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Abstract

This thesis is concerned with degenerate weakly coupled systems of Hamilton-Jacobi equations,
imposed on �at torus, using both PDE and dynamical methods. The PDE approach relies
essentially on control and viscosity solutions tools. Our main contribution is the construction of
an algorithm through which we can get a critical solution to the system as limit of monotonic
sequence of subsolutions and we also adapt the algorithm to non compact setting. Moreover,
we get a characterization of isolated points of the Aubry set and establish semi-concavity type
estimates for critical subsolution. A crucial step in our work is to reduce our analysis from
systems into either scalar Eikonal equations or discounted ones. Whereas, in the dynamical
approach we use the random frame introduced in [26] to provide a cycle condition characterizing
the points of Aubry set. This generalizes a property already known in the scalar case.
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Chapter 1

General Introduction

1.1 Context and background

The main purpose of the present thesis is to recover some crucial PDE and dynamical

facts from the theory of Hamilton Jacobi scalar equations and generalize it to systems,

using the techniques of viscosity solutions and tools in a suitable probabilistic framework

which govern some switching between equations. More precisely, we are interested in a

family of Hamilton-Jacobi systems of the form

Hi(x,Dui) +
m∑

j=1

aijuj(x) = α in TN for every i ∈ {1, 2, ...,m}, (HJα)

where α is a real constant, H1, · · · , Hm are continuous Hamiltonians de�ned on TN ×RN ,

convex and coercive in the momentum variable, and A := (aij) is an m × m coupling

matrix satisfying

aij ≤ 0 for every j 6= i,

and A is diagonally dominant, i,e

m∑

j=1

aij ≥ 0 for any i ∈ {1, 2, ...,m}.

Throughout the thesis we will be interested in the case where a degeneracy condition is
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assumed, namely
m∑

j=1

aij = 0 for any i ∈ {1, 2, ...,m}.

We further assume that the matrix irreducible, meaning roughly speaking, that the cou-

pling is non-trivial and the system cannot split into independent subsysytems.

To frame the problem in the literature, we should mention that the �rst papers dealing

with such a kind of systems with a viscosity solution approach are [16], [21], [24]. Here

the focus is on the non-degenerate case, where every row sum of the coupling matrix

is assumed to be strictly positive. It is introduced the class of monotone systems, which

contain as special instance the non�degenerate weakly coupled systems. Existence, and

uniqueness of viscosity solution for such systems are established. At this level, it is also

important to mention that when adding a suitable irreducibility condition on the coupling

matrix, the non degenerate case is achieved even if the sum of only one row is strictly

positive. In the scalar case, m = 1, where the matrix reduces to a scalar, the non

degeneracy amounts ensures that this scalar is strictly positive. Hence the corresponding

scalar equation is the discounted Hamilton�Jacobi equation which, as well known, can be

uniquely solved on the whole torus, and the solution is the value function of a related

control problem, see [12], [22].

In our work we are speci�cally interested in the degenerate case, which corresponds in

the scalar case to a single equation, not depending on the unknown function and classi�ed

as of Eikonal type. In this scalar setting a rich theory has been developed by linking PDE

facts to geometrical/dynamical properties. Representation formula for (sub) solutions

have been provided through minimization of a suitable action functional, showing, among

other things, the existence of an unique value of α, named a critical value, for which

viscosity solutions do exist, and the existence of subsolution for any value greater or equal

to the critical one. It is also proved the existence of a distinguished closed set for which

the obstruction in getting subsolutions below critical value concentrates, named Aubry

set. A PDE as well as dynamical characterization of the Aubry set is provided see [18].

This body of results is a part of the so-called weak KAM theory, see [17]. Several facts

from weak kAM theory were generalized to the case of weakly coupled Hamilton-Jacobi

systems and will be presented in what follows according to two approaches: PDE and

dynamical approach.
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We start with the PDE approach. It has been actually a merit of [8, 29, 27] to �rst realize

and point out that under the aforementioned assumptions on the coupling matrix, some

phenomena, already occurring in the Eikonal scalar case, also take place for systems, and

can be analyzed in the spirit of the weak KAM theory. In these papers it has been proved

the existence of a unique constant α ∈ R for which the system (HJα) admits viscosity

solutions. Such a quantity is quali�ed as critical. It is characterized as the minimal α ∈ R
for which the corresponding weakly coupled system admits viscosity subsolutions.

A signi�cant forward step in the analysis of systems at the critical level has been recently

taken by Davini-Zavidovique in [15], proving that similar to what happens in the critical

scalar case, the obstruction in getting globally strict subsolution is not spread over the

whole torus, but instead concentrates on a distinguished closed set named after Aubry.

From a PDE point of view the Aubry set is then de�ned with the crucial property that the

maximal critical subsolution (i.e., a subsolution to the system with α equals to the critical

value) taking a given value, among admissible ones, at any �xed point of the Aubry set

is indeed a critical solution.

The aforementioned admissibility refers to the fact that there is a restriction in the values

that a subsolution of the system can assume at any given point. This is a further relevant

property pointed out in [15], which genuinely depends on the vectorial structure of the

problem and has no counterpart in the scalar case. Due to stability properties of viscosity

subsolutions and the convex nature of the problem, these admissible values make up a

closed convex set at any point y of the torus.

All the above results belong to the PDE side of the theory, and are solely obtained

by means of PDE techniques. In the control literature, it is worth pointing out that

the �rst contributions in the framework are of the so�called Hierarchical control, where

the coupling matrix represents the hierarchy. Recently, a deep dynamical and variational

approach, integrating the PDE methods, was brought in by by Mitake, Siconol�, Tran and

Yamada in [26] . This angle allowed detecting the stochastic character of the problem. The

e�ectiveness of their approach is demonstrated by recovering some crucial facts holding

in the scalar case and intertwining between PDE and dynamical aspects which is at the

core of weak KAM theory. Namely, they adapted the action functional for the system

and they used it to fully characterize critical and supercritical subsolutions of the system.

Moreover, they used the functional to give a dynamical formulation of the property of
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being admissible value at a given point. By this way they also provided a representation

formula for critical solutions taking a prescribed admissible value at a given point of the

Aubry set. The crucial step in their analysis was to put the problem in a suitable random

frame, exploiting the fact that the coupling matrix under our assumptions being generator

of a semigroup of stochastic matrices.

1.2 Contributions

As pointed out in the previous section, Davini and Zavidovique proved the existence of a

solution for the Hamilton-Jacobi system at the critical level. Our main achievement is the

construction of an algorithm through which we can get such a critical solution starting

from a given subsolution. The construction is based on control-theoretic techniques and

its key tool is the reduction to discounted Hamilton-Jacobi equation, where existence and

comparison results hold. We also adapt the algorithm in the non- compact setting (RN),

to get solutions at any critical/supercritical levels. Moreover, we introduce the notion

of equilibrium points for weakly coupled Hamilton-Jacobi systems and prove that any

isolated point of the Aubry set is equilibrium. We also show that any critical subsolution

is strictly di�erentiable at every isolated point of the Aubry set. This generalizes a known

fact holding in the scalar Eikonal case. Following Fathi-Siconol� in [18], we establish a

semi-concavity type estimates for critical subsolutions. Namely, we prove that the su-

perdi�erential of any solution of the critical system is nonempty at any point of the torus

and the same property holds true for any critical subsolution on the Aubry set. The idea

of the proof is to reduce the analysis of system into scalar Eikonal equation and then

exploit the regularity properties of critical subsolutions holding in the scalar case. All the

above results pertain to the PDE side of the thesis and are presented in chapter 5.

The geometric/dynamical characterization of the Aubry set is so far missed and this

is our primary task in chapter 4 of the thesis. Following the dynamical approach in

[26], we precise the random frame of our problem, which does not introduce an abstract

probability space. This makes the presentation self-contained and readable by people

having no background in probability, only some basic knowledge of measure theory is

in fact necessary. To provide a dynamical characterization of the Aubry set, we employ

the action functional introduced in [26] in relation to the systems and we use random

cycles de�ned on intervals with a stopping time, say τ , as right endpoint, which we call

τ�cycles. However a �rst serious di�culty is that we need a strict positiveness of the
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stochastic matrix e−Aτ . To overcome this di�culty we introduce the notion of stopping

times strictly greater than a positive constant ε, denoted by τ � ε. This produces an ε

advantage in the �ltration which guarantee that e−Aτ is positive and above all is essential

in proving our main result. A second issue is that we use stopping times τ � ε to provide

a new characterization of admissible values which is used to get our desired result. The

main output is presented in chapter 4 in two versions, Theorems 4.4.3, 4.4.4, with the

latter one, somehow more geometrically �avored, exploiting the notion of characteristic

vector of a stopping time.

1.3 Organization

The thesis is organized as follows:

• chapter 2 presents the basic tools and material used through out the thesis. It also gives

a brief overview of results on scalar Hamilton-Jacobi equations.

• chapter 3 collects basic results on weakly coupled Hamilton-Jacobi systems, both from

a PDE and dynamical point of views.

• chapter 4 provides a dynamical/geometric characterization of the Aubry set by the be-

havior of action functional on cycles. This work has been submitted to Communications

in Contemporary Mathematics and presented in [19].

• chapter 5 is devoted to establish further PDE properties about weakly coupled Hamilton-

Jacobi systems. Namely, we prove existence results in both compact and non-compact

setting. Moreover, we establish semi-concavity type estimates for subsolutions. This

chapter is based on the e-print [34].

• Appendix A collects some elementary algebraic results on coupling and stochastic ma-

trices.

• Appendix B provides a self contained proof about using Lipschitz functions as test func-

tions for viscosity solutions.

13



14



Chapter 2

Overview of results on Hamilton-Jacobi

equations

This chapter is devoted to the basic theory of Hamilton Jacobi equation of the form

H(x, u(x), Du(x)) = 0, (HJ)

where the state variable x belongs to RN , or to an open bounded subset of RN , or to

the torus TN according to the di�erent problems we tackle, and the Hamiltonian H is a

continuous real-valued function on RN × R× RN .

2.1 Viscosity solutions

2.1.1 Semidi�erentials and generalized gradient

We �rst introduce the semidi�erentials of a function which will be important in our later

analysis. For a detailed treatment of all the results, we refer readers to [2], [1] and [10].

De�nition 2.1.1 (Super and subtangent).

Given an USC function u : RN → R, we say that a C1 function φ is supertangent to

u at some point x0 if φ(x0) = u(x0) and φ(x) ≥ u(x) for every x ∈ U where U is a

neighborhood of x0. This means that x0 is a local maximizer of u− φ.

Similarly, a C1 function ψ is called subtangent to a LSC function u at x0 if ψ(x0) = u(x0)

and ψ(x) ≤ u(x) for every x ∈ V , a neighborhood of x0. Accordingly, x0 is a local

minimizer of u− ψ.
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Remark 2.1.2 One can always assume that the local minimum (resp. maximum) at x0

is strict, by replacing φ(x) with φ(x)− |x− x0|2 (resp. φ(x) + |x− x0|2).

De�nition 2.1.3 (Super and subdi�erential).

Let u : RN → R be an USC function, the set of superdi�erentials of u at a point x ∈ RN

is de�ned as

D+u(x) = {p ∈ RN : p = Dφ(x); φ is supertangent to u at x}.

Similarly, if u : RN → R is a LSC function, the set of subdi�erentials of u at a point

x ∈ RN is de�ned as

D−u(x) = {p ∈ RN : p = Dψ(x); ψ is subtangent to u at x}.

The superdi�erential and subdi�erential are called semidi�erentials.

From the de�nition it follows that, for any x ∈ RN

D+u(x) = −D−(−u(x)).

Some basic properties of sub and superdi�erentials are collected in the following lemma.

Lemma 2.1.4

(a) D+u(x) and D−u(x) are closed convex (possibly empty ) subsets of RN ,

(b) if u is di�erentiable at x, then

D+u(x) = D−u(x) = {Du(x)},

(c) if for some x both D+u(x) and D−u(x) are nonempty, then u is di�erentiable at x

and the above equality of sets holds,

(d) if v : RN → R is a function with v ≤ u and v(x) = u(x), then D−v(x) ⊂ D−u(x)

and D+v(x) ⊃ D+u(x).

Now we introduce some weak di�erential for locally Lipschitz continuous functions called

Generalized Gradient (Clarke's gradient), which is one of the most important concepts

in nonsmooth analysis. We �rst recall that any locally Lipschtiz continuous function is

almost everywhere di�erentiable with locally bounded gradient, in force of Rademacher

Theorem. Then we have the following
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De�nition 2.1.5 (Generalized gradient).

Let u : RN → R be locally Lipschtiz continuous. The generalized gradient of u, denoted

by ∂u, is de�ned for every x via the formula

∂u(x) = co{p = lim
n
Du(xn), u is di�erentiable at xn, lim

n
xn = x},

where co(A) denotes the convex hull of A.

Some basic properties of generalized gradient are collected in the following proposition.

Proposition 2.1.6 Let u : RN → R be locally Lipschitz continuous. The following hold

a) if ∂u(x) = {p}, a singleton, then u is strictly di�erentiable at x, in the sense that u

is di�erentiable and Du is continuous at x. In this case, Du(x) = p.

b) let xn ∈ RN and pn ∈ RN be sequences such that pn ∈ ∂u(xn) for any n ∈ N.
Suppose that xn → x and pn → p, as n→∞ . Then one has p ∈ ∂u(x), that is the

set-valued map ∂u(·) is closed.

Let us point out that the presence of the convex hull in the de�nition of generalized

gradient is essential to keep, in the nonsmooth setting, the usual variational property, as

fully stated in the next result.

Proposition 2.1.7 Let u be locally Lipschitz continuous then 0 ∈ ∂u(x0) at any local

maximum or minimum x0 of u.

Now we directly deduce from the de�nition of generalized gradient:

Proposition 2.1.8 Let u and φ be locally Lipschitz-continuous and C1 functions respec-

tively, then

∂(u− φ)(x) = ∂u(x)−Dφ(x) for every x.

We derive from Proposition 2.1.7 and Proposition 2.1.8

Corollary 2.1.9 Let u be locally Lipschitz continuous then

D+u(x) ∪D−u(x) ⊂ ∂u(x) for any x.
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Notice that, in contrast to what happens for the sub and superdi�erential de�ned before

which can be empty, ∂u(x) 6= ∅ for any x.

Remark 2.1.10 In addition to the properties presented in Lemma 2.1.4, the sub and

superdi�erentials of a locally Lipschitz continuous function are bounded in RN

Remark 2.1.11 For a locally Lipschitz-continuous function u, we have the relation

u(y)− u(x) =

∫ T

0

d

dt
u(ξ(t))dt

for any x, y, any absolutely continuous curve ξ with ξ(0) = x, ξ(T ) = y.

Under the above assumptions on u and ξ, in fact, it can be proved that the composition

u◦ ξ inherits absolute continuity and so d
dt
u(ξ(t)) do exist for a.e. t. However, one should

be careful when writing down the apparently equivalent formula

u(y)− u(x) =

∫ T

0

Du(ξ(t)) · ξ̇(t)dt,

since the relation d
dt
u(ξ(t)) = Du(ξ(t)) · ξ̇(t), on which it is based, is surely true if both u

and ξ are di�erentiable, and thus is indeed the case for ξ at a.e. t. But such regularity is

not guaranteed for u at any ξ(t) for the reason that the support of the curve has vanishing

N−dimensional Lebesgue measure. However one can prove the next result on the a.e.

derivative of u along an absolute continuous curve, see for instance Lemma 1.4 in [14]:

Lemma 2.1.12 Let ξ : (−∞, 0] → TN be an absolutely continuous curve. Let s be such

that t 7→ u
(
ξ(t)

)
and t 7→ ξ(t) are both di�erentiable at s. Then

d

dt
u(ξ(t))|

t=s

= p · ξ̇(s) for some p ∈ ∂u(ξ(s)).

2.1.2 De�nitions and basic properties

Now we have all the ingredients to present the notion of viscosity solution. The notion

of viscosity solution was �rst introduced by Crandall and Lions in 1982 and it works

very well for many �rst- and second-order nonlinear PDEs, and satis�es properties of

existence, uniqueness and stability. Moreover, this notion selects in a suitable sense the

optimal almost everywhere solution.
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De�nition 2.1.13 (Viscosity solutions) .

An USC function u : RN → R is called a viscosity subsolution of (HJ) if

H(x, u(x), p) ≤ 0 for any x ∈ RN , any p ∈ D+u(x).

Similarly, a LSC function u is a viscosity supersolution of (HJ) if

H(x, u(x), p) ≥ 0 for any x ∈ RN , any p ∈ D−u(x).

Finally, a continuous function u is a viscosity solution of (HJ) if u is both a viscosity sub

and supersolution.

We state for latter use the next result which is an enlargement of the class of viscosity

test functions, weakening the standard requirement of C1−regularity.

Proposition 2.1.14 Let u be an USC subsolution (resp. LSC supersolution) to (HJ),

and φ a Lipschitz-continuous supertangent (resp. subtangent) to u at some point x. Then

H(x, u(x), p) ≤ 0 (resp. ≥ 0) for some p ∈ ∂φ(x).

A self-contained proof of this proposition is proposed in the Appendix B, by exploiting

some facts arising in convex analysis.

The following proposition explains the local character of the notion of viscosity solution

and its consistency with the classical pointwise de�nition.

Proposition 2.1.15 (a) If u ∈ C (Ω) is a viscosity solution of (HJ) in Ω, then u is a

viscosity solution of (HJ) in Ω′, for any open subset Ω′ ⊂ Ω;

(b) u ∈ C1(RN), u is a classical solution of (HJ) if and only if it is a viscosity solution

of (HJ).

Remark 2.1.16 A striking fact to be stressed here is that viscosity solutions are not

preserved by change of sign in the equation. Indeed, since any local maximum of u − φ
is a local minimum of −u − (−φ), hence u is viscosity subsolution of (HJ) if and only

if −u is a viscosity supersolution of −H(x, u,Du) = 0 in Ω. Similarly, u is viscosity

supersolution of (HJ) if and only if −u is a viscosity subsolution of −H(x, u,Du) = 0.

19



We now remark that the convexity of the Hamiltonian in the gradient variable allows us

to prove some additional results in the theory of viscosity solutions of Hamilton-Jacobi

equations. Namely, we can show that Lipschitz continuous viscosity subsolution and al-

most everywhere subsolution are equivalent as made precise in the next proposition.

Proposition 2.1.17 Assume for each x ∈ RN , r ∈ R, the Hamiltonian H(x, r, p) is

convex in p, and u : RN → RN be a locally Lipschitz continuous function. Then, the

following statements are equivalent:

a) u is a viscosity subsolution to (HJ) in RN ;

b) u is an almost everywhere subsolution to (HJ) in RN ;

c) H(x, u(x), p) ≤ 0, for any x ∈ RN and any p ∈ ∂u(x).

Proof . (a) ⇒ (b): This is evident because if u is as in the statement, then

Du(x) ∈ D+u(x) at any x where u is di�erentiable,

accordingly, if u is subsolution in the viscosity sense then it is also a.e. subsolution.

(b) ⇒ (c): Assume u be an almost everywhere subsolution to (HJ) and take any point

x ∈ RN and let p ∈ ∂u(x). By the very de�nition of generalized gradient,

p =
∑

i

λipi,

where

λi ≥ 0,
∑

i

λi = 1, pi = lim
n
Du(xin), lim

n
xin = x, for any i.

We derive exploiting the continuity of H

H(x, u(x), pi) = lim
n
H(xin, u(xin), Du(xin)) ≤ 0 for any i.

By the convexity assumption on H, we get

H(x, u(x), p) = H(x, u(x),
∑

i

λipi) ≤
∑

i

λiH(x, u(x), pi) ≤ 0.

(c) ⇒ (a): The implication directly comes from the fact that D+u(x) ⊂ ∂u(x) for any

x ∈ RN , and taking into account the de�nition of viscosity subsolution.

If we ask some more on the di�erential structure of u, we can state a more general result

without the assumption of convexity for H.
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Proposition 2.1.18 Let u be a locally Lipschitz continuous function in RN .

a) If D+u(x) = ∂u(x), ∀x ∈ RN , then u is a viscosity supersolution to (HJ) if and only

if it is an almost everywhere supersolution;

b) If D−u(x) = ∂u(x), ∀x ∈ RN , then u is a viscosity subsolution to (HJ) if and only

if it is an almost everywhere subsolution.

It is important to notice that a viscosity subsolution is not necessarily locally Lipschitz

continuous. However, this will be the case if the Hamiltonian H(x, r, p) is assumed to

satisfy the coercive condition in p, i.e.,

H(x, r, p) −→ +∞ as |p| → +∞, uniformly in x and in r. (2.1)

Proposition 2.1.19 Assume that the Hamitonian H satis�es the coercivity condition

(2.1). If u ∈ BC(RN) is a viscosity subsolution of (HJ), then u is Lipschitz continuous

in RN .

Proof . Fix x0 ∈ RN . Consider the function

φ(x) = u(x0) + C|x− x0|,

where C > 0 is a suitable constant to be chosen later. The boundedness of u implies the

existence of y ∈ RN such that y is a maximizer of u− φ on RN , we claim that y ≡ x0.

Indeed if y 6= x0, then the function φ is di�erentiable at y and since u is a viscosity

subsolution of (HJ), we get

H
(
y, u(y), Dφ(y)

)
= H

(
y, u(y), C

y − x0

|y − x0|
)
≤ 0.

For C su�ciently large, the above inequality is in contradiction to the coercivity condition

(2.1) and hence y ≡ x0. Therefore

u(x)− u(x0) ≤ C|x− x0|, for every x ∈ TN .

By interchanging the roles of x and x0, we get u ∈ Lip(RN). �

One of the most useful properties of viscosity solution is stability which allows us to

pass to limits even when the Hamilton-Jacobi equation is fully nonlinear. The following

stability result plays an important role in viscosity solution theory.
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Theorem 2.1.20 (Stability Result). Suppose that (un) is a sequence of continuous

viscosity solutions of

Hn(x, u(x), Du(x)) = 0, x ∈ RN

that converges locally uniformly to a function u : RN → R. Suppose moreover that Hn → H

locally uniformly, then u is a viscosity solution of

H(x, u(x), Du(x) = 0, x ∈ RN .

The validity of all stability arguments is due to the next elementary fact which is very

useful in many situations in viscosity theory. It is termed as stability for minimiz-

ers/maximizers (see Lemma 2.4 in [1]).

Lemma 2.1.21 Let v ∈ C(Ω). Suppose that v has a strict local maximum (or minimum)

at a point x0 ∈ Ω. If vn ∈ C (Ω) converges locally uniformly to v in Ω, then there exist a

sequence {xn} such that xn → x0, and vn has a local maximum (or minimum) at xn.

We now present the nice behavior of viscosity solutions w.r.t. the operations of in�mum

and supremum.

Proposition 2.1.22 Let F be a family of viscosity subsolutions (resp. supersolutions) of

(HJ) and cosider:

u(x) = sup
v∈F

v(x) (resp. u(x) = inf
v∈F

v(x)).

Assume also that u is USC (resp. LSC), then u is a viscosity subsolution (resp. superso-

lution) of (HJ).

Remark 2.1.23 Note that in general the supremum of viscosity supersolutions (resp. the

in�mum of viscosity subsolutions) is not a viscosity supersolution (resp. viscosity subso-

lution). Moreover even if we consider a family of continuous viscosity subsolution (resp.

continuous viscosity supersolutions), it is not necessary that the supremum (in�mum) will

be USC (LSC) as desired. Nevertheless, without the correct semi continuity needed, the

result is still true but one has to use the theory of discontinuous viscosity solution, which

means to deal with the lower and the upper semicontinuous envelopes.
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2.1.3 Some comparison results

In this section we address the problem of comparison and uniqueness of viscosity solu-

tions which is a major issue in the theory. In what follows we select some comparison

results between viscosity sub and supersolutions in the case of bounded domain Ω and on

the whole space RN . As a simple remark, each comparison result produces a uniqueness

theorem for the associated Dirichlet problem.

We start with comparison results for Hamilton-Jacobi equations of the form

λu+H(x,Du(x)) = 0, (2.2)

where λ is a positive scalar, the state variable x belongs to RN or to an open bounded sub-

set Ω of RN and the continuous HamiltonianH is now strictly increasing with respect to u.

We remark that, in what follows, by modulus we mean nondecreasing function from

[0,+∞) to [0,+∞) vanishing and continuous at 0.

Theorem 2.1.24 Let Ω be a bounded open subset of RN . Assume that u, v ∈ C(Ω̄) are,

respectively, viscosity sub- and supersolution of (2.2) such that

u ≤ v on ∂Ω.

Assume also that H satis�es

|H(x, p)−H(y, p)| ≤ ω1(|x− y|(1 + |p|)) for x, y ∈ Ω, p ∈ RN , (2.3)

where ω1 is a modulus, then

u ≤ v on Ω̄

We now provide a global comparison result (case of Ω = RN) in the space of bounded

continuous functions on RN :

Theorem 2.1.25 Assume that u, v are, respectively, bounded continuous viscosity sub-

and supersolution of (2.2) such that that H satis�es (2.3) in RN × RN and also

|H(x, p)−H(x, q)| ≤ ω2(|p− q|) for all x, p, q ∈ RN , (2.4)

where ω2 is a modulus, then

u ≤ v on RN .
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A relevant example of Hamiltonian satisfying (2.3), (2.4) is given by so�called Bellman

Hamiltonian

H(x, p) = max
a∈A
{−p · f(x, a)− `(x, a)} (2.5)

where A is a compact subset of some RM , withM possibly di�erent fromN , f : RN×A :→
RN is Lipschitz-continuous in x, uniformly with respect to a, namely

|f(x, a)− f(y, a)| ≤ Lf |x− y| for any x, y, a, some Lf > 0.

Finally, the function ` : RN × A → R is bounded and continuous in both arguments.

Notice that H is convex in p, being the maximum of linear functions.

Equation (2.2) withH being of Bellman type is called Hamilton�Jacobi�Bellman equation.

We mention, without entering in many details, that it is related to the following in�nite

horizon control problem

inf
α∈A

∫ +∞

0

e−λt`(y(t, x0, α), α) dt, (2.6)

where A = L∞(0,+∞;A), i.e. the space of measurable functions de�ned in [0,+∞) and

taking values in A, the boundedness condition being just a consequence of the fact that

A has been assumed to be compact. We consider the trajectory solution of the Cauchy

problem {
y′(t) = f(y(t), α(t))

y(0) = x0

(2.7)

Notice that under our assumptions such a problem actually admits, for any given α(.) ∈ A,
unique solution de�ned in the whole [0,+∞), that will be denoted in what follows by

t 7→ y(t, x, α).

In optimal control problems the set A is called the control set and the entities making

up A, are called controls. The previously introduced dynamics is quali�ed as controlled,

while ` is the running cost and the constant λ plays the role of a discount factor. Finally,

the functional appearing in (2.6) takes the name of payo�. See [1] for a general treatment

of this topics using the Dynamic Programming Principle .

The relationship of the above model with (2.2), with H of Bellman-type, is given by the

value function v associating to any initial point x the in�mum of the payo�, namely

v(x) = inf
α∈A

∫ +∞

0

e−λt`(y(t, x, α), α) dt.

Indeed under the above assumptions we have
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Proposition 2.1.26 The value function v is a viscosity solution of (2.2) on RN , with H

of Bellman type.

We proceed by presenting a comparison and uniqueness result for Hamilton-Jacobi equa-

tions of the form

H(x,Du) = 0, x ∈ Ω, (2.8)

where Ω is bounded open subset of RN and H is real valued Hamiltonian continuous on

both variables. Here the convexity of H with respect to the p variable plays a key role in

getting the result.

Theorem 2.1.27 Assume that u, v ∈ C(Ω̄) are, respectively, viscosity sub- and superso-

lution of (2.8) such that u ≤ v on ∂Ω. Assume also that H satis�es

• p→ H(x, p) is convex and coercive on RN for every x ∈ Ω,

• there exists a strict subsolution of (2.8) in Ω, namely there exists φ ∈ C(Ω̄) with

H(x,Dφ) ≤ −δ in the viscosity sense in Ω for some positive δ.

Then u ≤ v in Ω.

Proof . Due to the coercivity, u is locally Lipschitz�continuous in Ω. The argument is by

contradiction, we assume the minimum of v − u in Ω is strictly negative, which implies

that all minimizers of v − u must be in Ω, by the assumption u ≤ v on ∂Ω.

Next we construct a sequence of strict subsolutions, say un, uniformly converging to u in

Ω. For this we essentially exploit the existence of a strict global subsolution φ. Given a

strictly increasing sequence λn of positive numbers converging to 1, we de�ne

un = λn u+ (1− λn)φ.

It is easy to see, exploiting the convex character of the Hamiltonian, that the un are indeed

locally Lipschitz-continuous strict subsolutions of (2.8) converging uniformly to u. This

implies that any sequence xn of minimizers of v− un in Ω converges, up to subsequences,

to a minimizer of v − u which we know to be in Ω. Hence xn ∈ Ω for n large enough.

The function un is therefore a Lipschitz�continuous subtangent to v at xn, then by Propo-

sition 2.1.14

H(xn, p) ≥ 0 for some p ∈ ∂un(xn). (2.9)

Passing to the limit, and taking into account the continuity properties of H and Gener-

alized Gradient, we get
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H(x, p) ≥ 0 for some p ∈ ∂un(x), (2.10)

where x is a minimizer of v − u in Ω.

On the other side, owing to convexity and being strict subsolution, un satis�es

H(x, p) < 0 for all p ∈ ∂un(x). (2.11)

The relations in (2.10), (2.11) are in contradiction. We therefore conclude that there is

some minimizer of v − u on ∂Ω, which in turn implies v ≥ u in Ω, as desired.

Remark 2.1.28 The core of the above argument is to have a strict subsolution which is

subtangent to a given supersolution. So if we consider the Eikonal equation (2.8) imposed

on �at torus TN and we assume the existence of a strict subsolution and solution at some

level a, then the same argument holds and we get a contradiction, being all minimizers

interior. Therefore, we derive that it is impossible to have a solution and strict subsolution

simultaneously. In this case, we understand the existence of a unique level, quali�ed as

critical, to get a solution and below which we don't have subsolutions. This is explained

precisely in section 2.2.

2.2 Scalar eikonal equation

In this section we study a family of Hamilton-Jacobi equations of eikonal type in the

compact setting, in particular on the �at torus TN . Our aim is to collect some basic

materials from Weak KAM theory for convex, coercive Hamiltonians. For more details,

this topic has been extensively studied by Fathi and Siconol� in [18], .

We consider the family of Hamilton-Jacobi equations

H(x,Du(x)) = a on TN , (HJa)

with a real parameter. We assume that the Hamiltonian H : TN × RN → R satis�es the

following assumptions:

(H1) (x, p) 7→ H(x, p) is continuous for every x ∈ TN ;

(H2) p 7→ H(x, p) is convex for every x ∈ RN ;
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(H3) p 7→ H(x, p) is coercive, uniformly in x, namely

lim
|p|→+∞

H(x, p) = +∞;

Thanks to coercivity, all viscosity subsolutions of (HJa) are Lipschitz continuous. More-

over, by the convexity assumption, there is complete equivalence between the notions of

viscosity subsolution and a.e. subsolution. Therefore a function u is a subsolution of

(HJa) if and only if H(x, p) ≤ a for every x and p ∈ ∂u(x), see Proposition 2.1.17.

Moreover, for any �xed a ∈ R, the set of viscosity subsolutions of (HJa) is equi-Lipschitz

with a common Lipschitz constant κa given by

κa = sup{|p| : H(x, p) ≤ a}.

In the qualitative analysis of the family of Hamilton-Jacobi equations (HJa), it is well

known, as already pointed out, that a special value of a is relevant, quali�ed as critical

and denoted in the remainder by c. It is characterized from a PDE viewpoint, by the

property that it is the unique value for which the corresponding equation can be solved

in the viscosity sense on the whole torus. The uniqueness of the critical value is due to

the following fact:

Proposition 2.2.1 If there exists a subsolution u of (HJa) with a = a1 and a superso-

lution w of (HJa) with a = a2, then a1 ≥ a2.

From this result, we see that the unique value of a for which there can be a solution of

(HJa) is

c = inf{a : (HJa) has a subsolution}.

By the Ascoli-Arzelà Theorem and the stability of the notion of viscosity subsolution, it

is easily seen that such an in�mum is attained, meaning that there are subsolutions also

at the critical level. Therefore we focus our attention on the critical equation

H(x,Du(x)) = c. (HJc)

The existence of solution at critical level is obtained through the study of the critical

subsolutions given, for every �xed y ∈ TN , by

sup{u(.) : u is subsolution of (HJc) with u(y) = 0}
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and by relating it to a cover of the torus with open balls.

Next we need to provide an integral representation formula for subsolutions/solutions.

For this purpose, we de�ne for any x the a�sublevel

Z(x) = {p | H(x, p) ≤ a}

It is a patent consequence of the convexity and coercivity assumptions that Z(x) is con-

vex and compact for any x. Moreover, we directly derive, from the continuity of the

Hamiltonian, the following continuity properties for the set�valued function Z

xn → x, pn ∈ Z(xn), pn → p⇒ p ∈ Z(x). (2.12)

p ∈ Z(x), xn → x⇒ ∃pn ∈ Z(xn) | pn → p (2.13)

We proceed considering the support function

σ(x, q) = max{p · q | p ∈ Z(x)} (2.14)

we see that it is positively homogeneous in p and, in addition convex because of the

convexity of Z(x). This implies subadditivity, namely

σ(x, p1 + p2) ≤ σ(x, p1) + σ(x, p2) for any x, p1, p2.

It moreover comes from (2.12), (2.13) that

x 7→ σ(x, p) is continuous for any �xed p.

Following the metric method which has revealed to be a powerful tool for the analysis of

Hamilton-Jacobi equations, we carry out the study of properties of subsolutions of (HJa)

by means of semidistances Sa de�ned on TN × TN , as follows:

Sa(x, y) = inf

{∫ 1

0

σ(ξ(s), ξ̇(s))ds : ξ ∈ Bx,y

}
, (2.15)

where

Bx,y = {ξ : [0, 1]→ TN is Lipschitz-continuous with ξ(0) = x and ξ(1) = y)}.

We now recall some basic properties of the semidistance Sa and then provide a class of

fundamental (sub) solutions to (HJa). The mentioned results are taken from [18, 33], for

more details.
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Since the juxtaposition of trajectories in Bx,z and Bz,y respectively give, up to a change

of parameter, a curve in Bx,y, one can establish:

Sa(x, y) ≤ Sa(x, z) + Sa(z, y) for all x, y, z ∈ TN . (2.16)

Moreover, the semi distance Sa satis�es, for every x, y ∈ TN , the following inequality:

Sa(x, y) ≤ Ra|x− y| for some positive constant Ra. (2.17)

The semidistance Sa plays a crucial role in the representation formulae for (sub) solutions

of (HJa) as

Proposition 2.2.2 Given a ≥ c, we have

(i) The function Sa(y, .) is a solution on TN \ {y} and subsolution on TN of (HJa) ,

for every y ∈ TN . In addition

Sa(y, x) = max{u(x) : u subsolution of (HJa) with u(y) = 0}

(ii) A function u is subsolution of (HJa) if and only if

u(x)− u(y) ≤ Sa(y, x) for all x, y ∈ TN . (2.18)

Based on this proposition we next present the relation between viscosity solutions and a.e

solution:

Remark 2.2.3 Indeed any lipschitz continuous function which is a viscosity solution of

(HJa) is also a.e solution. However the converse, in general, is not true. The above

proposition tells us that at any supercritical level we have an in�nite number of a.e solu-

tions which are not viscosity solutions, given by the intrinsic distance Sa(y, .). This shows,

since we have an equivalence between viscosity subsolutions and a.e subsolutions, that in

the qualitative analysis of (HJa) the viscosity techniques enter to select supersolutions.

In the analysis of the behavior of critical subsolutions, a special role is played by the

so-called Aubry set, denoted by Ae, de�ned as the collection of points y ∈ TN such that

inf

{∫ 1

0

σc(ξ(s), ξ̇(s))ds : ξ ∈ By,y, `(ξ) ≥ δ

}
= 0 for some δ > 0,

where `(ξ) indicates the length of the curve ξ.

The set Ae is nonempty and closed in the torus.
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We recall that a critical subsolution of (HJc) is called strict in an open set B if

H(x,Du(x) ≤ c− δ, for some δ > 0.

In our setting and as mentioned previously it is impossible to get a solution and strict

subsolution simultaneously (Remark 2.1.28). However, the obstruction in getting global

strict subsolution is not spread over the whole torus but instead concentrates on the Aubry

set. We now provide a pde characterization of Ae.

Proposition 2.2.4 .

(i) y ∈ Ae if and only if Sc(y, .) is a solution of (HJc).

(i) Any point y with min
p
H(y, p) = c belongs to Ae.

(ii) y /∈ Ae if and only if there exists a critical subsolution which is strict in some

neighborhood of y.

It is well known that the existence of a strict subsolution is a su�cient and necessary con-

dition to get comparison and uniqueness result for Hamilton-Jacobi equations of Eikonal

type, Theorem 2.1.27. However, in our setting such a condition is only satis�ed outside

the Aubry set. Therefore the Aubry set behaves as a sort of interior boundary where, to

have uniqueness, the value of the solution has to be prescribed on Ae. More precisely, the

next theorem shows in particular that Ae is a uniqueness set for the equation (HJc).

Proposition 2.2.5 (i) If u and v are a subsolution and a supersolution of (HJc), re-

spectively, and u ≤ v on Ae, then u ≤ v on TN . In particular, if two solutions of

(HJc) coincide oh Ae, then they coincide on TN .

(ii) If u0 is a continuous function de�ned on a closed set C such that

u0(x)− u0(y) ≤ Sa(y, x) for every x, y ∈ C, (2.19)

then the function

u := min
y∈C
{u0(y) + Sa(y, .)} (2.20)

is the maximal subsolution of (HJa) in TN equaling u0 on C, and a solution of

(HJa) on TN \ C as well.

(iii) If we further set C = Ae and a = c in (2.20), then u is the unique critical solution

of (HJc) equal to u0 on Ae.
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We end up this section by stating the regularity properties of critical subsolutions. For

this purpose we assume additionally

(x, p) 7→ H(x, p) is locally Lipschtiz�continuous ,

p 7→ H(x, p) is strictly convex for every x.

Then we have the following semiconcavity-type estimates for Sc(y, .).

Proposition 2.2.6 Assume either x 6= y or x = y ∈ Ae then

∂Sc(y, x) = D+Sc(y, x).

Exploiting this proposition, we deduce the following regularity result for critical subsolu-

tions.

Theorem 2.2.7 .

(i) For y ∈ TN, the function Sc(y, .) is strictly di�erentiable at every point of Ae.

(ii) Any critical subsolution w is di�erentiable on Ae and Dw(y) = DSc(y, y) for every

y ∈ Ae.

Now it is important to mention that the above presented results, concerning intrinsic

distance and representation formulas, are still true in the whole space RN . However,

there are some facts that only hold in the non-compact setting, namely in RN .

The �rst remark is that the assumptions (H1) − (H3) don't guarantee that the criti-

cal value is �nite. To clarify this, we consider the following example of simple Eikonal

equation:

|Du| = f(x)− a on RN ,

where f is the potential function such that f(x)→ −∞ as |x| → +∞. In this case the set

of subsolutions at any level a is empty, and hence the critical value is in�nite (c = +∞).

Unlike the compact case where the critical value c is characterized by the property of being

the unique value such that (HJa) has solutions in TN , in the non-compact case (RN) a

solution does exist at the critical value as well as at any supercritical level. Namely, we

have
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Proposition 2.2.8 Assume c is �nite. Then for any a ≥ c, the equation (HJa) has

solutions in RN .

Proof . Given a ≥ c and x ∈ Rm. Let yn be a sequence in Rm going to in�nity, and we

set

un(x) := Sa(yn, x),

then, by Proposition 2.2.2, un is a sequence of subsolutions of (HJa) in Rm and solutions

in Rm \ {yn}.
De�ne, for each n ∈ N,

ũn(x) := un(x)− un(0)

= Sa(yn, x)− Sa(yn, 0).

Clearly, ũn are also subsolutions of (HJa) in Rm and solutions in Rm \{yn}, and moreover

ũn(0) = 0, for every n ∈ N.

We next prove that the sequence ũn is equi-Lipschitz continuous and locally equi-bounded

in Rm. Indeed, for any n ∈ N and x, z ∈ Rm, one has

ũn(x)− ũn(z) = Sa(yn, x)− Sa(yn, z)
≤ Sa(z, x)

≤ Ra|x− z|,

for some Ra > 0, where the inequalities follows from the triangle inequality of semidistance

Sa.

By exchanging the roles of x and z, we get

|ũn(x)− ũn(z)| ≤ Ra|x− z|, for any x, z ∈ Rm, any n ∈ N,

which shows the equi-Lipschitz continuity of ũn in Rm. The locally equi-boundedness

character of ũn is easily obtained from the following estimate

|ũn(x)| = |ũn(x)− ũn(0)| ≤ Ra|x|, for every x ∈ Rm, n ∈ N.

Up to subsequences, by Ascoli-Arzelà theorem, there exists a continuous function u0 such

that

ũn → u0, locally uniformly in Rm.

In the rest of the proof we verify that u0 is a solution of (HJa) in Rm. Clearly, u0 is

a subsolution of (HJa) in Rm by using subsolution property of ũn and basic stability
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property of viscosity solution theory. We are left to prove the supersolution property of

u0 in Rm. To this end, we take any x0 ∈ Rm and ϕ a C1 strict subtangent to u0 at x0,

i.e x0 is the unique minimizer of u0 − ϕ in a suitable closed ball B centered at x0. By

Lemma 2.1.21, there exists a sequence xn of minimizers of un − ϕ in B converges to x0.

We now remark that, for n large enough, xn 6= yn and xn is in the interior of B, hence by

the supersolution property of ũn in Rm \ {yn}, one has

H(xn, Dϕ(xn)
)
≥ a.

Passing to the limit and by the continuity of H and ϕ being C1, we get

H(x0, Dϕ(x0)) ≥ a.

This yields u0 is supersolution to (HJa) in Rm.

�

Assume c is �nite and a ≥ c. We may couple equation (HJa) with Dirichlet boundary

condition {
H(x,Du) = a in Ω

u = g on ∂Ω
(2.21)

where Ω is bounded open set of RN and g a given function on ∂Ω. We derive from

aforementioned results the following representation formula:

Theorem 2.2.9 Assume the boundary datum to satisfy

g(y)− g(x) ≤ Sa(x, y) for any x, y in ∂Ω

then the function

v(x) = inf{Sa(y, x) + g(y) | y ∈ ∂Ω}

is subsolution to (2.21) in RN , solution in RN \ ∂Ω and agrees with g on ∂Ω.

Moreover if a > c, then v is the unique solution to (2.21).

33



34



Chapter 3

Weakly coupled systems of Hamilton�

Jacobi equations

3.1 Introduction

This chapter deals with weakly coupled Hamilton�Jacobi system of the form

Hi(x,Dui) +
m∑

j=1

aijuj(x) = α in TN for every i ∈ {1, 2, ...,m}.

Here u = (u1, · · · , um) is the vector�valued unknown function, Dui is the gradient of ui,

α is a real number, Hi are mutually unrelated Hamiltonians enjoying standard properties,

see Section 3.2, and A is the so called m × m coupling matrix, which constitutes the

relevant item in the problem. The hypothesis taken on the coupling matrix A correspond

to suitable monotonicity properties of the equation with respect to the entries uj, see

Remark 3.2.3. They are complemented by a degeneracy condition requiring all rows of A

sums to 0 and any non�diagonal entry is nonpositive, yielding that −A is a generator of

semigroup of stochastic matrices.

In the PDE literature, such weakly coupled systems have been studied as a particular

instance of monotone systems; see [16, 21, 24]. More recently, they have been considered

in connection with homogenization problems [8, 28] and for the long-time behavior of the

associated evolutionary system [9, 27, 29, 30]. These works are a generalization of results

established in the case of a single equation, see [6, 13, 25, 32].
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Note that we must assume an irreducibility condition on the coupling matrix to solve

our system, see Section 3.2 for the precise de�nition. Under these assumptions, it is es-

tablished in [8, 29, 27] that there is a unique value for α, termed as critical, such that

the corresponding system admits viscosity solutions. Critical solutions are, instead, not

unique even up to the addition of a common constant to all the components ui. More

recently, a qualitative analysis on the critical weakly coupled system, investigating the

non�uniqueness phenomena taking place at the critical level, has been taken by Davini-

Zavidovique in [15]. The core of their analysis is discovering that, at the critical level,

a very rigid object appears, characterized as the region where the obstructions of strict

critical subsolutions concentrates and named after Aubry in analogy with the scalar case.

They explore the properties of this Aubry set, in particular to show that it is a uniqueness

set for the critical system i.e., two critical solutions that coincide on A do coincide on

the whole torus and they highlight some rigidity phenomena taking place on it. All these

results pertain to the PDE side of the theory, and are solely obtained by means of PDE

techniques, and they are presented in section 3.4.

A new approach has been taken recently by Mitake, Siconol�, Tran and Yamada in [26]

covering the dynamical part of the problem and recovering some crucial facts holding in

the scalar case. A crucial step in their analysis is to put the problem in a suitable random

frame, which avoid introducing an abstract probability space and just work with concrete

path spaces, see sections 3.5.1 and 3.5.2. Their main achievement is demonstrated by the

de�nition of family of related action functionals containing the Lagrangians obtained by

duality from the Hamiltonians of the system. They use them to characterize, by means

of a suitable estimate, all the subsolutions of the system, and to explicitly represent some

subsolutions enjoying an additional maximality property, see section 3.5.3.

In this chapter we give a brief overview of the existing PDE and dynamical results and

show the link between the two approaches which is the core of Weak KAM theory. We

also provide comparison results for non�degenerate systems.

3.2 Setting of the problem

Through out the thesis, we are speci�cally interested in degenerate weakly coupled system

of Hamilton-Jacobi equations of the form
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Hi(x,Dui) +
m∑

j=1

aijuj(x) = α in TN for every i ∈ {1, 2, ...,m}, (HJα)

where α is a real constant and H1, H2, ..., Hm are Hamiltonians satisfying the following

set of assumptions:

(H6) Hi : TN × RN → R is continuous for every i ∈ {1, 2, ...,m};

(H7) p 7→ Hi(x, p) is convex for every x ∈ TN , and i ∈ {1, 2, ...,m};

(H8) Hi is coercive in the momentum variable for every i ∈ {1, 2, ...,m}.

We denote by A := (aij) an m×m coupling matrix satisfying the following hypotheses:

(A1) aij ≤ 0 for every i 6= j;

(A2) A is degenerate i.e

m∑

j=1

aij = 0 for any i ∈ {1, 2, ...,m};

(A3) The matrix A is irreducible, i.e for every W ( {1, 2, ...,m} there exists i ∈ W and

j /∈ W such that aij < 0. Roughly speaking this means that the system cannot split

into independent subsysytems.

As made precise in Appendix A, the conditions (A1), (A2), (A3) implies that the matrix

A is singular with rank m − 1 and kernel spanned by 1, namely the vector with all

components equal to 1, moreover Im(A) cannot contain vectors with strictly positive or

negative components. This in particular implies Im(A) ∩ ker(A) = {0}.

The notion of viscosity (sub/super) solution can be easily adapted to systems as (HJα).

De�nition 3.2.1 We say that a continuous function u : TN → Rm is a viscosity subso-

lution of (HJα) if for every (x, i) ∈ TN × {1, 2, ...,m}, we have

Hi(x, p) +
m∑

j=1

aijuj(x) ≤ α for every p ∈ D+ui(x).

Symmetrically, u is a viscosity supersolution of (HJα) if for every (x, i) ∈ TN×{1, 2, ...,m},
we have

Hi(x, p) +
m∑

j=1

aijuj(x) ≥ α for every p ∈ D−ui(x).
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Finally, if u is both a viscosity sub and supersolution, then it is called a viscosity solution.

Remark 3.2.2 One could wonder why we are considering systems with the same constant

appearing in the right�hand side of any equation, while a more natural condition should

be to have instead a vector of Rm, say α, with possibly di�erent components. Indeed the

choice of taking the same scalar α on the right hand�side of the system is not a restriction.

In fact, if we write the vector α1 as α1 + α2 with α1 = α1 ∈ ker(A), α2 ∈ Im(A),

where this form is uniquely determined because Im(A) ∩ ker(A) = {0}, and pick b with

A b = −α2, then u is a (super/sub) solution to (HJα) if and only if u + b satis�es the

same properties for the system obtained from (HJα) by replacing in the right hand side

α1 by α1 + α2.

Remark 3.2.3 The weakly coupled system (HJα) is a particular type of monotone system,

i.e. a system of the form

Fi(x,u(x), Dui) = 0 in TN ,

where suitable monotonicity conditions with respect to the uj− variables are assumed on

the function Fi, see [8], [16], [20], [21], [24]. In our case the conditions assumed on the

coupling matrix A imply that each Fi is strictly increasing in ui and decreasing in uj for

every j 6= i and our system (HJα) is expressed as

Fi(x,u(x), Dui) = Hi(x,Dui) +
m∑

j=1

aijuj(x)− α in TN for every i ∈ {1, 2, ...,m}.

(3.1)

3.3 Comparison results

In this section we will present two comparison results based on the method of doubling

of variables. The basic di�erence is that the �rst comparison result requires irreducibility

assumption on the matrix A and non degeneracy in at least one row while the second one

does not need the matrix A to be irreducible but instead requires a non degeneracy in

every row .

We begin with the �rst comparison result.
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Theorem 3.3.1 Let A satis�es (A1), (A3) and

m∑

j=1

akj > 0 for some k ∈ {1, 2, ..., n}. (3.2)

Let u, v : TN → Rm be continuous sub and supersolution of the system (HJα) respectively,

then

u(x) ≤ v(x) for every x ∈ TN .

Proof . The proof is done by contradiction. Assume that there exists a point x ∈ TN

such that ui(x) > vi(x) for some i ∈ {1, 2, ...,m}. We then consider:

M = max
1≤i≤m

max
TN

(ui − vi) > 0.

Let x0 ∈ TN be the point where this maximum is attained. De�ne

W = {i ∈ {1, 2, ...,m};ui(x0)− vi(x0) = M}.

The key idea is to insert penalization terms and use the method of doubling the variables.

For every ε > 0, we de�ne the function φε : TN × TN → R by

φε(x, y) = ui(x)− vi(y)− |x− y|
2

2ε2
− |x− x0|2

2

This clearly admits a maximum at some point (xε, yε) ∈ TN×TN . By a standard argument

in the theory of viscosity solution, see for instance [2], the following properties hold:

xε, yε → x0,
|xε − yε|

ε
→ 0 as ε→ 0. (3.3)

Also,

pε =
xε − yε
ε2

∈ D−vi(yε) and qε =
xε − yε
ε2

− (xε − x0) ∈ D+ui(xε). (3.4)

Due to the lipschitz character of ui, we deduce that the vectors qε are equibounded and

hence converges, up to a subsequence, to some vector p ∈ RN .

So, in view of (3.3) and (3.4), we get

pε, qε → p as ε→ 0.

From the de�nition of viscosity sub and supersolution we obtain

Hi(xε, qε) +
m∑

j=1

aijuj(xε) ≤ a,
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Hi(yε, pε) +
m∑

j=1

aijvj(yε) ≥ a.

By subtracting the above second inequality from the �rst one and passing to the limit for

ε→ 0, we get
m∑

j=1

aij(uj(x0)− vj(x0)) ≤ 0 for every i ∈ W. (3.5)

If W = {1, 2, ...,m}, then by inequality (3.5), we get

M

m∑

j=1

aij ≤ 0 for every i ∈ {1, 2, ...,m},

which is a contradiction to assumption (3.2).

If W 6= {1, 2, ...,m}, by irreducibility character of A, there exists i ∈ W and k /∈ W such

that aik < 0. From (3.5) and the assumptions aij ≤ 0 for every i 6= j and M > 0, we

obtain

Maii ≤
∑

j 6=i
|aij|(uj(x0)− vj(x0))

≤ M
∑

j 6=i
|aij|

≤ Maii.

Hence these inequalities are equalities and so uk(x0) − vk(x0) = M , which yields to a

contradiction since k /∈ W . �

In contrast to the previous result, in the degenerate case where each row sums to zero, we

don't have a comparison between sub and super solution. Because arguing as in the proof

of Theorem 3.3.1, we get W = {i ∈ {1, 2, ...,m};ui(x0) − vi(x0) = M} = {1, 2, ...,m}.
So, we have the next remarkable property of weakly coupled systems (see Theorem 2.3 in

[15]):

Proposition 3.3.2 Assume that u, v are respectively a continuous sub and supersolution

of the system (HJα) for some α ∈ R. Let x0 ∈ TN be such that

ui(x0)− vi(x0) = M = max
1≤i≤m

max
TN

(ui(x)− vi(x)) for some i ∈ {1, 2, ...,m}.

Then u(x0)− v(x0) = M1.

We now proceed to show a comparison result for (HJα) in the non-degenerate case under

the following hypotheses:
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(A4) aij ≤ 0 for every i 6= j and
m∑
j=1

aij ≥ λ > 0 for every i ∈ {1, 2, ...,m} .

Theorem 3.3.3 . Assume (A4) holds. Let u, v : TN → Rm be respectively, continuous

sub and supersolution of the weakly coupled system (3.1). Then

u(x) ≤ v(x) for every x ∈ TN .

Proof . Set

M = max
1≤i≤m

max
TN

(ui − vi).

We want to show that M ≤ 0. Assume by contradiction that M > 0 and pick a point

x0 ∈ TN where such a maximum is attained. De�ne

W = {i ∈ {1, 2, ...,m};ui(x0)− vi(x0) = M}.

Arguing as in the proof of Theorem 3.3.1, we get

m∑

j=1

aij(uj(x0)− vj(x0)) ≤ 0 for every i ∈ W, (3.6)

that is, since i ∈ W ,

Maii ≤
∑

j 6=i
|aij|(uj(x0)− vj(x0)) ≤M

∑

j 6=i
|aij|.

This implies that

M λ < M
m∑

j=1

aij ≤ 0,

which is contradiction to λ, M > 0. �

3.4 PDE approach to Hamilton-Jacobi systems

This section is devoted to study degenerate Hamilton�Jacobi systems from a PDE point

of view. We review some main results, taken from Davini-Zavidovique [15], and prove

new properties for latter use.

We �rst de�ne the critical value β, in analogous to the scalar case, as

β = inf{α| (HJα) admits subsolution }.
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Indeed the in�mum in the de�nition of β is actually a minimum, see Proposition 2.9 in

[15]. We are then interested in the critical weakly coupled system

Hi(x,Dui) +
m∑

j=1

aijuj(x) = β in TN for every i ∈ {1, 2, ...,m}. (HJβ)

Moreover we have the next characterization of the critical value

Proposition 3.4.1 The critical system is the unique in the one�parameter family (HJα),

α ∈ R, for which there are solutions.

We now state two basic propositions which are analogous to scalar Hamilton�Jacobi equa-

tions. Due to coercivity we have

Proposition 3.4.2 The family of all subsolutions to (HJα) is equi-Lipschitz continuous

with Lipschitz constant denoted by `α.

Due to the convexity of the Hamiltonians Hi, the following equivalences also hold:

Proposition 3.4.3 Let u : TN → Rm be Lipschitz continuous function. Then the follow-

ing facts are equivalent for every (x, i) ∈ TN × {1, 2, ...,m}:

(i) Hi(x, p) +
∑m

j=1 aijuj(x) ≤ α for every p ∈ D+ui(x);

(ii) Hi(x,Dui(x)) +
∑m

j=1 aijuj(x) ≤ α for a.e.x ∈ TN ;

(iii) Hi(x, p) +
∑m

j=1 aijuj(x) ≤ α for every p ∈ ∂ui(x).

An adaptation of the pull-up method used in the scalar version of the theory gives:

Proposition 3.4.4 The maximal subsolution in the family of subsolutions to (HJα) tak-

ing the same value at a given point y is solution to (HJα) in TN \ {y}.

Next we start our qualitative analysis on the critical weakly coupled system. Similar to

what happens in the scalar case, the obstruction in getting subsolutions of the system

below the critical value is not spread over the torus, but concentrated instead on a distin-

guished closed nonempty subset of TN , named Aubry set and denoted by A. Following

[15], we give the de�nition of the Aubry set from the PDE point of view.
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De�nition 3.4.5 A point y belongs to the Aubry set A if any maximal critical subsolution

taking a given value at y is a solution to (HJβ).

More speci�cally, there cannot be any critical subsolution which is, in addition, locally

strict at a point in A, in the sense of subsequent de�nition.

De�nition 3.4.6 Given a critical subsolution u of (HJβ). We say that ui is strict at

y ∈ TN if there exists a neighborhood U of y and δ > 0 such that

Hi(x,Dui(x)) +
m∑

j=1

aijuj(x) ≤ β − δ for a.e. x ∈ U.

Moreover, we say that u is strict at y if ui is strict at y for every i ∈ {1, 2, ...,m}.

An useful criterion to check the latter property is the following

Lemma 3.4.7 Let y ∈ TN and u be a subsolution of (HJβ). The i−th component of u

is locally strict at y if and only if

Hi(y, p) +
m∑

j=1

aijuj(y) < β for any p ∈ ∂ui(y).

The mathematical formulation of the obstruction property is contained in the following

Theorem, which is an similar characterization to that in scalar eikonal case:

Theorem 3.4.8 A point y /∈ A if and only if for any index i ∈ {1, · · · ,m} there exists a
critical subsolution u with ui locally strict at y.

We proceed by stating a global version of the previous proposition, based on covering

argument. Namely we have

Theorem 3.4.9 There exists a subsolution which is strict in TN \ A.

A converse of this result is the next proposition which shows that the i-th component of

any critical subsolution ful�lls the supersolution test on A.

Proposition 3.4.10 Let y ∈ A. Then, for every i ∈ {1, 2, ...,m} and u a subsolution of

(HJβ),

Hi(y, p) +
m∑

j=1

aijuj(y) = 0 for every p ∈ D−ui(y).
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An interesting fact pointed out in [15] is that there is a restriction on the values that a

subsolution to (HJα) can attain at a given point. This is a property due to the vectorial

structure of the problem and has no counterpart in the scalar case. They refer to it as

rigidity phenomenon. We have

Theorem 3.4.11 Let y ∈ A and u,v be two subsolutions of (HJβ), then

u(y)− v(y) = k1, k ∈ R (3.7)

For α ≥ β, we de�ne for x ∈ TN

Fα(x) = {b ∈ Rm | ∃ u subsolution to (HJα) with u(x) = b}. (3.8)

It is clear that

b ∈ Fα(x) ⇒ b + λ1 ∈ Fα(x) for any λ ∈ R,

where 1 is the vector of Rm with all the components equal to 1. This is in a sense equiva-

lent of adding a constant to a subsolution in the scalar case. It is also apparent from the

stability properties of subsolutions and the convex character of the Hamiltonians, that Fα

is closed and convex at any x.

The rigidity phenomenon becomes severe on A where the admissible values make up a

one�dimensional set on A, as made precise by the following proposition:

Proposition 3.4.12 An element y belongs to the Aubry set if and only if

Fβ(y) = {b + λ1 | λ ∈ R}

where b is some vector in Rm depending on y, and 1 is the vector of Rm with all the

components equal to 1.

To complete the picture we proved recently in [19] that Fβ(y) possesses a non empty

interior outside A, which is characterized as follows:

Proposition 3.4.13 Given y /∈ A, the interior of Fβ(y) is nonempty, and b ∈ Rm is an

internal point of Fβ(y) if and only if there is a critical subsolution u locally strict at y

with u(y) = b.
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Proof . The values b corresponding to critical subsolutions locally strict at y make up a

nonempty set in force of Theorem 3.4.8, it is in addition convex by the convex character

of the system. We will denote it by F̃β(y).

Let b ∈ F̃β(y), we claim that there exists ν0 > 0 with

b + ν ei ∈ F̃β(y) for any i, ν0 > ν > 0. (3.9)

We denote by u the locally strict critical subsolution with u(y) = b, then there exists

0 < ε < 1 and δ > 0 such that

Hi(x,Dui(x)) +
m∑

j=1

aijuj(x) ≤ β − 2 δ for any i, a.e. x ∈ B(y, ε). (3.10)

We �x i and assume

η(ε) + aii
ε2

2
< δ for any i. (3.11)

where η is a continuity modulus for (x, p) 7→ Hi(x, p) in TN × B(0, `β + 1) and `β is a

Lipschitz constant for all critical subsolutions, see Proposition 3.4.2.

We de�ne w : TN → RM via

wj(x) =

{
uj(x) if j 6= i

max{φ(x), ui(x)} if j = i

where

φ(x) := ui(x)− 1

2
|y − x|2 +

ε2

2

Notice that

wi = φ > ui in B(y, ε) and wi = ui outside B(y, ε). (3.12)

By (3.10), (3.11) and the assumptions on the coupling matrix, we have for any i and a.e.

x ∈ B(y, ε)

Hi(x,Dwi(x)) +
∑

j

aij wj(x)

= Hi(x,Dui(x) + (y − x)) +
∑

j 6=i
aij uj(x) + aii φ(x)

≤ Hi(x,Dui(x)) + η(ε) +
∑

j

aij uj(x) + aii
ε2

2

≤ β − 2 δ + δ = β − δ
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Further, for j 6= i and for a.e. x ∈ B(y, ε), we have

Hj(x,Dwj(x)) +
∑

k

ajkwk(x)

= Hj(x,Duj(x)) +
∑

k

ajkuj(x) + aik

(
−1

2
|y − x|2 +

ε2

2

)

≤ β − 2 δ,

where the last inequality is due to the fact that aki ≤ 0. The previous computations

and (3.12) show that w is a critical subsolution locally strict at y, and this property is

inherited by

λw + (1− λ)u

for any λ ∈ [0, 1]. We therefore prove (3.9) setting ν0 = ε2

2
.

Taking into account that b + λ1 ∈ F̃β(y) for any λ ∈ R and that the vectors ei, i =

1, · · · ,m, and −1 are a�nely independent, we derive from (3.9) and F̃β(y) being convex,

that b is an internal point of F̃β(y) and consequently that F̃β(y) is an open set. Finally it

is also dense in Fβ(y) because if v is any critical subsolution and u is in addition locally

strict at y then any convex combination of u and w is locally strict and

λu(y) + (1− λ)v(y)→ v(y) as λ→ 0.

The property of being open, convex and dense in Fβ(y) implies that F̃β(y) must coincide

with the interior of Fβ(y), as claimed.

�

3.5 Dynamical approach to Hamilton-Jacobi systems

The aim of this section is to specify the random setting of our problem and recall the

existing dynamical results.

3.5.1 Path spaces

We refer readers to [7] for the material presented in this section without the proof.

The term càdlàg is used to indicate a function which is continuous on the right and has

left limit. We denote by D := D(0,+∞; {1, · · · ,m}) and D(0,+∞;RN) the spaces of

càdlàg paths de�ned in [0,+∞) with values in {1, · · · ,m} and RN , respectively. For any
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t > 0, we also indicate by D(0, t; {1, · · · ,m}) the space of càdlàg paths de�ned in [0, t]

with values in {1, · · · ,m}. It can be proved that

Any càdlàg path has at most countably many discontinuities. (3.13)

Any càdlàg path is locally (in time) bounded. (3.14)

To any �nite increasing sequence of times t1, · · · , tk, with k ∈ N, and indices j1, · · · , jk in
{1, · · · ,m} we associate with a cylinder de�ned as

C(t1, · · · , tk; j1, · · · , jk) = {ω | ω(t1) = j1, · · · , ω(tk) = jk} ⊂ D.

We denote by Di cylinders of type C(0; i) for any i ∈ {1, · · · ,m}.
We call multi-cylinders the sets made up by �nite unions of mutually disjoint cylinders.

The space D of càdlàg paths is endowed with the σ�algebra F spanned by cylinders of

the type C(s; i), for s ≥ 0 and i ∈ {1, · · · ,m}. A natural related �ltration Ft is obtained
by picking, as generating sets, the cylinders C(t1, · · · , tk; j1, · · · , jk) with tk ≤ t, for any

�xed t ≥ 0.

We can perform same construction in D(0,+∞;RN), and in this case the σ�algebra,

denoted by F ′t, is spanned by the sets

{ξ ∈ D(0,+∞;RN) | ξ(s) ∈ E} (3.15)

for s ≥ 0 and E varying in the Borel σ�algebra related to the natural topology of RN . A

related �ltration is given by the increasing family of σ�algebras F ′t spanned by cylinders

in (3.15) with s ≤ t.

Both D and D(0,+∞;RN) can be endowed with a metric, named after Skorohod, which

makes them Polish spaces, namely complete and separable. Above σ�algebras are the

corresponding Borel σ�algebras.

A consequence of the previous de�nitions is that F is the minimal σ�algebra for which

the evaluation maps

t 7→ ω(t) t ∈ [0,+∞)

are measurable and the same holds true for the σ�algebra in D(0,+∞;RN) with respect

to the evaluation maps

ξ 7→ ξ(t).

47



A map Ξ : D → D(0,+∞;RN) (resp φ : D → D) is accordingly measurable if and only

if the maps ω 7→ Ξ(ω)(t) from D to RN (resp., ω 7→ φ(ω)(t) from D to {1, · · · ,m}) are
measurable for any t.

The convergence induced by Skorohod metric can be de�ned, say in D(0,+∞;RN) to �x

ideas, requiring that there exists a sequence fn of strictly increasing continuous functions

from [0,+∞] onto itself (then fn(0) = 0 for any n) such that

fn(s) → s uniformly in [0,+∞]

ξn(fn(s)) → ξ(s) uniformly in [0,+∞].

We infer from the previous de�nition that

ξn → ξ in the Skorohod sense ⇒ ξn(t)→ ξ(t) at any continuity point of ξ. (3.16)

which in particular implies

ξn → ξ in the Skorohod sense ⇒ ξn(0)→ ξ(0) (3.17)

We moreover have

Any sequence convergent in the Skorohod sense is locally uniformly bounded. (3.18)

We consider the measurable shift �ow φh on D, for h ≥ 0, de�ned by

φh(ω)(s) = ω(s+ h) for any s ∈ [0,+∞), ω ∈ D.

Notice that φh is not in general continuous since the fact that ωn → ω in the Skorohod

metric does not in general implies that φh(ωn)(0) = ωn(h) → φh(ω)(0) = ω(h), unless

of course h is a continuity point for ω, and so does not in turn implies, by (3.17), that

φh(ωn) converges to φh(ω).

Proposition 3.5.1 Given nonnegative constants h, t, we have

φ−1
h (Ft) ⊂ Ft+h.

Proof . For any t1 ≥ 0, j1 ∈ {1, · · · ,m} we have

φ−1
h (C(t1; j1)) = C(t1 + h, j1).
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The assertion thus comes from the fact that Ft is spanned by cylinders of the form C(t1; j1),

with t1 ≤ t, and in this case C(t1 + h; j1) ∈ Ft+h. �

We also consider that space C(0,+∞;TN) of continuous paths de�ned in [0,+∞) taking

values in TN . It is endowed with a metric giving it the structure of a Polish space, which

induces the local uniform convergence.

We de�ne a map

I : D(0,+∞;RN)→ C(0,+∞;RN)

via

I(ξ)(t) =

(∫ t

0

ξ ds

)
.

Proposition 3.5.2 The map I(·) is continuous.

3.5.2 Random Setting

The material of this section is taken from [26]. We are going to de�ne a family of proba-

bility measures on (D,F). We start from a preliminary result. Taking into account that

F , Ft are generated by cylinders, we get by the Approximation Theorem for Measures,

see [23, Theorem 1.65].

Proposition 3.5.3 Let µ be a �nite measure on F . For any E ∈ F , there is a sequence

En of multi�cylinders in F with

lim
n
µ(En4E) = 0,

where 4 stands for the symmetric di�erence.

As a consequence we see that two �nite measures on D coinciding on the family of cylin-

ders, are actually equal.

Given a probability vector a in Rm, namely with nonnegative components summing to 1,

we de�ne for any cylinder C(t1, · · · , tk; j1, · · · , jk) a nonnegative function µa

µa(C(t1, · · · , tk; j1, · · · , jk)) =
(
a e−At1

)
j1

k∏

l=2

(
e−(tl−tl−1)A

)
jl−1 jl

. (3.19)

We then exploit that e−At is stochastic to uniquely extend µa, through Daniell�Kolmogorov

Theorem, to a probability measure Pa on (D,F), see for instance [37, Theorem 1.2].

Hence, in view of (3.19), we have
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Proposition 3.5.4 The map

a→ Pa

is injective, linear and continuous from S ⊂ Rm to the space of probability measures on

D endowed with the weak convergence.

Consequently, the measures Pa are spanned by Pi := Pei, for i ∈ {1, · · · ,m}, and

Pa =
m∑

i=1

ai Pi. (3.20)

Since by (3.19) the measures Pi are supported in Di ∈ F0, we also deduce

Pa(A) =
m∑

i=1

ai Pi(A ∩ Di) for any A ∈ F ,

and

ai = Pa(Di) for any i ∈ {1, · · · ,m}.

By (3.19) we also get that Pi are supported in Di := C(0; i).

We denote by Ea the expectation operators relative to Pa, and we put Ei instead of Eei .

We say that some property holds almost surely, a.s. for short, if it is valid up to Pa−null
set for all a > 0. We state the next property for later use

Lemma 3.5.5 Let f , a be a real random variable and a positive probability vector, re-

spectively. If ∫

E

f dPa = 0 for any E ∈ F

then f = 0 a.s.

De�nition 3.5.6 A random variable is a measurable map from (D,F) to a Polish space

endowed with the Borel σ�algebra. A simple random variable is the one that takes on

�nitely many values.

We consider the push�forward of the probability measure Pa, for any a ∈ S, through the

�ow φh on D. For a cylinder C := C(t1, · · · , tk; j1, · · · , jk), we have for any a ∈ S

φh#Pa(C) = Pa{ω | φh(ω) ∈ C} = Pa(C(t1 + h, · · · , tk + h; j1, · · · , jk))

=
(
a e−(t1+h)A

)
j1

k−1∏

l=2

(
e−A(tl−tl−1)

)
jl jl−1

= Pa e−Ah(C),

which implies
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φh#Pa(E) = Pa e−Ah(E) for any E ∈ F .

We therefore establish:

Proposition 3.5.7 For any a ∈ S, h ≥ 0,

φh#Pa = P
a e−hA .

Accordingly, for any measurable function f : D → R, we have by the change of variable

formula

Eaf(φh) =

∫

D
f(φh(ω)) dPa =

∫

D
f(ω) dφh#Pa = Ea e−Ahf. (3.21)

Given t > 0,the evaluation maps

ω 7→ ω(t)

are random variables taking values in {1, · · · ,m}.

The push�forward of Pa through ω(t) is a probability measure on indices. More precisely,

we have by (3.19)

ω(t)#Pa(i) = Pa({ω | ω(t) = i}) =
(
a e−At

)
i

for any index i ∈ {1, · · · ,m}, so that

ω(t)#Pa = a e−At. (3.22)

Moreover for b = (b1, · · · , bm) ∈ Rm, we have

Eabω(t) = a e−At · b.

Formula (3.22) can be partially recovered for measures of the type Pa E which means

Pa is restricted to E, where E is any set in F .

Lemma 3.5.8 For a given a ∈ S, E ∈ Ft for some t ≥ 0, we have

ω(s)#(Pa E) =
(
ω(t)#(Pa E)

)
e−A(s−t) for any s ≥ t.

De�nition 3.5.9 A stopping time, adapted to Ft, is a nonnegative random variable τ

satisfying

{τ ≤ t} ∈ Ft for any t,

which also implies {τ < t}, {τ = t} ∈ Ft.
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We will repeatedly use the following non increasing approximation of a bounded random

variable τ by simple stopping times. We set

τn =
∑

j

j

2n
I({τ ∈ [(j − 1)/2n, j/2n)}), (3.23)

where I(·) stands for the indicator function of the set at the argument, namely the function

equal 1 at any element of the set and 0 in the complement. We have for any j, n

{τn = j/2n} = {τ < j/2n} ∩ {τ ≥ (j − 1)/2n} ∈ Fj/2n ,

moreover the sum in (3.23) is �nite, being τ bounded. Hence τn are simple stopping times

and letting n go to in�nity we get:

Proposition 3.5.10 Given a bounded stopping time τ , the τn, de�ned as in (3.23), make

up a sequence of simple stopping times with

τn ≥ τ, τn → τ uniformly in D.

Admissible controls: We call control any random variable Ξ taking values inD(0,+∞;RN)

such that

(i) it is locally bounded (in time), i.e. for any t > 0 there is M > 0 with

sup
[0,t]

|Ξ(t)| < M a.s.

(ii) it is nonanticipating, i.e. for any t > 0

ω1 = ω2 in [0, t] ⇒ Ξ(ω1) = Ξ(ω2) in [0, t].

Remark 3.5.11 The second condition is equivalent to require Ξ to be adapted to the

�ltration Ft which means that the map

ω 7→ Ξ(ω)(t)

from D to RN is measurable with respect Ft and the Borel σ�algebra on RN . This in turn

implies that Ξ is in addition progressively measurable, namely, for any t the map

(ω, s) 7→ Ξ(ω)(s)

from D× [0, t] to RN is measurable with respect to the σ�algebras Ft×B[0, t] and B, where
B[0, t] and B denote the family of Borel sets of [0, t] and RN , respectively.
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We denote by K the class of admissible controls.

Given a bounded stopping time τ and a pair x, y of elements of TN , we set

K(τ, y − x) = {Ξ ∈ K | I(Ξ)(τ) = y − x a.s.} ,

where the symbol − refers to the structure of additive group on TN induced by the

projection of RN onto TN = RN/ZN . The controls belonging to K(τ, 0) are called τ�

cycles.

3.5.3 Main dynamical results

Here we recall some dynamical facts about critcal/supercritical subsolutions, admissible

set and Aubry set. We refer to [26] for proofs and more details on the results stated.

Given α ≥ β and an initial point x ∈ TN . The action functional adapted to the system is

Ea

[∫ τ

0

Lω(s)(x+ I(Ξ)(s),−Ξ(s)) + α ds

]
,

where a is any probability vector of Rm, τ a bounded stopping time and Ξ a control.

The action functional is used to characterize all the subsolutions of the system, by means

of suitable estimate. We have

Theorem 3.5.12 A function u : TN → Rm is a subsolution of (HJα), for any α ≥ β, if

and only if

Ea

[
uω(0)(x)− uω(τ)(y)

]
≤ Ea

[∫ τ

0

Lω(s)(x+ I(Ξ)(s),−Ξ(s)) + α ds

]
,

for any pair of points x, y in TN , a ∈ S, any bounded stopping time τ and Ξ ∈ K(τ, y−x).

Given y in RN and b ∈ Rm, we de�ne

vi(x) = inf Ei
[∫ τ

0

Lω((x+ I(Ξ),−Ξ) + α ds+ bω(τ)

]
(3.24)

for any i ∈ {1, · · · ,m}, x ∈ TN , where the in�mum is taken with respect to any bounded

stopping times τ and Ξ ∈ K(τ, y − x). We have

Theorem 3.5.13 The function v de�ned by (3.24) is subsolution to (HJα).

The action functional is also used to give geometric formulation of the set Fα(y) as

following:
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Theorem 3.5.14 For y ∈ TN , b ∈ Fα(y) if and only if

Ei
[∫ τ

0

Lω(s)(y + I(Ξ)(s),−Ξ(s)) + α ds− bi + bω(τ)

]
≥ 0, (3.25)

for any i ∈ {1, · · · ,m}, bounded stopping times τ and τ�cycles Ξ.

Proof . We denote by v the function de�ned in (3.24). If (3.25) holds, we get

v(y) ≥ b.

Moreover, by taking the stopping time τ ≡ 0 and the control Ξ ≡ 0 in (3.24), we also get

v(y) ≤ b.

Then v(y) = b with v being subsolution to (HJα), inview of Theorem 3.5.13, which

proves b ∈ Fα(y).

Conversely, if there is a subsolution u of (HJα) with u(y) = b then (3.25) is a direct

consequence of Theorem 3.5.12. �

We also have the following explicit representation of critical and supercritical subsolutions

enjoying an additional maximality property. More precisely, we have

Theorem 3.5.15 Assume b ∈ Fα(y), then

(i) v(y) = b;

(ii) v is the maximal subsolution to (HJα) taking the value b at y;

(iii) If α = β and y ∈ A then v is a critical solution.

Proof . Item (i) has already been proved in Theorem 3.5.14. If u is a subsolution to

(HJα) with u(y) = b, then by Theorem 3.5.12 we get

ui(y) ≤ Ei
[∫ τ

0

Lω(s)(x+ I(Ξ)(s),−Ξ(s)) + α ds+ bω(τ)

]

for any i ∈ {1, · · · ,m}, bounded stopping time τ and τ�cycle Ξ. This shows

v ≥ u.

Item (iii) directly comes from the de�nition of the Aubry set.

We also state the next convergence result:
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Lemma 3.5.16 Given a control Ξ0, a bounded stopping time τ 0 and b ∈ Rm, let Ξn, τn
be sequences of controls and bounded stopping times, respectively, with

Ξn → Ξ0 a.s. with respect to Skorohod metric

τn → τ 0 uniformly in D
τn ≥ τ 0 a.s. for any n.

Assume in addition that the Ξn are equibounded locally in time, then

Ei
(∫ τn

0

Lω(x+ I(Ξn),−Ξn) ds− bi + bω(τn)

)

converges in R to

Ei

(∫ τ0

0

Lω(x+ I(Ξ0),−Ξ0) ds− bi + bω(τ)

)

for any i ∈ {1, · · · ,m}.
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Chapter 4

Cycle characterization of the Aubry set

for weakly coupled Hamilton-Jacobi

systems

4.1 Introduction

The aim of this chapter is to provide a dynamical characterization of the Aubry set,

associated to degenerate weakly coupled Hamilton-Jacobi systems:

Hi(x,Dui) +
m∑

j=1

aijuj(x) = α in TN for every i ∈ {1, · · · ,m}, (HJα)

with m ≥ 2 and α varying in R. Here u = (u1, · · · , um) is the unknown function, A is an

m×m matrix, the so�called coupling matrix, and H1, · · · , ..., Hm are Hamiltonians. The

Hi satisfy the following set of assumptions for all i ∈ {1, · · · ,m} :

(H1) Hi : TN × RN → R is continuous;

(H2) p 7→ Hi(x, p) is convex for every x ∈ TN ;

(H3) p 7→ Hi(x, p) is superlinear for every x ∈ TN .

The superlinearity condition (H3) allows to de�ne the corresponding Lagrangians through

the Fenchel transform, namely

Li(x, q) = max
p∈RN
{p · q −Hi(x, p)} for any i.
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The coupling matrix A = (aij) satis�es:

(A1) aij ≤ 0 for every i 6= j;

(A2)
m∑
j=1

aij = 0 for any i ∈ {1, · · · ,m};

(A3) it is irreducible, i.e for every W ( {1, 2, ...,m} there exists i ∈ W and j /∈ W such

that aij < 0.

We remark that the assumptions (A1) and (A2) on the coupling matrix are equivalent

to e−At being a stochastic matrix for any t ≥ 0 and due to irreducibility we get e−At is

positive for any t > 0, as made precise in Appendix A.2.

As pointed out previously, we are interested in the critical system:

Hi(x,Dui) +
m∑

j=1

aijuj(x) = β in TN for every i ∈ {1, · · · ,m}, (HJβ)

where β is the critical value de�ned as :

β = inf{α ∈ R | (HJα) admits subsolutions}.

We recall that the obstruction to the existence of subsolutions below the critical value is

not spread indistinctly on the torus, but instead concentrated on the Aubry set. How-

ever, so far, no geometrical/dynamical description of A is available, and the aim of our

investigation is precisely to mend this gap.

To deepen knowledge of the Aubry set seems important for the understanding of the

interplay between equational and dynamical facts in the study of the system, which is

at the core of an adapted weak KAM theory. This will hopefully allow to attack some

open problem in the �eld, the most relevant being the existence of regular subsolutions.

Another related application, at least when the Hamiltonians are of Tonelli type, is in the

analysis of random evolutions associated to weakly coupled systems, see [14].

To this purpose, we take advantage of the action functional introduced in section 3.5.3

in relation to the systems. We also make a crucial use of the characterization of admis-

sible values through the action functional computed on random cycles, see Theorem 3.5.14.
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The starting point is the cycle characterization of the Aubry set holding in the scalar

case, see [18]. It asserts that a point is in the Aubry set if and only there exists, for some

ε positive, a sequence of cycles based on it, and de�ned in [0, t] with t > ε, on which

the action functional is in�nitesimal. Of course the role of the lower bound ε is crucial,

otherwise the property should be trivially true for any element of the torus.

To generalize it in the context of systems, we need using random cycles de�ned on intervals

with a stopping time, say τ , as right endpoint. We call it τ�cycles, see section 3.5.2. This

makes the adaptation of the ε�condition quite painful. To perform the task, we use the

notion of stopping time strictly greater than ε, τ � ε, see De�nition 4.2.5, which seems

rather natural but that we were not able to �nd in the literature. We therefore present

in Section 4.2 some related basic results. We, in particular, prove that the exponential

of the coupling matrix related to a τ � ε is strictly positive, see Proposition 4.2.6. This

property will be repeatedly used throughout the chapter.

We moreover provide a strengthened version of the aforementioned Theorem 3.5.14,

roughly speaking showing that the τ�cycles with τ � ε are enough to characterize admis-

sible values for critical subsolutions, see Theorem 4.4.1. This result is in turn based on a

cycle iteration technique we explain in Section 4.3.

The main output is presented in two versions, see Theorems 4.4.3, 4.4.4, with the latter

one, somehow more geometrically �avored, exploiting the notion of characteristic vector

of a stopping time, see De�nition 4.2.1.

This chapter is based on the submitted paper [19] and organized as follows: Section 4.2 is

devoted to illustrate some properties of stopping times and the related shift �ows. Section

4.3 is about the cycle iteration technique. In section 4.4 we give the main results.

4.2 Properties of stopping times

In this section, we provide more properties of stopping times, in addition to those pre-

sented in Section 3.5.2. We also prove properties of shift �ow via stopping times.

Given a stopping time τ , then similar to the deterministic case, the push�forward of Pa
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through ω(τ) is a probability measure on indices {1, · · · ,m}, which can be identi�ed with

an element of S. Then
a 7→ ω(τ)#Pa,

de�nes a map from the simplex of probability vectors S to S which is, in addition, linear.

Hence, thanks to Proposition A.2.3, it can be represented by a stochastic matrix which

we denote by e−Aτ acting on the right, i.e.

a e−Aτ = ω(τ)#Pa for any a ∈ S. (4.1)

De�nition 4.2.1 We say that a ∈ S is a characteristic vector of τ if it is an eigenvector

of e−Aτ corresponding to the eigenvalue 1, namely a = a e−Aτ .

Remark 4.2.2 According to Proposition A.2.4, any stopping time possesses a character-

istic vector a, and

Eabω(τ) = a e−Aτ · b = a · b for every b ∈ Rm.

According to the remark above, Theorem 3.5.12 takes a simpler form if we just consider

expectation operators Ea with a characteristic vector. This result will play a key role in

Lemma 4.4.5.

Corollary 4.2.3 A function u is a subsolution to (HJα) if and only if

a ·
(
u(x)− u(y)

)
≤ Ea

(∫ τ

0

Lω(s)(x+ I(Ξ)(s),−Ξ(s)) + β ds

)
. (4.2)

for any i ∈ {1, · · · ,m}, bounded stopping times τ , a characteristic vector of τ , and

Ξ ∈ K(τ, y − x).

Lemma 4.2.4 Take τn as in (3.23). Then

e−Aτn → e−Aτ as n goes to in�nity.

Proof . Let a ∈ S, b ∈ Rm. Being ω right-continuous and τn ≥ τ , we get ω(τn) → ω(τ)

for any ω ∈ D, and consequently

bω(τn) → bω(τ).

This implies, taking into account (4.1)

(a e−Aτn) · b = Eabω(τn) → Eabω(τ) = (a e−Aτ ) · b,

and yields the assertion. �
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De�nition 4.2.5 Given any positive constant ε, we say that τ is strongly greater than ε,

written mathematically as τ � ε, to mean that τ−ε is still a stopping time, or equivalently

τ ≥ ε a.s. and {τ ≤ t} ∈ Ft−ε for any t ≥ ε. (4.3)

Moreover for i ∈ {1, · · · ,m}, we say

τ � ε in Di

to mean

τ ≥ ε a.s. in Di and {τ ≤ t} ∩ Di ∈ Ft−ε for any t ≥ ε. (4.4)

Proposition 4.2.6 Let ε > 0, i ∈ {1, · · · ,m}. Then for every τ � ε in Di, there exists

a positive constant ρ, solely depending on ε and on the coupling matrix, such that

(
e−Aτ

)
ij
> ρ j ∈ {1, · · · ,m}. (4.5)

Proof . We approximate τ by a sequence of simple stopping times τn with τn ≥ τ , as

indicated in Proposition 3.5.10. For a �xed n, we then have

τn =
∑

j

j

2n
I({τ ∈ [(j − 1)/2n, j/2n)}).

By the assumption on τ , the set Fj := {τ ∈ [(j− 1)/2n, j/2n)}∩Di belongs to F j
2n
−ε. By

applying Lemma 3.5.8, we therefore get

ei e
−Aτn = ω(τn)#Pi =

∑

j

ω(j/2n)#(Pi Fj) =

(∑

j

ω(j/2n − ε)#(Pi Fj)

)
e−Aε

=
(
ω(τn − ε)#Pi

)
e−Aε

Owing to ω(τn − ε)#Pi ∈ S, we deduce

ei e
−Aτn ∈ {b e−Aε | b ∈ S},

we have in addition e−Aτn → e−Aτ by Lemma 4.2.4, and consequently

ei e
−Aτ ∈ {b e−Aε | b ∈ S}.

This set is compact, and contained in the relative interior of S because e−Aε is positive

by Proposition A.2.7. Since the component of ei e
−Aτ make up the i�th row of e−Aτ , we

immediately derive the assertion. �

According to the previous proposition and Proposition A.2.5, the the characteristic vector

of a τ � ε, for some ε > 0, is unique and positive.
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Remark 4.2.7 Take τ � ε and denote by ρ -the positive constant satisfying (4.5) for

any i, j, according to Proposition 4.2.6. Then, since e−Aτ is a stochastic matrix, we have

(
e−Aτ

)
ij

= 1−
∑

k 6=j

(
e−Aτ

)
ik
≤ 1− (m− 1)ρ ≤ 1− ρ.

Remark 4.2.8 Let τ , ρ be as in the previous remark. If a is the characteristic vector of

τ then by the Proposition 4.2.6 and Proposition A.2.5 a is unique and positive. Moreover

for any i we have

ai =
∑

j

aj
(
e−Aτ

)
ji
> ρ.

We proceed by establishing some properties for the �ow on D when the shift is given by

a stochastic time τ . For any stopping time τ , we consider the shift �ow φτ on D de�ned

by :

φτ : D → D
ω 7→ ω(·+ τ(ω)).

We derive

Lemma 4.2.9 Assume that τn is a sequence of stopping times converging to τ uniformly

in D, then
φτn → φτ as n→ +∞

pointwise in D, with respect to the Skorohod convergence, see Appendix 3.5.1 for the

de�nition.

Proof . We �x ω ∈ D, we set

gn(t) = t+ τ(ω)− τn(ω) for any n, t ≥ 0.

We have for any t

φτ (ω)(t) = ω(t+ τn(ω) + (τ(ω)− τn(ω))) = φτn(ω)(gn(t)).

This yields the asserted convergence because the gn are a sequence of strictly increasing

functions uniformly converging to the identity. �

Proposition 4.2.10 The shift �ow φτ : D → D is measurable.
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Proof . If τ is a simple stopping time, say of the form τ =
∑

k tk I(Ek), then

φτ (ω) =
∑

k

φtk(ω) I(Ek)(ω)

and the assertion follows being φtk measurable for any k, I(Ek) measurable. If τ is not

simple then, by Proposition 3.23, there exists a sequence of simple stopping times τn

converging to τ uniformly in D, this implies that φτ is measurable as well, as pointwise

limit of measurable maps, in force of Lemma 4.2.9. �

We now de�ne the probability measure φτ#Pa, for a ∈ S. The following result generalizes
Proposition 3.5.7 to shifts given for stopping times. It will be used in Theorem 4.3.2 and

in Lemma 4.4.2.

Theorem 4.2.11 Let a be a probability vector, then

φτ#Pa = Pa e−Aτ .

We need the following preliminary result:

Lemma 4.2.12 Let a, t, E be a vector in S, a positive deterministic time and a set in

Ft, respectively, then

φt#(Pa E) = Pa(E)Pb for some b ∈ S.

Proof .

We �rst assume E to be a cylinder, namely

E = C(t1, · · · , tk; j1, · · · , jk)

for some times and indices, notice that the condition E ∈ Ft implies tk ≤ t. We �x

i ∈ {1, · · · ,m} and consider a cylinder C ⊂ Di, namely

C = C(0, s2, · · · , sm; i, i2, · · · , im)

for some choice of times and indices. We set

F = {ω | φt(ω) ∈ C} ∩ E,

then

F = C(t1, · · · , tk, t, t+ s2, · · · , t+ sm; j1, · · · , jk, i, i2, · · · , im).
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We have

φt#(Pa E)(C) = Pa(F )

=
(
a e−At1

)
j1

k∏

l=2

(
e−A(tl−tl−1)

)
jl−1 jl

(
e−A(t−tk)

)
jk i

m∏

r=2

(
e−A(sr−sr−1)

)
ir−1 ir

= Pa(E)
(
e−A(t−tk)

)
jk i

m∏

r=2

(
e−A(sr−sr−1)

)
ir−1 ir

,

we also have

Pi(C) =
m∏

r=2

(
e−A(sr−sr−1)

)
ir−1 ir

,

and we consequently get the relation

φt#(Pa E)(C) = Pa(E)µi Pi(C)

with

µi =
(
e−A(t−tk)

)
jk i

(4.6)

just depending on E and i. If C is any cylinder, we write

φt#(Pa E)(C) =
∑

i

φt#(Pa E)(C ∩ Di) = Pa(E)
∑

i

µi Pi(C) (4.7)

where the µi are de�ned as in (4.6). Taking into account that µi ≥ 0 for any i and∑
i µi = 1, b :=

∑
i µi ei ∈ S, we derive from (4.7)

φt#(Pa E)(C) = Pa(E)Pb(C).

This in turn implies, taking into account (3.20)

φt#(Pa E) = Pa(E)Pb (4.8)

showing the assertion in the case where E is a cylinder. If instead E is a multi�cylinder,

namely E = ∪jEj with Ej mutually disjoint cylinders then by the previous step

φt#(Pa E) =
∑

j

φt#(Pa Ej) =
∑

j

Pa(Ej)Pbj

which again implies (4.8) with

b =
∑

j

Pa(Ej)
Pa(E)

bj.

Finally, for a general E, we know from Proposition 3.5.3 that there is a sequence of

multi�cylinders En with

lim
n

Pa(En4E) = 0. (4.9)
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Given F ∈ F , we set
C = {ω | φt(ω) ∈ F},

we have

φt#(Pa En)(F ) = Pa(C ∩En) ≤ Pa

(
(C ∩E)∪ (E4En)

)
= φt#(Pa E)(F )+Pa(E4En)

and similarly

φt#(Pa E)(F ) ≤ φt#(Pa En)(F ) + Pa(E4En).

We deduce in force of (4.9)

lim
n
φt#(Pa En)(F ) = φt#(Pa E)(F )

which in turn implies that φt#(Pa En) weakly converges to φt#(Pa E). Since, by the

previous step in the proof

φt#(Pa En) = Pa(En)Pbn for some bn ∈ S

we derive from Proposition 3.5.4 and (4.9)

φt#(Pa E) = Pa(E)Pb with b = limn bn.

This concludes the proof. �
Proof . (of the Theorem 4.2.11)

We �rst show that

φτ#Pa = Pb for a suitable b ∈ S. (4.10)

If τ =
∑

k tk I(Ek) is simple then by Lemma 4.2.12

φτ#Pa =
∑

k

φtk#(Pa Ek) =
∑

k

Pa(Ek)Pbk

for some bk ∈ S, and we deduce (4.10) with b =
∑

k Pa(Ek)bk.

Given a general stopping time τ , we approximate it by a sequence of simple stopping

times τn, and, exploiting the previous step, we consider bn ∈ S with

φτn#Pa = Pbn .

We know from Lemma 4.2.9 that

φτn(ω)→ φτ (ω) for any ω in the Skorohod sense,

and we derive via Dominate Convergence Theorem

Eaf(φτn)→ Eaf(φτ )
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for any bounded measurable function f : D → R. Using change of variable formula (3.21)
we get ∫

D
f dφτn#Pa →

∫

D
f dφτ# Pa

or equivalently

Pbn = φτn#Pa → φτ#Pa

in the sense of weak convergence of measures. This in turn implies by the continuity

property stated in Proposition 3.5.4 that bn is convergent in Rm and

Pbn → Pb with b = limn bn

which shows (4.10). We can compute the components of b via

bi = Pa{ω | φτ (ω) ∈ Di} = Pa{ω | ω(τ(ω)) = i} =
(
ω(τ)#Pa

)
i

=
(
a e−Aτ

)
i
.

This concludes the proof. �

4.3 Cycle iteration

It is immediate that we can construct a sequence of (deterministic) cycles going through

a given closed curve any number of times. We aim at generalizing this iterative procedure

in the random setting we are working with, starting from τ 0�cycle, for some stopping time

τ 0. In this case the construction is more involved and requires some detail.

Let τ 0, Ξ0 be a simple stopping time and a τ 0�cycle, respectively, we recursively de�ne

for j ≥ 0

τ j+1(ω) = τ 0(ω) + τ j(φτ0(ω)) (4.11)

and

Ξj+1(ω)(s) =

{
Ξj(ω)(s), for s ∈ [0, τ j(ω))

Ξ0(φτ j(ω))(s− τ j(ω)) for s ∈ [τ j(ω),+∞).
(4.12)

We will prove below that the Ξj make up the sequence of iterated random cycles we are

looking for. A �rst step is:

Proposition 4.3.1 The τ j, de�ned by (4.11), are simple stopping times for all j. If, in

addition, τ 0 � δ in Di, for some i ∈ {1, · · · ,m}, δ > 0, then τ j � δ in Di.
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Proof . We argue by induction on j. The property is true for j = 0, assume to know that

τ j is a simple stopping time, then by Proposition 4.2.10 τ j+1 is a random variable, as sum

and composition of measurable maps, taking nonnegative values. Assume

τ 0 =

m0∑

l=1

sl I(Fl) (4.13)

τ j =

mj∑

k=1

tk I(Ek) (4.14)

then the sets

Fl ∩ {ω | φτ0(ω) ∈ Ek} l = 1, · · · ,m0, k = 1, · · · ,mj

are mutually disjoint and their union is the whole D. Moreover if

ω ∈ Fl ∩ {ω | φτ0(ω) ∈ Ek}

then

τ j+1(ω) = τ 0(ω) + τ j(φτ0(ω)) = sl + tk,

which shows that τ j+1 is simple. Since τ 0, τ j are stopping time then Fl ∈ Fsl and
Ek ∈ Ftk . By Proposition 3.5.1

Fl ∩ {ω | φτ0(ω) ∈ Ek} ∈ Fsl+tk ,

which shows that τ j+1 is a stopping time.

Moreover if τ 0 � δ in Di then Fl ∩ Di ∈ Fsl−δ and consequently

Fl ∩ Di ∩ {ω | φτ0(ω) ∈ Ek} ∈ Fsl+tk−δ,

which shows that τ j+1 � δ in Di. �

The main result of the section is

Theorem 4.3.2 The Ξj, as de�ned in (4.12), are τ j�cycles for all j.

A lemma is preliminary.

Lemma 4.3.3 For any j, ω

τ j+1(ω) = τ j(ω) + τ 0(φτ j(ω)).
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Proof . Given j ≥ 1, we preliminarily write

φτ j−1(φτ0(ω))(s) = φτ0(ω)(s+ τ j−1(φτ0(ω))

= ω(s+ τ 0(ω) + τ j−1(φτ0(ω)) = ω(s+ τ j(ω)) = φτ j(ω)(s)

which gives

φτ j−1 ◦ φτ0 = φτ j . (4.15)

We proceed arguing by induction on j. The formula in the statement is true for j = 0.

We proceed showing that it is true for j + 1 provided it holds for j ≥ 0. We have, taking

into account (4.15)

τ j+1(ω) = τ 0(ω) + τ j(φτ0(ω)) = τ 0(ω) + τ j−1(φτ0(ω)) + τ 0(φτ j−1(φτ0(ω)))

= τ j(ω) + τ 0(φτ j−1(φτ0(ω))) = τ j(ω) + τ 0(φτ j(ω))

as asserted. �

Proof .(of Theorem 4.3.2)

The property is true for j = 0, then we argue by induction on j. We exploit the principle

that Ξj is a control if and only the maps ω 7→ Ξj(ω)(s) from D to RN are Fs�measurable

for all s. Given s and a a Borel set B of RN , we therefore need to show

{ω | Ξj+1(ω)(s) ∈ B} ∈ Fs, (4.16)

knowing that Ξ0, Ξj are controls, the �rst by assumption and the latter by inductive step.

We set

E = {τ j > s},
then we have by the very de�nition of Ξj+1

{ω | Ξj+1(s) ∈ B} = F1

⋃
F2 (4.17)

with

F1 = {ω | Ξj(s) ∈ B} ∩ E
F2 = {ω | Ξ0(φτ j(ω))(s− τ j(ω)) ∈ B} \ E.

We know that

F1 ∈ Fs. (4.18)

because τ j is a stopping time and Ξj a control. Assume now τ j to be of the form (4.13),

then Ek \ E = Ek or Ek \ E = ∅ according on whether tk ≤ s or tk > s and so

F2 =
⋃

tk≤s
{ω | Ξ0(φtk(ω))(s− tk) ∈ B} ∩ Ek
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Consequently, if tk ≤ t, Ξj+1(s) is represented in Ek by the composition of the following

maps

ω
ψ1−→ φtk(ω)

ψ2−→ Ξ0(φtk(ω))
ψ3−→ Ξ0(φtk(ω))(s− tk).

By the very de�nition of the σ�algebra F ′t, ψ−1
3 (B) ⊂ F ′s−tk , moreover, being Ξ0 adapted

implies that ψ−1
2 (F ′s−tk) ⊂ Fs−tk and �nally ψ−1

1 (Fs−tk) ⊂ Fs by Proposition 3.5.1. We

deduce, taking also into account that Ek ∈ Ftk ⊂ Fs, that if tk ≤ s then

{ω | Ξj+1(s) ∈ B} ∩ Ek = {ω | Ξ0(φtk(ω))(s− tk) ∈ B} ∩ Ek ∈ Fs,

and consequently F2, being the union of sets in Fs, belongs to Fs as well. By combining

this information with (4.17), (4.18), we prove (4.16) and conclude that Ξj+1 is a control.

To show that Ξj+1 is a τ j+1�cycle, we use the very de�nition of τ j+1, Ξj+1 and write for

any ω ∫ τ j+1(ω)

0

Ξj+1(ω) ds = I(ω) + J(ω) (4.19)

with

I(ω) =

∫ τ j(ω)

0

Ξj(ω) ds

J(ω) =

∫ τ j+1(ω)

τ j(ω)

Ξ0(φτ j(ω))(s− τ j(ω)) ds

Due to Ξj being a τ j�cycle, we have

I(ω) = 0 a.s. (4.20)

We change the variable in J , setting t = s− τ j(ω), and exploit Lemma 4.3.3 to get

J(ω) =

∫ τ0(φ
τj

(ω))

0

Ξ0(φτ j(ω))(t) dt. (4.21)

Let E be any set in F and a a positive probability vector. We integrate J(ω) over E with

respect to Pa using (4.21), replace φτ j(ω)) with ω by means of change of variable formula,

and exploit Theorem 4.2.11. We obtain

∫

E

J(ω) dPa =

∫

φ
τj

(E)

(∫ τ0(ω))

0

Ξ0(ω)(t) dt

)
dP

ae−Aτj . (4.22)

Due to Ξ0 being a τ 0�cycle

∫ τ0(ω)

0

Ξ0(ω)(t) dt = 0 a.s,
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and therefore the integral in the right hand�side of (4.22) is vanishing and so
∫

E

J(ω) dPa = 0.

Since E has been arbitrarily chosen in F and a > 0, we deduce in force of Lemma 3.5.5

J(ω) = 0 a.s.

This information combined with (4.19), (4.20) shows that Ξj+1 is a τ j+1�cycle and con-

clude the proof.

�

4.4 Dynamical properties of the Aubry set

In this section we give the main results of this chapter on the cycle characterization of

the Aubry set. As explained in the Introduction, a key step is to establish a strengthened

version of Theorem 3.5.14, which is based on the cycle iteration technique presented in

Section 4.3.

Theorem 4.4.1 Given ε > 0, α ≥ β, and y ∈ TN , b ∈ Fα(y) if and only if

Ek
(∫ τ

0

Lω(s)(y + I(Ξ)(s),−Ξ(s)) + β ds− bk + bω(τ)

)
≥ 0, (4.23)

for any k ∈ {1, · · · ,m}, τ � ε bounded stopping times and τ�cycles Ξ.

We break the argument in two parts. The �rst one is presented in a preliminary lemma.

Lemma 4.4.2 Let i ∈ {1, · · · ,m}, b ∈ Rm, δ > 0, assume τ 0 to be a simple stopping

time vanishing outside Di, with τ 0 � δ in Di satisfying

Ei

(∫ τ0

0

Lω(s)(y + I(Ξ0)(s),−Ξ0(s)) + β ds− bi + bω(τ0)

)
=: −µ < 0.

Then for any j ∈ N

Ei

(∫ τ j

0

Lω(s)(y + I(Ξj)(s),−Ξj(s)) + β ds− bi + bω(τ j)

)
< −µ (1 + ρ j), (4.24)

where τ j, Ξj are as in (4.11), (4.12), respectively, and ρ is the positive constant, provided

by Proposition 4.2.6, with
(
e−Aτ

)
ik
> ρ for any τ � δ in Di, k = 1, · · · ,m.
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Proof . We denote by Ij the expectation in the left hand�side of (4.24) and argue by

induction on j. Formula (4.24) is true for j = 0, and we assume by inductive step that it

holds for some j ≥ 1. Taking into account that

Ξj+1(ω)(s) = Ξj(ω)(s) in [0, τ j(ω)) for any ω,

we get by applying the inductive step

Ij+1 = Ij +Kj ≤ −µ (1 + ρ j) +Kj (4.25)

with

Kj = Ei

(∫ τ j+1

τ j
Lω(s)(y + I(Ξj+1)(s),−Ξj+1(s)) + β ds− bω(τ j) + bω(τ j+1)

)
.

We further get by applying Lemma 4.3.3 and the very de�nition of Ξj+1

Kj = Ei
(
W (ω)

)
+ Ei(−bω(τ j) + bω(τ j+τ0(φ

τj
))) (4.26)

where

W (ω) =

∫ τ j+τ0(φ
τj

)

τ j
Lω(s)(y + I(Ξ0(φτ j))(s− τ j),−Ξ0(φτ j)(s− τ j)) + β ds.

We �x ω and set t = s− τ j(ω), we have

W (ω) =

∫ τ0(φ
τj

(ω))

0

Lφ
τj

(ω)(t)(y + I(Ξ0(φτ j(ω)))(t),−Ξ0(φτ j(ω))(t)) + β dt

By using the above relation and change of variable formula( from φτ j(ω) to ω), and

Theorem 4.2.11, we obtain

EiW (ω) = Eeie−Aτ
j

(∫ τ0

0

Lω(y + I(Ξ0(ω)),−Ξ0(ω)) + β ds

)
(4.27)

We also have by applying the same change of variable

Ei
(
−bω(τ j) + bω(τ j+τ0(φ

τj
))

)
= Ei

(
−bφ

τj
(ω)(0) + bφ

τj
(ω)(τ0)

)

= Eeie−Aτ
j

(
−bω(0) + bω(τ0)

)

By using the above relation, (4.26), (4.27) and the fact that τ 0 vanishes outside Di, we
obtain

Kj = Eeie−Aτ
j

(∫ τ0

0

Lω(s)(y + I(Ξ0)(s),−Ξ0(s)) + β ds− bi + bω(τ0)

)

=
(
e−Aτ

j
)
ii
Ei

(∫ τ0

0

Lω(s)(y + I(Ξ0)(s),−Ξ0(s)) + β ds− bi + bω(τ0)

)

< −ρ µ
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By plugging this relation in (4.25), we end up with

Ij+1 ≤ −µ (1 + ρ (j + 1))

proving (4.24).

�

Proof . (of Theorem 4.4.1) .

The �rst implication is direct by Theorem 3.5.14.

Conversely, if b /∈ Fβ(y) then there exists, by Theorem 3.5.14, i ∈ {1, · · · ,m}, bounded
stopping time τ 0 and τ 0�cycle Ξ0 such that

Ei

(∫ τ0

0

Lω(s)(y + I(Ξ0)(s),−Ξ0(s)) + β ds− bi + bω(τ0)

)
=: −µ < 0. (4.28)

We can also assume τ 0 = 0 outside Di without a�ecting (4.28). We set

Ξ̃(ω)(s) =

{
Ξ0(ω)(s), for ω ∈ D, s ∈ [0, τ 0(ω))

0, for ω ∈ D, s ∈ [τ 0(ω),+∞).

We claim that Ξ̃ is still a τ 0�cycle; the unique property requiring some detail is actually

the nonanticipating character. We take ω1 = ω2 in [0, t], for some positive t, and consider

two possible cases:

Case 1: If s := τ 0(ω1) ≤ t then

ω1 ∈ A := {ω | τ 0(ω) = s} ∈ Fs ⊆ Ft,

which yields ω2 ∈ A and hence τ 0(ω1) = τ 0(ω2) = s.

In this case

Ξ̃(ω1) = Ξ0(ω1) = Ξ0(ω2) = Ξ̃(ω2) in [0, s],

Ξ̃(ω1) = Ξ̃(ω2) = 0 in [s, t],

Case 2: If τ 0(ω1) > t, then

ω1 ∈ {ω | τ 0(ω) > t} ∈ Ft,

which implies that ω2 belongs to the above set and consequently τ 0(ω2) > t. Therefore

Ξ̃(ω1) = Ξ0(ω1) = Ξ0(ω2) = Ξ̃(ω2) in [0, t].
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This shows the claim. Therefore we can assume that the Ξ0 appearing in (4.28) vanishes

when t ≥ τ 0(ω) for any ω.

We know from Proposition 3.5.10 that there is a nonincreasing sequence τ ′n of simple

stopping times with

τ ′n → τ 0 uniformly in D.

We de�ne

τn =

{
τ ′n + 1

n
in Di

0 in Dk for k 6= i

The τn are simple stopping times, moreover, since τ 0 is vanishing outside Di and 1
n
→ 0,

we get

τn ≥ τ 0 and τn → τ 0 uniformly in D,

in addition

{τn ≤ t} ∩ Di = {τ ′n + 1/n ≤ t} ∩ Di ∈ Ft−1/n for t ≥ 1
n

which shows that

τn �
1

n
in Di.

It is clear that Ξ̃ belongs to K(τn, 0), we further have

∣∣∣∣∣

∫ τn

0

Lω(s)(y + I(Ξ0),−Ξ0) ds−
∫ τ0

0

Lω(s)(y + I(Ξ0),−Ξ0) ds

∣∣∣∣∣ ≤
∫ τn

τ0
|Lω(s)(y, 0)| ds.

Owing to the boundedness property of the integrand and that τn → τ 0, the right hand-

side of the above formula becomes in�nitesimal, as n goes to in�nity. Therefore the strict

negative inequality in (4.28) is maintained replacing τ 0 by τn, for a suitable n.

Hence we can assume, without loss of generality, that τ 0 appearing in (4.28) satis�es the

assumptions of Lemma 4.4.2 for a suitable δ > 0. Let τ j, Ξj be as in (4.11), (4.12), we

de�ne for any j

τ̃ j = τ j + ε

and

Ξ̃j(ω)(s) =

{
Ξj(ω)(s) for s ∈ [0, τ j(ω))

0 for s ∈ [τ j(ω), τ̃ j(ω))

the τ̃ j are apparently stopping times with τ̃ j � ε, and that Ξ̃j are τ̃ j�cycles.

We have

Ei

(∫ τ̃ j

0

Lω(s)(y + I(Ξ̃j)(s),−Ξ̃j(s)) + β ds− bi + bω(τ̃ j)

)
= Uj + Vj
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with

Uj = Ei

(∫ τ j

0

Lω(s)(y + I(Ξj)(s),−Ξj(s)) + β ds− bi + bω(τ j)

)

Vj = Ei

(∫ τ j+ε

τ j
Lω(s)(y, 0) + β ds− bω(τ j) + bω(τ j+ε)

)

The term Uj diverges negatively as j → +∞ by Lemma 4.4.2, while Vj stays bounded,

which implies

Ei

(∫ τ̃ j

0

Lω(s)(y + I(Ξ̃j)(s),−Ξ̃j(s)) + β ds− bi + bω(τ̃ j)

)
< 0

for j large. Taking into account that τ̃ j � ε and Theorem 3.5.14, the last inequality

shows that stopping times strongly greater than ε and corresponding cycles based at y

are su�cient to characterize values b 6∈ Fβ(y). This concludes the proof.

�

Next we state and prove the �rst main theorem.

Theorem 4.4.3 Given ε > 0, y ∈ TN , b ∈ Rm, we consider

inf Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
(4.29)

where the in�mum is taken with respect to any bounded stopping times τ � ε and τ�cycles

Ξ. The following properties are equivalent:

(i) y ∈ A

(ii) the in�mum in (4.29) is zero for any index i, any b ∈ Fβ(y)

(iii) the in�mum in (4.29) is zero for some i, any b ∈ Fβ(y).

The assumption that the stopping times involved in the in�mum are strongly greater than

a positive constant is essentially used for proving (iii) ⇒ (i), while in the implication (i)

⇒ (ii) it is exploited the characterization of admissible values provided in Theorem 4.4.1.

Proof .

We start proving the implication (i) ⇒ (ii).

Let y ∈ A, assume to the contrary that

inf
τ�ε

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
6= 0 for some i and b ∈ Fβ(y).
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We deduce from Theorem 3.5.14 that

inf
τ�ε

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
> 0 (4.30)

for such i, b. We claim that b + ν ei ∈ Fβ(y) for any positive ν less than the in�mum in

(4.30) denoted by η. Taking into account (4.30) and e−Aτ being stochastic, we have for

any stopping time τ � ε and τ�cycle Ξ

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− (b + ν ei)ω(0) + (b + ν ei)ω(τ)

]

= Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
− ν + ν ei e

−Aτ · ei
≥ η − ν ≥ 0.

We further get for j 6= i in force of Theorem 3.5.14,

Ej
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− (b + ν ei)ω(0) + (b + ν ei)ω(τ)

]

= Ej
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
− ν ej · ei + ν ej e

−Aτ · ei
≥ 0.

Combining the information from the above computations with Theorem 4.4.1, we get the

claim, reaching a contradiction with y being in A via Proposition 3.4.12.

It is trivial that (ii) implies (iii). We complete the proof showing that (iii) implies (i). Let

us assume that (4.29) is vanishing for some i and any b ∈ Fβ(y).

For any positive constant ν, select δ > 0 satisfying δ − ρ ν < 0, where ρ > 0 is given by

Proposition 4.2.6. Notice that we can invoke Proposition 4.2.6 because we are working

with stopping times strongly greater than ε. We �x b ∈ Fβ(y) and deduce from (4.29)

being zero that there exist a bounded stopping time τ � ε, and a τ�cycle Ξ with

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
< δ. (4.31)

Taking into account Remark 4.2.7 and (4.31), we have

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− (b + ν ei)ω(0) + (b + ν ei)ω(τ)

]

= Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
− ν + ν ei e

−Aτ · ei
< δ − ρ ν
< 0
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which proves that b + ν ei /∈ Fβ(y), in view of Theorem 3.5.14. This proves that b,

arbitrarily taken in Fβ(y), is not an internal point, and consequently that the interior of

Fβ(y) must be empty. This in turn implies that y ∈ A in force of Proposition 3.4.13. �

Using expectation operators related to characteristic vectors of stopping times, we have

a more geometric formulation of the cycle characterization provided in Theorem 4.4.3,

without any reference to admissible values for critical subsolutions. This is our second

main result.

Theorem 4.4.4 Given ε > 0, y ∈ A if and only if

inf Ea

[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds

]
= 0 (4.32)

where the in�mum is taken with respect to any bounded stopping times τ � ε, τ�cycles Ξ

and a characteristic vector of τ .

Theorem 4.4.4 comes from Theorem 4.4.3 and the following

Lemma 4.4.5 Given ε > 0, y ∈ A and b ∈ Fβ(y), let us consider

inf Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
(4.33)

inf Ea

[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds

]
(4.34)

where both the in�ma are taken with respect to any bounded stopping times τ � ε, τ�cycles

Ξ , and in (4.34) a is a characteristic vector of τ .

Then (4.34) vanishes if and only if (4.33) vanishes for any i ∈ {1, · · · ,m}.

Proof . Let us assume that (4.33) vanishes for any i, then for any δ > 0, any i we �nd a

τi � ε and τi�cycles Ξi with

Ei
[∫ τi

0

Lω(s)(y + I(Ξi),−Ξi) + β ds− bω(0) + bω(τi)

]
< δ

We de�ne a new stopping time τ � ε and a τ�cycle Ξ setting

τ = τi on Di
Ξ = Ξi on Di

then we get

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
< δ for any i.
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Taking a characteristic vector a = (a1, · · · , am) of τ , and making convex combinations in

the previous formula with coe�cients ai, we get taking into account Remark 4.2.2

δ > Ea

[∫ τ

0

Lω(y + I(Ξ),−Ξ) + β ds

]
−a·b+(a e−Aτ )·b = Ea

[∫ τ

0

Lω(y + I(Ξ),−Ξ) + β ds

]
.

Since we know that the in�mum in (4.34) is greater that or equal to 0 thanks to Corollary

4.2.3 with x = y, the above inequality implies that it must be 0, as claimed.

Conversely assume that (4.34) is equal to 0, then for any δ > 0 there is a stopping time

τ � ε with characteristic vector a, and a τ�cycle Ξ with

Ea

[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds

]
< δ

Taking into account that

∑

i

ai Ei[bω(0) − bω(τ)] = a · b− (a e−Aτ ) · b = 0

for any b ∈ Fβ(y), we derive

∑

i

ai Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
< δ.

From Remark 4.2.8 and the fact that the expectations in the above inequality must be

nonnegative because of Theorem 3.5.14, we deduce

Ei
[∫ τ

0

Lω(s)(y + I(Ξ),−Ξ) + β ds− bω(0) + bω(τ)

]
<
δ

ρ
for any i,

where ρ is the constant appearing in Proposition 4.2.6. This implies that the in�ma in

(4.33) must vanish for any i.

�
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Chapter 5

Scalar reduction techniques for weakly

coupled Hamilton-Jacobi systems

5.1 Introduction

This chapter is devoted to study the degenerate weakly coupled system, introduced pre-

viously, from a PDE point of view. Namely, we deal with a family of systems of the

form

Hi(x,Dui) +
m∑

j=1

aijuj(x) = α in TN for every i ∈ {1, · · · ,m}, (HJα)

with m ≥ 2 and α varying in R. Here u = (u1, · · · , um) is the unknown function, A is an

m×m matrix, the so�called coupling matrix, and H1, · · · , ..., Hm are Hamiltonians. The

Hi satisfy the following set of assumptions for all i ∈ {1, · · · ,m} :

(H1) Hi : TN × RN → R is continuous;

(H2) p 7→ Hi(x, p) is convex for every x ∈ TN ;

(H3) p 7→ Hi(x, p) is coercive for every x ∈ TN .

The coupling matrix A = (aij) satis�es:

(A1) aij ≤ 0 for every i 6= j;

(A2)
m∑
j=1

aij = 0 for any i ∈ {1, · · · ,m};
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(A3) it is irreducible, i.e for every W ( {1, 2, ...,m} there exists i ∈ W and j /∈ W such

that aij < 0.

We recall that under our assumptions there exists a unique α ∈ R for which (HJα) admits

viscosity solution, denoted by β and termed critical value. We then focus on the critical

weakly coupled system:

Hi(x,Dui) +
m∑

j=1

aijuj(x) = β in TN for every i ∈ {1, · · · ,m}, (HJβ)

This chapter is centered on a method, which seems new, to tackle this kind of prob-

lems: namely the scalar reduction technique mentioned in the title. It simply consists

in associating to the system a family of scalar discounted equations. These are roughly

speaking obtained by picking one of the equations in the system, and freezing all the com-

ponents of a given critical subsolution except the one corresponding to the index of the

selected equation. It becomes the unknown of the discounted equation. This approach

advantageously allows exploiting the wide knowledge of this kind of equations to gather

information on the system. We in particular use that a comparison principle holds for

discounted equations, the solutions can be represented as in�ma of integral functionals,

and the fact that corresponding optimal trajectories do exist.

Our achievements are as follows: we provide a constructive algorithm for getting a critical

solution by suitably modifying an initial critical subsolution outside the Aubry set. The

solution is obtained as uniform limit of a monotonic sequence of subsolutions. The pro-

cedure can be useful for numerical approximation of a critical solution and of the Aubry

set as well, see Remark 5.3.2 for more details. We also adapt the construction in the non-

compact setting (RN) in order to get a solution on the whole space at any supercritical

level, in analogous to scalar case.

We moreover give a characterization of isolated points of the Aubry, adapting the notion

of equilibrium point to systems. This enables us to also show the strict di�erentiability

of any critical subsolution on such points. The �nal outcome is about a semiconcavity

property for critical subsolutions on the Aubry set, and on the whole torus for solutions.

We more precisely prove that the superdi�erential is nonempty. These results are clearly

related to an open problem about the di�erentiability of critical subsolutions on the Aubry

set. They can viewed as a partial positive answer to the regularity issue. We hope they
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will be useful to fully crack the problem.

The results of this chapter are obtained in [34] and it is organized as follows. In Section 5.2

we introduce the family of scalar discounted equations associated to the critical system. In

Section 5.3 we provide an algorithm to get a critical solution starting from any subsolution.

Section 5.4 is devoted to construct solutions of our system at any critical-supercritical

level, in non compact setting. In Section 5.5 we study, through the scalar reduction

technique, the nature of isolated points ofA and prove semiconcavity properties for critical

subsolutions.

5.2 Scalar reduction

In this section we associate to the critical system some discounted scalar equations. Using

these equations, we will thereafter write an algorithm to construct a solution of the critical

system by suitably modifying outside A a given critical subsolution.

We denote by w = (w1, · · · , wm) the initial subsolution of (HJβ) and freeze all its compo-

nents except one obtaining for a given i ∈ {1, · · · ,m}, the following discounted equation:

aiiv(x) +Hi(x,Dv) +
∑

j 6=i
aijwj(x)− β = 0, in TN . (5.1)

For simplicity we set fi(x) = −∑j 6=i aijwj(x) + β, for every i.

The discounted equation satis�es a comparison principle. This is well known, however

the proof in our setting is simpli�ed to some extent by exploiting the compactness of

the ambient space plus the coercivity of the Hamiltonian with respect to the momentum

variable. This straightforwardly implies that all subsolutions are Lipschitz�continuous

and allows using Proposition 2.1.14. We provide the argument for reader's convenience.

Theorem 5.2.1 If u, v an USC continuous subsolution and a LSC supersolution of (5.1),

respectively, then u ≤ v in TN .

Proof . We recall that u is Lipschitz continuous. Let x0 be a point in TN where v − u
attains its minimum and assume, for purposes of contradiction, that

v(x0)− u(x0) < 0. (5.2)
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The function u is therefore a Lipschitz continuous subtangent to v at x0 and hence we

have

aiiv(x0) +Hi(x0, p)− fi(x0) ≥ 0 for some p ∈ ∂u(x0).

But u is a viscosity subsolution of (5.1), then

aiiu(x0) +Hi(x0, p)− fi(x0) ≤ 0 for all p ∈ ∂u(x0).

Subtracting the above two inequalities, we get

aii(v(x0)− u(x0)) ≥ 0,

which contradicts (5.2). We therefore conclude that minTN (v − u) ≥ 0, which in turn

implies v ≥ u in TN , as desired. �

Due to the fact that any subsolution of (HJβ) is `β�Lipschitz continuous, we may modify

the Hi's outside the compact set {(x, p) : |p| ≤ `β}, to obtain a new Hamiltonian which is

still continuous and convex, and in addition satis�es superlinearity condition, for every i.

Since the sublevels contained in B(0, `β) are not a�ected, the subsolutions of the system

obtained by replacing the Hi's in (HJβ) by the new Hamiltonians are the same as the

original one.

In the remainder of the paper, we will therefore assume without any loss of generality

(H'2) Hi is superlinear in p for any i ∈ {1, 2, ...,m},

We can thus associate to any Hi a Lagrangian function Li through the Fenchel transform,

i.e.

Li(x, q) = sup
p∈RN
{pq −Hi(x, p)}.

The function Li is continuous on TN × RN , convex and superlinear in q. Moreover, for

every (x, p), (x, q) ∈ TN × RN , we have the following inequality:

p.q ≤ Li(x, q) +Hi(x, p). (5.3)

This is called the Fenchel inequality. For more details about the properties of L, we refer

readers to [10], [17].

The equation (5.1) can be interpreted as the Hamilton�Jacobi�Bellman equation of a

control problem with the Lagrangian Li as cost and aii as discount factor. The control is

given by the velocities which are in principle unbounded, but this is somehow compensated
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by the coercive character of the Hamiltonian. The corresponding value function vi : TN →
R is de�ned by

vi(x) = inf
γ

∫ 0

−∞
eaiis (Li(γ(s), γ̇(s)) + fi(γ(s))) ds, (5.4)

where the in�mum is taken over all absolutely continuous curves γ :]−∞, 0]→ TN with

γ(0) = x.

We now state for latter use a sub-optimality condition satis�ed by subsolutions of (5.1).

Lemma 5.2.2 If u is a continuous subsolution of (5.1), then

u(γ(0))− e−aiitu(γ(−t)) ≤
∫ 0

−t
eaiis (Li(γ(s), γ̇(s)) + fi(γ(s)))) ds

for every t > 0 and every γ : [−t, 0]→ TN absolutely continuous curve.

Proof . If u be a subsolution of (5.1), then it is is Lipschitz continuous. By convexity, we

get

aiiu(x) +Hi(x, p)− fi(x) ≤ 0 for every p ∈ ∂u(x). (5.5)

Let γ ∈ AC([−t, 0];TN) . Since u is Lipschitz continuous and γ is absolutely continuous,

we have

u(γ(0))− e−aiitu(γ(−t)) =

∫ 0

−t

d

ds
(eaiisu(γ(s))) ds

=

∫ 0

−t
eaiis (aiiu(γ(s)) + p(s) · γ̇(s)) ds a.e. for some p(s) ∈ ∂u(γ(s)).

Exploiting the Fenchel inequality (5.3) and (5.5), we get

u(γ(0))− e−aiitu(γ(−t)) ≤
∫ 0

−t
eaiis (Li(γ(s), γ̇(s)) + fi(γ(s))) ds.

�

The next main result holds:

Theorem 5.2.3 [12, Appendix 2] The discounted value function vi is the unique contin-

uous viscosity solution of (5.1).

Moreover, for every x ∈ TN there exists a curve γ : (−∞, 0] → TN with γ(0) = x such

that

vi(x) =

∫ 0

−∞
eaiis (Li(γ(s), γ̇(s)) + fi(γ(s))) ds. (5.6)
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Corollary 5.2.4 We have

wi ≤ vi in TN and wi = vi in A. (5.7)

Proof . Since wi is a viscosity subsolution of (5.1), we derive from Theorem 5.2.1 the

inequality in (5.7). Taking into account that aij ≤ 0 for every i 6= j, we further derive

that the vector valued function obtained from w by replacing wi with v
i and keeping all

other components una�ected, is still a subsolution of (HJβ). The equality in (5.7) then

comes from the rigidity phenomenon in A, see Theorem 3.4.11. �

5.3 Algorithm

In this section we will construct a monotonic sequence of critical subsolutions (vn) which

converges, up to a subsequence, to a solution of (HJβ).

step 1: Construction of the sequence (vn).

Let w = v0 = (v1
0, v

2
0, ..., v

m
0 ) be any subsolution of (HJβ).

The �rst element v1 = (v1
1, v

2
1, ..., v

m
1 ) of (vn) is de�ned component by component as fol-

lows :

For k = 1 · · ·m, vk1 is the solution of the discounted equation

Hk(x,Du) + akku+
∑

j<k

akjv
j
1(x) +

∑

j>k

akjv
j
0(x) = β,

where the possible empty sums in the above formula are counted as 0. By construction,

see the proof of Corollary 5.2.4, v1 is a critical subsolution of the system. In addition,

using Corollary 5.2.4, we get

w = v0 ≤ v1 and w = v0 = v1 on A.

We iterate the above procedure to construct vn, for any n ∈ N, n > 1, starting from vn−1.

We get that any element vn is a critical subsolution of the system and

vn−1 ≤ vn for any n (5.8)

all the vn coincide on A. (5.9)
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step 2: Convergence of the sequence (vn).

We exploit Proposition 3.4.2 to infer that the functions (vn) are equi-Lipschitz. Moreover,

all the (vn)'s take a �xed value on the Aubry set, see (5.9), so they are equibounded as well.

We derive by Ascoli-Arzelà Theorem that (vn) converge uniformly, up to subsequences,

and we in turn deduce convergence of the whole sequence because of its monotonicity, see

(5.8).

step 3: proving the limit is a critical solution .

We denote by V = (V1, V2, ..., Vm) the uniform limit of vn.

Given k ∈ {1, · · · ,m}, we have, by construction, that vkn is the solution of

F k
n (x, u,Du) := Hk(x,Du) + akku+

∑

j<k

akjv
j
n(x) +

∑

j>k

akjv
j
n−1(x) = β.

The Hamiltonians F k
n converge uniformly in TN × R× RN , as n→ +∞, to

F k(x, u, p) := Hk(x, p) + akku+
∑

j 6=k
akjVj(x).

Consequently, by basic stability properties in viscosity solutions theory, Vk is solution to

the limit equation

F k(x, u,Du) = Hk(x,Du) + akku+
∑

j 6=k
akjVj(x) = β.

We conclude that the limit V = (V1, V2, ..., Vm) is solution of (HJβ), as it was claimed.

Remark 5.3.1 . The above algorithm implies that the trace of any critical subsolution on

the Aubry set can be uniquely extended to the whole torus in such a way that the output is

a critical solution, where the uniqueness is due to the monotonicity of the sequence. This

is consistent with [15, Theorem 5.5].

Remark 5.3.2 1. As already pointed out in the Introduction, the above algorithm can

have a numerical interest to compute critical solutions of the system via the analysis

of a sequence of scalar discounted equations. The latter problem has been exten-

sively studied and well tested numerical codes are available. It is clearly required the
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knowledge of a critical subsolution as starting point, but this is easier than the de-

termination of a solution. In addition, since the initial subsolution is not a�ected on

A at any step of the procedure, the algorithm can be useful to get an approximation

of the Aubry set itself.

2. In principle we could apply the algorithm also starting from any supercritical subso-

lution. What happens is that the sequence we construct is not any more anchored at

the Aubry set, and we get in the end a sequence of functions positively diverging at

any point. We believe that the rate of divergence could be exploited to estimate how

far the supercritical value we have chosen is from β, but we do not investigate any

further this issue in the present paper.

5.4 Weakly coupled Hamilton-Jacobi systems in the

non-compact setting

In this section we will provide two methods for constructing a solution to the weakly

coupled system (HJα) at any critical/supercritcal level in the non compact setting, RN .

The �rst method is a generalization of the scalar case while the second one is an adaptation

of the algorithm introduced in section 5.3.

We start by stating a priori estimate for the subsolutions of the weakly coupled system

(HJα). This estimate is used in the subsequent results to recover equiboundedness of a

sequence of subsoultions. The result is well known in the compact case, where Davini-

Zavidovique provided in [15] a uniform estimate on the di�erence between components

of a given subsolution. Here we follow the same strategy they followed, with a local

argument, to get:

Proposition 5.4.1 Let K be a compact subset of RN and u : RN → Rm be continuous

subsolution of the system (HJα). Then there exists a constant Ck, depending on α, Hi,

K and the coupling matrix A, such that

|ui(x)− uj(x)| ≤ Ck for every x ∈ K, and i, j ∈ {1, · · · ,m}

Proof . We �rst set

µi = min
(x,p)∈K×RN

Hi(x, p) for every i ∈ {1, · · · ,m}, µ = min
i
µi.
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For every i ∈ {1, · · · ,m}, the following inequalities hold in the viscosity sense:

µ+
m∑

j=1

aijuj(x) ≤ Hi(x,Dui(x)) +
m∑

j=1

aijuj(x) ≤ α on K,

yielding
m∑

j=1

aijuj(x) ≤ α− µ for every x ∈ K. (5.10)

Let us now �x x ∈ K and assume, without any loss of generality,

u1(x) ≤ u2(x) ≤ · · · ,≤ um(x). (5.11)

We then de�ne

a? = min
1≤i≤m

aii and a? = max
1≤i,j≤m

|aij|.

First notice that, by subtracting
∑m

j=1 amjum(x) = 0 from both sides of equation (5.10)

with i = m, one gets ∑

j 6=m
−amj (um(x)− uj(x)) ≤ α− µ,

implying (
um(x)−max

j 6=m
uj(x)

)∑

j 6=m
−amj ≤ α− µ.

By exploiting (5.11) and the degenerate character of the matrix A we get

0 ≤ um(x)− um−1(x) ≤ α− µ
amm

≤ α− µ
a?

. (5.12)

This proves the assertion when m = 2. To prove it in the general case, we argue by

induction: we assume the result is true for m and we prove it for m + 1. To prove this,

we rewrite equation (5.10) as

m−1∑

j=1

aijuj(x) + (aim + aim+1)um(x) + aim+1 (um+1(x)− um(x)) ≤ α− µ,

then we exploit (5.12) to get

m−1∑

j=1

aijuj(x) + (aim + aim+1)um(x) ≤ (α− µ)

(
1 +

a?

a?

)
(5.13)

for every i ∈ {1, · · · ,m+ 1}. The irreducible character of the matrix A applied to the set

I = {m,m+ 1} implies that

aim + aim+1 > 0
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for either i = m or i = m + 1, let us say i = m. The assertion then follows by applying

the induction hypothesis to the system given by (5.13) with i varying in {1, · · · ,m}, the
corresponding coupling matrix being still irreducible and degenerate. �

Next we adapt to system case the method of constructing a solution at supercritical levels

in non-periodic setting. We have

Proposition 5.4.2 Assume β is �nite. Then there exists a solution to (HJα) for every

α ≥ β.

Proof . Let K be a compact subset of RN and yn be a sequence in RN tending to in�nity.

For every α ≥ β and n ∈ N, we de�ne the functions vn as the maximal subsolutions to

(HJα) taking the same value at yn. Then, in view of Proposition 3.4.2, we infer that the

functions vn are locally equi- Lipschitz. Up to subtracting a vector of the form v1
n(0)1 to

each vn, we can furthermore assume that v1
n(0) = 0 for every n ∈ N, yielding

|v1
n(x)| ≤ Lk for some Lk ∈ R, for every x ∈ K,

by the equi-Lipschitz character of the sequence.

Moreover,

|vjn(x)− v1
n(x)| ≤ Ck for every x ∈ K, j ∈ {1, · · · ,m}, and n ∈ N

yielding

|vjn(x)| ≤ Ck + Lk for every x ∈ K, j ∈ {1, · · · ,m}, and n ∈ N,

which implies that vn are locally equibounded in RN .

Furthermore, in view of Proposition 3.4.4, vn are subsolutions to (HJα) in RN and solu-

tions in RN \ {yn} for every n.
By Ascoli-Arzela theorem, up to subsequences, there exists a continuous function v such

that

vn → v locally uniformly in RN .

Next we will show that v is a solution to (HJα) in RN . Clearly, v is a subsolution of

(HJα) in RN by stability property of viscosity subsolution.

We proceed by proving the supersolution property of v in RN . Let x0 ∈ RN and φi be

a C1 strict subtangent to vi at x0, i.e x0 is the unique minimizer of vi − φi in a suitable

closed ball B centered at x0.

Let xn be a sequence of minimizers of vin − φi in B. Then, by the stability of minimizers
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under local uniform convergence, xn → x0 as n → ∞. Notice that xn 6= yn for n large

enough, hence by the supersolution property of vn in RN \ {yn}, we have

Hi(xn, Dφi(xn)) +
m∑

j=1

aijv
j
n(xn) ≥ α.

Passing to the limit as n→∞, and by the continuity of H and φi being C
1, we get

Hi(x0, Dφi(x0)) +
m∑

j=1

aijvj(x0) ≥ α.

This proves that v is a supersolution of (HJα) in RN . �

In what coming, we will adapt the Algorithm in Section 5.3 to construct a solution to the

weakly coupled system (HJα) at any critical/supercritcal level in RN .

For this purpose we start by a subsolution w = v0, and consider the same discounted

equation as before, see (5.1), but on balls and assigning w = v0 as Dirichlet boundary

datum. Namely,





aiiv(x) +Hi(x,Dv(x)) +
∑

j 6=i
aijwj(x)− α = 0, BR

v = wi, ∂BR

(BVP)

where BR is any ball of radius R and w : RN → Rm is a subsolution of the system (HJα).

For simplicity we set fi(x) = −∑j 6=i aijwj(x) + β, for every i

We �rst de�ne the value function vi : BR → R by

vi(x) = inf
γ

∫ 0

−τ
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijwj(γ(s)) + α

)
ds +e−aii τwi(γ(−τ)), (5.14)

where the in�mum is taken over all absolutely continuous curves γ :]−∞, 0]→ RN with

γ(0) = x, and τ is the last entrance time to BR given by:

τ = inf{t ≥ 0 : γ(−t) /∈ BR}.

It is worth mentioning that the theory requires regularity conditions on the boundary as

well as some conditions on admissible trajectories to guarantee the existence and unique-

ness of viscosity solution for such boundary value problems. However in our case, being

the problem posed on balls and due to coercivity which means roughly speaking any direc-

tion is admissible, all the necessary and su�cient conditions are automatically satis�ed.

Hence, the next main result holds:
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Theorem 5.4.3 ([5, Theorem 2.1]) The value function (5.14) is continuous on BR and

it is the unique viscosity solution of (BVP). Moreover a Strong Comparison Result holds.

Next we show that the value function de�ned by (5.14) attains the value w at the bound-

ary continuously. For this purpose we investigate the value function with state space

constraint. It is de�ned on BR by the in�nite horizon:

V i
c (x) = inf

γ(0)=x

∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijwj(γ(s)) + α

)
ds, (5.15)

where the in�mum here is taken only with respect to absolutely continuous curves γ living

in BR. The condition that the trajectories lie in BR constitutes the state space constraint.

We aim at providing a characterization of the constrained value function (5.15) in relation

with the discounted equation

aiiv(x) +Hi(x,Dv(x)) +
∑

j 6=i
aijwj(x)− α = 0 on BR. (5.16)

Next we give a more restrictive de�nition of viscosity solution which takes into account

the presence of constraint.

De�nition 5.4.4 (Constrained Viscosity Solution). Let u be a continuous function

on BR. We say that u is constrained viscosity solution of (5.16) in BR if:

1. u is viscosity subsolution in BR.

2. u is constrained viscosity supersolution in BR.

Equivalently,

1. For every φ ∈ C1(RN) and x0 ∈ BR such that (u − φ) has a relative maximum at

x0, we have

aiiu(x0) +Hi(x,Dφ(x0)) +
∑

j 6=i
aijwj(x0)− α ≤ 0.

2. For every φ ∈ C1(BR) and x0 ∈ BR such that (u − φ)(x0) is a relative minimum

for (u− φ) in BR, we have

aiiu(x0) +Hi(x,Dφ(x0)) +
∑

j 6=i
aijwj(x0)− α ≤ 0.
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In other words, compared to the classical de�nition of viscosity solutions, we haven't

changed the requirement for supertangents (that tests subsolutions), but we have en-

larged the class of subtangents (that tests supersolutions).

The next two results hold:

Theorem 5.4.5 (Comparison Result). Let u, v ∈ C(BR) such that

1. u is viscosity subsolution of (5.16) in BR.

2. v is constrained viscosity supersolution of (5.16) in BR.

Then, u ≤ v.

Theorem 5.4.6 The value function V i
c is continuous on BR. Moreover, it is the unique

constrained viscosity solution of (5.16) in BR.

The above asserted continuity is due to the property that at each boundary point there

is always a trajectory pointing directly inside BR. Furthermore owing to the comparison

result and the fact that wi is a viscosity subsolution of (5.16), we get

V i
c ≥ wi on BR (5.17)

This theory of state-space constraint problems is due to Soner. For a detailed treatment

of the theory and the proofs of the mentioned results we refer readers to [35, 36].

Now we prove the next preliminary proposition:

Proposition 5.4.7 The value function (5.14) is continuous up to the boundary.

Proof . We start by proving the upper semicontinuity i.e

lim sup
y→x, x∈∂BR

vi(y) ≤ wi(x). (5.18)

Let γ : [−d(x, y), 0]→ BR be the geodesic joining x to y parameterized by the arc-length.

For every absolutely continuous curve ν : (−∞, 0]→ RN with ν(0) = γ(−d(x, y)) = x, we

de�ne a curve ξ : (−∞,−d(x, y)] → RN by setting ξ(s) = ν(s + d(x, y)). We now de�ne

an absolutely continuous curve η : (−∞, 0]→ RN as follows

η(s) =

{
γ(s) : s ∈ [−d(x, y), 0]

ξ(s) : s ∈ (−∞,−d(x, y)].
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Let C := max{ Li(x, v)|x ∈ BR , ‖v‖ ≤ 1}, then from the de�nition of vi we get :

vi(y) ≤
∫ 0

−d(x,y)

eaiis(Li(η(s), η̇(s)) + fi(η(s)))ds+ e−aii d(x,y) wi(η(−d(x, y))

=

∫ 0

−d(x,y)

eaiis(Li(γ(s), γ̇(s)) + fi(γ(s)))ds+ e−aii d(x,y) wi(x)

≤ (C + ‖fi‖L∞(BR))

(
1− e−aiid(x,y)

aii

)
+ e−aii d(x,y) wi(x).

Taking lim sup in the last inequality we get (5.18) as desired.

Next we prove the lower semi continuity. Let us �x a point x on the boundary and a

sequence xn converging to it. We claim that

lim inf
xn→x

vi(xn) ≥ wi(x). (5.19)

Let γn : (−∞, 0]→ RN with γn(0) = xn be an 1
n
−optimal curve for vi(xn) and τn be the

corresponding entrance times, i.e.

vi(xn) +
1

n
≥
∫ 0

−τn
eaiis(Li(γn(s), γ̇n(s)) + fi(γn(s)))ds+ e−aii τn wi(γn(−τn)). (5.20)

Then two cases are possible:

Case 1: If τn → +∞, we de�ne the family of absolutely continuous curves ξn : (−∞, 0]→
RN as follows:

ξn(s) =

{
γn(s) : s ∈ [−τn, 0]

γn(−τn) : s ∈ (−∞,−τn].

We have, by the de�nition of constraint value function

V i
c (xn) ≤

∫ 0

−∞
eaiis

(
Li(ξn(s), ξ̇n(s)) + fi(ξn(s))

)
ds = In + Jn (5.21)

with

In =

∫ −τn
−∞

eaiis(Li(γn(−τn), 0) + fi(γn(−τn)))ds

Jn =

∫ 0

−τn
eaiis(Li(γn(s), γ̇n(s)) + fi(γn(s)))ds.
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The term In vanishes as n→ +∞ by the boundedness of the integrand, while, in view of

(5.20), Jn satis�es

lim inf
n→+∞

Jn ≤ lim inf
n→+∞

(
vi(xn) +

1

n
+ e−aii τn‖wi‖L∞(BR)

)
= lim inf

xn→x
vi(xn). (5.22)

Taking lim inf in (5.21) and taking into account the continuity up to the boundary of the

constraint value function and (5.22) , we get

V i
c (x) ≤ lim inf

xn→x
vi(xn).

Therefore, by the maximality of constraint value function and wi being subsolution of

(5.16), we have

wi(x) ≤ V i
c (x) ≤ lim inf

xn→x
vi(xn)

as desired.

Case 2: If τn is bounded, then it converges up to subsequence to some τ . Moreover, there

exists a sequence of boundary points yn such that γn(−τn) = yn.

Fix ε > 0 and let ζn : [−τ − ε, 0]→ RN as follows:

ζn(s) =

{
γn(s) for s ∈ [−τn, 0]

γn(−τn) for s ∈ [−τ − ε,−τn]

We have

∫ 0

−τ−ε
eaiis Li(ζn(s), ζ̇n(s))ds = Kn +Wn (5.23)

with

Kn =

∫ −τn
−τ−ε

eaiis Li(yn, 0)ds

≤ 2 maxz∈∂BR Li(z, 0)

aii

and
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Wn =

∫ 0

−τn
eaiis Li(γn(s), γ̇n(s)ds

≤ vi(xn) +
1

n
−
∫ 0

−τn
eaiis fi(γn(s))ds− e−aii τn wi(yn)

≤ ‖vi‖L∞(BR) +
2 ‖fi‖L∞(BR)

aii
+ ‖wi‖L∞(∂BR)

Combining the above information, we get

sup
n

∫ 0

−τ−ε
eaiis Li(ζn(s), ζ̇n(s))ds < +∞.

According to Dunford�Pettis type theorem, see for instance [12, Theorem 6.4 ], the curves

ζn uniformly converge, up to subsequences, to an absolutely continuous curve ζ : [−τ −
ε, 0]→ RN with ζ(0) = x and satisfying

∫ 0

−τ−ε
eaiis Li(ζ(s), ζ̇(s))ds ≤ lim inf

n→+∞

∫ 0

−τ−ε
eaiis Li(ζn(s), ζ̇n(s))ds (5.24)

Passing to lim inf in (5.23) and taking into account (5.24), we get

∫ 0

−τ−ε
eaiisLi(ζ(s), ζ̇(s))ds ≤ lim inf

xn→x
vi(xn)+

∫ −τ

−τ−ε
eaiisLi(ζ(−τ), 0)ds−

∫ 0

−τ
eaiisfi(ζ(s))ds−e−aiiτwi(ζ(−τ)).

(5.25)

Assume to the contrary that (5.19) doesn't hold, then in view of (5.25) and that ζ(0) = x,

we obtain

wi(ζ(0))−e−aiiτwi(ζ(−τ)) >

∫ 0

−τ−ε
eaiisLi(ζ(s), ζ̇(s))ds−

∫ −τ

−τ−ε
eaiisLi(ζ(−τ), 0)ds+

∫ 0

−τ
eaiisfi(ζ(s))ds.

Hence

wi(ζ(0))− e−aiiτwi(ζ(−τ)) >

∫ 0

−τ
eaiis

(
Li(ζ(s), ζ̇(s)) + fi(ζ(s))

)
ds,

which contradicts the sub-optimality principle for subsolutions (Lemma 5.2.2). This

proves (5.19) as desired. �

Next we aim at providing a solution to (HJα) in RN , at any supercritical level. As a

�rst step we will construct a solution to (HJα) in BR, as a limit function of a sequence of
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subsolutions (vn). To do that, we follow the algorithm presented in Section 5.3, with the

Dirichlet problem (BVP) replacing the discounted equation in each step. More precisely,

we start with a subsolution w = (w1, · · · , wm) = v0 = (v1
0, · · · , vm0 ) of (HJα) and then we

de�ne the �rst term v1 = (v1
1, · · · , vm1 ) of (vn) as follows :

Let vk1 be the solution of





Hk(x,Du) + akku(x) +
∑

j<k

akjv
j
1(x) +

∑

j>k

akjv
j
0(x)− α = 0, BR

vk1 = vk0 , ∂BR

(5.26)

Applying Theorem 5.4.3, we get

w = v0 ≤ v1 and w = v0 = v1 on ∂BR.

Similarly we can get the second term v2 but now starting with the subsolution v1 =

(v1
1, · · · , vm1 ) instead of w, and again we have

v2 ≤ v1 and v2 = v1 on ∂BR.

Repeating the same construction for v3,v4,v5, · · · , we get

w ≤ v1 ≤ v2 ≤ v3 ≤ · · · on BR

and

w = v1 = v2 = v3 = · · · on ∂BR.

According to the construction we have produced a monotonic sequence (vn) of subsolutions

in BR taking the value w on the boundary, and hence equi-Lipschitz and equibounded.

Applying Ascoli-Theorem in BR and exactly same stability argument we performed before

, we get a solution of (HJα) in BR assuming a �xed value on the boundary which is the

starting subsolution w.

Next, let (Rn) be a sequence of radii going to in�nity and vn be sequence of solutions to

(HJα) in BRn , resulting from performing the Algorithm in BRn for every n according to

the previous step.

We now de�ne another sequence of functions un : RN → Rm as following

un(x) =

{
vn(x) if x ∈ BRn

w(x) otherwise
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Clearly, un are solutions to (HJα) in BRn and subsolutions in RN . Following the same

argument of Proposition 5.4.2, we infer that the functions un are locally equi-Lipschitz

and locally equibounded. Up to subsequences, by Ascoli-Arzela Theorem, we get

un → u locally uniformly in RN .

Now we will show that u is solution of (HJα) in RN . Clearly, u is a subsolution to (HJα)

in RN by using basic stability property of viscosity solution theory.

We are left to prove the supersolution property of u. To this end we take any x ∈ RN ,

then x ∈ BRn for n large enough, hence by the supersolution property of un in BRn , one

has

Hi(x,Du
i
n(x)) +

m∑

j=1

aiju
j
n(x) ≥ α.

Passing to the limit we get

Hi(x,Dui(x)) +
m∑

j=1

aijuj(x) ≥ α,

which proves the supersolution property of u in RN .

5.5 Applications of the scalar reduction

True to title, we describe in this section two applications of the scalar reduction method.

Namely, we provide a characterization of the isolated points of A and establish some

semiconcavity properties of critical subsolutions to the system. To do that, we need a

strengthened form of Theorem 5.2.3 for points belonging to A.

Proposition 5.5.1 Let y ∈ A and u be a subsolution of (HJβ). Then for every i ∈
{1, · · · ,m} there exists a curve γ : (−∞, 0]→ TN with γ(0) = y such that

ui(y) =

∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijuj(γ(s)) + β

)
ds,

and γ(t) ∈ A for every t.

For the proof we need a preliminary lemma

Lemma 5.5.2 Let u be a subsolution of (HJβ) strict outside A. Then for every y ∈ A,
there exists a critical solution v such that

u(y) = v(y) and u < v on TN \ A.
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Proof . Given y ∈ A, we consider the maximal critical subsolution v taking the value

u(y) at y. Then, by the very de�nition of Aubry set, v is a critical solution, and v ≥ u.

If this inequality were not strict at some x0 ∈ TN \A, then ui(x0) = vi(x0) for some index

i, and consequently ui should be subtangent to vi at x0, and hence by Proposition 2.1.14

β ≤ Hi(x0, p) +
m∑

j=1

aijvj(x0) ≤ Hi(x0, p) +
m∑

j=1

aijuj(x0)

for some p ∈ ∂ui(x0). This contradicts ui being locally strict at x0, in view of Lemma

3.4.7.

�

Proof . of the Proposition 5.5.1 We consider a critical subsolution w to the system

strict outside A, see Theorem 3.4.9. It is not restrictive, by adding a suitable constant,

to assume ui(y) = wi(y), where u is the subsolution appearing in the statement. This in

turn implies by the rigidity property on the Aubry set, see Theorem 3.4.11, u(y) = w(y).

We in addition denote by ū the maximal subsolution taking the value w(y) = u(y) at y.

It is a critical solution to the system in view of Theorem 3.4.8 and, according to Lemma

5.5.2, we also have

w < ū on TN \ A. (5.27)

Now, let v be the solution of the discounted equation

Hi(x,Dv) + aiiv(x) +
∑

j 6=i
aijwj(x) = β,

and v̄ the solution of

Hi(x,Dv) + aiiv(x) +
∑

j 6=i
aijūj(x) = β.

We deduce from Corollary 5.2.4

v̄(y) = v(y) = ūi(y) = ui(y) = wi(y). (5.28)

There exists, in force of Theorem 5.2.3, a curve γ : (−∞, 0] → TN with γ(0) = y such

that

ūi(y) =

∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijūj(γ(s)) + β

)
ds.
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Assume, for purposes of contradiction, that the support of γ is not contained in A then,

taking into account (5.27), that aij < 0 for i 6= j by (A1) plus irreducibility of A, we get

wi(y) ≤
∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijwj(γ(s)) + β

)
ds

<

∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijūj(γ(s)) + β

)
ds

= ūi(y),

which is impossible in view of (5.28). By the maximality property of ū, we also have

ui(y) ≤
∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijuj(γ(s)) + β

)
ds

≤
∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijūj(γ(s)) + β

)
ds

= ūi(y),

which proves that γ is also optimal for ui(y) and concludes the proof. �

5.5.1 Equilibria of weakly coupled system

In this section we provide a characterization of the isolated points of A. To this aim,

we introduce the notion of equilibrium points of the weakly coupled system, which we

compactly write in the form

H(x,Du) + Au = β1, (5.29)

where the Hamiltonian H : TN × RmN has the separated variable form

H(x, p1, · · · , pm) = (H1(x, p1), · · · , Hm(x, pm)).

We consider the equilibrium distribution o ∈ Rm which is uniquely identi�ed by the

following conditions:

1) oA = 0

2) o · 1 = 1

It is an immediate consequence of the condition ImA ∩ Rm
+ = {0} plus dim ImA =

m − 1, that all the vectors orthogonal to ImA have either strictly positive or strictly

negative components. Consequently o is a probability vector, i.e. all its components are
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nonnegative and sum up to 1.

Multiplying the system (5.29) by o we get that all subsolutions u satisfy

o ·H(x, p1, · · · , pm) ≤ β for any x, pi ∈ ∂ui(x). (5.30)

For x ∈ TN , we set min
p
H(x, p) :=

(
min
p
H1(x, p), · · · ,min

p
Hm(x, p)

)
.

Then we deduce from (5.30) that

o ·min
p
H(x, p) ≤ β for any x.

We call a point x equilibrium if

o ·min
p
H(x, p) = β.

We see from the above de�nition that if x is an equilibrium and u a critical subsolution

then for any i and q ∈ ∂ui(x) we have

Hi(x, q) = min
p
Hi(x, p) (5.31)

β = Hi(x, q) +
m∑

j=1

aij uj(x) (5.32)

This implies that any subsolution also satis�es the supersolution property at an equi-

librium point, and we deduce from Proposition 3.4.4 and Theorem 3.4.8 that the set of

equilibria is contained in the Aubry set.

The next proposition is a partial converse of this fact, it provides a characterization of

the isolated points of Aubry set, which is a generalization of the scalar case.

Proposition 5.5.3 Any isolated point of the Aubry set is an equilibrium.

Proof .

Let x be an isolated point of Aubry set and u be a critical subsolution of the system.

Then, in view of Proposition 5.5.1, there exists a curve γ with γ(0) = x such that

ui(x) =

∫ 0

−∞
eaiis

(
Li(γ(s), γ̇(s))−

∑

j 6=i
aijuj(γ(s)) + β

)
ds, for every i ∈ {1, · · · ,m}

and the support of γ is contained in A. Exploiting the fact that x is isolated, we get

γ(t) ≡ x for every t and hence

ui(x) =
1

aii

(
Li(x, 0)−

∑

j 6=i
aijuj(x) + β

)
, for every i ∈ {1, · · · ,m}.
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Then

Au(x) = (L1(x, 0), · · · , Lm(x, 0)) + β1

= −min
p
H(x, p) + β1.

Multiplying by o and taking into account that o is a probability vector orthogonal to

Im(A), we get

o ·min
p
H(x, p) = β

as desired. �

Assuming the strict convexity assumption (H4), we get a regularity result.

Proposition 5.5.4 Under the additional assumption (H4), any critical subsolution is

strictly di�erentiable at every isolated point of A.

Proof . Let x0 be an isolated point of A and u be a subsolution of (HJβ). Then for every

i ∈ {1, · · · ,m}, we have

Hi(x0, pi) +
m∑

j=1

aijuj(x0) ≤ β for every pi ∈ ∂ui(x0).

This implies
m∑

i=1

oiHi(x0, pi) ≤ β.

Taking into account that x0 is equilibrium we deduce from the above inequality that

β =
m∑

i=1

oi min
p
Hi(x0, p) ≤

m∑

i=1

oiHi(x0, pi) ≤ β,

which in turn gives that

Hi(x0, pi) = min
p
Hi(x0, p), for every pi ∈ ∂ui(x0), i ∈ {1, · · · ,m}.

Due to Hi being strictly convex, the above minimum is unique and hence ∂ui(x0) reduces

to a singleton. This implies strict di�erentiability of u at x0. �

5.5.2 Semiconcavity-type estimates for critical subsolutions

In this section we study a family of Eikonal equations derived from the critical system.

The main information we gather through this approach, under the additional assumptions
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(H4),(H5), is that the superdi�erential of any critical solution of (HJβ) is nonempty at

every point of the torus. The same property holds true for any critical subsolution on the

Aubry set.

We start by stating and proving a consequence of Theorem 5.2.3.

Proposition 5.5.5 Let u, x, i be a critical solution to the system, a point in TN and

an index in {1, · · · ,m}, respectively. There is a curve γ de�ned in (−∞, 0] such that

γ(0) = x and

d

dt
ui(γ(t)) = Li(γ(t), γ̇(t))−

∑

j

aij uj(γ(t)) + β for a.e. t ∈ (−∞, 0).

Proof .

Taking into account that ui is the solution of the discounted equation (5.1) with uj in

place of wj, we know by Theorem 5.2.3 that there is an optimal curve γ de�ned in (−∞, 0]

with γ(0) = x such that

ui(x) =

∫ 0

−∞
eaiis

[
Li(γ(s), γ̇(s))−

∑

j 6=i
aijuj(γ(s)) + β

]
ds. (5.33)

We claim that γ also satis�es the statement of the proposition. We de�ne

g(t) = eaiitui(γ(t)) for t ∈ (−∞, 0),

accordingly
d

dt
g(t) = aii e

aiitui(γ(t)) + eaiit p(t) · γ̇(t) (5.34)

for a.e. t, where p(t) is a suitable element of ∂ui(γ(t)) satisfying d
dt
ui(γ(t)) = p(t) · γ̇(t)

for a.e. t, see Lemma 2.1.12. We further get taking into account that u is a solution to

the critical system

p(t) · γ̇(t) ≤ Hi(γ(t), p(t)) +Li(γ(t), γ̇(t)) ≤ −
∑

j

aijuj(γ(t)) + β +Li(γ(t), γ̇(t)). (5.35)

We derive from (5.33), (5.34), (5.35)

ui(x) = lim
t→−∞

g(0)− g(t) =

∫ 0

−∞

d

dt
g(t) dt

≤
∫ 0

−∞
aii e

aiitui(γ(t))− eaiit
(∑

j

aijuj(γ(t))− β − Li(γ(t), γ̇(t))

)
dt

=

∫ 0

−∞
eaiit

[
Li(γ(t), γ̇(t))−

∑

j 6=i
aij uj(γ(t)) + β

]
dt = ui(x).
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This in turn implies

d

dt
ui(γ(t)) = p(t) · γ̇(t) = −

∑

j

aijuj(γ(t)) + β + Li(γ(t), γ̇(t)) for a.e. t,

as it was to be proved. �

In the case where the point x belongs in addition to A, we get, thanks to Proposition

5.5.1, a strengthened form of the previous assertion.

Corollary 5.5.6 The statement of Proposition 5.5.5 holds true for any critical subsolu-

tion u, provided x ∈ A. The curve γ is in addition contained in A.

Proof . If u is any critical subsolution, we know from Proposition 5.5.1 that there is an

optimal curve γ for ui(x) which is in addition contained in A. We then prove that γ

satis�es the assertion arguing as in Proposition 5.5.5.

We recognize that the integrand appearing in the statement of Proposition 5.5.5 is nothing

but the Lagrangian associated through Fenchel transform to the Hamiltonian

Hu
i (x, p) = Hi(x, p) +

m∑

j=1

aijuj(x). (5.36)

Given a critical subsolution u to the system, we therefore consider the Eikonal equation

Hu
i (x,Dv) = β in TN , (5.37)

and denote by σu
i , S

u
i the corresponding support function and intrinsic distance, respec-

tively, given by suitably adapting (2.14) and (2.15). Since ui is a subsolution to (5.37), it

is clear that the critical value of Hu
i is less than or equal to β. We in addition have:

Proposition 5.5.7 The critical value of Hu
i (x, p) is equal to β, for any critical subsolu-

tion u to the system, any index i ∈ {1, · · · ,m}. In addition the limit points, as t→ −∞,of

any curve satisfying the statement of Proposition 5.5.5/Corollary 5.5.6 belong to the cor-

responding Aubry set.

Proof .We �x u and i. Let us consider x ∈ A and an optimal curve γ as in the statement

with γ(0) = x. We denote by y a limit point of γ as t → −∞. If the set of such limit

points reduces to y, then there is a sequence tn → −∞ with

d

dt
ui(γ(tn)) = Li(γ(tn), γ̇(tn))−

∑

j

aij uj(γ(tn)) + β and γ̇(tn)→ 0,
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therefore

0 = lim
tn→−∞

d

dt
ui(γ(tn)) = lim

tn→−∞
Li(γ(tn), γ̇(tn))−

∑

j

aij uj(γ(tn)) + β.

By continuity of Li, uj we deduce

Li(y, 0)−
∑

j

aij uj(y) = −β

or equivalently min
p
Hu
i (y, p) = β. Since we know that β is supercritical for Hu

i , this

implies that β is actually the critical value of Hu
i and y belongs to the corresponding

Aubry set, by Proposition 2.2.4.

If instead the limit set of γ, as t→ −∞, is not a singleton, then we �nd γ(tn) converging

to y such that the curves γn := γ
∣∣
[tn,tn+1]

possess Euclidean length bounded from below

by a positive constant. We have

∫ tn+1

tn

σu
i (γ(s), γ̇(s)) ds ≤

∫ tn+1

tn

[
Li(γ(s), γ̇(s))−

∑

j

aij uj(γ(s)) + β

]
ds

= ui(γ(tn+1))− ui(γ(tn)).

We deduce using (ii) of Proposition 2.2.2 that the leftmost inequality in the above formula

must actually be an equality. This shows that the intrinsic length
∫ tn+1

tn
σu
i (γ(s), γ̇(s)) ds

is in�nitesimal as n→ +∞.

We construct a sequence of cycles ηn based on y by concatenating the segment linking

y to γ(tn), γn and the segment linking γ(tn+1) to y. We �nd that the intrinsic lengths

of such cycles are in�nitesimal, as n → +∞, while the Euclidean lengths stay bounded

from below by a positive constant. Taking into account the very de�nition of Aubry set

for scalar Eikonal equations, we derive also in this case that β is the critical value of Hu
i ,

and y belongs to the corresponding Aubry set. This concludes the proof. �

We denote by Au
i the Aubry set associated with Hu

i at the critical level β, for i ∈
{1, · · · ,m}.

Proposition 5.5.8 We have that

Au
i ∩ A 6= ∅ for any susbsolution u to (HJβ), any i. (5.38)

If, in addition, u is strict on TN \ A, then

Au
i ⊆ A for every i ∈ {1, · · · ,m} (5.39)
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Proof . Formula (5.38) is a direct consequence of Corollary 5.5.6 and Proposition 5.5.7. To

show (5.39), let us consider y /∈ A, then ui is locally strict at y for every i ∈ {1, · · · ,m}.
Hence, there exists an open neighborhood W of y and δ > 0 such that

Hi(x,Dui(x)) +
m∑

j=1

aijuj(x) < −δ + β for a.e. x ∈ W, for every i ∈ {1, · · · ,m}.

Therefore, ui is a critical subsolution of (5.37) which is locally strict at y and consequently

y /∈ Au
i .

�

To establish the �nal result, we will also need the following additional requirements for

i ∈ {1, 2, ...,m}:

(H4) p 7→ Hi(x, p) is strictly convex for every x ∈ TN ;

(H5) (x, p) 7→ Hi(x, p) is locally Lipschitz continuous in TN × RN .

Note that, due to the Lipschitz character of any subsolution to the system, the Hamilto-

nians Hu
i are locally Lipschitz�continuous in TN × RN , for any subsolution u of (HJβ),

any index i.

In this setting we obtain:

Theorem 5.5.9 We assume(H4), (H5). If u is a critical subsolution of (HJβ), then

D+ui(x) 6= ∅ for every i ∈ {1, 2, ...,m}, x ∈ A.

If, in addition, u is a solution to (HJβ) then the above property holds true for any x ∈ TN .

Proof .

First assume u to be subsolution of (HJβ). If x0 ∈ Au
i then ui is di�erentiable at x0,

according to Theorem 2.2.7. This proves the assertion. If instead x0 ∈ A \ Au
i , then we

derive from the proof of Proposition 5.5.7 that

ui(x0) ≥ min
y∈Au

i

{ui(y) + Su
i (y, x0)}. (5.40)

By Proposition 2.2.5, the function on the right hand�side of the above formula is the

maximal subsolution to (5.37) with trace ui on Au
i , this implies that equality must prevail

in (5.40). There is then an element y0 ∈ Au
i such that

ui(x0) = ui(y0) + Su
i (y0, x0).
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Hence ui(y0) + Su
i (y0, .) is supertangent to ui at x0, and so by Proposition 2.2.6 the

superdi�erential of ui is nonempty at x0, as it was claimed. If u is in addition solution

of (HJβ), the same argument of above gives that D+ui(x0) 6= ∅ at any x0 ∈ TN . This

concludes the proof. �
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Appendix A

Linear Algebra

A.1 Coupling matrix

Here we brie�y present some elementary linear algebraic results concerning coupling ma-

trices.

De�nition A.1.1 Let A := (aij) be a m×m matrix. We say that A is a coupling matrix

if it satis�es the following conditions:

(A1) aij ≤ 0 for every i 6= j;

(A2) A is diagonal dominant, namely
m∑
j=1

aij ≥ 0 for any i ∈ {1, 2, ...,m};
It is additionally termed degenerate if

m∑

j=1

aij = 0 for any i ∈ {1, 2, ...,m};

Moreover, A is said to be irreducible if for every W ( {1, 2, ...,m} there exists i ∈ W and

j /∈ W such that aij < 0.

When a coupling matrix is also irreducible, an additional information can be derived on

its diagonal elements. We have

Proposition A.1.2 Let A be an m × m irreducible matrix satisfying (A1) and (A2) .

Then aii > 0 for every i ∈ {1, 2, ...,m}.

Proof .
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It is clear, due to the coupling assumptions, that aii ≥ 0. Indeed, if akk = 0 for some

k ∈ {1, 2, ...,m}, then condition (A2) would imply akj = 0 for every j ∈ {1, · · · ,m},
which contradicts the irreducibility character of the matrix A. �

The following property also holds:

Proposition A.1.3 If A satis�es (A1) and (A2), then A = sI − B for some s > 0 and

a non negative matrix B = (bij)1≤i,j≤m, with s ≥ ρ(B) and ρ(B) the spectral radius of B.

Proof . We de�ne s := max1≤i≤m aii > 0 and the matrix B = (bij) with bii = s− aii and
bij = −aij for j 6= i, then A = sI − B. By Perron-Frobenius theorem for nonnegative

irreducible matrices, we deduce that the spectral radius ρ(B) of B is a positive eigenvalue

of B and there exists a positive eigenvector q such that Bq = ρ(B)q and hence Aq =

(s− ρ(B))q. Let qk = max1≤i≤m qi > 0. Taking into account (A2), we get

(s− ρ(B))qk =
m∑

j=1

akjqj ≥
m∑

j=1

akjqk ≥ 0,

and therefore s ≥ ρ(B). �

We also have the following invertibility criterion:

Proposition A.1.4 Let A be an m×m irreducible coupling matrix, then

(i) Ker(A) ⊆ span {(1, · · · , 1};

(ii) Ker(A) = span {(1, · · · , 1} if and only if A is degenerate.

In particular, A is invertible if and only if

m∑

j=1

aij > 0 for some i ∈ {1, 2, ...,m}.

Proof . We �rst remark that, by assumptions (A1) and (A2),

aii ≥
∑

j 6=i
|aij| for every i ∈ {1, · · · ,m}.

We �rst prove (i). Let v = (v1, · · · , vm) ∈ Ker(A) and set

I = {i ∈ {1, · · · ,m}; vi = max{v1, · · · , vm}}.
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We claim that I = {1, · · · ,m}. If this were not the case then, by the irreducibility

assumption on A, there would exist i ∈ I and k /∈ I such that aik 6= 0. Since Av = 0, we

would get

aiivi =
∑

j 6=i
vj|aij| ≤ vi

∑

j 6=i
|aij| ≤ aiivi.

Then these inequalities must be equalities., Hence

vi|aij| = vj|aij| for every j 6= i,

in particular vk = vi = max{v1, · · · , vm}, yielding k belongs to I, which is a contradiction.

The remainder of the statement trivially follows from item (i). �

The next proposition shows an obstruction in being in the image of a degenerate coupling

matrix.

Proposition A.1.5 Let A be an m×m degenerate coupling matrix. If a = (a1, · · · , am)

satis�es ai > 0 for every i ∈ {1, · · · ,m}, then a /∈ Im(A).

Proof . Let us assume to the contrary that a ∈ Im(A) i.e there exists v = (v1, · · · , vm)

such that

Av = a.

Let vk = min{v1, · · · , vm}, then

ak =
m∑

j=1

akjvj ≤
m∑

j=1

akjvk = 0,

in contradiction with the hypothesis ak > 0.

A.2 Stochastic matrices

In this appendix we collect some elementary results concerning stochastic matrices. The

results stated are taken from [31], [11] for more details.

We denote by S ⊂ Rm the simplex of probability vectors of Rm, namely with nonnegative

components summing to 1.

De�nition A.2.1 A positive matrix M is a matrix for which all the entries are positive,

and we write M > 0.
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De�nition A.2.2 A right stochastic matrix is a matrix of nonnegative entries with each

row summing to 1.

Proposition A.2.3 A matrix B is stochastic if and only if

aB ∈ S whenever a ∈ S. (A.1)

Proof . B is stochastic if and only if each one of its rows is a probability vector, i.e.

eiB ∈ S for every i,

which in turn is equivalent to (A.1).

�

By Perron-Frobenius theorem for nonnegative matrices, we have

Proposition A.2.4 Let B be a stochastic matrix, then its maximal eigenvalue is 1 and

there is a corresponding left eigenvector in S.

By Perron-Frobenius theorem for positive matrices, we have

Proposition A.2.5 Let B be a positive stochastic matrix, then its maximal eigenvalue is

1 and is simple. In addition, there exists a unique positive corresponding left eigenvector

which is an element of S.

We now remark that the coupling matrix, under the above assumptions, spans a semi

group of stochastic matrices. We have the following

Proposition A.2.6 Given a matrix A and t ≥ 0. Assume (A1) and (A2) hold, then e−At

is stochastic.

Proof . If A satis�es (A1) and (A2), then, I − tA
n

is stochastic for n suitably large and

t > 0. Hence
(
I − tA

n

)n
is stochastic because the product of stochastic matrices is still

stochastic, and

e−tA = lim
n→∞

(
I − tA

n

)n

is also stochastic since stochastic matrices make up a compact subset in the space of

square matrices.

�

Moreover, the irreducibility condition (A3) allows to derive the next result, see Theorem

3.2.1 in [31].
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Proposition A.2.7 Let A be the coupling matrix of the system satisfying (A1), (A2),

(A3) then e−At is positive for any t > 0.
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Appendix B

Proof of Proposition 2.1.14

This Appendix is devoted to give a proof of Proposition 2.1.14 of Section 2.1.2. For this

purpose we introduce some basic tools from convex and non smooth analysis.

We �rst start with two special classes of Lipschitz functions: semiconvex and semiconcave

functions. For a comprehensive survey on these functions, we refer readers to [10].

De�nition B.0.8 A function u de�ned in an open subset Ω of RN is said semiconvex if

one of the following equivalent conditions is valid, for some α ≥ 0

u(x) + α|x|2 is a convex function;

u(x) + α|x− x0|2 is a convex function for some x0 ∈ Ω;

u(λx+ (1− λ)y) ≤ λu(x) + (1− λ)u(y) + αλ(1− λ)|x− y|2 for any x, y ∈ Ω.

We refer to α as a semiconvexity constant for u.

A function u is said semiconcave if one of the following equivalent conditions hold for

some α ≥ 0

u(x)− α|x|2 is concave ;

u(x)− α|x− x0|2 is concave for some x0;

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y)− αλ(1− λ)|x− y|2 for any x, y.

The constant α refers to semiconcavity constant for u.

Semiconvex and semiconcave functions inherit the regularity properties of convex and

concave functions, in particular they are twice di�erentiable almost everywhere, in force

of Alexandrov Theorem.
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With the term paraboloid, we mean a function of the form

x 7→ β + p · (x− x0) + α |x− x0|2

for some α, β in R, p, x0 in RN . The constant α, which can have any sign, is called

opening of the paraboloid.

The next proposition holds:

Proposition B.0.9 Let u be semiconvex (resp. semiconcave) then ∂u(x) = D−u(x)

(resp. ∂u(x) = D+u(x)) for all x. Moreover, there exists a paraboloid globally subtangent

(resp. supertangent) to u at any point.

As a consequence of the above result, we can write a semiconvex function u at any point

x0 as

u(x0) = sup
x,p∈∂u(x)

(u(x) + p(x− x0)− α|x− x0|2),

namely as the sup envelope of a family of paraboloid with �xed opening. Next we will

perform an inverse construction: starting from any upper semicontinuous (resp. lower

semicontinuous ) function we will de�ne semiconvex (resp semiconcave) functions through

sup (resp. inf) envelope of suitable classes of paraboloids.

We proceed by the relevant de�nitions

De�nition B.0.10 Given an usc function u bounded from above in RN and ε, the ε�sup

convolution of u is given by

uε(x) = max
y∈RN

(
u(y)− 1

2ε
|y − x|2

)
. (B.1)

Similarly, for a lsc function v bounded from below in RN and ε, the ε�inf convolution of

v is given by

vε(x) = min
y∈RN

(
v(y) +

1

2ε
|y − x|2

)
. (B.2)

It is apparent that maxima and minima in the previous de�nitions do exist in force of

semicontinuity and boundedness assumptions on u, v. We also clearly have

• uε ≥ u, vε ≤ v for any ε.

• uε(x) is nonincreasing and vε(x) nondecreasing with respect to ε for any �xed x.
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From now on we give de�nitions and statement of results mainly for sup� convolutions. By

slightly adapting them, we get the corresponding entities and facts for inf� convolutions.

De�nition B.0.11 We say that y0 is uε�optimal for a given x0 if

uε(x0) = u(y0)− 1

2ε
|x0 − y0|2

Proposition B.0.12 For any usc (resp. lsc) function u bounded from above (resp. be-

low), any ε > 0 the sup (resp. inf)� convolution is semiconvex (resp. semiconcave) with

semiconvexity (resp. semiconcavity) constant 1
2 ε
.

Proof . We just prove the part of the statement about sup convolution. We will show

that uε(x) +
1

2ε
|x|2 is convex. We compute

uε(x) +
1

2ε
|x|2 = sup

y∈RN
{u(x)− 1

2ε
|y − x|2 +

1

2ε
|x|2}

= sup
y∈RN
{u(y)− 1

2ε
|y|2 +

1

ε
(y · x)}

Then uε(x)+
1

2ε
|x|2 can be written as the supremum of linear function, and so it is convex,

as claimed. �

We proceed inquiring about �rst order properties of sup�convolutions.

Proposition B.0.13 Fix ε > 0, then, for any x0

∂uε(x0) = co

{
y0 − x0

ε
| y0 uε�optimal for x0

}
,

consequently uε is (strictly) di�erentiable at x0 if and only if it admits an unique uε�

optimal point y0, and then Duε(x0) = y0−x0
ε

.

We preliminarily show a continuity property for uε�optimal points.

Lemma B.0.14 Let xn be a sequence convergent to some x0. If, for any n, yn is uε�

optimal for xn and yn → y0, then y0 is uε�optimal for x0 and u(yn)→ u(y0).

Proof . We have

uε(xn) = u(yn)− 1

2ε
|xn − yn|2,
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for any n. Passing at the limit, and taking into account that u is usc, we obtain:

uε(x0) ≤ u(y0)− 1

2ε
|x0 − y0|2.

By the very de�nition of sup�convolution, the inequality in the previous formula must

indeed be an equality, which shows that y0 is optimal, as desired, and, in addition the

claimed convergence of u(yn) to u(y0). �

Proof of Proposition B.0.13 Let us �x x0 and take y0 u
ε�optimal for it, then, by the

very de�nition of uε, the quadratic function

x 7→ u(y0)− 1

2ε
|x− y0|2

is subtangent to uε at x0. This shows

y0 − x0

ε
∈ D−uε(x0) = ∂uε(x0)

and, since the generalized gradient is convex valued

∂uε(x0) ⊃ co

{
y0 − x0

ε
| y0 uε�optimal for x0

}
. (B.3)

Now, take a sequence xn, where u
ε di�erentiable, with xn → x0 and Duε(xn) converges,

then

Duε(xn) =
1

ε
(yn − xn) for any n, (B.4)

where yn is uε�optimal for xn. By Lemma B.0.14 and (B.4)

lim
n
Duε(xn) =

y0 − x0

ε

for some y0 optimal for x0. Keeping in mind the de�nition of generalized gradient, we

deduce

∂uε(x0) ⊂ co

{
y0 − x0

ε
| y0 uε�optimal for x0

}
,

which, together with (B.3), yields the assertion. �

We end by giving additional properties of sub/inf convolutions in the case where the initial

function is Lipschitz�continuous.

Proposition B.0.15 Let u, ε be a Lipschitz continuous function and a positive constant,

respectively. Let x be any point and y uε�optimal for x then

i. |x− y| ≤ O(ε) (O(·) is the Landau symbol).
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ii. ∂uε(x) ∩D+u(y) 6= ∅.

iii. uε → u uniformly as ε→ 0.

Proof . We have

u(x) ≤ uε(x) = u(y)− 1

2ε
|x− y|2.

We derive

|x− y|2 ≤ 2 ε(u(y)− u(x)),

and exploiting Lipschitz�continuity of u, we get

|x− y| ≤ 2 ε L

where L is a Lipschitz constant for u, which gives item i..

Using last inequality we further get

uε(x)− u(x) ≤ u(y)− u(x) ≤ 2L2 ε

which shows the asserted uniform convergence.

Finally, from the relation

uε(x) = u(y)− 1

2ε
|x− y|2 = max

z
{u(z)− 1

2ε
|x− z|2}

we derive, in view of Proposition 2.1.7, y−x
ε
∈ D+u(y) which in turn gives item iii. taking

into account Proposition B.0.13.

�

We exploit the monotonicity of uε to prove the next proposition:

Proposition B.0.16 Let Ω be a bounded open set, u and w be a Lipschitz-continuous

function and lsc on Ω, respectively. If xε is a sequence of maximizers of uε−w in Ω, then

any of its limit points is a maximizer of u−w. In addition, the corresponding maximum

values Mε converge to M0 := max
Ω

u− w.

Proof . The sequence uε decreases with respect to ε, and uε ≥ u, for any ε. Therefore,

by monotonicity, Mε := max
Ω

uε − w does converge, as ε→ 0, and

limMε ≥M0 := max
Ω

u− w.

We can assume, without loosing generality, that xε → x0, for some x0 ∈ Ω, then, taking

into account that uε converges uniformly to u in view of Proposition B.0.15 and that w

is lsc, we get

M0 ≤ limMε = lim supuε(xε)− w(xε) ≤ u(x0)− w(x0) ≤M0.
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This shows, at the same time, that x0 is a maximizer of u− w in Ω and that Mε → M0,

as asserted. �

The next proposition about viscosity test functions holds:

Proposition B.0.17 Let u be an usc subsolution (resp. lsc supersolution) of H(x, u(x), Du(x)) =

0, and ψ a semiconcave (resp. semiconvex) supertangent (resp. subtangent) to u at some

point x. Then

H(x, u(x), p) ≤ 0 (resp. ≥ 0) for all p ∈ ∂ψ(x)

Proof . We just prove the case subsolution with semiconcave supertangent. Since any

supertangent to ψ at x is also supertangent to u at the same point, we get

∂ψ(x) = D+ψ(x) ⊂ D+u(x),

which shows the assertion. �

Now we have all the ingredients to prove our proposition:

Proof of Proposition2.1.14 We treat the subsolution case. Being the argument local,

we can take, without loosing generality, ψ bounded. Up to adding a quadratic term

y → |y − x|2, we can assume ψ to be strict supertangent, and so x to be the unique

maximizer of u− ψ in a suitable closed ball B centered at x.

From this uniqueness property we deduce, taking into account Proposition B.0.16, that

any sequence xε of maximizers of u − ψε in B converges to x, where ψε denotes the inf�

convolution. Hence xε is in the interior of B for ε su�ciently small, and then for such ε,

ψε is supertangent to u at xε so that

H(xε, u(xε), pε) ≤ 0 for any pε ∈ ∂ψε(xε) (B.5)

in force of Proposition B.0.17. Further

u(xε)− ψε(xε) = max
B

u− ψε → max
B

u− ψ = u(x)− ψ(x),

which, implies, bearing in mind that limψε(xε) = ψ(x) by Proposition B.0.15

limu(xε) = u(x) (B.6)

We also know, by Proposition B.0.15, that for any yε ψε�optimal for xε

∂ψε(xε) ∩ ∂ψ(yε) 6= ∅. (B.7)
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Taking into account that yε → x, as ε goes to 0 by Proposition B.0.15, exploiting (B.6),

(B.7) plus the continuity properties of H and generalized gradients, see Proposition 2.1.6,

we �nd qε ∈ ∂ψε(xε) ∩ ∂ψ(yε) suth that

qε → p ∈ ∂ψ(x)

H(xε, u(xε), qε) → H(x, u(x), p)

then, thanks to (B.5)

H(x, u(x), p) ≤ 0 and p ∈ ∂ψ(x)

as claimed.
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