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Abstract

In the first part of the dissertation we show that 2((d − 1)n − 1)/(d − 2) is the
maximum possible number of critical points that a generic (n − 1)-dimensional
spherical harmonic of degree d can have. Our result in particular shows that there
exist generic real symmetric tensors whose all eigenvectors are real. The results of
this part are contained in Chapter 2.

In the second part of the thesis we are interested in expected outcomes in three
different problems of probabilistic real algebraic and differential geometry.

First, in Chapter 3 we compute the volume of the projective variety ∆ ⊂
PSym(n,R) of real symmetric matrices with repeated eigenvalues. Our computa-
tion implies that the expected number of real symmetric matrices with repeated
eigenvalues in a uniformly distributed projective 2-plane L ⊂ PSym(n,R) equals
E#(∆ ∩ L) =

(
n
2

)
. The sharp upper bound on the number of matrices in the

intersection ∆ ∩ L of ∆ with a generic projective 2-plane L is
(
n+1

3

)
.

Second, in Chapter 4 we provide explicit formulas for the expected condition
number for the polynomial eigenvalue problem defined by matrices drawn from
various Gaussian matrix ensembles.

Finally, in Chapter 5 we are interested in the expected number of lines that
are simultaneously tangent to the boundaries of several convex sets randomly
positioned in the sphere. We express this number in terms of the integral mean
curvatures of the boundaries of the convex sets.
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Introduction

Real algebraic geometry studies real solutions of polynomial systems with real
coefficients. Most results that hold in complex algebraic geometry do not have direct
analogs in the real setting mainly due to the fact that the field R of real numbers is
not algebraically closed. For example, the classical fundamental theorem of algebra
implies that a one-variable polynomial with sufficiently generic real coefficients
has degree many complex roots. Some of these roots may be real and those which
are not real always come in pairs of complex conjugate roots. Even though the
number of real roots of a generic polynomial is not constant there exist maximal
real polynomials all of whose roots are real. This is an example of an extremal
result in real algebraic geometry.

In the space Rd+1 of all real one-variable polynomials of degree d there is an
algebraic hypersurface, called the discriminant, that consists of polynomials with
repeated roots. Connected components of the complement to the discriminant
hypersurface are open semialgebraic subsets of Rd+1 and, in particular, any two
polynomials belonging to the same connected component have the same number of
real roots. Fixing a “reasonable” probability distribution in the space Rd+1 one
can see that the measure of each connected component of the complement to the
discriminant hypersurface is positive. In other words, with a positive probability a
random real polynomial of degree d has d− 2[d/2], . . . , d− 2 or d real roots. It is
then natural to ask for the expected (typical, average) number of real roots. For
example, Kac proved [48] that a real polynomial of degree d with independent
standard Gaussian coefficients has

4
π

1∫

0

√
(1− x2(d+1))2 − (d+ 1)2x4(1− x2)2

(1− x2)(1− x2(d+1)) dx ∼ 2
π

log(d+ 1), d→ +∞

real roots on average. This is an example of a typical result in (probabilistic) real
algebraic geometry.

Below we give an overview of the main results of this dissertation.
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Spherical harmonics with the maximum number of critical points

In Chapter 2 we construct generic spherical harmonics with the maximum possible
number of critical points. Our result, in particular, gives a positive answer to the
question addressed by Abo, Seigal and Sturmfels in [1, Sec. 6] (see Conjecture 6.5).
This part of the dissertation is based on the work [51].

The study of geometric and topological properties of Laplace eigenfunctions on
Riemannian manifolds has rich and interesting history, we refer the reader to the
survey of the results [89]. Classical directions of investigation concern properties of
the zero level hypersurfaces of Laplace eigenfunctions. Computation and estimation
of the volume of these hypersurfaces [30, 31, 70, 59, 58] and study of their basic
topological invariants [67, 56, 34, 64] remain active areas of research. Studies of
critical points of Laplace eigenfunctions have appeared in [54, 47, 65].

In our work we are interested in the maximal number of critical points of
eigenfunctions of the spherical Laplace operator. These functions are called spherical
harmonics and they can be equivalently defined as the restriction to the sphere of
harmonic homogeneous polynomials. In [11, Problem 1] Arnold asked to determine
the largest number of local maxima that a Morse spherical harmonic h ∈ Hd,3 can
have on the sphere S2. For even d the answer to this question is not known in
general (to our knowledge). For odd d the answer (d2 − d + 2)/2 was given by
Kuznetsov and Kholshevnikov in [54], where they also proved that the maximum
number md,3 of critical points of the restriction f |S2 to the sphere of a Morse (see
Subsection 2.1.1 for the definition) real homogeneous polynomial f ∈ Pd,3 of degree
d equals:

md,3 = 2(d2 − d+ 1)

and surprisingly enough this bound is attained by spherical harmonics. In the
following theorem we generalize the result of Kuznetsov and Kholshevnikov to the
case of any number of variables.

Theorem. For any d ≥ 1 and n ≥ 2 the maximum number md,n of critical points
of the restriction f |Sn−1 to the sphere of a Morse real homogeneous polynomial
f ∈ Pd,n of degree d equals

md,n = 2(d− 1)n − 1
d− 2 = 2((d− 1)n−1 + · · ·+ (d− 1) + 1)

Moreover, for any d ≥ 1 and n ≥ 2 there exists a Morse spherical harmonic
h ∈ Hd,n with md,n critical points.

Critical points of restrictions to the sphere of real homogeneous polynomials
reappeared in the context of spectral theory of high order tensors independently

ix



initiated by Lim [57] and Qi [69] in 2005. Several generalizations of the classical
concept of an eigenvector of a matrix were introduced in [57, 69]. Critical points
of the restrictions to the sphere of real homogeneous polynomials correspond to
l2-eigenvectors of Lim or Z-eigenvectors of Qi as we explain in Section 2.1.2.

Let A = (ai1...id)nij=1, ai1...id ∈ R be a real n-dimensional tensor of order d (in
the sequel, nd-tensor). A non-zero vector x ∈ Cn \ {0} is called an eigenvector of
A if there exists λ ∈ C, the corresponding eigenvalue, such that

Axd−1 = λx, Axd−1 :=



n∑

i2,...,id=1
a1i2...idxi2 · · ·xid , . . . ,

n∑

i2,...,id=1
ani2...idxi2 · · · xid


 .

For d = 2 one recovers the classical definition of an eigenvector of an n× n matrix
A = (ai1i2)nij=1. The point [x] ∈ CPn−1 defined by an eigenvector x ∈ Cn \ {0} is
called an eigenpoint and the set of all eigenpoints is called an eigenconfiguration.

An nd-tensor A = (ai1...id)nij=1, ai1,...,id ∈ R is said to be symmetric if aiσ1 ...iσd
=

ai1...id for any permutation σ ∈ Sd. Cartwright and Sturmfels [25] proved that
the number of eigenpoints of a generic (for the definition see Subsection 2.1.2)
symmetric nd-tensor equals

m̃d,n := (d− 1)n − 1
d− 2 = (d− 1)n−1 + · · ·+ (d− 1) + 1

but, except for the case of real symmetric matrices (d = 2), not all eigenvectors
of a general real symmetric tensor of order d ≥ 3 are real. In fact, most of real
symmetric tensors have eigenpoints in CPn−1 \ RPn−1. Abo, Seigal and Sturmfels
conjectured [1, Conjecture 6.5] that for any d ≥ 1 and n ≥ 2 there exists a generic
real symmetric nd-tensor having only real eigenvectors and proved it for d ≥ 1, n = 3
and for d = n = 4. The cases d ≥ 1, n = 2 and d = 2, n ≥ 2 are elementary, the
case of general d, n was unknown (see for example [82]). In the following theorem
we cover the case of arbitrary d and n.

Theorem. For any d ≥ 1 and n ≥ 2 there exists a generic real symmetric nd-tensor
all of whose m̃d,n eigenpoints are real.

The above two theorems are proved in Section 2. In the end of that section
we also discuss relation of our results to few other problems among which the
estimation of the number of real zeros of a semidefinite polynomial (Theorem 9).

On the geometry of the set of symmetric matrices with repeated
eigenvalues

In Chapter 3 we investigate some geometric properties of the set ∆ (below called
discriminant) of real symmetric matrices with repeated eigenvalues and of unit
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Frobenius norm

∆ = {Q ∈ Sym(n,R) such that λi(Q) = λj(Q) for some i 6= j} ∩ SN−1,

where N = n(n+1)
2 = dim(Sym(n,R)) and SN−1 denotes the unit sphere with respect

to the Frobenius norm ‖Q‖2 = tr(Q2). The results presented in Chapter 3 are
based on the work [21], in collaboration with Paul Breiding and Antonio Lerario.

The discriminant appears in several areas of mathematics, from mathematical
physics to real algebraic geometry [7, 9, 8, 10, 83, 3, 4, 87].

The set ∆ is an algebraic subset of SN−1 of codimension two. It is defined by
the discriminant polynomial:

dis(Q) :=
∏

i 6=j
(λi(Q)− λj(Q))2

which is a non-negative homogeneous polynomial of degree deg(dis) = n(n− 1) in
the entries of Q and, moreover, it is a sum of squares of real polynomials [46, 66].
The set ∆sm of smooth points of ∆ consists of matrices with exactly two repeated
eigenvalues (in fact, ∆ is stratified according to the multiplicity sequence of the
eigenvalues [7]). Our first main result about the discriminant ∆ ⊂ SN−1 is the
explicit formula for its volume.

Theorem. For any n ≥ 2 we have

|∆|
|SN−3| =

(
n

2

)
. (1)

Remark. Results of this type (the computation of the volume of some relevant
algebraic subsets of the space of matrices) have started appearing in the literature
since the 90’s [32, 33], with a particular emphasis on asymptotic studies and
complexity theory, and have been crucial for the theoretical advance of numerical
algebraic geometry, especially for what concerns the estimation of the so called
condition number of numerical problems [29]. The very first result gives the volume
of the set Σ ⊂ Rn2 of square matrices with zero determinant and Frobenius norm
one; this was computed in [32, 33]:

|Σ|
|Sn2−1| =

√
π

Γ
(
n+1

2

)

Γ
(
n
2

) ∼
√
π

2n
1/2. (2)

For example (2) is used in [32, Theorem 6.1] to compute the average number of
zeroes of the determinant of a matrix of linear forms. Subsequently, this computation
was extended to include the volume of the set of n×m matrices of given corank
in [14] and the volume of the set of symmetric matrices with determinant zero in
[55], with similar expressions.
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The proof of (3.1) requires the evaluation of the expectation of the square of
the characteristic polynomial of a GOE(n) matrix (Theorem 13 from Section 3),
which constitutes a result of independent interest.

The second main result of this part of the dissertation concerns maximal cuts
of the discriminant. To state it let’s denote by P∆ ⊂ PSym(n,R) ' RPN−1 the
projectivization of the discriminant. Since P∆ has codimension two, the number
#(L∩P∆) of symmetric matrices with repeated eigenvalues in a generic projective
two-plane L ' RP2 ⊂ RPN−1 is finite. In the following theorem we provide a sharp
upper bound on this number.

Theorem. For a generic projective two-plane L ' RP2 the following sharp upper
bound holds:

#(L ∩ P∆) ≤
(
n+ 1

3

)
. (3)

The formula (1) for the volume of ∆ combined with Poincaré formula (Corollary
2 from Subsection 1.3.2) allows to compute the average number of symmetric
matrices with repeated eigenvalues in a uniformly distributed projective two-plane
L ⊂ RPN−1:

E
L∈G(2,N−1)

#(L ∩ P∆) = |P∆|
|RPN−3| = |∆|

|SN−3| =
(
n

2

)
. (4)

Remark. Consequence (4) is especially interesting because it “violates” a frequent
phenomenon in random algebraic geometry, which goes under the name of square
root law: for a large class of models of random systems, often related to the so
called Edelman-Kostlan-Shub-Smale models [32, 74, 33, 50, 75, 73], the average
number of solutions equals (or is comparable to) the square root of the maximum
number; here this is not the case. We also observe that, surprisingly enough, the
average cut of the discriminant is an integer number (there is no reason to even
expect that it should be a rational number!).

The computation (1) of the volume of ∆ is obtained by a limiting procedure.
Using the fact that the restriction of the GOE(n) measure to the unit sphere in
Sym(n,R) gives the uniform measure, we will describe the volume of the ε-tube
around ∆ using the joint density of the eigenvalues of a GOE(n) matrix and then
make a careful application of Weyl’s tube formula to derive the asymptotic of this
volume at zero (whose leading coefficient, up to a constant, equals |∆|). The main
difficulties here are the explicit description of the tube, and the fact that the variety
∆ is singular, which makes the application of Weyl’s tube formula delicate. In
this way we will prove the following result, which also includes information on the
volume of the set ∆1 of symmetric matrices whose smallest two eigenvalues are
equal.

xii



Theorem. Let ∆1 ⊂ ∆ ⊂ SN−1 denote the set of symmetric matrices with the
smallest two eigenvalues repeated. Then we have the two following integral expres-
sions:

|∆|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

R
EQ∼GOE(n−2)

[
det(Q− u1)2

]
e−u

2 du, (5)

|∆1|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

R
EQ∼GOE(n−2)

[
det(Q− u1)21{Q−u1�0}

]
e−u

2 du. (6)

(note the appearance of the characteristic function 1{Q−u1�0} in the second integral).

The exact evaluation of the integral in (5) (given in the theorem below) will
take a considerable amount of work and is of independent interest. It is based on
some key properties of Hermite polynomials. By contrast, we do not know whether
there exists a closed form evaluation of (6).

Theorem. For a fixed positive integer k we have
∫

R
EQ∼GOE(k)[det(Q− u1)2] e−u2 du =

√
π

(k + 2)!
2k+1 .

To proof the bound (3) we exploit an interesting duality between symmetric
matrices with repeated eigenvalues in a 3-dimensional linear family and singularities
of some algebraic surface. To be more specific, given three independent matrices
R1, R2, R3 ∈ Sym(n,R) denote by L = P(span{R1, R2, R3}) ⊂ PSym(n,R) the
projective two-plane that they generate and consider the projective symmetroid
surface

PΣ3,n = {[x0 : x1 : x2 : x3] ∈ RP3 | det(x01 + x1R1 + x2R2 + x3R3) = 0}.

The following result, which is a particular case of Proposition 9, describes the
mentioned duality.

Proposition. For generic matrices R1, R2, R3 ∈ Sym(n,R) there is a one-to-one
correspondence between singular points of the symmetroid surface PΣ3,n ⊂ RP2 and
symmetric matrices with repeated eigenvalues in the projective two-plane L ' RP2.

The above results about the discriminant are proved in Chapter 3.

The condition number for polynomial eigenvalues of random matrices

In Chapter 4 we explicitly compute the expected condition number for polynomial
eigenvalues of random matrices drawn from various random matrix ensembles.
Results of this part are presented in the joint work [15] of the author with Carlos
Beltran.

xiii



First, following the ideas in [73, 17], we note that many numerical problems
can be described within the following simple general framework. We consider a
space of inputs and a space of outputs denoted by I and O respectively, and some
equation of the form ev(i, o) = 0 stating when an output is a solution for a given
input. Both I and O, and the solution variety

V = {(i, o) ∈ I ×O : o is an output to i} = {(i, o) ∈ I ×O : ev(i, o) = 0}

are frequently real algebraic or just semialgebraic sets. The numerical problem to
be solved can then be written as “given i ∈ I, find o ∈ O such that (i, o) ∈ V”, or
“find all o ∈ O such that (i, o) ∈ V”. One can have in mind the following examples:

1. Polynomial Root Finding: I is the set of univariate real polynomials of degree
d, O = R and V = {(f, ζ) : f(ζ) = 0}.

2. Polynomial System Solving, which we can see as the homogeneous multivariate
version of Polynomial Root Finding: I is the projective space of (dense or
structured) systems of n real homogeneous polynomials of degrees d1, . . . , dn
in variables x0, . . . , xn, O = RPn and V = {(f, ζ) : f(ζ) = 0}.

3. EigenValue Problem: I = Rn×n, O = R and V = {(A, λ) : det(A−λ Id) = 0}.

4. (Homogeneous) Polynomial EigenValue Problem (in the sequel called PEVP):
I is the set of tuples of d+1 real n×nmatricesA = (A0, . . . , Ad), O = RP1 and
V = {(A, [α : β]) : P (A,α, β) = det(α0βdA0 +α1βd−1A1 + · · ·+αdβ0Ad) = 0}.
One can force some of the matrices to be symmetric, a particularly important
case in applications, or consider other structured problems, see [62, 28, 41, 85].
In cases d = 1 and d = 2 polynomial eigenvalues are often referred to as
generalized eigenvalues and quadratic eigenvalues respectively.

The condition number of a numerical problem like the one above measures the
sensibility of the solution o under an infinitesimal perturbation of the input i.

Definition. Let I,O and V be real algebraic sets such that the smooth loci of I,O
are endowed with Riemannian structures and let (i, o) ∈ V be a smooth point of
V such that i ∈ I, o ∈ O are smooth points of I and O respectively. Moreover,
assume that D(i,o)p1 : T(i,o)V → TiI is invertible. Then the condition number µ(i, o)
of (i, o) ∈ V is defined as

µ(i, o) =
∥∥∥D(i,o)p2 ◦D(i,o)p

−1
1

∥∥∥
op
,

where p1 : V → I, p2 : V → O are the projections and ‖ · ‖op is the operator norm.
For points (i, o) ∈ V not satisfying the above assumptions the condition number is
set to ∞.
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Remark. This definition is intrinsic in I, i.e., changing I to some subvariety
I ′ ⊂ I leads (in general) to different, smaller, value of the condition number,
since perturbations of the input are only allowed in the direction of the tangent
space to the input set. Note also that the condition number depends on choices of
Riemannian structures on I and O.

In the PEVP the input space I is endowed with the following Riemannian
structure: 〈Ȧ, Ḃ〉A = ((Ȧ0, Ḃ0) + · · ·+ (Ȧd, Ḃd))/((A0, A0) + · · ·+ (Ad, Ad)), where
(·, ·) is the Frobenius inner product, A = (A0, . . . , Ad) and Ȧ = (Ȧ0, . . . , Ȧd), Ḃ =
(Ḃ0, . . . , Ḃd) ∈ TAI. The output space O = RP1 possesses the standard metric and
the solution variety V = {(A, [α : β]) : P (A,α, β) = 0} is endowed with the induced
product Riemannian structure. An explicit formula for the condition number for
the Homogeneous PEVP was derived in [28, Th. 4.2] (we write here the relative
condition number version):

µ(A, (α, β)) =
(

d∑

k=0
α2kβ2d−2k

)1/2 ‖r‖‖`‖
|`tv| ‖A‖,

where A = (A0, . . . , Ad), (α, β) ∈ R2 is a polynomial eigenvalue of A, r and ` are
the corresponding right and left eigenvectors and

v = β
∂

∂α
P (A,α, β)r − α ∂

∂β
P (A,α, β)r.

A given tuple A can have up to nd real isolated polynomial eigenvalues. We define
the condition number of A simply as the sum of the condition numbers over all
these PEVs:

µ(A) =
∑

[α:β]∈RP1is a PEV of A
µ(A, (α, β)).

(If A = (A0, . . . , Ad) has infinitely many polynomial eigenvalues, then we set
µ(A) =∞). In Chapter 4 we prove a general result (Theorem 16) which is designed
to provide exact formulas for the expected value of the condition number in the
PEVP and other problems. A simple particular case of our general theorem is as
follows.

Theorem. If A0, . . . , Ad ∈ M(n,R) are independent n × n real matrices whose
entries are independent identically distributed standard Gaussian variables, then

E
A0,...,Ad∼ i.i.d. Gaussian matrices

µ(A) = π
Γ
(

(d+1)n2

2

)

Γ
(

(d+1)n2−1
2

)
Γ
(
n+1

2

)

Γ
(
n
2

) (7)

= π

2
√

(d+ 1)n3
(

1 +O
( 1
n

))
, n→ +∞
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Remark. Recently in [6] Armentano and Beltran investigated the expectation of the
squared condition number for polynomial eigenvalues of complex Gaussian matrices.
Our result (7) establishes the “asymptotic square root law” for the considered
problem, i.e., when n→ +∞ (and up to the factor π/2) our answer in (7) equals
the square root of the answer in [6].

Another particular instance of our general Theorem 16 is the computation of
the expected condition number for matrices drawn from the Gaussian Orthogonal
Ensemble.

Theorem. If A0, . . . , Ad ∈ Sym(n,R) are independent GOE(n)-matrices and n is
even, then

E
A0,...,Ad∼ i.i.d. GOE(n)-matrices

µ(A) =
√

2n
Γ
(

(d+1)n(n+1)
4

)

Γ
(

(d+1)n(n+1)−2
4

)
Γ
(
n+1

2

)

Γ
(
n+2

2

)

=
√

(d+ 1)n3
(

1 +O
(

1√
n

))
, n→ +∞

If n is odd the explicit formula is more complicated and is given in (4.13). However,
the above asymptotic formula is valid for both even and odd n.

More generally, Theorem 17 from Chapter 4 gives the exact expression of the
expected condition number for Gaussian matrices constrained to stay in a given
linear subspace V ⊂M(n,R) of the space of all real square matrices. The key point
of the proof of this general theorem is the expression of the expected condition
number in terms of the volume of the set of singular matrices in V .

On the number of flats tangent to convex hypersurfaces in random
position

The last but not the least chapter of the dissertation is about enumerative geometry
of tangents to hypersurfaces randomly positioned in real projective space. Results
of Chapter 5 are presented in the joint work [52] of the author with Antonio Lerario.

Given dk,n = (k+1)(n−k) projective hypersurfaces X1, . . . , Xdk,n ⊂ RPn a clas-
sical problem in enumerative geometry is to determine how many k-dimensional pro-
jective subspaces of RPn (called k-flats) are simultaneously tangent to X1, . . . , Xdk,n .

Geometrically we can formulate this problem as follows. Let G(k, n) denote
the Grassmannian of k-dimensional projective subspaces of RPn (note that dk,n =
dimG(k, n)). If X ⊂ RPn is a smooth hypersurface, we denote by Ωk(X) ⊂ G(k, n)
the variety of k-tangents to X, i.e. the set of k-flats that are tangent to X
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at some point. The number of k-flats simultaneously tangent to hypersurfaces
X1, . . . , Xdk,n ⊂ RPn equals

# Ωk(X1) ∩ · · · ∩ Ωk(Xdk,n).

Of course this number depends on the mutual position of the hypersurfaces
X1, . . . , Xdk,n in the projective space RPn.

In [77] F.Sottile and T.Theobald proved that there are at most 3 · 2n−1 real lines
tangent to 2n− 2 general spheres in Rn and they found a configuration of spheres
with 3 · 2n−1 common tangent lines. They also studied [78] the problem of k-flats
tangent to dk,n many general quadrics in RPn and proved that the “complex bound"
2dk,n · deg(GC(k, n)) can be attained by real quadrics. See also [19, 60, 61, 79] for
other interesting results on real enumerative geometry of tangents.

An exciting point of view comes by adopting a random approach: one asks for
the expected value for the number of tangents to hypersurfaces in random position.
We say that the hypersurfaces X1, . . . , Xdk,n ⊂ RPn are in random position if each
one of them is randomly translated by elements g1, . . . , gdk,n sampled independently
from the orthogonal group O(n+ 1) endowed with the uniform distribution. The
average number τk(X1, . . . , Xdk,n) of k-flats tangent to X1, . . . , Xdk,n ⊂ RPn in
random position is then given by

τk(X1, . . . , Xdk,n) := E g1,...,gdk,n∈O(n+1)# Ωk(g1X1) ∩ · · · ∩ Ωk(gdk,nXdk,n).

The computation and study of properties of this number is precisely the goal of
Chapter 5.

A special feature of our study is that we concentrate on the case when the
hypersurfaces (not necessarily algebraic) are boundaries of convex sets. Part of the
results we present, however, hold in higher generality as we discuss in Section 5.5.

Definition (Convex hypersurface). A subset C of RPn is called (strictly) convex
if C does not intersect some hyperplane L and it is (strictly) convex in the affine
chart RPn \ L ' Rn. A smooth hypersurface X ⊂ RPn is said to be convex if it
bounds a strictly convex open set of RPn.

Recently, Bürgisser and Lerario [24] have studied the similar problem of de-
termining the average number of k-flats that simultaneously intersect dk,n many
(n − k − 1)-flats in random position in RPn. They have called this number the
expected degree of the real Grassmannian G(k, n), here denoted by δk,n, and have
claimed that this is the key quantity governing questions in random enumerative
geometry of flats. (The name comes from the fact that the number of solutions
of the analogous problem over the complex numbers coincides with the degree of
GC(k, n) in the Plücker embedding. Note however that the notion of expected
degree is intrinsic and does not require any embedding.)

xvii



For reasons that will become more clear later, it is convenient to introduce the
special Schubert variety Sch(k, n) ⊂ G(k, n) consisting of k-flats in RPn intersecting
a fixed (n− k − 1)-flat. The volume of the special Schubert variety is computed in
[24, Theorem 4.2] and equals

|Sch(k, n)| = |G(k, n)| ·
Γ
(
k+2

2

)
Γ
(
n−k+1

2

)

Γ
(
k+1

2

)
Γ
(
n−k

2

) ,

where |G(k, n)| denotes the volume of the Grassmannian (see Subection 1.3.1).
The following theorem relates our main problem to the expected degree (this is
Theorem 20 from Section 5.3).

Theorem. The average number of k-flats in RPn simultaneously tangent to convex
hypersurfaces X1, . . . , Xdk,n in random position equals

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| , (8)

where |Ωk(X)| denotes the volume of the manifold of k-tangents to X.
The number δk,n equals (up to a multiple) the volume of a convex body for which

the authors of [24] coined the name Segre zonoid. Except for δ0,n = δn−1,n = 1,
the exact value of this quantity is not known, but it is possible to compute its
asymptotic as n→∞ for fixed k. For example, in the case of the Grassmannian of
lines in RPn one has [24, Theorem 6.8]

δ1,n = 8
3π5/2 ·

1√
n
·
(
π2

4

)n
·
(
1 +O(n−1)

)
.

The number δ1,3 (the average number of lines meeting four random lines in RP3)
can be written as an integral [24, Proposition 6.7], whose numerical approximation
is δ1,3 = 1.7262.... It is an open problem whether this quantity has a closed formula
(possibly in terms of special functions).

The above theorem reduces our study to the investigation of the geometry of
the manifold of tangents, for which we prove the following result (Proposition 11
and Corollary 6 from Chapter 5).

Proposition (The volume of the manifold of k-tangents). For a convex hypersurface
X ⊂ RPn we have

|Ωk(X)|
|Sch(k, n)| =

Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
σk(x)dVX . (9)

where σk : X → R is the k-th elementary symmetric polynomial of the principal
curvatures of the embedding X ↪→ RPn.
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Figure 1: The equation x2
1 + · · ·+ x2

n = (tan r)2x2
0 defines in RPn a metric sphere

of radius r, i.e. the set of all points at distance r from a fixed point.

Remark. After this result was obtained P. Bürgisser has pointed out to us that it
can be also derived using a limiting argument from [5], where the tube neighborhood
around Ωk(X) is described.

In the case of spheres in projective space we are able to compute explicitly the
volume of the manifold of tangents and hence also the expected number of flats
that are simultaneously tangent to all the spheres.

Example (Spheres in projective space). Let Sri = {x2
1 + · · ·+ x2

n = (tan ri)2 x2
0} ⊂

RPn be a metric sphere in RPn of radius ri ∈ (0, π/2), i = 1, . . . , dk,n (see Figure
1). Since all principal curvatures of Sri are constants equal to cot ri and since
|Sri | = 2

√
π
n

Γ(n2 ) (sin ri)n−1 by (9) we have

|Ωk(Sr)|
|Sch(k, n)| =

2Γ
(
n+1

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · (cos ri)k(sin ri)n−k−1,

and combining it with (8) we obtain

τk(Sr1 , . . . , Srdk,n ) = δk,n ·
dk,n∏

i=1




2Γ
(
n+1

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · (cos ri)k(sin ri)n−k−1




Observe that a hypersurface Sy,r which is a sphere in some affine chart U ' Rn,
i.e. Sy,r = {x ∈ Rn : ∑n

i=1(xi − yi)2 = r2}, is a convex hypersurface in RPn, but
it is not a sphere with respect to the projective metric unless it’s centered at the
origin (y = 0); and, viceversa, a metric sphere in RPn needs not be a sphere in an
affine chart. In fact, (5.3) tells that Sottile and Theobald’s upper bound 3 · 2n−1 for
the number of lines tangent to d1,n affine spheres in Rn does not apply to the case
of spheres in RPn: since 2π

e
> 2, when n is large (5.3) is larger than 3 · 2n−1; as a
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consequence there must be a configuration of d1,n projective spheres in RPn with
(exponentially) more common tangent lines.

Remark (The semialgebraic case). The theorem above remains true in the case
of semialgebraic hypersurfaces X1, . . . , Xdk,n ⊂ RPn satisfying some mild non-
degeneracy conditions (see Section 5.5 for more details). Specifically it still holds
true that

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| ,

but the volume of the manifold of k-tangents has a more complicated description:

|Ωk(X)|
|Sch(k, n)| =

(
n−1
k

)
Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
E Λ∈Grk(TxX)|Bx(Λ)|dVX ,

where |Bx(Λ)| denotes the absolute value of the determinant of the matrix of the
second fundamental form of X ↪→ RPn restricted to Λ ∈ Grk(TxX) and written in
an orthonormal basis of Λ (see Subsection 5.2.1), and the expectation is taken with
respect to the uniform distribution on Grk(TxX) ' Gr(k, n− 1).

The quantities |Ωk(X)| offer an alternative interesting interpretation of the clas-
sical notion of intrinsic volumes. If C is a convex set in RPn, the spherical Steiner’s
formula [38, (9)] allows to write the volume of the ε-neighborhood URPn(C, ε) of C
in RPn as

|URPn(C, ε)| = |C|+
n−1∑

k=0
fk(ε)|Sk||Sn−k−1|Vk(C),

where
fk(ε) =

∫ ε

0
(cos t)k(sin t)n−1−kdt.

The quantities V0(C), . . . , Vn−1(C) are called intrinsic volumes of C. What is
remarkable is that when C is smooth and strictly convex, |Ωk(∂C)| coincides, up
to a constant depending on k and n only, with the (n− k − 1)-th intrinsic volume
of C (again this property can be derived by a limiting argument from the results
in [5]).

Proposition (The manifold of k-tangents and intrinsic volumes). Let C ⊂ RPn
be a smooth strictly convex set. Then

|Vn−k−1(C)| = 1
4 ·
|Ωk(∂C)|
|Sch(k, n)| , k = 0, . . . , n− 1.
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This interpretation offers possible new directions of investigation and allows to
prove the following universal upper bound (see Corollary 9 from Chapter 5)

τk(X1, . . . , Xdk,n) ≤ δk,n · 4dk,n ,

where the right-hand side depends only on k and n. However, already for n = 3,
as observed by T. Theobald [84] there is no upper bound on the number of lines
that can be simultaneously tangent to four convex hypersurfaces in RP3 in general
position (see Section 5.4 for a proof of this fact).

Part of the results presented in the dissertation are obtained in collaboration
of the author with other people: Chapter 3 is based on the joint work [21] with
Paul Breiding and Antonio Lerario, the results of Chapter 4 are presented in the
joint work [15] with Carlos Beltrán and Chapter 5 is a result of the joint work [52]
with Antonio Lerario. In all mentioned works the contribution of the authors was
comparable or equal.
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Chapter 1

Notations and preliminary results

In this chapter we set our notations, give main definitions, state some classical
results about spherical harmonics and semialgebraic sets and define the probabilistic
framework for Chapters 3, 4 and 5.

1.1 Spherical harmonics
Let us denote by Pd,n the set of real homogeneous polynomials of degree d in n
variables x1, . . . , xn. It is a real vector space of dimension

dim(Pd,n) =
(
n+ d− 1

d

)

Denote by

Hd,n =
{
h = f |Sn−1 : f ∈ Pd,n, ∆f = ∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

= 0
}

the space of restrictions to the sphere Sn−1 of harmonic polynomials of degree d.
Functions in Hd,n are called spherical harmonics and the dimension of Hd,n equals

dimHd,n =
(
n+ d− 1

d

)
−
(
n+ d− 3
d− 2

)
if d ≥ 2, dimH0,n = 1, dimH1,n = n

Definition 1. The spherical Laplace operator ∆Sn−1 is defined as follows. If
f ∈ C2(Sn−1) is a C2-differentiable function on Sn−1 and f̃ its degree 0 homogeneous
extension to Rn \ {0} , i.e., f̃(x) = f(x/‖x‖), x ∈ Rn \ {0}, then

∆Sn−1f := (∆f̃)|Sn−1

1



Using spherical coordinates it is straightforward to check that any spherical
harmonic h ∈ Hd,n is an eigenfunction of the spherical Laplace operator ∆Sn−1

corresponding to the eigenvalue −d(d+ n− 2). Remarkably, ∆Sn−1 has no other
eigenfunctions [76, Thm. 22.1].

Let us now consider the standard action of the orthogonal group SO(n) on the
space C(Rn) of continuous functions on Rn:

g ∈ SO(n), f ∈ C(Rn) 7→ f ◦ g−1

Since this action commutes with the Laplace operator:

∆f ◦ g−1 = ∆(f ◦ g−1), f ∈ C(Rn), g ∈ SO(n)

the space of harmonic homogeneous polynomials of degree d is invariant under
it and hence the spaces Hd,n, d ≥ 0 of spherical harmonics are finite-dimensional
representations of SO(n). It turns out that these representations are actually
irreducible [35, Thm. 9.3.4].

There is a special family of orthogonal polynomials that is intimately related to
spherical harmonics.
Definition 2 (Gegenbauer polynomials). Let n ≥ 2. Gegenbauer polynomials of
parameter n−2

2 are defined via the recurrence relation [2, 22.4.2, 22.7.3]:

G0,n(x) = 1,
G1,n(x) = (n− 2)x,

Gd,n(x) = 1
d

[
2x(d+ n

2 − 2)Gd−1,n(x)− (d+ n− 4)Gd−2,n(x)
]

The polynomials {Gd,n}d≥0 form an orthogonal family on the interval [−1, 1]
with respect to the measure (1− z2)n−3

2 dz [2, 22.2.3]:
1∫

−1

Gd1,n(z)Gd2,n(z) (1− z2)n−3
2 dz = 0, d1 6= d2

For any point y ∈ Sn−1 and any d ≥ 0 there exists a spherical harmonic
Zy
d ∈ Hd,n, called zonal, which is invariant under the rotations preserving y:

Zy
d (g−1x) = Zy

d (x), g ∈ SO(n), gy = y

The function Zy
d (x) is determined uniquely up to a constant and it is proportional

to Gd,n(〈x, y〉) [81, Thm. 2.14],1 where 〈x, y〉 = x1y1 + · · ·+ xnyn is the standard
scalar product in Rn.

1According to the usual definition [81, page 143] a zonal harmonic Zy
d is determined uniquely

by some normalization condition. Since a normalization is unimportant for our purposes we abuse
the terminology and call zonal any spherical harmonic with the mentioned invariance property.
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The inclusion map

i : Pd,n ↪→ Pd,n+1

f 7→ i(f)(x1, . . . , xn, xn+1) = f(x1, . . . , xn)

induces the linear inclusion

ˆ : Hd,n ↪→ Hd,n+1

h = f |Sn−1 7→ ĥ = i(f)|Sn

We call tesseral any spherical harmonic of the form ĥ ∈ Hd,n+1 for some h ∈ Hd,n.

1.2 Semialgebraic geometry
The material of this section is covered by [18, 27].

Definition 3. A subset S ⊂ Rn is semialgebraic if it can be written as

S =
s⋃

i=1

ri⋂

j=1
{x ∈ Rn : fi,j ∗i,j 0},

where fi,j ∈ R[x1, . . . , xn] are some real polynomials and ∗i,j is either < or = for
i = 1, . . . , s, j = 1, . . . , ri.

Remark 1. If S ⊂ Rn is algebraic, i.e., S = {x ∈ Rn : f(x) = 0 ∀f ∈ B} for
some set of real polynomials B ⊂ R[x1, . . . , xn], then it is also semialgebraic since
by Hilbert’s basis theorem S can be defined by a finite collection of polynomials.

Note that, by definition, the family of semialgebraic subsets of Rn is closed
under taking finite intersections, finite unions and complements and the product
S1 × · · · × Sr ⊂ Rn1 × · · · × Rnr of semialgebraic subsets Si ⊂ Rni , i = 1, . . . , r is
as well semialgebraic. On of the most important statements about semialgebraic
sets is Tarski-Seidenberg theorem.

Theorem 1 (Tarski-Seidenberg). If S ⊂ Rn is semialgebraic and π : Rn → Rk is
the projection on the first k coordinates, then π(S) ⊂ Rk is semialgebraic.

Morphisms between semialgebraic sets are defined as follows.

Definition 4. Let S ⊂ Rn and T ⊂ Rk be semialgebraic sets. A mapping f : S → T
is said to be semialgebraic if its graph

Γf = {(x, y) ∈ S × T : f(x) = y}

is a semialgebraic subset of Rn × Rk.

3



Tarski-Seidenberg theorem implies that the direct image and the inverse image
of a semialgebraic set under a semialgebraic mapping are semialgebraic.

It is easy to describe the semialgebraic subsets of R: they are the unions of
finitely many points and open intervals. The following proposition asserts that as
in the case n = 1 semialgebraic subsets of Rn are nothing but finite unions of open
“cubes” of different dimensions.

Proposition 1. Every semialgebraic subset S ⊂ Rn can be represented as the
disjoint union S = tri=1Ci of a finite number of semialgebraic subsets Ci (called
cells), where each cell Ci is a smooth submanifold of Rn semialgebraically dif-
feomorphic to an open cube (0, 1)di , di ∈ N (with (0, 1)0 being a point). The
number di is the dimension of the cell Ci and the dimension of S is defined as
dim(S) = max{di : i = 1, . . . , r}. This definition does not depend on a particular
decomposition of S.

Given a semialgebraic set S ⊂ Rn of dimension k ≤ n and given a decomposition
of S into cells (as in Proposition 1) we denote by Stop the union of all k-dimensional
cells and by Slow the union of the cells of dimension less than k. The sets Stop, Slow ⊂
Rn are semialgebraic and Stop is a smooth k-dimensional submanifold of Rn.

One of the central results about semialgebraic mappings is Hardt’s theorem.

Theorem 2 (Hardt’s semialgebraic triviality). Let S ⊂ Rn be a semialgebraic set
and let f : S → Rk be a continuous semialgebraic mapping. Then there exists
a finite partition of Rk into semialgebraic sets T1, . . . , Tr ⊂ Rk such that f is
semialgebraically trivial over each Ti, i.e., there are a semialgebraic set Fi and a
semialgebraic homeomorphism hi : f−1(Ti)→ Ti × Fi such that the composition of
hi with the projection Ti × Fi → Ti equals f |f−1(Ti).

The following corollary of Hardt’s theorem is frequently used to estimate
dimensions of semialgebraic sets.

Corollary 1. Let S ⊂ Rn and f : S → Rk be as in Theorem 2. Then the set
{x ∈ Rk : dim(f−1(x)) = d} is semialgebraic and has dimension not greater than
dim(S)− d. In particular, dim(f(S)) ≤ dim(S).

The classical Sard’s theorem asserts that the set of critical values of a smooth
mapping between two smooth manifolds is of measure zero. Its semialgebraic
version allows to say a bit more.

Theorem 3 (Semialgebraic Sard’s theorem). Let f : S → T be a smooth semialge-
braic mapping between smooth semialgebraic sets. Then the set of its critical values
is a semialgebraic subset of T of dimension strictly less than dim(T ).

4



1.3 Probabilistic framework
In this section we set up the probabilistic framework we will work in.

1.3.1 Conventions on metrics and volumes
The real projective space RPn−1 is endowed with the Riemannian metric with
respect to which the double covering Sn−1 2:1−→ RPn−1 is a local isometry, where the
unit sphere Sn−1 ⊂ Rn inherits its metric from the Euclidean space Rn. We refer
to this Riemannian metric on RPn−1 as “projective metric” or “standard metric”.

The Grassmannian manifold Gr(k, n) of k-planes in Rn is endowed with an
O(n)-invariant Riemannian metric through the Plücker embedding

i : Gr(k, n) ↪→ P
(

k∧
Rn

)

where P(∧k Rn), the projectivization of the vector space ∧k Rn ' R(nk), is endowed
with the standard metric. Using the Plücker embedding we locally identify Gr(k, n)
with the set of unit simple k-vectors v1 ∧ · · · ∧ vk, where v1, . . . , vk are orthonormal
in Rn (see [53] for more details).

A canonical left-invariant metric on the orthogonal group O(n) is defined as

〈A,B〉 := 1
2tr(A

tB), A,B ∈ T1O(n)

Denoting by |M | the total volume of a Riemannian manifold M (whenever it is
finite) one can prove the following formulas:

|Gr(k, n)| = |O(n)|
|O(k)||O(n− k)| ,

|O(n+ 1)|
|O(n)| = |Sn|, |O(1)| = 2, |Sn| = 2π n+1

2

Γ(n+1
2 ) .

We will also need a notion of the volume of a semialgebraic set.

Definition 5 (Volume of a semialgebraic set). Let S ⊂ Rn be a semialgebraic
subset of dimension k ≤ n and Stop be the union of all k-dimensional cells of
some cell decomposition of S (see Proposition 1). The k-dimensional manifold Stop
inherits a Riemannian structure from Rn and by |S| := |Stop| we denote the volume
of Stop.

One can check that this definition is independent of a particular cell decomposi-
tion of the semialgebraic subset S ⊂ Rn.
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Given a Riemannian manifold M and a measurable function f : M → R on
it we denote by

∫
M f(y) dVM the integration of f with respect to the Riemannian

volume density of M . We recall that there is a unique O(n)-invariant probability
distribution on O(n), Gr(k, n) and Sn called uniform (see [24, 53] for more details).
For a measurable subset A ⊂M ∈ {O(n), Gr(k, n), Sn} it is defined as

P(A) := 1
|M |

∫

M

1A dVM .

Remark 2. For a measurable A ⊂ Gr(k, n) the set Â = {g ∈ O(n) : g−1Rk ∈ A}
is measurable in O(n) and

P(A) = 1
|Gr(k, n)|

∫

Gr(k,n)

1A dVGr(k,n) = 1
|O(n)|

∫

O(n)

1Â dVO(n) = P(Â)

We will implicitly use this identification when needed.

1.3.2 Integral geometry formula
The classical Poincaré’s integral geometry formula allows to compute the average
number of intersection points of two planar curves, where one is fixed and the other
is moved around the plane R2 by a randomly chosen isometry of the plane.

Theorem 4 (Poincaré formula). Let c0, c1 ⊂ R2 be two smooth planar curves and
let the isometry group I(R2) = SO(2)oR2 of the plane be endowed with the product
Riemannian structure. Then

∫

g∈I(R2)

#(c0 ∩ gc1) dVI(R2) = 4|c0||c1|

There are generalizations due to Brothers [22] and Howard [45] of Poincaré
formula to the case of two submanifolds in an arbitrary homogeneous space endowed
with an invariant metric. In Chapters 3 and 4 we will only need a version of this
formula (that we state below) for submanifolds of spheres and real projective spaces
and in Chapter 5 a generalized Poincaré formula for hypersurfaces in Grassmannian
from [24] will be used (for this see Section 5.1).

Theorem 5 (Poincaré formula for submanifolds of a sphere). Let M,N ⊂ Sn be
smooth submanifolds of the sphere of dimensions dim(M) = m, dim(N) = k and
let m + k ≥ n. Then for almost all g ∈ SO(n + 1) the intersection M ∩ gN is
transverse and

1
|SO(n+ 1)|

∫

g∈SO(n+1)

|M ∩ gN | dVSO(n+1) = |Sm+k−n| |M ||Sm|
|N |
|Sk|
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The above formula also holds in case when M,N ⊂ Sn are algebraic subsets (even
singular).

The following corollary of Theorem 5 will be particularly useful for us.

Corollary 2. Let M ⊂ RPn be a smooth submanifold of dimension dim(M) = m,
N ' RPk ⊂ RPn be a k-dimensional projective subspace and let m+ k ≥ n. Then
for almost all g ∈ SO(n+ 1) the intersection M ∩ gN is transverse and

E L∈G(k,n)|M ∩ L| =
1

|SO(n+ 1)|
∫

g∈SO(n+1)

|M ∩ gN | dVSO(n+1) = |RPm+k−n| |M ||RPm| ,

where G(k, n) ' Gr(k+1, n+1) denotes the Grassmannian of projective k-subspaces
in RPn. Again, the above formula also holds in case when M ⊂ RPn is an algebraic
subset (even singular).

1.3.3 Smooth coarea formula
Let f : M → N be a smooth map between two smooth manifolds. A point x ∈M
is called a regular point of f if the differential Dxf : TxM → Tf(x)N is surjective,
otherwise x ∈ M is called a critical point. The point y ∈ N is called a regular
value of f if its preimage f−1(y) consists only of regular points, otherwise y ∈ N is
called a critical value. By convention, any point y ∈ N \ f(M) outside the image
of f is a regular value. Note that if dim(M) < dim(N), then all points x ∈M are
critical for f .

Sard’s theorem asserts that the set of critical values of f has zero measure.
Let now f : M → N be a smooth map between two Riemannian manifolds of

dimensions dim(M) = m, dim(N) = k.

Definition 6. The normal Jacobian NJxf of f at x ∈M is defined as follows. If
x ∈M is a critical point of f then NJxf = 0, otherwise

NJxf = ‖Dxf(e1) ∧ · · · ∧Dxf(ek)‖,

where e1, . . . ek ∈ (ker(Dxf))⊥ is any orthonormal basis of the orthogonal comple-
ment to the kernel of the differential of f at x.

The smooth coarea formula is a far going generalization of the classical formula
for the change of variables in the integral.
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Theorem 6 (Smooth coarea formula). Let f : M → N be a smooth map between
Riemannian manifolds of dimensions dim(M) = m, dim(N) = k. Then

∫

y∈N

∫

x∈f−1(y)

h(x) dVf−1(y) dVN =
∫

x∈M
h(x)NJxf dVM

for any Borel measurable function h defined almost everywhere on M and such that
the integral on the right is finite.

Remark 3. Note that when almost all points x ∈M are regular one can rewrite
the smooth coarea formula as follows:

∫

y∈N

∫

x∈f−1(y)

h(x)(NJxf)−1dVf−1(y) dVN =
∫

x∈M
h(x) dVM

1.3.4 Random matrices
The space M(n,R) of n × n real matrices is endowed with the Frobenius inner
product and the associated norm:

(A,B) = tr(A tB), ‖A‖2 = (A,A), A,B ∈M(n,R).

Any k-dimensional vector subspace V ⊂ M(n,R) is endowed with the standard
normal probability distribution NV :

PNV (U) = 1
√

2π k
∫

U
e−
‖v‖2

2 dv,

where dv is the Riemannian volume density on (V, (·, ·)) and U ⊂ V is a measurable
subset.

In case when V = Sym(n,R) is the space of real symmetric n× n matrices the
probability space (Sym(n,R),NSym(n,R)) is called the Gaussian Orthogonal Ensemble
and random matrices taking values in it are called GOE(n)-matrices. Denoting
by dQ = ∏

1≤i≤j≤n dQij the Lebesgue measure of the entries of a symmetric matrix
Q ∈ Sym(n,R) one can write

PGOE(n){U} = 1√
2n
√
π
N

∫

U
e−
‖Q‖2

2 dQ,

where N = dim(Sym(n,R)) =
(
n+1

2

)
and U ⊂ Sym(n,R) ' RN is a measurable

subset. Due to the invariance under conjugations Q 7→ CtQC, C ∈ O(n) by
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orthogonal matrices, the GOE(n) measure on Sym(n,R) induces a probability
measure on the space of eigenvalues Rn [63, Sect. 3.1]:

P{U} := 1
Zn

∫

U
e−
‖λ‖2

2 |∆(λ)| dλ

where dλ = ∏n
i=1 dλi is the Lebesgue measure on Rn, U ⊂ Rn is a measurable subset,

‖λ‖2 = λ2
1 + · · ·+ λ2

n is the Euclidean norm of λ ∈ Rn, ∆(λ) := ∏
1≤i<j≤n(λj − λi)

is the Vandermonde determinant and Zn is the normalization constant. The value
of Zn equals [63, (17.5.9)]

Zn :=
∫

Rn
e−
‖λ‖2

2 |∆(λ)| dλ =
√

2π n
n∏

i=1

Γ(1 + i
2)

Γ(3
2) (1.1)

The unit sphere SN−1 := {Q ∈ Sym(n,R) : ‖Q‖ = 1} in the space of symmetric
matrices is endowed with the uniform measure. Then the normalized volume
|E|/|SN−1| of any measurable set E ⊂ SN−1 equals the GOE(n) measure of the
cone C(E) := {Q ∈ Sym(n,R) : Q/‖Q‖ ∈ E} over E:

|E|
|SN−1| = P{C(E)} (1.2)

This property of the GOE measure will be useful for us.

9



Chapter 2

Spherical harmonics with the
maximum number of critical
points

Spherical harmonics are the restrictions to the standard unit sphere of harmonic
homogeneous polynomials. They can be equivalently defined as eigenfunctions
of the spherical Laplace operator. Spherical harmonics play an important role
in mathematics (the theory of special functions, spectral geometry) and physical
sciences (quantum mechanics, cosmology, geodesy).

The study of geometric and topological properties of Laplace eigenfunctions
on Riemannian manifolds has rich and interesting history, we refer the reader
to the survey of the results [89]. Being eigenfunctions of the spherical Laplace
operator spherical harmonics have many remarkable properties that are not shared
by general homogeneous polynomials. For example, the algebraic hypersurface
they define cannot have arbitrarily small volume. In fact, from the result [30,
Thm. 1.2] of Donnelly and Fefferman it follows that if h ∈ Hd,n+1 is a spherical
harmonic corresponding to a harmonic homogeneous polynomial of degree d in n+1
variables then the (n− 1)-dimensional Hausdorff volume of the nodal hypersurface
Nh = {x ∈ Sn : h(x) = 0} of the spherical harmonic h satisfies

cn
√
λd,n ≤ Hn−1(Nh),

where cn > 0 is a positive constant that depends only on n and −λd,n = −d(d+n−1)
is the eigenvalue of the spherical Laplace operator ∆Sn that corresponds to h.

Another interesting result concerns topological properties of nodal sets of
spherical harmonics. Connected components of the complement in the sphere to
the nodal hypersurface of a spherical harmonic are called nodal domains. In [67]
Pleijel proved the following asymptotic bound on the number µ(h) of nodal domains

10



in S2 of a spherical harmonic h ∈ Hd,3:

lim
d→+∞

µ(h)
d(d− 1) < 0.69 (2.1)

By the results of Harnack [42] a real plane algebraic curve of degree d, i.e., the
zero set in RP2 of a real homogeneous polynomial of degree d, cannot have more
than (d− 1)(d− 2)/2 + 1 connected components in RP2 when it is non-singular
and this bound is attained by some non-singular curves which are called M-curves.
The result (2.1) in particular implies that the non-singular real plane algebraic
curves defined by harmonic homogeneous polynomials cannot be M-curves (at least
when the degree d is large enough). In [11, Problem 1] Arnold asked to determine
for a given d the maximum number of nodal domains that a spherical harmonic
h ∈ Hd,3 can have. In [56] trying to answer Arnold’s question Leydold conjectured
the following formula:

max
h∈Hd,3

µ(h) =




1
2(d+ 1)2, if d is odd
1
2d(d+ 2), if d is even

and he proved it for d ≤ 6. For d > 6 the problem is still open to our knowledge.
Also in [11, Problem 1] Arnold asked to determine the largest number of local

maxima that a Morse spherical harmonic h ∈ Hd,3 can have on the sphere S2. For
even d the answer to this question is not known in general (to our knowledge). For
odd d the answer (d2− d+ 2)/2 was given by Kuznetsov and Kholshevnikov in [54],
where they also proved that the maximum number md,3 of critical points of the
restriction f |S2 to the sphere of a Morse (see Subsection 2.1.1) real homogeneous
polynomial f ∈ Pd,3 of degree d equals:

md,3 = 2(d2 − d+ 1)

and surprisingly enough this bound is attained by spherical harmonics. In the
following theorem we generalize the result of Kuznetsov and Kholshevnikov to the
case of any number of variables.

Theorem 7. For any d ≥ 1 and n ≥ 2 the maximum number md,n of critical points
of the restriction f |Sn−1 to the sphere of a Morse real homogeneous polynomial
f ∈ Pd,n of degree d equals

md,n = 2(d− 1)n − 1
d− 2 = 2((d− 1)n−1 + · · ·+ (d− 1) + 1)

Moreover, for any d ≥ 1 and n ≥ 2 there exist a Morse spherical harmonic h ∈ Hd,n

with md,n critical points.
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Critical points of restrictions to the sphere of real homogeneous polynomials
reappeared in the context of spectral theory of high order tensors independently
initiated by Lim [57] and Qi [69] in 2005. Several generalizations of the classical
concept of an eigenvector of a matrix were introduced in [57, 69]. Critical points
of the restrictions to the sphere of real homogeneous polynomials correspond to
l2-eigenvectors of Lim or Z-eigenvectors of Qi as we explain in Section 2.1.2.

Let A = (ai1...id)nij=1, ai1...id ∈ R be a real n-dimensional tensor of order d (in
the sequel, nd-tensor). A non-zero vector x ∈ Cn \ {0} is called an eigenvector of
A if there exists λ ∈ C, the corresponding eigenvalue, such that

Axd−1 = λx, Axd−1 :=



n∑

i2,...,id=1
a1i2...idxi2 · · ·xid , . . . ,

n∑

i2,...,id=1
ani2...idxi2 · · · xid


 .

For d = 2 one recovers the classical definition of an eigenvector of an n× n matrix
A = (ai1i2)nij=1. The point [x] ∈ CPn−1 defined by an eigenvector x ∈ Cn \ {0} is
called an eigenpoint and the set of all eigenpoints is called an eigenconfiguration.

An nd-tensor A = (ai1...id)nij=1, ai1,...,id ∈ R is said to be symmetric if aiσ1 ...iσd
=

ai1...id for any permutation σ ∈ Sd. Cartwright and Sturmfels [25] proved that
the number of eigenpoints of a generic (for the definition see Subsection 2.1.2)
symmetric nd-tensor equals

m̃d,n := (d− 1)n − 1
d− 2 = (d− 1)n−1 + · · ·+ (d− 1) + 1

but, except for the case of real symmetric matrices (d = 2), not all eigenvectors of
a general real symmetric tensor of order d ≥ 3 are real. In fact, “most”1 of real
symmetric tensors have eigenpoints in CPn−1 \ RPn−1. Abo, Seigal and Sturmfels
conjectured [1, Conjecture 6.5] that for any d ≥ 1 and n ≥ 2 there exists a generic
real symmetric nd-tensor having only real eigenvectors and proved it for d ≥ 1, n = 3
and for d = n = 4. The cases d ≥ 1, n = 2 and d = 2, n ≥ 2 are elementary, the
case of general d, n was unknown (see for example [82]). In the following theorem
which is a trivial corollary of Theorem 7 we cover the case of arbitrary d ≥ 1 and
n ≥ 2.

Theorem 8. For any d ≥ 1 and n ≥ 2 there exists a generic real symmetric
nd-tensor all of whose m̃d,n eigenpoints are real.

Before passing to the proof of Theorem 7 we need few auxiliary results: first
in Subsection 2.1.1 we recall some basic facts about Morse functions; then, in
Subsection 2.1.2, we give the definition of a generic tensor, recall the classical

1As it often happens in real algebraic geometry problems the objects of “maximal complexity”
are rare and “numerically invisible”.
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correspondence between symmetric tensors and homogeneous polynomials and
show that under this correspondence unit real eigenvectors of a real symmetric
tensor are exactly critical points of the restriction to the sphere of the corresponding
real homogeneous polynomial; finally, we describe critical points of zonal and tesseral
spherical harmonics in Subsection 2.1.3. In the end of this chapter we also discuss
several related problems.

2.1 Preliminaries
2.1.1 Morse functions
Let f : M → R be a smooth function on a smooth n-dimensional manifold M .

The differential dxf of f at a point x ∈M is a linear form on TxM : it sends
v = γ′(0) ∈ TxM to dxf(v) := (f ◦ γ)′(0), where γ = γ(t) ⊂M is a smooth curve
passing through x = γ(0) with the tangent vector v at t = 0. The point x∗ ∈M is
said to be critical for f if dx∗f = 0.

The second differential d2
x∗f of f at a critical point x∗ ∈M is a quadratic form

on Tx∗M : it sends v = γ′(0) ∈ Tx∗M to d2
x∗f(v) := (f ◦ γ)′′(0). In local coordinates

x = (x1, . . . , xn) near x∗ one has

d2
x∗f(v) =

n∑

i,j=1

∂2f

∂xi∂xj
(x∗)vivj

The matrix
(

∂2f
∂xi∂xj

(x∗)
)
is called the Hessian matrix.

A critical point x∗ ∈ M of f : M → R is said to be (non-)degenerate if the
second differential d2

x∗f is a (non-)degenerate (as quadratic form). Equivalently, a
critical point x∗ ∈M of f is (non-)degenerate if the Hessian matrix

(
∂2f

∂xi∂xj
(x∗)

)

written in any local coordinates is (non-)singular.
Classical Morse lemma asserts that in some local coordinates x = (x1, . . . , xn)

near a non-degenerate critical point x∗ the function f takes the form

f(x) = f(x∗)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n

where the number k, called the index of f at x∗, equals the dimension of a maximal
subspace of Tx∗M on which d2

x∗f is negative definite.
A smooth function f : M → R with only non-degenerate critical points is called

Morse. Non-degenerate critical points are isolated, hence on a compact manifold a
Morse function can have only finitely many critical points.

In the following we also say that a real homogeneous polynomial f ∈ Pd,n is
Morse if its restriction to the sphere Sn−1 is a Morse function.
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2.1.2 Symmetric tensors and homogeneous polynomials
A generic symmetric n×n matrix has n real simple eigenvalues and n corresponding
eigenpoints. Moreover, in the space of all symmetric n× n matrices those which
have repeated eigenvalues form a real algebraic subvariety, that we call the discrim-
inant, and a generic matrix belongs to its complement. The codimension of the
discriminant is two and this justifies the fact that the number of real eigenpoints is
the same for all generic matrices.

Let A=(ai1...id)nij=1, ai1...id∈R be an n-dimensional symmetric tensor of order d.
Recall that a complex number λ ∈ C is an eigenvalue associated to an eigenvector
x ∈ Cn if Axd−1 = λx. In this case the pair (x, λ) ∈ Cn \ {0} × C is called an
eigenpair of A. Two eigenpairs (x, λ) and (x′, λ′) of A are said to be equivalent if
they define the same eigenpoint [x] = [x′] ∈ CPn−1. Theorem 1.2 in [25] asserts
that the number of eigenpoints (equivalence classes of eigenpairs) of a sufficiently
generic symmetric nd-tensor equals m̃d,n = ((d − 1)n − 1)/(d − 2). Non-generic
tensors are cut out by an algebraic hypersurface, called the eigendiscriminant [1],
and the number of eigenpoints of a non-generic tensor is not equal to the expected
m̃d,n. On each connected component of the complement of the eigendiscriminant
the number of real eigenpoints (equivalence classes of real eigenpairs) is constant.

There is a well-known one-to-one correspondence between the set Pd,n of real
homogeneous polynomials of degree d in n variables and the set of real symmetric
nd-tensors:

fA =
n∑

i1,...,id=1
ai1...idxi1 . . . xid ←→ A = (ai1...id)nij=1

The critical points of the restriction fA|Sn−1 of a homogeneous polynomial fA to
the unit sphere are precisely unit real eigenvectors of the corresponding symmetric
tensor A. Indeed, by the method of Lagrange multipliers [16, Section 1.4], if
x ∈ Sn−1 then

dxfA|Sn−1 = 0 ⇔ dxfA = λ dx
(
‖x‖2 − 1

2

)
⇔ Axd−1 = (λ/d)x

Note that the Lagrange multiplier λ corresponds to the eigenvalue λ/d associated
to the unit eigenvector x. In the terminology of Lim [57] and Qi [69] unit real
eigenvectors are l2-eigenvectors and Z-eigenvectors respectively. Theorem 1.2 in
[25] thus gives an upper bound on the number of critical points of the restriction
to the sphere of a Morse homogeneous polynomial.

Lemma 1. If a real homogeneous polynomial f ∈ Pd,n defines a Morse function
f |Sn−1 on the sphere then the number of critical points of f |Sn−1 is bounded by
md,n = 2m̃d,n = 2((d− 1)n − 1)/(d− 2).
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Proof. If fA|Sn−1 is a Morse function and the tensor A is generic then A has m̃d,n

eigenpoints in CPn−1 which implies that the number of unit real eigenvectors
of A (that is equal to the number of critical points of fA|Sn−1) is bounded by
md,n = 2m̃d,n.

Suppose now that fA|Sn−1 is a Morse function but the tensor A is not generic.
Since non-generic tensors form a hypersurface in the space of symmetric tensors any
open neighbourhood of A contains a generic tensor Ã. Moreover, if Ã is sufficiently
close to A by [12, Cor. 5.24] the function fÃ|Sn−1 is Morse and it has the same
number of critical points as fA|Sn−1 .

Remark 4. It is not difficult to see that a real symmetric matrix is generic, i.e., all
of its eigenvalues are simple, if and only if the corresponding quadratic homogeneous
polynomial is Morse. However, in the case of higher order d ≥ 3 there can exist
non-generic tensors that correspond to Morse homogeneous polynomial.

2.1.3 Critical points of zonal and tesseral spherical
harmonics

Let y ∈ Sn−1 and Zy
d (x) = Gd,n(〈x, y〉) ∈ Hd,n be a zonal spherical harmonic,

where Gd,n is the degree d Gegenbauer polynomial of parameter n−2
2 (for details

see Section 1.1). Since polynomials {Gd,n}d≥0 are orthogonal on the interval [−1, 1]
with respect to the measure (1− z2)n−3

2 dz [2, 22.2.3] by [36, Prop. I.1.1] Gd,n has d
simple real roots in (−1, 1) and hence its derivative G′d,n has d− 1 roots in (−1, 1)
which we denote by αd,1, . . . , αd,d−1. The following lemma characterizes the critical
points of a zonal spherical harmonic.

Lemma 2. The set of critical points of Zy
d consists of y,−y and d − 1 affine

hyperplane sections of the sphere {x ∈ Sn−1 : 〈x, y〉 = αd,i}, i = 1, . . . , d− 1. The
critical points y and −y are non-degenerate.

Proof. A point x ∈ Sn−1 is critical for Gd,n(〈x, y〉) if and only if G′d,n(〈x, y〉)y is
proportional to x. This is possible either if 〈x, y〉 is a root of G′d,n or x = ±y. To
prove the non-degeneracy of x = ±y we assume without loss of generality that
y = (0, . . . , 0, 1) ∈ Sn−1 and then in local coordinates

(x1, . . . , xn−1) 7→
(
x1, . . . , xn−1,±

√
1− x2

1 − · · · − x2
n−1

)
∈ Sn−1

around x = ±y our functionGd,n(〈x, y〉) takes the formGd,n

(
±
√

1− x2
1 − · · · − x2

n−1

)
.

One can easily verify that its Hessian matrix at (x1, . . . , xn−1) = (0, . . . , 0) is non-
singular.
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Let h = f |Sn−1 ∈ Hd,n, where f ∈ Pd,n is a harmonic polynomial in n variables.
Recall that the tesseral spherical harmonic ĥ ∈ Hd,n+1 is the restriction to Sn of
the polynomial f ∈ Pd,n viewed as an element of Pd,n+1 (see Section 1.1). Critical
points of tesseral spherical harmonics are described as follows.

Lemma 3. Assume that d, n ≥ 2 and h ∈ Hd,n.

(i) If the zero locus {h = 0} ⊂ Sn−1 is regular then the set of critical points
of ĥ ∈ Hd,n+1 consists of ±(0, . . . , 0, 1) ∈ Sn and the points (x1, . . . , xn, 0),
where (x1, . . . , xn) ∈ Sn−1 is critical for h. Moreover, for d ≥ 3 the points
±(0, . . . , 0, 1) ∈ Sn are always degenerate.

(ii) If {h = 0} is singular then, additionally, for each singular point (x1, . . . , xn) ∈
{h = 0} the great circle {(tx1, . . . , txn,±

√
1− t2) : 0 ≤ t ≤ 1} ⊂ Sn consists

of critical points of ĥ.

Proof. If h = f |Sn−1 for some harmonic polynomial f ∈ Pd,n the critical points of
ĥ = i(f)|Sn ∈ Hd,n+1 are characterized by

∂f

∂x1
= λx1, . . .

∂f

∂xn
= λxn,

∂f

∂xn+1
= 0 = λxn+1 (2.2)

Obviously (x1, . . . , xn, 0) ∈ Sn is a critical point of ĥ if (x1, . . . , xn) ∈ Sn−1 is
critical for h. Now if λ = 0 and {h = 0} ⊂ Sn−1 is regular then x1 = · · · = xn = 0
and xn+1 = ±1. If, instead, {h = 0} is singular and (x1, . . . , xn) ∈ {h = 0} is
a solution of ∂f

∂x1
= · · · = ∂f

∂xn
= 0 then due to the homogeneity of f any point

(tx1, . . . , txn,±
√

1− t2), 0 ≤ t ≤ 1 is a solution of the system (2.2) with λ = 0.

2.2 Proof of main results
In this section we prove Theorem 7 and Theorem 8.

2.2.1 Proof of Theorem 7
Denote by Zd,n a zonal spherical harmonic Zy

d (x) = Gd,n(〈x, y〉) = Gd,n(xn) ∈ Hd,n

corresponding to the point y = (0, . . . , 0, 1) ∈ Sn−1 and let Md,n ∈ Hd,n be any
Morse spherical harmonic with the maximum possible number of critical points.
Note that by Lemma 1 this number is bounded by md,n = 2((d− 1)n − 1)/(d− 2).
In dimension n = 2 any h ∈ Hd,2 is just a trigonometric polynomial

h = a cos(dθ) + b sin(dθ), a, b ∈ R, θ ∈ [0, 2π)
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and hence it is a Morse function on S1 with md,2 = 2d critical points. For n, d ≥ 3
the number of critical points of a general spherical harmonic h ∈ Hd,n is not
anymore a constant and depends significantly on the choice of h. In the proposition
below we exhibit for any n, d ≥ 2 a Morse spherical harmonic Md,n ∈ Hd,n having
md,n critical points. In fact, we construct Md,n by induction on n starting from a
trigonometric polynomial Md,2 ∈ Hd,2.

Proposition 2. For any d, n ≥ 2 and a sufficiently small ε > 0 the spherical
harmonic Md,n+1 := Zd,n+1 + ε M̂d,n ∈ Hd,n+1 is a Morse function on Sn with
md,n+1 critical points.

Proof. As observed above one can take Md,2 = a cos(dθ) + b sin(dθ). Suppose
that for some n ≥ 2, we have already constructed a Morse spherical harmonic
Md,n ∈ Hd,n withmd,n critical points on Sn−1. By Lemmas 2 and 3 we have that the
points ±(0, . . . , 0, 1) ∈ Sn are critical for both Zd,n+1 and M̂d,n and hence also for
the perturbation Zd,n+1 + εM̂d,n. Since the points ±(0, . . . , 0, 1) are non-degenerate
for Zd,n+1 they remain non-degenerate for the perturbation for small enough ε > 0.

We prove that each of the d − 1 critical circles {x ∈ Sn : 〈x, y〉 = αd,i}, i =
1, . . . , d− 1 of Zd,n+1 breaks into md,n non-degenerate critical points when Zd,n+1 is
slightly perturbed by M̂d,n. The idea is shown on Figure 2.2.1, where the red/purple
color represents positive/negative values of functions. In spherical coordinates

x1 = sin θn · x̃1 = sin θn sin θn−1 · · · sin θ2 sin θ1

x2 = sin θn · x̃2 = sin θn sin θn−1 · · · sin θ2 cos θ1

x3 = sin θn · x̃3 = sin θn sin θn−1 · · · cos θ2
...

xn = sin θn · x̃n = sin θn cos θn−1

xn+1 = cos θn

on Sn, where (x̃1, . . . , x̃n) ∈ Sn−1 = {x ∈ Sn : xn+1 = 0}, we have

Zd,n+1(x1, . . . , xn+1) = Gd,n+1(xn+1) = Gd,n+1(cos θn)
M̂d,n(x1, . . . , xn+1) = sind θnMd,n(x̃1, . . . , x̃n)
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Figure 2.1: Plots of the absolute values on the sphere S2 of a zonal harmonic Z3,3
(left), a function M̂3,2 with 6 critical points on the circle (middle) and a perturbation
of Z3,3 by M̂3,2 with 14 = 2 + 2 · 6 non-degenerate critical points (right).

and hence the critical points of Zd,n+1 + εM̂d,n are described by the equations

ε sind θn
∂

∂θ1
Md,n(x̃1, . . . , x̃n) = 0

...

ε sind θn
∂

∂θn−1
Md,n(x̃1, . . . , x̃n) = 0

∂

∂θn

[
Gd,n+1(cos θn) + ε sind θnMd,n(x̃1, . . . , x̃n)

]
= 0 (2.3)

Since the d− 1 zeroes of G′d,n+1 are non-degenerate, then for a fixed (x̃1, . . . , x̃n) ∈
Sn−1 the equation (2.3) has d− 1 non-degenerate solutions provided that ε is small
enough. It follows that each critical point (x̃1, . . . , x̃n) ∈ Sn−1 of Md,n gives rise
to d − 1 critical points of Zd,n+1 + εM̂d,n. In spherical coordinates the Hessian
matrix of Zd,n+1 + εM̂d,n computed at a critical point θ = (θ1, . . . , θn−1, θn) has the
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block-diagonal form:



ε sind θn ∂
2Md,n

∂θ2
1

(θ) . . . ε sind θn ∂2Md,n

∂θ1∂θn−1
(θ) 0

... . . . ... ...
ε sind θn ∂2Md,n

∂θn−1∂θ1
(θ) . . . ε sind θn ∂

2Md,n

∂θ2
n−1

(θ) 0
0 . . . 0 ∂2

∂θ2
n

[Gd,n+1(cos θn)+
ε sind θnMd,n(x̃1, . . . , x̃n)

]




It is non-singular since the function Md,n is, by assumption, Morse and for a small
ε the solutions of (2.3) are non-degenerate. Thus, the function Zd,n+1 + εM̂d,n

has 2 + (d − 1) · 2((d − 1)n − 1)/(d − 2) = 2((d − 1)n+1 − 1)/(d − 2) = md,n+1
non-degenerate critical points.

Theorem 7 follows now from Lemma 1 and Proposition 2.

2.2.2 Proof of Theorem 8
In light of the correspondence between symmetric tensors and homogeneous poly-
nomials described in Subsection 2.1.2 Theorem 8 follows from Theorem 7.

It is worth to note that the inductive construction from Proposition 2 can be
generalized as follows.

Proposition 3. Let f = f(x1, . . . , xn) ∈ Pd,n be a Morse homogeneous polynomial
with md,n critical points on Sn−1 and p = p(xn+1) be an even or odd (depending
on the parity of d) univariate polynomial of degree d whose derivative p′ = p′(xn+1)
has d − 1 simple roots in (−1, 1). Then for a small enough ε > 0 the function
p(xn+1) + εf(x1, . . . , xn) ∈ Pd,n+1|Sn has md,n+1 critical points on Sn.

The proof of this proposition is identical to the proof of Proposition 2.

2.3 Relation to other problems
Eigenvectors of tensors or, equivalently, critical points of homogeneous polynomials
on the sphere arise in many areas of research in pure mathematics and the applied
sciences. We discuss three problems to which our work is closely related.

2.3.1 Real zeroes of semi-definite polynomials
A polynomial f ∈ Pd,n is said to be positive (negative) semi-definite if f(x) ≥ 0
(respectively f(x) ≤ 0) for any x ∈ Rn. Note that polynomials of only even degree
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d can be semi-definite. In [26] Choi, Lam and Reznick asked to determine the
largest possible finite number Bd,n of real zeros x ∈ RPn−1 that a semi-definite
polynomial f ∈ Pd,n can have. In the case d = 2 of quadratic polynomials one can
immediately see that B2,n = 1. It is also easy to prove that B2d,2 = d. But already
in the case of n = 3 variables the exact value of Bd,3 is not known for most values
of d. The following partial results about Bd,3 were obtained in [26]:

B4,3 = 4, B6,3 = 10, d2

4 ≤ Bd,3 ≤
(d− 1)(d− 2)

2 , d ≥ 6 (2.4)

It was also proved in [26] that the limit Bd,3/d
2 as d→ +∞ exists and

5
18 ≤ lim

d→+∞
Bd,3

d2 ≤
1
2

In the following Theorem we establish an upper bound on Bd,n.

Theorem 9. Let d ≥ 2 be even and n ≥ 2. Then

Bd,n ≤
1
2(m̃d,n − n) + 1 (2.5)

where m̃d,n = ((d − 1)n − 1)/(d − 2) is the number of complex eigenpoints of a
generic symmetric tensor.

Proof. For a Morse homogeneous polynomial f ∈ Pd,n let µk(f) denote the number
of critical points of f |Sn−1 of index k = 0, . . . , n− 1. In particular, µ0(f) (µn−1(f))
equals the number of local minima (respectively maxima) of f |Sn−1 and the numbers
µk(f) can be used to compute the Euler characteristics of the sphere Sn−1:

n−1∑

k=0
(−1)kµk(f) = χ(Sn−1) = 1 + (−1)n−1

Since d is even by [39, Thm. A] the even Morse function f |Sn−1 must have at least
two critical points of index k for each k = 0, . . . , n − 1. This together with the
bound

n−1∑

k=0
µk(f) ≤ 2m̃d,n

from Lemma 1 implies that

µ0(f) + 2
(
n− 2

2

)
≤

(n−2)/2∑

k=0
µ2k(f) ≤ m̃d,n
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if n is even and

µ0(f) + 2
(
n− 1

2

)
≤

(n−1)/2∑

k=0
µ2k(f) ≤ m̃d,n + 1

if n is odd. Consequently, we obtain the following upper bound on the number of
local minima:

µ0(f) ≤ m̃d,n − n+ 2 (2.6)

independently of the parity of n.
Let now f ∈ Pd,n be any polynomial with finitely many local minima on Sn−1

and let f̃ ∈ Pd,n be a small perturbation of f such that f̃ |Sn−1 is a Morse function.
Every local minimum of f |Sn−1 gives rise to at least one (non-degenerate) minimum
of f̃ |Sn−1 . Hence the bound (2.6) on the number µ0(f) of local minima of f |Sn−1

applies even if f |Sn−1 is not a Morse function. In particular, if f ∈ Pd,n is a
non-negative polynomial with finitely many real zeros in RPn−1 we have

#{x ∈ RPn−1 : f(x) = 0} ≤ m̃d,n − n
2 + 1

which completes the proof.

Remark 5. The bound (2.5) is not sharp. For example, for n = 3 it is worse than
the bounds (2.4) from [26]. For n > 3 though we are not aware of any better bound
on Bd,n than (2.5).

2.3.2 Low rank approximations
Eigenvectors and eigenvalues of a symmetric tensor can be used to find its best
rank one approximation. A real symmetric nd-tensor A = (ai1...id)nij=1 is said to be
of rank one if ai1...id = λxi1 · · ·xid for some vector x ∈ Sn−1 and constant λ ∈ R.
Consider the set

Xd,n := {λ(xi1 · · ·xid)nij=1 : λ ∈ R, x ∈ Sn−1}

of real symmetric nd-tensors of rank one and for a given real symmetric nd-tensor
A = (ai1...id)nij=1 define the function:

distA : Xd,n → R

λ(xi1 · · ·xid)nij=1 7→
n∑

i1,...,id=1
(ai1...id − λxi1 · · ·xid)2
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(this function measures the Euclidean distance of a rank one tensor from A).
A rank one tensor λ(xi1 · · ·xid)ni1,=1 ∈ Xd,n is a critical point of distA if and only

if x ∈ Sn−1 is a unit eigenvector of A and λ ∈ R is the corresponding eigenvalue. In
this context a best rank one approximation to A, a tensor λ(xi1 · · ·xid)nij=1 ∈ Xd,n

which is a global minimizer of distA, corresponds to the greatest (in absolute value)
eigenvalue |λ| [68, Thm. 2 (d)].

Theorem 8 is then equivalent to the existence for any d ≥ 1 and n ≥ 2 of a real
symmetric nd-tensor A such that the function distA : Xd,n → R has the maximum
possible generic number of critical points that is equal to m̃d,n.

Remark 6. The problem of finding a best rank one approximation to a real
symmetric nd-tensor A = (ai1...id)nij=1 is equivalent to the problem of maximizing the
absolute value |fA(x)| of the homogeneous polynomial fA(x) = ∑n

ij=1 ai1...idxi1 · · ·xid
constrained on the sphere Sn−1.

2.3.3 Complex dynamics
Let f : CPn−1 → CPn−1 be a non constant holomorphic map. Then in homogeneous
coordinates one can write f = [f1 : · · · : fn], where

fi(x) =
n∑

i2,...,id=1
aii2...inxi2 · · ·xid , i = 1, . . . , n

are complex homogeneous polynomials of certain degree d− 1 having no common
zeroes in CPn−1. Moreover, the polynomials f1, . . . , fn are determined uniquely
up to a common constant multiple. It is straightforward to see that the fixed
points {x ∈ CPn−1 : f(x) = x} of f = [f1 : · · · : fn] are precisely the eigenpoints
x ∈ CPn−1 of the tensor A = (ai1...id)nij=1. The number of fixed points for a generic
map f equals m̃d,n [37, 25].

When the polynomials f1, . . . , fn are real, f = [f1 : · · · : fn] preserves RPn−1 ⊂
CPn−1 and the real fixed points of this map are precisely the real eigenpoints of A.
Theorem 8 implies that for some generic real map f all of its (a priori complex)
fixed points are real.

22



Chapter 3

On the geometry of the set of
symmetric matrices with repeated
eigenvalues

In this chapter we investigate some geometric properties of the set ∆ (below called
discriminant) of real symmetric matrices with repeated eigenvalues and of unit
Frobenius norm

∆ = {Q ∈ Sym(n,R) such that λi(Q) = λj(Q) for some i 6= j} ∩ SN−1,

where N = n(n+1)
2 = dim(Sym(n,R)) and SN−1 denotes the unit sphere with respect

to the Frobenius norm ‖Q‖2 = tr(Q2).
The discriminant appears in several areas of mathematics, from mathematical

physics to real algebraic geometry [7, 9, 8, 10, 83, 3, 4, 87].
The set ∆ is an algebraic subset of SN−1 of codimension two. It is defined by

the discriminant polynomial:

dis(Q) :=
∏

i 6=j
(λi(Q)− λj(Q))2

which is a non-negative homogeneous polynomial of degree deg(dis) = n(n− 1) in
the entries of Q and, moreover, it is a sum of squares of real polynomials [46, 66].
The set ∆sm of smooth points of ∆ consists of matrices with exactly two repeated
eigenvalues (in fact, ∆ is stratified according to the multiplicity sequence of the
eigenvalues [7]). In the following theorem we compute the volume of ∆ ⊂ SN−1.

Theorem 10 (The volume of the discriminant).

|∆|
|SN−3| =

(
n

2

)
. (3.1)
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Remark 7. Results of this type (the computation of the volume of some relevant
algebraic subsets of the space of matrices) have started appearing in the literature
since the 90’s [32, 33], with a particular emphasis on asymptotic studies and
complexity theory, and have been crucial for the theoretical advance of numerical
algebraic geometry, especially for what concerns the estimation of the so called
condition number of linear problems [29]. The very first result gives the volume of
the set Σ ⊂ Rn2 of square matrices with zero determinant and Frobenius norm one;
this was computed in [32, 33]:

|Σ|
|Sn2−1| =

√
π

Γ
(
n+1

2

)

Γ
(
n
2

) ∼
√
π

2n
1/2. (3.2)

For example (3.2) is used in [32, Theorem 6.1] to compute the average number of
zeroes of the determinant of a matrix of linear forms. Subsequently, this computation
was extended to include the volume of the set of n×m matrices of given corank
in [14] and the volume of the set of symmetric matrices with determinant zero in
[55], with similar expressions.

The proof of (3.1) requires the evaluation of the expectation of the square of
the characteristic polynomial of a GOE(n) matrix (Theorem 13 below), which
constitutes a result of independent interest.

Next we discuss the problem of the maximal cut of the discriminant. Let’s
denote by P∆ ⊂ PSym(n,R) ' RPN−1 the projectivization of the discriminant.
Since P∆ has codimension two, the number #(L∩P∆) of symmetric matrices with
repeated eigenvalues in a generic projective two-plane L ' RP2 ⊂ RPN−1 is finite.
In the following theorem we provide a sharp upper bound on this number.

Theorem 11 (The maximal cut of the discriminant). For a generic projective
two-plane L ' RP2 the following sharp upper bound holds:

#(L ∩ P∆) ≤
(
n+ 1

3

)
. (3.3)

Remark 8. This result has already appeared in [72, Cor. 15]. The proof we present
below is a bit different from the one given in [72].

Theorem 10 combined with Poincaré formula (Corollary 2) allows to compute
the average number of symmetric matrices with repeated eigenvalues in a uniformly
distributed projective two-plane L ⊂ RPN−1:

E
L∈G(2,N−1)

#(L ∩ P∆) = |P∆|
|RPN−3| = |∆|

|SN−3| =
(
n

2

)
. (3.4)
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Remark 9. Consequence (3.4) is especially interesting because it “violates” a
frequent phenomenon in random algebraic geometry, which goes under the name of
square root law: for a large class of models of random systems, often related to the
so called Edelman-Kostlan-Shub-Smale models [32, 74, 33, 50, 75, 73], the average
number of solutions equals (or is comparable to) the square root of the maximum
number; here this is not the case. We also observe that, surprisingly enough, the
average cut of the discriminant is an integer number (there is no reason to even
expect that it should be a rational number!).

The proof of Theorem 10 is obtained by a limiting procedure. Using the fact
that the restriction of the GOE(n) measure to the unit sphere in Sym(n,R) gives
the uniform measure, we will describe the volume of the ε-tube around ∆ using
the joint density of the eigenvalues of a GOE(n) matrix and then make a careful
application of Weyl’s tube formula to derive the asymptotic of this volume at zero
(whose leading coefficient, up to a constant, equals |∆|). The main difficulties here
are the explicit description of the tube, and the fact that the variety ∆ is singular,
which makes the application of Weyl’s tube formula delicate. In this way we will
prove the following result, which also includes information on the volume of the set
∆1 of symmetric matrices whose smallest two eigenvalues are equal.

Theorem 12. Let ∆1 ⊂ ∆ ⊂ SN−1 denote the set of symmetric matrices with
the smallest two eigenvalues repeated. Then we have the two following integral
expressions:

|∆|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

R
EQ∼GOE(n−2)

[
det(Q− u1)2

]
e−u

2 du, (3.5)

|∆1|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

R
EQ∼GOE(n−2)

[
det(Q− u1)21{Q−u1�0}

]
e−u

2 du. (3.6)

(note the appearance of the characteristic function 1{Q−u1�0} in the second integral).

The exact evaluation of the integral in (3.5) (Theorem 13 below) will take a
considerable amount of work and is of independent interest. It is based on some
key properties of Hermite polynomials. By contrast, we do not know whether there
exists a closed form evaluation of (3.6).

Theorem 13. For a fixed positive integer k we have
∫

R
EQ∼GOE(k)[det(Q− u1)2] e−u2 du =

√
π

(k + 2)!
2k+1 .

The proof of Theorem 11 exploits an interesting duality that we establish be-
tween symmetric matrices with repeated eigenvalues in a 3-dimensional linear family
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and singularities of some algebraic surface. To be more specific, given three inde-
pendent matrices R1, R2, R3 ∈ Sym(n,R) denote by L = P(span{R1, R2, R3}) ⊂
PSym(n,R) the projective two-plane that they generate and consider the projective
symmetroid surface

PΣ3,n = {[x0 : x1 : x2 : x3] ∈ RP3 | det(x01 + x1R1 + x2R2 + x3R3) = 0}.

The following result, which is a particular case of Proposition 9, describes the
mentioned duality.

Proposition 4. For generic matrices R1, R2, R3 ∈ Sym(n,R) there is a one-to-one
correspondence between singular points of the symmetroid surface PΣ3,n ⊂ RP2 and
symmetric matrices with repeated eigenvalues in the projective two-plane L ' RP2.

For the generic choice of R1, R2, R3 the singularities of PΣ3,n correspond to
matrices of corank two in the linear family x01+ x1R1 + x2R2 + x3R3. The degree
of the set of symmetric matrices with corank two equals

(
n+1

3

)
(see [43]), and hence

Proposition 4 implies (3.3). The existence of a family attaining (3.3) is proved in
Proposition 8.

3.1 The volume of the discriminant
The goal of this section is to prove Theorem 10. In fact this result will follow
directly from Theorem 12 proved in Subsection 3.1.1 combined with Theorem 13
that we prove in Subsection 3.1.4.

3.1.1 Proof of Theorem 12
Let us denote by λ1(Q) ≤ · · · ≤ λn(Q) the ordered eigenvalues of a symmetric
matrix Q ∈ Sym(n,R) and let ∆j, j = 1, . . . , n − 1 denote the set of n × n real
symmetric matrices of unit norm, whose j-th and (j + 1)-th eigenvalues are equal:

∆j := {Q ∈ SN−1 | λj(Q) = λj+1(Q)}, j = 1, . . . , n− 1

The sets ∆j ⊂ SN−1, j = 1, . . . , n− 1 are semialgebraic and are of codimension two
[7, 3]. The smooth locus (∆j)sm of ∆j consists of matrices of unit norm whose j-th
and (j + 1)-th eigenvalues are equal and all other eigenvalues are of multiplicity
one:

(∆j)sm = {Q ∈ SN−1 | λ1(Q) < · · · < λj(Q) = λj+1(Q) < · · · < λn(Q)}

Recall that ∆ denotes the algebraic set of n× n real symmetric matrices of unit
norm that have at least one repeated eigenvalue. Therefore ∆ is the union of
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the sets ∆j, j = 1, . . . , n − 1 and its smooth locus ∆sm is a disjoint union of
(∆j)sm, j = 1, . . . , n− 1.

According to Proposition 5 (stated and proved in Subsection 3.1.2 below) we
have

|∆1|
|SN−3| = 4

Zn

(
n

2

) ∫

u<µ1,...,µn−2

n−2∏

i=1
(µi − u)2 e−

‖µ‖2
2 −u2|∆(µ)| d(µ, u).

Interpreting µ1, . . . , µn−2 as the eigenvalues of a GOE(n− 2) matrix we can rewrite
this as follows:

|∆1|
|SN−3| = 4Zn−2

Zn

(
n

2

) ∫

u∈R
EQ∼GOE(n−2)

[
1{Q−u1�0} det(Q− u1)2

]
e−u

2 du.

From (1.1) it’s easy to see that Zn = 8 Γ(n+1
2 )Γ(n+2

2 )Zn−2 or, using the duplication
formula for Gamma function, Zn = 2−n+3√π n!Zn−2. From this we get

|∆1|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

u∈R
EQ∼GOE(n−2)

[
1{Q−u1�0} det(Q− u1)2

]
e−u

2 du. (3.7)

which proves Theorem 12 (1).
For Theorem 12 (2) note that since ∆sm = ∪n−1

j=1 (∆j)sm is a disjoint union we
have that |∆| = ∑n−1

j=1 |∆j| and hence, by Proposition 5,

|∆|
|SN−3| = 4

Zn

(
n

2

)
n−1∑

j=1

(
n− 2
j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏

i=1
(µi − u)2 e−

‖µ‖2
2 −u2|∆(µ)| d(µ, u),

This, together with the summation lemma [20, Lemma E.3.5], gives

|∆|
|SN−3| = 4

Zn

(
n

2

) ∫

u∈R

∫

µ∈Rn−2

n−2∏

i=1
(µi − u)2 e−

‖µ‖2
2 −u2 |∆(µ)| dµdu,

Again, treating µ1, . . . , µn−2 as the eigenvalues of a GOE(n− 2) matrix and then
proceeding as we did to get (3.7) we obtain

|∆|
|SN−3| = 2n−1

√
π n!

(
n

2

) ∫

u∈R
EQ∼GOE(n−2)

[
det(Q− u1)2

]
e−u

2 du.

This proves Theorem 12 (2).

3.1.2 Volumes of ∆j’s
The following proposition describes for any j = 1, . . . , n − 1 the volume of the
semialgebraic set ∆j ⊂ SN−1 of symmetric matrices of unit norm whose j-th and
(j + 1)-th eigenvalues coincide.
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Proposition 5. Let 1 ≤ j < n. Then

|∆j|
|SN−3| = 4

Zn

(
n

2

)(
n− 2
j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏

i=1
(µi − u)2 e−

‖µ‖2
2 −u2|∆(µ)| d(µ, u),

Proof. Recall that

(∆j)sm = {Q ∈ SN−1 | λ1(Q) < · · · < λj(Q) = λj+1(Q) < · · · < λn(Q)}.

In the following, we denote for brevity λi := λi(Q). In order to compute |∆j| =
|(∆j)sm| define for δ > 0

Kj(δ) := {Q ∈ (∆j)sm | λj − λj−1 > δ, λj+2 − λj+1 > δ} (3.8)

Then (∆j)sm = ⋃
δ>0Kj(δ) and by continuity of the Lebesgue measure

|∆j| = lim
δ→0
|Kj(δ)|. (3.9)

For a fixed δ > 0 and for any ε > 0 let T⊥(Kj(δ), ε) ⊂ SN−1 denote the ε-tube
around Kj(δ) ⊂ SN−1. Weyl’s formula [88] gives the expansion of the volume of
the ε-tube around a submanifold of the sphere. Here it is enough to have it in the
following simplified form.
Theorem 14 (Weyl’s tube formula for Kj(δ)). For any ε > 0, such that the
fibres of T⊥(Kj(δ), ε) do not intersect, the volume of the ε-tube around Kj(δ) is
|T⊥(Kj(δ), ε)| = πε2|Kj(δ)|+O(ε3).

In Lemma 4 (stated and proved in Subsection 3.1.3 below) we describe the
ε-tube around Kj(δ) and show that for a sufficiently small ε > 0 its fibers do not
intersect. Combining this lemma with Weyl’s formula we are allowed to compute
the volume of Kj(δ) as |Kj(δ)| = limε→0

1
πε2 |T⊥(Kj(δ), ε)| and, consequently, by

(3.9):
|∆j| = lim

δ→0
lim
ε→0

1
πε2 |T

⊥(Kj(δ), ε)|. (3.10)

To actually compute this limit, we rewrite the volume of T⊥(Kj(δ), ε) in terms of
a GOE(n) random variable as we now explain. Applying (1.2) to the measurable
set T⊥(Kj(δ), ε) ⊂ SN−1 we obtain

|T⊥SN−1(Kj(δ), ε)|
|SN−1| = P

Q∼GOE(n)





λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2‖Q‖ sin ε,

λj+2 −
λj + λj+1

2 > δ‖Q‖ cos ε
λj + λj+1

2 − λj−1 > δ‖Q‖ cos ε





= (?) (3.11)
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In the following we denote the event

E(λ) :=





λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2‖Q‖ sin ε,

λj+2 −
λj + λj+1

2 > δ‖Q‖ cos ε
λj + λj+1

2 − λj−1 > δ‖Q‖ cos ε





.

The probability (3.11) of the event E(λ), written in terms of the density of eigen-
values of the GOE(n) ensemble, becomes

(?) = n!
Zn

∫

Rn
1E(λ) e

− ‖λ‖
2

2 |∆(λ1, . . . , λn)| dλ,

where 1E(λ) denotes the characteristic function of E(λ) and the factor n! appears
since the eigenvalues are taken to be ordered. We express now the integral in terms
of the following event:

Ẽ(λ) :=





λ1, . . . , λj−1 < λj, λj+1 < λj+1, . . . , λn,

|λj+1 − λj| <
√

2‖λ‖ sin ε,

λi −
λj + λj+1

2 > δ‖λ‖ cos ε for i ≥ j + 2,
λj + λj+1

2 − λi > δ‖λ‖ cos ε for i ≤ j − 1





.

There are (j − 1)! possibilities to arrange the first j − 1 eigenvalues, 2 possibilities
to arrange λj and λj+1 and (n− (j+ 1))! possibilities to arrange the last n− (j+ 1)
eigenvalues. Hence,

(?) = n!
Zn

1
2(j − 1)!(n− (j + 1))!

∫

Rn
1Ẽ(λ) e

− ‖λ‖
2

2 |∆(λ1, . . . , λn)| dλ

= 1
Zn

(
n

2

)(
n− 2
j − 1

)∫

Rn
1Ẽ(λ) e

− ‖λ‖
2

2 |∆(λ1, . . . , λn)| dλ

Next, we perform the following orthogonal change of variables

µ1 := λ1, . . . , µj−1 := λj−1, µj := λj+2, . . . , µn−2 := λn and

x = λj + λj+1√
2

, y = λj+1 − λj√
2

(µ1, . . . , µn−2 now become the eigenvalues of a new GOE(n − 2) matrix and we
treat the variables x, y separately). We get

(?) = 1
Zn

(
n
2

)(
n−2
j−1

) ∫
(µ,x,y)∈Rn−2×R×R 1

Ê(µ,x,y)g(µ, x, y)e−
‖µ‖2+y2+x2

2 |∆(µ)| (.µ, x, y),(3.12)
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where

g(µ, x, y) =
√

2|y|
n−2∏

i=1

((
µi −

x√
2

)2
− y2

2

)

and

Ê(µ, x, y) :=





µ1, . . . , µj−1 <
1√
2(x− y), 1√

2(x+ y) < µj, . . . , µn−2,

|y| < ‖(µ, x, y)‖ sin ε,

µi −
x√
2
> δ‖(µ, x, y)‖ cos ε for i ≥ j,

x√
2
− µi > δ‖(µ, x, y)‖ cos ε for i ≤ j − 1





.

We perform another change of varables:

t = y
sin ε ‖(µ,x,y)‖ dy = sin ε‖(µ, x)‖

(1− (sin ε)2t2)3/2

x, µ1, . . . , µn−2 are as before

Note that after this change a factor of (sin ε)2 appears and the function y(t, x, µ, ε)→
0 in the limits ε → 0. We multiply the integral in (3.12) by 1

πε2 and, thereafter,
invoke the dominated convergence theorem that allows us to pass to the limit ε→ 0
under the integral:

lim
ε→0

1
πε2

∫

(µ,x,y)∈Rn−2×R×R
1
Ê(µ,x,y)g(µ, x, y)e−

‖µ‖2+y2+x2
2 |∆(µ)| d(µ, x, y)

=
√

2
π

∫

(µ,x)∈Rn−2×R

∫ 1

t=−1
1Ē(µ,x)|t|‖µ, x‖2

n−2∏

i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)| dt d(µ, x),

where

Ē(µ, x) :=





µ1, . . . , µj−1 <
x√
2 < µj, . . . , µn−2,

µi −
x√
2
> δ‖(µ, x)‖ for i ≥ j,

x√
2
− µi > δ‖(µ, x)‖ for i ≤ j − 1





.

Using that
∫ 1
t=−1 |t| dt = 1 we have

lim
ε→0

1
πε2 |T

⊥(Kj(δ), ε)| =
√

2|SN−1|
πZn

(
n
2

) (
n−2
j−1

) ∫
Rn−2×R 1Ē(µ,x)‖µ, x‖2 n−2∏

i=1

(
µi − x√

2

)2
e−
‖µ‖2+x2

2 |∆(µ)| d(µ, x),
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Plugging this into (3.10) and again using the dominated convergence theorem we
get

|∆j| = lim
δ→0

lim
ε→0

1
πε2 |T

⊥(Kj(δ), ε)|

=
√

2|SN−1|
πZn

(
n

2

)(
n− 2
j − 1

)∫

D
‖µ, x‖2

n−2∏

i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)| d(µ, x),

where the region of integration is D = {µ1, . . . , µj−1 <
x√
2 < µj, . . . , µn−2}. Now

for a measurable positively homogeneous function f : Rm → R of degree d we have
by Lemma 13 from the appendix:

∫

x∈Rm
‖x‖2f(x)e−

‖x‖2
2 dx = (d+m)

∫

x∈Rm
f(x)e−

‖x‖2
2 dx

In our case, we have m = n− 1 and d = 2(n− 2) + (n−2)(n−3)
2 = (n−2)(n+1)

2 . Thus
d+m = n2+n−4

2 and

|∆j| =
(n2 + n− 4)|SN−1|√

2πZn

(
n

2

)(
n− 2
j − 1

)∫

D

n−2∏

i=1

(
µi −

x√
2

)2

e−
‖µ‖2+x2

2 |∆(µ)| d(µ, x).

Finally, we make a change of variables u := x√
2 and use (n2+n−4)|SN−1| = 4π|SN−3|

to conclude that

|∆j|
|SN−3| = 4

Zn

(
n

2

)(
n− 2
j − 1

)∫
µ1,...,µj−1<u
u<µj ,...,µn−2

n−2∏

i=1
(µi − u)2 e−

‖µ‖2
2 −u2|∆(µ)| d(µ, u).

This completes the proof of Proposition 5.

3.1.3 Description of the normal tube around Kj(δ)
In the following lemma an explicit description of the normal tube around the
smooth semialgebraic set Kj(δ) ⊂ SN−1 is obtained.

Lemma 4. For 0 < ε < arctan(
√

2δ) we have

T⊥(Kj(δ), ε) =




Q ∈ SN−1

∣∣∣∣∣∣

λ1 < · · · < λj ≤ λj+1 < · · · < λn,

λj+1 − λj <
√

2 sin ε,

λj+2 −
λj + λj+1

2 > δ cos ε, λj + λj+1

2 − λj−1 > δ cos ε





and the fibers of T⊥(Kj(δ), ε) do not intersect.
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Proof. We can assume without loss of generality that Q ∈ Kj(δ) is diagonal:
Q = diag(λ1, λ2, . . . , λn) and λ1 < · · · < λj = λj+1 < · · · < λn. Then, the fiber
NQ ⊂ TQS

N−1 of the normal bundle to Kj(δ) ⊂ SN−1 at Q is described as follows.
For a, b ∈ R let Va,b = (vi,j) ∈ Sym(n,R) be the matrix that has zeros everywhere
except for the following block on the diagonal:

(
vj,j vj,j+1
vj+1,j vj+1,j+1

)
= 1√

2

(
a b
b −a

)
. Note

that Va,b ∈ SN−1 if and only if a2 + b2 = 1. We claim that

NQ = {Va,b | a, b ∈ R}.

It is easy to see that Va,b is orthogonal to Q, i.e., Va,b ∈ TQSN−1, and that the
tangent space TQKj(δ) ⊂ TQS

N−1 to Kj(δ) at Q is spanned by the following(
n+1

2

)
− 3 vectors:

diag(λ2e1 − λ1e2),
...

diag(λj−1ej−2 − λj−2ej−1),
diag(λj+2ej−1 − λj−1ej+2),
diag(λj+3ej+2 − λj+2ej+3),

...
diag(λnen−1 − λn−1en)

and

diag
(
− 2λj

∑

i 6=j,j+1
λiei +

∑

i 6=j,j+1
λ2
i (ej + ej+1)

)

and




r s
... ...

r . . . 0 . . . λs − λr . . .
... ...

s . . . λs − λr . . . 0 . . .
... ...



, r, s = 1, . . . n, r 6= s, {r, s} 6= {j, j + 1}.

It is immediate to see that these vectors are all orthogonal to Va,b. Thus, NQ =
{Va,b | a, b ∈ R}.

Now we prove that T⊥(Kj(δ), ε) has the asserted form and that the fibers of
the normal ε-tube T⊥(Kj(δ), ε) do not intersect provided that ε < arctan(

√
2δ).

The fibers are swept out by geodesics of length less than ε starting at Q in the
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direction of some Va,b ∈ SN−1, in formulas: {cos tQ + sin t Va,b | 0 ≤ t < ε}. We
write explicitly the matrix cos tQ+ sin t Va,b:



λ1 cos t
. . .

λj−1 cos t
λj cos t+ a√

2 sin t b√
2 sin t

b√
2 sin t λj+1 cos t− a√

2 sin t
λj+2 cos t

. . .
λn cos t




Provided that ε < arctan(
√

2δ) the eigenvalues of this matrix are

λ1 cos t < · · · < λj−1 cos t < λj cos t ± sin t√
2
< λj+2 cos t < · · · < λn cos t (3.13)

since Q ∈ Kj(δ) (see (3.8)). Moreover, for 0 ≤ t < ε these eigenvalues satisfy the
inequalities

(λj cos t+ sin t√
2 ) + (λj cos t− sin t√

2 )
2 − λj−1 cos t = (λj − λj−1) cos t > δ cos ε,

(λj cos t+ sin t√
2

)− (λj cos t− sin t√
2

) =
√

2 sin t <
√

2 sin ε,

λj+2 cos t−
(λj+1 cos t+ sin t√

2 ) + (λj+1 cos t− sin t√
2 )

2 = (λj+2 − λj+1) cos t > δ cos ε

This shows that T⊥(Kj(δ), ε) is contained in the set we claim it to be. To show
the other inclusion let A ∈ SN−1 be a matrix whose eigenvalues α1 < · · · < αj−1 <
αj ≤ αj+1 < αj+2 < · · · < αn satisfy

αj + αj+1

2 − αj−1 > δ cos ε,

αj+1 − αj <
√

2 sin ε,

and αj+2 −
αj + αj+1

2 > δ cos ε.

We can assume again that A = diag(α1, α2, . . . , αn) is diagonal. Let 0 ≤ t < ε be
such that αj+1 − αj =

√
2 sin t. One can easily verify that A = cos tQ+ sin t V−1,0

for

Q = 1
cos tdiag(α1, . . . , αj−1,

1
2(αj + αj+1), 1

2(αj + αj+1), αj+2, . . . , αn) ∈ Kj(δ)
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This implies that A ∈ T⊥(Kj(δ), ε) and T⊥(Kj(δ), ε) has the claimed form.
It remains to show that the fibers of the normal ε-tube T⊥(Kj(δ), ε) do not

intersect when ε < arctan(
√

2δ). For this assume there is another representation
A = cos t̃ Q0 + sin t̃ V of the matrix A = diag(α1, . . . , αn) ∈ T⊥(Kj(δ), ε), where
Q0 ∈ Kj(δ), V ∈ NQ0 and 0 ≤ t̃ < ε. We will prove that actually Q0 = Q, V =
V−1,0 and t̃ = t. To show this, we consider the diagonalization of Q0; that is,
Q0 = CT

1 Q1C1, where Q1 = diag(λ1, . . . , λn) is diagonal and C1 is orthogonal. We
may assume λ1 < · · · < λj−1 < λj = λj+1 < λj+2 < · · · < λn. Note that the
normal bundle NQ0 to Kj(δ) at Q0 = CT

1 Q1C1 is given by NCT1 Q1C1 = CT
1 NQ1C1 =

{CT
1 Va,bC1 | a, b ∈ R}. It follows that V = CT

1 Va,bC1 for some a, b ∈ R and we
can write A = CT

1 (cos t̃ Q1 + sin t̃ Va,b)C1. Note that the eigenvalues of the inner
matrix are given as in (3.13). Therefore, we can write A = CT

1 C
T
2 Q2C2C1, where

the orthogonal matrix C2 commutes with Q1 and

Q2 = diag
(
λ1 cos t̃, . . . , λj−1 cos t̃, λj cos t̃− sin t̃√

2 , λj cos t̃+ sin t̃√
2 , λj+2 cos t̃, . . . , λn cos t̃

)

= cos t̃ Q1 + sin t̃ V−1,0

The condition ε < arctan(
√

2δ) together with Q1 ∈ Kj(δ) ensures λj−1 cos t̃ <
λj cos t̃ − sin t̃√

2 and λj cos t̃ + sin t̃√
2 < λj+2 cos t̃. Now since the diagonal matrices A

and Q2 both have ordered entries it follows that C2C1 can be taken to be the
identity matrix. Therefore αi = λi cos t̃ for i = 1, . . . , j − 1, j + 2, . . . , n, and
αj = λj cos t̃− sin t̃√

2 and αj+1 = λj cos t̃+ sin t̃√
2 . It is straightforward now to see that

t̃ = t, Q0 = Q and V = V−1,0.

3.1.4 Proof of Theorem 13
In this section we give a proof of Theorem 13. But first we recall some classical
facts about Hermite polynomials and prove few auxiliary results.
Lemma 5. Let Pm = 21−m2√

π
m∏m

i=0(2i)! and let Z2m be the normalization con-
stant from (1.1). Then Pm = 21−2m Z2m.

Proof. The formula (1.1) for Z2m reads

Z2m =
√

2π2m 2m∏

i=1

Γ
(
i
2 + 1

)

Γ
(

3
2

) = (2π)m
m∏

i=1

Γ
(

2i−1
2 + 1

)
Γ
(

2i
2 + 1

)

(√
π

2

)2 .

Using the formula Γ(z)Γ(z + 1
2) =

√
π21−2zΓ(2z) [80, 43:5:7] with z = i+ 1/2 we

obtain

Z2m = 2 3m
m∏

i=1

√
π21−2(i+1/2)Γ(2(i+ 1/2)) = 2 2m−m2√

π
m

m∏

i=1
(2i)! = 2 2m−1Pm
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Recall now that the (physicist’s) Hermite polynomials Hi(x), i = 0, 1, 2, . . .
form a family of orthogonal polynomials on the real line with respect to the measure
e−x

2
dx. They are defined by

Hi(x) = (−1)iex2 di

dxi e
−x2

, i ≥ 0

and satisfy
∫

u∈R
Hi(u)Hj(u)e−u2 du =





2ii!
√
π, if i = j

0, else.
(3.14)

A Hermite polynomial is either odd (if the degree is odd) or even (if the degree is
even) function:

Hi(−x) = (−1)iHi(x); (3.15)
and its derivative satisfies

H ′i(x) = 2iHi−1(x) (3.16)
(see [80, (24:5:1)], [40, (8.952.1)] for these properties).

The following proposition is crucial for the proof of Theorem 13.

Proposition 6 (Expected value of the square of the characteristic polynomial).
For a fixed positive integer k and a fixed u ∈ R the following holds.

1. If k = 2m is even, then

E
Q∼GOE(k)

det(Q− u1)2 = (2m)!
22m

m∑

j=0

2−2j−1

(2j)! detXj(u),

where

Xj(u) =
(

H2j(u) H ′2j(u)
H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)

)
.

2. If k = 2m+ 1 is odd, then

E
Q∼GOE(k)

det(Q− u1)2 =
√
π(2m+ 1)!

24m+2 Γ(m+ 3
2)

m∑

j=0

2−2j−2

(2j)! detYj(u),

where

Yj(u) =




(2j)!
j! H2j(u) H ′2j(u)
0 H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)

(2m+2)!
(m+1)! H2m+2(u) H ′2m+2(u)


 .
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Proof. In Section 22 of [63] one finds two different formulas for the even k = 2m
and odd k = 2m+ 1 cases.

If k = 2m, we have by [63, (22.2.38)] that

E det(Q− u1)2 = (2m)!Pm
Z2m

m∑

j=0

22j−1

(2j)! det
(
R2j(u) R′2j(u)
R2j+1(u) R′2j+1(u)

)
,

where Pm = 21−m2√
π
m∏m

i=0(2i)! is as in Lemma 5, Z2m is the normalization
constant (1.1) and where R2j(u) = 2−2jH2j(u) and R2j+1(u) = 2−(2j+1)(H2j+1(u)−
H ′2j(u)). Using the multilinearity of the determinant we get

E det(Q− u1)2 = (2m)!Pm
Z2m

m∑

j=0

2−2j−2

(2j)! detXj(u).

By Lemma 5 we have Pm
Z2m

= 21−2m. Putting everything together yields the first
claim.

In the case k = 2m+ 1 we get from [63, (22.2.39)] that

E det(Q− u1)2 = (2m+ 1)!Pm
Z2m+1

m∑

j=0

22j−1

(2j)! det




g2j R2j(u) R′2j(u)
g2j+1 R2j+1(u) R′2j+1(u)
g2m+2 R2m+2(u) R′2m+2(u)


 ,

where Pm, R2j(u), R2j+1(u) are as above and

gi =
∫

u∈R
Ri(u) exp(−u2

2 ) du.

Note that by (3.15) H2j+1(u) is an odd function. Hence, we have g2j+1 = 0. For
even indices we use [40, (7.373.2)] to get g2j = 2−2j√2π (2j)!

j! . By the multilinearity
of the determinant:

E det(Q− u1)2 =
√

2π(2m+ 1)!Pm
22m+2Z2m+1

m∑

j=0

2−2j−2

(2j)! detYj(u). (3.17)

From (1.1) one obtains Z2m+1 = 2
√

2 Γ(m+ 3
2)Z2m, which together with Lemma 5

implies
Pm

Z2m+1
= 2−2m
√

2 Γ(m+ 3
2)
.

Plugging this into (3.17) we conlude that

E det(Q− u1)2 =
√
π(2m+ 1)!

24m+2 Γ(m+ 3
2)

m∑

j=0

2−2j−2

(2j)! detYj(u).
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Everything is now ready for the proof of Theorem 13

Proof of Theorem 13. Due to the nature of Proposition 6 we also have to make a
distinction for this proof.

In the case k = 2m we use the formula from Proposition 6 (1) to write
∫

u∈R
E det(Q− u1)2e−u

2 du = (2m)!
22m

m∑

j=0

2−2j−1

(2j)!

∫

u∈R
detXj(u) du.

By (3.16) we have H ′i(u) = 2iHi−1(u). Hence, Xj(u) can be written as
(

H2j(u) 4jH2j−1(u)
H2j+1(u)− 4jH2j−1(u) 2(2j + 1)H2j(u)− 8j(2j − 1)H2j−2(u)

)
.

From (3.14) we can deduce that
∫

u∈R
detXj(u) du = 2(2j + 1)22j(2j)!

√
π + 16j222j−1(2j − 1)!

√
π

= 22j+1(2j)!
√
π(4j + 1).

From this we see that
m∑

j=0

2−2j−1

(2j)!

∫

u∈R
detXj(u) du =

√
π

m∑

j=0
(4j + 1) =

√
π (m+ 1)(2m+ 1). (3.18)

and hence,
∫

u∈R
E det(Q− u1)2e−u

2 du = (2m)!
22m

√
π (m+ 1)(2m+ 1) = (2m+ 2)!

22m+1
√
π.

Plugging back in m = k
2 finishes the proof of the case k = 2m.

In the case k = 2m+ 1 we use the formula from Proposition 6 (2) to see that
∫

u
E det(Q− u1)2 e−u

2 du =
√
π(2m+ 1)!

24m+2 Γ(m+ 3
2)

m∑

j=0

2−2j−2

(2j)!

∫

u
detYj(u) e−u2 du.

Note that the top right 2× 2-submatrix of Yj(u) is Xj(u), so that detYj(u) equals

(2m+ 2)!
(m+ 1)! detXj(u) + (2j)!

j! det
(
H2j+1(u)−H ′2j(u) H ′2j+1(u)−H ′′2j(u)

H2m+2(u) H ′2m+2(u)

)
(3.19)

Because taking derivatives of Hermite polynomials decreases the index by one
(3.16) and because the integral over a product of two Hermite polynomials is only

37



non-vanishing, if their indices agree, the integral of the determinant in (3.19) is
only non-vanishing for j = m, in which case it is equal to

∫

u∈R
H2m+1(u)H ′2m+2(u) e−u2 du = 2(2m+ 2)22m+1(2m+ 1)!

√
π,

by (3.14) and (3.16). Hence,
∫

u∈R
detYj(u) e−u2 du

=





(2m+2)!
(m+1)!

∫
u∈R detXm(u) e−u2 du+ (2m)!

m! 22m+2(2m+ 2)!
√
π, if j = m,

(2m+2)!
(m+1)!

∫
u∈R detXj(u) e−u2 du, else.

We find that
m∑

j=0

2−2j−2

(2j)!

∫

u
detYj(u) e−u2 du

=(2m+ 2)!
m!

√
π + (2m+ 2)!

(m+ 1)!

m∑

j=0

2−2j−2

(2j)!

∫

u
detXj(u) e−u2 du

=(2m+ 2)!
m!

√
π + (2m+ 2)!

(m+ 1)!

√
π

2 (m+ 1)(2m+ 1)

=
√
π

2
(2m+ 3)!

m! ;

the second-to-last line by (3.18). It follows that
∫

u∈R
E det(Q− u1)2 e−u

2 du =
√
π(2m+ 1)!

24m+2 Γ(m+ 3
2)

√
π

2
(2m+ 3)!

m!

= π(2m+ 1)!(2m+ 3)!
24m+3 Γ(m+ 3

2)m! .

It is not difficult to verify that the last term is 2−2m−2√π (2m+ 3)!. Substituting
2m+ 1 = k shows the assertion in this case.

3.2 Maximal cut of the discriminant
In this section we prove the sharp upper bound (3.3) on the number #(L ∩ P∆)
of matrices with repeated eigenvalues in a generic projective 2-plane L ' RP2 ⊂
PSym(n,R).
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Definition 7. Let M0,M1, . . . ,M` ∈ Sym(n,R) be independent matrices whose
linear span non-trivially intersects the cone Pn ⊂ Sym(n,R) of positive definite
symmetric matrices. Then the matrices M0,M1, . . . ,M` define the (spherical)
spectrahedron

S`,n := {x ∈ S` : x0M0 + x1M1 + · · ·+ x`M` � 0} (3.20)

and the real symmetroid hypersurface

Σ`,n = {x ∈ S` : det(x0M0 + x1M1 + · · ·+ x`M`) = 0} (3.21)

Remark 10. The spectrahedron (3.20) is a convex semialgebraic subset of the
sphere S` and the Zariski closure of its topological boundary ∂S`,n is the symmetroid
hypersurface (3.21).

It is important to note that any `-dimensional spectrahedron (3.20) and its
symmetroid hypersurface (3.21) admit the following representations:

S`,n = {x ∈ S` : x01 + x1R1 + · · ·+ x`R` � 0} (3.22)

Σ`,n = {x ∈ S` : det(x01 + x1R1 + · · ·+ x`R`) = 0} (3.23)

Indeed, without loss of generality we can assume that the matrix M0 = DtD is
strictly positive (otherwise perform an orthogonal change of coordinates in x ∈ S`
to ensure this). Setting Mi = DtRiD, i = 1, . . . , ` in (3.20) and (3.21) one obtains
(3.22) and (3.23) respectively.

In the following proposition we prove that the semialgebraic subsets S`,n,Σ`,n ⊂
S` are naturally stratified by the corank.

Proposition 7. Let S (k)
`,n be the set of matrices of corank k in the spectrahedron

S`,n and Σ(k)
`,n the set of matrices of corank k in the symmetroid hypersurface Σ`,n.

For a generic choice of R = (R1, . . . , R`) ∈ Sym(n,R)` the sets S (k)
`,n ,Σ

(k)
`,n ⊂ S`

are semialgebraic of codimension
(
k+1

2

)
.

Proof. In the space Sym(n,R) consider the semialgebraic stratification given by
the corank: Sym(n,R) = ∐n

k=0Z(k), where Z(k) denotes the set matrices of corank
k, and the induced stratification on the cone Pn of positive semidefinite matrices
Pn = ∐n

k=0(Z(k) ∩ Pn). These are Nash stratifications [4, Proposition 9] and the
codimensions of both Z(k) and Z(k) ∩ Pn are equal to

(
k+1

2

)
.

Consider now the semialgebraic map

F : S` × (Sym(n,R))` → Sym(n,R), (x,R) 7→ x01 + x1R1 + · · ·+ x`R`.
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Then Σ(k)
`,n = {x ∈ S` |F (R, x) ∈ Z(k)} and S (k)

`,n = {x ∈ S` |F (R, x) ∈ Z(k) ∩ Pn}
and consequently they are semialgebraic.

We now prove that F is transversal to all the strata of these stratifications.
Then the parametric transversality theorem [44, Chapter 3, Theorem 2.7] will imply
that for a generic choice of R the set S`,n is stratified by the S (k)

`,n and the same
for the set Σ`,n. To see that F is transversal to all the strata of the stratifications
we compute its differential. At points (x,R) with x 6= e0 = (1, 0, . . . , 0) we have
D(x,R)F (0, Ṙ) = x1Ṙ1 + · · · + x`Ṙ` and the equation D(x,R)F (ẋ, Ṙ) = P can be
solved by taking ẋ = 0 and Ṙ = (0, . . . , 0, x−1

i P, 0, . . . , 0) where x−1
i P is in the i-th

entry and i is such that xi 6= 0 (in other words, already variations in R ensure
surjectivity of D(x,R)F ). All points of the form (e0,R) are mapped by F to the
identity matrix 1 which belongs to the open stratum Z(0), on which transversality is
automatic (because this stratum has full dimension). This concludes the proof.

In the following proposition a sharp upper bound on the number of singular
points on a generic symmetroid surface Σ3,n is given.

Proposition 8. For generic R ∈ Sym(n,R)3 the number of singular points ρn on
the symmetroid Σ3,n and hence the number of singular points σn on ∂S3,n is finite
and satisfies

σn ≤ ρn ≤
n(n+ 1)(n− 1)

3 .

Moreover, for any n ≥ 1 there exists a generic symmetroid Σ3,n with ρn = n(n+1)(n−1)
3

singular points on it.

Proof. The fact that σn ≤ ρn are generically finite follows from Proposition 7 with
k = 2, as remarked before. Observe that ρn is bounded by twice (since Σ3,n is a
subset of S3) the number #Sing(ΣC

3,n) of singular points on the complex symmetroid
projective surface

ΣC
3,n = {x ∈ CP3| det(x01 + x1R1 + x2R2 + x3R3)) = 0}

Since Sing(ΣC
3,n) is obtained as a linear section of the set Z(2)

C of n × n complex
symmetric matrices of corank two (using similar transversality arguments as in
Proposition 7) we have that generically #Sing(ΣC

3,n) = deg(Z(2)
C ). The latter is

equal to n(n+1)(n−1)
6 ; see [43].

Now comes the proof of the second claim, we are thankful to Bernd Sturmfels
and Simone Naldi for helping us with this. For a generic collection of n+ 1 linear
forms L1, . . . , Ln+1 in `+ 1 variables we denote by p(x) := L1(x) · · ·Ln+1(x) their
product and by P = {x ∈ R`+1|Li(x) > 0, i = 1, . . . , n + 1} the polyhedral cone.
Let e ∈ int(P ) be any interior point of P . Then [71, Thm 1.1] implies that the
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derivative 〈∇p, e〉 of p along the constant vector field e ∈ R`+1 is a hyperbolic
polynomial in direction e and that the closure of the connected component of
R`+1 \ {〈∇p, e〉 = 0} containing e is a spectrahedral cone. Let’s consider the
intersection of this spectrahedral cone with the generic linear 4-space V ⊂ R`+1 and
denote by S3,n,Σ3,n the corresponding spectrahedron and its symmetroid surface
respectively. It is straightforward to check that the triple intersections of the
hyperplanes L1, . . . , Ln+1 when intersected with V produce 2

(
n+1

3

)
= (n+1)n(n−1)

3
singular points on Σ3,n. This completes the proof since the above number coincides
with the complex bound.

Given a genericR = (R1, R2, R3) ∈ Sym(n,R)3 denoteR := span{R1, R2, R3} '
R3 ⊂ Sym(n,R) and let S3,n and Σ3,n be as in (3.22) and (3.23) respectively. In
the following proposition we establish a useful identification between matrices with
repeated eigenvalues in R ∩ SN−1 and singular points of Σ3,n.

Proposition 9. For generic matrices R = (R1, R2, R3) ∈ Sym(n,R)3 we have
(i) the number #(R ∩∆1) of matrices in R ∩ SN−1 whose two smallest eigenvalues
coincide equals the number of singular points on the boundary ∂S3,n = {x ∈ S3,n :
det(x01 + x1R1 + x2R2 + x3R3) = 0} of the spectrahedron S3,n, and
(ii) the number #(R∩∆) of matrices with repeated eigenvalues in R∩ SN−1 equals
the number of singular points of the symmetroid surface Σ3,n.

Proof. (i) By Proposition 7 for a generic choice of R matrices of corank 2 in S3,n
and Σ3,n constitute the singular loci of S3,n and Σ3,n respectively, i.e.,

S (2)
3,n = Sing(∂S3,n), Σ(2)

3,n = Sing(Σ3,n) (3.24)

and the sets S (2)
3,n ⊂ Σ(2)

3,n are finite. When R is generic the sets R ∩∆1 ⊂ R ∩∆
are finite as well. Observe that

λi(x01 +R(x)) = x0 + λi(R(x)), i = 1, . . . , n, (3.25)

where we denote R(x) = x1R1 + x2R2 + x3R3. If R(x) ∈ ∆1, i.e., λ1(R(x)) =
λ2(R(x)), then, due to (3.24) and (3.25),

(−λ1(R(x)), x1, x2, x3)√
λ1(R(x))2 + x2

1 + x2
2 + x2

3
∈ S (2)

3,n = Sing(∂S3,n)

is a singular point of ∂S3,n. Vice versa, if (x0, x1, x2, x3) ∈ Sing(S3,n) we have
that x = (x1, x2, x3) 6= 0, λ1(R(x)) = λ2(R(x)) (by (3.24) and (3.25)) and hence
R(x)/‖R(x)‖ ∈ ∆1. Moreover, one can easily see that the established identification
is one-to-one.

The proof of (ii) is analogous.
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Theorem 11 now follows immediately from the above propositions.

Proof of Theorem 11. For a generic projective 2-plane L = PR ⊂ PSym(n,R) we
have, invoking Proposition 9, that

ρn = #(Sing(Σ3,n)) = #(R ∩∆) = 2#(L ∩ P∆)

Proposition 8 implies the bound:

#(L ∩ P∆) = 1
2ρn ≤

(n+ 1)n(n− 1)
6 =

(
n+ 1

3

)

and it’s attained for some generic L ' RP2 ⊂ PSym(n,R).
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Chapter 4

The condition number for
polynomial eigenvalues of random
matrices

Following the ideas in [73, 17], we note that many different numerical problems
can be described within the following simple general framework. We consider a
space of inputs and a space of outputs denoted by I and O respectively, and some
equation of the form ev(i, o) = 0 stating when an output is a solution for a given
input. Both I and O, and the solution variety

V = {(i, o) ∈ I ×O : o is an output to i} = {(i, o) ∈ I ×O : ev(i, o) = 0}

are frequently real algebraic or just semialgebraic sets. The numerical problem to
be solved can then be written as “given i ∈ I, find o ∈ O such that (i, o) ∈ V”, or
“find all o ∈ O such that (i, o) ∈ V”. One can have in mind the following examples:

1. Polynomial Root Finding: I is the set of univariate real polynomials of degree
d, O = R and V = {(f, ζ) : f(ζ) = 0}.

2. Polynomial System Solving, which we can see as the homogeneous multivariate
version of Polynomial Root Finding: I is the projective space of (dense or
structured) systems of n real homogeneous polynomials of degrees d1, . . . , dn
in variables x0, . . . , xn, O = RPn and V = {(f, ζ) : f(ζ) = 0}.

3. EigenValue Problem: I = Rn×n, O = R and V = {(A, λ) : det(A−λ Id) = 0}.

4. (Homogeneous) Polynomial EigenValue Problem (in the sequel called PEVP):
I is the set of tuples of d+1 real n×nmatricesA = (A0, . . . , Ad), O = RP1 and
V = {(A, [α : β]) : P (A,α, β) = det(α0βdA0 +α1βd−1A1 + · · ·+αdβ0Ad) = 0}.
One can force some of the matrices to be symmetric, a particularly important
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case in applications, or consider other structured problems, see [62, 28, 41, 85].
In cases d = 1 and d = 2 polynomial eigenvalues are often referred to as
generalized eigenvalues and quadratic eigenvalues respectively.

We prove a general theorem computing exactly the expected value of the
condition number in a wide collection of problems, including problem 4 above.

We start by recalling the general geometric definition of the condition number,
which is usually thought of as “a measure of the sensibility of the solution o under
an infinitesimal perturbation of the input i”. A Finsler structure on a differentiable
manifold M is a smooth field of norms ‖ · ‖p : TpM → R, p ∈M on M (see [17, p.
223] for more details). In particular, a Riemannian structure 〈·, ·〉 on M defines a
Finsler structure on it by ‖ṗ‖p =

√
〈ṗ, ṗ〉p, p ∈M , ṗ ∈ TpM .

Definition 8 (Condition number in the algebraic setting). Let I,O and V be
real algebraic varieties such that the smooth loci of I,O are endowed with Finsler
structures and let (i, o) ∈ V be a smooth point of V such that i ∈ I, o ∈ O are smooth
points of I and O respectively. Moreover, assume that D(i,o)p1 : T(i,o)V → TiI is
invertible. Then the condition number µ(i, o) of (i, o) ∈ V is defined as

µ(i, o) =
∥∥∥D(i,o)p2 ◦D(i,o)p

−1
1

∥∥∥
op
,

where p1 : V → I, p2 : V → O are the projections and ‖ · ‖op is the operator norm.
For points (i, o) ∈ V not satisfying the above assumptions the condition number is
set to ∞.

See [23, Sec. 14.1] for more on this geometric approach to the condition number.

Remark 11. Definition 8 is intrinsic in I, i.e., changing I to some subvariety
I ′ ⊂ I leads (in general) to different, smaller, value of the condition number, since
perturbations of the input are only allowed in the direction of the tangent space to
the input set. Note also that the condition number depends on choices of Finsler
structures on I and O.

Example: The classical Turing’s condition number µ(A) = ‖A‖op‖A−1‖op for matrix
inversion corresponds to the following setting:

• O = I = M(n,R) is the set of n × n real matrices endowed with the
Finsler structure associated to relative errors in operator norm: ‖Ȧ‖A =
‖Ȧ‖op/‖A‖op.

• V = {(A,B) : AB = Id} = {(A,B) : B = A−1}.
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In the PEVP the input space I is endowed with the following Riemannian
structure: 〈Ȧ, Ḃ〉A = ((Ȧ0, Ḃ0) + · · ·+ (Ȧd, Ḃd))/((A0, A0) + · · ·+ (Ad, Ad)), where
(·, ·) is the Frobenius inner product, A = (A0, . . . , Ad) and Ȧ = (Ȧ0, . . . , Ȧd), Ḃ =
(Ḃ0, . . . , Ḃd) ∈ TAI. The output space O = RP1 possesses the standard metric and
the solution variety V = {(A, [α : β]) : P (A,α, β) = 0} is endowed with the induced
product Riemannian structure. An explicit formula for the condition number for
the Homogeneous PEVP was derived in [28, Th. 4.2] (we write here the relative
condition number version):

µ(A, (α, β)) =
(

d∑

k=0
α2kβ2d−2k

)1/2 ‖r‖‖`‖
|`tv| ‖A‖, (4.1)

where A = (A0, . . . , Ad), (α, β) ∈ R2 is a polynomial eigenvalue of A, r and ` are
the corresponding right and left eigenvectors and

v = β
∂

∂α
P (A,α, β)r − α ∂

∂β
P (A,α, β)r.

A given tuple A can have up to nd real isolated polynomial eigenvalues. We define
the condition number of A simply as the sum of the condition numbers over all
these PEVs:

µ(A) =
∑

[α:β]∈RP1is a PEV of A
µ(A, (α, β)).

(If A = (A0, . . . , Ad) has infinitely many polynomial eigenvalues, then we set
µ(A) = ∞). The most important result in this paper is a very general theorem
which is designed to provide exact formulas for the expected value of the condition
number in the PEVP and other problems. A simple particular case of our general
theorem is as follows.

Theorem 15 (Gaussian Homogeneous PEVP are well conditioned on the average).
If A0, . . . , Ad ∈ NM(n,R) are independent NM(n,R)-distributed matrices, then

E
A0,...,Ad∼i.i.d.NM(n,R)

µ(A) = π
Γ
(

(d+1)n2

2

)

Γ
(

(d+1)n2−1
2

)
Γ
(
n+1

2

)

Γ
(
n
2

) (4.2)

= π

2
√

(d+ 1)n3
(

1 +O
( 1
n

))
, n→ +∞

In Corollary 4.6 we provide an analogous formula in the case when A0, . . . , Ad
are independent GOE(n)-distributed matrices.

Remark 12. Recently in [6] Armentano and Beltran investigated the expectation
of the squared condition number for polynomial eigenvalues of complex Gaussian
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matrices. Theorem 15 establishes the “asymptotic square root law” for the considered
problem, i.e., when n→ +∞ (and up to the factor π/2) our answer in (4.2) equals
the square root of the answer in [6].

In Section 4.1 we state our main results, of which Theorem 15 is an easy
consequence. Their proofs are given in Section 4.2 and in Section 4.3, some
technical results are left for the Appendix.

4.1 Statement of main results
In this section we state our most general result, from which Theorem 15 will follow.
First, let us fix a general framework which analyzes the input-output problems
described above in a semialgebraic context. For the rest of this paper the input
and the output sets will be, respectively, the real vector space I = Rm and the unit
circle S1 ⊂ R2 endowed with the standard Riemannian structures. The solution
variety will be a semialgebraic set S ⊂ Rm × S1 ⊂ Rm × R2 (we change letter
from V to S to remark the fact that it is semialgebraic). We denote by Stop the
union of top-dimensional cells in some fixed cell decomposition of S (see Section
1.2 for details). Then the smooth manifold Stop ⊂ Rm × S1 is endowed with the
induced Riemannian structure. The two projections defined on S are denoted by
p1 : S → Rm, p2 : S → S1.

Definition 9 (Condition number in the semialgebraic setting). Near a regular
point (a, x) ∈ Stop the first projection p1 : Stop → Rm is locally invertible, i.e., there
exists a neighbourhood U ⊂ Rm of a ∈ U and a unique smooth map p−1

1 : U → Stop
such that p−1

1 (a) = (a, x) and p1◦p−1
1 = idU . In this case the local relative condition

number µ(a, x) is defined as

µ(a, x) := ‖a‖ sup
ȧ∈Rm\{0}

‖Da(p2 ◦ p−1
1 )(ȧ)‖

‖ȧ‖

For points (a, x) ∈ Slow = S \ Stop in the cells of lower dimension in the decom-
position of S as well as for critical points (a, x) ∈ Stop of p1 : Stop → Rm we set
µ(a, x) :=∞.

The relative condition number µ(a) of a ∈ Rm is defined to be the sum of all
local relative condition numbers µ(a, x):

µ(a) :=
∑

x∈S1: (a,x)∈S
µ(a, x)

Remark 13. Note that Definition 9 agrees with Definition 8 if we endow the input
space I = Rm with the Riemannian structure associated to relative errors, that is
〈ȧ, ḃ〉a = (ḃ tȧ)/‖a‖2, a ∈ Rm.

46



To simplify terminology, throughout the rest of the paper, we omit the word
“relative” when refering to (local) relative condition number.

We deal with a large class of semialgebraic subsets of Rm × S1 that we define
next.

Definition 10. We say that the semialgebraic set S ⊂ Rm × S1 is regular if the
following conditions are satisfied:

1. for any x ∈ S1 the fiber p−1
2 (x) is of dimension m− 1,

2. the semialgebraic set Σ1 ⊂ Stop of critical points of p1 : Stop → Rm is at
most (m− 1)-dimensional. In Proposition 10 we show that this condition is
equivalent to the following one:

2′. there exists a semialgebraic subset B ⊂ Rm of dimension at most m− 2 such
that for any a /∈ B the fiber p−1

1 (a) is finite.

The first condition in Definition 10 implies that S is m-dimensional (see Lemma
6). To perform our probabilistic study we take the input variables a = (a1, . . . , am) ∈
Rm to be independent standard gaussians: a ∼ N(0, 1). In the following theorem
we establish a general formula for the expectation of the condition number µ(a) of
a randomly chosen a ∈ Rm:

Theorem 16. If S ⊂ Rm × S1 is a regular semialgebraic set, then

Ea∼N(0,1)


 ∑

x∈S1: (a,x)∈S
µ(a, x)


 = 1√

2πm
∫

x∈S1

∫

a∈p−1
2 (x)

‖a‖e− ‖a‖
2

2 da dx. (4.3)

If, moreover, S is scale-invariant with respect to the first m variables, i.e., (a, x) ∈ S
if and only if (ta, x) ∈ S for any t > 0, then

Ea∼N(0,1)


 ∑

x∈S1: (a,x)∈S
µ(a, x)


 =

Γ
(
m
2

)

2
√
π
m

∫

x∈S1

|p−1
2 (x) ∩ Sm−1| dx,

where |p−1
2 (x)∩Sm−1| denotes the volume of the (m− 2)-dimensional semialgebraic

spherical set p−1
2 (x) ∩ Sm−1.

The following form of Theorem 16 for sets in Rm×RP1 better fits our purposes.

Corollary 3. Let S ⊂ Rm×S1 be a regular semialgebraic set that is scale-invariant
with respect to the first m variables and suppose that S is invariant under the map
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(a, x) 7→ (a,−x), (a, x) ∈ Rm × S1. Then µ(a, x) = µ(a,−x), (a, x) ∈ S, the fibers
p−1

2 (x), p−1
2 (−x) are isometric and

Ea∼N(0,1)


 ∑

[x]∈RP1: (a,x)∈S
µ(a, x)


 =

Γ
(
m
2

)

2
√
π
m

∫

[x]∈RP1

|p−1
2 (x) ∩ Sm−1| d[x],

Note that Corollary 3 is a “projective” version of the second part of Theorem
16.

As pointed out in the introduction, we are specifically interested in the poly-
nomial eigenvalue problem. Given d + 1 matrices A0, . . . , Ad ∈ M(n,R) a point
[x] = [α : β] ∈ RP1 is a (real) polynomial eigenvalue (PEV) of A = (A0, . . . , Ad) if

det(α0βdA0 + · · ·+ αdβ0Ad) = 0.

The space M(n,R) of n× n real matrices is endowed with the Frobenius inner
product and the associated norm:

(A,B) = tr(AtB), ‖A‖2 = (A,A), A,B ∈M(n,R).

Then a k-dimensional vector subspace V ⊂M(n,R) is endowed with the standard
normal probability distribution NV :

PNV (U) = 1
√

2π k
∫

U

e−
‖v‖2

2 dv,

where dv is the Lebesgue measure on (V, (·, ·)) and U ⊂ V is a measurable subset.
Let us also denote by ΣV = {A ∈ V : detA = 0} ⊂ V the variety of singular
matrices in V .

The condition number for polynomial eigenvalues of A = (A0, . . . , Ad) ∈ V d+1

is defined via
µ(A) :=

∑

[x]∈RP1is a PEV of A
µ(A, x),

where µ(A, x) is as in Definition 9 with Rm = (V, (·, ·))d+1 and

S = {(A, x) = ((A0, . . . , Ad), (α, β)) ∈ V d+1 × S1 : det(α0βdA0 + · · ·+ αdβ0Ad) = 0}

As proved in [28], in the case V = M(n,R) this definition for µ(A, x) is equivalent
to (4.1). In the following theorem we investigate the expected condition number for
polynomial eigenvalues of independent NV -distributed matrices A0, . . . , Ad ∈ V .
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Theorem 17. If ΣV ⊂ V is of codimension one, then

E
A0,...,Ad∼i.i.d.NV

µ(A) =
√
π

Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

) |ΣV ∩ Sk−1|
|Sk−2| . (4.4)

Poincaré formula (Corollary 2 from Section 1.3) allows to derive the following
universal upper bound.

Corollary 4. If ΣV ⊂ V is of codimension one, then

E
A0,...,Ad∼i.i.d.NV

µ(A) ≤ √πn
Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

) (4.5)

In case V = M(n,R) of all square matrices we provide an explicit formula for
the expected condition number, that is the claim of our Theorem 15 above.

We give an explicit answer also in the case V = Sym(n,R) of symmetric
matrices. In this case the probability space (Sym(n,R),NSym(n,R)) is called the
Gaussian Orthogonal Ensemble (GOE).

Corollary 5. If A0, . . . , Ad ∈ Sym(n,R) are independent GOE(n)-matrices and n
is even, then

E
A0,...,Ad∼i.i.d.GOE(n)

µ(A) =
√

2n
Γ
(

(d+1)n(n+1)
4

)

Γ
(

(d+1)n(n+1)−2
4

)
Γ
(
n+1

2

)

Γ
(
n+2

2

) (4.6)

=
√

(d+ 1)n3
(

1 +O
(

1√
n

))
, n→ +∞

If n is odd the explicit formula is more complicated and is given in the proof of the
corollary. However, the above asymptotic formula is valid for both even and odd n.

4.2 Proof of main results
In this section we prove our main results, Theorems 16 and 17.

First we fix some notations that are used in the rest of this chapter: for
a regular subset S ⊂ Rm × S1 by Σ1,Σ2 ⊂ Stop we denote the semialgebraic
sets of critical points of p1 : Stop → Rm and p2 : Stop → S1 respectively, the
corresponding semialgebraic sets of critical values are denoted by σ1 = p1(Σ1) ⊂ Rm

and σ2 = p2(Σ2) ⊂ S1.
The following proposition establishes equivalence of the conditions (2) and (2′)

in Definition 10 of a regular semialgebraic subset S ⊂ Rm × S1.

49



Proposition 10. Let S ⊂ Rm × S1 be a semialgebraic subset of dimension m.
Then

(2) the semialgebraic set Σ1 ⊂ Stop of critical points of the first projection
p1 : Stop → Rm is at most (m− 1)-dimensional if and only if

(2′) there exists a semialgebraic subset B ⊂ Rm of dimension at most m − 2
such that for any a /∈ B the fiber p−1

1 (a) is finite.

Proof. (2) ⇒ (2′) By Sard’s theorem the semialgebraic set σ1 = p1(Σ1) ⊂ Rm of
critical values of p1 : Stop → Rm is of dimension ≤ m− 1. The set p−1

1 (σ1) ⊂ S of
critical fibers is also of dimension ≤ m− 1. Indeed, if it was m-dimensional there
would exist a nonempty open set U ⊂ p−1

1 (σ1) \ (Σ1 ∪ Slow) of regular points of p1.
The image p1(U) ⊂ σ1 of U is open in Rm which contradicts to dim(σ1) ≤ m− 1.

For the map p1 : p−1
1 (σ1) → σ1 define B1 := {a ∈ σ1 : dim(p−1

1 (a)) = 1},
the semialgebraic set of points in σ1 for which the fiber p−1

1 (a) is infinite. Since
dim(p−1

1 (σ1)) ≤ m− 1 Corollary 2 implies that dim(B1) ≤ m− 2.
Similarly, for the map p1 : Slow → p1(Slow) let us define B2 := {a ∈ p1(Slow) :

dim(p−1
1 (a) ∩ Slow) = 1}, the semialgebraic set of points in p1(Slow) for which

the fiber p−1
1 (a) ∩ Slow is infinite. Since dim(Slow) ≤ m − 1 Corollary 2 gives

dim(B2) ≤ m− 2.
Take now any a /∈ B1 ∪B2. If a ∈ σ1 the fiber p−1

1 (a) is finite since a /∈ B1. If
a /∈ σ1 it’s a regular point of the map p1 : Stop → Rm between two m-dimensional
manifolds. Therefore the semialgebraic set p−1

1 (a)∩Stop is zero-dimensional manifold
and hence it’s finite. The set p−1

1 (a) ∩ Slow is finite because a /∈ B2. Consequently,
the fiber p−1

1 (a) = (p−1
1 (a)∩Stop)∪ (p−1

1 (a)∩Slow) is finite for any point a /∈ B out
of the at most (m− 2)-dimensional semialgebraic subset B := B1 ∪B2 ⊂ Rm.

(2)⇐ (2′) Recall that dim(σ1) ≤ m−1 and let us consider the map p1 : Σ1 → σ1.
If Σ1 wasm-dimensional the semialgebraic set B := {a ∈ σ1 : dim(p−1

1 (a)∩Σ1) = 1},
by Corollary 2, would be (m− 1)-dimensional, which would contradict to (2′).

4.2.1 Proof of Theorem 16
In this subsection S denotes a regular semialgebraic subset of Rm × S1. For the
proof of Theorem 16 we need few technical lemmas which we state and prove below.

Lemma 6. The semialgebraic sets S ⊂ Rm×S1 and p1(S) ⊂ Rm are of dimension
m.

Proof. Since S is regular, for every x ∈ S1 the fiber p−1
2 (x) is (m− 1)-dimensional.

From Theorem 2 it follows that for some x ∈ S1 we have dim(S) = dim(p−1
2 (x)) +

dim(S1) = (m− 1) + 1 = m.
The map p1 : Stop → Rm has a regular point (a, x) ∈ Stop \ Σ1 since S is

m-dimensional and the set Σ1 of critical points of p1 is at most (m−1)-dimensional.
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The image p1(U) of a small open neighbourhood U ⊂ Stop \ Σ1 of (a, x) ∈ U is
open in Rm and hence dim(p1(S)) = m.

Lemma 7. There exists an open semialgebraic subset M ⊂ Stop such that p1(M)
is open in Rm, M = p−1

1 (p1(M)), the restriction p1 : M → p1(M) is a submersion
and dim (S \M) ≤ m− 1.

Proof. Define M := p−1
1 (Rm \ N) = Stop \ p−1

1 (N), where N := p1(Slow ∪ Σ1)
and the bar stands for the euclidean closure of a set. Note that M is an open
subset of Stop and M = p−1

1 (p1(M)). Moreover M consists of regular points of the
projection p1 : Stop → Rm, which implies that p1(M) is an open subset of Rm and
p1 : M → p1(M) is a submersion of smooth manifolds. Indeed, for a ∈ p1(M) and
(a, x) ∈M the image p1(U) of a small open neighborhood U ⊂M of (a, x) ∈ U is
open in Rm and a ∈ p1(U).

We now prove that S \M = p−1
1 (N) is at most (m − 1)-dimensional. Since

S is regular there exists a semialgebraic set B ⊂ Rm with dim(B) ≤ m − 2
such that p−1

1 (a) is finite for a /∈ B. We decompose the semialgebraic set N =
(N ∩B) ∪ (N \B). From Theorem 2 it follows that there exists some a ∈ N ∩B
such that dim(p−1

1 (N ∩B)) ≤ dim(p−1
1 (a)) + dim(N ∩B) ≤ 1 + (m− 2) = m− 1.

For a ∈ N \B the fiber p−1
1 (a) is discrete, which together with the non-degeneracy

of S and Theoren 2 implies dim(p−1
1 (N \ B)) ≤ dim(p−1

1 (a)) + dim(N \ B) ≤
dim(Slow ∪ Σ1) ≤ m− 1. Therefore, dim(S \M) = dim(p−1

1 (N)) = dim(p−1
1 (N ∩

B) ∪ p−1
1 (N \B)) ≤ m− 1.

Lemma 8. There exists an open semialgebraic subset R ⊂ Stop such that S1 \p2(R)
is finite, p2 : R→ p2(R) is a submersion, dim(S\R) ≤ m−1 and dim(p−1

2 (x)\R) ≤
m− 2 for x ∈ p2(R).

Proof. Since S is regular every fiber p−1
2 (x), x ∈ S1 is (m− 1)-dimensional.

Note that the set S1 \ p2(Stop) is semialgebraic and zero-dimensional, thus
finite. Indeed, if it was one-dimensional Theorem 2 together with dim(p−1

2 (x)) =
m − 1, x ∈ S1 would imply that p−1

2 (S1 \ p2(Stop)) ⊂ S \ Stop is m-dimensional
which would contradict to dim(S \ Stop) ≤ m− 1.

The semialgebraic set σ2 = p2(Σ2) ⊂ S1 of critical values of p2 : Stop → S1 has
measure zero by Sard’s theorem. Hence σ2 ⊂ S1 consists of a finite number of
points.

Applying Corollary 1 to the map p2 : Slow → S1 we have that C := {x ∈
S1 : dim(p−1

2 (x) ∩ Slow) = m − 1} is a semialgebraic subset of S1 and dim(C) ≤
dim(Slow)− (m− 1) ≤ 0. Thus C is a (possibly empty) finite set.

Set now R := Stop \ p−1
2 (σ2 ∪ C). Note that R is an open semialgebraic subset

of Stop and S1 \ p2(R) = σ2 ∪ C ∪ (S1 \ p2(Stop)) is finite by the above arguments.
Since R consists of regular points of p2 : Stop → S1 the map p2 : R → p2(R) is a
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submersion. Since dim(Slow) ≤ m−1 and p−1
2 (σ2∪C) is a finite collection of (m−1)-

dimensional fibers we have that dim(S \R = Slow ∪ p−1
2 (σ2 ∪C)) ≤ m− 1. Finally,

dim(p−1
2 (x)\R = p−1

2 (x)∩Slow) ≤ m−2 for x ∈ p2(R) because p2(R)∩C = ∅.

Lemma 9. For any measurable function f : S → [0,+∞) we have
∫

a∈Rm

∑

x∈S1: (a,x)∈S
f(a, x) da =

∫

x∈S1

∫

a∈p−1
2 (x)

NJ(a,x)p1

NJ(a,x)p2
f(a, x) da dx

Proof. Let M ⊂ Stop be as in Lemma 7. The smooth coarea formula [45, (A-2)]
applied to the measurable function f : M → [0,+∞) and to the submersion
p1 : M → p1(M) reads

∫

(a,x)∈M

NJ(a,x)p1 f(a, x) d(a, x) =
∫

a∈p1(M)

∑

x∈S1: (a,x)∈S
f(a, x) da, (4.7)

where we used that M = p−1
1 (p1(M)) (Lemma 7) to be able to sum over the whole

fiber p−1
1 (a) = {(a, x) ∈ S}, a ∈ p1(M). By Lemma 7 we have dim(S \M) ≤ m− 1

and hence dim(p1(S) \ p1(M) = p1(S \M)) ≤ dim(S \M) ≤ m − 1. Thus we
extend the integrations in (4.7) over S and p1(S) respectively without changing the
result. Moreover the integration over p1(S) can be further extended to the whole
space Rm since for a point a ∈ Rm \ p1(S) the summation ∑x∈S1:(a,x)∈S f(a, x) is
performed over the empty set p−1

1 (a) in which case the sum is conventionally set to
0. All together the above arguments imply

∫

(a,x)∈S

NJ(a,x)p1 f(a, x) d(a, x) =
∫

a∈Rm

∑

x∈S1: (a,x)∈S
f(a, x) da, (4.8)

Let R ⊂ Stop be as in Lemma 8. Applying the smooth coarea formula [45,
(A-2)] to the measurable function NJp1

NJp2
f : R → [0,+∞) and to the submersion

p2 : R→ p2(R) we obtain
∫

(a,x)∈R

NJ(a,x)p1 f(a, x) d(a, x) =
∫

x∈p2(R)

∫

a∈p−1
2 (x)∩R

NJ(a,x)p1

NJ(a,x)p2
f(a, x) da dx (4.9)

By Lemma 8 dim(S \R) ≤ m−1, S1 \p2(R) is finite, and dim(p−1
2 (x)\R) ≤ m−2

for x ∈ p2(R). Thus the integrations in (4.9) can be extended over S, S1 and p−1
2 (x)

respectively leading to
∫

(a,x)∈S

NJ(a,x)p1 f(a, x) d(a, x) =
∫

x∈S1

∫

a∈p−1
2 (x)

NJ(a,x)p1

NJ(a,x)p2
f(a, x) da dx (4.10)

Combining (4.10) with (4.8) we finish the proof.
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Now comes the proof of Theorem 16.

Proof of Theorem 16. The following identity is the key point of the proof:

µ(a, x) = ‖a‖ NJ(a,x)p2

NJ(a,x)p1
, (a, x) ∈M ∩R ⊂ Stop (4.11)

where M ⊂ Stop and R ⊂ Stop are as in Lemma 7 and Lemma 8 respectively and
µ(a, x), the local condition number of (a, x) ∈ S, is defined in Definition 9. The
proof of the identity comes after we derive the statement of Theorem 16.

Applying Lemma 9 to the measurable function f(a, x) = µ(a, x)e−‖a‖2/2/
√

2πm,
(a, x) ∈ S, and using (4.11) we obtain:

Ea∼N(0,1)


 ∑

x∈S1: (a,x)∈S
µ(a, x)


 = 1√

2πm
∫

a∈Rm


 ∑

x∈S1: (a,x)∈S
µ(a, x)


 e−

‖a‖2
2 da

= 1√
2πm

∫

x∈S1

∫

a∈p−1
2 (x)

‖a‖e− ‖a‖
2

2 da dx = (∗),

which gives the claimed formula (4.3). If S is scale-invariant with respect to a ∈ Rm

by Lemma 13 we have

(∗) =
Γ
(
m
2

)

2
√
π
m

∫

x∈S1

|p−1
2 (x) ∩ Sm−1| dx.

Now we turn to the proof of (4.11).
For (a, x) ∈M ∩R ⊂ Stop let (ȧ0, ẋ0), (ȧ1, 0), . . . , (ȧm−1, 0) be an orthonormal

basis of T(a,x)R with (ȧj, 0) ∈ kerD(a,x)p2, j = 1, . . . ,m − 1. Note that ȧ0 ∈
Rm, ẋ0 ∈ TxS1 are non-zero since p1 : M → p1(M), p2 : R→ p2(R) are submersions
and ȧ0 ∈ Rm is orthogonal to ȧj ∈ Rm, j = 1, . . . ,m− 1. We compute the normal
Jacobians NJ(a,x)p1 and NJ(a,x)p2 using the following orthonormal bases:

{(ȧ0, ẋ0), (ȧ1, 0), . . . , (ȧm−1, 0)} ⊂ T(a,x)Stop{
ȧ0

‖ȧ0‖
, ȧ1, . . . , ȧm−1

}
⊂ TaRm

{
ẋ0

‖ẋ0‖

}
⊂ TxS

1

It is straightforward to see that NJ(a,x)p1 = ‖ȧ0‖ and NJ(a,x)p2 = ‖ẋ0‖ and hence

NJ(a,x)p2

NJ(a,x)p1
= ‖ẋ0‖
‖ȧ0‖
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Since Da(p2 ◦ p−1
1 )(ȧj) = D(a,x)p2 ◦Dap

−1
1 (ȧj) = 0 for j = 1, . . . ,m − 1 and since

Da(p2 ◦ p−1
1 )(ȧ0) = D(a,x)p2 ◦Dap

−1
1 (ȧ0) = ẋ0 we obtain

µ(a, x) = ‖a‖ sup
ȧ∈Rm\{0}

‖Da(p2 ◦ p−1
1 )(ȧ)‖

‖ȧ‖ = ‖a‖‖ẋ0‖
‖ȧ0‖

This together with (5) implies the claimed identity (4.11).

4.2.2 Proof of Theorem 17
For a k-dimensional vector subspace V ⊂M(n,R) and for a basis
f = (f0(α, β), . . . , fd(α, β)) of the space Pd,2 of binary forms of degree d ≥ 1 let us
define the algebraic variety

S(V, f) := {(A, x) ∈ V d+1 × S1 : det(A0 f0(α, β) + · · ·+ Ad fd(α, β)) = 0}

Theorem 17 follows from the following more general result.

Theorem 18. If ΣV ⊂ V is of codimension one and f is any basis of Pd,2, then
S(V, f) is regular and

E
A0,...,Ad∼i.i.d.NV


 ∑

[x]∈RP1: (A,x)∈S(V,f)
µ(A, x)


 =

√
π

Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

) |ΣV ∩ Sk−1|
|Sk−2| ,

Proof. Observe first that for any x = (α, β) ∈ S1 the vector
f(x) = (f0(α, β), . . . , fd(α, β)) is non-zero. For any such fixed x, let g = (gij) ∈
O(d + 1) be an orthogonal matrix that sends f(x) to (c, 0, . . . , 0) ∈ Rd+1 \ {0},
where c 6= 0 is some constant, i.e.,

d∑

j=0
gijfj(α, β) =




c, i = 0,
0, i = 1, . . . , d

It is easy to verify that the linear change of coordinates Aj = ∑d
i=0 gijÃi, j =

0, . . . , d is an isometry of the product space (V, (·, ·))d+1 and

d∑

j=0
fj(α, β)Aj =

d∑

j=0
fj(α, β)

(
d∑

i=0
gijÃi

)
=

d∑

i=0




d∑

j=0
gijfj(α, β)


 Ãi = c Ã0

Therefore, for x = (α, β) ∈ S1 there is a global isometry Ix : (V, (·, ·))d+1 →
(V, (·, ·))d+1 that sends the fiber p−1

2 (x) = {A ∈ V d+1 : det(A0 f0(α, β) + · · · +
Ad fd(α, β)) = 0} to {Ã ∈ V d+1 : det(Ã0) = 0} = ΣV × V d. In particular, under
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the assumption dim(ΣV ) = k − 1 we have that p−1
2 (x) is of codimension one in

V d+1 and hence condition (1) in Definition 10 is satisfied.
Since both f0(α, β), . . . , fd(α, β) and α0βd, . . . , αdβ0 are bases of Pd,2 for some

h = (hij) ∈ GL(d+ 1) we have αiβd−i = ∑d
j=0 hijfj(α, β), i = 0, . . . , d. Let us

define B = {A ∈ V d+1 : Aj =
d∑
i=0

hijÃi, j = 0, . . . , d, det(Ã0) = det(Ãd) = 0}.
Since dim(ΣV ) = k − 1 and since h is a non-singular linear transformation the
algebraic subset B ⊂ V d+1 has codimension 2. For A /∈ B the matrix

d∑

j=0
fj(α, β)Aj =

d∑

j=0
fj(α, β)

(
d∑

i=0
hijÃi

)
=

d∑

i=0




d∑

j=0
hijfj(α, β)


 Ãi =

d∑

i=0
αiβd−iÃi

is non-singular at (α : β) = (0, 1) (at (α, β) = (1, 0)) if det(Ã0) 6= 0 (if det(Ãd) 6= 0,
respectively) and hence the binary form det(A0f0(α, β)+· · ·+Adfd(α, β)) is non-zero.
Consequently, the fiber p−1

1 (A) = {x ∈ S1 : det(A0f0(α, β) + · · ·+Adfd(α, β)) = 0}
is finite for any A /∈ B and condition (2′) in Definition 10 is satisfied. Applying
Corollary 3 to S(V, f) ⊂ R(d+1)k × S1, R(d+1)k ' V d+1 we obtain

E
A0,...,Ad∼i.i.d.NV

(
∑

[x]∈RP1: (A,x)∈S(V,f)
µ(A, x)

)
= 1√

2π(d+1)k
∫

[x]∈RP1

∫

A∈p−1
2 (x)

‖A‖e− ‖A‖
2

2 dAdx,

where ‖A‖2 = ‖A0‖2 + · · ·+ ‖Ad‖2. Since each fiber p−1
2 (x), x ∈ S1 is an algebraic

subset of R(d+1)k of codimension one we have by Lemma 13

∫

A∈p−1
2 (x)

‖A‖e− ‖A‖
2

2 dA =
√

2
Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

)
∫

A∈p−1
2 (x)

e−
‖A‖2

2 dA

Performing the isometric change of coordinates Ix : (V, (·, ·))d+1 → (V, (·, ·))d+1

that was constructed above we write the last integral as follows:
∫

A∈p−1
2 (x)

e−
‖A‖2

2 dA =
∫

{Ã∈V d+1: det(Ã0)=0}

e−
‖Ã0‖2

2 e−
‖Ã1‖2

2 . . . e−
‖Ãd‖2

2 dÃ0dÃ1 . . . dÃd

=
√

2π dk
∫

Ã0∈ΣV

e−
‖Ã0‖2

2 dÃ0 =
√

2π dk
√

2 k−3Γ
(
k − 1

2

)
|ΣV ∩ Sk−1|,

where in the last step Lemma 13 has been used. Collecting everything together we
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write

E
A0,...,Ad∼i.i.d.NV


 ∑

[x]∈RP1: (A,x)∈S(V,f)
µ(A, x)


 =

√
π

Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

)
Γ
(
k−1

2

)

2
√
π
k−1 |ΣV ∩ Sk−1|

=
√
π

Γ
(

(d+1)k
2

)

Γ
(

(d+1)k−1
2

) |ΣV ∩ Sk−1|
|Sk−2| ,

since |Sk−2| = 2
√
π
k−1

/Γ
(
k−1

2

)
. This completes the proof.

Proof of Theorem 17. Taking fi(α, β) = αiβd−i, i = 0, . . . , d in Theorem 18 we
obtain the claim of Theorem 17.

4.3 Applications of main results
In this section we derive Theorem 15 and Corollaries 4, 5.

Proof of Corollary 4. By Poincaré formula (Corollary 2 from Section 1.3) applied
to the projective hypersurface PΣV ⊂ PV ' RPk−1 we have

|ΣV ∩ Sk−1|
|Sk−2| = |PΣV |

|RPk−2| = E
`∈G(1,k−1)

#(PΣV ∩ `) ≤ deg(PΣV ) = n

which together with (4.4) implies the claimed bound (4.5).

In case of any particular space V ⊂ M(n,R) satisfying dim(ΣV ) = k − 1 =
dim(V )− 1 by Theorem 17 explicit computation of the expected condition number
for polynomial eigenvalues amounts to computing the volume of the hypersurface
ΣV ∩ Sk−1. In cases V = M(n,R) and V = Sym(n,R) formulas for the volume of
ΣV ∩ Sk−1 were found in [33] and [55] respectively.

Proof of Theorem 15. Formula from [33] reads

|ΣM(n,R) ∩ Sn2−1|
|Sn2−2| =

√
π

Γ
(
n+1

2

)

Γ
(
n
2

)

Plugging it in (4.4) for V = M(n,R), k = dim(V ) = n2 leads to

E
A0,...,Ad∼i.i.d.NM(n,R)

µ(A) = π
Γ
(

(d+1)n2

2

)

Γ
(

(d+1)n2−1
2

)
Γ
(
n+1

2

)

Γ
(
n
2

)

= π

2
√

(d+ 1)n3
(

1 +O
( 1
n

))
, n→ +∞,

where the asymptotic is obtained using formula (1) from [86].
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Proof of Corollary 5. In [55] it was proved that

|ΣSym(n,R) ∩ S
n(n+1)

2 −1|
|S n(n+1)

2 −2|
=
√

2
π
n

Γ
(
n+1

2

)

Γ
(
n+2

2

) (4.12)

for even n and

|ΣSym(n,R) ∩ S
n(n+1)

2 −1|
|S n(n+1)

2 −2|
= (−1)m

√
πn!

2nm!Γ
(
n+2

2

)


1− 4

√
2√
π

m−1∑

i=0
(−1)i

Γ
(

2i+3
2

)

i!


 (4.13)

for odd n = 2m + 1. Plugging (4.12) and (4.13) in (4.4) for V = Sym(n,R), k =
n(n+1)

2 leads to explicit formulas for the expected condition number (see (4.6) in
case of even n). In [55, Remark 3] it was shown that

|ΣSym(n,R) ∩ S
n(n+1)

2 −1|
|S n(n+1)

2 −2|
= 2
√
n√
π

(
1 +O

(
1√
n

))
, n→ +∞

regardless parity of n. This leads to the asymptotic

E
A0,...,Ad∼i.i.d.GOE(n)

µ(A) =
√
π

Γ
(

(d+1)n(n+1)
4

)

Γ
(

(d+1)n(n+1)−2
4

) |ΣSym(n,R) ∩ S
n(n+1)

2 −1|
|S n(n+1)

2 −2|

=
√

(d+ 1)n3
(

1 +O
(

1√
n

))
, n→ +∞,

where we again used formula (1) from [86] for the asymptotic of the ratio of two
Gamma functions.
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Chapter 5

On the number of flats tangent to
convex hypersurfaces in random
position

Flats simultaneously tangent to several hypersurfaces
Given dk,n = (k+1)(n−k) projective hypersurfaces X1, . . . , Xdk,n ⊂ RPn a classical
problem in enumerative geometry is to determine how many k-dimensional projec-
tive subspaces of RPn (called k-flats) are simultaneously tangent to X1, . . . , Xdk,n .

Geometrically we can formulate this problem as follows. Let G(k, n) denote
the Grassmannian of k-dimensional projective subspaces of RPn (note that dk,n =
dimG(k, n)). If X ⊂ RPn is a smooth hypersurface, we denote by Ωk(X) ⊂ G(k, n)
the variety of k-tangents to X, i.e. the set of k-flats that are tangent to X
at some point. The number of k-flats simultaneously tangent to hypersurfaces
X1, . . . , Xdk,n ⊂ RPn equals

# Ωk(X1) ∩ · · · ∩ Ωk(Xdk,n).

Of course this number depends on the mutual position of the hypersurfaces
X1, . . . , Xdk,n in the projective space RPn.

In [77] F.Sottile and T.Theobald proved that there are at most 3 · 2n−1 real lines
tangent to 2n− 2 general spheres in Rn and they found a configuration of spheres
with 3 · 2n−1 common tangent lines. They also studied [78] the problem of k-flats
tangent to dk,n many general quadrics in RPn and proved that the “complex bound"
2dk,n · deg(GC(k, n)) can be attained by real quadrics. See also [19, 60, 61, 79] for
other interesting results on real enumerative geometry of tangents.

An exciting point of view comes by adopting a random approach: one asks for
the expected value for the number of tangents to hypersurfaces in random position.
We say that the hypersurfaces X1, . . . , Xdk,n ⊂ RPn are in random position if each
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one of them is randomly translated by elements g1, . . . , gdk,n sampled independently
from the orthogonal group O(n+ 1) endowed with the uniform distribution. The
average number τk(X1, . . . , Xdk,n) of k-flats tangent to X1, . . . , Xdk,n ⊂ RPn in
random position is then given by

τk(X1, . . . , Xdk,n) := E g1,...,gdk,n∈O(n+1)# Ωk(g1X1) ∩ · · · ∩ Ωk(gdk,nXdk,n).

The computation and study of properties of this number is precisely the goal of
this chapter.

A special feature of our study is that we concentrate on the case when the
hypersurfaces (not necessarily algebraic) are boundaries of convex sets. Part of the
results we present, however, hold in higher generality as we discuss in Section 5.5.

Definition 11 (Convex hypersurface). A subset C of RPn is called (strictly) convex
if C does not intersect some hyperplane L and it is (strictly) convex in the affine
chart RPn \ L ' Rn. A smooth hypersurface X ⊂ RPn is said to be convex if it
bounds a strictly convex open set of RPn.

Remark 14 (Spherical versus projective geometry). Our considerations in projec-
tive spaces run parallel to what happens on spheres, with just small adaptations. A
set C ⊂ Sn is called (strictly) convex if it is the intersection of a (strictly) convex
cone K ⊂ Rn+1 with Sn. A smooth hypersurface X ⊂ Sn is said to be convex
if it bounds a strictly convex open set of Sn. For the purposes of enumerative
geometry, the notion of flats should be replaced with the one of plane sections of Sn.
Computations involving volumes and the generalized integral geometry formula also
require very small modifications (mostly multiplications by a factor of two) and we
leave them to the reader.

Probabilistic enumerative geometry
Recently, Bürgisser and Lerario [24] have studied the similar problem of determining
the average number of k-flats that simultaneously intersect dk,n many (n− k − 1)-
flats in random position in RPn. They have called this number the expected degree
of the real Grassmannian G(k, n), here denoted by δk,n, and have claimed that
this is the key quantity governing questions in random enumerative geometry of
flats. (The name comes from the fact that the number of solutions of the analogous
problem over the complex numbers coincides with the degree of GC(k, n) in the
Plücker embedding. Note however that the notion of expected degree is intrinsic
and does not require any embedding.)

For reasons that will become more clear later, it is convenient to introduce the
special Schubert variety1 Sch(k, n) ⊂ G(k, n) consisting of k-flats in RPn intersecting

1Note that in the notation of [24] Sch(k, n) = Σ(k + 1, n+ 1) and δk,n = edegG(k + 1, n+ 1).
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a fixed (n− k − 1)-flat. The volume of the special Schubert variety is computed in
[24, Theorem 4.2] and equals

|Sch(k, n)| = |G(k, n)| ·
Γ
(
k+2

2

)
Γ
(
n−k+1

2

)

Γ
(
k+1

2

)
Γ
(
n−k

2

) ,

where |G(k, n)| denotes the volume of the Grassmannian (see Subection 1.3.1).
The following theorem relates our main problem to the expected degree (this is
Theorem 20 from Section 5.3).

Theorem (Probabilistic enumerative geometry). The average number of k-flats
in RPn simultaneously tangent to convex hypersurfaces X1, . . . , Xdk,n in random
position equals

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| ,

where |Ωk(X)| denotes the volume of the manifold of k-tangents to X.

The number δk,n equals (up to a multiple) the volume of a convex body for which
the authors of [24] coined the name Segre zonoid. Except for δ0,n = δn−1,n = 1,
the exact value of this quantity is not known, but it is possible to compute its
asymptotic as n→∞ for fixed k. For example, in the case of the Grassmannian of
lines in RPn one has [24, Theorem 6.8]

δ1,n = 8
3π5/2 ·

1√
n
·
(
π2

4

)n
·
(
1 +O(n−1)

)
. (5.1)

The number δ1,3 (the average number of lines meeting four random lines in RP3)
can be written as an integral [24, Proposition 6.7], whose numerical approximation
is δ1,3 = 1.7262.... It is an open problem whether this quantity has a closed formula
(possibly in terms of special functions).

The above theorem reduces our study to the investigation of the geometry of
the manifold of tangents, for which we prove the following result (Proposition 11
and Corollary 6 below).

Proposition (The volume of the manifold of k-tangents). For a convex hypersurface
X ⊂ RPn we have

|Ωk(X)|
|Sch(k, n)| =

Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
σk(x)dVX .

where σk : X → R is the k-th elementary symmetric polynomial of the principal
curvatures of the embedding X ↪→ RPn.
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Remark 15. After this result was obtained P. Bürgisser has pointed out to us it
can be also derived using a limiting argument from [5], where the tube neighborhood
around Ωk(X) is described.

Figure 5.1: The equation x2
1 + · · ·+ x2

n = (tan r)2x2
0 defines in RPn a metric sphere

of radius r, i.e. the set of all points at distance r from a fixed point.

Example 1 (Spheres in projective space). Let Sri = {x2
1+· · ·+x2

n = (tan ri)2 x2
0} ⊂

RPn be a metric sphere in RPn of radius ri ∈ (0, π/2), i = 1, . . . , dk,n (see Figure
5.1). Since all principal curvatures of Sri are constants equal to cot ri and since
|Sri | = 2

√
π
n

Γ(n2 ) (sin ri)n−1 Corollary 6 gives

|Ωk(Sr)|
|Sch(k, n)| =

2Γ
(
n+1

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · (cos ri)k(sin ri)n−k−1,

Combining this into Theorem 20 we obtain

τk(Sr1 , . . . , Srdk,n ) = δk,n ·
dk,n∏

i=1




2Γ
(
n+1

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · (cos ri)k(sin ri)n−k−1


(5.2)

For a fixed k it is natural to find the maximum of the expectation in the case when
all the hypersurfaces are spheres. For example, when k = 1 one can easily see that
cos ri(sin ri)n−2 is maximized at ri = arccos 1√

n−1 = π
2 − 1

n1/2 +O(n−1/2), which is
just a bit smaller than π

2 . Therefore,

max
r∈(0,π/2)

|Ωk(Sr)|
|Sch(k, n)| = 4√

π
·
(
n−2
n−1

)n−2
2

(n− 1) 1
2
·

Γ
(
n+1

2

)

Γ
(
n
2

)

=
( 8
eπ

) 1
2
(

1 + 1
2n +O(n−2)

)
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and, together with (5.1) and (5.2), this gives

max
r1,...,r2n−2∈(0,π2 )

τ1(Sr1 , . . . , Sr2n−2) = δ1,n ·
(( 8

eπ

) 1
2
(

1 + 1
2n +O(n−2)

))2n−2

= e2

3π 3
2
· 1√

n
·
(2π
e

)n
·
(
1 +O(n−1)

)
.

(5.3)

Observe that a hypersurface Sy,r which is a sphere in some affine chart U ' Rn,
i.e. Sy,r = {x ∈ Rn : ∑n

i=1(xi − yi)2 = r2}, is a convex hypersurface in RPn, but
it is not a sphere with respect to the projective metric unless it’s centered at the
origin (y = 0); and, viceversa, a metric sphere in RPn needs not be a sphere in an
affine chart. In fact, (5.3) tells that Sottile and Theobald’s upper bound 3 · 2n−1 for
the number of lines tangent to d1,n affine spheres in Rn does not apply to the case
of spheres in RPn: since 2π

e
> 2, when n is large (5.3) is larger than 3 · 2n−1; as a

consequence there must be a configuration of d1,n projective spheres in RPn with
(exponentially) more common tangent lines.

Remark 16 (The semialgebraic case). The theorem above remains true in the
case of semialgebraic hypersurfaces X1, . . . , Xdk,n ⊂ RPn satisfying some mild non-
degeneracy conditions (see Section 5.5 for more details). Specifically it still holds
true that

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| ,

but the volume of the manifold of k-tangents has a more complicated description:

|Ωk(X)|
|Sch(k, n)| =

(
n−1
k

)
Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
E Λ∈Grk(TxX)|Bx(Λ)|dVX ,

where |Bx(Λ)| denotes the absolute value of the determinant of the matrix of the
second fundamental form of X ↪→ RPn restricted to Λ ∈ Grk(TxX) and written in
an orthonormal basis of Λ (see Subsection 5.2.1), and the expectation is taken with
respect to the uniform distribution on Grk(TxX) ' Gr(k, n− 1).

Relation with intrinsic volumes
The quantities |Ωk(X)| offer an alternative interesting interpretation of the classical
notion of intrinsic volumes. Recall that if C is a convex set in RPn, the spheri-
cal Steiner’s formula [38, (9)] allows to write the volume of the ε-neighborhood
URPn(C, ε) of C in RPn as

|URPn(C, ε)| = |C|+
n−1∑

k=0
fk(ε)|Sk||Sn−k−1|Vk(C),
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where
fk(ε) =

∫ ε

0
(cos t)k(sin t)n−1−kdt. (5.4)

The quantities V0(C), . . . , Vn−1(C) are called intrinsic volumes of C. What is
remarkable is that when C is smooth and strictly convex, |Ωk(∂C)| coincides, up
to a constant depending on k and n only, with the (n− k − 1)-th intrinsic volume
of C (again this property can be derived by a limiting argument from the results
in [5]).

Proposition (The manifold of k-tangents and intrinsic volumes). Let C ⊂ RPn
be a smooth strictly convex set. Then

|Vn−k−1(C)| = 1
4 ·
|Ωk(∂C)|
|Sch(k, n)| , k = 0, . . . , n− 1.

This interpretation offers possible new directions of investigation and allows to
prove the following upper bound (see Corollary 9)

τk(X1, . . . , Xdk,n) ≤ δk,n · 4dk,n ,

where the right-hand side depends only on k and n. However, already for n = 3,
as observed by T. Theobald [84] there is no upper bound on the number of lines
that can be simultaneously tangent to four convex hypersurfaces in RP3 in general
position (see Section 5.4 for a proof of this fact).

Related work
Enumerative geometry over the field of complex numbers is classical. Over the
Reals it is a much harder subject, due to the nonexistence of generic configurations.
From the deterministic point of view we mention, among others, the papers that
are closest to our work and that gave a motivation for it: [19, 60, 61, 77, 78, 79].
The probabilistic approach to real enumerative geometry was initiated in [24] for
what concerns Schubert calculus, and in [13] for the study of the number of real
lines on random hypersurfaces.

5.1 Preliminaries
By G(k, n) ' Gr(k + 1, n + 1) we denote the Grassmannian of (k + 1)-planes in
Rn+1 (or, equivalently, the set of projective k-flats in RPn). Both notations are
used throughout this chapter. The dimension of G(k, n) is denoted by dk,n :=
dimG(k, n) = (k + 1)(n − k). The Grassmannian G(k, n) admits an embedding
into R(n+1)2 as a non-singular real algebraic subset [18, Theorem 3.4.4]. Below,
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when applying classical results on semialgebraic sets and mappings from Section
1.2 to Grassmannians and, in particular, to projective spaces, we implicitly refer to
the mentioned real algebraic embedding.

5.1.1 Integral geometry of coisotropic hypersurfaces of
Grassmannian

A smooth (respectively semialgebraic) hypersurface H of G(k, n) is said to be
coisotropic if for any Λ ∈ H (respectively for any Λ ∈ Htop) the normal space
NΛH ⊂ TΛG(k, n) ' Hom(Λ,Λ⊥) is spanned by a rank one operator.
For k,m ≥ 1 let uj ∈ S(Rk), vj ∈ S(Rm), j = 1, . . . , km be unit independent
random vectors. Then the average scaling factor α(k,m) is defined as

α(k,m) := E ‖(u1 ⊗ v1) ∧ · · · ∧ (ukm ⊗ vkm)‖

where the norm ‖ · ‖ is induced from the standard scalar product on Rk ⊗ Rm:
(u1 ⊗ v1, u2 ⊗ v2) := (u1, u2)(v1, v2). We will use the generalized Poincaré formula
for coisotropic hypersurfaces of G(k, n) proved in [24, Thm. 3.19]:

Theorem 19. Let H1, . . . ,Hdk,n be coisotropic hypersurfaces of G(k, n). Then

E#(g1H1 ∩ · · · ∩ gdk,nHdk,n) = α(k + 1, n− k) |G(k, n)|
dk,n∏

i=1

|Hi|
|G(k, n)|

where g1, . . . , gdk,n ∈ O(n+ 1) are independent randomly chosen orthogonal trans-
formations.

Remark 17. This theorem expresses the average number of points in the inter-
section of dk,n many hypersurfaces of G(k, n) in random position in terms of the
volumes of the hypersurfaces and the average scaling factor α(k + 1, n− k), which
only depends on the pair (k, n).

5.1.2 Intersection of special real Schubert varieties
A special real Schubert variety Sch(k, n) consists of all projective k-flats in RPn
that intersect a fixed projective (n− k − 1)-flat Π:

Sch(k, n) = {Λ ∈ G(k, n) : Λ ∩ Π 6= ∅}

It is a coisotropic algebraic hypersurface of G(k, n). In [24] P. Bürgisser and the
second author of the current article had introduced a notion of expected degree δk,n of
the Grassmannian G(k, n). It is defined as the average number of projective k-flats
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in RPn simultaneously intersecting dk,n many random projective (n− k − 1)-flats
independently chosen in G(n− k − 1, n). In other words,

δk,n := E#(g1Sch(k, n) ∩ · · · ∩ gdk,nSch(k, n)).

Using the formula [24, Thm. 4.2]:

|Sch(k, n)| = |G(k, n)|Γ(k+2
2 )

Γ(k+1
2 )

Γ(n−k+1
2 )

Γ(n−k2 )

for the volume of Sch(k, n) and Theorem 19 one can express

δk,n = α(k + 1, n− k) |G(k, n)|
(

Γ(k+2
2 )

Γ(k+1
2 )

Γ(n−k+1
2 )

Γ(n−k2 )

)dk,n

Remark 18. The exact value of δk,n (equivalently α(k+1, n−k)) remains unknown
for 0 < k < (n− 1). See [24, Sec. 6] for various asymptotics of δk,n.

Remark 19. Note that one can define a notion of “expected degree” even over
the complex numbers, by sampling complex projective subspaces uniformly from the
complex Grassmannian. Denoting by ck,n ∈ H2(GC(k, n);Z) the first Chern class
of the tautological bundle and by [GC(k, n)] ∈ H2dk,n(GC(k, n);Z) the fundamental
class we have that

the expected degree over the complex numbers =
〈
(ck,n)dk,n , [GC(k, n)]

〉

The resulting number also equals the degree of GC(k, n) in the Plücker embedding.

5.2 The manifold of tangents
5.2.1 The volume of the manifold of tangents to a convex

hypersurface
Let X = ∂C be a convex hypersurface of RPn (bounding the strictly convex open
set C ⊂ RPn) and let p : Grk(X)→ X be the Grassmannian bundle of k-planes of
X (this is a smooth fiber bundle over X whose fiber p−1(x) is the Grassmannian
Grk(TxX) ' Gr(k, n− 1)). Define the kth Gauss map

ψ : Grk(X)→ G(k, n)
(x,Λ) 7→ P(Span{x,Λ})

here we identify the tangent space TxRPn with the hyperplane x⊥ ⊂ Rn+1 and thus
Λ and x (a line in Rn+1) are both subspaces of Rn+1.
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With this notation we observe that ψ is a smooth embedding and that Ωk(X),
the set of all k-flats tangent to X, coincides, by definition, with im(ψ).

Let’s choose a unit normal vector field ν to X ⊂ RPn pointing inside the
convex region C. Then the second fundamental form B of X is positive definite
everywhere. For (x,Λ) ∈ Grk(X) and an orthonormal basis v1, . . . , vk of Λ let’s
denote by Bx(Λ) = det(B(vi, vj)) the determinant of the k × k matrix {B(vi, vj)}.
Note that Bx(Λ) does not depend on the choice of v1, . . . , vk. Using the smooth
coarea formula we prove the following proposition.

Proposition 11. If X ⊂ RPn is a convex hypersurface, then

|Ωk(X)| = |Gr(k, n− 1)|(
n−1
k

)
∫

X

σk(x)dVX (5.5)

where σk : X → R is the k-th elementary symmetric polynomial of the principal
curvatures of the embedding X ↪→ RPn.

Proof. The O(n+ 1)-invariant metric g on G(k, n) induces a Riemannian metric
ψ∗g on Grk(X) through the embedding ψ. Note that the restriction of ψ∗g to the
fibers Grk(TxX) is O(TxX) ' O(n − 1)-invariant. We apply the smooth coarea
formula [45, (A-2)] to p : (Grk(X), ψ∗g)→ (X, gX), where gX denotes the induced
metric on X ↪→ RPn. We obtain:

|Ωk(X)| =
∫

Grk(X)

dVGrk(X) =
∫

X

∫

Grk(TxX)

(
NJ(x,Λ)p

)−1
dVGrk(TxX) dVX .

We show that the normal JacobianNJ(x,Λ)p equals |Bx(Λ)|−1 = |det(B(vi, vj))|−1.
Given a point x ∈ X, a unit normal ν ∈ TxRPn to TxX and an orthonormal

basis v1, . . . , vk ∈ TxX of Λ ∈ Grk(TxX) let’s complete them to an orthonormal
basis x, ν, v1, . . . , vk, vk+1, . . . , vn−1 of Rn+1. Using these vectors we describe the
tangent space to Grk(X) at (x,Λ).

For i = 1, . . . , n− 1 and j = 1, . . . , k let xi = xi(t) be a small curve through x
in the direction vi and let vij = vij(t) be the parallel transport of vj along xi, i.e.
the vector field solving ∇X

ẋi
vij = 0, vij(0) = vj. Note that for any time t the vectors

vi1(t), . . . , vik(t) ∈ Txi(t)X remain pairwise orthonormal. Consider now curves in
Grk(X) and their tangents produced by these vectors:

γ̃i(t) = (xi(t), vi1(t) ∧ · · · ∧ vik(t))

Γ̃i : = ˙̃γi(0) = (vi,
k∑

j=1
v1 ∧ · · · ∧ v̇ij(0) ∧ · · · ∧ vk)
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Observe that

v̇ij(0) = ∇Rn+1

vi
vij = ∇X

vi
vij︸ ︷︷ ︸

=0

+aij x+ bij ν = aij x+ bij ν

Since the standard scalar product on Rn+1 (here denoted by a dot) induces the
metric on TxRPn = TxS

n = x⊥ and since the second fundamental form of the unit
sphere Sn ⊂ Rn+1 coincides with the metric tensor we have

aij = (∇Rn+1

vi
vij) · x = δij

bij = (∇Rn+1

vi
vij) · ν = (∇RPn

vi
vij + δij x) · ν = (∇RPn

vi
vij) · ν = B(vi, vj) (5.6)

The tangent space to the fiber T(x,Λ)Grk(TxX) = ker(p∗) is spanned by the following
k(n− 1− k) vectors:

θ̃ij(t) = (x, v1 ∧ · · · ∧ (vi cos t+ vj sin t)
i

∧ · · · ∧ vk), i = 1, . . . , k

Θ̃ij : = ˙̃
θij(0) = (0, v1 ∧ · · · ∧ vj

i

∧ · · · ∧ vk), j = k + 1, . . . , n− 1

We work with the images Γi,Θij ∈ TSpan{x,Λ}G(k, n) of Γ̃i and Θ̃ij under ψ∗. It is
easy to see that

Γi = ψ∗Γ̃i = vi ∧ v1 ∧ · · · ∧ vk +
k∑

j=1
bij x ∧ v1 ∧ · · · ∧ ν

j
∧ · · · ∧ vk, 1 ≤ i ≤ n− 1

Θij = ψ∗Θ̃ij = x ∧ v1 ∧ · · · ∧ vj
i

∧ · · · ∧ vk, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n− 1

and Γi’s are orthogonal to Θij’s, but Γi’s are not in general orthonormal vectors.
Therefore, since p∗Γ̃i = vi and the vi’s form an orthonormal basis for TxX in order
to compute the normal Jacobian NJ(x,Λ)p we need to find a change of basis matrix
from {Γi}1≤i≤n−1 to some orthonormal basis of Span{Γi}1≤i≤n−1 = ker(p∗ ◦ ψ−1

∗ )⊥.
For this purpose let’s note that for the orthonormal vectors

Sj = x ∧ v1 ∧ · · · ∧ ν
j
∧ · · · ∧ vk, 1 ≤ j ≤ k

Pi = vi ∧ v1 ∧ · · · ∧ vk, k + 1 ≤ i ≤ n− 1
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we have



Γ1
...

Γk
Γk+1
...

Γn−1




=
(
b 0
∗ 1

)(
S
R

)
=




b11 . . . b1k 0 0 . . . 0
... ... ... ... ... ... ...
bk1 . . . bkk 0 0 . . . 0
bk+1,1 . . . bk+1,k 1 0 . . . 0

... ... ... ... ... ... ...
bn−1,1 . . . bn−1,k 0 0 0 1







S1
...
Sk
Pk+1
...

Pn−1




where b = {bij}1≤i,j≤k = {B(vi, vj)}1≤i,j≤k by (5.6). Note that

ψ∗ is injective iff b is invertible iff B|Λ is non-degenerate. (5.7)

Then since B is positive definite everywhere b is invertible and



S1
...
Sk
Pk+1
...

Pn−1




=
(
b−1 0
∗ 1

)




Γ1
...

Γk
Γk+1
...

Γn−1




Applying p∗ ◦ ψ−1
∗ to the Sj, Pi’s we obtain that

NJ(x,Λ)p = | det(b−1)| = |Bx(Λ)|−1

and thus

|Ωk(X)| =
∫

X

∫

Grk(TxX)

|Bx(Λ)| dVGrk(TxX)dVX . (5.8)

Since the fibers Grk(TxX) are endowed with O(n− 1) ' O(TxX) ' O({x, νx}⊥)-
invariant metric we may rewrite the inner integral as

∫

Grk(TxX)

|Bx(Λ)| dVGrk(TxX) = |Gr(k, n− 1)|E Λ∈Gr(k,n−1)|Bx(Λ)| (5.9)

Since the restriction B|Λ of a positive definite form B is also positive definite, we
have Bx(Λ) > 0 and hence

E Λ∈Gr(k,n−1)|Bx(Λ)| = E Λ∈Gr(k,n−1)Bx(Λ).
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We prove that

E Λ∈Gr(k,n−1)Bx(Λ) =
(
n− 1
k

)−1

sk(d1(x), . . . , dn−1(x))

where the di(x)’s are the principal curvatures of X ⊂ RPn at the point x and
sk is the k-th elementary symmetric polynomial. Now let’s choose an o.n.b.
e = {δ1, . . . , δn−1} of TxX in which the second fundamental form B is diagonal D =
diag{d1, . . . , dn−1}. For vectors vi we denote by the same letters their coordinate
representation in the basis e. Let V and E be (n− 1)× k matrices with columns
{vi}1≤i≤k and {δi}1≤i≤k respectively:

V =



| |
v1 . . . vk
| |


 E =




1 0 . . . 0
... ... ... ...
0 . . . 0 1
0 . . . . . . 0
... ... ... ...
0 . . . . . . 0




There exists an orthogonal matrix g ∈ O(n − 1) s.t. V = g · E and then b =
{B(vi, vj)}1≤i,j≤k can be written as b = V tDV = EtgtDgE. In this view Bx(Λ) =
det(b) = det(EtgtDgE) is just the leading principal minor of gtDg of order k. Note
that Bx(Λ) does not depend on the choice of g, namely it’s invariant under the
action of StabSpan{δ1,...,δk} ' O(k)×O(n− 1− k) ⊂ O(n− 1). Using this and the
fact that the induced metric on the fibers Grk(TxX) ' Gr(k, n− 1) is the standard
O(n− 1)-invariant metric we obtain

E Λ∈Gr(k,n−1)Bx(Λ) = 1
|Gr(k, n− 1)|

∫

Gr(k,n−1)

Bx(Λ) dVGr(k,n−1)

= 1
|Gr(k, n− 1)| · |O(k)| · |O(n− 1− k)|

∫

O(n−1)

det(EtgtDgE) dg

= 1
|O(n− 1)|

∫

O(n−1)

det(EtgtDgE) dg

where dg = dVO(n−1) is the invariant Haar measure on O(n− 1).
Now for any k-subset I = {i1, . . . , ik} ⊂ {1, . . . , n− 1} denote by EI the (n−

1)× k matrix with columns δi1 , . . . , δik . EI can be obtained as a left multiplication
of E by the permutation matrix MσI : EI = MσI · E, where σI is any permutation

69



that sends 1, . . . , k into i1, . . . , ik respectively. Using invariance of dg we get
∫

O(n−1)

det(Et
Ig
tDgEI) dg =

∫

O(n−1)

det(Et(gMσI )tD(gMσI )E) dg =
∫

O(n−1)

det(EtgtDgE) dg

Consequently we can express E Λ∈Gr(k,n−1)Bx(Λ) as a sum over all k-subsets I ⊂
{1, . . . , n− 1} divided by

(
n−1
k

)
:

E Λ∈Gr(k,n−1)Bx(Λ) =
(
n− 1
k

)−1 1
|O(n− 1)|

∫

O(n−1)

∑

I⊂{1,...,n−1},
|I|=k

det(Et
Ig
tDgEI) dg

The integrand here is the sum of all principal minors of gtDg of order k and thus
does not depend on g and is equal to the k-th elementary symmetric polynomial
sk(d1, . . . , dn−1) of d1 . . . , dn−1. Combining this with (5.8) and (5.9) we end the
proof.

In particular we can derive the following corollary.

Corollary 6. If X ⊂ RPn is a convex hypersurface, then

|Ωk(X)|
|Sch(k, n)| =

Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
σk(x)dVX .

Proof. We first observe that

|Gr(k, n− 1)|
|G(k, n)| = 1

πn/2

Γ
(
n
2

)
Γ
(
n+1

2

)

Γ
(
k+1

2

)
Γ
(
n−k

2

)

and, recalling [24, Theorem 4.2],

|Sch(k, n)|
|G(k, n)| = |Σ(k + 1, n+ 1)|

|Gr(k + 1, n+ 1)| =
Γ
(
k+2

2

)

Γ
(
k+1

2

) ·
Γ
(
n−k+1

2

)

Γ
(
n−k

2

) .
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Substituting into (5.5) we obtain

|Ωk(X)|
|Sch(k, n)| = |Gr(k, n− 1)|

|G(k, n)| · |G(k, n)|
|Sch(k, n)| ·

1(
n−1
k

)
∫

X
σk(x)dVX

= 1
πn/2

Γ
(
n
2

)
Γ
(
n+1

2

)

Γ
(
k+1

2

)
Γ
(
n−k

2

) ·
Γ
(
k+1

2

)
Γ
(
n−k

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · 1(
n−1
k

)
∫

X
σk(x)dVX

= 1
πn/2

Γ
(
n
2

)
Γ
(
n+1

2

)

Γ
(
k+2

2

)
Γ
(
n−k+1

2

) · 1(
n−1
k

)
∫

X
σk(x)dVX

=
Γ
(
k+1

2

)
Γ
(
n−k

2

)

π
n+1

2

∫

X
σk(x)dVX .

5.2.2 Intrinsic volumes
Recall that the intrinsic volumes V0(C), . . . , Vn−1(C) of a convex set C ⊂ RPn
are characterized by Steiner’s formula, which gives the exact expansion (for small
ε > 0) of the volume of the ε-neighbourhood of C:

|URPn(C, ε)| = |C|+
n−1∑

k=0
fk(ε)|Sk||Sn−k−1|Vk(C) (5.10)

(the functions fk are defined in (5.4)). The formula (5.10) is obtained from the
spherical Steiner’s formula [38, (9)] as follows. For a convex set C ⊂ RPn denote by
C̃ ⊂ Sn any of the two components of p−1(C), where p : Sn → RPn is the double
covering. Under p an open hemisphere in Sn maps isometrically onto RPn minus
a hyperplane. Therefore, for small ε > 0 we have |URPn(C̃, ε)| = |URPn(C, ε)| and
Vj(C̃) = Vj(C), j = 0, . . . , n− 1. As a consequence we obtain.

Corollary 7 (The manifold of k-tangents and intrinsic volumes). Let C ⊂ RPn be
a strictly convex set with the smooth boundary ∂C. Then

4 · Vn−k−1(C) = |Ωk(∂C)|
|Sch(k, n)| , k = 0, . . . , n− 1.
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Proof. From [38, (10)] and Corollary 6 it follows that

Vn−k−1(C) = 1
|Sk||Sn−k−1|

∫

∂C
σk(x)dV∂C

=
Γ
(
k+1

2

)
Γ
(
n−k

2

)

4π n+1
2

∫

∂C
σk(x)dV∂C

= 1
4 ·
|Ωk(∂C)|
|Sch(k, n)| .

This together with [38, (15)] implies the following interesting corollary.

Corollary 8. Let C ⊂ RPn be a strictly convex set with the smooth boundary ∂C
and let C◦ be the polar set of C̃ ⊂ Sn. Then

4|C|
|Sn| + 4|C◦|

|Sn| +
n−1∑

k=0

|Ωk(∂C)|
|Sch(k, n)| = 4.

In particular, for every k = 0, . . . , n− 1 we have

|Ωk(∂C)|
|Sch(k, n)| ≤ 4. (5.11)

5.3 Hypersurfaces in random position
Theorem 20. The average number of k-planes in RPn simultaneously tangent to
convex hypersurfaces X1, . . . , Xdk,n ⊂ RPn in random position equals

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| . (5.12)

Proof. We use the generalized kinematic formula for coisotropic hypersurfaces of
G(k, n) proved in [24] (Theorem 19 above).

In order to apply Theorem 19 to the case Hi = Ωk(Xi), i = 1, . . . , dk,n, we
need to prove that each Ωk(Xi) is a coisotropic hypersurface of G(k, n). Given
(x,Λ) ∈ Grk(Xi) as in the proof of Proposition 11 let’s consider an orthonormal basis
v1, . . . , vn−1 of TxXi such that Λ = span{v1, . . . , vk} and a unit normal ν ∈ TxRPn
to TxXi. For a curve xν(t) ⊂ RPn through x in the direction ν we consider the
parallel transports vν1 (t), . . . , vνk(t) ∈ Txν(t)RPn of v1, . . . , vk along xν(t). We claim
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that the tangent vector to the curve γ(t) = xν(t) ∧ vν1 (t) ∧ · · · ∧ vνk(t) ∈ G(k, n) is
normal to Tx∧v1∧···∧vkΩk(Xi). Indeed,

γ̇(0) = ν ∧ v1 ∧ · · · ∧ vk +
k∑

j=1
x ∧ v1 ∧ · · · ∧ v̇νj (0) ∧ · · · ∧ vk = ν ∧ v1 ∧ · · · ∧ vk

since v̇νj (0) = ∇RPn
ν vνj + ajx = 0 + ajx is proportional to x. Now it is elementary

to verify that γ̇(0) is orthogonal to the tangent space Tx∧v1∧···∧vkΩk(Xi) described
in (11). Seen as an operator γ̇(0) sends x to ν and all vectors in Λ to 0. Hence
Ωk(Xi) is coisotropic.

Applying now Theorem 19 we deduce

τk(X1, . . . , Xdk,n) = α(k + 1, n− k) |G(k, n)|
dk,n∏

i=1

|Ωk(Xi)|
|G(k, n)| . (5.13)

Note that applying Theorem 19 to the special real Schubert variety Sch(k, n) we
obtain

δk,n = E#(g1Sch(k, n) ∩ · · · ∩ gdk,nSch(k, n))

= α(k + 1, n− k) |G(k, n)|
(
|Sch(k, n)|
|G(k, n)|

)dk,n
.

This gives an expression for α(k + 1, n − k), which substituted into (5.13) gives
(5.12).

As a consequence we derive the following corollary, which gives a universal
upper bound to our random enumerative problem.

Corollary 9. If X1, . . . , Xdk,n ⊂ RPn are convex hypersurfaces, then

τk(X1, . . . , Xdk,n) ≤ δk,n · 4dk,n .

Proof. This follows immediately from (5.12) and (5.11).

5.4 Convex bodies with many common tangents
In this section we show that for everym > 0 there exist convex surfacesX1, . . . , X4 ⊂
RP3 in general position such that the intersection Ω1(X1) ∩ · · · ∩ Ω1(X4) ⊂ G(1, 3)
is transverse and consists of at least m points. We owe the main idea for this to
T. Theobald.
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Figure 5.2: The construction of the coordinate system.

5.4.1 A coordinate system
Let X1, X2, X3 ⊂ RP3 be smooth convex semialgebraic surfaces such that the
intersection Z = Ω1(X1) ∩ Ω1(X2) ∩ Ω1(X3) is transverse (hence Z is a smooth
curve in G(1, 3)). Let

P = {(Λ, [v]) : Λ ∈ Z, [v] ∈ Λ ' RP1}

be the projectivized tautological bundle over Z and consider the tautological map

η : P → RP3

(Λ, [v]) 7→ [v]

We determine points where η is an immersion.

Lemma 10. η∗ : T(Λ,[v])P → T[v]RP3 ' v⊥ is injective if and only if v is not
annihilated by the generator of TΛZ ⊂ Hom(Λ,Λ⊥).

Proof. Let Λ(t) = v(t) ∧ u(t) be a local parametrization of Z near Λ = Λ(0),
where {u(t), v(t)} is an orthonormal basis of Λ(t) and v = v(0), u = u(0). The
tangent vectors to the curves γ1(t) = (Λ, [cos t v + sin t u]), γ2(t) = (Λ(t), [v(t)])
at t = 0 span the tangent space T(Λ,[v])P and η∗(γ̇1(0)) = [u], η∗(γ̇2(0)) = [v̇(0)].
Any generator of the one-dimensional space TΛZ ⊂ Hom(Λ,Λ⊥) sends v ∈ Λ to
v̇(0) ∈ Λ⊥ ⊂ v⊥. The assertion follows.

Let (Λ, [v]) ∈ P be a point where η is an immersion (by the above lemma such
(Λ, [v]) ∈ P exists for any Λ ∈ Z) and let V ' RP2 ⊂ RP3 be a plane through
[v] = η((Λ, [v])) ∈ RP3 that is transversal to the line `[v] := η((Λ,Λ)). The map
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Figure 5.3: The convex body C.

η is an embedding locally near (Λ, [v]). Therefore the image under η of a small
neighbourhood of (Λ, [v]) intersects V along a smooth curve which we denote by
Γ. Moreover, the images of the fibers of P define a smooth field of directions
{`z : z ∈ Γ} on Γ (see Figure 5.2) which can be smoothly extended to a field of
directions {`z : z ∈ U} on a neighbourhood U ⊂ V of Γ.

As a consequence there exists a neighborhood W ⊂ RP3 of [v] of the form

W =
∐

z∈U
`z ∩W ' U × (−1, 1)

On this neighbourhood we have a smooth map (the projection on the first factor):

π : W → U.

This map has the following property:
Lemma 11. If B ⊂ W is a smooth strictly convex subset in RP3 and z ∈ U is a
critical value for π|∂B, then `z is tangent to ∂B.
Proof. In fact if #{`z ∩ ∂B} = 2 then the line `z would be trasversal to ∂B and z
would be a regular value for π|∂B.

5.4.2 The construction
Using strict convexity of X1, X2, X3 it is easy to show that for a generic choice of
the plane V a small arc of the curve Γ is strictly convex. Let’s use the same letter
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Γ to denote such an arc. For a given number m > 0 pick n = m+ 1 distinct points
t1, . . . , tn on Γ and consider an n−polygonal arc K tangent to Γ at the points
t1, . . . , tn. Call v1 . . . , vn−1 the ordered vertices of K and for every (curvilater)
triangle tiviti+1 pick a point xi in its interior (see left picture in Figure 5.3).

Let now C ⊂ W be the convex body in RP3 defined as the convex hull of the
segments in W ' U × (−1, 1):

C = conv({x1} × (−δ, δ), . . . , {xn−1} × (−δ, δ)),
where δ > 0 is chosen small enough such that none of t1, . . . , tn belongs to π(C).
Note that the polygon x1 · · ·xn−1 is a subset of π(C) ⊂ C. As a consequence, there
exist points s1, . . . , sn−1 on Γ, interlacing t1, . . . , tn such that they all belong to
im(π|int(C)). (See the right picture in Figure 5.3.)

Let now Cε ⊂ W be a smooth, strictly convex semialgebraic approximation of
C such that:
(1) s1, . . . , sn ∈ π|int(Cε);

(2) t1, . . . , tn /∈ π(Cε);

(3) the intersection Ω1(Cε) ∩ Ω1(X1) ∩ Ω1(X2) ∩ Ω1(X3) is transverse.
The conditions (1) and (2) imply that π(∂Cε) ∩ Γ (a semialgebraic subset of Γ)
consists of intervals:

π(∂Cε) ∩ Γ = [a1, b1] ∪ · · · ∪ [aN , bN ]

possibly reduced to points and N ≥ n− 1. Now each ai (and bi) is critical for π|∂Cε :
otherwise the image of π|∂Cε near ai would contain an open set and ai would not
be a boundary point of the intersection π(∂Cε) ∩ Γ. By Lemma 11 this implies
that each line `ai is tangent to ∂Cε and condition (3) implies that the transverse
intersection Ω1(Cε) ∩ Ω1(X1) ∩ Ω1(X2) ∩ Ω1(X3) (which is finite) contains more
than n− 1 = m lines.

5.5 The semialgebraic case
In this section we discuss a generalization of some of the results of Section 5.2 and
Section 5.3 to the case of semialgebraic hypersurfaces satisfying some nondegeneracy
conditions.

Let X be a smooth closed semialgebraic hypersurface in RPn. As in Section
5.2.1 we define the Grassmannian bundle of k-planes over X:

p : Grk(X)→ X

(x,Λ) 7→ x

Grk(X) : = {(x,Λ) : x ∈ X,Λ ∈ Grk(TxX) ' Gr(k, n− 1)}
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The variety Ωk(X) of k-tangents to X coincides with the image im(ψ) of the kth
Gauss map:

ψ : Grk(X)→ G(k, n)
(x,Λ) 7→ P(Span{x,Λ})

but now, unlike to the case of a convex hypersurface, Ωk(X) is in general singular.
It is convenient to identify the smooth manifold Grk(X) with its image in

X ×G(k, n) under the map id× ψ:
Grk(X) ' (id× ψ)(Grk(X)) = {(x,Λ) ∈ X ×G(k, n) : TxΛ ⊂ TxX}

id× ψ : Grk(X)→ X ×G(k, n)
(x,Λ) 7→ (x,P(Span{x,Λ}))

Note that Grk(X) is a smooth semialgebraic subvariety of X × G(k, n) and the
variety of tangents Ωk(X) is obtained by projecting it onto the second factor.

For a point x ∈ X let’s denote by B the second fundamental form of X defined
locally near x using any of the two local coorientations of X. For (x,Λ) ∈ Grk(X)
and an orthonormal basis v1, . . . , vk of Λ denote by Bx(Λ) = det(B(vi, vj)) the
determinant of the k × k matrix {B(vi, vj)}. Notice that |Bx(Λ)| does not depend
on the choice of v1, . . . , vk and the local coorientation of X near x.

Definition 12. We say that X ⊂ RPn is k-non-degenerate if

1. the semialgebraic set

D := {Λ ∈ G(k, n) : #(ψ−1(Λ)) > 1} ⊂ Ωk(X)

of k-flats that are tangent to X at more than one point has codimension at
least one in Ωk(X) and

2. the semialgebraic set

S := {(x,Λ) ∈ Grk(X) : B|TxΛ is degenerate}
has codimension at least one in the semialgebraic variety Grk(X).

Remark 20. Note that the sets D and S are closed in Ωk(X) and Grk(X) respec-
tively and, by the same reasoning as in the proof of Proposition 11 (up to (5.7)),
the set S consists of such (x,Λ) ∈ Grk(X) where π2 : Grk(x)→ G(k, n) is not an
immersion.

A convex semialgebraic hypersurface is k-non-degenerate for any k = 0, . . . , n−1
since in this case the sets D,S from Definition 12 are empty. The following lemma
shows that a generic algebraic surface in RP3 of sufficiently high degree is 1-non-
degenerate.
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Lemma 12. Let XC ⊂ CP3 be an irreducible smooth surface of degree d ≥ 4 which
does not contain any lines and such that X = RXC ⊂ RP3 is of dimension 2. Then
X is 1-non-degenerate.
Proof. Theorem 4.1 in [49] asserts that under the assumptions of the current lemma
the singular locus ΣC := Sing(Ω1(XC)) of the variety Ω1(XC) ⊂ GC(1, 3) of complex
lines tangent to the complex surface XC ⊂ CP3 is described as follows:

ΣC = DC ∪ IC,
where DC consists of lines that are tangent to XC at more than one point and IC
consists of lines intersecting XC at some point with multiplicity at least 3.

We now show that the singular locus Σ := Sing(Ω1(X)) = Ω1(X)∩Sing(ΩC
1 (X))

of Ω1(X) is of dimension at most 2. There are two cases: either (1) there exists
Λ ∈ Σ which is smooth for both Σ and ΣC or (2) any smooth point Λ ∈ Σ of Σ is
singular for ΣC. In the case (1) we have dimR(Σ) = dimR(TΛΣ) = dimC(TΛΣC) =
dimC(ΣC) < dimC(Ω1(XC)) = 3 and therefore dimR(Σ) ≤ 2. In the case (2) we
have dimR(Σ) = dimR(TΛΣ) ≤ dimC(Sing(ΣC)) < dimC(ΣC) < dimC(Ω1(XC)) = 3
and hence dimR(Σ) ≤ 1.

For the complex surface XC ⊂ RP3 let Gr1(XC) = {(x,Λ) ∈ XC × GC(1, 3) :
TxΛ ⊂ TxX

C} be the Grassmannian bundle of complex lines over XC. In the
proof of [49, Thm. 4.1] it is shown that a line Λ ∈ IC intersects XC ⊂ CP3

at a point x ∈ XC with multiplicity at least 3 if and only if the differential
(π2)∗ : T(x,Λ)Gr1(XC)→ TΛGC(1, 3) is not injective. By (5.7) for (x,Λ) ∈ S the dif-
ferential (π2)∗ : T(x,Λ)Gr1(X)→ TΛG(1, 3) (and hence also (π2)∗ : T(x,Λ)Gr1(XC)→
TΛGC(1, 3)) is not injective. In particular, π2(S) ⊂ Ω1(X) ∩ IC. Now, if XC does
not contain any lines, the fibers of the projection π2 : Gr1(X) → G(1, 3) are
finite and hence dim(π2(S)) = dimS. On the other hand, since π2(S) ⊂ Σ,
the above arguments show that dim(π2(S)) ≤ dim(Σ) ≤ 2 and consequently
dim(S) ≤ 2 < 3 = dim(Gr1(X)). Moreover, this together with (5.7) imply that
there exists a point in Gr1(X) at which π2 : Gr1(X) → G(1, 3) is an immersion
and hence Ω1(X) = π2(Gr1(X)) is of dimension 3.

Observe finally that D ⊂ Ω1(X)∩DC ⊂ Σ and the above arguments imply that
dim(D) ≤ dim(Σ) ≤ 2 < 3 = dim(Ω1(X)). This finishes the proof.
Remark 21. The above lemma implies that a generic algebraic surface X ⊂ RP3

of high enough degree is 1-non-degenerate.
In the following proposition we provide a formula for the volume of Ωk(X).

Proposition 12. Let X be a k-non-degenerate semialgebraic hypersurface in RPn.
Then

|Ωk(X)| = |Gr(k, n− 1)|
∫

X

E Λ∈Gr(k,n−1)|Bx(Λ)| dVX (5.14)

78



Proof. The complement

R := Grk(X) \ S = {(x,Λ) ∈ Grk(X) : B|TxΛ is non-degenerate}

of S is an open dense semialgebraic subset of Grk(X). Let’s pull back the metric
from G(k, n) to R through the immersion π2|R. Then repeating the proof of
Proposition 11 up to the point (5.8) we get

∫

R

dVR =
∫

XR

∫

Λ∈π−1
1 (x)∩R

|Bx(Λ)| dVπ−1
1 (x)∩R dVXR (5.15)

where XR := π1(R) ⊂ X is the projection of R ⊂ X ×G(k, n) onto the first factor
and the fiber π−1

1 (x) = Grk(TxX) ' Gr(k, n− 1) ⊂ Grk(X) is endowed with the
uniform distribution. Note that since Bx(Λ) = 0 precisely for Λ ∈ π−1

1 (x) \R we
can extend the integration over the whole fiber π−1

1 (x) in (5.15). Moreover, since
XR = π1(R) is open and dense in X (being the image of an open and dense set
under the projection π1) and since the function

x 7→
∫

Λ∈π−1
1 (x)

|Bx(Λ)| dVπ−1
1 (x)

is continuous (5.15) becomes
∫

R

dVR =
∫

X

∫

Λ∈π−1
1 (x)

|Bx(Λ)| dVπ−1
1 (x) dVX = |Gr(k, n− 1)|

∫

X

E Λ∈Gr(k,n−1)|Bx(Λ)| dVX

It remains to prove that |Ωk(X)| = ∫
R
dVR. For this let’s consider the set

D̃ := π−1
2 (D) = {(x,Λ) ∈ Grk(X) : #(π−1

2 (Λ)) > 1}

Note that D̃ is a closed semialgebraic subset of Grk(X) and from Definition 12 it
follows that D̃ ⊂ Grk(X) is of codimension at least one. As a consequence, the
semialgebraic set R \ D̃ is open and dense in Grk(X) (and hence also in R) and
therefore its projection π2(R \ D̃) is open and dense in Ωk(X). In particular,

|Ωk(X)| = |π2(R \ D̃)| =
∫

R\D̃

dVR\D̃ =
∫

R

dVR
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Remark 22. Using, for example, the Cauchy-Binet theorem it is easy to derive
the inequality

|Ωk(X)| ≤ |Gr(k, n− 1)|(
n−1
k

)
∫

X
sk(|d1(x)|, . . . , |dn−1(x)|) dVX

where sk(|d1(x)|, . . . , |dn−1(x)|) is the kth elementary symmetric poynomial of the
absolute principal curvatures at x ∈ X. Unfortunately, we do not have a clear
geometric interpretation of the right-hand side of the above inequality.

In the case of lines tangent to a surface in RP3 we can refine the formula (5.14)
as follows.

Corollary 10. If X ⊂ RP3 is a smooth 1-non-degenerate surface then

|Ω1(X)| =
∫

X

h(d1(x), d2(x)) dVX

where

h(d1, d2) =





π

2 |d1 + d2|, if d1d2 ≥ 0

2
√
−d1d2 + 2|d1 + d2| ·

∣∣∣∣∣∣
arctan

√
−d1

d2
− π

4

∣∣∣∣∣∣
, if d1d2 < 0

and d1(x), d2(x) are the principal curvatures of X at the point x.

Proof. The formula (5.14) reads

|Ω1(X)| = π
∫

X

E Λ∈Gr(1,2)|Bx(Λ)| dVX

In coordinates in which the second fundamental form Bx of X ⊂ RP3 at the point
x ∈ X is diagonal with values d1, d2 we have

π E Λ∈Gr(1,2)|Bx(Λ)| = π E v∈S1 |Bx(v, v)| =
∫ π/2

−π/2
|d1 cos2 ϕ+ d2 sin2 ϕ|dϕ

The last integral can be evaluated by elementary integration methods giving
π
2 |d1 + d2| in case d1d2 ≥ 0 and

2
√
−d1d2 + 2|d1 + d2| ·

∣∣∣∣∣∣
arctan

√
−d1

d2
− π

4

∣∣∣∣∣∣

in case d1d2 < 0.
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Finally we prove an analog of Theorem 20 for k-non-degenerate semialgebraic
hypersurfaces.
Theorem 21. The average number of k-flats in RPn simultaneously tangent to
k-non-degenerate semialgebraic hypersurfaces X1, . . . , Xdk,n in random position
equals

τk(X1, . . . , Xdk,n) = δk,n ·
dk,n∏

i=1

|Ωk(Xi)|
|Sch(k, n)| .

Proof. Exactly in the same way as in the proof of Theorem 20 one can show that
the union Ωk(Xi)top of all top-dimensional cells of some fixed decomposition of
Ωk(Xi) (see Section 1.2 for details) is a coisotropic hypersurface of G(k, n). Since
Ωk(Xi) \ Ωk(Xi)top has codimension ≥ 2 in G(k, n) by standard transversality
arguments we have that

g1Ωk(X1) ∩ · · · ∩ gdk,nΩk(Xdk,n) = g1Ωk(X1)top ∩ · · · ∩ gdk,nΩk(Xdk,n)top

for a generic choice of g1, . . . , gdk,n ∈ O(n+ 1).
The claim follows by applying the integral geometry formula (Theorem 19) to

the coisotropic semialgebraic hypersurfaces Ωk(X1)top, . . . ,Ωk(Xdk,n)top as in the
proof of Theorem 20.
Remark 23. (Random invariant hypersurfaces) The previous Theorem can be used
for computing the expectation of the number of k-flats tangent to random Kostlan
hypersurfaces of degree m1, . . . ,mdk,n in RPn – notice that here the randomness
comes directly from the hypersurfaces! Let us discuss the case n = 3, k = 1.

Let f1, . . . , f4 ∈ R[x1, . . . , x4] be random, independent, O(4)-invariant polynomi-
als of degrees m1, . . . ,m4 ≥ 4 and denote by X(fi) = {fi = 0} ⊂ RP3, i = 1, . . . , 4
the corresponding projective hypersurfaces. We are interested in computing

(∗) = E f1,...,f4#Ω1(X(f1)) ∩ · · · ∩ Ω1(X(f4)).

We use the fact that the polynomials are invariant and write:

(∗) = E g1,...,g4E f1,...,f4#Ω1(g1X(f1)) ∩ · · · ∩ Ω1(g4X(f4))
= E f1,...,f4E g1,...,g4#Ω1(g1X(f1)) ∩ · · · ∩ Ω1(g4X(f4)).

For i = 1, . . . , 4 with probability one X(fi) is irreducible and there are no lines
on it; hence by Lemma 12 with probability one each X(fi) is 1-non-degenerate.
Applying Theorem 21 we have

E f1,...,f4#Ω1(X(f1)) ∩ · · · ∩ Ω1(X(f4)) = δ1,3 ·
4∏

i=1

E fi |Ω1(X(fi))|
|Sch(1, 3)| .

Computation of the expected volume E f |Ω1(X(f))| of the variety of tangent
lines to a random invariant hypersurface is a difficult task though.
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Appendix

The following elementary lemma is used in Proposition 5 and throughout Section
4.2.

Lemma 13. If X ⊂ (Rm, ‖ · ‖) is a scale-invariant semialgebraic set of dimension
p ≤ m, f : X → R is a measurable positively homogeneous function of degree d ≥ 0
and q > 0, then

∫

a∈X
f(a)‖a‖q e−

‖a‖2
2 dVX =

√
2 q

Γ
(
d+p+q

2

)

Γ
(
d+p

2

)
∫

a∈X
f(a)e−

‖a‖2
2 dVX , (5.16)

where |X ∩ Sm−1| denotes the volume of the (r − 1)-dimensional semialgebraic spherical
set X ∩ Sm−1. If f = 1 on X, then

∫

a∈X
‖a‖q e−

‖a‖2
2 dVX =

√
2 p+q−2Γ

(
p+ q

2

)
|X ∩ Sm−1| (5.17)

Proof. By the smooth coarea formula (Theorem 6) applied to the submersion
π : Xtop → Xtop∩Sm−1, π(a) = a/‖a‖ whose Normal Jacobian is NJaπ = 1/‖a‖p−1

we have:
∫

a∈X
f(a)‖a‖qe− ‖a‖

2
2 dVX =

+∞∫

0

rd+p+q−1e−
r2
2 dr

∫

a∈X∩Sm−1

f(a) dVX∩Sm−1

=
√

2 d+p+q−2Γ
(
d+ p+ q

2

) ∫

a∈X∩Sm−1

f(a) dVX∩Sm−1

Combining this with the same formula for q = 0 we obtain (5.16).
If f = 1 on X we have

∫

a∈X∩Sm−1

f(a) dVX∩Sm−1 = |X ∩ Sm−1|

and (5.17) follows.
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