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Introduction

Channel coding is the branch of Information Theory which studies the noise

that can occur in data transmitted through a channel. Algebraic Coding

Theory is the part of Channel Coding which studies the possibility to de-

tect and correct errors using algebraic and geometric techniques. Nowadays,

the best performing linear codes are known to be mostly algebraic geom-

etry codes, also named Goppa codes, which arise from an algebraic curve

over a finite field, by the pioneering construction due to V. D. Goppa. The

best choices for curves on which Goppa’s construction and its variants may

provide codes with good parameters are those with many rational points,

especially maximal curves attaining the Hasse-Weil upper bound for the

number of rational points compared with the genus of the curve. Unfortu-

nately, maximal curves are difficult to find. The best known examples of

maximal curves are the Hermitian curve, the Ree curve, the Suzuki curve,

the GK curve and the GGS curve.

In the present thesis, we construct and investigate algebraic geometry

codes (shortly AG codes), their parameters and automorphism groups.

In the first part, mostly dedicated to background and preliminary re-

sults, we collect basic facts on algebraic function fields, and give a purely

algebraic description of Goppa’s method. An advantage is that the princi-

pal tools in Goppa’s construction, that is, the Riemann-Roch theorem and

its corollaries, can be more quickly introduced in the function field setting

rather than within Algebraic Geometry. We also report some basic defini-

tions from classic Algebraic Geometry, in particular we introduce the notion

of an algebraic curve X in a projective space over a finite field Fq. We also

explain how these geometric concepts are related to algebraic concepts in the

corresponding function fieldK(X ). Afterwards, we point out that combining

the algebraic and geometric ideas and tools can provide algebraic-geometric

codes whose parameters are often better than those of other codes.
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The original idea of Goppa was to construct a code C on the set X (Fq) of

Fq-rational points of a curve X , from two divisors D and G whose supports

are two disjoint subsets of X (Fq). Here the length of C coincides with

|Supp(D)|, while its dimension is upper bounded by the dimension of the

Riemann-Roch space L(D). The current literature on Coding Theory is rich

of various constructions but only a few of them give useful information on

the minimum distance of the code. Fortunately algebraic geometry codes

are of this latter kind, since a lower bound, called the designed minimum

distance, can easily been computed when X (Fq) is large enough. In many

cases, the designed minimum distance coincides with its true value. Since

long codes are better for correcting errors, we are interested in studying

curves with many Fq-rational points. It should be noticed that such curves

(especially maximal curves) often have large automorphism group. Curves

enjoying large automorphism group include the well-known 1-dimensional

Deligne Lusztig varieties (the Hermitian, Suzuki and Ree curves) together

with the more recent GK curve and Norm-Trace curve, the last being a

natural generalization of Hermitian curve.

The second part of the thesis presents the original results. In the fourth

chapter, the automorphism group of the abovementioned curves are dis-

cussed. Their automorphism group is known, except for the Norm-trace

curve. We focus on the automorphism group of the Norm-trace curve,

which we determine here. We also use it to construct multi-point algebraic-

geometric codes which turn out be monomially equivalent to one-point

codes. Since the automorphisms of the curve which preserve both divi-

sors in Goppa’s construction is induced by the arising algebraic-geometry

code, these multi-point algebraic-geometric codes have a large automor-

phism group. This is a very useful property for the decoding process, as

codes with a large automorphism groups often admit quicker decoding. The

main results of these chapter appear in a joint work with M. Montanucci

and G. Zini, see [10].

In the fifth and the sixth chapters, we investigate the general problem of

determining the minimum distance and the weight enumerator polynomial of

algebraic-geometric codes. We adopt an approach based on the intersection

of the curve defining the code and other curves. More in details, the first

part of the fifth chapter deals with the GK-curve. It should be noticed that

the GK-curve is the first maximal curve shown not to be covered by the
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Hermitian curve. In the same section, we compute the maximal number

of intersections that the GK curve can have with a plane curve of degree

lower or equal to three. The results are used to determine the minimum

distance and the number of minimum weight codewords of one-point AG-

codes arising from the GK-curve. The main results appeared in a joint paper

with D. Bartoli; see [5].

The second part of the fifth chapter is based on a joint work with L.

Girardi and M. Sala. Our aim is to extend the results of the previous

section to a generalization of the GK-curve, due to A. Garcia, C. Güneri

and H. Stichtenoth. We apply some techniques, similar to those used in the

previous section, to the study of the number of intersections between a line

and the GGS curve. Unfortunately, this curve has singularity in its point at

the infinity, which does not allow us to proceed analogously. We obtain an

upper bound for the minimum distance of some AG-codes arising from the

GGS curve.

In the final chapter, which comes from a joint work with M. Sala (see

[11]), we study the possible intersections between the Norm-Trace curve and

a plane curve with equation of the form y = ax3 +bx2 +cx+d. One aim is to

extend the results obtained in [50]. We have not been able to determine the

full spectrum of the intersections between these two curves. Nevertheless,

we obtain sharp bounds. For this purpose, we translate the problem of

finding the intersection of these two curves into that of determining the Fq-
rational points of a certain cubic surface. We treat differently the smooth

and singular cases using a variety of both theoretical and applied results:

such as the classification of the singularities of a cubic irreducible surface,

the Cremona map and elimination ideals. Moreover, the solution of some

particular cases of our investigation was also supported by the software

MAGMA.
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Chapter 1

Algebraic Function Fields

Algebraic function fields of one variable arise naturally in the study of alge-

braic curves. Branches of a curve (or points of a nonsingular model of the

curve) are bijectively associated to places of a function field, the property

of singularity can be verified studying the valuation ring of a the associated

place.

In this chapter we introduce the basic definitions and results of the theory

of function fields: places, valuations, divisors, genus, adeles, Weil differential

and the Riemann-Roch theorem. We present algebraic extensions of function

fields, one of the most important tools for working with concrete function

fields, and also decomposition of places in a finite extension, ramification

index and Hurwitz genus formula. These tools are useful for the computation

of the genus and the number of rational points on the associated curves.

In our applications the base field is always finite. The theory of function

fields is developed for an arbitrary ground field K, except for the section

on the extensions, where K is assumed to be perfect. We recall that K is

called perfect if all algebraic extension L/K are separable. For example K

is perfect if the field has characteristic zero, it is algebraically closed or it is

finite.

For details and proof we refer to [65].

1.1 Places and valuations

Definition 1.1. An algebraic function field F/K of one variable over K is

an extension field F ⊃ K such that F is a finite algebraic extension of K(x)

for some x ∈ F , with x is transcendental over K.

7



8 CHAPTER 1. ALGEBRAIC FUNCTION FIELDS

We call K̃ = {z ∈ F | z algebraic over K} the field of constants of F/K.

The field K is said to be algebraically closed in F if K̃ = K. Note that

F/K̃ is a function field over K̃.

Definition 1.2. A valuation ring of the function field F/K is a proper

subring K ( O ( F such that for every z ∈ F we have that z ∈ O or

z−1 ∈ O.

A valuation ring O of F/K has the following properties:

(i) O is a local ring, with unique maximal ideal P = O \O∗, where O∗ is

the group of units of O;

(ii) for each z ∈ F \ {0}, then z ∈ P ⇐⇒ z−1 /∈ O;

(iii) K̃ ⊂ O and K̃ ∩ P = {0};

(iv) O is a principal ideal domain (shortly PID);

(v) let t ∈ P be a generator for P , then every element z in F \ {0} can be

written in the form z = tnu, where u ∈ O∗.

Thus O is also a discrete valuation ring, that is a principal ideal domain

with exactly one non-zero maximal ideal.

Definition 1.3. A place P of the function field F/K is the maximal ideal

of some valuation ring O of F/K. An element t ∈ P such that P = tO is

called uniformizer. The set OP := {z ∈ F | z−1 /∈ P} is the valuation ring

of the place P .

It can be proved that every function field has infinitely many places. The

set of all places of a function field F/K is denoted with PF .

Definition 1.4. A discrete valuation of the function field F/K (shortly

DVR) is a function v : F → Z ∪ {∞} such that for every x, y ∈ F :

(i) v(x) =∞ if and only if x = 0

(ii) v(xy) = v(x) + v(y)

(iii) v(x+ y) ≥ min{v(x), v(y)}

(iv) there exists an element z ∈ F such that v(z) = 1
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(v) v(a) = 0, for all a ∈ K \ {0}

Proposition 1.5 (Strict Triangle Inequality). Let v be a discrete valuation

of F/K and x, y ∈ F with v(x) 6= v(y). Then

v(x+ y) = min{v(x), v(y)}.

Definition 1.6. Let P be a place and t be a uniformizer. We define a

function vP : F → Z ∪ {∞} as follows: for every z ∈ F \ {0} write z = tnu,

where u is a unity of OP and n ∈ Z, then vP (z) = n and vP (0) =∞.

Observe that this definition depends only on P , not on the choice of the

uniformizer t, because all generators of P differ by a unit.

For a place P of F/K the function vP described above is a discrete

valuation. We have:

• OP = {z ∈ F | vP (z) ≥ 0}

• O×P = {z ∈ F | vP (z) = 0}

• P = {z ∈ F | vP (z) > 0}

An element t ∈ P is a uniformizer for the place P if and only if vP (t) = 1.

Conversely we can construct a place from a discrete valuation v for the

function field F/K in this way: the set P = {z ∈ F | v(z) ≥ 0} is a place of

F/K and OP = {z ∈ F | v(z) ≥ 0} is the corresponding valuation ring. For

this reason we can say that places, valuation rings and discrete valuations

of a function field essentially correspond to the same thing.

Let P be a place of F/K and let OP be its valuation ring. Since P

is a maximal ideal, the residue class ring OP /P is a field. We know that

K̃ ⊂ OP and K̃ ∩P = {0}, so the residue class map OP → OP /P induces a

canonical embedding of K̃ into OP /P . Henceforth we shall always consider

K and K̃ as subfields of OP /P via this embedding.

Definition 1.7. Let P be a place of F/K and FP := OP /P its residue class

field. Then we define the degree of P to be deg(P ) := [FP : K]. A place of

degree one is called rational place.

Definition 1.8. Let z ∈ F , P a place of F/K, then

(i) if vP (z) = m > 0, the place P is a zero of z of order m;
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(ii) if vP (z) = −m < 0, the place P is a pole of z of order m.

Proposition 1.9. Let F/K be a function field, z ∈ F \ {0}, then:

(i) z has only finitely many zeros and poles;

(ii) if z is transcendental over K, then z has at least one zero and one

pole.

Example 1.10. Let x be a transcendental element over the field K and

let F = K(x) be the rational function field. Let p(x) ∈ K[x] an arbitrary

monic, p(x) irreducible polynomial, the set

Op(x) :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], p(x) - g(x)

}

is a valuation ring of K(x)/K. Its maximal ideal

Pp(x) =

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], p(x) | f(x), p(x) - g(x)

}

is a place of K(x)/K.

Note that if q(x) is another irreducible polynomial, then Op(x) 6= Oq(x).

There is another valuation ring of K(x)/K, namely

O∞ :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) ≤ deg(g(x))

}

with maximal ideal

P∞ =

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) < deg(g(x))

}
.

This is called the infinite place of K(x). Moreover, it is possible to prove

the following properties

(i) Let P = Pp(x) be the place defined by the monic polynomial p(x) ∈
K[x]. Then p(x) is a uniformizer, and the corresponding discrete val-

uation vP can be described as follows: if Z ∈ K(x) \ {0} is written in

the form z = (p(x))n ·(f(x)/g(x)), with n ∈ Z, f(x), g(x) polynomial of

K[x] that are not divided by p(x), then vP (z) = n. The residue class

field K(x)P = OP /P is isomorphic to K(x)/(p(x)). Consequently,

deg(Pp(x)) = deg(p(x)).
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(ii) In the special case P = x − α, with α ∈ K, the degree of P = Px−α
is one. For any z ∈ K(x) write z = f(x)/g(x), with relative prime

polynomials f(x), g(x) ∈ K[x]. Then the residue class map is given by

z(P ) =




f(α)/g(α) if g(α) 6= 0,

∞ if g(α) = 0.

(iii) In the special case P = P∞, the degree is one. A uniformizer for P∞
is t = 1/x. For any z ∈ K(x) write

z =
anx

n + · · ·+ a0

bmxm + · · ·+ b0
,

with an, bm ∈ K \ {0}. Then the residue class map is given by

z(P∞) =





an/bm, if n = m,

0 if n < m,

∞ if n > m.

(iv) K is the full constant field of K(x)/K.

(v) There are no places of the rational function fields other than Pp(x) and

P∞.

(vi) The places of K(x)/K of degree one are in 1-1 correspondence with

K ∪ {∞}.

1.2 Divisors and Riemann-Roch Theorem

In this section we introduce divisors, the Riemann-Roch space and Weil dif-

ferentials. These tools will be used to define the AG codes and to determine

their parameters.

Remark 1.11. The field K̃ of constants of an algebraic function field F/K

is a finite extension field of K and F can be seen as a function field over K̃.

Therefore from here on, F/K will always denote an algebraic function field

of one variable such that K is the full constant field of F/K.

Definition 1.12. The divisor group of F/K is defined as the (additive) free

abelian group which is generated by the places of F/K and it is denoted
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by DF . The elements of DF are called divisors of F/K. In other words, a

divisor is a formal sum

D =
∑

P∈PF
nPP,

with nP ∈ Z, almost all nP = 0.

We make a list of definitions and properties that will help us work with

divisors.

(i) The support of D is defined as Supp(D) = {P ∈ PF | np 6= 0}.

(ii) A divisor of the form D = P with P ∈ PF is called prime divisor.

(iii) The sum of two divisors is defined as the sum componentwise: let

D =
∑
nPP and D′ =

∑
n′PP , then

D +D′ =
∑

(nP + n′P )P.

(iv) The zero element of the divisor group DF is the divisor

0 :=
∑

rPP, all rP = 0.

(v) For Q ∈ PF and D =
∑
nPP ∈ DF we define vQ(D) := nQ.

(vi) A partial ordering on DF is defined by:

D1 ≤ D2 ⇐⇒ vP (D1) ≤ vP (D2), for all P ∈ PF .

(vii) A divisor D ≥ 0 is called positive (or effective).

(viii) The degree of a divisor is defined as

deg(D) :=
∑

vP deg(P ).

(ix) The function deg : DF → Z is an homomorphism.

Definition 1.13. Let f ∈ F \ {0} and denote by Z the set of zeros, N the

set of poles of f in PF . Then we define

(f)0 =
∑

P∈Z
vP (f)P, the zero divisor of x;

(f)∞ =
∑

P∈N
(−vP (f))P, the pole divisor of x;

(f) = (f)0 − (f)∞ =
∑

P∈PF
(−vP (f))P, the principal divisor of x.
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Since we assumed K to be the full constant field, from Proposition 1.9

we have that if f ∈ F enjoys (f) = 0, then f ∈ K.

Definition 1.14. For a divisor D ∈ DF we define the Riemann-Roch space

associated to D by

L(D) = {f ∈ F | (f) ≥ −D} ∪ {0}.

An element f ∈ F is contained in L(D) if and only if vP (f) ≥ −vP (A) for

all P ∈ PF . If D =
∑r

i=1 niPi −
∑s

j=1mjQj , with ni,mj > 0, then L(D)

consists of all f ∈ F such that:

(i) f has zeros of order greater or equal to mj at Qj (j = 1 . . . s);

(ii) f may have poles only at the places P1, . . . , Pr, with the pole order at

Pi being bounded by ni (i = 1, . . . , r).

For every D ∈ DF the Riemann-Roch space L(D) is a finite dimensional

vector space over K. So we define the integer `(D) = L(D) to be the

dimension of the divisor D. The following facts hold:

• L(0) = K and `(0) = 1;

• if A < 0, then L(A) = {0} and `(A) = 0;

• all principal divisors have degree zero and dimension one;

• if deg(D) < 0, then L(D) = {0} and `(D) = 0.

Example 1.15. Once again we consider the rational function field F =

K(x) as in Example 1.10. For z ∈ K(x) \ {0} write z = a · f(x)/g(x) with

a ∈ K \ {0}, f(x), g(x) ∈ K[x] monic and relatively prime. Let

f(x) =
r∏

i=1

pi(x)ni , g(x) =
s∏

j=1

qj(x)mj ,

with pairwise distinct irreducible monic polynomials pi(x), qj(x). Then the

principal divisor of z in DF is

(z) =
r∑

i=1

niPpi(x) −
s∑

j=0

mjPqj(x) + (deg(g)− deg(f))P∞.
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Proposition 1.16. There is a constant γ ∈ Z such that for all divisors

D ∈ DF :

deg(D)− `(D) ≤ γ.

Definition 1.17. The genus g of F/K is defined by

g := max{deg(D)− `(D) + 1 | D ∈ DF }.

We observe that this definition makes sense by the previous proposition.

Moreover the genus is a non-negative integer; indeed consider the divisor 0,

then deg(0)− `(0) + 1 = 0.

Definition 1.18. An adele of F/K is a mapping α : PF → F such that

α(P ) = αP ∈ OP for almost all P ∈ PF .

We regard an adele as an element of the direct product
∏
P∈PF F and,

therefore, use the notation α = (αP ). The setAF := {α | α is an adele of F/K}
is called the adele space of F/K. It is seen as a vector space over K. The

principal adele of an element x ∈ F is the adele all of whose components

are equal to x. This gives an embedding of F into AF , called diagonal

embedding. A valuation vP of F/K extends naturally to AF by setting

vP (α) = vP (αP ). By definition, vP (α) ≥ 0 for almost all P ∈ PF .

Definition 1.19. For D ∈ DF we define

AF (D) = {α ∈ AF | vP (α) ≥ −vP (D) for all P ∈ PF }.

Obviously, this is a K-subspace of AF . We define the index of speciality

of the divisor D to be the integer

i(D) = dim(AF /(AF (D) + F )).

Definition 1.20. A Weil differential of F/K is a K-linear map ω : AF → K

vanishing on AF (D) + F for some divisor D ∈ DF .

We call ΩF := {ω | ω is a Weil differential of F/K}. It is easy to prove

that ΩF is a vector space with respect to K. For D ∈ DF let ΩF (D) :=

{ω | ω vanishes on AF (D) + F}. Clearly it is a subspace of ΩF and its

dimension is exactly the index of speciality i(D).

We intend to attach a divisor to any Weil differential ω 6= 0. To this end,

consider the set of divisors M(ω) := {D ∈ DF | ω vanishes on AF (D) +F}.
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There is a uniquely determined divisor W ∈ M(ω) such that D ≤ W for

any D ∈ M(ω). Such element is called canonical divisor and denoted by

(ω). Is easy to prove that

ΩF (D) = {ω ∈ ΩF | ω = 0 or (ω) ≥ D}.

For any canonical divisor W , we have deg(W ) = 2g − 2 and `(W ) = g.

Theorem 1.21 (Riemann-Roch Theorem). Let W be a canonical divisor of

F/K. Then for any D ∈ DF ,

`(D) = deg(D) + 1− g + `(W −D).

It can be proved that `(W − D) = i(D), so another way to state the

same theorem is

`(D) = deg(D) + 1− g + i(D).

We note that ifD is a divisor of F/K of degree strictly greater than 2g−2,

then deg(W−D) < 0, so `(W−D) = i(D) = 0. Thus `(D) = deg(D)+1−g.

Example 1.22. As an application of the Riemann-Roch theorem, we want

to show that the rational function field K(x)/K has genus g = 0. Let P∞
denote the pole divisor of x. Consider, for r ≥ 0, the vector space L(rP∞);

obviously, the elements 1, x, . . . , xr generate L(rP∞). Let r > 2g − 2, we

have

r + 1 ≤ `(rP∞) = deg(rP∞) + 1− g = r + 1− g.

Thus g ≤ 0. Since g ≥ 0 for any function field, the assertion follows.

The last thing we introduce is the residue of a differential at a place P .

Definition 1.23. Suppose that P is a place of F/K of degree one and t ∈ F
is a P -prime element. If z ∈ F has the P -adic expansion z =

∑∞
i=n ait

i with

n ∈ Z and ai ∈ K we define its residue with respect to P and t by

resP,t(z) := a−1.

Definition 1.24. Let ω ∈ ΩF be a differential and let P ∈ PF be a place

of degree one. Choose a P -prime element t ∈ F and write ω = u dt with

u ∈ F . Then we define the residue of ω at P by

resP (ω) := resP,t(u).
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1.3 Extension of algebraic function fields

Any function field over K can be seen as a finite field extension of a rational

function field K(x). This is one of the reasons why it is of interest to

investigate field extensions F ′/F of algebraic function fields. This section

will give us the tools for the computation of the genus of some non-trivial

function fields and to determine the discrete valuation associated with some

places.

Two common types of extensions are Kummer extension and Artin-

Schreier extensions. We summarize the main properties of these extensions

in two theorems at the end of the section.

Remark 1.25. Throughout the whole subsection, K is assumed to be perfect.

Definition 1.26. An algebraic function field F ′/K ′ is called an algebraic

extension of F/K if F ′ ⊇ F is an algebraic field extension and K ′ ⊇ K. A

place P ′ ∈ PF ′ is said to lie over P ∈ PF if P ⊆ P ′. We also say that P ′ is

an extension of P , or that P lies under P ′, and write P ′|P .

If P ⊂ P ′ than also OP ⊆ OP ′ . Moreover there exists an integer e ≥ 1

such that vP ′(z) = e ·vP (z) for all z ∈ F . The integer e is called ramification

index of P ′ over P and denoted by e(P ′|P ).

We say that P ′|P is ramified if e(P ′|P ) > 1 and P ′|P is unramified if

e(P ′|P ) = 1.

There is a canonical embedding of the residue class field FP = OP /P
into the residue class field F ′P ′ = OP ′/P ′, therefore we can consider FP as a

subfield of F ′P ′ . The value f(P ′|P ) := [F ′P ′ : FP ] is called the relative degree

of P ′ over P .

Note that f(P ′|P ) can be finite or infinite; in particular it is finite if and

only if [F ′ : F ] is finite.

If F ′′/K ′′ is an algebraic extension of F ′/K ′ and P ′′ ∈ PF ′′ lies over P ′,

then

e(P ′′|P ) = e(P ′′|P ′)e(P ′|P ),

f(P ′′|P ) = f(P ′′|P ′)f(P ′|P ).

Proposition 1.27. Let F ′/K ′ be an algebraic extension of F/K. Then for

any place P ′ ∈ PF ′ there is exactly one place P ∈ PF such that P ′|P , namely

P = P ′∩F . Conversely, any place P ∈ PF has at least one, but only finitely

many, extensions P ′ ∈ PF ′.
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Theorem 1.28. Let F ′/K ′ be a finite extension of F/K, P a place of F/K

and P1, . . . , Pm ∈ PF ′ all the places that lay over P . Let ei := e(Pi|P ) and

fi := f(Pi|P ), then
m∑

i=1

eifi = [F ′ : F ].

Therefore the number of places Pi that lies over P is at most [F ′ : F ].

Moreover if P ′ lies over P then an upper bound of the ramification index

e(P ′|P ) and the relative degree f(P ′|P ) is [F ′ : F ].

Definition 1.29. Let F ′/F be an algebraic extension of function fields of

degree [F ′ : F ] = n and let P ∈ PF .

(i) P splits completely in F ′/F if there are exactly n distinct places P ′ ∈ PF ′
with P ′|P .

(ii) An extension P ′ of P in F ′ is said to be tamely ramified if e(P ′|P ) > 1

and char(K) does not divide e(P ′|P ); it is said to be wildly ramified if

char(K) divides e(P ′|P ).

(iii) We say that P is ramified in F ′/F if there is at least one P ′ ∈ PF ′ over

P such that P ′|P is ramified. Otherwise P is unramified. If there is at

least one wildly ramified place P ′|P we say that P is wildly ramified

in F ′/F ; otherwise P is tamely ramified.

(iv) P is totally ramified in F ′/F if there is only one extension P ′ ∈ PF ′ of

P in F ′, and the ramification index is e(P ′|P ) = n.

(v) F ′/F is said to be tame if no place P ∈ PF is wildly ramified in F ′/F .

Theorem 1.30 (Hurwitz Genus Formula). Suppose that F ′/F is a tame fi-

nite separable extension of algebraic function fields having the same constant

field K. Let g (resp. g′) denote the genus of F/K (resp. F ′/K). Then

2g′ − 2 = [F ′ : F ] · (2g − 2) +
∑

P∈PF

∑

P ′|P
(e(P ′|P )− 1) · deg(P ′).

The formula makes sense because almost all places P ∈ PF are unrami-

fied in F ′/F .

In positive characteristic the Hurwitz Genus Formula is much more com-

plicated when [F ′ : F ] is nontame. Since in the remaining part of this sec-

tion we only consider tame extensions we delay the reporting of the Hurwitz
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genus formula for the general case to the section about automorphisms of

algebraic curves. For details and proof see [36] and [65].

Any function field F/K can be seen as a finite separable extension of a

rational function field K(x). The Hurwitz Genus Formula is a powerful tool

that allows determination of the genus of F .

The following theorems describe two type of extensions in which it is

simple to compute the ramification index of all points. Thus there is a

direct formula to compute the genus of the extensions.

Theorem 1.31 (Kummer Extension). Let F/K be an algebraic function

field in which K contains a primitive n-th root of unity (with n > 1 and n

relatively prime to char(K)). Suppose that u ∈ F is an element satisfying

u 6= wd for all w ∈ F and d | n, d > 1.

Let F ′ = F (y) with yn = u. An extension such as F ′ is said to be a Kummer

extension of F . We have:

1. Let P ∈ PF and P ′ ∈ PF ′ be an extension of P . Then

e(P ′|P ) =
n

rP
,

where rP := gcd(n, vP (u)) is the greatest common divisor of n and

vP (u).

2. If K ′ denotes the constant field of F ′, g and g′ denote the genus of

F/K and F ′/K ′ respectively, then

g′ = 1 +
n

[K ′ : K]

(
g − 1 +

1

2

∑

P∈PF

(
1− rP

n

)
deg(P )

)
.

Theorem 1.32 (Artin-Schreier Extension). Consider an algebraic function

field F/K with constant field K of characteristic p > 0, and an additive

separable polynomial a(T ) ∈ K[T ] of degree pn which has all its roots in

K. Let u ∈ F . Suppose that for any P ∈ PF there is an element z ∈ F

(depending on P ) such that one of the following holds:

(i) vP (u− a(z)) ≥ 0,

(ii) vP (u− a(z)) = −m, with m > 0 and m 6≡ 0 mod p.
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Define mP := −1 in case (a) and mP := m in case (b). Then mP is a

well-defined integer. Consider the extension field F ′ = F (y) of F where y

satisfies the equation a(y) = u. If there exists at least one place Q ∈ PF
with mQ > 0, we have:

(i) K is algebraically closed in F ′.

(ii) Any P ∈ PF with mP = −1 is unramified in F ′/F .

(iii) Any P ∈ PF with mP > 0 is totally ramified in F ′/F .

(iv) Let g and g′ be the genus of F and F ′ respectively. Then

g′ = pn · g +
pn − 1

2

(
− 2 +

∑

P∈PF
(mP + 1) · deg(P )

)
.





Chapter 2

Algebraic Geometry

In this section we start by defining some basic notions of algebraic geometry.

We start with defining a variety X over an affine space and associate

it to a function field K(X ), whose transcendental degree is equal to the

degree of X . We call algebraic curve a variety of degree one; in this case

the associated function field is the same of Definition 1.1. We use the tools

studied in the last chapter to define properties of the curve that are also

defined from a geometrical point of view: genus, valuations, divisors and

the Riemann-Roch space (see [22,36]).

The homogenization of an affine variety embeds it into a projective space,

for this reason we define projective varieties and associate a function field.

After defining the projective closure X ∗ of an affine variety X we will see

that the associated function fields are isomorphic. Moreover, birationally

equivalent varieties have isomorphic function fields. If X is a curve with

function field K(X ) we can read off all information about X from K(X ).

In the first part of the chapter the base field K is assumed to be alge-

braically closed, mostly because in classical books of algebraic geometry the

Hilbert Nullstellensatz is strongly used to define and work with varieties.

The last section is focused on curves defined over finite field and we will see

that most of the properties remain. We can view a curve X over a finite

field Fq as a curve over the algebraic closure Fq of which we can see only a

fraction of all its points.

For a more extensive exposition of concepts and methods of algebraic

geometry we refer to [22,36,62].

21
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2.1 Affine varieties

Remark 2.1. We assume that K is an algebraically closed field.

Define the n-dimensional affine space over K, denoted AnK (or sim-

ply An), to be the set of n-tuples of elements of K. An element P =

(a1, . . . , an) ∈ An is called a point, a1, . . . , an ∈ K are called coordinates of

P .

Let K[X1, . . . , Xn] be the polynomial ring in n variables over K. We

can consider polynomial as functions from An to K, by defining f(P ) =

f(a1, . . . , an), where f ∈ A and P ∈ An. A zero of f is a point P ∈ An

such that f(P ) = 0. If S is any subset of K[X1, . . . , Xn], we define the set

of common zeros of all polynomials f ∈ S:

V (S) = {P ∈ An | f(x) = 0 for all f ∈ S}.

A subset X ∈ An is an algebraic set if there is a subset S ⊆ K[X1, . . . , Xn]

such that X = V (S). If a is the ideal generated by S, then X can be con-

sidered as the set V (a). Since K[X1, . . . , Xn] is a Noetherian ring, any ideal

has a finite set of generators. Therefore if f1, . . . , fr are generators of a,

than X can be expressed as the set of common zeros of a finite number of

polynomials.

It is easy to see that the union of two algebraic sets is an algebraic set

and the intersection of any family of algebraic sets is an algebraic set. The

empty set and the whole space are algebraic sets.

We define the Zariski topology on An by taking the open subsets to be

the complements of the algebraic sets. This is well defined for what said

above.

For any subset X ⊆ An let us define the vanishing ideal of X inK[X1, . . . , Xn]

by

I(X ) = {f ∈ K[X1, . . . , Xn] | f(P ) = 0 for all P ∈ X}.

An algebraic set X is irreducible if it cannot be expressed as the union

X = X ′ ∪ X ′′, where X ′ and X ′′ are two proper algebraic subsets of X .

Equivalently, X is irreducible if and only if I(X ) is prime in K[X1, . . . , Xn].

An affine algebraic variety (or simply affine variety) is an irreducible

algebraic set X ∈ An.

The quotient ring K[X ] = K[X1, . . . , Xn]/I(X ) is called the coordinate

ring of the affine variety X . Since I(X ) is a prime ideal, K[X ] is an integral



2.1. AFFINE VARIETIES 23

domain and a finitely generated K-algebra. Its field of quotient K(X ) is

called the function field (or field of rational functions) on X . It contains K

as a subfield.

Definition 2.2. If X is a topological space, we define the dimension of X
to be the supremum of all integers n such that there exists a chain X0 ⊂
X1 ⊂ · · · ⊂ Xn = X of distinct closed irreducible subset of X . We define

the dimension of an affine variety to be its dimension as a topological space

(considered with the Zariski topology).

Theorem 2.3. The dimension of an affine variety X is equal to the tran-

scendence degree of the field K(X ) over K.

Let P be a point of an affine variety X . Let U be an open neighborhood

of P . We say that a continuous map f : U → K is a regular function at

P if there exist polynomials g, h ∈ K[X1, . . . , Xn] such that h(x) 6= 0 and

f = g/h in an open neighborhood of P . It is called regular on U if it is

regular at all points P ∈ U .

Define an equivalence relation

(U, f) ∼ (U ′, f ′) if and only if f = f ′ on U ∪ U ′.

The equivalence classes form a ring, denoted OP (X ). It is a local ring with

unique maximal ideal

mP (X ) = {equivalence classes of (U, f) | f(P ) = 0}.

The equivalence classes, called rational functions, can be seen as element of

K(X ), so we can write

OP (X ) = {f ∈ K(X ) | f = g/h with g, h ∈ K[X ], h(P ) 6= 0},

mP (X ) = {f ∈ K(X ) | f = g/h with g, h ∈ K[X ], h(P ) 6= 0, f(P ) = 0}.

Let X ∈ An be an affine variety and let f1, . . . , fr ∈ K[X1, . . . , Xn] be

generators for the ideal I(X ). The variety X is non-singular at a point P ,

if the rank of the matrix (
∂fi
∂Xj

(P )

)

i,j

is n− d, where d is the dimension of X . The variety X is non-singular (or

smooth) if it is non-singular at every point.

Theorem 2.4. Let X ∈ An be an affine variety and let P be a point of X .

Then X is non-singular at P if and only if the local ring OP (X ) of P is a

regular local ring.
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2.2 Projective varieties

Define the n-dimensional projective space over K, denoted PnK (or simply

Pn), to be the set of equivalence classes of (n + 1)-tuples (a0, a1, . . . , an)

of elements of K, not all zero, under the equivalence relation given by

(a0, a1, . . . , an) ∼ (λa0, λa1, . . . , λan) for all λ ∈ K \ {0}. Another way

of saying this is that Pn, as a set, is the quotient of the set An+1 \ {0} un-

der the equivalence relation which identifies points lying on the same line

through the origin.

An equivalence class P = (a0 : a1 : . . . : an) is called a point of Pn. If

P = (a0 : a1 : . . . : an) is a point, then any (n+ 1)-tuple (λa0, λa1, . . . , λan)

in the equivalence class P is called a set of homogeneous coordinates for P .

A polynomial F ∈ K[X0, X1, . . . , Xn] is called homogeneous if

F (λX0, . . . , λXn) = λmF (X0, . . . , Xn),

for some m ∈ N (called the degree of F ) and all λ 6= 0 in K. So the property

of being zero or not, when evaluated in a point P , depends only on the

equivalence of P . An ideal a in K[X0, X1, . . . , Xn] is called homogeneous if

it can be generated by homogeneous elements.

If S is a subset of homogeneous polynomial of K[X0, X1, . . . , Xn], we

define the set of common zeros of all polynomials f ∈ S:

V (S) = {P ∈ Pn | f(x) = 0 for all f ∈ S}.

If a is a homogeneous ideal, V (a) = V (T ), where T is the set of all ho-

mogeneous element of a. Since K[X0, X1, . . . , Xn] is a Noetherian ring, let

F1, . . . , Fr be a set of generator of a, then V (a) = V ({F1, . . . , Fr}).
A subset X ∈ Pn is an algebraic set if there exists a set T of homogeneous

polynomial so that X = V (T ). We define the Zariski topology on Pn by

taking the open sets to be the complements of algebraic sets.

For any subset X ∈ Pn let us define the homogeneous ideal of X in

K[X0, X1, . . . , Xn] by

I(X ) = {f ∈ K[X0, X1, . . . , Xn] | f homogeneous, f(P ) = 0 for all P ∈ X}.

A projective algebraic variety X (or simply projective variety) is an ir-

reducible algebraic set in Pn. As before X is irreducible if and only if I(X )

is a prime ideal. The quotient ring K[X ] = K[X0, X1, . . . , Xn]/I(X ) is
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the homogeneous coordinate ring. An element f ∈ K[X ] is said to be

a form of degree d, if f = F + I(X ) for some homogeneous polynomial

F ∈ K[X0, X1, . . . , Xn] with deg(F ) = d. The function field of X is defined

by

K(X ) =

{
g

h
| g, h ∈ K[X ] are forms of the same degree and h 6= 0

}
.

The dimension of a projective variety is its dimension as a topological

space (with the topology of Zariski). It is equal to the transcendence degree

of K(X ) over K.

Let P = (a0 : · · · : an) ∈ X and f ∈ K(X ). Write f = g/h, where

g = G+I(X ), h = H+I(X ) ∈ K[X ] and G,H are homogeneous polynomial

of degree d. Since

G(λao, . . . , λan)

H(λao, . . . , λan)
=
λd ·G(a0, . . . , an)

λd ·H(a0, . . . , an)
=
G(a0, . . . , an)

H(a0, . . . , an)
,

we can set f(P ) = G(a0, . . . , an)/H(a0, . . . , an) ∈ K, if H(P ) 6= 0. Then we

say that f is defined at P . The ring

OP (X ) = {f ∈ K(X ) | f is defined at P}

is a local ring with maximal ideal

mP (X ) = {f ∈ OP | f(P ) = 0}.

Our next objective is to show that projective n-space has an open cover-

ing by affine n-spaces, and hence that every projective variety has an open

covering by affine varieties.

Let Hi = {(a0 : . . . : an) | ai = 0} be the set of zeros of Xi. Let Ui

be the open set Pn \ Hi. Then Pn is covered by the open sets Ui, because

if P = (a0 : . . . : an) is a point, then at least one ai 6= 0, hence P ∈ Ui.

We define a mapping ϕ : Ui → An as follows: if P = (a0 : . . . : an), then

ϕi(P ) = Q, where Q is the point with affine coordinates

(
a0

ai
, . . . ,

an
ai

)
,

with ai/ai omitted. Note that ϕi is well-defined, since the ration aj/ai are

independent of the choice of homogeneous coordinates.
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Let X be a projective variety. Suppose that X ∩ Ui 6= ∅. Then Xi :=

ϕi(X ∩Ui) is an affine variety. Moreover X =
⋃n
i=0(X ∩Ui), so X is covered

by open sets homeomorphic to affine varieties.

If F ∈ K[X0, X1, . . . , Xn] is a form, we define F∗ ∈ K[X1, . . . , Xn]

by setting F∗ = F (1, X1 . . . , Xn). Conversely, for any polynomial f ∈
K[X1, . . . , Xn] of degree d, write f = f0 + f1 + · · · + fd, where fi is a

form of degree i, and define f∗ ∈ K[X0, X1, . . . , Xn] by setting f∗ = Xd
0f0 +

Xd−1
0 f1 + · · · + fd = Xd

0f(X1/X0, . . . , Xn/X0); f∗ is a form of degree d.

These processes are often described as dehomogenizing and homogenizing

polynomials with respect to X0.

Consider now an affine variety X ∈ An and the corresponding ideal I =

I(X ) ⊂ K[X1, . . . , Xn]. Let I∗ be the ideal in K[X0, X1, . . . , Xn] generated

by {F ∗ | F ∈ I}. This is a homogeneous ideal; we define the projective

closure of X to be X ∗ := V (I∗) ⊂ Pn. Except for projective varieties lying

onH0, there is a natural one-to-one correspondence between nonempty affine

and projective varieties.

If f ∈ K[X ∗] is a form of degree d, we may define f∗ ∈ K[X ] as follows:

take a form F ∈ K[X0, X1, . . . , Xn] so that f = F + I(X ∗), and let f∗ to be

the residue class of F∗ in K[X ] (this is independent of the choice of F ). We

then define α : K(X ) → K(X ∗) as follows: α(f/g) = f∗/g∗, where f, g are

forms of the same degree on X ∗.
Let P ∈ X be an affine point, we may consider P ∈ X ∗ (by means of ϕ0)

and then α induces an isomorphism of OP (X ∗) with OP (X ). We usually

use α to identify K(X ) with K(X ∗), and OP (X ) with OP (X ∗).

Since the concept of non-singularity seen in the affine case depends only

on the local ring of a point we can extend the definition to projective vari-

eties.

Definition 2.5. A projective variety X is non-singular at a point P if the

local ring OP (X ) is a regular local ring. The variety X is non-singular (or

smooth) if it is non-singular at every point.

2.3 Maps between varieties

An open subset of a projective algebraic variety is called a quasi-projective

variety.
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Definition 2.6. Let V be a quasi-projective variety in Pn. A function

f : V → K is regular at a point P ∈ V if there is an open neighbourhood U

with P ∈ U ⊆ V , and polynomials G,H ∈ K[X0, X1, . . . , Xn], of the same

degree, such that H is nowhere zero on U and f = G/H on U . We say that

f is regular on V if it is regular at every point.

A regular function is necessarily continuous. An important consequence

of this is the fact that if f and g are regular functions on a variety X , and

if f = g on some non-empty open subset U ⊆ X , then f = g everywhere.

For the rest of this section we call variety both a projective and a quasi-

projective variety.

Definition 2.7. Let X ,Y be two varieties. A morphism ϕ : X → Y is a

continuous map such that for every open set V ∈ Y, and for every regular

function f : V ∈ K, the function f ◦ ϕ : ϕ−1(V )→ K is regular.

Let ϕ and ψ be two morphisms from X to Y, and suppose there is a non-

empty open subset U ⊆ X such that ϕ|U = ψ|U . Then ϕ = ψ everywhere.

Clearly the composition of two morphisms is a morphism, in particular

we have the notion of isomorphism: an isomorphism ϕ : X → Y of two

projective varieties is a morphism which admits an inverse morphism ψ :

Y → X with ψ ◦ ϕ = IdX and ϕ ◦ ψ = IdY .

Definition 2.8. Let X ,Y be varieties. A rational map ϕ : X → Y is an

equivalence class of pairs 〈U,ϕU 〉 where U is a non-empty subset of X , ϕU

is a morphism of U to Y, and where 〈U,ϕU 〉 and 〈V, ϕV 〉 are equivalent if

ϕU and ϕV agree on U ∩ V . The rational map ϕ is dominant if for some

(and hence every) pair 〈U,ϕU 〉, the image of ϕU is dense in Y.

Note that the relation on pairs 〈U,ϕU 〉 just described is an equivalence

relation.

Definition 2.9. A birational map ϕ : X → Y is a rational map which

admits an inverse, namely a rational map ψ : Y → X , such that ψ ◦ϕ = IdX
and ϕ ◦ ψ = IdY as rational maps. If there is a birational map from X to

Y, we say that X and Y are birationally equivalent.

Let X and Y be two birationally equivalent variety, than K(X ) and

K(Y) are isomorphic as K-algebras.
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2.4 Algebraic curves

A projective algebraic curve X is a projective variety of dimension one. This

means that the field K(X ) of rational functions on X is an algebraic function

field of one variable, in the sense of Definition 1.1.

A point P ∈ X is non-singular (or smooth) if and only if the local ring

OP (X ) is a discrete valuation ring (i.e. a principal ideal domain with exactly

one maximal ideal). On the other hand, if the curve is singular, then there

exist only finitely many singular points on the curve. Let us introduce now

a very important result of classical algebraic geometry.

Theorem 2.10. Every curve is birationally equivalent to a non-singular

projective curve.

Hence, if we study the function field associated to a non-smooth curve

X , we can derive all the properties of a smooth curve (that is birationally

equivalent to X ).

Let X be a smooth projective curve and F = K(X ) be its function field.

There is a 1-1 correspondence between the points P ∈ X and the places of

F/K, given by

P 7→ mP (X ),

the maximal ideal of the local ring OP (X ). This correspondence makes it

possible to translate definitions and results from algebraic function fields to

algebraic curves (and vice versa). We give the following examples:

(i) The genus of the curve X is the genus of the function field K(X ).

(ii) A divisor of X is a formal sum D =
∑

P∈X nPP , where nP ∈ Z and

almost all nP = 0. The degree of D is deg(D) =
∑

P∈X nP . The

divisors of X from an additive group D(X ), the divisor group of X .

(iii) The order of a rational function at a point P ∈ X is defined to be

vP (f), where vP is the discrete valuation of K(X ) corresponding to

the valuation ring OP (X).

(iv) The principal divisor (f) of a rational function 0 6= f ∈ K(X ) is

(f) =
∑

P∈X vP (f)P . The degree of a principal divisor is zero.

(v) For D ∈ D(X ), the space L(D) is defined as in the function field case.

It is a finite-dimensional vector space over K, its dimension given by

the Riemann-Roch Theorem.
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Note that if a curve X contains a finite number of singular points all the

properties of X are derived from the function field K(X ), thus are the same

of the non-singular curve associated to K(X ).

Example 2.11. Let P1
K denote the projective line over K. This can be seen

as K∪{∞}. The associated function field is the rational function field K(x).

The 1-1 correspondence between the points of P1
K and the places of K(x) is

given by

α 7→ Px−α, for all α ∈ K
∞ 7→ P∞.

Hence, by 1.22, the genus of a projective line is zero.

2.5 Curves over a finite field

In the previous sections we have assumed that the ground field K is alge-

braically closed. However, to apply algebraic geometry to coding theory, we

have to study curves defined over Fq and their points with coordinates in Fq
(such points are called Fq-rational).

Let K = Fq be a finite field and let K be an algebraically closed field

containing K as a subfield. Let p be a prime ideal of K[X1, . . . , Xn] which

generates a prime ideal p′ in K[X1, . . . , Xn]. Then p′ defines an affine variety

X = V (p′) defined over K. Similarly a projective variety defined over K

is given by a homogeneous prime ideal of K[X0, X1, . . . , Xn] which remains

prime being extended to K[X0, X1, . . . , Xn].

We call X smooth if, after extension of K to its algebraic closure K, the

curve is a smooth curve.

We can view a curve X over K as a curve over K of which we can see

only a fraction of its points.

We say that a point P = (a1, . . . , an) ∈ AnK is K-rational if ai ∈ K for

all i = 1, . . . , n. A point P = (a0 : a1 : . . . : an) ∈ PnK is called K-rational if

xi 6= 0 implies xj/xi ∈ K for all j = 0, 1, . . . , n.

An affine variety X ∈ AnK is defined over K if its associated ideal I(X )

has a basis {f1, . . . , fr} consisting of polynomials with coefficients in K.

Similarly a projective variety X ⊂ PnK is defined over K if I(X ) is generated
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by homogeneous polynomial F1, . . . , Fr ∈ K[X0, X1, . . . , Xn]. The subset of

K-rational points of X is denoted by X (K).

Let I(X ) ⊂ K[X] be the ideal of the variety X ⊂ AnK generated by

f1, . . . , fr. Let I(X/K) ⊂ K[X] be the prime ideal generated by f1, . . . , fr.

Then we have

I(X/K) = I(X ) ∩K[X].

We define the coordinate ring K[X ] = K[X1, . . . , Xn]/I(X/K). Its field

of quotient K(X ) is the field of K-rational function of X ; K(X )/K is a

function field over K in the sense of Definition 1.1. In the same manner the

field of K-rational functions of a projective variety can be defined.

Let X be a variety. If G = Gal(K/K) is the Galois group of K over K

and if P ∈ X then σ(P ) ∈ X for every σ ∈ G. Moreover if P ∈ X (K) we

have σ(P ) = P for every σ ∈ G. Thus

X (K) = {P ∈ X (K) | σ(P ) = P for all σ ∈ G},

K(X ) = {f ∈ K(X ) | σ(f) = f for all σ ∈ G}.

Consider a projective curve X ⊂ PnK which is defined over K. Denote by

σ the Frobenious automorphism of the field K,

σ : P = (a0 : a1 : . . . : an) 7→ σ(P ) = (aq0 : aq1 : . . . : aqn).

A divisor D =
∑

P∈X nPP ∈ D(X ) is called K-rational if σ(D) = D,

where

σ(D) =
∑

P∈X
nPσ(P ).

This means that nσ(P ) = nP for all P ∈ X . The divisors of X defined over

K form a subgroup D(X/K) ⊆ D(X ). For D ∈ D(X/K) the space LK(D)

is given by

LK(D) = K(X ) ∩ L(D).

It is a finite-dimensional K-vector space, and its dimension (over K) equals

the dimension of L(D) (over K).

A divisor Q ∈ LK(D) with Q > 0 is called a prime divisor of X (K) if Q

cannot be written as Q = Q1 +Q2 with positive divisors Q1, Q2 ∈ D(X/K).

It is easily seen that the divisor group D(X/K) is the free abelian group

generated by the prime divisors. Prime divisors of X (K) correspond to
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the places of the function field K(X )/K; under this correspondence, prime

divisors of degree one (i.e., K-rational points) of X correspond to the places

of K(X )/K of degree one.

An important theorem of algebraic geometry is the Hasse-Weil bound: it

provides an estimate of the number of Fq-rational points on curve, bounding

the value both above and below.

Theorem 2.12 (Hasse-Weil Bound). Let X be a projective curve of genus

g defined over a finite field Fq and let N be the number of Fq-rational points.

Then

|N − q − 1| ≤ 2gq1/2.

We say that a curve X is Fq-maximal if its number of maximal points

over Fq reaches the Hasse-Weil upper bound

|X (Fq)| = q + 1 + 2gq1/2,

where g is the genus of X . Here the cardinality q of the finite field will

always be a square.

In general, curves with many Fq-rational points with respect to their

genus give rise to AG codes with good parameters. For this reason maximal

curves have been widely investigated in the literature: for example the Her-

mitian curve and its quotients, the Suzuki curve, the Klein quartic and the

Giulietti-Korchmáros curve.

2.6 Automorphisms of algebraic curves

In this subsection we deal with the automorphisms of an algebraic curve,

which represent an important birational invariant of the curve. The study

of the automorphisms of a curve relies on algebraic methods, since the set

of the automorphisms of an algebraic curve forms a group respect to the

composition. Moreover, any curve can be embedded into a projective space

in which it is smooth, and because in this embedding the automorphisms

of the curve correspond to the collineations of the projective space, then

everything can be seen in a geometrical way. For details and proof we refer

to [38].

Let us introduce Galois covering.
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Proposition 2.13. Given a finite and separable extension [M : L] and

called

Γ(M,L) = {σ : M 7→M | σ automorphism such that σ(l) = l for each l in L},

we have that

|Γ(M,L)| ≤ [M : L].

Definition 2.14. A field extension finite and separable M : L is called a

Galois extension if |Γ(M,L)| = [M : L].

Definition 2.15. For a non-constant rational map φ : X 7→ Y defined on
two algebraic curves X and Y, with pull-back φ∗, Γ(X ,Y) is called the group
of automorphisms Γ(K(X ), φ∗(K(Y))). We have then

Γ(X ,Y) = {σ : K(X ) 7→ K(X )|σ automorphism such that σ(α) = α for all α in φ∗(K(Y))}.

The map φ is called a Galois map if this field extension K(X ) : φ∗(K(Y))

does. The curve Y is called quotient curve X with respect to the automor-

phism group Γ(X ,Y).

Theorem 2.16. Given a finite group of K-automorphisms G of an algebraic

curve X let

L = {α ∈ K(X ) |σ(α) = α for all α ∈ G}.

It comes out that the extension K(X ) : L is a Galois extension and Γ(K(X ), L) = G.

Corollary 2.17. The Galois covering of X are in bijection with the finite

automorphism subgroups of K(X ).

Definition 2.18. The quotient curve of X with respect to the automor-

phism group G is denoted with XG or X/G.

We recall that DVR means discrete valuation ring, for its definition see

the previous chapter. In Algebraic Geometry the results are usally given in

terms of DVRs and not in terms of places, which is a term belonging to the

theory of function fields. For this reason in this section we will report the

results using the language of Algebraic Geometry.

Lemma 2.19. Let O and O′ respectively DVR of K(X ) and K(Y) and let

them such that O|O′. Let σ ∈ Γ(X ,Y), we have that

(i) σ(O) is a DVR of K(X );
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(ii) ordσ(O)(y) = ordO(σ−1(y));

(iii) σ(O)|O′;

(iv) eσ(O) = eO.

Lemma 2.20. Let K(X ) : φ∗(K(Y)) be a Galois extension. we have that

φ∗(K(Y)) = {α ∈ K(X ) |σ(α) = α for all σ ∈ Γ(X ,Y)}.

The following result allows us to tell that the DVR of X which are in

the same DVR of Y = XG lie all on the same orbit in the action of the

automorphism group G.

Theorem 2.21. Given a Galois map φ : X 7→ Y, a DVR O′ of K(Y)

and two DVR O1, O2 such that O1|O′ and O2|O′ we have that there exists

σ ∈ Γ(X ,Y) such that O2 = σ(O1).

Corollary 2.22. Given a Galois map φ : X 7→ Y with degree n and a DVR

O of K(X ) we have that eO coincides with the size of the stabilizer GO of O

in Γ(X ,Y).

Theorem 2.23 (Hurwitz bound). Let G be the automorphisms group of a

curve X with genus g ≥ 2. If G is finite and char(K) = 0 or char(K) = p

with p prime such that gcd(p, |G|) = 1, then

|G| ≤ 84(g − 1) (2.1)

Definition 2.24. An automorphism of a curve X is said to be Fq-rational

if the maps that define it are Fq-rational.

Theorem 2.25. The set of the automorphisms of an algebraic curve X is

a group with the operation of composition. If the curve is not rational or

elliptic then this group is finite.

Definition 2.26. For a curve X over the field K we indicate with Aut(X ) :=

AutK(X ) its group of automorphisms. If α ∈ Aut(X ) is and automorphism

and P a DVR of X we define Pα := α(P ).

Theorem 2.27. If α ∈ Aut(X ) is an automorphism of X such that Pα = P

for an infinite number of DVR of X then α = id.

Lemma 2.28. A non-trivial K-automorphism α of X fixes at most 2g + 2

DVR.



34 CHAPTER 2. ALGEBRAIC GEOMETRY

Theorem 2.29. Let X be an irreducible algebraic curve over a field K with

characteristic p. Each K-automorphism of X which fixes a DVR has at most

order 2p(g + 1)(2g + 1)2.

Definition 2.30. Let G be a group of automorphisms of a curve X and

let P be a DVR of X . The orbit of P under G is defined as the set PG =

{Pα |α ∈ G}. The stabilizer of P in G is defined as the subgroup GP =

{α ∈ G |Pα = P}. The orbit PG is said to be long or short depending on

the banality of GP .

An important relation between X and its quotient curve XG with G

group of automorphisms X is given by the following lemma.

Lemma 2.31. Let G be a finite subgroup of Aut(X ). Two DVRs of XG
lie on the same DVR of XG if and only if they are in the same orbit of X
under G.

Theorem 2.32. Let P be a DVR of X which lies on the DVR P ′ of XG.

Said n = |G| and m = |GP |, the number of distinct DVR which lie over P ′

is n/m and the ramification index of each of them is eP = m.

Theorem 2.33. Let X be an algebraic curve with genus g > 0 and P one

of its DVR. The subgroup GP of Aut(X ) which fixes P is finite and its

structure is determined as follows

(i) if p = 0 then GP is cyclic with order at most 8(2g + 1)3;

(ii) • if p > 0 then there exists a p-Sylow N , normal subgroup of GP

and such that

|N | ≤ p2(g + 1)(2g − 1)2,

with a quotient group GP /N which is cyclic and such that

|GP /N | ≤ 2p(2g + 1)2(g + 1).

• GP contains a cyclic subgroup H ' GP /N and such that GP =

N oH. All the subgroups H with such properties are conjugates

in GP .

• |GP | has a upper bound only depending on p e g.

As a corollary we have the following result.
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Theorem 2.34. The stabilizer of a DVR of a curve X with a tame auto-

morphism group is cyclic.

Definition 2.35. A short orbit of a curve G of K-automorphisms is said

tame or non-tame (wild) depending on the fact that the order of GP for one

(and then for each) of its points is prime or not with the characteristic p of

K.

We stress that in zero characteristic any orbit is tame. We can now

expose the complete Hurwitz bound, already anticipated in Theorem 2.23.

Theorem 2.36 (Hurwitz bound). Let X be an algebraic irreducible curve

over the field K with genus g ≥ 2 and let G be its full automorphisms group.

• If all the orbits of X under the action of G are tame then

|G| ≤ 84(g − 1).

• If there exist not tame orbits (and then p is positive) then ther can be

an exeption to Hurwitz bound if and only if the quotient curve XG is

rational and G acts with at most three short orbits. The structure of

the short orbitscan only be one of the following

(1) p ≥ 3 and G has exactly three short orbits, two of them tame and

one wild;

(2) G has two short orbits and they are not tame;

(3) G has only a short orbit, not tame;

(4) G has exactly two short orbits, one tame and one wild.

In the case of tame automorphisms groups there exist many characteri-

zations useful for the determination of the automorphism group of the curve.

Theorem 2.37. Let G be the group of K-automophisms of an irreducible

curve X . Let n = |G|, g be the genus of X and g′ the genus of XG. If for

each DVR P of X the order of the stabilizer |GP | of G in P is prime with

p then

2g − 2 = n(2g′ − 2) +

s∑

i=1

(n− li),

where l1, . . . , ls are the lenghts of the short orbits of G.
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Theorem 2.38. Let α be a non-trivial and tame automorphism of the au-

tomorphism group of X and let n be the order of α and ρ(α) the number of

DVRs which it fixes. We have that

2g − 2 = n(2g′ − 2) + ρ(α)(n− 1),

where g and g′ are the genera of X and of Xα respectively.

Theorem 2.39. Let X be an irreducible curve with genus g > 0 and let GP

be the stabilizer of a DVR P of X . If n = |GP | is coprime with p then

n ≤ 4g + 2.

Definition 2.40. The i-th group of ramification of the DVR P of the curve

X is defined as the group

G
(i)
P = {α ∈ GP | ordP (α(x)− x) ≥ i+ 1},

where x is a local parameter of X in P .

It can be seen that the ramification groups form a chain

G
(0)
P ≥ G

(1)
P ≥ . . .

Theorem 2.41. With the same notation above:

(i) G
(0)
P is the stabilizer of P .

(ii) G
(1)
P is the only Sylow p-subgroup of GP .

(iii) For i ≥ 1 the group G
(i)
P is normal in GP and the group G

(i)
P /G

(i+1)
P is

a elementar abelian p-group.

Lemma 2.42. Let G be an abelian subgroup of the automorphisms group of

the curve X which fixes m ≥ 1 DVRs. We have that

(i) If P is a fixed DVR and g′ is the genus of the quotient curve CG then

2g − 2 ≥ |G|(2g′ − 2) +m|G| − 1 +
|G|
|G(1)

P |
(|G(1)

P | − 1)). (2.2)

(ii) If the full automorphism group C is not tame then

2g − 2 ≥ |G|
(

2g′ +
3

2
m− 2

)
−m. (2.3)
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Lemma 2.43. Let C be a curve and G be an abelian not tame subgroup of

AutK(C). If G = G
(1)
P oH where p - |H| then we have that

2g ≥ 2g′|G(1)
P |+ (|H| − 1)(|G(1)

P | − 1).

Theorem 2.44. Let C be an irreducible curve with genus g ≥ 1 and let GP

be a subgroup of the automorphisms group which fixes a DVR P . Then

|G(1)
P | ≤

4p

p− 1
g2. (2.4)

In particular if Ci is the quotient curve of X respect to |G(i)
P | then one of

the following holds

(i) C1 is not rational and |G(1)
P | ≤ g;

(ii) C1 is rational, G
(1)
P has a short orbit further P and

|G(1)
P | ≤

p

p− 1
g;

(iii) C1 and C2 are rationals, {P} is the only short orbit of G
(1)
P and

|G(1)
P | ≤

4p

(p− 1)2
g2.

Theorem 2.45. Given an abelian subgroup G of the group of K-automorphisms

of an irreducible curve C with genus g ≥ 2. We have that

|G| ≤





4g + 4 if p 6= 2;

4g + 2 if p = 2.
(2.5)





Chapter 3

Linear codes

Claude Shannon’s seminal paper “A mathematical theory of communica-

tion” stated the beginning of Information Theory and error-correcting codes.

Given a communication channel which may corrupt messages passing through

it, the task of an error-correcting code is to provide a systematic way of

adding redundancy to a message so that it can be recovered if some corrup-

tions happen during the transmission. Since the publication of Shannon’s

work, mathematicians have developed connections between error-correcting

coding and aspects of algebra and combinatorics and sophisticated math-

ematical techniques have proved useful for coding problems. Linear codes

also have found a lot of applications in cryptography. We start this section

introducing what a linear code is, for a complete exposition of the concepts

see [48].

Definition 3.1. Let Fq be the finite field with q elements. Let k, n ∈ N
such that k ≤ n. Let C be a k-dimensional vector subspace of (Fq)n: we say

that C is an Fq linear block code (or simply code) of dimension k and length

n. An element of C is called a codeword of C.

Definition 3.2. Let (Fq)n be any n-dimensional vector space on a finite

field Fq. For any two vectors x, y ∈ (Fq)n, the Hamming distance between x

and y, denoted by d(x, y), is the number of coordinates where the two words

differ.

Definition 3.3. Given x ∈ (Fq)n, we define the Hamming weight of x as

the number of non-zero coordinates of x. We denote it by w(x).

Definition 3.4. Let C be a linear block code. We define the minimum

39
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distance of C (or simply distance) as the minimum distance between any

two different words of C.

Clearly the distance of C is in fact also the minimum in the set of the

weights of its non-zero words.

Definition 3.5. Given an [n, k, d] code C, we denote by Ai the number of

words of weight i. The set {Ai} is also called the weight distribution of C,

and the {Ai} are also called the weight elements of C.

Remark 3.6. We observe that A0 = 1 and Ai = 0 for i ∈ {1, . . . , d − 1} or

i > n. Also,
∑n

i=0Ai = qk.

Definition 3.7. Define WC(x, y) ∈ Z[x, y] to be the weight enumerator of

C as

WC(x, y) =
n∑

i=0

Aix
n−iyi

WC(x, y) is a polynomial containing all information regarding the weight

distribution of the code.

Definition 3.8. Let C be an Fq [n, k, d] code. The brute force decoding

procedure for C is the algorithm that computes the distance between x and

any word of C and outputs

• either the word of C that is nearest to x, if it exists,

• or the distance of x from C (failure warning).

This is also known as nearest-neighbour decoding.

Proposition 3.9. An Fq [n, k, d] code C has detection capability d− 1 and

correction capability t = bd−1
2 c.

Proposition 3.10 (Singleton Bound). Let C be a [n, k, d]q code, then

d ≤ n− k + 1.

A code achieving this bound is called Maximum Distance Separable.

Since a code C is a vector subspace, it can be represented by a matrix

formed by a minimum set of its linear generators. This matrix is called the

generator matrix of C and is traditionally denoted by G. G is a k×n matrix

with coefficients in Fq. The code can then be described by the image of G

in (Fq)n.
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Definition 3.11. Let C be an [n, k, d] code. Its dual code C⊥ is the set of

all n-vectors that are orthogonal to all code words.

The dual code of an [n, k, d] code is obviously an [n, n − k, d′] code. A

generator matrix for C⊥, traditionally denoted by H, is called a parity-check

matrix for C. To check if an n-vector x is a word of C, it is necessary and

sufficient that xHT = HxT = 0. Conversely, any generator matrix for C is

a parity-check matrix for C⊥.

Proposition 3.12. Let C be an [n, k, d] code and H its parity-check matrix.

Then for any code word of weight w there is a linear dependence relation

among w columns of H and, conversely, for any linear dependence relation

involving w columns of H there is a code word of weight w.

Proposition 3.13. Let C be an [n, k, d] code with parity-check matrix H.

Then d ≥ w if and only if every choice of w − 1 or fewer columns of H is

linearly independent.

Let us consider what happens if a word x is sent, some errors occur and

the received vector y is another word of C. If this happens, there is no way

for the receiver to detect any error. The probability that this undesirable

situation occurs is called the Probability of the Undetected Error (PUE ).

Let P denote the error rate associated to a channel. We can suppose

that we send the word 0 and we have an error e, so that the received word

is exactly e, due to the linearity of the code. If the receiver is deceived it

means that e ∈ C. Let i = w(e) be the weight of e; there have then been i

errors, that is exactly i bits changed and exactly (n− i) remained unchanged.

Given e, the probability that this will occur is P i(1 − P )n−i. With e

varying among the words of C of weight i, the probability is AiP
i(1−P )n−i.

Finally, if e ∈ C is arbitrary we have:

PUE =

n∑

i=0

AiP
i(1− P )n−i.

Observe that normally P is significantly smaller than 1/2, so the addenda

P i(1−P )i are negligible for large i and it is the first elements of the weight

distribution that most significantly influence the PUE.
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3.1 Algebraic Geometry codes

In this section we recall some basic facts on AG-codes. For a detailed intro-

duction we refer to [65].

Let X be a curve of genus g over Fq, Fq(X ) be the field of Fq-rational

functions on X , X (Fq) be the set of Fq-rational places of X . For an Fq-
rational divisor D =

∑
P∈X (Fq) nPP on X , denote by

L(D) := {f ∈ Fq(X ) \ {0} | (f) +D ≥ 0} ∪ {0}

the Riemann-Roch space associated to D, whose dimension over Fq is de-

noted by `(D). Consider a divisor D = P1 + · · ·Pn where Pi ∈ X (Fq) and

Pi 6= Pj for i 6= j, and a second Fq-rational divisor G whose support is dis-

joint from the support of D. The functional AG code CL(D,G) is defined

as the image of the linear evaluation map

eD : L(G) → Fnq
f 7→ eD(f) = (f(P1), f(P2), . . . , f(Pn))

.

The code CL(D,G) has length n, dimension k = `(G) − `(G − D), and

minimum distance d ≥ d∗ = n− deg(G); d∗ is called the designed minimum

distance (or Goppa minimum distance). If n > deg(G), then eD is injective

and k = `(G). If deg(G) > 2g− 2, then k = deg(G) + 1− g. The differential

code CΩ(D,G) is defined as

CΩ(D,G) = {(resP1(ω), resP2(ω), . . . , resPn(ω) | ω ∈ Ω(G−D)} ,

where Ω(G − D) = {ω ∈ Ω(X ) | (ω) ≥ G − D} ∪ {0}. The linear code

CΩ(D,G) has dimension n− deg(G) + g− 1 and minimum distance at least

deg(G)− 2g + 2.

Now we define the automorphism group of CL(D,G); see [27, 44]. Let

Mn,q ≤ GL(n, q) be the subgroup of matrices having exactly one non-zero

element in each row and column. For γ ∈ Aut(Fq) and M = (mi,j)i,j ∈
GL(n, q), let Mγ be the matrix (γ(mi,j))i,j . Let Wn,q be the semidirect

product Mn,q o Aut(Fq) with multiplication M1γ1 ·M2γ2 := M1M
γ
2 · γ1γ2.

The automorphism group Aut(CL(D,G)) of CL(D,G) is the subgroup of

Wn,q preserving CL(D,G), that is,

Mγ(x1, . . . , xn) := ((x1, . . . , xn)·M)γ ∈ CL(D,G) for any (x1, . . . , xn) ∈ CL(D,G).

Let AutFq(X ) be the Fq-automorphism group of X and

AutFq ,D,G(X ) := {σ ∈ AutFq(X ) | σ(D) = D, σ(G) ≈D G},
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where G′ ≈D G if and only if there exists u ∈ Fq(X ) such that G′−G = (u)

and u(Pi) = 1 for i = 1, . . . , n; note that σ(G) = G implies σ(G) ≈D G.

Then the following holds.

Proposition 3.14. ( [6, Proposition 2.3]) If any non-trivial element of

AutFq(X ) fixes less than n Fq-rational places of X , then Aut(CL(D,G))

contains a subgroup isomorphic to

(AutFq ,D,G(X ) o Aut(Fq)) o F∗q .

In the construction of AG codes, the condition supp(D) ∩ supp(G) = ∅
can be removed as follows; see [68, Sec. 3.1.1]. Let P1, . . . , Pn be distinct

Fq-rational places of X and D = P1 + . . .+ Pn, G =
∑
nPP be Fq-rational

divisors of X . For any i = 1, . . . , n let ti be a local parameter at Pi. The

map

e′D : L(G) → Fnq
f 7→ e′D(f) = ((tnP1f)(P1), (tnP2f)(P2), . . . , (tnPnf)(Pn))

is linear. We define the extended AG code Cext(D,G) := e′(L(G)). Note that

e′D is not well-defined since it depends on the choise of the local parameters;

yet, different choices yield extended AG codes which are equivalent. The

code Cext is a lengthening of CL(D̂,G), where D̂ =
∑

Pi :nPi=0 Pi. The

extended code Cext is an [n, k, d]q-code for which the following properties

still hold

(i) d ≥ d∗ := n− deg(G).

(ii) k = `(G)− `(G−D).

(iii) If n > deg(G), then k = `(G); if n > deg(G) > 2g − 2, then k =

deg(G) + 1− g.

The differential code CΩ(D,G) is the linear code defined by

CΩ(D,G) := {(resP1(ω), . . . , resPn(ω))|ω ∈ Ω(G−D)} ⊂ Fnq ,

where Ω(G−D) is the space of Fq-rational differentials η on X such that

either η = 0 or div(η) ≥ G−D and resPj (η) is the residue of η at Pj .

The differential code is an [n, n − `(G) + `(G − D), d′]q code, where

d′ ≥ d∗ = deg(G) − 2g + 2 and d∗ denotes the dual designed minimum

distance. It is known (see [65]) that CΩ(D,G) = CL(D,G)⊥.
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Definition 3.15. An algebraic curve X contained in a projective space of

dimension n is said to be a complete intersection if the ideal I associated

with V (X ) is generated by exactly n− 1 polynomials.

One of the aims of this thesis is to find the minimum distance of some

dual Algebraic-Geometric codes. To achieve this goal in some occasions we

will use the following result which is a byproduct of [16, Theorem 3.5]. In

what follows, we will consider a nonnegative integer m and a divisor Gm on

X which is linearly equivalent to a scheme-theoretic intersection of X with

a hypersurface of degree m. Also, D = P1 + · · · + Ps, Pi 6= Pj is a divisor

whose support is disjoint from the support of Gm.

Theorem 3.16 (Theorem 3.5, [16]). Let X ⊂ Pr be a non-singular curve

which is a complete intersection. Consider Gm, m ≥ 2, and D as above. If

d is the minimum distance of the code C(D,Gm)⊥ then

1. d = m+ 2 if and only if m+ 2 points of the P ′i s are collinear in Pr;

2. d = 2m+ 2 if and only if no m+ 2 points of the P ′i s are collinear and

there exist 2m + 2 points of the P ′i s lying on a plane conic (possibly

reducible);

3. d = 3m if and only if no m + 2 points of the P ′i s are collinear, no

2m + 2 points lie on a plane conic, and there exist 3m points of the

P ′i s coplanar and belonging to the intersection of a cubic curve and a

curve of degree m having no common irreducible components;

4. d ≥ 3m+1 if and only if no sub-family of the points of the P ′i s satisfies

one of the three above configurations.

3.2 Affine variety codes

We introduce now affine variety codes, see [21] for further information.

Let t ≥ 1 and consider an ideal I = 〈g1, . . . , gs〉 of Fq[X1, . . . , Xt], {Xq
1 −

X1, . . . , X
q
t −Xt} ⊂ I. The ideal I is zero-dimensional and radical; see [60].

Let V (I) = {P1, . . . , Pn} be the variety of I and R = Fq[X1, . . . , Xt]/I.

Definition 3.17. An affine variety code C(I, L) is the image φ(L) of L ⊆ R,

a Fq-vector subspace of R of dimension r, given by the following isomorphism
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of Fq-vector spaces:

φ : R −→ Fnq
f 7−→ (f(P1), . . . , f(Pn)).

Let L be generated by b1, . . . , br. Then the matrix

H :=




b1(P1) b1(P2) . . . b1(Pn)

b2(P1) b2(P2) . . . b2(Pn)
...

...
...

...

br(P1) br(P2) . . . br(Pn)




is a generator matrix for C(I, L). It is clear that there is a strong connec-

tion between affine variety codes and algebraic-geometric codes and that,

depending on the choice of L, they can coincide.

Since we are interested in computing the number of minimum weight

codewords of particular AG codes, the next proposition will give us a useful

criterion.

Proposition 3.18. [51, Proposition 1] Let 1 ≤ w ≤ n. Let I = 〈g1, . . . , gs〉
be an ideal of Fq[X1, . . . , Xt] such that {Xq

1 −X1, . . . , X
q
t −Xt} ⊂ I. Let L

be a subspace of Fq2 [X1, . . . , Xt]/I of dimension r generated by {b1, . . . , br}.
Let Jw be the ideal in

Fq[X1,1, . . . , X1,t, . . . , Xw,1, . . . , Xw,t, X1, . . . , Xw]

generated by

∑w
i=1Xibj(Xi,1, . . . , Xi,t) for j = 1, . . . , r,

gh(Xi,1, . . . , Xi,t) for i = 1, . . . , w and h = 1, . . . , s,

Zq−1
i − 1 for i = 1, . . . , w,

∏
1≤l≤t((Xj,l −Xi,l)

q−1 − 1) for 1 ≤ j < i ≤ w.

Then any solution of Jw corresponds to a codeword of C(I, L)⊥ of weight

w. Also, the number Aw(C(I, L)⊥) of codewords of weight w is

Aw(C(I, L)⊥) =
|V (Jw)|
w!

,

where V (Jw) =
{
y ∈ F(t+1)w

q

∣∣h(y) = 0, for any h ∈ Jw
}

.
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Chapter 4

Automorphisms of algebraic

curves given by separated

polynomials and AG codes

from the Norm-Trace curve

Deep results on automorphism groups of algebraic curves, defined over a

field of characteristic zero, have been achieved after the work of Hurwitz who

was the first to prove that complex curves, other than the rational and the

elliptic ones, can only have a finite number of automorphisms. Afterwards,

a proof of Hurwitz’s result which is independent from the characteristic of

the ground field was provided, increasing the interest of studying curves

defined over fields of positive characteristic, as e.g. finite fields. Indeed

recall that curves in positive characteristic may happen to have much larger

K-automorphism group compared to their genus, as the Hurwitz bound

|G| ≤ 84(g − 1) for a K-automorphism G of a curve of genus g ≥ 2 may

do not hold when |G| is divisible by the characteristic of the ground field.

Artin-Schreier curves and, in particular, Hermitian curves are of this type.

A family of such plane curves arises from separated polynomial. It consists

of curves C : A(Y )− B(X) where p - m with m = degB(X) ≥ 2 and A(Y )

is an additive separable polynomial. The main known properties of C are

extracted from the local analysis of its unique singular point P∞; see [63],

where the genus, the Weierstrass semigroup at P∞, and partial information

about the ramification structure of Aut(X ) at P∞ are provided. The full

49
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K-automorphism group of C fixes P∞ except in two cases, namely, when C is

the Hermitian curve Y pn−Y −Xpn +1 = 0 or the curve, Y pn +Y −Xm = 0

with m < pn, and pn ≡ −1 (mod m) but now other informations are known

in the literature. For p > 2 and m = 2, the latter curve is hyperelliptic.

Notably for p > 2, these hyperelliptic curves and the Hermitian curves

are the only curves whose K-automorphism groups have order larger than

8g3; see [37]. Deligne-Lusztig curves provide other examples of significant

curves over finite fields, namely the DLS curves of Suzuki type and the

DLR curves of Ree type. They are characterised by their genera and K-

automorphism groups. For p = 2, the Hermitian curves, the DLS curves,

and the hyperelliptic curves Y 2 + Y +X2h + 1 = 0 are the only curves with

K-automorphism groups of order larger than 8g3.

In this chapter we compute the full automorphism group of C whenm 6≡ 1

(mod pn) and B(X) = Xm. Moreover, some sufficient conditions for Aut(X )

to imply that B(X) = Xm up to an affine transformation are provided. Also,

the full automorphism group of the Norm-Trace curve C : X(qr−1)/(q−1) =

Y qr−1
+ Y qr−2

+ . . . + Y is computed. An important application of curves

over finite fields is the construction of certain linear codes, called Algebraic

Geometric codes (AG codes for short). The parameters of an AG code

constructed from a curve C strictly depend on the geometry of C, and in

particular on two fixed divisors on C. The Norm-Trace curve was used in

the literature to construct one-point or two-point AG codes; see [4, 26, 57].

In this chapter we determine explicitly the parameters of a class of one-point

AG codes on the Norm-Trace curve, starting from divisors on C which are

invariant under the whole automorphism group of the curve. Such codes

turn out to inherit many automorphisms from the Norm-Trace curve.

4.1 Curves given by separated polynomials

Throughout the chapter, C is a projective plane curve defined over the alge-

braic closure K of a finite field of prime order Fp by an affine equation

A(Y ) = B(X), (4.1)

satisfying the following conditions:

1. deg(C) ≥ 4;

2. A(Y ) = anY
pn + an−1Y

pn−1
+ . . .+ a0Y , aj ∈ K, a0, an 6= 0;
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3. B(X) = bmX
m + bm−1X

m−1 + . . .+ b1X + b0, bj ∈ K, bm 6= 0;

4. m 6≡ 0 (mod p);

5. n ≥ 1, m ≥ 2.

Note that 2 occurs if and only if A(Y + a) = A(Y ) +A(a) for every a ∈ K,

that is, the polynomial A(Y ) is additive. The basic properties of C are

collected in the following lemmas; see [38, Section 12.1] and [63].

In the following, the couple (X,Y ) and the triple (Z,X, Y ) are used to

denote affine and homogeneous coordinates of points of C in P2(K), respec-

tively.

Lemma 4.1. The curve C is an irreducible plane curve with at most one

singular point.

(i) If |m− pn| = 1, then C is non-singular.

(ii) (a) If m > pn + 1, then P∞ = (0, 0, 1) is an (m− pn)-fold point of C.

(b) If pn > m+ 1, then P∞ = (0, 1, 0) is a (pn −m)-fold point of C.

(c) In both cases, P∞ is the centre of only one branch of C; also, P∞
is the unique infinite point of C.

(iii) C has genus g = (pn−1)(m−1)
2 ;

(iv) Let K(x, y) with A(y) = B(x) denote the function field of C.

(a) A transformation τa : (x, y) 7→ (x, y + a) preserves C if and only

if A(a) = 0;

(b) The set G = {τa | A(a) = 0} is an elementary abelian subgroup of

AutK(K(x, y)) of order pn. Every nontrivial element of G fixes

the unique place P∞ centered at P∞, and G acts transitively on

the zeros of x;

(c) the sequence of ramification subgroups of G at P∞ is

G = G
(1)
P∞ = G

(2)
P∞ = . . . = G

(m)
P∞ , G

(m+1)
P∞ = {1};

(d) {P∞} is the unique short orbit of G, and the different divisor in

the Hilbert different formula ( [38, Theorem 11.70]) applied to the

extension K(x, y)/K(x, y)G is

(pn − 1)(m+ 1)P∞;
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(e) K(x, y)G is rational, and C has p-rank zero.

An automorphism of the function field K(x, y) with A(y) = B(x) of C
defined as in (iv)(a) will be referred to as a translation.

Lemma 4.2. Let M be a K-automorphism group of C, and let MP∞ =

M
(1)
P∞ oH where p - |H|. Then

(i) |H| divides m(pn − 1);

(ii) |M (1)
P∞ | ≤ pn(m− 1)2 = 4pn

(pn−1)2
g2;

(iii) |M (1)
P∞ | = pn when m 6≡ 1 (mod pn), and so g 6≡ 0 (mod pn);

(iv) |M (2)
P∞ | = pn when m ≡ 1 (mod pn), and so g ≡ 0 (mod pn).

Lemma 4.3. The K-automorphism group AutK(C) fixes the place P∞ ex-

cept in the following two cases.

1. (a) Up to a linear substitution on X and Y , C is the curve Y pn +Y =

Xm, with m < pn, pn ≡ −1 (mod m);

(b) AutK(C) contains a cyclic normal subgroup Cm of order m such

that AutK(C)/Cm ∼= PGL(2, pn);

(c) Cm fixes each of the pn + 1 places with the same Weierstrass

semigroup as P∞;

(d) AutK(C)/Cm acts on the set of such pn+1 places as PGL(2, pn).

2. (a) Up to a linear substitution on X and Y , C is the Hermitian curve

Hpn : Y pn + Y = Xpn+1;

(b) AutK(C) ∼= PGU(3, pn);

(c) AutK(C) acts on the set of all places with the same Weierstrass

semigroup as P∞;

(d) AutK(C) acts on the set of such places as PGU(3, q) on the Her-

mitian unital.

4.2 On the automorphism group of C
At first we consider the Norm-Trace curve Nq,r with affine equation

X
qr−1
q−1 = Y qr−1

+ Y qr−2
+ · · ·+ Y,
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where q is a p-power and r is a positive integer. For r = 2, this is the Fq2-

maximal Hermitian curve, with automorphism group isomorphic to PGU(3, q).

For r > 2, we determine the automorphism group of Nq,r.

Theorem 4.4. For r ≥ 3, AutK(Nq,r) has order qr−1(qr − 1) and is a

semidirect product Go C, where

G =
{

(x, y) 7→ (x, y + a) | Trqr|q(a) = 0
}
, C = {(x, y) 7→ (bx, b

qr−1
q−1 y) | b ∈ F∗qr}.

Proof. Suppose that Nq,r ∼= Hq̄ for some p-power q̄. From Lemma 4.1 (iii),

g(Nq,r) = g(Hq̄) reads
( q
r−1
q−1
−1)(qr−1−1)

2 = q̄(q̄−1)
2 . This implies q̄ = q and

r = 2, a contradiction to the assumption on r.

Now suppose that Nq,r is isomorphic to the curve X : Xs = Y q̄ + Y

for some p-power q̄, with s < q̄, s | (q̄ + 1). From Lemma 4.2(iii), the

Sylow p-subgroups AutK(Nq,r)(1)
P∞ and AutK(X )

(1)
P∞ of AutK(Nq,r)P∞ and

AutK(X )P∞ have order qr−1 and q̄, respectively. From Lemma 4.1(e) Nq,r
and X have zero p-rank. Hence, AutK(Nq,r)(1)

P∞ and AutK(X )
(1)
P∞ are Sylow

p-subgroups of AutK(Nq,r) ∼= AutK(X ); see [38, Lemma 11.129]. Therefore

qr−1 = q̄. Then g(Nq,r) = g(X ) yields s = qr−1
q−1 = q̄ + · · · + q + 1, a

contradiction to s < q̄.

From Lemma 4.3, this proves that AutK(Nq,r) fixes P∞. By direct check-

ing AutK(Nq,r) contains the group G o C defined in the statement of the

theorem. From Lemma 4.3, AutK(Nq,r) = G o H, where H is a cyclic

group. From Schur-Zassenhaus Theorem, H contains C up to conjugation.

By Lemma 4.1(e) the quotient curve Nq,r/G is rational, and its function field

isK(x). Hence the automorphism group H̄ ∼= H ofNq,r/G induced byH has

exactly two fixed places and acts semiregularly elsewhere; see [41, Hauptsatz

8.27]. Since C ≤ H, the two places fixed by H̄ are the place P̄∞ under P∞
and the zero P̄0 of x. Let Ω = {P(0,0), P(0,a2), . . . , P(0,aqr−1 )} be the orbit of

G lying over P̄0, so that AutK(Nq,r) acts on Ω; we denote by P(0,0) ∈ Ω the

zero of y, centered at the origin (0, 0). The group H has a fixed point in Ω

by the Orbit-Stabilizer theorem, and P(0,0) is the only fixed place of C other

than P∞; thus, H fixes P(0,0).

Therefore, H fixes the unique pole of x and y, fixes the unique zero of y,

and acts on the qr−1 simple zeros of x. This implies that a generator h of H

acts as h(x) = µx, h(y) = ρy for some µ, ρ ∈ K∗. By direct computation,

h is an automorphism of Nq,r if and only if ρ = ρq and µ
qr−1
q−1 = ρ. Hence,

H = C.
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The following result generalizes Theorem 4.4.

Theorem 4.5. Suppose that m 6≡ 1 (mod pn) and B(X) = Xm. Then one

of the following two cases occurs.

(i) m divides pn + 1 and A(Y ) is pn-linearized, that is, A(Y ) = anY
pn +

a0Y . In this case, C is projectively equivalent to the curve Qm with

equation Xm = Y pn + Y described in Case 1 of Lemma 4.3.

(ii) m does not divide pn + 1 or A(Y ) is not pn-linearized. Let d =

gcd (j ≥ 1 : aj 6= 0) be the largest integer such that A(Y ) is pd-linearized.

Then AutK(C) has order pnm(pd − 1) and AutK(C) = G o C, where

G = {(x, y) 7→ (x, y + a) | A(a) = 0} and C = {(x, y) 7→ (bx, bmy) |
bm(pd−1) = 1}.

Proof. Let S be the stabilizer of P∞ in AutK(C). By direct checking, S

contains the semidirect product Go C. By Lemma 4.2, S = GoH, where

H is a cyclic group of order coprime to p. By Schur-Zassenhaus Theorem, H

contains C up to conjugation. Arguing as in the proof of Theorem 4.4, we

have that C/G is rational, and any nontrivial of the induced automorphism

group H̄ ∼= H ≤ AutK(C/G) fixes the pole P̄∞ and the zero P̄0 of x. Hence

H acts on the pn distinct places of C lying over P̄ , and H fixes one of them by

the Orbit-Stabilizer theorem. The only fixed place of C different from P∞
is the unique zero P0 of y, centered at the origin (0, 0). Let h be a generator

of H. We have shown that h fixes the zero and the pole of y, which implies

h(y) = ρy for some ρ ∈ K. Also, h fixes the pole and acts on the simple

zeros of x; this implies h(x) = µx for some µ ∈ K. By direct checking, h

normalizes G if and only if A(µa) = 0 for all a ∈ K satisfying A(a) = 0.

As A(Y ) is separable, this happens if and only if A(µY ) = A(Y ). This is

equivalent to µ ∈ F∗
pd

, with d defined as in the statement of the theorem.

Then, in order for h to be an automorphism of C, we have ρm = µ. We have

shown that S = Go C.

By Lemma 4.3, either AutK(C) = G o C and Case (ii) holds, or C
is isomorphic to the curve Qs : Xs = Y q̄ + Y with s | (q̄ + 1), s < q̄.

Suppose that C ∼= Qs. By Lemma 4.2 the Sylow p-subgroups of AutK(C)
and AutK(Qs) have size pn and q̄ respectively, so that q̄ = pn; as g(C) =

g(Qs), we have s = m. The normalizer in AutK(Qm) of a Sylow p-subgroup

contains a cyclic group of order pn − 1, by Lemma 4.3(b). Hence, the same
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holds in AutK(C) and d = n; this means that C has equation Xm = anY
pn +

a0Y .

Conversely, if C has equation Xm = anY
pn + a0Y , then C is isomorphic

to Qm. In fact, define ϕ : (x, y) 7→ (x′, y′) := (γx, δa0y) with δp
n−1 = ab−p

n

and γm = δ. Then K(x, y) = K(x′, y′) and ϕ(C) = Qm. Now the proof is

complete.

Next result provides a converse to Theorem 4.5 and extends [38, Theorem

12.8].

Theorem 4.6. Let d = gcd (j ≥ 1 : aj 6= 0) be the largest integer such that

A(Y ) is pd-linearized. If |AutK(C)P∞ |/|AutK(C)(1)
P∞ | ≥ m(pd−1), then equal-

ity holds, and B(X) = Xm up to an affine transformation in X.

Proof. Let S be the stabilizer of P∞ in AutK(C), H be a cyclic complement

of S(1) in S, and α be a generator of H. By Lemma 4.2, G = {(x, y) 7→
(x, y + a) | A(a) = 0} is normal in S. Hence, α induces an automorphism ᾱ

of the quotient curve C/G; by Lemma 4.1(e), C/G is rational with function

field K(x). From [41, Haptsatz 8.27], ᾱ has two fixed places in K(x) and

acts semiregularly elsewhere. Up to an affine substitution in x, these two

place are the pole P̄∞ and the zero of x. Thus, α(x) = ᾱ(x) = bx, for some

b ∈ K∗ of order ord(b) = ord(α). Since α fixes the unique pole P∞ of y

and the Weierstrass semigroup H(P∞) is generated by −vP∞(y) = pn and

−vP∞(x) = m, we have that α(y) = ay +Q(x), where a ∈ K∗ and Q(X) is

a polynomial satisfying either Q(X) = 0 or deg(Q(X)) · pn < m. Since α is

an automorphism of C, the polynomial A(aY +Q(X))−B(bX) is a multiple

of A(Y )−B(X), say

A(aY +Q(X))−B(bX) = k1(A(Y )−B(X)) (4.2)

with k1 ∈ K∗. As A is a separable polynomial, Equation (4.2) implies

A(aY ) = kA(Y ) and hence k1 = ap
j

for any j such that aj 6= 0; thus, k1 = a

and ap
d−1 = 1. Equation (4.2) also implies B(bX) = k1B(X) + A(Q(X))

and hence k1 = bm; thus, (bm)p
d−1 = 1 which yields |H| = m(pd − 1).

Note that β := αp
d−1 has order m and that it acts as β(x) = bp

d−1x,

β(y) = y +Q(bp
d−2x). As β ∈ AutK(C), we have

A(Y +Q(bp
d−2X))−B(bp

d−1X) = k2(A(Y )−B(X))
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with k2 ∈ K∗. Then k2 = 1 and

B(bp
d−1X)−B(X) = A(Q(bp

d−2X)). (4.3)

We want to show that β(y) = y. Suppose by contradiction thatQ(bp
d−2X) 6=

0. If bp
d−1 = 1 or Q(bp

d−2X) is a nonzero constant, then the ord(β)

is a multiple of p, a contradiction to ord(β) = m. If bp
d−1 6= 1 and

deg(Q(bp
d−2X)) > 1, then the left-hand side and the right-hand side in

Equation (4.3) have degree m and pn · deg(Q(bp
d−2X)), respectively; a

contradiction to p - m. Therefore, β(x) = bp
d−1x and β(y) = y, with

ord(b) = m(pd− 1). Since β ∈ Aut(C), B(X) = λXm for some λ ∈ K∗, that

is, B(X) = Xm up to scaling.

Even if B(X) is not a monomial, the argument of the proof of Theorem

4.6 shows the following result.

Proposition 4.7. Let AutK(C)P∞ = AutK(C)(1)
P∞ o H with H = 〈α〉, and

let d = gcd(j ≥ 1 : aj 6= 0) be the largest integer such that A(Y ) is pd-

linearized. Then α(x) = bx+ c for some b, c ∈ K, and α(B(x)) = aB(x) for

some a ∈ F∗
pd

.

Remark 4.8. Once that B(X) is explicitely given, Proposition 4.7 provides

a method to find H. In fact, H has one fixed place in K(x) centered at

an affine point and acts semiregularly on the other places centered at affine

points; also, H acts on the zeros of B(x) with the same multiplicity. For

instance:

• If B(X) has more than one root, but only one root with fixed multi-

plicity M > 1, then |H| divides either M or M − 1.

• If B(X) has more than one root, and all the root have the same mul-

tiplicity M > 1, then H is trivial and AutK(C) is a p-group of order

pn.

4.3 One-point AG codes on the Norm-Trace curves

Let `, r ∈ N, r ≥ 3, and let Nq,r be the Norm-Trace curve of genus g

as defined in Section 4.2. Let Ω = {P(0,y1), . . . , P(0,yqr−1 )} be the set of

the qr−1 Fqr -rational places of Nq,r which are the zeros of x; here, P(a,b)

denotes the unique place centered at the affine point (a, b) of Nq,r. Let Θ :=
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Nq,r(Fqr) \ (Ω ∪ P∞), where P∞ is the place at infinity of Nq,r. As pointed

out in the proof of Theorem 4.4, the principal divisors of the coordinate

functions are the following:

• (x) =
∑

P∈Ω P − qr−1P∞ ;

• (y) = qr−1
q−1 P(0,0) − qr−1

q−1 P∞ .

Define the Fqr -divisors

G := `qr−1P∞ and D :=
∑

P∈Θ

P.

Since |Nq,r(Fqr)| = q2r−1 + 1 (see [26, Lemma 2]), D has degree q2r−1 −
qr−1. Denote by C := CL(D,G) the associated functional one-point AG

code over Fqr having length n = q2r−1 − qr−1, dimension k, and minimum

distance d. The designed minimum distance is

d∗ = n− deg(G) = q2r−1 − (`+ 1)qr−1.

The parameters of one-point AG codes on the Norm-Trace curves have

been investigated by several authors, such as Miura and Kamiya [55] and

Geil [26].

Proposition 4.9 ( [55, Theorem 5]; see also [26, Theorem 2]). The code C

attains the designed minimum distance d∗.

Now we turn to the dimension of C.

If q
r−1
q−1 −2 ≤ ` ≤ qr−2, then n > deg(G) > 2g−2 and the Riemann-Roch

Theorem can be applied to conclude that

k = deg(G) + 1− g = `qr−1 + 1− 1

2

(
qr − 1

q − 1
− 1

)(
qr−1 − 1

)
.

If ` < qr−1
q−1 − 2, then k can be computed via the Weierstrass semigroup

H(P∞) at P∞, which is known to be generated by qr−1 and qr−1
q−1 ; see [4].

In fact, k equals the number of non-gaps at P∞ which are smaller than or

equal to `qr−1, as pointed out in [55, Theorem 5]. We provide an explicit

formula for k.

Proposition 4.10. If 1 ≤ ` ≤ qr−1
q−1 − 3, then the dimension of C is

k = `+ 1 +
(q − 1)

2

⌊
`

q

⌋(⌊
`

q

⌋
+ 1

)
+

(q2 − 3q + 2)

2
+ ∆,
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where,

∆ =
(q − 1)2

2

(
`

q
− 1

)2

+

(
(q − 3)(q − 1)

2

)(
`

q
− 1

)
+
q(q − 1)

2

(
`

q
− 1

)
,

if ` ≡ 0 (mod q);

∆ =
(q − 1)2

2

⌊
`

q

⌋2

+

(
(q − 3)(q − 1)

2

)⌊
`

q

⌋
+
q(q − 1)

2

⌊
`

q

⌋
,

if ` ≡ −1 (mod q);

∆ =
(q − 1)

2

[(
`−
⌊
`

q

⌋
q

)⌊
`

q

⌋2
+

(
q−`+

⌊
`

q

⌋
q−1

)(⌊
`

q

⌋
−1

)2]
+

(
q − 3

2

)[(
`−
⌊
`

q

⌋
q

)⌊
`

q

⌋

+

(
q − `+

⌊
`

q

⌋
q − 1

)(⌊
`

q

⌋
− 1

)]
+

1

2

⌊
`

q

⌋(
`−

⌊
`

q

⌋
q

)(
`−

⌊
`

q

⌋
q + 1

)

+
1

2

(⌊
`

q

⌋
− 1

)(
q − 1− `+

⌊
`

q

⌋
q

)(
q + `−

⌊
`

q

⌋
q

)
,

otherwise.

Proof. Let c := (qr−1)/(q−1). By the assumption on `, deg(G) < n; hence,

k = `(G). This means that k equals the number of non-gaps h ∈ H(P∞) at

P∞ satisfying h ≤ `qr−1. From [26] (see also [4]), k is the number of couples

(i, j) ∈ N2 such that

0 ≤ i < qr, 0 ≤ j < qr−1, iqr−1 + jc ≤ `qr−1.

Since ` ≤ c− 3, this implies

k =
∑̀

i=0

(⌊
(`− i)qr−1

c

⌋
+ 1

)
= `+ 1 +

∑̀

s=0

⌊
sqr−1

c

⌋
.

Write s = aq+b with a ≥ 0 and 1 ≤ b ≤ q. The condition s ≤ ` is equivalent

to a ≤ b `−bq c when b < q, and to a ≤ b `q c − 1 when b = q. Hence,

k = `+ 1 +

b `
q
c−1∑

a=0

⌊
(aq + q)qr−1

c

⌋
+

q−1∑

b=1

b `−b
q
c∑

a=0

⌊
(aq + b)qr−1

c

⌋
. (4.4)

By direct computation,

b `
q
c−1∑

a=0

⌊
(aq + q)qr−1

c

⌋
=

b `
q
c−1∑

a=0

⌊
(a+ 1)(q − 1) +

a+ 1

c

⌋
=

b `
q
c−1∑

a=0

(a+1)(q−1) =
1

2
(q−1)

⌊
`

q

⌋(⌊
`

q

⌋
+ 1

)
.

(4.5)
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Also,

(aq + b)qr−1

c
= a(q − 1) + b− 1 +

qr − 1 + a(q − 1)− b(qr−1 − 1)

qr − 1
.

Assume that 1 ≤ b ≤ q − 1 and 0 ≤ a ≤
⌊
`−b
q

⌋
≤
⌊
`
q

⌋
. By the assumption

on ` follows a ≤ q qr−2−1
q−1 . Thus,

qr − 1 + a(q − 1)− b(qr−1 − 1)

qr − 1
> 0,

qr − 1 + a(q − 1)− b(qr−1 − 1)

qr − 1
< 1,

so that
⌊

(aq+b)qr−1

c

⌋
= a(q − 1) + b− 1. Thus,

q−1∑

b=1

b `−b
q
c∑

a=0

⌊
(aq + b)qr−1

c

⌋
=

q−1∑

b=1

b `−b
q
c∑

a=0

(a(q − 1) + b− 1) =

(q − 1)

2

q−1∑

b=1

⌊
`− b
q

⌋2

+

(
q − 3

2

) q−1∑

b=1

⌊
`− b
q

⌋
+

q−1∑

b=1

b

⌊
`− b
q

⌋
+
q2 − 3q + 2

2
.

Denote by,

A =
(q − 1)

2

q−1∑

b=1

⌊
`− b
q

⌋2

, B =

(
q − 3

2

) q−1∑

b=1

⌊
`− b
q

⌋
, C =

q−1∑

b=1

b

⌊
`− b
q

⌋
.

We note that for a given b = 1, . . . , q−1, holds that

⌊
`−b
q

⌋
6=
⌊
`−b−1
q

⌋
if and

only if `− b ≡ 0 (mod q). Thus if ` ≡ 0 (mod q) then

⌊
`−b
q

⌋
= `

q −
⌈
b
q

⌉
=

`
q − 1, for every b = 1, . . . , q − 1; if ` ≡ q − 1 (mod q) then

⌊
`−b
q

⌋
=

⌊
`
q

⌋
;

while

⌊
`−b
q

⌋
=

⌊
`
q

⌋
for b = 1, . . . , ` −

⌊
`
q

⌋
q and

⌊
`−b
q

⌋
=

(⌊
`
q

⌋
− 1

)
for

b = `−
⌊
`
q

⌋
q+1, . . . , q−1, if ` 6≡ 0, q−1 (mod q). In particular this implies

that

A =
(q − 1)

2

q−1∑

b=1

(
`

q
− 1

)2

=
(q − 1)2

2

(
`

q
− 1

)2

,

if ` ≡ 0 (mod q),

A =
(q − 1)

2

q−1∑

b=1

⌊
`

q

⌋2

=
(q − 1)2

2

⌊
`

q

⌋2

,
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if ` ≡ q − 1 (mod q), and

A =
(q − 1)

2

`−
⌊
`
q

⌋
q∑

b=1

⌊
`

q

⌋2

+
(q − 1)

2

q−1∑

b=`−
⌊
`
q

⌋
q+1

(⌊
`

q

⌋
− 1

)2

=

(q − 1)

2

[(
`−

⌊
`

q

⌋
q

)⌊
`

q

⌋2

+

(
q − `+

⌊
`

q

⌋
q − 1

)(⌊
`

q

⌋
− 1

)2]
,

otherwise. Analagously,

B =
(q − 3)

2

q−1∑

b=1

(
`

q
− 1

)
=

(q − 3)(q − 1)

2

(
`

q
− 1

)
,

if ` ≡ 0 (mod q),

B =
(q − 3)

2

q−1∑

b=1

⌊
`

q

⌋
=

(q − 1)(q − 3)

2

⌊
`

q

⌋
,

if ` ≡ q − 1 (mod q), while

B =
(q − 3)

2

`−
⌊
`
q

⌋
q∑

b=1

⌊
`

q

⌋
+

(q − 3)

2

q−1∑

b=`−
⌊
`
q

⌋
q+1

(⌊
`

q

⌋
− 1

)
=

(
q − 3

2

)[(
`−

⌊
`

q

⌋
q

)⌊
`

q

⌋
+

(
q − `+

⌊
`

q

⌋
q − 1

)(⌊
`

q

⌋
− 1

)]

otherwise, and

C =

q−1∑

b=1

b

(
`

q
− 1

)
=
q(q − 1)

2

(
`

q
− 1

)
,

if ` ≡ 0 (mod q),

C =

q−1∑

b=1

b

⌊
`

q

⌋
=
q(q − 1)

2

⌊
`

q

⌋
,

if ` ≡ q − 1 (mod q) and

C =

`−
⌊
`
q

⌋
q∑

b=1

b

⌊
`

q

⌋
+

q−1∑

b=`−
⌊
`
q

⌋
q+1

b

(⌊
`

q

⌋
− 1

)
=

1

2

⌊
`

q

⌋(
`−

⌊
`

q

⌋
q

)(
`−

⌊
`

q

⌋
q + 1

)
+

1

2

(⌊
`

q

⌋
− 1

)(
q − 1− `+

⌊
`

q

⌋
q

)(
q + `−

⌊
`

q

⌋
q

)
,

otherwise. The claim now follows writing k = `+1+ (q−1)
2

⌊
`
q

⌋(⌊
`
q

⌋
+1

)
+

(q2−3q+2)
2 +A+B + C.
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We show that the automorphism group of Nq,r is inherited by the code

C.

Proposition 4.11. The automorphism group of C has a subgroup isomor-

phic to

(AutK(Nq,r) o AutK(Fqr)) o F∗qr .

Proof. By Theorem 4.4, AutK(Nq,r) is defined over Fqr , so that AutFqr (Nq,r) =

AutK(Nq,r). The support supp(G) = {P∞} of G and Ω are two orbits of

AutK(Nq,r); hence, AutK(Nq,r) acts on the support supp(D) = Nq,r(Fqr) \
(Ω ∪ {P∞}) of D. Also, all places contained in supp(D) have the same

weight in D, which implies σ(D) = D for any σ ∈ AutK(Nq,r); analogously,

σ(G) = G. Therefore, AutFqr ,D,G(Nq,r) is isomorphic to AutK(Nq,r).
From the proof of Theorem 4.4 follows that AutK(Nq,r) has exactly two

short orbits on Nq,r, namely the singleton {P∞} and the orbit Ω with size

qr−1. Hence, any non-trivial element σ ∈ AutK(Nq,r) fixes at most qr−1 + 1

places on Nq,r. Since the length n of C is bigger than qr−1 + 1, the claim

follows from Proposition 3.14.

Remark 4.12. Let D′ = D + P∞ and G̃ =
∑

P∈Ω `P . Define the extended

one point code C ′ := Cext(D
′, G) with D′ = D + P∞ and the multi-point

code C̃ := CL(D′, G̃). Then G̃ = G+(x`), so that C ′ and C̃ are monomially

equivalent.

The code C ′ has the same dimension of C as k depends on the divisor

G, which is the same. Also, C ′ attains the designed minimum distance

d′∗ = n+1−degG = q2r−1 +1−(`+1)qr−1 since C attains d∗ = n−deg(G);

in fact, any codeword c ∈ C with weight d∗ extends to a codeword c′ ∈ C ′
with weight d′∗. By the monomial equivalence, the multi point code C̃ has

the same parameters as C ′.





Chapter 5

GK and GGS curves

Let X be an algebraic curve defined over the finite field Fq of order q. We

recall that a curve X is called Fq- maximal if its number of rational points

over Fq reaches the Hasse-Weil upper bound

|X (Fq)| = q + 1 + 2g(X )q1/2,

where g(X ) is the genus of X . A curve Y is said to be a cover of X over Fq
if there exists a surjective map ϕ : Y → X , where ϕ and the two curves are

defined over Fq. There have been extensive studies on maximal curve, see

for instance [2, 16,26,27].

Since codes with good parameters can be constructed from these curves,

many authors studied their properties, see [5–7, 34, 50, 51, 53, 54, 72]. Most

of the known examples have been shown to be subcovers of the Hermitian

curve H, which is defined over Fq2 by the equation

Y q+1 = Xq +X.

This led to the question whether every maximal curve is a subcover of the

Hermitian curve or not. This question has a negative answer: in [28], Giuli-

etti and Korchmáros introduced an infinity family of curves C′, the so called

GK curve, which is maximal over Fq6 . Garcia, Güneri and Stichtenoth gener-

alized this construction to a family of curves Cn, called GGS curves, indexed

by an odd integer n ≥ 3, such that Cn is maximal over Fq2n (see [24]).

The parameters of the AG codes associated with X strictly depend on

some characteristics of the underlying curve X . In general, curves with many

Fq-rational places with respect to their genus give rise to AG codes with good

63
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parameters. For this reason, maximal curves, that is curves attaining the

Hasse-Weil upper bound, have been widely investigated in the literature: for

example the Hermitian curve and its quotients, the Suzuki curve, and the

Klein quartic; see [7, 34, 53, 54, 64, 67, 70–72]. More recently, AG codes were

obtained from the Giulietti-Korchmáros curve [28] (GK in the following);

see [6, 15,19].

In most cases, the weight distribution of a given code is hard to be com-

puted. Even the problem of computing codewords of minimum weight can

be a difficult task apart from specific cases. In [51], following the approach

of [3,58], the authors compute the number of minimum weight codewords of

certain dual AG codes arising from the Hermitian curve. For this purpose,

they provide a useful algebraic-geometric description for codewords with a

given weight which belong to a fixed affine-variety code.

In the first part of this chapter we deal with AG codes arising from

the Giulietti-Korchmáros maximal curve. The link between the minimum

distance of such codes and the underlying curve is given by a result of [16];

see Theorem 3.16. We compute the maximal intersections between the curve

GK and lines, plane conics, and plane cubics. Such information is used in

Section 4 to compute the number of minimum weight codewords of some

dual codes from the Giulietti-Korchmáros curve.

5.1 The Giulietti-Korchmáros curve

Denote by PG(3, q6) the three dimensional projective space over the field

Fq6 with q6 element. The Giulietti-Korchmáros curve GK is a non-singular

curve in PG(3, q6), introduced in [28], defined by the affine equations




Zq

2−q+1 = Y q2 − Y
Y q+1 = Xq +X

. (5.1)

This curve has genus g = (q3+1)(q2−2)
2 +1, q8−q6 +q5 +1 Fq6-rationals points

and a unique point at infinity P∞ = (1 : 0 : 0 : 0).

Theorem 5.1 (Theorem 6, [28]). Aut(GK) has order q3(q3 +1)(q2−1)(q2−
q + 1) and has a normal subgroup isomorphic to SU(3, q) defined over Fq2n.

(i) If gcd(3, n+ 1) = 3 then Aut(GK) ∼= SU(3, q)× Cq2−q+1
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(ii) if gcd(3, n+ 1) = 1 then Aut(GK) has a normal subgroup M of index

3 such that M ∼= SU(3, q)× Cq2−q+1/3

The set GK(Fq6) of the Fq6-rational points splits into two orbits under the

action of Aut(GK): the first one coincides with GK(Fq2) of the Fq2-rational

points of GK, coinciding with the intersection between GK and the plane

Z = 0; the second one is formed by all the points in GK(Fq6) \ GK(Fq2).

The curve GK is Fq6-maximal, that is, it attains the Hasse-Weil bound

|GK(Fq6)| = q6 + 1 + 2gq3; see [65, Theorem 5.2.3]. Moreover, for q > 2, GK
is not covered by the Hermitian curve (see [28]): this is the first example in

the literature of a family of maximal curves with this feature.

The curve GK is an example of a complete intersection curve in PG(3, q6);

see [28, Section 2].

Consider now the function field Fq6(GK) associated with GK and let

x, y, z ∈ Fq6(GK) be its coordinate functions, which satisfy yq+1 = xq + x

and zq
2−q+1 = yq

2 − y.

Concerning the functions x, y, z ∈ Fq6(GK) it is easily proved that

• (x) = (q3 + 1)P0 − (q3 + 1)P∞,

• (y) = (q2 − q + 1)(
∑

a:aq+a=0 P(a,0,0))− (q3 − q2 + q)P∞,

• (z) =
(∑

P∈X (Fq2 )\{P∞} P
)
− q3P∞,

where P(a,b,c) denotes the affine point (a, b, c) and P0 = P(0,0,0).

5.2 Intersection between the Giulietti-Korchmáros

curve and lines or conics

In this section we study the possible intersections between a line or a plane

conic and the curve GK as in (5.1). In particular, we are interested in its

maximum size.

Proposition 5.2. Let r ⊂ PG(3, q6) be a line. Then

|r ∩ GK| ≤ q2 − q + 1.

Also, any (q2− q+ 1)-secant is parallel to the z-axis and all the (q2− q+ 1)

common points are not Fq2-rational.
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Proof. As already mentioned, the Fq6-rational points of GK are divided into

two orbits O1 = GK(Fq2) and O2 = GK(Fq6) \ GK(Fq2).

Suppose that r ∩ GK(Fq6) contains at least an Fq2-rational point P1.

Without loss of generality we can assume that P1 = (0, 0, 0) since the auto-

morphism group of the curve is transitive on GK(Fq2) and linear (so it maps

secant lines to secant lines preserving the number of their intersections). Let

P2 = (x, y, z) ∈ GK(Fq6) \ {P1, P∞}. Suppose y 6= 0; this implies x 6= 0. An

Fq6-rational point P on the line r through P1 and P2 has coordinates

(
λx

1 + λ
,
λy

1 + λ
,
λz

1 + λ

)
,

for some λ ∈ Fq6 . If such a point belongs to GK then

(
λy

1 + λ

)q+1

=

(
λx

1 + λ

)q
+

λx

1 + λ
,

that is

λq+1yq+1 = λqxq(1 + λ) + λx(1 + λ)q.

The condition yq+1 = xq+x yields λqxq+λx = 0. The roots {a1, . . . , aq}
of the polynomial T q +T are all distinct and belong to Fq6 . It is easily seen

that points in r∩GK correspond to values λ among {a1/x, . . . , aq/x}∪{−1}.
A direct computation shows that the same result holds true for the line

through P1 and P∞ = (1 : 0 : 0 : 0).

Suppose now that r ∩ GK(Fq6) contains no points of O1. Let P1 =

(x1, y1, z1), P2 = (x2, y2, z2) ∈ O2 two points of r. An Fq6-rational point P

of r is

P =

(
x1 + λx2

1 + λ
,
y1 + λy2

1 + λ
,
z1 + λz2

1 + λ

)

for some λ ∈ Fq6 . If P ∈ GK then, by the second equation in (5.1),

(
y1 + λy2

1 + λ

)q+1

=

(
x1 + λx2

1 + λ

)q
+
x1 + λx2

1 + λ
.

Recalling that yq+1
1 = xq1 + x1 and yq+1

2 = xq2 + x2, we obtain

λq(x1 + xq2 − y1y
q
2) + λ(xq1 + x2 − yq1y2) = 0.

If (x1 + xq2 − y1y
q
2) 6= 0 or (xq1 + x2 − yq1y2) 6= 0 then |r ∩ GK(Fq6)| ≤ q + 1.

On the other hand, if x1 + xq2 − y1y
q
2 = xq1 + x2 − yq1y2 = 0 then

(x1+xq1)+(x2+xq2)−y1y
q
2−yq1y2 = 0, yq+1

1 +yq+1
2 −y1y

q
2−yq1y2 = (y1−y2)q+1 = 0,
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that is y1 = y2. Finally, from x1 + xq2 − y1y
q
2 = 0, we get x1 = x2. This

means that if |r ∩ GK(Fq6)| > q + 1 then r has equation X = x1, Y = y1,

with xq1 + x1 = yq+1
1 . Clearly y1 /∈ Fq2 otherwise P1 and P2 belong to O1.

A direct computation shows that the line r has exactly q2 − q + 1 points in

common with the curve GK.

Proposition 5.3. The total number of (q2 − q + 1)-secants of GK is (q +

1)(q5 − q3).

Proof. Recall that |O2| = q8 − q6 + q5 − q3. Also, each point in O2 lies on

exactly one (q2− q+ 1)-secant r : X = x1, Y = y1 such that (r∩GK(Fq6)) ⊂
O2. Therefore the number of such lines is

(q8 − q6 + q5 − q3)

(q2 − q + 1)
= (q + 1)(q5 − q3).

Proposition 5.4. Let C be a plane conic in PG(3, q6). Then the size |C ∩
GK(Fq6)| is at most

{
2(q2 − q + 1), if C is reducible,

2(q + 1), if C is absolutely irreducible.

Proof. Let C be contained in the plane defined by G(X,Y, Z) = αX +βY +

γZ + δ = 0. Suppose that C is absolutely irreducible.

Suppose γ 6= 0. The points P = (x, y, z) in C ∩ GK(Fq6) satisfy





zq
2−q+1 = yq

2 − y
yq+1 = xq + x

ax2 + by2 + cxy + dx+ ey + f = 0

G(x, y, z) = 0,

where a, b, c, d, e, f, g ∈ Fq6 . By Bézout’s Theorem (see [69, Theorem 3.14])

the number of pairs (x, y) satisfying yq+1 = xq+x and ax2 +by2 +cxy+dx+

ey+ f = 0 is at most 2(q+ 1). Clearly, for each such pair (x, y) there exists

a unique z satisfying G(x, y, z) = 0. Therefore |C ∩ GK(Fq6)| ≤ 2(q + 1).
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Suppose now γ = 0 and β 6= 0. The points P = (x, y, z) in C ∩ GK(Fq6)

satisfy 



zq
2−q+1 = yq

2 − y
yq+1 = xq + x

ax2 + bz2 + cxz + dx+ ez + f = 0

G(x, y) = 0,

where a, b, c, d, e, f, g ∈ Fq6 . As above, there are at most q + 1 pairs (x, y)

such that yq+1 = xq + x and G(x, y) = 0. Clearly, for each such pair (x, y)

there exist at most 2 values z such that ax2 + bz2 + cxz + dx+ ez + f = 0,

since the C is absolutely irreducible. Therefore |C ∩ GK(Fq6)| ≤ 2(q + 1).

The case γ = 0 and α 6= 0 is similar and omitted.

If the conic C splits into two lines, then, by Proposition 5.2, it is clear

that |C ∩ GK(Fq6)| is at most 2(q2 − q + 1). Note that if the two lines are

both (q2−q+1)-secants then they are parallel to the z axis (see the proof of

Proposition 5.2) and therefore their common point is (0, 0, 1, 0) /∈ GK. This

shows that the upper bound 2(q2 − q + 1) is attained.

The previous result can be generalized to a plane curve of degree α ≤ q.

Proposition 5.5. Let X be a curve of degree α ≤ q in PG(3, q6). Then the

size |X ∩ GK(Fq6)| is at most

{
α(q2 − q + 1), if X is reducible,

α(q + 1), if X is absolutely irreducible.

Proof. The argument is the same as in Proposition 5.4. Note that such

bound holds only if α ≤ since a plane can contain at most q lines parallel to

the z-axis which are (q2−q+1)-secants. In fact, each of these lines intersects

the plane z = 0 in an point of GK(Fq6) \ GK(Fq2); there are at most q such

collinear points (they correspond to the Fq6-rational intersection points of a

line with the Hermitian curve yq+1 = xq+x which are not Fq2-rational).

We conclude this section with the following proposition.

Proposition 5.6. There exist 3(q2 − q + 1) coplanar points contained in

GK(Fq6) lying on the intersection between a cubic curve and a curve Y of

degree q2 − q + 1.
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Proof. Let y ∈ Fq6 \ Fq2 . Consider three lines ri of equations X = xi,

Y = y, i = 1, 2, 3, with xqi + xi = yq+1. Such three lines are coplanar and

(q2 − q + 1)-secants; see also Proposition 5.2.

Let X be the plane cubic consisting of the union of r1, r2, and r3. Clearly,

|X ∩ GK(Fq6)| = 3(q2 − q + 1). To conclude the proof we have to show that

these points lie on a plane curve of degree m = q2 − q + 1.

It is enough to observe that the points in X ∩ GK(Fq6) are

(xi, y, zj), i = 1, 2, 3, j = 1, . . . , q2 − q + 1,

with zq
2−q+1
j = yq

2 − y. Such 3(q2 − q + 1) points are contained in the

q2 − q + 1 lines sj of equations

sj :=

{
Y = y

Z = zj
.

Therefore X ∩ GK(Fq6) is contained also in Y =
⋃q2−q+1
j=1 sj .

Remark 5.7. Proposition 5.2 and [8, Theorem 4.2] allow us to compute the

gonality of the curve GK; see [38, Definition 9.49]. Since GK is a smooth

complete intersection curve of degree q3+1 in a projective space of dimension

three, its gonality is given by

γ(GK) = q3 + 1− (q2 − q + 1) = q3 − q2 + q;

see [8, Theorem 4.2]. Such a value is also the smallest non-gap at a point of

GK; see [9]. This information could help to construct lattices from function

fields; see [2].

5.3 Minimum distance and number of minimum

weight codewords of one point codes on the

Giulietti-Korchmáros curve

We first determine the minimum distance of the one point AG code CL(D,Gm)⊥,

whereGm = m(q3+1)P∞, P∞ = (1 : 0 : 0 : 0), andD =
∑

P∈GK(Fq6 )\{P∞} P ,

applying Theorem 3.16.

Proposition 5.8. The minimum distance d of CL(D,Gm)⊥, m ≥ 2, is

1. d = m+ 2 when m ≤2 −q − 1;
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2. d = 2m+ 2 when m = q2 − q;

3. d = 3m when m = q2 − q + 1;

4. d ≥ 3m+ 1 when q2 − q + 1 < m ≤2 −1;

5. d ≥ d∗ when m > q2 − 1,

where d∗ is the designed Goppa minimum distance of CL(D,Gm)⊥.

Proof. We apply Theorem 3.16.

1. By Proposition 5.2 there exist m + 2 ≤ q2 − q + 1 collinear points in

GK and therefore the minimum distance is d = m+ 2.

2. If m = q2−q then m+2 = q2−q+2 points of GK cannot be collinear.

Since there exist 2m+2 = 2(q2−q+1) points contained in a reducible

plane conic (see the proof of Proposition 5.4) the minimum distance

is exactly d = 2m+ 2 = 2(q2 − q + 1).

3. If m = q2 − q + 1 then no line contains m + 2 points and no plane

conic contains 2m + 2 points of GK. By Proposition 5.6 there exist

plane cubics with 3m points which are also contained in a curve of

degree m having no common components with the cubic. Therefore

the minimum distance is 3m = 3(q2 − q + 1).

4. If m > q2− q+ 1, none of the previous cases applies and therefore the

minimum distance is at least 3m+ 1.

5. It is enough to observe that 3m+1 is larger than the designed minimum

distance d∗ = m(q3 + 1)− q5 + 2q3 − q2 + 2 only when

3m+1 ≥ m(q3+1)−q5+2q3−q2+2 ⇐⇒ m ≤2 −2+
3q2 − 5

q3 − 2
⇐⇒ m ≤ q2−1.

Remark 5.9. It is worth noting that if q = 2 the above proposition can be ap-

plied for m = 2, 3. In these cases the codes C(D, 18P∞)⊥ and C(D, 27P∞)⊥

have minimum distance 6 and 9 and confirm [19, Table 2] (they are a

[224, 214, 6] and a [224, 206, 9]-code respectively).

If q = 3, the parameters of the codes corresponding to m = 2, . . . , 8 are

summarized in Table 5.1. In particular, k ≤ 6074 − 28(m − 7/2) − 1 and
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Table 5.1: Codes C(D, 28mP∞)⊥ for m = 2, . . . , 8, with q = 3

m Gm n k d

2 56P∞ 6074 ≤ 6074 4

3 84P∞ 6074 ≤ 6074 5

4 112P∞ 6074 ≤ 6059 6

5 140P∞ 6074 ≤ 6031 7

6 168P∞ 6074 ≤ 6003 14

7 196P∞ 6074 ≤ 5975 21

8 224P∞ 6074 = 5947 22

equality holds if deg(Gm) > 2g − 2, that is m ≥ 8. None of these codes is

better than the corresponding ones in [19, Table 4].

It would be very interesting to compare, in general, the improvements to

the designed minimum distance d∗ of a Goppa code given by the Feng-Rao

approach with those given by Theorem 3.16.

5.3.1 Number of minimum weight codewords

In this section we determine the number of minimum weight codewords in

CL(D,Gm)⊥, Gm = m(q3 + 1)P∞, in the case q − 1 ≤ m ≤ 2(q − 1).

Recall that for the code C(D,Gm)⊥ the designed Goppa minimum dis-

tance is

d∗ = deg (Gm)− 2g(GK) + 2 = m(q3 + 1)− q5 + 2q3 − q2 + 2.

Consider the ideal I = 〈Zq2−q+1−Y q2 +Y, Y q+1−Xq−X,Xq6−X,Y q6−
Y, Zq

6 − Z〉 of Fq6 [X,Y, Z] and let R = Fq6 [X,Y, Z]/I. Also, let

Bq,m =
{
XiY jZk + I | i ∈ [0, . . . , q − 1], j ∈ [0, . . . , q2 − q], k ∈ [0, . . . ,m]

}

and L = 〈Bq,m〉 ⊆ R. By [19], Bq,m induces, in the coordinate functions

x, y, z of Fq6(GK), a basis for the Riemann-Roch space L(Gm).

To count the exact number of the minimum weight codewords of C(D,mP∞)⊥

we use Proposition 3.18. Let w ≥ d
(
C(D,mP∞)⊥

)
. Using the same nota-
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tions, we consider the ideal Jw of Fq6 [X,Y, Z] given by

Jw =

〈{ w∑

i=1

uiX
r
i Y

s
i Z

t
i

}

XrY sZt+I∈Bq,m

,
{
Zq

2−q+1
i − Y q2i + Yi

}
i=1,...,w

,
{
Y q+1
i −Xq

i −Xi
}
i=1,...,w

,

{
Xq6−1
i − 1

}
i=1,...,w

,
{
Y q

6−1
i − 1

}
i=1,...,w

,
{
Zq

6−1
i − 1

}
i=1,...,w

,

{
((Xi −Xj)q

6−1 − 1)((Yi − Yj)q
6−1 − 1)((Zi − Zj)q

6−1 − 1)
}

1≤i<j≤w

〉
.

A point in V (Jw) is a 4w-tuple

(x̄1, . . . , x̄w, ȳ1, . . . , ȳw, z̄1, . . . , z̄w, ū1, . . . , ūw) ∈ F4w
q6

which corresponds to a set of w points (x̄i, ȳi, z̄i), i = 1, . . . , w, in GK(Fq6).

Theorem 5.10. Let q−1 ≤ m ≤ 2(q−1). The number of minimum weight

codewords in CL(D,Gm)⊥ is

Ad(CL(D,Gm)⊥) = (q + 1)(q5 − q3)(q6 − 1)

(
q2 − q + 1

m+ 2

)
.

Proof. By Proposition 3.18, we have to count the number 4d-tuples

(x̄1, . . . , x̄d, ȳ1, . . . , ȳd, z̄1, . . . , z̄d, ū1, . . . , ūd) ∈ F4d
q6

which differ in the first 3d coordinates, and such that z̄q
2−q+1
i = ȳq

2

i − ȳi,
ȳq+1
i = x̄qi + x̄i, and





ū1 + · · ·+ ūd = 0

x̄1ū1 + · · ·+ x̄dūd = 0

ȳ1ū1 + · · ·+ ȳdūd = 0

z̄1ū1 + · · ·+ z̄dūd = 0
...

x̄q−1
1 ȳq

2−q
1 zd−2

1 ū1 + · · ·+ xq−1
d ȳq

2−q
d zd−2

d ūd = 0.

(5.2)

To each tuple (x̄1, . . . , x̄d, ȳ1, . . . , ȳd, z̄1, . . . , z̄d, ū1, . . . , ūd) we can associate

d points (x̄i, ȳi, z̄i), i = 1, . . . , d, in GK(Fq6). Suppose that the number of

different values ȳi is α ≤ d ≤ q2−q. Without loss of generality, let ȳ1, . . . , ȳα

be pairwise distinct.

Suppose α > 1. Let Ii = {ȳj : ȳj = ȳi}, for i = 1, . . . , α. We may

suppose |I1| ≤ |I2| ≤ . . . ≤ |Iα| and let β = |I1|. Note that β ≤ d/2 ≤ q − 1
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since d ≤ 2(q − 1). System (5.2) contains the equations

ȳr1ū1 + · · ·+ ȳrdūd = 0,

x̄1ȳ
r
1ū1 + · · ·+ x̄dȳ

r
1ūd = 0,

...

x̄q−1
1 ȳr1ū1 + · · ·+ x̄q−1

d ȳr1ūd = 0,

for r = 0, . . . , α − 1. Let us define for i = 1, . . . , α, ui =
∑

j : yj=yi
ūj and

xr,si =
∑

j : yj=yi
x̄rj z̄

s
j ūj , r = 0, . . . , q − 1, s = 0, . . . , d− 2. The above set of

equations can be written as





u1 + · · ·+ uα = 0

ȳ1u1 + · · ·+ ȳαuα = 0

ȳ2
1u1 + · · ·+ ȳ2

αuα = 0
...

ȳα−1
1 u1 + · · ·+ ȳα−1

α uα = 0

,





xr,s1 + · · ·+ xr,sα = 0

ȳ1x
r,s
1 + · · ·+ ȳαx

r,s
α = 0

ȳ2
1x

r,s
1 + · · ·+ ȳ2

αx
r,s
α = 0

...

ȳα−1
1 xr,s1 + · · ·+ ȳα−1

α xr,sα = 0

.

Each of the previous systems can be seen as a system in the indeterminates

u1, . . . , uα, or xr,s1 , . . . , xr,sα . Such systems are Vandermonde systems with the

same coefficients. Since ȳ1, . . . , ȳα are pairwise distinct the unique solutions

is u1 = · · · = uα = xr,s1 = · · · = xr,sα = 0.

Among the elements of A := {x̄i : ȳi = ȳ1}, the number of distinct

elements is at most γ ≤ β ≤ q − 1. Suppose γ > 1. Let A = {xi1 , . . . , xiβ}.
Consider the systems u1 = x1,0

1 = · · · = xγ−1,0
1 = 0, . . . , u1 = x1,d−2

1 = · · · =
xγ−1,d−2

1 = 0.

Let Jj = {k : x̄ik ∈ A, x̄ik = x̄ij} and vrj =
∑

k∈Jj z̄
r
ik
ūik , j = 1, . . . , γ,

r = 0, . . . , d − 2. We may suppose that xi1 , . . . , xiγ are pairwise distinct.

The previous systems can be written as





vr1 + · · ·+ vrγ = 0
∑γ

j=1 x̄ijv
r
j = 0

∑γ
j=1 x̄

1
ij
vrj = 0

...
∑γ

j=1 x̄
γ−1
ij

vrj = 0

,

and it can been seen as a system in the indeterminates vr1, . . . , v
r
γ . Since

the coefficients x̄i1 , . . . , x̄iγ are pairwise distinct, the above system has as
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unique solutions vr1 = · · · = vrγ = 0, r = 0, . . . , d− 2. Since (x̄i1 , ȳi1) = · · · =
(x̄iγ , ȳiγ ), all the values z̄i1 , . . . , z̄iγ must be pairwise distinct. Therefore,

from 



ūi1 + · · ·+ ūiγ = 0

z̄i1 ūi1 + · · ·+ z̄iγ ūiγ = 0

z̄2
i1
ūi1 + · · ·+ z̄2

iγ
ūiγ = 0

...

z̄d−2
i1

ūi1 + · · ·+ z̄d−2
iγ

ūiγ = 0,

we get that the unique solution is ūi1 = · · · = ūiγ = 0, a contradiction.

This shows that α = 1, that is ȳ1 = · · · = ȳd. Using a similar argument

we can prove that x̄1 = · · · = x̄d and therefore the values z̄i, i = 1, . . . , d,

are pairwise distinct. In other words, all the points (x̄i, ȳi, z̄i), i = 1, . . . , d,

lie on a fixed line parallel to the z-axis. We conclude the proof computing

the exact number of solution of System (5.2). Since x̄1 = · · · = x̄d and

ȳ1 = · · · = ȳd this system reduces to





ū1 + · · ·+ ūd = 0

z̄1ū1 + · · ·+ z̄dūd = 0
...

z̄d−2
1 ū1 + · · ·+ z̄d−2

d ūd = 0.

(5.3)

By Proposition 5.3, we have (q + 1)(q5 − q3) different choices for the

(q2 − q + 1)-secant line r; we need d points Pi = (xi, yi, zi), i ∈ {1, . . . , d},
among r (up to permutations). So the total number of d-tuples of points is

(q + 1)(q5 − q3)

(
q2 − q + 1

d

)
d!.

The matrix of System (5.3) is a Vandermonde matrix and the solution space

has linear dimension 1: the number of ui’s is |F∗q6 | = q6 − 1 and finally

Ad =
(q + 1)(q5 − q3)(q6 − 1)

(
q2−q+1

d

)
d!

d!
= (q+1)(q5−q3)(q6−1)

(
q2 − q + 1

d

)
.

In the case 2(q − 1) < m < q2 − q − 1 we can give a lower bound on the

number of minimum weight codewords. If we consider d collinear points of
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the type (x̄, ȳ, z̄i), i = 1, . . . , d, then System (5.2) collapses to System (5.3)

(note that the z̄i’s must be pairwise distinct) and therefore the number of

the corresponding ui’s is |F∗q6 | = q6− 1. Using again Proposition 5.3 we can

prove the following.

Theorem 5.11. Let 2(q − 1) < m < q2 − q − 1. The number of minimum

weight codewords in CL(D,Gm)⊥ is at least:

Ad(CL(D,Gm)⊥) ≥ (q + 1)(q5 − q3)(q6 − 1)

(
q2 − q + 1

d

)
.



5.4 Garcia-Güneri-Stichtenoth Curve

Our aim in this section is to generalize their result obtained in the previous

one to the GGS curve, so we will study the intersection between lines and

the Garcia-Güneri-Stichtenoth curve. Unfortunately, the generalization of

the GK curve has a singularity, so we cannot apply the same tools used

before: we will only find an upper bound for minimum distance of one point

codes on the GGS curve.

Let n ≥ 3 be an odd integer, consider the curve Cn over Fq2n defined by

the following equations:

Cn :




Y q+1 = Xq +X

Zm = Y q2 − Y,
(5.4)

where m = (qn + 1)/(q + 1).

Note that the first equation defines a maximal curve in PG(2, q2n) since

it is the Hermitian curve and n is odd.

The curve defined by the second equation was shown to be maximal in

PG(2, q2n) for any odd n ≥ 3 by Abdón, Bezerra and Quoos; see [1].

From what we said before Cn is a fibre product of two maximal curves

over Fq2n and we will see that Cn itself is maximal over Fq2n .

Note that C3 defines GK, so the Giulietti-Korchmáros curve is a special

case of the curve define in (5.4).

Let n ≥ 5, then the inequality m ≥ q2 holds for any power of a prime q.

We consider the homogenization of (5.4):




Xq+1

2 = Xq
1X0 +X1X

q
0

Xm
3 = Xq2

2 Xm−q2
0 −X2X

m−1
0

(5.5)

If X0 = 0, then X2 = X3 = 0 so the only point at the infinity is P∞ = [0 :

1 : 0 : 0]. This is the only singular point of Cn, because the Jacobian matrix

J =

[
−Xq

1 −Xq
0 Xq

2 0

−Xm−q2−1
0 Xq2

2 0 Xm−1
0 Xm−1

3

]

has rank one only for X0 = 0, which occurs only for P∞.

Theorem 5.12 (Theorem 3.22, [33]). Let n ≥ 5 odd, Aut(Cn) fixes the point
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at the infinity on Cn and is isomorphic to Γ = QoΦ Σ, where

Qa,b =




1 bq a

0 1 b

0 0 1


 , gζ(x, y, z) = (ζq

n+1x, ζmy, ζz)

Q = {Qa,b : a, b ∈ Fq2 aq + a = bq+1} and Σ = {gζ : ζ is a (qn + 1)(q −
1)-th root of unity}.

5.5 Intersection between the GSS curve and lines

We study the intersection between a line r and the curve C = Cn in the

three-dimensional projective space over Fq2n . In particular we are interested

in the lines that are maximal secants.

Let r be a secant to Cn.

Suppose that P∞ = [0 : 1 : 0 : 0] belongs to r ∩ C. Let P = [1 : x : y : z]

a different point of r ∩ C. Each point on the line r can be written in the

parametric form Q = µP + λP∞ = [µ : µx+ λ : µy : µz], where µ, λ ∈ Fq2n .

Our aim is to count the number of points Q that lie also on C.
If µ = 0 we have Q = P∞, so we can take µ 6= 0. We can divide by µ

and write Q = [1 : x + ν : y : z], where ν = λ/µ ∈ Fq2n . The point P is a

point of the curve C, in particular yq+1 = xq + x. If Q ∈ C then from the

first equation in (2)

yq+1 = (x+ ν)q + (x+ ν)

yq+1 = xq + νq + x+ ν

νq + ν = 0.

This last equation has at most q solutions, so we have at most q different

intersections. Thus a secant line through P∞ intersects the curve C in at

most q + 1 different points.

Since the GSS curve has only one point at infinity, we now work in the

affine space: we suppose r is a line that does not intersect P∞.

Let P1 = (x1, y1, z1), P2 = (x2, y2, z2) be two distinct points in r ∩ C. We

have the equations:



yq+1

1 = xq1 + x1

zm1 = yq
2

1 − y1




yq+1

2 = xq2 + x2

zm2 = yq
2

2 − y2

(5.6)
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A generic point of the line r trough P1 and P2 is

P3 = P1 + λP2P1 = ((1− λ)x1 + λx2, (1− λ)y1 + λy2, (1− λ)z1 + λz2)

for some λ ∈ Fq2n . If P3 ∈ C, then

[(1− λ)y1 + λy2]q+1 = [(1− λ)x1 + λx2]q + [(1− λ)x1 + λx2]

λq+1(y2 − y1)q+1 + λq(y1y
q
2 − x1 − xq2) + λ(yq1y2 − xq1 − x2) = 0

where we used the equations in (3). If one of (y2 − y1), (y1y
q
2 − x1 − xq2),

(yq1y2 − xq1 − x2) is non-zero, the last is a non-trivial equation in λ with at

most q+ 1 solutions. Thus in this case there are at most q+ 1 points in the

intersection r ∩ C.

If y2−y1 = y1y
q
2−x1−xq2 = yq1y2−xq1−x2 = 0 then y1 = y2 and x1 = x2;

the line has equation

r :




X = x1

Y = y1

with yq+1
1 = xq1 + x1. Moreover we have y1 /∈ Fq2 . Indeed, if y1 ∈ Fq2 , then

yq
2

1 − y1 = 0 and z1 = z2 = 0, so the only point in the intersection between

r and C is P = (x1, y1, 0). Let γ = yq
2

1 − y1 6= 0. The points in r ∩ C are

all the points of the form P = (x1, y1, z) with zm = γ, z ∈ Fq2n . Since in

Fq2n there is a primitive m-th root of unity, namely ζ, then if z1 6= 0 is a

solution, also ζkz is a solution for k = 1, . . . ,m− 1.

Thus the equation Zm − γ = 0 has exactly m distinct solutions in Fq2n
and |r ∩ C| = m.

Theorem 5.13. Let r ⊂ P3
q2n be a line. If r is parallel to the Z-axis then

|r ∩ C| ∈ {0, 1,m}. Moreover

(i) if r is m-secant all the m common points are not Fq2-rational;

(ii) if r is not parallel to the Z-axis, it has at most q+1 points in common

with the curve C.

Note that, since the number of line parallel to the Z axis in P3
q2n is q2n

and the number of Fq2n-rational points of Cn is N = q2n + 2gqn + 1 > q2n,

there exist at least one line with m points of intersection with the curve Cn.
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5.6 On the minimum distance of one point codes

arising from the GGS curve

Denote by C the GGS curve with the following parameters: q a power of a

prime and n ≥ 5 an odd integer. Let D denote the divisor constructed by

the formal sum of all the affine points of C,

D =
∑

P∈C\{P∞}
P.

Let C` = CL(D, `P∞) the evaluation code associated with the divisors D

and G = `P∞. Its dual code is CΩ(D, `P∞).

In [32] the authors showed that a basis for the Riemann-Roch space

L(`P∞) is given by

B` = {XiY jZk | i(qn + 1) + jmq + kq3 ≤ `, 0 ≤ i < q, 0 ≤ j < q2, k ≥ 0}.

Example 5.14. We have that

1. the set {1, Z} forms a basis for L(q3P∞).

2. the set {1, Y, Z, . . . , Zs}, with s =
⌊
m
q2

⌋
, forms a basis for L(mqP∞).

3. the set {1, X, Z, . . . , Zs, Y, Y Z, . . . , Y Zr}, with s =
⌊ qn+1

q3

⌋
and r =

bm
q3

⌋
, forms a basis for L((qn + 1)P∞).

Note that the monomial with the highest degree in the basis B` is zs, with

s =
⌊
`
q3

⌋
.

A generator matrix for C` is

G =




1 1 · · · 1
...

...
...

...

XiY jZk(P1) XiY jZk(P2) · · · XiY jZk(Pn)
...

...
...

...




where P1, . . . , Pn are all the affine points in C and every row ofG is associated

to a different elements of B`.

We use the result on the intersections between lines and the GGS curve

to find an upper bound on the minimum distance of the code CΩ(D, `P∞).
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Theorem 5.15. Let ` ≤ q3(m − 2) and s =
⌊
`
q3

⌋
be two non-negative

integers. Let d denote the minimum distance of the code C⊥` = CΩ(D, `P∞).

Then

d ≤ s+ 2.

Proof. Let ` ≤ q3(m − 2), then s ≤ m − 2. By Theorem 5.13 we have that

there is a line, parallel to Z, that intersect the curve C in m points. Choose

s+ 2 distinct points on this line, namely

Q1 = (a, b, c1), . . . , Qs+2 = (a, b, cs+2).

We claim that the columns associated to the Qi are linearly dependent.

Consider the submatrix M given by the columns associated to the Qi. Since

the points have the same X and Y coordinate we have that a line associated

to the monomial XiY jZk is a multiple of the line associated to the monomial

Zk. Hence the submatrix M has at most s + 1 linearly independent row

equivalently the columns of M are linearly dependent.

We found s + 2 columns of G that are linearly dependent, so we have

that there is a word of weight less or equal than s+ 2 in the dual code C⊥` .

Hence the distance d is limited from above by s+ 2.



Chapter 6

Intersections between the

Norm-Trace curve and some

low degree curves

As we have seen in the previous chapter the determination of the inter-

section of a given curve and curves with low degree is often useful for the

determination of useful information of the algebraic-geometric codes arising

from the curve; see [4, 5, 16,50,51].

The Norm-Trace curve, already introduced in the fourth chapter, is a

natural generalization of the Hermitian curve to any extension field Fqr and

it has been widely studied for coding theoretical purposes; see [4, 20, 26, 45,

52,57].

In this chapter, we focus our attention on Norm-Trace curves, we deter-

mine the intersection between the Norm-Trace curve over Fq3 and the curves

of the form y = ax3 + bx2 + cx + d giving a complete characterization of

the intersection between the curve and the parabolas and sharp bounds for

the other cases. We use it to deduce the weight distribution of the corre-

sponding one point codes arising from the Norm-Trace curve. To do so we

use geometrical techniques coming from the properties of irreducible cubic

surfaces over finite fields.

81
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6.1 Preliminary Results

Let q be a power of a prime and consider Fq, the finite field with q elements.

Let C ⊂ (Fq)n be a linear subspace, then C is a linear code and we will

indicate, as usual, with [n, k, d] its parameters, where d is its Hamming min-

imum distance. We define once again the Norm-Trace curve, for simplicity

in this chapter we just call it N .

6.1.1 The Norm-Trace curve

The Norm-Trace curve N is the plane curve defined over Fqr by the affine

equation

x
qr−1
q−1 = yq

r−1
+ yq

r−2
+ · · ·+ yq + y. (6.1)

The norm N
Fqr
Fq and the trace T

Fqr
Fq are two well-known functions from Fqr

to Fq such that

N
Fqr
Fq (x) = x

qr−1
q−1 = xq

r−1+qr−2+···+q+1

and

T
Fqr
Fq (x) = xq

r−1
+ xq

r−2
+ · · ·+ xq + x.

When q and r are understood, we will write N = N
Fqr
Fq and T = T

Fqr
Fq .

The equation x
qr−1
q−1 = yq

r−1
+ yq

r−2
+ · · · + yq + y has precisely q2r−1

solutions in A2 (Fqr), so the curve N has q2r−1 + 1 rational points: q2r−1 of

them are affine points plus a single point at the infinity P∞.

If r = 2 N coincides with the Hermitian curve and if r ≥ 3 N is sin-

gular in P∞. Moreover it is known that its Weierstrass semigroup in P∞ is

generated by
〈
qr−1, q

r−1
q−1

〉
.

Our main aim is the study of the intersection between N and the cubics

of the form y = ax3 + bx2 + cx + d, where a, b, c, d ∈ Fqr . In particular

we focus on the intersections between N and parabolas. The case r = 2 is

completely investigated in [17, 50], so we deal with the more difficult case

r ≥ 3.

6.1.2 Algebraic-Geometric Codes

In this section we introduce some basics notions on AG codes. For a detailed

introduction we refer to [65].
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Let N be a projective curve over the finite field Fq, consider the rational

function field Fq(N ) and the set N (Fq) = {P1, . . . , PN} given by the Fq-
rational places of N . Given an Fq-rational divisor D =

∑
i=1,...,nmiPi,

where n < N , the Riemann-Roch space associated to D on N is the vector

space L(D) over Fq defined as

L(D) = {f ∈ Fq(N ) | (f) +D ≥ 0} ∪ {0}.

It is known that L(D) is a finite dimensional Fq-vector space and the exact

dimension can be computed using the Riemann-Roch theorem. We write

`(D) = dimFq L(D).

Consider now the divisor D =
∑

P∈S P , S = {P1, . . . ,Pn} ( N (Fq),
where all the P ’s have weight one. Let G be another Fq-rational divisor

such that supp(G) ∩ supp(D) = ∅. Consider the evaluation map

ev : L(G)→ (Fq)n ev(f) = (f(P1), . . . , f(Pn)).

This map is Fq-linear and it is injective if n > deg(G).

The AG-code CL(D,G) associated with the divisors D and G is then

defined as ev(L(G)). It is well known that `(G) > `(G − D) and that

CL(D,G) is an [n, `(G) − `(G −D), d]q code, where d ≥ d∗ = n − deg(G),

with d∗ is the so called designed minimum distance of the code.

6.2 Intersections between N and y = A(x)

Our aim is to find out the intersection over Fq3 of N with the curve defined

by the polynomial y = A(x) of degree h, so A(x) = Ahx
h + · · ·+A0, where

Ah 6= 0 and Ai ∈ Fqr . More precisely, given two curves N and Y lying in the

affine space A2(Fqr) we call planar intersection (or simply intersection) the

number of points in A2(Fqr) that lie in both curves, disregarding multiplicity.

Substituting y = A(x) in the equation of the Norm-Trace curve, we get, by

the linearity of T,

N(x) = T(Ahx
h) + · · ·+ T(A1x) + T(A0).

Given a linear basis B = {w0, . . . , wr−1} of Fqr with respect to Fq, we

know that there is a vector space isomorphism ΦB : (Fq)r → Fqr such that

ΦB(s0, . . . , sr−1) =
∑r−1

i=0 siwi. If we consider the maps N,T: Fqr → Fq, we
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can interpret them from (Fq)r to Fq in this way

Ñ : (Fq)r → Fq T̃ : (Fq)r → Fq
Ñ = N ◦ ΦB T̃ = T ◦ ΦB

and call Ti := T(Aix
i) and T̃i := Ti ◦ ΦB, 1 ≤ i ≤ h. From now on, we will

take as B a normal basis, i.e. a basis B = {α, αq, . . . , αqr−1}. We know that

such a basis exists, see [46, Theorem 2.35]. A simple manipulation shows

that Ñ and T̃i are homogeneous polynomials of degree respectively r and i

in Fq[x0, . . . , xr−1]. Therefore

Ñ(x0, . . . , xr−1) = T̃h(x0, . . . , xr−1) + · · ·+ T̃1(x0, . . . , xr−1) +D (6.2)

which is the equation of a hypersurface of Ar(Fq), where D = T(A0). Notice

that the LHS has degree r, while the RHS has degree h.

6.3 Case r = 3 and h = 2

We are interested in this case to find the number of possible intersections

between the Norm-Trace curve and the parabolas. By parabola we mean a

curve y = Ax2 + Bx + C, A,B,C ∈ Fq3 and A 6= 0. These numbers help

to determine some weights for the corresponding AG code, see Section 6.

From now on, B = {α, αq, αq2}.
Specializing to y = Ax2 +Bx+ C, equation (6.2) becomes

Ñ(x0, x1, x2) = T̃2(x0, x1, x2) + T̃1(x0, x1, x2) +D (6.3)

The map Φ−1
B : Fq3 → (Fq)3 induces a correspondence between Fq[x0, x1, x2]

and Fq3 [x] such that we can substitute x with x0α + x1α
q + x2α

q2 and x2

with

x2
0α

2 + x2
1α

2q + x2
2α

2q2 + 2x0x1α
q+1 + 2x0x2α

q2+1 + 2x1x2α
q2+q

and the following results holds.

Remark 6.1. Chosen two elements A = A0α + A1α
q + A2α

q2 and B =

B0α+B1α
q +B2α

q2 then

T(AB) = A0B0 +A1B1 +A2B2
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Proof.

T(AB) = T((A0α+A1α
q +A2α

q2)(B0α+B1α
q +B2α

q2))

= T(A0B0α
2 +A0B1α

q+1 +A0B1α
q2+1 +A1B0α

q+1 +A1B1α
2q +A1B2α

q2+q +A2B2α
2q2)

= A0B0 +A1B1 +A2B2

Using these relations we want to write down the explicit equation of the

surface (6.3).

T̃1 = B(x0α+ x1α
q + x2α

q2) +Bq(x0α
q + x1α

q2 + x2α) +Bq
2

(x0α
q2 + x1α+ x2α

q)

= x0T(αB) + x1T(αBq
2

) + x2T(αBq)

T̃2 =A(x0α+ x1α
q + x2α

q2)2 +Aq(x0α
q + x1α

q2 + x2α)2 +Aq
2

(x0α
q2 + x1α+ x2α

q)2

=x20T(Aα2) + x21T(Aα2q) + x22T(Aα2q2) + 2x0x1T(Aαq+1) + 2x0x2T(Aαq
2+1) + 2x1x2T(Aαq

2+q)

Ñ =(x0α
q2 + x1α+ x2α

q)(x0α
q + x1α

q2 + x2α)(x0α+ x1α
q + x2α

q2)

=(x30 + x31 + x32)N(α) + (x20x1 + x21x2 + x22x0)T(αq+2) + (x20x2 + x21x0 + x22x1)T(α2q+1)

+ x0x1x2(3N(α) + T(α3))

Therefore (6.3) becomes

0 =− (x30 + x31 + x32)N(α)− (x20x1 + x21x2 + x22x0)T(αq+2)− (x20x2 + x21x0 + x22x1)T(α2q+1)

− x0x1x2(3N(α)− T(α3)) + x20T(Aα2) + x21T(Aα2q) + x22T(Aα2q2) + 2x0x1T(Aαq+1)

+ 2x0x2T(Aαq
2+1) + 2x1x2T(Aαq

2+q) + x0T(αB) + x1T(αBq
2

) + x2T(αBq) +D

(6.4)

and we call S1 = S1(Fq) the surface having this equation, which is clearly

defined over Fq. Here and in the following, if N is a surface or a curve, we

denote with N (Fq) only its affine Fq-rational points.

Remark 6.2. By construction the Fq-rational points of S1, i.e. the points in

S1(Fq), correspond to the intersections in A2(Fq3) between the Norm-Trace

curve and the parabola y = Ax2 +Bx+ C.

Equation (6.4) can be also written as

0 =− (x0α+ x1α
q + x2α

q2)(x0α
q + x1α

q2 + x2α)(x0α
q2 + x1α+ x2α

q) +A(x0α+ x1α
q + x2α

q2)2

+Aq(x0α
q + x1α

q2 + x2α)2 +Aq
2

(x0α
q2 + x1α+ x2α

q)2 +B(x0α+ x1α
q + x2α

q2)

+Bq(x0α
q + x1α

q2 + x2α) +Bq
2

(x0α
q2 + x1α+ x2α

q) +D.
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If we apply the following linear change of coordinates in GL(3,Fq)




X0 = x0α+ x1α
q + x2α

q2

X1 = x0α
q + x1α

q2 + x2α

X2 = x0α
q2 + x1α+ x2α

q

we obtain a new surface S2 = S2(Fq), defined over Fq3 , with equation

X0X1X2 = AX2
0 +AqX2

1 +Aq
2
X2

2 +BX0 +BqX1 +Bq2X2 +D. (6.5)

Note that this change of coordinates is bijective since its associated ma-

trix is

M =



α αq αq

2

αq αq
2

α

αq
2

α αq




which is a Moore matrix, and its determinant is different from zero since

we are dealing with three linearly independent elements, see [46, Corollary

2.38].

Remark 6.3. Clearly, all the Fq-rational points of S1 are mapped to all Fq3-

rational points of S2 of the form (β, βq, βq
2
), β ∈ Fq3 . Similarly, Fq-rational

lines contained in S1 are mapped to Fq3-rational lines contained in S2 hav-

ing direction (β, βq, βq
2
), β ∈ Fq3 . The affinity preserves the absolutely

irreducible components of the surfaces and the singularities, since it is in

GL(3,Fq).

Proposition 6.4. S1 is an absolutely irreducible cubic surface.

Proof. By Remark 6.3 it is sufficient to prove that S2 is absolutely irre-

ducible. We proceed by contradiction. If S2 is reducible, since its degree is

three, then it must contain a plane. In this case we would have

(h0X
2
0 + h1X

2
1 + h2X

2
2 + h3X0X1 + h4X0X2 + h5X1X2 + h6X0 + h7X1 + h8X2 + h9)·

(k0X0 + k1X1 + k2X2 + k3) = X0X1X2 −AX2
0 −AqX2

1 +−Aq2X2
2 −BX0 −BqX1 −Bq

2

X2 −D
(6.6)

where hi, kj ∈ Fq, i ∈ {0, . . . , 9} and j ∈ {0, . . . , 3}, and at least one

among h0, . . . , h5 nonzero and at least one of k0, k1, k2 nonzero. Applying

the identity principle for polynomials to the third degree terms, we obtain
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h0k0 = h1k1 = h2k2 = 0

h0k1 + h3k0 = h0k2 + h4k0 = 0

h1k0 + h3k1 = h1k2 + h5k1 = 0

h2k0 + h4k2 = h2k1 + h5k2 = 0

h3k2 + h4k1 + h5k0 = 1

(6.7)

There are three possibilites (up to a permutation of the indices):

1. k0 6= 0 and k1 = k2 = 0. We have that h0 = 0 and (6.7) becomes




h3k0 = h4k0 = 0

h1k0 = 0

h2k0 = 0

h5k0 = 1

which means h1 = h2 = h3 = h4 = 0 and h5 6= 0. At this point (6.6)
becomes

(h5X1X2+h6X0+h7X1+h8X2+h9)(k0X0+k3) = X0X1X2−AX2
0−AqX2

1−Aq
2

X2
2−BX0−BqX1−Bq

2

X2−D

and since Aq 6= 0 and the LHS does not contain any X2
1 term we have

that this cannot happen.

2. k0, k1 6= 0 and k2 = 0. We have that h1 = h2 = 0 and (6.7) becomes




h3k0 = h4k0 = 0

h3k1 = h5k1 = 0

h2k0 = h2k1 = 0

h4k1 + h5k0 = 1

which means h2 = h3 = h4 = h5 = 0 and this is a contradiction;

3. k0, k1, k2 6= 0. We have that h0 = h1 = h2 = 0 and (6.7) becomes




h3k0 = h4k0 = 0

h3k1 = h5k1 = 0

h4k2 = h5k2 = 0

h3k2 + h4k1 + h5k0 = 1

which means h2 = h3 = h4 = h5 = 0 and this is a contradiction.
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What we want to do now is to estimate the number of Fq-rational points

of S1. Since they correspond to the intersections between N and y = Ax2 +

Bx+ C, by applying the Bézout theorem we get that

|S1(Fq)| ≤ 2(q2 + q + 1).

This bound can be improved, as we will see. Using the fact that the surface

is irreducible, we can apply the well-known Lang-Weil bound.

Theorem 6.5 ( [47]). Given nonnegative integers n, d and r, with d > 0,

there is a positive constant A(n, d, r) such that for every finite field Fq, and

every irreducible subvariety N ⊆ Pn(Fq) of dimension r and degree d, we

have

||N (Fq)| − qr| ≤ (d− 1)(d− 2)qr−
1
2 +A(n, d, r)qr−1

Corollary 6.6. The number of Fq-rational points on the surface S1(Fq) is

limited by

q2 + 2q
3
2 +A(3, 3, 2)q.

This bound is better than Bézout’s, and other theoretical estimates are

known (see [12]), but we want to improve the estimation and arrive at a

bound in the form

S1(Fq) ≤ q2 + ηq + µ

where µ < q and η is upper bounded by a constant (independent from q and

µ). Experimentally we found the following

Fact 6.7. For q ∈ {2, . . . , 29} it is |η| ≤ 2 and µ = 1.

Conjecture 1. |η| ≤ 2 and µ = 1 for all q.

Let us recall some previous results

Theorem 6.8 (Theorem 27.1, [49]). Let S be a cubic surface over Fq. If S
is birationally trivial then

|S(Fq)| ≡ 1 mod q.

In the case in which S1 is smooth we also know the possible values for

|S1(Fq)|.
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Theorem 6.9 (Theorem 23.1, [49]). Let S be a smooth irreducible cubic

surface over Fq, then the number of points of S(Fq) is exactly

|S(Fq)| = q2 + ηq + 1

where η ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 7}.

Theorem (6.9) suggests us to to consider separately the case in which

S1 is smooth from the case in which it is singular, indeed (6.9) gives a good

bound for the smooth case.

6.4 Preliminaries on the singular case

From now on we investigate when S1 is singular. We start with observing

that the possible singular points can only be isolated double points, since

S1 is a cubic irreducible surface. In this context the following result is very

helpful.

Theorem 6.10 ( [13]). Let S ⊂ P3(K) be a singular irreducible cubic surface

defined on the field K. Let S̄ = S(K) be the surface defined by S over K,

the algebraic closure of K. Let δ be the number of isolated double points of

S̄. Then δ ≤ 4 and S is birationally equivalent (over K) to

(i) P2(K) if δ = 1, 4;

(ii) a smooth Del Pezzo surface of degree 4 if δ = 2;

(iii) a smooth Del Pezzo surface of degree 6 if δ = 3.

Recall that a smooth Del Pezzo surface is a smooth projective surface

V whose anticanonical class is ample. Many arithmetic properties of these

surfaces were investigated by Manin; see [49].

What we want to do now is to find a bound in the desired form for the

four possible cases of singularities (δ = 1, 2, 3, 4).

Clearly the singular points on S2 correspond to the solutions of




X0X1X2 = AX2
0 +AqX2

1 +Aq
2
X2

2 +BX0 +BqX1 +Bq2X2 +D

X1X2 = 2AX0 +B

X0X2 = 2AqX1 +Bq

X0X1 = 2Aq
2
X2 +Bq2

(6.8)
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Remark 6.11. Since S1 is defined over Fq if P ∈ S1(Fq) is a singular point

then its conjugates with respect to the Frobenius automorphism are singular.

Remark 6.12. Notice also if a singular point of S2 is Fq6-rational the corre-

sponding singularity of S1 will be Fq2-rational.

Before delving into the classification of the four cases arising from differ-

ent values of δ, we need to examine separately the case B = 0, which turns

out ot be special.

6.4.1 Case B=0

In this case the singularities of the surface correspond to the solutions of




X0X1X2 = AX2
0 +AqX2

1 +Aq
2
X2

2 +D

X1X2 = 2AX0

X0X2 = 2AqX1

X0X1 = 2Aq
2
X1

(6.9)

A direct computation leads to the fact that if (x̄0, x̄1, x̄2) 6= (0, 0, 0) is a

singular point, then each x̄i is different from zero.

Proposition 6.13. The possible singular case for B = 0 are

(i) P = (0, 0, 0) is the only singular point, this happens if and only if

D = 0;

(ii) q is odd and δ = 4, this happens if and only if −D
A is a square.

Proof. Direct computations show that (i) comes from Equation (6.9), so

we are left with the case q odd and (0, 0, 0) not singular. Substituting the

derivatives into the equation that defines the surface we get




−AX2
0 +AqX2

1 +Aq
2
X2

2 +D = 0

AX2
0 −AqX2

1 +Aq
2
X2

2 +D = 0

AX2
0 +AqX2

1 −Aq
2
X2

2 +D = 0.

Summing pairwise the equations gives us





2AX2
0 + 2D = 0

2AqX2
1 + 2D = 0

2Aq
2
X2

2 + 2D = 0
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and, since q is odd and A 6= 0, we can deduce the system





X2
0 = −D

A

X2
1 = − D

Aq

X2
2 = − D

Aq2

(6.10)

The fact that β ∈ Fq is a square if and only if βq is a square implies

that all the equations of (6.10) are solvable if and only if the first one is.

Therefore (6.10) is solvable if and only if −D
A is a square.

Suppose that −D
A is a square, −D

A = γ2. From the equation of the

surface it follows that S2 has four singularities of the form (γ, γq, γq
2
),

(γ,−γq,−γq2), (−γ, γq,−γq2), (−γ,−γq, γq2).

Remark 6.14. Notice that in case D 6= 0 and −D
A square, the four singular

points cannot be all conjugates with respect to the Frobenius automorphism.

6.4.2 One singular point

From now on we can consider B 6= 0. From Remark 6.11 if S1 has one

singular (double) point P then P has to be Fq-rational, otherwise also its

conjugate should be singular. Consider now the sheaf of Fq-rational lines

passing through P : each line, not contained in S1(Fq), can intersect S1(Fq)
in at most one more point since P is a double point and S1 has degree three.

So the number of Fq-rational points of S1 is given by

|S1(Fq)| ≤ (q2 + 1) + h(q − 1) = q2 + hq + 1− h

where h is the number of lines contained in S1 and passing through P .

Proposition 6.15. With the same notation as before we have h = 0.

Proof. We want to give a bound for the maximal number of (Fq-rational)

lines fully contained in S1 and passing through P . For simplicity we proceed

with the computations on S2, since the number of these lines will be the

same. Suppose the corresponding singular point Q on S2 has coordinates

(a, aq, aq
2
). Then, since it is the only singular point, we have that Q is

the only point that satisfies (6.8). Consider now the sheaf of lines passing
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through Q, which has parametric equation, for b 6= 0




X0 = bt+ a

X1 = bqt+ aq

X2 = bq
2
t+ aq

2

and after doing the substitution we get that, if the line is contained into S2,

p3t
3 + p2t

2 + p1t

has to be the zero polynomial in Fq[t], where

p3 = bq
2+q+1

p2 = −Ab2 − (Ab2)q − (Ab2)q
2

+ bq+1aq
2

+ bq
2+1aq + bq

2+qa

p1 = −2Aab− 2(Aab)q − 2(Aab)q
2 −Bb− (Bb)q − (Bb)q

2

+ baq
2+q + bqaq

2+1 + bq
2

aq+1

From the fact that p3 = 0 we have that N(b) has to be equal to zero, but

this means that b is equal to zero, which is a contradiction.

Putting together the previous observations we have the following result.

Proposition 6.16. If S1 has one singular Fq-rational point then

|S1(Fq)| ≤ q2 + 1. (6.11)

6.4.3 Two singular points

Call P1 and P2 the two singular points of S1, from Remark 6.11 there are

two possibilities:

(i) P1 and P2 are Fq-rational;

(ii) P1 and P2 are Fq2-rational and conjugates.

If (i) happens then (6.11) holds and we can use that bound.

We look for a bound when (ii) happens: call r the line passing through

P1 and P2, since it fixes the conjugate points then it has to be Fq-rational

and moreover this line has to be contained in S1(Fq) since the intersection

multiplicity of this line is at least 2 in both P1 and P2 and the surface has

degree 3. Now consider the pencil of planes passing through r and consider

the cubic curve C defined as intersection between any of these planes and

S1. Clearly C is reducible and there are two possible situations
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1. C is completely reducible. In this case C is the product of three lines

contained in the surface. Call s and s′ the two lines different from r:

s and s′ cannot be Fq-rational since they do not fix the conjugates, so

they are Fq2-rational. From the fact that they are contained in S1 and

they pass through conjugate points we have that s′ = sq. From this

fact we have that the number of Fq-rational points on C \ r is 1 and

that point is s ∩ s′.

2. C is the product of r and an irreducible conic D contained in the surface

and it contains exactly q points, see [40, Lemma 7.2.3]. In this case

the number of Fq rational points of D not contained in r is exactly

q − 2.

From the analysis of the two possible cases, recalling that the maximum

number of lines contained in a cubic surface is 27 (see [49, Chapter IV]), the

first situation can happen at most in 13 cases, and so we have:

q + (q − 13)(q − 2) + 13 ≤ |S1(Fq)| ≤ q(q − 2) + q

Putting together the previous observations we have the following result.

Proposition 6.17. If S1 has two singular Fq2-rational conjugate points then

q2 − 14q + 39 ≤ |S1(Fq)| ≤ q2 − q. (6.12)
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6.4.4 Three singular points

Call P1, P2 and P3 the singular points of S1, from Remark 6.11 we have the

following configurations:

(i) At least one among P1, P2 and P3 is Fq-rational;

(ii) P1, P2 and P3 are Fq3-rational and conjugates.

If (i) happens then (6.11) holds, so our task now is to find a bound when

(ii) happens.

We start with observing that the three points cannot be collinear, which

comes directly from the following proposition.

Proposition 6.18. Let C be a cubic curve such that it has three double

points. Then C is completely reducible and splits in the product of three

lines, each passing through a pair of its singular points.

Proof. Direct consequence of Bézout’s theorem.

In order to get an estimation of |S1(Fq)| for (ii) we change the model of

the surface as the following proposition suggests.

Proposition 6.19. Let S be a cubic surface over P3(Fq), considered with

projective coordinates [r0 : r1 : r2 : T ], and such that it has exactly three con-

jugates Fq3-rational double points, namely P1, P2 and P3. Then S is projec-

tively equivalent to the surface having affine equation, for certain β, γ ∈ Fq3

r0r1r2 + βr0r1 + βqr1r2 + βq
2
r0r2 + γr0 + γqr1 + γq

2
r2 = 0.

Proof. Up to a change of projective frame we can consider the following

situation

• The plane passing trough the three points is the plane at the infinity

T = 0 and the triangle of lines through them in that plane is given by

r0, r1 and r2;

• O = (0 : 0 : 0 : 1) ∈ S.

From these choices we obtain the following equation for the surface S

r0r1r2+T (α0r
2
0+α1r

2
1+α2r

2
2+β0r0r1+β1r1r2+β2r0r2)+T 2(γ0r0+γ1r1+γ2r2) = 0

where αi, βi, γi ∈ Fq3 for i ∈ {0, 1, 2}. From the fact that P1, P2 and P3 are

conjugates it follows that r0, r1 and r2 are conjugates and then we get that α1 = αq0,
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α2 = αq
2

0 , β1 = βq0 , β2 = βq
2

0 , γ1 = γq0 and γ2 = γq
2

0 . Consider now the plane π

passing trough P1, P2 and O. Without loss of generality, P1 is the singular point

satisfying T = r1 = r2 = 0, then its coordinates will be P1 = (p1, p2, p3, 0). Consider

now the line, namely s passing through P1 and O. A general point on that line has

coordinates Pλ,µ = (λp0, λp1, λp2, µ). Substituting the coordinates of Pλ,µ into the

equation of S we obtain

0 = α0λr
2
0(Pλ,µ) + β0λ

2r0(Pλ,µ) = λ(α0r
2
0(Pλ,µ) + β0λr0(Pλ,µ)).

Now since r0(P1) 6= 0 and we want (0, µ) as double solution then α0 = 0. Iterating

this process the equation of the surface becomes

r0r1r2 + T (β0r0r1 + βq0r1r2 + βq
2

0 r0r2) + T 2(γ0r0 + γq0r1 + γq
2

0 r2) = 0.

We want to reduce the problem of counting the points in the form

(α, αq, αq
2
) on the cubic surface to the problem of counting the points in

the same form on a certain quadric. To achieve the result we apply the

Cremona transform, call

z1 :=
1

r1
z2 :=

1

r2
z3 :=

1

r3
,

dividing the equation of the surface by r1r2r3 we obtain

Q : βz3 + βqz1 + βq
2
z2 + γz2z3 + γqz1z3 + γq

2
z1z2 − 1 = 0.

Note that if γ = 0 then Q collapse to a plane.

Proposition 6.20. The quadric surface Q is absolutely irreducible.

Proof. If γ = 0 there is nothing to prove, since Q is a plane. Suppose γ 6= 0
and that Q splits in the product of two planes π1 and π2, then

βz3+βqz1+βq
2

z2+γz2z3+γqz1z3+γq
2

z1z2−1 = (a1z1+a2z2+a3z3+a4)(d1z1+d2z2+d3z3+d4).

From the identity principles of polynomials we get that a1d1 = a2d2 =

a3d3 = 0 Without loss of generality we can consider a1 = a2 = d3 = 0 and

then the equation becomes

βz3+βqz1+βq
2
z2+γz2z3+γqz1z3+γq

2
z1z2−1 = (a3z3+a4)(d1z1+d2z2+d4)

and this cannot happen since in the right hand side of this equality we do

not have the term z1z2.
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We want to count the points on the quadric Q in the form (δ, δq, δq
2
),

where δ ∈ Fq3 . Writing down δ on the normal basis B we get δ = w1α +

w2α
q +w3α

q2 . Taking w1, w2 and w3 as a set of variables (on Fq) we obtain

a Fq-rational quadric surface and its Fq-rational points are in one-to-one

correspondence with the searched ones.

β(w1α
q2 + w2α+ w3α

q) + βq(w1α+ w2α
q + w3α

q2) + βq
2

(w1α
q + w2α

q2 + w3α)+

γ(w1α+ w2α
q + w3α

q2)(w1α
q + w2α

q2 + w3α) + γq(w1α
q2 + w2α+ w3α

q)(w1α
q + w2α

q2 + w3α)+

γq
2

(w1α
q2 + w2α+ w3α

q)(w1α+ w2α
q + w3α

q2)− 1 = 0.

The points we were looking for of the first surface are in one-to-one cor-

respondence with the Fq-rational points on the quadric surface above. It is

widely known (see [39, Section 15.3]) that, in this case

|S1(Fq)| = q2 + ηq + 1, η ∈ {0, 1, 2} (6.13)

since the quadric surface Q is irreducible.

6.4.5 Four singular points

Call P1, P2, P3 and P4 the singular points of S1, applying Remark 6.11 we

have the following possibilities:

(i) At least one among P1, P2, P3 and P4 is Fq-rational;

(ii) There are two couples of Fq2-rational and conjugates singular points.

(iii) P1, P2, P3 and P4 are Fq4-rational and conjugates.

If (i) or (ii) hold then we have already found out a good bound before,

the last thing we have to do is show that (iii) never holds.

Proposition 6.21. Case (iii) never holds.

Proof. In order to solve this problem we use a multivariate approach, calcu-

lating the elimination ideal with respect to all the variables less one. Con-

sider the equations in (6.8): it is clear that, given X1 and X2, the value of

X0 is uniquely determined. For this reason we proceed with eliminating the

variables X0 and X1 and we obtain the elimination ideal Ix0,x1 = 〈p1, p2〉,
where
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p1(X1) =2X5
1A

q +X4
1B

q − 16X3
1A

q2+q+1 − 8X2
1A

q2+1Bq −X2
1B

q2+1 + 32X1A2q2 + q + 2

− 2X1AB
2q2 − 2X1A

q2B2 + 16A2q2+2Bq − 4Aq
2+1Bq

2+1

p2(X1) =(X2
1 − 4Aq

2+1)(X4
1A

q +X3
1B

q − 4X2
1A

q2+q+1 +X2
1D − 4X1A

q2+1Bq

+ x1Bq
2+1 − 4Aq

2+1D +AB2q2 +Aq
2

B2).

On the other hand, if we prooced eliminating the variables X0 and X1

we get the elimination ideal Jx0,x2 = 〈q1, q2〉, where q1 = p1(X2)q and

q2 = p2(X2)q. The fact that the two ideals are generated by conjugate

polynomials will continue to be true after symmetric annihilation of some of

their terms. After further computations using the software MAGMA, which

can be completely seen in Section 4.5, we get that one of the generators of

Ix1,x2 is a polynomial of degree lower or equal to two, namely f(X1), and

one of the generators of Jx0,x2 is f(X2)q. From this fact we get that the

singularities of S2 are at most four and if this value is achieved then they

belong (at most) to the field Fq6 , which means that the singularities of S1

are at most in the field Fq2 .

6.5 Case r = 3 and h = 3

Consider the case of the intersection over Fq3 between N and the curves

y = Ax3 +Bx2 + Cx+D, A,B,C,D ∈ Fq3 and A 6= 0. After doing similar

computations to those done for the case r = 3 and h = 2 we arrive at an

equation of a cubic surface Ŝ1 = Ŝ1(Fq) defined over Fq, affinely equivalent

to a surface Ŝ2 = Ŝ2(Fq) defined over Fq3 , having equation

X0X1X2 = AX3
0+AqX3

1+Aq
2

X3
2+BX2

0+BqX2
1+Bq

2

X2
2+CX0+CqX1+Cq

2

X2+E

where E = T(D). In this more general case Ŝ1 may be reducible, which can

possibly increase the number of Fq-rational points of Ŝ1, but on the other

hand the reasonings done for r = 3 and h = 2 can be completely extended

if Ŝ1 is irreducible, so we claim the following result.

Theorem 6.22. Let r = h = 3 and consider the Fq-rational cubic surface

Ŝ1 associated to the intersections between N and y = Ax3 +Bx2 +Cx+D.

If Ŝ1 is irreducible then

|Ŝ1| ≤ q2 + 7q + 1.
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6.6 AG codes from the Norm-Trace curves

Consider the Norm-Trace curve over the field Fq3 : since r = 3, N has N =

q2r−1 = q5 Fq3-rational points in A2(Fq3). We also know that LFq(2q2P∞) =

{ay + bx2 + cx+ d | a, b, c, d ∈ Fq3}. Considering the evaluation map

ev : LFq3 (2q2P∞) −→ (Fq3)q
5

f = ãy + b̃x2 + c̃x+ d̃ 7−→ (f(P1), . . . , f(PN ))

the associated one-point code will be CL(D, 2q2P∞) = ev(LFq3 (2q2P∞)),

where the divisor D is the formal sum of all the q5-rational affine points of

N (Fq3). The weight of a codeword associated to the evaluation of a function

f ∈ LFq3 (2q2P∞) corresponds to

w(ev(f)) = |N (Fq3)| − |{N (Fq3) ∩ {ãy + b̃x2 + c̃x+ d̃ = 0}}|.

1. If ã = 0 then we have to study the common zeroes of b̃x2 + c̃x+ d̃ and

N (Fq3).

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = 0;

(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5;

(c) if b̃ = 0 and c̃ 6= 0 then w(ev(f)) = q5 − q2;

(d) if c̃ 6= 0 and c̃2 − 4b̃d̃ = 0 then w(ev(f)) = q5 − q2;

(e) otherwise w(ev(f)) = q5 − 2q2.

2. On the other hand, if ã 6= 0 then we have to study the common zeroes

between N (Fq3) and ãy + b̃x2 + c̃x+ d̃.

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = q5 − 1;

(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5 − q2;

(c) if b̃ = 0 and c̃ 6= 0 then, applying Bézout theorem, we have that

w(ev(f)) ≥ q5 − (q2 + q + 1);

(d) otherwise, from what we said previously, w(ev(f)) ≥ q5 − (q2 +

7q + 1).

We can summarize our reasonings in the following result.



6.7. MAGMA CODE 99

Theorem 6.23. Consider the Norm-Trace curve N over the field Fq3,

q ≥ 8, and the AG code C = CL(D, 2q2P∞) arising from N , where D =∑
P∈N(Fq3)\P∞ P . Let {Aw}0≤w≤q5 be the weight distribution of C, then the

following results hold

(i) A0 = 1;

(ii) The minimum distance of C is q5 − 2q2;

(iii) If w > q5 − 2q2 and Aw 6= 0 then w ≥ q5 − q2 − 7q − 1;

We conclude this chapter with the weight distribution of the cases q < 8,

i.e. q = 2, 3, 5, 7. In the second column of Table 6.1 the symbol ij means

that the code contains j codewords of weight i.

6.7 MAGMA code

As we said before there are many results obtained with the software MAGMA.
This is the commented code.

K<x0 , x1 , x2 ,A, Aq, Aqq ,B, Bq , Bqq ,D> := PolynomialRing ( I n t e g e r s ( ) , 1 0 ) ;

Sup := x0∗x1∗x2 − A∗x0ˆ2 −Aq∗x1ˆ2 −Aqq∗x2ˆ2 −B∗x0 −Bq∗x1−Bqq∗x2−D;

Dx0 := Der iva t ive (Sup , x0 ) ;

Dx1 := Der iva t ive (Sup , x1 ) ;

Dx2 := Der iva t ive (Sup , x2 ) ;

Table 6.1: Weight distribution

q Weight Distribution of the corresponding code

2 01 24196 25224 271568 28112 291568 31224 32203

3 01 2259126 2276084 23064350 233225108 2341404 236185562 23930420 242234 2439152

4 01 992127008 999317520 10032733696 10076921936 10088064 10115588352 1015952560 10231008 1024127071

5 01 3075961000 30895766000 309446717000 309996484400 310031000 310479763000 310913454000 31243100 3125961124

7 01 1670920059326 16743401186520 167503143683494 167575060681388 16758234612 167644473229698 16771722135736 1680616758 1680720059668
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CC := {Sup , Dx0 , Dx1 , Dx2} ;

CC1 := {Resultant ( pol , Dx0 , x0 ) : po l in CC} ;

{F a c t o r i z a t i o n ( po l ) : po l in CC1 | pol ne 0} ;

CC2 := {Resultant ( pol , x1∗x2ˆ2 − 4∗x1∗A∗Aq − x2∗B − 2∗A∗Bq , x1 ) : po l in CC1} ;

{F a c t o r i z a t i o n ( po l ) : po l in CC2 | pol ne 0} ;

p1 := 2∗x2ˆ5∗Aqq + x2ˆ4∗Bqq − 16∗x2ˆ3∗A∗Aq∗Aqq − 8∗x2ˆ2∗A∗Aq∗Bqq − x2ˆ2∗B∗Bq

+ 32∗x2∗Aˆ2∗Aqˆ2∗Aqq − 2∗x2∗A∗Bqˆ2 − 2∗x2∗Aq∗Bˆ2 + 16∗Aˆ2∗Aqˆ2∗Bqq −
4∗A∗Aq∗B∗Bq ;

p2 := ( x2ˆ2 − 4∗A∗Aq)∗ ( x2ˆ4∗Aqq + x2ˆ3∗Bqq − 4∗x2ˆ2∗A∗Aq∗Aqq + x2ˆ2∗D −
4∗x2∗A∗Aq∗Bqq + x2∗B∗Bq − 4∗A∗Aq∗D + A∗Bqˆ2 + Aq∗Bˆ 2 ) ;

RR := Resultant ( p1 , p2 , x2 ) ;

p3 := p1∗C o e f f i c i e n t s ( p2 , x2 ) [ 7 ] ∗ x2− p2∗C o e f f i c i e n t s ( p1 , x2 ) [ 6 ] ;

//Case 1 −−> B!=0 so p3 has degree 5

p4 := p1∗C o e f f i c i e n t s ( p3 , x2 ) [6 ]− p3∗C o e f f i c i e n t s ( p1 , x2 ) [ 6 ] ;

C o e f f i c i e n t s ( p4 , x2 ) ;

//Case 1 .1 −−> 4∗Aqqˆ2∗D − Aqq∗Bqqˆ2!=0 −−> 4∗Aqq∗D − Bqqˆ2!=0

//p4 has degree 4

p5 := p4∗C o e f f i c i e n t s ( p3 , x2 ) [ 6 ] ∗ x2− p3∗C o e f f i c i e n t s ( p4 , x2 ) [ 5 ] ;

//Case 1 . 1 . 1 −> 3∗Aqq∗B∗Bq∗Bqq − 4∗Aqq∗Dˆ2 + Bqqˆ2∗D!=0

//p5 has degree 4

p6 := p5∗C o e f f i c i e n t s ( p4 , x2 ) [5 ]− p4∗C o e f f i c i e n t s ( p5 , x2 ) [ 5 ] ;

//Case 1 . 1 . 1 . 1 −−> 8∗A∗Aqqˆ2∗Bqˆ2∗D − 2∗A∗Aqq∗Bqˆ2∗Bqqˆ2

+ 8∗Aq∗Aqqˆ2∗Bˆ2∗D −2∗Aq∗Aqq∗Bˆ2∗Bqqˆ2 − 9∗Aqqˆ2∗Bˆ2∗Bqˆ2

+ 4∗Aqq∗B∗Bq∗Bqq∗D − B∗Bq∗Bqqˆ3!=0

//p6 has degree 3

p7 := p6∗C o e f f i c i e n t s ( p5 , x2 ) [ 5 ] ∗ x2− p5∗C o e f f i c i e n t s ( p6 , x2 ) [ 4 ] ;

C o e f f i c i e n t s ( p7 , x2 ) ;

//Case 1 . 1 . 1 . 1 . 1 −−> C o e f f i c i e n t s ( p7 , x2 ) [ 4 ] ! = 0

//p7 has degree 3

p8 := p7∗C o e f f i c i e n t s ( p6 , x2 ) [4 ]− p6∗C o e f f i c i e n t s ( p7 , x2 ) [ 4 ] ;
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C o e f f i c i e n t s ( p8 , x2 ) ;

F a c t o r i z a t i o n ( C o e f f i c i e n t s ( p8 , x2 ) [ 3 ] ) ;

//SE C o e f f i c i e n t s ( p8 , x2 ) [ 3 ] ! = 0

// then at most the re are 4 s i n g u l a r po in t s

//Case 1 . 1 . 1 . 1 . 2 −−> C o e f f i c i e n t s ( p7 , x2 ) [4 ]=0

//p7 has degree 2

// then at most the re are 4 s i n g u l a r po in t s

//Case 1 . 1 . 1 . 2 −−> 8∗A∗Aqqˆ2∗Bqˆ2∗D − 2∗A∗Aqq∗Bqˆ2∗Bqqˆ2

+ 8∗Aq∗Aqqˆ2∗Bˆ2∗D −2∗Aq∗Aqq∗Bˆ2∗Bqqˆ2 − 9∗Aqqˆ2∗Bˆ2∗Bqˆ2

+ 4∗Aqq∗B∗Bq∗Bqq∗D − B∗Bq∗Bqqˆ3=0

//p6 has degree 2

// then at most the re are 4 s i n g u l a r po in t s

//Case 1 . 1 . 2 −> 3∗Aqq∗B∗Bq∗Bqq − 4∗Aqq∗Dˆ2 + Bqqˆ2∗D=0

( note that D!=0 , o therw i s e B=0)

CC2 0 := {K! ( ( 3 ∗B∗Bq∗Bqq − 4∗Dˆ2)ˆ( Degree ( pol ,A)+Degree ( pol ,Aq)

+Degree ( pol , Aqq)+3)∗Evaluate ( pol , [ x0 , x1 , x2 ,− Bˆ2∗D/(3∗B∗Bq∗Bqq − 4∗Dˆ2) ,

− Bqˆ2∗D/(3∗B∗Bq∗Bqq − 4∗Dˆ2) ,− Bqqˆ2∗D/(3∗B∗Bq∗Bqq − 4∗Dˆ2) ,B, Bq , Bqq ,D] ) )

: po l in CC2} ;

{F a c t o r i z a t i o n ( po l ) : po l in CC2 0 | pol ne 0} ;

pp1 :=(3∗x2∗B∗Bq∗Bqq − 4∗x2∗Dˆ2 − 2∗B∗Bq∗D)∗
(3∗ x2∗B∗Bq∗Bqq − 4∗x2∗Dˆ2 + 2∗B∗Bq∗D)∗
(3∗ x2ˆ3∗B∗Bq∗Bqqˆ3∗D − 4∗x2ˆ3∗Bqqˆ2∗Dˆ3

− 9∗x2ˆ2∗Bˆ2∗Bqˆ2∗Bqqˆ3 + 26∗x2ˆ2∗B∗Bq∗Bqqˆ2∗Dˆ2

− 16∗x2ˆ2∗Bqq∗Dˆ4 − 15∗x2∗Bˆ2∗Bqˆ2∗Bqqˆ2∗D
+ 32∗x2∗B∗Bq∗Bqq∗Dˆ3 − 16∗x2∗Dˆ5 − 9∗Bˆ3∗Bqˆ3∗Bqqˆ2

+ 18∗Bˆ2∗Bqˆ2∗Bqq∗Dˆ2 − 8∗B∗Bq∗Dˆ 4 ) ;

pp2 :=(3∗x2∗B∗Bq∗Bqq − 4∗x2∗Dˆ2 − 2∗B∗Bq∗D)∗
(6∗ x2∗B∗Bq∗Bqqˆ2∗D − 8∗x2∗Bqq∗Dˆ3 − 9∗Bˆ2∗Bqˆ2∗Bqqˆ2

+ 28∗B∗Bq∗Bqq∗Dˆ2 − 16∗Dˆ4)∗(3∗ x2ˆ2∗B∗Bq∗Bqqˆ2

− 4∗x2ˆ2∗Bqq∗Dˆ2 + 2∗x2∗B∗Bq∗Bqq∗D − 3∗Bˆ2∗Bqˆ2∗Bqq + 4∗B∗Bq∗Dˆ 2 ) ;

pp3:= C o e f f i c i e n t s ( pp1 , x2 ) [ 6 ] ∗ pp2∗x2−C o e f f i c i e n t s ( pp2 , x2 ) [ 5 ] ∗ pp1 ;

F a c t o r i z a t i o n ( C o e f f i c i e n t s ( pp3 , x2 ) [ 5 ] ;

//pp3 has degree exac t l y 4

pp4:= C o e f f i c i e n t s ( pp3 , x2 ) [ 5 ] ∗ pp2−C o e f f i c i e n t s ( pp2 , x2 ) [ 5 ] ∗ pp3 ;

F a c t o r i z a t i o n ( C o e f f i c i e n t s ( pp4 , x2 ) [ 4 ] ) ;

//pp4 has degree exac t l y 3

pp5:= C o e f f i c i e n t s ( pp3 , x2 ) [ 5 ] ∗ pp4∗x2−C o e f f i c i e n t s ( pp4 , x2 ) [ 4 ] ∗ pp3 ;

Degree ( pp4 , x2 ) ;

// I have at most 4 po in t s
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// case 1 . 2 −−> 4∗Aqq∗D − Bqqˆ2=0 ( note that D!=0 , o therw i s e B=0)

CC2 0 := {K! ( ( 4 ∗D)ˆ( Degree ( pol ,A)+Degree ( pol ,Aq)+Degree ( pol , Aqq)+3)

∗Evaluate ( pol , [ x0 , x1 , x2 ,Bˆ2/(4∗D) ,Bqˆ2/(4∗D) , Bqqˆ2/(4∗D) ,B, Bq , Bqq ,D] ) )

: po l in CC2} ;

{F a c t o r i z a t i o n ( po l ) : po l in CC2 0 | pol ne 0} ;

CC3 0 := {Resultant (2∗ x2∗D − B∗Bq , pol , x2 ) : po l in CC2 0 } ;

{F a c t o r i z a t i o n ( po l ) : po l in CC3 0 | pol ne 0} ;

// then 2∗x2∗D − B∗Bq=0 has not s o l u t i o n

CC3 0 := {Resultant (2∗ x2∗D + B∗Bq , pol , x2 ) : po l in CC2 0 } ;

{F a c t o r i z a t i o n ( po l ) : po l in CC3 0 | pol ne 0} ;

// then 2∗x2∗D − B∗Bq=0 could be a s o l u t i o n

CC3 0 := {Resultant (2∗ x2ˆ3∗Bqqˆ2∗D − x2ˆ2∗B∗Bq∗Bqqˆ2 + 8∗x2ˆ2∗Bqq∗Dˆ2 −
4∗x2∗B∗Bq∗Bqq∗D + 8∗x2∗Dˆ3 + 4∗B∗Bq∗Dˆ2 , pol , x2 ) : po l in CC2 0 } ;

{F a c t o r i z a t i o n ( po l ) : po l in CC3 0 | pol ne 0} ;

// then B∗Bq∗Bqq − 8∗Dˆ2=0 or

//Bˆ2∗Bqˆ2∗Bqqˆ2 + 20∗B∗Bq∗Bqq∗Dˆ2 − 8∗Dˆ4=0

// in the f i r s t case

CC4 0 := {Resultant (B∗Bq∗Bqq − 8∗Dˆ2 , pol ,B) : po l in CC2 0 } ;

{F a c t o r i z a t i o n ( po l ) : po l in CC4 0 | pol ne 0} ;

Resultant ( x2∗Bqq − 4∗D, x2ˆ2∗Bqqˆ2 − 4∗x2∗Bqq∗D − 8∗Dˆ2 , x2 ) ;

// i have two s o l u t i o n s f o r x2

// in the second case

CC4 0 := {Resultant (Bˆ2∗Bqˆ2∗Bqqˆ2 + 20∗B∗Bq∗Bqq∗Dˆ2 − 8∗Dˆ4 , pol ,B) :

// pol in CC2 0 } ;

{F a c t o r i z a t i o n ( po l ) : po l in CC4 0 | pol ne 0} ;

/∗{
[

<2, 44> ,

<D, 30> ,

<Bq , 8>,

<x2ˆ2∗Bqqˆ2 − 10∗x2∗Bqq∗D − 2∗Dˆ2 , 2>,

<x2ˆ2∗Bqqˆ2 + 2∗x2∗Bqq∗D − 2∗Dˆ2 , 1>,

<x2ˆ2∗Bqqˆ2 + 8∗x2∗Bqq∗D + 4∗Dˆ2 , 2>,

<x2ˆ2∗Bqqˆ2 + 10∗x2∗Bqq∗D − 2∗Dˆ2 , 1>

] ,

[

<2, 38> ,

<D, 22> ,

<Bqq , 2>,
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<Bq , 8>,

<x2ˆ2∗Bqqˆ2 − 10∗x2∗Bqq∗D − 2∗Dˆ2 , 2>,

<x2ˆ2∗Bqqˆ2 + 2∗x2∗Bqq∗D − 2∗Dˆ2 , 1>,

<x2ˆ2∗Bqqˆ2 + 8∗x2∗Bqq∗D + 4∗Dˆ2 , 1>,

<x2ˆ2∗Bqqˆ2 + 14∗x2∗Bqq∗D + 22∗Dˆ2 , 1>

]

}

> Resultant ( x2ˆ2∗Bqqˆ2 − 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 2∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

−288∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 − 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 8∗x2∗Bqq∗D + 4∗Dˆ2 , x2 ) ;

468∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 − 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

−800∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 2∗x2∗Bqq∗D − 2∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 8∗x2∗Bqq∗D + 4∗Dˆ2 , x2 ) ;

−108∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 2∗x2∗Bqq∗D − 2∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

−128∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 8∗x2∗Bqq∗D + 4∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

148∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 14∗x2∗Bqq∗D + 22∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 8∗x2∗Bqq∗D + 4∗Dˆ2 , x2 ) ;

−396∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 14∗x2∗Bqq∗D + 22∗Dˆ2 , x2ˆ2∗Bqqˆ2

+ 2∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

−288∗Bqqˆ4∗Dˆ4

> Resultant ( x2ˆ2∗Bqqˆ2 + 14∗x2∗Bqq∗D + 22∗Dˆ2 , x2ˆ2∗Bqqˆ2

− 10∗x2∗Bqq∗D − 2∗Dˆ2 , x2 ) ;

5184∗Bqqˆ4∗Dˆ4

∗/
// at most four s o l u t i o n s

// case 2 −−> B=0

CC2 0 := {Evaluate ( pol , [ x0 , x1 , x2 ,A, Aq, Aqq , 0 , 0 , 0 ,D] ) : po l in CC2} ;

{F a c t o r i z a t i o n ( po l ) : po l in CC2 0 | pol ne 0} ;

// case 2 . 1 −−−> D=0 −−> done
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// case 2 . 1 −−−> D!=0 −−> done
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