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General Introduction

This PhD thesis deals with the development and the analysis of numerical methods for

first order time dependent Hamilton-Jacobi-Bellman (HJB) equations. We consider the

following form of the equation.

∂tv +H(x,∇v) = 0, (t, x) ∈ [0, T ]× Rd (1)

v(0, x) = v0(x), x ∈ Rd, (2)

where H : Rd × Rd → R is the Hamiltonian and v0 is the initial condition. This kind

of equations, in general do not admit a classical solution even for regular initial data

v0. So the notion of viscosity solution (for precise definition, see Appendix B) has been

introduced in the early 1980s by Pierre-Louis Lions and Michael G. Crandall [35] as

a generalization of the classical concept of what is meant by a ‘solution’ to a partial

differential equation (PDE). It has been found that the viscosity solution is the natural

solution concept to use in many applications of PDE’s, including for example first order

equations arising in optimal control (the Bellman equation), differential games (the

Isaacs equation) or front evolution problems.

The lack of smoothness of viscosity solutions makes it difficult to develop efficient ap-

proximations. Starting from the 80s, monotone finite difference methods have been

proposed by Crandall and Lions [34] using the fact that in dimension one, viscosity

solution of HJB equation is the integral of the entropy solution of hyperbolic conserva-

tion laws . On this basis, monotone finite difference methods conceived for conservation

laws have been adapted to the approximation of the Hamilton-Jacobi (HJ) equation. In

this thesis we develop numerical schemes for regular and discontinuous initial data v0.

First we focus on the high-order schemes for HJB equations when solution is regular.

In this context there are some high-order schemes based on the relation between vis-

cosity solution and entropy solution in dimension one. Several schemes developed for

hyperbolic conservation law (see references [63], [64], [34], [59], [25]) and most of them

extended to HJB equations. High-order essentially non-oscillatory (ENO) scheme have

been introduced by A. Harten et al. in [65] for hyperbolic conservation laws, and then

extended to HJB equation by Osher and Shu [71]. ENO schemes are of high-order and

have been quite successful. However, till now and to the best of our knowledge, there is

xiii
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no convergence proof of ENO schemes. However, in the general case although there is

a numerical evidence that they converge to the viscosity solution of (1.6). Convergence

results may hold for related schemes, see for instance Lions and Souganidis [81]. In [49],

Fjordholm et. al. showed that ENO interpolation is stable but the stability result is not

sufficient to conclude total variation boundedness (TVB) of the ENO reconstruction pro-

cedure. In [48], a conjecture related to weak total variation property for ENO schemes

is given. Let us also mention, Semi-Lagrangian (SL), discontinuous Galerkin (DG) and

the semi-discrete central schemes [75]. SL method developed by Falcone, Ferretti and

Carlini [25, 41, 42]. In the SL setting the convergence proof for high-order scheme relies

also on the work of Ferretti [26, 47] where higher than first order schemes are proposed.

The finite difference schemes are used on structures grids where as SL schemes can be

also applied to unstructured grids. DG finite element methods were originally devised

for conservation laws later on extended to HJB equations. The DG spatial discretiza-

tion was later combined with Runge-Kutta (RK) temporal discretization, giving birth

to Runge-Kutta DG (RKDG) methods, introduced by Cockburn and Shu in [28] for

hyperbolic conservation laws and later on extended for HJB equation. DG methods are

flexible with complicated geometries, different boundary conditions, and various local

approximations, they use compact stencils to achieve high order accuracy, and therefore

are easy for parallel implementation but there is stability condition which is difficult to

prove. Also there are several variation of DG methods for HJB equations [77, 79, 90].

In [26], where weighted essentially non-oscillatory (WENO) schemes have been applied

to HJB equations.

We should also mention the work of Abgrall [1] where he proposed two different high-

order schemes which are based on a particular decomposition of the initial data and

decomposition of Hamiltonian. In [2] he also proposed hybrid schemes to solve steady

HJ equation on conformal triangular type meshes and one can extend to solve time

dependent HJB equation but proposed scheme is difficult to implement.

In the first part of the thesis in chapter 1 our focus is to develop high-order scheme for

HJB equation when solution is regular. We introduce a new class of the“filtered scheme”

for some time dependent first order HJB equations. The main idea of the filtered scheme

comes from the recent work of Froese and Oberman [51, 86], that was presented for first

and stationary second order HJ equations and based on the use of a “filter” function.

Our focus on mainly evolutive HJB equations. In our setting we use the discontinuous
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filter function from [86] for which the filtered scheme is still an ε-monotone scheme

(see Eq.(1.14)), but that improves the numerical results. Filtered scheme behaves as a

high order scheme when the solution is smooth and as a low order monotone scheme

otherwise. Presentation of filtered scheme is simple and easy to implement. Rigorous

error bounds hold, of the same order as the Crandall-Lions estimates in
√

∆x where

∆x is the mesh size. In the case the solution is smooth a high-order consistency error

estimate also holds. Let us also mention the recent work [20] for steady equations where

some ε-monotone semi-Lagrangian schemes are studied.

The theory of viscosity solutions has been tested on a variety of applications. One of the

typical applications of HJ equation is the study and approximation of front propagation

problems via the level set method. This technique has become very popular in the

90s due to its capability to follow front evolution after the onset of singularities and

topological changes. There exist a number of physical situations which lead to models

of these type, e.g., the description of industrial etching processes, bubbles moving in

a fluid, crystal growth and so forth. More recently, these techniques have also been

applied to image processing, which is one of the areas in which the introduction of

nonlinear partial differential equations has had a strongest impact in the last decades.

It is known since the work of Osher and Sethian [89] that front propagation problems

can be solved by using level sets and HJ equations. For full introduction we refer the

book [89, 100]. Several Numerical scheme has be developed for such a problems. For

instance semi-Lagrangian method for the minimum time problem has been proposed

by Bardi and Falcone in [7, 8], and its adaptation to the front propagation problem,

as well as some a priori estimates of the error on the front propagation can be found

in [40, 43]. We also mention a series of papers by Bokanowski et al. [17] where they used

RKDG method. These methods have the advantage to be easily adapted to arbitrary

unstructured meshes (see [14, 18]) but there is stability condition which is difficult to

prove. We develop a specific application of the scheme proposed and analyzed in [19] to

front propagation problems. The approach is based on the level-set method which leads

in the isotropic case to a classical evolutive first order HJ equation. We use the idea of

filtered scheme for the approximation of HJ equations in a general convergent setting.

We consider in particular a simple coupling between a monotone first order scheme and

a second order centered scheme, applied to front propagation problems. The effect of

the filtering is to stabilize an otherwise unstable scheme, and also to switch to the high
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order scheme whenever the solution is detected to be smooth.

Now we discuss numerical methods for HJB equation when solution is discontinuous.

Monotone (first-order) schemes have been shown to be stable and convergent under

mild regularity assumptions on the solution and to be first order accurate for the ap-

proximation of Lipschitz continuous solutions. However, in control and game problems,

the value function can be discontinuous so these schemes have to be adapted in order

to obtain accurate approximations which do not diffuse too much around the disconti-

nuities of ∇v and/or don’t introduce oscillations on the discontinuities of v. Now we

give some details of some available work when v0 is discontinues. We have also seen

for continuous viscosity solution, there are several contribution dealing with numerical

schemes. In [10] Barles and Souganidis give a general frame work for the convergence

of approximated solution towards the viscosity solution under generic monotonicity sta-

bility and consistency assumptions. But when we deal with discontinuous initial data

v0, classical monotone schemes are no more adapted. In fact, if we attempt to use these

schemes, we observe an increasing numerical diffusion around the discontinuities. This

is happening due to the fact that monotone schemes used at some level finite difference

or interpolation techniques. So that available schemes are typically diffusive. For the

classical theory for discontinuous viscosity solution we refer the book by Barles [9].

Initially in 1985 Roe [96] developed scheme for conservation laws when the flow is dis-

continuous with the constant velocity. Later on the same scheme has been modified by

Desprès and Lagoutière in [38] for capturing contact discontinuities for linear advection

and compressible Euler system. In [38] it has been proved that the proposed scheme

by Roe (which is called as Ultrabee scheme) has a property of exact advection for a

large set of piecewise constant functions. Recently this scheme has been modified by

Bokanowski and Zidani [13] for HJ equations with the convergence result [16] and an l1

error estimate [15]. Whole Ultrabee scheme idea is present for dimension one only and by

splitting one can extend to the higher dimensions. Proposed HJB-UltraBee scheme [13]

is explicit and non-monotonous (neither ε-monotone). We know that, there are few

non-monotone schemes that have been proved to converge for HJ equations (see [19]

and [81]). In [81], Lions and Souganidis show the convergence of some MUSCL types

non-monotone scheme which is TVD second order scheme, but implicit and difficult to

implement.
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We propose a new numerical approximation for linear advection and HJ equation which

is based on the coupling of two schemes with different properties. The approach is

general and can in principle be applied to couple many different schemes, for example

one can couple an accurate method for the regions where the solution is smooth with

another method which is more adapt to treat discontinuities and/or jumps in the gradi-

ents. Clearly one has to decide where to apply the first or the second method and this

is done by means of an indicator parameter which has to be computed in every cell at

every time step. Here we coupled an anti-dissipative scheme which has been proposed

in order to deal with discontinuous solutions and a SL scheme which is more adapt to

deal with Lipschitz continuous and can be more accurate for regular solutions provided

a high-order local interpolation operator is used for the space reconstruction. We in-

troduce the indicator parameter for this coupling, show how to couple the two schemes

which typically use two different grids reconstructions and prove some properties of the

resulting coupled scheme.

In the last part of the thesis we also deal another application: traffic models on networks.

Traffic flow can be described at different scales, depending on the level of details one

wants to observe. Typically, three scales of observation can be adopted: microscopic,

mesoscopic and macroscopic. Connections between microscopic follow-the-leader and

macroscopic fluid-dynamics traffic flow models are already well understood in the case

of vehicles moving on a single road. Analogous connections in the case of road networks

are instead lacking. This is probably due to the fact that macroscopic traffic models on

networks are in general ill-posed, since the conservation of the mass is not sufficient alone

to characterize a unique solution at junctions. This ambiguity makes more difficult to

find the right limit of the microscopic model, which, in turn, can be defined in different

ways near the junctions.

We propose a very natural extension of a first-orderfollow-the-leader on road networks

and then we prove that its solution tends to the solution of the LWR-based multi-

path model introduced in [22, 23] in the limit, i.e. as the number of vehicles tends

to infinity while their total mass is kept constant. The limit is proved extending to

networks the results already existing for a single road, and it is then confirmed by

numerical experiments. Note that the multi-path method is able to select automatically

an admissible solution at junction, thus resolving ill-posedness issues. However, the

solution selected by the method does not match the one obtained by maximizing the
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flux at junction. Therefore, the connection with the microscopic model promotes the

solution computed by the multi-path method as “more natural”, while the one based on

the maximization of the flux should be seen as the “most desirable”, to be achieved by

means of ad hoc traffic regulations.

The literature about microscopic and macroscopic traffic flow models is huge and a

detailed review is out of the scope of the chapter. For a quick introduction to the field

we suggest the book [62] and the surveys [11, 66]. Regarding first-order models on a

single unidirectional road, the micro-to-macro limit was already deeply investigated by

means of different techniques: the papers [30, 50, 97]. Finally, the paper [32] attacks the

problem exploiting the link between conservation laws and HJ equations.

Micro-to-macro limit for second-order models was instead investigated in [3, 60], where

the Aw-Rascle model is derived as the limit of a second-order follow-the-leader model.

Macroscopic-only traffic models on networks were deeply investigated starting from [70].

A complete introduction can be found in the book [54], which discusses several methods

to characterize a unique solution at junctions. Let us also mention the source-destination

model introduced in [53] (see also [68]) and the buffer models [52, 55, 69]. Recently, a

LWR-based multi-path model on networks was introduced in the paper [22], together

with a Godunov-based numerical scheme to solve the associated system of conservation

laws with discontinuous flux.

Outline of the thesis

The thesis is organized as follows.

In chapter 1 we give a very simple way to construct high-order schemes in a convergent

framework. In present a high-order filtered scheme for time dependent first order HJ

equations. In section 1.2 we present some basic properties and definitions and “filtered

scheme”. In Section 1.3, we present the schemes and give main convergence results.

Section 1.4 tests is devoted to the numerical tests on several academic examples to

illustrate our approach in one and two-dimensional cases. Also is included a test on

nonlinear steady equations, as well an evolutive ”obstacle” HJ equation in the form of

min (ut +H(x, ux), u− g(x)) = 0 for a given function g. Last section of the chapter

contains concluding remarks.
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In chapter 2 we present an application of HJ equation. We solve front propagation prob-

lems by the filtered scheme introduced in chapter 1. In section 2.2 we recall front prop-

agation equation and introduce some notations and definitions for the model problem.

Section 2.3 is devoted to new numerical examples for the front propagation problems up

to three dimensions.

Chapter 3 deals with coupled numerical schemes for discontinuous initial data v0. In

section 3.2 we recall the basic facts about the semi-Lagrangian (SL) method [42] and

the anti-dissipative (AD) [13] scheme which we use in the coupling. In section 3.3 we

present the general form of the coupled scheme and we describe how it will be applied

to solve the linear advection equation and how it has been extented of Hamilton-Jacobi

equation. Section 3.4 we will prove some important properties of the coupled scheme.

Finally, Section 3.5 will be devoted to the numerical tests fro hyperbolic conservation

laws and HJ equations dimension one.

Chapter 4 is devoted to traffic problems. In the section 4.2 we give the details about

existing macroscopic models on a single road and then the on road networks with nu-

merical schemes. In section 4.3 we recall basic microscopic model on a single road and

then we introduce the basic follow-the-leader model and the LWR model on a single

road. Moreover, the existing results about the micro-to-macro limit on a single road are

recalled. In section 4.4 we extend the model to networks, and in section 4.5, which is

the core of the chapter, we show the relationship between the follow-the-leader model

on networks and the LWR-based multi-path model. Finally, in section 4.6 we present

fully discrete algorithms for the numerical solutions of the equations considered in the

chapter and in section 4.7 we confirm our findings by means of some numerical tests and

confirm our findings by means of some numerical tests.

Contribution: Let us briefly mention the original contributions which are behind this

thesis.

• Chapter 1 is based on the submitted paper [BFS15].

[BFS15] O. Bokanowski, F. Falcone, and S. Sahu. An efficient filtered scheme for

some first order Hamilton-Jacobi-Bellman equations. Submitted to SIAM Journal

on Scientific Computing (SISC). 2014.

• Chapter 2 is based on the conference preceding submitted paper [S15].
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[S15] S. Sahu. High order filtered scheme for front propagation problems presented

at HYP2014- XV International Conference on Hyperbolic Problems. Submitted

to HYP2014 Bulletin of the Brazilian Mathematical Society.

• Chapter 3 is based on the submitted paper [FS15].

[FS15] M. Falcone and S. Sahu. Coupled scheme for linear and Hamilton-Jacobi-

Bellman equation. Submitted to Communications in Applied and Industrial Math-

ematics (CAIM), 2015.

• Chapter 4 is based on the submitted paper [CS15].

[CS15] E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traf-

fic flow models on networks, submitted to Networks and Heterogeneous Media

(NHM), 2015.



Chapter 1

High-order numerical schemes

1.1 Introduction

We introduce a new class of “Filtered” schemes for some first-order non-linear HJB

equations. The work follows recent ideas of Froese and Oberman [51] adn Oberman

and Salvador [86]. Here we mainly study the time-dependent setting. Furthermore,

specific corrections to the filtering idea are also needed in order to obtain high-order

efficiency. The proposed schemes are not monotone but still satisfy some ε-monotone

property. A general convergence result together with a precise error estimate is given,

of the order of
√

∆x where ∆x is the mesh size. The framework allows to construct

finite difference discretizations that are easy to implement and high-order in the domain

where the solution is smooth. Numerical tests on several examples are given to validate

the approach, also showing how the filtered technique can be applied to stabilize an

otherwise unstable high-order scheme.

Our aim is to develop high-order and convergent schemes for first-order HJ equations of

the following form

∂tv +H(x,∇v) = 0, (t, x) ∈ [0, T ]× Rd (1.1)

v(0, x) = v0(x), x ∈ Rd. (1.2)

Basic assumptions on the Hamiltonian H and the initial data v0 will be introduced in

the next section. For more details about the present high order schemes refer readers

1
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to the references already mentioned in the general introduction. In this chapter we give

a very simple way to construct high–order schemes in a convergent framework. It is

known (by Godunov’s theorem) that a monotone scheme can be at most first order.

Therefore it is necessary to look for non-monotone schemes. The difficulty is then to

combine non-monotonicity of the scheme and convergence towards the viscosity solution

of (3.1), and also to obtain error estimates. In our approach we will adapt a general idea

of Froese and Oberman [51], that was presented for stationary second order Hamilton-

Jacobi equations and based on the use of a “filter” function. The idea was also used to

treat some stationary first order HJ equations in Oberman and Salvator [86].

Here we focus mainly on the case of time-dependent first order Hamilton-Jacobi equation

(3.1). As suggested in [51] the scheme can be adapted to solve steady HJ equation by

using a fixed point approach. The schemes are written in explicit time marching form

which is well adapted to time-dependent equations, while the setting of [51] or [86] is

better adapted to solve stationary equations. Let us emphasize that it is our experience

that a direct application of the idea of [51] or [86], even if leading to convergent schemes,

does not lead to second order schemes in general (similar filtering idea were already

mentioned for instance in Osher and Shu [71, Remark 2.2], and see also Remark 1.3.1).

One aim of the here is to explain in more detail some adaptations that where needed in

order to achieve numerically the second order convergence, at least for main examples

tested.

We use the same discontinuous filter function as in [86] for which the filtered scheme

is still an “ε-monotone” scheme (see Eq.1.14). In our case we justify the use of this

discontinuous filter to obtain a second order numerical behavior of the scheme in the

L∞ norm. It is our experience that using instead the continuous filter initially introduced

in [51] leads to only first order behavior. (However in the case of steady equations - see

in section 1.4, it is our experience that both filters give very similar results).

Furthermore, when using a central finite difference scheme together with the filtering

idea, we introduce a limiting process that is needed in order to obtain high order effi-

ciency and that is made precise in the case of front-propagation models. This limiting

process was not needed in [51, 86] for the treatment of steady equations. Without the

limiting process the scheme may switch back to first order after a few time steps (see

for instance Example 2 in section 1.4).
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Moreover, the filtered scheme (1.8) needs the use of a filtering parameter (hereafter

denoted ”ε”) that must be chosen in order to switch between the high-order scheme and

the monotone scheme in a convenient way. A natural upper bound for the parameter is

given in [51, 86], of order O(
√

∆x). We give here a similar upper bound that is justified

theoretically to ensure an error estimate of order O(
√

∆x). However in our case we give

furthermore a lower bound on this parameter and some precise indications as how to fix

the parameter depending of the data. In the end we advice using ε = c1∆x where c1 is

a constant depending of the data in order to obtain numerically a high order behavior,

and therefore our choice is slightly different from the one of [86].

The approach also allows us to obtain new error estimates for filtered scheme for general

time dependant HJ equations, of order O(
√

∆x) where ∆x is the spatial mesh size,

and under a standard CFL condition on the time step (this results is new compared to

the works [51, 86]). This is similar to the Crandall-Lions error estimate for monotone

schemes [34], because the scheme can be written as a perturbation of a monotone scheme.

1.2 Definitions and main results

1.2.1 Setting of the problem

Throughout the chapter | · | denotes the Euclidean norm on Rd (d ≥ 1). The following

classical assumptions will be considered:

(A1) v0 is Lipschitz continuous function i.e. there exist L0 > 0 such that for every

x , y ∈ Rd,

|v0(x)− v0(y)| ≤ L0|x− y|. (1.3)

(A2) H : Rd × Rd → Rd satisfies, for some constant C ≥ 0, for all p, q, x, y ∈ Rd:

|H(y, p)−H(x, p)| ≤ C(1 + |p|)|y − x|, (1.4)

and

|H(x, q)−H(x, p)| ≤ C(1 + |x|)|q − p|. (1.5)
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Under assumptions (A1) and (A2) there exists a unique viscosity solution for (3.1) (see

Ishii [72]). Furthermore v is locally Lipschitz continuous on [0, T ]× Rd.

For clarity of presentation we focus on the one-dimensional case and consider the fol-

lowing simplified problem:

vt +H(x, vx) = 0, (t, x) ∈ [0, T ]× R, (1.6)

v(0, x) = v0(x), x ∈ R. (1.7)

1.2.2 Construction of the filtered scheme

Let ∆t > 0 be a time step (in the form of ∆t = T
N for some N ≥ 1), and ∆x > 0 be

a space step. A uniform mesh is defined by tn := n∆t, n ∈ [0, . . . , N ], and xj := j∆x,

j ∈ Z.

The construction of a filtered scheme needs three ingredients:

• a monotone scheme, denoted SM

• a high-order scheme, denoted SA

• a bounded “filter” function, F : R→ R.

The high-order scheme need not be convergent nor stable; the letter A stands for “arbi-

trary order”, following [51]. For a start, SM will be based on a finite difference scheme.

Later on we will also propose a definition of SM based on a semi-Lagriangian scheme.

Then, the filtered scheme is defined by

un+1
j ≡ SF (un)j := SM (un)j + ε∆tF

(
SA(un)j − SM (un)j

ε∆t

)
, (1.8)

where ε = ε∆t,∆x > 0 is a parameter that will satisfy

lim
(∆t,∆x)→0

ε = 0. (1.9)

More precision on the choice of ε will be given later on.
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The scheme is initialized as follows:

u0
j := v0(xj), ∀j ∈ Z. (1.10)

Now we make precise some requirements on SM , SA and F .

Definition of the monotone finite difference scheme SM : Following Crandall and Li-

ons [34], we consider a finite difference scheme written as un+1 = SM (un) with

SM (un)(x) := un(x)−∆t hM (x,D−un(x), D+un(x)), (1.11)

with

D±u(x) := ±u(x±∆x)− u(x)

∆x
,

where hM corresponds to a monotone numerical Hamiltonian that will be made precise

below. We will denote also SM (un)j := SM (un)(xj). Therefore the scheme also reads,

for all j ∈ Z, ∀n ≥ 0:

un+1
j := unj −∆t hM (xj , D

−unj , D
+unj ), D±unj := ±

unj±1 − unj
∆x

. (1.12)

(A3) - Assumptions on SM :

(i) hM is a Lipschitz continuous function.

(ii) (consistency) ∀x, ∀u, hM (x, p, p) = H(p).

(iii) (monotonicity) for any functions u, v,

u ≤ v =⇒ SM (u) ≤ SM (v).

In pratice condition (A3)-(iii) is only required at mesh points and the condition reads

(
∀j, uj ≤ vj

)
⇒

(
∀j, SM (u)j ≤ SM (v)j

)
(1.13)

At this stage, we notice that under condition (A3) the filtered scheme is ”ε-monotone”

in the sense that

uj ≤ vj , ∀j, ⇒ SF (u)j ≤ SF (v)j + ετ ‖F‖L∞ , ∀j. (1.14)
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with ε → 0 as (∆t,∆x) → 0. This implies the convergence of the scheme by using

Barles-Souganidis convergence theorem (see [10] and [2]).

Remark 1.2.1. Under assumption (i), the consistency property (ii) is equivalent to say

that, for any v ∈ C2([0, T ]×R), there exists a constant CM ≥ 0 independant of ∆x such

that

∣∣∣∣hM (x,D−v(x), D+v(x))−H(x, vx)

∣∣∣∣ ≤ CM∆x‖∂xxv‖∞. (1.15)

The same statement holds true if (1.15) is replaced by the following consistency error

estimate:

ESM (v)(t, x) :=

∣∣∣∣
v(t+ ∆t, x)− SM (v(t, .))(x)

∆t
−
(
vt(t, x) +H(x, vx(t, x)))

∣∣∣∣

≤ CM

(
∆t‖∂ttv‖∞ + ∆x‖∂xxv‖∞

)
. (1.16)

Remark 1.2.2. Assuming (i), it is easily shown that the monotonicity property (iii) is

equivalent to say that hM = hM (x, p−, p+) satisfies, a.e. (x, p−, p+) ∈ R3:

∂hM

∂p−
≥ 0,

∂hM

∂p+
≤ 0, (1.17)

and the CFL condition

τ

∆x

(
∂hM

∂p−
(x, p−, p+)− ∂hM

∂p+
(x, p−, p+)

)
≤ 1. (1.18)

When using finite difference schemes, it is assumed that the CFL condition (1.18) is

satisfied, and that can be written equivalently in the form

c0
∆t

∆x
≤ 1. (1.19)

Proposition 1.2.1. Let Hamiltonian H and initial data v0 be Lipschitz continuous

(satisfies (A1)-(A2)) and v0
j = u0(xj). For fix ∆t > 0 and ∆x > 0, let the monotone

finite difference scheme (1.11) (with numerical Hamiltonian satisfies (A3)) with standard

CFL (1.19). Then there is a constant C such that for any n ≤ T/∆t, we have

|vn(xi)− un(xi)| ≤ C
√

∆x. (1.20)
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for ∆t→ 0, ∆t = c∆x.

Proof. For proof we refer reader to to [34].

As a pure convergence result, Crandall- Lions theory is generalized by the BarlesSougani-

dis theorem, although in the latter result no convergence estimate is obtained.

Example 1.2.1. Let us consider the Lax-Friedrichs numerical Hamiltonian

hM,LF (x, p−, p+) := H(x,
p− + p+

2
)− c0

2
(p+ − p−) (1.21)

where c0 > 0 is a constant. The scheme is consistant; it is furthermore monotone under

the conditions maxx,p |∂pH(x, p)| ≤ c0, and c0
τ

∆x ≤ 1.

Definition of the high-order scheme SA: we consider an iterative scheme of ”high-order”

in the form un+1 = SA(un), written as

SA(un)(x) = un(x)− τhA(x,Dk,−un(x), . . . , D−un(x), D+un(x), . . . , Dk,+un(x)),

where hA corresponds to a ”high-order” numerical Hamiltonian, and

D`,±u(x) := ±u(x± `∆x)− u(x)

∆x
for ` = 1, . . . , k

. To simplify the notations we may write (1.22) in the more compact form

SA(un)(x) = un(x)− τhA
(
x,D±un(x)) (1.22)

even if there is a dependency in (D`,±un(x))`=1,...,k.

(A4) - Assumptions on SA:

(i) hA is a Lipschitz continuous function.

(ii) (high-order consistency) There exists k ≥ 2, forall ` ∈ [1, . . . , k], for any function

v = v(t, x) of class C`+1, there exists CA,` ≥ 0,

ESA(v)(t, x) :=

∣∣∣∣
v(t+ ∆t, x)− SA(v(t, .))(x)

∆t
−
(
vt(t, x) +H(x, vx(t, x)))

∣∣∣∣ (1.23)

≤ CA,`

(
∆t`‖∂`+1

t v‖∞ + ∆x`‖∂`+1
x v‖∞

)
. (1.24)
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Here v`x denotes the `-th derivative of v w.r.t. x.

Remark 1.2.3. The high-order consistency implies, for all ` ∈ [1, . . . , k], and for v ∈
C`+1(R),

∣∣∣∣hA(x, . . . ,D−v,D+v, . . . )−H(x, vx)

∣∣∣∣ ≤ CA,`‖∂`+1
x v‖∞∆x`.

Remark 1.2.4. (Centered scheme) A typical example with k = 2 is obtained with the

centered approximation in space and the TVD-RK2 scheme in time (or Heun scheme):

S0(un)j := unj −∆tH

(
xj ,

unj+1 − unj−1

2∆x

)
, (1.25a)

and

SA(u) :=
1

2
(u+ S0(S0(u))) . (1.25b)

Of course there is no reason that the centered scheme be stable (as it will be shown in

the numerical section). Using a filter will help stabilize the scheme.

Remark 1.2.5. A similar example with k = 3 can be obtained with any third order

finite difference approximation in space and the TVD-RK3 scheme in time [59].

Definition of the filter function F . We recall that Froese and Oberman’s filter function

used in [51] was:

F̃ (x) = sign(x) max(1− ||x| − 1|, 0) =





x |x| ≤ 1.

0 |x| ≥ 2.

−x+ 2 1 ≤ x ≤ 2.

−x− 2 −2 ≤ x ≤ −1.

In the present work use another filter function which is also used by Oberman and

Salvador in [86] simply as follows:

F (x) := x1|x|≤1 =





x if |x| ≤ 1,

0 otherwise.
(1.26)
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Figure 1.1: Froese and Oberman’s filter (left), Oberman and Salvador’s filter (right)

The idea of the present filter function is that it will keep the high-order scheme when

|hA − hM | ≤ ε, because then

|SA − SM |
∆tε

≤ 1 and SF = SM + ∆tεF (
SA − SM

∆tε
) ≡ SA,

and otherwise F = 0 and SF = SM , i.e., the scheme is simply given by the monotone

scheme itself. Clearly the main difference is the discontinuity at x = −1, 1. As men-

tionned in [86], use of a discontinuous filter may lead to difficulties when dealing with

implicit schemes in order to show the existence of the numerical solution. However, here,

we focus only on explicit schemes.

1.3 Convergence result

The following theorem gives several basic convergence results for the filtered scheme.

Note that the high-order assumption (A4) will not be necessary to get the error estimates

(i)-(ii). It will be only used to get a high-order consistency error estimate in the regular

case (part (iii)). Globally the scheme will have just an O(
√

∆x) rate of convergence

for Lipschitz continuous solutions because the jumps in the gradient prevent high-order

accuracy on the kinks.

Theorem 1.3.1. Assume (A1)-(A2), and v0 bounded. We assume also that SM satisfies

(A3), and |F | ≤ 1. Let un denote the filtered scheme (1.8). Let vnj := v(tn, xj) where v

is the exact solution of (1.6). Assume

0 < ε ≤ c0

√
∆x (1.27)
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for some constant c0 > 0. (i) The scheme un satisfies the Crandall-Lions estimate

‖un − vn‖∞ ≤ C
√

∆x, ∀ n = 0, ..., N. (1.28)

for some constant C independent of ∆x.

(ii) (First-order convergence for classical solutions.) If furthermore the exact solution v

belongs to C2([0, T ]× R), and ε ≤ c0∆x (instead of (1.27)). Then it holds

‖un − vn‖∞ ≤ C∆x, n = 0, ..., N, (1.29)

for some constant C independent of ∆x.

(iii) (Local high-order consistency.) Let N be a neighborhood of a point (t, x) ∈ (0, T )×
R. Assume that SA is a high-order scheme satisfying (A4) for some k ≥ 2. Let 1 ≤ ` ≤ k
and v be a C`+1 function on N . Assume that

(CA,1 + CM )

(
‖vtt‖∞∆t+ ‖vxx‖∞∆x

)
≤ ε. (1.30)

Then, for sufficiently small tn − t, xj − x, ∆t, ∆x, it holds

SF (vn)j = SA(vn)j

and, in particular, a local high-order consistency error for the filtered scheme SF :

ESF (vn)j ≡ ESA(vn)j = O(∆x`)

(the consistency error ESA is defined in (1.23)).

Proof of Theorem 1.3.1: (i) Let wn+1
j = SM (wn)j be defined with the monotone scheme

only, with w0
j = v0(xj) = u0

j . By definitions,

un+1
j − wn+1

j = SM (un)j − SM (wn)j + ε∆tF
(
.)

Hence, by using the monotonicity of SM ,

max
j
|un+1
j − wn+1

j | ≤ max
j
|unj − wnj |+ ε∆t,
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and by recursion, for n ≤ N ,

max
j
|unj − wnj | ≤ εn∆t ≤ Tε.

On the other hand, by Crandall and Lions [34], an error estimate holds for the monotone

scheme:

max
j
|wnj − vnj | ≤ C

√
∆x,

for some C ≥ 0. By summing up the previous bounds, we deduce

max
j
|unj − vnj | ≤ C

√
∆x+ Tε,

and together with the assumption on ε, it gives the desired result.

(ii) Let Enj :=
vn+1
j − SM (vn)j

∆t
. If the solution is C2 regular with bounded second order

derivatives, then the consistency error is bounded by

|Enj | ≤ CM (∆t+ ∆x). (1.31)

Hence

|un+1
j − vn+1

j | = |SM (un)j − SM (vn)j + ∆tEnj + ∆tεF
(
.)|

≤ ‖un − vn‖∞ + ∆t‖En‖∞ + ∆tε.

By recursion, for n∆t ≤ T ,

‖un − vn‖∞ ≤ ‖u0 − v0‖∞ + T

(
max

0≤k≤N−1
‖Ek‖∞ + ε

)
.

Finally by using the assumption on ε, the bound (1.31) and the fact that ∆t = O(∆x)

(using CFL condition (1.19)), we get the desired result.

(iii) To prove that SF (vn)j = SA(vn)j , one has to check that

|SA(vn)j − SM (vn)j |
ε∆t

≤ 1
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as (∆t,∆x)→ 0. By using the consistency error definitions,

|SA(vn)j − SM (vn)j |
∆t

=

∣∣∣∣
vn+1
j − SA(vn)j

∆t
+ vt(tn, xj) +H(xj , vx(tn, xj))

−
(
vn+1
j − SM (vn)j

∆t
+ vt(tn, xj) +H(xj , vx(tn, xj))

)∣∣∣∣
≤ |ESA(vn)j |+ |ESM (vn)j |

≤ (CA,1 + CM )(∆t‖vtt‖∞ + ∆x‖vxx‖∞)

Hence the desired result follows.

Remark 1.3.1. (related approaches) It is already known from the original work of

Osher and Shu [71] that it is possible to modify and ENO scheme in order to obtain a

convergent scheme. For instance, if D±,Aunj denotes a high-order finite difference deriva-

tive estimate (of ENO type), a projection on the first-order finite difference derivative

D±unj can be used, up to a controlled error (see in particular Remark 2.2 of [71]):

instead of D±,Aunj , use P[D±unj ,M∆x]

(
D±,Aunj

)

where P[a,b](y) is the projection defined by:

P[a,b](y) :=





y if a− b ≤ y ≤ a+ b

a− b if y ≤ a− b
a+ b if y ≥ a+ b

and M > 0 is some constant greater than the expected value 1
2 |uxx(tn, xj)|. However, we

emphasize that in our approach we do not consider a projection but a perturbation with

a filter, which is sligthly different. Indeed, by using a projection into an interval of the

form [a−M∆x, a+M∆x] where a = D±uni , numerical tests show that we may choose

too often one of the extremal values a±M∆x which is then produces an overall too big

error (worse than using the first-order finite differences).

Following the present approach, we would rather advise to use,

instead of D±,Aunj , the value P̃[D±unj ,M∆x](D
±,Aunj )
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where P̃[a,b](y) is defined by:

P̃[a,b](y) :=





y if a− b ≤ y ≤ a+ b

a if y /∈ [a− b, a+ b]

Remark 1.3.2. Filtered semi-Lagrangian scheme. Let us consider the case of

H(x, p) := min
b∈B

max
a∈A
{−f(x, a, b).p− `(x, a, b)} , (1.32)

where A ⊂ Rm and B ⊂ Rn are non-empty compact sets (with m,n ≥ 1), f : Rd ×
A × B → Rd and ` : Rd × A × B → R are Lipschitz continuous w.r.t. x: ∃L ≥ 0,

∀(a, b) ∈ A×B, ∀x, y:

max (|f(x, a, b)− f(y, a, b)|, |`(x, a, b)− `(y, a, b)|) ≤ L|x− y|. (1.33)

(We notice that (A2) is satisfied for hamiltonian functions such as (1.32).) Let [u]

denote the P 1-interpolation of u in dimension one on the mesh (xj), i.e.

x ∈ [xj , xj+1] ⇒ [u](x) :=
xj+1 − x

∆x
uj +

x− xj
∆x

uj+1. (1.34)

Then a monotone SL scheme can be defined as follows:

SM (un)j := min
a∈A

max
b∈B

(
[un]

(
xj + ∆tf(xj , a, b)

)
+ ∆t`(xj , a, b)

)
. (1.35)

A filtered scheme based on SL can then be defined by (1.8) and (1.35). Convergence

result as well as error estimates could also be obtained in this framework. (For error

estimates for the monotone SL scheme, we refer to [42, 102])

1.3.1 Adding a limiter

The basic filtered scheme (1.8) is designed to be of high-order where the solution is

regular and when there is no viscosity aspects. However, for instance in the case of front

propagation, it can be observed that the filter scheme may let small errors occur near

extrema, when two possible directions of propagation occur in the same cell.
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This is the case for instance near a minima for an eikonal equation. In order to improve

the scheme near extrema, we propose to introduce a limiter before doing the filtering

process. Limiting correction will be needed only when there is some viscosity aspect (it

is not needed for advection).

Let us consider the case of front propagation, i.e., equation of type (1.6), now with

H(x, vx) = max
a∈A

(
f(x, a)vx

)
(1.36)

(i.e., no distributive cost in the Hamiltonian function).

In the one-dimensional case, a viscosity aspect may occur at a minima detected at mesh

point xi if

mina f(xj , a) ≤ 0 and maxa f(xj , a) ≥ 0. (1.37)

In that case, the solution should not go below the local minima around this point, i.e.,

we want

un+1
j ≥ umin,j := min

(
unj−1, u

n
j , u

n
j+1

)
, (1.38)

and, in the same way, we want to impose that

un+1
j ≤ umax,j := max

(
unj−1, u

n
j , u

n
j+1

)
. (1.39)

If we consider the high-order scheme to be of the form un+1
j = unj −∆thA(un), then the

limiting process amount to saying that

hA(un)j ≤ hmaxj :=
unj − umin,j

∆t
.

and

hA(un)j ≥ hminj :=
unj − umax,j

∆t
.

This amounts to define a limited h̄A such that, if (1.37) holds at mesh point xj , then

h̄A(un)j := min

(
max(hA(un)j , h

min
j ), hmaxj

)
.
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and, otherwise,

h̄Aj :≡ hAj .

Then the filtering process is the same, using h̄A instead of hA for the definition of the

high-order hamiltonian.

For two dimensional equations a similar limiter could be developped in order to make

the scheme more efficient at singular regions. However, for the numerical tests of the

next section (in two dimensions) we will simply limit the scheme by using an equivalent

of (1.38)-(1.39). Hence, instead of the scheme value un+1
ij = SA (un)ij for the high-order

scheme, we will update the value by

un+1
ij = min

(
max

(
SA(un)ij , u

min
ij

)
, umaxij

)
, (1.40)

where uminij = min
(
unij , u

n
i±1,j , u

n
i,j±1

)
and umaxij = max

(
unij , u

n
i±1,j , u

n
i,j±1

)
.

1.3.2 Choice of the parameter ε : a simplified approach.

The scheme should switch to high-order scheme when some regularity of the data is

detected, and in that case we should have

∣∣∣∣
SA(v)− SM (v)

ε∆t

∣∣∣∣ =

∣∣∣∣
hA(·)− hM (·)

ε

∣∣∣∣ ≤ 1.

In a region where a function v = v(x) is regular enough, by using Taylor expansions, zero

order terms in hA(x,D±v) and hM (x,D±v) vanish (they are both equal to H(x, vx(x)))

and it remains an estimate of order ∆x. More precisely, by using the high-order property

(A4) we have

hA(xj , D
±vj) = H(xj , vx(xj)) +O(∆x2).

On the other hand, by using Taylor expansions,

Dv±j = vx(xj)±
1

2
vxx(xj)∆x+O(∆x2),

Hence, denoting hM = hM (x, u−, u+), it holds at points where hM is regular,

hM (xj , Dv
−
j , Dv

+
j ) = H(xj , vx(xj)) +

1

2
vxx(xj)

(
∂hMj
∂u+

−
∂hMj
∂u−

)
+O(∆x2).
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Therefore,

|hA(v)− hM (v)| =
1

2
|vxx(xj)|

∣∣∣∣
∂hMj
∂u+

−
∂hMj
∂u−

∣∣∣∣∆x+O(∆x2).

Hence we will make the choice to take ε roughly such that

1

2
|vxx(xj)|

∣∣∣∣
∂hMj
∂u+

−
∂hMj
∂u−

∣∣∣∣∆x ≤ ε (1.41)

(where hMj = hM (xj , vx(xj), vx(xj))). Therefore, if at some point xj (1.41) holds, then

the scheme will switch to the high-order scheme. Otherwise, when the expectations from

hM and hA are different enough, the scheme will switch to the monotone scheme.

In conclusion we have upper and lower bound for the switching parameter ε:

• Choose ε ≤ c0

√
∆x for some constant c0 > 0 in order that the convergence and

error estimate result holds (see Theorem 1.3.1).

• Choose ε ≥ c1∆x, where c1 is sufficiently large. This constant should be choosen

roughly such that

1

2
‖vxx‖∞

∥∥∥∥
∂hM

∂u+
(., vx, vx)− ∂hM

∂u−
(., vx, vx)

∥∥∥∥
∞
≤ c1.

where the range of values of vx and vxx can be estimated, in general, from the values

of (v0)x, (v0)xx and the Hamiltonian function H. Then the scheme is expected to

switch to the high-order scheme where the solution is regular.

1.4 Numerical Test

In this section we present several numerical tests in one and two dimensions.

Unless otherwise precised, the filtered scheme will refer to the scheme where the high-

order Hamiltonian is the centered scheme in space (see Remark 1.2.4), with Heun (RK2)

scheme discretisation in time (see in particular Eqs. (1.25a)-(2.18b)). Hereafter this

scheme will be referred as the ”centered scheme”. The monotone finite difference scheme

and function hM will be made precise for each example. For the filtered scheme, unless

otherwise precised, the switching coefficient ε = 5∆x. will be used. In practice ε = c1∆x
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with c1 sufficiently large does not much change the numerical results in the following

tests. All the tested filtered schemes (appart from the steady and obstacle equations)

enters in the convergence framework of the previous section, so in particular there is a

theoretical convergence of order
√

∆x under the usual CFL condition.

In the tests, the filtered scheme will be in general compared to a second order ENO

scheme (for precise definition, see Appendix A), as well as the centered (a priori unstable)

scheme without filtering.

In several cases, local error in the L2 norms are computed in some subdomain D, which,

at a given time tn, corresponds to

eL2
loc

:=

(
∆x

∑

i,xi∈D
|v(tn, xi)− uni |2

)1/2

Examples 1 and 2 deal with one-dimensional HJ equations, examples 3 and 4 with two-

dimensional HJ equations, and the last three examples will concern a one-dimensional

steady equation and two nonlinear one-dimensional obstacle problems.

1.5 One dimentional Tests

1.5.1 Advection equation

Example 1.5.1. (Advection equation). In this test we consider an sadvection equa-

tion in one dimension





vt + vx = 0, t > 0, x ∈ (−2, 2),

v(0, x) = v0(x), x ∈ (−2, 2)
(1.42)

with periodic boundary condition on (−2, 2), terminal time T = 0.3 and the following

initial data:

v0(x) = −max
(
0, 1− |x|2

)4
. (1.43)
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This ”smooth” initial data is chosen in order to have at least a 3rd order continuous

derivative at x = ±1. The monotone upwind Hamiltonian is used (hM (x, v−, v+) :=

v−).

Results are given in Table 1.1 for the errors in L2 norms, where is compared the CFD

scheme (central finite difference scheme ), the ENO scheme (second order ENO scheme)

with RK2 in time, as described in Appendix A), and the Filter scheme using ε = 4∆x.

In this test the CFL number
(
= τ

∆x

)
is 0.37. Errors are numerically comparable in

that case, all schemes are second order, also CFD scheme is numerically stable without

filtering. More precisely we observe that CFD and Filter schemes give identical results,

which means that the filtering has no effect here. So the filtering at least does not

deteriorate the good behavior of the CFD scheme. (Results are similar for the L1 and

L∞ errors.)

A third order scheme. Then, we have also tested a third order filtered scheme. More

precisely, to settle the third order scheme, the derivative vx was estimated using a third

order backward difference:

vx(xi) ≡
1

∆x

(
11

6
v(xi)− 3v(xi−1) +

3

2
v(xi−2)− 1

3
v(xi−3)

)
≡ (ṽx)i.

and the corresponding high order Hamiltonian, simply hA(v)i := H((ṽx)i). The usual

TVD-RK3 method was used for time discretisation, and is recalled in Appendix A (see

for instance [59] and refs. therein).

Results are given in Table 1.2, using CFL= 0.3. It is indeed also observed near to third

order convergence. This is only true for small enough CFL numbers though (CFL≤
0.35), otherwise it was numerically observed a switch to second order convergence.

Filter ε = 4∆x CFD ENO2

M N L2 error order L2 error order L2 error order

20 4 4.97E-02 - 4.97E-02 - 7.95E-02 -
40 8 1.26E-02 1.98 1.26E-02 1.98 2.29E-02 1.79
80 16 3.07E-03 2.03 3.07E-03 2.03 5.96E-03 1.95
160 32 7.66E-04 2.00 7.66E-04 2.00 1.51E-03 1.98
320 64 1.90E-04 2.01 1.90E-04 2.01 3.77E-04 2.00
640 128 4.76E-05 2.00 4.76E-05 2.00 9.41E-05 2.00

Table 1.1: (Example 2.3.1.) Global L2 errors for Filter, Central Finite difference
scheme (CFD) and ENO (2nd order) scheme with RK2 in time.
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M N L1 error order L2 error order L∞ error order

20 4 1.12E-01 - 7.74E-01 - 8.82E-02 -
40 8 1.67E-02 2.78 1.19E-02 2.71 1.41E-02 2.64
80 16 2.21E-03 2.92 1.60E-03 2.89 1.86E-03 2.93
160 32 2.77E-04 2.99 2.07E-04 2.95 2.87E-04 2.69
320 64 3.43E-05 3.02 2.64E-05 2.97 4.78E-05 2.58
640 128 4.51E-06 2.93 3.43E-06 2.94 7.26E-06 2.72

Table 1.2: (Example 2.3.1.) Global Errors for the third order filter scheme (ε = 4∆x).

1.5.2 Eikonal equation

Example 1.5.2. (Eikonal equation) We consider the case of

vt + |vx| = 0, t ∈ (0, T ), x ∈ (−2, 2), (1.44)

v(0, x) = v0(x) := max(0, 1− x2)4, x ∈ (−2, 2). (1.45)

In Table 1.3, we compare the filtered scheme (with ε = 5∆x) with the centered scheme

and the ENO second order scheme, with CFL = 0.37 and terminal time T = 0.3. For

the filtered scheme, the monotone hamiltonian used is hM (x, v−, v+) := max(v−,−v+).

As expected, we observe that the centered scheme alone is unstable. On the other hand,

the filtered and ENO schemes are numerically comparable in that case, and second order

convergent (the results are similar for the L1 and the L∞ errors).

Then, in Table 1.4, we consider the same PDE but with the following reversed initial

data:

ṽ0(x) := −max(0, 1− x2)4, x ∈ (−2, 2). (1.46)

In that case the centered scheme alone is unbounded. The filtered scheme (with ε = 5∆x)

is second order. However, here, the limiter correction as described in section (1.3.1) was

needed in order to get second order behavior. We also observe that the filtered scheme

gives better results than the ENO scheme. (We have also numerically tested the ENO

scheme with the same limiter correction but it does not improve the behavior of the ENO

scheme alone).



Chapter 1. High-order numerical schemes 20

In conclusion, this first example shows firstly, that the filtered scheme can stabilize an

otherwise unstable scheme, and secondly that it can give the desired second order behav-

ior.

filtered (ε = 5∆x) centered ENO2

M N L2 error order L2 error order L2 error order

40 9 7.51E-03 - 1.18E-01 - 1.64E-02 -
80 17 3.36E-03 1.16 1.14E-01 0.06 4.38E-03 1.91
160 33 8.02E-04 2.07 1.13E-01 0.00 1.19E-03 1.87
320 65 1.80E-04 2.16 1.13E-01 0.00 3.22E-04 1.89
640 130 4.53E-05 1.99 1.13E-01 0.00 8.22E-05 1.97

Table 1.3: (Example 2.3.2. with initial data (1.45)) L2 errors for filtered scheme,
centered scheme, and ENO second order scheme

filtered (ε = 5∆x) centered ENO2

M N error order error order error order

40 9 1.27E-02 - 2.03E-02 - 2.60E-02 -
80 17 3.17E-03 2.00 8.96E-03 1.18 8.00E-03 1.70
160 33 7.90E-04 2.01 1.06E-02 -0.24 2.50E-03 1.68
320 65 1.97E-04 2.00 1.26E-01 -3.57 7.80E-04 1.68
640 130 4.92E-05 2.00 1.06E+02 -9.71 2.44E-04 1.67

Table 1.4: (Example 2.3.2. with initial data (1.46).) L2 errors for filtered scheme,
centered scheme, and ENO second order scheme.
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Figure 1.2: (Example 2.3.2.) With initial data (1.45) (left), and plots at time T = 0.3
with centered scheme - middle - and filtered scheme - right, using M = 160 mesh points.

1.5.3 Burger’s equation



Chapter 1. High-order numerical schemes 21

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
t=0

 

 

 Exact
 Scheme

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
t=0.3

 

 

 Exact
 Scheme

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
t=0.3

 

 

 Exact
 Scheme

Figure 1.3: (Example 2.3.2. With initial data (1.46) (left), and plots at time T = 0.3
with centered scheme - middle - and filtered scheme - right, using M = 160 mesh points.

Example 1.5.3. (Burger’s equation)

In this example an HJ equivalent of the nonlinear Burger’s equation is considered:

vt +
1

2
|vx|2 = 0, t > 0, x ∈ (−2, 2) (1.47a)

v(0, x) = v0(x) := max(0, 1− x2), x ∈ (−2, 2) (1.47b)

with Dirichlet boundary condition on (−2, 2). Exact solution is known.1. In order to

test high order convergence we have considered the smoother initial data which is the

one obtained from (1.47) at time t0 := 0.1, i.e. :

wt +
1

2
|wx|2 = 0, t > 0, x ∈ (−2, 2). (1.48a)

w(0, x) := v(t0, x), x ∈ (−2, 2), (1.48b)

with exact solution w(t, x) = v(t+ t0, x).

An illustration is given in Fig. 1.4. For the filtered scheme, the monotone hamiltonian

used is hM (x, v−, v+) := 1
2(v−)2 1v−>0 + 1

2(v+)2 1v+<0.

Errors are given in Table (1.5), using CFL=0.37 and terminal time T = 0.3.

1 It holds

v(t, x) =
(max(0, 1− |x̄|))2

2t
1{t> 1

2
} +

(1− 2t)2 − |x|2
1− 2t

1{1≥|x|≥1−2t}.
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In conclusion we observe numerically that the filtered scheme keeps the good behavior of

the centered scheme (here stable and almost second order).
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Figure 1.4: (Example 2.3.4) Plots at t = 0 and t = 0.3 with the filtered scheme.

filtered (ε = 5∆x) centered ENO2

M N error order error order error order

40 9 2.06E-02 - 2.07E-02 - 2.55E-02 -
80 17 6.24E-03 1.73 6.24E-03 1.73 8.24E-03 1.63
160 33 1.85E-03 1.76 1.85E-03 1.76 2.81E-03 1.55
320 65 5.51E-04 1.74 5.51E-04 1.74 1.03E-03 1.45
640 130 1.68E-04 1.71 1.68E-04 1.71 3.74E-04 1.47

Table 1.5: (Example 2.3.4) L2 errors for filtered scheme, centered scheme, and ENO
second order scheme.

1.6 Two dimensional tests

Example 1.6.1. (2D rotation) We now apply filtered scheme to an advection equation

in dimension 2:

vt − yvx + xvy = 0, (x, y) ∈ Ω, t > 0, (1.49)

v(0, x, y) = v0(x, y) := 0.5− 0.5 max

(
0,

1− (x− 1)2 − y2

1− r2
0

)4

(1.50)

where Ω := (−A,A)2 (with A = 2.5), r0 = 0.5 and with Dirichlet boundary condition

v(t, x) = 0.5, x ∈ ∂Ω. This initial condition is regular and such that the level set

v0(x, y) = 0 corresponds to a circle centered at (1, 0) and of radius r0.
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In this example the monotone numerical Hamiltonian is defined by

hM (u−x , u
+
x , u

−
y , u

+
y ) := max(0, f1(a, x, y))u−x + min(0, f1(a, x, y))u+

x (1.51)

+ max(0, f2(a, x, y))u−y + min(0, f2(a, x, y))u+
y

and the high order scheme is the centered finite difference scheme in both spacial vari-

ables, and RK2 in time. The filtered scheme is otherwise the same as (1.8). However it

is necessary to use a greater constant c1 is the choice ε = c1∆x in order to get (global)

second order errors. We have used here ε = 20∆x.

On the other hand the CFL condition is

µ := c0

(
τ

∆x
+

τ

∆y

)
≤ 1. (1.52)

where here c0 = 2.5 (an upper bound for the dynamics in the considered domain Ω). In

this test the CFL number is µ := 0.37.

Results are shown in Table 1.6 for terminal time time T := π/2. Although the centered

scheme is a priori unstable, in this example it is numerically stable and of second order.

So we observe that the filtered scheme keep this good behavior and is also or second order

(ENO scheme gives comparable results here).

filtered centered ENO

Mx Ny L2 error order L2 error order L2 error order

20 20 5.05E-01 - 5.05E-01 - 6.99E-01 -
40 40 1.48E-01 1.77 1.48E-01 1.77 4.66E-01 0.58
80 80 3.77E-02 1.98 3.77E-02 1.98 2.04E-01 1.19
160 160 9.40E-03 2.00 9.40E-03 2.00 5.50E-02 1.89
320 320 2.34E-03 2.01 2.34E-03 2.01 1.29E-02 2.10

Table 1.6: (Example 2.3.5) Global L2 errors for the filtered scheme, centered and
second order ENO schemes (with CFL 0.37).

Example 1.6.2. (Eikonal equation) In this example we consider the eikonal equation

vt + ‖∇v‖ = 0, (x, y) ∈ Ω, t > 0 (1.53)
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Figure 1.5: (Example 2.3.5) Filtered scheme, plots at time t = 0 (left) and t = π/2
(right) with M = 80 mesh points.

in the domain Ω := (−3, 3)2. The initial data is defined by

v0(x, y) = (1.54)

0.5− 0.5 max

(
max(0,

1− (x− 1)2 − y2
1− r20

)4, max(0,
1− (x+ 1)2 − y2

1− r20
)4
)
.

The zero-level set of v0 corresponds to two separates circles or radius r0 and centered

in A = (1, 0) and B = (−1, 0) respectively. Dirchlet boundary conditions are used as the

previous example.

The monotone hamiltonian hM used in the filtered scheme is in Lax-Friedriech form:

hM (x, u−1 , u
+
1 , u

−
2 , u

+
2 ) = H

(
x,
u−1 + u+

1

2
,
u−2 + u+

2

2

)

−Cx
2

(
u+

1 − u−1
)
− Cy

2

(
u+

2 − u−2
)
, (1.55)

where, here, Cx = Cy = 1. We used the CFL condition µ = 0.37 as in (1.52). Also, the

simple limiter (1.40) was used for the filtered scheme as described in Section 1.3.1. It is

needed in order to get a good second order behavior at extrema of the numerical solution.

The filter coefficient is set to ε = 20∆x as in the previous example.

Numerical results are given in Table 1.7, showing the global L2 errors for the filtered

scheme, the centered scheme, and a second order ENO scheme, at time t = 0.6. We

observe that the centered scheme has some unstabilities for fine mesh, while the filtered

performs as expected.
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filtered (ε = 20∆x) centered ENO2

Mx Ny L2 error order L2 error order L2 error order

25 25 5.39E-01 - 6.00E-01 - 5.84E-01 -
50 50 1.82E-01 1.57 2.25E-01 1.41 2.11E-01 1.47
100 100 3.72E-02 2.29 8.46E-02 1.41 6.88E-02 1.62
200 200 9.36E-03 1.99 3.53E-02 1.26 2.02E-02 1.76
400 400 2.36E-03 1.99 1.36E-01 -1.95 5.98E-03 1.76

Table 1.7: (Example 2.3.3) Global L2 errors for filtered scheme, centered and second
order ENO schemes.
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Figure 1.6: (Example 2.3.3) Plots at times t = 0 (top) and t = π/2 (bottom) for the
filtered scheme with M = 50 mesh points. The figures to the right represent the 0-level

sets.
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Example 1.6.3. In this example the considered HJ equation is

vt − yvx + xvy + ‖∇v‖ = 0, (x, y) ∈ Ω, t > 0, (1.56)

with Ω = (−3, 3)2, and with the following initial data:

v(0, x, y) = 0.5− 0.5 max

(
max(0,

1− (x− 1)2 − y2

1− r2
0

)4, max(0,
1− (x+ 1)2 − y2

1− r2
0

)4

)
.(1.57)

(together with Dirichlet boundary condition v(t, x, y) = 0.5 for (x, y) ∈ ∂Ω).

Again we compare the filtered scheme (with ε = 5∆x) with the centered (a priori unstable)

scheme and the second order ENO scheme.

Numerical results are shown in Table 1.8, for terminal time T = 0.75 and CFL 0.37.

Local errors has been computed in the region |v(t, x, y)| ≤ 0.1 and also away from the

singular line x + y = 0 (i.e., for points such that furthermore |x+y√
2
| ≥ 0.1). In this

example, the naive centered scheme is unstable (as expected), while the filtered scheme

is stable and of second order.

filtered ε = 5∆x centered ENO2

Mx Nx L2 error order L2 error order L2 error order

25 25 1.02E-01 - 1.11E-01 - 1.14E-01 -
50 50 2.12E-02 2.45 1.99E-02 2.48 2.12E-02 2.43
100 100 9.02E-03 1.23 2.04E-02 -0.03 3.67E-03 2.53
200 200 1.90E-03 2.25 1.27E-02 0.69 8.61E-04 2.09
400 400 3.67E-04 2.38 1.13E-02 0.17 2.12E-04 2.02

Table 1.8: (Example 1.6.3) Local errors of filtered, centered and ENO scheme.

1.6.1 Steady equation

Example 1.6.4. (Steady eikonal equation) We consider a steady eikonal equation

with Dirichlet boundary condition, which is taken from Abgrall [2]:

|vx| = f(x) x ∈ (0, 1), (1.58a)

v(0) = v(1) = 0, (1.58b)
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Figure 1.7: (Example (1.6.3)) Plots at times t = 0 (top) and t = π/2 (bottom) for
the filtered scheme with M = 50 mesh points. The figures to the right represent the

0-level sets.

where f(x) = 3x2 + a, with a =
1−2x30
2x0−1 and x0 =

3√2+2
4 3√2

. Exact solution is known:

v(x) :=





x3 + ax x ∈ [0, x0],

1 + a− ax− x3 x ∈ [x0, 1].
(1.59)

The steady solution for (1.58) can be considered as the limit lim
t→∞

v(t, x) where v is the

solution of the time marching corresponding form:

vt + |vx| = f(x) x ∈ (0, 1), t > 0, (1.60a)

v(t, 0) = v(t, 1) = 0, t > 0. (1.60b)

In this example the upwind monotone scheme is used:

hM (.)j :=
un+1
j − unj

τ
−max

{
unj − unj−1

∆x
,
unj − unj+1

∆x

}
− τf(xj),
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the high order scheme will be the centered scheme, and the filtered scheme (1.8) will be

used with ε = 5∆x. The iterations are stopped when the difference between too successive

time step is small enough or a fixed number of iterations is passed, i.e., in this example,

‖un+1 − un‖L∞ := max
i
|un+1
i − uni | ≤ 10−6 or n ≥ Nmax := 5000. (1.61)

As analyzed in [20] for ε-monotone schemes, for a given mesh step, even if the iterations

may not converge (because of the non monotony of the scheme), it can be shown to be

close to a fixed point after enough iterations.

filtered centered filtered + ENO

M error order error order error order

50 2.16E-03 - NaN - 5.29E-03 -
100 7.14E-04 1.60 NaN - 1.35E-03 1.97
200 2.17E-04 1.72 NaN - 3.42E-04 1.98
400 6.32E-05 1.78 NaN - 8.61E-05 1.99
800 2.17E-05 1.54 NaN - 2.16E-05 2.00

Table 1.9: (Example 2.3.8) Global errors for filtered scheme, compared with the
centered (unstable) scheme, and a filtered ENO scheme.
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Figure 1.8: (Example 2.3.8) Filtered scheme for a steady equation, with M = 50
mesh points.

1.7 Obstacle problem
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Example 1.7.1. (advection + obstacle) Here we consider an obstacle problem, which

is taken from [17]:

min(vt + vx, v − g(x)) = 0, t > 0, x ∈ [−1, 1], (1.62)

v0(x) = 0.5 + sin(πx) x ∈ [−1, 1], (1.63)

together with periodic boundary condition. The obstacle function is g(x) := sin(πx). In

this case exact solution is given by:

v(t, x) :=





max(v0(x− at), g(x)) if t < 1
3

max(v0(x− at), g(x),−10x∈ [0.5,1]) if t ∈ [1
3 ,

1
3 + 1

2 ],

max(v0(x− at), g(x), 1x∈ [−1,t− 1
3
− 1

2
]∪[0.5,1]) if t ∈ [1

3 + 1
2 , 1],

(1.64)

Results are given in Table 2.8, for terminal time t = 0.5. Errors are computed away

from singular points, i.e., in the region [−1, 1] \
(
∪i=1,3 [si − δ, si + δ]

)
(where s1 =

−0.1349733, s2 = 0.5 and s3 = 2/3 are the three singular points. Filtered scheme is

numerically of second order (ENO gives comparable results here).

Errors filtered ε = 5∆x centered ENO2

M N error order error order error order

40 20 7.93E-03 2.03 1.63E-02 1.54 2.14E-02 1.59
80 40 1.84E-03 2.10 2.98E-02 -0.87 7.75E-03 1.46
160 80 3.92E-04 2.24 1.46E-02 1.03 1.07E-03 2.86
320 160 9.67E-05 2.02 8.02E-03 0.86 2.72E-04 1.97
640 320 2.40E-05 2.01 4.10E-03 0.97 6.92E-05 1.98

Table 1.10: (Example 1.7.1) L∞ errors away from singular points, for filtered scheme,
centered scheme, and second order ENO scheme.

Example 1.7.2. (Eikonal + obstacle) We consider an Eikonal equation with an

obstacle term, also taken from [17]:

min(vt + |vx|, v − g(x)) = 0, t > 0, x ∈ [−1, 1], (1.65)

v0(x) = 0.5 + sin(πx) x ∈ [−1, 1], (1.66)
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Figure 1.9: (Example 1.7.1) Plots at T=0(initial data), T=0.3, T=0.5.

with periodic boundary condition on (−1, 1) and g(x) = sin(πx). In this case the exact

solution is given by:

v(t, x) = max(v̄(t, x), g(x)). (1.67)

where v̄ is the solution of the Eikonal equation vt + |vx| = 0. The formula v̄(t, x) =

miny∈[x−t,x+t] v0(y) holds, which simplifies to

v(t, x) :=





v0(x+ t) if x < −0.5− t
−0.5 if x ∈ [−0.5− t,−0.5 + t],

min(v0(x− t), v0(x+ t)) if x ≥ −0.5 + t,

(1.68)

Results are given in Table 1.11 for terminal time T = 0.2. Plots are also shown in

Fig. 1.10 for different times (for t ≥ 1
3 solution remains unchanged).

Errors filtered ENO2

M error order error order

40 3.74E-03 - 6.85E-03 -
80 6.26E-04 2.58 2.12E-03 1.69
160 1.13E-04 2.47 6.80E-04 1.64
320 2.26E-05 2.32 2.18E-04 1.64
640 5.50E-06 2.04 6.96E-05 1.65

Table 1.11: (Example 1.7.2) Filtered scheme and ENO scheme at time t = 0.2
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Figure 1.10: (Example 1.7.2) Plots at times t = 0, t = 0.2 and t = 0.4. The dark
line is the numerical solution, similar to the exact solution, and the ligth line is the

obstacle function.



Chapter 2

High-order approximation

schemes for front propagation

2.1 Introduction

The main aim of this chapter is to solve front propagation problem by the high-order

filtered scheme presented in the chapter 1. The idea of level set formulation to propa-

gate curves and surfaces has been introduced by Osher and Sethian [89] for computing

and analyzing the motion of the interface in two and three dimensions. The advan-

tages of this approach are well known by now. It treats self-intersections, topological

changes, kinks and it is easily extended to capture hypersurfaces in higher dimensions.

Propagating interfaces occur in a wide variety of settings, including examples from fluid

mechanics, image processing, shape of soap bubbles, oil drop floating on water, com-

puter animations, manufacture of computer chips, airbag inflation (a comprehensive

presentation is contained in [88] and [100]). The techniques used to approximate these

problems are based mainly on finite difference schemes [100] and SL schemes [42]. It is

important to notice that monotone finite difference schemes (analyzed by Crandall and

Lions in [34]) converge to the solution which has to be understood in the viscosity sense

but are in general limited to at most first-order accuracy. Higher order finite difference

schemes such as ENO schemes [71] have also been developed but a general convergence

proof for them is still missing. For more details we refer readers to the references al-

ready mentioned in the general introduction. Here we use the recent class of filtered

32
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finite difference schemes studied in [19] in order to show that they are effective also for

singular problems like front propagation problems. It is important to note that filtered

schemes were introduced in the [51] for second order elliptic PDE’s and satisfy an ε-

monotonicity property which is enough to obtain a convergence result and an a priori

estimate. Finally, let us also mention that ε-monotone semi-Lagrangian schemes were

studied for steady equations in [20]). In this chapter we develop a specific application of

the scheme proposed and analyzed in [19] to front propagation problems. The approach

is based on the level-set method which leads in the isotropic case to a classical evolutive

first-order HJ equation. We will apply to this equation high-order “filtered schemes”,

for these which the strong monotonicity property will not be satisfied. However, a weak

ε-monotonicity property applies and this is enough to obtain a convergence result and

a precise error estimate. In the last section we present several examples where we solve

front propagation problems by high filtered scheme in two and three dimensions showing

the accuracy of our method.

We first give some notations and definitions for the model problem and then we present

many numerical tests based on high-order filtered scheme.

2.2 Definitions and notations

Let φ : Rd → R denotes a real valued function implicitly or explicitly defined on Rd,

where d is typically equal to 2 or 3. A level set associated to φ is geometrically defined

as points (in R), a curve (in R2) or a surface (in R3) given by

Γ := {x ∈ Rd| φ(x) = c} (2.1)

for some constant c i.e. φ|Γ = c. The function φ is called level set function associated

to Γ. A typical choice is c = 0 and we refer to Γ as an interface, described by the zero

level set. The following sets are associated to the interface Γ0 := {x ∈ Rd| φ(x) = 0}

Ω− := {x ∈ Rd| φ(x) < 0}, Ω+ := {x ∈ Rd| φ(x) > 0} (2.2)

are known as interior and exterior region respectively. Note that dim(Γ) = d− 1. This

gives a normal direction of evolution point outward with respect to Ω and the interior

region will grow in time. Reversing the sign of φ we obtain an inward evolution and the
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Figure 2.1: Implicit representation of the curve x2 + y2 = 1.

curve (surface) will shrink. When the interface is represented by an explicit function φ

then it is easy to parametrize Γ0.

For example. φ(x̄) = |x̄|2 − 1 gives the circle of radius 1. in the Fig. 2.1, where the

interface defined by the φ(x̄) = 0. The interior region is the unit open disk Ω− = {x̄ ∈
R2| |x̄| < 1} and exterior region is Ω+ = {x̄ ∈ R2| |x̄| > 1}. Explicit representation of

the surface is simply the unit circle defined by ∂Ω = {x̄ ∈ R2| |x̄| = 1}. However, in

many physical applications, the interface can be defined only in implicit form. Implicitly

surfaces can undergo some dynamics, say, under the influence of an external velocity field

for e.g. soap bubble in a steady wind current.

2.2.1 Front Propagation Problem

The associated level set function φ is also time-dependent hence zero level set denotes

by

Γt = ∂Ωt = {x ∈ Rd| φ(t, x) = 0}. (2.3)

This gives a normal direction of evolution point outward with respect to Ωt and the

interior region grow in time. Reversing the sign of φ we will obtain an inward evolution
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and the curve (surface) will shrink. If we regard the moving curves as an interface sepa-

rating two regions, the front at time t should consist of only the set of all points located

a distance t from the initial curve. This is known as Huygens principle construction

(see [99]). Let x(t) be the path of a point on the propagation front i.e. x is a point on

Γ0 at t = 0. The stipulation that the zero level set of the evolving function φ always

match the equation
dx

dt
= f(t, x)~n,

where dx
dt is normal to the front x(t) and f is scalar. The zero level set of the evolutive

function φ will coincide with the propagating hypersurface and this implies that

φ(x(t), t) = 0

By chain rule we have

∂φ

∂t
+∇φ(x(t), t) · dx

dt
= 0. (2.4)

Since f is a scalar speed in the outward normal direction, therefore

dx

dt
· n = f, where n =

∇φ
|∇φ| .

Hence the evolution equation for φ becomes

∂φ

∂t
+ f |∇φ| = 0, (2.5)

given φ(0, x) = φ0(x). (2.6)

For certain forms of the speed function f , this is our time dependent level set equation,

which is a standard time dependent HJ equation. This approach is simple and clever

way to describe an interface operating on two or more regions with different physical

phases. Depending upon the choice of normal (exterior/ interior), and the choice of f

we can describe the growth of a phase and its reduction. There are three major cases of

interest:

• f(t, x), isotropic velocity depending upon (t, x)

• f(x, k(x)), velocity depending upon both x and the front curvature at x
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• f(x, ~n(x)), anisotropic velocity depending on both x and the normal at x

We focus on the isotropic case where Γ0 is the only available data and f = f(t, x) is

given. For this problem a typical choice for the initial profile is signed distance i.e.

d̄(x,Γ0) =





d(x,Γt) x ∈ Ωc
0,

−d(x,Γt) x ∈ Ω0.
(2.7)

Let us note that problem (2.5) is simplifies if the evolution is monotone (either increasing

or decreasing). This happens when the velocity f has constant sign. Note that the signed

distance function has to be Lipschitz continuous. For monotone evolution the level set

formulation can converted from the time dependent PDE to a stationary problem. More

precisely f(x) > 0 for all x ∈ Rd, then (2.5) can be written as a stationary form by

introducing the function

φ(t, x) = T (x)− t (2.8)

and then we can recover the interface by the knowledge of T at any time using

Γt =
{
x ∈ Rd : T (x) = t

}
.

Formally substituting (2.8) in (2.5) we obtain

f(x)|∇T | = 1. (2.9)

Note that Dirichlet boundry condition T (x) = 0 on ∂Ω0 is quite natural to considering

that T (x) represents the time needed by the interface to reach the point x and we can

reformulate the boundary value problem as





f(x)|∇T | = 1, x ∈ Rd/Ω0

T (x) = 0, x ∈ ∂Ω0,
(2.10)

where Ω0 is a subset of Rd such that ∂Ω0 = Γ0. This stationary approach is linked

to minimum time problem. Here we briefly explain the minimum time problem (the

interested reader can find in the appendix of [6] and [40] more details on this link). Let
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us consider the following controlled dynamical system





ẏ(t)) = f(y)α(t) t ∈ (0,+∞)

y(0) = x,
(2.11)

where f : Rd → R, f > 0 is Lipschitz continuous and taking the values in a compact

set A ⊂ Rm and with the measurable control α ∈ A = {α ∈ L∞(R+;A)}. We denote

yx(., α(.)) the solution of (2.11) corresponding to the control α ∈ A. Here we consider

B(0, 1), whihch is a unit ball centered at origin. This choice means that the controller

can move the state of the system with speed f > 0 (which depends on the position of

the system itself) in every direction he wants. We can define for every x and α the

minimum time to hit the target T as

t(x, α) = inf
s

{
t ∈ R+ : yx(t, α) ∈ T

}

The problem is to determine the minimum time function

T (x) = inf
α∈A

t(x, α) (2.12)

and its domain of the definition R, called reachable set,

R =
{
x ∈ Rd : T (x) < +∞

}
(2.13)

=
{
x ∈ Rd : ∃ ᾱ ∈ A and t̄ ∈ [0,+∞] such that yx(t̄, ᾱ) ∈ T

}
. (2.14)

But in our case it can reach the target from every initial position x so that R = Rd.

Note that T satisfies (2.10) (see [6]) since by the definition. Always assuming that the

solution trajectory yx(., α) is unique (the Carathedory conditions are satisfied).

The connection between front propagation and minimum time problem can also be

exploited for numerical purposes, once characteristics of the front problem (also termed

as rays) are identified with optimal trajectories. Moreover, it is possible to treat the

propagation in presence of obstacles using a natural interpretation in terms of state

constraints. For solving such front propagation problems many schemes has been given
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we refer reader to [5, 6, 40, 42, 43]. In conclusion we have two kind of formulations.

Level set Formulation Stationary Formulation

∂φ

∂t
+ f |∇φ| = 0, |∇T |f = 1,

Front = Γ(t) = {(x, y)| φ(x, y, t) = 0} Front = Γ(t) = {(x, y)| T (x, y) = t}

applies for arbitrary f requires f > 0 or f < 0.

In the next section we present some numerical tests. for the model problem (2.5) The

main goal is to obtain high-order scheme when the solution is smooth. In chapter 1

we proposed a general way to mix a first-order scheme (monotone) with a high-order

(non-monotone) scheme for time dependent HJB equations with the convergence result.

2.3 Numerical test

We solve (2.5) by high-order filtered scheme (1.8). Let us consider the two dimensional

case, of the level set equation (2.5), which can be written as

φt +H(φx, φy) = 0, (2.15)

where H is the classical Hamiltonian and it is standard HJ equation. We keep the

notations from the chapter 1. Now we present filtered scheme in dimension two.

Let ∆t > 0 be a constant time steps, and tn = n∆t, n ∈ [0 . . . N ], and ∆x > 0 be a step

size of a spatial grid. Let (xi, yj) = (i∆x, j∆x) denote a uniform mesh with i, j ∈ Z.

Hence the filtered scheme is :

φn+1
ij = SM (φn)ij + ε∆tF

(
SA(φn)ij − SM (φn)ij

ε∆t

)
, (2.16)

where F is the filter function (1.26), ε is the switching parameter (section 1.3.2 from

chapter 2), SM is monotone scheme (1.11) where hM is Lax-Friedrich monotone flux

hM,LF
(
φ−1 φ

+
1 , φ

−
2 , φ

+
2

)
= H

(
φ−1 + φ+

1

2
,
φ−2 + φ+

2

2

)
− Cx

2

(
φ+

1 − φ−1
)
− Cy

2

(
φ+

2 − φ−2
)
,

(2.17)



Chapter 2. High-order approximation schemes for front propagation 39

Cx = max
A≤φ1≤B

|Hφ1(φ1, φ2)|, Cy = max
A≤φ2≤B

|Hφ2(φ1, φ2)|,

Hi(φ1, φ2) is the partial derivative of H with respect to i-th argument, or the Lipschitz

constant of H with respect to the i-th argument A = (φ−1 , φ
+
1 ) and B = (φ−2 , φ

+
2 )

with with the CFL condition (1.18). SA is high-order scheme which is the same as in

previous chapter i.e. centered scheme in space (see Remark 1.2.4), with Heun (RK2)

scheme discretization in time (see in particular Eqs. (1.25a)-(2.18b)).

SA,1(φnij) := φnij −∆th

(
φ(i+1)j − φ(i−1)j

2∆x
,
φi(j+1) − φi(j−1)

2∆x

)
, (2.18a)

and

SA(φij) :=
1

2

(
φnij + SA,1(SA,1(φnij))

)
. (2.18b)

Hereafter in all the numerical test we use the “centered scheme” (2.18) as high-order

scheme and (1.12) scheme as monotone with the same filtered function (1.26). As we

have already discussed in the chapter 1 for the choice of switching parameter ε we

have numerically observed that taking ε = c1∆x with c1 sufficiently large does not

change much the numerical results in the following so we will precise the value of c1

in each example. In this case of front propagation, it can be observed that the filter

scheme may produce small errors occur the near extrema, when two possible directions

of propagation occur in the same cell. For improving the order in all numerical tests

before doing the filtering process. limiter correction will be needed. In limiter correction

(see section 1.3.1 in chapter 1). In general tables below in the numerical tests filtered

scheme will be compared to a second order ENO scheme (for precise ENO scheme, see

Appendix A), as well as the centered (a priori unstable) scheme without filtering. In

front merging case when front merg then regularity lost. In that case one can not have

high order everywhere so local error in the L2 norms are computed in some subdomain

D, at a given time tn, corresponds to

eL2
loc

:=


∆x

∑

{i, xi∈D}
|v(tn, xi)− uni |2




1/2

and similarly L1 and  L∞ errors also comparable. We fixed CFL is µ = c0

(
τ

∆x + τ
∆x

)
=

0.37.
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2.3.1 Evolution of regular front

Example 2.3.1. ( Evolution of regular front ) In this example the initial condition

is given by the distance function d̄ (as in (2.7)) from the initial configuration of the front

Γ0 =

{
(x, y) ∈ Ω | 0.5− 0.5 max

(
0,

1− x2 − y2

1− r2
0

)4

= 0

}
, (2.19)

where Ω = (−2, 2)2 and here f(x, y) = 1 in (2.5) and T = 0.6 with Drichlet boundary

condition. We are solving front propagation problem and we choose switching parameter

ε = 10∆x. In this example the evolution in the outward direction and interior region will

grow in time and front expand. After evolution front will remains smooth. We compare

filtered scheme with central finite difference scheme and second order ENO scheme with

TVD RK2 in time. In the table 2.1 we are calculating global errors. Here viscous aspect

occurs so in order to have high-order behavior we need to use limiter correction (see

section 1.3.1 of chapter 1). In the Fig. 2.2 several level curves for φ are shown.

filtered (ε = 10∆x) centered ENO2

M N L2 error order L2 error order L2 error order

25 25 1.69E-01 - 2.15E-01 - 2.49E-01 -
50 50 5.03E-02 1.75 7.50E-02 1.52 8.49E-02 1.55
100 100 1.22E-02 2.04 2.55E-02 1.55 2.48E-02 1.78
200 200 3.03E-03 2.02 9.36E-03 1.45 7.24E-03 1.77
400 400 7.57E-04 2.00 2.58E-02 -1.46 2.13E-03 1.76

Table 2.1: Example 2.3.1, L2 errors for filtered scheme, centered scheme, and ENO
second order scheme.

2.3.2 Merging of regular fronts

Example 2.3.2. Merging of two disconnected fronts Again the initial condition is

given by the distance function d̄ (as in (2.7)) from the initial configuration of the front

Γ0 =
{

(x, y) ∈ Ω | φ0(x, y) = 0
)}
,
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Figure 2.2: Example 2.3.1, on the left we have initial configuration circle of radius
r0 = 0.5 and on the right expanded front at time T = 0.6 and CFL is 0.37.

where φ0(x, y) = min (φ1(x, y), φ2(x, y))

φ1(x, y) = r0 − r0 max

(
0,

1− (x− 1)2 − y2

1− r2
0

)4

,

φ2(x, y) = r0 − r0 max

(
0,

1− (x+ 1)2 − y2

1− r2
0

)4

,

are two disconnected smooth fronts which are centered at (1, 0) and (−1, 0) with radius

r0 = 0.5 respectively. Computations are done on the domain Ω = (−3, 3)2 with Drichlet

boundary conditions. Here initial data corresponds to the mixing of two fronts. As front

evolve and merge. They lost their regularity. So this example is less regular than the

previous one. CFL number and switching parameter ε are the same as in Example 2.3.1.

In the table 2.2 local errors have been computed away from the singular strip |x| ≤ ε1

and |y| ≤ ε1 where ε1 = 0.1. In this example, the naive centered scheme is unstable (as

expected), while the filtered scheme is stable and of second order. In Fig. 2.3 we can
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observe a very nice merging.
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Figure 2.3: Example 2.3.2, on the left we have initial configuration circle of radius
r0 = 0.5 and on the right expanded front at time T = 0.6.

filtered (ε = 10∆x) centered ENO2

M N L2 error order L2 error order L2 error order

50 50 1.14E-02 1.80 1.95E-01 1.30 1.32E-02 0.98
100 100 2.76E-03 2.04 7.31E-02 1.42 4.47E-03 1.56
200 200 6.97E-04 1.99 2.96E-02 1.30 1.25E-03 1.84
400 400 1.67E-04 2.06 1.36E-01 -2.20 2.64E-04 2.24

Table 2.2: Example 2.3.2, local L2 errors for filtered scheme, centered scheme, and
ENO second order scheme

Example 2.3.3. Merging of five regular fronts : The motivation of presenting this

example is that if we have more than two fronts expanding and merging even then filtered

scheme is locally high-order. The initial condition is given by the distance function d̄

(as in (2.7)) from the initial configuration of the front

Γk0 = {(x, y) ∈ Ω | φ(x, y) = 0},
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where

φ(x, y) = min{φk(x, y) : k = 1, ..., 5}

φk(x, y) = r0 − r0 max

(
0,

1− (x− xk)2 − (y − yk)2

1− r2
0

)4

, for k = 1, ..., 5

where r0 = 0.25 and centers (xk, yk) are (1, 0), (−1, 0), (0, 0), (0,−1), (0, 1) for k =

1, ..., 5 respectively. We are solving front propagation problem for f(x, y) = 1 and

we choose switching parameter ε = 10∆x. Computations are done on the domain

Ω = (−4, 4)2. In the Fig. 2.7 good merging is observed. Errors calculated away from

singularities (we removed strips |x+y| ≤ ε1, |x−y| ≤ ε1 and ε1 = 0.2 from the domain).

Filtered scheme gives the desired second order behavior.

filtered (ε = 10∆x) centered ENO2

M N L2 error order L2 error order L2 error order

50 50 4.76E-02 1.56 1.02E-01 0.65 6.35E-02 1.53
100 100 1.06E-02 2.16 5.94E-02 0.78 2.10E-02 1.60
200 200 2.83E-03 1.91 2.10E-01 -1.82 6.41E-03 1.71
400 400 7.05E-04 2.01 7.28E-02 1.53 1.87E-03 1.77

Table 2.3: Example 2.3.3, local L2 errors for filtered scheme, centered scheme, and
ENO second order scheme.

2.3.3 Evolution of non-smooth front

Example 2.3.4. Evolution of front with sharp corners : The initial condition is

given by the distance function d̄ (as in (2.7)) from the initial configuration of the front

Γ0 = {(x, y) ∈ Ω | φ(x, y) = 0},

where φ(x, y) = ‖(x, y)‖∞−r0 is a square centered at origin with the sides r0 = 1. Com-

putations are done on the domain Ω = (−1.5, 1.5)2 with Dirichlet boundary condition

and f(x, y) = 1. In this example the evolution in the outward direction and interior

region will grow in time. Also front expand. Note that initially front has sharp corners

but after evolution it becomes smoother. In the table 2.4 we compare filtered scheme with

central finite difference scheme and second order ENO scheme with TVD RK2 in time

and switching parameter is ε = 10∆x. As expected naive centered scheme alone is not

stable but when it is filtered with monotone scheme then the filtered scheme is stable and



Chapter 2. High-order approximation schemes for front propagation 44

x

y

 t=0

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Numerical front

 exact front

x

y

 t=0

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Numerical front

 exact front

x

y

 t=0.6

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Numerical front

 exact front

x

y

 t=0.6

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Numerical front

 exact front

Figure 2.4: (Example 2.3.3) plots at time T = 0 (top) and T = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

of high-order (without limiter scheme switches to first-order at extremes). In the Fig.

2.5 initially at T = 0 front has sharp corners and when front expands then corners of

the squares become smoother. We present the error tables for small time T = 0.25 (For

the longer time run front expands and becomes a circle). In this example we present the

full error tables (L1, L2 and L∞) for filtered scheme.

Errors (L1-Error) L2-Error) L∞-Error)

M N error order error order error order

100 100 6.89E-03 2.23 6.65E-03 2.12 9.36E-03 2.09
200 200 1.80E-03 1.93 1.84E-03 1.86 3.53E-03 1.41
400 400 3.02E-04 2.58 3.56E-04 2.37 1.10E-03 1.68
800 800 7.52E-05 2.01 8.72E-05 2.03 2.20E-04 2.32

Table 2.4: Example 2.3.4, local errors filtered scheme and RK2 in time where ε =
10∆x and with CFL=0.37.
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Figure 2.5: (Example 2.3.3) plots at time T = 0 (top) and T = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

2.3.4 Merging of one smooth and one non-smooth front

Example 2.3.5. One smooth and one non smooth front mergeing : In this

example the initial condition is given by the distance function d̄ (as in (2.7)) from the

initial configuration of the front.

Γ0 = {(x, y) ∈ Ω | φ0(x, y) = 0} ,

where φ0(x, y) = min(φ1(x, y), φ2(x, y)), φ1(x, y) = ‖(x, y)− (0.5, 0)‖∞ − r0 and

φ2(x, y) = r0 − r0 max

(
0,

1− (x− 0.5)2 − y2

1− r2
0

)4

,

where r0 = 0.25 and computations are done on the domain Ω = (−2, 2)2 with Dirichlet

boundary condition and f(x, y) = 1. In this example we have one regular front and one

front with sharp corners. After evolution fronts merge. In the table 2.5 we compare
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filtered scheme with centered scheme and second order ENO scheme with TVD RK2 in

time. Switching parameter is ε = 10∆x. In the Fig. 2.6 we have one smooth front

and one front with sharp corners and when front expands then corners of the square

become smoother and circle will also expand. When both the fronts merge, the regularity

is lost. Errors are calculated away from singularities ( we removed the strip |x| ≤ ε1 and

ε1 = 0.2 from the domain). Filtered scheme is locally high order.
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Figure 2.6: Example 2.3.5, plots at time T = 0 (top) and T = 0.6 (bottom) for the
filtered scheme with mesh point M = N = 100.

filtered (ε = 10∆x) centered ENO2

M N L2 error order L2 error order L2 error order

50 50 8.25E-04 2.54 6.80E-02 1.24 1.44E-03 2.52
100 100 2.51E-04 1.72 7.01E-02 -0.04 3.48E-04 2.05
200 200 6.30E-05 2.00 2.30E-01 -1.71 8.27E-05 2.07
400 400 1.57E-05 2.01 2.73E+00 -3.57 2.03E-05 2.03

Table 2.5: Example 2.3.5, local L2 errors for filtered scheme, centered scheme, and
ENO second order scheme and T = 0.6.
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Till now all above examples solved for the constant velocity f(x, y) = 1. Now we present

some examples with variable velocity.

Example 2.3.6. In the examples below, we are solving (2.5) with Dirichlet boundary

condition, and CFL number is 0.37 in the same domain considered in Example 2.3.1

with the initial profile as in (2.19). Moreover, we assume the velocity f(x, y) to be Lips-

chitz continuous. The numerical tests are performed for the following different variable

velocities.

(i) f(x, y) = |x| in the Fig. 2.7 solved by filtered scheme with ε = 20∆x. For this

example T=1.

(ii) f(x, y) = |y| in the Fig. 2.8 solved by filtered scheme with ε = 20∆x. For this

example T=1.

(iii) f(x, y) = |x|+ |y| in the Fig. 2.9 solved by filtered scheme with ε = 20∆x. For this

example T=0.8.

(iv) f(x, y) = (f1, f2) = (cos(π6 ), sin(π6 )) in the Fig. 2.10 solved by filtered scheme with

ε = 20∆x and T = 0.6.

(v) f(x, y) = (f1, f2) = (|x|cos(π6 ), |y|sin(π6 )) in the Fig. 2.11 solved by filtered scheme

with ε = 20∆x and T = 0.6.

(vi) f(x, y) = (f1, f2) = (|x|cos(π6 ), |x|sin(π6 )) in the Fig. 2.12 solved by filtered scheme

with ε = 20∆x and T = 0.6.
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Figure 2.7: Example 2.3.6 (i) , f(x, y) = |x| and T=1 solved by filtered scheme.
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Figure 2.8: Example 2.3.6 (ii), f(x, y) = |y| and T=1 solved by filtered scheme.
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Figure 2.9: Example 2.3.6 (iii), f(x, y) = |x| + |y| solved by filtered scheme and
T=0.8.
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Figure 2.10: Example 2.3.6 (iv), f(x, y) = (cos(π6 ), sin(π6 )) solved by filtered scheme
and T=0.6.

The Fig. 2.7 and 2.8 show the direction of velocity of propagation f(x, y) in the direction

of x and y axis respectively which is not the case in the Fig. 2.9, 2.10, 2.11 and 2.12
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Figure 2.11: Example 2.3.6 (v), f(x, y) = (|x|cos(π6 ), |y|sin(π6 )) solved by filtered
scheme and T=0.6.
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Figure 2.12: Example 2.3.6 (vi), f(x, y) = (|x|cos(π6 ), |y|sin(π6 )) solved by filtered
scheme and T=0.6.

and filtered scheme shows nice results.

Now we present some numerical examples in 3D. We extend filtered scheme (1.8) with

the limiter 1.3.1 to 3D same manner as in 2D with the same filter function 1.26. In the

examples below we observed that ENO scheme is slow compared to the filtered scheme

and switching parameter ε = 20∆x.

2.3.5 Evolution of fronts in 3D

Example 2.3.7. Regular Front in 3D : In this example the initial condition is given

by the distance function d̄ (as in (2.7)) from the initial configuration of the front

Γ0 = {(x, y, z) ∈ Ω | φ(x, y, z) = 0} ,
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where

φ(x, y, z) = r0 − r0 max

(
0,

1− (x− 0.5)2 − y2 + z2

1− r2
0

)4

, (2.20)

where r0 = 0.25. Computations are done on the domain Ω = (−2, 2)3 with Dirichlet

boundary condition. We are solving front propagation problem where f(x, y) = 1 and

we choose switching parameter ε = 20∆x. In the table 2.6 we can see centered finite

difference is not stable (as expected) and filtered scheme is stable and have second order

behavior. Filtered scheme is faster and somewhere better than ENO scheme. Here the

calculation of errors is global.

Errors filtered (ε = 20∆x) centered ENO

M N P L2 error order L2 error order L2 error order

50 50 50 5.61E-02 2.25 7.97E-002 1.70 1.08E-01 1.76
100 100 100 1.43E-02 1.97 4.08E-002 0.97 3.09E-02 1.81
200 200 200 3.64E-03 1.98 6.10E-001 -3.90 9.04E-03 1.77

Table 2.6: (Example 2.3.7) global errors for filtered scheme, centered scheme, and
ENO second order scheme.

Figure 2.13: Example 2.3.7, plots at time T = 0 (left) and T = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100.

2.3.6 Merging of regular fronts in 3D

Example 2.3.8. Merging of two regular fronts : In this example the initial

condition is given by the distance function d̄ (as in (2.7)) from the initial configuration
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of the front. We start with two smooth fronts (spheres) i.e.

Γ0 = {(x, y, z) ∈ Ω | φ0(x, y, z) = 0} ,

ss where φ0(x, y, z) = min (φ1(x, y, z), φ2(x, y, z))

φ1(x, y, z) = r0 − r0 max

(
0,

1− (x− 1)2 − y2 − z2

1− r2
0

)4

,

φ2(x, y, z) = r0 − r0 max

(
0,

1− (x+ 1)2 − y2 − z2

1− r2
0

)4

,

where r0 = 0.25 and computations are done on the domain Ω = (−2, 2)3 with Dirichlet

boundary condition. f(x, y) = 1 and we choose switching parameter ε = 20∆x. The

centered scheme is not stable (as expected) and filtered scheme is stable and have second

order behavior and faster and somewhere better than ENO scheme. In the table 2.8 error

calculations are local away from singularity (we eliminate the ball B(P, ε1) of radius

ε1 = 0.2 and P is the point where two fronts touches).

Figure 2.14: Example 2.3.8, plots at time T = 0 (left) and T = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100.

Example 2.3.9. The motivation of this example is that if we have more than two fronts

(even in three dimensional space) then filtered scheme is still of second order. In this
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Errors (filtered ε = 20∆x) (centered) (ENO)

M N P L2 error order L2 error order L2 error order

50 50 50 7.48E-02 2.07 1.31E-001 1.42 1.54E-01 1.68
100 100 100 2.15E-02 1.80 7.64E-002 0.78 4.60E-02 1.75
200 200 200 4.75E-03 2.18 2.55E+01 -3.03 1.24E-02 1.89

Table 2.7: (Example 2.3.8) local errors for filtered scheme, centered scheme, and ENO
second order scheme.

example we have five fronts

φk(x, y, z) = r0 − r0 max

(
0,

1− (x− xk)2 − (y − yk)2 − (z − zk)2

1− r2
0

)4

, k = 1, .., 5,

where r0 = 0.25 and centers (xk, yk, zk) are (1, 0, 0), (−1, 0, 0), (−1, 0, 0), (0,−1, 0),

(0, 1, 0) for k = 1, ..., 5 respectively. Computations are done on the domain Ω = (−2, 2)3

with Dirichlet boundary condition. In the table 2.8 error calculations are local away

from singularities and schemes switch to first-order. We eliminate the ball B(Pk, ε1) of

radius ε1 = 0.2 and Pk are the points where fronts touches for k = 1, ..., 5 respectively.

It is clear from the figure 2.15 that the singularities propagate, hence one cannot expect

to have high-order (thats why filtered scheme switches to first-order). However, filtered

scheme is better than ENO somewhere and we can see nice merging.

Figure 2.15: Example 2.3.8, plots at time T = 0 (left) and T = 0.6 (right) for the
filtered scheme with mesh point M = N = P = 100

Example 2.3.10. In this example we extend all 2D Example 2.3.6 with variable veloc-

ities in dimension three. We are solving (2.5) equation in 3D with Dirichlet boundary
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Errors (filtered ε = 20∆x) (centered) (ENO)

M N P L2 error order L2 error order L2 error order

25 25 25 1.43E-01 - 1.69E-01 - 1.30E-01 -
50 50 50 6.37E-02 1.17 1.54E-01 0.14 4.18E-02 1.64
100 100 100 1.50E-02 2.09 1.46E-01 0.08 1.20E-02 1.79
200 200 200 3.95E-03 1.92 2.57E+01 -7.46 3.75E-03 1.68

Table 2.8: (Example 2.3.8), local errors for filtered scheme, centered scheme, and
ENO second order scheme.

condition, Time T= 0.5 and CFL number is 0.37 in the same domain as considered

in Example 2.3.1 with the initial profile is (2.20) as in Example (2.3.7). Moreover,

we assume the velocity f(x, y, z) to be Lipschitz continuous. The numerical tests are

performed for the following different variable velocities.

(i) f(x, y, z) = |x| in the Fig. 2.18 solved by filtered scheme with ε = 20∆x.

(ii) f(x, y, z) = |y| in the Fig. 2.16 solved by filtered scheme with ε = 20∆x.

(iii) f(x, y, z) = |x| + |y| in the Fig. 2.17 solved by filtered scheme with ε = 20∆x for

this example T=1.

(iv) f(x, y, z) = x2 + y in the Fig. 2.19 solved by filtered scheme with ε = 20∆x.

In all the figures below we plot solution with first order scheme and with filtered scheme.

We observe nice behavior of filtered scheme.

Figure 2.16: Example 2.3.10, f(x, y, z) = |x| in the bottom and T=0.5 solved by
filtered scheme.
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Figure 2.17: Example 2.3.10, f(x, y, z) = |y| solved by filtered scheme and T=0.5.
First picture with first-order numerical scheme and second one with filtered scheme

with ε = 20∆x

Figure 2.18: Example 2.3.10, f(x, y, z) = |x| + |y| solved by filtered scheme and
T=0.8. First picture with first-order numerical scheme and second one with filtered

scheme with ε = 20∆x

Figure 2.19: Example 2.3.10, f(x, y, z) = x2 + y solved by filtered scheme and T=0.5
with first-order numerical scheme and second one with filtered scheme with ε = 20∆x



Chapter 3

Coupled schemes for

Hamilton-Jacobi equations

3.1 Introduction

We propose a new numerical approximation for Hamilton-Jacobi-Bellman equations

which is based on the coupling of two schemes with different properties. The approach

is general and can in principle be applied to couple many different schemes, for example

one can couple an accurate method for the regions where the solution is smooth with

another method which is more adapt to treat discontinuities and/or jumps in the gradi-

ents. Clearly one has to decide where to apply the first or the second method and this is

done by means of an indicator parameter which has to be computed in every cell at every

time step. In this chapter we investigate in particular, the coupling between an anti-

dissipative scheme which has been proposed in order to deal with discontinuous solutions

and a semi-Lagrangian scheme which is more adapt to deal with Lipschitz continuous

and can be more accurate for regular solutions provided a high-order local interpolation

operator is used for the space reconstruction. We will introduce the indicator parameter

for this coupling, show how to couple the two schemes which typically use two different

grids reconstructions and prove some properties of the resulting coupled scheme. In the

last section we will show some 1-dimensional tests which illustrate the properties of the

coupled scheme. In this chapter our aim is to propose a new method to build schemes

for first order time dependent HJ equations coupling two schemes for viscosity solution

55
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which have different properties. We will consider the following model problem

∂tv +H(x,∇v) = 0, (t, x) ∈ [0, T ]× R (3.1)

v(0, x) = v0(x), x ∈ R. (3.2)

where the hamiltonian H is convex in the gradient. A typical example comes from opti-

mal control theory where H(x,∇v) = max
α∈A
{f(x, α)vx(t, x)} and a represents the control,

it is well known that in this framework the solution v of the equation (3.1) corresponds

to the value function of an optimization problem [6, 9]. Typically the solution is Lip-

schitz continuous if the data are Lipschitz continuous but also discontinuous solutions

can be considered and they actually appear in several applications to control problems

with state constraints, games and image processing. This is our main motivation to

deal here with discontinuous initial conditions and in general the coupled scheme will be

designed in order to be able to track discontinuous solutions. However, since the typical

situation is to have a piecewise regular solution which only has discontinuities or jumps

of the derivatives at isolated points it is natural to try to diversify the method in the

subdomains where the solution is regular and in the cells where the solution exhibits this

kind of singularities. To this end we will couple two schemes which have been already

proposed in the literature and for which we know a number of properties which will

turn to be useful for the construction of the coupled scheme. Let us also mention that

hybrid schemes for hyperbolic conservation laws have been proposed in the literature to

capture shocks for hyperbolic conservation laws and contact discontinuities for the com-

pressible Euler system (see chapter 22 in the book by Laney [76] for more informations

and references). The coupled scheme proposed here follows the same ideas although our

goal is to solve HJ equations and the schemes chosen for the coupling are different.

It is well known that, in the one dimensional case, there is a strong link between

Hamilton-Jacobi (HJ) equations and hyperbolic conservation laws. Namely, the vis-

cosity solution of the evolutive HJ equation is the primitive of the entropy solution of

the corresponding hyperbolic conservation law with the same Hamiltonian. There are

several schemes developed for hyperbolic conservation law (see references [34, 59, 63, 64].

Most of the numerical ideas to solve hyperbolic conservation law can be extended to HJ

equations. In the last decades many numerical schemes have been proposed for HJ
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equations using different techniques, for example, finite differences, markov chain, semi-

Lagrangian (SL) [2, 34, 42], these schemes have been shown to be stable and convergent

under mild regularity assumptions on the solution and to be first order accurate for

the approximation of Lipschitz continuous solutions. We also mention that more re-

cently [19] a new class of high-order filtered schemes has been proposed, this schemes

converge to the viscosity solution and a precise error estimate has been proved for regular

viscosity solution. However, as we said, it can be interesting to deal with discontinuous

viscosity solutions so these schemes have to be adapted in order to obtain reasonable

approximations which do not diffuse too much around the discontinuities of Dv and/or

v and do not oscillate.

For discontinuous solutions an anti-dissipative (AD) scheme has been proposed [13]

and a convergence result has been proved in one dimension [15, 16]. That scheme has

been initially proposed for hyperbolic conservation laws [38, 96] and then extended to

Hamilton-Jacobi equations in one dimension. Another class of schemes which have been

shown to be rather effective is that of SL scheme (see Falcone and Ferretti book [42] for

a comprehensive presentation of this approach). SL scheme gives good results and are

naturally multidimensional, they can be very accurate in the regions of regularity for

the solution provided a high-order local reconstruction in space is used. Despite these

interesting features SL schemes are not efficient for discontinuous initial data since they

use a local interpolation operator for the computation at the foot of the characteristic.

In this chapter we present a new scheme for (3.1) based on the coupling between the

Ultrabee scheme (an AD scheme) and a first order SL scheme. We intend to take the

advantage of the properties of the two methods introducing an indicator parameter σj

which will be computed in every cell Cj in order to detect if there is a singularity there.

Then, according to the value of σj , we will use the SL scheme if the solution is regular

enough switching to the AD scheme when a discontinuity is detected.

3.2 Background results for the uncoupled schemes.

In this section we recall SL scheme which studied by Ferretti and Falcone and works very

well when solution of HJ equation is smooth in [41]. Also we will recall Antidiffusive

(Ultrabee) scheme which Modified by Bokanowski and Zidani [13].
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3.2.1 Semi-Lagrangian (SL) Schemes [42]

A SL method, is based on two basic steps: the reconstruction of the solution on a fixed

grid and numerical integration along the lines of the same characteristics; remember that

the idea of using the aspect numerical method of characteristics was proposed for the first

time by Courant, Isaacson and Rees in the [33]. In 1 dimension the CIR scheme precisely

gives the first order upwind scheme when applied to the advection equation imposing the

CFL condition vmax∆t/∆x ≤ 1 where vmax is the upper bound for the modulus of the

velocity. However, these methods are still stable for large time steps so they do not need

the typical CFL condition required by finite difference methods. This is particularly

important to run simulations which want to investigate the long time behavior of the

solution. In the framework of HJ, SL schemes have been developed initially for the

solution of Bellman equations associated with optimal control problems. This schemes

can be interpreted as a discretization of the dynamic programming principle.

The typical assumptions on H are:

1. H(·, ·, ·) is uniformly continuous in all the variables.

2. H(x, v, ·) is convex and coercive.

3. H(x, ·, Dv) is monotone.

Under these assumptions we have the representation Hopf-Lax formula for the solution

v(x, t+ ∆t) = min
a∈R
{v(x− a∆t, t) + ∆tH∗(a)}

where

H∗(a) = sup{a · p−H(p)}

is the Legendre transform of Hamiltonian H. Note that the formula is the extension of

the classical representation formula for the linear advection equation. Let I1[u] denote

the P1-interpolation of a function u in dimension one on the mesh G = {xj}, i.e.

I1[u](x) =
xj+1 − x

∆x
uj +

x− xj
∆x

uj+1 for x ∈ [xj , xj+1] (3.3)
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Hence the SL scheme for (3.1) is

un+1
j = min

a∈R
{I[un](xj − a∆t)∆tH∗(a)} (3.4)

SL scheme is monotone stable and works for large Courant number. Converges and error

estimate has been proven (see [42] for precise results).

3.2.2 Ultra-Bee scheme for HJB equations [13]

In this section we recall the anti-dissipative scheme (AD) which is the “Ultrabee” scheme

of Roe [96]. For modified Ultrabee scheme we refer the work of [13]. The Ultrabee scheme

is non monotone but it has the interesting property to transport exactly a particular

space of step functions in the case of linear advection when the speed is constant.

Let ∆t be a constant time step and tn = n∆t for n ≥ 0. Given two velocity functions

fg : R→ R, g = m,M , we set the following notation for the corresponding CFL numbers

at a node xj :

νmj :=
∆t

∆x
fm(xj) and νMj :=

∆t

∆x
fM (xj), j ∈ Z (3.5)

Then we can define the vectors, νm = {νmj , j ∈ Z}, νM = {νMj , j ∈ Z}. Let us define

the exact average values of the approximate solution at time tn:

unj =
1

∆x

∫ j+1/2

j−1/2
u(tn, x)dx , j ∈ Z, n ∈ N (3.6)

Denoting by ‖f‖∞ the L∞ norm of a bounded function defined on R we define the CFL

condition

max (‖|fm‖∞, ‖fM‖∞)
∆t

∆x
≤ 1. (3.7)

Here we recall the steps of the algorithm for the

Algorithm for the Ultrabee Scheme (UB)

Initialization. Compute the initial averages {u0
j}j∈Z as above

For n ≥ 0,

Main cycle

Step 1. Compute un+1 = {un+1
j }j∈Z by:
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Step 2. For every j ∈ Z, we define the “fluxes” unj±1/2(νj) for νj ∈ {νmj , νMj } as follows:

if νj ≥ 0, we set

unj+1/2(ν) :=





min
(

max
(
unj+1, b

+
j (νj)

)
, B+

j

)
if νj > 0

unj+1 if νj = 0 and unj 6= unj−1

unj if νj = 0 and unj = unj−1

(3.8)

where 



b+j (ν) := max
(
unj , u

n
j−1

)
+ 1

νj

(
unj −max

(
unj , u

n
j−1

))
,

B+
j (ν) := min

(
unj , u

n
j−1

)
+ 1

νj

(
unj −min

(
unj , u

n
j−1

))
,

(3.9)

if νj ≤ 0, we set

unj−1/2(ν) :=





min
(

max
(
unj−1, b

−
j (νj)

)
, B−j

)
if νj < 0

unj−1 if νj = 0 and unj 6= unj+1

unj if νj = 0 and unj = unj+1

(3.10)

where 



b−j (ν) := max
(
unj , u

n
j+1

)
+ 1

νj

(
unj −max

(
unj , u

n
j+1

))
,

B−j (ν) := min
(
unj , u

n
j+1

)
+ 1

νj

(
unj −min

(
unj , u

n
j+1

))
,

(3.11)

Step 3. For νj ∈
{
νmj , ν

M
j

}
, we define

un+1
j = unj − νj

(
unj+1/2(ν)− unj−1/2(ν)

)
(3.12)

Step 4. Finally, we set un+1
j := min

(
un+1
j (νmj ), un+1

j (νMj )
)

, j ∈ Z.

For simplicity and considering all the cases, we will use the following short notation for

the Ultrabee scheme

un+1
j = SUBj (un) :=

(
min

(
un+1
j (νm), un+1

j (νM )
))

j∈Z
(3.13)

For the advection equation: in [38] it has been proved that under the CFL condition

0 ≤ νj ≤ 1, for all j, Ultrabee scheme is consistent, L∞ stable and TVD. Let us also

mention the form of flux which used in [38] i.e.

unj+1/2 := unj +
1− νj
φj

(unj+1 − unj ), (3.14)
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where φj is defined as

φj =





max
(

0,min
(

2rj
νj
, 2

1−νj

))
, if unj+1 = unj and νj 6= 1

0, otherwise,
(3.15)

where rj =
unj −unj−1

unj+1−unj
and by replacing j = j − 1 we can compute unj−1/2.

3.3 Construction of the Coupled Scheme (CS)

As we said, AD schemes are based on previous results for conservation laws and they

typically require a projection onto a discontinuous reconstruction at every step. This

choice seems to be clever for the regions where the solution is non regular but rather

unfortunate where the solution is regular. Then a natural idea is to couple the features

of two schemes: a scheme (S1) well adapted for regular (at least Lipschitz continuous)

solutions with an AD scheme (S2) which allows for accurate result at the jumps. Thus

we expect to get advantages coupling the two schemes, to this end we should be able to

detect the regularity regions and the singular regions.

SL scheme uses a local interpolation operator to recover the value of the numerical solu-

tion at the foot of characteristics which are not grid points themselves. In their standard

version, SL schemes do not use cell averages. On the contrary AD schemes is based on

cell average values. For the coupling, we need values on two different grids GSL and

GAD with space step ∆x which are defined below:

GSL = {xj = j∆x : j = Z},

GAD = {xj : xj = xj +
∆x

2
, j ∈ Z}

For simplicity we will often use the short cut for the nodes of the two grids which

are shifted by ∆x/2, calling •-nodes the nodes of GSL and ×-nodes the nodes of GAD.

Where unj denotes an approximation of the u(xj , tn), unj denotes an approximation of the

u(xj , tn), where tn = n∆t, ∆t > 0. In what follows we drop the time index n and denote

for simplicity uj = unj . At every step, we divide our domain into two regions, one where

our approximate solution is continuous and the other where we detect discontinuities.

To construct the CS scheme we need following definitions.
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	  x0	   	  x1	   	  xj	   	  xj+1	   	  xN	  

	  Grid	  for	  semi-‐Lagrangian	  Scheme	  

	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	   	  	  	  	  	  x	  
	  x1	  	  x0	   	  xj+1	  	  xj	   	  	  xN	  

	  xj+1/2	   	  xj+1/2	   	  xj-‐1/2	  
	  	  	  x+1/2	  

	  Grid	  for	  An*diffusive	  Scheme	  
	  

Let us define the regularity indicators, Pj : Z→ R

Pj := Dunj ≡
unj−1 − unj+1

2∆x
and P j :=

unj−1 − unj+1

2∆x
, (3.16)

By the above indicators we will detect the cells where the solution is regular in the two

schemes, for simplicity we will just give the definition for Pj , the definitions for P j are

analogous.

Definition 1. A cell Cj = [xj , xj+1) is said to be a regular cell if we have |Pj | < δ or

DunjDu
n
j−1 > 0 and Dunj+1Du

n
j > 0.

For example in the case of transport equation, we know the solution which is u(x, t) =

uo(x−ct), so can set our threshold with the help of the initial condition δ = ||Du0
j ||∞−ε,

ε > 0.

Figure 3.1: A sketch of three possible situations around a jump in the derivative.

Definition 2. A cell Cj is said to be a singular cell if it is not a regular cell. We denote

the set of singular cells by Cs.

Definition 3. The singular region Rs is defined by the union of the following cells:

a) all the singular cells
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b) the neighbouring cells Cj+1, Cj−1 to Cj ∈ Cs provided they are not in Csand their

neighbour on the left or on the right is in Cs, i.e. we look for Cj+2 and Cj−2 and

if Cj+2 ∈ Cs ⇒ Cj+1 ∈ Cs

similarly, if Cj−2 ∈ Cs ⇒ Cj−1 ∈ Cs

Definition 4. The set Rr = [a, b] \ Rs is called the regular region.

Now we have a singular region Rs where we set σj ≡ 0 and in the regularity region Rr
set σj ≡ 1. Since the schemes are working on different grids when the indicator says

that we have to switch from SL to AD (or viceversa) we need to define the values on

the other grid . To this end we define two local projection operators.

Definition 5 (Local Projection Operator for SL). We define the local projection operator

PSLloc : R2 → R by a map which defines the new value uj at xj starting from the values

(uj−1/2, uj+1/2),

PSLloc (uj−1/2, uj+1/2) :=
uj−1/2 + uj+1/2

2
= uj (3.17)

Definition 6 (Local Projection Operator for AD). We define the local projection oper-

ator PADloc : R2 → R by a map which defines the new value uj at xj+1/2 starting from

the values (uj , uj+1),

PADloc (uj , uj+1) :=
uj + uj+1

2
= uj+1/2. (3.18)

Note that the projection operators are based on the average and they must be used locally

whenever in a cell we switch from one scheme to the other. From the local definition we

can also define a global projection operator which applies the local definition to every

cell, i.e.

un = PSL(un) will mean unj = PSLloc (unj−1/2, u
n
j+1/2),∀j (3.19)

and

un = PAD(un) will mean unj+1/2 = PADloc (unj , u
n
j+1), ∀j (3.20)

We will describe the algorithm which couples the the two scheme and formally works on

the two grids, although in practice we do not need to have a global algorithm everywhere

and we just compute in every node according to the scheme which is selected by the
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indicator σnj which is computed only at the •-nodes (remember that the ×-nodes are

shifted by ∆x/2 with respect to the •-nodes)

Algorithm for the Coupled Scheme SL+UB

Step 1.On every xj , we compute the initial data w0
j on every xj and xj .

For n ≥ 0

Step 2. We compute Dunj−1, Dunj , Dunj+1 and Dunj+2 and check ∀ j ∈ Z,

Dunj−1Du
n
j > 0, DunjDu

n
j+1 > 0 and ||Dunj ||∞ > δ .

Step 3. If Step 2 is true then go to Step 4

Step 4. For every node xj , we set

σnj = 1

and compute

w
n+1/2
j = σnj S

SL
j [wn] + (1− σnj )SADj [wn] = SSLj [wn],

otherwise go to Step 5

Step 5. Check that DunjDu
n
j+1 > 0, Dunj−1Du

n
j−2 > 0 and ||Dunj−1||∞ > δ .

Step 6. If Step 5 is true then set

σnj = 0

and apply PADloc at the node xj ,

PADloc (unj , u
n
j+1) =

unj + unj+1

2
= unj .

then we compute

w
n+1/2
j = σnj S

SL
j [wn] + (1− σnj )SADj [wn] = SADj [wn]. (3.21)

Step 7 If Step 5 is false then apply PSLloc at xj

PSLloc (uj , u
n
j+1) =

unj + unj+1

2
= unj



Chapter 3. Coupled schemes for Hamilton-Jacobi equations 65

Set

σnj = 1

and compute

w
n+1/2
j = σnj S

SL
j [wn] + (1− σnj )SADj [wn] = SSLj [wn], (3.22)

Step 8 (Filling the holes procedure)

For all the •-nodes where σnj = 0 we need to project by PSLloc defined in (3.17) using the

values in w
n+1/2
j ;

at the ×-nodes not computed by the SL-scheme we need to project by PSLloc defined in

(3.18) using the values in w
n+1/2
j . This will finally produce the new approximate solution

wn+1.

Then we go back to Step 2. �

Note that for all the •-nodes where σnj = 1 we have the value computed by the SL-

scheme so we will need to give a value only to the •-nodes where σnj = 0, this is done

via the projection operator PSLloc . In a similar way, at the ×-nodes belonging to a regular

cell we will not have a value computed by the AD-scheme so we have to assign a value

by the projection operator PADloc . The filling procedure is included in the scheme just to

simplify the presentation, in practice at every time step we will not need to project to

assign a value to the node if the scheme applied that node will not change with respect

to the scheme applied to compute the previous time step since in that case we already

have the necessary informations. Whenever there is a switch of σnj we need to project.

In section 3.5 we will see that the coupled scheme (CS) described above is working well

for the linear case and also for (3.1). In both cases we will be able to define a proper

regularity threshold δ.

3.4 Properties of the coupled SL+UB scheme

In this section we focus our attention on the properties for coupled scheme defined at the

end of the previous section. We will prove these properties for the advection problem,

the extension to the non linear problem is still under study. At the end of the chapter
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we will show some tests for linear and Hamilton-Jacobi equations which shows that the

coupling procedure is also effective for nonlinear problems and deserves further analysis

in that direction.

Let us start introducing some definitions.

Definition 7. The Discrete Total Variation of an approximate solution un is

TV (un) =
∑

j∈Z
|unj+1 − unj |. (3.23)

Definition 8. We say that the scheme is Total Variation Diminishing (TVD) if for all

n ≥ 0 ,

TV (un+1) ≤ TV (un). (3.24)

Now we also recall that a scheme written in Harten’s incremental form [63]

un+1
j = unj − cj− 1

2
(unj − unj−1) +Dj+ 1

2
(unj+1 − unj ), (3.25)

Cj− 1
2
, Dj+ 1

2
∈ R, is TVD if and only if the following conditions are satisfied for all j:

0 ≤ Cj− 1
2
, 0 ≤ Dj+ 1

2
and Cj− 1

2
+Dj+ 1

2
≤ 1.

Definition 9. The scheme (3.12) is L∞- stable if the following conditions hold

νj ≥ 0 ⇒ min(unj , u
n
j−1) ≤ un+1

j ≤ max(unj , u
n
j−1), (3.26)

νj ≤ 0 ⇒ min(unj , u
n
j+1) ≤ un+1

j ≤ max(unj , u
n
j+1). (3.27)

It is clear that above definition of L∞- stability implies the standard definition of L∞-

stability i.e.

‖un+1‖L∞ ≤ ‖un‖L∞ (3.28)
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Definition 10. We say that scheme (3.12) is consistent if all the fluxes un,L
j+ 1

2

and un,R
j+ 1

2

satisfy:

νj > 0 ⇒ min(unj , u
n+1
j ) ≤ un,L

j+ 1
2

≤ max(unj , u
n
j−1), (3.29)

νj < 0 ⇒ min(unj , u
n+1
j ) ≤ un,R

j+ 1
2

≤ max(unj , u
n
j+1). (3.30)

Properties of the CS for the linear advection equation

Let us consider the following model problem





vt + cvx = 0, t ∈ [0, T ], x ∈ R c > 0 and constant,

v(0, x) = v0(x)
(3.31)

We consider the coupled scheme:

w
n+1/2
j = σnj S

SL
j [wn] + (1− σnj )SADj [wn], (3.32)

with the projection (3.17) or (3.18) ( as explained in the coupled scheme algorithm

we use projection when it needed). When we are always in regular region then above

coupled scheme is coincide with the SL scheme. Let xj − c∆t ∈ (xj−1, xj ] and ν = c∆t
∆x

then we have following SL scheme

un+1
j = SSLj (un) := νunj−1 + (1− ν)unj (3.33)

Note that, despite being obtained through a different procedure, the result precisely

coincides with the upwind discretization for ν = 1. Although ∆t can in general be

rather big ans SL schemes typically work for large Courant numbers here we will set

ν = 1 because the coupling is made with the Ultrabee scheme which needs that condition

for stability.

For proving several properties of scheme we have to consider three cases.

Case 1 As we explained in the algorithm, when at time tn we are in the regular region

and there is no switch at the node xj , we have σnj = σn−1
j = 1 and we keep com-

puting by the SL scheme on that node. Thus the resulting scheme automatically

follows all the properties of SL schemes.
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Case 2 Similarly, when σnj = σn−1
j = 0 we continue to apply the AD scheme. Thus the

resulting scheme is AD (here in particular Ultrabee) scheme and its satisfied all

the properties for AD scheme.

Case 3 The scheme switches from one scheme to the other, i.e. σnj 6= σn−1
j . We need

to project the values from one grid to the other by the local projection operators

(3.17) or (3.18) and check the properties of the resulting coupled scheme.

Note that the following properties of the projection operators will play an important

role: As the definition of projection operator we have

min(unj , u
n
j+1) ≤ unj = PADloc (unj+1, u

n
j ) =

unj + unj+1

2
≤ max(unj , u

n
j+1) (3.34)

min(unj , u
n
j+1) ≤ unj = PSLloc (unj+1, u

n
j ) =

unj + unj+1

2
≤ max(unj , u

n
j+1) (3.35)

1. L∞-stability of the coupled SL+UB scheme. Let us consider the three cases.

Case 1: In this case, we are at the node xj the SL scheme which is known to be

L∞-stable (see [42]), so the property is true.

Case 2: Also in this case, the property follows from the fact that the Ultrabee

scheme is L∞-stable (see [15]), this implies scheme L∞ stability as in (3.26).

Case 3: If we switch from one scheme to another then we need to use local

projection operator (3.17) or (3.18). For instance, consider the situation when

there is a switch from SL to the Ultrabee scheme. More precisely, the point

(tn, xj−1) has been computed by SL scheme because σn−1
j−1 =1) i.e.

wnj−1 = w
n−1/2
j−1 = SSLj−1[wn−1] = SSLj−1[un−1] (3.36)

Now we need to switch to the Ultrabee scheme, hence the local projection operator

PADloc (see (3.18)) is needed. This gives

PADloc (wnj−1, w
n
j ) = PADloc (unj , u

n
j+1) =

unj + unj+1

2
= unj , (3.37)

and since σnj = 0 and we have

w
n+1/2
j = SADj [wn] = SSLj−1[un] (3.38)
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Then the L∞ bound is satisfied by (3.34) and the stablity property of the Ultrabee

scheme. In the same way we can prove, that when the scheme switches from

Ultrabee to SL scheme, the L∞ stability is bound is satisfied by (3.35) and the SL

stability property.

2. The Coupled SL+UB scheme is TVD.

We prove the TVD property for the three cases.

Case 1: σnj = σn−1
j = 1. We need to prove that the semi-Lagrangian scheme

based on P1-interpolation (SL-P 1) is TVD. We have then,

wn+1
j = w

n+1/2
j = SSLj [wn] = SSLj [un] (3.39)

un+1
j = νunj−1 + (1− ν)unj with ν ∈ (0, 1] (3.40)

|unj+1 − unj | = |νun−1
j + (1− ν)un−1

j+1 − (νun−1
j−1 + (1− ν)un−1

j )|

|unj+1 − unj | = |ν(un−1
j − un−1

j−1 ) + (1− ν)(un−1
j+1 − un−1

j )|

∑

j

|unj+1 − unj | ≤
∑

j

|ν(un−1
j − un−1

j−1 ) + (1− ν)(un−1
j+1 − un−1

j )|

TV (un) ≤ |ν|TV (un−1) + |(1− ν)|TV (un−1)

ν ∈ (0, 1] which implies

TV (wn) = TV (un) ≤ TV (un−1) = TV (wn−1) (3.41)

Hence SL-P 1 scheme is TVD.

Case 2: We assume that ν > 0, using the L∞-stability property and we have

w
n+1/2
j = SADj [wn] = SSLj−1[un] (3.42)
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so we can also write

un+1
j = unj − Cj−1/2(unj − unj−1)

with Cj−1/2 ∈ [0, 1], and we can write (3.25) with Dj+1/2 = 0 Hence we have

the incremental form (3.25) with Cj+1/2 +Dj+1/2 ≤ 1 since one of the coefficient

Cj+1/2 or DJ+1/2 always vanishes. Thus the scheme is TVD.

Case 3: The scheme switches from one scheme to the other, i.e. σnj 6= σn−1
j . For

instance, consider the situation (same as we did in the case 3 of L∞ stability proof)

when there is a switch from SL to the Ultrabee scheme. More precisely, the point

(tn, xj−1) has been computed by SL scheme because σn−1
j−1 =1, i.e.

wnj−1 = w
n−1/2
j−1 = SSLj−1[wn−1] = SSLj−1[un−1] (3.43)

Now we need to switch to the Ultrabee scheme, hence the local projection operator

PADloc (see (3.18)) is needed. This gives

PADloc (wnj−1, w
n
j ) = PADloc (unj , u

n
j+1) =

unj + unj+1

2
= unj , (3.44)

and since σnj = 0 and we have

w
n+1/2
j = SADj [wn] = SSLj−1[un] (3.45)

Hence coupled scheme is TVD thanks to local projection operator. In the same

manner we can prove when we switch from Ultrabee to SL scheme.

3. The Coupled scheme SL+UB is consistent.

Case 1: σj = 1 we already know that SL scheme is consistent . For more details

we refer reader to see [42]

Case 2: if σj = 0 Ultrabee scheme is consistent. Thus implies scheme L∞ stable

as in (3.29) (For more details we refer reader to see [15]).

Case 3 and 4 : When we switch from one scheme to the other, the scheme

resultant scheme is also consistent thanks to projection operator and the fact that

they work on different nodes. Thus the coupled scheme is consistent.
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3.5 Numerical tests

In this section we present several numerical tests in dimension one. In the following

examples we solve advection equation (with constant and variable velocities) and HJ

equation (3.1) by a coupled scheme based on the SL scheme (3.4) with P 1 local recon-

struction and the Ultrabee scheme (3.13) presented in the sections 4.3.1. In order to

show the differences between the original building methods and the couples scheme we

consider several initial conditions with various degree of regularity and we follow their

evolutions in time over an interval Ω. We will compute the errors in L1(Ω), L2(Ω) and,

in some cases, in L∞(Ωreg) to show also the behavior in the regularity region.

3.5.1 Advection equation

Example 3.5.1. We consider advection equation

vt + f(x)vx = 0, (t, x) ∈ Ω, (3.46)

v0(x) = v(0, x), (3.47)

where f(x) is the velocity and v0(x) is initial data with bounded support. We consider

three different v0 with different regularity. For all three initial data, domain Ω = [0, 2]×
(−2, 2). We fix CFL is 0.9 and f(x) = 1. In all the tables below error calculation is

global.

1 Initial data v0 is smooth data i.e.

v(0, x) = v0(x) =





(1− (1− |x|2))4 |x| ≤ 1

0 otherwise,
(3.48)

In this case it is clear that solution remains smooth hence SL-P 1 scheme have good behav-

ior unlike Ultrabee. So we expect coupled scheme to switch to SL-P 1 scheme everywhere.

In fact in the error calculation we get exactly the same table for SL-P 1 and coupled

scheme which is the expected result. In the Fig. 3.2 we have shown solution of (3.46) at

time t = 20∆t where time step ∆t = 0.045 for the initial data (3.48). Fig. 3.3 shows the

plots of σ for different time t = 10∆t, 20∆t, 30∆ where ∆t = 0.045 (as we mentioned

solution is smooth so σ = 1 for all the t). To sum-up for the advection with constant
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velocity if initial data is smooth then indicator function σ is able to switch to the correct

scheme. Table 3.1 and 3.2 are the error tables of Ultrabee and coupled (here same as

SL-P 1) scheme respectively.
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Figure 3.2: (Example 3.5.1), on the top left is the plot of initial data (3.48) and on
the top right SL-P 1 scheme. In the second row plot of Ultrabee and coupled scheme

respectively at t = 20∆t where ∆t = 0.045.
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Figure 3.3: (Example 3.5.1), the plot of the indicator function σ for (3.48) at different
time steps t = 10∆t, 20∆t, 30∆t where ∆t = 0.045.

2 Initial data v0 is Lipschitz continuous i.e.

v(0, x) = v0(x) =





1− |x| if |x| ≤ 1

0 otherwise,
(3.49)
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∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 9.04E-002 8.49E-002 1.10E-001
0.090909 0.102564 4.32E-002 4.27E-002 7.68E-002
0.045455 0.050633 2.17E-002 2.22E-002 5.56E-002
0.022472 0.025157 1.27E-002 1.27E-002 3.59E-002
0.011236 0.012539 6.49E-003 6.68E-003 2.20E-002
0.005634 0.006260 3.34E-003 3.50E-003 1.09E-002

Table 3.1: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.48)
at time t = 20∆t where ∆t = 0.045.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 7.36E-002 5.93E-002 7.44E-002
0.090909 0.102564 3.49E-002 2.84E-002 3.64E-002
0.045455 0.050633 1.67E-002 1.37E-002 1.75E-002
0.022472 0.025157 8.87E-003 7.28E-003 9.31E-003
0.011236 0.012539 4.38E-003 3.60E-003 4.60E-003
0.005634 0.006260 2.14E-003 1.76E-003 2.25E-003

Table 3.2: (Example 3.5.1), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.48) at time t = 20∆t where ∆t = 0.045.

For this case we expect coupled scheme to detect the sharp point and switch to Ultrabee.

In the Fig. 3.4 we have shown solution of (3.46) at time t = 20∆t where time step

∆t = 0.045 for the initial data (3.49). Fig. 3.5 contain the plots of σ for different time

t = 10∆t, 20∆t, 30∆ where ∆t = 0.045 and it is clear that indicator function σ detects

discontinuity. Table 3.3, 3.4 and 3.5 are the error tables of coupled SL-P 1, Ultrabee and

coupled scheme respectively.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 5.10E-002 6.06E-002 1.17E-001
0.090909 0.102564 1.91E-002 2.35E-002 4.60E-002
0.045455 0.050633 8.96E-003 1.37E-002 3.37E-002
0.022472 0.025157 4.74E-003 8.68E-003 3.18E-002
0.011236 0.012539 2.33E-003 5.12E-003 2.40E-002
0.005634 0.006260 1.13E-003 2.97E-003 1.26E-002

Table 3.3: (Example 3.5.1), errors for the SL-P 1 scheme with initial condition (3.49)
at t = 20∆t where ∆t = 0.045.

3 Initial data v0 is discontinuous function:

v(0, x) = v0(x) =





1 if |x| ≤ 1

0 otherwise,
(3.50)
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Figure 3.4: (Example 3.5.1), on the top left is the plot of initial data (3.49) and on
top right SL-P 1 scheme. In the second row plot of Ultrabee and coupled scheme at

t = 20∆t where ∆t = 0.045.
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Figure 3.5: (Example 3.5.1), the plot of the indicator function σ for (3.49) initial data
at t = 10∆t, 20∆t, 30∆t where ∆t = 0.045.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 9.17E-002 8.75E-002 1.15E-001
0.090909 0.102564 4.07E-002 4.85E-002 1.05E-001
0.045455 0.050633 2.30E-002 2.94E-002 6.04E-002
0.022472 0.025157 1.29E-002 1.67E-002 3.86E-002
0.011236 0.012539 6.19E-003 8.48E-003 2.56E-002
0.005634 0.006260 2.88E-003 4.48E-003 2.20E-002

Table 3.4: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.49)
at t = 20∆t where ∆t = 0.045.

Here initial data is discontinuous we expect coupled scheme to switch to Ultrabee when

discontinuity detects. In the Fig. 3.6 we have shown solution of (3.46) at time t = 20∆t
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∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 5.79E-002 6.34E-002 1.17E-001
0.090909 0.102564 1.91E-002 2.36E-002 4.15E-001
0.045455 0.050633 8.35E-003 1.32E-002 3.29E-002
0.022472 0.025157 4.19E-003 7.89E-003 2.73E-002
0.011236 0.012539 1.97E-003 4.46E-003 1.99E-002
0.005634 0.006260 9.34E-003 2.48E-003 1.34E-002

Table 3.5: (Example 3.5.1), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.49) at t = 20∆t where ∆t = 0.045.

where time step ∆t = 0.045 for the initial data (3.50). Fig. 3.7 shows the plots of σ for

different time t = 10∆t, 20∆t, 30∆t = 0.45. It is clear in the Fig. 3.7 that indicator

function σ detects discontinuity correctly. Tables 3.6, 3.7 and 3.8 are the error tables

of SL-P 1, Ultrabee and coupled scheme respectively.
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Figure 3.6: (Example 3.5.1), on the top left is the plot of initial data (3.49) and on
top right SL-P 1 scheme. In the second row plot of Ultrabee and coupled scheme at

t = 20∆t where ∆t = 0.045.

3.5.2 Advection equation with variable velocity

Example 3.5.2. In this example we consider advection equation with variable velocity

f(x) = −(x− x̄), where x̄ = 1.1. This example has been taken from the book of Falcone
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Figure 3.7: (Example 3.5.1), the plot of the indicator function σ for (3.49) initial data
at t = 10∆t, 20∆t, 30∆t where ∆t = 0.045.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 2.53E-001 3.32E-001 5.56E-001
0.090909 0.102564 1.43E-001 1.99E-001 3.38E-001
0.045455 0.050633 1.03E-001 1.72E-001 4.07E-001
0.022472 0.025157 7.57E-002 1.47E-001 4.05E-001
0.011236 0.012539 5.37E-002 1.25E-001 4.38E-001
0.005634 0.006260 3.77E-002 1.05E-001 4.61E-001

Table 3.6: (Example 3.5.1), errors for the SL-P 1 scheme with initial condition (3.50)
at t = 20∆t where ∆t = 0.045.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 7.02E-002 1.12E-001 2.12E-001
0.090909 0.102564 6.84E-002 1.51E-001 3.56E-001
0.045455 0.050633 3.38E-002 1.08E-001 3.90E-001
0.022472 0.025157 1.68E-002 8.32E-002 4.96E-001
0.011236 0.012539 8.36E-003 6.24E-002 5.44E-001
0.005634 0.006260 4.17E-003 3.73E-002 3.33E-001

Table 3.7: (Example 3.5.1), errors for the Ultrabee scheme with initial condition (3.50)
at t = 20∆t where ∆t = 0.045.

∆t ∆x L1 Error L2 Error L∞ Error

0.181818 0.210526 1.08E-001 1.04E-002 1.37E-001
0.090909 0.102564 4.66E-003 2.36E-002 2.27E-002
0.045455 0.050633 5.75E-003 1.32E-002 5.68E-002
0.022472 0.025157 8.20E-003 7.89E-003 1.63E-001
0.011236 0.012539 5.28E-003 4.46E-003 2.11E-001
0.005634 0.006260 2.03E-017 2.48E-016 1.55E-015

Table 3.8: (Example 3.5.1), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.50) at t = 20∆t where ∆t = 0.045.

and Ferretti [42]. We consider smooth initial data which has bounded second derivative



Chapter 3. Coupled schemes for Hamilton-Jacobi equations 77

i.e.

v(0, x) = v0(x) = max(0, 1− 16(x− 0.25)2)2 (3.51)

Here we fix CFL 0.6 and computations are done on the domain Ω = [0, 1] × (0, 1).

As solution is smooth so we expect to our coupled scheme to be SL-P 1 everywhere. In

the Fig. 3.8 we have shown solution of (3.51) at time t = 20∆t and where time step

∆t = 0.015385. Fig. 3.9 is the plot of σ for different time t = 10∆t, 20∆t, 30∆t .
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Figure 3.8: Example 3.5.2, on the top left is the plot of initial data (3.48) and on
top right SL-P 1 scheme. In the second row plot of Ultrabee and coupled scheme at

t = 20∆t where ∆t = 0.015385.
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Figure 3.9: Example 3.5.2, the plot of the indicator function σ for (3.51) initial data
for ∆t = 0.015385 and t = 5∆t, 10∆t, 20∆t.
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∆t ∆x L1 Error L2 Error L∞ Error

0.066667 0.111111 1.34E-001 2.62E-001 7.18E-001
0.031250 0.052632 1.35E-001 2.55E-001 6.79E-001
0.015385 0.025641 1.50E-001 2.87E-001 8.26E-001
0.007576 0.012658 1.64E-001 3.20E-001 9.10E-001
0.003774 0.006289 1.74E-001 3.44E-001 9.62E-001

Example 3.5.2, errors for the SL-P 1 scheme with initial condition (3.51) at t = 20∆t
where ∆t = 0.015385.

∆t ∆x L1 Error L2 Error L∞ Error

0.031250 0.052632 5.07E-002 1.04E-001 3.04E-001
0.015385 0.025641 5.98E-002 1.15E-001 3.44E-001
0.007576 0.012658 3.08E-002 5.85E-002 2.12E-001
0.003774 0.006289 1.95E-002 3.72E-002 1.33E-001
0.001880 0.003135 1.58E-002 3.01E-002 1.18E-001
0.000939 0.001565 1.54E-002 2.74E-002 9.67E-002

Table 3.9: (Example 3.5.2), errors for the Ultrabee scheme with initial condition (3.51)
at t = 20∆t where ∆t = 0.015385.

∆t ∆x L1 Error L2 Error L∞ Error

0.031250 0.052632 2.98E-002 4.50E-002 9.51E-002
0.015385 0.025641 1.95E-002 3.09E-002 6.63E-002
0.007576 0.012658 1.53E-002 2.52E-002 5.86E-002
0.003774 0.006289 1.52E-002 2.56E-002 6.16E-002
0.001880 0.003135 1.50E-002 2.53E-002 6.16E-002
0.000939 0.001565 1.51E-002 2.57E-002 6.29E-002

Table 3.10: (Example 3.5.2), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.51) at t = 20∆t where ∆t = 0.015385.

3.5.3 HJ equation

Example 3.5.3. In the example below we solve HJ equation

vt + |f(x)vx| = 0 (t, x) ∈ Ω. (3.52)

We solve above HJ equation for the initial data (3.48) and (3.50). We fix CFL = 0.6

and f(x) = 1 and the domain Ω = [−2, 2]× [0, 0.5]. All error calculations are global.

Firstly we consider smooth initial data (3.48) and in this case initialy solution is smooth

but later on regularity will be lost. So in the beginning we expect coupled scheme to be
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SL-P 1 scheme and when some non smoothness detect scheme must switch to Ultrabee

scheme. Fig. 3.13 shows the desired result i.e. till t = 10∆x solution is smooth (i.e.

σ = 1) and after that regularity lost ( σ = 0 ). In Fig. 3.10, 3.11 and 3.12 are the

plots at different time steps for initial data (3.48). Table 3.11, 3.12 and 3.13 are the

error tables of SL-P 1, Ultrabee and coupled scheme respectively at time t = 20∆t and

∆t = 0.014706.
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Figure 3.10: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right SL-P 1 scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.

∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 3.11E-002 2.62E-002 2.70E-002
0.055556 0.102564 2.27E-002 2.08E-002 2.52E-002
0.029412 0.050633 1.10E-002 1.01E-002 1.26E-002
0.014706 0.025157 5.96E-003 5.75E-003 7.45E-003
0.007463 0.012539 2.93E-003 2.85E-003 3.72E-003
0.003731 0.006260 1.47E-003 1.44E-003 1.89E-003

Table 3.11: (Example 3.5.3), errors for the SL-P 1 scheme with initial condition (3.48)
at time t = 20∆t and ∆t = 0.014706.

Fig. 3.17 shows that how indicator function works here. In Fig. 3.14, 3.15 and 3.16 are

the plots at different time steps for initial data (3.50). Table 3.14, 3.15 and 3.16 are the

error tables of SL-P 1, Ultrabee and coupled scheme respectively at time t = 20∆t and

∆t = 0.014706.
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Figure 3.11: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right Ultrabee scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.
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Figure 3.12: Example 3.5.3, on the top left is the plot of initial data (3.48) and on
right coupled scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.
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Figure 3.13: Example 3.5.2, the plot of the indicator function σ for (3.48) initial data
at different time steps t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706

.

∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 2.34E-001 2.42E-001 3.28E-001
0.055556 0.102564 8.26E-002 1.27E-001 2.69E-001
0.029412 0.050633 3.86E-002 5.20E-002 1.30E-001
0.014706 0.025157 1.76E-002 2.27E-002 6.69E-002
0.007463 0.012539 8.59E-003 1.04E-002 3.31E-002
0.003731 0.006260 6.80E-003 8.58E-003 2.41E-002

Table 3.12: (Example 3.5.3), errors for the Ultrabee scheme with initial condi-
tion (3.48) at time t = 20∆t and ∆t = 0.014706.

∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 5.01E-002 4.16E-002 4.27E-002
0.055556 0.102564 2.59E-002 2.35E-002 2.90E-002
0.029412 0.050633 1.16E-002 1.08E-002 1.36E-002
0.007463 0.012539 5.99E-003 5.71E-003 7.34E-003
0.014706 0.025157 2.98E-003 2.90E-003 3.79E-003
0.003731 0.006260 1.49E-003 1.46E-003 1.90E-003

Table 3.13: (Example 3.5.3), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.48) at time t = 20∆t and ∆t = 0.014706.
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Figure 3.14: (Example 3.5.3), on the top on the left is the plot of initial data (3.50)
and on right SL-P 1 scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.
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Figure 3.15: (Example 3.5.3), on the top on the left is the plot of initial data (3.50)
and on right Ultrabee scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.
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Figure 3.16: Example 3.5.3, on the top on the left is the plot of initial data (3.50)
and on right coupled scheme at t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706.
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Figure 3.17: (Example 3.5.3), the plot of the indicator function σ for (3.50) initial
data at different time steps t = 10∆t, 20∆t, 30∆t and ∆t = 0.014706

.
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∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 1.71E-001 2.64E-001 4.06E-001
0.055556 0.102564 1.56E-001 2.10E-001 3.77E-001
0.029412 0.050633 1.12E-001 1.84E-001 4.51E-001
0.014706 0.025157 8.47E-002 1.60E-001 4.90E-001
0.007463 0.012539 6.05E-002 1.34E-001 4.81E-001
0.003731 0.006260 4.29E-002 1.12E-001 4.60E-001

Table 3.14: (Example 3.5.3), errors for the SL-P 1 scheme with initial condition (3.50)
at time t = 20∆t and ∆t = 0.014706.

∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 3.07E-002 4.73E-002 7.29E-002
0.055556 0.102564 1.03E-001 2.26E-001 5.00E-001
0.029412 0.050633 1.99E-003 6.24E-003 1.96E-002
0.014706 0.025157 7.28E-003 3.24E-002 1.45E-001
0.007463 0.012539 1.28E-003 8.08E-003 5.10E-002
0.003731 0.006260 9.62E-003 8.60E-002 7.68E-001

Table 3.15: (Example 3.5.3), errors for the Ultrabee scheme with initial condi-
tion (3.50) at time t = 20∆t and ∆t = 0.014706.

∆t ∆x L1 Error L2 Error L∞ Error

0.125000 0.210526 7.24E-002 1.02E-001 1.98E-001
0.055556 0.102564 1.39E-001 2.90E-001 7.50E-001
0.029412 0.050633 2.31E-002 8.87E-002 3.93E-001
0.014706 0.025157 1.18E-002 5.54E-002 3.18E-001
0.007463 0.012539 6.14E-003 4.95E-002 4.39E-001
0.003731 0.006260 5.98E-003 6.01E-002 7.24E-001

Table 3.16: (Example 3.5.3), errors for the coupled SL-P 1 + UB scheme with initial
condition (3.50) at time t = 20∆t and ∆t = 0.014706.



Chapter 4

Many-particle limit for traffic

flow models on networks

4.1 Introduction

Since many years, traffic problems draw particular attention of the public. Traffic flow

can be described at different scales, depending on the level of details one wants to observe.

Typically, three scales of observation can be adopted: microscopic (single vehicles are

tracked), mesoscopic (averaged quantities like density and mean velocity are tracked

but car-to-car interactions are not lost) and macroscopic (only averaged quantities are

tracked).

Limiting our attention to differential models, the most famous microscopic models are

those of follow-the-leader type, also known as car-following models. In such a models,

the dynamics of each vehicle depend on the preceding vehicles, so that, in the end,

the whole traffic flow is determined by the dynamics of the first vehicle (the leader)

in a cascade fashion. Drawbacks of microscopic model is that they require too many

parameters, and high CPU time is needed to run a simulation.

Generally speaking, microscopic models are considered more justifiable because the be-

havior of every single vehicle can be described with high precision and it is immediately

clear which kind of interactions are considered. On the contrary, macroscopic models are

based on assumptions which are hardly correct or at least verifiable. As a consequence, it

85
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is often desirable establishing a connection between microscopic and macroscopic models

so to justify and validate the latter on the basis of the verifiable modeling assumptions

of the former.

Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traf-

fic flow models are already well understood in the case of vehicles moving on a single

road. Analogous connections in the case of road networks are instead lacking. This is

probably due to the fact that macroscopic traffic models on networks are in general ill-

posed, since the conservation of the mass is not sufficient alone to characterize a unique

solution at junctions. This ambiguity makes more difficult to find the right limit of the

microscopic model, which, in turn, can be defined in different ways near the junctions.

As we also explained in the general introduction of the thesis that we aim to established

macroscopic and microscopic connection on the road networks. We propose a very

natural extension of a first-order follow-the-leader model on road networks and then we

prove that its solution tends in the limit to the solution of the LWR-based multi-path

model introduced in [22, 23], i.e. as the number of vehicles tends to infinity while their

total mass is constant (for more details we refer to see the general introduction).

We would like to point out that for the first-order models on a single unidirectional

road, the micro-to-macro limit was already deeply investigated by means of different

techniques: the papers [30, 97] use standard techniques coming from the theory of

conservation laws. This is the approach we follow in this chapter; the paper [50] instead

proves the limit relying on measure theory. The microscopic solution is interpreted as an

empirical measure which is proven to converge to the entropy solution of the macroscopic

model in the 1-Wesserstein topology. Unlike [30, 97], this approach allows to pass to the

limit without shrinking to 0 the mass of the vehicles and without letting the number of

vehicles tend to infinity (for more references see general introduction).

To our knowledge, there is no systematic theory about the extension of the follow-the-

leader models on networks. It is plain that at the microscopic level one can easily reach

a high level of detail, including junctions with spatial extension (non point), multi-

lane roads, multi-class vehicles, traffic lights and priorities. Several highly sophisticated

simulators are available since many years (free and commercial), see, e.g., [44, 101]

and references therein to have an idea of the models and methods commonly used.
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Nevertheless, it is unclear which average flux is actually observed at junction by the

many-particle limit of any car-following model.

Beside this, let us also mention that the relationship between microscopic and macro-

scopic models was exploited to create hybrid models, see, e.g., [83]. In such a models

the averaged quantities are observed where a detailed description is not needed (e.g.,

far from the junctions) while a detailed dynamics is considered elsewhere. However,

this approach gives no clue about the macroscopic behavior of the microscopic model at

junctions.

4.2 Macroscopic model

Macroscopic models are historically inspired from constitutive models for hydrodynamics

system, which have similar properties as traffic flow. Traffic flow modeling began in

the 1950’s with the papers by Lighthill and Whitham [80, 107]. These authors wrote

two important paper at that time on kinematics waves, the first on “flood movement

in long rivers” and the second on a theory of “traffic flow on long crowded road”,

drawing similarities between the two types of flow. A similar discussion on traffic flow

was published by Richards around the same time [95], independently of Lighthill and

Whitham [80, 95, 107]. The common mathematical model is referred to as the LWR

model. Its basic principle is the one-dimensional conservation equation.

LWR model relies on the knowledge of an empirically measured flux function, also called

the fundamental diagram (we will explain in next section) in transportation engineering,

for which measurements go back to 1935 with the pioneering work of Greenshields [61].

A number of other flux functions have been proposed in the hope of capturing effects

of congestion more accurately, in particular: Greenberg [58], Underwood [106], Newell-

Daganzo [37, 85]. The existence and uniqueness of an entropy solution to the Cauchy

problem [98] for the class of scalar conservation laws to which the LWR model belongs to

the work of Oleinik [87] and Kruzhkov [74] (see also the seminal article of Glimm [57]).

Godunov scheme [58, 78] has been developed to solve LWR macroscopic model, which

was shown to converge to the entropy solution of the first order hyperbolic PDE.
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4.2.1 LWR model on a single road

Let ρ = ρ(t, x) denote the density of vehicles at time t in the point x ∈ R and v = v(t, x)

their (average) velocity. Given any interval [a, b] ⊂ R, the total amount of vehicles in it

at time t is

∫ b

a
ρ(t, x)dx

and, since it is assumed that vehicles are neither produced nor destroyed in [a, b], the

principle of conservation of vehicles states that the time variation of the above quantity

is only due to the net flux of vehicles crossing the boundaries x = a and x = b:

d

dt

∫ b

a
ρdx = [flux of vehicles entering at a]− [flux of vehicles exiting at b]

= f(t, a)− f(t, b)

where f := ρv is the traffic flux (i.e. the total number of vehicles crossing the point x

per unit time). Therefore

d

dt

∫ b

a
ρ(t, x)dx = ρ(t, a)v(t, a)− ρ(t, b)v(t, b).

=

∫ b

a
∂x(ρv)dx, (4.1)

Since ρ is bounded and we assume ρt exists, we get,

∫ b

a
∂tρdx = −

∫ b

a
∂x(ρv)dx, (4.2)

i.e.

∫ b

a
(∂tρ+ ∂x(ρv)) dx = 0.

Finally, due to the arbitrariness of the interval [a, b] and assuming formally that the

functions ρ and v are smooth, we conclude

∂tρ+ ∂x
(
ρv
)

= 0,
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which is a first order PDE expressing the conservation of the mass of vehicles. Notice

that this is a single equation for two unknowns, therefore it is not sufficient by itself to

uniquely determine the distribution of vehicles along the road. However, if an equation

of state v = v(ρ) is provided, yielding the velocity v as a known function of the density

ρ, then we get an equation for the variable ρ only of the form

∂tρ+ ∂x
(
f(ρ)

)
= 0, f(ρ) = ρv(ρ). (4.3)

The problem is now in principle solvable for ρ. The mapping ρ → f(ρ) is frequently

called the “fundamental diagram”. Equation (4.3) having the form of a nonlinear hyper-

bolic conservation law, is referred to as the Lighthill-Whitham-Richards (LWR) model.

Various forms of the fundamental diagram are possible (see, e.g., Garavello and Pic-

Figure 4.1: Speed and flux as a function of the density in the LWR model

coli [54, Chapt. 3]. For example we can consider as prototype the relation (see fig. 4.1,

left)

v(ρ) = vmax

(
1− ρ

ρmax

)
.

The macroscopic speed law ρ → v(ρ) is defined on [0, ρmax] and with values in vmax

being the maximum speed corresponding to a free highway. v is non-increasing function

and v(0) = vmax, v (ρmax) = 0. The choice vmax = ρmax = 1 gives rise to (see fig. 4.1,

right) the traffic flux function

f(ρ) = ρ(1− ρ),

a parabolic flux with the following main features:
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(i) f is (strictly) concave for ρ ∈ [0, 1];

(ii) f is nonnegative for ρ ∈ [0, 1];

(iii) f has precisely one maximum point at ρ = σ ∈ [0, 1], specifically σ = 1
2 .

In the sequel we will develop our theory having in mind this function f , however all we

will state holds more generally for any flux f complying with the assumptions (i), (ii),

(iii) above. In particular, we will be concerned with Cauchy problem





∂tρ+ ∂x
(
f(ρ)

)
= 0, t > 0, x ∈ R

ρ(x, 0) = ρ0(x) x ∈ R
(4.4)

for a prescribed initial datum 0 ≤ ρ0(x) ≤ 1 representing the initial distribution of

vehicles along the road.

4.2.2 LWR model on networks

Macroscopic modeling of the traffic flow on networks is a difficult problem. Many solu-

tions have been proposed in the past, based on heuristic approaches. Macroscopic traffic

models on networks were deeply investigated starting from [70]. A complete introduction

can be found in the book [54], which discusses several methods to characterize a unique

solution at junctions. Let us also mention the source-destination model introduced in

[53] (see also [68]) and the buffer models [52, 55, 69]. Recently, a LWR-based multi-path

model on networks was introduced in the paper [22], together with a Godunov-based

numerical scheme to solve the associated system of conservation laws with discontinuous

flux. The relationship between the multi-path model and more standard methods (like,

e.g., the one proposed in [29] based on the maximization of the flux at junction) was

investigated in [23]. In the following we discuss the approach adapted in [54].

Let I := [a, b] be a generic arc of the graph, i.e. a road. At any time t, the evolution of

the vehicle density on the network is computed by a two-step procedure:

• First, a classical conservation law is solved at any internal point of the arcs;

• Second, the densities at endpoints a, b which correspond to a junction are com-

puted. The latter step has not in general a unique admissible solution, so that

additional constraints must be added.
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Beside the conservation of vehicles at junctions, we assume here that drivers behave

in order to maximize the flux at junctions and that incoming roads are regulated by

priorities (right of way). The second step is performed by a linear programming method.

On each arc, the density ρ(x, t) of all vehicles (no distinction among vehicles is considered

here) is given by the entropic solution of

∂tρ+ ∂x
(
f(ρ)

)
= 0, t > 0, x ∈ (a, b) (4.5)

ρ(x, 0) = ρ0(x) x ∈ (a, b) (4.6)

We consider now a generic junction J , and we denote by {Ii := [ai, bi]}, i = 1, ..., n the

incoming roads and by Ij := [aj , bj ], j = n+1, ..., n+m the outgoing roads. We assume

Figure 4.2: a junction with n incoming edges and m outgoing edges.

that the choice of the outgoing road is prescribed by a matrix of preferences,

A =




αn+1,1 ... αn+1,1

... ... ...

αn+m,1 ... αn+m,n


 (4.7)

where 0 ≤ αj,i ≤ 1 for every i ∈ {1, ..., n} and j ∈ {n+ 1, ..., n+m}, and

n+m∑

j=n+1

αj,i = 1

for every i ∈ {1, ..., n}. The i-th column of A describes how the traffic from Ii distributes

in percentage to the outgoing roads. A basic requirement for a vector (ρ1, ..., ρn+m) to
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be an admissible solution to the problem at J is that

n∑

i=1

f(ρj(bi−, t)) =

n+1∑

j=n+1

f(ρj(aj+, t)), (4.8)

which translates the fact that the vehicles are conserved at junction. Note that (4.8) can

be seen as a generalization of the Rankine-Hugoniot condition at junctions. We define

γimax(ρ(bi, t)) =





f(ρ(bi, t)) if ρ(bi, t) ∈ [0, σ], i = 1, ..., n

f(σ) if ρ(bi, t) ∈ [σ, ρmax], i = 1, ..., n
(4.9)

and

γjmax(ρ(aj , t)) =





f(σ) if ρ(aj , t) ∈ [0, σ], j = n+ 1, ..., n+m

f(ρ(aj , t)) if ρ(aj , t) ∈ [σ, ρmax], j = n+ 1, ..., n+m
(4.10)

The quantities γimaxρ(bi, t)) and γjmax(ρ(aj , t)) represent, respectively, the maximum

incoming and the maximum outgoing flux that can be obtained on each road. Then we

define

Ωi := [0, γimax(ρ(bi, t))], i = 1, ..., n, (4.11)

Ωj := [0, γjmax(ρ(aj , t))], j = n+ 1, ..., n+m, (4.12)

Ω :=
{

(γ1, ..., γn) ∈ Ω1 × ...× Ωn | A(γ1, ..., γn)T ∈ Ωn+1 × ...× Ωn+m

}
.(4.13)

The sets Ωi, Ωj contain all the possible fluxes for the solution at junctions and then

the set Ω contains all the possible admissible fluxes at the end of the incoming roads,

taking into account the matrix of preferences A. Since we want to maximize the flux at

junction, we find the solution(s) of the maximization problem with linear constraints

max
(γ1,...,γn)∈Ω

n∑

i=1

γi. (4.14)

Note that the problem (4.14) has not in general a unique solution. To fix this, we assume

the additional constraint

(γ1, ..., γn) ∈ {qs, s ∈ R+}, (4.15)
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can be introduced where q = (q1, ..., qn) are the so-called priorities (right of way) coef-

ficients such that qi ≥ 0 ∀ i and
∑

i qi = 1. Equation (4.15) translates the fact that

some incoming roads have priority with respect to the other roads in assigning their flux

to the outgoing roads. The constraint (4.15) guarantees uniqueness of the solution of

problem (4.14) (unless a further projection onto Ω is needed, see fig 4.3 left later on).

Finally, define (γ∗1 , ..., γ
∗
n) as the unique solution of problem (4.14) (with the additional

constraint (4.15) if necessary),

(γ∗1 , ..., γ
∗
n) := arg max

(γ1,...,γn)∈Ω

n∑

i=1

γi, (4.16)

and consequently,

γ∗j :=

n∑

i=1

αj,iγ
∗
i , j = n+ 1, ..., n+m (4.17)

For example, if n = 2 and m = 1 (two incoming roads [ai, bi], i = 1, 2 and one outgoing

road [a3, b3]).

(P) : Assume that not all vehicles can enter the outgoing road. Let C be

the amount that can do it. Then rC cars come from first incoming road and

(1− r)C cars from the second road.

We have A = (1 1) and assume that a right of way parameter r ∈ (0, 1) is given. Then

the solution to the Riemann problem (ρ1,0, ρ2,0, ρ3,0) is formed by a single wave on each

road connecting the initial states to (ρ1, ρ2, ρ3) determined in the following way.

Since we want to maximize going through traffic we set:

γ∗ = min {γmax(ρ1, 0) + γmax(ρ2, 0) + γmax(ρ3, 0)} , (4.18)

where γimax defined in (4.9) and (4.10). Consider the space (γ1, γ2) and the line:

γ2 =
1− r
r

γ1. (4.19)

Notice that the line is exactly the locus of points satisfying exactly rule (P ) . Define P

to be the point of intersection of the line (4.19) with the line γ1 + γ2 = γ∗3 . Recall that
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the final fluxes should belong to the region

Ω =
{

(γ1, γ2) : 0 ≤ γimax(ρi, 0), 0 ≤ γ1 + γ2 ≤ γ∗3
}
.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we (γ∗1 , γ
∗
2) = P , while in the second we set (γ∗1 , γ

∗
2) = Q, where Q is the

point of the segment Ω ∩
{

(γ1, γ2) : γ1 + γ2 = γ∗3
}

closest to the line (4.19). We show

in figure 4.3. Once we have determined γ∗1 and γ∗2 (hence also γ∗3) we can determine

Figure 4.3: The cases a) and b) (figures from the book [54]).

in a unique way ρi (i ∈ {1, 2, 3}). For more details we refer reader to [54]. The idea

to consider the LWR model on a network was proposed by Holden and Risebro [70].

Existence of solution to Cauchy problems was proved in the paper by Coclite, Garavello

and Piccoli [29].

4.2.3 Numerical approximation by the Godunov scheme

Numerical methods to solve the equation along roads is represented by the Godunov

scheme, which is based on the exact solutions to Riemann problems. Our main references

are [29, 54]. The idea is the following:

• First the initial datum is approximated by a piecewise constant function.

• Then the corresponding Riemann problems are solved exactly and a global solution

is simply obtained by piecing them together
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• Finally, one takes the mean and proceeds by induction.

Let us describe briefly the Godunov scheme for solving a conservation law of the form

∂tρ+ ∂x
(
f(ρ)

)
= 0, t > 0, x ∈ [a, b] (4.20)

ρ(0, x) = ρ0(x) x ∈ [a, b], (4.21)

on a generic arc I = [a, b] of the network for a time interval t ∈ [0, T ], where T is the

final time. We define a numerical grid in [0, T ]× [a, b] with space step ∆x and time step

∆t, satisfying the CFL condition

∆tmax
ρ
|f ′(ρ)| ≤ ∆x. (4.22)

Let us denote by (xk, ts) := (k∆x, s∆t), k ∈ Z, s ∈ N, the generic grid node and by ρsk

the density ρ at (xk, ts). Once the initial condition ρ0 has been projected on the grid,

in the internal nodes of the interval [a, b] the density at time ts+1 is given by

ρs+1
k = ρs − ∆t

∆x

(
G(ρsk, ρ

s
k+1)−G(ρsk−1, ρ

s
k)
)
, (4.23)

where the Godunov numerical flux G is defined as

G(ρ`, ρr) =





min{f(ρ`), f(ρr)} if ρl ≤ ρr
f(ρ`) if ρl ≤ ρr and ρ` < σ

f(σ) if ρ` > ρr and ρ` > σ ≥ ρr
f(ρr) if ρ` > ρr and ρr > σ

(4.24)

At the boundary nodes we proceed as follows:

• If the node is not linked to any junction, then we assign the desired boundary

condition (Dirichlet or Neumann).

• If the node is a right endpoint and corresponds to the i-th incoming road of a

junction, we use the maximal flux (14) and set

ρs+1
k = ρs − ∆t

∆x

(
γ∗i −G(ρsk−1, ρ

s
k)
)
, (4.25)
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• If the node is a left endpoint and corresponds to the j-th outgoing road of a

junction, we use the maximal flux (15) and set

ρs+1
k = ρs − ∆t

∆x

(
G(ρsk, ρ

s
k+1)− γ∗j

)
. (4.26)

4.2.4 LWR-based multi-path model on networks

In the section 4.2.2 we explained LWR model on networks. In this section we recall

LWR-based multi-path model [22, 23] which is an alternative to model in [54]. Main

feature of this model is that it selects automatically an admissible solution near junction,

hence ad hoc external procedure (e.g. maximization of the flux via a linear programming

method) is not needed. This model is different from so-called multi-population model or

multi-class models [12, 108]. In those cases, the model consist of one equation of a single

road (extension to the network is also possible) with different velocity function vi, one

for each class of vehicles. Typically, the populations have different maximal velocities,

in order to take into account different types of vehicles or drivers behaviors.

There are similar model presented in [53]. In that case vehicles are divided in different

populations on the basis on their source-destination pair. Given total density ω all the

vehicles, the density µp of p-th population is given by

µp(t, x) = πp(t, x,O(p), D(p))ω(t, x)

where πp(t, x,O,D) specifies the percentage of the total density that started from source

O, it is moving towards the final destination D, and it is x at time t. Moreover,

O(p), D(p) are the origin and the destination associated to the p-th path, respectively.

Then, a standard PDE for ω is coupled with a system of PDEs for the coefficients

πp’s. We follow the notations and also numerical scheme from the “twin” paper [22]

and [23], where they introduced multi-path method for solving macroscopic model on

the networks. Let us consider a network, i.e. a directed graph with NR arcs (roads)

and NJ nodes (junctions). Vehicles moving on the network are divided on the basis of

their path. Let us assume that the number of possible paths on the graph is NP and

denote those paths by P 1, ..., P p, ..., PNP . We stress that paths can share some arcs of

the network. A point x of the network is characterized by both the path p it belongs

to and the distance x from the origin of that path. We denote by µp(x, t) the density
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of the vehicles following the p-th path at point x at time t > 0, and we assume that

µp(t, x) ∈ [0, ρmax] for some maximal density ρmax. Note that we have, by definition,

µp(t, x) = 0 if x /∈ P p. We also define

Figure 4.4: A network with 3 arcs and 1 junction, representing a merge. Path P 1

(left) and path P 2 (right).

ωp(t, x) :=

Np∑

q=1

µq(t, x). (4.27)

The function ω is expected to be discontinuous, especially at junctions, and contains

all the information about the topology of the network. Note that, for any point x, the

densities µp(x, t), p = 1, ..., NP , are admissible if their sum ωp(t, x) ≤ ρmax.

Let us denote by v(ω) the velocity of vehicles (given as a function of the density) and by

f(ω) = ωv(ω) the flux of vehicles. The LWR-based multi-path model is constituted by

the following system of NP conservation laws with space-dependent and discontinuous

flux

∂

∂t
µp(x, t) +

∂

∂x

(
µp(x, t)v(ωp(x, t)))

)
= 0, t > 0, x ∈ P p (4.28)

Or, equivalently

∂

∂t
µp(x, t) +

∂

∂x

( µp(x, t)
ωp(x, t))

f(ωp(x, t)))
)

= 0, t > 0, x ∈ P p (4.29)

for p = 1, ..., NP . If ωp = 0 we have, a fortiori, µp = 0 then it is convenient to

set µp

ωp = 0 in (4.29) to avoid singularities. In the following we assume that the flux

f ∈ C0([0, ρmax]) ∩ C1((0, ρmax)) and

f(0) = f(ρmax) = 0, f is strictly concave, f(σ) = max
ω∈(0,ρmax)

f(ω) (4.30)
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Equations of the system (4.28) (or (4.29) ) are coupled by means of the velocity v, which

depends on the total density ωp. On the other hand, not all the equations of the system

are coupled with each other because paths do not have necessarily arcs in common.

4.2.5 Numerical approximation for the multi-path model

For the numerical discretization of the multi-path equations we employ the Godunov-

based scheme introduced in [22]. For the sake of completeness, we briefly recall the

scheme in the following. We denote by µ̃s,pk the approximation of the value µp(xk, ts).

Along each path p, a space discretization is considered, defining a space step ∆x > 0

and space nodes xk := k∆x, k = 0, . . . , Nx.

The scheme reads, for any k = 0, . . . , Nx and s = 0, 1, 2, . . .,

µ̃s+1,p
k = µ̃s,pk −

∆t

∆x

(
µ̃s,pk
ωs,pk

g(ωs,pk , ωs,pk+1)−
µ̃s,pk−1

ωs,pk−1

g(ωs,pk−1, ω
s,p
k )

)
(4.31)

with initial conditions µ0,p
k = µp(xk, 0), and

ωs,pk =
P∑

q=1

µ̃s,qk .

Note that ωs,pk is the sum of all densities living at xk (along path p) at time ts. The

function g is instead the classical Godunov flux (4.24).

To summing up we have seen that the resulting Godunov-based numerical scheme can be

implemented in minutes since it requires no additional procedures to manage the solution

at junctions. Despite the simplicity of the model and of the numerical discretization,

the method shows many interesting properties, some of which do not require ad hoc

ingredients necessary in other models. Main features of LWR-based multi-path model

are following:

• The model selects automatically a solution at junctions that maximizes the flow

from an user point of view: On each single path the density is maximized (user

optimum). Therefore, the scheme does not compute in general the maximal flow

that could possibly be transferred over the node (global optimum), as it happens

in more standard approaches.



Chapter 5. Many-particle limit for traffic flow models on networks 99

• In the challenging case of a merge, proposed numerical scheme is consistent with

the Riemann problem. As a consequence, the numerical approximation automat-

ically assigns to the junction a finite spatial dimension and its density evolution

is managed by a special flux function. Specifically, the flux function balances the

incoming flows and the outgoing flow according to the fact that drivers want to

maximize their own flow. It is able to widen temporarily the spaced-junction ca-

pacity, allowing the passage of vehicles and making the junction act as a “buffer”,

we refer reader to see [23] .

• The Model, together with the proposed discretization, fulfills all the 7 require-

ments for junction models proposed in [104, sect 3.1]. In particular, it is generally

applicable irrespectively of the number of incoming and outgoing roads, the traffic

never flows backwards and all flows are non-negative, vehicles are conserved, and

turning fractions are preserved.

4.3 Microscopic Model

Early microscopic traffic models were proposed by Reuschel (1950) [94] and the physicist

Pipes (1953) [91], which was later validated by Chandler [27]. This type of model

concentrates on the behavior of each individual vehicle. The driver will adjust his or

her velocity and acceleration according to the conditions ahead. Holland [70] describes

this approach as providing a natural way to model traffic. In these models each vehicle

is influenced directly by the one in front, as often happens in real traffic flow. Thus,

vehicle position is treated as a continuous function and each vehicle moves according

to an ordinary differential equation normally dependent on its speed and the distance

to the next vehicle. The vehicle’s progress can be calculated by solving these ordinary

differential equations simultaneously. Usually the number of vehicles to be modeled has

to be small enough for the approach to be useful. This situation sets traffic modeling

apart from other fields, for example fluid mechanics and granular flow, because in these

subjects the number of particles to be considered is typically too great for microscopic

modeling. We can therefore consider follow-the-leader models as an alternative to a

continuum approach. There are a number of different assumptions made for the various

models of this type about what factors affect drivers decisions to change their behavior,

such as the headway, which is defined as the distance in front of a vehicle before the next
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vehicle. Gerlough [56] summarized a set of car-following rules in his dissertation about

traffic simulation in 1955. These approaches were followed by an avalanche of extensions,

such as the non-linear car-following model [36], the optimal velocity model [4], the

intelligent driver model [73, 92, 105] and the cellular automaton model [84]. These

agent-based models have been tested and applied to many traffic simulation systems,

such as CORSIM [31], MITSIM [82], PARAMICS [24] VATSIM [93] and SUMO [103].

Helbing [66] reviewed the history of traffic modeling and broadly classified the modeling

approaches into microscopic descriptions and macroscopic descriptions. Here we focus

on first order follow-the-leader model, where each driver adjusts his velocity to the vehicle

directly, and not in front in acceleration.

4.3.1 Follow-the-leader model on a single road

Let us describe the first-order follow-the-leader model which we will use as main ingredi-

ent in the rest of the chapter. We assume here that vehicles move on a single road with

a single lane. Vehicles are initially located one after the other and cannot overtake each

other. We denote by n the number of vehicles, by M their total mass, and by `n > 0

the length of the vehicles. The parameter `n is derived by n and M as

`n :=
M

n
. (4.32)

This assumption is crucial for the micro-to-macro limit since it translates the fact that

the total mass does not change when the the number of vehicles tends to infinity, because

the cars “shrink” accordingly.

We denote by yi(t) the position of the i-th car and we assume that at the initial time

cars are labeled in order, i.e. y1(0) < y2(0) < . . . < yn(0). This guarantees that the

(i + 1)-th car is just in front of the i-th one. Moreover, it is assumed that cars do not

overlap, i.e. yi+1(0) − yi(0) > `n, i = 1, . . . , n − 1. We are now ready to introduce the

model, described by the following system of ODEs





ẏi(t) = w(δi(t)), i = 1, . . . , n− 1

ẏn(t) = vmax,
(4.33)
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where

δi(t) := yi+1(t)− yi(t)

and w is such that

w : [`n,+∞)→ [0, vmax], w(δ) := v

(
`n
δ

)
, (4.34)

with v ∈ Lip([0, 1]; [0, vmax]) any function such that

v′(r) ≤ 0, v(0) = vmax, v(1) = 0. (4.35)

The leader is assumed to move at maximal velocity vmax > 0. Note that the properties

introduced above guarantee that the cars do not overlap at any time t > 0, see [50].

The macroscopic limit of the previous model is given by the well known LWR model,

which describes the evolution of the average density of vehicles ρ(t, x) : (R+×R)→ [0, 1]

by means of the following conservation law

ρt + (ρv(ρ))x = 0, t > 0, x ∈ R. (4.36)

Equation (4.34) makes the link between the two models.

In order to recall precisely the results about the correspondence between the two models,

we need to introduce first the natural spaces for the macroscopic density ρ and for the

vectors of vehicles’ positions y = (y1, . . . , yn), at any fixed time:

R :=

{
r ∈ L1(R; [0, 1]) :

∫

R
r(x)dx = M and supp(ρ) is compact

}

and

Yn :=
{

y ∈ Rn : yi+1 − yi = δi > `n, ∀i = 1, . . . , n− 1
}
.

We also introduce the operators En : R→ Yn and Cn : Yn → R, defined respectively as

En[r(·)] := y =





yn = max(supp(r)),

yi = max

{
z ∈ R :

∫ yi+1

z
r(x)dx = `n

}
, i = n− 1, . . . , 2, 1

(4.37)
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and

Cn[y] := rn =
n−1∑

i=1

`n
δi
χ[yi,yi+1). (4.38)

The discretization operator En acts on a macroscopic density ρ(t, ·), providing a vector

of positions y(t) = En[ρ(t, ·)] whose components partition the support of the density

into segments on which ρ has fixed integral `n. On the contrary, the operator Cn

antidiscretizes a microscopic vector of positions y, giving a piecewise constant density

ρn(t, ·) = Cn[y(t)].

We are now ready to state the main result about the convergence of the microscopic

model (4.33) to the macroscopic one (4.36). The proof can be found in [30].

Theorem 4.3.1. Let (4.34) and (4.35) hold. Fix T > 0 and choose ρ̄ = ρ(0, ·) ∈
R ∩ BV (R; [0, 1]) and ȳ = y(0) = En[ρ̄]. Let y(·) be the solution of (4.33) with initial

condition ȳ. Define ρn(t, ·) = Cn[y(t)]. If there exists ρ ∈ L∞([0, T ];R) such that

limn→+∞ ρn(t, x) = ρ(t, x) a.e., then ρ is a weak solution to (4.36) with initial condition

ρ̄.

4.4 Follow-the-leader model on networks

In this section we extend the follow-the-leader model described in section 4.3.1 to a

road network. We define a road network as a direct graph with Nr arcs (roads) and

Nj nodes (junctions). We assume that for each junction j = 1, . . . , Nj , there exist

disjoint subsets inc(j), out(j), representing, respectively, the incoming roads to j and

the outgoing roads from j. Among junctions, we distinguish two particular subsets

consisting of origins O, which are the junctions j such that inc(j) = ∅, and destinations

D, which are the junctions j such that out(j) = ∅. Finally, we denote by Lr the length

of the road r for any r = 1, . . . , Nr. At initial time, n vehicles are located anywhere in

the network.

4.4.1 A natural extension

A natural extension of the follow-the-leader model is derived as follows. We label the n

vehicles by an index i = 1, . . . , n and we denote by r(i, t) ∈ {1, . . . , Nr} the road that
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the vehicle i is traveling at time t. We also denote by yi(t) the position of the vehicle i

at time t, defined as the distance from the origin of the road r(i, t).

There are three main differences with respect to the model on a single road, which

require some modifications in the definition of δi and w.

• The concept of “ahead” must be redefined because when a vehicle reaches a junction

has, in general, more than one “ahead” to choose. We assume that each vehicle has a

sequence of roads (i.e., a path) assigned at the initial time to travel along, so that it

is always clear which is the space in front of the vehicle. We also assume that drivers

can actually see the space ahead, so that they can always evaluate the distance between

them and the car in front, even if the latter is in the next road. Given that, a vehicle is a

leader if it is the first vehicle on its road and there is no other vehicles in the next roads

along its path. It is important to note that now more than one leader can be present on

the network at the same time, and vehicles can gain or loose the leadership.

• The vehicle i+1 is no longer necessarily in front of vehicle i. This force us to introduce

a new notation to refer to the vehicle in front. If a vehicle is not a leader, we denote by

next(i) the label of the car just in front of car i. If it is a leader, we set next(i) = ∅.

The distance between a (nonleader) vehicle and the vehicle in front is now computed as

δ̂i(t) :=





ynext(i)(t)− yi(t), if r(i, t) = r(next(i), t)

(Lr(i,t) − yi(t)) +
∑

s L
s + ynext(i)(t), if r(i, t) 6= r(next(i), t)

(4.39)

where the summation with respect to s is done over all the empty roads between r(i, t)

and r(next(i), t) (if any) along the sequence of roads followed by vehicle i.

• The non-overlapping condition δ̂i < `n is no longer guaranteed, even if it holds at the

initial time t = 0. To see this, let us consider the simple case of a network with 3 roads

and 1 junction, with 2 incoming roads and 1 outgoing road, see Fig. 4.5. Assume that

the outgoing road is empty and some cars are traveling along both the incoming roads

(Fig. 4.5-left). Assume also that the two leader cars are going to reach the junction

nearly or exactly at the same moment (note that both cars are leaders). As soon as

one of the two cars goes through the junction, the other one becomes a follower and its

distance δ̂i, defined by (4.39), could be less than `n or even 0 (Fig. 4.5-right). However,

two important observations can be made:
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Figure 4.5: Overlapping issues across the junction. Leaders are denoted by filled
square/circle.

1. The number of overlapping cars at a junction is bounded by the number of incoming

roads of that junction. In other words, cars do not stack one over the other, since

the newly coming vehicles perceive the presence of the overlapping vehicles in front

and behave normally, without getting too close to them. Moreover, the mass of

overlapping vehicles will tend to zero as n→ +∞.

2. The space interval in which overlap can occur is (Lr − `n, Lr], which shrinks to ∅
when n→ +∞.

From now one we allow the above described “mild” overlap to happen and we handle

it extending the function w defined in (4.34) by means of a new function w∗ defined as

follows:

w∗ : [0,+∞)→ [0, vmax],





w∗(δ) = w(δ), if δ ≥ `n,
w∗(δ) = 0, if δ ≤ `n,

(4.40)

i.e. we assume that (smashed) vehicles with δ̂i < `n stops completely until the vehicle in

front leaves a space > `n, then they re-start moving normally. If more than one vehicle

is found to be exactly in the same place, the one with the largest label is taken as vehicle

“in front” and the others “behind”.

We are now ready to introduce the follow-the-leader model on networks. For any i =

1, . . . , n we write 



ẏi(t) = w∗(δ̂i(t)), if next(i) 6= ∅
ẏi(t) = vmax, if next(i) = ∅.

(4.41)

In addition, when yi(t) = Lr(i,t), the road r(i, t) must be updated according to the i-th

vehicle’s path and yi(t) must be reset to 0 (similarly to a new initial condition).
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Remark 4.4.1. The extension of the follow-the-leader model described above defines

implicitly a certain behavior of vehicles at junctions. Since vehicles cannot overtake each

other and never stop or slow down at junctions, they basically adopt a FIFO behavior

(see [67, Appendix B] for a general discussion in the context of traffic flow). Consider

for example the case of a diverge (see Fig. 4.8) and assume that one of the two outgoing

roads is fully congested. If the first car on the incoming road wants to go to the congested

road, it will stop. After that, all the following cars will stop too, even if they want to

turn to the other outgoing road. We will see that the FIFO behavior will be kept in the

macroscopic limit.

4.4.2 The model reformulated

In order to pass to the limit for n → +∞, it is convenient to reformulate the model

introduced in the previous section. Let us consider all the possible paths joining all the

origin nodes O with all the destination nodes D, see Fig. 4.6. Each path is considered

as a single uninterrupted road, with no junctions. Let us denote by P the total number

Figure 4.6: A generic network. Two possible paths are highlighted. N n arc of the
network.

of paths and let us divide the n vehicles in P populations, on the basis of the path they

are following.

Let us denote by np, p = 1, . . . , P , the number of vehicles following the path p and label

univocally the vehicles by the multi-index (i, p), i = 1, . . . , np, p = 1, . . . , P . Let us also

denote by ypi (t) the position of the vehicle i of population p at time t, defined as the

distance from the origin of the path p (not from the origin of the current road).

Most important, we redefine the concept of distance between two vehicles. First, we

define next((i, p), q) as the nearest vehicle belonging to population q in front of the

vehicle (i, p) along the path p (setting it to ∅ if there is no such a vehicle). Then, we
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define the p-distance between a (nonleader) vehicle and the vehicle in front as

δpi (t) := ypnext((i,p),p)(t)− y
p
i (t).

This corresponds to consider only vehicles of population p, neglecting the presence of the

others. We also keep considering the distance between two contiguous vehicles regardless

the population they belong to, defining, for any nonleader vehicle,

∆p
i (t) := y•next((i,p),•)(t)− y

p
i (t),

where next((i, p), •) is the vehicle in front of the vehicle (i, p), no matter the population

it belongs to and y•next((i,p),•) is its position. These two last quantities are defined only

if the vehicle (i, p) is not the first on path p, otherwise we set next((i, p), •) = ∅.

In the new formulation the model reads, for any p = 1, . . . , P and i = 1, . . . , np,





ẏpi (t) = w∗(∆p
i (t)), if next((i, p), •) 6= ∅

ẏpi (t) = vmax, if next((i, p), •) = ∅,
(4.42)

which is completely equivalent to system (4.41).

It is important to note that the right-hand side of the ODEs (4.42) is in general discon-

tinuous, since cars following paths q’s, q 6= p, can appear or disappear, thus increasing

or reducing abruptly the distance ∆p
i (or even changing the leader/follower status of car

i). To address this issue we will consider the integral form of (4.42) and we assume that

there exists a solution in the sense of Carathéodory.traffic

4.5 Micro-to-macro limit

To begin with, we note that condition (4.34) clarifies the relationship between the average

density and the distance between vehicles which is valid in the limit n → +∞ (see

Theorem 4.3.1). It states that

ρ(t, ·)←→ `n
δ(t)

. (4.43)

In section 4.4.2 we have introduced p-distances which must be now related to the right

average densities. To do that, let us use again the operators En and Cn introduced in
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section 4.3.1, modifying in a obvious manner the sets R (considering the mass Mp of

cars belonging to population p) and Yn to deal with the new framework. Define, for any

p,

yp := (yp1 , . . . , y
p
np

), µpn(t, ·) := Cn[yp(t); δp] =
∑

followers
of pop. p

`n
δpi
χ[ypi ,y

p
next((i,p),p)

)

and

y := (y1, . . . ,yP ), ωpn(t, ·) := Cn[yp(t),y(t); ∆p] =
∑

followers
on path p

`n
∆p
i

χ[ypi ,y
•
next((i,p),•))

.

Both functions µpn(t, ·) and ωpn(t, ·) are defined on the whole path p. The functions µpn’s

correspond to the densities of vehicles following path p, while the function ωpn represents

the total density along path p, and depends on the positions of all vehicles following

path p plus all vehicles following a path q which shares some roads with path p.

Defining the limits (if they exist)

µp(t, x) := lim
n→+∞

µpn(t, x), ωp(t, x) := lim
n→+∞

ωpn(t, x),

we get, in analogy to (4.43),

µp(t, ·)←→ `n
δp(t)

, ωp(t, ·)←→ `n
∆p(t)

. (4.44)

In order to introduce the macroscopic model we will also need the correspondence be-

tween the microscopic and the macroscopic velocity. To this end, we define the function

v∗ such that

v∗ : [0,+∞)→ [0, vmax],





v∗(r) = v(r), if r ≤ 1,

v∗(r) = 0, if r ≥ 1.
(4.45)

It is easy to see that the relation in (4.34) still holds, more precisely

w∗(δ) = v∗
(
`n
δ

)
.

At this point it is crucial to note that a path, by definition, has no junctions and therefore

is indistinguishable from a single road. As a consequence, we can follow in broad terms
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the results already proved in [30, 97] for the micro-to-macro limit on a single road.

Using (4.44), and reasoning by analogy with the 1D case, we claim that, for any fixed

p = 1, . . . , P , the macroscopic equation associated to the model (4.42) is

µpt + (µpv∗(ωp))x = 0, t > 0, x ∈ R. (4.46)

Note that in equation (4.46) both densities µp and ωp appear. This is due to the fact

that equation (4.42) describes the evolution of the population p only, but the velocity

is evaluated considering the distance ∆p, which is indeed related to the total density on

the path.

To prove the correspondence, let us fictitiously extend each path to (−∞,+∞), setting

the density to 0 before the first and after the last vehicle. In this way we simplify the

problem getting rid of the boundary conditions. Let us denote by T > 0 the final time

for the simulation and consider a test function φ ∈ C∞0 ((−∞, T ]× R;R).

Before entering the proof of the main result, we need to simplify the notations. Fix

p ∈ {1, . . . , P} and denote by i ∈ {1, . . . , np − 1} the index of a generic (follower) car

belonging to the p-th population. Denote the index of the first car ahead of the i-th

one, belonging to population p, simply by i + 1. Denote by k the index of a generic

car belonging to any population, including the p-the one. Denote the index of the car

in front of the k-th car by k + 1. Finally, denote by ki the index of the generic car

belonging to any population between car i (included) and car i+ 1 (excluded), see Fig.

4.7(top); and by ik the index of the first car belonging to population p on the left of the

car k (ik = k if the k-th car belongs to population p), see Fig. 4.7(bottom). Assume for

simplicity that the leftmost car belongs to population p so that ik is well defined.

i i+1 i+2ki

ik k k+1 ik+2

Figure 4.7: Path p, definition of ki (top) and definition of ik (bottom).
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In the following, we drop the superscript p from any symbol. Denote the initial density

for the vehicles of population p by µ̄ = µ(0, ·), and define the corresponding initial

positions of cars (ȳ1, . . . , ȳnp) = En[µ̄].

We are now ready to prove the correspondence between the microscopic follow-the-leader

model (4.42) and the macroscopic model (4.46) for any fixed p ∈ {1, . . . , P} (we do not

consider here the fully coupled problem). As usual [21, Formula (4.5)], we consider the

weak (integral) form of the equation (4.46) and we compute

In :=

∫ T

0

∫

R

(
µnϕt + µnv

∗(ωn)ϕx
)
dxdt+

∫

R
µ̄(x)ϕ(0, x)dx =

∫ T

0

∫

R
µn

(
ϕt + v∗(ωn)ϕx

)
dxdt+

∫

R
µ̄n(0, x)ϕ(0, x)dx+

∫

R

(
µ̄(x)− µn(0, x)

)
ϕ(0, x)dx.

By definitions, the densities µn and ωn are constant in the interval [yk(t), yk+1(t)] for

any t. Therefore we have

In =
∑

k

∫ T

0

`n
δik(t)

∫ yk+1(t)

yk(t)

(
ϕt + v∗

(
`n

∆k(t)

)

︸ ︷︷ ︸
=ẏk(t)

ϕx

)
dxdt+

∑

i

`n
δ̄i

∫ ȳi+1

ȳi

ϕ(0, x)dx+

∫

R

(
µ̄(x)− µn(0, x)

)
ϕ(0, x)dx.

Now we note that, for x ∈ [yk(t), yk+1(t)],

|ϕt(t, x) + ẏk(t)ϕx(t, x)− ϕ̇(t, yk(t))| =

|ϕt(t, x) + ẏk(t)ϕx(t, x)− ϕt(t, yk(t))− ẏk(t)ϕx(t, yk(t))| ≤

(1 + vmaxCϕ)|yk+1(t)− yk(t)|

where the quantity Cϕ := ‖ϕ‖C2 uniformly bounds from above the modulus of ϕ and all

its derivatives up to second order. Equivalently, we can write

ϕt(t, x) + ẏk(t)ϕx(t, x) = ϕ̇(t, yk(t))) +O(1)(yk+1(t)− yk(t)).

Using the latter estimate in the expression for In above and defining

A :=
∑

i

`n
δ̄i

∫ ȳi+1

ȳi

ϕ(0, x)dx, B :=

∫

R

(
µ̄(x)− µn(0, x)

)
ϕ(0, x)dx,
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we get

In =
∑

k

∫ T

0

`n
δik(t)

∫ yk+1(t)

yk(t)
ϕ̇(t, yk(t)))dxdt+

∑

k

∫ T

0

`n
δik(t)

∫ yk+1(t)

yk(t)
O(1)(yk+1(t)− yk(t))dxdt+A+B

=`n
∑

k

∫ T

0
ϕ̇(t, yk(t))

∆k(t)

δik(t)
dt+O(1)`n

∑

k

∫ T

0

∆k(t)

δik(t)︸ ︷︷ ︸
≤1

∆k(t)dt+A+B

=`n
∑

i

∑

ki

∫ T

0
ϕ̇(t, yki(t))

∆ki(t)

δi(t)
dt+O(1)`n

∑

k

∫ T

0
∆k(t)dt+A+B

= `n
∑

i

∑

ki

∫ T

0

(
ϕ̇(t, yi(t)) +O(1)(yi+1(t)− yi(t))

)∆ki(t)

δi(t)
dt+

O(1)`n
∑

i

∑

ki

∫ T

0
∆ki(t)dt+A+B

= `n
∑

i

∫ T

0

(
ϕ̇(t, yi(t)) +O(1)(yi+1(t)− yi(t))

)∑

ki

∆ki(t)

δi(t)
︸ ︷︷ ︸

=1

dt+

O(1)`n
∑

i

∫ T

0

∑

ki

∆ki(t)dt+A+B

=`n
∑

i

∫ T

0
ϕ̇(t, yi(t))dt+O(1)`n

∑

i

∫ T

0
δi(t)dt+O(1)`n

∑

i

∫ T

0
δi(t)dt+A+B

=`n
∑

i

∫ T

0
ϕ̇(t, yi(t))dt+O(1)`n

∑

i

∫ T

0
δi(t)dt+A+B.

At this point we got rid of the populations q’s, q 6= p, and thus we are back to the case

of a single road with a single population of vehicles. By the way, we have also resolved

the discontinuity issues around the junctions. Therefore, the proof is completed exactly

as in [30]:

In = −`n
∑

i

ϕ(0, ȳi) +O(1)`n

∫ T

0
(ynp(t)− y1(t))dt+A+B
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= −
∑

i

`n
δ̄i

∫ ȳi+1

ȳi

ϕ(0, ȳi)dx+O(1)`n

∫ T

0
(ynp(t)− y1(t))dt+

=
∑

i

`n
δ̄i

∫ ȳi+1

ȳi

ϕ(0, x)dx+B

∑

i

`n
δ̄i

∫ ȳi+1

ȳi

(
ϕ(0, x)− ϕ(0, ȳi)

)
dx+O(1)`n

∫ T

0
(ynp(t)− y1(t))dt+B.

To proceed further, let us define Λ := ȳnp+1 − ȳ1. We have

In =
∑

i

`n
δ̄i
O(1)

∫ ȳi+1

ȳi

δ̄idx+O(1)`n(Λ + vmaxT )T+

∫

R

(
µ̄(x)− µn(0, x)

)
ϕ(0, x)dx

= O(1)`nΛ +O(1)`n(Λ + vmaxT )T +

∫

R

(
µ̄(x)− µn(0, x)

)
ϕ(0, x)dx.

Since µn(0, ·) → µ̄ (see [30]) and `n → 0, all the terms in the latter quantity vanish as

n→ +∞. In conclusion, we have proved the following

Theorem 4.5.1. Let (4.34) and (4.35) hold, and consider the extensions (4.40) and

(4.45). Fix T > 0, p ∈ {1, . . . , P}, and choose µ̄p = µp(0, ·) ∈ Rp ∩ BV (R; [0, 1])

and ȳp = En[µ̄p]. Let yp(·) be the solution of (4.42) with initial condition ȳp (assuming

the other solutions yq(·), q 6= p are given). Define µpn(t, ·) = Cn[yp]. If there exists

µp ∈ L∞([0, T ];R) such that limn→+∞ µ
p
n(t, x) = µp(t, x) a.e., then µp is a weak solution

to (4.46) (assuming the other solutions µq, q 6= p are given) with initial condition µ̄p.

Now we note that the system of PDEs (4.46) is nothing else that the multi-path model

studied in [22, 23].

µpt + (µpv(ωp))x = 0, p = 1, . . . , P, t > 0, x ∈ path p (4.47)

where ωp(t, x) is the sum of all densities µq(t, x), q = 1, . . . , P , living at time t at the

point x along path p. It is a system of P conservation laws with discontinuous flux

which provides an alternative method to deal with traffic flow on networks. It consists

in a system of conservation laws with discontinuous flux which provides an alternative

method to deal with traffic flow on networks. It is characterized by the fact that junctions

are embedded in the equations themselves, so that the dynamics at junctions have not

to be resolved separately by ad hoc procedures, like, e.g., the maximization of the flux.

It appears that the model maximizes the flux but under the additional constraints of
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equidistribution of the fluxes from the incoming roads (i.e. the incoming roads have

assigned the same priority).

4.6 Numerical approximation

In this section we give some details about the discretization of the micro- and macro-

scopic equations.

4.6.1 The follow-the-leader model

For numerical purposes, it is convenient to discretize the follow-the-leader model as it is

described in section 4.4.1, rather than its equivalent formulation on paths.

First we set vmax = 1 and

v(ρ) = 1− ρ, w(δ) = 1− `n
δ
. (4.48)

Then, we introduce a time step ∆t > 0 and we denote by ỹsi , s = 1, 2, . . . the approximate

position of the vehicle i at time ts = s∆t. The discretization is obtained by a classical

explicit Euler scheme of the form

ỹs+1
i = ỹsi + ∆t w∗(δ̂i(ts)), s = 0, 1, 2, . . . (4.49)

with admissible initial conditions y0
i = ȳi.

When a vehicle goes beyond the junction, let say ỹi(ts) = Lr(i,ts) + ε, it is assigned to

the next road on the basis of its preference, and its position is updated as ỹi(ts) = ε.

At the discrete level, a CFL-like condition is needed to ensure that vehicles do not bump

into the one in front, i.e. to guarantee that δi > `n. Far from the junction, this condition

is given by

∆t w(δi) < δi ∀i. (4.50)

Substituting (4.48) in (4.50) we get

∆t = ∆t(n) < min
i

δ2
i

δi − `n
. (4.51)
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Unfortunately, this condition does not prevent vehicle overlapping near the junction, as

already discussed in section 4.4.1. In a discrete setting, the overlapping can happen also

after the junction, more precisely in the space interval

(Lr1 − `n, Lr1 ] ∪ [Lr2 ,∆t vmax],

where r1 and r2 are two consecutive roads and ∆t vmax is the maximal distance one

vehicle can travel in one time step. It can be seen that in the discrete setting the

overlapping zone shrinks to ∅ for n → +∞ and ∆t → 0, and not only for n → +∞.

However, the overlapping is still “mild”, in the sense that the number of bumped vehicles

is bounded by the number of incoming roads, see section 4.4.1.

Remark 4.6.1. The multi-path model, at least at the discrete level, does not allow the

total density to be larger than 1 [23, Sect. 3.2]. This seems in contradiction with the

possibility of overlapping in the microscopic model. Actually this is not, because the

overlapping is “mild”, i.e. it concerns at most a finite number of cars, and then it is

invisible at macroscopic level. However, a counterpart of the overlapping features at

macroscopic level exists: the cells after the junctions act as a sort of buffer [23, Sect.

5.2], which is able to gather a flux of vehicles larger than maximal one, i.e. maxρ f(ρ),

with f(ρ) := ρv(ρ). The actual maximal flux is instead Ninc maxρ f(ρ), where Ninc is

the number of incoming roads.

4.7 Numerical tests

In this section we confirm the theoretical findings of the previous sections by means of

some numerical tests. We consider the case of a simple network with 1 junction and (i)

a merge, (ii) a diverge, and (iii) 2 incoming roads and 2 outgoing roads, see Fig. 4.8.

In the cases (ii) and (iii), additional parameters are needed to describe the behavior of

the vehicles at the junction. They are usually referred to as distribution coefficients and

specify the percentage of vehicles which wish to turn to the left and to the right.

Since we are considering here simple networks with only 1 junction, specifying for each

car the turning conduct at junction is equivalent to define a path on the network. In the

case of more complex networks with more than 1 junction, we should instead assign the

whole sequence of decisions each car makes at junctions. If we stick with per-junction
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Road 1

Road 2
Road 3 Road 1

Road 3

Road 4

Road 1

Road 2

Road 3

Road 4

Figure 4.8: A merge (top, left), a diverge (top, right), and a junction with 2 incoming
and 2 outgoing roads (bottom).

coefficients, thus losing the global behavior of drivers, we expect convergence, in the

limit, to the hybrid version of the multi-path model described in [23, Remark 1].

Let us denote the distribution coefficients by Pa→b, where a is the index of the incoming

road and b is the index of the outgoing road. Clearly it is required that

∑

b

Pa→b = 1 ∀a.

In the follow-the-leader model, each vehicle traveling along road a is assigned to the

road b with probability Pa→b. In the multi-path model, these coefficients are used to

define properly the partial densities µp’s at the initial time given the initial condition

for the total density.

To improve readability and ease the comparison, we show the total density ωp brought

back on the roads, rather than on the paths (where they are originally defined). We

assume that all roads have the same length Lr = 4 × 103, and we divide them in

Nr
x = 100 space nodes. We employ Dirichlet-0 boundary conditions at the beginning of

the incoming roads and the end of the outgoing roads.

Comparison with the solution of the multi-path scheme is obtained by computing the

average density of the microscopic vehicles, defined for each space node k and time step
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s as

Ψs
k[ỹ

s] :=
1

∆x

∑

{i : ỹsi∈[xk,xk+1)}
`n, (4.52)

which corresponds to sum the total mass found in each space cell and divide it by the

length of the cell. This average density seems to be more stable than Cn[y] as defined

in (4.38), especially around junctions and when n is very large.

4.7.1 Merge

In this section we consider a network with three arcs and one junction, with two incoming

roads and one outgoing road. We denote by ρ1, ρ2 and ρ3 the density on the first

incoming road, the second incoming road and the outgoing road, respectively (Fig. 4.8).

Initial conditions are

ρ1(0, x) = 0.5, ρ2(0, x) = 0.3, ρ3(0, x) = 0 ∀x.

We run the simulation until the final time Tf = 3 × 103. Fig. 4.9 shows the density

computed by the multi-path model and the follow-the-leader model for two different

choices of `n and ∆t. Since we compare two numerically approximate densities, we
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Figure 4.9: Merge, results of the simulation at final time. Total density ωp redefined
on roads (red line) and density of microscopic vehicles Ψ (blu circles). Left: `n = 3
(max number of cars per cell = 13.3̄), ∆t = 3. Right: `n = 1 (max number of cars per

cell = 40), ∆t = 0.2.

expect a perfect match only for n → +∞ and ∆t,∆x → 0. That said, numerical

evidence confirms the convergence results, and also shows that the microscopic scheme



Chapter 5. Many-particle limit for traffic flow models on networks 116

is not diffusive as instead it is the macroscopic scheme. This is perfectly visible across

the discontinuities.

4.7.2 Diverge

In this section we consider a network with three arcs and one junction, with two incoming

roads and one outgoing road. We denote by ρ1, ρ3 and ρ4 the density on the incoming

road, the first outgoing road and the second outgoing road, respectively (Fig. 4.8). Initial

conditions are

ρ1(0, x) = 0.5, ρ3(0, x) = 0, ρ4(0, x) = 0 ∀x,

and distribution coefficients are

P1→3 = 0.8, P1→4 = 0.2.

We run the simulation until the final time Tf = 3×103. Fig. 4.10 shows the density com-

puted by the multi-path model and the follow-the-leader model for two different choices

of `n and ∆t. Again, numerical evidence confirms the convergence results, however, the
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Figure 4.10: Diverge, results of the simulation at final time. Total density ωp redefined
on roads (red line) and density of microscopic vehicles Ψ (blu circles). Left: `n = 2
(max number of cars per cell = 20), ∆t = 4. Right: `n = 0.1 (max number of cars per

cell = 400), ∆t = 0.25.

convergence is much slower than the previous case. This is probably due to the presence

of the distribution coefficients P which introduce stochasticity in the system.
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4.7.3 Junction with two incoming and two outgoing roads

In this section we consider a network with four arcs and one junction, with two incoming

roads and two outgoing roads. We denote by ρ1, ρ2, ρ3 and ρ4 the density on the

first incoming road, the second incoming road, the first outgoing road, and the second

outgoing road, respectively (Fig. 4.8). Initial conditions are

ρ1(0, x) = 0.4, ρ2(0, x) = 0.5, ρ3(0, x) = 0, ρ3(0, x) = 0 ∀x,

and distribution coefficients are

P1→3 = 0.7, P1→4 = 0.3, P2→3 = 0.6, P2→4 = 0.4.

We run the simulation until the final time Tf = 4 × 103. Fig. 4.11 shows the density

computed by the multi-path model and the follow-the-leader model. Again, numerical
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Figure 4.11: Diverge, results of the simulation at final time. Total density ωp redefined
on roads (red line) and density of microscopic vehicles Ψ (blu circles). `n = 0.25 (max

number of cars per cell = 160), ∆t = 0.1.

evidence confirms the convergence results, however, the convergence is even slower than

the previous case.



Appendix A

An essentially non-oscillatory

(ENO) scheme of second order

We recall here a simple ENO method of order two based on the work of Osher and

Shu [71] for Hamilton Jacobi equation (the ENO method was designed by Harten et

al. [65] for the approximation solution of non-linear conservation law). Let m be the

minmod function defined by

m(a, b) =





a if |a| ≤ |b|, ab > 0

b if |b| < |b|, ab > 0

0 if ab ≤ 0

(A.1)

(other functions can be considered such as m(a, b) = a if |a| ≤ |b| and m(a, b) = b

otherwise). Let D±uj = ±(uj±1 − uj)/∆x and

D2uj :=
uj+1 − 2uj + uj−1

∆x2 .

Then the right and left ENO approximation of the derivative can be defined by

D̄±uj = D±uj ∓
1

2
∆x m(D2uj , D

2uj±1)

and the ENO (Euler forward) scheme by

S0(u)j := uj − τhM (xj , D̄
−uj , D̄+uj).

The corresponding RK2 scheme can then be defined by S(u) = 1
2(u+ S0(S0(u))).
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Appendix B

Overview of results of

Hamilton-Jacobi equations

Appendix B: Overview of results of Hamilton-Jacobi equations

Here we recall some basic definitions and theoretical results about HJ equations. We

first introduce the notion of viscosity solution of the HJ equation

H(x, v(x),∇v(x)) = 0 x ∈ Ω, (B.1)

where Ω is an open domain of Rd and Hamiltonain H = H(x, r, p) is a continuous real

valued function on Ω × R × Rd. This notion allows us to obtain important existence

and uniqueness results for some equations of the form (B.1). It is well known that HJ

equation is in general not well-posed. It is possible to show several examples in which any

classical (that is of class C1) solution exists or infinite weak (that is a.e. differentiable)

solutions exist.

Definition 11. A continuous function v is a viscosity solution of the equation (B.1) if

the following conditions are satisfied:

(i) Viscosiy subsolution test i.e. for any test function φ ∈ C1(Ω), if x0 ∈ Ω is a local

maximum point for v − φ, then

H(x0, v(x0),∇φ(x0)) ≤ 0
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((ii) viscosiy supersolution test for any test function φ ∈ C1(Ω), if x0 ∈ Ω is a local

minima point for v − φ, then

H(x0, v(x0),∇φ(x0)) ≥ 0

The importance of “viscosity solutions” is that it can recovered as the limit function

v = limε→0+ v
ε where vε ∈ C2(Ω) is the classical solution of the regularized problem

−ε∆vε +H(x,∇vε) = 0, x× Ω (B.2)

in the case vε exists and converges locally uniformly to some continuous function v.

This method is named vanishing viscosity, and it is the original idea behind this notion

of solution. It was presented by Crandall and Lions [34]. Our main focus is on time

dependent first order Hamilton-Jacobi equation





∂tv +H(x,∇v) = 0, (t, x) ∈ [0, T ]× Ω

v(0, x) = v0(x), x ∈ Ω.
(B.3)

where Ω is an open domain of Rd and the Hamiltonian H is continuous and real valued

function on Ω× R× Rd. For details we refer the books [6, 9].

Definition 12. v ∈ BUC(Ω×T ) is a viscosity solution in Ω×(0, T ) of the equation (B.3)

if and only if, for any φ ∈ C1(Ω× (0, T )), the following conditions holds:

(i) at every point (t0, x0) ∈ Ω× (0, T ), local maximum of v − φ,

φt(t0, x0) +H(x0, t0, v(x0, t0), Dφ(t0, x0)) ≤ 0 (B.4)

(i.e. v is a viscosity subsolution.)

(ii) at every point (t0, x0) ∈ Ω× (0, T ), local minimum of v − φ,

φt(t0, x0) +H(x0, t0, v(x0, t0), Dφ(t0, x0)) ≥ 0 (B.5)

(i.e. v is a viscosity supersolution.)
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In the following we present some comparison results between viscosity sub- and super

solution which gives the uniqueness for the particular case H(x, t, v,Dv) = H(t,Dv).

Theorem B.0.1. Assume H ∈ C((0, T )× Rd). Let v1, v2 ∈ (0, T )× Rd be, respectively

viscosity sub- and supersolution in (0, T )× Rd of the equation

∂tv +H(x,Dv) = 0. (B.6)

Then,

sup
([0,T ]×Rd))

(v1 − v2) ≤ sup
([0,T ]×Rd)

(v1(0, .)− v2(0, .)). (B.7)

Proof. The proof can be found in [6], p. 56. Notice that more general comparison

results for more general Hamiltonians can be found in [5].

Representation formulae and Legendre transform:

In some cases it is possible to derive representation formula for the viscosity solution.

This formula has a great importance from both the analytical and the numerical points

of view. Concerning HJ equations, the representation formula is known as Hopf-Lax

formula. It is typically related to the problem

∂tv +H(Dv) = 0, (t, x) ∈ [0, T ]× Ω (B.8)

v(0, x) = v0(x), x ∈ Ω. (B.9)

where H : Rd → R is convex and satisfies the coercivity condition:

min
|p|→+∞

H(p)

|p| = +∞. (B.10)

Definition 13. Let (B.10) satisfied. We define Legendre-Fenchel conjugate ( Legendre-

Fenchel transform) of H for q ∈ Rd as:

H∗(q) = sup
p∈Rd

{p.q −H(p)} . (B.11)
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Note that the convexity assumption on H implies that H is continuous, and being also

coercive in the sense of (B.10), the sup in (B.11) is in fact a maximum. In general,

Legendre-Fenchel transform may not allow for an explicit computation.

Theorem B.0.2. The function v defined by the following Hopf-Lax formula

v(x, t) = inf
y∈Rd

[
v0(y) + tH∗

(
x− y
t

)]
(B.12)

is Lipschitz continuous, differentiable almost everywhere in (0,+∞)×Rd and solves a.e.

the initial value problem (B.8).

Proof. The proof can be found in [39], p. 126.

Theorem B.0.3. The unique viscosity solution of (B.8) is give by the Hopf-Lax repre-

sentation formula.

Proof. The proof can be found in [39], p. 561.



Conclusion and perspectives

In chapter 1 we have seen that proposed ”filtered” scheme which behaves as a high order

scheme when the solution is smooth and as a first order monotone scheme otherwise. It

has a simple presentation that is easy to implement. Rigorous error bounds hold, of the

same order as the Crandall-Lions estimates in
√

∆x where ∆x is the mesh size. In the

case the solution is smooth a high-order consistency error estimate also holds. We show

on several numerical examples the capability of the scheme to stabilize an otherwise

unstable scheme, and also we observe a precision close to a second order ENO scheme

on basic linear and non linear examples. In chapter 2, we used the idea of filtered scheme

for the approximation of Hamilton-Jacobi equations in a general convergent setting. We

consider in particular a simple coupling between a monotone first order scheme and a

second order centered scheme, applied to front propagation problems in 2D and 3D. It

could be interesting to use filter scheme on DG discretization. Filtering technique is

rather general to be applied to many different situations and problems. Another future

development possibility to solve second order HJB equation by filtered schemes.

In chapter 3, We have seen in the above examples coupling of anti-diffusive scheme

and semi-Lagrangian scheme is working very well for discontinuous viscosity solutions.

Hence when we have some discontinuity or jump then scheme switches to anti-diffusive

scheme and in this way the iterative scheme is not diffusive. We presented a coupling

between Ultra-bee and Semi-Lagrangian scheme but the coupling idea can be applied

to other schemes and can be even simpler when coupling schemes which work on the

same grid and the same type of approximate values. As we have seen that the scheme is

working well on our 1-dimensional tests problems, so the next step would be to develop

the analysis of coupled scheme to HJ equations and to extend the coupling technique to

2D problems.

Finally, in chapter 4 we have investigated the many-particle limit for a quite natural

extension of the follow-the-leader model on networks. Numerical tests have shown a

slow convergence to the limit solution. This requires a large number of particles (and

computational time) to get a reasonable precision comparable with that of the associate

macroscopic model. On the other hand, our results justify any multiscale approaches

where the micro and the macro scale live together and exchange information. The
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convergence result proven in in chapter 4 is only one of the possible micro-to-macro limits

which can be investigated in the framework of traffic flow models on networks. Although

the proposed follow-the-leader model is likely the most natural extension to networks

that one can imagine, other models can be also considered. First of all, one could define

the proper follow-the-leader model which corresponds, in the limit, to the LWR model

with maximization of flux at junctions. This requires a nontrivial management of the

junctions, in which an authority is able to decide who passes the junction and when.

At the discrete level, the authority has to choose among all vehicles which reach the

junction in one time step.

Second, one can consider analogous techniques for second-order models. In this case the

problem is completely open because a second-order multi-path does not yet exist and

then it can be difficult to find the right limit model.

Finally, it could be interesting the investigation of the many-particle limit for meso-to-

macro models. To this end, useful references could be the papers [46], which deals with

kinetic models on networks, and [45] about fundamental diagrams for kinetic equations.
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