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Abstract

When simulating phenomena in physics, engineering, or applied sciences, often one has to deal

with functional equations that do not admit an analytical solution. Describing these real situ-

ations is, however, possible, resorting to one of its numerical approximations and treating the

resulting mathematical representation. This thesis is placed in this context: Indeed the purpose

is that of furnishing several useful tools to deal with some computational problems, stemming

from discretization techniques. In most of the cases the numerical methods we analyse are

the classical Qp Lagrangian FEM and the more recent Galerkin B-spline Isogeometric Analy-

sis (IgA) approximation and Staggered Discontinuous Galerkin (DG) methods. As our model

PDE, we consider classical second-order elliptic di�erential equations and the Incompressible

Navier-Stokes equations. In all these situations the resulting matrix sequences {An}n possess a

structure, namely they belong to the class of Toeplitz matrix sequences or to the more general

class of Generalized Locally Toeplitz (GLT) matrix sequences, in the most general block k-level

case. Consequently, the spectral analysis of the coe�cient matrices plays a crucial role for an

e�cient and fast resolution. Indeed the convergence properties of iterative methods proposed,

like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol

of the coe�cient matrix sequence. In our setting the symbol is a function which asymptotically

provides a reasonable approximation of the eigenvalues [singular values] of An by its evaluations

of an uniform grid on its domain. These reasons, and many others, make the research of more

and more e�cient eigensolvers relevant and topical. In this direction, the second goal of this

thesis is to provide new tools for computing the spectrum of preconditioned banded symmetric

Toeplitz matrices, Toeplitz-like matrices, n−1K
[p]
n , nM

[p]
n , n−2L

[p]
n , coming from the B-spline IgA

approximation of −u′′ = λu, plus its multivariate counterpart for −∆u = λu, and block and

preconditioned block banded symmetric Toeplitz matrices. For all the above cases we propose

new algorithms based on the classical concept of symbol, but with an innovative view on the

errors of the approximation of eigenvalues by the uniform sampling of the symbol. The algo-

rithms devised are special interpolation-extrapolation procedures performed with a high level of

accuracy and only at the cost of computing of the eigenvalues of a moderate number of small

sized matrices.
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Multilevel block GLT algebra, symbol, spectral distribution, asymptotic expansion, interpolation-

extrapolation algorithms, multigrid methods, preconditioning Krylov methods, Staggered DG

methods, IgA approximation



ii



CONTENTS

Contents

Introduction and motivation v

Chapter I. De�nitions and known results 1

I.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Multi-index notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Spectral distribution of matrix sequences . . . . . . . . . . . . . . . . . . . . . . . 4

I.4 Toeplitz structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.4.1 Scalar Toeplitz matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I.4.2 Block and multilevel block Toeplitz matrices . . . . . . . . . . . . . . . . . 8

I.4.3 Spectral analysis of Hermitian block Toeplitz sequences: distribution results 9

I.4.4 Spectral analysis of Hermitian block Toeplitz sequences: extremal eigen-

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I.5 Trigonometric polynomials and banded Toeplitz matrices . . . . . . . . . . . . . . 11

I.6 Spectral analysis and computational features of block circulant matrices . . . . . 15

I.7 GLT sequences: operative features . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I.8 Preconditioning and multigrid methods for Toeplitz matrices . . . . . . . . . . . 18

I.9 Asymptotic Expansion: idea of the approximation errors . . . . . . . . . . . . . . 23

Chapter II. Spectral analysis on SDG methods for the incompressible

Navier-Stokes equations 27

II.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II.2.1 Analysis of the spectral symbol . . . . . . . . . . . . . . . . . . . . . . . . 32

II.2.2 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II.2.2.1 Evaluation of the eigenvalue functions of the symbol . . . . . . . 34

II.2.2.2 Spectral distribution of {KN}N . . . . . . . . . . . . . . . . . . . 35

II.2.3 A focus on the eigenvalue functions in a neighborhood of the origin . . . . 41

II.2.4 Spectral analysis of KN via low rank perturbations . . . . . . . . . . . . . 43

II.2.5 Further variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II.3.1 Taylor Green vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II.3.2 Modi�ed double shear layer . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II.3.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



CONTENTS

II.3.4 A multigrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter III. Asymptotic Expansion: an algorithm for preconditioned

matrices 57

III.1 Generalization of the preconditioned Asymptotic Expansion . . . . . . . . . . . . 57

III.2 Implicit Errors expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III.2.1 Error bounds for the coe�cients ck in the Asymptotic Expansion . . . . . 62

III.3 Error bounds for numerically approximated eigenvalues . . . . . . . . . . . . . . 64

III.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter IV. Asymptotic Expansion: applied to the IgA discretization 77

IV.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

IV.2 Properties of the spectral symbol ep(θ) . . . . . . . . . . . . . . . . . . . . . . . . 83

IV.3 Eigenvalues and eigenvectors of L
[p]
n for p = 1 and p = 2 . . . . . . . . . . . . . . 84

IV.3.1 The matrix algebras τm(ε, φ) for ε, φ ∈ {0, 1,−1} . . . . . . . . . . . . . . 84

IV.3.2 Eigenvalues and eigenvectors of L
[p]
n for p = 1, 2 . . . . . . . . . . . . . . . 85

IV.4 Algorithm for computing the eigenvalues of L
[p]
n for p ≥ 3 . . . . . . . . . . . . . . 88

IV.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV.5.1 Numerical experiments in support of the eigenvalue expansion . . . . . . . 92

IV.5.2 Numerical experiments illustrating the performance of algorithm 1 . . . . 99

IV.6 Extension to the multidimensional setting . . . . . . . . . . . . . . . . . . . . . . 99

IV.6.1 Eigenvalue�eigenvector structure of L
[p]
n . . . . . . . . . . . . . . . . . . . 102

Chapter V. Asymptotic Expansion: extension to the block case 105

V.1 Conditions for the existence of block asymptotic expansion . . . . . . . . . . . . . 106

V.2 Algorithm for computing the eigenvalues of Tn(f) for s > 1 . . . . . . . . . . . . . 110

V.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

V.3.1 Global condition example . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V.3.2 Local condition: intersection of the ranges . . . . . . . . . . . . . . . . . 117

V.3.3 Local condition: lack of the monotonicity . . . . . . . . . . . . . . . . . . 123

V.3.4 Local condition: reduction from block to scalar. . . . . . . . . . . . . . . . 127

V.3.5 Exact formulae for Qp Lagrangian FEM . . . . . . . . . . . . . . . . . . . 131

Chapter VI. Technical Results 137

VI.1 Staggered DG matrix symbol for k = 2 and p = 2 . . . . . . . . . . . . . . . . . 137

VI.2 Proof of the preconditioned eigenvalue expansion for α = 0 . . . . . . . . . . . . . 138

VI.3 Proofs of the theorems stated in Section IV.2 of Chapter IV . . . . . . . . . . . . 143

VI.4 Proof of the IgA eigenvalue expansion for α = 0 . . . . . . . . . . . . . . . . . . . 152

VI.5 Qp Lagrangian FEM matrix symbol for p = 2, 3, 4 . . . . . . . . . . . . . . . . . 156

VI.6 Proof of the block eigenvalue expansion for α = 0 . . . . . . . . . . . . . . . . . . 157

Conclusions 161

Bibliography 164

iv



Introduction and motivation

Introduction and motivation

The main mission of numerical analysts is to compute quantities that are in general incalculable

from an analytical point of view. The pivotal concept in numerical analysis is analyzing and

providing algorithms to solve a determined class of the problems of mathematics, whose intrinsic

nature can be either continuous or discrete. �Continuous� are most of the real problems which

science and engineering are built upon but that, without numerical techniques, would be quickly

untreatable. In this thesis the focus is on fast algorithms for the approximation of continuous

mathematical equations.

Indeed, when simulating phenomena in physics, engineering, or applied sciences, often one

has to deal with functional equations (written, e.g., in di�erential or integral form) that do not

admit an analytical solution.

Describing these real situations is, however, possible, resorting to one of its numerical ap-

proximations and treating the resulting mathematical representation. In practice the aim is to

construct proper numerical discretization techniques, that �transform� problems from �continu-

ous� to a more manageable �discrete� modelling.

Clearly the task of the numerical analyst does not end once that the approximation is per-

formed. We want to ensure that the solution of the resulting problem, with respect to the

original one, is more convenient in terms of resolution speed, resources, and computational cost.

This thesis is placed in this context: it has the purpose to furnish several useful tools to deal

with some computational problems, arising from discretization techniques.

In most cases the problems we have in mind come from the linear discretization of partial

di�erential equations (PDEs) of the form

A u = b,

where A is a linear di�erential operator, taking into account possible initial/boundary condi-

tions. Computing the numerical solution un of u, or a part of it, reduces to solving a linear

system of the form

Anun = bn. (1)

Furthermore, if the chosen approximation technique is convergent, the more we increase

the number of points of the discretization (n or an increasing function of n) the more the

approximation un of the analytical solution u will be accurate.

For this reason, one should not consider the speci�c linear system (1) for a �xed n, but rather

v



the sequence of linear systems

{Anun = bn}n,
whose dimensions depend on the number of discretization points, n.

The matrices produced by most types of discretizations possess a structure, namely they

are often sparse. Furthermore, depending on the linear di�erential operator, they can be badly

conditioned. Consequently in general (that is without a quite strong structure), direct methods

should be avoided, since, not only they may require a high computation cost, but also they often

do not take full advantage of the information of the structure.

Iterative solvers (in particular multigrid and preconditioned Krylov techniques) are instead

very convenient choices. It is indeed known that iterative methods exploit the spectral infor-

mation of coe�cient matrix and consequently they can be adapted in order to accelerate the

convergence and optimize the computational cost.

Hence here the spectral analysis of the matrix An (and consequently of the coe�cients matrix

sequence {An}n) plays a crucial role for an e�cient and fast resolution. Moreover, comparing

the spectrum of An with that of the di�erential operator can suggest whether the discretization

is appropriate or not to spectrally approximate the operator A .

However, it must be highlighted that the interest in �nding eigenvalues is intrinsically im-

portant. In fact, on one hand there are problems in which the knowledge of the eigenvalues is

indirectly useful in e�ciently �nding the solution. On the other hand there are situations where

they actually have a physical meaning and represent the approximation of the real solution.

This is the case, for example, of eigenvalue problems [42, 92].

Among speci�c applications that are not related to the approximation of di�erential equa-

tions, we can mention structured Markov chains [15], signal and image processing problems with

space invariant nature [46, 82], �nancial applications [110], etc.

The sequences considered in the whole thesis enjoy a very nice structure: they belong to the

class of Toeplitz matrix sequences or to the more general class of Generalized Locally Toeplitz

(GLT) matrix sequences.

In general, depending on whether the matrices come from a one-dimensional or a k-dimensional

problem, k > 1, their structure can be one-level or k-level. That is each matrix has a scheme

repeated k times equally in the inner patterns. In such a case the dimension of the matrix is

N(n) = n1n2 · · ·nk and the matrix is indexed by the multi-index n = (n1, n2, . . . , nk). For

the multi-index notation, see Section I.2. Depending on the size s of the system of PDEs, we

deal with a scalar (s = 1) or a block (s > 1) matrix sequence. In the latter setting each basic

entry in the matrix An is in turn an s × s matrix, so that the global dimension is sn × sn or

N(n, s)×N(n, s), with N(n, s) = sN(n) = sn1n2 · · ·nk, n = (n1, n2, . . . , nk).

However, even in the case of a scalar PDE, the block structure can be induced by the

numerical method, e.g., by classical p-degree �nite elements, p > 1, or p-degree Discontinuous

Galerkin mathods, p ≥ 1, or p-degree isogeometric analysis of regularity k with p− k > 1.

In all situations the research of spectral informations of the mentioned classes is related to

the concept of the symbol, that is a function f which, under certain hypotheses, provides a

spectral or a singular value description of the associated matrix sequences.

In the simplest scalar, one-level case, where the only requirement on f : D ⊂ R→ C is to be

a Lebesgue measurable function on a Lebesgue measurable domain D, with Lebesgue measure
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Introduction and motivation

0 < µ1(D) < ∞, we say that the sequence {An}n has an asymptotical spectral [singular value]

distribution described by f if it holds that:

lim
n→∞

1

n

n∑

j=1

F (λj(An)) =
1

µ1(D)

∫

D
F (f(θ)) dθ, (2)


 lim
n→∞

1

n

n∑

j=1

F (σj(An)) =
1

µ1(D)

∫

D
F (|f(θ)|) dθ,




for all continuous functions F with bounded support on C, where λj(An), j = 1, . . . , n [σj(An), j =

1, . . . , n] are the eigenvalues [singular values] of An.

The informal (and practical usable) meaning of relation (2) is that for n su�ciently large, a

reasonable approximation of the eigenvalues [singular values] ofAn is obtained from an evaluation

of f(θ) [|f(θ)|] over an uniform grid in the domain D. Once the symbol is known we have the

�control� of the behaviour of the whole spectrum [singular values], up to a number of outliers

which is in�nitesimal with respect to the matrix size, and we can exploit the results for designing

e�cient solvers for the coe�cient matrix An, for large n.

Along the same lines the k-level block case with blocks of size s can be given by playing with

the symbol, which will be k-variate and s×s matrix-valued. For such general notion see Section

I.3 (and Section I.2 for the necessary multi-index notation).

Generally speaking all the concepts, notations and mathematical tools which will be used in

the thesis are reported in Chapter I.

In the next chapters we face several type of sequence structures: from the most general block

k-level setting to the simplest scalar, one-level case. Clearly formula (2) is properly modi�ed

for the more general types of treated structured sequences. Indeed, with the obvious changes of

notation, the universal role of the symbol is being one of the tool for compactly describing the

asymptotic behavior of the eigenvalues [singular values] of An, for large n.

In Chapter II we consider the GLT sequence arising from the approximation of the incom-

pressible Navier-Stokes equations by semi-implicit Discontinous Galerkin methods on staggered

meshes (SDG), introduced in [65, 66, 135, 137].

These new schemes have never been analyzed with GLT techniques before. Therefore the

�rst aim is theoretical and concerns the possibility of using and extending the spectral tools

mentioned so far to this new numerical framework and of studying its properties. Special atten-

tion is given to the structural and spectral analysis of the involved linear systems, in particular:

structural properties, in connection with multilevel block Toeplitz-like (and circulant) matrices,

distribution spectral analysis in the Weyl sense, conditioning, asymptotic behaviour of the ex-

tremal eigenvalues via low rank perturbations and study of outliers. In turn all of them are

of interest for numeric and algorithmic purposes: the analysis of the intrinsic di�culty of the

problem aimed at designing and analyzing (preconditioned) Krylov methods [5, 11].

First we follow a classical preconditioning strategy, designing a Preconditioned Conjugate

Gradient (PCG) method, with circulant Strang preconditioner. But in a multilevel setting,

when an asymptotic condition is present, as it is well-known in the literature [98, 124, 129],
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the use of any circulant preconditioner permits to reach at most a sub-optimal convergence

of the PCG method. So a more original and e�cient approach is to design a block multilevel

multigrid procedure with two grids (TGM), that will ensure convergence and optimality in terms

of iterations. Although, up to our knowledge, many theoretical results on multigrid convergence

in block settings are still missing or in preparation [130], we validate them numerically. The

choice of the appropriate smoother and prolongation operators are justi�ed by the Laplacian

nature of the symbol and supported by the encouraging results in a block context in [48], and

in the scalar multilevel cases [2, 3, 69].

Moreover, based on the concept of symbol, it has been possible to design speci�c fast methods

for solving large linear systems with a Toeplitz or Toeplitz-like structure in various settings.

When speaking about Toeplitz-like matrices, we are referring to small perturbations of Toeplitz

matrices or block Toeplitz matrices, where the precise structure is observed when removing few

rows and columns.

Because of their pervasive appearance in any shift-invariant problem [7, 32, 93], there has

been a lot of attention on fast methods for solving large linear systems with Toeplitz or Toeplitz-

like structure (see the review papers in [32, 93, 94]), including both direct fast and superfast

solvers [93, 94] and iterative solvers [3, 32].

Here we consider the problem of computing the spectrum and, for such type of problems, we

develope a class of fast methods starting from the results in recent work [62], where Ekström,

Garoni, and Serra-Capizzano have conjectured the existence of an asymptotic expansion for the

eigenvalues of banded symmetric Toeplitz matrices. Independently Bogoya, Böttcher, Grudsky,

and Maximenko [16, 17, 19] have obtained the precise asymptotic expansion for the eigenvalues

of a sequence of Toeplitz matrices {Tn(f)}n, under suitable assumptions on the associated

generating function f .

In [62] the authors provided numerical evidences that some of those assumptions can be

relaxed, maintaining only the hypothesis on f of being a real cosine trigonometric polynomial

(RCTP), monotone on the domain.

Studying the errors of the approximation of eigenvalues by uniform sampling of the sym-

bol, we devise an extrapolation procedure for computing the eigenvalues of banded symmetric

Toeplitz matrices of very large dimension. The algorithm is performed with a high level of ac-

curacy and only at the cost of computing the eigenvalues of a moderate number of small sized

matrices.

From a theoretical viewpoint, in Chapters III, IV, V the assumptions on the generating

function have been relaxed and extended also for the eigenvalues of:

1. preconditioned banded symmetric Toeplitz matrices [1];

2. Toeplitz-like matrices, n−1K
[p]
n , nM

[p]
n , n−2L

[p]
n , coming from the B-spline IgA approxima-

tion of −u′′ = λu, plus its multivariate counterpart for −∆u = λu [58];

3. block and preconditioned block banded symmetric Toeplitz matrices [60].

We also prove, for all contexts above, the �rst order asymptotic term of the expansion and

we complement the results of [51, 71, 72, 73, 74, 76, 77], proving several important analytic

properties of ep(θ), spectral symbol of {n−2L
[p]
n }n.
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Introduction and motivation

For Item 3 we consider the natural extension of the analysis for the case of f being an s× s
matrix-valued function with s ≥ 1, and Tn(f) the block Toeplitz matrix generated by f . Hence

the natural step is that of deriving the analogous conditions which ensure the existence of an

asymptotic expansion for the eigenvalues in block settings. In particular how the assumptions on

the scalar symbol f of being a real, monotone, cosine trigonometric polynomial are transformed

for the matrix-valued symbol f. Here the eigenvalue functions of f , λ(i)(f), i = 1, . . . , s, play

an analogous role of f for the scalar cases. Furthermore we deal with the conversion from

polynomial (RCTP) to Hermitian matrix-valued trigonometric polynomial (HTP).

The hidden idea for the considered asymptotic expansion is based on the right reordering of

eigenvalues with respect to the evaluations of f (of λ(i)(f), i = 1, . . . , s, in case s > 1). Indeed

for s = 1, the assumption of monotonicity of f is crucial to ensure the correct combination of

eigenvalues and evaluations. Analogously, for s > 1, the right reordering and the validity of ex-

pansion are guaranteed globally on the spectrum, requiring the monotonicity of every eigenvalue

functions and the empty intersection of the ranges two eigenvalue function λ(j)(f) and λ(k)(f),

for every pair of indices j, k ∈ {1, . . . , s} such that j 6= k. If the global condition is violated, it

is, however, possible to recover the asymptotic expansion for the portion of spectrum associated

to those eigenvalue functions which verify locally both the non-intersection and monotonicity

conditions.

The asymptotic spectral expansion becomes a potential tool for the computation of the

spectrum of di�erential operators. In Chapter IV we perform a detailed spectral analysis of

the matrices n−1K
[p]
n , nM

[p]
n , n−2L

[p]
n .

In particular for p ≥ 3, we provide numerical evidence of a precise asymptotic expansion for

the eigenvalues, except for the largest nout
p = n−mod(p, 2) outliers, of n−2L

[p]
n .

In addition, for p = 1 and p = 2, we compute the exact eigenvalues and eigenvectors of K
[p]
n ,

M
[p]
n , and L

[p]
n . In both cases of p, the eigenvalues are given respectively by fp(θj,n), gp(θj,n),

and ep(θj,n), for j = 1, . . . , n+p−2, θj,n = jπ/n, where fp(θ), gp(θ), and ep(θ) are the functions

that spectrally describe the sequences {n−1K
[p]
n }n, {nM [p]

n }n, and {n−2L
[p]
n }n, respectively [77,

Section 10.7]. The exact computation is made possible since the matrices K
[p]
n , M

[p]
n , L

[p]
n belong

to the same matrix algebra. By using tensor-product arguments we can also present a detailed

extension of the whole analysis to the general k-dimensional setting.

We show indeed that the eigenvalue�eigenvector structure of the matrix arising from the IgA

approximation of the 1D problem




−u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = 0,
(3)

completely determines the eigenvalue�eigenvector structure of the matrix L
[p]
n in the k-dimensional

setting.

The exact formulae for the eigenvalues are also presented inChapter V for the scaled matrix

sequences, {M (p)
n }n, {K(p)

n }n and {L(p)
n }n = {(M (p)

n )−1K
(p)
n }n, coming from order p Lagrangian

Finite Element approximations of a second order elliptic di�erential problem. The algorithm

that exactly computes the spectrum of the mass M
(p)
n , sti�ness K

(p)
n and L

(p)
n is based on a

proper evaluation of the spectral symbols g, f and r on the correct grid.
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Chapters III, IV, V are completed from the computational viewpoint by delivering fast

(and parallel) interpolation�extrapolation algorithms for computing the eigenvalues of Items 1,

2, 3.

In all the treated cases the resulting algorithms can be interpretated as eigensolvers that do

not need to store either the coe�cients of the matrices or perform matrix-vector products, and

for this reason they have been recently de�ned matrix-less solvers [57].

We present and critically analyze many numerical examples. On one hand this has the

purpose to validate and numerically con�rm the proposed theoretical and algorithmic results.

On the other hand we show how to manipulate many examples of practical interest. For instance

we show how to bypass the monotone condition in few special cases and how to reduce a block

problem to few, separate, and simpler scalar problems.

The last sections will be dedicated to illustrate few topics for future research related to the

themes of the present thesis. The plan in mind is that of continue providing and analyzing

methods in order to deal with the most general classes of structured matrix sequences and PDE

discretizations.

Concerning this direction the �rst step regards a feasible extension of the proposed matrix-

less eigensolvers to multilevel contexts, in cases where a tensor product argument cannot be

exploited. Here the principal open question concerns the formalization, in both scalar or block

case, of the asymptotic spectral expansion for k-level matrices, that in turn depends on the lack

of the monotonicity concept for a k variate symbol.

In the following we brie�y describe the contents of the upcoming Chapters I-V and of the

Chapter VI of the technical results.

� In Chapter I we set the notation used throughout the thesis and we provide the funda-

mental background that is necessary for understanding the subsequent chapters.

In particular: the de�nitions and the main properties of Toeplitz, circulant and GLT

sequences in the most general block k-level form, the notion of spectral [singular value]

distribution, and the preliminary version of the asymptotic spectral expansion. Moreover

we brie�y recall the basic ideas which represent the minimal tools for understanding the

multigrid and preconditioned conjugate gradient methods.

� In Chapter II we are interested in e�ciently solving the large linear systems arising

from the discretization of the two�dimensional incompressible Navier-Stokes equations by

Discontinuous Galerkin methods on staggered meshes. These novel family of high order

semi-implicit schemes are analyzed for the �rst time with GLT techniques. We show

that the coe�cient matrix sequence has a multilevel block Toeplitz structure plus a low

rank corrections. The results are then used for deducing spectral informations on outliers,

conditioning and asymptotic behaviour of the extremal eigenvalues. In turn all of them are

of interest for numeric and algorithmic purposes: making use of the resulting asymptotic

spectral information, we design speci�c preconditioned Krylov and two grids method for

the e�cient resolution of the associated linear systems. We obtain that the use of PCG

method with circulant Strang preconditioner cannot ensure the superlinear convergence,
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Introduction and motivation

as it is known from [98, 124, 129], conversely an e�cient approach is represented by the

block multilevel two grids procedure, that guarantees convergence and optimality in terms

of iterations and global e�ciency.

� Chapter III is devoted to present the asymptotic spectral expansion for the eigenvalues

of preconditioned Toeplitz matrices Pn(f, g) = T−1
n (g)Tn(f). We consider the case where

f is a trigonometric polynomial, g is a nonnegative and not identically zero trigonometric

polynomial. We provide numerical evidence that few assumptions of [16, 17, 19] can be

relaxed, accompanied by an appropriate error analysis and numerical experiments. More-

over we devise an algorithm that compute an accurate approximation of the eigenvalues

of Pn(f, g) for very large n, having the eigenvalues of Pni(f, g), for moderate values of ni,

i = 1, . . . , α, where α is a �xed small number.

� in Chapter IV we consider the B-spline IgA approximation of the Laplacian eigenvalue

problem −∆u = λu over the k-dimensional hypercube (0, 1)k. We provide the exact

eigenvalue�eigenvector structure of the resulting discretization matrices L
[p]
n , L

[p]
n , and L

[p]
n ,

for p = 1, 2.

For p ≥ 3, based on the asymptotic spectral expansion, we propose a parallel interpolation�

extrapolation algorithm for computing the eigenvalues of L
[p]
n , excluding the largest nout

p =

p−2+mod(p, 2) outliers. The performance of the algorithm is illustrated through numerical

experiments. We end the chapter with a detailed extension of the whole analysis to the

general k-dimensional setting. By using tensor-product arguments, we show that the

eigenvalue�eigenvector structure of the matrix arising from the IgA approximation in one

dimension is enough to cover also the multidimensional case.

� In Chapter V we focus on the generalization of the results of Chapters III-IV under

the assumptions that f is a s× s matrix-valued trigonometric polynomial with s ≥ 1, and

Tn(f) is the associated block Toeplitz matrix, whose size is N(n, s) = sn.

First we numerically derive conditions which ensure the existence of an asymptotic expan-

sion for the eigenvalues, generalizing those for the scalar-valued setting s = 1. Further-

more, following the proposal for s = 1 in the previous chapters, we devise an interpolation�

extrapolation algorithm for computing the eigenvalues of banded symmetric block Toeplitz

matrices, with a high level of accuracy and a low computational cost, and we present several

examples of practical interest. Furthermore we provide exact formulae for the eigenvalues

of the matrices coming from the Qp Lagrangian Finite Element approximation of a second

order elliptic di�erential problem and the preconditioned block matrices coming from the

classical Lagrangian Finite Element approximation of the classical eigenvalue problem for

the Laplacian operator in one dimension.

� The Chapter VI contains the additional theoretical results and speci�cations related to

the contents in the thesis: it is divided in seven sections where di�erent topics are treated.

The choice of collecting them together in the end, instead near the respective chapters, is

made in order to make the text more readable, without the interruption, e.g., of the long

derivations represented by the proof of the theorems.
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The results will be anyway referred through the thesis. Among them we present the proof

of the �rst order asymptotic term of the expansion for the three Items in 1, 2, 3. We

show several theoretical results regarding ep(θ), the symbol of the normalized sequence

{n−2L
[p]
n }n of Chapter IV, such as the proof of a convergence result and of its monotone

increasing behaviour. As observed before, in connection with Chapters III, IV, V, the

monotonicity of the symbol is crucial for the asymptotic eigenvalue expansions and for the

proper e�cient behavior of our algorithms.

All our principal �ndings are summarized in the conclusion chapter.

The results of our research have been published or are in the process of publication in

[1, 55, 58, 59, 60, 67].

We stress that the Chapters II, III, IV, V faithfully report the contents of the papers

[1, 55, 58, 60] respectively. However, in order to avoid possible repetitions and to make the

readability of the whole thesis as �uent as possible, in the next chapters some minimal changes

are performed with respect to [1, 55, 58, 60]. For example, we use the uni�ed notation stemming

from Chapter I, the order of the sections is sometimes inverted, and we introduce additional

observations and examples, which are not present in the papers, but which help to illustrate and

explain better the treated topics.

xii



Chapter I

De�nitions and known results

The following chapter is devoted to set the notation and to introduce the de�nitions and few

known results adopted throughout all chapters. In particular, after basic notions of numerical

linear algebra, we present the multi-index notation, that will be largely used throughout the

whole thesis. Moreover we provide the formulation of the most general multilevel block form of

Toeplitz and circulant matrices and their main algebraic, structural, and spectral properties.

We introduce the concept of spectral/singular value distribution, we show key results on the

extremal eigenvalues of Hermitian Block Toeplitz sequences, and we brie�y describe the main

properties of the GLT class, which can be seen as a variable coe�cient generalization of the

Toeplitz notion.

Starting from basic features of trigonometric polynomials, we focus our attention on the

special case of Toeplitz matrices having a trigonometric polynomial as generating function. In

particular, a preliminary asymptotic expansion in terms of the �neness parameter related to the

matrix size is also presented for the scalar non-preconditioned case.

The chapter ends recalling advanced methods for solving linear systems, including precon-

ditioning strategies to be used in connection, e.g., with Krylov solvers and multigrid methods

tailored for Toeplitz structures.

I.1 General notation

� Rm×n (Cm×n) is the space of real (complex) m× n matrices.

� If x = [x1, . . . , xn] ∈ Cn is a vector,

� xT denote the transpose of x;

� x∗ denote the conjugate transpose of x;

� If A = [aij ]
n
i,j=1 ∈ Cn×n,

� AT denote the transpose of A;

� A∗ denote the conjugate transpose of A;

� rank(A) is the rank of A;

� det(A) is the determinant of A;

1



Chapter I. De�nitions and known results

� λj(A), j = 1, . . . , n, (σj(A), j = 1, . . . , n ) are the eigenvalues [singular values] of A;

If not speci�ed di�erently, we assume σ1(A) ≤ σ2(A) ≤ · · · ≤ σn(A);

� Λ(A) = {λ1(A), . . . , λn(A)} is the spectrum of A;

� Given 1 ≤ p ≤ ∞, ‖A‖p denotes the Schatten p-norm of A, which is de�ned as the

p-norm of the vector of the singular values [σ1(A), . . . , σn(A)]. The Schatten 1-norm

is also called the trace-norm and the Schatten∞-norm ‖A‖∞ = σn(A) is the classical

induced Euclidean norm (or spectral norm) and it is also denoted by ‖A‖.
� κ(A) is the condition number of an invertible matrix A de�ned as the quantity

κ(A) = ‖A‖‖A−1‖ (≥ ‖AA−1‖ = 1).

In particular, if in addition A is normal,

κ(A) = ‖A‖‖A−1‖ =
σmax(A)

σmin(A)
=

maxj |λj(A)|
minj |λj(A)| .

� If A, B ∈ Cn×n,

� A ∼ B means that A is similar to B, that is there exists an invertible matrix P such

that B = P−1AP ;

� A ≥ B if A and B are Hermitian and A − B is Hermitian Positive SemiDe�nite

(HPSD);

� A > B if A and B are Hermitian and A−B is Hermitian Positive De�nite (HPD);

� if A ∈ Cn×n is HPD, ‖ · ‖A = ‖A1/2 · ‖2 denotes the Euclidean norm weighted by A on Cn

and the associated induced matrix norm.

� Om and Im are the m×m zero matrix and identity matrix, respectively.

� ei denote the ith vector of the canonical basis of Rk.

� µk denotes the Lebesgue measure in Rk.

� ι is the imaginary unit, that is ι2 = −1.

� If A,B are matrices of any size, say A ∈ Cm1×m2 and B ∈ Cl1×l2 , the tensor (Kronecker)
product of A and B is the m1l1 ×m2l2 matrix de�ned by

A⊗B = [aijB]i=1,...,m1 , j=1,...,m2 =




a11B . . . a1m2B

a21B . . . a2m2B
...

. . .
...

am11B . . . am1m2B



.

� If D is a measurable subset of Rk, we de�ne

� Lp(D) the space of measurable functions f : D → C such that
∫

D
|f |p <∞, 1 ≤ p <∞;
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I.2. Multi-index notation

� L∞(D) the space of measurable functions f : D → C such that

ess supD|f | <∞.

� Given f ∈ Lp(D), we write ‖f‖p to indicate the Lp-norm of f , that is

‖f‖p =





(∫
D |f |p

)1/p
, if 1 ≤ p <∞,

ess supD|f |, if p =∞.

� We denote by Ik the k-dimensional cube [−π, π]k and by Lp(k, s) the linear space of

k-variate matrix-valued functions f : Ik → Cs×s, f ∈ Lp(Ik). We remark that a matrix-

valued function f belongs to Lp(D) (resp. is measurable, continuous, bounded, etc.) if

all its components fij : D → C, i, j = 1, . . . , s, belong to Lp(C) (resp. are measurable,

continuous, bounded, etc.).

� Given a function f ∈ Lp(k, s), we de�ne

‖f‖p =





(∫ π
−π ‖f(x)‖pp dx

)1/p
, if 1 ≤ p <∞,

ess supx∈[−π,π]‖f(x)‖∞, if p =∞.

� Given a function f ∈ Lp(k, s), we denote by λ(i)(f) [resp. σ(i)(f)], i = 1, . . . , s, the

eigenvalue [resp. singular value] functions of f and by
(
λ(i)(f)

)
(θ) [resp.

(
σ(i)(f)

)
(θ)],

i = 1, . . . , s, their evaluation at a point θ ∈ Ik.

� If z ∈ C and ε > 0, we denote by D(z, ε) = {ω ∈ C : |ω − z| < ε} the disk centered at z

and with radius ε. If S ⊆ C, D(S, ε) = ∪z∈SD(z, ε) denotes the ε−expansion of S.

I.2 Multi-index notation

We introduce the multi-index notation that will be systematically used throughout the thesis.

A vector i = (i1, i2, . . . , ik) ∈ Zk is called a k-index (or simply a multi-index). For a more

detailed description see [76].

� 0, e, 2,. . . are respectively the multi-indices of all zeros, all ones, all twos, . . . and their

size will be clear from the context.

� For all m = (m1,m2, . . . ,mk) ∈ Zk we set N(m) = m1m2 . . .mk and we write m→∞ to

indicate that all the components of m tend to in�nity, i.e. mini=1,...,kmi →∞.

� For all h, m ∈ Zk, h ≤m means hi ≤ mi, ∀ i = 1, . . . , k.

� If h, m ∈ Zk are such that h ≤m, the multi-index range h, . . . ,m is the set

{j ∈ Zk : h ≤ j ≤m}.

� When a k-index j varies over a multi-index range h, . . . ,m (and we write j = h, . . . ,m)

it is understood that j varies from h to m following the standard lexicographic ordering.

Note that h, . . . ,m consists of N(m-h+e) k-indices.

3



Chapter I. De�nitions and known results

� All the algebraic operations involving k-indices that have no meaning in the space Zk

must always be interpreted in the componentwise sense: ij = (i1j1, . . . , ikjk), αi/j =

(αi1/j1, . . . , αik/jk), for all α ∈ C and all j1, . . . , jk 6= 0, i mod j = (i1 mod j1, . . . , ik

mod jk), max(i, j) = (max(i1, j1), . . . ,max(ik, jk)), and so on.

� Given h,m ∈ Zk, with h ≤ m, the notation
∑m

j=h indicates the summation over all

multi-indices j = h, . . . ,m.

� If m ∈ Nk then
x = [xi]

m
i=e

is a vector of size N(m) whose components xi, i = e, . . . ,m are sorted in accordance with

the lexicographic ordering. Similarly

X = [xij]
m
i,j=e

is the N(m)×N(m) matrix whose components are indexed by two k-indices, both varying

in e, . . . ,m according the lexicographic ordering.

Example

Let A be the matrix

A =




4 4 0 0

4 4 0 0

0 0 1 1

0 0 2 2


 . (I.1)

Instead of using the traditional linear indices i, j = 1, . . . , 4, we can index the entries of A

by means of two multi-indices i, j = e, . . . ,2. Thus, instead of [Aij ]
4
i,j=1, we have [Aij]

2
i,j=e.

The indexing of the entries of A with two multi-indices i, j re�ects the fact that we are

thinking at the matrix A as a block matrix as (I.1): for all i, j = e, . . . ,2 the entry Aij is

the (i2, j2) entry of the (i1, j1) block of A.

Throughout the thesis we indicate by {An}n∈Nk , or simply {An}n, the matrix sequence

whose elements are the matrices An of dimensions N(n, s)×N(n, s), with N(n, s) = sN(n) =

sn1n2 . . . nk, n = (n1, n2, . . . , nk).

I.3 Spectral distribution of matrix sequences

In this section we �rst introduce the concept of spectral/singular value distribution of generic

matrix sequence {An}n∈Nv , v ≥ 1 (whose dimension, N ≡ N(n, s), has to be a monotonic func-

tion with respect to every single variable ni, i = 1, . . . , v). Secondly we provide the formulation

of Toeplitz and circulant matrix sequences in the most general block k-level form, recalling their

main algebraic and spectral properties. In particular special attention is dedicated to the lo-

calization results and to the asymptotic behaviour of the extremal eigenvalues of the Hermitian

Block Toeplitz sequences.
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I.3. Spectral distribution of matrix sequences

De�nition I.3.1 (clustering of a matrix-sequence). Let S ⊆ C be a nonempty subset of

C. Let {An}n∈Nv , v ≥ 1, be a sequence of matrices with eigenvalues λj(An), j = 1, . . . , N and

singular values σj(An), j = 1, . . . , N .

� We say that {An}n∈Nv is strongly clustered at S (in the sense of the eigenvalues), or

equivalently that the eigenvalues of {An}n∈Nv are strongly clustered at S, if, for every ε > 0,

the number of eigenvalues of An outside D(S, ε) is bounded by a constant Cε independent

of n. In other words, for every ε > 0 we have

#{j ∈ {1, . . . , N} : λj(An) /∈ D(S, ε)} = O(1) as n→∞. (I.2)

� We say that {An}n∈Nv is weakly clustered at S (in the sense of the eigenvalues), or equiv-

alently that the eigenvalues of {An}n∈Nv are weakly clustered at S, if, for every ε > 0,

#{j ∈ {1, . . . , N} : λj(An) /∈ D(S, ε)} = o(N) as n→∞. (I.3)

By replacing �eigenvalues� with �singular values� and λj(An) with σj(An) in (I.2)�(I.3), we

obtain the de�nitions of a matrix-sequence strongly or weakly clustered at S in the sense of the

singular values.

When we write strong/weak cluster, matrix-sequence strongly/weakly clustered, etc., with-

out further speci�cations, it is understood �in the sense of the eigenvalues�.

De�nition I.3.2. [essential range of a complex-valued function]. Let f : D ⊂ R` → C,
` ≥ 1, be a measurable complex-valued function de�ned on a measurable set with 0 < µ`(D) <∞.

The essential range of f is denoted by ER(f) and is de�ned as the set of points z ∈ C such that,

for every ε > 0, the measure of the set {f(θ) ∈ D(z, ε)} is positive. In other words,

ER(f) = {z ∈ C : µ`{f(θ) ∈ D(z, ε)} > 0 for all ε > 0}.

De�nition I.3.3. [essential range of a matrix-valued function]. Let f : D ⊂ R` → Cs×s,
` ≥ 1, be a measurable matrix-valued function de�ned on a measurable set with 0 < µ`(D) <∞.

The essential range of f is denoted by ER(f) and is de�ned as the union of the essential ranges

of the eigenvalue functions of f, λ(i)(f) : D → C, i = 1, . . . , s. In other words,

ER(f) = ∪si=1ER(λ(i)(f)).

De�nition I.3.4. [spectral/singular value distribution]. Let f : G→ Cs×s be a measurable

function, de�ned on a measurable set G ⊂ R` with ` ≥ 1, 0 < µ`(G) < ∞. Let C0(K) be the

set of continuous functions with compact support over K ∈ {C,R+
0 } and let {An}n∈Nv , v ≥ 1,

be a sequence of matrices with eigenvalues λj(An), j = 1, . . . , N and singular values σj(An),

j = 1, . . . , N .

� {An}n∈Nv is distributed as the pair (f, G) in the sense of the eigenvalues, in symbols

{An}n∈Nv ∼λ (f, G),

if the following limit relation holds for all F ∈ C0(C):

lim
n→∞

1

N

N∑

j=1

F (λj(An)) =
1

µ`(G)

∫

G

∑s
i=1 F

((
λ(i)(f)

)
(θ)

)

s
dθ. (I.4)

5



Chapter I. De�nitions and known results

� {An}n∈Nv is distributed as the pair (f, G) in the sense of the singular values, in symbols

{An}n∈Nv ∼σ (f, G),

if the following limit relation holds for all F ∈ C0(R+
0 ):

lim
n→∞

1

N

N∑

j=1

F (σj(An)) =
1

µ`(G)

∫

G

∑s
i=1 F

((
σ(i)(f)

)
(θ)

)

s
dθ. (I.5)

In this setting the expression n→∞ means that every component of the vector n tends to

in�nity, that is, mini=1,...,v ni →∞.

Remark 1. Denote by λ(1)(f), . . . , λ(s)(f) and by σ(1)(f), . . . , σ(s)(f) the eigenvalues and the

singular values of a s × s matrix-valued function f, respectively. If f is smooth enough, an

informal interpretation of the limit relation (I.4) (resp. (I.5)) is that when the matrix-size of An

is su�ciently large, then N/s eigenvalues (resp. singular values) of An can be approximated by

a sampling of λ(1)(f) (resp. σ(1)(f)) on a uniform equispaced grid of the domain G, and so on

until the last N/s eigenvalues (resp. singular values) which can be approximated by an equispaced

sampling of λ(s)(f) (resp. σ(s)(f)) in the domain.

For example, take G any domain as in De�nition I.3.4 and let F = χ[a,b](·) for a �xed real

interval [a, b] such that

µ`

{
θ ∈ G :

(
λ(r)(f)

)
(θ) = a

}
= µ`

{
θ ∈ G :

(
λ(r)(f)

)
(θ) = b

}
= 0 (I.6)

for every r = 1, . . . , s. Note that F = χ[a,b](·) is a discontinuous function, but, under the

assumptions in (I.6), the limit relation (I.4) still holds. The argument of the proof relies in

choosing two families of continuous approximations {F−δ }δ, {F+
δ }δ of χ[a,b] such that F+

δ <

χ[a,b] < F+
δ (see [117] for more details). If we de�ne

mr = essinfG

(
λ(r)(f)

)
(θ), Mr = esssupG

(
λ(r)(f)

)
(θ), r = 1, . . . , s,

when F = χ[mr,Mr](·), then equation (I.4) becomes

lim
n→∞

1

N

N∑

j=1

χ[mr,Mr] (λj(An)) =
1

sµ`(G)

∫

G

s∑

i=1

χ[mr,Mr]

((
λ(i)(f)

)
(θ)

)
dθ, (I.7)

and hence

lim
N→∞

1

N
# {j : λj(An) ∈ [mr,Mr]} =

1

sµ`(G)

s∑

i=1

µ`

{
θ ∈ G :

(
λ(i)(f)

)
(θ) ∈ [mr,Mr]

}
.

(I.8)

Moreover, if

esssupG

(
λ(r)(f)

)
(θ) ≤ essinfG

(
λ(r+1)(f)

)
(θ), r = 1, . . . , s− 1,
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and

µ`

{
θ ∈ G :

(
λ(r)(f)

)
(θ) = c

}
= 0, ∀c ∈ R, r = 1, . . . , s− 1,

then equation (I.8) in turn becomes

lim
n→∞

1

N
# {j : λj(An) ∈ [mr,Mr]} =

1

sµ`(G)
µ`

{
θ ∈ G :

(
λ(r)(f)

)
(θ) ∈ [mr,Mr]

}
=

1

s

which means that

# {j : λj(An) ∈ [mr,Mr]} =
N

s
+ o(N).

I.4 Toeplitz structures

Toeplitz matrices represent an important and very active topic introduced more than one hun-

dred years ago in the original papers by O. Toeplitz [143, 144]. The treated Toeplitz matrices

derive mostly from the approximation of di�erential equations, but, in general, they can be found

in many applications: they arise, for example, also from structured Markov chains [15], signal

and image processing problems with space invariant nature [46, 82] and �nancial applications

[110].

In the following, we provide the formulation of the most general multilevel block form of

Toeplitz matrix. We start from the simplest concept in the scalar setting and we generalize the

de�nitions, achieving the case of multilevel block Toeplitz matrix generated by a matrix-valued

function f.

I.4.1 Scalar Toeplitz matrices

A matrix of order n, having a �xed entry along each diagonal, is called Toeplitz and enjoys the

expression

An = [ai−j ]
n
i,j=1 =




a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2

...
. . .

. . .
. . . a−1

an−1 · · · · · · a2 a1 a0




.

An interesting case of Toeplitz matrix is given by Tn(f) ∈ Cn×n, that is associated with a

scalar valued function f ∈ L1(1, 1), de�ned on [−π, π] and periodically extended on the whole

real line. Such a matrix Tn(f) is de�ned via the Fourier series of f

f(θ) =

∞∑

k=−∞
f̂ke

ιkθ,

and has the following expression,

Tn(f) =
[
f̂i−j

]n
i,j=1

,
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Chapter I. De�nitions and known results

where the quantities f̂k

f̂k =
1

2π

∫ π

−π
f(θ) e−ιkθdθ, k ∈ Z,

are the Fourier coe�cients of f .

If n is varying in N, we obtain a matrix sequence {Tn(f)}n, consisting of Toeplitz matrices

of increasing size.

We refer to {Tn(f)}n as the Toeplitz sequence generated by f , which in turn is called the

generating function of {Tn(f)}n.
There are many properties of Tn(f) that follow by direct computation from assumptions on

f . In the following, we report those that will be used in next chapters [31, 96].

1. If f is complex-valued, then Tn(f) is non-Hermitian for all su�ciently large n. Conversely,

if f is real-valued, then Tn(f) is Hermitian for all n.

2. If f is real-valued, nonnegative and not identically zero almost everywhere, then Tn(f) is

HPD for all n.

3. If f is even, f(θ) = f(−θ), Tn(f) is symmetric for all n. Thus, from property one, if f is

real-valued and even, Tn(f) is real and symmetric for all n.

I.4.2 Block and multilevel block Toeplitz matrices

The following Subsection is devoted to the generalization of the concept of scalar Toeplitz matrix.

In general the entries ak of the matrix An = [ai−j ]
n
i,j=1 can be matrices themselves. If the

dimensions of the blocks are s× s, s > 1, the resulting matrix is the block Toeplitz matrix An,

where the bold points out the following block structure of the matrix

An = [Ai−j ]
n
i,j=1 =




A0 A−1 A−2 · · · · · · A−(n−1)

A1
. . .

. . .
. . .

...

A2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . A−2

...
. . .

. . .
. . . A−1

An−1 · · · · · · A2 A1 A0




,

whereA−(n−1), . . . , An−1 ∈ Cs×s are the �block� generalization of a−(n−1), . . . , an−1 of the setting

s = 1. Note that now the size of An is N = N(n, s) = sn.

Following the scalar case, we can de�ne particular block (resp. k-level block) Toeplitz ma-

trices Tn(f) starting from matrix-valued (resp. k-variate matrix-valued) function f ∈ L1(1, s)

(resp. f ∈ L1(k, s)). For the block settings we will write the function f (and corresponding

Fourier coe�cients) in bold.

De�nition I.4.1. Let the Fourier coe�cients of a given function f ∈ L1(k, s) be de�ned as

f̂j :=
1

(2π)k

∫

Ik
f(θ)e−ι〈j,θ〉 dθ ∈ Cs×s, j = (j1, . . . , jk) ∈ Zk, ι2 = −1, (I.9)

8
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where 〈j,θ〉 =
∑k

t=1 jtθt and the integrals in (I.9) are computed componentwise.

Then, the nth Toeplitz matrix associated with f is the matrix of order N(n, s) = sn1n2 . . . nk

given by

Tn(f) =

n−e∑

j=−(n−e)

J j1n1
⊗ · · · ⊗ J jknk ⊗ f̂j. (I.10)

where e = (1, . . . , 1) ∈ Nk, j = (j1, . . . , jk) ∈ Nk and J
jξ
nξ is the nξ × nξ matrix whose (i, h)th

entry equals 1 if (i− h) = jξ and 0 otherwise.

The set {Tn(f)}n (with n ∈ Nk) is called the family of k-level Toeplitz matrices generated by f,

that in turn is referred to as the generating function or the symbol of {Tn(f)}n.

I.4.3 Spectral analysis of Hermitian block Toeplitz sequences: distribution

results

The singular value and spectral distribution of Toeplitz matrix sequences has been of interest

over the past few decades.

The representation of the spectral distribution of Toeplitz sequences in terms of a function

(i.e. the symbol) was performed by Szeg®, Tyrtyshnikov and Zamarashkin, Tilli see, e.g., [81,

140, 146].

The earliest result on the eigenvalue distribution of Toeplitz matrices was established by

Szeg® in [81], proving that the eigenvalues of the Toeplitz matrix Tn(f) generated by a real-

valued f ∈ L∞([−π, π]) are asymptotically distributed as f .

Zamarashkin and Tyrtyshnikov [152], and Tilli [140] further weakened the requirement on f

and showed that the same result holds for f ∈ L1([−π, π]).

The work of Tilli [141] produced a key contribution, by allowing the concept of smoothly

varying diagonals and so allowing to treat the approximation of one-variable di�erential operators

with variable coe�cients.

Based on an approximation class sequence approach, Garoni, Serra-Capizzano, and Vassalos

[79] provided the same theorem for f ∈ L1([−π, π]) in the framework of the newly developed

theory of Generalized Locally Toeplitz (GLT) sequences [77].

In the following we illustrate the result concerning the spectral distribution of Toeplitz se-

quences under the hypothesis of f being a real-valued function.

Theorem I.4.1 ([81]). Let f ∈ L1(k, 1) be a real-valued function with k ≥ 1. Then,

{Tn(f)}n∈Nk ∼λ (f, Ik).

In the case where f is a Hermitian matrix-valued function, according to Tilli [140], the

previous theorem can be extended as follows:

Theorem I.4.2 ([140]). Let f ∈ L1(k, s) be a Hermitian matrix-valued function with k ≥ 1, s ≥
2. Then,

{Tn(f)}n∈Nk ∼λ (f, Ik).

9
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Remark 2. If {Tn(f)}n∈Nk is such that each Tn(f) is symmetric with symmetric and real blocks,

then the symbol has the additional property that f(±θ1, . . . ,±θk) ≡ f(θ1, . . . , θk), ∀(θ1, . . . , θk) ∈
I+
k = [0, π]k and therefore Theorem I.4.2 can be rephrased as

{Tn(f)}n∈Nk ∼λ (f, I+
k ).

In the Toeplitz setting, when f is a k-variate polynomial, the quantity o(N) of Remark

1 becomes proportional to N1− 1
k , with constant proportional to s and to the degree of the

polynomial.

I.4.4 Spectral analysis of Hermitian block Toeplitz sequences: extremal eigen-

values

Concerning the localization and the extremal behaviour of the spectra of Toeplitz sequences

there is a lot of work in the last 80 years culminated with the works of Böttcher, Grudsky, and

Serra-Capizzano [18, 115, 117, 119, 121]. More precisely, if f is a real-valued function, then we

have the following result.

Theorem I.4.3 ([18, 119]). Let f ∈ L1(k, 1) be a real-valued function with k ≥ 1. Let m be the

essential in�mum of f and M be the essential supremum of f .

1. If m = M then f = m a.e. and Tn(f) coincides with m times the identity of order N(n).

2. If m < M then all the eigenvalues of Tn(f) belong to the open set (m,M) for every n ∈ Nk.

3. If m = 0 and θ̃ is the unique zero of f such that there exist positive constants c, C, α for

which

c‖θ − θ̃‖α ≤ f(θ) ≤ C‖θ − θ̃‖α,
then the minimal eigenvalue of Tn(f) goes to zero as (N(n))−α/k.

In the case where f is a Hermitian matrix-valued function, according to the analysis in

[117, 121], the previous theorem can be extended as follows:

Theorem I.4.4 ([117, 121]). Let f ∈ L1(k, s) be a Hermitian matrix-valued function with k ≥
1, s ≥ 2. Let m1 be the essential in�mum of the minimal eigenvalue of f, M1 be the essential

supremum of the minimal eigenvalue of f, ms be the essential in�mum of the maximal eigenvalue

of f, and Ms be the essential supremum of the maximal eigenvalue of f.

1. If m1 = Ms then f is the constant m1Is a.e. and Tn(f) coincides with m1 times the identity

of size N(n, s) = sn1n2 . . . nk.

2. If m1 < M1 then all the eigenvalues of Tn(f) belong to the open set (m1,Ms] for every

n ∈ Nk. If ms < Ms then all the eigenvalues of Tn(f) belong to the open set [m1,Ms) for

every n ∈ Nk.

3. If m1 = 0 and θ̃ is the unique zero of λ(min)(f) such that there exist positive constants

c, C, α for which

c‖θ − θ̃‖α ≤ λ(min)(f(θ)) ≤ C‖θ − θ̃‖α,
then the minimal eigenvalue of Tn(f) goes to zero as (N(n))−α/k.

10
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I.5 Trigonometric polynomials and banded Toeplitz matrices

In the current section we recall the de�nitions and the principal properties of a k-variate matrix-

valued trigonometric polynomial and we concentrate on the special case of Toeplitz sequences,

having a trigonometric polynomial as generating function.

In the next chapters we deal with generating functions of various nature. We recall that

� depending on whether the dimension of the domain Ik is k = 1 or k > 1 we deal with an

univariate or a multivariate trigonometric polynomial, respectively;

� depending on whether s = 1 or s > 1 in the codomain Cs×s we deal with a scalar valued

or a matrix-valued trigonometric polynomial, respectively.

The polynomials treated in the thesis will be multivariate and matrix-valued (in Chapter II),

univariate and scalar (in Chapters III, IV), and univariate and matrix-valued (in Chapter

V). Thus we recall the de�nitions of all the possible four con�gurations, that are:

� univariate and scalar;

� univariate and matrix-valued;

� multivariate and scalar;

� multivariate and matrix-valued.

De�nition I.5.1. [univariate and scalar] A scalar univariate trigonometric polynomial is a

function f : I1 → C that can be written as a �nite linear combination of the Fourier frequencies

{eιjθ : j ∈ Z}. Note that f(θ) has a �nite number of nonzero Fourier coe�cients f̂j. The degree

of f is a positive integer r de�ned as

r = max{|j| : f̂j 6= 0, j ∈ Z}.

Hence f can be written as the Fourier sum

f(θ) =

r∑

j=−r
f̂je

ιjθ.

We say that f is a real-valued cosine trigonometric polynomial (RCTP), if f is the following

scalar univariate trigonometric polynomial of degree r.

f(θ) = f̂0 + 2
r∑

l=1

f̂l cos(lθ), f̂0, f̂1, . . . , f̂r ∈ R.

In the following, every time we deal with cosine trigonometric polynomial, we can replace, using

Remark 2, the interval I1 with I+
1 .

11
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The properties of Toeplitz matrices in Section I.4.1 imply that the nth Toeplitz matrix

generated by f is the banded real symmetric matrix given by

Tn(f) =




f̂0 f̂1 · · · f̂r

f̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

f̂r
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

f̂r · · · f̂1 f̂0 f̂1 · · · f̂r
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . f̂r

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . f̂1

f̂r · · · f̂1 f̂0




.

Furthermore Tn(f) can be written as

Tn(f) = τn(f) +Hn(f), (I.11)

where, for ψ RCTP of degree r and orthogonal Q =
(√

2
n+1 sin

(
ijπ
n+1

))n
i,j=1

, τn(ψ) is the

following τ matrix [14] of size n generated by ψ

τn(ψ) = Q diag
1≤j≤n

(
ψ

(
jπ

n+ 1

))
Q, Q = QT = Q−1,

and Hn(ψ) is the Hankel matrix

Hn(φ) =




ψ̂2 ψ̂3 · · · ψ̂r

ψ̂3 . .
.

... . .
.

ψ̂r

ψ̂r

. .
. ...

. .
.

ψ̂3

ψ̂r · · · ψ̂3 ψ̂2




,

with rank(Hn(ψ)) ≤ 2(r − 1).

De�nition I.5.2. [univariate and matrix-valued ] A matrix-valued univariate trigonometric

polynomial is a function f : I1 → Cs×s, s > 1, written as a �nite linear combination of the

12
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Fourier frequencies {e−ιjθ : j ∈ Z} or, equivalently, for all l,m = 1, . . . , s, its (l,m)th component

flm : I1 → C is a scalar univariate trigonometric polynomial of degree rlm. The degree of f is a

positive integer r de�ned as

r = max
l=1,...,s
m=1,...,s

rlm.

Thus f can be written as the Fourier sum

f(θ) =

r∑

j=−r

f̂je
ιjθ.

We say that f is an Hermitian matrix-valued trigonometric polynomial (HTP) with Fourier

coe�cients f̂0, f̂1, . . . , f̂r ∈ Rs×s, if f is of the form

f(θ) =
r∑

l=−r

f̂le
ιlθ = f̂0 +

r∑

l=1

(
f̂le

ιlθ + f̂Tl e−ιlθ
)
, r = deg (f(θ)) ,

where we set

f̂−l = f̂Tl , l = 0, . . . , r. (I.12)

The assumptions on f(θ) imply that Tn(f) is the N(n, s)×N(n, s) block real banded symmetric

Toeplitz matrix with �block bandwidth� 2r + 1, of the form

Tn(f) =




f̂0 f̂T1 · · · f̂Tr

f̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

f̂r
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

f̂r · · · f̂1 f̂0 f̂T1 · · · f̂Tr
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . f̂Tr

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . f̂T1

f̂r · · · f̂1 f̂0




.

We remark that

Tn(f) = τN(n,s)(f) +HN(n,s)(f), (I.13)

where, for ψ (HTP) of degree r and orthogonal Q =
(√

2
n+1 sin

(
ijπ
n+1

))n
i,j=1

, τN(n,s)(ψ) is the

following τ matrix [14] of size N(n, s) generated by ψ

τN (ψ) = (Q⊗ Is) diag
1≤j≤n

(
ψ

(
jπ

n+ 1

))
(Q⊗ Is), Q = QT = Q−1,

13
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where HN(n,s)(ψ) is the Hankel matrix

HN(n,s)(ψ) =




ψ̂2 ψ̂3 · · · ψ̂r

ψ̂3 . .
.

... . .
.

ψ̂r

ψ̂r

. .
. ...

. .
.

ψ̂3

ψ̂r · · · ψ̂3 ψ̂2




,

with ν := ν(s, r) = rank(HN(n,s)(ψ)) ≤ 2s(r− 1).

De�nition I.5.3. [multivariate and scalar] A scalar multivariate trigonometric polynomial

is a function f : Ik → C, k > 1, written as a �nite linear combination of the Fourier frequencies

{e−ι〈j,θ〉 : j ∈ Zk}. The degree of f is a positive k-index r de�ned as

r = max{|j| : f̂j 6= 0, j ∈ Zk} = max
j=(j1,...,jk)∈Zk

{(|j1|, . . . , |jk|) : f̂j 6= 0}.

Thus f can be written as the Fourier sum

f(θ) =
r∑

j=−r
f̂je
〈j,θ〉.

We say that f is a multivariate real-valued cosine trigonometric polynomial (RCTP), if f is the

following scalar multivariate trigonometric polynomial of degree r.

f(θ) = f̂0 + 2
r∑

l=e

f̂l cos(〈l,θ〉), f̂0, . . . , f̂r ∈ R.

The generalization of the properties in Section I.4.1 to the multilevel context imply that the

N(n, 1)×N(n, 1) Toeplitz matrix generated by f is the real banded symmetric matrix given by

Tn(f) =

r−e∑

l=−(r−e)

(J l1n1
⊗ · · · ⊗ J lknk)f̂l. (I.14)

where J
lξ
nξ is de�ned as in formula (I.10).

De�nition I.5.4. [multivariate and matrix-valued] A matrix-valued multivariate trigono-

metric polynomial is a function f : Ik → Cs×s, k, s > 1, written as a �nite linear combination

of the Fourier frequencies {e−ι〈j,θ〉 : j ∈ Zk} or, equivalently, for all l,m = 1, . . . , s, its (l,m)th

component flm : Ik → C is a scalar multivariate trigonometric polynomial of degree rlm. The

degree of f is a positive k-index r de�ned as

r = max
l=1,...,s
m=1,...,s

rlm.

14
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Thus f can be written as the Fourier sum

f(θ) =
r∑

j=−r
f̂je
〈j,θ〉.

We say that f is an Hermitian matrix-valued multivariate trigonometric polynomial (HTP)

with Fourier coe�cients f̂0, . . . , f̂r ∈ Rs×s, if f is of the form

f(θ) = f̂0 +
r∑

l=e

(
f̂le

ι〈l,θ〉 + f̂l
T

e−ι〈l,θ〉
)
, r = deg (f(θ)) ,

where we set

f̂−l = f̂Tl , l = 0, . . . , r. (I.15)

The assumptions on f(θ) imply that the N(n, s)×N(n, s) Toeplitz matrix Tn(f) generated by

f is the multilevel block banded real and symmetric matrix given by

Tn(f) =
r−e∑

l=−(r−e)

(J l1n1
⊗ · · · ⊗ J lknk)⊗ f̂l. (I.16)

where J
lξ
nξ is de�ned as in formula (I.10).

I.6 Spectral analysis and computational features of block circu-

lant matrices

In this section we report key features of the (block) circulant matrices, also in connection with

the generating function.

De�nition I.6.1. Let the Fourier coe�cients of a given function f ∈ L1(k, s) be de�ned as in

formula (I.9).

Then, the nth circulant matrix associated with f is the matrix of order N(n, s) = sn1n2 . . . nk

given by

Cn(f) =

n−e∑

j=−(n−e)

Zj1n1
⊗ · · · ⊗ Zjknk ⊗ f̂j, (I.17)

where e = (1, . . . , 1) ∈ Nk, j = (j1, . . . , jk) ∈ Nk and Z
jξ
nξ is the nξ × nξ matrix whose (i, h)th

entry equals 1 if (i− h) mod nξ = jξ and 0 otherwise.

Theorem I.6.1 ([44]). Let f ∈ L1(k, 1) be a complex-valued function with k ≥ 1. Then, the

following Schur decomposition of Cn(f) is valid:

Cn(f) = FnDn(f)F ∗n, (I.18)

where

Dn(f) = diag
0≤r≤n−e

(Sn(f))
(
θ

(n)
r

)
, θ

(n)
r = 2π

r

n
, Fn =

1√
N(n)

(
e
−ι

〈
j,θ

(n)
r

〉)n−e

j,r=0

, (I.19)
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with
〈
j, θ

(n)
r

〉
=
∑k

t=1 2π jtrtnt . Here Sn(f)(·) is the nth Fourier sum of f given by

(Sn(f)) (θ) =

n1−1∑

j1=1−n1

· · ·
nk−1∑

jk=1−nk
f̂je

ι〈j,θ〉, 〈j,θ〉 =

k∑

t=1

jtθt. (I.20)

Here Fn is the k-level Fourier matrix, Fn = Fn1⊗· · ·⊗Fnk , and its columns are the eigenvectors

of Cn(f) with eigenvalues given by the evaluations of the nth Fourier sum Sn(f)(·) at the grid

points

θ
(n)
r = 2π

r

n
.

In the case where f is a Hermitian matrix-valued function, the previous theorem can be

extended as follows:

Theorem I.6.2 ([78]). Let f ∈ L1(k, s) be a matrix-valued function with k ≥ 1, s ≥ 2. Then,

the following block-Schur decomposition of Cn(f) is valid:

Cn(f) = (Fn ⊗ Is)Dn(f)(Fn ⊗ Is)∗, (I.21)

where

Dn(f) = diag
0≤r≤n−e

(Sn(f))
(
θ

(n)
r

)
, θ

(n)
r = 2π

r

n
, Fn =

1√
N(n)

(
e
−ι

〈
j,θ

(n)
r

〉)n−e

j,r=0

, (I.22)

with
〈
j, θ

(n)
r

〉
=
∑k

t=1 2π jtrtnt and Is the s × s identity matrix. Here Sn(f)(·) is the nth Fourier

sum of f given by

(Sn(f)) (θ) =

n1−1∑

j1=1−n1

· · ·
nk−1∑

jk=1−nk
f̂je

ι〈j,θ〉, 〈j,θ〉 =
k∑

t=1

jtθt. (I.23)

Here the eigenvalues of Cn(f) are given by the evaluations of λ(t)(Sn(f)), t = 1, . . . , s, at the grid

points

θ
(n)
r = 2π

r

n
.

De�nition I.6.2. We say that a continuous 2π-periodic function f belongs to the Dini-Lipschitz

class if its modulus of continuity evaluated at δ goes to zero faster than 1/| log(δ)|, that is

lim
δ→0+

log(δ)ωf(δ) = 0.

Remark 3. If f is a trigonometric polynomial of �xed degree (with respect to n), then it is

worth noticing that Sn(f)(·) = f(·) for n large enough: more precisely, every nj should be larger

than the double of the degree with respect to the jth variable. Therefore, in such a setting, the

eigenvalues of Cn(f) are either the evaluations of f at the grid points if s = 1 or the quantity

λt (f(·)), t = 1, . . . , s, evaluated at the very same grid points. It is worth noting that we write

λt (f(·)), instead of
(
λ(t)(f)

)
(·), pointing out that we �rst calculate the matrices

f
(
θ

(n)
r

)
, 0 ≤ r ≤ n− e,

and then their eigenvalues

λt

(
f
(
θ

(n)
r

))
, t = 1, . . . , s.

A more detailed discussion on the evaluation of the eigenvalue functions of a matrix-valued

symbol will treated in Subsections II.2.2.1, II.2.5, for k > 1, and Section V.3, for k = 1.
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Remark 4. Though the eigenvalues of any Cn(f) are explicitly known, results like Theorem I.4.1

and Theorem I.4.2 do not hold for sequences {Cn(f)}n∈Nk in full generality: this is due to the

fact that the Fourier sum of f converges to f under quite restrictive assumptions (see [154]).

In fact if f, belongs to the Dini-Lipschitz class, then {Cn(f)}n∈Nk ∼λ (f, Ik), simply because

Sn(f)(·) uniformly converges to f (see [64] for more relations between circulant sequences and

spectral distribution results).

We end this subsection by recalling the computational properties of (block) circulants. Every

matrix/vector operation with circulants has cost O(N(n) logN(n)) with moderate multiplicative

constants: in particular, this is true for the matrix-vector product, for the solution of a linear

system, for the computation of the blocks (Sn(f))
(
θ

(n)
r

)
and consequently of the eigenvalues

(see, e.g., [148]).

I.7 GLT sequences: operative features

We brie�y present the class of Generalized Locally Toeplitz (GLT) sequences and its operative

features, which will be the pivotal tools used in the next chapters (see the pioneering work [141]

by Tilli for describing the spectrum of one-dimensional di�erential operators and the general-

izations in [125, 126] by Serra-Capizzano for multivariate di�erential operators).

Going through the details of GLT class requires rather technical tools and is not within the

aims of this thesis, hence here we list some properties of the GLT class in their multilevel block

form (see [126]), which are su�cient to our purposes.

GLT1 Each GLT sequence has a singular value symbol f(x,θ) for (x,θ) ∈ [0, 1]k × [−π, π]k

according to the second Item in De�nition I.3.4 with ` = 2k. If the sequence is Hermitian,

then the distribution also holds in the eigenvalue sense. If {Gn}n has a GLT symbol f(x,θ)

we will write {Gn}n ∼glt f(x,θ).

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations,

products, inversion (whenever the symbol is singular, at most, in a set of zero Lebesgue

measure), conjugation. Hence, the sequence obtained via algebraic operations on a �nite

set of given GLT sequences is still a GLT sequence and its symbol is obtained by per-

forming the same algebraic manipulations on the corresponding symbols of the input GLT

sequences.

GLT3 Every Toeplitz sequence generated by an L1(k, s) function f = f(θ) is a GLT sequences

and its symbol is f, with the speci�cations reported in Item GLT1. We note that the

function f does not depend on the space variables x ∈ [0, 1]k.

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is a

GLT sequence with symbol 0 (in particular every sequence in which the rank divided by

the size tends to zero as the matrix size tends to in�nity).

In short, GLT sequences form an algebra containing sequences of matrices including the Toeplitz

sequences with Lebesgue integrable symbols and virtually any sequence of matrices coming from

�reasonable� approximations by local discretization methods (Finite Di�erences, Finite Elements,

Isogeometric Analysis, etc.) of Partial Di�erential Equations.
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Chapter I. De�nitions and known results

I.8 Preconditioning and multigrid methods for Toeplitz matrices

We recall that often the approximation of a problem in an in�nite dimensional space produces

a sequence of large linear system

{Anun = bn}n,

of size N ≡ N(n, s), where An are structured matrices. If high precision is required, then we

have to compute the numerical solution un for a large value of n. Indeed the larger the dimension

n is, the more accurate the solution will be.

In these cases the direct methods can be unstable and often are too costly since they do

not exploit the structure of the coe�cient matrices, conversely the use of iterative methods is

recommended because of the memory and accuracy requirements.

The goal is to choose the resolution methods which are optimal. Here we give a de�nition of

optimality for iterative methods applied to sequences of linear systems [6, 123].

De�nition I.8.1. [Optimality] Given a sequence

{Anun = bn}n (I.24)

of linear systems of size N ≡ N(n, s), an iterative method is said to be optimal if

1) its cost for computing the solution is proportional to that of the matrix�vector product;

2) the number of iterations required for computing un within a preassigned accuracy ε is

bounded by a constant independent of n and possibly depending on ε

In case of Toeplitz structures the most popular iterative solvers (Conjugate Gradient (CG),

Conjugate Gradient for Least Squares (CGLS), Generalized Minimal Residual (GMRES), etc.)

satisfy the �rst requirement.

Conversely the second Item is the critical point. In most cases, the condition number of An

diverges to in�nity quickly as n increases (for example, if the minimal eigenvalue λ1(An) tends

to zero as n tends to in�nity). In such situations the classical iterative methods can be very

slow. Indeed it is well known that their convergence rate depends on the condition number of

the coe�cient matrix and on how the spectrum of An is clustered.

Preconditioning With regard to this feature, (when An is an HPD matrix) one of the most

successful iterative solvers is the preconditioned conjugate gradient (PCG) method. The use of

a preconditioner P n can accelerate the convergence by reducing the number of steps required

for the convergence.

Hence, instead of solving the problems (I.24), we deal with the preconditioned systems

{P−1
n Anun = P−1

n bn}n. (I.25)

In particular when the eigenvalues/singular values of P−1
n An − In are strongly clustered at

zero or when the sequence of the spectral condition numbers κ(P−1
n An) of {P−1

n An}n is upper-

bounded by a constant independent of n, we know [5] that a constant number of iterations are
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I.8. Preconditioning and multigrid methods for Toeplitz matrices

required for the convergence of the PCG method. In particular, if {P−1
n An − In}n is strongly

clustered at zero and {P−1
n An}n is spectrally bounded, then the PCG method with precondi-

tioner Pn is optimal and the convergence is superlinear. Consequently the preconditioner P n

should be chosen in order to balance the following two requirements.

a) The solution of a generic system Pnyn = cn has computational cost bounded by vector-

product with matrix An;

b) κ(P−1
n An) is upperbounded by a constant independent of n (that is {Pn}n is �close� to

{An}n in spectral norm) or {P−1
n An − In}n is strongly clustered at 0 (that is {Pn}n is

�close� to {An}n in the clustering sense).

The issues a) and b) are often con�icting since when a preconditioner Pn is too close to

An (the requirement in b) ) it also requires the same computational cost as to invert (hence

contradicting the requirement in a) ).

However, in the context of structured matrices of Toeplitz type many satisfactory solutions

can be found (see [32, 96, 120] and references therein). One of the possibilities is to look for

preconditioners within matrix algebras such as the circulant class.

This choice automatically satis�es requirement a). Indeed the computational cost of a

matrix-vector product when a circulant matrix is involved is proportional to O(n log(n)) (or

O (N(n, s) log(N(n, s))) in the block multilevel case) and can be achieved by using the Fast

Fourier Transform (FFT) [148].

In applications, the condition in b) may not be easily veri�able. However, in the scalar

setting the classical one level circulant preconditioners proposed by Strang [133] and T. Chan

[36] gives a superlinear convergence under suitable assumptions on the generating function. In

[33] authors proved that if Tn(f) = [f̂i−j ]ni,j=1 is a n×n Toeplitz matrix and it is associated with

an absolutely convergent Fourier series for a positive generating function, f(θ) =
∑∞

l=−∞ f̂le
ιlθ,

then the following circulant preconditioners [36, 133] provide a superlinear convergence. More

precisely:

� the Strang preconditioner is the matrix Sn obtained by copying the central diagonals of

Tn(f) and by incorporating the remainders in order to complete the circulant structure of

Sn. Speci�cally, the diagonals si of Sn are given by

si =





f̂i, 0 < i ≤ bn2 c;
f̂i−n, bn2 c < i < n;

sn+i, 0 < −i < n.

The superlinear convergence of PCG with the Strang preconditioner is guaranteed when-

ever f belongs to the Dini�Lipschitz class [122].

� The Chan preconditioner is the matrix Cn de�ned as

arg min
Cn circulant

‖Tn(f)− Cn‖F = arg min
Cn=FnDnFn∗ circulant

‖F ∗nTn(f)Fn −Dn‖F ,
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where Dn is diagonal and Fn is the Fourier matrix of size n.

Speci�cally, the entries ci of Cn are given by

ci =





if̂−(n−i)+(n−i)f̂i
n , 0 ≤ i < n;

cn+i, 0 < −i < n.

If f is a positive continuous generating function then the superlinear convergence of PCG

with the Tony Chan preconditioner is ensured [35, 120, 122].

Unfortunately in the k-level context, the construction of circulant preconditioners similar to

those of the unilevel case leads only to sublinear preconditioners, even for the well-conditioned

matrices.

The performances of multilevel circulant preconditioners indeed deteriorate as k increases

and in fact it is proved in [98, 124, 129] that the use of any multilevel circulant preconditioner

permits us to reach at most a sub-optimal convergence of the PCG method.

Multigrid methods The �rst important remark is that the requirement in b) can be over-

passed by using a multigrid technique, also in the multilevel setting.

Under suitable assumptions, these methods are optimal and their excellent features are iden-

tical in the multilevel setting. Furthermore they are optimal also for polynomially ill-conditioned

multidimensional problems and can be extended to the case of low-rank corrections of the con-

sidered structured matrices, so that the computational barriers holding in the preconditioning

setting [2, 3, 127] do not hold.

Here we brie�y sketch the basic ideas for de�ning the classical multigrid methods (MGM).

Firstly we focus on the general scalar unilevel matrices, then we give the main MGM convergence

results for scalar Toeplitz matrices with a scalar valued symbol.

In Section II.3.4 the following strategy is generalized to deal with the block multilevel matrix

sequence associated with a multivariate matrix-valued generating function.

The basic idea of a multigrid method is to create a sequence of linear systems of decreasing

dimensions by consecutive projections. In this way the computational cost is reduced at each

level and the convergence speed can be improved. Here, for MGM algorithm, we mean the

simplest and less expensive version of the large family of multigrid methods and which named

V-cycle procedures. In particular, �rst we consider the method with only two levels, known

as the Two Grid Method (TGM). Once that the TGM is introduced, the V-cycle algorithm is

obtained recursively applying a projection strategy.

An important choice for the TGM concerns the prolongation/restriction operators. When

deriving convergence estimates, usually the restriction is chosen to be the adjoint of the pro-

longation. These conditions are known in the related literature as Galerkin conditions and the

resulting method is the so-called algebraic multigrid (AMG).

We start from a linear system

Anxn = bn, (I.26)

where xn, bn ∈ Cn, An =Wn − Bn ∈ Cn×n, Wn is a non singular matrix. Let

x(j+1) = Vn(x(j), b1) = Vnx
(j) + b1 (I.27)
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be an iterative method for the solution of system (I.26), where b1 = W−1
n b ∈ Cn and Vn =

In −W−1
n An ∈ Cn×n. Given a full-rank matrix pmn ∈ Cn×m, with m < n, a Two-Grid Method

(TGM) is de�ned by the following algorithm [145]

1. dn = Anx
(j)
n − bn

2. dm = (pmn )∗dn

3. Am = (pmn )∗An(pmn )

4. SolveAmy = dm

5. x̂(j) = x(j) − pmn y
6. x(j+1) = V ν

n (x̂(j), b1)

Step 6 consists in applying the �smoothing iteration� (I.27) ν times while steps 1-5 de�ne the

�coarse grid correction�, that depends only on the prolongation operator pmn .

The global iteration matrix of the TGM is given by

TGM(Vn, p
m
n ) = V ν

n

[
I − pmn ((pmn )∗Anpmn )

−1
(pmn )∗An

]
,

which implies that the TGM can be seen as a classical stationary iteration technique.

A possible �pre-smoothing iteration� can be performed before step 1. If step 4 is replaced by

a recursive call to the same algorithm, then the scheme given before de�nes a V-cycle procedure.

Note that in the AMG the coarse grid matrix Ani+1 at the level (i+1) is chosen as (Pni)
∗AniPni ,

where Pni is the prolongation operator at level i.

In the following we illustrate the result concerning the convergence and the optimality of the

TGM [106].

Theorem I.8.1. Let An be a positive de�nite matrix of size n and let Vn be de�ned as in the

TGM algorithm. Assume

(a) ∃αpost > 0 : ‖Vnxn‖2An ≤ ‖xn‖2An − αpost‖xn‖2A2
n
, ∀xn ∈ Cn,

(b) ∃γ > 0 : miny∈Cm ‖xn − pmn y‖22 ≤ γ‖xn‖2An , ∀xn ∈ Cn.

Then γ ≥ αpost and

‖TGM(I, V
νpost
n , pmn )‖An ≤

√
1− αpost/γ.

Note that, since αpost and γ are independent from n, if the assumptions of Theorem I.8.1 are

satis�ed, the number of iterations, in order to reach a given accuracy ε, can be bounded from

above by a constant independent of n.

We refer to (a) and (b) as the �smoothing� and the �approximation� properties, respectively.

Indeed the condition (a) is related only to the smoothers, conversely the assumption (b) depends

only on the choice of the projector. Hence the two requirements can be treated separately and

the latter represents a substantial simpli�cation for studying the convergence analysis.

We are interested in the case where Tn(f) is a multilevel block Toeplitz matrix associated

with a matrix-valued trigonometric polynomial.
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Many theoretical results have been provided on the validation of the smoothing property in

the one (and multi) level scalar case [2, 3, 128]. Furthermore the theory can be easily extended

to the block context. Conversely, up to our knowledge, the generalization in block settings of

the theorems concerning the approximation property for scalar matrices [2, 3] are still missing

or under investigation [130]. Here the principal open question concerns the lack of commutative

property for matrix-valued symbols.

In what follows we report the results for the validation of both the smoothing and the

approximation conditions in the scalar multilevel case. We postpone the discussion on the block

case to Section II.3.4, where we construct the appropriate smoother and prolongation operator,

exploiting the Laplacian nature of the problem.

We assume that the matrices Tn(f) are such that n = (2t− 1)e ∈ Nk, with t positive integer
(the case n = 2te ∈ Nk is analogous [3, 69]).

Theorem I.8.2. [128] Let Tn(f) be a multilevel Toeplitz matrix associate to a k-variate gener-

ating function f : Ik → C nonnegative and not identically zero and de�ne Vn = In − ωTn(f). If

we choose αpost such that 0 ≤ αpost ≤ 2
‖f‖∞ , then relation (a) in Theorem I.8.1 holds.

This theorem can be possibly generalized when considering both pre-smoothing and post-

smoothing as in [2].

The other important choice for the TGM convergence concerns the operator pmn ∈ CN(n)×N(m),

with m < n.

In AMG the procedure starts with n0 = n and the indices in the coarse levels are de�ned as

ni = (2t−i − 1)e, such that ni > ni+1.

The matrix pmn has a double role. On one hand it projects the problem into a coarse one,

�cutting� the matrix Tn(f), on the other hand it should maintain the same structure and the

properties of Tn(f) in the �cut� and projected matrix (pmn )∗Tn(f)pmn . Therefore it is chosen as

the product between Tn(p), with p non negative trigonometric polynomial, and a cutting matrix

Zm
n ∈ CN(n)×N(m). That is the projector has the form

pmn = Tn(p)Zm
n , (I.28)

where

Zm
n = Zm1

n1
⊗ Zm2

n2
⊗ · · · ⊗ Zmknk

,

and Zmlnl
is the nl ×ml matrix given by

(Zmlnl
)i,j =





1 for i = 2j

0 otherwise
i = 1, . . . , nl, j = 1, . . . ,ml. (I.29)

Then the matrix at the coarse level Tm(f̃) = (pmn )∗Tn(f)pmn is still a Toeplitz matrix, up to a

lower rank correction, where

f̃(θ) =
1

2

[
p2f(θ/2) + p2f(θ/2 + π)

]
.

In our setting the correction is not present.
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In the following we show how the polynomial p should be chosen in order to ensure the

validity of the approximation property (b). For a �xed θ ∈ Rk, we de�ne the sets Ω(θ) and

M(θ) of the all corner and mirror points respectively, that are

Ω(θ) = {η = (η1, . . . , ηk) : ηj ∈ {θj , θj + π}}, M(θ) = Ω(θ) \ {θ}.

Theorem I.8.3. Let An = Tn(f) with n = (2t − 1)e, f a k variate nonnegative trigonometric

polynomial and let m = (m1, . . . ,mk) < n = (n1, . . . , nk). Let θ0 = (θ0
1, . . . , θ

0
k) be the unique

zero of f in Ik of order at most 2, and let pmn be de�ned as in (I.28) with p of the form

p(θ) = c

k∏

j=1

(1 + cos(θj − θ0
j )),

with c constant. Then the approximation property (b) holds if, for all θ ∈ Ik, p veri�es

lim sup
θ→θ0

|p(η)|2
f(θ)

<∞, η ∈M(θ),

∑

η∈Ω(θ)

p2(η) > 0.
(I.30)

Remark 5 ([128]). Let An and Bn be two Hermitian positive de�nite matrices, with

An ≤ θBn,

for some positive θ independent of n.

If a TGM is optimal for An then the same algorithm is optimal also for Bn.

Hence if a proposed TGM is optimally convergent for a positive de�nite sequence {Tn(f)}n,
then the same smoother and projector provide optimality when considering the de�nite positive

sequence {KN = Tn(f)+En}n, with En nonnegative de�nite matrix. In the context of Chapter

II we will see that En is a nonnegative de�nite small rank correction of Tn(f).

I.9 Asymptotic Expansion: idea of the approximation errors

In this section we consider the problem of computing the spectrum of banded symmetric Toeplitz

matrices. In the next chapters, for such type of problems, we develop a class of fast methods

starting from the results in the recent work [62], where Ekström, Garoni, and Serra-Capizzano

conjecture the existence of an asymptotic spectral expansion for this class of matrices.

We illustrate the preliminary version of the proposed expansion, which will be generalized

and used for computing the eigenvalues of large Toeplitz-like matrices in various contexts.

It must be highlighted that, independently from [62], Bogoya, Böttcher, Grudsky, and Maxi-

menko in [16, 17, 19] have obtained the precise asymptotic expansion for the eigenvalues of a

sequence of Toeplitz matrices {Tn(f)}n, under suitable assumptions on the associated generating

function f .

However, in [62] the authors provided numerical evidences that some of those assumptions

can be relaxed, maintaining only the hypothesis on f of being a real, cosine trigonometric

polynomial (RCTP), monotone on the domain.
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In [62] it was conjectured and numerically con�rmed that, if f is a monotone RCTP on I+
1 ,

then, for every integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic expansion

holds:

λj(Tn(f)) = f(θj,n) +

α∑

k=1

ck(θj,n)hk + Ej,n,α, (I.31)

where:

� the eigenvalues of Tn(f) are arranged in non decreasing or non increasing order, depending

on whether f is increasing or decreasing;

� {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on f ;

� h = 1
n+1 and θj,n = jπ

n+1 = jπh;

� Ej,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |Ej,n,α| ≤
Cαh

α+1 for some constant Cα depending only on α and f .

The idea under the expansion I.31 is based on the study of the approximation errors

Ej,n = λj(An)− f(θj,n), (I.32)

that arise when {An}n is a (special) matrix sequence such that {An}n ∼GLT,σ,λ f and θj,n is a

suitable uniform grid.

Assume we want to study the spectral properties of the matrix sequences {Bn}n and {Tn(g)}n,
where for a �xed n, Tn(g) is the Toeplitz matrix generated by

g(θ) = f(θ)2 = (2− 2 cos(θ))2 = 6− 8 cos(θ) + 2 cos(2θ).

and Bn = (Tn(f))2. The matrix Bn is the discretized bi-Laplacian, in the sense that we

apply twice the discretized Laplace operator by second order �nite di�erences, and was proved

[125] that g(θ) is its GLT symbol, that is {Bn}n ∼glt g. Since Bn is in addition Hermitian we

also have that {Bn}n ∼σ,λ g.
The sequence {Tn(g)}n is a banded Toeplitz matrix sequence generated by the trigonometric

polynomial g(θ), hence {Tn(g)}n ∼GLTσ,λ g.

The matrix Bn is equal to Tn(g) except for a low-rank correction Rn (in this case of rank 2),

Rn = Bn − Tn(g) = −e1e1
T − enen

T .

The low-rank correction sequence {Rn}n is zero-distributed, {Rn}n ∼λ 0, according to the

de�nition in Section I.3. This means that as n → ∞ the eigenvalues of Bn and Tn(g) will

coincide. However, the �nite-dimensional matrices have di�erent eigenvalues.

In particular sampling g(θ) with the grid of the τ algebra

θj,n =
jπ

n+ 1
, j = 1, . . . , n, (I.33)

returns the exact eigenvalues of Bn, that is λj(Bn) = g(θj,n). Conversely the eigenvalues

of Tn(g) are not exactly given by the sampling of g on grid (I.33). The Figure I.1 indeed
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con�rms that the uniform sampling of g (in blue circles ◦) provides just an approximation

of the eigenvalues of Tn(g) (in red stars ∗). Furthermore, as n grows the more accurate the

approximation will be. For example, we take n = 15 in Figure I.1(a) and n = 30 in Figure

I.1(b). Hence, for n→∞ the eigenvalues Tn(g) will coincide with the evaluations of g, but for

�nite n we do not know the explicit grid θj,n which yields Ej,n = λj(Tn(g))− g(θj,n) = 0 for all

j.
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Figure I.1: Comparison between the eigenvalues of Tn(g) (in red stars ∗) and the uniform sampling of g (in blue

circles ◦) on the grid in (I.33). The parameter n equals 15 in subplots (a) and it is doubled, n = 30, in (b).

Thus we have

λj(Tn(g)) = g(θj,n) + Ej,n, j = 1, . . . , n.

However, in Figures in I.2 we can observe that the errors Ej,n have an interesting property.

Indeed, when using the τ -grid for three di�erent n ∈ {100, 200, 400}, the shape of the �error

curve�, is retained as n increases, see Figure I.2(a).

In addition the errors Ej,n behave as expected, that is, they decrease linearly in n as n

increases, equivalently they are of order O(h), where h = 1/(n+ 1) for each n. Furthermore we

can observe in Figure I.2(b) that the curves of the scaled errors Ej,n/h = (λj(Tn(g))−g(θj,n))/h

for n = 20, 40, 80, 100 overlap perfectly.

This behavior of the curves Ej,n/h suggests that for g and other types of symbols there exists

an asymptotic expansion of the error in (I.32) of the form

λj(Tn(g))− g(θj,n) =
α∑

k=1

ck(θj,n)hk + Ej,n,α.

Note that, if α = 0, then Ej,n = λj(Tn(g)) − g(θj,n) = Ej,n,0. If α = 1, then Ej,n/h =

c1(θj,n)Ej,n,1/h, for each value of n. Indeed in Figure I.2(b) the four curves coincide since the

scaled remainder Ej,n,1/h is small and the function c1 does not depend on n.

In the Sections VI.3, VI.4, VI.6 of the Chapter VI we present the proof of the �rst order

asymptotic term of the expansion for

1. preconditioned banded symmetric Toeplitz matrices [1];
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(a) Ej,n = λj(Tn(g))− g(θj,n) = O(h) (b) Ej,n/h = (λj(Tn(g))− g(θj,n))/h = c1

Figure I.2: The errors Ej,n (left) and the scaled errors Ej,n/h (right) when approximating λj(Tn(g)) with the

sampling g(θj,n), j = 1, . . . , n for n ∈ {20, 40, 80, 160}

2. Toeplitz-like matrices, n−2L
[p]
n , coming from the B-spline IgA approximation of −u′′ = λu

[58];

3. block and preconditioned block banded symmetric Toeplitz matrices [60].

In all the contexts the proof is based on the following common facts. If τn(f) is the τ matrix of

size n generated by a monotone RCTP f of degree m (the case f monotone HTP is analogous),

then

� τn(f) is a real symmetric matrix with eigenvalues given by f(θj,n), j = 1, . . . , n;

� the matrix Tn(f) can be written as Tn(f) = τn(f) + Hn(f), where Hn(f) is symmetric

real Hankel matrix generated by f with ν = rank(Hn) ≤ 2(m− 1);

� from the classical Interlacing theorem for the eigenvalues (see [13] or [77]), it holds

f(θj−ν,n) ≤ λj(Tn(f)) ≤ f(θj+ν,n), j = ν + 1, . . . , n− ν;

� λj(Tn(f)) ∈ (mf ,Mf ), j = 1, . . . , n, where mf = min f < Mf = max f ; see [20, 77].

In the Chapters III, IV, V, studying the errors of the approximation of eigenvalues by uniform

sampling of the symbol, it is possible to devise an extrapolation�interpolation procedure for

computing the eigenvalues of Toeplitz-like matrices of very large dimension. The resulting

algorithm can be performed with a high level of accuracy and at the cost of the computation of

the eigenvalues of a moderate number of small sized matrices.

We remark that in [7, 16, 17] it has been prove that if the symbol f(θ) does not comply with

the simple-loop conditions, that is the requirment that f ′(θ) 6= 0 for θ ∈ (0, π) and f ′′(θ) 6= 0

for θ ∈ {0, π}, the expansion (I.31) will not be true point-wise for all eigenvalues. In practice

when using standard double precision computations, in the next chapters we demonstrate why

this is not a problem when using the proposed algorithm.
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Chapter II

Spectral analysis on SDG methods for

the incompressible Navier-Stokes

equations

In this chapter we consider the incompressible Navier-Stokes equations approximated by a novel

family of high order semi-implicit Discontinous Galerkin methods on staggered meshes (SDG)

introduced in [65, 66, 135, 137]. These new schemes are analysed for the �rst time by means of

GLT techniques and therefore the aim is to use and extend the spectral tools mentioned so far

to the present numerical framework and to study its properties.

We recall that computational �uid dynamics (CFD) represents a vast sector of ongoing

research in engineering and applied mathematics, which has also a wide applicability to real

world problems, such as aerodynamics of airplanes and cars, geophysical �ows in oceans, lakes

and rivers, Tsunami wave propagation, blood �ow in the human cardiovascular system, weather

forecasting and many others. The governing equations for incompressible �uids are given by

the incompressible Navier-Stokes equations that consist in a divergence-free condition for the

velocity

∇ · v = 0, (II.1)

and a momentum equation that involves nonlinear convection, the pressure gradient and viscosity

e�ects:

∂v

∂t
+∇ · F +∇p = ∇ · (ν∇v) . (II.2)

Here, v is the velocity �eld; p is the pressure; ν is the kinematic viscosity coe�cient and

F = v ⊗ v is the tensor containing the nonlinear convective term. The dynamics induced by

equations (II.1)-(II.2) can be rather complex and have been observed in various experiments, see

[4, 109, 150]. In the last decades a lot of e�ort was made to numerically solve the incompress-

ible Navier-Stokes equations using �nite di�erence schemes (see [83, 99, 100, 147]), continuous

�nite elements (see [24, 70, 85, 86, 91, 139, 149]) and more recently high order DG methods,

see, e.g., [9, 10, 43, 68, 95, 97, 104, 105, 131]. The main di�culty in the numerical solution

of the incompressible Navier-Stokes equations (II.1)-(II.2) lies in the elliptic pressure Poisson
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equation and the associated linear equation system that needs to be solved. On the discrete

level the pressure system is obtained by substitution of the discrete momentum equation (II.2)

into the discrete form of the divergence-free condition (II.1). Since the solution of the incom-

pressible Navier-Stokes equations requires necessarily the solution of large systems of algebraic

equations, it is indeed very important to have a scheme that uses a stencil that is as small

as possible, in order to improve the sparsity pattern of the resulting system matrix. It is also

desirable to use methods that lead to reasonably well conditioned systems that can be solved

with iterative solvers, like the conjugate gradient (CG) method [84] or the generalized minimal

residual (GMRES) algorithm [108]. Very recently, a new class of arbitrary high order accu-

rate semi-implicit DG schemes for the solution of the incompressible Navier-Stokes equations

on structured, adaptive Cartesian and unstructured edge-based staggered grids was proposed in

[65, 66, 135, 136, 137], following a philosophy that had been �rst introduced in �nite di�erence

schemes, see [25, 26, 27, 28, 29, 30, 83, 87, 99, 100, 147]. All those approaches have in common

that the pressure is de�ned on a main grid, while the velocity �eld is de�ned on an appropriate

edge-based staggered grid. The nonlinear convective terms are discretized explicitly by using a

standard DG scheme based on the upwind �ux or a local Lax-Friedrichs (Rusanov) �ux [107].

Then, the discrete momentum equation is inserted into the discrete continuity equation in order

to obtain the discrete form of the pressure Poisson equation. The advantage in using staggered

grids is that they allow to improve signi�cantly the sparsity pattern of the �nal linear system

that has to be solved for the pressure. For the structured case the resulting main linear system

is a sparse block penta-diagonal and hepta-diagonal one in two and three space dimensions,

respectively. Furthermore, several desirable properties, such as the symmetry and the positive

de�niteness can be achieved see, e.g., [65, 137].

The main advantage of using an edge-based staggered grid is that the resulting matrix in-

volves only the direct neighbors. For instance the total stencil in the three-dimensional Cartesian

grid case is 13 for a collocated grid, 27 for a vertex-based staggering and it is only 7 for an edge-

based staggered mesh. The edge-based staggered semi-implicit DG scheme therefore allows the

use of the most compact stencil together with the minimum number of unknowns (only the

scalar pressure). If one wants to achieve the same compact stencil on a collocated grid, a four

times larger system needs to be solved, including the scalar pressure and the three components

of the velocity vector.

Compared to classical continuous �nite elements the discontinuous Galerkin method is known

to handle dynamic adaptive mesh re�nement (AMR) with hanging nodes [66, 153] as well as

p-re�nement very easily. It is also possible to deal with �ow discontinuities in the boundary

conditions, see, e.g., [65, 137], since boundary conditions are only imposed weakly.

The DG framework has also been very successfully applied in the past to high Mach number

�ows with shock waves, see, e.g., [39, 40, 56] for some examples and an overview of recent

developments. The new class of staggered semi-implicit DG schemes analyzed in this chapter

has very recently also successfully been extended to the fully compressible case [138], allowing

to deal with all Mach number �ows, ranging from nearly incompressible low Mach number �ows

to supersonic �ows with shock waves.

The regular shape of Cartesian grids allows to further describe the structure of the main

linear system for the pressure in the framework of multilevel block Toeplitz matrices: in this
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setting we can deliver spectral and computational properties, including speci�c preconditioners

for the original coe�cient matrices and speci�c multigrid methods both for the preconditioning

matrices and the coe�cient matrices.

Main contributions

The main contributions of this Chapter can be summarized as follows.

1. We study the linear systems stemming from the considered approximations in a setting

of structured linear algebra. These new schemes have never been analyzed with GLT

techniques before and therefore our aim is to use and extend the spectral tools mentioned

so far to this new numerical framework and to study its properties.

2. One of the main goal is the proof that these matrix sequences can be viewed as perturba-

tions of matrices known in the literature, such as Toeplitz, and for which spectral studies

already exist.

3. We detect the symbol associated to the coe�cient matrix. This allows us to study the

nonsingularity of the associated Toeplitz matrix sequence {Tn(f)}n, together with infor-

mation on the conditioning, the distribution of the spectrum, the behavior of the extremal

eigenvalues and of the outliers.

4. The study is extended to the case of the global matrix sequence {KN}n = {Tn(f) +En}n,
by making a careful analysis of the low rank matrix En. In particular, we show that

En a�ects the number of outliers of KN , but it does not in�uence the behaviour of the

minimum eigenvalue of KN with respect to that of Tn(f).

5. The spectral features are used for proposing speci�c (preconditioned) Krylov methods,

with a study of the complexity and of the convergence speed, and for sketching a multigrid

strategy, again based on the spectral information contained in the symbol.

The Chapter is organized as follows. Section II.1 is devoted to a brief overview of the numer-

ical methods used in this chapter for the solution of the incompressible Navier-Stokes equations.

Section II.2 studies the linear systems stemming from the considered approximations in a setting

of structured linear algebra. In Section II.3 the spectral features are used for proposing speci�c

(preconditioned) Krylov methods, with a study of the complexity and of the convergence speed,

and for sketching a multigrid strategy, again based on the spectral information contained in the

symbol. In the above two directions, several numerical experiments are reported and critically

discussed. Finally, Section II.3.4 deals with conclusions, open problems, and future lines of

research.

II.1 Overview

In the framework of high order semi-implicit staggered discontinuous Galerkin schemes for the

incompressible Navier-Stokes equations, the numerical solution for the velocity v = (u, v, w)

and the pressure p is represented by piecewise polynomials on overlapping staggered grids.

The numerical solution can be written as a linear combination of polynomial basis functions,
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i.e. ph(x, t) =
∑

l φl(x) p̂l(t) and vh(x, t) =
∑

l ψl(x) v̂l(t). Here, φl represents the vector of

piecewise polynomial basis functions computed in x on the main grid, while ψl are the basis

functions on the edge-based staggered dual grid; the v̂l and p̂l are the vectors of the so called

degrees of freedom associated with the discrete solution vh and ph, respectively. The chosen

staggered grid is an edge based staggering, corresponding to the one used in [54]. The staggering

of the �ow quantities is brie�y depicted in Figure II.1, where also the main indexing used for

the numerical solution is reported, together with fractional indices referring to staggered grids.

(a) Two dimensional case
(b) Three dimensional case

Figure II.1: Mesh-staggering for the two dimensional case (left) and for the three-dimensional case (right).

The discrete form of the incompressible Navier-Stokes equations after a high-order DG dis-

cretization on Cartesian staggered grids as proposed in [65] reads as

Mxyz

(
ûτ+δτ
i+ 1

2
,j,r
− F̂u

τ

i+ 1
2
,j,r

)
+
δτ

∆x
Myz

(
Rxp̂

τ+δτ
i+1,j,r − Lxp̂τ+δτ

i,j,r

)
= 0, (II.3)

Mxyz

(
v̂τ+δτ
i,j+ 1

2
,r
− F̂v

τ

i,j+ 1
2
,r

)
+
δτ

∆y
Mzx

(
Ryp̂

τ+δτ
i,j+1,r − Lyp̂τ+δτ

i,j,r

)
= 0, (II.4)

Mxyz

(
ŵτ+δτ
i,j,r+ 1

2

− F̂w
τ

i,j,r+ 1
2

)
+
δτ

∆z
Mxy

(
Rzp̂

τ+δτ
i,j,r+1 − Lzp̂τ+δτ

i,j,r

)
= 0, (II.5)

Myz

(
L>
x
ûτ+δτ
i+ 1

2
,j,r
−R>

x
ûτ+δτ
i− 1

2
,j,r

)

∆x
+

Mzx

(
L>
y
v̂τ+δτ
i,j+ 1

2
,r
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v̂τ+δτ
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2
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)
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(II.6)

+

Mxy

(
L>
z
ŵτ+δτ
i,j,r+ 1

2

−R>
z
ŵτ+δτ
i,j,r− 1

2

)

∆z
= 0, (II.7)

where (II.3-II.5) are the discrete momentum equations and (II.7) is the discrete divergence-

free condition of the velocity.
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Mξ1ξ2ξ3 and Mξ1ξ2 for ξ1, ξ2, ξ3 ∈ [x, y, z] are the mass matrices de�ned in the standard way

as the tensor product of the one dimensional mass matrix given by

M ≡ {Mqq̃}q,q̃=0,...,p ≡





1∫

0

ϕq (ξ)ϕq̃ (ξ) dξ




q,q̃=0,...,p

.

Rξ and Lξ are real-valued matrices related to the discrete form of the gradient operator in the

ξ−direction. Their de�nitions are strongly related to the used staggering-framework and, in the

one dimensional case, they have the following expression:

R ≡ {Rqq̃}q,q̃=0,...,p ≡



ϕq(

1

2
)ϕq̃(0) +

1

2

1∫

0

ϕq

(
1

2
+
ξ

2

)
ϕ′q̃

(
ξ

2

)
dξ




q,q̃=0,...,p

L ≡ {Lqq̃}q,q̃=0,...,p ≡



ϕq(

1

2
)ϕq̃(1)− 1

2

1∫

0

ϕq

(
ξ

2

)
ϕ′q̃

(
1

2
+
ξ

2

)
dξ




q,q̃=0,...,p

where p is the polynomial degree of the DG discretization, ∆x, ∆y, ∆z, and δτ are the space and

time step size. Note that the basis functions φ(x) and ψ(x) on the main and dual grid in physical

space can be generated after appropriate shifting by tensor products of the one-dimensional basis

functions ϕ(ξ) in a reference coordinate system with 0 ≤ ξ ≤ 1. In this chapter, we consider a

nodal basis based on the Lagrange interpolation polynomials passing through a prede�ned set

of distinct nodes on the unit interval [0, 1].

An exhaustive derivation of system (II.3-II.7) is available in [65]. The adopted discretization

on staggered grids allows to link the de�nition of the gradient and the divergence operator at the

discrete level, that are indeed both described by the same matrices R and L and their transpose.

Formal substitution of the implicit velocities [ûτ+δτ
· , v̂τ+δτ

· , ŵτ+δτ
· ] given in equations (II.3)-

(II.5) into (II.7) leads to a linear system for the new pressure p̂τ+δτ
· that reads

δτ

∆x2
(MyzVx) p̂τ+δτ

i+1,j,r +
δτ

∆y2
(MzxVy) p̂τ+δτ

i,j+1,r +
δτ

∆z2
(MxyVz) p̂τ+δτ

i,j,r+1

+

(
δτ

∆x2
MyzWx +

δτ

∆y2
MzxWy +

δτ

∆z2
MxyWz

)
p̂τ+δτ
i,j,r

+
δτ

∆x2
(MyzLx) p̂τ+δτ

i−1,j,r +
δτ

∆y2
(MzxLy) p̂τ+δτ

i,j−1,r +
δτ

∆z2
(MxyLz) p̂τ+δτ

i,j,r−1

=b̂τi,j,r, (II.8)

for i = 2, ..., n1 − 1; j = 2, ..., n2 − 1; r = 2, ..., n3 − 1

where

V = −
(
L>M−1R

)
, L = −

(
R>M−1L

)
,

W =
(
L>M−1L

)
+
(
R>M−1R

)
. (II.9)

and n1, n2, n3 are the total number of elements in the x, y, and z direction, respectively. System

(II.8) is then written in compact form as KNp
τ+δτ = bτ . Here pτ+δτ collects all the unknown

pressure degrees of freedom at the new time step τ + δτ and bτ contains all the terms known at
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the time step τ , see again [65] for more details. In particular, in [65] it has been shown that the

resulting linear system is symmetric. Furthermore, it is clear from system (II.8) that the stencil

involves only the direct neighbors, and hence it is a symmetric 7 block diagonal system for the

3D case and a 5 block-diagonal system for the 2D case.

Once the new pressure pτ+δτ is known, we can readily compute the new velocity �eld

[ûτ+δτ
· , v̂τ+δτ

· , ŵτ+δτ
· ] from equations (II.3)-(II.5).

II.2 Spectral analysis

This section is devoted to the structural and spectral analysis of the linear systems arising from

the staggered semi-implicit DG approximation of incompressible two-dimensional incompressible

Navier-Stokes equations, with special attention to the following Items:

� structural properties, in connection with multilevel block Toeplitz (and circulant) matrices,

� distribution spectral analysis in the Weyl sense,

� conditioning and asymptotic behaviour of the extremal eigenvalues.

In particular, the �rst Item is used for the second two, which in turn are of interest in the

analysis of the intrinsic di�culty of the problem and in the design and convergence analysis of

(preconditioned) Krylov methods [5, 11].

Our aim is to e�ciently solve large linear systems arising from the staggered DG approxima-

tion of incompressible two-dimensional Navier-Stokes equations taking advantage of the structure

of the coe�cient matrix and especially of its spectral features. More precisely, when discretizing

the problem of interest for a sequence of discretization parameters hN we obtain a sequence of

linear systems, in which the Nth component is of the form

KNx = b, KN ∈ RN×N , x, b ∈ RN , (II.10)

whose approximation error tends to zero as the coe�cient matrix size N grows to in�nity. In

order to analyze standard methods and for designing new e�cient solvers for the considered

linear systems, it is of crucial importance to have a spectral analysis of the matrix-sequence

{KN}N . As we will show in the next sections, the coe�cient matrix KN is, up to low-rank

perturbations, a 2-level block Toeplitz matrix: however, when considering variable coe�cients

or for the study of the preconditioning, standard Toeplitz structures are not su�cient. For this

reason, we need to introduce the notion of multilevel block-Toeplitz sequences associated with

a matrix-valued symbol and of Generalized Locally Toeplitz (GLT) algebra.

II.2.1 Analysis of the spectral symbol

Using De�nition I.4.1, we can now explicitly express the symbol of the matrix KN in (II.10).

Let n = (n1, n2) be a 2-index and consequently N(n) = n1n2. If p is the degree of the basis

functions used for the staggered DG, we obtain the following Hermitian matrix

KN = Tn(f) + En, N = (p+ 1)2N(n), (II.11)
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where

Tn(f) =
[
f̂i−j
]n
i,j=e

∈MN

and f : I2 → Cs×s, s = (p+ 1)2, while En is a low-rank perturbation whose rank grows at most

proportionally to
√
N(n) and with constant depending on the bandwidths of KN . The nonzero

coe�cients of Tn(f) = [̂fi−j]ni,j=e correspond to the indices i = (i1, i2), j = (j1, j2) such that

|i1 − j1|+ |i2 − j2| ≤ 1.

For example, for n = (3, 3),

Tn(f) =




f̂(0,0) f̂(0,−1) 0 f̂(−1,0) 0 0 0 0 0

f̂(0,1) f̂(0,0) f̂(0,−1) 0 f̂(−1,0) 0 0 0 0

0 f̂(0,1) f̂(0,0) 0 0 f̂(−1,0) 0 0 0

f̂(1,0) 0 0 f̂(0,0) f̂(0,−1) 0 f̂(−1,0) 0 0

0 f̂(1,0) 0 f̂(0,1) f̂(0,0) f̂(0,−1) 0 f̂(−1,0) 0

0 0 f̂(1,0) 0 f̂(0,1) f̂(0,0) 0 0 f̂(−1,0)

0 0 0 f̂(1,0) 0 0 f̂(0,0) f̂(0,−1) 0

0 0 0 0 f̂(1,0) 0 f̂(0,1) f̂(0,0) f̂(0,−1)

0 0 0 0 0 f̂(1,0) 0 f̂(0,1) f̂(0,0)




. (II.12)

Therefore, in the two-dimensional case (k = 2) the symbol f is given by

f(θ1, θ2) = f̂(0,0) + f̂(−1,0)e
−iθ1 + f̂(0,−1)e

−iθ2 + f̂(1,0)e
iθ1 + f̂(0,1)e

iθ2 , (II.13)

where f̂(0,0), f̂(−1,0), f̂(0,−1), f̂(1,0), f̂(0,1) ∈ R(p+1)2×(p+1)2 , that is f is a linear trigonometric polyno-

mial in the variables θ1 and θ2. For detailed expressions of these matrices in the particular case

k = 2 and p = 3, see VI.1. Furthermore, the coe�cients of Tn(f) satisfy the following relations

f̂
T
(0,0) = f̂(0,0), f̂

T
(−1,0) = f̂(1,0), f̂

T
(0,−1) = f̂(0,1).

As a consequence,

f∗(θ1, θ2) = f(θ1, θ2),

that is f is a Hermitian matrix-valued function which implies that Tn(f) is a Hermitian matrix.

Using Theorem I.4.2, we can conclude that

{Tn(f)}n∈N2 ∼λ (f, I2). (II.14)
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From GLT3, we know that {Tn(f)}n∈N2 is a GLT sequence with symbol f. Moreover, let us

observe that {En}n∈N2 ∼σ 0 and hence, by the property GLT4, the sequence {En}n∈N2 is a

GLT sequence with symbol identically zero. Therefore, by GLT2 and by relation (II.14), the

sequence {Tn(f) + En}n∈N2 is a GLT sequence with symbol f. Consequently, by recalling that

Tn(f) + En is real symmetric for every n and using GLT1, we deduce

{KN}N ∼λ (f, I2). (II.15)

Furthermore, since each KN is symmetric and its blocks are symmetric and real, from Remark

2 with k = 2, we have

{KN}N ∼λ (f, I+
2 ). (II.16)

Let

λ1(KN ) ≤ λ2(KN ) ≤ · · · ≤ λN (KN ).

be the eigenvalues of KN . Recalling Remark 1, from equation (II.16), we know that for N

su�ciently large, N/(p + 1)2 eigenvalues of KN , up to outliers, can be approximated by a

sampling of λ(1)(f) on a uniform equispaced grid of the domain I+
2 , and so on until the last

N/(p+ 1)2 eigenvalues which can be approximated by an equispaced sampling of λ((p+1)2)(f) in

the domain. In the following section we give numerical evidence of this result.

II.2.2 Numerical tests

Let us �x n = (n1, n2), with n1, n2 = n, and let p = 2. Within these choices, the matrix-

size of KN de�ned as in (II.11) is N = 9n2. This section is devoted to the comparison of

the eigenvalues of KN with a sampling of the eigenvalue functions λ(1)(f), . . . , λ(9)(f). Actually,

we do not analytically compute the eigenvalue functions, but, according to Theorem I.6.2 and

Remark 3, we are able to provide an �exact� evaluation of them on an equispaced grid on I+
2

(see Subsection II.2.2.1) and this is su�cient for our aims.

II.2.2.1 Evaluation of the eigenvalue functions of the symbol

Let us de�ne the following equispaced grid on I+
2

Gn =

{
(θ

(j)
1 , θ

(k)
2 ) =

(
jπ

n
,
kπ

n

)
, j, k = 0, . . . , n− 1

}

and let us consider the following n2 Hermitian matrices of size 9× 9

Aj,k := f(θ
(j)
1 , θ

(k)
2 ), j, k = 0, . . . , n− 1. (II.17)

Ordering in non decreasing way the eigenvalues of Aj,k

λ1(Aj,k) ≤ λ2(Aj,k) ≤ · · · ≤ λ9(Aj,k), j, k = 0, . . . , n− 1,

for a �xed l = 1, . . . , 9, an evaluation of λ(l)(f) at (θ
(j)
1 , θ

(k)
2 ) is given by λl(Aj,k), j, k = 0, . . . , n−

1. From now onwards, �xed l, we will denote by P
(n)
l the vector of all eigenvalues λl(Aj,k),

j, k = 0, . . . , n− 1, that is

P
(n)
l := [λl(A0,0), λl(A0,1), . . . , λl(An−1,n−1)] ,
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and by P (n) the vector of all eigenvalues λl(Aj,k), j, k = 0, . . . , n− 1 varying l

P (n) := [λ1(A0,0), . . . , λ1(An−1,n−1), . . . , λ9(A0,0), . . . , λ9(An−1,n−1)] .
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Figure II.2: Comparison between the approximation of the eigenvalue functions λ(l)(f), l = 1, . . . , 9 on the grid

Gn contained in P
(n)
l (◦) and the corresponding approximation on the grid twice as �ne G2n contained in P

(2n)
l

(∗). Each �curve� refers to a di�erent value of l. The parameter n equals 4 and 5 in subplots (a) and (b),

respectively.

Re�ning the grid Gn by increasing n, we can provide the evaluation of the eigenvalue func-

tions of f in a larger number of grid points: convincing numerical evidences of the latter claim

are reported in Figure II.2. More speci�cally, in Figures II.2(a), II.2(b) we compare the ap-

proximation of λ(l)(f) on Gn, n = 4, 5 contained in P
(n)
l (ordered in non decreasing way) with

the approximation of the same eigenvalue function on a grid that is twice as �ne G2n, n = 4, 5

contained in P
(2n)
l (ordered in non decreasing way as well) for every l = 1, . . . , 9.

Therefore, for n su�ciently large, a feasible approximation of λ(l)(f), l = 1, . . . , 9, can be

obtained by displaying P
(n)
l as a mesh on Gn (see Figure II.3, for n = 40).

II.2.2.2 Spectral distribution of {KN}N
In this subsection we provide numerical evidences of the distribution result (II.16), making

use of the strategy for computing an approximation of λ(l)(f) on an equispaced grid showed in

Subsection II.2.2.1.

As a �rst evidence, we compare the eigenvalues of KN with the evaluation of λ(l)(f) l =

1, . . . , 9 at Gn given by a proper ordering of P (n). As shown in Figure II.4 in which we �xed

n = 40, the eigenvalues of KN mimic, up to outliers, the sampling of the eigenvalue functions.

This agrees with relation (II.16).

Aside from such a global comparison, if

esssupI+2

(
λ(l)(f)

)
(θ) ≤ essinfI+2

(
λ(l+1)(f)

)
(θ),

for some l = 1, . . . , 8, exploiting Remark 1, we can provide a more accurate analysis of the

spectrum of KN determining how many blocks it is made up of and how many eigenvalues
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Figure II.3: Approximation of the eigenvalues functions λ(l)(f), l = 1, . . . , 9 as a mesh on Gn, when n = 40

contains each block. With this aim, let us observe that, for a su�ciently large n, if we order in

non decreasing way P
(n)
l , the �rst and the last element in P

(n)
l satisfy the following relations:

(P
(n)
l )1 ≈ ml, (P

(n)
l )n2 ≈Ml, l = 1, . . . , 9.
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Figure II.4: Comparison of the eigenvalues of KN (∗) with the approximation of λ(l)(f) l = 1, . . . , 9 on Gn given

by a proper ordering of P (n) (∗), for n = 40.

A satisfactory approximation of [ml,Ml] can be numerically computed by setting n = 500;

as a result we obtain the following approximations

[m1,M1] ≈ [0.000000000, 0.123775621],

[m2,M2] ≈ [0.186715287, 0.260786617],

[m3,M3] ≈ [0.197732806, 0.355965321],

[m4,M4] ≈ [0.355965321, 0.524158720],

[m5,M5] ≈ [0.520903995, 0.696882517],

[m6,M6] ≈ [0.677870643, 0.910001758],

[m7,M7] ≈ [1.015599697, 1.731431133],

[m8,M8] ≈ [1.560701345, 2.284336270],

[m9,M9] ≈ [1.651355307, 5.985129348].
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we observe that the matrix has row sum equal to zero for every row.

This means that f(0, 0)e = 0 where e ∈ R9 is the vector of all ones. Therefore f(0, 0) is

analytically singular and m1 = 0, since the symbol is theoretically nonnegative de�nite because

of the Galerkin approach. Now, recalling the second Item of Theorem I.4.4 and observing that

f(π, π) is positive de�nite, we deduce that
(
λ(1)(f)

)
(θ1, θ2) has positive maximum and therefore

the interval [m1,M1] can be replaced by (0,M1].

From now onwards, we assume (0,M1], (ml,Ml), l = 2, . . . , 9, to be equal to its estimate.

Let us observe that the following relations hold

M1 < m2,

M3 = m4,

M6 < m7.

(II.18)

In other words, according to relations (II.16), (II.18), and Remark 1, we expect the eigen-

values of KN to satisfy

# {i : λi(KN ) ∈ (0,M1]} =
9n2

9
+ o(9n2),

# {i : λi(KN ) ∈ [m2,M3]} = 2
9n2

9
+ o(9n2),

# {i : λi(KN ) ∈ [m4,M6]} = 3
9n2

9
+ o(9n2),

# {i : λi(KN ) ∈ [m7,M9]} = 3
9n2

9
+ o(9n2),

(II.19)
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and then to identify 4 blocks

Bl1 = [λ1(KN ), . . . , λn2(KN )] ,

Bl2 = [λn2+1(KN ), . . . , λ3n2(KN )] ,

Bl3 = [λ3n2+1(KN ), . . . , λ6n2(KN )] ,

Bl4 = [λ6n2+1(KN ), . . . , λ9n2(KN )] .

Correspondingly, we can split the vector P (n) containing the sampling of the eigenvalue functions

on Gn as follows

Eval1 = [(P (n))1, . . . , (P
(n))n2 ],

Eval2 = [(P (n))n2+1, . . . , (P
(n))3n2 ],

Eval3 = [(P (n))3n2+1, . . . , (P
(n))6n2 ],

Eval4 = [(P (n))6n2+1, . . . , (P
(n))9n2 ].

Note that because of (II.19), a number of outliers in�nitesimal in the dimension N is allowed.

For instance, when n = 40 (N = 14400), we �nd

9n2

9
= 1600, 2

9n2

9
= 3200, 3

9n2

9
= 4800,

and

# {i : λi(KN ) ∈ (0,M1]} = 1444,

# {i : λi(KN ) ∈ [m2,M3]} = 2911,

# {i : λi(KN ) ∈ [m4,M6]} = 4670,

# {i : λi(KN ) ∈ [m7,M9]} = 5016.

(II.20)

Therefore, from relations (II.20), we expect a number of eigenvalues of KN which are in none

of the blocks or which are in the �wrong� block (5016 e�ective against 4800 expected eigenvalues

in the last block). This is con�rmed by Figure II.5 in which we represent in black the whole

spectrum ofKN and highlight by means of di�erent colours the eigenvalues belonging to di�erent

blocks. On the other hand, such a phenomenon is in line with relations (II.19) and the order

of what is missing/exceeding is in�nitesimal in the dimension N . As an example, in Table II.1

we compare the actual number of eigenvalues of KN contained in the �rst interval (0,M1] with

the expected number 9n2/9. In such way, we succeed in counting the outliers of KN in (0,M1],

whose cardinality behaves as O(
√

9n2).

A further evidence of relation (II.16) can be obtained by comparing block by block the

eigenvalues of KN with the sampling of the eigenvalue functions of f, that is comparing Bl1, Bl2,

Bl3, Bl4 with Eval1, Eval2, Eval3, Eval4, respectively. Two possibilities are available.

� On one hand, we can order Evalt in a non decreasing way and compare it with Blt.

As an example, in Figure II.6 we compare Bl1 with Eval1 �xed n = 40. Note that a

certain number of eigenvalues of KN seems not to behave as the corresponding sampling

of λ(1)(f). Nevertheless, a direct computation showed that such a number agrees with the

one reported in Table II.1. Similar results can be obtained in the comparison between Bl2

with Eval2, Bl3 with Eval3, Bl4 with Eval4.
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Figure II.5: Eigenvalues of KN for n = 40 (∗) together with the eigenvalues of KN satisfying (II.19) (∗)(∗)(∗)(∗)

n eigs in (0,M1] 9n2/9 Out. Out./
√

9n2

10 64 100 36 1.20

15 169 225 56 1.24

20 324 400 76 1.26

25 529 625 96 1.28

30 784 900 116 1.29

35 1089 1225 136 1.29

40 1444 1600 156 1.30

Table II.1: Comparison of the e�ective number of eigenvalues of KN contained in the �rst interval (0,M1] with

the expected number 9n2/9

� On the other hand, we can compare the elements of Evalt with the elements of Blt by

means of the following matching algorithm

� for a �xed λ ∈ Blt �nd η̃ ∈ Evalt such that

‖λ− η̃‖ = min
η∈Evalt

‖λ− η‖;

� associate λ to the couple in Gn corresponding to η̃.

Making use of the previous algorithm, in Figure II.7, we compare the eigenvalues of KN

with λ(l)(f), l = 1, . . . , 9 displayed as a mesh on Gn, for n = 40. Once again, the eigenvalues

of KN mimic, up to outliers, the sampling of the eigenvalue functions.

Moreover, looking at Figure II.7(a), we computed the eigenvalues of KN which do not

behave as the corresponding sampling of λ(1)(f) and, as expected, their order is O(
√

9n2)

(see again Table II.1). As an additional con�rmation of such a behaviour, in Table II.2

we show the number of outliers of KN with respect to the sampling of λ(9)(f) (see Figure

II.7(i)).
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Figure II.6: Comparison between Bl1 (∗) and Eval1 (∗), for n = 40

n Out. Out./
√

9n2

10 40 1.33

15 60 1.33

20 80 1.33

25 100 1.33

30 120 1.33

35 140 1.33

40 160 1.33

Table II.2: Number of eigenvalues of KN which do not behave as the corresponding sampling of λ(9)(f).

II.2.3 A focus on the eigenvalue functions in a neighborhood of the origin

In this subsection we study in more detail the behaviour of the eigenvalues λ(l) (f), l = 1, . . . , 9

at (0, 0). Such information is crucial when studying the convergence of a preconditioned Krylov

or of a multigrid method. Since
(
λ(1)(f)

)
(θ1, θ2) <

(
λ(l)(f)

)
(θ1, θ2), l = 2, . . . , 9, (θ1, θ2) ∈ I+

2 , (II.21)

it is su�cient to study λ(1)(f) in (0, 0). Because of (II.21), the behaviour of λ(1)(f) in (0, 0) is

equivalent to the one of

det f(θ1, θ2) =

9∏

i=1

(
λ(i)(f)

)
(θ1, θ2)

at the same point, which as a product of nonnegative functions is still a nonnegative function.

We numerically checked that

det f(θ1, θ2)|(0,0) = 0,

∂ det f(θ1, θ2)

∂θ1

∣∣∣∣
(0,0)

=
∂ det f(θ1, θ2)

∂θ2

∣∣∣∣
(0,0)

= 0,

∂2 det f(θ1, θ2)

∂θ2∂θ1

∣∣∣∣
(0,0)

=
∂2 det f(θ1, θ2)

∂θ1∂θ2

∣∣∣∣
(0,0)

= 0,
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Figure II.7: Comparison between the eigenvalues of KN and λ(l)(f), l = 1, . . . , 9 displayed as a mesh on Gn, when

n = 40

∂2 det f(θ1, θ2)

∂θ1
2

∣∣∣∣
(0,0)

=
∂2 det f(θ1, θ2)

∂θ2
2

∣∣∣∣
(0,0)

=
53

3912
.

Therefore,

(∇det f(θ1, θ2))|(0,0) =



∂ det f(θ1,θ2)

∂θ1

∣∣∣
(0,0)

∂ det f(θ1,θ2)
∂θ2

∣∣∣
(0,0)


 =

[
0

0

]
,

and

(Hdet f)|(0,0) =



∂2 det f(θ1,θ2)

∂θ1
2

∣∣∣
(0,0)

∂2 det f(θ1,θ2)
∂θ1∂θ2

∣∣∣
(0,0)

∂2 det f(θ1,θ2)
∂θ2∂θ1

∣∣∣
(0,0)

∂2 det f(θ1,θ2)

∂θ2
2

∣∣∣
(0,0)


 =

[
53

3912 0

0 53
3912

]
,
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that is the Hessian matrix (Hdet f)|(0,0) is positive de�nite. As a consequence,

det f(θ1, θ2) = det f(θ1, θ2)|(0,0) + (∇det f(θ1, θ2))T
∣∣
(0,0)

[
θ1

θ2

]
+

+
1

2

[
θ1

θ2

]T
(Hdet f)|(0,0)

[
θ1

θ2

]
+ o

(
‖θ‖22

)
,=

53

3912
(θ2

1 + θ2
2) + o

(
‖θ‖22

)
,

where ‖θ‖22 = θ2
1 + θ2

2.

Hence, in a neighborhood of (0, 0) det f(θ1, θ2) behaves as a quadratic form and

lim
‖θ‖2→0

det f(θ1, θ2)

‖θ‖22
=

53

3912
,

which means that det f(θ1, θ2) and then λ(1)(f) have a zero of order 2 in (0, 0), as con�rmed by

Figure II.8 and Figure II.3(a), respectively. Finally, in the light of the third Item of Theorem
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Figure II.8: det f(θ1, θ2), (θ1, θ2) ∈ I2

I.4.4, we conclude that the minimal eigenvalue of Tn(f) goes to zero as (N(n))−1.

II.2.4 Spectral analysis of KN via low rank perturbations

In this subsection we study the extremal behaviour of the matrix KN , by making a careful

analysis of the low rank matrix En, de�ned in Section II.2.1. In particular, we show that En

a�ects the number of outliers of KN but does not in�uence the behaviour of the minimum

eigenvalue of KN with respect to that of Tn(f).

As shown in Section II.2.1, the matrix KN is the sum of two Hermitian matrices, Tn(f) and En.

The structural and the spectral feature of Tn(f) have already been discussed in Section II.2.1,

while En is a block diagonal matrix with 9n× 9n block diagonal blocks. In particular there are

just 3 types of nonzero blocks in the matrix En.

1. E
(l)
n , that is in the top left corner,

2. E
(r)
n , that is in the bottom right corner,

3. E
(c)
n , that is repeated n− 2 times in the centre of the matrix.
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We will prove that E
(l)
n , E

(r)
n are positive de�nite, while E

(c)
n is nonnegative de�nite. This allows

us to conclude that En is a nonnegative de�nite matrix.

Let us start by observing that E
(l)
n , E

(r)
n and E

(c)
n are block diagonal themselves with 9 × 9

diagonal blocks. In detail, E
(l)
n and E

(r)
n are composed by n blocks of �xed dimension 9 × 9,

e
(l)
i and e

(r)
i , i = 1, . . . , n, respectively, ordered in non decreasing way from the top left to the

bottom right. Moreover we have

e
(l)
i = e

(l)
i+1, i = 2, . . . , n− 2 (II.22)

e
(r)
i = e

(r)
i+1, i = 2, . . . , n− 2 (II.23)

and

e
(r)
1 = J e(l)

n J ,

e(r)
n = J e(l)

1 J

e
(r)
i = J e(l)

i J , i = 2, . . . , n− 1

where J is the 9× 9 Hankel �ip-matrix

J =




1

1

. .
.

1



.

Note that J = J −1, then

e
(r)
1 ∼ e(l)

n , (II.24)

e(r)
n ∼ e(l)

1 , (II.25)

e
(r)
i ∼ e

(l)
i , i = 2, . . . , n− 1. (II.26)

A direct computation shows that e
(l)
1 , e

(l)
2 , e

(l)
n are positive de�nite, therefore according to rela-

tions (II.22)-(II.23) and (II.24)-(II.26) we can conclude that E
(l)
n , E

(r)
n are positive de�nite.

The matrix E
(c)
n has only 2 nonzero 9 × 9 blocks, e

(c)
1 , e

(c)
n in the top left and bottom right

corner respectively, such that

e(c)
n = J e(c)

1 J , (II.27)

while

e
(c)
i = O9, i = 2, . . . , n− 1.

Because of equation (II.27) it holds that

e
(c)
1 ∼ e(c)

n ,
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then, checking directly that e
(c)
1 is positive de�nite, we have proved that E

(c)
n is nonnegative

de�nite.

Summarizing, since E
(l)
n , E

(r)
n are positive de�nite, while E

(c)
n is nonnegative de�nite, we can

conclude that En is a nonnegative de�nite matrix.

Let

λ1(Tn(f)) ≤ λ2(Tn(f)) ≤ · · · ≤ λN (Tn(f))

be the eigenvalues of Tn(f). Since En is nonnegative de�nite, the Interlacing Theorem [13] ,

applied to the matrices KN , Tn and En, leads to the relation

λj(Tn(f)) ≤ λj(KN ) ≤ λγ+j(Tn(f)) (II.28)

for 1 ≤ j ≤ N − γ, where γ is the rank of En(f).

This relation is useful for the study of the conditioning of the matrix KN .

As shown in the last subsection

λ1(Tn(f))
n→∞∼ (N(n))−1,

and in addition, from Section II.2.1, {KN}N ∼λ (f, I2) and λ1(f(0, 0)) = 0, with f nonnegative

de�nite. Hence the minimum eigenvalue of KN , λ1(KN ), has to go to zero.

The relation (II.28) provides a lower bound for the convergence speed of λ1(KN ) to zero, in fact,

choosing in (II.28) j = 1,

λ1(Tn(f)) ≤ λ1(KN ), (II.29)

and this implies that λ1(KN ) does not go to zero faster than λ1(Tn(f)).

This means that the system (II.10) has the coe�cient matrix KN with a better conditioning,

with respect to that of the matrix Tn(f), which is quadratic with the inverse of the mesh size.

In Subsection II.2.2, Table II.2, we have seen that the ratio between the number of outliers of

KN with respect to the sampling of λ(9)(f) and
√

9n2 is constantly equal to 4
3 , so the number of

outliers of KN is 4
3

√
9n2 = 4n.

Because of the fact that the matrix En is a block diagonal matrix with precisely 2n+2(n−2) =

4n− 4 of its 9× 9 blocks positive de�nite, we have that En has exactly

9(2n) + 9(2(n− 2)) = 36n− 36

linearly independent rows and then γ grows exactly as 36n− 36 (see Table II.3).

This value is greater than the number of outliers, but asymptotically has the same order and

the latter is in line with the theoretical forecasts induced by the Interlacing Theorem.

II.2.5 Further variations

The numerical tests in Subsection II.2.2 are done using Dirichlet pressure boundary conditions

everywhere and a standard nodal approach of conforming continuous �nite elements, in order to

develop the basis functions (the Lagrange interpolation polynomials passing through the given

set of nodes), which are needed to compute the values in KN .

Two simple but important changes can be considered, but their detailed analysis will be the

subject of future research:
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n Rank(En(f))

10 324

15 504

20 684

25 864

30 1044

35 1224

40 1404

Table II.3: Rank(En(f)) with increasing n

� using periodic boundary conditions;

� considering another standard basis of Lagrange interpolation polynomials, passing through

the Gauss-Legendre quadrature points.

The �rst is motivated by the fact that several important numerical tests use this kind of boundary

condition, the second one by the fact that this important kind of polynomial basis constitute an

orthogonal basis. In this way the mass matrices used in the numerical method become diagonal

and hence require less memory and computational e�ort (see, e.g., [65]). Here we give some

details on the �rst Item.

Indeed, if we use periodic boundary conditions, then we obtain a sequence of linear systems

analogous to (II.10) of the form

CNx = b, CN ∈ RN×N , x, b ∈ RN . (II.30)

The symmetric matrix CN ≡ Cn(f) is the circulant matrix generated by the symbol f : I2 →
Cs×s, s = (p+ 1)2, described in Section II.2.1

f(θ1, θ2) = f̂(0,0) + f̂(−1,0)e
−iθ1 + f̂(0,−1)e

−iθ2 + f̂(1,0)e
iθ1 + f̂(0,1)e

iθ2 ,

Because f is a trigonometric polynomial, taking into account Theorem I.6.2 and Remark 3, for

n su�ciently large we have

Cn(f) = (Fn ⊗ Is)Dn(f)(Fn ⊗ Is)∗, (II.31)

with Dn(f) as in (I.22).

In (II.31), as stated in Theorem I.6.2, the matrix Fn⊗Is is unitary and Dn(f) is a block diagonal

matrix with Hermitian blocks, f
(
θ

(n)
r

)
, so we have

Λ(Cn(f)) =
{
λ(l)

(
f
(
θ

(n)
r

))
: r = 0, . . . ,n− e ; l = 1 . . . , s

}
, (II.32)

where, for a �xed θ
(n)
r , λ(l)

(
f
(
θ

(n)
r

))
l = 1 . . . , s are the eigenvalues of f

(
θ

(n)
r

)
.

Fixed n = (n1, n2), with n1 = n2 = n, and p = 2 the eigenvalues of CN , with N = 9n2, are a
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sampling of the eigenvalue functions λ(1)(f), . . . , λ(9)(f) on a equispaced grid on [0, 2π]2,

Jn =

{(
2πj

n
,
2πk

n

)
, j, k = 0, . . . , n− 1

}
.

Regarding the case of a possible change of the basis functions used for representing our

numerical solution, we just mention that the new coe�cient matrix is of the form K̃N = Tn(̃f) +

Ẽn, with the same dimensions and structure seen in (II.11) but with di�erent coe�cients. The

symbol f̃ is again a trigonometric polynomial of the form described before and we obtain, with

the same argument, {K̃N}N ∼λ (̃f, I2). However, the analytical behavior of f̃ has to be studied

in detail and this will be considered in a future work.

II.3 Numerical experiments

In this section we numerically verify the spectral properties derived in Section II.2 on several

applications of the staggered DG method [65] for the incompressible Navier-Stokes equations

(II.1)-(II.2). In particular we evaluate the computational e�ort needed for solving the main linear

system for the calculation of the discrete pressure using successive re�nements of a regular grid

with n := n1 = n2 = . . . = nk on a square computational domain Ω. From the analysis given

in Section II.2 we expect a condition number κ = κ(KN ) ≈ cN
2
k (the analysis has been done

for k = 2 but it is easily extendible to any k > 2) where k represents the space dimension, N =

nk(p+1)k is the matrix size, p the polynomial degree of the DG discretization, and c is a positive

real constant. Due to the use of the CG method and the spectral distribution/conditioning

results, the expected number of iterations for reaching a precision ε can be expressed as

Iter(n) ≈ 1

2

√
c log

(
2||r0||
ε

)
(p+ 1)n k = 2, 3. (II.33)

where r0 = pτ+δτ−pτ+δτ
0 is the initial residual between the numerical solution p at the new time

step τ + δτ and the initial guess for the CG method that is indicated with pτ+δτ
0 . In particular

we will use a trivial initial guess pτ+δτ
0 = bτ or a better one that is based on the solution at

the previous time τ , i.e. pτ+δτ
0 = pτ . In the following we will indicate with the term �IG� this

second choice for the initial guess. Furthermore, ε is set to 10−8 for all the simulations.

II.3.1 Taylor Green vortex

First of all we take a classical test problem, the two and three dimensional Taylor Green vortex.

The initial condition is given by

u(x, 0) = sin(x) cos(y), v(x, 0) = − cos(x) sin(y), p(x, 0) =
1

4
[cos(2x) + cos(2y)] , (II.34)

for k = 2 and

u(x, 0) = sin(x) cos(y) cos(z), v(x, 0) = − cos(x) sin(y) cos(z),

w(x, 0) = 0, p(x, 0) =
1

16
[cos(2x) + cos(2y)] [cos(2z) + 2] , (II.35)
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for k = 3. The behavior of the solution for k = 3 was numerically studied by Brachet et

al. in [22] and consists in a fast generation of small scale structures, whose kinetic energy

dissipation was monitored for several Reynolds numbers, see, e.g., [22, 65, 137]. For k = 2

and short times there is an analytical representation of the energy dissipation due to friction

phenomena and hence this test can be used to check the accuracy of the numerical algorithm,

see [65]. We consider Ω = [0, 2π]k; δτ = 5 · 10−3; τend = 2; Reynolds number Re = 800 and

periodic boundary conditions everywhere. The resulting �nal pressure at τ = τend is shown in

Figure II.9 for k = 2 and 3. The obtained average number of iterations needed to compute the

solution is reported in Table II.4 and Figure II.10 for the two particular choices of pτ+δτ
0 = bτ

and a better initial guess pτ+δτ
0 = pτ . The expected linear behavior for both two and three

dimensional case is achieved according to equation (II.33). Note that the choice of the initial

guess pτ+δτ
0 = pτ becomes particularly good when the solution is steady or quasi-steady, since

pτ+δτ − pτ ≈ (KN )−1(bτ − bτ−δτ ) and bτ − bτ−δτ contains essentially the variation of the

convective-viscous contribution. Hence, for quasi stationary problems or small perturbations

around a steady state, pτ is a good candidate for the initial guess of the CG algorithm. In

practice, what we observe is indeed that the needed number of iterations tends to decrease due

to a better choice of the initial guess, as suggested in equation (II.33). Note, however, that

the asymptotic behavior remains the same, i.e. linear in n, see Figure II.10 for a graphical

representation.

Figure II.9: Pressure pro�les at τ = τend. Pressure contours for k = 2 (left) and isosurfaces for k = 3 (right).

II.3.2 Modi�ed double shear layer

The previous test manifests at τend = 2 a relatively complex behavior for k = 3 but a simple

one involving sinusoidal functions for k = 2. In this section we want to test the behavior of the

number of iterations in a variant of the classical 2D double shear layer originally studied in [12].

For this test case we consider the same initial condition as the one used in [136]. In the original

study there is a regular jet region with v = (1, 0) in a �uid with velocity v = (−1, 0). The �ow

is characterized by two shear layers with high velocity gradient in the y-direction. This steady

state is physically unstable due to the Kelvin-Helmholtz instability and tends to generate also

48



II.3. Numerical experiments

k = 2 k = 3

n N Iter Iter with IG n N Iter Iter with IG

40 14400 65.8 40.3 10 27000 32.2 22.1

50 22500 80.7 50.3 15 91125 55.1 34.6

60 32400 95.8 60.8 20 216000 64.3 46.5

70 44100 109.8 69.9 25 421875 82.9 58.8

80 57600 123.3 78.5 30 729000 96.4 71.5

90 72900 136.7 87.0 35 1157625 113.3 84.1

100 90000 150.0 95.4 40 1728000 128.9 96.6

Table II.4: Resulting average number of CG iterations for τ ∈ [0, 2] with the choice of pτ+δτ0 = bτ (Iter) and the

use of the initial guess pτ+δτ0 = pτ (Iter with IG) for k = 2, 3.
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(a) k = 2
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(b) k = 3

Figure II.10: Resulting average number of CG iterations as a function of n with and without the IG initial guess

compared with the linear extrapolation of the data, for k = 2, 3.

49



Chapter II. Spectral analysis on SDG methods for the incompressible

Navier-Stokes equations

in this case vortical structures close to the shear layers. In order to drive this instability, a small

perturbation is introduced in the vertical velocity directly at τ = 0. In [12] the evolution of this

instability was performed for periodic boundary conditions everywhere.

For this test we take p = 2, τend = 1; Re = 800 but pressure boundary condition everywhere

in order to introduce the important perturbation matrix En discussed in Section II.2.1. In this

case we expect a slightly di�erent behavior with respect to what is observed in [12], owing to the

use of a di�erent type of boundary conditions. In any case the resulting pressure �eld will not

maintain a simple sinusoidal structure for k = 2. The resulting numerical solution at τ = τend

for the �nest grid is reported in Figure II.11 while the obtained average number of iterations is

shown in Table II.5 and the corresponding plot in Figure II.12. As expected, also in this case

the behavior for the number of iterations is linear with respect to N1/k.
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Figure II.11: Numerical solution for the modi�ed double shear layer at τ = 1. Top: the pressure and the vorticity.

Bottom: from left to right, u and v velocity component, respectively.

II.3.3 Preconditioning

A simple preconditioner is based on the use of the two-level circulant matrix C n(f) that is directly

associated to the fully periodic boundary case. In this case we can choose as preconditioner the

matrix C n(f) with the Strang correction P n(f) = C n(f) + ee> 1
N2 where eT = (1, . . . , 1) is the
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n N Iter Iter with IG

10 900 98.7 74.1

20 3600 195.9 138.9

30 8100 297.1 201.8

40 14400 400.1 264.3

50 22500 504.0 325.3

60 32400 607.1 386.3

70 44100 711.3 447.0

Table II.5: Resulting average number of CG iterations for τ ∈ [0, 1] with and without the IG initial guess.
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Figure II.12: Average number of CG iterations as function of n obtained in the modi�ed double shear layer test

case with and without the IG initial guess compared with the linear extrapolation of the data.

N−dimensional unitary vector. The inverse of this matrix is still a circulant matrix and so its

computation can be done at the cost of O(N logN). In this section we want to investigate the

impact of this simple preconditioner on the number of iterations in the complete case where

the coe�cient matrix is KN (see Subsections II.2.2.1, II.2.2.2 ). For this test we take the same

framework as in the previous numerical experiment, using pτ as initial guess. The resulting

number of iterations is reported in Table II.6

The use of this preconditioner drastically reduces the number of iterations as well as the

behavior that seems to be sub-linear and almost �at with respect to the case without precondi-

tioner, see Figure II.13. A comment on the latter fact has to be made. First of all we observe

that the matrix sequences {KN} n and {P n(f)} n share the same spectral symbol f, by Items

GLT1, GLT2, and GLT4, since the rank of the di�erences KN−Tn(f) = En and P n(f)−Tn(f)

grows as N1/2. As a consequence, since f is singular only at a unique point, that is (0, 0), again

by Item GLT2 we deduce that the preconditioned matrix-sequence {P−1
n (f)KN} n is a GLT
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n N Iter (CG method) Iter (PCG method)

10 900 74.1 24.6

20 3600 138.9 30.1

30 8100 201.8 33.3

40 14400 264.3 35.8

50 22500 325.3 38.3

Table II.6: Resulting average number of iterations for τ ∈ [0, 1] with CG and PCG whose preconditioner is the

2-level circulant Pn(f).

sequence with symbol 1. Since for every N, n, the matrix P−1
n (f)KN is similar to a symmetric

we deduce that 1 is the spectral symbol of the preconditioned matrix-sequence. In addition the

analysis of the rank corrections tells that the number of outlying eigenvalues grows at most as

O(N1/2). However, from the classical theory of the (preconditioned) CG convergence we know

that small outliers negatively a�ect the convergence more than large outliers. Now, since the

coe�cient matrix KN can be written as Tn(f) + En and since we proved that En is nonneg-

ative de�nite, we expect that the outliers are large (as practically observed in the numerical

experiments) and this is the reason why the number of iterations seems to grow slower than the

number of estimated outlying eigenvalues.
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Figure II.13: Average number of iterations obtained in the modi�ed double shear layer test case with CG and

PCG whose preconditioner is the 2-level circulant Pn(f).

Let us now take a look at the gain in terms of CPU time obtained by the use of this

simple preconditioner. Since Pn(f) is a circulant matrix, we can diagonalize it as FDF ∗ where
F = Fn⊗Fn⊗F9 is the three-level Fourier matrix and D is a block diagonal matrix. We can then

use the Fast Fourier Transform (FFT) to construct the matrix D = F ∗Pn(f)F and then D−1 by
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inverting each single block. Once D−1 is known, we can easily compute P−1
n (f)x = F ∗D−1Fx

using the three-level FFT algorithm to compute �rst x1 = Fx at the cost of O(N logN). Then

we have to compute x2 = D−1x1 at a linear cost and �nally we obtain P−1
n (f)x = F ∗x2 again at

the cost of O(N logN). A particular test when we can really take advantage of this procedure

is the fully periodic case so that the considered test becomes the classical double shear layer

test case. The resulting total CPU time as well as the total CPU time needed to compute

only the linear system is reported in Table II.7 for the fully periodic case (i.e. classical double

shear layer). In Table II.8 we report the obtained results for the case with pressure boundary

conditions everywhere (i.e. modi�ed double shear layer).

No Preconditioner With Preconditioner

n Nstep TTOT
TTOT

Nstep
TLS

TLS

Nstep
TTOT

TTOT

Nstep
TLS

TLS

Nstep

32 709 195.51 0.28 126.92 0.18 77.56 0.11 6.42 0.01

64 1411 2298.6 1.63 1793.5 1.27 609.06 0.43 48.76 0.03

128 2829 31284. 11.06 27218. 9.62 4434.81 1.57 367.12 0.13

Table II.7: Number of time steps Nstep, total and relative (small numbers) CPU time for the solution of the main

linear system for the pressure (TLS) and the entire CPU time (TTOT ) for fully periodic boundary conditions.

Note that in this test p = 2, k = 2 and N = (p+ 1)k nk.

No Preconditioner With Preconditioner

n Nstep TTOT
TTOT

Nstep
TLS

TLS

Nstep
TTOT

TTOT

Nstep
TLS

TLS

Nstep

32 696 371.36 0.53 296.50 0.43 219.20 0.31 142.20 0.20

64 1410 4868.4 3.45 4280.4 3.04 2034.6 1.44 1419.9 1.01

128 2853 72713. 25.49 67693. 23.73 20509. 7.19 15320. 5.37

Table II.8: Number of time steps Nstep, total and relative (small numbers) CPU time for the solution of the

main linear system for the pressure (TLS) and the entire CPU time (TTOT ) for pressure boundary conditions

everywhere. Note that in this test p = 2, k = 2 and N = (p+ 1)k nk.

As expected, since the symbol fully represents the periodic case, the gain on TLS obtained

by introducing the preconditioner is impressive. In fact, the computational cost is essentially

the cost of a fully explicit formula for large N . In fact, a solution method in this case is just the

application of a standard inversion formula for block circulant matrices.

In the worst case where we introduce pressure boundary conditions everywhere, we observe

a gain factor TnopreLS /T preLS of 2.0, 3.0, 4.4 for n = 32, 64, 128, respectively. Hence, the advantage

of using the basic Strang-type preconditioner suggested by our spectral analysis is veri�ed both

for periodic and non periodic case.

II.3.4 A multigrid approach

The PCG procedure de�ned in the previous subsection is practically e�ective, but still there is

room for improvements: in fact, the cost of each PCG iteration is O(N logN) because of the use
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of a block Fast Fourier Transform (FFT) and the number of iterations grows at most linearly

with the partial sizes, for moderate matrix sizes, due to the rank of the di�erence between the

actual matrix and the Strang-type preconditioner. In conclusion the computational cost results

in O(N3/2 logN), which is not optimal. Here for optimality we mean a total cost for solving the

linear system with a preassigned accuracy proportional to the cost of the matrix-vector product,

where the matrix is the coe�cient matrix and the vector is generic. Since the coe�cient matrix

is sparse the optimality amounts in a cost of O(N).

By exploiting the spectral analysis provided so far, a way for recovering optimality relies in

following a multigrid approach, which we brie�y sketch below.

Consider the linear system

ANxN = bN (II.36)

where xN , bN ∈ CN , AN =WN − BN ∈ CN × CN , WN non singular matrix. Let

x(j+1) = VNx
(j) + b1 := VN (x(j), b1) (II.37)

be an iterative method for the solution of system (II.36), where b1 := W−1
N b ∈ CN and VN :=

IN −W−1
N AN ∈ CN ×CN . Let pMN ∈ CN ×CM be a full-rank matrix, withM < N . A Two-Grid

Method (TGM) is de�ned by the following algorithm [145]

1. dN = ANx
(j) − b

2. dM = (pMN )∗dN

3. AM = (pMN )∗AN (pMN )

4. SolveAMy = dM

5. x̂(j) = x(j) − pMN y
6. x(j+1) = V µ

N (x̂(j), b1)

Step 6 consists in applying the �smoothing iteration� (II.37) µ times while steps 1-5 de�ne the

�coarse grid correction�, that depends only on the projection operator pMN . The global iteration

matrix of the TGM is given by

TGM(VN , p
M
N ) = V µ

N

[
I − pMN

((
pMN
)∗
ANp

M
N

)−1 (
pMN
)∗
AN

]
.

We remind that, if step 4 is replaced by a recursive call to the same algorithm (until the size

M is bounded from above by a �xed constant), then the scheme given before de�nes a V-cycle

procedure.

Our idea is to follow the same proposal as in [128] for Toeplitz structures generated by a

scalar-valued symbol, where the scalar generating function considered in [128] is replaced by the

minimal eigenvalue function of our matrix-valued symbol. According to this choice, since the

minimal eigenvalue function is of Laplacian type that is a nonnegative function with a unique

zero at (0, 0) of order two, then the projector has the form

p
n/2
n = Tn(p)(Z

n/2
n ⊗ I9),

where the generating function associated to the projector is

p(θ1, θ2) =
[
(2 + 2 cos(θ1)) (2 + 2 cos(θ2))

]
I9 ∈ R9×9, (II.38)
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Tn(p) =




2 1

1 2 1

1 2 1
. . . 1

1 2



⊗




2 1

1 2 1

1 2 1
. . . 1

1 2



⊗ I9, (II.39)

Z
n/2
n = Zn1/2

n1
⊗ Zn2/2

n2
,

and Z
m/2
m is the m× m−1

2 matrix given by

(Zm/2m )i,j =





1 for i = 2j

0 otherwise
i = 1, . . . ,m, j = 1, . . . ,

m− 1

2
, (II.40)

with m of the form m = 2t − 1, with t positive integer.

In the following ε is set to 10−8 for all the simulations, b and x0 are the known term and

the initial guess, respectively. We use as Pre/Post- smoother 1 iteration of Gauss-Seidel. In

Table II.9 we compare the iterations of the block TGM with those of our PCG with Strang-type

preconditioner, when increasing the size N . We can observe that the number of iterations of

block TGM for achieving a precision ε remains constant, cost = 18, when increasing the size N .

Here the right-hand side is the sampling of a smooth functions but no qualitative variations are

observed with di�erent choices.

n N = 9n2 PCG TGM

15 2025 22 18

21 3969 26 18

25 5625 27 18

31 8649 28 18

35 11025 30 18

41 15129 32 18

45 18225 32 18

Table II.9: Number of iterations for Tn(f) provided by PCG and TGM with 1 Pre/Post-smoothing Gauss-Seidel

iteration.

Now we check the TGM optimality in the complete case of

AN = Tn(f) + En.

Because of the fact that En is nonnegative de�nite and Tn(f) is positive de�nite we have

AN ≥ Tn(f); (II.41)

Hence, according to the result in Remark 5 [127], we have that the same TGM, designed for

Tn(f), has to be optimal also for AN .

In Table II.10 we can observe that the number of iterations of block TGM, needed for achieve the

tolerance ε, remains constant (cost ≈ 30), when increasing the size n. Therefore the application
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n N = 9n2 PCG TGM

15 2025 40 29

21 3969 45 29

25 5625 47 30

31 8649 50 30

35 11025 51 30

41 15129 53 30

45 18225 54 30

Table II.10: Number of iterations for AN = Tn(f) +En provided by PCG and TGM with 1 Pre/Post-smoothing

Gauss-Seidel iteration.

of the V-cycle for solving a linear system with our Strang-type preconditioner will decrease the

computational cost from O(N3/2 logN) to O(N3/2), which is a slight improvement, while the use

of the V-cycle algorithm directly on the original linear system in connection with the basic Gauss-

Seidel smoother induces a O(N) solver, that is a solver with an optimal cost. For the formal

proof of convergence of the Two-Grid method it is enough to mimic the same steps as in [128],

taking into account the order-relation results in [127] and the spectral study in which we proved

that: a) the minimal eigenvalue function is of Laplacian type that is a nonnegative function

with a unique zero at (0, 0) of order two, and b) AN ≥ Tn(f). The V-cycle analysis should follow

the more advanced tools in [3], which again rely strongly on the analytical information regarding

the spectral symbol studied in the previous sections. A formal study of these issues and more

e�cient combinations involving multigrid schemes and preconditioned Krylov techniques will be

the subject of future researches.

56



Chapter III

Asymptotic Expansion: an algorithm

for preconditioned matrices

III.1 Generalization of the preconditioned Asymptotic Expan-

sion

The present chapter is devoted to present the asymptotic spectral expansion for the eigenvalues

of preconditioned Toeplitz matrices Pn(f, g) = T−1
n (g)Tn(f). We consider the case where f is a

trigonometric polynomial, g is a nonnegative and not identically zero trigonometric polynomial.

We provide numerical evidence that few of the assumptions of [16, 17, 19] can be relaxed,

accompanied by an appropriate error analysis and numerical experiments.

Main contributions

The main results of the Chapter can be summarized as follows.

1. We provide numerical evidence of a precise asymptotic expansion for the eigenvalues of

Pn(f, g). Precisely, we show through numerical experiments that, under the assumption

that r = f/g is monotone, for every integer α ≥ 0, every n and every j = 1, . . . , n, the

following asymptotic expansion holds:

λj(Pn(f, g)) = r(θj,n) +
α∑

k=1

ck(θj,n)hk + Ej,n,α, (III.1)

where:

� the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing order,

depending on whether r is increasing or decreasing;

� {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on r;

� h = 1
n+1 and θj,n = jπ

n+1 = jπh;

� Ej,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |Ej,n,α| ≤
Cαh

α+1 for some constant Cα depending only on α and r.
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We refer the reader to the Chapter VI Section VI.2 for a proof of the expansion (III.1)

for α = 0.

We note that (III.1) is formally the same as the expansions for the eigenvalues of Toeplitz

matrices, which have been conjectured and validated through numerical experiments in

[62].

2. Based on the expansion (III.1) and drawing inspiration from [61], we propose a paral-

lel interpolation�extrapolation algorithm for computing the eigenvalues of Pn(f, g). The

computation is performed for very large n, when the eigenvalues of Pni(f, g) have been

computed, for moderate values of ni, i = 1, . . . , α, with α a �xed small number. The

performance of the algorithm is illustrated through numerical experiments.

The context we consider is that of a scalar univariate generating function φ. In addition

all the functions involved are real-valued, hence, by the properties seen in Section I.4.1, all the

Toeplitz matrices Tn(φ) are Hermitian. From the results seen in Chapter I much is known

regarding their spectral properties: from the localization of the eigenvalues to the asymptotic

spectral distribution in the Weyl sense. Indeed we recall that, under these hypothesis φ is the

spectral symbol of {Tn(φ)}n, see [20, 77] and the references therein.

In addition, if φ is real-valued and not identically constant, then any eigenvalue of Tn(φ)

belongs to the open set (mφ,Mφ), with mφ, Mφ being the essential in�mum, the essential

supremum of φ, respectively. Notice that the case of a constant φ is trivial: in that case if φ = γ

almost everywhere then Tn(φ) = γIn.

Hence if Mφ > 0 and φ is nonnegative almost everywhere, then Tn(φ) is Hermitian positive

de�nite.

In this chapter we focus our attention on the following setting.

� We consider two real-valued cosine trigonometric polynomials (RCTPs) f, g, that is

f(θ) = f̂0 + 2

d1∑

k=1

f̂k cos(kθ), f̂0, f̂1, . . . , f̂d1 ∈ R, d1 ∈ N,

g(θ) = ĝ0 + 2

d2∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝd2 ∈ R, d2 ∈ N,

so that Tn(f), Tn(g) are both real symmetric.

� We assume that Mg = max g > 0 and mg = min g ≥ 0, so that Tn(g) is positive de�nite.

� We consider Pn(f, g) = T−1
n (g)Tn(f) the �preconditioned� matrix and we de�ne the new

symbol r = f/g.

The nth Toeplitz matrix generated by φ ∈ {f, g} is the real symmetric banded matrix of
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bandwidth 2d+ 1, d ∈ {d1, d2} (d = d1 if φ = f and d = d2 if φ = g), given by

Tn(φ) =




φ̂0 φ̂1 · · · φ̂d

φ̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

φ̂d
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

φ̂d · · · φ̂1 φ̂0 φ̂1 · · · φ̂d
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . φ̂d

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . φ̂1

φ̂d · · · φ̂1 φ̂0




.

Matrices of the form Pn(f, g) are important for the fast solution of large Toeplitz linear

systems (in connection with the preconditioned conjugate gradient method [32, 34, 47, 116] or of

more general preconditioned Krylov methods [88, 89]). Furthermore, up to low rank corrections,

they appear in the context of the spectral approximation of di�erential operators in which a low

rank correction of Tn(g) is the mass matrix and a low rank correction of Tn(f) is the sti�ness

matrix.

Their spectral features have been studied in detail. More precisely, under the assumption

that r = γ identically Pn(f, g) = γIn. When mr < Mr then any eigenvalue of Pn(f, g) belongs

to the open set (mr,Mr), see [47], and the whole sequence {Pn(f, g)}n is spectrally distributed

in the Weyl sense as r = f/g (see [118]).

In our context, we say that a function is monotone if it is either increasing or decreasing over

the interval [0, π].

Under the assumption that r = f/g is monotone, we show experimentally in this chapter

that for every integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic expansion

holds:

λj(Pn(f, g)) = r(θj,n) +
α∑

k=1

ck(θj,n)hk + Ej,n,α, (III.2)

where:

� the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing order, depending

on whether r is increasing or decreasing;

� {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on r;

� h = 1
n+1 and θj,n = jπ

n+1 = jπh;

� Ej,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |Ej,n,α| ≤
Cαh

α+1 for some constant Cα depending only on α and r.
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In the pure Toeplitz case, that is for g = 1 identically, so that Pn(f, g) = Tn(f) and r = f ,

the result is proven in [16, 17, 19], if the RCTP f is monotone and satis�es certain additional

assumptions, which include the requirements that f ′(θ) 6= 0 for θ ∈ (0, π) and f ′′(θ) 6= 0 for

θ ∈ {0, π}. The symbols

fq(θ) = (2− 2 cos θ)q, q = 1, 2, . . . , (III.3)

arise in the discretization of di�erential equations and are therefore of particular interest. Un-

fortunately, for these symbols the requirement that f ′′(0) 6= 0 is not satis�ed if q ≥ 2. In [62]

several numerical evidences are reported, showing that the higher order approximation (III.2)

holds even in this �degenerate case�.

Here, as a �rst purpose, we show numerically the same for the preconditioned matrices

Pn(f, g) and, from a theoretical point of view, the numerical testing is complemented in Section

VI.2 of the Chapter VI by the proof of the above conjecture in the basic case of α = 0.

Furthermore, in [62], the authors employed the asymptotic expansion (III.2) for computing

an accurate approximation of λj(Tn(f)) for very large n, provided that the values

λj1(Tn1(f)), . . . , λjα(Tnα(f))

are available for moderate sizes n1, . . . , ns with θj1,n1 = · · · = θjα,nα = θj,n, α ≥ 2. The sec-

ond and main purpose of this chapter is to carry out this idea and to support it by numerical

experiments, accompanied by an appropriate error analysis in the more general case of the pre-

conditioned matrices Pn(f, g). In particular, we devise an algorithm to compute λj(Pn(f, g))

with a high level of accuracy and a relatively low computational cost. The algorithm is com-

pletely analogous to the extrapolation procedure, which is employed in the context of Romberg

integration (to obtain high precision approximations of an integral from a few coarse trapezoidal

approximations [132, Section 3.4], see also [23] for more advanced algorithms). In this regard,

the asymptotic expansion (III.2) plays here the same role as the Euler�Maclaurin summation

formula [132, Section 3.3].

The third and last purpose of this chapter is to formulate, on the basis of numerical ex-

periments, a conjecture on the higher-order asymptotic of the eigenvalues if the monotonicity

assumption on r = f/g is not in force. We also illustrate how this conjecture can be used along

with our extrapolation algorithm in order to compute some of the eigenvalues of Pn(f, g) in the

case where r is non-monotone.

III.2 Implicit Errors expansion

The proposed approach is based on the classical concept of the symbol, but with an innovative

view on the errors of the approximation of eigenvalues by the uniform sampling of the symbol. In

particular our advantage is that of manipulating the error expression implicitly given in (III.2).

In fact, if we assume that the relations in (III.2) hold, then we can write

Ej,n,0 =

α∑

k=1

ck(θj,n)hk + Ej,n,α , (III.4)

where Ej,n,0 = λj(Pn(f, g))− r(θj,n).

60
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We now suppose to know the eigenvalues for di�erent (small) ni namely

{(n1, λj1(Pn1(f, g))), (n2, λj2(Pn2(f, g))), · · · , (nα, λjα(Pnα(f, g)))},

where n1, n2, · · · , nα and j1, j2, · · · , jα are chosen in such a way that j1/(n1 +1) = j2/(n2 +1) =

· · · = jα/(nα + 1).

By de�ning h1 = 1/(n1 + 1), h2 = 1/(n2 + 1), . . . , hα = 1/(nα + 1), for a given set of

eigenvalues, equation (III.4) can be written as

Ej1,n1,0 =
α∑

k=1

ck(θj1,n1)hk1 + Ej1,n1,α,

Ej2,n2,0 =

α∑

k=1

ck(θj2,n2)hk2 + Ej2,n2,α,

Ej3,n3,0 =

α∑

k=1

ck(θj3,n3)hk3 + Ej3,n3,α,

...

Ejα,nα,0 =

α∑

k=1

ck(θjα,nα)hkα + Ejα,nα,α.

(III.5)

Let c, c̃ be the vectors

c = [c1, c2, . . . , cα]T ; c̃ = [c̃1, c̃2, . . . , c̃α]T ,

and let A be the coe�cient matrix of size α × α with components Ai,j = hji . Hence the set of

equations (III.5) can be written in matrix form as

Ac = b0 − bα , (III.6)

where b0 = [Ej1,n1,0, Ej2,n2,0, . . . , Ejα,nα,0]T and bα = [Ej1,n1,α, Ej2,n2,α, . . . , Ejα,nα,α]T . Further-

more, by neglecting the higher order errors, we may de�ne an approximation c̃ of c according to

the expression below

Ac̃ = b0 . (III.7)

In the next we analyse in more detail the properties of the matrix A. It must be highlighted

that the matrix involved is typically ill-conditioned. However, the approximation of c is easily

obtained by solving the linear system of equations above, since the matrix size is in practice

very small.

Indeed assume we are interested in calculating the eigenvalues, which are of the order O(1),

of a large matrix, for example, of the order O(106), and with ck function of the order O(1).

Then, when using the approximated c̃k and h = O(10−6), we have the term c̃3h
3 = O(10−18)

in the algorithm, which is beyond machine precision of the order O(10−16), for 64 bit double

precision computations. Therefore it is su�cient using a small α in the asymptotic expansion

(and consequently a small size of A) for reaching an accurate approximation of the ck functions,

using double precision arithmetic computations.
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III.2.1 Error bounds for the coe�cients ck in the Asymptotic Expansion

In the current subsection we derive upper-bounds for |c̃ − c|: in reality, equations (III.6) and

(III.7) leads to

A(c̃− c) = bα. (III.8)

If we de�ne ∆c = c̃− c and ηi =
Eji,ni,α

hα+1
i

for i = 1, . . . , α, then the system (III.8) can be written

as

A∆c =




η1h
α+1
1

η2h
α+1
2
...

ηαh
α+1
α



, (III.9)

with |ηi| ≤ Cα for i = 1, . . . , α, where Cα is a constant. The coe�cient matrix can be expressed

as

A =




h1 h2
1 . . . hα1

h2 h2
2 . . . hα2

...
...

...

hα h2
α . . . hαα




=




h1

h2

. . .

hα



V (h1, . . . , hα),

where V (h1, . . . , hα) is the Vandermonde matrix of order α corresponding to h1, . . . , hα.

By assuming W = V −1(h1, . . . , hα), we deduce

(W )i,j =





(−1)α−i




∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

∏

1≤ k≤α
k 6=j

(hj − hk)




1 ≤ i < α,

1∏

1≤ k≤α
k 6=j

(hj − hk)
i = α.

(III.10)

Therefore for the inversion of the matrix A we have

(A−1)i,j =





(−1)α−i




∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

hj
∏

1≤ k≤α
k 6=j

(hj − hk)




1 ≤ i < α,

1

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
i = α,

(III.11)

and we can obtain an explicit expression for (∆c)i, i = 1, . . . , α, that is

(∆c)i =
α∑

j=1

(A−1)i,jηjh
α+1
j . (III.12)
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Case 1. If i = α, then

(∆c)α =
α∑

j=1

ηjh
α+1
j

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
.

Whence, from the fact that |ηi| ≤ Cα for i = 1, . . . , α,

|(∆c)α| ≤
α∑

j=1

|ηj |hα+1
j

hj
∏

1≤ k≤α
k 6=j

|hj − hk|
≤

α∑

j=1

Cαh
α
j∏

1≤ k≤α
k 6=j

|hj − hk|
.

With the choice hj = 1
γj−1h1 for j = 1, . . . , α, γ positive integer, we have

|(∆c)α| ≤ Cα
α∑

j=1

( h1
γj−1 )α

∏

1≤ k≤α
k 6=j

h1

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣
= Cαh

α
1

α∑

j=1

( 1
γj−1 )α

hα−1
1

∏

1≤ k≤α
k 6=j

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣
=

= h1Cα

α∑

j=1

( 1
γj−1 )α

∏

1≤ k≤α
k 6=j

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣
= O(h1).

Case 2. If i = 1, . . . , α− 1, then

(∆c)i =

α∑

j=1

(−1)α−iηjh
α+1
j

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
,

that is di�erent from the case i = α just for the numerator

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i .

As a consequence

|(∆c)i| ≤ Cα
α∑

j=1

hαj

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

∏

1≤ k≤α
k 6=j

|hj − hk|
.
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With the choice hj = 1
γj−1h1 for j = 1, . . . , α, we infer

|(∆c)i| ≤ Cα
α∑

j=1

(
h1

γj−1

)α

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

hα−i1

(
1

γk1−1

1

γk2−1
. . .

1

γkα−i−1

)

∏

1≤ k≤α
k 6=j

h1

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣

= Cα

α∑

j=1

(
1

γj−1

)α(hα1hα−i1

hα−1
1

)

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

(
1

γk1−1

1

γk2−1
. . .

1

γkα−i−1

)

∏

1≤ k≤α
k 6=j

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣

= hα−i+1
1 Cα

α∑

j=1

(
1

γj−1

)α

∑

1≤ k1<...< kα−i≤α
k1,...,kα−i 6=j

(
1

γk1−1

1

γk2−1
. . .

1

γkα−i−1

)

∏

1≤ k≤α
k 6=j

∣∣∣∣
1

γj−1
− 1

γk−1

∣∣∣∣
= O(hα−i+1

1 ).

As a conclusion, with the choice hj = 1
γj−1h1 for j = 1, . . . , α and under the assumption that

the asymptotic expansion reported in (III.2) is true, we deduce

|(∆c)i| = O(hα−i+1
1 ), (III.13)

for i = 1, . . . , α.

III.3 Error bounds for numerically approximated eigenvalues

The goal of this section is to provide error bounds based on the linear system in (III.7) for

the computation of the eigenvalues of Pn(f, g): of course these error bounds are based on the

conjecture that the relations reported in (III.2) are true. However, as we can see in Section III.4,

the numerical tests fully support the existence of the considered asymptotic expansion.

Indeed, as already observed, by solving (III.7), we can compute the approximations c̃k of ck.

Once we have the values of c̃k, we can calculate the eigenvalues λ̃jβ of a large dimension matrix

of size nβ , here nβ + 1 = γβ−1(n1 + 1). The asymptotic expansion (III.4) can be written as

Ejβ ,nβ ,0 =h̄Tβ c+ Ejβ ,nβ ,α . (III.14)

By subtraction h̄Tβ c̃ from both sides of the equation above, we �nd

Ejβ ,nβ ,0 − h̄Tβ c̃ = h̄Tβ (c− c̃) + Ejβ ,nβ ,α,

λj(Pnβ (f, g))− r(θj,nβ )− h̄Tβ c̃ = h̄Tβ∆c+ Ejβ ,nβ ,α,

∣∣λj(Pnβ (f, g))− r(θj,nβ )− h̄Tβ c̃
∣∣ ≤

α∑

i=1

hiβ|(∆c)i|+ |Ejβ ,nβ ,α|,

∣∣λj(Pnβ (f, g))− r(θj,nβ )− h̄Tβ c̃
∣∣ ≤

α∑

i=1

hiβ|(∆c)i|+ Cαh
α+1
β ,

(III.15)
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where h̄β = [hβ, h
2
β, · · · , hαβ ]T , |Ejβ ,nβ ,α| ≤ Cαhα+1

β for some constant Cα and |(∆c)i| is given in

(III.13).

III.4 Numerical tests

In this section we want to present a few numerical experiments to support the asymptotic

expansion (III.2) in the case where one or more properties of the following list are satis�ed:

1. f ′′(0) 6= 0 (see Example 1, Example 3, and Example 5),

2. f ′′(0) = 0 (see Example 2 and Example 4),

3. min g > 0 (see Example 1, Example 2, and Example 5),

4. min g = 0 (see Example 3 and Example 4),

5. r = f/g is non-monotone (see Example 5).

The approximation of eigenvalues of large matrices in each case is also computed. The expansion

(III.2) for α = 4 is

λj(Pn(f, g)) = r(θj,n) + c1(θj,n)h+ c2(θj,n)h2 + c3(θj,n)h3 + c4(θj,n)h4 + Ej,n,4,

Ej,n,0 = λj(Pn(f, g))− r(θj,n) = c1(θj,n)h+ c2(θj,n)h2 + c3(θj,n)h3 + c4(θj,n)h4 + Ej,n,4 .

(III.16)

In all numerical examples we choose four matrix-size values, that is ni for i ∈ {1, 2, 3, 4}, in a

way that they satisfy ni = γi−1(n1 + 1) − 1, with γ being a positive integer. The expansion

(III.16) for the set of the four dimensions ni can be written as

Ej1,n1,0 = c1(θj1,n1)h1 + c2(θj1,n1)h2
1 + c3(θj1,n1)h3

1 + c4(θj1,n1)h4
1 + Ej1,n1,4,

Ej2,n2,0 = c1(θj2,n2)h2 + c2(θj2,n2)h2
2 + c3(θj2,n2)h3

2 + c4(θj2,n2)h4
2 + Ej2,n2,4,

Ej3,n3,0 = c1(θj3,n3)h3 + c2(θj3,n3)h2
3 + c3(θj3,n3)h3

3 + c4(θj3,n3)h4
3 + Ej3,n3,4,

Ej4,n4,0 = c1(θj4,n4)h4 + c2(θj4,n4)h2
4 + c3(θj4,n4)h3

4 + c4(θj4,n4)h4
4 + Ej4,n4,4,

(III.17)

where hi = 1
ni+1 and ji = γi−1 j1 for i ∈ {1, 2, 3, 4}. Notice that θji,ni = θj1,n1 = θ̄ for a �xed

j1 ∈ {1, 2, · · · , n1}. We are interested in the numerical approximation of ci(θ̄) for i ∈ {1, 2, 3, 4}
and then in the precise numerical approximation of the eigenvalue of Pn(f, g) for large n. The

set of equations (III.17) can be written as

Ej1,n1,0 = c̃1(θ̄)h1 + c̃2(θ̄)h2
1 + c̃3(θ̄)h3

1 + c̃4(θ̄)h4
1,

Ej2,n2,0 = c̃1(θ̄)h2 + c̃2(θ̄)h2
2 + c̃3(θ̄)h3

2 + c̃4(θ̄)h4
2,

Ej3,n3,0 = c̃1(θ̄)h3 + c̃2(θ̄)h2
3 + c̃3(θ̄)h3

3 + c̃4(θ̄)h4
3,

Ej4,n4,0 = c̃1(θ̄)h4 + c̃2(θ̄)h2
4 + c̃3(θ̄)h3

4 + c̃4(θ̄)h4
4.

(III.18)

We solve the system of linear equations above for j1 ∈ {1, 2, · · · , n1} to compute c̃i(θ̄). The

computed c̃i are used to approximate the eigenvalues of large size nβ by exploiting the following

relation

λ̃jβ (Pnβ (f, g)) = r(θjβ ,nβ ) + h̄Tβ c̃ . (III.19)
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Chapter III. Asymptotic Expansion: an algorithm for preconditioned matrices

Example 1. Let g, f , and r be the functions de�ned as

f(θ) = 4− 2 cos(θ)− 2 cos(2θ) = (2− 2 cos(θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
= 2− 2 cos(θ) ,

where θ ∈ [0, π]. The graphs of generating functions are shown in the left panel of Figure III.1,

and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right panel. Note that g(θ) > 0,

∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r(θ) is monotone. We set n1 ∈ {40, 60, 80, 100} and
γ = 2.

Figure III.1: Example 1: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4.

Example 2. Let g, f , and r be the functions de�ned as

f(θ) = 20− 30 cos(θ) + 12 cos(2θ)− 2 cos(3θ) = (2− 2 cos(θ))3 ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

(2− 2 cos(θ))3

3 + 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in the left panel of Figure III.2,

and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right panel. Remark that g(θ) > 0,

∀ θ ∈ [0, π], f ′′(0) = 0, and furthermore r(θ) is monotone. We set n = n1 ∈ {40, 60, 80, 100}
and γ = 2.

There is an important issue to discuss here. Both the functions f and r attain the minimum at

θ = 0 with a very high order. Indeed we have f(θ), r(θ) ≈ θ6, with φ1 ≈ φ2 being the symmetric,

transitive relation telling that there exist positive constants c, C > 0 such that cφ1 ≤ φ2 ≤ Cφ1

on the whole de�nition domain [0, π]. Therefore for �xed j (independent of n) the jth smallest

eigenvalue of Pn(f, g) is asymptotic to kjh
6, kj a positive constant depending on j but not on

n: the reader is referred to [114] for the preconditioned case with the limitation j = 1 and to [8]

and references therein for very elegant and precise estimates regarding the pure Toeplitz case.

Now if we �x j and we put together λj (Pn(f, g)) ≈ h6 with relations (III.4)�(III.5) then the

only possibility for avoiding a contradiction is that the functions c1(θ), c2(θ), c3(θ), c4(θ), c5(θ)

all vanish at θ = 0.
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Figure III.2: Example 2: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4.

The approximations c̃k, for k = 1, 2, 3, 4 shown in the right panel of Figure III.2 are coherent

with the above mathematical conclusion and in fact all these approximations vanish simultane-

ously at θ = 0 (the �fth is not displayed, but we computed it and it also equals to zero at θ = 0,

while, as expected from an extension of the results by [8] to the preconditioned Toeplitz case, the

sixth is nonzero at θ = 0).

Since the argument and the conclusions are the very same, we anticipate that the discussion

can be repeated verbatim for Example 4, where the functions f and r attain the minimum at θ = 0

with order 10. As a consequence, we expect that the functions c1(θ), . . . , c9(θ) all simultaneously

vanish at θ = 0, while c10(0) 6= 0: this is con�rmed for the �rst four of them as reported in the

right panel of Figure III.4.

Example 3. Let g, f , and r be the functions de�ned as

f(θ) = 1 + cos(θ) +
1

4
cos(2θ) +

1

5
cos(3θ) +

1

10
cos(4θ) +

1

10
cos(5θ) ,

g(θ) = 2− 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

1 + cos(θ) + 1
4 cos(2θ) + 1

5 cos(3θ) + 1
10 cos(4θ) + 1

10 cos(5θ)

2− 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in the left panel of Figure III.3,

and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right panel. Note that min g(θ) = 0,

∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r(θ) is monotone. We set n = n1 ∈ {40, 60, 80, 100}
and γ = 2.

Example 4. Let g, f , and r be the functions de�ned as

f(θ) = 252− 420 cos(θ) + 240 cos(2θ)− 90 cos(3θ) + 20 cos(4θ)− 2 cos(5θ) = (2− 2 cos(θ))5 ,

g(θ) = 2 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

(2− 2 cos(θ))5

2 + 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in the left panel of Figure III.4,

and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right panel. Remark that min g(θ) =
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Chapter III. Asymptotic Expansion: an algorithm for preconditioned matrices

Figure III.3: Example 3: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4.

Figure III.4: Example 4: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4.

0, ∀ θ ∈ [0, π], f ′′(0) = 0, and furthermore r(θ) is monotone. We set n = n1 ∈ {40, 60, 80, 100}
and γ = 2.

Example 5. Let g, f , and r be the functions de�ned as

f(θ) =
136

17
+

56

17
cos(θ)− 2

17
cos(2θ) +

5

17
cos(3θ) = (3− cos(θ) +

5

17
cos(2θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
= 3− cos(θ) +

5

17
cos(2θ) ,

where θ ∈ [0, π]. The graphs of generating functions are shown in the left panel of Figure III.5,

and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right panel. Notice that min g(θ) >

0, ∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r is non-monotone. We set n = n1 ∈ {40, 60, 80, 100}
and γ = 2.

The numerical tests related to Examples 1 and 2, as in Figures III.6 and III.7, show that the

error expansion (III.2) behaves as expected. In Figure III.11 we also see that the approximated

c̃k can be used for a large n to approximate the error term to (or almost to) machine precision.
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Figure III.5: Example 5: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4.

In the numerical tests associated with Examples 3 and 4, as in Figures III.8 and III.9, we

observe again that the error expansion is in accordance with (III.2). We also note a slight

deviation for the largest eigenvalue and this has to be expected since we have r(θ1,n) → ∞ as

n → ∞ for Example 3 (on the other hand for Example 4 we notice r(θn,n) → ∞ as n → ∞).

However, the approximation of the eigenvalues of Pn(f, g) is excellent and almost to machine

precision as reported in Figure III.12.

In the numerical test related to Example 5 we have a non-monotone region for

θ ∈ [0, 2 tan−1(
√

3/17)]

where the proposed expansion does not work. Indeed additional errors are introduced when

compared to Ej,n,0, since the sampling of r(θj1,n1) leads to a poorer approximation after order-

ing than the procedure given by sampling r(θj,n7) �rst and then picking samples after ordering.

However, the expansion is con�rmed for the rest of the domain, as seen in Figure III.10. Fur-

thermore, in Figure III.13 the expansion works well again for the monotone part, by allowing

an approximation almost to machine precision of the eigenvalues of Pn(f, g).

However, even if the eigenvalues lying in the non-monotone region give raise to an irregular

error pattern, it seems that there exists a kind of �deformed� periodicity in the error, like it is

formally proven, without deformations, for the eigenvalues of Tn(f), f(θ) = 2−2 cos(ωθ), ω ≥ 2

integer, and g(θ) = 1 (see [63]). The latter observation indicates that a more complete study of

this �deformed� periodicity has to be considered in the future.

We �nally observe that the remarkable numerical results for the eigenvalues of Pn(f, g), as

reported in Figures III.11, III.12, III.13, positively answer the question:

Q1. �Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost

closed form?�.

In fact, we obtain almost machine precision for the computation of the spectrum of Pn(f, g),

for large n and only working with few really small matrices.

At this point our goal will be to ascertain the existence of an asymptotic eigenvalue expansion

for PDE discretization matrices and exploit this expansion (if any) for computing the eigenvalues

themselves through fast interpolation�extrapolation procedures.
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Figure III.6: Example 1: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}.
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III.4. Numerical tests

Figure III.7: Example 2: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}.
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Figure III.8: Example 3: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}.
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III.4. Numerical tests

Figure III.9: Example 4: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}.
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Figure III.10: Example 5: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}.
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III.4. Numerical tests

Figure III.11: Example 1 and 2: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 = 6463

in (III.19), corresponding to n1 = 100, and using c̃k, k = 1, 2, 3, 4, computed with γ = 2.

Figure III.12: Example 3 and 4: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 = 6463

in (III.19), corresponding to n1 = 100, and using c̃k, k = 1, 2, 3, 4, computed with γ = 2.

Figure III.13: Example 5: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 = 6463 in

(III.19), corresponding to n1 = 100, and using c̃k, k = 1, 2, 3, 4, computed with γ = 2. Note the non-monotone

part, θ ∈ [0, 2 tan−1(
√

3/17)], where the error is not improved.
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Chapter III. Asymptotic Expansion: an algorithm for preconditioned matrices

In the next chapter we provide a positive answer in the case where the PDE is a the Laplacian

eigenproblem and the discretization method is the B-spline IgA. We observe that the question

Q1. can have interesting consequences since it opens the doors to a series of possible future

researches.
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Chapter IV

Asymptotic Expansion: applied to the

IgA discretization

In the present chapter, motivated by the aforesaid interest, we perform a detailed spectral

analysis of the matrices stemming from the B-spline Isogeometric Analysis (IgA) discretization

of the Laplacian eigenproblem −∆u = λu.

IgA is a modern paradigm for analyzing problems governed by Partial Di�erential Equations

(PDEs); see [41]. Because of its capability to enhance the connection between numerical simula-

tion and Computer-Aided Design (CAD) systems, IgA is gaining more and more attention over

time. In particular, the spectral investigation of matrices arising from the IgA discretization of

PDEs has become a topic of interest in the scienti�c community, mainly because of the supe-

riority of IgA over the classical Finite Element Analysis (FEA) in approximating the spectrum

of the underlying di�erential operator; see, e.g., [42, 80, 90, 92, 103]. It is also worth recalling

that recent spectral distribution results for IgA discretization matrices [51, 71, 72, 73, 74, 76, 77]

turned out to be the keystone for designing fast IgA solvers [49, 50, 52].

Our main results, which will be detailed in Subsection IV.1, complement those of [51, 71, 72,

73, 74, 76, 77] and deliver a fast (parallel) interpolation�extrapolation algorithm for computing

the eigenvalues of the considered IgA matrices.

IV.1 Problem setting

Consider the one-dimensional Laplacian eigenproblem with homogeneous Dirichlet boundary

conditions {
−u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(IV.1)

The corresponding weak formulation reads as follows: �nd eigenvalues λ ∈ R+ and eigenfunctions

u ∈ H1
0 (0, 1) such that, for all v ∈ H1

0 (0, 1),

a(u, v) = λ(u, v),

where

a(u, v) =

∫ 1

0
u′(x)v′(x)dx, (u, v) =

∫ 1

0
u(x)v(x)dx.
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization
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Figure IV.1: Cubic B-splines {N1,[3], . . . , Nn+3,[3]} for the knot sequence
{
0, 0, 0, 0, 1

n
, 2
n
, . . . , n−1

n
, 1, 1, 1, 1

}
(n =

10).

In Galerkin's method, we choose a �nite-dimensional vector space W ⊂ H1
0 (0, 1), we set N =

dim W , and we look for approximations of the exact eigenpairs

λj = j2π2, uj(x) = sin(jπx), j ≥ 1, (IV.2)

by solving the following Galerkin problem: �nd λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . , N ,

such that, for all v ∈ W ,

a(uj,W , v) = λj,W (uj,W , v). (IV.3)

Assuming the numerical eigenvalues λj,W are arranged in non decreasing order, the pair (λj,W , uj,W )

is taken as an approximation of the pair

(λj , uj)

for all j = 1, . . . , N . The numbers λj,W /λj − 1, j = 1, . . . , N , are referred to as the (relative)

eigenvalue errors. If {ϕ1, . . . , ϕN} is a basis of W , in view of the canonical identi�cation between

each v ∈ W and its coe�cient vector with respect to {ϕ1, . . . , ϕN}, solving the Galerkin problem

(IV.3) is equivalent to solving the generalized eigenvalue problem

Kuj,W = λj,W Muj,W , (IV.4)

where uj,W is the coe�cient vector of uj,W with respect to {ϕ1, . . . , ϕN} and

K = [a(ϕj , ϕi)]
N
i,j=1 =

[∫ 1

0
ϕ′j(x)ϕ′i(x)dx

]N

i,j=1

, (IV.5)

M = [(ϕj , ϕi)]
N
i,j=1 =

[∫ 1

0
ϕj(x)ϕi(x)dx

]N

i,j=1

. (IV.6)

The matrices K and M are referred to as the sti�ness matrix and the mass matrix, respectively.

Both K and M are always symmetric positive de�nite, regardless of the chosen basis functions

ϕ1, . . . , ϕN . Moreover, it is clear from (IV.4) that the numerical eigenvalues λj,W , j = 1, . . . , N ,

are just the eigenvalues of the matrix

L = M−1K. (IV.7)

Now, for p, n ≥ 1 let

Ni,[p], i = 1, . . . , n+ p, (IV.8)
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IV.1. Problem setting

be the B-splines of degree p ≥ 1 and smoothness Cp−1(R) de�ned over the knot sequence

0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
,

2

n
, . . . ,

n− 1

n
, 1, . . . , 1︸ ︷︷ ︸

p+1

.

The B-splines (IV.8) form a basis for the spline space

Vn,[p] =
{
v ∈ Cp−1[0, 1] : v|[ in , i+1

n ) ∈ Pp for i = 0, . . . , n− 1
}
,

where Pp is the space of polynomials of degree at most p. Except for the �rst and the last one,

all the other B-splines vanish on the boundary of [0, 1]. In particular, the B-splines

Ni+1,[p], i = 1, . . . , n+ p− 2, (IV.9)

form a basis for the space

Wn,[p] =
{
v ∈ Vn,[p] : v(0) = v(1) = 0

}
.

We refer the reader to Figure IV.1 for the graphs of the B-splines (IV.8) corresponding to the

degree p = 3. For more on B-splines, including the precise de�nition of the functions (IV.8), see

[45, 112].

In the IgA approximation of (IV.1) based on uniform B-splines of degree p ≥ 1, we look for

approximations of the exact eigenpairs (IV.2) by using the Galerkin method described above,

in which the basis functions ϕ1, . . . , ϕN are chosen as the B-splines N2,[p], . . . , Nn+p−1,[p] and,

consequently, the vector space W is equal to Wn,[p]. The resulting sti�ness and mass matrices

(IV.5)�(IV.6) are given by

K [p]
n =

[∫ 1

0
N ′j+1,[p](x)N ′i+1,[p](x)dx

]n+p−2

i,j=1

, (IV.10)

M [p]
n =

[∫ 1

0
Nj+1,[p](x)Ni+1,[p](x)dx

]n+p−2

i,j=1

, (IV.11)

and the numerical eigenvalues λ
[p]
j,n, j = 1, . . . , n+ p− 2, are the eigenvalues of the matrix

L[p]
n = (M [p]

n )−1K [p]
n . (IV.12)

For more details on IgA, we refer the reader to [41].

Let φq be the B-spline of degree q ≥ 0 corresponding to the knot sequence {0, 1, . . . , q + 1}.
The function φq is usually referred to as the cardinal B-spline of degree q and it is recursively

de�ned as follows [45]:

φ0(t) = χ[0,1)(t), t ∈ R,

φq(t) =
t

q
φq−1(t) +

q + 1− t
q

φq−1(t− 1), t ∈ R, q ≥ 1,
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization

where χ[0,1) is the characteristic (indicator) function of the interval [0, 1). Let

fp : [0, π]→ R, fp(θ) = −φ′′2p+1(p+ 1)− 2

p∑

k=1

φ′′2p+1(p+ 1− k) cos(kθ), p ≥ 1, (IV.13)

gp : [0, π]→ R, gp(θ) = φ2p+1(p+ 1) + 2

p∑

k=1

φ2p+1(p+ 1− k) cos(kθ), p ≥ 0, (IV.14)

ep : [0, π]→ R, ep(θ) =
fp(θ)

gp(θ)
, p ≥ 1. (IV.15)

It was proved in [72, Section 3] that 1

fp(θ) = (2− 2 cos(θ))gp−1(θ), θ ∈ [0, π], p ≥ 1, (IV.16)
( 4

π2

)p+1
≤ gp(θ) ≤ gp(0) = 1, θ ∈ [0, π], p ≥ 0, (IV.17)

so in particular the function ep(θ) is well-de�ned. From the analysis in [77, Section 10.7], we

know that the three sequences of matrices {n−1K
[p]
n }n, {nM [p]

n }n, {n−2L
[p]
n }n have an asymp-

totic spectral distribution (in the Weyl sense) described by the functions fp(θ), gp(θ), ep(θ),

respectively; that is, for any su�ciently large n, up to a small number of outliers, the eigenval-

ues of n−1K
[p]
n (resp., nM

[p]
n , n−2L

[p]
n ) are approximately given by the samples of fp(θ) (resp.,

gp(θ), ep(θ)) over some uniform grid in [0, π]. This is illustrated in Figure IV.2 for the ma-

trix n−2L
[p]
n and for p = 1, . . . , 6. Following the terminology in [77, Section 3.1], we refer to

fp(θ), gp(θ), ep(θ) as the spectral symbols of {n−1K
[p]
n }n, {nM [p]

n }n, {n−2L
[p]
n }n, respectively.

For more details on the spectral distribution of a sequence of matrices, see [77].

Main contributions

The main contributions of this Chapter can be summarized as follows. Throughout this chapter,

we will use the notations nout
p = p− 2 + mod(p, 2) and Nn,p = n+ p− 2.

1. We prove several important analytic properties of the spectral symbol ep(θ). In particular,

we show that ep(θ) is monotone increasing on [0, π] for all p ≥ 1 and that ep(θ) →
θ2 uniformly on [0, π] as p → ∞. Incidentally, we also show that the ratio wp(θ) =

gp(θ)/gp−1(θ) satis�es 1/3 ≤ wp(θ) ≤ 1 for all p ≥ 1 and θ ∈ [0, π]. The latter result was

already conjectured in [50, 52] on the basis of numerical experiments, and it was therein

exploited to design/analyze fast solvers for IgA discretization matrices.

2. For p = 1 and p = 2, we compute eigenvalues and eigenvectors of L
[p]
n . In both cases, the

eigenvalues are given by ep(θj,n) for j = 1, . . . , n + p − 2, where θj,n = jπ/n. The exact

computation of eigenvalues and eigenvectors is made possible by the fact that the matrices

K
[p]
n , M

[p]
n , L

[p]
n belong to the same matrix algebra, which is the tau algebra τn−1(0, 0)

for p = 1 and the algebra τn(−1,−1) for p = 2 (we are using the notations of [21]). It

is worth noting that both these algebras are related to fast unitary sine transforms [21],

which implies that many numerical linear algebra computations involving the matrices

K
[p]
n , M

[p]
n , L

[p]
n (matrix-vector products, solutions of linear systems, inversions, etc.) are

stable and fast [101, 102].

1Note that in [72] the function gp(θ) is denoted by hp(θ).
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Figure IV.2: Comparison between the eigenvalues of n−2L
[p]
n and the graph of ep(θ) for n = 50 and p = 1, . . . , 6.

The eigenvalues of n−2L
[p]
n are sorted in non decreasing order and are represented by the thick dots placed at

the points (θj,n, λj(n
−2L

[p]
n )), j = 1, . . . , n − mod(p, 2), where θj,n = jπ/n. The eigenvalues λj(n

−2L
[p]
n ) for

j > n−mod(p, 2) are the so-called outliers and are positioned outside the domain [0, π].
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3. For p ≥ 3, we provide numerical evidence of a precise asymptotic expansion for the eigen-

values of n−2L
[p]
n . Such an expansion, which obviously begins with the spectral sym-

bol ep(θ), is in force for the whole of the spectrum except for the largest nout
p eigen-

values (the so-called outliers; see Figure IV.2). To be more precise, we show through

numerical experiments that for every p ≥ 3, every integer α ≥ 0, every n, and every

j = 1, . . . , Nn,p − nout
p = n−mod(p, 2), we have

λj(n
−2L[p]

n ) = ep(θj,n) +
α∑

k=1

c
[p]
k (θj,n)hk + E

[p]
j,n,α, (IV.18)

where:

� the eigenvalues of n−2L
[p]
n are arranged in non decreasing order, λ1(n−2L

[p]
n ) ≤ . . . ≤

λn+p−2(n−2L
[p]
n );

� {c[p]
k }k=1,2,... is a sequence of functions from [0, π] to R which depends only on p;

� h = 1
n and θj,n = jπ

n = jπh for j = 1, . . . , n;

� E
[p]
j,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |E[p]

j,n,α| ≤
C

[p]
α hα+1 for some constant C

[p]
α depending only on α and p.

We refer the reader to the Chapter VI Section VI.4 for a proof of the expansion (IV.18)

for α = 0 and j = 1, . . . , Nn,p − (4p − 2), where 4p − 2 represents an estimate, solely

based on interlacing/rank-correction arguments, of the actual number of outliers nout
p . We

note that (IV.18) is formally the same as the expansions for the eigenvalues of Toeplitz

and preconditioned Toeplitz matrices, which have been conjectured and validated through

numerical experiments in [1, 62]. Furthermore, basic eigenvalue expansions (and related

extrapolation techniques) have been used in [37, 151] in the context of �nite element

approximations of di�erential problems. In the light of these considerations, the expansion

(IV.18) is not completely unexpected, because n−2L
[p]
n is �almost� a preconditioned Toeplitz

matrix as n−2L
[p]
n = (nM

[p]
n )−1(n−1K

[p]
n ) and nM

[p]
n , n−1K

[p]
n are Toeplitz matrices, up to

low rank corrections. To be precise,

n−1K [p]
n = Tn+p−2(fp) +R[p]

n , (IV.19)

nM [p]
n = Tn+p−2(gp) + S[p]

n , (IV.20)

where fp, gp are de�ned in (IV.13)�(IV.14) and

(R[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(R[p]

n ) ≤ 4p− 2, (IV.21)

(S[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(S[p]

n ) ≤ 4p− 2; (IV.22)

see [72, Subsection 4.1].

4. We show through numerical experiments that, for p ≥ 3 and k ≥ 1, there exists a point

θ(p, k) ∈ (0, π) such that c
[p]
k (θ) vanishes over [0, θ(p, k)]. Moreover, as it is suggested by

the numerics of this chapter, it is very likely that yp = infk≥1 θ(p, k) > 0 for all p ≥ 3.

This is consistent with another crucial numerical observation, namely the fact that, for all
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p ≥ 3, the equation λj(n
−2L

[p]
n ) = ep(θj,n) holds numerically whenever θj,n < θ(p), with

θ(p) being a point in (0, yp]. In addition, θ(p) apparently grows with p, i.e., the portion of

the spectrum of λj(n
−2L

[p]
n ) which is exactly described by ep(θ), at least from a numerical

viewpoint, increases with p.

5. For p ≥ 3, based on the expansion (IV.18) and drawing inspiration from [58], we pro-

pose a parallel interpolation�extrapolation algorithm for computing the eigenvalues of

L
[p]
n , excluding the nout

p outliers. The performance of the algorithm is illustrated through

numerical experiments. Note that we actually need to compute only the eigenvalues of L
[p]
n

corresponding in the expansion (IV.18) to points θj,n ≥ θ(p), because whenever θj,n < θ(p)

we numerically have λj(L
[p]
n ) = n2ep(θj,n) by the previous Item 4.

6. We present a detailed extension of the whole analysis to the general k-dimensional setting,

in which problem (IV.1) is replaced by (IV.32). By using tensor-product arguments, we

show that the eigenvalue�eigenvector structure of the matrix arising from the IgA approx-

imation of (IV.32) is completely determined by the eigenvalue�eigenvector structure of the

matrix L
[p]
n . In short, the analysis of L

[p]
n is enough to cover also the multidimensional

case.

The Chapter is organized as follows. In Section IV.2 we report the properties of ep(θ)

(and wp(θ)); for ease of reading, the corresponding technical proofs are deferred to Chapter

VI Section VI.3. In Section IV.3 we compute eigenvalues and eigenvectors of the matrix L
[p]
n

for p = 1 and p = 2. In Section IV.4, assuming the asymptotic eigenvalue expansion (IV.18),

we present our parallel interpolation�extrapolation algorithm for computing the eigenvalues of

L
[p]
n for p ≥ 3, excluding the nout

p outliers. In Section IV.5 we provide numerical experiments

in support of both the asymptotic eigenvalue expansion (IV.18) and the properties described in

Item 4 of Subsection IV.1. Moreover, we numerically illustrate the performance of the algorithm

presented in Section IV.4. In Section IV.6 we extend the whole analysis carried out in Sec-

tions IV.3�IV.5 to the multidimensional setting by showing through appropriate tensor-product

arguments that the multidimensional case reduces to the unidimensional case.

IV.2 Properties of the spectral symbol ep(θ)

The spectral symbol ep(θ) enjoys the properties reported in Theorems IV.2.1 and IV.2.2, whose

proofs are collected in theChapter VI Section VI.3. We note that the convergence expressed in

Theorem IV.2.1 was numerically observed in [80] and represents a starting point for the research

program outlined in [75, Remark 15].

Theorem IV.2.1. The function ep(θ) converges uniformly to θ2 on [0, π] as p→∞.

Theorem IV.2.2. The function ep(θ) is monotone increasing on [0, π] for all p ≥ 1.

As a byproduct of the proofs of Theorems IV.2.1 and IV.2.2, we also prove the following

result for the function

wp : [0, π]→ R, wp(θ) =
gp(θ)

gp−1(θ)
, p ≥ 1.
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization

Theorem IV.2.3. For p ≥ 1 and θ ∈ [0, π] we have

1

3
≤ wp(θ) ≤ 1. (IV.23)

Note that the bounds in (IV.23) are sharp. Indeed, wp(0) = 1 for all p ≥ 1 and w1(π) = 1/3.

Theorem IV.2.3 provides theoretical support to the numerically observed p-robustness of the

solvers devised in [50, 52] for IgA linear systems; see in particular [50, Section 5.5].

IV.3 Eigenvalues and eigenvectors of L
[p]
n for p = 1 and p = 2

In this section we compute the exact spectral decomposition of the matrix L
[p]
n for p = 1 and

p = 2. As a preliminary step, we recall some properties of the matrix algebras τn(ε, φ) intro-

duced in [21] for ε, φ ∈ {0, 1,−1}. It will turn out that K
[1]
n ,M

[1]
n , L

[1]
n belong to τn−1(0, 0) and

K
[2]
n ,M

[2]
n , L

[2]
n belong to τn(−1,−1), and this will be the key for computing eigenvalues and

eigenvectors of both L
[1]
n and L

[2]
n .

IV.3.1 The matrix algebras τm(ε, φ) for ε, φ ∈ {0, 1,−1}
Following [21], for any m ≥ 2 and any ε, φ ∈ {0, 1,−1} we de�ne the tridiagonal matrix

Hm(ε, φ) =




ε 1 0 · · · 0

1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 1

0 · · · 0 1 φ




= Tm(2 cos(θ)) + εe1e
T
1 + φeme

T
m,

Since Hm(ε, φ) is real and symmetric, it can be decomposed as

Hm(ε, φ) = Qm(ε, φ)Dm(ε, φ)Qm(ε, φ)T ,

where Qm(ε, φ) is a real unitary matrix and Dm(ε, φ) is a real diagonal matrix. The matrix

algebra generated by Hm(ε, φ) is denoted by τm(ε, φ) and is given by

τm(ε, φ) = {Qm(ε, φ)DmQm(ε, φ)T : Dm is a diagonal matrix of size m}.

It turns out that the matrix Qm(ε, φ) is a fast trigonometric transform such that the matrix-

vector product Qm(ε, φ)v can be computed in O(m logm) operations. Moreover, the diagonal

entries of the matrix Dm(ε, φ) (i.e., the eigenvalues of Hm(ε, φ)) are equal to the samples of the

function 2 cos(θ) over a uniform grid in [0, π].

The cases of interest in this chapter are ε = φ = 0 and ε = φ = −1. For ε = φ = 0, the

matrix algebra τm(0, 0) is the so-called tau algebra, which was originally introduced in [14]. In

this case, the sampling grid is
jπ

m+ 1
, j = 1, . . . ,m,

and we have
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[p]
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Dm(0, 0) = diag
j=1,...,m

[
2 cos

( jπ

m+ 1

)]
,

Qm(0, 0) =

√
2

m+ 1

[
sin
( ijπ

m+ 1

)]m

i,j=1

.

For ε = φ = −1, the sampling grid is

jπ

m
, j = 1, . . . ,m,

and we have

Dm(−1,−1) = diag
j=1,...,m

[
2 cos

(jπ
m

)]
,

Qm(−1,−1) =

√
2

m

[
kj sin

((2i− 1)jπ

2m

)]m

i,j=1

, kj =

{
1/
√

2, if j = m,

1, otherwise.

For more details on the matrix algebras τm(ε, φ) we refer the reader to [21].

IV.3.2 Eigenvalues and eigenvectors of L
[p]
n for p = 1, 2

In the case p = 1, the sti�ness and mass matrices K
[1]
n and M

[1]
n have size n − 1 and a direct

computation shows that

n−1K [1]
n =




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2




= Tn−1(f1) = 2In−1 −Hn−1(0, 0),

nM [1]
n =

1

6




4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 4




= Tn−1(g1) =
2

3
In−1 +

1

6
Hn−1(0, 0),

where f1, g1 are given by (IV.13)�(IV.14) for p = 1, i.e.,

f1(θ) = 2− 2 cos(θ),

g1(θ) =
2

3
+

1

3
cos(θ).

It follows that both K
[1]
n and M

[1]
n belong to the tau algebra τn−1(0, 0). Moreover, based on the

results of Subsection IV.3.1, we have

n−1K [1]
n = 2In−1 −Hn−1(0, 0) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
f1

(jπ
n

)])
Qn−1(0, 0)T ,

nM [1]
n =

2

3
In−1 +

1

6
Hn−1(0, 0) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
g1

(jπ
n

)])
Qn−1(0, 0)T .
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Given the algebra structure of τn−1(0, 0), we obtain

n−2L[1]
n = (nM [1]

n )−1(n−1K [1]
n ) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
e1

(jπ
n

)])
Qn−1(0, 0)T ,

where

e1(θ) =
f1(θ)

g1(θ)
=

6(1− cos(θ))

2 + cos(θ)
,

as de�ned by (IV.15) for p = 1. In particular, L
[1]
n belongs to the tau algebra τn−1(0, 0) just like

K
[1]
n and M

[1]
n , and the eigenvalues and eigenvectors of L

[1]
n are given by

n2e1

(jπ
n

)
, j = 1, . . . , n− 1,

√
2

n

[
sin
( ijπ
n

)]n−1

i=1

, j = 1, . . . , n− 1.

In the case p = 2, the sti�ness and mass matrices K
[2]
n and M

[2]
n have size n and a direct

computation shows that

n−1K [2]
n =

1

6




8 −1 −1

−1 6 −2 −1

−1 −2 6 −2 −1
. . .

. . .
. . .

. . .
. . .

−1 −2 6 −2 −1

−1 −2 6 −1

−1 −1 8




= Tn(f2) +R[2]
n ,

nM [2]
n =

1

120




40 25 1

25 66 26 1

1 26 66 26 1
. . .

. . .
. . .

. . .
. . .

1 26 66 26 1

1 26 66 25

1 25 40




= Tn(g2) + S[2]
n ,

where f2, g2 are given by (IV.13)�(IV.14) for p = 2, i.e.,

f2(θ) = 1− 2

3
cos(θ)− 1

3
cos(2θ),

g2(θ) =
11

20
+

13

30
cos(θ) +

1

60
cos(2θ),
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[p]
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and R
[2]
n , S

[2]
n are matrices of rank 4 given by

R[2]
n =

1

6




2 1

1

1

1 2



,

S[2]
n =

1

120




−26 −1

−1

−1

−1 −26



.

We note that both n−1K
[2]
n and nM

[2]
n are of the form

An(a, b, c) = Tn(a+ 2b cos(θ) + 2c cos(2θ)) +Rn(b, c), Rn(b, c) = −




b c

c

c

c b



.

(IV.24)

Indeed,

n−1K [2]
n = An

(
1,−1

3
,−1

6

)
,

nM [2]
n = An

(11

20
,
13

60
,

1

120

)
.

Now, any matrix of the form (IV.24) is a polynomial in Hn(−1,−1), and precisely

An(a, b, c) = (a− 2c)In + bHn(−1,−1) + cHn(−1,−1)2.

It follows that An(a, b, c) belongs to the matrix algebra τn(−1,−1). Moreover, based on the

results of Subsection IV.3.1, we have

An(a, b, c) = Qn(−1,−1)

(
diag

j=1,...,n

[
a+ 2b cos

(jπ
n

)
+ 2c cos

(2jπ

n

)])
Qn(−1,−1)T .

In particular, K
[2]
n and M

[2]
n belong to τn(−1,−1) and

n−1K [2]
n = Qn(−1,−1)

(
diag

j=1,...,n

[
f2

(jπ
n

)])
Qn(−1,−1)T ,

nM [2]
n = Qn(−1,−1)

(
diag

j=1,...,n

[
g2

(jπ
n

)])
Qn(−1,−1)T .

Given the algebra structure of τn(−1,−1), we obtain

n−2L[2]
n = (nM [2]

n )−1(n−1K [2]
n ) = Qn(−1,−1)

(
diag

j=1,...,n

[
e2

(jπ
n

)])
Qn(−1,−1)T ,
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where

e2(θ) =
f2(θ)

g2(θ)
=

20(3− 2 cos(θ)− cos(2θ))

33 + 26 cos(θ) + cos(2θ)
,

as de�ned by (IV.15) for p = 2. In particular, L
[2]
n belongs to the algebra τn(−1,−1) just like

K
[2]
n and M

[2]
n , and the eigenvalues and eigenvectors of L

[2]
n are given by

n2e2

(jπ
n

)
, j = 1, . . . , n,

√
2

n

[
kj sin

((2i− 1)jπ

2n

)]n

i=1

, kj =

{
1/
√

2, if j = n,

1, otherwise,
j = 1, . . . , n.

Remark 6. In a recent work [134], Tani proposed a preconditioner based on the fast sine trans-

form Qn(−1,−1) for solving linear systems arising from the IgA discretization of unidimensional

di�erential problems. For the case p = 2, the performance of the preconditioner was extremely

good: just one Krylov iteration! The theoretical explanation of such an excellent behavior lies

precisely in the exact spectral decompositions obtained in this subsection, where it is shown that

Qn(−1,−1) diagonalizes simultaneously the three matrices K
[2]
n ,M

[2]
n , L

[2]
n . Note that decomposi-

tions of this kind can also be used for accelerating the convergence of recently proposed iterative

solvers for IgA linear systems, such as multigrid-based and preconditioned Krylov-based methods;

see [50, 52, 111] and the references therein.

Remark 7. The results of Subsection IV.3 show that K
[p]
n ,M

[p]
n , L

[p]
n belong to the same matrix

algebra for p = 1, 2. Does this property remains true for p ≥ 3? The answer is �no�. Indeed, if

K
[p]
n ,M

[p]
n , L

[p]
n belong to the same matrix algebra, then K

[p]
n and M

[p]
n commute. We numerically

veri�ed that K
[p]
n and M

[p]
n do not commute for p ≥ 3.

IV.4 Algorithm for computing the eigenvalues of L
[p]
n for p ≥ 3

Assuming the expansion (IV.18) and drawing inspiration from [58], in this section we propose a

parallel interpolation�extrapolation algorithm for computing the eigenvalues of L
[p]
n , excluding

the nout
p outliers. In what follows, for each positive integer n ∈ N = {1, 2, 3, . . .} and each p ≥ 3

we de�ne n[p] = n−mod(p, 2). Moreover, with each positive integer n we associate the stepsize

h = 1
n and the grid points θj,n = jπh, j = 1, . . . , n. For notational convenience, unless otherwise

stated, we will always denote a positive integer and the associated stepsize in the same way.

For example, if the positive integer is n, the associated stepsize is h; if the positive integer is

n1, the associated stepsize is h1; if the positive integer is n̄, the associated stepsize is h̄; etc.

Throughout this section, we make the following assumptions.

� p ≥ 3 and n, n1, α ∈ N are �xed parameters.

� nk = 2k−1n1 for k = 1, . . . , α.

� jk = 2k−1j1 for j1 = 1, . . . , n1 and k = 1, . . . , α; jk is the index in {1, . . . , nk} such that

θjk,nk = θj1,n1 .

A graphical representation of the grids {θ1,nk , . . . , θnk,nk}, k = 1, . . . , α, is reported in Figure IV.3

for n1 = 5 and α = 4.
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0 π/5 2π/5 3π/5 4π/5 π

θ

1

2

3

4

k

Figure IV.3: Representation of the grids θ[nk], k = 1, . . . , α, for n1 = 5 and α = 4. Red circles represent the grid

points θjk,nk and blue x's represent the rest of the grid points of θ[nk].

For each �xed j1 = 1, . . . , n
[p]
1 we apply α times the expansion (IV.18) with n = n1, n2, . . . , nα

and j = j1, j2, . . . , jα. Since θj1,n1 = θj2,n2 = . . . = θjα,nα (by de�nition of j2, . . . , jα), we obtain





E
[p]
j1,n1,0

= c
[p]
1 (θj1,n1)h1 + c

[p]
2 (θj1,n1)h2

1 + . . .+ c[p]
α (θj1,n1)hα1 + E

[p]
j1,n1,α

E
[p]
j2,n2,0

= c
[p]
1 (θj1,n1)h2 + c

[p]
2 (θj1,n1)h2

2 + . . .+ c[p]
α (θj1,n1)hα2 + E

[p]
j2,n2,α

...

E
[p]
jα,nα,0

= c
[p]
1 (θj1,n1)hα + c

[p]
2 (θj1,n1)h2

α + . . .+ c[p]
α (θj1,n1)hαα + E

[p]
jα,nα,α

, (IV.25)

where

E
[p]
jk,nk,0

= λjk(n−2
k L[p]

nk
)− ep(θj1,n1), k = 1, . . . , α,

and

|E[p]
jk,nk,α

| ≤ C [p]
α h

α+1
k , k = 1, . . . , α. (IV.26)

Let c̃
[p]
1 (θj1,n1), . . . , c̃

[p]
α (θj1,n1) be the approximations of c

[p]
1 (θj1,n1), . . . , c

[p]
α (θj1,n1) obtained by

removing all the errors E
[p]
j1,n1,α

, . . . , E
[p]
jα,nα,α

in (IV.25) and by solving the resulting linear system:





E
[p]
j1,n1,0

= c̃
[p]
1 (θj1,n1)h1 + c̃

[p]
2 (θj1,n1)h2

1 + . . .+ c̃[p]
α (θj1,n1)hα1

E
[p]
j2,n2,0

= c̃
[p]
1 (θj1,n1)h2 + c̃

[p]
2 (θj1,n1)h2

2 + . . .+ c̃[p]
α (θj1,n1)hα2

...

E
[p]
jα,nα,0

= c̃
[p]
1 (θj1,n1)hα + c̃

[p]
2 (θj1,n1)h2

α + . . .+ c̃[p]
α (θj1,n1)hαα

, (IV.27)

Note that this way of computing approximations for c
[p]
1 (θj1,n1), . . . , c

[p]
α (θj1,n1) is completely

analogous to the Richardson extrapolation procedure that is employed in the context of Romberg

integration to accelerate the convergence of the trapezoidal rule [132, Section 3.4]. In this regard,

the asymptotic expansion (IV.18) plays here the same role as the Euler�Maclaurin summation

formula [132, Section 3.3]. For more advanced studies on extrapolation methods, we refer the

reader to Brezinski and Redivo-Zaglia [23]. The next theorem shows that the approximation

error |c[p]
k (θj1,n1)− c̃[p]

k (θj1,n1)| is O(hα−k+1
1 ).
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization

Theorem IV.4.1. There exists a constant A
[p]
α depending only on α and p such that, for j1 =

1, . . . , n
[p]
1 and k = 1, . . . , α,

|c[p]
k (θj1,n1)− c̃[p]

k (θj1,n1)| ≤ A[p]
α h

α−k+1
1 . (IV.28)

Proof. It is a straightforward adaptation of the proof of [61, Theorem 1].

The improvement of the algorithm is performed by using an interpolation procedure. This

has been designed following the idea in [61].

We �x an index j ∈ {1, . . . , n[p]}. To compute an approximation of λj(n
−2L

[p]
n ) through

the expansion (IV.18) we would need the value c
[p]
k (θj,n) for each k = 1, . . . , α. Of course,

c
[p]
k (θj,n) is not available in practice, but we can approximate it by interpolating in some way

the values c̃
[p]
k (θj1,n1), j1 = 1, . . . , n

[p]
1 . For example, we may de�ne c̃

[p]
k (θ) as the interpolation

polynomial of the data (θj1,n1 , c̃
[p]
k (θj1,n1)), j1 = 1, . . . , n

[p]
1 , � so that c̃

[p]
k (θ) is expected to be an

approximation of c
[p]
k (θ) over the whole interval [0, π] � and take c̃

[p]
k (θj,n) as an approximation

to c
[p]
k (θj,n). It is known, however, that interpolation over a large number of uniform nodes is

not advisable as it may give rise to spurious oscillations (Runge's phenomenon). It is therefore

better to adopt another kind of approximation. An alternative could be the following: we

approximate c
[p]
k (θ) by the spline function c̃

[p]
k (θ) which is linear on each interval [θj1,n1 , θj1+1,n1 ]

and takes the value c̃
[p]
k (θj1,n1) at θj1,n1 for all j1 = 1, . . . , n

[p]
1 . This strategy usually removes

any spurious oscillation, yet it is not accurate. In particular, it does not preserve the accuracy

of approximation at the nodes θj1,n1 established in Theorem IV.4.1, i.e., there is no guarantee

that |c[p]
k (θ) − c̃[p]

k (θ)| ≤ B
[p]
α h

α−k+1
1 for θ ∈ [0, π] or |c[p]

k (θj,n) − c̃[p]
k (θj,n)| ≤ B

[p]
α h

α−k+1
1 for j =

1, . . . , n[p], with B
[p]
α being a constant depending only on α and p. As proved in Theorem IV.4.2, a

local approximation strategy that preserves the accuracy (IV.28), at least if c
[p]
k (θ) is su�ciently

smooth, is the following: let θ(1), . . . , θ(α−k+1) be α−k+ 1 points of the grid {θ1,n1 , . . . , θn[p]
1 ,n1
}

which are closest to the point θj,n,
2 and let c̃

[p]
k,j(θ) be the interpolation polynomial of the data

(θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1))); then, we approximate c

[p]
k (θj,n) by c̃

[p]
k,j(θj,n). Note

that, by selecting α − k + 1 points from {θ1,n1 , . . . , θn[p]
1 ,n1
}, we are implicitly assuming that

n
[p]
1 ≥ α− k + 1.

Theorem IV.4.2. Let p ≥ 3 and 1 ≤ k ≤ α, and suppose n[p]
1 ≥ α−k+1 and c

[p]
k ∈ Cα−k+1[0, π].

For j = 1, . . . , n[p], if θ(1), . . . , θ(α−k+1) are α−k+1 points of {θ1,n1 , . . . , θn[p]
1 ,n1
} which are closest

to θj,n, and if c̃
[p]
k,j(θ) is the interpolation polynomial of the data

(θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1))),

then

|c[p]
k (θj,n)− c̃[p]

k,j(θj,n)| ≤ B[p]
α h

α−k+1
1 (IV.29)

for some constant B
[p]
α depending only on α and p.

Proof. It is a straightforward adaptation of the proof of [58, Theorem 2].

2These α− k + 1 points are uniquely determined by θj,n except in the following two cases: (a) θj,n coincides

with a grid point θj1,n1 and α− k+1 is even; (b) θj,n coincides with the midpoint between two consecutive grid

points θj1,n1 , θj1+1,n1 and α− k + 1 is odd.
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IV.4. Algorithm for computing the eigenvalues of L
[p]
n for p ≥ 3

We are now ready to formulate our algorithm for computing the eigenvalues of L
[p]
n , excluding

the outliers. Note that this algorithm permits a parallel implementation, as in the case of [58,

Algorithm 1]; see [58, Remark 4].

Algorithm 1. Given p ≥ 3 and n, n1, α ∈ N with n
[p]
1 ≥ α, we compute approximations of the

eigenvalues λj(L
[p]
n ) for j = 1, . . . , n[p] as follows.

1. For j1 = 1, . . . , n
[p]
1 compute c̃

[p]
1 (θj1,n1), . . . , c̃

[p]
α (θj1,n1) by solving (IV.27).

2. For j = 1, . . . , n[p]

� for k = 1, . . . , α

� determine α − k + 1 points θ(1), . . . , θ(α−k+1) ∈ {θ1,n1 , . . . , θn[p]
1 ,n1
} which are

closest to θj,n;

� compute c̃
[p]
k,j(θj,n), where c̃

[p]
k,j(θ) is the interpolation polynomial of the data

(θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1)));

� compute λ̃j(n
−2L

[p]
n ) = ep(θj,n) +

∑α
k=1 c̃

[p]
k,j(θj,n)hk and λ̃j(L

[p]
n ) = n2λ̃j(n

−2L
[p]
n ).

3. Return (λ̃1(L
[p]
n ), . . . , λ̃n[p](L

[p]
n )) as an approximation to (λ1(L

[p]
n ), . . . , λn[p](L

[p]
n )).

Remark 8. Algorithm 1 is speci�cally designed for computing the eigenvalues of L
[p]
n in the case

where n is quite large. When applying this algorithm, it is implicitly assumed that n1 and α are

small (much smaller than n), so that each nk = 2k−1n1 is small as well and the computation of

the eigenvalues of L
[p]
nk � which is required in the �rst step � can be e�ciently performed by

any standard eigensolver (e.g., the solver used by the function eig of Matlab).

The last theorem of this section provides an estimate for the approximation error made by

Algorithm 1.

Theorem IV.4.3. Let p ≥ 3, n[p] ≥ n
[p]
1 ≥ α and c

[p]
k ∈ Cα−k+1[0, π] for k = 1, . . . , α. Let

(λ̃1(L
[p]
n ), . . . , λ̃n[p](L

[p]
n )) be the approximation of (λ1(L

[p]
n ), . . . , λn[p](L

[p]
n )) computed by Algo-

rithm 1. Then, there exists a constant D
[p]
α depending only on α and p such that, for j =

1, . . . , n[p],

|λj(L[p]
n )− λ̃j(L[p]

n )| ≤ D[p]
α nh

α
1 . (IV.30)

Proof. By (IV.18) and Theorem IV.4.2,

|λj(n−2L[p]
n )− λ̃j(n−2L[p]

n )| =
∣∣∣∣∣ep(θj,n) +

α∑

k=1

c
[p]
k (θj,n)hk + E

[p]
j,n,α − ep(θj,n)−

α∑

k=1

c̃
[p]
k,j(θj,n)hk

∣∣∣∣∣

≤
α∑

k=1

|c[p]
k (θj,n)− c̃[p]

k,j(θj,n)|hk + |E[p]
j,n,α|

≤ B[p]
α

α∑

k=1

hα−k+1
1 hk + C [p]

α h
α+1 ≤ D[p]

α h
α
1h,

where D
[p]
α = (α+ 1) max(B

[p]
α , C

[p]
α ). Multiplying both sides by n2 we get the thesis.
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization

n1 200 300 400 500 600

θ
(ε)
n1 (3, 1)

86π

200
≈ 1.3509

129π

300
≈ 1.3509

172π

400
≈ 1.3509

214π

500
≈ 1.3446

257π

600
≈ 1.3456

θ
(ε)
n1 (3, 2)

115π

200
≈ 1.8064

172π

300
≈ 1.8012

229π

400
≈ 1.7986

286π

500
≈ 1.7970

343π

600
≈ 1.7959

θ
(ε)
n1 (3, 3)

126π

200
≈ 1.9792

188π

300
≈ 1.9687

251π

400
≈ 1.9713

313π

500
≈ 1.9666

377π

600
≈ 1.9740

Table IV.1: Example 6, p = 3: values θ
(ε)
n1 (3, k) for k = 1, 2, 3 and n1 = 200, 300, 400, 500, 600, computed with

the threshold ε = 0.0005.

Note that the error estimate provided by Theorem IV.4.3 seems disappointing, because of the

presence of the large factor n in the right-hand side of (IV.30). However, one should take into

account that (IV.30) is an absolute error estimate which, moreover, is uniform in j. Considering

that the largest non-outlier eigenvalue of L
[p]
n , namely λn[p](L

[p]
n ), diverges to ∞ with the same

asymptotic speed as n2, from (IV.30) we obtain the approximate inequality

|λn[p](L
[p]
n )− λ̃n[p](L

[p]
n )|

|λn[p](L
[p]
n )|

≤ D[p]
α h

α
1h,

which is a good relative error estimate. We refer the reader to Subsection IV.5.2 for several

numerical illustrations of the actual performance of Algorithm 1.

IV.5 Numerical experiments

This section is composed of two subsections. In Subsection IV.5.1 we implement the program

described in Items 3 and 4 of Subsection IV.1. In other words, we validate through numerical

experiments the expansion (IV.18) for p ≥ 3; we numerically show, for p ≥ 3 and k ≥ 1, the

existence of a point θ(p, k) ∈ (0, π) such that c
[p]
k (θ) vanishes over [0, θ(p, k)]; and we provide

numerical evidence of the fact that the in�mum yp = infk≥1 θ(p, k) is strictly positive and the

equation λj(n
−2L

[p]
n ) = ep(θj,n) holds numerically whenever θj,n < θ(p), with θ(p) being a point

in (0, yp]. In Subsection IV.5.2 we illustrate the numerical performance of Algorithm 1.

IV.5.1 Numerical experiments in support of the eigenvalue expansion

Fix p ≥ 3 and α ∈ N. As in Section IV.4, for every n1 ∈ N we set

nk = 2k−1n1, k = 1, . . . , α,

jk = 2k−1j1, k = 1, . . . , α, j1 = 1, . . . , n1.

In the hypothesis that the expansion (IV.18) holds, we can follow the derivation of Section IV.4

until Theorem IV.4.1 and we conclude that, for each k = 1, . . . , α and j1 = 1, . . . , n
[p]
1 , the value

c̃
[p]
k (θj1,n1) computed by solving the linear system (IV.27) converges to the value c

[p]
k (θj1,n1)

as n1 → ∞ with the same asymptotic speed as hα−k+1
1 . In other words, in the hypothesis

that the expansion (IV.18) holds, if we plot the values c̃
[p]
k (θj1,n1) versus the points θj1,n1 for
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IV.5. Numerical experiments

θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 1
(θ

j 1
,n

1
)

−2.5

−2

−1.5

−1

−0.5

0
n1 = 200
n1 = 300
n1 = 400

θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 2
(θ

j 1
,n

1
)

−2

−1

0

1 n1 = 200
n1 = 300
n1 = 400

θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 3
(θ

j 1
,n

1
)

−3

−2

−1

0

1

2

3

4
n1 = 200
n1 = 300
n1 = 400

Figure IV.4: Example 6, p = 3: graph of the pairs (θj1,n1 , c̃
[3]
k (θj1,n1)), j1 = 1, . . . , n1 − 1, for n1 = 200, 300, 400

and k = 1, 2, 3.

93



Chapter IV. Asymptotic Expansion: applied to the IgA discretization

0 π/4 π/2 3π/4 π

θj,n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|E
[3
]

j,
n
,0
|

n = 750
n = 1000
n = 1250
n = 1500

Figure IV.5: Example 6, p = 3: errors |E[3]
j,n,0| versus θj,n for j = 1, . . . , n− 1 and n = 750, 1000, 1250, 1500.

n 750 1000 1250 1500

j 58 80 101 123

θj,n 0.2429 0.2513 0.2538 0.2576

Table IV.2: Example 6, p = 3: �rst index j such that |E[3]
j,n,0| > 10−14 and corresponding grid point θj,n, for

n = 750, 1000, 1250, 1500.

j1 = 1, . . . , n
[p]
1 , the resulting picture should converge as n1 →∞ to the graph of a function from

[0, π] to R, which is, by de�nition, c
[p]
k (θ). The next examples show that this is in fact the case,

thus providing a validation of the expansion (IV.18). The examples also support the following

conjectures:

� the limit function c
[p]
k (θ) vanishes over an interval [0, θ(p, k)] with θ(p, k) ∈ (0, π);

� yp = infk≥1 θ(p, k) > 0;

� λj(n
−2L

[p]
n ) = ep(θj,n) numerically whenever θj,n < θ(p), where θ(p) is a point in (0, yp] which

grows with p.

Example 6. Fix p = 3 and let α = 3. In Figure IV.4 we plot the pairs

(θj1,n1 , c̃
[3]
k (θj1,n1)), j1 = 1, . . . , n

[3]
1 = n1 − 1, (IV.31)

for n1 = 200, 300, 400 and k = 1, 2, 3. We note that, for each �xed k, the graph of the pairs

(IV.31) is essentially the same for all the considered values of n1. In other words, this graph

converges to the graph of a function c
[3]
k (θ) as n1 →∞, and the convergence is essentially reached

already for n1 = 200, at least from the point of view of graphical visualization. Moreover, the

limit function c
[3]
k (θ) is apparently zero over an interval [0, θ(3, k)], where θ(3, k) ∈ (0, π). An

ε-approximation of θ(3, k) is obtained as the limit of θ
(ε)
n1 (3, k) for n1 →∞, where

θ(ε)
n1

(3, k) = max
{
θj1,n1 : 1 ≤ j1 ≤ n1 − 1, |c̃[3]

k (θi1,n1)| ≤ ε for all i1 < j1
}
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IV.5. Numerical experiments

n1 200 300 400 500 600

θ
(ε)
n1 (4, 1)

97π

200
≈ 1.5237

146π

300
≈ 1.5289

194π

400
≈ 1.5237

242π

500
≈ 1.5205

291π

600
≈ 1.5237

θ
(ε)
n1 (4, 2)

129π

200
≈ 2.0263

194π

300
≈ 2.0316

258π

400
≈ 2.0263

322π

500
≈ 2.0232

387π

600
≈ 2.0263

θ
(ε)
n1 (4, 3)

145π

200
≈ 2.2777

217π

300
≈ 2.2724

289π

400
≈ 2.2698

362π

500
≈ 2.2745

434π

600
≈ 2.2724

Table IV.3: Example 7, p = 4: values θ
(ε)
n1 (4, k) for k = 1, 2, 3 and n1 = 200, 300, 400, 500, 600, computed with

the threshold ε = 0.0005.

n 750 1000 1250 1500

j 71 97 123 152

θj,n 0.2974 0.3047 0.3091 0.3183

Table IV.4: Example 7, p = 4: �rst index j such that |E[4]
j,n,0| > 10−14 and corresponding grid point θj,n, for

n = 750, 1000, 1250, 1500.

and ε is a �xed threshold. Table IV.1 shows the values θ
(ε)
n1 (3, k) computed for k = 1, 2, 3 and

n1 = 200, 300, 400, 500, 600 with the �xed threshold ε = 0.0005. Both Figure IV.4 and Table IV.1

suggest that θ(3, k) grows with k. In particular, we may expect that

y3 = inf
k≥1

θ(3, k) = θ(3, 1) > 0.

In Figure IV.5 we plot the errors |E[3]
j,n,0| = |λj(n−2L

[3]
n ) − e3(θj,n)| versus the points θj,n for

j = 1, . . . , n[3] = n − 1 and n = 750, 1000, 1250, 1500. For the same values of n, in Table IV.2

we record the �rst index j such that |E[3]
j,n,0| > 10−14 and the corresponding grid point θj,n.

From Figure IV.5 and Table IV.2 we immediately see that a nontrivial portion of the spectrum

of n−2L
[3]
n is exactly approximated, at least from a numerical viewpoint, by the spectral symbol

e3(θ). Moreover, the points θj,n shown in Table IV.2 apparently form a monotone increasing

sequence; the limit of this sequence as n → ∞, say θ(3) ≈ 0.2576, is a point such that the

equation λi(n
−2L

[3]
n ) = e3(θi,n) holds numerically whenever θi,n < θ(3). In other words, the

ratio θ(3)/π ≈ 0.082 represents the portion of the spectrum of n−2L
[3]
n which is exactly described

by e3(θ), at least numerically.

Example 7. In this example we verbatim repeat for the case p = 4 what we have done in

Example 6 for p = 3. For the sake of brevity, we do not include here any comment and we

limit to report the exact analogs of Figure IV.4, Table IV.1, Figure IV.5, and Table IV.2 in

Figure IV.6, Table IV.3, Figure IV.7, and Table IV.4.

Example 8. A comparison between Table IV.2 and Table IV.4 shows that the portion of the

spectrum of n−2L
[p]
n which is exactly described by ep(θ), at least from a numerical viewpoint,

grows from θ(3)/π ≈ 0.082 for p = 3 to θ(4)/π ≈ 0.101 for p = 4. Actually, this spectrum

portion increases more and more with p, i.e., θ(p) grows with p; see Figure IV.8.
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0 π/4 π/2 3π/4 π

θj1,n1

−0.25

−0.2

−0.15

−0.1

−0.05

0

c̃[
4] 1
(θ

j 1
,n

1
)

n1 = 200
n1 = 300
n1 = 400

0 π/4 π/2 3π/4 π

θj1,n1

−0.02

−0.01

0

0.01

c̃[
4] 2
(θ

j 1
,n

1
)

n1 = 200
n1 = 300
n1 = 400

0 π/4 π/2 3π/4 π

θj1,n1

−0.002

0

0.002

0.004

0.006

0.008

0.01

c̃[
4] 3
(θ

j 1
,n

1
)

n1 = 200
n1 = 300
n1 = 400

Figure IV.6: Example 7, p = 4: graph of the pairs (θj1,n1 , c̃
[4]
k (θj1,n1)), j1 = 1, . . . , n1, for n1 = 200, 300, 400 and

k = 1, 2, 3.
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IV.5. Numerical experiments

0 π/4 π/2 3π/4 π

θj,n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|E
[4
]

j,
n
,0
|

n = 750
n = 1000
n = 1250
n = 1500

Figure IV.7: Example 7, p = 4: errors |E[4]
j,n,0| versus θj,n for j = 1, . . . , n and n = 750, 1000, 1250, 1500.

0 π/4 π/2 3π/4 π

θj,n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|E
[p
]

j,
n
,0
|

p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure IV.8: Example 8: errors |E[p]
j,n,0| versus θj,n for j = 1, . . . , n−mod(p, 2) and p = 3, . . . , 8, with n = 750.
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0 π/5 2π/5 3π/5 4π/5 π

θj,n

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

ε[
3
],
1

j,
n

0 π/5 2π/5 3π/5 4π/5 π

θj,n

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

ε[
3
],
2

j,
n

0 π/5 2π/5 3π/5 4π/5 π

θj,n

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

ε[
3
],
3

j,
n

0 π/5 2π/5 3π/5 4π/5 π

θj,n

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

ε[
3
],
4

j,
n

Figure IV.9: Example 9, p = 3: errors ε
[3],m
j,n versus θj,n for j = 1, . . . , n − 1, in the case where n = 5000,

n1 = 25 · 2m−1, and α = 4.
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IV.6. Extension to the multidimensional setting

IV.5.2 Numerical experiments illustrating the performance of algorithm 1

Example 9. Let p = 3. Suppose we want to approximate the eigenvalues of L
[3]
n (excluding the

nout
3 = 2 outliers) for n = 5000. Let λ̃

(m)
j (L

[3]
n ) be the approximation of λj(L

[3]
n ) obtained by

applying Algorithm 1 with n1 = 25 · 2m−1 and α = 4. In Figure IV.9 we plot the relative errors

ε
[3],m
j,n =

|λj(L[3]
n )− λ̃(m)

j (L
[3]
n )|

|λj(L[3]
n )|

versus θj,n for j = 1, . . . , n[3] = n − 1 and m = 1, . . . , 4. We see from the �gure that the errors

decrease rather quickly as m increases. A careful consideration of Figure IV.9 also reveals that,

aside from the exceptional minima attained in a neighborhood of θ = 0, 3 the local minima of

ε
[3],m
j,n are attained when θj,n is approximately equal to some of the coarse grid points θj1,n1 , j1 =

1, . . . , n1. This is no surprise, because for θj,n = θj1,n1 we have c̃
[3]
k,j(θj,n) = c̃

[3]
k (θj1,n1) and

c
[3]
k (θj,n) = c

[3]
k (θj1,n1), which means that the error of the approximation c̃

[3]
k,j(θj,n) ≈ c

[3]
k (θj,n)

reduces to the error of the approximation c̃
[3]
k (θj1,n1) ≈ c[3]

k (θj1,n1); that is, we are not introducing

further error due to the interpolation process.

Example 10. Let p = 4. Suppose we want to approximate the eigenvalues of L
[4]
n (excluding

the nout
4 = 2 outliers) for n = 5000. Let λ̃

(m)
j (L

[4]
n ) be the approximation of λj(L

[4]
n ) obtained by

applying Algorithm 1 with n1 = 10 · 2m−1 and α = 5. In Figure IV.10 we plot the relative errors

ε
[4],m
j,n =

|λj(L[4]
n )− λ̃(m)

j (L
[4]
n )|

|λj(L[4]
n )|

,

versus θj,n for j = 1, . . . , n[4] = n and m = 1, . . . , 4. Considerations analogous to those of

Example 9 apply also in this case.

IV.6 Extension to the multidimensional setting

We present in this section the extension to the multidimensional setting of the analysis carried

out in the previous sections. In what follows, we will systematically use the multi-index notation

and the properties of tensor products as described in [76, Subsections 2.1.1 and 2.6.1]. If wi :

Di → C, i = 1, . . . , k, are arbitrary functions, we will denote by w1⊗· · ·⊗wk : D1×· · ·×Dk → C
the tensor-product function

(w1 ⊗ · · · ⊗ wk)(ξ1, . . . , ξk) =
k∏

i=1

wi(ξi), (ξ1, . . . , ξk) ∈ D1 × · · · ×Dk.

Problem setting

Consider the k-dimensional Laplacian eigenvalue problem
{
−∆u(x) = λu(x), x ∈ (0, 1)k,

u(x) = 0, x ∈ ∂((0, 1)k).
(IV.32)

3These minima, as well as the highly oscillatory behavior of the error around θ = 0, are probably due to

the fact that e3(θ) provides a numerically exact description of the spectrum of n−2L
[3]
n around θ = 0; see also

Example 6.
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Figure IV.10: Example 10, p = 4: errors ε
[4],m
j,n versus θj,n for j = 1, . . . , n, in the case where n = 5000,

n1 = 10 · 2m−1, and α = 5.
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The corresponding weak formulation reads as follows: �nd eigenvalues λ ∈ R+ and eigenfunctions

u ∈ H1
0 ((0, 1)k) such that, for all v ∈ H1

0 ((0, 1)k),

a(u, v) = λ(u, v),

where

a(u, v) =

∫

(0,1)k
∇u(x) · ∇v(x)dx, (u, v) =

∫

(0,1)k
u(x)v(x)dx.

In the �tensor-product version� of Galerkin's method, we choose k �nite-dimensional vector

spaces W1, . . . ,Wk ⊂ H1
0 (0, 1) and we set

W = W1 ⊗ · · · ⊗Wk = span(w1 ⊗ · · · ⊗ wk : w1 ∈ W1, . . . , wk ∈ Wk) ⊂ H1
0 ((0, 1)k).

Then, we de�ne Ns = dim Ws for s = 1, . . . , k and N = (N1, . . . , Nk), and we look for approxi-

mations of the exact eigenpairs

λj =
k∑

i=1

j2
i π

2, uj(x) =
k∏

i=1

sin(jiπxi), j = (j1, . . . , jk) ∈ Nk, (IV.33)

by solving the following Galerkin problem: �nd λj,W ∈ R+ and uj,W ∈ W , for j = e, . . . ,N ,

such that, for all v ∈ W ,

a(uj,W , v) = λj,W (uj,W , v). (IV.34)

If {ϕ1,[s], . . . , ϕNs,[s]} is a basis of Ws for s = 1, . . . , k, then

ϕi = ϕi1,[1] ⊗ · · · ⊗ ϕik,[d], i = e, . . . ,N ,

is a basis of W , and in view of the canonical identi�cation between each v ∈ W and its coe�cient

vector with respect to {ϕe, . . . , ϕN}, solving the Galerkin problem (IV.34) is equivalent to solving

the generalized eigenvalue problem

Kuj,W = λj,W Muj,W , (IV.35)

where uj,W is the coe�cient vector of uj,W with respect to {ϕe, . . . , ϕN},

K = [a(ϕj , ϕi)]
N
i,j=e =

[∫

(0,1)k
∇ϕj(x) · ∇ϕi(x)dx

]N

i,j=e

= (IV.36)

k∑

r=1

(r−1⊗

s=1

M (s)

)
⊗K(r) ⊗

( k⊗

s=r+1

M (s)

)
, (IV.37)

M = [(ϕj , ϕi)]
N
i,j=e =

[∫

(0,1)k
ϕj(x)ϕi(x)dx

]N

i,j=e

=

k⊗

s=1

M (s), (IV.38)

and

K(s) =

[∫ 1

0
ϕ′j,[s](x)ϕ′i,[s](x)dx

]Ns

i,j=1

, s = 1, . . . , k,

M (s) =

[∫ 1

0
ϕj,[s](x)ϕi,[s](x)dx

]Ns

i,j=1

, s = 1, . . . , k.
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Chapter IV. Asymptotic Expansion: applied to the IgA discretization

The matrices K and M are, respectively, the sti�ness matrix and the mass matrix. Both K

and M are always symmetric positive de�nite, regardless of the basis functions ϕe, . . . , ϕN .

Moreover, it is clear from (IV.35) that the numerical eigenvalues λj,W , j = e, . . . ,N , are just

the eigenvalues of the matrix

L = M−1K =
k∑

r=1

(r−1⊗

s=1

INs

)
⊗ (M (r))−1K(r) ⊗

( k⊗

s=r+1

INs

)
. (IV.39)

In the IgA approximation of (IV.32) based on uniform tensor-product B-splines of degree

p = (p1, . . . , pk), we look for approximations of the exact eigenpairs (IV.33) by using the

tensor-product version of the Galerkin method described above, in which the basis functions

ϕ1,[s], . . . , ϕNs,[s] are chosen as the B-splines N2,[ps], . . . , Nns+ps−1,[ps] for s = 1, . . . , k, where the

functions Nis+1,[ps], is = 1, . . . , ns + ps − 2, are de�ned in (IV.8) for n = ns and p = ps. Setting

n = (n1, . . . , nk), the resulting sti�ness and mass matrices (IV.37)�(IV.38) are given by

K
[p]
n =

k∑

r=1

(r−1⊗

s=1

M [ps]
ns

)
⊗K [pr]

nr ⊗
( k⊗

s=r+1

M [ps]
ns

)
, (IV.40)

M
[p]
n =

k⊗

s=1

M [ps]
ns , (IV.41)

and the numerical eigenvalues λ
[p]
j,n, j = e, . . . ,n+ p− 2, are the eigenvalues of the matrix

L
[p]
n = (M

[p]
n )−1K

[p]
n =

k∑

r=1

(r−1⊗

s=1

Ins+ps−2

)
⊗ L[pr]

nr ⊗
( k⊗

s=r+1

Ins+ps−2

)
, (IV.42)

where the matrices K
[p]
n ,M

[p]
n , L

[p]
n are de�ned in (IV.10)�(IV.12) for all p, n ≥ 1.

IV.6.1 Eigenvalue�eigenvector structure of L
[p]
n

We now show that the eigenvalue�eigenvector structure of L
[p]
n is determined by the eigenvalue�

eigenvector structure of the matrices L
[p]
n for p ∈ {p1, . . . , pk}. It will immediately follow that

the eigenvalues and eigenvectors of L
[p]
n are explicitly known for e ≤ p ≤ 2, because of the

results of Section IV.3. Moreover, the parallel interpolation�extrapolation algorithm devised in

Section IV.4 for computing the eigenvalues of L
[p]
n also allows the computation of the eigenvalues

of L
[p]
n .

For p, n ≥ 1, let

L[p]
n = V [p]

n D[p]
n (V [p]

n )−1, D[p]
n = diag

j=1,...,n+p−2
λj(L

[p]
n ), (IV.43)

be a spectral decomposition of L
[p]
n . Note that such a decomposition exists because L

[p]
n is

diagonalizable, because of the similarity equation

L[p]
n = (M [p]

n )−1K [p]
n = (M [p]

n )−1/2
[
(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2
]
(M [p]

n )1/2.
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It follows from (IV.43) and the properties of tensor products that

L
[p]
n =

k∑

r=1

(r−1⊗

s=1

Ins+ps−2

)
⊗ L[pr]

nr ⊗
( k⊗

s=r+1

Ins+ps−2

)
,

=

( k⊗

s=1

V [ps]
ns

)[ k∑

r=1

(r−1⊗

s=1

Ins+ps−2

)
⊗D[pr]

nr ⊗
( k⊗

s=r+1

Ins+ps−2

)]( k⊗

s=1

V [ps]
ns

)−1

, (IV.44)

which is a spectral decomposition of L
[p]
n . More explicitly, let v

[p]
1,n, . . . ,v

[p]
n+p−2,n be the columns

of V
[p]
n , i.e., the eigenvectors of L

[p]
n ,

L[p]
n v

[p]
j,n = λj(L

[p]
n )v

[p]
j,n, j = 1, . . . , n+ p− 2,

and let

v
[p]
j,n =

k⊗

s=1

v
[ps]
js,ns

, j = e, . . . ,n+ p− 2. (IV.45)

Then, we can rewrite (IV.44) as

L
[p]
n v

[p]
j,n = λj(L

[p]
n )v

[p]
j,n, j = e, . . . ,n+ p− 2,

where

λj(L
[p]
n ) =

k∑

r=1

λjr(L
[pr]
nr ), j = e, . . . ,n+ p− 2. (IV.46)

In other words, the eigenvalue�eigenvector pairs of L
[p]
n are

(λj(L
[p]
n ),v

[p]
j,n), j = e, . . . ,n+ p− 2,

with v
[p]
j,n and λj(L

[p]
n ) de�ned as in (IV.45) and (IV.46), respectively.

We have considered the B-spline IgA approximation of the k-dimensional Laplacian eigen-

value problem (IV.32). Through tensor-product arguments, we have shown that the eigenvalue�

eigenvector structure of the resulting discretization matrix L
[p]
n is completely determined by the

eigenvalue�eigenvector structure of the matrix L
[p]
n arising from the B-spline IgA approximation

of the unidimensional eigenproblem (IV.1). As for the matrix L
[p]
n , we implemented the program

detailed in Items 1 to 5 of Subsection IV.1.
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Chapter V

Asymptotic Expansion: extension to

the block case

A substantial step forward in order to ascertain the existence of an asymptotic eigenvalue expan-

sion for several PDE discretization matrices has been the generalization of the proposed theory

to the block and preconditioned block context.

Special attention is dedicated to the generalization of the results of Chapters III-IV under

the assumptions that f of is an s × s matrix-valued trigonometric polynomial with s ≥ 1, and

Tn(f) is the associated block Toeplitz matrix, whose size is N(n, s) = sn.

Main contributions

The main contributions of the Chapter can be summarized as follows.

1. First we derive the conditions (either local or global) which ensure the existence of an

asymptotic expansion for the eigenvalues of Tn(f), generalizing those for the scalar-valued

setting, s = 1.

2. We provide numerical evidence of a precise asymptotic expansion for the eigenvalues of

Tn(f), under the speci�c conditions derived in the �rst item. In particular, we conjecture

on the basis of numerical experiments that for every integer α ≥ 0, every s ≥ 1, and every

q ∈ {1, . . . , s}, the following asymptotic expansion holds: for all n ∈ N and j = 1, . . . , n,

λγ(Tn(f)) = λ(q)(f(θj,n)) +
α∑

k=1

c
(q)
k (θj,n)hk + E

(q)
j,n,α , (V.1)

where:

� γ = γ(q, j) = (q − 1)n+ j;

� λk(Tn(f)), k ∈ {1, . . . , N(n, s)}, are the eigenvalues of Tn(f), which are sorted so

that, for each �xed q̄ ∈ {1, . . . , s}, the eigenvalues λ(q̄−1)n+j(Tn(f)), j = 1, . . . , n, are

arranged in non decreasing or non increasing order, depending on whether λ(q̄)(f)

is increasing or decreasing (this can be seen using the local or the global condition

below);
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Chapter V. Asymptotic Expansion: extension to the block case

� {c(q)
k }k=1,2,...,α is a sequence of functions from [0, π] to R which depends only on f ;

� h = 1
n+1 and θj,n = jπ

n+1 = jπh, j = 1, . . . , n;

� E
(q)
j,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |E(q)

j,n,α| ≤
Cαh

α+1 for some constant Cα depending only on α and f .

We refer the reader to the Chapter VI Section VI.6 for a proof of the expansion (IV.18)

for α = 0.

3. Following the proposal for s = 1 of the previous chapters, we devise an interpolation�

extrapolation algorithm for computing the eigenvalues of banded symmetric block Toeplitz

matrices, with a high level of accuracy and a low computational cost, and we present several

examples of practical interest.

4. We provide the exact formulae for the eigenvalues of the mass and sti�ness matrices com-

ing from the one dimensional Qp Lagrangian Finite Element approximation of a second

order elliptic di�erential problem and the preconditioned block matrices coming from the

classical Lagrangian Finite Element approximation of the classical eigenvalue problem for

the Laplacian operator in one dimension.

V.1 Conditions for the existence of block asymptotic expansion

We recall that an nth block Toeplitz matrix generated by a matrix-valued function φ : [−π, π]→
Cs×s is de�ned as

Tn(φ) =
[
φ̂i−j

]n
i,j=1

,

where the quantities φ̂l ∈ Cs×s are the Fourier coe�cients of φ, that is,

φ̂l =
1

2π

∫ π

−π
φ(θ) e−ιlθdθ, l ∈ Z. (V.2)

We refer to {Tn(φ)}n as the block Toeplitz sequence generated by φ, which in turn is called the

generating function or the symbol of {Tn(φ)}n. Such type of matrix sequences have been studied,

especially for s = 1, by many authors including Szeg®, Avram, Böttcher, Parter, Sibermann,

Tilli, and Tyrtyshnikov (see, e.g., [77, 140] and references therein).

Furthermore, if φ is Hermitian almost everywhere then, by (V.2), φ̂−k = φ̂∗k for every k ∈
Z and therefore each Tn(φ) is Hermitian. As a consequence, the spectrum of Tn(φ) is real.

Moreover, the analytical properties of φ decide many delicate features of the eigenvalues of

Tn(φ) such as distribution, clustering, and localization, as we brie�y describe below without

entering into technical details.

Distribution. In [140] it was proved that {Tn(φ)}n has an asymptotic spectral distribution, in

the Weyl sense, described by φ(θ), under the assumption that φ(θ) is a Lebesgue integrable

matrix-valued function which is Hermitian almost everywhere. An extension to the non-

Hermitian case was given in [53], by adapting the tools introduced by Tilli in [142] for

complex-valued generating functions.
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When the symbol φ is also continuous, i.e., each component φi,j is continuous, the present

distribution result can be described as follows: for su�ciently large n, up to a small

number of possible outliers, the eigenvalues of Tn(φ) can be grouped into s �branches�

having approximate cardinality n and for each q = 1, . . . , s the eigenvalues belonging to

the qth branch are approximately given by the samples over a certain uniform grid in

[−π, π] of the qth eigenvalue function λ(q)(φ).

Clustering. For any ε > 0, take an ε-neighborhood of the set Rφ, which is de�ned as the union

of the essential ranges of the eigenvalue functions λ(q)(φ). Then the spectrum of {Tn(φ)}n
is clustered at Rφ in the sense that the number of the eigenvalues of Tn(φ) that do not

belong to the ε-neighborhood of Rφ is o(n) as n tends to in�nity. If φ is a Hermitian-

valued trigonometric polynomial, then the number of such outliers is O(1) and it is at

most linearly depending on s and on the degree of the polynomial. Such clustering results

are consequences of the distribution result.

Localization. Assume that λ(q)(φ), q = 1, . . . , s, are sorted in non decreasing order, that is,

λ(1)(φ) ≤ λ(2)(φ) ≤ · · · ≤ λ(s)(φ). Then, for all n, the eigenvalues of Tn(φ) belong to

the interval [mφ,Mφ], where mφ = ess infθ∈[−π,π] λ
(1)(φ) and Mφ = ess supθ∈[−π,π] λ

(s)(φ).

Moreover, if the function λ(1)(φ) is not essentially constant, then the eigenvalues of Tn(φ)

belong to (mφ,Mφ], and, if the function λ(s)(φ) is not essentially constant, then the eigen-

values of Tn(φ) belong to [mφ,Mφ). For such results refer to [117, 121].

Remark 9. Part 1. When the symbol φ is continuous, then each eigenvalue function λ(q)(φ),

q = 1, . . . , s, is continuous and therefore the essential in�mum becomes a minimum and the

essential supremum becomes a maximum (because the interval [−π, π] is a compact set), while

the essential range is the standard range. Part 2. Finally the interval [−π, π] can be replaced

by the interval [0, π] when φ(−θ) = φ(θ)T : this is precisely the case we consider, see (V.4).

In this chapter we focus on the case where the symbol is a Hermitian matrix-valued trigono-

metric polynomial (HTP) f with Fourier coe�cients f̂0, f̂1, . . . , f̂m ∈ Rs×s, that is, a function of

the form

f(θ) =
m∑

k=−m
f̂ke

ιkθ = f̂0 +
m∑

k=1

(
f̂ke

ιkθ + f̂Tk e−ikθ
)
, m = deg (f(θ)) ∈ N,

where we set

f̂−k = f̂Tk , k = 0, . . . ,m. (V.3)

The assumptions on f(θ) imply that Tn(f) is a real symmetric block banded matrix with �block

107



Chapter V. Asymptotic Expansion: extension to the block case

bandwidth� 2m+ 1, of the form

Tn(f) =




f̂0 f̂T1 · · · f̂Tm

f̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

f̂m
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

f̂m · · · f̂1 f̂0 f̂T1 · · · f̂Tm
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . f̂Tm

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . f̂T1

f̂m · · · f̂1 f̂0




.

Note that from (V.3) we have

f(θ)T = f̂0 +
m∑

k=1

(
f̂Tk eιkθ + f̂T−ke

−ikθ
)

= f̂0 +
m∑

k=1

(
f̂−ke

ιkθ + f̂ke
−ikθ

)
= f(−θ), (V.4)

f(θ)∗ = f̂0 +
m∑

k=1

(
f̂Tk e−ιkθ + f̂T−ke

ιkθ
)

= f̂0 +
m∑

k=1

(
f̂−ke

−ikθ + f̂ke
ιkθ
)

= f(θ), (V.5)

and hence f(θ) has the same eigenvalues as f(−θ). Thus, each eigenvalue function λ(q)(f) is even

and we can therefore simply focus on its restriction λ(q)(f) : [0, π] → Rs×s (in accordance with

the second part of Remark 9).

In view of the above distribution, clustering, and localization results, up to O(1) possible

outliers, the eigenvalues of the symmetric matrix Tn(f) can be partitioned in s subsets (or

�branches�) of approximately the same cardinality n; and the eigenvalues belonging to the qth

branch are approximately equal to the samples of the qth eigenvalue function λ(q)(f) over a

uniform grid in [0, π].

In this chapter we show that the di�erent branches have a much �ner structure and that,

under mild restrictions, there exists a hierarchy of symbols which allow us to design extremely

economical procedures for the computation of the eigenvalues of the matrices Tn(f). In partic-

ular, we conjecture on the basis of numerical experiments that for every integer α ≥ 0, every

s ≥ 1, and every q ∈ {1, . . . , s}, the following asymptotic expansion holds under the speci�c

local condition and global condition that will be discussed below: for all n ∈ N and j = 1, . . . , n,

λγ(Tn(f)) = λ(q)(f(θj,n)) +

α∑

k=1

c
(q)
k (θj,n)hk + E

(q)
j,n,α , (V.6)

where:
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� γ = γ(q, j) = (q − 1)n+ j;

� λk(Tn(f)), k ∈ {1, . . . , N(n, s)}, are the eigenvalues of Tn(f), which are sorted so that,

for each �xed q̄ ∈ {1, . . . , s}, the eigenvalues λ(q̄−1)n+j(Tn(f)), j = 1, . . . , n, are arranged

in non decreasing or non increasing order, depending on whether λ(q̄)(f) is increasing or

decreasing (this can be seen using the local or the global condition below);

� {c(q)
k }k=1,2,...,α is a sequence of functions from [0, π] to R which depends only on f ;

� h = 1
n+1 and θj,n = jπ

n+1 = jπh, j = 1, . . . , n;

� E
(q)
j,n,α = O(hα+1) is the remainder (the error), which satis�es the inequality |E(q)

j,n,α| ≤
Cαh

α+1 for some constant Cα depending only on α and f .

We note that in the scalar-valued case s = 1, several theoretical and computational results

are available in support of the above expansion [7, 16, 17, 19, 58, 62, 63], including also extensions

to preconditioned matrices and matrices arising in a di�erential context [1, 58].

Unfortunately, as already shown in [7, 62, 63], the expansion (V.6) is not always satis�ed

even for s = 1. Below we give two conditions which ensure that the expansion holds.

Local condition. The eigenvalue λγ(Tn(f)) can be expanded as in (V.6) if there exists ε̄ > 0

such that, for all ε ∈ (0, ε̄) and all y ∈ (λγ(Tn(f))− ε, λγ(Tn(f)) + ε), there exists a unique

q ∈ {1, . . . , s} and a unique θ̄ ∈ [0, π] for which

y = λ(q)(f(θ̄)). (V.7)

Global condition. A trivial global condition is obtained by imposing that the local condition

is satis�ed for every eigenvalue which is not an outlier (if the eigenvalue λγ(Tn(f)) is an

outlier, then, by de�nition, it does not belong to the range of f and consequently relation

(V.7) cannot be satis�ed). A simple general assumption, which is equivalent to the trivial

global condition, is that each λ(q)(f), q = 1, . . . , s, is monotone (non increasing or non

decreasing) over the interval [0, π] and

max
θ∈[0,π]

λ(q)(f) < min
θ∈[0,π]

λ(q+1)(f)

for q = 1, . . . , s − 1. In other words, the global condition can be summarized as follows:

strict monotonicity of every eigenvalue function and the intersection of the ranges of two

eigenvalue functions λ(j)(f) and λ(k)(f) is empty for every pair of indices j, k ∈ {1, . . . , s}
such that j 6= k. This version of the global condition is of course much simpler to verify.

Moreover, in the case s = 1 it reduces to the monotonicity condition already used in the

literature; see [7, 16, 17, 19, 62, 63] and references therein.

In previous chapters we employed the asymptotic expansion (V.6) with s = 1 for computing

an accurate approximation of λj(Tn(f)) for very large n, if the values λj1(Tn1(f)), . . . , λjk(Tnk(f))

are available for moderately sized n1, . . . , nk such that θj1,n1 = · · · = θjk,nk = θj,n. We stress that

the preliminary version of the algorithm was developed in [62] and then improved in [1, 57, 58],
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while the mathematical foundations of the considered expansions and few numerical tests were

already present in [17].

The purpose of this chapter is to carry out this idea and to support it by numerical exper-

iments accompanied by an appropriate error analysis in the more general case where s > 1. In

particular, we devise an algorithm to compute λj(Tn(f)) with a high level of accuracy and a

relatively low computational cost. The algorithm is completely analogous to the extrapolation

procedure [132, Section 3.4], which is employed in the context of Romberg integration to obtain

high precision approximations of an integral from a few coarse trapezoidal approximations. In

this regard, the asymptotic expansion (V.6) plays here the same role as the Euler-Maclaurin

summation formula [132, Section 3.3].

The chapter is organized as follows. Assuming the asymptotic eigenvalue expansion (V.6), in

Section IV.4, we present our extrapolation algorithm for computing the eigenvalues of the s× s
block matrix Tn(f) for s > 1. In Section V.3 we provide numerical experiments in support of the

asymptotic eigenvalue expansion (V.6) in di�erent cases. Furthermore, we derive exact formulae

for the eigenvalues in some practical examples and for matrices coming from order p Lagrangian

Finite Element approximations of a second order elliptic di�erential problem, which are denoted

as Qp. Finally we provide exact formulae for the eigenvalues of the preconditioned block matrices

coming from the classical Lagrangian Finite Element approximation of the classical eigenvalue

problem for the Laplacian operator in one dimension. In the Section VI.6 of Chapter VI we

formally prove (V.6) in the basic case α = 0, and we report in detail the mass and sti�ness Qp

elements for p = 2, 3, 4.

V.2 Algorithm for computing the eigenvalues of Tn(f) for s > 1

Assuming that the expansion (V.6) holds and taking inspiration from [58], we propose in the

present section an interpolation�extrapolation algorithm for computing the eigenvalues of Tn(f).

In what follows, for each positive integer n ∈ N = {1, 2, 3, . . .} and each s > 1 we de�ne

N(n, s) = sn. Moreover, with each positive integer n we associate the stepsize h = 1/(n + 1)

and the grid points θj,n = jπh, j = 1, . . . , n. For notational convenience, unless otherwise stated,

we will always denote a positive integer and the associated stepsize in a strongly related way.

For example, if the positive integer is n, then the associated stepsize is h; if the positive integer

is n1, then the associated stepsize is h1; if the positive integer is n̄, then the associated stepsize

is h̄; etc. Throughout this section, we make the following assumptions.

� s > 1 and n, n1, α ∈ N are �xed parameters.

� nk = 2k−1(n1 + 1)− 1 for k = 1, . . . , α.

� jk = 2k−1j1 where j1 = {1, . . . , n1} and k = 1, . . . , α; jk are the indices such that θjk,nk =

θj1,n1 .

A graphical representation of the grids θ[nk] = {θjk,nk : jk = 1, . . . , nk}, k = 1, . . . , α, is shown

in Figure V.1 for n1 = 5 and α = 4.

For each �xed j1 = {1, . . . , n1} we apply α times the expansion (V.6) with n = n1, n2, . . . , nα

and j = j1, j2, . . . , jα. Since θj1,n1 = θj2,n2 = . . . = θjα,nα (by de�nition of j2, . . . , jα), we obtain,
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Figure V.1: Representation of the grids θ[nk], k = 1, . . . , α, for n1 = 5 and α = 4. The red diamonds represent

the grid points θjk,nk and the black ones represent the rest of the grid points of θ[nk].

for q = 1, . . . , s,





E
(q)
j1,n1,0

= c
(q)
1 (θj1,n1)h1 + c

(q)
2 (θj1,n1)h2

1 + . . .+ c(q)
α (θj1,n1)hα1 + E

(q)
j1,n1,α

,

E
(q)
j2,n2,0

= c
(q)
1 (θj1,n1)h2 + c

(q)
2 (θj1,n1)h2

2 + . . .+ c(q)
α (θj1,n1)hα2 + E

(q)
j2,n2,α

,

...

E
(q)
jα,nα,0

= c
(q)
1 (θj1,n1)hα + c

(q)
2 (θj1,n1)h2

α + . . .+ c(q)
α (θj1,n1)hαα + E

(q)
jα,nα,α

,

(V.8)

where

E
(q)
jk,nk,0

= λγk(Tnk(f))− λ(q)(f(θj1,n1)), k = 1, . . . , α, γk = (q − 1)nk + jk

and ∣∣∣E(q)
jk,nk,α

∣∣∣ ≤ C(q)
α hα+1

k , k = 1, . . . , α. (V.9)

For q = 1, . . . , s, let

c̃
(q)
1 (θj1,n1), . . . , c̃(q)

α (θj1,n1)

be the approximations of

c
(q)
1 (θj1,n1), . . . , c(q)

α (θj1,n1)

obtained by removing all the errors E
(q)
j1,n1,α

, . . . , E
(q)
jα,nα,α

in (V.8) and by solving the resulting

linear system:





E
(q)
j1,n1,0

= c̃
(q)
1 (θj1,n1)h1 + c̃

(q)
2 (θj1,n1)h2

1 + . . .+ c̃(q)
α (θj1,n1)hα1 ,

E
(q)
j2,n2,0

= c̃
(q)
1 (θj1,n1)h2 + c̃

(q)
2 (θj1,n1)h2

2 + . . .+ c̃(q)
α (θj1,n1)hα2 ,

...

E
(q)
jα,nα,0

= c̃
(q)
1 (θj1,n1)hα + c̃

(q)
2 (θj1,n1)h2

α + . . .+ c̃(q)
α (θj1,n1)hαα.

(V.10)

Note that this way of computing approximations for c
(q)
1 (θj1,n1), . . . , c

(q)
α (θj1,n1) is completely

analogous to the Richardson extrapolation procedure that is employed in the context of Romberg
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integration to accelerate the convergence of the trapezoidal rule [132, Section 3.4], with the

asymptotic expansion (V.6) playing here the same role as the Euler�Maclaurin summation for-

mula [132, Section 3.3]. For more advanced studies on extrapolation methods, we refer the

reader to the classical book by Brezinski and Redivo-Zaglia [23]. The next theorem shows that,

for q = 1, . . . , s, the approximation error
∣∣∣c(q)
k (θj1,n1)− c̃(q)

k (θj1,n1)
∣∣∣ is O(hα−k+1

1 ).

Theorem V.2.1. There exists a constant A
(q)
α depending only on α and q = 1, . . . , s such that,

for j1 = 1, . . . , n1 and k = 1, . . . , α,

∣∣∣c(q)
k (θj1,n1)− c̃(q)

k (θj1,n1)
∣∣∣ ≤ A(q)

α hα−k+1
1 , q = 1, . . . , s. (V.11)

Proof. It is a straightforward adaptation of the proof given in [58, Theorem 1].

Take an n� n1 and �x an index j ∈ {1, . . . , n}. We henceforth assume that q ∈ {1, 2, . . . , s}.
To compute an approximation of λγ(Tn(f)), γ = (q − 1)n + j, through the expansion (V.6)

we need the value c
(q)
k (θj,n) for each k = 1, . . . , α. Of course, c

(q)
k (θj,n) is not available in

practice, but we can approximate it by interpolating and extrapolating the values c̃
(q)
k (θj1,n1),

j1 = 1, . . . , n1. For example, we may de�ne c̃
(q)
k (θ) as the interpolation polynomial of the data

(θj1,n1 , c̃
(q)
k (θj1,n1)), j1 = 1, . . . , n1, � so that c̃

(q)
k (θ) is expected to be an approximation of

c
(q)
k (θ) over the whole interval [0, π] � and take c̃

(q)
k (θj,n) as an approximation to c

(q)
k (θj,n).

It is known, however, that interpolating over a large number of uniform nodes is not advis-

able, as it may give rise to spurious oscillations (Runge's phenomenon). It is therefore better

to adopt another kind of approximation. An alternative could be the following: we approxi-

mate c
(q)
k (θ) by the spline function c̃

(q)
k (θ) which is linear on each interval [θj1,n1 , θj1+1,n1 ] and

takes the value c̃
(q)
k (θj1,n1) at θj1,n1 for all j1 = 1, . . . , n1. This strategy removes for sure any

spurious oscillation, yet it is not accurate. In particular, it does not preserve the accuracy

of approximation at the nodes θj1,n1 established in Theorem V.2.1, i.e., there is no guarantee

that |c(q)
k (θ) − c̃(q)

k (θ)| ≤ B
(q)
α hα−k+1

1 for θ ∈ [0, π] or |c(q)
k (θj,n) − c̃(q)

k (θj,n)| ≤ B
(q)
α hα−k+1

1 for

j = 1, . . . , n, with B
(q)
α being a constant depending only on α and q. As proved in Theo-

rem IV.4.2, a local approximation strategy that preserves the accuracy (V.11), at least if c
(q)
k (θ)

is su�ciently smooth, is the following: let θ(1), . . . , θ(α−k+1) be α − k + 1 points of the grid

{θ1,n1 , . . . , θn1,n1} which are closest to the point θj,n,
1 and let c̃

(q)
k,j(θ) be the interpolation poly-

nomial of the data (θ(1), c̃
(q)
k (θ(1))), . . . , (θ(α−k+1), c̃

(q)
k (θ(α−k+1))); then, we approximate c

(q)
k (θj,n)

by c̃
(q)
k,j(θj,n). Note that, by selecting α− k + 1 points from {θ1,n1 , . . . , θn1,n1}, we are implicitly

assuming that n1 ≥ α− k + 1.

Theorem V.2.2. Let 1 ≤ k ≤ α, and suppose n1 ≥ α − k + 1 and c
(q)
k ∈ Cα−k+1[0, π]. For

j = 1, . . . , n, if θ(1), . . . , θ(α−k+1) are α− k + 1 points of {θ1,n1 , . . . , θn1,n1} which are closest to

θj,n, and if c̃
(q)
k,j(θ) is the interpolation polynomial of the data

(θ(1), c̃
(q)
k (θ(1))), . . . , (θ(α−k+1), c̃

(q)
k (θ(α−k+1))),

1These α− k + 1 points are uniquely determined by θj,n except in the following two cases: (a) θj,n coincides

with a grid point θj1,n1 and α− k+1 is even; (b) θj,n coincides with the midpoint between two consecutive grid

points θj1,n1 , θj1+1,n1 and α− k + 1 is odd.
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then ∣∣∣c(q)
k (θj,n)− c̃(q)

k,j(θj,n)
∣∣∣ ≤ B(q)

α hα−k+1
1 (V.12)

for some constant B
(q)
α depending only on α and q.

Proof. It is a straightforward adaptation of the proof of [58, Theorem 2].

We are now ready to formulate our algorithm for computing the eigenvalues of Tn(f).

Algorithm 2. Given n, n1, α ∈ N with n1 ≥ α, we compute approximations of λγ(Tn(f)),

γ = (q − 1)n+ j, for j = 1, . . . , n and q = 1, . . . , s as follows.

1. For j1 = {1, . . . , n1}, compute c̃
(q)
k (θj1,n1), for k = 1, . . . , α, by solving (V.10).

2. For j = 1, . . . , n,

� for k = 1, . . . , α

� determine α−k+1 points θ(1), . . . , θ(α−k+1) ∈ {θ1,n1 , . . . , θn1,n1} which are closest
to θj,n;

� compute c̃
(q)
k,j(θj,n), where c̃

(q)
k,j(θ) is the interpolation polynomial of the data

(θ(1), c̃
(q)
k (θ(1))), . . . , (θ(α−k+1), c̃

(q)
k (θ(α−k+1)));

� compute λ̃γ(Tn(f)) = λ(q)(f(θj,n)) +
∑α

k=1 c̃
(q)
k,j(θj,n)hk.

3. Return the vector (λ̃(q−1)n+1(Tn(f)), λ̃(q−1)n+2(Tn(f)), . . . , λ̃qn(Tn(f)) as an approximation

to the vector (λ(q−1)n+1(Tn(f)), λ(q−1)n+2(Tn(f)) . . . , λqn(Tn(f)).

Remark 10. Algorithm 2 is speci�cally designed for computing λγ(Tn(f)) in the case where n

is quite large. When applying this algorithm, it is implicitly assumed that n1 and α are small

(much smaller than n), so that each nk = 2k−1(n1 + 1)− 1 is small as well and the computation

of the eigenvalues λ̃γ(Tn(f)) � which is required in the �rst step � can be e�ciently performed

by any standard eigensolver (e.g., the Matlab eig function).

The last theorem of the current section provides an estimate for the approximation error

made by Algorithm 2.

Theorem V.2.3. Let n ≥ n1 ≥ α and c
(q)
k ∈ Cα−k+1[0, π] for k = 1, . . . , α. Let

(λ̃(q−1)n+1(Tn(f)), λ̃(q−1)n+2(Tn(f)) . . . , λ̃qn(Tn(f))

be the approximation of (λ(q−1)n+1(Tn(f)), λ(q−1)n+2(Tn(f)) . . . , λqn(Tn(f)) computed by Algo-

rithm 2. Then, there exists a constant D
(q)
α depending only on α and s such that, for j = 1, . . . , n,

γ = (q − 1)n+ j, ∣∣∣λγ(Tn(f))− λ̃γ(Tn(f))
∣∣∣ ≤ D(q)

α hhα1 . (V.13)
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Proof. By (V.6) and Theorem V.2.2,

∣∣∣λγ(Tn(f))− λ̃γ(Tn(f))
∣∣∣ =

∣∣∣∣∣λ
(q)(f(θj,n)) +

α∑

k=1

c
(q)
k (θj,n)hk + E

(q)
j,n,α − λ(q)(f(θj,n))−

α∑

k=1

c̃
(q)
k,j(θj,n)hk

∣∣∣∣∣ ≤

α∑

k=1

∣∣∣c(q)
k (θj,n)− c̃(q)

k,j(θj,n)
∣∣∣hk +

∣∣∣E(q)
j,n,α

∣∣∣ ≤ B(q)
α

α∑

k=1

hα−k+1
1 hk + C(q)

α hα+1 ≤

h
(
αB(q)

α hα1 + C(q)
α hα1

)
≤ D(q)

α hα1h,

where D
(q)
α = (α+ 1) max

(
B

(q)
α , C

(q)
α

)
.

V.3 Numerical experiments

In the current section we present a selection of numerical experiments to validate the algorithms

based on the asymptotic expansion (V.6) in di�erent cases where f is matrix-valued, and we give

exact formulae for the eigenvalues in some examples of practical interest.

We test the asymptotic expansion and the interpolation�extrapolation algorithm in Section

V.2 in order to obtain an approximation of the eigenvalues λγ(Tn(f)), γ = 1, . . . , sn, for large n.

Example 1. We show that the expansion and the associated interpolation�extrapolation algo-

rithm can be applied to the whole spectrum, since the symbol satis�es the global condition.

Example 2. We show that the expansion and the interpolation�extrapolation algorithm can

be locally applied for computing the approximation of the eigenvalues verifying the local

condition. In this particular case, the global condition does not hold because the inter-

section of ranges of two eigenvalue functions is a nontrivial interval and in addition there

exists an index q ∈ {1, . . . , s} such that λ(q)(f) is non-monotone.

Example 3. We show that the expansion and interpolation�extrapolation algorithm can be

locally applied for the computation of the eigenvalues satisfying the local condition. For

the speci�c example, the global condition does not hold since there exists an index q ∈
{1, . . . , s} such that λ(q)(f) is non-monotone either globally on [0, π] or just on a subinterval

contained in [0, π].

Example 4. We show how to bypass the local condition in a few special cases: in fact, using

di�erent sampling grids, we can recover exact formulas for parts of the spectrum, where

the assumption of monotonicity is violated.

Example 5. We give a closed formula for the eigenvalues of matrices arising from the dis-

cretization of a second order elliptic di�erential problem by the rectangular Lagrange

Finite Element method with polynomials of degree p > 1, usually denoted as Qp elements.

Moreover we provide the exact formulae for the eigenvalues of the preconditioned block

matrices stemming from the Qp Lagrangian FEM of the classical eigenvalue problem for

the Laplacian operator in one dimension.
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The number of the eigenvalue functions, which verify the global condition, depends on the

order of the Qp elements. In this speci�c setting we have s = p.

In Examples 1�3 we do not compute analytically the eigenvalue functions of f , but, for

q = 1, . . . s, we are able to provide an �exact� evaluation of λ(q)(f) at θjk,nk , jk = 1, . . . , nk, by

exploiting the following procedure:

� sample f at θjk,nk , jk = 1, . . . , nk, obtaining nk s× s matrices, Mjk , jk = 1, . . . , nk;

� for each jk = 1, . . . , nk, compute the s eigenvalues of Mjk , λq(Mjk), q = 1, . . . , s;

� for a �xed q = 1, . . . s, the evaluation of λ(q)(f) at θjk,nk , jk = 1, . . . , nk, is given by

λq(Mjk), jk = 1, . . . , nk.

This procedure is justi�ed by the fact that here f is a trigonometric polynomial and, denoting by

Cnk(f) the circulant matrix generated by f , the eigenvalues of Cnk(f) are given by the evaluations

of λ(q)(f) at the grid points θr,nk = 2π r
nk
, r = 0, . . . , nk − 1, since

Cnk(f) = (Fnk ⊗ Is)Dnk(f)(Fnk ⊗ Is)∗,

where

Dnk(f) = diag0≤r≤nk−1 (f (θr,nk)) , θr,nk = 2π
r

nk
, Fnk =

1√
nk

(
e
−ι2π jr

nk

)nk−1

j,r=0

,

and Is the s×s identity matrix [78]. Furthermore, by exploiting the localization results [117, 121]

stated in the introduction, we know that each eigenvalue of Tn(f), for each n, belongs to the

interval

(
min
θ∈[0,π]

λ(1)(f), max
θ∈[0,π]

λ(s)(f)

)
.

V.3.1 Global condition example

Example 1.

In this example we have block size s = 3, and each eigenvalue function λ(q)(f), q = 1, 2, 3, is

strictly monotone over [0, π]. The eigenvalue functions satisfy

max
θ∈[0,π]

λ(1)(f) < min
θ∈[0,π]

λ(2)(f),

max
θ∈[0,π]

λ(2)(f) < min
θ∈[0,π]

λ(3)(f).

In Figure V.2 the graphs of the three eigenvalue functions are shown.
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The Toeplitz matrix generated by f is a pentadiagonal block matrix, Tn(f) ∈ RN×N , where
N = 3n, and all the blocks belong to R3×3, that is

Tn(f) =




f̂0 f̂1 f̂2

f̂1
. . .

. . .
. . .

f̂2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . f̂2

. . .
. . .

. . . f̂1

f̂2 f̂1 f̂0




, (V.14)

f̂0 =




50 2 0

2 −55 2

0 2 10


 , f̂1 =




11 −1 0

−1 −6 −1

0 −1 9


 , f̂2 =




1 0 2

0 1 0

2 0 1


 .

Here f is such that the global condition is satis�ed. Hence we can use the asymptotic expansion

and Algorithm 1 to get an accurate approximation of the eigenvalues of Tn(f) for a large n.

Solving system (V.10) with α = 4 and n1 = 100, we obtain the approximation of c
(q)
k (θj1,n1),

k = 1, . . . , α. In Figure V.3 the approximated expansion functions c̃
(q)
k (θj1,n1), k = 1, . . . , α,

q = 1, . . . , s are shown for each eigenvalue function. Once that, for a �xed q = 1, . . . , s, the

values c̃
(q)
k (θj1,n1), k = 1, . . . , α, j1 = 1, . . . , n1 are known, we can �nally compute λ̃γ(Tn(f))

for n = 10000, by using (V.6). For simplicity we plot the eigenvalue functions and also the

expansion errors, E
(q)
j1,n1,0

, for q = 1, 2, 3. In the top panel of Figure V.4 (in black) we show the

errors, E
(q)
j,n,0, q = 1, . . . , 3, versus γ, from direct calculation of

λγ(Tn(f))− λ(q)(f(θj,n)),

for j = 1, . . . , n, q = 1, . . . , 3. As expected, with α = 0, the errors E
(q)
j,n,0, q = 1, . . . , 3, are

rather large. In the top panel of Figure V.4, comparing E
(q)
j,n,0 with errors Ẽ

(q)
j,n,α, q = 1, . . . , 3,

we see the errors are signi�cantly reduced if we calculate λ̃γ(Tn(f)), γ = 1, . . . , 3n, shown in

the bottom panel of Figure V.4, using Algorithm 1, with α = 4, n1 = 100, and n = 10000.

Furthermore, a careful study of the top panel of Figure V.4 (coloured) also reveals that, for

q = 1, . . . , s, Ẽ
(q)
j,n,α have local minima, attained when θj,n is approximately equal to some of

the coarse grid points θj1,n1 , j1 = 1, . . . , n1. This is no surprise, because for θj,n = θj1,n1

we have c̃
(q)
k,j(θj,n) = c̃

(q)
k (θj1,n1) and c

(q)
k (θj,n) = c

(q)
k (θj1,n1), which means that the error of

the approximation c̃
(q)
k,j(θj,n) ≈ c(q)

k (θj,n) reduces to the error of the approximation c̃
(q)
k (θj1,n1) ≈

c
(q)
k (θj1,n1). The latter implies that we are not introducing further errors due to the interpolation

process.
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V.3. Numerical experiments

Figure V.2: Example 1: The three eigenvalue functions, λ(q)(f), q = 1, 2, 3.

We point out that the results in the presented example, and those in the following ones, have

been provided using Matlab. Proper timing experiments have not been conducted but in [61]

the authors show, for the scalar setting, that for n = 106, LAPACK takes approximatively 10

hours of computations, whereas the matrix-less method takes approximatively 10 minutes.

We test the accuracy of the algorithm also for a more demanding computation with a matrix

size n of order O(105).

In Figure V.5 we report the error curves E
(q)
j,n,0 and Ẽ

(q)
j,n,α, q = 1, . . . , 3, α = 4 and n1 = 100,

for a more costly size n = 2 · 105, respect to that in V.4.

V.3.2 Local condition: intersection of the ranges

Example 2.

In the present example we choose block size s = 3, with eigenvalue functions λ(1)(f) and

λ(3)(f) being strictly monotone on [0, π]. The second eigenvalue function, λ(2)(f), is non-

monotone on a small subinterval of [0, π]. Furthermore the range of λ(2)(f) intersects that

of λ(3)(f), that is

max
θ∈[0,π]

λ(1)(f) < min
θ∈[0,π]

λ(2)(f),

max
θ∈[0,π]

λ(2)(f) > min
θ∈[0,π]

λ(3)(f).

When comparing with Example 1, the only di�erence in forming the matrix Tn(f) consists

117



Chapter V. Asymptotic Expansion: extension to the block case

Figure V.3: Example 1: Computations made with n1 = 100, α = 4. From the top to the bottom panel the

approximations c̃
(q)
k (θj1,n1) for λ

(q)(f), q = 1, 2, 3.
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V.3. Numerical experiments

Figure V.4: Example 1: Top: Errors log10 |Ẽ(q)
j,n,α|, with α = 4, and errors log10 |E(q)

j,n,0| , q = 1, 2, 3, versus γ

for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Bottom: Approximated eigenvalues

λ̃γ(Tn(f)), sorted in non decreasing order. Computation made with the interpolation�extrapolation algorithm,

with α = 4, n1 = 100 and n = 10000.

in the �rst Fourier coe�cient which is de�ned as

f̂0 =




12 2 0

2 −55 2

0 2 10


 .

In this example we want to show that it is possible to give an approximation of the eigenvalues

λγ(Tn(f)), n = 10000, satisfying the local condition.

From the Figure V.6, where the graphs of the three eigenvalue functions are displayed, we
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Chapter V. Asymptotic Expansion: extension to the block case

Figure V.5: Example 1: Errors log10 |Ẽ(q)
j,n,α|, with α = 4, and errors log10 |E(q)

j,n,0| , q = 1, 2, 3, versus γ for

γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 2 · 105.

notice that

� λ(1)(f) is monotone non decreasing and its range does not intersect that of λ(q)(f), q = 2, 3.

Hence, using the asymptotic expansion in (V.6), we expect that it is possible to give an

approximation of the �rst n eigenvalues λγ(Tn(f)), for j = 1, . . . , n;

� λ(3)(f) is monotone non increasing and there exist θ̂1, θ̂2 ∈ [0, π] such that, ∀ θ ∈ [0, θ̂1) ∪
(θ̂2, π], (

λ(3)(f)
)

(θ) 6∈ Range(λ(2)(f)).

Hence, of the remaining 2n eigenvalues, we expect that it is possible to give a fast approxi-

mation just of those eigenvalues λγ(Tn(f)) verifying local condition, that is those satisfying

the relation below

λγ(Tn(f)) ∈
[(
λ(3)(f)

)
(π),

(
λ(3)(f)

)
(θ̂2)

) ⋃ ((
λ(3)(f)

)
(θ̂1),

(
λ(3)(f)

)
(0)

]
.

(V.15)

We �x α = 4, n1 = 100 and we proceed to calculate the approximation of c
(q)
k (θj1,n1), k =

1, . . . , α, as in the previous example. As expected, the graph of c̃
(1)
k (θj1,n1), k = 1, . . . , 4, shown

in the top panel of Figure V.7, reveals that we can compute λ̃γ(Tn(f)), for q = 1 and j = 1, . . . , n,

using (V.6). In other words the �rst n eigenvalues of Tn(f) can be computed using our matrix-less

procedure.

For q = 2 no extrapolation procedure can be applied with c̃
(2)
k (θj1,n1), k = 1, . . . , 4, as we

can see from the oscillating and irregular graph in the middle panel of Figure V.7. Concerning

Figure V.8 the chaotic behavior of c̃
(2)
k (θj1,n1), k = 1, . . . , 4 corresponds to the rather large and

oscillating errors E
(2)
j,n,0 and Ẽ

(2)
j,n,α. On the other hand for q = 3 we can use the extrapolation

procedure and the underlying asymptotic expansion with c̃
(3)
k (θj1,n1), k = 1, . . . , 4 for θj1,n1 ∈

[0, θ̂1) ∪ (θ̂2, π], j1 = 1, . . . , n1.
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As a consequence we compute the approximation of the �rst n eigenvalues λγ(Tn(f)), for

γ = 1, . . . , n and that of other n̂1 + n̂2, that verify (V.15). For simplicity, in the bottom panel of

Figure V.8, we visualize them by using the non decreasing order instead of the computational

one.

The good approximation of the n̂1 + n̂2 eigenvalues belonging to

[(
λ(3)(f)

)
(π),

(
λ(3)(f)

)
(θ̂2)

) ⋃ ((
λ(3)(f)

)
(θ̂1),

(
λ(3)(f)

)
(0)

]

is con�rmed by the error Ẽ
(3)
j,n,α in the top panel of Figure V.8. In fact the error is quite high

for γ = 2n + n̂1 + 1, . . . , 3n − n̂2, but it becomes su�ciently small for γ = 2n + 1, . . . , 2n + n̂1

and γ = 3n− n̂2 + 1, . . . , 3n.

Figure V.6: Example 2: The three eigenvalue functions, λ(q)(f), q = 1, 2, 3.
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Figure V.7: Example 2: Computations made with n1 = 100, α = 4. From the top to the bottom panel the

approximations c̃
(q)
k (θj1,n1) for λ

(q)(f), q = 1, 2, 3.
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V.3. Numerical experiments

Figure V.8: Example 2: Top: Errors log10 |Ẽ(q)
j,n,α|, with α = 4, and errors log10 |E(q)

j,n,0| , q = 1, 2, 3, versus

γ for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Bottom: Approximated eigenval-

ues λ̃γ(Tn(f)), sorted in non decreasing order, for γ = 1, . . . , n and for γ such that λγ(Tn(f)) veri�es (V.15).

Computation made with the interpolation�extrapolation algorithm, with α = 4, n1 = 100 and n = 10000.

V.3.3 Local condition: lack of the monotonicity

Example 3.

In this example we set the block size s = 3, and the eigenvalue functions λ(q)(f), q = 1, 2, 3,

satisfy
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max
θ∈[0,π]

λ(1)(f) < min
θ∈[0,π]

λ(2)(f),

max
θ∈[0,π]

λ(2)(f) < min
θ∈[0,π]

λ(3)(f).

See the Figure V.9 for the plot of λ(q)(f), q = 1, 2, 3.

The matrix Tn(f) ∈ RN×N , N = 3n, shows a pentadiagonal block structure, and all the

blocks belongs to R3×3, that is

Tn(f) =




f̂0 f̂T1 f̂T2

f̂1
. . .

. . .
. . .

f̂2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . f̂T2

. . .
. . .

. . . f̂T1

f̂2 f̂1 f̂0




, f̂0 =
1

5




16 − 12 5

− 12 34 − 10

5 − 10 100


 ,

f̂1 =
1

10



− 4 7 0

8 − 16 0

0 0 − 10


 , f̂2 =

1

20



− 12 − 12 0

− 16 12 1

0 2 0


 .

In analogy with the Example 2, we want to give an approximation of λγ(Tn(f)), n = 10000,

in case the global condition is not satis�ed.

Although the intersection of the ranges of λ(j)(f) and λ(k)(f) is empty for every pair (j, k),

j 6= k, j, k ∈ {1, 2, 3}, the assumption of monotonicity is violated either globally on [0, π] or on

a subinterval in [0, π].

In detail:

� λ(1)(f), is fully non-monotone on [0, π], hence we expect that no fast approximation can

be given on the �rst n eigenvalues, λγ(Tn(f)), for γ = 1, . . . , n;

� λ(3)(f) is monotone non decreasing and its range does not intersect that of λ(q)(f), q =

1, 2. Hence we can provide an approximation, of the last n eigenvalues λγ(Tn(f)) for

γ = 2n + 1, . . . , 3n, (analogously with what we did for treating the �rst n eigenvalues in

Example 2);

� λ(2)(f) is non-monotone on a subinterval [0, θ̂1] in [0, π] and monotone non decreasing

on the remaining subinterval, (θ̂1, π]. Hence we are able to e�ciently compute also the

eigenvalues that verify the following relation

λγ(Tn(f)) ∈
((

λ(2)(f)
)

(θ̂1),
(
λ(2)(f)

)
(π)

]
. (V.16)

We set α = 4, n1 = 100, for the computation and we proceed, as in the previous examples,

to calculate �rst the approximation of c
(q)
k (θj1,n1), k = 1, . . . , α .
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V.3. Numerical experiments

In the top image of Figure V.10 we display the resulting chaotic graph of c̃
(1)
k (θj1,n1), k = 1, . . . , 4.

The graph con�rms that, for q = 1, the interpolation�extrapolation algorithm cannot be used

and, consequently, the �rst n eigenvalues, λγ(Tn(f)), q = 1, j = 1, . . . , n, cannot be e�ciently

computed using (V.6): the latter is con�rmed by the errors Ẽ
(1)
j,n,α and E

(1)
j,n,0, in Figure V.11.

The chaotic behaviour is also present in the values c̃
(2)
k (θj1,n1), k = 1, . . . , 4, see the middle panel

of Figure V.10, in the subinterval [0, θ̂1] of [0, π], that coincides with same subinterval where

λ(2)(f) is non�monotone.

Hence, if we restrict to [0, θ̂1], the extrapolation procedure can be used again on c̃
(2)
k (θj1,n1), k =

1, . . . , 4, for θj1,n1 ∈ (θ̂1, π], j1 = 1, . . . , n1. Consequently we obtain a good approximation

of λγ(Tn(f)), for q = 2, j = ĵ, . . . , n. Notice that ĵ is the �rst index in {1, . . . , n} such that
ĵπ
n+1 ∈ (θ̂1, π], that is we can compute the eigenvalues belonging to the interval reported in

(V.16). This is re�ected, in Figure V.11, in the gradual reduction of the errors Ẽ
(2)
j,n,α and E

(2)
j,n,0,

for indices larger than n̂1 = n+ ĵ.

Finally, the remaining n eigenvalues can be well reconstructed with a standard matrix-less

procedure, using the values of c̃
(3)
k (θj1,n1), k = 1, . . . , 4, shown in the bottom panel of Figure

V.10. The errors related to latter approximation, Ẽ
(3)
j,n,α, are shown in Figure V.11.

In total, 3n− ĵ + 1 eigenvalues of Tn(f) can be computed and plotted (in non decreasing order)

in the bottom of the Figure V.11.

Figure V.9: Example 3: The three eigenvalue functions, λ(q)(f), q = 1, 2, 3.
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Chapter V. Asymptotic Expansion: extension to the block case

Figure V.10: Example 3: Computations made with n1 = 100, α = 4. From the top to the bottom panel the

approximations c̃k(θj1,n1) for λ
(q)(f), q = 1, 2, 3.
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Figure V.11: Example 3: Top: Errors log10 |Ẽ(q)
j,n,α|, with α = 4, and errors log10 |E(q)

j,n,0| , q = 1, 2, 3, versus

γ for γ = 1, . . . , 3n. Computations made with n1 = 100 and n = 10000. Bottom: Approximated eigenvalues

λ̃γ(Tn(f)), sorted in non decreasing order, for γ = 2n + 1, . . . , 3n and for γ such that λγ(Tn(f)) veri�es (V.16).

Computation made with the interpolation�extrapolation algorithm, with α = 4, n1 = 100 and n = 10000.

V.3.4 Local condition: reduction from block to scalar.

Example 4.

In this example we consider three trigonometric polynomials,

p(1)(θ) = 2− 2 cos(θ),

p(2)(θ) = 7− 2 cos(2θ),

p(3)(θ) = 16− 8 cos(θ) + 2 cos(2θ) = 10 + (p(1)(θ))2,
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with the aim of approximating the eigenvalues of a block banded Toeplitz matrix, with a matrix-

valued generating function f(θ), such that λ(q)(f) = p(q) for q = 1, 2, 3. We choose s = 3 but

obviously the following procedure holds for any s ∈ Z+ and for any chosen s trigonometric

polynomials, p(1)(θ), p(2)(θ), . . . , p(s)(θ), such that

max
θ∈[0,π]

p(q)(θ) < min
θ∈[0,π]

p(q+1)(θ),

for q = 1, . . . , s− 1. We can de�ne

f(θ) = Q3



p(1)(θ) 0 0

0 p(2)(θ) 0

0 0 p(3)(θ)


QT

3 ,

where Q3 is any orthogonal matrix in R3×3. For the current example we choose

Q3 =




1 0 0

0 cos(π/3) − sin(π/3)

0 sin(π/3) cos(π/3)


 =

1

2




2 0 0

0 1 −
√

3

0
√

3 1


 .

Now we de�ne the Fourier coe�cients of f(θ), that is

f̂k = Q3



p̂

(1)
k 0 0

0 p̂
(2)
k 0

0 0 p̂
(3)
k


QT

3 = Q3D̂kQ
T
3 , (V.17)

where p̂
(q)
k is the kth Fourier coe�cient of the eigenvalue function p(q)(θ), and k = −m, . . . ,m,

where m = maxq=1,...,s deg(p(q)(θ). In our example m = 2, for p(2)(θ) and p(3)(θ) and m = 1 for

p(1)(θ). Each p(q)(θ) is a real cosine trigonometric polynomial (RCTP), so f(θ) is a symmetric

matrix-valued function with Fourier coe�cients

f̂0 =
1

4




8 0 0

0 55 −9
√

3

0 −9
√

3 37


 , f̂1 =



−1 0 0

0 −3
√

3

0
√

3 −1


 , f̂2 =

1

2




0 0 0

0 1 −
√

3

0 −
√

3 −1


 ,

where f̂−k = f̂Tk = f̂k, k = 0, 1, 2.

The resulting block banded Toeplitz matrix is the following matrix

Tn(f) =




f̂0 f̂−1 f̂−2

f̂1
. . .

. . .
. . .

f̂2
. . .

. . .
. . . f̂−2

. . .
. . .

. . . f̂−1

f̂2 f̂1 f̂0




,

with symbol

f(θ) = f̂0 +
2∑

k=1

(
f̂ke

ιkθ + f̂−ke
−ιkθ

)
= f̂0 + 2f̂1 cos(θ) + 2f̂2 cos(2θ).
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We want to approximate the eigenvalues of Tn(f), where f(θ) is constructed from p(q)(θ), q =

1, 2, 3. For the graph of the chosen polynomials see the top left panel of Figure V.12.

Due to the special structure of all f̂k, see (V.17), we have

Tn(f) = In ⊗Q3




D̂0 D̂−1 D̂−2

D̂1
. . .

. . .
. . .

D̂2
. . .

. . .
. . . D̂−2

. . .
. . .

. . . D̂−1

D̂2 D̂1 D̂0




In ⊗QT3 .

Therefore Tn(f) is similar to the matrix



Tn(p(1)(θ)) 0 0

0 Tn(p(2)(θ)) 0

0 0 Tn(p(3)(θ))


 ,

and �nally it is trivial to see that the block case, in this setting, is reduced to 3 di�erent scalar

problems, which can be treated separately.

Di�erently from previous examples, here the analytical expressions of the eigenvalue functions of

f(θ) are known, since they coincide, by construction, with p(q)(θ), q = 1, 2, 3. So we will describe

the spectrum of Tn(f), approximating or calculating exactly the 3n eigenvalues, treating the 3

di�erent scalar problems separately.

For the �rst n eigenvalues it is known that they can be calculated exactly, sampling p(1)

with grid θj,n = jπ
n+1 , j = 1, . . . , n. Analogously, the n eigenvalues can be found exactly by

sampling p(2) on a special grid de�ned in [63]. For the last n eigenvalues, the grid that gives

exact eigenvalues is not known, but p(3) is monotone non decreasing and consequently we can

use an asymptotic expansion in the scalar case.

We set the parameters as in previous cases: n1 = 100 and n = 10000.

In the top right panel of Figure V.12 we report the expansion errors E
(q)
j1,n1,0

, calculated using

grid θj1,n1 = πj1
n1+1 , j1 = 1, . . . , n1, q = 1, 2, 3.

Obviously in the �rst region of the graph (green area) the error is zero, since the �rst n1

eigenvalues are exactly given, sampling p(1) on the standard θj1,n1 grid.

In the yellow area we see the result of the direct calculation of

λγ(Tn1(f))− λ(3)(f(θj1,n1)),

for j1 = 1, . . . , n1, q = 3, as we are using the asymptotic expansion with α = 0.

The green area, containing the errors related to p(2)(θ), is obviously chaotic since p(2)(θ) is non-

monotone.

Following the notation and the analysis in [63], since n1 = 100 and p(2) = 7− 2 cos(2θ), we

have two changes of monotonicity which we collect in the parameter ω. As a consequence, in
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accordance with the study in [63], we choose

ω = 2, β = mod(n1, ω) = 0, nω = (n1 − β)/ω = 50,

θ(1)
nω =

jπ

nω + 1
, j = 1, . . . nω,

θ
(2)
nω+1 =

jπ

nω + 2
, j = 1, . . . nω + 1.

To map the two grids above to match the given symbol f(θ) we construct θn1 by

θn1 =

{
1

2
θ(1)
nω ,

1

2
θ

(2)
nω+1 +

π

2

}
.

A more general formula to match grids θ
(1)
nω and θ

(2)
nω+1 to be evaluated on the standard symbol

is

θn =
1

ω

{
ω−β⋃

r1=1

(
θ(1)
nω + (r1 − 1)π

)
,

β⋃

r2=1

(
θ

(2)
nω+1 + (r2 − 1)π + (ω − β)π

)}
. (V.18)

In the left bottom panel of Figure V.12 we report the global expansion errors E
(q)
j1,n1,0

, calculated

using the grid described above. In this way the region where the error is 0 is the second (red

area), since the eigenvalues are calculated exactly, by sampling p(2)(θ). Furthermore, in the

green and in the yellow areas we see the result of the direct calculation of

λγ(Tn1(f))− λ(q)(f(θj1,n1)),

for j1 = 1, . . . , n1, q = 1, 3, as we are using asymptotic expansion with α = 0.

Hence, the �rst n eigenvalues of Tn(f) can be calculated exactly sampling p(1) with grid θj,n =
jπ
n+1 , j = 1, . . . , n and n exact eigenvalues can be found sampling p(2) on grid (V.18). For the

computation of the last n eigenvalues, we use the matrix-less procedure in the scalar setting,

passing through the approximation of c
(3)
k (θj1,n1), k = 1, . . . , α, for α = 4, see the bottom right

panel of Figure V.12.

For α = 4 we ignore the �rst two evaluations of c
(3)
4 at the initial points θ1,n and θ2,n, because

their values behave in an erratic way. This problem has been emphasized in [7] and it is due to

the fact that the �rst and second derivative of p(3)(θ) at θ = 0 vanish simultaneously. However,

we have to make two observations for clarifying the situation

� The present pathology is not a counterexample to the asymptotic expansion (V.6) since

we take θ �xed and all the pairs j, n such that θj,n = θ: in the current case and in that

considered in [7] in the scalar-valued setting, we have j �xed and n grows so that the point

θ is not well de�ned.

� There are simple ways to overcome the problem and then to compute reliable evaluations

of c
(3)
4 at those bad points θ1,n and θ2,n. One of them is described in [57] and consists in

choosing a su�ciently large α > 4 and in computing c
(3)
k , k = 1, 2, 3, 4. Using this trick, the

c
(3)
4 at the initial points θ1,n and θ2,n have the expected behavior. In addition we stress the

fact that this behavior has little impact on the numerically computed solution. Assuming

double precision computations, the contribution to the error deriving from c
(3)
4 (θj,n)h4

will be numerically negligible, even for moderate n. Further discussions on the topic are

presented in [57].
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Figure V.12: Example 4: Top Left: Constructed eigenvalue functions. Top Right: Errors of the three eigenvalue

functions, presented on global indices γ, when using grid θj1,n1 = πj1
n1+1

, j1 = 1, . . . , n1, q = 1, 2, 3. Bottom Left:

Errors of the three eigenvalue functions, when using grid de�ned in (V.18). Bottom Right: Error expansion

for the third eigenvalue function. Computations made with n1 = 100 and α = 4.

V.3.5 Exact formulae for Qp Lagrangian FEM

Example 5.

Consider the Qp Lagrangian Finite Element approximation, of the second order elliptic dif-

ferential problem 


−∆u+ β · ∇u+ γu = f, in Ω = (0, 1)k,

u = 0, on ∂Ω,
(V.19)

in one dimension with β = γ = 0, and f ∈ L2(Ω). The resulting sti�ness matrix is A
(p)
n = nK

(p)
n ,

where K
(p)
n is a (pn−1)× (pn−1) block matrix. The construction of the matrix and the symbol

is given in [78]. The p× p matrix-valued symbol of K
(p)
n is

f(θ) = f̂0 + f̂1e
ιθ + f̂T

1 e
−ιθ.

We have

K(p)
n = Tn(f)−,

where the subscript − denotes that the last row and column of Tn(f) are removed. This is

because of the homogeneous boundary conditions. For detailed expressions of f̂0 and f̂1 in the

particular case p = 2, 3, 4, see the Section VI.5 of the Chapter VI.
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In Table V.1, we list seven examples of uniform grids, with varying n. The general notation

for a grid, where the type is de�ned by context, is θj,n, where n is the number of grid points,

and j is the indices j = 1, . . . , n. The grid �neness parameter h, for the respective grids, is also

presented in Table V.1. The names of the di�erent grids are chosen in view of their relations

with the τ -algebras [21] (see speci�cally equations (19), (22), and (23) therein).

Table V.1: Seven examples of uniform grids. Typically the τn-grid is the default choice, unless other grids

provides more accurate, or even exact, eigenvalues when sampling the symbol.

Name Grid j h Description

τn jπ/(n+ 1) 1, . . . , n 1/(n+ 1) τn(0, 0)

τn−1 jπ/n 1, . . . , n− 1 1/n τn−1(0, 0)

τn−2 jπ/(n− 1) 1, . . . , n− 2 1/(n− 1) τn−2(0, 0)

τ0n−1 (j − 1)π/n 1, . . . , n 1/n τn(1, 1) = 0 ∪ τn−1(0, 0)

τπn−1 jπ/n 1, . . . , n 1/n τn(−1,−1) = τn−1(0, 0) ∪ π
τ0,πn−2 (j − 1)π/(n− 1) 1, . . . , n 1/(n− 1) 0 ∪ τn−2(0, 0) ∪ π
τ0,πn−1 (j − 1)π/n 1, . . . , n+ 1 1/n 0 ∪ τn−1(0, 0) ∪ π

In Example 1 of [78] the case p = 2 is considered, and explicit formulas for the two eigenvalue

functions are given, with their notation,

λ1(f2(θ)) = 5 +
1

3
cos(θ) +

1

3

√
129 + 126 cos(θ) + cos2(θ),

λ2(f2(θ)) = 5 +
1

3
cos(θ)− 1

3

√
129 + 126 cos(θ) + cos2(θ).

Here we present the two grids used to sample the two eigenvalue functions in order to attain

exact eigenvalues,

λ1(f2(θ
(1)
j1,n−1)), θ

(1)
j1,n−1 =

j1π

n
, j1 = 1, . . . , n− 1,

λ2(f2(θ
(2)
j2,n

)), θ
(2)
j2,n

=
j2π

n
, j2 = 1, . . . , n.

With the notation in Table V.1, we use the grid τn−1 for the �rst eigenvalue function, and

grid τπn−1 for the second. Since for p > 2 the analytical expression of the eigenvalue functions

can not be computed easily, the following four steps algorithm can be used to obtain the exact

eigenvalues for any p.

Algorithm 3.

1. Sample the matrix-valued symbol f(θ) with the grid τ0,π
n−1

θj,n+1 =
(j − 1)π

n
, j = 1, . . . n+ 1.

Each sampling gives a matrix of size p × p. Use an eigensolver to get the p eigenvalues

of the sampling, sorted in non decreasing order. This results in a total of p(n+ 1) values:

jq = 1, . . . , n+ 1 for all p eigenvalue functions, so we have to discard p+ 1 of samplings,

since the total number of eigenvalues of the matrix K
(p)
n is pn− 1.

2. For the eigenvalue function λ(1)(f) choose samplings with index j1 = 2, . . . , n. This corre-

sponds to the choice of the grid τn−1.
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3. For eigenvalue functions λ(q)(f), where q is even, choose samplings with index jq = 2, . . . , n+

1. This corresponds to the choice of the grid τπn−1.

4. For eigenvalue functions λ(q)(f), where q is odd, choose samplings with index jq = 1, . . . , n.

This corresponds to the choice of the grid τ0
n−1.

The mass matrix, of the system (V.19) (that is, γ = 1), is B
(p)
n = n−1M

(p)
n , where M

(p)
n =

Tn(g)− is the scaled mass matrix.

The p× p matrix-valued symbol of M
(p)
n is given by

g(θ) = ĝ0 + ĝ1e
ιθ + ĝT

1 e
−ιθ.

For detailed expressions of ĝ0 and ĝ1 in the particular case p = 2, 3, 4, see the Section VI.5 of

the Chapter VI. The algorithm for writing the exact eigenvalues of M
(p)
n , for p even, is the

same as the one described for K
(p)
n above, just replacing f(θ) with g(θ). However, for p ≥ 3 odd,

we have a slight modi�cation:

If (p+ 1)/2 is odd, that is p = 5, 9, . . . , de�ne p̂ = p. If (p+ 1)/2 is even, that is p = 3, 7, . . . ,

de�ne p̂ = p−2. In summary, to obtaining the exact eigenvalues ofM
(p)
n , the algorithm becomes:

Algorithm 4.

� Do steps 1. and 2. of Algorithm 3, just replacing f(θ) with g(θ).

� For q = 2, . . . , (p̂+ 1)/2,

� For λ(q)(g), q is even, choose samplings with index jq = 1, . . . , n. This corresponds

to the grid τ0
n−1.

� For λ(q)(g), q is odd, choose samplings with index jq = 2, . . . , n+1. This corresponds

to the grid τπn−1.

� Continue with steps 3. and 4. of Algorithm 3, for q = (p̂+ 1)/2 + 1, . . . , p, just replacing

f(θ) with g(θ).

In Figure V.13 we present the appropriate grids, de�ned in Table V.1, for the exact eigen-

values of K
(p)
n and M

(p)
n with n = 6 and p = 5.

By the use of high precision arithmetic computations we have found the following �exceptions�

to the above procedures. Indeed testing the algorithms for f and g, for p = 1, . . . , 20, with 64

(O(eps) = 10−19), 128 (O(eps) = 10−39), and 256 (O(eps) = 10−77) bit precision, we have

noticed that the grids which provide the exact values of eigenvalues are �switched � for some p

and q. Precisely

� for f the exchange has to be performed for p = 14, 15, 18, 20:

p = 14: for q = 9, 10 choose the samplings of λ(q)(f) corresponding to the indices

j = 2−mod(q, 2), . . . , n+ mod(q, 2);
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Figure V.13: Example 5: Grids for the exact eigenvalues of K
(p)
n and M

(p)
n , with n = 6 and p = 5. Left: Grids

chosen for each eigenvalue functions of f(θ), for q = 1, . . . , 5, according to Algorithm 3. Right: Grids chosen for

each eigenvalue function of g(θ), for q = 1, . . . , 5, according to Algorithm 4.

p = 15: for q = 10, 11 choose the samplings of λ(q)(f) corresponding to the indices

j = 1 + mod(q, 2), . . . , n+ 1−mod(q, 2);

p = 18: for q = 12, 13 choose the samplings of λ(q)(f) corresponding to the indices

j = 1 + mod(q, 2), . . . , n+ 1−mod(q, 2);

p = 20: for q = 13, 14 choose the samplings of λ(q)(f) corresponding to the indices

j = 2−mod(q, 2), . . . , n+ mod(q, 2);

� for g the exchange has to be performed for p = 13, 14, 15, 19, 20:

p = 13: for q = 2, 3 choose the samplings of λ(q)(f) corresponding to the indices

j = 1 + mod(q, 2), . . . , n+ 1−mod(q, 2);

p = 14: for q = 2, 3 choose the samplings of λ(q)(g) corresponding to the indices

j = 1 + mod(q, 2), . . . , n+ mod(q, 2);

p = 15: for q = 4, 5 choose the samplings of λ(q)(g) corresponding to the indices

j = 2−mod(q, 2), . . . , n+ 1−mod(q, 2);

p = 20: for q = 4, 5 choose the samplings of λ(q)(g) corresponding to the indices

j = 1 + mod(q, 2), . . . , n+ mod(q, 2);

Despite in applications p is often less then 10, these patterns of exceptions warrant further

research for p > 20.
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Consider the one-dimensional Laplacian eigenvalue problem

{
−u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(V.20)

The resulting discretized system, using the Qp Lagrangian Finite Element approximation, is

K(p)
n un = λM (p)

n un, (V.21)

where the matrices K
(p)
n and M

(p)
n are the sti�ness and the mass matrices previously de�ned.

Thus we have to solve the generalized eigenvalue problem

L(p)
n un = λun. (V.22)

where

L(p)
n = (M (p)

n )−1K(p)
n . (V.23)

In [78] authors proved that

{n2L(p)
n }n ∼GLT r = g−1f .

We here present closed formulae for the computing the eigenvalues of n2L
(p)
n via the sampling

on the symbol r on the exact grid.

Algorithm 5.

1. Do step 1. of the Algorithms 3 (equivalently Algorithm 4), just replacing f(θ) (equivalently

g(θ)) with r(θ).

2. If p is even, for q = 1, . . . , p,

2.1 For the eigenvalue function λ(1)(r), choose samplings with index jq = 2, . . . , n + 1.

This corresponds to the choice of the grid τπn−1.

2.2. For the eigenvalue functions λ(q)(r), where q is even, choose samplings with index

jq = 2, . . . , n. This corresponds to the choice of the grid τn−1.

2.3. For the eigenvalue functions λ(q)(r), where q is odd, and q 6= 1, choose samplings with

index jq = 1, . . . , n+ 1. This corresponds to the choice of the grid τ0,π
n−1.

3. If p is odd, for q = 1, . . . , p,

3.2. For the eigenvalue functions λ(q)(r), where q is even, choose samplings with index

jq = 1, . . . , n+ 1. This corresponds to the choice of the grid τ0,π
n−1.

3.3. For the eigenvalue functions λ(q)(r), where q is odd, choose samplings with index

jq = 2, . . . , n. This corresponds to the choice of the grid τn−1.
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Chapter VI

Technical Results

VI.1 Staggered DG matrix symbol for k = 2 and p = 2

Recall that for the two-dimensional case (k = 2) the matrix symbol f is given according to

(II.13) by

f(θ1, θ2) = f̂(0,0) + f̂(−1,0)e
−iθ1 + f̂(0,−1)e

−iθ2 + f̂(1,0)e
iθ1 + f̂(0,1)e

iθ2 .

For the special case p = 2, the matrices appearing in the above expression (see [65] for details

concerning their de�nition) read

f̂(0,0) =




127
360

41
480

−43
320

41
480

−1
360

−2
45

−43
320

−2
45

13
288

41
480

103
90

41
480

−1
360

5
24

−1
360

−2
45

−113
240

−2
45

−43
320

41
480

127
360

−2
45

−1
360

41
480

13
288

−2
45

−43
320

41
480

−1
360

−2
45

103
90

5
24

−113
240

41
480

−1
360

−2
45

−1
360

5
24

−1
360

5
24

158
45

5
24

−1
360

5
24

−1
360

−2
45

−1
360

41
480

−113
240

5
24

103
90

−2
45

−1
360

41
480

−43
320

−2
45

13
288

41
480

−1
360

−2
45

127
360

41
480

−43
320

−2
45

−113
240

−2
45

−1
360

5
24

−1
360

41
480

103
90

41
480

13
288

−2
45

−43
320

−2
45

−1
360

41
480

−43
320

41
480

127
360




;

137



Chapter VI. Technical Results

f̂(−1,0) =




5
288

5
576

−5
1152

23
720

23
1440

−23
2880

−11
1440

−11
2880

11
5760

5
576

5
72

5
576

23
1440

23
180

23
1440

−11
2880

−11
360

−11
2880

−5
1152

5
576

5
288

−23
2880

23
1440

23
720

11
5760

−11
2880

−11
1440

−17
144

−17
288

17
576

−47
360

−47
720

47
1440

23
720

23
1440

−23
2880

−17
288

−17
36

−17
288

−47
720

−47
90

−47
720

23
1440

23
180

23
1440

17
576

−17
288

−17
144

47
1440

−47
720

−47
360

−23
2880

23
1440

23
720

−7
288

−7
576

7
1152

−17
144

−17
288

17
576

5
288

5
576

−5
1152

−7
576

−7
72

−7
576

−17
288

−17
36

−17
288

5
576

5
72

5
576

7
1152

−7
576

−7
288

17
576

−17
288

−17
144

−5
1152

5
576

5
288




;

f̂(0,−1) =




5
288

23
720

−11
1440

5
576

23
1440

−11
2880

−5
1152

−23
2880

11
5760

−17
144

−47
360

23
720

−17
288

−47
720

23
1440

17
576

47
1440

−23
2880

−7
288

−17
144

5
288

−7
576

−17
288

5
576

7
1152

17
576

−5
1152

5
576

23
1440

−11
2880

5
72

23
180

−11
360

5
576

23
1440

−11
2880

−17
288

−47
720

23
1440

−17
36

−47
90

23
180

−17
288

−47
720

23
1440

−7
576

−17
288

5
576

−7
72

−17
36

5
72

−7
576

−17
288

5
576

−5
1152

−23
2880

11
5760

5
576

23
1440

−11
2880

5
288

23
720

−11
1440

17
576

47
1440

−23
2880

−17
288

−47
720

23
1440

−17
144

−47
360

23
720

7
1152

17
576

−5
1152

−7
576

−17
288

5
576

−7
288

−17
144

5
288




;

f̂(1,0) = f̂T(−1,0);

f̂(0,1) = f̂T(0,−1).

VI.2 Proof of the preconditioned eigenvalue expansion for α = 0

Theorem VI.2.1. Let f , g be real-valued cosine trigonometric polynomials (RCTP) on [0, π]

with Mg = max g > 0 and mg = min g ≥ 0. If r = f
g is monotone on [0, π] then ∃C > 0 such

138



VI.2. Proof of the preconditioned eigenvalue expansion for α = 0

that ∣∣∣∣λj(Pn(f, g))− r
(

jπ

n+ 1

)∣∣∣∣ ≤ Ch ∀ j,∀n, (VI.1)

where

� Pn(f, g) is the �preconditioned� matrix Pn(f, g) = T−1
n (g)Tn(f),

� λ1(Pn(f, g)), λ2(Pn(f, g)), . . . , λn(Pn(f, g)) are the eigenvalues of Pn(f, g), arranged in

nondecreasing or nonincreasing order, depending on whether r is increasing or decreas-

ing,

� h = 1
n+1 and θj,n = jπ

n+1 = jπh.

Proof. For the sake of simplicity, we assume that r is nondecreasing (the other case has a similar

proof).

Notice that the conditions on f and g imply that Tn(g) is positive de�nite and we �nd

Pn(f, g) ∼ T−1/2
n (g)Tn(f)T−1/2

n (g),

so we can order the eigenvalues of Pn(f, g) as follows

λ1(Pn(f, g)) ≤ λ2(Pn(f, g)) ≤ · · · ≤ λn(Pn(f, g)).

We remark the decomposition (I.11) of Section I.5

Tn(f) = τn(f) +Hn(f),

Tn(g) = τn(g) +Hn(g),
(VI.2)

where, for ψ RCTP of degree m and orthogonal Q =
(√

2
n+1 sin

(
ijπ
n+1

))n
i,j=1

, τn(ψ) is the

following τ matrix [14] of size n generated by ψ

τn(ψ) = Q diag
1≤j≤n

(
ψ

(
jπ

n+ 1

))
Q, Q = QT = Q−1,

and Hn(ψ) is the Hankel matrix generated by ψ with rank(Hn(ψ)) ≤ 2(m− 1).

Hence,

Rf := rank(Hn(f)) ≤ 2(deg(f)− 1),

Rg := rank(Hn(g)) ≤ 2(deg(g)− 1),

Rf,g := max{Rf , Rg} ≤ 2 (max{deg(f),deg(g)} − 1) .

(VI.3)

Let P τn be the matrix τ−1
n (g)τn(f),

P τn = Q

(
diag

1≤j≤n

(
g

(
jπ

n+ 1

)))−1

QQ diag
1≤j≤n

(
f

(
jπ

n+ 1

))
Q

= Q diag
1≤j≤n

(
f

g

(
jπ

n+ 1

))
Q

= Q diag
1≤j≤n

(
r

(
jπ

n+ 1

))
Q.
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Hence, for j = 1, . . . , n

λj(P
τ
n ) = r

(
jπ

n+ 1

)
. (VI.4)

By observing that T−1
n (g)Tn(f) is similar to T

−1/2
n (g)Tn(f)T

−1/2
n (g), using the MinMax spectral

characterization for Hermitian matrices [13], �xed j ∈ {Rf,g + 1, . . . , n − Rf,g} and T ⊂ Cn,
dim(T ) = n+ 1− j, we obtain

λj(Pn(f, g)) = λj
(
T−1
n (g)Tn(f)

)

= λj

(
T−1/2
n (g)Tn(f)T−1/2

n (g)
)

= max
dim(T )=n+1−j


min
x∈T,
x 6=0

(
x∗T−1/2

n (g)Tn(f)T
−1/2
n (g)x

x∗x

)


= max
dim(T )=n+1−j


 min

x∈T,
x 6=0

y=T
−1/2
n (g)x

(
y∗Tn(f)y

y∗Tn(g)y

)



= max
dim(T̂ )=n+1−j


min
y∈T̂ ,
y 6=0

(
y∗Tn(f)y

y∗Tn(g)y

)

 ,

(VI.5)

because T
−1/2
n (g) is a full rank matrix and, if dim(T ) = n + 1 − j, then T̂ := {y : y =

T
−1/2
n (g)x, x 6= 0, x ∈ T} is a new vector space having the same dimension n+ 1− j as T .

Let F be the subspace of Cn generated by the union of the columns of matrices Hn(f) and

Hn(g). Because of the particular structure of the columns of Hankel matrices Hn(f) and Hn(g),

we deduce

dim(F ) = max {rank(Hn(g)), rank(Hn(f))} = Rf,g,

so that

dim(F⊥) = n−Rf,g.

Let us de�ne Wf,g = T̂ ∩ F⊥,

n+1−j ≥ dim(Wf,g) ≥ max{0,dim(T̂ )+dim(F⊥)−n} = n+1−j+n−Rf,g−n = n+1−(j+Rf,g),

because n+ 1− (j + Rf,g) ≥ 1 for j ≤ n− Rf,g.The latter implies in particular that Wf,g 6= ∅.
Thus, because of the orthogonality, ∀ y 6= 0 ∈Wf,g, we �nd

Hn(f)y = 0, Hn(g)y = 0,

so that

y∗Hn(f)y = 0, y∗Hn(g)y = 0.
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Hence, from (VI.5)

λj(Pn(f, g)) = max
dim(T̂ )=n+1−j


min
y∈T̂ ,
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)



≤ max
dim(T̂ )=n+1−j


 min
y∈Wf,g
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)


= max
dim(T̂ )=n+1−j


 min
y∈Wf,g
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)


= max
Wf,g=T̂∩F⊥
dim(T̂ )=n+1−j


 min
y∈Wf,g ,
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)


≤ max
n+1−j≥dim(Ŵf,g)≥n+1−(j+Rf,g)


 min
y∈Ŵf,g ,
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)



= max
n+1−j≥dim(Ŵ )≥n+1−(j+Rf,g)




min
y∈Ŵf,g ,
y 6=0

x=τ
1/2
n (g)y

(
x∗τ−1/2

n (g)τn(f)τ
−1/2
n (g)x

x∗x

)



= max{λj(P τn ), λj+1(P τn ), . . . , λj+Rf,g(P
τ
n )}

= λj+Rf,g(P
τ
n ).

(VI.6)

By �xing j ∈ {Rf,g + 1, . . . , n−Rf,g} and T ⊂ Cn, dim(T ) = j, analogously we obtain

λj(Pn(f, g)) = min
dim(T )=j


max
x∈T,
x 6=0

(
x∗T−1/2

n (g)Tn(f)T
−1/2
n (g)x

x∗x

)


= min
dim(T )=j




max
x∈T,
x 6=0

y=T
−1/2
n (g)x

(
y∗Tn(f)y

y∗Tn(g)y

)



= min
dim(T̂ )=j


max
y∈T̂ ,
y 6=0

(
y∗Tn(f)y

y∗Tn(g)y

)



= min
dim(T̂ )=j


max
y∈T̂ ,
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)

 .

(VI.7)

Let us de�ne Wf,g = T̂ ∩ F⊥,

j ≥ dim(Wf,g) ≥ max{0, dim(T̂ ) + dim(F⊥)− n} = j + n−Rf,g − n = j −Rf,g,
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because j−Rf,g ≥ 1 for j ≥ Rf,g + 1. The latter implies in particular that Wf,g 6= ∅, and hence,

because of the orthogonality, ∀ y 6= 0 ∈Wf,g, we have

Hn(f)y = 0, Hn(g)y = 0,

and therefore

y∗Hn(f)y = 0, y∗Hn(g)y = 0.

Thus, from (VI.7)

λj(Pn(f, g)) ≥ min
dim(T̂ )=j


 max
y∈Wf,g ,
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)


= min
dim(T̂ )=j


 max
y∈Wf,g ,
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)


= min
Wf,g=T̂∩F⊥

dim(T̂ )=j


 max
y∈Wf,g ,
x 6=0

(
y∗τn(f)y

y∗τn(g)y

)


≥ min
j≥dim(Ŵf,g)≥j−Rf,g


 max
y∈Wf,g ,
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)


= min{λj(P τn ), λj−1(P τn ), . . . , λj−Rf,g(P
τ
n )}

= λj−Rf,g(P
τ
n ).

(VI.8)

By exploiting the previous inequality, relations (VI.4) and (VI.6), we obtain for j = Rf,g +

1, . . . , n−Rf,g

r

(
(j − s)π
n+ 1

)
= λj−s(P τn ) ≤ λj(Pn(f, g)) ≤ λj+s(P τn ) = r

(
(j + s)π

n+ 1

)
, (VI.9)

where s = Rf,g.

The function r is a RCTP on [0, π] and a monotone increasing function so we have, ∀n and

∀ j = s+ 1, . . . , n− s,

λj(Pn(f, g))− r
(

jπ

n+ 1

)
≤ r

(
(j + s)π

n+ 1

)
− r

(
jπ

n+ 1

)
= r′(θ̄)

sπ

n+ 1
≤ ||r′||∞sπh, (VI.10)

with θ̄ ∈ ( jπ
n+1 ,

(j+s)π
n+1 ) and

λj(Pn(f, g))− r
(

jπ

n+ 1

)
≥ r

(
(j − s)π
n+ 1

)
− r

(
jπ

n+ 1

)
≥ −||r′||∞sπh. (VI.11)

By setting C = ||r′||∞sπ, for s+ 1 ≤ j ≤ n− s, we obtain
∣∣∣∣λj(Pn(f, g))− r

(
jπ

n+ 1

)∣∣∣∣ ≤ Ch. (VI.12)

Furthermore, from [47] ∀ j = 1, . . . , n, we know that

mr ≤ λj(Pn(f, g)) ≤Mr,
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where

mr = min
θ∈[0,π]

r(θ); Mr = max
θ∈[0,π]

r(θ),

with strict inequalities that is mr < λj(Pn(f, g)) < Mr if mr < Mr, while the case mr = Mr is

in fact trivial. Hence for n− s < j ≤ n
∣∣∣∣r
(

jπ

n+ 1

)
− λj(Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n+ 1

)
− r

(
nπ

n+ 1

)∣∣∣∣ ≤
∣∣r′
(
θ̄
)∣∣
∣∣∣∣
(n− j)π
n+ 1

∣∣∣∣ ,

where θ̄ ∈ ( jπ
n+1 ,

nπ
n+1). If n− s < j ≤ n then |n− j| < s, so that

∣∣∣∣r
(

jπ

n+ 1

)
− λj(Pn(f, g))

∣∣∣∣ ≤ ||r′||∞sπh = Ch.

For 1 ≤ j < s+ 1

∣∣∣∣r
(

jπ

n+ 1

)
− λj(Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n+ 1

)
− r

(
π

n+ 1

)∣∣∣∣ ≤
∣∣r′
(
θ̄
)∣∣
∣∣∣∣
(j − 1)π

n+ 1

∣∣∣∣ ,

where θ̄ ∈ ( π
n+1 ,

jπ
n+1). If 1 ≤ j < s+ 1 then |j − 1| < s, so

∣∣∣∣r
(

jπ

n+ 1

)
− λj(Pn(f, g))

∣∣∣∣ ≤ ||r′||∞sπh = Ch.

Hence ∣∣∣∣λj(Pn(f, g))− r
(

jπ

n+ 1

)∣∣∣∣ ≤ Ch ∀ j ∀n.

Remark 11. With regard to Theorem VI.2.1, the case where r is bounded and non-monotone

is almost analogous. If we consider r̂, the monotone nondecreasing rearrangement of r on [0, π],

taking into account that the derivative of r has at most a �nite number S of sign changes, we

deduce that r̂ is Lipschitz continuous and its Lipschitz constant is bounded by ‖r′‖∞ (notice that

r̂ is not necessarily continuously di�erentiable, but the derivative of r̂ has at most S points of

discontinuity). Furthermore, the eigenvalues of τn(r) are exactly given

r

(
jπ

n+ 1

)

so that, by ordering these values nondecreasingly, we deduce that they coincide with r̂(xj,h), with

xj,h of the form
jπ
n+1(1+o(1)). With these premises, the proof follows exactly the same steps as in

Theorem VI.2.1, using the MinMax characterization and the Interlacing theorem for Hermitian

matrices.

VI.3 Proofs of the theorems stated in Section IV.2 of Chapter IV

We �rst recall from [72, Section 3] that, for every p ≥ 0 and θ ∈ [0, π],

gp(θ) =
∑

k∈Z

∣∣∣φ̂p(θ + 2kπ)
∣∣∣
2
, (VI.13)
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where φ̂p is the Fourier transform of the cardinal B-spline φp, whose modulus is given by

∣∣φ̂p(θ)
∣∣2 =

(
2− 2 cos(θ)

θ2

)p+1

; (VI.14)

see [38]. The next lemma is fundamental to our purposes.

Lemma VI.3.1. For p ≥ 1 and θ ∈ [0, π] we have

9

5
π(π − θ)

(
θ

2π − θ

)2p+2

≤ ep(θ)− θ2 ≤ 4π(π − θ)
(

θ

2π − θ

)2p+2

+ 5θ2

(
θ

2π + θ

)2p

. (VI.15)

Proof. From (IV.16) and (VI.13)�(VI.14) we obtain

fp(θ) = (2− 2 cos(θ))p+1
∑

k∈Z

1

(θ + 2kπ)2p
= (2− 2 cos(θ))p+1

[
1

θ2p
+
∑

k 6=0

1

(θ + 2kπ)2p

]
,

gp(θ) = (2− 2 cos(θ))p+1
∑

k∈Z

1

(θ + 2kπ)2p+2
= (2− 2 cos(θ))p+1

[
1

θ2p+2
+
∑

k 6=0

1

(θ + 2kπ)2p+2

]
.

By setting

rp(θ) = θ2p
∑

k 6=0

1

(θ + 2kπ)2p
≥ 0,

we see that

ep(θ)− θ2 =
fp(θ)

gp(θ)
− θ2 = θ2 1 + rp(θ)

1 + rp+1(θ)
− θ2 = θ2 rp(θ)− rp+1(θ)

1 + rp+1(θ)
. (VI.16)

Furthermore,

rp(θ)− rp+1(θ) = θ2p(Ap,+(θ) +Ap,−(θ)) (VI.17)

where

Ap,+(θ) =
∑

k≥1

1

(2kπ + θ)2p

(
1− θ2

(2kπ + θ)2

)
, (VI.18)

Ap,−(θ) =
∑

k≥1

1

(2kπ − θ)2p

(
1− θ2

(2kπ − θ)2

)
. (VI.19)

Assume θ ∈ [0, π]. We observe that

0 ≤ 1− θ2

(2kπ + θ)2
≤ 1, k ≥ 1,

which implies

Ap,+(θ) ≤ 1

(2π + θ)2p
+
∑

k≥2

1

(2kπ + θ)2p
≤ 1

(2π + θ)2p
+

∫ +∞

1

dκ

(2πκ+ θ)2p

=
1

(2π + θ)2p
+

1

2π(2p− 1)(2π + θ)2p−1
≤ 5

2

1

(2π + θ)2p
.
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Similarly,

Ap,−(θ) ≤ 4π(π − θ)
(2π − θ)2p+2

+
8π(2π − θ)

(4π − θ)2p+2
+
∑

k≥3

1

(2kπ − θ)2p

≤ 4π(π − θ)
(2π − θ)2p+2

+
8π(2π − θ)

(4π − θ)2p+2
+

∫ +∞

2

dκ

(2πκ− θ)2p

=
4π(π − θ)

(2π − θ)2p+2
+

8π(2π − θ)
(4π − θ)2p+2

+
1

2π(2p− 1)(4π − θ)2p−1

≤ 4π(π − θ)
(2π − θ)2p+2

+
5

2

1

(2π + θ)2p
,

where we have exploited the fact that

4π − θ ≥ 2π + θ,
8π(2π − θ)
(4π − θ)2

≤ 1.

By combining (VI.16) and (VI.17) with the obtained upper bounds for Ap,+ and Ap,−, we get
the upper bound in (VI.15).

To prove the lower bound in (VI.15), we use the inequality

rp+1(θ) ≤ θ2p+2

(
1

(2π + θ)2p+2
+

1

(2π − θ)2p+2
+

∫ +∞

1

[
1

(2πκ+ θ)2p+2
+

1

(2πκ− θ)2p+2

]
dκ

)

= θ2p+2

(
1

(2π + θ)2p+2
+

1

(2π − θ)2p+2
+

1

2π(2p+ 1)

[
1

(2π + θ)2p+1
+

1

(2π − θ)2p+1

])
.

Note that
1

(2π + θ)q
+

1

(2π − θ)q ≤
1

(3π)q
+

1

πq
, q ≥ 1,

since the function on the left-hand side is monotone increasing for θ ∈ [0, π]. Therefore, for

p ≥ 1,

rp+1(θ) ≤
(
θ

π

)2p+2( 1

32p+2
+ 1 +

1

2(2p+ 1)

[
1

32p+1
+ 1

])
≤ 1

81
+ 1 +

1

6

[
1

27
+ 1

]
=

32

27
.

Moreover, from (VI.18) and (VI.19) we deduce that

Ap,+(θ) +Ap,−(θ) =
∑

k≥1

4kπ(kπ + θ)

(2kπ + θ)2p+2
+

4kπ(kπ − θ)
(2kπ − θ)2p+2

≥ 4π(π − θ)
(2π − θ)2p+2

.

Taking into account (VI.17), we arrive at

rp(θ)− rp+1(θ)

1 + rp+1(θ)
≥ 4π(π − θ)

(2π − θ)2

(
θ

2π − θ

)2p 27

59
.

In view of (VI.16), this immediately gives the lower bound in (VI.15).

We are now ready to prove Theorems IV.2.1 and IV.2.3.

Proof of Theorem IV.2.1. From the upper bound in (VI.15) we have

max
θ∈[0,π]

∣∣ep(θ)− θ2
∣∣ ≤ max

θ∈[0,π]

[
4π(π − θ)

(
θ

2π − θ

)2p+2

+ 5θ2

(
θ

2π + θ

)2p
]
.
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By setting z = θ
π ∈ [0, 1] we obtain

max
θ∈[0,π]

∣∣ep(θ)− θ2
∣∣ ≤ max

z∈[0,1]

[
4π2(1− z)

(
z

2− z

)2p+2

+ 5π2z2

(
z

2 + z

)2p
]

≤ max
z∈[0,1]

5π2

[(
z

2− z

)2p+2(
1− z

2− z

)
+

1

32p

]
.

Finally, by setting y = z
2−z ∈ [0, 1] and observing that

max
y∈[0,1]

y2p+2(1− y) =

(
1− 1

2p+ 3

)2p+2 1

2p+ 3
≤ 1

2p+ 3
,

we get

max
θ∈[0,π]

∣∣ep(θ)− θ2
∣∣ ≤ 5π2

(
1

2p+ 3
+

1

32p

)
.

This concludes the proof.

Proof of Theorem IV.2.3. For p = 1 the bounds 1/3 ≤ wp(θ) ≤ 1 stated in the theorem hold

because from (IV.14) we know that

g0(θ) = 1, g1(θ) =
2

3
+

1

3
cos(θ).

In the following we focus on the case p ≥ 2. From (IV.17) it is clear that the bounds hold for

θ = 0. From (IV.16) and (VI.15) we deduce that, for θ ∈ (0, π],

1 ≤ 1

θ2

fp(θ)

gp(θ)
=

2− 2 cos(θ)

θ2

gp−1(θ)

gp(θ)
≤ 1 +

4π(π − θ)
(2π − θ)2

(
θ

2π − θ

)2p

+ 5

(
θ

2π + θ

)2p

≤ 1 +
4π(π − θ)
(2π − θ)2

(
θ

2π − θ

)4

+ 5

(
1

3

)4

≤ 1 +
3

20
+

5

81
<

12

π2
.

Since

1 ≤ θ2

2− 2 cos(θ)
≤ π2

4
, θ ∈ (0, π],

we obtain

1 ≤ gp−1(θ)

gp(θ)
< 3,

which is equivalent to 1/3 < wp(θ) ≤ 1.

In order to prove Theorem IV.2.2, further work is needed. In particular, we shall need to

analyze the auxiliary functions

Rk,p(ω) =

(
ω

kπ + ω

)2p+1

−
(

ω

kπ − ω

)2p+1

, k, p ≥ 1, ω ∈
[
0,
π

2

]
. (VI.20)

The next three technical lemmas are devoted to this purpose.

Lemma VI.3.2. For p ≥ 1 and k ≥ 2 the function

Rk,p+1(ω)−Rk,p(ω) (VI.21)

is nonnegative, monotone increasing and convex for ω ∈ [0, π2 ].
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Proof. Assume ω ∈ [0, π2 ]. We have

Rk,p+1(ω)−Rk,p(ω) = z2p+3
k − z2p+1

k + y2p+1
k − y2p+3

k , k ≥ 1,

where

yk =
ω

kπ − ω , zk =
ω

kπ + ω
. (VI.22)

It is easy to check that yk is a monotone increasing and convex function of ω. Similarly, zk is a

monotone increasing and concave function of ω. Moreover,

zk
yk

=
1

1 + 2yk
,

z′k
y′k

=

(
zk
yk

)2

,
z′′k
y′′k

= −
(
zk
yk

)3

, k ≥ 1, (VI.23)

and

0 ≤ zk ≤ yk ≤
1

2k − 1
≤ 1

3
, k ≥ 2. (VI.24)

Proving the nonnegativity of the function in (VI.21) is equivalent to showing that

y2p+1
k (1− y2

k) ≥ z2p+1
k (1− z2

k).

In view of (VI.23), this is equivalent to

1− y2
k

1− z2
k

≥ 1

(1 + 2yk)2p+1
.

Since
1− y2

k

1− z2
k

≥ 1− y2
k,

it su�ces to prove that

1− y2
k ≥

1

(1 + 2yk)2p+1
.

A direct computation shows that the above inequality holds for yk ∈ [0, 1/3] (it is enough to

verify it for p = 1 as the right-hand side decreases with p). Taking into account (VI.24), this

proves the nonnegativity of (VI.21) for k ≥ 2.

We now show that the function (VI.21) is convex. With some elementary manipulations we

obtain

R′′k,p+1(ω)−R′′k,p(ω) = Ak +Bk − Ck −Dk, (VI.25)

where

Ak = 2y2p−1
k (y′k)

2
[
p(2p+ 1)− (p+ 1)(2p+ 3)y2

k

]
, Bk = y2p

k y
′′
k

[
2p+ 1− (2p+ 3)y2

k

]
,

Ck = 2z2p−1
k (z′k)

2
[
p(2p+ 1)− (p+ 1)(2p+ 3)z2

k

]
, Dk = z2p

k z
′′
k

[
2p+ 1− (2p+ 3)z2

k

]
.

From (VI.24) it follows that, for p ≥ 1 and k ≥ 2,

p(2p+ 1)− (p+ 1)(2p+ 3)x2
k > 0, 2p+ 1− (2p+ 3)x2

k > 0, xk = yk, zk.

As a consequence, we have Bk ≥ 0 and Dk ≤ 0 because y′′k ≥ 0 and z′′k ≤ 0. In the following we

show that Ak ≥ Ck. Taking into account (VI.23), this is equivalent to proving that

p(2p+ 1)− (p+ 1)(2p+ 3)y2
k

p(2p+ 1)− (p+ 1)(2p+ 3)z2
k

≥
(
zk
yk

)2p−1(z′k
y′k

)2

=
1

(1 + 2yk)2p+3
.
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Since
p(2p+ 1)− (p+ 1)(2p+ 3)y2

k

p(2p+ 1)− (p+ 1)(2p+ 3)z2
k

≥ p(2p+ 1)− (p+ 1)(2p+ 3)y2
k

p(2p+ 1)
,

it su�ces to prove that

1− (p+ 1)(2p+ 3)

p(2p+ 1)
y2
k ≥

1

(1 + 2yk)2p+3
.

The above inequality holds for p ≥ 1 and yk ∈ [0, 1/3] (it is enough to verify it for p = 1).

Recalling (VI.24), this shows the convexity of (VI.21).

Finally, the monotonicity of the function (VI.21) follows from the convexity by observing

that the �rst derivative vanishes at ω = 0.

Lemma VI.3.3. For p ≥ 1 the function

R1,p+1(ω)−R1,p(ω) (VI.26)

is nonnegative for ω ∈ [0, ω∗p] and concave for ω ∈ [ω∗p,
π
2 ], where

ω∗p =
π

2

(
1− 1

48p− 1

)
. (VI.27)

Proof. Along the proof we use the same notation as in the proof of Lemma VI.3.2. We �rst

address the nonnegativity. With the same line of arguments as in the proof of Lemma VI.3.2

we deduce that the function in (VI.26) is nonnegative if

1− y2
1 ≥

1

(1 + 2y1)2p+1
.

The above inequality holds for p ≥ 1 whenever

0 ≤ y1 ≤ 1− 1

24p
= y∗1,p. (VI.28)

In view of (VI.22) and (VI.27), this is equivalent to 0 ≤ ω ≤ ω∗p.
We now prove the concavity. Similarly to (VI.25), we have

R′′1,p+1(ω)−R′′1,p(ω) = A1 +B1 − C1 −D1,

where

A1 = 2y2p−1
1 (y′1)2

[
p(2p+ 1)− (p+ 1)(2p+ 3)y2

1

]
, B1 = y2p

1 y
′′
1

[
2p+ 1− (2p+ 3)y2

1

]
,

C1 = 2z2p−1
1 (z′1)2

[
p(2p+ 1)− (p+ 1)(2p+ 3)z2

1

]
, D1 = z2p

1 z′′1
[
2p+ 1− (2p+ 3)z2

1

]
.

Since 0 ≤ z1 ≤ 1
3 we have

p(2p+ 1)− (p+ 1)(2p+ 3)z2
1 > 0, 2p+ 1− (2p+ 3)z2

1 > 0.

Moreover, for y1 ≥ y∗1,p,

p(2p+ 1)− (p+ 1)(2p+ 3)y2
1 < 0, 2p+ 1− (2p+ 3)y2

1 < 0.
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Hence, A1 < 0 and C1 > 0 for ω ∈ [ω∗p,
π
2 ]. In the following, for ω ∈ [ω∗p,

π
2 ], we prove that

B1 ≤ D1, or equivalently

2p+ 1− (2p+ 3)y2
1

2p+ 1− (2p+ 3)z2
1

≤
(
z1

y1

)2p z′′1
y′′1
.

By (VI.23) this is equivalent to

(2p+ 3)y2
1 − (2p+ 1)

2p+ 1− (2p+ 3)z2
1

≥ 1

(1 + 2y1)2p+3
.

Since

(2p+ 3)y2
1 − (2p+ 1)

2p+ 1− (2p+ 3)z2
1

≥ (2p+ 3)y2
1 − (2p+ 1)

2p+ 1− (2p+ 1)z2
1

=

(
2p+ 3

2p+ 1
y2

1 − 1

)
1

1− z2
1

≥ 2p+ 3

2p+ 1
y2

1 − 1,

it su�ces to prove that, for ω ∈ [ω∗p,
π
2 ],

2p+ 3

2p+ 1
y2

1 − 1 ≥ 1

(1 + 2y1)2p+3
. (VI.29)

Note that the left-hand side in (VI.29) is monotone increasing while the right-hand side is

monotone decreasing. Thus, the observation that the inequality (VI.29) holds for y1 = y∗1,p and
p ≥ 1 concludes the proof.

Lemma VI.3.4. For p ≥ 1 and ω ∈ [0, π2 ] we have

1 + (p+ 1)
∑

k≥1

Rk,p+1(ω)− p
∑

k≥1

Rk,p(ω) ≥ 0. (VI.30)

Proof. Assume ω ∈ [0, π2 ]. When taking the derivative of Rk,p,

R′k,p(ω) = (2p+ 1)

[(
ω

kπ + ω

)2p kπ

(kπ + ω)2
−
(

ω

kπ − ω

)2p kπ

(kπ − ω)2

]
≤ 0, (VI.31)

we see that Rk,p(ω) is a monotone decreasing function with Rk,p(0) = 0. In addition,

∑

k≥1

Rk,p

(π
2

)
=
∑

k≥1

[
1

(2k + 1)2p+1
− 1

(2k − 1)2p+1

]
= −1, (VI.32)

so

1 +
∑

k≥1

Rk,p+1(ω) ≥ 1 +
∑

k≥1

Rk,p

(π
2

)
= 0. (VI.33)

In the following we prove that the sum of the remaining terms in (VI.30) is nonnegative as

well, i.e.,

p
∑

k≥1

[Rk,p+1(ω)−Rk,p(ω)] ≥ 0.

From Lemmas VI.3.2 and VI.3.3 it follows that this is true for ω ∈ [0, ω∗p]. Therefore, it remains

to show that

Sp(ω) =
∑

k≥2

[Rk,p+1(ω)−Rk,p(ω)] ≥ R1,p(ω)−R1,p+1(ω), ω ∈
[
ω∗p,

π

2

]
. (VI.34)
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To this end, we �rst deduce from (VI.32) that

∑

k≥1

[
Rk,p+1

(π
2

)
−Rk,p

(π
2

)]
= 0,

implying

Sp

(π
2

)
= R1,p

(π
2

)
−R1,p+1

(π
2

)
=

1

32p+1
− 1

32p+3
≥ 0.

Moreover, from (VI.31) we get

R′k,p
(π

2

)
= (2p+ 1)

4k

π

[
1

(2k + 1)2p+2
− 1

(2k − 1)2p+2

]
,

which gives 1

S′p
(π

2

)
= R′2,p+1

(π
2

)
−R′2,p

(π
2

)
+
∑

k≥3

[
R′k,p+1

(π
2

)
−R′k,p

(π
2

)]

≤ 16(p+ 1)

32p+2π
+

4

π

∑

k≥3

[
(2p+ 3)k

(2k + 1)2p+4
+

(2p+ 1)k

(2k − 1)2p+2

]

≤ 16(p+ 1)

32p+2π
+

12

5π

∑

k≥3

[
2p+ 3

(2k + 1)2p+3
+

2p+ 1

(2k − 1)2p+1

]

≤ 16(p+ 1)

32p+2π
+

12

5π

∫ +∞

2

[
2p+ 3

(2κ+ 1)2p+3
+

2p+ 1

(2κ− 1)2p+1

]
dκ

=
16(p+ 1)

32p+2π
+

6

5π

[
2p+ 3

2(p+ 1) 52p+2
+

2p+ 1

2p 32p

]

≤ p+ 1

32p−1π
= mp.

From Lemma VI.3.2 it follows that Sp(ω) is convex on [0, π2 ], so

Sp(ω) ≥
(
ω − π

2

)
mp + Sp

(π
2

)
= Tp(ω). (VI.35)

The straight line Tp(ω) vanishes at

ω̂p =
π

2
− Sp

(π
2

) 1

mp
=
π

2
−
(

1

32p+1
− 1

32p+3

)
32p−1π

p+ 1
=
π

2
− 8π

81(p+ 1)
,

and

ω̂p =
π

2

(
1− 16

81(p+ 1)

)
< ω∗p.

From Lemma VI.3.3 we know that R1,p(ω)−R1,p+1(ω) is convex on [ω∗p,
π
2 ], and so

R1,p(ω)−R1,p+1(ω) ≤ Tp(ω), ω ∈
[
ω∗p,

π

2

]
. (VI.36)

These functions are illustrated in Figure VI.1. By combining (VI.35) and (VI.36), we get (VI.34).

We are now ready to prove Theorem IV.2.2.

1The equality holds due to the uniform convergence of the series.
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VI.3. Proofs of the theorems stated in Section IV.2 of Chapter IV

0 π/8 π/4 3π/8 π/2
−0.2

−0.15

−0.1

−0.05

0

0.05
 

Figure VI.1: Graphs of S1(ω) (black), R1,1(ω)−R1,2(ω) (blue), and T1(ω) (red). The value ω
∗
1 is marked with a

red dot.

Proof of Theorem IV.2.2. Assume θ ∈ [0, π]. From [52, Lemma A.2] we know that g′p(θ) ≤ 0. 2

Moreover, by (IV.16)�(IV.17) we have gp(θ), fp(θ) ≥ 0 and fp(θ) = (2−2 cos(θ))gp−1(θ). Finally,

from the lower bound in (VI.15) we deduce that fp(θ) ≥ θ2gp(θ). Therefore,

e′p(θ) =
f ′p(θ)gp(θ)− fp(θ)g′p(θ)

(gp(θ))2
≥
f ′p(θ)− θ2g′p(θ)

gp(θ)

=
2 sin(θ)gp−1(θ) + (2− 2 cos(θ))g′p−1(θ)− θ2g′p(θ)

gp(θ)
.

This means that, in order to prove the monotonicity of ep, it su�ces to show that

Gp(θ) = 2 sin(θ)gp−1(θ) + (2− 2 cos(θ))g′p−1(θ)− θ2g′p(θ) ≥ 0, θ ∈ [0, π]. (VI.37)

From (IV.14) it follows that g′p(0) = g′p(π) = 0 for p ≥ 0, so that Gp(0) = Gp(π) = 0 for p ≥ 1.

It remains to prove the inequality in (VI.37) for θ ∈ (0, π).

Let ω = θ
2 ∈ (0, π2 ). From [52, Proof of Lemma A.2] we know that

gp(θ) =
∑

k∈Z

(
sin(ω)

ω + kπ

)2p+2

,

and

g′p(θ) = (p+ 1)(sin(ω))2p+1 cos(ω)
∑

k∈Z

[
1

(ω + kπ)2p+2
− tan(ω)

(ω + kπ)2p+3

]
.

Therefore, recalling that 2 − 2 cos(θ) = 4(sin(ω))2 and sin(θ) = 2 sin(ω) cos(ω), with some

manipulations we obtain

Gp(θ) = 4(sin(ω))2p+1

(
cos(ω)(p+ 1)

∑

k∈Z

1

(ω + kπ)2p

[
1−

(
ω

ω + kπ

)2
]

+ sin(ω)
∑

k∈Z

1

(ω + kπ)2p+1

[
(p+ 1)

(
ω

ω + kπ

)2

− p
])

.

(VI.38)

2 Note that in [52] the function gp(θ) is denoted by hp(θ).
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Considering the positivity of the �rst sum in (VI.38), it su�ces to show that

4(sin(ω))2p+2

ω2p+1

(
1 +

∑

k≥1

(
ω

kπ + ω

)2p+1
[

(p+ 1)

(
ω

kπ + ω

)2

− p
]

−
∑

k≥1

(
ω

kπ − ω

)2p+1
[

(p+ 1)

(
ω

kπ − ω

)2

− p
])
≥ 0.

This inequality follows from (VI.30).

VI.4 Proof of the IgA eigenvalue expansion for α = 0

This section is devoted to the proof of the following theorem, that is, the expansion (IV.18) for

α = 0 and j = 1, . . . , Nn,p − (4p− 2).

Theorem VI.4.1. For every p ≥ 3, every n, and every j = 1, . . . , Nn,p− (4p− 2) = n− 3p, we

have

λj(n
−2L[p]

n ) = ep(θj,n) + E
[p]
j,n,0, (VI.39)

where:

� the eigenvalues of n−2L
[p]
n are arranged in non decreasing order, λ1(n−2L

[p]
n ) ≤ . . . ≤ λn+p−2(n−2L

[p]
n );

� ep is the function de�ned in (IV.15);

� h = 1
n and θj,n = jπ

n = jπh for j = 1, . . . , n;

� |E[p]
j,n,0| ≤ C [p]h for some constant C [p] depending only on p.

Proof. Throughout this proof, we will use the simpli�ed notations N = N(p, n) and ρ = 4p− 2.

Moreover, we will write V ⊆sp. CN to indicate that V is a vector subspace of CN . If A is an

N × N matrix and V ⊆sp. CN , the symbol A(V ) will denote the subspace of CN de�ned as

{Ax : x ∈ V }. Note that A(V ) has the same dimension as V whenever A is invertible.

We know from [115, Section 3] that

TN (fp) = τN (fp) +HN (fp), (VI.40)

TN (gp) = τN (gp) +HN (gp), (VI.41)

where, for any cosine trigonometric polynomial ψ(θ) = ψ0 + 2
∑p

k=1 ψk cos(kθ),

� τN (ψ) is the tau matrix of order N generated by ψ, that is, the matrix in τN (0, 0) de�ned as

τN (ψ) = QN (0, 0)

(
diag

j=1,...,N
ψ
( jπ

N + 1

))
QN (0, 0);
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VI.4. Proof of the IgA eigenvalue expansion for α = 0

� HN (ψ) is the Hankel matrix de�ned as

HN (ψ) =




ψ2 ψ3 · · · ψp

ψ3 . .
.

... . .
.

ψp

ψp

. .
. ...

. .
.

ψ3

ψp · · · ψ3 ψ2




.

Considering that (HN (fp))ij = (HN (gp))ij = 0 for 2p ≤ i ≤ N − 2p+ 1 = n− p− 1, in view of

(IV.19)�(IV.22) we have

n−1K [p]
n = τN (fp) + R̂

[p]
N , (VI.42)

nM [p]
n = τN (gp) + Ŝ

[p]
N , (VI.43)

where the rank corrections R̂
[p]
N = HN (fp) +R

[p]
N and Ŝ

[p]
N = HN (gp) + S

[p]
N satisfy

(R̂[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(R̂

[p]
N ) ≤ ρ, (VI.44)

(Ŝ[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(Ŝ

[p]
N ) ≤ ρ. (VI.45)

Since M
[p]
n is symmetric positive de�nite and L

[p]
n = (M

[p]
n )−1K

[p]
n is similar to

(M [p]
n )−1/2K [p]

n (M [p]
n )−1/2,

by the minimax principle for the eigenvalues of Hermitian matrices [13] we have, for every

j = 1, . . . , N ,

λj(n
−2L[p]

n ) = λj(n
−2(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2)

= max
V⊆sp.CN

dimV=N−j+1

min
x∈V
x 6=0

n−2x∗(M [p]
n )−1/2K

[p]
n (M

[p]
n )−1/2x

x∗x

= max
V⊆sp.CN

dimV=N−j+1

min
y∈(M

[p]
n )−1/2(V )
y 6=0

n−2y∗K [p]
n y

y∗M [p]
n y

= max
U⊆sp.CN

dimU=N−j+1

min
y∈U
y 6=0

y∗(n−1K
[p]
n )y

y∗(nM [p]
n )y

. (VI.46)

Let F be the subspace of CN generated by the union of the nonzero columns of R̂
[p]
n and Ŝ

[p]
n . By

(VI.44)�(VI.45), we have dimF ≤ ρ and, consequently, dimF⊥ ≥ N − ρ. Moreover, if U is any

subspace of CN such that dimU = u, we have dim(U ∩F⊥) = dimU+dimF⊥−dim(U+F⊥) ≥
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u + (N − ρ) − N = u − ρ. Thus, for j = 1, . . . , N − ρ, from (VI.42)�(VI.43) and (VI.46) we

obtain

λj(n
−2L[p]

n ) ≤ max
U⊆sp.CN

dimU=N−j+1

min
y∈U∩F⊥

y 6=0

y∗(τN (fp) + R̂
[p]
n )y

y∗(τN (gp) + Ŝ
[p]
n )y

= max
U⊆sp.CN

dimU=N−j+1

min
y∈U∩F⊥

y 6=0

y∗τN (fp)y

y∗τN (gp)y

≤ max
W⊆sp.CN

dimW≥N−(j+ρ)+1

min
y∈W
y 6=0

y∗τN (fp)y

y∗τN (gp)y

= max
W⊆sp.CN

dimW≥N−(j+ρ)+1

min
x∈(τN (gp))1/2(W )

x 6=0

x∗(τN (gp))
−1/2τN (fp)(τN (gp))

−1/2x

x∗x

= max
V⊆sp.CN

dimV≥N−(j+ρ)+1

min
x∈V
x 6=0

x∗τN (ep)x

x∗x

= max
V⊆sp.CN

dimV=N−(j+ρ)+1

min
x∈V
x 6=0

x∗τN (ep)x

x∗x

= λj+ρ(τN (ep)) = ep

((j + ρ)π

N + 1

)
, (VI.47)

where the last equality is because of the monotonicity of ep (Theorem IV.2.2). Similarly, using

again the minimax principle for Hermitian matrices, for j = ρ+ 1, . . . , N we obtain

λj(n
−2L[p]

n ) = λj(n
−2(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2)

= min
V⊆sp.CN
dimV=j

max
x∈V
x 6=0

n−2x∗(M [p]
n )−1/2K

[p]
n (M

[p]
n )−1/2x

x∗x

= min
V⊆sp.CN
dimV=j

max
y∈(M

[p]
n )−1/2(V )
y 6=0

n−2y∗K [p]
n y

y∗M [p]
n y

= min
U⊆sp.CN
dimU=j

max
y∈U
y 6=0

y∗(n−1K
[p]
n )y

y∗(nM [p]
n )y

≥ min
U⊆sp.CN
dimU=j

max
y∈U∩F⊥

y 6=0

y∗(τN (fp) + R̂
[p]
n )y

y∗(τN (gp) + Ŝ
[p]
n )y

= min
U⊆sp.CN
dimU=j

max
y∈U∩F⊥

y 6=0

y∗τN (fp)y

y∗τN (gp)y

≥ min
W⊆sp.CN

dimW≥j−ρ

max
y∈W
y 6=0

y∗τN (fp)y

y∗τN (gp)y

= min
W⊆sp.CN

dimW≥j−ρ

max
x∈(τN (gp))1/2(W )

x 6=0

x∗(τN (gp))
−1/2τN (fp)(τN (gp))

−1/2x

x∗x
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= min
V⊆sp.CN

dimV≥j−ρ

max
x∈V
x 6=0

x∗τN (ep)x

x∗x

= min
V⊆sp.CN

dimV=j−ρ

max
x∈V
x 6=0

x∗τN (ep)x

x∗x

= λj−ρ(τN (ep)) = ep

((j − ρ)π

N + 1

)
. (VI.48)

Putting together (VI.47) and (VI.48), we get

ep

((j − ρ)π

N + 1

)
≤ λj(n−2L[p]

n ) ≤ ep
((j + ρ)π

N + 1

)
, j = ρ+ 1, . . . , N − ρ. (VI.49)

From (VI.49) we immediately obtain
∣∣∣∣λj(n−2L[p]

n )− ep
( jπ

N + 1

)∣∣∣∣ (VI.50)

≤ max

(∣∣∣∣ep
((j − ρ)π

N + 1

)
− ep

( jπ

N + 1

)∣∣∣∣,
∣∣∣∣ep
((j + ρ)π

N + 1

)
− ep

( jπ

N + 1

)∣∣∣∣
)

≤ ‖e′p‖∞
ρπ

N + 1
≤ ‖e′p‖∞ρπh, j = ρ+ 1, . . . , N − ρ. (VI.51)

Moreover, since the eigenvalues of n−2L
[p]
n are positive (because of the similarity between L

[p]
n and

the symmetric positive de�nite matrix (M
[p]
n )−1/2K

[p]
n (M

[p]
n )−1/2) and ep(0) = 0 = minθ∈[0,π] ep(θ)

(by (IV.16)�(IV.17)), for j = 1, . . . , ρ we have

∣∣∣∣λj(n−2L[p]
n )− ep

( jπ

N + 1

)∣∣∣∣ = (VI.52)

=





λj(n
−2L[p]

n )− ep
( jπ

N + 1

)
, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

ep

( jπ

N + 1

)
− λj(n−2L[p]

n ), otherwise,

≤





λρ+1(n−2L[p]
n )− ep

( jπ

N + 1

)
, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

ep

( jπ

N + 1

)
, otherwise,

≤





∣∣∣∣λρ+1(n−2L[p]
n )− ep

((ρ+ 1)π

N + 1

)∣∣∣∣+ ep

((ρ+ 1)π

N + 1

)
− ep

( jπ

N + 1

)
,

if λj(n
−2L[p]

n )− ep
( jπ

N + 1

)
≥ 0,

ep

( ρπ

N + 1

)
− ep(0), otherwise,

≤




‖e′p‖∞ρπh+ ‖e′p‖∞ρπh, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

‖e′p‖∞ρπh, otherwise,

≤2‖e′p‖∞ρπh. (VI.53)

Combining (VI.50) and (VI.53), we obtain
∣∣∣∣λj(n−2L[p]

n )− ep
( jπ

N + 1

)∣∣∣∣ ≤ 2‖e′p‖∞ρπh, j = 1, . . . , N − ρ. (VI.54)
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To conclude the proof, we note that the stepsizes h = 1
n and H = 1

N+1 are such that

0 < h−H =
N + 1− n
n(N + 1)

=
p− 1

n(n+ p− 1)
<

p

n2

and, consequently, the grid points θj,n = jπh and Θj,n = jπH satisfy

0 < θj,n −Θj,n <
pπ

n
, j = 1, . . . , n.

Thus, the inequality (VI.54) yields the thesis (VI.39) with

|E[p]
j,n,0| = |λj(n−2L[p]

n )− ep(θj,n)| ≤ |λj(n−2L[p]
n )− ep(Θj,n)|+ |ep(Θj,n)− ep(θj,n)|

≤ 2‖e′p‖∞ρπh+ ‖e′p‖∞pπh = C [p]h, j = 1, . . . , N − ρ,

where C [p] = (2ρ+ p)π‖e′p‖∞.

VI.5 Qp Lagrangian FEM matrix symbol for p = 2, 3, 4

Recall that the p× p matrix-valued symbols of K
(p)
n and M

(p)
n are

f(θ) = f̂0 + f̂1e
ιθ + f̂T

1 e
−ιθ

and

g(θ) = ĝ0 + ĝ1e
ιθ + ĝT

1 e
−ιθ

respectively. The detailed expressions of f̂0, f̂1 and ĝ0, ĝ1 for the particular degrees p = 2, 3, 4

are given below.

For p = 2,

f̂0 =
1

3

[
16 −8

−8 14

]
, f̂1 =

1

3

[
0 −8

0 1

]
,

ĝ0 =
1

30

[
16 2

2 8

]
, ĝ1 =

1

30

[
0 2

0 −1

]
.

For p = 3,

f̂0 =
1

40




432 −297 54

−297 432 −189

54 −189 296


 , f̂1 =

1

40




0 0 −189

0 0 54

0 0 −13


 ,

ĝ0 =
1

1680




648 −81 −36

−81 648 99

−36 99 256


 , ĝ1 =

1

1680




0 0 99

0 0 −36

0 0 19


 .
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For p = 4,

f̂0 =
1

945




16640 −14208 5888 −1472

−14208 22320 −14208 3048

5888 −14208 16640 −6848

−1472 3048 −6848 9850


 , f̂1 =

1

945




0 0 0 −6848

0 0 0 3048

0 0 0 −1472

0 0 0 347


 ,

ĝ0 =
1

5670




1792 −384 256 56

−384 1872 −384 −174

256 −384 1792 296

56 −174 296 584


 , ĝ1 =

1

5670




0 0 0 296

0 0 0 −174

0 0 0 56

0 0 0 −29


 .

VI.6 Proof of the block eigenvalue expansion for α = 0

Theorem VI.6.1. Let s > 1, N = N(n, s) = sn and f be an Hermitian matrix-valued trigono-

metric polynomial (HTP) with Fourier coe�cients f̂0, f̂1, . . . , f̂m ∈ Rs×s. Suppose that f is of the
form

f(θ) =

m∑

k=−m
f̂ke

ιkθ = f̂0 +

m∑

k=1

(
f̂ke

ιkθ + f̂Tk e−ikθ
)
, m = deg (f(θ)) ∈ N,

such that

f̂−k =f̂Tk k = 0, . . . ,m. (VI.55)

Suppose that the eigenvalue functions of f , λ(q)(f) : [0, π]→ Rs×s, q = 1, . . . , s, are monotone

on [0, π] and such that

max
θ∈[0,π]

λ(q)(f) < min
θ∈[0,π]

λ(q+1)(f) (VI.56)

q = 1, . . . , s− 1, then, �xed q ∈ {1, . . . , s},
∣∣∣λγ(Tn(f))− λ(q) (f (θj,n))

∣∣∣ ≤ Ch (VI.57)

∀n, for j = 1, . . . , n, and γ = γ(q, j) = (q − 1)n+ j, where

� λγ(Tn(f)), γ ∈ {1, . . . , N}, are the eigenvalues of Tn(f), such that, for a �xed q̄ ∈
{1, . . . , s}, λ(q̄−1)n+j(Tn(f)) are arranged in non decreasing or non increasing order, de-

pending on whether λ(q̄)(f) is increasing or decreasing.

� h = 1
n+1 and θj,n = jπ

n+1 = jπh, j = 1, . . . , n;

Proof. For the sake of simplicity, we assume that for q = 1, . . . , s, λ(q)(f) is monotone non

decreasing (the other cases have a similar proof).

Notice that the conditions on f imply that the N × N block Toeplitz matrix generated by f ,

Tn(f), is Hermitian positive de�nite so we can order its eigenvalues in non decreasing order of

as follows
{{
λ(q−1)n+j(Tn(f))

}n
j=1

}s
q=1

(VI.58)
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We remark from the relation I.13 of Section I.5 that

Tn(f) = τN (f) +HN (f), (VI.59)

where, for ψ (HTP) of degree m and orthogonal Q =
(√

2
n+1 sin

(
ijπ
n+1

))n
i,j=1

, τN (ψ) is the

following τ matrix [14] of size N generated by ψ

τN (ψ) = (Q⊗ Is) diag
1≤j≤n

(
ψ

(
jπ

n+ 1

))
(Q⊗ Is), Q = QT = Q−1,

where HN (ψ) is the Hankel matrix associated to ψ with ν := ν(s,m) = rank(HN (ψ)) ≤ 2s(m−
1).

For q = 1, . . . , s, j = 1, . . . , n, setting γ = (q − 1)n+ j, we �nd

λγ(τN (f)) = λ(q)

(
f

(
jπ

n+ 1

))
. (VI.60)

Note that Tn(f) is similar to the matrix

T̃n(f) = (Q⊗ Is)Tn(f)(Q⊗ Is)

= diag
1≤j≤n

(
f

(
jπ

n+ 1

))
+ (Q⊗ Is)HN (f)(Q⊗ Is)

= diag
1≤j≤n

(
f

(
jπ

n+ 1

))
+ H̃ν ,

with rank(H̃ν) = ν, so Tn(f) and T̃n(f) have the same eigenvalues.

Using the MinMax spectral characterization for Hermitian matrices [13], we obtain, for

γ = (q − 1)n+ j ∈ {ν + 1, . . . , N − ν},

λγ−ν(τN (f)) = λ(q)

(
f

(
(j − ν)π

n+ 1

))
≤ λγ(Tn(f)) ≤ λγ+ν(τN (f)) = λ(q)

(
f

(
(j + ν)π

n+ 1

))
.

(VI.61)

The eigenvalue functions λ(q)(f) are monotone non decreasing function so we have, ∀n and for

γ = (q − 1)n+ j ∈ {ν + 1, . . . , N − ν},

λγ(Tn(f))− λ(q)

(
f

(
jπ

n+ 1

))
≤ λ(q)

(
f

(
(j + ν)π

n+ 1

))
− λ(q)

(
f

(
jπ

n+ 1

))
=

=
(
λ(q)(f(θ̄))

)′ νπ

n+ 1
≤
∥∥∥∥
(
λ(q)(f)

)′∥∥∥∥
∞

νπ

n+ 1
,

(VI.62)

with θ̄ ∈
(

jπ
n+1 ,

(j+ν)π
n+1

)
and

λγ(Tn(f))− λ(q)

(
f

(
jπ

n+ 1

))
≥ λ(q)

(
f

(
(j − ν)π

n+ 1

))
− λ(q)

(
f

(
jπ

n+ 1

))
≥

≥ −
∥∥∥∥
(
λ(q)(f)

)′∥∥∥∥
∞

νπ

n+ 1
.

(VI.63)
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By setting C =
∥∥∥
(
λ(q)(f)

)′∥∥∥
∞
νπ, for γ = (q − 1)n+ j ∈ {ν + 1, . . . , N − ν}, we obtain
∣∣∣∣λγ(Tn(f))− λ(q)

(
f

(
jπ

n+ 1

))∣∣∣∣ ≤ Ch. (VI.64)

Furthermore, from [47] ∀ γ = 1, . . . , N , we know that

mf ≤ λγ(Tn(f)) ≤Mf ,

where

mf = min
θ∈[0,π]

(
λ(1)(f(θ))

)
; Mf = max

θ∈[0,π]

(
λ(s)(f(θ))

)
,

with strict inequalities that is mf < λγ(Tn(f)) < Mf since, by the assumptions, the extreme

eigenvalue functions are not constant. Hence for N − ν < γ ≤ N
∣∣∣∣λ(s)

(
f

(
jπ

n+ 1

))
− λγ(Tn(f))

∣∣∣∣ ≤
∣∣∣∣λ(s)

(
f

(
jπ

n+ 1

))
− λ(s)

(
f

(
nπ

n+ 1

))∣∣∣∣

≤
∣∣∣∣
(
λ(s)

(
f
(
θ̄
)))′∣∣∣∣

∣∣∣∣
(n− j)π
n+ 1

∣∣∣∣ ,

where θ̄ ∈
(

jπ
n+1 ,

nπ
n+1

)
. If N − ν < γ ≤ N then |N − ν| < |(s− 1)n+ j| → |n− j| < ν, so that

∣∣∣∣λ(s)

(
f

(
jπ

n+ 1

))
− λγ(Tn(f))

∣∣∣∣ ≤
∥∥∥∥
(
λ(s) (f)

)′∥∥∥∥
∞

νπ

n+ 1
= Ch.

For 1 ≤ γ < ν + 1

∣∣∣∣λ(1)

(
f

(
jπ

n+ 1

))
− λγ(Tn(f))

∣∣∣∣ ≤
∣∣∣∣λ(1)

(
f

(
jπ

n+ 1

))
− λ(1)

(
f

(
π

n+ 1

))∣∣∣∣

≤
∣∣∣∣
(
λ(1)

(
f
(
θ̄
)))′∣∣∣∣

∣∣∣∣
(j − 1)π

n+ 1

∣∣∣∣ ,

where θ̄ ∈
(

π
n+1 ,

jπ
n+1

)
. If 1 ≤ γ < ν + 1 then |j| > |ν + 1| ⇒ |j − 1| < ν, so

∣∣∣∣λ(1)

(
f

(
jπ

n+ 1

))
− λγ(Tn(f))

∣∣∣∣ ≤
∥∥∥∥
(
λ(1) (f)

)′∥∥∥∥
∞

νπ

n+ 1
= Ch.

Hence for q = 1, . . . , s, j = 1, . . . , n, γ = (q − 1)n+ j ∈ {1, . . . , N},
∣∣∣∣λγ(Tn(f))− λ(q)

(
f

(
jπ

n+ 1

))∣∣∣∣ ≤ Ch.

Remark 12. With regard to Theorem VI.6.1, for q = 1, . . . , s, the case where λ(q)(f) are

bounded and non-monotone is almost analogous. If we consider λ̂(q)(f), the monotone non

decreasing rearrangement of λ(q)(f) on [0, π], taking into account that the derivative of λ(q)(f)

has at most a �nite number S of sign changes, we deduce that λ̂(q)(f) is Lipschitz continuous

and its Lipschitz constant is bounded by ‖
(
λ(q)(f)

)′ ‖∞ (notice that λ̂(q)(f) is not necessarily
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continuously di�erentiable but the derivative of λ̂(q)(f) has at most S points of discontinuity).

Furthermore the eigenvalues λγ(τN (f)), are exactly given by

λ(q)

(
f

(
jπ

n+ 1

))
, q = 1, . . . , s j = 1, . . . , n,

so that, by ordering these values non decreasingly, we deduce that they coincide with λ̂(q) (f (xj,n)),

with xj,n of the form jπ
n+1(1 + o(1)). With these premises, the proof follows exactly the same

steps as in Theorem VI.6.1, using the MinMax characterization and the Interlacing theorem for

Hermitian matrices.
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Conclusions

In most of the applications the interest in studying the spectral properties of structured matrix

sequences is two-fold. In fact, on one hand there are problems in which the information on the

eigenvalues are indirectly useful in �nding e�ciently the numerical solution, on the other hand

there are situations (for example, this is the case of eigenvalue problems [42, 92]) where the

eigenvalues have a physical meaning or represent the approximation of a quantity of interest.

These reasons, and many others, make the research of more and more e�cient eigensolvers

relevant and topical.

This thesis faces up to the mentioned double requests with a double strategy. It presents

both several standard issues treated with a new class of techniques, and few novel computational

problems never solved with classical tools.

In particular this is the case of the Chapter II where for the �rst time the spectral analysis

with GLT techniques is applied to the recent discretization by the novel family of high order

accurate Discontinuous Galerkin (DG) methods on staggered meshes.

On the other direction, Chapter III, IV, V are devoted to present new fast extrapolation�

interpolation methods for computing the approximation of the spectrum of large Toeplitz and

Toeplitz-like sequences in various settings.

The future purpose will be to combine the two strategy and provide new useful tools to deal

with new computational problems and those arising from some recent discretization techniques.

A �rst achievement can be obtained from the possible future developments of the topics

treated in Chapter II.

We have have studied in detail the resulting (structured) matrices coming from the discretiza-

tion by staggered DG methods of the incompressible Navier-Stokes equations. The classical

theory of Toeplitz matrices generated by a function (in the most general block, multilevel form)

and the more recent theory of GLT matrix-sequences have been the key tools for analyzing the

spectral properties of the considered large matrices. We have obtained a quite complete picture

of the spectral properties of the underlying linear systems that result after the discretization

of the PDE. This information has been employed for giving a forecast of the convergence his-

tory of the CG method and for proposing a basic, still e�ective, Strang-type block circulant

preconditioner and for designing the essentials of the Two grid technique.

Starting from the preliminary �ndings in Subsection II.3.3 and Subsection II.3.4, the use

of these results will be the ground for further research in the direction of new more advanced

techniques (involving preconditioning, multigrid, multi-iterative solvers [113]), by taking into

account variable coe�cients, compressibility, graded meshes in geometrically complex domains,

and various boundary conditions.
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Furthermore there are possible other situations where the multilevel block matrix sequences

are involved and the proposed analysis could be similarly applied. This is the case of the

structured matrix sequences arising from some di�erent PDEs discretization, e.g., the Virtual

Element Methods, or the optimal control problems that will be subjects of future investigation.

On the other hand the second goal of this thesis have been to provide new tools for computing

the spectrum of:

1. preconditioned banded symmetric Toeplitz matrices [1];

2. Toeplitz-like matrices, n−1K
[p]
n , nM

[p]
n , n−2L

[p]
n , coming from the B-spline IgA approxima-

tion of −u′′ = λu, plus its multivariate counterpart for −∆u = λu [58];

3. block and preconditioned block banded symmetric Toeplitz matrices [60].

The proposed algorithms are based on the classical concept of symbol, but with an inno-

vative view on the errors of the approximation of eigenvalues by the uniform sampling of the

symbol. This new approach was used in the independent works [16, 17, 19] and [62] where the

authors conjectured the existence of an asymptotic spectral expansion for banded symmetric

Toeplitz matrices. From a theoretical viewpoint in the Chapter VI we have proved, for all the

Items, the �rst order asymptotic term of the expansion, using purely linear algebra tools. The

theoretical proof of the asymptotic expansion for higher-order α ≥ 1 will be a future research

line. Considering that the asymptotic eigenvalue expansion in IgA context is strongly connected

with the eigenvalue expansion for preconditioned Toeplitz matrices of Section III.1, a proof of

the former may suggest the way to prove the latter, and vice versa.

We also complement the results of [51, 71, 72, 73, 74, 76, 77], proving several important

analytic properties of ep(θ), spectral symbol of {n−2L
[p]
n }n.

We have extended for all contexts above the extrapolation algorithm based on the asymptotic

expansion and we have demonstrated that the simple-loop requirement treated in [7, 16, 17], in

standard double precision computations, is not a problem when using our proposed algorithms.

In Chapter III we have considered the problem of computing the spectrum of the sequence

of preconditioned Toeplitz matrices {Pn(f, g) = T−1
n (g)Tn(f)}, for f trigonometric polynomial,

g nonnegative and not identically zero trigonometric polynomial. Moreover we have shown

numerical evidences showing that some of the assumptions proposed by Bogoya et al. [16, 17, 19]

can be relaxed. We have extended the extrapolation algorithm for computing the eigenvalues

in this setting, here the key has been the sampling of the function r = f/g that plays the same

role as f in the non-preconditioned case.

This generalization have potential application to the computation of the spectrum of di�er-

ential operators. In fact, up to low rank corrections, matrices of the form Pn(f, g) appear in the

context of the spectral approximation of di�erential operators in which a low rank correction of

Tn(g) is the mass matrix and a low rank correction of Tn(f) is the sti�ness matrix.

Therefore a plan for the future has to include: the analysis of the non-monotone case and its

relations with the study in [63] for the special case where f(θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer,

and g(θ) = 1; the extension of the results by [8] to the preconditioned Toeplitz case and the

study of its connection with the treated general expansion; the extension of the numerical and

theoretical study to possible other contexts.
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The positive result of the preconditioned case have suggested that same kind of asymptotic

expansion holds, at least in the context of the IgA approximation of second order di�erential

operators.

In Chapter IV we have further explored the B-spline IgA approximation of the Laplacian

eigenvalue problem −∆u = λu over the k-dimensional hypercube (0, 1)k. We have provided the

exact eigenvalue�eigenvector structure of the resulting discretization matrices K
[p]
n , M

[p]
n , and

L
[p]
n , for p = 1, 2. For the cases p ≥ 3 we have proposed a parallel interpolation�extrapolation

algorithm based on the asymptotic spectral expansion for computing the eigenvalues of L
[p]
n ,

excluding the largest nout
p = p − 2 + mod(p, 2) outliers. The performance of the algorithm has

been illustrated through several numerical experiments. By using tensor-product arguments, it

is plain to extend the whole analysis to the general k-dimensional setting.

The matrices arising from the discretization of a linear PDE by a linear Numerical Method

(NM) usually have a Toeplitz or Toeplitz-like structure. For example, in the case of a constant-

coe�cient PDE, the matrix structure is often a small perturbation of a pure Toeplitz structure,

whereas in the case of a variable-coe�cient PDE, the matrix structure is often the so-called

Generalized Locally Toeplitz structure [76, 77, 125, 126]; see in particular [77, Section 7.1].

Hence the natural question is:

�Do we have an asymptotic expansions for the eigenvalues of generic PDE discretization

matrices? �

The chapter has provided a positive answer in the case where the PDE a the Laplacian

eigenproblem and the discretization is the B-spline IgA. It is clear, however, that the previous

question opens the doors to a series of possible future researches. Hence the purpose will be

ascertain the existence of an asymptotic eigenvalue expansion for PDE discretization matri-

ces and exploit this expansion (if any) for computing the eigenvalues themselves through fast

interpolation�extrapolation procedures.

A big step forward in this direction has been the generalization of the proposed theory to the

block and preconditioned block context, presented in Chapter V. Special attention has been

dedicate to the generalization of the results of Chapters III-IV under the assumptions that f

of is an s × s matrix-valued trigonometric polynomial with s ≥ 1, and Tn(f) is the associated

block Toeplitz matrix, whose size is N(n, s) = sn.

First we numerically have derived the conditions which ensure the existence of an asymp-

totic expansion for the eigenvalues, generalizing those for the scalar-valued setting s = 1.

Furthermore, following the proposal for s = 1 in the previous chapters, we have devised an

interpolation�extrapolation algorithm for computing the eigenvalues of banded symmetric block

Toeplitz matrices with a high level of accuracy and a low computational cost, and we have pre-

sented several examples of practical interest. Furthermore we have provided the exact formulae

for the eigenvalues of the matrices coming from the Qp Lagrangian Finite Element approxima-

tion of a second order elliptic di�erential problem and the preconditioned block matrices coming

from the classical Lagrangian Finite Element approximation of the classical eigenvalue problem

for the Laplacian operator in one dimension.

The natural step in order to investigate the existence of an asymptotic eigenvalue expansion

for many other PDE discretization matrices will be a feasible extension of the proposed approach

to the multilevel contexts, in cases where the tensor product argument of Chapter IV cannot
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be exploited. This is a real challenge and we still do not know how to race the problem: here the

principal open question concerns the formalization, in both scalar or block case, of the asymptotic

spectral expansion for k-level matrices, that in turn depends on the lack of the monotonicity

concept for a k variate symbol.

The matrices produced by most types of discretizations possess a structure, namely they are

often banded. As seen, the latter is strongly related with the concept of trigonometric polynomial

generating function, and this case has been the main object of the present thesis. However, we

stress that there are many other contexts, such as discretized fractional, di�erential or integral

operators where the involved symbols are not of polynomial type.

Hence, moved by preliminary positive results, we plan also to extend the theory and the

algorithms to the eigenvalues of possibly dense matrix sequences, possibly with some regularity

conditions on the symbol. The aim is that of continuing to provide and analyze methods in

order to deal with the most general classes of structured matrix sequences and discretizations

of partial di�erential equations using spectral methods or of fractional di�erential equations by

means of standard local methods.
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