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Abstract

Let M be a connected dM -dimensional complex projective manifold, and let A be a

holomorphic positive Hermitian line bundle on M , with normalized curvature ω. Let

G be a compact and connected Lie group of dimension dG, and let T be a compact

torus of dimension dT . Suppose that both G and T act on M in a holomorphic

and Hamiltonian manner, that the actions commute, and linearize to A. If X is the

principal S1-bundle associated to A, then this set-up determines commuting unitary

representations of G and T on the Hardy space H(X) of X, which may then be

decomposed over the irreducible representations of the two groups. If the moment

map for the T -action is nowhere zero, all isotypical components for the torus are finite-

dimensional, and thus provide a collection of finite-dimensional G-modules. Given a

non-zero integral weight νT for T , we consider the isotypical components associated

to the multiples kνT , k → +∞, and focus on how their structure as G-modules is

reflected by certain local scaling asymptotics on X (and M). More precisely, given

a fixed irreducible character νG of G, we study the local scaling asymptotics of the

equivariant Szegö projectors associated to νG and kνT , for k → +∞, investigating

their asymptotic concentration along certain loci defined by the moment maps.
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Chapter 1

Introduction

1.1 Preamble

The general framework of this thesis is the geometric quantization of compact Kähler

manifolds or, more specifically, the local harmonic analysis of quantized Hamiltonian

actions. Thus our basic ingredients will be a compact Hodge manifold (M,ω, J) that

is a compact complex projective manifold with a Kähler metric and a positive ample

line bundle (A, h) on it where, A is the Hermitian line bundle and h is the Hermitian

metric, such that the curvature of the unique connection on A, denoted by ∇ is −2iω.

One fundamental goal of geometric quantization is to associate to the phase space M

a Hilbert space H~ (depending on a parameter ~) and to any real function f ∈ C∞(M)

on it, viewed as classical observable, a collection of self-adjoint operators T ~
f on H~,

and to relate the asymptotic properties of H~ and T ~
f for ~ → 0+ to the symplectic

geometry of M and the classical dynamics of the Hamiltonian flow of f .

The traditional Berezin-Toeplitz approach (see [RCG1], [RCG2], [BG1], [B], [KS],

[Ch], [MM2], [GS2], [AE], [Z1], [E], [Sch], [Xu] and [BPU]) is to setH1/k = H0(M,A⊗k),

the space of global holomorphic sections of A, and to take T ~
f (σ) to be the Toeplitz

operator on it with multiplier f (see below). This essentially amount to decomposing

a naturally associated Hardy space into isotypes with respect to the structure circle

action of the circle. The local aspects of such decomposition, as decribed by the

celebrated T-Y-Z expansion (see [C], [Z2], [Xu], [Loi] and [Lu]) and its near diagonal

rescaled generalizations (see [BSZ], [SZ], [MM1] and [MZ]) have great importance in

geometric quantization and in differential, complex and symplectic geometry. When

additional symmetries are given, corresponding to quantizable (that is, linearizable)

Hamiltonian actions on M , other decompositions are possible, leading to different

natural and interesting decompositions into isotypes, whose local semiclassical be-

havior may be related to the underlying properties of the Hamiltonian action and the
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symplectic geometry of the phase space. We are interested here in one such situation,

where we consider two concurring Hamiltonian actions which commute and play a

different role in the asymptotics. We shall then study the asymptotic concentration

of the Szegö projection and Toeplitz kernels associated to this picture.

Let us discuss our results in more detail.

1.2 The main Theorem

Let M be a connected dM -dimensional, compact, complex projective manifold and

(A, h) be an ample positive Hermitian line bundle on M . We may assume that the

curvature form of the unique compatible connection ∇A is Θ = −2iω, where ω is a

Kähler form. Let dVM be the volume form ω∧dM
dM !

associated with (M,ω).

We put h = g − iω where g is the induced Riemannian structure. Suppose given

two connected compact Lie group G and T , with T a torus, of dimension dG and dT ,

respectively, and commuting holomorphic and Hamiltonian actions µG : G×M →M

and µT : T ×M →M . Thus µGg ◦ µTt = µTt ◦ µGg , ∀(g, t) ∈ G× T . Also, assume that

both actions unitarily linearize to A, that is, that they admit metric preserving lifting

µ̃G, µ̃T . Let Ĝ be the collection of irreducible characters of G and for any νG ∈ Ĝ

let VνG be the corresponding irreducible unitary representation. The action of G on

A dualizes to an action on the dual line bundle A∨ and the G invariant Hermitian

metric h on A naturally induces an Hermitian metric on A∨ also denoted by h.

Let X ⊆ A∨ be the unit circle bundle, with projection π : X → M . Then X is

a contact manifold, with contact form given by the connection 1-form α. Since G

and T preserve the Hermitian metric h on A∨, they act on X. Furthermore, as both

linearized actions preserve the unique compatible connection ∇A, both actions leave

α invariant.

The actions of G and T on X preserves the volume form dVX = α ∧ π∗
(
dVM
2π

)
on

X, whence they induce commuting unitary representations of G and T on L2(X),

which preserve the Hardy space H(X) = L2(X) ∩Ker(∂b).

By virtue of the Peter-Weyl Theorem, we may then unitarily and equivariantly

decompose H(X) over the irreducible representations of G and T , respectively. For

every νG ∈ Ĝ we define H(X)GνG ⊆ H(X) be the maximal subspace equivariantly

isomorphic to a direct sum of copies of VνG . In the same way we define H(X)TνT . So

decomposing the Hardy space of X unitarily and equivariantly over the irreducible

representations of T and G, we have:
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H(X) =
⊕

νT∈ZdT
H(X)TνT =

⊕

νG∈Ĝ

H(X)GνG . (1.1)

Similarly, under the previous assumptions there is an holomorphic Hamiltonian

action of the product P = G×T , and a corresponding unitary representation, so that

we also have:

H(X) =
⊕

νG∈Ĝ,νT∈ZdT
H(X)G×TνG,νT

, (1.2)

where H(X)G×TνG,νT
= H(X)GνG ∩H(X)TνT .

Under the assumption 0 6∈ ΦT (M) we have that dim(H(X)TνT ) < +∞ for each

νT ∈ ZdT .

Definition 1.2.1 Given a pair of irreducible weights νG and νT for G and T , respec-
tively, we shall denote by ΠνG,νT : L2(X)→ H(X)νG,νT the orthogonal projector, and
refer to its Schwartz kernel as the level (νG, νT )-Szegö projector of X (with the two

actions understood). In terms of an orthonormal basis
{
s

(νG,νT )
j

}NνG,νT
j=1

of H(X)νG,νT ,

it is given by:

ΠνG,νT (x, y) =
∑

j

ŝ
(νG,νT )
j (x)ŝ

(νG,νT )
j (y). (1.3)

In this paper we shall consider the local asymptotics of the equivariant Szegö

kernels Π̃νG,kνT , where the irreducible representation of T tends to infinity along a

ray, and the irreducible representation of G is held fixed. To this end, we shall use a

combination of the techniques in [P1] and [P4].

Observation 1.2.2 Furthermore, the smooth function x 7→ Π̃νG,kνT (x, x) descends
to a smooth function on M .

Remark 1.2.3 On the notation, we denote the Szegö kernel with

1 Π̃νG,kνT in the general case, under the action of G× T ;

2 Π̃kνT in the case of G trivial;

3 Πk in the case of G trivial and T = S1 with ΦT = 1;

4 ΠνG,k in the case of T = S1 and ΦT = 1;

5 Π̃νG,k and Π̃k also for the case T = S1 and not necessarily ΦT = 1.
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A key tool used in the proofs are the Heisenberg local coordinates centered at x ∈ X
(see [SZ]). We denote this system of coordinates by:

γx : (θ, v) ∈ (−π,+π)×B2dM (0, δ) 7→ x+ (θ, v) ∈ X,

here B2dM (0, δ) is the open ball of R2dM centered at the origin with radius δ > 0. We

have that θ is an angular coordinate along the circle fiber and v a local coordinate on

M . We shall also set x+ v = x+ (0, v). Given the choice of HLC centered at x ∈ X,

there are induced unitary isomorphisms TxX ∼= R⊕ R2dM and TmM ∼= R2dM ∼= CdM .

Therefore, each equivariant Szegö kernel Π̃νG,νT is a smoothing operator, with C∞
Schwartz kernel given by (1.3).

We shall make the following three transversality assumptions on the moment maps:

1 0 6∈ ΦT (M) and ΦT is transversal to the ray R+ · νT , so that MT
νT

= Φ−1
T (R+ ·

νT ) ⊆M is a compact, G×T -invariant and connected submanifold of dimension

2dM+1−dT . This is equivalent to requiring that the action of T on X be locally

free on the inverse of MT
νT

(see [P4]);

2 0 ∈ g∨ is a regular value of ΦG, so that MG
0 = Φ−1

G (0) ⊆ M is a compact,

G× T -invariant and connected submanifold of dimension 2dM − dG;

3 the two submanifolds MT
νT

and MG
0 are mutually transversal.

These conditions imply the following (which is what we shall really be using).

Since the two actions commute, they give rise to an action of the product group

P = G× T , which is also holomorphic and Hamiltonian, with moment map:

ΦP = (ΦG,ΦT ) : M → g∨ ⊕ t∨ ∼= p∨,

then 0 6∈ ΦP (M), and ΦP is transversal to the ray R+ ·
(
0, νT

)
.

Then

M0,νT = Φ−1
P (R+ · (0, νT ))

is a smooth connected submanifold of M with codimension dG+dT −1. Leaving aside

that here G is not required to be a torus, these hypothesis are similar in nature to the

hypothesis in [P4], applied however to P rather than T . Unlike [P4], where the local

scaling asymptotics for representations along a ray kνT are considered, we shall study

the local scaling asymptotics of doubly equivariant pieces of Π associated to pair

of representations (νG, kνT ), where only one of the representations drifts to infinity,

while the other is held fixed. Let us also remark that when T = S1 and ΦT = 1, we
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are reduced to considering the isotypical components of the spaces of holomorphic

global sections H0(M,A⊗k) under the action of G, as in [P1] and [MM2]. We will

find asymptotic expansions that generalize and combine the previous cases.

Let Nm we denote the normal bundle to Φ−1
P

(
R+(0, νT )

)
then Nm is naturally

isomorphic to Jm
(

Ker(ΦP (m))
)

(see [P4] section 2.2). The transversality condition

is equivalent to require the injectivity of the evaluation map (see as before [P4]). Now

for every m ∈M0,νT we have two Euclidean structures on

Ker(ΦP (m)) = g×Ker(ΦT (m)) ⊆ g⊕ t,

one induced from g⊕ t and the second from TmM . Let D(m) the matrix representing

the latter Euclidean product on Nm, with respect to an orthonormal basis. Then

D(m) is indipendent of the choice of an orthonormal basis for g× Ker(ΦT (m)), and

it determines a positive smooth function on M0,νT . As in [P4] we have the following

definition.

Definition 1.2.4 Define D ∈ C∞(M0,νT ), with m ∈M0,νT , by setting

D(m) =
√

detD(m).

We consider M0,νT and for the decomposition of the tangent space TmM we have

that:

TmM = Hm ⊕ Vm ⊕Nm (1.4)

where, given Jm : TmM → TmM the complex structure, we have:

Vm = gM(m)⊕ val(Ker(ΦT (m))), Nm = Jm(Vm), Hm = [Vm ⊕Nm]⊥, (1.5)

are respectively the vertical, the transversal and the horizontal part. Given m ∈M0,νT

and v ∈ TmM we can decompose v uniquely as v = vh+vv+vt with vv ∈ Vm, vt ∈ Nm

and vh ∈ Hm. The scaling asymptotics of the equivariant Szegö kernels, that we will

see later, are controlled by a quadratic exponent in the components vh, vv, vt of a

tangent vector at a given m ∈M0,νT (viewed as a small displacement from m).

Definition 1.2.5 Let x ∈ X and vl = (θl, vl) ∈ TxX with l = 1, 2. We define
H : TX ⊕ TX → C as

5



H(v1, v2) =

λνT

(
i[ωm (v1v, v1t)− ωm (v2v, v2t)] + iωm

(
(θ2 − θ1)

‖ΦT (m)‖ηMh(m), v1h + v2h

)
−

−iωm (v1h, v2h)− ‖ v1t‖2 − ‖ v2t‖2 − 1

2

∥∥∥∥v1h −
(θ2 − θ1)

‖ΦT (m)‖ηMh(m)− v2h

∥∥∥∥
2
)

with ηMh(m) the unitary generator of Ker(ΦP (m))⊥ such that 〈η,ΦP (m)〉 = ‖ΦT (m)‖
and λνT = ‖νT ‖

‖ΦT (m)‖ .

Theorem 1.2.6 (main Theorem) Under the previous assumptions fix νG ∈ Ĝ and
consider νT ∈ ZdT , assume that ΦP is transversal to the ray R+ · (0, νT ). We have:

1) If C, δ > 0, and

max {distM(π(x),M0,νT ), distM(π(y),M0,νT )} ≥ Ckδ−
1
2 ,

then Π̃νG,kνT = O(k−∞).

2) Uniformly in x ∈ X0,νT and vl ∈ TxX with ‖ vl‖ ≤ Ck
1
9 , as k → +∞ we have:

Π̃νG,kνT

(
x+

v1√
k
, x+

v2√
k

)
∼ 1

(
√

2π)dT−1
dνG2

dG
2 ·

·
(
k

π
‖νT‖

)dM− dP2 + 1
2

(
Nx∑

j=1

χνG(g−1
j )e−ikϑjνT eH(vj1,v2)

)
· e
−i
√
k(θ2−θ1)λνT

D(m)
·

· 1

‖ΦT‖dM+1− dP
2

+ 1
2

(
1 +

∑

l≥1

RνG,l(m, v
j
1, v2)k−

l
2

)

where dP = dG+dT , vj1, vj denote the monodromy representation Fx → GL(TmM),
such that for every j = 1, · · · , Nx, v ∈ TmM we have pj 7→ dmµ

P
pj

(v) = v(j) ∈
TmM . Where Fx is the stabilizator of P in x and RνG,l are polynomials in vj1, v2

with coefficients depending on x,νG and νT .

3) More in general, for every p0 ∈ P , denoting P · x the orbit of x ∈ X0,νT , then
the following expansion holds for k → +∞:

Π̃νG,kνT

(
x+

u1√
k
, p0 ·

(
x+

u2√
k

))
∼ 1

(
√

2π)dT−1
dνG2

dG
2 ·

·
(
k

π
‖νT‖

)dM− dP2 + 1
2
Nx∑

j=1

χνP (pjp
−1
0 )eH(vj1,v2) · e

−i
√
k(θ2−θ1)λνT

D(m)
·

· 1

‖ΦT‖dM+1− dP
2

+ 1
2

(
1 +

∑

l≥1

RνG,l(m, v
j
1, v2)k−

l
2

)
,

(1.6)
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where pj ∈ Fx and uj = (θj, vj) for j = 1, 2.

The previous result describes the asymptotics of Π̃νG,kνT in a shrinking neighbor-

hood of the orbit P · x, where x ∈ X0,νT . It is complemented by the following:

Proposition 1.2.7 Suppose x ∈ X0,νT and ε,D > 0. Then uniformly for distX(y, P ·
x) ≥ Dkε−1/2 we have

Π̃νG,kνT (x, y) = O(k−∞).

1.3 Special cases and relation to prior work

Before continuing our exposition, it is in order to digress on the relation of our results

to prior work in this area. Let us focus on the following two special cases:

a) T = S1 acts in the standard manner (with ΦT = 1);

b) G is trivial.

Let us first consider the case a), and to fix ideas let us start with the case where

G is trivial. Let ρ(·, ·) be a system of Heisenberg local coordinates for X centered

at x. We have for X centered at x, inducing a unitary isomorphism (TmM,hm) with

CdM the standard Hermitian structure. In Theorem 3.1 of [SZ] and in [BSZ], for

v1, v2 ∈ B(0, 1) ⊆ CdM , θ ∈ (−π, π) and k → +∞ the following expansion has been

determined for the level k of Szegö kernel Πk (see also [MM1]):

Πk

(
ρ

(
θ,

v1√
k

)
, ρ

(
θ′,

v2√
k

))
∼
(
k

π

)dM
· eik(θ−θ′)+ψ2(v1,v2)·

·
(

1 +
∑

j≥1

aj(x, v1, v2)k−
j
2

)
(1.7)

where

ψ2(v1, v2) = v1 · v2 −
1

2
(‖ v1‖2 + ‖ v2‖2)

and aj are polynomials in v1 and v2.

Observation 1.3.1 Another way to write ψ2 is:

ψ2(v1, v2) = −iωm (v1, v2)− 1

2
‖ v1 − v2‖2,

in this form we can look directly the real and the imaginary part of ψ2 observing that
it is responsible to the exponential decay near the diagonal.

7



Now let us consider the Hamiltonian action of a compact Lie group G on M and

suppose that 0 ∈ g∨ is a regular value of the moment map. Then ΠνG,k(x, x) is rapidly

decreasing away from Φ−1
G (0), and assuming ΦG(π(x)) = 0, under the standard action

of S1 the following asymptotic expansion holds with m = π(x):

ΠνG,k

(
x+

v1√
k
, x+

v2√
k

)

∼
(
k

π

)dM− dG2
e[Q(v1v+v1t,v2v+v2t)]

∑

g∈Gm
eψ2(v1gh,v2h) · AνG,k(g, x)·

·
(

1 +
∑

j≥1

RνG,j(m, v1g, v2)k−
j
2

)

(1.8)

where Q (v1v + v1t, v2v + v2t) = −‖v2t‖2−‖v1t‖2 + i[ωm(v1v, v1t)−ωm(v2v, v2t)], Gm =

{g ∈ G : µg(m) = m}, RνG,j are polynomials in v1, v2 and

AνG,k(g, x) = 2
dG
2

dim(VνG)

Veff(π(x))

1

|Gπ(x)|
χνG(g)hkg ,

where Veff(π(x)) is the volume of the fiber above m in Φ−1
G (0) (for more details on

the effective potentials see [BG2]) and here we have set

v1g = dmµ
G
g−1
j

(v1)

with gj in the stabilizator of G. Obviously (1.8) reduces to (1.7) for trivial G.

Let us consider case b). Thus assume that there is an holomorphic Hamiltonian

action of a compact torus T , and that the moment map determining the linearization

is nowhere zero. To fix ideas, let us first consider the case where T is one-dimensional.

If ξM and ξX are vector fields on M and on X induced by µT and µ̃T , we have that

in the Heisenberg local coordinates ξX(x) = (−ΦT (m), ξM(m)) with m = π(x). Let

ξX(x)⊥ ⊆ TxX be the orthocomplement of ξX(x). In view of Theorem 1 of [P4], again

working in a system of HLC centered at x and that vl = (θl, vl) ∈ TxX ∼= R× TmM
satisfying vl ∈ ξX(x)⊥, ‖ vl‖ ≤ Ck1/9, as k → +∞ we have:

Π̃k

(
x+

v1√
k
, x+

v2√
k

)

∼
(
k

π

)dM
ΦT (m)−(dM+1)e

i
√
k

(θ1−θ2)
ΦT (m) ·

(∑

t∈Tm
tkeE(dxµ̃T

t−1 (v1),v2)

)
·

·
(

1 +
∑

j≥1

Rj(m, v1, v2)k−
j
2

)

(1.9)
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for certain smooth functions Rj, polynomial in the vl’s, with

E(v1, v2) =
1

ΦT (m)

{
i

[
(θ2 − θ1)

ΦT (m)
ωm(ξM(m), v1 + v2)− ωm(v1, v2)

]
−

−1

2

∥∥∥∥v1 − v2 −
(θ2 − θ1)

ΦT (m)
ξM(m)

∥∥∥∥
2
}
.

This last result can be generalize to a dT -dimensional torus as in Theorem 2 of [P4].

In this Theorem we have a result similar to the previous but with the appearance of an

additional important invariant, which plays a role analogous to the effective potential

in (1.7). Suppose that ΦT is transversal to the ray R+ · νT . Then the normal space

to the inverse image Nm at any m ∈ MνT = Φ−1
T (R+ · νT ) is Nm

∼= Jm (Ker(ΦT (m)))

and the evaluation map val : Ker(ΦT (m)) → TmM is injective. Therefore, we have

on Ker(ΦT (m)) two Euclidean products, and given two orthonormal basis B1,B2 we

can consider the matrix D(m) whose determinant is independent of the choice of the

basis. Thus we can let D(m) =
√

detD(m). Considering νT ∈ ZdT , as k → +∞ we

have:

Π̃kνT

(
x+

v1√
k
, x+

v2√
k

)

∼
(

1

(
√

2π)dT−1

)(
‖νT‖

k

π

)dM+
1−dT

2 1

(‖ΦT‖)dM+1+
1−dT

2 D(m)

e
i
√
k

(θ1−θ2)
ΦT (m) ·

(∑

t∈Tm
tkeHm(dxµ̃T

t−1 (v1),v2)

)
·

·
(

1 +
∑

j≥1

Rj(m, v1, v2)k−
j
2

)

(1.10)

with

Hm(v1, v2) =
‖νT‖
‖ΦT‖

[
−iωm(v1, v2)− ‖ v1‖2 − ‖ v2‖2

]
.

In this paper, we shall pair these situations. More precisely, we shall assume given

actions of G and T as above, compatible in the sense that they commute, and consider

the resulting asymptotics relative to a pair (νG, kνT ) of irreducible characters, where

νG is held fixed, and kνT → +∞ along an integral ray.

We consider the case of a dT -dimensional torus. We have shown at the beginning

the fundamental result of this work. Now we present some observations.
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Observation 1.3.2 If G is trivial, dG = 0 the leading term is:

e−ikϑjνT

(
√

2π)dT−1

(‖νT‖k
π

)dM− dT−1

2

· 1

‖ΦT (m)‖dM+1− dT
2

+ 1
2D(m)

eλνT [−iωm(vj1,v2)− 1
2
‖ vj1−v2‖2]

and we’re back to the equation (1.10) when θ1 = θ2 = 0.

Observation 1.3.3 In the case T = S1 with the standard action we have λνT = 1,
and when θ1 = θ2 = 0 the result is the formula (1.8).

Now we present a Theorem that is the diagonal version, without scaling of the

point 2) of the main Theorem.

Theorem 1.3.4 Under the hypothesis of the main Theorem, without assumptions
about the directions, for m = π(x) ∈M0,νT as k → +∞ we have:

Π̃νG,kνT (x, x)

∼ dνG2dG/2
(√

2π
)dT−1

·
(‖νT‖k

π

)dM+
1−dP

2

·
Nx∑

j=1

χνG(g−1
j )e−ikϑjνT

· 1

D(m)‖ΦT (m)‖dM+1+
1−dP

2

·
(

1 +
∑

l≥1

Bl(m)k−l
)

(1.11)

with Bl that are smooth functions on M0,νT .

Corollary 1.3.5 Under the assumptions of Theorem 1.2.6,

lim
k→+∞

(
π

‖νT‖k

)dM−dP+1

dim(H(X)νG,kνT ) =

=
d2
νG

(2π)dT−1
·
∫

M0,νT

‖ΦT (m)‖−(dM+1)+dP−1

D(m)
dVM(m).

Observation 1.3.6 We observe that the Theorem 1.2.6 implies something stronger,
that is that the successive terms are of less degree.

Observation 1.3.7 This result about the dimension of the space of holomorphic sec-
tions is similar to results obtained by [DVP]. In fact about this last corollary, we
observe that in the case of the standard action and when the line bundle A is very
ample, we obtain the know result:

lim
k→+∞

(
1

kdM

)
dim(H(X)k) =

∫

M

c1(A)dM

dM !
,

where we have that dVM (m)

πdM
= 1

dM !

(
ω
π

)dM = c1(A)dM

dM !
.
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As a very special example, we observe that when dT = 1 and T 1 = S1 acts trivially

onM with moment map ΦT = 1, we haveH(X)k the k-th isotypical component for the

standard S1-action on X, which is naturally and unitarily isomorphic to H0(M,A⊗k).

In this case we have the celebrated Tian-Yau-Zelditch expansion. For this result we

refer to the work of Zelditch in [Z2]. Let M be a compact complex manifold of

dimension dM (over C) and (L, h) → M be a positive Hermitian holomorphic line

bundle. Let g be the Kähler metric on M corresponding to the Kähler form ωg defined

as the normalized curvature of h.

Theorem 1.3.8 (Zelditch, 2000) There exists a complete asymptotic expansion:

dN∑

i=0

‖sNi (z)‖2
hN = a0N

dM + a1(z)NdM−1 + · · · (1.12)

for certain smooth coefficients aj(z) with a0(z) = 1. More precisely, for any N :

∥∥∥∥∥
dN∑

i=0

‖sNi (z)‖2
hN −

∑

j<R

aj(x)NdM−j

∥∥∥∥∥
CN
≤ CR,NN

dM−R. (1.13)

1.4 Application to Toeplitz operator kernels

By way of application, motivated by the standard Berezin-Toeplitz quantization of a

classical observable, let us consider the scaling asymptotics of the equivariant com-

ponents of certain Toeplitz operators. Given f ∈ C∞(M) and assuming for simplicity

that f is invariant under the action of the product group P = G×T , we can consider

the Toeplitz operators TνG,kνT [f ] = Π̃νG,kνT ◦Mf ◦ Π̃νG,kνT , where Mf denotes multi-

plication by f ◦ π. Then TνG,kνT [f ] is a self-adjoint endomorphisms of H(X)νG,kνT .

Given that 0 6∈ ΦP , the equivariant Toeplitz operator TνG,kνT [f ] is smoothing, and

its distributional kernel is given by the following two alternative expressions:

TνG,kνT [f ](x, x′) =

∫

X

Π̃νG,kνT (x, y)f(y)Π̃νG,kνT (y, x′)dVX(y)

=
∑

j

TνG,kνT [f ](skj (x))(skj (x
′))

(1.14)

with x, x′ ∈ X0,νT and skj an orthonormal basis of H(X)νG,kνT . We will see that

TνG,kνT [f ](x, x′) has asymptotic expansions near the diagonal similar to the one for

Π̃νG,kνT . Note that with f(y) we denote f(π(y)) and that every f ∈ C∞(M) lifts to

an invariant function f(x) on X. For the sake of simplicity, we shall focus on points
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of the form (x + n, x + n) (with rescaling), as usual, in a system of Heisenberg local

coordinates centered at x, where n is a normal vector to the P -orbit of x and we shall

make the extra assumption that the stabilizer of x in P is trivial. Notice that any

point sufficiently close to P · x may be written in this manner, possibly replacing x

with p · x for some p ∈ P .

Theorem 1.4.1 Assume that 0 6∈ ΦP , f ∈ C∞(M0,νT ) is µP -invariant and that the
stabilizer of P in x is trivial. Suppose x ∈ X0,νT and fix a system of HLC centered at
x. Let m = π(x). Then we have:

1) If C, δ > 0 and

max {distM(π(x),M0,νT ), distM(π(y),M0,νT )} ≥ Ckδ−
1
2 ,

then TνG,kνT [f ](x, x′) = O(k−∞).

2) Uniformly in n1 ∈ NP
x = Tx(P · x)⊥ as k → +∞:

TνG,kνT [f ]

(
x+

n1√
k
, x+

n1√
k

)

∼ 1

(
√

2π)dT−1
dνG2

dG
2

(
k

π
‖νT‖

)dM− dP2 + 1
2

f(m)e−2λνT ‖ t1‖2·

· 1

D(m)
· 1

‖ΦT‖dM+1− dP
2

+ 1
2

(∑

l≥0

k−
l
2Rl(n1,m)

)

(1.15)

with Rl(n1,m) a polynomial in n1 and t1 ∈ Nm = Jm(valm(Ker(ΦP (m)))).

Corollary 1.4.2 Under the assumptions of Theorem 1.4.1,

lim
k→+∞

(
π

‖νT‖k

)dM−dP+1

T (TνG,kνT [f ]) =

=
d2
νG

(2π)dT−1
·
∫

X0,νT

f(π(x))‖ΦT (π(x))‖−(dM+2−dP )

D(π(x))
dVX(x),

where T (TνG,kνT [f ]) is the trace of the Toeplitz operator.

1.5 Examples

The main Theorem predicts that the diagonal restriction Π̃νG,kνT (x, x) of the equivari-

ant Szegö kernel (which descends to a function on M) is rapidly decreasing away from

the locus M0,νT , and grows like kdM+
1−dP

2 there. Let us illustrate this explicitly by
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two examples (cfr the computations in [P1]). Recall from [BSZ] that for k = 1, 2, · · ·
an orthonormal basis of H0(Pn,OPn(k)) is {skJ}|J |=k, where:

skJ =

√
(k + n)!

πnJ !
zJ (1.16)

and where J ! =
∏n

l=0 jl!, z
J =

∏n
l=0 z

jl
l . In the next example we consider a particular

product action and we show that outside of M0,νT we have the exponential decay of

the Szegö kernel.

Example 1.5.1 Let us make M = P1. Let us consider the actions of G = T 1

on M induced by the representation on C2 given by µG(z0, z1) = w · (z0, z1) =
(w−1z0, wz1), and the action of T = T 1 induced by the representation given by
µT (z0, z1) = (s−1z0, s

−2z1). These actions are holomorphic and Hamiltonian, with
moment maps:

ΦG(z0, z1) =
|z0|2 − |z1|2
|z0|2 + |z1|2

and

ΦT (z0, z1) =
|z0|2 + 2|z1|2
|z0|2 + |z1|2

.

Then we have:

Φ−1
G (0) = {[z0 : z1] : |z0| = |z1|}

and placing X = S3 ⊆ C2 we have

X0 = π−1
(
Φ−1
G (0)

)
=

{
(z0, z1) : |z0| = |z1| =

1√
2

}
∼= S1 × S1

with a free action of S1 on X0. We have νT = 1 ∈ Z, Φ−1
P (R+ · (0, 1)) = Φ−1

G (0) =
{(z0, z1) : |z0| = |z1|} and the action of P is given by:

µP ([z0 : z1]) = (w, s) · (z0, z1) =
(
(ws)−1z0, ws

−2z1

)
.

If |z0| = |z1| (6= 0) and (w, s) · (z0, z1) = (z0, z1) ⇒ ws = 1, ws−2 = 1 ⇒ s = s−2

so s = e
2
3
πji with j = 0, 1, 2 and w = 1

s
then the action is locally free. We are in

the hypothesis of the main Theorem. We have s · (za0zb1) = (sz0)a(s2z1)b = sa+2bza0z
b
1

and then H̃T (X)k = span{za0zb1 : a+ 2b = k}. In the other side we have w · (za0zb1) =

(wz0)a(w−1z1)b = wa−bza0z
b
1 and then H̃G(X)νG = span{za0zb1 : a = b+ νG}. Thus

H̃P (X)νG,k = span
{
za0z

b
1 : a = b+ νG, a+ 2b = k

}

then a+ 2b = k ⇒ b+ νG + 2b = k ⇒ 3b = k − νG and
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dim
(
H̃P (X)νG,k

)
=

{
0 if k ≡ νG mod 3

1 if k 6≡ νG mod 3
.

If k = νG + 3b we have:

H̃P
νG,νG+3b(X) = span

{
zb+νG0 zb1

}
,

the corresponding Szegö projector is:

Π̃P
νG,νG+3b ((z0, z1), (u0, u1)) =

(2b+ νG + 1)!

π(b+ νG)!b!
(z0u0)b+νG(z1u1)b. (1.17)

Now consider zj = uj with |z0|2 + |z1|2 = 1 and we set x = |z0|2, y = yb = b+νG
2b+νG

→
1
2

as b→ +∞. Using Stirling approximation:

n! ∼
√

2πn
nn

en

and the projector:

Π̃P
νG,νG+3b ((z0, z1), (z0, z1)) =

(2b+ νG + 1)!

π(b+ νG)!b!
|z0|2(b+νG)|z1|2b

we can find the following asymptotic for the coefficient:

(2b+ νG + 1)!

π(b+ νG)!b!
∼
√

2π(2b+ νG + 1)

2π(νG + b)2πb

(2b+ νG + 1)2b+νG+1

(b+ νG)b+νGbb
e−1

∼[2b+νG+1∼2b]
2
√
b√
π

(2b+ νG + 1)2b+νG

(b+ νG)b+νGbb
e−1

∼ 2√
π

√
b
(2b+ νG)2b+νG

(b+ νG)b+νGbb
e−1

{[
1 +

1

2b+ νG

]2b+νG

→ e

}

∼ 2√
π

√
b

[
2b+ νG
b+ νG

]b+νG [2b+ νG
b

]b

∼ 2√
π

√
b

(
1

yb

)b+νG ( 1

1− yb

)b

(1.18)

and for the projector:

Π̃P
νG,νG+3b ((z0, z1), (z0, z1)) ∼ 2√

π

√
b

(
x

y

)b+νG (1− x
1− y

)b
=

= 2

√
b

π

(
x

y

)νG [(x
y

)
·
(

1− x
1− y

)]b
= 2

√
b

π

(
x

y

)νG
ebF (x,y),

(1.19)
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where we set F (x, y) = log x + log (1− x) − log y − log (1− y) = f(x) − f(y) with
f(t) = log t + log (1− t) and 0 < t < 1. We observe that for t → 0+, 1− we obtain
f(t)→ −∞ and that the derivative:

f ′(t) =
1

t
− 1

1− t = 0⇔ 1− t = t⇔ t =
1

2

with f(1/2) = − log 4. Thus for b� 0 and y = yb we have f(y) = − log 4− δ(b) with
δ(b) > 0 and δ(b) → 0 as b → +∞. If x 6= 1

2
we have f(x) = − log 4 − δ(x) ( with

δ(x) > 0 fixed). Then F (x, yb) = −δ(x) + δ(b) ≤ − δ(x)
2

.
Now

∣∣∣Π̃P
νG,νG+3b ((z0, z1), (z0, z1))

∣∣∣ ∼ 2

√
b

π

(
x

y

)νG
ebF (x,y)

≤ 2

√
b

π

(
x

y

)νG
e−b

δ(x)
2 = O(b−∞)

(1.20)

but x = 1
2

that is |z0| = |z1| = 1√
2

and we have:

∣∣∣Π̃P
νG,νG+3b ((z0, z1), (z0, z1))

∣∣∣ ∼ 2

√
b

π

(
x

y

)νG
ebF (1/2,yb)

≤ 2

√
b

π

(
1

2yb

)νG
ebδ(b)

(1.21)

and considering that we have for yb:

yb =
b+ νG
2b+ νG

=
1 + νG

b

2
(
1 + νG

2b

) =
1

2

(
1 +

νG
b

)(
1− νG

2b
+
ν2
G

4b2
+ · · ·

)
=

=
1

2
+
νG
4b

+O

(
1

b2

)
,

(1.22)

then f(yb) = − log 4 + O
(

1
b2

)
(because f ′(1/2) = 0) and so follows that bδ(b) =

O
(

1
b

)
→ 0 as b→ +∞. Thus

∣∣∣Π̃P
νG,νG+3b ((z0, z1), (z0, z1))

∣∣∣ ∼ 2

√
b

π
. (1.23)

Another possible variation similar to the previous is the following.

Example 1.5.2 Let us make M = P2. Let us consider the actions of G = T 2 on M
induced by the representation on C3 given by µG(z0, z1, z2) = (w−1

1 z0, w1w
−1
2 z1, w2z2),

and the action of T = T 1 induced by the representation given by µT (z0, z1, z2) =
(s−1z0, s

−2z1, s
−3z2). These actions are holomorphic and Hamiltonian, with moment

maps:
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ΦG(z0, z1, z2) =

( |z0|2 − |z1|2
|z0|2 + |z1|2

,
|z1|2 − |z2|2
|z1|2 + |z2|2

)

and

ΦT (z0, z1, z2) =
|z0|2 + 2|z1|2 + 3|z2|2
|z0|2 + |z1|2 + |z2|2

.

Then

Φ−1
G (0) = {[z0 : z1 : z2] : |z0| = |z1| = |z2|}

and placing X = S5 ⊆ C3 we have:

X0 = π−1
(
Φ−1
G (0)

)
=

{
(z0, z1, z2) : |z0| = |z1| = |z2| =

1√
3

}
∼= S1 × S1 × S1

with a free action of G on X0. We have νT = 1 ∈ Z and Φ−1
P (R+ · (0, 1)) = Φ−1

G (0) =
{(z0, z1, z2) : |z0| = |z1| = |z2|} and the action of P is given by:

µP ([z0 : z1 : z2]) = (w, s) · (z0, z1, z2) =
(
(w1s)

−1z0, w1w
−1
2 s−2z1, w2s

−3z2

)
.

If |z0| = |z1| = |z2| (6= 0) and (w, s)·(z0, z1, z2) = (z0, z1, z2)⇒ w1s = 1, w1w
−1
2 s−2 =

1, w2s
−3 = 1 ⇒ s6 = 1 so s = e

2
6
πji with j = 0, 1, 2, 4, 5 and w1 = 1

s
, w2 = 1

s3

then the action is locally free. The hypothesis of the main Theorem are satisfied.
We have s · (za0zb1zc2) = (sz0)a(s2z1)b(s3z2)c = sa+2b+3cza0z

b
1z
c
2 and then H̃T (X)k =

span{za0zb1zc2 : a+ 2b+ 3c = k}. In analogue way we obtain that

H̃G(X)νG = span{za0zb1zc2 : (a− b, b− c) = (ν1, ν2) = νG}.
Thus

H̃P (X)νG,k = span
{
za0z

b
1z
c
2 : (a− b, b− c) = (ν1, ν2), a+ 2b+ 3c = k

}

and

dim
(
H̃P (X)νG,k

)
=

{
0 if k ≡ ν1 mod 6

1 if k 6≡ ν1 mod 6
.

If k = 6c+ ν1 + 3ν2 we have:

H̃P (X)(ν1,ν2),ν1+3ν2+6c = span
{
zc+ν1+ν2

0 zc+ν2
1 zc2

}
.

Now consider zj = uj with |z0|2 + |z1|2 + |z2|2 = 1 and we set x = |z0|2, y =
|z1|2, z = |z2|2 = 1−x−y. As before, using Stirling approximation for the projector:

16



Π̃P
νG,6c+ν1+3ν2

((z0, z1, z2), (z0, z1, z2))

=
(3c+ ν1 + 2ν2 + 2)!

π2(c+ ν2 + ν1)!(c+ ν2)!c!
(|z0|)2(c+ν2+ν1)(|z1|)2(c+ν2)(|z2|)2c,

(1.24)

the following asymptotic holds:

(3c+ ν1 + 2ν2 + 2)!

π2(c+ ν2 + ν1)!(c+ ν2)!c!
∼

1

π2

√
2π(3c+ ν1 + 2ν2 + 2)

2π(c+ ν2 + ν1)2π(c+ ν2)2πc

(3c+ ν1 + 2ν2 + 2)(3c+ν1+2ν2+2)

(c+ ν2 + ν1)c+ν2+ν1(c+ ν2)(c+ν2)cc
e−2

∼ 9
√

3c

2π3

[
3c+ ν1 + 2ν2

c+ ν2 + ν1

]c+ν2+ν1
[

3c+ ν1 + 2ν2

c+ ν2

]c+ν2
[

3c+ ν1 + 2ν2

c

]c

(1.25)

and, for the projector:

Π̃P
νG,6c+ν1+3ν2

((z0, z1, z2), (z0, z1, z2)) ∼ 9
√

3c

2π3
xν1+ν2yν2xcyc(1− x− y)c =

=
9
√

3c

2π3
xν1+ν2yν2ecF (x,y),

(1.26)

with F (x, y) = log x+log y+log (1− x− y), 0 < x, y and x+y < 1. Studing the partial
derivatives we find that we have a critical point x = y = 1

3
with F

(
1
3
, 1

3

)
= − log 27.

So we have F (x, y) = − log 27− δ(z) with δ(z) > 0. If x = y 6= 1
3

we have:

∣∣∣Π̃P
νG,6c+ν1+3ν2

((z0, z1, z2), (z0, z1, z2))
∣∣∣

≤ 9
√

3c

2π3
xν1+ν2yν2e−cδ(z) = O(c−∞)

(1.27)

but x = y = 1
3
, δ(z) = 0 and

∣∣∣Π̃P
νG,6c+ν1+3ν2

((z0, z1, z2), (z0, z1, z2))
∣∣∣ ∼ 9

√
3c

2π3

(
1

3

)ν1+ν2
(

1

3

)ν2

. (1.28)
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Chapter 2

Preliminaries

2.1 Basic Objects

In this section, considering the setting of geometric quantization (see [GS1], [W]

and [RCG1]) we define a basic quantum objects necessary to develope our results.

Associated to the compact symplectic manifold (M,ω) we consider a prequantization

triple (L,∇, h), where L is an Hermitian line bundle, ∇ is a connection with curvature

form given by

Θ = −2iω, (2.1)

and h an Hermitian inner product. Sometimes the condition (2.1) is called the pre-

quantization condition. As quantum space, a good candidate is the space of holomor-

phic sections H0(M,L). These spaces, with the completition respect the norm:

‖s‖2 =

∫

M

h(s, s)
ωdM

dM !
(2.2)

are Hilbert spaces.

Other basic objects in the theory of geometric quantization are the circle bundle

and the tensor power of the line bundle. Let L as before, considering the dual space

L∨ we have the following definition:

Definition 2.1.1 (Circle Bundle) A circle bundle associated to L is a subset X of
L∨ defined as:

X = {(m,λ) : m ∈M,λ ∈ L∨m, h(λ, λ) = 1}.

Observation 2.1.2 Note that we have the restriction of π : L∨ → M to X that for
simplicity we denote in the same way.
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The circle bundle is the boundary of D = {(m,λ) : m ∈ M,λ ∈ L∨m, h(λ, λ) ≤ 1}
that is a strictly pseudoconvex domain in L. We denote with ‖ · ‖m the induced

norm by h so we have that D = {ρ > 0} where ρ : L∨ → R is defined as ρ(m,λ) =

1− ‖λ‖2
m = 1− a(m)−1|α|2 where we write λ = αs∨L and a(m) = ‖s∨L‖2

m is a smooth

function over a U ⊂ M and s∨L is a local coframe over U . We have a circle action

on X denoted by rθ : S1 × X → X with infinitesimal generator ∂
∂θ

. As in [Z2] we

consider the holomorphic and respectively antiholomorphic subspaces T ′D,T ′′D ⊂
TDC and the corrisponding differentials d′f = df |T ′ , d′′f = df |T ′′ for f smooth on D.

TDC = T ′D ⊕ T ′′D ⊕ C ∂
∂θ

has a Cauchy Riemann structure and the vectors on D

that are elements of T ′X (resp. T ′′X) are of the form
∑

j aj
∂
∂zj

(resp.
∑

j aj
∂
∂zj

). We

can choose a basis for these vector spaces and consider the Cauchy Riemann operator

∂b : C∞(X) → C∞(X, (T ′′D)∨) defined as ∂b = df |T ′′ . If we define α = 1
i
d′ρ|X and

the Volume form dV = α ∧ (dα)dM we have that (X,α) is a contact manifold. In the

compact Kähler case from (2.1) we have that L is a positive line bundle and by the

Kodaira embedding Theorem there exists a positive tensor power L⊗k with k ∈ N
and global holomorphic sections {ski }dki=0 that give the following embedding:

Φ : M → Pdk(C),

where Φ(z) = [sk0(z) : · · · : skdk(z)]. The set {ski }dki=0 is a basis for H0(M,L⊗k) the

space of holomorphic sections of L⊗k. The dim(H0(M,L⊗k)) = 1 + dk.

2.2 The Hardy space and the Szegö kernel

In this section we give the basic definitions of the Hardy space and Szegö kernel.

Definition 2.2.1 We define the Hardy space H(X) = L2(X) ∩ Ker(∂b) that admit
the following decomposition:

H(X) =
⊕

k

H(X)k,

where the subspaces

H(X)k = {f ∈ C∞(X) : f(eiϕx) = eikϕf(x)} ∩Ker(∂b)

are called k-Hardy spaces.

Observation 2.2.2 On H(X)k we have the L2-Hermitian product:

〈ρ, σ〉 =

∫

X

ρσdVX
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and on H0(M,L⊗k) we have the Hermitian product 〈ρ, σ〉 =
∫
M
hm(ρ(m), σ(m))dVM(m)

determined by the metric and the symplectic volume form. On the other hand, to a
section s ∈ H0(M,L⊗k) there is naturally associated a function ŝ ∈ H(X)k given by

ŝk = 〈λ⊗k, sk(z)〉.

This correspondence determines a unitary isomorphism:

H0(M,L⊗k) ∼= H(X)k.

Definition 2.2.3 (Equivariant Szegö projector) We define the equivariant Szegö
projector Πk : L2(X)→ H(X)k where ∀f ∈ L2(X) as:

Πk(f) =
∑

j

〈f, ŝ(k)
j 〉L2(X)ŝ

(k)
j

where (ŝ
(k)
j )dkj=1 is an orthonormal basis of H(X)k ∼= H0(M,L⊗k).

The projector Πk can be written in the form:

(Πk(f)) (x) =

∫

X

∑

j

ŝ
(k)
j (x)ŝ

(k)
j (y)f(y)dVX(y)

for any choice of the orthonormal basis {s(k)
j (y)}dkj=1. We denote the equivariant Szegö

kernel as:

Πk(x, y) =
∑

j

ŝ
(k)
j (x)ŝ

(k)
j (y).

By a theorem of [BS] it is possible to represent the Szegö kernel as a complex

Fourier integral operator (FIO representation).

Theorem 2.2.4 Let Π(x, y) the Szegö kernel of X, the boundary of a strictly pseu-
doconvex domain in L. Then there exists a symbol s ∈ SdM (X ×X ×R+) that admit
the following expansion:

s(x, y, t) =
∞∑

k=0

tdM−ksk(x, y), (2.3)

so that

Π(x, y) =

∫ +∞

0

eitψ(x,y)s(x, y, t)dt, (2.4)

where ψ ∈ C∞(L × L) such that ψ(x, x) = −iρ(x) (ρ is a defining function for X),
d′′xψ, d

′
yψ vanish to infinite order along the diagonal and ψ(x, y) = −ψ(y, x).
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Concerning the phase function ψ we have the following proposition.

Proposition 2.2.5 There exists a constant C > 0 such that:

=ψ(x, y) ≥ C
[
distX(x,X) + distX(y,X) + |x− y|2

]
+O(|x− y|3)

for x, y ∈ D.

Proof. We have that:

1

i
[ψ(x, y) + ψ(y, x)− ψ(x, x)− ψ(y, y)] = Lρ(x− y) +O(|x− y|3),

where Lρ =
∑

j,k
∂2ρ

∂zj∂zk
zjzk is the Levi Hermitian form. We consider the immaginary

part of ψ, that is:

=ψ(x, y) =
1

2i
(ψ(x, y)− ψ(x, y)) =

1

2i
(ψ(x, y) + ψ(y, x)).

Now on D we have that ρ < 0 and dρ 6= 0 on X, then there exist C ′ > 0 such

that:

1

i
ψ(x, x) = −ρ(x) ≥ C ′ distX(x,X)

for x ∈ D. In a similar way there exist C ′′ > 0 such that:

1

i
ψ(y, y) = −ρ(y) ≥ C ′′ distX(y,X)

for y ∈ D.

This conclude the proof. 2

The phase functions plays an important role in geometric quantization. Geomet-

rically we have that ψ satisfies the Hamilton Jacobi equation and the image of the

differential dψ is a Lagrangian submanifold of the phase space. So ψ can be taken

as the phase function of a first order approximate solution of Schrödinger equation.

From the point of view of physics, this is the crucial point that connect the classical

description of mechanics and the modern vision of the quantum world.

Another important concept in microlocal analysis, is the concept of symbol of

a vector field. We denote the space of symbols of order m with Sm following the

notation introduced by [H]. Considering now a distribution IΨ,s, depending by the

pase function Ψ ∈ C∞(U ×RN \ {0}) and the symbol s, we have that the wave front

set WF (I) is contaided in the closed conic subset:
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Σ = {(x, dxΨ(x, θ)) ∈ TU∨ \ {0}, (x, θ) ∈ Esssup(s), dθΨ(x, θ) = 0} ⊆ TU∨ \ {0}.

Here Esssup(s) is the smallest conic subset of U ×RN \{0} ⊂ Rn outside of which

is of a class S−∞ (for more details see [D]).

In our case we consider as distribution the distributional kernel Π and as nonde-

generate complex phase function tψ(x, y) in an open cone Σ in T (X × X)∨ × R+.

We have that Π is a Fourier integral operator with complex phase (see [MS]) and the

corresponding almost complex canonical relation C ⊂ (TX)∨ × (TX)∨ parametrized

by the phase tψ(x, y) on X ×X × R+. The condition for the parametrization of the

Lagrangian submanifold C is that:

d(tψ)

dt
= 0.

Let α = −id′ρ and let Σ = {(x, rα) : r ∈ R+} the symplectic cone generated by

the contact form α, the real points of C consist in the diagonal Σ × Σ. We say that

Π has a Toeplitz structure on the symplectic cone Σ.

Using this microlocal description of Π, Zelditch provided a quick proof in [Z2] of

the celebrated Tian-Yau-Zelditch expansion:

Theorem 2.2.6 Let M a compact complex projective manifold of dimension dM , and
let (A, h) a positive Hermitian holomorphic line bundle. Let gJ a Kähler metric on M
and −2iω = Θ a Kähler form. For each k ∈ N, h induces a Hermitian metric hk on
L⊗k. Let {ski }dki=0 be any orthonormal basis of H0(M,L⊗k) with dim(H0(M,L⊗k)) =
1 + dk. Then there exists a complete asymptotic expansion:

Πk(z, z) =
∑

j

‖s(k)
j (z)‖2

hk
= a0k

dM + a1(z)kdM−1 + · · · (2.5)

for some aj smooth with a0 = 1.

2.3 The geometric setting

Before taking a closer look at the geometric setting we need to indroduce some more

pieces of notation. As is well-known, if G and T both act on a symplectic manifold M

in an Hamiltonian fashion with moment maps ΦG and ΦT and these actions commute,

then P = G× T act on M and the moment map is

ΦP = ΦG ⊕ ΦT : M → p∨,
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with p∨ = g∨ ⊕ t∨. We give an explicit expression for H(X)νG,νT as

H(X)νG,νT =
{
s ∈ H(X)νG : s(µ̃Tt−1(x)) = tνT s(x),∀x ∈ X, ∀t ∈ T dT ,∀νG ∈ Ĝ

}
,

where in general we have νT = (ν1, · · · , νdT ) ∈ ZdT , t = (t1, · · · , tdT ) ∈ T dT and

χνT (t) = tνT = tν1
1 · · · t

νdT
dT

.

The geometrical setting is essentially the same illustrated in [P4] with P = G×T
in place of T .

Now we want to fix our ideas about some important facts.

Before we remember that the matrix D(m) represent the Euclidean product on

Nm respect to an orthonormal basis. It determines a positive smooth function D on

M0,νT defined above. Note that there is a relation between the D(m) matrix and the

C(m) matrix used in Theorem 1.2.6. We have in fact that D(m) = C(m)t ·C(m) and

so D(m) =
√

detD(m) = | detC(m)|.
About the product action (referring to [P4]), by the fact that 0 is a regular value

for ΦG, the group P acts freely on M0,νT and then also on X0,νT = π−1 (M0,νT ).

We can view this in the same time as a conseguence of the assumption that ΦP is

transverse to R+ · (0, νT ). After we have also that X0,νT is invariant for G × T . In

fact we have that R+ · (0, νT ) is invariant for the coadjoint action and, given that ΦP

is equivariant, we conclude.

As we have argued previously, for our purposes we need an additional hypothesis

on the submanifolds Φ−1
G (0) and Φ−1

T (R+νT ) that is that they should be mutually

transverse. In fact given two maps between manifolds f1 : M → N1 and f2 : M → N2

with A1 ⊆ N1 and A2 ⊆ N2 submanifolds, we have the following result.

Proposition 2.3.1 (f1, f2) t A1 × A2 if and only if f−1
1 (A1) t f−1

2 (A2).

In our case this means that ΦP is transversal to R+ · (0, νT ) if and only if

Φ−1
G (0) t Φ−1

T (R+νT ). So we are in analogy with the assumption of [P4] where

ΦT was transversal to R+νT .

We recall the definition of symplectic cone Σ ⊆ TX∨ \ {0} sprayed by the con-

nection form α:

Σ = {(x, rαx) : x ∈ X, r > 0}.

This cone is important for the microlocal description of Szegö kernel (as in [BS])

and in the theory of Toeplitz operators (see [BG1]). We have that the wave front set

of Π is the anti-diagonal:
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Σ# = {(x, rαx, x,−rαx) : x ∈ X, r > 0}.

Notice that Σ ∼= X × R+ in a natural manner (for every r > 0). Let ωΣ the

restriction to Σ of the symplectic structure on TX∨. Let r be the cone coordinate

on Σ and θ be the circle coordinate on X, locally defined, and pulled-back to Σ.

Then ωΣ = dλ = dr ∧ α + 2rω, with λ = rα. Let ξ̃f be the contact lift to X of the

Hamiltonian vector field ξf on (M, 2ω). Then the cotangent flow restricted to Σ is

generated by (ξ̃f , 0). Thus the cotangent flow on Σ ∼= X × R is φΣ
τ = φXτ × idR. It is

follows that if f and g Poisson commute on M , then their flows on M , X and Σ also

commute, and conversely.

2.4 Heisenberg local coordinates

Now we recall a basic tool from [SZ], Heisenberg local coordinates.

We start with the definition of preferred coordinate system and preferred frame.

After, combining these two ingredients will follow the definition of Heisenberg coor-

dinate chart.

Definition 2.4.1 Let m0 ∈ M , a coordinate system z = (z1, · · · , zdM ) on a neigh-
borhood U of m0 is called preferred at m0 if

1 ∂zj
∣∣
m0
∈ T 1,0M , with 1 ≤ j ≤ dM ;

2 ω(m0) = ω0;

3 g(m0) = g0.

Where ω0 is the standard symplectic form and g0 is the Euclidean metric.

Let now L an Hermitian line bundle on M , we proceed to the next definition.

Definition 2.4.2 A preferred frame for L→M at point m0 ∈M is a local frame eL
in a neighborhood of m0 such that:

1 ‖eL‖m0 = 1;

2 ∇eL
∣∣
m0

= 0;

3 ∇2eL
∣∣
m0

= −(g + iω)⊗ eL
∣∣
m0
∈ TM∨ ⊗ TM∨ ⊗ L.

Remark 2.4.3 In the previous definition 2) and 3) are independent of the choice of
connection on TM∨ used to define ∇ : C∞(M,L⊗TM∨)→ C∞(M,L⊗TM∨⊗TM∨).
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Remark 2.4.4 Property 3) is a necessary condition for obtaining universal scaling
asymptotics.

Remark 2.4.5 If eL is a preferred frame at m0 and if z = (z1, · · · , zdM ) are preferred
coordinates at m0, then we compute the Hessian:

(
∇2‖eL‖h

)
m0

= <
(
∇2eL, eL

)
m0

= −g0,

thus if the preferred coordinates are centered at m0 (i.e. m0 = 0), we have:

‖eL‖h = 1− 1

2
|z|2 +O(|z|3).

Our next step is the definition of the Heisenberg chart on the S1-bundle.

Definition 2.4.6 A Heisenberg coordinate chart at a point x0 ∈ X is a coordinate
chart ρ : U ≈ V with 0 ∈ U ⊂ CdM × R and ρ(0) = x0 ∈ V ⊂ X of the form:

ρ(z1, · · · , zdM , θ) = eiθa(z)−
1
2 e∨L(z), (2.6)

where eL is a preferred local frame for L → M at m0 = π(x0), and (z1, · · · , zdM ) a
preferred coordinates centered at m0.

Remark 2.4.7 Suppose that sk(z) = fe⊗kL (z) is a local section of L⊗k. Then by the
previous definition and the expression of the lifted section ŝk(λx) = (λ⊗kx , sk(z)), with
λx ∈ X, we have that:

ŝk(z, θ) = f(z)a(z)−
1
2 eikθ. (2.7)

We denote briefly with γx(θ, v) = x + (θ, v) the system of Heisenberg local coor-

dinates on X centered at x. We have the following facts:

1 The standard circle action r : S1 × X → X is expressed by translation in the

following way:

reiϑ(x+ (θ, v)) = x+ (ϑ+ θ, v).

2 If m ∈M and m = π(x), we set

m+ v = π(x+ (0, v)),

that is a local coordinate chart centered at m, inducing a unitary isomorphism

CdM ∼= R2dM ∼= TmM .
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3 γx induces at x an isomorphism R⊕ R2dM ∼= TxX compatible with the decom-

position in vertical and horizontal space.

4 Heisenberg local coordinates can be locally and smoothly deformed with the

base point x. In other words, for any x ∈ X exist an open neighborhood

x ∈ U ⊆ X and a smooth map

Γ : U × (−π,+π)×B2dM (0, δ)→ X,

such that γy(θ, v) = Γ(y, θ, v) is a system of Heisenberg local coordinates cen-

tered at y, for each y ∈ U .

Let us now locally express the action of P in terms of Heisenberg local coordinates.

To fix ideas, let us first consider the case of a 1-dimensional torus and trivial stabilizer.

We want to find the scaling Heisenberg coordinates of:

µ̃Pp−1√
k

(x1k) = µ̃G
e
− ς√

k
◦ µ̃T− ϑ√

k

(x1k) ,

where x1k = x + (θ1,v1)√
k

, p ∈ P and ϑ, ς are the linear coordinates respectively for G

and T . Assume x ∈ X, ΦG ◦ π(x) = 0, and fix a system of HLC centered at x. Let

ξM(m), ςM(m) the valutations of ξ ∈ t, ς ∈ g and assume that the stabilizer Fx of x

in P is trivial. We have the following Lemma.

Lemma 2.4.8 Under the previous assumptions there exist C∞ functions B̃3, B̃2 :
R×CdM ×RdG → CdM , vanishing at the origin to third and second order, respectively,
such that as k → +∞ the Heisenberg local coordinates of:

µ̃G
e
− ς√

k
◦ µ̃T− ϑ√

k

(x1k)

are given by
(

1√
k

(ϑΦT (m) + θ1) +
1

k
ωm (ϑξM (m), v1) +

1

k
ωm (ςM (m), v1) + B̃3

(
ϑ√
k
,

v√
k
,
ς√
k

)
,

,
1√
k

(v1 − ϑξM (m)− ςM (m)) + B̃2

(
ϑ√
k
,

v√
k
,
ς√
k

))
.

Proof. For corollary 2.2 of [P4] we have:

µ̃G

e
− ς√

k
◦ µ̃T

− ϑ√
k

(x1k)

= µ̃G

e
− ς√

k

(
x+

(
1√
k

(ϑΦT (m) + θ1) +
1

k
ωm (ϑξM (m), v1) +B3

(
ϑ√
k
,

v√
k

)
,

,
1√
k

(v1 − ϑξM (m)) +B2

(
ϑ√
k
,

v√
k

)))
,
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where Bj denotes a smooth function from R × CdM → CdM vanishing to j-th order

at the origin.

Applying lemma 4.3 of [P1] we have:

(
1√
k

(ϑΦT (m) + θ1) +
1

k
ωm (ϑξM (m) + ςM (m), v1)− 1

k
ωm (ςM (m), ϑξM (m)) +Q

(
v√
k
,
ς√
k

)
+

+B3

(
ϑ√
k
,

v√
k

)
,

1√
k

(v1 − ϑξM (m)− ςM (m)) + T

(
v√
k
,
ς√
k

)
+B2

(
ϑ√
k
,

v√
k

))
,

where Q, T are smooth functions from CdM × RdG → CdM vanishing at the origin to

third and second order, respectively. Set B̃2 = T + B2 and B̃3 = Q + B3 remains

to prove that ωm (ςM(m), ϑξM(m)) = 0. To prove that ωm (ςM(m), ξM(m)) = 0, we

can observe that G acts on g via the adjoint representation and on vector fields on

M . It follows that the mapping ξ → ξM is a G morphism. Since the map is uniquely

determined by the relation between ξ and ξM , it follows that the map ΦG is a G

morphism, that is,

ΦG(gm) = gΦG(m)

for all g ∈ G and m ∈ M . The action used in the formula before is coadjoint

representation of G on g∨

〈gΦG(m), ξ〉 = 〈ΦG(m), adg−1ξ〉

if we take g = etς and differentiate the above equation at t = 0 we have:

d〈etςΦG(m), ξ〉
dt

∣∣∣∣
t=0

=
d〈ΦG(m), e−tςξetς〉

dt

∣∣∣∣
t=0

so

〈dmΦG(ςM(m)), ξ〉 = −〈ΦG(m), [ς, ξ]〉,

then

ωm(ςM(m), ξM(m)) = −〈ΦG(m), [ς, ξ]〉 = 0

by assumption. This complete the proof. 2

Now we present a general version of the preceding lemma assuming non trivial Fx

and that T is a dT -dimensional torus. In this case have to find the scaling Heisenberg

local coordinates of:
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µ̃P(ppj)−1
√
k

(x1k).

We remember that ϑ = (ϑ1, · · · , ϑdT ) with −π < ϑi < π and we have that

ξ = ∂
∂ϑ

∣∣
0
. In addiction ξ = (ξ1, · · · , ξdT ) and ΦT (m) = (Φ1(m), · · · ,ΦdT (m)) where:

Φl = 〈Φ, ξl〉,

and

ϑ · ξ =

dT∑

l=1

ϑlξl.

We denote with vj1 the monodromy representation of Fx defined as vj1 = dmµ̃
P
p−1
j

(v1).

Now under the assumption of Lemma 2.4.8 and the previous notations we have a more

general Lemma for the Heisenberg coordinates with scaling. An adaptation of the

previous argument then shows the following:

Lemma 2.4.9 Let P = G×T with T a dT -dimensional torus, under the assumption
of the previous Lemma and that the stabilizer is Fx = {pj : j = 1, · · · , Nx}. Then

there exist C∞ functions B̃3, B̃2 : RdT × CdM × RdG → CdM , vanishing at the origin
to third and second order, respectively, such that for k → +∞ the Heisenberg local
coordinates of:

µ̃G
e
− ς√

k
◦ µ̃T− ϑ√

k

(
µ̃P
p−1
j

(x1k)
)

are given by
(

1√
k

(ϑΦT (m) + θ1) +
1

k
ωm

(
ϑξM (m), vj

1

)
+

1

k
ωm

(
ςM (m), vj

1

)
+ B̃3

(
ϑ√
k
,

v√
k
,
ς√
k

)
,

,
1√
k

(
vj
1 − ϑξM (m)− ςM (m)

)
+ B̃2

(
ϑ√
k
,

v√
k
,
ς√
k

))
.
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Chapter 3

Proofs

3.1 Proof of the main Theorem

Proof.

Proof of 1). We consider (ρνG , VνG) an unitary irreducible representation of G

and we define ρνG,kνT : G × T → GL(VνG) as ρνG,kνT (g, t) = tkνT ρνG(g). We have

that (ρνG,kνT , VνG) is an unitary irreducible representation of G × T with character

χνG,kνT (g, t) = Tr(ρνG,kνT (g, t)) = tkνT Tr(ρνG(g)) = tkνTχνG(g).

Assuming that 0 6∈ ΦT (M) we have that H(X)kνT is finite dimensional, then

H(X)νG,kνT ⊆ H(X)kνT and Π̃νG,kνT ∈ C∞(X × X). We want study the asymptotic

behavior of Π̃νG,kνT with k → +∞. Since Π̃νG,kνT is the the composition of Π :

L2(X)→ H(X) and the orthogonal projector of H(X) onto:

Π̃νG,kνT (x, y) =
dνG

(2π)dT

∫

G

∫

T

χνG(g−1)t−kνTΠ
(
µ̃Gg−1 ◦ µ̃Tt−1 (x) , y

)
dtdg, (3.1)

where dνG = dim(VνG) and dg, dt are the associated measure for G and T such that∫
G
dg = 1 and

∫
T
dt = 1. We start considering the diagonal case, so we have:

Π̃νG,kνT (x, x) = dνG

∫

G

∫

T

χνG(g−1)t−kΠ
(
µ̃Gg−1 ◦ µ̃Tt−1 (x) , x

)
dtdg

=
dνG
2π

∫

G

∫

(−π,+π)dT
χνG(g−1)e−ikνT ·ϑΠ

(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x

)
dϑdg,

(3.2)

where ϑ ∈ (−π, π)dT . For the moment suppose x ∈ X generic and fixed, and denote

Fx ⊆ G× T the stabilizer of x. For ε > 0 we set

A = {(g, t) ∈ G× T : distG×T ((g, t), Fx) < 2ε}
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and

B = {(g, t) ∈ G× T : distG×T ((g, t), Fx) > ε}

so we have G× T = A ∪ B and we can consider a partition of the unity γ1 + γ2 = 1

associated to the covering {A,B}. We observe that the function:

(g, t) 7→ γ2(g, t)χνG(g−1)Π
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x

)
(3.3)

is C∞ because the singular support of Π is included in the diagonal of X ×X.

Then

t 7→
∫

G

γ2(g, t)χνG(g−1)Π
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x

)
dg (3.4)

is infinitely smooth and the Fourier transform is rapidly decreasing. Thus the con-

tribution coming from B is rapidly decreasing and we can multiply the integrand by

γ1. So we can only consider:

Π̃νG,kνT (x, x) ∼ dνG
2π

∫

G

∫

(−π,π)dT
γ1(g, ϑ)χνG(g−1)e−ikνT ·ϑΠ

(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x

)
dϑdg.

(3.5)

Now if γ2(g, ϑ) 6= 0 then µ̃Gg−1 ◦ µ̃T−ϑ(x), x are near and we can represent Π as

Fourier integral operator as in [BS]:

Π(y, y′) =

∫ +∞

0

eitψ(y,y′)s(y, y′, t)dt, (3.6)

where =(ψ) ≥ 0 and s is a semiclassical symbol admitting an asymptotic expansion

s(y, y′, t) =
∑+∞

j=0 t
n−jsj(y, y′). Inserting (3.6) in (3.5) we obtain:

Π̃νG,kνT (x, x) ∼ dνG
2π

∫

G

∫

(−π,+π)dT

∫ +∞

0

γ1(g, ϑ)χνG(g−1)e
i[tψ(µ̃G

g−1◦µ̃T−ϑ(x),x)−kνT ·ϑ]·

· s
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x, t

)
dtdϑdg,

(3.7)

and performing the change of variables t→ kt, we get:

Π̃νG,kνT (x, x) ∼ dνG
2π

k ·
∫

G

∫

(−π,+π)dT

∫ +∞

0

γ1(g, ϑ)χνG(g−1)eikΨ(t,g,ϑ,x)·

· s
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x, kt

)
dtdϑdg,

(3.8)
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where we have set Ψ(t, g, ϑ, x) = tψ(µ̃Gg−1 ◦ µ̃T−ϑ (x) , x) − νT · ϑ. We shall now use

integration by parts in ϑ to prove that only a rapidly decreasing contribution to the

asymptotic is lost, if the integrand in (3.8) is multiplied by a suitable cut-off function.

In local coordinates we have µ̃Gg−1 ◦ µ̃T−ϑ (x) = x+O(ε) with ε > 0 very small, because(
g, eiϑ

)
∈ U with U a small neighborhood of Fx. Thus we have that:

d(µ̃G
g−1◦µ̃T−ϑ(x),x)ψ = d(x,x)ψ +O(ε) = (αx,−αx) +O(ε),

with ∂ϑΨ = tΦT (m) − νT + O(ε). Therefore, since ΦT (m) 6= 0 and νT 6= 0 we have

for t � 0 that ‖∂ϑΨ‖ ≥ Ct, for some C > 0. In a similar way for 0 < t � 1

we have ‖∂ϑΨ‖ ≥ C1 > 0, for some C1 > 0. Therefore by integration by parts

in dϑ, we have that the asymptotics for k → +∞ is unchanged. We multiply the

integrand by ρ(t), where ρ ∈ C∞0
(

1
2D
, 2D

)
and ρ ≡ 1 on

(
1
D
, D
)
, so that the integral

in dt is now compactly supported. We shall now use integration by parts in dt to

show that only a rapidly decreasing contribution is lost, if the integration in (g, ϑ) is

restricted to a tubular neighborhood of Fx of radius O(kδ−
1
2 ). We have that ∂tΨ =

ψ(µ̃Gg−1 ◦ µ̃T−ϑ (x) , x). If dist
((
g, eiϑ

)
, Fx
)
≥ Ckδ−

1
2 , then

dist
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , x

)
≥ Ckδ−

1
2

and so:

∣∣ψ(µ̃Gg−1 ◦ µ̃T−ϑ (x) , x)
∣∣ ≥ =ψ(µ̃Gg−1 ◦ µ̃T−ϑ (x) , x) ≥ C2k

2δ−1 (3.9)

(see Corollary 2.3 of [BS]). Introducing the operator

Lt =
[
ψ(µ̃Gg−1 ◦ µ̃T−ϑ (x) , x)

]−1
∂t,

we have that:

eikΨ = − i
k
Lt
(
eikΨ

)
.

We can now mimick the standard proof of the Stationary Phase Lemma: itera-

tively integrating by parts, we obtain at each step in view of (3.9) a factor of order

O
(
k−2δ

)
, and then afterN steps a factor of orderO

(
k−2Nδ

)
. This proves that the con-

tribution to the asymptotics coming from the locus where dist
((
g, eiϑ

)
, Fx
)
≥ Ckδ−

1
2

is rapidly decreasing. We can now prove that (3.8) is rapidly decreasing in k for

distX(x,X0,νT ) ≥ Ckδ−
1
2 . Now we consider a bump function ρ1 : P → R supported

in a small neighborhood of Fx and ≡ 1 near to Fx. The function ρ1 is defined as

ρ1 = ρ1(f, ξ) with f ∈ Fx and ξ the normal coordinate to Fx. We can multiply the
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integrand of (3.8) by ρ1

(
f, k

1
2
−δξ
)

losing only an O(k−∞). Then if ρ1(g, t) 6= 0 we

have µ̃Gg−1 ◦ µ̃T−ϑ (x) = x+O
(
kδ−

1
2

)
. Therefore:

d(
µ̃G
g−1◦µ̃T−ϑ(x),x

)ψ = d(x,x)ψ +O
(
kδ−

1
2

)
= (αx,−αx) +O(kδ−

1
2 ),

and ∂(ς,ϑ)ψ = tΦP (m)−νT +O
(
kδ−

1
2

)
. Here (ς, ϑ) are local coordinates on P induced

by the exponential map expP . Then if distX(x,X0,νT ) ≥ C3k
δ− 1

2 we have that:

‖∂(ς,ϑ)ψ‖ ≥ C4k
δ− 1

2 .

Thus we find a differential operator Lς,ϑ with |Lς,ϑ| ≥ C5k
δ− 1

2 where distX(x,X0,νT ) ≥
O
(
kδ−

1
2

)
such that Lς,ϑ

(
eikΨ

)
= ikeikΨ. Iterating the integration by parts, in

view of the scaling factor we have at each step a factor O
(
k−2δ

)
. This proves that

Π̃νG,kνT (x, x) = O(k−∞) for distX(x,X0,νT ) ≥ Ckδ−
1
2 . Let us consider (x, y) ∈ X ×X

with

max {distX(x,X0,νT ), distX(y,X0,νT )} ≥ Ckδ−
1
2

for every δ fixed and using the Cauchy-Schwarz inequality we have:

∣∣∣Π̃νG,kνT (x, y)
∣∣∣ ≤

√
Π̃νG,kνT (x, x) ·

√
Π̃νG,kνT (y, y), (3.10)

so Π̃νG,kνT (x, y) = O(k−∞). This complete the proof of 1).

Let us now consider the proof of 2). Now setting xjk = x +
(θj ,vj)√

k
for j = 1, 2,

using FIO representation as before and changing variables t→ kt, we get:

Π̃νG,kνT (x1k, x2k) =
kdνG

(2π)dT

∫

W

χνG(g−1)eikΨ(1)(t,ϑ,x)·

· s
(
µ̃Gg−1 ◦ µ̃T−ϑ (x1k) , x2k, kt

)
dVW (w),

(3.11)

where

W = G× (−π, π)dT × (0,+∞) dVW (w) = dgdϑdt, (3.12)

and

Ψ(1)(t, ϑ, x) = tψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x1k) , x2k

)
− νT · ϑ. (3.13)
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Here t = (t1, · · · , tdT ) =
(
eiϑ1 , · · · , eiϑdT

)
= eiϑ. Let Fm ⊆ P , Fm = {pj} =

{(gj, tj)} the finite stabilizer of x ∈ X0,νT . We introduce a bump function ρ =
∑Nx

j=1 ρj

with support of ρj in a neighborhood of pj = (gj, tj). As consequence we have:

Π̃νG,kνT (x1k, x2k) ∼
∑

j

ΠνG,kνT (x1k, x2k)
(j) , (3.14)

where each addend of (3.14) is given by (3.11) multiplied by ρj. In the support of each

pj we write g = gj expG
γ√
k

and t = tje
iϑ√
k , where with expG we denote the exponential

map from g → G and γ, ϑ are coordinates on g ∼= RdG ,t ∼= RdT associated with the

respective orthonormal basis. Omitting ρj in the integrand we have:

Π̃νG,kνT (x1k, x2k) ∼
k1− dP

2 dνG
(2π)dT

∫

W ′
χνG

(
g−1
j expG

(
− γ√

k

))
t−1
j eikΨ(2)(t,ϑ,x)·

· s
(
µ̃G− γ√

k

◦ µ̃T− ϑ√
k

(x1k) , x2k, kt

)
dVW ′(w),

(3.15)

where

W ′ = RdG × RdT × (0,+∞) dVW ′(w) = dγdϑdt (3.16)

and

Ψ(2)(t, ϑ, x) = tψ

(
µ̃G− γ√

k

◦ µ̃T− ϑ√
k

◦ µ̃G
g−1
j
◦ µ̃T

t−1
j

(x1k) , x2k

)
− νT ·

ϑ√
k
. (3.17)

We write xj1k = µ̃G
g−1
j

◦ µ̃T
t−1
j

(x1k) = x + 1√
k
(θ1, v

j
1), for a particular choice of σ

adapted section in the definition of HLC. We assume that the orthonormal basis of t

is taken as (w1, · · · , wdT ) with (w1, · · · , wdT−1) an orthonormal basis for Ker(ΦT (m))

and 〈ΦT (m), wdT 〉 = ‖ΦT (m)‖. So we have that, if (v1, · · · , vdG) is the orthonormal

basis for g, an orthonormal basis for p = Lie(P ) is of the form:

(v1, · · · , vdG , w1, · · · , wdT = η).

We call (a1, · · · , adP = b) the corresponding linear coordinates on p such that

a = (a1, · · · , adP = b) ∈ RdP−1 ∼= Ker(ΦP (m)) and aM(m) ∈ R2dM ∼= TmM is his

injective valutation. Considering (3.17), we write (γ, ϑ) ∈ p ∼= RdP ∼= RdG × RdT as

(γ, ϑ) = (γ, ϑ′) + ϑη = a+ bη, (3.18)
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remember that νT = λ · ΦT (m)⇒ (0, νT ) = λΦP (m), then we have:

νT · ϑ = (0, νT ) · (a+ bη) = bλ‖ΦT (m)‖.
Here λ = λνT is such that νT = λνT · ΦT (m). Thus we have:

Ψ(2)(t, b, x) = tψ

(
µ̃P−a+bη√

k

(
xj1k
)
, x2k

)
− λνT

‖ΦT (m)‖b√
k

. (3.19)

Now let p = a + bη we have that a ∈ Ker(ΦP (m)) and η ∈ Ker(ΦP (m))⊥, with

‖η‖ = 1, 〈ΦP (m), η〉 = 〈ΦT (m), η〉 = ‖ΦT (m)‖. We get:

µ̃P− p√
k

(
xj1k
)

= µ̃P− p√
k

(
x+

1√
k

(θ1, v
j
1)

)
=

= x+

(
θ1 + 〈ΦT (m), p〉√

k
+

1

k
ωm(aM(m) + bηM(m), vj1) + B̃3

(
aM(m)√

k
,

v√
k
,
b√
k

)
,

,
θ1√
k

(vj1 − aM(m)− bηM) + B̃2

(
aM(m)√

k
,

v√
k
,
b√
k

))

= x+ (Aj,k(ϑ, vj1, v2),Bj,k(ϑ, vj1, v2)),
(3.20)

with B̃2, B̃3 that vanish at the origin to third and second order. We obtain that:

tψ
(
µ̃P− p√

k

(
xj1k
)
, x2k

)
− ϑ√

k

= it

[
1− ei

(
Aj,k(ϑ,vj1,v2)− θ2√

k

)]
− it

k
ψ2

(
vj1 − aM(m)− bηM(m), v2

)
e
i
(
Aj,k(ϑ,vj1,v2)− θ2√

k

)
−

− ϑ√
k

+ itRψ
3

(
1√
k

(
vj1 − ϑξM(m)− ςM(m)

)
,

v2√
k

)
e
i
(
Aj,k(ϑ,vj1,v2)− θ2√

k

)
,

(3.21)

where Rψ
3 vanishes to third order at the origin and

ψ2(r, s) = −iωm(r, s)− 1

2
‖r − s‖2 (r, s ∈ Cn).

Now

i

(
Aj,k(ϑ, vj1, v2)− θ2√

k

)
=

i√
k

(θ1 − θ2 + b‖ΦT‖) +
i

k
ωm(aM + bηM , v

j
1) + B̃′3

(
aM(m)√

k
,

v√
k
,
b√
k

)
,
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then

1− ei
(
Aj,k(ϑ,vj1,v2)− θ2√

k

)
=

= 1−
{

1 +
i√
k

(θ1 − θ2 + b‖ΦT‖) +
i

k
ωm
(
aM(m) + bηM(m), vj1

)
−

− 1

2k
(θ1 − θ2 + b‖ΦT‖)2 + B̃′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)}

= − i√
k

(θ1 − θ2 + b‖ΦT‖)−
i

k
ωm
(
aM(m) + bηM(m), vj1

)
+

+
1

2k
(θ1 − θ2 + b‖ΦT‖)2 + B̃′′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)

and

it

[
1− ei

(
Aj,k(ϑ,vj1,v2)− θ2√

k

)]
=

=
t√
k

(θ1 − θ2 + b‖ΦT‖) +
1

k
tωm

(
aM(m) + bηM(m), vj1

)
+

+
i

2k
t(θ1 − θ2 + b‖ΦT‖)2 + itB̃′′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)
.

Thus as conseguence:

Ψ(2)(t, b, x) =
t√
k

(θ1 − θ2 + b‖ΦT‖)+

+
1

k
tωm

(
aM(m) + bηM(m), v

(j)
1

)
+

i

2k
t(θ1 − θ2 + b‖ΦT‖)2 − λνT

‖ΦT (m)‖b√
k

−

− it

k
ψ2

(
vj1 − aM(m)− bηM(m), v2

)
+ itB̃′′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)

=
1√
k

(t(θ1 − θ2 + b‖ΦT‖)− λνT ‖ΦT (m)‖b) +

+
1

k

[
tωm

(
aM(m) + bηM(m), v

(j)
1

)
+
i

2
t(θ1 − θ2 + b‖ΦT‖)2−

−itψ2

(
vj1 − aM(m)− bηM(m), v2

)]
+ itB̃′′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)

and
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ikΨ(2)(t, b, x)

= i
√
k (t(θ1 − θ2 + b‖ΦT‖)− λνT ‖ΦT (m)‖b) +

+

[
itωm

(
aM(m) + bηM(m), v

(j)
1

)
− 1

2
t(θ1 − θ2 + b‖ΦT‖)2+

+tψ2

(
vj1 − aM(m)− bηM(m), v2

)]
− ktB̃′′′3

(
aM(m)√

k
,

v√
k
,
b√
k

)
.

Continuing calculations we can rewrite the j-term as:

Π̃νG,kνT (x1k, x2k)
(j)

∼ k1− dP
2

dνG
(2π)dT

·
∫

RdP−1

da ·
[∫ +∞

0

dt

∫ +∞

−∞
dbei

√
kΥ(t,b)eA(m,θ,v,v,a)B(j)

]
,

(3.22)

where

Υ(t, b) = t (b‖ΦT (m)‖+ θ1 − θ2)− λ‖ΦT‖b, (3.23)

A(m, θ, v, v, a)

= − t
2

(b‖ΦT (m)‖+ θ1 − θ2)2 + itωm(aM(m) + bηM(m), vj1)+

+ tψ2(vj1 − aM(m)− bηM(m), v2)eiAj,k(ϑ,vj1,v2)

(3.24)

and

B(j) = χνG(g−1
j )e−ikϑjνT . (3.25)

The internal integral in (3.22) is oscillatory in
√
k with phase Υ. The phase has

critical points (t0, b0) =
(
λνT ,

θ2−θ1
‖ΦT (m)‖

)
. The Hessian is

H(Υ)(P0) =

(
0 ‖ΦT (m)‖

‖ΦT (m)‖ 0

)

and

√√√√
∣∣∣∣∣det

√
kH

2π

∣∣∣∣∣ =

√
k

2π
‖ΦT (m)‖.

Using the Stationary Phase Lemma [H] we have:
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Π̃νG,kνT (x1k, x2k)
(j) ∼ dνG

(2π)dT−1
B(j)k

1
2
− dP

2 ·
∫

RdP−1

e−i
√
k(θ2−θ1)λν ·

· eA(a,t0,b0) · 1

‖ΦT (m)‖

(
kλνT
π

)dM
da,

(3.26)

where

A(a, t0, b0) = λνT
[
iωm

(
aM(m) + b0ηM , v

j
1

)
+

+ψ2

(
vj1 − aM(m)− b0ηM(m), v2

)]
,

and we have to evaluate the integral
∫
RdP−1 daeA(a,t0,b0). In order to do this we define

the following spaces:

Vm = valm(g⊕Ker(ΦT (m))) = valm(Ker(ΦP (m))) ⊆ TmM,

Nm = Jm(Vm),

Hm = [Vm ⊕Nm]⊥,

where Vm, Hm are complex subspaces of TmM and Nm is the normal space to M0,νT .

Decomposing v ∈ TmM as v = vh + vv + vt, with respectively vh ∈ Hm, vv ∈ Vm and

vt ∈ Nm, we have that aM = aMv, ηM = ηMh + ηMv and

iωm
(
aM(m) + b0ηM(m), vj1

)
+ iψ2

(
vj1 − aM(m)− b0ηM(m), v2

)

= iωm(aM(m), vj1t) + ib0ωm(ηMh(m), vj1h + v2h) + ib0ωm(ηMv(m), vj1t)− iωm(vj1h, v2h)+

+ iωm(aM(m), v2t) + ib0ωm(ηMv(m), v2t)−
1

2
‖ vj1h − b0ηMh(m)− v2h‖2 − iωm(vj1v, v2t)−

− 1

2
‖ vj1t − v2t‖2 − 1

2
‖ v1v − aM(m)− b0ηMv(m)− v2v‖2 − iωm(vj1t, v2v)

= iωm(aM(m), vj1t + v2t)−
1

2
‖ v1v − aM(m)− b0ηMv(m)− v2v‖2

+ ib0ωm(ηMh(m), vj1h + v2h) + ib0ωm(ηMv(m), vj1t + v2t)− iωm(vj1h, v2h)+

− 1

2
‖ vj1h − b0ηMh(m)− v2h‖2 − iωm(vj1v, v2t)−

1

2
‖ vj1t − v2t‖2 − iωm(vj1t, v2v).

(3.27)

We define rM(m) ∈ RdP−1 translated by aM(m) such that:

rM(m) = vj1v − aM(m)− b0ηMv(m)− v2v,
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so aM(m) = vj1v − rM(m)− b0ηMv(m)− v2v and

ωm(aM(m), vj1t + v2t)

= ωm(vj1v − v2v, v
j
1t + v2t)− ωm(rM(m), vj1t + v2t)− ωm(b0ηMv(m), vj1t + v2t).

(3.28)

We get:

ωm(aM(m), vj1t + v2t) = ωm(vj1v, v
j
1t) + ωm(vj1v, v2t)− ωm(v2v, v

j
1t)− ωm(v2v, v2t)−

− ωm(rM(m), vj1t + v2t)− ωm(b0ηMv(m), vj1t + v2t).
(3.29)

Putting (3.29) in (3.28) and deleting the opposite terms, we obtain:

iωm
(
aM(m) + b0ηM(m), vj1

)
+ iψ2

(
vj1 − aM(m)− b0ηM(m), v2

)

= i
[
ωm(vj1v, v

j
1t)− ωm(v2v, v2t)

]
− 1

2
‖ vj1t − v2t‖2+

+ ib0ωm(ηMh(m), vj1h + v2h)− iωm(vj1h, v2h)−
1

2

∥∥vj1h − b0ηMh(m)− v2h

∥∥2−

− iωm(rM(m), vj1t + v2t)−
1

2
‖rM(m)‖2.

Let C the matrix of valm : Ker(ΦT (m))⊕ g→ Vm. Changing variable r′ = Cr we

have that dr = detC−1dr′. We have to evaluate:

1

detC

∫

RdP−1

eλνT [−iωm(r′,vj1t+v2t)− 1
2
‖r′‖2]dr′. (3.30)

We make the substitution s =
√
λνT r

′, so we obtain:

=
λ
− 1

2
(dP−1)

νT

detC

∫

RdP−1

e[−iωm(s,
√
λνT (vj1t+v2t))− 1

2
‖s‖2]ds =

(2π)
dP−1

2

λ
1
2

(dP−1)
e−

1
2
λνT ‖ vj1t+v2t‖2 .

(3.31)

Thus the exponential factor in the asymptotic expansion is eH(vj1,v2) with

H(vj1, v2) = λνT

(
−iωm

(
vj1h, v2h

)
− ‖ v1t‖2 − ‖ v2t‖2 + i

(θ2 − θ1)

‖ΦT (m)‖ωm
(
ηMh(m), vj1h + v2h

)

+i[ωm
(
vj1v, v

j
1t

)
− ωm (v2v, v2t)]−

1

2

∥∥∥∥vj1h −
(θ2 − θ1)

‖ΦT‖
ηMh(m)− v2h

∥∥∥∥
2
)
,

(3.32)
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and the principal term is of the form:

dνG2
dG
2

(
√

2π)dT−1

(
kλνT
π

)dM− dG2 − (dT−1)

2

· χνG(g−1
j )e−ikϑjνT ·

· e
i
√
k(θ2−θ1)λν · eH

‖ΦT (m)‖D(m)
.

(3.33)

This complete the proof of 2).

Let us now describe the necessary changes to the previous argument to prove

3). Instead of considering a neighborhood of (x, x) we consider the asymptotic in a

neighborhood of (x, p0 · x). We set y = p · x and we assume given the local system of

Heisenberg coordinates in a neighborhood of x and y. We may also assume without

loss that the Heisenberg coordinate system centered at y is obtained from the one

centered at x by a p-translation, that is,

y + (θ, v) = p ·
(
x+ (θ, v)

)
.

We must evaluate:

Π̃νG,kνT (x1k, y2k) ,

where x1k = x + u1√
k
, y2k = y + u2√

k
and uj = (θj, vj). Now with the preceding

interpretation we have that y2k = p0

(
x+ u2√

k

)
= p0x2k. Proceeding as in the previous

case we have:

Π̃νG,kνT (x1k, y2k)

=
dνG

(2π)dT

∫

G

∫

T

χνG(g−1)t−kνT · Π
(
µ̃Gg−1 ◦ µ̃Tt−1 (x) , p0 · x2k

)
dtdg,

(3.34)

and due to the unitary action:

Π̃νG,kνT (x1k, y2k)

=
dνG

(2π)dT

∫

G

∫

T

χνG(g−1)t−kνT · Π
(
µ̃P
p−1

0
◦ µ̃Gg−1 ◦ µ̃Tt−1 (x) , x2k

)
dtdg.

(3.35)

Let p0 = (g0, t0) =
(
g0, e

iϑ0
)
∈ P , then

µ̃P
p−1

0
◦ µ̃P(g,t)−1(x1k) = µ̃G

g−1
0 g−1 ◦ µ̃Tt−1

0 t−1(x1k),
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and changing variables g′ = gg0, t′ = tt0, we have g = g′g−1
0 , t = t′t−1

0 and ϑ = ϑ′−ϑ0.

Then

Π̃νG,kνT (x1k, y2k)

=
dνG

(2π)dT

∫

G

∫

T

χνG(g′g−1
0 )e−ikνT (ϑ′−ϑ0)Π

(
µ̃P
p−1

0
◦ µ̃Gg′−1 ◦ µ̃Tt′−1 (x) , x2k

)
dt′dg′,

(3.36)

that will be the same as before with the difference that in the j-addendum we will

make the substitution:

χνG (gj)t
−kνT
j = χνg ,kνT (pj) 7→ χνG

(
gjg
−1
0

)
(tjt

−1
0 )−kνT = χνG,kνT (pjp

−1
0 ).

This complete the proof of 3) and complete the proof of the main Theorem. 2

3.2 Proof of Theorem 1.3.4

Proof.

On the diagonal we have:

Π̃νG,kνT (x, x)

= dνG

∫

G

∫

T

χνG(g−1)t−kνTΠ
(
µ̃Gg−1 ◦ µ̃Tt−1(x), x

)
dtdg

=
dνG

(2π)dT

∫

G

∫

(−π,π)dT
χνG(g−1)e−ikνT ·ϑΠ

(
µ̃Gg−1 ◦ µ̃T−ϑ(x), x

)
dϑdg,

(3.37)

where ϑ = (ϑ1, · · · · · · , ϑdT ), νT = (ν1, · · · , νdT ) ∈ ZdT and νT · ϑ =
∑dT

j=1 νT jϑj. We

consider Fx = {(g1, t1), · · · , (gNx , tNx)} the stabilizer, with |Fx| = Nx. Let ε > 0 and

we consider the following open subsets of P = G× T :

A = {(g, t) ∈ G× T : distG×T ((g, t), Fx) < 2ε}

B = {(g, t) ∈ G× T : distG×T ((g, t), Fx) > ε}.

Then P = A∪B, and we have choose a partition of unity γ1 +γ2 = 1 subordinate

to the open cover {A,B}. Then for (g, t) ∈ supp(γ2) we have

distX
(
µ̃Gg−1 ◦ µ̃Tt−1(x), x

)
≥ Cε
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for some constant C > 0. Therefore, the map

(g, t) ∈ P 7→ γ2(g, t)χνG(g−1)Π
(
µ̃Gg−1 ◦ µ̃Tt−1(x), x

)

is C∞ because the singular support of Π is included in the diagonal X × X. As

consequence the function:

t ∈ T 7→
∫

G

γ2(g, t)χνG(g−1)Π
(
µ̃Gg−1 ◦ µ̃Tt−1(x), x

)
dg

is C∞ and so its Fourier transform evaluated at kνT is rapidly decreasing for k → +∞,

since by assumption νT 6= 0. We set γ1(g, ϑ) =
∑Nx

j=1 ρj(g, ϑ), with each ρj supported

in a neighborhood of (gj, ϑj), and consider

Π̃νG,kνT (x, x) ∼
Nx∑

j=1

Π̃νG,kνT (x, x)(j)

where

Π̃νG,kνT (x, x)(j)

∼ dνG
(2π)dT

∫

G

∫

(−π,π)dT
ρj(g, ϑ)χνG(g−1)e−ikνT ·ϑΠ

(
µ̃Gg−1 ◦ µ̃T−ϑ(x), x

)
dϑdg.

(3.38)

Let us now examine the asymptotics of each integrand separately. On the support

of γ1, µ̃Gg−1 ◦ µ̃Tt−1(x) is close to x, and therefore we may replace Π by its representation

as a Fourier integral, perhaps after disregarding a smoothing term which contributes

negligibly to the asymptotics. After rescaling in t we have:

Π̃νG,kνT (x, x)(j)

∼ dνG
(2π)dT

k

∫

G

∫

(−π,π)dT

∫ +∞

0

χνG(g−1)eikΨ(x,t,g,ϑ)

· s
(
µ̃Gg−1 ◦ µ̃T−ϑ(x), x, kt

)
γj(g, ϑ)dtdϑdg

(3.39)

with

Ψ(x, t, g, ϑ) = tψ
(
µ̃Gg−1 ◦ µ̃T−ϑ(x), x

)
− νT · ϑ. (3.40)

Let us regard 3.39 as an oscillatory integral with a complex phase Ψ of pos-

itive type. Let us look for critical points of Ψ. We have that ∂tΨ(x, t, g, ϑ) =

ψ
(
µ̃Gg−1 ◦ µ̃T−ϑ(x), x

)
= 0 if and only if ϑ = ϑj and g = gj. We set ϑ = η + ϑj
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with η ∼ 0. In the neighborhood of gj, we can write g = gj expG ξ, where ξ ∈ g is

close to the origin. With abuse of notation we shall write µ̃G−ς ◦ µ̃T−ϑ(x) = µ̃G−ξ ◦ µ̃T−η(x).

Upon choosing orthonormal basis for the Lie algebras, we shall identify them with

RdT and RdP , respectively. We consider now ∂(ς,ϑ)Ψ(x, t, ς, ϑ)
∣∣
ξ=0,η=0

= tΦT − νT .

Thus in the new coordinates at any critical point ξ = 0, η = 0. The critical points

are of the form:

P0 = (t0, (ς0, ϑ0)) =

( ‖νT‖
‖ΦT (m)‖ , (ςj, ϑj)

)
.

Considering the second derivatives, ∂2
ttΨ = 0, and using Heisenberg coordinates

we write:

Ψ(x, t, ξ, η) = tψ
(
x+

(
ξΦG(m) + ηΦT (m) +O(‖(ξ, η)‖3),

,−ξM(m)− ηM(m) +O(‖(ξ, η)‖2)
)
, x
)
− νT · η − νT · ϑj.

(3.41)

Here with abuse of language we have identified ηM(m) and ξM(m) with their

representation in local coordinates. We note that m ∈M0,νT so

Ψ(x, t, ξ, η) = tψ
(
x+

(
ηΦT (m) +O(‖(ξ, η)‖3),

,−ξM(m)− ηM(m) +O(‖(ξ, η)‖2)
)
, x
)
− νT · η − νT · ϑj

= −νT · η − νT · ϑj + it
{[

1− eiηΦT (m)
]

+
1

2
‖ηM(m) + ξM(m)‖2eiηΦT (m) +O(‖(ξ, η)‖3)

}

(3.42)

and setting γ = (γ1, · · · , γdP ) = (ξ1, · · · , ξdG , η1, · · · , ηdT ) and σ = (ς, ϑ), we have

σ0 = (ς0, ϑ0) and

∂2
tσΨ(x, t, σ)

∣∣
(t0,σ0)

= ΦT (m). (3.43)

Thus, we have:

∂2
σlσk

Ψ(x, t, σ)
∣∣
(t0,σ0)

= iλνT [Φl(m)Φk(m) + 〈γl, γk〉m] , (3.44)

with λνT = t0, we are in the same case of [P4] in the proof of Theorem 2, so we have

that:

detH(t0, σ0) = idP+1λdP−1
νT
‖ΦT (m)‖2 detC(m). (3.45)
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Where C(m) is a scalar product on Ker(ΦP (m)) and

det

[
k

2πi
H(t0, σ0)

]
=

(
k

2π

)dP+1

λdP−1
νT
‖ΦT (m)‖2D(m)2. (3.46)

The principal term is:

dνGe
−ikϑj ·νT 2dG/2χνG(g−1

j )
(√

2π
)dT−1

·
(‖νT‖k

π

)dM+
1−dP

2

· 1

D(m)‖ΦT (m)‖dM+1+
1−dP

2

. (3.47)

This complete the proof of the Theorem. 2

3.3 Proof of Corollary 1.3.5

Proof.

We start considering the dimension of H(X)νG,kνT :

dim(H(X)νG,kνT ) =

∫

X

Π̃νG,kνT (x, x)dVX(x).

Now let us observe that Π̃νG,kνT (x, x) is naturally S1-invariant as a function of x,

and therefore descends to a function on M , that we shall denote by Π̃νG,kνT (m,m)

with abuse of language. Thus by integrating first along the fibers the previous integral

may be naturally interpreted as an integral over M , that we shall write in the form:

dim(H(X)νG,kνT ) =

∫

M

Π̃νG,kνT (m,m)dVM(m).

Now by the above Π̃νG,kνT (m,m) is rapidly decreasing away from a shrinking

neighborhood of M0,νT . So, using a smoothly varying system of adapted coordinates

centered at points m ∈M0,νT , we can locally parametrize a neighborhood U of M0,νT

in the form m+ v, where m ∈M0,νT and v ∈ Nm. This parametrization is only valid

locally in m, since we may not expect to find a single C∞ family of adapted coordinates

γm (m ∈ M0,νT ). Hence to make this argument strictly rigorous we should introduce

a partition of unity on M0,νT subordinate to an appropriate open cover. However, we

shall simplify notation and leave this point implicit.

dim(H(X)νG,kνT ) =

∫

M0,νT

∫

RdP−1

Π̃νG,kνT (m+ v,m+ v) d vdVM(m).
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In view of Theorem 1.2.6 the asymptotics of the previous integral are unchanged,

if the integrand is multiplied by a cut-off of the form %
(
k

7
18‖ v‖

)
, where % ∈ C∞0 (R) is

identically equal to 1 in some neighborhood of 0.

dim(H(X)νG,kνT ) =

∫

M0,νT

∫

RdP−1

Π̃νG,kνT (m+ v,m+ v) %
(
k

7
18‖ v‖

)
d vdVM(m).

Let us now operate the rescaling v = u√
k
. We can now make use of the asymptotic

expansion in Theorem 1.3.4, with u = ut (that is, uv = uh = 0). We obtain:

dim(H(X)νG,kνT ) = k−
dP−1

2

∫

M0,νT

∫

RdP−1

Π̃νG,kνT

(
m+

u√
k
,m+

u√
k

)
%
(
k−

1
9‖ u‖

)
d udVM

= k−
dP−1

2 ·
∫

M0,νT

2
dG
2 d2

νG

(
√

2)dT−1πdT−1

(‖νT‖k
π

)dM− dP−1

2

·

·
∫

RdP−1

1

‖ΦT‖dM−
dP−1

2
+1 detC(m)

e−λνT 2‖ u‖2%
(
k−

1
9‖ u‖

)
d udVM(m) + · · · ,

(3.48)

where dP = dG + dT and the dots denote lower order terms. Now we evaluate the

Gaussian integral, let us operate the change of variables q =
√

2λνT u, we have that:

∫

RdP−1

e−2λνT ‖u‖2d u =
1

λ
dP−1

2
νT (

√
2)dP−1

∫

RdP−1

e−‖q‖
2

dq

=
‖ΦT (m)‖ dP−1

2 π
dP−1

2

(
√

2)dP−1‖νT‖
dP−1

2

(3.49)

and substituting in (3.48) we obtain the following expression:

dim(H(X)νG,kνT ) =
d2
νG

2dT−1πdT−1

(‖νT‖k
π

)dM−dP+1

·

·
∫

M0,νT

‖ΦT (m)‖−dM+dP−2

detC(m)
dVM(m) + · · · .

The proof is complete. 2

3.4 Proof of Proposition 1.2.7

Proof.
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We assume that distX(y, p · x) ≥ Dkε−1/2, for every p ∈ P . The method consist to

use iteratively integration by parts to deduce the rapidly decreasing behavior of the

kernel. We start following the previous situations using the standard representation

as Fourier integral operator. So, by performing the change of variables t 7→ kt, we

obtain the following expression for the Szegö kernel:

Π̃νG,kνT (x, y) =
kdνG

(2π)dT

∫

G

∫

T

∫ +∞

0

χνG(g−1)eikΨ(t,ϑ,x)·

· s
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y, kt

)
dtdgdϑ,

(3.50)

where

Ψ(t, ϑ, x) = tψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)
− νT · ϑ (3.51)

is the phase of the oscillatory integral. First we observe that:

‖∂ϑΨ‖ = ‖tψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)
− νT‖ ≥ C

for 0 < t� 1 and C > 0. In a similar way

‖∂ϑΨ‖ ≥ C1t

for t� 0 and C1 > 0. Using integration by parts in dϑ, the asymptotics for k → +∞
is unchanged. We multiply the integrand by γ(t), where γ ∈ C∞0

(
1

2D
, 2D

)
, γ ≡ 1 on(

1
D
, D
)

and γ ≡ 0 outside of
(

1
2D
, 2D

)
. The integral now is compactly supported in

dt. Taking the partial derivative respect t, we deduce that:

∂tΨ(t, ϑ, x) = ψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)

and by the assumption we find that:

‖∂tΨ(t, ϑ, x)‖ =
∣∣ψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)∣∣ ≥ =ψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)
≥ D′k2ε−1.

Now we introduce the differential operator:

Lt =
[
ψ
(
µ̃Gg−1 ◦ µ̃T−ϑ (x) , y

)]−1
∂t

and observing that eikΨ = − i
k
Lt
(
eikΨ

)
we can apply iteratively the integration by

parts. So step by step we obtain a factor of order O(k−2Nε).

The proof is complete. 2
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3.5 Proof of Theorem 1.4.1

Proof.

In view of the equality on the first line of (1.14) we observe that 1) follows im-

mediately from the point 1) of the main Theorem. Let us now consider the proof of

2).

Let f ∈ C∞(M), we consider the associated Toeplitz operator:

TνG,kνT [f ]

(
x+

v√
k
, x+

v√
k

)

=

∫

X

Π̃νG,kνT

(
x+

v√
k
, y

)
f(y)Π̃νG,kνT

(
y, x+

v√
k

)
dVX(y)

(3.52)

with x ∈ X0,νT , where f(y) = f(π(y)). Now in view of Proposition 1.2.7 only a shrink-

ing neighborhood of the orbit P · x contributes non-negligibly to the asymptotics.

Therefore, the asymptotics are unchanged if the integrand in (3.52) is multiplied by

a cut-off function %k(y), where %k = 1 for distX(y, P · x) ≤ Dkδ−1/2 (for example

concretely δ equal 1/9) and %k = 0 for distX(y, P · x) ≥ 2Dkδ−1/2. We shall make a

more explicit choice of %k below.

Let x + (θ, v) be a system of Heisenberg local coordinates on X centered at x.

This determines for every p ∈ P a system of HLC centered at p · x, by setting

p · x+ (θ, v) = p ·
(
x+ (θ, v)

)
.

In this manner we have a unique smoothly varying family of HLC systems centered

at points of P · x, and identifications Tp·xX ∼= TxX ∼= R × R2dM , Tp·mM ∼= TmM ∼=
R× R2dM . Furthermore, the action of P preserves the contact and CR structures of

M , and the decomposition of the tangent spaces in h-, v-, and t-components. This

means that the corresponding decomposition is preserved under the identification

Tp·mM ∼= TmM . If y ∈ P · x, let NP
y be the normal space to P · x in X at y; then we

have natural unitary isomorphisms NP
y
∼= NP

x . With this identification implicit and

some abuse of language, we may then parametrize a suitably small open neighborhood

of P · x by the map

(p, n) ∈ P ×NP
x 7→ p · x+ n.

We set y = p · (x+ n), where p = (g, t) ∈ P and n is a tangent vector normal

to the orbit. For simplicity we suppose that the stabilizator of x in P is trivial. We

have a diffeomorphism P ×N(ε)→ X ′, with X ′ a ε-tubular neighborhood of P · x in
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X and N(ε) is a ball of radious ε in the normal space of the orbit in x (a real vector

space of dimension 2dM + 1− dP ). This diffeomorphism doesn’t preserve the volume

form. Thus in coordinates (p, n) ∈ P × NP
x (where NP

x denote the normal space to

P · x in x):

dVX(y) = D(p, n)dVP (p)dn, (3.53)

where dVP (p) = dϑ
(2π)dT

dVG(g) is the Haar measure of P , dn = dL(n) the Lebesgue

measure on NP
x (unitarily identified with R2dM+1−dP ) and D(p, 0) = Rx(p) with Rx :

P → R>0 a distortive function defined as follow. Let B0 an orthonormal basis of

p and let valx : p → TxX the valutation map. Let Dx(p) the matrix associated to

val∨x (gX) : p× p→ R respect to B0 and

Rx(p) =
√

detDx(p), (3.54)

here gX is the Riemannian metric on X and val∨x (gX) is the pull back of such metric to

p = Lie(P ) using the valutation valx : γ 7→ γX(x). We observe that Rx(p) is constant

along the orbit, because P acts by isometries. We put Rx(p) = rx. We obtain that:

TνG,kνT [f ]

(
x+

v√
k
, x+

v√
k

)

=

∫

X

Π̃νG,kνT

(
x+

v√
k
, y

)
f(y)Π̃νG,kνT

(
y, x+

v√
k

)
%k(y)dVX(y)

=

∫

P

∫

Nx

Π̃νG,kνT

(
x+

v√
k
, p (x+ n)

)
f (p · (x+ n)) ·

· Π̃νG,kνT

(
p (x+ n) , x+

v√
k

)
D(p, n)%k (p · (x+ n)) dVP (p)dn.

(3.55)

Rescaling n 7→ n√
k
, we observe that Rank(N) = dimX − dimP = 2dM + 1− dP =

2
[
dM + 1−dP

2

]
from which we have that dn→ k

−
[
dM+

1−dP
2

]
dn and we obtain that:
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TνG,kνT [f ]

(
x+

v√
k
, x+

v√
k

)

= k
−
[
dM+

1−dP
2

] ∫

X

Π̃νG,kνT

(
x+

v√
k
, y

)
f(y)Π̃νG,kνT

(
y, x+

v√
k

)
%k(y)dVX(y)

= k
−
[
dM+

1−dP
2

] ∫

P

∫

Nx

Π̃νG,kνT

(
x+

v1√
k
, p

(
x+

n√
k

))
f

(
p

(
x+

n√
k

))
·

· Π̃νG,kνT

(
p

(
x+

n√
k

)
, x+

v√
k

)
D

(
p,

n√
k

)
%k

(
p ·
(
x+

n√
k

))
dVP (p)dn.

(3.56)

Here %k(p · x + n) = %k
(
p · x+ k1/2−εn

)
and ε = 1/9. n ∈ NP

x by construction

and v ∈ NP
x by assumption. We have that:

NP
x = [valx(Ker(ΦP (m)))⊕ span(ηX(x))]⊥.

Let η ∈ t be the unique element such that

η ∈ ker ΦT (m)⊥, 〈ΦT (m), η〉 = ‖ΦT (m)‖.

In particular we have η ∈ t, and η has unit norm. Then

ηX(x) = (‖ΦP (m)‖,−ηM(m)). (3.57)

So in terms of the isomorphism TxX ∼= R× TmM we have:

pX(x) = ({0} × valm(Ker(ΦP (m))))⊕ spanR((‖Φ(m)‖,−ηM(m))),

and so in the notation of (1.4) and (1.5)

pX(x)⊥ = ({0} × Vm)⊥ ∩ spanR(‖Φ(m)‖,−ηM(m))⊥

= [R× (Hm ⊕Nm)] ∩ [spanR((‖Φ(m)‖,−ηM(m)))]⊥,

with Vm = valm(Ker(ΦP (m))), Nm = Jm(Vm) and Hm = (Vm ⊕Nm)⊥. We have that

ηMt(m) = 0, because M0,νT is P -invariant. Thus if (λ, h + t) ∈ R × (Hm ⊕ Nm) we

have:

gX((λ, h + t), (‖Φ(m)‖,−ηM(m))) = λ‖ΦP (m)‖ − gX(h, ηMh(m)).

Denoting Φ = ΦP (m) and ηM = ηM(m) we have:
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NP
x =

{
(λ, h + t) ∈ R× (Hm ⊕Nm) : λ =

gX(h, ηMh)

‖Φ‖

}

= [{0} ×Nm]⊕
{(

1

‖Φ‖gX(h, ηMh), h

)
: h ∈ Hm

}
.

(3.58)

We write v = n1 =
(

1
‖Φ‖gX(h1, ηMh), h1 + t1

)
, n =

(
1
‖Φ‖gX(h, ηMh), h + t

)
. Re-

calling that Π(x1, x2) = Π(x2, x1) we obtain:

TνG,kνT [f ]

(
x+

n1√
k
, x+

n1√
k

)
=

k
−
[
dM+

1−dP
2

] ∫

P

∫

Nx

∣∣∣∣Π̃νG,kνT

(
x+

n1√
k
, p

(
x+

n√
k

))∣∣∣∣
2

f

(
p

(
x+

n√
k

))
·

·D
(
p,

n√
k

)
%k

(
p ·
(
x+

n√
k

))
dVP (p)dn.

(3.59)

Let us now make use of the asymptotic expansion of Π̃νG,kνT from point 3) of the

Theorem 1.2.6 and, using the Taylor expansion for f
(
p · x+ n√

k

)
and for D

TνG,kνT [f ]

(
x+

n1√
k
, x+

n1√
k

)
∼ k

[
dM+

1−dP
2

]
rx · f (p · x)C(m, νP )

∫

P

∫

Nx

|χνP (p)|2 · eH(n1,n)+H(n,n1)%k

(
p ·
(
x+

n√
k

))
dVP (p)dn(1 + · · · )

(3.60)

where we have set:

C(m, νP ) =




dνG2
dG
2

(
√

2π)dT−1
·

(
‖νT ‖
π

)dM+
1−dP

2

D(m)‖ΦT‖dM+1+
1−dP

2




2

and the dots stand for terms of less degree.

Here the exponent is as follows: let

n = v + t + h, n1 = v1 + t1 + h1

be the decomposition as in (1.4) and (1.5). We call Rx = NP
x and r, r1 in place of

n1, n. Then

H(r1, r) +H(r, r1) = −2λνT
(
‖ t1‖2 + ‖ t‖2

)
− λνT

∥∥∥∥h1 − h− gX(h− h1, ηMh)

‖ΦT (m)‖ ηMh

∥∥∥∥
2

.

(3.61)

49



We evaluate the Gaussian integral
∫
Rx
eH(r1,r)+H(r,r1)dr. So we have that:

∫

Rx

eH(r1,r)+H(r,r1)dr = e−2λνT ‖ t1‖2
∫

Nm

e−2λνT ‖ t‖2d t·
∫

Hm

e
−λνT

∥∥∥h1−h− gX (h−h1,ηMh)

‖ΦT (m)‖ ηMh

∥∥∥
2

d h.

(3.62)

Let dNm = dP − 1 the dimension of Nm. Let us first consider the first Gaussian

integral in (3.62).

∫

Nm

e−2λνT ‖ t‖2d t =
1

(
2
√
λνT
)dNm

∫

Nm

e−
1
2
‖s‖2ds =

(
π

2λνT

)(dP−1)/2

. (3.63)

To compute the second Gaussian integral in (3.62), let us operate the change of

variable

− h1 + h +
gX(h− h1, ηMh)

‖ΦT (m)‖ ηMh = w. (3.64)

We differentiate the previous expression d h = det
(
∂ w
∂ h

)−1
dw and in order to

determine det
(
∂ w
∂ h

)
we have the following Lemma:

Lemma 3.5.1 Under the change of coordinates (3.64) we have that:

det

(
∂ w

∂ h

)
= 1 +

‖ηMh‖2

‖ΦT‖
.

Proof.

We consider an orthonormal basis of Hm that include ηMh. So the Jacobian matrix

is of the form:

(
∂ w

∂ h

)
=

[
I 0

0 1 + ‖ηMh‖2
‖ΦT ‖

]

where I is the identity matrix and the Lemma is proved. 2
So we have:

∫

Hm

e
−λνT

∥∥∥h1−h− gX (h−h1,ηMh)

‖ΦT (m)‖ ηMh

∥∥∥
2

d h

=
‖ΦT‖

‖ΦT‖+ ‖ηMh‖2

∫

Hm

e−
1
2
‖s‖2 ds

(2λνT )
dHm

2

=
‖ΦT‖

‖ΦT‖+ ‖ηMh‖2

(
π

λνT

)dHm/2
,

(3.65)
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with dHm = 2(dM +1−dP ) the dimension of Hm. Inserting (3.65) and (3.63) in (3.62),

we obtain

∫

Rx

eH(r1,r)+H(r,r1)dr

= e−2λνT ‖ t1‖2 · ‖ΦT‖
‖ΦT‖+ ‖ηMh‖2

(
π

λνT

) dHm
+dNm
2

2−
dNm

2 .

(3.66)

Let us now insert this in (3.60). We obtain a leading term depending on rx and

f(x). We can then determine rx using that for f = 1 this must reduce to the leading

term in 2) of Theorem 1.2.6. Thus, recalling that
∫
P
|χνP (p)|2 dVP (p) = 1 (see [BD]

Theorem 4.11) and noting that dHm +dNm = 2dM +1−dP we obtain that the leading

order term in (3.60) is given by:

k

[
dM+

1−dP
2

]
· C(m, νP ) ·

(
π

λνT

) dHm
+dNm
2

· 2−
dNm

2

· e−2λνT ‖ t1‖2 · ‖ΦT‖
‖ΦT‖+ ‖ηMh‖2

· rx =
1

(
√

2π)dT−1
dνG2

dG
2

(
k

π
‖νT‖

)dM− dP2 + 1
2

e−2λνT ‖ t1‖2·

· 1

D(m)
· 1

‖ΦT‖dM+1− dP
2

+ 1
2

,

(3.67)

and we find that

rx =
πdT−1D(m)(‖ΦT‖+ ‖ηMh‖2)

dνG
(√

2
)−dG−dT+1−dNm

. (3.68)

The leading term become:

1

(
√

2π)dT−1
dνG2

dG
2

(
k

π
‖νT‖

)dM− dP2 + 1
2

f(m)e−2λνT ‖ t1‖2 ·

· 1

D(m)
· 1

‖ΦT‖dM+1− dP
2

+ 1
2

.

(3.69)

This complete the proof of 2) and of the Theorem. 2

3.6 Proof of Corollary 1.4.2

Proof.
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We start considering the trace of TνG,kνT [f ]:

T (TνG,kνT [f ]) =

∫

X

TνG,kνT [f ](x, x)dVX(x).

Now we observe that TνG,kνT (x, x) is rapidly decreasing away from a shrinking

neighborhood of X0,νT . So, using a smoothly varying system of adapted coordinates

centered at points x ∈ X0,νT , we can locally parametrize a neighborhood U of X0,νT

in the form x + t, where x ∈ X0,νT and t ∈ Nm. This parametrization is only valid

locally in x. We introduce a partition of unity on X0,νT subordinate to an appropriate

open cover and we simplify the notation leaving this point implicit.

T (TνG,kνT [f ]) =

∫

X0,νT

∫

RdP−1

TνG,kνT [f ] (x+ t, x+ t) d tdVX(x).

In view of Theorem 1.4.1 the asymptotics of the previous integral are unchanged,

if the integrand is multiplied by a cut-off of the form %
(
k

7
18‖ t‖

)
, where % ∈ C∞0 (R) is

identically equal to 1 in some neighborhood of 0.

T (TνG,kνT [f ]) =

∫

X0,νT

∫

RdP−1

TνG,kνT (m+ v,m+ v) %
(
k

7
18‖ t‖

)
d tdVX(x).

Let us now operate the rescaling t = u√
k
. We can now make use of the asymptotic

expansion in Theorem 1.4.1, with n1 = u. We obtain:

T (TνG,kνT [f ]) = k−
dP−1

2

∫

X0,νT

∫

RdP−1

TνG,kνT

(
x+

u√
k
, x+

u√
k

)
%
(
k−

1
9‖ u‖

)
d udVX

= k−
dP−1

2 · 2
dG
2 d2

νG

(
√

2)dT−1πdT−1

(‖νT‖k
π

)dM− dP−1

2

·
∫

X0,νT

∫

RdP−1

f(π(x))

‖ΦT‖dM−
dP−1

2
+1D(π(x))

e−λνT 2‖ u‖2%
(
k−

1
9‖ u‖

)
d udVX(x) + · · · ,

(3.70)

where dP = dG + dT and the dots denote lower order terms. Now we evaluate the

Gaussian integral, that is the same of (3.49) in the Corollary 1.3.5. Substituting the

result in (3.70) we obtain the following expression:

T (TνG,kνT [f ]) =
d2
νG

2dT−1πdT−1

(‖νT‖k
π

)dM−dP+1

·

·
∫

X0,νT

f(π(x))‖ΦT (π(x))‖−dM+dP−2

D(π(x))
dVX(x) + · · · .

The proof is complete. 2
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Birkhäuser Springer, New York, 2011.

[Di] J.Dixmier “Les C∗-algebras et leurs réprésentations”, Gauthier-Villars Paris
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