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Abstract

In the thesis we consider a class of fully nonlinear (i.e. strongly nonlinear) Schrodinger equations and
we prove the existence and the stability of Cantor families of quasi-periodic, small amplitude solutions.
We firstly deal with forced reversible or Hamiltonian nonlinearities depending quasi-periodically on time,
and secondly we discuss the existence of analytic solutions for reversible autonomous nonlinearities. Note
that this is the first result on analytic quasi-periodic solutions for fully nonlinear PDEs.

In the forced cases we use a Nash-Moser scheme on scales of Sobolev spaces combined with a re-
ducibility argument of the linearized operator in a neighborhood of zero. In the reducibility step we
exploit the pseudo-differential structure of the linearized operator by using changes of variables, induced
by torus diffeomorphisms and pseudo-differential operators, which conjugate it to a constant coefficients
differential operator plus a bounded remainder. Then we use a KAM-like scheme which diagonalizes the
linearized operator and provides a sufficiently accurate asymptotic expansion of the eigenvalues. This
procedure produces a change of variables which diagonalizes the operator linearized at the solution. In
the Hamiltonian case the linearized operator has multiple eigenvalues so we are able to obtain only a
block-diagonalization: in any case we deduce informations about the linear stability of the quasi-periodic
solution.

In the autonomous case we first perform a “weak” Birkhoff normal form step in order to find an
invariant manifold of the third order approximate NLS on which the dynamics is integrable. Then,
in order to deal with reversible and analytic nonlinearities, we introduce a suitable generalization of a
KAM nonlinear iteration for “tame” vector fields which works both in Sobolev and analytic regularity.
In particular such scheme preserves the “pseudo-differential structure” of the vector field and allows us
to use the techniques developed in forced cases in order to invert the linearized operator in the “normal”

directions.






Introduction

Nonlinear partial differential equations (nonlinear PDEs in the following) play a very important role
in various physical phenomena. Nonlinear models appear in non-equilibrium statistical mechanics, fluids
dynamics, quantum mechanics and many other fields. Naturally the qualitative description of solutions
strongly depends on the spatial domain in which one is studying the problem. Let us consider for instance
the case of dispersive PDEs, i.e. equations for which different frequencies propagate at different group
velocities. When the spatial domain is the real line, on long time scales one expect to see the effect
of the dispersion as a L* decay of the solution. On the other hand on compact domains one might
expect the presence of recursive behaviors. In this thesis we consider the latter type of phenomena in
a neighborhood of zero. In general the methods used to study nonlinear PDEs are problem depending,
and the behavior of the system could differ drastically from its linear approximation, even for solutions
in a neighborhood of zero. Many evolution partial differential equations on compact domains, can be
written as infinite dimensional dynamical systems in some separable Hilbert space. Precisely they can
be written as

w = Lw + f(w), (1)

where L is a linear operator, F' is a sufficiently smooth non linearity and w belongs to some Sobolev
space H?®.

Typically L : H® — H* ™ is an unbounded differential operator of order n. For instance in the
case of NLS equation L is ¢A where A is the Laplace-Beltrami operator. In general one can consider
nonlinearities that map some neighborhood of H® to H*~® for some § > 0. In other words one can

consider bounded (6 = 0) or unbounded (6 > 0) nonlinearities. Most of the literature concerns model
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PDEs deriving from a suitable approximation of physical models, such as the wave equation, water waves
equation and many models deriving from it, like the non linear Schrédinger (NLS), the Korteweg-de Vries
(KdV), the Boussinesq and so on. See for instance [24] for an extensive exposition of the topic. We

mention the most famous models: the cubic wave equation (NLW):
g — Au+mu+ v =0, (2)

the cubic NLS
iuy = Au+ |ul*u, (3)

as examples of equation with a bounded nonlinearity and the KdV equation
Ut — Uy + Ugzy = 0, (4)

which present an unbounded nonlinearity (§ = 1).

In this thesis we study fully nonlinear (i.e. § =n ) NLS on the circle with the purpose of proving
the existence of very special global solutions. The NLS equation is certainly one of the most studied
physical models. Such equation appears in different context like Bose-Einstein condensate theory or
quantum mechanics. In fluids dynamics the NLS appears in the study of small-amplitude gravity waves.
In general NLS appears in the description of various phenomena involving evolution of waves packets in
media which have dispersion, by performing asymptotic expansions and scaling limits, see for instance
[60]. It may also happen that, in some regime of approximation, appears with unbounded nonlinearities.

This is why we considered the fully nonlinear model.

Dynamical system approach. When considering equations like (1) on tori and more generally
on compact manifolds, the spectrum of the linear operator is purely pointwise, hence the so called
“dynamical system approach” turned out to be a very fruitful approach to the study of these problems.
In other words some ideas and techniques coming from the theory of dynamical systems have been
extended to the infinite dimensional setting. One of the most important ideas one borrows from the
finite dimensional theory is to look for invariant manifold on which the dynamics is particularly simple.
Then one would like to deduce general properties of the whole system by studying the behavior of a
typical initial datum. The simplest invariant manifold to look for are equilibria, periodic orbits, and
then quasi-periodic solutions. It is known that the measure of the initial data corresponding to periodic
or quasi-periodic motions is zero. However one can hope to understand the dynamics at least for initial
data in a neighborhood of such particular solutions. This is actually one of the most famous conjectures
of Poincaré. Historically such conjecture was an important motivation for a systematic study of such

particular orbits in the finite dimensional setting, which lead in 50s and 60s to the celebrated KAM

v



Introduction

Theorem proved by Kolmogorov [40], Arnold [1] and Moser [49]. The theory, developed for finite-
dimensional Hamiltonian systems, guarantees that for nearly integrable systems a “large” measure set
of the phase space corresponds to quasi-periodic solutions (KAM tori). The key problem arising in
the search of such quasi-periodic solutions is the presence of the so called “small divisors”, which are
arbitrary small quantities appearing in the denominators when one computes explicitly the approximate
perturbative series. Even in finite dimension is clear that such small denominators are main source of
chaotic behaviors.

In the PDEs context the problems concerning the small denominators are much harder with respect
to the finite dimensional case. As an example one can think that, for Hamiltonian PDESs, the problem
of small divisors appears also in the search of periodic solutions, while, in the finite-dimensional setting,
the periodic solutions are not plagued by small divisors.

In order to pass from finite-dimensional systems to the infinite-dimensional ones, one of the first
questions analyzed has been the “integrability” of a system. This matter has been widely studied since
‘60s and it is connected to the “solvability” of the equations of motions by exploiting possible symmetries
of the system. A “strong” notion of integrability in the case of Hamiltonian systems is the “Liouville
integrability” which relies on the existence of a foliation of the phase space in manifolds which are
invariant for the flow of the systems. In this case there exist a canonical coordinate systems, called
action-angle variables.

Proving that a dynamical system is integrable is clearly a non trivial task. However integrability
has been proved for various nonlinear PDEs by explicitly constructing the so-called Lax pair. Famous
examples are the 1-dimensional cubic NLS (proved by Zakharov and Shabat (1972)), the KdV equation,
the Benjamin-Ono equation, the Degasperis-Procesi and Camassa-Holm equations. Then, as in the finite-
dimensional case, a perturbation theory has been developed for nearly-integrable systems, see for instance
paper by Kuksin [41]. A more recent approach for nearly-integrable equations is to consider directly
systems which are non-integrable perturbations of equations already written in action-angle variables.
This approach is close to the finite dimensional case and the key idea is to start the perturbation theory
by bifurcating from a quasi-periodic solution of the integrable system. However finding local or global
action-angle variables is a delicate question; see for instance [44], [38], [36], [47], [39]. Therefore in practice
this latter approach may not be possible. Another approach is to implement the perturbation theory
near zero, by bifurcating form a solution of the linear equation. This is in some sense simpler because
linear equations are integrable and one does not need the complex analysis required to find action-angle
variables for nonlinear systems. On the other hand KAM theory was first developed for anisochronous
systems because one needs parameters to modulate (for instance a frequency to amplitude modulation).

It could happen that the quasi-periodic solutions appear only due to the nonlinearity (this happens
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for completely-resonant PDEs). Hence bifurcating from a periodic solution can make the perturbation
theory very difficult due to the possible resonances of the frequencies. In any case the perturbation
theory developed up to now does not provide the existence of almost-periodic solutions, i.e. embeddings
of maximal tori, the so called Lagrangian tori. In finite dimension the classical KAM theory provides
precisely the existence of such kind of embeddings. In infinite dimension this matter seems to be out
of reach at the present time, except for some ad hoc models, (see [18], [21], [51]). On the contrary a
lot of efforts are focused on the search of embeddings of finite-dimensional tori, that is quasi-periodic
solutions. This is actually the equivalent in infinite dimension of the search for lower dimensional tori
in finite-dimensional dynamical systems; see for instance [49], [35], [33], for classical references and the

more recent papers [20], [25], [26] where degenerate situations are considered.

In general, due to the infinite-dimensional setting and to the presence of resonances, one expects the
dynamics to exhibit a very complex behavior, with coexistence of both stable and unstable phenomena.
On the one hand people started to investigate some invariant structure, such as periodic and quasi-
periodic orbits; on the other hand one exploit the structure of resonances and diffusive orbits in order to
prove the existence of instability and phenomena such as the growth of Sobolev norms. As references on
the latter topic we mention the results of Bourgain in [15] and Staffilani [56] who proved that the Sobolev
norms grow at most polynomially in time, and the breakthrough results by Colliander, Keel, Staffilani,
Takaoka and Tao, who proved in [23] the existence of solutions of cubic NLS evolving from a small initial
data and undergoing an arbitrarily large growth. A dual point of view of such theory are long time
existence and stability results obtained by using techniques of Birkhoff normal form and Nekhoroshev
theory. Such theories are quite well-established in the finite-dimensional setting while results in the
infinite dimensional setting are more recent. In a neighborhood of an elliptic equilibrium point the
Birkhoff normal form gives a quite good description of the dynamics. Roughly speaking a Birkhoff’s like
theorem provides the existence of a canonical map which puts the Hamiltonian in normal form up to
a remainder of arbitrary large order. Hence, while KAM results provides the existence of special global
solutions, through Birkhoff theory one describes the evolution of any initial data in a neighborhood of
the equilibrium point, for large but finite time. We mention for instance Delort [28], Bambusi-Grébert

[6] which adapted these techniques to the infinite-dimensional setting.

Some Literature. In this thesis we are interested in studying phenomena of stability, and in
particular in studying existence of quasi-periodic solutions for PDEs. The existence of small-amplitude
periodic quasi-periodic solutions was one of the first successes of KAM theory for PDEs, obtained by
Kuksin [41] and Wayne [58]. Such results were restricted to the case in which the spatial variable

ranges in a finite interval with Dirichlet boundary conditions. In order to consider the case of periodic
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boundary conditions, Craig-Wayne used a Lyapunov-Schmidt reduction method in [27] later generalized
by Bourgain in [19], [16]. Other developments of KAM Theory for PDEs can be found in [50], [22],
[43], [45]. All the papers quoted above deal with “non-resonant” PDEs, i.e. equations for which the
linear frequencies satisfies some non degeneracy conditions. In this way the bifurcation analysis is much

simpler. For example we mention the model of NLS considered in [29] having the form
iuy = Au+ V(z) *u+ O(u?) (5)

where V is a regular convolution potential. In this case the linear frequencies have the form |j|? + Vi,
(with V; the Fourier coefficients of the function V') . In the “completely resonant” case, i.e. V =0, in
addition to the small divisors problem, appears also the issue of infinite-dimensional bifurcation problem.
See for instance [55], [34], [53]|. Let us put aside the bifurcation problem for the moment, and focus on
the small divisors matter. Typically one has that the equation linearized about zero is not invertible,
since the spectrum of the linearized operator accumulate to zero. In other words the inverse of the
linearized operator produces a “loss” of regularity. Hence the classical implicit function theorem does not
hold. To overcome this problem one typicaly uses use an iterative scheme in order to find a sequence of
approximate solutions rapidly converging to the true solution. Such fast convergence is used to control
the loss of regularity due to the small divisors. Two different approaches have been mainly developed so
far: the Nash-Moser scheme and the KAM algorithm.

A Nash-Moser scheme is essentially a Newton method to find zeros of polynomial extended to func-
tional spaces. The idea is to reduce the search of quasi-periodic solutions to the search of zeros of a
suitable functional. In order to run an algorithm of this type one must be able to control the linearized
operator in a neighborhood of the expected solution see Figure 1. Due to the presence of small divisors
it is not possible to invert such operator as a functional from a Sobolev space to itself (not even the
operator linearized about zero). However, since the Newton scheme is quadratic, one may accept that
dyF~1 is well defined as “tame” operator from H* to H*™* for some appropriate s.

The KAM scheme is to find a converging sequence of changes of coordinates such that in the final
variables the solution is trivially at the origin of the phase space. The key idea is to remove from the
system the non homogeneous terms through a translation: in this way the solution is obviously at the
origin of the new coordinate system

However it turns out that the equation for the translation is essentially the same as the one for the
approximate solution in the Nash-Moser scheme. Hence the solvability conditions are quite the same and
involves lower bounds on the eigenvalues (the so called “First Mel'nikov” conditions) of the linearized
operator. However one sees immediately that there is no hope to have uniform lower bounds for the

eigenvalues. Besides this, in classical KAM approach one asks for “stronger” non-degeneracy conditions
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Figure 1: Three steps of the Newton algorithm ;1 := up, — (du F'(\, &,un)) " [F(\, €, up)]

of the eigenvalues in order to simplify the equation for the translation. The idea is to use a reducibility
argument, i.e. to diagonalize the linearized operator. It is well known that it is possible to diagonalize
a finite dimensional matrix, with a regular transformation, if it has distinct eigenvalues. Hence in order
to diagonalize the infinite dimensional matrix appearing in the KAM schemes one asks for lower bounds
on the differences of the eigenvalues (the so called “Second Mel'nikov” conditions) in addiction to the
First Mel’'nikov conditions. This requirement together with some structural hypothesis on the system
(Hamiltonianity, reversibility, ....) provides the linear stability of the possible solution. Naturally the
reducibility is a sufficient condition for the invertibility and typically in a Nash-Moser scheme it is not
required. Historically this is considered to be the main difference between the two approaches: in general
when one refers to KAM theorem, implicitly one means “reducible” solutions. Notice moreover that the
Nash-Moser scheme is, in principle, coordinate independent while the KAM scheme by its nature relies
on the existence of privileged coordinate systems. This last point implies that one loses track of the fact

that the original Banach space is a space of functions.

We have to underline that, imposing conditions like the First or the Second Mel'nikov is not trivial
at all. First one needs some parameters to modulate in order to avoid resonances (in (5) the V; play
the role of such parameters). In other words one exclude parameters associated to “bad” denominators.
Secondly one has to satisfy infinite conditions, hence it may be possible to exclude a full measure set
of such parameters, and in principle one may have to introduce some weaker property such as a block
diagonalization. Moreover in certain cases it is very difficult to verify second Mel’nikov conditions, in
particular in presence of multiple eigenvalues. For instance the NLS in (3) on T™ with n > 1. This

is one of the reason why the first KAM results were for PDEs with Dirichelet boundary conditions.
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Indeed the first existence results for periodic and quasi-periodic solutions on tori have been obtained by
using a Nash-Moser approach by Bourgain in [16] for the nonlinear Schrédinger equation on T? with
a convolution potential. Here the author used subtle multiscale argument to estimate the decay of the
inverse of the linearized operators developed in the following in [17] to obtain the existence result on
T?. We mention also the remarkable results by Berti and Bolle [13], [10] which study equations in
presence of a more natural multiplicative potential; in particular the authors never exploit properties of
“localization” of the eigenfunctions of —A + V(x) with respect to the exponentials that actually might
be not true. This is why their approach applies also to equations with multiplicative potential and not
only with convolution potential. The latter approach, based on a multi-scale analysis, has been very
fruitfully exploited in the study of PDEs also on manifolds different from tori. In [14] Berti, Corsi and
Procesi studied NLW and NLS on compact Lie groups and homogeneous manifolds. Again we remark
that these papers rely on the so called “multi-scale” analysis based on the first Mel'nikov condition and
geometric properties of “separation of singular sites”, and that this methods do not imply reducibility
and linear stability of the solutions. There are very few and recent results on reducibility on tori. We
mention Geng-You in |32| for the smoothing NLS, Eliasson-Kuksin in [29] for the non resonant NLS (see
(5)) and Procesi-Procesi [53] for the completely resonant NLS which involves deep arguments of normal
forms developed in [52], [54]. All the aforementioned papers, both using KAM or multi-scale, are on

semi linear PDEs with no derivatives in the non linearity.

More recently KAM theory has been developed also for dispersive semilinear PDEs on the one
dimensional torus when the nonlinearity contains derivatives of order 6 < n — 1, here n is the order
of the highest derivative appearing in the linear constant coefficients term. The additional difficulty in
this case is that, due to the presence of derivatives in the nonlinearity, the KAM transformations used
to diagonalize the linearized operator might be unbounded. The key idea to overcome such problem
has been introduced by Kuksin in [42] in order to deal with non-critical unbounded perturbations, i.e.
d < n—1, with the purpose of studying KdV type equations (4), see also [39]. The general strategy can
be explained as follows. Roughly speaking the aim of a reducibility scheme is to iteratively conjugate an
operator D + eM w.r.t. the exponentials basis, where D is diagonal, to D, + e?M, where D, is again
diagonal in the exponentials basis. Let us consider the KdV case on T where the diagonal operator D

in the Fourier space (in time and space) has the form
Di(l)=iw-1+i®, 1€2% jeZ weR'd>1 (6)

The equation which defines the change of variables is called the homological equation while the op-

erators D, D, are called the normal form. In one defines A as the generator of the quasi-identically

ix
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transformation, the homological equation has the form
ad(D)[A] := [D,A] =eM — e[M], (7)

where [M] € Ker(ad(D)). It is clear that the eigenvalues of the adjoint operator ad(D) involves the
differences of the eigenvalues of D: here one uses conditions the Second Mel'nikov conditions in order
to have a lower bounds on such differences. If M is an unbounded operator then one may exploit the

properties of the dispersion law of the equation to prove a stronger bound like

V053 — k3|

A+ -k >
w4 T

(8)
Of course for j # k one has |j3 — k3| > |52 + k2| and this good separation property allows to control
derivatives in the nonlinearities. However it turns out that D, is diagonal in the space variable (with
coefficients depending on time). The purpose of the so called Kuksin-Lemma is to show that such an
algorithm can be run, namely that one can solve the homological equation also when the normal form
is diagonal only in the space variable (as Dy is). This approach, developed for the KdV that has a
strong dispersion law, has been further exploited by the Chinese school to cover the “less” dispersive case
of NLS in presence of one derivative in the non linearity, i.e. the critical case when § = n — 1. Here
the eigenvalues of the spatial differential operator have an asymphtotics like |j|?, hence the separation
properties are worse. In particular we mention Zhang, Gao and Yuan [61] which studied the reversible
NLS and Liu and Yuan which in [46] deal with the Hamiltonian case. The previously mentioned results
require that the equation is semi-linear and dispersive; in the "weakly dispersive" case of the derivative
Klein-Gordon equation we mention the results |7]-[8], also based on KAM theory. In the latter papers
the key idea is in the explicit computation of the first order asymptotic expansion of the perturbed
normal frequencies, obtained using the notion of quasi-T6plitz function. This concept was introduced
by Procesi-Xu [59] and it is connected to the Toplitz-Lipschitz property in Eliasson-Kuksin [29].

The KAM approach described above seems to fail in the fully nonlinear case and one has to develop
different strategies. The point is that in solving (7) one is not able to prove that A is a bounded operator.
This is due the fact that along the iterative procedure one loses information on the PDEs structure. This
is one of the motivation for developing the idea of quasi-T6plitz vector fields. The first breakthrough
result for fully nonlinear PDEs is due to looss-Plotnikov-Toland who studied in [37] the existence of
periodic solutions for water-waves; we mention also the papers by Baldi [2], [3] on periodic solutions for
the Kirckhoff and Benjamin-Ono equations. These papers strongly rely on the PDEs structure. They are
based on Nash-Moser methods and the key point is to apply appropriate diffeomorphisms of the torus

and pseudo-differential operators in order to invert the operator linearized at an approximate solution.



Introduction

However these results do not imply the linear stability of the solutions and they do not work in the
quasi-periodic case. Here the idea, borrowed from pseudo-differential calculus, is to conjugate D + e M
to an operator D4 +eM, where D, is again diagonal while M is of lower order w.r.t. M. After a finite
number of such steps one obtains an operator of the form Dg + e Mg where Dp is diagonal and My is
as smoothing (in space) operator of order k, with k arbitrarily large. In the search of periodic solutions
this is sufficient to get the invertibility of Dp + eMp. Indeed the “vector” of frequency w is actually
one-dimensional, hence the small divisor in (6) becomes wl + 53 with | € Z. Hence such quantity is a

true small divisor only if |I|  |j]3. In such a case one prove lower bounds of the form

for some 7 > 0. 9)

This implies that, if Mz maps H® to H5T™ with 75 > 71, i.e. it is sufficiently smoothing, then one
can invert Dp 4+ eMp by Neumann series. Unfortunately, this arguments does not hold in the case of
quasi-periodic solutions. In this case w € R hence [ is not controlled by || to some power and the
bounds (9) does not hold.

Quite recently this problem has been overcome by Berti, Baldi, Montalto who studied fully nonlinear
perturbations of the KdV equation first in [5], for the forced case, then in [4] for the autonomous. This
was the first result for quasi-periodic solutions for quasi linear PDEs. As in the periodic case the main
point is conjugate D + M to an operator of the form D diagonal and Mp a bounded operator. This
is done by exploiting the PDEs structure and using conjugation by flows of pseudo-differential vector
fields. Note that such transformations preserves the PDEs structure. This is the main difference with
the KAM reducibility scheme. Once one has obtained the structure Dp + e Mp one can apply a KAM
reducibility scheme in order to diagonalize. One needs only to invert such operator and this could be
done by a multi-scale argument, however since they are working in one space dimension they show that
the second Mel'nikov conditions can be imposed. This gives the stronger stability result. This scheme,
i.e. Nash-Moser plus reducibility of the linearized operator, is very reminiscent of the classical KAM
scheme. The main difference with the classical KAM approach is that, following the ideas introduced
in [5] one does not apply the changes of variables that diagonalize the linearized operator. Even if this
scheme has been developed for the particular case of the KdV, it is quite clear that it can be generalized
to larger class of dispersive PDEs on the circle, see for instance the application to capillary water waves
(Beti-Montalto in preparation). An important point is that their scheme runs on Sobolev spaces, i.e.
spaces with only finite regularity. This means that even if one starts with an analytic PDE (as in the
case of most natural models) still the quasi-periodic solution has only finite regularity, both in time and
space. This is not a technical question, but is related to the loss of regularity in the reducibility scheme.

In other words in order to get the estimates on the inverse of the linearized operator one needs to control

xi
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the norm of the operator which diagonalizes it. In the case of Sobolev regularity such operator is bounded
from H?® to itself. In the analytic case this is false. Consider as an example the torus diffeomorphism I"
of the form T > z — x+¢f(x). It is clear that if x € T,, namely x € C with Re(z) € T and |[Im(x)| < a,
as in analytic cases, there is no reasons why I' should map T, into itself. Another important remark
is that the techniques to study the autonomous KdV, see [4], are deeply connected to the Hamiltonian

structure.

Plan of the Thesis. The main purpose of the present thesis is to provide existence and linear

stability of quasi-periodic solutions for a class of equations of the form
g = Uge + £ (U, Ug, Use), €T, (10)

where f is a suitably smooth fully nonlinear nonlinearity. The general approach is similar to the one
developed in [5], [4] for the KdV. We deal both with forced and autonomous cases, both in reversible
and Hamiltonian setting. Finally we discuss both analytic and finite regularity results. Our results are
stated in Theorem 1.1.1 for the forced reversible case, 1.1.2 for forced Hamiltonian case. Regarding the
autonomous case we consider a reversible NLS and we discuss analytic solutions in Theorem 1.2.5 and

Sobolev regularity in 1.2.6.

The main novelties with respect to the strategy of [4] are the following,.

e we deal with analytic nonlinearities and prove the existence of analytic solutions. This is the
first results of this type for fully nonlinear equations. Note that even though we have done this
only in the case of the autonomous reversible NLS, recovering the same result for forced and/or
Hamiltonian setting is completely straightforward at this point. See paragraph Analytic solutions

on page xxi.

e we use a unified procedure valid both for finite regularity and analytic cases, since in our abstract
theorem we rely only on properties of “tame” vector fields on scales of weighted Hilbert spaces.
If one has exponential weights then the setting is analytic, otherwise it is Sobolev. Thus our
algorithm is very flexible. As a drawback, in the analytic case, we do not use Cauchy estimates
which may simplify some technical points; instead we use the fact that our functions are analytic

on the complex domain T, and Sobolev on the boundary.

e in the autonomous case we deal with a wide class of NLS equations where the leading term of
the nonlinearity is cubic but contains derivatives up to the second order. Things would be signifi-
cantly easier if we studied perturbations of the integrable cubic NLS, as it has been done for the

autonomous KdV. In the construction of frequency-amplitude modulation we must deeply use a

xii
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suitable argument of “genericity” of the nonlinearity and of the tangential frequencies. Such prob-
lem does not appear in perturbations of the integrable cubic NLS. See paragraph Weak Birkhoff

normal form on page xvi.

e we consider a very general cubic term for our autonomous equation. It depends on several free
parameters. By our techniques, we not only prove that for “generic” choices of such parameters then
one has “infinitely” many choices of tangential sites, but we also give an explicit set of “resonant”
parameters (see Definition 4.2.65) for which our method does not apply. In other words for such
bad parameters we are not able to prove that there are choices of tangential sites for which the
frequency-amplitude map is a diffeomorphism. It would be interesting to understand what happens
in the case of such “null-forms”. Anyway our class of fully nonlinear cubic terms cover the cases
studied in the literature of semi-linear PDEs as well as many other quasi linear and fully non linear

models.

e since the dispersion law of the NLS is even, in the Hamiltonian cases we have to deal with double
eigenvalues. This is not trivial even is the simplest cases (bounded or semilinear nonlinearities)
since the Kuksin Lemma in this context does not apply. See paragraph Inversion of the linearized

operator on page xiv for a brief description of these first two points.

e in the autonomous case we consider reversible equations. This requires developing a more general

KAM iteration algorithm. See paragraph Abstract KAM on page xix for an informal description.

e we deal with complex equation; this essentially brings only technical problems.

In the following we explain how the thesis is organized. In particular we focus on the novelty
introduced and the differences we have with respect the works [5] and [4].

In Chapter 1 we state our main Theorems. In particular in Section 1.1 we present the first results
we obtained on the forced NLS. In forced cases the non linearity £ depends explicitly on time in a quasi-
periodic way, i.e. f(u, Uz, Upe) = £(Wi, T, U, Uy, Uzy) Where w € R? for some d > 1 is the frequency vector
of the forcing. We started by studying the forced case because here one does not have to handle the
bifurcation equation. Hence we focused on the small divisors problems and extended the methods used
in [5] to the NLS case. As main differences with respect to the KdV equations we mention the “weaker”
dispersion law of the linear operator (|7|? instead of |j|?) and that, due to its complex nature, the NLS is
a system and not a scalar equation. We studied two cases: in Theorem 1.1.1 we analyze the NLS under
some ‘“reversibility” assumption, then in Theorem 1.1.2 we study NLS with Hamiltonian nonlinearities.

Regarding our reversibility condition (actually a very natural condition appearing in various works,

starting from Moser [48|) some comments are in order. First of all some symmetry conditions are needed

xiii
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in order to have existence, because this excludes the presence of dissipative terms. Also such conditions
guarantee that the eigenvalues of the linearized operator are all imaginary. All this properties could be
imposed by using a Hamiltonian structure, however preserving the symplectic structure during the Nash-
Moser iteration is not straightforward. Another property which follows by the reversibility is that the
spectrum of the operator linearized at zero is simple, this is not true in the Hamiltonian case. Actually
the reversibility conditions is given in terms of the parity of the functional (see Hypothesis 1). In other
words we assume that some subspace of functions is invariant for the system. We selected a subspace
of odd functions of the variable x. In some sense it is equivalent of working with Dirichelet boundary
conditions because the linear operator in the Fourier space with the “sine” basis has single eigenvalues.
It turns out that in this case there are no deep differences with the problems tackled in [5]. On the
contrary many problems arise from the Hamiltonian structure and not only of technical nature. We
briefly describe the general strategy we used to tackle the forced cases. First we note that in the forced
cases the only unknown of the problem is the embedding of the torus T¢ 3 ¢ — u(p, z) € H*(T4; C)

such that u(wt, z) solves (10). Assuming that the forcing is small, the equation for the embedding reads
iw - 0o = Ugy + £ (0, T, U, Uy, Ugy). (11)

The proof of the existence of the embedding is based on an iterative scheme that produces “approximate”
solutions at each step. Due to the presence of the quasi-periodic forcing with frequency w, the starting

point (at € = 0) is u = 0.

Nash-Moser scheme. The first ingredient is a generalized implicit function theorem with parame-
ters (in our case the frequency w). In Section 3.1 of Chapter 3 we state such abstract Theorem. This is
a well-established iterative scheme which allows to find zeros of a functional provided that one is able to
prove the invertibility of its linearization in a neighborhood of the origin. This is fairly standard material.
For instance in [11] the authors uses a similar algorithm. Anyway our abstract formulation allows us
to apply the theorem to a wide class of operators. This formulation is based on a formal definition of
good parameters where the algorithm runs through. In other words the Theorem (see Theorem 3.1.18)
provides a “possibly empty” set of good parameters for which there is convergence of the sequence of
approximate solutions to a true solution of the equation. We use this result in order to prove Proposition
4.0.46 in Section 4.

Inversion of the linearized operator. The second step is to study the invertibility of the linearized
operator in order to give a more explicit formulation of the set of good parameters obtained at the
previous step. An efficient way to prove bounds on the inverse of a linear operator is to diagonalize it:

this is the so called reducibility. In the case of fully nonlinear NLS the linearized operator at some point
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u has the form

L(u) =w- 0,1 +i(1 + Az(p, 2))0ps + iA1(p, )0y + 1 Ao(p, ) (12)

where A; are multiplication operators on the space H® x H® (see (4.1.14)) and 1 is the 2 x 2 identity
matrix.

The key point is to control the differences of eigenvalues. This is the content of Proposition 4.1.51 in
Section 4.1 for the reversible case. In the Hamiltonian case, where the eigenvalues of the linear operator
are double, we cannot obtain the diagonalization. We only we obtain a reduction to a 2 x 2 block-diagonal
matrix; this is the content of Proposition 5.0.85 in Chapter 5. In both cases the proof is divided in two

steps:

1. Since we are dealing with unbounded non-linearities, before performing the diagonalization, we
need to apply some changes of variables in order to reduce the operator to a constant coefficients
unbounded operator plus a bounded remainder. This is a common feature of the above-mentioned
literature and the reduction to constant coefficients of the differential operators of highest order
can be iterated obtaining a constant coeflicients unbounded operator plus a remainder which is
regularizing of degree k. In the reversible case we set kK = 0 as one can see in Lemmata 4.2.53 and
4.2.58 in Section 4.2. Concerning the Hamiltonian case we need to set £k = 1. Indeed, due to the
multiplicity of the unperturbed eigenvalues, we need a more precise control of their asymptotic.
This analysis is performed in Lemmata 5.1.87 and 5.1.95. Some minor difficulties appear related

to preserving the Hamiltonian structure.

2. The previous step gives a precise understanding of the eigenvalues of the matrix which we are
diagonalizing. This allow us to impose the Second Mel’nikov conditions and to diagonalize by a
linear KAM scheme. The conditions which we require are explicitly stated in Proposition 4.1.51
of Section 4.1 in the reversible case and in Theorem 5.0.85 in Chapter 5. In the latter case we
obtain a block diagonal reduction to a 2 x 2 block diagonal time independent matrix. Note that
the arguments of Step 1. allows us to obtain a complete diagonalization, that is a better result
with respect to the one obtained by using the Kuksin Lemma. We remark also that, due to the
multiplicity of the eigenvalues we need to require a weaker condition (see the definition of 0% in
(5.0.4)). This is needed in order to perform the measure estimates and it is a matter exclusively

related to the Hamiltonian structure and the periodic boundary conditions.

Once we have diagonalized the matrix, the bounds on the inverse follow from bounds on the eigen-
values, see Proposition 4.4.77 in Section 4.4 and Proposition 5.3.110. Now the sets of good parameters

are rather explicit. They are formulated only in terms of the eigenvalues of the linearized operator £
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(see for instance formulae(4.1.23) and 4.4.208). Before discussing about the measure estimates of the set

of parameters we want to remark which is the core of the steps we just analyzed.

The key idea to deal with fully nonlinear equations stands in Step 1. In such procedure one uses
techniques different from the standard KAM idea (such as the Kuksin Lemma). The important issue
is that our methods deeply rely on the structure of pseudo-differential operator of £ in (4.1.29). Such
particular structure comes form the fact that £ is the linearized operator of a PDE in which the non-
linearity £ is a composition operator. The transformation of coordinates used in Step 2 destroys the
particular structure of £. This is the reason why we follow a Nash-Moser scheme. Indeed we just use the
fact that in a special coordinate system we are able to give estimates on the inverse of £, but we never
changes the coordinates of the whole system. This is the advantages of the Nash-Moser with respect to
the KAM approach. It is automatic to preserve any structure of the initial system at each step of the

iteration. This issue has to be taken into account also when studying the autonomous case.

Measure estimates. As last step of our strategy we perform measure estimates on the sets of
good parameters in order to ensure that for “most” parameters w we are able to find a quasi-periodic
solution with such frequency vector. There are two principal issues concerning such measure estimates.
Essentially, following our scheme one construct at the n-th step a set G,, of parameters which depends on
the approximate solution u,. The first matter is to show that each G, has measure 1 — O(e). The first
basic requirement is to prove that we may impose each single non-resonance condition by only removing
a small set of parameters. This is relatively simple in the reversible case, while in the Hamiltonian case
this is a non trivial problem which we overcome by imposing a non-degeneracy condition (see Hypothesis

3) and by considering vectors w as in (1.1.7) instead of (1.1.2).

Secondly one needs to study the dependence of the Cantor sets on the function u,. Indeed in
principle as n varies this sets are unrelated and then the intersection might be empty. Indeed G, is
constructed by imposing infinitely many Mel'nikov conditions. We show that such infinitely many
conditions imply finitely many second Mel'nikov conditions on a neighborhood of w,. This implies a
sort of “summability” condition and allows us to show that the union of the resonant sets is still small.
This analysis is performed in Section 4.5 for reversible NLS an in Section 5.4 for the Hamiltonian case.

This is the most delicate part where substantial new ideas with respect to reversible case, are needed.

Since the w, are a rapidly converging Cauchy sequence this proposition allows us to prove that
GUoo = Np>0Gy has asymptotically full measure. The strategy described above is similar to that followed
in [5] and [31]. It is quite general and can be applied to various case. The main differences are in the
proof of Proposition 4.1.51 (or 5.0.85). Clearly it depends on the unperturbed eigenvalues and on the

symmetries one ask for on the system.
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Chapter 6 is devoted to the proof of Theorems 1.2.5 and 1.2.6 which are about the more interesting
case of autonomous NLS i.e. equation (10) with £ which does not depend on time. On one hand one
can use the result obtained in Chapters 4 on the forced case. On the other hand in the autonomous
case there are no external parameters in the nonlinearity that fixed the frequency vector w. So that, by
following straightforward the same scheme used for forced cases, one cannot exclude that the solution
of the problem is u = 0. In other words cannot choose u = 0 as starting point. Hence some preliminary
steps are required. In [4] the authors studied the autonomous KdV, and exploited the Hamiltonian
structure of the equation in order to reduce the autonomous case to the forced one, using arguments
developed by Berti-Bolle in [9].

Here we study a “reversible” equation and moreover we are interested in looking for analytic solutions
for the NLS in (10) with an analytic £. Actually Theorem 1.2.5 is the first results about the existence of
analytic quasi-periodic solutions for fully nonlinear PDEs. Indeed using the techniques used in [4] one
cannot find analytic solutions and in moreover one cannot deal with reversible systems. The core of our
proof relies on the abstract Theorem (3.2.39) stated, in Section 3.2, for general “tame” vector fields and
not on the symplectic geometry arguments developed in [9].

Anyway in the autonomous case the proof is sophisticated and involves many different arguments.
The structure of Chapter 6 follows essentially the structure if the proof. Here we give an overview of
the proof by referring the reader to the main Propositions proved in the Sections of Chapter 6. Here we
want to remark the differences between the autonomous case and the forced one and in the following the
differences between our approach and the one followed in [4].

An important feature of the autonomous equation (10) is that the NLS is completely resonant near
u = 0. Note that this is not true for equation (5). In other words here we have that all the linear
solutions of (10) are periodic. This means that we are looking for a quasi-periodic solution close to some

periodic solution

d
u(t,z) = Z uviei"?teiv“c (13)
=1
of the linear equation which involves d frequencies in the set S = {vy,...,v4} C Z. This means also

that the existence of quasi-periodic solution is purely a non linear phenomenon. Due to the presence
resonances it can happen that, for specific choices of the sites .S, the behavior of the solutions of the non
linear equation differ drastically from the one of the linear equation (see for instance [23|). In order to

avoid such phenomena one has to restrict to “generic” choices of S, in the sense of Definition 1.2.4.

Weak Birkhoff normal form. As preliminary step one looks for an approximate solution for
the NLS 1.2.16 which will be the starting point for an iterative algorithm. We said that a linear

approximation is not enough. Hence in Section 6.1 we find an solution of the third order approximate
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NLS. This is done in the following way. One first rewrites the NLS as a dynamical system

i =x(w) = 3 X (), (14)

JEZ

where x is vector field defined on the space of sequences u = {u;}jez € h*P. In our case h®P <
HP(T,; C) the functions analytic on the toroidal domain x € C such that Re(z) € T and |Im(z)| < a, for
some a > 0. For a precise definition see formula (2.1.16) in Section 2.1. Once selected, the sites S C Z
decompose the space of sequences h®P into two orthogonal subspaces u = (v, z) := ({uk}ke s, {ur b re Sc).
Then one looks for a coordinates system such that {z = 0} is an invariant manifold of solutions for the
approximate NLS. More precisely one splits the vector field in (14) as x = Ilgxdy + Igex0;, hence,
through a step of Birkhoff normal form, one removes all the cubic terms O(v?), O(v?2) from IIgy and all
the term O(v3) form Ilgcx that do not commute with the linear part. This implies that the dynamics
on z = 0 is integrable for the third order approximation of the new vector field. We perform this step in
Proposition 6.1.124 of Section 6.1. It turns out that such transformation is close to the identity up to a
finite dimensional operator.

In principle one could remove also the term O(v?z) from Ilgey by performing a stronger normal
form. In classical KAM Theory for semi-linear NLS this is actually done. See for instance [52]. With a
complete normal form one can completely diagonalize the third order term of the vector field. Here we

do not do this due to the following question.

Structure. We see in (2.1.19) (se also (4.1.29)) that the linearized operator of an unbounded vector
field as x in (2.1.16) is a non constant coefficients pseudo-differential operator. In the forced cases we
analyzed the spectrum of similar linear operator in Proposition 4.1.51. To prove the invertibility of the
linearized operator in the autonomous case we need to use similar arguments. The proof of Theorem
4.1.51 strongly relies on the particular differential structure of £. In order to perform a step of Birkhoff
normal form as in [52] one has that the map is close to the identity up to a bounded operator. The
advantage of using the map defined in Proposition 6.1.124 is that the linearized operator of the field is
modified only up to a finite rank operator. Hence the spectral analysis is essentially the same as the

analysis in the original coordinates. Hence we can use the same arguments used for the forced case.

Action-angles variables. We have underlined that in autonomous cases there are no external
parameters to modulate in order to fulfill non-degeneracy conditions. Now thanks to the step of weak
Birckhoff norml form we selected an approximatively invariant manifold where the dynamics is integrable
and non-isocronous. On this manifolds we introduce action-angle variables, on the tangential sites (i.e.

the sites in S), in such a way one can use the initial data as parameters which will be denoted by £. This
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is done in Section 6.2 using the change of coordinates in (6.2.9) one obtains (see (6.2.14)) a system like

0 =w(&)+F0,y,w)
£ =Q(0;)z + F™(0,y,2),

with F' small in some suitable sense. The system in (15) are of the form considered in the abstract
Theorem in (3.2.39). Some comments are required.

The tangential frequencies w(§) are given by the frequency-amplitude modulation in (6.2.16). Here
one can see one the most important issue of autonomous cases with respect to the forced one. Indeed
one has that the frequency vector w is O(|£|)—close to integer vectors as & — 0 hence the perturbation

theory is more difficult. Indeed we need a diophantine frequency, i.e. which satisfies a bounds like

v

w(§) -1 > W,

for some T >0, (16)

and for v ~ O(|¢]).

Moreover in usual KAM Theorems the whole normal form N := w(&) - 9p + (6, )20, is reduced
to constant coefficients. Here the operator 2(6,£) depends on the angles € since we did not remove
the terms O(v22) from the vector field in the normal directions. This means that in (6,&) there are
some terms which, are not “perturbative” with respect to the size of the small divisor v. These term are
dealt in Lemma 6.4.142 of Section 6.4.2 where we study the invertibility of the linearized operator in the
normal directions. Such terms are essentially the non-resonant terms we did not cancel with the initial
Birkhoff step.

A crucial point is the so called “twist” condition with respect to the parameters £&. What we need to
check is that if one “moves” the initial data £ then the frequencies move in a non “trivial” way. We firstly
prove that for the tangential frequency the map £ — w(§) is a diffeomorphism. Then we prove that
also the normal frequencies satisfy an appropriate twist condition. These terms are given by the average
in 6 of 2(0,£). The analysis of the last issue is performed in Lemmata 6.6.157 and 6.6.158 in Section
6.6. Note that this is a delicate question, since we are requiring a modulation of infinitely many normal
frequencies by only finitely many parameters. The analysis would be much simpler if one considers a
fully nonlinear perturbation, of order at least four, of the cubic integrable NLS. In such a case, for any
choices of the tangential site in S, one would obtain that the map £ — w(§) is a diffeomorphism by
exploiting the integrability properties of the system. Here we need to introduce a notion of “genericity”
(see Definition 1.2.4) which implies that for “most” choices of the cubic terms and “most” choices of the
tangential sites the frequencies satisfy a “twist” condition. Interestingly we can produce explicitly non

generic choices of cubic non linearities such that for any choice of tangential sites the twist condition is
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false. In particular it turns out that the Jacobian of the map £ — w(§) has at most rank 2. It would be
interesting to investigate whether quasi periodic solutions exist for such “degenerate” cases.

The previous steps are not trivial at all, and depends deeply on the equation and on the domain on
which one works. Now we briefly comment the strategy we follow in order to find a torus embedding for
a general vector field of the form (15), which is one of the most important differences with respect to

the approach followed in [4].

Abstract KAM. The existence of an invariant torus means that it is possible to describe the system

in coordinates (0, y,w) adapted to such torus, i.e. such that the system has the form

b =w+ g 0,y,w)
y = g(y)(97va) (17)

w = g0, y,w)

with g(")(97 0,0) = 0 for v = 60, y,w. Of course at this level of course there is no particular reason for
separating the variables y, w; however in all applications the variables y naturally appear as variables
“conjugated” to #: in the Hamiltonian setting they come from the symplectic structure and in the
reversible setting they are characterized by the fact that (¢®)(-,y,w)) = 0.

As said, possibly after the Birkhoff procedure one typically obtain a system like (15) which has only
an “approximate” invariant torus since F()(6,0,0) are “small”.

Thus the idea, which goes back to Moser [48], is to find a change of coordinates such that in the new
coordinates the system (15) takes the form (17). Precisely one has to consider a sequence of changes of
variables approximating better and better (17).

We have already said that an important feature of Moser’s scheme is that the operator (6; ) needs
to have distinct eigenvalues with suitable lower bound on the distance between two distinct eigenvalues
in order to be diagonalized. Under such condition it is possible to show that in the final coordinates the
system assume the form

0=0(8) + FO0,y,w)
j= FO(9,y,w) (18)
W = Q(&)w + F(8,y, w)

not only with F (")(9, 0,0) =0 for v =6, y,w but also quadratic in y,w: in turn this gives informations
about the linear stability of the invariant torus (6,0, 0).

However in the fully nonlinear case we need to preserve some properties of the initial vector field, for
instance the fact that the vector field comes from a Nemytskii operator, and it is well known that the

change of variables which diagonalizes Q(6; £) does not preserve such structure.
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The aim of the Theorem 3.2.39 is Section 3.1 is to show that in principle there is in fact no need to
require the second order Mel’nikov conditions.

Given a dynamical system it is very natural to look for a set of variables in which the dynamics is
“easier” to study and describe: of course also being “easier” heavily depend on the aspect of the dynamic
one is willing to study. When looking for invariant tori, one has to perform an iterative scheme: at each
step, the goal is to find a change of variables close to the identity such that the term constant in y,w
is “reduced drastically” (in some suitable sense) so that after infinitely many steps it vanishes. If one
simply wants to reduce (15) to (17) the natural thing to consider are the translations, i.e. one may start
looking for a change of coordinates (6, y,w) + (6 + h(0),y + h¥)(0),w + h(*)()) with h(*) suitably
small, in order to simply eliminate the dependence on the angular variable; however in order to find such
a change of coordinates one needs to invert the whole linearized operator about (6, 0,0), which may be a
too hard task. Another possibility is to consider a rototraslation in such a way that the rotation makes
the linearized operator diagonal and hence “easier” to invert. However, a part from the fact that the
rotation is the one involving the second order Mel'nikov condition and there are case in which one cannot
impose them, as said also when one is able to impose the second Mel'nikov conditions, after rotating
the w-variables in principle one loses the Toplitz structure. The compromise is to “rotate” the operator
only in the y-variables; precisely one consider changes of variables which are merely translations in the
0, w-components and contain a term linear in y,w in the y-component. Such changes of coordinates are
obtained as time-1 flow associated with vector fields in a suitable subspace of “almost-identical” vector
fields that we shall denote A; see (3.2.53) below. In general, under any change of coordinates ® generated
by a vector field G, a vector field f is changed into

0.(f) = f+[G, f]+0(G?)

so if we look for ® such that II4(®.f) = 0 up to a quadratic remainder (which in the scheme will

converge to zero very fast), we need to find G such that

aA(f + 1[G, 1) = 0;

in other words we need to invert the operator II14[f,]. If, as said, we confine to the case G € A it is

natural to decompose f as

F=X+X', Xed Xxteat

since [X, G] = 0 for G € A, thus we need to invert the operator £ := II4([X*,]). Then it is convenient

to consider a “degree decomposition” of X+, namely writing
Xt=N+R
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with N, R being the (< 0)-degree and the (> 2)-degree vector fields respectively. The second order
Mel’'nikov conditions allow to diagonalize the operator ® = D (&) := I14([XV,]) and deduce the invert-
ibility of £ by Neumann series. We show that the invertibility of ® implies the invertibility of £, because
R = II4([R,]) is nihilpotent and it commutes with ®, thus the minimal condition to require on the
parameters seems to be the invertibility of ®. The invertibility of ® rely on the following two important

properties which has to be satisfied at each step of the iteration:
e the frequency vector w must be diophantine;
e the operator w - 9y + (0, &) must be “approximatively invertible”.

In classical KAM scheme in the second item one has that the operator €2 is approximatively diagonal. In
our approach we do not have such property, but on the other hand we just use transformation which are
close to the identity up a a finite rank operator. This implies that, at each step, the linearized operator
in the normal directions has the form (4.1.29) up to a finite rank operator. In this way, in order to
invert it, we are allowed to use all the techniques we used in studying the forced cases. Actually the
abstract theorem 3.2.39 provides a general methods that allows us to pass from the forced case to the
autonomous one. This is done without exploiting any Hamiltonian structure, as done in [4]. We remark
again that, in applications, one must be able to perform the preliminary step of Birkhoff normal form,

otherwise the result provided by our abstract algorithm should be empty.

Analytic solutions. An important point is that our algorithm is in some sense “stable” under slight
modifications of the scheme we have just described. We have already said that the invertibility of a
matrix does not depend on the coordinates one choose. On the other hand lots of estimates we perform
actually depend on the coordinate system. Hence it can be convenient to have the possibility of choosing
appropriate coordinates. The iterative scheme can be changed, without affecting the convergence, by
applying at each step linear transformations on the normal variables. This is actually the role of the
transformations 7 introduced in (3.2.66) in Section 3.2. The key point is that such map T must preserve
any kind of structure one needs. This clearly depends on the particular problem that one studies, in
our case the pseudo-differential structure of the linearized operator. Just to fix the ideas one can think
that, in the case of bounded nonlinearities, one can choose the maps 7 as the maps which diagonalize
Q. Note that in this way one recovers the results of classical KAM theory for semilinear PDEs. This
question is analyzed in Section 6.4.1 where we study what kind of linear maps T are allowed in our case.
Thanks to good choices of such maps 7, we are able to show that the loss of analyticity at each step
of the iteration is exponentially small, and hence to obtain a solution that is analytic in slightly smaller

domain.
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Analytic and differentiable cases. In Theorems 1.2.5 and 1.2.6 we deal with analytic and differ-
entiable nonlinearities respectively. We remark that we work on spaces of functions which are analytic in
the complex toroidal domain 7, and Sobolev on the boundary. In the abstract Theorem 3.2.39 we never
exploit any analytic properties, but we just use properties of “tameness” of the vector fields, exactly as
done in differentiable cases like [4], or in Chapter 4 and 5. Hence one obtain differentiable the result in

Theorem 1.2.6 just following word by word the proof of Theorem 1.2.5.
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1. Main Results

In this introductive Section we state our main results. We prove the existence and the stability of
quasi-periodic solutions for the NLS in different contexts. First on forced equations, both in the reversible
and Hamiltonian cases. Hence in Section 1.2 we present the results obtained on the autonomous reversible

NLS.

1.1 The forced equation

In the first part of the thesis we study a class of forced fully non linear Schrodinger equations of the
form

U = Ugy + ef (Wt x, Uy Uy, Ugy), x €T :=R/277Z, (1.1.1)

where € > 0 is a small parameter, the nonlinearity is quasi-periodic in time with diophantine frequency

vector

13 _ Y0 d
-2 > —— e . 1.1.2
2,2] CR, |w-¢> MTO,V e z4\{0} (1.1.2)

For instance one can fix 7o = d+1. and £(g, z, 2), with o € T, 2 = (29, 21, 22) € C3is in CI(T ! xC3; C)

w = A\, )\GA::[

in the real sense (i.e. as function of Re(z) and Im(z)). For this class we prove existence and stability of
quasi-periodic solutions with Sobolev regularity for any given diophantine vector w and for all A in an

appropriate positive measure Cantor-like set.

A quasi-periodic solution, with frequency w € R¢, for an equation such as (1.1.1) is a function of the
form u(t, ) = u(wt, z) where
u(p, ) : T x T — C.

In other words we look for non-trivial (27)%+! —periodic solutions u(y, x) of
1w - Opt = Uy + €f (W, 2, U, Uy, Ugy) (1.1.3)
in the Sobolev space

HS := H¥(T? x T; C) := {u(p,z) = Z u&kei(mﬁk'x) ul)? = Z lug|?(i)% < 400}, (1.1.4)
(6,k)eZiXZ, ieZd+1
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where s > 59 := (d+2)/2 > (d+1)/2, i = (£, k) and (i) := max(|¢], |k|,1), [¢] := max{|t1],..., |la|}.
For s > 59 H® is a Banach Algebra and H*(T9!) < C(T%*!) continuously. We impose the reversibility

condition

Hypothesis 1. Assume that £ is such that

(i) £(p,—x,—20,21,—22) = —£(p, x, 20, 21, 22).-

(“) f(—gp, T, 20,21, ZQ) = f(@v z, 201 zla 22)7

(iii) £(p,2,0) #0, 0.,f € R\{0},

where 0, = Ore(z) — 1 Otm(z)-
Chapter 4 is devoted to the proof of the following Theorem.

Theorem 1.1.1. There exist s := s(d) > 0, ¢ = q(d) € N such that for every nonlinearity £ €
CYT¥! x C3;C) that satisfies Hypothesis 1 and for all ¢ € (0,20), with g = eo(£,d) small enough,

there exists a Cantor set C. C A of asymptotically full Lebesgue measure, i.e.
ICcl =1 as e —0, (1.1.5)

such that for all A\ € C. the perturbed NLS equation (1.1.3) has solution u(e, \) € H® such that u(t,z) =
a(—t,x) and u(t,z) = —u(t, —z) with ||u(e, \)||s = 0 as € = 0. In addition, u(e, \) is linearly stable.

Regarding our reversibility condition (actually a very natural condition appearing in various works,
starting from Moser [48|) some comments are in order. First of all some symmetry conditions are needed
in order to have existence, in order to exclude the presence of dissipative terms. Also such conditions
guarantee that the eigenvalues of the linearized operator are all imaginary. All this properties could
be imposed by using a Hamiltonian structure, however preserving the symplectic structure during our
Nash-Moser iteration is not straightforward. Another property which follows by the reversibility is that
the spectrum of the operator linearized at zero is simple, this is not true in the Hamiltonian case, see
[30]. On the contrary, the spectrum the linearized Schrodinger equation at zero, in the Hamiltonian case,
has double eigenvalues, hence there are a number of difficulties not only of a technical nature.

Here we have also considered the equation
iU = Ugy +mu + ef (wt, T, U, Uy, Ugy), x €T :=R/27Z, (1.1.6)

m > 0 and the nonlinearity is quasi-periodic in time with the frequency
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we A= [2, 2] CRY |w-l > ’Z% v ¢ e Z\{0}. (1.1.7)
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1.1 The forced equation

The difference with respect to definition 1.1.2 is that here we have d parameters, while for the reversible
case we fixed a diophantine direction w and we use only a one-dimensional parameters. Again we work

in differentiable class and we assume that f(¢,z, ), with ¢ € T9, z = (20, 21, 22) € €3 is such that
£(0, @, Uy U, Uaa) = [1(0, 2,615 Eo Mas Eas Noa) + 1F2(0, 7,651, €2 My Gy M)
where we set u = & + in, with (¢, x),n(p, z) € H*(T9T1; R) for some s > 0, and where
filp,x, &0,m0,€1,m1,E2,m2) : T X RE - R, i=1,2. (1.1.8)
is 04 for some ¢ € IN large enough. In this case the equation for u(p,x) : T¢ x T — C reads
W - OpUl = Ugy +mu + €£(0, T, U, Uy, Ugy) (1.1.9)
On the non linearity £ we assume the following;:

Hypothesis 2. Assume that £ is such that
d

f(wt, z,u, Ug, Ugy) = 0z, G(WE, T, u, ug) — %[&IG(wt,x, U, Ug)] (1.1.10)
with Oz, = O, +10y,, 1 = 0,1, and
G(wt, , u,uy) == F(wt, z, &1, &, m0) : T X R - R, (1.1.11)
of class CIT1.
Hypothesis 3. Assume that £ is such that
(%;dﬂ /Tdﬂ(azlf)(cp,x, 0,0,0)dzdp — ¢ # 0. (1.1.12)

Hypothesis 3 si quite technical and we will see in the following where we need it. On the contrary
Hypothesis 2 si quite natural and it implies that the equation (1.1.6) can be rewritten as an Hamiltonian

partial differential equation

up = i0gH(u), H(u) = / lug|® + mlul? + eG(wt, z,u, ug) (1.1.13)
T
with respect to the non-degenerate symplectic form
Qu,v) := Re/ wode, u,v e H* (T4 Q), (1.1.14)
T

where 0y is the L2 —gradient with respect the complex scalar product. The main result proved in Chapter

5 is the following.
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Theorem 1.1.2. There exist s := s(d,70) > 0, ¢ = ¢(d) € IN such that for every nonlinearity £ €
CY(T4! x RS; C) that satisfies Hypotheses 2 and 3 if € < eo(s,d) small enough, then there exists a
Lipschitz map

u(e, \) : [0,e0] x A — H*(T4; €)

such that, if X € C. C A, u(e, \) is a solution of (1.1.3). Moreover, the set C. C A is a Cantor set of

asymptotically full Lebesque measure, i.e.
IC:l =1 as e—0, (1.1.15)

and ||u(e, N)||s = 0 as € = 0. In addiction, u(e, \) is linearly stable.

Theorem 1.1.2 is the equivalent result of Theorem (1.1.1) in the Hamiltonian case. Here we just
changing the equation by introducing a “mass” m > 0. This slightly simplify the problem and allows us

to concentrate on the problems given by the multiplicity of the eigenvalues.

1.2 The autonomous equation

We started to study fully non linear equations in the forced case. The presence of the forcing simplify
the bifurcation problem, and hence we focused on the small divisor problems, which, due to the presence
of derivatives in the non linearity, is more difficult with respect to classical bounded cases. Then we
considered autonomous equation and we studied it by using the results obtained on the forced case. In

particular we consider the equation
up = —1i(Ugg + £(U, Uy, Uzy)), x € T. (1.2.16)

The non linearity f is a gauge preserving and z-independent function of the form

f(’U,, u:E?u:B:E) = f(u7 u:ta ua::v) + g(u7u1‘7u1‘l‘) (1217)

where f is the homogeneous components of degree 3 and g contains all terms of higher order.

We will consider two cases

1. g is analytic as function €3 — C in the ball of radius rg. Then we fix a > 0 and extend (1.2.16)
to x € Tq. Here T, is the compact subset of the complex torus T¢ := C/27Z with z € C and
Im(z)| < a.

2. g € C1(U,,,R?), where Uy, is the ball of radius ro in RS, for some large ¢ in the real sense.

4



1.2 The autonomous equation

Hypothesis 4. Assume that £ is such that

(i) £(=n0,m1, —n2) = —£(n0, 11, 72).

(i) £(n0,m1.m2) = £(70, 71, 72),
(iti) we require that [y |u|*dz and Im [ Gu, dz are constants of motion for (1.2.16),
(iv) Op,f € R\{0}, where 0y = Ore(y) —  Otm(y)-

(v) the cubic term in the non linearity has the form

f(ua Uy, uzz) = a1|u|2u + a—2|u|2ua:x + a3|u:v|2u + a—4|uzv|2uxx + a6|u:vx’2u:m: (1 9 18)
+ bQUQZ_ng + b3(uz)2a + b4(um)2ﬂxx

with a; € R fori=1,2,3,4,6 and b; € R fori=2,3,4.

Items (i), (i), (iv) in Hypotheses 4 are the same reversibility assumptions we did in Hypotheses 1. Item
(v) is nothing but the request that the leading term of f is cubic. The form in (1.2.18) comes from items

(i) — (iv).
Definition 1.2.3. We say that (a1, ag, as, a4, ag, bz, bz, by) # 0 is resonant if either:
1. ag=a;=0and ay — by =0 and a3 —as — by — b3 = 0.

2. ag =a; =0 and a4 — by =0 and a3 — as — ba — by # 0 but one has either ag = 0 and bs # 0 and
a3z —b3 = (6d+1)/(2d+ 1)by or az # 0 and az — (1 + 3d)as —bs = 0 and daz = ba.

3. ag=a; =0 and a3 —ag — by —bg =0 and ay — by # 0 but one has ag # 0 and (2d — 1)as = by.

We are now ready to state our main Theorem on the existence of quasi-periodic solutions of d

frequencies which is based on the following “genericity” condition.

Definition 1.2.4 (Genericity). Given a finite number of variables x € IN¢ and a non-trivial polynomial

in x, we say that a point xq is “generic” if it is not a zero of the polynomial.

Equation (1.2.16) can be seen as an infinte dimensional dynamical system with phase space a scale

of complex Hilbert spaces u € h*P with

he? = {u = {uphrez ¢ ull2, =Y |upPe® ™ (k)% < oo} (1.2.19)
kEeZ
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where 0 < a < a/2 and p > 1/2. Note that there is an isometric one-to-one correspondance between
a sequence {uy} and a function u = 3, uge’*® in HP(T,), i.e. the analytic function on the complex
strip T, that are p-Sobolev on the boundary. We will use the same symbol u € h*P to indicate both the
sequence and the function.

Note that in case 1 £ is an analytic map from the ball By, C h%P to h®?~2 for any a < a/2. In case
2 we have a = a = 0 and £ is a C% map from By, C h%P to h0P=2,

A quasi-periodic solutions of (1.2.16),is an embedding
T35 ¢ v(p,x) € K, d>1, (1.2.20)

and a frequency vector ws, € RY such that u(t, r) = v(wsl, ) is a solution of the equation and v(¢p,x) €
H? (Tg“). Note that, in the autonomous case, both the embedding v and the frequency vector w, are
a unknown of the problems. Again these are the analytic functions on the complex strip Tg“ that are

p-Sobolev on the boundary.

Theorem 1.2.5. Consider the equation (1.2.16) in case 1, namely when £ as in (1.2.17) is an analytic
function. Assume the Hypothesis 4 and moreover that (a1, as, as, a4, ag, ba, bs, bs) is not resonant. There
exists a non trivial polynomial such that for any d € IN with d > 2 and for any choice of vi,...,vq € N
generic with respect to the polynomial the following holds.
There ezists a = a(d,f) and €9 = €o(d, £) such that for all € € (0,e¢), there exists a Cantor set
,[1 31

C.Ce 379| ICcl =1 as e—0, (1.2.21)
of asymptotically full Lebesque measure, such that for all & € Ce the NLS equation (1.2.16) has a quasi-
periodic solution with frequency w™ given by the embedding v(§) € Hl(']Tg‘H):

d
v=>Y V& sin(vir) + o(\/E), w(&) =vi+ > Mg +o(é) (1.2.22)
i=1 7
with M an invertible matriz. Moreover one has v(p,z) = —v(p, —x) and v(p,x) = v(—p,z), and the

solution s linearly stable.

Note that in particular we are able to separate the condition on (ai, as, as, a4, ag, bz, bg, bs) from the
one on vi,...,vq. For example given any choice of (aj,as,as, a4, ag, be, bz, bg) such that a; # 0, then
the genericity condition can be verified by removing only a co-dimension one algebraic manifold in the
variables vi,..., vq.

In the case of finite regularity we have a similar result.
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1.2 The autonomous equation

Theorem 1.2.6. Consider the equation (1.2.16) in case 2. There exists ¢ = q(d) such that for any non
linearity £ € CY? that satisfies Hypothesis 4 and moreover such that (ai,as,as, a4, ag, ba, b, bs) is not
resonant, there exists a non trivial polynomial such that for any d € IN with d > 2 and for any choice of
vi,...,vq € IN generic with respect to the polynomial the following holds.

There exist p = p(d,£), e0 = eo(d, £) such that for all € € (0,eq), there exists a Cantor set

d
13
C. C & [2, 2] , Cl—=1 as -0, (1.2.23)
of asymptotically full Lebesque measure, such that for all & € Ce the NLS equation (1.2.16) has a quasi-
periodic solution with frequency w™ given by the embedding v(€) € H*(TH1):

d
v = Z VEie¥isin(viz) + o(\/€), wi®(€) =vZ + ZM%J' + 0(€)
i=1 ;
with M an invertible matriz. Moreover one has v(p,x) = —v(p, —z) and v(p,z) = v(—p,x), and the

solution is linearly stable.

In the autonomous case we provides two existence results. One in analytic class and one in Sobolev
regularity. Theorem 1.2.5 is the first result of analytic solutions for quasi-linear partial differential

equations.






2. Functional Setting

In this Section we introduce the functional spaces on which we work. Moreover we analyze in a
specific way the role of the “reversibility” condition and how we use it in Theorems 1.1.1, 1.2.5 and 1.2.6.

The Hamiltonian structure of NLS will be analyzed in Section 2.3.

2.1 Scales of Sobolev spaces

We have already seen that we will work on Sobolev spaces H® defined in (1.1.4). For the analytic

contest we introduce the space of analytic functions that are Sobolev on the boundary

HA(T5:C) o= {u= > we: fuf?, = (1)%P|u[*e* < 0o} . (2.1.1)
lezb lezb

for a > 0 and for some b > 1. Clearly the space H*(T%) is in one-to-one correspondence with the
sequences space. We denote the space of sequences by h** (see (1.2.19)).

In the forced cases of Theorems 1.1.1 and 1.1.2, we directly study the equations for the embeddings
(see (1.1.3) and (1.1.9)) and we look for a solutions v(¢, z) € H*(T¢xT; C) for some s. On the other hand
in the autonomous case of Theorems 1.2.5 and 1.2.6 it is convenient to study the equation as dynamical
system on the phase space H'(T,;C) (or H(T;C) in the Sobolev case), i.e. look for u(t) € H'(T,;C)
quasi-periodic in ¢. In order to distinguish these two cases, for the autonomous system we will use the
equivalent notation h%P to denote the functions in HP(T,; C). We will always use the capitol letter H
to denote the space of functions of d + 1 variables.

Due to the complex nature of the NLS we need to work on product spaces. We will usually denote

H := H (T R) = H*(T"™; R) x H*(T"""; R),

(2.1.2)
H® := H* (T, C) = H5(T*; C) x H* (T, C) U,

where

U={h",n)e H T C) x H (T C) : ht =h"}. (2.1.3)

9
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There is a one-to-one correspondence between these two spaces given by H®* 3 v = (v(l),v(z)) = w =
(u,u) € H® with u = v +iv@ . To simplify the notation, in the thesis we should use the same symbol
v to indicate a function v € H® or v € H®. We will use different symbols in some cases only to avoid
confusion.

We also write HS and HZ to denote the phase space of functions in H*(T; R) = H*(T}; R) x H*(T!; R)
and H:(T;C) = H*(T!; C) x H*(T!;C) NU, On the product spaces H* and H* we define, with abuse

of notation, the norms

|2 lms == max{||z@||s}iz12, 2= (z1,2?))eH?,

(2.1.4)
wllge = |2l gs(pasiey = l12llss w=(2,2) € B, z=2M 40,
For a function f: A — E where A C R™ and (E, || - ||g) is a Banach space we define
sup norm : || f||5"=If54 = iugllf(W)HE, (2.1.5)
€
Lipschitz semi—mnorm : ||f]|gp::Hf|]lépA ‘= su [1f(wr) = fwo)lle
T wiwer A A
w1 Fw2
and for v > 0 the weighted Lipschitz norm
i
1 l2q = fllzaq = FIE" + A" (2.1.6)

In the paper we will work with parameter families of functions in Hg, If one deal with parameters family
u = u(\) € Lip(A, Hs) where Hy = H*, H® and A C R? we simply write || |3,y = || flls, o [[u]lsp in
the analytic contest. All the discussion above holds for the product space h®? := %P x h*P. Along the

Thesis we shall write also
a<;b & a<C(s)b forsome constant C(s) > 0.

Moreover to indicate unbounded or regularizing spatial differential operator we shall write O(d%) for

some p € Z. More precisely we say that an operator A is O(9%) if
A:H; - H; P, Vs>0. (2.1.7)

Clearly if p < 0 the operator is regularizing.

Now we define the subspaces of trigonometric polynomials

Hy,=Hy, :={uec 2T u(p,z) = > u;(0)e"#H)} (2.1.8)
|(€.5)|<Nn

10



2.1 Scales of Sobolev spaces

3\n
where N, := Néz) , and the orthogonal projection

0, =1y, : LX(T%Y - H,, Ol:=1-1I,.

n

This definitions can be extended to the product spaces in (2.1.2) in the obvious way. We have the

following classical result.
Lemma 2.1.7. Fo any s > 0 and v > 0 there exists a constant C := C(s,v) such that

HHnUHS-i-V,’y < CN;:HUHS;Y’ Vu € H?,

(2.1.9)
Iy ulls < CNullssw, Vu€ H.

We omit the proof of the Lemma since bounds (2.1.9) are classical estimates for truncated Fourier series
which hold also for the norm in (3.1.1) and in the analytic case.

We have introduced the space H® and H® because we want to rewrite the problem of the existence of
quasi-periodic solutions for equations (1.1.3) and (1.1.9) as into the research of zeros of some functionals
on the functional spaces H® and H?.

In the Hamiltonian case of Theorem (1.1.2) we rewrite equation (1.1.9) into the form
F(wt,z,w) =0, (2.1.10)

where w := (§,n) € H® and we defined the functional F on the space H® as

9 Oy —
F(wt,x,w) := Dyw + eg(wt,z,w), D, = Y% " , (2.1.11)
Opx + M w - Oy

where

(2.1.12)

Q(Wt,l',w) — <—f2(<P,96,57777551:77%75”,77”)) ‘

fi(p, 2, €m, 8oy M2, s M)
and f;, for i = 1,2, defined in (1.1.8). This will be explained better in Section 2.3. this approach as the
advantages that one uses real coordinates to study the equation.

Another possible choice to study the non linear Schréodinger equation is to introduce complex inde-

pendent coordinates
u:=(ut,u") € H(T C) x H¥ (T4 ), (2.1.13)

and then to study the system on the “real” subspace U in (2.1.3) in which one looks for the solution.
The advantages of using the veriables u and u is that the linear operator diagonal as we will see in the

following. In the reversible case of Theorem 1.1.1 we introduce the following functional.

11
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Definition 2.1.8. Given £ € C9, we define the "vector” NLS as

F(u) = w-0,u+i(0zu+ef(p,z,u)) =0,
f(90,$ u) . fl((vaau+>u77u;7u;7ujxvu;x) (2.1.14)
fQ((P,iU, u+7u_7u:;c~_7u:;7 u;ci_zv u;z)

where the functions f = (fi1, f2) extend (£,%) in the following sense. The f; are in CI(TIH1 x RS x
RS:R?), and moreover on the subspace U they satisfy f = (£,%) and

O :hi=0_fo, 0+fi=0_T i=01, 0-fi=0+f =012,
Osfi=05fo=0-fi=0-fr=0 (2.1.15)

Z,L Z,L

where O,z = ORe 2+ 10m 2, 0= 4. Note that this extension is trivial in the analytic case.
J

By Definition 2.1.8 the (2.1.14) reduces to (1.1.3) on the subspace Y. The advantage of working on
(2.1.14) is that the linearized operator dF'(u) := L(u) for u € U is self-adjoint. Note that the linearized
operator of (1.1.3) is actually self-adjoint, but even at € = 0 is not diagonal. To diagonalize one needs
to complexify and then to give meaning to f € CY, thus we introduce the extension.

The proofs af Theorems 1.1.1 and 1.1.2 are based on an generalized Implicit function Theorem that
we prove in Section 3.1. As we will see such theorem is based on very mild hypotheses. Hence we analyze
the two cases into two different way just to stress the strength of our approach and to underline the fact
that the two formulations in (2.1.11) and (2.1.14) present just some little technical differences.

Concerning the autonomous case of Theorems 1.2.5 and 1.2.6 we define
u:= (u",u”) € % ;= h*P x p*P.
and we consider the dynamical system
£ (u, u,, + 1 0
£ (u,uy, uyy) X (u) 0 -1

where £* are defined in such a way that, on the subspace U := {u* = u~}, the system (2.1.16) is

u:=—iFk

equivalent to (1.2.16). Essentially one uses the same extension defined in Definition 2.1.8.
If £ is analytic this extension is completely standard, indeed one may Taylor expand f as totally
convergent series in u, @ (and their derivatives). In the CY case this requires some care, see for instance

[31]. Here the notation of a vector field is the following:

X() =D X7 (W)dur = > > X Ouz, (2.1.17)
o=+

o==% jeZ
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2.2 Rewversible structure.

Note that the map F : h®? — h®»P~2 defined by

£ (u, uy, u
F:ur (8, Uz, az) , (2.1.18)
f_(u, umauxz)
is a composition operator. This implies that the linearized operator at some u is of the form
fH(u,u,,u £ (u, uy,u fH(u,u,,u
du]f(u) = d%i ( ( x xx)) am-i'dmi ( ( x :ca:)) 6x+d173[ < ( x xx)) .

f_(u7 Uy, Ugy f_(u, Uy, Ugy f_(u, uxyu:m)

Thus x linearized at any u has a very special multiplicative structure, namely on U is acts on functions
h(z) = (h*(2),h~ (x)) as

(l—i—az(x) ba(z) )8 Jr(fll(l‘) bl($)>a Jr(aO(‘T) bO(m))] h(z). (2.1.19)
n) " \b 7 o) o

dux(u)lh] = —iF _
x(u)lh) bo(z) 1+ as( (@) @)

2.2 Reversible structure.
By Hypothesis 1 one has that (2.1.14), restricted to U, is reversible with respect to the involution
S :u(t,z) — —a(t,—x), S?=1, (2.2.20)
namely, setting V (¢, u) := —i(uzy + £ (wt, x, u, Uy, Uy, )) We have
=SV (—t,u) = V(t,Su).

In the same way using Hypothesis 4 it turns out that equation (2.1.16) is reversible with respect the

involution (2.2.20) and hence we have
—Sox(u) =xoS(u).
Hence the subspace of “reversible” solutions
u(t,x) = —u(—t, —x). (2.2.21)

is invariant. Actually we look for odd reversible solutions i.e. u which satisfy (2.2.21) and wu(t,z) =

—u(t, —x). Hence we choose as phase space of (2.1.16)
he? = {(ut,u") € h? ¢ uf = —u”,}, (2.2.22)
essentially the couples of odd functions in HP(T,). Then (2.2.21) reads u(t,x) = u(—t,x).
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To formalize this condition also for (2.1.14) we introduce spaces of odd or even functions in x € T.

For all s > 0, we set

X = {u € HY (T x T): wu(p,—2) = —u(p,x), u(—p,z)= @(cpvx)}
Y= {u € H (T xT): u(p,—x) = u(p,z), u(—p,z)= ﬂ(%fﬁ)} : (2:2.23)

7% = {u e HS(TYxT): u(p, —x) = —u(p,x), ul—p,z)=—i(yp, x)},

Note that odd reversible solutions means u € X*, moreover an operator reversible w.r.t. the involution
S maps X to Z°.

Definition 2.2.9. We denote with bold symbols the spaces G* := G* x G* NU where G* is H®, X® Y*
or Z°.

We denote by HS := H*(T) the Sobolev spaces of functions of x € T only, same for all the subspaces G2,
and G,.

Remark 2.2.10. Given a family of linear operators A(p) : HS — H for o € T, we can associate it to
an operator A : H¥(T1Y) — H3(TY) by considering each matriz element of A(p) as a multiplication
operator. This identifies a subalgebra of linear operators on H¥(T9T1). An operator A in the sub-algebra
identifies uniquely its corresponding “phase space” operator A(p). With reference to the Fourier basis

this sub algebra is called “Téopliz-in-time” matrices (see formule (4.3.98), (4.3.99)).

Remark 2.2.11. Part of the proof of Theorem 1.1.1 is to control that, along the algorithm, the oper-
ator d,F(\,&,u) maps the subspace X° into Z°. In order to do this, we will introduce the notions of

“reversible” and “reversibility-preserving” operator in Section 4.1.
2.3 Hamiltonian structure

Given a function v € H® if we write u = £ 4 in one has that the equation (1.1.9) reads

w - 0p€ = Naw +mn + £ f2(0, 7,81, &5 Nas Sos Nara) (2.3.24)

—Ww- 89077 = &EJI + mg + €f1(<,0,$,§, 777§x7773:7§acma 7738.1)7

where f; for i = 1,2 are defined in (1.1.8). Equation (2.3.24) is nothing but equation (2.1.10) written in

an explicit way. Now we analyze its Hamiltonian structure. Thanks to Hypotesis 2 we can write

w=xg(w):=JVH(w), w=(mn) el J= (Ol (1)) , (2.3.25)

14



2.8 Hamiltonian structure

If we consider the space H® endowed with the symplectic form

Qw,v) = / w - Judr = (w, Jv) 2y, YVw,veH (2.3.26)
T

where - is the usual R? scalar product, then yz is the Hamiltonian vector field generator by the hamil-

tonian function
1
H:H° - R, H(w) = 2/ |we|? 4+ mlw|? + eF(wt, z, w, wy). (2.3.27)
T

Indeed, for any w,v € H® one has

dH(w)[h] = (VH(ZU), h)L2(’]T)><L2(']I‘) = Q(XH(“)? h)7

With this notation one has

f1:= =0cF + Oge, F&y + Ope, 'y + Ot e, Féaw + Oy Flgas
f2 = =0gF + Ogy, F&x + Oy, Fy + Og i, F'éaw + Oy Fsas,

(2.3.28)

where all the functions are evaluated in (¢, x,&, 1, £z, Ny Exzy Nra). One can check that the (2.3.24) is
equivalent to (1.1.9). It is sufficient to multiply by the constant i the first equation and to add or subtract
the second one, one obtains

1w - Optt = 1w - 0p€ — w - OpN) = Ugy +mu + €F,

B (2.3.29)
iw - 0ot = 1w - Op€ + w - Opn) = —Ugy —mil — ef

The classical approach is to consider the “double” the NLS in the product space H*(T+!; C)x H*(T4*!; C)
in the complex independent variables (u™,u ™). One recovers the equation (1.1.9) by studying the system
in the subspace U = {ut = u=} (see the (2.3.29)).

On the contrary we prefer to use the real coordinates, because we are working in a differentiable
structure. To define a differentiable structure on complex variables is more less natural. Anyway, one
can see in [31] how to deal with this problem. There, the authors find an extension of the vector fields
on the complex plane that is merely differentiable. The advantage of that approach, is to deal with a
diagonal linear operator. How we will see in the following of this paper, it is not necessary to apply the
abstract Nash-Moser Theorem proved in Section Section 3.1.

The phase space for the NLS is H! := H'(T;R) x H'(T;R). In general we have the following

definitions:

15



Functional Setting

Definition 2.3.12. We say that a time dependent linear vector field x(t) : H® — H?® is Hamiltonian if
x(t) = JA(t), where J is defined in (2.3.25) and A(t) is a real linear operator that is self-adjoint with

respect the real scalar product on L?> x L?. The corresponding Hamiltonian has the form
1
H(u) := i(A(t)u,u)szLa = / A(t)u - udz
T

Moreover, if A(t) = A(wt) is quasi-periodic in time, then the associated operator w - 0,1 — JA(p) is

called Hamiltonian.

Definition 2.3.13. We say that a map A : H' — H' is symplectic if the symplectic form Q in (2.3.26)

is preserved, i.e.

Q(Au, Av) = Q(u,v), YV u,v € H (2.3.30)

If one has a family of symplectic maps A(p), ¥ o € T then we say that the corresponding operator

acting on quasi-periodic functions u(p,x)

(Au)(p, 2) = A(p)ulp, ),

s symplectic.

Remark 2.3.14. Note that in complex coordinates the phase space is H' := H'(T;C) x H'(T;C). The
definitions above are the same by using the symplectic form defined in (1.1.14) and the complex scalar

product on L?.

Now it is more convenient to pass to the complex coordinates. In other words we identify an element
V = (v, 0®) € H® with a function v := v 4+ v? € H3(T';C). Consider the linear operator

d,F(wt, x, z) linearized in some function z, and consider the system
D,V +ed,g(wt,z,2)V =0, V € H. (2.3.31)

We introduce an invertible linear change of coordinate of the form

T :H* — H5,
I 1 i _i L
v | v <U< ))_ 75V —— = = (2.3.32)
1 i 2 11" ’ 1 i
ova) W)\ 7 VB

We postponed the proof of the following Lemma in the Appendix:
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2.8 Hamiltonian structure

Lemma 2.3.15. The transformation of coordinates T defined in (2.3.32) is symplectic. Moreover, a

function V := (v, 02 € H® is a solution of the system

d,F(wt,z,z)V =0, (2.3.33)
if and only if the function
—iv2 0
) =10y, ve BT ), 17 = W2 (2.3.34)
v 0 V2
solves the system
£(z) (”) = TP d, F(wt, z, 2) T~ T <U> ~0 (2.3.35)
v v
In particular the operator £(z) : H¥(T4!; C) x H* (T, C) — H3 (T, C) x H (T, C) has the form
L(z) = w01 +i(E + A2)Ors + 1410, +i(mE + Ay), (2.3.36)
where
1 0 a; b
E = y Az = Az , X, 2) 1= _ 2.3.37
") = (4 ") 233)

with for i =0,1,2, and Vz € H*(T4!; C),

Il
o

2ai(907 .7}) : (8Zif)(80> z, z(@? $)7 ZZE(SDa x)v zxz(@, $)),

(2.3.38)
2bi(90? :L‘) = 6(82¢f)(307 €, Z(g@, ZL'), Zx(gpa 1:)7 211(507 l'))a

where we denoted 0,, 1= 82(1) — 2'82@) and Oz, 1= 8Z§1) + iﬁz@) fori=0,1,2.

The operator £ has further property. It is clearly Hamiltonian with respect to the symplectic form

in (1.1.14) and the corresponding quadratic Hamiltonian has the form

1 B .

H(u,u) = / (1 + ag)|ug|® + 3 [boti2 + bou?] — %Im(al)(uxﬂ — uty)dx

T ) (2.3.39)

+ / —mlu|? — Re(ao)|u|? — §(b0712 + bou?)dz.
T

Note that the symplectic form Q in (1.1.14) is equivalent to the 2—form € in (2.3.26), i.e. given
uw=uY +iu® v =0l i@ e (T, C), one has

Qu,w) = Re/ uvdr = / (M@ —oWy@de = QU, V), (2.3.40)
T

T

17



Functional Setting

where we set U = (u),u®), V = (v, 0@ € H5(T41; R) x H*(T4; R). The (2.3.39) is the general

form of a linear Hamiltonian operator as £, and, the coefficients a; in (2.3.37) have the form

w(p.x) € R, 1(6,7) = S ar(p, ) + ilm(an) (o, ).
d i d (2.3.41)
bl((p?x) - @bQ(QO?w)? ao(np, x) - Re(ao)(cp,ac) + 5@1111(@1)(()0,%)

18



3. Abstract Nash-Moser Theorems

In this Chapter we present two Abstract Nash-Moser scheme on which are based the proofs of
Theorems stated in Chapter 1. Theorem (3.2.39) in Section 3.2 is very general and is one of the novelty
introduced in this Thesis. It is a results on “tame” vector fields, and it is adapted to treat autonomous
cases. Clearly it should cover forced cases. Anyway we choose to prove Theorem 3.1.18 for functionals
depending on external parameters for completeness. Moreover for forced cases the proof of a generalized
implicit function theorem is much simpler and less sophisticated with respect to the one of Theorem
(3.2.39).

3.1 An Abstract Existence Theorem for forced equations

In this Section we prove an Abstract Nash-Moser theorem in Banach spaces. This abstract formula-
tion essentially shows a method to find solutions of implicit function problems. The aim is to apply the

scheme to prove Proposition 4.0.46 to the functional F' defined in (2.1.14).

3.1.1 Nash-Moser scheme
Let us consider a scale of Banach spaces (Hs, || ||s)s>0, such that
Vs <8, Hg CHs and |julls < ||ullsy, Yu € Hy,

and define H := Ng>oH.s.
We assume that there is a non-decreasing family (E(N )) ~N>o of subspaces of ‘H such that U NZQE(N )

is dense in Hs for any s > 0, and that there are projectors

o™ 4y — EW)
satisfying: for any s > 0 and any v > 0 there is a positive constant C' := C(s, ) such that
(P1) |IHMy| sy, < CNY|jul|s for all v € Hy,
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Abstract Nash-Moser Theorems

(P2) [|(1 — TI™)u|y < CN~Y|Ju|ssp for all u € Hyyp,.

In the following we will work with parameter families of functions in Hg, more precisely we consider

u=u(A) € Lip(A, Hs) where A C R. We define:

o sup norm: |[fI[3 = ||f|[;X = sup || f(N)ls,
AEA

. . A) = FOA

o Lipschitz semi-norm: || f||"P := Hin”jX = sup 17 = S Q)HS,
T aeen A=A
A1#A2
and for v > 0 the weighted Lipschitz norm
p
A lsry == 1Lf sa s= HLFIE AP (3.1.1)

Let us consider a C2 map F : [0,e0] X A X Hgytr — Hs, for some v > 0 and assume the following

(FO) F is of the form
F(Ea A, U’) =Lu+ Ef()\, ’LL)

where, for all A € A, L is a linear operator which preserves all the subspaces E(!Y).
(F1) reversibility property:

JAg, Bs € H, closed subspaces of Hs, s > 0, such that F : Agy, — Bs.

We assume also the following tame properties: given S’ > sg, Vs € [s0,S’), for all Lipschitz map u(\)
such that ||ulls,~ <1, (€,A) € [0,e0) X A,

(F2) [If (A u)
(F3) Nlduf (X w)[h]llsy < C(8) ([ullstvrllPllsgrvy + 1hllst)

(F4) [ldnf A w)h, vl < C) ([ullstvy Vhllso+vy [0 lls0-425+

+HhHS+VﬁHUH50+V7’Y + ||h||so+uﬁH”Hs+Vn)a

S7s HLAUHs,v <O(s)(1+ ||u|‘s+l/,'y)7

for any two Lipschitz maps h(A), v(\).
Remark 3.1.16. Note that (F1) implies d, F (e, \,v) : As1y — By for allv € A,.

We denote
L(u) = L(A,u) == Lx +eduf(Au), (3.1.2)

we have the following definition.
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3.1 An Abstract Ezistence Theorem for forced equations

Definition 3.1.17 (Good Parameters). Given yu >0, N > 1 let
k1 =6p+12v, ko =11p+ 25v, (3.1.3)

for any Lipschitz family uw(\) € EX) with ||u||so4py < 1, we define the set of good parameters A € A as:

Gulu) = (A€ A+ (1L @y < CC50)yMlleg (3.1.4a)
Hﬁ_l(u)hst < 0(5)7_1 (1Al stpy + Hulls [Pl ]s0,7) 5 (3.1.4b)
Vsg < s <so+ ke —p, for all Lipschitz maps h(\)}.

Clearly, Definition 3.1.17 depends on p and N.
Given Ng > 1 we set
N, = (NO)(%)na Hp = E(Nn)a Ap = AsNHy,

same for the subspace B. Also we define
o) =11, (1 -0%)) =1t

In the following, we shall write a <; b to denote a < C(s)b, for some constant C(s) depending on s. In
general, we shall write a < b if there exists a constant C, depending only on the data of the problem,

such that a < Cb.

Theorem 3.1.18. (Nash-Moser algorithm) Assume F' satisfies (F0) — (F4) and fix vo >0, 7 > d + 1.
Then, there exist constants eg > 0,C, > 0, Ng € IN, such that for all v < o and ey~! < ¢ the following
properties hold for any n > 0:

(N1), there exists a function
Up :Gn CA— A, l|wn||sotpy < 1, (3.1.5)
where the sets G, are defined inductively by Go := A and Gn11 := G, N Gn, (uy), such that
|| F(un)|lso,y < CyeN,, ™. (3.1.6)
Moreover one has that hy, := uyp — up—1 (with hg = 0) satisfies
Pnllsorpny < Cuey "N "8, kg = v + 2p. (3.1.7)
The Lipschitz norms are defined on the sets G,.
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Abstract Nash-Moser Theorems

(N2),, the following estimates in high norms hold:

|[tn|lso-+ro,y + '7_1||F(Un)||5o+/<2,’y < 0*5'7_1N771- (3.1.8)
Finally, setting Goo := Mp>0Gn, the sequence (un)n>0 converges in norm || - ||so4u,Geo,y t0 @ function
Uoso Such that
OO =0, s0p [l < o7 (3.1.9)
€000

Proof. We proceed by induction.
We set ug = hg = 0, we get (N1)g and (N2)g by fixing

Cy = max {[|£(0)llso N 11£(0) s+ Ng ™ } -

We assume inductively (Ni), for i =1, 2,3 for some n > 0 and prove (Ni)p,41 for i =1,2.
By (N1),, u, € A, satisfies the conditions in Definition 3.1.17. Then, by definition, A € G, 1 implies
that £,, := L(uy,) is invertible with estimates (3.1.4), (used with u = u,, and N = N,,).
Set
Uni1 = Un 4 Ppg1 € Anit,  hnyt i= =1 £, M1 F(uy), (3.1.10)

which is well-defined. Indeed, F'(u,) € Bs implies, since £, maps As;, — Bs that hp41 € Apy1. By
definition
F(upt1) = Fup) + Lphpt1 +€Q(un, Ant1), (3.1.11)

where, by condition (F'0) we have
Q(un, hnt1) = fun + hns1) — f(un) — duf(un)hnt1, (3.1.12)
which is at least quadratic in h,41. Then, using the definition of h,4+1 in (3.1.10) we obtain

F(Un—l—l) = F(Un) - ﬁan—s—lE;lHn—i—lF(un) + 5Q(un7 hn-i—l)
= H#JrlF(un) + EHH#+1£;1Hn+1F(un) + EQ(“”R? hn—i—l)

" | 1 (3.1.13)
=1 1 F(un) + 15 Lo £y M1 F(un)
+ [Ln, H#—kl]ﬁ;lHnJrlF(un) + £Q(tn, hnt1),
hence, by using the fact that by (FO0) [Ly, I, 1] = e[duf (A, un), i, 1], one has
F(unt1) =y Fup) +eldu f(wn) 1 125 T 1F () +£Q(tn, A1) (3.1.14)

Now we need a technical Lemma to deduce the estimates (3.1.6) and (3.1.8) at the step n + 1. This
Lemma guarantees that the scheme is quadratic, and the high norms of the approximate solutions and

of the vector fields do not go to fast to infinity.
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3.1 An Abstract Ezistence Theorem for forced equations

Lemma 3.1.19. Set for simplicity

Ko := futnllag ey + 7 E @n)llsgains Fn = 7 () e (3.1.15)

Then, there exists a constant Cy := Co(u,d, K2) such that

Kps1 < CoNZTY(1 4 kn)* Ko,
ko1 < CoN 2PV, (1+ ky) + CoN2HE? (3.1.16)

Proof. First of all, we note that, by conditions (F'2) — (F4), Q(uy, -) satisfies

|| Q(un, h) sy < ||h||50+l/,'y (||h||s+1/7’7 + Hun’|s+uﬁ||h”50+u,w) ) (3.1.17a)
190, Mooty <5 N IR 10 VEON) € Hu (3.117h)

where h(\) € A,41 is a Lipschitz family of functions depending on a parameter. The bound (3.1.17b) is
nothing but the (3.1.17a) with s = sy + v, where we used the fact that ||uy||s;+» < 1 and the smoothing
properties (P1), that hold because u,, € A,, by definition and h € A, ;1 by hypothesis.

Consider hy41 defined in (3.1.10). then we have

(3.1.4b) -

nstllsgtrary < sotns 7 Ny (11 ()l lag oy + it

1t () )

(31da)
nsilloory < a7 N 1 (s (3.1.19)
Moreover, recalling that by (3.1.10) one has uy,4+1 = uy, + hpt1, we get, by (3.1.18) and (3.1.19),
untllsornay < lunllsgtrany (1 + 7_1N7€L+1HF(UTZ)H507’Y)

+ T N () sz (3.1.20)

Now, we would like to estimate the norms of F(up4+1). First of all, we can estimate the term

Ry = [duf (up), My 1] L5 1 F(uy) in (3.1.14), without using the commutator structure,

— +2v
1 Rallsy <s 7T N (1F () sy + sy [1F (un)llso,) » (3.1.21)
— —Ko+pu+2v
RalleoSeosrs ¥~ N2 (1L ) g sy s 1F ) e ).
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where we used the (3.1.4) to estimate £}, the (F3) for d, f and the smoothing estimates (P1) — (P2).
By (3.1.14), (3.1.21), (3.1.17b) and using ey~! < 1 we obtain,

1
|[F (1) 50,4 Zso HHN,LHF(Un)Hsoﬂ + EN?%ithHzo,'y (3.1.22)
— —Ko+p+2v
+ey 1an12 : ([ (i) lsg+may + Nt llso+ma [ (un)[ls0,7)
(P2)
—kKo+pu+2
SsotralNtt U (un)llso+ray T [nlso-tram | [F (un)lso.+)
—2 A72u42
+ €y 2]Vni/i—l #HF(UTL)HE?O,'Y

Following the same reasoning as in (3.1.22), by using the estimates (3.1.21), (3.1.17a), (3.1.18), (3.1.19)
and (P2), we get the estimate in high norm

||F(un+1)||so+ﬁ2,7 < (HF(un)HsoJrnzry + |’Un||50+fi2,'y||F(Un)||50,'y) X

X (LN N2 Y () o) (3.1.23)

From the (3.1.22) follows directly the second of the (3.1.16), while collecting together (3.1.20) and (3.1.23)
one obtain the first of (3.1.16). O

By (3.1.6) we have that

kn < ey 'C.N;™ <1, (3.1.24)
if ey~! is small enough. Then one has, for Ny large enough,
(3.1.24),(3.1.16) 3
Kni1 < Nsi—sl—Q#QKn < C*E,y—anZ (4V+2/1/)N7I:1 < C*E,Y—lN:il (3125)

where we used the fact that, by formula (3.2.62), one has 3(2v4 ) +#x1 = 3k1. This proves the (N2),,41.

In the same way,

(N2)n,(3.1.16) 3
Fort S 2NEEToyTINmI Gy 4 2y 20N T N2
< eyT'GN (3.1.26)

where we used again the formula (3.2.62). This proves the (N1),41. The bound (3.1.7) follows by (N2),,

and by using Lemma 3.1.19 to estimate the norm of h,. Then we get

n+1 o9
Hun+1Hso+uﬁ < HuoHﬁo"Fﬂ»’Y + Z Hthﬁo-i—uﬂ < Z C*g’)’lek_m <1, (3.1.27)
k=1 k=1

1

if ey~" is small enough. This means that (Ni),+1, ¢ = 1,2, hold.
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3.1 An Abstract Ezistence Theorem for forced equations

Now, if eéy~! is small enough, we have by (N1),, that the sequence (u,)>o is a Cauchy sequence in

norm || - ||sg+u,, on the set Goo = Ny>0G,. Hence, we have that us, := lim, o uy solves the equation
since

1P (o) ey < T [ ()] s < lim NECLeN7™ = 0. (3.2
This concludes the proof of Theorem 3.1.18. O

25



Abstract Nash-Moser Theorems

3.2 An Existence Theorem for torus embeddings

In this Section we prove an abstract Theorem on a wide class of vector field. Roughly speaking we
provide a scheme that, given a vector field, produces a set of parameters, inductively defined, for which
it is possible to find a torus embedding. We introduce all the relevant notations and tools we need. In
particular we define our phase space, a suitable subspace of vector fields for which we are able to deal

with, and the type of change of variables we need in order to perform our algorithm.

3.2.1 The Phase Space

Our starting point is an infinite dimensional space with a product structure V, ) := C? x ¢4 x Lap-

Here 4, is a scale of separable Hilbert spaces endowed with norms || - ||gp, in particular this means that
I fllap < Ifllarp if (a,p) < (a,p") lexicographically. The space £ is endowed with a bilinear scalar
product

frg€blopor—f-geC
such that

lwligo=w-@, lg-fI<llglloolflloo < llgllagllflloo- (3.2.29)

We denote the set of variables V := {91, e 0q,y1, - .,yd,w}. Moreover we make the following

assumption on the scale £, .

Hypothesis 5. We assume that there is a non-decreasing family (F(K))KZO of subspaces of £y, such

that UKZOF(K) is dense in Ly, for any p > 0, and that there are projectors

Mg, : boo — Fx, Hp :=1-1p,, (3.2.30)

such that one has for a, 3 >0
e wllataprs < e EP|[wllap Yw € lop, (3.2.31a)
||H1#Kw||a,p < e_aKK_ﬁHwHa—i-a,p—irBa Vw € Loyaptp- (3.2.31b)

We shall need two parameters, pg < p;. Precisely pg > d/2 is needed in order to have the Sobolev
embedding and thus the algebra properties, while p; will be chosen very large and is needed in order to

define the phase space.
Definition 3.2.20 (Phase space). We consider the toroidal domain
Dap(s,7) := T x Dap(r) = T¢ x B2 X Brap, C Vap (3.2.32)
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3.2 An Existence Theorem for torus embeddings

where
T .= {6 € C? : Re(f) € T, hinlaxdﬁm On < s},

B2 :={ye€ Ct |yl < r?}, Brapi={welyy : [Jw

a,p1 < T} I

and we denote by T4 := (R/27Z)? the d-dimensional torus.
Fix some numbers sg,ag > 0 and rg > 0. Given s < s, a,a’ < ag, 7 < rg, p,p’ > po consider maps

f:TE X Dy (1) — €4 x €% x £,

(3.2.33)
0, y,w) = (FO0,y,w), FP0,y,w), f¥ (0, y,w)),
with
Qy, Zflv % 1l~9’ V:97?J>w
lezd

where fl(v)(y, w) € €% if v = 6,y while fl(w) (y,w) € Ly p.

Remark 3.2.21. We think of these maps as families of torus embeddings from T¢ into Vap depending

parametrically on y,w € Dy (1), and this is the reason behind the choice of the norm; see below.

We define a norm (pointwise on y, w) by setting

1F13 a5 = 17 DN, + 1S, S (3.2.34)
where )
50w 1oy, w)lpoepay s < s0# 0
L e R (3.2.35)
‘—Sflpd ||f Yy w)laperay, s=8s0=0
1F s = Z £ Gy ) o ey (3.2.36)
: !
w 1 w s w s
17O Nsap o= — || D2 A @) 2, @) | 30 1™ w2, 070! (3.2.37)
0 lez lezd
where HP(T¢) = HP(T?; C) is the standard Sobolev space with norm
lwC) G epay = Dl D, (1) := max{1, |I]}. (3.2.38)

lez
Note that trivially [0} ull o (ay = ||uHHp+p/(Tg).
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Remark 3.2.22. Note that if £, , = HP(T},) then fizing po > (d+r)/2 we have that || - ||sqp in (3.2.37)

is equivalent to || - || go(raxy)

It is clear that any f as in (3.2.33) can be identified with “unbounded” vector fields by writing!

fe > Y0,y w)o,. (3.2.39)

v=0,y,w

Similarly, provided that |f(?) (6, y,w)| is small for all (6, y,w) € T¢ x D, ,(r) we may lift f to a map
=0+ fO y+ fO w4 f@y: T x Dy — T?l x C¥x €,,, forsomes; >s, (3.2.40)
and if we set ||0|s,q,p := 1 we can write

H(I)(V)Hs,a,p = ”VHs,au’o + Hf(v)

$,a,p Vzeayaw-
Note that
||y||s,a,l) = Tazlyh ) ||w‘|8,a,p = ral||w|’a,p'

Remark 3.2.23. Note that if || f||s,ap, ~ p s small enough one has
O : T x Dap(r) = T, o X Dap(r + pro).

Definition 3.2.24. Fiz 0 < p,d < 1/2, and consider two differentiable maps ® =1+ f, ¥ =1+ g as
in (3.2.40) such that for all p > po, 2pso < s < 50, 2pr0 <1 <19 and 0 < a < ag(l — 20) one has

®, 0 : T¢ % Dy sa0,p(r — pro) = T o) % Dap(r).

If
1=Vo®:T¢ », % Datasarp(r —2pr0) — T x Dyy(r) (5.241)
.y, w)  — (0,y,w)
we say that W is a left inverse of ® and write =1 := W,
Moreover fix v >0, 0 < & < 1/2. Then for any F : T¢ X Dyt a9 piv(r) — Vap, with 0 < a <
ap(1 — 26 — 0"), we define the “pushforward” of F as

O F = d®(® ") [F(® )] : T 5,00 X Dot (26+6)a0p+ (T — 20m0) = Vap. (3.2.42)

! Vector fields are defined by giving their action on functions. In order to describe them as vectors we use the identifi-
cation between differential and gradient given by the bilinear scalar product. On the 6,y components we use the euclidean

product, while on £,,, we use the one defined in formula (3.2.29).
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We need to introduce parameters & € Og a compact set in R°. Given any compact O C Oy we

consider Lipschitz families of vector fields
F:T? X Dyr (1) x O = Vo, (3.2.43)

and say that they are bounded vector fields when p = p’ and a = a’. Given a positive number \ we

introduce the weighted Lipschitz norm

2 sup IF© = FOlsay
S,a,p .

15 = llul
op ££ncO 1€ —nl

\O.sap = sup [[F(£)] (3.2.44)
£eo

and we shall drop the labels ¥ = (A, O, s,a) when this does not cause confusion.

Remark 3.2.25. Note that in some applications one might need to assume a higher reqularity in . In

this case it is convenient to define the weighted q1-norm

IFllop = IFIr0sap = »_ A" up 102 F(€)]s.0,p-
S

heN?
[h|<a1

Througout the paper we shall always use the Lipschitz norm (3.2.44), although all the properties hold
verbatim also for the qi-norm. The only delicate question is how to extend functions defined in a compact
subset O' C O to the whole domain. By the Kirszbraun theorem this is trivial in the Lipschitz case, while

it requires some care for the qi-norm.

We are interested in vector fields defined on a scale of Hilbert spaces; precisely we shall fix §,v,q > 0
and consider vector fields
F T X Doy sagpiv(r) x O = Vap, (3.2.45)

for some s < 59, a + dag < ag, r < rp and all p + v < q. We shall denote by Vy,, with 7 = (X, O, s,a,7)
the space of vector fields as in (3.2.45) with § = 0.
We use the Lipschitz norm (3.2.44) also for maps ® = (0 4+ f@, y + f®) w + f®)) with

®:T? x Dy (1) x O — ']Pff1 X D p(r1) .
We now define tame vector fields, i.e. vector fields behaving “tamely” when composed with maps ®.
Definition 3.2.26. Fix parameters \, §,v >0, a large ¢ > p1 + v+ 3 and a set O . Consider
F: ’JP? X Dyssagpiv(T) X O = V,p, Vp<gq
for s < sg,a < ag,r < ry; for s1 < s set
v=(\0,sa) 01=(\0,s1,a), Ua=(\O,s1,a+ dag).
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We say that F is C3-tame if there exists a scale of constants Cy,(F) = Cx0,s5.ap(F), such that the
following holds.
For all pg < p < p' < q consider any map ® = (6 + fO y 4+ &) w + f@)) with

o ']l’gl1 X Dgr (1) X O = T? X Doy sag pin(r),  for some 11 <71, 51 <s
and any three vector fields
hl, hg, h3 : Td X Da/,p/(rl) x O — Va+5a0’p+y.

S1

Then for all y,w € Dy 1 (r1) one has

(F1) [F(®@)l7p < Cop(F)+ Copo (F)|1 P p+v-

(F2) [ F (@) [lllsrp < (Copr1(F) + Capgra (F)[®llzy pao) 17115300 40
+C”L7,Po+1(F)”h1||172,p+lM

(F3) |G F(®)[h1, halllgyp < (Copra(F) + Copora(F)IPg, prv) 171 g oo 1 h2ll5 o+

+077,P0+2(F)(th||172,p+u||h2H172,Po+V + th|’172,1J0+V”h2‘|172,p+l/)7

IN

(F4) N d3F(®) [y, ho, hs]llg, (Cop+3(F) + Coiposa (P @l prr) 101 s o121 o 1 15,

+Cl7mo+3(F) (”hlHffz,p-i-VHhQH1727Po+VHh3H172,Po+V
Hlh1llzypotv 12l prv 13l po v + th”172430+l/”hQH172,P0+VHh3||172,p+l/>

Here dyF is the differential of F' w.r.t. the variables V.
We say that a bounded vector field F' is tame with scale of constants Cy,(F) if (F1), (F2), (F3), (F4)
above hold with v = 0. We call Cy ,(F) the p-tameness constants of F'.

More generally we say that F is C*-tame if it satisfies tame estimates as above up to its k’th deriva-

tives.

Remark 3.2.27. Formula (3.2.34) depends on the point (y,w), hence it is not a norm for vector fields
and this is very natural in the context of Sobolev regularity. Indeed in the scale of domains Dgp(s,T)
one controls only the py norm of w (see Definition 3.2.20), and hence there is no reason for which one
may have

sup | flls,ap < 0.
(y,w)€Daq,p(r)
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Naturally if one fizes p =p1 one may define as norm of F the quantity sup (r) |F

The motivation for choosing the norm (3.2.34) instead of the standard operator norm is the following.

Y,w)EDq,p, ‘syaml-

Along the algorithm we need to control commutators of vector fields. In the analytic case, i.e. if sg # 0,
one may keep p fized and control the derivatives via Cauchy estimates by reducing the analyticity, so the
phase space can be defined in terms of the fized p. However, since we do not want to add the hypothesis
sg # 0, we have to leave p as a parameter and use tameness properties of the vector field (see Definition
3.2.26) as in the Sobolev Nash-Moser schemes.

Remark 3.2.28. Definition 3.2.26 is quite natural if one has to deal with functions and vector fields
which are merely differentiable. In order to clarify what we have in mind we consider the following

example. Let L be a linear operator
L: H?(T%) — HP(TY).
In principle there is no reason for L to satisfy a bound like

[ Ll <[]

wllpo + [I1L]

‘C?p ‘CaPOHUHP (3'2'46)

where || - ||z,p is the HP-operator norm. However if L = T, is a multiplication operator, i.e. Tyu = au

for some a € HP(T?) then it is well known that

[Taully < rp(llallpllullo + lallpollp)

which is (3.2.46) since ||lal|, = ||Tol|zp- In this case we may set for all p < q Cp(T,) = Kqllallp. This is
of course a trivial (though very common in the applications) example in which the tameness constants
and the operator norm coincide; we preferred to introduce Definition 3.2.26 since it is the most general

class in which we are able to prove our result.

Remark 3.2.29. The constants C(F') essentially play the réle of the norm of F. Indeed one could start
by fixing Csap, as the norm of F' and then minimize over the scales of constants which satisfy all our

constraints, this would most probably produce a well defined norm, but we did not pursue the subject.

Lemma 3.2.30. Consider any two C*-tame vector fields F,G € Vip, then:

(i) for any 0 < j < q one has that GfolF is a C*-tame vector field for p < q — j with tameness scale of
constants Cpyj(F) for anyl=1,...,d.

(ii) For any 0 < j < k one has that &, F, 8}, F[w’] are C¥~J-tame vector field for p < q with tameness
scale of constants Cpyj(F). Moreover if F is a polynomial of degree < k in y,w then it is Ch-tame
for any h > 0.
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(i4) The commutator [G, F] is a C*~1-tame vector field for p < q — 1 with scale of constants
Cop([F,9]) < Cop1(F)Capotv+1(9) + Cipg+1(F)Cprvt1(9)- (3.2.47)

Proof. ITtems (i) and (i7) follows by the definition of the norm || - |54, and by Definition 3.2.26. Item
(zit) follows By Lemma B.182 in Appendix B. O]

Lemma 3.2.31 (Conjugation). Consider a tame left invertible map ® = 1 + f with tame inverse
&' = 1 + g as in Definition 3.2.24 such that (3.2.41) holds. Assume that the fields f,g are such
that Cyp(f) = Cysp(g) < p for p > 0 small. Consider a constant pg > 0 and any tame vector field
F : Dgpiv(s,m) = Vop, then the pushforward

G =D F : Dy piv(s —2pso, T — 2pr0) = Va—25a0.p (3.2.48)

is tame with scale of constants

Cy p(G) < (14 Cy poyv11 () Cp(F) + Crpo (F) (1 + Cy po 041 () Cty pyvr1 (), (3.2.49)
with T:= (X, 0, s,a), 01 := (A, O, s — 2psp, a — 2dag) and Uz := (A, O, s — psg,a — dag).
Proof. The proof is in Appendix B. O
Definition 3.2.32. It will be convenient to extend the projection I, to C* x £y, by setting

5, (0,y,w) = (6,y, g w).

Given K > 0 and a vector field f € Vg, we define the projection llk f € Vi, as

Oif =Y Mg fil0,y, Opw)e’ (3.2.50)
<K

Then we define EX as the subspace of Vi,p where Ik acts as the identity.
Lemma 3.2.33. Given a C*-tame vector field F € Vip one has for any p1,di,d2 > 0 and for K large
(P1) T F is a C*-tame vector field with Cs1d, atdy pip gy f) < eh KK (F).

(P2) (1-1Ilx))F isa C*=1_tame vector field with Csap((I-TL ) F) < K‘ple‘dlK—dQKC’s+d1’a+d2’p+p1 (F),
provided s + dy < sg,a +dz < ap,p+p1 <gq.
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Proof. Consider a map ® as in definition 3.2.26 and the composition of IIx F with ®. For this purpose

set for instance

GO (6,y,w) = (U F™) o & = 37 Ty [F)(@0, 00 115, 0()] e
II<K

we have

NG N2 ) ot dypn = Z <HHFsz(w)”Z+d2,p0<l>2p+2p1€2|l|(s+dl)

<K
(w) 2 2po 2|1 (s+d
+ TG 2 ay i, (02T 1)) (3.2.51)
< KPrelditd)K ) plw)(§0) o), HF}((D(w))Hg,a,p

< K7l MR (Cy ) (F) 4 Copy [Ty @)l )

For the other components and to estimate the orthogonal projector Hj—( one can follows the same rea-
soning. One one has the results it is sufficient to apply Definition (3.2.26) to obtain the results on the

tameness constants. O

Given a vector field F' € Vg, we introduce the notation
FO(9) .= F(6,0,0), FCU)(0)[] :=dyF(6,0,0)], v=0,y,w, v =y,w (3.2.52)
and the subspaces

N = {V € Ve : V=V (9). 05+ V) (O)w- 0,) }

AWO) = {veViy(s,r) : V= V(”’O)(G) 2Oy}, v=y,w

A = fveVs,: V= V(”’”/)(Q)v’ O, v=0,y,w, vV =yw (3.2.53)
A= AW ¢ AWY) g AWw) gy g(w,0)

Ro={V EVs,: V=V_T4V -4V},

where IIn and II 4 are the projections on the subspaces N” and A. Note that a vector field in A can be
extended to analytic functions of y, w € C" X £, ,. Clearly the subspaces in (3.2.53) are disjoint so that
for any vector field F' € V, (s, r) := N & A® R we may split

F=N+X+R=Iy\F+T4F +xF. (3.2.54)

Another important class of vector fields is the following.
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Definition 3.2.34 (Linear vector fields). We consider vector fields f € A with f : O X Dg pyu(s,7) —
Vap such that

f= Z FO08, + (fOvy + fO0) ), fOY e Mat(d x d), fY) e l,, (3.2.55)

V=Y, w

It is convenient to define:

flop =3 55, + sup  [[f@9) |5, +sup || f@)]|5, (3.2.56)

k=y,w 2,5=1,..., 7

We also denote by B the subspace of bounded vector fields in A which satisfy (3.2.55).

Remark 3.2.35. Note that E) are dense in the subset of A which satisfy (3.2.55) w.r.t. the norm
(3.2.56).

As explained before, we must deal with a class of non-linear tame vector field F' with some special

properties. Here we define the “subspace” of such fields.

Definition 3.2.36 (Subspaces). Consider £ a subspace of VapQ such that for any F € €N A satisfies
3.2.34. We say that the map ® is E—preserving if &, maps € in itself. We denote by B C B the subset

of linear bounded vector fields defined as follows:
B:={feB: <I>}c is £ preserving}, (3.2.57)

For this dynamical system we wish to construct an invariant torus. This is done by producing a

change of variables ® generated by a vector field in the Lie algebra B such that
[I®.(F) = 0.

This construction is performed iteratively, by a quadratic scheme where the input is F' and a set of
parameters O, the output is a change of variables ® defined for all £ € O set of good parameters
€ € Ox € O such that IT4P.(F) = 0 holds for £ € O the main point is that Oy is described
iteratively in a relatively explicit way. Then the point becomes verifying that such set is not empty. We
now give the important definition of set of parameters for which we are able to run the algorithm. Fix

parameters

1
T>0, p>7, a<1, v,p>0,K >0large t<1, (3.2.58)

2For instance £ is the subspace of Hamiltonian vector fields.
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Definition 3.2.37 (Good Parameters Jg . (F) ). Given a tame vector field
F=Ny+G:0 % Dgpip(r) x T =V,

such that for € € O C Oy one has F € £. We say that a compact set O' C O is a set of good parameters,
O € Jgry(F) if the following holds.
For all £ € O' there exist a vector field g such that

(a) g € Bqujl’pﬂE(K) with v) = (v,0’, s,a)

(b) one has
1915 p <7 K (4G, p + K PITAG 5, 5,7 Cr (@) (3.2.59)

(c) setting X = HgIIaF and u := (Il gad(Il 41 F)[g] — X), one has

|u|17,p1 < V_ItKMCﬁm (G)|X|17,P1’

(3.2.60)
|u|17,P2 < W_IK# <‘X|177P2017,P1 (G) + Ka(m_pl)’X‘ﬁ,PlCﬁpz (G)) )
Now we set some notations we need to state our Theorem.
Given e < 1, Kg > 1, rg > 0 and aq, sg > 0, we set for all vg, O, Ag > 0,
1 I~
Kn: (KO)(S/Q) ) Vn:70(1+27n)7 mn:m02in72+mn—l7 Qn :a0(1—5227]),
j=1
I~ e~
rn=ro(l = ZQ—J), sn=so(1— 3 Zz—ﬂ) M, o= 1) T =1 - T, (3.2.61)
7j=1 7=1
1 _
En:E(Kn)a Pn = W,TLZL /70:0; tn:(;KnIﬂ?
We will also use the shorter notation
H ’ ||17n,z P = ” : "’Yn7On75n_ipn507an_ipna01p H ' | (néZ) = H : HSn—ipnsoﬂn—ipnao,n)\n,g’ 2 = O’ cee 76
(n,) p,

where O, C Op. We use the second notation when we want to specify a different domain G for the
parameters §. The The same notation is used for the tameness constants Cf i)vp(.) . Forall a € [0,1/4),

p > p1, and given pu = u(a, p1,d) we choose constants x; such that

Ko > Ks+pu+1, kKe2>3u+2k1+4, kK >6p+6v+24, o<

)

W =

K1 > 27p + 6v + 24 (3262)
aﬂgﬁ%, 2u+v+4+arky+ k3 +1<(5/3)k1

2u4+v+aky —ap <Ky
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Note that if
1

%7
then conditions in (3.2.62) simplify. We can ask for

o =

ko = 2Kk1 + 64 + 8, k3 < K1+ 3L, (3.2.63)

K1 > 2Tu + 6v + 24 (3.2.64)

Set moreover pg = (d+ 1)/2 and p1 = po + i, p2 = po + K2
At each step we change the coordinates in order to simplify the homological equation. This is done

in two ways:

e We use quasi-identical transformations ®,, in order to decouple the 6,y from the w components
and in order to translate the approximate solutions at zero. The vector fields which generate such
changes of coordinates are in B and are found by solving a homological equation. We will show

that this can be done provided that we restrict £ to the good parameters.

e We introduce as free parameters a convergent sequence of £ preserving change of variables 7,11 =

Tn+1(&) : Day, py (S, ™) = Dan—prag.pi (Sn + Pnt150, Tn + pnt170) such that for all n > 0 and § > 0
small one has

(i) Tn+1 is left-invertible and for any tame G € €N V5

(n,0),p O1C has G = (Tn+1)+G is tame with

scale of constants

O (@) < O (@)1 + 6K, 1)

P1.00 P1,00 (3.2.65)
C2 (&) < €9 (@) + ) (@)oK

Tt — 1w (n,1) < 0K il (n,0)
(s = liig, <GS, 5260
|(Togr = Dwllsg, < (llwllier, + K flw][§,)

(iii) for m > 0 one has

O4(Trp1)F =0, VFeNNR (3.2.67)

Remark 3.2.38. Note that the almost-identical changes of variables ®,, are essentially fixed by the
algorithm. On the other hand the iterative algorithm converges for any choice of T, as above. In
particular this extra degree of freedom can be used in the applications, when one can produce a privileged
system of coordinates in which it is simpler to solve the homological equation. Indeed in classic KAM
schemes the T,, are iteratively fized so that they diagonalize (up to order ) the linearized vector field in

the w component and diagonalize w(6).
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We also introduce the following notation. Given a sequence of invertible linear maps H,, defined and
Lipschitz in Oy with Ho = 1 we set F,, := (Hy)F for n > 0 and

Fo_1:= (%)*Fn—l = Nn—l + Xn—l + Rn—h n > 17

(where the splitting (3.2.54) is used with obvious meaning of symbols). Our main abstract result is the

following

Theorem 3.2.39 (Abstract KAM). Let p1,p2 large enough and consider F'= F(§) € ENVy o p for
some so,ag > 0, p € [p1,p2) with & € Oy C R" a Lipschitz family of tame vector fields of the form

F:=Ny+G:=Ny+N, +X +R, (3.2.68)

where Ng € N preserves all the subspace EE) gnd Ny := IyG, X := 4G, R := [gxG. Fiz Yo > 0,
set vy = (Y0, Oo, S0, a0) and
© 1= Cop, 1 @), Ao =75 Crypy(G) 6 1= 75 Ciy p, (TT4G), (3.2.69)
There exist Cy(d,po) and C1(d,po) and eg = eo(d, po) (small) such that if
0 < ¢, K§°6 < e, AoKy ' < ep, (3.2.70)

then there exists a sequence of changes of variables H,, defined and Lipschitz on Ogy such that Ho = 1

and the H, = ®, o Ty o Hp—1 that converges for all £ € Oy to some change of variables
ﬁ = ﬁ(f) : Dao,p(SO/Q, 7“0/2) — Da707p(80, T’Q), (3.2.71)

such that the following holds.
Setting Fy, := (Hp)+F = No + Gy, then for any sequence of sets Oy, defined inductively for n > 1

On € On—l N Janl,tnfl,'yn,l ((’EL)*((’HTL—I)*F))y (3272)

with v, := 00K, "}, one has that ®,, = 1 + f,, is generated by g, € B given in Definition (3.2.37) and
such that with

C’g(nim)’pl (gn) < 0K, ", C’g(n7172)7p2 (gn) <IOK)_4, K= K1 — [ (3.2.73)

and p = 5(n + v + 3) where 1 the loss of reqularity in Definition 3.2.87. Moreover one has

Y tC o (Mt Gr) < 0%Uyy 4 C oy (T Gy) < 0AK S
Vo Con (Gn) < Uy 77 Cy iy (G) < A, (3.2.74)
Yo oy (MMaG) < CLK,™,
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and defining Foo := (H)«F one has

MuF =0 VE€G:=[)O0n (3.2.75)

n>0
and
Yo ' Coipy (M Foo — No) < 229, 5 ' Crp, (T Fa) < 260

with T := (\, G, s0/2,a0/2).
Remark 3.2.40. Note that we do not require that the H, are of the form 1 + ¥, with ¥,, in B. In
principle one can impose this condition but this gives a further constraint on the good parameter set, so

that one may not be able to prove that it is non empty. Moreover in the applications, we need to prove

the following two properties on the good parameters sets Oy, :
e meas(OF) ~ ~§ for some a > 0;
b
e meas(Op\Opi1) ~ 2§ for b < a.

We have formulated our theorem in a very general form, as a draw-back we define our sets of good
parameters in a very implicit way. If we add to the definition of £ the condition that £ is compatible

with the projections on A, N, R then a more explicit expression is possible.

Definition 3.2.41 (Property P). Let € be a subspace as in Definition 3.2.36. We say that € has the
property P if

Vge B,Fe&: g, Fl €&, Vg,h € B: HA[g,h]GB (3.2.76)
and moreover that £ is compatible with the projections on EE) A R,N, i.e. that forallF € £, IyF € &

with U one of the above subspaces.

As in Definition 3.2.37 let us fix a tame vector field F' € V3
T¢ — V., such that F € & for all £ € O. We denote

p» namely F' = No+ G : Og X Dy py (1) X

Q) = Qp(0) == 8,F™(0,0,0), w=w(®) =wp(®):=FD0,0,0, N:=w®)-d+QO)w-d,.
(3.2.77)

Definition 3.2.42 (Melnikov conditions ). We say that a compact set O C O satisfies the Melnikov
conditions for F, O € Mg ~(F) if the following holds.

There exist linear operators Wy : O' x EFIN AW — EEINAWD) gnd Wy : O’ x EKN(AWIUABY)) -
AW Uy AWY) sych that, for any vector field X € AN EX) ngEN Vip setting

WX = Wy [XW(0) + XU (0)y] - 9, + XU (0)[W,w]) - 8y + W_X)(9) - 9, (3.2.78)
one has:
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(a) the vector field WX is in B

(b) one has
WX g <7 KX |5y + KPP X5, 5, Ci(G)). (3.2.79)

(c) setting u:= (IIgad(IIyF)WX] — X), and U1 = (7,0, s,a) one has

lulgp, <7 K" Chp, (G)| X, (32.80)
‘“|ﬁ,pz < ’y_lKn <|X|177P2017,P1 (G) + Ka(pQ_pl)‘X|’t77mcﬁ,P2 (G)) ;

Lemma 3.2.43. Take a tame vector field F € £ and assume that £ has property P. Assume also that
F = Ny + G with v"'Czyp, (G) < K, then the sets O' € M (F) are in Jx .~ (F) provided that we fiz
w=>5mn+v+5).

Proof. In the Appendix C.3. O

3.2.2 The iterative scheme

We first analyze one step of the iteration we want to perform in order to prove Theorem 3.2.39.
Essentially given the field F),, we show that for parameters in the set G,, we are able to construct a
change of variables such that the vector field in such new variables has the size of the projection on A
much smaller than the previous one. For simplicity from now on we drop for all the objects indexed by

n while we will write 4+ instead of n + 1.

Lemma 3.2.44 (The KAM step). Consider constants vo > 0, Ao > 0, § > 0, and Ky of Theorem
3.2.39. Take constant K > Ky and set Ky = K> and a set O C Og. Take some constants v,a,r,s such
that

70§’y§270,%Sagao,%gsgso,%grgro, (3.2.81)
and 1 > p4 > 0 such that
r —16pyrg > 0, if sg # 0then s — 16p4sp > 0, if ag # 0 then a — 16p4ap > 0. (3.2.82)
Consider also a vector field
F : Dgpiv(s,7) = Vop, (3.2.83)

such that F € £ for £ € O. Write FF = Ng+ G = Ng + lIyG + 4G + 1IgrG := Ng+ M + X + R. Set
v:=(v,0,s,a) and

T, i =7"1Cs,(G), O, :=7"'Cs,[I\1G), 6, =7 'Cs,(I14G), (3.2.84)

39



Abstract Nash-Moser Theorems

Assume that
Ty, <220, Oy, <20y, pi KYTH05, <e (3.2.85)

where p is the loss of regularity in Definition 3.2.37 and € is a constant depending only on pg and d.
Consider the map T; that satisfies formule(3.2.65), (3.2.66) and (3.2.67) with Tpy1 ~> T4,pn+1 ~ P+,

GnyTry Sp ~ a, 1,8 K, ~ K and set
F=(T\).F=Nog+M+X+R: Da—2p,ag,p4v(8 —2p450,7 — 2p470)

If € is small enough then the following hold:

for any O C ON JK+7Q,Y(I3’) with v :== §K ™" one has that, for £ € O, there exists an invertible
(see Def. 3.2.24) E-preserving change of coordinates &)Jr =1+ ]1 such that
()

S =1+ [ : Daspragp(s — 4p150,7 — 4p470) — Da—2p, a0 p(s — 20150,7 — 2p470),  (3.2.86)

with fy == ®, — 1 € EE+;
(ii) there exists a Lipschitz extension fy of }1 such that Cé3g)o(f+) < C’Z()s()o+(f+), Moreover, setting
O, =1+ fi, one has, for any s4+,ay,r4 with

§—16p1s9 <54 <s—10p1s9, 7 —16psrg <7y <r —10p4rg, a— 16prap < ay < a— 10p1ao,

(3.2.87)
that
Fy = (@+)*F = No + G+ : Da+,p+y<8+,7’+), (3288)
(iii) writing Fy := No + My + X4 + Ry with
My =T (P, ). F — Ny, Xy :=T04(®4),F, Ry :=Igr(d,).R, (3.2.89)
and setting v/2 < v+ <7, U3 := (v4+, 04, a4, 84 ), one has that
Ty pi=73Co p(Gh), Oy p =71 Cr, p (i G), 64 p =73 O, p(TTAG)
satisfy the following estimates:
Cipp <(1+ Ki+25m) [sz + KiWH@pz + 5P1Kiu+y+4+a(m_u) (Lp, + KHSH)} , (3.2.90)
9—&-7132 < (1 + K—lf-+25pl) [@P2Ki+y+4 + 5P1Ki+y+4+a(ﬁ2_u) (FPQ + 5Kﬂ3+1)}
and
Typ <1+ K000, 04y, < (L+ KE05,,)0,,, (3.2.91)
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In addiction to this one has

6+7P1 < [{7(170{)(miu)JﬂuJ&(11 P2 + 5Kﬁ3+1)6 P1 + K*ﬁ2+u+39p2

+ K.U‘-FQ 5 + 52 2,u,+21/+8 1 + (1—\ + 6K}43+1)K*(I€27u):| (3292)
P1 P2 +
Proof. First of all we note that, by (3.2.65), we have
YO0, (X) 771000, (X)(1 +6KTY) < 26y, (3.2.93)

for K, large. Our aim is to define the vector field g as the “approximate” solution of the equation
ATk, [g1, No + M + R) = T All g, X (3.2.94)

By Definition if £ € Oy then £ € JK%W(F) and hence we can find g4 with properties (a),(b),(c) of
Definition 3.2.37.

By Definition 3.2.37 of “good” parameters, we see that for & € O it is possible to find an approximate
solution of (3.2.94) if R = 0. However we use the results contained in Appendix C.3 to define a solution
of the whole equation:

we set .

gy = (Z(W+H AHK+adﬁl)k> Willg, X (3.2.95)
k=0
where W, satisfies conditions (a), (b), (¢) of Definition 3.2.37.
By using estimates (3.2.59), one gets

(H X) —10(2)

(2)
¢ p,0+

0. (9+) <y K4 (0252()9 (g, X) +Ka(p P1) (2)

s, (@) (3.2.96)

and hence, using (3.2.65) and (3.2.67) and Ty, < K,

(2)
CP170+

(2)
OP27O+

(g+) < V_IKiC;S?,)(’M (X)(l + 5K_1)(1 + Fpl) < KiJrz(sPl?

_ (3.2.97)
(9+) < K [ (O + 0 (Tyy + Ty, 0K K 71)]

Moreover, by condition (a) of definition 3.2.37, one has that g, € B. Now, if € in (3.2.85) is small enough ,
one can apply Lemma B.178 and conclude that the transformation of coordinates ;Ivhr =1+ f+ generated
by the flow of the vector field g1 is well defined and moreover C’ ( f+) < 20 ) (g+). Finally, by
taking e possibly smaller, one choose € small enough in order to ﬁt Condltlon (B.15) of Lemma B.179.
Hence (3.2.86) hold. This proves item (i).

Let us check (ii). In the following we write ¥} := (v4, O+, a—8pag, s—8psp) and vy = (v4+, O, a4, s4).

By Kirstzbraun Theorem (see for instance [57]) there exists a Lipschitz extensions fy of f; defined for
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all £ € Oy with the same Lipschitz norm. Moreover f; is a tame vector field with the same scale of
constants as fi. We define @, = 1 + f1 for & € Oy. Clearly it coincides with EIVDJF in the set of good
parameters Q4. Then the vector field F is well defined. The conditions in (3.2.87) are simply smallness
conditions on € in (3.2.85). Conditions in (3.2.87) just say us that s; is smaller that s but it is very
close to it.

Let us check (iii) recalling the definitions in (3.2.89). First we note that
1
G = (81).No + (20,6 = No= [ (@2)fow, Mol + (24,6
0

1 1
= /0 (1) 1ALk, g, No + M + R] — /0 (®4) ALl [g. 01 + B + (@,).G (3298

1 1
| @0UIL X ) = T [ (@ )AL g 3T + B+ (84).6
0 0
where
7= Allg, [g4, No + M + R] — g, X. (3.2.99)
Note that r in (3.2.99) satisfy bound (3.2.60) with v ~» § K~*'. By Lemma 3.2.31 we estimate the third

summand in (3.2.98) and obtain

o (24):G) < (1 + KH25,,) Dy, + Ty K42 (O, + 8y, (T, + T, GK%2) K277
gf{ (kK2 —
(3.2.100)
and
~  (3.2.97),(3.2.65)
Ciy 9, (24(G)) < (1 + K—lf-—i_QéPl)FPl (3.2.101)
for € in (3.2.85) small enough. Moreover
1
Cﬁl,pg </0 (I)i(HK-pX + ’I“)) < (1 + Kiépl)(cﬁl,Pz(X) + Cm (X)C1717P2(f+))
+ (1 + Kidpl)(cﬁl,m (7‘) + CPI(T)OULF'Q (f+))
(3.2.80) i . . . .
< (14 K18,) | Cpa(X) + Cpy(X)(Co s (G) + 3C5, 1, (G) gy (1))
(3.2.102)

where we used the fact that k1 > (3/2)p + 1 and § < 1 and I'y;, < K. Now by using (3.2.65) and
(3.2.97) we get

1
Covp < /0 LMk, X + 7“)) <A(1+ K4725,,) [@pz + O, (5K"‘3+2 + Ty, + @me?ﬂ

+ 7(1 + Kﬁ+25p1) [631Ki+a(ﬁ2_u)(rp2 + 5K'€3+1) + 5leﬁ+a(Hz—u)Fp2]
(3.2.103)
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In low norm we have

1
Con, ( /0 &L (I, X + r)) < (14 K525,) 0y (X)L + Gy (f)) (L + 76K M KTCr 0 ()

(3.2.65),(3.2.96) .
< 7(1 +K+5P1)25P1?

(3.2.104)
where we also used the fact that k1 > (3/2)pu+ 1 and the smallness of e. The last term can be estimated
as follows. First we note that the vector field IL4IIx [g4, M+ R] is tame, with tameness constant given

by
R . (P1) . R
Cﬁl ,p(HAHK+ [97 M + RD < K+C'L71,p71(HA[ga M + R])

) ) (3.2.105)
< K+(Cﬁl,p+u(9+)cﬁ,po (G) + C171,P0+1/(g+)c17,p(G))7
hence,
O v [ (2 2 .
CU+,p2 (HAHK+ 9, M + R]) < KL {Céz?o+ (g+)Fp1 + C;El,)O+ (9+)(Fp2 + Iy 0K J)]
(3.2.97) B o) 2 e (3.2.106)
< R [% 05, (K5I, 4 R 3”)]
and
Ci, p (Mall, [g, M + R]) < A K425, (3.2.107)

Hence we have obtained
1 N N _ 2 2
Ciy s ( / (@) ATl [g. M + R]) < (1 + K426, ) K20y, + 6, (KT TIT,, 2o T3
0

1
Crvpe( [ (@) TLaTLic 9, 1+ B]) < (14 K20, 125,

" (3.2.108)
The first of (3.2.90) follows by collecting together bounds (3.2.100), (3.2.103) and (3.2.108). Moreover
bounds (3.2.101), (3.2.104) and (3.2.108) imply the first bound in (3.2.91). Let us study ©,,. By

linearity one has that
Myt (D4),Gy = Tyee ((@4).No + (@4). (T G) + (04), (T2 ) ) (3.2.100)

First of all we have

_ (3.2.49),(3.2.65) el .
Corps (P4) (1 G)) < 7(1+Ki+25p1)(@p2(1 + KH) 4 Gy KA, 5K+3+1)> ’

Cy iy (B4)u (ML G)) < Y(1+EL26,,)0p, (1 + K4265,),
(3.2.110)
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and we can use Lemma B.181 to estimate the projection on N (®,),(Ily,LG). Now we use Lemma
(B.185) to obtain

Cy.ps (M (24):(TING)) < Ciipy (G)Ciiypy 11 (f4) + 2C5p, (G)Ciiy py 1 (f4)
(3.2.65) ) alra—p) (3.2.111)
S ’YKiJr [@PQ + 6P1K+ o (FPQ + 5K“3+1) )

and
Ciypr My (P1): (I G)) < K445, (3.2.112)

Finally to estimate the term IIy,1 (®4).Np one can use bounds (3.2.103), (3.2.104) and (3.2.108) which,
together with (3.2.110), (3.2.111) and (3.2.112) imply the estimates on Oy ,,,©4,, in (3.2.90) and
(3.2.91) for e small enough.

In order to prove the estimate in low norm we first write

uFy =TA(F+[F,94]+Q), Q= (®)F — (F +[F,g4]) (3.2.113)

and hence
MAFy = X + T[N + R, g4 ] + Ta[X, g4] + T14Q

) ) ) R ) ) . (3.2.114)
= i, (X + ILalN + R.g4]) + T, (X + T[N + Rog4]) + ALK 9] + IL4Q.

Consider the tern IT4Q. Using Lemma B.180 and B.184 one can reason as in (3.2.98) and write

MAQ = T4 { /0 1 /0 (@, (o [9+ G + [g Tk, X +7 =TTl g, M + R]])} (3.2.115)

where 7 is defined in (3.2.99). On the first summand in (3.2.115) one applies Lemma B.183 and obtains

1 t
Covn (14 [ @02 (o419 G1)) ) < CrpiralGICEp, (0
< 2 4,(94) (Copr 2 (T, G) + Ciy 12T, G)) (3:2.116)
(3.2.65),(3.2.97)

<A KT (L (D + 0B K]
Now using Lemmata 3.2.31, C.186 and the bounds (3.2.104), (3.2.108) we obtain
b 0 VT +2 2p+20+6 ¢2
Cal,pl(/ / (@ )ilgr Mg, X +r — Hallg [g+, M + R]]) < ~y(14 K770, ) K706 0 (3.2.117)
0o Jo
For € small enough one has that

C-

U4,P1

(ITAQ) < 02 KH+2+8 [1 + (T, + 5Kﬁ3+1)K;<”2—“>} . (3.2.118)
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Moreover one has

A NI (P2) (o —pi— . A
Conpu (Mg (X + TN + R,94])) < K P70, 1 (X + TN + R, g4)

(3.2.65).(B.33) (3.2.119)
S’ PYK;(H,Q—M—l) (emKi—I—Q + 5lei+2+a(52—u) (Fpg + 5KI€3+1)>
Finally, using the condition (¢) of Definition 3.2.37 with t = e K" one obtain
5 o ~ ,u+27§m
Cs, o1 (MK+ (X+HA[N+R, g+]>> < K" S (3.2.120)
In conclusion one has
Cm,m (HAF+) < ’YK-;(lia)(H27“)+#+2(FP2 + 6Kﬁ3+1)6131 + K;H2+u+3®p2
,LL+2—2I£1 2 2 8 *(K _ ) (32121)
ARy 0 KPS 1 (T, 4 K K
that is bound (3.2.92). O

In order to prove Theorem 3.2.39 we use the following iterative lemma:

Proposition 3.2.45 (Iterative Lemma). Consider a tame vector field F as in Theorem 3.2.39. Then
there exist constants 6 > 0,Cy >0, Ko € N, Cy(d,po) and C1(d, po), €0 = €o(po,d) such that, denoting

Top =7 'Cap(G), Oop =7 Cap(MyLG), bop:=7 " Cryp(IaG), (3.2.122)
with vy := (X, Op, S0, a0), and assuming
Top <o, Oopy <0 Oppy =g, CKS80p, < €0, oKy < e (3.2.123)

if €o is small enough then the following holds:

(N1),, For 0 < j < n—1 we have the vector fields Fj : Og X Dy, p11(55,75) = Va; p and the sets O; € O
which satisfy the hypotheses of Lemma 3.2.44 with the parameters pjy1, K; and v;. To define F;, we
apply Lemma 3.2.44 to F,—1. In particular this implies fizing Oj11 € O3 NIk, v (F]) with v
(N2),, for n >0 setting for U, := (Yn, On, an, Sn)

Lyp = ’Yv?lcﬁn,p(Gn) , Onp = 77:10ﬁn,p(HNlGn)u On,p = ’Y;lcﬁn,p(HAGn)v (3.2.124)
one has the following estimate in high norm

Dopy S AoKZ', Oy, < 0AKT, (3.2.125)
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and in low norm

Cppy <Uny Oppy <0Uny, Opypy < CLOK ™ (3.2.126)

(N3),, for n >0 one has
Kn=®n0Tn: Da p(sy:70) = Day_1—2pna0,0(Sn—1 = 2Pn50, Tn—1 — 2pnT0) (3.2.127)

n'n

with s, = $p—1 — bppso, @), = an—1 — Hppag, T, = rn—1 — dpnro is E— preserving and we define

Hn = lCn ©) Icn—l Oo... ICl o) Ko. (32128)
For v = (Y, On, sy, a;,) and w € Do ,(s7,,77,) one has that
= 1
[Hn = Lllgrp <5 20 Y oo M0 = Hnallrp, < voleoK;t. (3.2.129)
k=0

Same bounds hold for the inverse.

Proof. We prove the result by induction on n.

(N1)g. The field Fy satisfies the Hypotheses of Lemma 3.2.44. Indeed O = O, F € &€ for any £ € Oy
and equations (3.2.81) and (3.2.82) are trivially true. Moreover the first two conditions of (3.2.85) are
trivial, while

3
prlE s = 99205 < e, (3.2.130)

by (3.2.123) for suitable C'(po,d). Hence we can apply Lemma 3.2.44 to Fy and define F; and O; as the
output F and O of the lemma.

(N2). Equations (3.2.125) and (3.2.126) follows simply by (3.2.123). The bounds on dgp, in (3.2.126)
follows by choosing C, > K{J*.

(N3)g. This is trivial because Ty = 1 and all the bounds hold with &y = 1.

Let us assume inductively (Ni),, for i =1,2,3,4 for all m < n and prove (Ni), 11 for i = 1,2, 3.
(N1),+1. By inductive hypothesis we have defined the field F), as as the output of Lemma 3.2.44 applied
to F,—1. We need to check that also F, satisfies the hypotheses of Lemma (3.2.44). Clearly K,, > Kj
and O,, C Oy. Clearly by (3.2.61) 7o < v, < 279, moreover

and same for a,, and s,, hence the (3.2.81) holds true. Moreover one has that p, + 1 := 2~ (n+8) gatisfies
the (3.2.82). If £ € O, then £ € N, O; and hence thanks to (N1),, we have that F; € £ for { € O,, and
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3.2 An Existence Theorem for torus embeddings

0 <j <n—1. We conclude that F,, € £ on O,,. It remains to prove (3.2.85) for F;,,. We obtain the first
two bounds in (3.2.85) using (N2),,, and moreover

(N2)n _2
K05, <o s g (3.2.131)

hence by (3.2.61) one can choose K large in order to fulfill (3.2.85).
(N2),,41. To prove this point we use item (i:7) of Lemma 3.2.44. Let us check the (3.2.125). First one

has
(3.2.90) 3
Toiip < (14 KS26C,K,%) |AoKE + K75 5910+
2, 12,02 u _
+50*K2iﬁiy+4+a(n2—u)m0 +5C*Knﬁ1f€1+3f€5+3+2u+ +44a(ka—p) 7 (32132)
(3.2.62)
< Aok,

and moreover

2 v _
Ouriyn < (1+ KIC.OH,) [0 177 4 0oy 140000

+5C*K;Efl+,u+u+4+a(ﬁ2—,u)+§n3+§] (3.2.133)

(3.2.62)

< SAKEL,.

Let us now check the estimates in low norm. We have

(N2)p
Togip < (1+ KAVP0COK, ™ < Ay +AoKo < Apps (3.2.134)

for Ky large enough. Moreover we obtain

(3.2.90) (N2)n

Oniip < (L4 KEVOCOK )0y, < 0(n + AoKATTHOCK ™) < 02y, (3:2135)

Finally

(3.2.62) 1o L, . ,
b S Koy TR SO (M K ST 4 Ky T sl

_4 _
+ KISR0, 4 620K

(3.2.62)

< COK

4
4 k14 2pt20+8 [1 + QKR + 5K’“‘3+1)K;ﬁ2_”)] (3.2.136)
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(N3),,+1. One has that for 7" = (yn11, Ont1, Sn — 5Pn+150, n — DPn+1a0),
[(Hns1 — D) (W)llgrpy < |(Ho — 1) () |lg7p, + [ frs1(Tnsr 0 Ho(w)llgrp, + 1(Toar — D) Hn (w57 p,

(N3)n,(3.2.66) .
S o ‘€0 Z + 7 e Ky B[ Han(W)ll5 9y + 2C5 py (Gnr) | Tagt © Ha (W) |57 p,

(22)
@ty o o+ (L4 875 1) (2K, + KL/ e,

1 1
<%0 ) 55 + g
k=0
(3.2.137)
for Kg large and v ey small enough. Finally
[(Hnt1r = Ha)ullgrp, < [(Tapr = DHn(w)llsrp, + | fota (Tngr 0 Ha)(w)|575,
(N4, (3.2.66) (3.2.138)

< ’AOC*PYn n(K;HJ + Kg_Q/?ml)a

implies the second of (3.2.129) for for Ky large and 7 ey small enough. This concludes the proof of
Proposition 3.2.45. O

Proof of Theorem 3.2.39 We first show that there exists a limit map H = lim,, o0 Hn. This simply
follows by (3.2.129). Indeed

I = 1)@, 02,25 < 10— Do 0.2, + D e~ Ha )@ o .2,

n>2
< 270_150.
(3.2.139)
Hence for gp small enough also the (3.2.71) hold. Bound (3.2.73) follow by (3.2.97). It remains to check
(3.2.75). By definition the final vector field is
Foo:= lim Fy, F,:=(®n07Tp)Fp1. (3.2.140)

n—oo

On the other hand we have
Foo 1= (ﬁ)*FO
We need that Foo = F. Setting F,, := (Hy)«Fo we show that F,, = F, for any n > 1. We proceed

by induction. For n = 1 clearly H; = ®1 o 71, hence F; = F;. Now assume that F,,_1 = F,_1. By the
(N4),, one has that

Hp=KpoHp1 = (<Dn o 7;L) o Hp—1, H_l = ,H;il o /C,Il

n
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Hence we have
Ey = Fp= (Kn)eFno1 — (Hp)oFo = dKy Frymq 0 Kt — dHp Fy o Hy't
= dK,Fyo1 0Kyt — dKpdHp—1Fy o Hyty 0 K (3.2.141)
= dKn(Fp1 — dHp_1Foo 1 ) o K = 0.
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4. Forced NLS: reversible case

In this Chapter we give the proof of Theorem 1.1.1. In order to make clear ous strategy we divided
the proof into several technical Propositions. The general strategy is essentially the same in both cases
and it is the one followed in [5] e [31]. It is based on a Nash-Moser iteration. We consider the operator
F in 2.1.14 for the reversible case and our aim is to show that there exists a sequence of functions that
converges, in some Sobolev space, to a solution of (1.1.3). As explained in the Introduction the first
we prove an (essentially standard) Nash-Moser iteration scheme which produces a Cauchy sequence of

functions converging to a solution on a possibly empty Cantor like set.

Proposition 4.0.46 (Nash-Moser). Fiz v < vy, > 7 > d. There exist ¢ € IN, depending only on
T,d, pi, such that for any nonlinearity £ € C? satisfying Hypothesis 1 the following holds. Consider F(u)
defined in Definition 2.1.8, (or F defined in (2.1.11)), then there exists a small constant ey > 0 such
that for any € with 0 < ey~ < g, there exist constants Cy, Ny € N, a sequence of functions u, and a

sequence of sets Gn (v, 7, 1) = Gy C A such that u, : G, — X° (oru, : G, — H°),
_(3\"
[[nlfeg e < 1o 1[ttn = o]y < Cuey™ (o)~ (3)" 1520, (4.0.1)

Here || - ||s,y is the weighted Lipschitz norm in (2.1.6). Moreover the sequence converges in || - ||sg4+un~ t0

a function us such that

F(uoo) =0, VA€Gx:= ngOgn- (402)

The proof of Proposition 4.0.46 of course uses the abstract result we obtained in Section 3.1. We
state the result also for the Hamiltonian equation because essentially there are no important differences.
In Section 5.4 we will show that also the functional F in (2.1.11) satisfies the hypotheses of Lemma
3.1.18, hence Proposition 4.0.46 holds.
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4.1 Reversible Operators

We now specify to Hy = H® := H*(T!, C) x H3(T!, C) N, with the notations of Definition
2.2.9; recall that
Ihllsy = [[Bllgsxae y = max{|IhT[]sq [ |lsq}- (4.1.3)

Since we are working one the space of functions which are odd in space, it is more convenient to
use the sine basis in space instead of the exponential one. Namely for « odd in space we have the two

equivalent representations:

u(p,x) = Z uj(ﬂ)ei(é”ﬂx) = Z Hj(é)eie'“p sin jx,
U/ ARIVA eTd jeN
setting w;(¢) = 2iu;(¢), since u; = —u_;. Then we have also two equivalent H® norms differing by a
factor 2. In the following we will use the second one which we denote by || - ||s, because it is more suitable
to deal with odd functions and odd operators. The same remark holds also for even functions, in that
case we will use the cosine basis of L2.
We will also use this notation. From a dynamical point of view our solution u(p,z) € H*(T? x T)

can be seen as a map
T3 o — h(y) == u(p,z) € HS := HY(T) x H(T) NU. (4.1.4)

In other words we look for a curve in the phase space HS that solves (2.1.14). We will denote the norm
of h(p) := (u(p, z), u(p, z))
1A(P)IIErs == Y i (@) (). (4.1.5)
JEZ
It can be interpreted as the norm of the function at time a certain time ¢, with wt < ¢. The same
notation is used also if the function u belongs to some subspaces of even or odd functions in H;.
Let a;; € H*(T? x T), on the multiplication operator A = (@j)ij=+1 : Hs — Hs, we define the
norm
1A]ls := max {|ai s}, [|Allsy = max {[|ai]|sy} (4.1.6)
i,j==%1 i,j==%1
Recalling the definitions (2.2.23), we set,
Definition 4.1.47. An operator R : H® — H?® is “reversible” with respect to the reversibility (2.2.20) if
R:X°—=2° s>0 (4.1.7)
We say that R is “reversibility-preserving” if
R:G° = G° for G°=X°Y® 7% s>0. (4.1.8)
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In the same way, we say that A : X° — Z°, for s > 0 is “reversible”, while A : G* — G*, for

G* =X°%Y?% Z% s >0 is “reversibility-preserving”.

Remark 4.1.48. Note that, since X°* = X*® x X° NU, Definition 4.1.47 guarantees that a reversible

operator preserves also the subspace U, namely (u, ) il (z,Z) e H* x H°NU.

Lemma 4.1.49. Consider operators A, B,C of the form

AZ(C&(%%) a;i«o?x))?B::i(aﬂm “flfm),c::Bam.
ali(gz) aZ}(p.) —ali(p,2) —ai(p,)

One has that A is reversibility-preserving if and only if agl € Y? foro,0’ = £1. Moreover B is reversible

if and only if A is reversibility-preserving. Finally C' is reversible if and only if ag/ € X°®.
Proof. The Lemma is proved by simply noting that for u € X*

7 up € Z°, Val € X, (4.1.9)

’ . ’ ’ .
al -u € X®, ioal -ue Z® Yal €Y® ial

o o

using that u, € Y?* if u € X*. The fact that the subspace U is preserved, follows by the hypothesis that

!
aO’

7 = aZ,, that guarantees, for instance Ru = (z1, z2) with z; = Z. O

4.1.1 Proof of Proposition 4.0.46

We now prove that our equation (2.1.14) satisfies the hypotheses of the abstract Nash-Moser theorem.
We fix v = 2 and consider the operator F : H® — H* 2,

A7 : 8 + 8 ‘ b ) ) 77 b U b b u
POy u) i (9 Oeu 0} | (A0 e Ty U T (4.1.10)
Ao - 6@12 - Zaﬂma _if2(§0ax7ﬂvua'axauzaazzauxm)
For simplicity we write
F(u) :== F(\u) = Lyu+ef(u) (4.1.11)
where (recall w = A\w)
L)\ = Lw — w - 84)0 + 'Lazx 0 7
0 W Op — 10z
f(u) = if1(¢7$7u7ﬂ7uI7a$7uxx7al‘x) (4112)
_ZfZ(SOa Ty Uy Uy Ugey Ugey Uy sz)

Hypothesis (F0) is trivial. Hypothesis (F'1) holds true with Ay = X*, By = Z*® by Hypothesis 1.
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Forced NLS: reversible case

Hypotheses (F2) — (F'4) follow from the fact that f is a C? composition operator, see Lemmata A.165,
A.166. Let us discuss in detail the property (F'3), which we will use in the next section.

Take u € X?, then by our extension rules we have
edyf(u) :=iAo(p,z,u) + iA1(p, z, )0y + iAs(p, x,1)0sy, (4.1.13)

where, by (2.1.15), the coefficients of the linear operators A; = A;(y, z,u) have the form

b b b
A= ) 4= ) 4= ). (4.1.14)
—by —a9 b1 —a1 —by —agp

with
ai(@v :C) = 5(627"101)(%0’ T, Uy Uy Uz, Ugy Ugeg azz)a
‘ (4.1.15)
bz(% .ZE) = E(azl_ fl)(@a T, u, Z_L, Ug, ﬂxa Uz, ,L_sz)
Thanks to Hypothesis 1, and Remark 3.1.16 one has that dy f(u) : X — Z° and hence
a;, b; GYS, 1=0,2, a1, by e X°. (4.1.16)
By (4.1.14) and Lemma 4.1.49, the (4.1.16) implies
iAg,iAg : X0 - Z° 4,0, : X" — Z°. (4.1.17)

then the operator £ = duF maps X° to Z°, i.e. it is reversible according to Definition 4.1.47.
The coefficients a; and b; and their derivative dy-a;(u)[h] with respect to u? in the direction h, for

h € H?, satisfy the following tame estimates.
Lemma 4.1.50. For all so < s < q—2, ||u||sy+2 < 1 we have, for anyi=0,1,2, 0 = £1
[1bi(w)l[s, [[ai ()]s < eC(s)(1 + [[ul]s+2), (4.1.18a)
[lduo bi () [R][, ||dus ai()[R]]|s < eC(s)([|Al]s+2 + [[allss2l[]ls+2)- (4.1.18Db)
If moreover A\ — u(\) € H® is a Lipschitz family such that ||ul|sy < 1, then
[1bi(W)[[s.55 [lai()]s,y < eC(s)(1 + |[ufls12,4)- (4.1.19)
Proof. To prove the (4.1.18a) it is enough to apply Lemma A.165(i) to the function 0.¢ f1, for any

1=20,1,2 and 0 = £1 which holds for s + 1 < g. Now, let us write, for any 7 = 0,1,2 and 0,0’ = +,

2
duras(w)[h] Y eSO, L ) (0w g, T g )OS,
k<1
) (4.1.20)
duobi(W)[h] =" Y (0%, 1) (0,2, Uy Uy U, Ty U, ) O B

o
Zk Zi
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4.1 Reversible Operators

Then, by Lemma A.165(i) applied on 8:0,20 f1 we obtain
k

10 1) (05,1, T g, Ty U, T 5 < C5)[Fllmsa (1 [0 |s42), (4.1.21)

for s +2 < ¢. The bound (4.1.18b) follows by (A.5) using the (4.1.21). To prove the (4.1.19) one can

reason similarly. O

This Lemma ensures property (F'3). Properties (F'2) and (F'4) are proved in exactly in the same

way, for property (F'4) just consider derivatives of f of order 3.

We have verified all the Hypotheses of Theorem 3.1.18, which ensures the existence of a solution
defined on some possibly empty set of parameters Go,. This concludes the proof of Proposition 4.0.46.

To prove Theorem 1.1.1 we clearly has to show that the set G, has “large” measure. Hence we need
a more explicit formulation of such set. In order to do this we produce a set o parameters defined in
terms of the eigenvalues of the linearized operator £(u) on which we have some estimates on the inverse
of L. In order to do this we use a reducibility argument. In other words we show that in a rather explicit
set of parameters it is possible to conjugate the operator £ to a diagonal linear operator. In this way
the problem of the invertibility becomes trivial. Sections 4.2 and 4.3 are devoted to the proof of the

following Proposition.

Proposition 4.1.51 (Diagonalization: reversible case). Fix v < 79,7 > d. There exist n,q € IN,
depending only on 7,d, such that for any nonlinearity £ € C? satisfying the Hypotheses 1, there exists
€0 > 0 such that for any ¢ with 0 < ey~
family u(X) € X° defined on A, with ||ullsy+y~ < 1 the following holds. There exist Lipschitz functions

ppe : A — iR of the form

< €g, for any set A, € A C R and for any Lipschitz

(e 9]

B = Hgj = —aimj? + Togs  sup |rp°ly < Ce, (4.1.22)
heCxIN

withm € R, h = (0,j) € C x N and C := {+1, -1}, such that pg%; = —p, ;. Setting

(4.1.23)

. = . 00 00 2’Y|Uj2—0/j/2‘

VL € 74 Y(0, §), (0,5') € C x N

we have:
(i) For X € A?.g there exist linear bounded operators Wy, Wy : X0 — X0 with bounded inverse, such that
L(u) defined in (4.2.30) satisfies

L(u) = Wl»coowgila Loo=w:" 890]1 + Doy Do = diag{:uzo}hECX]N- (4'1'24)
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Forced NLS: reversible case

Moreover, for any s € (50,q — 1), if |[u]|s4n < +00, then WEL are bounded operators X* — X*.
(i1) under the same assumption of (i), for any ¢ € T¢ the W; define changes of variables on the phase

space

Wie), Wy M) - X5 = X5, i=1,2, (4.1.25)

7

see Remark 2.2.10. Such operators satisfy the bounds
(W () = Dhllrg < ey ' C(s)([llr + |[llssys0 | R l)- (4.1.26)

Remark 4.1.52. The purpose of item (ii) is to prove that a function h(t) € X2 is a solution of the
linearized NLS (4.1.29) if and only if the function v(t) := Wy '(wt)[h(t)] € HS solves the constant

coefficients dynamical system

Oo) (P O (" "V o g4t =0 jeN (4.1.27)
0, 0 -D.) \& 0 7 Hsts J

Since the eigenvalues are all imaginary we have that

o)1y = Y los PG> =Y 100 P()* = [lv(0)][7. (4.1.28)

JEN JEN
that means that the Sobolev norm in the space of functions depending on x, is constant in time.

Proposition 4.1.51 provides a quite explicit set of parameters (see (4.1.23)) for which it is possible to
diagonalize the linearized operator £ at some point u.

To prove a Proposition like 4.0.46 is quite standard when the non linearity £ does not contain
derivatives. In this simpler case £(u) is a diagonal matrix plus a small bounded perturbation. Hence

one can use a classical reducibility scheme ¢ la KAM. In our case this is not true, indeed
L(u) =w-0p1 +i(1 + A2(p,2))0rs + 1A1(p, 2)0r + iAo(p, ) (4.1.29)

where A; : H® — H?® are defined in (4.1.14) and 1 is the 2 x 2 identity. Hence the reduction requires a
careful analysis. In particular in Section 4.2 we perform a series of changes of variables which conjugate
L to an operator £4 which is the sum of an unbounded diagonal operator plus a small bounded remain-
der. As we will see the transformation used in Section 4.2 are deeply different from the usual KAM

transformations. Then in section 4.3 we perform a KAM reduction algorithm.
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4.2 The diagonalization algorithm: regularization

4.2 The diagonalization algorithm: regularization
For u € X° we consider the linearized operator
L(u) =Ly +eduf(u) =w- 0,1 +i(E + As(p, ,u))0py + 410, + iAo, (4.2.30)
with E = diag(1, —1), duf(u) defined in formula (4.1.13) and ||u||s,+2 small. In this Section we prove
Lemma 4.2.53. Let £ € CY satisfy the Hypotheses of Proposition 4.0.46 and assume q > 11 + g where
n = d + 280 + 10. (4.2.31)

There exists eg > 0 such that, if 570_1 < € (see (1.1.2) for the definition of vy) then, for any v < vy and
for all u € X° depending in a Lipschitz way on \ € A, if

[allsg+my <1, (4.2.32)

then, for sg < s < q—n1, the following holds.
(i) There exist invertible maps Vi, Vs : H® — H° such that L4 := VflﬁVQ with

0 0
Limw- O +i| ) Ot Mo, +i & #), (4.2.33)
0 —m -1 0 —q3 —q2

where the ¢; = ¢i(p, x).

The V; are reversibility-preserving and moreover for allh € X% and i = 1,2
[1Vilalls + [V sy < C(s)(]ss2 + [[allsiny hlls12,) - (4.2.34)
(11) The coefficient m := m(u) of L4 satisfies

Im(u) — 1|, < eC, (4.2.35a)
|dum(u)[h]| < eC|lh],,. (4.2.35b)

(11i) The operators q; :== q;(u), are such that

gillsy < C(s)(L + |[ulls494); (4.2.36a)
||du(g:)(w)[b]]]s < eC(s)(|[][s4n, +[|llsn + [[B]lso4:), (4.2.36D)

Finally L4 is reversible.
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Forced NLS: reversible case

The rest of the Section is devoted to the proof of this Lemma. We divide it in four steps. at each step

we construct a reversibility-preserving change of variable 7; that conjugates' £; to £;1 where Lg := L

and L£; :=
(@) (1) (@) (@) (@) 10
[ 14+ay’ by A a’ b ay’ by
w- O, +1| _,. | Opeti | ) Sl o+ 2 A 4.2.37
@ <_b(z) 1_ (z)) (_bgz) —ag” _bg) —a((f) ( )

2 ay
possibly renaming the space and time variables. On the transformation we need to prove bounds like
1 Ti(wh|]s 5 < C(s)([][sy + [|llsr; 4 [[h]]s0), (4.2.38a)
||duTi(u)[h]g|ls < eC(s) (lglls+1lhllso+r; + llgll2lhllsr+
+llallstr;lgll2lhls) (4.2.38b)

for suitable x;. We prove the same for 7;_1. Moreover the coefficients in (4.2.37) satisfy

a5 (w)[]s, < C() (1 + [l s1r,10); (4.2.39a)
[ dura (W) [R]||s < cC()(0llsr, + [[0]lssr, + |B]|ssr,); (4.2.39b)

for j=0,1,2and ¢ =1,...,4. We prove the same for by).

Step 1. Diagonalization of the second order coefficient

We first diagonalize the term E + As in (4.2.30). By a direct calculation, one can see that the matrix

: (1)
(E + As) has eigenvalues Ao = £+/(1 + as)? — [b2|2. Hence we set a;’ (p,2) = A\; — 1. We have that
(1)
ay

€ R because a2 € R and a;, b; are small. The diagonalizing matrix is

(1)

_ 1(24ay+a b

Tt = 3 2 NE (4.2.40)
—bo —(2+a2+a2 )

The tame estimates (4.2.39) for agl) and the (4.2.38) on 7! follow with x; = 2 by (4.1.18a), (4.2.32)
and (A.5). The bound on 7; follows since

detT; " = (|bo]? — (2 + a2 + a$)?) /4,
and by using the same strategy as for agl). One has

Ly = T LT =w 0,0 +iT; (B + A2)Ti0m + (4.2.41)
+ 277N E+ AT+ T AT O,
i [T 0T + TN (B 4 A2 T+ T 0T+ T Ao

! Actually in the third step we only are able to conjugate L2 to pL3, where p is a suitable function. This is the reason

why L is semi-conjugated to L4.
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4.2 The diagonalization algorithm: regularization

the (6.4.56) has the form (4.2.37) and this identifies the coefficients ag-l), bg-l). Note that the matrix of

the second order operator is now diagonal. Moreover, by (A.5), (4.2.39) on agl), (4.1.18a) and (4.1.18b)

(1) (1)
L

k1 =5 in all the bounds (4.2.38a)-(4.2.39b) even if for some of the coefficients there are better bounds.

one obtains the bounds (4.2.39) for the remaining coefficients a with x1 := 5. Then we can fix

Finally, since the matrix ’7'1_1 is £+ As plus a diagonal matrix with even components, it has the same
parity properties of Ao, then maps Y* to Y* and X?® to X*, this means that it is reversibility-preserving
and hence £, is reversible. In particular one has that agl),a(()l), b(()l) € Y9 and agl), bgl) € XO then by
Lemma 4.1.49.

Remark 4.2.54. We can note that in the quasi-linear case this first step can be avoided. Indeed in that

case one has Oz, f = 0, so that the matriz Az is already diagonal, with real coefficients.

Step 2. Change of the space variable

We consider a p—dependent family of diffeomorphisms of the 1—dimensional torus T of the form
y=1x+E&(p, @), (4.2.42)

where ¢ is as small real-valued function, 27 periodic in all its arguments. The change of variables (4.2.42)

induces on the space of functions the invertible linear operator

(Tzh)(¢,7) == (g, + (g, @), with (T3 '0)(,9) = v(e,y + E(9,v)), (4.2.43)

~

where y — y + &(p,y) is the inverse diffeomorphism of (4.2.42). With a slight abuse of notation we
extend the operator to H®:

(4.2.44)

T H® — H°, Tyh= <<T2h)<90’m)> .

(T2h)(, @)
Now we have to calculate the conjugate 7571 £ 75 of the operator £ in (6.4.56).
The conjugate T, *aTz of any multiplication operator a : h(yp,z) — a(p,z)h(yp,z) is the multiplication
operator (75 a) : v(p,y) — (T5 *a)(p,y)v(p,y). The conjugate of the differential operators will be
T w0, = wdp+ [Ty (w:0,610y, AT =[Ty '(1+&)19,
T 0mA = (T3 (14 &40 + T3 )]0y, (1.2.45)

where all the coefficients are periodic functions of (¢, x). Thus we have obtained Lo = T~ ' L1 T2 where

Lo has the form (4.2.37) in the variable y instead of x. Note that the second rows are the complex
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Forced NLS: reversible case

conjugates of the first, this is due to the fact that 7s trivially preserves the subspace U. We have

(2)

1+aP(py) = T 1+a)0+&)% 8P, = TV + &),
d(gy) = T A+ a$)ew) — T (w - 0,6) + T oV (1 + &),
aP(ey) = T el b0y = T V). (4.2.46)

We are looking for (¢, x) such that the coefficient of the second order differential operator does not

depend on y, namely

T (1 +al) (1 +6)% = 1+ a2 (p), (4.2.47)

for some function aéQ)(go). Since T3 operates only on the space variables, the (6.4.90) is equivalent to

(14 a5 (0,2)) (1 + &, 2))% = 1+ a8 (). (4.2.48)
Hence we have to set
&er)=po polex) = (1+a)2(9)(1+af (o, 2)) 72 - 1, (4.2.49)

that has solution & periodic in x if and only if fT pody = 0. This condition implies

1 -2
) = (5 [0+ eant) -1 (42.50)
T JT
Then we have the solution (with zero average) of (6.4.92)
E(p,x) = (95 ' po) (¢, ), (4.2.51)
where 9! is defined by linearity as
) etk
oy teth .= —= Vkez\{0}, o1 =0. (4.2.52)

In other word 9, 'h is the primitive of h with zero average in x. Thus, conjugating £; through the
operator T3 in (4.2.44) , we obtain the operator £y in (4.2.37).
Now we start by proving that the coefficient a§2) satisfies tame estimates like (4.2.39) with ko = 2.

Let us write

() = v (Cloay”) —g(0)]) = v(0),
1

P(t) = (1+1)72% Gh:=o— | hdx, g(t):=(1+1)"2.
T Jr

ol

(4.2.53)
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4.2 The diagonalization algorithm: regularization

Then one has, for € small,

(A.10)
162, < Cs)IGlg(as?) = g()I]s < C(s)llg(as?) — g(0)]]s

(A.10) )

< C@)|ad]s. (4.2.54)

In the first case we used (A.10) on the function ¢ with u =0,p = 0,h = G[g(agl)) — ¢(0)], while in the
second case we have set u = 0,p = 0,h = aél) and used the estimate on g. Then we used the (4.2.39)

and the bound (4.1.18a), with sg = sp which holds for s + 2 < ¢. By (4.2.53), we get for 0 = £1

dura? ()] = o' (Glg(a”) - 9(0)]) G [g'(a8")dural 1] (4.2.55)

Using (A.5) with sgp = 89, Lemma A.165(i) to estimate the functions ¢’ and ¢', as done in (4.2.54)), and
by the (4.1.18b) we get (4.2.39b). The (4.2.39a) follows by (4.2.54), (4.2.39b) and Lemma A.166. The
second step is to give tame estimates on the function & = 9, 1py defined in (6.4.92) and (6.4.94). It is
easy to check that, estimates (4.2.39) are satisfied also by pg. They follow by using the estimates on
at? and the estimates (4.2.39), (4.1.18a), (4.1.18b), (4.1.19) for a{"). By defining |u|>® := |Jul[yy= and
using Lemma A.164(i) we get

€157 < C(9)l[€llstso < C(8)llpollstsy < eC(8)(1 +[|ullstso+2), (4.2.56a)
|dus§(W)[R][S7 < eC(s)([[Alls4s0+2 + |[ulls+so+2]llsp+2), (4.2.56b)

and hence, by Lemma A.166 one has
€157 < eC(8)(1 + [[ulls+so+2.4)s (4.2.57)

for any s 4+ s9 + 2 < ¢. The diffeomorphism x — x + (¢, x) is well-defined if [£|; o« < 1/2, but it is
easy to note that this condition is implied requiring eC(s)(1 + ||u]|so+3) < 1/2. Let us study the inverse

diffeomorphism (¢, y) — (p,y + &(p,y)) of (¢, z) — (v, z + v(p,x)). Using Lemma A.167(i) on the

torus T, one has

~

€157 < CIES < eCs)(1 + [[ullstsp+2)- (4.2.58)

~ ~

By definition we have that {(p,y) + (., y + &(p,y)) = 0, which implies, for o = £1,

~

|dus§(W)[R]]5° < eC([|Mllso+2 + [[0llstso+3[ IRl lso-+2)- (4.2.59)

Now, thanks to bounds (4.2.58) and (4.2.59), using again Lemma A.166 with p = sg + 3, we obtain

€122, < eC(5) (1 + [[ullsts043.7)- (4.2.60)

61



Forced NLS: reversible case

We have to estimate Tz(u) and 7, *(u). By using (A.16¢), (4.2.57) and (4.2.60), we get the (4.2.38a)

with k9 = 59 + 3, Now, since

du(T2(u)g)[h] := dug(e, z + £(p, x5 1)) = (T2(0)gz)du (u)[h],

we get the (4.2.38b) using the (A.7), (4.2.56b) and (4.2.38a). The (4.2.38b) on 7, * follows by the same
reasoning. Finally, using the bounds (A.7), (4.2.38), (4.2.60), (4.1.19), Lemma 4.1.50 and ||ul|sy4x, y < 1,
one has the (4.2.39a) on the coefficients a§-2), b§2) for j = 0,1 in (4.2.46). Now, by definition (4.2.46), we

can write

o =T Wpr, pri= (14056 —iw- 0,6 +afV (14 &), (4.2.61)

so that, thanks to bounds in Lemma 4.1.50, and (4.2.56a), (4.2.56b), (A.7) and recalling that ||u||sy4n, <

1, we get the (4.2.39a) on p;. Now, the (4.2.39b) on agz) follows by using the chain rule, setting k9 = s0+5
2)

and for s + 59 + 5 < ¢. The same bounds on the coefficients a(()Q), by’ are obtained in the same way.

Remark 4.2.55. Note that ¢ is a real function and &(p,x) € XO since a € Y°. This implies that
the operators To and ’7'2_1 map X = X0 and YO — YO, namely preserves the parity properties of the
functions. Moreover we have that ag), a[()Q), b(g?) €Y, while ag2), b§2) € X0 Then then by Lemma 4.1.49,

one has that the operator Lo is reversible.

Step 3. Time reparameterization

We have obtained L2 which is an operator of the form (4.2.37) in the variables (¢, y). In this section
we want to make constant the coefficient of the highest order spatial derivative operator 9y, of Ls, by a

quasi-periodic reparameterization of time. We consider a diffeomorphism of the torus T¢ of the form
0=p+walp), peT? alp)eR, (4.2.62)

where « is a small real valued function, 2w —periodic in all its arguments. The induced linear operator

on the space of functions is
(T3h)(@,y) == hip +walp),y), with (T3 '0)(0,y) = v(0 +wa(6),y), (4.2.63)

where ¢ = 0 + wa(#) is the inverse diffeomorphism of 6 = ¢ + wa(y). We extend the operator

(4.2.64)

Ty H S HL (T (o) = <(73h)(“0’x)> -

(T3h) (e, x)
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4.2 The diagonalization algorithm: regularization

By conjugation, we have that the differential operator becomes
T tw - 0,Ts = p(0)w -0, Ty 10, Ta =0y, p(0):=T; (1+w:dpa). (4.2.65)
We have obtained 7371 LoT3 = pLs3 with L3 as in (4.2.37) where
L+ ag” (6) = (T (L+a57))(6),

p(0)a(0,y) = (T, 1) 0,),  pOP(0,y) = (T;117)(8, ),

for 5 = 0,1. We look for solutions « such that the coefficients of the highest order derivatives (iw - Jp

(4.2.66)

and Oyy) are proportional, namely
(T (1 +a5™))(8) = mp(6) = mT; ™ (1 +w- D,0) (4.2.67)

for some constant m, that is equivalent to require that

1+ a () = m(1 +w - dya(yp)), (4.2.68)
By setting
1 (2)
™= )l /Td(1+a2 (0))dep, (4.2.69)
we can find the (unique) solution of (4.2.68) with zero average
1 _
alp) = —(w-9,) (14 a0y —m)(p), (4.2.70)

where (w - 8,) 71 is defined by linearity

eile
iw- Ll
thanks to this choice of a we have T; '£2T3 = pL3 with 1 + aég) (0) =m.

First of all, note that the bounds (4.2.35) on the coefficient m in (6.4.106) follow by the (4.2.39) for ag2).
Moreover the function a(y) defined in (6.4.107) satisfies the tame estimates:

(w-8,) el =

(#£0, (w-0y) '1=0.

|| < evg ' C(s) (1 + [ullstdrsot2)s (4.2.71a)
dua(W)[B]° < 95 " Cs)(Blsrdraprs + [allsrarsnrelBllars2). (4.2.71b)
@38 < &9 ' Cs) (1 + |[ullsrdrsor2n)- (4.2.71c)

Since w = MA@ and by (1.1.2) one has |@ - £] > 3v0|¢|=%, V £ # 0, then one has the (4.2.71a). One can
prove similarly the (4.2.71c) by using (4.2.39a), (4.2.35) and the fact (w-£)~! = A"} (@ £)~L. To prove
(4.2.71b) we compute

duo(p;u)[h] = (m-%)*(du(l%g (w) [h]mn;(lmg))d“m(u) L ) (4.2.72)
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Forced NLS: reversible case

and use the estimates (4.2.39a), (4.2.39b) and (4.2.35). Finally, the diffeomorphism (6.4.101) is well-
defined if |«|$® < 1/2. This is implied by (4.2.71a) and (4.2.32) for € small enough.

The inverse diffeomorphism 6 — 6 + wa(f) of (6.4.101) satisfies the same estimates in (4.2.71) with
d+ 59+ 3. The (4.2.71a), (4.2.71c) on a follow by the bounds (A.14), (A.15) in Lemma A.167 and
(4.2.71a), (4.2.71c). As in the second step the estimate on dya(u)h] follows by the chain rule using
Lemma A.167(iii), (A.6), (4.2.71a), (4.2.71b) on « and (A.2) with a = d+ 59+ 3, b = d+ 59 + 1 and
p=s—1, ¢ =2 one has the (4.2.71b) for a.

We claim that the operators 73(u) and E_l(u) defined in (5.1.46), satisfy for any g,h € H? the (4.2.38)
with k3 := d+ 59+ 3. Indeed to prove estimates (4.2.38a), we apply Lemma A.167(ii) and the estimates
(4.2.71a), (4.2.71c) on o and @ obtained above. Now, since

du(T3(u)g)[h] = T3(u)(w - 9,g)ducr(u)[h] (4.2.73)

then (A.7), (4.2.71b) and (4.2.38a), imply (4.2.38b). Reasoning in the same way one has that (4.2.71a),
(4.2.38b) imply (4.2.38b) on T3 '
By the (4.2.65) one has p =1+ T; '(w - dpa). By using the (A.17a), (A.17b), the bounds (4.2.71) on a

and (4.2.32) one can prove

|p - 1|§7O'y < E’YO—IC
|dup(w)[h][° < eng'C

8)(1 + [[alls+dtsot+4,7) (4.2.74a)
$)(|0ls+d+so+3 + [0l stdtso+alla+so+3)- (4.2.74b)

(
(

Bounds (4.2.39) on the coefficients a§-3), b§-3) follows, with k3 := d + s9 + 5, by using the (4.2.74) on p,
)

the (4.2.38) on T3 and T; ', the (A.5)-(A.7) and the condition (4.2.32).

Remark 4.2.56. Note that « is a real function and o € X°, then the operators Tz and 75_1 map
X% = X0 and YO = YO, Moreover we have that m € R, a(()3),b(()3) e YO, while ags), b§3) € X0 Then

then by Lemma 4.1.49, one has that the operator L3 is reversible.

In the following we rename y = z and 6 = .
Step 4. Descent Method: conjugation by multiplication operator

The aim of this section is to conjugate the operator L3 to an operator £4 which has zero on the
diagonal of the first order spatial differential operator.

We consider an operator of the form

[T+ z(p,2) 0
(e 0y o
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4.2 The diagonalization algorithm: regularization

where z : T4 — C is small enough so that 7y is invertible. By a direct calculation we have that £4

has the form (4.2.37) where the second order coefficients are those of £3 while?

a§4) = o~ +a§3)a QQECL((]4) = —iw - 0p2) + Mgy aég),
1+2 1+ 2
@ ._,@3l+z @ ._,@3l+z (4.2.76)
Eb4 :=b3 Eb4 ::b3 .
@ =05 Lig,  B=% 0112

We look for z(yp, x) such that a§4) = 0. If we look for solutions of the form 1+ z(p,x) = exp(s(p,x)) we

have that a§4) = 0 becomes

1 3 1 3
Re(sy) = —%Re(ag ), Im(sy) = —%Im(ag N, (4.2.77)
that have unique (with zero average in x) solution
1 3 1 3
Re(s) = —5.-2; Re(al™),  TIm(s) = ~5-0; Tm(al?) (4.2.78)

where 9, ! is defined in (4.2.52).

The function s defined in (4.2.78) satisfies the following tame estimates:

|[5]]s,y < eC(s)(1 4+ [|ulls4dtso+5,) (4.2.79a)
||dus(w)[h]|]s < eC(s)(|[h]]stdrsora + |[llsrarsorslhllarsora)- (4.2.79b)

The (4.2.79) follow by (4.2.35), used to estimate m, the estimates (4.2.39), on the coefficient of agg), and
(4.2.32). Since by definition one has

z(p,x) = exp(s(p,r)) — 1,

clearly the function z satisfies the same estimates (4.2.79a)-(4.2.79b).

The estimates (4.2.79a)-(4.2.79b) on the function z(y,x) imply directly the tame estimates in (4.2.38)
on the operator 7; defined in (4.2.75). The bound (4.2.38a) on the operator T, ! follows in the same
way. In order to prove the (4.2.38b) we note that

duT; (w)h] = =T, (w)duTa(w)[b] 7, (),

then, using the (4.2.32) and the (4.2.38b) on 73 we get the (4.2.38b) on T, *. We show that the coefficients
in (4.2.76), for i = 1,2, 3 satisfy the tame estimates in (4.2.39) with k4 = d + s¢9 + 7 that simply are the
(4.2.36a), (4.2.36b). The strategy to prove the tame bounds on ¢; is the same used in (4.2.61) on a§2).
Collecting together the loss of regularity at each step one gets 71 as in (4.2.31).

2We use Tz to cancel a§4)7 then to avoid apices we rename the remaining coefficients coherently with the definition of
Ly.
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Remark 4.2.57. Since ag?)) € XY, then s(¢,z) € Y, so that the operator Ty does not change the parity
properties of functions. This implies that the operator Ly, defined in (4.2.33), is reversible.

The several steps performed in the previous sections (semi)-conjugate the linearized operator L to

the operator £4 defined in (4.2.33), namely
L=VILY;", V1=TiT:TspTs, Vo=TT2T:Ti (4.2.80)

where p is the multiplication operator by the function p defined in (4.2.65). Now by Lemma A.168,
the operators V; and Vs defined in (4.2.80) satisfy, using (4.2.32), the (4.2.34). Note that we used that
m > d+ 289 + 7. The estimates in (ii) and (iii) have been already proved, hence the proof of Lemma
4.2.53 has been completed. O

The following Lemma is a consequence of the discussion above.

Lemma 4.2.58. Under the Hypotheses of Lemma 4.2.53 possibly with smaller €y, if (4.2.32) holds, one
has that theT; i # identify operators T;(¢), of the phase space HS := H*(T). Moreover they are invertible
and the following estimates hold for so < s < q—m and fori=1,2,4:

(T () — D[ < eCs)(|[hllerg + |lullsrarase+al Bl [a), (4.2.81a)

Proof. T1 and Ty are multiplication operators then, it is enough to perform the proof on any component

(7});’/, for 0,0’ = +1 and 7 = 1,4, that are simply multiplication operators from H? — H$. One has

, (A5) , :
(T2 (@)hllas < C) Tz ()laglbllgy + [[(Ti)g ()|l ms)

SICTDG Wsesol Bl 2z + (TG Ilrvso 1Al 1) (4.2.82)

(4.2.38a)
< CE)Inl]ag + [[allsso+2lll 1),

where we used also (4.2.32). In the same way one can show that

(T3 (,-) = Dhlls < eCls) ([R5 + ullsrs+2 [l my)- (4.2.83)

and hence the bound (5.1.102a) follow. Note that we used the simple fact that given a function v €
HS(T%; C) then ||v(9)||ms < C||v]|s+s,- Now, for fixed ¢ € T? one has Ta(¢)h(z) := h(z + £(p, z)).
We can bound, by using the (A.16a) on the change of variable T — T, x — x + £(¢, x),

I Ta(@)hllrg < C(s)([hll g + 1€(P) weoo (1] 2)

(4.2.56a)
< Cl)[IAlag + [allstso+2]lhl[ 1)

where we have used also the fact [§()[ws.co(m) < [€]5%s,- One can prove (5.1.102a) by using (A.16b),
(4.2.32) and (4.2.56a). The estimates (5.1.102a) hold for 75 () : h(y) — h(y + £(¢,y)) thanks to the
(4.2.58). O

(4.2.84)
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Note that the fact that 73 maps H; — H is trivial.

4.3 The diagonalization algorithm: KAM reduction

In this section we diagonalize the operator £4 in (4.2.33) in Section 4.2. In order to implement our
procedure we pass to Fourier coefficients and introduce an "off diagonal decay norm" which is stronger
that the standard operatorial one. We also define the reversibility properties of the operators, in terms
of the Fourier coefficients.

Consider the bases {ex = e*¥?sinjr : k = (£,7) € Z¢ x N} and {e = e*“¥cosjoz : k = (£,j) €
74 x 7., } for functions which are odd (resp. even) in 2. Then any linear operator A : GY — GY, where
G(f,? = X% Y0 Z9 can be represented by an infinite dimensional matrix

A= (AD)ivecxz, xzi (AN = (Aew,er) paary, (A7 Ju=Y (AT} wwer,
kK
where (-, ) 2(pa+1) is the usual scalar product on L?, we are denoting i = (0, k) = (0,5,p) € CxZ, x 7%
and C := {+1, —1}.
In the case of functions which are odd in x we set the extra matrix coefficients (corresponding to

j = 0) to zero.

Definition 4.3.59. (s-decay norm). Given an infinite dimensional matriz A = (Ag)i7,i/€C><Z+de we

define the norm of off-diagonal decay

/ /7’?3,
|A|?:= sup |AZ|?:= sup Z (R)?* sup A7 & 2 (4.3.85)
o,0'eC U’U,EChEZ+XZd k—k'=h -+

If one has that A := A(X) for A € A C R, we define

AL = sup [AQN) s, AP = sup A = ARl
AEA A1F#A2 |A1 — Ao (4.3.86)

|Alsy = A + ] A[LP.
The decay norm we have introduced in (4.3.85) is suitable for the problem we are studying. Note
that
Vs<s = |AT]; <|AT ]y
Moreover norm (4.3.85) gives information on the polynomial off-diagonal decay of the matrices, indeed

!
A5 s

TR < Gy YRk € 2 X 2 AL < Ao, AL < AR (4.3.87)
We have the following important result:
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Forced NLS: reversible case

Theorem 4.3.60. Let f € C? satisfy the Hypotheses of Proposition 4.0.46 with ¢ > n1 + 8+ sg where 1y
is defined in (4.2.31) and 3 = 71 +5 for some T > d. Lety € (0,7), 50 <5 < q—n1—f and u(\) € X
be a family of functions depending on a Lipschitz way on a parameter X € A, C A : [1/2,3/2]. Assume
that

HuHso—&-m—i—,B,Aa,v <1 (4.3.88)

Then there exist constants ey, C, depending only on the data of the problem, such that, if ey~ < €,
then there ezists a sequence of purely imaginary numbers as in Proposition 4.1.51, namely ¥ h = (0,j) €

C x NN, andV ) € A,

fh = Hgi(A) 1= pgi(Au) = —aimj? +r (4.3.89)

VK
where m is defined in (6.4.106) with
roily <eC, Voel, jelN (4.3.90)

and such that, for any \ € Agz(u), defined in (4.1.23), there exists a bounded, invertible linear operator
P (N) : H® — H?, with bounded inverse ®(\), such that

Loo(A) =P (N) 0 L40P(N) = A& - Oyl + i Do,

(4.3.91)
where Doo = diagheoxn{ui’ (A},
with Ly defined in (4.2.33). Moreover, the transformations ®oo(\), ! satisfy
|Poo(N) — ]l|5,A§;’;y + @ (N — ]l|s,A§3,7 < ey 1O(s) (L + [|ullsim+8.00.4)- (4.3.92)

In addition to this ® defines, for any ¢ € T9, the operator ®u.(p) (see Remark 2.2.10) which is
an invertible operator of the phase space X3 = X*(T), for any so < s < q —n1 — B, with inverse
(Poo(9)) ™" 1= 0 () and

(@2 () = Dhlless < =y CCs) (gt + [l sy 00 ). (4.3.9)

Remark 4.3.61. [t is important to note that thanks to Reversibility Hypothesis 1, the operator L :

X0 — 70 j.e. it is reversible.

The main point of the Theorem 4.3.60 is that the bound on the low norm of u in (4.3.88) guarantees
the bound on higher norms (4.3.92) for the transformations ®%!. This is fundamental in order to get
the estimates on the inverse of £ in high norms.

Moreover, the definition (4.1.23) of the set where the second Mel’'nikov conditions hold, depends only

on the final eigenvalues. Usually in KAM theorems, the non-resonance conditions have to be checked,
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4.8 The diagonalization algorithm: KAM reduction

inductively, at each step of the algorithm. This formulation, on the contrary, allow us to discuss the
measure estimates only once. Indeed, the functions pp () are well-defined even if Ao, = ), so that, we

will perform the measure estimates as the last step of the proof of Theorem 1.1.1.

4.3.1 Functional setting and notations

The off-diagonal decay norm  Here we want to show some important properties of the norm |- .
Clearly the same results hold for the norm |- |gs := |+ |gsxgs. Moreover we will introduce some
characterization of the operators we have to deal with during the diagonalization procedure.

First of all we have following classical results.

Lemma 4.3.62. Interpolation. For all s > so > (d + 1)/2 there are C(s) > C(sg) > 1 such that if
A= A(\) and B = B()\) depend on the parameter X € A C R in a Lipschitz way, then

|AB|sy < C(5)[Als 4| Blsy + C(s0)[Als|Blsoys (4.3.94a)
[AB|sy < C(5)|Alsy|Blsy- (4.3.94D)
HAhHSW < C(s)(|A’sothHsn + ’A‘sthHSOW)v (4.3.94c)

Lemma 4.3.62 implies that for any n > 0 one has V s > sg

(A spy S [C(s0)"THALS 0 A"y < nlCls0)]" T C(5)] Alsyr- (4.3.95)

- 50,77
The following Lemma shows how to invert linear operators which are "near” to the identity in norm
| ’ ‘50'
Lemma 4.3.63. Let C(sg) be as in Lemma 4.3.62. Consider an operator of the form ® =1 + U where

U = W(\) depends in a Lipschitz way on X € A C R. Assume that C(s0)|V|sy~ < 1/2. Then ® is
invertible and, for all s > sy > (d+1)/2,

|<I)71’srw <2, |o7'- Lsy < C(s)[¥]sy (4.3.96)
Moreover, if one has ®; =1 + V;, i = 1,2 such that C(s0)|¥;|s,y < 1/2, then
1931 — @1 sy < C(8) (192 = Uty + (| Wty [ P2lsn) [ W2 — Uiy ) - (4.3.97)

Proof. One has that (1 +W)~" =37, %\Pk, then by (4.3.95) we get bounds (4.3.96). Now, we can
note that

1 1 4 4 (4.3.94a) 4
|q)2 2] |s77:"1)1 (\I’l_‘l’2)‘1’2 ‘sw < C(S)|‘I)1 ‘50,7

+0(8)|®] 5o |1 — Po

(4.3.96)
< OOV = Wolsy + (1Pl + [Walsy) [P1 — Polsy )

vy — \112|5077|<I>2_1|3,7
-1 -1 -1
@, ‘50774‘0(5)‘@1 |s7v|\I’1 - ‘Ij2‘son @, |80,"/

877

69
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that is the (4.3.97). O

Topliz-in-time matrices We study now the special class of operators introduced in Remark 2.2.10,

the so-called Tépliz in time matrices, i.e.

Al = AT = AT (p—pf), for i € Cx Zy x 7. (4.3.98)

To simplify the notation in this case, we shall write A7 = A¥ (¢), i = (k,p) = (0,4j,p) € C x Zy x 7,
y ) k .] +
= (K,p) = (0,§,0) € C xZy x 7%, with k,k' € C x Z,.
They are relevant because one can identify the matrix A with a one-parameter family of operators,

acting on the space H?, which depend on the time, namely

Alp) = (A7 () gorecs AZT (0) =D ATT (D). (4.3.99)
53 €2y tczd

To obtain the stability result on the solutions we will strongly use this property.

Lemma 4.3.64. If A is a Topliz in time matriz as in (4.53.98), and sg := (d + 2)/2, then one has
|A(p)]s < C(s0)| Alstsg, V€T (4.3.100)

Proof. We can note that, for any ¢ € T9,

[A(p)2:= sup > (W)* sup A7 ()

o,0'eC heZ Jj=i'=
< C(So) sup Z 25 sup Z |Aa 250
o,0'eC heZ., Jj—j'= ZeZd
< C(s0) sup > sup [AZI(0)[(¢, h)*+e0) (4.3.101)

Gaechez j—3'=h

< C(so) sup Y sup |A77(0)2(¢,hy2et=0)
UUGC}LEZ j—j'=h

ZeZd

(4.3.85) )
< 0(50)”4‘3+507

that is the assertion. O

Definition 4.3.65. (Smoothing operator) Given N € N, we the define the smoothing operator Iy

as
(ILy A)° fazat, =<,
N

ge = (4.3.102)
0 otherwise
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Lemma 4.3.66. Let HJLV =1 — Iy,
if A= A(\) is a Lipschitz family X\ € A, then

’HﬁA‘s,v < N_’B‘A‘HB,W g =0. (4.3.103)
Proof. Note that one has,

AP =N"2 sup Y sup |AT 7 (0)]2(¢, h)> N?
o,0'eC h€Z+j_j/:h

[¢|>N
SN sup S sup AT (0)2(n)HE) (4.3.104)
o,0'eC h€Z+j_j/:h ’
[¢|>N
S N_2B|A’g+57
The estimate on the Lipschitz norm follows similarly. O

Remark 4.3.67. (Multiplication operator) We have already seen that if the decay norm is finite
then the operator has a “good” off-diagonal decay. Although this property is strictly stronger than just
being bounded, this class contains many useful operators in particular multiplication ones. Indeed, let
To : GI — G5, where Gf o = X®,Y*, Z% be the multiplication operator by a function a € G* with
G® = X5 Y* 7% i.e (T,h) = ah. Then one can check, in coordinates, that it is represented by the

matriz T such that
IT]s < lalls- (4.3.105a)
Moreover, if a = a(\) is a Lipschitz family of functions,
IT|s~ < |lal]s,y- (4.3.106)

At the beginning of our algorithm we actually deal with multiplication operators, so that one could
try to control the operator by using only the Sobolev norms of functions. Unfortunately, it is not possible
since the class of multiplication operators is not closed under our algorithm. This is the reason why we

have introduced the decay norms that control decay in more general situations.

Matrix representation In this paragraph we give a characterizations of reversible operators in the

Fourier space. We need it to deal with a more general class of operators than the multiplication operators.
Lemma 4.3.68. We have that, for G° = X®°,Y* Z%,
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R:G°— G & R (O)=R/(0),Vler V] el (4.3.107)

Moreover,

. vSs s ' _ i d .y
R: X2 =R {)=-R;((), WeZ Vjj>1 (4.3.108)

Proof. One can consider a function a(p,z) € G* where G* = X*® Y* Z*% and develop it in a suitable
basis egj, (£,]) € 74 x 7., (to fix the idea we can think erj = e¥ sin jz, that is the correct basis

for X®). One has that the coefficients of the function a satisfies a;(¢) = a;(¢) for G* = X*,Y*® while

a;j(l) = —a;(¢) if G* = Z°. Then (4.3.107) and (4.3.108) follow by applying the definitions of reversibility
or reversibility preserving in (4.1.7) and (4.1.8). O

Lemma 4.3.69. Consider operators A : G* — G* with G* = X°,Y?*  Z° of the form A = (Ag,)a,a’:il,

then
Al Al
! _1 “1=1") e G®, for any (u,u) € G* (4.3.109)
All A:1 U w

if and only if ¥V 0,0’ = 1, L € Z%, j,§' € Zy

o5 _ qolg’ W_ —aj
A7Z(0) = A7 (0), and A7 (—0) = AZ7 7 (0), (4.3.110)

An operator B : X* — Z° if and only ifV 0,0’ = £1, £ € Z%, j,j' > 1

Y4

B (0)= —BJ7 (), and By (—0)=B 57 (0). (43.111)

0.J 0,J —0,j

Proof. Lemma 4.3.68 implies only that Aglj’.j / (0) = Ag/}j I(E). Since we need that the complex conjugate
of the first component of Au, with u € G*, is equal to the second one, the components of A have to

satisfy
AZT(—0) = AZZT (), VYoo’ =+1,0e 24§ € Zy. (4.3.112)

70.7.]'

In this case we say that the operator A : G® — G? is reversibility-preserving.

Following the same reasoning we have that for reversible operators the (4.3.111) hold. O

4.3.2 Reduction Algorithm

We prove Theorem 4.3.60 by means of the following Iterative Lemma on the class of linear operators
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Definition 4.3.70.
w-0,1+D+R: X" = Z° (4.3.113)

where w = A\, and

D = (—iom(M\u(A\)D?)g—r1, R =E D+ Ey (4.3.114)

with D := diagjen{j}, and where, if we write k = (0,j,p) € C x N x Z%, ¢ =0,1,

k/ l7 -/
By = (E)Y), yeomens = (Ees 0 =1)

k k' €CxNxZd' (4.3.115)
(ENJS (p—p) =0, Vjj €N, pp ez
Now given u(\) defined on A,, we note that the operator £4 constructed in Lemma 4.2.53 has the
form (4.3.113) and satisfies the (4.3.114) and (4.3.115) as well as the estimates (4.2.36a) and (4.2.36b).
Note that each component (Eq)gl, q = 0,1, represents the matrix of the multiplication operator by a
function. This fact is not necessary for our analysis, and it cannot be preserved during the algorithm.
Define

, 3
Nop=1, Ny=Ny =N, Vo0, x=3. (4.3.116)

and
a="T1+3, 2 :=mn + 5, (4.3.117)

where 7, is defined in (4.2.31) and = 77+ 5. Fix L4 = Lo = w - 0,1 + Dy + Ro with Ry = EYD + EY,
we define
69 := |EY|sy + |EQlsy, for s>0. (4.3.118)

Lemma 4.3.71 (KAM iteration). Let ¢ > n1 + so + 3. There exist constant Cy > 0, Ng € IN large,
such that if

N80 o<1 4.3.119

G180 5 < 1, (4.3.119)

then, for any v > 0, one has:
(S1.), Set A} := A, and forv >1

— v— 0'2_0_/ 12
A ‘:{ NEAT yt w- b ) =g (V)] 2 AR }

v , (4.3.120)
V(| <N, 1,h,h/ € C x N

For any A € A} = AZ(u), there exists an invertible map ®,_1 of the form ®_1 = 1 and for v > 1,
b, 1:=1+Y,_1:H®*— H®, with the following properties.
The maps ®,,_1, @;il are reversibility-preserving according to Definition 4.1.47, moreover V,_q is

Toplitz in time, Vy,_1 := V,_1(p) (see (4.3.98)) and satisfies the bounds:
Wy _1]sy <05, gNZTTIN, (4.3.121)

v—2
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Setting, forv > 1, L, := (13;_11&,_1(1),,_1, we have:

L, =w-0,1+D,+ Ry, D, = diagyecoxn{rn}t;

L) = i 40O e O (4.3.122)
Ky, _/"La,j_lu’o,j( )+T0',j( )7 /'La,j( )_ azm( ,11( ))] )

and
R, = E{(A\)D + E§(N), (4.3.123)

where Ry, is reversible and the matrices E; satisfy (4.3.115) for ¢ = 1,2. For v > 0 one has 1}, € iR,

L ———

rU,j - —0,

; and the following bound holds:
[l = Irplay , < eC. (4.3.124)

Finally, if we define
d5 = [E{|sH + | Eg

oy Vs >0, (4.3.125)

one has V' s € [s0,q —m1 — ] (« is defined in (4.3.117)) and v > 0

%< 0N (4.3.126)
0drp < OgapNut.

(S2), For all j € N there exists Lipschitz extensions [y (-) : A = R of py () : A} — R, such that for
v2>1,
iy, =ty <65t VEeC x N (4.3.127)

(S3), Let ui(A), ua(N) be Lipschitz families of Sobolev functions, defined for A € A, such that (4.5.88),
(4.3.119) hold with Rg = Ro(w;) with i = 1,2. Then for v > 0, for any A € A} (u1) N AJ?(uz), with
1,72 € [v/2,27], one has

BV (w1) — BY (ug)lsy + | B (w) ~ B (wa)lsy < N, [t — uollsgsn, (4.3.1284)

Y 1) — B (02 o 5+ Y (1)~ B (22) a5 < < Vo101~ g (13.128)
and moreover, for v > 1, for any s € [so, 50+ 3], for any h € C x N and for any A € AJ' (uy) VA (us),

|(rh (ag) = 7 (1)) = (™ (a) =~ (@) [ < |EG () = By~ (u2) s, (4.3.129a)
|(rh (u2) — rj(u1))| < eClluy — uz||sg4n,- (4.3.129Db)

(S4), Let ui,ug be as in (S3), and 0 < p < ~y/2. For any v > 0 one has

eCN]_, )\sul{) lur —llsgrn, <p = AJ(ur) C A)7P(ug), (4.3.130)
€No
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4.8 The diagonalization algorithm: KAM reduction

Proof. We start by proving that (Si)g hold for i =1,...,4.

(S1)o. Clearly the properties (4.3.124)-(4.3.126) hold by (4.3.113), (4.3.114) and the form of ) in
(4.3.122), recall that r? = 0 . Moreover, m real implies that u? are imaginary. In addition to this, our
hypotheses guarantee that Ry = EY0, + EJ and L are reversible operators.

(S2)o. We have to extend the eigenvalues u9 from the set AJ to the entire A. Namely we extend the
function m(\) to a m(\) that is Lipschitz in A, with the same sup norm and Lipschitz semi-norm, by
Kirszbraun theorem.

(S3)o. It holds by (4.2.36b) for sg, so + 5 using (4.3.88) and (4.3.117).

(S4)o. By definition one has Aj(u1) = A, = AJ ”(uz), then the (4.3.130) follows trivially.

KAM step In this Section we show in detail one step of the KAM iteration. In other words we show
how to define the transformation ®, which conjugates £, to £, 1. For simplicity we shall avoid to write
the index, but we will only write 4+ instead of v + 1.

We consider a transformation of the form ® = 14+ V¥, with ¥ := (\Ilg/)g’g/:ﬂ, acting on the operator
L=w-0,1+D+TR
with D and R as in (4.3.122), (4.3.123). Then, ¥ h € H®, one has

LOh = w-3,(®(h))+ DPh + RO (4.3.131)
= &(w-dyh+Dh)+ (w- 0,0+ [D,¥] + TyR) h + (HﬁR—kR\P) h,

where [D, ®] := D® — &D, and Iy is defined in (4.3.102). The smoothing operator IIy is necessary
for technical reasons: it will be used in order to obtain suitable estimates on the high norms of the
transformation ®.

In the following Lemma we show how to solve the homological equation

. Eo)f = (E))7(0), k=K,
w- 0,0+ [D, U] + xR = [R], [R]} := (B0 = (E0)er;(0) (4.3.132)
0 k#£K,

for k,k' € C x N x Z¢.

Lemma 4.3.72 (Homological equation). For any A\ € A there exists a unique solution ¥ = ¥(yp)
of the homological equation (4.3.132), such that

|5, < CN*THy~ 15 (4.3.133)
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Forced NLS: reversible case

Moreover, for v/2 < 1,72 < 2v, and if ui(A\),uz(A\) are Lipschitz functions, then ¥V s € [sq, 80 + S],
A e Al (u) N AP (uy), one has

[Ap0[s < ON?THIAT ((\El(uz)\s + [Eo(u2)|s)[lur — azl[sgtn, +

+|A2Eq |5 + \A12E0\5>, (4.3.134)

where we define AjaW = ¥(u) — ¥U(uy).

Finally, one has ¥ : X® — X% i.e. the operator U is reversible preserving.

Proof. On each component k = (0, j,p), k' = (¢/,§',p) € C x N x Z%, the equation (4.3.132) reads

iw- (p—p)UE + DR — 0l DE + R = [R]Y. (4.3.135)
then, by defining
¥ =iw- (p—p')+ Lo — Mo i/ (4.3.136)
we get /
vy = —d?i’ k#K, [p—p| <N, (4.3.137)

0_/ j/ p/
YA U’-j’p YA
: : o' _ o'.j it
define a time-dependent change of variables as W_ ¥ () = > jcza ¥y 7 (£)e™%.

Note that, by (4.3.120) and (1.1.2) one has for all k # k' € C x IN x Z4, setting k = (0,j,p),
k= (o',j",p") and £ =p —p'

and \I/’,j/ = 0 otherwise. Clearly the solution has the form W = ‘I/g/]]/ (p — p’) and hence we can

'7(j2+j/2) _ /
T T
/ S
i | = %@;”,ifa:dj¢f, (4.3.138)
Y if N A /
| 0 it o=0j=7p#p

This implies that, for o # o', we have

wE | <y (IEDK |+ 1(Bo)k 1) (4.3.139)

J
j2 +j/2’
while, for o = o,
o1

—1/p\T k . -/

, Y AONE) |——, TF#T,
W] < O (4.3.140)

T HOTNE)E L, =4,
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4.8 The diagonalization algorithm: KAM reduction

and we can estimate the divisors dgl from below, hence, by the definition of the s—norm in (4.3.85) in

any case we obtain the estimate
¥, <y 'NTG,. (4.3.141)

If we define the operator A as

A = 47 () vIA(0), (0,4)=(0',5) € Cx N, tezZ"\{0}, @3122)
7 0, otherwise,

we have proved the following Lemma.

Lemma 4.3.73. The operator ¥ — A is reqularizing, indeed,

) . (431200
|D(¥ — A\:suszupN/’] O, k), <,  ~2N?74,
O’O’ECkeIN] i'=k
ZGZd J?é.]

(4.3.143)

where D is defined in the line above (4.3.115).

This Lemma will be used in the study of the remainder of the conjugate operator. In particular we
will use it to prove that the reminder is still in the class of operators described in (4.3.114).
Now we need a bound on the Lipschitz semi-norm of the transformation. Then, given Aj, Ao € Aj’r,
one has, for k = (0,7,p), k' = (¢/,5',p') € C x N x Z% and £ :=p — p/,
[RE (M) — RE (o)
| (A1)

' () — df Q)]
af Ol Oa)

. _ (4.2.35a)
Now, recall that w = A\@, by using that y|m|""? = y|m — 1]"» < ¢C, and by (4.3.124), we obtain

T (M) =T (M) < +|RE (M) (4.3.144)

, , (4.3.136),(4.3.122) L _ B
|4 (M) = di (ha)) ' A= Xol - ([€] +evHog? = o' +ey71). (4.3.145)

Then, for 0,0’ = +1, j # j’ and ey~ < 1,

N2T+1,y—2

\d’]g’()\l) — d,’Z,()\z)| (4.3.145),(4.3.120)
0§ — o' j"|

: u A1 — Az
| (M) | ()

(4.3.146)

for [/| < N. Summarizing we have proved that, for any [(| < N, 5,7/ >1,j# 4, 0,0/ =+£1
Ry /105 — o3 < [(E)i |+ | (Eo)i

for any A € A7. Moreover |df'| > - (£)~7 for o = ¢’ and j = j/. We apply this two bounds in (4.3.144)
together with (4.3.146) and (4.3.141). We get

|‘Ij|s,’y S 7_10N27+1 (|E1|s,'y + |E0|s,'y) 5 (43147)
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Forced NLS: reversible case

and hence the (4.3.133) is proved.
Let us check the (4.3.134). For A € A NAL, if k = (0, 4,p) # (0/,7',p') = K/, one has

: AR} Y |Asadf |
| AT | < o TR (u2) 5 7
()| af () 1 (uz)
(4.2.35b),(4.3.129b) , ,
< N ((BBEOE |+ (BB | (4.3.148)
(I ()l + 1(E)E (u2)]) Il = sl ey )

where we used ey~ < 1 7{1,751 < ~7!, hence (4.3.148) implies the (4.3.134).
Since [iy; = —fis,; and the operator R is reversible (see (4.3.111)), by (4.3.137), we have that
~R7I(0) R (0)

A ) p—— % = %3 =v77'(0), 4.3.149
73 ) —iw L+ gy — oy —(iw - L+ pigrjo = pog) 77 @ ( )

so that, by Lemma 4.3.68, for any 0,0’ = +1, the operators \I!g/ are reversibility preserving. In the
same way, again thanks to the reversibility of R, one can check \I’Z/jj/(—ﬁ) = \I/:Z/}j / (¢) which implies

U X% — X* ie. U is reversibility preserving. O

By Lemma 4.3.63, for d5, small enough, we have by (4.3.133) for s = s

1

Clso)[¥lso < 5 (4.3.150)

then, the operator ® = Z + W is invertible. In this case we can conjugate the operator £ to an operator

L4 as shown in the next Lemma.

Lemma 4.3.74 (The new operator L. ). Consider the operator ® =T + ¥ with ¥ defined in Lemma
4.8.72. Then, one has
Ly =01Ld:=w- 9,1 +Ds +Ry, (4.3.151)

where the diagonal operator Dy has the form

Dy = diagher]N{/JZ}y

) , o (4.3.152)
pn = i+ (Bo)y(0) = ppy + 70+ (EBo)y, =2 pp + 1y
with h := (0,j) € C x N. The remainder has the form
R4 = E D+ E{, (4.3.153)

where Ej are linear bounded operators of the form (4.3.115) for i = 0,1. Moreover, the eigenvalues u;[
satisfy
it = 1l = i — 7l = [(E)h(O)" < [Eoli?, heTxN, (4.3.154)
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4.8 The diagonalization algorithm: KAM reduction

while the remainder R4 satisfies

6F = |Ef s + 1B sy <s N P6gip5+ N7TH715,5,,, (4.3.155)

N27'+1

6;r+ﬁ §S+B 58+,3 + ’7_1584—5650'

Finally, for v/2 < y1,v2 < 27, and if ui(\),uz2(\) are Lipschitz functions, then ¥ s € [sg, 80 + f],

A€ AT (u) MAP (u2), setting |A12Eh|s 4+ |A12Ey|s = As, we have:

Af < OyAREs + TIyAE s
NI, () + 0, (u2) (B (1) + b (02))[[ur = vzl (4:3.156)
+ N7 NG (w) + 6, (u2) Ay, + NPTy TL(G, (1) + 6, (u2)) A,

Proof. The expression (4.3.152) follows by (4.3.132), the bound (4.3.154) follows by (4.3.87).
The bound (4.3.155) is more complicated. First of all we note that, by (4.3.131) and (4.3.132), we

have
Ry =01 (H}VR +RU - \I/[R]) = E{D+Ef, (4.3.157)
where
Ef =0 (HﬁEl + E1A> ,
(4.3.158)
BEf =01 (HﬁEo + EgU — W[R] + By D(¥ — A)) ,
where A is defined in (4.3.142).
We can estimate the first of the (4.3.158) by
N (4.3.94a),(4.3.96) N N
|ET [sy <s 2Ty Erlsy + (14 [¥s4) (ITIx Eilsoy 4 | Eitlso v Also )
+2(|E1|sy|Alsoy + [ Etlsoy|Alsqy) (4.3.159)
(4.3.133),(4.3.103) it 1
<s N_B|E1|s+gﬁ + N T+ o 550(55.
The bound on Ear is obtained in the same way by recalling that, by Lemma 4.3.73,
ID(W — A)|s, <~y IN?THG,. (4.3.160)

The second bound in (4.3.155) follows exactly in the same way.

Now, consider A12E| + Aj2E), that is defined for A € A7 (u;) N A" (uz). Define also B, ;= E;(u)
and FE, = Ey(u;), for i = 1,2. We prove the bounds only for Ef ! which is the hardest case, the
bounds on E; follow in the same way. By Lemma 4.3.62 and the definition of Ej (see (4.3.158)) one
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Forced NLS: reversible case

has
(4.3.133),(4.3.134)
A Ef s <s My Ar2Egls + N> (5, (1) + 6, (u2))| Ar2 Ey s,
N2 (S, (w) + 65, (u2)) (65 (1) + 6,(u2))|[ur — st
F N2 (S, (wy) + 6, (u2)) [ A1 Epls, (4.3.161)

We prove equivalent bounds for Ef ; then we obtain (4.3.156) by using the bounds given in Lemmata
4.3.72 and 4.3.63 to estimate the norms of the transformation . O

In the next Section we will show that it is possible to iterate the procedure described above infinitely

many times.

The iterative Scheme Here we complete the proof of the Lemma 4.3.71 by induction on v > 0.
Hence, assume that (Si), hold. Then we prove (Si),4+; for i = 1,2,3,4. We will use the estimates
obtained in the previous Section.

(S1),,, The eigenvalues jij, of D, are defined on A}, and identify the set A}, . Then, by Lemma 4.3.72,
for any A € A) 41 there exists a unique solution ¥, of the equation (4.3.132) such that, by inductive
hypothesis (S1),, one has

(43.133) | (43.12) -
Wylsny < ATINZTHRY < T4 INZTHING 60, (4.3.162)

Hence the (4.3.121) holds at the step v + 1. Moreover, by (4.3.162) and hypothesis (4.3.119), one has
for s = s

(4.3.163)

ol 1
C(50)[Uulsgy < Cls0)y ' NyTHN, 0, 4 5 < 2’

for Ny large enough and using for v = 1 the smallness condition (4.3.119). By Lemma 4.3.63 we have
that the transformation ¢, := 7 + ¥, is invertible with

(D5 sy €2, @5 sy ST+ C ()W syr (4.3.164)

Now, by Lemma 5.4.120, we have £, 1 := <I>;1EZ,‘1>V =w 0,1 +Dyy1 + Ryy1, where
D — di { V+1} v+l . v + (Eu)h(o) —,,0 + v+1
v+l = dlagpcoxN WMy, 5y My T Hp 0/h Khp T T

(4.3.165)
Ryi1 = ;" (T4, Ry + Ry, = W[R,]) = B D + By,

where EYt1 s E, see (4.3.158). Let us check the (4.3.126) on the remainder R,,1. By (4.3.155) in
i i +
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4.8 The diagonalization algorithm: KAM reduction

Lemma 5.4.120, we have

ort! < N, 267 g+ NG 8
(4'?2126) 60 —1p727+1 20160 6
=s Ny PNy183y 5+ NTHING 2000 1 503,
(4.3.117),(6.4.92),(4.3.119)
<s 50, 5N, %, (4.3.166)

that is the first of the (4.3.126) for v ~» v + 1. In the last inequality we used that y = 3\2, 8 > a + 1
and x (27 + 14 a) < 2a, and this justifies the choices of 5 and « in (4.3.117). By using the (4.3.155) we
have

05 <arp 0%ip+7 NS 66061 5 <stp 005N, (4.3.167)

for Nog = Ny(s, B) large enough. This completes the proof of the (4.3.126).
By using (4.3.154) in Lemma 5.4.120 we have, V h € C x IN,

v+1 v v+1 v v (4.3.126) ey
|:U’ - Mh|’7 = |Th - Th|’y < 550 < 550+5N1/ 1 (4.3.168)
. . (4.3.168)
hence we get the (4.3.124) since |7}/ ™', < YV |yt —r¥], < Oo 45K
Finally, we have to check that u” 1= uZ}rl " ngj It follows by the inductive hypotheses since,

by (4.3.111), one has
(E§)75(0) = —(E§)75(0) = (E§)=55(0)

(S2),+1 Thanks to (4.3.168) we can extend, by Kirszbraun theorem, the function ;™' — % to a Lipschitz

1“1 in this way, this extension has the same Lipschitz norm, so that the bound

function on A. Defining /1,
(4.3.127) hold.
(S3),41. Let A € A} (u1) N AJ?(uz), by Lemma 4.3.72 we can construct operators ¥?, := ¥, (u;) and

!, = &, (u;) for i = 1,2. Using the (4.3.134) we have that

(4.3.126),(4.3.128)

[A12Py s, ' NITHIN, Sy~ (6015 +€) [lur — uallsy 13,160
(4.3.119) o ) (4.3.117) (4.3.169)
< Ny N lHul u2|’50+772 < Hul - u2’|50+7727
where we used the fact that ey~! is small. Moreover one can note that
_,, (43.97),(4.3.169) ) )
|A12®,, [ <s (19 ]s + [¥51s) [[ur — wa|lsgn, + [A12T, s, (4.3.170)

then, by using the inductive hypothesis (4.3.121), the (4.3.119) and the (4.3.170) for s = s, one obtains
|A12(I);1|50 < ||u1 — u2||50+n2- (4.3.171)
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Forced NLS: reversible case

The (4.3.156) with s = sg together with (4.3.119), (4.3.126) and (4.3.128) implies

v—

| AL EY oo+ A EY sy <sy (ENu—lNJ'B+N37“N_2i’€27*1) |[ug —z||sy 10,
< eN, % lur — ugfsg 4, (4.3.172)

for Ny large enough and ey~! small. Moreover consider the (4.3.156) with s = 5o+ 3, then by (4.3.119),
(4.3.128) and (4.3.126), we obtain for Ny large enough

IALEY  srp + |A1ES 5015

Sso+6 (0504 5(w1) + 05y s(u2))[ w1 — W[5y + [A12EY |so45 + [ D12 [s045
< C(so + B)eNy_1||ur — ua||sotn < eNyllur — uzl|sy-ns- (4.3.173)

Finally note that the (4.3.129) is implied by (4.3.154) that has been proved in Lemma 5.4.120.
(S4),,,. Let A € AJ ,, by (4.3.120) and the inductive hypothesis (S4), one has that A} (1) C
Al(up) € A" (up) € AY*(us). Hence the cigenvalues (A, uz(N)) are well defined by the (S1),. Now,
since A € AJ(u;) N Az/2(u2), we have for h = (0,7) € C x IN and setting A’ = (0/,j') € C x N

(= pr ) (A w2 (N)) = (p = ) (A, ai ()]
(4.2.35) 0 0 0 0
< (n = ) (A uz(X) = (g = pae) (A, ai (V)]
+ 2 sup O us(N) — i w (V)] (4.3.174)
heCxIN
(4.3.129)
< eClog® — o' [|uz — wilsg -

The (4.3.174) implies that, for any [¢| < N, and j # j/,

jiw - €+ pp(uz) — s (u2)]

(4.3.120),(4.3.174) o s o o
> V|oj” = o'j7N6) T = Cloj” — o' [uz — uil[so+n (4.3.175)
(S4)v -2 ! 12 —T
> (v =p)log= —a'3= | (O,

where we used that, for any A € Ag, one has CeN] |[u; — ua||sg+n, < p. Now the (4.3.175) imply that if
Ae Al (ug) then A € A)7(uy), that is the (S4),41.

Proof of Theorem 4.3.60 We want apply Lemma 4.3.71 to the linear operator Ly = L4 defined
in (4.2.33) where Rg := EYD + E§ defined in (4.3.115), and we have defined for s € [s9,q — m1 — ],
0g = |EY|sy + | EGls,y, then
(4.2.36) (4.3.88)
s < eClso+B)1+[ullssains) < 26C(s0+5) (4:3.176)
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4.8 The diagonalization algorithm: KAM reduction

which implies IV 0520+B’y_1 < 1if ey~! < ¢ is small enough, that is the (4.3.119). We first prove that

there exists a final transformation ®,,. For any \ € ﬂyzoAZ we define
D, :=Ppodyo0...0D,. (4.3.177)

One can note that EIV)V—‘rl = &DV od, 1 = E% + E),,\IIVH. Then, one has

~ (4. 3 94b) (4. 3 121) _ (50)
|Po+1s0,y |<I> |50, + C|<I> ls0.7 [ Wotlso,y D[54 (1 + &), (4.3.178)
where we have defined for s > s,
el = Ky INZTIN, 50, (4.3.179)

for some constant K > 0. Now, by iterating (4.3.178) and using (4.3.119) and (4.3.121), we obtain
[P0 t1ls0,y < [Polsgy [[(1+250) <2 (4.3.180)
v>0
The estimate on the high norm follows by

(4.3.94a),(4.3.180) _

‘&)qul ’s,'y < |(I)1/|s,'y(1 + C(5O)|\IJV+1|50,’7) + C(S)|&)V|50,’Y \Ijl/+1|57’}’
(4.3.121),(6.4.92) ° ~
< 1@l (1+e8) 46 <0 [ Sl 4 1@ (4.3.181)
§=0
(4.3.121)

< C(s)(1+ 52+5771) ;

where we used the inequality J[;5q(1 + 5§5°)) < 2. Thanks to (4.3.181) we can prove that the sequence
®,, is a Cauchy sequence in norm | - |s,v. Indeed one has

_ _ v+m—1 _ ~
[Dugm — Pulsy < Z D)1 — Pjlsy
Jj=v
(4.3.94a) vim-1 -
< C(s) Z (‘q)j‘377‘\1}j+1‘5077 + ’q’j‘sonmljﬂ‘sry)
Jj=v
(4.3.181),(4.3.119)

(4.3.182)
(4.3.121),(4.3.180)

IA

Cls) Y 0egn™ NG
v

C( )53—‘,-,37_1]\[1/_1‘

As consequence one has that @, ||—5$ ®,. Moreover (4.3.182) used with m = oo and v = 0 and

| — Ly = [Wolsy <77 6s+ﬁ imply
3 (4.3.96) B
Poo — Ly < C(s)7 00,5, |10 —1lsy < Cs)y 1005 (4.3.183)
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Forced NLS: reversible case

Hence the (4.3.92) is verified. Let us now define for k = (0,7) € C x NN,

B = i) = lim 00 = 0,00+ lim 7

v—+00
We can note that, for any v, j € IN, the following estimates on the eigenvalues hold:
(4.3.127),(4.3.126)

[ee]
12> = Ay < ) P = Blay < 080 . 4N,
m=v

and moreover,
00 ~0 0
g — Mk|A,v < 0550+,3'

As seen in Lemma 4.3.71 the corrections are ng = 7‘591 + (Eé’)g;(O)

(4.3.184)

(4.3.185)

(4.3.186)

The following Lemma gives us a connection between the Cantor sets defined in Lemma 4.3.71 and

Theorem 4.3.60.

Lemma 4.3.75. One has that
Agg C ﬂyZOAZ.

(4.3.187)

Proof. Consider A € A% We show by induction that A € A} for v > 0, since by definition we have

Ag;’ C Ag := A,. Assume that Agg C AZ—1~ Hence pjy are well defined and coincide, in Agg, with their

extension. Then, for any fixed k = (0, 4,p), k' = (¢/,§,p) € C x N x Z¢, we have (recall £ = p — p/)

(4.1.23),(4.3.185) 2’7|0'j2 _ O.lj/2|

]w -0+ M;j — '“Z",j’| > - 20620-1—5]\[1/_—&1

0r
Now, by the smallness hypothesis (4.3.119), we can estimate for [p — p/| = |[{| < N,,
;2 /112
Vo™ —a'5"
‘w ) €+NZJ B MZJ7j/| 2 T’

that implies A € A}.

Now, for any A € A2l C N,>0A7 (see (4.3.187)), one has

(4.3.185),(4.3.186)

Dy = Doolsy = sup |pg ;= por july < K(sgoJrﬁNu_—ap
keCxINxZd
(4.3.126)
ﬁ _
v < 6S+5Nyf1,
that implies
(4.3.122) Is .
L, =D, +R, X Dy =L, Do := diagpcoxwnxzn i -
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4.4 Conclusion of the diagonalization algorithm

By applying iteratively the (4.3.122) we obtain £, = &3;_11./;0&)”_1 where ®,_; is defined in (4.3.177)

and, by (4.3.182), ®,_; — ® in norm | - |, . Passing to the limit we get
Loo =3 0Lyod, (4.3.192)

that is the (4.3.91), while the (4.3.90) follows by (4.3.176), (4.3.185) and (4.3.186). Finally, (4.3.94a),
(4.3.94c), Lemma 4.3.64 and (4.3.92) implies the bounds (4.3.93). This concludes the proof. O

4.4 Conclusion of the diagonalization algorithm

In the previous Section we have conjugated the operator £y (see (4.2.33)) to a diagonal operator L.

In conclusion, we have that
L=WiL W5, W;=Vi®s, Vi:=TiHLTpTa, Vi=TTHTT. (4.4.193)
We have the following result

Lemma 4.4.76. Let 5o < s < q— 8 —m — 2, with n1 define in (4.2.31) and [ in Theorem (4.3.60).

1

Then, for ey~ small enough, and

[ullsg4B4m+24 < 1, (4.4.194)

one has for any \ € AZ,

Wbl lory + W, ey < C(5) (1Bl 2+ 1l 54 Bllsory) (4.4.195)
foriv=0,1. Moreover W; and VVi_1 are reversibility preserving.

Proof. Each W is composition of two operators, the V; satisfy the (4.2.34) while ®, satisfies (4.3.92). We
use (4.3.94c¢) in order to pass to the operator norm. Then Lemma A.168 and (A.2) with p = s —s¢, ¢ = 2
implies the bounds (4.4.195). Moreover the transformations W; and W[l are reversibility preserving

because each of the transformations VZ-,VZ-_I and @, ®! is reversibility preserving. O

4.4.1 Proof of Proposition 4.1.51

We fix n = m +8+2 and ¢ > so+n. Let pp° be the functions defined in (4.3.184). Then by Theorem
4.3.60 and Lemma 4.4.76 for A € A2l we have the (4.1.24). Hence item (i) is proved.
Item (ii) follows by applying the dynamical system point of view. We have already proved that

£ = TTTopTibac Lol T T3 75177 (4.4.156)
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Forced NLS: reversible case

By Lemma 4.2.58 all the changes of variables in (4.4.196) can be seen as transformations of the phase
space HS depending in a quasi-periodic way on time plus quasi periodic reparametrization of time (73).

With this point of view, consider a dynamical system of the form
ou = L(wt)u. (4.4.197)
Under a transformation of the form u = A(wt)v, one has that the system (4.4.197) become
Ov = Ly (wt)v, Ly (wt) = A(wt) ' L(wt)A(wt) — A(wt) 10 A(wt) (4.4.198)
The transformation A(wt) acts on the functions u(yp, x) as

(Au)(p, z) := (A(p)ulp, ) (z) = A(p)u(p, ),

) ) (4.4.199)
(A7 u)(p,2) = A7 (p)ulep, x).
Then the operator on the quasi-periodic functions
L:=w-0,— L(p), (4.4.200)
associated to the system (4.4.197), is transformed by A into
AT LA=w 0, — Li(y), (4.4.201)

that represent the system in (4.4.198) acting on quasi-periodic functions. The same considerations hold

for transformations of the type

Y(t) ==t +a(wt), t=o 1) =1+ a(wr),

T (4.4.202)
(Bu)(t) := u(t + a(wt)), B7Iv) (1) = v(r + a(wr)).

with a(p), ¢ € T? is 2r—periodic in all the d variables. The operator B is nothing but the operator
on the functions induced by the diffeomorfism of the torus ¢t — ¢ + a(wt). The transformation u = Bv

transform the system (4.4.197) into

Ov = Ly (wt)v, Li(wr):= <1 — (WL.(gj)a)(Wt)> o (4.4.203)

If we consider the operator B acting on the quasi-periodic functions as (Bu)(¢,z) = u(e + wa(p), )
and (B~'u)(p, z) := u(p + wa(yp), r), we have that
BTILB = p(p)Lys = p(p) (w -0y — L+(p))

= 20 (w0 Lo+ ue))). (44204

86



4.4 Conclusion of the diagonalization algorithm

and p(¢) := B7}(1+w-d,q), that means that £ is the linear system (4.4.203) acting on quasi-periodic
functions.
By these arguments, we have simply that a curve u(¢) in the phase space of functions of x, i.e. HS,

solves the linear dynamical system (4.1.29) if and only if the curve

v(t) := @;lﬂflﬁ_lﬁ_lﬂfl(wt)h(t) (4.4.205)
solves the system (4.1.27). This completely justify Remark 5.0.86. In Lemma 4.2.58 and the (4.3.93) we
have checked that these transformations are well defined. O
4.4.2 Inversion of L

We chose to completely reduce to constant coefficients the operator £(u) because once it is diagonal it
is trivial to invert it in an explicit Cantor like set. The following Lemma concludes the inversion of the

linearized operator L.

Lemma 4.4.77 (Right inverse of £). Under the hypotheses of Proposition 4.1.51, let us set
(:=41+n+8 (4.4.206)

where n is fived in Proposition 4.1.51. Consider a Lipschitz family u(X) with A € A, C A C R such that
[ " (4.4.207)

Define the set

NEAy: D@ l+p(N)| > B
| A@ +:U’a,]( )|_<g> } (4.4.208)

PY(u) :=
() { Veezdi, V(0,j)€eCxN

There exists €y, depending only on the data of the problem, such that if ey~' < € then, for any \ €
AZ(W)NPZ () (see (4.1.23)), and for any Lipschitz family g(\) € ZO, the equation Lh := L(\, u(\))h =

g, where L is the linearized operator in (4.2.50), admits a solution
h:=L""g:=Wot W 'g e X° (4.4.209)
such that
Ih]ls < Cls)r™" (lglls2rsq + lullsteallgllson) . 50 <s<q—C. (4.4.210)
Proof. As explained in the Introduction, we now study the invertibility of
Loo = diagrecmxze{ic - L+ pg}  Hog(A) = —iom(X)j% +r3%(\) (4.4.211)
in order to obtain a better understanding of the set G, of the Nash-Moser Proposition 4.0.46.
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Forced NLS: reversible case

Lemma 4.4.78. For g € Z?, consider the equation
Loo(uwh=g. (4.4.212)

If A € A2 (w)N P2 (u) (defined respectively in (4.1.23) and (4.4.208) ), then there exists a unique solution
Llg:=h=(h,h) € X5. Moreover, for any Lipschitz family g := g(\) € Z° one has

12 8llsy < Oy lgllst2rt1- (4.4.213)

Proof. By hypothesis g = (g,g). By solving the (6.4.208) one obtains the solution h := (hy,h_) of the

form 0
L gj 14 il o -
hy(p,x) = Z P ) (4 e""¥sin jz,
1eZd,5>1 »J
5 (4.4.214)
gj —ilp . -
h_(p,x) = Z — e ""¥sin jr.
reziys Wb H
By the hypothesis of reversibility, we have already seen that ui% = —ﬁ’f’j and p> ; = —p7, then one
has that h_ = h, := h. Moreover, one has
9;(*) —9;(¢)
h;(0) = - = = h,(¢ 4.4.215
i) iw- L+ pgs —(iw - £+ pgs) () ( )
then the Lemma (4.3.68) implies that h € X*.
Now, since A € A2l (u) NP3 (u) then, by (4.4.208), we can estimate the (4.4.214)
Ihfs < Cy 7 lgllsr- (4.4.216)
The Lipschitz bound on h follow exactly as in formulee(4.3.144)-(4.3.146) and we obtain
1],y = [[B]IS7 + (Bl <77 |gllsr2r41, (4.4.217)
that is the (4.4.213). O

We show in the next Lemma how to solve the equation Lh = g for g € Z°:

By (4.4.193) one has that the equation £Lh = g is equivalent to [,OOWQ_lh = Wl_lg. By Lemma
4.4.78 this second equation has a unique solution Wy 'h € X*. Note that this is true because W' is
reversibility-preserving, so that W~ lg € 75 if g € Z°. Hence the solution with zero average of Lh = g
is of the form

h:=Wol W, g, (4.4.218)
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4.5 Measure estimates and conclusions

Since W is reversibility-preserving and, by Lemma 4.4.78, one has that £3! : Z° — X" then h € X®.

Now we have

(4.4.195) L L
Hh||8,'y < Of(s) (||£001W1 1g||s+2,'y + ||u||s+/3+771+4,'y |£001W1 1g||50,’y)

18llso.7) 5

(4.4.219)

< C(S)’Y_l (||g||s+27+5,'y + ||u‘|s+47+,3+10+77177

=, again the (4.4.195) for W' and (4.4.207).
Finally we used the (A.2) with a =80+ 27+ n + 8+ 7,b =59 and p = s — s0,¢ = 27 + 3. Formula
(4.4.219) implies (4.4.210) with ¢ defined in (4.4.206) where we already fixed 1 := n; + 8+ 2 in the proof
of Proposition 4.1.51. O

where, in the second inequality, we used (4.4.213) on £}

4.5 Measure estimates and conclusions

The aim of this Section is to use the information obtained in Sections 4.2 and 4.3, in order to apply
Theorem 3.1.18 to our problem and prove Theorem 1.1.1.

By formula (4.4.210) we have good bounds on the inverse of £(u,) in the set A2 (u,,) NP2 (uy,). It is
easy to see that this sets have positive measure for all n > 0. Now in the Nash-Moser proposition 4.0.46
we defined the sets G, in order to ensure bounds on the inverse of £(u,), thus we have the following

Proposition on the measure of such set.

Proposition 4.5.79 (Measure estimates). Sety, := (14+27")v and consider the set Goo of Proposition
4.0.46 with = C defined in Lemma 4.4.77 . We have

N0 AZ" (1) N P2 (1) € oo (4.5.220a)
|A\Goo| — 0, as v — 0. (4.5.220b)

Formula (4.5.220a) is essentially trivial. One just needs to look at Definition 3.1.17 and item (N1),
of Theorem 3.1.18, which fix the sets G,. The (4.5.220b) is more delicate. The first point is that we
reduce to computing the measure of the left hand side of (4.5.220a). It is simple to show that each
AZ"(u,) N PZ"™(u,) has measure 1 — O(v), however in principle as n varies this sets are unrelated
and then the intersection might be empty. We need to study the dependence of the Cantor sets on the
function u,. Indeed A% (u) is constructed by imposing infinitely many second Mel’nikov conditions. We
show that this conditions imply a finitely many second Mel’'nikov conditions on a whole neighborhood
of u.

We first prove the approximate reducibility
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Forced NLS: reversible case

Lemma 4.5.80. Under the hypotheses of Proposition 4.1.51, for N sufficiently large, for any0 < p < /2
and for any Lipschitz family v(\) € X° with X\ € A, such that

sup ||u = vl|so4n < eCpN™T, (4.5.221)
AEA,

we have the following. For all A € AiZ(u) there exist invertible and reversibility-preserving (see Section

4.1 for a precise definition) transformations V; for i = 1,2 such that

Vi L(V)Va = w - 0,1 + diaghecax{pl"} + E10y + Eo : X0 — 70, (4.5.222)
where ,u,(lN) have the same form of ug® in (4.1.24) with bounds
oo (N) . —K
[T =1 |y < eClla = Vl|sgyny + CeNTF, (4.5.223)

for an appropriate r depending only on 7. More precisely A2 (u) C AP (v) with

J N N — 0-'2_0./ 272
AL (v) = AEA,: |)\w-€+/£((,7j)()\) —ug/’;,()\)| > %7 |
\V/M’ < N, V(U,j), (0'/7j/) cC xN

Finally the V; satisfy bounds like (5.0.7) and the remainders satisfy

||Eohl]s + [ Exhlls <eCNTE([[h]|s + ||v]]s+n|Mhlls)- (4.5.224)

Proof. We first apply the change of variables defined in (4.2.80) to £(v) in order to reduce to L4(v).
We know that Lemma 4.3.71 holds for £4(u), now we fix v such that N,_; < N < N, and apply
(S3), — (S4), with uy = u, ug = v. This implies our claim since, by Lemma 4.3.75, we have Agg(u) -
AJ(u) € AJ7P(v). Finally for all A € A)7(v) we can perform v + 1 steps in Lemma 4.3.71. Fixing
k = 2a/3 we obtain the bounds on the changes of variables and remainders, using formule (4.3.164)

and (4.3.168). O

Proof of Proposition 4.5.79. Recall that we have set v, = v(14+27"), (uy)>0 is the sequence
of approximate solutions introduced in Theorem 3.1.18 which is well defined in G, and satisfies the
hypotheses of Proposition 4.1.51. G, in turn is defined in (N1),, and Definition 3.1.17. For notational
convenience we extend the eigenvalues 157 (u,) introduced in Proposition 4.1.51, which are defined only

for j € IN, to a function defined for j € Z in the following way:
Qo j(wn) = pg(n), (0,j) € C xN, Q5 (u,) =0, o€C, j=0. (4.5.225)
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4.5 Measure estimates and conclusions

Definition 4.5.81. We now define inductively a sequence of nested sets G,, for n > 0. Set Go = A and

27, 2 )12
A E G NGy tliw - £+ Qi (1) — Qoo ()] > ’(’JW‘” )
Gn+1 = < >

ez o0 €C, jj e,

The following Lemma implies (4.5.220a).

Lemma 4.5.82. Under the Hypotheses of Proposition 4.5.79, for any n > 0, one has
Gnt1 C Gnr. (4.5.226)

Proof. For any n > 0 and if A € G,,+1 one has, by Lemmata 4.4.78-4.4.77 and recalling that v <, < 2y
and 27 +5 < (,

L7 (un)gllsy < C()y " (lIgllstcry + [nllsrcqllgllsoq) -
Hﬁil(un)HsOﬂ < 0(50)771]\75”%”50,%

for sp < s < q— p, for any g(\) Lipschitz family. The (5.4.213) are nothing but the (3.1.4) in Definition

(4.5.227)

3.1.17 with p = ¢ . p represents the loss of regularity that you have when you perform the regularization
procedure in Section 4.2 and during the diagonalization algorithm in Section 4.3. This justifies our choice

of p in Proposition 4.5.79. O
By Lemma 5.4.113, in order to obtain the bound (4.5.220b), it is enough to prove that
A\ Np>0 G| =0, as ~v—0. (4.5.228)

We will prove by induction that, for any n > 0, one has

|Go\G1| < Chy, |G \Gry1| < CoyN; Y, n> 1. (4.5.229)
First of all write
Gn\Gpy1 = U"’”/Eece’%’ jez. Ry (uy) (4.5.230)
RIS (u,) = {)\ € Gt |iX - €+ Qo j () — Qo s ()] < W} .

By (1.1.2) we have Rzg(un) = (). In the following we assume that if ¢ = o/, then j # j’. Important
properties of the sets RZ’.;'.,, are the following. The proofs are quite standard and follow very closely

Lemmata 5.2 and 5.3 in [4]. For completeness we give a proof in the Appendix C.1.
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Forced NLS: reversible case

Lemma 4.5.83. For anyn >0, |[{| < N,,, one has, for ey~* small enough,

RZJ(]T( )C Rfjj (un 1) (45231)

Moreover,
it R7% A0, then |oj?—o'j? <8l 4. (4.5.232)

Lemma 4.5.84. For all n > 0, one has
|Rm (uy)| < CH{O)™. (4.5.233)

We now prove (4.5.229)-(4.5.228) by assuming Lemmata 4.5.83 and 4.5.84. By (4.5.230) one has
jo??/(un) C G, and at the same time for all |¢| < N,, one has Rgg,l(un) - szig,l(un,l) by (4.5.231).
Hence, if [¢| < Ny, one has R, (u () = 0 since RZ;?,/ (u,—1) NG, = 0 by Definition 5.4.211. This implies
that

G\Gns1 C U R (u) (4.5.234)

4yj
o,0'€C,j,5'€Zy
[€]>Np,

Now, consider the sets RZJ;’,,(O) By (4.5.232), we know that if RZ]’?,,(O) # () then we must have
J+ 7 < 16|@||¢|. Indeed, if o = o, then

—_

2 _j,Q‘ = ‘.7 |(] +.7 ) 2(] +j,)7 Vj?j/ € Z+7 j #jlv (45235)

|j

while, if o # o', one has (j + j')/2 < (j% + j?) < 8|@||¢] see (4.5.232). Then, for 7 > d + 2, we obtain
the first of (4.5.229), by

(4 5.233)

Go\G1l < > IREZO0) < > IRZSO)] <y > (0T <0
o,0'eC, o,0'eC, ez
3,3 €24 (4+5")<16|@| 14|
Lz Lz

Finally, we have for any n > 1,

(4.5. 233) C B
GGl S R S Y <o,
33’ (0yT=1)
0,0'€eC, |€]>Nn (4.5.236)
(+5)<16[]l¢]
|€]>Nn,
since 7 > d + 2; we have obtained the (4.5.229). Now we have
IA\ N0 Gl <D 1Ga\Gsa| < Cy+Cy Y Nt <Oy — 0, (4.5.237)
n>0 n>1
as g — 0. By (5.4.212), we have that N,,>0Gy, C Goo. Then, by (4.5.237), we obtain (4.5.220b). O
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4.5 Measure estimates and conclusions

4.5.1 Proof of Theorem 1.1.1

Fix v := €% a € (0,1). Then the smallness condition ey~! = £!7% < ¢y of Theorem 3.1.18 is satisfied
for ¢ small. Then we can apply it with g = ¢ in (4.4.206) (see Lemma 4.5.79). Hence by (3.1.9) we have

that the function us in X*¢ is a solution of the perturbed NLS with w = A&. Moreover, one has

4.5.220b)
_>

A\Gool 0, (4.5.238)

as € tends to zero. To complete the proof of the theorem, it remains to prove the linear stability of the

solution.

Since the eigenvalues pg”; are purely imaginary, we know that the Sobolev norm of the solution
v(t) of (4.1.27) is constant in time. We show that the Sobolev norm of h(t) = Wav(¢), solution of
(4.1.29) does not grow in time. To do this we first note that, by (5.1.102a) and (4.3.93), one has
vVt e R, Vg =g(z) € H

177 (wh)gllms + [[(Ta®oo) ! (wh)gl s < C(s)llgllms, (4.5.239)
(T (wt) = D)l + [[(Ta®oo) = (W) — D)gllmy < &7 C(s)llgl| o1

with 4 = 1,2. In both cases, the constant C'(s) depends on ||ul|stsy+84r,.- We claim that there exists a
constant K > 0 such that the following bounds hold:

()]s < K[[h(0)||ms, (4.5.240)
1h(0)]]; — e®K[[h(0)]] o1 < [[B()]|rzz < [I0(0)[| 15 + K[ (0)[] o1

for some b € (0,1). The (4.5.240) imply the linear stability of the solution.
Recalling that T3f(t) := f(t + a(wt)) = f(t) and T3 L f(t) = f(t+ a(wt)) = f(t), fixing ty = a(0), one
has,

(4.4.205)

(4.5.239)
h@)|la; = "NTTTTTa®v()|ln; < C()[T3TaPoov (D) 13

(4.5.239) 4.1.28
= ITidav®Ollm; < C)IvOllaz “= Cs)lIv(to)]s

(4.4.:205) C(s)| ‘@5017;_175_17-2—17-1—1}1({0)‘ |H; (4.5.241)
(4.5.239)

—

C(s)ITs" Ty T h(to) ||z = C(s)| T2 T "h(0)] a3

(4.5.239)
< C(s)[h(0)]|m,
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Forced NLS: reversible case

Then the first of (4.5.240) is proved. Following the same procedure, we obtain

4.4.205

@)l C 2 R ity ()1 < 1T Ti®oov ()]l

+ (T2 = 1) T3TaPoo v (1)|] 13

(4.5.239)
< vOllag + [1(Ta®oo — L)v(H)|| a5

+ e O [ Tioov (B ot
(4.1.28),(4.5.239)

< |1V ()5 + &7~ C(9)[|v(t0)] s+1,
(4.4.205),(4.5.239) 1
< [0 (0)[[1; + ey C(s)|[0(0)[ s+,

(4.5.242)

where we used t) = «(0) and in the last inequality we have performed the same triangular inequalities

used in the first two lines only with the 7;_1. Then, using that v = &%, with a € (0, 1), we get the second
of (4.5.240) with b = 1 — a. The first is obtained in the same way. This concludes the proof of Theorem

1.1.1.
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5. Forced NLS: Hamiltonian case

In this Chapter we prove Theorem 1.1.2. We already said that the strategy we follow is the same
used in Chapter 4. We will see that Proposition 4.0.46 holds also in this case. Here we focus on the
study of the linearized operator. Indeed all the differences between the reversible and the Hamiltonian
case stand in the inversion of £. In particular we see how the multiplicity of the eigenvalues of NLS on
T complicate the inversion procedure.

The aim of the next sections is to prove the invertibility of the linearized operator. It is more
convinient to work on L since its main part is diagonal. In this contest we prove a analogous result of

Proposition 4.1.51 but as we will see it is slightly weaker that the result on the reversible case.

Proposition 5.0.85 (Diagonalization: Hamiltonian case). Fizy <y and 7 > d and consider any
f € CY that satisfies Hypotheses 2 and 3. Then there exist n,q € N, depending only on d, such that
for 0 < e < gg with g9 small enough the following holds. Consider any subset A, C A C R? and any
Lipschitz families u(w) : Ao — H® with ||ul|sy1n~ < 1. Consider the linear operator £ : H* — HS in
(2.3.36) computed at u. then for all 0 = £2,j € IN there exist Lipschitz map Qoj: A— Mat(2 x 2,C)
of the form

1 0 1 0
Q5 = —z'cr(mgj2 + mo) (0 1> —io|lmqlj (0 1) +i0 Ry, (5.0.1)

where Ry j is a self-adjoint matriz and

eC
Ima — 1]y + |mo —m|y, <eC, |R}|, <=, k=4%j, jeZ,

()’ (5.0.2)

ec < mp|*"P < eC, \mﬂ”p < 62’)/_10.

for any o € C, 5 € NU{0}, here and in the following C := {+1,—1}. Set

07 o7
O, = ( o) o ) , (5.0.3)
s QJ . QU]_]

0,—]
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Forced NLS: Hamiltonian case

Define po,; and po,—j to be the eigenvalues of 1y j Define A2 (u) := 83 (u) N O (u) with

: 2 IU'Q_O-/ '/2|
S¥(u) = { weEA: |wltpo (W) —por jr(w)] > %’ },

tez o0 cC,jji el
(5.0.4)

oy o | © S bos = odl >
> (eZN\{0},jeZ k=%joecC |

then we have:

(i) for any s € (s0,q — 1), if ||2||so+y < 00 there exist linear bounded operators Wy, Wy : H¥(T41) —
H* (T with bounded inverse, such that L£(u) satisfies

L(u) = W1LeWy ', Log =w - 0,1 + Doo, Doo = diag(s jecxz{Q0,} (5.0.5)

(ii) for any ¢ € T¢ one has
Wi(e), W, p) : HE - HS, i=1,2. (5.0.6)
with HS := H*(T;C) x H*(T;C) NU and such that
(W () = Dbl < ey~ Cls) (IRl + [[ullsnsol IRl m1). (5.0.7)
Remark 5.0.86. Note that function h(t) € HS is a solution of the forced NLS
L(z)h =0 (5.0.8)

if and only if the function v(t) := (vi,v_1) = Wy ' (wt)[h(t)] € HS solves the constant coefficients

dynamical system

< Orv1 ) D (”1> - <0> oy = Qo Ve, (0,5) € C X Z, (5.0.9)
6{071 V2 0 - -
where all the eigenvalues of the matrices (dg; are purely imaginary. Moreover, since @ = —er’j and
Qa?_j = —Qafj then one has

%(‘Ul,j(tHQ + |o1,—;(1)]*) = 0, [ve0(t)|> = constant

and hence

o (@)l = D lorg (1P ()>

JEZ
= Joro()P + D (oL (OF + o () (5)* (5.0.10)
JEN
= [u10(0)* + Y (Jor 5O + o1, (0)*) (7)** = |[01(0)] [
JEN

Eq. (5.0.10) means that the Sobolev norm in the space of functions depending on x, is constant in time.
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5.1 Regularization of the linearized operator

Proposition 5.0.85 is fundamental in order to prove Theorem 1.1.2. Of course one can try to invert the
linearized operator without diagonalize it. In addiction to this we are not able to completely diagonalize
it due to the multiplicity of the eigenvalues. This is one of the main difference with respect to the
reversible case. Anyway the result in Proposition 5.0.85 is enough to prove the stability of the possible
solution. What we obtain is a block-diagonal operator with constant coefficients while in [46] the authors
obtain a normal form depending on time. Here most of the problems appear because we want to obtain
a constant coefficient linear operator. Another important difference between Proposition 4.1.51 and
5.0.85 stands in the set O3] in (5.0.4). Indeed, as one can see in (5.0.4), due to the multiplicity of the
eigenvalues, we must impose a very weak non degeneracy condition on the eigenvalues. Moreover, as
we will see in Section 5.4, the measure estimates in the Hamiltonian case are more difficult with respect
to the reversible one, and most of the problems appear due to the presence of the set (933 . In order to
overcame such problems we will use the additional Hypotheses 3. As done in Sections 4.2 and 4.3, we
first conjugate £ to a differential linear operator with constant coefficients plus a bounded remainder, in

Section 5.1 and then we complete block-diagonalize the operator in Section 5.2.

5.1 Regularization of the linearized operator

In this section and in Section 5.2 we apply a reducibility scheme in order to conjugate the linearized
operator to a linear, constant coefficients differential operator. Here we consider the linearized operator
L in (2.3.36) and we construct two operators V; and Vs in order to semi-conjugate £ to an operator
L. of the second order with constant coefficients plus a remainder of order O(d;!). We look for such
transformations because, in order to apply a KAM-type algorithm to diagonalize £, we need first a
precise control of the asymptotics of the eigenvalues, and also some estimates of the transformations V;
with ¢ = 1,2 and their inverse.

The principal result we prove is the following.
Lemma 5.1.87. Let £ € CY satisfy the Hypotheses of Proposition 4.0.46 and assume q > 11 + o where
m = d + 2s0 + 10. (5.1.11)

There exists g > 0 such that, if e'yal <€ (see (1.1.2 for the definition of 7o) then, for any v < o and
for all w € H® depending in a Lipschitz way on X € A, if

lllsomy <77 (5.1.12)
then, for sg < s < q—n1, the following holds.
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Forced NLS: Hamiltonian case

(i) There exist invertible maps Vi, Vs : H® — H? such that L7 := Vl_lﬁ]/g =

0 0
w01 +i (m2 >8m+i <m1 )az+7;< o qO(QO’l‘)) +R (5.1.13)
0 —mq 0 —m —qo(p,x)  —my

with ma,mo € R, my € iR and R is a pseudo-differential operator of order O(9; ') (see (2.1.7)). The

V; are symplectic maps and moreover for all h € H°

hllsot2,4), i=1,2. (5.1.14)

[Vihllsqy + 1V hllse < C()(1hllst2a + [fullsn,
(11) The coefficient m; :== m;(u) fori=0,1,2 of L7 satisfies

ma(u) = 1o, [mo(u) =y < <C, [dumi()[h]] < =C[[Ally,, i = 0,2,

(5.1.15)
ma(u)| < eC;fduma (u)[h]| < Cl[hl]y,,
and moreover the constant my := my(w,u(w)) satisfies
ec < |mq(u)l, (5.1.16a)
wl;ﬁWQ ‘)\1 - )\2|
for some C > 0.
(iit) The operator R := R(u) is such that
IRWhllsr < eCs)(1Allsy + N1ullsniv[1Plls); (5.1.17)
lduR(w)[hlglls < eC(s)(Iglls+allhllsom + lgllzlllssn
+ ullstnlgll2lllso), (5.1.18)
and moreover
g0lls.» < eC(s)(L + [[ullstm ), (5.1.19a)
Idugo(w)[R]lls < eC(8)([[Pllstm + [1ullstn + [Rllsorn), (5.1.19D)

Finally L7 is Hamiltonian.

Remark 5.1.88. The estimate in (5.1.16) is different from that in (5.1.15). As we will see, it is very
important to estimate the Lipschitz norm of the constant my in order to get the measure estimates
in Section 6. The constant my1 depends in A in two way: the first is trough the dependence on w of
the function u; secondly it presents also an explicit dependence on the external parameters. Clearly by
(5.1.15) we can get a bound only on the variation |mi(w,u(w:)) — m1(w,u(ws2))|. To estimate the | - |

seminorm we need also the (5.1.16).
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5.1 Regularization of the linearized operator

We do not give the proof of Lemma 5.1.87 apart form (5.1.16) because the strategy is very similar
to the ones used in Lemma 4.2.53 in Section 4.2. At each step we construct a transformation 7; that
conjugates L; to L;11. We fix Ly = L. Moreover the 7; are symplectic, hence £; is Hamiltonian and has

the form

Li=w- 0,1 +i(E+ AD)0,, +iAV0, +i(mE + AD) + R, (5.1.20)

with E defined in (2.3.37),

. 4 MONNAQ)
AD = AD (o zy = T4 T ), =012 (5.1.21)
J J @ g
J

and R; is a pseudo-differential operator of order 9, 1. Essentially we need to prove bounds like

(T () = Dhllsy < eCls)([hllsy + [tllstnirlPllso); (5.1.22)
(T (@) [Plglls < €C () (llgllssllRllso+n: + Ngll2lBllstr,
+ [ullsr, lgll2llBllso) (5.1.23)

for suitable x; and on the coefficients in (5.1.20) we need

104 (@) |y 167 () 57 < £C(5) (1 + tlls,0) (5.1.24a)
ldual” ()R] s, [|dubl” () [B]lls <eC () (1Rl s, +utllscrr, + 1 Fellsgrns)s (5.1.24b)

for j=0,1,2and ¢ =1,...,7 and on R; bounds like (5.1.17) with x; instead of 7.

The bounds are based on repeated use of classical tame bounds and interpolation estimates of the
Sobolev norms. The proof of such properties of the norm can be found in [5] in Appendix A. To conclude
one combine the bounds of each transformation to obtain estimates on the compositions. It turn out
that the constant 71 contains all the loos of regularity of each step. We present only the construction of
the transformation that, in the Hamiltonian case, are more involved. Moreover the difference between
Lemma 5.1.87 and Lemma 4.2.53 (see [31]) is also in equation (5.1.16). Indeed, in this case we need
to prove that non degeneracy hypothesis 3 persists during the steps in order to obtain the same lower
bound (possibly with a worse constant) for the constant my in (5.1.15). This fact will be used in Section

6 in order to perform measure estimates.

Step 1. Diagonalization of the second order coefficient In this section we want to diagonalize

the second order term (E+ A3) in (2.3.36). By a direct calculation one can see that the matrix (E+ As2)

has eigenvalues A 2 := \/(1 + az)? — |ba]?. if we set agl) := A1 — 1 we have that agl) € R since as € R
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Forced NLS: Hamiltonian case

for any (¢, x) € T and a;,b; are small. We define the transformation 7,7 : H? — HC as the matrix
~1 ~1yo' :
71 = <(71 )g )o’,cr’:il with

My y—1 Sy V=1
2 A bo (i
71 (et )(Zl ) 2 0()1) N (5.1.25)
—bg(l)\o)_ —(2 + ag + ay )(Z)\o)_
where \g 1= z'\/2)\1(1 + as + A1). Note that det’Tl_1 = 1. One has that
(1)
1 , 0
TN B+ AT - T T2 P 0 . (5.1.26)
0 e Qg ((;07 33')

Moreover, we have that the transformation is symplectic. We can think that 77 act on the function of
H*(T%1; C) is the following way. Set U = (u,u),V = (v,0) € H® and let (MZ), for o € {+1,—1}
be the first or the second (respectively) component. Given a function v € H*(T%"!; C) we define, with
abuse of notation, 7, 'u := (T, 'U) 41 := ((T; HDu+ (7,717 H)@. With this notation one has that

@ (7 T 1) = Re [ 4 (T D1y + (7777 o)

T

+i (YT "o + (T HTHT DL jaw) da
= Re [ Re((T)HT) )

+i (T HT 4 (e +aw)

F (T - (OITYL) weda
- Re/Tiuvdm — O(u, v).

which implies that Tfl is symplectic.
Now we can conjugate the operator £ to an operator £; with a diagonal coeflicient of the second

order spatial differential operator. Indeed, one has

L1:=T LTI =w- 0,1 + T, H(E + A2)Ti0us
2T, HE + A2)0,Th + T AT,
+i [~iT W 0pTh) + T (B + A2)0 Th
+T 0T+ Ty (mE + Ao) Tl 5

(5.1.27)

the (5.1.27) has the form (5.1.20). This identify uniquely the coefficients agl), bgl) for j =0,1,2 and R;.

In particular we have that bgl) = 0 and Ry = 0. Moreover, since the transformation is symplectic, then
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5.1 Regularization of the linearized operator

the new operator £1 is Hamiltonian, with an Hamiltonian function

H(u, 1) = / (14 @) — S Tm(a) (g — i) ~Re(al P da
T

. (5.1.28)
+ /m|u|2(b(()1)a2 +5((31)u2)dx = / filp, z,u, 4, uy, Uy )de,
T 2 T
hence, since f; depends only linearly on ,, one has by (2.1.3),
(1) d _
bi'(p,2) = 7~ 8z f1) = 0. (5.1.29)

This means that we have diagonalized also the matrix of the first order spatial differential operator.

Remark 5.1.89. It is important to note that agl)(gp,x) as the form

d
agl)(907 .fL') = aaél) (QO, J,‘) + 820§1f1 - azliofl

so that the real part of agl) depends only on the spatial derivative of agl).

Step 2. Change of the space variable We consider a ¢—dependent family of diffeomorphisms of
the 1—dimensional torus T of the form
y=z+€p ), (5.1.30)

where € is as small real-valued funtion, 27 periodic in all its arguments. We define the change of variables

on the space of functions as

(T2h)(p, ) == /14 &, )R,z + E(p, 2)), with inverse

(T3 10) (0, ) == /1 + &, y)o(0,y + E(0,1))

~

r=y+E&(e,y), (5.1.32)

is the inverse diffeomorphism of (5.1.30). With a slight abuse of notation we extend the operator to H?:

T:H - H, T (Z) - (mh)(w’x)) . (5.1.33)

(5.1.31)

where

(Tah) (¢, )

Now we have to calculate the conjugate To L1 Ts of the operator £ in (5.1.27).
The conjugate T, *aTz of any multiplication operator a : h(yp,z) — a(p,z)h(yp,z) is the multiplication

operator

v(p,y) = (T3 Lay/1T+ &) (0. y)v(e,y) = ale,y + E(,1))v(0, y). (5.1.34)
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Forced NLS: Hamiltonian case

In (5.1.34) we have used the relation

0= &(p, ) + (0, y) + Eal, 2)Ey (. y), (5.1.35)

that follow by (5.1.30) and (5.1.32). The conjugate of the differential operators will be

Tt 0,73 = -0, 4 57 0,000, ~ 757 (2525,

21+,
-1 _ 1 1 §ax
T0Ts =T 04600, - T3 (555 ). (5,130
. _ _ 25.’[{171‘ +£:%a:
Ty 0o = [Ty (L4 6)"10yy — Ty <W> ;

where all the coefficients are periodic functions of (¢, x). Thus, by conjugation, we have that Lo =
75 1 L1775 has the form (5.1.20) with

1+a$ (poy) = T, A +ad)) (1 + &),
aP(p,y) = T @V (14 &) — iTy N (w - 9,8),

2) 1 w -+ 0,€: 1 [ 1 2596:61,4_592” (5.1.37)
w0 (p) =Ty <2<1+5>>_T <2<1+5>)_T <4(1+§>>

b (poy) = T, (05,

and bg) = b(12) = 0. We are looking for £(¢, z) such that the coefficient a(22)(g0, y) does not depend on y,
namely
1+a (0.y) = T 11 +al)) (1 + &)%) = 1+ a5 (p), (5.1.38)
@)

for some function as (¢). Since 73 operates only on the space variables, the (5.1.38) is equivalent to

(1+a5) (0, 2)(1 + Ealp,2))? = 1+ a5 (p). (5.1.39)
Hence we have to set
&lox) =po,  polerz) = (1+ a5 (9)2 () (1 + a8 (p,2)) "2 — 1, (5.1.40)

that has solution ~ periodic in x if and only if fT pody = 0. This condition implies

1 -2
af? () = (2/(1+a§1)(w,m))‘5> -1 (5.1.41)
TJr
Then we have the solution (with zero average) of (5.1.40)

E(p,z) = (05 ' po) (¢, @), (5.1.42)
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5.1 Regularization of the linearized operator

where 9! is defined by linearity as
) etk
aflezkx - ’
v ik

In other word 9, 'h is the primitive of h with zero average in z. Moreover, the map 7 is canonical with

VEkez\{0}, o9;'=o0. (5.1.43)

xT

respect to the N LS—symplectic form, indeed, for any u,v € H*(T4*!; C),

Q(Tou, Tov) —Re / (VI Eulpz + oo, 2))VI T &g,z + ol 2))de

T

~ Re / (1+ Eai,2)) Gl 2+ £(0, )00, + E(p, 2))dlx
T

= Re/T(iU(% ¥)v(p, y)dy =: Qu,v).

Thus, conjugating £; through the operator 72 in (5.1.33) we obtain the Hamiltonian operator Lo =

75_1/517'2 with Hamiltonian function given by

Hy(u, @)= / (1+ a5 () luo 5 1m(af®) (w7 —uiiy) ~ Re(af”) |ul*dx
T
1 (5.1.44)
+/—m\u|2—2(b[()2)u2+b[()2)u2)da::—/ fo(o, x,u, 0, uy, Uy)de,
T T

Remark 5.1.90. As in Remark 5.1.89, the real part of coefficients a§2) depends on the spatial derivatives

of ag), then in this case, again thanks the Hamiltonian structure of the problem, one has that a?)(cp, y) =

iIm(agz))(go,y), i.e. it is purely imaginary. Moreover béQ) = bgz) =0 and Ry =0.

Step 3: Time reparametrization In this section we want to make constant the coefficient of the
highest order spatial derivative operator d,, of L, by a quasi-periodic reparametrization of time. We

consider a diffeomorphism of the torus T¢ of the form
0=p+walp), peT? alp) eR, (5.1.45)

where « is a small real valued function, 2wr—periodic in all its arguments. The induced linear operator

on the space of functions is
(Tsh) (¢, y) := h(p +wale),y), (5.1.46)

whose inverse is

(T3 '0)(0,y) = v(0 +wa(0).y), (5.1.47)

where ¢ = 0 + wa(0) is the inverse diffeomorphism of § = ¢ + wa(yp). We extend the operator to H*:

Ts:H - H°, Ty (?) = ((T@)(gx)) : (5.1.48)
h (T3h)(p, )
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Forced NLS: Hamiltonian case

By conjugation, we have that the differential operator become
E’lw - 0,T3 = p(0)w - Op, 7;181,75 =0y, p(f):= 7?1(1 + wl,a). (5.1.49)

Hence we have 75 'LoT3 = pL3 where £3 has the form (5.1.20) and

—1 (2) —1 (2)
1 . 0 (0
1+a53)(0) — (7?5 ( +a’z ))( )7 a£3)(9) = (7?3 az )( )’ 2—0,1,
—1,(2 =
b(3)(0 y) — (7?3 1b[() ))(979)
’ p(0)
We look for solution « such that the coefficient aé?’) is constant in time, namely
(T3 (1 + a$)) () = map(8) = maTy 1 (1 + w - Dpcx) (5.1.51)
for some constant meo, that is equivalent to require that
14 a$? (p) = ma(1 +w - Dpa(p)), (5.1.52)
By setting
1
ma = o [ 1+ a3, (5.1.53)
we can find the (unique) solution of (5.1.52) with zero average
.:i o) (1 (2) _ 5.1.54
a(p) = (W 0p) (1 + a5 —ma)(p), (5.1.54)
where (w - d,)"! is defined by linearity
il
—1 i € _
(w-0,) tet? = o7 0#£0, (w-0y) '1=0.
Moreover, the operator 73 acts only on the time variables, then it is clearly symplectic, since
Tz, Tav) = Qu,v).
Then the operator L3 is Hamiltonian with hamiltonian function Hg
Hs(u,u) = / mg\uz\z—%lm(a?))(umﬂ — uﬁm)—Re(a(()3))]u\2d:U
T (5.1.55)

1 _
+/ _i(b(()3)ﬂ2+b(()3)u2)dw 3:/f3(§0,l',u,ﬂ,ux,ax)dl‘,
T T

Remark 5.1.91. Also in this case, thanks to the hamiltonian structure of the operator, we have that the
coefficient agg) €iR, bés) = bgg) =0 and R3 = 0.
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5.1 Regularization of the linearized operator

Step 4. Change of space variable (translation) The goal of this section, is to conjugate L3 in
(5.1.20) with coefficients in (5.1.50) to an operator in which the coefficients of the first order spatial
derivative operator, has zero average in y.

Consider the change of the space variable

2=y + B(0) (5.1.56)
which induces the operators on functions
Tah(0,y) := h(0,y + B8(0)), T, v(0,z—B(6)). (5.1.57)
We extend the operator T3 to H® as
Ta (?) - ((71?)(&,7;)) _ (5.1.58)
h (Tah)(0,y)

By conjugation, the differential operators become
T lw - 0gTa=w 09+ (w-08(0))0,, T '0yTa = 0. (5.1.59)
Hence one has that £4 := 7:(15372 has the form (5.1.20) where

alV(0,2) == —iw- 0,8(0) + (T; 1al?) (0, ),

(5.1.60)
a§?(0.2) == (T, 'al)(0.2), 030(0.2) = (T3 857)(0, 2).
The aim is to find a function 8(#) such that
L[ a0, 2)dz =my, voeT (5.1.61)
27T T

for some constant m; € C, independent on 6. By using the (5.1.60) we have that the (5.1.61) become
ius - pB6) = my — / o) (6, y)dy =: V(0). (5.1.62)
T

This equation has a solution periodic in 6 if and only if V' (#) has zero average in . So that we have to

define

1

3

Note also that m; € iR (see Remark 5.1.91). Then the function V' is purely imaginary. Now we can set
B(6) :==i(w-0p) "tV (8), (5.1.64)

105



Forced NLS: Hamiltonian case

to obtain a real diffeomorphism of the torus y 4+ 5(#). Morover one has, for any u,v € H*(T; C)

Tiu, Tiw) = Re [ iulp.-+ 5(e))ole, + 5(9)) = a0, (5.1.65)

T

hence T is symplectic. This implies that £4 is Hamiltonian with hamiltonian function of the form
Hy(u, @) = / m2|um|2—%1m(a§4>)(uxa — uiiy) —Re(a$) |uf? = mlu|?dzx
T

. (5.1.66)
+/ —5(b84)ﬂ2+584)u2)d33 ::/ falp, z,u, U, uy, Uy )de,
T T

Remark 5.1.92. Again one has b§4) = bg4) =0 and Ry =0.

For simplicity we rename the variables z = x and 6 = ¢.

Step 5. Descent Method: conjugation by multiplication operator In this section we want to

eliminate the dependance on ¢ and z on the coefficient cg of the operator £4. To do this, we consider

[T+ z(p,2) 0
(e 0 ) o

an operator of the form

where z : T — €. By a direct calculation we have that

LiTs —Ts [w.a@nH(mQ 0 >8m—|—i <m1 0 )az] -
0 —mgoy 0 —my
:Z.(rl(so,x) 0 )am <m+0(90,96) (g, ) )
0 _?1(90733) —d(gO,[L‘) _m_E(@a I)

(g, x) = 2mz,(p,2) + (a{” (g 2) — m1) (1 + 2(p, ),

c(p, ) == —i(w - 0p2)(p, x) + aé4)(<p, x)(1+ z(p,x)), (5.1.69)
d(e,7) = b5 (p, 2) (1 + 2, 7).

We look for z(yp, x) such that 1 = 0. If we look for solutions of the form 1+ z(p,x) = exp(s(p,z)) we

(5.1.68)

where

have that 1 = 0 become
(4)

2masy +a; —my =0, (5.1.70)
that has solution
L 4, @
s(p, ) = %896 1(ag ) m1)(p,x) (5.1.71)
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5.1 Regularization of the linearized operator

where 0,1 is defined in (5.1.43). Moreover, since a§4) € iR, one has that s(p,x) € iR. Clearly the

operator 75 is invertible for € small, then we obtain L5 := 7};15475 with

0 0
Ly=w-a,0+i| Opw+i [ By + imE + A (5.1.72)
0 —mao 0 —my

that has the form (5.1.20) with mg and m; are defined respectively in (5.1.53) and (5.1.63), while the
i)

coefficients of Aé are
ay (p,0) = (1 + 2(p,2)) e, @),

5) ) (5.1.73)
bO (¢7x) = (1 + Z(()Oa x))i d(gO,(I?)
It remains to check that the transformation exp(s(p,x)) = 1 + z is symplectic. One has
Q(e’u, e’v) = Re/ ie* @ u(p, 2)e P05, z)dz = Q(u, v), (5.1.74)
T
where we used that s = —s, that follows by s € i¢IR. Hence the operator L5 is Hamiltonian, with
corresponding hamiltonian function
Hs(u,u) / ma|ug)? — flm(ml)(uxu—uux) Re( )\u|2dx
(5.1.75)
/—m|u\2 = 2+ b( ) u?)dz = / (o, z,u, 4, uy, Uy )de.
T
Again using the Hamiltonian structure, see (2.3.41), we can conclude that
(5) d _
Im(ay’)(p, ) = —Im(my) =0, (5.1.76)

dx
that implies a((JE)) € R.
Remark 5.1.93. We have bg’) = b§5) =0 and R5 = 0.

Step 6. Descent Method: conjugation by pseudo-differential operator In this section we want

to conjugate L5 in (5.1.72) to an operator of the form w - 0, + iM 0y, + iM10, + R where

mo 0 mi 0
M = , M1 = R (5.1.77)
0 —mg 0 —m

and R is a pseudo differential operator of order 0.

We consider an operator of the form

< (1+wY 0
S—(Tv , (5.1.78)
0  1+aT
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Forced NLS: Hamiltonian case

where w : T 5 Rand T = (1- 89[;3;)%835 is defined by linearity as

Tel® =

. ijT
1+,27¢

We have that the difference

-(5) ()
IO 0 0 b
£58 8 |w-a,14i ™ R outi (M0 N =
0
=i +R
0 —ro

where bé5) is defined in (5.1.73) and

rolp, o) = 2mawgAD, + (0 (p,7) — ) (9)), R =i <p§ q;)
—40 TFO
(5.1.79)

Po(p, x) == —i(w - Opw) Y + mowg, Y + miw, T + (a(()5) — d(()s))wT,
qo(p, ) = b(()5)u_ff — wa(()5).

We are looking for w such that rp = 0 or at least rg is “small” in some sense. The operator R is a

pseudo-differential operator of order —1. We can also note that
Yo,u =iu—i(l — 8m)_1u
Since the second term is of order —2, we want to solve the equation
2imwy + (aé5) — &(()5))u =0.
This equation has solution if and only if we define
i) (p) = — /T o (o, 2)da, (5.1.80)
and it is real thanks to (5.1.76). Now, we define
w(ep, ) = z‘%@;l(aé@ — &) (p, ), (5.1.81)

that is a purely imaginary function. In this way we can conjugate the operator L5 to an operator of the
form w- 0y +iM Opy +1M10; + 1My +0(0;1) with the diagonal part of My constant in the space variable.
Unfortunately, this transformation in not symplectic. We reason as follow. Let w = i(w + w) := ia and

consider the Hamiltonian function

1
H(u,u) = 2/T—(aT+Ta)u-udx.
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5.1 Regularization of the linearized operator

Since the function a is real, and the operator Y : L?(T; C) — L?(T, C) is self-adjoint, then the operator

aY + Ya is self-adjont. As consequence the hamiltonian H is real-valued on L?. The corresponding

(u,) = —i OuH\ L(aY + Ya)u
e =" o) T \SiaT + Taya)

Then, the 1-flow of x g generates a symplectic transformation of coordinates, given by

eX 0 u
Te = exp(xm(u,n)) := ( 0 e—ix> (u) ;

Xy 1 (i %(%(QT n Ta))m> u.

m=

(linear) vector field is

(5.1.82)

We can easily check that, the operators in (5.1.82) and (5.1.78) differs only for an operator of order
0O(9;2). Indeed one has

eXy = u+ %(aT + YTa)u+ 0(9;%) = u + %aTu + %T(au) +0(0;2)
7 7 71
- *T *T A Yz 1_90:571:01:1_:0&871
u+2a u+2a u+2i8 (( Opz)” Qzzx(1 — Opz) (5.1.83)
21 — 8ye) Lap(1 — 8m)_15)xu> 10072
= (1 +iaY)u+ 0(8;2).
In (5.1.83) we essentially studied the commutator of the pseudo-differential operator (1 — 8361)_1 with

the operator of multiplication by the function a. Since the transformation 7g is symplectic we obtain

the hamiltonian operator

Ly = T\LoTo— Dyt R (5.1.84)
~(5) (5)
~ 0 b
L5 = w-0pl+imeE0y, +i ™ Op +imE + i 0 —g) A(g) ’
0 —my —bo —ay (90)

R = T5' [557% - 7%55} ;
where R is hamiltonian and of order O(9;1).

Remark 5.1.94. Here we have that Le has the form (5.1.20) where bg6) = bg6) =0, a((JG) = d(()S),
B = b and Re == R.

Step 7. Descent Method: conjugation by multiplication operator II In this section we want

to eliminate the dependance on the time variable of the coefficients &(()5)(g0) in (5.1.80).
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Forced NLS: Hamiltonian case

Consider the operator

To = (1 TR0 ) , (5.1.85)
0 1+ k(p)

with & : T¢ — C. By direct calculation we have that

0 0
LoTr = Tr \w- 0,0 +imogB +i [ Oy ti|
0 —m 0 —myg

; (5.1.86)
NS {0 b(() )
=1 B 7 _(6) + RG 7'-77
0 —T1 _bO 0
where
ri(p) = w - pk(p) +i(al’ (9) — mo) (1 + k()), (5.1.87)

We are looking for I' such that 71 = 0. As done in step 5, we write 1 + k(¢) = exp(I'(¢)), then equation
r1 = 0 reads

w- 0,1 () + i(aéﬁ)(cp) +m —myg) =0, (5.1.88)

that has a unique solution if and only if we define

: 1 (6)
mo :==m + @n)? /qrd ay” (p)de. (5.1.89)
Hence we can set
T(p) := —i(w- 0,) " (@l +m — mo)(). (5.1.90)

It turns out that the trasformation 77 is invertible, then, by conjugation, we obtain L7 := 7’7*1£67'7 with

m 0 my O mo b(()7)
where we have defined
0 b(7) 0 b(ﬁ)
( 5 ((]) ) = T7_1 ( 5 (()) Tz, Rq:= 7;_173677- (5.1.92)
—by —5

Moreover, since by (5.1.90) the function I' is purely imaginary, then the transformation is symplectic.
Indeed

Qe u, elv) = Re/ it ue M odz = Q(u,v), (5.1.93)
T
hence the linearized operator L7 is Hamiltonian.

110



5.1 Regularization of the linearized operator

5.1.1 Non-degeneracy Condition

Here we give the proof of formula (5.1.16) Let us study the properties of the average of the coefficients
of the first order differential operator. In particular we are interested in how these quantities depends
explicitly on w, see Remark 5.1.88. Consider a;(p,x) = a1(p, z,u) where u satisfies (5.1.12) and a; is
defined in (2.3.38). One has

| e

if 5761 is small enough. Essentially, by using (5.1.22), (5.1.23), (5.1.24a) and (5.1.24b), one can repeat
the reasoning followed in (5.1.94) for the average of agi) for i = 1,2,3,4 and prove the (5.1.16a) with a

> e — Ocl|ul|agn, > % , (5.1.94)

constant ¢ < ¢/16. Let us check (5.1.16b). At the starting point there is no explicit dependence on the

parameters w in aj, hence we get also for wy # we

0=

/ a1 (@, x,wi, u(w)) — ay (@, ,wy, u(w))| < e2Clwy — wyl. (5.1.95)
Td+1

Now, by (5.1.27) one has that

oM, 2,0, u(w)) = al (g, 2, u(w)) = i2T (E + A2)0,Ti + T AT,

and again we do not have explicit dependence on w since the matrix 77 depends on the external pa-

(2)

rameters only trough the function u. Hence bound (5.1.95) holds. Now consider the coefficients ;™ in

(5.1.37). There is explicit dependence on w only in the term

Ty H(w - 0,8) = \/ 1+ &(0,9)w - Dpb(0,y + (9, y))- (5.1.96)

Recall that the functions £ in (5.1.42) and é depends on w only through u. Hence one has

/Tdﬂ m 0,60y + E(p, ))dgody‘ -

/ (w1 — wa) - 9,8(p, ) dpdz
Tat \/1+£y (o2 +&(p, 7))

(5.1.97)
< Jwi — wy / 0,8 (¢, v)dpda
Td+1
+ w1 — wo / L 1| 0,&(p, x)dpdx
1— w2 —— 6P,
Tgy1 7/1+ ,Sy
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Forced NLS: Hamiltonian case

By defining |u|$® := ||u||ws. and using the standard estimates of the Sobolev embedding on the
function ¢ in (5.1.42) we get

€157 < C(9)llEllstso < C8)llpollstso < eC(s)(L+ [[ullsspr2), - (5.1.982)

The function ¢ satisfies the same bounds by Lemma A.167. Hence, since the first integral in (5.1.97) is

zero, using the interpolation estimates in Lemma A.164, we get

lip
/ af? (g, z)dpdz| < Ce. (5.1.99)
']PdJrl

Let us study the coefficients agg) defined in (5.1.50). In particular one need to control the difference
(3)( (3)(

a;”’ (w1) — ay”’(w2). To do this one can uses standard formulee of propagation of errors for Lipschitz
functions. In order to perform the quantitative estimates one can check that the function a(y) defined

in (5.1.54) satisfies the tame estimates (see also Lemma 4.2.53):

|3° < evg 'O () (1 + [|ullstdtsor2)s (5.1.100a)
(R < 35 C)(Mllasarsosa + lillssatsan2llbllasoosa), (5.1.1000)
lalss, < &7 ' C(8) (L + |[u] stdtsot+2,7)s (5.1.100c)

while by the (5.1.49) one has p = 1 + 73 *(w - 9,). By using Lemma A.167 and the bounds (5.1.100)

on « and (5.1.12) one can prove

p— 12 < 9 O() (1 + Ilullssrsnsan) (5.1.101a)
dup(@) B < £75 " C)(Ihllsttrorss + lullst s sl Alliran3)- (5.1.101b)

The bounds above follows by classical tame estimates in Sobolev spaces, anyway the proof can be found
in Section 3 of [31]. Now by taking the integral of (5.1.99) and by using (5.1.100a)-(5.1.101b), the tame
estimates in Lemma A.167 and the (5.1.24a), (5.1.24b) one obtain the result on the . For the last step
one can reason in the same way. Indeed the most important fact is to prove (5.1.99). At the starting
point we have no explicit dependence on A in the average of a1, but, once that dependence appear, then
we have the estimates (5.1.99) that is quadratic in €.

One has also the following result.

Lemma 5.1.95. Under the Hypotheses of Lemma 5.1.87 possibly with smaller ey, if (5.1.12) holds, one
has that the T;, i # 3 identify operators Ti(v), of the phase space HY := H?*(T). Moreover they are
invertible and the following estimates hold for so < s < q—m and i=1,2,4,5,6,7:

(T () = Dbl < eC(s)(1Allerg + lullssarzs+al Bl ) (5.1.102a)
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5.2 Reduction to constant coefficients

The Lemma is essentially a consequence if the discussion above. We omit the details because the

proof follows basically the same arguments used Lemma 5.1.95.

5.2 Reduction to constant coefficients

In this Section we conclude the proof of Proposition 5.0.85 through a reducibility algorithm. First
we need to fix some notations. Let b € IN, we consider the exponential basis {e; : i € Z"} of L?(T?). In
this way we have that L?(T?) is the space {u = > wue; : 3 |ui|? < oo}. A linear operator A : L?(T?) —

L%(T®) can be written as an infinite dimensional matrix

A= (Ag)z’,jeva A{ = (Aejvei)m(ﬂrb), Au = ZAgujei-

i,J
where (-, ) z2(yat1) is the usual scalar product on L?. In the following we also use the decay norm
2 12 2 AP
|A[S = sup |Ag |5 = sup Z (h)™ Sup |Ag,k . (5.2.103)
o,0'eC o,0'eC heZx 74 k—k'=h
Note that this is the same definition of the norm in (4.3.85) with the only difference that here the indexes

are in Z x Z¢ while in (4.3.85) one has h € IN x Z?. Clearly all the properties proved in Lemmata 4.3.62,
4.3.63, 4.3.64 and 4.3.66 hold.

Theorem 5.2.96. Let £ € C? satisfy the Hypotheses of Proposition 5.0.85 with q > n1 + B+ sg where 1y
defined in (5.1.11) and B =Tt + 5 for some 7 > d. Let v € (0,7), 50 < s < q—n — B and u()\) € H
be a family of functions depending on a Lipschitz way on a parameter w € A, C A : [1/2,3/2]. Assume
that

[wllsg+m+8,00,y < 1. (5.2.104)

Then there exist constants ey, C, depending only on the data of the problem, such that, if ey~ < €, then
there exists a sequence of purely imaginary numbers as in Proposition 4.1.51, namely () J Q;; A= C

0’7]’
of the form

Q) = —iomaj” — io|mi|j + iomg + ior,

’ (5.2.105)

|
Qa,j =0T,
where

ma,mg € R, my €iR, rF=r], k=1j (5.2.106)

for any o € C, j € N, moreover

C
rly < ?jj VoelC, jeZ, k=4j, (5.2.107)
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Forced NLS: Hamiltonian case

and such that, for any w € Ag;’(u), defined in (4.1.23), there exists a bounded, invertible linear operator
P (w) : H® — H?, with bounded inverse ® (w), such that

Loo(w) := q)gol(w) 0 L70Py(w) =w- 0,1 +iDs,

(5.2.108)
where Do = diagh:((,,j)ecxm{(lg,l-(w)},
with Ly defined in (5.1.13) and where
Q. o
Qg j = ( ‘;’] fj’.ﬂ ) (5.2.109)
- Qav_j QU7_j
Moreover, the transformations @ (N), @3l are symplectic and satisfy
[Poc() = L,z , + 1O N) = 1, yar , <97 OO llullssmn,0): (52110)

In addition to this, for any o € T?, for any s < s < q—n1 — B the operator P () : HS — HE is an
invertible operator of the phase space HS := H*(T) with inverse (®oo(0)) ™t := @1 () and

oo
123 () = Dhler; < ey C(s)(Ilhllrs + [[els4n,+5-+50| Bl lEx2)- (5.2.111)
Remark 5.2.97. Note that since the @, is symplectic then the operator Lo, is hamiltonian.

The main point of the Theorem 5.2.96 is that the bound on the low norm of u in (5.2.104) guarantees
the bound on higher norms (5.2.110) for the transformations ®Z!. This is fundamental in order to get
the estimates on the inverse of £ in high norms.

Moreover, the definition (5.0.4) of the set where the second Melnikov conditions hold, depends only
on the final eigenvalues. Usually in KAM theorems, the non-resonance conditions have to be checked,
inductively, at each step of the algorithm. This formulation, on the contrary, allow us to discuss the
measure estimates only once. Indeed, the functions uj(w) are well-defined even if A, = (), so that, we
will perform the measure estimates as the last step of the proof of Theorem 1.1.2.

We need some technical lemmata on finite dimensional matrices.

Lemma 5.2.98. Given a matric M € My (C), where M, (C) is the space of the n x n matriz with

coefficients in C, we define the norm ||M||oo 1= maxmzl,m,n{Ag}. One has

[M|loo < [[M]]2 < nl|M||o, (5.2.112)
where || - ||2 is the L?—operatorial norm.
Proof. 1t follow straightforward by the definitions. O
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5.2 Reduction to constant coefficients

Lemma 5.2.99. Take two self adjoint matrices A, B € M,,(C). Let us define the operator M : M,,(C) —
M, (C)
M:C— MC:=AC - CB. (5.2.113)

Let \j and B for j =1,...,n be the eigenvalues respectively of A and B. Then, for any R € My(C)
one has that the equation MC = R has a solution with

—1
qmgM—m)|mm, (5.2.114)

3J =Ly

Cle <k (,
where the constant K depends only on n.

Proof. Define the operator 7 : M, (C) — C"” that associate to a matrix the vector of its components.

Then the equation M C' = R can be rewritten as
(A1 -1 BT)T(C)=T(R),
where 1 is the n x n identity. Then, by using Lemma 5.2.98, one has

IOl = max _[[[T(C)lillo < nll(A®1~1®B") Yo max [[T(R)]i|

i=1,....,n i=1,...,n?
. (5.2.115)
<A1 -1 BT max (TR < e (| min Oy = 53) IRl
i=1,...n 1,7=1,...,n
that is the (5.2.114). O

Hamiltonian operators

Here we give a characterization, in terms of the Fourier coefficients, of hamiltonian linear operators.

This is important since we want to show that our algorithm is closed for such class of operators.

Lemma 5.2.100. Consider a linear operator B := (iaRg/) : H®* — H*. Then, B s hamiltonian with
respect to the symplectic form (1.1.14) if and only if

/

o' ,h' _ p—o,h o' b/ po,—
Ra,h = Rfo_/’h,, Rmh = Rg,ﬁh (5.2.116)
Proof. In coordinates, an Hamiltonian function for such operator, is a quadratic form real and symmetric,
o' h o o
H = Z Qa',h Zh Zh/ s
o,0'eC

h,h/ €zd+1

where we denote z7 = z~j and h = (j,p),h = (j',p'). This means that, @ satisfies

" _ /,7h/ /,h/ h
Qg,h ZQ,;,h, Qg,h :ng,h/ (5.2.117)

115



Forced NLS: Hamiltonian case

Now, since the hamiltonian vector field associated to the Hamiltonian H is given by B = ¢J(Q, then

s [t 0 10JQ
"o -1) o -1

we set R7 = Q7 follow the (5.2.116). O

writing

Since the operator L, in Theorem 5.2.96 is hamiltonian, thanks to the characterization in Lemma

5.2.100 we can note that the blocks €2, ; defined in (5.2.109) as purely imaginary eigenvalues.

5.2.1 Reduction algorithm

We prove Theorem 5.2.96 by means of the following Iterative Lemma on the class of linear operators

Definition 5.2.101.

w-0,1+D+R: H - H, (5.2.118)
where w is as in (1.1.7), and
J —J
D = diagy ; {Q;} : = diags.; Uoj Lo (5.2.119)
9(0,j)eCxZ\3b0,j 9(0,7)eCXZ o 0 )
O'zfj 0’77.7'
where ' '
o = —iomaj? —io|mi|j + iomg + ior’, (5.2.120)
—J e ] o
QUJ =0T,
and
. - ] € . € .
ma, Moy € ]Ra my € Z]Rv T_]; = 7“]1’ 7‘;{': = O(@) k= -7 T? = O(@)a k= J (52121)

for any (0,7) € C x N, with R is a Tépliz in time Hamiltonian operator such that RS = O(e0;!) and
R;7 = O(e) for o = £1. Moreover we set uy; for o € C the eigenvalues of Qo

Note that the operator £7 has the form (5.2.118) and satisfies the (5.2.119) and (5.2.120) as well
as the estimates (5.1.17) and (5.1.18). Note moreover that for £7 the matrix D is completely diagonal.
This fact is not necessary for our analysis, and it cannot be preserved during the algorithm.

Define

N.i:=1, N,:=NY =N}, Vv>0, x= ; (5.2.122)

and
a=1771+ 3, n3 :=m + 5, (5.2.123)
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5.2 Reduction to constant coefficients

where 7, is defined in (5.1.11) and 8 = 77 + 5. Consider £7 = Ly.Note that L£; belongs to the class of
Definition 5.2.101. Indeed in this case we have that

R(] — < 0 QO(Qovx)) +R,
_QO((Pax) 0

(see (5.1.13)) and R is a pseudo differential operator of order O(d;!). We have the following lemma:

Lemma 5.2.102. The operator R defined in Lemma 4.2.53 satisfies the bounds

IR(u)|s,y <eC(s)(1+ [|ul|stmv), (5.2.124a)
[duR(u)[h]ls < eC(s) ([[Pllsg+n + [[~lls+m + l[wllstnlBlls) (5.2.124b)

where my is defined in Lemma 5.1.87.

Proof. By the proof of Lemma 5.1.87 we have that in the operator L5 in (5.1.72) the remainder is just a
multiplication operator by the functions a(()s), béS). Hence by Remark 4.3.67 one has that the decay norm
of the operator is finite. We need to check that the transformation 7Tg has a finite decay norm. First of

all we have that the function w in (5.1.81) satisfies the following estimates:

HwHS,’Y <se(l+ HUHS—I—nﬁ)a

(5.2.125)
|Ouw(u)[R][ls <s e(|[P]s4r, + l[ullstr [1Al]-),

with 71 a constant depending only on the data of the problem and much small than 7;.!
The operator S = 1+ w7 defined in (5.1.78) satisfies the following estimates in norm |- | defined in
(4.3.85):
1S = Lary <s e(1+ [[ullstm 1),
10uS(@)[Blls <5 e(Bllstry + [ullstr [Bllr),

The (5.2.126) follow by the (5.2.125) and the fact that |Y|; < 1 using Lemma 4.3.67. Clearly also the

(5.2.126)

transformation 7g defined in (5.1.82) satisfies the same estimates as in (5.2.126). Hence using Lemma ?7?
one has that the remainder R of the operator Lg in (5.1.84) satisfies bounds like (5.2.124) with a different
constant 7o (possibly greater than 71) instead of 7. Now the last transformation 77 is a multiplication
operator, then, by using again Lemmata 4.3.62 and 4.3.67 one obtain the (5.2.124) on the remainder of
the operator L7 in (5.1.91). O

'to prove Lemma 5.1.87 one prove bounds like (5.1.17) and (5.1.19) on the coefficients of each £; with loss of regularity

7; at each step. The constant 7; of the Lemma is obtained by collecting together the loss of regularity of each step.
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Forced NLS: Hamiltonian case

Lemma 5.2.103. Let g > ny + 59 + 8. There exist constant Cy > 0, Ny € N large, such that if

NE Y Y Rolsgrs < 1,

then, for any v > 0:

(S1), There ezists operators

;Cl/ =W 8@]1 =+ Dy -+ Ry, Dl/ = diaghGCXZ{QZ’,Z}7

where ‘ ‘
12¥) v,—J
OV (w) _ QUJ QUJ
95 QVJ va_j ’
a'v_j Uu_j
and

j ) ) . L . g 0 | - vj
QZ? = —iomgj® —io|m|j +iomg + wr;jj =: Q%+ wr}”,

V77j «— 1 l/zfj — 077.7' y V77j
QJJ =0Ty Y = QUJ +ior;
with (0,7) € C x Z, and defined for X € A} := A}, with A := A, and for v > 1,

A == P)(u) N O,

v v

S)(u) =
(w) V|| < N,_1,h, i € C x Z

2o v—1  v-1 Y
|2w f + IU‘O-J’ Ho’,k ‘ 2 <€)T<j>’ ’
e ZN{0},j € Z,k = +j,0 € C

where

)

,,,.’./’j _ ,,,.Vv‘*j 2
b o= | | —2lma| + L— ] +4
y

. . Vi v—i 1
,u(';j = i0 (—m2]2 + mg + 7“]-’] + 1 I+ 2ajbj> )

|7";’7j ‘2

(az)* "

J

a;j=j,if j#£0, aj=1,if j =0,

are the eigenvalues of the matriz Q ;. For v >0 one has Pk = rZ’j, for k==xj and

J

eC
(4)’
The remainder R, satisfies V' s € [so,q —m — B] (« is defined in (5.2.123))

eC

SRl = g T
<
;e =)

" |y = ’7’;’_]‘7 < 671y < eC.

‘Ry|s < |R0|8+5N;_ap

Ruls+8 < |Rols+8Nv—1,
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5.2 Reduction to constant coefficients

|(Rv)5%1s + ID(Ru)gls < Ruls, 0 € C,  where D :=diag;cz{Jj}- (5.2.134)

Moreover there exists a map ®,_1 of the form ®,_1 :=exp (¥,_1) : H®* — H*, where V,,_; is Toplitz
in time, W,,_1 := W, _1(p) (see (4.3.98)), such that

L, =0 L, 18, (5.2.135)
and for v > 1 one has:
‘\IJV—1|SN < ’R0‘2+ﬁN32T1Nu_—a2' (5-2~136)

One has that the operators @El are symplectic and the operator R, is hamiltonian. Finally the
eigenvalues p, ; are purely imaginary.
(S2), For all j € Z there exists Lipschitz extensions ﬁg;ﬁ A — iR of QZI; : A) — iR, for k = %j, and
() s A= iR of ph(+) : A} — iR, such that for v > 1,
Ik — QR < |(Ruet)Glsoy 0 € CLj € Tk = £, 5217
g 5 = By 1" < |(Ry-1)5 s, 0 €C.j €L

(S3), Let uyi(N), uz(N) be Lipschitz families of Sobolev functions, defined for X € A, such that (5.2.104),

(5.2.127) hold with Ro = Ro(u;) with i = 1,2. Then for v > 0, for any X € AJ* N AJ?, with v1,72 €
[v/2,27], one has

IRy (u1) — Ru(u2)lsy < eN, % [lur — uallsg4nss (5.2.138a)

Ry (u1) = Ry (uz)lso+s < eNv—1lur — uallsg4ns (5.2.138b)

and moreover, for v > 1, for any s € [so, 80 + 5], for any (0,j) € C X Z and k = +7,

(P8 (ug) = r2% () = (2 () — 75 ()] < [Ry—1 (1) — Ry (u2) 5o,

07j J
’(Tu,k(uz) _ r”’k(ul))\ < 50”“1 _ u2|’50+773’ (5.2.139)

U?j U’J

15 (u1) = b7 (u2)| < eCllur — uzllsgtns- (5.2.140)
(S4), Let ui,uz be as in (8S3), and 0 < p < v/2. For any v > 0 one has that, if

ONJ_qllur —uo|lophn, <pe =

PJ(u1) € P)7P(u2), OJ(u1) € O P(us).

(5.2.141)

Proof. We start by proving that (Si)g hold for i = 0,...,4.
(S1)o. Clearly the properties (5.2.132)-(5.2.133) hold by (5.2.118), (5.2.119) and the form of x in
2. , recall that r;, =0 . Moreover, mo, |m1| and mg real imply that u;, are imaginary. In addition
5.2.131 Il that r) = 0. M d | imply that 4 are imagi In additi

to this, our hypotheses guarantee that Ry and Ly are hamiltonian operators.
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Forced NLS: Hamiltonian case

(S2)p. We have to extend the eigenvalues ,ug from the set A to the entire A. Namely we extend the
functions ma(A), m1(A) and mo(A) to a m;(A) for ¢ = 0, 1,2 which are Lipschitz in A, with the same sup
norm and Lipschitz semi-norm, by Kirszbraum theorem.

(S3)o. It holds by (5.1.17) and (5.1.18) for sq, so + 5 using (5.2.104) and (5.2.123).

(S4)o. By definition one has Aj(u1) = A, = AJ ?(uz), then the (5.2.141) follows trivially.

Kam step

In this Section we show in detail one step of the KAM iteration. In other words we will show how to
define the transformation ®, and ¥, that trasform the operator £, in the operator £,1. For simplicity
we shall avoid to write the index, but we will only write 4 instead of v + 1.

We consider a transformation of the form ® = exp (¥), with ¥ := (¥7), ,/—s;, acting on the
operator

L=w-0,1+D+R
with D and R as in (4.3.122), We define the operator

o0
L
— Z — [V, L)™, with [U,L]™ = [T, [V, L"), [¥,L]=VL—-L¥
m!
=0

acting on the matrices L. One has that
VWL = eV Le¥. (5.2.142)
Clearly the (5.2.142) hold since ¥ is a linear operator. Then, V h € H*, by conjugation one has

O71LD = M) (. 91 + D) 4 e“YIR

:w.aw+D+[\If,w-8 1+D]+1INR (5.2.143)

+Z W, w-d,1 4+ D)™ R+Z

m22 ! m>1

where Iy is defined in (4.3.102). The smoothing operator Il is necessary for technical reasons: it will
be used in order to obtain suitable estimates on the high norms of the transformation .
In the following Lemma we will show how to solve the homological equation
WV, w-0,1+D]+IINR =[R], where
) R 0-/7,k O 5 g = 0‘,7 k :j7 —j’ E = 0 (52144)
R o o | O

0 otherwise,

for k,k' € C x N x Z¢.
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5.2 Reduction to constant coefficients

Lemma 5.2.104 (Homological equation). For any A € A, there exists a unique solution ¥ = U(yp)
of the homological equation (5.2.144), such that

[U]sy < CN*TTIy YR, (5.2.145)

Moreover, for v/2 < v1,72 < 27, and if ui(A\),u2(X) are Lipschitz functions, then ¥ s € [sq, 80 + 5],
A€ A (ur) NA? (ug), one has

AW < CN*THIyTH (R (u2) sl Jur — uzllsgtn, + [A12R]5) (5.2.146)

where we define AjaW = W(up) — ¥(ug).
Finally, one has ® : H® — H? is symplectic.

Proof. We rewrite the equation (5.2.144) on each component k = (o, j,p), k' = (¢/,j',p’) and we get the

following matricial equation

. Ul7jl7p/ G/’j/?p/ O'l,j/7p/ U/’j/
iw - (p— p’)mg’ﬁ + Q09,00 — Vi Qorg = —Ra’l*(p -7 (5.2.147)

where (), ; is defined in (5.2.128) and where we have set

. U/7j/7p/ 0/7_j/7p/
ahge \Ilﬁ,j,p \Ija,j,p
Q ] L VY / A (52.148)
0,],P \IIO— »J ‘,P g’o— 7_:7 P
0,=1:P 0,=,p

the matrix block indexed by (7, j’). To solve equation (5.2.147) we can use Lemma 5.2.99 with A :=
iw - pl +Qp ; and B = iw 1+ Qg jr. Hence if we write 1, 5 and i pr with h = j, —j and n =y, -5

the eigenvalues respectively of €1, ; and €, j,

(5.2.130) B .
: C|O-]<§>_/yo-/]/2 h=j 7511}?/;):{.7/ 7‘]-/ ‘RZ,;Lh (€)|’

o=0d,j#7j, oro#d, Vjj (5.2.149)

a,/’j/p/
W] 5 e <

S e S Ui e RIEOL 0=, 5=,
where we fixed p — p’ = ¢. Clearly the solution ¥ is T6pliz in time. Unfortunately bounds (5.2.149) are
not sufficient in order to estimate the decay norm of the matrix fog’. Roughly speaking one needs to
prove, for any ¢, that \I/gljj/(ﬁ) ~ o(1/(j — 7)), and \I!gjj’._j/ ~ o(1/(j + 7")%). Actually we are able to
prove the following.
Assume that either |j] < % or |j'| < % for some large C' > 0 and e defined in (1.1.12). Assume also
that

Cmax RO = RLY(0)]. (5.2.150)
h=j,—j,h'=j",—j



Forced NLS: Hamiltonian case

By (5.2.149) we have that

(05 12+ 105 27 2)G = 5% + (187 1+ e 212G+ 5

<o W RS OF (G- 3 + G+ 1))

= o2 = ol e (5.2.151)
~ <€>2T’7_2 o5’ . .1\ 2s

< CWWUJJ GIRVEFIS

where we used the fact that, for a finite number of j (or finite j'), one has

(G+4") <K@G -4,
for some large K = K(¢) > 0. Note also that the smaller is ¢ the larger is the constant K. If the (5.2.150)
does not hold one can treat the other cases by reasoning as done in (5.2.151). Assume now that

O C
gl = (5.2.152)

holds. Here the situation is more delicate. Consider the matrices €2 ;, 2 j in equation (5.2.147) which
have, by (5.2.131), eigenvalues fiq j, ftg,—j and pys jr, flo —j respectively. Eirst of all one can note that
by (5.2.152)

ltoj — Ho—jl, = Imal(f) > cee(f), |porjr — por,—j| = Imal (') (5.2.153)

by the (1.1.12). Hence we can define the invertible matrices

oL —to -5
U..:-= | Poi=to—i  Hoj—lo—j 5.2.154
7L oy QHe— | ( )

Ho,j—Ho,—j Ho,j—Ho,—j

and moreover one can check that

j 0
UU_,JlQU,ijj =Dy, = <MUJ ) ) (5.2.155)
In order to simplify the notation we set
(1) R Q;;]*.j B /’LG',j (2) R Q‘;z.] B /’LU,—j R _Q;;;
fo = " frii= Tl gpyim (5.2.156)
IU/O'vj - /'Lgu_j MULj - luo')_j /.,La—’j - IU/O'v_j

First of all, by using (5.2.154), (5.2.153) and (5.2.132) one has
(1) @), . ,¢ 1< b
ol 1l <dy ooyl < — Iy, (5.2.157)

Hence one has

. C /
Uo :=diag)i>c/ejenUoy,  Uslsy < W’Rg 570 (5.2.158)
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5.2 Reduction to constant coefficients

and moreover U, diagonalizes the matrix (), = diagjj>c/.{d;. Setting Uy W', = Y2, equation

(5.2.147), for 0,0’ = +1, reads
iw-8,Y + D, Y — 'Y D, =U; R U,. (5.2.159)

For || < N we set

U RS U, (¢

Y7 (0) = .( o RoUo)oj ) (5.2.160)
7 L N N e N

Now as done in (4.3.136), (4.3.137) and (4.3.141), we get the bound

V7' |s <y NT|UGTRE Us s, (5.2.161)

where we used the estimates (5.2.130) on the small divisors.
By the definition, the estimate (5.2.158) and the interpolation properties in Lemma 4.3.62 we can

bound the decay norm of ¥ as

|¥|, < C(s)y 'NT|R|s, (5.2.162)
using that |R|s/|m1| < C for some constant C' > 0. Moreover the following hold:
Lemma 5.2.105. Define the operator A as

v, o=0 €C, j=+j €Z e

A =A77 ()= ' (5.2.163)
0, otherwise,

then the operator W — A is reqularizing and hold
ID(W — A)], <7 'NTIR],, (5.2.164)
where D := diag{j}jez.

This Lemma will be used in the study of the remainder of the conjugate operator. In particular we
will use it to prove that the reminder is still in the class of operators described in (5.2.119).
Now we need a bound on the Lipschitz semi-norm of the transformation. Then, given wy,ws € A} 1
one has, for k = (0,7,p), k' = (¢/,5',p') € C x Z x Z%, and £ := p — p/,
wi -4 ‘I’;;*(ﬁ,wl) - Wg,iL(EaWQ)} + Qo j(w1) [‘I’Z,;*(& wi) — ‘I’Z,;*(fvwz)} +
= W7 Fw) = 07 (ws)| Qo ()
+ (w1 — w2) - 0y (L, wa)+
Qo (@1) = Doy (w2)| 07 (0 )
0 (0 wn) [ g (1) = Qo o (w2)] =

O'I,jl Ul,j/
= Rg»f(e’ wl) — 7—\’,072*(5, wl).

(5.2.165)
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Forced NLS: Hamiltonian case

First we can note that

19,7 (w1) = Q7 (ws)| < [ma(wr) — ma(w2)||os® — 05| + ey~

+ [mi(w1) —mi(wa)|log — o'5'| + [mo(w1) — mo(w2)] (5.2.166)

-2

< Clwr —wa|(ey Hoj® —o'§? + eyt +ev )

where we used the (5.2.128), (5.2.132) and (5.1.15) to estimate the Lipschitz semi-norm of the constants
m;. Following the same reasoning, one can estimate the sup norm of the matrix Qg ;(w1) — Qs j(w2).

Therefore by triangular inequality one has
g (6 ) = W (6 wa) oo < [Rg (6, w1) = R (6, 01) lmaa N7y~

+ w1 — wa (WI +ey o —o'f? \) (5.2.167)
N27’+1,}/—2

1 . T %
+ |w1 —wa (e Moj — of'|lev ) RS, (57w2)Hoon

for [/| < N, j # j' and ey~ < 1. As done for the estimate (5.2.162) for a finite number of j of a finite
number of j' the bound (5.2.167) is sufficient to get, for w € A}, and using also the bound (5.2.130)
with j7 = 7/, the estimate

v -
W = [ 4y sup 12 )

< Oy INTTR|s ., (5.2.168)
w1Fw2 ’wl - w2|

that is the (5.2.145).

On the other hand, in the case of (5.2.152), we can reason as follows. Consider the diagonalizing
matrix Up,; defined in (5.2.155) and recall that by (5.2.158) also the lipschitz semi-norm of Uy is bounded
by the lipschitz semi-norm of Rg/. Hence by (5.2.159), (5.2.160), using again the interpolation properties
of the decay norm in Lemma (4.3.62) one get the Lipschitz bound in (5.2.168). Note also that the Lemma
5.2.105 holds with | - |5, and N?7! instead of | - |s and N7.

The proof of the bound (5.2.146) is based on the same strategy used to proof (5.2.168). We refer to
the proof of the bound (4.3.134) in Section 4.3.2 of Chapter 4.

Finally we show that W is an hamiltonian vector field, and hence the transformation ® is symplectic.

By hypothesis R is hamiltonian, hence by Lemma 5.2.100 we have

(R3)" =-R3, R,°=R’%,, R =Ry, Voo eC. (5.2.169)

o g

Moreover, by inductive hypothesis (S1), one can note that
T
Q) =—-Q =Q,. (5.2.170)
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5.2 Reduction to constant coefficients

By (5.2.169), (5.2.170) one can easily note that the solution of the equation
w- 0,97 + 0,07 — W70, =RY,

satisfies conditions in (5.2.169), hence, again by Lemma 5.2.100, ¥ is hamiltonian. This concludes the

proof of Lemma 5.2.104. 0

Next Lemma concludes one step of our KAM iteration.

Lemma 5.2.106 (The new operator L£.). Consider the operator ® = exp(V) defined in Lemma
5.2.104. Then the operator L, := ®1L® has the form

£+ =W - 8<p]1 + D+ -+ R+, (52171)

where the diagonal part is

N o) ar
Dy = diag(, jyeoxz{ ;U (V) = ij inj—j 7
o,—]

o,—]
:’jj 1= —iomaj® — io|malj + iomo + 7307‘;—’]7 (5.2.172)
+a_j «e— +7_.7
QUJ =0Ty,

+7h’ o h Uzh — ;
ri =i+ R, (0), h=d=j.

with (0,7) € C x Zi,\ € A. The eigenvalues pih, with h = j,—j, of Qs ; satisfy
= < (R,
J J o ls0 o (5.2.173)
|/‘Ih = tion"™ < |[(R)Glsoy,  h=1J,—J-
The remainder R4 is such that

Rils <s N_B|R|s+5,v + N27+17_1|R’s,7‘7€|50777

ot (5.2.174)
R ls+5 Ss+8 |R‘S+57’Y + N |R|s+l3ﬁ|7€|ﬁo,77
and (R4)% = O(e0; 1) while (R1);% = O(¢) for o = +1. More precisely,
[(R4)57|s + [D(R4)gls <IR+ls, 0 € C, where D :=diag;cz{j}- (5.2.175)

Finally, for v/2 < ~y1,7v2 < 27, and for ui(\),u2(X) Lipschitz functions, then for any s € [sq, s0 + 5] and
A e Al (ur) NAL (ug) one has

AR STy AR + + N7yt (’R(ulﬂs + ’R(m)'S) [A12R]so
+NZHL QR(Ul)‘s+|R(u2)|s) (|R(U1)|so+|73(“2)\so)||“1_“2H50+773

N (IR (g + [R(u2)lg ) |A12R, (5.2.176)

125



Forced NLS: Hamiltonian case

Proof. The (5.2.172) follow by the (5.2.144). Note that the term Rg’k(O) R_Uk for k = j,—j and
hence the new correction 7“ " does not depend on o. Moreover, by (4.3.87) one has
+k ki ol .
’QU,]' - Qo',j’ P S ’(R)O' 50pv k =7 —J- (52177)

Moreover, one has

+h  h .
s = pojl < 2hsu£\rh — il + 71[b) = byl
=xJ

5.2.178)
(5.2.177) (
<2 sup (it ol + s ey =t O (g
h==+j ‘ ‘h +j
then the (5.2.173) follows. Now, by (5.2.143) one has that
Ry =10y R+Z [V, w- 8,1 + D" +Z [0, R]" := INR + B. (5.2.179)

n>2 n! n>1

Here we used the simple fact that [A, B]" = [A, [4, B]]*~! for any n > 1. Hence we can estimate

1 ) 1 .
S,V+Zg|[‘1”HNR]k 1|s,~y+Zm|[‘I’=R] |,y

|R+|S,'y <s |HJJ\7R

k>2 n>1
<o ARy + 30 I R] oy <, TAR],
n>1 !

(nC )" | 1o
3 O o R (] Rl s Rl )

n>1
(4.3.103),(5.2.145) _s o1 1
< N |R|s+6,'y+N Ty ’R’&v“qsom
where we assumed that .
n"-
> ——Cls0)"” o Rm T < 1. (5.2.180)
n>1 ’

Now we have to estimate A1aR4 defined for A € A" (u1) U A" (ug). We write R; := R(u;) for
1 =1,2. We first need a technical Lemma used to study the variation with respect to the function u, of

the commutator between two operators.

Lemma 5.2.107. Given operators A(u), B(u) one has that the following identities hold for any n > 1:

[A1, B1]" = [A1, A12B]" + [A1, Ba]™; (5.2.181)

n [Al, (Ao A, Bz]] ; (5.2.182)

n—2

[A1, Bo]" = [Ah [AQ,Bz]}n

41,140, Bal| " = (43, Bo]" = (n = 2)[ A1, [A124, [4, By

(5.2.183)
+ [A12A7 [Ag, Bz]n_l}-
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5.2 Reduction to constant coefficients

Proof. We prove the identities by induction. Let us start from the (5.2.181). For n = 1 it clearly holds.
We prove it for n 4 1 assuming that (5.2.181) holds for n. One has

[A1, A B]" ™ 4[4y, Bo]" ! = [Ah [A1,A12B]"} + [Al, [A1, Bo]"

(5.2.181)

(5.2.184)
= A (AL B =4, B

The remaining formulee can be proved in the same way. [ |

By using Lemma 5.2.107, one can rewrite the term B in (5.2.179). Then setting As := |R1|s + |Rals
for any s > 0, and using (4.3.95) and (5.2.180), one obtains

(5.2145)(5.2146) N
|A128‘s <s N-T v AS‘A12R|50+N T Y A50|A12R’s

+ 2N4T+27*1A5A§0 lJur — u2|lso4ns
AN 24 A AR + N2 AL A iy =l
+ N4T+27_2A§O‘A12R‘sa

where we used the (5.2.145) and (5.2.146). If we assume that
NZTHA =LA <1, (5.2.185)

then, using also (4.3.103) we obtain the (5.2.176). Finally by using Lemma 5.2.105 one can note that
(U, R]Z = O(ed, 1) while [¥,R];7 = O(e) for ¢ = +1, this implies that the new remainder R has the

same properties. O

Clearly we proved Lemma 5.2.106 by assuming the (5.2.180) and (5.2.185). These hypotheses have
to be verified inductively at each step. In the next Section we prove that the procedure described above,

can be iterated infinitely many times.

5.2.2 Conclusions and Proof of Theorem 5.2.96

To complete the proof of Lemma 5.2.103 we proceed by induction. The proof of the iteration is
essentially standard and based on the estimates of the previous Section.

We omit the proof of properties (S1),+1,(S2),+1 and (S3),41 since one can repeat almost word by
word the proof of Lemma 4.3.71 in Section 4.3. The (54),41 is fundamental different. The difference
depends on the multiplicity of the eigenvalues. Moreover the result is weaker. This is why, in this case,

the set of good parameters is smaller. We will see this fact in Section 6.
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Forced NLS: Hamiltonian case

(S4),,, Let w € AJ_;, then by (5.2.130) and the inductive hypothesis (S4), one has that A (u1) C
AJ(u1) €AY P(ug) C AZ/Q(UQ). Hence the eigenvalues puj, (w, ua(w)) are well defined by the (S1),. Now,
since A € AJ(u1) N AZ/Q(UQ), we have for h = (0,j) € C x Z and setting ' = (¢/,j') € C X Z

(et — p) (@, ua(w) = (piy = pi ) (w, (W) < |oj? = 0’5 [[ma(ur) — ma(uz)]

+ [mo(u1) — mo(uz)|lo — o + max [ (w, ua (W) — 1% (w, ur (w))|
. . ’ (5.2.186)
+ 71105 (w1) = b7 (u2)| + [5°][65) (w1) — % (u2)]
(5.1.15),(5.2.139),(5.2.140) . ‘ A .
< eC (log? = o321+ 113+ 15']]) lluz = willsg4na
The (5.2.186) implies that for any || < N, and j # +j’,
. , , (5.2.130),(5.2.186) s
liw - €+ py ;(u2) — por i (uz)] > vloj* —o'5|(E)
— Cloj® = 0" |lua — ullsg s (5.2.187)
(S4),

> (v =p)log? =[O,

where we used that, for any A € Ag, one has CeN]||ui — ual||so4n, < p (note that this condition is
weaker with respect to the hypothesis in (S4),. Now, the (5.2.187), imply that if X\ € P, (u1) then
A € P) {(uz). Now assume that A € O, (u1). We have two cases: if |j| > 4|w||¢|/ce, then we have no

small divisors. Indeed one has

,’,,V>.] — T.V»'*.j rllzfj 2 C 2
b}’(u)Qz (—2|m1|+] — > +4| J 2| > <2|m1|—€|,|>
J J

17
(5.1.15) cC \2 ee \2_ |mi2 _ (ce)?
> 22— ——) >mi*|2— > >
>t (2= ) 2t (2= g5) > M=
for any u. Hence it is obvious that
. 4|wl|€
o £+ ) — )] 2 W oy )] — o
) (5.2.188)
> |wlle] = g
{O)7G)
Let us consider the case |j| < 4|w]||¢|/ce: one has
. V , (5.2.130),(5.2.186) o .
Jiw - €+ g j(u2) — py _;(ug)| > WOTTG) T = eClillluz — wallso4n
1 . — TP
> : 7—5|]|QC'N a+T1+2 > -
o ¢ <) 2 )

that is the (S4), ;.
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5.2 Reduction to constant coefficients

Proof of Theorem 5.2.96
We want apply Lemma 5.2.103 to the linear operator £y = L7 defined in (5.1.13) where

0 , T
- ::< ) qo(¢ )>+R7’
—qo(p, x) 0

with R7 defined in (5.1.92). One has that Ry satisfies the (iii) of Lemma 5.1.87. Then

(5.1.17) (4.3.88)
|R0|So+ﬁ < 50(50 + B)(l + ||u||,3+50+7717’y) < 250(50 + B)a =

(5.2.189)
NOCD|’R’0|SO+B’Y_1 < 1’

if ey~! < ¢ is small enough, that is the (5.2.127). Then we have to prove that in the set N,>oA} there

exists a final transformation

Py = lim @, = lim Pgpodro...0d,. (5.2.190)
V—00 V—r00
and the normal form
0 = 0 (\) = lim 07.(\) =00 (\) + li i7" o7 (5.2.191)
oj T “oyg - 1/—1>I-iI-1c>o o.J — %%o,j V_l>rfoo P e el -
—J —J

The proof that limits in (5.2.190) and (5.2.191) exist uses the bounds of Lemma 5.2.103. We refer the
reader Section 4.3.2 for more details.
The following Lemma gives us a connection between the Cantor sets defined in Lemma 5.2.103 and

Theorem 5.2.96. Again the proof is omitted since it is essentially the same of Lemma 4.3.75 in Section
4.3.

Lemma 5.2.108. One has that
A% NysoAl. (5.2.192)

Since one prove that in A2 the limit in (5.2.190) exists in norm | - |~ one has

(5.2.128) [l v
L, = "w-0,14+D,+R, 3 w-0,1 + Dy =: Lo,
v v oo (5.2.193)
Dy := diag(a,j)ECXZQg?z-
and moreover
Lo = 0Lyo Dy, (5.2.194)

that is the (5.2.108), while the (5.2.107) follows by the smallness in (5.2.132) and the convergence Finally,
Lemma 4.3.62, Lemma 4.3.64 and (5.2.110) implies the bounds (5.2.111). This concludes the proof. m
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Forced NLS: Hamiltonian case

5.3 Inversion of the linearized operator

In this Section we prove the invertibility of £(u), and consequently of d,, F'(u) (see 2.3.15), by showing
the appropriate tame estimates on the inverse. The following Lemma resume the results obtained in the
previous Sections.

We have the following result
Lemma 5.3.109. Let £ = Wlﬁoong where
Wi =Vi®oo, Vi:=TiTTspTaTsT6Tz, Vo= TiTaTsTaTsT6 Tz (5.3.195)

where V; and P are defined in Lemmata 5.1.87 and 5.2.96. Let s < s < q— [ —n1 — 2, with n; define
in (5.1.11) and B in Theorem (5.2.96). Then, for ey~! small enough, and

ullso+p+m+2y <1, (5.3.196)

one has for any A € A?g,

Wil + W5 ALy < CC6) ([Allstry + Nallos s san Bllson) (5.3.197)

fori=20,1. Moreover, W; and W;l symplectic.

Proof. Each W; is composition of two operators, the V; satisfy the (5.1.14) while ®, satisfies (5.2.110).
We use Lemma 4.3.62 in order to pass to the operatorial norm. Then Lemma A.168 and (A.2) with
p =S — 850, ¢ = 2 implies the bounds (5.3.197). Moreover the transformations W; and I/VZ-_1 symplectic

because they are composition of symplectic transformations V;,V;” Land @, ol O

Thanks to Lemma 5.3.109 the proof of Proposition 5.0.85 is almost concluded. We fix the constants
17 = m+5+2 (the constant 1 has to be chosen) and ¢ > so+7. Let U; and Q;g be the functions defined
in (5.2.191), and consequently 1, ; the eigenvalues of the matrices Q,j. Therefore by Lemmata 5.2.96
and 5.3.109 item () in Proposition 5.0.85 hold. The item (i) follows simply by applying a dynamical
point of view to our operator. Indeed by Lemma 5.1.95 and (5.2.111) in Lemma 5.2.96 one has that
each transformation in (5.3.195) is a quasi-periodic in time transformation of the phase space H? plus a

reparametrization of the time with 73. Under a transformation of the form u = A(wt)v, one has that

ou = L(wt)u <+ Oyv = Li(wt)v,

(5.3.198)
Ly (wt) = A(wt) " L(wt) A(wt) — A(wt) " 9 A(wt)
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5.8 Inversion of the linearized operator

by conjugation. Moreover the transformation A(wt) acts on the functions u(y, z) as

(Au)(p, z) := (Alp)ulp, ) (z) = A(p)u(p, 2),

) . (5.3.199)
(A7) (p, ) = A7 (p)ulp, 2).
Then on the space of quasi-periodic functions one has that the operator
L:=w-0,— L(p), (5.3.200)
associated to the system (5.3.198), is transformed by A into
AT LA=w 0, — Lyi(y), (5.3.201)

that represent the system in (5.3.198) acting on quasi-periodic functions. The same consideration hold
for a transformation of the type T3 as explained in Section 4.4.
Now we prove the following Lemma that is the equivalent result of Lemma 4.4.77 in the Hamiltonian

case.

Lemma 5.3.110 (Right inverse of £). Under the hypotheses of Proposition 5.0.85, let us set
(:=47+n+38 (5.3.202)

where 1 is fived in Proposition 5.0.85. Consider a Lipschitz family u(w) with w € A, € A C R such
that

[allsp+cy < 1. (5.3.203)
Define the set
€Nyt |we g (w)] > 22
ng(u) :: w |w foj(w)| > ) ‘ (5.3.204)
teZto,eC,jcl

There exists ey, depending only on the data of the problem, such that if ey~! < ey then, for any w €
AZ ()P (u) (see (5.0.4)), and for any Lipschitz family g(w) € HE, the equation Lh := L(w,u(w))h =

g, where L is the linearized operator L in (2.3.36), admits a solution
h:=L"lg:=WoL W g (5.3.205)

such that

1Allsy < C)7 ™ (lgllstarsy + lullsicallgllson) s S0 <s<q—¢. (5.3.206)

Proof. A direct consequence of Lemma, 5.3.109 is that, once one has conjugated the operator £ in (2.3.36)

to a block-diagonal operator L in (5.2.108) is essentially trivial to invert it:
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Forced NLS: Hamiltonian case

Lemma 5.3.111. For g € H®, consider the equation
Loo(u)h = g. (5.3.207)

If w € A2 (u) NPY(u) (defined in (5.0.4) and (5.3.204)), then there exists a unique solution L3lg :=
h € H®. Moreover, for all Lipschitz family g := g(w) € H® one has

1L gllsy < CY gl s2r41.7- (5.3.208)

Proof. One can follows the same strategy used for Lemma refinverselinfty in Section 4.4 and conclude

using Lemma 5.2.98. O

In order to conclude the proof of Lemma 4.4.77 it is sufficient to collect the results of Lemmata

5.3.109 and 5.3.111. In particular one uses (5.3.197) and (5.3.208) to obtain the estimate

sy = [Wald Witglls
Allsy =1 1 9llsy (5.3.209)

< ()7 (lgllsvzresy + llullsrarssrioem 4 119llsoq)

O

Note that by Lemma 2.3.15 the estimates (5.3.209) holds also for the linearized operator d,F(u).

5.4 Measure estimates

In Section 5.1, 5.2 and 5.3 we prove that in the set A2 (u,) N P2 (u) we have good bounds (see
(5.3.206)) on the inverse of L(uy) . We also give a precise characterization of this set in terms of the
eigenvalues of £. Now in the Nash-Moser proposition 4.0.46 we defined in an implicit way the sets G, in
order to ensure bounds on the inverse of £(u,). In this section we prove Proposition 5.4.112 that is the

analogous of Proposition 4.5.79 of Section 4.5.

Proposition 5.4.112 (Measure estimates). Set v, := (1+27")y and consider the set G of Propo-
sition 4.0.46 with p = ¢ defined in Lemma 5.3.110 and fix v = % for some a € (0,1). We have

Nnz0 P2 (un) N A" () C Goo, (5.4.210a)
IA\Goo| = 0, as e — 0. (5.4.210D)

Proof of Proposition 5.4.112. Let (u,)>0 be the sequence of approximate solutions introduced

in Proposition 4.0.46 which is well defined in G,, and satisfies the hypothesis of Proposition 5.0.85. G,
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5.4 Measure estimates

in turn is defined in Definition 3.1.17. We now define inductively a sequence of nested sets G,, N H,, for
n > 0. Set GoN Hy = A and

2’7n|0-j2 B O'Ij/2’

we Gy :iw- L+ pioj(un) = plor jr (un)| > p ,
Gn+1 = ! ! <€> ’

veezZ”, o0 c€C, j,jct

2vn
weHy, :iw -0+ tgj(un) — po—j(un)| > 7 ;Y s
Hypr = @O (5.4.211)
VeZ"\{0}, ce€C, jeZ
29n(4)”

weP, |iw-l+ pyj(up)| >
P = " 7alnl 2 =7

Ve oceC, jeZ

)

Recall that 15 j(up) and ps —j(uy,) are the eigenvalues of the matrices Q,; defined in Proposition 5.0.85

in (5.0.1) The following Lemma implies (5.4.210a).

Lemma 5.4.113. Under the Hypotheses of Proposition 5.4.112, for any n > 0, one has
PoiiNGpi1iNHyp1 CGnya- (5.4.212)

Proof. For any n > 0 and if A € G,,11, one has by Lemmata 5.3.111 and 4.4.77, (recalling that v < ,, <
2y and 27 4+ 5 < ()

L7 un)hllsy < C()y ™ (hllscy + lunllsacqllhllson)

(5.4.213)
127 (un) 1o,y < Cls0)y™ ' Ny [[Bllso

for s < s < q— u, for any h(A) Lipschitz family. The (5.4.213) are nothing but the (3.1.4) in Definition
3.1.17 with u = ¢ . It represents the loss of regularity that you have when you perform the regularization
procedure in Section 5.1 and during the diagonalization algorithm in Section 5.2. This justifies our choice

of p in Proposition 5.4.112. O

Now we prove formula (5.4.210b) that is the most delicate point. It turns out, by an explicit computation,

that we can write for j # 0,

Lo — ug,,jzzw\/(f2|m1|j +rd = T2 4 Al = by = b (un), (5.4.214)
where 7“;?, for j,k € IN are the coefficients of the matrix Ry ; in (5.2.105), and we define
P(w, un) :=w - £+ jbj(un). (5.4.215)
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Forced NLS: Hamiltonian case

Now we write for any ¢ € Z4\{0} and j € Z,

Hy:= () A%j(un) = |) {weHn_l Siw - €+ b (un)] > <,>7<”€>T}. (5.4.216)
oceC, oceC, J
(£,5)ez+1 (¢,5)ezd+1

Clearly one need to estimate the measure of (), Hn. The strategy to get such estimate is quite

standard and it is the following:

a. First one give an estimate of the resonant set for fixed (o, j,£) € C x Z x Z% (namely (A7;)). This
point require a lower bound on the Lipschitz sub-norm of the function v in (5.4.215). In this way
we can give an estimate of the measure of the bad set using the standard arguments to estimate
the measure of sub-levels of Lipschitz functions. This is in general non trivial but in the case of
the sets G, and P, there is a well established strategy to follow that uses that ps ; ~ 0(5%). In
the case of the sets H,, the problem is more difficult since s ; ~ O(ej), hence, even if j is large, it
could happen that p,; ~ w - ¢. However we prove such lower bound (see (5.4.230)) using result of
Lemma 5.4.117 and non-degeneracy condition on m; (see (5.1.16)). Moreveor we use deeply the
fact that we have d parameters w; for i = 1,...,d to move. On the contrary in Section 4.5 (see also
[31]) we performed the estimates by choosing a diophantine direction @ and using as frequency the

vector w = Aw with A € [1/2,3/2], hence using just one parameter. In this case this is not possible.

b. Item a. provides and estimate like [(A7,)¢| ~ v/(j|¢|"). The second point is to have some summa-
bility of the series in j since one need to control (J;,(A7;)°. One can sum over ¢ by choosing 7
large enough. In principle on can think to weaker the Melnikov conditions and ask for a lower
bound of the type

Wl = /1P ler (5.4.217)

This can cause two problems. If one ask (5.4.217) it may be very difficult to prove the lower bound
on the Lipschitz norm. Secondly in the reduction algorithm one must have a remainder R that
support the loss of 2 derivatives in the space. Our strategy is different: we use results in Lemmata

5.4.115 and 5.4.116 to prove that the number of j for which (Af ;)¢ # 0 is controlled by |¢].

c. Finally one has to prove some ‘“relation” between the sets H, and Hj for k # n. Indeed the first
two points imply only that the set H,, has large measure as € — 0. But in principle as n varies this
sets can be unrelated, so that the intersection can be empty. Roughly speaking in Lemma 5.4.118
we prove that lots of resonances at the step n have been already removed at the step n — 1. In
other words we prove that, if |¢| is sufficiently small, if ¢ (u,—_1) satisfies the Melnikov conditions,

then also 9 (u,) automatically has the good bounds. Again this point is different from the case
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5.4 Measure estimates

studied in Section 4.5. Indeed with double eigenvalues one is able to prove the previous claim only
for n large enough and not for any n. This is the reason in this case the set of good parameters is

small, but in any case of full measure.
In the following Lemma we resume the key result one need to prove Proposition 5.4.112.
Lemma 5.4.114. For any n > 0 one has
[Po\Priil, [Go\Gra |, [Ho\Hp 1| < CV/7. (5.4.218)

Moreover, if n > n(e) (where n(e) is defined in Lemma 5.4.118), then one has

|Pn\Pn+1|a ’Gn\GnJrl‘: |Hn\Hn+1| < C\ﬁNn_l- (5-4219)
In particular n(e) has the form
1
n(e) := aloglog [b], (5.4.220)
cye

with a,b,c > 0 independent on e.

By Lemma 5.4.114 follows the (4.5.220b). Indeed on one hand we have

n(e)
A\ Pnzo Ha| > [H\Hnpa| + Y |[Ho\Hpy1| < Cyn(e). (5.4.221)

n=0 n>n(e)
The same bounds holds for |A\ Np>0 Gyl, |A\ Np>o Pn|. Now, fixing v := 7y(e) = ® with a € (0,1), one
has that
IA\Goo| < CVA(e)(1+7(e)) =0, as &— 0.
This concludes the proof of Proposition 5.4.112. It remains to check Lemma 5.4.114 following the strategy
in three point explained above. We will give the complete proof only for the sets H,, that is more difficult.
The inductive estimates on G, and P, is very similar, anyway one can follows essentially word by word

from the proof of Proposition 4.5.79 in Section 4.5. Similar measure estimates can be also found in [5].
Lemma 5.4.115. If |bj[[j] > 2[w - €] or [bj|[j] < |w - £]/2 then (A7 ;(un))® = 0.

Proof. Lemma follows by the fact that w is diophantine with constant 79 and 7 > 7y and from the
smallness of |mq]. O
Thanks Lemma 5.4.115 in the following we will consider only the j € Sy, C Z where

jw - £]

St = {j € Z == < Jjlbs(un) < 2o zy} (5.4.222)

for some constant C' > 0. In order to estimate the measure of (A7 ;(un))® we need the following technical

Lemma.
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Forced NLS: Hamiltonian case

Lemma 5.4.116. If j € Sp,, N (Agp)¢, where

Ap:i={j € Z: |jl < 4|{|C]e},
then one has that |bj(up)| > |m1(un)|/2.
Proof. 1t follow by

Hor I\ P o\
b} = (—2[m1]+ ! 7 J) +4 |Jj|2 > (2\77”61’— )

il
(5.1.15)

(5.4.223)
2 2 2
eC 1 ||
> 2o — > N (7 — > .
>t (2= ) 2l (2 ) 2
|
An consequence of Lemmata 5.4.115 and 5.4.116 is that we need to study the sets AZJ only for

i< 2
- ge

(5.4.224)
It is essentially what explained in item b. Note the here we used the non-degeracy of the constant mj.

Lemma 5.4.117. For anyn > 0 and j € S;,, one has

. 1 .
1b; (un)|? < Ko [|m1|l”’\j\ + ac} : (5.4.225)
for some K > 0.
Proof. One can note that,
b (w1) — b3 (w2)
’bﬂ(wl)_bJ(WQ)’ - bj‘(wl) + bj(CUQ) <
j J (5.4.226)
i Lo g —j|li —j|li
< for =l |lma 4 T (1 B 417 )
using that
J —J ; J —J ;
(2lma(en)] + (] = e/ I CAmenl + O e/
bj(W1) + bj(WQ)
and that the same bound holds also for \(rj_j)(wlﬂ/\j\(bj (wi) + bj(w2)). ]
An immediate consequence of (5.4.225) is that
i, (BL15) O
l7]16;"P < 4\€|?2K50, JESinNA (5.4.228)
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5.4 Measure estimates

_ (5.1.16) 1 Y -
1], < K|jym €]m1(0)|CLe|+€C < Kelt],  jeSinn(A)F (5.4.229)

By Lemmata 5.4.116 and 5.4.117 we deduce the following fundamental estimates on the function
defined in (5.4.215). First we note that, since there exists i € {1,...,d} such that |[¢;| > |¢|/2d, one has

4]
w - > —
|awzw €| — 2d
Hence one has
. / _ 2\ (5:4228) |¢
ot > (51— i) = (5:4230

for e small enough for any j € Sy,,. The (5.4.230) is fundamental in order to estimate the measure of
a single resonant set and this is what we claimed in item a. The following Lemma is the part c. of the

strategy,

Lemma 5.4.118. For |[{| < N,, one has that for any € > 0 there exists n := n(e) such that if n > n(e)
then

(A7 (un))® C (A7 (un—1))". (5.4.231)
Proof. We first have to estimate

1105 (un) — bj(un—1)| < 4 max rh Unp, —ph Upy—
15 n) = byt 1)| < 4 sl () =7 () .

+ 2|m (upn) — mi(un—1)|]7]-

By Lemma 5.2.103, using the (S4),4+1 with v = v,_1 and v — p = 7y, and with u; = up_1, us = uy,, we
have

AT (n—1) © A7 (un), (5.4.233)

1

since, for ey~ small enough, and n > n(e) defined as

1 1 1
n(e) = 1 1 0.4.234
n(e) log(3/2) ©8 (k — 7 —3)log Ny °8 <C’y€>] ( )
CN, sucg) |n — Un—1llsg+n < €(Yn—1 — n) =t €p =27 ". (5.4.235)
AEGH,

where & is defined in (4.0.1) with v = 2, u = ( defined in (4.4.206) with n = n; + 3, u > 7 (see Lemmata
5.4.112, 5.4.113 and (5.2.123), (5.1.11)). We also note that,

(54.211),(4.1.23) (5:2192) (C.10)
G,NH, - A (un—1)  C 0 AT (upo1) C Agil(un). (5.4.236)
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This means that A € H, NG, C AZl_ll (up—1) N A?L’jrl with

v =n+1, in Lemma 5.2.103 to get for any h,k = +j,

(up), and hence, we can apply the (S3)

v

|7 () =7 (1) < it () — 7 ()|

[k an) = ) [+ 17 () = T ()|
(5.1.19a),(5.2.139),(4.0.) .
< Cey "N, "+e(1+ Hun—l”ﬁoerJrﬁ + Hun”50+171+5) N, .
Now, first of all £ > « by (4.0.1), (5.2.123), moreover 7y + 8 < 715 then by (S1),,, (S1),—1, one has

[un—1lso+ns + [[unllso4ns < 2, We obtain

(5.4)
|r,§(un) - r,’i(un_l)\ < eN,“. (5.4.237)

Then, by (B.16), (5.1.15) and (C.12) one has that
[(Hoj — to,—5)(Un) — (Hoj — po—j) (un—1)| < Celj|N,, (5.4.238)

hence for |¢| < N,,, and X € G, N H,, we have
(@8) 2771—1 2’7n
liw - €+ po j(Un) — toj(Un)| > —7x — Celj|N, ¢ > ~, (5.4.239)
’ ’ (07 ()75

since j € Spn, hence |j| < 4|w||f|/ce, and n is such that N7 ~*T2 < 427", The (C.9) implies the
(5.4.231). 0

An immediate consequence of Lemma 5.4.118 is the following.

Proof. Proof of Lemma 5.4.114. First of all, write

H\Hp1:= | (A7;(un))".

el ez (5.4.240)
tez?
By using Lemma 5.4.118 and equation (5.4.222), we obtain
H\Hpy1 CHOUHP UHS® UH®Y
g = (| @g)r). 5O =( U Agw)).
25 TS
] n ] N
el N (5.4.241)
P = (U agw)y), 5= U @gm)).
oeC, oeC,
JESN(Ap)® JESN(Af)®
[€]<Nn |€]>Np,
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5.4 Measure estimates

One has that the cardinality if the set Sy, N Ay is less than 4|¢|C/e. This implies that

4)¢|Cy, 4d )
H)| < " < CyN, L 5.4.242
A 2 G S

Let us estimate the measure of the sets H® for ¢ = 3,4. The cardinality of Sp, N (Ar)¢ is less than
K|{|/ee, hence we have to study the case j € Sp,, N (Ay)¢ more carefully. We introduce the sets

/
By = {W € Hy1: |iw - £+ jbj(un)| = ZZ;ZL}, (5.4.243)

for £ € ZN\{0}, j € Sp.n N (Ap)¢, Where ay, := inf;|bj(un)|, v, = (1+27")%, v/ < v and 71 > 0. We

have the following result.

Lemma 5.4.119. Given ' and 71, there exist v and T such that if X\ € BZ]- then A € Azj for j €
Sg,n N (Ag)c.

Proof. First of all

jw - £ Y0
jeS, =bj> ——, =>a, > <
772l 2(0)7 ()
hence
, YnOn Yn Y0 Vn
| 12 g 2 Ggn e = ey
if Y90 > 2y and 7 > 71 + 79. O
By Lemma 5.4.119 follows that
40| K~ o, 4d _
HW| < BY| < S 2 04N 5.4.244
‘ n ‘— Z Z ’ fj‘— Z €e<£>7—1 M|< A ( )

|E‘>Nn jesf,nm(AZ)c |£‘>Nn

Unfortunately, for the sets H7(11) and Hr(LS) we cannot provide an estimate like (5.4.244); by the

summability of the series in £ we can only conclude
|HD| [HP| < Cy. (5.4.245)

This implies the (5.4.218) for any n > 0. Moreover by Lemma 5.4.118 we have that if n > n(e)
then HY) = H{¥ = 0, hence the (5.4.219) follows by (5.4.242) and (5.4.244). Lemma 5.4.114 implies
(5.4.210b) by choosing, for instance, v := (y')? <y < 1. O
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5.4.1 Proof of Theorem 1.1.2

Theorem 1.1.2 essentially follows by Propositions 4.0.46 and 5.4.112. The measure estimates performed in
the last section guarantee that the “good” sets defined in Prop. 5.0.85 are not empty, but on the contrary
have “full” measure. In particular one uses the result of Proposition 5.0.85 in order to prove Lemma
refinverseoflham. Indeed one one has diagonalized the linearized operator it is trivial to get estimate
(5.3.206). From formula (5.3.206) essentially follows (5.4.210a). Concerning the proof of Proposition
4.0.46, we have omitted since it is the same of Section 4.1.1. The only differences is that in Section 4.1.1
one deals with a functional that is diagonal plus a non linear perturbation. In this case the situation is
slightly different. However the next Lemma guarantees that the subspaces H,, in (2.1.8) are preserved

by the linear part of our functional F in (2.1.11),

Lemma 5.4.120. One has that
D, : H, — H,. (5.4.246)

Proof. Let us consider u = (uV), u?) € H,,, then

Dou= D, Z ugi) (0)eitetise
[(€,5)|<Nn
- (Zl(e,j)szvn (iw - O)ut (0); — [(7)* + m]ug.z)e“'@*iif”) -
S ey, (i@ - OuP(0); + (i) + m]ul

O

L = ¢gl=2 < ¢y of Proposition 4.0.46 is

We fix v := €% a € (0,1). Then the smallness condition ey~
satisfied. Then we can apply it with g = ¢ in (5.3.202) (see Proposition 5.4.112). Hence by (4.0.2) we
have that the function us in H%F¢ is a solution of the perturbed NLS with frequency w. Moreover, one

has
5.4.210b)
=

A\Gool | 0, (5.4.247)

as € tends to zero. To complete the proof of the theorem, it remains to prove the linear stability of the
solution. Since the eigenvalues p, ; are purely imaginary, we know that the Sobolev norm of the solution
v(t) of (4.1.27) is constant in time. We just need to show that the Sobolev norm of h(t) = Wav(t),
solution of Lh = 0 does not grow on time. Again to do this one can follow the same strategy used in
Section 4.5.1 (or in [31]). In particular one uses the results of Lemma 5.1.95 in Section 5.1 and estimates

(5.2.111) in Proposition 5.2.96 in order to get the estimates
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()]s < K|[R(0)||ms, (5.4.248a)
1ROz — "K||P(0)]| g1 <[P0z < [[B(O)[]115 + K [[B(O)]] o1, (5.4.248Db)

for b € (0,1). Clearly the (5.4.248) imply the linear stability of the solution, so we concluded the proof
of Theorem 1.1.2.
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6. Autonomous NLS

In this last Chapter we give the proof of Theorem 1.2.5 on the analytic autonomous NLS. We see
that one can obtain Theorem 1.2.6 just by following words by words the proof given for the analytic
case. This is due to the fact that we never exploit analytic properties of functions defined on the complex
strip T,. As we explained in the Introduction we just use the property of the functions to be Sobolev
on the boundary. In other words we never use Cauchy estimates and we never control the (polynomial)
loss of regularity, due to the small divisors, by using the exponential decay of the Fourier coefficients of
analytic functions. We exploit the “tame” properties as essentially done for forced cases.

We start by studying the preliminary steps of Birkhoff normal form, in order to introduce a frequency-
amplitude modulation of the frequency. In such a way we transform the system (1.2.16) into the form
(15) in order to apply Theorem 3.2.39. In Section 6.5 we give a more explicit formulation of the sets
of “good” parameters given by Theorem (3.2.39), and hence, in Section 6.6 we concludes the proof of

Theorem 1.2.5 by giving measure estimates of such sets.

6.1 Weak Birkhoff Normal Form

Let fix some notation. Given a finite set of distinct numbers {j1,...,jn} = EFT C N we de-

fine E := {£j1,...,£jn} C Z. This decomposes naturally h%? into two orthogonal subspaces u =
({wj}jer {u;}j¢r). We write

u(z) = Hpu + Mpu.,  h*P = Mgh® @ MEh%P. (6.1.1)

We choose ST = {v1,...,v4} C IN as above and denote v = [Igu the tangential variables and z = H§u

the normal ones. As notation we will also indicate with R(v?z") a homogeneous polynomial

g—times r—times

R(vi2") = Mv*t,... vt v, oo 2 2T e 2T

with M a g, multilinear operator in the variables v+, zF.
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Definition 6.1.121. For any natural k consider a 2k-uple 7= (j1,...,jor) € Z2*. We say that 7 is a

k-resonance if

2k ' 2k ‘
D (D=0, Y (-1 =0.
i=1 i=1

We say that a k-resonance is trivial if j; = jit1 up to a permutation of the {ju}r_,.

We say that a 2k-uple is non-resonant, 7€ N if

2k ' 2k '
Y (=D5Gi=0, Y (-1 #0
=1 =1

Remark 6.1.122. Note that all 2-resonances are trivial. Indeed if j1—ja+js—j = 0 then ji—ja+j3—j% =
2(j1 — j2)(j2 — js) = 0.

Lemma 6.1.123. For S generic one has that that there are no non-trivial 3-resonances with at least

five points in S
Proof. We just need to exhibit the polynomial which gives such genericity condition. O
Given 7= (j1,...,Jn) € Z"™ for some n we say that
7€ Ay, if at most [ of thej; are not in S'.

Note that for each fixed n the set (j1,...,jn) € Aj is finite dimensional. For a finite dimensional subspace

E := span{e¥® : |j| < C},C > 0 we denote Il its L? projector.

Proposition 6.1.124 (Weak Birkhoff Normal Form). There exists an analytic change of variables of
the form

u;y = P(u) =u+ ¥(u), (6.1.2)

where U is a finite rank map. The map ®(u) is defined for all * u € h%? such that ||[ullqp, < €0, and

satisfies the bounds:
[V (u)lap < Cpeg”HEuHa,pa [du¥(0)[P]l[ap < Cp (G(Q)HHEhHam + 60HHEUHWJHI_IJ‘EhHa,m) (6.1.3)

for all u : ||ullqp, < €. Actually ¥ is tame modulus in the sense of [6], namely it respects interpolation

bounds also for the higher order derivatives.

Inote that € is fixed in terms of ro and a,pi.
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6.1 Weak Birkhoff Normal Form

Finally ® preserves hg’dd NU and the new vector field O, x := T restricted to U is reversible and has

the form
T-=7t,
YT := —i(v), + A(u) + By (u)), (6.1.4)
O T = —i(2f, + Q(u) + B (w),
where

3
Bf(u) := Z Cikjufu;ugu;ugaug + Z Z kajju;u,;u?(?u]q, + ZR(qu5_q) + gh>2 (),
i,5,k€S JES keS¢, q=0
4
B (u) := > R(u72°9) + Mgh>? (u)),

q=0
(6.1.5)

h(>9) collects all terms with degree greater than 5, and for* u € U

= ClulPuon, + > O CFlurl)wdu;, Q) =" > Xjujaai i Ugatjs Oy

JjeSs JES €S JESe j1—j2+3j3—j=0,
k#j (]11J27]37J)¢A1
J . k._
Ci = Xjjzs» O = Xukjj + Xjkkj>

Xjujajsj = @1 — @2jj3 + agjija — bajs — bajija — asjijaji + bajifsis — a6iiizis
(6.1.6)
Proof. Now consider the equation (1.2.16). As notation for a vector field F' we denote by Fj, . j,, . ; the

coefficient of the monomial vl us ...uF 0 +. We divide
J1 )2 J2k+1 U

x(w) = N+ xs3(u) + xs5(u) + x>5(u)

a direct computation gives

. 9 4 . 9
N—IZ] ujau;——IZ] ujau]_—
J J

while

_ +
u) - IZ Z Xﬂjﬂwuﬁu]2u338u+ + IZ Z XJU?BJququujsau

JEZ j1—ja2+i3= JEZ j1—j2+j3=
Gi€Zi= 123 ji€Zi= 123

with Xj,jojs; € R defined in (6.1.6), comes from f. The other terms collect respectively the part of

degree 5 and > 5 of g.

We want to eliminate from y all the monomials ujlu]2u;;8u+ or ujlujzu]38u such that the list

(J1,72,7J3,J) € A1 NN. Note that this is a finite set of monomials.

2extending polynomials outside U/ is trivial just apply v — v and @ — u™.
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We define the transformation ®() as the time—1 flow map generated by the vector field

Xj1j2j3j o, —0,0
F3(u) = — o . - ’ —uf u ’ul. Oy
Z Z Z (]% _ j% +j32, _32) J1 72 I3 7Y

o=+1,-1 jEZ ji—ja+js=j
(91,32,33,7) €A1NN

Xj1j2535 c,—0
- o g Uy, U UT Oy
Z Z Z (]% —]% +]§ _32) J1%ge 3t

o=+1,—1 je€S  ji—ja+jz=j
(41,92,33,J) €(A1)°NN

(6.1.7)

By construction the transformation ®) has finite rank. Moreover one has

Xjigejsi € B X(=j1)(=2)(—a) (—5) = Xirjajai
hence the vector field F3 in (6.1.7) is reversibility preserving.
By construction the push-forward of the vector field @Sﬁl)x := Y has the form Y = N+ Y3+ V5 + V=5,
where )3 contains only monomials uf u

g1 752
is not in A; or j € S and at least two among ji,j2,J3 are in S¢ (see the second summand in BY in

Tug, au;_f such that (j1,jo, j3,7) is either a trivial resonance or

(6.1.5)) . The trivial resonances in A; give A(u), all the other terms either contribute to B or to Q.
More explicitly In this way the system u = )(u) possesses an invariant subspace Hg and its dynamics
is integrable and, as we will see, non-isochronous.

In order to enter a perturbative regime we need to cancel further term from the vector field. In
particular we look for a transformation &2 such that the field T := @&2))7 does not contain monomials
uf uyug usg”
of monomials. @) is the time 1 flow of the vector field Fs of the form

u3~758u;,r such that the list (j1, jo, j3,J4,J5,7) € A1 NN, as in degree three this is a finite set

N _ _
Fy(u) = - i W N e SRR SRV S
Z Z (j%_]§+]§_]2+33_]2) J17J27J3 7 Ja 5 g

JEL j1—iatis—iutis=i
(41,92,93,J4,95,7) EA1NN

+ T TR TSR T4 TG N (6.1.8)
Z Z (j%_]22+]?2)_j2+j§_]2) J17J2 78 T4 s Ty

ST jrirtisutis=i
(J1,92,93,J4,05,7) EA1NN

Again by construction ®® has finite rank. Moreover since ) is reversible then Fy is reversibility
preserving. Finally YT := <1>S?)y = N+Y3+Y5+7 <5 contains only monomials such that (1, 72, 73, ja, J5, 7)
is either a resonance or is not in A;. By Lemma 6.1.123 all the resonances in A; are trivial and hence
contribute to the first summand in B;. Now we perform the last step in order to cancel out from )3

For the tame estimates (6.1.3) we refer to [6]. O

Remark 6.1.125. Note that, by construction the change of variables written on functions HP(T,) is

u(z) ~ q(z) = u(e) + ) ¥;(llgu)e
JEE
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6.2 Action-angles variables

hence setting u = ®~1(q) = q(z) + > jeE \le (Ipq)e® one has

(u, ug, Ugy
Y(q) :=d®(® " (q))x(®'(q)) = —iE |up. + C‘Eu,u " ;) +d¥(u)x(u).

Then ( see Lemma 7.1 of [4] for a detailed proof)
qu<Q) = —iFE [89696 + du]:(u)] + R<q)

where the first term is described in (2.1.19), while for some fized N

N

R@)h] = Y (h@),a™ (@) b6 (q:a).

Here o™ b(™) are functions in h®P depending on q and such that, for any m, one of the a(™,b(™) s
equal to €9% for some j € E. In other words R is a linear operator sum of two terms, one maps ILgh®P

mnto h®P and the other maps h*P into Ilgh®P.

6.2 Action-angles variables

In the previous paragraph we have worked in the Fourier basis and we have shown that the change
of variables preserves hgfd. Now we restrict our vector field to hg’dd where it is natural to use the sin
basis indexed by IN.

We want to switch the tangential variables to polar coordinates. We set

. 6.2.9
PR ese (629
this is a well defined , analytic change of variables for & > 0, |y;| < &;.
For ¢ small we consider £ € e2A = £2[1/2,3/2]? and the domain
Dag piv(0,70) = {9 €Tyl <12, [wlaom < ro} C T x €4 x TTEh™P (6.2.10)
One can check that there exist constant ¢; and co such that, if
ro < c1€ < €/2, V2dearPret e < e, k= max(|ji), (6.2.11)

then one has ®©) : Dg p+v(50,70) = Be,, where the vector field T is well defined. We assume that our

parameters €, 1o, So satisfy (6.2.11) sto that we can apply ®¢ to our vector field. In the new variables
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one has u(z) = v(0,y; z) + w(x) with

d
v=@w"v), o= Z V& +yieisin(vir), w=(zF,27),27 = Z 27 sin(jz), (6.2.12)
i=1 jese
and
F =097 = FO 6, y,w)d + FY (0, y,w)d, + F™) (6, y, w)y, (6.2.13)
reads
T+ T e—iek(BJr) 4 ek (B,)
F(ek)H’ ) = AL AL - 2_M + - LRRAL AL k:]-v 7d7
FO(0,y,w) = 4o, YT + 4o Ty = 2i/E + yr(e % (B )v, — €% (B )w,), k=1,...,d
(6.2.14)
where M is the twist matrix
1
M = Z(C“,’I’; + C’v_kvh) for k,h=1,...,d, vi,v,€ST. (6.2.15)
We define @ € R? the vector of unperturbed frequencies as
Gy =0;6) = wit +w ), WV i=52 0 wl?(€) = —(Mg);, je st (6.2.16)

In the new variables U becomes
U:={0,y,w) e C® xTIEzh%% . §eT, yeR? z =z}

which is clearly preserved by the dynamics of F. We now are in the setting of (3.2.43) with p’ =p+ v,

v=2and {g 4~ Hé%h“’q.

Remark 6.2.126. Our identification of £, with Sobolev functions on T, implies that a map 6 — f(0) €
bap with || f|lsap < oo is identified with a function f(0,z) € HP(T4 x T,) and 1£(0, 2)|| o (raxr,y ~
If

ls,ap- See Lemma A.170 in the Appendiz A.1 for the equivalence.

Properties of ' We describe here some fundamental properties of the vector field F.

e Tameness F' is tame according to Definition (3.2.26). This properties follows by reasoning as in

Lemma 4.1.50 and by the properties of the map ¥ in Proposition 6.1.124.
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6.2 Action-angles variables

Reversibility: F' restricted to U is reversible w.r.t. the involution
S (Gj,yj,zj,ij) — (—9j,yj,2j,zj), j €N, S% =1. (6.2.17)

hence we have that

F(G)(_ea Y, _w) - F(e) (6) Y, w)7 F(y)(_ea Y, —’lf)) = _F(y) (97 Y, UJ),

- (6.2.18)
F(w)(—Q,y, —w) = FW) (0, y, w).
In particular the component F(© is even in the variables # while F®) is odd in 6.

Constants of motion: The vector field I preserves the mass M =, yi +)_; |zj|2, this means that

= D Filapey 0, x=0.y.2
Lh,o, B,z

is such that

Z&' + Z(Oé] —

Pseudo-differential structure: Setting u = (6, y,w) one has that

duF(u) = P (u) + % (u) (6.2.19)
where
1 . b . . b .
) = —ipg | (PR bwn) ), C (el hilm ) o
ba() 1+ ag(u; ) bi(z)  ai(u;z)
b .
i\E HJS_ C}O( ’ ) O(Uax) Hé_
o(w; ) ao(u;x)
while
h(9) d ,
Z(u)[h] = A(u) + Z AR + fiya(u)h®) + e@ g n0) 4 e, 4 B
. (6.2.20)
+ ) (em - hl")d

m=1

where A(u) €Mat(C??) while ¢;, d;, fi, g1 € Lo for each [. In other words we have
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__ T
1
A
_ 27217
Z(u)[h] = ‘ ‘ + X (W)[h] == (o (u) + H (u))[h] (6.2.21)
91" Gad 0
where N
H(W)[h] =Y (em - B)dp, (6.2.22)

m=1

is the linear operator on £4, — {4

Definition 6.2.127 (Pseudo-differential vector fields). We call finite rank operators the

linear operators of the form % and Schridinger pseudo-differential operators the ones of the form

2.

We say that a tame wvector field ' = Nog + G s of Schriodinger pseudo-differential type if its
differential in a neighborhood of zero has the form (6.2.19) for some Z,% for a fited N > 0 and
where a;(u),bi(u) fori=0,1,2 and ¢, dy, fi, i for any l are tame functions form Dg,(s,r) to €q

with tame constant controlled by the tameness constant Cy,(G).

Remark 6.2.128. Finite rank operators are bounded linear operators on C2¢ x lyp and form a
bilateral ideal in the algebra of bounded linear operators. More precisely given R of finite rank and a
linear operator L : C*¢ x4, ,, — C**x l, , then RL is of finite rank and maps C?¢ x £y, — C* x4,

while LR is of finite rank and maps C2¢ x lop — €% x lag-

6.3 Inizialization

In this Section we consider the field F' defined in (6.2.14) and we prove that satisfies hypotheses of
the abstract theorem 3.2.39. In particular we need to fix the subspace of vector field £ on which we will
work and the constants given in (3.2.69). We also perform directly a first step in which we find the first
map of the sequence 7,. We follows the notations of the abstract theorem 3.2.39 and we set Fy := F
defined on the domain in (6.2.10) Dg, p+v(S0,70) Where the parameters are given by formula (6.2.11).

Moreover by 6.2.16 we set
No = (w™' +wO(€)) - 9p + Q@ wdy = &(€) - Fp + A wy, (6.3.23)
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and (2717 = iodiagj?, (271);7 = 0. Hence by equation (6.2.14) we have Fy = Ny + G and we define
Iy F =w(£,0)0 + Q0, E)woy,
w(E,8) = wD +wO(e) + GY0 (€, 0), (6.3.24)
Q(0,€) = QY 1 Q0(9,6) = d, 7 (0,0,0)[] = Q" + d,G§(6,0,0)[]
Let us study in particular the linear operator {2 on faso’p . In order to do this it is more simple to identify
0P with TIThSY = IERGY x TIERSY (recall definition in (6.1.1)). We have that Q! := —iEd,, :
IIEhY — MEhYP where E := diag{1,—1}. Moreover one has that Q) = ((Q(©)7’

seen as a 2 times 2 matrix whose components are operator on Hfghgg’dp. In particular

)o.o'=+1 can be

QO0(9,€) =TI (—iE [T1(6,€) + To(0,€))) 1§ + Ao,
ad)(0,€) b3(6,¢) a”(9,¢) v17(0,¢) al(6,¢) by(6,¢)
= {0 () Oz + | 1(0) _(0) 9z + | -0) _(0)
by (975) ) (975) by (975) aq (975) bo (eaf) ay (eaf)
al(0,€) 1= ap|v|? + aglva|? + 2ag|vasl? B (0, €) = bolv[? + ba(ve)? + agvd,
ag()) (9, f) 1= aglz¥ + ayUz Vg + 2b300; + 2b403 Vs, bgO) (97 5) 1= a3VVg + a4Up Uy

a(()o) (0,€) := 2a;|v]* + ag0v.y + a3|vg|* + bo¥Usy, b(()o) (0,2) := a1v® + agVvzy + Doy + by (vg)?,
(6.3.25)
where T5(6, &) has the same form of 77 but collects all terms that are at least of degree 5 in v and
o has the form (6.2.22). Clearly in formula (6.3.25) the function v(6,y) is evaluated at y = 0. We can
see that T} comes from the cubic term Q(u) defined in (6.1.6) while T comes from the linearization of
the term Bjy. For convenience we split Iy Fy in several terms using equation (6.3.25). In particular we
split the term 77 in (6.3.25). This is done because each term will have different sizes and will be treated

in a different way. More explicitly we define
FO = NO + N(l) + N(2) + HO, (6.3.26)

where NU. N@) e A/, are

(6.3.27)
N® .= 0O@yw - NV, Hy:=Gy— NY - NO

where the coefficients ago), bgo) and the field Q) are defined in (6.3.25) . Since the vector &(€) € {T(€) :
¢ € e2A} (see (6.2.10)) we have that & is €—close to the integer vector w™! in (6.3.24), hence we fix the
size of vy by requiring that w(§) satisfies

0> 22 viezd, r>d+ 1,y = cf, (6.3.28)

o
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with the constant ¢ small enough.
We define
E:={F €Vy, : F satisfies (6.2.18)} (6.3.29)

where @ := (70, O, 50, ag) with Op := e2A = £2[1/2,3/2]°.
Lemma 6.3.129. The vector field Fy given by (6.2.14) satisfies the hypotheses of Theorem (3.2.39).

Proof. By definition each term in (6.3.26) is tame, now we want to estimate their tameness constant in
order determine ©, %y in (3.2.69). By usign the Definition 3.2.26 and the explicit form in (6.3.25) of the

coefficients one has that

Crppa (N) <OME, iy oo (NP)) <IME, iy (Ho) < M€ 2, (6.3.30)

0,P2

where the constant 9% depends on the constants a;, b; for i = 1,2,3,4,6, j = 2,3,4 in (6.3.25) and on
po. This scaling justifies the splitting (6.3.26). Indeed we have separated the terms N (1), N that are
not “perturbative” with respect to the size of the small divisors v & &.

We check explicitly the (6.3.30). Recall that Fy in (6.2.14) is defined in terms of equations (6.1.4),
(6.1.5) and (6.1.6). We start to study the terms N and N that are terms that contribute to F(*)

that comes form @ in (6.1.6). For instance we can bound using the interpolation properties of the norm

s7a7p

_ 1
%o Hllazlv*0za 2l py < o (Cp2)€ + Cpo)éll2llz ptv) » (6.3.31)

where we used that ||z||4,p, < ro. Hence one can check Definition (3.2.26) with a constant Cy, ,(a2|v|?2z4) <
g = Ap(p2, ¢). All the other terms in (6.3.25) can be estimated in the same way. Indeed all those terms
are quadratic on v and linear in z. Recall that the norm | - [|5, , is a weighted norm and on the w—

component the weight is 7o (see (3.2.34)). This determines the constant 20y by setting

_ _ M
% Croa (V)7 Crppa (N®) < =2 = Uy (p2, ), (6.3.32)

so we can fix also a large number Ky > 20g. Now let us estimate the several components of the field Hy
starting from Iy Hy. Consider HNHéw). All these terms comes form B;‘ in (6.1.4) so that the linear

term in z is at least of degree 4 in v. Hence one has
10" Capa (TN (™)) < U (6.3.33)

We now note that HNH(SQ) = Hég’o)(Q) is of the form (6.2.14) where B is defined in (6.1.5) where the

term independent on z of degree minimum has degree 5 in v. Hence
_ 9
15" oo (T (H ™)) < o (6.3.34)
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Let us study II4Hp. Recall that by Lemma B.177 we can directly to estimate |II4Ho|y,, defined
in (B.7) in order to estimate the tameness constant of the field. We have by equation (6.1.5) that
HAHéw) = T AITE A% (u), hence the term Héw’o) (0) is of degree at least 6 in v. Hence

75 g (A HE™) < 2Ag2r5 (6.3.35)
Now by (6.2.14) and (6.1.5) one has
o ITAHY |50y < R0E2V/ErG2 + Ao + Ao2r ! (6.3.36)

To get bound (6.3.36) we used an important property coming from reversibility condition and from the
fact that the only term of degree 5 in v in B; are integrable as one can see in (6.1.5). This two fact
implies that such term of degree 5 cancel out and hence do not contribute to the y component of Fy.
Collecting the bounds (6.3.35) and (6.3.36) we have

_ 3
Yo 1|HAH0’170,p2 < QLOfb? b< 5) (6337)

provided
&7 < < /e (6.3.38)

The second inequality comes form (6.2.11). Now we study IIg Hy. The componentHRHée)

is at least
linear in the variables y, w while the terms in HRH(()y) comes from the last two summand in (6.1.5) (this
follows by the definition of R(Y) that collects the terms coming form the second summand and the fact
that the integrable terms of order 5 are zero). Following the same reasoning of the previous bounds we

get
_ 3 _ _ w
Yo Cro e MR HY) < M2, 75 Cp o MR HY) < Aov/E, 75 ity TR HS™) < Aok (6.3.39)

without requiring any additional hypotheses on rg. Again in the second bound we use that the integrable
terms in By in (6.1.5) cancel out. Indeed on terms of the form R(vz?) in B; one cannot prove a bound

like (6.3.39). Now we fix for convenience b = 1/2, and for £ small enough we set
1
8§ =y ' Ciypo TLaHp) = €1, O 1= 7' Cyiy o (Ho) < Ao, (6.3.40)

Hence we have fixed the constants in (3.2.69). Moreover by requiring that £, (or that ¢ in (6.3.29)) is
small enough, then equation (3.2.70) is satisfied. O

All the terms that are not “small” with & are in NM) and N3, In order to use Theorem 3.2.39 we
need to identify the sequence of maps 7, with n > 1. We first present some abstract results on reversible
pseudo-differential vector field of Schrodinger type (see Definition 6.2.127). Then in the last Section we

will prove the measure estimates that concludes the proof of Theorem 1.2.5
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6.4 Pseudo-differential Vector Fields

In this Section we study how pseudo-differential operator changes under special changes of variables.
First we prove some lemmata of conjugation of non linear vector fields. Then, in Section 6.4.2, we analyze
properties of the linearized operator of Pseudo-differential vector field. In particular we study how to
invert it. In the forced cases of Chapters 4 and 5 we shown as to study the asymptotics of the eigenvalues
of the linearized operator. In the autonomous case we perform a similar analysis. the important difference
is the following. Here we follow the iterative scheme of Theorem 3.2.39 while for forced cases we proved
the Nash-Moser theorem 3.1.18. Theorem 3.2.39 is in some sense very close to a classical KAM scheme.
Indeed at each step on choose the convenient coordinates in which the approximate solution is trivial.
In the Nash-Moser scheme in Theorem 3.1.18 one never changes coordinates. On the contrary here we
must study how the entire non linear system changes under the transformations of coordinates we use.
In particular in this Section we study the transformation we use to define the 7, introduced in Theorem
3.2.39. We refer to Lemma 6.5.153 for more details.

6.4.1 Regularization

In the following we consider the decay norm |- |5 4, in we have introduced in (4.3.85) in order to deal

with linear operators on Hﬁhggfw. We have the following important property.

Lemma 6.4.130 (Decay along lines). Let M = (M}'); ycsexza be a linear operator on IEhiGr™"

(2

Then one has

|M‘S7a,p < Cz‘ersr'lfiXZd HM{Z'}”s,a,P-&-d-i-l' (6'4'41)

The decay norm satisfies the following classical interpolation estimates proved in Lemmata 4.3.62,

4.3.63. Moreover to obtain the stability result on the solutions we will strongly use this property.

Lemma 6.4.131. If A is a Tépliz in time matriz as in (4.3.98), and po := (d + 2)/2, then one has

|A(0)|s,p < C(pO)|A‘s,a,p+po = Cy, SuIl) Z (h, l>2p62|h|a62m$ Sulp |Ag7l’<;k (l)|2 , Vepe T
T (h1€)Zs x 74 k=k'=h
(6.4.42)

Proof. Tt is sufficient to follow word by word the proof of Lemma 6.7 of [31] by substituting the matrix
A with A defined as [A7;¥ (1) = |A7F (1)]e2Mlse2lk—H'la, B

154



6.4 Pseudo-differential Vector Fields

Remark 6.4.132. The class of linear operators with decay is strictly stronger than just being bounded.
In particular contains an important class operator, the so called multiplication operators. See Remark

4.84 in Section 4 of [31].

Remark 6.4.133. The (s, p)—decay norm is defined on linear operators Aﬁl with indeces k, k' € 74 x 7.2,
The linearized operator in the normal directions, in our case, is supported on k,k' € S¢ x Z*. We say
that a linear operator A on Hg:hgodfr” has the decay is it is the restriction to S¢ of some operator B on
hgod’(erV with (s,p)— decay norm finite.

We now want to introduce a “decay” norm on generic linear operator on C?? x Hé‘hg3§’+y
Definition 6.4.134. Consider a linear operator of the form
M := My + My : C* x TIZhP ™ — €2 x IIEhSP T, (6.4.43)
where My is a finite rank operator of the form (6.2.20) and is a linear operator M : H%hggﬁﬁy —
Hg:hg?i’fr”. We define the decay norm of M as

d k
s, o= max (14 ap)+ max (eilloaps |fillsan)+ K loap + 1Malsap (6.4.44)

i,5=1,...,2d

where the coefficients A;?,ci, fiyai, by has the same meaning as in (6.2.20) and K is the term in (6.2.22).
v,0.5,a,p 15 defined as done in (4.3.86).

The Lipschitz norm | -

Definition 6.4.134 guarantees that a finite rank operator of the form (6.2.20) has a finite “decay” norm
if the coefficients f, g; are in £, , and ¢, d; € {4 pyqq1 for any [. In other words a finite rank operator
has lines in ¢4 ;4441 then has decay. Hence for any operator F' = Ny + G of the Schrédinger type one
has that

|<%|17,p < Cﬁ,p-‘rd-&-l(G) (6.4.45)

In this Section we study the properties of Schrodinger type pseudo-differential equation. In particular

we study how this structure changes under the following class of linear changes of variables:

o Torus embedding. the transformation ® := 1 + f with f € B. Note that this is a finite rank
operator (see Definition 6.2.127),

e Diffeomorphism of the torus 1. the transformation ® := IIE T, I where Tou == u(6, x + a(6, ),

o Diffeomorphism of the torus 2. The transformation 75 : 0 — 0 4 3(6)

e Multiplication operator. the transformation ® := II$ M (0, z)II where M (6, x) is a multiplication

operator on the space HP(T%+1).
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Lemma 6.4.135 (Torus embedding). Fiz p > 0. Consider F': O X Dg pir, (s + pso, T+ pro) = Vap a
vector field of pseudo-differential type, then for all torus embedding ® = 1+ f as in Definition 3.2.24 and
with f € B one has that ®,F is tame and pseudo-differential. In particular d(®,F)(u)[h] = Py + R
has the form (6.2.19) where 2 has coefficients @i, b; tame with constant

Cip(ai) < Cyplai) + Cyp(f)Copy (@)  T:= (7, 0,8+ pso,a). (6.4.46)
The coefficients ¢;, d; fori=1,...,N of #y satisfies the same bound (6.4.46).

Proof. Since the transformation ® is tame (see Lemma B.177) by Lemma 3.2.31 one has that the push-
forward is tame with tameness constants given by (3.2.49). We study in particular the structure of the

linearized operator in u = (0, y,w). One has

d(®,F)(u)[h] = dF(® (u))[h] + R[], (6.4.47)
where R is a finite rank operator as in (6.2.19). Moreover the pseudo-differential part as the same
form of dF(u) but with coefficients @;(x) = a;(® '(u);x) (same for b;). The bounds (6.4.46) follow
by the tameness of the coefficients a;. The range of the finite rank operator does not increase. Indeed

(®.F)(u) = Fo® ' +d,f(® H[F o ®!]. The second term does not contribute to the w—component.

If we linearize the first term we have
dy(F 0 ®71)(0,0,0)[h] = d,, F(a@)[h].

This happens because the map ®~! contains translations, and in other words, to linearize in zero the
field F o ®~! is nothing but to linearize in a point near zero the field F. The property 6.2.127 requires
that the linearized operatorhas the form (6.2.19) in a whole neighbourhood of the origin, hence the rank

is again N. The estimates of the new coefficients ¢;, c?z follows. O

Lemma 6.4.136 (Diffemorphism of the torus 1). Fiz p > 0. Consider F': O X Dq pt., (5 + pso, T +
pro) — Vap a vector field of pseudo-differential type, and a function a : T¢ x T, — C such that
l|gp, <9, for some 6 > 0 small. Then setting Tou(0,x + a0, x)) := u(f,x4) and defining the map

d:0, =0, y. =y, wy =T w, (6.4.48)

one has that for some p small ®.F : Dgq_2pa p+v (S + pso, 7 + pro) = Va—opagp is tame of Schridinger
type and § < p. Moreover d(®.F)(u)[h] = P+ + X+ has the form (6.2.19) where P4 has coefficients

a;i, b; given by

L+a =T, {1+ a)(1+aq)?, b =T (b2)(1+ ),
a1 =T (1 + a2)aws] — T w - 0ol + T ar(L+ ag)],  bi=T i1+ ap)],  (6.4.49)
Go =T, "[aol,  bo =T, ‘bol,
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where T, tu = u(0, y+ a(0,y) is the inverse of the diffeomorphism x — x+a(0, ), and v = K4 + H
(see (6.4.62)) where A, with rank N with coefficients &, d; such that

Cop(ci) < Cgplci) + lolgprpo (@) Cap, (5)- (6.4.50)
The coefficients a; = a;(0,y, w1;y), with wy = Tow and y = x + (0, x) are tame with constant

Cvz p( ) < ”O‘”v pr2 T Cy 7p(a2) + ||a||v1 D ,p1(a2) +C5 p(al) + HO‘HM P~ U, p1 (al)
Coyp(b1) < Ciip(b1) + [ltll, pi2Ciip, (1)

(6.4.51)

where ¥ := (v,0, s + pso,a), U1 := (7,0, s + pso,a — pag) and va := (7,0, s + pso,a — 2pay). Same for

ao, bg .
Proof. The vector field @, F is clearly tame, indeed in the new variables the system reads

6y =FO0,y, (M570)  wy)
y-‘r - ( )(9-{-7 Y+, (HST ) ’U)+) (6452)
iy = [FO04,y, [IET0) " wg) - 99a)0p, wy + TETF ™ (04, yy, (5 T0) wy)

while equation (6.4.49) follows by a direct computation. Bounds (6.4.51) follows by Lemma A.171.
Indeed we already note that || -|[5,, is equivalent to || - || gp(paxr,) on the functions u(¢, z). Hence Lemma
A.171 applies on the diffeomorphism of the toroidal domain T¢ x T, 6§ — 6 and  — x + «(6, x). Let us
check (6.4.50). We define #Z, = &/} + J#, with same splitting used in (6.2.21). Again by using Lemma
A.171 one gets the bound for the term in &7, . Since F' is of Schrodinger type, then the coefficients ¢;, d;
in % are in {4 pi 441 and their norms are controlled by Cy,(F). Now one can see that . is of the form
(6.2.22) with the same N of #". Indeed

N
Ho(wy) = (Tad T Ywy = Ta Y (em(@), Ty wy) p2di (). (6.4.53)
m=1
Hence formula (6.4.50) holds.
O

Lemma 6.4.137 (Diffeomorphism of the torus 2). Consider F' as in Lemma 6.4.1536 and the
transformation Tg : 6 — 0+ 5(0) with ||B||zp, < 0, for some § > 0 small. Then setting Tgu(6+05(8), ) :=

u(04,x) and defining the map

P:0,=0+p500), yr =y, wy =w, (6.4.54)
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one has that for some p small ®.F : Dg pi(s — 2psg, + pro) — Vap is tame of Schridinger type and
§ < p. Moreover d(®,F)(u)[h] := P4 + R has the form (6.2.19) where P has coefficients d;, b; such
that

Cyp(ai) < Caplai) + [|Bl|zp+po Crpy (@i), (6.4.55)
where U = (7,0, s + pso,a), U1 = (v,0,s,a) and Vs := (v,0,s — 2psp,a). Same for bi. Moreover
Hy = Ky + A4 (see (6.4.62)) where H#y with rank N and coefficients that satisfy the bound (6.4.50)
with o ~ (.

Proof. One can reason as in Lemma 6.4.136 and use Lemma A.171. OJ

Lemma 6.4.138 (Multiplication operator). Consider F' as in Lemma 6.4.136 and the transformation
® := TG M (0, x)IE where M(0,2) = 1 + A(0,x) : HP(T? x T,) x HP(T¢ x T,) — HP(T? x T,) x
HP(T¢ x T,) with |Al|zp, small. One has that ®.F is tame with tameness constant given by (3.2.49)

where Cyp, ~ ||Allg,p. Moreover, writing
dyF(u) =105 [(—iE + L2)0yy + L1y + Lo Ilg + Z(u)

where

bi(z) a;(u;x

i(u; bi(u; .
Li(6,y, w; ) = —iE (a (2) bilu w)>, i=0,1,2,

the linearized operator d,(®.F)(u) has the form

5 (M~ Y(—iE + Lo)MOyy + [2M ™~ (—iE + L2)0, M + M L1 M| 0,
(6.4.56)
+ [M—l(FW) COgM) + MY (—iE + Ly)dpe M + M~ L0, M + M—lLOMD I + %,

hence each coefficient L; for i = 0,1,2 defined by equation (6.4.56) is tame with the same tameness
constant of ®.F. Moreover one has that Z+ = Ky + 4 (see (6.4.62)) where &, with rank N of #
and coefficients such that

0172’1;(51') < Cg,p(ci) + ”AHﬁ,erpoCU,pl (ci), i=1,...,N, (6.4.57)
same for c?z

Proof. First of all we note that ® is a tame map. It is sufficient to apply the definition and use the
fact that || - ||z, is equivalent to || - ||Hp(Tg><Ta) on the functions u(#, z). Hence also the push-forward is
tame. Equation (6.4.56) follows again by an explicit calculation, and the tame bounds on the coefficients
follow by the tameness of the transformation and of the coefficients L;. The bounds (6.4.57) follows by

interpolation properties of the decay norm. O
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Remark 6.4.139 (Loss of regularity). Note that transformations in Lemma 6.4.135 do not loose
analyticity. On the contrary the diffeormorphisms of the torus in Lemmata 6.4.136 and 6.4.137 loose
reqularity in the analytic case. In the differentiable case such transformations are diffeomorphism of the

real torus. The loss of regularity is controlled by the the low norm of the functions a and .

Lemmata 6.4.135, 6.4.136, 6.4.137 and 6.4.138 guarantees that the structure of pseudo-differential
operator of the linearized in a neighbourhood of w = (6,0,0) persists under the change of variables we
need to apply. We also have decomposed the linearized operator in homogeneous decreasing symbols of
order two, one and zero. By Lemmata above we note that also such decomposition is stable, and we are
able to control the tameness constant of each symbol. This not a priori obvious.

The following Lemma is the key result of this Section. We give the result on a special class of vector
field. Consider tame, pseudo-differential and reversible vector fields F' : O x Dy piy(s,7) = Vo with
F = Ny + G (see Section 6.6) We assume that F' has the form

Fi= (14 1) (No+ NO + N® 4 1) (6.4.58)

for some h : O x T¢ — C with
v HIbllgp =65, (6.4.59)

and where No = w - 9p + Q1w - 8, with Q=1 = Q! w e RY is diophantine and

w—wly <0(§), [c—1]y <0O(E), (6.4.60)
NO — (Hg <_iE (ZQ((Z’:”)) bZEQ’xD) amnﬁ)w "y (6.4.61)
2(0, T as(\U,x

0 b1 (0 0 bo (0
b1(0,$) 51(97:6) bg(@,l’) 6_10(9,.’,12‘)
and % of the form (6.2.22). Moreover we assume that
dy H® (w)[] : TERSP — TIEhED,. (6.4.63)
and
Cyp(H) < Cyp(Ily1G),  Cp(NP) < C(G). (6.4.64)

Note that by the reversibility condition one has that on U the function h(f) is real and even in 6.
Write

Y IHOO 5 = 60, max{yazllapy lballsp} = 62, (6.4.65)

Finally we fix parameter po > (d 4 1)/2 and pa > po. In this way the norm || - ||s,4p for p > po defines a
Banach algebra on the space HP(T? x T,).
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Lemma 6.4.140 (Regularization). Fiz K > 0 large, K = K3 and p+ > 0 small and consider F' as
in (6.4.58). There exists n = n(d,po) > 0 such that, if

p_T_lK’“ max{éé?, 5,(,?)} <k, 55?) < oo, po+1n < p1 < po, (6.4.66)

where Ao > 0, p1 > 2po + 27 + 4 and € = €(d, po) is small enough then there exists a tame, reversibility

preserving map

Ty =1+ f: 00 X Daspyanpiv(s — pa50,7 — pa70) = Dagpiw(s,7), (6.4.67)

with

Cip(f) < Crg ' K" max{]|az| s [H "y 3 0 < po (6.4.68)

v,p> HbQ

that satisfies (3.2.65), (3.2.66) and (3.2.67) with K,, ~ K, Kpy1 ~ Ky, ppy1 ~ p+ and with p1 =
Po + 1, P2 = po + K2 defined in (3.2.61) and (3.2.63), provided p > py. Moreover for any £ € Oy such

that
v

|w - 1| > o | < K4 (6.4.69)
F = (T3)sF : Da—2p, agptv(8 — 20450, 7 — 2p470) = Va—2pag,p (6.4.70)
has the form Ny + G and
Fo=(14hy) (N; +NO 4 N 4 H+> (6.4.71)
with
3 27+2) (2 3 274+2) o(2 2 (2
Il < 051+ K260 by g, < 050 (14 KPP 4 kEFTGE - (6.4.72)
Ng‘ =wy - Op+ ﬁ;lw By with Q™ = ¢, Q7 and
wy —w| <80, e — ¢ <62 (6.4.73)

One has that Nil) as the form (6.4.61) with coefficients ag , b3, N_(E) has the form (6.4.62) with coefficients
a’ bf fori=0,1, %, of the form (6.2.22) with the same N of & and coefficients cZT", df, and one has

7

2 2
Cop (N) < (14 K268) O, (NP .
Cipa (NP) < (14 K4 60) (Cripy (N 4 K22 H2(500) 4 52y =1C5,, (@),
017,!31(]\7-5-1)) < (1 + Kﬁﬁld,f)) [K;(Pz—m—ZPo—ZT—?)(Sg) + Kipo+27+2(5]§?))2 7 (6 \ 75)

Cﬁ»m (N-E- )) < Cﬁ,m (N(l)) + K—lf-l Cﬁ,m (N(l))-
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where ¥ = (,0, s,a), U1 := (7,0, 8 — pySo,a — prag) and Uy := (7,0, s — 2p480,a — 2ptag). Moreover

the following estimates hold:

Cipy (G) < (14 K268y (G)

. i <(2) (1) @) (6.4.76)
Cipo(G) < (1+ K585 ) (Crpa (G) + K (053 + 032) Cip, (G)),
0,0 2 — — 1 2 1
VO, < (1 Y1602 (1 P26 4 Kt oo (6.4.77)
2
max {16 s 4] g} < (14 K5205) max {lleillopgs ldilap, )
2
max {llef N pas 14 llaapa} < (1 4+ K4165) (infgyzN{||ci|ap2, il } (6.4.78)
1 2
R (G + 8 max {leillp, ||dz-uﬁ,p1}> .
Finally one has
2 —(p2—p1—2p0—27—-2) (2 T 2
||7—+a2 _ a2+||6’p1’ ||'T+b2 _ b;”ﬁ,pl S Kil5xg1) [K+(P2 P1—2po )552) + KiPO—i—Z +2(5£1))2}7
2 .
1 Toai — af lloprs | Tobs — b llapy < K682 max{||aillsp,, Ibillsp, 3, i=0,1, (6.4.79)

2 .
1T ci = & g 1T ds = g, < K057 max{lleillap,s [dillap, }s 0= 1,0, N

Proof of Lemma (6.4.140). The proof follows the scheme used in Section 4.2. The differences are
due to the fact we want to reduce to constant coefficients only the linearized operator in the normal
directions.

Step 1. The first step is to diagonalize the second order coefficient by eliminating the terms bs through

a multiplication operator. We use a transformation of the form
D1:0 =0, y—y, w— MsTallsw. (6.4.80)

The eigenvalues of

<c+a2(9,w) by (0, ) )
ba(0,2)  c+ax(0,x)

are \1 o = \/(c + a2)? — |be|?. Hence we set as(¢p, ) = A\; —c. We have that a3 € R because as € R and

a;, b; are small. The diagonalizing matrix is

1 (2 a —b
1 [eeraata 2 ) =144 (6.4.81)
2c —ba 2¢c + as + as
We define ’7;‘_1 =1 +1Ix, A, hence
T, Allgp < Cpp(Ilg, N (6.4.82)

161



Autonomous NLS

The bound on the inverse 77 follows simply by the fact that

(b2|? — (2¢ 4 ag + a2)?)

det(1+ A) := 6.4.83
The bounds on the truncated matrix is the same. One can also prove that
18+ T, A)7! = (1 4+ A) g < T, Allgy + | Allgp, [Allz,p. (6.4.81)

We set F() = (91),F = Ny + GO = (1 + 1) (No + NV + N? + HD) (see notations in (6.4.58)) and
one has
Cip(G) < Cyp(G) + K{H [ A5, Clip, (). (6.4.85)

In particular the term (H™M)@9) satisfies a bounds like (6.4.85) with G ~ (H)@9. Moreover using
equation (6.4.56) of Lemma 6.4.138 with M = cE 4 IIx, A we obtain that

0, 0 (Mg b (o
N = g | (20 Ore | T — i ETIE C_L(Ql)( ) fl)( N o | T (6.4.56)
0 as (0, x) by ' (0,2) a5’ (6,x)
where
1aS 0 165 155 < Cip (T, (ND)) + Cp (ND) i, (ND), (6.4.87)

and N1(2) =KW + M with KO as in (6.4.62) and .# () as in (6.2.22). By reversibility one has that

ay is an even function of #, hence the transformation is reversibility preserving. Finally by (6.4.82) one

has
2
Cirp(N{?) < Cip(N®)) 4 Crpa(Tlie, NU)Cp, (N®) + O o (T, N 6.455)
+ CU7P1+2(HK+N(1))C€,p(H) + Cﬁ,p-&—Q(HKJrN(l))Cﬁ,m(H)y
and the same bounds holds on the single coefficients agl), bgl) for ¢ = 0,1. Hence
2 2
Oy (N1) < (14 K387 Ol (N) + K2 Ci, (H) 6.159

Crps (NP)) < Cripy (N®)) + Oy (N K362+ K2 (Clipy (H)6E + Cipp, (H)SW)

One the coefficients cgl), dl(l) fo (1) the bound (6.4.57) holds.
Step 2 - Change of the space variable Now we want to eliminate the dependence on x of the
coefficients @y of the field F(1). We use a change of variables ® as in (6.4.48) of Lemma 6.4.136. We
are looking for a(f, x) such that the coefficient of the second order differential operator does not depend

on y, namely by equation (6.4.49)
T 1+ @) (1 + ax)?] = 1+ a5 (6), (6.4.90)
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(2)

for some function as (6). Since T, operates only on the space variables, the (6.4.90) is equivalent to
(1+a2(0,2)(1 4 ap(6,2))? = 1+ ma(6). (6.4.91)
Hence we have to set
az (0, ) = po, po(f,x) :=(1+ mg)%(ﬂ)(l —1—62(9,36))*% -1, (6.4.92)
that has solution « periodic in « if and only if fT pody = 0. This condition implies

ma(6) = <217T/T(1 +62(9,x))%>2 —1 (6.4.93)

Then we have the “approximate” solution (with zero average) of (6.4.92)

a(0,z) == (9; Tk, po) (0, 2), (6.4.94)
where 9,1 is defined by linearity as 9, e’ := %, V ke 7Z\{0}, ;' =0.In other word 9, 'h is

the primitive of h with zero average in . The function « (that is a trigonometric polynomial) satisfies

2 2
lallopstpo < K082, lallopsp < KO8 (6.4.95)

For more details on the estimates on « we refer to [31].
With this definition of the function o and by Lemma A.171 one has that 7o : Ty_(,/4)0 — Ta if, by
(6.4.95), 55?) is small enough. Setting

F® = (0,),FO = Ny + G? = 1+ h)(Ng + NV + NP + HO), (6.4.96)
again one has

Cp(GP) < (1+ lallgpyo01) (Cop(GD) + lallspros1Cap, (GD) ) (6.4.97)

where we used ||a|gp, 4141 < K”Hég) < 1. Moreover we have obtained

0 0 ) g v (9
N = gy | (™20 Oy | TIE — i ETIE C_‘é)( @) %2)( N ol (6.98)
0 ma(6) by’ (0,z) ay’(0,x
where
10 s 1657 155 < Ciip(Tg, (ND)) + Cp(ND)Cig, (ND), (6.4.99)
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with N2(2) = K@ + #® and K® as in (6.4.62) and on the coefficients al@),bZ@) for i = 0,1 bound
(6.4.51) hold in term of the coefficients atV, o) where Cyp(f) is replaced by |lag

et

7,0,5,0—(p/4)ag,p- More

explicitly one has

Cop (NS < (1 4+ K2F265) O (NP)) 4+ KR P28 Oy (NEV),

(6.4.100)
2 2 2 1 2 1 2
Cﬁ,m (NZ( )) < Cff,Pz (Nl( )) + Kﬁ—0+25P2CﬁP1 (Nl( )) + Ki0+2<ci7,P2 (Nl( ))5121) + Cﬁ,Pl(Nl( )>5lgz))

Moreover the coefficients cl(?), dl(?) of # (2 satisfy the bound (6.4.50). For more details on the estimates
on a we refer to [31].
Note that in this two steps the function h(6) did not change.

(2)
2

Step 3 - Time reparameterization. In order to eliminate the dependence on 6 of a5’ we use a special

diffeomorphism of the torus
Ts:0 =0, =0+wbB0), 0T BB cR, (6.4.101)

where « is a small real valued function, 2w —periodic in all its arguments. We consider a transformation
®3 of the form (6.4.54) and we set

FG®) .= (93),F® = Ny + G®) (6.4.102)

with the usual notation N®) := I (®3), F?), XO) .= [14(®3),F? and R®) := II3(®3),F?). By the

nature of the transformation ®3 we also have that

T (®3), F P = (®3), N F?, T 4(B3), F? = ($3),H4FP | TI3(®3), FP := (®3), I FP),

(6.4.103)
Let us study in detail the from of N®). First of all we have
(@) T FE) D (0,4) = T [(1+w- pB) (1 + ) + (HE) O] (5), (6.4.104a)
(®3), TN FP) ) (04, w0, ) = T; ! [(1 +h) (Ném + NV 4 NP 4 de@)wﬂ - (6.4.104b)
“L1+h 0
g (T (L Metms) ) 02 Tp1lg
0 T5 1 (1 + h)(c+ma)
Lg—1 a?) 652) a((32) béZ) 1L 1 4(2)
ST e @)t e e ) | T H T AT
1 1 0 0

Our aim is to find § in such a way the coefficients of the second order is proportional with respect

to the coeflicients of w. This is equivalent to require that
(1+h(0))(c+m2(0)) = cr (1 4+ w-0pB(0))(1 + h(0)), (6.4.105)
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for some cy := ¢+ ¢. By setting

1
= —— 0))deo 6.4.106
= gt [, (ma(0)0. (6.4.106)
we can find the (unique) approximate solution of (6.4.105) with zero average
1
B(0) = s c(w - 0p) e+ Tg (ma) — ¢ —¢)(0), (6.4.107)

eil:

where (w - 0p) ! is defined by linearity (w-9,) te!¥ = <~ (#£0, (w-9,)"'1 = 0. Note that j is
trigonometric polynomial supported on |¢| < K. As one can check (see also [31] for more details) the

function § in (6.4.107) satisfy the bound

w-

18150400 <0 K23 ptpor 27125 (6.4.108)
with ¥ = (v,0,s — (p/4),a — (p/4)ap) and 7o is the diophantine constant of w. Hence we have

27+2 (2 2 2 (2
18ll5pp0 < K225 | Bllapype < KPS (6.4.109)

This implies that the transformation 73 maps Tgi (p/4)50 T4 if &5 is sufficiently smaller than p (see
condition (6.4.66)). We set
by =T; (w- 0pB+h+ hw - 9), (6.4.110)

so that one has for ¥ = (v, 0, s — psg,a — pay)

7 2742 2
I = Tahllsp < Nl By + o - DaBlsapo Il < K22 (la5? sy + Nazllipolibllep), (6:4.111)
which for p; large enough, implies the bound (6.4.72). We have

F® = Ng+G® = (1+ hy)(No + NV + NP + HO), (6.4.112)

with ]VO =w- 0+ c Qw0 with ¢ = c+r,

g 5 (g
N = BT f%)( ) fg)( ) 0, 1t (6.4.113)
by (0,x) ay’(6,x)
where
Cop(NSY) < Crp (e, (NS)) + 1181150 Crpn ([T, (N)) (6.4.114)

2 2 2 2
+max{[[as? 5., 165 5.0} + 11815 p-p0 max{[[as? 05 11657 10 }

and the coefficients a3, b3 satisfies the same bound. and N?EQ) = (<I>3)*(NO+N2(1) +N2(2)) - (No—i-Nél)) =
KB + 3 collects all the terms of order at most O(9,,) and K3) as in (6.4.62) with coefficients a§3), b§3)
for ¢ = 0,1 which satisfy the bound

3 3 2 2
1l 155 116 15 < 116215 + 18119400 10 1501 (6.4.115)
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More explicitly one has

1 T 2 1 2 2
Copy (NSV) < (14 K220 P20 o (NSY) 4+ maxc{ |aS? s 1657 50 3+
Ciipy (N5) < Cip, () + K2 P““’O”T”ﬂ 2 Copa(N3)

2
+ K250 ma{ a8 (g py s 1957 0 1 (6.4.116)

P1 (N?EQ)) S (1 + Ki0+27+25(2))c17p1 (NZ(Z))7

C’w
2 2 T 2 2
Crps (NS?) < Cipy (NSP) + KPF 260 0y L (NS,

By equation (6.4.106) we also obtain the bound supy |cy — ¢| < (5,&?) on the constant c¢; hence (6.4.73)
is satisfied. Using the estimates given by Lemmata 6.4.136, 6.4.137, 6.4.138 and collecting the estimates
n (6.4.82), (6.4.95) and (6.4.109) we get on the field G

Cipy (GO < (14 KPP0y (@),

(6.4.117)
Cipa(GP) < (1 4+ K253 0y 0 (Q) + (1 4+ K PTH50) 0y (G KT H26(2)
Moreover the coeflicients cgg), dgg) of #3) satisfy the bound (6.4.50) and finally
2742 1
IO 5y, < (14 KET250)5,), 64118
N O g, < [HO g, + KT 250550

Step 4 - Torus diffeomorphism. The aim of the final step is reduce “quadratically” the size of the
term (H®))®0) We define the trasformation

Q4 (0,y,w) = (04 9(0),y,w), (6.4.119)

and we call T, the transformation Tyu = u(+g(0), z). We set F' = (94),F®) = Ny+G and we study its
projection on the subspace N. By a direct calculation one can note that HN(<I>4)*F(3) = (<I>4)*HNF(3),
(D) F®) = (84), 4 F® and g (®y), F®) = (®4),IIg FG). For convenience we write

(@4). T F®) = (By), ((1 ) (N + (H<3>)(970)))
+ (@0) (14 B ) (VY + NI+ (I H)(0)) ) = (6.4.120)

= (1475 he) [(@2)2(No+ (HO)O0) 4 (@), (V3" + N + (1L HE) )

We set hy := 7;_1%+. Moreover by Lemma B.180 one has

1 t
(82).N® = N® 4 [, N®)] + / / @)z (g, [g, NP dsdt.
0 0
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where N®) := (Ny + (H®)(@9)) We look for g(#) such that the 6 component of N® + [g, N®)] has the
form in (6.4.71) with the size of H_(f’o) “much smaller” of the size of H(®9. More explicitly one has that

(N®) +[g, NOYO = (w, + HOO(0)), (6.4.121)

where , denoting by (-) the average in the variable 6,

wp = w0 (HD)OD),

HOO o (HONOO6) - (HO)O0) 4 0pg(6) + (HONOOug(0) — H(HO OO 0)
and we look for g(6) such that
g [(HG)HO0 (g) — <(H(3))(9’0))] +w - 9yg(0) = 0. (6.4.123)
Equation (6.4.123) is satisfied by choosing
9(6) = (w- 9y ") ML [(H®)OO(0) — (D)) (6.4.124)
One has the following estimates hold
gll5p0 SKTT 297! Crg, (HE)O0) < KFH2(1 4 KRTHTH50)60), (6.4.125)

e 1 T 2) ¢(1
lgllspy < E2H1(85) + KR 25250,

Moreover by the first of (6.4.122) we have that (6.4.73) holds. Now for (53),(5;()?) small enough (see

condition (6.4.66)) one can use Lemma A.171 to conclude that

. d d
To T 1150 = ooy /2)s0° (6.4.126)

and hence

F= (‘1)4)*F(3) : Dafp+ao,p+u(7” — P41, T — P4T0) — Vafp+ao,p-
We set T := &4 0 30 Py 0 &;. By the discussion above we have that
T - Da—p+a07p+u(3 — P450,T0 — P4T0) — Da,p—i-V(SvT)a

and moreover satisfies conditions 3.2.65, (3.2.66) and (3.2.67) by choosing p > 2pg + 27 + 4. Indeed we
in the abstract theorem (3.2.39) we have fixed p; := po + 1, and hence (see condition (3.2.62))

2p0+ k1 + 27+ 4 < k3 < K1 + 3. (6.4.127)
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By the discussion above we have

F = No+ (@4)-No = No) + (@1). (3 No) + (@) (1 4+ = )N + N+ () @) )
- (6.4.128)

Fix now 7 = (7,0, s — p150,a — pag). From this first splitting we have that F' = Ny + G and on G the

following estimates hold:

Cipr (C) < (14 K262 (NO) + N 4 )

A rs(2) (1) (2) 2po+27+25(1) | 5(2)y —1 (64.129)
Cﬁ,pz (G) S (1 + K+6p1 )(C'D',m (N + N + H) + K+ (5]32 + 5p2 )ry Cﬁ,pl(G))a
which implies (6.4.76). To prove (6.4.129) one uses (6.4.117) and the smallness of ¢ and that
(), N — No) —/ (®4)3]g, No] = / (®4):1 K, [g, No] =
0 0
1 _ 1
— [ @0t [0, o + (HO)00) — [ (@)L, g, (1))
0 0
1 1
= [(@azr+ [ @it g, (OO0,
0 0
where by (6.4.123)
r= (I, (H®)00) 1 (HO)000,9(9) — 0p(HO)P09(6) ) - 0 (6.4.130)
Clearly the estimates (6.4.129) follows. Trivially one has also
Cios (T ) < (14 K262 Cp, (T G
o1 (L G) < ( +0p1") Cripy (T2 G) (6.4.131)

Ciipy (Mpr G) < (14 K465,)(Crp, (M G) + KR 2729007710, (T G)),
Now we want to rewrite the field F' in a form more similar to (6.4.112) by using (6.4.120). We have
Fi= (14 07 'hy) [N + N+ NP+ O,
N = (w + (HE) ) - 95 + e, Q7w - Do,
N = (@) N5V, NP = (@) N,
HW = (04), H®) + (94),No — Ny

(6.4.132)

This is another way to write (6.4.128). But now we give a precise estimates on the low norm of the
component 0 of the field H® on A. First of all we have

1

. . . 1 t . s
H® .= Ny — Nf + [g, No] + / / ()9, [g, Nol] + H® + / (®4)7 g, HO).
0 0 0
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Now if we look at the the component (H®)®9 by using equation (6.4.123), we obtain

1
(HO)O00 .= 11k (H)00)( / / (@219, 9. Nol) + / (@) g, HE]

(6.4.133)
— I, (H®)00(9) + /0 (@) g, H / / (@) lg, T (H®) OO,
and hence using (6.4.66) we get
(D)5, < K2 Cp, (H®)O0) 4 K2 g5, | (HE) 5,
(6.4‘118)é(6.44125) Kl_(pQ_pl)( +Kp0+27+15(2))(6£2) 1 5(1)Kp0+27+25( )) (6.4.134)
+ (14 KRHETLER)) pepot 24252 5(1)

which implies (6.4.77). We conclude by noting that N, f) = K* + W with the coefficients c§4), d§4) of

4 that satisfy the bound (6.4.50). By collecting the bounds on D o2 3 () we get the
(6.4.78). Now by (6.4.132) we have, by using (6.4.116), (6.4.99)

0177)31(N1£1)) <1+ K2P0+25(2)>3 K;(P2—P1—2P0—27—2)5g) + Kip0+27+2(5g))2}’

(6.4.135)
Cﬁ,pg(Nil)) < Cypy(N NO) 4 K2po+2‘r+4c ,pl(N(l))'

which implies (6.4.75). In the same way , using (6.4.116), (6.4.100) and (6.4.88), the (6.4.74) follows.
Bounds in (6.4.79) follow by the discussion above recalling the results of Lemmata 6.4.136, 6.4.137 and
6.4.138.

O

6.4.2 Inversion of the linearized operator in the normal directions

To prove our main Theorem 1.2.5 we said we want to use the abstract Theorem 3.2.39 on the field
Fy defined in (6.2.13) of Section 6.2. Theroem (3.2.39) is based on an iterative scheme and on the
existence of sets of “good” parameters defined inductively (see Definition (3.2.37)). In this Section we
give an explicit formulation of such sets in terms of the eigenvalues of the linearized operator in the
normal directions. Moreover by Hypothesis 1 we have that our vector field Fy has a particular structure
of “reversibility” as explained in (6.2.17) and (6.2.18) of Section 6.2. In other words we want to work
on a subspace (see Definition 3.2.36) of vector fields £ that are reversible with respect to the involution
S in (6.2.17). Since the reversibility is given in terms of some parity conditions of the coefficients of
the fields, one can easily check that our subspace £ of reversible fields has the property P of Definition
3.2.41. Hence, by Lemma 3.2.43, we can study the sets of good parameters defined in 3.2.42 instead of
those defined in 3.2.37.
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Now we inductively assume that at some step of the iteration the vector field Fyy has been transformed
into a field F' = Ny + G of the form (6.4.58) with all the properties in equations (6.4.59)-(6.4.65).
In the following we will also see that we can assume that hypotheses of Lemma 6.4.140 are satisfied.

We introduce a further notation. We set
Op =7 'O (L4 H). (6.4.136)

Now we apply Lemma 6.4.140 to the field F and we obtain the field F' = (7). F = (1 + hy)(Ny™ +
ND 4+ N® 4 H) in (6.4.71). We want to study the form of some set O’ € My, (F) with ¢ := §K "
(see definition 3.2.42). The parameters K,v are the same of Lemma 6.4.140. One can note that the
conditions (3.2.79) and (3.2.80) on the operator W are equivalent to find an “approximate” solution

g€ B of the equation
g I4lg, Nl =g, X, X e ANng, (6.4.137)

and where
N=(1+hy) (N; +ND 4 N@ 4 HNH>. (6.4.138)

In Indeed by an explicit calculation equation 6.4.137 defining w(f) := F©@9 and Q) := Fww)[],

becomes
ic, (w(0) - 09 +g¥0)w) - 0, + Thxe, (w(0) - Dpg™ O = 2(0)g™?) - By = T, X, (6.4.139)

We recall that w(f) := (1+ hy)(wy + HO0) and Q(0) := (1 + hy)(c4Q P+ NO + N@ 4 (I H)®).
By construction one of the effect of the map 75 is that the size of the terms H (©:0)) and N® is “much”
smaller with respect to the size of H(%)) and NV (see equations (6.4.75) and (6.4.77)). Hence we claim
that in order to find an approximate solution of (6.4.139) we just look for a solution of

1
1 —i—HKJthr’
1
1 —|—HK+h+y7

wy - Bpg W0 () = HK+X(y’0)

wy - Bpg WY (0)y = HK+X(y»y)

. (6.4.140)

1 + HK+ h+ ’
wy - 9pg ™) (O)w + g™ ()Q(0)w = HK+X(w’w)

wi - Opg 0 (0) — Q(0)g™) =TI, X 0

1
YT Ty
with
Q) := (14 hy) (e Q@+ N 4 (T H)W), (6.4.141)

To solve the first two equations it is enough to ask that

wy - k| > # kezd, |k <K, (6.4.142)
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In other word thanks to the bound (6.4.187) we are able to estimate the operator Wy := (w, - 9p) 1.

Moreover thanks to Remark B.176 in Appendix B one can see that if one is able to solve the two equations
Liu= <w+ Oy + ﬁ(&))u —f (6.4.143)
for u =u(0,x), f = f(0,x) maps
u, f 2 T — TEh%P,

then one can solve the third and the fourth equation in (6.4.189). To conserve some coherence of notation

with [31] we rename the functional spaces one which we work in the following way.

Definition 6.4.141. Consider the spaces X,Y, Z in (2.2.23). We define

G = {u = (u,u) : veG st u= Z uj(l)eil’aeij'x}, (6.4.144)
lezd,jese
for G=X,Y,Z of G = H*(T? x T : C) endowed with the norm || - ||s.qp defined in
Hence what we want to study is the invertibility of the operators £i. We analyze the operator

L, =: L but the analysis of £_ is completely similar. Explicitly we have that
n f ..fc+ O . ap b . ag  bo N 5
L:=1gwy -0p+ 15 | —iE Opz —1E | _ Op —iE | _ IIg + ¢, (6.4.145)
0 ct —-b1 a1 —by ag

where we rename a;, 131 ~> a;, b; the coefficients of N®@) . The inversion of £ stands on two fundamental

results. The first is the following:

Lemma 6.4.142. Fiz § = {i with ¢ € 2\ (see (6.2.10)) and recall that vy = c& (see (6.3.28)).

Consider a reversible, tame linear operator L defined for & € Oy of the form

0 N
C+

(6.4.146)
b b
Tl T B N o) B RCR B
by a1 bo aop
with |cy — 1] < CE, and, for £ € O C Oy
ai=a"” +d, b=b"+0b, i=0,1, (6.4.147)
where the coefficients az(o), bgo) fori=0,1 are given by formule(6.3.25) while
allzops 10550, < CES, i=0,1,
11,1 > 1105110, (6.4.148)

sp SCES, i=1,...,N,

leillapy s [1.fi
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for some constant C' = C(pa,d) > 0 and where ¢;,d; are the coefficients of . Then there exists a tame

and reversibility preserving map
S=1+VvV:H—-H (6.4.149)

with
Cop, (W) < CE, (6.4.150)
such that the conjugated L := S'LS has the form

0 diag;cz. 7 0 X
Lo=Thwy 0+ 104 [ —iE [ By — iE | BIEZLTO ) g 4t
0 ¢t 0 diag;ez, 79

0 b ag b$
+ 113 (—iE (_ 1) Oy + —iE (_0 ) ) g,
b 0 by ag

where ro € R is such that |1l < CE& and the coefficients a{{, bj with 7 = 0,1, and the coefficients c;-'r, dj
fori=1,...,N of Vs satisfy the bound

(6.4.151)

lag |z, < CE6. (6.4.152)

Proof. We divide the proof into two steps.
Step 1 - Descent Method. In this step we want to eliminate the term aq := ago) + @} in the operator
of order O(d,). We follows the strategy used in Step 4 of Section 3 in [31]. We introduce a change of

coordinates of the form

0, 0
Sim1 4wy —14ng (00 IS (6.4.153)
0 5(6,x)
for a function s small enough in such a way Sy is invertible. By a direct calculation we have that the
coefficients . 5
agl) = 2c, 18m + a, a(()l) = —iws - I‘PS) T+ Chfo + ao,
ts i +s (6.4.154)
pV i TS ., 145
L 0o T s

We look for s such that agl) = 0. Recall that by the reversibility one has on U that a; has zero average

in z. Hence, by setting 1 + s = exp (¢(0,x)), one has that agl) = (0 becomes

1 1
Re(gz) = _ERG(GI)’ Im(q,) = —Elm(al), (6.4.155)

that have unique (with zero average in x) solution

1 1
Re(q) = 5,0, Re(ar),  Im(g) = 5 —0; 'Im(an). (6.4.156)
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One has that the solution ¢ is satisfies the estimates

lallapy < Cllaxllsp,
||q||17,p1 S Cf?

(6.4.157)

where we used the estimate |cy —1| < C¢. Clearly the function s satisfies the same estimates in (6.4.157).

Hence we have obtained

0 .
L1 =wy 0y + 114 (—iE <Co+ ) 8m> g + .7
C+

0o CORACY
+ I [ —iE | Yo, +—ie| 2, s,
S( <b§” 0) (bé” a')) "

Now since the transformation §; = 1 4+ O(§) trivially (see Lemma (6.4.138)) one has again that

(6.4.158)

a(()l) = aéO) + CLga bz('l) = bz('O) + b;/, i=0,1, (6'4'159)

CORYE
]

the coefficients ay @ gD for § = 1,...,N of VaAY satisfy the

with j = 0,1, and the coefficients ¢; ’, d;
bounds (6.4.148). Moreover by equation (6.4.156) one has that ¢ is even in = and hence the transformation
S does not change the parity of the coefficients, i.e. it is reversibility preserving.

Step 2 - Linear Birkhoff Normal Form. In this step we look for a reversibility preserving map

(Ui (Ta)7!

Sy =1 +U; =1+
((‘1’1)11 ()74

) : Mghl — Mgh?, (6.4.160)
that eliminates the coefficients a(()o), bl(-o) for ¢ = 0,1. First we write

0
Ly =wy - 0p+1I5 <—iE (CJ > Oz + B) I + R, (6.4.161)
C+

) NORQ!
B:=1& | —-iE | Y'lo,—ie| % I3,
S( (bio) 0) (béo) ")) °

where

4.162
O b// CL” bl/ R (6 6 )
R:=1I% (—iE <_ 1) 8, —iE <_° 0)) g + .M
b// O /! a/l
1 0 0
We have that

L18] — SiTTE (W -0y — iBcy 0y IE =

151 = Sl (w4~ Oy +02 )L (6.4.163)

= Hé [W+ - Opl + [*iEc+6mz, ‘1/1] + B] Hé + é
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where
R:= BV, + R(1 + 0). (6.4.164)

We look for ¥y such that
wy - Ogl + [—1Ec4 Oy, V1] + B = 0. (6.4.165)
In Fourier space, using the exponential basis both in time and space, equation (6.4.165) reads
iwy -1 —iocy (% — (aa’)kz)(\lll)g:]’.k(l) - _Bg,'f(Z), 1€7% jkeS o0 ==+l (6.4.166)

Now by (6.4.162) we have that the opeator B depends only on the terms defined in (6.3.25). Moreover
by (6.2.9) and (6.2.12) we have that the function v(f, x) has the form

d
x) = Z V& + yiew("i)'e sin(v;x),
i=1

(:S, €7 ((v;) =e;,

(6.4.167)

where e; = (0...,1,...,0) is the i — th vector of the canonical basis of R?. Definitions in (6.2.9) and
(6.2.12) are given in the sine basis in space, since we deal with odd function of . On the other hand
in this case it is more convenient to use the exponential basis also in x. It is sufficient to change the

definition in (6.2.9) by recalling that for u odd in space then the Fourier coefficients (in space) has the

property u;j = —u_;. Hence v = (v,v7) and w = (21, 27) are
= 3 sign(va)e™" " 6w + ., = Gt = i (i) = (i),
vies (6.4.168)
Zua 10]90 f:—u;’
jEeSe
that are equivalent to definitions in (6.2.9). With this formalism we have that
o,k . . ..
B (1) == —i0(2a1 — jiaz — jijaaz — as (3775 + ))& V& (6.4.169)
for ji, jo, j—k €S, j1—jatk—3j=0, l=4L(1)—{(j2),
and Bgf(l) = 0 otherwise, and
B=7*(1) .= —io a1 —j2a2 — (@371 —a4j2j2 —o)k),
oy (1) = —io ( a2 — ( 172)(—0)k) (6.4.170)
for ji,jo, j+k €S, j1—jet+k—3=0, 1=4L0j1)—L(52),
and B;;k(l) = 0 otherwise. We define the solution of equation (6.4.165) as
B M)
/ , Tt Jif wl i+ o5 — o'k £ 0,
(W) 2= { or 1= 0es (72 = (00)R) rools (6.4171)

0 otherwise
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Actually the operator ¥y in (6.4.171) is the solution of

o, _ . !
Ba,j(0)7l *07;7 - k‘,O’,—O’

wi Ol + [~iBci 0y, U+ B =[B],  [B]:= (6.4.172)

0 otherwise,

indeed for such values of [, j, k the denominators in (6.4.171) are zero. Now W, is well posed and solves
(6.4.172). Indeed by (6.4.169) and (6.4.170) we have that Bg:]’-k(ﬁ) = 0 unless |I|] < 2, hence since
I =£(j1) — £(j2) one has

W L+ R = P = (5 - g R = P > for §# £k # £
where one uses Lemma 6.1.123. Moreover for ¢ = —o’ one has
-1 2 .9 . ..
|(.U I+ k + ’217 for any j7k7]17]2'

By using that w; = w™! + O(€) and that ¢y = 1+ O(£) we have that the denominators in (6.4.171)
satisfy

1
s -1 00 = (00 M) = [eslo -1+ 02 =KD = [llws —cqw 2 5, (6.4.173)
for £ small enough.
Lemma 6.4.143. Set dg,j’k(l) = (wy -l —ocy (52 — (00")k?)). One has that

C(2+ k%), o=-0,
A7) > § CUjl+ kD), i o=0'j#k, (6.4.174)
C, if o=0"j==k 1#0
Proof. If one assume 52+ k2 > C > 0 then, since |w,| < |w™!| + 1, one has

ok 1 1,
Ao D] 2 717+ K2 = 2los] 2 (7 + ), (6.4.175)

If j2+ k2 < C but j—k € S then one can use equation (6.4.173) to obtain the result. Finally if j —k € S¢
then one has B;jk(l) = 0. The second bound is obtained following the same reasoning and using the
fact that [j2 — k2| = [(j — k)(j + k)| > || + |k|. The last bound is trivial. O

The following properties is a consequence of Lemma 6.4.2.

Lemma 6.4.144. Let us define the operator A := Wy — {¥1} where {\Ill}gljk(l) = \I/gj(l) for o =o',
j==Fkandl #0. Then one has that |A0y |y, + |0 Alzp, < C(p)€ where | - ]gﬁ; is the decay norm extended
obtained by extending the norm defined in (4.3.86) with j € Z. instead of Z.y .
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Proof. One has that

W10s]aap = sup D7 (0PN sup (W07 DR < C0) (6.4.176)
0.0'=% ) 7 1ezd J—k=k
since (\Ifl)glj’k(l) = 0 outside the set |I| < 2 and |j — k| < Cg and the decay norm of B is controlled by

the norm of its coefficients a(()o), bgo)’ b(()o)

. In particular note that we used Lemma 6.4.143 in the following
way. For instance we have the estimate
(W), 7Ok < €| B, 7F )k (6.4.177)
: (2 + k2) '
and one uses the gain of two derivatives of the denominator to control the two derivatives in the nu-
merator. Hence one control the coefficients using Hbgo) lap + Hb(()o) |7 The bounds second term and the

Lipschitz estimate follows in the same way. O

By Lemma 6.4.2 follows that for & small the map S, is invertible. Moreover we have the following

Lemma

Lemma 6.4.145. Consider a linear operator A = (A)g/ for 0,0’ = 1 on the spaces G := G x G where
G = X, Y, Z the spaces defined in (4.1.47). One has that A is reversibility preserving if and only if for
any o,0' =+1,1€ 72, j ke Z

o'k a0k o', —k 40k o’k 40k
Ag i) =Ag (1), A () =A2;(), A7 (=0)=A_ (D). (6.4.178)

70.7.].

An operator B is reversible, i.e. maps X — Z if and only if

BI M) = -BJA0), BIF0) =B, BLA-0) = BIlM). (6.4.179)

U’j 7,J U?j U7j _ij

The proof of Lemma 6.4.145 is similar to the proof of Lemma (4.36) in [31]. Clearly in this case
the differences stands in the fact that we developed in Fourier coefficients using the exponential basis in
x. By this Lemma and an explicit computation, we have that W, is reversibility preserving since B is
reversible. Now we can define the map

Sp == exp(¥y), (6.4.180)

the time—1 flow of the field ¥;. Clearly again S; — 1 = O(&). Hence by equation (6.4.172) we obtain

Ly=8L18 = Tg(IEQ (&) + Ry)IIg

20 Byl(0) B0
07! = diagjez, <<C+] ) + ( 15(0) 1’{,( ) (6.4.181)

0 cpg?

with
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and Ry as the form (6.4.151). Note that we have defined erl as infinite dimensional matrix with index
¢ € 7% and j € Z,. Tt is an operator one the space of sequences {zj}jez. But by our condition of
reversibility we work on sequences such that z; = —z_;. Hence we can rewrite the matrix erl as an

operator acting on the space of “odd” sequences as a diagonal matrix

B ' ‘ , . 15 e
07! = diagjez, (crs?+1),  rgi=BLI(0) - B;(0), (6.4.182)
and 7“% is real by the reversibility of the field B. Hence the Lemma is proved. O

Remark 6.4.146. The terms 7“6 are of order O(§). In particular they are the integrable terms that
cannot be cancelled through a Birkhoff transformation. Moreover such terms are the corrections of order
O(&) to j? that we have considered in (6.6.275) of Section 6.6.

The following Lemma is the last important abstract result we will use in order to invert the operator

of the type £ in (6.4.145).

Lemma 6.4.147. Fiz 6 = 55 with & € e2A .= Oy (see (6.2.10)) and recall that o := c£ (see (6.3.28)).

Consider a reversible, tame linear operator L defined for & € Oy of the form
L=Tg(wys -0+ D+ R)E (6.4.183)

where
D .= —iEdiagjeZerSC <C+j2 + Té)’

R:=FE1D+ Ey = El(ﬁ)D + Eo(ﬁ)

(6.4.184)

with D := diagjcy, ng-{j}, and where, if we write k = (0,j,p) € C x N x 74 with C := {+1,—1}
q=0,1,

1= ()= (B0,
! (B kk'€CxINxZ? ( q)‘m (© kK €CxINxZd (6.4.185)
(E)Z () =0, Vjjezynse, lez

Assume that |cy — 1| < C€, and |7“ﬂr| < C¢. Fix parameters
ke =TT +3, Kks=T7T7+D5, (6.4.186)
and take an arbitrary N > 0 large. Assume that

|E1‘17»P1 + |E0|17,P1 < 080, po + k5 < p1 < po,
| E5,p, + [Eolgp, < Copy (a1 Gr)

(6.4.187)
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There exists a constant Cy = Cy(p2,d) > 0 such that, if
K§oy10es < e (6.4.188)

and € = €(d,pa) is small enough then the following holds. There exists a sequence of purely imaginary
numbers
po (&) i= —lo(cj® + ), o==1, j€Z,nS (6.4.189)
with
ryl<cg, |y =) <0

defined on Og and such that for any & € Ai?, defined as

) N N 2y|05°—0’5"|
pr o [ €05 fr 1)~ ()] 2 Bl | 6.4190
VieZ |l| <N VY(o,7),(0',j') € C x (Zy N S)
there ezists a bounded, reversibility preserving, linear operator ®n = ®n (&) such that
Ly =3 oLo®y :=ws I+ Dy+Rn, (6.4.191)
where
Dy := diag ; wN ),
UEC,]€Z+( O',j) (64192)
Ry :=EYD+ Ey,
N N —K4 = 2y
| By |171,p + | Eg ’171,13 < (‘E1|17,p+fis + ‘EO‘U,p-Fms)N y U1 i= (%AN ,8,a),
N N (6.4.193)
‘El |171,p+i<a5 + |E0 ’171,p+n5 <’E1‘ﬁ,p+/€5 + ’Eoyﬁ,p+n5>Na po < p < p2 — Ks.
Moreover one has that
O3 — Lz p < 77" <\E1\z7,p + \Eo\ﬁ,p)- (6.4.194)

Before giving the proof of the Lemma we make some remarks. This Lemma essentially can be applied
to operators £ of the form (6.4.151). Indeed our strategy is to use Lemma 6.4.142 as a preliminary
step before using a KAM-like scheme in order to diagonalized the linear operator £. Lemma 6.4.147
provides an approximate diagonalization, but anyway the order of the approximation IV is arbitrary large.
The conditions on the parameters in (6.4.190) are the Second order Melnikov conditions. Clearly such
conditions depends on N (see formula (6.4.190)). In particular to obtain a partial diagonalization one
can ask for the conditions (6.4.190) only for |I| < N. On the contrary in order to completely diagonalize
one has to ask the the lower bounds in (6.4.190) for any I € Z?. Our choice is less restrictive but it is

sufficient we are just looking for an approximate inverse of £. Lemma (6.4.147) is the equivalent result
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of Theorem 4.27 in Section 4 of [31]. The proof of the Lemma above is based on the following Iterative
Lemma.

Take £ as in (6.4.183) and define

= |E|5, + |EQlsp, for p>0. (6.4.195)

Lemma 6.4.148 (KAM iteration). There exist constant Cy > 0, Ko € IN large, such that if

Koy tel s <1, (6.4.196)

then, for any v > 0, one has:
(S1.), Set A := O and for v >1

AN =

v

(6.4.197)

EeN) o Jw- bl N &) —pl (€)= M’
W|<Kyl(aj)( i) eCxN ’

For any & € A} = AJ(L), there exists an invertible map ®,_1 of the form ®_; = 1 and for v > 1,
b, 1:=1+Y, 1:H®*— H®, with the following properties.

The maps ®,,_1, <I>,j_11 are reversibility-preserving according to Definition 4.1.47, moreover W,_q is
Toplitz in time, Vy,_1 := V,_1(p) (see (4.3.98)) and satisfies the bounds:

Wo—1l5,p < €2+,€5K31T1K;f{2, 0y = (v,A], s,a). (6.4.198)
Setting, forv > 1, L, := @;_115,,_1(1),,_1, we have:

L, =w-0,14+D,+R,, D, = diag, jicoxNito,;}s

0 0 P (6.4.199)

and

Ry = B{(€)D + E{(9), (6.4.200)

where R,, is reversible and the matrices Ey satisfy (6.4.185) for ¢ = 1,2. For v > 0 one has TZJ- € iR,

r? .= —rY . and the following bound holds:

) —0,]

‘TZ,]'H = ‘ o]’AZ v < &oC. (6.4.201)

Finally, if we define
= |EY]5, p + |EGla,p» VP >0, (6.4.202)
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one has ¥ p € [so,p2 — k5] (ks is defined in (6.4.186)) and v > 0

81/ < 60 K—m

o g’*“ v (6.4.203)
Eptrs < 5P+H5KV_1'

(S2), For all j € N there exists Lipschitz extensions iy (-) : Oy — R of pf(-) : A) — R, such that for
v>1,

iy — gty <ell,  VkeCxN. (6.4.204)
(S3), Let L1 and Lo as in (6.4.183), defined on Oy such that (6.4.188) and (6.4.196) hold. Then for
v >0, for any & € AJN(L1) N AP (La), with y1,72 € [v/2,27], one has

|E§(L£1)—Ef (L2) |50 < N, IEQ(L1)—Eg(£2)]5,p0 (6.4.205a)
|G (L1) = E§ (L£2)|5p04+n5 < Nu—1| EQ(L1) — Eg (L2)

Bpo-ris (6.4.205b)

with © = (v, A} (L1) N AJ*(L2), s,a), and moreover, for v > 1, for any p € [po,Po + k5], for any
(0,7) € C x N and for any € € AJ(L1) N AY(L2),

(5 5 (L2) = 15 (£1) = (ry 5 (L2) = L) < IEGH (L) = Eg ™ (L£2)ls,,p05 (6.4.206a)
|(r ;(La) =74 ;(£1))] < C|EQ(L1) = EQ(La) 50 (6.4.206b)

(S4), Let L1,L2 be as in (S3), and 0 < p < v/2. For any v > 0 one has

CK]_y sup |E(L1)—EQ(L2)lape < p = AL(L1) CA)P(L), (6.4.207)
£€0o

Proof of Lemmata 6.4.147 and 6.4.148. The proof is the same that the one of Theorem 4.3.60 in Section
4.3 which is based on the iterative scheme in Lemma 4.3.71. Here Lemma 6.4.147 follows from Lemma
6.4.148. The proof of Lemma 6.4.148 is similar to the one of Lemma 4.3.71. Indeed by hypothesis
the operator £ in (6.4.183) has the same class of operators defined in Definition 4.3.70 and moreover
smallness condition in (6.4.187) is the equivalent of the smallness condition of v~ !¢ in Theorem 4.3.60.
One difference is that here the frequency w, deends on parameters ¢ € R?, while in Chapter 4 there is
only one-dimensional parameters A € R that modulate w. Anyway there are no differences in the proof
since Kirszbraun’s Theorem on Lipschitz extension of functions holds in R¢ (see Lemma A.2 in [50]).
The proofs of items (53),, (54), of Lemma 6.4.148 are the same of those of items (53),, (S4), of Lemma
4.3.71. The difference is in the fact that in Chapter 4 one considers the same linear operator £ that is
the linearized of the same non linear operator on two different points u; and uy. Moreover the difference

of L£(uy) and L(uz2) is given by the difference of u; and ug. In other words the operators are close to each
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other if the points u; are close. Here one gives the estimates on the differences of ry ;(£1) and ry ;(L2)
directly in terms of the differences of the two operators £ and L.

Another difference is that in Theorem 4.3.60 one get a complete diagonalization. This is obtained
by applying infinitely many changes of coordinates that approximatively diagonalize as one can see in
Lemma 4.3.60 in Section 4.3. In this case, to prove formula (6.4.191) it is enough to consider ®y the
composition of a finite number of changes of coordinates. That is why the set of parameters in (6.4.190)
is defined for |I| < N. The last difference is that here the sites j € S¢ instead of Z. This cannot create
problem by Remark 6.4.133. O

Remark 6.4.149. Approximate eigenvalues In Theorem 4.3.60 in Section 4.3 given an operator L
one construct the eigenvalues pc®; as limit of some “approrimate” eigenvalues e, forv > 1. Here we
have that we stop the sequence of p; ; after the number of steps one need in order to get the approzimation
of order N in (6.4.192),(6.4.193) and the one defines ,uij as the last term of such sequence. Moreover
in Chapter J the operator L is the linearize operator of a field Fy in some point u. Theorem 4.3.60
provides also Lipschitz dependence of the approximate eigenvalues u(’;j(u) with respect the point w. This
is used in measure estimate in Section 4.5 Here the situation is different. As we will see the operator
L comes form the linearization in zero of some vector field Fy. Hence while in Section 4.5 one has to
control the difference between the eigenvalues of L(u1) and L(uz), i.e the linearized operator of Fy in two
different functions ui, us, here we need to control the differences between the eigenvalues of the linearized
operators of two different fields Fy, Fy. If one knows that Ly is “close” to Lo (clearly one has to explain

the meaning of “close”) then the bounds on the eigenvalues follows trivially.

Corollary 6.4.150. For g € Z, consider the equation

Lyu=g. (6.4.208)
Let us define
€O AN (o) > 2
Py = o1 poy (O] 2 T . (6.4.209)
Vezi || <N VY(oj)eCxZ NS

If¢€ e A?\,7 N P]%;’ (defined respectively in (6.4.187) and (6.4.209)), then there exists h = (h,h) € X such

that
I£nh = gllip, < Cllgllap, SN, vi=(,A¥ NPy, a,s). (6.4.210)
13— gllny <7 (1B + B0l )N Iy + 7 CEON g p2ri1,

Proof. First of all we can define
h:= (wy -0 + Dn) ‘g, (6.4.211)
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since Dy is diagonal and hence it is trivial to define its inverse. Let us check estimate (6.4.210). Following

the same strategy of Lemma 5.44 in [31] one get the bound

(6.4.209)
||h||17,p < 7 Hg||’t7,p+2‘r+1 (6.4.212)

and that h € X. Eq. (6.4.211) implies Lxyh — g = Ryh and moreover one has

(4.3.94¢)
IRnhllz, < (BN + BN IS hlgp, + (BN + |EY (3 )|[h]5,. (6.4.213)
By using (6.4.212), (6.4.193) and (6.4.187) we have that (4.3.94c) implies (6.4.210). O

6.5 The sets of “good” parameters

In this Section we conclude the proof of Theorem 1.2.5. In Sections 6.1 and 6.2 essentially we rewrite
the (1.2.16) as a infinite dynamical system given by the vector field in (6.2.14). In this way we are allowed
to apply Theorem (3.2.39) to the vector field Fy defined in (6.2.14). The analysis performed in Section
6.3 guarantees that one can satisfies hypotheses (3.2.69) and (3.2.70) of the Abstract theorem. In order
to apply Theorem (3.2.39) one need to identify the sequences of maps 7, with properties (3.2.65),(3.2.66)
and (3.2.67). and give a more explicit formulation of the sets of “good” parameters defined in (3.2.72)
in order to estimate the measure of such sets.

On the field Fjy we cannot apply directly Lemma (6.4.140) just because N (1) is not “small enough” and
we are not able to prove that 7 is close to the identity. We overcome this problem using an algebraic
arguments. We strictly follows the strategy of Lemma (6.4.140), we will underline the fundamental
differences. Roughly speaking the aim of the following Lemma is to conjugate Fy to a vector field for
which the term N1 has constant coefficients of order O(£) plus terms of order at least O(¢ %) Clearly
a procedure like this cannot be iterated infinitely many times. We just perform it one time in order to
fullfil the smallness hypothesis of Lemma 6.4.140. In such Lemma one reduces the size of the term in

N “quadratically”. We have the following result.

3
Lemma 6.5.151. Consider the field Fy defined in (6.3.26). Fiz K1 = K§ and take py1 of definition
(3.2.61). Assume

prLOKS <€ (6.5.214)

for some C depending only on d, 7. Then, if € is small enough, there exists a tame, reversibility preserving

map

Ti =1+ f:00 %X Daytprao,p+v(50 — p150, 7 — p170) = Dag p+v(50,70), (6.5.215)
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with

Cip(f) < Cg ' K" max{|a| [0 1Py }, P < p2 (6.5.216)

v,py Hb2

that satisfies (3.2.65), (3.2.66) and (3.2.67) with n = 0 and with p1 = po + p, P2 = po + k2 defined in
(3.2.61) and (3.2.63) provided > 2pg + 27 + 4. We set

FO = (ﬂ)*FO =Ny + é : Da072p1a0,p+y(30 — 2p180,7 — ZPITO) — Va072p1a0,pa

and moreover F' has the form

Fo=(14 hl)(Ng + N 4 NP +H1). (6.5.217)
On the set of & € Op such that |w - 1| > ~v/{I)7 for |l| < K1 one has the following. The function hy
satisfies bounds (6.4.72) with (58) ~ Mo& and 5,&3) ~ Mo&. One has that N& =wy -0+ ﬁl_lw - Oy, with
ﬁl_l = oL, and

~ 1

and that NJ(FI) as the form (6.4.61) with coefficients ad, b, Nl(z) has the form (6.4.62) with coefficients
al, bl fori=0,1, 2 of the form (6.2.22) with the same N of #y. On the field N1(2) the bounds (6.4.74)
hold with Ky ~ K1, Cp(N®)) ~s Moé and (Sél) ~ 70_1||H(§9’0)H17,p = Apd. With the same convention also
the bounds (6.4.75), (6.4.76), (6.4.77) and (6.4.78) hold.

Proof. Recall that , using the notations of Lemma (6.4.140), for the field Fy the function h = 0 and the
constant ¢ = 1. Note that the definition of 51(,1) is the same of Lemma 6.4.140. It controls the norm of the
Hée,o) divided by the size of the small divisor «y. The definition of (5,(,2) has changed. Indeed in this case
we have set 5,(32) ~ C’ap(Nél)) without divide by ~p. This is due to the fact that ’yo_lle(Nél)) = Ao
that is not small. In Lemma 6.4.140 we used the smallness of 55?) in order to prove that 7T is close to
the identity. In this case to get the result we need to use different arguments. However we follows the
same strategy used in Lemma 6.4.140 and we perform the same four steps of that Lemma. Concerning
step 1 and step 2 we apply the same transformations defined exactly in the same way. In this case there
is no small divisors in the equations that define transformation ®; and ®5. Hence the same estimates
of Lemma 6.4.140 hold with the convention 553) ~ Mp& and 5&) ~ ’)/071||H(()9’0)”g7p = Apd. The step 3
has to be analyzed more carefully. Indeed if one looks at the equation (6.4.107) for § one sees that one
has to control the inverse of the operator w - Jp. By using the diophantine condition (6.3.28), one get by

pi+p ! 0 2 “p [S 1 _ 1 Kvpo—i-QT—&-l
||B||U, ) 0 < KIO ,-Y 1||’I7’L va 1 < 10 2 ’70710117 1(N(§ )) g " Q[O’
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that is not small. We need to estimates § in a different way. We first analyze the form of the coefficient

ag) . By equation (6.4.93) we have

1

ma(0) = <217T/(1+a2(9 )" 2>_2 Y (6.5.219)

where ay = \/(1 + a2)? — |bo]? — 1, with ag and by the coefficients of Nél). We have that we can write

as = az(0,z) + b0, x), b(8,x) = \/(1+ az)? — |ba]2 — (1 + a2) (6.5.220)

and we note also that
1bllp, < (Cap, (N§V))? < CE2, (6.5.221)

for some constant C'. Moreover by an explicit computation we can write

ma : ! a dx + d
2T on Jp P 2n(1 — [paade +¢)’
2
d:=2m¢ — (/52) + (/52)6,
T T
6.5.222
A._1/+1/~2_1/~ / +1/2 i
¢:=— TC 3 Tag 5 Tag Tc g ’]I‘C ,
1 1
C .= 2((1"_@2);_14‘262)
Clearly one has
1 ~
s = 5= [ Fllay < CElazlo ozl
) T (6.5.223)
Iz = 5= [ Gallaya, < C%
Clearly using (6.5.220) one has
1 (6.5.223),(6.5.221)
me = 5 / azdzx + s(6,x), (IS < cee. (6.5.224)
Roughly speaking this implies that in low norm p; one has ma ~ as + O(£?). Now equation (6.4.93)
becomes
B(O) = — (@8 (140 1/a dots)—1-c)0) c—1/ (0, z)dodx
= 1—|—C 0 K o T 2 ) - (27T)d+1 —_ 2\Y, )

(6.5.225)
Now we have to estimate . The critical term is obviously the term of O(&) because one cannot use
estimate (6.3.28) since vy ~ £. One can use an algebraic arguments. First we recall that by (6.3.24) one
has @ = w ! + w©(€) with w=! = j2, j € ST. On the other hand the term of order £ of § (6.5.225)
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depends only on the coefficients ag given in (6.3.25). Hence in formula (6.5.225) we need to estimate
@k with k € (ST)? but with only two components different from zero and not for k € Z% as in (6.3.28).

This implies, using Lemma 6.1.123, in the term asz,; - 0, there are only trivial resonances, and hence

HBHﬁ‘o,p—I—po < ||HK1a2”770,p+p07 Hﬁ”ﬁo,m < C& (6'5'226)

for some constant C', that is a better estimates with respect to the one in (6.4.108). In this way we get
that the transformation is £—close to the identity. Now the last step can be performed exactly as in
Lemma 6.4.140 because there are no other differences and one can estimate the transformation ®4 as
done in (6.4.124) and (6.4.125). Thanks to the perturbative arguments in (6.5.222) and (6.5.220) one

can fix
1

S dzxdf
D= (on)dH /Tdﬂ 20

and the Lemma follows.

Remark 6.5.152. Note that the coefficient co in (6.5.218) gives the correction of order O(£5%) to the
eigenvalues j2 as we will see in Section 6.6 (see equation 6.6.275). This term will remain the same at

each step of our iteration since all the further correction will be of higher order in &.

The main result of this Section is the following:

Lemma 6.5.153. There exists a sequence of maps T, n > 1 that satisfies (3.2.65), (3.2.66) and (3.2.67),
such that the n—th vector field F,, is defined on Oy and on O in (3.2.72) satisfies bounds (3.2.74).
Moreover F,, is pseudo differential of the Schrodinger type (see Definition 6.2.127) and can be written in
the form (6.4.58)

Fp = (1+ hy) (Né") +NO 4+ N@ 4 Hn> (6.5.227)

where Nén) =wn -0+ Q;lw - Oy With Q,;l =, Q71 w, € RY is diophantine and
lwn, — @y < CE,  |en — coly < CE6, (6.5.228)
where co 1s defined in (6.5.218),
dy H (w)[] : TIEhSPH — TIEhED,. (6.5.229)
In particular Nél),]\@(f) have the form (6.4.61) and (6.4.62) and the following estimates hold:
Cy,p(Hn) < Cg (T Gy NBnlls, pr Cop(NEP) < O, (G- (6.5.230)
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Yo O 5, 0 < 0K O (NED) < 0K M, (6.5.231)

We also have that the coefficients agn), b(n), cgn), dg.n) of the field NT(LQ) fori=0,1,57=1,...,N have the

(2

form

o =a® +a", b=0" 43", i=0,1, (6.5.232)
where the coefficients ago)’ bl(-o) fori=0,1 are given by formule(6.3.25), while
18 s 1Bl < CE8, i = 0,1, (6.5.233)
and
1 gm0 1A < (14 6K7)Cip, (Tars (Go)).- (6.5.234)

In particular one has that

lai™ = Taa™ ™ Vlagn 17 = Tub" gy < 6554, =012

)

= Tl " = TVl < KT im0 N

[ 7

(6.5.235)

le
Proof. We prove the Lemma by induction on n. If one assume that we already constructed the map 7,
such that all the properties above are satisfied then we proceed as follows. First of all by (6.5.231) one
note that hypotheses (6.4.66) of Lemma 6.4.140 are satisfied. Then we apply the Lemma to the field
F,,. We set T,,11 the map given by the Lemma (6.5.215). It satisfies (3.2.65), (3.2.66) and (3.2.67) by
(6.5.216). We set F}, := (Tr41)«Fn (see (6.4.70)) that has the form

By o= No+ Go = (1+ hpy1) (Ngm + N 4 N Hn> (6.5.236)

that clearly has all the bounds (6.4.72),(6.4.73), (6.4.74), (6.4.75), (6.4.76), (6.4.77) and (6.4.78) hold and
these bounds together the inductive hypotheses implies that the field F}, satifies bounds like (6.5.228)-
(6.5.234) except for (6.5.231). Actually one proves better bounds on ngl), aleo.

Indeed we have Nén) = Wpt1 -0 + Q;lw - Oy With Q;l = 107, Wyt € R? is diophantine and
]wnH - (,NL)’,Y S Cg(;, ’C»,H_l - 1|ry S Cf, (65237)

and

Cip, (N < (1 4+ KMSK )2,

A

Cipa (V) < (14 KETOK, ") Uo (KL + K SKGLy),

n

Gy (WD) < (L KSR ) [ Ky 0o mm)s K 4 KK 2007,
. (6.5.239)
Copa (V) < 82y (KL, + KATKAL, ),
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Cip, (Gn) < (1+ KSR, A,

R (6.5.240)
Cipa(Gn) < (1+ KLOK, ") Uo (K + K46),
VPOl < (1 KL K [ 027006 K 5 + K 02K 25, (6.5.241)
while the finite rank operator Ay, in NT(LQ) has coefficients
max {16 [apy 14 gy b < (14 KE10K, ") max ([l g, 18 15, )
i=1,..N ) v2,p10 i v2,p1 S = n n—1 =1, N 7 v,p1 i v,p1
max {116 g pa 14 e} < (14 K2VOK ) (iqlaxN{ncE”)Hm, 1.} (6.5.242)

i=1,...

FRLORE (e a6 ) )

Clearly one has that bounds in (6.5.230), (6.5.233) and (6.5.234) holds also for F,,. The more critical
conditions are those in (6.5.231). Using (3.2.62) by (6.5.239) and (6.5.241) one gets

Cop (N) < 6K, |HPO 5, < 0K, ™ (6.5.243)

that are bounds even better than (6.5.231).

By the definition in Theorem 3.2.39, we have that the field Fj,41 is given by F,+1 = (<I>n+1)*ﬁn,
where the map ®,,;1 is generated by the field g,,41 of Definition (3.2.37) used with F' ~~ Fn We have to
show that the map ® does not affect seriously the coefficients of N,(Ll), N,(ZQ) in such a way the estimates
on F,, 11 remains essentially the same of those on Fn. First we note that, by the form of the map ®,,;

one has

Fpt o= (®ni1)uFn = (14 hnst) ((@n+1)*(ﬁ(§")) F (@) (ND 4 N fIn)). (6.5.244)

Let us study first the term that does not contains the constant coefficients term Nén). Again by the form
of the map ®,,1, that is generated by g,41 € B, we have that ®,,4+1 preserves the pseudo-differential

structure of the vector fields. By setting
F = (Pn+1)«( A7(L1) + N1S2) + ﬁn)

we have that the coefficients of (ILyF)®) comes form HN(‘I)HH)*(NS) + N2+ I\ H,) or from
A/ (s 1)« (T Hy,). Obviously the first coefficients satisfies (6.5.231) using (6.5.239) and the fact
that ®, 1 ~ 1 + O(6K,, ™). The second terms satisfies (6.5.231) because by Lemma B.180 one has

1
T (®pi1)s (s Hy) 1= HN/ (Prs1)? [gnsts yrs Hy)ds, (6.5.245)
0
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and hence one gets estimates (6.5.231) by using the estimate (3.2.73) on g,+1. Let us analyse the first
term. We note that Lemma B.184 holds also with Nén), since it has only constant coefficients. Hence

we have

1 1
\r (1 (331) S \r (1 S 7"
T (@) (M) B2 11 /O ds(®s1)S [gnrn, N] = Ty /0 ds(rs) T, ., TLalgnr, N

1
= HN/ dS(‘I)n+1)iHKn+1HA [9n+1, (1 + hn+1) (Nén) + N7(Ll) + N7(12) + HNHn)i|
0

1
—HN/ ds(q)n+1)iHKn+1H.A[gn+17thrlN(gn)]
0

1
~ Iy / (@) 2,0 T [ g, (1+ B (N + N2 4 T A )|
0

(6.5.246)
Now we use the definition of g,+; and by item (i77) in Definition 3.2.37 we obtain that
i LA [, (1 4+ ) (B 4 N0 4 R 4 T i,) ] = T, LA, + 7 (6.5.247)

where 7, satisfies bounds (3.2.60) and I, II4F, = (1 4 hy1)II4H,. Equation (6.5.231) simply

follows by applying Lemma B.182 and the inductive hypotheses.

n+1

In order to prove the inductive basis we reason as follows. First we note that if n = 0 then we cannot
apply Lemma 6.4.140 in order to define the map 77 and the field Fy. On the other hand we apply Lemma

6.5.151 that provides the same result. Then on can reason as done in above using the map ®;.

O

Now our aim is to give an explicit form to the sets O’ € M . We have the following

Knt1,0Kn ™ ym <Fn)
result.

Lemma 6.5.154. Consider the vector field F, given in (6.5.236) and assume the Inductive hypothesis.
Fixv >0 as
1

vi=n+n", n* = log% ~ , kg =TT+3. (6.5.248)
R4

Then there exist a vector wpy1 € RY and a sequence of purely imaginary numbers
1o (€) = (€)= —io(cas1s® + 1), o==%1, j€Zy NS, (6.5.249)
with

17l < CE |1y — 1|y, < C&6, Cn1 — Cnly, < E0K, ™, Wil — Wnlyy < EK,™, (6.5.250)
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with 7‘6 defined in (6.4.182), such that, by defining

n n nlo ~2_0./ /2
T B R e
Viezd, |l| < K, Y(o,5),(c",j) € C x (Zy N S°)
€0, wner -1+ u™M ) > 2,
P (n+1) = ¢ onit 1+ bty (E)] 2 : (6.5.251)
veZzZ || <K, V(0,j)€CxZyNSe
. . 2’777.
7t 1) =] $EO e ll2 g L
viezd || <K,
one has that
A2 P2 §2m ¢ M Koo S (E,). (6.5.252)

Proof. We show that for any parameter & € A" N P27 N S there exist operators Wén), in) that
satisfy all the properties of Definition 3.2.42 with v ~» 7, K ~» K41, t ~» 0K " and F ~ E,. As
we said at the beginning of Section 6.4.2, we look for an “approximate solution of the equation (6.4.137)

where K| ~» K,1 and
N~ (1+ hpy1) (N(gn) + Nq(ll) + ]\7752) + H,/\/’I'i’n)-

First of all we need that w1 is a diophantine vector of R%. As first approximation we does not consider
in the commutator the terms Nr(bl), (HNﬁn)(e). This is possible because one of the consequences of
Lemma 6.4.140 is to reduce the size of such terms. We will see that this approximation is sufficients to
get a good approximate solutions that satisfies the requirements in Definition (3.2.42). Hence we study
equation

(L)t = (wnﬂ O+ Qn(e))u — 7, (6.5.253)

with f € Z and u € X (see Definition 6.4.141) and where
0, = (I N™)®) 4 NO 4 (T H,,) @), (6.5.254)

The following strategy can be applied indifferently to (£,)+ of (£,)—. Hence we will simply write £,,. By
the construction of the field F}, one has that the operator L, satisfies the hypotheses of Lemma 6.4.142.
Indeed the first smallness condition in (6.4.148) comes from the hypothesis (6.5.233) and the fact that
the map 7,.1 in Lemma 6.4.140 is of the form 1 + O(6K,!). The second bound on the coefficients

() g

¢; ',d; "’ is obtained in the following way. By inductive hypothesis we have the control of the p;—norm

in terms of Il\,1 Go. Now by Lemma 6.4.130 we have

| |3 < (1 4+ KPOK,, ") Cpy v2d11 (T Go) < CED. (6.5.255)

v,p1
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By applying Lemma 6.4.142 to the operator £, in (6.5.253) we get the operator
Ly =& (wny1 - 09 + Dy + R4 (6.5.256)
of the form (6.4.183) where
D, = —iEdiagjey, nge(cns1i’ +79),  Ry:=EVD+ EJ", (6.5.257)

as in (6.4.151). Again by construction we have that £, in (6.5.256) satisfies the hypotheses of Lemma
6.4.147. In order to prove a bound like (3.2.80) we fix the number N > 0 in Lemma 6.4.147 in such a
way one has

N~r < K751, (6.5.258)

3\¥
By the construction in the Lemma, one has that N has the form Kéz) k4 for some v > 0. Hence to get

the (6.5.258) it is enough to fix

vi=n-+n", n* = log% :—i. (6.5.259)
As we already seen, Lemma 6.4.147 is based on an KAM-like scheme. In other words, if we are at step
n of the abstract algorithm in Theorem 3.2.39, hence we have to perform n + n* Kam steps in Lemma

6.4.147.

3\v
By applying Lemma 6.4.147 with N = KSQ) := K, to the truncated operator
L= T& (Wny1 - 09 + Do + (k,,, ES)D + Tk, (E)TTE (6.5.260)

we have that, for the parameters £ € AP = A?: defined in (6.4.190), there is a map ®, := P that
satisfies (6.4.194) and conjugates £;} with the operator

(Lh)y =TIy (wn+1 -9 + Dy, +R;)H§ (6.5.261)

where
D, = diagaec,jez+ (UZ,j)v
RY: = (EY)'D + (ESM),
given by equation (6.4.192). Moreover using estimates (6.4.193), (6.4.194) and the Inductive Hypothesis

(6.5.262)

we get the bounds:

(B, + 1SV IES, < Kot (IBIK + 1BV 195 ) K™, 1 i= (1A% s,0), (6.5.263)

U1,p U1,p = v,p
Moreover one has that
D, — g, <7t (\EY‘) dec ¢ B i‘p) (6.5.264)
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In particular this means that

|(E£n)>l/ dec + ‘(E(gn))u dec KnilKgﬁlé-(s (65265)

1,1 v1,p1 = n

Now consider the equation

(s + BP0 - 0y + (T Fr) @ = f (6.5.266)
We claim that, if we set
wi= WM =& (wy - 9+ DY) 1D, f, (6.5.267)
then equation (3.2.80) holds. First of all we have, by (6.5.267), that (6.5.266) reads
Af =07 (N + AP0 9y + (g, BU)D + (W ES) ) @y - 5 + D) ' 0,f =0, (6.5.268)

Hence using (3.2.61), Corollary 6.4.150, (6.4.194) to estimate ®;, (6.4.193) to estimate RY, (6.4.75) and
(6.4.77) we have (3.2.80) for the w—component and in particular
Cipi (Af) < 7 0K, ™ KL Clsp (),

! (6.5.269)
Cpa(Af) < 7 KT (Cﬁvm(f) + Cip (f)%KSIW)

Note that (3.2.80) follows even with o = 0. The operator Wj_n) is constructed in the same way. Clearly
by setting Wy := (w - 9p)~ ! and using that & € S (n), one get the (3.2.80) by defining W™ as in
(3.2.78). O

Remark 6.5.155. Cosider F,, the sequence of vector fields given by Theorem 1.2.5 and consider the
approximate eigenvalues uffnj) (&) given by Lemma 6.5.154. By Remark 6.4.146 and 6.5.152 one has that

(€)= cog® + 1 + 0(€)7% + (&) = QM + 0(€)52 + 0(€), (6.5.270)

where Q™ is defined in Section 6.6.

6.6 Measure estimates

In this last Section we prove that the measure of the set of “good” parameters is large as £ — 0. In

particular in Section 6.5 we have seen that Theorem 1.2.5 holds in the set

Cei=[)On  On:=A"nPI"ASI", (6.6.271)

n>1

with v defined in (6.5.259) (see Lemma 6.5.154). Before performing such measure estimates we first prove

that the map which link the parameters £ to the frequency w(&) and £ — i j(€) is a diffeomorphism.
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6.6.1 The “twist” condition

Recall that by definition we can write F' = Ny + G where Ny := (w™' +w(©)(€)) - 9p + Q@ 'wdy where

Wi = (€)= —(ME);. j € ST and (@17 = odiagi? (271);7 = 0. Hence by equation

Vi g g
(6.3.24) we have
Ty F = w(£,0)0 + Q6, €)wd,
w(§,0) = +00(©) + G40, 0), (6.6.272)
0(0,€) = QY+ Q0(0,6) = d, F™)(0,0,0)[] = Q' + dwG™)(6,0,0)[]

Let us study in particular the linear operator ) on Hg:hggﬁ’. We have that Q71 := —iF0,, : Hg:hzg’(? —

Hé‘hgg’f_Q where E := diag{1, —1}. Moreover one has that Q0 = ((Q(©)7"), ,/_.; can be seen as a 2
times 2 matrix whose components are operator on H®P. In particular it has the form given by (6.3.25).

We have the vector field
0=w(,0)+ HNLG(‘Q)(Q,y,w)

j=GW(0,y,w) (6.6.273)
W = QE, 0w + T G0, y, w)

where G is small. In order to run our algorithm we need to reduce the matrix Q(w(§)¢;€). In order to do
this perturbatively we need to impose second Melnikov conditions. The minimal requirement (so that
the reduction algorithm runs at least at a formal level) is that the difference of the eigenvalues is not

identically zero as function of £, namely

e Twist. Denote by p;(&) for j € S¢ the eigenvalue functions of Q(6,€). For all [, j, k, 01,09 such
that: if o1 = o9 then (I, j,k) # (0,7, /) and moreover ) . l; + 01 = o2 consider the map

§ = w(&) - 1+ o1p5(8) — o2pk(8) (6.6.274)

where we defined w(f, €) := @ (&) + Ty G? = w +wO (&) + TN G®. We require that these maps

are never identically zero.
This is the reason why we needed to introduce w(®, Q) since clearly
w(*l) S+ Qg_l) + Q](ﬁ_l) =0

for infinitely many choices of [, j, k.
We split:
Q(0,¢) = 2"(&) + 200,¢)
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where
Qint) &) = QD 4 diag(m; - §)jesenz, = diag(j* + mj - §)jesenz, (6.6.275)

) 1 1
m; = Z(C‘” +C; V‘) = 2(2&11 — ay(j52 + V5 )+a3v —2b2v —b3v a4v?j — 2a4vt 7 )

1
m; = 5(Qal —ay(j2 + V%) + (ag — 2by — b3)V? — ayj2V2 — 2a6]2V4)1

where V := diag;(v;). Note that Q is of the same order as Q) however it turns out that for generic

choices of aq,...,ag,bg, b3, by, v1,..., Vg
° W, Ql(gt) (&) satisfy the twist conditions, namely Vi, j, k 01,09 = 0,£1 the affine maps
€= () 1+ o™ (€) — 020 (€)
are not identically zero (with the usual restrictions on (I, 7, k)).
e The twist condition above implies the corresponding twist condition for the y; (see (6.6.274)).

Now we prove that our normal form satisfies the twist condition. First we introduce the following

non-resonance condition.

Definition 6.6.156. We say that (a,b) := (a1, as, as, a4, ag, b2, by, by) is non-resonant if one of the

following occurs:
1. ag #0,
2. ag =0 and a1 # 0,
3. ag =a; =0, —ay + by # 0 and one of the following holds:

e a, =0, or

o as #0 and (2d —1)as —bs # 0 or

4. ag=a; = —aq4 +byg =0, a3 —as — by — by £ 0 and one of the following holds:

e as =0 and ag — 3bs —bg =0, or
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e as #0, a3 —ags —3bo — b3 #0, or
e as =0, a3 —3bs —bg #0 and a —gg%%bg—bg#o, or

e as #0, a3 —ay — 3by — by = 0 and day # bs.
Note that a non-resonant vector (a,b) is “generic” in the sense of Definition 1.2.4.

Lemma 6.6.157. For all non-resonant choices of (a,b) there exists a “generic” choice of the tangential

sites ST = {v1,...,vq} C N such that the map
2A 3 €= (&) = w () — Me (6.6.276)
is a affine diffeomorphism.

Proof. Since & is affine we only need to show that M is invertible. Recalling that M;; = (1/4)(Cy} +

Cv_ivj ) fori,7 =1,...,d. It is convenient to represent
Mm=1 iM‘Q’“) (6.6.277)

4 k=0
where the matrix elements M%) are homogeneous of degree 2k in the variables v1, ..., v4. More precisely

setting V' = diag(v;), A;; = 1, forall ¢, j, we have

MO =a;44-1), MO = —agv?(44 — 1)v*

M(z) = —(a3 —ags — by — bg)V2 + (a3 —ag — 3by — b3)2AV2 — 2a2V2A
@) (a3 — ag)v? — 2a2V12 — 3b2V% — b3V12 if i=k
ik 2(ag — ag)vi — 2a2v§ — 4b2v,2q — 2b3v% if i#£k

M(:) _ { (—a4 — b;;t)V;l if 1=k

—2a4vive if 1#k
M(4) = —(—a4 + b4)V4 — 2a4V2AV2
We now compute P(a,b,v) :=det (M) which is a non trivial polynomial in (a1, ..., ag, ba, b3, by, Vi, ..., vg).

Indeed P(a,0) = det(M©) = af(2d — 1), so for any a such that a; # 0 we impose P(a,v) # 0 as

generiticity condition on the v.
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In the same way, the term of highest degree in v is det(M©)) = ag(2d — 1) []; v¢, so again for any
a such that ag # 0 we impose P(a,v) # 0 as generiticity condition on the v.

We are left with the case a; = ag = 0. Now the term of minimal degree is det(M(?)) while term
of maximal degree is det(M®). Now we show that for generic choices of a;, b; then det(M?)) is not

identically zero as function of the v;. First of all we set
A= —(a3 —ag — by — b3), o= (a3 —ag — 3by — b3)2, b := —2ay. (6.6.278)
Hence we can write
M®P = \V2 4 0 AV? + BVPA.

Assume that A # 0. Now if 8 =0 and « # 0 then one has

M = (14 TAV.

The first matrix in the product is invertible if has all the eigenvalues different from zero. Hence we

impose that

« 6d+1
1+—-d+#0, ie. —ag — by — bz # 0. 6.6.279
3 #0, le az—ap Sd 102 b # ( )
If on the contrary o = 0 and 3 # 0 then
p

M® = v2(1 + A

which is invertible if

1+ ?d £0, ie ag—(2d+1)ag—by — by #0. (6.6.280)

Consider the case o # 0 and 8 # 0. Then we have

M =1+ %A + évQAv”)v?.

The invertibility of M) relies on the invertibility of the matrix 1 + R := 1 + TA+ gVQAV_Q. We have
that R has at most rank 2, hence has at most two eigenvalues different from zero. Say that p; 2 = p11,2(v;)
is such eigenvalues that in principle depends on the v;. Now one has that 1 + R has d — 2 eigenvalues
equals to 1 and two equals to 1 4 p1,2(v;). One must have that 1 + p; 2(v;) # 0. Hence if p(v;) is not
a trivial polynomial in the variables v; then one get the invertibility of M2 as generiticity condition
on v;. Otherwise one has to exclude some values of § and g by imposing a generiticity condition on
ag, as, b, bg (as done in equations (6.6.279) and (6.6.280)) and then taking a generic choice of v;. This
second option does not occur. Indeed one note that the vector w; := (1,...,1) € R is orthogonal to

the kernel of the matrix $A. Moreover the vector ws := ¥, where ¥ := (v3,... ,vg), is orthogonal to the
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kernel of the matrix yV2AV~2. Hence the range of the matrix R is generated by {1, w2}. One can note
that

Q B.o oy o, . B

—A+ VA =<

()\ )\V V) )\dwl + )\C1w2,

Q Boo ooy O L B

(A + VAV )iy = S Cowy + Tdi, (6.6.281)

d d

1 2

where Cj := g —, C2:= E s
=1 Vi i=1

The 2 x 2 matrix which represent the matrix R has eigenvalues given by

P12 = % (d(a +B8) £ VA2 (B —a)? + 4aﬁC’102> (6.6.282)

The dimension of the range of R, for any a/\ # 0 and /A # 0, depends only on the v; fori = 1,...,d.
The same reasoning holds verbatim if a; = ag =0, A = 0 (see (6.6.278)) but

A1 = —(b4 — a4), (6.6.283)

indeed one can write

MW =yt ?vav?
1

Here, as in the case of M®), we get some additional conditions on a; and b;: if ay = 0, then M® is

invertible, otherwise we have the invertibility of the matrix if
as #0 and a4(2d —1) — by # 0. (6.6.284)
Suppose that A = Ay = 0 then
M = (a3 — ay — 3by — b3)24V% — 22,V A4 — 2a4V2AV?,
which has at most rank 2. O

Lemma 6.6.158. For all non-resonant choices of (ai,az,as,asas, be,bs,by) there exists a no-trivial
polynomial in the v; such that for all choices of (v1,...,vq) with v; “generic” with respect to the polynomial
the following holds. For all ¢,j,k, 01,09 such that: if o1 = o9 then (I,j,k) # (0,4,7) and moreover
> li + 01 =09 the affine map

§—w(@)- 1+ chg-im) (€) — 02920 (¢) (6.6.285)
is not identically zero.
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Proof.
w(§) -1+ alﬁg'int)(f) — 0™ (&) =
w(_l) A+ Jlj2 — 0'2]6'2 + (MTg + oim; — Uka) £

then if w1 . £ + 01j% — o9k? = 0, and using (6.6.275), we look at the vector

X .
MTL+ (o1 = 02) (221 + (a3 — a2 — 2o — by)V?) T+

1 . -
—1—5(01]2 — 02k2)( —as — a4)V2 — 2a6V4)1 =

1 1
(MT + B (ag + 23.4\/2 + 28.6\/4) AV? — B (28.1 + (ag —ag — 2by — b3)V2)A>£

since (012 — 09k?)1 = —AV%( and (01 — 09)1 = —AL. Hence, by using (6.6.277), we say that a list (a, v)
is acceptable if for all ¢, j, k such that ). ¢; = —o1 + o2 one has

1
— Z (alll + (a3 —ag — by — 'bg)V2 + (—a4 + b4)V4 — a6V6)€ 7& 0 (66286)

then one only needs to require that none of the v; satisfy
p(z) :==a; + (a3 —az — by — b3).%'2 + (—aq + b4):1:4 —agz® = 0.
The hypothesis of non resonance implies that p is not identically zero. O

Remark 6.6.159. Just to fix the ideas we give some examples of cubic non linearity (see (1.2.18)) for
which the extraction of parameters give the twist condition on the tangential sites. The classical cubic
NLS withay =1, a; =0 fori =2,...,6 andb; =0 fori=2,3,4,5 . The derivative NLS a3 =1, a; =0
fori=1,2,4,6 and b; =0 for i =2,3,4. (this case has been studied in [61]).
6.6.2 The estimates of “good” parameters

We prove the following Proposition.
Proposition 6.6.160. Consider the set C. defined in (6.6.271). One has that

|Oo\Ce| = 0, as ~p— 0. (6.6.287)

For simplicity we set G = A2 (n),Gg) = P (n),GS’) := 87 (n) (see equation (6.5.251)). In

order to prove (6.6.287) we prove prove by induction that, for any n > 0, one has
GINGY| < Cor, IGINGY) < CKFY, n21, i=1,2,3, (6.6.288)
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We follows the same strategy used in Section 6 of [31] and we bounds the measure only of the sets GS)
which is the more difficult case. The other estimates can be obtained in the same way. First of all write,

dropping the index 1,

Gn\Gn1 = Uosocc ez, Bijy (n) (6.6.289)
lez™
/ . 2 112
RZ’;, (n) = {)\ € Gy |iwpsr - 0+ ug?—ﬂg}?ﬂ < %} .

By (6.3.28) we have R/;7(n) = () and moreover recalling (6.5.259) for |I| < Kj1,+ one has RZ;,/(n) =0.
In the following we assume that if ¢ = ¢’, then j # j'. Important properties of the sets Rlaj’;.’,/ (n) are the

following. The proofs are quite standard and follow very closely Lemmata 5.2 and 5.3 in [4].

Lemma 6.6.161. For anyn >0, |{| < K, 1n=, one has, for |£| small enough,

RS (n) C RS (n—1). (6.6.290)
Moreover,
if R7%#0,  then oy —o'j? < 8l@- 1. (6.6.291)

Proof. We first prove the (6.6.291); note that if (o, j) = (0’, ') then it is trivially true. If Rfj;,l(n) £,
then, by definition (6.6.289), there exists a £ € Op such that

) — p2 < 2yl — o2 + 2w 1. (6.6.292)

On the other hand, for £ small and since (o, j) # (o, 7),

(6.5.250) 1 ) ) 1 . ]
g = uih = S (1= C9los® = o' = O > Sloy? = o). (6.6.203)
By the (6.6.292), (6.6.293) and ~,, < 2 follows
1 4 . . 1, )
20wt -1 > <3 - <€>77> j05% = o'§%| = 4log* = o', (6.6.294)

since v < g, by choosing vy small enough. It is sufficient vy < 1/48. Then, the (6.6.291) hold.

(n) _:
. with respect

to n. In other word the eigenvalues of the linearized operator of the field F;,. If we assume that

In order to prove the (6.6.290) we need to understand the variation of the eigenvalues p

() — 8y — (D — D < Ctlog? — o K (6.6.295)
sJ 3] »J

0-7-]
then, for j # j', |l| < Kpin+, and € € Gy, we have

. (n) (n) (6.6.295) -2 112 -7
liwpt1 - L+ Hoj — Ng/,j/| > 2yp-1lojt — o' (6.6.296)

— C€loj® — o'jP|K e > 2ynlof® — o5 [(0) 77,
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because COK; 742"t < 1. We complete the proof by verifying (6.6.295).
By Lemma 6.4.148, using the (S4), (for v < n + n*) with v = 7,1 and v — p = ~,, and with
Ly =Ly_1, Lo = L,, (where £,,_1 and L,, are the linearized operator of the vector fields F,,_; and F,

rispectively) we have

A)=t(n—1) C AJ"(n), (6.6.297)
since, for [£| small enough,
_ 0 0 (6.5.235) T et Y
eONy fSu(/[)) |Eg(Ln—1)—Ey (,Cn)’g’po < COCOKT WKyttt <y = p =127
€W
We also note that,
(6.5.251) (6.6.297)
G, C  APni(n) C AF(n+1). (6.6.298)

This means that £ € G, C AJ"'(n) N AJ"(n + 1), and hence, we can apply the (S3),, with v =n + 1,
in Lemma 6.4.148 to get
[rY (n) — 2=t (n — 1)|<eK, 7. (6.6.299)

0,J ]
Then, by (6.5.228) and (C.12), one has that the (6.6.295) hold and the proof of Lemma (6.6.161) is
complete.

O

The next Lemma is fundamental. It is the equivalent of Lemma 4.5.84 in Section 4.5 and its proof
is very similar. Anyway in the autonomous cases it is slightly more difficult. This is due to the fact
that if one “move” the parameters £, then w(§) and p,; moves together. This is why one need to prove
that the entire map in (6.6.285) must have the “twist”, and it is not enough to ask that £ — w(&) is a

diffeomorphism.

Lemma 6.6.162. For alln > 0, one has

[R7% (n)] < Cy{6)"TH, (6.6.300)

Proof. Let us define the map ¢ : Qg — C
(€)= wns1(6) - L+ 1) (€) — 1 (€)
(6.5.249),(6.5.250) (

(w1402 =k +wO€) - 1+ co(€) (0 — o'k?) + 0’7“6 - a'r’é) (6.6.301)

i (@1 = ) L+ (enss — )02 = ok?) + (0 (™ =) = o (1" = 1)),
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where ¢y and ré are defined in (6.5.218) and (6.4.182). In other words the terms that are linear in £ are
given by @ = w1 4 w©)(¢), defined in (6.2.16), and 52 + coj% + rg = Qijnt defined in (6.6.275). In order
to get (6.6.301) we need a lower bound on the lipschitz semi- norm [)|"7 (as done in [31]). First of all
assume that w™! -1+ 052 — 0’k? = 0. Then the (6.6.301) becomes

P =1Al- & + i((an —co)(0j® — ok?) + (U(Tj(n) - 7“6) - Ul(rlin) - 7‘3)), (6.6.302)
where by formula (6.6.286) we have set
A= —(1/4)(&1]1 + (a3 —ag — by — b3)V2 + (—a4 + b4)V4 — a6V6).

Hence we have for & # &

V(&) —¥(&2)l
€1 — &2

for a suitable pure constant ¢ > 0. To obtain (6.6.303) we used the invertibility of the matrix A,
equation (6.6.291) and (6.5.250) to estimate the Lipschitz semi-norm of the constants (rj(.n) - ré)(f) and
(cn+1 — ¢0)(&). This implies that

> i) - o)l > C—/|l| (6.6.303)
= 2d =a" v

1 (6.6.303) _
e S

that implies (6.6.300). Let us now consider the case w™! -1+ 052 — 0'k? := Z # 0. We first prove the

[R5 (n)] < Crlog? = o'k2[(1) 77

(1)~ (6.6.304)

following Lemma.

Lemma 6.6.163. Assume that
A

],]05% — o'k?| < —, (6.6.305)
&3
then || > 1/4.
Proof. Since we have w™! -1+ 0j% — 0'k? # 0 we obtain
91> w14+ 052 = 'R = (llwnr — w7+ 107 = R lenss — 1 +1r”] + ")
1 ¢ ; (6.6.306)
Z (O, >
25 Cl\/g + € > 1
O]

Lemma 6.6.163 we have that if (6.6.305) hold, then there is no small divisor, and hence Rlaj’;,/ (n) =0. in

the last case we rewrite (6.6.301) as
Vi=Z+ M- €4+ co(€)(Z —w™ 1)+ OE|l|) = Z + AE -1 + co(€)Z + O(&6) (6.6.307)
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hence one has 6.5.218
W G2 = ze (6.6.308)
1— &2

for some suitable constant ¢, C' > 0. Now we use that |I| > Z/+/€ to conclude, for ¢ small, that one has
[p[lP > ). (6.6.309)

Reasoning as in (6.6.304), we have that (6.6.309) implies the (6.6.300). O

Conclusions Proposition 6.6.160 concludes the proof of Theorem 1.2.5. Concerning Theorem 1.2.6 in
which the nonlinearity f is merely differentiable, one repeats word by word the arguments of Sections
6.1 and 6.2. At this point the vector field in (6.2.14) is defined in the domain (6.2.10) with sg = ag = 0.
In this way the norm [ - || g»(pax,) is nothing but the Sobolev norm || - || gp(paxmy ~ || - [l0,0,p sSee Remark
6.2.126 and the definition in (3.2.34). Hence one can repeat the proof of Theorem 1.2.5 since the abstract
Theorem 3.2.39 holds in Sobolev regularity.
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A. General Tame and Lipschitz estimates

Here we want to illustrate some standard estimates for composition of functions and changes of
variables that we use in the paper. We start with classical embedding, algebra, interpolation and tame
estimate in Sobolev spaces H® := H*(T? C) and W*> := W, d > 1.

Lemma A.164. Let sg > d/2. Then
(i) Embedding. ||u||r~ < C(so)||ullsy, ¥V u € H®.
(i) Algebra. |[uv|ls, < C(so)|lullso||v]]ses ¥V u,v € H.
(i7i) Interpolation. For 0 < s; < s < s2, s = As; + (1 — \)sa,
llalls < [lull3 lulls;? ¥V ue H (A1)
Let a,b>0 and p,q > 0. For all u € H*PT4 qnd v € H**P+4 one has
ullatpllvllo+q < lullatprqllvlle + lullal|v]lotptq- (A.2)
Similarly, for the [ul3® := 3, <4 ||D%ul[Le norm, one has
ul2® < Cs1,s2) (Julg)M(ulZ)' ™, Vue W, (A.3)
and ¥V u € Watrtase o g Whiptace,
lulatplvlsty < Cla, b, p, @) (JulgSpiqlvls” + [ula”[oleSp1g)- (A.4)
(iv) Asymmetric tame product. For s > sy one has
[luvl]s < Cso)llullsl|vllso + C(s)lullsol[olls, ¥ u,ve H. (A.5)
(v) Asymmetric tame product in W, For s >0, s € IN one has
|uv[$® < gHUHLw!UlZO + C(s)ulCl|v][Lee, V u, v € W, (A.6)
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(vi) Mixed norms asymmetric tame product. For s >0, s € IN one has
3
luvlls < Sllullzee[lvlls + C(s)lulscollvllo, V u € W™, 0 € H. (A7)

If u :== u(\) and v := v(\) depend in a Lipschitz way on A € A C R, all the previous statements

hold if one replace the norms || - [|s, | - |3° with || - ||s, |- |5%-

Now we recall classical tame estimates for composition of functions.

Lemma A.165. Composition of functions Let f : T? x By — C, where By := {y € R™ : |y| < 1}.

it induces the composition operator on H*
f(u)(z) = f(z,u(z), Du(x),. .., DPu(z)) (A.8)

where D¥ denotes the partial derivatives 0%u(x) of order |a| = k.
Assume f € C"(T? x By). Then
(i) For all uw € H™P such that |u|pco < 1, the composition operator (A.8) is well defined and

1F W)l < Cllfller(lullr+p + 1), (A.9)

where the constant C' depends on r,p,d. If f € C™*2, then, for all |u|, |h[;° < 1/2, one has

1w+ R) = F@)ll < Cllllorer (llrp + B2 ull4), (A.10)

f(wh) = f(u) = [ Bl < Cllfller2 |l (IRl rp + (Rl lrp)-
(73) the previous statement also hold replacing || - ||, with the norm | - |s.
Proof. For the proof see [3] and [48]. O

Lemma A.166. Lipschitz estimate on parameters Let d € IN, d/2 < s <s, p >0, v > 0. Let
F:AxH®* — C, for A CR, be a Ct—map in u satisfying the tame estimates: ¥ ||ul|sg+p < 1, h € H*TP,

[F(Ar,u) = F(Az, u)lls < C(s)[Adr = Ao|(L + [[ulls4p), A1, A2 €A (A.1lla)
sup [[F(A, u)[s < C(s)(1 +[|ulls+p), (A.11b)
eA

Sup 10uE (X, w)[R][ls < C(8)([[Allstp + [[ulls+pllllso+p)- (A.11c)

Let u(\) be a Lipschitz family of functions with ||u||sy4p~ < 1. Then one has
ECu)llsy < C) (1 + [ullstp)- (A.12)

The same statement holds when the norms || - ||s are replaced by | - |2°.
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Proof. We first note that, by (A.11b), one has supy||F(X, u(N))||s < C(s)(1+ ||u||s+p,y). Then, denoting
h =u(X\2) — u(\), we have
1F(A2,u(2)) = FAr, u(A)l[s < [[F(A2, u(A2)) = F(Ar, u(A2))lls
+[F (A u(A2)) = F(Ar, u(A)lls
< A2 = MO+ [[u(A2)]]s+p)
1
+ [ o) + a0~ OO (A13)

(A.11e)
< P2 = M|CA + [[u(Ao)ls+p) + CS)1lls4p

1
+C(8)Hh|\sO+p/0 (1= OffuQA)|s+p + tu(A2)l|s+p) dt

so that
F(u(A1, A1) — F( Ao, u(X
7 sup WEWALA)) = B ud)lls < o1 4 sup flu(aa) o)
AL A2€A A1 — Az AzEA
A1#A2
1
+ C(s) |||ul|stpy + Hu||so+p;y§ fu}\) (D s4pry + [u(A2)[[s+p,7)
1,72
< C(s) [llullZspy + llsorpnl[ellstpy] + Cls)X + [Jullstpn),
since ||ul|sg4p,y < 1, then the lemma follows. O

In the following we will show some estimates on changes of variables. The lemma is classical, one

can see for instance [3].

Lemma A.167. (Change of variable) Let p : R¢ — R? be a 2m—periodic function in W, s > 1,
with |p|3° < 1/2. Let f(x) = x + p(x). Then one has (i) f is invertible, its inverse is f~1(y) = g(y) =
y + q(y) where q is 2n—periodic, ¢ € W=(T% R%) and |q|° < C|p|°. More precisely,

q|z = |p|Les, |dg|r~ < 2]dp|pe, |dg|52, < Cldp|2y, (A.14)

where the constant C' depends on d, s.
Moreover, assume that p = py depends in a Lipschitz way by a parameter A € A C R, an suppose, as

above, that |dypx|pee < 1/2 for all \. Then q = qy is also Lipschitz in X\, and

55 < © (1o + [sup ala blo=s ) < ol (A15)
€
the constant C' depends on d, s (it is independent on ).
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(i1) If u € H*(T% C), then uo f(x) = u(z + p(x)) € H*, and, with the same C as in (i) one has

lwo flls < CUlulls + [dplZ 1 [[ully), (A.16a)
luo f —ulls < C(|plreellullsta + [PIS||ull2), (A.16b)
lwo fllsqy < Cllulstiy + P15 lull2n)- (A.16¢)

The (A.16a), (A.16b) and (A.16¢) hold also for wo g.

(4ii) Part (ii) also holds with || - [|s replaced by |- [3°, and || - ||s~ replaced by | - |32, namely
o fI57 < C(luls® + ldplsZq]ul7), (A.17a)
o fI32, < Clul3 y + 1dpl3ey 4 ul3)- (A.17D)

Lemma A.168. (Composition). Assume that for any ||u||sy+pu,y < 1 the operator Q;(u) satisfies
1Qihlls.y < C()Illstriy + NullstpinlPllsotriy);, = 1,2, (A.18)
Let 7 := max{7, 72}, and p := max{u1, u2}. Then, for any

|‘U||so+7+u,'y <1, (A.19)

one has that the composition operator Q := Q1 o Qs satisfies

||Qh||3,7 < C(S)(Hh”ernJrfz,’y + |‘U||s+7'+u,'y||h|‘30+n+72,7)' (A.20)

Proof. Tt is sufficient to apply the estimates (A.18) to Q; first, then to Qo and using the condition
(A.19). O

A.1 Smooth functions and vector fields on the torus

Here we provide some technical results.
The following one is a general result about smooth maps on the torus. First of all, for any p > 0 and

b > 0 we denote as usual

HP(T% ) = {u= > e« |ull2, =Y (1)%|ue® < o0}, (A.21)
lezb lezb

the space of functions which are analytic on the strip T%, Sobolev on its boundary, and have Fourier

coefficients u;. By Cauchy formula for analytic complex functions we have that this w is uniquely
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determined by the values that assume on the edge of the domain i.e z = 2 + ios where 0 € {=1, -1},

We can define a natural norm using the Sobolev norm of the function on the boundary
W2, = Y / (V)2P|u(z + ios)[? (A.22)
oe{=1,—1}b T®
Using the Fourier basis it reads
D DD ST s
oe{=1,—1}bleZb
Lemma A.169. The norm |- |s, and

[ull2, =Y (1) uy 2N (A.23)
lezb

are equivalent.

Proof. Let us define theset A:={f € Z:¢; >0, i=1,....b}and B:={{ € ZV:£; <0,i=1,...,b}.
Consider p = 0. For p > 0 one can follows the same reasoning. One has

0, = 3 e+ 37 fugPe 3 a2 3 JuglPe 3 < 2 A Y 2Bl < CW)ull,,
leA Le Ac leB le B¢ leA

The opposite inequality is obtained in the same way. O

Lemma A.170. Take 4,4 of Section 3.1 as lq, = HP(Ty; C) and take a map u : Tg — Lyp Define

up(0) = [|uf|ap-
Then the norm
Au) = [|upllspo + g lls.p; (A.24)
18 equivalent to the norm
1
Blu)=( > max{Ll,[j]}>Prroe>We2lly ;> ), p>o. (A.25)

leZd,jeZ
Proof. Note that the norm in (A.24) is nothing but the norm in (3.2.37) where ¢, , is the Sobolev space
HP(T,,C) The norm in (A.25) is nothing but the norm defined in (A.21) for b = d + 1 and different
strip of analyticity for the variables # and x. Assuming that the index p € IN we first prove that A(u) is

equivalent with

N|=

Clu):= > g Pyl p > 2pg (A.26)
p1+p2=p+po \I€Z?,jcZ
P1,p2>Po
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Explicitly one has that

|
N|=

Aw)i= D7 urgPO @@ el | (37 ) el
€74, 57 €74 57

Clearly one inequality is obvious. The other comes form Young’s Inequality and

VP2 = ()P0 (1) o () 2o (12200 < () o )P0 (2;591 _‘jff ()20 + 2;{;_‘ ;00)) <1>2<“°>>

Hence C'(u) < C(p)A(u) with C(p) a constant depending on p. Clearly B(u) and A(u) are equivalent,

hence we have the Lemma follows. O
The following Lemma resume some important properties in Sobolev spaces H® := H*(T?; C) with
norm
2 2 2
lull? =D (|,
lezb

The same results of Lemma A.164 holds also for our analytic norm in (A.21).

We now introduce the space

p
WP(T2) i= {8 : T¢ = TY : |Blpcoo = 3 Ild"Bllzoe(rn) < o0}, (A.27)
k=0

and note that one has H¢P+Po (TIE) C Wp’oo(Tg).

Lemma A.171 (Diffeomorphism). Let 5 € WP’OO(TZ) for some p,( > 0 such that

18]

0 1 ¢
< — < — = A2
C,Po — 201? ||BHC7PO — 202’ O < 5 < 27 01’02 > 07 ( 8)
and let us consider @ : ”]I‘g — TSC of the form
x = x4+ [(x) = P(x). (A.29)

Then the following is true.
(i) There exists U : Tlé—(s — ']Pé’ of the form W(y) =y + B(y) with 3 € WP’OO(TS_(;) satisfying

- 5 -
1Bllc-6p0 = 55 1Bllc—sp = 2[1Bllc (A.30)

such that for all x € Tg_% one has ¥ o ®(z) = x.
(i1) For all u € Hc’p(’JI‘Z), the composition (uo ®)(z) = u(z + B(x)) satisfies

Juo @l[¢c—sp < Clllullep + [dBlp—1.¢,00[wll¢po)- (A.31)
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Proof. For ¢ = 0 the result is proved in A.167 thus in the following we assume ¢ > 0.
(1) First of all recall that, if pg > b/2 then |lu|/ze < |lull¢p,. We look for 3 such that

Bly) = =By + B(y))- (A.32)
The idea is to rewrite the problem as a fixed point equation. We define the operator G : HSP — HSP
as G(B) = —B(y + B). First of all we need to show that G maps the ball Bysa = {|lull¢-sp < §/2} into
itself.

One has

~ 1 ~ 1 >
1GB)lc=sa0 = ||D_ 5@ 8)8" | <D —l1Blc—spornllBIEsps (A.33)
n>0 c—opo ™20 '

where 98 denotes the derivative of 3 w.r.t. its argument. Note that for any v € H*%% and 7 > 0 one

has
T\7 1
lullestr < (2) 55 lullcsss (A.34)

indeed

) 2|l { st
|g7p+7 = Z<l> (+7) 20 gy |2 < Z (1)2P 1|27 e~ 20D 2Oy 2
lezb lezb

and the function f(z) := x27e~2%% reach its maximum at = = 7/6 and f(7/8) = (7/8¢)?7, so that (A.34)
follows. Then using the (A.34) and the fact that n! = (1/v27n)(n/e)*(1 + O(1/n)) as n — oo, we

obtain

I

~ 1 n 1 ~ B n
19 =500 < >- = () 5 <l S C ( Blcsa )

n>0 n>0 (A35)
(A.28) §
< —.
- 2
Finally we show that G is a contraction. One has
o Py 1 n 2\ an 1 n 2\ an
19(81) = G(Bo)llc-ap = || D_ —(0"B)BY = D> — (0" B)B5
n>1 n>1
= = ¢(—6,p
= Z (0"8)(Br — (Z Byt ’f)
n>1 ) C—6.p (A~36)

N

- 1 /e 1 i S
<81 = Belle—sp 3 = (2) 52 Bllcall Y 1Bl BallZ3
n>1 k=0

~ ~ (A28) 1 ~ ~
< |81 = Ballc=spC2l|Bllc=sp < §||51 — Ball¢—sp -
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Then we deduce that there exists a unique fixed point in Bg/,, hence a solution of the equation (A.31).
(11) One can follow almost word by word the proof of Lemma 11.4 in [?] using the norm (A.22) instead
of (A.23) and the interpolation properties of the W»° (’]I‘é’)—norms. [

Remark A.172. Note that by Lemma A.169, one has

1

(6) . ~ — (91) 3

[VE(0) - Ol s,a,p 5 128, d IV (Re(8) +ios) | an
oe{£1}d

V) - Oyllsap ~ QZ Y IV (Re(9) +ios)lle

=1 ge{£1}d

IV O0ulsap — D5 D NIV (Re(O) +i05)llapl 1

ae{il}d p1+p2=p

In particular this means that for all s > 0, a > 0 and p > p > n/2 one has the standard algebra,

interpolation and tame properties; see for instance [12, 4, 31, 14] just to mention a few.

From Lemma A.171 above we deduce the following result; from now on we drop the labels s,a in the

scales of constants since all the results below do not depend on them, i.e. we write Cp(F) = Cs qp(F).

Lemma A.173. Given a tame vector field F' € V, p(s,r) with scale of constants Cp(F) of the form
(3.2.39) and given a map ®(0) = 6+ B(0) as in (A.29) with b =d and ( = s, then the composition F o ®

is a tame vector field with constant

Cp(F 0 @) < Cp(F) + Cyo (F) |18

s,p+v+3 (A37)

Proof. For simplicity we drop the indexes A and O in the tameness constants. By Lemma A.171 one has
that if || 5]| s p, is sufficiently small, then the vector field F o ® is defined on D, (s — psg, ™ — pro). Lemma
A.171 guarantess that for a function u(f) € C the estimate (A.31) holds. Hence also the components
F®)(9,y,w) for v = 0,y satisfy the same bounds (recall that for the norm (3.2.34) y,w are simply
parameters). Let us study the composition of F(*) (6 + 5(6),y, w).

We define the function u,, : T¢ — C as uy, (0) = ||[F) ”a,p1- Hence one has that

1
1P g0 = %w“poHs,p + lluplls.po)-

Consider the composition with the diffeomorphism @, then one has

spo) < (HF(“’ Is.a

B 7p0)

1
IFC) 0 @ gap < — = lwpo ls.p + 1Blp.g,00l[tpolls.po + Clluy|

By the estimates on the norm we get the estimates on the tameness constants. O
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We collects some properties of vector fields that are “tame” in the sense of Definition 3.2.26. These

results are used in Section 3.1.18 in order to prove Theorem 3.2.39. First we set up some notations.

Notations. Given a map f : T¢ — C? f(0) -0y : g — dg[f] = ., fi(0)Ds,9. The same holds for

F(0)y - 9, when F maps T¢ into £(C%,C?) ( the d x d complex matrices).
d

Consider now a map M from T¢ into £ , x ... x €; . so M(0) = {M;(0)}%_, with M; € £} .. The
symbol (M (6)[w]) is a linear map in £(£, 4, C?) and so (M () - w) - 9, is well defined as above.

Finally given a map W from ']P‘Si into £ 4, the vector field W (0) - 9,, acts on functions g : £ 4 — L4 4
as g — dg[W] = Vg-W. Then given a map L from ']I‘g into L(44,q, 4a,q) the vector field Lw - 9y, is defined
in the same way.

It is important to note that our operators depend on the angles 6 and it is more convenient describe

them in terms of the Fourier coefficients. More precisely we define

HP(Tg%a,q) ={u= {“l}leZd tup € Lag HUHs,a,p < oo},

(B.1)
HP(T%05 ) o= f = {filTheza - A1 €6y D AP @)™ < 0o

lezd

The action of a linear operator M on the space H?(T%;¢,,) is described, in Fourier coefficients, by

Mu = M{ubeza =13 > Afuy (B.2)
rezs 1€z,

Definition B.174. Given a map M as in (B.2) we define an operator M on the space Hp(']I‘g;fz,q) as

follows: for any w € £, 4 one has

M flw] = f[Mw] = $ > fulM] w] (B.3)

vrezs 1€z
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Remark B.175. By Definition B.17/ follows that if an operator M is left-invertible, i.e. there exists L
such that
LMu =u € HP(T%¢,,),

then the operator L' is a right-inverse for M7, i.e.

ML f[w] = flw] € H(TS; ()

571 %a,q

Remark B.176. Definition B.174 is quite natural. Indeed, if the matriz {Mll/}u/ezd is the representa-

tion of an operator the is a function of 8 one has that
M1 (0) flw] = F[M ()w] = —ad(Mw - 8y)(f[w] - ) = [Mw - Dy, f[w] - D).
Clearly Definition B.5 is more general.

Proof of Lemma 3.2.31 (Conjugation). By (3.2.42) one has that the vector field G is defined in
D po (s — 2pso,r — 2prg). Then, given a change of coordinates I' which maps Dg p, (s — 3pso, ™ — 3pro)
into Dy p, (s — 2psg, ™ — 2prg) we can consider the composition of G with I'. Let us check the property
(F'1) for the vector field G. In the following to simplify the notation we will drop the indices a, s, A in

the norms since they are essentially fixed. One has

IGMO)llp < IF@H D)l + lldf (@~ TN EF@HT))]Il

1t o DIF@ Oy + (Coa () + Coorr (DI 2 O [F @)

. (B.A4)
< (14 Cypor1(f)) [Co(F) + Cog (F)[|97HT) [l
+ (Cpi1(f) + Coor1 (DN THD)Ip) [Coo(F) + Cog ()27 g ] »
and moreover
12711y < Colf) + (1 + Co (FIIT o, (B5)
1271 (T)llpo+v < 1+ 2Cpg+0(f)-
Hence by (B.4) and (B.5) we obtain
IGM)llp < Cp(F) (1 + Cpgrvr1(f)) 4+ 5Ch0 (F) (1 + Cpos1 () Cprv1(f) (B.6)

+ Pl [Coo (F) (1 + 3Cpo4041(f))°] |

that is the (F'1). The other properties are obtained with similar calculations using also the fact that the

vector field f is linear in the variables y,w. Hence G is tame with scale of constants in (3.2.49). O
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Lemma B.177. All f as in Definition 3.2.34 are tame with tameness constant

Cyp(f) = Caglf (B.7)

N
v,p

where | - |, is defined in Definition 3.2.54.

Proof. Consider a linear vector field f (see (3.2.34)) and a map ® = 1 + ¢ as in Definition (3.2.26). For
simplicity we drop the indeces @, 71, %o. Without loss of generality we can also assume that ¢(®) depends
only on 6 . Let us check the (F'1) for f. One has that

(Fo @)@ :=n®0(0),  (fo @)= n"0(p),
(f o @)W = hWO(9) + RW¥) (9)2W) (9, y, w) + RV ()2 (8, y, w)

where

hr(9) = £ 0 + gP0(0), v, =0,y,w

We first give bounds on the norm of f o ® in terms of the norms of A and ®. Then we need a Lemma to
estimate the norms of the composition with diffeomorphisms of the torus. For the 8 and w components
it is trivial that the tameness constant is the norm of the function. Concerning the y—components we

will give an explicit estimates only for the non trivial terms. One has

d d
thy)q) ||27 ap < Z ZZ‘ yuyk) ( )(0)%e 28\€|<g>

0 EEZd =1 k=1

d
Z [ vius) () WE) (9 )||§’p (B.8)

i=1 k=1
49 1 d 2 _ _
774 DO R || 9WE) |y + (BB || | R )2,
0 =1 k=1
hence one obtains
Hh(y’y)@(y)Hs,a,p <K <7’3Hh(y’y)Hs,a,puq’(y)us,a,po + Tguh(y’y)”s,a,poH‘I’(y)Hs,a,p> . (B.9)
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Finally one has

d d

" 1 w 1 s w) g (w
IR o2 < O(d) Z @12 = C(d)— Z Z (1)2Pe2sll | (B wiw) @(w)y (1) 2
e "0 =1 1eza
Z Z 2pe23|l\ Z ‘h(yi’w)(l _ k)CIJ(“’)(k)DQ
i=1 leZd kezd

k) 2P 231Kl (1) 2P0 28Ikl (wisw) (1 — 1Y) (k) |2

i=1 lkeZd
C(d po Z Z k) 2P0 2s11=Kl (2P 28Ikl p (werw) (1 — ) () (k)|
i=1 [ kez
(3.2 29) d,
el po Z > (= ke Ik gy o M a1 — k) |2 1@ (k)12
i=1 | kcZd
d
C(d,PO) s|l— s i w
+ Do (U= kel o2k pwi) (1 — ) |12 1@ (B2,
0 i=1kezd
(B.10)
where we used the fact that po > d/2. By (B.10) follows that
|RO )| 0, < C(d,po) ( a2 5.0 + 7ollA a0 op)- (B1D)
Now set @) := v + ¢(")(0, y,w) for v = 6,y,w. Then, by the discussion above, we have
[(fo q))(y)Hs,a,p = ap T ||h(y’w)||s,a,p||<b(w)Hs,a,po + | | 1@P (B.12)

< ||At

B :p‘|®(y)||5,a:p0 + || @, P

Now each component of the vector fields h is a function of # composed with a diffeomorphism of the

torus given by 6 — 6 + ¢(%0)(#). Hence we obtain, by using (ii) of Lemma A.171,
1f o @llsap < CUfls.ap + [flsapolllls.aptr), (B.13)
with a constant depending only on d, pg. O

Lemma B.178. Fiz p;. Given any vector field g € B, p > p1 with |g|gp, < p then for 0 <t <1
there exists fi € B such that the time—t map of the flow of g is of the form 1 + f; moreover we have
| felap < 2|9l5,-

Lemma B.179. For all s,a >0, A € (0,1), consider a vector field f € B such that
f:OX Dy p(r') x T =V, (B.14)
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and

P
|f ﬁ,pl S ?7

for some p >0, p >0, and K = K(po,d) > 1. If p is small enough, then for all £ € O the following

holds.
(1) The map ® :=1 + f is such that

(B.15)

D : O X Dyp(r) x T — Dy p(r + pro) x TY. (B.16)
(it) There exists a vector field g € B such that
o |glop < 2|flsp, the map ¥ :=1 + g is such that

W : O x Dyplr — pro) x T — D, ,(r) x T¢ (B.17)

o for all (0,y,w) € Dqpysu(r —2pr0,5) one has

Uod(h,y,w)=(0,y,w). (B.18)

Proof. (i) We want to bound the components of ® =1 + f. First of all we see that for 6 € Tg one has

(B.15)
1090 < s+ [fO) <5+ 1D Fllsape < s+ p%s0, (B.19)

where we used the standard Sobolev embedding Theorem. The bound on [|®()||,,, < r + p?rg fol-
lows directly by hypothesis (B.15). In order to obtain the estimates on the y—components, since the

components of f are in 1-to-1 correspondence with those of the vector field f we need to check that

FOO) ) < KIfO0) - Oyllsapor ISP @)yl < KIFY 0)y - Oylls.apos

(B.20)
LFO D O)wli < K| fY (0)w - 9y ls,a,p05

for some constant K > 0 depending on pg. Since for an d-dimensional vector v one has |v|; < d|v|s we
get

fU@wh <d max [fO@)w| <d max sup [fE0@)w] =d max | [ (B)w]w
V=Y1yee5Yd U=Y1sYd ged V=Y15eYd

< K (n, po)llF 4 (@) wllspy < K (d,po)|| £ (O)w - Oy lls,apo -
(B.21)
The other bounds in (B.20) follow in the same way. The extension of the bounds for the Lipschitz norm
is standard; see for instance [31]. Thus, choosing properly K = K(d,po) we obtain [®®)|; < (r + prg)?
so that (B.16) follows.
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(ii) On the first d components of the map (64,y,,w;) = ®(A,y,w) we have 0, = 6 + fO(9). If p
is small enough, we can apply Lemma A.171 in order to define a map f(e) (0+) € WPeo(T?_ ) with

s—pso

HJ?(Q)Hs—pso,p < 2||f@|s, and such that for 64 € T?___ one has FOO) + @0, + fO6,)) =0. On

s—pso

the other hand, for @ € Ts_,s,, one has f@(9) + 7O + fO(0)) = 0, hence we set

vO(0,) =0, + [O0,), 0+ € Ty (B.22)

s—pso*

Define the map 7 : (8, y,w) — (0+ f(6),y,w) and the vector field G := II4F — IT 46,00 F" Denoting
by f(“’k) for v =y, w and k = y, w, 0 the components of G o T, by Lemma A.173 the vector field

GoT = (F¥O(0,) + FU9 (0. )y + F¥) (0,)w) - 9, + F©0(0,)d,

(B.23)
— (f(y,O) o @(9)(9+) + f(y,y) ° \11(9)(9+)y + f(va) o \11(9)(6?+)w) -0y + f(w70) o w(® (04)00

is tame with scale of constants C),(G) as in (A.37) with 8 ~ f©).
The third component of ® is given by wy := w + f®9(0) so that by (B.15) we deduce w, €

By pro,apo+p- On the latter component the map is a translation, hence we can write
w=wy + 00, :=wy — FOOED(0,) = v (O, w,), (B.24)
so that by Lemma A.173 one has

||J7(w’0)8st—p807a,p < Cp(f) + Cpo(f)‘f(e) |p,s,00 5 (B.25)

hence by the smallness condition (B.15) we have that wy € By_prg.a,po+p implies w € By g po+u-
The y—components are more delicate. Let us start by studying the invertibility of the finite-

dimensional matrix 1 4 f®¥) (\11(9)(9+)). Setting formally

1 FU0(0,) s= (1+ 09 0 WO) L = (14 J0) 1= S (= fow) o), (B.20)
n>0

we have

“}‘V(y:y)(9+)y . ay”s—psoyayp < Z ”f(y,y)(6+)ny . ay”s—pso,a,p

n>1
(F2) P
<Y CERlF U (01)y - Oylls—psoaps
n>1
hence, by (A.37), (B.15) and (B.27) we obtain that f®¥) (6, )y - 0y is a well defined tame vector field
with constant Cp(f(y’y)) < 2C,(G).

We now define the y—components of the map ¥ as

(B.27)

y =90,y wp) =yy + FEO00) + Y0 )yy + FU 0wy, (B.28)
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with f(y’y) as above and

FO 0wy = — (L + fO(0.,))(f@) 0o v @) (0, )y, (B.292)
FOOOL) === (1 + fU¥(0,)) <(f(y’0) o U)(04) + (f¥) o Ty (0,)(f 0 o ‘I’(G))(QH) :
(B.29b)

We will show that each summand can be associated with a tame vector fields with scale of constants such
that C, (f(y’k)) is small with p for k = 0,y,w. This will implies the assertion, reasoning as in the proof
of (B.16) i.e. via bounds of the form (B.20): in order to simplify the notation we drop the Lipschitz
parameter A. The bound on the term f®¥) (6, )y, - 0y follows from the discussion after (B.27). Let us

consider (B.29a) and note that it is the sum of two terms, i.e.
(B.298) = —(F0) 0 WO) (0 s — FOD(0,)(F0) 0 WO) (0, o,

The bound for (f®%) o ¥@)(4,) is a direct consequence of Lemma A.173. The second summand can
be bounded by

3 (F2)
Hf(y’y) (0+)(f(y’w) © \I’(e))(‘9+)w+ay||sfpso,a,p < Cp(G)”(f(y’w) © \Il(e))(0+)w+|‘8*0807a7p0
+ Coo (A I(FY™) 0 WY (0)w |6 psp.ap (B.30)
< CP(G)OPO (G)||w+||a7p0 + OPO (G)2||w+||a,p.

The bound (B.29b) follows in the same way.
Collecting together the bounds (B.25), (B.19), (B.27), (B.30) we obtain that the map ¥ with com-
ponents defined in (B.22), (B.24) and (B.28) is such that W : Dg po4.(7 — pro, s — pso) = Dapo+u(r s).

Finally from the discussion above it follows that that the vector field
g:=F0004)- 95+ (FEO05) + FO O )ys + FO O )wy) - 0y + F0(04)D
is tame with scale of constants Cp,(g) < Cp(f) + Cypo(f) f|ls,ap hence the result follows. O

Lemma B.180. Let g € B that satisfies the Hypothesis of Lemma B.179 with p sufficiently small and
consider ®' the flow at time t € [0,1] of the vector field g. Set ® := ®1. Then, for all p > po for all

tame vector field F' : O x Dq pyy (1 + pro) X T

s+pso — Va,p one has

1
o, F — F = / ®' (g, Fdt,
0 (B.31)

1 t
O.F —[g,F]— F = / / o219, lg, Flldst.
0 0
21
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Proof. We start from the first of (B.31). Consider ® the flow at time ¢ € [0, 1]. It is know that it is a

1-parameter group of transformations. We want to evaluate its derivative in the parameter. Hence one

has
d d d
— (BLE) |y=ty = — (PRDIF) |s=g = B0 — (B5F) |s=0 = D[g, F B.32
dt(*)‘t_to ds(* *)|—0 *ds(*”—o *[ga ] ( 3)
by the definition of Lie derivative. O

Now we have the following Lemma.

Lemma B.181. Given any F € Vy,, that satisfy properties (F'1) and (F'2) in Definition 3.2.26 with scale

of constant Cy ,(F), then the projection Ilz1 F' is a tame vector field with the same scale of constant.

Proof. The projection on the subspaces N' and A can be defined in terms of the derivatives of F' (see
formula (3.2.52)). Clearly the sum of tame vector fields is a tame vector field. Let study the single
projections on the subspaces N, A9 for v = 6, y, w and A¥) with v = y, w (see formula(3.2.53)). The
tame properties for the fields in A®? are derived form (F'1) on the field F' since II 4,00 F = F@) (0,0,0).
The vector fields

I 40 F = O, FW) (0,0,0)[v] - 0y, ©v=uy,w,

can be controlled by using property (F'1) on the field F. Same hold for the projection on N. O

Lemma B.182 (Commutator). Consider tame vector fields F' € Vi, and g € B. Then the commutator

[F, g] satisfies properties (F'1) and (F2) of Definition 3.2.26, for p < q — v — 3, with constant
Cop([F,9]) < Cop1(F)Crpotv+1(9) + Copo+1(F)Cptvt1(9)- (B.33)

Proof. Let us check the properties (F'1) for the vector field [g, f]. Consider a map ® := 1 + h with h
that satisfies the hypothesis of Lemma B.179. We need to estimate the norm of

g, F1(®) := dg(®)[f(®)] — df (®)[9(®)]. (B.34)

In the following to simplify the notation we will drop the indices a, s, A in the norms since they are

essentially fixed. First of all we have

1dg(@) £ @)y < (gl1 + 9lsoL 1P @) lpo + 9lpor 1 £(@)]],
< (gl + 1900411 20) (1o + [ Floo 1 @los) + 9l (£l + | FlpolBllpe)  (B35)
< 2(1glp+11Flpo + 19lpos11F1p) + 210011 Flpo [ Bllpo-
Moreover
dF @) [g(®)] < (1Flpr1+ o112 )19 (@) b+ Flpos119(8) 0

< (
(B.36)
< 2([flpr1l9lpotvr1 + 19lporvr1l flpr1) + 2(glporvt1| flpor1l| Pl
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The (F2) and (F3) follows in the same way. O

Note that in Lemma B.182 one cannot in general conclude that the commutator between is a tame
vector field in the sense of Definition 3.2.26 Indeed some problems appear in proving properties (F'3)
and (F'4) on the commutator between two fields. It turn out one need a control on the fourth order
derivative of the field F. This is not a problem if F' € A because in this [F, g] € R*, hence one can use
Lemma B.181 to conclude that [F) g] is tame.

Lemma B.183 (Remainder). Let g € B that satisfies the Hypothesis of Lemma B.179 with p suffi-
ciently small and consider ®' the flow at time t € [0,1] of the vector field g. Then, for all p > po for all
tame vector field F' € Vg (s + pso,r + pro), one has that the vector field

1t
G:= H'RJ_/O /0 ®ilg, g, F|dsdt (B.37)

is a tame vector field for po <p <q—v —4 and

CU,p(G) < Cﬁ,er?(F)Cg,poJrqul(g) + Cﬁ,po+2(R)Cﬁ,po+u+1(9)cﬁ,p+u+l (g) (B38)

Proof. We consider the map ® := 1 + f; the flow at time ¢ of the vector field g. Moreover by Lemma
B.178 one has that the norm of f; is controlled by the norm of g. The first step is to prove that the
commutator [g, [g, F']] satisfies properties (F'1) and F'(2). Consider a map I' as in Definition 3.2.26, one
has that

9.9, FI|(T) = dg(I")[dg(D)[R(T)]] — 2dg(T)[dR(T)[g()] — d’g(T)[R(T), 9(I)]

(B.39)
— R(D)[g(D), ()] + dR(T)[dg(T) [g(D)]].

Hence by using properties (F'1), (F2),(F3) on R and g we have that the double commutator satisfies
(F'1) with

Cﬁ,p([gv lg, R]]) < Cﬁ,p+2(F)C§,po+zx+1(g) + Cﬁ,po+2(R)Cﬁ,po+u+1(Q)Cﬁ,p+u+1(9)- (B.40)

The property (F2) for [g, [g, F]] can be checked in the same way by using in addiction property F'(4) on
the field R. This is the most important point where we need to work with C? tame vector field. Now

by definition we have that
319, 9, F) = [g9. g, FII((@") ™) + df (@) 7H)lg, g, FII((2) )], (B.41)
hence properties (F'1) and (F2) are still satisfied with the constant

Cyp(P5S) < (L+ 5| felwpo+v+1)Crp(s) + 5Cpy () (1 + 5[ filpotw+1) | felwprus1s (B.42)
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where S := [g,[g, F]] (see the proof of Lemma 3.2.31 for further details). To finish the proof of the
Lemma it is sufficient to use the smallness condition on the |g|z,, and use Corollary B.181 in order to
conclude that the projection on R+ is “tame” (i.e. satisfies also properties (F'3) and (F'4)) with constant
given in (B.38). O

In Lemma remainder we use strongly the (F'4) on a non linear vector field F. Essentially we need
to perform three derivatives just to be able to control the remainder of the second order in g of the
push-forward of a vector field.

The last Lemma we need is quite technical. In our application we will always deal with vector
field with a particular form, i.e. a constant coefficients vector field Ny plus something in V, (s, r) that
is “perturbative” with respect to the size of Ny. We will explain later what we mean with the term

“perturbative”.

Lemma B.184 (Normal form). Let g € B that satisfies the Hypothesis of Lemma B.179 with p
sufficiently small and assume also that g € E¥) for some K > 0 large (see Definition 3.2.32 for the
definition of the EX) ). Let Ny := Ny(€) € N© be a vector field of the form

Ny :=wq - 9y + Qow - O (B.43)
with constant coefficients. Then one has
HAJ- [gv NO] =0, (B44)

and
I alg, No] = 0, (B.45)

where H%{ =1 —1Ilg.

Proof. First of all note that since Ny has constant coefficients it preserves the subspaces EX. Hence
formula (B.45) follows since g € EUS) so that the projection IT% is zero. Let us check the (B.44). Since
g€ ng +3(s) and Ny € NV then IIz[g, No] = 0. Then by explicit calculation we have that

g, Nol@ := (w- 3590 (0)) - g,  [g, No]™ := (w - Bpg™?(8) — Qpg™) - D (B.46)

Clearly the w—component does not have a linear term in w, moreover the §—component has zero average

in 6, hence also the projection on the subspace N is zero. O

Lemma B.185. Consider a map ® = 1 + f and a tame field F € N as in Lemma 3.2.31. Assume in
addiction that f € B. Then, for all p > po one has that

HNJ-0171,p((I)*F) < Cﬁ,p(F)Cﬁé,pl-‘rl(f) + Cﬁ’,m (F)0172,p+1(f)(1 + 20172,p1+1(f)) (B'47)
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where ¥ := (X, O, s,a), U1 := (A, O, s — 2psg,a — 2dag) and Uy := (X, O, s — psg,a — day).

Proof. We have that the field F' has the form F = F@9(0) . 9y + F“)()w - 8,,. If we consider the

map

0s =0, yr=y+ fO00) + fUD Oy + fE O, wy=w+ [00)

one can write explicitly the conjugated field. Hence one has

I <¢*F> = 1L, (Foqu +duf(<1r1)[Fo<Ir1]) = —Fww) (@) (w0 gy L 11, (duf(qu)[Foqu]).

(B.48)
All terms in (B.48) can be estimated using the tameness of the fields, i.e. the properties (Fi) i=1,2, in
Definition 3.2.26. [l
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C. Proofs

C.1 Proof of Lemmata 4.5.84 and 4.5.83

Proof of Lemma 4.5.84. Define the function ¢ : A — C,

Y(A) =i oL+ Qg’j<)\) — QJ/J/()\)

wsm). (C.1)

Ao - £ —im(N)(05% — 0'§"%) + 155 (N) — 75 1 (N),

where with abuse of notation we set reo = 0. Note that, by (N1), of Theorem 3.1.18, we have
[[unlso+pe,y <1 on Gp. Then (4.3.90) holds and we have

Q20,5 = Qo 5" < [m"Plos? — o' 2] 4 o5 4 |3 [P

(4.5.232) (C.2)
< CeyHoj® —d'j? < CeyHw- 4.
We can estimate, for any A1, Ay € A,
[P (M) = ()| 45232(C2) (1 B j05% — 0’5"
> - —-C > C.3

if ey~! is small enough. Then, using standard measure estimates on sub-levels of Lipschitz functions,
we conclude
/ 9
RI%| < 4 2 T < Oy ()T C.4
‘ 077 | = ’Yn|0-j g ‘< > |O'j2 70_/j/2| = 7< > ( )
O

Proof of Lemma 4.5.83. We first prove the (4.5.232); note that if (o, ) = (¢/,j’) then it is trivially true.
If RZ’?/I (uy,) # 0, then, by definition (4.5.230), there exists a A € A such that

10,5 (Wn) = Qo o (wn)| < 29n[0j? — 0"52|(6) 77 + 2@ - £]. (C.5)

On the other hand, for € small and since (o, j) # (0, 7),
(4.2.35a),(4.3.90) |

) ) 1, . )
Q0. (1n) — Qo jr ()] > §|O'j2 — 0/3’2\ —Ce > §|O'j2 — 0'3’2]. (C.6)
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By the (C.5), (C.6) and -, < 2+ follows
1 4 1
2004 > (5 = i ) 103® = ' = {los® = 0’57, (C.7)
3 (07 4
since v < 7, by choosing vy small enough. It is sufficient 9 < 1/48. Then, the (4.5.232) hold.
In order to prove the (4.5.231) we need to understand the variation of the eigenvalues €, ;(u) with

respect to the function u. If we assume that

Qo5 = Qo) (Un) = (i = Qo jr) (Wn—1)| < Celoj® — "5 |N, (C.8)

, ),

then, for j # j', || < Ny, and X € G,,, we have

(C8)
[iIAG L+ Qo j(Wn) — Qo jr(Wn)| > 2yn—1]od® — o' §2(0) 7 (C.9)

— Ce\UjZ—U'jQ]Nn_O‘ZQ'yn\JJ —03/2\(> ,

because Cey ! NT~92"+1 < 1 if e4~! small enough. We complete the proof by verifying (C.8).
By Lemma 4.3.71, using the (S4),, 11 with v = 7,_1 and v — p = 7, and with uy = u,,_1, ugs = u,,
we have
A (an1) © A (uy), (C.10)

1

since, for ey~ small enough,

(3.1.7)
eCN; sup ||up — Up—1||sg4p < 527_1CC*N2_"””3 <Al — Y = p=72"",
AEGn
where r3 is defined in (3.1.7) with v = 2, p defined in (4.4.206) with n = n; + 3, p > 7 (see Lemmata
4.5.79, 5.4.113 and (4.3.117), (4.2.31)). We also note that,

Def.5.4.211,(4.1.23) (4.3.187)
Gn - A2t 1) C NysoA)t(up_1)
(C.10)
- AZ?f(un—l) - A?Jll( n)- (C-H)

This means that A € G, € A)"5' (up—1) NA)" (uy,), and hence, we can apply the (S3),, with v =n+1,

in Lemma 4.3.71 to get

r o (Un) =T g(un )| < ’ngl(un) - Tn—t_l(un—l)‘

+ g% (wn) = g5 (wn)| + 1755 (un—

(4.3.185),(4.2.36a),(4.3.129b)
< eClluy, — un—l”so-i-nz

)_ n+1

+e(l+ Hun—l‘|5o+nl+ﬂ + Hun’|so+nl+6) N,

(3.1.7) o B
< CEly TN e (1 [t llsgim+8 + [0l lsgtm+6) Ny @
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Now, first of all p3 > « by (3.1.7), (4.3.117), moreover 7y + 5 < 15 then by (S1),, (S1),—1, one has

||un71”50+175 + ||un||50+175 S 2, we Obtain
o (un) = 7% (1) [<eN, . (C.12)

Then, by (4.2.35b) and (C.12), one has that the (C.8) hold and the proof of Lemma (4.5.83) is complete.
O

C.2 Proof of Lemma 2.3.15

We first show that 7' is symplectic. Consider W = (w®, w®),V = (v, 0?) € H5(TH;R) x
H*(T4 ! R) and set w = w™® 4+ iw®, v = v 4 (@) then one has

~ Lw LU ~
Q(TW,TV) ::/ S A dx:/ W JVdz =: Q(W, V). (C.13)
T ﬁw %U T

To show the (2.3.35) is sufficient to apply the definition of T;. First of all consider the linearized

operator in some z = (21, 2(2))
D, F(wt,x,z) = Dy, +eD,g(wt,x,z) = Dy + €04,9 + €02, 90z + €02, 900 (C.14)
where D, and g are defined in (2.1.11) and (2.1.12) and

0,9 = (a§i]2)j,k:1,2 = (0,5 9k )jh=12- (C.15)

All the coefficients ag.ik) are evaluated in (z(l), 2(2), zg(cl), 2532), zg(cz), zg;)) By using the definitions (C.14),

(C.15) and recalling that g = (g1,92) = (—f1, fo) and £ = f; + ifs, one can check with an explicit
computation that
L(z) =T, 'Td,F(wt,z,2)T T}

has the desired form. [ ]

C.3 Proof of Lemma 3.2.43
We write F' = Ny + G and define
£:=D 4+ R :=gIL([N,]) + TR, ])
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with R := IIxG and N = IIpF. Let us first notice that by construction the Melnikov conditions (see
Definition 3.2.42) allow us to invert approximately the operator ® and that the approximate solution of
the homological equation is in B. Let us show that that the invertibility of ® implies the invertibility of
£, by showing that R := [IgII4([R,]) is upper triangular with zero on the diagonal and hence nilpotent.

Lemma C.186 (commutator). Given ¥ € A and a vector field R € R. Let us write ¥ = (\Ii(y’o) +
Ty + G0y . 9, + @09, then one has

AR, WW¥)y0,] =

TI4[R, 0w, ] = —\I/(y’w)(Q)R(Wy)(H)y -8,

T4[R, 099, ] = (8,y RY(6,0,0) 0y + 9, RY)(6,0,0) 0 w) - 9, , (C.16)
4R, U@09,] = — (9@ (9) ROV (0)y + 9y 0¥ (9) RO

_ 3ny(y)(9, 0, 0)\1,(%0)3/ _ 3wa(y) (9,0, 0)\1,(%0) (O)w) - 9, + R(wvy)(g)\l,(y,o)(g) -
Moreover
IIv[R, U] = [R, 9] (0,0,0) - 8y + G(0)wd, (C.17)

with
G(9) = R (9)pww) 4 awa(’w) (0,0,0)8@0) 4+ 8, R (0,0,0) 00 — g0 gOw)(g)
Proof. 1t is an explicit computation. [ |

A vector field in A is determined by its five components ¥;. Hence the operator R : U — I14[R, V]

can be written in the form

(TI4[R, W])wv) 0 0 —Rwy awyR(y) 5ny(y) — ROWy, o)
(TI4[R, \Il])(va) B 0 0 0 8wwR(y) Rw.y) Wy (ww) s
AR ¥)@O | [0 0 0 0 R(w) L) (C.18)
(ILa[R, ¥])

(IL4[R, ©])®0) 00 0 0 0 o(©,0)

Recall that ® is block-diagonal w.r.t. the above decomposition; by definition W is block-diagonal as
well and provides an approximate inverse for ©. Let us set L := SRW, we note that i is upper triangular
so U* = 0 Now set B = DW — 1, by definition we have

4
@+RWA+0) " =1L +4+B) A+ ' =1+BA+0)~", 1+4)7"=) (1) (C.19)
7=0

Now set X = IIgII4F we claim that

4
g=W> (-1)/WX, (C.20)
7=0
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satisfies the bounds (3.2.59), (3.2.60). By hypothesis X € &, by the properties of £ and definition of W
we have that WU/ X € B so that g € B. We estimate the five terms of the sum separately. Obviously
for j = 0 the estimate (3.2.79) holds. Moreover for k = 1 one has

(3.2.79)
WRWX )l < 77 K" [[RVX gy + K207 Cy o (G)RWX g, |

(B.33)
< AT KT G, (R) iy (WX) + G, (R)Ci (WX

+ 2K PPy Gy L (G)C, py (R)C WX}

G210 ot gon [ 1 -1
< ATK K[ Cglp(R)(l"F’Y 0171,p1(G))’X‘171,P1

(C.Ql)
+ ’771C171,p(R)(‘X|171,p + Ka(pipl)ﬁyilc?_fl,}?(G)‘X‘ﬁhpl)
+77 C p(G) KPP TIC o (R)(1 477 C ) (@)X 5,y

<A X g+ KOO (G)) X

where in the last inequality we have used the fact that v~1Cy p1 (R) is controlled by 7_1C’1717p1 (G) < K.
The term with £ = 2 can be estimated by

WRWROVX )l p < 77 K7 [[RWROVX)|g, + KE 8571 C,  (G)RWROV )l |

(B.33)
< UK Gy p(R)Cs p (WR(WVX)) + i, (R)C p (WROVX)

+ 2Ky LGy, (G)Cr py (R)Ci g, (WROVX) |

(C.21)
< 7_1Kn+y+1 [ _10171 p(R)K277+V+4(1 + '7_10171431 (G))|X’171,P1

+ 2K PPy Cy (G Cy gy (R)y  EPT (1 4 471 C o, (G) X 5,
+ 7_101717331 (R)K2H+V+4(|X’1717p + Ka(p—m) _10171 p( )‘X|171,P1)}

< 771K3n+2u+8[|X|ﬁ1,p i Ka(pfpl),yflcﬁl’p(G)|X|ﬁl7pl}‘
(C.22)
By following the same reasoning for £ = 3 and k = 4 we have that the whole sum satisfies (3.2.79) with
i =51+ 4v + 20. Let us check (3.2.60). By following the same reasoning used to estimate g in (C.20)

we have that

0+ Xy < K421 X g 071G p (VK P)] X i, ) (©2)
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By equation (C.19) one has [(® + R)g — X] = B(1 + )1 X. Moreover one has

(3.2.80) _ _
BA+N) X5, < 7KL+ 807 X5 pCy py (G) + C p (VKPP + 107 X |3, )

(C.23)
< ’771tK5n+4y+20 ((‘X|1717p + ’yilcﬁl,P(G)Ka(pipl) ’X‘ﬁl,m)cﬁl,m (G)
+ Cﬁlap(G)Ka(p_pl)(l + '7_107711P1)|X|1717p1>

< 7*1tK577+4V+21 (|X|171 ,pCﬁLm (G) + 0171 ,p(G)Ka(pipl) |X”L71 ,Pl) )
(C.24)
which implies (3.2.60).
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