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Introduction

Context and Motivation

The three dimensional reconstruction of an object is a topic of great interest in many
different fields of application: from the biomedical application of 3D reconstruction of
human tissues, to the archeology for the digitization of artistic works. Other examples
come from engineering for the construction of an endoscope 3D for surgical operations
in real time and from astronomy for the characterization of properties of planets or
other astronomical entities. More recently the application to security have emerged for
the facial recognition of individuals. This problem has always attracted a great attention
because although its formulation is simple, there is still no global method for its resolution
under realistic assumptions but it finds applications in various fields of application as
listed just above.

The firsts being interested in the problem were some opticians [33, 96] in the Fifties-
Sixties. Afterwards, Horn [50, 51, 53, 54, 52] first formulated this problem, known in the
literature as the Shape from Shading (SfS) problem, via a partial differential equation
(PDE), giving rise to an expansion in the field of mathematics as well, upon which others
researchers gave theoretical contributions. In fact, starting e.g. from the first works of
Lions, Rouy and Tourin [97, 75], the SfS problem was inserted in the context of the
viscosity solutions frameworks, hence in a much more theoretical area [81].

This classical problem of image processing is a difficult inverse problem where the goal
is to reconstruct the surface from a single image, that is, given a two-dimensional gray
scale digital image I(x), where x := (x, y), the goal is to reconstruct the surface z = u(x)
that corresponds to it, using the information contained in the image (hence the name
Shape from Shading). This problem is described in general by the irradiance equation

R(N(x)) = I(x) (0.1)

where the normalized brightness of the given grey-value image I(x) is put in relation
with the function R(N(x)) that represents the reflectance map giving the value of the
light reflection on the surface as a function of its orientation (i.e., of the normal N(x)) at
each point (x, u(x)). Depending on how we describe the function R different reflection
models are determined. In the literature, the most common representation of R takes
into account only the angle between the outgoing normal to the surface N and the light
source ω, that is

I(x) = γD(x)N(x) · ω, (0.2)

where γD(x) indicates the albedo of the diffuse part, i.e. the diffuse reflectivity or reflect-
ing power of a surface. It is the ratio of reflected radiation from the surface to incident
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radiance upon it. Its dimensionless nature is expressed as a percentage and is measured
on a scale from zero for no reflection of a perfectly black surface to 1 for perfect reflection
of a white surface. The data are the grey-value image I(x), the direction of the light
source ω and the albedo γD(x). The light source ω is a unit vector, hence |ω| = 1.

Several approaches have been proposed to solve this problem that can be collect in two
big classes (see the survey [34]): methods of resolution of partial differential equations
(PDEs), in particular the method of characteristics [33, 96, 51, 80, 79, 14, 71] and the
approximation of viscosity solutions (see [57, 18, 20, 41, 19, 75, 92, 8, 98, 60, 42, 89]),
and optimization methods based on the variational approach (see [53, 72, 31, 105, 44,
106, 55, 15, 121]). In this thesis we will follow the differential approach, that leads to a
nonlinear partial differential equation of the first order (Hamilton-Jacobi equation). It is
well known that, in general, this problem is ill-posed since there can be many viscosity
solutions (no matter which regularity is required for the solutions) unless additional
conditions/informations are added to the problem [124, 34]. This explains the growing
importance of a generalization of this classical problem in order to obtain uniqueness
of the solution while reducing the assumptions on the physical reflectance properties of
the objects. A continuous effort has been made by the scientific community to take into
account more realistic scenarios including perspective deformations [78, 109, 90, 3, 76]
and/or multiple images of the same object [122, 123], taken from the same point of view
but with different light sources (photometric stereo technique, see [107, 70]) or from
different points of view but with the same light source (stereoscopy, see [21]). We can
consider in addition other supplementary issues, as the estimation of the albedo or of
the direction of the light source (the so-called calibrated/uncalibrated problem), that
are known quantities for the model but not provided in the real images. Moreover, the
boundary conditions that we need to know in real applications consists to know a priori
the height of the surface on the boundary of the image. This is a supplementary data that
it is possible to approximate using the classical (not differential) approach of photometric
stereo, following the seminal paper by Woodham [120], aims at reconstructing the surface
through its normal field approximation and integration.

Our initial effort goes in another direction: we want to take into account more realistic
models considering generic surfaces with not uniform reflection properties, in such a way
that the light intensity of the image does not depend only on the angle between the
outgoing normal to the surface and the light source (such a model is said the Lambertian
model). We will see how this problem does not admit a unique solution due to the so-
called concave/convex ambiguity. This ambiguity is common to the two approaches, i.e.
methods based on partial differential equation or minimization methods (see [34]).

Contributions of this thesis

The research work is focused on the analysis and the approximation of a problem related
to image processing, namely the Shape-from-Shading (SfS) problem. Our goal is to over-
come the classical Lambertian model, which reflects the light uniformly over the entire
surface supposed smooth, without taking into account the position of the observer or
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the physical properties of the material of the object to be reconstructed. We also would
like to overcome the concave/convex ambiguity typical of the SfS problem. In the course
of this research work we have proposed a unified formulation of a general model for the
orthographic case, that is

I(x) = kAIA(x) + kDID(x) + kSIS(x), (0.3)

where IA(x), ID(x) and IS(x) are respectively the ambient, diffuse reflected and specular
reflected light components and kA, kD and kS indicate the percentages of these compo-
nents such that their sum is equal to 1 (we do not consider absorption phenomena). Note
that the diffuse or specular albedo is inside the definition of ID(x) or IS(x), respectively.
This formulation can describe different models of reflection, specular or diffuse, in a
single notation and mathematical formulation that, using the various components such
as a switch on-off, finds the different models. We analyzed with particular attention two
reflectance models alternative to the classical Lambertian one: the first was the diffuse
model introduced by Oren and Nayar [83, 84, 82, 85], which irradiance equation in the
simplified version suggested by the authors themselves in the Section 4.4 of [83] is

ED(x) = γD(x) cos(θi)(A+B sin(α) tan(β) max[0, cos(ϕr − ϕi)]). (0.4)

Assuming that there is a linear relation between the irradiance of the image and the
image intensity, the ID brightness equation for the ON–model is given by

ID(x) = γD(x) cos(θi)(A+B sin(α) tan(β) max[0, cos(ϕr − ϕi)]) (0.5)

where

A = 1− 0.5σ2(σ2 + 0.33)−1 (0.6)

B = 0.45σ2(σ2 + 0.09)−1. (0.7)

Note that A and B are two non negative constants depending on the statistics of the
cavities via the roughness parameter σ that we can imagine that takes values between 0
and π/2, as representative of the slope of the roughness of the surface considered. In this
model θi represents the angle between the unit normal to the surface N(x) and the light
source direction ω, θr stands for the angle between N(x) and the observer direction V,
ϕi is the angle between the projection of the light source direction ω and the x1 axis onto
the (x1, x2)-plane, ϕr denotes the angle between the projection of the observer direction
V and the x1 axis onto the (x1, x2)-plane and the two variables α and β are given by

α = max [θi, θr] and β = min [θi, θr] . (0.8)

The second model analyzed was the specular model proposed by Phong [86], which
brightness equation is

I(x) = kAIA(x) + kDγD(x)(N(x) · ω) + kSγS(x)(R(x) ·V)α, (0.9)
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where the diffuse component is represented by the Lambertian model and the specular
light component IS(x) is described as a power of the cosine of the angle between the
unit vectors V and R(x) (it is the vector representing the reflection of the light ω on the
surface). The exponent α expresses the specular reflection characteristics of a material.
A careful analysis of the parameters involved in these models was carried out.

Using a differential approach it is possible to associate partial differential equations
(PDEs) to the equations of these models: in the vertical light case, we noted that it is
possible to arrive to an eikonal equation form for each model

|∇u(x)| = f(x) for x ∈ Ω, (0.10)

where Ω is an open subset of R2 and the expression of f(x) changes for each model.
With respect to the oblique light case, after a Kruzkov transform, we were able to write
the problem in the new variable v in a similar way for all the models as follows:

µv(x) + max
a∈∂B3

{−bM (x, a) · ∇v(x) + PM (x, z)(1− µv(x))} = 1, x ∈ Ω, (0.11)

where the vector field bM (x, a) and the function PM (x, z) have a different expression for
each model (M indicates the acronym of the specific model considered).

Rewriting this problem in a fixed point form V = TM (V ), we discretized it by con-
structing a semi-Lagrangian scheme associated to it. We were able to write the discrete
operator associated to the different models in a similar manner as

TMi (W ) = min
a∈∂B3

{e−µhw(xi + hbM (xi, a))− τPM (xi, z)a3(1− µw(xi))}+ τ, (0.12)

where

τ = 1− e−µh/µ (0.13)

PM : Ω× R→ R (0.14)

and w(xi + hbM (xi, a)) is obtained by interpolating on W , that denotes the vector solu-
tion giving the approximation of the height of u at every node xi of the grid.
Note that µ is a free positive parameter without a specific physical meaning, but it is
important because varying its value it is possible to modify the slope. In fact, the slope
increases for increasing values of µ.
Thanks to this general form of the discrete operator, we came to the formulation of a
single general convergence theorem, then checked for individual models that the proper-
ties assumed by the general theorem were actually respected by individuals and different
operators.

Numerical tests to compare the performances of the two models with the classical
Lambertian model were done. In addition, we applied acceleration techniques based on
a finite difference solver (Fast Marching and Fast Sweeping methods) and compared the
performances of them too.

We have also studied the perspective case based on the reflectance model of Oren-
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Nayar. In the literature it is always assumed that the light source is located exactly at the
optical center of the camera, a restrictive and unrealistic assumption (think for example
to the flash of a camera or to an endoscope), see e.g. Ahmed and Farag [3, 2] or Prados
and Faugeras [90, 89] using this restrictive assumption. Starting from a perspective
model, we have reached a formulation of a generalized model, using a parameterization
of the surface in spherical coordinates, which allows us to locate the light source at any
point in the scene. The switching from Cartesian coordinates to spherical coordinates is
useful and crucial to ensure that the points at maximum brightness coincide with the
critical points, an essential condition for the application of the Fast Marching method.
Because of the min and max operators involved in the Oren-Nayar model, it is necessary
to distinguish several cases that have been analyzed and implemented in [59].

It is still in progress the analysis and approximation of non-linear systems correspond-
ing to the application of the photometric stereo technique to non-Lambertian models (Cf.
[23, 128, 47]). This technique considers more than one input image taken from the same
point of view but from different light sources, an approach which has been successfully
applied for Lambertian model (see [76]). Note that this approach is able to overcome
the concave/convex ambiguity typical of the SfS problem: in fact, it ensures uniqueness
of the solution with only two images, that give rise to two partial differential equations,
with boundary conditions. If we consider three images the uniqueness is guarantee with-
out the use of boundary conditions (see details in [77]). On the heels of that success
in the Lambertian case, we hope to achieve similar results to more realistic models, i.e.
non-Lambertian models.

Organization of this thesis

In Chapter 1 we give a description of some non-Lambertian reflectance models, after a
very short explanation of the classical Lambertian model. In particular, we focus our
attention on the diffuse Oren-Nayar model, the specular Phong model and the Blinn-
Phong model. We begin the chapter by formulating the problem, listing the assumptions
that we will follow in the orthographic case and we illustrate a new general mathemati-
cal formulation that includes the different models in a unique notation. In this way, we
can switch on-off the different components (ambient, diffuse and specular components)
and we can retrieve the Lambertian model in some special case. We observe that in the
particular case of vertical position of the light source, it is possible to rewrite the PDEs
associated to each model in an eikonal form. After that, we recall some definitions and
concepts related to the viscosity solutions and their theory (existence and uniqueness
results). Then, we focus our attention on two methods of resolutions of PDE: character-
istic strips expansion and approximation of viscosity solutions. Finally, a subsection on
the issue of boundary conditions is given.

In Chapter 2 we begin by describing two class of numerical schemes for the solution
of the PDEs illustrated in Chapter 1. We focus our attention on the Finite Difference
(FD) approximation and on the semi-Lagrangian (SL) approach, describing the main
characteristics of each technique. After that, a new general convergence theorem is stated
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for a general discrete fixed point operator. We list and prove the properties of this general
operator. In this way, we show that the general operator is a contraction mapping under
some assumptions and we will see in the next Chapters 4 and 5 that the discrete operators
associated to the Oren-Nayar model and to the Phong model described in Chapter 1
satisfy the properties listed here.

In Chapter 3 we move on the description of acceleration methods, as the Fast Marching
(FM) and the Fast Sweeping (FS) methods, describing how they work in a section
devoted to each of them, showing the algorithms in pseudocode too.

Chapter 4 is devoted to the Oren-Nayar model. An analysis of the parameter σ involved
in the model is given. Then, we show how the discrete operator TON of the SL scheme for
this model has the properties stated in the general convergence theorem of the Chapter
2. Finally, some numerical tests are shown on synthetic and real input images. We give
tables of errors and images of the results obtained. We conclude the chapter with some
final comments.

Chapter 5 deals with the analysis and the approximation of the Phong model. The
structure of this chapter is similar to that of Chapter 4: we give an analysis of the
parameters α and kS involved in the model, we show how the discrete operator TPH has
the properties stated in the general convergence theorem of the Chapter 2, we show some
numerical tests on synthetic and real input images, accompanied by tables of errors too.
Finally, a section on the comparison between the Oren-Nayar model, the Lambertian
model and the Phong model is given, with some final remarks.

In Chapter 6 we move to consider the perspective case formulated via PDEs, by
combining a spherical surface parametrization with the non-Lambertian Oren-Nayar
reflectance model. We present a new general model that allows to deal with an arbitrary
position of the light source in the scene, not located at the optical center of the camera
that is the common assumption in the literature. We explain why we choose a spherical
coordinate system, we parametrize the surface in spherical coordinates and then we
describe the normal vector in spherical coordinates. We present the perspective Oren-
Nayar SfS brightness equation and we derive its formulation in spherical coordinates
for the several cases typical of the Oren-Nayar model. Afterwards, we describe the Fast
Marching method that we use to solve the resulting set of Hamilton-Jacobi equations
(HJEs). Finally, we show some numerical results obtained by using endoscopic images
provided in [1].

Appendix A contains supplementary materials related to Chapter 6, showing in details
intermediate steps that are helpful to understand the derivation of the normal vector
and the four cases of the HJEs that correspond to the generalized perspective SfS model
with Oren-Nayar reflectance described in Chapter 6.

Original material for this thesis

Part of the Chapter 1, Chapter 4 and 5 are an extended version of the paper [TF14b].
The complete proof of the general convergence theorem and a version similar in extension
to the material present in the thesis will appear in [TF15].
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Chapter 4 is based on the refereed paper [TF14a], presented at the 9th International
Conference on Computer Vision Theory and Applications (VISAPP).
Chapter 6 is based on the refereed paper [JTBBK13], presented at the 24th British
Machine Vision Conference (BMVC).
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1. A review of some non-Lambertian
models

We want to take into account more realistic models considering generic surfaces with
reflection properties not uniform, in such a way that the light intensity of the image does
not depend only on the angle between the outgoing normal to the surface and the light
source (such a model is said the Lambertian model). With this purpose, in this chapter,
after a formulation of the problem and its assumptions, and a description of the classical
Lambertian model, of course, we will describe briefly several non-Lambertian reflectance
models. Our initial effort was to describe these different models in a single formulation
and notations unified which will help in their analysis and approximation.

1.1. Formulation of the general model

We fix a camera in a three-dimensional coordinate system (Oxyz ) in such a way that
Oxy coincides with the image plane and Oz with the optical axis. Let ω = (ω1, ω2, ω3) =
(ω̃, ω3) ∈ R3 (with ω3 > 0) be the unit vector that represents the direction of the
light source; let I(x) be the function that measures the gray tones of the image at the
point x := (x, y). I(x) is the datum in the model since it is measured at each pixel of
the image, for example in terms of a greylevel (from 0 to 255). In order to construct
a continuous model, we will assume that I(x) takes real values in the interval [0, 1],
defined in a compact domain Ω called “reconstruction domain” (with Ω ⊂ R2 open set),
I : Ω→ [0, 1], where the points with a value of 0 are the dark point (blacks), while those
with a value of 1 correspond to a completely reflection of the light (white dots, with a
maximum reflection).
We consider the following assumptions:

A1. there is a single light source placed at infinity in the direction ω (the light rays are,
therefore, parallel to each other);

A2. the observer’s eye is placed at an infinite distance from the object you are looking
at (i.e. there is no perspective deformation);

A3. there are no autoreflections on the surface.

In addition to these assumptions, there are other hypothesis that depend on the different
reflectance models (we will see them in the description of the individual models).
Being valid the assumption (A2) of orthographic projection, the visible part of the scene
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is a graph z = u(x) and the unit normal to the regular surface at the point corresponding
to x is given by:

N(x) =
n(x)

|n(x)| =
(−∇u(x), 1)√
1 + |∇u(x)|2

, (1.1)

where n(x) is the outgoing normal vector.
We assume that the height function, which is the unknown of the problem, is u(x) ≥ 0
and the surface is standing on a flat background, we will denote by Ω the region inside
the silhouette and we will assume (just for technical reasons) that Ω is an open and
bounded subset of R2 (see Fig. 1.1). It is well known that the Shape-from-Shading (SfS)

Figure 1.1.: An object on a flat background: Ω indicates the region inside the silhouette,
∂Ω the boundary of it.

problem is described by the image irradiance equation

I(x) = R(N(x)), (1.2)

where I(x) is the normalized brightness of the given grey-value image, N(x) is the
unit normal to the surface at the point (x, u(x)) and R(N(x)) is the reflectance map
giving the value of the light reflection on the surface as a function of its orientation (i.e.,
of the normal) at each point. Depending on how we describe the function R different
reflection models are determined. We describe below some of them. Note that a more
general formulation of the reflectance function R present in the irradiance equation
(1.2) consists of adding a dependence on x too, in order to include several features like
e.g. non uniform ambient light depending on some diffuse lights in the ambient (that
can be generated by other light sources at finite distance). We will not consider this
generalization in this thesis. For the analysis of the different models, it would be useful
to introduce a representation of the brightness function I(x) where we can distinguish
different terms representing the contribution of ambient, diffuse reflected and specular
reflected light. We will write then

I(x) = kAIA(x) + kDID(x) + kSIS(x), (1.3)
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where IA(x), ID(x) and IS(x) are respectively the above mentioned components and kA,
kD and kS indicate the percentages of these components such that their sum is equal to
1 (we do not consider absorption phenomena). Note that the diffuse or specular albedo
is inside the definition of ID(x) or IS(x), respectively. In the sequel, we will always
consider I(x) normalized in [0, 1]. This will allow to switch on and off the different
contributions depending on the model. Let us note that the ambient light term IA(x)
represents light everywhere in a given scene. As we will see in the following sections,
the intensity of diffusely reflected light in each direction is proportional to the cosine
of the angle θi between surface normal and light source direction, without taking into
account the point of view of the observer, but another diffuse model (the Oren–Nayar
model) will consider it in addition. The amount of specular reflected light towards the
viewer is proportional to (cos θs)

α, where θs is the angle between the ideal (mirror)
reflection direction of the incoming light and the viewer direction, α being a constant
modelling the specularity of the material. But another specular model will consider an
intermediate vector between the light source and the viewer, representing the intensity
of specular reflected light in proportion to the cosine of the angle between surface normal
and this intermediate vector. In this way we have a more general model and, dropping
the ambient and specular component, we retrieve the Lambertian reflection as a special
case.

1.2. The Lambertian model (L–model)

For a Lambertian surface, which generates a purely diffuse model, the specular compo-
nent does not exist. So, the general equation (1.3) becomes

I(x) = kAIA(x) + kDID(x), (1.4)

whose diffuse component ID(x) is

ID(x) = γD(x) N(x) · ω, (1.5)

where γD(x) is the diffuse albedo. Neglecting the ambient component that can be con-
sidered as a constant (i.e. setting kA = 0), recalling that the sum kA + kD + kS must be
equal to 1, we obtain that necessarily kD = 1 and we can omit it in the following. Then,
for a Lambertian surface the irradiance equation (1.2) becomes

I(x) = γD(x) N(x) · ω, (1.6)

where we assume to know γD(x) (in the sequel we suppose uniform albedo and we put
γD(x) = 1, that is all the points of the surface reflect completely the light that hits
them).

Under these assumptions, the orthogonal SfS problem consists in determining the
function u : Ω→ R that satisfies the equation (1.6). The unit vector ω and the function
I(x) are the only quantity known.
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In this model, we can note that the measured light in the image depends only on the
scalar product between N(x) and ω and the parameter γD(x), which describes the
physical properties of the surface reflection. So in this case the surface of the object has
uniform properties of light reflection (see Fig. 1.2). We will see in the next sections that

Figure 1.2.: A Lambertian surface diffuses the incident radiation independently from
the angle between the surface normal N and the direction of the observer.
Two different observers V1 and V2 do not detect any difference in radiance.
The radiance is a function only of the angle θi between ω and N.

for other models it is no longer true because other quantities are taken into account.
For Lambertian surfaces [53, 54], just considering an orthographic projection of the
scene, it is possible to model the SfS problem via a nonlinear PDE of the first order
which describes the relation between the surface u(x) (our unknown) and the brightness
function I(x). In fact, recalling the definition of the unit normal to a graph given in
(1.1), we can write (1.6) as

I(x)
√

1 + |∇u(x)|2 + ω̃ · ∇u(x)− ω3 = 0, in Ω (1.7)

where ω̃ = (ω1, ω2). This is an Hamilton-Jacobi type equation which does not admit in
general regular solution. It is known that the mathematical framework to describe its
weak solutions is the theory of viscosity solutions as in [75].

The vertical light case.
If we choose ω = (0, 0, 1), the equation (1.7) becomes the so-called “eikonal equation”:

|∇u(x)| = f(x) for x ∈ Ω, (1.8)

where

f(x) =

√
1

I(x)2
− 1. (1.9)

Points x ∈ Ω such that I(x) assume maximum value correspond to the case in which ω
and N(x) have the same direction: these points are usually called “singular points”.
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In order to make the problem well-posed, we need to add boundary conditions to the
equations (1.7) or (1.8): they can require the value of the solution u (Dirichlet boundary
conditions type), or the value of its normal derivative (Neumann boundary conditions),
or an equation that must be satisfied on the boundary (the so-called boundary conditions
“state constraint”). The current choice in our work is to consider the Dirichlet boundary
conditions equal to zero, assuming the surface on a flat background

u(x) = 0, for x ∈ ∂Ω, (1.10)

but we will see in the numerical tests that a second possibility of the same type occurs
when it is known the value of u on the boundary, which leads to the more general
condition

u(x) = g(x), for x ∈ ∂Ω. (1.11)

We will focus on the analysis of boundary conditions in the Section 1.7.4 of this chapter.
But adding a boundary condition to the PDE that describes the SfS model is not enough
to obtain a unique solution because of the concave/convex ambiguity. We will explore
better this issue in the Section 1.7.
For analytical and numerical reasons it is useful to introduce the exponential trans-
form µv(x) = 1 − e−µu(x) and change the variable. Note that here µ is a free pos-
itive parameter without a physical meaning, but it is important because varying its
value it is possible to modify the slope. In fact, the slope increases for increasing val-
ues of µ. Assuming that the surface is standing on a flat background and following
[42], we can write (1.7)+(1.10) in a fixed point form in the new variable v obtaining the

Lambertian Model
{
µv(x) = min

a∈∂B3

{bL(x, a) · ∇v(x) + fL(x, a, v(x))} for x ∈ Ω,

v(x) = 0 for x ∈ ∂Ω,
(1.12)

where bL : Ω× ∂B3(0, 1)→ R2 and fL : Ω× ∂B3(0, 1)× [0, 1]→ R are defined as

bL(x, a) =
1

ω3
(I(x)a1 − ω1, I(x)a2 − ω2) , (1.13)

fL(x, a, v(x)) = −I(x)a3

ω3
(1− µv(x)) + 1 (1.14)

and B3 is the unit ball in R3.

1.3. The Oren-Nayar model (ON–model)

The diffuse reflectance ON–model [83, 84, 82, 85] is an extension of the previous L–model
which explicitly allows to handle rough surfaces. The idea of this model is to represent a
rough surface as an aggregation of V-shaped cavities, each with Lambertian reflectance
properties (see Fig. 1.3).
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In [83] and, with more details, in [85], Oren and Nayar derive a reflectance model for
three types of surfaces with different slope-area distributions:

• Uni-directional Single-Slope Distribution: This distribution results in a non-
isotropic surface where all facets have the same slope and all cavities are aligned
in the same direction.

• Isotropic Single-Slope Distribution: Here, all facets have the same slope but
they are uniformly distributed in orientation on the surface plane.

• Gaussian Distribution: This is the most general case examined where the slo-
pearea distribution is assumed to be normal with zero mean. The roughness of the
surface is determined by the standard deviation of the normal distribution.

The reflectance model obtained for each of the above surface types is used to derive the
succeeding one, called by the authors the “Qualitative Model”, a simpler version obtained
by discarding the coefficient C3 present in their formulation and ignoring interreflections
(see Section 4.4 of [83] for more details).

V-cavity

facet

dA

Figure 1.3.: Facet model for surface patch dA consisting of many V-shaped Lambertian
cavities.

The irradiance equation of this simpler model is then

ED(x) = γD(x) cos(θi)(A+B sin(α) tan(β) max[0, cos(ϕr − ϕi)]). (1.15)

Assuming that there is a linear relation between the irradiance of the image and the
image intensity, the ID brightness equation for the ON–model is given by

ID(x) = γD(x) cos(θi)(A+B sin(α) tan(β) max[0, cos(ϕr − ϕi)]) (1.16)

where

A = 1− 0.5σ2(σ2 + 0.33)−1 (1.17)

B = 0.45σ2(σ2 + 0.09)−1. (1.18)

Note that A and B are two non negative constants depending on the statistics of the
cavities via the roughness parameter σ that we can imagine that takes values between 0
and π/2, as representative of the slope of the roughness of the surface considered. In this
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model (see Fig. 1.4), θi represents the angle between the unit normal to the surface N(x)
and the light source direction ω, θr stands for the angle between N(x) and the observer
direction V, ϕi is the angle between the projection of the light source direction ω and
the x1 axis onto the (x1, x2)-plane tangent to the surface, ϕr denotes the angle between
the projection of the observer direction V and the x1 axis onto the (x1, x2)-plane tangent
to the surface and the two variables α and β are given by

α = max [θi, θr] and β = min [θi, θr] . (1.19)

Note that in order to make all the quantities present in this model computable for the
implementation, we consider a modified version of the ON–model in which the difference
ϕr − ϕi is constant and depends on the data ω and V given. That simplification allows
for the numerical tests to compute max[0, cos(ϕr − ϕi)] only once for a whole image.

Surface
normal

Camera:
ref ected light (V)

Point light source:
incident light ( )

φr

−φi

θrθi

Reference direction on the surface

dA

ω
l

Figure 1.4.: Diffuse reflectance for the ON–model.

We define (see Fig. 1.4):

cos(θi) = N · ω =
−ω̃ · ∇u(x) + ω3√

1 + |∇u(x)|2
(1.20)

cos(θr) = N ·V =
−ṽ · ∇u(x) + v3√

1 + |∇u(x)|2
(1.21)

cos(ϕr − ϕi) = (ω1, ω2) · (v1, v2) = ω̃ · ṽ (1.22)

sin(θi) =
√

1− (cos(θi))2 =
gω(∇u(x))√
1 + |∇u(x)|2

(1.23)

sin(θr) =
√

1− (cos(θr))2 =
gv(∇u(x))√
1 + |∇u(x)|2

(1.24)

where

gω(∇u(x)) =
√

1 + |∇u(x)|2 − (−ω̃ · ∇u(x) + ω3)2 (1.25)

gv(∇u(x)) =
√

1 + |∇u(x)|2 − (−ṽ · ∇u(x) + v3)2 (1.26)
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For smooth surfaces, we have σ = 0 and the ON–model brings back to the L–model.
In the particular case ω = V = (0, 0, 1), or, more precisely, when cos(ϕr − ϕi) ≤ 0 (e.g.
the case when the unit vectors ω and V are perpendicular we get cos(ϕr − ϕi) = −1)
the equation (1.16) simplifies and reduces to a L–model scaled by the coefficient A. This
means that the model is more general and flexible than the L–model. This happens
when only one of the two unit vectors is zero or, more in general, when the dot product
between the normalized projections onto the (x1, x2)-plane of ω and V is equal to zero.

Also for this diffuse model we neglect the ambient component. Then, we get kD = 1
and, as a consequence, in the general equation (1.3) the total light intensity I(x) is
equal to the only diffuse component ID(x), in this case described by the equation (1.16).
Hence, for what follow, we will write I(x) instead of ID(x).

To deal with this equation one has to resolve the min and max operators which appear
in (1.16), (1.19). Hence, we must consider several cases (and for simplicity we set the
albedo γD(x) = 1):

Case 1: θi ≥ θr and (ϕr − ϕi) ∈ [0, π2 ) ∪ (3
2π, 2π]

The brightness equation (1.16) becomes

I(x) = cos(θi)

(
A+B sin(θi)

sin(θr)

cos(θr)
cos(ϕr − ϕi)

)
(1.27)

and by using the formulas (1.20)-(1.24) we arrive to the following first order nonlinear
Hamilton-Jacobi equation

I(x)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3)−B (ω̃ · ṽ) gω(∇u(x)) gv(∇u(x))√
1 + |∇u(x)|2 (−ṽ · ∇u(x) + v3)

= 0,

(1.28)
where ω̃ = (ω1, ω2) and ṽ = (v1, v2).

Case 2: θi < θr and (ϕr − ϕi) ∈ [0, π2 ) ∪ (3
2π, 2π]

In this case the brightness equation (1.16) becomes

I(x) = cos(θi)

(
A+B sin(θr)

sin(θi)

cos(θi)
cos(ϕr − ϕi)

)
(1.29)

and by using again the formulas (1.20)-(1.24) we get

I(x)(1+|∇u(x)|2)+A(ω̃·∇u(x)−ω3)
√

1 + |∇u(x)|2−B(ω̃·ṽ) gω(∇u(x)) gv(∇u(x)) = 0,
(1.30)

that is again a first order nonlinear Hamilton-Jacobi equation.

Case 3: ∀ θi, θr and (ϕr − ϕi) ∈ [π2 ,
3
2π]

In this case we have the implication max(0, cos(ϕr − ϕi)) = 0. The brightness equation
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(1.16) simplifies in
I(x) = A cos(θi) (1.31)

and the Hamilton-Jacobi equation associated to it becomes consequentially

I(x)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3) = 0, (1.32)

that is equal to the L–model scaled by the coefficient A.

Case 4: θi = θr and ϕr = ϕi

This is a particular case when the position of the light source ω coincides with the ob-
server direction V but there are not on the vertical axis. This choice implies max[0, cos(ϕi−
ϕr)] = 1, then defining θ := θi = θr = α = β, the equation (1.16) simplifies to

I(x) = cos(θ)
(
A+B sin(θ)2 cos(θ)−1

)
(1.33)

and we arrive to a first order nonlinear Hamilton-Jacobi equation

(I(x)−B)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3) +B
(−ω̃ · ∇u(x) + ω3)2

√
1 + |∇u(x)|2

= 0. (1.34)

The vertical light case.
If ω = (0, 0, 1), regardless of the position of V, the first three cases of the previous
four cases are reduced to only one to which we can associate the following PDE to the
brightness equation (1.16)

I(x) =
A√

1 + |∇u(x)|2
. (1.35)

In this way we can put it in the following eikonal type equation, analogous to the
Lambertian eikonal equation (1.8):

|∇u(x)| = f(x) for x ∈ Ω, (1.36)

where

f(x) =

√
A2

I(x)2
− 1. (1.37)

Following [112], we write the surface as S(x, z) = z − u(x) = 0, for x ∈ Ω, z ∈ R, and
∇S(x, z) = (−∇u(x), 1), so (1.34) becomes

(I(x)−B)|∇S(x, z)|+A(−∇S(x, z) ·ω) +B

( ∇S(x, z)

|∇S(x, z)| · ω
)2

|∇S(x, z)| = 0. (1.38)
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Defining d(x, z) = ∇S(x, z)/|∇S(x, z)| and c(x, z) = I(x) − B + B(d(x, z) · ω)2, using
the equivalence |∇S(x, z)| ≡ max

a∈∂B3

{a · ∇S(x, z)} we get

max
a∈∂B3

{c(x, z) a · ∇S(x, z)−Aω · ∇S(x, z)} = 0. (1.39)

Defining the vector field for the ON-model

bON (x, a) =
1

Aω3
(c(x, z)a1 −Aω1, c(x, z)a2 −Aω2) , (1.40)

introducing the exponential transform µv(x) = 1 − e−µu(x) as already done for the L–
model, we can finally write the Dirichlet problem in the new variable v obtaining the

Oren-Nayar Model





µv(x) + max
a∈∂B3

{−bON (x, a) · ∇v(x) + c(x,z)a3
Aω3

(1− µv(x))} = 1, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.
(1.41)

Note that the simple homogeneous Dirichlet boundary condition is due to the flat back-
ground behind the object but a condition like u(x) = g(x) can also be considered if
necessary.
In the particular case when cos(ϕr − ϕi) = 0, the equation (1.16) simply reduces to

I(x) = A cos(θ) (1.42)

and, as a consequence, the Dirichlet problem in the variable v is equal to (1.41) with
c(x, z) = I(x).

1.4. The Phong model (PH–model)

The PH–model introduce a specular component to the brightness function I(x). As we
said in the first section of this chapter, this can be described in general as the sum
I(x) = kAIA(x) + kDID(x) + kSIS(x), where IA(x), ID(x) and IS(x) are the ambient,
diffuse and specular light component, respectively. We will set for simplicity kA = 0 and
represent the diffuse component ID(x) as the Lambertian reflectance model.
The most simple specular model is obtained putting the incidence angle equal to the
reflection one and ω, N(x) and R(x) belong to the same plane.
The PH–model is an empirical model that was developed by Phong [86] in 1975. This
model describes the specular light component IS(x) as a power of the cosine of the angle
between the unit vectors V and R(x) (it is the vector representing the reflection of the
light ω on the surface), then for the Phong model

IPHS (x) = γS(x)(R(x) ·V)α (1.43)
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where α expresses the specular reflection characteristics of a material.
Hence, the brightness equation for the PH–model is

I(x) = kDγD(x)(N(x) · ω) + kSγS(x)(R(x) ·V)α, (1.44)

where γD(x) and γS(x) represent the diffuse and specular albedo, respectively.
Starting to see in details the PH–model in the case of oblique light source ω and

oblique observer V.
Assuming that N(x) is the bisector of the angle between ω and R(x) (see Fig. 1.5), we
obtain

N(x) =
ω + R(x)

||ω + R(x)|| which implies R(x) = ||ω + R(x)||N(x)− ω. (1.45)

Figure 1.5.: Geometry of the Phong reflection model.

From the parallelogram law, taking into account that ω,R(x) and N(x) are unit vectors,
we can write ||ω + R(x)|| = 2(N(x) · ω), then we can derive the unit vector R(x) as
follow:

R(x) = 2(N(x) · ω)N(x)− ω = 2

(
−ω̃ · ∇u(x) + ω3√

1 + |∇u(x)|2

)
N(x)− (ω1, ω2, ω3)

=

(−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2
)

(−∇u(x), 1)− (ω1, ω2, ω3). (1.46)

With this definition of the unit vector R(x) we have

R(x) ·V =

(−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2
)

(−∇u(x) · ṽ + v3)− ω ·V. (1.47)
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Then, putting α = 1, equation (1.44) becomes

I(x)(1 + |∇u(x)|2) −kDγD(x)(−∇u(x) · ω̃ + ω3)(
√

1 + |∇u(x)|2)

−2kSγS(x)(−∇u(x) · ω̃ + ω3) (−ṽ · ∇u(x) + v3)

+kSγS(x)(ω ·V)(1 + |∇u(x)|2) = 0,

(1.48)

to which we add a Dirichlet boundary condition equal to zero, assuming that the surface
is standind on a flat blackground. Note that the cosine in the specular term is usually
replaced by zero if R(x) ·V < 0 (and in that case we get back to the L–model).
As we have done for the previous models, we write the surface as S(x, z) = z−u(x) = 0,
for x ∈ Ω, z ∈ R, and ∇S(x, z) = (−∇u(x), 1), so (1.48) will be written as

(I(x) + kSγS(x)(ω ·V))|∇S(x, z)|2 −kDγD(x)(∇S(x, z) · ω)(|∇S(x, z)|)

−2kSγS(x)(∇S(x, z) · ω)(∇S(x, z) ·V) = 0.
(1.49)

Dividing by |∇S(x, z)|, defining d(x, z) = ∇S(x, z)/|∇S(x, z)| as in the ON–model and
c(x) = I(x) + kSγS(x)(ω ·V), we get

c(x)|∇S(x, z)|−kDγD(x)(∇S(x, z)·ω)−2kSγS(x)(∇S(x, z)·ω)(d(x, z)·V) = 0. (1.50)

By the equivalence |∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z)} we obtain

max
a∈∂B3

{c(x) a·∇S(x, z)−kDγD(x)(∇S(x, z)·ω)−2kSγS(x)(∇S(x, z)·ω)(d(x, z)·V)} = 0.

(1.51)
Defining the vector field

bPH(x, a) =

(c(x)a1 − kDγD(x)ω1 − 2kSγS(x)ω1(d(x, z) ·V), c(x)a2 − kDγD(x)ω2 − 2kSγS(x)ω2(d(x, z) ·V))

QPH(x, z)
(1.52)

where
QPH(x, z) := 2kSγS(x)ω3(d(x, z) ·V) + kDγD(x)ω3, (1.53)

and using the exponential transform µv(x) = 1−e−µu(x) as done for the previous models,
we can finally write the nonlinear problem corresponding to the

Phong Model





µv(x) + max
a∈∂B3

{−bPH(x, a) · ∇v(x) + c(x)a3
QPH(x,z)

(1− µv(x))} = 1, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.
(1.54)
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Again, note that the simple homogeneous Dirichlet boundary condition considered is due
to the flat background behind the object but a different boundary condition can also be
considered.

A. Oblique light source and vertical position of the observer.
In the case of oblique light source ω and vertical observer V = (0, 0, 1), the dot product
R(x) ·V becomes

R(x) ·V =
−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2 − ω3 =
−2ω̃ · ∇u(x) + ω3(1− |∇u(x)|2)

1 + |∇u(x)|2 . (1.55)

The Dirichlet problem in the variable v will be equal to (1.54) with

c(x) = I(x) + ω3kSγS(x),

QPH(x, z) = 2kSγS(x)(d(x, z) · ω) + kDγD(x)ω3,

bPH(x, a) = 1
QPH(x,z)

(c(x)a1 − kDγD(x)ω1, c(x)a2 − kDγD(x)ω2) .

(1.56)

B. Vertical light source and oblique position of the observer.
When ω = (0, 0, 1) the definition of the vector R(x) reported in (1.46) becomes

R(x) =

( −2ux
1 + |∇u(x)|2 ,

−2uy
1 + |∇u(x)|2 ,

2

1 + |∇u(x)|2 − 1

)
(1.57)

and, as a consequence, the dot product R(x) ·V with general V is

R(x) ·V =
−2ṽ · ∇u(x) + v3(1− |∇u(x)|2)

1 + |∇u(x)|2 . (1.58)

Hence, the Dirichlet problem in the variable v is equal to (1.54) with

c(x) = I(x) + v3kSγS(x),

QPH(x, z) = 2kSγS(x)(d(x, z) ·V) + kDγD(x),

bPH(x, a) = 1
QPH(x,z)

(c(x)a1, c(x)a2) .

(1.59)

C. Vertical light source and vertical position of the observer.
If we choose ω ≡ V = (0, 0, 1) the equation (1.48) simplify in

I(x)(1 + |∇u(x)|2)− kSγS(x)(1− |∇u(x)|2) = kDγD(x)(
√

1 + |∇u(x)|2). (1.60)

After some manipulations we can write it in the following eikonal type equation, analo-
gous to the Lambertian eikonal equation (1.8):

|∇u(x)| = f(x) for x ∈ Ω, (1.61)
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where

f(x) =

√√√√√√
k2
DγD(x)2 − 2I+(x)I−(x) + k2

DγD(x)2
√
Q(x)

2

(
I(x) + kSγS(x)

)2 , (1.62)

with

I+(x) := I(x) + kSγS(x), (1.63)

I−(x) := I(x)− kSγS(x), (1.64)

Q(x) := k2
DγD(x)2 + 8k2

SγS(x)2 + 8 I(x) kSγS(x). (1.65)

1.5. The Blinn-Phong model (BP–model)

A modification of the PH–model has been proposed by Blinn [10] in 1977 taking into
account an intermediate vector H, which bisects the angle between the unit vectors ω
and V (see Fig. 1.6).

Figure 1.6.: Geometry of the Blinn-Phong reflection model.

For this model, the specular component is defined as follow:

IBPS (x) = γS(x)(N(x) ·H)c (1.66)

where the parameter c is a measure of shininess of the surface and H =
ω + V

||ω + V|| .
Note that the BP–model will produce a faster algorithm in terms of CPU time in the
case in which the observer and the light source are placed at infinity because H is in
this case independent of the position and the orientation of the surface. This implies
that H can be computed only once for each light whereas this is not possible in the
original model of Phong where R(x) depends on the curvature of the surface and must
be computed again at every pixel of the image.
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Setting kA = 0 and choosing the diffuse component ID(x) as the L–model as done for
the PH–model, the brightness equation for the BP–model is

I(x) = kDγD(x)(N(x) · ω) + kSγS(x)(N(x) ·H)c, (1.67)

where γD(x) and γS(x) represent the diffuse and specular albedo, respectively.
We suppose v3 > 0. This assumption is not restrictive because it is coherent with ω3 > 0.
Recalling the definition of the unit normal given in (1.1), we can write the first order
nonlinear Hamilton-Jacobi equation associated to (1.67) as

I(x) = kDγD(x)

(
−∇u(x) · ω̃ + ω3√

1 + |∇u(x)|2

)
+ kSγS(x)

(
−H̃ · ∇u(x) +H3√

1 + |∇u(x)|2

)c
, (1.68)

where H̃ = (H1, H2).
We start by analyzing the equation for c = 1 in the case of oblique light source and
generic position of the observer (vertical or oblique). Equation (1.68) can be written as

I(x)(
√

1 + |∇u(x)|2)− kDγD(x)(−∇u(x) · ω̃ + ω3)− kSγS(x)
(
−H̃ · ∇u(x) +H3

)
= 0.

(1.69)
As already done for the previous models, we write the equation (1.69) in terms of
∇S(x, z) = (−∇u(x), 1), having defined the surface as S(x, z) = z − u(x) = 0, for
x ∈ Ω, z ∈ R

I(x)|∇S(x, z)| − kDγD(x)(∇S(x, z) · ω)− kSγS(x)(∇S(x, z) ·H) = 0. (1.70)

By using the equivalence |∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z)} we obtain

max
a∈∂B3

{I(x) a · ∇S(x, z)− kDγD(x)(ω · ∇S(x, z))− kSγS(x)(∇S(x, z) ·H)} = 0. (1.71)

Defining the vector field

bBP (x, a) =
1

QBP
(I(x)a1 − kDγD(x)ω1 − kSγS(x)H1, I(x)a2 − kDγD(x)ω2 − kSγS(x)H2)

(1.72)
where

QBP := kDγD(x)ω3 + kSγS(x)H3, (1.73)

and using the exponential transform µv(x) = 1 − e−µu(x) we can finally write the non-
linear problem corresponding to the BP–model in the new variable v obtaining
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Blinn-Phong Model





µv(x) + max
a∈∂B3

{−bBP (x, a) · ∇v(x) + I(x)a3
QBP

(1− µv(x))} = 1, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.
(1.74)

We add Dirichlet boundary condition supposing the object is standing on a flat back-
ground.

A. Vertical light source and oblique position of the observer.
When ω = (0, 0, 1), equation (1.69) becomes

I(x)(
√

1 + |∇u(x)|2)− kDγD(x)− kSγS(x)
(
−H̃ · ∇u(x) +H3

)
= 0. (1.75)

Hence, the Dirichlet problem in the variable v is equal to (1.74) with

QBP = kDγD(x) + kSγS(x)H3,

bBP (x, a) = 1
QBP

(I(x)a1 − kSγS(x)H1, I(x)a2 − kSγS(x)H2) .
(1.76)

B. Vertical light source and vertical position of the observer.
If we choose ω ≡ V = (0, 0, 1) then H = (0, 0, 1) and equation (1.69) simplify in

I(x)(
√

1 + |∇u(x)|2)− kDγD(x)− kSγS(x) = 0 (1.77)

and we can write it in the following eikonal type equation, analogous to the Lambertian
eikonal equation (1.8):

|∇u(x)| = f(x) for x ∈ Ω, (1.78)

where

f(x) =

√
(kDγD(x) + kSγS(x))2

I(x)2
− 1. (1.79)

1.6. A short survey of other non-Lambertian models

Several other non-Lambertian specular models exist. In this section we briefly describe
some of them with specular component, in which the main feature is that the reflected
radiance is concentrated along a particular direction, the one for which the reflected ray
and the incident one lie on the same plane and the angle of reflection equals the incidence
angle (this is the behavior of a perfect mirror).
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1.6.1. The Torrance-Sparrow model

A more sophisticated model was proposed by Torrance and Sparrow [111]. This model
assumes that the surface is composed of small-faces mirror randomly oriented. Only the
faces with a normal in the direction of H contribute to IS . The specular model that
results is

IS = FDA (1.80)

where

F is the Fresnel reflection coefficient, computed as the ratio between the reflected and
incident radiation ( IrIi );

D is a distribution function of the orientation of the face;

A is a geometric factor of attenuation improved by inclination.

The Fresnel coefficient models the amount of light that is reflected from the individual
faces. In general, it depends on the angle of incidence and the refractive index of the
reflective material (which is a complex number in the case of a material which exhibits
absorption).
The distribution function D describes the orientation of the faces relative to the normal
N. In agreement with Torrance and Sparrow, Healey and Blinford [48], which Tsai and
Shah refer in [113], use the Gaussian distribution function

D = Ke−( α
m

)2 (1.81)

where

K is a normalization constant;

m is the constant that indicates the roughness of the surface and is proportional to the
standard deviation of the Gaussian.

Small values of m describe smooth surfaces for which most of the specular reflection is
concentrated in one direction. Large values of m, instead, describe rough surfaces with
large differences in the orientation between neighboring faces.
The factor A quantifies the effects of a geometrical attenuation factor G corrected for
inclination dividing by (N ·V)

A =
G

(N ·V)
. (1.82)

Remark 1.1 Since the intensity is proportional to the number of faces pointing in the
direction of H, we must take into account that the observer sees a greater surface area
when this is inclined. The increase of the visible area is inversely proportional to the
cosine of the angle of inclination, which is the angle between the vectors N and V. This
explains the division by (N ·V) in (1.82).
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The G that appears in (1.82) is the one used by Torrance and Sparrow [111], who, by
this hypothesis, examine the possible configurations of the different faces that you have
in correspondence with the phenomena of shading or masking ; for different positions of
the light and the observer, it may have the three different cases shown in the Figs. 1.7,
1.8, 1.9.

Figure 1.7.: Case (a) without interference.

Figure 1.8.: Case (b): A part of the reflected light is intercepted (shading).

Figure 1.9.: Case (c): Part of the incident light is hidden (masking).

Remark 1.2 Note that the vectors ω and V do not necessarily belong to the plane
containing N and H. This is better visible with a top view presented in Fig. 1.10.
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Figure 1.10.: Top view of the reflection of a micro face.

In the case of Fig. 1.7 the value of G is 1.0, which means that we are not in the
presence of attenuation.

In order to compute G for the case (b) visible in Fig. 1.8, we need to compute the
ratio 1− m

l that indicates the amount of face that contributes to the reflected light (see
Fig. 1.11).

Figure 1.11.: Light that comes out is 1− m
l .

We can reduce the problem to two dimensions if we project V on the plane that
contains N and H. By calling this projection VP and denoting the interested angles we
obtain the following Fig. 1.12.

Recalling that in any triangle the ratio between the measure of one side and the sine
of the opposite angle is constant, we obtain that

m

l
=

sin f

sin b
.
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Figure 1.12.: Measurement of m
l .

We note that
sin b = cos e cos b = sin e

being known the relations

sinα = cos(
π

2
− α) cosα = sin(

π

2
− α).

Since the sum of the angles of a triangle must be equal to π we obtain that

sin f = sin(b+ c) = sin b cos c+ cos b sin c. (1.83)

For the symmetry of the cavity and the complementarity of the angles d and a

c = 2d
cos c = 1− 2 sin2 d = 1− 2 cos2 α
sin c = 2 cos d sin d = 2 sinα cosα.

By using these into (1.83) we get

sin f = cos e(1− 2 cos2 α) + 2 sin e sinα cosα

= cos e− 2 cosα(cos e cosα− sin e sinα)

= cos e− 2cosα cos(e+ α)

= (H ·VP )− 2(N ·H)(N ·VP ).

Since VP is the projection of V on the plane which N and H belong, then N·VP = N−V
and H−VP = H ·V such that

Gb = 1− m
l = 2(N ·H)(N ·V)/(V ·H).

Examining the case (c) we see that is the same as case (b), but with the roles of ω and
V exchanged. Thus

Gc = 2(N ·H)(N · ω)/(H · ω) = 2(N ·H)(N · ω)/(V ·H).
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For a particular situation, the actual value of G is the minimum of Ga, Gb and Gc

G = min{1, 2(N ·H)(N ·V)

(V ·H)
,
2(N ·H)(N · ω)

(V ·H)
}. (1.84)

Remark 1.3 The attenuation factor G is a value between 0 and 1 and represents the
proportionate quantity of light that remains after the effect of shading or masking.

Focusing for a moment on the Fresnel coefficient F , which is a function of the incidence
angle of micro-faces and refractive index, it is given by the following expression:

F =
1

2

(
sin2(φ− θ)
sin2(φ+ θ)

+
tan2(φ− θ)
tan2(φ+ θ)

)
(1.85)

where

sin θ = sinφ
n

φ is the incidence angle

n is the refractive index.

In our case, the incidence angle is φ = arccos(ω ·H) = arccos(V ·H). The interesting
thing about this function is that it has a substantially different shape for metallic and
non-metallic substances. For metals, which correspond to large values of n, F is almost
constant at 1; for non-metals, which correspond to small values of n, has more exponential
form, starting from 0 per φ = 0 and reaching 1 in φ = π/2.

Back to the issue of the distribution functions mentioned, Blinn [10] compares the
distribution function of Blinn-Phong (Cf. (1.66))

D1(α) = cosc1 α (1.86)

with the function proposed by Torrance and Sparrow (Cf. (1.81))

D2(α) = e−(αc2)2 (1.87)

and with another introduced by Trowbridge and Reitz

D3(α) =

(
c2

3

cos2 α(c2
3 − 1) + 1

)2

(1.88)

where α is the angle between N and H (see Fig. 1.6) and c3 is the eccentricity of the
ellipsoid and it is zero for very bright surfaces and is one for those very diffuse.
Each of these distribution functions takes on a maximum value of 1 for α = 0. To
compare these three functions is necessary to specify the values of c1, c2 and c3 with
respect to the same variable. If we compute these values as a function of the angle β in
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which the distribution falls in the middle we obtaine

c1 = − ln 2

ln cosβ

c2 =

√
ln 2

β

c3 =

(
cos2 β − 1

cos2 β −
√

2

)1/2

.

According to Blinn, the distribution function that we must choose is the D3(α).
Thus, we have to distinguish three cases following (1.84) in order to define the PDE

associated to the (1.80).
Case 1: G = 1

I(x) =
−uxω1 − uyω2 + ω3√

|∇u|2 + 1
+ FD

√
|∇u|2 + 1

−uxv1 − uyv2 + v3

Case 2: G = 2(N ·H)(N ·V)/(V ·H)

I(x) =
−uxω1 − uyω2 + ω3√

|∇u|2 + 1
+ FD

2√
|∇u|2 + 1

−ux(ω1 + v1)− uy(ω2 + v2) + ω3 + v3

ω1(ω1 + v1) + ω2(ω2 + v2) + ω3(ω3 + v3)

Case 3: G = 2(N ·H)(N · ω)/(V ·H)

I(x) =
−uxω1 − uyω2 + ω3√

|∇u|2 + 1
+

FD
2√

|∇u|2 + 1

(−ux(ω1 + v1)− uy(ω2 + v2) + ω3 + v3)(−uxω1 − uyω2 + ω3)

(ω1(ω1 + v1) + ω2(ω2 + v2) + ω3(ω3 + v3))(−uxv1 − uyv2 + v3)

1.6.2. The Healey-Binford model

Healey and Binford [48] simplify (1.80) considering F as a constant with respect to
the geometry of the visual; this is a good approximation for metals and many other
materials. Furthermore, noting that the exponential factor in (1.81) changes much more
rapidly than any term of A, they also consider A constant through mirroring. So the
form of (1.80) becomes

IS = K
′
e−( α

m
)2 (1.89)

where K
′

is a constant. It is assumed that the observer and the light source is placed
at a distance relative to the size of the surface, therefore, V and ω can be regarded
as constant; consequently, also the vector H which bisects the angle between the two
vectors is constant. In addition, the position of the light source and the observer are
supposed known. Finally, since the distance of the observer from the surface is large,
one can approximate the perspective projection with an orthographic projection. The
equation (1.89) is solved in a geometric way by Healey and Benford, while the same
expression of IS is solved by Tsai and Shah [113] using a linear approximation, basing
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the iterative algorithm on the form of the method of Newton-Raphson that converges
quadratically if we start from an initial approximation sufficiently accurate.

1.7. Viscosity solutions and concave/convex ambiguity

We have seen in the previous sections the description of several reflectance models. Now,
let’s see which kind of solutions we are looking for. In this section we present a brief
introduction to the notion of continuous viscosity solutions of first order Hamilton-Jacobi
equations. The aim is first to present the fundamental definitions and theorems which
are used to try to solve the SfS problem.

The notion of viscosity solution of Hamilton-Jacobi equations has been introduced by
Crandall and Lions [26, 27, 28, 74] in the 80s. It is a very nice way of making quantitative
and operational the intuitive idea of weak solutions of first-order (and for that matter,
second-order) PDEs. In the context of the SfS problem we are only concerned with
first-order PDEs.

The following definitions and results can be found in Barles’s, Bardi and Capuzzo
Dolcetta’s or Lions’ book [5, 8, 74].

1.7.1. A notion of weak solutions

Let u : Ω ⊂ R2 → R be a C1 function (Ω is an open subset of R2) and consider a
Hamilton-Jacobi equation of the form:

H(x, y, u(x, y),∇u(x, y)) = 0 on (x, y) ∈ Ω, (1.90)

where H is a continuous scalar function on Ω× R× Rn and it is called Hamiltonian.

Definition 1.1 Viscosity subsolution:
u ∈ BUC(Ω) (set of bounded and uniformly continuous functions) is a viscosity subso-
lution of equation (1.90) if:

∀φ ∈ C1(Ω),∀(x0, y0) ∈ Ω local maximum of (u− φ),

H(x0, y0, u(x0, y0),∇φ(x0, y0)) ≤ 0

Definition 1.2 Viscosity supersolution:
u ∈ BUC(Ω) is a viscosity supersolution of equation (1.90) if:

∀φ ∈ C1(Ω), ∀(x0, y0) ∈ Ω local minimum of (u− φ),

H(x0, y0, u(x0, y0),∇φ(x0, y0)) ≥ 0

Definition 1.3 Viscosity solution:
u is a viscosity solution of equation (1.90) if it is both subsolution and supersolution of
(1.90).
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1.7.2. Existence and uniqueness of continuous viscosity solutions

As we have seen, the classical modelization of Lambertian SfS problem results in an
Hamilton-Jacobi equation where the Hamiltonian does not depend on u.

We present here an uniqueness result due to Ishii [56]. This result has been proved later
in a different manner by Lions [74]. Rouy and Tourin have also given this uniqueness
result for Hamiltonian H which do not depend upon u (see [97]). For more general
condition, see [75].

Theorem 1.7.1 Let u, v ∈ BUC(Ω) respectively subsolution and supersolution of the
equation:

H(x, y,∇u(x, y)) = 0 on the bounded open set Ω ⊂ R2. (1.91)

If the following hypotheses are verified:

• ∀(x1, y1), (x2, y2) ∈ Ω, ∀p ∈ R2, |H(x1, y1, p) − H(x2, y2, p)| ≤ ρ(|(x1 − x2, y1 −
y2)|(1 + |p|)), where ρ is a continuous nondecreasing function such that ρ(0) = 0;

• H is continuous in Ω× R2 and convex with respect to ∇u;

• there exists a strict viscosity subsolution u ∈ C1(Ω)∩C(Ω) of (1.91) (i.e. such that
H(x, y,∇u(x, y)) < 0 for all (x, y) ∈ Ω);

then there exists at most one continuous viscosity solution of (1.91) verifying u = g on
∂Ω where g ∈ C(∂Ω).

In the eikonal equation case, it is easy to show that the previous theorem is sharp:
there exist many solutions if there are singular points in Ω. Recall that in this context,
a singular point is a point (x, y) ∈ Ω such that I(x, y) = 1.

1.7.3. Methods of resolution of PDEs

Equations (1.7) and (1.8) have attracted much attention in the research community in
PDEs for their wide range of applications. In the framework of the SfS problem, several
methods of resolution have been tested. In the following we focus our attention on two
methods: characteristic strips expansion and approximation of viscosity solutions.

Characteristic strip expansion.
The characteristic method is an important tool useful to solve a particular class of PDEs.
The one more suitable are the partial differential equations where the information is
propagated with finite velocity: hyperbolic equation which belong the wave equation
and the transport equation are examples.

The simpler way to introduce this method, that makes understandable its intrinsic
meaning in particular for our problem, is to introduce the characteristics: let us consider
a first order nonlinear PDE

F (x, y, u(x, y),∇u(x, y)) = 0, in Ω, (1.92)
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under the boundary condition

u(x, y) = g(x, y), on Γ, (1.93)

where Γ ⊂ ∂Ω and g : Γ → R are known. Furthermore we suppose that F and g are
regular functions. The characteristics method solve (1.92)-(1.93) converting the partial
differential equation in a opportune ordinary differential equations system. We suppose
that u solves (1.92)-(1.93) and we fix a point (x, y) ∈ Ω. We want to compute u(x, y)
finding a curve that lies in Ω, which connects (x, y) to a point (x0, y0) ∈ Γ and along
which is possible to compute u. Since the boundary condition, we know the value of u
in (x0, y0). We hope to be able to compute u along all the curve and so in particular
also in (x, y). But, how we have to choose this curve? Supposing that it is parametrically
described by the function (xc(s), yc(s)); the parameter s belongs to an interval of R. We
suppose u ∈ C2 solution of the equation (1.92). We define also

z(s) = u(xc(s), yc(s)). (1.94)

In addition, we set:
p(s) = ∇u(xc(s), yc(s)), (1.95)

that is, p(s) = (p1(s), p2(s)) where

p1(s) =
∂u

∂x
(xc(s), yc(s)), p2(s) =

∂u

∂y
(xc(s), yc(s)). (1.96)

In this way z(·) gives the value of u along the curve and p(·) records the values of
the gradient ∇u. We must choose the function (xc(·), yc(·)) in such a way that we can
compute z(·) and p(·).

If we differentiate (1.96) with respect to s, and the equation (1.92) with respect to x
and y and (1.94), making opportune substitutions, we arrive to the following equations:





(a) (ṗ1(s), ṗ2(s)) = −DzF (p(s), z(s), xc(s), yc(s))p(s)
−(DxcF (p(s), z(s), xc(s), yc(s)), DycF (p(s), z(s), xc(s), yc(s)))

(b) ż(s) = DpF (p(s), z(s), xc(s), yc(s)) · p(s)
(c) (ẋc(s), ẏc(s)) = DpF (p(s), z(s), xc(s), yc(s)).

(1.97)

This important system of 2n + 1 ODEs of the first order includes the characteristic
equations of the first order nonlinear PDE (1.92). The functions p(·) = (p1(·), p2(·)),
z(·), (xc(·), yc(·)) are called characteristics. We will refer to (xc(·), yc(·)) as projected
characteristic: it is the projection of the characteristic (p(·), z(·), xc(·), yc(·)) ⊂ R5 on
the domain Ω ⊂ R2.

The first mention of 3D reconstruction using photometric cues is due to the Dutch
astronomer Van Diggelen [33]. The first resolution was suggested by Rindfleisch [96] who
demonstrated that if the photometric behavior of a surface follows certain properties,
then the shape can be expressed as an integral along a set of convergent straight lines.
He implemented this computation on images of the Moon, claiming that its surface
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verifies the necessary photometric properties reasonably well. Later, Horn suggested
calling this problem “Shape–form–Shading”, and showed that the resolution proposed
by Rindfleisch in a particular case could be generalized, while still using the characteristic
strip expansion [51], under the following two conditions:

• the function u has to be of class C2

• the 5-tuple (x, y, u, ∂u∂x ,
∂u
∂y ) has to be known at every point of a curve called the

initial curve, which means in fact that two boundary conditions are needed simulta-
neously, one on u (Dirichlet boundary condition) and other on (∂u∂x ,

∂u
∂y ) (Neumann

boundary condition).

The characteristic lines (which are the lines along which the integration has to be per-
formed) can be of any form in the image domain, and this differs from the case studied
by Rindfleisch.

Besides the inherent defect of error accumulation, which is typical of every method
of resolution using integration, the determination of these characteristic lines is a new
problem itself, since they also are defined through integration. Therefore, the accuracy
of boundary conditions is much more crucial than for other methods. It follows that a
certain number of obstacles must be overcome (i.e. the crossing of a characteristic lines)
which should normally occur only at a singular points, or at the presence of holes in Ω,
which must be filled using secondary lines [51].

Finally, this method has been essentially used for the theoretical study of the number
of solutions of class C2 of the eikonal equation: a number of uniqueness results have been
provided (see [80, 79, 14, 71] and the reference therein).

Approximation of viscosity solutions.
Starting from the paper by Rouy and Tourin [97], the most recent approach to the
resolution of SfS uses the notion of viscosity solutions to first order PDEs. These are
almost-everywhere solution (a.e. solutions) which can be obtained as the limit in a family
of solutions of regularized second order problems (the so-called “vanishing viscosity”
method). These solutions are typical Lipschitz continuous solutions (but discontinuous
viscosity solutions have also been considered in the literature [8]). The development of
the theory of viscosity solutions for Hamilton-Jacobi type equations provides a good
framework for the analysis of the SfS problem.

Moreover, several algorithms have been proposed to compute viscosity solutions. Finite
difference numerical methods have been used in [97, 75] for the resolution of (1.8) and
generalized to the resolution of (1.7) in [92]. Similar results have been obtained by
Oliensis and Dupuis [81] with an algorithm based on the Markow Chain approximation.
Unfortunately, the Dirichlet problem (1.7)-(1.11) can have several weak solutions in the
viscosity sense and also several classical solutions (due to the so-called concave/convex
ambiguity, see [51]). As an example, all the surfaces represented in Fig. 1.13 are viscosity
solutions of the same equations (1.8)-(1.10) which is a particular case of (1.7)-(1.11) (in
fact the equation is |u′| = −2x with homogenous Dirichlet boundary condition). The
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solution represented in Fig. 1.13-a is the maximal solution and is smooth. All the non-
smooth a.e. solutions, which can be obtained by a reflection with respect to a horizontal
axis, are still admissible weak solutions (see Fig. 1.13-b). In this example, the lack of
uniqueness of the viscosity solutions is due to the existence of a singular point where the
right hand side of (1.8) vanishes. An additional effort is then needed to define which is
the preferable solution since the lack of uniqueness is also a big drawback when trying
to compute a numerical solution. In order to circumvent these difficulties, the problem
is usually solved by adding some information such as height at each singular point [75].

Figure 1.13.: Illustration of the concave/convex ambiguity: (a) maximal solution and (b)
a.e. solutions giving the same image.

More recently, an attempt has been made to eliminate the need for a priori additional
information. In recent results in the theory of viscosity solutions, the “maximal solution”
without additional information apart from the equation was characterized, as was the
construction of an algorithm which converges to that solution. A result by Ishii and
Ramaswamy [57] applied to SfS guarantees that if the function I is continuous and the
number of singular points is finite, then a unique maximal solution (in the viscosity
sense) of (1.7)-(1.11) exists. It should be noted that their result on the characterization
of the maximal solution does not apply to the general situation when the set of singular
points has a positive measure. More general uniqueness results for maximal solution
have been recently obtained by Camilli et al. [18, 20]. Several papers have followed this
approach providing different algorithms to compute the maximal solution, which has
been shown to be unique, see [41, 19, 98] and the references therein.

Remark 1.4 All the theoretical results mentioned above use the regularity of the grey
level function I, which is supposed to be (at least) continuous. Naturally, real images
do not fit that assumption, even in the case of Lambertian objects. The continuity as-
sumption for I has been removed in paper by Kain and Ostrov [60] and by Prados and
Faugeras [89]. Both these papers also contain a scheme and some numerical examples.

Another approach which produces a global solution to SfS consists in the search for
equal-height contours, originally proposed by Bruckstein [16] and later re-introduced by
Kimmel and Bruckstein [64, 65]. The method consists of two major steps: the computa-
tion of weighted distance functions from all the singular points, using a level set method,
and the merging of these surfaces. The algorithm can compute a global solution (which is
an a.e. solution) of eikonal equation (1.8) in the reconstruction domain, only combining
the local solutions obtained during the first step. Interestingly, this method has been
extended to the case of near light source [78].
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Finally, the idea of solving the eikonal equation using a power series expansion at a
regular point, in the case of a grey level function of class C∞, has been introduced by
Bruss [17] and has been extended to the analytical grey level functions by Durou and
Piau [35], which could exhibit a “non-visible deformation” (i.e., a continuous family of
analytical shapes giving the same image). This is an important theoretical result but,
nevertheless, no algorithm has been derived from this method of resolution.

1.7.4. Boundary conditions

We have seen in the previous sections that, although with several differences, all the
reflectance models described above are represented by a first order nonlinear Hamilton-
Jacobi equation that is described in the more general form as follow

H(x, u(x),∇u(x)) = 0, x ∈ Ω. (1.98)

The use of PDE methods for the resolution of the SfS problem leads necessarily to
the definition of some sort of boundary conditions. This is one of the differences with
respect to the methods using optimization, since for those methods boundary conditions
can be imposed but are not compulsory (see the surveys [34, 124] for more informations
concerning the principal properties of these classes). A detailed analysis of the well-
posedness of the boundary value problem for nonlinear PDEs in the framework of the
weak solutions (in the viscosity sense) can be found in Barles’ book [8] and in the
references therein. It is important to note that the addition of boundary conditions does
not solve the concave/convex ambiguity and that in practical applications boundary
conditions are seldom known.

The choice between the different types of boundary conditions is a crucial question:
it depends on appropriateness and simplicity, or depends on the additional information
available on the object (if any). The Dirichlet boundary condition is typically used when
the object is standing on a flat background and the surfaces meets the background at
∂Ω, or if the height on ∂Ω is known (or assumed, for example by symmetry). Neumann
boundary conditions correspond to ∂u

∂ν (x) = m(x), where ν(·) represents the outward
normal to domain Ω. A typical use of it is when we know (or we presume) that the level
curves of the surface are orthogonal to the boundary ∂Ω or to a subset of it where we
simply choose m(x) = 0. The Neumann boundary condition gives more freedom in the
computation since it only imposes the value of a derivative and does not fix the height
of the surface at the boundary. Naturally, also this condition modifies the surface. State
constraint boundary conditions differ from the previous ones since they do not impose
a value either for the height or for its normal derivative. In this respect, it has been
interpreted as a “no boundary condition” choice [88], although this interpretation is
rather superficial. In fact, a real function u bounded and uniformly continuous is said to
be a “state constraint viscosity solution” if and only if it is a subsolution (in the viscosity
sense) in Ω and a supersolution in Ω (i.e. up to the boundary). It can also be stated as
a Dirichlet boundary condition, simply setting g(x) = gc on ∂Ω, where gc is a constant,
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provided:
gc > max

x∈Ω
{u(x)} .

Note that in our problem, this is a mild assumption since we can easily fix an upper
bound for the height of the object. The effect of the state constraint boundary condi-
tion is to produce solutions that grow inwards from the boundary ∂Ω. This choice can
be appropriate in some situations and wrong in other situations, in any case also this
boundary condition affects the computation.



2. Numerical techniques and a new general
convergence theorem

We start this chapter by describing the numerical schemes that we are going to use
for our numerical tests on the different models illustrated in Chapter 1. These schemes
can be divided into two class of numerical techniques: the methods based on finite
difference (FD) approximation and the semi-Lagrangian (SL) method. We will sketch
the main characteristics of each technique. After that, we will state and prove a general
convergence theorem suitable for a general operator written in a fixed point form.

2.1. Finite difference schemes

Let consider the following nonlinear problem in d-dimensional space

{
ut(x, t) +H(Du(x, t)) = 0, (x, t) ∈ Rd × [0, T ],

u(x, 0) = u0(x).
(2.1)

Once out of the framework of linear equations (and linear schemes), no convergence result
of the same generality of Lax-Richtmeyer theorem exists. In practice, while consistency
of a scheme can be defined in essentially the same way for a nonlinear scheme, stability
becomes a more subtle topic, since uniform boundedness of numerical solutions does not
suffice in general for convergence.

Therefore, different nonlinear stability concepts have been developed for nonlinear
equations and schemes. In the framework of Hamilton-Jacobi equations (HJEs) two main
concepts have been proposed: the more classical idea of monotone stability (which leads
to the convergence theorems of Crandall-Lions [28, 29] and Barles-Souganidis [104, 9])
and the idea of uniform semiconcavity used in the Lin-Tadmor convergence theorem [73].
We just recall here the first one. For further details on this issue see [39].

2.1.1. Crandall-Lions theorem

The Crandall-Lions theorem is inspired by the result of convergence of monotone conser-
vative schemes for conservation laws, therefore it assumes the scheme to have a structure
which parallels the structure of conservative schemes. On the contrary, Barles-Souganidis
theorem does not assume any particular structure for the scheme, and is suitable for more
general situation (including second-order HJEs), provided a comparison principle holds
for the exact equation. It also requires a more technical definition of consistency. We will
describe it in the next section regarding SL schemes.
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We will present here the Crandall-Lions theorem in the case of two space dimensions.
The extension to an arbitrary number of dimensions being straightforward. Hence, we
will rewrite (2.1) as

ut +H(ux1 , ux2) = 0. (2.2)

Crandall-Lions theorem works in the framework of difference schemes, so we assume that
the space grid is uniform, ∆xi being the space step along the i-th direction. We define
an approximation of the partial derivative uxi at the point xj by the right (partial)
incremental ratio, that is

Di,j [V ] =
vj+ei − vj

∆x
(i = 1, 2). (2.3)

We give now the definition of a scheme in differenced form.

Definition 2.1 A scheme S is said to be in differenced form if it has the form

vn+1
j = vnj −∆tH (D1,j−p[V n], . . . , D1,j+q[V

n];D2,j−p[V n], . . . , D2,j+q[V
n]) (2.4)

for two multi-indices p and q with positive components and for a Lipschitz continuous
function H (called the numerical Hamiltonian).

In practice, (2.4) defines schemes in which the dependence on V n appears only through its
finite differences, computed on a rectangular stencil of points around xj . The differenced
form of a scheme lends itself to an easier formulation of the consistency condition, which
is given in the following

Definition 2.2 A scheme in differenced form is consistent if, for any a, b ∈ R,

H(a, . . . , a; b, . . . , b) = H(a, b). (2.5)

This last definition matches the usual one (refer to [39] for details on it).
Note that, in the nonlinear case, we expect that monotonicity may or may not hold

depending on the speed of propagation of the solution, this speed being related to the
Lipschitz constant of u0 (in fact, in general monotonicity does depend on the speed of
propagation, but in the linear case this speed is given and unrelated to u0). We will say
that the scheme is monotone on [−R,R] if the usual stability condition is satisfied for
any V and W such that |Di,j [V ]|, |Di,j [W ]| ≤ R.

Now, we have all elements to state the Crandall-Lions convergence theorem.

Theorem 2.1.1 (Crandall-Lions)
Let H : R2 → R be continuous, let u0 in (2.1) be bounded and Lipschitz continuous (with
Lipschitz constant L) on R2, and let v0

j = u0(xj). Let the scheme (2.4) be monotone on
[−(L+1), L+1] and consistent for a locally Lipschitz continuous numerical Hamiltonian
H. Then, there exists a constant C such that, for any n ≤ T/∆t and j ∈ Z,

∣∣∣vnj − u(xj , tn)
∣∣∣ ≤ C∆t1/2 (2.6)
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as ∆t→ 0, ∆xi = λi∆t (i = 1, 2).

Remark 2.1 In what follows, we will give an example of scheme in one dimensional.
Hence, we will apply this convergence result to first-order, three-point stencil schemes in
one space dimension. In this particular setting, a differenced scheme takes the simpler
form (in which the index i of the variable is clearly omitted)

vn+1
j = vnj −∆tH (Dj−1[V n], Dj [V

n]) , (2.7)

involving only the points vnj−1, vnj and vnj+1 in the computation of vn+1
j .

2.1.2. An example: the Lax-Friedrichs scheme

Let consider the following one-dimensional problem

{
ut(x, t) +H(ux(x, t)) = 0, (x, t) ∈ R× [0, T ],

u(x, 0) = u0(x).
(2.8)

We will make the standing assumptions that H is convex and that there exists α0 ∈ R
such that {

H ′(α) ≤ 0 if α ≤ α0,

H ′(α) ≥ 0 if α ≥ α0.
(2.9)

We also define
MH′(L) = max

[−L,L]
|H ′|, (2.10)

which corresponds to the maximum speed of propagation of a solution with Lipschitz
constant L.

We will see now the Lax-Friedrichs scheme adapted to the nonlinear case, listing the
definitions and the convergence theorem for it.

Construction of the Lax-Friedrichs scheme.
The simplest way to recast Lax-Friedrichs scheme for the HJE is to define it in the form

vn+1
j =

vnj−1 + vnj+1

2
−∆tH(Dc

j [V
n]), (2.11)

where Dc
j [V

n] is the centered difference at xj defined by

Dc
j [V

n] =
vnj+1 − vnj−1

2∆x
=
Dj−1[V n] +Dj [V

n]

2
. (2.12)

This definition of the LF scheme completely parallels the linear case, and is also suitable
to be treated in the framework of the Crandall-Lions theorem. In fact, once we recall
that

vnj−1 + vnj+1

2
= vnj +

∆x

2
(Dj [V

n]−Dj−1[V n]) , (2.13)
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(2.11) can be written in the differenced form

vn+1
j = vnj −∆tHLF (Dj−1[V n], Dj [V

n]), (2.14)

by setting

HLF (α, β) = H(
α+ β

2
)− ∆x

2∆t
(β − α). (2.15)

Consistency of the Lax-Friedrichs scheme.
The LF scheme (2.11) satisfies the consistency condition (2.5), and in fact

HLF (a, a) = H

(
a+ a

2

)
= H(a). (2.16)

Consistency is therefore satisfied.

Stability of the Lax-Friedrichs scheme.
We examine the issues of CFL condition and monotonicity, which in this case give the
same restriction on the discretization steps.

CFL condition for the Lax-Friedrichs scheme Taking into account that the
maximum speed of propagation is MH′(L), the CFL condition reads as

MH′(LV )∆t

∆x
≤ 1. (2.17)

This condition is necessary and sufficient, since it also ensures monotonicity (as we will
soon show).

Monotonicity of the Lax-Friedrichs scheme.
Considering the LF scheme in the form (2.11). Clearly, the j-th component SLFj (∆;V )
depends only on the values vj±1, so that

∂

∂vi
SLFj (∆;V ) = 0 (i 6= j ± 1). (2.18)

On the other hand, if i = j ± 1, we have

∂

∂vj±1
SLFj (∆;V ) =

1

2
−∆tH ′

(
Dc
j [V ]

) ∂Dc
j [V ]

∂vj±1

=
1

2
∓ ∆t

2∆x
H ′
(
Dc
j [V ]

)
,

(2.19)

where we have used the fact that

∂Dc
j [V ]

∂vj±1
= ± 1

2∆x
. (2.20)
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Therefore, if LV is the Lipschitz constant of the sequence V , the scheme is monotone,
provided

∆t

∆x
≤ 1

MH′(LV )
. (2.21)

Convergence result for the Lax-Friedrichs scheme.
The convergence result is obtained from consistency (2.16) and monotonicity (2.21) and
applying Theorem 2.1.1.

Theorem 2.1.2 Let H satisfy the basic assumptions, let u0 ∈ W 1,∞(R), let u be the
solution of (2.8) with L as its Lipschitz constant, and let vnj be defined by (2.11) with

v0
j = u0(xj).

Then, for any j ∈ Z and n ∈ [1, T/∆t],

∣∣∣vnj − u(xj , tn)
∣∣∣ ≤ C∆t1/2 (2.22)

as ∆→ 0, with MH′(L+ 1)∆t ≤ ∆x.

2.2. Semi-Lagrangian schemes

In this section we will focus our attention on semi-Lagrangian (SL) schemes which have
shown to be very effective for first order problems since it tries to mimic at the discrete
level the method of characteristics (see [39] for more details). Other approaches based
on finite difference or finite volumes are feasible. As we have seen there are basically two
main problems related to the vertical light case and the oblique light case. In the vertical
case, we have to solve an eikonal-type equation for each model (Cf. (1.8), (1.36), (1.61),
(1.78)). In the oblique case, we get more general first-order Hamilton-Jacobi equations
(HJEs) (1.7), (1.34), (1.48), (1.69) where the nonlinear term is also coupled with lin-
ear terms. The general framework for these type of problems is the theory of viscosity
solutions which guarantees (under appropriate assumptions) existence and uniqueness
results for the vertical light case. A similar approach can also be applied to the case of
an oblique light source when the surface is not smooth and black shadows are present
in the image. It should be noted that to have uniqueness one has to add additional
assumptions or to add more informations, like the height at maximum brightness points
or the fact that we select to approximate the maximal solution (as introduced in [18]).
General convergence results for the approximation scheme to the maximal solution of the
degenerate eikonal equation can be found in [34, 19]. There are two types of algorithms
based on the semi-Lagrangian approach. The first type of algorithm is global and gives
an approximation of the fixed point problem on the whole grid at every iteration till
the stopping rule is satisfied. Some acceleration methods, like the Fast Sweeping method
([62, 61]) can be introduced to speed up convergence. The second type of methods is local
and tries to concentrate the numerical effort only in a neighborhood of a region which
is considered to be already exact (the so called Accepted region). The Fast Marching
method (extensively described in [102, 30]) is a typical example of this class of methods.
We will briefly describe them in the next chapter.
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The algorithms corresponding to the models presented in the Chapter 1 compute the
maximal solution in the domain without additional information of the surface and with
a single boundary condition which can be either homogeneous u = 0 or not (but to set
u = g on the boundary of the mask one has to know or guess the right solution there).

As already stated in Section 1.1, we suppose a surface given as a graph. In the case
of vertical light, for such a surface we do not have shadows covering an open domain
(i.e. the points where I(x) = 0 are either isolated or curves in the plane). If the light is
oblique, we usually have shadows so that we can divide the support of the surface (the
domain of u) into two regions, Ωl ≡ {x : I(x) > 0} and Ωs ≡ {x : I(x) = 0}, which
represent respectively the “light” and the “shadow” regions. Typically they have both
nonempty interior and, naturally, Ω = Ωl ∪ Ωs. Note that Ω now represents the new
mask which also includes black regions. Moreover, we assume that Ω ⊂ Q, where Q is
the rectangular domain corresponding to the image.
In Ωl the equation is always the same, whereas in the “shadow” region the surface can
have any shape since the model is naturally not able to describe the real surface there.
This is why other authors have included boundary conditions (e.g., Neumann boundary
conditions) on ∂Ωl to treat the problem in Ωl just ignoring the region Ωs. This can in
turn create difficulties in the construction of the numerical algorithm since the boundary
of Ωl can be nonsmooth and somewhat difficult to follow. We include the region Ωs in the
computation just defining there a conventional surface to replace the unknown surface.
We will substitute for the surface the “separation surface” (or “shadow surface”) i.e. the
surface separating light from shadow. That surface will depend on ω and on the normal
direction to the original surface. This means that in Ωs, for example for the L–model,
we have to solve the equation

ω̃ · ∇u(x)− ω3 = 0, x ∈ Ωs, (2.23)

that coincides with (1.7) since I = 0 in Ωs. Then, we can use the same equation every-
where in Q and we do not need to introduce any boundary condition on ∂Ωl.

Now, let us see in detail how the scheme works. As illustrative case we will describe
the process for a specific model, for example the L–model.

We can rewrite the Lambertian eikonal equation (1.8) as





max
a∈B2(0,1)

{−a · ∇u} = f(x) for x ∈ Ω ⊂ R2,

u(x) = g(x) for x ∈ ∂Ω,
(2.24)

where B2(0, 1) is the R2 unit ball and f(x) is given by (1.9). In fact, it is sufficient to
note that the maximum is achieved for ā ≡ ∇u/|∇u|. Without loss of generality, we can

suppose that u ≥ 0 and, with the appropriate change of variable µv(x) = 1−exp(−µu(x))
µ ,

the equation (2.24) can be rewrited as follow




µv(x) + max

a∈B2(0,1)

{
− a
f(x) · ∇v(x)− 1

}
= 0 for x ∈ Ω,

v(x) = 1− exp(g(x)) for x ∈ ∂Ω.
(2.25)
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Here µ is a free positive parameter without a specific physical meaning, but it is im-
portant because varying its value it is possible to modify the slope. In fact, the slope
increases for increasing values of µ. Note that by definition 0 ≤ v(x) ≤ 1/µ. For the
vertical case we will set µ = 1.
This equation admits a unique solution provided that f(x) is non-zero and bounded in
Ω [6].

Let us consider the equation (2.25), we suppose that the set Ω is entirely contained in
the rectangular domain Q corresponding to the image, and that on this image is defined
a discrete grid G (size n ×m) of points {xij} with i, j ∈ Z. We denote by Gin the set
of grid points belonging to Ω and by Gout the set G\Gin. We can write the scheme
corresponding to the problem (2.25) with µ = 1 as follow:




w(xij) = min

a∈B2(0,1)

{
e−hw(xij + h a

f(x))
}

+ 1− e−h for i, j ∈ Gin,

w(xij) = 1− exp(−g(xij)) for i, j ∈ Gout,
(2.26)

where h is a small parameter.

Fixed point Scheme.

Denoting by W the matrix containing the values of w(xij), we can rewrite the equation
as

W = T (W ), T : Rn×m → Rn×m.

In [7, 40] it has been proved that the numerical solution to (2.26) exists and it is unique
by a fixed point argument on the iteration

W k+1 = T (W k).

Moreover, we can describe in general the interpolated value as Λ(W ) and the operator
T as the operator

T (W ) = min{e−hΛ(W )}+ 1− e−h.
Such a scheme is a fixed point scheme during which we search the matrix W ? such that

W ? = T (W ?).

It means that the solution is computed for successive iterations, computing a new matrix
W k+1 by applying the operator T to the previous matrix W k. In fact, the monotony
of T implies that if we start from a sub-solution W 0 the sequence will monotonically
converge to the fixed point. It should be noted that the presence of singular points makes
the vectorfield a/f(x) unbounded since f vanishes. In order to overcome this difficulty,
the minimum of f(x) is truncated to a value ε, that is, f(xij) is approximated with

fε(xij) = max{f(xij), ε}.
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Even with the introduction of this perturbation the solution converges to the original
not perturbed problem in the limit of ε going to 0 (see [20]). The condition for the
convergence to the maximal solution [34, 98] is given by

h
∣∣∣ 1

fε

∣∣∣
∞
≤ δ. (2.27)

The stopping rule.
In iterative methods, the method stops when you have reached the required tolerance
or when you have exceeded the maximum number of iterations allowed. In an iterative
method of fixed point, the point is reached when

‖Wn+1 −Wn‖ ≤ η,

for some appropriate norm and a tolerance factor η.
With the same presuppositions of the vertical light case, regarding the problem (1.12)

in the variable v, assuming that the set Ω is entirely contained in the rectangular image,
and by using the same definition ofG,Gin andGout introduced just above, also in the case
of oblique light source we seek solutions w(xij) in the space of the linear approximations
on the grid points. With these definitions, the fully discrete scheme of (1.12) is





w(xij) = min
a∈∂B3

{
e−µhw

(
xij + h bL(xij ,a)

)
− τ I(xij)a3ω3

(
1− µw(xij)

)}
+ τ,

for i, j ∈ Gin,

w(xij) = 0, for i, j ∈ Gout,
(2.28)

where xij are the grid nodes, τ = (1− e−µh)/µ and

bL(xij ,a) =
1

ω3
(ID(xij)a1 − ω1, ID(xij)a2 − ω2) . (2.29)

The operator

TLi (W ) = min
a∈∂B3

{
e−µhw(xij + h bL(xij ,a))− τ I(xij)a3

ω3
(1− µw(xij))

}
+ τ (2.30)

is a contraction mapping [42] in [0, 1/µ)G if

I(xij)a3 < µω3, (2.31)

where a3 ≡ arg min
a∈∂B3

{e−µhw(xij + hbL(xij , a))− τ I(xij)a3ω3
(1− µw(xij))}.

As done for the equation (2.26), we can rewrite the equation (2.28) in a fixed point form
as

W = T (W ), T : Rn×m → Rn×m.
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In addition to a stopping rule for the iterative process, the ingredients of a SL scheme
are: a grid, an interpolation, a procedure for the search of the minimum value. Let’s see
in detail the possible choices for each ingredient.

2.2.1. Types of grids: structured or unstructured

A grid is called structured when the numbering of the nodes belonging to each cell
can be obtained through simple algebraic operations. The advantages of this kind of
grid is that you can write more efficient algorithms using direct addressing the memory
variables. The disadvantage is the difficulty to generate grids of good quality on very
complex geometric configurations. Not are suitable for local thickening of grid nodes
(grid adaptivity). In order to remedy in part to the geometric limitations of structured
grids is used sometimes block-structured grids or multiblock, obtained by partitioning
a priori the domain in subdomains (blocks) of simpler geometry and using a structured
grid in each block. The disadvantage in this case is the request of complex data structures
in order to obtain an efficient management of subdomains and their interconnections.
Moreover, the division into blocks is hardly automatable.

The unstructured mesh can be or not hybrid (flat, composed of triangular or quadri-
lateral elements, or three-dimensional, consisting of tetrahedral or hexahedral). In the
unstructured meshes is not easy to carry out a numbering of the nodes but we proceed
to the numbering following a predetermined order. Despite the need “to store” nodes,
these meshes can reproduce complex geometries and are very flexible. For this reason
they are currently the mesh most used for the calculations structural.
The most popular algorithms used for unstructured grid composed of triangular elements
are the triangulation of Delaunay and the technique of advancement of the front. For
more details on these algorithms see [46, 110].
In this thesis we will use a structured grid with space steps fixed.

2.2.2. Types of interpolation

Interpolation is a method of constructing new data points within the range of a discrete
set of known data points. The scheme described above is not fully discrete. In fact, xij +
ha/f(x) is not in general a point belonging to the grid. The values of w(xij +ha/f(x))
must be find through an interpolation process.
There exist several types of interpolation:

• the Piecewise constant interpolation, the simplest interpolation method that con-
sists into locate the nearest data value, and assign the same value. In simple prob-
lems, this method is unlikely to be used, as linear interpolation (see below) is
almost as easy, but in higher-dimensional multivariate interpolation, this could be
a favourable choice for its speed and simplicity, but not for accuracy.

• the Linear interpolation, that takes two data points, say (xa, ya) and (xb, yb), and
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the interpolant at the point (x, y) is given by:

y = ya + (yb − ya)
x− xa
xb − xa

. (2.32)

This kind of interpolation is quick and easy, but it is not very precise. In fact, the
error is proportional to the square of the distance between the data points.

• the Bilinear interpolation, that is an extension of linear interpolation for interpo-
lating functions of two variables (e.g., x and y) on a regular 2D grid. The key idea
is to perform linear interpolation first in one direction, and then again in the other
direction. Although each step is linear in the sampled values and in the position,
the interpolation as a whole is not linear but rather quadratic in the sample loca-
tions (details below). The result of bilinear interpolation is independent of which
axis is interpolated first and which second. If we had first performed the linear
interpolation in the y-direction and then in the x-direction, the resulting approxi-
mation would be the same.
We will consider the bilinear interpolation which needs of the coefficients (a, b, c, d) ∈
R4 to express the function value w(xss) = w(xs, ys) = w(xij + ha/f(x)) in the
bilinear combination axsys + bxs + cys + d. We chose this last kind of interpo-
lation because each point (xs, ys) ∈ Gin falls inside a cell of four nodes and we
assumed as the reference vertex the one in the bottom on the left that we will
call (xk, yk) ∈ Gin (see Fig. 2.1). If we impose the interpolation condition for the

(xi−1, yj+1)

(xs, ys)(xi−1, yj)

(xi−1, yj−1) (xi, yj−1) (xi+1, yj−1)

(xi, yj+1)

(xs, ys)

(xi+1, yj)

(xi+1, yj+1)

(xi, yj)

ρ(xi, yj)

(xk, yk) (xk+1, yk)

(xk+1, yk+1)(xk, yk+1)

(xi−1, yj+1) (xi, yj+1) (xi+1, yj+1) (xk+1, yk+1)(xk, yk+1)

 North Elevation

Figure 2.1.: The picture explains the position of the different points for the bilinear
interpolation to determine the value w(xs, ys) in the case where the two
components of the vector field ρ(xi, yj) are both positive. On the left, the
part of the lattice centered on (xi, yj). On the right, the zooming of the
interesting square with the reference coordinate.

nearest four points of (xs, ys) inside this cell is thus possible to obtain the following
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system: 



axkyk + bxk + cyk + d = w(xk, yk)
axk+1yk + bxk+1 + cyk + d = w(xk+1, yk)
axk+1yk+1 + bxk+1 + cyk+1 + d = w(xk+1, yk+1)
axkyk+1 + bxk + cyk+1 + d = w(xk, yk+1)

(2.33)

that is



xkyk xk yk 1
xk+1yk xk+1 yk 1
xk+1yk+1 xk+1 yk+1 1
xkyk+1 xk yk+1 1







a
b
c
d


 =




w(xk, yk)
w(xk+1, yk)
w(xk+1, yk+1)
w(xk, yk+1)


 . (2.34)

Let us emphasize an interpolation results based on the uniqueness of bilinear in-
terpolation on this kind of data:

Lemma 2.2.1 The system (2.34) admits a unique solution.

Proof.
The proof is simply based on the computation of the determinant of the matrix.
We want to prove that the necessary condition to make it be zero is not possible
if we consider a discretization like our.

det




xkyk xk yk 1
xk+1yk xk+1 yk 1
xk+1yk+1 xk+1 yk+1 1
xkyk+1 xk yk+1 1


 =

= −(xk+1ykxk+1yk+1 + xk+1yk+1xkyk+1 + xk+1yk+1xkyk−
−xkyk+1xk+1yk − xk+1yk+1xk+1yk+1 − xkyk+1xk+1yk)+

+xkykxk+1yk+1 + xkyk+1xkyk+1 + xk+1yk+1xkyk

−xkyk+1xk+1yk − xk+1yk+1xkyk+1 − xkyk+1xkyk−
−(xkykxk+1yk+1 + xkykxkyk+1 + xk+1ykxkyk−
−xkyk+1xk+1yk − xk+1ykxkyk+1 − xkykxkyk)+

+xkykxk+1yk+1 + xkykxk+1yk+1 + xk+1ykxk+1yk−
−xk+1yk+1xk+1yk − xk+1ykxkyk+1 − xk+1ykxkyk =

= −2x2
k+1ykyk+1 − 2xkxk+1y

2
k+1 + x2

k+1y
2
k+1 + 4xkxk+1ykyk+1+

+x2
ky

2
k+1 − 2x2

kykyk+1 − 2xkxk+1y
2
k + x2

ky
2
k + x2

k+1y
2
k =

= x2
k+1(yk − yk+1)2 + x2

k(yk − yk+1)2 − 2xkxk+1(yk − yk+1)2 =

= (yk − yk+1)2(xk − xk+1)2.

Therefore the matrix has the determinant equal to zero if and only if

yk = yk+1 or xk = xk+1,
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that is not true. Then it concludes the proof.

�

Let us call the unique solution of the previous system (a∗, b∗, c∗, d∗) for every point
(xi, yj) ∈ Gin. Now it is possible to calculate the bilinear form in the evaluation
point (xs, ys), that is:

a∗xsys + b∗xs + c∗ys + d∗ = w(xs, ys) = w(xij + h ρij), (2.35)

where ρij := ρ(xi, yj) = a/f(x).

2.2.3. Search of the minimum

The search of the minimum is a very important building block of the SL schemes for
nonlinear problems such as our problem. There exist several methods of minimization
suitable for function to be minimized that has no explicit form, so we will briefly sketch
here methods which minimize a function f of N variables without making use of the
analytic expressions of the gradient that is unknown.

Direct search methods.
This class of methods generally collects methods of heterogeneous nature, which share
the feature of minimizing a function without using, either in exact or approximate form,
its gradient. Direct search methods rather proceed by computing the function at a dis-
crete, countable set of points. The most common schemes of this class are based on the
simplex technique (not to be confused with the algorithm used in Linear Programming),
whose basic idea dates back to the ’60s. Let a simplex of vertices V1, . . . , Vm be con-
structed in RN . Once computed the corresponding values y1, . . . , ym of f at the vertices,
the highest value yh is selected, and the corresponding vertex Vh is reflected with respect
to the centroid C of the simplex made by the remaining vertices. Then, the new simplex
obtained by replacing the node Vh with Vr is accepted if the value of the function at Vr
is not the highest value in the new simplex. Otherwise, the second highest value of the
original simplex is selected, and the procedure is repeated. If all possible updates of the
simplex lead to finding the highest value on the reflected node, the algorithm stops. The
size of the simplex should then be considered as a tolerance in locating the minimum,
and to refine the search the algorithm should be restarted with a simplex of smaller size.
For further details see [69].

Descent methods (without derivatives).
In these methods, an initial estimate of the minimum point x0 is given, and the updating
of the approximation xk is performed via the formula xk+1 = xk + βkdk, that is, the
scheme moves from xk to xk+1 along the direction dk with step k. As a rule, the direc-
tion dk should be a descent direction, i.e. (dk,∇f(xk)) < 0, βk should be positive, and
f(xk+1) < f(xk). Neglecting for the moment the problem of avoiding the computation
of derivatives, the most typical scheme of this class is the method of steepest descent (or
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gradient method), in which dk = −∇f(xk) and βk is chosen on the basis of an exact
line search, that is, f(xk+1) = min

β
[xk − β∇f(xk)]. Such a choice of the direction dk

gives locally the largest negative directional derivative, and the original formulation of
this method requires a high complexity to determine βk. A first improvement consists in
accepting a certain β if it ensures that the function “decreases enough” passing from xk
to xk+1. A further improvement is to choose more efficient search directions dk, e.g. via
the Newton’s method or the conjugate direction methods (see [39] for more details).
To turn back to the problem of implementing schemes of this class without computing
derivatives, we remark that in principle it is possible to replace gradient of f by their
finite difference approximations, although the complexity of this operation is N+1 com-
putations of f . Whenever the computation of f has a critical complexity (and this is
definitely the case when using minimization algorithms within a SL scheme), the mini-
mization is better accomplished by cheaper techniques.

Powell’s method.
This method is genuinely derivative-free, but search directions are rather computed ex-
ploiting a geometric property of quadratic functions, which allows to construct conjugate
directions without computing the gradient, nor the hessian. The basic idea in the case
of two space dimensions is the following: let a quadratic function f (shown through its
elliptical level curves) and a search direction d1 be given. Consider the minima of f
along two parallel lines with direction d1 (we recall that at a line-constrained minimum
the search direction is tangent to the level curve). Then, the direction d2 through the
two minima is conjugate with d1. The technique can be extended to generate conjugate
directions for a generic dimension N , and produces a scheme in the form of a descent
method. Being a conjugate direction method, Powell’s method converges in N iterations
for quadratic functions of N variables, and is expected to be superlinear for smooth
nonquadratic functions. For technical details see [87].

Trust-region methods based on quadratic models.
In this class of schemes, the iterative minimization of the function f is carried out by
working at each step on an approximate (typically, quadratic) model of the function,
which is associated to a so-called trust region, which is a set in which the model is
considered as a good approximation of the function. Let xk denote the current iterate.
We write the quadratic model for the function f at xk as mk(xk + s) = f(xk) + (gk, s) +
1/2(Hks, s) and the trust region as the ball Bk = {x ∈ RN : ||x− xk|| ≤ ∆k}. Although
the vector gk and the (symmetric) matrix Hk play the role of respectively the gradient
and the hessian of f , their construction should not use any information on derivatives. In
practice, they are typically constructed by interpolating a certain set of previous iterates
where the function f has already been computed. Once the model has been constructed
at the iterate xk, a new candidate point x+

k is computed as the minimum point for mk

in the trust region. If the value f(x+
k ) represent a sufficient improvement of f(xk), then

the iterate is updated as xk+1 = x+
k , and typically a former point is removed from the

set of points used in the interpolation. If not, the trust region is reduced by decreasing
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∆k, and/or new points are added to improve the quality of the approximation. The
robustness of the algorithm is crucially related to the geometric properties of the set of
points used to construct the model, so various recipes have been proposed to generate
this set, to iteratively update it, and to improve it whenever the algorithm is unable to
proceed. See [24] for more details.

2.2.4. Strategy of search for the minimum with less controls

In the equation (2.26) and in the other similar equations, the search of the minimum
consists in search for the minimum value obtained by interpolating on a grid of discrete
points. The general method is to use the control a to approximate the values of w(xij +
ha). The value of these controls is in the domain of minimization and can be limited
to an appropriate choice in the set of unit vectors, as in our case. Obviously, the total
number of controls to be used must be finite, and the most suitable choice depends,
apart from the need to maintain limited the time required to compute, also by the
choice of the interpolation type and by the need to obtain a better approximation of the
minimum. The general method consists to generate all the possible controls a, excluding
the controls that bring the point off the grid, or those that do not satisfy other criteria
such as the contraction condition (2.31) for the model with oblique light, and then choose
the minimum between all the values generated by the controls. For the equations like
(2.26), in the case of linear approximation [30], it is possible to compute a lower number
of controls on the border of the unit ball ∂B2(0, 1).

Vertical light case

Let us consider, for simplicity, a Cartesian grid with step ∆x = ∆y = 1. In such a grid,
for each point xij we consider the four triangles formed by the itself point and its four
neighbors {xi,±j , x±i, j} (see Fig. 2.2). By choosing an appropriate coordinate system,
such that the point (i, j, wij) coincides with the origin O, we consider the three vertices
of the triangle T1, that is O = (0, 0, 0), A = (1, 0, A), B = (0, 1, B). The equation of the
plane passing through these three points is z = −(Ax+By). The minimum of w on such
a plane is in the intersection of the base cylinder ha and the plan itself. The equation
of the cylinder with axis z and radius h is





x = h cos θ,

y = h sin θ,

z = ζ.

Its intersection with the plane passing for OAB is

z = −h (A cos θ +B sin θ),
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Figure 2.2.: By choosing an appropriate coordinate system, such that the point (i, j, wij)
coincides with the origin O, the minimum of w(xij + ha) is located on the
intersection of the planes defined by the triangles Ti with the cylinder of
radius h and center O. The 5 points where it can be located the minimum
are marked with thicker points.

whose stationary points in θ are given by

d

dθ
{−h (A cos θ +B sin θ)} = 0,

that is
θ = arctanB/A,

from which, considering only the triangle T1, being

sin(arctanB/A) =
B√

A2 +B2
, cos(arctanB/A) =

A√
A2 +B2

,

we obtain the stationary point

z = −h
√
A2 +B2, (2.36)

value that we have to compare with the values at the extremes

z = hA, z = hB. (2.37)

The stationary point z = −h
√
A2 +B2 is actually a minimum point in T1 if B and A

are both less to 0, i.e. θ = arctanB/A is in (0, π/2).

Remark 2.2 Interpreting in a more restrictive way the condition (2.27), we can fur-
ther simplify the problem by requiring that h|1/fε|∞ ≤ δ/

√
2, so that the interpolation is

always carried out between the next neighbors of the point xij, i.e. so that the circumfer-
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ence ∂B2(0, h) is always contained in the rhombus having as vertices the four neighbors
of the point xij.

Summarizing, for each of the four triangles Ti we compute the points z1 = −h
√
A2 +B2,

z2 = hA, z3 = hB and finally we choose the minimum between all the values computed.
In this way, we have reduced the needed number of controls to 5 restricting at the only
linear interpolation. Note that being only interested in the value of the minimum and not
to where it is carried on the grid, we can change the problem transforming appropriately
each of the remaining triangles, so that it is equivalent to that just solved for the triangle
T1. Furthermore, noting that the minimum given by (2.36) is achieved when A and B
are both negative, we can in advance search the triangle with the minimum values of
the vertices and perform the computation of the minimum only on this triangle by using
equation (2.36) and on the two intersections with the axes by using (2.37), thus cutting
the number of the controls to a maximum of 3. Reintroducing the steps of the grid, the
solution of the equation (2.26) for each grid point is the minimum value between

wij = β(−h
√
A2 +B2

√
2/δ + wij) + 1− β,

wij = β(hA
√

2/δ + wij) + 1− β,
and

wij = β(hB
√

2/δ + wij) + 1− β,
where β = e−h and δ = min{∆x,∆y}. The scheme in pseudocode is illustrated in details
in Algorithm 1.

Oblique light case

Also for the equation (2.28) we need to compute the value of w in the points which concide
with the grid nodes. The general method is to use the control a to approximate the values
of w(xij + ha). The value of these controls is in the domain of minimization and can be
limited to an appropriate choice in the set of unit vectors, as in our case. For example,
we can discretize the ball B3(0, 1) and use the controls a in order to approximate the
values w. As already done for the case of vertical light source (see equation (2.26)), also
in this case it is possible to limit the computation only to a finite (lower) number of
controls. Note that h should not be chosen globally, and that for a suitable choice of h,
xij +h b(xij ,a) can be entirely contained in the square (or in the rhombus in the case of
a cartesian grid with different step in x and y) having as vertices the next four neighbors
of each grid point xij . For each point xij , the points xij + h b(xij ,a) are the locus of the
circle with center (−kω1,−kω2) and radius I(xij)k ρ where

ρ =
√
a2

1 + a2
2

and k = h/ω3. The condition, required in order to contain this circumference in the
rhombus formed by the four grid points close to xij , is satisfied for each radius less or
equal to the radius of the circumference tangent to the nearest side. Without loss of
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Algorithm 1: Search for the minimum with less controls - vertical light case

xij ∈ Gin
P1 = wi j+1 − wij , P2 = wi+1 j − wij
P3 = wi j−1 − wij , P4 = wi−1 j − wij
if P1 < P3 then
A← P1

else
A← P3

end if
if P2 < P4 then
B ← P2

else
B ← P4

end if
if B < 0 and A < 0 then
wij ← β(−h

√
A2 +B2

√
2/δ + wij) + 1− β

else
wij ← β(h min{A,B}

√
2/δ + wij) + 1− β

end if

generality we can perform the computation in the first quarter, where for symmetry the
center of the circumference is (k |ω1|, k |ω2|) and the equation of the line containing the
side of the square is

x

∆x
+

y

∆y
− 1 = 0.

Thanks to these definition (see Fig. 2.3), the tangent condition with the circumference
of maximum radius I(xij)kM is

∆x∆y − kM |ω1|∆y − kM |ω2|∆x√
∆x2 + ∆y2

= I(xij)kM ,

hence

kM =
∆x∆y√

∆y2 + ∆x2 I(xij) + ∆x |ω2|+ ∆y |ω1|
and, as a consequence, the radius is

rM = I(xij)
∆x∆y√

∆y2 + ∆x2 I(xij) + ∆x |ω2|+ ∆y |ω1|
.

The contraction condition (2.31) adds a lower limit to r. Defining a3 =
√

1− ρ2 we can
write

ρm =
√

1− µ2ω2
3/I(xij)2,
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Figure 2.3.: Controls for oblique light case. For each point of a Cartesian grid, we can
define the maximum value of h, such that h b lies inside the rhombus whose
vertices are the next four neighbors of the point. For each of the four triangles
of the grid we compute rm, rM , r, θ and θ+π and the correspondents inter-
polated points. Between these we choose the minimum. The points where it
can be located the minimum are marked with thicker points.

hence

rm =

√
I(xij)2 − µ2ω2

3 ∆x∆y√
∆y2 + ∆x2 I(xij) + ∆x |ω2|+ ∆y |ω1|

and r ∈ [rm, rM ]. Note that µω3 > I(xij) is a possible condition: in the contraction

condition it means
√

1− ρ2 less to a quantity greater than 1, that is always satisfied,
hence µω3 > I(xij) is equivalent to require rm = 0.
Finally,

w(xij) = min
r∈[rm,rM ]
θ∈[0,2π]

{
e−µhP (xij , r, θ)− τQ(xij , r, θ)

}
+ τ,

where P (xij , r, θ) is the intersection between the plane z = −Ax−By +wij (defined in
each quarter in a way similar to what has been done in §2.2.4 p. 43), and the cylinder
of radius r and center (−kω1,−kω2), that is

P (xij , r, θ) = −A (r cos θ − kω1) + wij −B (r sin θ − kω2) + wij .

From the condition
I(xij)

ω3
a3 =

I(xij)

ω3

√
1− ρ2,

we get

Q(xij , r, θ) =
1

ω3kM

√
(kM I(xij))2 − r2(1− µwij).
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Then, we can define

F (xij , r, θ) = β P (xij , r, θ)− τ Q(xij , r, θ)

whose stationary points are

θ1 = arctan(B/A), θ2 = arctan(B/A) + π

and

r =
β
√
A2 +B2kM I(xij)√

ω2
3 k

2
Mβ

2(A2 +B2) + 4τ2
ω3 kM .

Obviously, the minimum should be sought even to extremes, i.e. also for r = rm and r =
rM , and these values should be compared with the values with which the three cylinders
intersect the diagonals of the rhombus formed by the point xij and its neighbors. In
conclusion: for each of the four triangles Ti we compute rm, rM , r, θ1 and θ2. We obtain
the interpolated points corresponding and finally we choose the minimum. It should be
noted that in this way, at the cost of limited to only linear interpolation, we have reduced
the number of necessary controls to a maximum of 36 (limit value not actually always
achieved, taking into account that some controls are not to be computed in case you are
out of the quarter). If I(xij) = 0, the minimum coincides with the value interpolated w
in the point (−kω1,−kω2) = (b1, b2). A description of the method in pseudocode can be
found in Algorithm 2.

2.2.5. Convergence results

The SL schemes are based on the idea which is to discretize directly the“directional
derivative” which is hidden behind the nonlinearity ∇u(x). The goal is to mimic the
method of characteristics by constructing the solution at each grid point integrating
back along the characteristics passing through it and reconstructing the value at the
root of the characteristic line by interpolation. In this way the schemes have always an
upwind correction which is crucial for stability allowing for larger time steps with respect
to finite differences (FD). In fact, FD schemes first discretize in space then discretize in
time using a fixed stencil. Instead SL schemes first discretize in time then discretize in
space, moving the stencil. We begin by writing the equation

ut + c(x)|∇u(x)| (2.38)

as
ut + max

a∈B(0,1)
[−c(x)a · ∇u(x)] = 0. (2.39)

Naturally, this is equivalent to our equation since plugging a∗ = −∇u(x)
|∇u(x)| we get back to

the first equation. In order to simplify notations we will consider N = 2. We define the
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Algorithm 2: Search for the minimum with less controls - oblique light case

xij ∈ Gin, I(xij) > 0
fγ ←∞
computation of rM , rm, h
b1 ← −hω1/ω3

b2 ← −hω2/ω3

for all quarters Q do
computation of the coefficients A and B of the plane
computation of r, θ
if r ∈ [rm, rM ] then

if (±r cos θ,±r sin θ) ∈ Q then
fγ ← min{fγ , F (xi,j ,±r, θ)}

end if
if |b1| < r or |b2| < r then

computation of qr intersections with diagonal of rhombus, fγ ← min(fγ , q))
end if

end if
if (±rm cos θ,±rm sin θ) ∈ Q then
fγ ← min(fγ , F (xij ,±rm, θ))

end if
if |b1| < rm or |b2| < rm then

computation of qrm intersections with diagonal of rhombus, fγ ← min(fγ , qrm))
end if
if (±rM cos θ,±rM sin θ) ∈ Q then
fγ ← min(fγ , F (xij ,±rM , θ))

end if
if |b1| < rM or |b2| < rM then

computation of qrM intersections with diagonal of rhombus, fγ ← min(fγ , qrM ))
end if

end for
w(xij)← fγ + τ
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lattice L(x, y, z) by

L = {(xi, yj , tn) : xi = i∆x, yj = j∆y, tn = n∆t} (2.40)

where i, j,∈ Z and n ∈ N, (xi, yj , tn) ∈ R2×R+, x and y are the space steps (we assume
they are constant) and t is the time step.
In order to obtain the SL-scheme let us consider the following approximation

−∇v(xi, yj , tn) · a =
v(xi − a1∆t, yj − a2∆t, tn)− v(xi, yj , tn)

∆t
+O(t). (2.41)

We will use the standard notation vn(i, j) for an approximation of v(xi, yj , tn), with
i, j,∈ Z, n ∈ N and vn : R2 → R for its reconstruction, i.e. its extension to any triple
(x, y, tn) by interpolation of the values on the grid. Replacing the term vt by forward
finite differences and the discrete directional derivative by the SL discretization, we get

vn+1
i,j − vni,j

∆t
= min

a∈B(0,1)

[
vn(xi − a1∆tcij , yj − a2∆tcij)− vnij

∆t

]
. (2.42)

For a general Hamiltonian H(∇u) we have

vn+1
i,j − vni,j

∆t
= min

a∈R2

[
vn(xi − a1∆tcij , yj − a2∆tcij)− vnij

∆t
+H∗(a)

]
, (2.43)

where H∗(a) is the Legendre transform defined by

H∗(a) = sup
q∈Rn
{a · q −H(q)}. (2.44)

Finally, we can write the time explicit scheme

vn+1
i,j = vni,j + min

a∈R2
[vn(xi − a1∆t, yj − a2∆t) + ∆tH∗(a)] . (2.45)

By construction, the numeric dependence domain contains the continuous dependence
domain without any additional conditions on t and x. This allows for larger time steps
than FD where a CFL condition of the type ∆t

∆xC ≤ 1 has to be imposed to guarantee
stability.
In order to compute the solution we first compute the value of v on the right-hand side
by an interpolation procedure based on the values of the nodes of the lattice L. Then,
one has to determine H∗(a) so that we can finally compute the minimum for a ∈ R2.

A major difficulty when applying SL schemes is to compute H∗. Sometimes it is
possible to determine its explicit expression (as e.g. for the front propagation model).
In general one has to rely on its approximation by the Fast Legendre Transform (FLT)
developed by Brenier [12] and Corrias [25]. This solution is feasible as far as the state
space has 2 or 3 dimensions. Now, we can give a convergence theorem in R.
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Consider the SL-scheme



vn+1
j = min

a∈R
[Ir[V

n](xj − a∆t) + ∆tH∗(a)] ,

v0
j = u0(xj),

(2.46)

where I[·] is a generic (high order) interpolation operator on the grid with a reconstruc-
tion of degree r > 1.

Theorem 2.2.2 (Ferretti, 2003)
Let V n be defined by the scheme (2.46). Assume that

A1. H∗
′′
(a) ≤ 1

mH

A2. |Ir[V ](x)− I1[V ](x)| ≤ Cr max
xj−1,xj ,xj+1∈S

|vj+1 − 2vj + vj−1|, (Cr < 1), where S is

the stencil of the reconstruction defined as S(x) = (x− h−∆x, x+ h+∆x).

Then, for any j ∈ Z and n ≥ 1,

vnj+1 − 2vnj + vnj−1 ≤
∆x2

mH∆t
. (2.47)

Moreover, since A2 holds, then

max
xj−1,xj ,xj+1∈U(xj)+aj∆t

|vnj+1 − 2vnj + vnj−1| ≤ C
∆x2

∆t
(2.48)

for some positive constant C depending on Cr, h and mH and with U(x) = (x−h∆x, x+
h∆x), with a fixed h > max(h−, h+) so that S(x) ⊂ U(x).

Hence, the scheme converges in L∞× (0, T ) to the unique viscosity solution. See [43] for
the proof and more details.

Another important convergence theorem that we want to recall here is the Barles-
Souganidis theorem [9]. This convergence theory gives a more abstract and general
framework for convergence of schemes, including the possibility of treating second-order,
degenerate and singular equations. Roughly speaking, this theory states that any mono-
tone, stable and consistent scheme converges to the exact solution provided there exists
a comparison principle for the limiting equation.
They consider approximation schemes of the form

S(ρ, x, uρ(x), uρ) = 0, in Ω, (2.49)

where Ω is an open subset of RN , Ω its closure. Here S : R+ × Ω × R × B(Ω) → R is
locally bounded.

Theorem 2.2.3 (Barles-Souganidis, 1991)
Let u(x) be the unique viscosity solution in RN of the equation

H(x, u,Du,D2u) = 0. (2.50)
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Assume that the scheme S defined in (2.49) verifies the following assumptions:

A1. The scheme is monotone, i.e.

S(ρ, x, t, u) ≤ S(ρ, x, t, v) (2.51)

if u ≥ v for all ρ ≥ 0, x ∈ Ω, t ∈ R, and u, v ∈ B(Ω).

A2. The scheme is stable, i.e. for all ρ > 0, there exists a solution uρ ∈ B(Ω) of (2.49),
with a bound independent of ρ.

A3. The scheme is consistent, i.e. for all x ∈ Ω and ϕ ∈ C∞b (Ω)

lim inf
ρ→0 , y→x, ξ→0

S (ρ, y, ϕ (y) + ξ, ϕ+ ξ)

ρ
≥ H∗

(
x, ϕ (x) , Dϕ (x) , D2ϕ (x)

)
(2.52a)

and

lim sup
ρ→0 , y→x , ξ→0

S (ρ, y, ϕ (y) + ξ, ϕ+ ξ)

ρ
≤ H∗

(
x, ϕ (x) , Dϕ (x) , D2ϕ (x)

)
, (2.52b)

where H∗ and H∗ denote viscosity sub- and supersolution of (2.50) respectively.

Finally, assume that (2.50) has the following strong uniqueness property:

A4. If u ∈ B(Ω) is an upper semicontinuous solution of (2.50) and v ∈ B(Ω) is a lower
semicontinuous solution of (2.50), then u ≤ v in Ω.

Then, as ρ → 0, the solution uρ of (2.49) converges locally uniformly to the unique
continuous viscosity solution of (2.50).

There exists also an extended version of this theorem for the time-marching form. For
more details on convergence theory, on the proofs of the theorems state here and for
more details on SL schemes in general, see the book [39].

2.3. A new general convergence theorem

Now, let us state a general convergence theorem suitable for a general operator. We will
see in the next chapters that the discrete operators of the ON–model and the PH–model
described in Chapter 1 satisfy the properties listed here.

Let Wi = w(xi) so that W will be the vector solution giving the approximation of
the height u at every node xi of the grid. Note that in one dimension the index i is an
integer number, in two dimensions i denotes a multi-index, i = (i1, i2). We consider a
semi-Lagrangian scheme written in a fixed point form, so we will write the fully discrete
scheme as

Wi = Ti(W ). (2.53)
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Denoting by G the global number of nodes in the grid, the operator corresponding to
the oblique light source is T : RG → RG that is defined componentwise by

Ti(W ) = min
a∈∂B3

{e−µhw(xi + hb(xi, a))− τP (xi, z)a3(1− µw(xi))}+ τ, (2.54)

where

τ = 1− e−µh/µ (2.55)

P : Ω× R→ R (2.56)

and w(xi + hb(xi, a)) is obtained by interpolating on W .
Note that here µ is a free positive parameter without a specific physical meaning, but
it is important because varying its value it is possible to modify the slope. In fact, the
slope increases for increasing values of µ.
Comparing (2.54) with its analogue for the vertical light case we can immediately note
that the former has the additional term τP (xi, z)a3(1−µw(xi)) which requires analysis.

Theorem 2.3.1 Let Ti(W ) the operator defined as in (2.54). Then Ti(W ) has the fol-
lowing properties:

1. Let
P (xi, z)a3 ≤ 1, (2.57)

where a3 ≡ arg min
a∈∂B3

{e−µhw(xi + hb(xi, a))− τP (xi, z)a3(1− µw(xi))}.

Then 0 ≤W ≤ 1
µ implies 0 ≤ T (W ) ≤ 1

µ .

2. T is a monotone operator, i.e., v ≤ u implies T (v) ≤ T (u).

3. T is a contraction mapping in [0, 1/µ)G if P (xi, z) a3 < µ.

Proof.

1. To prove that W ≤ 1
µ implies T (W ) ≤ 1

µ we just note that

T (W ) ≤ e−µh

µ
+ τ =

1

µ
. (2.58)

Let W ≥ 0; then

T (W ) ≥ −τP (xi, z) a3(1− µw(xi)) + τ = τ (1− P (xi, z) a3(1− µw(xi))) . (2.59)

This implies that T (W ) ≥ 0 if P (xi, z) a3 ≤ 1 since 0 ≤ 1− µw(xi) ≤ 1.
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2. In order to prove that T is monotone, assume that v ≤ u and let a∗ and a be the
arguments of the minima. Then

T (v)− T (u) ≤ e−µh[v(x+ hb(x, a∗))− u(x+ hb(x, a))]

−τP (x, z)(a∗3(1− µv(x))− a3(1− µu(x)))

≤ e−µh[v(x+ hb(x, a))− u(x+ hb(x, a))]

+τP (x, z)a3(v(x)− u(x)).

(2.60)

Hence,

T (v)− T (u) ≤ e−µh[v(x+ hb(x, a))− u(x+ hb(x, a))]

+τP (x, z)a3(v(x)− u(x)) ≤ 0.
(2.61)

Note that this property does not require condition (2.57) to be satisfied.

3. Let
P (xi, z)a3 < µ. (2.62)

To prove that T is a contraction mapping note that (2.61) yields

T (v)− T (u) ≤
(
e−µh + τP (x, z)a3

)
||v − u||∞. (2.63)

Then, T is a contraction mapping if and only if

e−µh + τP (x, z)a3 < 1 (2.64)

and this holds true if the bound (2.62) is satisfied.

�

The algorithm is rather simple since it is based on the fixed-point iteration

{
Wn = T (Wn−1),
W 0 given.

However, to improve the speed of convergence, the iteration must be accelerated (see
[36] for an accelerator method based on the monotonicity of the T operator, as the FM
method that will be described in the next chapter). On the boundary of Ω we just impose
the homogeneous Dirichlet boundary condition. This condition implies that the shadows
must not cross the boundary of Ω, so the choice ω3 = 0 corresponding to an infinite
shadow behind the surface is not admissible. Note that the interfaces between light and
black shadows are ignored, since the algorithm computes with the same rule on every
internal node.



3. Numerical acceleration techniques

Since in the numerical tests we will also compare results obtained with Fast Marching
and Fast Sweeping methods, in this chapter we will briefly sketch how they works and
their properties.

3.1. Fast Marching Method

All the literature on this subject mainly stems from a paper by Tsitsiklis [116] in
which the author introduced a Dijkstra-like algorithm to solve efficiently the discretized
Hamilton-Jacobi equation associated to a particular minimum time problem. One year
later, Sethian [100] refined Tsitsiklis’ arguments introducing the so-called Fast March-
ing (FM) method for the eikonal equation modelling the monotone front propagation.
Later on, some authors improved the FM method in order to make it more efficient.
For example, Kim [63] introduced the Group Marching (GM) method and Chopp [22]
extended the FM method to high order approximation. Sethian himself proposed a wide
class of applications for FM method (see, among others, [66, 67]). More recently, some
authors tried to modify the FM method in order to deal with more general equations.
Sethian and Vladimirsky [103] introduced an extension which covers a wider class of
equations including the monotone anisotropic front propagation and Vladimirsky [117]
introduced an extension which covers the front evolution with time-depending velocity.
Prados and Soatto [93] suggested a modification which allows to deal with quite general
Hamilton-Jacobi equations provided a subsolution of the equation is given. In parallel,
other authors competed with FM method introducing the so-called Fast Sweeping (FS)
method which provides a very efficient technique in order to speed up the classical itera-
tive algorithm. We will focus our attention on the FS method in the next section. Now,
let us explain how FM works.

The Fast Marching [102] is a local method based on a finite difference approximation,
which produces a very fast algorithm for the numerical solution of eikonal equations also
on reconstruction domains that are not connected. We suppose that the set Ω is entirely
contained in the rectangular domain corresponding to the image, and that on this image
is defined a discrete grid G (size n ×m) of points {xij} with i, j ∈ Z. The basis of the
method is the division of the grid into three separate sets at every iteration n:
the set of Accepted nodes Accepted(n), whose value has been already computed and
accepted;
the set of Considered nodes Considered(n), or Narrow Band Narrow Band(n), for
which the value has to be computed at the present iteration;
the set of Far nodes Far(n), on which has not been made any computation and the
nodes will be computed in future iterations.
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This method was first introduced for solving problems of evolution of the fronts, there-
fore, the initial value known is usually a given value and coincides with the initial front.
In our case, Accepted(0) at the first iteration is the set of nodes where we have to
apply boundary conditions (which are known). Then, at iteration n, the set Consid-
ered(n) contains the neighboring nodes of Accepted(n), and Far(n) are the remaining
nodes where we do nothing at that iteration. The algorithm computes the value in Con-
sidered(n). The node xij where the minimum is achieved is marked Accepted (i.e.
Accepted(n+1)=Accepted(n)∪{xij}); the set Considered(n) is updated adding the
neighboring nodes to xij and we compute the solution in Considered(n+1). The al-
gorithms accepts only one node for each iteration and ends only when the Far region
is empty. The method converges in a finite number of iteration but unfortunately its
application is limited to eikonal type equations. Start to see more in details how it
works.

In the SfS problem the image data are defined on a discrete grid. It is necessary,
therefore, to find a suitable convention for the definition of approximations for the spatial
derivatives. The central finite difference approximation is not stable for the equations of
hyperbolic type, so the choice falls on finite difference forward or backward. However, the
only forward or backward differences may introduce instability when the direction of the
derivative is not followed. The right solution for this problem is to use an upwind-type
discretization.

3.1.1. Approximation of the eikonal equation

We consider an equation of the type

|∇u(x)| = f(x), x ∈ Ω (3.1)

and we denote by Gin the set of grid points belonging to Ω, by Gout the set G\Gin and
by Gb ⊂ Gout the set of grid points belonging to ∂Ω. We define neighboring nodes of
node wi,j the nodes

Near(wi,j) = {wi+1,j , wi−1,j , wi,j+1, wi,j−1}.

For simplicity, we also denote by δ the grid step (in the case of Cartesian grid with
various steps δ =

√
∆x2 + ∆y2/

√
2).

The discrete version of (3.1) is

[(wi,j − wxm)+]2 + [(wi,j − wym)+]2 = f2
i,j δ

2 (3.2)

where wxm = min{wi−1, j , wi+1, j}, wym = min{wi, j−1, wi, j+1} and

(x)+ =

{
x, x > 0,

0, x ≤ 0.

At the extremes of the domain of definition of the grid can be used appropriate finite
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difference, for example, for i = 0 is possible to use

[(w0, j − w1, j)
+]2 + [(w0, j − wym)+]2 = f2

0, j δ
2. (3.3)

In the initialization phase the exact (or interpolated) values of u(x) = 0 or u(x) = g(x)
are assigned to the grid points corresponding to the boundary condition, and these nodes
are marked as Accepted. The next closest nodes are marked as Considered, or as
Accepted if they belong to Gout. All other nodes are marked as Far and a very high
value is assigned to them.

As already mentioned, the method is used initializing the grid nodes. An initial front
of nodes is defined, whose value has been definitively accepted. Subsequently, the neigh-
boring nodes are computed again and compared with the value previously assumed. The
algorithm proceeds locally to search for the minimum, hence assigning to each node a
very high initial value simplifies the comparisons in subsequent computations. In detail,
the equations (3.2) and (3.3) can be rewritten more compactly as

[(x− a)+]2 + [(x− b)+]2 = f2δ2

where a = wxm and b = wym. This equation has a unique solution x̄ that is

x̄ =





min{a, b}+ fδ, |a− b| ≥ fδ,
1

2

(
a+ b+

√
2f2δ2 − (a− b)2

)
, |a− b| < fδ.

(3.4)

The method assigns a value of g(x) to the nodes belonging to Gb and the conventional
value 0 to the other nodes belonging to Gout. To all the other grid nodes is assigned
the conventional value of ∞, that is the highest positive possible value. The method is
described in detail in Algorithm 3 and in Fig. 3.1.

A scheme of the procedure is summarized below:

• Initialization. The grid points are marked as Far, Accepted e Considered.

– The nodes that belong to Gout are marked as Accepted and we assign them
the value wij = 0; to the nodes of Gb ⊂ Gout that constitute the border of the
reconstruction domain is given the value of wij = g(xij) and are marked as
Accepted. The next closest of these nodes marked as Accepted, belonging
to Gin, are marked as Considered and we assign them a temporary value
computed with the equation (3.4).

– For the remaining nodes, marked as Far, is assigned a value of wij =∞.

• Core of the algorithm.
As long as there are points marked as Considered:

– Among all the nodes marked as Considered is chosen the node with the
minimum value of w, i.e. whk, and it is marked as Accepted.
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– Among all the nodes next neighboring of (h, k) the nodes Far are marked as
Considered and computed again according to equation (3.4).

FAR ACCEPTED CONSIDERED

(a)

FAR ACCEPTED CONSIDERED

(b)

FAR ACCEPTED CONSIDERED

(c)

FAR ACCEPTED CONSIDERED

(d)

Figure 3.1.: Fast Marching Method: (a) Initialization. The grid points are marked as
Far, Accepted and Considered. (b) The minimum of the Considered
is marked as Accepted. (c) We are looking for the neighbors of the min-
imum. The neighbors that are Far are marked as Considered. All the
neighbors that are marked as Considered are computed again according
to the numerical scheme in (3.4). (d) The resulting new grid. The method
continues until exhaustion of the list Considered.

Remark 3.1 The algorithm computes the value in each node only when one of its neigh-
bors becomes Accepted. A node can become Accepted only once, after which it is no
longer taken into account. In a Cartesian grid each node has four neighbors, then each
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node can be computed to a maximum of four times. It appears that the complexity of
the algorithm is O(N), where N is the number of nodes of the grid belonging to Gin.
This value must be added to the cost of the search for the minimum in the list Con-
sidered. Using an algorithm of type Heapsort to sort the list Considered, such that
the minimum is at the top of the list and the complete ordering is performed during the
insertion phase, we can estimate this cost in O(log(N)), bringing the total value of the
computational cost to O(N log(N)).

Algorithm 3: Fast Marching Method

Initialization
for all xij ∈ G do

if xij ∈ Gout then
xij → Accepted
Wij ← 0
if xij ∈ Gb then
Wij ← g(xij)

end if
else
xij → Far
Wij ←∞

end if
end for
for all xij ∈ Accepted do

for all xhk ∈ Near(xij) do
if xhk ∈ Far then
xhk → Considered
Whk ← min{Whk,upwind(xhk)}

end if
end for

end for

Execution
while Considered do
xij = argmin {W (xlm)|xlm ∈ Considered}
xij → Accepted
for all xhk ∈ NEAR(xij) and xhk 6∈ Accepted do
Whk ← min{Whk, upwind(xhk)}
if xhk ∈ Far then
xhk → Considered

end if
end for

end while
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3.2. Fast Sweeping Method

There are mainly two types of approaches for solving the Eikonal equation. One approach
is to transform it to a time dependent problem. For example, if we have u(x) = 0,
x ∈ Γ ⊂ ∂Ω, then u(x) is the first arrival time at x for a wave front starting at Γ with a
normal velocity that is equal to 1

f(x) . This can be solved by the level set method. In the
control framework, a semi-Lagrangian scheme is obtained for Hamilton-Jacobi equations
by discretizing in time the dynamic programming principle [37, 38]. However, many time
steps may be needed for the convergence of the solution in the entire domain due to finite
speed of propagation and CFL condition for time stability. The other approach is to treat
the problem as a stationary boundary value problem and to design an efficient numerical
algorithm to solve the system of nonlinear equations after discretization. For example,
the Fast Marching method [100, 116] is of this type. In the FM method, the update
of the solution follows the causality in a sequential way; i.e., the solution is updated
one grid point by one grid point in the order that the solution is strictly increasing
(decreasing). Hence an upwind difference scheme and a heapsort algorithm are needed.
The complexity is of order O(N logN) for N grid points, where the logN factor comes
from the heapsort algorithm.

Here we present and analyze an iterative algorithm, called the Fast Sweeping (FS)
method, for computing the numerical solution for the Eikonal equation on a rectangular
grid in any number of space dimensions. The Fast Sweeping method is motivated by the
work in [11] and was first used in [127] for computing the distance function. The main
idea of this method is to use nonlinear upwind difference and Gauss-Seidel iterations
with alternating sweeping ordering. In contrast to the Fast Marching method, the FS
method follows the causality along characteristics in a parallel way; i.e., all character-
istics are divided into a finite number of groups according to their directions and each
Gauss-Seidel iteration with a specific sweeping ordering covers a group of characteristics
simultaneously. The Fast Sweeping method is extremely simple to implement and for
this reason is a popular method for solving HJEs [32, 114, 94]. The algorithm is optimal
in the sense that a finite number of iterations is needed. So the complexity of the algo-
rithm is O(N) for a total of N grid points. The number of iterations is independent of
grid size. The accuracy is the same as any other method which solves the same system
of discretized equations. The FS method has been extended to more general Hamilton-
Jacobi equations [62, 114]. The idea of alternating sweeping ordering was also used in
Danielsson’s algorithm [32]. The algorithm computes the distance mapping, i.e., the rel-
ative (x, y) coordinate of a grid point to its closest point using an iterative procedure.
Danielsson’s algorithm is based on a strict dimension by dimension discrete formulation
which in general does not follow the real characteristics of the distance function in two
and higher dimensions and hence results in low accuracy and twice as many iterations
compared to the Fast Sweeping method we present here. Danielsson’s algorithm does
not work for distance functions to more general data sets such as the distance to a curve
or a surface. Neither does it extend to general Eikonal equations. Later, another discrete
approach that uses the idea of FS method was proposed in [115]. It can compute the dis-
tance function more accurately but does not apply to general Eikonal equations either.
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Other related methods include a dynamic programming approach and post sweeping
idea in [99] and a group marching method in [63].

The Fast Sweeping (FS) is another popular method for solving HJEs [32, 114, 94]. The
main advantage of this method is its implementation, which is extremely easy (easier
than that of Fast Marching). FS method is basically the classical iterative (fixed-point)
method, since each node is visited in a predefined order, until convergence is reached.
Here, the visiting directions (sweeps) are alternated in order to follow all possible char-
acteristic directions, trying to exploit causality. In two-dimensional problems, the grid
is visited sweeping in four directions: S → N & W → E, S → N & E → W , N → S &
E →W and N → S & W → E.
The basic idea of the Fast Sweeping method [126, 125] is to use an upwind discretization
and iterations of the Gauss-Seidel type with an alternating order (sweep). Unlike the
Fast Marching method, FS follows the characteristics by computing along alternate di-
rections, which favor specific groups of characteristics. All the characteristics are divided
into a finite number of groups based on the direction and each iteration of Gauss-Seidel
runs along a specific group, performed with a specific order. It is well known that in the
case of eikonal equations FS converges in only four sweeps.

The method is appropriate to obtain the viscosity solutions of the equation (3.1). Also
in this case we suppose that the reconstruction domain Ω is entirely contained in the
rectangular image, and that on this image is defined a discrete grid G (size n ×m) of
points {xij} with i, j ∈ Z. We use the same sets Gin, Gout and Gb defined before. We
use again the discrete version of the equation (3.1), that is the (3.2).
In the initialization phase the exact (or interpolated) values of u(x) are assigned to the
grid points corresponding to the boundary condition (u(x) = 0 or u(x) = g(x)). At all
other points of the grid is assigned a very high value. Subsequently, the values of wij
are computed again using the equation (3.2), by alternating the order of computation
(sweep). The computation is repeated until the convergence condition is satisfied.

3.2.1. Approximation of the eikonal equation

As for the FM method, the equation (3.2) can be written in a more compact form as
follow:

[(x− a)+]2 + [(x− b)+]2 = f2δ2

where a = wxm and b = wym, whose unique solution x̄ is given by equation (3.4).
The method assigns a value of g(x) to the nodes belonging to Gb and the conventional
value 0 to the other nodes belonging to Gout. To all the other grid nodes is assigned the
conventional value of∞, that is the highest positive possible value. As mentioned before,
at each sweep the new value obtained thanks to the equation (3.4) is compared with the
previous value, and accepted only if it is smaller than the value previously computed.
Then, assigning a positive value higher than any result of equation (3.4) allows us to
accept the value computed in the next sweep. The order of computation of the grid points
occurs according to a different sweep alternatively, iteration after iteration (assuming to
be at iteration number d, the order is given by the method described in Algorithm 4).
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Algorithm 4: Sweeping Order

n← d (mod 4)
if n == 0 then

(i0, i1)← (0, iM ), (j0, j1)← (0, jM )
end if
if n == 1 then

(i0, i1)← (iM , 0), (j0, j1)← (0, jM )
end if
if n == 2 then

(i0, i1)← (iM , 0), (j0, j1)← (jM , 0)
end if
if n == 3 then

(i0, i1)← (0, iM ), (j0, j1)← (jM , 0)
end if

Let us suppose for simplicity that the grid is defined with values of i and j between 0
and iM and between 0 and jM . Then the four sweeps that we have to use are

1. i = 0 . . . iM , j = 0 . . . jM ,

2. i = iM . . . 0, j = 0 . . . jM ,

3. i = iM . . . 0, j = jM . . . 0,

4. i = 0 . . . iM , j = jM . . . 0.

A complete description of the method is described in pseudocode in Algorithm 5.

3.2.2. Motivation

In the Fast Sweeping algorithm the upwind difference scheme used in the discretization
enforces the causality; i.e., the solution at a grid point is determined by its neighboring
values that are smaller. The one sided difference scheme at the boundary enforces the
propagation of information to be from inside to outside since the data set Γ is contained
in the computational domain. If all grid points can be ordered according to the causality
along characteristics, one iteration of the Gauss-Seidel iteration is enough for conver-
gence. For example, the heapsort algorithm is used in the Fast Marching method to sort
out this order every time a grid point is updated. The key point behind Gauss-Seidel
iterations with different sweeping ordering is that each sweep will follow the causality of
a group of characteristics in certain directions simultaneously and all characteristics can
be divided into a finite number of such groups according to their directions. The value
at each grid point is always nonincreasing during the iterations due to the updating rule.
Whenever a grid point obtains the minimal value it can reach, the value is the correct
value and the value will not be changed in later iterations.
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Algorithm 5: Fast Sweeping Method

Initialization
for all grid points xij ∈ G do

if xij ∈ Gout then
if xij ∈ Gb then
wij ← g(xij)

end if
wij ← 0

else
wij ←∞

end if
end for
End of initialization
Execution
d← 0
repeat

sweeped← FALSE
(i0, i1)(j0, j1)← Sweeping Order(d)
for i = i0 . . . i1 do

for j = j0 . . . j1 do
if xij ∈ Gin then

compute the value (wij)u using equation (3.4)
if (wij)u < wij then
wij ← (wij)u
sweeped← TRUE

end if
end if

end for
end for
d← d+ 1

until sweeped == TRUE

We use the distance function as an example to illustrate the motivation. The distance
function d(x) to a set Γ satisfies the Eikonal equation

|∇d(x)| = 1, d(x) = 0, x ∈ Γ. (3.5)

All characteristics of this equation are straight lines that radiate from the set Γ. In one
dimension, the upwind differencing at the interior grid point i is

[(wi −min(wi−1, wi+1))+]2 = δ2, 1 ≤ i ≤ iM − 1. (3.6)

We use two Gauss-Seidel iterations with sweeping orderings, i = 0 : iM and i = iM : 0
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successively, to solve the above system. The update of the distance value at grid i simply
becomes

wnewi = min(min(wi−1, wi+1) + δ, wi). (3.7)

Figure 3.2 shows how one sweep from left to right followed by one more sweep from right
to left is enough to finish the calculation of the distance function. This follows because
there are only two directions for the characteristics in one dimension, left to right or vice
versa. In another word, the distance value at any grid point can be computed from either
its left neighbor or right neighbor by exactly di = min(di−1, di+1) + δ. The first sweep
will cover those characteristics that go from left to right; i.e., those grid points whose
values are determined by their left neighbors are computed correctly. Similarly, in the
second sweep all those grid points whose values are determined by their right neighbors
are computed correctly. Since we only update the current value if the newly computed
value is smaller, those values that have been calculated correctly in the first sweep have
achieved their minimal possible values and will not be changed in the second sweep.
Convergence in two sweeps is true for arbitrary Eikonal equations in one dimension. In
the special case of the distance function, it is easy to see that the Fast Sweeping method
finds the exact distance function in two sweeps.
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All characteristics of this equation are straight lines that radiate from the set Γ. In
one dimension, the upwind differencing at the interior grid point i is

(2.9) [(uh
i −min(uh

i−1, u
h
i+1))

+]2 = h2, 2 ≤ i ≤ I − 1.

We use two Gauss-Seidel iterations with sweeping orderings, i = 1 : I and i = I : 1
successively, to solve the above system. The update of the distance value at grid i
simply becomes

unew
i = min(min(ui−1, ui+1) + h, ui).

Figure 2.1 shows how one sweep from left to right followed by one more sweep
from right to left is enough to finish the calculation of the distance function. This
follows because there are only two directions for the characteristics in one dimen-
sion, left to right or vice versa. In another word, the distance value at any grid
point can be computed from either its left neighbor or right neighbor by exactly
di = min(di−1, di+1) + h. The first sweep will cover those characteristics that go
from left to right; i.e., those grid points whose values are determined by their
left neighbors are computed correctly. Similarly, in the second sweep all those grid
points whose values are determined by their right neighbors are computed correctly.
Since we only update the current value if the newly computed value is smaller, those
values that have been calculated correctly in the first sweep have achieved their min-
imal possible values and will not be changed in the second sweep. Convergence in
two sweeps is true for arbitrary Eikonal equations in one dimension. In the special
case of the distance function, it is easy to see that the fast sweeping method finds
the exact distance function in two sweeps.

In higher dimensions characteristics have infinitely many directions which cannot
be followed exactly by the Cartesian grid lines. Here are two important questions for
the fast sweeping algorithm: (1) How many Gauss-Seidel iterations are needed? (2)
What is the error estimate? The most important observation is that all directions of
characteristics can be classified into a finite number of groups for distance functions.
For example, in two dimensions all directions of characteristics can be classified into
four groups, up-right, up-left, down-left and down-right. Information propagates
along characteristics in the above four groups of directions. The four different
orderings of the Gauss-Seidel iterations and the upwind differencing are meant to
cover the four groups of characteristics, respectively. Figure 2.2(a) illustrates why
the fast sweeping method converges after four sweeps with different orderings for
the distance function to a single point. The solution uh

i,j at each grid point in the

first quadrant depends on the solution at uh
i−1,j and uh

i,j−1 which have already been
computed and can be recursively traced all the way back to the data point in the
first sweep. So we get the correct values for all grid points in the first quadrant
plus the points on the positive x and y axes after the first sweep. For the same
reason, after the second sweep the grid points in the second quadrant and on the

(a) the computed distance function af-
ter the first left to right Gauss-Seidel
sweeping

(b) the computed distance function af-
ter the second right to left Gauss-
Seidel sweeping

Figure 2.1. The fast sweeping algorithm in one dimension.
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Figure 3.2.: The Fast Sweeping algorithm in one dimension.

In higher dimensions characteristics have infinitely many directions which cannot be
followed exactly by the Cartesian grid lines.

In the case of one data point, the distance function is smooth except at the data point.
For a more general data set, interactions of characteristics at their intersections can cause
more than 2n sweeps for the iteration to converge in n dimensions. It is impossible to
track the exact number of sweeps for the highly nonlinear discretized system in general.
However, it is possible to show that in n dimensions, after 2n sweeps the Fast Sweeping
method can compute a numerical solution to the distance function that is as accurate
as the numerical solution after the iteration converges. This means 2n sweeps is good
enough in practice for computing the distance function to an arbitrary data set. For
general Eikonal equations, the characteristics are curves instead of straight lines. So
more than one sweep may be needed to cover one characteristic curve. Anyway, it is
possible to prove that given a fixed domain and the right-hand side f(x), the number
of sweeps needed is still finite and is independent of grid size. For the proof of this last
result, for the basic properties or more details in general on this method see [126].



4. Analysis and approximation of the
Oren-Nayar model

In this Chapter, we will focus our attention on the Oren-Nayar model. We will analyze the
parameters of the model, we will prove that the discrete operator of the corresponding SL
scheme has the properties required by Theorem 2.3.1 and we will show some numerical
tests carried out on synthetic and real images, in order to compare the performances of
the ON–model with those of the classical L–model.

4.1. Analysis of the parameter σ

In the vertical light case, ω = (0, 0, 1), we have obtained the expression (1.35), that is

I(x) =
A√

1 + |∇u(x)|2
,

where
A = 1− 0.5σ2(σ2 + 0.33)−1.

In this expression we can see that there is an explicit dependence of the total light
intensity I(x) at the point x = (x, y) with respect to the euclidean norm of the gradient
|∇u(x)|. This relation is also present in the L–model, in the PH–model or in the BP–
model (see eqs. (1.8), (1.61), (1.78)).

In order to use these models, for which we have required I(x) ∈ [0, 1], we need to
check that it is true with respect to the different values that the parameters can assume.
Hence, in the specific case of the ON–model, we have to check this hypothesis with
respect to the parameter σ. In this analysis we neglect the contribution of the ambient
light (kA ≡ 0), that can be considered as a constant as already said in Chapter 1.

Remark 4.1 Denoting by p the euclidean norm of the gradient of the surface, i.e. p =
|∇u|, in the L–model results

∂I

∂p
= − p

(p2 + 1)
3
2

.

Then I is monotone decreasing with respect to |∇u|, its maximum value is I = 1 in
p = 0 and I goes to zero in the limit of p that goes to infinity. (see Fig. 4.1). Hence, the
model is suitable to be used without variations for the reconstruction of real and synthetic
images with values in [0, 1].
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Figure 4.1.: In the ON–model, that coincides with the L–model for σ = 0, the value of
the parameter σ does not affects the monotony of I with respect to |∇u|. I
is monotone non-increasing for values of σ in the range [0, π2 ].

The dependence on p for the ON–model can be shown as follows

∂I

∂p
= − Ap

(p2 + 1)
3
2

.

Then I is monotone decreasing with respect to |∇u|, its maximum value is I = A in
p = 0 and I goes to zero in the limit of p that goes to infinity, as seen for the L–model.
Since A depends on the parameter σ, we can derive the function I with respect to σ and
we obtain

∂I

∂σ
= − 0.33σ√

1 + p2(σ2 + 0.33)2
. (4.1)

This is a negative quantity for each value of σ ∈ [0, π2 ], hence I is a monotone decreasing
function with respect to this parameter. Therefore, also the ON–model is adequate for
the reconstruction of real and synthetic images with values in [0, 1].

4.2. Properties of the discrete operator TON

Let Wi = w(xi) so that W will be the vector solution giving the approximation of the
height u at every node xi of the grid. Note that in one dimension i is an integer number,
in two dimensions i denotes a multi-index, i = (i1, i2). We consider a semi-Lagrangian
discretization of (1.41) written in a fixed point form, so we will write the SL fully discrete
scheme for the ON–model as

Wi = TONi (W ), (4.2)

where ON is the acronym identifying the ON–model. Denoting by G the global number
of nodes in the grid, the operator corresponding to the oblique light source is TON :
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RG → RG that is defined componentwise by

TONi (W ) = min
a∈∂B3

{e−µhw(xi + hbON (xi, a))− τPON (xi, z)a3(1− µw(xi))}+ τ, (4.3)

where

τ =
1− e−µh

µ
,

bON (xi, a) =
1

Aω3
(c(xi, z)a1 −Aω1, c(xi, z)a2 −Aω2) ,

c(xi, z) = I(xi)−B +B(d(xi, z) · ω)2,

d(xi, z) = ∇S(xi, z)/|∇S(xi, z)|,

PON (xi, z) =
c(xi, z)

Aω3
,

(4.4)

and w(xi + hbON (xi, a)) is obtained by interpolating on W .
Now, let us check if the discrete operator TON for the ON–model satisfies the three
properties of the general Theorem 2.3.1 described in Section 2.3 on page 52, whose
statement in this case is the following:

Theorem 4.2.1 Let TONi (W ) the operator defined as in (4.3). Then TONi (W ) has the
following properties:

1. Let
PON (xi, z)a3 ≤ 1, (4.5)

where a3 ≡ arg min
a∈∂B3

{e−µhw(xi + hbON (xi, a))− τPON (xi, z)a3(1− µw(xi))}.

Then 0 ≤W ≤ 1

µ
implies 0 ≤ TON (W ) ≤ 1

µ
.

2. TON is a monotone operator, i.e., v ≤ u implies TON (v) ≤ T (u).

3. TON is a contraction mapping in [0, 1/µ)G if PON (xi, z) a3 < µ.

Proof.

1. To prove that W ≤ 1

µ
implies TON (W ) ≤ 1

µ
we just note that

TON (W ) ≤ e−µh

µ
+ τ =

1

µ
. (4.6)

Let W ≥ 0; then

TON (W ) ≥ −τPON (xi, z) a3(1−µw(xi))+τ = τ
(
1− PON (xi, z) a3(1− µw(xi))

)
.

(4.7)
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This implies that TON (W ) ≥ 0 if PON (xi, z) a3 ≤ 1 since 0 ≤ 1− µw(xi) ≤ 1.

2. In order to prove that TON is monotone, assume that v ≤ u and let a∗ and a be
the arguments of the minima. Then

TON (v)− TON (u) ≤ e−µh[v(x+ hbON (x, a∗))− u(x+ hbON (x, a))]

−τPON (x, z)(a∗3(1− µv(x))− a3(1− µu(x)))

≤ e−µh[v(x+ hbON (x, a))− u(x+ hbON (x, a))]

+τPON (x, z)a3(v(x)− u(x)).

(4.8)

Hence,

TON (v)− TON (u) ≤ e−µh[v(x+ hbON (x, a))− u(x+ hbON (x, a))]

+τPON (x, z)a3(v(x)− u(x)) ≤ 0.
(4.9)

Note that this property does not require condition (4.5) to be satisfied.

3. Let
PON (xi, z)a3 < µ. (4.10)

To prove that TON is a contraction mapping note that (4.9) yields

TON (v)− TON (u) ≤
(
e−µh + τPON (x, z)a3

)
||v − u||∞. (4.11)

Then, TON is a contraction mapping if and only if

e−µh + τPON (x, z)a3 < 1 (4.12)

and this holds true if the bound (4.10) is satisfied.

�

4.3. Hints on the implementation

The ON–model, as the L–model, chooses always to approximate the maximal viscosity
solution, which sometimes can not coincide with the original surface that we want to
reconstruct (see e.g. Test 2 in the next Section). In these cases, in order to obtain a
reconstruction closer to the original desired surface, we will fix the value in the origin
at zero. In this way we force the scheme to converge to a solution different from the
maximal one. Moreover, the discrete operator defined in (4.3) shows that there are many
contributions that can cause some problems in the implementation like for example
d(xij , z) defined in (4.4) as d(xij , z) = ∇S(xij , z)/|∇S(xij , z)|, where we recall that

∇S(xij , z) =

( −∇w(xij)

1− µw(xij)
, 1

)
. In fact, we will see in the experiments presented in the
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next Chapter 5 in order to compare the three models that the ON–model results highly
sensitive to the change of parameter values in the oblique light cases since roundoff errors
occur and limit the accuracy that can be achieved. In order to improve the results by
guaranteeing the stability of the numerical scheme, we use a fixed time step h for the
implementation of the scheme in the oblique case.

4.4. Numerical tests

In this section we show some numerical tests to compare the two SL schemes related to
the L–model and the ON–model. All the tests are contained in the paper [112]. Other
numerical experiments will be presented in the next Chapter 5 in order to compare the
performances with those of the PH–model too.

The algorithm for both the schemes is based on the fixed-point iteration

{
V n = TM (V n−1),
V 0given.

(4.13)

where M is the acronym identifying the model, then M = L or M = ON .
All the numerical tests presented in this Chapter have been implemented in MATLAB
R2012a. The computer used is a MacBook Pro 13” Intel Core 2 Duo with speed of 2.66
GHz and 4GB of RAM.

4.4.1. Synthetic images

For the synthetic images, we discretize the domain Q with 151×151 nodes. The fixed
point has been computed with an accuracy of η = 10−4 and the stopping rule used is
max(|V n+1 − V n|) ≤ η.

Test 1

The first experiment is related to the paraboloid in [−1.5, 1.5]x[−1.5, 1.5] described by
the function

u(x, y) =

{
1− (x2 + y2) if (x2 + y2) < 1,
0 otherwise,

(4.14)

with light direction ω = (0, 0, 1) and visible in Fig. 4.2.

As one can see in Fig. 4.3, there are no significant differences between the two surfaces
reconstructed, but we can note from Tables 4.1, 4.2 and 4.3 that increasing the value
of the roughness parameter σ the error generated by the ON–model decreases and it
is lower than the error for the L–model. Note that for σ = 0 we get exactly the same
results (since the two models coincide). In Fig. 4.4 the background gray level is different
because it has been computed via the model.
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Figure 4.2.: Test 1: Original surface u(x, y).

Figure 4.3.: Test 1: Surface reconstruction, L–model (left) and ON–model with σ = 0.8
(right).

Table 4.1.: Test 1: L∞ Error on the image for different values of σ.

σ L∞ Error Lamb L∞ Error ON

0 0.074826 0.074826

0.3 0.074826 0.066809

0.5 0.074826 0.058700

0.8 0.074826 0.050141

π/2 0.074826 0.041826



4.4 Numerical tests 71

Table 4.2.: Test 1: L1 Error on the image for different values of σ.

σ L1 Error Lamb L1 Error ON

0 0.028256 0.028256

0.3 0.028256 0.025228

0.5 0.028256 0.022166

0.8 0.028256 0.018934

π/2 0.028256 0.015795

Table 4.3.: Test 1: Standard Deviation on the image for different values of σ.

σ Std Dev. Lamb Std Dev. ON

0 0.007426 0.007426

0.3 0.007426 0.006631

0.5 0.007426 0.005826

0.8 0.007426 0.004976

π/2 0.007426 0.004151

I(x) phong I(x) approssimata Phong

Input I(x) Computed I(x)

Input I(x) Computed I(x)

Figure 4.4.: Test 1: Images, ON–model with σ = 0.8 (up) and L–model (down).

Test 2

The second numerical test is related to the surface described by the function

u(x, y) =

{
−(1− (x2 − y2))2 + 1 if (x2 + y2) < 2,
0 otherwise,

(4.15)
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with light direction ω = (0, 0, 1) in the same domain of the previous test (See Fig. 4.5
for the input surface).
Looking at Fig. 4.6 we can note that both the schemes choose the maximal viscosity

Figure 4.5.: Test 2: Original surface u(x, y).

solution, which does not coincide with the original surface. In order to obtain a recon-
struction closer to the original surface, we fix the value in the origin at zero. In this way
we forced schemes to converge to a solution different from the maximal one (see Fig.
4.7). Also in this case we can see that the reconstruction of the surface is very similar
for both the schemes. In Fig. 4.8 note that the background gray level is different for the
same reason of the Fig. 4.4.

4.4.2. Real images

Test real 1: Beethoven bust

The next test is on a real-world image: the bust of Beethoven (see Fig. 4.9). The light di-
rection is ω = (−0.19798,−0.01680, 0.98006) and the size of the input image is 77×210.
Obviously, in the case of real image, the achievable accuracy is more sensitive to the
values of σ because the input image is given. After finding a correct value for the pa-
rameter σ, we can see again in Fig. 4.9 that the approximations generated by the two
schemes are more o less the same, but the values in Tables 4.4, 4.5 and 4.6 show that
the different errors on the image with the ON–model are lower than the errors obtained
with the L–model. Note that the improvement is more evident in Table 4.6.

Test real 2: Real vase

The last test concerns the reconstruction of a vase enlightened by a vertical light source.
The size of the input image is 128×128. We can see in Fig. 4.10 the approximated
images with the two schemes on the right, starting from the same input image on the
left. The reconstructed surface computed by both methods is shown in Fig. 4.11. As in
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Figure 4.6.: Test 2: Approximated surface u(x, y) by the two schemes that compute the
maximal viscosity solution.

Figure 4.7.: Test 2: Approximated surface u(x, y) with the setting u(x, y) = 0, L–model
(left) and ON–model (right).

Table 4.4.: Beethoven Test: L∞ Error on the image for different values of σ.

σ L∞ Error Lamb L∞ Error ON

0 0.635977 0.635977

0.2 0.635977 0.567406

0.4 0.635977 0.515963

0.5 0.635977 0.419684

the previous real test, the L∞ and the L1 errors obtained with the Oren–Nayar approach
are always lower than the Lambertian errors how we can note looking at Tables 4.7 and
4.8.
Other numerical tests will be presented in the next chapter 5, in order to compare the
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I(x) phong I(x) approssimata Phong

Input I(x) Computed I(x)

Input I(x) Computed I(x)

Figure 4.8.: Test 2: Images, ON–model with σ = 0.5 (up) and L–model (down).

Input I(x)

a)

Computed I(x)

b)

Computed I(x)

c)

Figure 4.9.: a) Beethoven input image. b) Oren–Nayar computed image with σ = 0.4. c)
Lambertian computed image.
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Table 4.5.: Beethoven Test: L1 Error on the image for different values of σ.

σ L1 Error Lamb L1 Error ON

0 0.047027 0.047027

0.2 0.047027 0.045838

0.4 0.047027 0.043205

0.5 0.047027 0.042169

Table 4.6.: Beethoven Test: Standard deviation on the image for different values of σ.

σ Std Dev. Lamb Std Dev. ON

0 0.056253 0.056253

0.2 0.056253 0.054361

0.4 0.056253 0.050138

0.5 0.056253 0.048308

Input I(x) Computed I(x)

Input I(x) Computed I(x)

Figure 4.10.: Vase images: ON–model with σ = 0.4 (up) and L–model (down).

performances of the ON–model with those of the PH–model.
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Figure 4.11.: Vase reconstruction: L–model (left) and ON–model (right).

Table 4.7.: Vase Test: L∞ Error on the image for different values of σ.

σ L∞ Error Lamb L∞ Error ON

0 0.808202 0.808202

0.2 0.808202 0.766265

0.4 0.808202 0.678274

0.5 0.808202 0.634672

Table 4.8.: Vase Test: L1 Error on the image for different values of σ.

σ L1 Error Lamb L1 Error ON

0 0.028919 0.028919

0.2 0.028919 0.027292

0.4 0.028919 0.023764

0.5 0.028919 0.022190

Table 4.9.: Vase Test: Standard deviation on the image for different values of σ.

σ Std Dev. Lamb Std Dev. ON

0 0.028751 0.028751

0.2 0.028751 0.026846

0.4 0.028751 0.022844

0.5 0.028751 0.021026
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4.5. Conclusions

The non-Lambertian ON–model leads to rather complex nonlinear PDEs of the first
order which can be treated in the framework of weak (viscosity) solutions. The analysis
of this model shows that it is not able to solve the well known concave/convex ambiguity,
what we expected since it is not possible to obtain uniqueness with a single image, despite
the fact that it can deal with more general surfaces. From the numerical point of view,
these equations can be approximated via semi-Lagrangian techniques in a rather effective
way. The role of the roughness parameter σ is crucial to obtain accurate results, playing
with this parameter can in fact improve the approximation with respect to the classical
L–model. In fact, the numerical tests carried out show that by increasing of the value
of the parameter σ the errors in the different norms decrease, resulting always less to
those obtained using the classical L–model and equal to them in the case σ = 0 since
in this case the two model coincide. In this respect, the non-Lambertian framework is
more flexible and effective.



5. Analysis and approximation of the
Phong model

In this Chapter we will focus our attention on the Phong model. We will analyze the
parameters of the model, we will prove that the discrete operator of the correspond-
ing SL scheme has the properties required by Theorem 2.3.1 and we will compare its
performances with the classical L–model in terms of some error indicators on series of
benchmarks images which come from synthetic and real images. Additionally, we will
show other numerical experiments in order to compare the performances of the ON–
model with those of the PH–model.

5.1. Analysis of the parameters α and kS

In the case of vertical light source ω = (0, 0, 1) and an oblique position of the observer
V, we associate the following PDE to the brightness equation (1.44)

I(x) = kDγD(x)
1√

1 + |∇u(x)|2
+ kSγS(x)

(
1− |∇u(x)|2
1 + |∇u(x)|2

)α
. (5.1)

In this expression we have an explicit dependence of the total light intensity I(x) in the
point x = (x, y) with respect to the norm of the gradient |∇u(x)|.

As already stated for the ON–model, in order to use this model, for which we have
required I(x) ∈ [0, 1], we need to check if it is true with respect to the different values
that the parameters can assume. Hence, we have to check this hypothesis with respect
to the parameters α and kS . In this analysis we neglect the contribution of the ambient
light (kA ≡ 0) and we suppose that the diffuse and specular albedo are uniform, i.e.
γD(x) = γS(x) = 1. Since the ambient component is neglected and recalling that we
must have kA + kD + kS = 1, we can rewrite the diffuse kD as kD = 1− kS and then we
rewrite the equation (5.1) as follow:

I(x) = (1− kS)
1√

1 + p2
+ kS

(
1− p2

1 + p2

)α
, (5.2)

where we have used the notation p := |∇u(x)| to ease the writing.
In the case of the PH–model (see Fig. 5.1), the dependence on α is defined only for

p ≤ 1 because the cosine in the specular term is replaced by zero if R(x) ·V < 0 (and
in that case we get back to the L–model, see Chapter 1 on page 12). For such values we
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Lamb. Is=0
=2, Is=0.4
=2, Is=0.8

I

0

0.2

0.4

0.6
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| u|
0 1 2 3 4

k
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Figure 5.1.: In the PH–model, which coincides with the L–model when kS = 0, the value
of the parameter kS does not affect the monotony of I with respect to |∇u|
and for any value of kS and α, I has always values in [0, 1].

get
∂I(x)

∂α
= kS

(
1− p2

1 + p2

)α
ln

(
1− p2

1 + p2

)
, (5.3)

that is a negative quantity. The grey level intensity of the image, as function of the
parameter α, is monotone for p ≤ 1 and it is constant for p > 1. If we compute the
derivative with respect to kS we obtain

∂I(x)

∂kS
=





− 1√
p2+1

p > 1,

(
1−p2
1+p2

)α
− 1√

p2+1
p ≤ 1,

(5.4)

from which we deduce that the intensity is obviously monotone for p > 1. Instead, for
p ≤ 1, since the term in parenthesis is a quantity less than 1, we deduce that it decreases
with the increase of α. Finally, noting that for α = 1

(
1− p2

1 + p2

)
− 1√

p2 + 1
≤ 0, (5.5)

we conclude that the intensity is monotone non-increasing also as a function of the
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parameter kS . Moreover, being

∂I(x)

∂p
=





− (1−kS) p

(p2+1)
3
2

p > 1

−
(p2+1)−α−

1
2

(
4αkS p (1−p2)α

√
p2+1+(p2+1)α ((kS−1) p3+(1−kS) p)

)

1−p4 p ≤ 1,

(5.6)

we can verify that I(x) is monotone also in p. In fact, the quantity (kS−1) p3 +(1−kS) p
is always nonnegative for p ≤ 1 and, hence, the numerator is always not positive.

Regarding the eikonal form of this model, that we obtain in the case of vertical light
source and vertical position of the observer, we consider the definition of Q(x) given in
(1.65) with kD = 1− kS and so we write it as

Q(x) = (1− kS)2 + 8k2
S + 8kSI(x). (5.7)

Noting that 1 − kS ≥ I(x) − kS ∀x ∈ R, where R is a rectangle domain containing the
support of the image Ω, omitting the dependence on the point x to facilitate the reading
of what follows, we can write

Q ≥ (I − kS)2 + 8k2
S + 8kSI,

Q ≥ I2 − 2kSI + k2
S + 8k2

S + 8kSI,

Q ≥ I2 + 6kSI + 9k2
S ,

arriving finally at the following inequality

Q ≥ (I + 3kS)2. (5.8)

Thanks to this result and recalling again that 1− kS ≥ I(x)− kS ∀x ∈ R, we can write
for the numerator of the equation (1.62),

k2
D − 2I+I− + kD

√
Q ≥

(1− kS)2 − 2(I − kS)(I + kS) + (1− kS)(I + 3 kS) ≥
(I − kS)2 − 2(I − kS)(I + kS) + (I − kS)(I + 3 kS) =

(I − kS) [I − kS − 2I − 2kS + I + 3kS ] = 0,

(5.9)

deducing that the expression of f present in the eikonal equation corresponding to the
PH–model (1.61) is always defined and real-valued. Thus, even for the PH–model, we
conclude that it is appropriate to be used without changes for the reconstruction of real
and synthetic images with values in [0, 1].

5.2. Properties of the discrete operator T PH

Let Wi = w(xi) so that W will be the vector solution giving the approximation of the
height u at every node xi of the grid. Note that in one dimension i is an integer number,
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in two dimensions i denotes a multi-index, i = (i1, i2). We consider a semi-Lagrangian
discretization of (1.54) written in a fixed point form, so we will write the SL fully discrete
scheme for the PH–model as

Wi = TPHi (W ), (5.10)

where PH is the acronym identifying the PH–model. Denoting by G the global number
of nodes in the grid, the operator corresponding to the oblique light source is TPH :
RG → RG that is defined componentwise by

TPHi (W ) = min
a∈∂B3

{e−µhw(xi + hbPH(xi, a))− τPPH(xi, z)a3(1− µw(xi))}+ τ, (5.11)

where, in the case of oblique light source and vertical position of the observer,

τ =
1− e−µh

µ
,

bPH(xi, a) =
1

QPH(xi, z)
(c(xi)a1 − kDγD(x)ω1, c(xi)a2 − kDγD(x)ω2) ,

c(xi) = I(xi) + ω3kSγS(x),

d(xi, z) = ∇S(xi, z)/|∇S(xi, z)|,
QPH(xi, z) = 2kSγS(x)(d(xi, z) · ω) + kDγD(x)ω3,

PPH(xi, z) =
c(xi)

QPH(xi, z)
,

(5.12)

and w(xi + hbPH(xi, a)) is obtained by interpolating on W .

Now, as already done for the ON–model in Section 4.2 on page 66, we will check if
the discrete operator TPH for the PH–model satisfies the three properties of the general
Theorem 2.3.1 described in Section 2.3 on page 52, whose statement in this case is the
following:

Theorem 5.2.1 Let TPHi (W ) the operator defined as in (5.11). Then TPHi (W ) has the
following properties:

1. Let
PPH(xi, z)a3 ≤ 1, (5.13)

where a3 ≡ arg min
a∈∂B3

{e−µhw(xi + hbPH(xi, a))− τPPH(xi, z)a3(1− µw(xi))}.

Then 0 ≤W ≤ 1

µ
implies 0 ≤ TPH(W ) ≤ 1

µ
.

2. TPH is a monotone operator, i.e., v ≤ u implies TPH(v) ≤ T (u).

3. TPH is a contraction mapping in [0, 1/µ)G if PPH(xi, z) a3 < µ.
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Proof.

1. To prove that W ≤ 1

µ
implies TPH(W ) ≤ 1

µ
we just note that

TPH(W ) ≤ e−µh

µ
+ τ =

1

µ
. (5.14)

Let W ≥ 0; then

TPH(W ) ≥ −τPPH(xi, z) a3(1−µw(xi))+τ = τ
(
1− PPH(xi, z) a3(1− µw(xi))

)
.

(5.15)
This implies that TPH(W ) ≥ 0 if PPH(xi, z) a3 ≤ 1 since 0 ≤ 1− µw(xi) ≤ 1.

2. In order to prove that TPH is monotone, assume that v ≤ u and let a∗ and a be
the arguments of the minima. Then

TPH(v)− TPH(u) ≤ e−µh[v(x+ hbPH(x, a∗))− u(x+ hbPH(x, a))]

−τPPH(x, z)(a∗3(1− µv(x))− a3(1− µu(x)))

≤ e−µh[v(x+ hbPH(x, a))− u(x+ hbPH(x, a))]

+τPPH(x, z)a3(v(x)− u(x)).

(5.16)

Hence,

TPH(v)− TPH(u) ≤ e−µh[v(x+ hbPH(x, a))− u(x+ hbPH(x, a))]

+τPPH(x, z)a3(v(x)− u(x)) ≤ 0.
(5.17)

Note that this property does not require condition (5.13) to be satisfied.

3. Let
PPH(xi, z)a3 < µ. (5.18)

To prove that TPH is a contraction mapping note that (5.17) yields

TPH(v)− TPH(u) ≤
(
e−µh + τPPH(xi, z)a3

)
||v − u||∞. (5.19)

Then, TPH is a contraction mapping if and only if

e−µh + τPPH(xi, z)a3 < 1 (5.20)

and this holds true if the bound (5.18) is satisfied.

�
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5.3. Hints on the implementation

The discrete operator defined in (5.11) shows that there are many contributions that can
cause some problems in the implementation like for example d(xij , z) defined in (5.12) as

d(xij , z) = ∇S(xij , z)/|∇S(xij , z)|, where we recall that ∇S(xij , z) =

( −∇w(xij)

1− µw(xij)
, 1

)
.

In fact, we will see in the next section that the model results highly sensitive to the change
of parameter values in the oblique light cases since roundoff errors occur and limit the
accuracy that can be achieved. In order to improve the results of the approximation
we adopt the following formula for the approximation of d(xij , z): because the quantity
d(xij , z) have to be compute at each grid point for each iteration since depends on
the iterative variable W of the fixed point scheme, we first tried to approximate it
by the “minmod” technique, i.e. choosing the less in absolute value between the right
and the left finite differences on each direction (on the axis x and y) of w(xij) at the
point (i, j) of the grid (see [102] for more details on this technique). But then we noted
that considering the average of the four neighboring points of (i, j), i.e. the value w at
(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1) computed by the minmod finite derivative, plus
the itself point w(i, j) computed in the same way, we can obtain in some cases one order
of magnitude more for accuracy because in this way we regularize a bit the gradient in
question, making the function less discontinuous. Hence, in the numerical tests presented
here we will use this last approximation. Of course, this suggestion cannot solve the
difficulties that we will meet in the oblique light case to set manually the parameters
involved in the model.

5.4. Numerical tests

In this section we show some numerical experiments on synthetic images in order to
analyze the behavior of the parameters involved in the PH–model and to compare the
performances of the PH–model with respect to the L–model. Other numerical experi-
ments on synthetic and real images will be done in the next section in order to compare
the performances of the PH–model with those of the ON–model too. All the numerical
tests inserted in this chapter have been implemented in language C++. The computer
used to compute the CPU times is a MacBook Pro 13” Intel Core 2 Duo with speed of
2.66 GHz and 4GB of RAM.

We call G the discrete grid of points xij , with size card(G) = n × m. We define
Gin := {xij : xij ∈ Ω} as the set of grid points inside Ω; Gout := G \Gin. The boundary
∂Ω is defined as the set Gb ⊂ Gout such that at least one of the neighboring points
belongs to Gin. For each image we define a map, called mask or silhouette, where the
pixels xij ∈ Gin are white and the pixel xij ∈ Gout are black. In this way it is easy to
distinguish the nodes that we have to use for the reconstruction (the nodes inside Ω)
and the nodes on the boundary ∂Ω (see e.g. Fig. 5.2(b)).

All the synthetic images are defined on the same domain G, that is a rectangle con-
taining the support of the image Ω, G ≡ [−1, 1] × [−1, 1]. We can easily modify the
number of the pixels choosing different values for the steps in space ∆x and ∆ y. All the
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synthetic images have 256×256 pixels, unless otherwise specified. For all it is possible to
define, if useful, the function g(x), that is the border of the object. X and Y represent
the real size (e.g. for G ≡ [−1, 1]× [−1, 1], X = 2, Y = 2).

Test 1: Paraboloid

The paraboloid is defined on Gin : {x2 + y2 < r2} in the following way

{
u(x, y) = r2 − x2 − y2, (x, y) ∈ Gin,
u(x, y) = 0, (x, y) ∈ Gout,

(5.21)

where

r =
min{X,Y }

2
− 2 δ̃,

with δ̃ = max{∆x,∆y}. As example, we can see in Fig. 5.2 the input image, the corre-
sponding mask and the surface reconstructed by the L–model.

(a) Paraboloid Input (b) Paraboloid Mask (c) Paraboloid surface

Figure 5.2.: Paraboloid via the L–model: (a) Input image; (b) Mask; (c) surface.

By using the values of the parameters reported in Table 5.1, we can note in Table
5.2 that when the specular component is zero, so we just have the contribution of the
diffuse component, we retrieve exactly the errors values and the number of iterations of
the L–model as expected. Then, by increasing the value of the coefficient kS and, as a
consequence, decreasing the value of kD, we can note that for the PH–model the L1(I),
L2(I) and L∞(I) errors on the image grow albeit slightly and remaining of the same
order of magnitude, while the errors on the surface decrease until the use of intermediate
values of the parameters (with kD = 0.4 and kS = 0.6) and then increase.
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Table 5.1.: Synthetic paraboloid: parameter values used in the models.

Model kA kD kS α

LAM 0
PH-s00 0 1 0 1
PH-s02 0 0.8 0.2 1
PH-s04 0 0.6 0.4 1
PH-s06 0 0.4 0.6 1
PH-s08 0 0.2 0.8 1
PH-s10 0 0 1 1

Table 5.2.: Synthetic paraboloid: vertical light source ω = (0, 0, 1).

SL–Schemes Iter. [s] L1(I) L2(I) L∞(I) L1(S) L2(S) L∞(S)

LAM 1756 1.84 0.0001 0.0013 0.0235 0.0030 0.0035 0.0068
PH-s00 1756 2.31 0.0001 0.0013 0.0235 0.0030 0.0035 0.0068
PH-s02 1756 1.91 0.0002 0.0020 0.0353 0.0025 0.0030 0.0067
PH-s04 1758 1.96 0.0002 0.0027 0.0471 0.0015 0.0020 0.0055
PH-s06 1762 1.93 0.0003 0.0034 0.0588 0.0008 0.0009 0.0069
PH-s08 1784 2.01 0.0005 0.0041 0.0706 0.0063 0.0070 0.0161
PH-s10 1314 1.58 0.0004 0.0048 0.0824 0.2513 0.2513 0.2547

Test 2: Vase

The synthetic vase is defined as

{
u(x, y) =

√
P (ȳ)2 − x2 (x, y) ∈ Gin,

u(x, y) = g(x, y) (x, y) ∈ Gout,
(5.22)

where

ȳ = y/Y,

P (ȳ) = (−10.8 ȳ6 + 7.2 ȳ5 + 6.6 ȳ4 − 3.8 ȳ3 − 1.375 ȳ2 + 0.5 ȳ + 0.25)X

and
Gin = {(x, y)|P (ȳ)2 > x2}.

We utilize this test to study the behavior of the PH–model changing the value of the
exponent α and comparing the performances of the FM and FS schemes.

We start to note looking at Fig. 5.3 that increasing the value of α (from α = 2 to
α = 20) the spotlight areas becomes smaller and smaller and the surface appears more
lucid and dark.

Looking at Table 5.3 we can note firstly that the errors are of the same order for the
two schemes. Analyzing more in details the error values, the FS schemes gets a smaller
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Figure 5.3.: Synthetic vase: output images and 3D reconstructions varying α.

L1(I) and L2(I) error, but a bigger L∞(I) error with respect to the FM method; instead
it has a bigger L1(S) and L2(S) errors on the surface but same L∞(S) error. The CPU
time is very small, always less than 2 seconds, for both the schemes, but FM is always
the fastest as expected.

Table 5.3.: Synthetic vase: FM and FS schemes with kS = 0.6 and different values of α.

Model Schemes [s] L1(I) L2(I) L∞(I) L1(S) L2(S) L∞(S)

PHα20 FM 0.37 0.0068 0.0275 0.7922 0.0195 0.0210 0.0425
PHα20 FS 1.80 0.0050 0.0236 0.8588 0.0205 0.0219 0.0425
PHα10 FM 0.29 0.0075 0.0320 0.8157 0.0197 0.0212 0.0425
PHα10 FS 1.64 0.0055 0.0271 0.8784 0.0208 0.0221 0.0425
PHα5 FM 0.14 0.0083 0.0377 0.8196 0.0201 0.0216 0.0428
PHα5 FS 1.66 0.0061 0.0317 0.8863 0.0211 0.0225 0.0428
PHα2 FM 0.25 0.0093 0.0463 0.8235 0.0205 0.0220 0.0434
PHα2 FS 0.76 0.0068 0.0386 0.8941 0.0215 0.0229 0.0434
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Test 3: A sinusoidal function

The third synthetic numerical experiment is related to the sinusoidal function defined
as follow 



u(x, y) = 0.5 + 0.5 sin(

π x

∆x
) sin(

π y

∆y
), (x, y) ∈ Gin,

u(x, y) = 0, (x, y) ∈ Gout.
(5.23)

With this test we want to show that also the PH–model, as already seen for the ON–
model, not overcomes the concave/convex ambiguity typical of the SfS problem. In fact,

Model in out vertical source oblique source

PH-s00

PH-s05

PH-s08

Figure 5.4.: Synthetic sinusoidal function: example of concave/convex ambiguity.

looking at Fig. 5.4 we can see that also varying the parameters kD and kS we can observe
the same phenomenon: the SL method always chooses the maximal solution.

5.5. Comparison between PH–model and ON–model

In this section we give other numerical experiments on synthetic and real images too in
order to compare the performances of the PH–model with those of the ON–model and
the L–model.

5.5.1. Synthetic images

As said in the previous section, all the synthetic images are defined on the same domain
G, that is a rectangle containing the support of the image Ω, G ≡ [−1, 1]× [−1, 1]. We
can easily modify the number of the pixels choosing different values for the steps in space
∆x and ∆ y. All the synthetic images have 256× 256 pixels, unless otherwise specified.
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For all it is possible to define, if useful, the function g(x), that is the border of the object.
X and Y represent the real size (e.g. for G ≡ [−1, 1]× [−1, 1], X = 2, Y = 2).

Test 1: Synthetic vase

We start to compare the performances of the models on a synthetic test: the synthetic
vase defined before via the equation (5.22). The input images generated by L–model,
ON–model and PH–model are visible in Fig. 5.5. We show in Table 5.4 the values of

(a) L–model (b) ON–model (c) PH–model

Figure 5.5.: Input vase images by L–model, ON–model (σ = 0.6), PH–model (kS = 0.3).

the parameters related to some numerical tests performed. It is possible to compute
error estimates in L1, L2, L∞ norm on the image (Lp(I)) and on the surface (Lp(S))
too because for synthetic images we know the real surface (for the vase this is given by
(5.22)). The reconstruction of the surface and the output image obtained with the three

Table 5.4.: Synthetic vase: parameter values used in the models.

Model kA kD kS α σ

LAM 0
ON-00 0 0
ON-04 0 0.4
ON-06 0 0.6
ON-10 0 1
PH-00 0 1 0 1
PH-03 0 0.7 0.3 1
PH-07 0 0.3 0.7 1
PH-10 0 0 1 1

models, starting from the input images in Fig. 5.5, are visible in Fig. 5.6.
Looking at the errors in Table 5.5 we note that the ON–model performs better increasing
the parameter σ both on the image I and on the surface, with the same error order than
the L–model. Instead, for the PH–model we can see that the errors on the surface decrease
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Table 5.5.: Synthetic vase: vertical light source ω = (0, 0, 1).

SL–Schemes Iter. [s] L1(I) L2(I) L∞(I) L1(S) L2(S) L∞(S)

LAM 1337 0.73 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
ON-00 1337 0.72 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
ON-04 1341 0.73 0.0054 0.0316 0.6118 0.0263 0.0282 0.0562
ON-06 1344 0.75 0.0049 0.0277 0.5373 0.0259 0.0277 0.0553
ON-10 1334 0.74 0.0044 0.0229 0.4510 0.0254 0.0274 0.0547
PH-00 1337 0.76 0.0063 0.0380 0.7333 0.0267 0.0286 0.0569
PH-03 1331 0.73 0.0068 0.0396 0.8078 0.0264 0.0283 0.0561
PH-07 1356 3.81 0.0075 0.0419 0.9098 0.0235 0.0252 0.0496
PH-10 737 0.40 0.0081 0.0472 0.9961 0.1496 0.1590 0.2309
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Figure 5.6.: Synthetic vase: output images and 3D reconstructions for the three models.

increasing the parameter kS , except for the specular case (kS = 1), but it is not true
that the errors on the image decrease for increasing values of kS . The best model for
this test seems to be the ON–model with σ = 1.

5.5.2. Real images

Now, we will consider two real input images: the bust of Beethoven (size (256 × 256))
and the black horse (size (184× 256)), both visible in Fig. 5.7(a), 5.7(c).
Unless otherwise specified, the value of η for the stopping rule of the iterative method is
fixed to 10−8 and the maximum number of allowed iterations is 9000. If a scheme arrives
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(a) Beethoven Input (b) Beethoven Mask (c) Horse Input (d) Horse Mask

Figure 5.7.: Real input images and masks.

to the maximum of 9000 iterations, we put a ∗ before it in the table.

Test 1: Beethoven

In this case, we have compared the performances of the SL–schemes applied to the
three models with the parameters reported in Table 5.6 with two different cases for
the light source: the vertical case (ωvert = (0, 0, 1)) and the oblique case (ωobl =
(0.0168, 0.198, 0.9801)). As we can see in Table 5.7, all the cases converge in less than

Table 5.6.: Beethoven: parameter values used in the models.

Model kA kD kS α σ

LAM 0
ON-00 0 0
ON-01 0 0.1
ON-02 0 0.2
ON-03 0 0.3
ON-04 0 0.4
ON-06 0 0.6
PH-00 0 1.0 0 1
PH-01 0 0.9 0.1 1
PH-02 0 0.8 0.2 1
PH-03 0 0.7 0.3 1
PH-04 0 0.6 0.4 1

three seconds with the same order of iteration. Looking at the errors on the images, they
are of the same order for all the cases, L∞(I) is a little bit higher for the ON–model
with σ = 0.6. We can note that in the case of σ = 0 for the ON–model and kS = 0 for
the PH–model we obtain the same errors and number of iterations too because the three
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models coincide as illustrated in Chapter 1. With respect to the ON–model, by increas-
ing the value of σ the errors grow slightly or remain unchanged. The same behavior has
the PH–model with respect to the parameter kS . In fact, by increasing the value of kS
the errors tend to increase, remaining of the same order.

Table 5.7.: Beethoven: numerical results for ωvert = (0, 0, 1).

SL–schemes Iter. [s] L1(I) L2(I) L∞(I)

LAM vertical 2920 1.68 0.0325 0.0605 0.4118
ON-00 vertical 2920 2.24 0.0325 0.0605 0.4118
ON-01 vertical 2885 2.89 0.0325 0.0605 0.4118
ON-02 vertical 2790 2.23 0.0326 0.0605 0.4118
ON-06 vertical 2264 1.94 0.0355 0.0628 0.4157
PH-00 vertical 2920 2.29 0.0325 0.0605 0.4118
PH-01 vertical 2676 2.12 0.0329 0.0609 0.4118
PH-02 vertical 2423 1.92 0.0333 0.0613 0.4118
PH-03 vertical 2160 1.92 0.0337 0.0617 0.4118
PH-04 vertical 1887 1.72 0.0337 0.0619 0.4118

Looking at Table 5.8, we can note that the oblique cases require higher CPU time
with respect to the corresponding vertical cases due to the fact that the equations are
more complex because of additional terms involved. Analyzing the errors on the images,
as noted just before, the case of σ = 0 for the ON–model and kS = 0 for the PH–model
coincide with the L–model in terms of number of iterations and errors. With respect to
the ON–model, the errors increase by increasing the parameter σ. The same holds for
the PH–model with respect to kS .

Because of additional terms involved in the oblique case, in Table 5.8 we have reported
the results obtained using a value of the tolerance η for the stopping rule of the iterative
method equal to 10−3. This is the maximum accuracy achieved by the non-Lambertian
models since roundoff errors coming from several terms occur and limit the accuracy.
Only for the ON–model with σ = 0.4 we have reported the result also for η = 10−4

and for the L–model with η = 10−8. Lastly, we can note that choosing kS = 0.4 the
PH–model does not converge in the maximum number of allowed iterations, i.e. in 9000
iterations.
The 3D reconstructions and the output images obtained for the three models are visible
in Fig. 5.8. The first two rows refer to the vertical case, the others to the oblique case.
The reconstructions in the vertical cases are more accurate than the corresponding in
the oblique case also because obtained with a tolerance η = 10−3 instead of η = 10−8 as
in the vertical case. We can note that there is a concave/convex inversion in the surface
due to classical ambiguity of the SfS model.
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Table 5.8.: Beethoven: numerical results for ωobl = (0.0168, 0.198, 0.9801).

SL–schemes Iter. [s] L1(I) L2(I) L∞(I) η

LAM oblique 3129 234.60 0.0397 0.0659 0.4039 10−8

LAM oblique 236 40.85 0.0464 0.0696 0.4039 10−3

ON-00 oblique 236 46.85 0.0464 0.0696 0.4039 10−3

ON-01 oblique 242 50.90 0.0439 0.0656 0.4118 10−3

ON-02 oblique 262 53.43 0.0484 0.0699 0.4196 10−3

ON-03 oblique 270 53.76 0.0550 0.0763 0.4039 10−3

ON-04 oblique 314 65.63 0.0604 0.0830 0.4314 10−3

ON-04 oblique 3598 709.80 0.0672 0.0890 0.4314 10−4

ON-06 oblique 362 75.91 0.0722 0.0989 0.5647 10−3

PH-00 oblique 236 47.42 0.0464 0.0696 0.4039 10−3

PH-01 oblique 237 44.59 0.0712 0.0917 0.4510 10−3

PH-02 oblique 303 58.04 0.1095 0.1291 0.4784 10−3

PH-03 oblique 513 97.09 0.1506 0.1743 0.5333 10−3

PH-04 oblique 9000∗ 1149.00 0.1701 0.2041 0.5765 10−3

∗ indicates the maximum number of iterations.

Test 2: Black horse

We use this test to compare the performances of the global SL–scheme with the acceler-
ation schemes based on a finite difference solver (FM-FD, FS-FD). The comparison will
be made for all the models (L–model, ON–model, PH–model) with the parameter values
reported in the second and third column of Table 5.9. Note that the SL–scheme, that
is slower than FM-FD and FS-FD methods as expected, however it is more accurate
with respect to FD schemes. We can also note that the parameters play an important
role in these models. For example, in the PH–model passing from kS = 0.4 to kS = 0.8
the errors change significantly in L1 and L2 norm for the FM-FD and FS-FD methods.
In Fig. 5.9 one can see the output images and the 3D reconstructions of the surface
obtained by the SL–scheme applied to the three models. The reconstruction obtained by
the PH–model recognizes better the silhouette of the object considered so it seems to be
a more realistic model, more suitable to deal with real images.
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Figure 5.8.: Beethoven: output images and 3D reconstructions for the three models.

5.6. Conclusions

We have seen in this chapter as the PH–model leads to rather complex nonlinear PDE of
the first order in which the parameters involved in the model play a crucial role to obtain
accurate results. In fact, varying the value of the parameters it is possible to improve
the approximation with respect to the classical L–model. The analysis performed on
the model showed that it is not able to solve the well known concave/convex ambiguity
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Table 5.9.: Black horse: parameters and errors of the models with vertical light source.

Model kS σ [s] L1(I) L2(I) L∞(I)

LAM-FM 0.08 0.0363 0.0610 0.6902
LAM-FS 0.08 0.0362 0.0607 0.6902
LAM-SL 2.62 0.0346 0.0590 0.6863
ON-02-FM 0.2 0.07 0.0363 0.0611 0.6902
ON-02-FS 0.2 0.02 0.0362 0.0608 0.6902
ON-02-SL 0.2 2.49 0.0347 0.0591 0.6902
ON-03-FM 0.3 0.14 0.0364 0.0611 0.6941
ON-03-FS 0.3 0.14 0.0363 0.0609 0.6941
ON-03-SL 0.3 2.39 0.0348 0.0592 0.6902
PH-04-FM 0.4 0.28 0.0441 0.0677 0.6902
PH-04-FS 0.4 0.77 0.0439 0.0674 0.6902
PH-04-SL 0.4 1.06 0.0358 0.0606 0.6863
PH-08-FM 0.8 0.16 0.0788 0.1132 0.7098
PH-08-FS 0.8 0.63 0.0788 0.1132 0.7098
PH-08-SL 0.8 0.53 0.0463 0.0736 0.7059

despite the fact that it can deal with more general surfaces. Regarding the analysis of
the parameters involved, we have seen that with respect to the parameter kS , the errors
on the surface decrease increasing the values of kS , but it is not more true for the errors
on the image. Moreover, the best results on the surface seem to be for values of kS
intermediate between the extreme values 0 and 1, around kS = 0.6.
With respect to the exponent α, we have seen that increasing the value of α the spotlight
areas becomes smaller and smaller and the surface appears more lucid and dark. For
both the schemes used, FM and FS methods, the performances are better increasing
the value of α and the errors on the image and on the surface too for the synthetic
cases become lower increasing the exponent α. This holds for both the schemes. From
the numerical point of view, comparing the different techniques we noted that the SL–
scheme approximates in a rather effective way the equation that describes the model
and it is more accurate with respect to FD schemes although it is slower than FM-FD
and FS-FD methods as expected. Looking at the numerical experiments made using the
three models, the PH–model seems to approximate better the surface with respect to
the L–model and the ON–model choosing an opportune value for kS , although the errors
computed on the images are higher than those obtained by the others two models. In
this respect, the PH–model is more flexible and effective.
Focusing the attention on the tests performed with an oblique light source, we have to do
some comments that are common to the PH–model and the ON–model. Several terms
appear in these models and each of them gives a contribution to the roundoff error.
Note that the accumulation of these roundoff errors makes difficult in the oblique case
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Figure 5.9.: Black horse: output images and 3D reconstructions for the three models.

to obtain a great accuracy. A possible improvement could be the use of second order
schemes, that release the link between the space and the time steps which characterizes
and blocks the accuracy for first order schemes.



6. Generalized Perspective Shape from
Shading with Oren-Nayar Reflectance

In this Chapter we consider the class of modern perspective SfS models formulated via
partial differential equations (PDEs). By combining a recent spherical surface parametriza-
tion with the advanced non-Lambertian Oren-Nayar reflectance model, we obtain a ro-
bust approach that allows to deal with an arbitrary position of the light source while
being able to handle rough surfaces and thus more realistic objects. To our knowledge,
the resulting model is currently the most advanced and most flexible approach in the
literature on PDE-based perspective SfS. Apart from deriving our model, we also show
how the corresponding set of sophisticated Hamilton-Jacobi equations can be efficiently
solved by a specifically tailored Fast Marching scheme. Experiments with medical real-
world data show that our model works in practice offering the desired flexibility.

Starting from the formulation of the SfS problem realized to the pioneering work
of Horn [50, 54] using partial differential equations (PDEs), there has been enormous
progress in the area of SfS. In particular, the appropriate modeling of light reflectance
and scene illumination has played a key role in the design of successful SfS approaches.

With respect to the light reflectance, the classical orthographic model of Horn [50]
based on Lambertian surfaces was soon replaced by advanced non-Lambertian reflectance
models that offer an improved capability to handle realistic scenarios (see e.g. [4, 95]).
Relying on perspective instead of orthographic projection, a different class of modern SfS
approaches has emerged in the last years [78], most of them formulated again in terms
of PDEs [108, 109, 90]. By assuming a Lambertian surface and the illumination given
by a point light source located at the optical center of the camera, they feature many
well-posedness properties in contrast to their orthographic counterparts. In particular,
the quadratic light fall-off due to inverse square law turned out to be very useful in
this context [91, 13]. Recently, such perspective SfS models with the light source located
at the optical center of the camera have been extended to non-Lambertian reflectance
models [3, 118] such as the Oren-Nayar model [3]. This model has also been investigated
in [58] for the use with the highly efficient Fast Marching (FM) method [102].

Turning to more general illumination scenarios, there have been recent works on per-
spective SfS with Lambertian reflectance for a point light source not located at the
optical center. While Wu et al. [122] presented a multi-image optimization framework,
Galliani et al. [45] proposed a PDE-based approach for a single input image that leads
to an efficient FM implementation. However, no advanced non-Lambertian reflectance
models have been employed in the context of general illumination settings so far.

Summarizing, in the previous work on perspective SfS, approaches for non-Lambertian
surfaces as well as for point light sources not co-located with the projection center have
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only been considered individually. This shows that it is an extremely challenging task to
relax the original SfS setup. In particular, there have been no attempts so far to combine
a non-Lambertian reflectance model with a general illumination setup – even though,
from an application viewpoint, the framework should be as flexible as possible.

In the current chapter, we advance the field by successfully merging the aforementioned
two paths of research. (i) As in the work of Galliani et al. [45] we consider the use of a
spherical coordinate system centered at the point light source. (ii) Instead of employing
a simple Lambertian reflectance model, we formulate a new brightness equation based
on the advanced reflectance model of Oren and Nayar. The resulting approach is a
sophisticated PDE belonging to the class of Hamilton-Jacobi equations (HJEs) where
the solution has to be understood in a viscosity sense, cf. [28, 97, 68, 91]. Apart from
creating a very general and flexible approach, setting up our model in this way offers a
third advantage: (iii) since for (advanced) diffuse reflectance models the brightest points
correspond approximately to local minima of the depth [95], it allows us to extend
the efficient FM algorithm proposed in [45] to our model – although our HJEs are
significantly more complex. Experiments with medical real-world input images from
endoscopy allow us to verify the properties of our approach, see e.g. [119, 109] for a
similar application of SfS.

Hence first, we briefly recall the SfS setting in spherical coordinates and the Oren-
Nayar reflectance model in the perspective case that serves as basis for our approach.
Then, we proceed with the derivation of our new model and comment on its numerical
approximation. Then, a presentation of computational results and conclusions will be
given.

6.1. Why using Spherical Coordinates?

Although SfS methods make use of standard Cartesian coordinates [122, 3, 118], such
coordinates have one decisive drawback illustrated in Fig. 6.1(a) and Fig. 6.1(b). When
the light source is not located at the optical centre of the camera, the critical points, i.e.
the points of the object with largest local height, are not the brightest points, i.e. the
points that are closest to the light source.

In short: local intensity maxima do not identify critical points (local surface maxima).
This is due to the fact that in SfS with Cartesian coordinates, the depth is measured
along the x3-axis (Fig. 6.1: vertical axis). Since identifying critical points is required
to apply efficient algorithms of Fast Marching (FM) type [100, 101, 102, 116, 49] to
solve the brightness equation in (6.7), we propose to use a spherical coordinate system
with the origin located at the position of the light source. We measure the depth and
thus the critical points from the viewpoint of the light source. By construction, in such
a coordinate system, the locally brightest points in the image coincide again with the
critical points. Typical assumption in this context are:

i) the albedo is assumed to be uniform,

ii) surface normals at local maxima are parallel to the direction of incoming light (per
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(a) Light source located at optical centre. Brightest
and highest point (B,H) coincide.

(b) Light source not located at optical centre.
Brightest and highest point (B,H) differ(!).

Figure 6.1.: Relationship between the brightest point B (critical point) and the high-
est point H of the object depending on the scene geometry. The problem
of differing H and B is inherent to Cartesian coordinates. In a spherical
coordinates with origin at the light source, B is always H.

definition of local maxima in our new coordinate system),

iii) remaining concave-convex ambiguities are resolved by the light fall-off factor 1/r2

in the brightness equation [91].

Let us now describe our parametrization.

6.2. Perspective SfS Based on Spherical Coordinates

Although most approaches in the SfS literature are still based on the assumption that
the light source is located at the optical center of the camera, we follow Galliani et
al. [45] and consider a general setup in which the light source is allowed to be located
anywhere in the scene. The corresponding geometry described in Fig. 6.2 is based on a
spherical coordinate system whose origin has been located at the position of the light
source.

The main idea is to represent the Cartesian vector r =
−→
LS, i.e. the distance from the

light source to the surface, via two angles θ and ϕ, respectively, as well as a radius r:

r = Rx3 (θ) Rx2 (ϕ)




0

0

r


 =




cos θ cosϕ − sin θ cos θ sinϕ

sin θ cosϕ cos θ sin θ sinϕ

− sinϕ 0 cosϕ







0

0

r


 . (6.1)

Here, the two matrices Rx3 (θ) and Rx2 (ϕ) represent respectively the rotations about
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Figure 6.2.: General SfS setup with arbitrary position of the light source.

the x3- and x2-axis. The corresponding orthonormal basis is then given by

eϕ =




cosϕ cos θ

cosϕ sin θ

− sinϕ


 , eθ =



− sin θ

cos θ

0


 , er =




sinϕ cos θ

sinϕ sin θ

cosϕ


 , (6.2)

where

ϕ = arccos

(
r3/
√
r2

1 + r2
2 + r2

3

)
and θ = arctan (r2/r1) . (6.3)

In this basis defined by spherical coordinates, the position vector from the light source
to a surface point can be compactly written as:

[
r1 r2 r3

]>
=: r := r er with r =

√
r2

1 + r2
2 + r2

3 . (6.4)

Having parametrized the unknown surface in spherical coordinates, we now need to
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compute the surface normal for each pixel of the input image. This can be done by
first determining the vectors defining the tangent plane – these vectors are given by the
derivatives of the surface with respect to the two directions orthogonal to r, namely ϕ
and θ – and then by computing the cross product to obtain the corresponding normal
vector. Using the definition of r from (6.4), the surface normal vector can be determined
by

n =
∂ (rer)

∂θ
× ∂ (rer)

∂ϕ
= r

∂ r

∂θ

(
er ×

∂ er
∂ϕ

)
+ r

∂ r

∂ϕ

(
∂ er
∂θ
× er

)
+ r2

(
∂ er
∂θ
× ∂ er

∂ϕ

)
.

(6.5)
Note that by (6.2), ∂ er

∂ϕ = eϕ and ∂ er
∂θ = sinϕ eθ, since (eϕ, eθ, er) constitutes a right-

handed coordinate system. Therefore, we obtain

n = r
∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er . (6.6)

This information is required later on in the reflectance model to establish the connection
between the known image brightness and the unknown local orientation of the surface.

6.3. Perspective Oren-Nayar SfS Brightness Equation

Let us now explain the Oren-Nayar reflectance model. As already stated in Chapter
1, the advanced Oren-Nayar model [84, 82, 85, 83] explicitly allows to handle general
rough surfaces. The idea of this model is to represent a rough surface as a collection of
V-shaped cavities, each with Lambertian reflectance properties. Assuming the slopes of
these cavities to be Gaussian distributed, the roughness of a surface can be characterized
by a single parameter, namely the standard deviation σ of its slope distribution.

For determining the irradiance in the perspective case, we consider additionally the
inverse square law for the light fall-off. Thus, we obtain the following brightness equation
for the Oren-Nayar model [83, 3]:

I(x)=
1

r2
cos(θi) (A+B sin(α) tan(β) max[0, cos(ϕi−ϕr)]) , (6.7)

where the two non-negative coefficients A and B, as all the other quantities in the
equation, are the same that in the orthographic case (see Chapter 1 on page 6), except
for the light source here indicated with the letter L.

6.4. Perspective Oren-Nayar SfS in Spherical Coordinates

In order to derive the nonlinear HJEs that describe our new model, we have to for-
mulate the brightness equation of the Oren-Nayar reflectance model in (6.7) using the
parametrization in terms of spherical coordinates that we derived in Section 6.2. As
a first step we have to determine the direction L of the light source and the viewing
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direction V of the camera. Following Fig. 6.2, these two directions can be computed as

L = − er and V =
−→
SC =

−→
LC −−→LS = (v1 − r) er + v2 eϕ + v3 eθ , (6.8)

where

v1 =
√
c2

1 + c2
2 + c2

3 , v2 = arccos

(
−c3/

√
c2

1 + c2
2 + c2

3

)
, v3 = arctan (c2/c1) . (6.9)

Knowing the surface normal n from Eq. (6.6) as well as the light direction L and the
viewing direction V, we can then reformulate all trigonometric expressions occurring
in the Oren-Nayar brightness equation (6.7) in terms of spherical coordinates. By the
relation

∇r := ∇(θ,ϕ)r =
1

r

(
∂ r

∂ϕ

)
eϕ +

1

r sinϕ

(
∂ r

∂θ

)
eθ , (6.10)

we get

cos(θi) = N · L =
n

|n| · L =
(
|∇r|2 + 1

)−1/2
, (6.11)

cos(θr) = N ·V =

(
1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

)(
|∇r|2 + 1

)−1/2
, (6.12)

with sin(θi) =
√

1− cos2(θi) and sin(θr) =
√

1− cos2(θr) which, in particular, allows to
rewrite sin(α) and tan(β). What still remains to be computed is the expression cos(ϕi−
ϕr). To this end, we calculate the projections of the directions L and V onto the (x1, x2)-
plane. This is realized setting ϕ = π

2 and, consequently, by reducing v1 and r defined in
(6.9) and (6.4) to their first two components. Denoting these projections of L and V by
l̂ and v̂, respectively, we get

cos(ϕi − ϕr) = l̂ · v̂ =
√
r2

1 + r2
2 −

√
c2

1 + c2
2 . (6.13)

Now, we can rewrite Eq. (6.7) entirely in spherical coordinates. However, since there
are several min and max operators involved, we have to distinguish four different cases.
These cases are given by Eqs. (6.14)–(6.17). For each case we have listed the correspond-
ing implications, the resulting brightness equation as well as the HJE that we finally
have to solve. Note that Case 3 resembles the single Lambertian PDE in [45], whereas
the HJEs for the other cases are significantly more complex. This makes explicit that our
general SfS approach with Oren-Nayar reflectance model is substantially more challeng-
ing than previous approaches based on the Lambertian assumption. Moreover, Case 4 is
actually a special case of Case 1. Since this case exactly describes the standard setting,
where the light source is located at the optical center of the camera, we decided to list it
separately. Finally, we would like to mention that the angle between the light direction
L and the viewing direction V cannot be larger or equal to π. This is evident, since
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otherwise we cannot project these vectors onto the (x1, x2)-plane.

Case 1: θi ≥ θr and (ϕi − ϕr) ∈ [0, π2 ) ∪ (3
2π, 2π]

(6.14)1. Implication: max[0, cos(ϕi − ϕr)] = cos(ϕi − ϕr)

2. Brightness equation: I(x) =
1

r2
cos(θi)

(
A+B cos(ϕi − ϕr) sin(θi)

sin(θr)

cos(θr)

)

3. Hamilton-Jacobi equation:

r2I − A√
|∇r|2+1

− B(̂l·v̂)|∇r|
|∇r|2+1

√
|∇r|2+1−

(
1

r sinϕ
∂ r
∂θ v3+ 1

r
∂ r
∂ϕ v2+r−v1

)2

(
1

r sinϕ
∂ r
∂θ v3 + 1

r
∂ r
∂ϕ v2 + r − v1

) = 0

Case 2: θi < θr and (ϕi − ϕr) ∈ [0, π2 ) ∪ (3
2π, 2π]

(6.15)1. Implication: max[0, cos(ϕi − ϕr)] = cos(ϕi − ϕr)

2. Brightness equation: I(x) =
1

r2
cos(θi)

(
A+B cos(ϕi − ϕr) sin(θr)

sin(θi)

cos(θi)

)

3. Hamilton-Jacobi equation:

r2I − A√
|∇r|2+1

− B(̂l·v̂)|∇r|
|∇r|2+1

√
|∇r|2+1−

(
1

r sinϕ
∂ r
∂θ v3+ 1

r
∂ r
∂ϕ v2+r−v1

)2
= 0

Case 3: For any θi, θr, and (ϕi − ϕr) ∈ [π2 ,
3
2π]

(6.16)1. Implication: max[0, cos(ϕi − ϕr)] = 0

2. Brightness equation: I(x) =
1

r2
A cos(θi)

3. Hamilton-Jacobi equation: I
√
|∇r|2 + 1− A

r2
= 0

Case 4: θi = θr and ϕi = ϕr

(6.17)1. Implications: θ := θi = θr = α = β and max[0, cos(ϕi − ϕr)] = 1

2. Brightness equation: I(x) =
1

r2
cos(θ)

(
A+B

sin(θ2)

cos(θ)

)

3. Hamilton-Jacobi equation: r2I(|∇r|2 + 1)−A
√
|∇r|2 + 1−B |∇r|2 = 0
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6.5. Fast Marching Solver: a variant for spherical coordinates

After we have derived the brightness equation for the Oren-Nayar reflectance model with
general position of the light source, let us now discuss how we can solve the resulting set
of HJEs for the unknown radial distance r. In order to allow for an efficient computation,
we rely on a variant of the Fast Marching (FM) schemes which are among the fastest
solvers for PDEs available in the literature [102]. Such schemes start from critical points,
i.e. points that are local minima of the depth, and then propagate the solution to the
remaining points on the surface. At each grid point, the corresponding nonlinear PDE
from Eqs. (6.14)–(6.17) has to be solved iteratively for the unknown radial distance. Since
our HJEs are formulated in a spherical coordinate system that is usually not centered at
the camera position, the location where the radiance data I has to be evaluated depends
on r. This, however, prevents the application of standard FM schemes, since they assume
I not to change during the iterations.

Recently, Galliani et al. [45] proposed a specifically adapted variant of FM for spherical
coordinates. Although their SfS model is restricted to the Lambertian case and the
corresponding single HJE is significantly simpler than our set of HJEs, we can still make
use of the basic strategy of their approach:

(i) In a first step, we identify critical points on the surface based on their brightness
values. Since such points denote local minima with respect to their distance to the light
source, we know that ∇r = 0. This allows us to solve the set of HJEs at those locations
locally for the radial depth r, i.e. without considering information from neighbouring
pixels. Solving for r can either be done iteratively (Case 1 and 2) or directly (Case 3 and
4).

(ii) After computing the depth values at critical points, we propagate the information
to other points in terms of θ and ϕ by sequentially updating the depth values at neigh-
boring locations via solving the corresponding HJE there. As proposed in [45], we apply
the iterative update strategy from [118] making use of the regula falsi method that has
been originally employed in the context of nonlinear HJEs in Euclidean coordinates. This
requires to discretize our HJEs for which we use a standard upwind scheme as described
in [97]. Moreover, since x1 and x2 depend on the radial depth r, we have to update the
sample location and thus the value of I(x1(θ, ϕ, r), x2(θ, ϕ, r)) at each iteration within
our iterative framework. The sampling at subpixel locations is done using bilinear inter-
polation. The iterations are stopped if the residual of the equation drops below a certain
threshold T . In our case, we use T =10−3.

6.6. Experimental Evaluation

In order to evaluate the quality and robustness of our model, we have used endoscopic
images provided in [1]. Since model parameters in SfS are in general unknown, experi-
ments with such real-world data are highly challenging (see e.g. [95, 109]). In particular,
the position of the camera relative to the position of the light source is typically not
provided with such data sets, since standard SfS models are restricted to the assump-
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tion that both positions coincide (which is often not true by construction). Since we
consider position of the light source not located at the optical center of the camera, for
our experiments we had to rely on a rough estimation of the correct position by visually
inspecting the images. Hence, we assumed that the light source is located at the origin
based on Fig. 6.2 and chose the position of the camera nearby but not too close to the
origin. Since it was already shown in [45] that a model with flexible position of the light
source can give significant advantages over a standard SfS approach, we focus in the
following on the other two important aspects of our novel method: the visual quality of
the reconstruction as well as its robustness with respect to parameter variations.

Test 1
In our first experiment, we evaluated the impact of the spherical resolution on the quality
of the reconstruction. To this end, we used uniform grids in the ϕ-θ-domain with mesh
widths δϕθ = ∆ϕ = ∆θ and computed the results for different resolutions. As we can
see from Fig. 6.3, the reconstruction quality improves significantly when increasing the
resolution, i.e. when refining the grid. However, one should keep in mind that the actual
quality is limited by the resolution of the input image which is repeatedly evaluated at
sub-pixel positions during our FM computation. Moreover, one should note that, due to
choice that the light source is at the origin of our coordinate system, the reconstruction
is computed from the viewpoint of the light source. This explains the slight shift of the
reconstruction with respect to the input image.

(a) Input image
(115 × 106).

(b) δϕθ = 0.025. (c) δϕθ = 0.0175. (d) δϕθ = 0.0125. (e) δϕθ = 0.0075.

Figure 6.3.: Reconstruction of gastric antrum with σ = π
6 .

Test 2
In a second experiment, we investigated the robustness of the reconstruction with respect
to the choice of the roughness parameter σ for the Oren-Nayar reflectance model. To
this end, we have used four different input images and computed the reconstructions
for different values of σ accordingly. The Figs. 6.4–6.7 show the reconstruction of the
duodenum, the esophagus, the papilla of Vater, and the stomach of lining, respectively.
As we can see, the model gives very reasonable results and behaves in a well-posed
manner, i.e. the results are stable and depend continuously on σ. This is very important
for performing SfS computations with real-world input images, since the correct value
of σ is typically not known.
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(a) Input image (211×
208).

(b) σ = π
6

. (c) σ = π
4

. (d) σ = π
2

.

(e) Input image

(cropped, 106× 78).

(f) σ = π
6

. (g) σ = π
4

. (h) σ = π
2

.

Figure 6.4.: Reconstruction of the duodenum δϕθ = 0.0125, grid size 504× 504.

(a) Input image (586×502). (b) σ = π
6

. (c) σ = π
4

. (d) σ = π
2

.

Figure 6.5.: Reconstruction of the esophagus δϕθ = 0.0125, grid size 504× 504.

(a) Input image (210×160). (b) σ = π
6

. (c) σ = π
4

. (d) σ = π
2

.

Figure 6.6.: Reconstruction of the papilla of Vater δϕθ = 0.0125, grid size 504× 504.

6.7. Conclusions

We have presented a perspective SfS model that combines the advantage of freely select-
ing the position of the light source with the robustness of an advanced non-Lambertian
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(a) Input image (80 ×
71).

(b) σ = π
6

. (c) σ = π
4

. (d) σ = π
2

.

Figure 6.7.: Reconstruction of the stomach lining δϕθ = 0.0125, grid size 504× 504.

reflectance model. By considering both a general light source setup and an improved re-
flectance model, the resulting approach is one of the most advanced and flexible models
in this area. This is also validated by our experiments with real-world images coming
from medical applications that gave good results. Despite these results, we found that
the relatively large number of unknown parameters still makes conducting experiments
difficult. There is a gap between the model and the real world: parameters as the camera
position, the light position and the roughness have to be roughly estimated since they
are required in the formulation of the model as data. Surely, at the end results are more
accurate with respect to the Lambertian model, but after many tests carried out by set-
ting manually the various parameters involved. This is the price to pay for taking into
account an advanced reflectance model that leads to a set of relatively complex PDEs.
Nevertheless, we believe that the combination of advanced models for light source setup
and reflectance is necessary to obtain good results. The reflectance model should not
be more complicated than the one of Oren and Nayar otherwise a carefully controlled
experimental environment is needed to achieve meaningful results (see e.g. [95]).



7. Conclusions and perspectives

In this thesis we focused our attention on the SfS problem, most under orthographic pro-
jection but also under perspective projection. We considered non-Lambertian reflectance
models, i.e. models that take into account the position of the observer or physical char-
acteristics of the material of the object to be reconstructed, an extension of the classical
Lambertian model, which reflects the light uniformly over the entire surface supposed
smooth, without taking into account the physical properties of the material or other
points of view.

7.1. Orthographic projection

With respect to the orthographic projection, we derived nonlinear partial differential
equations of first order, i.e. Hamilton-Jacobi equations (HJEs), associated to the non-
Lambertian reflectance models ON–model, PH–model and BP–model. We derived the
HJEs in all the possible cases for each models, coupling vertical or oblique light source
with vertical or oblique position of the observer, in order to give a complete description
of these models, that is not present at the moment in the literature. We have proposed
and analyzed a general and unique mathematical formulation of these models. In this
general formulation we can switch on and off the different terms related to ambient,
diffuse and specular reflection in a very simple way. This elegant general model is very
flexible to treat the various situations with vertical and oblique light sources.

Moreover, we try to overcome the typical concave/convex ambiguity known for the
classical Lambertian model via these non-Lambertian models, but our numerical simu-
lations carried out on synthetic and real images showed that they all fail on this issue.
But our work is able to respond to the need to overcome the Lambertian model that is
not suitable to deal with realistic images coming from medical or security application.

We studied several numerical techniques to solve the HJEs rewritten in a fixed point
form: the semi-Lagrangian scheme and acceleration methods based on a finite difference
approximation, as the Fast Marching and the Fast Sweeping ones. We have obtained a
general convergence result (Theorem 2.3.1 illustrated in Chapter 2).

From the numerical point of view, our numerical tests showed that the schemes are
consistent and we obtained good results for synthetic and real input images. With a
vertical light source, the CPU time of the non-Lambertian models is of the same order
of the CPU time employed by the Lambertian model but setting the parameters in a
right way the performances are always better. Regarding the oblique light source case,
the CPU time necessary for the non-Lambertian models is greater with respect to the
Lambertian model. This happens since the Lambertian model is easier to use being
devoid of parameters to be set. Moreover, the fixed point scheme corresponding to the
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Lambertian model converges using a smaller tolerance η for the same reason of before.
Choosing a model that is the best of all is not simple, because the two non-Lambertian
models analyzed are both sensitive to the choice of the parameters involved in the model
and to the choice of the light source. Note that the roughness parameter σ for the Oren-
Nayar model or the exponent α and the coefficient kS for the Phong model are known
quantities for the model, but they are not provided in real situations.

Orthographic projection: open problems

As already said, the new models do not solve the classical concave/convex ambiguity
of the SfS problem based on a single image. This can be done only adding additional
informations on the image or dealing with more than one image as in the photometric
stereo SfS problem. In this respect, we are going to develop an interesting model applying
the Photometric Stereo technique. This model will consider the Lambertian model as
diffuse component and the Blinn-Phong model for the specular one. We will try first to
prove that the only specular part is well-posed and there exists a unique solution, as
already done for the Lambertian component [76]. After that, we will try to find a way
to combine the two components in order to work with both.

Another interesting improvement is a new model that has the diffuse component repre-
sented by the more general and complex Oren-Nayar model, and the specular component
represented by the model introduced by Phong or the one proposed by Blinn-Phong.
Then, verify whether such a model can be written in the same form of the models an-
alyzed here, namely, through a fixed point form; check if the discrete operator of the
corresponding semi-Lagrangian scheme respects the properties of the general convergence
Theorem 2.3.1 illustrated in Chapter 2 of this thesis, and if this new model gives better
results than those obtained so far in the simulations, especially provided on real images.
A possible improvement can also be to resort to the use of high order approximation
schemes.

7.2. Perspective projection

Regarding the perspective case, we described a new general model that combines the
advantage of freely selecting the position of the light source with an advanced non-
Lambertian reflectance model, i.e. the Oren-Nayar model. We derived the HJEs in spher-
ical coordinates for all the positions of the light source and of the camera. By considering
both a general light source setup and an improved reflectance model, the resulting ap-
proach is one of the most advanced and flexible models in the field, although there
are no comparisons of the performances in terms of some errors estimations with other
models since they are not present in the literature. From the numerical point of view,
our experiments on medical real-worlds images gave good results. Despite these results,
some remarks on the difficulties encountered should be made: there is a gap between the
model and the real world. Parameters as the camera position, the light position and the
roughness have to be roughly estimated since they are required in the formulation of the
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model as data. Surely, at the end results are more accurate with respect to the Lamber-
tian model, but after many tests carried out by setting manually the various parameters
involved. This is the price one has to pay for taking into account an advanced reflectance
model that leads to a set of relatively complex PDEs. If considering models of reflection
increasingly complex is completely convenient in terms of time and accuracy, hence if it
is worth to deal with them, is a question still open.

Perspective projection: open problems

An interesting future direction could be to realize a new general model in spherical
coordinates that has the same advantage of locating the position of the light source
everywhere in the scene. This model will be based on the Phong or Blinn-Phong model
instead of the Oren-Nayar model. Once you have created such a model, observe if it is
more easy to handle and the results are more accurate than the model based on the
Oren-Nayar reflectance model.
Another improvement could be applying the Photometric Stereo technique to these gen-
eral non-Lambertian models for the resolution of the Perspective SfS problem in cartesian
coordinates by using the usual assumption of the light source located at the optical center
of the camera.



A. Appendix: Supplementary Material for
Chapter 6

In what follows, we present intermediate steps that are helpful to understand the deriva-
tion of the normal vector and the four cases of the Hamilton-Jacobi equations that corre-
spond to the generalized perspective SfS model with Oren-Nayar reflectance, described
in Chapter 6.

A.1. Surface Parametrization and Normal Vector

Starting our derivation in Cartesian coordinates, we can note from Fig. 6.2 on page 99
in Chapter 6 that

−−→
CX =

−−→
LX −−→LC =




x1

x2

−(c3 + f)


−



c1

c2

−c3


 =



x1 − c1

x2 − c2

−f


 . (A.1)

This leads to −→
LS =

−→
LC +

−→
CS =

−→
LC + λ

−−→
CX

=




c1

c2

−c3


+ λ



x1 − c1

x2 − c2

−f




=



λx1 + (1− λ)c1

λx2 + (1− λ)c2

−(c3 + λf)


 =:



r1

r2

r3


 ,

(A.2)

where
−−→
AB stands for a vector notation with a starting point A and an endpoint B.

In spherical coordinates, we can describe (A.2) as



r1

r2

r3


 =: r := r er (A.3)

with

r =
(
r2

1 + r2
2 + r2

3

) 1
2 , (A.4)
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see Fig. A.1 for details.

x1

x2

x3

r

r

θ

ϕ

eϕ

eθ

er

Figure A.1.: Illustration of parameters in spherical coordinates. r = (r1, r2, r3) represents
a vector on the sphere and r denotes the magnitude of r given by (A.4).

In order to obtain λ, we have to solve the following quadratic equation:

r2 = r2
1 + r2

2 + r2
3

(A.2)
= [c1 + λ (x1−c1)]2 + [c2 + λ (x2−c2)]2 + (c3 + λf)2

=
(
c2

1+c2
2+c2

3

)
+ 2 [c1 (x1−c1) + c2 (x2−c2) + c3 f] λ+

[
(x1−c1)2 + (x2−c2)2 + f2

]
λ2 .

(A.5)
Since this requires the radial depth r to be known, we switch from Cartesian coordinates
to spherical coordinates and compute r from the input image directly. This can be done
via the brightness equation of the Oren-Nayar model that describes the relation between
the brightness values of the input image I and the normal n of the corresponding point
on the object surface. However, before we can make use of this brightness equation,
we have to express it in spherical coordinates. In particular, this requires to calculate
the surface normal n in terms of the radial depth r. Starting from (A.3) and using the



A.2 Oren-Nayar Brightness Equation 112

spherical basis described in Section 6.2 on page 98, we obtain

n =
∂ (rer)

∂θ
× ∂ (rer)

∂ϕ

=

(
∂ r

∂θ
er + r

∂ er
∂θ
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∂ϕ
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∂θ
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r
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r
∂ er
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× ∂ er
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)

(a)
= r

∂ r

∂θ
(er × eϕ) + r

∂ r

∂ϕ
(sinϕ eθ × er) + r2 (sinϕ eθ × eϕ)

(b)
= r

∂ r

∂θ
eθ + r sinϕ

∂ r

∂ϕ
eϕ − r2 sinϕ er .

(A.6)
The intermediate step (a) in (A.6) can be explained by noting that

∂ er
∂ϕ

=




cosϕ cos θ

cosϕ sin θ

− sinϕ


 = eϕ (A.7)

and

∂ er
∂θ

=



− sinϕ sin θ

sinϕ cos θ

0


 = sinϕ eθ . (A.8)

In addition, we know that 



er × eϕ = eθ

eϕ × eθ = er

eθ × er = eϕ

(A.9)

since (eϕ, eθ, er) constitutes a right-handed coordinate system. This in turn explains step
(b).

A.2. Oren-Nayar Brightness Equation

Starting from Section 6.3 on page 100, we have to calculate the trigonometric quantities
that appear in the Oren-Nayar brightness equation (6.7) in order to derive the Hamilton-
Jacobi equations in spherical coordinates. Based on Fig. 6.2 from Chapter 6, we know
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that the light source is located at the center of the coordinate system and thus the light
direction is given by

L = − er . (A.10)

On the other hand, the viewing direction at any surface point reads

V =
−→
SC

=
−→
LC −−→LS

= (v1 er + v2 eϕ + v3 eθ)− r er

= (v1 − r) er + v2 eϕ + v3 eθ ,

(A.11)

where

v1 =
√
c2

1 + c2
2 + c2

3 , (A.12)

v2 = arccos
−c3√

c2
1 + c2

2 + c2
3

, (A.13)

v3 = arctan
c2

c1
. (A.14)

Knowing the surface normal n given by (A.6), the light direction L and the viewing
direction V given by (A.10) and (A.11), respectively, and by making use of the relation

∇r := ∇(θ,ϕ)r =
1

r

(
∂ r

∂ϕ

)
eϕ +

1

r sinϕ

(
∂ r

∂θ

)
eθ , (A.15)

we can reformulate all trigonometric expressions of the Oren-Nayar brightness equation
(6.7) in terms of spherical coordinates as follows:

cos(θi) = N · L

=
n

|n| · L

(A.6)
=

(A.10)

(
r ∂ r∂θ eθ + r sinϕ ∂ r

∂ϕ eϕ−r2 sinϕ er

)
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√
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[(
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)2
+ sin2 ϕ

(
∂ r
∂ϕ
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+ r2 sin2 ϕ

]
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r2 sinϕ

r

√(
∂ r
∂θ

)2
+ sin2 ϕ

(
∂ r
∂ϕ

)2
+ r2 sin2 ϕ

=
1√

|∇r|2 + 1
,

(A.16)
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cos(θr) = N ·V

=
n

|n| ·V

(A.6)
=

(A.11)

r ∂ r∂θ v3 + r sinϕ∂ r∂ϕ v2 + (v1 − r)(−r2 sinϕ)

r2 sinϕ
√
|∇r|2 + 1

=

∂ r
∂θ v3 + sinϕ∂ r∂ϕ v2 + r2 sinϕ− v1r sinϕ

r sinϕ
√
|∇r|2 + 1

=

1
r sinϕ

∂ r
∂θ v3 + 1

r
∂ r
∂ϕ v2 + r − v1√

|∇r|2 + 1
,

(A.17)

sin(θi) =
√

1− (N · L)2

(A.16)
=

√√√√1−
(

1√
|∇r|2 + 1

)2

=

√
1− 1

|∇r|2 + 1
=

|∇r|√
|∇r|2 + 1

,

(A.18)

sin(θr) =
√

1− (N ·V)2

(A.17)
=

√√√√√√1−




1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

√
|∇r|2 + 1




2

=

√√√√√
1−

(
1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

)2

|∇r|2 + 1
.

(A.19)



A.3 Hamilton-Jacobi Equations in Spherical Coordinates 115

In order to project the vectors L and V onto the (x1, x2)-plane, we have to put ϕ = π
2

in the orthonormal basis defined in Section 6.2 on page 98, and we have to reduce v1 and
r defined in (A.12) and (A.4) to the first two components. In this way, denoting these
projections of L and V by l̂ and v̂, respectively, we can attain

cos(ϕi − ϕr) = l̂ · v̂ =
√
r2

1 + r2
2 −

√
c2

1 + c2
2 . (A.20)

A.3. Hamilton-Jacobi Equations in Spherical Coordinates

In order to derive the Hamilton-Jacobi equations (HJEs) corresponding to the Oren-
Nayar brightness equation, we will use the formulas of the previous section. Thus, we
obtain the following four cases:

Case 1: θi ≥ θr and (ϕi − ϕr) ∈ [0, π
2
) ∪ (3

2
π, 2π]

In this case, we have the following implication:

max[0, cos(ϕi − ϕr)] = cos(ϕi − ϕr) (A.21)

and hence we attain

I(x) =
1

r2
cos(θi)

(
A+B cos(ϕi − ϕr) sin(θi)

sin(θr)

cos(θr)

)

⇔ r2I = A cos(θi) +B cos(ϕi − ϕr) cos(θi) sin(θi)
sin(θr)

cos(θr)

⇔ r2I = A(N · L) +B(̂l · v̂) (N · L)
√

1− (N · L)2 ·
√

1− (N ·V)2

(N ·V)

⇔ r2I =
A√

|∇r|2 + 1
+

B(̂l · v̂)√
|∇r|2 + 1

· |∇r|√
|∇r|2 + 1

·

√√√√√
1−

(
1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

)2

|∇r|2 + 1
·

√
|∇r|2 + 1(

1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

)

⇔ r2I − A√
|∇r|2 + 1

− B(̂l · v̂)|∇r|
|∇r|2 + 1

·

√
|∇r|2 + 1−

(
1

r sinϕ
∂ r
∂θ v3 + 1

r
∂ r
∂ϕ v2 + r − v1

)2

(
1

r sinϕ

∂ r

∂θ
v3 +

1

r

∂ r

∂ϕ
v2 + r − v1

) = 0 .

(A.22)
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Case 2: θi < θr and (ϕi − ϕr) ∈ [0, π
2
) ∪ (3

2
π, 2π]

Since (A.21) is still true, we obtain

I(x) =
1

r2
cos(θi)

(
A+B cos(ϕi − ϕr) sin(θr)

sin(θi)

cos(θi)

)

⇔ r2I = A cos(θi) +B cos(ϕi − ϕr) sin(θi) sin(θr)

⇔ r2I = A(N · L) +B(̂l · v̂)
√

1− (N · L)2
√

1− (N ·V)2

⇔ r2I − A√
|∇r|2 + 1

− B(̂l · v̂)|∇r|√
|∇r|2 + 1

√√√√√
1−

(
1

r sinϕ

∂ r
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1

r

∂ r
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v2 + r − v1

)2

|∇r|2 + 1
= 0

⇔ r2I − A√
|∇r|2 + 1

− B(̂l · v̂)|∇r|
|∇r|2 + 1
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|∇r|2 + 1−

(
1

r sinϕ
∂ r
∂θ v3 + 1

r
∂ r
∂ϕ v2 + r − v1

)2
= 0 .

(A.23)

Case 3: For any θi, θr, and (ϕi − ϕr) ∈ [π
2
, 3

2
π]

In this case, we have the trivial implication:

max[0, cos(ϕi − ϕr)] = 0 . (A.24)

Because of (A.24), we end up with the following HJE:

I(x) =
1

r2
A cos θi

⇔ r2I = A cos θi

⇔ r2I = A(N · L)

⇔ r2I =
A√

|∇r|2 + 1

⇔ r2I
√
|∇r|2 + 1−A = 0

⇔ I
√
|∇r|2 + 1− A

r2
= 0 .

(A.25)

Case 4: θi = θr and ϕi = ϕr

In this particular case, we have a different implication: by defining θ := θi = θr = α = β ,
we have

ϕi = ϕr ⇒ max[0, cos(ϕi − ϕr)] = max[0, cos(0)] = 1 . (A.26)
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So, we obtain the HJE

I(x) =
1

r2
cos(θ)

(
A+B

sin(θ2)

cos(θ)

)

⇔ r2I = A cos(θ) +B sin(θ2)

⇔ r2I =
A√

|∇r|2 + 1
+

B |∇r|2
|∇r|2 + 1

⇔ r2I (|∇r|2 + 1)−A
√
|∇r|2 + 1−B |∇r|2 = 0 .

(A.27)
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