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I N T R O D U C T I O N

This thesis is devoted to the investigation of some aspects of the connection between

the theory of Siegel modular forms and the study of the geometry of Siegel modular

varieties. We will show how one can use this connection to study polarized abelian

varieties and their moduli spaces.

In order to understand abelian varieties one has to understand first complex tori

since abelian varieties turns out to be complex tori that admit an immersion in some

projective space. The simpler example of an abelian variety is an elliptic curve. We

will present an introduction to the basic theory of complex tori and complex abelian

varieties (see Chapter 1) in order to highlight the deep relationship between this subject

and the theory of Siegel modular varieties. Indeed these varieties arise naturally as

compactifications of moduli spaces of complex abelian varieties.

We will mostly talk about Siegel modular forms as tools for the study of complex

abelian varieties and their moduli spaces, but they also represent an interesting and

rich subject in the theory of automorphic forms. We will develop the theory of Siegel

modular forms in Chapter 2 where we will also give many examples of Siegel modular

forms. These modular forms will have a prominent role in the exposition of the original

results of the thesis which are mostly based on my papers [39], [8], [40].

Let Hg denote the Siegel space of degree g. This is the space of g⇥ g symmetric com-

plex matrices with positive definite imaginary part. The group of integral symplectic

matrices �g := Sp(2g, Z) acts properly discontinuously on Hg as follows:

� · ⌧ = (A⌧+ B)(C⌧+ D)-1, 8� =
�

A B
C D

�
2 �g,

where A, B, C, D are g⇥g matrices. If � ⇢ �g is a group acting properly discontinuously

on the Siegel space, the quotient Hg/� is called a modular variety. It has the structure

of a normal analytic space and it is a quasi-projective variety.

Clearly the Siegel space and �g are a natural generalization of the upper-half plane of

complex numbers and the special linear group of degree 2 acting on the complex plane

by Möbius transformation respectively. Since isomorphism classes of elliptic curves

are in bijection with the quotient of the upper-half plane of complex numbers by such

an action we get a first hint of the connection between modular varieties and moduli

spaces of abelian varieties. In Section 1.4.1 and 1.4.2 we will make this connection
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precise by giving explicit construction of some moduli spaces of polarized abelian

varieties. For example the moduli space of principally polarized abelian varieties is a

modular variety since the set isomorphism classes of these varieties is in bijection with

the points of the quotient space Hg/�g.

Let us briefly give the definition of both vector-valued and scalar-valued Siegel

modular forms. If (⇢, V⇢) is a finite dimensional rational representation of GLg(C),

a vector-valued Siegel modular form with respect to ⇢ and a subgroup � ⇢ �g is a

holomorphic function f : Hg ! V⇢ such that

f(� · ⌧) = ⇢(C⌧+ D) f(⌧), 8� =
�

A B
C D

�
2 � , 8 ⌧ 2Hg.

If ⇢(C⌧+ D) = det(C⌧+ D)k/2 for some k 2 N, f is said to be a scalar-valued Siegel

modular form of weight k/2 with respect to � . For technical reasons, in order to consider

half-integer weights we shall introduce the notion of multiplier system.

The most important examples of scalar-valued Siegel modular forms we will work

with are theta functions with characteristics. For any m =
⇥

m 0
m 00
⇤
, m 0, m 00 2 Zg, the theta

function with characteristic m is defined by the series

#m(⌧, z) =
X

n2Zg

e⇡i(t(n+m 0/2)⌧(n+m 0/2)+2t(n+m 0/2)(z+m 00/2)), ⌧ 2Hg, z 2 Cg.

We will first introduce these functions in Section 1.3.1 as theta functions for suitable line

bundles on principally polarized abelian varieties. The theta function with characteristic

m is a holomorphic function in the two variables ⌧ and z which is an even or odd

function of z if tm 0m 00 is even or odd respectively. Correspondingly, the characteristic

m is called even or odd. We will see that one can reduce to the case where m 2 { 0, 1 }
2g.

The function #m(⌧, 0) is a holomorphic function on Hg which is not identically zero

if and only if the characteristic m is even. These functions are usually called theta

constants. They are scalar-valued Siegel modular forms of weight 1/2 and a suitable

multiplier system with respect to a subgroup of �g.

Regarding theta functions with odd characteristics, they give rise to vector-valued

Siegel modular forms by taking gradients with respect to the variable z and then

evaluating in z = 0. We will present examples of both scalar-valued and vector-valued

Siegel modular forms arising from theta functions with characteristics in Section 2.4.

In Chapter 3 we will investigate the role of both scalar-valued and vector-valued

Siegel modular forms in the study of the geometry of Siegel modular varieties.

In particular scalar-valued Siegel modular forms can be used to give a compactifica-

tion of these varieties. If the ring of scalar-valued Siegel modular forms with respect

to a subgroup � is denoted by A(�), the Satake compactification of Hg/� , also called

Siegel modular variety associated to � , is defined as Proj(A(�)).
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In Section 3.1 we will explain in more details the construction of the Satake compacti-

fication of a modular variety and study in details the Satake compactification of the

moduli space of principally polarized abelian surfaces with level 2 structure. This is

known to be a quartic hypersurface in P4 usually called the Igusa quartic. We will also

present a different modular interpretation of the Igusa quartic involving the Kummer

variety of an abelian variety.

In [32] the Igusa quartic has been characterized as a Steiner hyperquartic. As

such it has a degree 8 endomorphism. By means of this characterization the Satake

compactification of the moduli space of principally polarized abelian surfaces with

Göpel triples is isomorphic to the Igusa quartic [32]. Both compactifications can be

thought as Siegel modular threefolds (Siegel modular varieties of degree 2) and the

latter isomorphism can also be given by means of Siegel modular forms (cf. [6, section

11]).

In Section 3.3 we will prove that many modular threefolds share the property of

the Igusa quartic of having a degree 8 endomorphism. With this result we give also

an alternative proof of the existence of a degree 8 endomorphism of the Igusa quartic

exploiting Siegel modular forms. The construction of a degree 8 endomorphism on

suitable Siegel modular threefolds will be done via an isomorphism of graded rings

of scalar-valued Siegel modular forms and a degree 8 map between two given Siegel

modular threefolds. The results of this section are based on my paper [39].

We will prove that the degree 8 map

P3 ! P3

[x0, x1, x2, x3] 7! [x2
0, x2

1, x2
2, x2

3]
, (1)

is a map between two Siegel modular varieties. This is the part that will give the right

degree of the desired self map between some modular threefolds. For the other part,

that is the isomorphism of suitable rings of scalar-valued Siegel modular forms, we

shall prove that there is an isomorphism

�0(2)/�2
2 (2, 4) ⇠= �0

0 (2)/�2(2, 4), (2)

equivariant with respect to the action of the groups on the two copies of P3 in (1). For

the definition of the groups see (59), (56), (60), (15). Denoting the group in (2) by G we

shall prove the following theorem.

Theorem. For any subgroup H ⇢ G there exists an isomorphism of graded rings of modular

forms

�H : A(�)! A(� 0),
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where �2(2, 4) ⇢ � ⇢ �0
0 (2), �2

2 (2, 4) ⇢ � 0 ⇢ �0(2) and the quotients �/�2(2, 4) and � 0/�2
2 (2, 4)

are both isomorphic to H.

With a suitable choice of the subgroup H one can actually recover the isomorphism

between the Satake compactification of the moduli space of abelian surfaces with level

2 structure and with Göpel triples respectively which is proven in [32, 6].

By this theorem and the modular interpretation of the map (1) we will prove the

following result.

Theorem. For any subgroup �2(2, 4) ⇢ � 0 ⇢ �0
0 (2) the Siegel modular variety Proj(A(� 0)) has

a map of degree 8 onto itself.

We can recover the degree 8 endomorphism of the Igusa quartic if we set

� 0 = { � 2 �2 | � ⌘ 14 (mod 2) } .

The theorem about the existence of a degree 8 endomorphism can be further extended

to other modular threefolds. This will be achieved by studying the action of the Fricke

involution

J2 = 1p
2

0
@ 0 1g

-2 1g 0

1
A 2 Sp(2g, R)

on the groups considered so far and consequently on the rings of modular forms. The

last section of Chapter 3 is dedicated to the case of degree three, with a view toward

Siegel modular varieties in higher dimensions. We will see that the arguments exploited

in degree two do not generalize directly.

Regarding the role of vector-valued Siegel modular forms in the study of the geometry

of Siegel modular threefolds, in Section 3.2 we will explain their relationship with the

definition of holomorphic differential forms on modular varieties.

If X is a complex manifold, denote by ⌦n(X) the space of holomorphic differential

forms on X of degree n. If g > 2 and n < g(g + 1)/2, there is a natural isomorphism

⌦n(X0
� )

⇠= ⌦n(Hg)� ,

where X0
� is the set of regular points of Hg/� and ⌦n(Hg)� is the space of � -invariant

holomorphic differential forms on Hg of degree n (cf. [17]). For suitable degrees some

of these spaces are known to be trivial. The possible non-trivial spaces are identified

with vector spaces of vector-valued modular forms (cf. Theorem 3.2.1). For example,

for N = g(g + 1)/2 the identification of � -invariant holomorphic differential forms of

degree N- 1 with some vector-valued Siegel modular forms is given in the following
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way. Let
�

d⌧̌ij

 g

i,j=1
be the basis of holomorphic differential forms on Hg of degree

N- 1 given by

d⌧̌ij = ± eij

^

16k6l6g

(k,l) 6=(i,j)

d⌧kl; eij =
1 + �ij

2
,

where the sign is chosen in such a way that d⌧̌ij ^ d⌧ij = eij

V
16k6l6g d⌧kl. By [14] a

differential form ! 2 ⌦N-1(Hg) is � -invariant if and only if

! = Tr(A(⌧)d⌧̌),

where A(⌧) is a vector-valued modular form satisfying the transformation rule

A(� · ⌧) = det(C⌧+ D)g+1 t(C⌧+ D)-1 A(⌧) (C⌧+ D)-1, (3)

for any � 2 � and ⌧ 2Hg. We are interested in some explicit constructions of � -invariant

holomorphic differential forms of degree N- 1.

In [12] the author uses some differential operators applied to scalar-valued modular

forms of suitable weight to define such holomorphic differential forms. For any f, h 2
[� , (g- 1)/2], we will denote by !f, h the holomorphic differential form constructed in

this way. This method produces �g-invariant holomorphic differential forms for suitable

values of g. Indeed we will prove the following proposition.

Proposition. Let

f =
X

m even

#m(⌧)g-1.

Then !f, f 2 ⌦N-1(Hg)�g and does not vanish for g = 8k + 1, k > 1.

The result for g ⌘ 1 (mod 8), g > 9 is well known and it is proven in [12]. Recently

in my join work [8] we extended the result to g = 9.

A second method of building elements of ⌦N-1(Hg)�g is examined in [44]. There

the author starts from gradients of odd theta functions and produces holomorphic

differential forms invariant under the action of the full modular group for g ⌘ 0

(mod 4), g 6= 5, 13.

These two methods seemed to be totally unrelated until [8] provided a link between

them. The key point in the proof of this result is that theta functions satisfy the heat

equation
@2

@zj@zk
#m(⌧, z) = 2⇡i(1 + �jk)

@

@⌧jk
#m(⌧, z), j, k = 1, . . . , g.

In Chapter 4 we will present some new results on the construction of vector-valued

Siegel modular forms starting from scalar-valued ones.
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Some constructions of vector-valued Siegel modular forms from scalar-valued Siegel

modular forms have been recently investigated in [5] and [4]. In the first paper the

authors consider the restriction of a scalar-valued modular form f with respect to �g
to the diagonally embedded Hj ⇥Hg-j for some 1 6 j 6 g - 1. If such a restriction

vanishes, one can develop f in the normal bundle of Hj ⇥Hg-j inside Hg. As lowest

non-zero term one finds a sum of tensor products of vector-valued Siegel modular

forms with respect to �j and �g-j. In the second paper the authors focus on degree two

and extend the correspondence given by Igusa between invariants of binary sextics and

scalar-valued Siegel modular forms with respect to �2 to a correspondence between

covariants of the action of SL(2, C) on the space of binary sextics and vector-valued

Siegel modular forms with respect to �2.

In this thesis we will construct vector-valued Siegel modular forms with respect

to a congruence subgroup � ⇢ �g from singular scalar-valued Siegel modular forms,

where f 2 [� , r/2] is singular if and only if r < g. This new construction comes from a

development of the ideas in [8, Section 5], where we provided a link between the two

above-mentioned method to build holomorphic differential forms of degree N- 1 on

suitable modular varieties.

The details of the construction are presented in Sectionr 4.1 which is based on my

work [40]. For f, h 2 [� , 1/2] define

Af, h = f(@h) - (@f)h,

where @ := (@ij) is the g⇥ g matrix of differential operators

@ij =

8
><
>:

@
@⌧ij

i = j

1
2

@
@⌧ij

i 6= j
.

It is easy to prove that Af, h is a vector-valued modular form that satisfies the transfor-

mation rule

Af, h(� · ⌧) = det(C⌧+ D) (C⌧+ D) Af, h(⌧) t(C⌧+ D),

for all � =
�

A B
C D

�
2 � and ⌧ 2 Hg. If fi, hi, with 1 6 i 6 k < g, are in [� , 1/2] we will

construct a vector-valued Siegel modular form in the following way. We will define a

product ⇤ (see (68)) such that

Af1, h1
⇤ · · · ⇤Afk, hk

2 [� , ⇢k] (4)

where ⇢k is a suitable irreducible representation. The representation we consider

here is interesting because ⇢g-1 turns out to be the representation appearing in the

vi



transformation formula (3) for vector-valued Siegel modular forms that define � -

invariant holomorphic differential forms of degree N- 1.

For f and h scalar-valued Siegel modular forms with respect to a subgroup � of

weight k/2, with 1 6 k < g, we will define two pairings involving the product ⇤ that

generalize the pairing defined for k = g- 1 in [12] for the construction of � -invariant

holomorphic differential forms of degree N - 1. We will denote them by {f, h}k and

[f, h]k. If f, h 2 [� , (g- 1)/2], the � -invariant holomorphic differential form !f,h can be

written as follows:

!f,h = {f, h}g-1 u d⌧̌ = Tr([f, h]g-1 d⌧̌),

where u is a suitably defined product (see (54)).

If f =
Qk

i=1 fi and h =
Qk

i=1 hi with fi, hi 2 [� , 1/2] for 1 6 i 6 k, we will prove that

[f, h]k =
X

�2Sk

Af1, h�(1)
⇤ · · · ⇤Afk, h�(k)

,

where Sk is the group of permutations of the set { 1, . . . , k }. Hence our new vector-

valued Siegel modular forms (4) appear as generalizations of the method in [12]. More

precisely they appear in the construction of vector-valued modular forms with our new

method applied to singular scalar-valued modular forms of a suitable type, namely the

ones that can be expressed as products of weight 1/2 scalar-valued modular forms.

We will prove that the relationship between the two methods in [12] and [44] given

in [8] is not only at the level of holomorphic differential forms but also at the level of

vector-valued modular forms (cf. Section 4.1.3). Gradients of odd theta functions can be

used to construct vector-valued modular forms and not only holomorphic differential

forms. Such a construction is presented in [45], generalizing the construction of

holomorphic differential forms of degree N - 1 presented in [44]. In order to find

this relationship we will apply our new method to second order theta constants. For

" 2 { 0, 1 }
g the second order theta constant with characteristic " is defined as

⇥["](⌧) = # [ "0 ](⌧, 0).

Theorem. Denote by Vgrad the vector space generated by the vector-valued modular forms

constructed with gradients of odd theta functions and by V⇥ the vector space generated by the

vector-valued modular forms constructed with our new method applied to second order theta

constants. Then Vgrad = V⇥.

Finally in Section 4.2 we will apply these constructions to study principally polarized

abelian varieties. In particular we will give a new characterization of the locus of

decomposable principally polarized abelian varieties. This is part of my joint work [8].
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An abelian variety is decomposable if it is a product of lower dimensional abelian

varieties. The simpler example of reducible abelian variety is an abelian surface

which is a product of two elliptic curves. The analytic characterization of the locus of

decomposable abelian varieties involving second order theta constants is well known

(cf. [49] and [48]).

In [8] we give a characterization of a decomposable principally polarized abelian

variety by looking at the Gauss map of its the theta divisor. Any ⌧ 2 Hg defines a

principally polarized abelian variety (X⌧,⇥⌧). By taking the gradient with respect to z

of the holomorphic function ✓0(⌧, z), we get the Gauss map

G : ⇥⌧ 99K Pg-1.

The base locus of G⌧ is equal to the singular locus of the theta divisor ⇥⌧. Via the Gauss

map, the gradients at z = 0 of odd theta functions can be thought of as the images of

the 2-torsion points in X⌧ that are smooth points of the theta divisor. With this we will

prove the following theorem:

Theorem. A principally polarized abelian variety is decomposable if and only if the images

under the Gauss map of all smooth 2-torsion points in the theta divisor lie on a quadric in Pg-1.
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1
C O M P L E X A B E L I A N VA R I E T I E S

The history of abelian varieties goes back to the beginning of the 19th century when N.

Abel and C. Jacobi started to investigate what we now call the hyperelliptic integrals.

Essential progress in the subject was made by Riemann who used heavily theta functions

in his investigation of the problem.

Towards the end of the 19th century geometers started to study the theory of abelian

and theta functions by geometric methods. Originally an “abelian variety” of dimension

g meant a hypersurface in Pg+1 given as the image of Cg under the map defined by

g + 2 suitable theta functions (cf. [11]). Since these variety often have unpleasant

singularities and do not admit a group structure, the language of complex tori turned

out to be more fruitful for this purpose. For the modern mathematician, who is working

with C as ground field, an abelian variety is a complex torus that is a projective variety.

It was only after the work of Lefschetz that this point of view was generally accepted.

Today abelian varieties play an important role in many areas of mathematics. Their

importance in algebraic geometry lies in the fact that there are natural ways to associate

to any smooth projective algebraic variety Y an abelian variety X and investigate

properties of Y by studying X. Examples of this are the Picard variety, the Albanese

variety and certain intermediate Jacobians.

Apart from this, geometric properties of abelian varieties are interesting for their own

sake and this is the subject of this chapter. After a short review of some properties of

elliptic curves we will introduce complex tori and study in details the definition of line

bundles on them via factors of automorphy. In Section 1.3 we will start talking about

abelian varieties. Here we will introduce Riemann’s theta function as a global section of

a suitable line bundle on a principally polarized abelian variety. Finally in Section 1.4.1

we will present the construction of some moduli spaces of abelian varieties. These will

represent in the following examples of modular varieties.

A comprehensive reference for the theory of complex tori and abelian varieties is [3].
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1.1 elliptic curves

In this section we briefly present the simplest examples of complex abelian varieties:

elliptic curves. These are the natural setting for the theory of elliptic functions.

For f : C ! Ĉ := C [ {1 } an analytic function, the group of the periods of is defined

as

⇤f = {! 2 C | f(z +!) = f(z) 8 z 2 C } .

It is easy to see that ⇤f is a discrete subgroup of C. If ⇤f is a lattice, i.e. a maximal

rank subgroup of C, then f is said to be elliptic or doubly periodic. This terminology is

justified by the fact that a discrete subgroup ⇤ ⇢ C is a lattice if and only if there are

non-zero �1, �2 2 C with Im(�2/�1) 6= 0 such that ⇤ = �1Z� �2Z. As a consequence

f(z + �) = f(�) 8 � 2 ⇤ , f(z + �1) = f(z + �2) = f(z).

Clearly holomorphic elliptic functions are constant by Liouville’s theorem, so in order

to consider non-constant elliptic functions one must admit some poles and consider

meromorphic elliptic functions.

Let ⇤ be a lattice and consider M⇤ =
⌦

f : C ! Ĉ analytic | ⇤f = ⇤
↵

. It is easily

checked that for z, w 2 C

z-w 2 ⇤) f(z) = f(w) 8 f 2M⇤.

So elliptic functions in M⇤ actually live on the quotient group C/⇤. This group is

usually called complex torus or elliptic curve.

Any lattice can be normalized to one of the form ⇤⌧ = Z � ⌧Z, where Im(⌧) > 0.

This can be done in such a way that C/⇤ ' C/⇤⌧. In the following we will consider

only lattices of this type.

One of the most important elliptic function is the Weierstrass } function defined for

a given lattice ⇤⌧ by the series

}(z) =
1

z2
+

X

n,m2Z\{0}

✓
1

(z-n-m⌧)2
-

1

(n + m⌧)2

◆
.

Its importance is related to the fact that the field M(C/⇤⌧) of meromorphic functions

on the elliptic curve C/⇤⌧ can be completely described in terms of }(z) and its first

derivative. Indeed we have that

M(C/⇤⌧) = C(}(z)) + C(}(z))} 0(z),

where C(T) is the field of rational functions in T with coefficients in C.
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Via the } function it is well defined the embedding of C/⇤⌧ in P2 as

C/⇤⌧
'�! P2

z 7!
⇥
1,}(⌧, z),} 0(⌧, z)

⇤
.

The functions } and } 0 have a pole of order 2 and 3 respectively in the origin and by

periodicity in every point of the lattice ⇤⌧. The map extends holomorphically onto the

poles if we put '(z) = [0, 0, 1] for z 2 ⇤.

It is well known that the Weierstrass } function satisfies the following differential

equation

} 0(z)2 = 4}(z)3 - g2}(z) - g3,

where

g2 = 60
X

n, m2Z\{0}

1

(n + m⌧)4
, g3 = 140

X

n, m2Z\{0}

1

(n + m⌧)6
.

Because of this the image '(C/⇤⌧) is the projective curve given by the equation:

x0x2
2 = 4x3

1 - g2x2
0x1 - g3x3

0.

1.2 complex tori

In this section we will introduce complex tori which are the higher dimensional version

of elliptic curves. If any elliptic curve admits an embedding in projective space, this is

not the case for higher dimensional complex tori. We will be mainly interested in the

ones that are projective, namely we will be interested in complex abelian varieties.

For V a complex vector space of dimension g, a lattice ⇤ in V is a discrete subgroup

of maximal rank. Equivalently there are non-zero �1, . . . , �2g 2 C independent over R

such that ⇤ = �1Z� · · · � �2gZ. Hence a lattice is a free abelian group of rank 2g. The

quotient group X = V/⇤ is called a complex torus of dimension g. For v 2 V we denote

by [v] its equivalence class in X.

A complex torus is a connected compact Lie group. The vector space V may be

considered as the universal covering space of X via the canonical projection ⇡ : V ! X.

The lattice ⇤ can be identified with the fundamental group ⇡1(X) := ⇡1(X, 0). Moreover,

since ⇤ is abelian, ⇡1(X) is canonically isomorphic to H1(X, Z). As the torus is locally

isomorphic to V we can regard it as the tangent space T0X of X in 0 so that the universal

covering map is nothing but the exponential map ⇡ : T0X! X.

The period matrix of a complex torus determines it completely. Choose e1, . . . , eg

and �1, . . . , �2g bases of V and ⇤ respectively. For i = 1, . . . , 2g write �i =
Pg

j=1 �jiej.
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The period matrix of X with respect to these basis is the g⇥ 2g matrix ⇧ = (�ji). The

columns of this matrix generate a lattice that we denote by ⇧Z2g. With these choices

X ⇠= Cg/⇧Z2g. Conversely one may ask when a g⇥ 2g complex matrix is a period

matrix of a complex torus.

Proposition 1.2.1. A matrix ⇧ 2Mg⇥2g(C) is a period matrix of a complex torus if and only

if the matrix
�
⇧
⇧

�
2M2g(C) is non singular, where ⇧ is the complex conjugate matrix of ⇧.

Proof. A matrix ⇧ 2 Mg⇥2g(C) is a period matrix if and only if its columns vectors

span a lattice in Cg or equivalently if its columns are linearly independent over R. If

the columns of ⇧ are dependent over R then there is a non zero x 2 R2g with Px = 0.

This implies det P = 0. Conversely, if P is singular there are non zero vectors x, y 2 R2g

such that P(x + iy) = 0. Hence the columns of ⇧ are linearly dependent over R since

⇧(x + iy) = 0 and ⇧(x- iy) = ⇧(x + iy) = 0 imply ⇧x = ⇧y = 0.

If X = V/⇤ and X 0 = X 0/⇤ 0 are two complex tori of dimension g and g 0, a homomor-

phism of X to X 0 is a holomorphic map f : X! X 0 compatible with the group structures.

The connected component (ker f)0 of ker f containing 0 is a closed subtorus of X of

finite index in ker f. The following Proposition shows that every holomorphic map

between complex tori is the composition of an homomorphism and a translation.

Proposition 1.2.2. If h : X! X 0 is a holomorphic map of complex tori then there is a unique

homomorphism f : X ! X 0 such that h(x) = f(x) + h(0) for all x 2 X and there is a unique

C-linear map F : V ! V 0 with F(⇤) ⇢ F(⇤ 0) inducing the homomorphism f.

Remark 1.2.3. The C-linear map F : V ! V 0 fits in the commutative diagram

V
F //

f·⇡
✏✏

V 0

⇡ 0~~
X 0

.

It is useful to define also the analytic and rational representation of the group of

homomorphisms Hom(X, X 0) for X and X 0 complex tori. The analytic representation is

given as

⇢a : Hom(X, X 0)! HomC(V , V 0)

f 7! F.

By Proposition 1.2.2 ⇢a is an injective homomorphism of abelian groups.

The restriction F⇤ : ⇤ ! ⇤ 0 of F to the lattices is Z-linear and determines F and f

completely. So the rational representation of Hom(X, X 0) is given as

⇢r : Hom(X, X 0)! HomZ(⇤,⇤ 0)

f 7! F⇤.
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The map ⇢r is again an injective homomorphism of groups.

Fixing bases of V , V 0 and ⇤, ⇤ 0 then for any f 2 Hom(X, X 0) the associated homo-

morphisms ⇢a(f) and ⇢r(f) are given by a matrix A 2Mg 0⇥g(C) and R 2M2g 0⇥2g(Z)

respectively. If ⇧ and ⇧ 0 are period matrices for X and X 0 respectively, with respect to

these bases, then ⇢a(f)(⇤) ⇢ ⇤ 0 if and only if A⇧ = ⇧ 0R.

If f : X! X 0 is a surjective homomorphism, then the Stein factorization of f is defined

by the commutative diagram

X
f //

g

✏✏

X 0

X/(ker f)0

h

:: ,

where g is a surjective homomorphism with a complex torus as kernel and h is

a surjective homomorphism with finite kernel. A homomorphism with the same

properties as h is usually called an isogeny. It is easily seen that a homomorphism

X ! X 0 is an isogeny if and only if it is surjective and dim X = dim X 0. The degree

of a homomorphism f is defined as the order of the group ker f, if it is finite, and 0

otherwise. Hence if f : V/⇤! V 0/⇤ 0 is an isogeny we have that

deg f = [⇤ 0 : ⇢r(f)(⇤)],

where [⇤ 0 : ⇢r(f)(⇤)] is the order of the subgroup ⇢r(f)(⇤) in ⇤ 0. If f is an endomorphism

then deg f = det ⇢r(f).

For any non zero integer n we have a remarkable example of endomorphism which

is an isogeny:

nX : X! X

x 7! nx.

If dim X = g, then Xn := ker(nX) ' (Z/nZ)2g is finite and it is called the group of

n-torsion points of X. Then nX is an isogeny of degree n2g. Isogenies define an

equivalence relation on the set of complex tori. Two complex tori are isogenous if they

are in the same coset for this equivalence relation.

We are interested in complex tori X = V/⇤ that can be embedded in some projective

space. There is more than one way to define a map from a complex torus to a projective

space. Suppose for example that fi : V ! C, i = 0, . . . , n, are holomorphic functions with

no common zeros with the property that for every � 2 ⇤ there exists e� : V ! C \ {0}

such that

fi(v + �) = e�(v)fi(v), 8 v 2 V , 8 � 2 ⇤.
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Then the map f : X! Pn with f([v]) = [f0(v), . . . , fn(v)] is holomorphic. We will see that

these maps arise naturally as the maps defined by sections of line bundles on complex

tori.

1.2.1 Line bundles and factors of automorphy

For a complex manifold M let ⇡ : fM ! M be the universal covering. Denote by

⇡1(M) the fundamental group of M, where we omit the base point in the notation.

Holomorphic line bundles on M whose pullback on fM is trivial can be described in

therms of the cohomology of the fundamental group ⇡1(M) acting on fM.

The action of ⇡1(M) on fM induces a ⇡1(M)-module structure on H0(O⇤
fM), where O⇤

fM
is the sheaf of invertible holomorphic functions on fM. We are interested in the first

cohomology group of ⇡1(M) with values in H0(O⇤
fM)

H1(⇡1(M), H0(O⇤
fM)) = Z1(⇡1(M), H0(O⇤

fM))/B1(⇡1(M), H0(O⇤
fM)),

where as usual Z1 is the abelian group of cocycles and B1 is the subgroup of boundaries.

More explicitly a cocycle is a holomorphic map f : ⇡1(M)⇥fM ! C⇤ satisfying the

cocycle relation

f(�µ, x̃) = f(�, µx̃)f(µ, x̃)

for all �, µ 2 ⇡1(M) and x̃ 2 fM. Functions of this type are also called factors of

automorphy. A boundary is a factor of the form f(�, x̃) = h(�x̃)h(x̃)-1 for some

h 2 H0(O⇤
fM).

For any factor of automorphy we can define a line bundle on M starting from the

trivial line bundle on fM. Let ⇡1(M) act on the trivial line bundle fM⇥C !fM by

� · (x̃, z) = (�x̃, f(�, x̃)z), 8 � 2 ⇡1(M).

Since the action is free and properly discontinuous, the quotient L = fM⇥C/⇡1(M)

is a complex manifold. It is easily checked that L is a holomorphic line bundle on

M by considering the projection p : L ! M induced by the canonical projection
fM⇥C !fM. The following Proposition shows that there is an isomorphism between

H1(⇡1(M), H0(O⇤
fM)) and the group of line bundles on M whose pullback on fM is trivial.

Proposition 1.2.4. There is a canonical isomorphism

 : ker
⇣
H1(M, O⇤

M)
⇡⇤
�! H1(fM, O⇤

fM)
⌘ '��! H1(⇡1(M), H0(O⇤

fM)).
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Proof. We will only give details on the definition of the map  . That is we will explain

how one can associate a factor of automorphy to a line bundle L with trivial pullback on
fM. Let ↵ : ⇡⇤L!fM⇥C be a trivialization for ⇡⇤L. The action of ⇡1(M) on fM induces

holomorphic automorphisms of ⇡⇤L over this action. Via ↵ we get for every � 2 ⇡1(M)

an automorphism '� of the trivial line bundle fM⇥C. Necessarily '� is of the form

'�(x̃, z) = (�x̃, f(�, x̃)z) with a map f : ⇡1(M)⇥fM! C holomorphic in x̃. The equation

'�µ = '�'µ implies that f 2 Z1(⇡1(M), H0(O⇤
fM)). Suppose ↵ 0 : ⇡⇤L ! fM⇥ C is a

different trivialization. Then there is an h 2 H0(O⇤
fM) such that ↵ 0↵-1(x̃, z) = (x̃, h(x̃)z)

for all (x̃, z) 2 fM⇥C. If ' 0
� denotes the automorphism of fM⇥C associated to � 2 ⇡1(M)

with respect to the trivialization ↵ 0, then

' 0
�(x̃, z) = (↵ 0↵-1)'�(↵

0↵-1)-1(x̃, z) = (�x̃, h(�x̃)f(�, x̃)h-1(x̃)z).

Hence the class of the cocycle f does not depend on the trivialization ⇡⇤L!fM⇥C and

we get a canonical map ker
⇣
H1(M, O⇤

M)
⇡⇤
�! H1(fM, O⇤

fM)
⌘
! H1(⇡1(M), H0(O⇤

fM)). For

the rest of the proof the reader may refer to [3, Proposition B.1].

Also the global sections of line bundles on M with trivial pullback on fM can be

described in terms of a factor of automorphy for L. For any line bundle L on M there

is a canonical isomorphism between the space of global sections of L and the space

H0(⇡⇤L)⇡1(M) of global sections of ⇡⇤L that are invariant under the action of ⇡1(M) on
fM. A trivialization ↵ : ⇡⇤L ! fM⇥C induces an isomorphism between H0(⇡⇤L)⇡1(M)

and H0(fM⇥C)⇡1(M). If f is the factor of automorphy associated to L with respect to the

same trivialization, then the elements of H0(fM⇥C)⇡1(M) are holomorphic functions

# : fM! C satisfying

#(�x̃) = f(�, x̃)#(x̃),

for x̃ 2 fM and � 2 ⇡1(M). We will call them theta functions for the factor of automorphy

f. In this way the sections of L are identified with the space of theta functions for a

factor of automorphy associated to L. This identification depends on the trivialization

of ⇡⇤L. If f and f 0 are two factors of automorphy for L associated to two different

trivialization, then

f 0(�, x̃) = h(�x̃)f(�, x̃)h-1(x̃),

for some h 2 H0(O⇤
fM). So if one changes the trivialization the factor of automorphy for

a line bundle L is multiplied by a boundary.
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1.2.2 Canonical factor of automorphy on complex tori

In this section we turn back to line bundles on complex tori. The projection ⇡ : V ! V/⇤

is the universal covering map of the complex torus V/⇤ and ⇡1(V/⇤) = ⇤. Since any

line bundle on a complex vector space is trivial, from Section 1.2.1 we get a description

of all line bundles on a complex torus in terms of an action of the lattice on the trivial

line bundle on V . We will see that any line bundle is defined by a factor of automorphy,

which will be called canonical, that is related to its first Chern class.

We briefly recall the definition of the first Chern class of a line bundle on a complex

manifold. Consider the exponential exact sequence for a complex manifold M

0 ��! Z ��! OM
e2⇡i·
����! O⇤

M ��! 0,

where Z is the constant sheaf with values in Z, OM is the sheaf of holomorphic

functions on M and O⇤
M is the sheaf of invertible holomorphic functions on M. The

induced long exact sequence in cohomology gives a map

Pic(M)
c1�! H2(M, Z),

where Pic(M) is the group of line bundles on M. For L 2 Pic(M) the class c1(L) is

called the first Chern class of the line bundle L. The image c1(Pic(M)) = NS(M) is the

Neron-Severi group of M. If M is a complex torus, then the Neron-Severi group can be

described in terms of Hermitian and alternating forms on the universal cover:

NS(V/⇤) =

8
><
>:

E : V ⇥ V ! R alternating form

E(⇤,⇤) ⇢ Z, E(iv, iw) = E(v, w)

9
>=
>;

=

8
><
>:

H : V ⇥ V ! C hermitian form

with Im H(⇤,⇤) ⇢ Z

9
>=
>;

.

The correspondence is given by

E ! E(iv, w) + iE(v, w)

Im H  H.

Let X = V/⇤. A semi-character for H 2 NS(X) is a map ↵ : ⇤! S1 := { z 2 C | | z | = 1 }

such that

↵(�+ µ) = ↵(�)↵(µ)e⇡i Im H(�,µ), 8 �, µ 2 ⇤.

For any couple (H,↵) where H 2 NS(X) and ↵ is a semi-character for H one can

define the factor of automorphy

eH,↵(�, v) = ↵(�)e⇡(H(v,�)+H(�,�)/2), 8 � 2 ⇤, 8 v 2 V . (5)
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Denote by L(H,↵) the line bundle defined by this factor of automorphy. By Section 1.2.1

it follows that

L(H,↵) = V ⇥C/⇤,

where the action of the lattice on V ⇥C is given by

� · (v, z) = (v + �, eH,↵(�, v)z), 8 v 2 V , 8 z 2 C.

The following theorem states that for any line bundle on X we can distinguish a

canonical factor of automorphy for it.

Theorem 1.2.5 (Appell-Humbert). If L 2 Pic(X) with c1(L) = H, one can distinguish a

semi-character for H such that

L ' L(H,↵).

The factor of automorphy eH,↵ as in (5) is called the canonical factor of automorphy for L.

With this description of line bundles in terms of canonical factors of automorphy we

can easily prove the following theorem.

Theorem of the square. For any x 2 X denote by tx the translation by x. For any v, w 2 X

and L 2 Pic(X)

t⇤v+wL ' t⇤vL⌦ t⇤wL⌦ L-1.

Proof. For any x 2 X

t⇤xL(H,↵) ' L(H,↵e2⇡i Im H(-,x)). (6)

Comparing hermitian forms and semi-characters, the theorem easily follows.

Formula (6) in the proof of the theorem also shows that two line bundles that differ

by a translation have the same first Chern class. If the first Chern class of L is non

degenerate the vice versa is also true.

Lemma 1.2.6. Let L be a line bundle with c1(L) non degenerate. If L 0 2 Pic(X) has the same

Chern class of L then there exists x 2 X such that L 0 ' t⇤xL.

1.3 abelian varieties

We now come to the main subject of this chapter. An abelian variety is a polarized

complex torus, i.e. a complex torus X with a positive definite Hermitian form H 2 NS(X).

Since the elements of the Neron-Severi group are first Chern classes of line bundles on

X, we will also call polarization a line bundle with positive definite first Chern class.

We will denote by (X, L) or (X, H) the abelian variety X with polarization given by a line
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bundle L or with polarization given by a positive definite H 2 NS(X) respectively. If we

think of a polarization as given by a line bundle, by Lemma 1.2.6 the polarization is

defined up to translation.

If X = C/⇤⌧ is an elliptic curve then the Hermitian form H : C⇥C ! C defined as

H(v, w) =
v · w
Im ⌧

is a polarization on X. Then every one dimensional complex torus is an abelian variety.

In higher dimension it is not true that any complex torus is an abelian variety. The

following theorem gives explicit examples of 2-dimensional complex tori which are not

abelian varieties.

Theorem 1.3.1 ([10], Appendix). Let X = C2/⇤, where ⇤ is the lattice generated by the

columns of the matrix ⇣
1 0 ip ir
0 1 iq is

⌘

with p, q, r, s,2 R. Then

rankZ(NS(X)) = 4- rkQ(p, q, r, s) +

8
><
>:

1 if ps- qr 2 Q

0 if ps- qr /2 Q
.

So if we take p, q, r, s 2 R independent over Q such that ps - qr /2 Q, then the

rankZ(NS(X)) = 0. In these cases the complex torus X is not an abelian variety. For a

very explicit example we can take (p, q, r, s) = (1,
p

3,
p

2,
p

5).

Even if not all complex tori are abelian varieties, for any complex torus X there exist

an abelian variety Xab, called the abelianization of X, and a surjective holomorphic map

⇢ : X! Xab such that any holomorphic map of X into projective space factors trough

⇢ (cf. [9]). The morphism ⇢ induces isomorphisms M(Xab) ' M(X) and Div(Xab) '
Div(X), where M(X) is the field of meromorphic functions on X and Div(X) is the group

of divisors on X. As the field of functions on an abelian variety of dimension g is an

extension of finite type of C with transcendence degree g, the field of functions on X

is an extension of finite type of C with transcendence degree equal to dim Xab. This

degree equals the dimension of X if and only if X is an abelian variety.

If (X, H) is an abelian variety, the type of the polarization is defined in the following

way. The elementary divisor theorem states that there is a basis of the lattice, called

a symplectic basis of ⇤ for H, with respect to which the alternating form E := Im H is

given by the matrix 0
@ 0 D

-D 0

1
A ,
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where D = diag(d1, . . . , dg) with di 2 Z>0 and di|di+1 for i = 1, . . . , g - 1. The ele-

mentary divisors d1, . . . , dg are uniquely determined by E and the lattice. The g-tuple

(d1, . . . , dg), or the matrix D, is called the type of the polarization. If D is the identity

matrix the polarization is called principal and X is called a principally polarized abelian

variety.

If f : Y ! X is a homomorphism of complex tori with finite kernel and L 2 Pic(X) is a

polarization on X, then the line bundle f⇤L gives a polarization on Y which is called the

induced polarization. Any polarization on a complex torus is induced by a principal

polarization via an isogeny (cf. [9]). More precisely, if (X, L) is an abelian variety, then

there exists a principally polarized abelian variety (Y, L 0) and an isogeny f : X! Y such

that L ' f⇤L 0.

If L is a polarization, the dimension of the space of global section depends only on

its type. Indeed if L is a polarization of type (d1, . . . , dg) then

dim H0(L) =

gY

i=1

di.

A polarization is what we need to define an embedding of a complex torus in some

projective space. A line bundle L on a compact complex variety M is said to be

generated by global sections if for every x 2M there exists a global section of L which

does not vanish at x. If s0, . . . , sm is a basis of H0(L), one can define a map

'L : M! P(H0(L))_

p 7! [s0(p), . . . , sm(p)].

The line bundle L is said to be very ample if 'L is an embedding. If there exist n 2N

such that Ln is very ample then L is said to be ample.

A line bundle on a complex torus defines a polarization if and only if it is ample

(cf [3, Proposition 4.5.2]). The following theorem states that a polarization is not so far

from being very ample.

Theorem 1.3.2 (Lefschetz). If L is a polarization on X, then Ln is very ample for n > 3.

1.3.1 Riemann’s theta functions

In this section we will introduce Riemann’s theta function as a theta function for a

suitable line bundle on a principally polarized abelian variety. We will start by looking

at the period matrix of an abelian variety.
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Theorem 1.3.3 (Riemann’s relations). A complex torus X with period matrix ⇧ is an abelian

variety if and only if there is a non degenerate alternating matrix A 2M2g(Z) such that

⇧A-1t⇧ = 0 and i⇧A-1t⇧ > 0.

If the polarization is of type D and ⇧ = (⇧1,⇧2) is the period matrix with respect to

a symplectic basis of the lattice then Riemann’s relations give:

⇧2D-1t⇧1 -⇧1D-1t⇧2 = 0,

i⇧2D-1t⇧1 - i⇧1D-1t⇧2 = 0.
(7)

Let X = V/⇤ and denote by �1, . . . , �2g a symplectic basis of ⇤ for the polarization.

Then ei = 1
di
�g+i, i = 1, . . . , g, is a C-basis for V (cf. [3, Lemma 3.2.1]). With respect

to these bases the period matrix of X is of the form ⇧ = (⌧, D) for some ⌧ 2 Mg(C).

By (7) the matrix ⌧ satisfies the identities t⌧ = ⌧, Im(⌧) > 0. Hence a complex torus is

an abelian variety with polarization of type D if and only if there are basis with respect

to which the period matrix ⇧ = (⌧, D), for some ⌧ in

Hg =
�
⌧ 2Mg(C) | t⌧ = ⌧, Im(⌧) > 0

 
. (8)

This is called the Siegel space of degree g. So if one fixes the type D of the polarization,

any abelian variety with a polarization of type D defines an element of Hg by taking

the first g columns of the period matrix ⇧ = (⌧, D).

Conversely, any matrix in the Siegel space defines a polarized abelian variety of type

D with a symplectic basis in the following way. For ⌧ 2 Hg let X⌧ = Cg/⌧Zg �DZg,

where ⌧Zg �DZg is the lattice generated by the columns of the matrices ⌧ and D. The

Hermitian form H⌧ = (Im ⌧)-1 is a polarization of type D for X⌧ and the symplectic

basis of the lattice ⌧Zg �DZg for H⌧ is given just by the column of the matrix (⌧, D).

In this way we can think of the Siegel space of degree g as a moduli space for polarized

abelian varieties of type D with symplectic basis.

Riemann’s theta functions arise as sections of a principal polarization on a complex

torus X⌧. The factor of automorphy

e(⌧m + n, z) = e-⇡i(tm⌧m+2tmz), m, n 2 Zg, z 2 C,

defines a principal polarization L⌧ on X⌧. Up to scalar the unique theta function for L⌧,

in the sense of Section 1.2.1, is defined by the series

X

m2Zg

e⇡i(tm⌧m+2tmz).
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The Riemann theta function # : Hg ⇥Cg ! C is defined as

#(⌧, z) =
X

m2Zg

e⇡i(tm⌧m+2tmz).

By formula (6), for any x 2 X⌧ the line bundle t⇤xL⌧ defines again a principal polar-

ization on X⌧. The sections of the line bundles for x a 2-torsion point are extremely

interesting in the theory of modular forms. If m = [ a
b ] , a, b 2 { 0, 1 }

g, the point

xm = a⌧2 + b1
2 is a 2-torsion point in X⌧. The unique non-zero section up to scalar of

t⇤xm
L⌧ is the theta function with characteristic

#m(⌧, z) = # [ a
b ](⌧, z) =

X

n2Zg

e⇡i[t(n+a/2)⌧(n+a/2)+2t(n+a/2)(z+b/2)].

The function #m is an even function of z if ta b ⌘ 0 (mod 2) and it is an odd function

of z if ta b ⌘ 1 (mod 2). Correspondingly the characteristic m is called even or odd.

This actually means that the line bundles t⇤xm
L⌧ are symmetric, that is they are invariant

under pullback by the involution

◆ : X! X

x 7! -x.

If we write a line bundle L in terms of Appell-Humbert data L = L(H,↵), then it is

symmetric if and only if ↵(⇤) ⇢ { ±1 }. It is called totally symmetric if ↵(�) = 1 for all

� 2 ⇤.

The line bundle L2
⌧ is totally symmetric and a basis of sections is given by the second

order theta functions

⇥[�](⌧, z) = # [ �0 ](2⌧, 2z), � 2 { 0, 1 }
g .

By the following Lemma the line bundles t⇤xm
L⌧ are all the possible symmetric

principal polarizations on X⌧.

Lemma 1.3.4 ([30]). For a complex g-dimensional complex torus X and a given H 2 NS(X)

there are 22g semi-characters for H such that L(H,↵) is a symmetric line bundle.

1.4 moduli spaces of abelian varieties

Moduli spaces arise as solutions to classification problems. Given a collection of

interesting geometric objects (e.g. polarized abelian varieties with a given polarization

up to isomorphisms), a moduli space is roughly speaking a geometric space (scheme or

algebraic stack) whose points are in some natural one to one correspondence with the
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elements of the set. If the moduli space has such a structure then one can parametrize

the objects to classify by introducing coordinates on the moduli space.

In this section we will present the analytic construction of some moduli space of

polarized abelian varieties.

1.4.1 Moduli space of polarized abelian varieties

We want to classify abelian varieties with polarization of a given type D and a given

dimension g. The space to start with is the Siegel space Hg defined in (8). We can think

of Hg as a moduli space for triples

�
X, H,

�
�1, . . . , �2g

 �
,

where X is an abelian variety, H 2 NS(X) is a polarization of type D on X and
�
�1, . . . , �2g

 
is a symplectic basis of ⇤ for H (see Section 1.3.1).

For any ⌧ 2 Hg denote by (X⌧, H⌧) the corresponding polarized abelian variety of

type D. To construct a moduli space for these varieties we need to know when two

elements in Hg define isomorphic abelian varieties.

Define the integral symplectic group of type D as

�D =
�

M 2M2g(Z) | M
�

0 D
-D 0

�
tM =

�
0 D

-D 0

�  
.

It acts on Hg by the formula

R · ⌧ = (a⌧+ bD)(D-1c⌧+ D-1dD)-1, R =
�

a b
c d

�
2 �D. (9)

Theorem 1.4.1. Two polarized abelian varieties (X⌧, H⌧) and (X⌧ 0 , H⌧ 0) of type D are isomor-

phic if and only if ⌧ 0 = R · ⌧ for some R 2 �D.

Proof. Let

GD =
�

M 2 Sp(2g, Q) | tM⇤D ⇢ ⇤D

 
,

where ⇤D is the lattice generated by the columns of the matrix (1g, D). We can let GD

act on Hg by

M ⇤ ⌧ = (a⌧+ b)(c⌧+ d)-1,

where M =
�

a b
c d

�
, with g⇥ g blocks. One can prove that (X⌧, H⌧) and (X⌧ 0 , H⌧ 0) are

isomorphic if and only if ⌧ 0 = M ⇤ ⌧ for some M 2 GD. For this part of the proof we

refer to [3].
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Let SpD(2g, R) =
�

M 2M2g(R) | M
�

0 D
-D 0

�
tM =

�
0 D

-D 0

�  
and define

�D : SpD(2g, R)! Sp(2g, R)

M 7!
⇣

1g 0
0 D

⌘-1
M
⇣

1g 0
0 D

⌘-1
.

This is an isomorphism such that �D(�D) = GD. If M =
�

a b
c d

�
2 SpD(2g, R) then

�D

�
a b
c d

�
=
�

a bD
D-1c D-1dD

�
2 Sp(2g, R). So the action of GD on Hg induce the action of

�D given in formula (9). This ends the proof of the theorem.

So there is a one-to-one correspondence between the quotient AD
g = Hg/�D and

the isomorphism classes of polarized abelian varieties of type D. The action of �D on

Hg is properly discontinuous, so that AD
g is a normal complex variety of dimension

g(g + 1)/2.

The principally polarized case is of great interest for us. If D = 1g, the moduli space

of principally polarized abelian varieties is

Ag = Hg/�g,

where �g is the integral symplectic group.

1.4.2 Moduli space of abelian varieties with level structures

In this section we will consider abelian varieties with some extra structure and give

a description of their moduli spaces. If X is a complex torus, denote by Pic0(X) the

group of line bundles with trivial first Chern class. It is a complex torus of the same

dimension of X. Because of the theorem of the square (see page 9), any line bundle

L 2 Pic(X) defines a homomorphism of complex tori by

�L : X! Pic0(X)

x 7! t⇤xL⌦ L-1.
(10)

This homomorphism is an isogeny if and only if c1(L) is non degenerate. The kernel

of the homomorphism �L will be denoted by H(L). If L defines a polarization of type

D = (d1, . . . , dg) on X then H(L) is a finite group of order equal to deg�L =
Qg

i=1 d2
i .

This group satisfies the following properties.

Lemma 1.4.2 ([3]). For any L 2 Pic(X)

1. H(L⌦ P) = H(L) for any P 2 Pic0(X),

2. H(L) = X if and only if L 2 Pic0(X),
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3. H(Ln) = n-1
X H(L) for any n 2 Z,

4. H(L) = nXH(Ln) for any n 2 Z, n 6= 0

5. Xn ⇢ H(L) if and only if L = Mn for some M 2 Pic(X).

The Weyl pairing eL : H(L)⇥H(L)! C⇤ on H(L) is defined as

eL(w1, w2) = e-2⇡i Im H(w1,w2).

This is a multiplicative alternating form on H(L) with values in C⇤, i.e.

eL(w1 + w2, w) = eL(w1, w)eL(w2, w),

eL(w1, w2) = eL(w2, w1)-1,

eL(w, w) = 1,

for all w1, w2, w 2 H(L).

Define H(D) = (�g
i=1Z/diZ)2. If f1, . . . , f2g is the standard basis of H(D) define an

alternating form eD : H(D)⇥H(D)! C⇤ as

eD(fi, fj) =

8
>>>><
>>>>:

e
- 2⇡i

di if j = g + i

e
2⇡i
di if i = g + j

1 otherwise.

A level D structure on X is a symplectic isomorphism between H(L) and H(D)

with respect to the alternating forms eL and eD. If (X, H) is a principally polarized

abelian variety, a level n1g structure on (X, nH) is called a level n structure for (X, H).

By Lemma 1.4.2 a level n structure on a principally polarized abelian variety X is a

symplectic isomorphism Xn ' (Z/nZ)2g.

Because of the modular interpretation of Hg, polarized abelian varieties with level D

structure are essentially triples

�
X⌧, H⌧,

�
�1/d1, . . . , �g/dg, �g+1/d1, . . . , �2g/dg

 �
,

where
�
�1, . . . , �2g

 
is the symplectic basis given by the columns of the matrix (⌧, D).

Theorem 1.4.3 ([3]). Two matrices ⌧ and ⌧ 0 determine isomorphic polarized abelian varieties

of type D with level D structure if and only if ⌧ 0 = R · ⌧ for some

R 2 �D(D) :=
� �

a b
c d

�
2 �D | a- 1g ⌘ b ⌘ c ⌘ d- 1g ⌘ 0 (mod D)

 
,

where a ⌘ 0 (mod D) means a 2 DMg(Z).
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A generalized level n structure on an abelian variety (X, H) with a polarization of

arbitrary type D is a basis of Xn coming from a symplectic basis of ⇤. If �1, . . . , �2g is a

symplectic basis of ⇤ for H then the corresponding basis of Xn is given by 1
n�1, . . . , 1

n�2g.

Theorem 1.4.4 ([3]). Denote by �D(n) =
�

R 2 �D | M ⌘ 12g (mod n)
 

. The normal com-

plex analytic space Hg/�D(n) is a moduli space of polarized abelian varieties of type D with

generalized level n structure.
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2
S I E G E L M O D U L A R F O R M S

In this chapter we will develop in some details the general theory of Siegel modular

forms. In connection with his famous investigation of the analytic theory of quadratic

form, C. Siegel pioneered the generalization of the theory of elliptic modular forms to

modular forms in more variables now named after him.

Siegel modular forms represent a rich subject in the theory of automorphic forms

and are of great importance in number theory and algebraic geometry. Concerning the

theory of Siegel modular varieties we will see that these are the right coordinates to

view these as projective varieties.

In this Chapter we will review the classical definitions and properties of both vector-

valued and scalar-valued modular forms. We will mostly refer to [14].

In Section 2.4 we will present and discuss many examples of Siegel modular forms.

Most of them are strictly related to the classical Riemann’s theta function.

2.1 the siegel modular group acting on the siegel space

For any g 2N let

Sp(2g, R) =
�
� 2M2g⇥2g(R) | t� J � = J

 
,

where J =
⇣

0 1g

-1g 0

⌘
. This is called the real symplectic group of degree g. We will use

a standard block notation for the elements of Sp(2g, R). Any M 2 Sp(2g, R) can be

written in block notation as M =
�

A B
C D

�
where A, B, C, D are g⇥ g matrices. We will

keep this block notation throughout the thesis. It is easy to see that M 2 Sp(2g, R) if

and only if the following relations are satisfied:
8
>>>><
>>>>:

A tB = B tA,

C tD = D tC,

A tD-B tC = 1g

;

8
>>>><
>>>>:

tA C = tC A,

tB D = tDB,

tA D- tC B = 1g

.
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The group Sp(2g, R) acts continuously and transitively on the Siegel space Hg

defined in (8). This action is given by the formula

� · ⌧ = (A⌧+ B)(C⌧+ D)-1, for� 2 Sp(2g, R), ⌧ 2Hg. (11)

Via this action any element � 2 Sp(2g, R) defines a biholomorphic automorphism

T� : Hg !Hg

⌧ 7! � · ⌧ .
(12)

If we denote by Aut(Hg) the group of biholomorphic automorphisms of Hg, the map

Sp(2g, R)! Aut(Hg)

� 7! T� ,

is a group homomorphism with kernel { ±1g }. Since it is a surjective homomorphism

by [51], we get that Aut(Hg) can be completely described in terms of the action of the

symplectic group on the Siegel space. Namely Aut(Hg) ' Sp(2g, R)/ { ±1g }.

It is easy to describe Hg as homogeneous space. The stabilizer of i1g is the subgroup

U(g) :=
� �

A B
-B A

�
2 Sp(2g, R) | A tA + B tB = 1g

 
.

Hence by a classical result for group actions on a topological space we get

Hg ' Sp(2g, R)/U(g). (13)

As a consequence, each discrete subgroup of Sp(2g, R) acts properly discontinuously

on Hg. The most important example of discrete subgroup of Sp(2g, R) we will consider

is

�g := Sp(2g, Z) = Sp(2g, R)\M2g⇥2g(Z). (14)

This is usually called the Siegel modular group. It is generated by the matrix J and by

the matrices �S =
⇣

1g S

0 1g

⌘
, where S is an integral symmetric matrix.

A fundamental domain Fg for the action of �g on Hg is determined in [51]. It is the

set of ⌧ = x + iy 2Hg such that

i) | det(C⌧+ D)| > 1, 8� 2 �g;

ii) for all primitive vectors n 2 Zg, ntyn > ykk for 1 6 k 6 g and yk,k+1 > 0 for

1 6 k 6 g- 1;

iii) |xij| 6 1/2 for 1 6 i, j 6 g.
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For g = 1 we have an easier description of the fundamental domain. Indeed

F1 = { ⌧ = x + iy 2H1 | |x| 6 1/2, |⌧| > 1 } .

For any natural number n let �g(n) denote the principal congruence subgroup of

level n of �g. It is defines as the kernel of the natural homomorphism Sp(2g, Z) !
Sp(2g, Z/nZ) induced by the canonical projection Z ! Z/nZ:

�g(n) =
�
� 2 �g

�� � ⌘ 12g (mod n)
 

.

These are normal finite index subgroups of �g. If n > 3 the action of �g(n) on Hg is free

(cf. [50]). A subgroup � ⇢ �g such that �g(n) ⇢ � as a finite index subgroup for some

n 2N is called a congruence subgroup. Such a subgroup is said to be of level n if n is

the least integer such that �g(n) ⇢ � . For g = 1, the symplectic group is nothing but the

special linear group SL(2, Z) and there are examples of finite index subgroups that are

not congruence subgroups (see [41, 37]). If g > 1 any subgroup of finite index in �g is a

congruence subgroup of some level (cf. [38]).

Examples of level 2n subgroups are given by the groups

�g(n, 2n) =
�
� 2 �g(n)

�� diag( tA C) ⌘ diag( tB D) ⌘ 0 (mod 2n)
 

. (15)

For even values of n these are normal subgroups of �g. It is easily seen that for

� 2 �g(2m) the following congruences hold:
8
><
>:

diag( tAC) ⌘ diag(C) (mod 4m)

diag( tBD) ⌘ diag(B) (mod 4m)
.

Then we get the simpler description

�g(2m, 4m) = {� 2 �g(2m) | diag(B) ⌘ diag(C) ⌘ 0 (mod 4m)}.

Furthermore, [�g(2m) : �g(2m, 4m)] = 22g for any m 2N.

2.2 vector-valued siegel modular forms

First of all we need to introduce the notion of multiplier system, since we will consider

not only modular forms of integral weight but also half-integral weight ones. A

multiplier system of weight r 2 R for a congruence subgroup � ⇢ �g is a function

v : � ! C \ {0} such that jr(�, ⌧) := v(�) det(C⌧+ D)r is holomorphic in ⌧ and satisfies

the following conditions:
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(i) jr(�1�2, ⌧) = jr(�1,�2 · ⌧) jr(�2, ⌧) for all �1, �2 2 � and ⌧ 2Hg;

(ii) If -12g 2 � then jr(-12g, ⌧) = 1 for all ⌧ 2Hg.

We will first introduce vector-valued Siegel modular forms. For this, we need to recall

some basic facts about rational representations of the group GLg(C). Proofs can be

found in [35].

Let V be a finite dimensional complex vector space. A representation of GLg(C)

is a homomorphism ⇢ : GLg(C) ! GL(V). It is called rational if the entries of ⇢(A)

are polynomials in the entries of A and det(A)-1. In the following we will always

work with rational representations if not otherwise stated. A representation is called

irreducible if V 6= { 0 } and the only invariant subspaces of V are 0 and V itself. It is

well known that each representation of GLg(C) is isomorphic to a finite direct sum of

irreducible representations. The isomorphisms classes of the irreducible addends are

uniquely determined up to the order.

A vector of V is called a highest weight vector of ⇢ if it is invariant under the group

of strictly upper triangular matrices. It can be shown that highest weight vectors always

exists if V 6= { 0 }. Moreover, a representation of GLg(C) is irreducible if and only if the

space of highest weight vectors is one dimensional. If v is a highest weight vector for

the irreducible representation ⇢, then there exist integers �i 2 Z with �1 > · · · > �g

such that

⇢

0
BBBBBB@

a1 ⇤ . . . ⇤

0
. . . . . .

...
...

. . . . . . ⇤
0 . . . 0 ag

1
CCCCCCA

· v = a�1

1 · · · a�g
g v.

The vector (�1, . . . , �g) is called the highest weight of ⇢. Two irreducible representations

are isomorphic if and only if their highest weights agree, so an irreducible representation

is uniquely identified up to isomorphism by its highest weight. It is interesting to

note that each vector (�1, . . . , �g) with �1 > · · · > �g occurs as a highest weight.

We will write ⇢ = (�1, . . . , �g) if (�1, . . . , �g) is the highest weight of ⇢. The dual

representation of ⇢ is ⇢_ : GLg(C)! GL(V_) with ⇢_(A) = t⇢(A-1). If ⇢ = (�1, . . . , �g)

then ⇢_ = (-�g, . . . ,-�1).

In the following we will work with representations that involve the “determinant

representation”. Denote by det : GLg(C) ! C \ { 0 } the representation such that

⇢(A) · v = det(A) v. Clearly det = (1, . . . , 1) and the dual is det-1 = (-1, . . . ,-1). For any

k 2 Z the representation ⇢⌦ detk = (�1 + k, . . . , �g + k).

The weight w(⇢) of a representation is defined as the biggest integer k such that

det-k⌦⇢ is a polynomial representation. If ⇢ = (�1, . . . , �g) then w(⇢) = �g. An
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irreducible representation is called reduced if its weight is 0. The co-rank of an

irreducible representation ⇢ = (�1, . . . , �g) is defined as

co-rank(⇢) = # { i, 1 6 i 6 g | �i = �g } .

For r 2 Z we will consider irreducible representations of the form ⇢ = detr/2⌦⇢0,

where ⇢0 is a reduced irreducible representation of GLg(C). We will call these repre-

sentations half-integral weight representations. A half-integral weight representation is

called singular if 2w(⇢) < g.

If v is a multiplier system of weight r/2 for a subgroup � and ⇢ is a half-integral

weight representation, a holomorphic function f : Hg ! V is a vector-valued Siegel

modular form with respect to � , ⇢ and v if

f(� · ⌧) = v(�)⇢(C⌧+ D) f(⌧), 8� 2 � , 8 ⌧ 2Hg,

where the action of �g on Hg is defined in (11). If g = 1 we need to require also that

f is holomorphic at 1. This condition is always satisfied for g > 2 by the Köcher

principle [14, Hilfssatz 4.11]. Denote by [� , ⇢, v] the complex vector space of such

modular forms. If v is trivial it will be omitted in the notation. Each [� , ⇢, v] is a finite

dimensional vector space. Clearly if ⇢ = ⇢1 � ⇢2, then [� , ⇢, v] = [� , ⇢1, v]� [� , ⇢2, v].

Lemma 2.2.1 ([13]). Let ⇢ = (�1, . . . , �g) be a non-trivial irreducible representation of GLg(C).

If [� , ⇢] 6= { 0 } for a congruence subgroup � ⇢ �g then �g > 1.

Under certain conditions, the space [� , ⇢] is known to be trivial.

Vanishing theorem ([52]). Let ⇢ = (�1, . . . , �g) be an irreducible representation with r :=

co-rank(⇢) < g- �g. Then

# { i | 1 6 i 6 g, �i = �g + 1 } < 2(g- �g - r) =) [� , ⇢] = (0).

2.3 scalar-valued siegel modular forms

In this section we will focus on scalar-valued Siegel modular forms. We will denote

by [� , r/2, v] the vector space of modular forms with respect to the group � , the rep-

resentation ⇢ = detr/2 and the multiplier system v. We will refer to its elements as

scalar-valued Siegel modular forms of weight r/2 with multiplier. Lemma 2.2.1 implies

that scalar-valued modular forms of negative weight vanish, hence the ring of scalar-

valued modular forms with respect to a given subgroup � is positively graded. It is

well known that this is a normal integral domain of finite type over C.
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A symmetric g⇥ g matrix S 2 GL(g, Q) is called half-integral if 2S is integral and

diag(2S) is even. Every half-integral matrix gives a linear form with integral coefficients

in the coordinates of ⌧ =
�
⌧ij

�
2Hg by

Tr(S⌧) =

gX

i=1

Sii⌧ii + 2
X

16i<j6g

Sij⌧ij.

Let � be a level n congruence subgroup of �g. Hence �nT =
⇣

1g nT

0 1g

⌘
2 � for any

integral symmetric g⇥ g matrix T . By definition, any scalar-valued modular form f

with respect to � satisfies f(�nT · ⌧) = f(⌧+ nT) = f(⌧). Then f is periodic with period n

in each variable ⌧ij and therefore admits a Fourier expansion

f(⌧) =
X

S

a(S)e
2⇡i
n Tr(S⌧), (16)

where S runs over the set of all symmetric half-integral matrices and a(S) 2 C.

In particular the series (16) converges absolutely on Hg and uniformly on each

compact set in Hg. Moreover it can be shown that a(S) = 0 for each half-integral

symmetric matrix S which is not positive semi-definite (cf. [14]).

A scalar-valued modular form is called singular if the matrices that appear in its

Fourier expansion are singular matrices, that is a(S) 6= 0 implies that det S = 0. The

rank of a scalar-valued Siegel modular form f is defined as follows:

rank(f) = max { rank(T) | a(T) 6= 0 } .

Clearly 0 6 rank(f) 6 g

Proposition 2.3.1 ([15, 16]). A scalar-valued Siegel modular form f 2 [� , r/2] is singular if

and only if r < g. If f is a non-vanishing singular modular form, then r 2 N. Moreover,

rank(f) = r.

We can characterize these properties by means of suitable differential operators. Let

@⌧ij
:= @

@⌧ij
and define the g⇥ g matrix

@ := (@ij), @ij =
1 + �ij

2
@⌧ij

.

For 1 6 k 6 g define the differential operator acting on a singular scalar-valued modular

form f as

@[k]f = (det(@I
J) f)I,J2P⇤

k(Xg),

where P⇤
k(Xg) is the collection of increasingly ordered subset of { 1, . . . , g } of cardinality

k and @I
J is the submatrix of @ obtained by taking rows with indexes in I and columns

with indexes in J. If

f(⌧) =
X

S

a(S)e⇡i Tr(S⌧)
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with a(S) 2 C, then

@[k]f =
X

a(S) S[k]e⇡i Tr(S⌧),

where S[k] is the matrix of k⇥ k minors of S (cf. [14]). Then it follows by definition that

f is singular if and only if @[g]f = 0. Moreover, since rank(S) < k if and only if S[k] = 0,

for 1 6 n 6 g one has

rank(f) = n, @[g]f = @[g-1]f = · · · = @[n+1]f = 0 and @[n]f 6= 0. (17)

2.4 theta functions and theta series

In Section 1.3.1 we have introduced Riemann’s theta functions with characteristic as

theta functions for suitable line bundles on principally polarized abelian varieties. In

this section we present scalar-valued and vector-valued modular forms arising from

these functions.

Recall that for a vector m =
⇥

m 0
m 00
⇤
, m 0, m 00 2 Zg, the theta function with characteristic

(or theta-characteristic) m is defined by the series

#m(⌧, z) =
X

n2Zg

e⇡i(t(n+m 0/2)⌧(n+m 0/2)+2t(n+m 0/2)(z+m 00/2)).

This series converges absolutely and uniformly in every compact subset of Hg ⇥Cg.

Then it defines a holomorphic function of the two variables ⌧ and z.

Since

#m(⌧,-z) = (-1)
tm 0 m 00

#m(⌧, z),

the theta function with characteristic m is an even or odd function of z if tm 0m 00 is

even or odd respectively. Correspondingly, the characteristic m is called even or odd. It

follows by definition that

#m+2n(⌧, z) = (-1)
tm 0 n 00

#m(⌧, z),

for any n 2 Zg. Therefore up to sign there are 22g theta functions and we can

normalize a characteristic by the condition that its coefficients are either zero or one.

We have defined theta functions with characteristic in this way for completeness, but

in the following we will consider only normalized characteristics and characteristics.

The number of even characteristics is 2g-1(2g + 1) and the number of odd ones is

2g-1(2g - 1).

We will now define an action of the Siegel modular group (14) on theta functions.

We have already seen that this group acts on the the Siegel upper-half space by (11).
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We are going to see that there is an action of �g also on the set of theta characteristics.

For any � 2 �g and m 2 { 0, 1 }
2g set

� ·
⇥

m 0
m 00
⇤

=
h ⇣

D -C
-B A

⌘⇣
m 0
m 00

⌘
+

✓
diag(CtD)

diag(AtB)

◆ i
(mod 2), (18)

where we think of the elements of Z/2Z as zeroes and ones. The action defined in

this way is neither linear nor transitive. Indeed, the action preserves the parity of the

characteristics. Clearly the action of the principal congruence subgroup �g(2) on the set

of theta characteristics is trivial.

Theta functions with characteristics satisfy the following transformation law for any

� 2 �g (see [27]):

#�·m(� · ⌧, t(C⌧+ D)-1z) = (�)e⇡i[2�m(�)+tz(C⌧+D)-1Cz] det(C⌧+ D)1/2#m(⌧, z), (19)

where (�) is an 8th root of the unity, with the same sign ambiguity as in det (C⌧+ D)1/2,

and

�m(�) = -
1

8
(tm 0 tBDm 0 + tm 00 tACm 00 - 2tm 0 tBCm 00)+

+
1

4
t diag(AtB)(Dm 0 -Cm 00).

Evaluating a theta function with characteristic m at z = 0 we get a holomorphic

function on Hg which is not identically zero if and only if the characteristic m is even

(cf. [24]). These functions are usually called theta constants and are denoted by

#m(⌧) = #
⇥

m 0
m 00
⇤
(⌧, 0).

Acting with elements of �g(2) and evaluating the formula (19) in z = 0, we get a

simple transformation formula for theta constants:

#m(� · ⌧) = (�)e2⇡i�m(�) det (C⌧+ D)1/2#m(⌧), 8� 2 �g(2). (20)

It is easy to see that whenever � 2 �g(4, 8) we have e2⇡i�m(�) = 1, thus the theta

constants with even characteristics are scalar-valued modular forms of weight 1/2 with

a multiplier with respect to the group �g(4, 8).

By Section 2.3 we already know that rank(#m) = 1 for even m, but this is also a

straightforward consequence of the following system of equations, usually called “heat

equation”:
@2

@zj@zk
#m(⌧, z) = 2⇡i(1 + �jk)

@

@⌧jk
#m(⌧, z), (21)

for j, k = 1, . . . , g.
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We will need a different formulation of the transformation rule for a product of theta

constants #m #n in order to examine some modularity properties of suitable products

of theta constants.

We will first recall the construction of a set of generators for the subgroup �g(2).

If 1 6 i 6= j 6 g are positive integers, let aij be the matrix obtained by replacing the

(i, j)-coefficient of 1g by 2. If 1 6 i 6 g let aii be the matrix obtained by replacing the

(i, i)-coefficient of 1g by -1. Then

Aij =

0
@aij 0

0 ta-1
ij

1
A 2 �g(2).

If 1 6 i < j 6 g are positive integers, let bij be the matrix obtained by replacing the

(i, j)-coefficient and the (j, i)-coefficient of the zero matrix by 2. If 1 6 i 6 g let bii be

the matrix obtained by replacing the (i, i)-coefficient of the zero matrix by 2. Then

Bij =

0
@1g bij

0 1g

1
A 2 �g(2).

For 1 6 i 6 j 6 g let Cij = tBij. Then Cij 2 �g(2).

By [24, Theorem 1] the g(2g + 1) matrices Aij for 1 6 i, j 6 g, Bij and Cij for

1 6 i 6 j 6 g are a set of generators for �g(2). This implies that any � 2 �g(2) can be

written as

� =

0
@ Y

16i, j6g

A
pij

ij

1
A ·

0
@ Y

16i6j6g

B
qij

ij

1
A ·

0
@ Y

16i6j6g

C
rij

ij

1
A · � 0, (22)

where pij, qij, rij 2 Z and � 0 is in the commutator subgroup of �g(2). Note that by [24,

Lemma 1], � 0 2 �g(4, 8). Denote by p the g⇥ g matrix with entries pij and by q and r

the symmetric matrices with entries qij and rij respectively.

With this notations, by [24] one has that

� 2 �g(2, 4), diag(q) ⌘ diag(r) ⌘ 0 (mod 2), (23)

� 2 �g(4, 8), p, q, r ⌘ 0 (mod 2); diag(q) ⌘ diag(r) ⌘ 0 (mod 4). (24)

We are ready to write down the transformation formula we need. For any � 2 �g(2)

written in the form (22), we have the following transformation formula (cf. [24, Theorem

3]):

(#m #n)(� · ⌧) = (�)2 (-1)A exp(-1/4)B det(C⌧+ D)(#m #n)(⌧), (25)

where exp(t) = e2⇡it,

(�)2 = (-1)
P

i pii , (26)
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and

A =
X

16i, j6g

pij(m
0
im

00
j + n 0

in
00
j ) +

X

16i<j6g

qij(m
0
im

0
j + n 0

in
0
j)+

+
X

16i<j6g

rij(m
00
i m 00

j + n 00
i n 00

j ) ,

B =
X

16i6g

qii((m
0
i)

2 + (n 0
i)

2) +
X

16i6g

rii((m
00
i )2 + (n 00

i )2) .

Then by (24) and (25) it is easy to see that #m#n is a scalar-valued modular form of

weight 1 and trivial multiplier system with respect to �g(4, 8) .

Regarding the congruence subgroup �g(2, 4), the modularity condition can be ex-

pressed in terms of some equations satisfied by the entries of the characteristics m and

n. By (23) and (25) it is easy to see that #m#n is a scalar-valued modular form of weight

1 and trivial multiplier system with respect to �g(2, 4) if for 1 6 i, j 6 g

m 0
im

00
j + n 0

in
00
j ⌘

8
><
>:

1 (mod 2) if i = j

0 (mod 2) if i 6= j
, (27)

m 0
im

0
j + n 0

in
0
j ⌘ m 00

i m 00
j + n 00

i n 00
j ⌘ 0 (mod 2). (28)

Denote by �g(2, 4)⇤ the index two subgroup of �g(2, 4) where (�)2 = 1. Clearly if

#m#n 2 [�g(2, 4), 1] then it also a scalar-valued modular form of weight 1 with respect to

�g(2, 4)⇤. Moreover by equation (26), #m#n is a scalar-valued modular form of weight 1

and trivial multiplier system with respect to �g(2, 4)⇤ if for 1 6 i, j 6 g

m 0
im

00
j + n 0

in
00
j ⌘ 0 (mod 2), (29)

m 0
im

0
j + n 0

in
0
j ⌘ m 00

i m 00
j + n 00

i n 00
j ⌘ 0 (mod 2). (30)

If we define the matrix M = (m, n), then we can reformulate the modularity condi-

tions given by equations (27), (28), (29) and (30) in the following way

#m#n 2 [�g(2, 4), 1] if M tM ⌘
⇣

0 1g

1g 0

⌘
(mod 2),

#m#n 2 [�g(2, 4)⇤, 1] if M tM ⌘ 0 (mod 2) or M tM ⌘
⇣

0 1g

1g 0

⌘
(mod 2).

Now we can easily understand what happens if we take a product of an even number

of theta constants. Let M = (m1, . . . , m2k) be a matrix of even characteristics and let

#M = #m1
· · · #m2k

. (31)

It is easily seen that

#M 2 [�g(2, 4), k] if MtM ⌘ k
⇣

0 1g

1g 0

⌘
(mod 2), (32)

#M 2 [�g(2, 4)⇤, k] if MtM ⌘ 0 (mod 2) or M tM ⌘
⇣

0 1g

1g 0

⌘
(mod 2). (33)
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We will be also interested in modular forms constructed with second order theta

functions. We have already introduced them as theta functions for a line bundle which

is twice a principal polarization on abelian varieties parametrized by points in Hg (see

Section 1.3.1). Recall that for " 2 { 0, 1 }
g the second order theta functions are defined as

⇥["](⌧, z) = # [ "0 ](2⌧, 2z); ⌧ 2Hg, z 2 Cg. (34)

These are all even functions of z. As for theta constants with characteristic, denote by

⇥["] = ⇥["](⌧, 0) the second order theta constant with characteristic ". These are related

to theta constants with characteristic by Riemann’s addition formula (cf. [27]):

⇥[�](⌧)⇥[�+ "](⌧) =
1

2g

X

�2{ 0,1 }g

(-1)�·�# [ "� ](⌧)2, (35)

# [ "� ](⌧)2 =
X

�2{ 0,1 }g

(-1)�·�⇥[�](⌧)⇥[�+ "](⌧). (36)

For every � 2 �g let �̃ 2 �g be such that 2(� · ⌧) = �̃ · (2⌧), that is �̃ =
⇣

A 2B
C/2 D

⌘
. By the

above transformation formula for theta constants we get

⇥["](� · ⌧) = (�̃) det(C⌧+ D)1/2⇥["](⌧), 8� 2 �g(2, 4). (37)

Second order theta constants are then modular forms of weight 1/2 with respect to the

congruence subgroup �g(2, 4) and the multiplier system v⇥(�) := k(�̃). By equations (35)

and (36) it is easy to see that (�̃)2 = (�)2.

We will now give some examples of scalar-valued and vector-valued Siegel modular

forms constructed by taking derivatives of theta functions with odd characteristics. If n

is an odd characteristic, denote by

vn(⌧) := gradz ✓n(⌧, z)
��
z=0

,

the gradient of the odd theta function with characteristic n. Differentiating the transfor-

mation formula for theta function (19) with respect to the variable zi and evaluating

it at z = 0, we get the following transformation rule for the gradient of an odd theta

function:

v�·n(� · ⌧) = (�)e2⇡i�n(�) det(C⌧+ D)1/2 (C⌧+ D) vn(⌧), 8� 2 �g. (38)

Hence for an odd characteristic n we have that vn(⌧) is a vector-valued Siegel modular

form with a multiplier with respect to the congruence subgroup �g(4, 8) and the half-

integral weight representation ⇢ such that ⇢(A) = det(A)1/2 A.
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We will now present vector-valued modular forms associated to a set of 1 6 k < g

odd characteristics. For N = (n1, . . . , nk) 2M2g⇥k where {ni}i=1,...,k is a set of distinct

odd characteristics, define

W(N)(⌧) = ⇡-2k (vn1
(⌧)^ . . .^ vnk

(⌧)) t(vn1
(⌧)^ . . .^ vnk

(⌧)). (39)

By [45] for every � 2 �g one has the following transformation formula:

W(� · N)(� · ⌧) = (�)2k e4⇡i
P

i �ni
(�) ⇢k(C⌧+ D) W(N)(⌧),

where � · N = (� · n1, . . . ,� · nk) and ⇢k = (k + 2, . . . , k + 2, k, . . . , k) with co-rank(⇢k) =

g - k. Clearly W(N) is a vector-valued modular form with respect to the subgroup

�g(4, 8) and the representation ⇢k.

We are also interested in the modularity of W(N) with respect to the subgroups

�g(2, 4) and �g(2, 4)⇤. In order to study this modularity we can make the same reasoning

we made before in the case of products of theta constants (see (32) and (33)). Indeed if

we take a matrix fM = (M, M) where M is a matrix of k even characteristics, then with

the notations as in (31)

#fM(� · ⌧) = (�)2k e4⇡i
Pk

i=1 �mi
(�) det(C⌧+ D)k#fM(⌧),

for any � 2 �g(2).

If eN = (N, N) with N a matrix of k odd characteristics, then

eN t eN = 2

kX

i=1

ni
tni ⌘ 0 (mod 2).

So we can conclude that W(N) 2 [�g(2, 4)⇤, ⇢k] for any k. Moreover, if k is even then

W(N) 2 [�g(2, 4), ⇢k].

If k = g then (39) defines a scalar-valued modular form which can be expressed

in term of the long studied “Jacobian determinant” of odd theta functions. For N =

(n1, . . . , nk) 2M2g⇥g a matrix of g odd characteristics define

D(N)(⌧) = ⇡-g det(@(#n1
. . . #ng)/@(z1 . . . zg))(⌧, 0) = ⇡-g vn1

(⌧)^ . . .^ vng(⌧). (40)

By [43] this is a scalar-valued Siegel modular form of weight g/2 + 1 with respect to the

subgroup �g(4, 8) that never vanishes identically provided that ni 6= nj for i 6= j. Clearly

if N is a matrix of g distinct odd characteristics then

W(N) = D(N)2.

We end this section with a brief introduction to the theory of theta series. We will

present two kinds of theta series: theta series with respect to positive definite quadratic

forms and theta series with harmonic polynomial coefficients.
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Let S denote a positive definite integral matrix of degree k ⌘ 0 (mod 8) which is

unimodular (i.e. det(S) = 1) and even (i.e. diag(S) is even). The theta series with respect

to S is defined as

#S(⌧) =
X

G2Mg⇥k(Z)

e⇡i Tr(GStG⌧).

By [47] #S(⌧) 2 [�g, k/2] .

In some cases, this theta series can be written in terms of theta constants. The theta

series that have such an expression are studied in [46, Section 3]. One example is the

theta series ⇥(g)
E8

with respect to the quadratic form of the lattice E8. For a suitable

choice of the basis the matrix ⇣E8
of this quadratic form is given as follows:

⇣E8
=

0
BBBBBBBBBBBBBBBB@

2 0 0 1 0 0 0 0

0 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

1 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 2

1
CCCCCCCCCCCCCCCCA

(41)

By [28] we have that

⇥
(g)
E8

=
1

2g

X

m even

#8
m(⌧). (42)

Another kind of theta series we would like to present are theta series with harmonic

polynomial coefficients. We will see in Section 4.1.3 that they are related to some

generalization of the remarkable Jacobi’s derivative formula.

Let A denote an even positive definite integral matrix of degree p. Assume that

p is even. Denote by l the smallest positive integer such that B = lA-1 is even. Let

B(x) = 1
2 Tr(txBx) for x 2Mp⇥g(R). Choose a polynomial h(x) satisfying

B(@/@x)h(x) = 0, h(vx) = det(v)qh(x),

for every invertible g⇥ g matrix v and for some non-negative integer q. Given ⇠0 2
BMp⇥g(Z), the theta series with harmonic polynomial coefficient h and basic quadratic

form A is defined as

#⇠0
(⌧; A, h) =

X

⇠⌘⇠0 (mod l)

h(⇠)e⇡il2 Tr(⌧t⇠A⇠) , ⌧ 2Hg. (43)

These theta series span a finite dimensional vector space ⇥(A, h) which is stable under

the action of �g on holomorphic functions on Hg defined as

(�-1 · f)(⌧) = det(C⌧+ D)-p/2-qf(� · ⌧).
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It is interesting to note that both Jacobian determinants (40) and products of g + 2

even theta constants can be expressed in terms of theta series with suitable harmonic

coefficients. Indeed by [29, Section 11] the C-span of Jacobian determinants is the space

of theta series with “det” as harmonic polynomial coefficient and with 4(x2
1 + · · · + x2

g)

as basic even quadratic form while the C-span of products of g + 2 even theta constants

is the space of theta series with “1” as harmonic coefficient and with 4(y2
1 + · · · + y2

g+2)

as basic even quadratic form.
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3
G E O M E T RY O F S I E G E L M O D U L A R VA R I E T I E S

For any discrete subgroup � of Sp(2g, R), the modular variety X� = Hg/� with its

natural quotient structure is a normal complex analytic space of dimension N =

g(g + 1)/2. It is smooth if � acts freely and it has at most finite quotient singularities in

any case. If all the isotropy groups of the action of � are generated by reflections, then

the quotient is still non-singular even though there are fixed points.

Our interest in the theory of Siegel modular varieties is mostly due to its connection

with the theory of moduli spaces of complex abelian varieties (see Section 1.4.1 and

Section 1.4.2). They also represent an interesting setting where Siegel modular forms

can be used to investigate geometric problems. In Section 3.1 and Section 3.2 we present

some geometric properties of modular varieties that can be investigated by means of

scalar-valued and vector-valued Siegel modular forms respectively.

Section 3.1 is about the construction of the Satake compactification X� of a modular

variety X� . We will call such a compactification the Siegel modular variety associated

to � . This a projective and normal variety that contains X� as a Zariski open subset.

The space of scalar-valued Siegel modular forms with respect to � gives the projective

embedding of X� . We will explicitly present the Satake compactification of the moduli

space of abelian surfaces with a level 2 structure as a quartic hypersurface in P4. In

Section 3.1.2 we will analyze the relationship between a point x of this quartic and the

Kummer variety of the abelian surface whose moduli point is x.

The topic of Section 3.2 is the construction of holomorphic differential forms on

modular varieties by means of vector-valued Siegel modular forms. In Section 3.2.1

we will give methods to define holomorphic differential forms of degree N- 1 starting

from scalar-valued Siegel modular forms and from gradients of odd theta constants

that produce holomorphic differential forms invariant under the action of the full

modular group. In Proposition 3.2.2 we will give an explicit construction of non-zero

�g-invariant holomorphic differential forms exploiting theta series for suitable values

of g. This result for g = 9 is part of my joint work [8].
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In the following chapter (see Section 4.1) we will generalize these methods to the

construction of vector-valued Siegel modular forms and prove that in some remarkable

cases they give rise to elements of the same vector space (see Theorem 4.1.10).

In the last two sections of this chapter we will focus on modular varieties of low

degree. In Section 3.3 we will focus on modular varieties of degree 2. We will present

the results of my paper [39] about the construction of Siegel modular threefolds

with a degree 8 endomorphism, generalizing the result proven in [32] for the Satake

compactification of the moduli space of abelian surfaces with a level 2 structure. In

Section 3.4 we will briefly study the situation for degree 3.

3.1 the satake compactification of a siegel modular variety

In this section we begin to investigate the role of modular forms in the study of the

geometry of Siegel modular varieties. We will focus on the construction of the Satake

or Baily-Borel compactification of these varieties. This kind of compactification arise

more generally in the theory of locally symmetric spaces.

By (13) Hg is a homogeneous space. Moreover it is a symmetric space, that is each

point of Hg admits a symmetry. For this consider the automorphism TJ defined in (12)

for J =
⇣

0 1g

-1g 0

⌘
. In particular TJ is an involution of Hg and TJ(i1g) = i1g. Hence TJ is

a symmetry for the point i1g. Since the action of Sp(2g, R) on Hg is transitive, for each

⌧ 2Hg there exists ⌘ 2 Sp(2g, R) such that ⌧ = ⌘ · (i1g). Then the automorphism T⌘J⌘-1

is a symmetry for ⌧.

If � is a finite index subgroup of �g then X� is a locally symmetric space. An

embedding theorem proved by Borel and Harish-Chandra (cf. [1]) states that every

symmetric domain can be realized as a bounded domain in a complex affine space of

the same dimension if and only if it does not admit a direct factor, which is isomorphic

to Cn modulo a discrete group of translations. Since Sp(2g, R) is a simple Lie group,

the picture of Hg as a homogeneous space implies that Hg does not admit such a

factor. The Borel and Harish-Chandra theorem applies and the embedding is given as

follows. Let

Dg :=
�

M 2Mg⇥g(C)
�� M = tM, MM- 1 < 0

 
.

Then

' : Hg ! Dg

⌧ 7! (⌧- i1g)(⌧+ i1g)-1.

is an embedding and displays the Siegel space as a bounded domain.
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Let

Dg =
�

M 2Mg⇥g(C)
�� M = tM, MM- 1 6 0

 
,

be the closure of Dg. The action of Sp(2g, R) on Hg then defines, via ', an action on Dg

which extends to Dg. We say that two points in Dg are equivalent if and only if they are

connected by finitely many holomorphic arcs. More precisely, for z, w 2 Dg we write

z ⇠ w if and only if there exists finitely many holomorphic maps f1, . . . , fk : D1 ! Dg

such that f1(0) = z, fk(0) = w and fi(D1) \ fi+1(D1) 6= ; for i = 1, . . . , k. Under this

equivalence relation all points in Dg are equivalent. The equivalence classes with

respect to the relation ⇠ are usually called the boundary components of Dg. The

equivalence classes of Dg \ Dg are called the proper boundary components of Dg.

There is a bijection between the proper boundary components of Dg and the non-

trivial isotropic subspaces of R2g with respect to the standard symplectic form J. For

this, for any z 2 Dg define

 (z) : R2g ! Cg

x 7! x
⇣

i(1g+z)
1-z

⌘
.

The real subspace of R2g

U(z) := ker (z)

is an isotropic subspace of R2g with respect to the standard symplectic form J. It has

the property that U(z) 6= { 0 } if and only if z /2 Dg and U(z1) = U(z2) if and only if

z1 ⇠ z2.

If we consider the action of Sp(2g, R) on these isotropic subspaces we get

U(� · z) = U(z)�-1, 8 z 2 Dg, 8� 2 Sp(2g, R).

So we have also an action of Sp(2g, R) on the set of boundary components. A boundary

component is called rational if its stabilizer subgroup in Sp(2g, R) is defined over Q.

Let D
rc
g be the set of rational boundary components of Dg and consider the rational

closure Drat
g = Dg [D

rc
g . The space Drat

g can be equipped with the cylindrical topology

(cf. [36]). With this topology Drat
g is a Hausdorff space and Dg is an open dense subset

in Drat
g . The Satake compactification of X� is then defined as

X� = Drat
g /� .

For example, if � = �g we have that set theoretically

X�g
= Hg/�g [Hg-1/�g-1 [ · · · [H1/�1 [ { pt } ,
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and the boundary components are given by

Dg,r =
⌦ ⇣

N 0
0 1g-r

⌘
| N 2 Dr

↵
⇢ Dg,

for 0 6 r 6 g- 1.

For any finite index subgroup � , X� is a projective and normal variety that contains X�

as a Zariski open subset. If � 0 ⇢ � are two finite index subgroup of �g with [� : � 0] < 1,

there is a canonical finite holomorphic map X� 0 ! X� extending the natural finite map

X� 0 ! X� . The compactification X� is highly singular along the boundary which is also

of codimension g.

A partial desingularization of X� can be found by blowing up along the boundary,

this is usually called Igusa’s compactification. This procedure gives a resolution of

X�g(n) for n > 3 and g 6 3 but not for g > 4 (cf. [26]).

The ideas of Igusa and the work of Hirzebruch on Hilbert modular surfaces lead

to the general theory of toroidal compactifications developed by Mumford in [34].

One of the good properties of toroidal compactifications that complement the bad

properties of Satake compactifications is that the boundary is a divisor. Nevertheless to

construct a toroidal compactification one has to choose some additional data, so this

kind of compactification is not unique. There are however criterion for smoothness or

projectivity of the compactification in terms of some properties of the chosen data. In

particular one can construct in this way a smooth compactification of a modular variety.

Igusa’s compactification is a toroidal compactification in Mumford sense (cf. [36]).

Despite the high codimension of the boundary and its singularities, one of the

main features of the Satake compactification is that one can describe it by means of

Siegel modular forms. We will work precisely with this description in order to study

geometric properties of Siegel modular varieties.

The idea is to define an explicit embedding of X� into projective space by means

of modular forms and then compactify the image. If the subgroup � acts freely on

Hg, then the factor of automorphy det(C⌧+ D)k defines a line bundle Lk on Hg/�

whose global sections are weight k modular forms (for a detailed discussion on line

bundles and factors of automorphy see Section 1.2.1.). Since any element with fixed

points is torsion and the order of all torsion elements is bounded, even if � does not act

freely, the modular forms of weight nk0 for some integer k0 and n > 1 are sections of a

line bundle Lnk0 on Hg/� . As global sections of a line bundle, the elements of [� , nk0]

define a rational map ' : Hg/� ! PN for some N (see Section 1.3). If n is sufficiently

large, then ' is an immersion and the Satake compactification of Hg/� is the projective

closure of the image of '.

36



In other words, the Satake compactification of X� is

X� = Proj(A(�)),

where A(�) is the graded ring of scalar-valued Siegel modular forms with respect to � .

If one is working with scalar-valued Siegel modular forms with respect to a multiplier

system v of weight 1/2, one can consider the ring of Siegel modular forms with respect

to the group � and the multiplier system v which is the graded ring

A(� , v) =
M

k2N

[� , k/2, vk],

and define in the same way

X� = Proj(A(� , v)).

The compactification X� indeed does not depend on the multiplier system chosen.

Moreover, if we let

A(� , v)(d) =
M

k⌘0 (mod d)

[� , k/2, vk],

then Proj(A(� , v)) ⇠= Proj(A(� , v)(d)).

3.1.1 The Igusa quartic

We will give an explicit description of the Satake compactification of the modular

variety X�2(2) as a quartic hypersurface in P4. This is usually called the Igusa quartic

and gives a compactification of the moduli space of abelian surfaces with a level 2

structure (see Section 1.4.2).

We will present this compactification in two ways. For the first one, consider the ring

of modular forms of even weight with respect to �2(2)

A(�2(2))ev =
X

k2N

[�2(2), 2k].

The structure of this ring is given in [25] where the author proves that A(�2(2))ev is

generated over C by the five scalar-valued modular forms

y0 = #
⇥

01
10

⇤
(⌧)4, y1 = #

⇥
01
00

⇤
(⌧)4, y2 = #

⇥
00
00

⇤
(⌧)4,

y3 = #
⇥

10
00

⇤
(⌧)4 - #

⇥
01
10

⇤
(⌧)4, y4 = -

�
#
⇥

11
00

⇤
(⌧)4 + #

⇥
01
10

⇤
(⌧)4

�
.

These generators satisfy the relation

(y0y1 + y0y2 + y1y2 - y3y4)2 - 4 y0y1y2(y0 + y1 + y2 + y3 + y4) = 0. (44)
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Since

X�2(2) = Proj(A(�2(2))) = Proj(A(�2(2))ev),

the Satake compactification of X�2(2) is the quartic hypersurface in P4 defined by the

equation (44).

For the second one, we want to give explicitly the embedding of the Satake compacti-

fication by a map defined by scalar-valued Siegel modular forms. By (20) and (26) it is

easy to see that #m(⌧)4 is a modular form of weight 2 with respect to the group �2(2)

for any even characteristic m. Hence we can define a map

X�2(2) ! P9

⌧ 7! [. . . , #m(⌧)4, . . . ].

There are linear relations between these modular forms and the vector space of weight

2 modular forms is 5 dimensional. A set of independent relations are the following

ones (cf. [20]):

#
⇥

10
00

⇤
(⌧)4 - #

⇥
11
00

⇤
(⌧)4 - #

⇥
11
11

⇤
(⌧)4 - #

⇥
10
01

⇤
(⌧)4 = 0,

#
⇥

00
00

⇤
(⌧)4 - #

⇥
00
01

⇤
(⌧)4 - #

⇥
01
10

⇤
(⌧)4 - #

⇥
11
00

⇤
(⌧)4 = 0,

#
⇥

01
10

⇤
(⌧)4 - #

⇥
00
10

⇤
(⌧)4 - #

⇥
11
11

⇤
(⌧)4 + #

⇥
00
11

⇤
(⌧)4 = 0,

#
⇥

01
00

⇤
(⌧)4 - #

⇥
00
00

⇤
(⌧)4 + #

⇥
10
01

⇤
(⌧)4 + #

⇥
00
11

⇤
(⌧)4 = 0,

#
⇥

01
00

⇤
(⌧)4 - #

⇥
10
00

⇤
(⌧)4 + #

⇥
00
01

⇤
(⌧)4 - #

⇥
00
10

⇤
(⌧)4 = 0.

Hence the modular forms of weight 2 gives a map

X�2(2) ! P4 ⇢ P9

⌧ 7! [. . . , #m(⌧)4, . . . ].

In [20] the author shows that this map is an embedding and the image is the quartic

hypersurface given by

I =

8
<
:

 X

m even

#m(⌧)8

!2

- 4
X

m even

#m(⌧)16 = 0

9
=
; . (45)

The singular locus of (45) is the boundary of the Baily-Borel embedding of X�2(2).

There are 15 1-dimensional boundary components and 15 0-dimensional boundary

components.
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3.1.2 Igusa quartic and universal Kummer variety

In [20] the author also explains a different modular interpretation of the Igusa quartic.

We need to recall some basic facts about the Kummer variety of an abelian variety.

Let (X,⇥) be a principally polarized abelian variety of dimension g. Let ◆ : X ! X be

the involution defined by ◆(x) = -x. The fixed point locus of ◆ is clearly the group of

2-torsion points on X denoted by X2. We will call the quotient KX = X/h◆i the “abstract”

Kummer variety of X. If g > 2 then KX is a singular variety of dimension g with 22g

singular points of multiplicity 2g-1 corresponding to the image of X2 via the projection

map ⇡ : X! KX. If X is an elliptic curve then KX
⇠= P1 and the projection ⇡ : X! P1 is

a 2 : 1 cover branching over four points, which are the image under ⇡ of the 2-torsion

points of the elliptic curve. Then we can regard the abstract Kummer variety of an

elliptic curve as a P1 with four marked points.

If (X1, L1) and (X2, L2) are two abelian varieties, denote by pi : X1 ⇥ X2 ! Xi the

projection on the i-th factor for i = 1, 2. If L1 ⇥ L2 := p⇤
1L1 ⌦ p⇤

2L2 then (X1 ⇥X2, L1 ⇥ L2)

is an abelian variety, called the product abelian variety with the product polarization.

A principally polarized abelian variety is called decomposable if it is a product abelian

variety. If (X,⇥) is a decomposable abelian variety with X = X1 ⇥ · · · ⇥ Xs and ⇥

the product polarization, then the map defined by the linear system |2⇥| gives an

embedding of KA1
⇥ · · · ⇥KAs

in projective space:

A
|2⇥| //

✏✏

P2g-1

KA1
⇥ · · · ⇥KAs

* ⌦

77

We will refer to KX1
⇥ · · · ⇥ KXs

,! P2g-1 as the “embedded” Kummer variety of X.

Note that if X is indecomposable the abstract and embedded Kummer variety of X

coincide, we will call it just the Kummer variety of X.

The map |2⇥| can be easily given in terms of theta functions. For ⌧ 2Hg denote as

usual by (X⌧, L⌧) the principally polarized abelian variety where X⌧ = Cg/⌧Zg �Zg

and L⌧ is the principal polarization whose only section, up to scalar, is given by the

theta function with characteristic m =
⇥

0
0

⇤
(see Section 1.3.1). Then a basis of sections

of the line bundle L2
⌧ is given by the second order theta functions (34). So the map |2⇥|

is given by

|2⇥| : X⌧ ! P2g-1

z 7! [. . . ,⇥[�](⌧, z), . . . ],
(46)

where the coordinates on P2g-1 are indexed by � 2 { 0, 1 }
g.
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If X is an indecomposable abelian surface then the Kummer surface of X is a quartic

hypersurface in P3 with 16 nodes. If X = E1 ⇥ E2 is the product of two elliptic curves,

then the image of KE1
⇥ KE2

in P3 is a non-singular quadric isomorphic to P1 ⇥P1.

The following theorem gives a relation between suitable points of the Igusa quartic and

their Kummer varieties.

Theorem 3.1.1 ([20]). Let x be a non-singular point of I not lying on the intersection of

I with the 10 coordinate hyperplanes
�
#m(⌧)4 = 0

 
m even

. The intersection of I with the

tangent space of I at x is a quartic surface with 16 nodes. If x is a non-singular point lying on

I\
�
#m(⌧)4 = 0

 
then the intersection of I with the tangent space of I at x is a quadric surface

with multiplicity 2.

The quadrics in the theorem corresponds to the embedded Kummer varieties of

abelian surfaces which are products of two elliptic curves. Indeed the locus of reducible

abelian surfaces in the moduli space of principally polarized abelian surfaces is given by

the ✓null divisor. It has 10 irreducible components each corresponding to the vanishing

of a single theta constant with even characteristic. In X�2(2) these components are given

by the 10 coordinates hyperplanes
�
#m(⌧)4 = 0

 
with m even. These quadrics must be

counted twice to preserve the degree.

We can see this situation in a different light by introducing the universal Kummer

variety. Define the map

� : Hg ⇥Cg ! P2g-1 ⇥P2g-1

(⌧, z) 7! [⇥⌧(0),⇥⌧(z)].
(47)

The image of this map is a quasi-projective variety of dimension g + g(g + 1)/2. The

closure of the image is called the universal Kummer variety. This variety is indeed a

modular family of embedded Kummer varieties. If we fix a point ⌧ 2Hg, the (reduced)

image of � is the embedded Kummer variety of the abelian variety A⌧ defined by the

point ⌧ 2Hg.

There is a lot of beautiful geometry in the study of the universal Kummer variety.

One of the main features is that it can be studied by means of computer algebra systems

like Macaulay2 [21] since there are many known equations for the universal Kummer

variety and some remarkable sub-loci.
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For example, for g = 2 the closure of the image of � is given by a single equation

F(u, x) (cf. [19]). Let x� = ⇥[�](⌧, z) and u� = ⇥[�](⌧, 0). Then set u = (u00, u01, u10, u11)

and x = (x00, x01, x10, x11) and take (u, x) as the coordinates in P3 ⇥P3. Set

P0 = x4
00 + x4

01 + x4
10 + x4

11;

P1 = 2(x2
00x2

01 + x2
10x2

11);

P2 = 2(x2
00x2

10 + x2
01x2

11);

P3 = 2(x2
00x2

11 + x2
01x2

10);

P4 = 4x00x01x10x11.

(48)

The equation of the universal Kummer variety in degree 2 is then given by:

F(u, x) = det

0
BBBBBBBB@

P0 P1 P2 P3 P4

u3
00 u00u2

01 u00u2
10 u00u2

11 u01u10u11

u3
01 u2

00u01 u01u2
11 u01u2

10 u00u10u11

u3
10 u10u2

11 u2
00u10 u2

01u2
10 u00u01u11

u3
11 u2

10u11 u2
01u11 u2

00u11 u00u01u10

1
CCCCCCCCA

(49)

By Riemann’s addition formula (36), the irreducible components of ✓null are given by

the zero locus of the 10 quadrics:

Q1 = u2
00 + u2

01 + u2
10 + u2

11,

Q2 = u2
00 - u2

01 + u2
10 - u2

11,

Q3 = u2
00 + u2

01 - u2
10 - u2

11,

Q4 = u2
00 - u2

01 - u2
10 + u2

11,

Q5 = u00u01 + u10u11,

Q6 = u00u01 - u10u11,

Q7 = u00u10 + u01u11,

Q8 = u00u10 - u01u11,

Q9 = u01u10 + u00u11,

Q10 = u00u11 - u01u10.
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Let fi = F(u, x)|{ Qi=0 }, i = 1, . . . , 10. By direct computations in Macaulay2 [21] we have:

f1 = p1(u)(x2
00 + x2

01 + x2
10 + x2

11)2,

f2 = p2(u)(x2
00 - x2

01 + x2
10 - x2

11)2,

f3 = p3(u)(x2
00 + x2

01 - x2
10 - x2

11)2,

f4 = p4(u)(x2
00 - x2

01 - x2
10 + x2

11)2,

f5 = p5(u)(x00x01 + x10x11)2,

f6 = p6(u)(x00x01 - x10x11)2,

f7 = p7(u)(x00x10 + x01x11)2,

f8 = p8(u)(x00x10 - x01x11)2,

f9 = p9(u)(x01x10 + x00x11)2,

f10 = p10(u)(x00x11 - x01x10)2,

where pi are suitable polynomials in the second order theta constants. So on any

irreducible component of the reducible locus of principally polarized abelian surfaces,

which has a quadric equation in the moduli space, the universal Kummer variety is

essentially the same quadric counted twice.

We want to end this section with a short discussion on theta structures on abelian

varieties. We will explain how the datum of a theta-structure allows to identify a

canonical map from an abelian variety to a projective space. We will show that indeed

the map (46) is one of these. Moreover, this will give a deeper understanding of the

map (47) for the definition of the universal Kummer variety.

Recall that if X is a complex torus, any line bundle L 2 Pic(X) defines a homomor-

phism of complex tori

�L : X! Pic0(X)

x 7! t⇤xL⌦ L-1.

This homomorphism is an isogeny if and only if c1(L) is non degenerate. The kernel

of the homomorphism �L will be denoted by H(L). If L defines a polarization of type

D = (d1, . . . , dg) on X then H(L) is a finite group of order equal to deg�L =
Qg

i=1 d2
i .

Another remarkable group attached to a polarization L on X is the theta-group G(L).

It is defined as follows

G(L) =
⌦

(x,') | x 2 X, ' : L
'�! t⇤xL

↵
.

In other words we are considering points in H(L) and we also remember the datum of

the isomorphism between the line bundles. The group law on G(L) is given as follows:

(y, ) · (x,') = (x + y, t⇤x �')
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for any (x,'), (y, ) 2 G(L). Define ↵ : G(L)! H(L) as ↵(x,') = x. Then ↵ is surjective

by definition of H(L) and ker(↵) is the group of isomorphisms of L with itself. Hence

G(L) fits in the exact sequence

0! C⇤ ! G(L)
↵�! H(L)! 0, (50)

where C⇤ = C \ { 0 }.

These groups can be completely described in terms of the type of the polarization.

If the polarization L is of type D = (d1, . . . , dg), define K(D) = �g
i=1Z/diZ, the dual

[K(D) = Hom(K(D), C⇤) and H(D) = K(D)� [K(D). Let G(D) = C⇤⇥K(D)⇥ [K(D) as a set.

Define a group law on G(D) by

(t, x, l) · (t 0, x 0, l 0) = (t t 0 l 0(x), x + x 0, l + l 0).

Then it is easy to prove that the sequence (50) is isomorphic to the sequence

0! C⇤ ! G(D)! H(D)! 0.

Proposition 3.1.2 ([33]). The group G(D) has a unique irreducible representation in which C⇤

acts by multiplication by scalars. Denote this representation by V(D). If V is any representation

of G(D) in which C⇤ acts by multiplication by scalars, then V is isomorphic to the direct sum of

V(D) with itself r-times for some r.

There is a simple way to describe this unique irreducible representation. Let V(D)

be the vector space of functions on K(D) with values in C. The representation of G(D)

on V(D) is usually called the Schrödinger representation and is given as follows. Any

w = (t, x, l) 2 G(D) acts on V(D) by Uw : V(D)! V(D) where

(Uw(f))(y) = t l(y) f(x + y).

The most important feature of the group G(L) is that it acts on H0(L), the space of

sections of the line bundle L. For any z = (x,') 2 G(L) define

Uz : H0(L)! H0(L)

s 7! t⇤-x('(s))

Also, the center C⇤ of G(L) acts on H0(L) by multiplication by scalars.

Theorem 3.1.3 ([33]). The space H0(L) is an irreducible G(L)-module for any polarization L.

A theta-structure is an isomorphism ↵ : G(L) ! G(D) which is the identity on C⇤.

If L is a very ample line bundle, a theta-structure determines in a canonical way one

projective embedding of X (not just an equivalence class of projectively equivalent
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embeddings) in the following way (cf. [33]). Since H0(L) is the unique irreducible

representation of G(L) and V(D) is the unique irreducible representation of G(D) in

which C⇤ acts by multiplication by scalars, there is an isomorphism

↵ : H0(L)! V(D),

which is unique up to scalar multiples and such that ↵(Uz(s)) = U↵(z)(↵(s)) for all

z 2 G(L) and s 2 H0(L). Then ↵ induces a unique isomorphism

P(↵) : P H0(L)! P V(D).

Fixing a basis of V(D) we define an isomorphism

� : P V(D)! Pm-1,

where m is the order of the group K(D). Finally, since L is very ample there is a

canonical embedding

F : X ,! P H0(L).

Then the composition

F↵ = � �P(↵) � F

is the canonical embedding of X in Pm-1 we where looking for. In this way we can

also define a canonical point of Pm-1, namely F↵(0) where 0 is the identity point on X.

If the line bundle L is just globally generated, by similar arguments we get a unique

canonical morphism X! Pm-1.

To construct the map that gives the embedded Kummer variety of X we need to

consider a polarization of type 21g = (2, . . . , 2). It is given by a line bundle which is

twice a principal polarization. If (X, L2) is a polarized abelian variety with a polarization

of type 21g it is easy to see that H(L2) = X2. Moreover dim H0(2⇥) = 2g. Regarding the

theta group of L2 this is isomorphic to the group

G := G(21g) = C⇤ ⇥ (Z/2Z)g ⇥ (Z/2Z)g.

Indeed the image of 1 2 Z/2Z by a homomorphism f : Z/2Z ! C⇤ must be 2-torsion,

so f(1) = (-1)n for a unique n 2 Z/2Z. So we have an isomorphism

Hom(Z/2Z, C⇤)! Z/2Z

f 7! n.

The group G is generated by C⇤ and the two subgroups

K = { (1, 0, y), y 2 (Z/2Z)g } ,

K̃ = { (1, x, 0), x 2 (Z/2Z)g } .
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The vector space V := V(21g) = Functions((Z/2Z)g, C) has a natural basis of “delta

functions”. For any � 2 (Z/2Z)g let

��(u) =

8
><
>:

0 u 6= �

1 u = �
.

Then given a theta structure ↵ on (X, 2⇥) we get the morphism

F↵ : X! P2g-1

x 7! [. . . ,↵-1(��)(x), . . . ].

Since (t, 0, 0) 2 G acts by scalar multiplication on V it acts trivially on PV and thus the

Shrödinger representation induces a representation of G/C⇤ ' (Z/2Z)2g on PV . Let

w = (t, x, l) 2 G map to w̃ 2 G/C⇤ and denote by P(w̃) : PV ! PV the projective linear

map induced by the action of w on V .

For any x 2 X2, two elements (x,') and (x,' 0) in G(L2) are related by ' 0 = t' for

some t 2 C⇤. Thus a theta-structure induces an isomorphism

↵̃ : X2 ' G(L2)/C⇤ ! G/C⇤ ' (Z/2Z)2g.

We then get that the translation by two torsion points on X is given by projective

transformations of PV . Indeed one has the commutative diagram

X
F↵ //

t
↵̃-1(w̃)

✏✏

PV

P(w̃)
✏✏

X
F↵ // PV

IF (X⌧, L⌧) is the principally polarized abelian variety corresponding to a point of Hg,

the polarization L2
⌧ on X⌧ is a polarization of type 21g. There is a natural theta-structure

↵⌧ : G(L2
⌧) ! G is defined as ↵⌧(((a⌧+ b)/2,')) = (t', [a], [b]), where a, b 2 Zg and

[a] [b] are the corresponding classes in (Z/2Z)g. Then the isomorphism ↵⌧ is given as

↵⌧ : H0(L2
⌧)! V

⇥[�] 7! ��.

It follows that the induced morphism in projective space is given as

F↵⌧ : X⌧ ! PV

z 7! [. . . ,⇥[�](⌧, z), . . . ].

So in the definition of the map (47) we see that we need the theta constants coordinates

to determine the class of the abelian variety in the moduli space Ag(2, 4) = X�g(2,4).
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Once we have this, we also have the natural theta structure that let us define the map

F↵⌧ via second order theta functions.

The map F↵⌧ is also equivariant for the action of G on theta functions. This action is

explicitly given by

(t, x, y) ·⇥[�](⌧, z) = t(-1)(�+x)·y⇥[�+ x](⌧, z).

It then gives an action of the Heisenberg group H = G/C⇤ on PV .

The polynomials appearing in (48) are invariant for this action. Indeed the equa-

tion (49) of the universal Kummer variety for g = 2 is also invariant.

3.2 holomorhic differential forms on siegel modular varieties

We will look at the role of vector-valued Siegel modular forms in the definition of

holomorphic differential forms on modular varieties.

For any complex manifold X denote by ⌦n(X) the sections of the sheaf of holomorphic

differential forms on X of degree n. For a congruence subgroup � denote by X0
� the set

of regular points of the Satake compactification X� and by fX� a desingularization of X� .

If N is the dimension of Hg, by [17] every holomorphic differential form ! 2 ⌦n(X0
� )

of degree n < N extends holomorphically to fX� . Moreover, if g > 2 and n < N there is

a natural isomorphism

⌦n(X0
� )

⇠= ⌦n(Hg)� ,

where ⌦n(Hg)� is the space of � -invariant holomorphic differential forms on Hg of

degree n.

We will see that any non-zero � -invariant holomorphic differential form on Hg can

be described in terms of a vector-valued Siegel modular form. Let us start with a

description the � -invariant holomorphic 1-forms. Any ! 2 ⌦1(Hg) can be written as

! = Tr(f(⌧) d⌧),

where f(⌧) is a symmetric matrix of holomorphic functions on Hg. By [14],

�⇤(d⌧) = t(C⌧+ D)-1 d⌧ (C⌧+ D)-1, 8� 2 �g.

Since the trace is invariant under cyclic permutations we get

�⇤! = Tr(f(� · ⌧)�⇤(d⌧)) =

= Tr((C⌧+ D)-1f(� · ⌧)t(C⌧+ D)-1 d⌧).
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Hence if follows that

�⇤! = !, f(� · ⌧) = (C⌧+ D)f(⌧)t(C⌧+ D), f 2 [� , Sym2(Cg)] ,

where Sym2(Cg) is the symmetric power of the standard representation of GLg(C).

Then ⌦1(Hg)� ' [� , Sym2(Cg)] and consequently

⌦n(Hg)� ' [� ,^n Sym2(Cg)] . (51)

For suitable degrees, depending only on g, some of these spaces are known to be

trivial a priori. The following theorem gives the list of the non-trivial representations

appearing in (51) and the list of degrees n for which ⌦n(Hg)� is trivial.

Theorem 3.2.1 ([52]). For 1 6 ↵ 6 g let ⇢↵ = (g + 1, . . . , g + 1, g - ↵, . . . , g - ↵) with

co-rank(⇢↵) = ↵. For ↵ = -1 let ⇢-1 = (g + 1, . . . , g + 1). Then

⌦n(Hg)� =

8
><
>:

[� , ⇢↵] if n = g(g + 1)/2-↵(↵+ 1)/2

0 otherwise
(52)

Proof. According to [31] the representation

^⇤ Sym2 Cg =
M

⇢2R

⇢̂,

where R is the set of representations of the form w�- � with � = (g, g- 1, . . . , 2, 1) and

w in the set W0 of Kostant representatives. Hence

[� ,^⇤ Sym2 Cg] = [� ,�⇢2R⇢̂].

If ⇢̂ = (�1, . . . , �g) with �g = g-↵, then w� = (↵, ⇤, . . . , ⇤). If ↵ is the largest integer that

occurs among the entries of the highest weight of w�, then either ↵ = -1 or 1 6 ↵ 6 g.

If ↵ 6= -1 then

w� = (↵, ⇤, . . . , ⇤,-(↵+ 1),-(↵+ 2), . . . ,-(g- 1),-g),

and �g-↵ = g + 1. Let r = co-rank(⇢̂) and c = #{i, 1 6 i 6 g | �i = �g + 1}. Because

�g-↵ = g + 1 it follows that r + c 6 ↵ and r 6 ↵. The Vanishing Theorem at page 23

now implies that

c > 2(a- r) or r > ↵.

Hence it follows that r = ↵.
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By this theorem a vector-valued Siegel modular form with respect to � and the ir-

reducible representation with highest weight (g + 1, . . . , g + 1, g - 1) determines a � -

invariant holomorphic differential form of degree N- 1. Define

d⌧̌ij = ± eij

^

16k6l6g

(k,l) 6=(i,j)

d⌧kl; eij =
1 + �ij

2
, (53)

where the sign is chosen such that d⌧̌ij ^ d⌧ij = eij

V
16k6l6g d⌧kl. Then each holomor-

phic differential form ! 2 ⌦N-1(Hg) can be written in the form

! = Tr(f(⌧)d⌧̌) =
X

16i,j6g

fij(⌧)d⌧̌ij.

It is easy to see by similar arguments exploited for 1-forms that ! 2 ⌦N-1(Hg)� if and

only if

f(� · ⌧) = det(C⌧+ D)g+1 t(C⌧+ D)-1f(⌧)(C⌧+ D)-1.

3.2.1 Differential forms of degree g(g + 1)/2 - 1 invariant for the full modular group

We are going to present two methods for constructing �g-invariant holomorphic diffe-

rential forms of degree N- 1, where N = g(g + 1)/2. The first one exploit scalar-valued

Siegel modular forms and in particular theta constants, while the second one exploits

gradients of odd theta functions.

Let us start from the construction of a holomorphic differential form invariant under

the action of a congruence subgroup � ⇢ �g starting from two suitable scalar-valued

modular forms. By [12] for any f and h in [� , (g - 1)/2], possibly with a multiplier

system, it is possible to define a holomorphic differential form !f, h 2 ⌦N-1(Hg)� .

The definition of !f, h exploits suitable differential operators applied to the two scalar-

valued modular forms.

Let us first fix some notation. For X ⇢ N of finite cardinality, denote by P⇤
k(X) the

collection of the increasingly ordered subsets of X with fixed cardinality k. If I 2 P⇤
k(X)

set Ic := X \ I 2 P⇤
n-k(X), where n is the cardinality of X. Denote by Xg the ordered set

{1, . . . , g}.

If V is a g-dimensional complex vector space with a given basis, one can choose a

basis of the exterior product
Vp V which is indexed by suitable sets of indexes of length

p. A linear map L :
Vp V ! Vp V is then given by a matrix

�
LI

J

�
for I, J 2 P⇤

p(Xg). If

A : ^pV ! ^pV and B : ^qV ! ^qV define the linear map AuB

AuB : ^p+qV ! ^p+qV
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given by the following matrix (cf. [12])

(AuB)H
K =

1�
p+q

p

�
X

I2P⇤
p(H)

J2P⇤
p(K)

(-1)I+JAI
J BIc

Jc , H, K 2 P⇤
p+q(Xg). (54)

Let @⌧ij
:= @

@⌧ij
and define the g⇥ g matrix of differential operators

@ := (@ij), @ij =
1

2
(1 + �ij)@⌧ij

, i, j = 1, . . . , g.

For any 1 6 k 6 g let @[k] = @u · · · u @, where we take the u product k times. Hence for

I, J 2 P⇤
k(Xg) ⇣

@[k]
⌘I

J
= det

�
@(I, J)

�
,

where by @(I, J) we denote the k⇥ k submatrix of @ obtained by taking rows with

indexes in I and columns with indexes in J. If f is a modular form we denote by @[k]f

the matrix such that

⇣
@[k]f

⌘I

J
= det(@(I, J)) · f, I, J 2 P⇤

k(Xg).

If v a given multiplier system, there exists a linear pairing

[� , (g- 1)/2, v]⇥
⇥
� , (g- 1)/2, v-1

⇤
! ⌦N-1(Hg)�

(f, h) 7! !f, h ,

with

!f, h =
X

p+q=g-1

(-1)p@[p]fu @[q]hu d⌧̌.

By definition one can easily see that

!f, h = Tr(B(⌧)d⌧̌),

where

B(⌧)ij := (-1)i+j

g-1X

k=0

(-1)k

�
g-1

k

�
X

I2P⇤
k(Xg\{i})

J2P⇤
k(Xg\{j})

(-1)I+J det
�
@(I, J)

�
· f det

�
@(Ic, Jc)

�
· h ,

where I + J means the sum of all the indexes in I and J.

By [12, eq. 61], the Fourier coefficient with respect to a matrix T of the entry B(⌧)gg

is given by

b(T) =

gX

k=1

(-1)k

�
g-1
k-1

�
X

I,J2P⇤
k-1(Xg-1)

X

T1+T2=T

✏det
�
T1(I, J)

�
det

�
T2(Ic, Jc)

�
af(T1)ah(T2), (55)
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where ✏ = (-1)I+J, T1(I, J) (resp. T2(Ic, Jc)) is the submatrix of T1 (resp. T2) obtained by

taking rows in I (resp. Ic) and columns in J (resp. Jc), af(T1) and ah(T2) are the Fourier

coefficients of f and h corresponding to the matrices T1 and T2 respectively.

We are interested in the explicit construction of the �g-invariant holomorphic diffe-

rential forms obtained with this method.

Proposition 3.2.2 ( [12, 8]). Let

f =
X

m even

#m(⌧)g-1.

Then !f, f 2 ⌦N-1(Hg)�g and does not vanish for g = 8k + 1, k > 1.

Proof. The result for k > 2 is classical and it is proven in [12]. Here we will prove that if

f =
P

m even #m(⌧)8, then !f, f 2 ⌦35(H9)�9 does not vanish identically (cf. [8]).

Recall by (42) that X

m even

#m(⌧)8 = 2g⇥
(g)
E8

,

where ⇥(g)
E8

is the degree g theta series with respect to the quadratic form on E8. Then

we only need to show the non vanishing of the form !F, F for F = ⇥
(9)
E8

. Let A(⌧) be

such that !F, F =
P

16i,j6g A(⌧)ijd⌧̌ij. Let a(T) be the Fourier coefficient with respect to

a matrix T of the entry A(⌧)99. The expression of a(T) is given in general by (55), but it

can be greatly simplified by suitably choosing the matrix T . To prove the non vanishing

of the form !F, F we will prove that the Fourier coefficient a(T) does not vanish for

T :=

0
@⇣E8

0

0 0

1
A ,

where ⇣E8
is the matrix (41). By Köcher principle, only the terms with even positive

semi-definite T1 and T2 produce non-zero summands in the expression of a(T). The

unique decompositions of this type for the chosen T are T1 = T , T2 = 0 and T1 = 0,

T2 = T .

So we have to study the Fourier coefficients of ⇥(9)
E8

for the chosen matrix T . Recall

that

⇥
(9)
E8

(⌧) =
X

p2M9⇥8(Z)

e⇡iTr(p⇣E8
tp⌧) =

X

M

NM

Y

j6k

e⇡imjk⌧jk ,

where, for M = (mjk) a symmetric g⇥ g integral matrix, NM 2 N is the number of

integral matrix solutions of the Diophantine system p ⇣E8
tp = M. Setting M = T and

writing p = ( p1
p2

), where p1 and p2 are 8⇥ 8 and 1⇥ 8 integer matrices respectively, it

follows that for all solutions p2 = 0, while p1 satisfies p1 ⇣E8
tp1 = ⇣E8

. The number of

solutions of this latter equation equals the order of the group U(⇣E8
) of automorphisms
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of the E8 lattice. By [7, page 121] #(U(⇣E8
)) = 4!6!8!. Thus we finally have that there is a

non-empty set of summands in the expression of a(T). Since all of the summands are

positive it follows that A(T)99 is non-zero and the Proposition is proven.

Using the modular form ⇥E8
(⌧)k, the argument above easily generalizes to give an

alternative proof of the classical result in [12] for k > 2.

A second method of building elements of ⌦N-1(Hg)�g is examined in [44]. Here the

author starts from the vector-valued modular forms constructed from a set of g- 1 odd

characteristics defined as in (39) and produces holomorphic differential forms invariant

under the action of the full modular group for g ⌘ 0 (mod 4), g 6= 5, 13. We will see in

Section 4.1.3 that in some remarkable cases the two constructions agree (cf. [8, 40]).

3.3 siegel modular threefolds with a degree 8 endomorphism

In Section 3.1.1 we have seen that the Satake compactification of the moduli space of

principally polarized abelian surfaces with level 2 structure is a quartic hypersurface in

P4. In [32] the Igusa quartic has been characterized as a Steiner hyperquartic and as

such it has a degree 8 endomorphism.

In this section we will show that the existence of a degree 8 endomorphism of the

Igusa quartic is indeed a part of a more general result. We will construct a degree 8

endomorphism on suitable Siegel modular threefolds via an isomorphism of graded

rings of scalar-valued Siegel modular forms and a degree 8 map between two given

Siegel modular threefolds.

First we will consider the rings of scalar-valued Siegel modular forms (with multiplier)

with respect to the subgroup �2(2, 4), defined as in (15), and the subgroup

�2
2 (2, 4) =

⌦
� 2 �2 | � ⌘

⇣
12 ⇤
0 12

⌘
(mod 2), diag(2B) ⌘ diag(C) ⌘ 0 (mod 4)

↵
. (56)

The computation of such rings give us that the degree 8 map

P3 ! P3

[x0, x1, x2, x3] 7! [x2
0, x2

1, x2
2, x2

3]
(57)

is indeed a map between the modular varieties related to these two groups:

 : Proj(A(�2(2, 4)))! Proj(A(�2
2 (2, 4))). (58)
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The above-mentioned isomorphism of suitable rings of modular forms involves the

following two subgroups:

�0(2) = { � 2 �2 | C ⌘ 0 (mod 2) } , (59)

�0
0 (2) = { � 2 �2 | C ⌘ B ⌘ 0 (mod 2) } . (60)

We shall prove that there is indeed an isomorphism

�0(2)/�2
2 (2, 4) ⇠= �0

0 (2)/�2(2, 4),

equivariant with respect to the action of the groups on the two copies of P3 in (58). If

G = �0(2)/�2
2 (2, 4) ⇠= �0

0 (2)/�2(2, 4), we will establish the following theorem.

Theorem. For any subgroup H ⇢ G there exists an isomorphism of graded rings of modular

forms

�H : A(�)! A(� 0),

where �2(2, 4) ⇢ � ⇢ �0
0 (2), �2

2 (2, 4) ⇢ � 0 ⇢ �0(2) and the quotients �/�2(2, 4) and � 0/�2
2 (2, 4)

are both isomorphic to H.

By this theorem we will give a degree 8 endomorphism of the Satake compactification

X� 0 for any subgroup �2(2, 4) ⇢ � 0 ⇢ �0
0 (2). Studying the action of the Fricke involution

we will find other modular threefolds with a degree 8 endomorphism.

In the next section we will see to what extent it is possible to generalize these results

to Siegel modular varieties of degree 3. Section 3.3 and 3.4 are based on my paper [39].

3.3.1 Degree 8 map between two modular threefolds

We are going to prove that the map (57) is indeed a morphism of modular varieties. For

the sake of simplicity we will denote the four second order theta constants in degree 2

as follows:

f00 := ⇥[0 0], f01 := ⇥[0 1], f10 := ⇥[1 0], f11 := ⇥[1 1].

By [42] we have that

A(�2(2, 4), v⇥) = C[f00, f01, f10, f11], (61)

where v⇥ is the multiplier system appearing in the transformation formula (37) for

second order theta constants. Hence X�2(2,4) isomorphic to P3.
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It is easily seen that the quotient �2
2 (2, 4)/�(2, 4) is isomorphic to the vector space F3

2,

where F2 is the finite field with two elements. Indeed, consider the map

�2
2 (2, 4)

'��! F3
2

� =
�

A B
C D

�
7�!

✓
b11

2
, b12,

b22

2

◆
(mod 2),

where B =
⇣

b11 b12
b21 b22

⌘
. Since � is a symplectic matrix, the condition A ⌘ 0 (mod 2)

implies that B is a symmetric matrix once we reduce it modulo 2, so the classes

of three entries b11, b12, b22 in F2 determine the matrix B. Moreover the condition

diag(B) ⌘ 0 (mod 2) implies that b11, b22 are even integers so the map ' is well

defined. By the conditions A ⌘ D ⌘ 12 (mod 2) it is easily checked that ' is a group

homomorphism. We want to show that the map ' is surjective and its kernel is the

group �(2, 4). We have that

diag(B) ⌘ 0 (mod 2) =) B =
�

2a b
c 2d

�
, with a, b c, d 2 Z,

so the surjectivity of the map follows. Furthermore we have that

'(�) = (0, 0, 0), diag(B) ⌘ 0 (mod 4) and b12 ⌘ 0 (mod 2),

, diag(B) ⌘ 0 (mod 4) and B ⌘ 0 (mod 2),

, � 2 �(2, 4).

So we have that �1(2, 4)/�(2, 4) is abelian and the index [�1(2, 4) : �(2, 4)] = 8.

Any symmetric 2⇥ 2 integer matrix S determines an element �S 2 �2, namely

�S =

0
@12 S

0 12

1
A .

In particular, if we put

B1 =
�

2 0
0 0

�
, B2 =

�
0 0
0 2

�
, B3 =

�
0 1
1 0

�
,

then the matrices Mi := �Bi
belong to �2

2 (2, 4), and the M2
i belong to its index 8 normal

subgroup �2(2, 4). By taking {M1, M2, M3} as a basis we thus identify �2
2 (2, 4)/�2(2, 4)

with F3
2.

We will discuss the action of the quotient �2
2 (2, 4)/�(2, 4) on the second order theta

constants fa. Focus on the action of the matrices Mi on theta constants. From [42, p.

59] we have

#
⇥

m 0
m 00
⇤
(�S · ⌧) = #

⇥
m 0
m 00
⇤
(⌧+ S) = "-

tm 0(Sm 0+2 diag(S))#
h

m 0
m 00+Sm 0+diag(S)

i
(⌧),

53



with " = 1+ip
2

a primitive 8th root of unity. For the second order theta constants this

gives

⇥[a](�S · ⌧) = i
taSa⇥[a](⌧).

Thus, for a = (a1, a2) 2 { 0, 1 }
2 it follows that

fa(M1 · ⌧) = (-1)a1fa(⌧),

fa(M2 · ⌧) = (-1)a2fa(⌧),

fa(M3 · ⌧) = (-1)a1a2fa(⌧).

So the group �2
2 (2, 4)/�2(2, 4) acts by changes of sign on the fa. Therefore it acts trivially

on the f2
a.

Proposition 3.3.1. The ring C[f2
00, . . . , f2

11] is equal to the subring AN(�2
2 (2, 4), v2

⇥) ⇢
A(�2

2 (2, 4), v2
⇥) of scalar-valued Siegel modular forms with integral weight.

Proof. We have just seen that C[f2
a] ⇢ AN(�2

2 (2, 4), v2
⇥). For the opposite inclusion, since

both rings are integrally closed it is enough to show that they have the same field of

fractions. This is also immediate, because we have already seen that they both have

C(fa) as an extension of degree 8.

Thus the degree 8 endomorphism of P3 given by [x0, . . . , x3] 7! [x2
0, . . . , x2

3] can be

seen as a map between the two modular varieties

 : Proj(A(�2(2, 4)))! Proj(A(�2
2 (2, 4))).

Here we omit the multipliers since the modular variety is independent of the choice of

the multiplier system.

3.3.2 Isomorphic modular threefolds and degree 8 endomorphisms

In this section we will prove an isomorphism of graded ring of scalar-valued modular

forms. It is easily checked that the groups �2
2 (2, 4) and �2(2, 4) are normal subgroups

of �0(2) and �0
0 (2) respectively. Moreover [�0(2) : �2

2 (2, 4)] = 96 and the quotient group

is isomorphic to the semidirect product F4
2 n S3 where S3 is the symmetric group of

degree 3.

We can construct an isomorphism

' : �0(2)/�2
2 (2, 4)! �0

0 (2)/�2(2, 4),
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as follows. For a class � 2 �0(2)/�2
2 (2, 4) we can choose a representative (which we also

call �) of the form

� ⌘
�

A B
C D

�
=
�

1 0
CA-1 1

� �
A 0
0 tA-1

� �
1 A-1B
0 1

�
.

Define

'(�) =
�

1 0
CA-1 1

� �
A 0
0 tA-1

� �
1 A-12B
0 1

�
.

Roughly speaking, the map ' sends “B” to “2B”. Set

G := �0(2)/�2
2 (2, 4) ⇠= �0

0 (2)/�2(2, 4).

From [18, section 2] we know that �0(2) is generated by matrices of the form t�2S,

� 0 =
�

A 0
0 tA-1

�
and �S, where S is a symmetric 2⇥ 2 matrix with integer coefficients.

The classes of these matrices are then generators for the group �0(2)/�2
2 (2, 4) and their

images under ' are generators for the group �0
0 (2)/�2(2, 4).

An easy computation gives

fa(t�2S · ⌧)2 = fa-diag(S)(⌧)
2, fa(t�2S · ⌧) = fa-diag(S)(⌧).

fa(� 0 · ⌧)2 = fAa(⌧)2, fa(� 0 · ⌧) = fAa(⌧),

fa(�S · ⌧)2 = i
ta2Safa(⌧)2, fa(�2S · ⌧) = i

ta2Safa(⌧).

This shows that via the isomorphism ' the action of the group G on the two polynomial

rings is the same and the map fa 7! f2
a is an isomorphism of G-modules.

Theorem 3.3.2. For any subgroup H ⇢ G there exist two groups � , � 0 such that

�2(2, 4) ⇢ � ⇢ �0
0 (2), �2

2 (2, 4) ⇢ � 0 ⇢ �0(2)

and the quotients �/�2(2, 4) and � 0/�2
2 (2, 4) are both isomorphic to H via the map induced by '.

This also induces an isomorphism

�H : A(� , v⇥)! AN(� 0, v2
⇥),

such that if f 2 [� , k/2, v⇥] then �H(f) 2 [� 0, k, v2
⇥].

As an immediate consequence we have the following Theorem.

Theorem 3.3.3. For every subgroup � such that �2(2, 4) ⇢ � ⇢ �0
0 (2) the projective variety X�

has a degree 8 endomorphism.
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Proof. We will follow the notation of Theorem 3.3.2. Directly from the inclusion of

groups we have that

A(� , v⇥) ⇢ A(�2(2, 4), v⇥) = C[fa]

AN(� 0, v2
⇥) ⇢ A(�2

2 (2, 4), v2
⇥) = C[f2

a].

Let

 : C[fa]! C[f2
a]

fa 7! f2
a

,

then

A(� , v⇥)
 ��! AN(� 0, v2

⇥)
�H���!
⇠=

A(� , v⇥),

has degree 8 and as a consequence the modular variety associated to � has a degree 8

endomorphism.

Since �2(2, 4) ⇢ �2(2) ⇢ �0
0 (2), Theorem 3.3.3 gives a degree 8 endomorphism of the

Igusa quartic.

By means of the characterization of the Igusa quartic as a Steiner hypersurface, the

Satake compactification of the moduli space of principally polarized abelian surfaces

with Göpel triples is shown to be isomorphic to the Igusa quartic (cf. [32]). This

isomorphism is given by means of scalar-valued Siegel modular forms in [6, section

11]. With the result of Theorem 3.3.2 we will give a different proof of this isomorphism

between this two Siegel modular varieties. The moduli space of principally polarized

abelian surfaces with Göpel triples is the modular variety with respect to the subgroup

�1(2) = { � 2 �2 | A ⌘ D ⌘ 12 (mod 2), C ⌘ 0 (mod 2) } .

It is readily seen that both �2(2)/�2(2, 4) and �1(2)/�2
2 (2, 4) are isomorphic to the group H

generated by M1, M2, tM1 and tM2. Therefore the isomorphism 'H of Theorem 3.3.2

induces an isomorphism between X�2(2) and X�1(2).

3.3.3 Action of the Fricke involution

In this section we will see that Theorem 3.3.3 can be extended to other modular

threefolds by studying the action of the Fricke involution.

First note that by Riemann’s addition formula (see (35) and (36)) the vector space

of modular forms spanned by
�
⇥[a]2

 
a2{ 0,1 }g coincides with the one spanned by⌦

#
⇥

0
b

⇤2 ↵
b2{ 0,1 }g

where #b := #
⇥

0
b

⇤
for b 2 { 0, 1 }

g. By the action of the Fricke involu-

tion we will see that in the arguments of the previous section we can actually replace
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the rings C[fa] and C[f2
a] by the rings C[#b] and C[#2

b] thus finding other modular

threefolds with a degree 8 endomorphism.

The Fricke involution on Hg is the involution given by the matrix

Jg = 1p
2

0
@ 0 1g

-2 1g 0

1
A 2 Sp(2g, R),

acting on Hg as in (11), so that Jg · ⌧ = (2⌧)-1. We are interested in the case g = 2 and

the action of J2 on the functions fa with a 2 { 0, 1 }
2.

Although formula (18) does not define an action of Sp(2g, R) on theta characteristics,

it is still possible to use the classical transformation formula for theta functions to

compute the action of the matrix J2 on theta constants. An easy computation shows

that

fa(J2 · ⌧) = v⇥(J2) det(⌧)1/2#a(⌧), (62)

where we define v⇥(J2) to be equal to v#(J) with J =
⇣

0 1g

-1g 0

⌘
. By v# we denote the

multiplier system appearing in the transformation formula for theta constants. For any

� 2 Sp(4, R) we write �J2 for the conjugate J2�J-1
2 . Then

�J2 =

0
@ D -C/2

-2B A

1
A , 8� 2 �2. (63)

In particular, if � 2 �2, then �J2 2 �2 if and only if C ⌘ 0 (mod 2).

From (63) we can compute that

�2
2 (2, 4)J2 = �2

2 (2, 4) and �0(2)J2 = �0(2),

whereas

�0
0 (2)J2 = �0(4) := { � 2 �2 | C ⌘ 0 (mod 4) } ,

and

�2(2, 4)J2 =

8
>>>><
>>>>:

A ⌘ D ⌘ 12 (mod 2),

� 2 �2 s.t. C ⌘ 0 (mod 4), diag(C) ⌘ 0 (mod 8),

diag(B) ⌘ 0 (mod 2)

9
>>>>=
>>>>;

.

We can exploit this action to compute the ring of scalar-valued Siegel modular forms

with respect to the group �2(2, 4)J2 . From (61) and (62) it follows that

A(�2(2, 4)J2 , v#) = C[#b].

Moreover, since the f2
a are linear combination of the #2

b and vice versa, by (35) and (36),

the polynomial ring C[f2
a] = C[#2

b] is invariant under the action of the Fricke involution.
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Thus, we have another modular interpretation of the endomorphism (57) of P3. Set

G 0 := �0(4)/�2(2, 4)J2 . With the same arguments that led us to Theorem 3.3.2, we have

an isomorphism ' 0 : �0(2)/�2
2 (2, 4)! �0(4)/�2(2, 4)J2 such that via this isomorphism the

action of the group G 0 on the rings C[#b] and C[#2
b] is the same and the map #b 7! #2

b is

an isomorphism of G 0-modules.

Theorem 3.3.4. For any subgroup H 0 ⇢ G 0 there exist two groups �, � 0 such that

�2(2, 4)J2 ⇢ � ⇢ �0(4), �2
2 (2, 4) ⇢ � 0 ⇢ �0(2),

and the quotients �/�2(2, 4)J2 and � 0/�2
2 (2, 4) are both isomorphic to H 0. This isomorphism is

induced by ' 0. Therefore it is also induced an isomorphism of graded ring of modular forms

 H 0 : A(�, v#)! AN(� 0, v2
#)

such that if f 2 [�, k/2, v#] then  H 0(f) 2 [� 0, k, v2
#].

Note that since the groups �2
2 (2, 4) and �0(2) are fixed by the Fricke involution the

set of groups between them is also fixed, but the individual groups need not be. As

before we get the following statement about the existence of a degree 8 endomorphism

on suitable Siegel modular threefolds.

Theorem 3.3.5. For every subgroup � such that �2(2, 4)J2 ⇢ � ⇢ �0(4) the projective variety

X� has a degree 8 endomorphism.

3.4 siegel modular varieties in degree 3

In this section we will examine the modular varieties associated to the degree 3 version

of the subgroups appearing in (58). We will investigate some properties of these

modular varieties in order to show that the arguments of the previous section do not

generalize directly in the higher dimensional case.

Define the group

�2
3 (2, 4) =

⌦
� 2 �3

��� � ⌘
⇣

12 ⇤
0 12

⌘
(mod 2), diag(2B) ⌘ diag(C) ⌘ 0 (mod 4)

↵
.

We will show that both H3/�3(2, 4) and H3/�2
3 (2, 4) are not unirational. A necessary

condition for unirationality is that there are no non-trivial holomorphic differential

forms in any degree. Exploiting the construction of holomorphic differential forms

by means of gradients of odd theta functions, we will show that ⌦5(H3)�3(2,4) and

⌦5(H3)�
2
3 (2,4) are not trivial.
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We have seen in Section 3.2 that a vector-valued Siegel modular form with respect to

a subgroup � ⇢ �g and the irreducible representation with highest weight

(g + 1, . . . , g + 1, g- 1)

determines a � -invariant holomorphic differential form of degree N - 1, where N =

g(g + 1)/2. For � = �3(2, 4) we can easily find such a modular form among the ones

constructed with gradients of odd theta functions. Recall from Section 2.4 that if N is

a matrix of two distinct odd characteristics, then W(N) 2 [�3(2, 4), (4, 4, 2)]. Hence the

space ⌦5(H3)�3(2,4) is non-trivial and so H3/�3(2, 4) is not unirational. Actually in this

way one can construct at least
�
28
2

�
= 378 non-trivial holomorphic differential forms on

H3 invariant under the action of �3(2, 4), each coming from a vector-valued modular

form W(M) where M is a matrix of two distinct odd characteristics.

These vector-valued Siegel modular forms can be also used to construct some non-

trivial holomorphic differential forms of degree 5 invariant under the action of the

group �2
3 (2, 4) as it is shown in the proof of the following Theorem.

Theorem 3.4.1. The space ⌦5(H3)�
2
3 (2,4) is non-trivial and so H3/�2

3 (2, 4) is not unirational.

Proof. We will prove that this space of holomorphic differential forms is not trivial by

exhibiting some elements of [�2
3 (2, 4), (4, 4, 2)]. One way to construct vector-valued Siegel

modular forms in this space is to symmetrize suitable vector-valued Siegel modular

forms with respect to �3(2, 4) and the representation ⇢ = (4, 4, 2) and then check that

the resulting vector-valued Siegel modular form with respect to �2
3 (2, 4) and ⇢ does not

vanish identically.

Given a matrix M = (m1, m2) of distinct odd characteristics, consider

�(M)(⌧) =
X

�2�2
3 (2,4)/�3(2,4)

⇢(C⌧+ D)-1W(M)(� · ⌧)

=
X

�2�2
3 (2,4)/�3(2,4)

(�)4 e (2'n1
(�) + 2'n2

(�)) W(N)(⌧),
(64)

where N = (n1, n2) with ni = �-1 · mi, i = 1, 2. If well defined and not identically

zero, �(M) is a vector-valued Siegel modular form with respect to �2
3 (2, 4) and the

representation ⇢ by construction.

By [24] we know that (�)4 = (-1)Tr(tBC) for � 2 �g. It is easily seen that a set of

generators for the quotient group �2
3 (2, 4)/�3(2, 4) is given by the classes of the matrices

M1, . . . , M6, where Mi =
⇣

13 Bi
0 13

⌘
and

B1 =
⇣

2 0 0
0 0 0
0 0 0

⌘
, B2 =

⇣
0 0 0
0 2 0
0 0 0

⌘
, B3 =

⇣
0 0 0
0 0 0
0 0 2

⌘
,

B4 =
⇣

0 1 0
1 0 0
0 0 0

⌘
, B5 =

⇣
0 0 1
0 0 0
1 0 0

⌘
, B6 =

⇣
0 0 0
0 0 1
0 1 0

⌘
.
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Thus, the sum in (64) is finite and �(M) is well defined. Moreover, from the set of

generators we can explicitly construct the group �2
3 (2, 4)/�3(2, 4) and compute (64) in

order to see if there are choices of the matrix M such that �(M) does not vanish

identically.

A direct computation in Mathematica [53] shows that there are only 42 (from the 378

we started with) choices of the matrix M such that �(M)(⌧) does not vanish identically,

exactly the ones such that if M =
⇣

m 0
1 m 0

2

m 00
1 m 00

2

⌘
then m 0

1 = m 0
2. For instance, take

M =

0
@

0 0
0 0
1 1
0 0
0 1
1 1

1
A ,

then

�(M)(⌧) = 16

4X

i=1

W(Ni)(⌧),

where N1 = M and

N2 =

0
@

0 0
0 0
1 1
0 0
1 0
1 1

1
A , N3 =

0
@

0 0
0 0
1 1
1 1
0 1
1 1

1
A , N4 =

0
@

0 0
0 0
1 1
1 1
1 0
1 1

1
A .

The results obtained so far can be used to show that the arguments of Section 3.3 do

not generalize directly to the degree three case. The first key point in the degree 2 case

was that there is a map

 : H2/�2(2, 4)!H2/�2
2 (2, 4)

which is actually the endomorphism of P3 given by [x0, x1, x2, x3] 7! [x2
0, x2

1, x2
2, x2

3]. We

have shown that both H3/�3(2, 4) and H3/�2
3 (2, 4) are not unirational, and therefore a

map between these two modular varieties is not a map between two projective spaces.

In fact, it is not even possible to construct a map by “squaring coordinates” as in the

degree two case. We will show that the coordinate ring of H3/�2
3 (2, 4) is not generated

by squares of elements of the coordinate ring of H3/�3(2, 4).

In degree three there is a non-trivial algebraic relation between second order theta

constants. By [42] we know that

A(�3(2, 4), v⇥) = C[fa]/(R16),

where

R16 = P8(f2
000, . . . , f2

111) + q · Q4(f2
000, . . . , f2

111),
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with P8 and Q4 polynomials in the f2
a of degree 8 and 4 respectively and q =

Q
a2{ 0,1 }3 fa. Its expression is simpler in terms of theta constants, namely

R16 = 23
X

m even
#16

m (⌧) -
⇣ X

m even
#8

m(⌧)
⌘2

.

One can move from one expression to the other by means of the identities (35) and (36),

recovering in this way the explicit expression of the polynomials P8 and Q4.

It is easily checked that q 2 A(�2
3 (2, 4), v2

⇥) so that this ring contains

R := C[f2
a, q]/(P8 + q · Q4, q2 -

Q
af2

a).

HenceA(�2
3 (2, 4), v2

⇥) is not generated by squares of elements of the ring A(�3(2, 4), v2
⇥).
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4
V E C T O R - VA L U E D M O D U L A R F O R M S A N D T H E H E AT

E Q U AT I O N

In this chapter we will present some new results concerning the construction of vector-

valued Siegel modular forms and a consequent application to the theory of principally

polarized abelian varieties. The chapter is based on my works [8] and [40].

In Section 4.1 we present a new construction of vector-valued Siegel modular forms

starting from singular scalar-valued modular forms. Applying this construction to

second order theta constants we will prove that the relationship between the two

methods in [12] and [44] given in [8] is not only at the level of holomorphic differential

forms but also at the level of vector-valued modular forms (cf. Section 4.1.3).

In Section 4.2 we will give an application of this new construction to the characteriza-

tion of decomposable principally polarized abelian varieties.

4.1 a new construction of vector-valued modular forms

The material exposed in this section is a development of the ideas in [8, Section 5].

Here we focus on vector-valued modular forms and not only on invariant holomorphic

differential forms and give a new method for constructing vector-valued modular forms

from singular scalar-valued ones. We will prove that the relationship between the two

methods in [12] and [44] given in [8] is not only at the level of holomorphic differential

forms but also at the level of vector-valued Siegel modular forms. Denote by Vgrad the

vector space generated by the vector-valued Siegel modular forms constructed with

gradients of odd theta functions as in (39) and by V⇥ the vector space generated by

the vector-valued modular forms constructed with our new method applied to second

order theta constants. We will prove that Vgrad = V⇥.

This section is mostly based on my recent work [40].
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4.1.1 Multilinear algebra

In this section we present some results in multilinear algebra. First we shall fix notations.

If M is a g⇥ g matrix its elements will be denoted by Mi
j where i is the row index

and j is the column index. If I 2 P⇤
k(Xg) and J 2 P⇤

l (Xg) denote by M(I, J) the k⇥ l

submatrix of M obtained by taking rows with indexes in I and columns with indexes in

J. If J = {ji, . . . , jl} we will write

M(I, J) = (M(I, j1) | · · · | M(I, jl))

to emphasize the columns of the submatrix. If I = Xg we will write MJ for M(I, J).

The following formula is a well known generalization of the Laplace expansion

theorem for the determinant of a square matrix. Choose 1 6 k < g and fix J 2 P⇤
k(Xg)

then

det(M) =
X

I2P⇤
k(Xg)

(-1)I+J det( M(I, J) ) det( M(Ic, Jc) ), (65)

where I + J means the sum of all the elements of the sets I and J. Here we are fixing

a set of columns of M and extracting minors of order k from such columns with the

related cofactors, the same formula holds if we fix a set of rows and extract from them

minors of order k.

Denote by M(k) the matrix of cofactors of submatrices of order k < g of M. We will

index the entries of M(k) by some sets of indexes, that is

( M(k) )I
J = (-1)I+J det( M(Ic, Jc) ),

for I, J 2 P⇤
k(Xg). This notation is justified by the relation with exterior powers of linear

mapping, relation that we will explain in the following.

Let us make some examples. If

M =

0
BBBBBB@

M1
1 M1

2 M1
3

M2
1 M2

2 M2
3

M3
1 M3

2 M3
3

1
CCCCCCA
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is a 3⇥ 3 matrix we get

M(1) =

0
BBBBBBBBBBBBBBBB@

������

M2
2 M2

3

M3
2 M3

3

������
-

������

M2
1 M2

3

M3
1 M3

3

������

������

M2
1 M2

2

M3
1 M3

2

������

-

������

M1
2 M1

3

M3
2 M3

3

������

������

M1
1 M1

3

M3
1 M3

3

������
-

������

M1
1 M1

2

M3
1 M3

2

������
������

M1
2 M1

3

M2
2 M2

3

������
-

������

M1
1 M1

3

M2
1 M2

3

������

������

M1
1 M1

2

M2
1 M2

2

������

1
CCCCCCCCCCCCCCCCA

and

M(2) =

0
BBBBBB@

( M(2) )
{ 1,2 }

{ 1,2 }
( M(2) )

{ 1,2 }

{ 1,3 }
( M(2) )

{ 1,2 }

{ 2,3 }

( M(2) )
{ 1,3 }

{ 1,2 }
( M(2) )

{ 1,3 }

{ 1,3 }
( M(2) )

{ 1,3 }

{ 2,3 }

( M(2) )
{ 2,3 }

{ 1,2 }
( M(2) )

{ 2,3 }

{ 1,3 }
( M(2) )

{ 2,3 }

{ 2,3 }

1
CCCCCCA

=

=

0
BBBBBB@

M3
3 -M3

2 M3
1

-M2
3 M2

2 -M2
1

M1
3 -M1

2 M1
1

1
CCCCCCA

For k = 0 we set M(0) = det M. Moreover, t
�
M(1)

�
is the adjoint matrix of M, that is

the matrix such that

M t
�
M(1)

�
= (det M) 1g.

Let V be a g-dimensional complex vector space and fix a basis { ei }
g
i=1. If L : V ! V is a

linear map, then for any 1 6 p 6 g there is an associated linear map
Vp L :

Vp V ! Vp V .

If the map L is given by a matrix M with respect to the fixed basis of V , the matrix of

the associated map
Vp L with respect to the basis

eI = ei1
^ · · ·^ eip

, I = {i1, . . . , ip} 2 P⇤
p(Xg), (66)

will be denoted by
Vp M. It can be easily obtained by the matrix M. Indeed

(
VpM)I

J = det(M(I, J)), I, J 2 P⇤
p(Xg). (67)
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Note that when we work with exterior powers of vector spaces, the elements of a matrix

representing a linear map are indexed by some set of indexes corresponding to the

indexing set of the chosen basis (66). Note that

( M(k) )I
J = (-1)I+J(

VpM)Ic

Jc .

Recall by (54) that for A : ^pV ! ^pV and B : ^qV ! ^qV the linear map AuB

AuB : ^p+qV ! ^p+qV

is given by the following matrix

(AuB)H
K =

1�
p+q

p

�
X

I2P⇤
p(H)

J2P⇤
p(K)

(-1)I+JAI
J BIc

Jc , H, K 2 P⇤
p+q(Xg).

The following Lemma gives the explicit expression of this product in suitable cases.

Lemma 4.1.1. Fix 1 6 k 6 g and I 2 P⇤
k(Xg) and J = {j1, . . . , jk} 2 P⇤

k(Xg). If A1, . . . , Ak :

V ! V then

(A1 u · · · uAk)I
J =

1

k!

X

�2Sk

✏(�) det(A�),

where ✏(�) is the sign of the permutation � and

A� =
�
A1(I, j�(1)) | · · · | Ak(I, j�(k))

�
.

Proof. We proceed by induction on k. The case k = 2 follows directly from the def-

inition (54). For k > 3, a direct computation from (54) and the inductive argument

gives

(A1 u · · · uAk)I
J =

1

k!

X

⇢2Sk-1

✏(⇢)
X

J 02P⇤
k-1(J)

I 02P⇤
k-1(I)

⇣
(-1)I 0+J 0

det(A⇢)(Ak)
I\I 0

J\J 0

⌘
.

Note that the subsets I \ I 0 and J \ J 0 have only one element, so (Ak)
I\I 0

J\J 0 is an entry of

the matrix Ak. By formula (65) and the properties of the determinant of a matrix it

follows that the right-hand side is equal to

1

k!

X

⇢2Sk-1

✏(⇢)
X

J 02P⇤
k-1(J)

✏(⇢J 0) det(A1(I, j⇢(1)) | · · · | Ak-1(I, j⇢(k-1)) | Ak(I, J \ J 0)),

where ⇢J 0 2 Sk is the permutation such that j⇢J 0(k) = J \ J 0 and fixes all other elements.

Since every permutation on k elements is the product of a transposition taking the last

element in a given position and a permutation on the others k- 1 elements, the lemma

is proved.
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Corollary 4.1.2. For A : V ! V and 1 6 k 6 g let

A[k] := Au · · · uA| {z }
k times

.

Then we have A[k] =
Vk A, where

Vk A is defined as in (67).

For any A : ^pV ! ^pV and B : ^qV ! ^qV we define the linear map

A ⇤B : ^g-(p+q)V ! ^g-(p+q)V

given by the matrix

(A ⇤B)I
J = (-1)I+J(AuB)Ic

Jc , (68)

for I, J 2 P⇤
g-(p+q)(Xg). If A1, . . . , Ak : V ! V are linear maps then the matrix of the

map A1 ⇤ · · · ⇤Ak, which we denote with the same symbol, has entries

(A1 ⇤ · · · ⇤Ak)I
J = (-1)I+J(A1 u · · · uAk)Ic

Jc , (69)

for I, J 2 P⇤
g-k(Xg).

For A : V ! V and 1 < k 6 g,

(A ⇤ · · · ⇤A| {z }
k times

)I
J = (-1)I+J(Au · · · uA| {z }

k times

)Ic

Jc = (-1)I+J
⇣
A[k]

⌘Ic

Jc
=
⇣
A(g-k)

⌘I

J
,

for I, J 2 P⇤
g-k(Xg). For example

A(1) = A ⇤ · · · ⇤A| {z }
g-1 times

.

Lemma 4.1.3. If v1, . . . , vk 2 V , then

v1
tv1 ⇤ · · · ⇤ vk

tvk =
1

k!
(v1 ^ · · ·^ vk) t(v1 ^ · · ·^ vk).

Proof. For any 1 6 k < g, the Hodge ⇤-operator gives an isomorphism

⇤H :
VkV ! Vg-kV .

If eI is the basis in (66) then the Hodge ⇤-operator is defined by

⇤H(eI) = ✏(I, Ic) eIc , I 2 P⇤
k(Xg),

where ✏(I, Ic) is the sign of the permutation that turns the set I[ Ic into the set Xg.

Define A as the matrix whose i-th row is the vector vi:

A =

0
BBB@

(v1)1 . . . (v1)g

...
...

(vk)1 . . . (vk)g

1
CCCA .
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With respect to the basis {⇤H(eI)}I2P⇤
k(Xg) the coordinates of the vector v1 ^ · · ·^ vk are

the following

(v1 ^ · · ·^ vk)J = ✏(J, Jc) det(AJc), J 2 P⇤
g-k(Xg),

where AJc is the matrix obtained by A by taking columns in Jc.

Let Vi = vi
tvi. A simple computation shows that ✏(I, Ic)✏(J, Jc) = (-1)I+J, hence by

Lemma 4.1.1 it is enough to prove that for I, J 2 P⇤
k(Xg)

X

�2Sk

✏(�) det(V�) = det(AI) det(AJ), (70)

where

V� = (V1(I, j�(1)) | · · · | Vk(I, j�(k))).

Identity (70) easily follows by the fact that

Vh(I, j�(h)) = (vh)j�(h)

t(A(h, I)).

4.1.2 Vector-valued modular forms from singular scalar-valued modular forms

In this section we will work with scalar-valued modular forms with trivial multiplier

system in order to ease notations. Nevertheless the same arguments work for scalar-

valued modular forms with some non-trivial multiplier system with few changes. We

will see an example of this in Section 4.1.3.

For f, h 2 [� , k/2] let

Af, h = f2 @

✓
h

f

◆
= f(@h) - (@f)h,

where @ := (@ij) with @ij =
1+�ij

2 @⌧ij
. Then Af, h is a vector-valued modular form

with respect to the group � and the representation detk⌦ Sym2(Cg) of highest weight

(k + 2, k, . . . , k). More explicitly for any ⌧ 2Hg and any � 2 � it holds that

Af, h(� · ⌧) = det(C⌧+ D)k (C⌧+ D) Af, h(⌧) t(C⌧+ D).

We will be interested in suitable products of this kind of vector-valued modular forms

when f and h are weight 1/2 scalar-valued modular forms. If we let

⇢k = (k + 2, . . . , k + 2, k, . . . , k)

with co - rank(⇢k) = g- k, then Af, h 2 [� , ⇢1] if f, h 2 [� , 1/2].
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Proposition 4.1.4. If A1, . . . , Ak 2 [� , ⇢1] then

A1 ⇤ · · · ⇤Ak 2 [� , ⇢k],

where ⇤ is defined as in (69).

Proof. By definition

(A1 ⇤ · · · ⇤Ak)(� · ⌧) =
�
⇢1(C⌧+ D)A1(⌧)

�
⇤ · · · ⇤

�
⇢1(C⌧+ D)Ak(⌧)

�
.

So we need to prove that

�
⇢1(C⌧+ D)A1(⌧)

�
⇤ · · · ⇤

�
⇢1(C⌧+ D)Ak(⌧)

�
= ⇢k(C⌧+ D)(A1 ⇤ · · · ⇤Ak)(⌧).

It is enough to check the transformation rule for vector-valued modular forms of a

given type. Let vi : Hg ! V be such that

vi(� · ⌧) = det(C⌧+ D)1/2 (C⌧+ D) vi(⌧), 8� 2 � ,

then vi
tvi 2 [� , ⇢1]. By [45] we have that

(v1 ^ · · ·^ vk) t(v1 ^ · · ·^ vk) 2 [� , ⇢k].

The thesis then follows by Proposition 4.1.3.

By Proposition 4.1.4 it easily follows that if fi, hi 2 [� , 1/2], i = 1, . . . , k, then

Af1, h1
⇤ · · · ⇤Afk, hk

is a vector-valued Siegel modular form with respect to the irreducible representation

⇢k.

We will show that these vector-valued modular forms are related to a generalization

of the pairing defined in [12].

For any 1 6 k 6 g and f, h 2 [� , k/2] we define the pairings

{f, h}k =

kX

p=0

(-1)p @[p]fu @[k-p]h,

[f, h]k =

kX

p=0

(-1)p @[p]f ⇤ @[k-p]h,

Where @ := (@ij) with @ij =
1+�ij

2 @⌧ij
. Note that {f, h}1 = Af, h and

[f, h]k = ({f, h}k)(g-k).
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If f, h 2 [� , (g- 1)/2], the � -invariant holomorphic differential form !f,h described

in [12] is defined as

!f,h = {f, h}g-1 u d⌧̌ = Tr([f, h]g-1 d⌧̌), (71)

where d⌧̌ is the basis of ⌦N-1(Hg) given in (53).

In what follows we will focus on modular forms of half integral weight which are

products of weight 1/2 ones.

Lemma 4.1.5. If f, f1, . . . , fl 2 [� , 1/2], then for k 2N

@[k](f1 · · · fl) =

8
>><
>>:

0 if k > l

k!
X

I={i1<···<ik}

f1 · · · fl

fi1
· · · fik

@fi1
u · · · u @fik

if 1 6 k 6 l
,

and

@[k]fl =

8
><
>:

0 if k > l

l(l- 1) · · · (l- k + 1)fl-k(@f)[k] if 1 6 k 6 l
.

Proof. The product u is bilinear, commutative, associative and distributive with respect

to the sum of matrices (cf. [12]). Hence for A : ^pV ! ^pV , B : ^qV ! ^qV , the

following formula holds:

(A + B)[k] =

kX

j=0

✓
k

j

◆
A[j] uB[k-j].

From this, it easily follows that for f 2 [� , k] and h 2 [� , l] and for every 1 6 p 6 g

@[p](fh) =

pX

j=0

✓
p

j

◆
@[j]fu @[p-j]h. (72)

Note that here the terms for which j > rank(f) or p- j > rank(h) vanish by (17). So the

thesis follows by Lemma 2.3.1 and formula (72).

Proposition 4.1.6. Let 1 6 k < g. If fi, hi 2 [� , 1/2], i = 1, . . . , k then

[f1 · · · fk, h1 · · · hk]k =
X

�2Sk

Af1, h�(1)
⇤ · · · ⇤Afk, h�(k)

,

where Sk is the group of permutations on k elements.

Proof. It is enough to prove that

{f1 · · · fk, h1 · · · hk}k =
X

�2Sk

Af1, h�(1)
u · · · uAfk, h�(k)

.
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If I = {i1, . . . , ip} 2 P⇤
p(Xk), with p 6 k, and � 2 Sp denote by �(I) = {i�(1), . . . , i�(p)}.

Moreover, denote by fI = fi1
· · · fip

and by @fI = @fi1
u · · · u @fip

. Then by Lemma 4.1.5

we have

@[p](f1 · · · fk) = p!
X

I2P⇤
p(Xk)

fIc @fI.

Since the product u is bilinear it holds that

Af1, h1
u · · · uAfk, hk

=

kX

p=0

(-1)p
X

I2P⇤
p(Xk)

hI fIc (@fI u @hIc).

Then

X

�2Sk

Af1, h�(1)
u · · · uAfk, h�(k)

=

kX

p=0

(-1)p
X

I2P⇤
p(Xk)

fIc@fI u

0
@X

�2Sk

h�(I) @h�(Ic)

1
A =

=

kX

p=0

(-1)p
X

I2P⇤
p(Xk)

fIc@fI u

0
@p!(k- p)!

X

J2P⇤
p(Xk)

hJ @hJc

1
A =

=

kX

p=0

(-1)p @[p](f1 · · · fk)u @[k-p](h1 · · · hk).

Corollary 4.1.7. Let 1 6 k < g. If f, h 2 [� , 1/2] then

[fk, hk]k = k!(Af,h)(g-k).

As a consequence, if f = Fg-1 and h = Hg-1 for F, H 2 [� , 1/2] it easily follows that

!f, h = (g- 1)! Tr((AF, H)(1)d⌧̌),

where !f, h is defined in (71). So we recover the result in [8, Theorem 14] and actually

generalize it to every � -invariant holomorphic differential form (71) constructed from

two singular scalar-valued Siegel modular forms of weight (g- 1)/2 which are products

of weight 1/2 ones.

Remark 4.1.8. For k = g the identities in Proposition 4.1.6 and Corollary 4.1.7 still hold. The

products f1 · · · fg and h1 · · · hg are no more singular modular forms and we are constructing

scalar-valued Siegel modular forms of weight g + 2 instead of vector-valued modular forms. In

particular one of the scalar-valued Siegel modular forms we obtain is

det(Af, h) = g!
gX

p=0

(-1)p @[p](fg)u @[g-p](hg).
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4.1.3 An identity of vector spaces of vector-valued modular forms

In this section we prove that if V⇥ is the vector space generated by the vector-valued

Siegel modular forms constructed with our new method applied to second order theta

constants and Vgrad is the vector space generated by the vector-valued Siegel modular

forms constructed with gradients of odd theta functions as in (39), then V⇥ = Vgrad.

Hence the two methods, although so different at a first look, give rise to elements of

the same vector space of vector-valued Siegel modular forms.

We will first illustrate the construction of the vector-valued Siegel modular forms

with the new method applied to second order theta constants. In this way we will also

give examples of vector-valued Siegel modular forms constructed as in Section 4.1.2

with scalar-valued Siegel modular forms with some non-trivial multiplier system.

Recall from Section 2.4 that for any " 2 { 0, 1 }
g the second order theta constant with

characteristic " is defined as ⇥["](⌧) = # [ "0 ] (2⌧, 0). For every ", � 2 { 0, 1 }
g denote by

A"� := {⇥["],⇥[�]}1. Then it is easy to see that

A"�(� · ⌧) = (�)2 det(C⌧+ D) (C⌧+ D) A"�(⌧)
t(C⌧+ D), 8� 2 �g(2, 4).

By this equation and Proposition 4.1.4, for "1, . . . , "k, �1, . . . , �k 2 { 0, 1 }
g, the vector-

valued Siegel modular form A"1 �1
⇤ · · · ⇤A"k �k

satisfies the following transformation

formula for any � 2 �g(2, 4)

(A"1 �1
⇤ · · · ⇤A"k �k

)(� · ⌧) = (�)2k ⇢k(C⌧+ D)(A"1 �1
⇤ · · · ⇤A"k �k

)(⌧). (73)

Note that as we said before, here we are dealing with scalar-valued Siegel modular

forms with some non-trivial multiplier system that shows up in the transformation

formula (73) for the vector-valued Siegel modular form we are constructing.

Since (�)2 = 1 for every � 2 �g(2, 4)⇤, then A"1 �1
⇤ · · · ⇤A"k �k

2 [�g(2, 4)⇤, ⇢k] for any

k. If k is even, then A"1 �1
⇤ · · · ⇤A"k �k

2 [�g(2, 4), ⇢k] because by formula (26) we have

that (�)4 = 1 for any � 2 �g(2, 4).

Concerning gradients of odd theta functions, recall from Section 2.4 that for N =

(n1, . . . , nk) 2M2g⇥k, where {ni}i=1,...,k is a set of distinct odd characteristics, we have

defined the vector-valued Siegel modular form

W(N)(⌧) = ⇡-2k (vn1
(⌧)^ . . .^ vnk

(⌧)) t(vn1
(⌧)^ . . .^ vnk

(⌧)),

where vn(⌧) := gradz ✓n(⌧, z)|z=0. We have that W(N) 2 [�g(2, 4)⇤, ⇢k] for any k. If k is

even the modularity group is bigger, indeed in this case W(N) 2 [�g(2, 4), ⇢k].

A fundamental step in the proof of the identity of the vector spaces V⇥ and Vgrad

is the following Lemma that shows a consequence of the classical Riemann’s addition

theorem for theta functions.
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Proposition 4.1.9. If vn is the gradient of an odd theta function with characteristic n = [ "� ],

then

vn
tvn = ⇡i

X

↵2{ 0,1 }g

(-1)↵·�A"+↵↵. (74)

Moreover for given ", � 2 { 0, 1 }
g, denote by n↵ =

⇥
"+�
↵

⇤
for ↵ 2 { 0, 1 }

g. Then

4⇡i A"� =
1

2g-2

X

↵2{ 0,1 }g s.t.
n↵ odd

(-1)�·↵ vn↵
tvn↵ . (75)

This proposition fits in the big subject of generalizations of Jacobi’s derivative formula.

For g = 1 the classical Jacobi identity states that

D
�⇥

1
1

⇤�
= - #

⇥
0
0

⇤
#
⇥

1
0

⇤
#
⇥

0
1

⇤
.

Essentially, the problem of generalizing this formula consist in expressing the Jacobian

determinant of g distinct odd theta functions as a polynomial in theta constants.

In [28] it is proven that the Jacobian determinant is always a rational function of

the theta constants. The question about the possible expression as a polynomial in

theta constants is more complicated. For g = 2 the formula is still classical and gives

the following. If n1, . . . , n6 are the six odd characteristics and mi = n1 + n2 + ni+2 for

i = 1, . . . , 4 then

D(n1, n2) = ± #m1
· · · #m4

.

For g = 3 it is known that if ni, i = 1, . . . , 3 are odd characteristics the Jacobian

determinant D(n1, n2, n3) is a polynomial in the theta constants if and only if n1 + n2 +

n3 is an even characteristic. In higher degree there is a conjectural formula which has

been proven only for g 6 5.

Nevertheless we can say when a Jacobian determinant is not a polynomial in theta

constants by looking at a condition on the characteristics involved. A set of character-

istics is called essentially independent if the sum of any even number of them is not

congruent to 0 mod 2. A triplet of odd characteristics is called azygetic or syzygetic

if their sum is even or odd respectively. A set of odd characteristics is azygetic or

syzygetic if all triples in the set are azygetic or syzygetic respectively. By [28] we know

that if n1, . . . , ng is a set of odd characteristics which is an essentially independent

syzygetic set then D(n1, . . . , ng) is not a polynomial in the theta constants.

A different generalization can be done by looking at higher order derivatives of

theta functions. This is the direction taken in our Proposition (recall that by the heat

equation (21) one has that 4⇡i@jk = @zj
@zk

).

Regarding theta series with harmonic polynomial coefficients, we have seen in

Section 2.4 that the C-span of Jacobian determinants and the C-span of products of
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g + 2 even theta constants are spaces of theta series with suitable harmonic coefficients.

To find an element in the intersection of the two spaces is then equal to find an

expression of some linear combinations of Jacobian determinants as a polynomial (of

the right degree since the weight of a Jacobian determinant is g/2 + 1) in theta constants.

The generalization in the Proposition also fits in this setting. For example in degree 1

we are working with theta series with harmonic polynomial coefficient x2 - y2 (cf. [22]).

Proof of Proposition 4.1.9. We will follow the proof given in [23]. A spacial case of

Riemann’s addition theorem for theta functions gives the following formula (cf. [27]):

#
⇥↵
�

⇤
(2⌧, 2z) #

⇥↵+"
�

⇤
(2⌧, 2x) =

1

2g

X

�2{ 0,1 }g

(-1)↵·�#
⇥ "
�+�

⇤
(⌧, z + x) # [ "� ](⌧, z- x), (76)

for ⌧ 2Hg, z, x 2 Cg and ↵,�, " 2 { 0, 1 }
g.

Denote by C�"�(⌧) the g⇥ g matrix with entries
⇣

C�"�(⌧)
⌘i

j
= @zi

#
⇥ "
�+�

⇤
(⌧, 0)@zj

# [ "� ](⌧, 0) + @zj
#
⇥ "
�+�

⇤
(⌧, 0)@zi

# [ "� ](⌧, 0),

and by A�"�(⌧) the g⇥ g matrix with entries
⇣

A�"�(⌧)
⌘i

j
=
�
@zi
@zj
#
⇥
�
�

⇤
(2⌧, 0)

�
#
⇥ "
�

⇤
(2⌧, 0) - #

⇥
�
�

⇤
(2⌧, 0)

�
@zi
@zj
#
⇥ "
�

⇤
(2⌧, 0)

�
. (77)

Note that A0
"� = 4⇡i A"�. Clearly C�"�(⌧) = 0 unless the characteristics

⇥ "
�+�

⇤
and [ "� ]

are odd and A�"�(⌧) = 0 unless
⇥
�
�

⇤
and

⇥ "
�

⇤
are even characteristics.

We are going to prove that if [ "� ] and
⇥ "
�+�

⇤
are odd characteristics then

C�"� =
1

2

X

↵2{ 0,1 }g

(-1)↵·�A�"+↵↵. (78)

Fix � 2 { 0, 1 }
g and take the sum of the equations (76) for ↵ 2 { 0, 1 }

g each with coefficient

(-1)↵·�. Hence we get
X

↵2{ 0,1 }g

(-1)↵·�#
⇥↵
�

⇤
(2⌧, 2z) #

⇥↵+"
�

⇤
(2⌧, 0) =

=
1

2g

X

↵,�2{ 0,1 }g

(-1)↵·(�+�)#
⇥ "
�+�

⇤
(⌧, z) # [ "� ](⌧, z) =

= #
⇥ "
�+�

⇤
(⌧, z) # [ "� ](⌧, z).

Differentiating this relation with respect to zi and zj and evaluating at z = 0 we get the

identity (78).

There is also the “inverse” formula, indeed we will prove that

A�↵+"↵ =
1

2g-1

X

�2{ 0,1 }g s.t.
[ "� ]odd

(-1)↵·�C�"�. (79)
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Assume that in (76) the characteristics
⇥↵
�

⇤
and

⇥↵+"
�

⇤
are both even. Differentiating we

get

�
@zi
@zj
#
⇥↵
�

⇤
(2⌧, 0)

�
#
⇥↵+"
�

⇤
(2⌧, 0) =

=
1

2g
@zi
@zj

0
@ X

�2{ 0,1 }g

(-1)↵·� #
⇥ "
�+�

⇤
(⌧, z) # [ "� ](⌧, z)

1
A
������
z=0

.

Switching ↵ and ↵+ " we get

#
⇥↵
�

⇤
(2⌧, 0)

�
@zi
@zj
#
⇥↵+"
�

⇤
(2⌧, 0)

�
=

=
1

2g
@zi
@zj

0
@ X

�2{ 0,1 }g

(-1)(↵+")·� #
⇥ "
�+�

⇤
(⌧, z) # [ "� ](⌧, z)

1
A
������
z=0

.

The identity (79) now follows by subtracting and computing separately for the cases

[ "� ] odd and even.

If n = [ "� ] then 2vn
tvn = C0

"�. Thus by the heat equation (21) and taking � = 0 in (78)

and (79) we get the identity (74) and (75) respectively.

Now we can establish our result about the identity of vector spaces of vector-valued

Siegel modular forms.

Theorem 4.1.10. Denote by Vgrad the vector space of vector-valued Siegel modular forms

generated by the modular forms W(N), where N is a matrix of k distinct odd characteristics.

Denote also by V⇥ the vector space of vector-valued Siegel modular forms generated by the

modular forms A"1 �1
⇤ · · · ⇤A"k �k

where "1, . . . , "k, �1, . . . , �k 2 { 0, 1 }
g. Then for any 1 6

k < g one has the identity of vector spaces

V⇥ = Vgrad.

Proof. We will prove that each vector-valued Siegel modular form A"1 �1
⇤ · · · ⇤A"k �k

for

some "i, �i 2 { 0, 1 }
g, i = 1, . . . , k is in Vgrad. By formula (75) we have that

4⇡i A"i �i
=

1

2g-2

X

↵2{ 0,1 }g s.t.
ni
↵ odd

(-1)�·↵ vni
↵

tvni
↵

,

where ni
↵ =

⇥
"i+�i
↵

⇤
, for i = 1, . . . , k. By the linearity of the product ⇤ and by applying

Lemma 4.1.3 we see that there exists a computable constant c such that

A"1 �1
⇤ · · · ⇤A"k �k

= c
X

↵i2{ 0,1 }g s.t.
["i+�i,↵i] odd

(-1)
P

i �i↵i W(["1 + �1, ↵1], . . . , ["k + �k, ↵k]).

On the other hand, by Lemma 4.1.3 and equation (74) it is also easy to prove that each

vector-valued Siegel modular form W(N) is in V⇥. This completes the proof.
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4.2 an application to the theory of abelian varieties

By means of the vector-valued modular forms presented in the previous section we

give a new characterization of decomposable principally polarized abelian varieties. In

particular we will characterize them in terms of the image of the Gauss map for their

theta divisor. This is part of my joint work [8].

For (X1, L1) and (X2, L2) two polarized abelian varieties denote by pi : X1 ⇥X2 ! Xi

the projection on the i-th factor for i = 1, 2. The line bundle L1 ⇥ L2 := p⇤
1L1 ⌦ p⇤

2L2

defines a polarization on X1 ⇥X2. The new abelian variety (X1 ⇥X2, L1 ⇥ L2) is called a

product abelian variety with a product polarization.

An abelian variety is called indecomposable if it is not a product abelian variety.

Unlike the case of complex tori the indecomposable factors of a decomposable polarized

abelian variety are well determined. Let (X, L) be a polarized abelian variety containing

abelian subvarieties (X1, L1), . . . , (Xr, Lr) and (Y1, M1), . . . , (Ys, Ms) such that

X '
 

rY

i=1

Xi, L1 ⇥ · · ·⇥ Lr

!
'

0
@

sY

j=1

Yj, M1 ⇥ · · ·⇥Ms

1
A .

If (Xi, Li), i = 1, . . . , r, and (Yj, Mj), j = 1, . . . , s are indecomposable, then r = s and there

exists a permutation � of { 1, . . . , s } such that Yj = X�(j) (cf. [9]).

If X⌧ is the principally polarized abelian variety associated to a point ⌧ 2 Hg (see

Section 1.3.1), it is decomposable if and only if there exists � 2 �g such that

� · ⌧ =
⇣
⌧1 0
0 ⌧2

⌘
,

with ⌧i 2Hgi
, for some g1 and g2 such that g1 + g2 = g.

Also we can describe the indecomposable factors of an abelian variety X⌧ in terms of

the irreducible components of the theta divisor

⇥⌧ = { z 2 X⌧ | #0(⌧, z) = 0 } . (80)

Denote by L⌧ = O(⇥⌧) the principal polarization defined by the divisor ⇥⌧. If ⇥1, . . . ,⇥r

are the irreducible components of the divisor ⇥⌧, let Li = O(⇥i), i = 1, . . . , r. Denote

by H(Li) the kernel of the map �Li
defined as in (10) and by H(Li)0 the connected

component of the identity. Let Xi be the complex subtorus X⌧/ H(Li)0 and denote by

pi : X⌧ ! Xi the natural surjection. Then by [9, Corollary 9.4] for any 1 6 i 6 r, there

exists a principal polarization Li on Xi such that p⇤
iLi ' Li and

(X⌧, L⌧) '
 

rY

i=1

Xi, L1 ⇥ · · ·⇥ Lr

!
.
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The analytic characterization of the indecomposable principally polarized abelian

varieties is well known:

Theorem 4.2.1 ([49],[48]). Set N = g(g + 1)/2 and define the (N + 1)⇥ 2g matrix L(⌧) as

L(⌧) :=

0
BBBBBBBBBBBB@

⇥[�]

@z1
@z1

⇥[�]
...

@zi
@zj
⇥[�]

...

@zg@zg⇥[�]

1
CCCCCCCCCCCCA

,

with entries taken for all � 2 { 0, 1 }
g and for all 1 6 i 6 j 6 g. A principally polarized abelian

variety is indecomposable if and only if L(⌧) has maximal rank, i.e. rank equal to N + 1.

A remarkable property of the matrix L(⌧) is given in the following theorem.

Theorem 4.2.2 ([49]).

rank L(⌧) = rank L(� · ⌧), 8� 2 �g.

4.2.1 A new characterization of decomposable principally polarized abelian varieties

Let (X, L) be an abelian variety of dimension g. For a reduced divisor D 2 P(H0(L))_

denote by Ds the smooth part of the support of D. For every x 2 Ds the tangent space

TD,x is a (g- 1)-dimensional vector space and its translation to zero is a well defined

(g- 1)-dimensional vector subspace of the tangent space of X at 0. We will denote this

tangent space by V . If we identify the space of global sections of L as the space of

theta functions for a factor of automorphy, there is a theta function ✓ 2 H0(L), uniquely

determined up to a constant, such that ⇡⇤D = (✓). If w1, . . . , wg are the coordinate

functions with respect to some complex basis of V , the equation of the tangent space

TD,x at a point x 2 D is
gX

i=1

@✓

@wi
(x)(wi - xi) = 0.

So the 1-dimensional subspace of the dual vector space V_ determined by TD,x is

generated by the vector
⇣
@✓
@w1

(x), . . . , @✓@wg
(x)
⌘

. The Gauss map of D is then defined as

G : Ds ! Pg-1 = P(V_)

x 7!

@✓

@w1
(x) , . . . ,

@✓

@wg
(x)

�
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The Gauss map is holomorphic. It neither depends on the choice of ✓ nor on the

choice of a factor of automorphy for L. If the divisor D is irreducible then the map is

dominant.

We will study the Gauss map of the theta divisor of a principally polarized abelian

variety in order to give a new characterization of the locus of reducible abelian varieties.

For any ⌧ 2 Hg let X⌧ = Cg/⌧Zg ⌦Zg be the principally polarized abelian variety

associated to ⌧ and consider the Gauss map G⌧ for the theta divisor ⇥⌧ (see (80)).

In particular we will look at the images of the smooth 2-torsion points on the theta

divisor. For m 2 { 0, 1 }
2g the point xm = ⌧ m 0

2 + m 00
2 is a 2-torsion point of X⌧. Since

#
⇥

0
0

⇤
(⌧, z + xm) = �(z)#

⇥
m 0
m 00
⇤
(⌧, z),

for some nowhere vanishing function �, the 2-torsion points xm on the theta divisor

are in bijection with the set of the theta constants #m(⌧) vanishing at ⌧. If m is odd, a

theta constant vanishes for any ⌧ so at least the 2-torsion points xm corresponding to

odd m are on the theta divisor. There could be more if the matrix ⌧ is a zero of some

even theta constant but the theta divisor cannot contain all the 2-torsion points (cf. [27]).

However, these “even” torsion points would not be smooth points of the theta divisor.

Theorem 4.2.3. A principally polarized abelian variety X⌧ is decomposable if and only if the

images under the Gauss map G⌧ of all smooth 2-torsion points in the theta divisor lie on a

quadric in Pg-1.

Proof. If ⌧ =
⇣
⌧1 0
0 ⌧2

⌘
, with ⌧i 2Hgi

for g1 + g2 = g, then it defines a reducible abelian

variety

(X⌧, L⌧) ' (X⌧1
⇥X⌧2

, L⌧1
⇥ L⌧2

).

It is well known that in this case any theta function with characteristic splits as a

product

✓m(⌧, z) = ✓m1
(⌧1, z1) · ✓m2

(⌧2, z2),

where zi 2 Cgi and m 0 =
h

m 0
1

m 0
2

i
and m 00 =

h
m 00

1

m 00
2

i
with m 0

i, m 00
i 2 { 0, 1 }

2gi , i = 1, 2. If

vm(⌧) := gradz ✓m(⌧, z)|z=0 for an odd characteristic m, then

vm(⌧) =
⇣
vm1

(⌧1) · ✓m2
(⌧2, 0), ✓m1

(⌧1, 0) · vm2
(⌧2)

⌘

Since m is odd, precisely one of m1 and m2 is odd, and thus only the corresponding

gi entries of the gradient vector are non-zero. Thus if we arrange the gradients for

all odd m in a matrix, it will have a block form, with the two non-zero blocks of

sizes gi ⇥ 2gi-1(2gi - 1), and two “off-diagonal” zero blocks. This is just equal to

say that the set of gradients of all odd theta functions at a point ⌧ as above lies in
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the product of coordinate linear spaces Cg1 [Cg2 ⇢ Cg. Since gradz ✓m(⌧, z)|z=0 and

gradz ✓0(⌧, z)|z=xm differ by a constant factor and thus give the same point in Pg-1, this

implies that the images of all the smooth 2-torsion points of ⇥⌧ under G⌧ lie on g1g2

reducible quadrics in Pg-1 written explicitly as

XiXj = 0, 8 1 6 i 6 g1 < j 6 g.

This is equivalent to these Gauss images all lying on a union of two hyperplanes, and a

weaker condition is that they all lie on some quadric (not necessarily a reducible one).

In general if a principally polarized abelian variety is decomposable, its period matrix

does not need to have this block shape, and would rather be conjugate to it under

�g. Since vm(⌧) are vector-valued modular forms for the representation det1/2⌦ std

(see (38)), they transform linearly under the group action, and hence the condition

that the images of the odd 2-torsion points under the Gauss map lie on a quadric is

preserved under the action of �g. Thus for any decomposable principally polarized

abelian variety the images of all smooth 2-torsion points lying on ⇥⌧ are contained in

(many) quadrics.

For the other direction of the theorem we manipulate the gradients to reduce to the

characterization of the locus of decomposable principally polarized abelian varieties

given by theorem 4.2.1. Indeed, suppose all images of the odd 2-torsion points xm lie

on a quadric with homogeneous equation Q(x1, . . . , xg). If B is the matrix of coefficients

of Q, then

Q(vm) = vt
mBvm = 0

for all xm that are smooth points of ⇥⌧. We thus have

Tr(vt
mBvm) = Tr(Bvmvt

m) = 0

for all odd m. Since by (75)

vm
tvm =

1

4

X

↵2{ 0,1 }g

(-1)↵·�A"+↵↵,

where A"+↵↵ := A0
"+↵↵ (see (77)), we also have

Tr(BA↵�) = 0

for all ↵,� 2 { 0, 1 }
g. In particular this implies that the matrix

A := (A↵�)↵6=�2{ 0,1 }g ,

where each A↵� is a column-vector in Cg(g+1)/2, is degenerate.
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We will show that the matrix A(⌧) has non-maximal rank if and only if the matrix

L(⌧) in theorem 4.2.1 has non-maximal rank. This will complete the proof of the

theorem.

For 1 6 i 6 j 6 g, we denote by Lij and Aij the (i, j) rows of the matrices L(⌧) and

A(⌧) respectively. Denote by L0 the first row of L(⌧). We then have

L0 ^Lij = Aij

where by the wedge we mean taking the row vector whose entries are all two by two

minors of the matrix formed by the two row vectors L0 and Lij. If the vectors A↵� are

linearly dependent, this means we have some linear relation 0 =
P

aijAij among the

rows of A(⌧), which is equivalent to

0 =
X

i,j

aij(L0 ^Lij) = L0 ^

0
@X

i,j

aijLij

1
A

and thus L0 must be proportional to
P

aijLij, so that the matrix L does not have

maximal rank.

The proof above shows that in fact a quadric in Pg-1 contains the Gauss images of

the 2-torsion points on the theta divisor if and only if it contains the entire image of the

Gauss map.
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