called
Screen Space Ambient Occlusion. The right image shows the occlusion map
computed offline.

surface. In Computer Graphics, the shadow effect is computed and rendered
as any contribution inside the scene. Computing of shadow is divided into
two main categories: large scale shadows and small scale shadows. The
first case concerns a hidden area from the light source, and the second one
concerns e.g., shadows due to folds in a cloth, between the wrinkles of the
skin or between the cracks in a wall. Ambient Occlusion can increase the
perception of a virtual world, by increasing the photo-realism degree of a
virtual scene.

The mathematical definition of ambient occlusion is related to the concept
of the solid angle. In fact, the occlusion Ap at a point p on a surface with
normal n can be computed by integrating the visibility function over the
hemisphere Ω with respect to the projected solid angle, as shown in equation
(4.1). In the same equation Vp,ω is the visibility function at p along a direction
ω . There are several method to compute the Ambient Occlusion, which differ
from each other for speed and accuracy: Offline Ambient Occlusion and
Real-time Ambient Occlusion. A simple method to approximate the Ambi-
ent Occlusion integral (4.1) in practice, in off-line rendering (see figure 4.1b),
is based on ray-tracing.

4.1 Overview 43

Ap =
1
π

∫

Ω
Vp,ω(n ·ω)dω (4.1)

Fig. 4.2 Raytraced Ambient Occlusion: a most used method to solve the
Ambient Occlusion integral. It is considered the simplest and most accurate
possible, although due to its structure is also the slowest.

Rays are shot in a uniform pattern across the hemisphere over point p,
and an occlusion value can be calculated as the number of rays that hit the
geometry divided by the total number of rays shot as shown in figure 4.2. Rays
can be restricted to a certain length, avoiding the need to take into account
distant geometry while calculating the occlusion value. This is fundamental
in closed environments, which would otherwise result in total occlusion at
every point and subsequently the complete removal of ambient light.

Fig. 4.3 In real time, a very used method is Screen Space Ambient Occlusion.
This algorithm darkens a pixel treating adjacent pixels as potential occluders.
Grey elements represent the samples with depth value is greater than an
examined fragment. In the figure there are two examples with spheres and
hemispheres.

A most used method to approximate the Ambient Occlusion in real-time
rendering is called Screen Space Ambient Occlusion (see figure 4.1a). The

44 Ambient Occlusion Baking

Screen Space Ambient Occlusion algorithms are used on the bi-dimensional
space by darkening a pixel treating each of its adjacent pixels as potential
occluders. This technique was introduced by M. Mittring [106] in 2007
implemented in the most popular video game Crysis of the Crytek. Respect
to the offline raytraced Ambient Occlusion, Screen Space Ambient Occlusion
is much more performing because it does not need of geometric information,
but only the depth value of each pixel. In particular, Screen Space Ambient
Occlusion will compute the depth value for each pixel rendered on the screen,
by comparing such value with that of the neighbouring pixels, which are
chosen at random way in a surrounding sphere. The number of neighbouring
pixels, which depth value is greater than of the depth value of the current
pixel provides its occlusion factor.

Video games often pre-compute Ambient Occlusion and bake out the
results into vertex or texture data, which is later loaded into OpenGL or
DirectX shaders. To implement such a baking pipeline, an implementation of
ray-tracing is used as off-line rendering. When the ambient occlusion values
was computed for a 3D shape, they must be written in a format that can be
easily consumed during the rendering. The methods used in film and game
rendering are point clouds, 2D textures, and vertex attributes. Point clouds
are not efficient to access in hardware for real-time rendering. 2D textures
retain the detail from the original ambient occlusion values, but require too
many memory resources. Vertex attributes require occlusion values from
the 3D surface shape to be mapped onto the vertices. The last solution
yields significantly lower memory overhead and less expensive run-time
reconstruction for real-time applications such as video games [78].

Our key idea is to represent ambient occlusion by using a multi-layer
perceptron, allowing general encoding via regression and efficient decoding
via a simple GPU fragment shader in real-time. Because of the non-linear
nature of multi-layer perceptrons, they are suitable and effective for capturing
non-linearities described by ambient occlusion values. In addition, multi-

4.2 Feed Forward Neural Network Approach 45

layer perceptrons are random-accessible, have a compact size, and can be
evaluated efficiently on the GPU. Our approach offers benefits in terms of
quality, size, and run-time speed particularly for low-poly models used in real-
time application. To evaluate the quality of results, we compare screen shots
from our implementation with images rendered off-line in the ray-tracing
engine NVIDIA OptiX[120], which is also used to train our neural network.
For comparison, we use the Structural Similarity Index [163], which is a
metric that measures similarity between images in a way that is consistent
with human eye perception.

4.2 Feed Forward Neural Network Approach

As mentioned in Section 2, a feed-forward neural network is a weighted and
directed graph whose nodes are organized into layers. The weights of the
edges constitute the components of the weight vector w. The network we
used is an acyclic feed-forward neural network with two hidden layers, as
shown in Figure 4.4. Each node is connected to all nodes of the previous layer
by directed edges, such that a node in the i th layer receives inputs from all
nodes in the (i−1) th layer. The graph takes inputs through the nodes in the
first layer, and produces outputs through the nodes in the final layer.

4.2.1 Representation

Our proposed feed-forward neural network is composed of the 16 normals
taken in the object space which represent the nodes of the input layer. The
output layer consists of one node that is the value of the Ambient Occlusion.
We use a 16×X ×Y × 1 neural network, where X ×Y are the two hidden
layers. In particular, we evaluated three hidden layers configurations: 16×8,
32× 16, and 64× 32. Each neuron in a particular layer is connected with
all neurons of the previous layer. The connection between a neuron k in the
(i−1) th layer and a neuron j in the i th layer is characterized by the weight

46 Ambient Occlusion Baking

Fig. 4.4 The acyclic feed-forward neural network, which defines a mapping
from 16 sample normals in object space to the output ambient occlusion. We
evaluated three neural network with different hidden layers: neural network
16×8, neural network 32×16, and neural network 64×32.

coefficients wi−1
k j . Let ni

j be the output of the node j in the i th layer and wi
j0

be its bias weight. Each node output of an hidden layer i is calculated from
the outputs of all nodes in the (i−1) th layer as follows:

ni
j = σ(zi

j), zi
j = wi

j0 + ∑
k>0

wi−1
k j ni−1

k 7 (4.2)

The summation is carried out over all neurons k transferring the signal to
the i th layer. The function σ(zi

j) is the activation function and for all hidden
layers is used the hyperbolic tangent function σ(z) = tanh(z) = 2

(1+e−2z)−1 ,
while for the node in the output layer it is a linear function. The training
process varies the bias weight wi

j0 and weight coefficients wi−1
k j to minimize

the sum of the squared differences between the computed and required output
values.

4.2 Feed Forward Neural Network Approach 47

4.2.2 Training

We use four1 models and select 128 points of views by using a rotating camera
around the bounding sphere containing the model. From each point of view,
we use OptiX[120] to render the global Ambient Occlusion at a resolution
of 1920×1080. From each image, we randomly pick 512 pixels from which
we obtain the ambient occlusion values. We then take 16 normal samples in
the object space located around the ambient occlusion value, in a circle of
radius 10 as shown in Figure 4.5. These values represent the input data for
our neural network, while the ambient occlusion value of the central pixel is
the corresponding output data. When completed, the final dataset has 65,536
data points. The dataset extracted with this approach produces the best results
experimentally.

Fig. 4.5 Four 3D models were used to create a dataset for each of them.
The Ambient Occlusion and normals values around the point were selected
randomly. The normals components were saved in a texture in order to
perform the sampling.

For the training, the dataset was split into three subsets: 50% as training
set, 25% as validation set, and 25% as test set. Dataset splitting was done
in a random way. The training was performed by using the scaled conjugate

1 The used models were "Happy Buddha", "Dragon", "Stanford Lucy", "Stanford Bunny",
which are freely downloadable: https://graphics.stanford.edu/data/3Dscanrep/

48 Ambient Occlusion Baking

gradient backpropagation method [109], and performance was evaluated by
using the mean squared normalized error performance function. The number
of epochs and max fail were set to 20,000, while the other parameters were
set to default. The neural network was trained by using a NVIDIA Tesla K40c
installed on a machine equipped with an Intel Core i7-3820 and 16 GB RAM.
The average training time for the neural network of 16×8 hidden layers is
about 4.50 minutes, for the network of 32×16 about 5.55 minutes, and for
64× 32 about 7.53 minutes. Training was performed by using MATLAB
Deep Learning Toolbox™.

4.2.3 Rendering

After training the feed-forward neural network, the ambient occlusion of each
point of the 3D mesh can be rendered in real-time by using the trained model
in a fragment shader. We developed a shader by using OpenGL Shading Lan-
guage, which is a straightforward translation of the neural network. Weights
and biases are provided to the fragment shader by using the uniform buffer
for allocation of GPU memory. In particular, the memory occupation for
neural network 16×8, neural network 32×16, and neural network 64×32
are 3.716 bytes, 8,452 bytes, and 20,996 bytes, respectively.

In Figure 4.6 is shown the sampling of normals, which are computed in the
object space by using a G-buffer and then projecting them in the screen space
by using a texture. In more detail, for a given viewpoint we first compute the
visible surface points of each screen pixel. For each pixel, we take its normal
and then assign it as input the same value over all inputs of the neural network.
This way of querying the neural network model is different in terms of the
way we trained it, but the approach produces excellent ambient occlusion
without either noise or blurring artifacts, thus avoiding the cost of a Gaussian
blur pass. This corresponds to taking 16 normal samples located around a
pixel in a circle of radius zero.

4.3 Experimental Results 49

Fig. 4.6 Computing a visible surface is our first step. For each pixel, we
got its normal and replicate this value in order to generate an input for the
Neural Network. The weights and bias of the trained model are passed to the
fragment shader using a uniform buffer.

4.3 Experimental Results

We implemented the rendering algorithm on a GPU via OpenGL API and
GLSL shading language. All results and performance measures shown in
this chapter were conducted on a PC with 3.50 GHz i7-5930K CPU, 16GB
memory, and NVIDIA GTX 1070 graphics card.

In Figures 4.7, 4.8, 4.9, 4.10, we visually compare the results of our
approach to the ground truth images rendered with OptiX, and Mara et al.
(14 samples, 7.4 radius, 1 iteration, and 0.002 bias) [100]. These images
are the final results of the fragment shader without any pass of Gaussian
blur and other filters. Compared with the ground truth images, where there
are geometric creases and contact shadows between triangle meshes, our
approach can produce a result that is less dark because of the radius used to
sample normals. Our approach produces good results in general, and visually
there are slight differences between the three neural networks as shown in
Figure 4.11.

In addition, because the training data are based only on the normals of
the 3D model, depth resolution artifacts that occur in screen-space ambient
occlusion techniques are not present regardless of the distance from the

50 Ambient Occlusion Baking

Fig. 4.7 From left to right: neural network 16×8, neural network 32×16,
neural network 64×32, ground truth with OptiX, and Mara et al. [100]. The
3D model shown in Figure is called Happy Buddha, which consists in 543,652
vertices and 1,087,716 triangles.

Fig. 4.8 From left to right: neural network 16×8, neural network 32×16,
neural network 64× 32, ground truth with OptiX, and Mara et al. [100].
Stanford Bunny is the 3D model shown in the Figure, it consists of 35,947
vertices and 69,451 triangles.

Fig. 4.9 From left to right: neural network 16×8, neural network 32×16,
neural network 64× 32, ground truth with OptiX, and Mara et al. [100].
The 3D model shown in Figure is called Dragon, which consists of 566,098
vertices and 1,132,830 triangles.

4.3 Experimental Results 51

Fig. 4.10 From left to right: neural network 16×8, neural network 32×16,
neural network 64×32, ground truth with OptiX, and Mara et al. [100]. The
model shown in Figure is called Stanford Lucy and consists of 14,027,872
vertices and 28,055,742 triangles

Fig. 4.11 Close-up of ambient occlusion results. From left to right: neural
network 16×8, neural network 32×16, neural network 64×32, and ground
truth with OptiX.

camera of the 3D model, however we tried to train our neural network by using
the depth information as discussed in Section 4.4. To define the similarity
between two images, we adopted the Structural Similarity Index [163] as a
metric to measure similarity between images in a way that is consistent with
human eye perception. In Table 4.1, we report the Structural Similarity Index
between images generated with the three neural networks and those generated
with OptiX.

In Table 4.2, we show the results of a numerical comparison between our
method and that of Mara et al. All measurements are taken at 1920×1080.
The neural network 16×8 offers better performances. For reference only, in
the same table we also report the performance of rendering the same models

52 Ambient Occlusion Baking

MODEL 16×8 32×16 64×32
Buddha 0.9646 0.9642 0.9655
Bunny 0.9814 0.9819 0.9793
Dragon 0.9495 0.9504 0.9489
Lucy 0.9743 0.9750 0.9754

Table 4.1 Structural Similarity Index between images generated with the three
neural networks and those generated in Figures 4.7, 4.8, 4.9, 4.10 with OptiX.

MODEL 16×8 32×16 64×32 MARA et al. VERT. COL.
Bunny 1.96 ms 21.31 ms 29.29 ms 16.99 ms 0.19 ms
Buddha 2.74 ms 22.18 ms 29.97 ms 17.00 ms 0.67 ms
Dragon 2.17 ms 16.35 ms 22.76 ms 16.99 ms 0.55 ms
Lucy 2.25 ms 21.71 ms 29.54 ms 16.99 ms 0.32 ms

Table 4.2 Comparison between the three neural networks, Mara et al. [100],
and vertex attributes rendering

by using vertex colours to store the baked ambient occlusion. We find that the
neural network 32×16 requires more computing resources, probably because
of the loop performances, and neural network 64×32 offers essentially the
same performance. Nevertheless, we are confident that some optimization
can be implemented to increase performance.

4.4 Discussion

In this chapter it was discussed an approach for performing screen-space
ambient occlusion using a feed-forward neural network. The training phase
is performed by using only normals of the 3D model in the object space
and by using a rendering framework such as OptiX to create a high-quality
ambient occlusion. We create a fragment shader that computes the values of
the ambient occlusion in real-time efficiently and with accurate results. The

4.4 Discussion 53

proposed approach offers a new way to use precomputed ambient occlusion
during rendering for geometry from low to medium-grained high-frequency
structures. The limit of this approach depends on the type of 3D model.
Models with extreme variability and geometric complexity could cause net-
work overfitting of the training data and fail to capture the distribution of the
ambient occlusion over the model surface. Future works will focus on how to
design dynamically the neural network based on geometric complexity. We
will also study how to sample in a more efficient and effective way normals
and the ambient occlusion values to avoid the selection of points of view
when picking the pixels.

54 Ambient Occlusion Baking

4.4.1 The Z-Buffer problem

Starting from the approach proposed by Martin Mittring [106] to use the
depth values (or z-values) to compute the screen space ambient occlusion,
we tried to use a similar approach by sampling the depth values into a depth
buffer [103]. The idea was based on the combination of the normals and
depth values of the scene, in order to create a more generalized dataset and
optimize the performance of the neural network.

Fig. 4.12 The effect of the introduction of the depth-buffer in the dataset and
in the training of the neural network. As shown in the figure, the rendering
result is affected by the camera position.

After the training, we use the neural network in the fragment shader and
we sampling the normals and the depth values into two respective buffers:
normal and depth buffers. Although the training performance was promising,
in the rendering phase we were faced with the typical problems of the use
of the depth buffer. In more specific terms as shown in the Figure 4.12 the
depth buffer changes as the observer’s position changes and this behaviour
was also found through the use of the neural network in the rendering phase
demonstrating that the neural network is affected to the camera motion. In
addition, this problem also occurred in the sampling phase because the camera
has to be move on the z-axis to an indefinite number of times for proper neural

4.4 Discussion 55

network training. For these reasons we did not use the depth buffer but we
investigated the use of only normals, as described in the previous sections.

Chapter 5

Night time to Day time Approach

Starting from the Ambient Occlusion baking algorithm proposed and illus-
trated in the previous section, we have investigated the use of the deep learning
to approximate the images lighting scheme. In particular, we propose an ap-
proach based on a fully convolutional neural network to convert night-time
images to day-time images [22]. This chapter describes such approach by
illustrating the design of the deep neural network and some preliminary re-
sults. The obtained results have led us to investigate further on the use of
deep learning and image processing, as will be shown in Chapters 6 and 7.

5.1 Overview

As previously said, deep learning is often used in computer vision and image
processing. Starting from this assumption, we develop an approach based
on a supervised learning algorithm that through a deep neural network is
able to process an image and simulate a filter that applies artificial or natural
lighting. The idea is to transform an image or a scene with a low ambient
light in a fully illuminated one as if it receives light from a lamp or the sun.
The training dataset consists of pairs of input-output values where the input
is composed of a set of images with low light and the corresponding outputs

58 Night time to Day time Approach

are the same images with greater brightness. The goal of our work is to
be able to transform an image obtained in night-time ambient to a day-time
image. In order to achieve our goal, we built a neural network from a structure
composed of 16 convolutional layers, of which 13 were convolutional and 3
were fully connected, developed by VGG-16 [150] team for ILSVRC-2014
competition. The first part performs a classification process, the second part
is formed by a structure that is responsible for the decoding of the image. It
uses an approach based on Deep Residual Learning [63]. To train our deep
neural network, we used a tensorflow framework [2], described in section 2.3.
To performing the experimentation, we created three datasets: the first two
were synthetic, created through a software called Unreal Engine 4, and the
third one was created in the real world by taking a lot of photos. Through
their use, we developed three regression models, each of them can operate
in a defined dataset domain. Each dataset represents a level of complexity
where the neural network has to work and we evaluate the obtained results by
performing a visual comparison. Others evaluations were performed through
the neural network metrics obtained on validation dataset in the training phase
and test dataset after the training phase. Due to the limited number of images
we were able to collect, we can only demonstrate that our approach can
effectively obtain good results. However, this work represents a first step of
the deep neural network application on the image processing task, in fact in
the next chapters we propose a more complexity task by using a similar deep
neural network approach.

5.2 Fully Convolutional Neural Network

As mentioned in the previous section, our goal is to simulate natural or artifi-
cial illumination through deep learning with a supervised learning paradigm.
The input of the neural network is an image with low brightness and the
output will be the same image but with a sufficiently high illumination to

5.2 Fully Convolutional Neural Network 59

ensure a consistent view of it. We developed a neural network that consists
of two main parts: a first part is structured as the well known VGG-16 [150]
architecture, which identifies a pattern from the image and extract the features
from it, in order to create a sufficiently complex function to approximate the
lighting of the image itself.

Fig. 5.1 The architecture of our own Fully Convolutional Neural Network.
On the light blue background are represented only the 13 convolutional
layers of the VGG-16 divided into 5 groups. We used the first four groups
and concatenate them on the second part, which is shown on a light yellow
background. Such part is based on residual learning net and represents our
contribution.

As can be seen from the Figure 5.1, the first performed operation is the
VGG-16 neural network import. Such neural network is composed by 16
layers of which we consider only the convolutional layers, divided into five
groups. The first two groups are composed of two convolutional layers ad the
other three are composed of three convolutional layers. Among these groups
is performed an operation called max-pool, which reduces the image size,
represented by a tensor, through a non-linear operation of downsampling to
adjust the tensor as the input of the next layer. As the image is represented
using tensors, the output of each convolution operation is a tensor, called

60 Night time to Day time Approach

activation tensor, which is passed as input to the Rectified Linear Unit [55]
activation function of the next layer. We extracted the tensors from the last
layer of the first four convolutional layers groups of the VGG-16. At such
tensors is applied a normalization, called batch-norm, and they will serve us
in the image decoding phase. During the training phase, there is a mutation
of the neural network parameters, which involves also the distribution of the
output of each layer, so subsequent layers have to adapt to this mutation. To
solve this problem Ioffe et al. [70] proposed the batch normalization, which
ensures that the input of the activation function has mean zero and variance
equal to one:

BN(xi) = γ
xi −µB√

σ2
B + ε

+β (5.1)

Where µB represents the mean and denominator is the standard deviation,
the smaller constant ε is added to the variance in order to avoid dividing by
zero. γ and β are learnable parameters.

The second part of our neural network is composed of so-called Residual
Learning Net. Such an approach proposed by He et al. [63] describes a
solution to the degradation problem that affects very deep neural network.
In fact it is known that the number of features extracted from convolutional
neural network increases in proportion to the number of layers of which it is
composed. He et al. [63] in a Microsoft Research studio have demonstrated
that in this case is noticeable a decrease of accuracy and an increase of error
both in training and test phase. In more specific terms, considering the same
dataset and iterations, a neural network with fewer layers achieves better
result compared to a neural network with more layers, due to the degradation
problem. As can be seen in the Figure 5.2, the solution to this problem is to
allow the neural network to learn a residual function. In details, let H(x) a
function that a layers group has to learn, if the problem is reproposed so that
the function to approximate is F(x) = H(x) + x, then a residual function will
be obtained and the problem will be repeated in the form H(x) = F(x) + x,

5.2 Fully Convolutional Neural Network 61

Fig. 5.2 Details on the proposed residual learning net. The figure shows a
block of layers that implement H(x) = F(x)+x, and as can be seen the tensor
x is extracted through the last layer of each group and is concatenated with
the respective tensor, characterized of the same dimension and extracted from
the residual learning net. For the VGG-16 parts we keep the Rectified Linear
Unit activation function after each convolution, as proposed by the authors,
while for our residual learning net component we used Leaky Rectified Linear
Unit (See section 2 and Figure 2.4).

where F(x) represents the residual function and x represents the input of this
function.

The residual function was learned by contiguous layers and the input
of such group of layers is added to the output of itself through links called
shortcut connection in order to attenuate the aforementioned degradation
problem. The approximation of the residual function F(x) is performed
through two or more layers as shown in the Figure 5.1. As the sum of the
residual function and the input is performed element by element, it is needed
to adapt these two dimensions. This operation is performed on the height and
width dimensions (see Appendix A) through the bilinear interpolation [128].
The task of such operation is to move the pixel values, based on a parameter of
scale, which defines how much the feature map must be enlarged or reduced.

62 Night time to Day time Approach

In this way is possible to obtain empty pixels. To this pixels must be assigned a
value through interpolation based on four known values around the considered
pixel [128]. To obtain the same dimension even on depth we have performed
a convolutional operation with a [1x1] kernel and subsequently [3x3] kernel.

The extracted tensor from the last VGG-16 convolutional layer of the
fourth layers group has a 512 features map. Starting from this tensor, our
residual learning net performs a normalization through a [1×1] convolutional
operation, which reduces the number of features map to 256, to sum this
tensor and the output tensor of the last layer of the third layers group. This
operation is performed after a bilinear interpolation that fits the width and
height dimension of the tensor. The VGG-16 output tensor is an input of the
residual learning net through a convolution operation using the [3×3] kernel,
stride 1 and "same" padding, which adds to the input convolutional tensor a
border of zeros so that the output feature map has the same dimension. Such
operation was performed through the following formula:

(
W−F+2P

S + 1
)

where W represents the tensor size, F is the local receptive field size, P
represents the amount of zero padding on the border and, finally, S represents
the stride. Continuing for the next convolution, bilinear interpolation is
performed in order to double the width and height feature map dimensions.
The subsequent operation consists of adding such resized feature map with
the output tensor of the last layer of the second VGG-16 convolutional layers
group after applying a batch normalization. The operations aforementioned
are repeated until the input tensor and the last two convolution operations
return a tensor that has only three features map, which represent the RGB
channels, in addition to the width and height that characterize the output
image.

At the end of the last convolution, a sigmoid activation function (see
Figure 2.5) is used to normalize the output values between 0 and 1. To train
our neural network, we use a well-known optimization method called Stochas-
tic Gradient Descent [14]. The loss function is computed using the mean

5.2 Fully Convolutional Neural Network 63

squared error (see Appendix A): Error = 1
n = ∑n

i=1(yi − ti)2, where t is the
ground truth and y is the neural network prediction. Such loss function is
computed on each input-output pair that is forwarded to the neural network.
The weights are updated at each iteration by setting an hyper-parameter called
batch size to 1. We also used a learning-rate equal to 0.0001 to adjust the
learning speed to get better results. As our neural network consists of two
parts, the values of the weights were initialized in two different ways: for
VGG-16 (encoder component) we used a pre-trained model on more then a
1.2 million images (ILSVRC-2014), to make sure that what was learned in
that given context is exploited to improve the level of generalization in our
context [56] (see Appendix A); The residual learning net weights were initial-
ized using a continuous distribution of probability called truncated normal
distribution [17]. The values of the weights were generated by following the
normal distribution in which the mean and standard deviation were specified.
The normal distribution is expressed through the following formula:

F(x|µ,σ2) =
1√

2πσ2
exp(− 1

2σ2 (x−µ)2) (5.2)

where µ is the mean of the distribution, computed on all possible values
obtainable; σ is the standard deviation, which represents formally the dis-
persion of the points with respect to the mean and finally σ2 is the variance,
which, given a set of points, represents the mean of the distance of such
points from µ . For our approach, we set µ = 0 and σ = 0.01 (Figure 5.3)
and, as our distribution is truncated, the values assumed by the weights vary
between −0.02 and 0.02, while the values with greater magnitude were not
used for the weights initialization. This approach can avoid that the gradient
is amplified or completely dissolved, leading to critical errors during learning.

In many tasks, such as image processing, a normal distribution is a good
choice to initialize the weights of own neural network. I. Goodfellow et
al. [56] explain that the main benefits of using this distribution are two: (i) as
established by central limit theorem, the sum of many independent random

64 Night time to Day time Approach

variables is roughly normally distributed. Through such theorem is shown that
very complex system as a neural network can be successfully modelled using
a normal distribution; (ii) unlike other probability distributions, the normal
distribution encodes the maximum amount of uncertainty on real numbers. In
this way, it inserts the minimum amount of initial knowledge on the neural
network and it can learn directly from the supplied data distribution (dataset).

Fig. 5.3 The plotted graph of a truncated normal distribution with a classic bell
curve shape, mean set to µ = 0 and the standard deviation is set to σ = 0.01.

Finally, another important consideration concerns the batch normalization
operation used, which is done after every convolution operation. It reduces
the probability that a bad initialization of weights leads to a non-optimal
convergence.

5.3 Experimental Results

For the purpose of testing the performance and predicting the results of
our deep neural network, we performed several experimentations. In order

5.3 Experimental Results 65

to obtain accurate predictions, we defined three application domains, two
indoor environments and an outdoor one. For each domain, we trained the
deep neural network defining a regression model able to perform the correct
prediction of images belonging to the same domain. The first domain is
represented by a real indoor environment, whose dataset is composed of 523
pairs of input-output pictures, captured using a camera placed on a tripod to
ensure a perfect matching between pictures.

Fig. 5.4 Example of the night-to-day conversion on the real environment:
The left image is the input of our deep neural network; the central image
represents the prediction and finally the right image represents the Ground
Truth.

Dataset images are taken at a resolution of 6,000 × 4,000 and then
cropped and resized to 224× 224, which is the size accepted by our deep
neural network as input. The picture with low illumination was obtained
through the occlusion of all possible sources of light which illuminated the
environment and the lighted image was obtained at the same angle but using
the camera flash that sufficiently illuminated the small room (Figure 5.4).

The use of low resolution for the input and output images of the neural
network is due to the aim of reducing neural network complexity and training
time. We divided our datasets into training and validation set and, subse-
quently, we created the test set that contains only low-light images (Figures
5.5a and 5.6a). This dataset was used to test the accuracy of the neural net-
work prediction. Our first dataset consisted of 473 images for the training

66 Night time to Day time Approach

(a) (b) (c)

Fig. 5.5 Comparison between the results obtained after 1,000 and 6.6 million
of iterations. The central image is an inference result performed after 1,000
iterations and the right image represent an inference result after 6.6 million
of iterations.

(a) (b) (c)

Fig. 5.6 Another example of inferences results obtained after 1,000 and 6.6
million of iterations. As can be seen, the right images obtained from our
neural network trained for 6.6 million of iterations represents the best result.

5.3 Experimental Results 67

set and 50 for the validation set. In this dataset, we added further images,
using a technique called data augmentation that creates new images applying
artificial noise to saturation and contrast of the dataset images, bringing the
number of images to about 34,000. In the training phase, we used a system
of dynamic change of the neural network input. In more specific terms, each
iteration was characterized by a training operation and every two iterations a
validation operation was computed. In the training iteration, was computed
loss-training error using the training set of images, the later loss-validation
error was computed using an image belonging to the validation set. For this
dataset, the training time lasted around six days running about 6.6 million of
iterations and showing a good grade of convergence. Figure 5.4 shows the
result of an inference performed to the trained neural network after just 1,000
iterations by using an image that belongs to the indoor dataset. This results
obtained after very few iterations has encouraged us to continue to test by
training the neural network for more iterations and then for more time. In
fact, the Figures 5.5 and 5.6 show the results of two inferences performed
by using an image of the test set. The result of the first inference shown by
the Figure 5.5a, was obtained after about 1.5 million of iterations, while the
result (Figure 5.5c) of the second inference, performed on the same input
image (Figure 5.5a) was obtained after 6.6 million of iteration in which it can
be noted a much better improvement represented through a loss training value
equal to 0.0005.

The second domain is a virtual environment created with the Unreal
Engine 4. The virtual scene represents a landscape composed of trees and
plants. We obtained a dataset consisting of 3,894 input-output pairs, of
which 3,834 used for the training set and 60 used for the validation set. Data
augmentation was applied, leading to an increase in the number of images to
about 276,000. The images were obtained through a video in which a camera
was moved along a default path within the virtual scene both in night-time and
in the daytime. On this experiment, we needed about 0.6 million iterations to

68 Night time to Day time Approach

Fig. 5.7 Results of the Unreal Engine outdoor scene obtained by performing
inference on the neural network trained for 0.6 million of inferences: the left
image is the input of the neural network; the prediction is represented from
the central image and finally the right image represent the ground truth.

Fig. 5.8 Other results obtained by using Unreal Engine outdoor scene. As
can be seen in the images, the neural network is able to well approximate the
shadows and the colour of the corresponding ground truth image.

obtain good results. We extended the training until reaching 1.2 million of
iterations but in this case, we found that the neural network was in overfitting
by observing the trend of loss validation and verifying through the results of
the inferences which were worse.

Through the Figures 5.7 and 5.8 we show the results of two inferences
after 0.6 million of iterations with a loss training value of 0.0004. The last
domain is a virtual environment also created with Unreal Engine 4. The
scene, in this case, is an indoor environment and the images were taken in the

5.3 Experimental Results 69

Fig. 5.9 Results of the Unreal Engine indoor scene obtained by performing
inference on the neural network trained for 0.1 million of inferences. The
images are arranged in the same way as the previous ones.

Fig. 5.10 Other results obtained by using Unreal Engine on the same indoor
scene. As can be seen in the images, the neural network is able also to reduce
the highlights like reflections, flashes, etc.

same outdoor mode. From the video images were extracted 2,028 images, of
which 1,998 were used for the training set and 28 for the validation set. With
data augmentation, images were increased to 143,000. In this case, we got
a good convergence to 0.12 million of iterations. The Figures 5.9 and 5.10
show the results of two inferences after about 0.1 million of iterations. To
obtain the better performance during the training phase, we exploited parallel
computing allowed from the GPU through tensorflow functions. The tests
were performed on a machine equipped with an NVidia Tesla K40 GPU,
which allows optimal performance on the computation time.

70 Night time to Day time Approach

5.4 Discussion

In this chapter we have investigated that the deep neural network is an useful
solution to obtain a good simulation of the artificial and ambient light on
the images. The main problem of our approach is the creation of a good
dataset with a high amount of images that allows the neural network to
achieve optimal results in generic environments. A supervised deep learning
algorithm generally achieves acceptable performance with around 5,000
labeled examples per category and matches human performance when trained
with a dataset containing at least 10 million labeled examples [56]. In our
approach, we used datasets limited to isolated application contexts because,
at the state of art, the use of heterogeneous environment does not lead to
good results. Possible applications of this approach can be applied in the
field of photo editing or digital post-processing of images taken in a low
light environment. Our goal was to implement a proper filter that can be
applied to the images. This is a work in progress and we are going to further
investigate this neural network with a sufficiently large dataset, allowing to
perform predictions regarding much larger and generic domains compared
to those presented in this work. In fact in the next Chapter 6 we shows an
approach based on this work to obtain a Flash / No Flash filter on images
over-illuminated.

5.4.1 Details on VGG Convolutional Network

Karen Simonyac and Andrew Zisserman proposed a deep neural network
called VGG [150] for image recognition. The proposed architecture is char-
acterized from a high depth by using very small convolutional filters and
performing several configurations among which, the most famous are with
16 and 19 layers respectively. Such neural network was trained by using
images with 224×224 as resolution. The used filter for each convolutional
layer is 3×3 as dimension ad 1 as stride. After each convolutional layer, a

5.4 Discussion 71

rectified linear unit was performed. VGG can be divided into 5 convolutional
groups, each of them is followed by max-pooling operation with 2× 2 as
pixel window and 2 as stride. After the convolutional layers, there are two
fully connected layers with 4,096 neurons, one fully connected layer with
1,000 neurons and a softmax layer. The original neural network was trained
using stochastic gradient descent with 0.9 as momentum, 256 as batch size
and weight decay as 0.0005. The learning rate was 0.01 as the initial value,
which was decreased 3 times by a factor of 10 and for the fully connected
layers a dropout [151] regularization with 0.5 as the ratio was introduced. The
training was performed at 74 epochs and the learning rate was decreased when
the accuracy of the validation stopped improving. In the first neural network
configuration, the weights are initialized by using a normal distribution with
zero mean and 0.01 as variance, while in the other configurations the first four
convolutional layers and all fully connected layers are initialized by using
the weights of the first configuration. The VGG authors have shown that
increasing the number of convolutional layers in the individual groups of the
network improve its performance. Furthermore, the structure of the VGG is
an optimal solution when used as an encoder in a U-shape net.

Since in our version we used the only first 4 convolutional groups, we
have removed the dropout regularization because we used the VGG as the
encoder of our network. Other parameters and configuration of our neural
network has been described in Section 5.2.

5.4.2 Details on Residual Learning Network

As explained in Section 5.2, residual learning networks were designed to
address the degradation problem. Such problem concerns the very deep neural
network where was observed that as the depth increased, the training accuracy
was reduced. To solve this problem Kaiming He et al. [63] propose a deep
residual learning framework (more detail in Section 5.2) that also allows to
avoid the vanishing gradient problem (see Section 8.1.3). In particular, starting

72 Night time to Day time Approach

from a current layer and reusing the activations from the previous layer, by
using the connections called skip connections (or shortcut connections) until
the next layer have learned its weights, the degradation and vanishing gradient
problems are greatly reduced.

Fig. 5.11 The figure shows the residual block. The top arrow represents the
skip (or shortcut) connection.

In more specific terms, let li the current layer, li−1 and li−2 the previous
layers as shown in the Figure 5.11 and let wi−1,i and wi−2,i the weights for the
connections of the previous layers with the current layer respectively, then in
the activation function we have a forward propagation defined as

xi = σ
(

wi−1,i xi−1 +wi−2,i xi−2
)
= σ

(
zi +wi−2,i xi−2

)
, (5.3)

Where xi and σ are the output and the activation function of the current
layer respectively, xi−1 and xi−2 are the outputs of the two previous layers and
finally zi = wi−1,i xi−1 is used to simplify the notation, moreover, the biases
have been omitted for simplicity. Previous equation is valid for one skipped
layer, while for the several layers the equation can be rewritten as

xi = σ
(

zi + ∑
k=2

wi−k,i xi−k
)
. (5.4)

5.4 Discussion 73

In the backpropagation phase the gradient of the loss function without the
residual block can be computed for each layer as

∇wi−1,i =−ε
∂Li

∂wi−1,i (5.5)

Where Li is the error at the layer li and ε is the learning rate. If we include
the residual block with several skip connections the equation can be rewritten
as

∇wi−k,i =−ε
∂Li

∂wi−k,i (5.6)

Kaiming He et al. [63] have evaluate their method on the ImageNet 2012
(dataset) for the classification task by comparing plain networks and residual
networks using 18 and 34 layers. The plain network with 34 layers obtained
training and validation errors greater than the plain network with 18 layers,
showing the degradation problem. The same comparison was performed by
using the residual learning networks with 18 and 34 layers. In this case both
configurations obtained better results than the plain networks, but the residual
learning network with 34 layers obtained lower error values than the residual
learning network with 18 layers. In this way the authors demonstrated that
the degradation problem was avoided. As positive side effect, the residual
learning network can regularize the model and consequently it can reduce
overfitting problem.

Chapter 6

Deep Flash face photos

Through the knowledge obtained with the application of deep learning in
the modification of the image lighting scheme, as explained in the previous
chapter, we continued to investigate on this front. In this chapter we, show
a method based on convolutional neural network for turning a flash selfie
into a photograph as if it had been taken in a studio setting with uniform
lighting [20]. We show how our method can amend defects introduced by a
close-up camera flash, such as specular highlights, shadows, skin shine, and
flattened images.

6.1 Overview

With the steady improvement of built-in digital cameras, pictures taken on
smartphones and computer tablets are becoming increasingly predominant
on the internet, even on web-based services dedicated to quality photography,
such as Flickr, 500px, and Instagram. However, if it is true that in favorable
light conditions, smartphones can take pictures that are comparable to those
of digital reflex cameras, it is also true that they perform poorly in low light
conditions. This is mainly due to the size of their sensors, which is a constraint
difficult to overcome within the small space of a smartphone. It follows that,

76 Deep Flash face photos

often, taking pictures in low light triggers the camera flash, which is typically
a low-power light-emitting diode (LED) flash mounted side by side with the
camera lens, and results in images with high noise. One of the most common
type of photograph taken with a smartphone is the so-called selfie, which is
a picture of one’s face taken by holding the phone in the hand or by using
a "selfie stick". Low-light flash photographs and selfies are an unfavorable
combination that produces images with specular highlights, sharp shadows,
and flat, unnatural skin tones. Therefore, researchers have recently started to
develop several correction techniques: re-lighting and enhancement of images
with non-uniform lighting [18, 161], some of them have focused mainly on
the images of faces [146, 162, 164, 148].

Fig. 6.1 Two examples from our results. The split images show a comparison
between the input and the output of our algorithm. In the central column the
input, output, and ground truth images.

In this chapter we explore the possibility of taking smartphone flash
selfies and employing a convolutional neural network to turn them into studio
portraits. Convolutional neural network have already been extensively used
to improve pictures, for example for creating high dynamic range images
from single exposure [42], colorization [69], super-resolution [94], and so
on, as will be discussed in Section 9.6.2. However, our problem is especially
challenging for at least three reasons. Firstly, it concerns an effect that has
both local and global discriminant features such as highlight and skin tone,

6.2 Turning a Flash Selfie into a Studio Portrait 77

respectively. Secondly, we want to imitate a process that humans are very
good at performing; i.e.,, to picture what an image would look like if flash was
not used. Finally, both previous points apply to the domain of human faces,
on which humans are extremely good to spot any kind of inconsistencies. We
leverage the fact that, by their nature, smartphone flash selfies share many
common traits and make a fairly well-defined sub-domain of photographs:
they are front or three-quarter single-face portraits, taken from less than
one meter away with a single flash collocated with the camera lenses. Our
approach consists of training a convolutional neural network with a series
of pairs of portraits, where one is taken with the smartphone flash and one
with photographic studio illumination. The two photographs of the same pair
are taken as simultaneously as possible, so that the pose of the subject is the
same.

6.2 Turning a Flash Selfie into a Studio Portrait

We designed a regression model targeted to the restricted domain of human
faces. We adopted a supervised approach where a convolutional neural
network is trained by feeding pair of flash and no flash portraits. Although the
main idea is straightforward, there are several details that need to be addressed
in the design of the network, the training procedure, the loss function and the
encoding of the problem. All these aspects are discussed in the following
sections.

6.2.1 Deep Neural Network

Our convolutional neural network is an U-shape Net that consists of two
sub-networks: the first network takes as input a flash image and performs the
encoding to create a deep feature map representation; the second network
takes as input the encoder output and recreates the image without the flash

78 Deep Flash face photos

Fig. 6.2 Our neural network architecture for transforming a flash image into
a non-flash image. The first 13 blocks represent the VGG-16 convolutional
layers, which perform the image encoding. The second part reconstructs
the output image and has several convolutional and deconvolutional layers.
From the blue blocks of the VGG-16, the shortcut connections start, which
are linked with their counterparts in the decoder. The convolutional neural
network input is an image taken with the smartphone flash, and the ground
truth is an image taken using simulated ambient light, on both of which the
bilateral filter is applied. The target image is the difference between the
input and ground truth image, normalized in a range between 0 and 1. The
network prediction is the searched difference, which is denormalized in a
range between −1 and 1 and then subtracted from the non-filtered input. The
final output prediction is an image without flash highlights.

defects. The input image encoding is performed by the VGG-16 [150] net-
work. As in the previous work (see sections 5.2 and 5.4.1) we used only the
convolutional layers but in this case of the all five groups. We developed the
decoder component, which performs the decoding task, based on Eilertsen et
al.’s approach [42]. In particular, the input of the network is the output from
the last VGG-16 convolutional layer after a further convolution operation.

6.2 Turning a Flash Selfie into a Studio Portrait 79

After each convolution a batch normalization [70] (see Equation (5.1)) is
performed forcing the input of the activation function to have mean zero
and unit variance. After each batch normalization, the obtained activation
tensor, crosses the next activation function, Leaky Rectified Linear Unit [98],
which introduce a non-zero gradient for the next inputs. To obtain optimal
convolutional neural network performance in the training phase, the slope
parameter α is set to 0.2 [165].

The main features of the decoder layers are operations such as convo-
lutions, batch normalization, deconvolutions, and concatenations. Because
our network is composed of many layers, to avoid the vanishing gradient
problem [64] also studied by He et al. [63], we used an approach based on
a residual learning network. This problem concerns the weight update in
the backpropagation phase, which is proportional to the gradient of the error
function compared with the weight that has to be updated. Progressing in the
backpropagation phase and inverse crossing the network to update the weight
may mean that the gradient is so small as to make inefficient updates on the
weights belonging to the first deep neural network layers, and consequently,
their training is stopped. A simple way to solve this problem is to use a block
division of the VGG-16 and concatenate in depth each block output with its
counterpart in the decoder through a link called a shortcut connection. For
this reason, we use concatenations layers[67].

The proposed U-shape Net works in the RGB (red, green, blue) domains
only, and it is able to recreate similar input images of faces, but in a different
light mode. Starting from the VGG-16 output tensor, to reconstruct the
output image, we use deconvolutional layers [171], which transpose the
convolutional layers.

6.2.2 Training

Our convolutional neural network was trained to minimize the loss function
using an algorithm called the Adam Optimizer [84]. This algorithm is a

80 Deep Flash face photos

stochastic gradient descent with momentum variant [138], which manages
in a different way the problem of setting the learning rate. The choice of
the learning rate can influence the convolutional neural network training
convergence because a high value can lead to a possible divergence, while a
very low value can lead to a slow convergence. Stochastic gradient descent
with momentum addresses this problem by updating weights through a linear
combination of the gradient and previous updates. Adam is a Stochastic
Gradient Descent with Momentum variant, which is based on two other well-
known ones, called AdaGrad [40] and RMSProp [156]. These are classified
in the category of adaptive algorithms because they adapt the learning rate for
each of the parameters, leading to better convergence results. In particular,
Adam combines the advantages of the methods mentioned above: It adapts
the learning rate based on the first and second gradient moments. In our Adam
configuration, the initial learning rate is set to 10−5, while β1 and β2, called
the forgetting factors, are left at the default values, 0.9 and 0.999, respectively.
A parameter, ε , used to avoid divisions by zero, is set to 10−8.

To increase the generalization level and to compensate for the amount
of the training data available, we initialized the weights of the VGG-16
encoder using a pre-trained model, which is used for face recognition [121],
exploiting the transfer learning concept [126]. The model was trained using
a very large-scale dataset that consists of 2.6 million faces belonging to
2,600 identities (about 1,000 images for each identity), using four GPU Titan
Blacks. The input images of the pre-trained model have a resolution of
224× 224 pixels, from which was subtracted the mean of the training set
images. The weights of our decoder were initialized using truncated normal
distribution [17], which ensures that the weights values have mean zero and
unit standard deviation. The weights of the last decoder layer were initialized
using Xavier Initialization [54] (see Appendix A), which ensures that the
weights are neither too large nor too small and that the signal passing through
the neural network is propagated accurately. This prevents the signal from

6.2 Turning a Flash Selfie into a Studio Portrait 81

being amplified or reduced too much due to excessively large or small weight
initialization.

6.2.3 Problem Encoding

Fig. 6.3 Each row of the table shows a possible (and tested) encoding of
the problem. For each row, the neural network input, target, prediction, and
algorithm output are shown. The last row shows the bilateral filter applied to
the uniform lit image (left) and the best achievable result with approach C.

82 Deep Flash face photos

The network can be used in more than one way to achieve our goal. The
table in Figure 6.3 illustrates three alternative encodings of the problem,
showing the neural network input, target, prediction, and algorithm output for
each one. We indicate with xi the flash image, oi the uniformly lit image, and
yi[A|B|C] the network prediction. The most straightforward solution, shown in
the first row of Figure 6.3, consists of training the neural network by providing
xi as the input, oi as the target, and, once trained, to take the network prediction
yiA as the final output. With this setting, the network converged and gave good
results in terms of colours and chromaticism. On the downside, the predictions
were blurred, and small misalignments of facial expressions between xi and
oi (e.g., eyes closed/open, the position of the lips, and other facial landmarks)
created very visible artifacts in the predicted images. To reduce the blur in
the images, we can train the network, giving as input the flash image and as
the target the difference between xi and oi. This way, the artifacts due to the
alignment of facial expressions were greatly reduced and the training was
simplified. Through this approach, shown in the second row of Figure 6.3,
the results visibly improved, but the blur was not entirely removed. Inspired
by these results, we chose an encoding that decouples high-frequency details
such as hairs of facial features from low-frequency characteristics such as
the global skin tone. We employed an accelerated version of the Bilateral
Filter [8],[157], which is a nonlinear filter that is ubiquitously used to smooth
images preserving the edge features. In practical terms, a weight is assigned
to each pixel of the image to be filtered, depending both on spatial proximity
(spatial domain and on photometric similarity (range domain or intensity
domain). The idea behind many spatial filters is based on the requirement that
neighboring pixels tend to have similar values. However, this idea turns out to
be incorrect on the borders of objects in images because, in these points, the
signal changes quickly. The bilateral filter considers this feature and replaces
the intensity of each pixel with a weighted average of the intensity value of the
neighboring pixels. Through this filter, we remove the input and the ground

6.2 Turning a Flash Selfie into a Studio Portrait 83

truth image high frequencies, retaining the low frequencies and we compute
the distance between two images, normalizing it to [0,1]. The network input
is the filtered flash image, and the target is the distance between the filtered
input and the filtered ground truth:

ti =
[BL(xi,σs,σr)−BL(oi,σs,σr)]+1

2
xi,oi, ti ∈ [0,1], (6.1)

where BL is the bilateral filter operator, σs = 16 is the spatial sigma value,
and σr = 0.1 is the range sigma value. The parameters of the filter were
selected after an experimentation to determine the values that could create
high quality results. The final reconstructed image is computed as:

predi = xi −2yi +1, (6.2)

where yi is the network output.

6.2.4 Loss Function

As mentioned above, we trained our neural network with images filtered using
the bilateral filter as the input, and the distance between input and ground
truth filtered with the same filter as the target. The aim was to preserve the
low frequencies and retrieve them in a subsequent step from the original non-
filtered image. For this reason, we minimized the distance between the low
frequencies of the input and ground truth. The objective function is therefore
defined as follows:

L(yd, td) =
1

3N ∑
i

(
(ydi −E[ydi])− (tdi −E[tdi])

)2

, (6.3)

84 Deep Flash face photos

where

ydi = BL(xi,σs,σr)−2yi +1

tdi = BL(xi,σs,σr)−2ti +1
(6.4)

In more specific terms, N is the number of pixels, BL(xi,σs,σr) is the con-
volutional neural network input, xi is the flash image, yi is the predicted
difference of the convolutional neural network, and ti = BL(xi,σs,σr)−
BL(oi,σs,σr), where oi is the ground truth. The arguments of the bilateral
filter are the same in equation (6.1). Replacing equation (6.4) in equation
(6.3), and by simplifying and exploiting the linear property of the mean, the
objective function can be rewritten as

L(y, t) =
4

3N ∑
i

(
(ti − yi)+E[yi − ti]

)2

. (6.5)

To avoid negative values affecting the convolutional neural network con-
vergence due to activation functions, we normalized the target difference
image in the range [0. . . 1] (6.2). In particular, since Rectified Linear Unit
and Leaky Rectified Linear Unit are non-saturating nonlinear activation func-
tions [86] [154], they tend to eliminate completely or partially the negative
output values of each layer, leading to faster convergence than saturating non-
linear activation functions such as tanh, which lead to longer training times
and a slower convergence. Furthermore, it was shown that rectified units are
much more efficient for tasks concerning images [111] [55]. The network,
therefore, will perform predictions in the [0,1] range; for this reason, the
values are reported in the [−1,1] range and subsequently subtracted from the
input values. If we consider the bilateral filter function and perform a further
substitution, we can insert the original non-filtered images into equation (6.4),
and the objective function can be explicitly rewritten as

6.3 Experimental Setup - Dataset Creation 85

L(y,x,o) =
4

3N ∑
i

(
(BL(xi,σs,σr)−BL(oi,σs,σr)− yi)+

+E[yi −BL(xi,σs,σr)+BL(oi,σs,σr)]

)2 (6.6)

Mean subtraction is performed for each channel of each image pixel by
pixel only in the evaluation phase of the objective function, to centralize the
data and to distribute the weights of each image across the training in a bal-
anced manner, so that each image gives the same contribution to the training
and does not have more or less important than the others. This normalization
operation is performed differently for every single image, compared with the
classic method of centralizing the data, which involves subtracting from each
image the mean computed across the whole training dataset. Because our
problem is confined to a specific domain, in which the data are stationary and
the image lighting parameters are well defined and always the same both for
the input and for the output, we subtracted the mean for each single image,
which was computed on the same image to remove the average brightness or
intensity from each pixel.

6.3 Experimental Setup - Dataset Creation

We performed neural network training using pairs of photos taken with a 13
Megapixel Nexus 6 smartphone camera. The photographs were taken in a
studio equipped with four Lupoled 560 lamps to provide uniform illumination.
For each pose, a photograph was taken with the lamps on, which were then
immediately switched off, and a second photograph was taken with the smart-
phone flash only. Because the switching off the lamp imposes a significant
delay between the two shots (about 400ms with our lamps), the pose of the
face between the first and the second may change significantly. To reduce

86 Deep Flash face photos

the problem of face misalignment, we performed an affine alignment (i.e.,
translation, rotation, scale, and shear) using the MATLAB Image Processing
Toolbox™. In particular, we considered the non-flash image as the misaligned
image (M) and the flash image as our reference (R). Because the images have
different lighting conditions, we employed a multimodal metric [130] [102]
and optimizer[153]. Once the geometric transformation was estimated, we
applied it to M, obtaining M′, which is a better alignment to R. Note that a
limitation of this approach is that misalignments remain between open and
closed eyes. After affine registration, we identified the face of a subject in M,
M′, and R using the Face Recognition API 1, which returns a bounding box
for the photograph. Each bounding box is used to crop the image, and then
the image is downsampled to 512×512. In this way, the convolutional neural
network takes the global information on the images. We collected about 495
pair of photos of 101 of men and women in different poses. The dataset has
then been augmented in three ways. First, through 5 rotations from −20 to
20 degrees around the center of face bounding box, using a 10 degree step.
Second, by cropping the image to the face bounding box and rescaling to
original image size. Finally, images are flipped horizontally. Altogether, we
augmented the initial set of examples by a factor 20, therefore our training is
done with 9.900 images with 3120×4160 resolution (13 Megapixel).

6.4 Results

We evaluated the results in validation and test sets. In particular, the convolu-
tional neural network was trained using pairs of images with a resolution of
512×512 in about five days using a NVIDIA Titan Xp GPU and by perform-
ing 62 epochs and about 458,000 backpropagation iterations. We interrupted
the training when the value of the loss function computed on 1500 images
reached a low level of approximately 0.0042. To evaluate the similarity ac-

1 Face Recognition API: https://github.com/ageitgey/face_recognition

6.4 Results 87

Fig. 6.4 Accuracy trend in the validation set at the end of training the convo-
lutional neural network after 62 epochs and 458,000 iterations performed in 5
days.

curacy between the current prediction and ground truth, we computed the
percentage difference between the two images as follows:

acc = 100−
(

100
3w(I)h(I)∑

i
∑
c
| Ic − Ĩc |

)
(6.7)

where I = td, Ĩ = yd,w(I) = width(I), and h(I) = height(I). After the
training step, we obtained an accuracy value of 96.2% (Figure 6.4). In the test
phase, we evaluated our approach using 740 test images, obtaining a loss-test
value of 0.0045 and an accuracy value of 96.5% (Table 6.1).

6.4.1 Comparison with reconstructed Ground Truth

As explained in Section 6.2.3, the result provided by our pipeline is obtained
by subtracting the convolutional neural network prediction from the original
input image, allowing us to retrieve the high frequencies, which had been lost

88 Deep Flash face photos

due to the bilateral filter. It follows that even for a loss function L(y,x,o) = 0
the exact ground truth can never be reconstructed. Furthermore, and more
importantly, the misalignements due to pose changes between the flash and
non flash photos would dominate when computing the input and output image
differences. For these reasons we introduce a preconditioning operator on the
ground truth as

oi = xi −2ti +1 (6.8)

where ti is the target difference, as explained in Section 6.2.4. Figure
6.5 shows the final result for some examples of the validation data, while
Figures 6.6 and 6.7 show, similarly, the reconstruction of example images
belonging to the training and test sets, respectively. In particular, it can be
seen in Figures 6.5 and 6.7 that the information lost because of the flash,
such as hairs, beard and skin colour, are retrieved through the convolutional
neural network prediction. The shadow cast by the subject is also corrected by
the convolutional neural network to reduce the highlights due to the camera
flash. By reconstructing the final image through the non-filtered input, we
retrieved the high frequencies resolving the blur problem. We evaluated the
data using the Structural Similarity Index [163] for each subset of the dataset.
In particular, as can be seen from Table 6.2, which shows a comparison
between ground truth and the reconstructed predictions (see Figures 6.5, 6.6,
and 6.7), the Structural Similarity Index average value is around 80% for the
validation set, around 92% for the test set, and around 94.5% for the training
set. As a final step, we run a Red Eye Removal filter with GIMP to present
the final result. Please note that the metrics were calculated considering the
images without removing the red-eye artifact.

6.4 Results 89

LOSS ACCURACY

VALIDATION 0.0042 96.2%
TEST 0.0045 96.5%

Table 6.1 Loss validation and loss test after 62 epochs. This table also shows
the maximum accuracy achieved in both phases.

SSIM Left Center Right

Fig. 6.5:
Validation

87.5% 76.0% 70.0%
78.5% 81.1% 80.7%
83.7% 73.8% 85.9%

First row Second row Third row
Fig. 6.6: Train. 94.8% 89.3% 79.5%
Fig. 6.7: Test 91.0% 91.0% 92.3%

Table 6.2 The Structural Similarity Index (SSIM) of the reference images: The
first three rows show the Structural Similarity Index of Figure 6.5 (starting
from the top of the image) computed by comparing the central image of each
group and the image at the top right. The subsequent rows show the Structural
Similarity Index values related to Figures 6.6 and 6.7.

90 Deep Flash face photos

Fig. 6.5 Samples of validation data. Each group of images is composed of:
the original image taken with the smartphone flash (top left); the flash image
to which the bilateral filter was applied (bottom left); the image reconstructed
by the difference prediction of the convolutional neural network (center); the
ground truth reconstructed (top right); the ground truth (bottom right).

6.4.2 Comparison with other approaches

Our approach was compared with the similar approach of the state of the art.
In particular, we perform three comparisons with three different approaches:

6.4 Results 91

Input Output Ground Truth

Fig. 6.6 Training set example. For each row: the original input (left); the
image reconstructed by convolutional neural network prediction (center); the
ground truth reconstructed (right).

the first approach is called HDRNet[53]; the second approach is based on
Conditional Generative Adversarial Network [105] and is called Pix2Pix [71];
the final approach is non-deep learning based but on the direct style transfer
between pairs of images [146].

92 Deep Flash face photos

Input Output Ground Truth

Fig. 6.7 Test set example. For each row: the original input (left); the image
reconstructed by convolutional neural network prediction (center); the ground
truth reconstructed (right).

6.4.2.1 Comparison with HDRNet

We compared our approach to HDRNet by Gharbi et. al [53]. This work
is based on the use of a convolutional neural network inspired to the bilat-

6.4 Results 93

Flash Image Result

Fig. 6.8 Two example of a real images. The subjects were detected using
Photoshop Subject Detection tool and were forwarded to our neural network
with a green background. The results were blended with the original images.

eral grid processing [24] and to local affine colour transforms. HDRNet is
designed to learn any image operator and hence is a suitable candidate to
remove flash artifacts from photographs. In a first experiment, we trained
HDRNet end-to-end with our dataset, by feeding the network with input and
target images. We used the same parameters, times and training algorithm
proposed by the authors and trained the network for 48 hours. We obtained
a stable loss value of 0.0031. Figure 6.9 shows the comparison with our
approach. It can be seen that, although HDRNet is capable of approximating
the colours of the ground truth image, the flash highlights remain substantially

94 Deep Flash face photos

unchanged and, more important, the blurring is high to the point that the face
is unrecognizable. Note that this is also a consequence of the input and output
image misalignments for which we introduced the preconditioning operator
explained at the beginning of Section 6.4.1. On the contrary, our result more
closely matches the studio portrait preserving the high frequencies of the
images such as hair and face traits. In a second experiment, we combined
HDRNet with our encoding, that is, training HDRNet with the filtered images
as input and the difference between the input and the filtered ground truth as
target (see Section 6.2.3). Even in this experiment, we used the parameters
proposed by the authors and trained the network for over 48 hours, obtaining
an stable loss value of 0.0007. A few result samples of this experiment are
shown in Figure 6.10. From this figure, we can notice that HDRNet perfor-
mance has dramatically improved by using our encoding. However, our full
approach (that is, our encoding on our network) does a better job at removing
the flash artifacts (i.e., highlight and shadows). We compared the two meth-
ods by using Structural Similarity Index and the Peak Signal to Noise Ratio
between the prediction of networks and the target images obtained a random
sample of 30 images from each sub-set of the dataset (training set, validation
set, and test set). The results are reported in the Table 6.3. From this table,
we can see that our approach results in higher Structural Similarity Index and
Peak Signal to Noise Ratio values for all subsets. Summarizing, we can claim
both that our approach outperforms HDRNet w.r.t. the specific image operator
that removes the flash artifacts, and that HDRNet benefits from our encoding
strategy by producing better results than its native end-to-end configuration.

6.4.2.2 Comparison with Pix2Pix

Another comparison of our approach and the state of the art was performed
with Pix2Pix [71]. Such work is based on a particular type of generative
adversarial network [57] in the conditional setting (conditional generative
adversarial network) [105]. The use of such type of neural network was inves-

6.4 Results 95

Input HDRNet Our approach Ground Truth

Fig. 6.9 A comparison between HDRNet end-to-end training and our ap-
proach.

Input HDRNet Our approach Ground Truth
our encoding

Ta
in

in
g

V
al

id
at

io
n

Te
st

Fig. 6.10 An example of comparisons between HDRNet (combined with
our problem encoding) and our approach. We show one example from the
training set, the validation set and the test set, respectively.

96 Deep Flash face photos

OUR SSIM
HDRNET

SSIM
OUR PSNR

HDRNET

PNSR
TRAINING 91.55% 73.93% 24.05 dB 19.71 dB

VALIDATION 87.76% 78.51% 20.42 dB 18.84 dB
TEST 89.80% 82.92% 21.28 dB 19.02 dB

Table 6.3 Comparisons on samples of the training, validation, and test sets.
In particular, the Structural Similarity Index (SSIM) and Peak Signal to
Noise Ratio (PSNR) values are computed on samples of 30 images extracted
randomly from each dataset.

tigated as a general-purpose solution to image-to-image translation problems.
The Pix2Pix authors tested their conditional generative adversarial network
on several tasks such as photo generation and semantic segmentation. In
the training details, they explained that the images were randomly jittered
through resizing the 256×256 (original size of images) to 286×286 and then
randomly cropped to come back to 256×256. Therefore, we trained Pix2Pix
cGAN by using the training information provided for the Day → Night task,
which is performed by the authors. In particular, the network was trained
using our dataset; i.e., 4 as batch size and 80 as the number of epochs. We
had to increase the number of epochs because 17 epochs, as in the case of
the Day → Night task proposed by authors of Pix2Pix, produced low quality
results. The network was trained from scratch by using a Gaussian distribu-
tion to initialize the weights with 0 as mean and 0.02 as standard deviation,
as suggested by the authors. We performed a mirroring and the random jitter
starting from our image resolution 512× 512 and doubling the resizing to
572×572. As the previous comparison (see Section 6.4.2.1), we performed
two experiments. In the first one, we trained Pix2Pix end-to-end using our
dataset by feeding the network with input and target images. The network
was trained for about 9 hours. Figure 6.11 shows the comparison with our
approach. Although Pix2Pix better approximates the ground truth image

6.4 Results 97

colours, it introduces notable artifacts by changing the image content sig-
nificantly. Many of these artifacts can be seen on eyes and facial features.
In the second experiment, we combined Pix2Pix with our encoding. We
trained Pix2Pix with the filtered images as input and the difference between
the input and ground truth filtered as a target; see Section 6.2.3. In this case,
the network was trained for 9 hours with the same parameters used in the
first case. Figure 6.12 shows some outcomes of this experiment. As before,
it is possible to notice a dramatical improvement of the results obtained by
combining Pix2Pix and our encoding. However, artifacts are still present
on the geometry of the image (i.e., facial features and around eyes), even
though they are not as strong as in the end-to-end training. The results of
the comparisons are visible in the Table 6.4, which reports the Structural
Similarity Index and Peak Signal to Noise Ratio values. As before, these
values are computed on a random sample of 30 images for each subset of the
dataset (i.e., training set, validation set, and test set). From this table, it can
be seen that our approach obtains higher values of Structural Similarity Index
and Peak Signal to Noise Ratio for all subsets. Finally, this comparisons
elicits that our approach outperforms Pix2Pix w.r.t the image operator that
remove the flash artifacts, and that Pix2Pix can benefit from our encoding
strategy by generating high-quality results compared to end-to-end training.

Input Pix2Pix Our approach Ground Truth

Fig. 6.11 A comparison between Pix2pix end-to-end training and our ap-
proach.

98 Deep Flash face photos

Input Pix2Pix Our approach Ground Truth
our encoding

Ta
in

in
g

V
al

id
at

io
n

Te
st

Fig. 6.12 An example of comparisons between Pix2Pix (with our problem
encoding) and our approach. We show one example from the training set, the
validation set and the test set, respectively.

6.4.3 Comparisons with Style Transfer

As our final comparison, we tested our method against the style transfer
method by Shih et al. [146]. This method is specifically meant for portraits
and based on a multi-scale local transfer approach. In our tests, we used the
ground-truth image as target style to be transferred to the input image that is
the ideal condition. Unfortunately, we could not try Shih et al.’s method on a
large dataset because the generation of masks and landmarks for the original
code is extremely cumbersome (i.e., more than an hour per image). Therefore,
we tested on a limited number of images that are displayed on Figure 6.13. As

6.5 Discussion 99

OUR SSIM
PIX2PIX

SSIM
OUR PSNR

PIX2PIX

PNSR
TRAINING 90% 71% 24.8 dB 17.82 dB

VALIDATION 83.16% 73.16% 19.72 dB 17.64 dB
TEST 88.78% 74.25% 20.58 dB 17.30 dB

Table 6.4 Comparisons on samples of the training, validation, and test sets.
As before, the Structural Similarity Index (SSIM) and Peak Signal to Noise
Ratio (PSNR) values are computed on samples of 30 images each, which
were extracted randomly from each dataset.

can be seen from Figure 6.13, the method by Shih et al. can transfer colours
correctly, but it fails to remove flash artifacts. Moreover, these are enhanced
creating unnatural effects especially for eyes and hard shadows and lighting.

6.5 Discussion

We have proposed an unassisted pipeline to turn a smartphone flash selfie into
a studio portrait by using a regression model based on supervised learning.
We have defined a complete pipeline, starting from data collected by well-
defined acquisition parameters, performing pre-processing by a bilateral filter,
training the network, and finally, validating the results. We have made several
comparisons using different metrics to validate our approach. Among these,
we used the Structural Similarity Index that places more emphasis on the
validity of the results because it measures the similarity between images in
a way that is consistent with the perception of the human eye. Besides the
obvious application of our method for correcting flash selfies, our results allow
us to conjecture that a low-quality smartphone flash selfie contains enough
information for reconstructing the actual appearance of a human face as one
obtained with more uniform lighting. The most likely future work will be to

100 Deep Flash face photos

Input Ground Truth Style Transfer Our Approach

Fig. 6.13 An example of visual comparisons between the Portrait Style
transfer [146] and our approach. Although there is a good match in colours
several artifacts are presents such as flash hard shadows and around eyes.

widen the acquisition domain, both in terms of hardware and illumination
settings and in terms of the age and ethnicity of photographed subjects. Then,
we will build on our method by incorporating state-of-the-art solutions for
multiple-face detection, red-eye removal, and background subtraction. Our

6.5 Discussion 101

aim is to deploy a mobile app that can be used by any smartphone user. On
the method itself, we are planning to explore the solution proposed by Larsen
et al. [89] and to use our network as the generator component of a Generative
Adversarial Network [57] where the discriminator is trained to recognize if
a given image is a difference between the bilateral filtered version of a flash
and no flash images.

6.5.1 Limitations

Thanks to the tightly bounded domain of the input, our system can provide
convincing results even after being trained with a small dataset of 495 input
images (prior to data augmentation). However, results would greatly improve
if a more diverse training dataset was provided by relaxing some boundaries
of the said domain. More specifically, all the subjects were white adults,
the uniform-light setting was the same for all images, and all images were
acquired with the same device.

Chapter 7

Deep Chroma Key

The shape and face of a person obtained to the selfie photos are typically in the
foreground of the picture. To specialize the deep neural network algorithms
on a well-defined domain such as the faces or shapes of people we need to
decouple the background and foreground from the pictures. In this way, deep
neural network learns only the intrinsic characteristics of the shapes and the
faces, by focusing on the edges, colours and other details. To decouple the
foreground and background we focused on the chroma key technique, by
using convolutional neural network. In this context, the main advantage of
deep learning is the ability to shoot a photo or video without equipment such
as a green screen and numerous types of special lighting. In this way, video
or photo editing times are decreased considerably, providing excellent results
without the need for professional software.

7.1 Overview

Chroma Key is used mainly in cinema and TV, allowing two or more videos
to be combined into one [124], [167]. This is achieved by signaling to a video
mixer what source to use at a given time, using a background video and a
foreground video with the actor moving against a uniform background (for

104 Deep Chroma Key

Fig. 7.1 Some examples of functioning and results obtained with our approach.
The blue-bordered RGB sub-images, taken using an RGB camera, are passed
through our network, which performs pixel classification by extracting the
actor’s shape from the picture. Such results can be viewed through the binary
images in grey scale, that is, the green-bordered images. In the black border
is shown a label overlay.

example, a green screen). The key colour is then interpreted by the video
console as transparent, by requiring actors to avoid using objects and clothing
that are the same colour as the background. However, chroma key presents
several limits: it requires the use of separate lighting between the uniform
background and the actor, and to avoid as much as possible any overlapping
of shadows in the camera frame. Even under ideal lighting conditions, it is
not always easy to identify image edges to a precise degree, and flat lighting
often leads to the loss of thickness and three-dimensionality. Today, the
most widespread way to obtain excellent results is to manage material in
a completely digital process, through the use of computer graphics, and
integrate it with the movements of the actor. Professional software and the
knowledge and skills of industry experts are also required. In attempts to
overcome these limitations, various techniques were studied, including image
matting.

Image matting is the process of accurately estimating a foreground object
in image-editing applications and film production. In the case of image
segmentation, the goal is to segment an image into foreground and background
objects by labelling the pixels. This method generates a binary image, in
which a pixel belongs to either the foreground or the background. However,

7.1 Overview 105

the problem is that some pixels may belong to the foreground as well as to the
background, and so the aim is to determine the combination of foreground and
background intensity for each of these pixels. This is expressed as follows:

Ii = αFi +(1−α)Bi αi ∈ [0,1] (7.1)

where Ii is the red, green, blue (RGB) colour at pixel i, Fi is the foreground
colour, Bi is the background colour, and α is the matte estimation. In the
image-matting problem, all quantities on the right-hand side of the equation
(7.1) are unknown, which makes the problem ill-posed. It can be solved by
adding more information to it. Many models and algorithms take an image
and the corresponding trimap as inputs and predict the alpha matte of the
image [166, 25, 61, 26]. A trimap is an image with three regions: known
foreground in white, known background in black, and unknown regions in
grey. A trimap allows a high degree of accuracy to be obtained, but user
interaction is the most common form to generate it: In some trimap interfaces,
the user manually partitions images into the three regions, requiring extensive
computation, which narrows the possible applications. A useful idea is to use
segmentation to obtain a good trimap initialization for image matting [144].

In this chapter, we propose an alternative method to simulate chroma key
automatically and quickly, and attempt to overcome its limitations through
the use of a deep convolutional neural network. It has an encoder–decoder
structure composed of two subnetworks: an encoding and a decoding com-
ponent, appropriately trained to perform automatic extraction of actors from
images. The encoder is typical of a convolutional network and is topologically
identical to the well-known VGG-16 architecture [150], but without the fully
connected layers. The decoder has as many convolutional layers as those
of the encoder, and converts the low-resolution encoder feature maps to full
input resolution feature maps by using upsampling operations. In particular,
this type of network classifies the pixels of the input images and produces
an output image segmented appropriately into two classes: background and

106 Deep Chroma Key

foreground. To train our network, two specific datasets were created using
the shapes of 35 different moving actors arranged on background frames,
which were extracted from videos recorded in selected areas: the first dataset
concerned an indoor area and the second an outdoor area. The main benefit
of our approach is the possibility to shoot a video, in the same selected area,
without the aid of alternative tools such as a green screen or particular types of
lighting. In this way, it is possible to replace the background easily and faster
for the same selected area, allowing the subject and the camera to move. Our
network output can also be used to quickly generate an accurate trimap on
real images with people in the foreground, by using morphological operations
to derive unknown regions.

7.2 U-Shape Convolutional Neural Network Ar-
chitecture

The proposed approach aims to extract foreground actors’ shapes from the
images, so that it is possible to add a different background, simulating the
chroma key effect. We use a deep neural network, shown in Figure 7.2,
which uses a technique called semantic segmentation. Increasingly, semantic
segmentation techniques [118], [110], [145], [9], [81] are being used to divide
an image into a set of non-overlapping regions. The pixels belonging to a
specific region share some features such as colour. Segmentation algorithms
are able to identify the areas that share similar features, but do not interpret
the content. Semantic segmentation takes care of understanding the content
of the image by classifying the pixels and relating them to certain classes, and
is responsible for giving such content a closed and well-defined edge. Our
neural network is based on the well-known SegNet architecture [6], that is,
an U-shape Net, performing pixel classification through its final layer. The
encoding component of the input consists of several convolutional layers [56],
with batch normalization operations [70], rectified linear units as activation

7.2 U-Shape Convolutional Neural Network Architecture 107

functions [55], and max-pooling layers [175]. The component that performs
the decoding of the encoder output is based on inverse operations such as
deconvolutions [171] and unpoolings [170].

Fig. 7.2 The used U-shape Net, developed from the SegNet [6] architecture.
The network structure is represented by coloured blocks: orange represents
the convolutions, batch normalization, and Rectified Linear Unit operations;
blue represents the pooling operations; green represents the up-sampling
operations; and grey represents the pixel classification layer based on Soft-
max [13] operation. The set of images to the left are the input set, while the
set of images to the right are the corresponding outputs.

The used encoder sub-network is the same proposed in the previous
Chapters 6.2.1 and 5.4.1, however, in this case it was introduced a stored
operation of max-pooling indices. Such indices represent the positions of
the maximum value and will be used in the decoding phase to perform the
up-sampling operations.

7.2.1 Decoder

The remaining part of the network performs the decoding of the encoder out-
put tensor. Such sub-network, called decoder, consists of many convolutional
layers as those of the encoder. Decoding occurs through a set of operations
such as deconvolution and unpooling. The unpooling operation performs the
spatial up-sampling by using the stored indices in max-pooling operations. In

108 Deep Chroma Key

this way, the hardware memory is significantly reduced, avoiding the need
to store all of the features map, which was obtained after the down-sampling
operation in the encoding phase, and reducing the number of parameters
without loss of accuracy. The features maps obtained in this phase are sparse,
and they are then passed through convolutional layers to make them dense.
After the convolution, a batch normalization is performed. The last layer
of the decoder network classifies pixels by using Softmax as the activation
function. The loss function uses cross-entropy [56], which is typically used in
classification problems. Weights of the decoder network are initialized using
the MSRA method, which was proposed by He et al. [62]. It is suitable for
layers followed by a Rectified Linear Unit activation function on very deep
neural networks.

7.3 Deep Neural Network for the Chroma Key

To train our deep neural network, we provided a pair of images as input. Each
pair consists of an RGB element, which contains the shape of an actor on a
background frame, and a binary image, which represents the label as shown
in Figure 7.2. The background frames were extracted from a recorded video
in defined areas. In this way, once the neural network was trained, it will be
possible to use as input the frames of a video shot in the chosen area in which
both the actor and the camera can move. The RGB element is represented
through a tensor w×h×3, with width w, height h, and depth 3. The label is
represented through a binary matrix that uses only two values, 0 and 1, where
0 represents the background class and 1 represents the foreground class. Such
distinction is useful for obtaining the chroma key effect. The background is
the element to be replaced, while the foreground represents the shape of the
actor, which is the element to be saved. More specifically, the label represents
the ground truth for comparison with the output of the deep neural network by
the training algorithm, to compute the loss value. Loss function was defined

7.3 Deep Neural Network for the Chroma Key 109

using cross-entropy (see Appendix A), as indicated above. In particular, the
error L(yi, ti) can be defined as follows:

L(yi, ti) =−ti logyi (7.2)

where y is the prediction and t is the target related to foreground and
background classes.

Cross-entropy is useful for measuring the dissimilarity between the ground
truth and the output predicted by our network. Equation (7.2) can be defined
as

L(yi, ti) =−t(f g)
i logy(f g)

i − t(bg)
i logy(bg)

i (7.3)

where

1. y(f g) is the probability of classifying the output as foreground and
y(bg) is the complementary probability of classifying the output as
background;

2. t(f g) is the real probability of related to foreground and t(bg) is the
complementary real probability related to background.

Using Equations (7.2) and (7.3), the loss function L(y, t) computed on N
samples and expressed according to the foreground terms, can be described
as follows:

L(y, t) =
1
N

N

∑
i=1

[−t(f g)
i logy(f g)

i − (1− t(f g)
i) log(1− y(f g)

i)] (7.4)

If an image contains only one actor, in general, the background pixels
will be more frequent with respect to the foreground ones, as shown in
Figure 7.3. Such difference can be dangerous for the training process due
to partial learning that favors the background class. Ideally, we would like
each class to have the same number of observations in the training dataset
to prevent a category from being underrepresented. Since the goal of the

110 Deep Chroma Key

Fig. 7.3 A label overlay of a training image. The background pixels (light
blue), are more frequent with respect to the foreground pixels (red). The
frequency of foreground pixels in the training dataset is 11.16%, and the
frequency of background pixels is 88.84%.

network is to segment actors in the foreground, the inverse frequency is used
to weigh the classes and give more importance to the foreground. Thus, during
backpropagation, only the gradient from the maximally scoring instance is
calculated and used for updating the weights. The inverse frequency can be
expressed as follows:

F−1 =
∑i, j Ii, j

∑i, j I(k)i, j

k = 0,1 (7.5)

where the numerator represents the sum of the pixels for each I image
in the training dataset, and the denominator represents the sum of the pixels
belonging to the kth class for each I image in the training dataset. F−1 is the
inverse frequency for each class (background when k is equal to 0, foreground
when k is equal to 1).

7.3 Deep Neural Network for the Chroma Key 111

7.3.1 Dataset Collection

The training of our deep neural network was performed using two solutions
to create the dataset. Our dataset was based on a number of requirements to
make a good dataset for semantic segmentation: (i) There must be enough
image pairs, composed of those to be segmented and the relative ground truth,
and (ii) the labels must be as precise as possible, due to potentially critical
issues such as the actor’s hair is very jagged, clothes have folds, or there is
little difference between background and actor.

Fig. 7.4 Example of pre-processing phase. Left: The input taken using a
camera and green screen. Center: The edge highlighted on the matte image
obtained using Adobe After Effects. Right: The corresponding label.

The first step in creating the dataset was to recorder videos of moving
actors using the green screen and a camera to obtain a large amount of data
and very precise labeling. The green screen setup consisted of an opaque
green drape and two lights, one of which illuminated the background, and
the other illuminated the actor to remove the shadows as much as possible.
The videos were recorded using a Panasonic HDC-SD800 camera with 14.2
megapixel and 1,920×1,080 spatial resolution. The video pre-processing
phase consisted of removing the green background (left image of Figure 7.4)
using Adobe After Effects and extracting the shapes of the actors. Using
the same software, it was also possible to obtain a matte version of each

112 Deep Chroma Key

shape (center image of Figure 7.4). This consists of a mask that defines the
transparent or background areas as black and the matte or foreground areas,
which contain the actor’s shape, as white. The matte version contains three
channels, between 0 and 255. To label (right image of Figure 7.4) each image,
a binarization process was performed using a global threshold value, which
creates a binary image in which all the values of the starting image over the
threshold are set to 1 and all the values below it are set to 0. The threshold
is a value that varies between 0 and 1, but we set this value to 0.3 because
this represented a good compromise for maintaining, as much as possible, the
quality of the matte version. Lower values of the threshold would have made
the background areas white, and higher values would have cut out part of the
shape, such as edges, hair, and clothes.

The second step was to extract background frames from a recorded video
in an area that we chose. For the first solution, an indoor area was chosen.
Then, the actors’ shapes were arranged on the background frames to create
the RGB elements, which, together with the labels, formed the first dataset
solution. The obtained pairs were divided into 16,832 for the training set,
1,403 for the test set, and 900 for the validation set. The validation set was
introduced to check the training performance of the network by using different
data from the training set. The dataset images were reduced using 640×360
spatial resolution for reasons related to the resources and computational times
that were available.

The second solution was created to compensate for some critical issues
that arose in the first one. In particular, shape overlapping on the background
frame caused a clear distinction between the borders of the shape and the
background compared with a real image. The network learned the shape
from images created in the previous solution, and gave discrete results on
real images where the variation between the background and the shape was
more linear. To solve this problem, we introduced a bilateral filter and
applied it to the images obtained in the previous solution. As explain in the

7.3 Deep Neural Network for the Chroma Key 113

Fig. 7.5 Comparison between an unfiltered image and the corresponding
image filtered with the bilateral filter. The filter parameters are w= 5, σd = 16,
and σr = 0.1. In the filtered image, an attenuation of the sharp edges can be
seen, particularly at the neck and the hands.

previous Chapter 6.2.2, this is a nonlinear filter and is often used to reduce
the noise of images while preserving the edges. In realistic photos, normally,
there is no clear separation between the actor and the background. Since
our photos resulted from the overlapping of background frames and actors’
shapes clipped from the green screen, this separation was more evident in
the left image of Figure 7.5. The bilateral filter was applied in the image in
the right image of Figure 7.5, with the spatial parameter σd set to 16, the
range parameter σr set to 0.1, and the dimension of a half-window of the
Gaussian kernel w set to 5. Based on the knowledge acquired, we also used
the second solution to create an outdoor dataset. In this case, the second step
was performed by extracting the background frames from a recorded video in

114 Deep Chroma Key

an outdoor area. Data augmentation was applied to the datasets [39]. This
operation generated perturbed images of the training dataset for each epoch,
to avoid the problem of overfitting. The data augmentation was performed by
applying several transformations on the fly in the training phase; therefore,
the perturbed images were not stored, and the dataset dimension remained
unchanged. We made spatial transformations mirroring right/left and rotation
with a random angle between −30 and 30 degrees.

7.4 Training Step

We developed, trained, and tested our neural network using MATLAB® and
its toolboxes, in particular, the Neural Network ToolboxTM. We used Nvidia
GPU GTX 1080Ti, which has a Pascal architecture, 3584 CUDA core, 11
GB GDDR5X as a frame buffer and 11 Gbps speed memory. The training
was performed by selecting Adam [84] (see Appendix A) as the optimization
algorithm. It was demonstrated empirically that this algorithm achieves good
results, in a short time, applied to large models and datasets. The initial
learning rate was set to 10−5, and the validation set was introduced to check
the level of generalization of the neural network for each epoch. The number
of epochs was set to 40, but the training was stopped after 19 epochs since
no further improvements were noted: neither an increase in accuracy nor a
reduction in error. At the end of training, the accuracy was fixed at around
99.8%, and loss in training was around 0.01. Accuracy in the validation
stage did not decrease with respect to that of training, reaching approximately
99.79%, and loss during validation fell throughout the training, reaching a
final value of 0.008.

7.5 Results 115

7.5 Results

This section begins with an overview of the methods of evaluation of the re-
sults, through analysis of the proposed neural network output. The remainder
of the section will describe in detail the results obtained and their evaluation
through analysis of the two dataset solutions, by using the described methods.

7.5.1 Evaluation methods

Evaluation of the results after several training steps was performed through
two types of test: A first test was performed by using the test set, which
contained the images to be segmented and the labels to be used as a compari-
son with the output obtained from the network; the other test was performed
on real and unlabeled photos. Semantic segmentation quality was evaluated
through three metrics: Accuracy, Intersection over Union (IoU) [52], and
Mean Boundary F1 Score (BF) [140]. The Accuracy metric measures the
amount of correctly classified pixels with respect to the total amount of pix-
els. It can represent the ratio of correctly classified pixels to total pixels,
regardless of class (Global Accuracy), the ratio of correctly classified pixels
in each class to total pixels, averaged over all classes (Mean Accuracy), or the
ratio of correctly classified pixels in each class to the total number of pixels
belonging to that class according to the ground truth. This last definition can
be expressed as

Accuracy =
T P

T P+FN
(7.6)

where T P indicates the true positive and FN the false negative. Inter-
section over Union is a statistical measure of accuracy that penalizes false
positives. This parameter shows the quality of the pixels correctly classified
with respect to the total amount of pixels assigned to a certain class by ground
truth and by the network output. Intersection over Union can be expressed by

116 Deep Chroma Key

the following formula:

IoU =
T P

T P+FP+FN
(7.7)

where FP indicates the false positive. Intersection over Union can also be
computed as an average value (Mean Intersection over Union).

Boundary F1 Score is a measure of the accuracy used in the statistical
analysis and is calculated for each class. The measure takes into account the
precision and recovery of the test, where the precision is the number of true
positives divided by the number of all positive results, and the recovery is the
number of true positives divided by the number of all the tests that should
have been positive (i.e., the sum of true positives and false negatives). This
parameter is defined as the harmonic mean of precision p and recovery r.

score = 2 · p · r
p+ r

(7.8)

In addition to these metrics, a further method of viewing the performance
data from the tested network is the normalized confusion matrix [152]. It
returns a representation of the accuracy of the classification. Each column
represents the predicted values, and each row represents the real values. Each
element (i, j) is given from the amount of pixels that belong to the true class
i, but associated with the predicted class j. A normalization is performed by
dividing by the total number of predicted pixels in j.

7.5.2 Unfiltered Dataset Results

After training with the unfiltered dataset, the performances of our neural
network were evaluated with respect to the test dataset and the real photos.
Table 7.1 shows the metrics aggregated over the test dataset, and Table 7.2
shows the metrics for each class. By observing the normalized confusion

7.5 Results 117

GLOBAL ACCURACY MEAN ACC. MEAN IOU MEAN BF SCO.
0.99737 0.99828 0.99132 0.9942

Table 7.1 The metric values of the whole test dataset for the network trained
with the unfiltered dataset: Global Accuracy; Mean Accuracy; Mean Intersec-
tion over Union; Mean Boundary F1 Score.

matrix (Table 7.3), it is possible to obtain rapid feedback on the performed
test.

ACCURACY INT. OVER UNION MEAN BF SCO.
FOREGROUND 0.99974 0.98587 0.99168
BACKGROUND 0.99683 0.99677 0.99672

Table 7.2 The metrics obtained by considering each class with respect to the
unfiltered test dataset.

PRED. FOREGROUND

CLASS

PRED. BACKGROUND

CLASS

TRUE FOREGROUND

CLASS
99.97 0.02647

TRUE BACKGROUND

CLASS
0.3166 99.68

Table 7.3 Results of the test carried out on the network after training with the
unfiltered dataset. A normalized confusion matrix returns a representation
of the accuracy of the classification. Each column represents the predicted
values, while each row shows the real values. Each element (i, j) is given by
the count of the pixels belonging to the real class i but associated with the
predicted class j. Finally, a normalization is performed by dividing by the
total number of predicted pixels of the j class.

Figure 7.6 shows the results related to the test dataset. This dataset was
created as the training dataset, with actors’ shapes arranged on background

118 Deep Chroma Key

frames. These images highlight the best and the worst case for Mean Accuracy
(left images) and Mean Intersection over Union (right images).
Other tests were performed on real photos 7.7, which were taken in the same
indoor area where the background videos used to create the dataset were shot.
These photos were resized appropriately to fit the aspect ratio to the size of
the neural network input. Note that the subject in these photos is partially
undivided by the network. This is because, since the network was trained on
a dataset in which the actors presented a well-defined edge with respect to the
background, there is an uncertainty in real cases above the boundary zones.
This involves an error in the classification of foreground pixels.

7.5 Results 119

Fig. 7.6 Results related to the test dataset after training using the unfiltered
dataset. The test set was created as the training set and contains unfiltered
images. The first image shows the best result for Mean Accuracy (99.9%),
and the second image shows the best result for Mean Intersection over Union
(99.6%). A classification error related to foreground can be seen in the
third image, which shows the worst result for Mean Accuracy (96%), and a
classification error related to background can be seen in the last image, which
shows the worst result for Mean Intersection over Union (96.6%).

120 Deep Chroma Key

Fig. 7.7 Results of real images, taken directly with a camera, querying the
network after training with the unfiltered dataset. A classification error related
to foreground pixels can be seen in these three images. In particular, parts of
the actor in the top and center images have a colour similar to the background.

7.5 Results 121

7.5.3 Filtered Dataset Indoor Results

The next training step was performed on the filtered dataset with background
frames of an indoor area, and the neural network performances were evaluated
with respect to the test set and the real photos. Table 7.4 shows the metrics
aggregated over the test dataset, Table 7.5 shows the metrics for each class,
and Table 7.6 shows the normalized confusion matrix.

GLOBAL ACCURACY MEAN ACC. MEAN IOU MEAN BF SCO.
0.99778 0.99829 0.99267 0.9955

Table 7.4 The metric values of the whole test dataset for the network trained
with our filtered dataset for an indoor area.

ACCURACY INT. OVER UNION MEAN BF SCO.
FOREGROUND 0.99909 0.98805 0.99351
BACKGROUND 0.99749 0.99728 0.9975

Table 7.5 The metrics obtained by considering each class with respect to the
filtered test dataset for an indoor area.

PRED. FOREGROUND

CLASS

PRED. BACKGROUND

CLASS

TRUE FOREGROUND

CLASS
99.91 0.09141

TRUE BACKGROUND

CLASS
0.2514 99.75

Table 7.6 The confusion matrix related to the test carried out on the network
after training with the filtered dataset for an indoor area.

Figure 7.8 shows the neural network output that was obtained on the test
set in a similar way to the results of the first solution. No improvements

122 Deep Chroma Key

were found in the results for the dataset test, unlike the real cases, as can be
observed by comparing Figures 7.7 and 7.9. By testing the real photos, we
found a marked improvement in the classification of foreground pixels. In
particular, in the top image of Figure 7.9, the problem occurs on the left hand
of the shape because the colour of the hand is similar to the background colour.
In contrast, in the center image of Figure 7.9, there is excellent classification
of pixels, due to a clear difference in colour between the background and the
foreground.

7.5 Results 123

Fig. 7.8 Results of the filtered test dataset for the chosen indoor area. The
first image shows the best results for Mean Accuracy (99.9%), and the second
image shows the best results for Intersection over Union (99.6%). A classifi-
cation error related to foreground pixels can be seen in the third image, which
shows the worst result for Mean Accuracy (96.4%), and a classification error
related to background pixels can be seen in the last image, which shows the
worst result for Mean Intersection over Union (94%).

124 Deep Chroma Key

Fig. 7.9 Results of real images, taken directly with a camera, querying the
network after training with the filtered dataset related to the chosen indoor
area. An improvement in the classification of foreground pixels can be seen,
especially in the bottom image.

7.5 Results 125

7.5.4 Filtered Dataset Outdoor Results

The final training step was performed on the filtered dataset with background
frames of an outdoor area, and the neural network performances were evalu-
ated as in the previous case. Table 7.7 shows the metrics aggregated over the
test dataset, Table 7.8 shows the metrics for each class, and Table 7.9 shows
the normalized confusion matrix.

GLOBAL ACCURACY MEAN ACC. MEAN IOU MEAN BF SCO.
0.99771 0.99843 0.99245 0.99602

Table 7.7 The metric values of the whole test dataset for the network trained
with our filtered dataset for the chosen outdoor area.

ACCURACY INT. OVER UNION MEAN BF SCO.
FOREGROUND 0.99957 0.9877 0.99432
BACKGROUND 0.99729 0.9972 0.99771

Table 7.8 The metrics obtained by considering each class with respect to the
filtered test dataset for the chosen outdoor area.

PRED. FOREGROUND

CLASS

PRED. BACKGROUND

CLASS

TRUE FOREGROUND CLASS 99.96 0.04345
TRUE BACKGROUND CLASS 0.2705 99.73

Table 7.9 The confusion matrix related to the test carried out on the network
after training with the filtered dataset for the chosen outdoor area.

Figure 7.10 shows the neural network output that was obtained on the test
set in a similar way to the results of the previous case. Figure 7.11 shows
some of the results obtained from the real photos taken in the same outdoor
area selected for the network training.

126 Deep Chroma Key

Fig. 7.10 Results of the filtered test dataset for the chosen outdoor area. The
first image shows the best results for Mean Accuracy (99.9%), and the second
image shows the best results for Intersection over Union (99.66%). The third
image shows the worst result for Mean Accuracy (96.6%), and the last image
shows the worst result for Mean Intersection over Union (97.8%). In these
last two images, a classification error related to foreground pixels can be seen.

7.5 Results 127

Fig. 7.11 Results of real images, taken directly with a camera, querying the
network after training with the filtered dataset for the chosen outdoor area.
In these three cases, there are no notable classification errors. The system is
efficient even when there are more people in the image, as shown in the top
image.

7.5.5 Improvements

In some cases, the obtained result has small imperfections that can be cor-
rected, for example, isolated pixels wrongly classified as foreground and/or
small holes. Then, it is possible to perform a post-processing phase. In the
first case, an area opening operation can be used. This is a morphological

128 Deep Chroma Key

operation that removes all connected components that have fewer than a given
number of pixels from a binary image. In the second case, a closing opera-
tion can be used, which is a dilation followed by an erosion, using the same
structuring element for both operations. Figure 7.12 shows the advantages
of the described operations. The number of pixels was set to 30 for the area
opening operation, and a disk-shaped structuring element with a radius of 2
pixels was used for the closing operation.

Fig. 7.12 Improvements in the neural network result. Top: The original image
passed as input to the network (left) and the obtained result (right). Bottom:
The output of the area opening operation, which removed all connected
components with fewer than 30 pixels (left), and the output of the closing
operation considering a disk-shaped structuring element with a radius of 2
pixels (right).

7.6 Comparisons and Applications 129

7.6 Comparisons and Applications

Starting with the results obtained through our approach, we made a visual
comparison using an Adobe Photoshop tool called Select Subject. Select
Subject was developed through Adobe Sensei, a framework that uses artifi-
cial intelligence to support image-processing tasks to enhance and simplify
complex user image-editing operations. According to Adobe, this tool is
useful for quickly selecting prominent subjects in pictures. Select Subject
provides a basic method to select the subject and allows the selection to be
refined through other tools or user actions. Adobe Sensei is an advanced
machine-learning technology trained to identify a wide variety of objects in
an image, such as people, animals, vehicles, and toys. We tested a subset of
our filtered test dataset for an indoor area. By comparing our network with
the Select Subject tool, we obtained the metrics aggregated over the dataset
(Table 7.10), the metrics for each class (Table 7.11), and the normalized
confusion matrix (Table 7.12).

GLO. ACC. ME. ACC. ME. IOU ME. BF SCO.
PHOTOSHOP 0.98942 0.99242 0.99 0.9248

OUR NN 0.99799 0.9983 0.99 0.99481

Table 7.10 The first row shows the metric values obtained using the results of
Photoshop Select Subject on a subset of our filtered test dataset for the indoor
area. The second row shows the results of our network using the same test
subset.

Figures 7.13 and 7.14 show the best and worst cases for Mean Accuracy
and Intersection over Union, comparing the Adobe Photoshop results with
ours. It is evident that our network provides better results. Figure 7.15
shows some of the results obtained with Select Subject from real images,
taken directly with a camera. In comparison with the images in Figure 7.7,
greater accuracy was obtained with our approach, particularly in the subject’s

130 Deep Chroma Key

ACC. IOU MEAN BF SCORE

PHOTOSHOP
Foreground 0.99715 0.94511 0.893

Background 0.98769 0.98706 0.9566

OUR NN
Foreground 0.99878 0.99754 0.99252

Background 0.99781 0.99754 0.9971

Table 7.11 The metrics for each class obtained using the results of Photoshop
Select Subject and our results on a subset of our filtered test dataset for the
indoor area. A deterioration when using Select Subject compared with the
results of our approach can be observed.

PREDICTED

FOREGROUND

CLASS

PREDICTED

BACKGROUND

CLASS

PHOTOSHOP

True Foreground
Class 99.72 0.2845

True
Background Class 1.231 98.77

OUR NN
True

Foreground Class 99.88 0.1216

True
Background Class 0.2185 99.78

Table 7.12 The confusion matrix related to the test carried out using the
results of Photoshop Select Subject and our results on a subset of our filtered
test dataset for the indoor area. A deterioration when using Select Subject
compared with the results of our approach can be observed.

contours in the center image of Figure 7.15. These tests show the effectiveness
of our work.

7.6 Comparisons and Applications 131

Fig. 7.13 From top to bottom: The images show the results obtained with
Select Subject on a subset of our filtered test dataset for the indoor area: The
first and second images show the best results for Mean Accuracy (99.5%) and
Intersection over Union (97.9%); in the third image, which shows the worst
result for Mean Accuracy (98%), a classification error related to foreground
pixels can be seen; in the last image, which shows the worst result for Mean
Intersection over Union (94%), a classification error related to background
pixels can be seen.

132 Deep Chroma Key

Fig. 7.14 The images show our results on the same test subset by using Adobe
Phothosp Select Subject 7.13: Better outcomes were obtained. In particular,
the first image is our best result for Mean Accuracy (99.9%), the second is
our best result for Mean Intersection over Union (99.5%), the third is our
worst result for Mean Accuracy (99.4%), and the last is our worst result for
Mean Intersection over Union (99.46%).

7.6 Comparisons and Applications 133

Fig. 7.15 Results obtained with Select Subject on real images taken directly
with a camera. Comparing these images with the same three in Figure 7.9,
less accuracy can be observed, particularly in the subject’s contours in the
center image.

The output of our neural network can also be used to provide a good
trimap for image-matting problems, as shown in Figure 7.16. The trimap (top
right image) was generated using morphological operations: The unknown
region, in grey, was obtained with erosion and dilation using a disk-shaped

134 Deep Chroma Key

structuring element with a radius of 20 pixels. The bottom images show the
KNN (K-Nearest Neighbors) [25] and the KL-divergence (Kullback-Leibler)
[77] output using our trimap.

Fig. 7.16 The trimap generated through our network output. The top left
image shows the image given as input to the network. The neural network
output was used to obtain the trimap (top right image), in which the unknown
region was obtained through morphological operations. The image and the
trimap can be used as the input for well-known algorithms, such as KNN,
resulting in the image shown in the bottom left image, and KL-divergence,
resulting in the image shown in the bottom right image.

7.7 Discussion

Our aim was to simulate the chroma key effect through deep-learning ap-
proaches. The chroma key effect is usually obtained by using a uniform green

7.7 Discussion 135

or blue background and by replacing it in the post-processing phase with a
different background. Our goal was to provide an alternative to this classical
method.

7.7.1 Advantages

The main advantage is the possibility of shooting a video with a person in the
foreground without the use of a green screen or particular types of lighting, to
obtain the chroma key effect in an automatic, simple, and fast way. Two case
studies were defined, and the semantic segmentation problem was tackled by
classifying pixels and assigning them a specific meaning using the U-shape
Net. Our system identifies pixels belonging to the background class and those
belonging to the foreground class, where the foreground is represented by the
shape of a person in the image. The system also proved to be efficient in the
semantic segmentation of images composed of more shapes, as shown in the
top image of Figure 7.11. A critical issue that was tackled is the creation of a
good training dataset, one that is representative of the system and allows the
network to generalize appropriately, avoiding underfitting or overfitting. A
green screen was used as a determinant to create datasets quickly and to easily
extract labels by performing a binarization of the matte versions. These input
images were built by blending the extracted shape with a selected background
and applying a nonlinear filter to smooth the edges of the shape and make
the images as uniform and real as possible. Most state-of-the-art matting
algorithms [25], [61], [26] require human intervention to generate the alpha
matte from the input image. The most common form of user interaction
is the trimap interface, where the user manually partitions the image into
foreground, background, and unknown regions [134]. Natural-image matting
is usually problematic. To make it tractable, user-specified strokes or a trimap
are used to sample foreground and background colours. Our approach uses
semantic segmentation that takes only an RGB image as input and generates
a binary output quickly, often with a very accurate boundary. Our estimated

136 Deep Chroma Key

segmentation result could be used as a good initial trimap for image matting.
The unknown regions could be created with morphological operations such
as erosion and dilation of foreground regions.

7.7.2 Limitations and Directions

Despite the numerous advantages, there are some questions concerning the
limitations of our approach. The main problem is due to its use of deep
learning, which requires a large amount of data to obtain good results. This
data must be as precise as possible to allow the neural network to obtain
a good level of generalization for a certain behaviour. Another problem
concerns the precision of the segmentation when the foreground colour is
chromatically similar to the background colour, which makes it difficult to
detect the edges of a shape. Other limitations are due to reflections within a
scene (for example, glasses, windows) and motion blur (partially solvable by
recording slow-motion video, from 120 fps) because the neural network fails
to classify pixels in such areas. We intend to continue the development of
our approach by increasing the dataset to obtain more accurate classification
and by performing the segmentation on high-resolution images [174], [99].
Furthermore, our work is related to the chosen background area. A possible
future development is to generalize the dataset in such a way that the network
is independent of the type of background. Other future works include the
resolution of the limitations exposed in this section.

Chapter 8

Overall Discussion

This chapter tries to answer on the unresolved or partially resolved research
questions. Are delineated also the implications from the results and future
research directions.

8.1 Generalization and Training Problems

The capacity of the deep learning algorithms to perform optimal and consistent
predictions on unknown data is called generalization [56]. Such ability is
particularly highlighted in the supervised learning paradigm because the deep
neural network has to perform valid prediction on data that not part of the
training set itself, but belong to the same domain. For example, if we want
to classify cats from images, we have to train our neural network by using a
large dataset of images of cats. After the training, we expect that the network
knows how to recognize a cat also from unseen images such as a cat in other
positions, a cat with different colours and other images which contain a cat.
The unseen images with a cat, belong to the same domain of the training
dataset but not directly to the dataset itself (test set is an example). A good
response to such images establishes a good level of generalization of the
neural network.

138 Overall Discussion

Let our neural network has to build a function f (x), which is able to
perform a prediction y starting from an input x. The risk of a particular
function R(fn) on all possible values of y and x is:

R(fn) =
∫

X×Y
L(fn(x),y)P(x,y)dxdy, (8.1)

where L is the loss function, P(x,y) is the true distribution and n is a
number of samples. Since the true probability is unknown, is possible to
compute the empirical risk of fn as follow:

Rs(fn) =
1
n
= ∑

i
L(fn(xi),yi). (8.2)

The generalization error [79], also called test error is given by

generalization error = R(fn)−Rs(fn). (8.3)

If this difference tends to zero, it means that our neural network gener-
alizes well. Generalization level can be measured through the test set after
the training process, however, the trend of the generalization level of the net-
work in the training phase can be identified through the validation set. The
use of training-validation paradigm is usually adopted in the deep learning
context, where the algorithms have several hyperparameters (see Appendix
A), which influence the behaviour of the algorithm itself. Although more
of the hyperparameters can be manual tuned, such operation requires more
experience from the user. For this reason is possible to optimize the hyper-
parameters (i.e., learning rate, number of hidden units, etc.) in an automatic
way, by trying to reduce an objective function, called also validation function
or loss validation. The main problem due to the neural network inability of
generalization is called overfitting, discussed in Section 8.1.2.

8.1 Generalization and Training Problems 139

8.1.1 Rules of Dataset definition

Although there are no strictly specific rules of a good dataset construction, in
image processing tasks there are several strategies to improve the performance
of algorithms based on deep learning. Some of these strategies have been
investigated and extended in this thesis. As explained in Section 3.3 we have
collected a coins training dataset that consists of 80 images taken with a
camera at a distance of 10cm. Such number of images is very low to train
a deep neural network if we consider large dataset for machine learning
research such as ImageNet1 [86], CIFAR-102, PASCAL VOC3 [48] and
others, because a small dataset can easily bring a deep neural network to
overfitting. However, in our work described in Chapter 3, we considered only
80 images and we tried to exploit a data augmentation concept, through which
the deep neural network can improve its generalization level. In particular,
as mentioned by I. Goodfellow et al. [56], the geometric operations such as
random translation, flipping, and rotation, but also through another type of
transformations such as the random colours perturbation and another type
of image distortions, can be beneficial for deep neural network, especially
for the classifiers. In fact, our coins images were rotated by 60° around their
center, mirrored, and then rotated again by 60°, to obtain a dataset of 1,040
images for each coin and a total of 8,320 coin images.

In the image processing tasks, there are several techniques used to improve
the deep neural network performance and a very used used pre-processing
step is called contrast normalization. Since the contrast amount represents
a clear variation in the images, it can be removed dividing the image by the
standard deviation of its pixels. In fact, the image contrast is defined through
the ratio between the brightest and the darkest pixels and can be quantified

1 ImageNet: a very large dataset, consisting of more than 14 million images and more than
20,000 categories.

2 CIFAR-10: a dataset consisting of 60,000 images and 10 different classes.
3 PASCAL VOC: a dataset consisting of 500,000 images which include also the Flickr

images.

140 Overall Discussion

through the standard deviation of the image pixels. In particular, let the pixels
of the image I is normalized in the range [0,1] and let the w and h represent
the image dimensions, the contrast of the images can be defined through the
following formula:

C =

√
1

w h ∑
i

∑
j

(
Ii, j −E[I]

)2
, (8.4)

where E[I] is the mean of the pixels value.
In Chapter 6 we use a variant of global contrast normalization, whose

goal is to centralize the data distribution so that each image gives the same
contribution to the training and does not have more or less important than the
others. We perform such operation by subtracting the mean of the pixels of
an image, from the image itself. The mean subtraction is a typical operation
performed in the classification problem, in fact, K. Simonyan and A. Zisser-
man [150] remove the mean of the entire training dataset from each image
of all dataset to reduce the variation of the amount of contrast. In a more
generic global contrast normalization, this operation is performed together
with the division for standard deviation, in order to rescale the image so that
the standard deviation of its pixels is equal to a certain constant s [56]. In the
global contrast normalization, to avoid divisions by zero due to zero-contrast
images, a small positive regularization parameter called λ is introduced and a
pixel p

′
i, j of regularized contrast normalization is given from the formula

p
′
i, j = s

pi, j −E[I]

max
{

ε,
√

λ + 1
w h ∑i ∑ j(Ii, j −E[I])2

} . (8.5)

The last rule of dataset creation investigated by us concerning the influence
of the high and low frequencies of the images. In particular, as shown in Chap-
ter 6, the used deep neural network for image processing tasks suffers from
the blur problem, especially when the images and ground truth are slightly

8.1 Generalization and Training Problems 141

misaligned. To avoid this problem we introduce the bilateral filter [8], [157],
which, by smoothing the images, preserves the low frequencies. To explore
more depth this detail, we refer to Section 6.2.3. The variation of high and
low frequencies was a problem also investigated in our work on chroma key
(Section 7). In such work, the deep neural network learned well the edges of
the shapes from the artificial images, created by overlapping actor’s shape
extracted using Adobe After Effect with the selected background. In this way,
the deep neural network did not well recognize the edges in real images. For
this reason, we use, the bilateral filter to smooth the artificial images. Also in
this case, to explore more depth details, we refer to Section 7.3.1.

8.1.2 Overfitting and Underfitting

When a deep neural network is unable to generalize, the network can be found
in an overfitting situation. In this situation, the neural network will not be
able to recognize examples that it has never seen. To recognize the overfitting
is possible to analyze the validation error, as can be seen in Figure 8.1.

There are several approaches to avoid the overfitting, e.g., data augmenta-
tion described in the previous section can reduce this problem when a dataset
with a few samples is available. A high number of well-distributed samples
in the training set can reduce the risk of overfitting, however, there are other
techniques to avoid such problem that involve the regularization. A first
simple form of regularization is called early stopping. Such method consists
of updating the weights at each iteration to better fit the training data. When
the validation error starts to increase, the training must be stopped [127].
There are other techniques based on the use of the validation set such as the
cross-validation [85], but this type of techniques are useful when dataset with
limited samples is available. We do not use such type of techniques because
our datasets are widely large and well generalized. Other types of techniques,
used to avoid the overfitting and increase the generalization level, keeping
training error low are based on regularization. Such techniques do not involve

142 Overall Discussion

Fig. 8.1 The left block represents a state of underfitting; The central block
represents a good model and the last block represents a state of overfitting.

the dataset rules and the most used are L2 [13] also called weight decay or
ridge regression, L1 regularization and Dropout [151]. In general, we did
not use L1 regularization and Dropout techniques because the problem of
overfitting did not appear in our work.

However starting from the AlexNet [86] that we used for the coin recogni-
tion system proposed in Chapter 3, the weight decay was introduced to reduce
the model training error. More generally, such method consists in adding of
penalty called regularizer to the loss function:

LL2(x,y,wt) = L(x,y,wt)+
λ
2

w2
t , (8.6)

where L(x,y,wt) is the loss function, LL2(x,y,wt) is the regularized loss func-
tion and λ is a term that controls the weight of the penalty term contribution.
After calculating the gradient the function becomes

8.1 Generalization and Training Problems 143

∇w LL2(x,y,wt) = ∇w L(x,y,wt)+λ wt . (8.7)

In the backpropagation phase the weights update are performed as

wt+1 = wt − ε (∇w L(x,y,wt)+λ wt), (8.8)

where ε is the learning rate and λ wt is the penalty term. The update of the
weights can be rewritten as

wt+1 = (1− ε λ)wt − ε (∇w L(x,y,wt)). (8.9)

When a learning algorithm is not able to fit well to the data, the problem
opposed to overfitting occurs, called underfitting. This situation can be
captured through the analysis of the loss training as can be seen in the left
block of the Figure 8.1. In this case, the loss training is not minimized and
continues to remain very high during the training process. The underfitting
problem is typically due to the very simple model, where the data have low
variance and high bias.

8.1.3 Vanishing gradient problem

Very deep neural network can suffer from a problem called "vanishing gra-
dient", when the optimization algorithms are gradient-based. In the back-
propagation phase, the partial derivative of the error function is used to
proportionally update the weights of the network. As the weights are updated
by moving the network levels backwards, the gradient will become smaller
and smaller, until in some case it disappears. In this way, the first neurons of
the network may not be trained or suffer a trivial influence from the gradient.

Typically this problem is due to the presence of saturated activation
functions such as tanh or sigmoid, which have gradients in (0,1) range.
When the gradient of the activation functions takes high values, the problem

144 Overall Discussion

Fig. 8.2 The image shows a visual interpretation of the vanishing gradient
problem. As can be seen, as the gradient is backpropagated through the
network, its effect will be increasingly shallow.

is called "exploding gradient". There are several methods used to reduce
such problem: in our work we used techniques such as batch normalization
(see Equation (5.1)) and residual learning net (see Section 5.4.2). A simple
solution for the vanishing gradient problem is to use the rectified function
(see Figure 2.4), that we used in the works described in Chapters 3, 5, 6,
and 7. Finally, another technique, similar to the Residual Learning Net, was
proposed by G. Huang et al. [67], called DenseNet. Starting from the residual
learning intuition in which, from the use of the skip-connection, the non-
linear transformation is bypassed through xl = Hl(xl−1)+ xl−1, where xl is
the output of the lth layer and Hl is the non-linear transformation of the layer,
DenseNet proposes a different connectivity pattern. In particular, the idea is to
remove the addition and replacing it with a concatenation. In this way the lth

layer can receive feature maps of all previous layers xl =Hl(x0,x1,x2, ...,xl−1)

are not lost in the sum.

8.2 Future Research Directions 145

We want to point out that batch normalization, residual learning, and
DenseNet have as a positive side effect the regularization of the model and,
consequently, the reduction of the generalization error and avoidance of
overfitting problem.

8.2 Future Research Directions

From the obtained results we can to assert that the application of the super-
vised learning paradigm in computer vision tasks, such as image-to-image
translation, image segmentation and image classification, is a generally good
solution. However, recently new deep learning techniques are affirming and,
among the most important, there are certainly the GANs [57]. Although this
type of techniques born from the unsupervised learning paradigm, in this
section we briefly discuss their functioning.

8.2.1 Generative Adversarial Networks

A generative adversarial network is a type of network whose functioning
is based on the competition between two neural networks. A first neural
network, called generator, takes as input the random noise and generates
image samples. The other network, called discriminator, takes as input two
set of images: the first one coming from the training set and the second one
coming from the generator sampling, as shown in the Figure 8.3.

These two networks are continually challenging each other: the gener-
ator has to learn how to produce an always more realistic image, while the
discriminator has to become increasingly better to distinguish real data from
those generated. The training is performed concurrently and the expectation
is that the competition will lead the generated samples to be more and more
indistinguishable from the real samples. Although it seems there may be
similarities with reinforcement learning paradigm, instead in the generative
adversarial network is present a backpropagation phase, in which the gradient

146 Overall Discussion

Fig. 8.3 The image shows the classical architecture of the Generative Adver-
sarial Network. As can be seen, the generator takes the random noise as input
and the discriminator takes samples from the training set and the output of the
generator. The output of the discriminator is the truthfulness of the sample.

information is also propagated from the discriminator towards the generator,
in order to allow the generator to adapt its parameters and produce data that
can mislead the discriminator.

In the last period, the study of the generative adversarial network has led
to several its variants. Among the most important, there are Deep Convolu-
tional Generative Adversarial Networks [129], whose main characteristic is
only based on convolutions without pooling and unpooling, and Conditional
Generative Adversarial Netowrks [105], whose main characteristic is to be
based on a semi-supervised type of learning. In particular, in this case, the
generator takes both the random noise and the label as input, obtaining a
considerable improvement of the generated samples.

Chapter 9

Related Work

This chapter shows the state of the art relative to the deep learning field, its
application in computer graphics and image processing tasks related to our
studies. Moreover, some works related to the addressed problems will be
presented.

9.1 Deep Learning

As explained in Chapter 1, deep learning [90] is a framework inspired by
biology that enables computational models (made of nonlinear projection) to
learn high-level representation from data, through back-propagating errors
with respect to the model parameters. The most important advantage of deep
learning is it avoids feature engineering that is automatically inferred from
raw data. One class of deep learning architecture of particular interest is the
convolutional neural network class, namely, deep learning models that mimic
how the visual cortex works. Krizhevsky et al.’s work [86] on Convolutional
Neural Networks has sparked a renaissance in the field of deep learning. Fur-
thermore, this work has pushed forward the state of the art in many imaging
tasks. This was made possible because of three key factors: the increasing
computing power of modern graphics processing units (GPUs), the avail-

148 Related Work

ability of huge datasets, and novel and powerful algorithms and frameworks
for Convolutional Neural Networks. To improve their learning invariance,
Convolutional Neural Networks are typically trained on augmented data [39].
As shown in the previous chapters, data augmentation (see Section 8.1.1) was
found to be essential in our experimentations.

9.2 Coin Classification

Starting from our proposed coin recognition approach, the research trend is
focused on several studies. Among the different coin recognition methods,
Bremananth [15] proposes a system that focuses on numerals rather than
images on the front or back. The idea is to capture an image of the coin
and extract the numeral using a technique based on pattern matching. The
approach uses several techniques, such as statistical colour, threshold method,
Gabor filtering, and backpropagation networks for accurate recognition of
these numbers. Kim [82] proposes an automatic recognition method for Impe-
rial Roman coins using convolutional neural network. The study implements
a hierarchical framework that employs convolutional neural network models
for coin classification tasks. The aim is to find a landmark on coin images. An
optimization problem is formulated as the selection of a set of the elements
of the coin that represents the class. The selected parts are considered to
be elements that can be used to discriminate the coin. These landmarks can
be critical for the analysis of the features of coins for numismatic experts.
Modi [108] developed an artificial convolutional neural network based on the
automatic recognition of Indian coins. The system is able to recognize both
sides of coins. Information is extracted from images using methods such as
the Hough Transformation, Pattern Averaging, etc. The extracted information
is used as input to train a neural network.

The main difference between these methods and our proposed approach
(see Section 3) is that we consider the entire coin, and classify it according to

9.3 Real-Time Ambient Occlusion 149

membership classes. The information is extracted directly from the coin and
is passed to the neural network in the training phase. In this way, we obtain a
classification model that can predict the classification of other coins.

9.3 Real-Time Ambient Occlusion

As real-time global illumination is a hot topic in computer graphics research,
and an impressive number of related works were published, we restrict the
scope to techniques most closely related to our own: ambient occlusion
suitable to real-time rendering that operates in image space (also called
screen-space ambient occlusion). The technique called "screen-space ambient
occlusion" appears for the first time in [106]. In its CryEngine, CryTek
implements this technique, which works by sampling the surroundings of a
pixel and, on the basis of the z-buffer, performs depth comparisons. Sample
positions are distributed in a sphere around the pixel, and some randomness is
introduced by reflecting position vectors on a random plane passing through
the sphere origin. The occlusion factor depends only on the depth difference
between the sampled points and the current point. This, combined with the
simple distribution of samples (around a sphere and not a hemisphere), causes
some over-darkening: even flat, non-occluded areas result in some samples
being considered as occluders. Even in only this category of algorithms, a
variety of approaches exist. Some sources attempt to correlate, compare, and
evaluate such techniques. The interested reader may like to consult [1] and
[58], which are two recent theses that agree that the Alchemy algorithm [103]
was state of the art at that time. More recently, the state of the art in research
is Mara et al. [100], which was demonstrated to be an order of magnitude
faster and more correct.

150 Related Work

9.4 Global Illumination and Neural Networks

Neural networks were used in real-time global illumination in [133]. In that
work, the authors model a radiance regression function for fast rendering of
global illumination in scenes with dynamic local light sources. The regression
function is implemented by using a multi-layer acyclic feed-forward neural
network, which provides a close functional approximation of the indirect
illumination and can be efficiently evaluated at run time. A similar work
based on a feed-forward neural network is [65]. In this work, the authors train
a neural network to learn a mapping from the depth and normals surrounding
the pixel to the ambient occlusion. In this thesis, we use only normals
surrounding the pixel as the input of the neural network. The idea is to train
the neural network to learn the shape of the surface to guess the occlusion
value for a given surface point (see Section 4).

9.5 Day Time to Night Time Translation

Image processing is a very hot topic in deep learning research, in fact, in the
last years were developed more and more approaches. Zezhou et al. [28]
developed a method for colorizing images from a grey-scale input image. The
problem is formulated as a regression problem and deep neural network is
used to solve it. They used a huge training dataset, which contains several
types of images such as trees, animals, buildings, sea and mountains.
The used neural network has a number of input neurons equal to the size of
descriptive features extracted from every single pixel in the grey-scale image
and two neurons in the output layer, which output are the U and V channels
representing colour value in the chrominance space.

J. Lee and S. Lee[95] developed a system that allows applying image
illumination in order to simulate that the same picture was taken repeatedly
in different hours of the day. They use an approach based on the adversarial
network[57] to define a convolutional neural network as a function that

9.5 Day Time to Night Time Translation 151

changes the input image colour in the one it should have in the selected
hour of the day. A function is trained to separate the samples day-time and
night-time images. Because of the approach is based on the adversarial
network, they use two Convolutional Neural Networks (see Section 8.2.1):
The generator is composed by five convolutional layers, the discriminator
one is composed by six convolutional layers. They use features like pooling,
rectified linear unit and dropout layers. Last layers placed at the end of
discriminator are fully connected; the activation function for each neuron is
a sigmoid. T. Shih et al. [147] developed a system that creates an image in
a particular hour of the day using a single input image. Their approach is
data-driven and allows to automatically create a plausible-looking picture.
This approach is based on the use of a database of time-lapse movies of
several scenes. Such movies provide information on the colour variation of
scenes during the day. This method transfers colour from movies with similar
scenes to the input picture. Used movies cover several outdoor scenes like a
cityscape, buildings, and street views. The transfer performs a matching of
the input image with time-lapse movies that contains a similar image and is
used a Markov Random Field based algorithm to find a match. Subsequently,
they used an example based on a locally affine model that transfers the local
variation colour between two frames of the movie in two different times of
the input image.

The main difference between these methods and our presented work
(Section 5) is that we consider only two classes of images, daytime and night-
time. We define the problem as a regression problem: the model was trained
using as input the image with applied artificial illumination and as output the
same image with the desired real-world illumination. The key of our work is
the perfect matching between images content representing input and output,
in such a way the neural network was trained only to change colours scale of
the images and not to translate or deform them.

152 Related Work

9.6 Computational Photography and Deep Learn-
ing trend

In this section, we review works related to our and photography per se,
without a focus on acquisition for computer vision/graphics tasks (e.g., colour
acquisition for three-dimensional (3D) meshes).

9.6.1 Flash Photography

In two contemporary works, Petschnigg et al. [123] and Eisemann and Du-
rand [43] proposed the idea of using a flash photograph with low ISO (i.e.,
low noise) to transfer the ambiance of the available lighting into a non-flash
photograph of the same subjects/scene, to reduce noise. This is because
non-flash photographs taken in dark environments suffer from high noise to
avoid blur. Other works [4] have developed this idea further by removing
over/under-illumination at a given flash intensity, reflections, highlights, and
attenuation over depth.

9.6.2 Deep Learning and Computational Photography

Recently, Convolutional Neural Networks were applied to numerous compu-
tational photography tasks [149], [143], [68], [27][66], [176].
To improve the editing of selfies, Shen et al. [144] extended the FCN-8s
framework [97] to automatically segment portraits. This allows a user to
automatically edit/augment portraits. For example, users can change the back-
ground, stylize the selfie, enhance the depth-of-field, etc. Zhang et al. [173]
proposed an end-to-end learning approach for single-image reflection separa-
tion with perceptual losses and a customized exclusion loss. Their method
can be used to remove or reduce unwanted reflections in pictures. Eilertsen et
al. [42] introduced a U-Net architecture for expanding the dynamic range of
low dynamic range images to obtain high dynamic range images. Similarly,

9.7 Deep Chroma Key 153

Chen et al. [23] shown that U-Nets can be used successfully to debayer images
captured at low-light conditions and high ISO, which typically exhibit noise.
They extensively studied different approaches on real-world low light with
real noise. For example, they tested a variety of architectures, loss functions
(e.g., L1 (least absolute deviations), L2 (least square errors), and the structural
similarity index), and colour inputs. Aksoy et al. [5] presented large-scale
collection of pairs of images with ambient light and flashlight of the same
scene. The images were obtained with the aid of casual photographers by
using their smartphone cameras, and consequently, the dataset covers a wide
variety of scenes. The dataset was provided in order to be studied in future
works for high-level tasks such as semantic segmentation or depth estimation.
Unlike their dataset, whose objective is to provide matching between two
images under uncontrolled lighting, our dataset aims to change the lighting
scheme by turning from flash lighting to a controlled photograph studio light.

To the best of our knowledge, there have not been proposed approaches
for removing flash artifacts such as hard shadows and highlights from selfies
as the work presented in this thesis (see Section 6).

9.7 Deep Chroma Key

In this section, we summarize the current state of the art used to obtain
the chroma key effect by means of methods based on deep learning and
Convolutional Neural Networks useful for semantic segmentation.

9.7.1 Chroma Key Effect

There are several techniques to obtain the chroma key effect [160]. Among
the most recent ones, Yamashita et al. [167, 3] propose a method to extract
a region using the chroma key effect with a two-tone checker pattern back-
ground. Their method prevents foreground objects that are the same colour
as the background from becoming transparent, based on estimation of the

154 Related Work

alpha channel. Bagiwa et al. [7] propose a method to identify the chroma key
background in digital video using blurring artifact as a feature. They used the
Wiener filter to extract the blurring artifact from the background of a video
and the foreground objects, and chroma key detection was obtained through
computing and analysis of the blurring cross-correlation between the video
background and foreground blocks. Vidal [159] proposes a technique that
provides immersive feedback between an actor and the background image,
based on polarized non-directional reflections, retro-reflective screens, and
polarization filters. The polarized filter allows projections of high-contrast
colour images, while the camera captures the chroma key background, im-
proving the immersive effect and maintaining good and uniform chromatic
lighting. Gvili et al. [59] provide a solution to the problem of video keying
in a natural environment, based on segmentation of foreground objects from
background objects by using their relative distance from the observer through
a depth camera, so that the colours of objects can be disregarded for this
purpose.

9.7.2 Deep Learning and Image Semantic Segmentation

Deep learning is often used in the semantic segmentation field. For example,
D’Avino et al. [35] propose a method to detect forged videos by using an
autoencoder-based architecture and recurrent neural networks in a "long and
short-term memory model". Long et al. [97] deal with semantic segmentation
by using fully convolutional neural networks, which are trained end to end,
pixel to pixel, and take an image of arbitrary size as input and produce
an output of the same dimensions. Both the training and the reading are
performed on complete images through computing steps such as feed-forward
and backpropagation. Hariharan et al. [60] propose a method of detecting
all instances of specified categories in each image and mark the pixels that
belong to each category, in a method called simultaneous detection and
segmentation, based on Convolutional Neural Networks and support vector

9.7 Deep Chroma Key 155

machines. Chroma key and semantic segmentation are strongly related to
each other and, in the deep learning field, they are a very hot topic [16, 177].
Badrinarayanan et al. [6] use an U-shape Net structure to perform semantic
segmentation, and our proposal is based on training a similar deep neural
network structure through the creation of an ad-hoc dataset to obtain the
chroma key effect and specific training and test parameters.

Today, the most widespread way to obtain excellent results with the
chroma key effect is to use computer graphics to integrate a new background
with the movements of the subject. However, these require professional
software and expert knowledge, and is costly in terms of resources and
computation times. The purpose of our work (see Section 7), therefore, is to
try to overcome the limits of the classical approach to the chroma key effect
and to simulate it in an easy and fast way on a recorded video in a defined area
when both the camera and the actor are moving. After the network is trained,
it will take just a few moments to obtain the output and use it to replace the
background automatically.

Chapter 10

Conclusion

In this thesis, we have presented the results of supervised learning applica-
tions on several 2D and 3D computer graphics problems. In the first part, we
focused on key concepts of deep learning investigating them through different
proposed applications. This thesis aims to demonstrate the validity of deep
learning methodologies through the answers it provides for different research
questions. For example in the application of deep learning to Ambient Occlu-
sion backing (see Section 4) the aim was to reduce the computational cost
and optimize the memory space occupied because such problems affect the
offline Ambient occlusion. Other examples concern the problems that affect
image-to-image translation or other image processing technique such as the
chroma key.

To study the deep learning techniques we started from a classification
problem (see Chapter 3) and from this, we realized that one of the significant
problems of deep learning concerns the rules of the construction of a dataset
appropriate to the type of considered application context. In particular, the
question that often arises during the dataset construction are: "how should the
dataset samples be constructed?", "how much should the dataset samples be
different from each other?", "is it necessary to perform pre-processing on the
data?", "what type of pre-processing?", etc.

158 Conclusion

Investigating these aspects, we tried to answer these questions in the
previous chapters, but the dataset is not the only topic addressed. Other
questions concern the type and the configuration of neural networks for each
context, by trying to bring their performance to the highest levels. When we
applied deep learning to the ambient occlusion computing we proposed a
multilayer perceptron as neural network in which the dataset consisted only
of the "normals" belonging to the scene, and in this context, we evaluated
the extent to which the neural network can be used for real-time rendering
obtaining the results described in the Chapter 4. In this context, we tried to
answer questions like "how many artificial neurons are necessary to obtain
neural network convergence and optimal performance?", "how many layers
are necessary to use?", "what are the correct configuration parameters of the
network and the training?", "how is the validity of the network and training
tested?", etc. To answer these questions we studied the correct solution in
terms of the dataset and the neural network configuration to obtain the optimal
results in terms of quality and performance, overcoming the state of the art
and demonstrating it through the comparisons with other similar approaches.

Ambient occlusion is closely linked to the lighting scheme of the scene.
A similar concept is at the basis of the image-to-image translation and from
this perspective, we investigated the computational models based on the fully
convolutional neural networks, in particular the encoder-decoder networks
also called U-Shape Networks 2.1.4. Through the proposed approach we tried
to answer the following questions: "what optimization algorithm to use?",
"what are the hyperparameters to configure?", "how to configure the U-Shape
network to get the best result in a given context?", "what are the regularization
techniques that allow having a higher level of generalization?", etc. In order
to change the lighting scheme of images such as faces (see Section 6) we
opened other research scenarios. The removal of image background could be
useful in specializing the neural network to work only on the characteristics
of faces, decoupling it from the global scene. For this reason, we investigated

159

chroma key (see Section 7) techniques by also using deep learning in this
context and proposing a method to apply this technique to video editing.

We aim in future developments to use the based convolutional neural
network 2.1.3 and generative adversarial network algorithms 8.2.1 in real-
time rendering and to improve the photorealism level bringing the offline
rendering algorithms quality also to real-time performance. Also from an
industrial point of view, big companies like NVIDIA are moving in this
direction, and in fact, the proposed GPU Turing architecture 1 uses a mix of
programmable shaders, tensor core 2 and much more to improve photorealism
level details.

1 NVIDIA Turing GPU Architecture:https://www.nvidia.com/en-us/geforce/news/graphics-
reinvented-new-technologies-in-rtx-graphics-cards

2 Tensor Core: process unit capable of processing operations on matrices and tensors that
are at the basis of deep learning algorithms.

Appendix A

Comprehensibility of the Deep
Learning Terminology

This appendix provides further information on details not explained in the
chapters of the thesis. To obtain a neural network convergence is necessary
to minimize a function called Loss Function or objective function. Typi-
cally, in the deep learning problems, two types of loss functions are used:
cross-entropy for the classification problems and mean squared error for
regression problem.

Let y the probability distribution of the neural network prediction values
for a given input and t the true distribution probability for the label (ground
truth) values. The cross-entropy for N samples is defined as

Lc−e(y, t) =− 1
N ∑

i
ti log yi. (A.1)

Let us to consider a binary classifier with y ∈ {0,1}, the cross-entropy
can be used to compute the distance between t and y as

Lc−e(y, t) =− 1
N ∑

i

(
ti logyi +(1− ti) log (1− yi)

)
. (A.2)

162 Comprehensibility of the Deep Learning Terminology

In a similar way, the mean squared error is defined as

Lmse(y, t) =
1
N ∑

i
(y− t)2, (A.3)

we used cross-entropy for the applications described in Chapters 3 and 7,
while the mean squared error is used for the applications described in the
other chapters. When the loss is computed on training samples it is called loss
training and when the loss is computed on validation samples it is called loss
validation. Although the performance (loss function) of the neural network
is often confused with accuracy, in some contexts such indicators can be
measured separately. It is possible to compute the accuracy in training,
validation or both phases as we shown in the equation (6.7) or by using
Root-Mean-Square Error or other metrics. However, it is possible to compute
accuracy after the training, i.e., in the testing phase, e.g., through Structural
Similarity Index [163] or other metrics as described in Section 7.5.1.

The minimization of the loss function is performed through optimiza-
tion algorithms. Such algorithms are based on the gradient descent, whose
functioning is shown in Figure A.1.

Fig. A.1 Starting from a point x0 the gradient ∇ f (x0) is computed. Gradient
provides the following direction to obtain minimum direction. At a certain
distance, a new point x1 is found, on which the gradient ∇ f (x1) is calculated
again. The algorithm continues until the gradient reaches zero.

163

In particular, in the deep learning context, an extension of gradient de-
scent, called Stochastic Gradient Descent(A.4) and its variants are used.
The Stochastic Gradient Descent is characterized by a low computational cost
because it is computed on a subset of random samples of the dataset, called
mini-batch, on which the loss function is computed. In this algorithm a very
important parameter is the learning rate, in fact, it is necessary to decrease
gradually its value over the time because Stochastic Gradient Descent intro-
duce a source of noise due to the mini-batch that remains even when it reaches
the minimum value. Moreover, through the learning rate, it is possible to
monitor the learning curve shown by the loss function over the time [56].

wt+1 = wt − ε
1
m ∑

i
∇wL(x,y,wt) (A.4)

The equation (A.4) represents the updating of the weight through Stochas-
tic Gradient Descent. The terms wt+1 and wt represent respectively the new
and the old value of the weight and the term m represent the mini-batch size.
We use Stochastic Gradient Descent in the night to day application, as shown
in Section 5.2.

For the coin recognition (see Section 3), we used a variant called Stochas-
tic Gradient Descent with Momentum [138]. Momentum is a term dependent
on previous interactions used to regularize the movement in the parameter
space. The idea is to move in the direction of the exponentially decaying mov-
ing average that characterizes the past gradients. The algorithm introduces a
variable v that represents the direction and speed of the parameter movements
in order to accelerate the learning.

vt+1 = α vt − ε
1
m ∑

i
∇wL(x,y,wt) (A.5)

Where α is the momentum parameter used to control the importance of
past iteration. The weight is updated by adding v and the gradient of the
current iteration:

164 Comprehensibility of the Deep Learning Terminology

wt+1 = wt +α vt − ε
1
m ∑

i
∇wL(x,y,wt) (A.6)

For applications presented in Chapters 6 and 7, we used another optimized
variant of the Stochastic Gradient Descent with Momentum called Adaptive
Moment Estimation (Adam) [84]. Adam is based on other well-known op-
timization algorithms, AdaGrad [40] and RMSProp [156]. Such algorithms
are called adaptive algorithms because they adapt the learning rate for each
of the parameters, improving the learning trend. In particular, Adam takes
into account the moving average of the first s and second r moments of the
gradient, using the correct estimators ŝ and r̂ to counter the zero bias in the
first iterations.

st+1 = β1 st +(1−β1)
1
m ∑

i
∇wL(x,y,wt) (A.7)

The equation (A.7) describes the partial update of the estimate of the first
moment where β1 and β2 represent the exponential decay rates of the moment
called also forgetting factors.

rt+1 = β2 rt +(1−β2)

(
1
m ∑

i
∇wL(x,y,wt)

)2

(A.8)

The equation (A.8) describes the partial update of the estimate of the
second moment.

ŝ =
st+1

β t+1
1

(A.9) r̂ =
rt+1

β t+1
2

(A.10)

The equations (A.9) and (A.10) show the correct biases for the first ŝ and
second moment r̂. Finally the weight update is performed as

wt+1 = wt − ε
ŝ√

r̂+δ
(A.11)

165

where δ is a small smoothing constant used for numerical stabilization.
Another optimization method, used in the application described in Sec-

tion 4, is the Scaled Conjugate Gradient, widely used in the multilayer percep-
trons. This algorithm is too complex and very long to explain in a few lines,
for this reason, we refer the original paper, proposed by Martin Fodslette
Møller [109], for more details. The main advantages of this algorithm concern
the fact that the parameters do not depend critically on the user’s choice and
it is faster than other similar approaches.

The above-described optimization algorithms introduce new parameters
to those that already belong to neural networks. Such parameters are called
hyperparameters. Although the hyperparameters are defined as the param-
eters whose value is set before the learning process, it is possible to design
a nested procedure to learn the best hyperparameters for another learning
algorithm [56]. With reference to the algorithms described above, some of
the hyperparameters are the learning rate, the moment control parameter, the
size of mini-batch and others. Some hyperparameters belonging to neural
networks are the number of hidden units, the size of the convolutional kernel,
the dropout rate, the weight decay coefficient, the zero padding, etc. Hyperpa-
rameter can be useful to control the deep learning algorithm behaviour. Two
important hyperparameters are epochs and batch size: the epoch represents
the crossing of the entire dataset in the neural network both in the forward
and backward propagation phase; the batch size is the number of the dataset
samples used in one iteration. This latter hyperparameter can involve three
options: batch-mode, when the batch size is equal to the dataset size (in this
case, an iteration corresponds to an epoch); mini-batch mode, when the batch
size is greater than one but less than the dataset size; the stochastic model,
when the batch size is equal to one. In this final case, the neural network is
updated after each sample. The use of the batch mode requires less memory
and in general the neural network train faster with mini-batches.

166 Comprehensibility of the Deep Learning Terminology

In Chapter 6 we introduce the use of transfer learning. As described in
Chapter 1, transfer learning [126] allows to exploit the "knowledge" obtained
from a neural network in a specific task and reuse it in similar but different
tasks. This operation can be performed by using pre-trained models. In
particular, is possible to use the weights of the neural network already trained
for a specific problem as initialization values of weights of the same or similar
neural network for another problem. The weights of the neural network can
be pre-initialized partially or totally. When neural network is partially pre-
initialized, is possible to freeze such part and to train the uninitialized part.
In this way, the old knowledge of the neural network is totally preserved and
can be used for the new task.

Another method, introduced in Chapter 6, is the Xavier Initialization [54].
We used such method for the initialization of the last decoder layer (see
Section 6.2.2) to avoid too small or too large weights initialization. It reduces
or increases the signal as it crosses the neural network until it becomes too
small or too large to be useful. In particular, suppose we have a linear classifier
and the weights initialization with zero mean and specific variance, the output
is given from

y = w1 x1 +w2 x2 +w3 x3 + ...wn xn. (A.12)

The variance of the wi xi can be written as

var(wi xi) = E[xi]
2 var(wi)+E[wi]

2 var(xi)+ var(wi) var(xi). (A.13)

Since we have initialized the mean as zero for the weights initialization
distribution, the equation (A.13) can be simplified as

var(wi xi) = var(wi) var(xi). (A.14)

If we consider xi and wi independent and identically distributed, the
variance of the neural network output value can be written as

167

var(w1 x1 +w2 x2 +w3 x3 + ...wn xn) = n var(wi) var(xi) = var(y) (A.15)

Since we want the same variance for the input and the output, then
n var(wi) var(xi) = 1 and var(wi) =

1
n f

, where n f is the number of neurons
fed by the forward propagation phase. The same operation is performed for
the backward propagation phase, where var(wi) =

1
nb

. To satisfy these two
properties, it is necessary to consider equal n f and nb and the variance is
computed as

var(wi) =
2

n f +nb
(A.16)

As shown in the previous equations, Xavier initialization is useful to
obtain a better variance value for the weights initialization distribution.

For our classification problems (see Sections 3 and 7), we used as ac-
tivation function for the last layer the Softmax function [13], called also
normalized exponential function is often used as activation function for the
last layer of the multi-class classifier, while the logistic function, such as
sigmoid, is used for binary classification tasks. Softmax is defined as

σ(yi) =
eyi

∑K
k=1 eyk

, (A.17)

where yi represent the ith input element of the softmax that corresponds
to class i and K is the number of classes. Such function acquires a vector of
real values, which indicates the scores, and turns it into a probabilities vector,
which contain the probability of sample x belong to each class. The sum of
all probabilities is equal to one and the highest value of softmax indicates the
greater probability of belonging to the class associated with that probability.
Since the softmax output is used for the cross-entropy computation, its values
have to be greater then zero.

168 Comprehensibility of the Deep Learning Terminology

Finally, the last topic to be clarified is the bilinear interpolation that we
used in the application described in Chapter 5. Such technique is applied to
resize the image or feature map dimension in 2D space (Figure A.2).

Fig. A.2 Left figure shows the original image and right figure shows the image
after the application of the bilinear interpolation.

Bilinear interpolation allows to find the value of an unknown function
f at the vertex x,y. We assumed that the value of the four vertices v1,1 =

(x1,y1), v1,2 = (x1,x2), v2,1 = (x2,y2), v2,2 = (x2,y2) are known, as shown in
Figure A.3. The algorithm works by interpolating first in the x direction

f (x,y1) =
x2−x
x2−x1

f (v1,1)+
x−x1
x2−x1

f (v2,1)

f (x,y2) =
x2−x
x2−x1

f (v1,2)+
x−x1
x2−x1

f (v2,2),
(A.18)

and then in the y direction by replacing (A.18) in the next equation:

f (x,y) =
y2 − y

y2− y1
f (x,y1)+

y− y1

y2 − y1
f (x,y2). (A.19)

By explicating products and simplifying the equation above, will be
obtained the following formula:

169

Fig. A.3 Four vertex shown with green dots represent the known points and
the red dot represent the point we want to interpolate.

f (x,y)=
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

][f (v1,1) f (v1,2)

f (v2,1) f (v2,2)

][
y2 − y
y− y1

]

References

[1] Aalund, F. P. and Bærentzen, J. A. (2013). A comparative study of screen-
space ambient occlusion methods. Bachelor thesis, Technical University
of Denmark, Informatics and Mathematical Modelling.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: a system
for large-scale machine learning. In OSDI, volume 16, pages 265–283.

[3] Agata, H., Yamashita, A., and Kaneko, T. (2007). Chroma key using a
checker pattern background. IEICE TRANSACTIONS on Information and
Systems, 90(1):242–249.

[4] Agrawal, A., Raskar, R., Nayar, S. K., and Li, Y. (2005). Removing pho-
tography artifacts using gradient projection and flash-exposure sampling.
ACM Trans. Graph., 24(3):828–835.

[5] Aksoy, Y., Kim, C., Kellnhofer, P., Paris, S., Elgharib, M., Pollefeys, M.,
and Matusik, W. (2018). A dataset of flash and ambient illumination pairs
from the crowd. In Proc. ECCV.

[6] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481–
2495.

[7] Bagiwa, M. A., Wahab, A. W. A., Idris, M. Y. I., Khan, S., and Choo,
K.-K. R. (2016). Chroma key background detection for digital video using
statistical correlation of blurring artifact. Digital Investigation, 19:29 – 43.

[8] Banterle, F., Corsini, M., Cignoni, P., and Scopigno, R. (2012). A Low-
Memory, Straightforward and Fast Bilateral Filter Through Subsampling
in Spatial Domain. Computer Graphics Forum, 31(1):19–32.

172 References

[9] Batenburg, K. J. and Sijbers, J. (2009). Optimal threshold selection
for tomogram segmentation by projection distance minimization. IEEE
Transactions on Medical Imaging, 28(5):676–686.

[10] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learn-
ing: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828.

[11] Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations
and trends® in Machine Learning, 2(1):1–127.

[12] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Des-
jardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano:
A cpu and gpu math compiler in python. In Proc. 9th Python in Science
Conf, volume 1.

[13] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

[14] Bottou, L. (2010). Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[15] Bremananth, R., Balaji, B., Sankari, M., and Chitra, A. (2005). A New
Approach to Coin Recognition using Neural Pattern Analysis. In 2005
Annual IEEE India Conference - Indicon, pages 366–370.

[16] Brostow, G. J., Fauqueur, J., and Cipolla, R. (2009). Semantic ob-
ject classes in video: A high-definition ground truth database. Pattern
Recognition Letters, 30(2):88–97.

[17] Burkardt, J. (2014). The truncated normal distribution. Department of
Scientific Computing Website.

[18] Bychkovsky, V., Paris, S., Chan, E., and Durand, F. (2011). Learning
photographic global tonal adjustment with a database of input/output image
pairs. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 97–104. IEEE.

[19] Capece, N., Agatiello, R., and Erra, U. (2016a). A Client-Server Frame-
work for the Design of Geo-Location Based Augmented Reality Applica-
tions. In 2016 20th International Conference Information Visualisation
(IV), pages 130–135.

References 173

[20] Capece, N., Banterle, F., Cignoni, P., Ganovelli, F., Scopigno, R., and
Erra, U. (2019). Deepflash: Turning a flash selfie into a studio portrait.
arXiv preprint arXiv:1901.04252.

[21] Capece, N., Erra, U., and Ciliberto, A. V. (2016b). Implementation of a
coin recognition system for mobile devices with deep learning. In 2016
12th International Conference on Signal-Image Technology Internet-Based
Systems (SITIS), pages 186–192.

[22] Capece, N., Erra, U., and Scolamiero, R. (2017). Converting night-time
images to day-time images through a deep learning approach. In 2017 21st
International Conference Information Visualisation (IV), pages 324–331.

[23] Chen, C., Chen, Q., Xu, J., and Koltun, V. (2018a). Learning to See in
the Dark.

[24] Chen, J., Paris, S., and Durand, F. (2007). Real-time edge-aware image
processing with the bilateral grid. ACM Trans. Graph., 26(3).

[25] Chen, Q., Li, D., and Tang, C.-K. (2013a). Knn matting. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35(9):2175–2188.

[26] Chen, X., Zou, D., Zhiying Zhou, S., Zhao, Q., and Tan, P. (2013b).
Image matting with local and nonlocal smooth priors. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
1902–1907.

[27] Chen, Y.-S., Wang, Y.-C., Kao, M.-H., and Chuang, Y.-Y. (2018b).
Deep photo enhancer: Unpaired learning for image enhancement from
photographs with gans. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6306–6314. IEEE.

[28] Cheng, Z., Yang, Q., and Sheng, B. (2015). Deep colorization. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 415–423.

[29] Chiara, R. D., Santo, V. D., Erra, U., and Scarano, V. (2007). Real
positioning in virtual environments using game engines. In Eurographics
Italian Chapter Conference 2007, Trento, Italy, 2007, pages 203–208.

[30] Cireşan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J.
(2013). Mitosis detection in breast cancer histology images with deep
neural networks. In Mori, K., Sakuma, I., Sato, Y., Barillot, C., and

174 References

Navab, N., editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2013, pages 411–418, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[31] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A
matlab-like environment for machine learning.

[32] Danaee, P., Ghaeini, R., and Hendrix, D. A. (2017). A deep learning
approach for cancer detection and relevant gene identification. In PA-
CIFIC SYMPOSIUM ON BIOCOMPUTING 2017, pages 219–229. World
Scientific.

[33] Dao-Duc, C., Xiaohui, H., and Morère, O. (2015). Maritime Vessel
Images Classification Using Deep Convolutional Neural Networks. In
Proceedings of the Sixth International Symposium on Information and
Communication Technology, SoICT 2015, pages 276–281, New York, NY,
USA. ACM.

[34] Davidsson, P. (1996). Coin classification using a novel technique for
learning characteristic decision trees by controlling the degree of gener-
alization. In Ninth International Conference on Industrial & Engineer-
ing Applications of Artificial Intelligence & Expert Systems. Gordon and
Breach Science Publishers.

[35] D’Avino, D., Cozzolino, D., Poggi, G., and Verdoliva, L. (2017). Au-
toencoder with recurrent neural networks for video forgery detection. Elec-
tronic Imaging, 2017(7):92–99.

[36] De Mauro, A., Greco, M., and Grimaldi, M. (2016). A formal definition
of big data based on its essential features. Library Review, 65(3):122–135.

[37] Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M. L.,
Zweig, G., He, X., Williams, J. D., et al. (2013). Recent advances in deep
learning for speech research at microsoft. In ICASSP, volume 26, page 64.

[38] Dheekonda, R. S., Panda, S., Hasan, M., Anwar, S., et al. (2017). Object
detection from a vehicle using deep learning network and future integration
with multi-sensor fusion algorithm. Technical report, SAE Technical Paper.

[39] Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T. (2014).
Discriminative unsupervised feature learning with convolutional neural
networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’14, pages 766–774,
Cambridge, MA, USA. MIT Press.

References 175

[40] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

[41] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Unsupervised learning
and clustering. Pattern classification, pages 517–601.

[42] Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R., and Unger, J.
(2017). Hdr image reconstruction from a single exposure using deep cnns.
ACM Transactions on Graphics (TOG), 36(6).

[43] Eisemann, E. and Durand, F. (2004). Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph., 23(3):673–678.

[44] Erra, U. and Capece, N. (2017). Engineering an advanced geo-location
augmented reality framework for smart mobile devices. Journal of Ambient
Intelligence and Humanized Computing.

[45] Erra, U., Capece, N. F., and Agatiello, R. (2017). Ambient Occlusion
Baking via a Feed-Forward Neural Network. In Peytavie, A. and Bosch,
C., editors, EG 2017 - Short Papers. The Eurographics Association.

[46] Erra, U., Senatore, S., Minnella, F., and Caggianese, G. (2015). Approx-
imate tf-idf based on topic extraction from massive message stream using
the gpu. Inf. Sci., 292(C):143–161.

[47] Evans, J. R. and Lindner, C. H. (2012). Business analytics: the next
frontier for decision sciences. Decision Line, 43(2):4–6.

[48] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman,
A. (2010). The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338.

[49] Fakoor, R., Ladhak, F., Nazi, A., and Huber, M. (2013). Using deep
learning to enhance cancer diagnosis and classification. In Proceedings of
the International Conference on Machine Learning, volume 28.

[50] Farfade, S. S., Saberian, M. J., and Li, L.-J. (2015). Multi-view Face
Detection Using Deep Convolutional Neural Networks. In Proceedings of
the 5th ACM on International Conference on Multimedia Retrieval, ICMR
’15, pages 643–650, New York, NY, USA. ACM.

176 References

[51] Fukumi, M., Omatu, S., Takeda, F., and Kosaka, T. (1992). Rotation-
invariant neural pattern recognition system with application to coin recog-
nition. IEEE Transactions on Neural Networks, 3(2):272–279.

[52] Ge, F., Wang, S., and Liu, T. (2007). New benchmark for image seg-
mentation evaluation. Journal of Electronic Imaging, 16(3):033011.

[53] Gharbi, M., Chen, J., Barron, J. T., Hasinoff, S. W., and Durand, F.
(2017). Deep bilateral learning for real-time image enhancement. ACM
Transactions on Graphics (TOG), 36(4):118.

[54] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 249–
256.

[55] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier
neural networks. In Gordon, G., Dunson, D., and Dudík, M., editors,
Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 315–323, Fort Lauderdale, FL, USA. PMLR.

[56] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.
MIT Press. http://www.deeplearningbook.org.

[57] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680.

[58] Gravås, L. O. (2013). Image-space ambient obscurance in webgl. Tech-
nical report, Institutt for datateknikk og informasjonsvitenskap.

[59] Gvili, R., Kaplan, A., Ofek, E., and Yahav, G. (2003). Depth keying. In
Stereoscopic Displays and Virtual Reality Systems X, volume 5006, pages
564–575. International Society for Optics and Photonics.

[60] Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. (2014). Simulta-
neous detection and segmentation. In Fleet, D., Pajdla, T., Schiele, B., and
Tuytelaars, T., editors, Computer Vision – ECCV 2014, pages 297–312,
Cham. Springer International Publishing.

[61] He, K., Rhemann, C., Rother, C., Tang, X., and Sun, J. (2011). A global
sampling method for alpha matting.

References 177

[62] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), ICCV ’15, pages 1026–1034, Washington, DC, USA. IEEE
Computer Society.

[63] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778.

[64] Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001).
Gradient flow in recurrent nets: the difficulty of learning long-term depen-
dencies.

[65] Holden, D., Saito, J., and Komura, T. (2016). Neural network ambient
occlusion. In SIGGRAPH ASIA 2016 Technical Briefs, SA ’16, pages
9:1–9:4, New York, NY, USA. ACM.

[66] Hu, Y., He, H., Xu, C., Wang, B., and Lin, S. (2018). Exposure: A white-
box photo post-processing framework. ACM Transactions on Graphics
(TOG), 37(2):26.

[67] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017).
Densely connected convolutional networks. In CVPR, volume 1, page 3.

[68] Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., and Van Gool, L.
(2017). Dslr-quality photos on mobile devices with deep convolutional
networks. In the IEEE Int. Conf. on Computer Vision (ICCV).

[69] Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2016). Let there be color!:
Joint end-to-end learning of global and local image priors for automatic
image colorization with simultaneous classification. ACM Trans. Graph.,
35(4):110:1–110:11.

[70] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning (ICML-15),
pages 448–456.

[71] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image
translation with conditional adversarial networks. CVPR.

178 References

[72] Jan, B., Farman, H., Khan, M., Imran, M., Islam, I. U., Ahmad, A., Ali,
S., and Jeon, G. (2017). Deep learning in big data analytics: A comparative
study. Computers & Electrical Engineering.

[73] Jensen, H. W. (1996). Global illumination using photon maps. In
Rendering Techniques’ 96, pages 21–30. Springer.

[74] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional Architecture
for Fast Feature Embedding. In Proceedings of the 22Nd ACM Interna-
tional Conference on Multimedia, MM ’14, pages 675–678, New York,
NY, USA. ACM.

[75] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285.

[76] Kajiya, J. T. (1986). The rendering equation. In ACM SIGGRAPH
computer graphics, volume 20, pages 143–150. ACM.

[77] Karacan, L., Erdem, A., and Erdem, E. (2015). Image matting with
kl-divergence based sparse sampling. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 424–432.

[78] Kavan, L., Bargteil, A. W., and Sloan, P.-P. (2011). Least squares
vertex baking. In Proc. of the Twenty-second Eurographics Conference
on Rendering, EGSR ’11, pages 1319–1326, Aire-la-Ville, Switzerland.
Eurographics Association.

[79] Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization
in deep learning. arXiv preprint arXiv:1710.05468.

[80] Kawano, Y. and Yanai, K. (2014). Food Image Recognition with Deep
Convolutional Features. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Pub-
lication, UbiComp ’14 Adjunct, pages 589–593, New York, NY, USA.
ACM.

[81] Kenney, J., Buckley, T., and Brock, O. (2009). Interactive segmentation
for manipulation in unstructured environments. In Robotics and Automa-
tion, 2009. ICRA’09. IEEE International Conference on, pages 1377–1382.
IEEE.

References 179

[82] Kim, J. and Pavlovic, V. (2015). Discovering Characteristic Landmarks
on Ancient Coins using Convolutional Networks. CoRR, abs/1506.09174.

[83] Kim, Y. (2014). Convolutional neural networks for sentence classifica-
tion. arXiv preprint arXiv:1408.5882.

[84] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[85] Kohavi, R. et al. (1995). A study of cross-validation and bootstrap
for accuracy estimation and model selection. In Ijcai, volume 14, pages
1137–1145. Montreal, Canada.

[86] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet
Classification with Deep Convolutional Neural Networks. In Pereira, F.,
Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc.

[87] Langer, M. S. and Bülthoff, H. H. (2000). Depth discrimination from
shading under diffuse lighting. Perception, 29(6):649–660.

[88] Langer, M. S. and Zucker, S. W. (1994). Shape-from-shading on a
cloudy day. JOSA A, 11(2):467–478.

[89] Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O.
(2016). Autoencoding beyond pixels using a learned similarity metric.
In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 1558–
1566. JMLR.org.

[90] LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature,
521(7553):436–444.

[91] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1(4):541–551.

[92] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324.

[93] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer.

180 References

[94] Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta,
A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W. (2017). Photo-
realistic single image super-resolution using a generative adversarial net-
work. pages 105–114.

[95] Lee, J. and Lee, S. (2016). Hallucination from noon to night images
using cnn. In SIGGRAPH ASIA 2016 Posters, page 15. ACM.

[96] Li, H. (2011). RESTful Web service frameworks in Java. In Signal
Processing, Communications and Computing (ICSPCC), 2011 IEEE Inter-
national Conference on, pages 1–4.

[97] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440.

[98] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlineari-
ties improve neural network acoustic models. In in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing.

[99] Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). High-
resolution image classification with convolutional networks. In 2017
IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pages 5157–5160.

[100] Mara, M., McGuire, M., Nowrouzezahrai, D., and Luebke, D. (2016).
Deep g-buffers for stable global illumination approximation. In Proc.
of High Performance Graphics, HPG ’16, pages 87–98, Aire-la-Ville,
Switzerland. Eurographics Association.

[101] Masinter, L. (2015). Returning values from forms: multipart/form-data.
Technical report.

[102] Mattes, D., Haynor, D. R., Vesselle, H., Lewellyn, T. K., and Eubank,
W. (2001). Nonrigid multimodality image registration. In Medical imaging
2001: image processing, volume 4322, pages 1609–1621. International
Society for Optics and Photonics.

[103] McGuire, M., Osman, B., Bukowski, M., and Hennessy, P. (2011). The
alchemy screen-space ambient obscurance algorithm. In Proc. of the ACM
SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pages
25–32, New York, NY, USA. ACM.

References 181

[104] Méndez-Feliu, À. and Sbert, M. (2009). From obscurances to ambient
occlusion: A survey. The Visual Computer, 25(2):181–196.

[105] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784.

[106] Mittring, M. (2007). Finding next gen: Cryengine 2. In ACM SIG-
GRAPH 2007 Courses, SIGGRAPH ’07, pages 97–121, New York, NY,
USA. ACM.

[107] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., and Riedmiller, M. (2013). Playing Atari With Deep Rein-
forcement Learning. In NIPS Deep Learning Workshop.

[108] Modi, S. and Bawa, D. S. (2011). Article: Automated Coin Recognition
System using ANN. International Journal of Computer Applications,
26(4):13–18. Full text available.

[109] Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast
supervised learning. Neural networks, 6(4):525–533.

[110] Morar, A., Moldoveanu, F., and Gröller, E. (2012). Image segmentation
based on active contours without edges. In 2012 IEEE 8th International
Conference on Intelligent Computer Communication and Processing, pages
213–220. IEEE.

[111] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
pages 807–814, USA. Omnipress.

[112] Nalbach, O., Arabadzhiyska, E., Mehta, D., Seidel, H.-P., and Ritschel,
T. (2017). Deep shading: Convolutional neural networks for screen space
shading. Comput. Graph. Forum, 36(4):65–78.

[113] Nesterov, Y. E. (1983). A method for solving the convex programming
problem with convergence rate o (1/kˆ 2). In Dokl. Akad. Nauk SSSR,
volume 269, pages 543–547.

[114] Ng, A. (2013). Machine learning and ai via brain simulations. Andrew
Ng.

182 References

[115] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE international
conference on computer vision, pages 1520–1528.

[116] Nölle, M., Penz, H., Rubik, M., Mayer, K., Holländer, I., and Granec,
R. (2003). Dagobert-a new coin recognition and sorting system.

[117] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learning and
transferring mid-level image representations using convolutional neural
networks. In Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’14, pages 1717–1724, Washington,
DC, USA. IEEE Computer Society.

[118] Pal, N. R. and Pal, S. K. (1993). A review on image segmentation
techniques. Pattern recognition, 26(9):1277–1294.

[119] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

[120] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J.,
Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and
Stich, M. (2010). Optix: A general purpose ray tracing engine. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages 66:1–66:13, New York,
NY, USA. ACM.

[121] Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face
recognition. In British Machine Vision Conference.

[122] Pautasso, C., Wilde, E., and Alarcon, R. (2014). REST: Advanced
Research Topics and Practical Applications. Springer Publishing Company,
Incorporated.

[123] Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and
Toyama, K. (2004). Digital photography with flash and no-flash image
pairs. ACM Trans. Graph., 23(3):664–672.

[124] Porter, T. and Duff, T. (1984). Compositing digital images. In ACM
Siggraph Computer Graphics, volume 18, pages 253–259. ACM.

[125] Prabhakar, G., Kailath, B., Natarajan, S., and Kumar, R. (2017). Ob-
stacle detection and classification using deep learning for tracking in
high-speed autonomous driving. In 2017 IEEE Region 10 Symposium
(TENSYMP), pages 1–6.

References 183

[126] Pratt, L. Y. (1993). Discriminability-based transfer between neural
networks. In Advances in neural information processing systems, pages
204–211.

[127] Prechelt, L. (2012). Early Stopping — But When?, pages 53–67.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[128] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
(1982). Numerical recipes in C, volume 2. Cambridge Univ Press.

[129] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434.

[130] Raghunathan, S., Stredney, D., Schmalbrock, P., and Clymer, B. D.
(2005). Image registration using rigid registration and maximization of
mutual information. In Poster presented at: MMVR13. The 13th Annual
Medicine Meets Virtual Reality Conference.

[131] Ramachandran, P., Liu, P. J., and Le, Q. V. (2016). Unsuper-
vised pretraining for sequence to sequence learning. arXiv preprint
arXiv:1611.02683.

[132] Reisert, M., Ronneberger, O., and Burkhardt, H. (2006). An efficient
gradient based registration technique for coin recognition. In Proc. of the
Muscle CIS Coin Competition Workshop, Berlin, Germany, pages 19–31.

[133] Ren, P., Wang, J., Gong, M., Lin, S., Tong, X., and Guo, B. (2013).
Global illumination with radiance regression functions. ACM Trans.
Graph., 32(4):130:1–130:12.

[134] Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., and Rott,
P. (2009). A perceptually motivated online benchmark for image matting.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1826–1833. IEEE.

[135] Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz, J. (2012). The
state of the art in interactive global illumination. In Computer Graphics
Forum, volume 31, pages 160–188. Wiley Online Library.

[136] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pages
234–241. Springer.

184 References

[137] Rosasco, L., De Vito, E., Caponnetto, A., Piana, M., and Verri, A.
(2004). Are loss functions all the same? Neural Comput., 16(5):1063–
1076.

[138] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. nature, 323(6088):533.

[139] Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,.

[140] Sasaki, Y. et al. (2007). The truth of the f-measure. Teach Tutor mater,
1(5):1–5.

[141] Schlag, I. and Arandjelovic, O. (2017). Ancient roman coin recognition
in the wild using deep learning based recognition of artistically depicted
face profiles. In 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 2898–2906.

[142] Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural networks, 61:85–117.

[143] Sengupta, S., Kanazawa, A., Castillo, C. D., and Jacobs, D. W. (2018).
Sfsnet: Learning shape, refectance and illuminance of faces in the wild. In
Computer Vision and Pattern Regognition (CVPR).

[144] Shen, X., Hertzmann, A., Jia, J., Paris, S., Price, B., Shechtman, E., and
Sachs, I. (2016). Automatic portrait segmentation for image stylization.
Comput. Graph. Forum, 35(2):93–102.

[145] Shi, J. and Malik, J. (2000). Normalized cuts and image segmenta-
tion. IEEE Transactions on pattern analysis and machine intelligence,
22(8):888–905.

[146] Shih, Y., Paris, S., Barnes, C., Freeman, W. T., and Durand, F. (2014).
Style transfer for headshot portraits. ACM Transactions on Graphics
(TOG), 33(4):148.

[147] Shih, Y., Paris, S., Durand, F., and Freeman, W. T. (2013). Data-driven
hallucination of different times of day from a single outdoor photo. ACM
Transactions on Graphics (TOG), 32(6):200.

[148] Shu, Z., Hadap, S., Shechtman, E., Sunkavalli, K., Paris, S., and
Samaras, D. (2018). Portrait lighting transfer using a mass transport
approach. ACM Transactions on Graphics (TOG), 37(1):2.

References 185

[149] Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., and
Samaras, D. (2017). Neural face editing with intrinsic image disentan-
gling. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, pages 5444–5453. IEEE.

[150] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[151] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

[152] Stehman, S. V. (1997). Selecting and interpreting measures of thematic
classification accuracy. Remote sensing of Environment, 62(1):77–89.

[153] Styner, M., Brechbuhler, C., Szckely, G., and Gerig, G. (2000). Para-
metric estimate of intensity inhomogeneities applied to mri. IEEE Trans-
actions on Medical Imaging, 19(3):153–165.

[154] Sun, Y., Wang, X., and Tang, X. (2015). Deeply learned face repre-
sentations are sparse, selective, and robust. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2892–2900.

[155] Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement
learning, volume 135. MIT press Cambridge.

[156] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop, coursera:
Neural networks for machine learning. University of Toronto, Technical
Report.

[157] Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and
color images. In Sixth International Conference on Computer Vision (IEEE
Cat. No.98CH36271), pages 839–846.

[158] Van Der Maaten, L. and Postma, E. (2006). Towards automatic coin
classification. na.

[159] Vidal, B. (2012). Chroma key visual feedback based on non-
retroreflective polarized reflection in retroreflective screens. IEEE Trans-
actions on Broadcasting, 58(1):144–150.

[160] Wang, J., Cohen, M. F., et al. (2008). Image and video matting: a
survey. Foundations and Trends® in Computer Graphics and Vision,
3(2):97–175.

186 References

[161] Wang, S., Zheng, J., Hu, H.-M., and Li, B. (2013). Naturalness
preserved enhancement algorithm for non-uniform illumination images.
IEEE Transactions on Image Processing, 22(9):3538–3548.

[162] Wang, Y., Zhang, L., Liu, Z., Hua, G., Wen, Z., Zhang, Z., and Samaras,
D. (2009). Face relighting from a single image under arbitrary unknown
lighting conditions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(11):1968–1984.

[163] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004).
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4):600–612.

[164] Wen, Z., Liu, Z., and Huang, T. S. (2003). Face relighting with radiance
environment maps. In null, page 158. IEEE.

[165] Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation
of rectified activations in convolutional network. CoRR, abs/1505.00853.

[166] Xu, N., Price, B. L., Cohen, S., and Huang, T. S. (2017). Deep image
matting. In CVPR, volume 2, page 4.

[167] Yamashita, A., Agata, H., and Kaneko, T. (2008). Every color chro-
makey. In 2008 19th International Conference on Pattern Recognition,
pages 1–4.

[168] Zaharieva, M., Kampel, M., and Zambanini, S. (2007). Image based
recognition of coins – an overview of the COINS project. In Performance
Evaluation for Computer Vision 31st AAPR/OAGM Workshop 2007, pages
57–64.

[169] Zambanini, S., Kampel, M., and Schlapke, M. (2008). On the use
of computer vision for numismatic research. In Proceedings of the 9th
International Conference on Virtual Reality, Archaeology and Cultural
Heritage, pages 17–24. Eurographics Association.

[170] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding
convolutional networks. In European conference on computer vision, pages
818–833. Springer.

[171] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010).
Deconvolutional networks. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 2528–2535.

References 187

[172] Zeiler, M. D., Taylor, G. W., and Fergus, R. (2011). Adaptive de-
convolutional networks for mid and high level feature learning. In 2011
International Conference on Computer Vision, pages 2018–2025.

[173] Zhang, X., Ng, R., and Chen, Q. (2018). Single image reflection
separation with perceptual losses. In IEEE Conference on Computer Vision
and Pattern Recognition.

[174] Zhao, W., Du, S., and Emery, W. J. (2017). Object-based convolutional
neural network for high-resolution imagery classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
10(7):3386–3396.

[175] Zhou, Y. T. and Chellappa, R. (1988). Computation of optical flow
using a neural network. In IEEE 1988 International Conference on Neural
Networks, pages 71–78 vol.2.

[176] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-
to-image translation using cycle-consistent adversarial networks. arXiv
preprint.

[177] Zitnick, C. L. and Dollár, P. (2014). Edge boxes: Locating object
proposals from edges. In European conference on computer vision, pages
391–405. Springer.

Biography

Nicola Felice Capece was born in Potenza, Italy, on 23nd April 1987. He
received his master’s degree in Computer Engineering from the Università
della Basilicata, Italy, in July 2015. Currently, he is a PhD student in Com-
puter Science at the Università della Basilicata (in collaboration with the
Università del Salento) under the supervision of Dr Ugo Erra. He is a member
of the CGLab (Computer Graphic Lab) research group at the University della
Basilicata. His research interests include: (i) Computer Graphics: Real Time
and Offline Rendering; (ii) Deep Learning Application in Computer Graphic
fields; (iii) Virtual, Mixed and Augmented Reality (VR/AR); (iv) Human
Computer Interaction (HCI). From 1st November 2017 to 30 April 2018 (six
months) he carried out a visiting period at National Council of Research
(CNR) in Pisa, Italy. In such period he was member of Visual Computing Lab
(VGC) at the Istituto di Scienza e Tecnologie dell’Informazione "A. Faedo"
under the supervision of Dr Roberto Scopigno. He has attended in several
international conferences at which he presented different works, among them:
"Information Visualisation, Lisbon 2016", "Signal Image Technology & Inter-
net Based System, Naples 2016", "Eurographics Lyon 2017"and "Information
Visualisation, Salerno 2018".

190 References

Pubblications

Computer Graphics

• Erra, U., Capece, N. F., and Agatiello, R. (2017). Ambient Occlusion
Baking via a Feed-Forward Neural Network. In Peytavie, A. and Bosch,
C., editors, EG 2017 - Short Papers. The Eurographics Association.

• Erra, U., Scanniello, G., & Capece, N. (2012, July). Visualizing the
evolution of software systems using the forest metaphor. In 2012 16th
International Conference on Information Visualisation (pp. 87-92).
IEEE.

Deep Learning

• Capece, N., Erra, U., and Ciliberto, A. V. (2016b). Implementation
of a coin recognition system for mobile devices with deep learning.
In 2016 12th International Conference on Signal-Image Technology
Internet-Based Systems (SITIS), pages 186–192.

• Capece, N., Erra, U., and Scolamiero, R. (2017). Converting night-time
images to day-time images through a deep learning approach. In 2017
21st International Conference Information Visualisation (IV), pages
324–331.

• Capece, N., Banterle, F., Cignoni, P., Ganovelli, F., Scopigno, R., and
Erra, U. (2019). Deepflash: Turning a flash selfie into a studio portrait.
arXiv preprint arXiv:1901.04252.

Virtual and Augmented Reality

• Capece, N., Erra, U., Romano, S., & Scanniello, G. (2017, June).
Visualising a software system as a city through virtual reality. In

References 191

International Conference on Augmented Reality, Virtual Reality and
Computer Graphics (pp. 319-327). Springer, Cham.

• Erra, U., & Capece, N. (2019). Engineering an advanced geo-location
augmented reality framework for smart mobile devices. Journal of
Ambient Intelligence and Humanized Computing, 10(1), 255-265.

• Capece, N., Erra, U., & Grippa, J. (2018, July). GraphVR: A Virtual
Reality Tool for the Exploration of Graphs with HTC Vive System. In
2018 22nd International Conference Information Visualisation (IV) (pp.
448-453). IEEE.

• Capece, N., Erra, U., & Romaniello, G. (2018, June). A Low-Cost Full
Body Tracking System in Virtual Reality Based on Microsoft Kinect.
In International Conference on Augmented Reality, Virtual Reality and
Computer Graphics (pp. 623-635). Springer, Cham.

• Capece, N., Agatiello, R., & Erra, U. (2016, July). A client-server
framework for the design of geo-location based augmented reality
applications. In 2016 20th international conference information visual-
isation (IV) (pp. 130-135). IEEE.

Index

Accuracy Training, 162
Accuracy Validation, 162
Activation Function, 10, 60
AdaGrad, 80, 164
Adam, 80, 114, 164
AlexNet, 38
Ambient Occlusion, 41
Artificial Intelligence, 1
Artificial Neuron, 10

Backward Propagation, 73
Batch Normalization, 60, 79, 145
Batch Size, 29, 165
Bilateral Filter, 82, 83, 112, 141
Bilinear Interpolation, 62, 168
Binarization Problem, 135
Binarization Process, 112
Blur Problem, 140
Bounding Box, 86

Caffe, 23
Chroma Key, 103
Classification Problem, 4, 25

Coin Recognition, 25
Colours Perturbation, 34, 139
Concatenation, 79
Confusion Matrix, 116
Contrast Normalization, 139
Convolution, 15, 79
Convolutional Neural Network, 12,

28, 58, 76
Cropping, 86
Cross-Entropy, 30, 108, 161

Data Augmentation, 34, 67, 86,
114

Dataset, 139
Deconvolution, 18, 79, 107
Deep Learning, 1, 9
Deep Learning Toolbox, 24
Degradation Problem, 60, 72
DenseNet, 144, 145
Depth-Buffer, 54
Discriminator Network, 145
Downsampling, 59

194 Index

Dropout, 142, 165

Encoder-Decoder, 19
Epochs, 29, 165
Exploding Gradient Problem, 144

Face Recognition, 86
Feed-Forward Neural Network, 10,

45, 48
Flash Selfie, 75, 77
Flipping, 34, 86, 139
Forward Propagation, 72
Fragment Shader, 54

Generalization Level, 137
Generative Adversarial Network,

94, 145
Generator Network, 145
Global Accuracy, 115
GPU, 22
Gradient Descent, 162
Green Screen, 135

HDRNet, 92
Hidden Layers, 13
Hyperbolic Sigmoid, 15
Hyperparameters, 138, 165

Image Distorsion, 139
Image Processing Toolbox, 86
Image Segmentation, 105
Image-Matting Problem, 104, 133
ImageNet, 38

Intersection Over Union, 115

JSON, 32

Kernel, 14, 165

L1 Regularization, 142
L2, 142
Layer, 10
Layer Group, 61
Leaky Rectified Linear Unit, 15,

61
Learning Rate, 71, 80, 114, 163,

165
Lighting Scheme, 57, 75
Local Receptive Fields, 13
Loss Function, 83, 138, 162
Loss Validation, 138

Machine learning, 1
MATLAB, 24, 114
Max-Pooling, 18, 71, 107
Mean Accuracy, 115, 123
Mean Boundary F1 Score, 115
Mean Squared Error, 63, 162
Mean Subtraction, 85
Mini-Batch, 163, 165
Multilayer Perceptron, 11, 44

Neural Network, 10
Normal Distribution, 63, 80
Normalized Exponential Function,

167

Index 195

NumPy, 24
Nvidia DIGITS, 29

Off-Line Rendering, 42
Optimization Algorithms, 162
Overfitting Problem, 141

Peak Signal to Noise Ratio, 94
Pix2Pix, 94
Pooling, 18
Pre-Trained Model, 63, 80, 166

Real-Time Rendering, 43
Rectified Linear Unit, 15, 61, 71,

84, 106
Regression Problem, 4, 77
Reinforcement Learning, 21
Residual Function, 60
Residual Learning Net, 60, 71,

144, 145
REST, 31
RMSProp, 80, 164
Rotation, 34, 86, 139

Scaled Conjugate Gradient, 165
Screen Space Ambient Occlusion,

43
Select Subject, 129
Shortcut Connection, 72, 78, 144
Sigmoid, 15, 62
Skip-Connection, 72, 144
Softmax, 108, 167

Standard Deviation, 39, 60, 140
Stochastic Gradient Descent, 39,

62, 163
Stochastic Gradient Descent with

Momentum, 163
Stride, 14
Structural Similarity Index, 88,

162
Studio Portrait, 75, 77
Style Transfer Method, 98
Supervised Learning, 19, 58

Tensorflow, 23
Test Set, 29
Theano, 24
Torch7, 24
Training Set, 29
Transfer Learning, 80, 166
Translation, 34, 139
Trimap Image, 105, 133, 135

U-Net, 17, 106
Underfitting, 143
Unpooling, 18, 107
Unreal Engine 4, 67
Unsupervised Learning, 20

Validation Set, 29, 138
Vanishing Gradient Problem, 72,

143
VGG-16, 59, 62, 70, 80

Weight Decay, 165

196 Index

Weights, 10

Xavier Initialization, 80, 166

Z-Buffer, 54

