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Summary

Scope of the present research is to develop novel mathematical tools in order
to face the continuously growing need of modern theoretical approaches for
a proper development of Artificial Intelligence.

Using Statistical Mechanics and Graph Theory languages and techniques, we
will start this thesis by introducing the mean field Hopfield model as the har-
monic oscillator in Neural Networks. This will set the reference framework
in order to extend its capabilities: in our research , we succeed in formalizing
for the first time neural networks able to spontaneous parallel processing (a
step forward with respect to the original harmonic oscillator, where only se-
quential processing was allowed to emerge as a collective feature shared over
the distributed memories across the net).

Indeed, the Hopfield model (together with the related Hebb’s learning rule)
provides a prototypical associative memory model that has attracted a great
attention by the communities of Theoretical Physicists and Mathematicians
mainly due to its natural formalization within the canonical setting of Statis-
tical Mechanics (possibly beyond the adherence of its processing paths with
those empirically found in biological information processing systems).
Through well controlled learning procedures, in this attractor networks it
is possible to store and sequentially retrieve patterns of information. The
retrieval of a stored pattern does coincide, mathematically, with the ther-
malization of the system in one of the several minima of the related free en-
ergy (each minimum corresponding to a pattern to be retrieved) such that,
through the analogy between thermodynamical relaxation and selection of a
distributed memory, we can adapt the mathematical tools (i.e. models and
methods) originally developed for statistical mechanical treatments of spin
glasses (other complex systems whose free energy landscape is rugged) to the
analysis of neural networks, and, in this thesis, this is the route that we aim
to contribute to pave, moving from serial to parallel information processing.
Indeed, properly modifying the structure of the memories -pattern’s definitions-
(in the pertinent phase space where the system dynamics takes place) or
carefully diluting the network architecture (in the topological space where
spins dialogue) we will build models of neural networks able to recall si-
multaneously multiple patterns of information. We will therefore analyze in
details the mathematical structure of these networks and discuss the resulting
properties.

The thesis is structured as follows:
In the first Chapter we briefly revise the Hopfield model: after an histori-
cal digression on the role of the so-called mean-field approximation in Physics



(and in particular in Statistical Mechanics), we will construct its related
Hamiltonian in two novel ways (with respect to the original Hopfield pro-
posal). More precisely, starting from the paradigmatic models for ferromag-
nets and for spin-glasses (i.e., the Curie-Weiss model and the Sherrington-
Kirkpatrick model, respectively) we will show how to recover the Hopfield
model and the underlying deep connections among these models.

The second Chapter is entirely dedicated to parallel processing networks
and it is split into two main Sections, the former dealing with multitasking
network, the latter dealing with hierarchical network.

We will start with purely mean field models, the so-called multitasking asso-
ciative networks and we will perform an extended treatment of its capabilities
and properties, mixing techniques stemming from Statistical Mechanics and
Graph Theory (whose usage is more typical for Theoretical Phycisists and
Mathematicians) with those of common usage in Robotics and Automation as
Signal-to-Noise, stability analysis and other related operational approaches.
After discussing as toy-examples the simultaneous retrieval of two or three
patterns, we will explore the whole low-storage behavior of the network, that
can be defined in a simple way as follows: consider a network built of by N
binary spins (i.e. Ising spins), that we want to use to store and retrieve P
patterns (i.e., N-length vectors of binary entries +1). Now, as we are inter-
ested in the network performances in the thermodynamic limit (i.e. sending
N — o0 in order to deal with averages, rather than full probability distribu-
tions), we need to specify how P scales with N. If such a scaling is extensive,
namely if P oc N, we talk of high storage regime, while if the amount of pat-
ters scales sub-linearly in the number of spins (such that limy_,.(P/N) — 0),
we talk of low storage.

At a first glance, the low storage regime looks as a pathological regime or a
simplifying analysis avoiding the high storage, but, actually, this is not the
case. The origin of this idea lies in the properties of the Hopfield network
and, in particular, in the theory of Amit, Gutfreund and Sompolinsky who
showed how to load that original network in order to let it work in the high
storage regime. However, to understand that most modern variants of the
Hopfield network can not handle extensive storage (i.e. P ~ N) it is enough
a simple and heuristical consideration of Graph Theory: the Hopfield model
is a fully connected mean-field network. This implies that, as the memory is
distributed -namely it is shared over the synapses (i.e. the links connecting
the spins and whose values can be both positive and negative tacitly locat-
ing neural networks in the larger bulk of spin glasses)- we can feed O(N?)
synapses (i.e. links) with the information contained in the patterns to store.
However let us now consider a minimal modification of the Hopfield model
that makes it more biologically plausible: let us collapse the Hopfield network



on an Erdos-Rényi graph (instead of the original fully connected network).
This has the advantage of avoiding the assumption that each neuron inter-
acts with all the other neurons in the network, that is clearly biologically
false, despite mathematically convenient. However, from an Artificial Intelli-
gence perspective, the major difference between a random graph and a fully
connected network resides in the number of links: N! for the former, N? for
the latter. It is then evident that, as the amount of synapsis does no longer
scale quadratically with the amount of neurons, the overall network perfor-
mance can not remain unaltered. This is a general result when embedding
associative networks on structured or biological interesting topologies (and
it is a particularly severe limitation for Hebb learning rules, as those we will
investigate in this work).

Once understood this theoretical bound to the maximal storage capacity of
the variations on the Hopfield theme, we analyze in all details our multi-
tasking extension: a key (and novel) assumption is the introduction of blank
entries in pattern’s definition, that is, pattern entries may assume values +1
(carrying information) or simply be blank (denoting lack of information). It
is remarkable that this novel approach to dilution, that is seen as a must by
Biologists, will play as the real core of parallel processing such that, mak-
ing the network topology more adherent to biological demands, we will also
obtain -as a result- that network’s performances also match better those of
biological neural networks.

Once explored exhaustively the multitasking network, we will try to face an-
other fundamental and intrinsic limitation of the original Hopfield scenario:
its mean-field nature. To overcome this obstacle -at least partially- we try
to adapt the hierarchical ferromagnet, introduced by Dyson in the Litera-
ture almost four decades ago, implementing on its structure the Hebb rule
for learning and inferring the resulting properties the network spontaneously
shows.

Concretely, we introduce and investigate the statistical mechanics of hier-
archical neural networks: in these systems, spins interact with a strength
that is a (decreasing) function of a suitably introduced concept of distance,
such that different levels (i.e. hierarchies) of degenerate-strength couplings
immediately emerge.

First, we approach these systems a la Mattis, that is, by thinking at the
Dyson model as a single-pattern hierarchical neural network, and, through
this perspective, we discuss the stability of different retrievable states as
predicted by the related ( approximate) self-consistencies equation. The
mathematical key argument here is properly reabsorbing fluctuations of the
magnetization related to higher levels of the hierarchy into effective fields
for the lower levels: remarkably, mixing Amit’s ansatz technique (to select

3



candidate retrievable states) with the interpolation procedure (to solve for
the free energy of these states) we show that (due to gauge symmetry) the
Dyson model accomplishes both serial and parallel processing.

One step forward, we extend this scenario toward multiple stored patterns by
implementing the Hebb prescription for learning within the couplings. This
results in an Hopfield-like networks constrained on a hierarchical topology,
for which, restricting to the low storage regime (where the number of patterns
grows at most logarithmical with the amount of spins), we give an explicit
expression of its mean field bound and of the related improved bound.

As aresult of the present investigation, the hierarchical neural network (both
for its underling topology, as well as for its emerging properties) is actually
much closer to real biology with respect to neural network models previously
developed.

Finally, our general considerations on the whole strategy exploited in this
Ph.D. training period will be collected in the Conclusions of the thesis.
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Chapter 1

Introduction

Neural networks are such a fascinating field of science that its development
is the result of contributions and efforts from an incredibly large variety
of scientists, ranging from engineers (mainly involved in electronics and
robotics) [60, 70|, physicists (mainly involved in statistical mechanics and
stochastic processes) [6,17], and mathematicians (mainly working in logics
and graph theory) [5,22] to (neuro) biologists [34,63] and (cognitive) psy-
chologists [13,44].

Tracing the genesis and evolution of neural networks is very difficult,
probably due to the broad meaning they have acquired along the years!; sci-
entists closer to the robotics branch often refer to the W. McCulloch and
W. Pitts model of perceptron [68] 2, or the F. Rosenblatt version [40], while
researchers closer to the neurobiology branch adopt D. Hebb’s work as a
starting point [21]. On the other hand, scientists involved in statistical me-
chanics, that joined the community in relatively recent times, usually refer
to the seminal paper by Hopfield [49] or to the celebrated work by Amit
Gutfreund Sompolinky [18], where the statistical mechanics analysis of the
Hopfield model is effectively carried out.

Whatever the reference framework, at least 30 years elapsed since neu-
ral networks entered in the theoretical physics research and much of the
former results can now be re-obtained or re-framed in modern approaches,
as we want to highlight in the present work. In particular, we show that
toy models for paramagnetic-ferromagnetic transition [65] are natural proto-

!Seminal ideas regarding automation are already in the works of Lee during the XIIX
century, if not even back to Descartes, while more modern ideas regarding spontaneous
cognition, can be attributed to A. Turing [7] and J. Von Neumann [50] or to the join efforts
of M. Minsky and S. Papert [58], just to cite a few.

2Note that the first “transistor”, crucial to switch from analogical to digital processing,
was developed only in 1948 [68].
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types for the autonomous storage /retrieval of information patterns and play
as operational amplifiers in electronics. Then, we move further analyzing the
capabilities of glassy systems (ensembles of ferromagnets and antiferromag-
nets) in storing/retrieving extensive numbers of patterns so to recover the
Hebb rule for learning [21] in two different ways (the former guided by fer-
romagnetic intuition, the latter guided by glassy counterpart), both far from
the original route contained in his milestone The Organization of Behavior.

1.1 Statistical Mechanics

Hereafter we summarize the fundamental steps that led theoretical physicists
towards artificial intelligence; despite this parenthesis may look rather dis-
tant from neural network scenarios, it actually allows us to outline and to
historically justify the physicists perspective.

Statistical mechanics aroused in the last decades of the XIX century
thanks to its founding fathers Ludwig Boltzmann, James Clarke Maxwell
and Josiah Willard Gibbs [12]. Its “solely” scope (at that time) was to act
as a theoretical ground of the already existing empirical thermodynamics,
so to reconcile its noisy and irreversible behavior with a deterministic and
time reversal microscopic dynamics. While trying to get rid of statistical
mechanics in just a few words is almost meaningless, roughly speaking its
functioning may be summarized via toy-examples as follows. Let us consider
a very simple system, e.g. a perfect gas: its molecules obey a Newton-like
microscopic dynamics (without friction -as we are at the molecular level- thus
time-reversal as dissipative terms in differential equations capturing system’s
evolution are coupled to odd derivatives) and, instead of focusing on each
particular trajectory for characterizing the state of the system, we define
order parameters (e.g. the density) in terms of microscopic variables (the
particles belonging to the gas). By averaging their evolution over suitably
probability measures, and imposing on these averages energy minimization
and entropy maximization, it is possible to infer the macroscopic behavior
in agreement with thermodynamics, hence bringing together the microscopic
deterministic and time reversal mechanics with the macroscopic strong dic-
tates stemmed by the second principle (i.e. arrow of time coded in the entropy
growth). Despite famous attacks to Boltzmann theorem (e.g. by Zermelo or
Poincaré) [61], statistical mechanics was immediately recognized as a deep
and powerful bridge linking microscopic dynamics of a system’s constituents
with (emergent) macroscopic properties shown by the system itself, as ex-
emplified by the equation of state for perfect gases obtained by considering
an Hamiltonian for a single particle accounting for the kinetic contribution
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only [12].

One step forward beyond the perfect gas, Van der Waals and Maxwell in
their pioneering works focused on real gases [52|, where particle interactions
were finally considered by introducing a non-zero potential in the micro-
scopic Hamiltonian describing the system. This extension implied fifty-years
of deep changes in the theoretical-physics perspective in order to be able
to face new classes of questions. The remarkable reward lies in a theory
of phase transitions where the focus is no longer on details regarding the
system constituents, but rather on the characteristics of their interactions.
Indeed, phase transitions, namely abrupt changes in the macroscopic state
of the whole system, are not due to the particular system considered, but are
primarily due to the ability of its constituents to perceive interactions over
the thermal noise. For instance, when considering a system made of by a
large number of water molecules, whatever the level of resolution to describe
the single molecule (ranging from classical to quantum), by properly varying
the external tunable parameters (e.g. the temperature?), this system eventu-
ally changes its state from liquid to vapor (or solid, depending on parameter
values); of course, the same applies generally to liquids.

The fact that the macroscopic behavior of a system may spontaneously
show cooperative, emergent properties, actually hidden in its microscopic de-
scription and not directly deducible when looking at its components alone,
was definitely appealing in neuroscience. In fact, in the 70s neuronal dynam-
ics along axons, from dendrites to synapses, was already rather clear (see
e.g. the celebrated book by Tuckwell [45]) and not too much intricate than
circuits that may arise from basic human creativity: remarkably simpler than
expected and certainly trivial with respect to overall cerebral functionalities
like learning or computation, thus the aptness of a thermodynamic formu-
lation of neural interactions -to reveal possible emergent capabilities- was
immediately pointed out, despite the route was not clear yet.

Interestingly, a big step forward to this goal was prompted by problems
stemmed from condensed matter. In fact, theoretical physicists quickly re-
alized that the purely kinetic Hamiltonian, introduced for perfect gases (or

3We chose the temperature here (as an example of tunable parameter) because in neural
networks we will deal with white noise affecting the system. Analogously, in condensed
matter, disorder is introduced by thermal noise, namely temperature. There is a deep
similarity between them. In stochastic processes, prototype for white noise generators
are random walkers, whose continuous limits are Gaussians, namely just the solutions
of the Fourier equation for diffusion. However, the same celebrated equation holds for
temperature spread too, indeed the latter is related to the amount of exchanged heat by
the system under consideration, necessary for entropy’s growth [52,57]. Hence we have
the first equivalence: white noise in neural networks mirrors thermal noise in structure of
matter.
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Hamiltonian with mild potentials allowing for real gases), is no longer suitable
for solids, where atoms do not move freely and the main energy contributions
are from potentials. An ensemble of harmonic oscillators (mimicking atomic
oscillations of the nuclei around their rest positions) was the first scenario
for understanding condensed matter: however, as experimentally revealed by
crystallography, nuclei are arranged according to regular lattices hence mo-
tivating mathematicians in study periodical structures to help physicists in
this modeling, but merging statistical mechanics with lattice theories resulted
soon in practically intractable models®*.

As a paradigmatic example, let us consider the one-dimensional Ising

model, originally introduced to investigate magnetic properties of matter:
the generic, out of IV, nucleus labeled as ¢ is schematically represented by a
spin o;, which can assume only two values (0; = —1, spin down and o; = +1,
spin up); nearest neighbor spins interact reciprocally through positive (i.e.
ferromagnetic) interactions J; ;41 > 0, hence the Hamiltonian of this system
can be written as Hy (o) o< — Zf[:l Jii410i0i41 — hZf{:l 0;, where h tunes
the external magnetic field and the minus sign in front of each term of the
Hamiltonian ensures that spins try to align with the external field and to get
parallel each other in order to fulfill the minimum energy principle.
Clearly, this model can trivially be extended to higher dimensions, how-
ever, due to prohibitive difficulties in facing the topological constraint of
considering nearest neighbor interactions only, soon shortcuts were properly
implemented to turn around this path. It is just due to an effective shortcut,
namely the so called “mean field approximation”, that statistical mechanics
approached complex systems and, in particular, artificial intelligence.

1.2 The Role of Mean Field Limitations

As anticipated, the “mean field approximation” allows overcoming prohibitive
technical difficulties owing to the underlying lattice structure. This consists
in extending the sum on nearest neighbor couples (which are O(N)) to in-
clude all possible couples in the system (which are O(N?)), properly rescal-
ing the coupling (J — J/N) in order to keep thermodynamical observable
linearly extensive. If we consider a ferromagnet built of by N Ising spins

“For instance the famous Ising model [62], dated 1920 (and curiously invented by Lenz)
whose properties are known in dimensions one and two, is still waiting for a solution in
three dimensions.
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Figure 1.1: Example of regular lattice (left) and complete graph (right) with
N = 20 nodes. In the former only nearest-neighbors are connected in such
a way that the number of links scales linearly with N, while in the latter
each node is connected with all the remaining N — 1 in such a way that the
number of links scales quadratically with N.

o, =+1 with i € (1,..., N), we can then write

Ry L N
HN(U|J):_NZJijUinN_ﬁ ZO'Z'O']', (11)

i<j ij=1
where in the last term we neglected the diagonal term (i = j) as it is

irrelevant for large N. From a topological perspective the mean-field ap-
proximation equals to abandon the lattice structure in favor to a complete
graph (see Fig.(1.2)). When the coupling matrix has only positive entries,
e.g. P(Jij) = 6(J;; — J), this model is named Curie-Weiss model and acts
as the simplest microscopic Hamiltonian able to describe the paramagnetic-
ferromagnetic transitions experienced by materials when temperature is prop-
erly lowered. An external (magnetic) field h can be accounted for by adding
in the Hamiltonian an extra term oc —h 3>~ | o;.

According to the principle of minimum energy, the two-body interaction
appearing in the Hamiltonian in Eq.(1.1) tends to make spins parallel with
each other and aligned with the external field if present. However, in the
presence of noise (i.e. if temperature 7" is strictly positive), maximization
of entropy must also be taken into account. When the noise level is much
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higher than the average energy (roughly, if T > J), noise and entropy-driven
disorder prevail and spins are not able to “feel” reciprocally; as a result, they
flip randomly and the system behaves as a paramagnet. Conversely, if noise is
not too loud, spins start to interact possibly giving rise to a phase transition;
as a result the system globally rearranges its structure orientating all the
spins in the same direction, which is the one selected by the external field if
present, thus we have a ferromagnet.

In the early '70 a scission occurred in the statistical mechanics commu-

nity: on the one side “pure physicists" saw mean-field approximation as a
merely bound to bypass in order to have satisfactory pictures of the struc-
ture of matter and they succeeded in working out iterative procedures to
embed statistical mechanics in (quasi)-three-dimensional reticula, yielding to
the renormalization group developed by Kadanoff and Wilson in America [51]
and Di-Castro and Jona-Lasinio in Europe [11]; this proliferative branch gave
then rise to superconductivity, superfluidity [16] and many-body problems in
condensed matter [48].
Conversely, from the other side, the mean-field approximation acted as a
breach in the wall of complex systems: a thermodynamical investigation of
phenomena occurring on general structures lacking Euclidean metrics (e.g.
Erdoés-Rényi graphs [8, 31|, small-world graphs [19, 25|, diluted, weighted
graphs [33]) was then possible.

In general, as long as the summations run over all the indeces (hence
mean-field is retained), rather complex coupling patterns can be solved (see
e.g., the striking Parisi picture of mean-field glassy systems [59]) and this
paved the strand to complex system analysis by statistical mechanics, whose
investigation largely covers neural networks too.

1.3 Serial Processing

Hereafter we discuss how to approach neural networks from models mimicking
ferromagnetic transition. In particular, we study the Curie-Weiss model and
we show how it can store one pattern of information. Then, we notice that
such a stored pattern has a very peculiar structure which is hardly natural,
but we will overcome this (fake) flaw by introducing a gauge variant known as
Mattis model. This scenario can be looked at as a primordial neural network.
The successive step consists in extending, through elementary thoughts, this
picture in order to include and store several patterns. In this way, we recover,
via the first alternative route (w.r.t. the original one by Hebb), both the Hebb
rule for synaptic plasticity and, as a corollary, the Hopfield model for neural
networks too.
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1.3.1 The Curie-Weiss Paradigm.

The statistical mechanical analysis of the Curie-Weiss model (CW) can be
summarized as follows: Starting from a microscopic formulation of the sys-
tem, i.e. N spins labeled as 7, j, ..., their pairwise couplings J;; = J, and
possibly an external field h, we derive an explicit expression for its (macro-
scopic) free energy «(f). The latter is the effective energy, namely the dif-
ference between the internal energy U, divided by the temperature T'= 1/,
and the entropy S, namely a(f3) = S — U, in fact, S is the “penalty” to be
paid to the Second Principle for using U at noise level 5. We can therefore
link macroscopic free energy with microscopic dynamics via the fundamental
relation

2N
a(B) = Jim <13 exp[~BHx(o], )], (1.2
{o}

where the sum is performed over the set {o} of all 2V possible spin configura-
tions, each weighted by the Boltzmann factor exp[—SHy(co|J, h)] that tests
the likelihood of the related configuration. From expression (1.2), we can
derive the whole thermodynamics and in particular phase-diagrams, that
is, we are able to discern regions in the space of tunable parameters (e.g.
temperature/noise level) where the system behaves as a paramagnet or as a
ferromagnet.
Thermodynamical averages, denoted with the symbol (.), provide for a given
observable the expected value, namely the value to be compared with mea-
sures in an experiment. For instance, for the magnetization m(o) = S~ , 0;/N
we have

Z{g} m(o)e PN (l)
DR

When  — oo the system is noiseless (zero temperature) hence spins feel re-
ciprocally without errors and the system behaves ferromagnetically (|(m)| —
1), while when 3 — 0 the system behaves completely random (infinite tem-
perature), thus interactions can not be felt and the system is a paramagnet
({m) — 0). In between a phase transition happens.

In the Curie-Weiss model the magnetization works as order parameter:
its thermodynamical average is zero when the system is in a paramagnetic
(disordered) state (— (m) = 0), while it is different from zero in a ferro-
magnetic state (where it can be either positive or negative, depending on the
sign of the external field). Dealing with order parameters allows us to avoid
managing an extensive number of variables ;, which is practically impossible
and, even more important, it is not strictly necessary.

(m(6))

(1.3)
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Now, an explicit expression for the free energy in terms of (m) can be
obtained carrying out summations in Eq.(1.2) and taking the thermodynamic
limit N — oo as

_ B2
a(f) =In2 + Incosh[B(J(m) + h)] — 7<m) : (1.4)
In order to impose thermodynamical principles, i.e. energy minimization and
entropy maximization, we need to find the extrema of this expression with
respect to (m) requesting O sy (3) = 0. The resulting expression is called
the self-consistency and it reads as

Imya(B) = 0 = (m) = tanh[B(J(m) + h)]. (1.5)

This expression returns the average behavior of a spin in a magnetic field. In
order to see that a phase transition between paramagnetic and ferromagnetic
states actually exists, we can fix h = 0 (and pose J = 1 for simplicity) and
expand the r.h.s. of Eq.(1.5) to get

(m) oc £4/BJ — 1. (1.6)

Thus, while the noise level is higher than one (8 < . =1or T > T. = 1)
the only solution is (m) = 0, while, as far as the noise is lowered below
its critical threshold 5., two different-from-zero branches of solutions appear
for the magnetization and the system becomes a ferromagnet (see Fig.(1.2)).
The branch effectively chosen by the system usually depends on the sign of
the external field or boundary fluctuations: (m) > 0 for A > 0 and vice versa
for h < 0.

Clearly, the lowest energy minima correspond to the two configurations
with all spins aligned, either upwards (o; = +1,Vi) or downwards (o; =
—1,Vi), these configurations being symmetric under spin-flip o; — —o;.
Therefore, the thermodynamics of the Curie-Weiss model is solved: energy
minimization tends to align the spins (as the lowest energy states are the two
ordered ones), however entropy maximization tends to randomize the spins
(as the higher the entropy, the most disordered the states, with half spins up
and half spins down): the interplay between the two principles is driven by
the level of noise introduced in the system and this is in turn ruled by the
tunable parameter 5 = 1/T as coded in the definition of free energy.

A crucial bridge between condensed matter and neural network could
now be sighted: One could think at each spin as a basic neuron, retaining
only its ability to spike such that o; = +1 and o; = —1 represent firing and
quiescence, respectively, and associate to each equilibrium configuration of
this spin system a stored pattern of information. The reward is that, in this
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Figure 1.2: Average magnetization (m) versus temperature T for a Curie-
Weiss model in the absence of field (h = 0). The critical temperature 7, = 1
separates a magnetized region (|(m)| > 0, only one branch shown) from a
non-magnetized region ((m) = 0). The box zooms over the critical region
(notice the logarithmic scale) and highlights the power-law behavior m ~
(T — T.)", where B = 1/2 is also referred to as critical exponent (see also
Eq.(1.6)). Data shown here (o) are obtained via Monte Carlo simulations for
a system of N = 10° spins and compared with the theoretical curve (solid
line).

way, the spontaneous (i.e. thermodynamical) tendency of the network to
relax on free-energy minima can be related to the spontaneous retrieval of
the stored pattern, such that the cognitive capability emerges as a natural
consequence of physical principles.

1.3.2 From Curie-Weiss to Hopfield

Actually, the Hamiltonian (1.1) would encode for a rather poor model of neu-
ral network as it would account for only two stored patterns, corresponding to
the two possible minima (that in turn would represent pathological network’s
behavior with all the neurons contemporarily completely firing of completely
silenced), moreover, these ordered patterns, seen as information chains, have
the lowest possible entropy and, for the Shannon-McMillan Theorem, in the
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large N limit® they will never be observed.

This criticism can be easily overcome thanks to the Mattis-gauge, namely
a re-definition of the spins via o; — £} o;, where ¢! = +1 are random entries
extracted with equal probability:

1 1
P& = 555571 + 5555“, (1.7)

and kept fixed in the network (in statistical mechanics these are called quenched
variables to stress that they do not contribute to thermalization, a terminol-
ogy reminiscent of metallurgy [59]). Fixing J = 1 for simplicity, the Mattis
Hamiltonian reads as

| N N
Hy " (o]€) = “oN Z ¢i&joio) — hz&-l% (1.8)

ij=1 i=1
The Mattis magnetization is defined as m; = %ZZ]\LI ¢lo;. To inspect

its lowest energy minima, we perform a comparison with the CW model:
in terms of the (standard) magnetization, the Curie-Weiss model reads as
H{W ~ —(N/2)m? — Nhm and, analogously we can write H3%(g|¢) in
terms of Mattis magnetization as H%" ~ —(N/2)m? — Nhm,. It is then
evident that, in the low noise limit (namely where collective properties may
emerge), as the minimum of free energy is achieved in the Curie-Weiss model
for (m) — +1, the same holds in the Mattis model for (m;) — +1. How-
ever, this implies that now spins tend to align parallel (or antiparallel) to
the vector &', hence if the latter is, say, ¢! = (+1,—1,—1,—1,+1,+1) in
a model with N = 6, the equilibrium configurations of the network will be
o= (+1,-1,-1,-1,+1,+1) and ¢ = (—1,+1,+1,+1,—1,—1), the latter
due to the gauge symmetry o; — —o; enjoyed by the Hamiltonian. Thus, the
network relaxes autonomously to a state where some of its neurons are firing
while others are quiescent, according to the stored pattern £'. Note that, as
the entries of the vectors & are chosen randomly +1 with equal probability,
the retrieval of free energy minimum now corresponds to a spin configura-
tion which is also the most entropic for the Shannon-McMillan argument,
thus both the most likely and the most difficult to handle (as its information
compression is no longer possible).

Two remarks are in order now. On the one side, according to the self-
consistency equation (1.5) (m) versus h displays the typical graded /sigmoidal

5The thermodynamic limit N — oo is required for both mathematical convenience,
e.g. it allows saddle-point/stationary-phase techniques, and in order to neglect observable
fluctuations by a central limit theorem argument.
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response of a charging neuron [45], and one would be tempted to call the
spins ¢ neurons. On the other side, it is definitely inconvenient to build a
network via NN spins/neurons, which are further meant to be diverging (i.e.
N — o) in order to handle one stored pattern of information only. Along
the theoretical physics route overcoming this limitation is quite natural (and
provides the first derivation of the Hebbian prescription in this work): If
we want a network able to cope with P patterns, the starting Hamiltonian
should have simply the sum over these P previously stored® patterns, namely

N,N P
Hy(olt) = ~5 (Z&“&j‘) 005, (1.9)

1,j=1 \pu=1

where we neglect the external field (b = 0) for simplicity. As we will see in the
next section, this Hamiltonian constitutes indeed the Hopfield model, namely
the harmonic oscillator of neural networks, whose coupling matrix is called
Hebb matriz as encodes the Hebb prescription for neural organization [17].

1.3.3 From Sherrington-Kirkpatrick to Hopfield

Despite the extension to the case P > 1 is formally straightforward, the
investigation of the system as P grows becomes by far more tricky. In-
deed, neural networks belong to the so-called “complex systems” realm. We
propose that complex behaviors can be distinguished by simple behaviors
as for the latter the number of free-energy minima of the system does not
scale with the volume N, while for complex systems the number of free-
energy minima does scale with the volume according to a proper function
of N. For instance, the Curie-Weiss/Mattis model has two minima only,
whatever N (even if N — 00), and it constitutes the paradigmatic example
for a simple system. As a counterpart, the prototype of complex system is
the Sherrington-Kirkpatrick model (SK), originally introduced in condensed
matter to describe the peculiar behaviors exhibited by real glasses |6, 59).
This model has an amount of minima that scales o< exp(cN) with ¢ # f(NV),
and its Hamiltonian reads as

HYS (o)) = ZJUO'ZO'], (1.10)

z<]

6The part of neural network’s theory we are analyzing is meant for spontaneous retrieval
of already stored information -grouped into patterns (pragmatically vectors)-. Clearly it
is assumed that the network has already overpass the learning stage.
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where, crucially, coupling are Gaussian distributed” as P(J;;) = N[0, 1]. This
implies that links can be either positive (hence favoring parallel spin config-
uration) as well as negative (hence favoring anti-parallel spin configuration),
thus, in the large N limit, with large probability, spins will receive conflict-
ing signals and we speak about “frustrated networks”. Indeed frustration, the
hallmark of complexity, is fundamental in order to split the phase space in
several disconnected zones, i.e. in order to have several minima, or several
stored patterns in neural network language. This mirrors a clear request also
in electronics, namely the need for inverters (that once mixed with op-amps)
result in flip-flops (crucial for information storage as we will see).

The mean-field statistical mechanics for the low-noise behavior of spin-
glasses has been first described by Giorgio Parisi and it predicts a hierar-
chical organization of states and a relaxational dynamics spread over many
timescales (for which we refer to specific textbooks [59]). Here we just need
to know that their natural order parameter is no longer the magnetization (as
these systems do not magnetize), but the overlap qu,, as we are explaining.
Spin glasses are balanced ensembles of ferromagnets and antiferromagnets
(this can also be seen mathematically as P(J) is symmetric around zero)
and, as a result, (m) is always equal to zero, on the other hand, a compari-
son between two realizations of the system (pertaining to the same coupling
set) is meaningful because at large temperatures it is expected to be zero, as
everything is uncorrelated, but at low temperature their overlap is strictly
non-zero as spins freeze in disordered but correlated states. More precisely,
given two “replicas” of the system, labeled as a and b, their overlap ¢, can
be defined as the scalar product between the related spin configurations,
namely as qq = (1/N) 32V 00?8, thus the mean-field spin glass has a com-
pletely random paramagnetic phase, with (¢) = 0 and a “glassy phase” with
{(q) > 0 split by a phase transition at 5. = T, = 1.

The Sherrington-Kirkpatrick model displays a large number of minima as
expected for a cognitive system, yet it is not suitable to act as a cognitive
system because its states are too “disordered”. We look for an Hamiltonian
whose minima are not purely random like those in SK, as they must represent
ordered stored patterns (hence like the CW ones), but the amount of these
minima must be possibly extensive in the number of spins N (as in the SK
and at contrary with CW), hence we need to retain a “ferromagnetic flavor”
within a “glassy panorama™ we need something in between.

"Couplings in spin-glasses are drawn once for all at the beginning and do not evolve
with system’s thermalization, namely they are quenched variables too.

8Note that, while in the Curie-Weiss model, where P(.J) = §(J—1), the order parameter
was the first momentum of P(m), in the Sherrington-Kirkpatrick model, where P(J) =
N[0, 1], the variance of P(m) (which is roughly g,») is the good order parameter.
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Figure 1.3: Phase diagram for the Hopfield model [17]. According to the
parameter setting, the system behaves as a paramagnet (PM), as a spin-
glass (SG), or as an associative neural network able to perform information
retrieval (R). The region labeled (SG+R) is a coexistence region where the
system is glassy but still able to retrieve.

Remarkably, the Hopfield model defined by the Hamiltonian (1.9) lies ex-
actly in between a Curie-Weiss model and a Sherrington-Kirkpatrick model.
Let us see why: When P = 1 the Hopfield model recovers the Mattis model,
which is nothing but a gauge-transformed Curie-Weiss model. Conversely,
when P — oo, (1/v/N) 25 '€ — N0, 1], by the standard central limit
theorem, and the Hopfield model recovers the Sherrington-Kirkpatrick one.
In between these two limits the system behaves as an associative network [4].
Such a crossover between CW (or Mattis) and SK models, requires for its
investigation both the P Mattis magnetization (m,), p = (1,...,P) (for
quantifying retrieval of the whole stored patterns, that is the wvocabulary),
and the two-replica overlaps (gq) (to control the glassyness growth if the
vocabulary gets enlarged), as well as a tunable parameter measuring the ra-
tio between the stored patterns and the amount of available spins, namely
a =limy_,o, P/N, also referred to as network capacity.

As far as P scales sub-linearly with NV, i.e. in the low storage regime
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defined by a = 0, the phase diagram is ruled by the noise level § only: for
f < B. the system is a paramagnet, with (m,) = 0 and (g,) = 0, while
for 8 > B, the system performs as an attractor network, with (m,) # 0 for
a given p (selected by the external field) and (g,) = 0. In this regime no
dangerous glassy phase is lurking, yet the model is able to store only a tiny
amount of patterns as the capacity is sub-linear with the network volume N.
Conversely, when P scales linearly with N, i.e. in the high-storage regime
defined by o > 0, the phase diagram lives in the «,  plane (see Fig.(1.3)).
When « is small enough the system is expected to behave similarly to o = 0
hence as an associative network (with a particular Mattis magnetization posi-
tive but with also the two-replica overlap slightly positive as the glassy nature
is intrinsic for @ > 0). For « large enough (o > a.(8), ae(8 — o0) ~ 0.14)
however, the Hopfield model collapses on the Sherrington-Kirkpatrick model
as expected, hence with the Mattis magnetizations brutally reduced to zero
and the two-replica overlap close to one. The transition to the spin-glass
phase is often called “blackout scenario” in neural network community. Mak-
ing these predictions quantitative is a non-trivial task in statistical mechanics
and, nowadays several techniques are available, among which we quote the
replica-trick (originally used by the pioneers Amit-Gutfreund-Sompolinsky
[18]), the martingale method (originally developed by Pastur, Sherbina and
Tirozzi [53]) and the cavity field technique (recently developed by Guerra
and some of us in [2]).

23



Chapter 2
Dilution in the Hebb Rules

The paradigm, introduced almost three decades ago by Amit, Gutfreund
and Sompolinsky [17, 18], of analyzing neural networks through techniques
stemmed from statistical mechanics of disordered systems (in particular the
Replica Trick [59] for the Hopfield model [49]) has been so prolific that its
applications have gone far beyond Artificial Intelligence and Robotics, over-
lapping Statistical Inference [9], System Biology [66], Financial Market, plan-
ning [64], Theoretical Immunology [32] and much more.
As a result, research in this field is under continuous development, ranging
from the diverse applications outlined above, to a deeper and deeper under-
standing of the core-theory behind. For the sake of reaching results closer to
experimental neuroscience outcomes, scientists involved in the field tried to
bypass the rather crude mean field description of a fully connected network
of interacting spins, embedding them in diluted topologies as Erdos-Rényi
graphs [46], small-worlds [67] or even finitely connected graphs [10]. The
main point was showing robustness of the mean-field paradigm even in these
diluted, and in some sense “closer to biology", versions and this was indeed
successfully achieved (with the exception of too extreme degrees of dilution,
where the associative capacities of the network trivially break down).
Recently, a mapping between Hopfield networks and Boltzmann ma-
chines [1] allowed the introduction of dilution into associative networks from
a different perspective with respect to standard link removal & la Sompolin-
sky [46] or a la Coolen [10,67]. In fact, while in their papers these authors
perform dilution directly on the Hopfield network, through the equivalence
with Boltzmann machine, one may perform link dilution on the Boltzmann
machine and then map back the latter into the associative Hopfield-like net-
work [30]. Remarkably, the resulting model still works as an associative per-
former, as the Hebbian structure is preserved, but its capabilities are quite
different from the standard scenario. In particular, the resulting associative
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network may still be fully-connected but the stored patterns of information
display entries which, beyond coding information through digital values +1,
can also be blank [27,30]. In fact, any missing link in the bipartite Boltz-
mann machine corresponds to a blank entry in the related pattern of the
associative network.
Now, while standard (i.e., performed directly on the Hopfield network) dilu-
tion does not change qualitatively the system performances, the behavior of
the system resulting from hidden (i.e., performed on the underlying Boltz-
mann machine) dilution becomes “multitasking" because retrieval of a single
pattern, say ¢!, does not exhaust the whole spins, and the ones coupled with
the blank entries of £! are free to align with &2, whose entries will partially
be blank as well, hence eliciting, in turn, the retrieval of £* and so on up to
a parallel logarithmic (with respect to the volume of the network N) load of
all the stored patterns.
As a consequence, by tuning the degree of dilution in the hidden Boltzmann
network and the level of noise in the directed network, the system exhibits
a very rich phase diagram, whose investigation is the subject of the present
chapter.

Let us now move on and generalize the system described above in order to
account for the existence of blank entries in the patterns &’s. More precisely,
we replace Eq.(1.7) by

1—d 1—d
P(&}) = —5—0gr—1 + —5— 01 + ddgy, (2.1)

where d encodes the degree of “dilution” in pattern entries. Patterns are still
assumed as quenched and, of course, the definitions of the Hamiltonian (1.9)
and of the overlaps (1.3), with the Glauber dynamics provided by:

o;(t + dt) = sign[tanh[Bh;(t)] + n;(1)],

(where n € [—1, +1] is a random number and represent the stochasticity and
h; is the field acting on the i-th spin) still hold.

As discussed in [27,30], this kind of extension has strong biological mo-
tivations and also yields highly non-trivial thermodynamic outcomes. In
fact, the distribution in Eq.(1.7) necessarily implies that the retrieval of a
unique pattern does employ all the available spins, so that no resources are
left for further tasks. Conversely, with Eq.(2.1) the retrieval of one pattern
still allows available spins (i.e., those corresponding to the blank entries of
the retrieved pattern), which can be used to recall other patterns up to the
exhaustion of all spins. The resulting network is therefore able to process
several patterns simultaneously.
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In particular, in the low-storage regime, it was shown both analytically
(via density of states analysis) and numerically (via Monte Carlo simula-
tions) [30], that the system evolves toward an equilibrium state where several
patterns are simultaneously retrieved. In the noiseless limit 7' = 0 and for d
not too large, the equilibrium state is characterized by a hierarchical overlap

m=(1-d)(1,d,d*...,0), (2.2)

hereafter referred to as “parallel ansatz”. On the other hand, in the presence of
noise or for large degrees of dilution in pattern entries, this state ceases to be a
stable solution for the system and different states, possibly spurious, emerge.
In the following highlight the equilibrium states of this system as a function
of the parameters d and 7', and finally build a phase diagram; to this task
we first develop a rigorous mathematical treatment for calculating the free
energy of the model and then we obtain the self-consistencies constraining the
phase-diagram; finally, we solve these equations both numerically and with a
stability analysis. In this way we are able to draw the phase diagram, whose
peculiarities lie in the stability of both even and odd mixture of spurious
states (in proper regions of the parameters) and the formation of parallel
spurious state. Both these results generalize the standard counterpart of
classical Hopfield networks.

Findings are double-checked through Monte Carlo runs that are in agreement
with the picture we obtained.

2.1 Notes About the Coupling Distribution

As it is immediate to check, each &' = 0 in the i*" entry of the bit-string £# in
the associative network, which ultimately affects the interaction matrix J =
Jij. Of course, the larger the degree of dilution, the stronger the difference
between such (random) coupling matrix and its Hopfield counterpart. This
section is devoted to the investigation of the properties of the matrix J.

Let us consider a set of IV nodes labeled as i = 1, ..., N and let us associate
to each node a string of length P and built from the alphabet {—1,0,1},
meaning that the generic element ¢!, with ¢ € [1, N] and p € [1, P], can equal
either +1 or 0. For the network described by the Hamiltonian in Eq.(1.9),
the interaction strength between two arbitrary nodes ¢ and j is given by

P

Ty =Y &l (2.3)

pn=1
For the following treatment it is more convenient not to normalize the cou-
pling Jij, differently from the definition used in Eq.(1.9). Of course J;; €
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[— P, P]. Equation (2.3) gives rise to a network of mutually and symmetrically
interacting nodes, where a link between nodes ¢ and j is drawn whenever they
do interact directly (J;; # 0), either imitatively (J;; > 0) or anti-imitatively
(Jij <0).

First, one can calculate the probability that two nodes (since they are
arbitrary we will drop the indexes) in the network are linked together, namely

P
Pink(d, P) = P(J #0;d, P) = 1= P(J = 0;d, P) = 1 =} _ Paum—o(k; d, P),

= (2.4)

where Psum_o(k;d, P) is the probability that two strings display (an even
number) k of non-null matchings summing up to zero; otherwise stated, there
exist exactly k values of u such that '€}’ # 0 and they are half positive and
half negative. In particular, Pym_o(0;d, P) = [d(2 — d)]”, because this is the
probability that, for any p € [1, P, at least one entry (either &' or £ or
both) is equal to zero. More generally,

Pym—o(k;d, P) = (1%1)% [d(2 —d))F* (11:) {2’“ (k];Q)] , (2.5)

where the first and the second factors in the r.h.s. require that k entries are
non-zero and the remaining P — k entries are zero; the third factor accounts
for permutation between zero and non-zero entries, while the last term is the
number of configurations leading to a null sum for non-null entries. Therefore,
we have

P(J = 0:d, P) = [d(2 — d)]PkXP% [2(;(2_7_‘”;)} k (];) ( k%) o (26)

whose plot is shown in Fig.(2.1). As for its asymptotic behavior, we distin-
guish the following cases (for simplicity we assume P finite and even):

P(J=0:d,P)=1— P(1—d)+ %P(P (1 —dr 01 —d) (27)

_1)P2 /x
P(J=0;d,P) = F(1/2(— g)r({; P7) (1—2Pd)+ O(d?)

~ 1 _QPd( P ) + O(d?). (2.8)

T oar \PJ2

The average number of nearest neighbors per node (z)4 py follows immedi-
ately as (2)q,p.n = NPink(d, P).
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Figure 2.1: The probability P(J = 0;d; P) is plotted as a function of the
dilution d and for different values of P, as shown by the legend. Notice the
semilogarithmic scale and that dilution is rescaled by /p so to highlight the
common scaling of the distributions.

More generally, we can derive the coupling distribution P(J;d, P), once
having defined P,(k), P_1(k) and Py(k), as the probability that, given two
strings, they display k& matches each equal to +1, —1 and 0, respectively,
namely

Paalhid) = Pl ) = | & ;d>2r, Pokid) = [d2 - ). (29)
Hence, we can write
PP P+ J;d)Po(l;d)Py(P — 21 — J: d) P!
PUidP) = 3 0+ )P — 20— J) (2.10)

=0

~ N(0,0,(d,P)).

The last asymptotic holds for large P; the null mean value (J)yp = 0 is
due to the symmetry characterizing P(&) | while the standard deviation is
=/ (J2)apr =VP(l -
An explicit, exact expressmn for this probability can be written for a
particular value of d, by exploiting Gauss’s Hypergeometric Theorem [69], so
that when 422 = 1, corresponding to d = 1 — 1/2/2 ~ 0.293, we have

2P e
P(J;1—+/2/2,P)=4"F ~—
( / ) (P + J ) VTP
In the last passage we used the Stirling approximation assuming P =+ J large,
namely that the distribution is peaked on non-extreme values of J.
It is worth underlining that P(J;d, P) does not depend on the size N.
Indeed, patterns are drawn independently and randomly so that the coupling

-J2/p
(2.11)
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Ji; may be regarded as the distance covered by a random walk of length
B and endowed with a waiting probability d(2 — d). Hence, the end-to-
end distance is distributed normally around zero and with variance (mean
squared distance) which is given by the diffusion law, namely ~ P. The
possibility of the walker to stop simply reduces the effective walk length to
[(1—d)(2—d)]P = (1-d)?P in agreement with results above.

2.1.1 Pattern dilution versus Topological dilution

Dilution on pattern entries does not necessarily yield to a topological dilu-
tion for the associative network, but, as we will see, can induce non-trivial
cooperative effects. On the other hand, a topological dilution can be realized
by directly cutting the edges on a standard Hopfield network. In this section
we highlight the deep difference between these two kinds of dilution.

First, we recall that, according to a mean-field approach, the network is
expected to display a giant component when the average link probability is
larger than 1/N. In the thermodynamic limit and assuming a large enough
size P (stemming from either low, i.e. P ~ log N, or high, i.e. P ~ N,
storage regimes) to ensure the result in Eq.(2.10) to hold, for any finite value
of d the emergent graph turns out to be always over-percolated. In fact,
Pink(d,P) = 1 — P(J = 0;d,P) ~ 1 —1/y/2m0%, so that it suffices that
o7 > N/[V2r(N —1)] = 1/+/27 and this leads to d < 1 — (27P)"1/2 = 1.

On the other hand, when P is finite we can check the possible discon-
nection of the network by studying P(J = 0;d, P) from Eq.(2.7) and we get
that Py (d, P) < 1/N for d > 1 —1/v/PN. Thus, in the thermodynamic
limit, for any finite d, the graph is still overpercolated. Replacing 1/N with
(log N)/N, one also finds that the graph is even always connected.

Different scenarios may emerge if we take d properly approaching to 1 as
N is increased [25].

Another kind of dilution can be realized by directly cutting edges in the
resulting associative network, as for instance early investigated in the neural
scenario by Sompolinsky on the Erdos-Rényi graph [17,46] or more recently
by Coolen and coworkers on small worlds and scale-free structures [10,47].

Such different ways of performing dilution - either on links of the as-
sociative network (see [10,17,46,47]) or on pattern entries (see Eq.(1.7))
- yield deeply different thermodynamic behaviors. To see this, let us con-
sider the field insisting on each spin, namely for the generic i*" spin h; =
* Zgéjzl Ji;0;, and analyze its distribution P(h|d) at zero noise level. When
dilution is realized on links (d is the fraction of links cut), only an average
fraction d of the H available spins participates to h, in such a way that both
the peak and the span of the distribution decrease with d (Fig.(2.2), left).
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Figure 2.2: Left panel: Distribution of the field h acting on the spins with
(Sompolinsky) dilution. Right panel: Distribution of the field h acting on
the spins with (our) dilution.

Conversely, when dilution is realized on the single bit £ (d is the fraction
of null entries in a pattern), as d > 0, P(h|d) gets broader and peaked at
smaller values of fields.

The latter effect is due to the fact that couplings are, on average, of
smaller magnitude. As for the former effect, we notice that, at 5, N and
P fixed, when dilution is introduced in bit-strings, couplings are made uni-
formly weaker (this effect is analogous to a rise in the fast noise) so that
the distribution of spin configurations, and consequently also P(h|d), gets
broader. At small values of dilution this effect dominates, while at larger
values the overall reduction of coupling strengths prevails and fields get not
only smaller but also more peaked (Fig.(2.2), right).

2.2 Statistical Mechanics Analysis

We now solve the general model described by the Hamiltonian (1.9), with
patterns diluted according to (2.1), in the low storage regime P ~ log N,
such that the limit o = limy_ o, P/N = 0 holds'

As standard in disordered statistical mechanics, we introduce three types
of average for an observable o(c, £):

'Results outlined within this scaling can be extended with little effort to the whole
region P ~ N7, with v < 1, such that the constraint o = 0 is preserved, as realized in the
Willshaw model [20] concerning neural sparse coding.

Note further that there is a deep similarity with the Potts model with pairwise interaction
[41].
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i. the Boltzmann average w(o) = >, o(0, ) exp[—SH(0;¢)]/Zn,p(B, d),
where

Znp(B,d) = exp[-BHy(0,€)]

{o}

is called “partition function",
11. the average E performed over the quenched disordered couplings &,
iti. the global expectation Ew(o) defined by the brackets (o).
Given these definitions, for the average energy of the system F we can write
E =limy_,o.((Hn(0,€))/N).
Also, we are interested in finding an explicit expression for the order param-
eters of the model, namely the averaged P Mattis magnetizations

N
1
_ 1 p
(m") = ]\}LmooEw (N Zlfj 0j> . (2.12)
]:
To this task we need to introduce the statistical pressure

o(B,d) = Jim < In(Zy p(5,d)),
which is immediately related to the free energy per site f(3, d) by the relation
f(B,d) = —a(B,d)/ because, by maximizing a(f,d) with respect to the P
magnetizations (m#), we get exactly the self consistence equations for these
order parameters, whose solutions will give us a picture of the phase diagram.
In the past decades, scientists involved in disordered statistical mechan-
ics investigations, even beyond Artificial Intelligence, paved several strands
for solving this kind of problems, and nowadays a plethora of techniques is
available. We extend early ideas of Guerra, on the line developed in [43],
consisting in modeling disordered statistical mechanics through dynamical
system theory and in particular, here, we are going to proceed as follows:
Our statistical-mechanics problem is mapped into a diffusive problem embed-
ded in a P-dimensional space and with given, known, boundaries. We solve
the diffusive problem via standard Green-propagator technique, and then we
will map back the obtained solutions in terms of their original statistical me-
chanics meaning.
To this task, let us introduce and consider a generalized Boltzmann factor
By (x,t) depending on P+1 parameters x, ¢t (which we think of as generalized
P-dimensional Euclidean space and time)

N P P N

t

Bn(x,t;€,0) = exp (ﬁ Z 0i0j Z ffff + qu Z ﬁfaj)a (2.13)
i#j p=1 p=1 Jj=1
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and the generalized statistical pressure

an(x,t) = %ln ZBN(X,t;f,U) : (2.14)
{o}

Notice that, for proper values of x,t¢, namely x = 0 and t = [, classical
statistical mechanics is recovered as

a(f,d) = lim ay(x=0,t= /)= lim —ln ZBNX—O t=03;¢0)

N—oo N—ooo N
{c}

In the same way, the average (-) ) will be denoted by (-), wherever evaluated
in the sense of statistical mechanics, namely

> (o1 0(0,§)Bn(x, 1€, 0)

0)(x,t) = ) 2.15
(Ol > (o) Br(x, €, 0) (215)
<0> . Z{a} 0(07 5) exp[—ﬁH(J, 5)] . <0> (2 16)
>y exp[~3H (0. €)] e |
It is immediate to see that the following equations hold:
ataN(X7t)_ 22 < >(xt
2.17
ey (,1) = ()i 210
and, defining a vector I'y(x, t) of elements I'y (x,t) = —0,,an(x,t), by con-
struction 'y (x,¢) obeys the following equation:
P
OTH (x,1) + > T%(x, )02, Ty (x, 1)) Za%r“ (x,t),  (2.18)
v=1

which happens to be in the form of a Burgers’ equation for the vector I'y(x, t)
with a kinematic viscosity (2N)~!. As it is well-known, the Burger equation
can be mapped into a P-dimensional diffusive problem using the Cole-Hopf
transformation [43] as follow:

Yy (x,t) = exp {—N/d:vuffbv(x, t)] = exp[Nay(x,t)], (2.19)
and its £ and x streaming read off as

atqu)N(Xa t) - N(ataN (Xu t))¢(x> t)v
39@#151\/ (X, t) = N(axu an (X7 t))w()g t)?
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in such a way that

82 1V¢N(X> t) - N¢N(X7 t) {aa%ux,,aN(X7 t) + N[aquéN(X, t)] [axyOéN(X, t)]} :
(2.21)
Now, from equations (2.20), (2.21) we get

Dby (x,1) — QNZ[ gquxt} 0. (2.22)

Therefore, we established a reformulation of the problem of calculating the
thermodynamic potential «(3,d) over the equilibrium configuration of the
order parameters for an attractors network model in terms of a diffusion
equation for the function iy (x,t), namely the Cole-Hopf transform of the
Mattis magnetizations, with a diffusion coefficient D = (2N)~!, that is

Oion (x,t) = DV2hn(x,t) = 0,

Zexp (qu25 O'J) (2.23)
{c}

We solve this Cauchy problem (2.23) through standard techniques: first, we
map the diffusive equation in the Fourier space, then we calculate the Green
propagator for the homogenous configuration, and finally we will inverse-
transform the solution.

Let us consider the Fourier transform:

JN(k, t) = f]RP d¥z exp ( — izu xuku)¢N£X7 t),

, 2.24
N, = b for hexp (15, 2k ) O, t), Y

and the related Green problem:
8,G(k,t) + DE*G(k, t) = 6(t), (2.25)

where é(k, t) is the Green propagator in the k-space, which can be decom-
posed as B B B
G(k,t) = Gr(k,t) + Gs(k, 1), (2.26)

being Gr(k, t) the general solution of the homogeneous problem and Gs(k, t)
a particular solution of the non-homogeneous problem. Hence, the full solu-
tion will be

Uy (x,t) = /RP dP2'Gr(x — ', )N (X, 0), (2.27)
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where the function Gr(k,t) fulfills

0,Gr(k,t) — DK*Gr(k,t) =0,

2.28
GR(k7 O) =1, ( )
hence B
G(k,t) = exp(—Dk?*t),
2 (2.29)
G(Xa t) = (2\/%)13 exp(m).
Therefore, we get
N\: [+
77Z)N(X7 t) = (%) / <H dw;) €Xp [_Nq)(xla X, t)] ) (230)
pn=1

P /\2 N P
T, —x 1
O(x',x,t) = 2 l;t D —In2— v g In [cosh ( E xL&f)] (2.31)
j=1 pn=1

ay(x,t) = %ln [N (x,1)]. (2.32)

We can solve now the saddle-point equation

a(x,t) = lim ay(x,t) = Extr{®}, (2.33)

N—oo

where we neglected O(N™') terms, as we performed the thermodynamic
limit. Finally, by replacing t = § and x = 0 and z), = 5(m,) (hence the
original statistical mechanics framework), we obtain the following expressions
for the statistical pressure

a(B,d) = §Z<mu)2 —In(2) — <ln [cosh (5 Z<m#>gu>] > o (2.34)

3

whose extremization offers immediately the P desired self-consistency equa-
tions for all the (m,),

(my,) = <£” tanh (ﬁZﬁ“(mQ) >5 Y e [1, P, (2.35)

where with the index £ we emphasized once more that the disorder average
over the quenched patterns is performed as well.
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Of course, the self-consistence equations (2.35) recover those obtained
in [30] via different analytical techniques, where they were also shown to
yield to the parallel ansatz (2.2), which, in turn, can be formally written as

P v—1
oi=&+ > &I, (2:36)
v=2 pn=1

and it will be referred to as o(*).

The parallel ansatz (2.2) can be understood rather intuitively. To fix
ideas let us assume zero noise level and that one pattern, say pu = 1, is
perfectly retrieved. This means that the related average magnetization is
m; = (1 — d), while a fraction d of spins is still available and they can
arrange to retrieve a further pattern, say p = 2. Again, not all of them can
match non-null entries in pattern £? and the related average magnetization is
mg = d(1 — d). Proceeding in the same way, for all spins, we get the parallel
state. Notice that, the number K of patterns which are, at least partially,
retrieved does not necessarily equal P. In fact, due to discreteness, it must
be df~1(1 —d) < 1/N, namely at least one spin must be aligned with &%,
and this implies K < log N.

Such a hierarchical, parallel, fashion for alignment, providing an overall
energy (see Eq.(1.9))

T

(1— )1 - d)

E®) = _N 1-d)d* 12+ P=—-N
D 1 —d)d 1+ T

k=1

+P, (2.37)

is more optimal than a wuniform alignment of spins amongst the available
patterns, as this case would yield my = (1 — d)/P for any k and an overall
energy

P 2 2

1— 1—-d)*N
EV) — N E (Td) +P= _% + P, (2.38)
k=1

being (1 — d?*?F) > (1 — d?)/P.
On the other hand, as we will see in Sec. 2.3, when d > d. ~ 1/2, the state
(2.2) is no longer stable and spurious states do emerge.

Before proceeding, it is worth stressing that, although the parallel state
(2.2) displays non-zero overlap with several patterns, it is deeply different,
and must not be confused with, a spurious state in standard Hopfield net-
works. In fact, in the former case, at least one pattern is completely retrieved,
while in spurious states, the overlap with each memory pattern involved is
only partial.
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Figure 2.3: Behavior of the two Mattis magnetizations m; and msy versus d
at two (small) noise levels, namely 37 = 107 (left panel) and 37! = 0.05
(right panel).

Moreover, in standard Hopfield networks, spurious states are somehow unde-
sirable because they provide corrupted information with respect to the best
retrieval achievable where one, and only one, pattern is exactly retrieved.
Conversely, in our model, the retrieval of more-than-one pattern is unavoid-
able (for finite d and  — o) and the quality of retrieval may be excellent
(perfect) in the case of patterns poorly (not) overlapping.

Finally, and most importantly, for 5 — oo and in a wide region of dilution,
the parallel state ¢(¥) corresponds to a global minimum for the energy. This
is not the case for an arbitrary mixture of states.

2.2.1 The case P=2

The self-consistencies encoded into Eq.(2.35) for the simplest case P = 2 are

2
m1(8,d) = d(1—d) tanh(Bm,) + a 2d) [tanh[B(m1 +ma)] + tanh[B(m1 —m2)]],
(2.39)

(1—d)?
ma(B,d) = d(1—d)tanh(Smse) + 5 [ tanh[B(m +mg)] — tanh[B(m1 —ms)]].
(2.40)

The solution of these equations (m Vs d) for different values of § is reported
in Fig.(2.3). In the low (fast) noise limit (f — o0), when no dilution is
present (d = 0) the second magnetization my disappears and the first mag-
netization m; approaches the value 1 as expected because the Hopfield model
is recovered. As dilution is increased, my decreases linearly, while my displays
a parabolic profile with peak at d = 0.5. In the presence of (fast) noise, mq
starts growing for higher values of dilution because (as will be cleared by the
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signal-to-noise analysis of the next section) the signal? insisting on the latter,
which is proportional to d(1 —d), must be higher than the noise level in order
to be effective. Also notice that, from intermediate dilution onwards, m, and
ms collapse and the related curves converge at a “bifurcation” point.

Let us now deepen these results, first from a more intuitive point of view,
and later from a more rigorous one.

In the zero (fast) noise limit, let us fix ¢! as the pattern corresponding to
the maximum overlap with the magnetic configuration, so that the expected
Mattis magnetization is (m;) = (1 — d). The remaining N d “free” spins
will seek for patterns to align with, namely displaying non-null entries in
correspondence with the null entries of &' Actually, due to dilution, one
expects that the second best-matching pattern only engages N d(1—d) spins,
while the remaining N d? will match other patterns; in general, the k-th best-
matching pattern is expected to engage N d*~*(1 — d).

Such a hierarchical fashion for alignment is more optimal than a uni-
form alignment of spins amongst the available patterns which would yield
my, = d/B for any k and an overall energy —N/23", (d/P)* = —(d*N)/(2P).
Indeed, the hierarchical solution is the one that minimizes the energy (recall
that the magnetization are summed quadratically) as well as the most likely
from a combinatorics point of view, providing an overall energy —N/2 >, [(1—
d)d*)? = —N(1 — d*P)(1 — d)/[2(1 + d)].

Therefore, the system is able to perform the “parallel retrieval” of K

patterns, whose magnetizations are m, = (1/N)> ,_, &/'h;, that is (m;) =
(1—d), (mo) = d(1—d), ..., {mg) = d¥(1 —d). Tt is easy to see that it must
be d¥*! = (. Hence, for any finite value of d, an infinite number of patterns
can in principle be retrieved, i.e. d¥ — 0, for K — oco. More accurately,
taking into account the discreteness of the system, we have that the last pat-
tern to be retrieved will match only one spin, which yields N d¥(1 —d) =1,
from which K = [log N + log(1 — d)]/log(1/d) ~ log N. In the low storage
regime, with P finite or scaling logarithmically with N, the retrieval of all
patterns can, in principle, always be accomplished.
When noise is also introduced, we have that for the :-th pattern to be re-
trieved the field felt by spins has to be larger than the noise level, that is
[d(1 —d)] > 871, if this condition is not fulfilled the field is confused with
the noise and the pattern can not be retrieved.

In the case of large degree of dilution, i.e. d close to 1, patterns are so
sparse that not all the NV spins can be matched; assuming that patterns get
orthogonal, only a fraction P(1 — d)/N (= (1 —d) or = alog N(1 — d)/N
in low and high storage regime, respectively) of spins is aligned with a given

*We use the term "fields" for the forces acting on h; and "channels" for those on m,,.
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pattern, the remaining are free and their mean value is zero. In this condition
the emergent graph is also disconnected.

Beyond constraints on d, probably the most striking feature displayed by
my, my is the bifurcation occurring at intermediate values of dilution (see
Fig.(2.3)). In order to understand this phenomenon we can divide spins
into four sets: &, which contains spins ¢ corresponding to zero entries in
both patterns (¢! = &2 = 0), therefore behaving paramagnetically; S;, which
includes spins seeing only one pattern (|&}] # [£2]);

S3, which contains spins corresponding to two parallel, non-null entries

(¢! = &2 # 0), thus being the most stable; S;, which includes spins 4 corre-
sponding to two parallel, non-null entries (¢} = —&? # 0), hence intrinsically
frustrated.
The cardinality of these sets are: |S;| = d?, S| = 2d(1—d), |S;3] = (1—d)?/2,
and |Sy| = (1 — d)*/2. Now, the most prone spin to align with the related
patterns are those in S3 and in S,, and this requires (1 —d) < 87! for the
field to get effective. As d is further reduced, m; and msy grow paired, due
to the symmetry of the sets S; and S3. The growth proceeds paired until
the magnetizations get the value m; = my = (1 — d)?/2 + d(1 — d), where
the two contributes come from spins aligned with both patterns and with the
unique pattern they see, respectively. From this dilution onwards frustrated
spins also start to align so that one magnetization necessarily prevails over
the other. This explanation can be extended to any finite B and, in general,
the number of sets turns out to be P+ 1+ 3.1 | 55E].

Now we want to quantify these bifurcation points, and to this task let us

call
x = (my) — (ma). (2.41)

We use Egs. (2.39) and (2.40) and expand for small values of
z = d(1 — d)[tanh(B(m1)) — tanh(B(my))] + (1 — d)* tanh (B{m1) — (m2))

(2.42)
where
d(1 — d) [tanh (8(m4)) — tanh (5{ms))] ~
d(1—d) {tanh(ﬂ(mﬁ) — tanh(B(my)) + W] , (2.43)
and
(1 —d)*tanh(B(m;) — (my)) ~ (1 — d)*Bz + O(z?). (2.44)
Thus, the leading term is
N d(1—d)p a2l
x {—cosh2(ﬁ(m1>) + 6(1 —d) ] ) (2.45)

38



1 0.16

— 1] —111
—_— T — M2
ms | R m3 40.14
my
0.8 ms
F me {0.12
06 b 10.1
g F 10.08 &
0.4 — \ {0.06
b 10.04
0.2 \
. b 10.02
\
0 ‘ 0
0 0.5 1 085 0.9 0.95 1
d d

Figure 2.4: Parallel retrieval of three (left panel) and of six (right panel)
patterns. Behavior of the two Mattis magnetization versus d at noise level
f~1 =0.05.

The critical value of g corresponding to the bifurcation point is defined as
bif 1
B = : (2.46)

_ J\2 (1-4d) 1
(L—d)?|1+ d  cosh?(82 my)

This mechanism can be easily generalized to the case of multiple patterns.

We move now to analyze the critical noise level at which the magneti-
zations disappear and the network dynamics becomes ergodic, still in this
test-case of two patterns: Expanding expressions (2.40) we find

(ma) ~ d(1 - )3 0ma)] + L= D [50m) + Blmap+
+ %(<m1>3 + (ma)® + 3(m1)*(ma) + 3(my) (ms)*)]+ (2.47)
a1 - )2 may — S a0m) — goma) + 2 ((may+
— (ma)® — 3(m1)*(ma) + 3(my) (my)?)],
such that we can write
(ma) ~ (1 — d)B(mz) + O((m2)?). (2.48)
Therefore the critical noise level turns out to be
1
B. = T4 (2.49)

This calculation can easily be generalized to several patterns, too.
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Figure 2.5: Parallel retrieval of three strategies. Behavior of three Mattis
magnetization versus d in the slow (fast) noise limit (ie. B~! = 107%).
Continuous lines correspond to numerical solution of Egs. (2.50)-(2.52), while
dashed lines correspond to Monte Carlo simulations.

2.2.2 The case P=3

When three patterns are considered, the related self-consistent equations that
constraint the system to parallel processing are the following (we skip the
brackets (.) for the sake of clearness):

ml = d?(1 — d) tanh[8m1] — (1/4)d(1 — d)? tanh[8(—m1 — m2)]+

+ (1/4)d(1 — d)? tanh[B(m1 — m2)] — (1/4)d(1 — d)? tanh[(—m1 + m2)]+

+ (1/4)d(1 — d)? tanh[B(m1 4+ m2)] — (1/4)d(1 — d)? tanh[8(—m1 — m3)]+

— (1/4)d(1 — d)? tanh[8(m1 — m3)] — (1/8)(1 — d)? tanh[B(—m1 — m2 — m3)]+

+(1/8 d)® tanh[B(m1 — m2 — m3)] — (1/8)(1 — d)3 tanh[B(—m1 + m2 — m3)]+ (2.50)

)d

)

Y(1 —d)®ta

+ (1/8)(1 — d)? tanh[B(m1 + m2 — m3)] — (1/4)d(1 — d)? tanh[3(—m1 + m3)]+

+ (1/4)d(1 — d)? tanh[B(m1 + m3)] — (1/8)(1 — d)3 tanh[3(—m1 — m2 4+ m3)]+

+(1/8) d)® tanh[B(m1 — m2 4+ m3)] — (1/8)(1 — d) tanh[B(—m1 + m2 + m3)]+
)

(1-d)
+ (1/8)(1 — d) tanh[B(m1 + m2 + m3)]]
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m2 = —(1/4)d(1 — d)? tanh[8(—m1 — m2)] — (1/4)d(1 — d)? tanh[B(m1 — m2)]+

+d%(1 — d) tanh[8m2] + (1/4)d(1 — d)? tanh[3(—m1 + m2)]+

+ (1/4)d(1 — d)? tanh[B(m1 + m2)] — (1/4)d(1 — d)? tanh[8(—m2 — m3)]+

— (1/8)(1 — d)3 tanh[3(—m1 — m2 — m3)] — (1/8)(1 — d)® tanh[B(m1 — m2 — m3)]+

+ (1/4)d(1 — d)? tanh[B8(m2 — m3)] + (1/8)(1 — d)3 tanh[3(—m1 + m2 — m3)]+ (2.51)

+(1/8)(1 — d)® tanh[8(m1 4+ m2 — m3)] — (1/4)d(1 — d)? tanh[8(—m2 + m3)]+
)
)
)

—~ o~

)
— (1/8)(1 — d)3 tanh[B(—m1 — m2 + m3)] — (1/8)(1 — d)3 tanh[B(m1 — m2 4+ m3)]+
+ (1/4)d(1 — d)? tanh[B8(m2 + m3)] + (1/8)(1 — d)3 tanh[3(—m1 + m2 4+ m3)]+
+ (1/8)(1 — d)® tanh[8(m1 + m2 + m3)]]
m3 = —(1/4)d(1 — d)? tanh[8(—m1 — m3)] — (1/4)d(1 — d)? tanh[B(m1 — m3)]+
— (1/4)d(1 — d)? tanh[3(—m2 — m3)] — (1/8)(1 — d)* tanh[3(—m1 — m2 — m3)]—
— (1/8)(1 — d)3 tanh[B(m1 — m2 — m3)] — (1/4)d(1 — d)? tanh[8(m2 — m3)]—
— (1/8)(1 — d)3 tanh[B(—m1 + m2 — m3)] — (1/8)(1 — d)® tanh[B(m1 + m2 — m3)]+
+ d?(1 — d) tanh[m3] 4 (1/4)d(1 — d)? tanh[B(—m1 + m3)]+ (2.52)
+ (1/4)d(1 — d)* tanh[B(m1 + m3)] + (1/4)d(1 — d)? tanh[3(—m2 + m3)]+
+ (1/8)(1 — d)3 tanh[B(—m1 — m2 + m3)] + (1/8)(1 — d)3 tanh[B(m1 — m2 4+ m3)]+
+ (1/4)d(1 — d)? tanh[8(m2 + m3)] + (1/8)(1 — d)3 tanh[3(—m1 + m2 4+ m3)]+
+ (1/8)(1 — d)2 tanh[B(m1 + m2 + m3)]].

Recalling the picture explained in the previous subsection, the magnetiza-
tions my, mo and mg again grow together until all spins corresponding to
equal non-null entries and to single non-null entries are aligned. Then spins
which are aligned only with two patterns out of three start to feel the field
and get aligned hence breaking the symmetry. At this point, say m; and mo,
still grow while mg decreases. The next symmetry-breaking occurs when all
spins corresponding to equal non-null entries &' = €2 get aligned. From this
point onward one magnetization prevails against the other. The same process
applies, mutatis mutandis, for larger number of patterns (see Fig.2.4).

The last subtlety to be investigated is given by the small discontinuities
in the behavior of the magnetizations (see for instance Fig.2.5). To explain
this feature, let us consider the set of patterns &,&s, ..., p and assume the
zero fast noise limit (8 — oo) for the sake of simplicity, so that we can take
|m¥| = (1—d)d*~1, for k =1, ..., P as (absolute) Mattis magnetizations. The
field insisting on the arbitrary spin o; can be written as

N P P P
1 1
_ _ I el ©
- NZJijaj = ;Q m — N;gi o, ~ ;gi m, (2.53)

J#i

where in the last passage we dropped the second sum as it is vanishing in
the thermodynamic limit. Now, let us consider the spin hy, which, again
without loss of generality can be thought of as aligned with the first pattern
and equal to +1. The field insisting on this lymphocyte is by = (1 — d)[1 +
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2512 (1, p)d* 1], where €(1, u) = sign(&}', m*). We notice that, in general,
hq is not positive definite so that the occurrence of the condition h; < 0 would
lead to the spin flip h; = 1 — hy = —1 and, consequently, to m; < (1—d). In
order to understand this effect we focus on €(1, ). By assumption, m; = (1—
d) and h; = £, so that the first entry of pattern u = 1 effectively contributes
to the related magnetization m;. As for the following magnetizations 1,
effective contributes can arise only from entries 5]‘-”2 corresponding to null
entries in 5]1. Otherwise stated, there is no correlation between &' and m*
for > 1 (in fact, €(1, p) is zero on average), and one can count the pattern
configurations leading to h; < 0 applying combinatorics.

Seeking for clarity, we consider the following explicit cases:
- The probability that the first entries of all patterns p > 1 are misaligned
with respect to the related magnetizations is [(1 — d)/2]" !, hence giving a
field oy = (1 =d)[1 =3 ., d* '] =1 —2d+d"*". Such a field turns out to
be negative in the interval a; < d < 1, where a; — 1/2 for P — oc.
- The probability that the first entries of all patterns ;1 > 1 but one, say &,
are misaligned and that & = 0 is d[(1 — d)/2]"2, and this would lead to
hi(l) = (1 —d) —d(1 —d?) + (1 — d)d""!, which is negative for ay < d < 1,
where ay — 1/2 for P — o0; of course hy(l) is growing with [.
- The probability that the first entries of all patterns p > 1 but one, say
¢!, are misaligned and that & =1, is d[(1 — d)/2]"~! and this configuration
yvields hi(l) = (1—d)—d(1—d")+2(1—d)d"~!. For instance, when [ = 2 and
P > 1, the field is negative for d > 1//2; when [ = 3 the field is negative
for d > a3, where a3 ~ 0.648.
Summarizing, in the zero noise limit § — oo for any given dilution d, the
probability that m; < (1 — d) can be written as a sum over pattern configu-
rations leading to h; < 0. For instance, for P = 3, only one out of the 35!
possible configurations, i.e. sign(&, m*) = sgn(&4, m*) = —1, can yield a
spin-flip: the corresponding field is 7y = (1 —d)(1 —d —d?), which is negative
for d > (v/5 —1)/2 =~ 0.62 (see Fig.(2.5)). Therefore, for that value of dilu-
tion onwards, m; is reduced with respect to the optimal value (1 — d). The
extent of the loss is a fraction 1/9 of the total, namely =~ 0.34 (see Fig.(2.5)).

Notice that while the change reduces my, other magnetizations are favored
by the spin-flip and undergo a proportional increment. Also, the occurrence
of a magnetization reduction with respect to the optimal value is more likely
for the highest magnetization my, because fields insisting on spins contribut-
ing to m; are the most complex, being the sum of P — 1 terms. The same
discussion can be applied in turns to msy: now the number of terms which sum
up to give the field insisting on the (1 —d)d spins which contribute effectively
to mg is P — 2, so that there are far less configurations able to yield a nega-
tive field. Consequently, a loss in msy is less likely. Therefore, as long as the
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number of patterns allows readjustments in the value of magnetizations with
respect to those expected, the arbitrary m, may display complex corrections
(possibly occurring at slightly different values of d) due to the combination of
several simple corrections, each corresponding to the readjustment affecting
the previous magnetizations m,j (see Fig.(2.5)).

2.2.3 Signal to noise ratio

As usually done in the neural network context [17], we couple the statisti-
cal mechanics inspection to signal-to-noise analysis. Aim of this procedure
is trying to confirm the “parallel ansatz" we implicitly made by studying
the stability of the basins of attractions (whose fixed points are the learned
strategies) created in the hierarchical fashion we prescribed. We recall that
the model we are investigating describes a low storage of information in the
associative network so that no slow noise is induced by the underlying spin
glass, i.e. @ = 0. Nonetheless, we study the signal to noise ratio in the zero
fast noise limit (8 — oo) as a problem formulated in general terms of «, d;
then, we take the limit &« — 0 to get estimate about the stability of the
basins of attractions (where the presence of fast noise can possibly produce
fluctuations).

Without loss of generality, we assume that the network is retrieving the
first pattern. This means that spins are aligned with the non-null entries in
the first bit-string ¢!, while the remaining spins explore the other patterns.
Thus, for the generic spin o; we can write

P v—1
o =&+ & JTaen. (2.54)
v=2 pn=1
Accordingly, the local field acting on the i** lymphocyte can be written as

1 N P P v—1
hi=x2 0 8¢ |6+ ¢ 11 5(55-‘)] : (2.55)
v=2 pn=1

J#FL @
e In the reference case P = 1, like for the pure states of the Hopfield
network, we set

0i =& +0(& ki, (2.56)

where k; is a random variable uniformly distributed on the values +1
added to ensure that there are no nulls entries in the state of the net-
work. Hence we find

(hio)e = (signal + noise)e = (signal)e (2.57)
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being (noises)e = 0, and so for large N we have

N -1
(signal)e = T(l —d) = (1—-4d), (2.58)
while
. 2 P—1 2 2
((noises)”)e = T(l —d)* =a(l —d)*. (2.59)
e In the test case of two patterns retrieved, P = 2, we set:
0i =& +0(&)IE + (€K (2.60)

Now, we need to distinguish between the various possible configura-
tions:

— Vi such that &} # 0,£2 = 0 and so that o; = & # 0 for large value

of N
(signal)e = (1 —d), (noises)e =0, (2.61)
((noises)?)e = S 1]3[(2P ) (1—-d)?=a(l—d)?* (2.62)
— Vi such that & #0,&? # 0 and so that o; =&} # 0
if & =&
(signal)e = 2(1 —d) — (1 —d)*,  (noises)e = 0, (2.63)
e — ¢
(signal)e = (1 —d)?,  (noises)s = 0. (2.64)
and in both cases
((noises)?)e =
W=DP= D ap e D=2 g a2 — a1 - ap
(2.65)
— Vi such that & = 0,£? # 0 and so that o; = 2 # 0
(signal)e = d(d — 1), (noises)e =0, (2.66)
((noises)?)e =
i 1]3[(2]3 "D apy = 1)<2P “D (1~ dpd=a(1 - )

(2.67)
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Therefore, in the regime of low storage of strategies we are exploring (o = 0),
the retrieval is stable, states are well defined and the amplitude of the signal
on the first channel is order (1 — d) while on the second is of order d(1 — d),
in perfect agreement with both the statistical mechanics analysis and Monte
Carlo simulations.

Once proved that these parallel states exist, it would be interesting trying
to understand deeper their structure in the configurational space. To this
task let us fix a pattern &, with ¢ = 1, ..., N, and a dilution d, in such a way
that N d of £! entries are expected to be null and the remaining N(1 — d)
are expected to be half equal to +1 and half equal to —1. The number
of spins configurations displaying maximum overlap with ! corresponds to
the degeneracy induced by null entries, namely 2V%; all these configurations
lay in an energy minimum because their Mattis magnetization is maximum
(actually the same holds for the symmetrical configurations due to the gauge
symmetry of the model).

Let us now generalize this discussion by introducing the number of con-
figurations n(m,d) whose overlap with the given pattern displays m mis-
alignments in such a way that n(m,d) is given not only by the degeneracy
induced by null entries, but also by the degeneracy induced by the choice of
m entries out of N(1—d) which have to be mismatched. It is easy to see that
n(m,d) = 2Nd (N(in_d)). Interestingly, for such configurations the signal felt
by a spin ¢ can be written as h; = & [N((1 — d)) — 2m] and the effect of the
correction due to the m misalignments might be vanishing in the presence
of a sufficiently large level of noise, so that the system is not restricted to
the 2V configurations corresponding to the minimum energy, but it can also
explore all the configurations n(m, d).

Therefore, we can count the number of configurations 7n(x, d) exhibiting a
number of misalignments, with respect to £, up to a given threshold z; in the
presence of noise such configurations are all accessible, namely they all lay
in the same “deep” minimum. Indeed, we can write n(z,d) = >, _ n(m,d);
of course, for + = N(1 — d) we recover n(z,d) = 2V. Moreover, when
z = N(1—d)/2, we can exploit the identity >, _, (¥) = 1/2[4° + (¥)], and
assuming without loss of generality N(1 — d) to be even we get

A(N(1 —d)/2,d) = Z n(m,d) = %Nd {2“”) + ( N]\(ffl__d%)] ~

m=0

o [ 2
2P T aNa—a |
(2.68)

where in the last passage we used the Stirling approximation given that
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Figure 2.6: Normalized number of accessible configurations n(z, d) as a func-
tion of x and d for a system made up of N spins. The critical line z. = (1—d),
corresponds to the emergence of a giant component.

N((1—d)) > 1. Then, we have n(N(1 —d)/2,d) 2 1/2, and similar calcula-
tions can be drawn for smaller thresholds, e.g., A(N(1 —d)/2 —1,d) < 1/2.

As shown in Fig.(2.6), once d is fixed, when x is small only a microscopic
fraction 7(x, d)/2V of configuration is accessible (in the thermodynamic limit
this fraction is vanishing), while by increasing the tolerance x, more and more
configuration get accessible and correspondently their fraction gets macro-
scopic. From a different perspective, each configuration can be looked at as a
node of a graph and those accessible are connected together. The link prob-
ability is then related to x and when x is large enough a “giant component”
made up of all accessible configurations emerges. This is a percolation process
in the space of configurations. Indeed, similarly to what happens in canonical
percolation processes, the curves representing the giant component relevant
to different sizes N intersect at around 1/2, which distinguishes the percola-
tion threshold z.. According to Eq.(2.68) we can write . ~ N(1 — d)/2.

Interestingly, when a giant component emerges retrieval is no longer
meaningful because the system may retrieve essentially anything and this
corresponds to the critical line (in the d, 5 plane) where all the magnetiza-
tions simultaneously disappear.
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2.3 The Emergence of Spurious States

In Sec. 2.2, we explained why we expect the parallel state (2.36) to occur,
exploiting the fact that each pattern tends to align as many spins among those
still available. Actually, this intuitive approach yields the correct picture for
T = 0 (no fast noise) and not-too-large d, while when either 7" or the degree
of dilution are large enough, the system can relax to a state where only one
pattern is retrieved or fall into a spurious state where several patterns are
partially retrieved, but none exactly. For instance, when patterns are sparse,
none of them can generate an attraction basin strong enough to align all
available spins, in such a way that stationary, mixture states can emerge.

Let us start from the noiseless case and consider the state (2.36) corre-
sponding to the parallel ansatz (2.2): we notice that, on average, there exists
a fraction 2[(1 — d)/2]¥ of spins o; corresponding to the entries &} = 1,£F =
—1,Vk € [1, P] (and analogously for the “gauged” case £} = —1,£F = +1) and
expected to be aligned with the first entry £}, in such a way that the overall
field insisting on each of them is h; = m; — mo — m3 — .... — mp. Of course,
such spins are the most unstable, and, at zero noise level, they flip whenever
h; happens to be negative, that is, when m; < kazg my. Exploiting the
ansatz my = d*~1(1 — d), this can be written as

d—d?
1—d

hi = (1 —d) [1— ] =1-2d+d", (2.69)
which becomes negative for a value of dilution d.(P), which converges ex-
ponentially from above to 1/2 as P gets large. From this point onwards,
the first pattern is no longer completely retrieved and the system fails to
parallel retrieve (according to the definition in Eq.(2.36)). Therefore, when
d > d.(P), genuine spurious states emerge and the system relaxes to states
which correspond to mixture of p < P patterns, but none of them is com-
pletely retrieved (at least up to extreme values of dilution). As we will see
in Sec. 2.4.4, the transition at d.(P) is first order.

Moreover, from Eq.(2.69) we find that the case P = 2 has no solution
in the range d € [0,1], meaning that the parallel-retrieval state is always
a stable solution in the zero noise limit; on the other hand, d.(3) ~ 0.62,
d.(4) ~ 0.54 and so on.

Such phenomenology concerns relatively large degrees of dilution, yet,
the presence of noise can also destabilize the true parallel-retrieval state
(2.2) in the regime of small degrees of dilution. In fact, we expect that the
spins aligned according to the k-th pattern associated to a magnetization
my = d*1(1 — d) will loose stability at noise levels T' > d*"1(1 — d). In
particular, at 7' > d(1 — d), only one pattern will be retrieved and the pure
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state is somehow recovered. As we will see in Sec. 2.4.4, such estimates are
correct for small d.

Typical spurious states emerging in standard associative networks are the
so-called symmetric mixtures of p < P states, which can be described as

o; = sign (Z §f‘> : (2.70)
pn=1

and it will be referred to as o). We anticipate that the symmetric mixture
turns out to emerge also in the diluted model under investigation.

Now, in the standard Hopfield model, odd mixtures of p patterns, are metastable,
i.e. their energies are higher than those of the pure patterns, and, moreover,
the smaller p and the more energetically favorable the mixture. On the other
hand, even mixtures of p patterns are unstable (they are saddle-points of the
energy).

More precisely, at the critical temperature of the standard Hopfield model,
namely at 7. = 1, all the symmetric spurious states become extrema in the
free-energy landscape. They are either minima, maxima, or saddle-points. As
T < 0.461 spurious states become successively stable. First, the symmetric
three mixtures become stable and begin to attract. As the temperature
is lowered further, more and more of the symmetric odd mixtures become
attractors. Lower mixtures become stable at higher temperature. The pure
pattern attractors remain the absolute minima in the landscape all the way
down to T'= 0. They always have the largest basins of attraction.

The instability of even mixtures is often associated to the fact that, for
a macroscopic fraction of spins, ¢(®) is not defined due to the ambiguity of
the sign. For instance, when p = 2, Zizl ¢!" occurs to be null for half of
the spins and the related values are defined stochastically according to the
distribution

1
P(0;) = 5001+ doi41)- (2.71)

However, as we will show in Sec. 2.4.3, this is not the case for this diluted
model as it displays wide regions in the parameter space (d,7’) where even
and/or odd symmetric mixtures are stable.

As we will see in Sec. 2.4.3, the symmetric mixture ¢(®) can become
unstable and relax to a different spurious state which is a “hybrid” state
between the symmetric mixture o(®) and the parallel state o(*).

To begin and fix ideas, let us set P = 3 and start from the state o; =
sign(&) + &2+ &2). In the presence of dilution the argument &} + &2 + &2 can
be zero and in that situation one can adopt the following hierarchical rule:
take o; = & provided that £} # 0; otherwise, if £} = 0, then take o; = &2
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provided that &2 # 0; otherwise, if also £ = 0, then take o; = & provided
that & # 0; otherwise, if also & # 0, then put o; = +1 with probability
1/2. In this way we can built a state, generally defined for any P, and, being
==>_,& it can written as

0; = (1 — 0z)sign(Z) + d=[&; + 553,0@2 + 553,0553,05’ + .., (2.72)

which will be referred to as o(%).

The related average Mattis magnetizations can be calculated as the sum of
one contribution mg (the same for any ;) deriving from the spins correspond-
ing to non ambiguous sign function (i.e., = # 0), and another contribution
accounting for hierarchical corrections (i.e., = = 0). Let us focus on the first
term:

my = (EMsign(2))e (2.73)

- =1 <sign<1 + ") —sign(—1+ Z§“>> (2.74)
13

vENR vER

= (1-d [P(Z ¢<)-POD ¢ > 1)] : (2.75)

V£ VEN

where, in the last step, we exploited the implicit symmetry in pattern entries
and P(ZLM €¥ 2 1) represents the probability that the specified inequality
is verified over the distribution (2.1). The latter quantity can also be looked
at as the probability for a symmetric random walk with holding probability
d to be at distance = 1 from its origin after a time span P — 1. Hence, we
get

mo=(1—-d)[P(0O—=0,P—-1)+P(0—1,P—1)], (2.76)

where P(xy — x,t) is the probability for a symmetric random walk with
stopping probability d to move from site z( to site x in t steps, namely

t—(x—x0) £ 1-d t—s
P(Z‘O - .Z',t) - ZO S' <t787(x7$0))| <ts+($x0))|d ( 2 ) ’ (277)
s= ! 5 ! 5 !

The second contribution to the magnetization is (1 — d) kP;llP(O —
1, P —k)dL.
Finally, by summing the two contributions we find the following expres-
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sions for P =3

1
m, = 5(1 +d—3d* + d*), (2.78)
1
my = 5(1 —d)(1+d?), (2.79)
1
ms = 5(1 — 3d + 5d* — 3d%), (2.80)
and for P =5
1
my = g(3 +9d — 42d* + 74d* — 65d* + 21d°), (2.81)
1
my = g(1 —d)(3 4 6d* — d*), (2.82)
1
my = g(l —d)(3 — 4d + 18d* — 20d® + 11d*), (2.83)
1
my = g(l —d)(3 — 4d + 18d* — 28d° + 19d*), (2.84)
1
ms = §<1 —d)(3 — 4d + 18d* — 36d° + 27d*). (2.85)

The expressions for arbitrary P can be analogously calculated exactly and
some examples are shown in Fig.(2.7).
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Figure 2.7: Mattis magnetizations m versus dilution d, according to the
analytical expression derived in Sec. 2.3. Each panel refers to a different
value of P, as specified.

We expect o to become globally stable in the region of very large dilu-
tions (d > dy(P)); intuitively, dilution must be large enough to make mag-
netizations rather close to each other in such a way that the least signalled
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spins corresponding to (—,—,...,—,+,+,...,+) (overall (P — 1)/2 negative
entries and (P + 1)/2 positive entries) are stable. This means S (1 —
bz0)sign(E) /N > SV p(P 4+ 1)/(P — k), where by = 257[(1 —
d) /22 dP=2(P — k) /[Nl — D)Y(P — k — 2l + 1)!] and P is odd. This con-
dition is fulfilled for values of dilution larger than dy(P), which converges to
1 as P gets larger, hence, in order to tackle this limit, dilution must become
a function of the system size d — d(N). In this case the network itself be-
comes diluted as well and different techniques are required; this will not be
discussed in this manuscript.

2.4 Stability Analysis

The set of solutions for self-consistent equations (2.35) describes states whose
stability may vary strongly. In fact, provided the network has reached them,
in the noiseless limit (of whatever kind) it would persist in those states.
However, the equations do not contain any information about whether the
solutions will be stable against small perturbations, that is to say if the
system will indeed really thermalize on these states or will fall apart more or
less quickly. In order to evaluate their stability we need to check the second
derivative of the free-energy [17|. More precisely, we further need to build
up the so called “stability matrix” A with elements
2
= Tdolm) (2.86)
omromY
Then, we evaluate and diagonalize A at a point m, representing a partic-
ular solution of the self-consistence equations (2.35), in order to determine
whether m is stable or not. Being {E,},—1... p, the set of related eigenvalues,
m is stable whenever all of them are positive.
Now, from Eq.(2.34) and (2.86), remembering that «(f3,d) = —5f(5,d),
we find straightforwardly

A =1 = B(1 = d)jo"” + pQ™, (2.87)

where

Q" = ("¢ tank®(8 S me"))e. (2.88)
“w

Of course when d = 0 we recover A" = (1—3)6" +(£4€Y tanh? (B Do, M),
namely the result known for the standard Hopfield model.

We now consider several states, known to be solutions of self-consistence
equations (2.35) and check their stability. In this way we will find constraints
in the region (T, d) where those states are stable and then we will build up
the phase diagram.
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2.4.1 Paramagnetic State

Let us start with the paramagnetic state, which is described by
mt' =0Vu (2.89)

this state trivially fulfills Eq.(2.35).
By replacing this expression in Eq.(2.87) and in Eq.(2.88) we find

A = 5,11 — B(1 - d)]. (2.90)

Therefore, in this case, A is diagonal and its eigenvalues are directly £, =
At =1 — (1 —d),Vv € [1,P]. We can conclude the paramagnetic state
exists and is stable in the region 1 — (1 —d) > 0, that is (remembering that

T=p5")
PM  stability = T > 1 — d. (2.91)

This region is highlighted in Fig.(2.8).
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Figure 2.8: (Color on line) In the parameter space (7,d) we highlighted
the region where the paramagnetic state exists and is stable. As proved in
Sec. 2.4.1, this region includes points fulfilling 7" < 1 — d; notice that this
result is independent of P.

52



2.4.2 Pure State
Let us now consider the pure state, that is any of the P configurations
m" = 0., (2.92)

m being the extent of the overlap, which, in general, depends on d and on
T. The related self-consistence equations are

m* = (1 —d)tanh(Bm"), (2.93)
m'7r = 0. (2.94)
The first equation has solution in the whole half-plane 7" > 1 — d, and this

ensures that, in the same region, the pure-state exists. In order to check its
stability, we calculate the stability matrix finding

A = OV u#v (2.95)
A = 1 — B(1 — d)[1 — tanh?(Sm*)] (2.96)
A" = 1—-B(1—d)[1— (1—d)tanh®*(Bm*")]. (2.97)

Therefore A is diagonal and the eigenvalues are E,, = A" and E, = A™.
Notice that these eigenvalues do not depend on P and that £, > F,, so that
the analysis can be restricted on E,. Requiring the positivity for F,, we get
the region in the plane (7, d), where the pure state is stable; such a region is
shown in Fig.(2.9). We stress that this result is universal with respect to P
(in the low-storage regime).
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Figure 2.9: In the parameter space (7, d) we highlighted the region where the
pure state exists and is stable. This result was found by numerically solving
the self-consistence equation Eq.(2.35) and the inequality F, > 0, where E,
is the smallest eigenvalues of the stability matrix A (see Eq.(2.97)); notice
that this result is independent of P.

2.4.3 Symmetric State

A symmetric mixture of states corresponds to configurations leading to
m* =m(d, T)Vu € [1,pjm* =0Vu € [p+ 1, P] (2.98)
where p < P order parameters are equivalent and non null, while the remain-
ing P — p are vanishing.
Let us start with the case p = P = 3, yielding m = m(d,7)(1,1,1). In

this special case the three self-consistence equations collapse on

2
+d (%Z) tanh?(23m) + 2 (#) d? tanh?(3m) (2.99)
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Figure 2.10: In the parameter space (7', d) we highlighted the region where
the symmetric state o), for the special case p = P = 3, exists and is
stable. Notice that two disconnected regions emerge: the one corresponding
to lower values of dilution derives from the fact that p is odd, while the one
corresponding to larger values of dilution from the fact that p = P.

and the matrix A reads as

(2.100)

> o Q
St Qo
Q ot

a and b being parameters related to m, d and 5. More precisely, the
eigenvalues of A are (a + 2b,a — b,a — b), which can be written as

) 1—d\°
a—b=1-p5(1- d)—l—?ﬂ{ tanh”(28m)d <?) +

+ tanh?(Bm) [MjL (2.101)

4 (1;_‘1)3] } (2.102)
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3
a+2b=1-p(1-d)+ 25{ tanh®(34m)3 <1%d) +

+ tanh?(8m) {dm; 9, (1 ; d)g} }+ (2.103)

) 1—d\’
+8df tanh*(24m) (T) . (2.104)

The conditions for the existence and the stability of the symmetric, odd
mixture with p = P = 3, yield a system of equations which was solved
numerically and the region were such conditions are all fulfilled is shown in
Fig.(2.4.3). Notice that the region is actually made up of two disconnected
parts, each displaying peculiar features, as explained later.

This result is robust with respect to P, being P odd and p = P.
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Figure 2.11: In this plot we focused on the region of the parameter space
(T, d), where odd symmetric spurious state exist and are stable. In particular,
we chose P = 7 and we considered any possible odd mixture,i.e. p=3,p=5
and p = 7; each value of p is represented by a different curve. Notice that
the smaller p and the wider the region, analogously to the standard Hopfield
model.

We can further generalize the analysis by considering P > p, still being
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p odd. In this case we get the following stability matrix

a b b 0
b a b 0
O (2.105)
0 00 ¢
with eigenvalues (a — b,a — b, a + 2b, ¢), where
¢c = 1-p5(1—-4d)
1—d\’ 1—d\?
X {1 - 2[ (—d) [tanh?(3m) + 3 tanh?(m)] + d (—d)
2 2
2 l1—d , 2
X 3tanh®(2m) + 3Td tanh (m)]
1—d\* ) )
X [1 -2 5 [tanh®(35m) + 3 tanh*(5m)]
1—d\? 1—
+ 3d (Td) tanh?(25m) +3?dd2 tanh2(6m)]} (2.106)

has degeneracy P — p.
Such states (p < P, p odd) are stable only at small d. This is due to the
fact that the eigenvalue ¢ occurs only when p < P and it reads as (u > p):

A = 1= B(1 = d)] + B{(E") ) (tanh*[Bm Y €])e

= [1- 80— )+ B(L - d)(tanl’[Bm Y e (2.107)

Thus, one can see that the r.h.s term contains factors (1 — d) at least of
second order in such a way that when d is close to 1, i.e. for high dilution,
and T' < 1 — d, such term becomes negative. On the other hand, in the case
w<p, we get

At =1 = B(1 = d)] + B((£")” tanh®[Bm Y~ €"])e

v=1

and therefore the r.h.s term contains even first order term (1 — d), which are
comparable with 5(1 — d).

Moreover, we find that the p-component, odd symmetric state exists and
is stable in a region of the space (7', d), which gets smaller and smaller as p
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Figure 2.12: In this plot we focused on the region of the parameter space
(T, d), where symmetric spurious state with p = P exist and are stable. In
particular, we chose P = 7 and we considered any possible mixture, i.e.
p=3,p=4,p=2>5,p=06and p = 7; each value of p is represented by a
different curve. Notice that the smaller p and the wider the region, yet the
region tends to an “asymptotic shape”.

grows (see Fig.(2.11)). The emergence of such states can be seen as a feature
of robustness of the standard Hopfield model with respect to dilution.

Finally, the case P = p always admits a region of existence and stability
in the regime of high dilution. The latter region is independent of the parity
and depends slightly on P (see Fig.(2.12)). The emergence of such states is
due to the failure of hierarchical retrieval, namely uniformity prevails.

2.4.4 Parallel State

The parallel-retrieval state can be looked at as the extension to arbitrary
values of d of the pure state holding for the special case d = 0. We recall
that in the noiseless limit the parallel-retrieval state can be described as

m* = (1—d)d" . (2.108)
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In this case the stability matrix is diagonal with terms:
A =1 — B(1—d)+ B{(e")? tanh?[B(1 — d) (€1 +d€* + ...+ dPeD)]), (2.109)
and, consistently, taking the limit 5 — oo, we get the simplified form

A — 61520 =1-B(1—d)+B{(€")*(1 = 6[(¢' +d&> + ... +d7EP)])). (2.110)
Now, the third term in the r.h.s. is either 5((£#)?) = B(1 — d) (when the
polynomial of order P is zero) or 0; the latter case would trivially yield
At < 0. Therefore, in the limit 8 — oo the stability of the parallel-retrieval
state is constrained by the smallest real root € [0, 1] of the polynomial &' +
d€? + ... + dP€eP with ¢ = 1,0, —1. This corresponds to &' = 1 and ¢ =
—1,Vi > 1, under gauge symmetry and returns the same result found, from a
more empirical point of view, in Sec. 2.3. More precisely, the critical dilution
converges exponentially to 1/2 as P grows.

In particular, for P = 3 we find that the parallel-retrieval state exists and
is stable in the interval d € (0, */52’1) ~ (0,0.618). The point d.(3) = %
corresponds to the unique real root in (0, 1).

When noise is introduced, the critical dilution d., separating the parallel-
retrieval state from spurious states, is shifted towards larger values, as sug-
gested by Eq.(2.109). On the opposite side, namely in the regime of small
dilution, the parallel state is progressively depleted and, as the temperature
is increased, magnetizations vanish, starting from mp, and proceeding up
to my. One can distinguish a set of temperatures Tp(d) < Tp_1(d) < ... <
T5(d) < Ti(d), such that when T" > Tj(d), all magnetizations m;, Vi < k are
null on average. Hence, above Ty(d) the pure state retrieval is recovered,
while above T7(d) = 1 — d the paramagnetic state emerges.

In Fig.(2.13) we highlight the region of the parameter space (7, d) where
such parallel states exist and are stable. This was obtained numerically for
the case P = b; for larger values of P the region is slightly restricted to
account for the shift in d,.

2.5 Monte Carlo Simulations

In this Section we discuss details on Monte Carlo simulations.

All the simulations were performed on a system Ubuntu Linux with Intel Core
17, 3.2Ghz, 12 CPU, Nvidia-Fermi technology, 12 Gb RAM and OpenMP
libraries. The simulations were carried out sequentially according to the
following algorithm:
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Figure 2.13: In this plot we focused on the region of the parameter space
(T, d), where parallel retrieval states exist and are stable. In particular, we
chose P = 5 and we considered any possible state with k =2, k =3, k =4
and k£ = 5 non-null magnetization.

1. Building and storing of the coupling matrix.

First, we generate P patterns according to the distribution (d = 0):

1—d 1—d
P(&) = —5=0er—1) + 5 Oer+n) + depy, (2.111)

then, we build a char-matrix J; = > &€/ with entries ranging €
[0,2P +1] and acting as key pointing to another hash-matrix jij where
the N(N — 1)/2 real numbers accounting for the Hebb interactions
are stored. If the amount of patterns do not exceed P = 256, i.e.
one byte, it is then possible to account for 10° spins with no need of
swapping on hard disk (which would sensibly affect the performance of
the simulation). This condition is fulfilled for the low storage regime
we are interested in.

2. Initialize the network status.

We checked the two standard approaches: The first is to initialize the
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network in a (assumed) fixed point of the dynamics, namely
o;=¢& Viell, ..., N, (2.112)

and check its evolution: This gives information on the structure of the
basins of attraction of the minima as we vary the dilution (see Point 5).

The second approach is to initialize the network randomly: We set
o; = 1 with probability 0.5 and o; = —1 otherwise. This is a stan-
dard procedure to follow the relaxation to a fixed point with no initial
assumption and gives information on the structure of the basins of
attraction of the minima at fixed dilution.

. Evolution dynamics

The spin status evolves according to a standard (random and sequen-
tial) Glauber dynamics for Ising-like systems [17]: At each time inter-
val, the spins state is updated according to its input signals, where the
probability of the unit’s activity is equal to a rectified value of the input
(logit transfer function), i.e.

1

Prloi(t) = £1] = +exp[F26 >, Jijos]

(2.113)

The field-updating process is managed by a linked list whose parsing
is parallelized through OpenMP.

. Convergence of the simulation.

Due to the peculiar structure of the fields induced by pattern dilution,
the field insisting on a given spin may be zero and the related spin
would flip indefinitely. To avoid this pathological situation we skip
the updating of these “paramagnetic” spins and focus on the remaining
ones: In the zero noise limit convergence is almost immediate, such that
when the whole ensemble of spins remains unchanged for the whole N-
length of the update cycle, dynamics is stopped and the resulting P
pattern overlaps are printed on a file.

Relaxation at non-zero noise is checked through the linked list (see
next step): The pointer of each spin that is aligned with its own field is
stored, the ones of spins with no net fields are removed from the linked
list, while all the other spins, mismatched to their own fields, are added
into the linked list.

61



5. Making the P patterns sparser.

There can be two deeply different ways of increasing dilution. The
former is a Bernoullian approach and essentially if one starts from a di-
lution d = 0.45 toward a dilution d = 0.5 (just as a concrete example)
may forget the starting information and generate a random pattern
with on average one half of zero entries; the latter is a Markovian di-
lution by which one needs to start from the previous coupling matrix
(and patterns) diluted at d = 0.45 and increases dilution on that struc-
ture.

Dilution is tuned at steps of 0.01, ranging from d =0 to d = 1.

We take as the state of the network the last equilibrium state, then go
to point (3).

Figure 2.14: Data from Monte Carlo simulations (symbols) and analytical
predictions (solid lines) obtained for a system with P = 3 patterns and set
at a temperature 7' = 0.06 are compared. Simulations are performed on a
set of 10° spins. The dashed line at d ~ 0.06 marks the boundary of the pure
state regime; the dotted line at d ~ 0.78 marks the onset of the symmetric
phase; the semi-dashed line at d ~ 0.94 marks the onset of the paramgnetic
phase.

Through Markovian dilution, we can follow the evolution of the pure Hop-
field attractors while tuning d. In general, the results obtained via numerical
simulations are in perfect agreement with the theory: This point is not sur-
prising, as, due to the load storage regime, limy_,, P/N = 0, hence replica
symmetry is never broken and our solution is the real solution of the model
(no approximations have been made).
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Chapter 3

Hierarchical Structures

In the last decade some steps forward toward more realistic systems have been
achieved merging statistical mechanics [42,59,65] and graph theory [17,19]. In
particular, mathematical methodologies were developed to deal with spin sys-
tems embedded in random graphs, where the ideal, full homogeneity among
spins is lost [23,24]. Thus, networks of spins arranged according to Erdos-
Rényi [26], small-world [25], or scale-free [47] topologies were addressed, yet
finite-dimensional networks were still out of debate.

Focusing on neural networks, it should be noted that, beyond the difficulty
of treating non-trivial topologies for spin architectures, one has also to cope
with the complexity of their coupling pattern, meant to encode the Hebbian
learning rule. The emerging statistical mechanics is much trickier than that
for ferromagnets; indeed neural networks can behave either as ferromagnets
or as spin-glasses, according to the parameter settings: their phase space is
split into several disconnected pure states, each coding for a particular stored
pattern, so to interpret the thermalization of the system within a particular
energy valley as the spontaneous retrieval of the stored pattern associated to
that valley. However in the high-storage limit, where the amount of patterns
scales linearly with the number of spins, neural networks approach pure spin-
glasses (loosing retrieval capabilities at the blackout catastrophe [17]) and,
as a simple Central Limit argument shows [4], when the amount of patterns
diverge faster that the amount of spins they become purely spin glasses. For
the sake of exhaustiveness we also stress that, even in the retrieval region,
neural networks are ezactly linear combinations of two-party spin glasses
[2,3]: due to the combination of such difficulties, neural networks on a finite
dimensional topology have not been extensively investigated so far.

However, very recently, a non-mean-field model, where a topological dis-
tance among spins can be defined and couplings can be accordingly rescaled,
turned out to be, to some extent, treatable also for complex systems such
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Left Right

Figure 3.1: Schematic representation of the hierarchical topology, that un-
derlies the system under study: green spots represent nodes where spins live,
while different colors and thickness for the links mimic different intensities in
their mutual interactions: the brighter and thinner the link, the smaller the
related coupling.

as spin-glasses [15,56]. More precisely, spins are arranged according to a
hierarchical architecture as shown in Fig.(3.1): each pair of nearest-neighbor
spins form a “dimer” connected with the strongest coupling, then spins be-
longing to nearest “dimers” interact each other with a weaker coupling and
so on recursively. In particular, the Sherrington-Kirkpatrick model for spin-
glasses defined on the hierarchical topology has been investigated in [55]:
despite a full analytic formulation of its solution still lacks, renormalization
techniques, [14, 56|, rigorous bounds on its free-energies [54] and extensive
numerics [38,39] can be achieved nowadays and they give extremely sharps
hints on the thermodynamic behavior of systems defined on these peculiar
topologies.

Remarkably, as we are going to show, when implementing the Hebb pre-
scription for learning on these hierarchical networks, an impressive phase
diagram, much richer than the mean-field counterpart, emerges. More pre-
cisely, spins turn out to be able to orchestrate both serial processing (namely
sharp and extensive retrieval of a pattern of information), as well as parallel
processing (namely retrieval of different patterns simultaneously).

The remaining of the chapter is structured as follows: in the next subsec-
tions we provide a streamlined description of mean-field serial and parallel
processors, and we introduce the hierarchical scenario. Then, we split in
three sections our findings according to the methods exploited for investiga-
tion: statistical mechanics, signal-to-noise technique and extensive numerical
simulations. All these approaches consistently converge to the scenario out-
lined above. Seeking for clarity and completeness, each technique is first
applied to a ferromagnetic hierarchical mode (which can be thought of as
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a trivial one-pattern neural network and acts as a test-case) and then for a
low-storage hierarchical Hopfield model.

3.1 The Network on a Hierarchical Topology.

We now start our investigation of a neural network embedded in the hier-
archical topology depicted in Fig.(3.1). As mentioned, two main difficulties
are interplaying: the complexity of the emergent energy landscape (essen-
tially due to frustration in the coupling pattern) and the non-mean-field
nature of the model (essentially due to the inhomogeneity of the network
architecture). It is therefore safer to proceed by steps discussing first the
hierarchical ferromagnet (hence retaining only the second difficulty), known
as Dyson hierarchical model (DHM). Then, via the Mattis gauge we reach
a Mattis hierarchical model (MHN) and finally we extend to the Hopfield
hierarchical model (HHM).

The Dyson hierarchical model [37] is a system made of N binary (Ising)
spins S5; = +1, ¢ =1, ..., N in mutual interaction and built recursively in such
a way that the system at the (k + 1)-th iteration contains N = 2! sping
and is obtained by taking two replicas of the system at the k-th iteration
(each made of 2¥ spins) and connecting all possible couples with overall (]; )
couplings equal to —.J/2° ¥V J and o being real scalars tuning the interac-
tion strength: the former acts uniformly over the network, the latter triggers
the decay with the “distance” among spins. The resulting Hamiltonian can
be written recursively as

2k‘+1
1 1 1 J
Hl?-i}-]io (S|J, o) = H}?yso (S|, O,)_'_H]?yso (52|, U)_W Z S;S;, (3.1)
i<j
where S; = {S;}2", and S, = {Sj}fg,tﬂ, while Hy¥*" = 0.

Before proceeding it is worth stressing that the parameters J and o are
bounded as J > 0 and o € (%, 1): the former trivially arises from the
ferromagnetic nature of the model which makes neighboring spin to “imitate”
each other, while the latter can be understood by noticing that for & > 1 the
interaction energy goes to zero in the thermodynamic limit!, while for o < %

the interaction energy is no longer linearly-additive implying thermodynamic

ok+

"The sum 37 _;
scales as 272(k+1) « N=29 thus, when o > 1 the internal energy (the thermodynamical
expectation of the Hamiltonian normalized over the system size) is overall vanishing in
the thermodynamic limit & — oo.

1
brings a contribution scaling like 22(**1) ~ N2, while the pre-factor

65



instability?. Moreover, this model is intrinsically non-mean-field because a
notion of metrics, or distance, has been implicitly introduced: two nodes are
said to be at distance d if they get first connected at the d-th iteration. In
general, calling d;; the distance between the spins i, j, (thusd;; = 1,...,k+1),
we can associate to each couple a distant-dependent coupling J;; and rewrite
Eq.(3.1) in a more familiar form as

]?Jﬁon S‘J g ZJ‘jSiSja (32)
1<j
where ol
+ o—d;;o —ko—o
J 497%i% — 4
Jij — Z 220[ — J 40 — 1 . (33)
l=d;;

The next step is to gauge the spins a la Mattis, namely, once extracted
quenched values for the pattern entries (¢/'),—; from the distribution

P(€!) = 50(€! — 1)+ 30(et + 1), (3.4

we replace S; with £15;. This results in the following hierarchical Mattis
model

HYH9(S|],0) = = > J;;&€15:8;. (3.5)

1<J

Finally, summing over p patterns, we obtain the Hopfield hierarchical model
(HHM) that reads as (for J = 1)

HIP(SI6,0) = H?pﬁe“(&\f, 7) + H{T (S, o)

P 2k‘+1

220 k+1) Z Z g#g#s (3'6)

p=11,j=1

with Hgl‘)pﬁeld = 0 and o still within the previous bounds, i.e. o € (3,1). As
anticipated, here we restrict the analysis to low storage limit only: recalling
N = 2F1 we can fix p finite at first so to move straightforwardly from the
DHM to the HHM (as the notion of distance is preserved) and, posing

go—dijo _ g—ko—c p

_ 3
Jij = 1 > el (3.7)
p=1
2The sum ZZ < brings a contribution scaling like 22(F*1) ~ N2, while the pre-factor
scales as 2729(k+1) N =29 thus, when o < % the intensive energy is overall divergent in

the thermodynamic limit k£ — co.
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we can write equivalently the Hamiltonian 3.6 in the more compact form

2k+1
HP(S|E o) = = J;5S8iS;. (3.8)

1<j

Thus in the HHM the Hebbian prescription is coupled with a function of the
spin’s distance.

3.2 Insights From Statistical Mechanics

Here we summarize findings that can be achieved by suitably extending inter-
polation techniques [35,36] beyond the mean-field paradigm: it is important
to stress once more that, as this strand gives only (not-mean-field) bounds on
the free energy (and not the full solution), the self-consistencies that result
are not the true self-consistencies of the model.

3.2.1 Free Energies in the Dyson Model

As the Hamiltonian Hy1(S|J, o) is given (see Eq.(3.1)) and the noise level
p~1 = T (where T stands for noise for historical reasons) introduced, it is
possible to define the partition function Zx, (8, J, o) at finite volume k + 1
as

Zk+1(67 J, U) = Z exp [_BHk+1(S|‘]> U)] ) (39)

{s}

and the related free energy ax.1(5,J, o), namely the intensive logarithm of
the partition function, as

2k+1

1 .
p1(B, J,0) = WlogZeXp —BHia(S)+h) S|, (3.10)
{s} =

where the sum runs over all possible g2+ spin configurations. Note that the
usual free energy f is related to o by f(8) = —Sa(f), hence we will find
thermodynamic equilibria checking the maxima of a(/3) and not the minima.
We are interested in an explicit expression of the infinite volume limit of the
intensive free energy, defined as

Oé(ﬁ,J,U) :]}LI{.IOO‘kJrl(ﬁa J,O'), (311)

in terms of suitably introduced magnetizations m, that act as order param-
eters for the theory. In fact, as the free energy is just the difference between
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the internal energy E of the system (i.e. the mean-value of the Hamilto-
nian) weighted by (3, and the entropy S, namely «(8, J,0) = —SE(S,J,0) +
S(B,J, o), extremization of the free-energy over the order parameters equals
to imposing thermodynamic prescriptions (i.e. minimum energy and maxi-
mum entropy principles) and therefore allows us to get a description of the
thermodynamic equilibria of the system in terms of the self-consistencies for
these m’s.

To this task we introduce the global magnetization m, defined as the limit
m = limy_,o, My Where

2k+1

1
M1 = oy > s, (3.12)

i=1

and, recursively and with a little abuse of notation, level by level (over k
levels) the k magnetizations i, ..., M, as the same k — oo limit of the
following quantities (we write explicitly only the two upper magnetizations
related to the two main clusters left and right -see Fig.(3.1):

1 Qk‘ 1 2k+1
1 _ 2 __
my = o ;S mi = o ‘;lsi, (3.13)

and so on. The thermodynamical averages are denoted by the brackets (-)
such that, e.g. for the observable my (5, J, o), we can write

o} My e P (517.0)
mi41(8,J,0)) = , 3.14
< k+1( )> Zk;—f—l(ﬂa J, 0_) ( )
and Clearly <m(67 J) U)) = hmk—)oo <m/€+1(67 J7 0)>
Starting with the pure ferromagnetic case, which mirrors here the serial re-
trieval of a single pattern in the Hopfield counterpart, its free energy can be
bounded as (see also [54])

a(h, B, J,0) > sup{log 2 + log cosh |h + fmJ(Coy_1+ (3.15)
J
—Ca)| — %(020—1 — Cyy)m?}, (3.16)
where
Coy — — (3.17)
20 — 220. _ 17 .
1
020_1 m. (318)
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Now let us suppose that, instead of a global ordering, the system can be
effectively split in two parts (the two largest communities called left and right
in Fig.(3.1)), with two different magnetizations m.;; = my and myign =
ma; we also assume Myepe = —Myigne. Through the interpolative route we
approach a bound for the free energy related to such a mixed state. We
stress the fact that the upper link, connecting the two communities with
opposite magnetization, remains and it gives a contribute m in the system
as (see also [28])

Qpy1 =

1
5 log cosh {h + BJ

k k+1
m(2(k‘+1)(1—20')) 4 my (Z 21(1—20’) . Z 2—210’)] }
=1 =1
k k+1
m(2(k+1)(1—20)) 1 My (Z 9l(1-20) _ Z 2—210)] }
=1 =1
k k+1
B [(Z yii2) _ Zz%) (L : mg) - z<k+1><120>m2]
=1

=1
+log 2. (3.19)

1
+ alogcosh {h—i—ﬁJ

Notice that, thanks to the gauge simmetry S; — —95;, the state considered
mirrors the parallel retrieval of two patterns in the Hopfield counterpart.

Identifying m; = mo = m we recover the previous bound as expected,
and, quite remarkably, in the thermodynamic limit the two free energies
assume the same values, thus serial and parallel retrieval are both equally
accomplished by the network. Imposing thermodynamic stability we obtain
the following self-consistencies

myo = tanh(h + BJTI’LLQ(CQU_l - CQU)), (320)

whose behavior is depicted in Fig.(3.2).

3.2.2 Serial/Parallel Retrieval in Hopfield Hierarchical
Model

Guided by the ferromagnetic model just described, we now turn to the hi-
erarchical Hopfield model (HHM) and start its analysis from a statistical
mechanical perspective, namely we infer the thermodynamic behavior of a
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system described by the following recursive Hamiltonian

HT (816 0) = H;f(’pﬁdd(S €,0) + H (S5, 0)  (3.21)

P 2k‘+1

N 220 k+1) Z Z gufual%

p=11,j=1
To this task, we introduce suitably p Mattis magnetizations (or Mattis over-
laps), over the whole system, as

2k+1
1
m' = o > ehS, pellpl (3.22)
=1

Even in this context, the definition above can account for the state of inner
clusters by the sum over the (pertinent) spins. For instance, focusing on the
two larger communities we have the 2p Mattis magnetizations

1 ok ok+1
Ml = o5 D605 My = Qk Y s, (3.23)
i=1 =2k 11

with u € [1,p]. Again, we will not enter in the mathematical details concern-
ing non-mean-field bounds for the model free energy (as they can be found
in [28]), while we streamline directly the physical results.

Still mirroring the previous section, we are interested in obtaining a bound
limiting the free energy of the HHM, the latter being defined as the £ — oo
limit of a1, whose expression reads

2k‘+1

1
(B (b, 0) = gy log > " exp | —BHy:1(S) + Z h* Z Sil, (3.24)
{s} i=

where we accounted also for p external stimuli A*.
The non-mean field bound for serial processing free energy reads as

a(B, {h"},p) > Slrip[logQ + <log cosh <i [h“ + Bm*(Coy_1 — CQU)]§“>>£
Y Z ((m"))¢(Cag—r = Cao)], (3.25)

with optimal order parameters fulfilling
p
(mi)e = (¢" tanh[8 ) [ + (Cap-1 = Cao)m"] €"])e;
v=1
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and whose critical noise is B¥NME = (Cy, | — Cy,, where the index NMF
stresses that the estimate was obtained through a non mean field bound of
the free energy.

Of course we can assume again that the two different families of Mattis
magnetizations ({mj’,}"_,) (those playing for the two inner blocks of spins
left and right lying under the k + 1-th level) behave independently as the
higher links connecting them go to zero quickly for £ — oo and we can
start the interpolative machine: following this way we generalize the serial
processing analysis to a two-pattern parallel retrieval analysis, which results
in the following bound for the related free energy:

k
a(B,{h.},p) > sup [log2+ %< log cosh { i [h“ + ﬁm‘f(Z ol(1=20)
{ K

ml,Q} pn=1 =1

- g 2l(_20)> + Bm"Q(kH)(l_QU)] f“}>§ + %< log cosh { [h” + pmb

=1

hS]

k

> [Z 21(1720)

=1
k
_ Z 21(720)]
=1

Here we do not investigate further the parallel retrieval of larger ensembles
of patterns, as the way to proceed is identical to the outlined one, but we
simply notice that, if we want the system to handle M patterns, hence we
assume it effectively splits M times into sub-clusters until the £k +1 — M
level, then the procedure keeps on working as long as

w
3 k
oU(~20) +Bmu2(k+1)(1720)] ,u}> __[ ol(1-20)
> ] &5)=5 lZ
2 P

(mT)2>£J;<(mg)2>£ 2(k+1 Y(1—20) Z

.Z‘I<

p=1

k+1

lim Do 2l Zm;‘ = 0. (3.26)

lk—f—lM

Since the magnetizations are bounded, in the worst case we have

k+1 P k+1
Z 21(1—20’) Z mlM S p Z 2l(1—20’)
l=k+1-M p=1 l=k+1-M
S p Z 2l(1—20) o 2(1—20’)(/€+1—M)p' (327)
l=k+1-M

If we want the system to handle up to p patterns, we need p different blocks
of spins and then M = log(p).
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Figure 3.2: Main plots: numerical solutions of the non-mean-field self-
consistent equations for the parallel state (left panel) and for the pure state
(right panel) of the Dyson model (see Eq.(3.20)) obtained for different val-
ues of o (as explained by the legend) and plotted versus a rescaled noise.
Note that by rescaling the noise the dependence on o is lost and all curves
are collapsed. Insets: comparison between the numerical solutions of the
non-mean-field self-consistent equations (dashed line) and of the mean-field
self-consistent equations (solid line) as a function of the noise and for fixed
o =1 (see Eq.(3.20)). Notice that for the Hopfield hierarchical model, nu-
merical solutions for the Mattis magnetizations pertaining to the pure and
to the mixed states are the same.

3.3 Insights From Signal-to-Noise Techniques

Results from statistical mechanics gave stringent hints on the network’s be-
havior, however they act as bounds only.

This requires further inspection via other techniques: the first route we ex-
ploit is signal-to-noise. Through the latter, beyond generally confirming the
predictions obtained via the first path, we obtain sharper statements regard-
ing the evolution of the Mattis order parameters. These two approaches
are complementary: while statistical mechanics describes the system with
N — oo and f < oo, with the signal-to-noise technique we inspect the
regime N < oo and 8 — 0.

3.3.1 A Glance at the Fields in the Dyson Network

Plan of this Section is to look at the dynamically stable configurations of
the spins, that is to say, we investigate the configurations (global and lo-
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cal minima) that imply each spin S; to be aligned with its corresponding
field h;(5), i.e. S;h;(S) > 0,Vi. This approach basically corresponds to a
negligible-noise statistical mechanical analysis but it is mathematically much
more tractable.

We can rearrange the Dyson Hamiltonian in a useful form for such an inves-
tigation as follows

k+1 2k+1 k+1 1 l
/?ﬁon({SI Sokt1}) = ——ZZS [Z <2TJ> ] Z S;, (3.28)

p=1 =1 {i}dij=n

thus, highlighting the field h; insisting on the spin S; we can write

i?ﬁon({sl Sort1}) = —Zsz‘hz‘(s), (3.29)
hi(S) = JZ[Z (220)] > S (3.30)
p=1 Li=p {7} :dij=p

While Glauber dynamics will be discussed in Sec. 4 (dedicated to numer-
ics), we just notice here that the microscopic law governing the evolution of
the system can be defined as a stochastic alignment to local field h;(S).

Si(t + ot) = sign {tanh [8h; (S (t))] + n:(1)} ,

where the stochasticity lies in the independent random numbers 7;(¢), uni-
formly distributed over the interval [—1,1] and tuned by §. The latter con-
tinues to rule the noise level even dynamically as it amplifies, or suppresses,
the smoothness of the hyperbolic tangent; in particular, in the noiseless limit

8 — oo we get
S;(t + dt) = sign [h; (S(1))] . (3.31)

This is crucial for checking the stability of a state as, if S;h;(S) >0V i €
[1, N], the configuration {S} is dynamically stable (at least for 5 — oo, as in
the presence of noise there is a S-dependent probability to fluctuate away).

We keep the previous ensemble of non-independent order parameters m;
defined in detail as

2™ X4
1
mi(S) = > S withi=1,2.2"""" andn=0,1,2,.k+1,
j=2nxi—(27—1)

(3.32)
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? — with 7 = 1’ 27 ”72]’»‘4’17

. . 9
mlli 22-7 QZ 1 Wlch:LQ’“azk %m%:%Zj: Sj7
22 - 22 Z] 22i—(22—1) Sj with ¢ = 1,27 ”72]9*1 — m% —

\mlf—’—l - 2k+1 Z
From Eq.(3.29), we get the following fundamental expression for the fields

k+1 /k41 !
_ -1, p—1
hi(S) = | J Z(Z ) 2l (3.33)

p=1 \l=p

2k+1

where we used the relation m Z{j} di; Sj. Thus the order parameters

m‘;(;i) represent the magnetlzatlons assumed by spins that lie at distance p

from S;. Note that the function f(u,) can be estimated through the floor
function |-| (e.g., [3.14] = 3) as

; =1 _ 1 (a1 _
flp,1) = V—’_(Qu——l)J + (_1)([%J+1)

Finally, we notice that the largest value allowed for a field -away from the
boundary value o = 1/2- for large k approaches a plateau (whose boundaries
-in the (k,o0) plane- are important for finite-size-scaling during numerical
analysis), hence we can easily check the right field normalization

k+1
Qlok+1) =) J(uk+1,0)2"" =
pn=1
272(k+1)a (22(k+2)0 — 9k+20+2 4 ok+2 440 — 2)

=/ —3 X 47 + 167 + 2 ’ (3:34)
as Q(o, k) represents the largest value allowed by a field.
Note that in the thermodynamic limit
920
dim Qlovk) = Qo) = = (3:35)

that is @) is always bounded whenever o > %
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3.3.2 Metastabilities in the Dyson Network: Noiseless
Case.

We can now proceed to the stability analysis explaining in details a few test
cases that show how to proceed for any other case of further interest:

[a] the global ferromagnetic state, i.e. S; = +1,1i € (1,...,2"1).

[b] the parallel /mixed state, i.e. the first half of spins up and the second half
down, thus S; = +1,i € (1,...,2¥) and S; = —1, i € (2% + 1,...,2KF1).

[c] the dimer, i.e. S} = Sy = +1 while S; = —1 for all 7 # (1, 2).

[d] the square, i.e. S] =Sy = S3 =5, = +1 while S; = —1 for all ¢ > 4.

Let us go through each case analysis separately:

e [a] The global ferromagnetic state S; = +1 Vi € [1,281] = m?(S) =
1 Vi, n has fields
4—(k;+1)a [22(k+2)a — 9k+2+20 4 9k+2 440 — 2]

hi(S) =J (3.36
(5) —3 x 47 + 167 + 2 (3:36)

hi(S) >0Vk,oe (1/2,1). (3.37)

Thus, the configuration S; = +1 Vi € [1,25+1] is stable in the noiseless
limit Vo € [3,1]. In the thermodynamic limit k& — oo we have

40’
) = T e

To address network’s behaviour in the presence of noise, fixing J =1
without loss of generality, we can look at the solution of the following
equation

40’
—3 X 494167 4 2

tanh(Sh;(S)) ~ 1 = tanh (B ) ~ 1. (3.38)

This allows to find the curve 57° ©™S(g) versus o (shown in Fig.(3.3)).
In fact, we know that, at the time t+44t, the system obeys the dynamics

S;(t + ot) = sign(tanh(Bh;(S)) + n:),

where 7; is a random variable, whose value is uniformly distributed in
[—1,1]. Imposing tanh(Bh;) ~ 1 we ask that |h;] > 1, so the sign of
the right hand side member of the equation is positive, thus the sign
of S; at the time ¢ + dt is the same of the field h; at the time ¢. Then,
fixed o, for every 3 > 1° ™(g) the state S; = +1 Vi € [1,281] is
stable without errors.
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e [b] The parallel/mixed state S; = +1 S; = —1 Vj € [1,2F] Vi €
[2% + 1,271 has fields

4—(k;+1)a (22(k+2)0 4 ok+1+20 _ 9k+1+4o 440 — 2)

= hi(5) = 3% 4% + 167 + 2
= () >0V k+1>2, (3.39)
S lim hy(S) = S (3.40)
e R '

thus the configuration S; = +1 S; = —1 Vj € [1,2%] Vi € [2F+1, 2~
is stable in the noiseless limit V k+1 > 2, o € (1/2,1). Using the same
arguments of the previous case, fixing J = 1 without loss of generality,
to infer network’s behaviour in the presence of the noise we can look
at the solution of the following equation

1

tanh(8h;(S)) ~ 1 = tanh <621_2U T 3) ~ 1. (3.41)
This allows to find the curve 2™ (o) versus o (see Fig.(3.3)). Then,
fixed o, for every g > [Bro¢"™(o) the state S; =1 S, = —1 Vj €
[1,2F] Vi € [1 + 2% 2%F1] is stable without errors. So we can see
how, in the thermodynamic limit, the state with all spins aligned S; =
+1 Vj € [1,2%] and the state with half spins pointing upwards and
half pointing downwards S; = +1 Vj € [1,2%] S; = -1 Vi€ [1+
2k 2F+1] are both robust. For an arbitrary finite value of & it is possible
to solve numerically Eq.(3.41) to get an estimate for 52" (o) versus
o: in Figure 3.3 Br"(0) is plotted for the state S; = +1 S, =
—1 Vj € [1,2%] Vi € [1+2"% 2] and the state S; = +1 Vi € [1, 2F1].

e [c] The dimer S; = +1 S;=—1 Vj € [1,2] Vi€ [3,2""] has fields
hi(S) = ha(S) =
2—20(l<;+1)(220(k;+2) 4 ok+2+20 _ 41+(l<;+1)a — 9k+2 _ 3 « 4o 4+ 6)
(—3 x 47 + 167 + 2) ’

, . 47— 4
dim ha(S) = lim ho(S) =2+ =g < 0 Vo e (/2. 1).

Therefore, the configuration S; = +1 S; = —1 Vj € [1,2] Vi €
[3,28+1] in the thermodynamic limit, is unstable V o € (1/2,1).
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e [d] The square S; =1 S;=—1 Vj € [1,4] Vi€ [5,28] has fields

21—2(k+1)0 (_2k+1+20 + 22k0+1 4 2k;+1 4 220+1 . 4)
hi(S,k) = —
(5 ) —3 X 47 + 169 + 2

—3x 4—(k;+1)a 4+ 9l—20 +1

— 3.42
1 — 40 ’ ( )
(22(k+3)a — 9k+2420 + ok+2+40 _ 22(k+1)o+3)
hi(Sk+1) =
(=3 x 49 4+ 167 + 2) /(27 2(k+2)7)
7 x 221 _ 7 x 16°
LU x 16°) (3.43)
(23 x 47 + 167 + 2)/ (2 2(k+2)7)
thus
477 (167 — 0, ifog>3
lim h;(S) = (167 — 8) - ?a>§.
k—oco —3X4U+160+2 < 0, lfO'<Z

Therefore, the configuration S; = +1 S; = —1 Vj € [1,4] Vi € [5, 2]
in the limit (k — oo) for ' = 0 is stable V o € (2,1)

It is worth noticing that beyond the extensive meta-stable states (e.g. the
parallel /mixed one) already suggested by the statistical mechanical route,
stability analysis predicts that tighley connected modules (e.g. octangon,
esadecagon, ...) with spins anti-aligned with respect to the bulk get dy-
namically stable in the thermodynamic limit: these motifs in turn are able
to process small amount of information and an analysis of their capabilities
can be found in [23,24], and their robusting is due to their intrinsic loopy
structure.

3.3.3 Signal Analysis for the Hopfield Hierarchical Model

Let us now consider the Hopfield hierarchical model (see Eq.(3.21)). As we
are interested in obtaining an explicit prescription for the fields experienced
by the spins, we can rewrite its Hamiltonian in terms of neural distance d;;

as
k+1 p
Hy1(SI€,0) =) SiS; [Z (2231) ] > etk (3.44)

1<J I=d;; pn=1

or inverting the order of the sums

p 2k+1 k+ l P
e -2 253 () | ¥ s3es

M 1 =1 {]}duzu v=1
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Figure 3.3: Phase diagram for the perfect retrieval accomplished by a pure
state (S; = +1 Vi = 1,...,2¥"1) and parallel state (S; = +1 Vi = 1, ..., 2% and
S; = —1Vi =2F+1,...,281), The line separating different regions corre-
sponds to numerical solution of 52° ¢™™[g]| versus o, obtained from (3.38)
and (3.41) for different values of k£ (10,15, 20,100 respectively). In yellow,
the area where both the pure and parallel states are perfectly retrieved, while
in blue the area where none of them is retrieved. The red line represents the
area where only the pure state is stable: this region vanishes as k gets larger
(namely in the thermodynamic limit), hence confirming that the pure and
the mixed state are both global minima.

such that, paying attention to the fields we can write

2k+1

H,1(S|€,0) = —ZSZ-hZ-(S), (3.45)

hi(S) = Z[Z (2%)] > S &E. (3.46)

p=1 L l=p {ihdij=p  v=1

Mirroring the analysis carried on for the Dyson model, we introduce an en-
semble of non-independent Mattis-like order parameters as

X 2™
mit(S) = > S withi=1,2,..2""7" n=0,1,2, . k+1
j=ix2n—(2n—1)

(3.47)
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K

Figure 3.4: Stability and instability zones for various configurations in the
plane (0,k) when § — 0, obtained by solving the inequality S;h;(o, k, [S]) >
0. In particular in the figure, the square represents the configuration S; = +1
Vi € [1,4] and S; = —1 Vi € [5,2F1], the octagon the configuration S; = +1
Vi € [1,8] and S; = —1 Vi € [9,2""!], and the esadecagon the configurations
S; = +1Vi € [1,16] and S; = —1 Vi € [17,2""1]. In red we can see the region
where all of them are stable, in yellow the region where only the octagon and
the esadecagon are stable, in green the region where only the esadecagon is
stable, while in blue none of these reticular animals is stable.

so that
'Trw0 — 55“ with ¢ = 1,2, .., 2F+?
mit =1 Z] Lyit ;e with i =1,2,..,28 — ml' = %Zle ik

u2n __ K : s k-1 w2 14 H
my = 5 Z] o2io(2-1y9;&;  Wwithi=1,2,.,2 —my" =10 Sk

pk+1 2’““ [
\ml - 2k+1 Sf

As we saw for the Dyson case, this allows writing the fields as

P k+1  k+1 1 i D k+1 i
Zf”Z [Z 220)]2d ) —ZSVZ‘“Z k1, 0)2 7 mi ),
v=1 I=d v=1

where
4a'fd0 _ 47]6‘0‘70’

49 —1

The microscopic evolution of the system is defined as a stochastic alignment
to local field h;(S):

J(d,k+1,0)21 = 2471, (3.48)

S;(t 4 6t) = sign{tanh[Bh;(S(t))] + n;(t)}, (3.49)
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where the stochasticity lies in the independent random numbers 7;(¢) uni-
formly drawn over the interval [—1,1]. In the noiseless limit 8 — oo we
have

Si(t + 6t) = sign[hi(S(1))] (3.50)

and so if S;h;(S) > 0V i € [1,N], the configuration [S] is dynamically
stable (see Fig.(3.4)).

3.3.4 Signal to Noise Analysis for Serial Retrieval

Using equations (3.45) and (3.47) and posing S; = £!' in order to check the
robustness of the serial pure-state retrieval (of the test pattern u), we can
write

p k+1
hi(S) = &> ¢ ZJkorl o) Y gl (3.51)
v=1 jidij=d
k+1 p k+1
= ZJkorl )2 Y > Jdk+1,0) Y el
v d=1 jidij=d

We can decompose the previous equation into two contributions, a stochastic
noisy term R(£) and a deterministic signal I as

& hi(S) =1+ R(E) (3.52)

The signal term I is positive because

k+1
I[=> J(dk+1,0)2"" >0, (3.53)
d=1

while the noise R(£) has null average (the latter being denoted by standard
brackets), namely

D k+1
RE) = &) &> Jdk+1,0) > e, (3.54)

v#p  d=1 Jidij=d
(R(&))e = 0. (3.55)

Thus, in order to see the regions of the tunable parameters o, k4 1 where the
signal prevails over the noise and the network accomplishes retrieval, we need
to calculate the second moment of the noise over the distribution of quenched
variables £ so to compare the signal amplitudes of I and |/ (R?(&))¢|:
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D k+1

:<[2552J(d,k+1,a) 3 g;gy] X

vAL  d=1 jidij=d
p k+1
% [Zgzj(d’k_'_ 1,0) Z f?&j‘] >£- (3.56)
n#Fp d=1 jidij=d

Neglecting off-diagonal terms (as they have null average), we get the
following expressions for (R*(£))e:

(R2(€))e = <Z (%Jdkﬁa 5y 55“)> — (3.57)

v#EpR Jidij=d
p k+1 40— do — 4 (k+1)o
(S (T T ag)).
VFEL d=1 jidij=d

3

where we used (£/)? = 1 Vi,v. Once again, as the &’s are symmetrically
distributed, only even order terms give contributions, thus we can safely
neglect off-diagonal terms and write again

k41 o—do _ pg—ko—o ?
(R2(€))e = (p—1>2< (4 — ) 3 e > (3.58)

d=1 jidij=d ¢

k41 4ofda_4fkafo 2
= <p—1>2( e )(Z > G

d=1 jidij=d, k:d;p=d

Therefore
E+1

(R())e=(p-1)>_J(d o k+1)2" (3.59)
d=1

Exploiting the approximation (|z|) ~ |\/(22)], we can simplify the previous
expression into

k+1

(RE)) ~ (B2 = | (0= 1) D J(d, o, k +1)224-1, (3.60)

d=1

where we consider the positive branch of the serial retrievl only. We are now
ready to check the stability of the pure retrieval: as long as

1>\ J(R*(&))e = &'hi(S) = T+ R(§) > 0, (3.61)
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the pure state is stable. Hence we need to calculate explicitly

_116 ko
JIR2(€))e = N+ Uy,
\/ 40—1) (167 — 2) b

where

U, = (40 o 2)42(k+1)0 —3x 2k+20+1’

\112 — 2k+60’+1 o (160' o 2)22(k+1)0’+1 4 2k+2 - 640 4 220’+1 4+ 24U+1 o 4
The expression for the signal is much simpler, resulting in

4—(k+1)0 (_2k+20+2 4+ 4(k+2)0 4 9k+2 440 — 2)
—3 x 47 +169 4+ 2

I —

(3.62)

Imposing I = y/(R%*({))¢ and solving for the variable p, we find the critical
load allowed by the network, namely the function P.(o, k), whose behavior
is shown in Fig.3.5:

1= \/iR(©))c = P.(o. k). (3.63)
Now, imposing the relation
P.(o,k) =k

and solving numerically with respect to o, we can plot the maximum value
omax (k) that the variable o can reach such that the storage P = k produces
retrievable patterns, as shown in Figure 3.5.

In the thermodynamic limit we get

- 920 \/HQ%
I — /(R%(S)) B T Ry v YTk (3.64)
(7 —1) (167 — 2)
PO = Coirae et (3.65)

3.3.5 Signal to Noise Analysis for Parallel Retrieval

Fixing S; = & Vi € [1,2%] and S; = £ Vi € [1 + 2%, 2] for u # v, namely
selecting 1 and 7 as test patterns to retrieve, we set the system in condition
to handle contemporarily two patterns, the former managed by the first half
of the spins, the latter by the second half. The robustness of this state is
addressed hereafter following the same prescription outlined so far. Namely,
being

p k+1

SZ§”ZJdk+1a > e, (3.66)
v=1

J: dz]*d
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if i € [1,2*] we have

D k
&-m(S)—5#255(2J(d,k+1,o> > &g
v=1 d=1 jidij=d
+J(k+1k+1,0) > 5;5}), (3.67)
Jidij=k+1

while if i € [2¥ 4 1,21, the same equation still holds provided we replace
i with v and v with p, hence hereafter we shall consider only one of the two
cases as they are symmetrical.

Again, we can decompose the above expression in the sum of a constant,
positive term -that plays as the signal- I > 0, and a stochastic term for the
noise R(¢), namely we can write

Sihi(S) = I+ R(§), (3.68)

k
I=>" (J(d, k+1, 0)2“),

d=1
R =Jk+1k+10) > &€
Jidij=k+1
D k

+E (D Jdk+1,0) > g+ Ik+1Lk+1,0) Y &),

[ d=1 jidij=d Jidij=k+1

In order to get a manageable expression for the noise, it is convenient to
reshuffle R(¢) distinguishing four terms such that

R§)=a+b+c+d, (3.69)
where
a = Jk+1k+10) Y &g, (3.70)
j:dij:k—f—l

P k
bo= &Y &Y Jdk+1,0) > &, (3.71)

v£L d=1 Jidij=d

p

c = &Y GIk+1Lk+1,0) Y &g, (3.72)

vE Jidij=k+1

vy
d = &Ik +1,k+1,0)2" (3.73)
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As p # 7, we have that (R(¢))¢ = 0, while (R*(¢))¢ turns out to be
(R*(€))e = (a®> + V? + 2 + d* + 2(ab+ ac + ad + be + bd + cd))e.  (3.74)

Let us consider these terms separately: skipping lenghty, yet straightforward
calculations, we obtain the following expressions

@) = (Ph+Lk+10) > 3 geae)

j:dij=k+1 n:d;pn=k+1 £

= JHk+1,k+1,0) x 2~ (3.75)

(B = <(§52§;’2J(d,k+1,0) Z g;gf) >

VFEL d=1 jidij=d ¢

k
= (-1 J(dk+1,0)2" (3.76)
d=1

<02>§ = <(§“ Z & Jk+1,k+1,0) Z §;§]>>

v#u&vF£y Jidij=k+1 ¢

= (p—2)%(k+1,k+1,0)2" (3.77)

2
(d%)e = <(£é‘£ZJ(k +Lk+1, 0)2’“) > = J(k+1,k+1,0)2%, (3.78)
3

and, since a and b and, analogously, b and ¢, are defined over different
blocks of spins, clearly

(2ab)e = 0, (3.79)
(2bc)e = 0, (3.80)
(2bd)e = 0. (3.81)

As a result, rearranging terms opportunely we finally obtain

e

+ (2((_3 % 2k+20+1 + 2k+60+1 + 2k+2 + 220+1 + 24<7+1 .
+ (47 —2)42 7 — (167 — 2)22(F Do) 4

647)(p — 1))((47 ~ 2)(16 = 2)) 7).
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while the signal term reads as

2—2ka—1 (_2k+20 o 2k+4a + 22(k;+1)a+1 + 2k;+1 + 220+1 o 4)
—3 X 49 + 169 + 2

I =

(3.82)

Imposing I = /(R?(£))¢, and solving with respect to the variable p we can
outline the function P.(o, k+ 1) that returns the maximum allowed load the

network may afford accomplishing parallel retrieval and whose behavior is
shown in Fig.(3.5):

[ = \/(R2(€))e = Pu(ok +1). (3.83)

50 100

o

log( })rlllix(‘ll)

o
o /
e )
2
&

Figure 3.5: Upper panel (serial retrieval): On the left we show the maximum
value of storable patterns P. as a function of k£ and of o (as results from
Eq.(3.64)) for the pure state in order to have signal’s amplitude greater than
the noise (i.e. retrieval). Note the logarithmic scale for P, highlighting its
wide range of variability. On the right we show the maximum value of the
neural interaction decay rate o’(k) versus k allowed to the couplings under
the storage constraint £ = p and the pure state perfect retrieval constraint,
in the 8 — oo limit.

Lower panel (parallel retrieval): On the left there is the maximum value of
storable patterns P, as a function of k and of ¢ (as results from Eq.(3.85))
for th parallel state in order to have signal’s amplitude greater than the
noise (i.e. retrieval). Note the logarithmic scale for P, highlighting its wide
range of variability. On the right there is the maximum value of the neural
interaction decay rate o’(k) versus k allowed to the couplings under the

storage constraint k£ = p and the parallel state perfect retrieval constraint,
in the f — oo limit.
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Figure 3.6: Starting from the state S; = +1 Vi € [1,2*1] results of the
simulations for DHM for ¢ = 0.99 and N = 28! k41 = 8,10, 12 are plotted.
In the left panel, the rescaled magnetic susceptibility 25+1((m?) — (m)?) is
plotted vs 5 (one over the noise). In the right panel the magnetization
(m) = (% SV, S,) is plotted vs 8 (one over the noise).

3.4 Insights from Numerical Simulations

Using the same machines described in the previous section 2.5. Aim of this
Section is to present results from extensive numerical simulations to check the
stability of parallel processing over the finite-size effects that is not captured
by statistical mechanics or that can be hidden in the signal-to-noise analysis
. Further this allows checking that the asymptotic behavior (in the volume)
of the network is in agreement with previous findings.

All the simulations were carried out using the same machines described in
the previous section 2.5 and according to the following algorithm.

1. Building the matrix coupling, pattern storage.
Once extracted randomly from a uniform prior over +1 p patterns of
length k& + 1, and defined the distance between two spins ¢ and j as d;;
we build the matrix J, for the HHM, as

R S pett - k+1 k+1
o= e DU fori = 12 = 2R

p=1

(3.84)
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Figure 3.7: Starting from the state S; = +1,5; = —1 Vi € [1,2*] and

Vj € [2F + 1,2%71] results of the simulations for DHM for ¢ = 0.99 and
N = 2kt1 are plotted. In the left panel, the rescaled magnetic susceptibility
25 [((m3) — (m1)?)+((m?) — (my)?] is plotted vs 3 (i.e. one over the noise) for
k+1=8,10,12. In the right panel, the magnetizations (m;) = (5 Zfil Si)
and (mp) = (3¢ Zz?jigk S;) are plotted vs [ (i.e. one over the noise) for
k41=8,10,12.

while for the DHM we use the form:

go—dijo _ g—(k+1)o

Jz‘j = 10— 1 .. 2k+1

 fori=1,- and j =1,--. 21

(3.85)

where k + 1 is the number of levels of the hierarchical construction of
the network, and o € (3,1].

2. Initialize the network.
We used different initializations to test the stability of the resulting
stationary configuration:

-Pure retrieval: We initialize the network in an assumed fixed point of
the dynamics, namely S; = & with i = 1,..28" and p = 1 for the
HHM, while S; = +1 with ¢ = 1,...2¥"! in the DHM case, and we check
the equilibrium as reported in Fig| 3.6].

-Parallel retrieval: Since we study the multitasking features shown by
this hierarchical network, we can also assign different types of initial
conditions with respect to the pure state, e.g.
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i) For the DHM, starting from the lowest energy level ( after the
standard one S; = 1 Vi) we chose S; = +1 for i = 1,...,2* and
S; = —1 for i = 2F +1,..., 2" (viceversa is the same, and we
check the equilibrium as reported in Fig| 3.7|);

ii) For the HHM, looking for multitasking features, we set in the
case p = 2, weset S; = & fori = 1,..,2" and S; = €2 i =
2% +1,..., 28 (Fig| 3.10]); In the case p = 4 we set S; = &
Vie [1+U=DN 1N and g e [1,4](Figl 3.9])
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In this way, we have two or four communities (sharing the same size)
building the network with a different order parameter.
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Figure 3.8: Starting from the state S; = +1 Vi € [1,2""!] with ¢ = 0.99 for
the DHM and k+1 = 8,10, 12. Binder cumulant 1 — % Versus noise % for
k+1 = 8,10,12. Plotting the binder cumulant for different values of k£ + 1
permits to find the critical noise of this state.

3. Evolution: Glauber dynamics.
The evolution of the spins follows a standard random asynchronous
dynamics [5] and the state of the network is updated according to the
field acting on the spins at every step of iteration, that is,

Si(t + 1) = sign{tanh[Bh;(S(t)] +n(t)}, for 3 =T""

where 7)(t) is the noise introduced as a random uniform contribution
over the real interval [—1, 1] in every step.
For each noise the stationary mean values of the order parameters
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have been measured mediating over O(10?) different realizations. For
the HHM the average of the order parameters is performed over the
quenched variables. For DHM, to better highlight the stability of
the parallel configuration, S; = +1 for i« = 1,...,2¥ S, = —1 for
i = 28 +1,...,2"" and to break the Gauge invariance, during half
of the relaxation period to equilibrium a small positive field is applied
to the system.
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Figure 3.9: . Starting from the state S; = ¢}, S; = €2,5, = &.,5 = ¢!
Vie [1,2°1,V) € [ +1,2%],Vn € [2F +1,32%] Vi € [§2k+ 1, 281 results
of the simulations for HHM for ¢ = 0.99 and N = 2**! are plotted. The
Mattis order parameters (m!') = (3= Zg;(i_mk,Q S;&5) for i, € [1, 4] are
plotted vs noise,from left we have k£ + 1 = 8,10, 12. Same colors correspond
to the same pattern p, while same symbols correspond to the same index 7.

4. Results.
It is worth noting that -at difference with paradigmatic prototypes
for phase transitions (i.e. the celebrated Curie-Weiss model), as we
can see from figures | 3.6, 3.7, 3.8], in these models we studied here
the critical noise level approaches its asymptotic value (obtained by
analytical arguments in the thermodynamic limit) from above (i.e. from
higher values of fs). This happens because the intensities of couplings
are increasing functions (clearly upper limited) of the size of the system.
As can be inferred from fig| 3.7] (where we present results regarding
simulations for the DHM at ¢ = 0.99, k + 1 = 8,10, 12 [S; = +1, 5, =
—1 Vi € [1,2%] and Vj € [2¥ + 1,2"F1]]), the stability of the parallel
configuration (in the low noise region) is confirmed and, as expected
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from theoretical arguments, the noise region in which this configuration
is stable increases with the size of the system up to coincide with that of
the pure state. Also in the HHM case (figures | 3.9, 3.10]) the stability
of parallel configurations is verified (in the low noise region) for system’s
configurations shared by the two and four communities.
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Figure 3.10: . Starting from the state S; = ¢!, S; = & Vi € [1,2%],V) €
[2F 4 1, 25F1] results of the simulations for HHM for o = 0.99 and N = 2++!

are plotted. The Mattis order parameters (m!) = (3= Zgl_j(ifmk% S;€5)
for i, € [1,2] are plotted vs noise,from left we have k + 1 = 8,10, 12.
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Chapter 4

Discussion

The comprehension of biological complexity is one of the main goals of this
century research: the route to pave is long and scattered over countless
branches. Focusing to neural networks, we notice that the deep difficul-
ties in the statistical mechanics treatment prohibitive constraints beyond
the mean field approximation (where each notion of distance or metrics for a
space where to embed spins is lost),implied that their theory has been largely
developed without investigating the crucial degree of freedom of neural dis-
tance. However, research is nowadays capable of investigations towards more
realistic and/or better performing models: indeed, while the mean-field sce-
nario, mainly represented by the Hopfield network as for retrieval and by
the Boltzmann machines as for learning, has been so far understood (not
completely at the rigorous level but at least largely), investigation of the
non-mean-field counterpart is only at the beginning.

In this thesis we explored the retrieval capabilities of the multitasking as-
sociative network introduced the first time in [30] at the low storage level, and
we tackled the problem of studying information processing (retrieval only) on
hierarchical topologies introduced in [29], where spins interact with an Heb-
bian strength (or simply ferromagnetically in their simplest implementation,
namely the Dyson model) that decays with their reciprocal distance.

In Chapter 2, we introduced a system characterized by (quenched) pat-
terns which display a fraction d of null entries: interestingly, by paying the
price of reducing the amount of information stored within each pattern (by
a fraction d), we get a system able to retrieve several patterns at the same
time. At zero noise level (T" = 0), and for a relatively low degrees of dilu-
tion, the system converges to an equilibrium state characterized by overlap
m = ((1—-d),(1—-d)d,..., (1 —d)d* (1 —d)d"~1), where P is the number of
stored patterns. Although this state displays non-null overlap with several
patterns, it does not represent a spurious state, as can be seen by noticing, for
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instance, that this state allows the complete retrieval of at least one pattern.
However, through a careful inspection, we proved that there are regions in
the (T, d) plane where genuine spurious states occur, hence the clear picture
of the phase diagram that we offered becomes a fundamental issue in order
to make the model ready for practical implementations.

A remarkable difference with respect to standard (serial processing) neural
networks lies in the stability of mixture states: both even and odd mix-
tures are stable, which -within the world of spurious states - was a somewhat
desired, and expected, result as there is neither a biological reason, nor a pre-
scription from robotics, to weight differently odd and even mixtures (whose
difference in terms of physical symmetries translates in the gauge invariance
of the standard Hopfield model, that is explicitly broken within our frame-
work due to the partial blankness of the pattern entries). Another expected
feature, which we confirmed, is the emergence of parallel spurious states be-
yond standard ones. From classical neural network theory this is the natural
generalization when moving from serial to parallel processing.

Beyond these somehow attended results, the phase diagram of the model

is still very rich and composed by several not-overlapping regions where the
retrieval states are deeply differently structured: beyond the paramagnetic
state and the pure state, the system is able to achieve both a hierarchical
organization of pattern retrievals (for intermediate values of dilution) and
a completely symmetric parallel state (for high values of dilution), which
act as the basis for the outlined mixtures when raising the noise level above
thresholds whose value depends on the load P of the network.
These findings have been obtained developing a new strategy for computing
the free energy of the model from which, imposing thermodynamic princi-
ples (i.e. extremizing the latter over the order parameters of the model),
self-consistency has been obtained: the whole procedure has been based on
techniques stemmed from partial differential equation theory. In particular,
the key idea is showing that the noise-derivatives of the statistical pressure
obey Burgers’ equations, which can be solved through the Cole-Hopf trans-
formation. The latter maps the evolution of the free energy over the noise
into a diffusion problem which can be addressed through standard Green
integration in momenta space and then mapped back in the original frame-
work.

In chapter 3, we studied a Hebbian neural network, where spins are ar-
ranged according to a hierarchical architecture such that their couplings scale
with their reciprocal distance. While a full statistical mechanical treatment
is not yet achievable, stringent bounds for its free energy -intrinsically of
non-mean-field nature- are still available and allows getting a picture of the
network capabilities by far richer than the corresponding mean-field coun-
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terpart (the Hopfield model within the low storage regime). Indeed, these
networks are able to retrieve one pattern at a time accomplishing an exten-
sive reorganization of the whole network state -mirroring serial processing
as in standard Hopfield networks- but they are also able to switch to mul-
titasking behavior handling multiple patterns at once -without falling into
spurious states-, hence performing as parallel processors.

Remarkably, as far as the low storage regime is concerned, the underlying
(weighted) topology -crucial for parallel processing- returns a phase space
that shares similarities with the multitasking associative networks [30].
However, as theorems that definitively confirm this scenario are not fully
available yet, to give robustness to the statistical mechanics predictions, we
performed a signal-to-noise analysis checking whether those states -candidate
by the first approach to mimic parallel retrieval- are indeed stable beyond
the pure state related to serial processing and, remarkably, we found wide
regions of the tunable parameters (strength of the interaction decay o and
noise level ) where indeed those states are extremely robust.

Clearly, as standard in thermodynamics, nothing is for free and even for this
richness of behaviors there is a price to pay: as anticipated in the Summary
of this thesis, emergent multitasking features in not-mean-field models re-
quire a substantial drop in network’s capacity thus implying a new balance
required by associative networks beyond the mean-field scenario.

While a satisfactory picture beyond such a mean-field paradigm is still far,
we do hope that this work may act as one of the first steps in this direction.
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