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Everyone is wrong about the future. Man can only be certain about the present
moment. But is that quite true either? Can he really know the present? Is he in a

position to make any judgment about it? Certainly not. For how can a person
with no knowledge of the future understand the meaning of the present? If we do
not know what future the present is leading us toward, how can we say whether

this present is good or bad, whether it deserves our concurrence, or our suspicion,
or our hatred?

Milan Kundera - Ignorance
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1. Introduction

1.1. Context

The dashing progress of technology and scientific computation in the last decades made
the numerical modeling a discipline of growing and growing success. The huge potential
of modeling in describing a very wide variety of processes through Partial Differen-
tial Equations (PDEs) is been applied to many different sciences: physics, engineering,
biology, chemistry, medicine, but also to social sciences such as economics, sociology,
political science and so on. Numerical methods allow to the translation of a mathemat-
ical model (which can be explicitly solved only occasionally) into algorithms that can
be solved by computers under mathematical manipulation. Computational Fluid Dy-
namics (CFD) plays an important role in this scenario, providing a prediction of fluid
flows solving mathematical modeling with numerical methods. Physical applications are
various: numerical weather predictions, aerospace engineering, computational hemody-
namics (study of blood flow/circulation) and so on.
This PhD thesis fosuses on the study, development and applications of numerical meth-
ods for non-linear differential problems in the CFD context. In particular I applied the
theoretical study to a specific geophysical application, the quasi-geostrophic model, so
I dealt with the vorticity equation and the Jacobian differential operator. In this chap-
ter an introduction to this context with particular attention to atmospheric modeling
is provided, trying to give to the reader a state of the art of the main results achieved
during last decades.

1.1.1. Mimetic schemes

Once an appropriate mathematical model is chosen, we need to design a numerical
method which obtains the solution with sufficient efficiency and accuracy for the prob-
lem considered. The main techniques used to convert the partial differential equations
which form our mathematical model into a set of algebraic equations that can be solved
on a computer are finite difference (our choice), finite volume, and finite element. Each
of these methods involve dividing or discretizing space and time in some manner.
A significant class of numerical methods are the so-called mimetic schemes [1]; these
schemes mimics fundamental properties of mathematical and physical systems such as
conservation laws, symmetry and positivity of solutions, duality of differential opera-
tors, as well as exact mathematical identities of the vector and tensor calculus. The
preservation of conservation laws in a discrete model is necessary for modeling flows
with strong shocks or, as in our case, for non-linear problems, when the energy transfer



1.1 Context 3

between different scales occurs and need to be correctly discretized to avoid numerical
instabilities. Most of PDE’s are formulated in terms of divergence, gradient and curl,
and conservation of integral properties (e.g. mean kinetic energy or mean square vortic-
ity) depends on analytical properties of such operators and resulting theorems of vector
analysis. The need of conserving energy (as well as other physical quantities) is one of
the most important example in fluid dynamics of the applications of mimetic schemes. A
typical problem comes from the finite size of the mesh cells: while the PDEs can resolve
all the scales of motion, its numerical simulation may be more restricted. For example,
the energy dissipation due to the molecular viscosity could result to be important but
at the same time cannot be resolved numerically. We need, then, to avoid unphysical
energy growth with the correct numerical scheme.
The idea of constructing mimetic schemes, firstly appear in the late mid-fifties (even if
the world mimetic appeared many years later), when easy strategies to construct discrete
analogs of analytical differential operators orthogonal meshes are used [2], [3].
Based on rectangular meshes, Arakawa [4] proposed the construction of a finite difference
scheme for the vorticity equation. In this paper Arakawa underlines the importance of
integral constraints on quadratic quantities and he shows that these quantities would
not be maintained using a general finite difference scheme unless the finite difference
Jacobian expression for the advection term is restricted to a form which properly rep-
resents the interaction between grid points. It is shown that the derived form of the
finite difference Jacobian prevents nonlinear computational instability and then allows
to long-term numerical integrations, as we will see in details in Chapter I. In [5], Arakawa
shows with numerical examples the necessity and the superiority of such conservative
schemes. Together with Lamb, Arakawa proposed a potential enstrophy and energy con-
serving scheme for the shallow water equations [6]; the idea of this work has been then
extended for mimetic finite elements by McRae and Cotter [7], who presented a family
of conservative spatial discretizations of the nonlinear rotating shallow-water equations.
These are based on two-dimensional mixed finite element methods and then do not re-
quire an orthogonal grid as some finite difference methods do. Another approach for
a potential enstrophy and energy conserving scheme is given by Salmon [8] who used
Nambu brackets: in this way one need only discretize the Nambu bracket in such a
way that the antisymmetry property is maintained. Using this strategy, Salmon derives
explicit finite-difference approximations for the shallow-water equations that conserve
mass, circulation, energy, and potential enstrophy on a regular square grid and on an
unstructured triangular mesh.
Almost twenty years earlier, Salmon and Talley proposed a generalization of Arakawa’s
Jacobian [9], where a simple method yields discrete Jacobians that obey analogues of the
differential properties needed to conserve energy and enstrophy for a two-dimensional
flow. This is a generalization in the sense that this method is independent of the type
of discretization and thus applies to an arbitrary representation in grid points, finite
elements, or spectral modes, or to any mixture of the three. In particular the method is
illustrated by deriving simple energy and enstrophy conserving Jacobians for an irregular
triangular mesh in a closed domain, and for a mixed grid point and mode representation
in a semi-infinite channel.
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Starting by Arakawa’s works, other authors presented different kind of generalizations
of Arakawa’s conservative scheme, see [10], [11], [12], [13] for details; in Section 2.2.3 I
explain the difference between mine and existing generalizations.
Mimetic methods with similar properties have been more recently proposed in [14] and
[15] on triangular meshes and in 2008, Abba and Bonaventura also proposed a mimetic
finite difference discretization for the incompressible Navier-Stokes equations [16]. The
results obtained in different papers demonstrate the advantages and the superiority of
mimetic methods especially for a long-term numerical integration of incompressible fluid
motion.
In [17] discrete numerical approximations with conserved quantities are developed for
barotropic geophysical flows using Poisson brackets. Mathematical, numerical, and also
statistical properties of these approximations are studied.
In this class of works it’s worth quoting also a paper of Bas van’t Hof and Arthur E.P.
Veldman [18], “Mass, momentum and energy conserving (MaMEC) discretizations on
general grids for the compressible Euler and shallow water equations”.
Different works, involving domain with complex shapes and Lagrangian approach ap-
peared approximately in the mid-seventies. In this period the derivation of compatible
discrete operators are not carried out independently for each operator as before and, in
most papers, the stability and convergence are proved in the energy norms induced by
the mimetic inner product. The energy estimate together with the mimetic ideas can also
be found in the more recent works of Olsson [19], [20], Mattsson, Nordström and Svärd,
[21], [22] (see Chapter IV for more references), where finite difference approximations of
differential operators on rectangular grids and weighted inner products are composed in
order to make the discrete analogous of summation by parts formula consistent with the
continuous case. It’s precisely the analogy between the discrete and the continuum cal-
culus the basic idea, as a matter of fact the stability estimates for these finite difference
schemes are obtained following the argument used for continuum initial and boundary
value problems; this method has been mainly applied to hyperbolic, parabolic, and mixed
hyperbolic-parabolic systems and will be further discussed and applied in Chapter IV.
A third class of mimetic schemes born with the beginning of a systematic devolopment of
Discrete Vector and Tensor Calculus (DVTC) and the extension to more general meshes.
In [23], natural discrete analogs of grad, curl and div are constructed and discrete analogs
of several important theorems of the continuum calculus are then proved, as, for exam-
ple, that div(A) = 0 if and only if A = curl(B). In this paper, the world mimetic refered
to a numerical discretization is adopted for the first time even if the word mimetic had
already been used in another unpublished report of Hyman and Scovel (1988). In [24],
the construction of the derived operators is based on the duality principle, e.g.

[uh, ˜GRADph]F = −[DIV uh, ph]C , ∀uh ∈ Fh, ph ∈ Ch,

where Fh and Chare discrete spaces for face and cell grid functions, respectively. The in-
ner products in discrete spaces are introduced and corresponding matrices are developed.
The set of primary and derived discrete operators allows to construct discrete analogs
of other operators, like second-order operators as div grad, grad div, curl curl, and so
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on, which are needed to discretize various PDEs.
Nowadays, when we refer to mimetic schemes, we think of research activity carried out
by the collaboration between the Los Alamos National Laboratory, USA, and a research
group of Pavia, Italy, see works of Brezzi, Cangiani, Lipnikov, Shashkov, Manzini etc.
The application of new technology to a wide range of PDEs is developed for arbitrary-
order discretizations concerning primarily elliptic problems, the stability analysis and
discrete maximum principles. This work is not placed in this category, but for complete-
ness the interested reader is referred to [25], [26], [27] and related bibliography.
Much more references about mimetic schemes can be found in [1].

1.1.2. Atmospheric modeling

It is considered that Wilhelm Bjerknes (1904) was the first to point out that the future
state of the atmosphere can in principle be obtained by an integration of differential
equations governing the atmosphere and a first practical attempt at a numerical weather
prediction was made by Richardson. After very long computations, Richardson obtained
a totally unacceptable result; his work is described in the famous book Weather predic-
tion by Numerical Process [28]. Richardson estimated that 64000 men are necessary to
advance the calculations as fast as the weather itself is advancing; this, together with
the total wrong result, left some doubt if the method would be of practical use. Later, a
number of developments that followed improved the situation: Courant, Friedrichs and
Lewy (1928) figured out that space and time increments in integrations of this type have
to meet a certain stability criterion (CFL condition), Rossby’s works in the late 1930’s
on easiest model for describing large-scale motions of the atmosphere and finally, in
1945, the first electronic computer ENIAC (Electronic Numerical Integrator and Com-
puter) was constructed. In late 1940’s, the vorticity conservation equation, and this first
electronic computer, were used by Charney, Fj 6oroft and von Neumann [29] for the first
successful numerical forecast. This, together with the improvement of faster and faster
computers, has been the starting point for the development of increasingly sophisticated
numerical simulations.
Most models in atmospheric science are formulated by starting from conservation laws:
conservation of mass, conservation of momentum, conservation of thermodynamic en-
ergy, and the radiative transfer equation. A priori, these equations can describe the
evolution of the atmosphere in extreme detail, but practically, of course, we cannot use
too high spatial and temporal resolution, and so we must represent some important pro-
cesses parametrically [30], [31]. Parameterization in a climate model within numerical
weather prediction refers to the method of replacing processes that are too small-scale,
e.g. cloud microphysics, radiative parameterizations, etc. Obviously, mathematical meth-
ods are needed to solve the equations of a model, and in practice the methods are almost
always approximate, which means that they entail errors. Many different errors arise in
the numerical solution of a geophysical model: the model is sensitive to the initial and
boundary conditions, the approximation of the model itself, the numerical method used
to discretize the equation will also introduce errors and so on. There are various types
of numerical models designed for atmospheric purposes, a good introductory course is
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given by Randall [32]; he also made a collection of significant papers in [33]. A brief
history of atmospheric general circulation modeling (GCM) is given by Edwards: start-
ing from the early 20th century, with Bjerknes, going through the Richardson forecasts,
the war, the Swedish Institute of Meteorology (the first in the world to begin routine
real-time numerical weather forecasting, meaning broadcast of forecasting in advance
of weather) and the Joint Numerical Weather Prediction Unit (built by Von Neumann,
Charney and others around 1952), he traced the history of atmospheric modeling until
late ’80s. The first laboratory to develop a continuing program in general circulation
modeling opened in 1955: the General Circulation Research Section, under the direction
of Joseph Smagorinsky. In 1955-1956, Smagorinsky collaborated with Von Neumann,
Charney and Phillips to develop a two-level model using a subset of the primitive equa-
tions; in 1959 he continued with a nine-level primitive equation model and he studied the
need to couple ocean models to atmospheric GCMs. Jacob Bjerknes, already presented,
founded the UCLA Department of Meteorology in 1940 and his interest in the problem
of atmospheric circulation continued with Yale Mintz, a graduate student of him. Mintz
recruited a Japanese meteorologist, Akio Arakawa, to help him in building GCMs. The
first generation UCLA-GCM was completed in 1963; then Arakawa went back to Japan,
but Mintz persuaded him to return to UCLA permanently in 1965, where he is now an
Emeritus Professor (1.1). There exist a very interesting interview to Arakawa made by
Edwards at University of California, Los Angeles in 1997, where his scientific history
(and not only) is narrated.

Figure 1.1.: Akio Arakawa

As already underlined in the previous paragraph, Arakawa’s work was innovative for
his different way in approach numerical modeling, his attention was focused on the real-
ism of the physical properties in the discrete system (in this sense mimetic). Historically,
the incentive for this approach came by Norman Phillips who discovered the mechanism
of non linear instability due to the systematic distorsion of the energy spectrum studied
on a two-dimensional incompressible flow [34]. A straightforward remedy adopted by
Phillips was a Fourier filtering aimed to prevent the fatal accumulation of energy at the
smallest scales. Arakawa’s mimetic solution [4], instead, was able to prevent nonlinear
instability maintaining the discrete analogs of domain-averaged kinetic energy and en-
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strophy, ensuring no change in the average wave number, [5], [35] (and see chapter 2
for details). Other relevant papers to underline how mimetic methods can result essen-
tial for climate modeling are: [36], where Mesinger and Arakawa proposed a publication
reviewing methods for numerical simulation of the atmosphere and [6] and [37] where
Arakawa and Lamb proposed also a new parametrization of the sub-grid scale processes.
It’s worth noting that, in 1960s, another important research center was established: the
National Center for Atmospheric Research -NCAR-, with scientists such as Kasahara
and Washington who started developing a two-layer global model.
After this brief historical presentation, some more practical considerations about nu-
merical techniques: a general introduction to numerical analysis for computational fluid
mechanics is given in [38], where the author shows and analyze the main numerical
techniques to integrate PDEs with particular attention to the Navier-Stokes equations.
By far, this (N-S equationss) is the most commonly used model for fluid dynamics; the
Navier-Stokes equations can accurately predict the dynamics of most common fluids
under a wide range of conditions (the most notable exceptions are non-Newtonian flu-
ids, rarefied gases, and flows with very strong shock waves). In addition to the direct
numerical simulation (DNS), where the Navier-Stokes equations are numerically solved
without any turbulence model, meaning that the whole range of spatial and temporal
scales of the turbulence must be resolved, we can treat N-S equations at different levels:

1. Averaging (or more generally filtering) is one of the primary means of simplifying
our mathematical model. For example, as long as the process that we wish to simu-
late is approximately two-dimensional we can average the Navier-Stokes equations
in one space dimension, or apply a scale analysis in order to select the magnitude
of each dimension (e.g. Quasi-Geostrophic Model).

2. We can otherwise use a low-pass filter in space to obtain the so-called Large Eddy
Simulation (LES) equations. This model can be useful for turbulent flows which
generally have a wide range of spatial length scales. By using a low-pass filter we
only include the large scales, or eddies, in our computation while the small-scale
eddies are modeled using empirical relationships. This is convenient because the
large eddies contain most of the energy, while the small eddies are nearly isotropic
and therefore easier to model.

3. At the next level, we can average the Navier-Stokes equations also in time, where
the equations obtained are called the Reynolds Averaged Navier-Stokes (RANS)
equations. The idea behind the equations is Reynolds decomposition, whereby
an instantaneous quantity is decomposed into its time-averaged and fluctuating
quantities, an idea first proposed by Osborne Reynolds.

This list is clearly just a simplification of mathematical models for CFD; it is possible,
under certain circumstances, to make further approximations that take into account
special physical characteristics of the flow under consideration.
Another important issue in numerical discretization, lies in the form that we choose for
our model; to be more precise let’s consider the advection equation. This is based on
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one of the following forms:

∂q

∂t
+ v · ∇q = 0, Eulerian advective form (1.1)

∂mq

∂t
+∇ · (mvq) = 0, Eulerian flux (divergence) form (1.2)

Dq

Dt
= 0, Lagrangian form (1.3)

Here q is a quantity per unit mass to be advected, v is the velocity field, m is the mass
per unit and D/Dt is the material time derivative. Each of the previous forms, automat-
ically satisfy a specific property: eq. 1.1 has the constancy, meaning that, if initially q is
constant, it remains so in time; eq. 1.2 is conservative, in the sense that the area-averaged
over a closed domain mq does not change in time (note that the conservation here refers
just to the first moment, mq and not to higher moments such as mq2); finally, the auto-
matic property of eq. 1.3 is to be stable in the sense of the boundedness of predicted q.
Maybe the constancy is the minimum requirement for an advection scheme, anyway it
is not always guaranteed for example in the case of the flux divergence form. Generally,
Lagrangian schemes do satisfy constancy but not conservation and they have the advan-
tage of no restriction in time step, in contrast to Eulerian schemes (our choice) that are
restricted by the Courant-Friedrich-Levy (CFL) condition. Of course it is possible, and
sometimes necessary, mix different forms to obtain one or more properties in the discrete
space, as we will see in details for the Arakawa’s Jacobian. The splitting technique and
its relation with stability problems is also discussed by Nordström using SBP operators
([39] and related bibliography).

1.2. The Burgers equation

In order to clarify the meaning of non-linear energy transfer, we consider a simple 1D
model, the Burgers equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1.4)

For simplicity, we consider the solution defined in the domain D = [0, 2π) and to be
periodic with zero mean value. We can expand the solution as:

u(x, t) =
∞∑

k=1

Ak(t)sin(kx). (1.5)

Using this expansion, we have:

∂u

∂t
=

∞∑

k=1

Ȧk(t)sin(kx) (1.6)
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∂u

∂x
=
∞∑

k=1

kAk(t)cos(kx) (1.7)

∂2u

∂x2
= −

∞∑

k=1

k2Ak(t)sin(kx) (1.8)

u
∂u

∂x
=

∞∑

l=1

∞∑

m=1

Al(t)Am(t)msin(lx)cos(mx)

=

∞∑

l=1

∞∑

m=1

Al(t)Am(t)m

2
{sin[(l +m)x] + sin[(l −m)x]}.

(1.9)

Putting all of this inside eq. 1.4, we obtain:

∞∑

k=1

Ȧk(t)sin(kx) +

∞∑

l=1

∞∑

m=1

Al(t)Am(t)m

2
{sin[(l +m)x] + sin[(l −m)x]}

= −ν
∞∑

k=1

k2Ak(t)sin(kx).

(1.10)

Now we recall the orthogonality of the function sin:

∫ 2π

0
sin(px)sin(qx) = π(δp,q − δ−p,q), (1.11)

and then, multiplying eq. 1.10 times sin(kx) and integrating over D, we have:

Ȧk(t)π +
∞∑

l=1

∞∑

m=1

πAl(t)Am(t)m

2
= −πνk2Ak(t), k = 1, 2, . . . ,∞ (1.12)

where the two summations consider only indices m and l such that

• l +m = k

• l −m = k

• l −m = −k

• l +m = −k (this condition brings nothing because it means l < 0).

So eq. 1.12 becomes

Ȧk +
∞∑

m=1

m(
AmAk−m

2
+
AmAk+m

2
− AmAm−k

2
) = −νk2Ak, k = 1, 2, . . . ,∞ (1.13)

This equation says that the change of Ak in time depend on two different causes: one
linear and one non-linear.
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• Linear terms:
If we consider only linear terms, eq. 1.13 becomes

Ȧk = −νk2Ak ⇒ Ak(t) = Ak(0)e−νk
2t, k = 1, 2, . . . ,∞ (1.14)

meaning that each component Ak decreases as fast as the fluid is viscous and
the structure is small (meaning that k is large). The important remark on the
linear term is that the evolution of each Ak is independent from the others, so if
initially Ak(0) depends only on a finite number of k (for example k = 1, 2, 3), it
means that the solution would decrease only on initial modes (k = 1, 2, 3) each one
independently from the others.

• Non-linear terms:
Differently, non-linear terms completely modify the structure of the solution, trans-
ferring the momentum of the k-component to components k + m, k −m, m − k.
If we consider, for simplicity, only the first three terms in the general summation
(instead of ∞), we have, by eq. 1.13:

Ȧ1 +
1

2
(A1A0 +A1A2 −A1A0) + (A2A−1 +A2A3 −A2A1)

+
3

2
(A3A−2 +A3A4 −A3A2) = −νA1

Ȧ2 +
1

2
(A1A1 +A1A3 −A1A−1) + (A2A0 +A2A4 −A2A0)

+
3

2
(A3A−1 +A3A5 −A3A1) = −ν4A2

Ȧ3 +
1

2
(A1A2 +A1A4 −A1A−2) + (A2A1 +A2A5 −A2A−1)

+
3

2
(A3A0 +A3A6 −A3A0) = −ν9A3

(1.15)

but considering Ap = 0 for p < 0 and p > 3,

Ȧ1 −
1

2
A1A2 −

1

2
A2A3 = −νA1

Ȧ2 +
1

2
A1A1 −A1A3 = −ν4A2

Ȧ3 +
3

2
A1A2 = −ν9A3

(1.16)

Now, if we consider an initial condition containing only A1, it’s immediate to see
it’ll results Ȧ2 6= 0, due to the term A1A1

2 ; similarly, when A2 6= 0, it’ll results

also Ȧ3 6= 0, and so on: if we didn’t limit k as we did but we consider the infinite
summation, we would have an energy transfer towards smaller and smaller scales
(bigger k).
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This easy example shows the basic mechanism of turbulence, which will be discussed in
Chapter V: the Reynolds number is defined as the ratio of inertial forces to viscous forces
and it is often used to characterize different flow regimes such as laminar or turbulent
flow. For what we have seen so far, when the Reynolds number is small, viscous forces will
dominate over inertial forces and then the energy will decrease and the energy transfer
will be restrained. Differently, when we consider a fluid with high Reynolds number,
non-linear terms will dominate viscous effects, the energy transfer will be activated and
the original structure will bring smaller fluid-dynamical structures.

1.3. Organization

This PhD thesis focuses on the study, development and application of numerical methods
for nonlinear advective problems with additional conservative and symmetry properties.
In particular, the work is of interest in climatology and meteorology with particular
attention to the quasi-geostrophic model characterized by the dynamic of the vorticity
equation.
The work is divided in three main parts:

Part 1 • In Chapter 2 I recall basic notions about the vorticity equation and a par-
ticular finite-difference scheme to discretize it: I start with the Navier-Stokes
equation to derive the vorticity equation for a two-dimensional incompressible
flow, I show analytical properties of the Jacobian operator involved, and then
I give to the reader a review of Arakawa’s work, a mimetic finite difference
discretization for the vorticity equation.

• Chapter 3 is about the development of a systematic method to construct
mimetic finite difference schemes. In particular the whole chapter is intended
to a particular application of this method: the generalization of Arakawa’s
Jacobian. The general scheme found is then studied both in physical and
Fourier space and many numerical examples are given.
This work has been submitted to Journal of Computational Physics [40] and
presented in [41].

Part 2 In Chapter 4 I deal with Summation-by-parts (SBP) operators: I will give an
introduction to the argument to then show how it is possible to read the original
Arakawa’s Jacobian in an abstract form using SBP operators and then proving all
the mimetic properties desired in this more general space [42].

Part 3 Chapter 5 is the geophysical application of this theorical study: I present the
simulation of a quasi-geostrophic model discretized using mimetic finite-difference
presented in the previous chapters. In particular I investigate about the energy
spectra and on physical and numerical parameters of the Q.G. model [43].

In the last Chapter I summarize the conclusions and the possible further developments
of this work.



2. Introduction to finite-difference schemes
for incompressible flows

2.1. The Vorticity Equation

Consider the Euler equation for an incompressible inviscid fluid

∂v

∂t
+ v · ∇v = −∇p
∇ · v = 0

(2.1)

for x ∈ D, where D is a bounded region in <3. The vorticity vector ω is defined as the
curl of the velocity field v, i.e.,

ω = ∇× v (2.2)

such that in a Cartesian frame with coordinate (x, y, z) and corresponding velocity com-
ponent (u, v, w), we have

ω =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
. (2.3)

For deriving the vorticity equation we recall the following identity

v · ∇v = ω × v +∇
(
|v|2

)

2
,

(for details see [44],[45]) which transforms the Euler equation (2.1) to

∂v

∂t
+ ω × v = −∇

(
p+
|v2|
2

)

∇ · v = 0
(2.4)

By taking the curl of the momentum equation in (2.4) and using the incompressible
relation, we get

∂ω

∂t
+ v · ∇ω − ω · ∇v = 0. (2.5)

By considering a velocity field with a zero vertical component w we obtain the vorticity
for a two-dimensional incompressible fluid. In this setting, (2.3) becomes ω = (0, 0, ζ),
where ζ = (∂v/∂x− ∂u/∂y). From (2.5) the vorticity equation for an incompressible
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flow on a general two-dimensional spatial domain is

∂ζ

∂t
+ v · ∇ζ = 0. (2.6)

with
∇ · v = 0. (2.7)

In this section we will work in a biperiodic domain D. Thanks to relation 2.7, we can
write eq. 2.6 as

∂ζ

∂t
+∇ · (vζ) = 0 (2.8a)

and introduce the stream function ψ such that:

v = k×∇ψ (2.8b)

ζ = k · ∇ × v = ∇2ψ (2.8c)

where k is the unit vector normal to the plane of motion. We can introduce the Jacobian
operator

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
(2.9)

with the following properties:

• Skew-symmetry:
J(a, b) = −J(b, a) (2.10)

• Integral property:
aJ(b, c) = cJ(a, b) (2.11)

where f = 1
|D|
∫
D fdxdy.

The skew-symmetry property (2.10) follows by definition, while property (2.11) follows
by integration by parts over a biperiodic domain:

aJ(b, c) =
1

|D|

∫ ∫
(a
∂b

∂x

∂c

∂y
− ∂b

∂y

∂c

∂x
dxdy)

=
1

|D|

∫ ∫
[−c ∂

∂y
(a
∂b

∂x
) + c

∂

∂x
(a
∂b

∂y
)dxdy]

=
1

|D|

∫ ∫
(−c∂a

∂y

∂b

∂x
− ca ∂2b

∂x∂y
+ c

∂a

∂x

∂b

∂y
+ ca

∂2b

∂y∂x
)dxdy

=
1

|D|

∫ ∫
(−c∂a

∂y

∂b

∂x
+ c

∂a

∂x

∂b

∂y
)dxdy = cJ(a, b)

(2.12)

We can rewrite equation (2.8a) as:

∂ζ

∂t
= J(ζ, ψ). (2.13)
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Conserved quantities:
For any motion governed by equation (2.6) we have physical constraints such as conser-
vation of mean kinetic energy,

(
∂K

∂t
) =

1

2

∂(∇ψ)2

∂t
= (∇ψ) · ∂(∇ψ)

∂t
= −ψ∂(∆ψ)

∂t

= −ψ∂ζ
∂t

= −ψJ(ζ, ψ) = 0

(2.14)

and conservation of enstrophy, defined as the mean square vorticity, which is a quantity
directly related to the kinetic energy and it is particularly useful in the study of turbulent
flows,

(
∂G

∂t
) =

1

2

∂(ζ2)

∂t
= ζ

∂ζ

∂t
= ζJ(ζ, ψ) = 0. (2.15)

The RHS of both equations is zero thanks to the skew-symmetric (2.10) and the integral
(2.11) properties with, respectively, a = c = ψ and a = b = ζ.
Expanding ψ into the series of orthogonal armonic functions, ψn, which satisfy

∇2ψn + k2
nψn = 0, (2.16)

we get that the average wave number k, defined as

k2 =

∑
n k

2
nKn∑

nKn
(2.17)

is conserved, thanks to the energy and enstrophy conservation:

d

dt

∑

n

Kn = 0, with Kn =
1

2
(∇ψn)2 (2.18)

d

dt

∑

n

Gn = 0, with Gn =
1

2
(∇2ψn)2 = k2

nKn. (2.19)

This means that no systematic one-way cascade of energy into smaller scales can occur.
It is well known that non-linear problems as system (2.6) require the correct modeling of
sub-grid terms (see, for example, J. Smagorinsky 1963 [30], J. W. Deardorff 1970 [31]).
Moreover, a false transfer of energy between different scales can occour depending on
different forms of truncation error, corresponding to different forms of discretization. In
1959 Phillips [34], treating non-linear numerical instability, proposed to add a smoothing
term to equation (2.8a), but his solution resulted to be physically incorrect and to
compromise the simulation. To overcome this problem, Arakawa [4] introduced the use
of a mimetic scheme and, alternatively, higher order schemes have been devoloped ([46],
[47], [48]). The latter choice is not necessarily preferable to a mimetic solution as pointed
out in [49]; in this paper higher order schemes are compared with Arakawa’s Jacobian
which results to be the better candidate for under-resolved simulations.
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Arakawa’s solution is a mimetic scheme able to conserve integral quantities and then
satisfying other important constraints on the spectral distribution of the energy. His
scheme has been widely used (see, for example [49],[13],[50]) and studied: Dubinkina
and Frank [51] examined the statistical properties of Arakawa’s discretization, while
Lilly [52] proposed a detailed paper based on a spectral analysis.
Also different generalization of the particular Arakawa’s solution have been presented
(see [10], [11],[9], [12]) but none of them is a general procedure to produce the overall
set of solutions.
We will start introducing and analyzing Arakawa’s solution, then we will present our
general proceduce to create mimetic finite-difference schemes and we will finally compare
the particular Jacobian of Arakawa with the general solution found with the new method.

2.2. Arakawa’s Jacobian

In this section i will denote a generic grid point i = (i, j) and a generic discrete Jacobian
is:

h2Ji(ζ, ψ) =
∑

i′

∑

i′′
ci′,i′′ζi+i′ψi+i′′ (2.20)

where h is the spatial step size, supposed to be uniform in x and y direction. Arakawa
looked for a mimetic Jacobian discretization, satisfying then the discrete analogous of
(2.14)-(2.15), so he imposed: ∑

i

h2ζiJi(ζ, ψ) = 0 (2.21)

∑

i

h2ψiJi(ζ, ψ) = 0 (2.22)

It is useful to write equation (2.20) as:

h2Ji(ζ, ψ) =
∑

i′
ai,i+i′ζi+i′ (2.23)

where
ai,i+i′ =

∑

i′′
ci′,i′′ψi+i′′ (2.24)

Multiplying eq. (2.23) times ζi, we obtain:

h2ζiJi(ζ, ψ) =
∑

i′
ai,i+i′ζiζi+i′ (2.25)

If we sum over i, the RHS must be zero in order to satisfy (2.21), and then the enstrophy
conservation; this is true if we impose

ai+i′,i = −ai,i+i’, ∀i, i’. (2.26)
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Similarly, Arakawa imposed the energy conservation, with a similar trick he wrote the
discrete jacoabian as:

h2Ji(ζ, ψ) =
∑

i′′
bi,i+i′′ψi+i′′ (2.27)

where
bi,i+i′′ =

∑

i′
ci′,i′′ζi+i′ , (2.28)

obtaining now
bi+i′′,i = −bi,i+i′′ , ∀i, i′′. (2.29)

The Laplacian operator can be easily discretized using central finite-difference:

ζi,j =
1

h2
(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) (2.30)

which satisfies ψ∇2ψ = −(∇ψ)
2
.

Arakawa considered three analogous analytical forms for the Jacobian:

1. J(ζ, ψ) = ζxψy − ζyψx
2. J(ζ, ψ) = − ∂

∂x
(ζyψ) + ∂

∂y (ζxψ)

3. J(ζ, ψ) = ∂
∂x

(ζψy)− ∂
∂y (ζψx)

corresponding to three different discretization:

(J1)i,j =
1

4h2
[(ζi+1,j − ζi−1,j)(ψi,j+1 − ψi,j−1)− (ζi,j+1 − ζi,j−1)(ψi+1,j − ψi−1,j)] (2.31)

(J2)i,j =
1

4h2
[−(ζi+1,j+1 − ζi+1,j−1)ψi+1,j + (ζi−1,j+1 − ζi−1,j−1)ψi−1,j

+(ζi+1,j+1 − ζi−1,j+1)ψi,j+1 − (ζi+1,j−1 − ζi−1,j−1)ψi,j−1]
(2.32)

(J3)i,j =
1

4h2
[(ψi+1,j+1 − ψi+1,j−1)ζi+1,j − (ψi−1,j+1 − ψi−1,j−1)ζi−1,j

−(ψi+1,j+1 − ψi−1,j+1)ζi,j+1 + (ψi+1,j−1 − ψi−1,j−1)ζi,j−1]
(2.33)

Using the above mentioned discrete properties, Arakawa proved that:

• J1 is only skew-symmetric

• J2 is only enstrophy-conserving

• J3 is only energy-conserving
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Moreover, J3 is written in divergence form, and we can read in the same form also J1

and J2 just rotating the axis:

(J1)i,j = − 1√
2h

[
ψi+1,j − ψi,j+1√

2h

ζi+1,j + ζi,j+1

2
− ψi,j−1 − ψi−1,j√

2h

ζi,j−1 + ζi−1,j

2

+
ψi,j+1 − ψi−1,j√

2h

ζi,j+1 + ζi−1,j

2
− ψi+1,j − ψi,j−1√

2h

ζi+1,j + ζi,j−1

2
]

(2.34)

(J2)i,j = − 1√
2h

[
ψi+1,j − ψi,j+1√

2h

ζi+1,j+1 + ζi,j
2

− ψi,j−1 − ψi−1,j√
2h

ζi,j + ζi−1,j−1

2

+
ψi,j+1 − ψi−1,j√

2h

ζi−1,j+1 + ζi,j
2

− ψi+1,j − ψi,j−1√
2h

ζi,j + ζi+1,j−1

2
]

(2.35)

In this form, expressions in brackets represent vorticity fluxes calculated on the diagonals
of the grid (fig. 2.1).

Figure 2.1.: A square grid used for the finite-difference vorticity equation

We observe that another possible skew-symmetric form, opposite to J1, can be made
writing the classical Jacobian J(ζ, ψ) = ζxψy − ζyψx but using again rotated axis:

J××i,j (ζ, ψ) =
1

8h2
[(ζi+1,j+1 − ζi−1,j−1)(ψi−1,j+1 − ψi+1,j−1)

−(ζi−1,j+1 − ζi+1,j−1)(ψi+1,j+1 − ψi−1,j−1)]
(2.36)

Looking for a discrete Jacobian with all the above mentioned properties, Arakawa
considered the linear combination of J1, J2, J3 and J××:

JA(ζ, ψ)i,j = α(J1)i,j + β(J2)i,j + γ(J3)i,j + δ(J××)i,j (2.37)

with α + β + γ + δ = 1, and he proved that the choice α = β = γ = 1/3 and δ = 0,
is the only possible linear combination of J1, J2, J3 and J×× which is together skew-
symmetric, energy and enstrophy preserving. From now on we will refer to this solution
as Arakawa’s Jacobian.
Other possible discretizations:

It is possible to construct more discretizations of the Jacobian different from J1, J2, J3, J
××, JA
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but always considering the linear combination of J1, J2, J3, some examples follow. In fig-
ure (2.2) we emphasize verified properties for each jacobian and the grid points used.

• J4 = 1
2(J1 + J2)

• J5 = 1
2(J2 + J3)

• J6 = 1
2(J1 + J3)

Figure 2.2.: Schematic representation of ζ and ψ points used in constructing the finite-
difference Jacobians

Remark 2.1. Due to the grid points used, as well as in 2.36, we can interchangeably
refer to

• J1 as J++

• J2 as J×+

• J3 as J+×

If we consider more grid points (figure 2.3), Arakawa showed how it is possible to
construct a forth order scheme with all properties required. Considering also grid points
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(i+2,j), (i-2,j), (i,j+2) e (i,j-2) we can define:

JB(ζ, ψ) =
1

3
[J××(ζ, ψ) + J4×+(ζ, ψ) + J4+×(ζ, ψ)] (2.38)

where J××(ζ, ψ) is defined in (2.36) and

(J4×+)i,j =
1

8h2
[(ψi,j+2 − ψi+2,j)ζi+1,j+1 − (ψi−2,j − ψi,j−2)ζi−1,j−1

−(ψi,j+2 − ψi−2,j)ζi−1,j+1 + (ψi+2,j − ψi,j−2)ζi+1,j−1]
(2.39)

(J4+×)i,j =
1

8h2
[(ψi+1,j+1 − ψi+1,j−1)ζi+2,j − (ψi−1,j+1 − ψi−1,j−1)ζi−2,j

−(ψi+1,j+1 − ψi−1,j+1)ζi,j+2 + (ψi+1,j−1 − ψi−1,j−1)ζi,j−2]
(2.40)

Figure 2.3.: Grids used for JB

It’s worth noting that JB presents the same structure of truncation error of JA as we
will see in the next section.

2.2.1. Analysis of truncation error

Using Taylor expansion, we obtain:

J1(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂3ψ

∂y3
− ∂ζ

∂y

∂3ψ

∂x3
+
∂3ζ

∂x3

∂ψ

∂y
− ∂3ζ

∂y3

∂ψ

∂x
] +O(h4) (2.41)
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J2(ζ, ψ) = J(ζ, ψ) +
h2

6
[+
∂ζ

∂x

∂3ψ

∂y3
− ∂ζ

∂y

∂3ψ

∂x3
+
∂3ζ

∂x3

∂ψ

∂y
− ∂3ζ

∂y3

∂ψ

∂x

+3
∂2ζ

∂x∂y
(
∂2ψ

∂y2
− ∂2ψ

∂x2
) + 3(

∂ψ

∂y

∂3ζ

∂x∂2y
− ∂ψ

∂x

∂3ζ

∂y∂2x
) +O(h4)]

(2.42)

J3(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂3ψ

∂y3
− ∂ζ

∂y

∂3ψ

∂x3
+
∂3ζ

∂x3

∂ψ

∂y
− ∂3ζ

∂y3

∂ψ

∂x

+3(
∂ζ

∂x

∂3ψ

∂x2∂y
− ∂ζ

∂y

∂3ψ

∂x∂y2
) + 3(

∂2ζ

∂x2
− ∂2ζ

∂y2
)
∂2ψ

∂x∂y
] +O(h4)

(2.43)

→ JA(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂3ψ

∂y3
− ∂ζ

∂y

∂3ψ

∂x3
+
∂3ζ

∂x3

∂ψ

∂y
− ∂3ζ

∂y3

∂ψ

∂x

+(
∂ζ

∂x

∂3ψ

∂x2∂y
− ∂ζ

∂y

∂3ψ

∂x∂y2
) + (

∂2ζ

∂x2
− ∂2ζ

∂y2
)
∂2ψ

∂x∂y

−(
∂ψ

∂x

∂3ζ

∂x2∂y
− ∂ψ

∂y

∂3ζ

∂x∂y2
)− (

∂2ψ

∂x2
− ∂2ψ

∂y2
)
∂2ζ

∂x∂y
] +O(h4)

(2.44)

In terms of velocity this means:

J1(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂2u

∂y2
+
∂ζ

∂y

∂2v

∂x2
+
∂3ζ

∂x3
u+

∂3ζ

∂y3
v] +O(h4) (2.45)

J2(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂2u

∂y2
+
∂ζ

∂y

∂2v

∂x2
+
∂3ζ

∂x3
u+

∂3ζ

∂y3
v

+3
∂2ζ

∂x∂y
(
∂v

∂x
+
∂u

∂y
) + 3(u

∂3ζ

∂x∂2y
+ v

∂3ζ

∂y∂2x
)] +O(h4)

(2.46)

J3(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂2u

∂y2
+
∂ζ

∂y

∂2v

∂x2
+
∂3ζ

∂x3
u+

∂3ζ

∂y3
v

+3(
∂ζ

∂x

∂2u

∂x2
+
∂ζ

∂y

∂2v

∂y2
) + 3(

∂2ζ

∂x2
− ∂2ζ

∂y2
)
∂u

∂x
] +O(h4)

(2.47)

→ JA(ζ, ψ) = J(ζ, ψ) +
h2

6
[
∂ζ

∂x

∂2u

∂y2
+
∂ζ

∂y

∂2v

∂x2
+
∂3ζ

∂x3
u+

∂3ζ

∂y3
v

+
∂2ζ

∂x∂y
(
∂v

∂x
+
∂u

∂y
) + (u

∂3ζ

∂x∂2y
+ v

∂3ζ

∂y∂2x
)

+(
∂ζ

∂x

∂2u

∂x2
+
∂ζ

∂y

∂2v

∂y2
) + (

∂2ζ

∂x2
− ∂2ζ

∂y2
)
∂u

∂x
] +O(h4)

(2.48)
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And, for JB:

JB(ζ, ψ) = J(ζ, ψ) +
h2

3
[
∂ζ

∂x

∂3ψ

∂y3
− ∂ζ

∂y

∂3ψ

∂x3
+
∂3ζ

∂x3

∂ψ

∂y
− ∂3ζ

∂y3

∂ψ

∂x

+(
∂ζ

∂x

∂3ψ

∂x2∂y
− ∂ζ

∂y

∂3ψ

∂x∂y2
) + (

∂2ζ

∂x2
− ∂2ζ

∂y2
)
∂2ψ

∂x∂y

−(
∂ψ

∂x

∂3ζ

∂x2∂y
− ∂ψ

∂y

∂3ζ

∂x∂y2
)− (

∂2ψ

∂x2
− ∂2ψ

∂y2
)
∂2ζ

∂x∂y
] +O(h4)

(2.49)

2.2.2. Spectral analysis

Here after I present the analysis made by Lilly [52], this is a spectral analysis to show
different errors generated by Arakawa’s Jacobian. Lilly showed there are three kinds of
errors, two of them are related to the truncation error of first and second order derivatives
(and then they can be minimized raising the order of accuracy), and the last type is the
aliasing error, responsible of instability problems showed by Phillips in ([34]).
The starting point for Lilly’s analysis is expressing the stream function and the vorticity
as a series of complex exponential functions with vector wave number M = (m,n), as
follows:

ψ =
∑

M

AMe
i(M ·R) =

∑

M

ψM (2.50)

where R = (x, y). The vorticity will be:

ζ = −
∑

M

|M |2AMei(M ·R) = −
∑

M

|M |2ψM (2.51)

and the Jacobian:

J(ψ, ζ) =
∑

M ′,M ′′
(k·M ′×M ′′)|M ′′|2ψM ′ψM ′′ =

1

2

∑

M ′,M ′′
(k·M ′×M ′′)(|M ′′|2−|M ′|2)ψM ′ψM ′′

(2.52)
An important fact is that the three different Jacobians of Arakawa’s construction, cor-
respond respectively to

1. J1(ψ, ζ) = δxψ
x
δyζ

y − δyψyδxζx

2. J2(ψ, ζ) = δx(ψδyζ
y
)
x
− δy(ψδxζx)

y

3. J3(ψ, ζ) = −δx(ζδyψ
y
)
x

+ δy(ζδxψ
x
)
y

where (assuming uniform grid h = ∆x = ∆y)

δxF (x) =
1

h
[F (x+

h

2
)− F (x− h

2
)],

F (x)
x

=
1

2
[F (x+

h

2
) + F (x− h

2
)],
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δxF (x)
x

= δ2xF (x) =
1

2h
[F (x+ h)− F (x− h)],

∇F = (δxF
x
, δyF

y
).

Following this notation:
∇ei(M ·R) = S(M)iei(M ·R) (2.53)

where

S(M) = (
sin(m∆x)

h
,
sin(nh)

h
) (2.54)

and:
∇2ei(M ·R) = −4|S(M/2)|2ei(M ·R). (2.55)

We don’t have algebraic identities between analytical and numerical derivates because
S(M) 6= M . Lilly analyzed then spectral forms of each Jacobian, obtaining:

J1 = k · ∇ψ×∇ζ = 2
∑

M ′,M ′′
k · [S(M ′)×S(M ′′)]{|S(

M ′′

2
)|2−S(

M ′

2
)|2}ψM ′ψM ′′ (2.56)

J2 = k · ∇ × (ψ∇ζ)

= 2
∑

M ′,M ′′ k · S(M ′ +M ′′)× {S(M ′′)|S(M
′′

2 )|2 + S(M ′)|S(M
′

2 )|2}ψM ′ψM ′′
(2.57)

J3 = −k · ∇ × (ζ∇ψ)

= −2
∑

M ′,M ′′ k · S(M ′ +M ′′)× {S(M ′′)|S(M
′

2 )|2 + S(M ′)|S(M
′′

2 )|2}ψM ′ψM ′′
(2.58)

JA = 2
3

∑
M ′,M ′′ k · {S(M ′)× S(M ′′)

+[S(M ′ +M ′′)]× [S(M ′′)− S(M ′)]} · {|S(M
′′

2 )|2 − |S(M
′

2 )|2}ψM ′ψM ′′
(2.59)

Comparing equations (2.56)-(2.59) with equation (2.52), Lilly focused on three kinds of
error:

• First derivative errors:
Errors due to first derivatives approximation arise because S(M) 6= M , that is
the replacement of wave numbers by their sines, and this replacement is present in
almost every interaction. sono presenti in quasi tutte le interazioni; these errors may
be reduced by using a higher order difference scheme, for which S(M) is replaced
by the Fourier sine series converging toward M in the range from −π/h to π/h in
each coordinate direction.

• Second derivative errors:
Errors due to second derivative approximation arise because 4S(M/2)2 6= M ·M
which comes from the calculation of the vorticity as the laplacian of the stream
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function. Again these errors can be reduced by expanding the network of points to
compute the Laplacian.

• Aliasing error:
We cannot see aliasing error in the spectral equations, this kind of error arises
because only limited wave numbers can be representabled in a discrete space;
the highest representable wave number is m̃ = π

h , higher wave numbers will be
misinterpreted as wave numbers −π

h + m causing spurious interactions involving
reflections of one or both components.

It is clear that wrong interactions arise for all discrete Jacobians, but numerical in-
stabilities arise only with the non-conservative ones, as shown in [5].

2.2.3. Generalizations

Different kinds of Arakawa’s generalization have been presented in literature; hereafter
I will give just a summary of the main ones in order to show differences and strengths
of the systematic method I developed to discretize mimetic non-linear operator.

• in 1974-1975 Jespersen [10] and Fix [11] studied different classes of conservative
finite-element Jacobians. In particular Jespersen reinterpreted Arakawa’s solution
as a finite-element method, showing how any nine-point second-order method obey-
ing the conservation laws is a linear combination of two finite-element schemes,
bilinear elements in rectangles and linear elements in triangles. He showed conser-
vative finite-difference nine-points schemes is a one-parameter family solution;

• In 1989, Salmon and Talley [9] proposed a generalization of Arakawa’s Jacobian
in terms of indipendence of type of discretization. The method presented is an
integral generalization of Arakawa’s solution to apply to an arbitrary number of
gridpoints for finite-difference schemes, or finite elements, or spectral modes, or
to any mixture of the three. In particular they derived Arakawa’s Jacobian as the
particular solution for the 9 grid-points, an energy-enstrophy conserving Jacobian
for an irregular triangular mesh in a closed domain and for a mixed gridpoint/mode
representation in a semi-infinite channel;

• In 1998, McLachlan [12] using symmetry groups and skew-symmetric finite differ-
ence tensors, presented a systematic method for discretizing PDEs with a known
list of integrals. The problem of this method is that the required symmetry prop-
erties make the the finite differences unavoidably complicated, except for special
cases (as Arakawa’s solution);

• In collaboration with Professor Nordström and PhD student Cristina La Cognata
of Linköping University, I also found a generalization of Arakawa’s Jacobian written
in terms of Summation-by-parts operator [42]. This generalization will be presented
in a succeeding chapter.
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Also Hu and Fulton, in the technical report [13], tried to generalize Arakawa’s idea for
a general second order compact stencil conservative and skew-symmetric scheme. They
found a whole set of solution depending on one parameter, exactly the same that I will
find in the next sections, the problem of their work is that it is ill-posed. As a matter
of fact, they impose the consistency of the general discrete scheme with the analytical
Jacobian imposing the following three properties:

1. Ji,j(1, ψ) = 0

2. Ji,j(ζ, 1) = 0

3. Ji,j(x, y) = 1

for all suitably smooth functions ζ and ψ. It’s easy to show that these conditions are
necessary but not sufficient to guarantee consistency. To prove that, let’s consider the
following counterexample:

JJ(ζ, ψ) =
∂2ζ

∂x∂y
(
∂ψ

∂x
+
∂ψ

∂y
)− ∂2ψ

∂x∂y
(
∂ζ

∂x
+
∂ζ

∂y
)− ∂ψ

∂x

∂ζ

∂y
+
∂ψ

∂y

∂ζ

∂x
(2.60)

Discretizing such operator (for example with central finite differences) we obtain a dis-
crete operator which respects properties 1.-2.-3. (and which is also skew-symmetric) but
this is anyway not consistent with an analytical Jacobian.
The solution obtained by Hu and Fulton is correct only because they consider the class
of solution which obey concurrently to 1.-2.-3., skew-symmetry, energy and enstrophy
preserving requirements. It is only the intersection of these properties which guarantees
consistency, but if we would consider only subsets of solutions, the method results to be
incorrect.
The systematic method to construct mimetic finite-difference schemes for incompress-
ible flows presented below is the correct generalization of this method to a generic non-
linear operator which uses arbitrary grid-points and with arbitrary order of accuracy
and properties. Moreover, this is the only generalization able to guarantee the overall
set of solutions for each specific class of schemes we are looking for.



3. A systematic method to construct
mimetic finite-difference schemes for
incompressible flows

3.1. The General Method

We start by considering a general finite differences discretization of a general non-linear
operator L in N variables:

Li(φ
1, ..., φN ) =

∑

i1

∑

i2

. . .
∑

iN

φ̃i1,i2,...,iN

N∏

k=1

φki+ik
(3.1)

where i is a generic index which has as many components as the dimension of the problem
(one for a scalar problem, two for a bi-dimensional problem and so on) and ij has the
same size of i but it is defined depending on the stencil we are using. This is a special
form in writing a non-linear operator: the non-linearity is hidden in the products of
sequences which contains every variables, while the coefficients are out of the product
but depend on each variable. In such a way it’s natural to construct a linear system
for the coefficients φ̃i1,...,iN . As a matter of fact, once we specify domain and stencil, we
will translate numerical and physical requests on the general operator in terms of linear
equations for coefficients φ̃i1,...,iN .
To be more precise, the N-summations indexes depend on the stencil we are using: if we
consider a compact stencil, the summation will include only the nearest grid-point, and
will then include only 0,+1,−1; if we consider a larger stencil with one more point it will
be on −2,−1, 0, 1, 2, and so on. The general coefficient φ̃i1,i2,...,iN should generally take
care and correlate each variable, this is the reason of all the indexes. Of course we could
a priori also consider a different stencil and a different correlation for each variable, and
the general expression 3.1 include them all.
In this way we just need to impose any property that we need to the coefficients φ̃i1,i2,...,iN ,
we could ask for example the skew-symmetric property alone or all three Arakawa’s
requests together and so on. Every different choice leads to different linear systems and
then to different solutions; in next section we will consider a special case in order to
show how to apply the general procedure concretely.
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3.2. An application: Non uniqueness of Arakawa’s Jacobian

Let us consider a specific case: we fix the set of solutions as the set of all non-linear
discrete operators with a compact stencil, constant spatial step size h, with the following
properties:

a) skew symmetry (eq. 2.10);

b) enstrophy conserving (eq. 2.15);

c) energy conserving (eq. 2.14);

d) second order consistency with the analytical Jacobian (eq. 2.9).

In order to impose such constraints, we started from Arakawa’s work [4] to generalize
his idea. We re-write equation (3.1) as

Ji(ζ, ψ) =
∑

i’

∑

i”

ci’,i”ζi+i’ψi+i” (3.2)

where now it is clear that the generic i index is defined as i = (i, j), i’, i” can assume
values in the set A×A with A = {0, 1,−1}, and of course Ji(ζ, ψ) ≡ J(ζ(xi, yj), ψ(xi, yj)).
In this explicit example it is easy to see the trick in writing linear equations: ci’,i” are
coefficients of the non-linear variable ζψ, for this reason we don’t have 9+9 non-linear
unknowns but a linear system in the 81 unknows ci’,i” (which correspond to the general

coefficients φ̃i1,...,iN of the original operator (3.1)).
It is useful to read again the Jacobian as Arakawa did:

Ji(ζ, ψ) =
∑

i’

ai,i+i’ζi+i’, where ai,i+i’ =
∑

i′′
ci’,i”ψi+i” (3.3)

or
Ji(ζ, ψ) =

∑

i”

bi,i+i”ψi+i” where bi,i+i” =
∑

i’

ci’,i”ζi+i’ (3.4)

in order to translate properties a)−b)−c)−d) in terms of coefficients ai’,i”, bi’,i”, , ci’,i”.
Indeed, discrete analogues of requirements a)− b)− c)− d) are:

a) Ji(ζ, ψ) = −Ji(ψ, ζ), ∀i:
∑

i’

∑

i”

ci’,i”ζi+i’ψi+i” = −
∑

i’

∑

i”

ci’,i”ζi+i”ψi+i’

⇒ ci’,i” = −ci”,i’
(3.5)

b)
∑

i ζiJi(ζ, ψ) = 0:

∑

i

ζiJi(ζ, ψ) =
∑

i

∑

i’

ai,i+i’ζiζi+i’ = 0

⇒ ai+i’,i = −ai,i+i’

(3.6)
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c)
∑

i ψiJi(ζ, ψ) = 0:

∑

i

ψiJi(ζ, ψ) =
∑

i

∑

i”

bi,i+i”ψiψi+i” = 0

⇒ bi+i’,i = −bi,i+i’

(3.7)

d) to obtain consistency we use Taylor expansion of equation (3.2) in each grid point
(xi, yj):

JT (ζ, ψ) =
∑

i′,j′

∑

i′′,j′′
ci′,j′,i′′,j′′ [(

n−1∑

l=0

n−1∑

m=0

(i′h)l(j′h)m

l!m!

∂l+mζ(xi, yj)

∂xl∂ym
)

(

n−1∑

l=0

n−1∑

m=0

(i′′h)l(j′′h)m

l!m!

∂l+mψ(xi, yj)

∂xl∂ym
)]

(3.8)

With the help of a symbolic manipulator, we obtain linear equations for coefficients
ci’,i” nullifying any equation proportional to h0, h1, h3, and we save only the

contribution proportional to h2 of the Jacobian, meaning ( ∂ζ∂x
∂ψ
∂y ) and (∂ζ∂y

∂ψ
∂x ).

Equations (3.5) and (3.8) are clearly written in terms of coefficients ci’,i” while equations
(3.6) and (3.7) are, respectively, in terms of ai,i+i’ and bi,i+i”. By definition (3.3)-(3.4)
coefficients ai,i+i’ and bi,i+i” are linear combinations of ψ and ζ, so that we can read
equations (3.6) and (3.7) as system of equations in the unknowns ci’,i”.
It’s worth noting that analytical identities from LHS to RHS of equations (2.14)-(2.15)
are not exactly verified in the discrete space; as a matter of fact, with regards to enstrophy
conservation, the identity is verified except for time derivative approximations, while for
energy conservation we go through integration by parts:

(∇ψ) · ∂(∇ψ)

∂t
= −ψ∂(∆ψ)

∂t
(3.9)

and then what we are actually imposing is the integral constraint

ψJ(ζ, ψ) = 0 (3.10)

for energy conservation and
ζJ(ζ, ψ) = 0 (3.11)

for enstrophy conservation. We want to underline that this is just a possible choice, as
well as the choice of imposing all requirements a) − b) − c) − d); we could impose less
properties to look for wider sets of solutions.
By imposing conditions a) − b) − c) − d) we obtain a huge number of equations, but,
using a symbolic manipulator, we can see that only 80 of them are linearly independent,
meaning that the system exhibits ∞1 solutions. We proved the following theorem:

Theorem 3.2.1. Non-uniqueness of Arakawa’s Jacobian
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There exists a whole set of solutions for the discrete 2nd order Jacobian which satisfies
conservation of energy and enstrophy and skew-symmetric property; this set depends on
one parameter, when the parameter is zero, we recover Arakawa’s solution.

This discrete set of solutions can be written in each grid point i = (i, j) as:

Jsi (ζ, ψ) = ~ψi
T
S~ζi (3.12)

where:

~ψi = (ψi+1,j+1, ψi+1,j , ψi+1,j−1, ψi,j+1, ψi,j , ψi,j−1, ψi−1,j+1, ψi−1,j , ψi−1,j−1)T ;

~ζi = (ζi+1,j+1, ζi+1,j , ζi+1,j−1, ζi,j+1, ζi,j , ζi,j−1, ζi−1,j+1, ζi−1,j , ζi−1,j−1)T ;

and

S =
1

12h2




0 −s− 0 s− 0 0 0 0 0
s− 0 s+ −s+ 0 −s− 0 0 0
0 −s+ 0 0 0 s+ 0 0 0
−s− s+ 0 0 0 0 −s+ s− 0

0 0 0 0 0 0 0 0 0
0 s− −s+ 0 0 0 0 s+ −s−
0 0 0 s+ 0 0 0 −s+ 0
0 0 0 −s− 0 −s+ s+ 0 s−

0 0 0 0 0 s− 0 −s− 0




with s− = s− 1 and s+ = s+ 1.

3.2.1. Special cases: s = ±1
Let’s start by analyzing the special case s = 1; the general scheme becomes:

Js=1(ζ, ψ) =
1

6h2
{ζi+1,j(ψi,j+1 − ψi+1,j−1)− ζi−1,j(ψi,j−1 − ψi−1,j+1)

+ζi,j+1(ψi−1,j+1 − ψi+1,j)− ζi,j−1(ψi+1,j−1 − ψi−1,j)

+ζi+1,j−1(ψi+1,j − ψi,j−1)− ζi−1,j+1(ψi−1,j − ψi,j+1)}

(3.13)

If we want to give a geometric reading of the special scheme (3.13), we can see that it
uses grid points in figures (3.1)-(3.2) that we can read, respectively, as:

ζx(ψy −
ψx
2

)− ζy(ψx +
ψy
2

) (figure 3.1)

(ζx + ζy)(
ψx + ψy

2
) (figure 3.2)

which, combined, give rise to the Jacobian. With a better analysis, we can decompose
such discretization as in figures (3.3-3.4-3.5 and (3.6):

Now it is clear the new reading of the scheme, adding and subtracting the ghost-node
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Figure 3.1.: ζx(ψy − ψx
2 )− ζy(ψx +

ψy
2 )

Figure 3.2.: (ζx + ζy)(
ψx+ψy

2 )

(i, j):

Js=1(ζ, ψ) =
1

6h2
{[(ζi+1,j − ζi,j)(ψi,j+1 − ψi,j + ψi,j − ψi+1,j−1)

+(ζi,j − ζi−1,j)(ψi−1,j+1 − ψi,j + ψi,j − ψi,j−1)] (figure3.7)

−[(ζi,j+1 − ζi,j)(ψi+1,j − ψi,j + ψi,j − ψi−1,j+1)

+(ζi,j − ζi,j−1)(ψi+1,j−1 − ψi,j + ψi,j − ψi−1,j)] (figure3.8)

−[(ψi+1,j − ψi,j)(ζi,j − ζi+1,j−1)

+(ψi,j − ψi−1,j)(ζi−1,j+1 − ζi,j)] (figure3.9)

+[(ψi,j+1 − ψi,j)(ζi,j − ζi−1,j+1)

+(ψi,j − ψi,j−1)(ζi+1,j−1 − ζi,j)]} (figure3.10)}

(3.14)
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Figure 3.3.: ζx(ψy − ψx
2 )− ζy(ψx +

ψy
2 )

Figure 3.4.: Scomposizione di ψy

Figure 3.5.: Scomposizione di ψx
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Figure 3.6.: (ζx + ζy)(
ψx+ψy

2 )

Figure 3.7.: ζxψy

Figure 3.8.: ζyψx

The special case s = −1 is symmetric respect to s = 1 using the opposite diagonals:

Js=−1(ζ, ψ) =
1

6h2
{ζi+1,j+1(ψi,j+1 − ψi+1)− ζi−1,j−1(ψi,j−1 − ψi−1,j)

+ζi,j+1(ψi−1,j − ψi+1,j+1)− ζi,j−1(ψi+1,j − ψi−1,j−1)

+ζi+1,j(ψi+1,j+1 − ψi,j−1)− ζi−1,j(ψi−1,j−1 − ψi,j+1)}

(3.15)
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Figure 3.9.: ζyψx

Figure 3.10.: ζxψy

and the grid points used are those in figures (3.11-3.12).

Remark 3.1. As already noted, Arakawa’s Jacobian is the linear combination of three
different readings of the analytical Jacobian:

• ζxψy − ζyψx
• − ∂

∂x(ζyψ) + ∂
∂y (ζxψ)

• ∂
∂x(ζψy)− ∂

∂y (ζψx).

We can easily note that also the special cases Js=1 and Js=−1 are linear combination of
such three readings, what changes is the way of discretization, the grid points used.
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Figure 3.11.: s = −1

Figure 3.12.: s = −1

3.2.2. Js and sub-solutions

The previous observation, leads to write the general Jacobian as

Js =
J

(1)
s + J

(2)
s + J

(3)
s

3
,

where:

J (1)
s (ζ, ψ) =

1

4h2
{(ζi+1,j − ζi−1,j)(ψi,j+1 − ψi,j−1)

+s(ζi+1,j − 2ζi,j + ζi,j−1)(ψi+1,j − 2ψi,j + ψi,j−1)

−(ψi+1,j − ψi−1,j)(ζi,j+1 − ζi,j−1)

−s(ψi+1,j − 2ψij + ψi,j−1)(ζi+1,j − 2ζi,j + ζi,j−1)}

(3.16)
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J (2)
s (ζ, ψ) =

1

4h2
{−(ψi+1,j [(ζi+1,j+1 − ζi+1,j−1)− s(ζi+1,j+1 − 2ζi,j + ζi+1,j−1)]

−ψi−1,j [(ζi−1,j+1 − ζi−1,j−1) + s(ζi−1,j+1 − 2ζi,j + ζi−1,j−1)])

+ψi,j+1[(ζi+1,j+1 − ζi−1,j+1)− s(ζi+1,j+1 − 2ζi,j + ζi−1,j+1)]

−ψi,j−1[(ζi+1,j−1 − ζi−1,j−1) + s(ζi+1,j−1 − 2ζi,j + ζi−1,j−1)]}

(3.17)

J (3)
s (ζ, ψ) =

1

4h2
{ζi+1,j [(ψi+1,j+1 − ψi+1,j−1)− b(ψi+1,j+1 − 2ψi,j + ψi+1,j−1)]

−ζi−1,j [(ψi−1,j+1 − ψi−1,j−1) + s(ψi−1,j+1 − 2ψi,j + ψi−1,j−1)]

−(ζi,j+1[(ψi+1,j+1 − ψi−1,j+1)− s(ψi+1,j+1 − 2ψi,j + ψi−1,j+1)]

−ζi,j−1[(ψi+1,j−1 − ψi−1,j−1) + s(ψi+1,j−1 − 2ψi,j + ψi−1,j−1)])}

(3.18)

The truncation error shows that only in the special case s = 0, each of the three Jacobian

is consistent, while, in general only J
(1)
s and (J

(2)
s + J

(3)
s )/2 mantain consistency:

JT (1)
s = (ψyζx − ψxζy)

+h2(
1

6
(ψyζxxx − ψxxxζy − ψxζyyy + ψyyyζx)− s

4
(ψxxζyy + ψyyζxx))

+h4(
1

36
(ψyyyζxxx − ψxxxζyyy) +

s

48
(ψyyζxxxx − ψxxxxζyy − ψxxζyyyy + ψyyyyζxx))

+h6 s

576
(ψyyyyζxxxx − ψxxxxζyyyy)

(3.19)
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JT (2)
s = (ψyζx − ψxζy) + s(ψxζx − ψyζy)

+h2(
1

6
(ψyζxxx − 3ψxζxxy − 3ψxxζxy − ψxxxζy − ψxζyyy + 3ψyζyyx + 3ψyyζxy + ψyyyζx)

+
s

12
(3ψxxζyy − 3ψyyζxx + 2ψxζxxx + 3ψxxζxx + 2ψxxxζx

+6ψxζyyx − 6ψyζxxy − 2ψyζyyy − 3ψyyζyy − 2ψyyyζy))

+h4(
1

72
(6ψyyζxxxy − 6ψxxxζxxy − 3ψxxxxζxy − 6ψxxζyyyx − 6ψxxζxxxy

−2ψxxxζyyy + 2ψyyyζxxx + 6ψyyζyyyx + 6ψyyyζyyx + 3ψyyyyζxy)

+
s

144
(3ψxxζxxxx + 4ψxxxζxxx + 3ψxxxxζxx + 18ψxxζxxyy

−3ψyyζxxxx + 12ψxxxζyyx + 3ψxxxxζyy + 3ψxxζyyyy − 18ψyyζxxyy

−12ψyyyζxxy − 3ψyyyyζxx − 3ψyyζyyyy − 4ψyyyζyyy − 3ψyyyyζyy))

+
h6

576
(4ψyyyyζxxxy − 4ψxxxxζyyyx − 4ψxxxxζxxxy + 4ψyyyyζyyyx

+s(ψxxxxζxxxx + 6ψxxxxζxxyy + ψxxxxζyyyy − ψyyyyζxxxx − 6ψyyyyζxxyy − ψyyyyζyyyy))
(3.20)

JT (3)
s = (−ζyψx + ζxψy)− s(ζxψx − ζyψy)

−h2(
1

6
(ζyψxxx − 3ζxψxxy − 3ζxxψxy − ζxxxψy − ζxψyyy + 3ζyψyyx + 3ζyyψxy + ζyyyψx)

+
s

12
(3ζxxψyy − 3ζyyψxx + 2ζxψxxx + 3ζxxψxx + 2ζxxxψx

+6ζxψyyx − 6ζyψxxy − 2ζyψyyy − 3ζyyψyy − 2ζyyyψy))

−h4(
1

72
(6ζyyψxxxy − 6ζxxxψxxy − 3ζxxxxψxy − 6ζxxψyyyx − 6ζxxψxxxy

−2ζxxxψyyy + 2ζyyyψxxx + 6ζyyψyyyx + 6ζyyyψyyx + 3ζyyyyψxy)

+
s

144
(3ζxxψxxxx + 4ζxxxψxxx + 3ζxxxxψxx + 18ζxxψxxyy

−3ζyyψxxxx + 12ζxxxψyyx + 3ζxxxxψyy + 3ζxxψyyyy − 18ζyyψxxyy

−12ζyyyψxxy − 3ζyyyyψxx − 3ζyyψyyyy − 4ζyyyψyyy − 3ζyyyyψyy))

− h6

576
(4ζyyyyψxxxy − 4ζxxxxψyyyx − 4ζxxxxψxxxy + 4ζyyyyψyyyx

+s(ζxxxxψxxxx + 6ζxxxxψxxyy + ζxxxxψyyyy − ζyyyyψxxxx − 6ζyyyyψxxyy − ζyyyyψyyyy))
(3.21)
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The global truncation error is then:

Js(ζ, ψ) = ψyζx − ψxζy

+
h2

6
[ψyζxxx − ψxζxxy − ψxxζxy + ψxyζxx − ψxxxζy + ψxxyζx

−ψxζyyy + ψyζyyx − ψxyζyy + ψyyζxy − ψyyxζy + ψyyyζx

+
s

2
(2ψxζyyx − 2ψyζxxy + ψxxζyy − ψyyζxx + 2ψxxyζy − 2ψyyxζx)]

+O(h4).

(3.22)

In a more compact form, we can read the general scheme as Arakawa’s Jacobian plus a
term depending on the parameter:

Js = JA + sJ̃ (3.23)

where
J̃ = ζi,j+1(ψi+1,j+1 + ψi−1,j+1 − ψi+1,j − ψi−1,j)

+ζi,j−1(ψi+1,j−1 + ψi−1,j−1 − ψi+1,j − ψi−1,j)

−ζi+1,j(ψi+1,j+1 + ψi+1,j−1 − ψi,j+1 − ψi,j−1)

−ζi−1,j(ψi−1,j+1 + ψi−1,j−1 − ψi,j+1 − ψi,j−1)

+ζi+1,j+1(ψi+1,j − ψi,j+1)

+ζi+1,j−1(ψi+1,j − ψi,j−1)

+ζi−1,j+1(ψi−1,j − ψi,j+1)

+ζi−1,j−1(ψi−1,j − ψi,j−1)

(3.24)

3.2.2.1. Different sets of solutions

As outlined before, many classes of possible solutions arise: one possible choice is the
family of skew-symmetric 2nd-order Jacobians. To obtain this special set of schemes we
should impose only conditions a) and d), obtaining a wider family of solutions depending
on many parameters. Here we observe that the special cases presented in the previous

section J
(1)
s and (J

(2)
s + J

(3)
s )/2 belong to this subset. For semplicity, we will rename

them as:
Js+(ζ, ψ) = J (1)

s (3.25)
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and

Js∗(ζ, ψ) = (J (2)
s + J (3)

s )/2 =
1

8h2

{−(ψi+1,j [(ζi+1,j+1 − ζi+1,j−1)− s(ζi+1,j+1 + ζi+1,j−1)]

−ψi−1,j [(ζi−1,j+1 − ζi−1,j−1) + s(ζi−1,j+1 + ζi−1,j−1)])

+ψi,j+1[(ζi+1,j+1 − ζi−1,j+1)− s(ζi+1,j+1 + ζi−1,j+1)]

−ψi,j−1[(ζi+1,j−1 − ζi−1,j−1) + s(ζi+1,j−1 + ζi−1,j−1)]

+ζi+1,j [(ψi+1,j+1 − ψi+1,j−1)− s(ψi+1,j+1 + ψi+1,j−1)]

−ζi−1,j [(ψi−1,j+1 − ψi−1,j−1) + s(ψi−1,j+1 + ψi−1,j−1)]

−(ζi,j+1[(ψi+1,j+1 − ψi−1,j+1)− s(ψi+1,j+1 + ψi−1,j+1)]

−ζi,j−1[(ψi+1,j−1 − ψi−1,j−1) + s(ψi+1,j−1 + ψi−1,j−1)])}

(3.26)

refering to the grid points that they use.
We summarize some examples of different subsets of solutions in table (3.12) and, in the
next section, we will show their different behaviors.

Table 3.12.: Examples of 2nd order Jacobians with different properties

Skew-symmetric Enstrophy Conserving Energy Conserving

Js Js Js

Js∗ (J+× + J++)/2 (J×+ + J++)/2
Js+ J×+ J+×

3.2.3. Analysis of the general scheme

3.2.3.1. Error analysis in the physical space

Let’s consider now the special case where the velocity field is assumed to be constant,
(k1, k2) = (u, v), meaning ψ(x, y) = −uy + vx. In terms of truncation error, this corre-
sponds to:

Rs =
h2

6
[−(uζxxx + uζyyx + vζxxy + vζyyy) + s(vζyyx + uζxxy)]

=
h2

6
[−uζxxx − vζyyy + ζyyx(sv − u) + ζxxy(su− v)].

(3.27)

Remark 3.2. For the special case s = 0 some terms nullify. If we consider a general s,
we observe that some choice will make disappear mixed terms, in particular:

• (u, v) = (k, k)
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In this case the best choice is s = 1, the resulting truncation error is:

Rs =
h2

6
[k(−ζxxx − ζyyy)]. (3.28)

• (u, v) = (k,−k)
In this case the best choice is s = −1, the resulting truncation error is:

Rs =
h2

6
[k(ζyyy − ζxxx)]. (3.29)

To eliminate one or another mixed derivative, I should check s = u
v or s = v

u .

3.2.3.2. Error analysis in the Fourier space

In this section we focus on the modified wave number (MWN); we will consider the
special case (advection equation) where the velocity field is constant but the stream
function and the vorticity function are not correlated and they can be expressed as:

ψ(x, y) = −uy + vx

ζ(x, y) = ζei(mx+ny).
(3.30)

For this particular choice, the analytical Jacobian results to be:

J(ζ, ψ) = −i(mu+ nv)ζ(x, y) (3.31)

while the discrete Jacobian, Js (with mx→ mjh = jα, ny → nlh = lβ):

Js(ζ, ψ) = i
ζ(x, y)

3h
[−v(2sin(β) + sin(β)cos(α))− u(2sin(α) + sin(α)cos(β))

+s(v(−sin(α) + sin(α)cos(β))− u(sin(β)− sin(β)cos(α)))]
(3.32)

Similar to the physical space, also for the modified wave number we observe that there
are special choices where some terms nullify. We have, again:

• (u, v) = (ũ, ũ)
In this case the best choice to nullify mixed terms is s = 1, the resulting MWN is:

Js(ζ, ψ) =
−ũζ(x, y)

h
[sin(β) + sin(α)] (3.33)

• (u, v) = (ũ,−ũ)
In this case the best choice to nullify mixed terms is s = −1, the resulting MWN
is:

Js(ζ, ψ) =
ũζ(x, y)

h
[sin(β)− sin(α)] (3.34)
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Clearly, these choices are not meant to be the best, because we imposed only that mixed
terms nullify which does not necessarily mean a minimization of the error, as we will see
in the following analysis.
I will now present some plots: firsts represent the 2D projection of the difference between
real and modified wave numbers, while in the 3D plot I will show separately real and
MWN. In both case I will show the dependence from the parameter.

2D plots comparing analytical and modified wave numbers

a) Case (u,v)=(0,1)

(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.13.: MWN - ((u,v)=(0,1))
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Figure 3.14.: MWN - ((u,v)=(0,1)) - Arakawa

b) Case (u,v)=(1,1)

c) Case (u,v)=(-1,1)

d) Case (u,v)=(1,1
2)

e) Case (u,v)=(1,1
4)

3D plots comparing analytical and modified wave numbers
For the 3D plot I will show, as example, only the case (u, v) = (−1, 1).

Error comparison for different choices of the parameter

We can summarize the analys defining the four squared domains:

• A = [−π
6 ,

π
6 ]× [−π

6 ,
π
6 ]

• B = [−π
4 ,

π
4 ]× [−π

4 ,
π
4 ]

• C = [−π
2 ,

π
2 ]× [−π

2 ,
π
2 ]

• D = [−2π
3 ,

2π
3 ]× [−2π

3 ,
2π
3 ]

and the following error limitations on the MWN:
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(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.15.: MWN - ((u,v)=(1,1))

Figure 3.16.: MWN - ((u,v)=(1,1)) - Arakawa
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(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.17.: MWN - ((u,v)=(-1,1))

Figure 3.18.: MWN - ((u,v)=(-1,1)) - Arakawa
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(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.19.: MWN - ((u,v)=(1,1
2))

Figure 3.20.: MWN - ((u,v)=(1,1
2)) - Arakawa
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(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.21.: MWN - ((u,v)=(1,1
4))

Figure 3.22.: MWN - ((u,v)=(1,1
4)) - Arakawa
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(a) s=-1 (b) s=-2 (c) s=-3

(d) s=1 (e) s=2 (f) s=3

Figure 3.23.: MWN 3D - ((u,v)=(-1,1))

Figure 3.24.: MWN 3D - ((u,v)=(-1,1)) - Arakawa
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• Case i) Ω− Ω̃ < a
where a = 1, 2, 15, 30 is expressed as percentage respect to Ω, for ~x respectively
belonging to A,B,C,D;

(u,v)/s -5 -4 -3 -2 -1 0 1 2 3 4 5

(1,1)
√ √

(1,-1)
√ √

(-1,1)
√ √

(-1,-1)
√ √

(0,1)

(1,0)

(0,-1)

(-1,0)

(1,1
2)

√
(1,-1

2)
√

(-1,1
2)

√
(-1,-1

2)
√

(1
2 ,1)

√
(1

2 ,-1)
√

(-1
2 ,1)

√
(-1

2 ,-1)
√

• Case ii) Ω− Ω̃ < b
where b = 2, 3, 20, 35 is expressed as percentage respect to Ω, for ~x respectively
belonging to A,B,C,D;
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(u,v)/s -5 -4 -3 -2 -1 0 1 2 3 4 5

(1,1)
√ √

(1,-1)
√ √

(-1,1)
√ √

(-1,-1)
√ √

(0,1)
√

(1,0)
√

(0,-1)
√

(-1,0)
√

(1,1
2)

√ √ √
(1,-1

2)
√ √ √

(-1,1
2)

√ √ √
(-1,-1

2)
√ √ √

(1
2 ,1)

√ √ √
(1

2 ,-1)
√ √ √

(-1
2 ,1)

√ √ √
(-1

2 ,-1)
√ √ √

• Case iii) Ω− Ω̃ < c
where c = 3, 5, 20, 40 is expressed as percentage respect to Ω, for ~x respectively
belonging to A,B,C,D;

(u,v)/s -5 -4 -3 -2 -1 0 1 2 3 4 5

(1,1)
√ √ √ √

(1,-1)
√ √ √ √

(-1,1)
√ √ √ √

(-1,-1)
√ √ √ √

(0,1)
√ √ √

(1,0)
√ √ √

(0,-1)
√ √ √

(-1,0)
√ √ √

(1,1
2)

√ √ √
(1,-1

2)
√ √ √

(-1,1
2)

√ √ √
(-1,-1

2)
√ √ √

(1
2 ,1)

√ √ √
(1

2 ,-1)
√ √ √

(-1
2 ,1)

√ √ √
(-1

2 ,-1)
√ √ √

• Case iv) Ω− Ω̃ < d
where d = 5, 10, 40, 60 is expressed as percentage respect to Ω, for ~x respectively
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belonging to A,B,C,D;

(u,v)/s -5 -4 -3 -2 -1 0 1 2 3 4 5

(1,1)
√ √ √ √ √

(1,-1)
√ √ √ √ √

(-1,1)
√ √ √ √ √

(-1,-1)
√ √ √ √ √

(0,1)
√ √ √ √ √ √ √ √ √

(1,0)
√ √ √ √ √ √ √ √ √

(0,-1)
√ √ √ √ √ √ √ √ √

(-1,0)
√ √ √ √ √ √ √ √ √

(1,1
2)

√ √ √ √ √ √ √ √
(1,-1

2)
√ √ √ √ √ √ √ √

(-1,1
2)

√ √ √ √ √ √ √ √
(-1,-1

2)
√ √ √ √ √ √ √ √

(1
2 ,1)

√ √ √ √ √ √ √ √
(1

2 ,-1)
√ √ √ √ √ √ √ √

(-1
2 ,1)

√ √ √ √ √ √ √ √
(-1

2 ,-1)
√ √ √ √ √ √ √ √

3.2.4. Stability Analysis

Figure 3.25.: Stability region for the leapfrog scheme

In the next Section we will show some numerical examples to show different behaviours
corresponding to different spatial discretization of the Jacobian. We will also need a time
integrator, and we will use the Leap-frog scheme. Particular attention must be paid to
the choice of time-step in the case where the parameter is not zero. Indeed: let R = u

v ,
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in order to get stability, an analysis on the modified wave number gives us the following
estimate (starting from eq. 3.32):

Ω = 1
3h [−v(2sin(β) + sin(β)cos(α))− u(2sin(α) + sin(α)cos(β))
+s(v(−sin(α) + sin(α)cos(β))− u(sin(β)− sin(β)cos(α)))]

≤ |v|
3h [2 + 1 + |R|(2 + 1) + |s|(1 + 1 + |R|(1 + 1))]

= |v|
3h [3 + 3|R|+ |s|(2 + 2|R|)] = |v|

3h [(1 + |R|)(3 + 2|s|)]

(3.35)

Now, an analysis of the stability region for the Leap-Frog scheme [53], fig. 3.25, leads to:

∆t ≤ 3h

|v| [(3 + 2|s|)(1 + |R|)]−1 (3.36)

in the case s=0 (Arakawa) we get the classical condition:

∆t ≤ h

|v|+ |u| . (3.37)

3.2.5. Numerical Simulations

3.2.5.1. Two-dimensional advection equation

In order to test the family of schemes that we have found with the general method, we
start analyzing an easy, linear, case: the advection equation:

∂ζ

∂t
+ ~u · ~∇ζ = 0 (3.38)

We will show different simulations for different values of the parameter and of the velocity
field. The boundary conditions are supposed to be biperiodic on the domain [0, 1]× [0, 1]
and, to integrate over the time, Leap-Frog scheme is used (and already analyzed in the
previous section):

ζn+1
i,j = ζn−1

i,j + 2dtJi,j(ζ
n, ψn) (3.39)

for the first time-step Euler method is used:

ζn+1
i,j = ζni,j + dtJi,j(ζ

n, ψn). (3.40)

We consider two different initial conditions:

ζ(x, y) = exp(− 1

0.04
[(x− 1

2
)2 + (y − 1

2
)2]) (3.41)

ζ(x, y) =

{
1 if x ∈ [1

4 ,
3
4 ]× [1

4 ,
3
4 ]

0 otherwise
(3.42)

• (u,v)=(1,0)
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– TEST 1, initial condition (3.41)

s T N CFL L∞ L1 L2

0 5 64 0.5 1.2173 e-001 4.2880 e-002 2.5707 e-002

1 5 64 0.5 1.2261 e-001 4.2684 e-002 2.6346 e-002

-1 5 64 0.5 1.2261 e-001 4.2684 e-002 2.6346 e-002

(a) s=0 (b) s=1

(c) s=-1

Figure 3.26.: TEST 1 - Section

– TEST 2, initial condition 3.42

s T N CFL L∞ L1 L2

0 1 64 0.5 8.5988e-001 2.8916e-001 1.6600e-001

1 1 64 0.5 8.7407 e-001 3.0204e-001 1.5930e-001

-1 1 64 0.5 8.7407e-001 3.0204e-001 1.5930e-001

• (u,v)=(1,1)

– TEST 3, initial condition (3.41);

s T N CFL L∞ L1 L2

0 5 64 0.5 1.8564 e-001 4.6229 e-002 3.4902 e-002

1 5 64 0.5 1.3730 e-001 4.0045 e-002 2.7721 e-002

-1 5 64 0.5 2.2337 e-001 5.8602 e-002 4.3846 e-002
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(a) s=0 (b) s=1

(c) s=-1 (d) Soluzione esatta

Figure 3.27.: TEST 1 - 3D

– TEST 4, initial condition (3.41);

s T N CFL L∞ L1 L2

0 10 64 0.7 3.0168 e-001 8.3144 e-002 6.0423 e-002

1 10 64 0.7 2.1939 e-001 7.3173 e-002 4.9586 e-002

-1 10 64 0.7 3.4885 e-001 9.6304 e-002 7.1262 e-002

• (u,v)=(-1,1)

– TEST 5, initial condition (3.41);
For this case we consider also cases with s > 1 (paying attenction to the
choice of the time step) in order to show results already found by the study
of the MWN:
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(a) s=0 (b) s=1

(c) s=-1

Figure 3.28.: TEST 1 - Error

s T N CFL L∞ L1 L2

-3 5 64 0.5 1.0775 e-001 4.0348 e-002 3.0349 e-002

-2 5 64 0.5 1.0267 e-001 3.8392 e-002 2.5415 e-002

-1 5 64 0.5 1.3730 e-001 4.0045 e-002 2.7721 e-002

0 5 64 0.5 1.8564 e-001 4.6229 e-002 3.4902 e-002

1 5 64 0.5 2.2337 e-001 5.8602 e-002 4.3846 e-002

2 5 64 0.5 2.4628 e-001 7.1161 e-002 5.2478 e-002

3 5 64 0.5 2.5960 e-001 8.2244 e-002 6.1007 e-002
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(a) s=0 (b) s=1

(c) s=-1

Figure 3.29.: TEST 2 - Section
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(a) s=0 (b) s=1

(c) s=-1 (d) Soluzione esatta

Figure 3.30.: TEST 2 - 3D
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(a) s=0 (b) s=1

(c) s=-1

Figure 3.31.: TEST 3 - Section
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(a) s=0 (b) s=1

(c) s=-1 (d) Soluzione esatta

Figure 3.32.: TEST 3 - 3D
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(a) s=0 (b) s=1

(c) s=-1

Figure 3.33.: TEST 3 - Error

(a) s=0 (b) s=1

(c) s=-1

Figure 3.34.: TEST 4 - Section
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(a) s=0 (b) s=1

(c) s=-1 (d) Soluzione esatta

Figure 3.35.: TEST 4 - 3D
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(a) s=0 (b) s=-2

(c) s=2

Figure 3.36.: TEST 5 - Section
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(a) s=0 (b) s=-2

(c) s=2 (d) Soluzione esatta

Figure 3.37.: TEST 5 - 3D
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(a) s=0 (b) s=-2

(c) s=2

Figure 3.38.: TEST 5 - Errore
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3.2.5.2. The Rankine Vortex

We test now a non-linear example, the Rankine vortex. Now we are back in the formu-
lation where ψ and ζ are related by the Poisson equation ζ = ∆ψ. It is natural to define
the Rankine Vortex in a cylindric coordinate system (r,θ,z). This vortex has a velocity
field normal both to the z symmetry axes and to the radial vector r, meaning that the
velocity field is parallel to the versor j. The length of the velocity depends only by the
radius, in particular the inner part is proportional to r, while the outer is proportional
to the inverse of the distance from the centre (1/r); the maximum value that the velocity
can reach is at the characteristic distance, R, where there’s the shift, from the linear to
the hyperbolic behaviour. We can analytically define the Rankine Vortex as:

~v = vr î+ vθ ĵ + vzk̂ (3.43)

with 



vr = 0

vθ =

{
VR

r
R if 0 ≤ r < R

VR
R
r if R ≤ r

vz = 0

(3.44)

VR is the maximum value of the velocity. It’s easy to obtain the vorticity equation for
this special field:

~ζ = ∇× ~v = k̂
1

r

∂(rvθ)

∂r
= k̂(

vθ
r

+
∂vθ
∂r

) = k̂

{
2 VR

R if 0 ≤ r < R
0 if R ≤ r

(3.45)

The Rankine Vortex is then characterized by a continuous velocity field but a discontin-
uous vorticity which, as already seen, will cause problems in the numerical simulations.
For the following example we will consider the maximum value VR = 1 and the charac-
teristic distance R = 1.

The classic Rankine Vortex
Numerical problems caused by the discontinuities of the vorticity are shown if figures
3.39-3.41; for this reason we are going to construct a similar vortex, which should be yet
an analytical solution of the vorticity equation, but we impose it to be smoothed enough
in order to avoid numerical problems.
In the following simulation we fix the following data:

• CFL=0.7

• Stream function tolerance = 10−11 o k < 100

• Domain [-12,12]

• Final time T=235

• Nodes NxN=64x64
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Remark 3.3. A particular attention must be given to the boundary conditions. We are
solving the following system:





ζt = J(ζ(~x, t), ψ(~x, t))
ζ = ∆ψ

(solved by Gauss− Seidel algorithm)

+ initial conditions for ζ
→ initial conditions for ψ through Gauss− Seidel algorithm

+ boundary conditions for ζ
+ boundary conditions for ψ when using Gauss− Seidel algorithm

(3.46)

The initial condition ζ(~x, 0) = ζ0(~x) is given by the analytical Rankine vortex.
In order to fix the boundary conditions correctly, we choose to impose Dirichlet conditions
for the ζ, meaning

ζ(~x, t) = 0 if ~x ∈ ∂D
and Neumann boundary conditions for the ψ, this is because the most reasonable choice
is to impose constant velocity at the boundary (true going to infinity), so we fix

∂ψ(~x, t)

∂n
= f(~x, t) if ~x ∈ ∂D,

where n denotes the normal to the boundary.
In our case, then, the function f is fixed calculating the velocity near the boundary.

(a) Exact solution (b) Numerical solution at T = 20

Figure 3.39.: The classical Rankine Vortex - Vorticity

The smoothed Rankine Vortex
Because of numerical instabilities caused by discontinuities of the vorticity, we look for
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(a) Exact solution (b) Numerical solution at T = 20

Figure 3.40.: The classical Rankine Vortex - Velocity

(a) Vorticity section at T = 20 compared with
the analytical solution

(b) Velocity section at T = 20 compared with
the analytical solution

Figure 3.41.: The classical Rankine Vortex - Sections

a smoothed version of the Rankine Vortex in order to avoid such problems. We impose:

{
vθ(r) = r if r < 1

vθ(r) = rαe(1−r)β otherwise
(3.47)

so that
limr→∞vθ(r) = 0

and
vθ(1) = 1

. The vorticity is then:



3.2 An application: Non uniqueness of Arakawa’s Jacobian 65

~ζ = ∇× ~v = k̂
1

r

∂(rvθ)

∂r
= k̂(

vθ
r

+
∂vθ
∂r

) = k̂

{
2 if r < 1

[(α+ 1)rα−1 − βrα]e(1−r)β otherwise
(3.48)

Now we fix the constants α and β such that

limr→∞ζ(r) = 0

and
ζ(1) = 2

obtaining
α+ 1− β = 1 (3.49)

meaning the class of solution α = β + 1.
In the following simulations we consider the case α = 2, β = 1 and we fix the following
data:

• CFL=0.7

• Stream function tolerance = 10−11 o k < 100

• Domain [-12,12]

• Final time T=10

• Nodes NxN=65x65

Scheme parameter s L∞ L1 L2

0 2.6987e-002 6.5011e-002 3.9821e-002

-1 5.5913e-002 1.1139e-001 7.0287e-002

-2 4.8667e-002 1.3192e-001 9.0814e-002

1 5.5870e-002 1.1372e-001 7.0294e-002

2 4.8610e-002 1.4206e-001 9.0811e-002

In this case, there is no a favorite direction, so the best choice is Arakawa’s scheme
(s = 0).

The smoothed Rankine Vortex with Advection
Now we have a smooth analytical solution for the vorticity equation, so we will add a
constant advection in order to compute the error depending on the scheme parameter,
s, that we know to have good results with advection. In the following simulations we
consider the previous example multiplied by a factor 10−1 and we consider again the
case α = 2, β = 1 and we fix also the following data:

• CFL=0.7

• Stream function tolerance = 10−11 o k < 100
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• Domain [-12,12]

• Final time T=170

• Nodes NxN=129x129

• (u, v) = (−1, 1) constant advection velocity

In these simulations boundary conditions are fixed to be periodic in order to see the
vortex turning in our domain. In particular, at the final time the vortex has runned for
the whole domain passing through the diagonal ten times, in the following table we can
appreciate the error estimates. Energy and enstrophy plots are not showed because, as
already proved, these quantities are conserved.

Scheme parameter s L∞ L1 L2

0 7.5735e-002 2.8436e-001 1.6698e-001

-1 5.7278e-002 2.3686e-001 1.3008e-001

-2 4.0272e-002 1.5199e-001 8.8872e-002

1 1.0773e-001 3.5846e-001 2.3248e-001

2 1.2494e-001 4.4528e-001 2.8537e-001

(a) Exact solution (b) s = −2

Figure 3.42.: Smoothed Rankine with Advection - Vorticity at final time - Exact solution
compared with the best choice of the parameter

In these non-linear examples, we can appreciate what we studied in the easy (linear)
advection case, meaning that the parameter s is able to reduce the error when a constant
advection field is present (see fig. 3.46-3.49) even if a priori estimate of the best parameter
for a general non-linear field is not available.
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(a) Exact solution (b) s = −2

Figure 3.43.: Smoothed Rankine with Advection - Velocity at final time - Exact solution
compared with the best choice of the parameter

(a) s = 0

Figure 3.44.: Smoothed Rankine with Advection - Vorticity at final time -Section

(a) s = −1 (b) s = 1

Figure 3.45.: Smoothed Rankine with Advection - Vorticity at final time -Section
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(a) s = −2 (b) s = 2

Figure 3.46.: Smoothed Rankine with Advection - Vorticity at final time -Section

(a) s = 0

Figure 3.47.: Smoothed Rankine with Advection - Velocity at final time -Section

(a) s = −1 (b) s = 1

Figure 3.48.: Smoothed Rankine with Advection - Velocity at final time -Section
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(a) s = −2 (b) s = 2

Figure 3.49.: Smoothed Rankine with Advection - Velocity at final time -Section
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3.2.5.3. A test example to show non-linear numerical instability

In this section we consider a numerical experiment for the vorticity equation in the
biperiodic domain D = [ax, bx]× [ay, by] with initial condition:

ζ(x, y) =

12∑

k=4

Ãsin(
2πkx

bx
)sin(

2πky

by
) (3.50)

where we fixed Ã = 0.15, ax = ay = 0, bx = by = 16 and N=129 (number of grid points
per direction).

Figure 3.50.: Stream function at different times

In the following experiment we want to show the different behaviors of Jacobians
presented in table 3.12. Since some of these, as expected, will not conserve energy and/or
enstrophy and the solution will then explode, we decide to fix time-step as independent
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Figure 3.51.: Vorticity function at different times

from the velocity field:

∆t =
3Ch2

3 + 2|s| (3.51)

and we fix C = 0.7. In order to integrate system (2.6), at each time-step we need to
solve also the equation for the stream function:

∆ψ = ζ (3.52)

Gauss-Seidel algorithm is used for equation (3.51). The evolution of the stream function,
vorticity and velocity fields are shown in figures (3.50)-(3.51)-(3.52) for the special case
s = 0. Table (3.52) reports the l∞-norm of the error of physical constraints ζJ(ζ, ψ) and
ψJ(ζ, ψ) related respectively to the conservation of enstrophy and energy. The behavior
of these two quantities is shown in figures (3.53)-(3.54)-(3.55)-(3.56). Figure 3.53 shows
the parameter schemes’ family (3.12) for s=0, s=0.5, s=-1 and, as expected, both integral
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Figure 3.52.: Velocity field at different times

constraints are satisfied. J+× and (J++ + J×+)/2 conserve only energy as we can see in
figure (3.54) where the enstrophy is going to diverge. The enstrophy-conserving property
is a strong requirement as shown in figures (3.55), where J×+ and (J++ + J+×)/2 do
not conserve exactly both physical quantities but only small variations of energy arise.
Finally some skew-symmetric cases are shown in figures 3.56: J0+ does not conserve
either energy or enstrophy but the behavior of J0∗ is surprising. This Jacobian, also if
verifies only the skew-symmetric property, gives rise to a stable simulation. J0∗ is the
combination of J×+ and J+× which are, respectively, the discretization of the analytic
forms J(ζ, ψ) = ∇· (ψ∇⊥ζ) and J(ζ, ψ) = −∇· (ζ∇⊥ψ). It’s possible to switch from one
form to the other, thanks to the fact that the divergence of the curl is always zero, in
our case divergence of velocity and of palinstrophy. This correspond to have ψxy = ψyx
and ζxy = ζyx. By simple inspection of numerical forms J×+ and J+×, it is possible to
verify that we go through the same steps in the discrete case while, in general, this is
not possible.
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Table 3.52.: l∞-norm error for different Jacobians

Property Discrete Operator |ψJ(ζ, ψ)| |ζJ(ζ, ψ)|
General scheme Js J0 1.6650e-003 4.9843e-002

J0.5 1.6500e-003 5.1186e-002
J−1 1.6410e-003 5.1133e-002

Energy conserving J+× 1.6160e-003 6.6046e-001
(J++ + J×+)/2 1.5840e-003 2.0311e-001

Enstrophy conserving J×+ 1.5840e-003 4.9843e-002
(J++ + J+×)/2 1.6800e-003 4.9846e-002

Skew symmetric J0+ +∞ +∞
J0∗ 1.6250e-003 4.9843e-002

: Mean kinetic energy : Mean square vorticity

Figure 3.53.: Js with s = 0 - - - - - -; s = 0.5 ————–; s = −1 · · · · · · · · · · · ·
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: Mean kinetic energy : Mean square vorticity

Figure 3.54.: J+× - - - - - - and (J++ + J×+)/2 ————–

: Mean kinetic energy : Mean square vorticity

Figure 3.55.: J×+ - - - - - - and (J++ + J+×)/2 ————–
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: Mean kinetic energy : Mean square vorticity

Figure 3.56.: J0+ - - - - - - and J0∗ ————–



4. SBP formulation

The aim of this section is to propose a new and general solution to the non-linear prob-
lem already presented in the first chapter. This new formulation will mix together high
order accuracy with mimetic properties re-formulating Arakawa’s Jacobian using the
summation-by-parts (SBP) operators ([54],[55],[56]). The proficiency of this technique
lies in the power of such discretization to simulate integration by parts property which
maintains the analytical conservation properties in the discrete space. Moreover, the
compact and general form of SBP operators includes any order schemes; as a matter
of fact, all mimetic properties are derived thanks to the special discretization matrices
structure and they do not depend on a specific numerical discretization as, for example,
in Arakawa’s solution, where the mimetic properties are proved only for a particular
scheme.
Summation-by-parts operators are finite-difference operators which mimic analytical in-
tegration by parts. This property results to be very useful in constructing energy-stable
discretization of partial differential equations. SBP operators are defined by a weight ma-
trix in combination with a difference operator to approximate any derivative of any order
of accuracy. Kreiss and Scherer [57] first suggested the use of SBP spatial operators in
relation with second-order central-difference schemes, Strand [58] is a classical reference
paper, while in Olsson [19], [20], high order finite difference operators are constructed
based on spatial operators of SBP type. Nordström et al. [59] obtained a stable and con-
servative high order multi-block method for the compressible Navier-Stokes equations.
The SBP resulting schemes are strictly stable meaning that the growth rate of the an-
alytic and semi-discrete solution is identical, as we will show explicitly for a particular
case in the next section.
The basic idea is that we start from the continuous problem and we want to get an
energy estimate in the continuous space as well as in the discrete space, where a proper
norm has to be defined; sometimes an adequate split form is necessary for non-linear
conservation laws [60], as we already have seen for the vorticity equation with Arakawa’s
solution, which is the combination of three different (but equal in the analytical space)
forms of the Jacobian operator. In [39] Nordstrom showed also how to use artificial dissi-
pation for finite difference approximations (in linear hyperbolic problems) with variable
coefficients in order to have the energy estimate and strict stability. Associated to the
SBP operators is the simultaneous-approximation-term (SAT) technique for imposing
boundary [61] and interface [54] conditions weakly [62], [63], [64]. The SBP-SAT method
has been applied to a wide set of problems and has proven to be robust, [65], [66], [67],
for this reason, in the next future (not in this work) we will adopt this approach when
we will analyze the non-periodic case.
SBP technique has been also applied to discretize in time (for details see [68] and re-
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lated bibliography) and we are trying to apply such operators for our simulation (to be
completed-november).
I will start with basic notions about SBP theory, I will then show well-posed boundary
conditions for a general domain and I will finally reformulate Arakawa’s Jacobian with
these new operators, proving in this space, the three standard mimetic properties for the
Jacobian operator [42]. The last theorem is proved only on a biperiodic domain, but an
extension to a general domain will shortly be done.

4.1. Basic Notions

Let the inner product for real valued functions u, v ∈ L2[a, b] be defined by

(u, v) =

∫ b

a
uvdx (4.1)

and the corresponding norm ‖u‖2 = (u, u). The domain (a ≤ x ≤ b) is discretized using
N equidistant grid points,

xj = a+ (j − 1)h, j = 1, 2, . . . , N, h =
b− a
N − 1

.

The vector vT = [v1, v2, . . . , vN ] represents the discrete solution in each grid point xj .
We define the discrete analogous of the inner product for the vector functions u, v ∈ <n
by

(u, v)H = uTHv (4.2)

and the discrete analogous of the norm by

‖v‖2H = (v, v)H (4.3)

where H = HT symmetric-positive-definite.
An SBP operator is basically a finite-difference centered scheme which mimic the behav-
ior of the corresponding continuous operator with regard to the inner product defined by
4.2 because it leads to energy estimates, meaning stability properties. In order to make
it clearer, we apply the energy method to the easiest hyperbolic scalar equation:

ut = ux. (4.4)

Multiplying both sides of the continuous equation 4.4 by u, integrating over the interval
[a,b] using integration by part property, leads to

∂

∂t
‖u‖2 = (u, ux) + (u, ux) = u2|ba. (4.5)

Now we consider the semi-discretization of eq. 4.4, vt = D1v and we give the following
definition:
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Definition 4.1. A difference operator D1 = H−1Q is an SBP operator if H is a
symmetric-positive-definite matrix and Q+QT = B where B

B =




−1 0 0 ... 0
0 0 0 ... 0
...

...
...

0 0 ... 0 1


 . (4.6)

If we consider the special case of periodic boundary conditions the matrix B is equal to
the zero matrix, meaning that Q is a total skew-symmetric matrix.

Discretizing eq. 4.4 using SBP operators, lead to

∂

∂t
‖v‖2H = (v,H−1Qv)H + (H−1Qv, v)H = vT (Q+QT )v = v2

N − v2
0 (4.7)

for the general case (of course if we use boundary conditions the RHS is zero both in
the continuous case 4.5 and in the discrete one 4.7).
Similarly we can define and work with higher order derivatives [21] and with multi-
dimensional problems [59], [69], [63], in particular we are interested in the two-dimensional
case.
We recall the definition and the properties of the Kronecker product:

Definition 4.2. If A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A⊗B is the mp× nq block matrix:

A⊗B =



a11B ... a1nB

...
...

am1B ... amnB


 . (4.8)

Properties:

a) Bilinearity and associativity

The Kronecker product is bilinear and associative:

• A⊗ (B + C) = A⊗B + A⊗C,

• (A + B)⊗C = A⊗C + B⊗C,

• (kA)⊗B = A⊗ (kB) = k(A⊗B),

• (A⊗B)⊗C = A⊗ (B⊗C), where A, B and C are matrices and k is a scalar.

b) Non-commutative:

In general A⊗B 6= B ⊗A.
However, A⊗B and B ⊗A are permutation equivalent, meaning that there exist
permutation matrices P and Q (so called commutation matrices) such that

A⊗B = P (B⊗A) Q.
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If A and B are square matrices, then A ⊗ B and B ⊗ A are even permutation
similar, meaning that we can take P = QT .

c) The mixed-product property and the inverse of a Kronecker product:

If A, B, C and D are matrices of such size that one can form the matrix products
AC and BD, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

It follows that A ⊗ B is invertible if and only if A and B are invertible, in which
case the inverse is given by

(A⊗B)−1 = A−1 ⊗B−1.

d) Transpose:

The transposition and conjugate transposition are distributive over the Kronecker
product:

(A⊗B)T = AT ⊗BT

(A⊗B)∗ = A∗ ⊗B∗.

e) Determinant:

Let A and B be two squared matrices of size n and p respectively. Then

|A⊗B| = |A|p|B|n.

For the bidimensional case, we introduce the computational grid, xi = ihx, i ∈ 0, 1, 2, ..., N
and yj = jhy, j ∈ 0, 1, 2, ...,M where hx and hy > 0 are the spatial step in the two di-
mensions.
A general function f(x, y) will be represented in the discrete space as a matrix F of size
N ×M , where the generic element fi,j is the representation of the function f calculated
in the grid point (xi, yj). In order to simplify the notation and to introduce the bidimen-
sional SBP operator, our function will not be represented as a matrix, but as a vector,
defined as:
f = (f11, ..., f1M , f21..., f2M , ..., fN1, ..., fNM ).
On this vector we will apply SBP operators, where the partial derivatives are approxi-
mated by

∂f

∂x
≈ (P−1

x Qx ⊗ Iy)f and
∂f

∂y
≈ (Ix ⊗ P−1

y Qy)f (4.9)

The Px,y are diagonal positive definite operators such that (Px ⊗ Py) define a two-
dimensional L2 norm by

‖f‖2(Px⊗Py) = fT (Px ⊗ Py)f.
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While Qx,y are periodic operators satisfying

Qx,y +QTx,y = 0

(again, the non-periodic case will define matrices Qx,y such that Qx,y+QTx,y = B, defined
in 4.6).

4.2. Re-formulation of Arakawa’s Jacobian

In this section, we will use the notation already introduced in the previous paragraph
4.1.
In order to define a discrete non-linear operator, we need to define an analogous of the
product between two functions; to do it, we go through the definition of the operator
diag(·), which turns vectors into matrices with special properties. For any vector a =
(a1, ..., aN ), let the matrix diag(a) be

diag(a) =




a1 0 0 ... 0
0 a2 0 ... 0
...

...
...

0 0 ... 0 aN


 . (4.10)

and the vector 1 = (1, · · · , 1)T be of the same length as a. Then we have

diag(a)1 = a and 1Tdiag(a) = aT (4.11)

with properties:
Ddiag(a) = diag(Da) (4.12)

aTB = (BTa)T = 1Tdiag(BTa) (4.13)

for any diagonal matrix D, and for any vector a of length N and N ×N matrix B. Eq.
(4.13) follows from (4.11).
In the SBP notation, the definition (4.11) is used as follows to define the vectors:

Dxf = (P−1
x Qx ⊗ Iy)f = diag(P−1

x Qx ⊗ Iyf)1 (4.14)

Dyf = (Ix ⊗ P−1
y Qy)f = diag(Ix ⊗ P−1

y Qyf)1 (4.15)

Now we can define the corresponding SBP discretization of the analytical Jacobian
adopting the previous definition for each non-linear term of the analytical Jacobian (see
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Chapter 1):

J(ψ, ζ) =
1

3

(
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

)

+
1

3

(
∂

∂x

(
ψ
∂ζ

∂y

)
− ∂

∂y

(
ψ
∂ζ

∂x

))

+
1

3

(
∂

∂x

(
ζ
∂ψ

∂y

)
− ∂

∂y

(
ζ
∂ψ

∂x

))
.

(4.16)

In the discrete space, the analogous of an Arakawa-like Jacobian operator is a vector
of size NM defined as the combination of the three following:

J1 =
{[
diag(P−1

x Qx ⊗ Iyψ)diag(Ix ⊗ P−1
y Qyζ)

]
1

−
[
diag(Ix ⊗ P−1

y Qyψ)diag(P−1
x Qx ⊗ Iyζ)

]
1
} (4.17)

J2 =
{

(P−1
x Qx ⊗ Iy)

[
diag(ψ)diag(Ix ⊗ P−1

y Qyζ)
]
1

− (Ix ⊗ P−1
y Qy)

[
diag(ψ)diag(P−1

x Qx ⊗ Iyζ)
]
1
} (4.18)

J3 =
{

(Ix ⊗ P−1
y Qy)

[
diag(ζ)diag(P−1

x Qx ⊗ Iyψ)
]
1

− (P−1
x Qx ⊗ Iy)

[
diag(ζ)diag(Ix ⊗ P−1

y Qyψ)
]
1
}
.

(4.19)

where ζ and ψ are the vectors of size NM.
The following theorem refers to mimetic properties of the discrete scheme obtained by
the linear combination of J1, J2 and J3; in particolar theorem (4.2.1) and the existence
of high-order SBP operators prove that the Arakawa-like scheme (4.20) is a mimetic
arbitrary high-order accurate finite difference approximation of the non-linear Jacobian
operator (4.16). Moreover, with the same techniques used to prove theorem 4.2.1, we
can prove one specific property for each discrete Jacobian: J1 is only skew-symmetric,
J2 conserves enstrophy and J3 conserves kinetic energy.

Theorem 4.2.1. The linear combination

J∗ =
1

3
J1 +

1

3
J2 +

1

3
J3 (4.20)

is skew-symmetric, conserves enstrophy and conserves kinetic energy.

Proof. The proof is divided in three parts:

a) Skew-symmetry
We start noting that J1 is itself skew-symmetric, by definition (4.17):

J1(a, b) = −J1(b, a) (4.21)

while J2 and J3 are not their-selves skew-symmetric, but, using definitions (4.18)-
(4.19) they satisfy:

J2(a, b) = −J3(b, a). (4.22)
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The linear combination J∗ satisfies then:

J∗(a, b) = 1
3 [J1(a, b) + J2(a, b) + J3(a, b)]

= 1
3 [−J1(b, a)− J3(b, a)− J2(b, a)]

= −J∗(b, a)

(4.23)

b) Conservation of enstrophy
Consider the semi-discretization

∂ζ

∂t
+ J∗(ψ, ζ) = 0. (4.24)

By multipling (4.24) by ζT (Px ⊗ Py) we have

ζT (Px ⊗ Py)
∂ζ

∂t
=

1

2

∂

∂t
‖ζ‖2(Px⊗Py)

= −1

3
ζT (Px ⊗ Py){[diag(P−1

x Qx ⊗ Iyψ)diag(Ix ⊗ P−1
y Qyζ)]1

−[diag(Ix ⊗ P−1
y Qyψ)diag(P−1

x Qx ⊗ Iyζ)]1}

−1

3
ζT (Px ⊗ Py){(P−1

x Qx ⊗ Iy)[diag(ψ)diag(Ix ⊗ P−1
y Qyζ)]1

−(Ix ⊗ P−1
y Qy)[diag(ψ)diag(P−1

x Qx ⊗ Iyζ)]1}

−1

3
ζT (Px ⊗ Py){(Ix ⊗ P−1

y Qy)[diag(ζ)diag(P−1
x Qx ⊗ Iyψ)]1

−(P−1
x Qx ⊗ Iy)[diag(ζ)diag(Ix ⊗ P−1

y Qyψ)]1}.

(4.25)

In the first term on the RHS of (4.25) we use (4.11) and the commutative property
of diagonal matrices to write

ζT (Px ⊗ Py) = 1Tdiag(ζ)(Px ⊗ Py) = 1T (Px ⊗ Py)diag(ζ).

In the second and third term we use Qx,y = −QTx,y, (4.11), (4.12) and (4.13) as
follows

ζT (Px ⊗ Py)(P−1
x Qx ⊗ Iy) = ζT (Qx ⊗ Py)

= −ζT (QTxP
−1
x ⊗ Iy)(Px ⊗ Py)

= −[(Px ⊗ Py)(P−1
x Qx ⊗ Iy)ζ]T

= −1Tdiag[(Px ⊗ Py)(P−1
x Qx ⊗ Iy)ζ]

= −1T (Px ⊗ Py)diag(P−1
x Qx ⊗ Iyζ)

(4.26)
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and

ζT (Px ⊗ Py)(Ix ⊗ P−1
y Qy) = ζT (Px ⊗Qy)

= −ζT (Ix ⊗QTy P−1
y )(Px ⊗ Py)

= −[(Px ⊗ Py)(Ix ⊗ P−1
y Qy)ζ]T

= −1Tdiag[(Px ⊗ Py)(Ix ⊗ P−1
y Qy)ζ]

= −1T (Px ⊗ Py)diag(Ix ⊗ P−1
y Qyζ).

(4.27)

Next, by extracting diag(ψ) and diag(ζ) from the second and the third term re-
spectively, (4.25) becomes

1

2

∂

∂t
‖ζ‖2(Px⊗Py)

= −1

3
1T (Px ⊗ Py)diag(ζ)

{[
diag(P−1

x Qx ⊗ Iyψ)diag(Ix ⊗ P−1
y Qyζ)

]
1

−
[
diag(Ix ⊗ P−1

y Qyψ)diag(P−1
x Qx ⊗ Iyζ)

]
1
}

+
1

3
1T (Px ⊗ Py)diag(ψ)

{
−diag(P−1

x Qx ⊗ Iyζ)
[
diag(Ix ⊗ P−1

y Qyζ)
]
1

+ diag(Ix ⊗ P−1
y Qyζ)

[
diag(P−1

x Qx ⊗ Iyζ)
]
1
}

+
1

3
1T (Px ⊗ Py)diag(ζ)

{
diag(Ix ⊗ P−1

y Qyζ)
[
diag(P−1

x Qx ⊗ Iyψ)
]
1

− diag(P−1
x Qx ⊗ Iyζ)

[
diag(Ix ⊗ P−1

y Qyψ)
]
1
}

(4.28)

Note that the first term on the RHS of eq. (4.28) is the same of the third term
with opposite sign, thanks to the commutative property of diagonal matrices. The
same property is applied to the second term and finally, by summation, we have

1

2

∂

∂t
‖ζ‖2(Px⊗Py) = 0.

c) Conservation of kinetic energy
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We multiply (4.24) by ψT (Px ⊗ Py) and we obtain

ψT (Px ⊗ Py)
∂ζ

∂t
=

1

2

∂

∂t
‖(∇ψ)2‖2(Px⊗Py)

= −1

3
ψT (Px ⊗ Py)

{[
diag(P−1

x Qx ⊗ Iyψ)diag(Ix ⊗ P−1
y Qyζ)

]
1

−
[
diag(Ix ⊗ P−1

y Qyψ)diag(P−1
x Qx ⊗ Iyζ)

]
1
}

−1

3
ψT (Px ⊗ Py)

{
(P−1

x Qx ⊗ Iy)
[
diag(ψ)diag(Ix ⊗ P−1

y Qyζ)
]
1

− (Ix ⊗ P−1
y Qy)

[
diag(ψ)diag(P−1

x Qx ⊗ Iyζ)
]
1
}

−1

3
ψT (Px ⊗ Py)

{
(Ix ⊗ P−1

y Qy)
[
diag(ζ)diag(P−1

x Qx ⊗ Iyψ)
]
1

− (P−1
x Qx ⊗ Iy)

[
diag(ζ)diag(Ix ⊗ P−1

y Qyψ)
]
1
}
.

(4.29)

Similar to the procedure above for the first term on the RHS of (4.29) we rewrite

ψT (Px ⊗ Py) = 1Tdiag(ψ)(Px ⊗ Py) = 1T (Px ⊗ Py)diag(ψ).

In the second and third term we again apply Qx,y = −QTx,y, (4.12) and (4.13)
obtaining, with analogous steps of (4.26) and (4.27),

ψT (Px ⊗ Py)(P−1
x Qx ⊗ Iy) = −1T (Px ⊗ Py)diag(P−1

x Qx ⊗ Iyψ)

and

ψT (Px ⊗ Py)(Ix ⊗ P−1
y Qy) = −1T (Px ⊗ Py)diag(Ix ⊗ P−1

y Qyψ).

Then, by extracting from the second and the third term diag(ψ) and diag(ζ),
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respectively, (4.29) becomes

1

2

∂

∂t
‖(∇ψ)‖2(Px⊗Py)

= −1

3
1T (Px ⊗ Py)diag(ψ)

{[
diag(P−1

x Qx ⊗ Iyψ)diag(Ix ⊗ P−1
y Qyζ)

]
1

−
[
diag(Ix ⊗ P−1

y Qyψ)diag(P−1
x Qx ⊗ Iyζ)

]
1
}

+
1

3
1T (Px ⊗ Py)diag(ψ)

{
diag(P−1

x Qx ⊗ Iyψ)
[
diag(Ix ⊗ P−1

y Qyζ)
]
1

− diag(Ix ⊗ P−1
y Qyψ)

[
diag(P−1

x Qx ⊗ Iyζ)
]
1
}

+
1

3
1T (Px ⊗ Py)diag(ζ)

{
−diag(Ix ⊗ P−1

y Qyψ)
[
diag(P−1

x Qx ⊗ Iyψ)
]
1

+ diag(P−1
x Qx ⊗ Iyψ)

[
diag(Ix ⊗ P−1

y Qyψ)
]
1
}

(4.30)
Note again that the first term on the RHS of eq. (4.30) is the same of the second
term with opposite sign, thanks to the commutative property of diagonal matrices.
The same property is applied to the last term and finally, by summation, we have

1

2

∂

∂t
‖(∇ψ)‖2(Px⊗Py) = 0.



5. A physical application: study of the
energy spectra for a quasi-geostrophic
model

This section focuses on the devolopment and the study of an atmospheric model, the
quasi-geostrophic model. Quasi-geostrophic (QG) theory is based on the assumption of
rapid rotation (small Rossby number) and thinness (10 km vertical vs 20000 km horizon-
tal). The underlying physics involves a velocity equation and a temperature equation,
and 1st-order perturbation expansion around the Rossby number. The vertical velocity
is constrained, for this reason 2D and QG theories are related also if they are not iso-
morphic in terms of physics [70].
In particular, I will focus on the numerical model, for this reason I’ll try to give a short
introduction to the geophysical problem, even if an infinite bibliography is available on
this topic. A good introduction to the Geophysical fluid dynamics is given by Pedlosky
[44], a very useful PhD dissertation on the theoretical study of the cascades of 3D, 2D,
and QG turbulence is given by Eleftherios Gkioulekas [71], a collection on the available
informations of the bidimensional turbulence is given by Tabeling [72], and many other
more specific references will be discussed in the next sections.
The physical problem highlights the need of a numerical method able to respect physical
properties as energy/enstrophy conservation and a correct simulation of the energy spec-
trum. For this reason I will start with a short introduction of the turbulence dynamics
and the related energy spectrum, I will show how it is possible to derive the quasi-
geostrophic model and, in the last section, I will present the numerical results that we
obtained using mimetic finite difference operators for a two-layer QG model. Again, we
will deal with the non-linearity of equations: this will cause an energy transfer between
different scales, so we have to be very careful in the treatment of numerical experiments.
This work has been done in collaboration with ENEA UTMEA -Unitá Tecnica Model-
listica Energetica Ambientale- laboratories, Anguillara.

5.1. The turbulence

One of the main properties of turbulence, lies in its capability to transfer energy between
different scales of motion; this mechanism begins when big vorteces spring up at the
integral scale, where the fluid kinetic energy is conveyed, and, due to the high instability
tipical of these vortex structures, there is a fragmentation phenomenon which gives rise
to smaller vorteces causing an energy cascade toward the inertial scale. The trasferred
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kinetic energy is finally dissipated at smallest scales through a viscous term - heat -
(Kolmogorov scale).
Atmospheric turbulence near the Earth’s surface differs from that at higher levels. At
low levels (within a few hundred metres of the surface), when solar radiation heats
the surface, the air above it becomes warmer and more buoyant, and cooler, denser
air descends to displace it. The resulting vertical movement of air, together with flow
variations around surface obstacles, makes low-level winds extremely irregular. At night
the surface cools rapidly, chilling the air near the ground; when that air becomes cooler
than the air above it, a stable temperature inversion is created, and the wind speed
decreases sharply. At altitudes of several thousand meters or more, frictional effects
of surface topography on the wind are greatly reduced, and the small-scale turbulence
characteristic of the lower atmosphere is absent. Generally upper-level winds are usually
relatively regular, but this is not always true.
The transfer between different scales is due to non linear processes, as we have seen
for an easy 1D model in 1.2, for this reason the energy cascade will depend on the
equations considered: a brief description of the turbulence is given, trying to focusing on
the differences between 2D and 3D model dynamics.

5.1.1. 3D and 2D Turbulence

In this section I will show turbulence behavior depending on the model considered and
I will show the main differences between a 2D and a 3D modeling.
Let’s start again applying the curl to the momentum equation for an incompressible
flow,

∂ω

∂t
+ u · ∇ω = ν∇2ω +∇× f +

∇ρ×∇p
ρ2

+ ω · ∇u (5.1)

Let’s suppose that f can be written as the gradient of a scalar function and that∇ρ×∇p =
0, in this case the equation (5.1) reduces to:

∂ω

∂t
+ u · ∇ω = ν∇2ω + ω · ∇u (5.2)

On the LHS we can see the terms composing the material derivative of ω, they quantify
the vorticity variation of a fluid particle, measured moving on the particle. The terms
on the RHS represent the reason of such variation, the first term is the diffusion and
the second is the vortex stretching. In order to better understand the action of the last
term, we write component by component (for example the x component in a cartesian
system):

(ω · ∇u) · x̂ = ωx
∂ux
∂x

+ ωy
∂ux
∂y

+ ωz
∂ux
∂z

(5.3)

The term ωx
∂ux
∂x operates when the velocity gradient has the same direction of the

vorticity and will stretch the fluid; due to the angular momentum conservation, the
rotational velocity must increase and so does the vorticity. This is a self-amplification
mechanism and it is caused by the velocity gradient and it doesn’t need any external
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sources. The other two terms acts in order to rotate the existent vorticity because of the
cross velocity gradients.
In the 3-dimensional vorticity dynamic there is an amplification mechanism associated
to the increasingly smaller scales of motion; this growth is stopped at the characteristic
scale rB = (ν

3

ε )
1
4 (Kolmogorov scale) where vortex stretching and diffusion cancel out

each other.
We cannot use the same arguments of 3D dynamics in the 2-dimensional flows because
it results ω · ∇u = 0 and the vortex-stretching is zero, changing the dynamic at all; 2-D
flows tend to well approximate large-scale flows in thin fluid shells, such as planetary
atmospheres and the ocean, so it seems reasonable to study bidimensional dynamics. In
2D flows, the vector ω has only the component normal to the plane of motion, them,
without viscous terms, equation (5.2) becomes

Dω

Dt
= 0 (5.4)

This equation states that each single fluid particle vorticity is conserved along its trajec-
tory; multiplying such equation with ωn we can see that any power of the vorticity will
still be conserved. We can integrate equation (5.4) on the plane of motion, obtaining the
conservation of the circulation

Γ =

∫

S
ωdS, (5.5)

of the enstrophy

Ω =

∫

S

ω2

2
dS, (5.6)

and of all velocity’s powers.
All these conservation properties cause deep differences with the 3D case, first of all the
energy transfer between different scales. In the next section we will explore physical and
theorical results for the energy spectra of 2D and quasi-geostrophic models.

5.2. KLB theory and Tung-Orlando-Gkouliekas extension

KLB (Kraichnan [73]-[74], Leith [75], Batchelor [76]) theory for the 2D turbulence claims
there is only one energy flux (energy upscale cascade) and one entrophy flux (enstrophy
downscale cascade); these two cascades live on disjointed spectral interval. The union
set of these processes is called dual-pure cascade. Kraichnan, Leith e Batchelor use a
scale analysis to show that the energy spectrum, respectively in the upper scales for the
energy cascade and in the lower scales for the enstrophy cascade, is given by:

E(k) = C1ε
2/3k−

5
3

E(k) = C2η
2
3k−3

(5.7)

where ε and η respectively represent the energy and the entrophy injection rates, fig.
5.1.
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These expression hold only under the hypotesis of disjointed intervals for the two cas-

Figure 5.1.: The Kraichnan-Leith-Batchelor scenario of a dual-pure cascade.

cades. Moreover, for the numerical point of view there is the limit of an unrepresentable
infinite domain, even if, recently, it was shown that it is possible to obtain the enstrophy
cascade in agreement with the KLB theory [77],[78],[79].
Charney [80] states that quasi-geostrophic model is isomorphic to the 2D turbulence,
so initially one would execpt the Q.G. behavior to be similar to the 2D case. This is
not really true (as argued in [81]), and anyway a different dynamic appears when we
consider a two-layer Q.G. model [70]. In this case, the stratification leads to a situation
where Danilov inequality is not valid [82]-[83] and in the inertial range can coexist en-
ergy and enstrophy fluxes. In order to break Danilov inequality, the quasi-geostrophic
system needs to have a sufficently big asymmetry between the two layers, meaning that
the system has to be baroclinic. This is obtained putting a suitable Ekman damping in
the lower layer [84].
Moreover, against KLB theory, Gkioulekas and Tung ([85]) conjectured that intervals
can overlap each other giving rise to a double energy/enstrophy cascade in both direc-
tions. In particular they derive a useful expression for the energy cascade using a linear
combination of the flux spectrum related to the energy (k−3), and to the enstrophy (k−

5
3 )

proving how these two fluxes can coexist; the transition from −3 slope to −5/3 slope
occurs at the transition wavenumber kt. The order of magnitude of kt can be estimated
by dimensional analysis and it is given by kt ≈

√
η/ε.

What if we compare modeling theories with experimental results? In 1984 Nastrom and
Gage [86] proposed the (renowned) energy spectrum for the atmospheric turbulence ob-
tained from more then 6000 commercial aircraft flights made during the GASP (Global
Atmospheric Sampling Program). In figure 5.2, we can see two different slopes: between
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3000 km and 800 km (large scales) the slope behaves like k−3 whilst for small scales,
around 600 km and 1 km, the slope is like k−5/3. The transition region appears for the
scales between 600 km and 800 km. Nastrom and Gage analysis showed that only little
variability respect to latitude, season etc. appears, except for the temperature ampli-
tudes, which result to be much larger in the stratosphere than in the troposphere.
So far we have seen two different approaches to explain the Nastrom-Gage spectrum: the

Figure 5.2.: Nastrom-Gage Spectrum

dual pure cascade (KLB theory) vs the double energy cascade (Gkioulekas and Tung);
the dual pure cascade was supported also by Fjortoft [87], who proved that in the 2D
turbulence cannot exist a downscale energy cascade, but this proof was argued to be
incorrect [70] by Tung and Orlando, which contributed to support the double energy
cascade theory. They proved that in 2D turbulence, as well as in Q.G. dynamics, the
energy downscale cascade is not prohibited, but the downscale energy cascade in 2D does
not appear due to the absence of anomalous dissipation when the viscosity coefficient
vanishes. In the Q.G. dynamic this prohibition does not hold, so a downscale energy cas-
cade is possible. Another important difference between Q.G. and 2D turbulence is the
QG-contained mechanism of baroclinic instability as the source of energy and enstrophy
injection [88].
Tung and Orlando claim that the quasi-geostrophic model is sufficient to reproduce
Nastrom-Gage spectrum, and showed it using spectral methods [89], see figure ??. They
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used a two-layer Q.G. model without any forcing other than self-excited baroclinic in-
stability, or other (e.g., unbalanced) dynamics, and this does not appear to present any
difficulty for the model in producing the right amount of turbulent energy in all scales
of motion. The subgrid dissipation used, albeit small, appears to be sufficient to ensure
a downscale energy flux throughout the subsynoptic and mesoscales. Also the transition
between the two slopes k = −3 and k = −5/3 is in agreement with the one obtained by
observations.

Figure 5.3.: Numerical Tung-Orlando spectrum

For the reasons presented, the Q.G. model seems to be an easy but good model to
represent the atmospheric dynamic; in the next section I’ll give a full derivation of the
quasi-geostrophic equation and in the last section I will show numerical results of such
model using mimetic finite difference discretization.

5.3. The quasi-geostrophic model

The main idea of the quasi-geostrophic model is to re-scale motion equations for the
synoptic scale, using a Taylor expansion respect to an adimensional parameter (the
Rossby number). The main steps can be summarized as follows:

a) Euler equations
Let’s consider the conservation equations:

ρ
Du

Dt
= −∇p+ ρ∇φ+ F (5.8)
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Dρ

Dt
+ ρ∇ · u = 0 (5.9)

ρ
De

Dt
= −pρ D

Dt
ρ−1 + k∇2T + χ+ ρQ (5.10)

where, by D
Dt = ∂t+u ·∇ we denote the material derivative, while other terms are:

• u = (u, v, w), the velocity vector

• ρ, the density

• p, the pressure

• e, the internal energy per mass unit

• φ, the conservative forces potential (tipically this corresponds to the gravity)

• F , the non-conservative forces

• T, the temperature

• Q, the heat

• k, the thermal conductivity coefficient

• χ, the heat due to viscous dissipation

b) Equation of state and potential temperature
We consider the ideal gas law:

ρ =
p

RT
(5.11)

where the internal energy depends only by the temperature, e = e(T ), and we
assume this relation to be linear. We define, respectively, Cv when the volume is
constant and Cp when the pressure is constant as:

Cv =
de

dt
(5.12)

Cp =
d(e+ p/ρ)

dT
, (5.13)

They are related by:
Cp = Cv +R, (5.14)

We can write (linear dependence):

e = CvT. (5.15)

Now we can introduce the specific entropy s = s(p, T ), related to the other termo-
dynamic variable by:

Tds = de+ pd(ρ−1) (5.16)

We can substitute the specific entropy in the equation (5.10), obtaining:

T
Ds

Dt
=
k

ρ
∇2T +Q (5.17)
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while, deriving the equation of state:

dT

T
=
dp

p
− dρ

ρ
(5.18)

This, together with (5.16), divide by T, yields:

ds = Cv
dT

T
+
p

T
d(

1

ρ
) = Cv

dT

T
− Rρ

ρ2
dρ) = Cv

dT

T
+R(

dT

T
− dp

p
). (5.19)

Finally, using the relation (5.14), we obtain:

ds = Cp
dT

T
−Rdp

p
. (5.20)

s = Cpln(T )−Rln(p) = ln(
TCp

pR
). (5.21)

If we consider a constant entropy transformation, starting with initial temperature
T0 and initial pressure p0 we’ll get:

Cpln(
T

T0
) = Rln(

p

p0
) (5.22)

T

T0
= (

p

p0
)
R
Cp . (5.23)

Then we obtain the definition of potential temperature θ:

θ = T (
p0

p
)
R
Cp (5.24)

The potential temperature is the temperature that the parcel would acquire if
adiabatically brought to a standard reference pressure. Using the ideal gas law,
equation (5.24) can be written as:

ρ =
p0

Rθ
(
p

p0
)
1
γ (5.25)

with γ =
Cp
Cv

.
Let’s consider now figure (5.4), where a fluid particle A is brought from height z
to height z + dz at the same level of another fluid particle B.

Then, at z + dz, the density variation of A is:

dρA =
1

γ

p0

Rθ
(
p

p0
)
1
γ
∂p

∂z

dz

p
(5.26)
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Figure 5.4.: Static Stability

then we can write the density at z + dz as

ρA + dρA = ρA(z) +
1

γ

ρ

p

∂p

∂z
dz. (5.27)

Particle B density is:

ρB = ρA(z) +
∂ρ

∂z
dz (5.28)

then:

ρA + dρA − ρB = (
1

γ

ρ

p

∂p

∂z
− ∂ρ

∂z
)dz. (5.29)

This gap gives rise to a buoyancy force equal to

g

ρ
(ρA + dρA − ρB) = g(

1

γ

1

p

∂p

∂z
− 1

ρ

∂ρ

∂z
)dz =

g

θ

∂θ

∂z
dz (5.30)

This means that, if ∂θ
∂z > 0, the buoyancy force pushes the particle back to the

starting point z and the atmosphere is said to be stable. For this reason, the
quantity 1

θ
∂θ
∂z is called static stability coefficient. Moreover, due to the fact that

the force is proportional to the change of position, the fluid particle oscillation
frequency around his equilibrium point is given by:

N = (
g

θ

∂θ

∂z
)
1
2 (5.31)

which is called Brunt-Vaisala frequency. We consider again the temperature and,
using the hydrostatic balance, we can write the stability coefficient as:

1

θ

∂θ

∂z
=

1

T
[
∂T

∂z
+

g

Cp
] (5.32)

then, even if ∂T
∂z < 0, the atmosphere will be stable until the adiabatic lapse rate

(−∂T
∂z ) is not bigger than g

Cp
.
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Finally, we observe:
D

θ

∂θ

∂z
=
N2D

g
= O(10−1) (5.33)

where D is the vertical spatial scale.
Let’s go back to the potential temperature (5.24), if we derive:

dθ = dT (
p0

p
)
R
Cp + Tp

R
Cp

0

R

Cp

1

p

R
Cp
−1

(−dp
p2

)

= dT (
p0

p
)
R
Cp + T

p0

p

R
Cp R

Cp
(−dp

p
)

= dT (
θ

T
)
R
Cp − θ R

Cp
(
dp

p
) =

θ

Cp
(Cp

dT

T
−Rdp

p
) =

θ

Cp
ds.

(5.34)

Using θ instead of e, we write equation (5.17) obtaining a potential temperature
equation:

dθ

dt
=

θ

CpT
(
k

ρ
∇2T +Q) (5.35)

c) Rotational coordinate system
In order to take care of the Earth’s rotation, we consider a rotational coordinate
system assuming the Earth to be a sphere turning around his own rotating axis
with constant angular velocity Ω. Let r = (rx, ry, rz) be the position vector in the

inertial system (̂i, ĵ, k̂) and r′ = (r′x, r
′
y, r
′
z) be the position vector in the rotating

coordinate system (î′, ĵ′, k̂′); regarding velocity and acceleration we have:

v = v′ + Ω× r′ (5.36)

dv

dt
=
dv′

dt
+ 2Ω× v′ + Ω× (Ω× r′) (5.37)

Assuming Ω = (0, 0,Ω), and substituting this relation in equation (5.8), we obtain
(from now on I will obmit the quotes because we will always refer to the non-inertial
coordinate system):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ v2Ωsin(ϕ) (5.38)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
− u2Ωsin(ϕ) (5.39)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (5.40)

2Ωsin(ϕ) = f is the Coriolis parameter.

d) Hydrostatic approximation When the atmosphere is at rest, the gravity bal-
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ances the vertical component of the pressure gradient (hydrostatic balance):

∂ps(z)

∂z
= −ρs(z)g (5.41)

Due to the smallness of velocity components, it is useful to write p and ρ as the
sum of hte basic state plus a small deviation due to the motion:

p = ps(z) + p′(x, y, z, t) (5.42)

ρ = ρs(z) + ρ′(x, y, z, t). (5.43)

e) Scaling and adimensional equations
We are looking for motions acting on the following scales:

• T ≈ 105 s, temporal scale

• L ≈ 106 m, horizontal spatial scale

• D ≈ 104 m, depth scale

• U ≈ 10 m/s, horizontal velocity scale

• W ≈ 10 cm/s, vertical velocity scale

• f0U ≈ 10−3m/s2

• δP
ρ ≈ 103m2/s2 scale of the fluctuations of the horizontal pressure

• P
ρD ≈ 10 m/s2, scale of the vertical pressure gradient

• Ω ≈ 10−4/sec, angular velocity of the Earth

• G ≈ 10 m/s2, gravity scale

Now it is useful to introduce a dimensionless parameter, the Rossby number:

R0 =
U

fL
. (5.44)

We write different fields in such a way that it is easy to compare similar scales:
u = Uu, t = L

U t, p = Pp, etc..
Thanks to (5.42)-(5.43), we re-write equation (5.9) as:

∂ρ′

∂t
+ w

∂ρs
∂z

+ U · ∇ρ′ + (ρs + ρ′)∇ · U (5.45)

Moreover, we observe:
p = ps(z) + ρsUf0Lp

′ (5.46)

ρ = ρs(z)[1 +R0Fρ
′] (5.47)

where F =
f20L

2

gD , eq. (5.45), divided by ρs, becomes:
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W

D
(w

1

ρs

∂ρs
∂z

+
∂w

∂z
) +

U

L
(
∂u

∂x
+
∂v

∂y
)

+
R0FU

L
(
∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ ρ′

∂u

∂x
+ ρ′

∂v

∂y
)

+
R0FW

D
(w
∂ρ′

∂z
+ ρ′

∂w

∂z
) = 0

(5.48)

We can analyze the different scales:

• A = W
D ≈ 10−6

s

• B = U
L ≈ 10−5

s

• C = FR0U
L ≈ 10−7

s

• D = R0FW
D ≈ 10−8

s

Because of B >> A >> C >> D, we choose to keep only A and B:

W

D
(w

1

ρs

∂ρs
∂z

+
∂w

∂z
) +

U

L
(
∂u

∂x
+
∂v

∂y
) = 0 (5.49)

Regarding the potential temperature, similar to what we have already done with
p and ρ, we obtain the following decomposition:

θ = θs(z)[1 +R0Fθ
′
(x, y, z, t)]. (5.50)

where

ln(θs(z)) =
1

γ
ln(ps(z))− ln(ρs(z)) + cost, γ =

Cp
Cv

(5.51)

Using the decomposition (5.50), we can write dimensionless eq. (5.35):

∂θ
′

∂t
+ u

∂θ
′

∂x
+ v

∂θ
′

∂y
+

w

R0Fθs

∂θs
∂z

(1 +R0Fθ
′
) = (

H∗
CpT

)
gD

U2f0
(5.52)

with

H∗ =
k

ρ
∇2T +Q. (5.53)

and H∗ ≤ O(U2f0). We define also:

H = H∗
gD

CpTf0U2
(5.54)

and the stratification parameter S(z):

S(z) =
F−1

θs

∂θs
∂z

(5.55)
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so that eq. (5.52) is now:

∂θ
′

∂t
+ u

∂θ
′

∂x
+ v

∂θ
′

∂y
+

w

R0
S(1 +R0Fθ

′
) = H (5.56)

First two equations of the motion are easy to handle, while the third one:

WU

L

∂w

∂t
+
UW

L
u
∂w

∂x
+
UW

L
v
∂w

∂y
+
W 2

D
w
∂w

∂z

= − P

Dρs(1 +R0Fρ)

∂(ps + ρsUfLp)

∂z
− g

(5.57)

but

• A = WU
L ≈ 10−7 m

s2

• B = W 2

D ≈ 10−8 m
s2

• C = P
Dρs
≈ g ≈ 10m

s2

so that C >> A >> B and then:

0 = − P

Dρs(1 +R0Fρ)

∂(ps + ρsUfLp)

∂z
− g (5.58)

Finally we are able to write the whole system:

U2

L

∂u

∂t
+
U2

L
u
∂u

∂x
+
U2

L
v
∂u

∂y
+
UW

D
w
∂u

∂z
= − P

ρsL

∂p

∂x
+ 2UΩsin(ϕ)v (5.59)

U2

L

∂v

∂t
+
U2

L
u
∂v

∂x
+
U2

L
v
∂v

∂y
+
UW

D
w
∂v

∂z
= − P

ρsL

∂p

∂y
− 2UΩsin(ϕ)u (5.60)

0 = − P

Dρs(1 +R0Fρ)

∂(ps + ρsUfLp)

∂z
− g (5.61)

W

D
(w

1

ρs

∂ρs
∂z

+
∂w

∂z
) +

U

L
(
∂u

∂x
+
∂v

∂y
) = 0 (5.62)

R0[
∂θ
′

∂t
+ u

∂θ
′

∂x
+ v

∂θ
′

∂y
] + wS−1(1 +R0Fθ

′
) = HR0 (5.63)

f) Series Expansion respect to the Rossby number
We consider now the series expansion of primitive variable respect to the Rossby
number

R0 =
U

fL

:
u = u(0) +R0u

(1) +R2
0u

(2) + .. (5.64)
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v = v(0) +R0v
(1) +R2

0v
(2) + .. (5.65)

and so on.

• ∂u
∂z = ∂v

∂z = 0, indeed, studying the vorticity equation ω = ∇× u:

dω

dt
= ωa · ∇u− ωa∇ · u+

∇ρ×∇p
ρ2

+∇× F

ρ
(5.66)

with ωa = ω + 2Ω, we get the vorticity equation for large scale motions:

(2Ω · ∇)u− 2Ω∇ · u = −∇ρ×∇p
ρ2

(5.67)

Recalling that Ω has got only the component parallel to the z axis, then we
write eq. (5.67) for each component:

2Ω
∂u

∂z
= − 1

ρ2
(
∂p

∂z

∂ρ

∂y
− ∂p

∂y

∂ρ

∂z
) (5.68)

2Ω
∂v

∂z
=

1

ρ2
(
∂p

∂z

∂ρ

∂x
− ∂p

∂x

∂ρ

∂z
) (5.69)

2Ω(
∂u

∂x
+
∂v

∂y
) = − 1

ρ2
(
∂p

∂x

∂ρ

∂y
− ∂p

∂y

∂ρ

∂x
) (5.70)

We are supposing the density horizontal variations to be negligible, which
means ρ = ρ(z), then the last equation is:

2Ω(
∂u

∂x
+
∂v

∂y
) = 0 (5.71)

Putting together this equation with the barotropic model ∇ρ × ∇p = 0, we
get:

∂u

∂z
=
∂v

∂z
= 0.

• Looking at eqs. (5.46),(5.47),(5.50), the ρ and p expansions are:

ρ = ρs[1 +R0F (ρ(0) +R0ρ
(1) + ..)] (5.72)

p = ps + ρsUfL(p(0) +R0p
(1) + ..) (5.73)

θ = θs(z)[1 +R0F (θ
′(0)

+R0θ
′(1)

+ ..)]. (5.74)

• β-plane approximation:
With this assumption, we suppose the Coriolis parameter to change linearly
respect to the latitude,

f ≈ f0 + β0y, (5.75)

with β0 = 2Ω
a cos(θ0). In principle L

a can be small or big and gives rise to
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different developments of the quasi-geostrophic theory. We consider only the
special case where L

a ≈ O(R0) which is the situation where the relative vor-
ticity is comparable with the planetary vorticity, this means that we impose
the ratio between U

L2 and β0 to be O(1):

O(1) = O(R0
0) =

U

L2β0
=

1

β
⇒ β = O(1) (5.76)

Starting back from fv expansion:

fv = f0Uv + β
U2

L
y v (5.77)

fv = v + βR0y v (5.78)

We put all this works inside eqs. (5.59)-(5.63) factorizing respect to the Rossby
number:

R0[
∂

∂t
(u(0) +R0u

(1)) + (u(0) +R0u
(1))(

∂

∂x
(u(0) +R0u

(1)))+

(v(0) +R0v
(1))

∂

∂y
(u(0) +R0u

(1))]

= − ∂

∂x
(p(0) +R0p

(1)) + v(0) + βR0yv
(0) +R0v

(1) + βR2
0yv

(1)

(5.79)

R0[
∂

∂t
(v(0) +R0v

(1)) + (u(0) +R0u
(1))(

∂

∂x
(v(0) +R0v

(1)))+

(v(0) +R0v
(1))

∂

∂y
(v(0) +R0v

(1))]

= − ∂

∂y
(p(0) +R0p

(1))− u(0) − βR0yv
(0) −R0v

(1) − βR2
0yv

(1)

(5.80)

ρs(ρ
(0) +R0ρ

(1)) = −∂(ρsp
(0))

∂z
−R0

∂(ρsp
(1))

∂z
(5.81)

∂(u(0) +R0u
(1))

∂x
+
∂(v(0) +R0v

(1))

∂y

+R0[(w(0) +R0w
(1))

1

ρs

∂ρs
∂z

+
∂(w(0) +R0w

(1))

∂z
] = 0

(5.82)

R0[
∂(θ(0) +R0θ

(1))

∂t
+ (u(0) +R0u

(1))
∂(θ(0) +R0θ

(1))

∂x

+(v(0) +R0v
(1))

∂(θ(0) +R0θ
(1))

∂y
]

+(w(0) +R0w
(1))S(1 +R0F (θ(0) +R0θ

(1))) = HR0

(5.83)

In eq. (5.81), we used the hydrostatic balance (5.41).
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R0[
∂u(0)

∂t
+ u(0)∂u

(0)

∂x
+ v(0)∂u

(0)

∂y
+
∂p(1)

∂x
− βyv(0) − v(1)]

+R2
0[
∂u(1)

∂t
+ u(0)∂u

(1)

∂x
+ u(1)∂u

(0)

∂x
+ v(0)∂u

(1)

∂y
+ v(1)∂u

(0)

∂y
− βyv(1)]

+R3
0[u(1)∂u

(1)

∂x
+ v(1)∂u

(1)

∂y
]

= −∂p
(0)

∂x
+ v(0)

(5.84)

R0[
∂v(0)

∂t
+ u(0)∂v

(0)

∂x
+ v(0)∂v

(0)

∂y
+
∂p(1)

∂y
+ βyu(0) + u(1)]

+R2
0[
∂v(1)

∂t
+ u(0)∂v

(1)

∂x
+ u(1)∂v

(0)

∂x
+ v(0)∂v

(1)

∂y
+ v(1)∂v

(0)

∂y
+ βyu(1)]

+R3
0[u(1)∂v

(1)

∂x
+ v(1)∂v

(1)

∂y
]

= −∂p
(0)

∂y
− u(0)

(5.85)

ρsρ
(0) +

∂(ρsp
(0))

∂z
+R0[ρsρ

(1) +
∂(ρsp

(1))

∂z
] = 0 (5.86)

∂u(0)

∂x
+
∂v(0)

∂y

+R0[
∂u(1)

∂x
+
∂v(1)

∂y
+ w(0) 1

ρs

∂ρs
∂z

+
∂w(0)

∂z
]

+R2
0[w(1) 1

ρs

∂ρs
∂z

+
∂w(1)

∂z
] = 0

(5.87)

Sw(0) +R0[
∂θ(0)

∂t
+ u(0)∂θ

(0)

∂x
+ v(0)∂θ

(0)

∂y
+ Sw(1) + Sw(0) −H]

+R2
0[
∂θ(1)

∂t
+ u(0)∂θ

(1)

∂x
+ v(0)∂θ

(1)

∂y
+ u(1)∂θ

(0)

∂x
+ v(1)∂θ

(0)

∂y

+SFw(0)θ(1) + SFw(1)θ(0)]

+R3
0[u(1)∂θ

(1)

∂x
+ v(1)∂θ

(1)

∂y
+ SFw(1)θ(1)] = 0

(5.88)

g) Hierarchy of primitive variables equations
Now we are able to select any possible scale, starting from the O(1) = O(R0

0) order
we obtain the geostrophic equations:

• O(1) = O(R0
0), geostrophic equations
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v(0) =
∂p(0)

∂x
(5.89)

u(0) = −∂p
(0)

∂y
(5.90)

ρ(0) = − 1

ρs

∂

∂z
(ρsp

(0)) (5.91)

∂u(0)

∂x
+
∂v(0)

∂y
= 0 (5.92)

w(0) = 0 (5.93)

Remark: From the definition of θ it follows that:

ln(θ) = [
1

γ
ln(ps)− ln(ρs)] +

1

γ
ln(1 +R0

f2
0L

2p

ps/ρs
)− ln(1 +R0Fρ)

=
1

γ
ln(ps)− ln(ρs) +

1

γ
R0
f2

0L
2p

ps/ρs
−R0Fρ+O(R2

0F )

(5.94)

which means that we can write θ(0) respect to the pressure and the density:

θ(0) = −ρ(0) +
1

γ
(
ρsgD

ps
)p(0) =

∂p(0)

∂z
− p(0) 1

θs

∂θs
∂z

(5.95)

Thanks to the estimate (5.33), we know that 1
θs
∂θs
∂z = O(R0) which allows us

to write:

θ(0) =
∂p(0)

∂z
(5.96)

This equation, together with eqs. (5.89)-(5.90):

∂u(0)

∂z
= −∂θ

(0)

∂y
(5.97)

∂v(0)

∂z
=
∂θ(0)

∂x
. (5.98)

• O(R0), quasi-geostrofic equations
We introduce the notation d0

dt = ∂t + u(0)∂x + v(0)∂y:

d0

dt
u(0) = − ∂

∂x
p(1) + v(1) + βv(0)y (5.99)

d0

dt
v(0) = − ∂

∂y
p(1) − u(1) − βu(0)y (5.100)
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ρ(1) = − 1

ρs

∂

∂z
(ρsp

(1)) (5.101)

∂u(1)

∂x
+
∂v(1)

∂y
= 0 (5.102)

d0θ
(0)

dt
+ w(1)S = H (5.103)

h) The potential vorticity
We want to take care of another variable, the vorticity, ζ = ∂v

∂x − ∂u
∂y and we need

to change variables height→ pressur. We recall the hydrostatic balance:

∂p

∂z
= −ρg (5.104)

where g = ∇φ,
φ = gz → ∂φ = g∂z

to obtain, thank to the equation of state

∂p = − p

RT
g∂z (5.105)

∂p

p
= − g

RT
∂z ⇒ ∂φ = −RT ∂p

p
(5.106)

Here we introduce the new vertical variable Z := −ln( pp0 ) and:

∂Z = − g

RT
∂z (5.107)

We want to switch from height levels to pressure levels.
We would like to write the whole system using the new coordinates, but we need
first to transform also the derivative operators, meaning that, using the pressure
as the vertical coordinate, the horizontal partial derivatives must be calculated at
constant p and no more constant z. Looking at the fig. (5.5):

[
(p0 + δp)− p0

δx
]z = [

(p0 + δp)− p0

δz
]x(
δz

δx
)p (5.108)

where the subscript means the variable to be constant. Going to the limit δz → 0,
δx→ 0 and using the hydrostatic equation:

− 1

ρ
(
∂p

∂x
)z = −g(

∂z

∂x
)p = −(

∂φ

∂x
)p (5.109)

Similarly for y:

− 1

ρ
(
∂p

∂y
)z = −(

∂φ

∂y
)p (5.110)
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Figure 5.5.: Slope of pressure surfaces in the x, z plane.

We can finally write the whole system in the new coordinates:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+W

∂u

∂Z
= −∂φ

∂x
+ fv (5.111)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+W

∂v

∂Z
= −∂Φ

∂y
− fu (5.112)

∂φ

∂Z
= RT (5.113)

− Z +
∂u

∂x
+
∂v

∂y
+
∂W

∂Z
= 0 (5.114)

D

Dt

∂φ

∂Z
+W

∂

∂Z
(
∂φ

∂Z
+ kφ) = kQ (5.115)

with W = DZ
Dt e k = R

Cp
.

As already seen with the primitive variables and applying similar steps, we can
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write an equation for the vorticity at order 0:

d0

dt
(
∂v(0)

∂x
− ∂u(0)

∂y
) = −∂u

(1)

∂x
− ∂v(1)

∂y
− ∂(βyu(0))

∂x
− ∂(βyv(0))

∂y

= −∂u
(1)

∂x
− ∂v(1)

∂y
− βy∂(u(0))

∂x
− βy∂(v(0))

∂y
− βv(0)

= −∂u
(1)

∂x
− ∂v(1)

∂y
− βy∂(φ(0))

∂x∂y
− βy∂(φ(0))

∂y∂x
− βv(0)

= −∂u
(1)

∂x
− ∂v(1)

∂y
− βv(0)

(5.116)

where by d0
dt we denote the material derivative respect the the velocity at order 0.

d0ζ

dt
= −∇ · u(1) − βv(0) (5.117)

If we observe that (u(0), v(0)) = (−∂φ(0)

∂y , ∂φ
(0)

∂x ) we can write the equation for the
stream function φ:

∂

∂t
∇2φ(0) + J(φ(0),∇2φ(0) + βy) = −∇ · u(1) (5.118)

where J(A,B) is the Jacobian operator:

J(A,B) =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
.

In order to close the system, we need to estimate ∇ · u(1), to do this, we need
dimensionless thermodynamic equations. Let’s consider eq. (5.115) and ∂φ

∂Z = RT ,

φ = gZ, ∂
∂x = g

RT
∂
∂Z :

∂

∂Z
(
∂φ

∂Z
+ kφ) =

RT

g

∂

∂z
(RT +

R

Cp
gZ) =

R2T

g
(
∂T

∂z
+

g

Cp
) (5.119)

We introduce a new dimensionless parameter, the Richardson number:

Ri =
R2TRC
gU2

(
∂TRC
∂z

+
g

Cp
). (5.120)

We can factorize φ in the sum of a radiative-convective part (depending only from
the pressure) and part depending from the deviations due to the motion:

φ = φRC(Z) + f0LUφ
′(x, y, Z, t) (5.121)

Putting eq. (5.121) into eq. (5.115), we obtain:



5.4 Numerical Results 106

fU2(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)
∂

∂Z
φ′ +

U

L
W

∂

∂Z
[(
∂

∂Z
φRC + kφRC) + fLU(

∂

∂Z
φ′ + kφ′)]

= kQ
(5.122)

Considering the order 1 and dividing everything by Uf2L (in order to see the
Rossby number), we obtain:

R0
d

dt

∂φ(0)

∂Z
+R2

0RiR0W
(1) = 0 (5.123)

The static stability is defined as S(Z) = R2
0Ri, so that

W (1) = − 1

S(Z)

d

dt

∂

∂Z
φ(0). (5.124)

Now we put the following equation

∂

∂Z
W (1) −W (1) = −∇ · u(1) (5.125)

into the vorticity equation, to obtain:

dζ

dt
=

∂

∂Z
W (1) −W (1) =

1

p

∂

∂Z
[pW (1)] (5.126)

∂

∂t
∇2φ(0) + J(φ(0),∇2φ(0) + βy) = −1

p

∂

∂Z
[
p

S(Z)

d

dt

∂φ(0)

∂Z
]. (5.127)

The last equation can be written in conservative form:

d0

dt
q = 0 (5.128)

with

q = ∇2φ(0) + βy +
1

p

∂

∂Z
[
p

S(Z)

d

dt

∂φ(0)

∂Z
]. (5.129)

5.4. Numerical Results

Following [44] for a rigourus derivation of a general N-layer QG model, and in
particular adopting the model proposed by Haidvogel and Held [90], we consider a
horizontally uniform temperature-gradient in a two-layer quasi-geostrophic model
on a β-plane:
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∂Q1

∂t
+ J(Ψ1, Q1) = −ν∇6Ψ1 (5.130)

∂Q2

∂t
+ J(Ψ2, Q2) = −k∆Ψ2 − ν∇6Ψ2 (5.131)

where the subscripts 1 and 2 refer to the upper and lower layers respectively. The
two layers are assumed to have equal depths when at rest. The potential vorticities
are related to the stream-functions through the relations

Qi = ∆Ψi + βy +
1

2R2
d

(Ψj −Ψi) (5.132)

for i, j = 1, 2 and i 6= j, Rd = (g′∆θθ0
H

2f20
)
1
2 is the Rossby radius of deformation, H

is the resting depth, g′ is the reduced gravity (g′ = g(ρ2−ρ1)
ρ1

) and f0 is the Coriolis
parameter.
Here we consider a horizontally uniform temperature-gradient, meaning:

Ψ1(x, y, t) = −Uy + ψ1(x, y, t)

Ψ2(x, y, t) = ψ2(x, y, t)
(5.133)

where ψi is the deviation of the stream-function from its time-average. Nondimen-
sionalizing, the quasi-geostrophic voritcity equations become:

∂q1

∂t
+ J(ψ1, q1) = −ν̃∇6ψ1 + F1 (5.134)

∂q2

∂t
+ J(ψ2, q2) = −k̃∆ψ2 − ν̃∇6ψ2 + F2 (5.135)

where the eddy potential vorticities are:

qi = ∆ψi +
1

2
(ψj − ψi) (5.136)

for i, j = 1, 2 and i 6= j. The forcing terms F1 and F2 represent the effects of the
mean temperature and planetary vorticity gradients

F1 = −∂q1

∂x
− (β̃ + 1/2)

∂ψ1

∂x

F2 = −(β̃ − 1/2)
∂ψ2

∂x

(5.137)

All variables are nondimensional and β̃ = βR2
d/U , ν̃ = ν/R2

dU , k̃ = kRd/U .
We distinguish physical and numerical parameters:

• Physical parameters:
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– β̃, this is a non-dimensional measure of the planetary vorticity gradient

– k̃, this is a non-dimensional measure of the bottom friction

• Numerical parameters:

– L, N defining the resolution and then the maximum wavenumber kmax =
N/2L,

– ν̃, the artificial viscosity.

In the following simulations we will consider a squared biperiodic domain of size
L× L with initial condition given by:

qi(x, y) =

4∑

k=1

ai,ksin(
2πk

L
x)sin(

2πk

L
y), (5.138)

which represents the composition of different waves with random amplitude ai,k.

Spatial Integration
The most important part of the discretization, lies in the spatial integration of the
non linear term, the Jacobian operator, widely presented in the previous chapter. In
order to conserve enstrophy and energy we choose the mimetic scheme of Arakawa.
Dissipative and forcing terms are always discretized using central finite differences.

Time Integration
To integrate over the time, we choose the Leap-Frog scheme in combination with
Matsuno scheme, this is a common choice in atmospheric simulations because Leap-
Frog scheme could result unstable for long time iteration, then applying Matsuno
scheme at constant interval steps will avoid this problem. At the first time-step we
apply Eulero scheme again. We recall, for the PDE

∂u

∂t
= f(u)

• Eulero scheme:

un+1 = un + dtf(un) (5.139)

• Leap-frog scheme:

un+1 = un−1 + 2dtf(un) (5.140)

• Matsuno scheme:

uint = un + dtf(un)

un+1 = un + dtf(uint)
(5.141)
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Inversion of the biperiodic Laplacian Operator
In order to solve the Poisson equation for the stream function (see equation 5.136),
we use the iterative method of Gauss-Seidel [91] in combination with a Multigrid
algorithm [92] in order to accelerate the convergence.

5.4.1. Analyzed quantities

• i-layer kinetic energy: Ki = 1
2 |∇ψi|2

• potential energy: P = 1
2
ψ1−ψ2

2

2

• total energy: E = K1 +K2 + P

• zonal spectra: for every fixed y, we consider the one-dimensional Fourier trans-
form in x-direction, then we average over the N-transforms and then we aver-
age again over time (we could analogously define the meridional spectra with
the switched directions but we will omit them because they look approxi-
mately the same).

5.4.2. Physical Parameters

5.4.2.1. Bottom Friction

In the following tests we can compare the different behaviors depending on different
values of k; as pointed out in [90], one expects the strength of this drag to affect the
energy level of the large scale-flow. Reducing k means reducing the bottom friction
of the lower layer and then we enforce the kinetic energy of layer 2. For very small
k, the system tends to be barotropic and the difference between two layers seems
to disappear. Also the energy spectra of two layers reflect this behavior, as we can
see by the comparison in fig. 5.9. This behavior leads to a system which loses the
original turbulence, and a big vortex of the size of the grid is created (see fig. Test
3).

Test 1 512× 32; k = 0, 6; β = 0, 25

Test 2 512× 32; k = 0, 35; β = 0, 25

Test 3 512× 32; k = 0, 005; β = 0, 25

5.4.2.2. Planetary vorticity gradient

The simulations are carried out with a resolution of 64× 16.
As we have seen, β is related to the Coriolis parameter through the relation 5.75.
The advantage of the β-plane approximation over more accurate formulations is
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(a) Energy (b) Stream functions ψ1 and ψ2

(c) Zonal spectra layer 1 (d) Zonal spectra layer 2

Figure 5.6.: Test 1

that it does not contribute nonlinear terms to the dynamical equations; such terms
make the equations harder to solve. Anyhow, as we can see in fig. 5.11, also the
parameter β affects the large scales and the amount of energy 5.10 and increasing
β is not physically reasonable.

5.4.3. Numerical Parameters

5.4.3.1. Artificial Viscosity

The simulations are carried out with a resolution of 88× 16.
Fig. 5.12 clearly shows numerical instabilities in the initial part of the simulation
when the parameter ν increases. These problems arise only in the beginning of
the simulation and doesn’t affect the long time behavior of the spectra, as we can
appreciate in fig. 5.13. Anyway a possible explanation for instabilities problems
can be found in the following remark:
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(a) Energy (b) Stream functions ψ1 and ψ2

(c) Zonal spectra layer 1 (d) Zonal spectra layer 2

Figure 5.7.: Test 2

Remark 5.1. We are solving a system of non-linear partial differential equation;
for each equation we can focus on two main terms: a convective term (the non-
linear Jacobian) and a dissipative term ν∇6ψ. The last term is proportional to
a second derivative, so it has the same properties of a even derivative. We can
associate a 1D easier problem, in order to better understand the problems that may
arise, so we consider the equation

ut + aux = νuxx (5.142)

Applying Von Neumann analysis to the diffusion equation (ignoring the convective
term) it can be proved that a central finite difference discretization results to be
stable if the following condition is satisfied

dt =
dx2

2ν
(5.143)
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(a) Energy (b) Stream functions ψ1 and ψ2

(c) Zonal spectra layer 1 (d) Zonal spectra layer 2

Figure 5.8.: Test 3

whilst in our simulation, we are fixing the time-step using the classical CFL con-
dition for the convection equation dt = dt

a .

This could explain why our simulations result to be unstable when the viscosity
term increases. To confirm this hypothesis we repeat a simulation with a smaller
value of dt and we compare the energy behaviors 5.14:

5.4.3.2. High-resolution simulations

Once we have fixed the correct time-step, we can study the energy spectra for
higher resolution in order to figure out if the discrepancy with the theoretical
spectrum can be explained by an insufficient resolution. In particular we show the
case

1000× 32, k = 0.5;β = 0.25.
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(a) k=0.6 (b) k=0.58

(c) k=0.5 (d) k=0.44

(e) k=0.35 (f) k=0.005

Figure 5.9.: Comparing energy spectra for different k

We cannot infer a clear spectral behavior, nor with the −5/3 slope, nor with the −3
one. If the problem would be yet a too low resolution, we should be able at least to
clearly see the −3 slope of synoptic scales. Moreover, we cannot see much difference
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(a) β = 0 (b) β = 0.5

Figure 5.10.: Comparing energy for different β

Figure 5.11.: Comparing energy spectra for different β

in the spectra with the simulation with a small and a big k (fig. 5.9), whilst we
should see different behaviors for the barotropic and the baroclinic systems.
What we can see is a different behavior in the two layers: the upper layer looks like
a −3 spectrum, while the lower layer like the −5/3 (the last part of the spectrum
with a different slope is not physical). So the situation seems to be baroclinic
enough, but yet the lower layer is slowed down by the bottom friction and seems
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(a) ν = 0 (b) ν = 0.00017

(c) ν = 0.00047 (d) ν = 0.00077

Figure 5.12.: Comparing energy for different ν

to have not enough energy to dominate the smallest wave numbers (this would
give the transition −5/3→ −3).
Possible causes of this result could be: a wrong energy injection which could imply
that we are not in a stationary condition or maybe, also the biperiodic boundary
conditions could comprimise the simulations, as pointed out in [].
Moreover, we underline that Tung and Orlando obtained the energy spectrum 5.3
using a spectral method: maybe a second order finite difference scheme is not
enough to study and resolve spectral quantities. For this reason we are going to
raise the order of accuracy of the scheme to conclude if the model is unable to
reproduce the Nastrom-Gage spectrum, or we just need a higher-order scheme.
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Figure 5.13.: Comparing energy spectra for different ν

(a) dt (b) 10−1dt

Figure 5.14.: Comparing energy for different dt
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(a) Energy (b) Stream functions ψ1 and ψ2

(c) Zonal spectra layer 1 (d) Zonal spectra layer 2

Figure 5.15.: High-resolution simulations
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Figure 5.16.: Total energy spectra for high resolution simulation



6. Conclusions

Two different approaches to formulate mimetic schemes for the vorticity equa-
tion have been presented and studied; in this context mimetic refers to the skew-
symmetric property of the Jacobian and its capability to conserve energy and
enstrophy.
The first approach is quite general and consists of a systematic method to con-
struct mimetic finite-difference schemes for non-linear advective problems; with
this method it is possible to produce any order non-linear operator on arbitrary
stencils and with arbitrary properties. The discrete scheme’s coefficients are iden-
tified by solving a linear system where the equations are the specific properties
required; in this way we can ensure selecting the whole generic family of operators
we are looking for, no other operator with such properties can be left out. In this
paper I applied the method to select the class of order two discrete Jacobians based
on a 9x9 uniform stencil and with skew-symmetric, enstrophy and energy preserv-
ing properties and then compared this general solution with the one obtained by
Akio Arakawa. I showed there exists a whole set of solutions which satisfies all
properties mentioned before and this set depends on one parameter, when the pa-
rameter is zero, Arakawa’s scheme is recovered. I studied the scheme dependence
respect to the parameter in the physical space as well as in the Fourier space. This
study has been applied and checked for numerical simulations of analytical models
such as the advection equation and the Rankine vortex in different forms. I also
showed examples of particular solutions: only skew-symmetric, only energy con-
serving and only enstrophy conserving schemes in order to compare them with the
generic discrete Jacobian found by imposing all these conditions. The numerical
example related to these set of solutions underlines the difference between these
operators: the general scheme is able to preserve numerical stability as well as the
only enstrophy-conserving schemes and a particular skew-symmetric scheme, J0∗.
This procedure can be applied to various differential problems to obtain higher
order schemes and different classes of solutions.
In the second approach, an Arakawa-like scheme for the discretization of the Ja-
cobian was reformulated using a finite difference method based on summation-by-
parts (SBP) operators with arbitrary order of accuracy. The proficiency of this
technique lies in the power of such discretization to simulate the integration by
parts property and maintain the analytical conservation properties in the discrete
setting. In this context, the Jacobian approximation found is proved to be skew-
symmetric, energy and enstrophy conserving, by using the special structure of the
SBP operators and a special way to relate vectors and diagonal matrices. This
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work will be extended to explore the non-periodic dynamics and the goal will be
to generalize this kind of idea to a three-dimensional model.
These two approaches are different and each one has its own advantages: the first
method ensures that the class of solutions found is the biggest one, the second
approach is not that general, but it has the property of containing any arbitrary
order accuracy in one compact structure, whilst in the first approach we yet can
obtain any order scheme, but we should impose it a priori as a specific request.
In the last part of this work, I applied Arakawa’s scheme to a geophysical appli-
cation: the simulation of a two-layer quasi-geostrophic model. The analysis was
designed to understand the model behavior depending on physical and numerical
parameters: the numerical simulations showed that the first ones (bottom friction
and planetary vorticity gradient) affect the large scales, whilst the numerical pa-
rameters can affect the stability. High-resolution simulations have also been run
in order to study energy spectra and compare them with the experimental ones of
Nastrom and Gage. We cannot select the double slopes −5/3 and −3 as Tung and
Orlando did using a spectral method; this could be explained by the fact that our
accuracy (order two) could be not sufficient to study spectral quantities. In this
direction, higher-order simulations are being investigated.



A. Poisson’s equation

We consider the Poisson’s equation

∆ψ = ζ (1.1)

with periodic boundary conditions. We refer the reader to [93] and [94] for reference
about the analytical well-posedness of eq. (1.1) with periodic boundary conditions
as well as Dirichlet or Neumann ones.
Numerically, I treated this problem with two different approaches:

• The Gauss-Seidel Method
The Gauss-Seidel method is an iterative technique for solving a square system
of n linear equations with unknown x:

Ax = b. (1.2)

It is defined by the iteration

L∗x(k+1) = b− Ux(k), (1.3)

where the matrix A is decomposed into a lower triangular component L∗, and
a strictly upper triangular component U , such that: A = L∗ + U .
The Gauss-Seidel method now solves the left hand side of this expression for
x, using previous value for x on the right hand side. Analytically, this may be
written as:

x(k+1) = L−1
∗ (b− Ux(k)). (1.4)

However, by taking advantage of the triangular form of L∗, the elements of
x(k+1) can be computed sequentially using forward substitution:

x
(k+1)
i =

1

aii


bi −

∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
(k)
j


 , i, j = 1, 2, . . . , n. (1.5)

The procedure is generally continued until the changes made by an iteration
are below some tolerance, computing the residual.
The Gauss-Seidel formula is extremely similar to that of the Jacobi method.
The computation of x(k+1) uses only the elements of x(k+1) that have already
been computed, and only the elements of x(k) that have not yet to be advanced
to iteration k+1. This means that, unlike the Jacobi method, only one storage
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vector is required as elements can be overwritten as they are computed, which
can be advantageous for very large problems.
In our specific case the matrix A corresponds to the Laplacian operator (see
eq. (1.1)). For this reason, if we use the classical 2nd order central finite
difference discretization for the Laplacian, we get the explicit formula:

ψi,j = (ψi,j+1 + ψi,j−1 + ψi+1,j + ψi−1,j − h2ζi,j)/4. (1.6)

Remark A.1. We need the additional constraint

ψ = 0 (1.7)

in order to have the solution uniquely defined. By the way, without this con-
dition, we could add any constant to the solution ψ and it would still be a
solution of eq. (1.1).

• Stationary solution
Another possible approach is to look for stationary solution of the fictitious
time-dependent equation

∂ψ

∂t
= ∆ψ − ζ. (1.8)

This method will be adopted in the SBP context.



Bibliography

[1] Mikhail Shashkov Konstantin Lipnikov, Gianmarco Manzini. Mimetic finite
difference method. Journal of Computational Physics, 257:1163–1227, 2014.

[2] A.A. Dezin. Method of orthogonal expansion. Sib. Math. J., 9(4):788–797,
1968.

[3] A.A. Samarskii A.N. Tikhonov. Homogeneous difference schemes. Comput.
Math. Math. Phys., 1(1):5–67, 1962.

[4] Akio Arakawa. Computational design for long-term numerical integration of
the equations of fluid motion: Two-dimensional incompressible flow. part i.
Journal of Computational Physics, 1:119–143, 1966.

[5] A. Arakawa. Finite-difference methods in climate modeling. M. E. Schlesinger
(ed.), Physically-Based Modelling and Simulation of Climate and Climatic
Change - Part 1, pages 79–168, 1988.

[6] V.R. Lamb A. Arakawa. A potential enstrophy and energy conserving scheme
for the shallow water equations. Mon. Weather Rev., 109:18–36, 1981.

[7] Andrew T. T. McRae and Colin J. Cotter. Energy- and enstrophy-conserving
schemes for the shallow-water equations, based on mimetic finite elements.
Quarterly Journal of the Royal Meteorological Society, ISSN:0035-9009, 2014.

[8] Rick Salmon. A general method for conserving energy and potential enstrophy
in shallow-water models. J. Atmos. Sci., 64:515–531, 2007.

[9] Rick Salmon and Lynne D Talley. Generalizations of arakawa’s jacobian.
Journal of computational physics, 83(2):247–259, 1989.

[10] Dennis C. Jespersen. Arakawa’s method is a finite-element method. Journal
of computational physics, 16:383–390, 1974.

[11] George J. Fix. Finite element models for ocean circulation problems. SIAM
J. Appl. Math., 29(3):371–387, 1975.

[12] Robert I. McLachlan. Spatial discretization of partial differential equations
with integrals. Journal of numerical Analysis, 23(4):645–664, 2003.

[13] Miao Hu and Scott R. Fulton. Higher order adaptive multigrid solution of a
fluid flow problem. Technical Report No. 2000-03, Department of Mathematics
and Computer Science, Clarkson University, Potsdam, New York, 2000.

[14] T. Ringler L. Bonaventura. Analysis of discrete shallow-water models on
geodesi cdelaunay grids with c-type staggering. Mon. Weather Rev., 133:2351–
2373, 2005.



Bibliography 124

[15] J. B. Perot. Conservation properties of unstructured staggered mesh schemes.
J. Comp. Phys., 159:58–89, 2000.

[16] L. Bonaventura A. Abba. A mimetic finite difference discretization for
the incompressible navier-stokes equations. Int. J. Numer. Methods Fluids,
56(8):1101–1106, 2008.

[17] Rafail V. Abramov and Andrew J. Majda. Discrete approximations with ad-
ditional conserved quantities: deterministic and statistical behavior. Methods
and applications of analysis, 10 (2):151–190, 2003.

[18] Arthur E.P. Veldman Bas van’t Hof. Mass, momentum and energy conserving
(mamec) discretizations on general grids for the compressible euler and shallow
water equations. Journal of Computational Physics, 231:4723–4744, 2012.

[19] P. Olsson. Summation by parts, projections, and stability i. Math. Comp.,
64:1035–1065, 1995.

[20] P. Olsson. Summation by parts, projections, and stability ii. Math. Comp.,
64:1473–1493, 1995.

[21] J. Nordstrom K. Mattsson. Summation by parts operators for finite difference
approximations of second derivatives. J. Comput. Phys.,, 199(2):503–540,
2004.

[22] Nordstrom Svard, Mattsson. Steady-state computations using summation-by-
parts operators. J. Sci. Comput., 24 (1):79–95, 2005.

[23] M. Shashkov J.M. Hyman. Natural discretizations of the divergence, gradient
and curl on logically rectangular grids. Comput. Appl. Math., 33 (4):81–104,
1997.

[24] M. Shashkov J.M. Hyman. Adjoint operators for the natural discretizations of
the divergence, gradient and curl on logically rectangular grids. Appl. Numer.
Math., 25:413–442, 1997.

[25] A. Cangiani G. Manzini L.D. Marini A. Russo L. Beirao da Veiga, F. Brezzi.
Basic principles of virtual element methods. Math. Model Methods Appl. Sci.,
23 (1):199–214, 2013.

[26] A. Buffa F. Brezzi. Innovative mimetic discretizations for electromagnetic
problems. J. Comp. Appl. Mech., 234:1980–1987, 2010.

[27] M. Shaskov F. Brezzi, K. Lipnikov. Convergence of the mimetic finite dif-
ference method for diffusion problems on polyhedral eshes. SIAM J. Numer.
Anal., 43 (5):1872–1896, 2005.

[28] Richardson. Weather prediction by numerical process. London, Cambridge
University Press/ reprinted: Dover, 1965.

[29] Von Neumann Charney, Fjortoft. Numerical integration of the barotropic
vorticity equation. Tellus, 2:237–154, 1950.



Bibliography 125

[30] J. Smagorinsky. General circulation experiments with the primitive equations.
i: The basic experiment. Month. Weath. Rev, 91:99–164, 1963.

[31] J. W. Deardorff. A numerical study of three-dimensional turbulent channel
flow at large reynolds numbers. J. Fluid Mech., 41:453–480, 1970.

[32] D. Randall. An introduction to atmospheric modeling. Department of Atmo-
spheric Science Colorado State University, 2004.

[33] D. Randall. General circulation model development - past, present, and future.
International Geophysics Series, 70, 2000.

[34] Norman A. Phillips. An example of non-linear computational instability. The
Atmosphere and the Sea in Motion (Rockefeller Institute Press in association
with Oxford University Press, New York), pages 501–504, 1959.

[35] A. Arakawa. Adjustment mechanism in atmospheric models. J. Meteor. Soc.
Japan 75, pages 155–179, 1997.

[36] Arakawa Mesinger. Numerical methods used in atmospheric models. Global
Atmospheric Research Programme (GARP), Volume I, 1976.

[37] V.R. Lamb. A. Arakawa. Computational design of the basic dynamical
processes of the ucla general circulation model. Methods in Computational
Physics, 17:173–265, 1977.

[38] S. Scott Collis. An introduction to numerical analysis for computational fluid
mechanics. Computational Mathematics Algorithms Sandia National Labora-
tories, 2005.

[39] Jan Nordstrom. Conservative finite difference formulations, variable coeffi-
cients, energy estimates and artificial dissipation. Journal of Scientific Com-
puting, 29 (3), 2006.

[40] Bernardo Favini Chiara Sorgentone. A systematic method to construct
mimetic finite-difference schemes for incompressible flows. Submitted to Jour-
nal of Computational Physics, 2014.

[41] Chiara Sorgentone, Irene Milillo, Sandro Calmanti, Bernardo Favini, Gener-
alization of Arakawa’s Jacobian, Workshop on Partial Differential Equations
on the Sphere (PDEs), NCAR (National Centre for Atmospheric Reasearch,
Boulder (CO), USA), 7th April 2014.

[42] Jan Nordstrom Chiara Sorgentone, Cristina La Cognata. A new high order
energy and enstrophy conserving arakawa-like jacobian differential operator.
In preparation, 2014.

[43] Chiara Sorgentone, Numerical Simulation of quasi-geostrophic turbulence,
Seminar at Department of Mathematics, “La Sapienza” University of Rome,
28th May 2013.

[44] Joseph Pedlosky. Geophysical fluid dynamics. Springer-Verlag, 1979.



Bibliography 126

[45] James R. Holton. An introduction to dynamic meteorology. Fourth edition.
Academic Press, 2004.

[46] Sanjiva K. Lele. Compact finite difference schemes with spectral-like resolu-
tion. Journal of Computational Physics, 103(1):16–42, 1992.

[47] Jay C. Webb Christopher K.W. Tam. Dispersion-relation-preserving finite
difference schemes for computational acoustics. Journal of Computational
Physics, 107(2):262–281, 1993.

[48] J. Strikwerda. Finite difference schemes and partial differential equations.
Society for Industrial Mathematics, PA, USA, 2004.

[49] Omer San and Anne E. Staples. High-order methods for decaying two-
dimensional homogeneous isotropic turbulence. Computers Fluids, 53:105–
127, 2012.

[50] Abderrahim Kacimi and Boualem Khouider. A numerical investigation of the
barotropic instability on the equatorial β-plane. Theorical and Computational
Fluid Dynamic, 2012.

[51] Svetlana Dubinkina and Jason Frank. Statistical mechanics of arakawa
’
Äôs
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