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Un ringraziamento immenso va ai miei familiari, a cui dedico questo risultato. Loro

vi
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Abstract

In this thesis we address two problems related to the numerical approximation of partial
differential equations on stationary or evolving surfaces.

Firstly, we are concerned with geometric approximation of stationary surfaces. We ap-
proximate a given compact surface Γ with a piecewise flat surface with polygonal faces, called
polygonation. Polygonations generalise the triangulations used in the surface finite element
method [40]. We show two advantages of polygonations over standard triangulations: they
simplify the approximation of simple surfaces and allow for simple mesh pasting. Based on
our recent publication [58] we propose a novel numerical method for the Laplace-Beltrami
equation, called Surface Virtual Element Method (SVEM) that is well-posed on polygona-
tions. We prove that the method exhibits linear convergence in H1(Γ) seminorm. We provide
numerical examples to experimentally show the convergence of the method and the advantages
of polygonal meshes.

Secondly, for time-dependent partial differential equations on both stationary and evolv-
ing surfaces, we present the first numerical methods that preserve monotonicity properties
under discretisation. For the case of stationary surfaces we present the results given in our
publications [55, 56]. Specifically, we propose a Lumped Surface Finite Element Method
(LSFEM) for the spatial discretisation of two parabolic problems on a stationary surface Γ:
the semilinear heat equation and reaction-diffusion systems, with or without cross-diffusion
(RDSs and RCDSs respectively). We derive a full discretisation by combining the LSFEM
with an Implicit-Explicit (IMEX) Euler method. For the semilinear heat equation, both the
spatially- and fully discrete methods preserve the maximum principle under discretisation.
For RDSs and RCDSs, the methods preserve the invariant regions under discretisation. We
prove quadratic convergence in space and linear convergence in time in L∞([0, T ];L2(Γ))
norm, where T is the final time. We present numerical examples to confirm our findings in
terms of convergence and preservation of monitonicity properties under discretisation.

For the case of evolving surfaces we present results from our publication [57]. In particu-
lar, we propose a Lumped Evolving Surface Finite Element Method (LESFEM) for the linear
heat equation and for RDSs on an evolving surface. We introduce indicators, called dilation
rates, that quantify the rate of expansion or contraction of the evolving surface. Under suit-
able conditions on the dilation rates, the linear heat equation fulfils the minimum-maximum
principle at both the spatially and fully discrete levels. Similarly, for spatially and fully dis-
cretised RDSs we prove sufficient conditions on the dilation rates and the reaction kinetics,
under which a given set in the phase-space is an invariant region. We apply our findings to
determine classes of invariant regions for four RDSs on evolving surfaces existing in the liter-
ature. We provide numerical examples to confirm the preservation of monotonicity properties
under discretisation and to empirically show the convergence of the method.
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Chapter 1

Introduction

Mathematical modelling of real phenomena through partial differential equations (PDEs) is
an extremely wide field of mathematics. In many applications, the domain on which the
phenomenon takes place is a surface embedded in R3, rather than a flat domain [12, 19, 52,
53, 79, 125]. Moreover, in many cases the spatial domain -a flat domain or a curved surface-
can be time-dependent or evolving [6, 14, 43, 45, 46, 85, 92, 136]. For this reason, the analysis
and application of PDEs on stationary or evolving surfaces has become an active area of
research over the last two decades.

Numerous classes of PDEs on surfaces have been considered in the literature, from both an
analytical and a numerical point of view. The prototypical PDE on surfaces is the Laplace-
Beltrami equation, that is the counterpart of the Laplace equation on surfaces [37, 125].
However, more general elliptic equations on surfaces have been considered [40, Section 3.1].
The basic time-dependent PDE on surfaces is the diffusion- or heat equation [68]. A more
general class of parabolic PDEs on surfaces is that of reaction-diffusion systems (RDSs), which
are extensively studied ever since Turing showed that such RDSs can exhibit the so called
diffusion-driven or Turing instability [128]. It is worth mentioning some other remarkable
time-dependent PDEs on surfaces that have been considered in the literature, such as the
Navier-Stokes [125, Chapter 17], Allen-Cahn [35] and Cahn-Hilliard [44] equations.

The increasing number of applications of surface PDEs has stimulated the development
of several numerical methods for their solution. The main challenge of devising efficient
numerical methods for surface PDEs is to account for arbitrary geometries. For this reason,
numerical methods for PDEs on general surfaces usually rely on the geometric approximation
of the surface itself. The need of discretising the surface can be avoided only on particular
geometries. For instance, some numerical methods are specifically designed for spherical
geometries [19, 52, 53, 84, 99, 133] or for simple geometries that can be parametrised in closed
form over planar domains, such as spheres, tori, cones, etc. [109]. For PDEs on arbitrary
surfaces, several numerical methods have been developed. For instance, we mention the
surface finite element method (SFEM) and its extensions [40], kernel methods [54], embedding
methods [12, 24, 67, 90, 115]. In particular, we focus our attention on the SFEM. The method
was first introduced in the pioneering work [37] for the Laplace-Beltrami equation. The SFEM
was then extended to numerous classes of surface PDEs on stationary or evolving surfaces.
We refer the interested reader to the survey paper [40]. The success of the method is due to its
ability of coping with arbitrary geometries and for its algorithmic simpleness. In this thesis we
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present three novel extensions of the SFEM: (i) the surface virtual element method (SVEM)
for the Laplace-Beltrami equation, (ii) the lumped surface finite element method (LSFEM) for
the semilinear heat equation, RDSs and RCDSs, and (iii) the lumped evolving surface finite
element method (LESFEM) for the linear heat equation and RDSs on evolving surfaces. As
discussed in the remainder of this introduction, the proposed numerical methods address two
open problems in numerical analysis.

1) Polygonal approximation of geometry and applications

The aforementioned SFEM is based on the approximation of the surface through a triangulated
surface or triangulation or mesh, i.e. a piecewise flat surface made up of triangles (called
elements). On each element, the given PDE problem is locally discretised exactly as in the
planar case using the finite element method (FEM). Consequently, the SFEM can be easily
applied to arbitrary geometries and this justifies the success of the method. We face the
problem of generalising the SFEM by considering polygonal approximation of surfaces. Before
discussing the details of the novel numerical method, we motivate the need of considering
polygonal approximation of surfaces. At first glance, it may appear that approximating an
arbitrary surface with polygons is a cumbersome task with no advantage. In fact, any three
not-aligned points span a (unique) triangle while, given n ≥ 4 points, these do not span any
n-gon if they do not belong to the same plane. However, there are at least two cases in which
the process of meshing benefits from the possibility of choosing arbitrary polygonal elements.

The first application of polygonal meshes is the approximation of particular geometries
such as cylinders, tori, cones, etc. We will show through numerical examples that approx-
imating these simple surfaces with suitable quadrilaterals instead of triangles can lead to a
significant reduction in the number of elements on equal number of nodes. This, in turn, trans-
lates into a reduction in the computational cost of the method, which is indeed proportional
to the number of elements.

The second -and more interesting- proposed application of polygonal meshing is that of
mesh pasting. If a surface is composed of simpler portions and a triangulation of each portion
is available, it is desirable to simply paste the triangulated portions to obtain a triangulation
of the overall surface. Unfortunately it is very unlikely that the triangulated portions match
with each other along the boundaries, hence a naive pasting approach almost surely leads to a
discontinuous or holed triangulation. An existing approach to overcome this issue is to suitably
manipulate the boundaries of triangulated portions to let them match with each other. This
is a complicated approach and some algorithms of this kind have been studied [75, 122]. We
propose a pasting technique for which it is sufficient to juxtapose the triangulated portions
without worrying about the discontinuities and the holes of the overall surface. Instead
of manipulating and distorting the triangulations, we simply turn some triangular elements
into polygonal elements by adding new nodes. Then we face the discontinuity of the overall
triangulation by imposing a fictitious continuity condition on the numerical solution, called
virtual continuity.

In order to exploit the aforementioned advantages of polygonal meshes we propose, based
on our paper [58], a numerical method for the Laplace-Beltrami equation that is well-posed
on such arbitrary polygonal surfaces, which we call Surface Virtual Element Method (SVEM).
The method is an extension of the Virtual Element Method (VEM) introduced in [8] for the

3



numerical approximation Laplace equation on planar domains using polygonal meshes.

2) Numerical preservation of monotonicity properties under dis-
cretisation

The second problem that we address is the numerical preservation of monotonicity properties
under discretisation for time-dependent PDEs. We start the discussion from the case of
stationary surfaces. A scalar time-dependent PDE on a stationary surface that admits a
strong solution u(x, t) is said to fulfil the minimum-maximum principle if, for any bounded
initial datum u0(x), the solution fulfils

min

{
0,min

y∈Γ
u0(y)

}
≤ u(x, t) ≤ max

{
0,max
y∈Γ

u0(y)

}
, (x, t) ∈ Γ× [0, T ]. (1.1)

For nonnegative initial data, the above definition reduces to the well-known notion of maxi-
mum principle:

min
y∈Γ

u0(y) ≤ u(x, t) ≤ max
y∈Γ

u0(y), (x, t) ∈ Γ× [0, T ]. (1.2)

We will refer to the minimum-maximum and maximum principles as monotonicity properties.
The linear heat equation on stationary surfaces is known to fulfil the maximum principle [18].
From a numerical point of view, it is interesting to determine whether a numerical method
for the heat equation preserves the maximum principle under discretisation. See Table 1.1
for a synoptic state of the art. In this thesis we present, based on our recent paper [56], a
lumped surface finite element method (LSFEM) for the spatial discretisation of a semilinear
heat equation and an implicit-explicit (IMEX) Euler-LSFEM for the full discretisation. The
proposed methods preserve the maximum principle of the semilinear heat equation under
discretisation.
For systems of PDEs, the monotonicity property which we are interested in is the existence
of invariant regions. For a system of r, r ∈ N PDEs that admits a strong solution u(x, t),
a closed subset Σ of the phase-space Rr is said to be an invariant region if, for any initial
datum u0(x) fulfilling u0(x) ∈ Σ for all x ∈ Γ, the solution fulfils

u(x, t) ∈ Σ, (x, t) ∈ Γ× [0, T ]. (1.3)

The two classes of systems of PDEs we will address in this thesis are reaction-diffusion sys-
tems (RDSs) and the more general reaction-cross-diffusion systems (RCDSs). For RDSs and
RCDSs on planar domains, sufficient conditions for a set Σ to be an invariant region have been
proven in [25, 123]. The sufficient conditions proposed by Taylor [125] for RDSs on stationary
surfaces are analogous to the planar counterpart. To the best of the author’s knowledge, the
general case of RCDSs on stationary surfaces is not covered in the literature, although it is
reasonable to think that the sufficient conditions given in [25] for RCDSs on planar domains
still apply to the general case of stationary surfaces.

From a numerical point of view, the preservation of invariant regions has not been studied
in depth. We summarise the state of the art on this topic in Table 1.1. To the best of the
author’s knowledge, the cases of RDSs on surfaces and RCDSs on planar domains or surfaces
have not been considered in the literature. In this thesis we present, based on our recent
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papers [55, 56] a LSFEM space discretisation and a LSFEM-IMEX Euler full discretisation
of RDSs and RCDSs on general stationary surfaces, that preserve the invariant regions under
discretisation.

As well as for the case of stationary surfaces, for scalar PDEs on evolving surfaces we con-
sider the minimum-maximum- and maximum principles, whose definitions are analogous to
(1.1)-(1.3), but since now the surface is time-dependent, a more precise formalism is needed,
as discussed in detail in Chapter 6. Since the analysis and numerical approximation of PDEs
on evolving surfaces are novel research areas, it is not surprising that the study of monotonic-
ity properties for PDEs on evolving surfaces is almost completely unexplored, both at the
continuous and discrete levels. The main challenge is to account for the impact of surface
evolution on monotonicity properties. At the discrete level, an interesting insight in this di-
rection is provided by the work in [15, 104], which study the impact of domain evolution on
the stability of an Arbitrary Lagrangian Eulerian (ALE) FEM for parabolic PDEs on evolving
planar domains. In order to face the open problem of discrete monotonicity properties we
present, based on our recent paper [57] a lumped evolving surface finite element method (LES-
FEM) spatial discretisation and a LESFEM-IMEX Euler full discretisation for the linear heat
equation and for RDSs on surfaces that evolve according to a prescribed material velocity.
Moreover, to quantify the impact of surface evolution, we introduce indicators, called dilation
rates, that measure the rate of expansion of contraction of the evolving surface. By exploiting
these dilation rates we prove, at the spatially and fully discrete levels, sufficient conditions
(i) for the minimum-maximum principle for the linear heat equation and (ii) for the existence
of invariant regions for RDSs. To the best of the author’s knowledge, these are the first
examples of discrete monotonicity properties for PDEs on evolving surfaces presented in the
literature. It is worth remarking that the continuous counterpart of our discrete monotonicity
properties for PDEs on evolving surfaces remain an open problem in the field of pure analy-
sis. As an application of our theory we prove, at the spatially discrete level, the existence of
classes of invariant regions for four RD models on evolving surfaces existing in the literature:
the Schnakenberg, Thomas, Hodgkin-Huxley models [100] and the morphochemical model for
electrodeposition in [80].

Layout of the thesis

The present thesis is structured as follows.
In chapter 2 we set up the notations and definitions needed throughout the thesis. We
state the classes of PDEs on stationary surfaces we are interested in: the Laplace-Beltrami
equation, the semilinear heat equation, RDSs and RCDSs. We recall some analysis of the
Laplace-Beltrami equation, alongside the SFEM for its numerical approximation. We survey
some of the existing methods for the spatial approximation of the semilinear heat equation,
RDSs and RCDSs.
In Chapter 3, based on our paper [58], we present the novel SVEM for the numerical ap-
proximation of the Laplace-Beltrami equation. We discuss the advantages and applications
of polygonal meshes. We prove geometric error estimates for polygonal approximation of sur-
faces and analytical error estimates for the discrete bilinear forms involved in the method. We
prove that the proposed method possesses a first order convergence in H1(Γ) norm, where Γ
is the surface. We provide three numerical examples to show (i) the applications of polygonal
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meshes and (ii) the convergence of the method.
In Chapter 4, based on our paper [56], we present the LSFEM for the spatial discretisation
and the IMEX Euler-LSFEM for the full discretisation of the semilinear heat equation on
a stationary surface Γ. We prove that our methods preserve the maximum principle under
discretisation. We prove that the convergence of the proposed methods in L2([0, T ];H1(Γ))
norm is of second order in space and first order in time. In two numerical examples we show
(i) the preservation of the maximum principle under discretisation and (ii) the convergence
of the method.
In Chapter 5, based on our papers [55, 56], we present the LSFEM for the spatial discretisation
and the IMEX Euler-LSFEM for the full discretisation of RDSs and RCDSs on a stationary
surface Γ. We prove that the proposed methods preserve the invariant regions of the PDE
system under discretisation. As well as for the semilinear heat equation considered in the
previous chapter, we prove that the convergence of the methods in L2([0, T ];H1(Γ)) norm
is of second order in space and first order in time. We provide four numerical examples to
illustrate (i) in the first two examples, the preservation of an invariant region for a RDS and a
RCDS, respectively, (ii) the convergence of the IMEX Euler-LSFEM and (iii) the application
of the method to the simulation of biological pattern formation.
In Chapter 6, based on our paper [57], we consider the linear heat equation and RDSs on
evolving surfaces. We present the LESFEM for the spatial discretisation and the IMEX Euler-
LESFEM for the full discretisation of such PDEs. We introduce indicators called dilation rates
that quantify the rate of expansion or contraction of smooth or triangulated surfaces. For
the linear heat equation, we prove sufficient conditions under which the minimum-maximum
principle holds at the spatially- and fully discrete levels. Likewise, for RDSs we prove suffi-
cient conditions under which a region in the phase-space is invariant under spatial and full
discretisation. In two numerical examples we experimentally show (i) the convergence of the
IMEX Euler-LESFEM for the linear heat equation and (ii) the existence of an invariant region
for a RDS at the fully discrete level.
In Chapter 7 we summarise the main findings of this thesis and we outline possible future
extensions.
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MAXIMUM PRINCIPLE FOR THE LINEAR HEAT EQUATION

Continuous level Discrete level

Planar domains Nirenberg (1953) ([103])

Nie & Thomée (1985) [101]
Elliott & Stuart (1993) [47]

Faragó et al. (2012) [49]
Chatzipantelidis et al. (2015) [20]

Stationary surfaces Calabi (1958) [18] Frittelli et al. (2017) [56]

Evolving surfaces - Frittelli et al. (2018) [57]

INVARIANT REGIONS FOR RDSs

Continuous level Discrete level

Planar domains Chueh et al. (1977) [25]
Hoff (1978) [73]

Garvie & Trenchea (2007) [60]

Stationary surfaces Taylor (2013) [125] Frittelli et al. (2017) [56]

Evolving surfaces - Frittelli et al. (2018) [57]

INVARIANT REGIONS FOR RCDSs

Continuous level Discrete level

Planar domains Chueh et al. (1977) [25] -

Stationary surfaces - Frittelli et al. (2017) [55]

Evolving surfaces - -

Table 1.1: State of the art of (i) the maximum principle for the linear heat equation and (ii)
invariant regions for RDSs and RCDSs. Our contribution is highlighted in bold. Concerning
the linear heat equation, our work in [56] covers the more general semilinear heat equation.

7



Chapter 2

Partial differential equations on
stationary surfaces

2.1 Introduction

This chapter introduces the necessary background to present and motivate the contributions
of this thesis and is structured as follows. In Section 2.2 we recall the mathematical notions
needed for the understanding and the analysis of surface PDEs at the continuous level. In
Section 2.3 we summarise the classes of PDEs that will be addressed throughout the thesis.
In Section 2.4 we introduce the Laplace-Beltrami equation in detail and recall the proof of
existence and uniqueness of its weak solution, in order to make the reader familiar with the
techniques that will be adopted throughout the remainder of this work. In Section 2.5 we
recall from [40] the Surface Finite Element Method (SFEM) for the numerical approximation
of the Laplace-Beltrami equation. All the novel numerical methods presented in this thesis
will be extensions or modifications of the SFEM. In Section 2.6 we present the counterpart
of SFEM for parabolic PDEs on stationary surfaces and we review some alternative existing
methods for their spatial discretisation, thereby discussing some advantages and disadvantages
with respect to the SFEM.

2.2 Preliminaries and notations

In this section we recall some fundamental notions concerning surface PDEs. If not explicitly
stated, definitions and results are taken from [40].

Definition 1 (Ck surface, normal and conormal vectors). Given k ∈ N, a set Γ ⊂ R3 is said
to be a Ck surface if, for every x0 ∈ Γ, there exist an open set Ux0 ⊂ R3 containing x0 and a
function φ ∈ Ck(U) such that

Ux0 ∩ Γ = {x ∈ Ux0 |φ(x) = 0}.

The vector field

ν : Γ→ R3, x 7→ ∇φ(x)

‖∇φ(x)‖ (2.1)
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ν(x)

x

µ(y)

y

Figure 2.1: Illustration of normal vector field ν : defined in (2.1) and conormal vector field µ
defined in (2.2). The boundary ∂Γ of the surface Γ is highlighted in blue.

is said to be the unit normal vector. We denote by ∂Γ the one-dimensional boundary of Γ.
If ∂Γ has a well-defined tangent direction at each point, the unit vector field

µ : ∂Γ→ R3, (2.2)

such that

• µ(x) ⊥ ν(x), x ∈ ∂Γ;

• µ(x) ⊥ ∂Γ, x ∈ ∂Γ;

• µ(x) points outward of Γ,

is called the conormal unit vector.

A representation of normal and conormal vectors is given in Figure 2.1.

Lemma 1 (Fermi coordinates, see [40]). If Γ is a C2 surface, there exists an open neighbour-
hood U ⊂ R3 of Γ such that every x ∈ U admits a unique decomposition of the form

x = a(x) + d(x)ν(a(x)), a(x) ∈ Γ, d(x) ∈ R. (2.3)

The maximal open set U with this property is called the Fermi stripe of Γ, a(x) is called normal
projection onto Γ, d(x) is called oriented distance function and (a(x), d(x)) are called the
Fermi coordinates of x. An example of Fermi stripe is depicted in Fig. 2.2.

Definition 2 (Tangential gradient, tangential divergence). If Γ is a C1 surface, A is an open
neighborhood of Γ and f ∈ C1(A,R), the operator

∇Γf : Γ→ R3, x 7→ ∇f(x)− (∇f(x) · ν(x))ν(x) = P (x)∇f(x), (2.4)

where ∇ denotes the usual gradient in R3 and P (x)ij = δij−νi(x)νj(x), is called the tangential
gradient of f . A pictorial representation is given in Figure 2.3. The components of the
tangential gradient, i.e.

Dif : S → R, x 7→ Pi(x)∇f(x), i ∈ {1, 2, 3}, (2.5)
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a(x)

x

U

Γ

d(x)ν(a(x))

Figure 2.2: Schematic representation of the Fermi stripe U of a surface Γ, as defined in Lemma
1. According to (2.3), each point x ∈ U is obtained by moving its normal projection a(x) ∈ Γ
by a distance d(x) in the normal direction ν(a(x)).

O

x

ν(x)

∇Γf(x)

∇f(x)

Γ

Figure 2.3: Schematic representation of tangential gradient, defined as the orthogonal projec-
tion of the standard gradient onto the tangent plane, according to (2.4).

where Pi(x) is the i-th row of P (x), are called the tangential derivatives of f . Given a vector
field F ∈ C1(A,R3), the operator

∇Γ · F : S → R, x 7→
3∑

i=1

DiFi(x) (2.6)

is called the tangential divergence of F .

Theorem 1. Given Γ ⊂ A a C1 surface, if f and g are C1(A,R) functions such that f|Γ = g|Γ,
then

∇Γf(x) = ∇Γg(x), x ∈ Γ.

This means that the tangential derivatives of a function only depend on its restriction over Γ.

Thanks to Theorem 1, the following definition is well-posed.
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Definition 3 (Ck(Γ) functions). If Γ is a C1 surface, a function f : Γ→ R is said to be C1(Γ)
if it is differentiable at any point of Γ and its tangential derivatives are continuous over Γ.
If k ≥ 2 and Γ is a Ck surface, a function f : Γ→ R is said to be Ck(Γ) if it is C1(Γ) and its
tangential derivatives are Ck−1(Γ) functions.

Definition 4 (Laplace-Beltrami operator). Given a C2 surface Γ and f ∈ C2(Γ), the operator

∆Γf : Γ→ R, x 7→ ∇Γ · ∇Γf(x) =

3∑

i=1

DiDif(x)

is called the Laplace-Beltrami operator of f .

We now recall the definitions of some remarkable Lebesgue and Sobolev spaces on surfaces.
For further details, the reader is referred to [64], [70] or [125].

Definition 5 (Lebesgue and Sobolev spaces on surfaces). Let Γ be a C1 surface and let L0(Γ)
be the set of measurable functions on Γ with respect to the bidimensional Hausdorff measure
on Γ. The Lebesgue spaces L2(Γ) and L∞(Γ) are defined by

H0(Γ) = L2(Γ) =

{
f ∈ L0(Γ)

∣∣∣∣
∫

Γ
|f |2dσ < +∞

}
;

L∞(Γ) =

{
f ∈ L0(Γ)

∣∣∣∣ ess sup
x∈Γ
|f(x)| < +∞

}
,

respectively. Let now be s ∈ N and let Γ be a Cs surface. The Sobolev spaces on Γ are defined
by

Hr(Γ) =
{
f ∈ L2(Γ)

∣∣ Dif ∈ Hr−1(Γ), i ∈ {1, 2, 3}
}
, r = 1, . . . , s.

The space L∞(Γ) is a Banach space with the following norm

‖f‖∞ := ess sup
x∈Γ
|f(x)|, f ∈ L∞(Γ).

The space H0(Γ) = L2(Γ) and Hr(Γ), r = 1, . . . , s are Hilbert spaces with the following inner
products

< f, g >0:=

∫

Γ
fgdσ, f, g ∈ L2(Γ);

< f, g >r:=

∫

Γ


fg +

∑

|α|≤r
DαfDαg


 dσ, f, g ∈ Hr(Γ),

respectively, which induce the following norms

‖f‖0 :=

(∫

Γ
f2dσ

) 1
2

, f ∈ L2(Γ);

‖f‖r :=



∫

Γ
f2dσ +

∑

|α|≤r

∫

Γ
(Dαf)2dσ




1
2

, f ∈ Hr(Γ),
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where Dα is the multi-index notation for partial derivatives 1 and tangential derivatives are
meant in a distributional sense 2. On Hr(Γ), 1 ≤ r ≤ s, we consider the seminorm

|f |r :=


∑

|α|=r

∫

Γ
(Dαf)2dσ




1
2

, f ∈ Hr(Γ).

The topological dual space of Hr(Γ), 1 ≤ r ≤ s, is denoted by H−r(Γ). The topological dual
space of L2(Γ) is denoted by L−2(Γ).

Remark 1. if T̃ is a compact subset of a Cs surface Γ, with s ∈ N, the spaces L∞(T̃ )
and Hr(T̃ ), with 0 ≤ r ≤ s are defined similarly to Definition 5. The respective norms,
seminorms and inner products will be denoted with an additional T̃ subscript, e.g. ‖·‖0,T̃ ,
|·|2,T̃ and 〈·, ·〉1,T̃ .

A basic result in surface calculus, taken from [39], is the following

Theorem 2 (Green’s formula on surfaces, see [39]). Given a C2 surface Γ with a well-defined
tangent vector field on the boundary ∂Γ, f ∈ H1(Γ) and g ∈ H2(Γ), it holds that

∫

Γ
f∆Γgdσ = −

∫

Γ
∇Γf · ∇Γgdσ +

∫

∂Γ
f
∂g

∂µ
dl, (2.7)

where µ is the conormal vector (see Definition 1) and ∂g
∂µ(x) := ∇Γg(x) ·µ(x) is the conormal

derivative of g on ∂Γ. If Γ has no boundary, i.e. ∂Γ = ∅, then the boundary integral in (2.7)
vanishes.

The analysis of elliptic problems requires suitable subspaces of the Lebesgue and Sobolev
spaces, namely the average-free Lebesgue and Sobolev spaces.

Definition 6 (Average-free Lebesgue and Sobolev spaces). Let s ∈ N and let Γ be a Cs
surface. The zero-averaged Lebesgue and Sobolev spaces are defined by

L2
0(Γ) :=

{
f ∈ L2(Γ)

∣∣∣∣
∫

Γ
f = 0

}
;

Hr
0(Γ) :=

{
f ∈ Hr(Γ)

∣∣∣∣
∫

Γ
f = 0

}
, 1 ≤ r ≤ s,

respectively. L2
0(Γ) and Hr

0(Γ), 1 ≤ r ≤ s, are Hilbert subspaces of L2(Γ) and Hr(Γ) respec-
tively.

Given a space B of space-dependent real functions endowed with a norm ‖·‖B and possibly
with an inner product 〈·, ·〉B, the norm and the inner product are extended to Rn-valued
functions, with n ∈ N, as follows

‖u‖B :=

(
n∑

i=1

‖ui‖B
) 1

2

, u = (u1, . . . , un) ∈ Bn;

〈u,v〉B :=
n∑

i=1

〈ui, vi〉B, u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Bn.

1See for instance [112].
2See [40] for a precise definition of distributional tangential derivatives.
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As well as in the case of flat domains, the following Poincaré inequality holds in the zero-
averaged space H1

0 (Γ) on a smooth surface Γ, see [40].

Theorem 3 (Poincaré’s inequality on surfaces, see [40]). Given a C2 surface Γ with a well-
defined tangent vector field on the boundary ∂Γ, there exists C > 0 such that

‖f‖0 ≤ C|f |1 ∀f ∈ H1
0 (Γ). (2.8)

The analysis of time-dependent problems requires suitable spaces of time and space dependent
functions defined on ΓT = Γ× [0, T ], namely the Bochner spaces, see for instance [112].

Definition 7 (Bochner spaces, see [112]). Let B be a Banach space endowed with the norm
‖·‖B. The Bochner spaces L2([0, T ];B) and L∞([0, T ];B) are defined by

L2([0, T ];B) =

{
f : [0, T ]→ B

∣∣∣∣
∫ T

0
‖f(t)‖2Bdt < +∞

}
;

L∞([0, T ];B) =

{
f : [0, T ]→ B

∣∣∣∣∣ ess sup
t∈[0,T ]

‖f(t)‖B < +∞
}
,

respectively, and are Banach spaces with the respective norms

‖f‖L2([0,T ];B) :=

(∫ T

0
‖f(t)‖2Bdt

) 1
2

, f ∈ L2([0, T ];B);

‖f‖L∞([0,T ];B) := ess sup
t∈[0,T ]

‖f(t)‖B, f ∈ L∞([0, T ];B).

Finally, we set up the notation for transpose vectors and matrices, which we will adopt
throughout the thesis.

Notation (Transpose vectors and matrices). Let m,n ∈ N and let A be a m× n matrix with
arbitrary entries (possibly a row- or column-vector when m = 1 or n = 1 respectively). Then,
the n×m transpose of A is denoted by Atr.

2.3 Three model surface PDEs

In the present thesis we introduce novel extensions of the Surface Finite Element Method (see
for instance [37, 40]) for the following three classes of surface PDEs. Let Γ be a C3 surface in
R3 and let f ∈ C0(Γ). The prototype of elliptic surface PDE is the Laplace-Beltrami equation

−∆Γu(x) = f(x), x ∈ Γ. (2.9)

For time-dependent PDEs, it is enough to require that Γ is a C2 surface, as explained later.
If T > 0 is the final time, d > 0 is a diffusion coefficient and f ∈ C2(Γ× [0, T ]) is a nonlinear
source term, a time-dependent counterpart of (2.9) is the following semilinear diffusion or
heat equation on Γ:

∂u

∂t
(x, t)− d∆Γu(x, t) = f(x, t), (x, t) ∈ Γ× [0, T ]. (2.10)
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If r ∈ N, D := (dij) ∈ Rr,r is a positive definite matrix, f1, . . . , fr ∈ C0(Rr) are nonlinear
reaction kinetics, a reaction-cross-diffusion system (RCDS) on Γ is given by





∂u1

∂t
(x, t)−∑r

k=1 d1k∆Γuk(x, t) = f1(u(x, t));

...
∂ur
∂t

(x, t)−∑r
k=1 drk∆Γuk(x, t) = fr(u(x, t)),

(x, t) ∈ Γ× [0, T ], (2.11)

where u1, . . . , ur : Γ× [0, T ]→ R are the components of the solution. When D is diagonal, i.e.
dij = 0 for i 6= j, the system (2.11) is called a reaction-diffusion system (RDS). In vectorised
form, system (2.11) can be written as

∂u

∂t
(x, t)−D∆Γu(x, t) = f(u(x, t)), (x, t) ∈ Γ× [0, T ], (2.12)

where u := (u1, . . . , ur)
tr, ∆Γu := (∆Γu1, . . . ,∆Γur)

tr and f := (f1, . . . , fr)
tr. In the two

subsequent sections we recall some analysis of the Laplace-Beltrami equation (2.9) at the
continuous level and the Surface Finite Element Method (SFEM) for the its numerical ap-
proximation.

2.4 The Laplace-Beltrami equation

In this section we recall the derivation of the weak formulation of the Laplace-Beltrami equa-
tion (2.9) and the proof of existence and uniqueness of the weak solution in H1

0 (Γ). These
notions will provide the necessary background for (i) its SFEM discretisation recalled in the
next section and (ii) the analysis of the time-dependent PDE problems (2.10) and (2.11) car-
ried out in the following chapters.
Let Γ be a C3 surface without boundary. Let f ∈ C0(Γ) such that

∫
Γ f = 0. Observe that, if

u ∈ C2(Γ) is a solution of (2.9), then, for any c ∈ R, u + c is still a solution of (2.9). Hence,
(2.9) does not have a unique solution. For this reason, we consider the following problem

{
−∆Γu = f ;∫

Γ u = 0.
(2.13)

We now consider the weak formulation of (2.13). To this end, we define the bilinear form

a(u, v) :=

∫

Γ
∇Γu · ∇Γv, u, v ∈ H1(Γ).

By multiplying both hands of the first equation in (2.13) by an arbitrary test function ϕ ∈
H1(Γ), integrating on Γ, and applying Green’s formula (2.7), we have

a(u, ϕ) = 〈f, ϕ〉0 ∀ϕ ∈ H1(Γ). (2.14)

Notice that (2.14) is well-posed under the weaker regularity assumptions that f ∈ L2(Γ) and
u ∈ H1(Γ). Hence, the weak formulation of (2.13) is:

find u ∈ H1(Γ) such that
{

a(u, ϕ) = 〈f, ϕ〉0 ∀ϕ ∈ H1(Γ);∫
Γ u = 0.

(2.15)
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In order to show the existence and uniqueness of the solution of (2.15), it is useful to rephrase
(2.15) in a different way. To this end, since a(u, 1) = 0 for all u ∈ H1(Γ) and 〈f, 1〉0 = 0, then
(2.15) is equivalent to

find u ∈ H1
0 (Γ) such that a(u, ϕ) = 〈f, ϕ〉0 ∀ϕ ∈ H1

0 (Γ). (2.16)

The following result of existence and uniqueness of the solution of (2.16) holds.

Theorem 4. The weak Laplace-Beltrami equation (2.16) has a unique solution u ∈ H1(Γ).

Proof. The bilinear form a(·, ·) : H1
0 (Γ)×H1

0 (Γ)→ R is:

• continuous since, from the Cauchy-Schwarz inequality, it holds that

|a(u, v)| ≤ ‖∇Γu‖0‖∇Γv‖0 = |u|1|v|1 ≤ ‖u‖1‖v‖1, u, v ∈ H1
0 (Γ);

• coercive since, from Poincaré’s inequality (2.8), it holds that

a(u, u) = ‖∇Γu‖20 = |u|21 ≥ C‖u‖21, u ∈ H1
0 (Γ).

From Lax-Milgram’s theorem follows that the weak Laplace-Beltrami equation (2.16)
has a unique solution u ∈ H1

0 (Γ).

Remark 2 (Surfaces with boundary). The whole analysis carried out in the remainder of the
chapter holds unchanged in the presence of a non-empty boundary, ∂Γ 6= ∅, and homogeneous
Neumann boundary conditions. In the case of homogeneous Dirichlet boundary conditions,
the analysis still holds if H1

0 (Γ) is the space of H1(Γ) functions that vanish on ∂Γ in the sense
of traces, see [124, Chapter 4.5].

2.5 The Surface Finite Element Method (SFEM) for the Laplace-
Beltrami equation

This section is devoted to the (SFEM), introduced in [37] and further analysed in [40], for
the discretisation of the weak Laplace-Beltrami equation (2.15). The SFEM will serve as a
background to present and analyse novel extensions of the SFEM in the remainder of this
thesis. In this chapter we (i) describe the SFEM discretisation of the weak Laplace-Beltrami
equation (2.15), (ii) show the existence and uniqueness of the numerical solution and (iii)
provide some numerical examples.

2.5.1 Approximation of the surface and definitions

Given a C2 surface in R3 and a number h > 0 called meshsize, a triangulation Γh of Γ is
defined by

Γh =
⋃

T∈Th
T,

where
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• Th is a set of finitely many non-degenerate triangles in R3, whose diameters do not
exceed h;

• the N ∈ N vertices xi, i = 1, . . . , N , of Γh (called nodes) lie on Γ;

• for any T1, T2 ∈ Th with T1 6= T2, the intersection T1 ∩ T2 is either empty, or a common
vertex, or a common edge of T1 and T2;

• Γh is contained in the Fermi stripe U associated to Γ, see Lemma 1;

• if a : U → Γ is the normal projection defined in Lemma 1, the restriction a|Γh : Γh → Γ
is one-to-one.

We now define a discrete function space on Γh. To this end, we need to define polynomials on
(possibly slanted) planar regions in R3. Let K be a (bounded or unbounded) planar region
contained in R3. Then, there exists a linear invertible mapping JK : R3 → R3 such that
JK(K̂) = K, where K̂ is a planar region contained in the horizontal plane {(x, y, z) ∈ R3|z =
0}. Clearly, given K ∈ Kh, the couple (K̂, JK) is not unique. For k ∈ N the polynomial space
Pk(K) on the planar region K is defined by

Pk(K) := {V : K → R|V ◦ JK ∈ Pk(K̂)}. (2.17)

This definition is well-posed since it does not depend on the choice of the couple (K̂, JK).
The finite element space is defined by

Vh := {V ∈ C0(Γh)|V|T ∈ P1(T ), ∀T ∈ Th}. (2.18)

Central to the analysis of the SFEM method is the average-free subspace Vh,0 of Vh, defined
by

Vh,0 :=

{
V ∈ Vh

∣∣∣∣
∫

Γh

V = 0

}
.

For each i = 1, . . . , N , the i-th Lagrange basis function χi is the unique Vh function such that

χi(xj) = δij , i, j = 1, . . . , N, (2.19)

where δij is the Kronecker symbol. The functions χi, i = 1, . . . , N , form a basis for Vh. Given
a function v ∈ C0(Γ) or v ∈ C0(Γh), the Lagrange interpolant Ih(v) is the unique Vh function
such that

Ih(v)(xi) = v(xi), i = 1, . . . , N. (2.20)

The Lagrange interpolant Ih(v) of v can be expressed as a linear combination of the Lagrange
basis functions as follows

Ih(v)(x) =
N∑

i=1

v(xi)χi(x), x ∈ Γh. (2.21)

In order to compare functions defined on the continuous surface Γ with functions defined
on the discrete surface Γh, we consider lifts following [40] and unlifts following [56]. Given
V : Γh → R, its lift V ` : Γ→ R is defined by

V `(a(x)) := V (x), x ∈ Γh. (2.22)
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Conversely, given v : Γ→ R, its unlift v−` : Γh → R is defined by

v−`(x) := v(a(x)), x ∈ Γh, (2.23)

where a : γh → Γ is the normal projection defined in Lemma 1. The analysis of the SFEM
and of its extensions presented in this thesis requires Sobolev spaces on the discrete surface
Γh. Particular attention must be paid in defining these spaces, as Γh is not smooth, which
implies that the tangential derivatives are not defined globally on Γh.

Definition 8 (Discrete Sobolev spaces). We define the following discrete Sobolev spaces

L∞(Γh) :=

{
U : Γh → R | ess sup

x∈Γh

|U(x)| < +∞
}

;

H0(Γh) := L2(Γh) =

{
U : Γh → R |

∫

Γh

U2 < +∞
}

;

H1(Γh) := L2(Γh) ∩
∏

T∈Th
H1(T );

H2(Γh) := L2(Γh) ∩
∏

T∈Th
H2(T ).

The above spaces are endowed with the following seminorms

|U |1,h :=


∑

T∈Th
|U|T |2H1(T )




1
2

, U ∈ H1(Γh);

|U |2,h :=


∑

T∈Th
|U|T |2H2(T )




1
2

, U ∈ H2(Γh),

and the following norms

‖U‖∞,h := ess sup
x∈Γh

|U(x)|, U ∈ L∞(Γh);

‖U‖0,h :=

(∫

Γh

U2

) 1
2

, U ∈ L2(Γh);

‖U‖1,h :=
(
‖U‖20,h + |U |21,h

) 1
2 , U ∈ H1(Γh);

‖U‖2,h :=
(
‖U‖20,h + |U |21,h + |U |22,h

) 1
2 , U ∈ H2(Γh).

The topological dual space of L2(Γh) will be denoted by L−2(Γh).

Remark 3. Notice that the seminorms and norms in Definition 8, are well-defined even for
functions that are discontinuous across the edges of Γh. We will exploit this fact in the next
chapter.

Remark 4. If T ∈ Th is a face of Γh, the spaces L∞(T ) and Hr(T ), r = 0, 1, 2, are defined
analogously to Definition 8. The respective norms and seminorms are denoted with a T
subscript instead of h, e.g. ‖·‖∞,T and |·|2,T .
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As well as in the continuous case, we define the following discrete average-free Sobolev spaces.

Definition 9 (Average-free discrete Sobolev spaces). The average-free Lebesgue and Sobolev
spaces are defined by

L2
0(Γh) =H0

0 (Γh) :=

{
U ∈ L2(Γh)

∣∣∣∣
∫

Γh

U = 0

}
;

Hr
0(Γh) :=

{
U ∈ Hr(Γh)

∣∣∣∣
∫

Γh

U = 0

}
, r = 1, 2.

We prove the following discrete Poincaré inequality in H1
0 (Γh).

Lemma 2 (Discrete Poincaré inequality in H1
0 (Γh)). Let Γ be a C3 surface without boundary.

Then, there exists h0 > 0 and C > 0 depending on Γ such that, for all 0 < h < h0 and for
any triangulation Γh of Γ,

‖V ‖0,h ≤ C|V |1,h, ∀V ∈ H1
0 (Γh). (2.24)

Proof. This lemma is a special case of Theorem 8 in the next chapter. Hence, we omit the
proof.

2.5.2 The SFEM space discretisation

In this section we recall from [37] and [40] the SFEM discretisation of the weak Laplace-
Beltrami equation (2.15). Moreover, we present an implementation of the method as a square,
sparse, full-rank linear system that accounts for the condition

∫
Γh
U = 0, where U ∈ Vh is the

numerical solution.
Let Γ be a C3 surface without boundary, let Γh be a triangulation of Γ as defined in Section
2.5.1 and let f ∈ H2

0 (Γ) be a load term.

Remark 5 (Regularity of f). In contrast to the weak formulation (2.15) where f ∈ L2
0(Γ),

we now require the stronger regularity assumption f ∈ H2
0 (Γ). With this assumption, from

Sobolev’s embedding theorem on surfaces [4], the pointwise values of f (and thus the interpolant
Ih(f) of f) are well-defined. We remark that some alternative approximations of f are well-
defined even if f ∈ L2

0(Γ), such as the Ritz projection [34, 44] or the unlift f−`. However,
on an arbitrary surface Γ, these alternative approximations of f are not computable in closed
form.

Notice that, if
∫

Γ f = 0, it might not hold that
∫

Γh
Ih(f) = 0. For this reason, we consider

the average-free approximation fh of Ih(f) defined as

fh(x) = Ih(f)(x)− 1

|Γh|

∫

Γh

Ih(f), x ∈ Γh, (2.25)

where |Γh| is the area of Γh. By construction, fh fulfils
∫

Γh
fh = 0, or equivalently

〈fh, 1〉0,h = 0. (2.26)

We consider the bilinear form

ah(U, V ) :=

∫

Γh

∇ΓhU · ∇ΓhV, U, V ∈ Vh.

18



The SFEM approximation of the weak Laplace-Beltrami equation (2.15) is:

find U ∈ Vh such that




ah(U, φ) = 〈fh, φ〉0,h ∀φ ∈ Vh∫

Γh

U = 0

(2.27)

Since
∫

Γh
∇ΓhV · ∇Γh1 = 0 for all V ∈ Vh and 〈fh, 1〉0,h = 0, then (2.27) is equivalent to

find U ∈ Vh,0 such that ah(U, φ) = 〈fh, φ〉0,h ∀φ ∈ Vh,0 (2.28)

Theorem 5. For h sufficiently small, the SFEM spatially discrete Laplace-Beltrami equation
(2.28) has a unique solution U ∈ Vh,0.

Proof. The bilinear form ah : Vh,0 × Vh,0 → R is:

• continuous since, from the Cauchy-Schwarz inequality in L2(Γh), it holds that

|ah(U, V )| ≤ ‖∇ΓhU‖0,h‖∇ΓhV ‖0,h = |U |1,h|V |1,h ≤ ‖U‖1,h‖V ‖1,h, U, V ∈ Vh,0;

• coercive since, for h sufficiently small, we can apply the discrete Poincaré inequality
(2.24), obtaining

ah(U,U) = ‖∇ΓhU‖20,h = |U |21,h ≥ C‖U‖21, U ∈ Vh,0.

From Lax-Milgram’s theorem it follows that the SFEM discretisation (2.28) of the
Laplace-Beltrami equation has a unique solution U ∈ Vh,0.

2.5.3 Implementation

We now present an implementation of the discrete Laplace-Beltrami equation (2.27) as an
N ×N sparse, full-rank algebraic linear system. To this end notice that, since the Lagrange
functions χj , j = 1, . . . N , form a basis for Vh, problem (2.27) is equivalent to

find U ∈ Vh such that
{

ah(U, χj) = 〈fh, χj〉0,h, j = 1, . . . , N,

〈U, 1〉0,h = 0.

(2.29)

Since ah(U, 1) = 0 for all U ∈ Vh and

N∑

i=1

χi(x) = 1, x ∈ Γh, (2.30)

then the sum of the first N equations in (2.29) vanishes. This means that problem (2.29) can
be rewritten equivalently by removing one of the first N equations. For instance, by removing
the N -th equation in (2.29), we obtain

find U ∈ Vh such that
{

ah(U, χj) = 〈fh, χj〉0,h, j = 1, . . . , N − 1,

〈U, 1〉0,h = 0.

(2.31)
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By expressing the numerical solution U and the load term fh in the Lagrange basis, i.e.

U(x) =
N∑

i=1

ξiχi(x), fh(x) =
N∑

i=1

fh(xi)χi(x), x ∈ Γh,

and using (2.30) in the last equation of (2.31), we rewrite problem (2.31) as

find ξ = (ξ1, . . . , ξN ) ∈ RN such that




N∑

i=1

ξiah(χi, χj) =
N∑

i=1

fh(xi)〈χi, χj〉0,h, j = 1, . . . , N − 1,

N∑

i=1

N∑

j=1

ξi〈χi, χj〉0,h = 0.

(2.32)

By using the mass matrix M = (mij) ∈ RN,N and the stiffness matrix A = (aij) ∈ RN,N ,
defined by

mij := 〈χi, χj〉0,h, i, j = 1, . . . , N ; (2.33)

aij := ah(χi, χj), i, j = 1, . . . , N, (2.34)

respectively, we rewrite problem (2.32) as





N∑

i=1

aijξi =

N∑

i=1

mijfh(xi), j = 1, . . . , N − 1;

N∑

i=1




N∑

j=1

mij


 ξi = 0,

(2.35)

which is an N×N linear algebraic system in the unknowns ξ = (ξ1, . . . , ξN ) ∈ RN . It remains
to show how to compute the nodal values fh(xi), i = 1, . . . , N , of the average-free load term
fh. From the definition (2.25) of fh, using (2.21) and (2.30), it holds that

fh(xi) = Ih(f)(xi)−
〈Ih(f), 1〉0,h
〈1, 1〉0,h

= f(xi)−
∑N

j=1

∑N
k=1 f(xj)〈χj , χk〉0,h∑N

j=1

∑N
k=1〈χj , χk〉0,h

=f(xi)−
∑N

j=1

(∑N
k=1mjk

)
f(xj)

∑N
j=1

∑N
k=1mjk

, i = 1, . . . , N.

In matrix form, we write system (2.35) as

Bξ = c,
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where B = (bij) ∈ RN,N and c = (c1, . . . , cN )tr are defined by

bij =





aij if i = 1, . . . , N − 1, j = 1, . . . , N ;
N∑

j=1

mNj , if i = N ;

ci =





N∑

j=1

mijfh(xj) if i = 1, . . . , N − 1;

0 if i = N,

respectively. The matrix B is sparse, with only its last row being full, and unstructured. For
a general review on numerical methods for sparse linear systems we refer the reader to [116].

2.6 Survey on numerical methods for the semilinear heat equa-
tion and RDSs on stationary surfaces

In this section we recall some of the existing numerical methods for the spatial discretisation
of the semilinear heat equation (2.10) and RDSs (2.12) on stationary surfaces. For each of
these methods, we point out their advantages and disadvantages.

2.6.1 Surface Finite Element Method

In Section 2.4 we have already recalled the SFEM for the Laplace-Beltrami equation intro-
duced in [37]. Here we present the counterpart of the SFEM for parabolic problems introduced
in [38]. In particular, we focus on the semilinear heat equation (2.10) and RCDSs of the form
(2.11). As well as for the Laplace-Beltrami equation, the SFEM approximates the weak
formulation of the problem.

Weak formulation

By multiplying both hands of the semilinear heat equation (2.10) by an arbitrary test function
ϕ ∈ H1(Γ), integrating on Γ, and applying Green’s formula (2.7), we obtain the following weak
formulation: find u ∈ L2([0, T ];H1(Γ)) with u̇ ∈ L2([0, T ];H−1(Γ)) such that

∫

Γ
u̇ϕ+ d

∫

Γ
∇Γu · ∇Γϕ = −β

∫

Γ
uαϕ, (2.36)

for all ϕ ∈ H1(Γ), see for instance [56]. In a similar fashion, we obtain the weak formulation
of the RCDS (2.11): find u1, . . . , ur ∈ L2([0, T ];H1(Γ)) with u̇1, . . . , u̇r ∈ L2([0, T ];H−1(Γ))
such that ∫

Γ
u̇mϕm +

r∑

k=1

dmk

∫

Γ
∇Γuk · ∇Γϕm =

∫

Γ
fm(u)ϕm, (2.37)

for all ϕm ∈ L2([0, T ];H1(Γ)) and m = 1, . . . , r, see for instance [55].
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The SFEM space discretisation

We now use the notations introduced in Section 2.5.1. Let h > 0 and let Γh a triangulation
of Γ with meshsize h. The SFEM spatial discretisation of the weak semilinear heat equation
(2.36) is: find U ∈ L2([0, T ];Vh) with U̇ ∈ L2([0, T ];Vh) such that

∫

Γh

U̇φ+ d

∫

Γh

∇ΓhU · ∇Γhφ = −β
∫

Γh

Uαφ, (2.38)

for all φ ∈ L2([0, T ],Vh), where the initial condition U0 ∈ Vh is the Lagrange interpolant of
the exact initial condition u0 ∈ C2(Γ), namely U0 = Ih(u0). Since the Lagrange functions χi,
i = 1, . . . , N defined in (2.19) are a basis of Vh, the formulation (2.38) is equivalent to: find
U ∈ L2([0, T ];Vh) with U̇ ∈ L2([0, T ];Vh) such that

∫

Γh

U̇χj + d

∫

Γh

∇ΓhU · ∇Γhχj = −β
∫

Γh

Uαχj , (2.39)

for all j = 1, . . . , N . For all j = 1, . . . , N , let bj(t) be an approximation of
∫

Γh
Uαχj obtained

through a sufficiently high order quadrature rule (see for instance [106] for a survey on quadra-
ture rules in finite element methods) in order to preserve the convergence rate of the SFEM,
which is quadratic in L∞([0, T ], L2(Γ)) norm and linear in L∞([0, T ], H1(Γ)) norm, see [38].
We obtain the following computable method: find U ∈ L2([0, T ];Vh) with U̇ ∈ L2([0, T ];Vh)
such that ∫

Γh

U̇χj + d

∫

Γh

∇ΓhU · ∇Γhχj = −βbj , (2.40)

for all j = 1, . . . , N , where the dependence of bj on t is omitted for better readability. As shown
in the following Chapters 4-5, the novel Lumped Surface Finite Element Method (LSFEM)
provides a simpler spatially discrete formulation with an easily computable right-hand-side
that requires no quadrature rule. By expressing the spatially discrete solution U in the
Lagrange basis as

U(x, t) =

N∑

i=1

ξi(t)χi(x), (x, t) ∈ Γh × [0, T ], (2.41)

the formulation (2.40) becomes an ODE system in the N unknowns ξ1(t), . . . , ξN (t):

N∑

i=1

ξ̇i(t)

∫

Γh

χiχj + d

N∑

i=1

ξi(t)

∫

Γh

∇Γhχi · ∇Γhχj = −βbj(t), (2.42)

for j = 1, . . . , N and t ∈ [0, T ]. By using the mass matrix M and the stiffness matrix A defined
in (2.33)-(2.34) respectively, we can rewrite the ODE system (2.42) in vectorised form:

M ξ̇(t) + dAξ(t) = −βb(t), (2.43)

for all t ∈ [0, T ], where ξ(t) := (ξ1(t), . . . , ξN (t))tr and b(t) := (b1(t), . . . , bN (t))tr.
Analogously, the SFEM spatial discretisation of the weak RCDS (2.37) is: find U1, . . . , Ur ∈
L2([0, T ];Vh) with U̇1, . . . , U̇r ∈ L2([0, T ];Vh) such that

∫

Γh

U̇mϕm +
r∑

k=1

dmk

∫

Γh

∇ΓhUk · ∇Γhϕm=

∫

Γh

fm(U)ϕm, (2.44)
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for all ϕm ∈ L2([0, T ],Vh), m = 1, . . . , r and t ∈ [0, T ], where the initial condition (U0,1, . . . , U0,r) ∈
Vrh is the Lagrange interpolant of the exact initial condition (u0,1, . . . , u0,r), namely U0,m =
Ih(u0,m) for m = 1, . . . , r. By recalling that the Lagrange functions χi, i = 1, . . . , N are a
basis of Vh and expressing the components of the numerical solution as

Uk(x, t) =
N∑

i=1

ξk,i(t)χi(x), (x, t) ∈ Γh × [0, T ], (2.45)

we rewrite (2.44) as follows

N∑

i=1

ξ̇k,i(t)

∫

Γh

χiχj +
r∑

k=1

dmk

N∑

i=1

ξk,i(t)

∫

Γh

∇Γhχi · ∇Γhχj =

∫

Γh

fm(U)χj , (2.46)

for m = 1, . . . , r, j = 1, . . . , N and t ∈ [0, T ]. As discussed above (2.40), for all m =
1, . . . , r and j = 1, . . . , N let cm,j(t) be an approximation of

∫
Γh
fm(U)χj obtained through

quadrature. We obtain the following ODE system in the rN unknowns ξm,i(t), m = 1, . . . , r,
i = 1, . . . , N :

N∑

i=1

ξ̇m,i(t)

∫

Γh

χiχj +
r∑

k=1

dmk

N∑

i=1

ξk,i(t)

∫

Γh

∇Γhχi · ∇Γhχj = cm,j(t), (2.47)

for all m = 1, . . . , r, j = 1, . . . , N and t ∈ [0, T ]. By using the mass matrix M and the stiffness
matrix A defined in (2.33) and (2.34) respectively, we can rewrite (2.47) in vectorised form:

M ξ̇m(t) +

r∑

k=1

dmkAξk(t) = cm(t), (2.48)

for all m = 1, . . . , r and t ∈ [0, T ], where for all m = 1, . . . , r, ξm(t) := (ξm,1(t), . . . , ξm,N (t))tr

and cm(t) := (cm,1(t), . . . , cm,N (t))tr. The vectorised form (2.48) can be compacted as follows:

(Ir ⊗M)ξ̇(t) + (D ⊗A)ξ(t) = c(t), (2.49)

for t ∈ [0, T ], where Ir is the r × r identity matrix, ⊗ denotes the Knonecker product, see
[83], while ξ(t) and c(t) are the column vectors defined by ξ(t) := (ξ1(t)tr, . . . , ξr(t)

tr)tr and
c(t) := (c1(t)tr, . . . , cr(t)

tr)tr, respectively.
In the Chapters 4 and 5 next, we will mimick the approach followed in this section to derive
spatially discrete formulations of the weak heat equation (2.36) and the weak RCDS (2.37)
through the novel LSFEM.

Advantages and drawbacks

Advantages:

1. the method can cope with arbitrary surfaces;

2. since the method approximates the weak formulation, it provides meaningful solutions
even when the right-hand-side of the considered PDE is C1(Γ), only;
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3. the mass- and stiffness matrices M and A involved in the method are sparse, which
translates into computational efficiency;

4. the convergence rate of the method can be increased by considering isoparametric ele-
ments as shown in [32], i.e. by considering a piecewise polynomial function space Vph
of a given order p ∈ N on curved triangles of the same polynomial order p, see [32] for
more details.

Drawbacks:

1. the exact surface Γ must be approximated with a triangulation Γh as shown in Section
2.5.1. Even if mesh generation is a well-studied topic and mesh-generating software is
widely available, the computational cost related to mesh generation is not present in the
so-called meshless methods, such as the kernel methods addressed in the next section.

2.6.2 Kernel Methods

The class of kernel methods has its origins in the pioneering work by Kansa [76], in which
the method was introduced for some classes of elliptic, parabolic and hyperbolic equations
on planar one- and two-dimensional domains. The method was then extended to solve PDEs
on spherical surfaces, in particular: the Laplace-Beltrami equation, see [99], (ii) the heat
equation, see [84], (iii) linear transport, see [53] and (iv) shallow water equation [52]. A
further evolution allowed the method to solve parabolic PDEs, including RDSs, on arbitrary
stationary surfaces, see [59]. For a more general overview on kernel methods we refer the
interested reader to the survey paper [54]. In the remainder of this section we will describe
the kernel method for RDSs on arbitrary surfaces presented in [59].

Kernel interpolation

We start from the notion of a kernel interpolant in R3. Given a target function v : R3 → R
scattered at N ∈ N sample points X := {xj , j = 1, . . . , N} ⊂ R3 and a continuous function
φ : R3 × R3 → R called kernel, the kernel interpolant of v at the sample points X is defined
by

Iφv(x) :=
N∑

j=1

cjφ(x,xj), x ∈ R3, (2.50)

where cj , j = 1, . . . , N , are real coefficients to be determined by imposing the interpolation
condition

Iφv(xj) = v(xj), j = 1, . . . , N. (2.51)

Using (2.50), the interpolation condition (2.51) can be written as a linear system as follows:

N∑

j=1

cjφ(xi,xj) = v(xi), i = 1, . . . , N. (2.52)

Let now c := (c1, . . . , cN )tr and consider the matrix AX = (aij) ∈ RN,N and the column
vector vX = (v1, . . . , vN )tr ∈ RN,1 defined respectively by

aij := φ(xi,xj), vj := v(xj), (2.53)
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for all i, j = 1, . . . , N . The linear system (2.52) can be written in matrix form as

AXc = vX , (2.54)

whereA = (aij) ∈ RN,N , with aij := φ(xi,xj) for all i, j = 1, . . . , N and vX := (v(x1), . . . , v(xN ))tr.
The kernel φ is assumed to be positive definite, i.e.

btrAXb > 0 (2.55)

for all possible node sets X := {xj , j = 1, . . . , N} ⊂ R3 and for all nonzero column vectors
b ∈ RN,1. Assumption (2.55) ensures that the kernel interpolant (2.50) is uniquely defined. A
positive definite kernel φ : R3 ×R3 → R is called a radial basis function (RBF) if there exists
a function ψ : [0,+∞[→ R such that

φ(x,y) = ψ(‖x− y‖), x,y ∈ R3, (2.56)

where ‖ · ‖ is the Euclidean norm in R3. Notice that, in contrast to φ, ψ is a function of one
variable. Hence, in the remainder of this Section, we denote the derivative of ψ as ψ′ if it
exists. Here are three examples of RBFs:

1. Given ε > 0, the Gaussian RBF is given by

φ(x,y) := e−(ε‖x−y‖)2
, x,y ∈ R3, (2.57)

see for instance [50];

2. Given ε > 0, the inverse multiquadric (IMQ) RBF is given by

φ(x,y) :=
1√

1 + (ε‖x− y‖)2
, x,y ∈ R3, (2.58)

see for instance [59];

3. Given ε > 0 and ν > 3
2 , The Matérn RBF is given by

φ(x,y) :=
21−(ν−3/2)

ΓE(ν − 3/2)
(ε‖x− y‖)ν−3/2Kν−3/2(ε‖x− y‖), x,y ∈ R3, (2.59)

where Kν−3/2 is the modified second-kind Bessel function of order ν − 3/2 and ΓE is
Euler’s Gamma function, see for instance [59].

Exact surface differential operators of a radial kernel

Let φ : R3 × R3 → R3 be a RBF, let ψ : [0,+∞[→ R be defined by (2.56) and consider
N ∈ N sample points X := {xj , j = 1, . . . , N} ⊂ R3. Let ∇ denote the gradient operator
with respect to the variable x = (x, y, z). Using the chain rule, it holds that

∇φ(x,xj) = ∇ψ(‖x− xj‖) =




∂
∂xψ(‖x− xj‖)
∂
∂yψ(‖x− xj‖)
∂
∂zψ(‖x− xj‖)




=



x− xj
y − yj
z − zj


 ψ′(‖x− xj‖)

‖x− xj‖
= (x− xj)

ψ′(‖x− xj‖)
‖x− xj‖

,

(2.60)
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for x ∈ R3 and j = 1, . . . , N . Notice that, since φ(·, ·) is smooth, (2.56) implies that

limr→0+
ψ′(z)
z exists and is a finite number, see [59]. Hence, the apparent singularity in (2.60)

cancels. Let now Γ be a C2 surface and let ν = (νx, νy, νz) : Γ→ R3 be the outward unit nor-
mal vector as in Definition 1. By combining (2.4) and (2.60), we have the following expression
for the tangential derivatives of φ:

Dxφ(x,xj) =
(

(x− xj)(1− ν2
x(x))−(y − yj)νx(x)νy(y)

−(z − zj)νx(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

;
(2.61)

Dyφ(x,xj) =
(

(y − yj)(1− ν2
y(x))−(x− xj)νx(x)νy(x)

−(z − zj)νy(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

;
(2.62)

Dzφ(x,xj) =
(

(z − zj)(1− ν2
z (x))−(x− xj)νx(x)νz(x)

−(y − yj)νy(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

,
(2.63)

for all x ∈ Γ and j = 1, . . . , N .

Discrete surface differential operators of a sampled function

Given a function v ∈ C2(Γ) known at the nodes X = {xi, i = 1, . . . , N}, consider its kernel
interpolant Iφv defined by (2.50). The discrete tangential derivatives of v are defined as the
exact tangential derivatives of the interpolant Iφv. By using (2.50) and (2.61)-(2.63), these
discrete tangential derivatives are given by

DxIφv(x) =
N∑

j=1

cjDxφ(x,xj) =
N∑

j=1

cj

(
(x− xj)(1− ν2

x(x))

−(y − yj)νx(x)νy(y)−(z − zj)νx(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

;

(2.64)

DyIφv(x) =
N∑

j=1

cjDyφ(x,xj) =
N∑

j=1

cj

(
(y − yj)(1− ν2

y(x))

−(x− xj)νx(x)νy(x)−(z − zj)νy(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

;

(2.65)

DzIφv(x) =

N∑

j=1

cjDzφ(x,xj) =

N∑

j=1

cj

(
(z − zj)(1− ν2

z (x))

−(x− xj)νx(x)νz(x)−(y − yj)νy(x)νz(x)
)ψ′(‖x− xj‖)
‖x− xj‖

,

(2.66)

for x ∈ Γ. The discrete derivative operators (2.64)-(2.66) are well-defined for all x ∈ Γ.
However, in order to carry out a numerical method for surface PDEs, we only need to evaluate
these discrete tangential derivatives at the sample points X = {xi, i = 1, . . . , N}. To this
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end, we introduce the matrices Bx = (bxij), B
y = (byij), B

z = (bzij) ∈ RN,N defined respectively
by

bxij :=
(

(xi − xj)(1− ν2
x(xi))−(yi − yj)νx(xi)νy(xi)

−(zi − zj)νx(xi)νz(xi)
)ψ′(‖xi − xj‖)
‖xi − xj‖

;
(2.67)

byij :=
(

(yi − yj)(1− ν2
y(xi))−(xi − xj)νx(xi)νy(xi)

−(zi − zj)νy(xi)νz(xi)
)ψ′(‖xi − xj‖)
‖xi − xj‖

;
(2.68)

bzij :=
(

(zi − zj)(1− ν2
z (xi))−(xi − xj)νx(xi)νz(xi)

−(yi − yj)νy(xi)νz(xi)
)ψ′(‖xi − xj‖)
‖xi − xj‖

,
(2.69)

for all i, j = 1, . . . , N . By combining (2.64)-(2.66) with (2.67)-(2.69) we have the following
expressions for discrete tangential derivatives evaluated at the sample points X = {xi, i =
1, . . . , N}:

DxIφv(xi) =

N∑

j=1

bxijcj , DyIφv(xi) =

N∑

j=1

byijcj , DzIφv(xi) =

N∑

j=1

bzijcj , (2.70)

for all i = 1, . . . , N . By writing (2.70) in matrix form and using (2.54) we obtain

DxIφv|X = Bxc = BxA−1vX ; (2.71)

DyIφv|X = Bxc = ByA−1vX ; (2.72)

DzIφv|X = Bxc = BzA−1vX , (2.73)

The discrete Laplace-Beltrami operator ∆Γ,φ of v ∈ C2(Γ) is defined as

∆Γ,φv := DxIφDxIφv +DyIφDyIφv +DzIφDzIφv, (2.74)

in analogy with its continuous counterpart, see Definition 4. Hence, using (2.71)-(2.73), the
discrete Laplace-Beltrami operator of v at the sampling points X has the following matrix
representation:

∆Γ,φv|X = LvX , (2.75)

where L := (BxA−1)2+(ByA−1)2+(BzA−1)2. By reviewing the whole procedure, it is easy to
see that L is a full matrix. The work in [52] introduces a radial basis function-finite difference
(RBF-FD) method for the shallow water equation posed on a spherical surface, that produces
a sparse discrete Laplace-Beltrami operator. The RBF-FD method was then extended to solve
RDSs on arbitrary surfaces in [121]. However, the sparse structure of the RBF-FD method
comes at the expense of the algorithmic complexity of the numerical method.
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Spatially discretised problem

Consider the semilinear heat equation (2.10). With the notation introduced so far, its discrete
formulation is given by

d

dt
uX = dLuX − βuαX , (2.76)

for t ∈ [0, T ], a nonlinear ODE system to be solved with a time integrator of choice. For
instance, in [59] the 2-SBDF scheme is used to solve this system. Analogously, given the RDS
(2.11), its discrete formulation is:

d

dt
um,X −

r∑

k=1

dmkLuk,X = fm(u1,X , . . . ,um,X), (2.77)

for m = 1, . . . , r and t ∈ [0, T ]. In compact notation, system (2.77) becomes

d

dt
uX −D ⊗AuX = bX , (2.78)

for t ∈ [0, T ], where

uX :=



u1,X

...
ur,X


 , bX :=



f1(u1,X , . . . ,ur,X)

...
, f1(u1,X , . . . ,ur,X)


 .

Advantages and drawbacks

Advantages:

1. the method can cope with arbitrary surfaces;

2. the method only requires scattered points on the surface Γ, without any mesh or adja-
cency structure;

3. depending on the regularity of the chosen kernel φ, the method exhibits a high-order
polynomial or even exponential convergence [59];

Drawbacks:

1. the discrete Laplace-Beltrami operator ∆Γ,φ defined in (2.75) is a full matrix;

2. the discrete Laplace-Beltrami operator ∆Γ,φ is typically ill-conditioned, see for instance
[59].

2.6.3 Spectral Method of Lines based on Spherical Harmonics

This method, introduced by Chaplain, Ganesh and Graham in [19], is specifically devised
to spatially discretise RDSs on the unit sphere, i.e. RDSs of the form (2.12) with Γ = S2.
Even if the authors restrict their presentation to a RDS of two equations with Schnakenberg
kinetics, their method is applicable to RDSs of arbitrarily many equations and with arbitrary
kinetics. Hence, we present the spectral method of lines for an arbitrary RDS on the unit
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sphere Γ. To this end, we recall from [19] some definitions.
The Associated Legendre Polynomials are defined by

Pmn (x) :=
(1− x2)

m
2

2nn!

dm+n

dxm+n
(x2 − 1)n, (2.79)

where x ∈ R, n ∈ N ∪ {0} and m = −n, . . . , n. If (θ, φ) ∈ [0, π] × [0, 2π] are the spherical
coordinates on S2, the spherical harmonics are defined by

Y m
n (θ, φ) := cmn P

|m|
n (cos θ) exp(imφ), (2.80)

where

cmn =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)! (2.81)

are normalization constants, (θ, φ) ∈ [0, π] × [0, 2π], n ∈ N ∪ {0} and m = −n, . . . , n. The
spherical harmonics are eigenfunctions for the Laplace-Beltrami operator ∆Γ on the unit
sphere Γ, i.e.

∆ΓY
m
n = −n(n+ 1)Y m

n , (2.82)

for all n ∈ N ∪ {0} and m = −n, . . . , n. Moreover, the set of the spherical harmonics

{Y m
n |n ∈ N ∪ {0}, m = −n, . . . , n} (2.83)

is well-known to be a complete orthonormal set in L2(Γ). We recall that orthonormality
means that ∫

Γ
Y m
n Y m′

n′ = δnn′δmm′ , (2.84)

for all n, n′ ∈ N ∪ {0}, m = −n, . . . , n, m′ = −n′, . . . , n′ where δij , i, j ∈ Z is the Kronecker
symbol. Complete orthonormality implies that the exact solution u of the RDS (2.11) of r
equations may be uniquely expanded in the basis of spherical harmonics (2.83) as

u(x, t) =

+∞∑

n=0

n∑

m=−n
ξmn (t)Y m

n (x), x ∈ Γ, t ∈ [0, T ], (2.85)

where ξmn (t) : [0, T ]→ Rr, n ∈ N ∪ {0}, m = −n, . . . , n, are time-dependent coefficients.
Given N ∈ N, consider an approximate solution U(x, t) to the RDS (2.11) in the form of a
truncated expansion in the same basis (2.83):

U(x) =

N−1∑

n=0

n∑

m=−n
ηmn (t)Y m

n (x), x ∈ Γ, t ∈ [0, T ], (2.86)

where ηmn (t) : [0, T ]→ Rr, n ∈ N ∪ {0} and m = −n, . . . , n are time-dependent coefficients.
In order to introduce the numerical method, we first consider the following weak formulation3

of the RDS (2.12):
∫

Γ

∂u

∂t
Y m
n dσ +

∫

Γ
D∆ΓuY

m
n dσ =

∫

Γ
f(u)Y m

n dσ, (2.87)

3This formulation differs from the usual weak formulation (2.37). This alternative weak formulation will
allow for the derivation of a reasonably simple numerical method.
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for all n ∈ N∪{0}, m = −n, . . . , n. The spectral method of lines seeks to find an approximate
solution U(x, t) by mimicking the weak formulation (2.87):

∫

Γ

∂U

∂t
Y m
n dσ +

∫

Γ
D∆ΓUY

m
n dσ =

∫

Γ
f(U)Y m

n dσ, (2.88)

for all n = 0, . . . , N , m = −n, . . . , n. By choosing an approximate solution U(x, t) of the form
(2.86) and using (2.82), the method (2.88) becomes

N−1∑

n′=0

n′∑

m=−n′

[
η̇n
′
m′(t)

∫

Γ
Y m′
n′ Y

m
n dσ − n(n+ 1)Dηn

′
m′(t)

∫

Γ
Y m′
n′ Y

m
n dσ

]
=

∫

Γ
f(U)Y m

n dσ, (2.89)

for all n = 0, . . . , N , m = −n, . . . , n. By using the orthonormality property (2.84), the
formulation (2.89) reduces to

η̇mn (t)− n(n+ 1)Dηmn (t) =

∫

Γ
f(U)Y m

n dσ, (2.90)

for all n = 0, . . . , N − 1, m = −n, . . . , n, t ∈ [0, T ]. By approximating the right-hand side of
(2.90) with a Gauss-Legendre quadrature rule for the sphere (see [19] and reference therein),
the formulation (2.90) becomes an ODE system in the N2 vector-valued unknowns Um

n (t),
n = 0, . . . , N − 1, m = −n, . . . , n, i.e. in rN2 real-valued unknowns, where r is the number of
equations in the RDS (2.12). Such quadrature rule should have a degree of accuracy M ∈ N
with grows suitably with N in order to preserve the exponential convergence of the method.
This relation between M and N depends on the nature of the kinetics and is discussed in [19].

Advantages and drawbacks

Advantages:

1. Since the method is based on a spectral decomposition of the solution, the convergence
is exponential, see [19].

Drawbacks:

1. The method is limited to spherical surfaces;

2. The numerical approximation of the right-hand-side of (2.90) using quadrature formulas
of suitable order is the bulk of the algorithmic complexity of the method.

2.6.4 Planar parametrisation through spherical coordinates

Another method specifically designed for RDSs on the unit sphere Γ = S2, presented by
Varea, Aragón and Barrio [133], is based on the planar parametrisation of the sphere through
spherical coordinates. The authors restrict the presentation to a particular RDS of two equa-
tions, but their method is applicable to arbitrary RDSs on the unit sphere. Hence, we present
the method for general RDSs on the unit sphere.
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Let (θ, φ) ∈ [0, π]× [0, 2π] be the spherical coordinates of the unit sphere Γ. We recall that
the relation between the Cartesian coordinates (x, y, z) and the spherical coordinates (θ, φ)
of any point of the unit sphere Γ is





x = sin θ cosφ;

y = sin θ sinφ;

z = cos θ.

(θ, φ) ∈ [0, π]× [0, 2π]. (2.91)

Given any function v(x, y, z) defined on the unit sphere Γ, we denote by v(θ, φ) its pla-
nar parametrisation through spherical coordinates(2.91). If v(x, y, z) is C2(Γ), the planar
parametrisation ∆Γv(θ, φ) of the surface Laplacian ∆Γv(x, y, z) has the following expression:

∆Γv(θ, φ) =
1

sin θ

∂

∂θ

(
sin θ

∂v

∂θ
(θ, φ)

)
+

1

sin2 θ

∂2v

∂φ2
(θ, φ), (θ, φ) ∈ [0, π]× [0, 2π], (2.92)

see for instance [69, Appendix A]. Using (2.92), the planar parametrisation of the RDS system
(2.12) is

∂u

∂t
(θ, φ, t)−D 1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ
(θ, φ, t)

)
+

1

sin2 θ

∂2u

∂φ2
(θ, φ, t) = f(u(θ, φ, t)), (2.93)

for (θ, φ, t) ∈ [0, π]× [0, 2π]× [0, T ], with additional boundary conditions

u(θ, 0, t) = u(θ, 2π, t), θ ∈ [0, π], t ∈ [0, T ], (2.94)

u(0, φ, t) = u(0, φ+ π, t), φ ∈ [0, π], t ∈ [0, T ], (2.95)

u(π, φ, t) = u(π, φ+ π, t), φ ∈ [0, π], t ∈ [0, T ]. (2.96)

System (2.93)-(2.96) is a PDE system on the planar domain [0, π]×[0, 2π] that can be spatially
discretised with any method of choice. For instance, Varea, Aragón and Barrio [133] choose
finite differences on a grid constructed as follows. Given M,N ∈ N with N even, let

hθ :=
π

M
, hφ :=

2π

N
. (2.97)

The parameter space [0, π]× [0, 2π] is discretised with a rectangular grid constructed on the
following M ×N points:

θm :=

(
m+

1

2

)
hθ, m = 0, . . . ,M − 1, (2.98)

φn := nhφ, n = 0, . . . , N − 1. (2.99)

On such grid, the boundary conditions (2.94)-(2.96) become

u(θm, φ0, t) = u(θm, φN−1, t), m = 0, . . . ,M − 1, t ∈ [0, T ]; (2.100)

u(θ0, φn, t) = u(θ0, φn+N
2
, t), n = 0, . . . ,

N

2
− 1, t ∈ [0, T ]; (2.101)

u(θM−1, φn, t) = u(θM−1, φn+N
2
, t), n = 0, . . . ,

N

2
− 1, t ∈ [0, T ], (2.102)

From (2.92) we can see that the parametrised Laplace-Beltrami operator is singular when
θ = 0 or θ = π, i.e. at the poles of the unit sphere. In order to avoid these singularities in
the numerical method, the grid constructed by Varea, Aragón and Barrio avoids the points
of [0, π]× [0, 2π] with θ = 0 or θ = π, as we can see in (2.98).
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Advantages and drawbacks

Advantages:

1. Simplicity: the parametrisation through spherical coordinated reduces the problem to
a PDE on a rectangle, which is easily solved by finite differences on a rectangular grid.

Drawbacks:

1. This approach is limited to surfaces that admit a global parametrisation, e.g. ellipsoids
or spheres;

2. The presence of singularities in the spherical coordinates is a bottleneck in the conver-
gence rate of the method, as discussed in [133].

2.6.5 Embedding methods and level set method

Consider a PDE on a surface Γ ⊂ R3 and let u be its solution. The paradigm of embedding
methods is to consider a three-dimensional compact neighbourhood W of Γ and to derive an
auxiliary PDE posed on W such that its solution, restricted to Γ, coincides with u or is a good
approximation of u. The auxiliary PDE on W can be then discretised with any numerical
method for PDEs on three-dimensional domains. There are different classes of embedding
methods in the literature, such as level set methods [12, 67], closest point methods [90, 115]
or finite elements in the embedding space [24]. However, for illustrative purposes, we present
the level set method presented in [12] and improved in [67].
Level set methods are particular embedding methods that require the surface Γ to be rep-
resented as a level set of a function defined on a higher-dimensional domain. Precisely, let
U ⊂ R3 be an open set and let φ : U → R be a C2 function, called the level function, such
that ∇φ(x) 6= 0 for all x ∈ U . Let Γ be the zero level surface defined by

Γ := {x ∈ U |φ(x) = 0}. (2.103)

Notice that this definition is stronger than Definition 1, as a zero level surface can be rep-
resented through one global level function. We present the method in [12], which can be
considered the pioneering work in the field of level set methods. First, we have to make an
appropriate choice for the compact neighbourhood W of Γ on which the auxiliary PDE will
be posed, as clarified in the later paper [67]. To this end, let ε > 0 be a sufficiently small
number such that the neighbourhood Uε of Γ defined by

Uε := {x ∈ R3||φ(x)| ≤ ε}, (2.104)

is contained in U . We choose W = Uε. Second, the initial data u0,W of the auxiliary PDE on
W is chosen as the constant extension of the initial data u0 : Γ→ R in the normal direction
to Γ, defined as follows:

{
∇u0,W (x) · ∇φ(x) = 0, x ∈W ;

u0,W (x) = u0(x), x ∈ Γ,
(2.105)
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see [12]. Finally, given a PDE on the zero level surface Γ, the corresponding auxiliary PDE
on W must be determined. For instance, the authors of [12] prove that the homogeneous heat
equation on Γ 




∂u

∂t
(x, t)− d∆Γu(x, t) = 0, (x, t) ∈ Γ× [0, T ];

u(x, 0) = u0(x), x ∈ Γ,
(2.106)

where d > 0, is equivalent4 to the following PDE on W





∂u

∂t
(x, t)− 1

‖∇φ(x)‖∇ · (P (x)∇u(x, t)‖∇φ(x)‖), (x, t) ∈W × [0, T ];

u(x, 0) = u0,W (x), x ∈W,
(2.107)

where ⊗ denotes the Kronecker product, u0,W is defined in (2.106), P (x) is the projection
matrix onto the plane orthogonal to ∇φ(x), defined by

P (x) := I3 −
∇φ(x)tr ⊗∇φ(x)

‖∇φ(x)‖2 , x ∈W, (2.108)

where I3 is the 3 × 3 identity matrix. As explained in [67, Section 2.3], even if W has a
non-empty boundary, the PDE (2.107) does not need any boundary condition in order to be
well-posed.
The authors of [12] numerically approximate (2.107) through finite differences in space. How-
ever, in contrast to the continuous formulation (2.107), its spatially discretised counterpart
does need boundary conditions in order to be well-posed, but such appropriate boundary
conditions cannot be determined exactly. The authors of [12] face this problem by frequently
restarting the PDE with initial (and boundary) data defined by (2.106). The method was
improved in [67] in order to overcome this limitation. Specifically, the author of [67] replaces
the operator P (x) defined in (2.108) with

P̃ (x) := (I3 + φ(x)∇2φ(x))−1P (x), x ∈W, (2.109)

where ∇2φ(x) is the Hessian matrix of φ(x). With this choice, the solution u(x, t) of the
following modified auxiliary PDE





∂u

∂t
(x, t)− 1

‖∇φ(x)‖∇ · (P̃ (x)∇u(x, t)‖∇φ(x)‖), (x, t) ∈W × [0, T ];

u(x, 0) = u0,W (x), x ∈W,
(2.110)

remains constant in the normal direction to Γ at all times, i.e.

∇u(x, t) · ∇φ(x) = 0, (x, t) ∈W × [0, T ]. (2.111)

Since, from (2.104), the boundary of W is a level set of φ, the property (2.111) implies that
u(x, t) fulfils homogeneous Neumann boundary conditions on the boundary of W , as shown in
[67, Section 3.3]. Hence, the spatial discretisation of problem (2.110) must be complemented
with homogeneous Neumann boundary conditions.

4meaning that the solution of (2.107), restricted to Γ, coincides with the solution of (2.106).
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Advantages and drawbacks

Advantages:

• The method handles arbitrary surfaces without boundary;

• Since the auxiliary PDE is defined in a three-dimensional domain, it can be discretised
with any existing method for PDEs in 3D. This avoids the difficulties of discretising
surface differential operators on arbitrary surfaces.

Drawbacks:

• solving a PDE in a higher dimensional domain increases the computational complexity;

• in the original level set method [12] it is not clear which boundary conditions are to
be enforced on the boundary of the narrow band W . This problem is removed in the
improved method presented by Greer [67];

• the auxiliary PDE is much more complicated than the original surface PDE, especially
in the improved method proposed by Greer [67].

2.7 Conclusions

In this chapter we have set the necessary notions to understand and motivate the novel results
in the remainder of the thesis. In particular, we have recalled in detail the SFEM for elliptic
and parabolic PDE problems on compact surfaces, introduced in [37] and [39], respectively.
We have reviewed some of the existing methods for such PDE problems, thereby discussing
some advantages and drawback of each method. In the next chapter we present a novel
extension of the SFEM, called Surface Virtual Element Method (SVEM) for the numerical
approximation of the Laplace-Beltrami equation.
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Chapter 3

The Surface Virtual Element
Method for the Laplace-Beltrami
equation

The Surface Virtual Element Method (SVEM), introduced in the recent work [58] is a novel
extension of the SFEM that allows for polygonal approximations Γh of the surface Γ in which
each face of Γh is a polygon with arbitrarily many edges.
The Virtual Element Method (VEM) for PDEs on planar domains was first introduced in
[8] for the Laplace equation and was then extended to several classes of partial differential
equations on planar domains. A non exhaustive list is: linear elasticity [30], plate bending
[17], fracture problems [10], eigenvalue problems [98], Cahn-Hilliard equation [3], heat [130]
and wave equations [129].
The core idea of the virtual element paradigm is that, given a polynomial order k ∈ N and a
polygonal element K, the local basis function space on K includes the polynomials of degree
k (thus ensuring the optimal degree of accuracy) plus other basis functions that are not
known in closed form [8]. The presence of these virtual functions motivates the name of the
method. However, the knowledge of certain degrees of freedom attached to the basis functions
is sufficient to compute the discrete bilinear forms with a degree of accuracy k. The aim of
the present chapter is to consider the VEM in the case k = 1 and extend it to solve surface
PDEs, i.e. PDEs having a two-dimensional smooth surface in R3 as spatial domain. Here
we will focus on the Laplace-Beltrami equation (2.9), that is the prototypical second order
elliptic PDE on smooth surfaces.
We will show that the novel SVEM has an improved geometric flexibility with respect to
the triangular SFEM, as it handles polygnal and/or nonconforming meshes (see [5, 8] for
the case of planar domains). This increased flexibility can be exploited in mesh pasting. In
fact, nonconforming meshes naturally arise when pasting several meshes to obtain a polygonal
approximation of the whole domain or surface [11, 22] and, in contrast to conforming pasting
techniques [75, 122], there is no need to match the nodal points.
We prove, under minimal shape regularity assumptions on the polygonal mesh, some error
estimates for the approximation of surfaces and for the projection operators and bilinear forms
involved in the method. Furthermore, we prove the existence and uniqueness of the discrete
solution and a first order (and thus optimal) H1 error estimate.
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Numerical examples are provided to show (i) the application of the SVEM to mesh pasting
and (ii) that the experimental order of convergence in H1 norm is linear as predicted by our
analysis.
The structure of the chapter is as follows. In Section 3.1 we introduce polygonal approximation
of surfaces and discrete function spaces involved in the method. In Section 3.2 we present
the SVEM discretisation of the Laplace-Beltrami equation. In Section 3.3 we prove error
estimates for the discrete bilinear forms and the approximation of geometry. In Section 3.4
we prove existence, uniqueness and first order H1 convergence of the numerical solution. In
Section 3.5 we face with the issues related to the implementation of the SVEM. In Section 3.6
we (i) discuss some advantages of the SVEM when applied to mesh pasting and (ii) present
three numerical examples on a sphere, a torus and a cylinder, respectively.

3.1 Approximation of the surface and discrete function spaces

We now introduce polygonal approximations of surfaces (or polygonations) that generalise at
once (i) the triangulations of the SFEM considered in Subsection 2.5.1 and (ii) the planar
polygonal meshes of the VEM introduced in [8].
Given a C2 surface in R3 and a number h > 0 called meshsize, a polygonation Γh of Γ is
defined by

Γh =
⋃

K∈Kh
K, (3.1)

where

• each K ∈ Kh is a simple polygon in R3, i.e.without holes and with non self-intersecting
boundary, such that the diameter hK of K does not exceed h;

• the N ∈ N vertices xi, i = 1, . . . , N of Γh (called nodes) lie on Γ;

• for any K1,K2 ∈ Kh with K1 6= K2, the intersection K1 ∩ K2 is either empty, or a
common vertex, or a common edge of K1 and K2;

• Γh is contained in the Fermi stripe U associated to Γ, see Lemma 1;

• if a : U → Γ is the normal projection defined in Lemma 1, the restriction a|Γh : Γh → Γ
is one-to-one.

Different examples of polygonations are depicted in Figures 3.5(a), 3.6(a) and 3.7(a). Let
νh = (νh,1, νh,2, νh,3) : Γh → R3 denote the outward unit normal vector field on Γh. Notice
that νh is piecewise constant as νh is constant on every face K ∈ Kh. Furthermore, we
consider the following mesh regularity assumptions in the remainder of the chapter. There
exist γ1, γ2 > 0 such that, for all h > 0, for any polygonation Γh of Γ and for any K ∈ Kh,

(A1) K is star-shaped with respect to a ball of radius ρK such that

ρK ≥ γ1hK ;

(A2) for every pair of nodes P,Q ∈ K, the distance ‖P −Q‖ fulfils

‖P −Q‖ ≥ γ2hK .
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We now define a discrete function space on Γh. To this end, given K ∈ Kh we consider the
space Ṽh(K) defined by

Ṽh(K) := {V ∈ H1(K)|V|e ∈ P1(e) ∀ e ∈ edges(K),∆KV ∈ P1(K)}.

We remark that functions in Ṽh(K) are virtual, i.e. they are not known in closed form. For
this reason, in order to formulate a computable numerical method, we consider the projection
Π∇K : Ṽh(K)→ P1(K) defined by

∫

K
∇KΠ∇K(V ) · ∇Kq1 =

∫

K
∇KV · ∇Kq1, ∀q1 ∈ P1(K); (3.2)

∑

P∈nodes(K)

Π∇KV (P ) =
∑

P∈nodes(K)

V (P ), (3.3)

where (3.3) is needed to fix the free constant in (3.2). Exactly as in the case of planar domains
considered in [8], this projection is computable. The local virtual element space is defined by

Vh(K) :=

{
V ∈ Ṽh(K)

∣∣∣∣
∫

K

(
V −Π∇KV

)
q1 = 0 ∀ q1 ∈ P1(K)

}
. (3.4)

In [1] it has been proven, for the special case of planar domains, that the nodal values
{V (P )|P ∈ nodes(K)} are unisolvent for Vh(K), i.e. any specific choice of the nodal val-
ues uniquely identifies a function in Vh(K). Through a linear mapping argument it follows
immediately that the same result holds when K is a polygon in R3. Moreover, even if the
functions in Vh(K) are still not known in closed form, we will be able to formulate a com-
putable numerical method by using this function space. The global virtual element space Vh
is defined by

Vh := {V ∈ C0(Γh)|V|K ∈ Vh(K) ∀K ∈ Kh}. (3.5)

For each i = 1, . . . , N , the i-th virtual basis function χi is the unique Vh function such that

χi(xj) = δij , i, j = 1, . . . , N.

Since the nodal values {V (xi)|i = 1, . . . , N} are unisolvent for Vh, the set {χi|i = 1, . . . , N}
is a basis for Vh. In analogy with the Lagrange interpolant considered in Subsection 2.5.1 for
the SFEM, we define the virtual interpolant Ih(v) of a function v ∈ C0(Γ) or v ∈ C0(Γh) as
the unique Vh function such that

Ih(v)(xi) = v(xi), i = 1, . . . , N. (3.6)

Similarly to the expansion (2.21) considered for the SFEM case, Ih(v) can be expressed in the
virtual basis as

Ih(v)(x) =

N∑

i=1

v(xi)χi(x), x ∈ Γh.

Furthermore, we define the average-free virtual element space as

Vh,0 :=

{
V ∈ Vh

∣∣∣∣
∫

Γh

V = 0

}
. (3.7)

We observe that, from definition (3.5), the integral in (3.7) is computable even if the functions
in Vh are not known in closed form.

38



3.2 The SVEM space discretisation

In this section we introduce, following our recent work [58], the SVEM discretisation of the
weak Laplace-Beltrami equation (2.15). Let Γ be a C3 surface without boundary and let Γh
be a triangulation of Γ as defined in Section 2.5.1.

3.2.1 Approximation of the a(·, ·) form

Let K ∈ Kh. Since the functions in Vh(K) cannot be expressed in closed form, the local
bilinear form ah,K : Vh(K) × Vh(K) → R defined by ah,K(U, V ) :=

∫
K ∇KU · ∇KV for

all U, V ∈ Vh(K) is not computable. Hence, we need to define a computable bilinear form
bh,K : Vh(K)× Vh(K)→ R that approximates ah,K , defined by

bh,K(U, V ) :=

∫

K
∇KΠ∇KU · ∇KΠ∇KV + SK((Id−Π∇K)U, (Id−Π∇K)V ), (3.8)

for all U, V ∈ Vh(K), where SK : Vh(K)× Vh(K)→ R is the stabilising form defined by

SK(U, V ) :=
∑

P∈nodes(K)

U(P )V (P ), U, V ∈ Vh(K). (3.9)

Notice that, since Π∇Kq1 = q1 for all q1 ∈ P1(K), the local form bh,K fulfils the consistency
property

bh,K(U, q1) = ah,K(U, q1), U ∈ Vh(K), q1 ∈ P1(K). (3.10)

Moreover, under the mesh regularity assumptions (A1)-(A2), SK scales as ah,K on the kernel
of Π∇K , i.e. there exist c∗ > c∗ > 0 such that

c∗ah,K(U, V ) ≤ SK(U, V ) ≤ c∗ah,K(U, V ), U, V ∈ ker Π∇K , (3.11)

see [8]. We can now define a global bilinear form bh : Vh × Vh → R as follows

bh(U, V ) :=
∑

K∈Kh
bh,K(U|K , V|K), U, V ∈ Vh. (3.12)

3.2.2 Approximation of the average-free condition

In order to impose the condition
∫

Γh
U = 0 to the numerical solution U , we need to define a

computable approximate L2 inner product on Vh. To this end, let K ∈ Kh. We consider the
local projection Π0

K : Vh(K)→ P1(K) defined by

∫

K
Π0
KUq1 =

∫

K
Uq1, q1 ∈ P1(K). (3.13)

We remark that Π0
K = Π∇K , see for instance [1]. Hence, Π0

K is computable. Following [8], we
define the following local approximate L2(K) form

〈U, V 〉M,K :=

∫

K
Π0
KUΠ0

KV + |K|SK((Id−Π0
K)U, (Id−Π0

K)V ), U, V ∈ Vh(K), (3.14)
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where SK and Π0
K are defined in (3.9) and (3.13), respectively, and |K| is the area of K.

Notice that the bilinear form in (3.14) fulfils the following consistency property

〈U, q1〉M,K = 〈U, q1〉0,K , U ∈ Vh(K), q1 ∈ P1(K). (3.15)

A computable global approximate L2 form is obtained by pasting the local ones:

〈U, V 〉M :=
∑

K∈Kh
〈U|K , V|K〉M,K , U, V ∈ Vh. (3.16)

As a consequence of (3.15) and (3.16), we have that the integral of any function in Vh can be
computed exactly, i.e.

〈U, 1〉M =

∫

Γh

U, U ∈ Vh. (3.17)

Property (3.17) implies that the average-free virtual element space Vh,0 can be represented as

Vh,0 := {U ∈ Vh|〈U, 1〉M = 0}. (3.18)

Hence, the space Vh,0 is computable. We will utilise the representation (3.18) of Vh,0 for the
implementation of the SVEM.

3.2.3 Approximation of the right-hand-side

Let f ∈ H2
0 (Γ) be a load term (see Remark 5). Analogously to the SFEM, we consider an

average-free approximation fh of Ih(f) defined as

fh(x) = Ih(f)(x)− 1

|Γh|

∫

Γh

Ih(f), x ∈ Γh, (3.19)

By construction, fh fulfils
∫

Γh
fh = 0. To approximate the right hand side of the weak

formulation (2.15), following [8], we consider the functional 〈fh, ·〉R : Vh → R defined by

〈fh, V 〉R :=
∑

K∈Kh

∫

K
fh

∑

P∈nodes(K)

V (P )

nK
, V ∈ Vh, (3.20)

where nK is the number of vertices of K. From (3.17) we have that 〈fh, V 〉R is computable,
given the degrees of freedom of fh and V . Furthermore, notice that

〈fh, 1〉R = 〈fh, 1〉M =

∫

Γh

fh = 0. (3.21)

3.2.4 Discrete formulation

We may now ready to introduce the SVEM approximation of the Laplace-Beltrami equation
(2.15):

find U ∈ Vh such that
{

bh(U, φ) = 〈fh, φ〉R ∀φ ∈ Vh;

〈U, 1〉M = 0,

(3.22)

By using (3.18) and the consistency properties (3.10) and (3.15), the discrete Laplace-Beltrami
problem (3.22) is equivalent to

find U ∈ Vh,0 such that bh(U, φ) = 〈fh, φ〉R ∀φ ∈ Vh,0. (3.23)
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3.3 Interpolation, projection and geometric error estimates

In this subsection we recall and introduce some results that are crucial to analyse the SVEM
in terms of existence, uniqueness and optimal convergence of the numerical solution. The
following result taken from [16] addresses the projection error in P1(K) for all K ∈ Kh.

Theorem 6. Under the mesh regularity assumptions (A1)-(A2), there exists C > 0 depending
only on the constants γ1, γ2 defined (A1)-(A2) such that, for s ∈ {1, 2} and for all V ∈ Hs(K),
there exists a Vπ ∈ P1(K) such that

‖V − Vπ‖0,K + hK |V − Vπ|1,K ≤ ChsK |V |s,K . (3.24)

The following theorem from [8] gives an interpolation error estimate in Vh(K) for all
K ∈ Kh.

Theorem 7. Under the mesh regularity assumption (A1), there exists C > 0, depending only
on the constant γ1 defined in (A1), such that for all V ∈ H2(K), the interpolant Ih(V ) ∈
Vh(K) fulfils

‖V − Ih(V )‖0,K + hK |V − Ih(V )|1,K ≤ Ch2
K |V |2,K . (3.25)

To approximate integrals and bilinear forms under lifting, a geometric error must be taken
into account. To this end, we recall some geometric quantities from [40]. For any x ∈ Γh, let
Bε(x) be an open ball (in the topology of Γh) centred in x with radius ε. The quotient δh
between the smooth and discrete surface measures is defined by

δh(x) = lim
ε→0

meas(a(Bε(x)))

meas(Bε(x))
, x ∈ Γh, (3.26)

where meas denotes the two-dimensional Hausdorff measure in R3. Let Ph : Γh → R3,3 be the
matrix-valued function representing the projection onto Γh, defined by

Ph,ij(x) := (δij − νh,i(x)νh,j(x)), x ∈ Γh, i, j = 1, 2, 3. (3.27)

This operator is the discrete counterpart of the projection P onto the continuous surface Γ,
introduced in Definition 2. Let H : Γ→ R3,3 be the Weingarten map of Γ defined by

Hij(x) := Diνj(x), x ∈ Γ, i, j = 1, 2, 3. (3.28)

Let now Qh : Γh → R3 be the matrix-valued function defined by

Qh(x) :=
1

δh(x)
P (a(x))(I − d(x)H(a(x)))Ph(x)(I − d(x)H(a(x)))P (a(x)), x ∈ Γh.

(3.29)
In the following lemma we provide geometric error estimates. The result extends [40, Lemma
4.1], devoted to triangulations, to the case when Γh is a polygonation of Γ as described in
Subsection 3.1.

Lemma 3. Let Γh be a polygonal approximation of Γ as in Subsection 3.1. The oriented
distance function d(·) introduced in (2.3) fulfils

‖d(·)‖∞,h ≤ Ch2. (3.30)
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The surface measure quotient δh defined in (3.26) fulfils

‖1− δh‖∞,h ≤ Ch2. (3.31)

The following estimate holds
‖P −Qh‖∞,h ≤ Ch2. (3.32)

In all of the claimed inequalities C depends only on the curvature of Γ.

Proof. Throughout this proof we denote by d(·) the oriented distance function defined in
(2.3), in order to avoid confusion with the diffusion coefficient defined in (2.10). We start by
recalling the definition of the | · |C2 seminorm on polygons, segments and bulks. Let U be an
open set in R3, let K be a polygon contained in U and let r be a segment contained in K.
Without loss of generality, K and r may be assumed to lie in R2 and R, respectively. Let
u ∈ C2(U). Then consider

|u|C2(r) := max
x∈r

∣∣∣∣
∂2u

∂x2
(x)

∣∣∣∣ ;

|u|C2(K) := max
α∈(N∪0)2

|α|=2

max
x∈K

∣∣∣∣
∂2u

∂xα
(x)

∣∣∣∣ ;

|u|C2(U) := max
α∈(N∪0)3

|α|=2

max
x∈U

∣∣∣∣
∂2u

∂xα
(x)

∣∣∣∣ ,

with the multi-index notation for partial derivatives. It is easy to prove that

|u|C2(r) ≤ |u|C2(K) ≤ |u|C2(U). (3.33)

Furthermore, if ur is the linear interpolant of u on r, i.e. the affine function on r that agrees
with u at the endpoints of r, the following classical interpolation error estimate holds

‖u− ur‖∞,r ≤ C|r|2|u|C2(r), (3.34)

where |r| is the length of r, see [26]. Consider K ∈ Kh, see Fig. 3.1(a). First of all we prove
that

‖d(·)‖∞,∂K ≤ Ch2|d(·)|C2(K). (3.35)

To this end, let xB ∈ ∂K and let e be an edge of K such that xB ∈ e, see Fig. 3.1(b). Then,
if de(·) is the linear interpolant of d(·) on e, then (i) de(x) = 0 for all x ∈ e since d(·) vanishes
at the endpoints of e and (ii) the interpolation error estimate (3.34) holds with r = e and
u = d(·). Using also (3.33), we have

|d(xB)| ≤ ‖de(·)‖∞,e + ‖d(·)− de(·)‖∞,e ≤ C|e|2|d(·)|C2(e) ≤ Ch2|d(·)|C2(K),

that proves (3.35). Now let x ∈
◦
K and let s be any straight line contained in the plane of

K and passing through x, let x1,x2 ∈ s ∩ ∂K such that [x1,x2] ⊂ K, see Fig. 3.1(c), and
let ds(·) be the linear interpolant of d(·) on s. By choosing r = s and u = d in (3.34), using
(3.33) and (3.35) we have that

|d(x)| ≤ ‖ds(·)‖∞,s + ‖d(·)− ds(·)‖∞,s = max(|d(x1)|, |d(x2)|) + ‖d(·)− ds(·)‖∞,s
≤ ‖d(·)‖∞,∂K + C|s|2|d(·)|C2(s) ≤ Ch2|d(·)|C2(K) ≤ Ch2|d(·)|C2(U),

(3.36)
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(a) The element K is given

xBe

(b) The point xB is on the edge e
of the boundary ∂K

s

x

x1

x2

(c) x1 and x2 are two distinct in-
tersection points between s and
∂K such that [x1,x2] ⊂ K

Figure 3.1: Graphical representation of the construction involved in the proof of Lemma 3.

where U is the Fermi stripe of Γ. Now, |d(·)|C2(U) depends only on the curvature of Γ, thus
(3.36) proves (3.30). To prove (3.30), (3.31) and (3.32), we proceed as in [40, Lemma 4.1]
using estimate (3.30) for polygonal meshes.

The remainder of our analysis relies on the following equalities borrowed from [40]:

∫

Γ
U `V ` −

∫

Γh

UV =

∫

Γ

(
1− 1

δ`h

)
U `V `; (3.37)

∫

Γ
∇ΓU

` · ∇ΓV
` −

∫

Γh

∇ΓhU · ∇ΓhV =

∫

Γ
(P −Qh)∇ΓU

` · ∇ΓV
`, (3.38)

for all U, V : Γh → R such that the gradients and the integrals are well-defined. We remark
that, even if the work in [40] is restricted to the case when Γh has triangular faces, the proof of
equalities (3.37)-(3.38) does not utilise the assumption of triangular faces. Hence, the relations
(3.37)-(3.38) still hold true in our polygonal setting. The following lemma generalizes Lemma
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4.2 in [40] to our polygonal setting and provides lower and upper bounds for some norms of
arbitrary functions when they are unlifted from Γ to Γh or lifted from Γh to Γ.

Lemma 4. Let V : Γh → R with lift V ` : Γ → R. Let a : Γh → Γ be the projection
onto Γ defined in (2.3) and, for every K ∈ Kh, let K̃ := a(K) ⊂ Γ be the curved element
corresponding to K ∈ Kh. Then

1

C
‖V ‖0,K ≤ ‖V `‖0,K̃ ≤ C‖V ‖0,K ; (3.39)

1

C
‖∇KV ‖0,K ≤ ‖∇K̃V `‖0,K̃ ≤ C‖∇KV ‖0,K ; (3.40)

‖∇2
KV ‖0,K ≤ C‖∇2

K̃
V `‖0,K̃ + ChK‖∇K̃V `‖0,K̃ , (3.41)

if the norms exist, where ∇2
K and ∇2

K̃
denote the tangential Hessian on K and K̃, respectively,

and C depends only on the curvature of Γ.

Proof. We use the estimates of Lemma 3 for polygonal meshes into (3.37)-(3.38) and proceed
exactly as in [40, Lemma 4.2].

Notice that Eqs. (3.39) and (3.40) express the following equivalences under lifting: (3.39)
between L2(Γh) and L2(Γ) norms and (3.40) between H1(Γh) and H1(Γ) seminorms. Eq.
(3.41) can be interpreted as an h-perturbed dominance of the H2(Γ) seminorm over the
H2(Γh) seminorm. The following result provides error estimates for the interpolation in V`h
and the projection on (

∏
K P1(K))`. The interpolation result extends to SVEM Lemma 4.3

in [40] for the triangular SFEM.

Lemma 5. Given a C2 surface Γ, there exists C > 0 such that, for all v ∈ H2(Γ) and
w ∈ Hs(Γ), s ∈ {1, 2}, and for all h > 0, then

• the interpolant Ih(v) ∈ Vh fulfils

‖v − Ih(v)`‖0 + h|v − Ih(v)`|1 ≤ Ch2 (|v|2 + h|v|1) ; (3.42)

• there exists a projection wπ ∈
∏
K∈Kh P1(K) such that

‖w − w`π‖0 + h|w − w`π|h,1 ≤ Chs
(
|w|Hs(Γ) + h|w|1

)
. (3.43)

Proof. From Lemma 4, w−` ∈ L2(Γh) ∩∏K∈Kh H
s(K). Let wπ be the

∏
K∈Kh P1(K) pro-

jection of w−` defined piecewise by (3.24) and let Ih(v) be the interpolant of v−` defined by
(3.6). From Theorems 6 and 7, by summing piecewise contributions, we have

‖w−` − wπ‖0,h + h|w−` − wπ|1,h ≤ Chs|w−`|2,h; (3.44)

‖v−` − Ih(v)‖0,h + h|v−` − Ih(v)|1,h ≤ Ch2|v−`|2,h. (3.45)

From (3.44), (3.45) and Lemma 4 we have

‖w − w`π‖0 + h|w − w`π|1,h ≤ Chs
(
|w|Hs(Γ) + h|w|1

)
; (3.46)

‖v − Ih(v)`‖0 + h|v − Ih(v)`|1,h ≤ Ch2 (|v|2 + h|v|1) , (3.47)

that are the desired estimates.
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The following Lemma extends Lemma 4.7 in [40] to our polygonal/virtual setting and provides
bounds for the geometric errors in the bilinear forms.

Lemma 6. For any (V,W ) ∈ H1(Γh)×H1(Γh), the following estimates hold:

|〈V `,W `〉0 − 〈V,W 〉0,h| ≤ Ch2‖V `‖0‖W `‖0; (3.48)

|a(V `,W `)− ā(V,W )| ≤ Ch2‖∇ΓV
`‖0‖∇ΓW

`‖0, (3.49)

where C depends only on the geometry of Γ.

Proof. We proceed as in Lemma 4.7 of [40], but here using, into (3.37)-(3.38), the generalised
estimates (3.30)-(3.32) given in the previous Lemma 3.

In the following theorem we prove a discrete Poincaré inequality in H1
0 (Γh), i.e on polygonal

surfaces Γh of the type (3.1).

Theorem 8 (Poincaré inequality in H1
0 (Γh)). Let Γ be a closed C3 surface in R3. Then there

exist h0 > 0 and C > 0 depending on Γ such that, for all 0 < h < h0 and Γh as in (3.1),

‖V ‖0,h ≤ C|V |1,h ∀V ∈ L2
0(Γh) ∩

∏

K∈Kh
H1(K). (3.50)

Proof. From (3.39) and the triangle inequality we have

‖V ‖0,h ≤ C‖V `‖0 ≤ C
(∥∥∥∥V ` − 1

|Γ|

∫

Γ
V `

∥∥∥∥
0

+
1

|Γ| 12

∫

Γ
V `

)
. (3.51)

Now, from (3.39) we have that V `− 1
|Γ|
∫

Γ V
` ∈ H1

0 (Γ). Then, from Poincaré’s inequality (2.8)

and (3.40) it follows that
∥∥∥∥V ` − 1

|Γ|

∫

Γ
V `

∥∥∥∥
0

≤ C|V `|1,h ≤ C|V |1,h. (3.52)

Furthermore, from (3.39), (3.48) and the fact that V is average-free on Γh, it follows that

1

|Γ| 12

∫

Γ
V ` ≤ 1

|Γ| 12

(∣∣∣∣
∫

Γh

V

∣∣∣∣+ Ch2‖V `‖0|Γ|
1
2

)
≤ Ch2‖V ‖0,h. (3.53)

Combining (3.51), (3.52) and (3.53) we have

(1− Ch2)‖V ‖0,h ≤ C|V |1,h.

By choosing, for instance, h0 = 1√
2C

, the result follows.

Concerning the convergence rates of the error estimates in Lemmas 5 and 6, we observe
that:

• As shown in Lemma 6, in the approximation of the bilinear forms (3.48) and (3.49), the
polygonal approximation of geometry yields a geometric error that is quadratic in L2

norm and linear in H1 norm. In fact, this Lemma is based on the geometric estimates
of Lemma 3.
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• The interpolation error on Γ, as shown by (3.42) in Lemma 5 (and its proof) arises from
two sources. The first one is the interpolation error on flat polygons (cp. Theorem 7).
The second one is given by the geometric estimates given in Lemma 3.

This implies that using higher-order virtual element spaces instead of (3.5) will not improve
the convergence rate of the method, since geometric error would dominate over the interpola-
tion one. The same drawback occurs with the standard SFEM [40] of higher order; in [32] it
has been shown that a finite element space of degree k ∈ N defined on a suitable curvilinear
triangulation of degree k (isoparametric elements) provides a SFEM with the same conver-
gence rate as polynomial interpolation of degree k. This suggests that, to formulate a SVEM
of order k > 1, a different approximation of the surface is needed.
We close this section proving an error estimate for the approximate right hand side < fh, φ >h
in the discrete formulation (3.22).

Theorem 9. Let f ∈ H1
0 (Γ). Under the regularity assumptions (A1)-(A2), there exists C > 0

depending on Γ, γ1 and γ2 such that

|〈f, V `〉0 − 〈fh, V 〉R| ≤ Ch (|f |1 + h|f |2) |V `|1, V ∈ Vh,0. (3.54)

Proof. Let Ih(f) be the piecewise linear interpolant of f and fh be as in (3.7). We split the
error as

|〈f, V `〉0 − 〈fh, V 〉R| ≤ |〈f, V `〉0 − 〈Ih(f), V 〉0,h|+ |〈Ih(f), V 〉0,h − 〈fh, V 〉0,h|
+ |〈fh, V 〉0,h − 〈fh, V 〉M |.

(3.55)

From the Cauchy-Schwarz inequality and (3.48) we obtain

|〈f, V `〉0 − 〈Ih(f), V 〉0,h| ≤ |〈f − Ih(f)`, V `〉0|+ |〈Ih(f)`, V `〉0 − 〈Ih(f), V 〉0,h|
≤ ‖f − Ih(f)`‖0‖V `‖0 + Ch2‖Ih(f)`‖0‖V `‖0.

(3.56)

From the Cauchy-Schwarz inequality, the definition of fh and (3.48) we have

|〈Ih(f), V 〉0,h − 〈fh, V 〉0,h| ≤ |Γh|−
1
2 |〈Ih(f), 1〉0,h|‖V ‖0,h

≤|Γh|−
1
2

(
|〈Ih(f)` − f, 1〉0|+ Ch2‖Ih(f)`‖0

)
‖V ‖0,h

≤
(
‖Ih(f)` − f‖0 + Ch2‖Ih(f)`‖0

)
‖V ‖0,h.

(3.57)

Following [8], we know that

|〈fh, V 〉0,h − 〈fh, V 〉R| ≤ Ch|fh|1,h|V |1,h, (3.58)

but, from the definition of fh and from (3.40) it follows that

|fh|1,h = |Ih(f)|1,h ≤ C|Ih(f)`|1. (3.59)

Combining (3.55)-(3.59), using (3.39),(3.40), (3.42), the Poincaré inequalities (2.8), (3.50) and
the triangle inequality we obtain

|〈f, V `〉0 − 〈fh, V 〉R| ≤
(
‖f − Ih(f)`‖0 + Ch|Ih(f)`|1 + Ch2‖Ih(f)`‖0

)
|V `|1

≤
(

(1 + Ch2)‖f − Ih(f)`‖0 + Ch2‖f‖0 + Ch|f − Ih(f)`|1 + Ch|f |1
)
|V `|1

≤C
(
(h2 + h4)|f |2 + (h+ h3 + h5)|f |1

)
|V `|1 ≤ Ch (|f |1 + h|f |2) |V `|1,

that is the desired estimate.
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3.4 Existence, uniqueness and error analysis

The following theorem, that is the main result of this chapter, extends the error analysis
in Theorem 3.1 in [8] for the case of planar domains to the Laplace-Beltrami equation on
surfaces. In fact, it provides: (i) the existence and the uniqueness of the solution for the
discrete problem (3.22) and (ii) an abstract convergence result. As a corollary, an optimal
H1(Γ) error estimate for problem (3.22) will be given.

Theorem 10 (Abstract convergence theorem). Let a : H1
0 (Γ) × H1

0 (Γ) → R be the bilinear
form defined by

a(u, v) =

∫

Γ
∇Γu · ∇Γv, u, v ∈ H1

0 (Γ),

and let bh : Vh,0 × Vh,0 → R be any symmetric bilinear form such that

bh(U, V ) =
∑

K∈Kh
bh,K(U|K , V|K) (3.60)

where, for all K ∈ Kh, bh,K is a symmetric bilinear form on Vh(K)× Vh(K) such that

|bh,K(p, V|K)− aK̃(p`, V `
|K)| ≤ Ch2|p`|1,K̃ |V `

|K |1,K̃ , V|K ∈ Vh(K), p ∈ P1(K); (3.61)

α∗aK̃(V `
|K , V

`
|K) ≤ bh,K(V|K , V|K) ≤ α∗aK̃(V `

|K , V
`
|K), V|K ∈ Vh(K), (3.62)

where α∗ and α∗ are independent of h and K ∈ Kh.
If V′h,0 is the topological dual space of Vh,0, let F ∈ L−2(Γ) and Fh ∈ V′h,0 be linear continuous
functionals. Consider the problems

{
u ∈ H1

0 (Γ)

a(u, v) = F (v) ∀v ∈ H1
0 (Γ)

(3.63)

{
U ∈ Vh,0
bh(U, V ) = Fh(V ) ∀V ∈ Vh,0

(3.64)

Problem (3.64) has a unique solution and the following error estimate holds

|u− U `|1 ≤ C
(
|u− u`π|h,1 + |u− u`I |1 + Fh + h‖F‖L−2(Γ)

)
, (3.65)

where Fh is the smallest constant such that

|F (V `)− Fh(V )| ≤ Fh|V `|1, V ∈ Vh,0. (3.66)

Proof. Existence and uniqueness for (3.64) follows from Lax-Milgram’s theorem. In fact the
bilinear form bh is

• coercive since

|bh(V, V )| =
(3.60)

∣∣∣∣∣∣
∑

K∈Kh
bh,K(V|K , V|K)

∣∣∣∣∣∣
≥

(3.62)
α∗

∑

K∈Kh

∣∣∣aK̃(V `
|K , V

`
|K)
∣∣∣ = α∗

∑

K∈Kh
|V `|2

1,K̃

≥
(3.40)

C
∑

K∈Kh
|V |21,K = C|V |21,h ≥

(3.50)
C‖V ‖21,h, V ∈ Vh,0;
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• continuous. In fact, since bh is symmetric and coercive (i.e. it is an inner product on
Vh,0), then it fulfils the Cauchy-Schwarz inequality. Then we have

|bh(V,W )| ≤ (bh(V, V )bh(W,W ))
1
2 ≤

(3.60)


 ∑

K∈Kh

∑

K′∈Kh
bh,K(V|K , V|K)ah,K′(W|K′ ,W|K′)




1
2

≤
(3.62)

α∗


 ∑

K∈Kh

∑

K′∈Kh
aK̃(V `

|K , V
`
|K)a

K̃′(W
`
|K′ ,W

`
|K′)




1
2

= α∗(a(V `, V `)a(W `,W `))
1
2

= α∗|V `|1|W `|1 ≤
(3.40)

C|V |1,h|W |1,h ≤ C‖V ‖1,h‖W‖1,h, V,W ∈ Vh,0.

Hence, the discrete problem (3.64) meets the assumptions of Lax-Milgram’s theorem.
Let us now prove the error estimate (3.65). Let uπ ∈

∏
K∈Kh P1(K) be the projection of

u defined in (3.43) and let uI ∈ Vh,0 be the interpolant of u defined in (3.42). From [40,
Theorem 3.3], The solution of (3.63) fulfils u ∈ H2(Γ) and thus uπ and uI are well-defined.
Let δh = U − uI . It holds that

α∗|δ`h|2W = α∗a(δ`h, δ
`
h) ≤ bh(δh, δh) = bh(U, δh)− bh(uI , δh)

=
(3.60)

Fh(δh)−
∑

K∈Kh
bh,K(uI , δh) = Fh(δh)−

∑

K∈Kh

(
bh,K(uI − uπ, δh) + bh,K(uπ, δh)

)

≤
(3.61)

Fh(δh)−
∑

K∈Kh

(
bh,K(uI − uπ, δh) + aK̃(u`π, δ

`
h)
)

+ Ch2
∑

K∈Kh
|u`π|1,K̃ |δ`h|1,K̃

=Fh(δh)−
∑

K∈Kh

(
bh,K(uI − uπ, δh) + aK̃(u`π − u, δ`h) + aK̃(u, δ`h)

)

+Ch2
(
|u`π|2h,1 + |δ`h|21

)
= Fh(δh)− a(u, δ`h) + Ch2

(
|u`π|2h,1 + |δ`h|21

)

−
∑

K∈Kh

(
bh,K(uI − uπ, δh) + aK̃(u`π − u, δ`h)

)
= Fh(δh)− F (δ`h)

−
∑

K∈Kh

(
bh,K(uI − uπ, δh) + aK̃(u`π − u, δ`h)

)
+ Ch2

(
|u`π|2h,1 + |δ`h|21

)
.

(3.67)

By using (3.62) and (3.66) into (3.67) and the continuity of a and bh, we obtain

(α∗ − Ch2)|δ`h|21 ≤ Fh|δ`h|1 + |uI − uπ|h,1|δh|1,h + |u`π − u|h,1|δ`h|1 + Ch2|u`π|2h,1. (3.68)

By using (3.40) and for h sufficiently small, (3.68) yields

|δ`h|21 ≤ C(Fh + |u`I − u`π|h,1 + |u`π − u|h,1)|δ`h|1 + Ch2|u`π|2h,1. (3.69)

By defining A = Fh+|u`I−u`π|h,1+|u`π−u|h,1 and solving the second-degree-algebraic inequality
(3.69) we have

|δ`h|1 ≤
CA

2
+

1

2

√
C2A2 + 4Ch2|u`π|2h,1 ≤

CA

2
+

1

2
(CA+ 2

√
Ch|u`π|h,1) ≤ CA+ Ch|u`π|h,1.
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By recalling the definition of A and applying the triangle inequality, we get

|u− U `|1 ≤ C(Fh + |u− u`I |1 + |u− u`π|h,1) + Ch|u`π|h,1.

By applying the triangle inequality to the last term, we obtain

|u− U `|1 ≤ C
(
Fh + |u− u`I |1 + (1 + h)|u− u`π|h,1 + h|u|1

)
.

The obvious stability estimate |u|1 ≤ C‖F‖L−2(Γ), where C is the constant in the Poincaré
inequality (2.8), together with h ≤ h0, complete the proof.

From the abstract framework given in Theorem 10 we are now ready to derive the H1(Γ)
error estimate between the continuous problem (2.15) and the discrete one (3.22).

Corollary 1 (H1(Γ) error estimate). Problem (3.23) has a unique solution. Let u and U be
the the solutions of (2.16) and (3.23), respectively. Under the mesh regularity assumptions
(A1)-(A2), if f ∈ H2

0 (Γ), the following estimate holds:

|u− U `|1 ≤ Ch(|u|2 + |f |1) + Ch2|f |2. (3.70)

Proof. In Theorem 10, we choose

F (v) = 〈f, v〉0, v ∈ H1(Γ);

Fh(V ) = 〈fh, V 〉R, V ∈ Vh,0,

with bh defined in (3.8), (3.12). Under the mesh regularity assumptions (A1)-(A2),

1. Assumption (3.61) follows from (3.10) and (3.49);

2. Assumption (3.62) follows from (3.8), (3.11) and (3.40);

3. From [40, Theorem 3.3] we have u ∈ H2(Γ). Then, Lemma 5 provides

|u− u`π|h,1 + |u− u`I |1 < Ch(|u|2 + h|u|1); (3.71)

4. if f ∈ H1
0 (Γ), the Poincaré inequality (2.8) provides

‖F‖L−2(Γ) = ‖f‖0 ≤ C|f |1, (3.72)

and (3.54) yields

Fh ≤ Ch(|f |1 + h|f |2). (3.73)

By substituting (3.71)-(3.73), into the abstract error bound (3.65), we obtain

|u− U `|1 ≤ Ch(|u|2 + |f |1) + Ch2(|u|1 + |f |2). (3.74)

By using the Poincaré inequality (2.8), the stability estimate |u|1 ≤ C‖F‖L−2(Γ) and (3.72)
into (3.74), the result follows.
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3.5 Implementation

In this section we will discuss how to implement the SVEM using only information on the
mesh and the nodal values of the load term f . The major differences with respect to the
planar case are:

1. construction of test problems on arbitrary surfaces, with the knowledge of the exact
solution and construction of polygonal meshes;

2. computation of local matrices (mass, stiffness and load term);

3. formulation of the discrete problem as a square, full-rank linear system which also
accounts for the zero-average condition on the solution.

3.5.1 Constructing test problems

To perform a convergence study of any numerical method for the Laplace-Beltrami equation,
it is necessary to construct some test problems, where the exact solution is known in closed
form. Constructing test problems, which is trivial in the planar case, is more involved on
curved surfaces. For a generic surface, we proceed as follows:

• Represent Γ as a zero level set of a suitable function φ as in Definition 1;

• Compute the unit normal vector field ν according to (2.1);

• Choose the exact solution u such that u is well-defined and sufficiently smooth in an
open neighbourhood of Γ;

• By repeatedly computing the tangential derivatives of u as in (2.5), compute the Laplace-
Beltrami of u according to (2.6), thus obtaining the right-hand side f of the Laplace-
Beltrami equation (2.13). We remark that, if Γ has no boundary, then, by construction,
f is average-free on Γ.

Though being merely algorithmic, this procedure can be particularly lengthy and tedious even
on rather simple surfaces, neverthless a symbolic calculus software could be used for this task.
On very special surfaces, such as spheres and cylinders, some eigenfunctions of the Laplace-
Beltrami operator are known in the literature [97]. Hence, if ū is an eigenfunction of −∆Γ with
eigenvalue λ, a test problem is immediately obtained by choosing the load term as f = λū.
This approach will be used in our numerical example provided in next Section 3.6 (Example
3.6.2).
Concerning the discretisation of generic surfaces for a Laplace-Beltrami equation, to the best
of the author’s knowledge, the problem of generating and refining arbitrary polygonal meshes
is an open question and no general algorithm is available. More is known on the specific case
of triangular meshes, see [31, 40, 107] and some codes are available [108, 119]. Here we suggest
a possible way of constructing polygonal meshes in the following cases:

1. On spherical surfaces: polygonal meshes can be constructed starting from arbitrary
triangulations by suitably subdiving the triangles and projecting the resulting nodes
onto Γ, as explained in Figure 3.2 for a single triangle. In the caption of this figure
we describe the steps required by this construction. We will apply this approach in
Example 3.6.2, see Fig. 3.5(a).

50



T

C
(a) Step 1

C
C′

(b) Step 2

C
(c) Step 3

E

(d) Step 4

E

(e) Step 5

Figure 3.2: Algorithmic procedure, mentioned in Section 3.5.1, for the construction of polyg-
onal meshes on the sphere. (a) Given a triangular element T , we consider the out-circle C
(which is contained in Γ). (b) We consider a circle C′, concentric with C′, whose radius is
such that C′ intersect each edge of T in two distinct points. (c) The resulting six points are
moved, orthogonally to the plane of T , onto Γ. (d) By connecting these points, an hexagon
K is created, whose vertices are on Γ. (e) New triangles are added to connect the nodes of K
with the neighboring nodes of T .

2. For special surfaces, such as cylinders or tori: it is possible to trivially construct quadri-
lateral or trapezoidal meshes that significantly reduce the number of elements, on equal
number of degrees of freedom. We will consider these meshes in Section 3.6.2 (Examples
2 and 3).

3.5.2 Constructing local matrices

In this section we explain how the construction of the stiffness and mass matrices on polygonal
meshes in R3 differ from the planar case. For every element K ∈ Kh, consider the local mass
and stiffness matrices MK and AK defined respectively by

MK = (mK
ij ) := 〈χi, χj〉M,K , i, j : xi,xj ∈ nodes(K);

AK = (aKij ) := bh,K(χi, χj), i, j : xi,xj ∈ nodes(K).

For all K ∈ Kh, we move K to the horizontal plane {z = 0} and we use the algorithm
described in [9] for the computation of the local matrices in the planar case.
To move K onto the horizontal plane, we proceed as follows. Let nK ∈ N be the number of
vertices of K, let Pi, i = 1, . . . , nK be the vertices of K and let P ′i = (x′i, y

′
i), i = 1, . . . , nK , be

the vertices of the transformed element. For the sake of simpleness, we fix the transformation
by enforcing that

• the first vertex P1 is moved to the origin, i.e. P ′1 = O;
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• the second vertex P2 is moved onto the x-axis, i.e y′2 = 0;

• if j := min{i = 3, . . . , nK | P1, P2 and Pj are not aligned}, then Pj is moved onto the
positive y half-plane, i.e. y′j > 0.

The vertices of the transformed element can be computed with the following rule:

x′1 = 0, x′i =
(P2 − P1) · (Pi − P1)

‖P2 − P1‖
, i = 2, . . . , nK ;

y′1 = y′2 = 0, |y′i| =
‖(P2 − P1)× (Pi − P1)‖

‖P2 − P1‖
, i = 3, . . . , nK ;

y′j > 0, sign y′i = sign
(

(P2 − P1)× (Pj − P1)·

· (P2 − P1)× (Pi − P1)
)
, i = j + 1, . . . , nK ,

where × denotes the cross-product. Notice that the transformed elements are used in the
computation of the local matrices, only. The numerical solution is then plotted on the original
mesh in R3.

3.5.3 Full-rank linear system associated to SVEM for the Laplace-Beltrami
equation

As pointed out in Remark 2, the Laplace-Beltrami equation must be complemented with
the zero-average condition when (i) Γ has no boundary or (ii) The boundary condition are
of homogeneous Neumann type. In this subsection we explain how to write the discrete
formulation as a square, full-rank linear system that accounts for the zero-average condition
and whose dimension is minimal, i.e. equal to the number N of vertices. The implementation
of the SFEM for the Laplace-Beltrami equation discussed in Section 3.5 is a special case
of the procedure presented here. We express the numerical solution of (3.22) in the basis
{χi|i = 1, . . . , N} as

U(x) =
N∑

j=1

ξjχj(x), x ∈ Γh,

with ξj ∈ R for all j = 1, . . . , N . Problem (3.22) is then equivalent to

N∑

j=1

bh(χi, χj)ξj = 〈fh, χi〉R, i = 1, . . . , N ; (3.75)

N∑

j=1

〈1, χj〉Mξj = 0. (3.76)

Problem (3.75)-(3.76) is a rectangular (N+1)×N sparse linear system that has, from Corollary
1, a unique solution. We want to rephrase this problem as a square N×N sparse linear system.
To this end, notice that the function χ̄ :=

∑N
i=1 χi fulfils χ̄(xj) = 1 for all j = 1, . . . , N and

thus, from the definition (3.5) of the virtual element space Vh, we have

N∑

i=1

χi(x) = 1, x ∈ Γh. (3.77)
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We show that the sum of all equations in (3.75) vanishes. In fact, for the left hand side of
(3.75), using (3.10) and (3.77), we have that

N∑

i=1

N∑

j=1

bh(χi, χj)ξj =

N∑

j=1

bh

(
N∑

i=1

χi, χj

)
ξj =

N∑

j=1

bh(1, χj)ξj =

N∑

j=1

ā(1, χj)ξj = 0,

while for the right hand side of (3.75), from (3.21) and (3.77) we have
∑N

i=1〈fh, χi〉R =
〈fh, 1〉R = 0. We conclude that the sum of equations (3.75) vanishes. This implies that we
can remove, for instance, the N -th equation in (3.75). System (3.75)-(3.76) is then equivalent
to the N ×N system





N∑

j=1

bh(χi, χj)ξj = 〈fh, χi〉R, i = 1, . . . , N − 1;

N∑

j=1

〈1, χj〉Mξj = 0.

Consider the stiffness matrix A, the mass matrix M , and the load term b defined by

A = (aij) := bh(χi, χj), M = (mij) := 〈χi, χj〉M , i, j = 1, . . . , N ;

b = (bi) := 〈fh, χi〉R, i = 1, . . . , N.

The matrices A and M are assembled from the corresponding local matrices introduced in
the previous section. To compute the load vector b we observe that, from (3.20) and the
definition of the basis functions, it holds that

bi =
∑

K:xi∈nodes(K)

1

nK

∫

K
fh, i = 1, . . . , N. (3.78)

Each integral in (3.78) is computed as follows. The nodal values of the load term fh are
computed by

fh(xk) = Ih(f)(xk)−
〈fh, 1〉M
|Γh|

= f(xk)−
∑N

i=1〈χi, 1〉Mf(xi)

〈1, 1〉M
= f(xk)−

∑N
i=1(

∑N
j=1mij)f(xi)

∑N
i=1

∑N
j=1mij

,

for all k = 1, . . . , N . For every K ∈ Kh, the integral of fh on K is given by

∫

K
fh = 〈fh, 1〉L2

h,K
=

∑

i:xi∈nodes(K)

〈χi, 1〉L2
h,K

fh(xi) =
∑

i:xi∈nodes(K)


 ∑

j:xj∈nodes(K)

mK
ij


 fh(xi).

In conclusion, the discretisation of the Laplace-Beltrami equation (2.15) by SVEM is given
by the following sparse, square, full-rank linear algebraic system





N∑

j=1

aijξj = bi, i = 1, . . . , N − 1;

N∑

j=1

(
N∑

i=1

mij

)
ξj = 0.

(3.79)
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In matrix form, we write system (3.79) as

Bξ = c, (3.80)

where B = (bij) ∈ RN,N and c = (c1, . . . , cN )tr are defined by

bij =





aij if i = 1, . . . , N − 1, j = 1, . . . , N ;
N∑

j=1

mNj , if i = N ;

ci =

{
bi if i = 1, . . . , N − 1;

0 if i = N.

The matrix B in (3.80) is sparse, with only its last row being full, and unstructured. For a
general review on numerical methods for sparse linear systems we refer the reader to [116].

3.6 Applications and numerical examples

3.6.1 Mesh pasting

In this section we discuss a possible advantage of SVEM with respect to SFEM. Suppose
that Γ is made up of two surfaces Γ1 and Γ2, joining along a curve `, i.e. Γ = Γ1 ∪ Γ2 and
Γ1 ∩ Γ2 = `. Furthermore, suppose we are given two corresponding polygonal surfaces Γ1,h,
Γ2,h. We want to construct a polygonal surface Γh by pasting Γh,1 and Γh,2. Such a process
can lead to nonconforming and/or discontinuous meshes. For this reason, pasting algorithms
for standard FEMs typically need additional steps to deform the meshes and match the nodes,
see for instance [75, 122]. As illustrated below, mesh pasting becomes trivial in the framework
of the SVEM. We distinguish two cases.

Pasting along a straight line

In the first case ` is a straight line. Suppose that Γ1,h and Γ2,h are triangulations that fit `
exactly, i.e. Γ1,h ∩ Γ2,h = `. An example of pasting process is depicted in Fig. 3.3. As shown
in Fig. 3.3(b) this can lead, in general, to a nonconforming overall triangulation, that is Γh is
composed of three quadrilaterals and two triangles in this specific example. It is well-known
that the triangular FEMs, including SFEM, are not applicable to nonconforming meshes,
since the basis functions are not well-defined in the presence of arbitrarily many vertices per
polygon.

Pasting along an arbitrary curve

The general case when ` is an arbitrary curve is more interesting. In this case it is not true
that Γ1,h ∩ Γ2,h = `. In general, only the vertices of Γ1,h and Γ2,h lie on `. Hence, Γh,1 ∪ Γh,2
might be a discontinuous mesh, as depicted in Fig. 3.4(b).
In order to apply the SVEM in this case, we proceed as follows:

1. We sort the boundary nodes (i.e. that are on `) of Γh,1∪Γh,2 according to their curvilinear
abscissa;
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Γ1

Γ2

` `

(a) Step 1

Γ1

Γ2

`

(b) Step 2

Figure 3.3: Graphical illustration of the algorithmic procedure, described in Section 3.6.1, for
pasting two meshes along a straight line. Step 1: two surfaces Γ1 and Γ2 are given together
with their approximations Γ1,h and Γ2,h. The elements having an edge on ` are depicted and
their nodes on ` are black-marked. Step 2: by pasting the polygonal surfaces, a nonconforming
polygonation of Γ = Γ1 ∪ Γ2 is formed, due to the presence of hanging nodes on `, which are
red-marked.

2. For each pair (P,R) of subsequent boundary nodes of Γh,1 and let T1 be the element to
which it belongs, see Fig. 3.4(a);

3. For any boundary node Q of the other polygonal surface Γh,2 that is between P and R,
consider the orthogonal projection Q′ of Q onto the edge PR, as shown in Fig. 3.4(b);

4. Add Q′ to the element T1 as a hanging node;

5. Repeat steps (2)–(4) on the boundary nodes of the other mesh Γh,2;

6. For any pair (Q,Q′) as above, enforce the virtual continuity condition U(Q) = U(Q′)
on the numerical solution U .

Note that if Q = Q′, then of course the continuity condition is automatically fulfilled, but a
new nonconforming element arises (see e.g. R = R′ in Fig. 3.4(b)). We remark that, when
assembling the matrices involved in the method (mass, stiffness and load term), Q and Q′

are associated to the same degree of freedom, hence virtual continuity does not affect the
size of the linear system associated to the SVEM. Once again, this procedure strongly relies
on the possibility of handling polygons with arbitrarily many vertices and hanging nodes,
where standard FEMs are not well-defined. Furthermore, we point out that our convergence
analysis in Section 3.4 does not cover this case of discontinuous meshes. However, without
giving full details, our analysis can be extended to the present case in a straightforward way.
In fact, based on interpolation estimates, it can be proven that the distance ‖Q−Q′‖ decays
quadratically with the meshsize (a similar result has been proven in [23] in the planar case).
In Example 3 of the following Section 3.6.2 we experimentally show that this approach to
mesh pasting does not affect the convergence rate of the method.
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P
R S

Γ1,h

Γ2,h

`

`

T1

T2

(a) Step 1

Q

P
R = R′

S
Q′

`

Γ1,h

Γ2,h

T1

T2

(b) Step 2

Figure 3.4: Graphical illustration of the algorithmic procedure, described in Section 3.6.1,
for pasting two meshes along an arbitrary curve. (a) Step 1: two surfaces Γ1 and Γ2 are
given together with their approximations Γ1,h and Γ2,h. The elements having an edge on `
are depicted and some nodes on ` are black-marked. (b) Step 2: by pasting the polygonal
surfaces, a discontinuous polygonation of Γ = Γ1∪Γ2 is formed. The new node Q′ is obtained
by projecting Q onto the edge PR, so that the triangle T1 becomes a quadrilateral with a
hanging node, and the virtual continuity condition U(Q) = U(Q′) is enforced on the numerical
solution. The node R coincides with its projection R′ onto QS and the triangle T2 becomes
a quadrilateral with a hanging node.
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3.6.2 Numerical examples

In this section we will validate the theoretical findings through numerical examples.
In Example 1, a Laplace-Beltrami problem on the unit sphere, approximated with a polygonal
mesh, is used to test the convergence rate in (3.70). The example also shows the robustness
of the method with respect to “badly shaped” meshes, i.e with very tight polygons and of
very different size, thus confirming the generality of assumptions (A1)-(A2). In Example 2,
we solve the Laplace-Beltrami equation on a torus using the SVEM on trapezoidal meshes.
In Example 3, to present an example of mesh pasting along a curve, we solve the Laplace-
Beltrami equation on a cylindrical surface. We show that, even if discontinuous meshes are
used, the theoretical convergence order of the SVEM is preserved.
All the simulations in the present thesis have been carried out using MATLAB. The linear
systems have been solved with MATLAB direct solver in the “backslash” command. The
codes are available on request.

Example 1 (Sphere)

In this example we solve the Laplace-Beltrami equation

{
−∆Γu(x, y, z) = 6xy, (x, y, z) ∈ Γ;∫

Γ u(x, y, z)dσ = 0.
(3.81)

on the unit sphere Γ := S2, whose exact solution is given by u(x, y, z) = xy, (x, y, z) ∈ Γ. In
this case, the Fermi stripe of Γ is U = R3 \ {0}, the oriented distance function is given by
d(x) = ‖x‖− 1, x ∈ U and the outward unit normal vector field is given by ν(x) = x, x ∈ Γ.
Hence, the representation (2.4) of the tangential gradient of a function f ∈ C1(Γ) becomes

∇Γf(x) = ∇f(x)− (∇f(x) · x)x =




1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2


∇f(x),

for all x = (x, y, z) ∈ Γ. We solve the problem on a sequence of seven polygonal meshes, with
decreasing meshsize h, made up with triangles and hexagons whose vertices lie on Γ. These
polygonal meshes are constructed with an ad-hoc algorithm starting from a triangulation of
the sphere obtained with the Matlab library DistMesh [108]. Each polygonal mesh has been
obtained by the algorithm explained in the previous Section 3.5.1. The sequence of polygonal
meshes is such that in each mesh the ratio between the number of triangles and hexagons is
approximately constant and for h→ 0, this ratio tends to 12 : 1. Furthermore, the sequence
of polygonal meshes fulfils the regularity assumptions (A1)-(A2).
We test the convergence rate as follows. Let uI be the interpolant, defined in (3.42), of the
exact solution u and let δh := uI − U . We consider the following approximations of the L2,
L∞ and H1 errors, respectively:

EL2,h := 〈δh, δh〉M ; (3.82)

EL∞,h := max
P∈nodes(Γh)

|δh|; (3.83)

EH1,h := bh(δh, δh), (3.84)
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where the forms bh(·, ·) and 〈·, ·〉M are defined in (3.12) and (3.16), respectively. These approx-
imations are O(h2)-accurate, see for instance [130]. The need of defining these approximate
norms and seminorms arise from the presence of the virtual basis functions that are not known
in closed form. These norms are reminiscent of the approximate L2 norm used for instance in
[130, Equation 46], but also account for the fact that, in our case, the exact and the numerical
solutions are defined on different surfaces. The convergence rate in the norms and seminorms
defined in (3.82)-(3.84) is estimated by computing these errors as functions of h.
The coarsest of the polygonal meshes under consideration (meshsize h = 0.6209) is shown in
Figure 3.5(a). The numerical solution obtained on the finest mesh (meshsize h = 0.0798) is
shown in Figure 3.5(b). The convergence results are shown in Fig. 3.5(c). The convergence is
linear in H1 norm and, even if the method is not designed for optimal L2 and L∞ convergence,
it appears to be quadratic in L2 norm and almost quadratic in L∞ norm. We remark that
the considered meshes, like the one in Fig. 3.5(a), have polygons of very different size and
shape, this means that the regularity assumptions (A1)-(A2) are quite weak and the method
is thus robust with respect to badly shaped meshes.

Example 2 (Torus)

In this example we solve the Laplace-Beltrami equation
{
−∆Γu(x, y, z) = 100z

9

(
2− 7

10(x2 + y2)−
1
2

)
, (x, y, z) ∈ Γ;

∫
Γ u(x, y, z)dσ = 0.

(3.85)

on the torus

Γ :=

{
(x, y, z) ∈ R3

∣∣∣∣∣

(
(x2 + y2)

1
2 − 7

10

)2

+ z2 =
9

100

}
, (3.86)

whose exact solution is given by u(x, y, z) = z, (x, y, z) ∈ Γ. A similar example has been
considered in [33]. In this case, the Fermi stripe of Γ is U = {(x, y, z) ∈ R3|(x, y) 6= (0, 0) ∧
(x2 + y2 6= 49

100 ∨ z 6= 0)}, that is the whole space deprived of a circle and the z-axis, the

oriented distance function is given by d(x) =
(

((x2 + y2)
1
2 − 7

10)2 + z2
) 1

2 − 3
10 , x ∈ U and

the outward unit normal vector field is given by ν(x, y, z) = 10
3 (x, y, z) − 35

3(x2+y2)
1
2

(x, y, 0),

(x, y, z) ∈ Γ. Hence, the representation (2.4) of the tangential gradient of a function f ∈ C1(Γ)
becomes

∇Γf(x) = ∇f(x)− (∇f(x) · x)x =




1− ν2
1(x) −ν1(x)ν2(x) −ν1(x)ν3(x)

−ν1(x)ν2(x) 1− ν2
2(x) −ν2(x)ν3(x)

−ν1(x)ν3(x) −ν2(x)ν3(x) 1− ν2
3(x)


∇f(x),

for all x ∈ Γ, with ν(x) = (ν1(x), ν2(x), ν3(x)) as defined above. We consider a family
of meshes defined as follows. Given m,n ∈ N, the approximation Γh of the torus Γ is the
polytope having the following mn gridpoints as vertices

Pij =

((
7

10
+

3

10
cos

2iπ

n

)
cos

2jπ

m
,

(
7

10
+

3

10
cos

2iπ

n

)
sin

2jπ

m
,

3

10
sin

2iπ

n

)
,

for all i = 1, . . . n and j = 1, . . . ,m, such that a trapezoidal mesh is obtained. To test the

convergence, we consider a sequence of six trapezoidal meshes Γ
(k)
h of the type described
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(a) Polygonal approximation Γh of the unit
sphere Γ, made up of triangles and hexagons,
with meshsize h = 0.6209.

(b) Numerical solution obtained on Γh,
for h = 0.0798.
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(c) Convergence results in the EL2,h and EL∞,h norms and
in the EH1,h seminorm defined in (3.82), (3.83) and (3.84),
respectively.

Figure 3.5: Example 1. Laplace-Beltrami problem (3.81) on the unit sphere. The example
(i) illustrates the usage of polygonal meshes on the sphere as described in Section (3.5.1),
(ii) provides a convergence test and (iii) shows the robustness of the method with respect to
meshes made of polygons with different shape and size.
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above, obtained by increasing n = 3 · 2k and m = 8 · 2k, k = 0, . . . , 5. The mesh Γ
(2)
h

is shown in Fig. 3.6(a), while the numerical solution obtained for k = 5 is shown in Fig.
3.6(b). For all k = 0, . . . , 5, the errors (3.82)-(3.84) are shown in Fig. 3.6(c) as functions of
h. The experimental convergence rate is quadratic in the approximate L2, L∞ norms and H1

seminorm. This superconvergence is due to the symmetry of the mesh and of the solution.

Example 3 (Cylinder)

In this example we solve the Laplace-Beltrami equation and we address the problem of pasting
two surfaces along a curve. We consider the cylinder

Γ := {(x, y, z) ∈ R3 | x2 + y2 = 1 ∧ 0 ≤ z ≤ 2} (3.87)

and we split it into two parts Γ1 := Γ ∩ {z ≤ 1} and Γ2 := Γ ∩ {z ≥ 1}.
We consider the following Laplace-Beltrami problem with Neumann boundary conditions





−∆Γ u = ((10 + π2)x2 − 6x4 − 6x2y2 − 2) cos(πz), (x, y, z) ∈ Γ;
∂u
∂n = 0, (x, y, z) ∈ ∂Γ;∫
Γ udσ = 0,

(3.88)

whose exact solution is given by x(x, y, z) = x2 cos(πz), (x, y, z) ∈ Γ.
In this case, the Fermi stripe of Γ is U = {(x, y, z) ∈ R3|(x, y) 6= (0, 0)}, the oriented distance
function is given by d(x, y, z) =

√
x2 + y2 − 1, (x, y, z) ∈ U and the outward unit normal

vector field is given by ν(x, y, z) = (x, y, 0), (x, y, z) ∈ Γ. Hence, the representation (2.4) of
the tangential gradient of a function f ∈ C1(Γ) becomes

∇Γf(x) = ∇f(x)− (∇f(x) · (x, y, 0))(x, y, 0) =




1− x2 −xy 0
−xy 1− y2 0

0 0 1


∇f(x),

for all x = (x, y, z) ∈ Γ. We consider a family of meshes defined as follows. Let n ∈ N. The
half cylinder Γ1 is approximated with 6n2 equal rectangular elements having the following
6n(n+ 1) gridpoints as vertices:

Pij =

(
cos

i

3n
π, sin

i

3n
π,
j

n

)
, i = 1, . . . 6n, j = 0, . . . , n,

while the half cylinder Γ2 is approximated with 6n2 equal rectangular elements constructed
on the following 6n(n+ 1) gridpoints:

Pij =

(
cos

2i+ 1

6n
π, sin

2i+ 1

6n
π,
j

n
+ 1

)
, i = 1, . . . 6n, j = 0, . . . , n.

By pasting these meshes we end up with a nonconforming and discontinuous mesh Γh made
up of 12n2 elements, of which 12n(n− 1) rectangles and 12n degenerate pentagons with one
hanging node each.

To test the convergence, we consider a sequence of six meshes Γ
(k)
h of the type described above,

by increasing n = 2k, k = 0, . . . , 5. Notice that h = O( 1
n). For n = 1, the nonconforming

60



−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

−0.2
0

0.2

 

yx
 

z

(a) Trapezoidal mesh Γ
(2)
h for the torus Γ,

with meshsize h = 0.2470.
(b) Numerical solution obtained on the finest mesh

Γ
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h , with meshsize h = 0.0314.
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(c) Convergence results in the EL2,h and EL∞,h norms and in the EH1,h semi-
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Figure 3.6: Example 2. Laplace-Beltrami problem (3.85) on the torus (3.86). The example:
(i) shows the usefulness of polygonal meshes in approximating particular surfaces as described
in Section 3.5.1 and (ii) provides a convergence test.
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mesh Γ
(0)
h is shown in Fig. 3.7(a), in which the rectangles are green and the pentagons are

orange, while the corresponding numerical solution on the finest mesh is shown in Fig. 3.7(b).
For all k = 0, . . . , 5, the errors in the norms and seminorms (3.82)-(3.84) are shown in Fig.

3.7(c) as functions of h. The experimental convergence rate is quadratic in the approximate
L2 and L∞ norms and superlinear in the approximate H1 seminorm.

3.7 Conclusions

We have presented a Surface Virtual Element Method (SVEM) for the numerical approxi-
mation of the Laplace-Beltrami equation on smooth surfaces, by generalising the VEM on
planar domains [8] and the SFEM [37]. The ability of the proposed method of handling non-
conforming and/or discontinuous polygonal meshes can be easily exploited in mesh pasting.
The SVEM retains the same (optimal) first-order convergence rate in H1 norm exhibited by
the SFEM [37, 40] and the planar VEM [8].
In the next two chapters we present another novel variation of the SFEM: the Lumped Sur-
face Finite Element Method (LSFEM) for the numerical approximation of the semilinear heat
equation (2.10) and RDSs (2.11), respectively. Even if the LSFEM can be equally applied to
elliptic problems, we apply the LSFEM to time-dependent PDEs, only, because our analysis
of the LSFEM is mainly concerned with (i) discrete maximum principles for the semilinear
heat equation and (ii) numerical preservation of invariant regions of RDSs.
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1.4142, made up of rectangles and pen-
tagons.

(b) Numerical solution obtained on the finest

mesh Γ
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(c) Convergence results in the EL2,h and EL∞,h norms and in the EH1,h seminorm
defined in (3.82), (3.83) and (3.84), respectively.

Figure 3.7: Example 3. Laplace-Beltrami problem (3.88) on the cylinder (3.87). The example
(i) illustrates the possibility of pasting two meshes along a curve, as discussed in Section 3.6.1
and (ii) provides a convergence test.
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Chapter 4

The heat equation on stationary
surfaces

4.1 Introduction

This chapter is focused on a simple class of scalar parabolic surface PDEs, the semilinear heat
equation (2.10). Our interest in the semilinear heat equation stems from the fact that (i) it
models diffusion processes on a surface [39] and (ii) it constitutes a remarkable special case
of the more general RDSs addressed in the next chapter.
An important property of the semilinear heat equation (2.10) is the maximum principle, that
is

0 ≤ u(x, t) ≤ max
y∈Γ

u0(y), (x, t) ∈ Γ× [0, T ], (4.1)

where T > 0 is the final time, u : Γ × [0, T ] → R is the strong solution to (2.10), and
u0 : Γ → R is the initial datum, see [18]. The maximum principle (4.1) (i) automatically
provides a stability estimate for the solution and thus (ii) can be exploited in the convergence
analysis of numerical methods. For the special case of the homogeneous heat equation on
surfaces, i.e. when β = 0 in (4.2), it is known that the maximum principle is fulfilled at the
continuous level, see [18].
The increasing interest from applications in PDEs on manifolds has stimulated the develop-
ment of several numerical methods for such PDEs, and in particular for the semilinear heat
equation (2.10). We have reviewed some of these methods in Section 2.6. Many of these
method are examples of the well-known Method of Lines (MOL) [118], i.e. the given PDE
is approximated, through space discretisation, by a system of ordinary differential equations
(ODEs). The ODE system obtained with the MOL must be then approximated through a
numerical method for ODEs. Among the applications of the MOL to parabolic PDEs on man-
ifolds -including the semilinear heat equation (2.10)- we mention the SFEM, see for instance
[39, 40], whose success is mainly related to its geometric flexibility in coping with arbitrary
surfaces.
In this chapter we present, following our recent work [56], a novel spatial and full discretisation
of (2.10) that preserve the maximum principle (4.1) under discretisation, namely our methods
fulfil discrete maximum principles. In particular:

• The spatial discretisation is obtained through a novel extension of the SFEM, the
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Lumped Surface Finite Element Method (LSFEM). The method extends to surfaces
the Lumped Finite Element Method (LFEM) analysed in [101, 126] for scalar parabolic
equations on planar domains.

• The full discretisation is obtained by discretising the ODE system arising from space
discretisation through the implicit-explicit (IMEX) Euler method, that approximates
the linear diffusion part implicitly and the nonlinear reaction part explicitly. Fully
discrete schemes based on the IMEX Euler time discretisation have beed considered in
the literature, for instance in [82, 91].

To the best of our knowledge, numerical methods for the semilinear heat equation (2.10) on
surfaces that preserve the maximum principle have not yet been investigated. This motivates
the contents of the present chapter. The main contributions of this chapter are the following:

1. For the semilinear heat equation (2.10), we prove that the LSFEM space discretisation
and the IMEX Euler-LSFEM full discretisation preserve the invariant rectangles. A
timestep restriction depending on the Lipschitz constants of the kinetics is needed at
the fully discrete level. These preservation results require no space meshsize restriction
or modified kinetics. A numerical example on the unit sphere confirms the result for
the linear heat equation (Example 1).

2. By exploiting the discrete maximum principles, we prove optimal error bounds for the
semi- and fully discrete schemes. These results are novel in that they account for
errors arising from mass lumping and surface approximation, respectively. A numerical
example on the unit sphere confirms the result for the homogeneous heat equation
(Example 2).

The remainder of this chapter is structured as follows. In Section 4.2 we recall the semilinear
heat equation on a compact surface in its strong and weak formulations and we recall the
notion of maximum principle. In Section 4.3 we present the LSFEM space discretisation of
the semilinear weak equation, while the LSFEM-IMEX Euler full discretisation is presented in
Section 4.4. In Section 4.5 we prove the preservation of the maximum principle under spatial
and full discretisation. In Section 4.6 we prove asymptotically optimal convergence results for
the spatially and fully discrete methods. In Section 4.7 we present two numerical examples
to confirm (i) the theoretical convergence rate of the LSFEM-IMEX Euler full discretisation
of the linear heat equation on a sphere and (ii) the preservation of the maximum principle at
the fully discrete level for the homogeneous heat equation on a sphere.

4.2 The semilinear heat equation at the continuous level

Let Γ be a C2 surface in R3 without boundary and let T > 0 be a final time. We consider the
following semilinear heat equation

{
u̇(x, t)− d∆Γu(x, t) = −βuα(x, t), (x, t) ∈ Γ× [0, T ];

u(x, 0) = u0(x), x ∈ Γ.
(4.2)

where β ≥ 0, α ≥ 1, d > 0 is a diffusion coefficient and u0 ∈ C2(Γ) is a smooth initial datum,
that we will omit in the remainder of this chapter.
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Remark 6 (Regularity of Γ). In Sections 2.4, 2.5 and Chapter 3, devoted to the Laplace-
Beltrami equation, we had imposed the stronger assumption that Γ ∈ C3. In fact, the analysis
of the Laplace-Beltrami equation relies on the Poincaré inequality in its continuous (2.8) and
discrete (2.24) forms, which hold true when Γ ∈ C3. For the whole analysis carried out in
this chapter, which does not rely on these Poincaré inequalities, it is sufficient to require that
Γ ∈ C2, such that the Laplace-Beltrami operator ∆Γ is well-defined.

Remark 7 (Surfaces with boundary). The following arguments still hold for systems on
surfaces with boundaries, whose boundary conditions could be taken as homogeneous Neumann
type, i.e. zero conormal derivative on ∂Γ [40]. However, we will confine the present analysis
to the case of compact surfaces without boundary to simplify the presentation.

Definition 10 (Maximum principle). Problem (4.2) is said to fulfil the maximum principle
if u0(x) ≥ 0 for all x ∈ Γ implies

0 ≤ u(x, t) ≤ max
y∈Γ

u0(y), (x, t) ∈ Γ× [0, T ]. (4.3)

Remark 8 (Minimum-maximum principle). The nonlinear right-hand-side of the semilinear
heat equation (4.2) is not defined for u < 0. However, for scalar PDEs that also admit negative
solutions, one can consider the following minimum-maximum principle:

min

{
0,min
y∈Γ

u0(y)

}
≤ u(x, t) ≤ max

{
0,max
y∈Γ

u0(y)

}
, (x, t) ∈ Γ× [0, T ]. (4.4)

In the remainder of this chapter we present a semi- and a full-discretisation of (4.2), introduced
in our recent work [56], that preserve the maximum principle (4.3) under discretisation.

4.3 The Lumped Surface Finite Element Method (LSFEM)

In the remainder of this chapter we utilise the same notations and definitions introduced in
Section 2.5.1 for the SFEM. The LSFEM, that discretises the weak formulation (2.36) of the
semilinear heat equation (4.2), seeks to find U ∈ L2([0, T ];Vh) with U̇ ∈ L2([0, T ];Vh) such
that ∫

Γh

Ih(U̇φ) + d

∫

Γh

∇ΓhU · ∇Γhφ = −β
∫

Γh

Ih(Uαφ), ∀φ ∈ Vh, (4.5)

where the initial condition U0 ∈ Vh is the Lagrange interpolant of the exact initial condition
u0 ∈ C2(Γ), namely U0 = Ih(u0). Since {χj |j = 1, . . . N} is a basis for Vh, we can reformulate
(4.5) as

∫

Γh

Ih(U̇χj) + d

∫

Γh

∇ΓhU · ∇Γhχj = −β
∫

Γh

Ih(Uαχj), j = 1, . . . , N. (4.6)

Remark 9 (Standard finite elements). The LSFEM discretisation (4.5) is obtained by adding
the Lagrange interpolant Ih (mass lumping) to the standard SFEM discretisation (2.39). As
we will see in the remainder of this chapter, mass lumping yields two advantages. In fact,
the simplified structure of the ODE system associated to (4.5) (i) results in a computational
advantage and (ii) allows us to prove a discrete maximum principle which does not hold in
the absence of mass lumping.
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In order to formulate (4.5) as an ODE system, we express the spatially discrete solution
U as a linear combination, with time-dependent coefficients, of the nodal basis functions
{χi|i = 1, . . . , N} as follows

U(x, t) =
N∑

i=1

ξi(t)χi(x) (x, t) ∈ Γh × [0, T ]. (4.7)

By plugging the expansion (4.7) into (4.6) we obtain the following ODE system

N∑

i=1

ξ̇i(t)

∫

Γh

Ih(χiχj)+d
N∑

i=1

ξi(t)

∫

Γh

∇Γhχi·∇Γhχj = −β
∫

Γh

Ih

((
N∑

i=1

ξi(t)χi

)α
χj

)
, (4.8)

for all j = 1, . . . , N and t ∈ [0, T ]. From the definition (2.19) of the Lagrange basis functions
and the definition (2.20) of the Lagrange interpolant, we can swap the integral with the sum
in the right-hand-side of (4.8). Hence, (4.6) is equivalent to

N∑

i=1

ξ̇i(t)

∫

Γh

Ih(χiχj) + d

N∑

i=1

ξi(t)ah(χi, χj) = −β
N∑

i=1

ξαi (t)

∫

Γh

Ih(χiχj), (4.9)

for all j = 1, . . . , N and t ∈ [0, T ]. In matrix form, the ODE system (4.9) can be written as

M̄ ξ̇(t) + dAξ(t) = −βM̄ξα(t), t ∈ [0, T ], (4.10)

where ξ(t) := (ξ1(t), . . . , ξN (t))tr, ξα(t) := (ξα1 (t), . . . , ξαN (t))tr, A ∈ RN,N is the stiffness
matrix defined in (2.34) and M̄ = (m̄ij) ∈ RN,N is the lumped mass matrix defined by

m̄ij :=

∫

Γh

Ih(χi, χj) =

{∫
Γh
χi if i = j;

0 if i 6= j,
i, j = 1, . . . , N. (4.11)

The lumped mass matrix (4.11) is positive definite and, in contrast to the standard mass
matrix defined in (2.33), it is diagonal. Hence, the computation of its inverse M̄−1 is trivial.
This feature can be exploited in the implementation of the fully discrete scheme presented
in the next section and results in a computational advantage. For the maximum principle
analysis, we rewrite (4.10) as

ξ̇(t) = −dM̄−1Aξ(t)− βξα(t), t ∈ [0, T ]. (4.12)

4.4 Time discretisation

To carry out a fully discrete scheme, we adopt the well-known Method of Lines, i.e. we regard
the spatially discrete method as a system of ODEs, which we discretise through an ODE
solver (timestepping scheme). The timestepping scheme that we choose for our purposes in
the Implicit-Explicit (IMEX) Euler scheme, that approximates the diffusion terms implicitly
and the reaction terms explicitly.
Let τ > 0 be the timestep. By applying the IMEX Euler timestepping to the spatially discrete
method (4.10), we obtain the fully-discrete scheme

M̄
ξn+1 − ξn

τ
+ dAξn+1 = −βM̄(ξn)α, n = 0, . . . , NT , (4.13)
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with ξ0 = ξ(0), where ξ(t) is defined in (4.7), and NT :=
⌊
T
τ

⌋
is the number of time steps.

Equivalently, we write the scheme (4.13) as

ξn+1 = (M̄ + dτA)−1M̄(ξn − τβ(ξn)α), n = 0, . . . , NT . (4.14)

We remark that, for β = 0 (for the case of the homogeneous heat equation), the timestepping
scheme collapses to the standard implicit Euler method.

4.5 Semi- and fully-discrete maximum principles

In this section we show that, under suitable assumptions on the triangulation Th, the LSFEM
space discretisation and the LSFEM-IMEX Euler full discretisation fulfil discrete maximum
principles, i.e. discrete versions of (4.3). To this end we first introduce a regularity assumption
for the triangulation on the mesh Th.

4.5.1 Mesh regularity assumption

We now introduce a regularity assumption for the triangulation on the mesh Th that mim-
icks the standard Delaunay condition on planar domains. We also show how this regularity
assumption affects the properties of the matrices involved in the semi- and fully-discrete
schemes.
Let e be an edge of the triangulation Th and let T1 and T2 be the triangles sharing the edge
e. Let α1 and α2 be the angles in T1 and T2 opposite to e, respectively. For every edge e in
Th we require that

α1 + α2 ≤ π. (4.15)

This condition is represented in Fig. 4.1.

Remark 10. We remark that the construction of good quality meshes on arbitrary surfaces
is well-studied in the literature and some theoretical works in this area are available (see for
instance [31, 36, 107] and references therein). However the work in these references does not
explicitly discuss the construction of surface meshes fulfilling the Delaunay property (4.15).
To the best of our knowledge, algorithms for the construction of Delaunay triangulations on
arbitrary smooth surfaces remain an open area of research.

We provide the following result that extends to triangulated surfaces a characterization of
(4.15) given in [126] for the planar case.

Lemma 7. Th fulfils (4.15) if and only if

(∇Γhχi,∇Γhχj) ≤ 0 ∀i 6= j. (4.16)

Proof. Let xi and xj be two distinct nodes of Th. If xi and xj are not neighbours, then
(∇Γhχi,∇Γhχj) = 0. Otherwise, let e be the edge connecting xi and xj . Since the intersection
of the support of the pyramidal functions χi and χj is T1∪T2 (see Fig. 4.1) then we can write

(∇Γhχi,∇Γhχj) = (∇T1χi,∇T1χj) + (∇T2χi,∇T2χj). (4.17)
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K2

K1

α2α1

e

Figure 4.1: Schematic representation of Delaunay condition (4.15) for two triangles K1 and
K2.

Let F1 and F2 be two linear transformations that map T1 and T2 into two triangles T 0
1 and

T 0
2 contained in the xy plane, respectively, and let J1 and J2 be the Jacobians of F1 and F2,

respectively. Then, expression (4.17) can be written equivalently as

∫

T 0
1

(
J1∇T 0

1
(χi ◦ F−1

1 )
)
·
(
J1∇T 0

1
(χj ◦ F−1

1 )
)

det(J1)

+

∫

T 0
2

(
J2∇T 0

2
(χi ◦ F−1

2 )
)
·
(
J2∇T 0

2
(χj ◦ F−1

2 )
)

det(J2).

We choose F1 and F2 as direct isometries, that is det(J1) = det(J2) = 1. Since ∇T 0
1

and ∇T 0
2

both collapse to the standard gradient ∇ in R2, the expression above becomes
∫

T 0
1

∇(χi ◦ F−1
1 ) · ∇(χj ◦ F−1

1 ) +

∫

T 0
2

∇(χi ◦ F−1
2 ) · ∇(χj ◦ F−1

2 ).

It is known that (see [126]) this expression only depends on the transformed angles α0
1 = α1,

α0
2 = α2 and is given by − sin(α1+α2)

4 sin(α1) sin(α2) , which is nonpositive if and only if α1 +α2 ≤ π. This
completes the proof.

Next, we proceed to state two key properties associated with the lumped mass and stiffness
matrices to be used throughout the analysis. Let 1 and 0 be the vector of ones and the
null vector in RN , respectively. As shown in [126, pages 272-273], the structure (4.16) of the
stiffness matrix A, together with the diagonal structure of the lumped mass matrix M̄ , imply
that, for every s > 0, M̄ + sA is an M-matrix. It then follows that

(M̄ + sA)−1M̄ ≥ 0, (4.18)

meaning that this matrix has nonnegative entries. If ξ = 1, from (4.7) we have U(x, t) = 1
for all (x, t) ∈ Γh × [0, T ], and thus ∇ΓhU(x, t) vanishes, which yields A1 = 0. It therefore
follows that

(M̄ + sA)−1M̄1 = 1. (4.19)

We will show that (4.18) and (4.19) play a crucial role in the discrete maximum principle for
the parabolic equation (4.2) and, in the next chapter, the preservation of invariant regions of
reaction-diffusion systems.
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4.5.2 Discrete maximum principles

It is known that the lumped FEM fulfils a discrete maximum principle for the homogeneous
heat equation on planar domains (see [101, 126]). The purpose of this section is to extend
this result to the semilinear heat equation on surfaces (4.2) which includes as a special case
the homogeneous heat equation on surfaces.

Theorem 11 (Maximum principle for (4.12)). Under the Delaunay condition (4.15), the
semi-discrete solution ξ(t) of (4.12) fulfils the following discrete maximum principle

0 ≤ ξi(t) ≤ max
RN
{ξ(0)} , i = 1, . . . , N, t > 0. (4.20)

Proof. Consider the auxiliary equation

ξ̇ = −dM̄−1Aξ − β|ξ|αsign(ξ), (4.21)

where |ξ| and sign(ξ) are the componentwise absolute value and the componentwise sign
function of ξ, respectively. If µ = maxRN {ξ(0)}, it is sufficient to prove that the solution
of the ODE system (4.12) does not escape the set Σ = [0, µ]N , i.e. we have to prove that,
for every ε > 0, the solution of (4.21) does not leave the set Σ̄ := [−ε, µ]N . To this end,
we have to prove that the vector field on the right-hand-side of (4.21), computed on every
(N − 1)-dimensional face of Σ̄, points toward the interior of Σ̄. To this end, let ξ be a point
on ∂Σ̄. This means that there exists i = 1, . . . , N such that ξi ∈ {−ε, µ}. Suppose ξi = µ; in
the case ξi = −ε the proof is analogous. Then

ξj ≤ ξi, j 6= i. (4.22)

All we have to prove is that ξ̇i is negative. Hence, we prove that:

1. −|ξi|αsign(ξi) = −|µ|αsign(µ) < 0 from (4.22);

2. The ith component of the vector −dM̄−1Aξ is nonpositive. In fact, since M̄ is a diagonal
matrix, this component is given by

− (dM̄−1Aξ)i = −dm̄−1
ii

N∑

j=1

aijξj . (4.23)

We can split the sum on the right-hand-side by isolating the aiiξi term:

dm̄−1
ii


−aiiξi +

∑

j∈{1,...,N}\{i}
(−aij)ξj


 . (4.24)

Since aij ≤ 0 for i 6= j from Lemma 7 and ξj ≤ ξi for j 6= i from (4.22), expression
(4.24) is less than or equal to

dm̄−1
ii ξi


−aii +

∑

j∈{1,...,N}\{i}
(−aij)


 = −dm̄−1

ii ξi

N∑

j=1

aij . (4.25)
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From the definition of A, we have

− dm̄−1
ii ξi

N∑

j=1

aij = −dm̄−1
ii ξi

∫

Γh

∇Γhχi · ∇Γh

N∑

j=1

χi. (4.26)

Since Γh has no boundary,
∑N

j=1 χi(x) = 1, x ∈ Γh, and thus

∇Γh

N∑

j=1

χi(x) = 0, x ∈ Γh. (4.27)

By combining (4.23)-(4.27), we finally have

− (dM̄−1Aξ)i ≤ 0. (4.28)

The above points 1. and 2. imply the desired result that ξ̇i is negative. This completes the
proof.

The following theorem is the fully-discrete counterpart of Theorem 11. In the specific case
of the homogeneous heat equation on planar domains, the following theorem was proven in
[126].

Theorem 12 (Maximum principle for (4.14)). Under the Delaunay condition (4.15), the
fully-discrete solution ξn with initial data ξ0 of scheme (4.14) fulfils the following maximum
principle

0 ≤ ξni ≤ max
RN

{
ξ0
}
, i = 1, . . . , N, n ∈ N, (4.29)

if the timestep τ satisfies

βτ ≤
(

max
y∈Γh

{
U0(y)

})1−α
. (4.30)

In particular, for β = 0, (4.29) holds with no restriction on τ .

Proof. From the matrix properties (4.18) and (4.19) we have that, for every τ > 0,

(M̄ + dτA)−1M̄1 = 1; (4.31)

(M̄ + dτA)−1M̄ ≥ 0. (4.32)

Let n ∈ N ∪ {0}. We assume by induction that ξn ≥ 0. We have to prove that

max
RN

ξn+1 ≤ max
RN

ξn; (4.33)

ξn+1 ≥ 0. (4.34)

We first prove (4.33). Using (4.31) and (4.32) in the scheme (4.14), we observe that

max
RN

ξn+1 = max
RN

(
(M̄ + dτA)−1M̄ (ξn − τβ(ξn)α)

)

≤ (M̄ + dτA)−1M̄

(
1 max

RN
(ξn − τβ(ξn)α)

)
= max

RN
(ξn − τβ(ξn)α) .

(4.35)

71



Hence, (4.33) holds if

max
RN

(ξn − τβ(ξn)α) ≤ max
RN

(ξn). (4.36)

Since, from inductive hypothesis, ξn ≥ 0, then (4.36) holds. We are left to prove (4.34). Using
(4.32) in the scheme (4.14), (4.34) holds if

ξn − τβ(ξn)α ≥ 0; (4.37)

Condition (4.37) holds if

τβ ≤ min
RN

(
(ξn)1−α) ≤

(
max
RN

(ξn)

)1−α
. (4.38)

We have proven that, for all n ∈ N ∪ {0}, (4.38) implies (4.33) and (4.34). From (4.33), the
most severe of the timestep restrictions in (4.38) is

τβ ≤
(

max
RN

(ξ0)

)1−α
=

(
max
y∈Γh

{
U0(y)

})1−α
, (4.39)

which completes the proof.

4.6 Convergence analysis

In this section we show optimal convergence results for the semi- and full-discretisations of
the semilinear heat equation (4.2). These results are special cases of Theorems 18 and 19 in
the forthcoming Section 5.3, devoted to general reaction-diffusion systems. Hence, we omit
the proofs.

Theorem 13 (Error estimate for the semi-discrete solution (4.5)). If the analytical solution
u of (4.2) and its time derivative u̇ are L∞([0, T ];H2(Γ)) and the approximate initial datum
U0 fulfils ‖u0 − U `0‖0 ≤ ch2, then the following estimate holds

‖u− U `‖0 ≤ C(u, T )h2, (4.40)

where C(u, T ) is a constant depending on u and T .

Theorem 14 (Error estimate for the fully-discrete solution (4.14)). If the analytical solution
u of (4.2) and its time derivative u̇ are L∞([0, T ];H2(Γ)), ü is L∞([0, T ];L2(Γ)) and the
approximate initial datum U0 fulfils ‖u0 − U `0‖0 ≤ ch2, then the following estimate holds

‖un − U `,n‖0 ≤ C(u, T )(h2 + τ), (4.41)

where un is the exact solution at time tn := nτ and C(u, T ) is a constant depending on u and
T .
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4.7 Numerical examples

In this section we provide numerical validation of our theoretical results and show that the
LSFEM combined with the IMEX Euler in time:

• fulfils the discrete maximum principle for the homogeneous heat equation as proven in
Theorem 12, while the standard SFEM does not;

• exhibits the optimal convergence rate predicted in Theorem 14;

The meshes for our numerical examples have been constructed by using the MATLAB package
DistMesh (see [108]). A-posteriori, we have verified that the generated meshes fulfil the
Delaunay condition (4.15). The linear systems arising at each timestep have been solved with
MATLAB direct solver in the “backslash” command.

Example 1: The homogeneous heat equation and the maximum principle

We solve the parabolic equation (4.2) for the homogeneous case β = 0 on the unit sphere
Γ with d = 0.1 until the final time T = 1 and the nonnegative compactly supported H1(Γ)
initial datum

u0(x, y, z) =

{ √
1− 25(x2 + y2) if 25(x2 + y2) ≤ 1, z > 0;

0 elsewhere on Γ.
(4.42)

In this case, the invariant region is Σ = [0, 1], then the solution must stay nonnegative at all
times. Moreover, since β = 0, the IMEX Euler time discretisation reduces to Implicit Euler. In
this example, as well as in the following example, the problem is solved on a sequence of eight

meshes Γi, i = 0, . . . , 7 with corresponding meshsizes hi with h0 = 4.013e-1 and hi ≈
√

2
−i
h0

for all i = 1, . . . , 7 and corresponding timesteps τi with τ0 = 0.2 and τi = 2−iτ0 for all
i = 1, . . . , 7 (see parameter values in Tab. 4.2). Hence, τi is approximately proportional to h2

i

in order to reveal the quadratic convergence, with respect to the mesh size, of the method.
The minima of the computed numerical solution, obtained for every (hi, τi), i = 0, . . . , 7, are
reported in Table 4.1. This example confirms our findings, as the LSFEM fulfils the discrete
maximum principle, while the standard SFEM violates the maximum principle as illustrated
in Table 4.1.

Example 2: The linear heat equation and convergence

In this example we solve the parabolic equation (4.2) in the linear case α = 1 on the unit
sphere Γ = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}:

{
u̇− d∆Γu = −βu;

u0(x, y, z) = xyz, (x, y, z) ∈ Γ,
(4.43)

with d = 1
24 and β = 1

2 , to test the convergence rate of the LSFEM method. The exact solution
of (4.43) is u(x, y, z, t) = xyze−t, (x, y, z) ∈ Γ, t ≥ 0. We solve this problem on the same
sequence of meshes Γi, i = 0, . . . , 7 and corresponding timesteps τi, i = 0, . . . , 7 considered in
the previous example. For all i = 0, . . . , 7, τi fulfils the stability condition given in Theorem
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i N h min
Γh×[τ,1]

U SFEM min
Γh×[τ,1]

U LSFEM

0 126 4.013e-01 -3.454e-04 7.016e-09
1 258 2.863e-01 -4.695e-06 4.812e-12
2 516 2.026e-01 -1.299e-03 1.213e-16
3 1062 1.414e-01 -2.123e-07 2.746e-23
4 2094 1.007e-01 -7.546e-04 3.142e-32
5 4242 7.082e-02 -1.037e-05 1.816e-45
6 8370 5.041e-02 -4.163e-04 5.324e-64
7 16962 3.542e-02 -1.254e-04 3.126e-90

Table 4.1: Example 1: homogeneous heat equation (4.2) on the unit sphere with β = 0,
initial datum (4.42) and final time T = 1. Discrete maximum principle analysis on a sequence
of eight Delaunay meshes Γi, i = 0, . . . , 7, and corresponding timesteps τi, i = 0, . . . , 7 as
described in the text. The SFEM violates the discrete maximum principle for all i = 0, . . . , 7,
while the LSFEM fulfils the discrete maximum principle for all i = 0, . . . , 7.

12. For every i = 0, . . . , 7 the L∞([0, T ], L2(Γh)) error between the numerical solution U and
the interpolant Ih(u) of the exact solution is reported in Table 4.2. The lumped solution at
the final time T = 1 obtained on the finest mesh is shown in Figure 4.2 (left), as well as its
planar projection through spherical coordinates

x = cosφ cosψ, y = cosφ sinψ, z = sinψ, (φ, ψ) ∈ [−π, π]×
[
−π

2
,
π

2

]
.

In this example the predicted second order convergence in space is attained. Furthermore, we
observe that, for this specific example, the lumped SFEM exhibits a better accuracy than the
standard SFEM. We believe that this phenomenon, which does not occur in general, is due
to the particular symmetry of the considered problem.

4.8 Conclusions

We have introduced a surface finite element method with mass lumping (LSFEM) for the
spatial discretisation of the semilinear heat equation (2.10) and we have carried out a fully
discrete scheme by applying the IMEX Euler method to the semi-discrete formulation. Our
spatial and full discretisations fulfil discrete maximum principles with no restriction on the
mesh size. Only a timestep restriction is required for the fully discrete maximum principle.
In the next chapter we extend the LSFEM space discretisation and the LSFEM-IMEX Euler
full discretisation to general RDSs of arbitrarily many equations. The key feature of the
proposed methods will be the preservation of invariant rectangles for such systems. For the
special case of the semilinear heat equation (2.10), the preservation of invariant rectangles
will imply the discrete maximum principles. Hence, the theory presented in the next chapter
constitutes a generalisation of the present chapter.
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Figure 4.2: Example 2: Linear heat equation (4.43) on the unit sphere with d = 1
24 , β = 1

2 and
final time T = 1. LSFEM solution obtained on the Delaunay mesh Γ7 with N = 16962 nodes,
meshsize h7 = 3.542e-2 and timestep τ7 = 1.6e-3 at T = 1 (left) and its planar projection
through spherical coordinates (right).

SFEM LSFEM

i N h L∞(L2) error rate L∞(L2) error rate

0 126 4.013e-01 6.100e-03 - 3.061e-03 -
1 258 2.863e-01 3.129e-03 1.977 1.846e-03 1.498
2 516 2.026e-01 1.594e-03 1.951 1.095e-03 1.510
3 1062 1.414e-01 7.899e-04 1.953 5.444e-04 1.945
4 2094 1.007e-01 3.966e-04 2.030 3.025e-04 1.731
5 4242 7.082e-02 2.013e-04 1.925 1.401e-04 2.184
6 8370 5.041e-02 1.003e-04 2.049 7.671e-05 1.773
7 16962 3.542e-02 5.063e-05 1.938 3.529e-05 2.200

Table 4.2: Example 2: Linear heat equation (4.43) on the unit sphere with d = 1
24 , β = 1

2
and final time T = 1. Comparisons of the convergence analysis in L∞([0, T ], L2(Γh)) norm
between the SFEM and the LSFEM.
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Chapter 5

Reaction-cross-diffusion systems on
stationary surfaces

In recent years, there has been a remarkable increase in the theoretical analysis of mathe-
matical models of reaction-diffusion type with or without cross-diffusion, on planar domains
or surfaces. Diffusion is a process in which the gradient in the concentration of one chemical
or biological species induces a flux, either linearly or nonlinearly, of the species itself. Cross-
diffusion, instead, is the process for which the gradient in the concentration of one species
induces a flux of another species.
Reaction-diffusion systems (RDSs) have been extensively employed to model many different
processes in a wide range of fields. On planar domains, we mention applications to biol-
ogy ([51, 100, 102]), chemistry ([131]), electrochemistry ([13, 81]) and finance (e.g. [7]). On
surfaces, RDSs have been applied to the study of biological patterning ([6]), tumour growth
([19]), metal dealloying ([43]), biomembrane modeling ([45]), electrochemistry ([79]) cell motil-
ity ([46]), just to mention a few examples.
We also mention some processes that have been modelled through reaction-cross-diffusion
systems (RCDSs). For instance, in molecular biology, cross-diffusion processes appear in mul-
ticomponent systems containing at least two solute components [96, 135]. Multicomponent
systems containing nanoparticles, surfactants, polymers and other macromolecules in solution
play an important role in industrial applications and biological functions [96]. In developmen-
tal biology, recent experimental findings demonstrate that cross-diffusion can be quite signifi-
cant in generating spatial structure [132]. The effects of cross-diffusion on models for pattern
formation have been studied in many theoretical papers, such as [94]. Apart from pattern
formation in developmental biology, other applications of reaction-cross-diffusion systems in-
clude cancer motility [61], finance [7] and biofilms [113]. The introduction of cross-diffusion in
standard reaction-diffusion models has been shown to prevent blow-up phenomena that are
associated with reaction-diffusion systems in the absence of cross-diffusion [71]. It must be
noted that the concept of cross-diffusion includes well-known processes such as chemo- and
haptotaxis [61].
In this chapter we consider reaction-cross-diffusion systems (RCDSs) of arbitrarily many equa-
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tions on a compact surface of the form





∂ui
∂t
−

r∑

j=1

dij∆Γuj = fi(u1, . . . , ur), in Γ× (0, T ],

ui(x, 0) = u0,i(x), x ∈ Γ, i = 1, . . . , r,

(5.1)

where Γ is a C2 surface in R3 without boundary, dij are any real diffusion and cross-diffusion
coefficients such that the diffusion matrix D = (dij) is positive definite, f1, . . . , fr are C2(I;R)
reaction kinetics defined on an open set I ⊂ Rr and an initial condition (u0,1, . . . , u0,r) ∈ C2(Γ)
is given.

For many RCDSs, an important property is the existence of invariant regions. From a mod-
elling point of view, it is useful to know that a given model possesses an invariant region. For
real applications, solutions for RCDSs are usually meaningful as long as they range within a
limited set of values and an invariant region could provide an a-priori bound on the analyti-
cal solution which can be helpful, for instance, when studying the convergence of numerical
methods. Sufficient conditions for a region to be invariant for a given RDS or RCDS were
given (i) in [25, 123] for RCDSs on planar domains and (ii) in [125, p. 335-353] for the case
of stationary surfaces. In the literature, preservation of invariant regions under discretisation
has been addressed in the following special cases. In the scalar case, the existence of invariant
regions corresponds to the maximum principle. On planar domains, works in this direction
cover the homogeneous heat equation [20], RD scalar equations [47, 49, 101], anisotropic RD
[87] and reaction-convection-diffusion scalar equations [88]. For RCDSs of many equations
on planar domains, the problem is addressed in [73]. The aforementioned papers consider
different spatial approximation approaches. Most of them require the discretisation to be suf-
ficiently refined, in order to preserve invariant rectangles and maximum principles. A notable
exception is the lumped finite element method (LFEM) [20, 47, 87, 88, 101].
In this chapter we present the results given in the recent works [55, 56] on RDSs and RCDSs,
respectively. These results are organised as follows. In Section 5.1 we recall the weak formu-
lation of the RCDS (5.1), we present its LSFEM space discretisation and its LSFEM-IMEX
Euler time discretisation. In Section 5.2 we prove sufficient conditions for the existence of
invariant regions of polytopal shape at the semi- and fully-discrete levels for semilinear RCDSs
of the form (5.1). In Section 5.3 we prove (i) stability estimates at the continuous, spatially
discrete and fully discrete levels and (ii) optimal asymptotic convergence rates for the spatially
discrete and the fully discrete methods. In Section 5.4 we present four numerical examples to
show:

• in the first two examples, the preservation of an invariant region for a RCDS with
Rosenzweig-MacArthur kinetics on a sphere, without and with cross-diffusion respec-
tively;

• in the third example, the convergence of the LSFEM-IMEX Euler full discretisation of
a RDS with Schnakenberg kinetics on a sphere;

• in the fourth example, the comparison with an existing method for RCDSs on surfaces
in terms of Turing pattern formation for the Schnakenberg model on a sphere.
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5.1 Reaction-cross-diffusion systems on surfaces

Let Γ be a C2 surface in R3 without boundary (see Remarks 6 and 7 in the previous chap-
ter). As shown in Section 2.6.1, the weak formulation of (5.1) is given by: find u1, . . . , ur ∈
L2([0, T ];H1(Γ)) with u̇1, . . . , u̇r ∈ L2([0, T ];H−1(Γ)) such that

∫

Γ
u̇mϕm +

r∑

k=1

dmk

∫

Γ
∇Γuk · ∇Γϕm =

∫

Γ
fm(u)ϕm, (5.2)

for all ϕm ∈ L2([0, T ];H1(Γ)) and m = 1, . . . , r.

5.1.1 Space discretisation

Let Γh be a triangulation of Γ as defined in Section 2.5.1 and let Vh be the finite element
space defined in (2.18). We define the following LSFEM space discretisation for the weak
RCDS (5.2): find U1, . . . , Ur ∈ L2([0, T ];Vh) with U̇1, . . . , U̇r ∈ L2([0, T ];Vh) such that

∫

Γh

Ih(U̇mϕm) +

r∑

k=1

dmk

∫

Γh

∇ΓhUk · ∇Γhϕm=

∫

Γh

Ih(fm(U)ϕm), (5.3)

for all ϕm ∈ L2([0, T ],Vh) and m = 1, . . . , r, where the initial condition (U0,1, . . . , U0,r) ∈ Vrh
is the Lagrange interpolant of the initial condition (u0,1, . . . , u0,r) of the weak continuous
system (5.2). Notice that (5.2) is analogous to the SFEM spatial discretisation (2.44), but
differs for the presence of the interpolant operator Ih (mass lumping). By expressing each
component Uk as

Uk(x, t) =

N∑

i=1

ξk,i(t)χi(x), x ∈ Γh, t ∈ [0, T ], (5.4)

and choosing the test functions in (5.3) to be the nodal basis functions, we rewrite (5.3) as
follows

∫

Γh

Ih(U̇mχj) +
r∑

k=1

dmk

N∑

i=1

ξk,i

∫

Γh

∇Γhχi · ∇Γhχj =

∫

Γh

Ih(fm(U)χj), (5.5)

for all m = 1, . . . , r and j = 1, . . . , N . If A and M̄ are the stiffness- and the lumped mass-
matrices defined in (2.34) and (4.11), respectively, the matrix form of the LSFEM (5.5) is
given by

Mξ̇m +

r∑

k=1

dmkAξk = Mfm(ξ1, . . . , ξr), m = 1, . . . , r, (5.6)

where, for all k = 1, . . . , r, ξk(t) := (ξk,1(t), . . . , ξk,N (t))tr are the time-dependent coefficients
of the nodal expansion (5.4) of Uk in the Lagrange basis {χi|i = 1, . . . , N}. The system of
ordinary differential equations (ODEs) (5.6) can also be rewritten as

Ir ⊗M



ξ̇1
...

ξ̇r


+D ⊗A



ξ1
...
ξr


 = Ir ⊗M



f1(ξ1, . . . , ξr)

...
fr(ξ1, . . . , ξr)


 , (5.7)
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where Ir ∈ RN,N is the identity matrix and ⊗ denotes the Knonecker product, see [83]. Since,
from the properties of the Kronecker product [83], (Ir⊗M)−1(D⊗A) = (Ir⊗M−1)(D⊗A) =
(IrD)⊗ (M−1A) = D ⊗ (M−1A), we end up with the following ODE system of dimension
rN : 


ξ̇1
...

ξ̇r


 = −D ⊗ (M−1A)



ξ1
...
ξr


+



f1(ξ1, . . . , ξr)

...
fr(ξ1, . . . , ξr)


 , (5.8)

with ξk,i(0) = U0,k(xi) for k = 1, . . . , r and i = 1, . . . , N . In the remainder of this chapter
we assume that the mesh Γh meets the Delaunay property (4.15). We will show that the
characterisation, given in Lemma 7, of the Delaunay property plays a crucial role in the
existence of invariant regions of RCDSs at the discrete levels.

5.1.2 Time discretisation

As we did for the semilinear heat equation considered in the previous Chapter 4, we carry
out a fully discrete scheme by applying the IMEX Euler timestepping to the semi-discrete
scheme (5.3). If τ > 0 is the timestep (hence, the total number of timesteps is given by
NT :=

⌊
T
τ

⌋
) the LSFEM-IMEX Euler fully-discrete method for (5.2) is: for all n = 0, . . . , NT ,

for all ϕ1, . . . , ϕr ∈ Vh




∫

Γ
Ih

(
Un+1

1 − Un1
τ

ϕ1

)
+

r∑

k=1

d1k

∫

Γ
∇ΓU

n+1
k · ∇Γϕ1 =

∫

Γ
Ih(f1(Un)ϕ1);

...∫

Γ
Ih

(
Un+1
r − Unr

τ
ϕr

)
+

r∑

k=1

drk

∫

Γ
∇ΓU

n+1
k · ∇Γϕr =

∫

Γ
Ih(fr(U

n)ϕr),

(5.9)

where the initial condition (U0
1 , . . . , U

0
r ) coincides with that of the semi-discrete method

(U0,1, . . . , U0,r). We will utilise formulation (5.9) for stability and convergence analysis. In
particular, the stability estimates for (5.9) will rely on an energy argument. For the imple-
mentation, we write system (5.9) as a system of rN algebraic linear equations, using the
lumped mass- and stiffness-matrices M and A:



ξn+1

1
...

ξn+1
r


 = (INr + τD ⊗ (M−1A))−1



ξn1 + τf1(ξn1 , . . . , ξ

n
r )

...
ξnr + τfr(ξ

n
1 , . . . , ξ

n
r )


 , (5.10)

to be solved at each timestep tn := nτ for n = 0, . . . , NT . Note that scheme (5.10) can be
obtained equivalently by applying the IMEX Euler timestepping to the semi-discrete scheme
(5.8). If the solutions of (5.8) and (5.10) are a-priori confined within any (possibly unbounded)
set Σ contained in the domain of definition I of the kinetics and the kinetics are Lipschitz
on Σ, then these solutions are well-defined at all positive times. This further motivates the
study of invariant regions, addressed in the following section.
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5.2 Invariant convex polytopes for the semi- and fully-discrete
schemes

This section focuses on investigating an interesting property of the LSFEM discretisation of
RCDSs which does not hold in the absence of lumping, that is the existence of invariant
convex polytopes. For our purposes, we recall the following definition given in [123, 125].

Definition 11. For the system (5.1), a region Σ in the phase-space Rr is said to be positively
invariant if, whenever the initial condition u0 is in Σ, u stays in Σ as long as it exists and
is unique.

Let us now consider polytopal invariant regions. Let s ∈ N, let nl ∈ Rr, l = 1, . . . , s be
unit vectors and let cl ∈ R, l = 1, . . . , s be real constants. Let Σ be the convex polytope in
the phase-space defined as the intersection of s half-hyperspaces:

Σ = {y ∈ Rr | nl · y ≤ cl, l = 1, . . . , s}, (5.11)

and consider its hyperfaces Σl := {y ∈ Σ | nl · y = cl}, l = 1, . . . , s. Consider the following
inward flux condition for the kinetics:

f(y) · nl(y) < 0, y ∈ Σl, l = 1, . . . , s, (5.12)

and the following compatibility condition between Σ and D

nl is a left eigenvector of D l = 1, . . . , s. (5.13)

In order for the region Σ to be invariant, (i) condition (5.12) is sufficient in the absence
of cross-diffusion when Γ is a Riemannian manifold without boundary [125], while (ii) the
simultaneous conditions (5.12) and (5.13) are sufficient when Γ is a k-dimensional domain in
Rk, k ∈ N [123].
We remark that, on stationary domains, some systems are known to possess an invariant
region which do not meet the strict inequalities (6.21)-(6.22). For instance, for many mass-
action laws, the positive orthant is invariant [21, 56] even though the flux of f is tangent to
this region, instead of strictly inward.

Remark 11 (Invariant regions in the absence of cross-diffusion). In the absence of cross-
diffusion, i.e. when D is diagonal, the left eigenvectors of D are the standard basis vectors
of Rr. Consequently, the regions fulfilling the compatibility condition (5.13) are the hyper-
rectangles of the form

Σ =

r∏

k=1

[σk, σk], (5.14)

where, for all k = 1, . . . , r, σk ∈ R ∪ {−∞} and σk ∈ R ∪ {+∞}. We remark that hyper-
rectangles of the form (5.14) can be bounded or unbounded. Some examples of unbounded
hyper-rectangles are half-spaces, stripes and orthants.

Remark 12 (Maximum and minimum-maximum principles in terms of invariant regions).
In the case r = 1 of scalar equations, the maximum principle (4.3) considered in the previous
chapter is equivalent to the invariance of the following family of regions:

[0,M ], M > 0, (5.15)
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while the minimum-maximum principle (4.4) is equivalent to the invariance of the following
family of regions:

[−M1,M2], M1,M2 > 0. (5.16)

In the following theorems we prove that, in the presence of cross-diffusion on a compact
surface, under assumption (5.12), Σ is an invariant region for the semi- (5.8) and fully-discrete
(5.10) systems conditionally on τ , as well.

Theorem 15 (Invariant convex polytopes for the semi-discrete system (5.8)). Let the kinetics
f be Lipschitz on the polytope Σ in (5.11) and assume that (5.12)-(5.13) hold. Then Σ is an
invariant region for the semi-discrete problem (5.8).

Proof. It suffices to prove that the rN -dimensional polytope Σ̄ = ΣN is an invariant region
for the ODE system (5.8), i.e. we have to prove that the vector field on the right-hand-side
of (5.8), computed on the boundary of Σ̄, points toward the interior of Σ̄. To this end, let
(ξ1, . . . , ξr)

tr be a point on ∂Σ̄. This means that there exist i = 1, . . . , N and l = 1, . . . , s
such that nl · ξ:,i = cl. Then, nl · ξ:,j ≤ cl for j 6= i, that implies

ξ:,j · nl ≤ ξ:,i · nl, j 6= i, (5.17)

All we have to prove is that ξ̇:,i ·nl is nonpositive. But since, from (5.12), f(ξ1,i, . . . , ξr,i) ·nl <
0, it remains to prove that

−


D ⊗ (M−1A)



ξ1
...
ξr







:,i

· nl ≤ 0. (5.18)

Since nl is a left eigenvector of D (with eigenvalue λl > 0), the left-hand side of (5.18) is
equal to

−λl

Ir ⊗ (M−1A)



ξ1
...
ξr







:,i

· nl

= −λl
r∑

k=1

nlk
(
M−1Aξk

)
i

= −λl
r∑

k=1

nlkm̄
−1
ii

N∑

j=1

aijξk,j

= −λlm̄−1
ii

N∑

j=1

aij

r∑

k=1

nlkξk,j = −λlm̄−1
ii

N∑

j=1

aij(ξ:,j · nl)

= −λlm̄−1
ii


aii(ξ:,i · nl) +

∑

j∈{1,...,N}\{i}
aij(ξ:,j · nl)


 .

(5.19)

From aij ≤ 0, i 6= j (Lemma 7) and (5.17), the right-hand side of (5.19) is less than or equal
to

λlm̄−1
ii (ξ:,i · nl)


−aii +

∑

j∈{1,...,N}\{i}
(−aij)


 = −λlm̄−1

ii (ξ:,i · nl)
N∑

j=1

aij . (5.20)

81



From the definition of A we have

N∑

j=1

aij =

∫

Γh

∇Γhχi · ∇Γh

N∑

j=1

χi. (5.21)

Since Γh has no boundary,
∑N

j=1 χi(x) = 1, x ∈ Γh and thus

∇Γh

N∑

j=1

χi(x) = 0, x ∈ Γh. (5.22)

By combining (5.19)-(5.22), we have proven (5.18), which completes the proof.

In order to prove the fully-discrete counterpart of Theorem 15, we need the two folliowing
original lemmas. In particular, Lemma 8 extends Lemma 15.5 in [126].

Lemma 8 (Preservation of linear constraints). Given r,N ∈ N, let B ∈ RN,N be a matrix
with real nonnegative eigenvalues such that bij ≤ 0 for i 6= j, let H ∈ Rr,r be a (possibly
non-symmetric) positive definite matrix, let n be a left eigenvector of H with real eigenvalue
λ, let ζ1, . . . , ζr ∈ RN and let ζ = (ζ1, · · · , ζr)tr ∈ RrN . If (ntr ⊗ IN )ζ ≥ 0, then it holds
that (ntr ⊗ IN )(IrN +H ⊗B)−1ζ ≥ 0.

Proof. For µ > 0, we consider the matrix K := µIrN −(IrN +H⊗B) = (µ−1)IrN −H⊗B.
Now, λ̄ is an eigenvalue of H ⊗B if and only if ¯̄λ := µ− 1− λ̄ is an eigenvalue of K, in fact
det(λ̄IrN −H ⊗B) = det((µ− 1− λ̄)IrN −H ⊗B) = 0. Notice that

Re(¯̄λ) = µ− 1− Re(λ̄), Im(¯̄λ) = −Im(λ̄). (5.23)

Since, from the positive definiteness, the eigenvalues of H have positive real part and, by
assumption, B has real nonnegative eigenvalues, then the eigenvalues of H ⊗ B have non-
negative real part, namely Re(λ̄) ≥ 0. Consequently, (5.23) implies |Re(¯̄λ)| ≤ µ − 1, which,

in combination with (5.23), yields |¯̄λ|2 ≤ (µ − 1)2 +
(
Im(λ̄)

)2
. It follows that, by choosing

µ > maxλ̄∈eig(H⊗B)
(Im(λ̄))2+1

2 , the spectral radius of K is less than µ, then the spectral radius

of µ−1K is less than 1, and thus µ−1K may be expressed as the sum of a geometric series.
Assume now (ntr ⊗ IN )ζ ≥ 0. Then

(ntr ⊗ IN )(IrN +H ⊗B)−1ζ

=(ntr ⊗ IN )(µIrN −K)−1ζ = (ntr ⊗ IN )µ−1(IrN − µ−1K)−1ζ

=(ntr ⊗ IN )µ−1
+∞∑

j=0

µ−jKjζ =
+∞∑

j=0

µ−1−j(ntr ⊗ IN )((µ− 1)IrN −H ⊗B)jζ.

We need to prove that, for all j ∈ N, (ntr ⊗ IN )((µ − 1)IrN −H ⊗B)jζ ≥ 0. However, by
induction, it suffices to prove that

(ntr ⊗ IN )((µ− 1)IrN −H ⊗B)ζ ≥ 0. (5.24)
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From the properties of the Kronecker product, the left-hand side in (5.24) can be rearranged
as

[(µ− 1)ntr ⊗ IN − (ntrH)⊗ (INB)]ζ = [(µ− 1)ntr ⊗ IN − λntr ⊗B]ζ. (5.25)

Claim (5.24) can now be written componentwise as

(µ− 1)((ntr ⊗ IN )ζ)i ≥ λ((ntr ⊗B)ζ)i, i = 1, . . . , N. (5.26)

We recast the left-hand side of (5.26) as

(µ− 1)
r∑

k=1

nkζk,i, (5.27)

and the right-hand side of (5.26) as

λ

r∑

k=1

nk(Bζk)i = λ

r∑

k=1

nk

N∑

j=1

bijζk,j = λ

N∑

j=1

bij

r∑

k=1

nkζk,j ≤ λbii
r∑

k=1

nkζk,i, (5.28)

where, in the inequality, we have exploited the the assumption that bij ≤ 0 for i 6= j and
(ntr ⊗ IN )ζ ≥ 0. Now it suffices to prove that the right-hand side of (5.28) is less than or
equal to (5.27) for all i = 1, . . . , N , which is true by enforcing µ ≥ λmaxi=1,...,N (bii) + 1.

Lemma 9 (Zero discrete diffusion of spatially uniform states). Let M ,A,D be the lumped
mass matrix, the stiffness matrix and the diffusivity matrix introduced above, let τ > 0 and
let v ∈ Rr be a column vector. Then (IrN + τD ⊗ (M−1A))−1(v ⊗ 1N ) = v ⊗ 1N .

Proof. The claim follows from A1 = 0.

Theorem 16 (Invariant convex polytopes for the fully-discrete scheme (5.10)). Let the ki-
netics f be Lipschitz on the polytope Σ in (5.11) and assume that (5.12)-(5.13) hold. Then Σ
is an invariant region for the fully-discrete problem (5.10) if the timestep τ fulfils

τ ≤ τ̄ :=
1

max
l=1,...,s

√√√√
r∑

k=1

(nlkLk)
2

, (5.29)

where L1, . . . , Lr are the Lipschitz constant of the kinetics f1, . . . , fr, respectively.

Proof. Given n = 0, . . . , NT and Un ∈ Σ, we must ensure that Un+1 ∈ Σ, i.e., that it satisfies
nl · Un+1 ≤ cl, l = 1, . . . , s. Since Un+1 is an Sh function, it suffices to verify that Un+1

satisfies the inequality at the gridpoints. Using the definition of the fully-discrete scheme
(5.10) we wish to show that

nl ·Un+1 = (nl,T ⊗ IN )M(ξn + τfn) ≤ cl1N , l = 1, . . . s, (5.30)

whereM := (IrN+τD⊗M−1A)−1 and fn := f(ξn1 , . . . , ξ
n
r ). If v ∈ Rr is such that nl·v = cl,

(5.30) becomes

(nl,T ⊗ IN )M(ξn + τfn) ≤ (nl,T ⊗ IN )(v ⊗ IN ), l = 1, . . . , s, (5.31)
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By applying Lemma 9 in the Appendix to the right-hand side of (5.31), we end up with

(nl,T ⊗ IN )M(ξn + τfn − v ⊗ 1N ) ≤ 0, l = 1, . . . , s. (5.32)

From Lemma 8 in the Appendix, it suffices to prove that

(nl,T ⊗ IN )(ξn + τfn − v ⊗ 1N ) ≤ 0, l = 1, . . . , s, (5.33)

but, recalling that nl · v = cl, (5.33) is equivalent to

(nl,T ⊗ IN )(ξn + τfn) ≤ cl1N , l = 1, . . . , s. (5.34)

We now observe that dl,n := cl1N − (nl,T ⊗ IN )ξn is a vector in RN such that, for all

i = 1, . . . , N , the i-th component dl,ni = cl−nl·ξn:,i is the oriented distance between the solution

ξn:,i on the i-th nodal point and the hyperplane Σl. We then rewrite (5.34) as τ(nl,T⊗IN )fn ≤
dl,n, l = 1, . . . , s. Componentwise, we have τnl · fn:,i ≤ dl,ni , i = 1, . . . , N, l = 1, . . . , s. Now,
since Un ∈ Σ, we can upper-bound this last inequality in terms of the oriented distances
dl,n and the directional Lipschitz constant L̃l of the kinetics f along the outward normal nl,

obtaining τL̃ldl,ni ≤ d
l,n
i , i = 1, . . . , N , l = 1, . . . , s, but since L̃l ≤

√∑r
k=1(nlk)

2L2
k, the result

follows.

Notice that, from Theorems 15 and 16, Remark 11 holds at the semi- and fully-discrete
levels, as well.

Remark 13 (Timestep restriction in the absence of cross-diffusion). In the absence of cross-
diffusion, since the eigenvectors of D are the standard basis vectors of Rr, the timestep re-
striction (5.29) becomes

τ ≤ τ̄ :=
1

max
k=1,...,r

Lk
. (5.35)

5.3 Stability and error analysis

Next we prove in this section stability estimates and optimal L∞([0, T ], L2(Γ)) error bounds
for the semi-discrete (5.8) and the fully-discrete (5.10) solutions of the RCDS (5.1) of r ∈ N
equations. First, we proceed to recall some preliminaries and basic notations.

The lumped L2 product (see for instance [60, 101, 105, 126]) defined by (U, V )h :=∫
Γh
Ih(UV ), U, V ∈ L2(Γh), where Ih is the piecewise linear interpolant defined in Section

5.1.1, induces the norm ‖U‖h :=
√

(U,U)h, U ∈ Vh, which is equivalent to ‖ · ‖0,h, uniformly
with respect to h (see [114] for the proof):

‖U‖0,h ≤ ‖U‖h ≤ C‖U‖0,h, U ∈ Vh, h > 0. (5.36)

In [56] we proved the following estimate for the error εh(U, V ) :=
∫

Γh
(UV − Ih(UV )) in the

lumped quadrature rule (U, V )h, for all U ∈ H2(Γh) and V ∈ Vh:

|εh(U, V )| ≤ ch2‖U‖2,h‖V ‖1,h. (5.37)
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We remark that inequalities (5.36) and (5.37) were proven on planar triangulations in [105]
and [101], respectively. By using an affine map argument, we extended these inequalities to
triangulated surfaces. From Lemma 4 we derive the following estimate for the broken H2

norm of U .

Lemma 10 (Dominance of H2(Γ) norm over H2(Γh) norm). If u ∈ H2(Γ), then u−` ∈ H2(Γh)
and

‖u−`‖2,h ≤ C‖u‖2. (5.38)

Proof. Let K ∈ Kh. Then, from (3.39)-(3.41), we have

‖u−`‖22,K =‖u−`‖20,K + ‖∇Ku−`‖20,K + ‖∇2
Ku
−`‖20,K ≤

1

c2
‖u‖2

0,K̃
+

1

c2
‖∇K̃u‖20,K̃

+c2‖∇2
K̃
u‖2

0,K̃
+ c2h2‖∇K̃u‖20,K̃ ≤ C(1 + h2)‖u‖2

2,K̃
.

(5.39)

Now, from (5.39), we have

‖u−`‖22,h =
∑

K∈Kh
‖u−`‖22,K ≤

(5.39)
C(1 + h2)

∑

K∈Kh
‖u‖2

2,K̃
= C(1 + h2)‖u‖22. (5.40)

This completes the proof.

For the following proofs we need to consider, for any positive definite matrix B ∈ Rr,r,
the seminorms | · |B and | · |B,h on H1(Γ) and (H1(Γh))r respectively, defined by

|U |2B :=

∫

Γ
B∇Γu : ∇Γhu =

∫

Γ
Bs∇Γu : ∇Γhu, u ∈ H1(Γ)r; (5.41)

|U |2B,h :=

∫

Γh

B∇ΓhU : ∇ΓhU =

∫

Γh

Bs∇ΓhU : ∇ΓhU , U ∈ H1(Γh)r, (5.42)

respectively where Bs := B+Btr

2 is the symmetric part of B. It is well-known that a matrix
is positive definite if an only if its symmetric part is positive definite. Then, the eigenvalues
λi, i = 1, . . . , r, of Bs are real and positive. It follows that

min
i=1,...,r

(λi)|u|21 ≤ |u|2B ≤ max
i=1,...,r

(λi)|u|21, u ∈ (H1(Γ))r; (5.43)

min
i=1,...,r

(λi)|U |21,h ≤ |U |2B,h ≤ max
i=1,...,r

(λi)|U |21,h, U ∈ (H1(Γh))r, (5.44)

i.e. the seminorms (5.41) and (5.42) are equivalent to | · |1 and | · |1,h, respectively.

We employ usual energy argument techniques to carry out the following stability esti-
mates. Note that due to the existence of an invariant region, these estimates will not depend
exponentially on time since they will not rely on Grönwall’s lemma. The only requirement
is that the reaction kinetics f in (5.1) are Lipschitz locally in the invariant region and not
globally Lipschitz. We recall that, given n,m ∈ N and any two matrices A,B ∈ Rn,m, the
Frobenius inner product of A and B is defined by A : B :=

∑n
i=1

∑m
j=1 aijbij .

85



Lemma 11 (Stability estimates for the weak formulation (5.2)). If u is the solution of (5.2),
Σ as in (5.11) is a bounded invariant region for (5.2), f is Lipschitz (and thus bounded) on
Σ and u0 ∈ Σ, then the following estimates hold

sup
t∈[0,T ]

||u||20 +

∫ T

0
‖∇Γu‖20 ≤ C

(
T + ‖u0‖20

)
; (5.45)

∫ T

0
‖u̇‖20 + sup

t∈[0,T ]
‖∇Γu‖20 ≤ C

(
T + ‖∇Γu0‖20

)
, (5.46)

for all T > 0, where C is a constant independent of T and u0.

Proof. By summing over the equations in (2.37) and choosing ϕ = u we have

1

2

d

dt

∫

Γ
|u|2 + |u|2D =

∫

Γ
f(u) : u, (5.47)

where | · | denotes the Euclidean norm of the vector u. By combining (5.43) and (5.47) we
have

d

dt
‖u‖20 + |u|21 ≤ C

∫

Γ
|f(u) : u|.

Since u ∈ Σ at all times and f is bounded on Σ, we obtain

d

dt
‖u‖20 + |u|21 ≤ C. (5.48)

By integrating both sides of (5.48) over [0, T ], estimate (5.45) follows.
To prove the second estimate, we sum over the equations in (2.37) and we set ϕ = u̇,

thereby obtaining: ∫

Γ
|u̇|2 +

1

2

d

dt

∫

Γ
D∇Γu : ∇Γu ≤

∫

Γ
|f(u)||u̇|, (5.49)

but, since f is bounded on Σ, it holds that
∫

Γ
|f(u)||u̇| ≤ 1

2

∫

Γ
|f(u)|2 +

1

2

∫

Γ
|u̇|2 ≤ C +

1

2

∫

Γ
|u̇|. (5.50)

Combining (5.49) and (5.50) we have

‖u̇‖20 +
d

dt
|u|2D ≤ C, (5.51)

from which, by integrating on [0, T ] we obtain

∫ T

0
‖u̇‖20 + |u|2D ≤ CT + |u0|2D. (5.52)

By using (5.43) into (5.52), we have

∫ T

0
‖u̇‖20 + |u|21 ≤ C

(
T + |u0|21

)
,

from which estimate (5.46) immediately follows.
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In the next lemmas we show analogous estimates for the semi- and fully-discrete problems.

Lemma 12 (Stability estimates for the semi-discrete system (5.3)). If U is the solution of
(5.3), Σ is a bounded invariant region for (5.3), f is Lipschitz on Σ and U0 ∈ Σ, then

sup
t∈[0,T ]

||U ||20,h +

∫ T

0
‖∇ΓU‖20,h ≤ C

(
T + ‖U0‖20,h

)
; (5.53)

∫ T

0
‖U̇‖20,h + sup

t∈[0,T ]
‖∇ΓU‖20,h ≤ C

(
T + ‖∇ΓU0‖20,h

)
, (5.54)

for all T > 0, where C is a constant independent of T and U0.

Proof. We use an energy argument as in the previous lemma and then use the equivalence
(5.36) between the norms ‖ · ‖h and ‖ · ‖0,h.

Lemma 13 (Stability estimates for the fully-discrete system (5.9)). Let τ > 0. If Un,
n = 0, . . . , NT , is the solution of (5.9), Σ is a bounded invariant region for (5.9), f is Lipschitz
on Σ and U0 ∈ Σ, then

‖Um+1‖20,h + τ
m∑

n=0

‖∇ΓhU
n+1‖20,h ≤ C(‖U0‖0,h + T ); (5.55)

1

τ

m∑

n=0

‖Un+1 −Un‖20,h + ‖∇ΓhU
m+1‖20,h ≤ C(‖∇ΓhU

0‖20,h + T ), (5.56)

for all n = 0, . . . , NT and T > 0, where C is a constant independent of T and U0.

Proof. By summing over the equations in (5.9) and choosing φn = Un+1 we have

1

τ

(
‖Un+1‖2h −

∫

Γh

Ih(Un : Un+1)

)
+ |Un+1|2D,h =

∫

Γh

Ih(f(Un) : Un+1).

After multiplying by τ , Cauchy-Schwarz inequality yields

‖Un+1‖2h + τ |Un+1|D,h ≤ ‖Un+1‖h‖Un‖h + τ‖f(U)n‖h‖Un+1‖h.

Since Un and Un+1 ∈ Σ and f is Lipschitz on Σ, the last term on the right-hand side is
bounded by some constant C > 0: ‖Un+1‖2h + τ |Un+1|D,h ≤ ‖Un+1‖h‖Un‖h + Cτ . Young’s
inequality yields ‖Un+1‖2h + τ |Un+1|2D,h ≤ ‖Un‖2h + Cτ . We sum for n = 0, . . . ,m to obtain

‖Um+1‖2h + τ
m∑

n=0

|Un+1|2D,h ≤ ‖U0‖2h + Cmτ.

By using (5.36), (5.44) and m ≤ NT , (5.55) follows immediately. Summing over the equations
in (5.9) and choosing φn = D(Un+1−Un), since D is constant and positive definite we have

1

τ
‖Un+1 −Un‖2h + ‖D∇ΓhU

n+1‖20,h −
∫

Γh

D∇ΓhU
n+1 : D∇ΓhU

n

≤ C
∫

Γh

Ih(f(Un) : D(Un+1 −Un)).
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The Cauchy-Schwarz inequality yields

1

τ
‖Un+1 −Un‖2h + ‖D∇ΓhU

n+1‖20,h
≤ ‖D∇ΓhU

n+1‖0,h‖D∇ΓhU
n‖0,h + C‖f(Un)‖h‖D(Un+1 −Un)‖h.

Since f is Lipschitz -and thus bounded- on Σ, say maxΣ |f | = C, we can bound the last term
on the right-hand side as follows:

1

τ
‖Un+1 −Un‖2h + ‖D∇ΓhU

n+1‖20,h ≤ ‖D∇ΓhU
n+1‖0,h‖D∇ΓhU

n‖0,h + C‖Un+1 −Un‖h.

Young’s inequality yields

1

τ
‖Un+1 −Un‖2h + ‖D∇ΓhU

n+1‖20,h

≤ 1

2

(
‖D∇ΓhU

n‖20,h + ‖D∇ΓhU
n+1‖20,h

)
+ Cτ +

1

2τ
‖Un+1 −Un‖2h.

Rearranging terms and multiplying by 2 we have

1

τ
‖Un+1 −Un‖2h + ‖D∇ΓhU

n+1‖20,h ≤ ‖D∇ΓhU
n+1‖20,h + Cτ. (5.57)

By summing (5.57) for n = 0, . . . ,m we have

1

τ

m∑

n=0

‖Un+1 −Un‖2h + ‖D∇ΓhU
m+1‖20,h ≤ ‖D∇ΓhU

0‖20,h + Cmτ.

Now, since D is positive definite, by using (5.36) and m ≤ NT , (5.56) finally follows.

In what follows, we adopt the surface Ritz projection considered in [34, 44] to prove the
convergence of the semi- and fully-discrete methods.

Definition 12 (Ritz projection). Given u : [0, T ] → H1(Γ), the Ritz projection of u is the
unique function Ū : [0, T ]→ Vh such that

∫

Γh

∇ΓhŪ · ∇Γhϕ =

∫

Γ
∇Γu · ∇Γϕ

` and

∫

Γh

Ū =

∫

Γ
u ∀ϕ ∈ Vh. (5.58)

It must be observed that this definition is different from the one considered in [41, 89]. The
following error estimates for the Ritz projection can be found in [34, 44].

Theorem 17 (Error estimates for the Ritz projection). Given u : [0, T ] → H2(Γ) such that
u̇ : [0, T ]→ H2(Γ), the error in the Ritz projection satisfies the following bounds

‖u− Ū `‖0 + h‖∇Γ(u− Ū `)‖0 ≤ Ch2‖u‖2; (5.59)

‖u̇− ˙̄U `‖0 + h‖∇Γ(u̇− ˙̄U `)‖0 ≤ Ch2 (‖u‖2 + ‖u̇‖2) . (5.60)

From here onwards, we will denote by Ū the componentwise Ritz projection of a given vector
function u. This entails that the estimates (5.59)-(5.60) still hold in their respective tensor
product norms.
In the following theorems, extracted from [55], we prove asymptotically optimal error bounds
for the LSFEM space discretisation and for the LSFEM-IMEX Euler full discretisation.
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Theorem 18 (Error estimate for the semi-discrete solution (5.3)). Assume that Σ is an
invariant region for (5.2) and (5.3), that f ∈ C2(Σ) and that u0,U0 ∈ Σ. If the solution u
of (5.2) and its time derivative u̇ are L∞([0, T ];H2(Γ)) and ‖u0 − U `

0‖0 ≤ Ch2, then the
following estimate holds

‖u−U `‖0 ≤ C(u, T )h2,

where C(u, T ) is a constant depending on u and T .

Proof. Following [56, Theorem 7], let us write the error as U `−u = (U `− Ū `
) + (Ū

`−u) =:
θ` + ρ`. Since u and u̇ are L∞([0, T ], H2(Γ)), from the error estimates (5.59)-(5.60) for the
Ritz projection and (3.39)-(3.40) we have that

‖ρ‖0,h ≤ C‖ρ `‖0 = C‖Ū ` − u‖0 ≤ Ch2‖u‖2; (5.61)

‖ρ̇‖0,h + h‖∇Γhρ̇‖0,h ≤ Ch2 (‖u‖2 + ‖u̇‖2) . (5.62)

It remains to show the convergence for θ`. For the sake of simplicity, we derive an estimate for
θ in the norm ‖ · ‖h and then we will use (3.39) and (5.36) to estimate ‖θ`‖0. In the weak and
semi-discrete formulations (5.2) and (5.3) we choose the same test functions ϕm, m = 1, . . . , r,
under lifting. By subtracting these two formulations and summing over m = 1, . . . , r, we have

(∫

Γ
u̇ : ϕ` −

∫

Γh

Ih(U̇ : ϕ)

)
+

(∫

Γ
D∇Γu : ∇Γϕ

` −
∫

Γh

D∇ΓhU : ∇Γhϕ

)

=

(∫

Γ
f(u) : ϕ` −

∫

Γh

Ih(f(U) : ϕ)

)
,

(5.63)

Using (3.37) and (5.58) we rearrange the three terms between brackets in (5.63) as follows

1)

∫

Γ
u̇ : ϕ` −

∫

Γh

Ih(U̇ : ϕ)

=

∫

Γ

(
1− 1

δ`h

)
u̇ : ϕ` −

∫

Γh

ρ̇ : ϕ+ εh( ˙̄U ,ϕ)−
∫

Γh

Ih(θ̇ : ϕ);

2)

∫

Γ
D∇Γu : ∇Γϕ

` −
∫

Γh

D∇ΓhU : ∇Γhϕ

=

∫

Γh

D∇ΓhŪ : ∇Γhϕ−
∫

Γh

D∇ΓhU : ∇Γhϕ = −
∫

Γh

D∇Γhθ : ∇Γhϕ;

3)

∫

Γ
f(u) : ϕ` −

∫

Γh

Ih(f(U) : ϕ) =

∫

Γ
f(u) : ϕ` −

∫

Γh

f(u−`) : ϕ+

∫

Γh

f(u−`) : ϕ

−
∫

Γh

Ih(f(u−`) : ϕ) +

∫

Γh

Ih((f(u−`)− f(U)) : ϕ)

=

∫

Γ

(
1− 1

δ`h

)
f(u) : ϕ` + εh(f(u−`),ϕ) +

∫

Γh

Ih((f(u−`)− f(U)) : ϕ).
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By using these relations in (5.63) we obtain
∫

Γh

Ih(θ̇ : ϕ) +

∫

Γh

D∇Γhθ : ∇Γhϕ =

∫

Γh

Ih((f(U)− f(u −`)) : ϕ)

−εh(f(u −`),ϕ)−
∫

Γ

(
1− 1

δ`h

)
f(u) : ϕ` −

∫

Γh

ρ̇ : ϕ

+εh( ˙̄U ,ϕ) +

∫

Γ

(
1− 1

δ`h

)
u̇ : ϕ`.

(5.64)

In (5.64) we choose ϕ = θ. For the first term of (5.64) we observe that
∫

Γh

Ih(θ̇ : θ) =
1

2

d

dt
‖θ‖2h. (5.65)

We estimate the single terms on the right-hand side of (5.64) in turn. By using the Cauchy-
Schwarz inequality, the Lipschitz continuity of f , the definition of θ, (3.39), (5.36) and (5.61),
we have that

∣∣∣∣
∫

Γh

Ih((f(U)− f(u−`)) : θ)

∣∣∣∣ ≤ C‖U − u−`‖h‖θ‖h

≤ C (‖ρ‖0 + ‖θ‖h) ‖θ‖h = C(u)(h2 + ‖θ‖h)‖θ‖h.
(5.66)

By using the estimate (5.37) for εh, (5.38), the regularity assumptions u ∈ L∞([0, T ], H2(Γ))
and f ∈ C2(Σ), and by applying the chain rule to the composite function f(u) it follows that

|εh(f(u−`),θ)| ≤ Ch2‖f(u−`)‖2,h‖θ‖1,h ≤ Ch2‖f(u)‖2‖θ‖1,h
≤ Ch2‖f‖C2(Σ)‖u‖2‖θ‖1 ≤ Ch2‖θ‖1,h.

(5.67)

Since f is Lipschitz over the compact region Σ, then f ∈ L∞(Σ). Hence, by using the
Cauchy-Schwarz inequality, (3.39) and the geometric estimate (3.31) we have

∣∣∣∣
∫

Γ

(
1− 1

δ`h

)
f(u) : θ`

∣∣∣∣ ≤
∥∥∥∥1− 1

δ`h

∥∥∥∥
∞
‖f(u)‖0‖θ`‖0 ≤ Ch2‖θ‖0,h. (5.68)

From the Cauchy-Schwarz inequality, the error estimate (5.62) for ρ̇ and (3.39) we have
∣∣∣∣
∫

Γh

ρ̇ : θ

∣∣∣∣ ≤ C‖ρ̇‖0,h‖θ‖0,h ≤ C(u)h2‖θ‖0,h. (5.69)

From the estimate (5.37) for εh, the estimate (5.62) for ρ̇, (3.39),(3.40), the triangle inequality

and ˙̄U ,θ ∈ Vh we have

|εh( ˙̄U ,θ)| ≤ Ch2‖ ˙̄U‖1,h‖θ‖1,h ≤ Ch2
(
‖ρ̇‖1,h + ‖u̇−`‖1,h

)
‖θ‖1,h

≤ Ch2 (C(u)h+ C‖u̇‖1) ‖θ‖1,h ≤ C(u)h2‖θ‖1,h.
(5.70)

The Cauchy-Schwarz inequality, (3.39), the geometric estimate (3.31) and the stability bound
(5.45) yield

∣∣∣∣
∫

Γ

(
1− 1

δ`h

)
u̇ : θ`

∣∣∣∣ ≤
∥∥∥∥1− 1

δ`h

∥∥∥∥
∞
‖u̇‖0‖θ‖0,h ≤ C(u)h2‖θ‖0,h. (5.71)
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Combining (5.64)–(5.71), using (3.39), (3.40), (5.36) and (5.44), we have

1

2

d

dt
‖θ‖2h +m‖∇Γhθ‖20,h ≤ C(u)

(
h2 + ‖θ‖h

)
‖θ‖1,h ≤ C(u,m)

(
h4 + ‖θ‖2h

)
+m‖θ‖21,h,

where m = min(eig(Ds)). Canceling m‖∇Γhθ‖20,h on both sides and using (5.36), we have

that d
dt‖θ‖2h ≤ C(u)h4 + C(u)‖θ‖2h. Using Grönwall’s lemma, the assumption ‖θ`0‖0 ≤ Ch2,

(5.36) and (3.39), we obtain ‖θ`‖20 ≤ C(u, T )h4, which yields the desired result.

Similarly to the approach employed in [101] and [82], one obtains the following L∞([0, T ], L2(Γ))
error estimate for the fully-discrete solution (5.9) as follows.

Theorem 19 (Error estimate for the fully-discrete solution (5.9)). Assume that Σ is an
invariant region for (5.2) and (5.9), f ∈ C2(Σ) and u0,U0 ∈ Σ. If the solution u of (5.2)
and its time derivative u̇ are L∞([0, T ];H2(Γ)), ü is L∞([0, T ];L2(Γ)) and ‖u0−U `

0‖0 ≤ ch2,
then the following estimate holds

‖un −U `,n‖0 ≤ C(u, T )(h2 + τ), n = 0, . . . , NT ,

where un is the exact solution at time tn := nτ and C(u, T ) is a constant depending on u
and T .

Proof. Following [56, Theorem 8], let us write the error as U `,n−un = (U `,n−Ū `,n
)+(Ū

`,n−
un) =: θ`,n + ρ`,n and the discrete time derivative of any function φ : Γh × [0, T ] → Rr as

∂̄φn := φn−φn−1

τ . Since u and u̇ are L∞([0, T ], H2(Γ)), from (3.39), (3.40), (5.59) and (5.60),
we have that

‖ρn‖0,h ≤ C‖ρ`,n‖0 = C‖Ū `,n − un‖0 ≤ ch2‖un‖2; (5.72)

‖ρ̇n‖0,h + h‖∇Γhρ̇
n‖0,h ≤ ch2(‖un‖2 + ‖u̇n‖2). (5.73)

It remains to show the convergence for θ`,n. To this end, we derive an estimate for θn in the
L2(Γh) norm and then use (3.39) and (5.36) to estimate ‖θ`,n‖0. The continuous problem
(5.2) and the fully-discrete formulation (5.9), the definition of Ritz projection (5.58), and the
relation (3.37), imply that

∫

Γh

Ih(∂̄θn : ϕn) +

∫

Γh

D∇Γhθ
n : ∇Γhϕ

n = −εh(f(u−`,n−1),ϕn)

−
∫

Γ

(
1− 1

δ`h

)
f(un−1) : ϕ`,n +

∫

Γh

Ih((f(Un−1)− f(u−`,n−1)) : ϕn)

+

∫

Γ
(f(un−1)− f(un)) : ϕ`,n −

∫

Γh

∂̄ρn : ϕn + εh(∂̄Ūn,ϕn)

−
∫

Γh

(∂̄ − ∂t)u−`,n : ϕn +

∫

Γ

(
1− 1

δ`h

)
u̇n : ϕ`,n.

(5.74)

In (5.74) we choose ϕn = θn. For the first term in (5.74) we observe that, from Young’s
inequality, ∫

Γh

Ih
(
∂̄θn : θn

)
≥ 1

2τ
(‖θn‖2h − ‖θn−1‖2h). (5.75)
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We estimate the single terms on the right-hand side of (5.74) in turn. From the Cauchy-
Schwarz inequality, the Lipschitz continuity of f , the definition of θn, (5.36) and (5.72), it
follows that ∣∣∣∣

∫

Γh

Ih((f(Un−1)− f(u−`,n−1)) : θn)

∣∣∣∣ ≤ C‖Un−1 − u−`,n−1‖h‖θn‖h

≤ C(‖ρn−1‖0 + ‖θn−1‖h)‖θn‖h ≤ C(u)(h2 + ‖θn−1‖h)‖θn‖h.
(5.76)

From the estimate (5.37) for εh and (5.38), we obtain that

|εh(f(u−`,n−1),θn)| ≤ Ch2‖f(u−`,n−1)‖2,h‖θn‖1,h
≤ Ch2‖f(un−1)‖2‖θn‖1,h ≤ Ch2‖f‖C2(Σ)‖un−1‖2‖θn‖1,h ≤ Ch2‖θn‖1,h,

(5.77)

where we have exploited the regularity assumptions f ∈ C2(Σ) and u ∈ L∞([0, T ], H2(Γ)).
Since f is Lipschitz over the compact region Σ then f ∈ L∞(Σ). This fact, together with
Cauchy-Schwarz inequality, (3.39) and the geometric estimate (3.31), yields

∣∣∣∣
∫

Γ

(
1− 1

δ`h

)
f(un−1) : θ`,n

∣∣∣∣ ≤
∥∥∥∥1− 1

δ`h

∥∥∥∥
∞
‖f(un−1)‖0,h‖θn‖0 ≤ Ch2‖θn‖0,h. (5.78)

The Cauchy-Schwarz inequality yields, together with (3.39) and the stability estimate (5.46),
∣∣∣∣
∫

Γ
(f(un−1)− f(un)) : θ`,n

∣∣∣∣ ≤ C‖un − un−1‖0‖θn‖0,h =

∥∥∥∥∥

∫ tn

tn−1

u̇

∥∥∥∥∥
0

‖θn‖0,h

≤ ‖θn‖0,h
∫ tn

tn−1

‖u̇‖0 ≤ τ‖u̇‖L∞([0,T ],L2(Γ))‖θn‖0,h = C(u)τ‖θn‖0,h.
(5.79)

The Cauchy-Schwarz inequality and the estimate (5.73) for ρ̇ yield
∣∣∣∣
∫

Γh

∂̄ρn : θn
∣∣∣∣ ≤ C‖∂̄ρn‖0,h‖θn‖0,h =

C

τ

∥∥∥∥∥

∫ tn

tn−1

ρ̇

∥∥∥∥∥
0,h

‖θn‖0,h

≤ C

τ
‖θn‖0,h

∫ tn

tn−1

‖ρ̇‖0,h ≤ C‖ρ̇‖L∞([0,T ],L2(Γh))‖θn‖0,h ≤ C(u)h2‖θn‖0,h.
(5.80)

From the estimate (5.37) for εh, the estimate (5.73) for ρ̇, the equivalences (3.39), (3.40), the
triangle inequality and ∂̄Ūn,θn ∈ Vh we obtain

|εh(∂̄Ūn,θn)| ≤ Ch2‖∂̄Ūn‖1,h‖θn‖1,h ≤
Ch2

τ
‖θn‖1,h

∫ tn

tn−1

‖ ˙̄U‖1,h

≤ Ch2‖ ˙̄U‖L∞([0,T ],H1(Γh))‖θn‖1,h (5.81)

≤Ch2
(
‖ρ̇‖L∞([0,T ],H1(Γh))+‖u̇−`‖L∞([0,T ],H1(Γh))

)
‖θn‖1,h

≤ Ch2
(
C(u)h+ C‖u̇‖L∞([0,T ],H1(Γ))

)
‖θn‖1,h ≤ C(u)h2‖θn‖1,h. (5.82)

The Cauchy-Schwarz inequality and (3.39) give rise to the following inequalities
∣∣∣∣
∫

Γh

(∂̄ − ∂t)u−`,n : θn
∣∣∣∣≤C‖(∂̄ − ∂t)un‖0‖θn‖0,h≤

C

τ
‖θn‖0,h

∫ tn

tn−1

‖u̇(t)− u̇(tn)‖0dt

≤ C

τ
‖θn‖0,h

∫ tn

tn−1

∫ tn

t
‖ü(s)‖dsdt ≤ Cτ‖ü‖L∞([0,T ],L2(Γ))‖θn‖0,h=C(u)τ‖θn‖0,h, (5.83)
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where we have exploited the assumption that ü ∈ L∞([0, T ], L2(Γ)). The Cauchy-Schwarz
inequality, (3.39), the geometric estimate (3.31) and the stability bound (5.45) yield

∣∣∣∣
∫

Γ

(
1− 1

δ`h

)
u̇n : θ`,n

∣∣∣∣ ≤
∥∥∥∥1− 1

δ`h

∥∥∥∥
∞
‖u̇n‖0‖θn‖0,h ≤ C(u)h2‖θn‖0,h. (5.84)

Combining (5.74)-(5.84), using (5.36), (5.44) and Young’s inequality we get

1

2τ

(
‖θn‖2h − ‖θn−1‖2h

)
+m‖∇Γhθ

n‖20,h ≤ C(u)
(
h2 + τ + ‖θn−1‖h

)
‖θn‖1,h

≤ C(u,m)
(
h4 + τ2 + ‖θn−1‖2h

)
+m‖θn‖21,h,

(5.85)

where m = min(eig(Ds)), from which, canceling ‖∇Γhθ
n‖0,h on both sides of (5.85), and

using (5.36), we have that

‖θn‖2h ≤ (1 + C(u)τ)‖θn−1‖2h + C(u)τ(h4 + τ2). (5.86)

By recursively applying (5.86), taking into account the assumption that ‖θ0‖0 ≤ Ch2, and
then using (3.39) and (5.36), we obtain ‖θ`,n‖20 ≤ C(u)(h4 + τ2), which yields the desired
result.

In summary, the previous theorems entail that our semi- and fully-discrete schemes exhibit
optimal convergence rates that are quadratic in the mesh size and linear in the timestep.

5.4 Numerical examples

In this section we provide numerical validation of our theoretical results and show that the
LSFEM combined with the IMEX Euler in time:

• preserves the invariant rectangles of RDSs, while the standard SFEM does not (see
Example 1);

• preserves the invariant polytopes of RCDSs, while the standard SFEM does not (see
Example 2);

• exhibits the optimal convergence rate predicted in Theorem 14 (see Example 3);

• the LSFEM can be applied for the approximation of Turing patterns on surfaces, in
good agreement with the results obtained with another method in [62] (see Example 4);

The meshes for our numerical examples have been constructed by using the MATLAB package
DistMesh (see [108]). A-posteriori, we have verified that the generated meshes fulfil the
Delaunay condition (4.15). The linear systems arising at each timestep have been solved with
MATLAB direct solver in the “backslash” command.
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Example 1: preservation of an invariant rectangle of a RDS

In this example we consider the reaction-diffusion system with Rosenzweig-MacArthur kinetics
(see [60, 65]) 



ut − d1∆Γu = au(1− u)− b uv

u+ α
;

vt − d2∆Γv = c
uv

u+ α
− dv,

(5.87)

where α, a, b, c and d are positive constants. The surface considered is the Dupin ring cyclide

Γ :=



(x, y, z) ∈ R3 :

(
x2 + y2 + z2 +

261

100

)2

− 4

(
2x−

√
39

10

)2

− 361

25
y2 = 0



 , (5.88)

(see [59]). This system has been numerically solved in [60] on a planar domain with LFEM in
combination with an implicit Euler time discretisation. However, since the theory developed
in [60] addresses a problem on domains of more general dimension (n ≤ 3) there is no discrete
maximum principle and the authors consider modified kinetics to ensure the positivity of the
numerical solution. The present example shows that, on two dimensional manifolds, lumping
guarantees the preservation of the invariant region without the need of modifying the kinetics.

When c = d and 0 < α < 1√
2

for every 0 < ε < 1− 2
√
a, the rectangle

Σ :=
[
ε, 1
]
×
[
0,
aα

2b

]
(5.89)

is an invariant region for (5.87), see for instance the analysis in [65]. An easy way to see this
is to observe that, for every ε, ε′ > 0, the rectangle

Σ1 :=

[
ε, 1 +

ε′aα
b

]
×
[
−ε′, aα

2b

]

fulfils condition (5.12). Since the intersection of invariant regions is still invariant, hence Σ is
invariant for (5.87). The H1(Γ) initial datum

u0(x, y, z) =

{
ε+ (1− ε)

√
1− y2

0.16 if y2 ≤ 0.16;

0 elsewhere on Γ;

v0(x, y, z) =
aα

2b
, (x, y, z) ∈ Γ,

is contained in the invariant region Σ. Furthermore, for 0 < α < 1, it is easy to verify that,
in Σ, the Lipschitz constants L1 and L2 of the kinetics in (5.87) fulfil

L1 <
√

2

(
3a+

b

2α

)
, and L2 <

√
2

(
c

2α
+
d

2

)
.

In the following we choose ε = 1e-7 while, for the diffusion coefficients and reaction parameters
we set

d1 = d2 = 1e-2, α = 1e-3, a = 10, b = 1e-2, c = d = 1. (5.90)
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With these settings the invariant region (5.89) becomes

Σ = [1e-7, 1]×
[
0,

1

2

]
, (5.91)

and the stability condition (5.35) on the timestep is fulfilled if we choose

τ ≤ τ̄ :=
1√

2 max
{(

3a+ b
2α

)
,
(
c

2α + d
2

)} ≈ 1.4e-3. (5.92)

We thus solve the problem on a sequence of seven spatial meshes Γi, i = 0, . . . , 6 with cor-

responding meshsizes hi with h0 = 1.190 and hi ≈
√

2
−i
h0 for all i = 1, . . . , 6, with a fixed

timestep τ̄ = 1e-3 and final time T = 5. In Tables 5.1-5.2 we show the minima and the
maxima of the components of the computed numerical solution: we observe that the LSFEM
solution preserves Σ, whilst the SFEM one blows-up on all meshes. In Figure 5.1 we show, for
the v component, the SFEM (left) and LSFEM (right) solutions, computed on mesh i = 6, at
the time t̄ := 0.4770 in which the SFEM solution attains its absolute minimum (−5.529). In
Figure 5.1 we set the bounds of the colormap to the endpoints of the invariant region ([0, 0.5])
to highlight the points on the surface in which the SFEM solution violates the region.

Figure 5.1: Example 1: Rosenzweig-MacArthur RDS (5.87) on the Dupin ring cyclide (5.88)
with diffusion coefficients and reaction parameters as in (5.90) and final time T = 5. Com-
ponent v of the numerical solution obtained by SFEM (left) and LSFEM (right) on a mesh
with N = 15552 gridpoints, meshsize h = 0.1531, at the time t̄ = 0.477. The bounds of the
colormap are set to [0, 0.5] to highlight the areas in which the SFEM solution violates the
invariant region (5.91).

Example 2: preservation of an invariant parallelogram of a RCDS

In this example we consider the RCD system with non-dimensional Rosenzweig-MacArthur
kinetics [60, 65] and linear cross-diffusion given by

{
ut − duu∆Γu− duv∆Γv = au(1− u)− b uv

u+α ;

vt − dvu∆Γu− dvv∆Γv = c uv
u+α − dv,

(5.93)

on the unit sphere Γ, where α, a, b, c and d are positive constants.
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i N h min
Γh×[τ,5]

U max
Γh×[τ,5]

U min
Γh×[τ,5]

V max
Γh×[τ,5]

V

0 242 1.190e+00 -2.199e+173 1.670e+169 -1.157e-01 5.159e-01
1 486 8.537e-01 -1.654e+161 2.663e+157 -1.629e+00 7.239e-01
2 986 5.898e-01 -2.788e+254 5.341e+250 -5.002e-01 2.170e+00
3 1950 4.273e-01 -4.164e+174 7.136e+170 -2.448e+00 3.394e+00
4 3866 3.011e-01 -5.784e+215 8.624e+211 -2.816e+00 7.301e+00
5 7766 2.114e-01 -1.961e+158 5.002e+154 -2.472e+01 2.114e+01
6 15552 1.531e-01 -2.891e+178 1.688e+175 -5.529e+01 1.085e+01

Table 5.1: Example 1: Rosenzweig-MacArthur RDS (5.87) on the Dupin ring cyclide (5.88)
with diffusion coefficients and reaction parameters as in (5.90) and final time T = 5. Invariance
analysis for the SFEM solution: the solution blows up on all meshes, hence the SFEM does
not preserve the bounded invariant region (5.91).

i min
Γh×[τ,5]

U max
Γh×[τ,5]

U min
Γh×[τ,5]

V max
Γh×[τ,5]

V

0 1.005e-07 0.999919049314999 0.140403459482026 0.499999499006500
1 1.005e-07 0.999859791592458 0.140314932710790 0.499999500147031
2 1.005e-07 0.999928903829794 0.140311706814337 0.499999500464241
3 1.005e-07 0.999882762800890 0.140311624718897 0.499999500411808
4 1.005e-07 0.999929620790774 0.140311624053878 0.499999500465688
5 1.005e-07 0.999932927703920 0.140311624044096 0.499999500467816
6 1.005e-07 0.999934143729114 0.140311624043996 0.499999500468662

Table 5.2: Example 1: Rosenzweig-MacArthur RDS (5.87) on the Dupin ring cyclide (5.88)
with diffusion coefficients and reaction parameters as in (5.90) and final time T = 5. Invariance
analysis for LSFEM: the numerical solution stays in the invariant rectangle (5.91) for all
meshes. The minima of U coincide up to machine precision.

In the absence of cross-diffusion, this model has been solved in [60] on a planar domain.
To the best of the authors’ knowledge, until now there is no discussion about the existence
of an invariant region at the discrete level. In the present example we show that the IMEX-
LSFEM full discretisation of system (5.93) possesses an invariant parallelogram in the presence
of linear cross-diffusion with no modifications of the kinetics. For the reaction kinetics, we
choose the following parameters

α = 1e-3, a = 10, b = 1e-2, c = 1, d = 2.2. (5.94)

For the diffusion coefficients, we choose

(
duu duv
dvu dvv

)
=

(
6e-2 0
1e-2 1.2e-1

)
. (5.95)
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It is possible to verify that the parallelogram Σ defined by

Σ = {(u, v) ∈ R2 | σl(u, v) ≥ 0, l = 1, . . . , 4}, (5.96)

where the affine functions σl, l = 1, . . . , 4 are given by

σ1(u, v) = u− ε; (5.97)

σ2(u, v) = 6− 5α+
√

(6− 5α)2 + 24α(6− ε)− 12u; (5.98)

σ3(u, v) = u+ 6v − ε; (5.99)

σ4(u, v) = 3 + ε− u− 6v, (5.100)

with ε = 1e-7, is an invariant region for system (5.93). Σ is depicted in Fig. 5.2. The

P

O ε 1

1
2

1

P

Σ

u

v

σ1 = 0 σ2 = 0

σ4 = 0

σ3 = 0

Figure 5.2: Example 2: Rosenzweig-MacArthur RCDS (5.93) on the unit sphere, with reaction
parameters and diffusion coefficients as defined in (5.94) and (5.95), respectively. Pictorial
representation of the invariant parallelogram Σ defined in (5.96). The edges are represented
as the zero-level sets of the functions σi, i = 1, . . . , 4 defined in (5.97)-(5.100), in which we
set ε = 1e-7. The slope of the slanting edges is −1

6 . The corner P lies on the nullcline P of
the kinetic for u.

invariance of Σ means that σl, l = 1, . . . , 4, defined above, are positive for all times after
discretisation. The H1(Γ) initial datum

u0(x, y, z) =

{
ε+ (1− ε)

√
1− x2+y2

r2 if x2 + y2 ≤ r2, z > 0;

ε elsewhere on Γ;
(5.101)

v0(x, y, z) =
aα

3b
, (x, y, z) ∈ Γ, (5.102)
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i N h minΓh×[τ,5] σ1(U) minΓh×[τ,5] σ2(U) minΓh×[τ,5] σ3(U, V ) minΓh×[τ,5] σ4(U, V )

0 126 4.013e-01 -7.503e+271 -4.733e+269 -7.460e+271 -7.730e+268
1 258 2.863e-01 -1.538e+305 -1.935e+303 -1.521e+305 -3.086e+302
2 516 2.026e-01 -1.871e-02 2.198e-02 -4.275e+00 -1.707e+00
3 1062 1.414e-01 -1.704e-02 -1.901e-01 -2.756e-01 -1.588e+00
4 2094 1.007e-01 -1.424e-02 2.198e-02 -8.777e+00 1.613e-02
5 4242 7.082e-02 -1.288e-02 2.198e-02 1.553e-01 -5.531e+00
6 8370 5.041e-02 -9.164e-03 2.198e-02 1.553e-01 -2.390e+00
7 16962 3.542e-02 -6.391e-03 2.198e-02 1.553e-01 7.946e-03

Table 5.3: Example 2: Rosenzweig-MacArthur RCDS (5.93) on the unit sphere, with reaction
parameters and diffusion coefficients as defined in (5.94) and (5.95), respectively, with final
time T = 5. Invariance analysis for the SFEM solution. By solving the problem on a sequence
of eight meshes Γi, i = 0, . . . , 7 with fixed timestep τ = 1e-3, the solution blows up on the five
coarsest meshes. On the three finest meshes the numerical solution stays bounded, though
still violating the invariant parallelogram Σ defined in (5.96) and depicted in Fig. 5.2.

with r = 0.2, is contained in the invariant region Σ. It is easy to verify that, on Σ, the
Lipschitz constants L1 and L2 of the kinetics in (5.93) satisfy

L1 < L̃1 :=
√

2

(
3a+

b

2α

)
≈ 49.4975, and L2 < L̃2 :=

√
2

(
c

2α
+
d

2

)
≈ 708.6624.

The stability condition (5.29) on the timestep is fulfilled if we choose

τ ≤ τ̄ :=
1

max

(
L̃1,
√

1
37 L̃

2
1 + 36

37 L̃
2
2

) ≈ 1.43e-3. (5.103)

We solve the problem with a fixed timestep τ = 1e-3 until the final time T = 5, on a sequence
of eight meshes Γi, i = 0, . . . , 7 with decreasing meshsizes hi ≈ h0

(
√

2)i
, h0 = 4.013e-1, so that,

for all i = 0, . . . , 6, the number of nodal points of Γi+1 is approximately double that of Γi. For
all i = 0, . . . , 7, the minima of σl, l = 1, . . . , 4, defined above are shown in Table 5.3 for SFEM
and in Table 5.4 for LSFEM. We observe that the LSFEM solution is in Σ at all times, whilst
the SFEM solution without lumping escapes Σ on all considered meshes. Furthermore, the
SFEM exhibits a stability threshold: the numerical solution blows up on meshes Γi, i = 0, 1,
while it appears to stay bounded on the finer meshes Γi, i = 2, . . . , 7. It is worth noting that
the timestep restriction (5.103) is only a sufficient condition for the IMEX-LSFEM scheme to
possess an invariant region. In fact, we have carried out the above invariance test with larger
timesteps and we have observed that the IMEX-LSFEM admits Σ as an invariant region on
all meshes Γi also for larger values of τ , that is 1e-3 ≤ τ ≤ 1e-1, while for τ = 0.2, the method
violates Σ on all meshes Γi.

Example 3: RDS and convergence

In this example, we test the convergence rate of the method on the unit sphere Γ for the
well-studied activator-depleted substrate kinetics (see [63, 100, 110, 120]) with an additional
forcing term: {

ut − d1∆Γu = a− u+ u2v + f1(x, y, z, t);

vt − d2∆Γv = b− u2v + f2(x, y, z, t),
(5.104)
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i N h minΓh×[τ,5] σ1(U) minΓh×[τ,5] σ2(U) minΓh×[τ,5] σ3(U, V ) minΓh×[τ,5] σ4(U, V )

0 126 4.013e-01 6.667e-10 2.198e-02 1.619e-01 2.033e-02
1 258 2.863e-01 6.667e-10 2.198e-02 1.568e-01 7.509e-02
2 516 2.026e-01 6.667e-10 2.198e-02 1.556e-01 1.158e-01
3 1062 1.414e-01 6.667e-10 2.198e-02 1.553e-01 8.724e-03
4 2094 1.007e-01 6.667e-10 2.198e-02 1.553e-01 1.496e-02
5 4242 7.082e-02 6.667e-10 2.198e-02 1.553e-01 8.220e-03
6 8370 5.041e-02 6.667e-10 2.198e-02 1.553e-01 1.326e-02
7 16962 3.542e-02 6.667e-10 2.198e-02 1.553e-01 8.201e-03

Table 5.4: Example 2: Rosenzweig-MacArthur RCDS (5.93) on the unit sphere, with reaction
parameters and diffusion coefficients as defined in (5.94) and (5.95), respectively, with final
time T = 5. Invariance analysis for the LSFEM solution. By solving the problem on a
sequence of eight meshes Γi, i = 0, . . . , 7 with fixed timestep τ = 1e-3, the solution stays
in the invariant parallelogram Σ defined in (5.96) and depicted in Fig. 5.2 on all considered
meshes.

where the functions f1(x, t) and f2(x, t) are chosen in such a way that the exact solution is
known at all times. Although this example is beyond the scope of the present work, due to
the space and time dependence of the reaction terms, we include it merely as a numerical
test. For the reaction parameters and the diffusion coefficients, we choose

a = 1, b = 1, d1 =
1

6
, d2 =

1

12
. (5.105)

Moreover, we choose the following forcing terms

f1(x, y, z, t) = xye−t(1 + x2y2e−2t)− 1, f2(x, y, z, t) = −x3y3ze−t − 1; (5.106)

and the following initial condition

u0(x, y, z) = xy, v0(x, y, z) = −xyz, (x, y, z) ∈ Γ; (5.107)

such that the exact solution is given by

u(x, y, z, t) = xye−t, v(x, y, z, t) = −xyze−t, (x, y, z) ∈ Γ, t ≥ 0. (5.108)

We solve the problem on the same sequence of meshes and timesteps considered in Example
1, with final time T = 1, for both the SFEM and the LSFEM, where the contributions due to
the forcing terms fk, k = 1, 2 are approximated with the standard and the lumped quadrature
rule given by

∫

Γh

Ih(fk)χi, and

∫

Γh

Ih(fkχi), i = 1, . . . , N,

respectively. We observe that the standard quadrature rule is exact for piecewise linear
functions, whilst the lumped one is only exact when the product of the functions is piecewise
linear. For this reason, the LSFEM is expected to produce larger errors than the SFEM.
The L2 errors and experimental convergence rates are plotted in Figure 5.3 together with
the LSFEM solution obtained on the finest mesh at the final time T = 1. As expected,
the LSFEM exhibits slightly larger errors than the SFEM. Nonetheless, they have the same
convergence rate, in agreement with our theoretical findings.
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Figure 5.3: Example 3: RDS with activator-depleted kinetics (5.104) on the unit sphere with
reaction parameters and diffusion coefficients as in (5.105), forcing terms (5.106), initial da-
tum (5.107) and final time T = 1, solved on a mesh with N = 16962 nodes and timestep
τ = 1.6e-3. Top row: the u-component of the LSFEM solution at the final time T = 1
and its corresponding planar projection through spherical coordinates. Bottom row: conver-
gence analysis of the SFEM and LSFEM. As predicted, the LSFEM retains the quadratic
convergence rate of the SFEM.

Example 4: RCDS and pattern formation

In this example, we solve the RCDS with Rosenzweig-MacArthur kinetics in (5.93) with the
following diffusion coefficients

(
duu duv
dvu dvv

)
=

(
100 100
400 500

)
; (5.109)

and the following reaction parameters

α =
11

15
, a = 1, b =

2

3
, c =

2

30
, d =

11

1000
. (5.110)

The final time is T = 50. This choice is equivalent, by rescaling time, to the parameter
choice in Fig. 4A of [62] and leads to Turing instability, as proven therein. The initial
condition is a spatially random perturbation, of amplitude 1e-5, of the homogeneous steady
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state (u∗, v∗) :=
(
dα
c−d ,

a
b (1− dα

c−d)(α+ dα
c−d)

)
= (0.1935, 1.0406). Since, in [62], the problem

is solved on the square [0, 200]2, we consider a sphere of the same area, thus with radius
R = 100√

π
. We solve the system with SFEM and LSFEM on a mesh with N = 16962 gridpoints

and timestep τ = 1e-2. The solutions at the final time T = 50 are shown in Fig. 5.4(a) for
SFEM and in Fig. 5.4(b) for LSFEM, respectively. We observe that (i) starting from the same
initial datum, SFEM and LSFEM exhibit almost the same final pattern and (ii) with SFEM
and LSFEM, we obtain the same kind of patterns obtained in [62] by using finite differences
in space (on the planar domain).

(a) SFEM

(b) LSFEM

Figure 5.4: Example 4: Rosenzweig-MacArthur RCDS (5.93) on a sphere with radius R = 100√
π

with diffusion coefficients (5.109), reaction parameters (5.110) and final time T = 50, solved
on a triangular mesh of N = 16962 gridpoints, with timestep τ = 1e-2. The picture shows
the u-component of the SFEM (top row) and LSFEM (bottom row) numerical solutions at
the final time T = 50. The planar deployments of the numerical solutions, through spherical
coordinates (φ, ψ), are shown on the right side of each panel.
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5.5 Conclusions

We have presented a LSFEM spatial discretisation and a LSFEM-IMEX Euler full discretisa-
tion of RCDSs on C2 surfaces without boundary. Both discretisations preserve the invariant
regions of the continuous PDE problem at the spatially- and fully discrete levels with no
restriction on the meshsize. A timestep restriction depending on the Lipschitz constants of
the kinetics is required at the fully discrete level, only.
In the next chapter we extend the LSFEM to solve RDSs on evolving surfaces and we prove
sufficient conditions, that account for surface evolution, for the existence of invariant regions
at the spatially and fully discrete levels.
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Chapter 6

Linear heat equation and
reaction-diffusion systems on
evolving surfaces

6.1 Introduction

In this chapter we consider RDSs on surfaces which may be time-dependent, namely RDSs on
evolving surfaces. RDSs on evolving surfaces arise from the mathematical modelling of numer-
ous phenomena, among which we mention brain growth [85], cell migration [14], chemotaxis
[46], developmental biology [92], and phase field modeling [136]. The growing interest toward
PDEs on evolving surfaces has stimulated the development of several numerical methods for
such problems, among which we mention embedding methods [12], kernel methods [59], sur-
face finite element methods (SFEM) [40] and some of their recent variations and extensions
[48, 56, 58, 66, 78, 127].

As well as for the case of RDSs on stationary surfaces, we care about existence of invariant
regions. Once again, for scalar equations, the well-known notion of maximum principle is
equivalent to the invariance of all the regions of the form [0,M ], M > 0. As mentioned in the
previous chapter, for RDSs on a stationary surface, sufficient conditions have been found for a
region to be invariant at the continuous level, see [125]. To the best of the authors’ knowledge,
the extension of these results to RDSs on evolving surfaces has not been considered in the
literature. In this chapter we will focus on surfaces that evolve according to a prescribed
material velocity field.

From a numerical point of view, it is interesting to understand if the invariant regions of
the continuous problem are preserved under discretisation. In the previous chapter, based on
our recent publications [55, 56] we proved that, for RDSs and RCDSs on stationary surfaces,
the LSFEM, combined with the IMEX Euler method, preserves the invariant regions of the
continuous problem. The purpose of the present chapter, based on an unpublished manuscript,
is to extend these results to the case of evolving surfaces, in particular (i) we prove a semi-
and a fully-discrete maximum principle for the heat equation with a linear source term and
(ii) we provide sufficient conditions under which a region is invariant at the semi- and fully-
discrete levels when a lumped evolving surface finite element method (LESFEM) and an IMEX
Euler timestepping are considered. In particular we quantify the impact of surface evolution
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(measured through the dilation rate) on the existence of invariant regions and we find that
surface growth or contraction respectively fosters or inhibits the invariance of a given region
in the phase-space.

Crucial in our analysis is the assumption that the mesh preserves the Delaunay property
under evolution, which is not true for an arbitrary surface evolution law. A class of surface
evolution laws for which the Delaunay property is automatically preserved is that of isotropic
growth [93], which has biological applications [27, 86, 111, 117]. To the best of the authors’
knowledge, an adaptive strategy for the preservation of the Delaunay property under a generic
evolution law is still an open problem. An attempt in this direction is the work in [77]. For
the special case of isotropic growth, we provide fully practical sufficient conditions for the
existence of invariant regions at the semi- and fully-discrete levels. As an application of our
general theory, we classify some classes of invariant regions, depending on the growth rate of
the evolving surface, for two well-known RD models in the literature: the activator-depleted
(or Schnakenberg, also known as the Brusselator model) and the Thomas models. Finally,
we provide two numerical examples. In the first example we experimentally show that the
LESFEM-IMEX Euler method, applied to the heat equation with a linear source term on
a linearly growing sphere, exhibits optimal convergence rates in space and time. In the
second example we consider the Thomas RDS on an exponentially growing Dupin ring cyclide
thereby showing (i) the existence of invariant regions for the fully discretised model and (ii)
the violation of this region in the absence of mass lumping.

The chapter is structured as follows. First, in Section 6.2 we recall (i) the derivation
of RDSs on evolving surfaces and (ii) some basic notions about invariant regions and we
introduce the notion of dilation rate, which is crucial in our analysis. In Section 6.3 we
introduce the LESFEM for the space discretisation of RDSs on evolving surfaces and we
carry out a fully-discrete scheme using the IMEX Euler timestepping. Section 6.4 deals with
the characterisation of the dilation rate in terms of the material velocity. In particular, we
compute exactly the dilation rate for the class of isotropic growth laws. In Section 6.5 we
prove a semi- and a fully-discrete maximum principle for the linear heat equation on evolving
surfaces with a linear source term. We prove, in Section 6.6, sufficient conditions for the
existence of invariant regions for RDSs of arbitrarily many equations on evolving surfaces at
the semi- and fully discrete levels. Section 6.7 presents some classes of invariant regions for
the activator-depleted, the Thomas, the DIB and the Hodgkin-Huxley RD models on evolving
surfaces, respectively. Numerical examples are presented in Section 6.8. Finally, in Section
6.9 we conclude and discuss our findings with an eye for future extensions of the present work.

6.2 Reaction-diffusion equations on an evolving surface

6.2.1 Preliminaries and basic results

In analogy with Definition 1 in Chapter 2 -with the bare addition of time dependence- let
T > 0 be the final time and, for t ∈ [0, T ], let Γ(t) be a C2 orientable surface in R3, represented
as the zero-level set of a signed distance function d ∈ C1([0, T ], C2(R3)), i.e. Γ(t) = {x ∈
R3 | d(x, t) = 0}, with ∇d(x, t) 6= 0 for t ∈ [0, T ] and x ∈ Γ(t). Hence, the outward unit
normal vector field on Γ(t) is given by

n(x, t) :=
∇d(x, t)

‖∇d(x, t)‖ , t ∈ [0, T ], x ∈ Γ(t), (6.1)
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where ‖ · ‖ denotes the Euclidean norm in R3. Following [40, Section 5], we assume that there
exists a mapping G : Γ(0)× [0, T ]→ R3, G ∈ C1([0, T ], C2(Γ(0))), such that for all t ∈ [0, T ],
G(Γ(0), t) = Γ(t) and G(·, t) is a diffeomorphism between Γ(0) and Γ(t). The space-time
surface GT is defined by GT :=

⋃
t∈[0,T ] Γ(t)× {t}. The material velocity v : GT → R3 of Γ(t)

is defined by

v(G(x0, t), t) =
∂G

∂t
(x0, t), x0 ∈ Γ(0), t ∈ [0, T ]. (6.2)

Vice-versa, if ṽ ∈ C1([0, T ], C2(R3)) is an extension of v, i.e. ṽ(G(x0, t), t) = v(G(x0, t), t)
for x0 ∈ Γ(0) and t ∈ [0, T ], the mapping G (and thus the time-dependent surface Γ(t)) is
recovered by solving, for each x0 ∈ Γ(0), the Cauchy problem





∂G

∂t
(x0, t) = ṽ(G(x0, t), t), t ∈ [0, T ];

G(x0, 0) = x0.
(6.3)

For t ∈ [0, T ] and δ > 0, let Uδ(t) be the open neighbourhood of Γ(t) defined by

Uδ(t) := {(x, t) ∈ R3 × [0, T ] : |d(x, t)| < δ}. (6.4)

In the following, we will write Γ instead of Γ(t) to simplify the notation. Furthermore, let
∂•g denote the material derivative of g defined by

∂•g :=
∂g̃

∂t
+ v · ∇g̃, (6.5)

where ∇ is the standard gradient in R3 and g̃ is any differentiable extension of g defined on a
neighborhood of GT . Definition (6.5) is intrinsic, i.e. it does not depend on the choice of the
extension g̃ (see [41] for further details). The analysis of RDSs on evolving surfaces requires
suitable function spaces, the evolving Bochner spaces, introduced in [2].

Definition 13 (Bochner spaces on evolving surfaces, see [2]). Let Γ(t), t ∈ [0, T ], be an
evolving surface as defined in Section 6.2.1. For t ∈ [0, T ], let B(t) be either H1(Γ(t) or
H−1(Γ(t)). The evolving Bochner spaces L2([0, T ];B(t)) and L∞([0, T ];B(t)) are defined by

L2([0, T ];B(t)) =

{
f : [0, T ]→ B(t)

∣∣∣∣
∫ T

0
‖f(t)‖2B(t)dt < +∞

}
;

L∞([0, T ];B(t)) =

{
f : [0, T ]→ B(t)

∣∣∣∣∣ ess sup
t∈[0,T ]

‖f(t)‖B(t) < +∞
}
,

respectively. These spaces are Banach spaces with the respective norms

‖f‖L2([0,T ];B(t)) :=

(∫ T

0
‖f(t)‖2B(t)dt

) 1
2

, f ∈ L2([0, T ];B(t));

‖f‖L∞([0,T ];B(t)) := ess sup
t∈[0,T ]

‖f(t)‖B(t), f ∈ L∞([0, T ];B(t)).

Let us recall some basic results from [40].
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Lemma 14 (Integration by parts). If g ∈ L2([0, T ];H1(Γ(t))), it holds that
∫

∂Γ(t)
g · µ =

∫

Γ(t)
∇Γ · g −

∫

Γ(t)
(g · n)(∇Γ · n), t ∈ [0, T ], (6.6)

where µ : ∂R(t) → R3 is the outward conormal unit vector on ∂R(t), i.e. normal to ∂R(t)
and tangent to R(t). Specifically, if g is tangent to Γ, i.e. g · n = 0, it holds that

∫

∂Γ(t)
g · µ =

∫

Γ(t)
∇Γ · g, t ∈ [0, T ]. (6.7)

Lemma 15 (Transport formula). If g ∈ L2([0, T ];H1(Γ(t))) is such that
∂•g ∈ L2([0, T ];H−1(Γ(t))), then it holds that

d

dt

∫

Γ(t)
g =

∫

Γ(t)
(∂•g + g∇Γ · v) , t ∈ [0, T ]. (6.8)

Remark 14 (Surfaces without boundary). Lemma 14 holds on surfaces with or without
boundary, i.e. ∂Γ(t) 6= ∅ or ∂Γ(t) = ∅, respectively. Specifically, if ∂Γ(t) = ∅, then the
boundary integral in (6.7), vanishes.

6.2.2 Derivation of the reaction-diffusion model in strong form

Suppose we are given r ∈ N species uk : Γ(t) → R, k = 1, . . . , r, and let qk : Γ(t) → R3,
k = 1, . . . , r, be their fluxes tangent to Γ(t). We recall from [6] the derivation of a system
of r equations for u := (u1, . . . , ur) that accounts for (i) the diffusion on the surface, (ii) the
flux across the boundary (if non-empty) and (iii) the (possibly nonlinear) production rates
fk(u), k = 1, . . . , r, of the given species. To this end, let R(0) be a portion of Γ(0) and
let R(t) = G(R(0), t) be the portion of Γ(t) corresponding to the initial portion R(0). We
consider a mass balance on R(t) of the form

d

dt

∫

R(t)
uk = −

∫

∂R(t)
qk · µ+

∫

R(t)
fk(u), k = 1, . . . , r, t ∈ [0, T ]. (6.9)

Since the fluxes qk, k = 1, . . . , r, are tangent to Γ(t), we can apply the integration-by-parts
formula (6.7) to the first term on the right hand side of (6.9). Then (6.9) becomes

d

dt

∫

R(t)
uk = −

∫

R(t)
∇Γ · qk +

∫

R(t)
fk(u), k = 1, . . . , r, t ∈ [0, T ]. (6.10)

By applying the transport formula (6.8) to the left hand side of (6.10), we obtain
∫

R(t)
(∂•uk + uk∇Γ · v +∇Γ · qk) =

∫

R(t)
fk(u), k = 1, . . . , r, t ∈ [0, T ], (6.11)

where v is the material velocity defined in Section 6.2.1. Since R(t) is an arbitrary portion,
we conclude that

∂•uk + uk∇Γ · v +∇Γ · qk = fk(u), k = 1, . . . , r, t ∈ [0, T ]. (6.12)
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We assume qk corresponds to a diffusive flux according to Fick’s law as follows:

qk = −dk∇Γuk, k = 1, . . . , r, (6.13)

where dk, k = 1, . . . , r, are positive diffusivity constants. By inserting (6.13) into (6.12), we
end up with the reaction-diffusion system of the form

∂•uk + uk∇Γ · v = dk∆Γuk + fk(u), k = 1, . . . , r, t ∈ [0, T ]. (6.14)

6.2.3 Invariant regions and maximum principle

In this section we recall basic notions concerning invariant regions for systems of the form
(6.14) and conjecture a sufficient condition under which system (6.14) possesses an invariant
region. To this end, we give the following definitions.

Definition 14 (Dilation rates). The minimum and maximum instantaneous dilation rates
are defined by

H∗min(t) := min
x∈Γ(t)

∇Γ · v(x, t) and H∗max(t) := max
x∈Γ(t)

∇Γ · v(x, t), t ∈ [0, T ],

(6.15)

respectively. When the minimum and maximum instantaneous dilation rates coincide, we call
H∗(t) := H∗min(t) = H∗max(t) the instantaneous dilation rate. The minimum and maximum
global dilation rates are defined by

µ∗min := min
t∈[0,T ]

H∗min(t) and µ∗max := max
t∈[0,T ]

H∗max(t), (6.16)

respectively. When the minimum and maximum global dilation rates coincide, we call µ∗ :=
µ∗min = µ∗max the global dilation rate.

As in the previous chapter, we are interested in invariant regions for the RDS (6.14). The
definition 11 of invariant regions holds unchanged in the case of evolving surfaces considered
here. For scalar RDSs (r = 1), we consider the following notions of maximum and minimum-
maximum principles.

Definition 15 (Maximum and minimum-maximum principles). Consider the scalar case r =
1 in the RDS (6.14) in strong formulation, let u(x, t) be its solution. The minimum-maximum
principle holds if, for any initial condition u(·, 0), the solution fulfils

min

{
0, min
y∈Γ(0)

u(y, 0)

}
≤ u(x, t) ≤ max

{
0, max
y∈Γ(0)

u(y, 0)

}
, (x, t) ∈ GT . (6.17)

For nonnegative initial conditions u(·, 0) ≥ 0, the minimum-maximum principle reduces to
the following: maximum principle:

0 ≤ u(x, t) ≤ max
y∈Γ(0)

u(y, 0), (x, t) ∈ GT . (6.18)
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The above definition of maximum and minimum-maximum principles is analogous to the one
considered in the case of stationary surfaces (see Definition 10 and Remark 8), but includes
the time-dependence of Γ. As well as in the case of stationary surfaces, the maximum and
minimum-maximum principles can be regarded in terms of invariant regions, see Remark 12.

We focus our attention on regions Σ ⊂ Rr of hyper rectangular shape, that is to say of the
form

Σ :=
r∏

k=1

[σk, σk], (6.19)

where σk ∈ R ∪ {−∞} and σk ∈ R ∪ {+∞} for all k = 1, . . . , r. For instance, if σk = 0 and
σk = +∞ for all k = 1, . . . , r, then Σ is the positive orthant in Rr, which means that the
solution of the RDS stays positive at all times. Consider the (r − 1)-dimensional hyperfaces

Σk := Σ ∩ {uk = σk}, Σk := Σ ∩ {uk = σk}, k = 1, . . . , r.

For k = 1, . . . , r, we define the constants

µ∗k :=

{
µ∗min if σk ≥ 0;

µ∗max if σk < 0,
µ∗
k

:=

{
µ∗max if σk ≥ 0;

µ∗min if σk < 0,
(6.20)

where µ∗min and µ∗max are defined in (6.16).

Next, we conjecture a criterion under which a hyper-rectangle is invariant for system (6.14).
This criterion holds true in the stationary cases (when µ∗ = 0): (i) when Γ is a stationary
monodimensional domain in R (see [123]), (ii) when Γ is a stationary k-dimensional domain in
Rk, k ∈ N (see [25]) and (iii) when Γ is a stationary Riemannian manifold without boundary
(see [125]). In the case of isotropically evolving flat domains, the invariance of the positive
orthant was studied in [134]. To the best of the author’s knowledge, the case of evolving
surfaces has not been studied at the continuous level. Hence, we introduce at the continuous
level the following conjecture.

Conjecture 1. Let Σ be a hyper-rectangle as in (6.19) in the phase space of (6.14) and let
f be Lipschitz on Σ. If

fk(u) < µ∗kσk, u ∈ Σk ∩ Rr, k = 1, . . . , r; (6.21)

fk(u) > µ∗
k
σk, u ∈ Σk ∩ Rr, k = 1, . . . , r, (6.22)

then Σ is an invariant region for (6.14). In particular, when σk = +∞ and σk = −∞,
then Σk ∩Rr and Σk ∩Rr are respectively empty, and so (6.21) and (6.22) are automatically
fulfilled, respectively.

Notice that on stationary surfaces, since µ∗k = µ∗
k

= 0, then conditions (6.21)-(6.22) reduce to
the inward flux condition considered in [125, Chapter 4]. In the next Section 4, we will prove
the discrete counterpart of Conjecture 1 obtained by discretising the RDS in space with the
lumped version of the ESFEM method [40] and IMEX Euler in time.
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6.2.4 Derivation of the variational formulation

Following [6], we derive the variational formulation of system (6.14). To this end, for each
t ∈ [0, T ] we multiply the equations of(6.14) by respective test functions ϕ1, . . . , ϕr ∈
L2([0, T ];H1(Γ(t))) with ∂•ϕ1, . . . , ∂

•ϕr ∈ L2([0, T ];H−1(Γ(t))) and integrate over Γ(t):
∫

Γ(t)
(ϕk∂

•uk + ϕkuk∇Γ · v − ϕkfk(u)) = dk

∫

Γ(t)
ϕk∆Γuk, (6.23)

for all k = 1, . . . , r. By applying the Green formula (2.7) to the right hand side of (6.23) we
obtain∫

Γ(t)
(ϕk∂

•uk +ϕkuk∇Γ · v−ϕkfk(u)) + dk

∫

Γ(t)
∇Γϕk · ∇Γuk = dk

∫

∂Γ(t)
ϕk∇Γuk ·µ, (6.24)

for all k = 1, . . . , r. We assume that either Γ(t) has no boundary, i.e. ∂Γ(t) = ∅, or ho-
mogeneous Neumann boundary condition are enforced, i.e. ∇Γuk · µ = 0 on ∂Γ(t), so
that the last term in (6.24) vanishes (see Remark 14). Furthermore, by observing that
∂•(ϕkuk) = ϕk∂

•uk + uk∂
•ϕk, (6.24) becomes

∫

Γ(t)
∂•(ϕkuk) =

∫

Γ(t)
(uk∂

•ϕk − ϕkuk∇Γ · v + ϕkfk(u))− dk
∫

Γ(t)
∇Γϕk · ∇Γuk, (6.25)

for all k = 1, . . . , r. By applying the transport property to the first term on the left hand side
of (6.25), we have

d

dt

∫

Γ(t)
ϕkuk −

∫

Γ(t)
uk∂

•ϕk =

∫

Γ(t)
ϕkfk(u)− dk

∫

Γ(t)
∇Γϕk · ∇Γuk, (6.26)

for all k = 1, . . . , r. Therefore, the variational formulation seeks to find u1, . . . , ur ∈
L2([0, T ];H1(Γ(t))) with ∂•u1, . . . , ∂

•ur ∈ L2([0, T ];H−1(Γ(t))) such that, for each t ∈ [0, T ],

d

dt

∫

Γ(t)
ukϕk −

∫

Γ(t)
uk∂

•ϕk + dk

∫

Γ(t)
∇Γuk · ∇Γϕk =

∫

Γ(t)
fk(u)ϕk, (6.27)

for all ϕ1, . . . , ϕr ∈ L2([0, T ];H1(Γ(t))) with ∂•ϕ1, . . . , ∂
•ϕr ∈ L2([0, T ];H−1(Γ(t))).

6.3 Lumped evolving surface finite element method

Following the evolving surface finite element method (ESFEM) studied in [6] for the ap-
proximation of the variational problem (6.27), and extending to evolving surfaces the LSFEM
presented in the previous chapter, we present a lumped evolving surface finite element method
(LESFEM).

6.3.1 Surface triangulation and some definitions

Following [38], given h > 0, called meshsize, a triangulation Γh(t) of the evolving surface Γ(t)
is defined by

Γh(t) =
⋃

Z(t)∈Zh(t)

Z(t),

where Zh(t) is a set of evolving triangles, with xi(t), i = 1, . . . , N ∈ N, being the overall
evolving nodes, such that
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• The nodes evolve with the exact material velocity, i.e. ẋi(t) = v(xi(t), t) for t ∈ [0, T ]
and i = 1, . . . , N ;

• For all t ∈ [0, T ] and for any two distinct triangles Z1(t) and Z2(t) in Zh(t), the inter-
section Z1(t) ∩ Z2(t) is either empty, or a node, or a complete edge;

• For all t ∈ [0, T ] and Z(t) ∈ Zh(t), Z(t) ⊂ U(t), where U(t) is the Fermi stripe of Γ(t)
as defined in Lemma 1;

• For all t ∈ [0, T ], the normal projection a(·, t) : Uδ(t) → Γ(t) defined in Lemma 1 is a
one-to-one mapping between Γh(t) and Γ(t), i.e. a(Γh(t), t) = Γ(t).

Notice that, for the special case of stationary surfaces, i.e. v(x, t) = 0 for all (x, t) ∈ R3 ×
[0, T ], the above definition of evolving triangulations reduces to the definition of stationary
triangulations given in Section 2.5.1. We assume that, for each t ∈ [0, T ], Γh(t) meets the
Delaunay condition (4.15). This assumption does not hold true for arbitrary evolution laws,
but it does for any isotropic growth law, as we will show in a later section. The space-time
triangulated surface Gh,T is defined by

Gh,T :=
⋃

t∈[0,T ]

Γh(t)× {t}.

Since Γh(t) is piecewise planar, there exists a time-differentiable mapping Gh : Γh(0)×[0, T ]→
R3 such that, for all t ∈ [0, T ], Gh(Γh(0), t) = Γh(t) and, for every facet Z ∈ Zh, Gh(·, t) is a
diffeomorphism between Z(0) and Z(t).
For a fixed time t ∈ [0, T ], let Vh(t) be the space of piecewise linear functions on Γh(t) defined
by

Vh(t) := {ϕ ∈ C0(Γh(t)) | ϕ|Z is linear affine for each Z ∈ Zh}. (6.28)

Let Vh be the space of time-dependent, spatially piecewise linear functions defined by

Vh := {ϕ : Gh,T → R | ϕ(·, t) ∈ Vh(t) for each t ∈ [0, T ]}. (6.29)

Given t ∈ [0, T ] and a function η ∈ C0(Γh(t)), its linear interpolant Ihη is the unique function
in Vh(t) such that

Ihη(xi(t)) = η(xi(t)), i = 1, . . . N.

The discrete material derivative of a sufficiently smooth function U ∈ Vh is defined by

∂•hU :=
∂U

∂t
+ Ih(v) · ∇U, (x, t) ∈ Gh,T ,

where v is the material velocity. For our purposes, we define the discrete counterpart of the
dilation rates introduced in Definition 14.

Definition 16 (Discrete dilation rates). The minimum and maximum discrete instantaneous
dilation rates are defined by

Hmin(t) := essinfx∈Γh(t)∇Γh · Ih(v)(x, t), t ∈ [0, T ]; (6.30)

Hmax(t) := esssupx∈Γh(t)∇Γh · Ih(v)(x, t), t ∈ [0, T ], (6.31)
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respectively. When the minimum and maximum discrete instantaneous dilation rates coincide,
we call H(t) := Hmin(t) = Hmax(t) the discrete instantaneous dilation rate. The minimum
and maximum discrete global dilation rates are defined by

µmin := min
t∈[0,T ]

Hmin(t), µmax := max
t∈[0,T ]

Hmax(t), (6.32)

respectively. When the minimum and maximum discrete global dilation rates coincide, we call
µ := µmin = µmax the discrete global dilation rate.

For every i = 1, . . . , N , the i-th Lagrange basis function χi is the unique Vh function such
that

χi(xj(t), t) = δij , t ∈ [0, T ], i, j = 1, . . . N, (6.33)

where δij is the usual Kronecker symbol. The components U1, . . . , Ur ∈ Vh of the spatially
discrete solution may be expressed in the Lagrange basis as

Uk(x, t) =

N∑

i=1

ξk,i(t)χi(x, t), (x, t) ∈ Gh,T , k = 1, . . . , r. (6.34)

6.3.2 Preliminary results on triangulated surfaces

We recall from [38] the following property of the basis functions.

Lemma 16 (Transport property of the basis functions). The basis functions χi, i = 1, . . . , N ,
defined in (6.33) fulfil

∂•hχi = 0, i = 1, . . . , N. (6.35)

Hence, for the functions Uk, k = 1, . . . , r defined in (6.34) it holds that

∂•hUk(x, t) =

N∑

i=1

ξ̇k,i(t)χi(x, t), (x, t) ∈ Gh,T , k = 1, . . . , r. (6.36)

We recall from [40, Lemma 5.6 and Remark 5.7] the following preliminary result.

Lemma 17 (Leibniz formula on triangulated surfaces). For any time-differentiable U, V ∈ Vh,
it holds that

d

dt

∫

Γh(t)
UV =

∫

Γh(t)
∂•UV +

∫

Γh(t)
U∂•V +

∫

Γh(t)
UV∇Γh · Ih(v). (6.37)
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6.3.3 Lumped evolving surface finite element method

The lumped evolving surface finite element method (LESFEM), applied to the variational
formulation (6.27), seeks to find U1, . . . , Ur ∈ Vh such that

d

dt

∫

Γh(t)
Ih(Ukχi)−

∫

Γh(t)
Uk∂

•
hχi + dk

∫

Γh(t)
∇ΓhUk · ∇Γhχi =

∫

Γh(t)
Ih(fk(U)χi), (6.38)

for all k = 1, . . . , r and i = 1, . . . , N . Thanks to the transport property (6.35) of the basis
functions, formulation (6.38) is equivalent to: find U1, . . . , Ur ∈ Vh such that

d

dt

∫

Γh(t)
Ih(Ukχi) + dk

∫

Γh(t)
∇ΓhUk · ∇Γhχi =

∫

Γh(t)
Ih(fk(U)χi), (6.39)

for all k = 1, . . . , r and i = 1, . . . , N . The LESFEM method (6.39) differs from the evolving
surface finite element method (ESFEM) in [6] due to the presence of the interpolant operator
on the first and the last terms in (6.39). By expressing U1, . . . , Ur according to (6.34), the
matrix form of (6.39) is

d

dt
(Mξk) + dkAξk = Mfk(ξ1, . . . , ξr), k = 1, . . . , r, (6.40)

where A and M are the (time-dependent) stiffness and lumped mass matrices defined by

Aij(t) =

∫

Γh(t)
∇Γhχi · ∇Γhχj , i, j = 1, . . . , N ;

Mij(t) =

∫

Γh(t)
Ih(χiχj) =

{∫
Γh(t) χi if i = j;

0 if i 6= j,
i, j = 1, . . . , N,

for t ∈ [0, T ], respectively. Notice that the lumped mass matrix M(t) is diagonal. The
Delaunay condition (4.15) holds iff

Aij(t) ≤ 0, i 6= j, t ∈ [0, T ]. (6.41)

Since, for all t ∈ [0, T ], M(t) is diagonal, we obtain the following time-dependent counterparts
of relations (4.18)-(4.19):

(M + sA)−1M(t) ≥ 0, s ≥ 0, t ∈ [0, T ]; (6.42)

(M + sA)−1M(t)1 = 1, s ≥ 0, t ∈ [0, T ], (6.43)

see Section 4.5.1 for the derivation.

6.3.4 Time discretisation

We are now concerned with the time discretisation of the spatially discrete system (6.40)
arising from the LESFEM. We discretise system (6.40) by means of the IMEX Euler method,
i.e by treating diffusion implicitly and reaction terms explicitly. To this end, let τ > 0 be a
timestep, let tn := nτ for all n = 0, . . . , NT with NT =

⌊
T
τ

⌋
, let An and Mn be the stiffness

and lumped mass matrices at time tn, respectively, let (ξn1 , . . . , ξ
n
r ) be the coefficients of the
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numerical solution at time tn, and let fnk := fk(ξ
n
1 , . . . , ξ

n
n) for each k = 1, . . . , r. If (ξ0

1, . . . , ξ
0
r)

are the coefficients of the spatially discrete initial datum, the IMEX Euler time discretisation
of (6.40) is

Mn+1ξn+1
k −Mnξnk
τ

+ dkA
n+1ξn+1

k = Mnfnk , k = 1, . . . , r, n = 0, . . . , NT , (6.44)

or equivalently

ξn+1
k = (Mn+1 + τdkA

n+1)−1Mn(ξnk + τfnk), k = 1, . . . , r, n = 0, . . . , NT . (6.45)

6.4 Characterisation of surface growth

The purpose of this section is to characterise surface growth in terms of the material velocity
v, with specific regard to isotropic growth. In fact, the lumped mass M(t) and stiffness A(t)
matrices depend on v. In particular:

1. For an arbitrary triangulated surface that evolves with an arbitrary material velocity,
we bound the time derivative dM

dt of the lumped mass matrix in terms of the constants
µmin and µmax defined in (6.32), i.e. in terms of the divergence ∇Γh · Ih(v) of the
discrete material velocity. We will need this result to prove a sufficient condition for the
existence of invariant regions for the semi- and fully-discrete schemes;

2. For an arbitrary smooth or triangulated surface that evolves with an arbitrary material
velocity, we characterise the velocity flows∇Γ ·v and∇Γh ·Ih(v) in terms of the mappings
G and Gh introduced in Sections 6.2.1 and 6.3.1, respectively;

3. For an arbitrary smooth or triangulated surface that evolves isotropically in space, that
is

v(x, t) = S(t)x, (x, t) ∈ R3 × [0, T ], (6.46)

where S : [0, T ] → R is an arbitrary smooth function, we compute exactly ∇Γ · v and
∇Γh · Ih(v) in terms of v. This result will yield a fully practical criterion to detect the
invariant regions of a given RDS in the case of isotropic surface evolution.

6.4.1 Bounding the rate of change of the mass matrix in terms of the
dilation rates

In this section we bound the time derivative dM
dt of M in terms of the discrete dilation rates

defined in (6.32). To this end, we prove the following characterisation of dM
dt .

Lemma 18 (Transport formula for the lumped mass matrix M). The entries of the lumped
mass matrix M fulfil the following property

d

dt

∫

Γh(t)
Ih(χiχj) =

∫

Γh(t)
Ih(χiχj)∇Γh · Ih(v), i = 1, . . . , N. (6.47)
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Proof. By choosing U = Ih(χiχj) for any i, j = 1, . . . , N and V = 1 in the Leibniz formula
(6.37) we have

d

dt

∫

Γh(t)
Ih(χiχj) =

∫

Γh(t)
∂•Ih(χiχj) +

∫

Γh(t)
Ih(χiχj)∇Γh · Ih(v). (6.48)

Now, if i = j, then Ih(χiχj) = χi, otherwise, if i 6= j, Ih(χiχj) = 0. Then, from the transport
property (6.35) we have ∂•Ih(χiχj) = 0 for all i, j = 1, . . . , N . Equation (6.48) thus implies
the desired result (6.47).

In some proofs we will need the following corollary of Lemma 18.

Corollary 2 (Consequence of the transport formula for the lumped mass matrix M). The
diagonal matrix dM

dt fulfils the estimates

µminmii(t) ≤
dmii

dt
(t) ≤ µmaxmii(t), i = 1, . . . , N, t ∈ [0, T ], (6.49)

where µmin and µmax are defined in (6.32).

6.4.2 Characterising velocity flows in terms of the mappings G and Gh

We wish to characterise the continuous and discrete velocity flows ∇Γ · v and ∇Γh · Ih(v)
in terms of the mappings G and Gh introduced in Sections 6.2.1 and 6.3.1, respectively, for
arbitrary smooth or triangulated surfaces that evolve under an arbitrary material velocity.
To this end, let Γ(t) be an arbitrary evolving smooth surface and let (A,X) be any local
parametrisation of Γ(0), where A ⊂ R2 is an open connected set and X : A → Γ(0) is a
differentiable map such that its Jacobian J is full-rank on A. Let B be a measurable subset
of A. For all t, the portion X(B) of Γ(0) evolves into G(X(B), t) ⊂ Γ(t).
By choosing f(x, t) = 1 for each (x, t) ∈ GT in the transport formula (6.8), we have

d

dt

∫

G(X(B),t)
1 =

∫

G(X(B),t)
∇Γ · v. (6.50)

Let êi, i = 1, 2, 3, be the standard basis vectors in R3. For (θ, t) ∈ B× [0, T ], let J(x, t) ∈ R2,3

be the (spatial) Jacobian of the function G(X(θ), t) and let

J̃(θ, t) := det



ê1 ê2 ê3

J(θ, t)


 ∈ R3. (6.51)

The surface integrals in (6.50) can be written as integrals on the planar domain B by using
the parametrisation G(X(·), t) : B → G(X(B), t). Hence, (6.50) becomes

d

dt

∫

B
‖J̃(θ, t)‖dθ =

∫

B
∇Γ · v(G(X(θ), t))‖J̃(θ, t)‖dθ, (6.52)

where ‖ · ‖ denotes the Euclidean norm in R3, or equivalently,

∫

B

d

dt
‖J̃(θ, t)‖dθ =

∫

B
∇Γ · v(G(X(θ), t))‖J̃(θ, t)‖dθ. (6.53)
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Since (6.53) holds for any measurable subset B of A, then it holds that

d

dt
‖J̃(θ, t)‖ = ∇Γ · v(G(X(θ), t))‖J̃(θ, t)‖. (6.54)

By applying the chain rule, (6.54) is equivalent to

∇Γ · v(G(X(θ), t)) =
d

dt
ln ‖J̃(θ, t)‖. (6.55)

Given any triangulated surface Γh(t) (which evolves under the discrete velocity field Ih(v)),
we notice that every facet Z(t) ∈ Zh(t) is smooth and thus parametrisable. For any facet
of the initial triangulated surface, Z(0) ∈ Zh(0), let (A,X) be a parametrisation of Z(0), as
described above. For (θ, t) ∈ A × [0, T ], let Jh(θ, t) ∈ R2,3 be the Jacobian of the function
Gh(X(θ), t) and let

J̃h(θ, t) := det



ê1 ê2 ê3

Jh(θ, t)


 ∈ R3. (6.56)

By reasoning as above we obtain the following discrete counterpart of (6.55).

∇Γh · Ihv(Gh(X(θ), t)) =
d

dt
ln ‖J̃h(θ, t)‖. (6.57)

Relations (6.55) and (6.57) are useful in that they (i) express the velocity flow without tan-
gential derivatives and (ii) can be computed exactly when G and Gh are known explicitly, e.g.
for the isotropic growth as discussed in the next subsection.

6.4.3 Computing the dilation rates for the isotropic growth

In this section we compute the dilation rates defined in (6.16) and (6.32), respectively, for
arbitrary surfaces that evolve with the material velocity (6.46). The velocity field (6.46)
corresponds to the specific case of isotropic evolution, see for instance [28, 93] for the case
of evolving planar domains and [6, 109] for the general case. In particular, for suitable
choices of the function S(t), the growth law (6.46) admits some specific cases such as uniform,
exponential, logistic and periodic growth, see [6, 28, 93, 109]. From (6.3), it is easy to show
that, with the velocity field (6.46), each x0 ∈ Γ0 evolves to the point

G(x0, t) = exp

(∫ t

0
S(τ)dτ

)
x0, t ∈ [0, T ], (6.58)

therefore the evolution induced by an isotropic growth is a time-dependent dilation of the
initial surface. The function

φ(t) := exp

(∫ t

0
S(τ)dτ

)
, t ∈ [0, T ], (6.59)

that appears in (6.58) is known as the growth function, see for instance [93].

Remark 15 (Properties of isotropic growth). Isotropic growth preserves the angles of trian-
gulated surfaces. This has two consequences:
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1. if Γh(0) meets the Delaunay condition, then Γh(t) retains the Delaunay condition for all
t ∈ [0, T ];

2. if A(0) and M(0) are the stiffness and the mass matrices at t = 0, then

A(t) = A(0), M(t) = φ2(t)M(0), t ∈ [0, T ]. (6.60)

Hence, in implementations, A(t)and M(t) need not be computed at each time step.

In the following result we compute the dilation rates µmin, µmax, µ∗min and µ∗max on an
arbitrary smooth or triangulated surface that evolves with the material velocity (6.46), in
terms of S(t).

Theorem 20 (Velocity flow on isotropically growing smooth or triangulated surfaces). Let
Γ(t) be a smooth surface that evolves with the velocity field (6.46) and let Γh(t) be the corre-
sponding triangulated surface. Then, the instantaneous dilation rates satisfy

H(t) = 2S(t) = H∗(t), t ∈ [0, T ]. (6.61)

Hence, it follows that

µmin = µ∗min = 2 min
t∈[0,T ]

S(t), and µmax = µ∗max = 2 max
t∈[0,T ]

S(t). (6.62)

Proof. Let Γh(t) be an evolving smooth surface and let (A,X), J(θ, t) and J̃(θ, t) as defined
in Section 6.4.2. From (6.58) and (6.59), J(θ, t) fulfils

J(θ, t) = φ(t)JX(θ), (θ, t) ∈ A× [0, T ], (6.63)

where JX : A→ R2,3 is the Jacobian of X. It follows that

‖ det J̃(θ, t)‖ = φ2(t)‖det J̃(θ, 0)‖, (θ, t) ∈ A× [0, T ], (6.64)

which implies that

ln ‖ det J̃(θ, t)‖ − ln ‖ det J̃(θ, 0)‖ = 2 lnφ(t) = 2

∫ t

0
S(τ)dτ, (θ, t) ∈ A× [0, T ]. (6.65)

By differentiating (6.65), we have

d

dt
ln ‖ det J̃(θ, t)‖ = 2S(t), (θ, t) ∈ A× [0, T ]. (6.66)

By combining (6.55), (6.66) and dropping the parametric coordinates θ, we have

∇Γ · v(x, t) = 2S(t), (x, t) ∈ GT , (6.67)

which proves the first equality in (6.61). Analogously, we prove the second equality in (6.61)
by using (6.57). This completes the proof.

For the uniform, exponential, logistic and periodic growths, the functions φ(t), S(t) and the
dilation rates µmin, µ∗min, µmax and µ∗max are detailed in Table 6.1, see also [93, Table 1] for
the case of evolving planar domains, while the corresponding plots are depicted in Figure 6.1.
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Type of growth Growth function φ(t) S(t) µmin = µ∗min µmax = µ∗max

Linear rt+ 1
r

rt+ 1

2r

rT + 1
2r

Exponential exp(rt) r 2r 2r

Logistic
K exp(Krt)

K − 1 + exp(Krt)

rK(K − 1)

K − 1 + exp(Krt)

2rK(K − 1)

K − 1 + exp(KrT )
2r(K − 1)

Periodic 2− cos(rt)
r sin(rt)

2− cos(rt)
−2r
√

3

3

2r
√

3

3

Table 6.1: Particular types of isotropic growth with their respective growth functions φ(t),
S(t) functions and constants µmin, µmax, µ∗min, and µ∗max. The constant r > 0 is the growth
rate. For the logistic growth, K > 1 is the carrying capacity, i.e. the square root of the
asymptotical ratio between the final and the initial area of the surface, see [93].
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Figure 6.1: Plots of the growth functions φ(t) (top row) and the corresponding S(t) functions
(bottom row) listed in Table 6.1 for K = 2 and r = 0.5, 1, 1.5. From left to right: linear,
exponential, logistic and periodic growth profiles.

6.5 Linear heat equation and discrete maximum principles

We consider, for k = 1, the specific case of linear heat equation on an evolving surface Γ(t):

∂•u+ u∇Γ · v = d∆Γu− βu, β ∈ R, (6.68)

and we prove the semi- and fully-discrete maximum principles for the case when µmin + β ≥
0. Equation (6.68) is a special case of the general system (6.14) that we are interested in.
However, we start with this specific case as (i) it provides more insights on the effect of growth
on stability, (ii) we are able to prove a better timestep stability condition and (iii) to make
the reader familiar with the demonstrative techniques.
The following result, that we proved in [56, Theorem 2.1] for the special case of stationary
surfaces, addresses the maximum principle at the semi-discrete level.

Theorem 21 (Semi-discrete maximum principle for the linear heat equation (6.68)).
If the velocity field v fulfils

µmin + β ≥ 0, (6.69)

with µmin as defined in (6.32), and the triangulation Γh(t) meets the Delaunay condition for
all t ∈ [0, T ], then the LESFEM solution of (6.68) fulfils the following discrete maximum
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principle

min

{
0, min
j=1,...,N

ξj(0)

}
≤ ξi(t) ≤ max

{
0, max
j=1,...,N

ξj(0)

}
, (6.70)

for i = 1, . . . , N and t ∈ [0, T ].

Proof. From (6.40), the LESFEM spatial discretisation of (6.68) is

d

dt
(Mξ) + dAξ = −βMξ. (6.71)

By applying the chain rule, (6.71) becomes

M ξ̇ +
dM

dt
ξ + dAξ = −βMξ. (6.72)

By multiplying (6.72) on the left by M−1, we have

ξ̇ = −dM−1Aξ −M−1 dM

dt
ξ − βξ. (6.73)

All we have to prove is that the ODE (6.73) is dissipative, i.e. −dM−1A|ξ|−M−1 dM
dt |ξ|−β|ξ| ≤

0. For every t ∈ [0, T ], M is diagonal with positive diagonal entries and A fulfils (6.41) from
the Delaunay condition. Then, it follows that −dM−1A|ξ| ≤ 0. Hence, it suffices to prove
that −(M−1 dM

dt + βI)|ξ| ≤ 0, which is true provided

M−1 dM

dt
+ βI ≥ 0. (6.74)

By using (6.49), condition (6.74) is true if

(µmin + β)I ≥ 0, (6.75)

which holds true from assumption (6.69). This completes the proof.

The next theorem shows the same result for the LESFEM-IMEX Euler full-discretisation of
(6.68), under a timestep restriction. This result holds true for the special case of stationary
surfaces (see [56, Theorem 2.2]).

Theorem 22 (Fully-discrete maximum principle for the linear heat equation (6.68)).
If the velocity field v fulfils

µmin + β ≥ 0, t ≥ 0, (6.76)

with µmin as defined in (6.32), and the triangulation Γh meets the Delaunay condition for
all t > 0, then the LESFEM-IMEX Euler solution of (6.68) fulfils the following minimum-
maximum principle

min

{
0, min
j=1,...,N

ξ0
j

}
≤ ξni ≤ max

{
0, max
j=1,...,N

ξ0
j

}
, (6.77)

for i = 1, . . . , N and n = 0, . . . , NT , if the timestep satisfies

τβ ≤ 1. (6.78)

In particular, there is no timestep restriction if β ≤ 0.
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Proof. The full-discretisation (6.45) of the heat equation (6.68) can be written as

ξn+1 = (Mn+1 + τdAn+1)−1Mn+1(Mn+1)−1Mn(1− τβ)ξn, n = 0, . . . , NT . (6.79)

From (6.42)-(6.43) we have

(Mn+1 + τdAn+1)−1Mn+1 ≥ 0, n = 0, . . . , NT ; (6.80)

(Mn+1 + τdAn+1)−1Mn+11 = 1, n = 0, . . . , NT . (6.81)

Then, the scheme (6.79) fulfils the discrete maximum principle if

(Mn+1)−1Mn(1− τβ)ξn ≥ min{0, ξn}, n = 0, . . . , NT ; (6.82)

(Mn+1)−1Mn(1− τβ)ξn ≤ max{0, ξn}, n = 0, . . . , NT . (6.83)

Since (Mn+1)−1Mn is diagonal with strictly positive diagonal entries, conditions (6.82)-(6.83)
are true provided

1− τβ ≥ 0; (6.84)

(1− τβ)I ≤ (Mn)−1Mn+1, n = 0, . . . , NT . (6.85)

Condition (6.84) is true under assumption (6.78). In order to prove (6.85), we need to estimate
Mn+1 as a function of Mn. To this end, by applying Gronwall’s lemma to the first inequality
in (6.49), we have

Mn+1 ≥Mneτµmin , n = 0, . . . , NT . (6.86)

By using (6.86), condition (6.85) is true if

1− τβ ≤ eτµmin . (6.87)

Let us now define f(τ) := 1 − τβ and g(τ) = eτµmin . These functions fulfil f(0) = g(0) = 1,
f is linear and g is non-concave for all µmin ∈ R. Then

• if f ′(0) > g′(0), then condition (6.87) is not fulfilled for any sufficiently small τ .

• if f ′(0) ≤ g′(0), then condition (6.87) is fulfilled for every τ > 0.

Now, condition f ′(0) ≤ g′(0) means −β ≤ µmin, which is true from assumption (6.76). This
completes the proof.

Remark 16 (Interplay between material velocity and source term). Relation (6.69) implies
that

• domain growth (µmin > 0) can enable the discrete maximum principle even for β < 0;

• local domain contraction (µmin < 0) can prevent the discrete maximum principle even
for β ≥ 0.
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This interplay is justified by observing that domain evolution implies a dilution effect, ex-
plained as follows. By choosing ϕ = 1 in the variational formulation (6.27) with k = 1 and
f1(u) = −βu, we obtain

d

dt

∫

Γ(t)
u = −β

∫

Γ(t)
u, t ∈ [0, T ]. (6.88)

If |Γ(t)| denotes the surface area of Γ(t) and 〈u(t)〉 := 1
|Γ(t)|

∫
Γ(t) u denotes the mean value of

u, (6.88) becomes
d

dt
(|Γ(t)|〈u(t)〉) = −β|Γ(t)|〈u(t)〉, t ∈ [0, T ]. (6.89)

By solving (6.89) for d
dt〈u(t)〉, we obtain

d

dt
〈u(t)〉 = −β|Γ(t)|+ d

dt |Γ(t)|
|Γ(t)| 〈u(t)〉, t ∈ [0, T ]. (6.90)

By choosing g = 1 in the transport formula (6.8), we have

d

dt
|Γ(t)| =

∫

Γ(t)
∇Γ · v ≥ |Γ(t)|µ∗min, t ∈ [0, T ]. (6.91)

By combining (6.90) and (6.91) we have

d

dt
〈u(t)〉 ≤ −(β + µ∗min)〈u(t)〉, t ∈ [0, T ]. (6.92)

From (6.92), the dilution effect arising from surface growth can be interpreted as the dampening
or uplifting effect of µ∗min on 〈u(t)〉. The estimate (6.92) implies that 〈u(t)〉 is non-increasing
if

β + µ∗min ≥ 0, (6.93)

which is the continuous counterpart of (6.69). We conclude that condition (6.69) is consistent
with the interpretation of surface growth in terms of dilution effect.

Remark 17 (Interplay between timestep restriction and source term). Relation (6.78) im-
plies that the timestep restriction needed for guaranteeing the discrete maximum principle is
independent of the material velocity and it only depends on the stiffness parameter β of the
source term. In particular, when the source term is nonnegative (i.e. when β ≤ 0), the
LESFEM - IMEX Euler fully-discrete scheme unconditionally fulfils the discrete maximum
principle.

6.6 Reaction-diffusion systems and invariant regions

In this section we prove, for the semi- and full-discretisations of RDSs of the form (6.14), a
criterion to test if a hyper-rectangle in the phase-space is invariant. In the case k = 1 of scalar
equations, the notion of invariant region collapses to that of minimum-maximum principle,
considered in the previous section for the special case of the linear heat equation. We assume
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that the Delaunay regularity of the mesh is preserved under evolution. For k = 1, . . . , r, we
define the constants

µk :=

{
µmin if σk ≥ 0;

µmax if σk < 0,
µ
k

:=

{
µmax if σk ≥ 0;

µmin if σk < 0,
(6.94)

where µmin and µmax are the dilation rates defined in (6.32). In the following theorem we
prove that, under similar assumptions of Conjecture 1, Σ is an invariant region for the solution
obtained from the semi-discrete scheme (6.40). Hence, in the following theorem we extend
[56, Theorem 3.3] to the case of evolving surfaces.

Theorem 23 (Invariant rectangles for (6.40)). Let Σ be a hyper-rectangle as in (6.19) in the
phase space of (6.40), let f be Lipschitz on Σ. If the triangulation Γh(t) satisfies the Delaunay
condition for all t ≥ 0 and

fk(U) < µkσk, U ∈ Σk ∩ Rr, k = 1, . . . , r; (6.95)

fk(U) > µ
k
σk, U ∈ Σk ∩ Rr, k = 1, . . . , r, (6.96)

then Σ is an invariant region for (6.40).

Proof. The semidiscrete method (6.40) can be written, after applying the chain rule to the
term d

dt(Mξk) and multiplying on the left by M−1 as

ξ̇k = −dkM̄−1Aξk + fk(ξ1, . . . , ξr)− M̄−1 dM

dt
ξk, k = 1, . . . , r. (6.97)

Since M is diagonal with positive diagonal entries and Aij ≤ 0 for i 6= j from the assumption
of Delaunay regularity, proceeding as in the proof of [56, Theorem 3.3], it suffices to verify
that, for all (U1, . . . , Ur) ∈ Σ, k = 1, . . . , r, and i = 1, . . . , N ,

fk(U1, . . . , σk, . . . , Ur)−m−1
ii

dmii

dt
σk < 0; (6.98)

fk(U1, . . . , σk, . . . , Ur)−m−1
ii

dmii

dt
σk > 0, (6.99)

where σk and σk are as in (6.19). Using relation (6.49), conditions (6.98)-(6.99) hold if, for
all k = 1, . . . , r,

fk(U1, . . . , σk, . . . , Ur)− µk σk < 0; (6.100)

fk(U1, . . . , σk, . . . , Ur)− µk σk > 0, (6.101)

with µ
k

and µk as in (6.94), that is true from assumptions (6.95)-(6.96). This completes the
proof.

The following theorem provides a sufficient condition for regions to be invariant for the
LESFEM-IMEX Euler scheme (6.45) and extends [56, Theorem 3.4]. In contrast to the semi-
discrete case, we relax the strict inequalities (6.21)-(6.22) with conditions (6.103)-(6.104), in
which we use the perturbed dilation rates µ̃k and µk

˜
given by

µ̃k :=





µmin if σk ≥ 0;

eτµmax − 1

τ
if σk < 0,

µk
˜

:=





eτµmax − 1

τ
if σk > 0;

µmin if σk ≤ 0,

(6.102)
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respectively, and µmin and µmax are defined in (6.32). Observe that µ̃k → µk and µk
˜
→ µ

k

as τ → 0.

Theorem 24 (Invariant rectangles for (6.45)). Let Σ be a hyper-rectangle as in (6.19) in the
phase space of (6.40), let f be Lipschitz on Σ. If the triangulation Γh(t) meets the Delaunay
condition for all t ≥ 0 and

fk(U) ≤ σkµ̃k, U ∈ Σk ∩ Rr, k = 1, . . . , r; (6.103)

fk(U) ≥ σkµk
˜
, U ∈ Σk ∩ Rr, k = 1, . . . , r, (6.104)

then Σ is an invariant region for (6.45) if the timestep τ fulfils

τLk ≤ 1, k = 1, . . . , r, (6.105)

where, for all k = 1, . . . , r, Lk is the Lipschitz constant of fk.

Proof. The fully-discrete scheme (6.45) can be written as

ξn+1
k = (Mn+1 + τdAn+1)−1Mn+1(Mn+1)−1Mn(ξnk + τfnk), (6.106)

n ∈ N ∪ {0}, k = 1, . . . , r. Since the mesh meets the Delaunay assumption at all times, the
matrix properties (6.80)-(6.81) hold. Then, it suffices to prove that

σk1 ≤ (Mn+1)−1Mn(ξnk + τfnk) ≤ σk1, k = 1, . . . , r, (6.107)

where 1 is the column vector of ones. We will prove the two inequalities in (6.107) in turn.
From (6.49), the inequality on the right-hand-side of (6.107) holds true if

ξnk + τfnk ≤ σkeτµk1, k = 1, . . . , r, (6.108)

with µk as defined in (6.94). Suppose σk ≥ 0. From assumption (6.103) we can estimate fnk
as follows

fnk ≤ σkµk + Lk(σk1− ξnk), k = 1, . . . , r. (6.109)

From (6.109), condition (6.108) holds true provided

ξnk(1− τLk) + τµkσk + τLkσk1 ≤ σkeτµk1, k = 1, . . . , r. (6.110)

From assumption (6.105), since ξnk ≤ σk1, then (6.110) holds true if

σk(1− τLk) + τµkσk + τL̃kσk ≤ σkeτµk , k = 1, . . . , r, (6.111)

that is to say
1 + τµk ≤ eτµk , k = 1, . . . , r, (6.112)

which holds true for each τ ∈ R. Suppose, instead, σk < 0. From assumption (6.103) we can
estimate fnk as follows

fnk ≤
eτµk − 1

τ
σk + Lk(σk1− ξnk), k = 1, . . . , r. (6.113)
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From (6.113), condition (6.108) holds true provided

ξnk(1− τLk) + σk(e
τµk − 1 + τLk)1 ≤ σkeτµk1, k = 1, . . . , r. (6.114)

From assumption (6.105), since ξnk ≤ σk1, then (6.114) holds true if

σk(1− τLk)1 + σk(e
τµk − 1 + τLk)1 ≤ σkeτµk1, k = 1, . . . , r. (6.115)

As (6.115) always holds with the equality, we conclude that the second inequality in (6.107)
is true under assumptions (6.103) and (6.105). Similarly, the inequality on the left side of
(6.107) holds under assumptions (6.104) and (6.105). This completes the proof.

Remark 18 (Sharper timestep restriction). In the specific case of the linear heat equation
(6.68), estimate (6.78) in Theorem 22 is sharper than estimate (6.105) in Theorem 24. In
fact, since the Lipschitz constant of the source term is L = |β|, the timestep restriction (6.105)
is fulfilled for τ |β| ≤ 1, which is more restrictive than condition (6.78).

6.7 Velocity-induced invariant regions for RD models

Now, we consider four different RDSs that are well-known in the literature and prove, at the
discrete level, the existence of discrete invariant hyper-rectangles for these RDSs, depending
on the global discrete dilation rates µmin and µmax defined in (6.16). The results in this
section are confined to the spatially discrete level, but from Conjecture 1, we claim that the
same results holds at the continuous level. In the special case of stationary surfaces (i.e.
when µmin = µmax = 0), we obtain invariant hyper-rectangles that have been studied in the
literature (see [21, 25, 65]). It is worth remarking that, even though we consider four RD
models for illustrative purposes, the following analysis can be easily extended to other types
of RDSs.

6.7.1 RDS with activator-depleted kinetics

Let us consider an RDS with the well-known non-dimensional activator-depleted kinetics, also
known as Schnakenberg or Brusselator kinetics (see for instance [6, 120]), on evolving surfaces

{
∂•u1 + u1∇Γ · v −∆Γu1 = f1(u1, u2) := γ(a− u1 + u2

1u2);

∂•u2 + u2∇Γ · v − d∆Γu2 = f2(u1, u2) := γ(b− u2
1u2),

(6.116)

where a, b and γ are positive parameters and d is a positive diffusion rate. The model
describes a system of two interacting chemicals, in which u1 ≥ 0 and u2 ≥ 0 are the respective
concentrations. For this reason, we focus our attention on invariant regions contained in the
positive ortant. In the following theorem we prove that: (i) the positive orthant is invariant
for (6.116) regardless of µmin and µmax. At the continuous level, the result holds in the
specific case of stationary planar domains, see [21]. (ii) when µmin > 0, the model possesses
unbounded invariant stripes (depending on µmin) in the positive orthant.

Theorem 25 (Velocity-induced invariant regions for the activator-depleted model (6.116)).
For the LESFEM spatial discretisation of (6.116), the following statements hold:
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1. For any value of the constants µmin, and µmax defined in (6.32), the positive orthant
Σ+ := [0,+∞[2 is invariant.

2. If µmin > 0 and σ2 is a constant such that

σ2 ≥
γb

µmin
, (6.117)

then the stripe Σ = [0,+∞[×[0, σ2] is invariant.

Proof. In order to prove Statements 1 and 2 we have to verify conditions (6.21)-(6.22). For
Statement 1, we observe that

a) Σ1 := {0} × [0, σ2] ⊂ Σ+
1 := {0} × [0,+∞[ and, for (u1, u2) ∈ Σ+

1 , we have f
1
(u1, u2) =

f1(u1, u2) = γa > 0;

b) Σ2 := [0, σ1] × {0} ⊂ Σ+
2 := [0,+∞[×{0} and, for (u1, u2) ∈ Σ+

2 , we have f
2
(u1, u2) =

f2(u1, u2) = γb > 0.

This proves Statement 1. For Statement 2, let µmin > 0 and we assume for the moment that
the strict inequality holds in (6.117). Then the set Σ1 := [0,+∞[×{σ2} is contained in the
region {

(u, v) ∈ R2

∣∣∣∣u > 0, v >
γa− (γ + µmin)u

γu2

}
,

in which f1(u1, u2) := f1(u1, u2) − µminu1 < 0. This proves Statement 2 when the strict
inequality holds in (6.117). Otherwise, observe that

Σ = [0,+∞[×[0, σ2] =
⋂

ε>0

[0,+∞[×[0, σ2 + ε], (6.118)

i.e. Σ is the intersection of invariant regions and is thus invariant. This completes the proof
of Statement 2.

6.7.2 RDS with Thomas kinetics

Let us consider an RDS with the non-dimensional Thomas kinetics (see for instance [100, p.
78]), on evolving surfaces




∂•u1 + u1∇Γ · v −∆Γu1 = f1(u1, u2) := γ

(
a− u1 − ρ u1u2

1+u1+Ku2
1

)
;

∂•u2 + u2∇Γ · v − d∆Γu2 = f2(u1, u2) := γ
(
α(b− u2)− ρ u1u2

1+u1+Ku2
1

)
,

(6.119)

where α, a, b, γ, K and ρ are positive constants and d is a positive diffusion rate. The model
describes a system of two interacting chemicals, in which u1 ≥ 0 and u2 ≥ 0 are the respective
concentrations. For this reason, we focus our attention on invariant regions contained in the
positive orthant.

Theorem 26 (Velocity-induced invariant regions for the Thomas model (6.119)). For the
LESFEM spatial discretisation of (6.119), the following statements hold:
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1. For any value of the constants µmin, and µmax defined in (6.32), the positive orthant
Σ+ := [0,+∞[2 is invariant.

2. If µmin > −γmin(1, α) and σ1 and σ2 are two constants such that

σ1 ≥
γa

γ + µmin
, σ2 ≥

γαb

γα+ µmin
, (6.120)

then the region Σ = [0, σ1]× [0, σ2] is invariant.

Proof. To prove Statements 1 and 2, we have to verify conditions (6.21)-(6.22). For Statement
1), observe that

a) for (u1, u2) ∈ Σ1 := {0} × [0, σ2], we have f
1
(u1, u2) = f1(u1, u2) = a > 0;

b) for (u1, u2) ∈ Σ2 := [0, σ1]× {0}, we have f
2
(u1, u2) = f2(u1, u2) = αb > 0.

Items a) and b) prove Statement 1. For Statement 2, let µmin > −γmin(1, α) and we assume
for the moment that the strict inequalities hold in (6.120). Then, observe that

c) the set Σ1 := {σ1} × [0, σ2] is contained in the region

{
(u, v) ∈ R2

∣∣∣∣u > 0, v > (γa− (µmin + γ)u)
1 + u+Ku2

γρu

}
,

in which f1(u1, u2) := f1(u1, u2)− µminu1 < 0;

d) the set Σ2 := [0, σ1]× {σ2} is contained in the region

{
(u, v) ∈ R2

∣∣∣∣u > 0, v >
γαb(1 + u+Ku2)

γρu+ (γα+ µmin)(1 + u+Ku2)

}
,

in which f2(u1, u2) := f2(u1, u2)− µminu2 < 0.

Items a) through d) prove Statement 2 when the strict inequalities hold in (6.120). Otherwise,
we have that

Σ = [0, σ1]× [0, σ2] =
⋂

ε>0

[0, σ1 + ε]× [0, σ2 + ε], (6.121)

i.e. Σ is the intersection of invariant regions and is thus invariant.

6.7.3 Morphochemical RDS model for electrodeposition

Let us consider a RDS on an arbitrary evolving surface Γ(t), given by

{
∂•u1 + u1∇Γ · v −∆Γu1 = f1(u1, u2);

∂•u2 + u2∇Γ · v − d∆Γu2 = f2(u1, u2),
(6.122)

where f1(u1, u2) and f2(u1, u2) are the kinetics considered in [79, 80, 81], given by

f1(u1, u2) := A1(1− u2)u1 −A2u
3
1 −B(u2 − α); (6.123)

f2(u1, u2) := C(1 + k2u1)(1− u2)(1− γ + γu2)−Du2(1 + γu2)(1 + k3u1), (6.124)
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respectively, and A1, A2, B, C,D, α, γ, k2, k3 are positive constants. Following [80], we fix the
following constraints on the parameters:

α = 0.5, γ = 0.2, k2 = 2.5, k3 = 1.5; (6.125)

χ :=
D

C
=

(1− α)(1− γ + γα)

α(1 + γα)
≈ 0.8182. (6.126)

Hence, we choose A1, A2, B,C as free parameters. The above model (called DIB model after
the authors) describes electrodeposition processes as discussed in detail in [80]. In particular,
we recall that the unknowns have the following interpretation:

• u1(x, t) is the morphology. A positive value of u1(x, t) corresponds to metal deposition,
while a negative value of u1(x, t) corresponds to corrosion;

• u2(x, t) is the surface chemistry and ranges in [0, 1].

To summarize, the solutions of the DIB model should be confined in the region R× [0, 1] of the
phase space. Even if this property has not been proven in the literature, our invariant region
analysis gives a partial answer to the problem. In fact, a consequence of the next theorem is
that, when the parameters fulfil (6.125)-(6.126), and Γ(t) is not contracting too quickly, then
the u2(x, t) component of the solution fulfils u2(x, t) ≤ 1. A rigorous proof of the positivity
of u2(x, t) remains an open problem. It is worth remarking that this RD model has been
studied in the literature on stationary planar domains in [80, 81] and on stationary surfaces
in [79]. However, in this section we pose the model on evolving surfaces and we carry out
an invariant region study. Hence, in the special case µmin = µmax = 0 our invariant region
analysis covers the case of stationary domains and surfaces.

Theorem 27 (Velocity-induced invariant regions for the DIB model (6.122)-(6.124)). Let
conditions (6.125)-(6.126) hold. Let

σ2 :=
(2γ − 1)k2 − χk3 −

√
((2γ − 1)k2 − χk3)2 + 4(1− γ)k2γ(k2 + χk3)

2γ(k2 + χk3)
≈−4.2847; (6.127)

σ2 :=
(2γ − 1)k2 − χk3 +

√
((2γ − 1)k2 − χk3)2 + 4(1− γ)k2γ(k2 + χk3)

2γ(k2 + χk3)
≈ 0.6262, (6.128)

and let Λ,Λ be defined by

Λ := (1− σ2)(1− γ + γσ2)− χσ2(1 + γσ2) ≈ 0.2006; (6.129)

Λ := (1− σ2)(1− γ + γσ2)− χσ2(1 + γσ2) ≈ −0.2306, (6.130)

If the minimum dilation rate µmin fulfils

µmin
C

> max

{
Λ

σ2

,
Λ

σ2

}
≈ −0.04682, (6.131)

then there exist σ1 < 0 and σ2 > 0 (depending only on A1, A2 and B) such that the region
Σ := [σ1, σ1] × [σ2, σ2] is invariant for the LESFEM spatial discretisation of the DIB model
(6.122)-(6.124).
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Proof. To prove the theorem, we have to verify conditions (6.21)-(6.22). To this end observe
that, since σ2 < 0 and σ2 > 0, then f

2
(u1, u2) = f2(u1, u2) = f2(u1, u2) − µminu2 for all

(u1, u2) ∈ R2. Now notice that f2(u1, u2) can be rearranged as

f2(u1, u2) = C
{
u1[k2(1− u2)(1− γ + γu2)− χk3(1 + γu2)u2]

+[(1− u2)(1− γ + γu2)− χ(1 + γu2)u2]− µmin
C

u2

}
.

(6.132)

Hence, f(u1, u2) does not depend on u1 when

k2(1− u2)(1− γ + γu2)− χk3(1 + γu2)u2 = 0, (6.133)

i.e. when u2 takes one of the two values σ2 or σ2 defined in (6.127)-(6.128). In particular, for
all u1 ∈ R, it holds that

f2(u1, σ2) = CΛ− µminσ2; (6.134)

f
2
(u1, σ2) = CΛ− µminσ2, (6.135)

with Λ and Λ as defined in (6.129) and (6.130). Now, in order to verify conditions (6.21)-(6.22)
for f2(u1, u2) we require that

CΛ− µminσ2 < 0; (6.136)

CΛ− µminσ2 > 0, (6.137)

i.e. we require that (6.131) holds. To complete the proof we need to prove the existence of
σ1 < 0 and σ1 > 0 such that

f1(σ1, u2)− µminσ1 > 0; (6.138)

f1(σ1, u2)− µminσ1 < 0, (6.139)

for all u2 ∈ [σ2, σ2]. But since the dominating term in f1(u1, u2) is −A2u
3
1, it suffices to

choose σ1 and σ1 sufficiently large in modulus in order to fulfil conditions (6.138)-(6.139).
This completes the proof.

We remark that the dilation rate restriction (6.131) means that the evolving surface Γ(t)
is allowed to grow arbitrarily quickly, but if Γ(t) is contracting, then the contraction must be
sufficiently slow in comparison to C.

6.7.4 RDS with Hodgkin-Huxley kinetics

Let us now consider a RDS on arbitrary evolving surfaces with the well-known non-dimensional
Hodgkin-Huxley kinetics (see [29, 72] and [123, Chapter 14]), given by




∂•u1 + u1∇Γ · v −∆Γu1 = f1(u1, u2, u3, u4) := k1u
3
2u3(c1 − u1) + k2u

4
4(c2 − u1) + k3(c3 − u1);

∂•u2 + u2∇Γ · v − d1∆Γu2 = f2(u1, u2) := g1(u1)(h1(u1)− u2);

∂•u3 + u3∇Γ · v − d2∆Γu3 = f3(u1, u3) := g2(u1)(h2(u1)− u3);

∂•u4 + u4∇Γ · v − d3∆Γu4 = f4(u1, u4) := g3(u1)(h3(u1)− u4),

(6.140)
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where c1 > c3 > 0 > c2, di > 0, 0 < hi(u) < 1 and gi(u) > 0 for i ∈ {1, 2, 3} and u ∈ R. On
stationary planar domains, this model has been used to model the propagation of neuronal
impulses, see [29]. In particular, the variable u1 represent a current (which can be positive or
negative), while the variables uk ≥ 0, k = 2, 3, 4, represent chemical concentrations. For this
reason, we focus our attention on invariant regions contained in the stripe S := R× [0,+∞[3.
In the following theorem we prove that: (i) the stripe S := R×[0,+∞[3 is invariant for (6.140)
regardless of µmin and µmax; (ii) if µmin ≥ 0, bounded invariant rectangles arise in S. At the
continuous level, the result holds in the specific case of stationary planar domains, see [25].

Theorem 28 (Velocity-induced invariant regions for the Hodgkin-Huxley model (6.140)).
For the LESFEM spatial discretisation of (6.140), the following statements hold:

1. For every value of the constants µmin and µmax defined in (6.16), the stripe S = R ×
[0,+∞[3 is invariant for system (6.140);

2. If µmin ≥ 0, σ1 ≤ c2, σ1 ≥ c1 and

σi+1 ≥
(

1 +
µmin

maxu∈[σ1,σ1] gi(u)

)−1

, i ∈ {1, 2, 3}, (6.141)

then any region of the form Σ := [σ1, σ1] ×∏4
i=2[0, σi] (and thus Σ ⊂ S) is invariant

for system (6.140).

Proof. In order to prove Statement 1 we have to verify condition (6.22). To this end, we
observe that

a) For (u1, . . . , u4) ∈ Σ2 := R × {0} × [0,+∞[2, we have f
2
(u1, u2) = f2(u1, u2) =

g1(u1)h1(u1) > 0;

b) For (u1, . . . , u4) ∈ Σ3 := R× [0,+∞[×{0} × [0,+∞[, we have f
3
(u1, u3) = f3(u1, u3) =

g2(u1)h2(u1) > 0;

c) For (u1, . . . , u4) ∈ Σ4 := R×[0,+∞[2×{0}, we have f
4
(u1, u4) = f4(u1, u4) = g3(u1)h3(u1) >

0.

Then, condition (6.22) is fulfilled. This proves Statements 1. To prove Statement 2 we have
to verify conditions (6.21)-(6.22). Let us assume for the moment that the strict inequality
holds in (6.141). We complement the first part of the proof by observing that

d) For (u1, . . . , u4) ∈ Σ1 := {σ1}×
∏4
i=2[0, σi], we have f1(u1, . . . , u4)−µminu1 = k1u

3
2u3(c1−

σ1) + k2u
4
4(c2 − σ1) + k3

(
c3 − σ1

(
1 +

µmin
k3

))
> 0;

e) For (u1, . . . , u4) ∈ Σ1 := {σ1}×
∏4
i=2[0, σi], we have f1(u1, . . . , u4)−µminu1 = k1u

3
2u3(c1−

σ1) + k2u
4
4(c2 − σ1) + k3

(
c3 − σ1

(
1 +

µmin
k3

))
< 0;

f) For (u1, . . . , u4) ∈ Σ2 := [σ1, σ1]× {σ2} ×
∏4
i=3[0, σi], we have f2(u1, u2)− µminu2 =

g1(u1)

(
h1(u1)− σ2

(
1 +

µmin
g1(u1)

))
< g1(u1)

(
1− σ2

(
1 +

µmin
maxu∈[σ1,σ1] g1(u)

))
< 0;
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g) Analogously, for (u1, . . . , u4) ∈ Σ3 := [σ1, σ1]×[0, σ2]×{σ3}×[0, σ4], we have f3(u1, u3)−
µminu3 < 0;

h) Analogously, for (u1, . . . , u4) ∈ Σ4 := [σ1, σ1]×∏3
i=2[0, σi]× {σ4}, we have f4(u1, u4)−

µminu4 < 0.

Items a) through h) imply that conditions (6.21)-(6.22) are fulfilled. This proves Statements
2) when the strict inequality holds in (6.141). Let us now suppose that σk, k = 2, 3, 4, fulfil
the equalities in (6.141). Then it holds that

Σ = [σ1, σ1]×
4∏

k=2

[0, σk] =
⋂

ε2,ε3,ε4>0

(
[σ1, σ1]×

4∏

k=2

[0, σk + εk]

)
, (6.142)

i.e. Σ is the intersection of invariant regions and is thus invariant. This completes the
proof.

6.8 Numerical examples

The purpose of this section is to provide two numerical examples in which we (i) estimate the
experimental order of convergence of the LESFEM and (ii) experimentally show the ability
of Theorem 24 to find invariant regions of RDSs on evolving surfaces at the discrete level.

Example 1: Linear heat equation on an evolving sphere

In this example, we wish to estimate the experimental order of convergence of the LESFEM.
As a test problem, we consider the linear heat equation given by

∂•u+ u∇Γ · v −
1

12
∆Γu = u. (6.143)

We choose T = 1 to be the final time. The initial domain Γ(0) is the unit sphere S2, that
evolves under the velocity field

v(x, t) :=
x

t+ 1
, (x, t) ∈ R3 × [0, 1], (6.144)

and undergoes linear growth for r = 1, see Table 6.1. In particular, the domain Γ(t) at time
t ∈ [0, T ] is a sphere whose radius is given by the growth function φ(t) = t + 1 and the
minimum dilation rate fulfils µmin = 2r

rT+1 = 1 (see Table 6.1).
In order to determine the experimental order of convergence, we consider the analytical solu-
tion to (6.143) given by

u(x, y, z, t) =
xyz

(t+ 1)3
exp

(
t− 2 log(t+ 1)− t

t+ 1

)
, (x, y, z, t) ∈ R3 × [0, 1]. (6.145)

Hence, for the initial condition we choose the solution (6.145) at t = 0:

u0(x, y, z) = xyz, (x, y, z) ∈ S2. (6.146)

See Appendix for the derivation of the analytical solution (6.145).
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Figure 6.2: Example 1: Linear heat equation (6.143) on a sphere that evolves linearly with
the material velocity field (6.144) with initial datum (6.146) and final time T = 1. Plots
at different times of the numerical solution obtained on the finest mesh Γ8 (see text) with
N = 16962 gridpoints, initial meshsize h8(0) = 3.542e-2 and timestep τ = 3.116e-4. Plotted
values range from −0.1924 (blue) to 0.1924 (red).

The constants β = −1 and µmin = 1 fulfil the sufficient conditions (6.76) and (6.78) for
the discrete maximum principle for each τ > 0. Hence, the LESFEM-IMEX Euler solution to
(6.143) fulfils a discrete maximum principle unconditionally on τ . In order to appreciate the
quadratic convergence in space we solve the problem on a sequence of eight Delaunay meshes
Γi, i = 1, . . . , 8, whose mesh sizes at t = 0 fulfil h1(0) = 0.4013 and hi(0) ≈ hi−1(0)√

2
, i =

2, . . . , 8. The corresponding timesteps τi fulfil τ1 = 4e-2 and τi =
(

hi
hi−1

)2
τi−1, i = 2, . . . , 8.

In Fig. 6.2 we show a sequence of snap shots of the evolution of the numerical solution on the
finest mesh Γ8. The experimental order of convergence is computed by measuring the error,
in L∞([0, T ], L2(Γh(t))) norm, between the numerical solution U and the piecewise linear
interpolant Ih(u) of the exact solution. The result is shown in Fig. 6.3: the convergence is
experimentally optimal in that it is quadratic in the meshsize and linear in the timestep.
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Figure 6.3: Example 1: Linear heat equation (6.143) on a sphere that evolves linearly with
the material velocity field (6.144), with initial datum (6.146) and final time T = 1, solved
on a sequence of eight Delaunay meshes Γi, i = 1, . . . , 8, and corresponding timesteps τi,
i = 1, . . . , 8, as described in the text. Error in L∞(0, T, L2(Γh(t))) norm (left panel) and
experimental rate of convergence (right panel). The quadratic convergence in space is optimal.

Numerical Example 2: RDS with Thomas kinetics and invariant regions

In this example, we show that the LESFEM-IMEX Euler preserves the invariant regions of
RDSs on evolving surfaces. Let us consider the following RDS with Thomas kinetics




∂•u1 + u1∇Γ · v − d1∆Γu1 = f1(u1, u2) := γ

(
a− u1 − ρ u1u2

1+u1+Ku2
1

)
;

∂•u2 + u2∇Γ · v −∆Γu2 = f2(u1, u2) := γ
(
α(b− u2)− ρ u1u2

1+u1+Ku2
1

)
,

(6.147)

considered in Section 6.7.2, with the following reaction parameters:

a = 150, b = 100, ρ = 13, K = 0.05, γ = 1, (6.148)

as in [95]. With these parameters, the system (6.147) admits, in the absence of domain
growth, the homogeneous steady state P ≈ (37.7382, 25.1588) calculated using Newton-
Raphson method on a stationary domain. Notice that the diffusion coefficient for u2 has
been normalised to 1 for convenience, and we choose d1 = 0.01. The initial domain Γ(0) is
the Dupin ring cyclide considered in [59, Appendix B], rescaled for convenience, given by

D :=



(x, y, z) ∈ R3 :

(
9(x2 + y2 + z2) +

261

100

)2

− 4

(
6x−

√
39

10

)2

− 3249

25
y2 = 0



 , (6.149)

an orientable surface without boundary that is topologically equivalent to a torus. The surface
evolves under the isotropic velocity field (6.46) with

S(t) =
rK(K − 1)

K − 1 + exp(Krt)
> 0, t ∈ [0, T ], (6.150)

with r = 0.2, K = 3 and undergoes a logistic growth, see Table 6.1. As final time we choose
T = 100. From Theorem 20, it follows that the corresponding dilation rates fulfil

µmin = µ∗min ≈ 0, µmax = µ∗max = 0.8. (6.151)
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Figure 6.4: Example 2: Thomas RDS (6.147) with reaction parameters (6.148) on any surface
that evolves logistically with the material velocity field defined by (6.46) and (6.150). Plot of
the region (6.152), which is invariant for the considered system under the timestep restriction
τ ≤ 1.676e-3. This region is obtained by considering the nullclines of the modified kinetics
defined in (6.153)-(6.154).

From Theorem (26), model (6.147) possesses arbitrarily large bounded invariant regions con-
tained in the positive orthant. Let

Σ = [σ1, σ1]× [σ2, σ2] ≈ [0.3366, 126.4194]× [13.2938, 45.8182] (6.152)

be the smallest bounded region that (i) contains P and (ii) meets the modified inward flux
conditions (6.103)-(6.104) with τ = τ̄ := 2e-3 and thus (6.103)-(6.104) hold for all 0 < τ ≤ τ̄ .
As illustrated in Fig. 6.4, Σ is obtained by considering the nullclines of the modified kinetics

fk(u1, u2) := fk(u1, u2)− µminuk, k = 1, 2; (6.153)

f
k
(u1, u2) := fk(u1, u2)− eτ̄µmax − 1

τ̄
uk, k = 1, 2. (6.154)

It is easy to see that, on a region of the form Σ = [σ1, σ1] × [σ2, σ2], the Lipschitz constants
L1 and L2 of the kinetics f1 and f2 of (6.147) fulfil

L1 ≤ L̂1 := γ
√

(1 + ρσ2)2 + ρ2, L2 ≤ L̂2 := γ
√

(ρσ2)2 + (α+ ρ)2.

Hence, the timestep restriction (6.105) becomes τ ≤ 1
max(L̂1,L̂2)

≈ 1.676e-3. It follows that

Σ is invariant for the LESFEM-IMEX Euler full discretisation under the timestep restriction

0 < τ ≤ min
(
τ̄, 1

max(L̂1,L̂2)

)
≈ 1.676e-3. We choose τ = 1e-3. The region Σ is smaller than

the invariant region provided in Theorem 26, which has a simple analytical expression but is
not optimal. The following initial condition

{
u1,0(x, y, z) = σ1 + (σ1 − σ1)ψ(x, y, z);

u2,0(x, y, z) = σ2 + (σ2 − σ2)ψ(x, y, z),
(6.155)

where ψ(x, y, z) :=
√

1− 25(min(|y|, 1
5))2 fulfils (u1,0(x), u2,0(x)) ∈ Σ for all x ∈ Γ(0) and is

shown in the first snap shot of Fig. 6.5. We solve the problem with τ = 1e-3 on a sequence
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i hi(0) min
t∈[τ,T ]

η
1

min
t∈[τ,T ]

η1 min
t∈[τ,T ]

η
2

min
t∈[τ,T ]

η2

1 1.190e+00 8.482e-02 1.841e-01 -8.001e-01 5.214e-01
2 8.537e-01 8.005e-02 5.281e-01 -5.318e-01 6.397e-01
3 5.898e-01 5.860e-02 1.759e-01 -5.083e-01 7.626e-01
4 4.273e-01 2.259e-02 1.793e-01 -6.559e-01 5.147e-01
5 3.011e-01 -7.288e-02 1.791e-01 -6.338e-01 8.181e-01
6 2.114e-01 -3.555e-01 1.241e-01 -5.017e-01 4.297e-01
7 1.531e-01 -5.376e-01 1.321e-01 -3.816e-01 6.152e-01

Table 6.2: Example 2: Thomas RDS (6.147) on the Dupin ring cyclide (6.149) that evolves
logistically with the material velocity field defined by (6.46) and (6.150), with reaction param-
eters (6.148), initial datum (6.155) and final time T = 100. Invariance analysis for ESFEM,
carried out by solving the system on a sequence of seven meshes Γi, i = 1, . . . , 7 as described
in the text with a fixed timestep τ = 1e-3. The region Σ defined in (6.152) is not invariant
for ESFEM for any i = 1, . . . , 7, as the method violates the minimum of U1 for i = 5, 6, 7 and
the minimum of U2 for each i = 1, . . . , 7.

of seven meshes Γh,i(t), i = 1, . . . , 7, with decreasing initial meshsizes hi(0), i = 1, . . . , 7,
with both the LESFEM-IMEX Euler and ESFEM-IMEX Euler methods. Snap shots of the
LESFEM-IMEX Euler numerical solution obtained on the finest mesh Γh,7 at different times
are shown in Fig. 6.5. In particular, at the final time T = 100 (see last snap shot of Fig.
6.5), the surface is stationary up to machine precision and the numerical solution has reached
a stationary pattern. For a given numerical solution (U1, U2) on the mesh Γh,i, i = 1, . . . , 7,
consider the following functions

ηk(t) := min
x∈Γh,i(t)

(σk − Uk(x, t)), η
k
(t) := min

x∈Γh,i(t)
(Uk(x, t)− σk), k = 1, 2.

These functions are the oriented distances of the numerical solution (U1, U2) from the edges
of Σ. If the oriented distances η

k
and ηk, k = 1, 2, stay positive at all times, it means that

(U1, U2) is in Σ at all times. For all i = 1, . . . , 7, we show the minima over the time interval
[τ, T ] (i.e. excluding the initial data) of η

k
and ηk, k = 1, 2, for both the ESFEM-IMEX Euler

and LESFEM-IMEX Euler methods in Tables 6.2 and 6.3, respectively. We observe that
ESFEM-IMEX Euler violates Σ for all i = 1, . . . , 7, while LESFEM-IMEX Euler preserves Σ
for all i = 1, . . . , 7.

6.9 Conclusions

We have presented a LSFEM spatial discretisation and a LSFEM-IMEX Euler full discretisa-
tion of RCDSs on evolving compact surfaces. We have introduced indicators, called dilation
rates that measure the rate of evolution of the continuous and triangulated surfaces.
We have proved sufficient conditions for a rectangular region in the phase-space to be in-
variant (i) for the LESFEM space discretisation and (ii) for the LESFEM-IMEX Euler full
discretisation. These sufficient conditions account for the dilation rates of the discrete surface.
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Figure 6.5: Example 2: Thomas RDS (6.147) on the Dupin ring cyclide (6.149) that evolves
logistically with the material velocity field defined by (6.46) and (6.150), with reaction param-
eters (6.148), initial datum (6.155) and final time T = 100. Snap shots of the U1 component of
the LESFEM-IMEX Euler numerical solution at different times, obtained on the finest mesh
Γ7 (see text) with initial meshsize h7(0) = 1.531e-1 and timestep τ = 1e-3.
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i hi(0) min
t∈[τ,T ]

η
1

min
t∈[τ,T ]

η1 min
t∈[τ,T ]

η
2

min
t∈[τ,T ]

η2

1 1.190e+00 1.060e-01 1.738e-01 7.6017752487788e-02 2.665e-01
2 8.537e-01 1.060e-01 4.796e-01 7.6017752487775e-02 3.676e-01
3 5.898e-01 1.060e-01 1.958e-01 7.6017752487774e-02 5.336e-01
4 4.273e-01 1.060e-01 2.163e-01 7.6017752487768e-02 6.679e-01
5 3.011e-01 1.060e-01 1.934e-01 7.6017752487765e-02 9.708e-01
6 2.114e-01 1.060e-01 1.909e-01 7.6017752487761e-02 9.401e-01
7 1.531e-01 1.060e-01 1.899e-01 7.6017752487756e-02 9.367e-01

Table 6.3: Example 2: Thomas RDS (6.147) on the Dupin ring cyclide (6.149) that evolves
logistically with the material velocity field defined by (6.46) and (6.150), with reaction param-
eters (6.148), initial datum (6.155) and final time T = 100. Invariance analysis for LESFEM,
carried out by solving the system on a sequence of seven meshes Γi, i = 1, . . . , 7 as described
in the text with a fixed timestep τ = 1e-3. The region Σ defined in (6.152) is invariant for all
i = 1, . . . , 7. The minima of η

1
(and so the minima of U1) coincide up to machine precision.

At the fully discrete level, a timestep restriction that depends on the Lipschitz constants of
the kinetics is required.
By applying the proposed theory, we have classified some families of invariant regions for the
LSFEM spatial discretisation of the Schakenberg, the Thomas, the Hodgkin-Huxley and the
DIB models on evolving surfaces.
We have provided two numerical examples to show:

1. the L∞([0, T ], L2(Γ(t))) optimal convergence (i.e. quadratic in the meshsize and linear in
the timestep) of the LESFEM-IMEX Euler full discretisation of the linear heat equation
on a linearly growing sphere, even though a theoretical convergence analysis is beyond
the scope of this thesis;

2. the existence of an invariant rectangle for the LESFEM-IMEX Euler full discretisation
of the Thomas RDS on a logistically growing Dupin cyclide.
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Chapter 7

Conclusions and possible extensions

In this work we have proposed novel extensions of the SFEM for the numerical approximation
of partial differential equations on stationary or evolving surfaces. The proposed methods
address two problems in numerical analysis: (i) polygonal approximation of the surface and
(ii) preservation of maximum principles and invariant regions under discretisation. The main
findings of this thesis can be summarised as follows:

• In Chapter 3 we have presented a Surface Virtual Element Method (SVEM) for the
numerical approximation of the Laplace-Beltrami equation on a stationary surface Γ.
The method is well-defined on arbitrary (possibly discontinuous) polygonal approxima-
tions of the surface, rather than just on triangulations. The possibility of approximating
the surface with arbitrary polygons can provide a computational advantage in several
applications since (i) particular geometries can be approximated with fewer elements on
equal number of nodes and (ii) multiple meshes can be easily pasted together through
juxtaposition by imposing virtual continuity. We have proven optimal convergence in
H1(Γ) norm (that is linear in the meshsize).

• In chapter 4 we have presented a Lumped Surface Finite Element Method (LSFEM) for a
semilinear heat equation on a stationary surface Γ and a full discretisation based on the
implicit-explicit (IMEX) Euler method of the LSFEM spatially discrete formulation.
Both the spatial- and fully discrete methods preserve the maximum principle under
discretisations if the mesh meets the Delaunay angle condition. No restriction on the
meshsize is required, while a timestep restriction depending on the source term of the
equation is required at the fully discrete level. We have proven optimal convergence
in L∞([0, T ], L2(Γ)) norm for both the spatially- and fully discrete methods (that is
quadratic in the meshsize and linear in the timestep).

• In Chapter 5 we have extended the LSFEM and the IMEX Euler-LSFEM considered
in the previous chapter to solve reaction-cross-diffusion systems (RCDSs) on a sta-
tionary surface Γ. Both the spatial- and fully discrete methods preserve the invariant
regions of the continuous PDE problem under discretisations if the mesh meets the De-
launay angle condition. No restriction on the meshsize is required, while a timestep
restriction depending on the Lipschitz constants of the kinetics is required at the fully
discrete level. As well as in the previous chapter, we have proven optimal convergence
in L∞([0, T ], L2(Γ)) norm for both the spatially- and fully discrete methods.

138



• Finally, In Chapter 6 we have further extended the LSFEM and the IMEX Euler-LSFEM
to solve the linear heat equation and reaction-diffusion systems (RDSs) on an evolving
surface Γ(t). We have introduced novel indicators, called dilation rates, that measure
the rate of growth or contraction of both the continuous and triangulated surfaces. For
the linear heat equation we have proven sufficient conditions for the maximum principle
to hold at the spatially- and fully discrete levels. For RDSs we have proven sufficient
conditions for a region in the phase-space to be invariant at the spatially- and fully
discrete levels. We have conjectured that analogous sufficient conditions hold at the
continuous level. These sufficient conditions account for the dilation rates of the surface,
thus quantifying the impact of surface evolution on the maximum principle for the heat
equation and on the invariance of sets in the phase-space for RDSs. We have classified
families of invariant regions -depending on the dilation rates- for the activator-depleted,
the Thomas, the DIB and the Hodgkin-Huxley RD models.

We now outline possible direction for future studies:

1. Nonlinear cross-diffusion. In [123] the authors consider RCDSs with nonlinear cross-
diffusion on stationary planar domains. They prove that, in the absence of nonlinearities
in the diffusion term, the only possible invariant regions have polygonal shape while, in
the presence of nonlinear cross-diffusion, invariant regions with curved boundaries can
exist. To the best of the author’s knowledge, no numerical evidence of such invariant
regions with curved boundaries is available in the literature. Hence, devising a numerical
method that preserves the invariant regions of RCDSs with nonlinear cross-diffusion is
a possible direction for future studies.

2. Higher order convergence in space. Higher orders of convergence can be achieved by
adopting curved finite elements, as shown in [32]. However, raising the order of conver-
gence of the presented methods provides additional challenges, in fact:

• For the SVEM, the increased complexity arising from curved elements would re-
quire suitable techniques to retain computability;

• For the LSFEM, the main bottleneck is the impossibility of formulating a La-
grangian finite element method of arbitrarily high order such that the resulting
stiffness matrix is an M -matrix. In fact, if for linear Lagrangian elements it is
sufficient to impose the Delaunay angle condition, the work in [74] shows that, for
quadratic Lagrangian elements a much more restrictive angle condition is required,
while for cubic Lagrangian elements there is no angle condition that guarantees a
discrete maximum principle. Hence, novel machinery would be required.

3. Different time integrators. The LSFEM for stationary surfaces and the LESFEM for
evolving surfaces could be combined with different time discretisation schemes for two
reasons. First, by choosing a different time discretisation, the order of convergence in
time can be increased. For instance, in [42] the authors consider Runge-Kutta time
integrators combined with standard finite elements for parabolic problems on evolving
surfaces. Second, some time integrators are suited for particular kinds of solutions. For
instance, ESFEM and LESFEM could be combined with a symplectic time integrator
to approximate oscillating solutions.
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4. Preservation of the Delaunay condition under evolution. On evolving surfaces, the
assumption that the mesh preserves the Delaunay condition under evolution is too re-
strictive in many cases in which non-isotropic growth is considered. Some adaptive
mesh algorithms that produce quality evolving meshes (e.g. free of excessively distorted
elements) have been proposed in the literature, we mention for instance the work in
[77]. However, to the best of the author’s knowledge, the preservation of the Delaunay
condition under evolution remains an open problem.
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