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Abstract

This thesis is devoted to the analytical study of rate-independent damage process in physi-
cally linearly two-phases elastic materials. The study is done through an energetic approach
with particular attention to threshold properties. The evolution of the systems is driven by
an external force f(t) or by a time-dependent boundary conditions g(t) that can produce
deformations and damage of the material, which physically means a weakening of elastic
properties. We associate to the system an energy E , which consists in the elastic internal
stored energy of the material and the amount of energy generated by external loadings (with
an inertial term in last chapter), and a dissipation D, which represents the amount of energy
dissipated when changing from a damage configuration to another. The notion of solution that
we consider is the quasi-static evolution (q.s.e.) which means a couple deformation-damage
that for each time satisfies a minimality condition among all the admissible competitors, an
energy balance and an irreversibility property of the damage.
The main interesting point related to the considered model is given to the possibility to com-
bining efficiently quasi-static evolution with non classical problem as homogenization, both
in the (quasi)static case and in the dynamic framework. Moreover for this model we can
also give two different natural notion of evolutions, based on an energetic criterion and on a
threshold one.

The main original results of the thesis are the following:

• Quasi-static damage evolution and homogenization, existence and convergence results.
We consider a family of q.s.e. for oscillating energy Eε and dissipation Dε describing a
mixture of two one-dimensional elastic two-phase materials. We show that this family
converges to a q.s.e. related to the Γ-limit of Eε + Dε (which is shown to be different
from the sum of the Γ-limits, but nevertheless interpretable as sum of an energy Fhom
and dissipation Dhom). Moreover we characterize the limit relaxed evolution as the one
corresponding to a double-damage material (i.e. homogeneous material with two possibil-
ity of damaged states and related dissipations). This results contribute to the analysis of
interaction between Γ-convergence and q.s.e..
This is treated in Chapter 2.

• Quasi-static damage evolution for a perimeter-regularized energy, convergence result.
We consider the energy and dissipation for a linear two-phase isotropic elastic material
with penalization given by the perimeter of the damage. We show that in case that the
penalization goes to zero, the q.s.e. of the system converges to a q.s.e. for the relaxed
energy according to the definition given in [43], and moreover that some threshold prop-
erties are satisfied. This results contribute to the study of the interplay between q.s.e.
and homogenization and show the stability of the threshold solution defined in [43] w.r.t.
singularity perturbations.
This is treated in Chapter 3.

• Dynamic evolution of the damage through energetic and threshold approach.
We consider the energy and dissipation for a linear two-phase isotropic elastic material for
discrete time with a kinetic (inertial) term given by discretization of the second derivative
(in time) of the deformation. We show that the limit (in the time step) of minimizing
sequences satisfies the monotonicity of the damage, an energy inequality, a threshold con-
dition and a “relaxed” elasto-dynamic equation. Moreover starting directly from the mo-
mentum equation for the system and considering damage obtained, step by step, through a
threshold condition, we show that, also with this approach, the limit solution of the equa-
tion and the limit of the damage satisfy a “relaxed” elasto-dynamic equation. We stress
that there is no viscosity term in the model which usually helps for the limit passages.
This results contribute to the study of the homogenization process in a dynamic frame-
work.
This is treated in Chapter 4.
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Introduction

In nature when an external force acts on a material it can produce some modifications
to the state of equilibrium of it, producing effects as damage, fracture, phase transitions or
plasticity. Our interest is in the damaging of an elastic material, where elastic means that when
the external forces disappear the body goes back to its original position without maintain
permanent deformation. Usually we can think at damaging as a process that modifies the state
of a region of the body weakening its properties but without producing a macroscopic fracture
on it. We can imagine that fractures can happen at a microscopic level breaking connections
between different particles but at a macroscopic level if these microscopic fractures are not
so frequent we will see in that region just a weakening of the material. The interest in these
problems is to describe how the damage (or the fracture or other relevant properties of the
material) changes during the time.
Historically the necessity of a damage theory came from an engineering environment and
started as phenomenological observations (see [48], [54] and [55]) to try to describe (and
hopefully) predict the evolution of the damage as tool for mechanical engineering applications.
In the framework of the damage of an elastic material it is postulate that there exists a space-
time internal scalar (or vectorial) variable of the model θ(x, t) which usually corresponds to
a characteristic function or a density function of the damaged set. It describes the ‘amount’
of damage at the point x ∈ Ω ⊂ Rn (with n = 1, 2, 3) of the material (occupying the bounded
region Ω) at the time t ≥ 0 and it is considered intrinsically part of the system through the
tensor A(x, t) according to a constitutive relation

A(x, t) = Â(θ(x, t)).

The choice of the function Â(θ) is a matter of great debate and can take different forms
depending on the assumption made on the system although it must reflect the physical idea
that greater is the damage (i.e. increasing θ) then weaker is the material (i.e. decreasing is

Â). In the case of small strains of the material the response of the material is assumed to
follow the linear Hooke’s law which leads to the linear elastic internal energy density

W (e) =
1

2

n∑

i,j,k,l

Aijkleijekj (0.0.1)

where A ∈ F(α, β) which is the set of the 4-th order bounded symmetric tensors (see (1.2.15)
for scalar definition), and e(u) denotes the linearized strain tensor

e(u) :=
(∇u)T + (∇u)

2
with

u : Ω −→ Rm, m = 1, 2, 3,

the displacement of the material.

2



From thermodynamics it is classical (see [44]) to write a constitutive law that relates the
thermodynamic forces

F := − ∂

∂θ
W (e, θ)

to a dissipation potential D = D(θ̇(t)) (which represents the energy density dissipated when
changing from a damage configuration to another because of external loading) by the subd-
ifferential relation

F (t) ∈ ∂D(θ̇(t))

for each point of the domain Ω ⊂ Rn .
The processes in which we are interested are the ones called rate-independent processes
namely the processes such that with a reparametrization of the time we obtain just the
time-reparametrized evolution of the damage and deformation, i.e., the evolution doesn’t
depend on the velocity of the external loadings . This physical property is mathematically
expressed requiring that the dissipation potential is 1-homogeneous in the velocity of the
damage variable, i.e.

D(αθ̇(t)) = αD(θ̇(t)) if θ̇(t) ≥ 0, (0.0.2)

with α > 0, while, imposing also that

D(θ̇(t)) =∞ if θ̇(t) < 0 (0.0.3)

we recover the physical non-decreasing property of the damage. A way to study the evolution
of the displacement and the damage of the material (due to external loadings f(t) on the
domain and/or to boundary condition g(t)) is to assume that at each time the material
reaches the elastic equilibrium and so satisfies the Euler-Lagrange equation related to the
energy density. In so doing the analysis of the evolution of the displacement and damage
becomes to find a pair solution (u(t), θ(t)) of the problem

{
−div

(
∂
∂eW (e(u(t)), θ(t))

)
= f(t) Ω

− ∂
∂θW (e(u(t)), θ(t)) ∈ ∂D(θ̇(t)), θ(0) = θ0

(0.0.4)

where u(t) satisfies some boundary conditions (in case depending on time through a function
g(t)). From a classical standpoint, this model requires great regularity and to be solved it is
necessary to introduced some regularization in the form of the gradient of the damage variable
(see [41, 39, 47, 53]). On the other hand in the last decades another powerful approach for
rate-independent processes to study damage evolutions (but also other processes as fracture,
plasticity and phase transition) was introduced in [66, 67] and it is based on an energetic
formulation instead of a partial differential equations approach which leads to the definition
of Quasi-static Evolution. The idea is to associate an energy E(t, u, θ) to the system

E(t, u, θ) =

∫

Ω
W (x,∇u, θ(x))dx− 〈l(t), u〉 (0.0.5)

where l(t) = f(t) + g(t), and a dissipation potential satisfying (0.0.2)-(0.0.3). Then a dissipa-
tion energy is introduced as

Diss(θ, [t0, t1]) :=

∫ t1

t0

∫

Ω
D(x, θ(x, t), θ̇(x, t))dxdt

with a dissipation distance between two damage states

D̃(θ0, θ1) = inf{Diss(θ, [0, 1]) : θ ∈ C1([0, 1]× Ω), θ(0) = θ0, θ(1) = θ1},
and by this looking for a quasi-static evolution defined as follows:
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Definition 0.1. A pair (u(t), θ(t)) : [0, T ] −→ Q := F × Z, with F and Z Banach
spaces (e.g. H1

0 (Ω)×L∞(Ω)) is called Quasi-static Evolution of the rate-independent problem

associate to an energy E and a dissipation distance D̃ if it holds

• Minimality property: For all t ∈ [0, T ] and all admissible competitors (ũ, θ̃) ∈ Q
we have

E(t, u(t), θ(t)) ≤ E(t, ũ, θ̃) + D̃(θ(t), θ̃) (0.0.6)

• Energy Balance: For all t ∈ [0, T ] we have

E(t, u(t), θ(t)) +Diss(θ, [0, 1]) = E(0, u(0), θ(0))−
∫ t

0
〈l̇(s), u(s)〉ds (0.0.7)

• Monotonicity: The damage variable θ(t) is increasing in time, for each x ∈ Ω.

For a more general abstract framework see [57] and [60, 66, 68] in which it was shown
that the quasi-static formulation can be derived from the mechanical one given by (0.0.4)
satisfying properties (0.0.2)-(0.0.3), and that, with appropriate convexity hypothesis on the
energy density, the two formulation are equivalent. The energy model that we consider in this
thesis is the one proposed in [33] (see (0.0.11) below) where the simplest density dissipation
potential satisfying (0.0.2)-(0.0.3) is taken, i.e.

D(s) := ks with s ≥ 0, and D(s) :=∞ with s < 0 (0.0.8)

with k the dissipation constant. Although this is a very simple model, it allows to study
q.s.e. in which complex processes can occurs as homogenization and (at least in the one
dimensional case) it is possible to make explicit computations. Moreover, as will be clear, the
(homogenized) q.s.e. from this model neither need to impose an a-priori form for the elastic
matrix nor a particular microstructure for the damage must be prescribed at the beginning.
The notion of quasi-static evolution does not require the solutions to be smooth in time
and space and, moreover, such energetic approach allows for the usage of the powerful tools
of the modern theory of the calculus of variation, such as lower semi-continuity, quasi/poly
convexity, non-smooth techniques and, as we will see, to study homogenization processes
through G − convergence notions. All this tools have been much more adequate to study
many mechanical system and by this energetic approach of rate-independent process has
been developed for a variety of evolution problems in the material science as for damage
([33, 35, 43, 65]), plasticity ([22, 25, 59, 71]), fracture ( [26, 28, 34, 36]), phase transitions
([5, 6, 37, 49, 67]) but also for the interplay between damage and fracture (e.g. [10]) and
between fracture and plasticity (e.g. [29]).
The usual strategy to obtain quasi-static evolution for rate-independent materials is through
the resolution of time-parametrized minimization problems: the first part is to perform a step
by step minimization of the total energy, then let the time-step go to zero and show that the
limit of such minimizing sequences satisfies the assumption of a quasi static evolution. More
precisely, it is considered a space Q of all possible configurations of the system, the energy
functional E(t, q) with the associated dissipation distance D̃(q1, q2) and, given an initial datum
q0 ∈ Q and a time step τ , the first part consists in solving for each j = 1, 2....bT/τc

min
{
E(jτ, q) + D̃(q, qτj−1) : q ∈ Q

}
. (0.0.9)

with qτ0 := q0, which can be done, for example, applying direct methods.
Then a piecewise-constant trajectory qτ (t) is usually defined by

qτ (t) = qτj if t ∈ [jτ, (j + 1)τ),

and taking its limit in τ (by some compactness property) the idea is to show that it satisfies
a minimality property, an energy balance, and some monotonicity property, namely, it is a
quasi-static evolution.
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In this thesis we follow this fruitful approach to study a model for rate-independent damage
process in linear two-phases elastic materials and homogenization effects that can arise.
We focus our analysis considering a bidimensional isotropic material (i.e. such that for each
point the elastic properties are the same in each direction) whose deformation is permitted
only in the orthogonal way of the domain of such material (antiplane case).
The damaged region D is characterized by the matrix αI, with α > 0 and I the identity
matrix in R2, while the undamaged region by the matrix βI, with β > α and hence the
elastic properties of the material are described by the matrix

σD(x) := αIχD(x) + βI(1− χD(x)). (0.0.10)

This model for a brittle damage of a material with two phases (not necessarily isotropic)
in the vectorial case was introduced by Francfort and Marigo in [35] (and then numerically
implemented in [1] and [2]) in which the dissipation is given by (0.0.8).
In the scalar isotropic case their total energy takes the form

Etot(t, u,D) :=
1

2

∫

Ω
σD|∇u|2dx− 〈f(t), u〉+ k|D| (0.0.11)

where f(t) ∈ H−1(Ω) and 〈·, ·〉 is the duality between H−1 and H1
0 .

The evolution according to such energy and dissipation describes a damage process with a
non-decreasing damage zone, driven by the external force f(t) and the competition between
the internal energy, which is characterized by the elastic matrix in (0.0.10) which is lower
in the damaged region D, and the dissipation, which accounts for the amount of damaged
material.
We remark that minimize (0.0.11) in (u,D) is equivalent to minimize in u the energy

Etot(u) :=
1

2

∫

Ω
W (∇u)dx− 〈f(t), u〉 (0.0.12)

with

W (ξ) = min{1

2
βξ2,

1

2
αξ2 + k}

and since W (ξ) is not a convex function (neither quasiconvex in the vectorial framework of
[35]) it implies that during the minimization process we need to relax the problem. This was
exactly the most important point noticed in [35] where Francfort and Marigo showed that
in this case (without further restriction on the damage set) we can not expect time per time
a well localized damage region but, in the process of minimization (at the first time step!),
the material could prefer to create a finer and finer mixture of the damaged and undamaged
region.
In the multi-dimensional case the right framework for the relaxation is that of the G-
convergence for the coefficients σD (see [35], [33] and [43]), and this will be treated in
Chapter 3 and Chapter 4.

In Chapter 2 we focus on the one-dimensional evolution case (driven by a time-dependent
boundary condition g(t)) for which weak evolution can be easily expressed in terms of the
weak limits of characteristic functions χD and for which it can be seen it is always possible
to construct strong evolutions of the form (u(t), D(t)) and we explicitly compute this kind of
solution. In particular we will treat a heterogeneous case, with a parameter depending energy
functional given by

Eε(u,D) =

∫

D
α
(x
ε

)
|u′|2 dx+

∫

Ω\D
β
(x
ε

)
|u′|2 dx (0.0.13)
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associated to a dissipation term of the form

D̃ε(D) =

∫

D
γ
(x
ε

)
dx , (0.0.14)

where α, β, and γ are 1-periodic functions taking, for sake of simplicity, only two values so
that Eε can be interpreted as describing a mixture of two materials with coefficients β1 and
β2 when undamaged, and α1 and α2 when damaged. In this case the same scheme adopted
in (0.0.9) can be followed. In so doing for fixed ε it can be defined a quasi-static evolution
qε and after that the limit as ε→ 0 can be studied. Conversely, with fixed τ and ε, we may
consider discrete trajectories qτ,εj defined iteratively as solutions of

min
{
Eε(jτ, q) + D̃ε(q, qτ,εj−1) : q ∈ Q

}
(0.0.15)

and take the limit as ε→ 0 first instead of τ . Under some coerciveness and continuity assump-
tions (that guarantees the possibility to apply the Fundamental Theorem of Γ-convergence,

see Section 1.1) these trajectories converge as ε → 0 to qτ,0j , which solves an effective limit
problem

min
{
F (jτ, q, qτ,0j−1) : q ∈ Q

}
, (0.0.16)

where F (·, q̃, t) is the Γ-limit of

q 7→ Eε(t, q) + D̃ε(q, q̃).
with respect to the topology in Q. We underline that, while the properties of Γ-convergence
easily imply the existence of a limit functional F and the convergence of minimizers, the
actual form of F (t, ·, q̃) may depend in a non-trivial way on q̃, and is not immediately written
as a sum of an energy and a dissipation. After this passage as ε → 0, we can define the
piecewise constant functions

qτ,0(t) = qτ,0j if t ∈ [jτ, (j + 1)τ)

and again, using some compactness property, take the limit as τ → 0 to obtain (up to
subsequences) a continuous in time limit q0(t). In general it is not clear whether this last
trajectory q0(t) agrees with the effective energetic solution given by the limit of qε(t). In other
words it is not obvious, and in general is false, that a quasi-static evolution related to an energy
and dissipation (depending by a parameter) converges to a quasi-static evolution for the Γ-
limit of energy and dissipation. Mielke et al. [64] proved that this property of commutability

of Γ-convergence and quasi-static evolution happens when Eε and D̃ε separately Γ-converge
to some E and D̃ and suitable additional assumptions are satisfied (as the existence of a
mutual recovery sequence (see Lemma 2.1. in [64] ) which in particular implies that

F (q, q̃, t) = E(q, t) + D̃(q, q̃) , (0.0.17)

and hence the limiting trajectory can be again regarded as an energetic solution. This however
is a restrictive hypothesis, and in general neither the form of the limit F may be immediately
interpreted as the sum of an internal energy and a dissipation, nor we may deduce from the
Γ-convergence of Eε and Dε enough information on the convergence of their sum.
We will illustrate that for the energy and dissipation given in (0.0.13)-(0.0.14) we do have
separate Γ-convergence, but the Γ-limit of the sum does not agree with the sum of the Γ-limits.
Nevertheless, the limit F can be viewed as the sum of an internal energy and a dissipation
and the main result that we will prove is that the corresponding quasi-static evolution is the
limit of the quasi-static evolutions for Eε and D̃ε. This result contributes to the analysis of
the interaction between Γ-convergence and variational evolution which has recently attracted
much interest both in the framework of energetic solutions and in the theory of gradient flows
(see [4, 14, 16, 62, 63, 64]).
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In Chapter 3 we will consider the energy in (0.0.11) in the multi-dimensional case for
which, as noticed, we need G-convergence tools. In [33] Francfort and Garroni showed (in the
vectorial framework) the existence of a relaxed form of the energetic quasi-static evolution
(see Definition 3.1 with Remark 3.2 in Chapter 3) for the relaxed functional of the energy
given in (0.0.12) which is (see [35, 38, 33, 70])

E∗tot(u) :=
1

2

∫

Ω
W ∗(∇u)dx− 〈f(t), u〉 (0.0.18)

with

W ∗(ξ) = min
θ∈[0,1]

min
A∈Ḡθ(αI,βI)

{1

2
Aξξ + kθ}

where Gθ(αI, βI) is the so called G-closure of α and β with volume fractions θ and 1 − θ
which is the set of matrices which represents every possible fine periodic mixture of healthy
material with proportion (1− θ) and of damaged material with proportion θ (see Chapter 1).
As noticed, the necessity to relaxing the problem arises in the minimizing process at the first
time step and leads to consider density damage functions instead of characteristic functions
for damage sets. By this it is needed to decide how to impose the irreversibility of the damage
for the next time steps and how to impose the minimality condition. In this relaxed framework
the minimality condition at time t considered in [33] was given in terms of adding further
damage to the material obtained at time t by previous mixture process, i.e. it was expressed
by a couple (A(t), θ(t)) minimizing the energy (0.0.18) with respect to competitors (A′, θ′)
with A′ ∈ Ḡθ′(αI,A(t)). Moreover they proved that the evolution satisfying such minimality
condition can be approximated by a sequence of (increasing) sets Dn(t), such that

αIχDn(t) + βI(1− χDn(t))
G−→ A(t) and χDn(t)

∗
⇀ θ(t).

However in [43] was proved that Dn(t) (or any such approximating sequence) does not have
good optimality properties, since if D′n ⊃ Dn(t) it is not generally true that the G-limit of
σD′n is in the set of the competitors Ḡθ′(αI,A(t)) (see Remark 4 in [43]). By this a new
minimality condition (with larger class of competitors) was defined to take in account good
properties also for approximating set (see Definition 3.1).
The existence of a (relaxed) quasi-static evolution with this larger class of competitors for
the minimality condition is proved in [43] and moreover it is proved that this quasi-static
evolution is also a (relaxed) threshold solution, where by this they mean that the damage
satisfies a relaxed version of the following definition of Threshold solution (see Definition 3.4):

Definition 0.2. The set function t −→ D(t) is a threshold solution if there exists a
scalar λ > 0 such that

• Monotonicity: t −→ D(t) is increasing (in the sense that D(s) ⊇ D(t) if s > t);
• Threshold condition: given u(t) = u(t, x) the solution of

−div(σD(t)∇v) = f(t),

we have |∇u(t)| ≤ λ in Ω\D(t);
• Necessity of Damage:

-∀E ⊂ D(T ) with |E| > 0, and all ∆t sufficiently small, ∃τ < t − ∆t such that
considering the solution v of

−div(σD(τ+∆t)\∆E∇v) = f(τ + ∆t),

where ∆E := E ∩ [D(τ + ∆t)\D(τ)] we have |∇v| > λ in on a set of positive
measure of ∆E.
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-If D(t) is not continuous at T , then we also require that ∀E ⊂ D(T )\D(T−) with
|E| > 0 and D(T−) := ∪t<TD(t), the solution v of

−div(σD(T )\E∇v) = f(T )

satisfies
|∇v(x)| > λ

in a subset of E with positive measure.

The first two properties are very clear, the last one needs an explanation: it is a condition
that codifies the fact that if a region has been damaged then there exists a previous time
such that if that region had not been damaged then it would be exceeded the threshold λ in
a set of positive measure of the undamaged region.
The importance of a threshold approach is that it is, intuitively, more physical than the
energetic one because the evolution of the damage is not related to the energy of the system
(which can be something abstract) but it follows a computational criterion: in the region in
which the (gradient of the) deformation of the material exceeds a certain threshold then a
damage occurs. Moreover it is a local criterion so we don’t need to know the state of the whole
material to know if in some point the damage will happen. This approach seems to have a
natural extension in dynamic processes, and in Chapter 4 a definition of threshold solution
is investigated. Our starting point in Chapter 3 is to avoid, in the process of damaging,
the homogenization of the material (mixture of healthy and damage phase) and to this aim
we add in the energy a penalization for the damaged set to have a compactness property,
and, considering the relative (not relaxed) quasi-static evolution we study what happens in
the limit when such penalization term goes to zero. Precisely, we will start with the energy
(0.0.11) penalized by the perimeter of the damaged region

Eεtot(u,D) :=
1

2

∫

Ω
σD|∇u|2dx− 〈f(t), u〉+ k|D|+ εPer(D) (0.0.19)

where Per(D) is the perimeter given by the total variation of the characteristic function χD

Per(D) := sup

{∫

D
divϕdx : ϕ ∈ C1

0 (Ω), ‖ϕ‖∞ ≤ 1

}
.

The minimization problem for such energy (with ε = 1) was studied by Ambrosio and
Buttazzo in [3] where they proved the existence of a minimizer couple (u,D) where u turns to
be Holder continuous in space and D is (equivalent to) an open set. The space regularity of u
was improved in [56] and in [50] it was proved that, in the two dimensional case, components
of D have C1 boundary.
The existence of a quasi-static evolution (without homogenization effects) for (0.0.19) was
proved in [80] in which a more general framework has been analyzed.
Starting from this point our main result is in proving that, under the assumption that the
perimeter term goes to zero in ε, the quasi-static evolution for the energy (0.0.19) converges
to the quasi-static evolutions in the relaxed version of [43] whose class of competitors is
bigger than the one in [33] (and so to a threshold solution in the sense of Definition 3.4).
In this sense, this result contributes to the study of homogenization process for quasi-static
evolution, moreover it confirms the validity of the new physical idea of damaging processes
introduced in [43], and finally that the threshold definition is, in some sense, stable under
perturbation at finite scale.
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In Chapter 4 we will study a damaging process in an elastodynamic framework. This
means that, considering the elasticity matrix A(t, x), the general equations that describe
the deformation u of the material (with, e.g. zero boundary conditions), with initial data
(p(x), q(x)) are given by





∂t(ρ(t, x)∂tu)− div(A(t, x)∇u) = f in Ω
u = 0 in ∂Ω
u(0, x) = p(x),
ρ(x, 0)∂tu(x, 0) = q(x)

(0.0.20)

where ρ(t, x) represents the density of the material and f the external loading. The problem
(0.0.20) has been widely studied both in case of given A(t, x) and in case it is not given
a-priori and satisfying some (growth) conditions. Homogenization and corrector results for a
parameter depending matrix An(t, x) can be found respectively in [20, 11] and in [18] while
conditions for existence and non-existence of solutions are studied in [19, 21, 46].
The case that we will analyze is given by A(t, x) := σD(t)(x) and ρ ≡ 1 that is covered by the
result of Casado-Diaz et al. ([17]) in which it is proved an existence and uniqueness result
for a parameter depending ρn ∈ BV (0, T ;L∞) and An ∈ BV (0, T ;M2×2

sym), and an homoge-
nization and corrector result.
The study of the evolution of the damage variable θ(x) ∈ [0, 1] coupled to the displace-
ment given by the solution of an hyperbolic equation like in (0.0.20) started from [40] in the
framework of complete damage. In the one-dimensional case they proved a local in time weak
solution for the displacement equation with a viscosity term and for the associated damage
variable equation (see also [8]) while the problem without viscosity term was solved (locally
in time) in [9] in the elliptic and parabolic case. In the case of incomplete damage global
existence results, considering viscosity and temperature, can be found in [45] and in [76] in
which is used the notion of entropic solution and energy inequality results was proved.
The energetic approach for rate-independent processes coupled with inertia (but also vis-
cosity and temperature) has first been analyzed in two pioneering papers [77, 78] and by
these has been used in different materials problems like fracture (e.g. [51]) and plasticity (e.g.
[30]). Recently using this approach was studied in [52] a rate-independent damage model in
thermo-visco-elastic materials with inertia where, differently from [77, 78], the damage was
considered unidirectional.
The dynamic model from which we start is not considering viscosity effects or temperature,
as done in [9], and it is in the framework of incomplete damage of a two-phase material.
Differently from the results cited before, we will obtain (as in the previous Chapter) evolu-
tions for the damage in which neither the microstructure of the damage set nor the form of
the elastic matrix is chosen a priori but they will be defined as consequence of minimizing
problems. The model that we have in mind is then





ü− div(σD∇u) = f(t) in Ω
u(0) = p(x),
u̇(0) = q(x),

(0.0.21)

where u has zero boundary condition and σD is given by (0.0.10), where D has to satisfies
an irreversibility property of damage. The interesting point of our results is related to the
possibility to give different natural notions of dynamic evolution to study the homogenization
that arises in such problems. The first one is driven by the classical energetic approach while
the second follows a threshold criterion. We stress that by the lack of uniqueness in such kind
of problems the two limit solutions can be different and by this we will suggest a definition
of threshold solution for the dynamic problem (extended from the (quasi)static framework)
that could help in some way to select physically “good” solutions.
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In the first part of Chapter 4 following the energetic approach we use a discretization of time to
find a sequence of solution (un, Dn) for a discrete version of the minimum problem associated
to the equation (0.0.21). The main result is given in Theorem 4.1 in which we prove that the
limit (as the time step tends to zero) of such sequence of solution satisfies (in weak sense) the
elasto-dynamic equation for a homogenized material, a monotonicity condition (regarding to
the density of the damage), a one-side energy inequality and a threshold property.
In the second part we will present a different way to study the evolution based in considering
the solution of the discrete in time version of problem (0.0.21). This approach consists in
solving the equation till the time in which the gradient of the solution exceeds a certain
threshold λ in a set of measure 1/n, then to damage this region and to modify the equation
with the new damage and iterate the argument. We will show, using results in [17], that also
with this approach we obtain a limit of such sequence that, also in this case, solves (in the
weak sense) the elasto-dynamic equation for a homogenized material.
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CHAPTER 1

Preliminaries

1.1. Γ- convergence

In many physical situations the energy that describes the model can depend by a param-
eter j, that could represent, for example, a microscopic space scale in which some properties
of a material appears. In this case the minimum problem in which we are interested is of the
form

min{Fj(u) : u ∈ X} (1.1.1)

The condition to have solution for (1.1.1) are given by direct methods. It could happen that
the problem in (1.1.1) has no solution (but only minimizing sequence) or that even in case
of existence of solution it is hard to solve the problem. The Γ-convergence, introduced by De
Giorgi and Franzoni in [31], is a kind of convergence to obtain a some kind of limit F̄ of Fj
in such a way that considering the limit problem

min{F̄ (u) : u ∈ X} (1.1.2)

we have that minimizing sequences of problem in (1.1.1) converge to minimum points of the
problem in (1.1.2) and viceversa (see Theorem 1.4). We recall here definition and some well
known property of Γ-convergence, for further details see [24] or [13].

Definition 1.1.1. Let X a metric space. A functional F̄ : X −→ R̄ is the Γ-limit of Fj if

1) (Γ−liminf inequality) for all u ∈ X and for all uj −→ u it holds

F̄ (u) ≤ lim inf
j−→∞

Fj(uj)

2) (Γ−limsup inequality) for all u ∈ X there exists a recovery sequence ūj −→ u
it holds

F̄ (u) ≥ lim inf
j−→∞

Fj(uj)

Remark 1.1. In case of a family Fε of functionals indexed by continuous parameter we
say that F0 is the Γ-limit of Fε and we write

F0 = Γ− lim
ε
Fε

if F0 is the Γ-limit of Fεj for every sequence {εj}j converging to zero.

Remark 1.2. Let note that the Γ-limit depends on the convergence used on X but it easy
to prove that once this is fixed then the Γ-limit, if exists, is unique. Moreover the Γ-limit
satisfies the following properties:

1) The Γ-limit is lower semicontinuos.
2) A sequence of functional Γ-converges if and only if every subsequence Γ-converges

to the same limit.

3) If Fε
Γ→ F̄ and G is a continuous functional on X then Fε +G

Γ→ F̄ +G

4) If Fε ≡ F , then Fε
Γ→ F ∗ where F ∗ is the lower semicontinuous envelope of F .

An important result about Γ-convergence is the fact that, up to subsequences, there
always exists the Γ-limit of a sequence of functional.
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Theorem 1.3. Let X a metric space and Fε : X −→ X̄, ε > 0. There exists a subsequence

Fεj and a functional F̄ : X −→ R̄ such that Fεj
Γ→ F̄ .

We now remind the well known fundamental theorem of Γ-convergence which precise the
idea introduced to study problems (1.1.1) and (1.1.2).

Theorem 1.4. (Fundamental Theorem of Γ-convergence)
Let X a metric space and Fε : X −→ R̄ equi-coercive1 and such that

F̄ = Γ− lim
ε
Fε

then

1) F admits minimum, and minF = limε−→0 inf Fε;
2) if uεj is a minimizing sequence for some subsequence Fεj which converges to some

u then its limit point is a minimizer for F ;
3) every minimizers of F is the limit of a converging minimizing sequence of Fε

Proof. We focus just on the proof of point 1), which is the most important in our
purposes.
Let uε be a minimizing sequence for Fε, that is

lim inf
ε→0

Fε(xε) = lim inf
ε→0

inf
X
Fε.

Since Fε is equi-coercive, there exists u ∈ X such that, up to a subsequence, uε −→ u. By
the Γ-liminf inequality we have immediately

inf
X
F ≤ F (u) ≤ lim inf

ε→0
Fε(uε) = lim inf

ε→0
inf
X
Fε. (1.1.3)

Moreover for any v ∈ X let {ūε,v} be a recovery sequence for u according with Γ-limsup
inequality. Then, by 1.1.3, we get for any v

F (u) ≤ lim inf
ε→0

inf
X
Fε ≤ lim sup

ε→0
Fε(ūε,v) ≤ F (v).

It follows that F (u) = minX F and that

F (u) = lim inf
ε→0

Fε(uε).

�

1.1.1. Homogenization Formula. For special kind of family of functional it is possible
to characterized the Γ-limit. Let consider the family of functional Fε : W 1,p(Ω) −→ R with
p ∈ (1,∞) defined by

Fε(u)

∫

Ω
f

(
x

ε
,∇u

)
dx (1.1.4)

where u ∈W 1,p(Ω;R) and Ω open set in Rn. Let assume also that

f is a Caratheodory function (1.1.5)

f(·, ξ) is 1-periodic for each ξ ∈ Rn (1.1.6)

c1(|ξ|p − 1) ≤ f(s, ξ) ≤ c2(1 + |ξ|p) ∀ξ ∈ Rn and ∀s (1.1.7)

with c2 > c1 > 0. Then the following Representation Theorem holds

1i.e. such that for any sequence uε ∈ X with supε Fε(xε) ≤ C for some C > 0, there exists ū ∈ X such
that, up to a subsequences, uε −→ ū.
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Theorem 1.5. (Homogenization Theorem)
Let Fε a family as in (1.1.4) with f : Ω × Rn −→ R satisfying (1.1.5), (1.1.6) and (1.1.7).
Then there exists a convex function ϕ : Rn −→ R, satisfying (1.1.7) such that,
defined Fhom : W 1,p(Ω) −→ R as

Fhom(u) =

∫

Ω
ϕ(∇u)dx (1.1.8)

it holds

Fε
Γ→ Fhom.

Moreover ϕ is characterized by the following representation formula

ϕ(ξ) = inf

{∫

(0,1)n
f(x,∇u+ ξ)dx : u ∈W 1,p

# ((0, 1)n)

}
(1.1.9)

= lim
T−→∞

[
inf

{
1

Tn

∫

(0,1)n
f(x,∇u+ ξ)dx : u ∈W 1,p

0 ((0, T )n)

}]
(1.1.10)

= lim
ε−→0

[
inf

{∫

(0,1)n
f

(
x

ε
,∇u+ ξ

)
dx : u ∈W 1,p

0 ((0, 1)n)

}]
. (1.1.11)

where W 1,p
# ((0, 1)n) := {ϕ ∈W 1,p

loc ((0, 1)n) periodic in the unit cell (0, 1)n}.

We conclude this section reminding a characterization Theorem in scalar case that will
be useful in Chapter 2 (see [13], Theorem 2.35).

Definition 1.6. Given a function f : (a, b) × R −→ R be a function, we define the
conjugate function of f as

f∗(x, z∗) = sup{z∗z − f(t, z) : z ∈ R}
for all x ∈ (a, b) and z∗ ∈ R.

Theorem 1.7. Let Fj a family of function of the form in (1.1.12) with integrand fj
satisfying (1.1.5), (1.1.6) and such that fj(x, ·) is convex for all x ∈ (a, b). Then the following
statements are equivalent:

1) for all I open subintervals of (a, b), F (·, I) given by

F (u, I) =

∫

I
f(x, u′(x))dx (1.1.12)

is the Γ-limit on W 1,p(I) w.r.t Lp(I) topology
2) for all z∗R, f∗(·, z∗) is the weak∗-limit of the sequence f∗j (·, z∗).

Moreover, both conditions are compact.

Example 1.8. As a particular case, take fj(t, z) = αj(t)|z|2 with 0 < c1 ≤ αj ≤ c2 <∞.
Then

f∗j (x, z∗) =
(z∗)2

4αj(t)
.

So, f∗j (·, z∗) converges weakly∗ if and only if

1

αj(x)

∗
⇀

1

β(x)
for some β ∈ L∞(a, b),

and in this case we get

Γ− limj

∫ b

a
αj(x)|u′(x)|dx =

∫ b

a
β(x)|u′(x)|dx.
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As a particular case we can take αj(x) = α(jx) with α 1-periodic. in this case β is constant
and

β =

(∫ 1

0

1

a(x)
dx

)−1

,

the harmonic mean of α(x).

1.2. G-convergence

The notion of G-convergence, introduced by De Giorgi and Spagnolo in [32] and [79], is one of
the most powerful tool to study homogenization in material science. Let consider a sequence
of problem in a bounded domain Ω ⊂ Rn

{
−div(Aj∇u) = f in Ω
u = 0 in ∂Ω

(1.2.13)

where, in the framework of elastic material, An(x) ∈ Rn×n describes the elastic properties of
an heterogeneous material, u : Ω −→ R the displacement of the point x of the material and
f ∈ H−1(Ω) an external force. As for Γ- convergence sometimes it could be more easier and
useful not to solve the problem (1.2.13) but to solve a some kind of limit problem

{
−div(A∗∇u) = f in Ω
u = 0 in ∂Ω

(1.2.14)

for which the solution of (1.2.13) converges to the solution of (1.2.14). Roughly speaking G-
convergence is, by definition, the convergence of the elastic matrices An (tensors in vectorial
case) that assures this kind of approximation.
The notion of G-convergence can be given in the general vectorial case (see, e.g., [32], or
[69] for the more general case of nonsymmetric linear operators and H-convergence), but we
focus just in the case of symmetric scalar operator. In this case we recall, the definition and
some well known properties.

Considering a sequence Aj ∈ L∞(Ω;F(α, β)), where β > α > 0 and

F(α, β) := { B ∈ Sym2×2(R) such that α|ξ|2 ≤ Bξ · ξ ≤ β|ξ|2, ξ ∈ Rn}. (1.2.15)

with Sym2×2(R) the set of 2×2, real valued and symmetric matrices, we give the following
definition

Definition 1.9. Given Aj ∈ L∞(Ω;F(α, β)), we say that Aj G-converges to A ∈
L∞(Ω;F(α, β)), and we write Aj

G−→ A, if for every body force f ∈ H−1(Ω), the solutions
uj of the equilibrium equation

−div(Aj∇uj) = f, uj ∈ H1
0 (Ω;R),

is such that

uj ⇀ u, weakly in H1 (1.2.16)

where u is the solution of

−div(A∇u) = f.

Now, considering B and C matrices in F(α, β), and so representing the elastic properties
of two phases, we can look for any mixture of those two phases, that is, for any characteristic
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function χD of a set D ⊂ Ω of, say, phase B, we look at a new elastic material with elastic
matrix

σD := χDB + (1− χD)C.

Considering a sequence of characteristic functions χDj
∗
⇀ θ, we investigate the possible G-

limits of σχ
Dj
. The main important properties of G-convergence are the followings

• Compactness: for any sequence Aj ∈ L∞(Ω;F(α, β)), there exists a subsequence,

Ak(j), and A ∈ L∞(Ω;F(α, β)) such that Ak(j) G−→ A;

• Convergence of the energy: if Aj
G−→ A, then

∫

Ω
Aj∇uj∇uj dx→

∫

Ω
A∇u∇u dx;

with uj and u defined as above.
• Metrizability: G-convergence is associated to a metrizable topology

on L∞(Ω;F(α, β));

• Ordering: if Bj ≤ Aj and Bj G−→ B, Aj
G−→ A, then B ≤ A (the inequalities are

in the sense of quadratic forms);

• Locality: if Bj G−→ B, Aj
G−→ A, and χD is a characteristic function of a set D ⊂ Ω,

then χDB
j + (1− χD)Aj

G−→ χDB + (1− χD)A;
• Periodicity: if Aj(x) := A(jx), with A ∈ L∞([0, 1]2;F(α, β)) periodic, then the

whole sequence Aj G-converges to A0, which is the constant matrix given by

A0ξ · ξ = inf
ϕ periodic

∫

[0,1]2
A(y)(ξ +∇ϕ) · (ξ +∇ϕ) dy. (1.2.17)

Note that it coincides with the homogenization formula (1.1.9), obtain with Γ-
convergence in case that f(x, ξ +∇u) = A(x)(ξ +∇u) · (ξ +∇u).

In the case of a two-phase periodic material we consider σχ
Dj

(x) = χD(jx)B+(1−χD(jx))C,

with χD a characteristic function of a set D ⊂ [0, 1]2, and we speak of periodic mixtures with
volume fraction

θ :=
1

|D|

∫

[0,1]2
χD(y) dy (1.2.18)

of material B. The set of all G-limits resulting from the periodic mixture of B and C with
volume fractions θ and 1− θ is denoted by Gθ(B,C) i.e.

Gθ(B,C) := {A ∈ F(α, β) such that ∃χD(x) : σD(jx)
G−→ A and χD(jx)

∗
⇀ θ}

The relevance of this set is clarified by a famous unpublished result of localization due to
Dal Maso and Kohn (see [73] for the nonlinear case). It claims that the range of all possible
mixtures of B and C is given by periodic homogenization. More precisely if θ ∈ L∞(Ω) with
values in [0, 1] and we denote by Gθ(B,C) the set of all possible G-limits of σDj (x), with

χDj
∗
⇀ θ as

Gθ(B,C) := {A ∈ L∞(Ω;F(α, β)) such that ∃χDj (x) : σDj
G−→ A and χDj

∗
⇀ θ}

then is proved that

Gθ(B,C) = {A ∈ L∞(Ω;F(α, β)) : A(x) ∈ Gθ(x)(B,C), a.e. in Ω}. (1.2.19)

The set of all possible mixtures of B and C, as the volume fraction varies from point to
point, is the G-closure of B and C and will be denoted by G(B,C) and as consequence of the
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localization result mentioned above is given by

G(B,C) = {A ∈ L∞(Ω;F(α, β)) : ∃θ ∈ L∞(Ω), such that

A(x) ∈ Gθ(x)(B,C), a.e. in Ω} .
We finally recall an useful result which links G-convergence and Γ-convergence (see [24]

pag.233, for details):

Theorem 1.10. Let A and Aj in L∞(Ω;F(α, β)), Gj and G the functionals:

Gj(u) =

∫

Ω
Aj(x)∇u∇udx, G(u) =

∫

Ω
A(x)∇u∇udx.

Then the following conditions are equivalent:

1) Aj
G−→ A

2) Gj
Γ−→ G (with respect to the H1 weak convergence).

1.2.1. G-closure of two dimensional isotropic materials. In the case of a two
dimensional composites made by the mixture of two isotropic materials is it possible to give a
clear characterization of the set of the G-closure, even geometrically. Considering a mixture of
two phases described by the matrix αI and βI (where I is the identity matrix and β > α > 0)
with volume fraction θ ∈ [0, 1], all the possible mixtures of such components (i.e. the G-closure
set) are characterized by the eigenvalues (λ1, λ2) of the matrices A obtained as limit

αIχDj + βI(1− χDj )
G−→ A

where Dj describes every possible way to mixture the components at a very small scale
and satisfying (1.2.18). It can be proved that the greater eigenvalue is always less than the
arithmetic mean of the coefficients α and β and the smaller eigenvalue is bigger than the
harmonic mean, i.e. (supposing λ1 ≤ λ2)

λ1 ≤ αθ + (1− θ)β and λ2 ≥
1

θ
α + 1−θ

β

(1.2.20)

Combining this two inequalities we in

α ≤ λ1 ≤
αβ

α+ β − λ2
≤ λ2 ≤ β (1.2.21)

The last relation characterizes completely the G-closure, and can be easily represented graph-
ically in Figure 1, in which the boundary, describes the so called laminates and is obtained
taking equalities in (1.2.21).
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Figure 1. G-closure of two-dimensional isotropic materials
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CHAPTER 2

Quasi-static damage evolution and Homogenization:
a 1-dimensional (non)commutative result

2.1. Main results

In this chapter our original goal is to show that every approximable quasi-static evolution
for the energy and dissipation given in (0.0.13) and (0.0.14) converges to an approximable
quasi-static evolution for the homogenized energy limit and viceversa (Theorem 2.18). More-
over we will give a characterization for such quasi-static evolutions (Theorem 2.9 and Theorem
2.17) and by these results we will show the interesting fact that (at least in one dimensional
case) the effective evolution of a mixture of two homogeneous two-phase materials can be
interpreted as the relaxed evolution of a homogeneous three-phase material (Theorem 2.19).
This chapter is from [15].

2.2. Introduction

It is well known that for fixed D the energy given in (0.0.13) Γ-converge to

E(t, u,D) = α

∫

D
|u′|2 dx+ β

∫

Ω\D
|u′|2 dx, (2.2.1)

where α and β are the harmonic means of α and β, respectively. This is immediate by the
example 1.8 using as recovery sequence ūε = ūεαχD + ūεβ(1 − χD) where ūεα and ūεβ are the
recovery sequences respectively for the first part and for the second part of right side of
(2.2.1).

First of all, we note that the Γ-limit of Eε(u,D)+D̃ε(D) always requires a relaxation process.
In fact, minimizing sequences of D will never be compact as sets, and their limit (precisely,
the weak limit of their characteristic functions) must be described by a density function
θ ∈ [0, 1]. Hence, the limit evolution must be expressed in terms of the relaxed variable (u, θ).

In these variables the Γ-limit of Eε(t, u,D) + D̃ε(D) takes the form (see Theorem 2.11)
∫

(0,1)
fhom(θ)|u′|2dx+

∫

(0,1)
γhom(θ) dx ,

so that a weak quasi-static evolution can be constructed for this energy. We show that this
agrees with the limit of the corresponding strong ε-quasi-static evolutions (see Theorem 2.18).
We show that an equivalent formulation can be given in terms of a three-phase material model:
the effective evolution can itself be seen as a relaxed evolution of a homogenized energy of
the form

E(t, u,D1, D2) = α

∫

D2

|u′|2 dx+ C(α, β)

∫

D1

|u′|2 dx+ β

∫

Ω\(D1∪D2)
|u′|2 dx

with D1 ∩D2 = ∅. The sets D2 and D1 can be interpreted, respectively, as the zone where
either both materials are damaged, or one of the two (which is uniquely determined by the
values of αi and βi) is damaged. C(α, β) is the corresponding harmonic mean in the latter
case.
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2.3. Quasi-static evolution for composite materials

In this section we give the definition of quasi-static evolution related to the elastic energy
and dissipation in (0.0.13) and (0.0.14) for fixed ε, and show explicitly the existence of such
evolution.
For fixed ε > 0 we consider the functional

EεTot(u,D) = Eε(u,D) + D̃ε(D) , (2.3.2)

where

Eε(u,D) =

∫

(0,1)
σεD(x)|u′(x)|2dx and D̃ε(D) =

∫

D
γ
(x
ε

)
dx, (2.3.3)

with u ∈ H1(0, 1), D ⊂ (0, 1),

σεD(x) = α
(x
ε

)
χD(x) + β

(x
ε

)
(1− χD(x)), (2.3.4)

and

α(y) =

{
α1 if y ∈ [0, 1

2)

α2 if y ∈ [1
2 , 1)

β(y) =

{
β1 if y ∈ [0, 1

2)

β2 if y ∈ [1
2 , 1)

(2.3.5)

γ(y) =

{
γ1 if y ∈ [0, 1

2)

γ2 if y ∈ [1
2 , 1)

(2.3.6)

with
βi > αi > 0, γi > 0, for i = 1, 2. (2.3.7)

Moreover, we will denote in the following

α :=

(
1

2α1
+

1

2α2

)−1

and β :=

(
1

2β1
+

1

2β2

)−1

, (2.3.8)

the harmonic means of αi and βi, respectively.
As noticed this energy describes a 1-dimensional elastic heterogeneous material, for exam-

ple a bar, made periodically by two homogeneous materials characterized, in the undamaged
regions, by the elastic constant β1 for the first material and β2 for the second one, and, in
the damaged region by α1 for the first material and by β2 for the second one .

We suppose that
ε−1 ∈ N; (2.3.9)

the general case can be always reduced to this assumption up to a negligible error in the
energy (2.3.2) (as ε→ 0).

As remarked before the first usual step in the quasi-static evolution approach to study
an evolution of a system described by an energy varying in time is to look for existence of
minimizers for the energy.

2.3.1. Minimum problems for the ε-energy. In the following proposition and in the
next corollary we show explicitly, by a characterization, the existence of a solution for the
minimum problem for the energy functional in (2.3.2) with prescribed boundary data.

Proposition 2.1. Let t ∈ R; then there exists a minimizer (uε, Dε) of

m(t) := min{EεTot(u,D) : u(0) = 0, u(1) = t,D ⊂ (0, 1)}. (2.3.10)

Moreover, m(t) can be computed explicitly and it is independent of ε. If

p1 :=

√
α1β1γ1

β1 − α1
<

√
α2β2γ2

β2 − α2
=: p2, (2.3.11)
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(which we may suppose without loss of generality) then

m(t) =





βt2 if |t| ≤ p1

β

2p1t−
p2

1

β
if
p1

β
< |t| ≤ p1(β2 + α1)

2β2α1

2β2α1

β2 + α1
t2 +

γ1

2
if
p1(β2 + α1)

2β2α1
< |t| ≤ p2(β2 + α1)

2β2α1

2p2t+
γ1 + γ2

2
− p2

2

α
if
p2(β2 + α1)

2β2α1
< |t| ≤ p2

α

αt2 +
γ1 + γ2

2
if t ≥ p2

α
.

(2.3.12)

The function m(t) is plotted in Fig. 1.

t

m(t)

βt2

2β2α1

β2+α1
t2 + γ1

2
αt2 + γ1+γ2

2

Figure 1. The minimal value m

Remark 2.2. As will be clear (see Corollary 2.3) the assumption (2.3.11) only implies,
once we have a quasi-static evolution, that the first material that goes damaged is the one
defined by elastic constants α1 and β1. When all this material will be completely damaged
then the second one will start to become damaged.
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Proof. For D ⊂ (0, 1), we set

Dε
1 := D ∩

([
0,
ε

2

)
+ εN

)
, Dε

2 := D ∩
([ε

2
, ε
)

+ εN
)
,

Bε
1 := ((0, 1) \D) ∩

([
0,
ε

2

)
+ εN

)
, Bε

2 := ((0, 1) \D) ∩
([ε

2
, ε
)

+ εN
)
.

(2.3.13)

D

Dε
1

Dε
2 Bε

2

Bε
1

Figure 2.

Note that (0, 1) = Dε
1 ∪ Dε

2 ∪ Bε
1 ∪ Bε

2, α
(
x
ε

)
= αi for x ∈ Dε

i , and β
(
x
ε

)
= βi for

x ∈ Bε
i (i = 1, 2). It means that considering D as a damaged set of a heterogeneous bar made

periodically by two homogeneous materials, we have that Dε
1 represents the damaged part of

the first homogeneous material and Dε
2 the damaged part of the second one.

We observe that the value

mD(t) := min
{
EεTot(u,D) : u(0) = 0, u(1) = t

}
(2.3.14)

depends on D only through the measures |Dε
1| and |Dε

2|. Indeed, by Jensen’s inequality and
(2.3.13), for all test functions u we have

∫

D
α
(x
ε

)
|u′|2 dx+

∫

(0,1)\D
β
(x
ε

)
|u′|2dx

≥α1|Dε
1||z11|2 + β1|Bε

1||z12|2 + α2|Dε
2||z21|2 + β2|Bε

2||z22|2,
where

zi1 :=
1

|Dε
i |

∫

Dεi

u′ dx, zi2 :=
1

|Bε
i |

∫

Bεi

u′ dx, i = 1, 2, (2.3.15)

with a strict inequality unless u′ is constant on Dε
i and Bε

i . Hence, each minimizer must have
a constant value of the derivative on each of the four sets Dε

i and Bε
i .

This observation allows to reduce the computation of m(t) to a finite-dimensional minimiza-
tion. To that end, denote

λi := 2
∣∣Dε

i

∣∣, i = 1, 2. (2.3.16)

Observing that |Bε
i | = 1

2 − |Dε
i | = 1

2(1− λi), we have that

m(t) = min
zij ,λk

{1

2
(λ1α1z

2
11 + (1− λ1)β1z

2
12) +

1

2
(λ2α2z

2
21 + (1− λ2)β2z

2
22)

+
1

2
γ1λ1 +

1

2
γ2λ2 :

1

2
(λ1z11 + (1− λ1)z12) +

1

2
(λ2z21 + (1− λ2)z22) = t

}
.

(2.3.17)

A solution λi,min, zij,min (i, j = 1, 2) provides a description of all minimizers of problem
(2.3.10) as follows: the set Dε is any set D such that 2|Dε

i | = λi,min, and uε is the unique
solution of (2.3.15), which gives (see Figure 3)

u′ = zi1,min on Dε
i and u′ = zi2,min on Bε

i , i = 1, 2. (2.3.18)
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D

Dε
1

Dε
2

Bε
2

Bε
1

uε

Figure 3. Example of minimizer uε

We can explicitly compute the minimum in (2.3.17). We conclude that m(t) is independent
on ε and satisfies

m(t) =
1

2
min

{
m1(t1) +m2(t2) :

t1 + t2
2

= t
}
, (2.3.19)

where

mi(t) := min
zi1,zi2,λi

{
λiαiz

2
i1 + (1− λi)βiz2

i2 + γiλi : λizi1 + (1− λi)zi2 = t
}
,

whose explicit form is given by

mi(t) =





βit
2 if |t| ≤

√
αiγi

βi(βi−αi) = pi
βi

αit
2 + γi if |t| ≥

√
βiγi

αi(βi−αi) = pi
αi

2t

√
αiβiγi
βi − αi

− γiαi
βi − αi

= 2tpi −
p2
i

βi
otherwise.

(2.3.20)

Using (2.3.20) and solving (2.3.19) we obtain the expression of m(t) as in (2.3.12). �

We can also explicitly compute the minimum values λi,min in (2.3.17) and by the char-
acterization of the minimizers (uε, Dε) given by (2.3.16) and (2.3.18)we obtain immediately
the following corollary.

Corollary 2.3. Each minimizer (uε, Dε) for the problem (2.3.10) is characterized as
follows (assuming (2.3.11), i.e., p1 < p2) :
consider

Dε
1 := Dε ∩

([
0,
ε

2

)
+ εN

)
, Dε

2 := Dε ∩
([ε

2
, ε
)

+ εN
)

then

λmin(t) := |Dε| =





λ1,min(t)

2
if |t| < p2(β2 + α1)

2β2α1
1

2
+
λ2,min(t)

2
if |t| ≥ p2(β2 + α1)

2β2α1

(2.3.21)
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where

λ1,min(t) := 2|Dε
1| =





0 if 0 ≤ |t| ≤ p1

β
2p1

γ1

(
|t| − p1

β

)
if
p1

β
≤ |t| ≤ p1(β2 + α1)

2β2α1

1 if |t| ≥ p1(β2 + α1)

2β2α1
,

(2.3.22)

and

λ2,min(t) := 2|Dε
2| =





0 if 0 ≤ |t| ≤ p2(β2 + α1)

2β2α1
2p2

γ2

(
|t| − p2(β2 + α1)

2β2α1

)
if
p2(β2 + α1)

2β2α1
≤ |t| ≤ p2

α

1 if |t| ≥ p2

α
.

(2.3.23)

For such Dε, uε is the unique minimizer of

min
u

{
EεTot(u,D

ε) : u(0) = 0, u(1) = t
}

The value of λmin is plotted in Fig. 4.

λmin(t)

t

1/2

1

p1
β

p1(β2+α1)
2β2α1

p2(β2+α1)
2β2α1

p2
α

Figure 4. The value of λmin.

Remark 2.4.
1)Let note that by Corollary 2.3 we don’t have a characterization of the shape of Dε but only
about the measure and by this we have the existence of infinitely-many minimizers, except in
the cases when both λi,min ∈ {0, 1}, for which the minimizing pair is unique. Under condition
(2.3.11), i.e., p1 < p2, this corresponds to Dε = ∅, Dε = (0, 1) ∩ ([0, ε2) + εN) or Dε = (0, 1).
Note that the minimality conditions for (2.3.17) give the relations

α1z11 = β1z21 = α2z12 = β2z22. (2.3.24)
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2) Among all the minimizers (uε, Dε) we have those with

Dε
1 := (0, 1) ∩

([
0, λ1,min

ε

2

)
+ εN

)
, Dε

2 = (0, 1) ∩
([ε

2
, (1 + λ2,min)

ε

2

)
+ εN

)
,

for which the damage is “uniformly distributed” in (0, 1) (see Figure 5). In this case the weak

Dε
1

Dε
2

ε

Figure 5. Example of minimizer Dε with λ1,min = 1 and λ2,min = 1/2.

limit of the characteristic functions of the sets Dε
i is the constant 1

2λi,min. So from a damaging
point of view, this possible microscopical structure represents on a macroscopical framework
a uniform damage along the bar with constant density (at fixed t) equal to 1

2(λ1,min+λ2,min).
Another family of minimizers are those with

Dε
1 := (0, λε1,min) ∩

([
0,
ε

2

)
+ εN

)
, Dε

2 = (0, λε2,min) ∩
([ε

2
, ε
)

+ εN
)
,

where λεi,min is such that 2|Dε
i | = λi,min, for which the damage is “concentrated towards

0” (see Figure 6).

Dε
1

Dε
2

ε

Figure 6. Example of minimizer Dε with λ1,min = 1 and λ2,min > 0.

Note that in this case we have |λεi,min − λi,min| ≤ ε and hence the weak limit of the

characteristic functions of the sets Dε
i is the function 1

2χ[0,λi,min], which from a macroscopical

point of view means that the damage is localized in [0, λmin].

Remark 2.5. Let note that we can rewrite the minimization problem (2.3.17) in a more
compact way that will be useful for what follows, i.e.

m(t) = min
λ1,λ2

{
fhom

(λ1

2
,
λ2

2

)
t2 +

1

2
γ1λ1 +

1

2
γ2λ2

}
, (2.3.25)
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where

fhom
(λ1

2
,
λ2

2

)
:= min

zij

{1

2
(λ1α1z

2
11 + (1− λ1)β1z

2
12) +

1

2
(λ2α2z

2
21 + (1− λ2)β2z

2
22) :

1

2
(λ1z11 + (1− λ1)z12) +

1

2
(λ2z21 + (1− λ2)z22) = 1

}
,

(2.3.26)

which is, solving the minimum problem (2.3.26), defined by

fhom(η1, η2) :=
[ 1

α1
η1 +

1

β1

(1

2
− η1

)
+

1

α2
η2 +

1

β2

(1

2
− η2

)]−1
, (2.3.27)

that we call homogenized coefficient related to η1 and η2.

Remark 2.6. Let

G(λ1, λ2, t) = fhom
(λ1

2
,
λ2

2

)
t2 +

γ1

2
λ1 +

γ2

2
λ2 , (2.3.28)

where fhom is defined by (2.3.27). Then for fixed s and t with 0 ≤ s ≤ t, the unique minimizer
of the function G(·, ·, s) on [λ1,min(t), 1]×[λ2,min(t), 1] is (λ1,min(t), λ2,min(t)). This follows from
a straightforward calculation.
As will be clear in the proof of Theorem 2.9 the importance of Remark 2.6 is the following.
Let consider the minimum problem in (2.3.10) in which instead of the increasing boundary
condition t we have a non-increasing function g(t). Since t has the role of a parameter all
the computations done change only in the substitution of t with g(t). The evolution that
we are interested in must satisfy the property of increasing of damage in the case that the
external force g(t) increases. This remark, on the other hand, assure that in the case that g(t)
decreases in time, then the measure of the damage remains unchanged during the decreasing
of the body force.
This observation will be fundamental in Theorem 2.9 to prove the characterization result
for quasi-static evolution related to the energy in (2.3.2), and in particular to show the
approximability of such quasi-static evolution in case of a non-increasing body force g(t).

2.3.2. Quasi-static evolution for the ε-energy. We state now the definition of quasi-
static evolution for the energy functional (2.3.2) and we describe explicitly the behaviour of
such motions in Theorem 2.9 through a characterization result.

From now on we will consider u = u(t, x), with u(t, ·) ∈ H1(0, 1) parametrized by t ∈
[0, T ]. As a shorthand we will write u(t) = u(t, ·).

Definition 2.3.1. Given g ∈ AC([0, T ]), with g(0) = 0, and ε > 0, we say that
(u(t), D(t)) is a (strong) quasi-static evolution (for the energy (2.3.2) subjected to the bound-
ary condition g) if for all t ∈ [0, T ] we have u(t) ∈ H1(0, 1), u(t, 0) = 0, u(t, 1) = g(t),
D(t) ⊂ (0, 1), and the following properties hold:

• Damage Irreversibility: D(t1) ⊂ D(t2) if t1 < t2;
• Energy Balance: for all t ∈ [0, T ] we have

EεTot(u(t), D(t)) = EεTot(u(0), D(0)) + 2

∫ t

0
ġ(s)

∫

(0,1)
σεD(s)(x)u′(s, x) dxds; (2.3.29)

• Minimality Condition: for all t ∈ [0, T ]

EεTot(u(t), D(t)) ≤ EεTot(v,B) (2.3.30)

for all v ∈ H1(0, 1) with v(0) = 0, v(1) = g(t), and D(t) ⊂ B ⊂ (0, 1).
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Moreover, we say that (u(t), D(t)) is an approximable (strong) quasi-static evolution (for
the energy (2.3.2) subjected to the boundary condition g(t)) if it satisfies the conditions above
and if considering the solution (uτk, D

τ
k) of the discrete problem (for k ≥ 1)

min
{
EεTot(v,D) : v(0) = 0, v(1) = g(kτ), Dτ

k−1 ⊂ D
}

(2.3.31)

and defined
uτ (t) := uτk if t ∈ [kτ, (k + 1)τ)

and
Dτ (t) := Dτ

k if t ∈ [kτ, (k + 1)τ)

with uτ0 = 0 and Dτ
0 = ∅, it holds (up to subsequences)

uτ (t)
H1

⇀ u(t)

and
χDτ (t)

∗
⇀ χD(t)

when τ −→ 0.

Remark 2.7. Let note that in general, given an energy E and a dissipation D, is not
true that a quasi-static evolution related to E +D is approximable. In [62] is given a coun-
terexample. In Theorem 2.9 we will prove that if (uε(t), Dε(t)) satisfies some properties (i.e.
(i)-(ii)-(iii) in the Theorem ) then (uε(t), Dε(t)) is a quasi-static evolution, and moreover that
is approximable. To prove the converse, and in particular the property (ii), we will use the
approximability condition. Considering our particular 1-dimensional case one could wonder if
in this case every quasi-static evolution for the energy in (0.0.13) and dissipation in (0.0.14)
is approximable. Actually this is not completely clear, and we will not address this issue in
the following.

Remark 2.8. By the minimality condition (2.3.30), with B = D(t), we deduce that u(t)
is the unique minimizer of the quadratic energy Eε(v,D(t)) satisfying the boundary condition
u(t, 0) = 0 and u(t, 1) = g(t). Testing the Euler-Lagrange equation with u(t, x) − g(t)x we
deduce the identity ∫

(0,1)
σεD(t)(x)u′(t, x) dx = f ε(D(t))g(t) , (2.3.32)

where

f ε(D) := min
{
Eε(v,D) : v ∈ H1(0, 1) , v(0) = 0 , v(1) = 1

}
. (2.3.33)

This remark will be useful in the following Theorem.

Theorem 2.9. Let g ∈ AC([0, T ]), with g(0) = 0. Assume (without loss of generality)
that (2.3.11) holds. Then each approximable strong quasi-static evolution (uε(t), Dε(t)) (in
the sense of Definition 2.3.1) for the energy in (2.3.2), subjected to the boundary condition g,
is characterized by

(i) Dε(t) is increasing in t;
(ii) if Dε

1(t) := Dε(t) ∩
(
[0, ε2) + εN

)
and Dε

2(t) := Dε(t) \Dε
1(t), then

2|Dε
1(t)| = λ1,min(g(t)) and 2|Dε

2(t)| = λ2,min(g(t)),

where g is the non-decreasing envelope of the function g (see Figure 7), defined by

g(t) := inf
h
{h(t) : h ≥ g on [0, T ], h non decreasing}; (2.3.34)

(iii) the function uε(t) is the unique minimizer of Eε(·, Dε(t)) under the boundary condi-
tion uε(t, 0) = 0 and uε(t, 1) = g(t).
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t

g(t)

g(t)

Figure 7. Non-decreasing envelop of g(t).

Proof. Note that the approximability condition in general implies the minimality and
the energy balance. This can be derived from [57], upon a relaxation argument in order
to fulfil the abstract framework therein. Here we give a direct proof that highlights the
homogenization process through the explicit description of the solutions, using λ1,min and
λ2,min . We consider the case of g non-decreasing first, and then the general case. If g is
non-decreasing, we can assume without loss of generality that g(t) = t for all t ∈ R, since t
has just the role of a parameter. Let (uε(t), Dε(t)) satisfy (i)–(iii). By the characterization of
minimizers in Proposition 2.1 and Corollary 2.3 such a pair is a solution to

min{EεTot(v,B) : v(0) = 0, v(1) = t, B ⊂ (0, 1)}. (2.3.35)

and hence satisfies the minimality condition in Definition 2.3.1. Damage irreversibility is
property (i). It remains to prove the energy balance. To that end, we first note that by
(2.3.12) the function s 7→ EεTot(u

ε(s), Dε(s)) is absolutely continuous and its a.e. derivative
is given by

∂sE
ε
Tot(u

ε(s), Dε(s)) = m′(s) =





2βt if 0 < t <
p1

β

2p1 if
p1

β
< t <

p1(β2 + α1)

2β2α1

4β2α1

β2 + α1
t if

p1(β2 + α1)

2β2α1
< t <

p2(β2 + α1)

2β2α1

2p2 if
p2(β2 + α1)

2β2α1
< t <

p2

α

2αt if t >
p2

α
.

(2.3.36)

Using this equality we now prove (2.3.29), rewritten as
∫ t

0
∂sE

ε
Tot(u

ε(s), Dε(s)) ds = 2

∫ t

0

∫

(0,1)
σεDε(s)(x)(uε(x, s))′ dxds.

In order to conclude we show that for all s ∈ R

m′(s) = 2

∫

(0,1)
σεDε(s)(x)(uε(x, s))′ dx. (2.3.37)
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Note that, by Remark 2.4(1) we have (in the notation of Proposition 2.1)

(uε)′ = zi1 on Dε
i , (uε)′ = zi2 on Bε

i .

Taking into account conditions (2.3.24) and the boundary condition

1

2
(λ1,min(s)z11 + (1− λ1,min(s))z12) +

1

2
(λ2,min(s)z21 + (1− λ2,min(s))z22) = s ,

this allows us to conclude that the right-hand side of (2.3.37) equals

4α1α2β1β2

α2β2(β1 − α1)λ1,min(s) + α1β1(β2 − α2)λ2,min(s) + α1α2(β2 + β1)
s.

Using (2.3.22), (2.3.23), (2.3.36) it is immediate to check that this expression is equal to the
one for m′(s) above which concludes the proof of the energy balance property and so the fact
that (uε(t), Dε(t)) is a quasi-static evolution.

By (i)–(iii) and recalling the minimality properties of λ1,min and λ2,min, we have that, for
every τ and k, (uτk, D

τ
k) = (uε(kτ), Dε(kτ)) is a minimizer for (2.3.31). Moreover since

uετ (t)
H1

⇀ uε(t) and χDετ (t)
∗
⇀ χDε(t)

where

uετ (t) := uε(kτ) if t ∈ [kτ, (k + 1)τ)

and

Dε
τ (t) := Dε(kτ) if t ∈ [kτ, (k + 1)τ)

we conclude the approximability of (uε(t), Dε(t)) and the proof of the first part of theorem
in the case of g increasing. In the general case, we define g by (2.3.34) (see Figure 7) and

consider (uε(t), Dε(t)) satisfying (i)–(iii). If we denote by uε the minimizer of

min{EεTot(v,D
ε(t)) : v ∈ H1(0, 1), v(0) = 0, v(1) = g(t)}, (2.3.38)

then, by the previous step, the pair (uε(t), Dε(t)) is an approximable quasi-static evolution
for the boundary condition g. In order to show that (uε(t), Dε(t)) is an approximable quasi-
static evolution for the boundary condition g we first examine the minimality condition. It is
enough to consider t such that g(t) < g(t) (otherwise g(t) is increasing in t and so the result
is true by the previous step). Suppose by contradiction that there exists B ⊃ Dε(t) such that

EεTot(u
ε(t), Dε(t)) > min

{
EεTot(v,B) : v(0) = 0 , v(1) = g(t)

}
.

Then, noting that f ε(D), as defined in (2.3.33), is decreasing by inclusion, we have

EεTot(u
ε(t), Dε(t)) = EεTot(u

ε(t), Dε(t)) + f ε(Dε(t))
(
g2(t)− g2(t)

)

> min
{
EεTot(v,B) : v(0) = 0 , v(1) = g(t)

}

+f ε(B)
(
g2(t)− g2(t)

)

= min
{
EεTot(v,B) : v(0) = 0 , v(1) = g(t)

}
,

contradicting the minimality condition for (uε(t), Dε(t)). As for the energy balance, it is
enough to check it between two points s and t such that g(τ) = g(s) = g(t) for all τ ∈ (s, t);
i.e.,

EεTot(u(t), D)− EεTot(u(s), D) = 2

∫ t

s
ġ(τ)

∫

(0,1)
σεD(x)u′(τ, x) dxdτ, (2.3.39)
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where D = D(t) = D(s). This is easily verified by noting that, in view of Remark 2.8, we can
rewrite (2.3.39) as

f ε(D)
(
g2(t)− g2(s)

)
= 2

∫ t

s
ġ(τ)g(τ)f ε(D) dτ .

The approximability is obtained as in the non-decreasing case above, after recalling the
constrained minimality properties of λi,min(t) in Remark 2.6 which allow to characterize the
minimum values of the energy as in Remark 2.5. This conclude the first part of Theorem in
general case.
It now remains to prove that every approximable quasi-static evolution (uε(t), Dε(t)) satisfies
properties (i)–(iii). Properties (i) and (iii) are immediately implied by the definition. Let
(uτk, D

τ
k) be as in Definition 2.3.1. We define the piecewise-constant function gτ by

gτ (t) = g(kτ) if t ∈ [kτ, (k + 1)τ),

and gτ as its non-decreasing envelope in the notation (2.3.34). The sets Dτ
k satisfy

2
∣∣∣Dτ

k ∩
([

0,
ε

2

)
+ εN

)∣∣∣ = λ1,min(gτ (kτ)) and

2
∣∣∣Dτ

k \
([

0,
ε

2

)
+ εN

)∣∣∣ = λ2,min(gτ (kτ)).
(2.3.40)

This can be proved by induction. Indeed, (2.3.40) is satisfied for k = 0, since g(0) = 0 and
Dτ

0 = ∅. Assume it holds true with k − 1 in the place of k. We have two cases: if gτ (kτ) >
gτ ((k − 1)τ) then g(kτ) = gτ (kτ) and the validity of (2.3.40) follows by the minimality
properties of λ1,min and λ2,min; if otherwise gτ (kτ) = gτ ((k−1)τ) then the conclusion follows
by noting that Dτ

k = Dτ
k−1 as a consequence of Remark 2.6. Passing to the limit as τ → 0 we

then obtain property (ii), after noting the uniform convergence of gτ to g. �

Remark 2.10. For any quasi-static evolution (uε(t), Dε(t)) in the sense of Definition
2.3.1, for fixed t the sets Dε(t) do not converge to sets as ε→ 0, except for the trivial cases

∅ and (0, 1). Indeed, for example for p1 < p2 and t ∈
[
p1(β2+α1)

2β2α1
, p2(β2+α1)

2β2α1

]
, we have that

Dε(t) = ε
(
N +

[
0, 1

2

))
, whose characteristic functions weakly converge to the constant 1

2 .
This suggests that to study the limit behaviour of the quasi-static evolution characterized
in Theorem 2.9 we must consider in the limit density function θ(t) instead of characteristic
function χA(t) of the damage set.

2.4. Quasi-static evolution for non-homogeneous materials

In this section we compute the Γ-limit of the energy functionals EεTot, we give the definition
of (approximable) quasi-static evolution for such limit and we show that the approximable
quasi-static evolutions related to the energy functionals EεTot converge, up to subsequences,
to the approximable quasi-static evolutions related to the Γ-limit of such energy functionals.
Vice versa, any approximable quasi-static evolution for the Γ-limit of the functionals (2.3.2)
is the limit of the corresponding approximable quasi-static evolutions. From this point of
view it is a commutative result about Γ-convergence a and quasi-static evolutions.

2.4.1. Relaxed homogenization. We start computing the Γ-limit of the family of
functionals EεTot. We tacitly identify sets with the characteristic functions as elements of
L1(0, 1).

Theorem 2.11 (relaxed homogenization). Let (2.3.11) hold. Then the family EεTot in
(2.3.2) Γ-converges, in the L2 × L1-weak topology, to the functional

Ehom
Tot (u, θ) = Ehom(u, θ) +Dhom(θ) , (2.4.41)
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where

Ehom(u, θ) =

∫

(0,1)
fhom(θ)|u′|2dx, (2.4.42)

with

fhom(θ) =





[
β1+β2
2β1β2

+ (β1−α1)
β1α1

θ

]−1

if θ ∈ [0, 1
2)

[
β2+α1

2β2α1
+ (β2−α2)

2β2α2
(2θ − 1)

]−1

if θ ∈ [1
2 , 1)

(2.4.43)

and

Dhom(θ) =

∫

(0,1)
γhom(θ) dx, γhom(θ) =

{
γ1θ if θ ∈ [0, 1

2)
γ1
2 + γ2(θ − 1

2) if θ ∈ [1
2 , 1).

(2.4.44)

Proof. This is a particular case of homogenization in Lp spaces, where the cell-problem
formula rewrites as

φ(θ, z) := min
{∫

D
α(y)|v|2 dy +

∫

(0,1)\D
β(y)|v|2 dy +

∫

D
γ(y) dy :

D ⊂ (0, 1), |D| = θ,

∫ 1

0
v dx = z

}
.

Note that, minimizing first in v, and denoting by η1 = |D ∩ [0, 1
2 ]| and η2 = |D \ [0, 1

2 ]|, we
obtain

φ(θ, z) = min
{
fhom(η1, η2)z2 + γ1η1 + γ2η2 : η1 + η2 = θ

}
, (2.4.45)

with fhom(η1, η2) defined in (2.3.27). By a direct computation we get the unique minimal

η1 = min

{
θ,

1

2

}
, η2 = max

{(
θ − 1

2

)
, 0

}
(2.4.46)

and

φ(θ, z) = fhom(θ)z2 + γhom(θ),

and the desired characterization. �

As done in Proposition 2.1 and in Corollary 2.3 we are interested at the minimum value
and at the minimum points of such limit energy. Let remark that, by Corollary 2.3, considering
(uε(t), χDε(t)) minimum point for EεTot it holds the followings

1) Dε(t) is such that

|Dε(t)| ≤ 1

2
if t <

p2(β2 + α1)

2β2α1

and

|Dε(t)| ≥ 1

2
if t ≥ p2(β2 + α1)

2β2α1

2) λmin(t) satisfies ∫

(0,1)
χDεdx = λmin(t)

3) uε is the unique minimum point of

min{EεTot(u,D
ε) : u(0) = 0, u(1) = t}.

In the Corollary 2.12 we show that analogous properties are true for (u, θ) minimum points
for Ehom

Tot .
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Corollary 2.12. For all t ≥ 0 we have

min
{
Ehom

Tot (v, θ) : v ∈ H1(0, 1), v(0) = 0, v(1) = t, 0 ≤ θ ≤ 1
}

= m(t), (2.4.47)

where m is given by (2.3.12). Furthermore, the minimizers (u, θ) for this problem are char-
acterized by the following properties:

(i) either θ ≥ 1
2 a.e. or θ ≤ 1

2 a.e.;
(ii) we have ∫

(0,1)
θ dx = λmin(t), (2.4.48)

where λmin(t) is given by (2.3.21);
(iii) u is the unique minimizer of

min
{
Ehom(v, θ) : v ∈ H1(0, 1), v(0) = 0, v(1) = t

}
. (2.4.49)

Proof. The corollary follows from a direct computation, or from the previous theorem,
Proposition 2.1 and the Fundamental Theorem of Γ-convergence. To that end, note that the
characterization of m in the proof of Proposition 2.1 guarantees that sequences (uε, Dε) such
that uε(0) = 0, uε(1) = t and EεTot(uε, Dε) = m(t) + o(1) as ε → 0 have the same cluster
points as the sequences of minimizers of (2.4.47).

If (u(t), θ(t)) satisfy (i)–(iii) then we can define Dε(t) such that χDε(t) weakly converges to
θ(t), |Dε(t)| = λmin(t), Dε(t) ⊃ [0, ε2)+εN or Dε(t) ⊂ [0, ε2)+εN, and uε is the corresponding
solution of minEεTot(u,Dε(t)) with u(0) = 0 and u(1) = t. By Proposition 2.1 and Corollary
2.3 (uε(t), Dε(t)) is a minimizer of EεTot(u,D) with u(0) = 0 and u(1) = t and then converges

to a minimizer of Ehom
Tot (u, θ) subject to the same boundary conditions. �

Remark 2.13. Note that we do not have the separate Γ-convergence of Eε and Dε to
Ehom and Dhom. This is evident from the dependence of the form of the limit functionals on
inequality (2.3.11). This fact has an important consequence. Considering the separate Γ-limit

Ehom,2 of Eε and Dhom,2 of D̃ε (which exist up to subsequence) and suppose to have a quasi-
static evolution for this limit energy Ehom,2 +Dhom,2. One could wonder if the (approximable)

quasi-static evolution (uε, Dε) for the energy Eε+D̃ε converge to (u, θ) (approximable) quasi-
static evolution for the energy Ehom,2 + Dhom,2 and viceversa. This kind of commutability
result is the one analyzed in an abstract framework by Mielke, Roubichek and Stefanelli
in [64] using the so called mutual recovery sequence . But in our case since we will prove
in Theorem 2.18 that every (approximable) quasi-static evolution at step ε > 0 converges
to a (approximable) quasi-static evolution for the energy Ehom + Dhom 6= Ehom,2 + Dhom,2

and viceversa, we conclude that from this point of view there is not commutability between
(separated) Γ-convergence and quasi-static evolutions.

Proposition 2.14 (compatibility of constraints). Let Bε be a family of subsets of (0, 1)

and ϕ ∈ L1(0, 1), such that χBε
∗
⇀ ϕ and

Γ- lim
ε→0

EεTot(·, Bε) = Ehom
Tot (·, ϕ) (2.4.50)

with respect to the L2-convergence, then the Γ-limit of

EεTot(u,D;Bε) :=

{
Eε(u,D) + D̃ε(D) if D ⊃ Bε
+∞ otherwise

(2.4.51)

with respect to the L2 × L1-weak convergence is

Ehom
Tot (u, θ;ϕ) :=

{
Ehom(u, θ) +Dhom(θ) if θ ≥ ϕ
+∞ otherwise.

(2.4.52)

31



Remark 2.15. Let show that condition (2.4.50) is equivalent to requiring that

χBε∩([0, ε
2

)+εN) ⇀ ϕ1 := max

{
ϕ,

1

2

}
(2.4.53)

or, equivalently, that

χBε∩([ ε
2
,ε)+εN) ⇀ ϕ1 := min

{
ϕ− 1

2
, 0

}
. (2.4.54)

In order to check (2.4.53), denote with ϕ1 the weak limit of the sequence on the left-hand
side of (2.4.53), which exists up to subsequences, and ϕ2 = ϕ−ϕ1, which is the weak limit of
the sequence on the left-hand side of (2.4.54). Note that (we do not relabel the subsequence)

Γ- lim
ε→0

EεTot(u,Bε) = F (u, ϕ1, ϕ2), (2.4.55)

where

F (u, ϕ1, ϕ2) :=

∫

(0,1)
fhom(ϕ1, ϕ2)|u′|2dx+ γ1

∫

(0,1)
ϕ1 dx+ γ2

∫

(0,1)
ϕ2 dx (2.4.56)

and fhom is defined in (2.3.27). This immediately follows from the convergence of the dis-
sipation term, and the characterization of one-dimensional Γ-convergence (see Theorem 1.7
and Example 1.8).
So by (2.4.45) and (2.4.46) we have that F (u, ϕ1, ϕ2) = Ehom

Tot (u, ϕ) ,i.e., we have the 2.4.50)
if and only if ϕ1 and ϕ2 are as in (2.4.53) and (2.4.54).

Proof of Proposition 2.14. The lower bound inequality is trivial since the constraint
is closed. As for the upper bound, with fixed θ ≥ ϕ, we use a diagonal argument, first
constructing a recovery sequence of sets for a sequence of θσ converging to θ.

With fixed σ > 0, for all x Lebesgue point of ϕ, ϕ1 (as defined in Remark 2.15) and θ,
we consider the family

Iσx =
{
I = (x− δ, x+ δ) ⊂ (0, 1) : δ < σ,
∫

I
|ϕ(x)− ϕ| dy +

∫

I
|ϕ1(x)− ϕ1| dy +

∫

I
|θ(x)− θ| dy < σ|I|

}
.

Since Iσ =
⋃
x Iσx is a fine cover of the set of Lebesgue points of (0, 1) we can find a finite

family of disjoint intervals {Iσk } of Iσ such that
∣∣∣(0, 1) \

⋃

k

Iσk

∣∣∣ < σ.

We construct subsets Dσ
ε of (0, 1) defining them on each such interval

Iσk = (xσk − δσk , xσk + δσk )

as follows:
(i) Dσ

ε ∩ Iσk ⊃ Bε ∩ Iσk ;
(ii) |Dσ

ε ∩ Iσk | =
∫
Iσk
θ dy.

If ϕ(xσk) > 1
2 conditions (i) and (ii) are the only ones required in our construction;

otherwise, if ϕ(xσk) ≤ 1
2 , we have to require some additional conditions. In order to specify

such conditions we introduce the notation

Dσ
ε,1 = Dσ

ε ∩
([

0,
ε

2

)
+ εN

)
, Dσ

ε,2 = Dσ
ε \Dσ

ε,1

and

Bε,1 = Bε ∩
([

0,
ε

2

)
+ εN

)
, Bε,2 = Bε \Bε,1.
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(iiia) if θ(xσk) ≤ 1
2 then

Dσ
ε,2 ∩ Iσk = Bε,2 ∩ Iσk ; (2.4.57)

(iiib) if θ(xσk) > 1
2 then

|Dσ
ε,2 ∩ Iσk | = max

{
|Bε,2 ∩ Iσk |,

∫

Iσk

(
θ − 1

2

)
dy

}
. (2.4.58)

We finally include in the sets Dσ
ε the complement of

⋃
k I

σ
k .

Up to a subsequence we have that

χDσε ⇀ θσ, and χDσε,2 ⇀ θσ2

as ε→ 0, for some θσ2 and θσ.
By the fact that Iσk belong to Iσxσk , that Bε satisfy the optimality condition (2.4.54), and by

the properties of Dσ
ε and Dσ

ε,2, we have: for all intervals I ⊂ (0, 1)
∣∣∣
∫

I
θσ2 dy −

∫

I
θ̃σ dy

∣∣∣ ≤ 4σ,

where

θ̃σ(x) =





(
θ(xσk)− 1

2

)+
if x ∈ Iσk

0 otherwise.

Since θ̃σ converges in L1(0, 1) to
(
θ − 1

2

)+
, we deduce that

θσ ⇀ θ and θσ2 ⇀
(
θ − 1

2

)+

as σ → 0.
By a diagonal argument, we can construct Dε = D

σ(ε)
ε ⊇ Bε which thanks to (2.4.54) satisfies

Γ- lim
ε→0

EεTot(·, Dε) = Ehom
Tot (·, θ), (2.4.59)

which implies the desired upper bound. �

We now prove a result which is the analogous of the one stated in Remark 2.6 but in a
homogenized situation.

Corollary 2.16. Given s ∈ [0, T ]. Assume that ϕ : [0, 1]→ [0, 1] satisfies ϕ ≤ 1
2 a.e. or

ϕ ≥ 1
2 a.e. and ∫

(0,1)
ϕdx > λmin(s). (2.4.60)

Then

min{Ehom
Tot (u, ϕ) : u(0) = 0, u(1) = s} ≤ min{Ehom

Tot (u, θ) : u(0) = 0, u(1) = s}
for all θ ≥ ϕ.

Proof. This is a direct consequence of the Γ-convergence result above, combined with
Remark 2.6. Indeed, denoting by t > s the time value such that

∫

(0,1)
ϕdx = λmin(t), (2.4.61)

we have, using Corollary 2.12, that ϕ can be approximated by a sequence χBε , with Bε
satisfying the assumption of Proposition 2.14 and

2|Bε ∩ ([0, ε/2) + εN))| = λ1,min(t)
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and

2|Bε \ ([0, ε/2) + εN))| = λ2,min(t).

Then by Remark 2.6 we get that

min{EεTot(u,Bε) : u(0) = 0, u(1) = s} ≤ min{EεTot(u,D) : u(0) = 0, u(1) = s}
for all D ⊃ Bε. We conclude applying Proposition 2.14. �

2.4.2. Quasi-static evolution. As done for the (approximable) quasi-static evolution
at step ε > 0 we state now the definition of quasi-static evolution for the homogenized energy
functional in (2.4.52) and describe explicitly the behaviour of such motions in Theorem 2.17
through a characterization result.

Definition 2.4.1. Given g ∈ AC([0, T ]), with g(0) = 0, we say that (u(t), θ(t)) is a (weak)
quasi-static evolution (for the energy (2.4.41)) if for all t ∈ [0, T ] we have u(t) ∈ H1(0, 1),
u(0) = 0, u(1) = g(t), θ(t) ∈ L∞(0, 1), 0 ≤ θ ≤ 1, and the following properties hold:

• Damage Irreversibility: θ(t) is non-decreasing in time;
• Energy Balance:

Ehom
Tot (u(t), θ(t)) = Ehom

Tot (u(0), θ(0)) + 2

∫ t

0
ġ(s)

∫

(0,1)
fhom(θ)u′(s, x) dxds; (2.4.62)

• Minimality Condition:

Ehom
Tot (u(t), θ(t)) ≤ Ehom

Tot (v, ψ), (2.4.63)

for all v ∈ H1(0, 1) v(0) = 0, v(1) = g(t) and ψ ∈ L∞(0, 1), ψ ≥ θ(t).
Moreover, we say that (u(t), D(t)) is an approximable (strong) quasi-static evolution

(u(t), θ(t)) is an approximable (weak) quasi-static evolution (for the energy (2.4.41) subjected
to the boundary condition g) if it satisfies the conditions above and if considering the solution
(uτk, θ

τ
k) of the discrete problem (for k ≥ 1)

min
{
Ehom

Tot (v, θ) : v(0) = 0, v(1) = g(kτ), θτk−1 ⊂ θ
}

(2.4.64)

and defined

uτ (t) := uτk if t ∈ [kτ, (k + 1)τ)

and

θτ (t) := θτk if t ∈ [kτ, (k + 1)τ)

with uτ0 = 0 and θτ0 = ∅, it holds (up to subsequence)

uτ (t)
H1

⇀ u(t)

and

θτ (t)
∗
⇀ θ(t)

when τ −→ 0.

Theorem 2.17. Every approximable (weak) quasi-static evolution (u(t), θ(t)) for Ehom
Tot is

characterized by the following properties:
(i) θ(t) is non-decreasing in t;
(ii) θ(t) ≤ 1

2 a.e. or θ(t) ≥ 1
2 a.e., and

∫
(0,1) θ(t) dx = λmin(g(t));

(iii) u is the unique minimizer of

min
{
Ehom

Tot (v, θ(t)) : v(0) = 0, v(1) = g(t)
}
. (2.4.65)
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Proof. By [57] Theorem 4.5, all limits of incremental problems (2.4.64), which exist up
to subsequences, are (weak) quasi-static evolutions for the energy Ehom

Tot . Then it is enough
to show that, for any pair (u(t), θ(t)) satisfying (i)–(iii), we can construct an incremental
problem whose solutions converge to (u(t), θ(t)), and that any limit of solutions of incremental
problems satisfy (i)–(iii).
Let (u(t), θ(t)) satisfy (i)–(iii) and for every τ > 0, as in the proof of Theorem 2.9, denote by
gτ (t) the the piecewise-constant function

gτ (t) = g(kτ) if t ∈ [kτ, (k + 1)τ)

and let gτ (t) be its non-decreasing envelope as in (2.3.34). Then we consider a family θτk , with

either θτk ≥ 1
2 a.e. or θτk ≤ 1

2 a.e.,
∫

(0,1)
θτk dx = max{λmin(g(jτ)) : j ≤ k} = λmin

(
gτ (kτ)

)
,

and

θτk−1 ≤ θτk ≤ θ(kτ). (2.4.66)

This can be done by induction. We also consider the corresponding uτk minimum for the
problem

min
{
Ehom

Tot (v, θτk) : v(0) = 0, v(1) = g(kτ)
}
. (2.4.67)

We can show that, by construction, the family (uτk, θ
τ
k) is a solution of the incremental problem

Ehom
Tot (uτk, θ

τ
k) ≤ Ehom

Tot (v, ϕ)

for every v ∈ H1(0, 1), with v(0) = 0 and v(1) = g(kτ) and for every ϕ ≥ θτk−1. Indeed if
∫

(0,1)
θτk−1 dx ≤ λmin(g(kτ))

then by Corollary 2.12 such θτk minimizes

min
{
Ehom

Tot (v, ϕ) : v ∈ H1(0, 1), v(0) = 0, v(1) = g(kτ) and ϕ ≥ θτk−1

}

= min
{
Ehom

Tot (v, θτk) : v ∈ H1(0, 1), v(0) = 0, v(1) = g(kτ)
}
,

(2.4.68)

while if ∫

(0,1)
θτk−1 dx > λmin(g(kτ)) ,

then, by Corollary 2.16, we deduce that θτk = θτk−1. By (2.4.66) we deduce that the piecewise-
constant functions (uτ (t), θτ (t)) = (uτk, θ

τ
k) if t ∈ [kτ, (k + 1)τ) converge to (u(t), θ(t)) for all

t ∈ [0, T ], which proves the approximability of (u(t), θ(t)).
On the other hand if (u(t), θ(t)) is an approximable quasi-static evolution, let (uτk, θ

τ
k) be

a solution of the incremental problem (2.4.64) which converges to (u(t), θ(t)). We can prove
by induction that

θτk ≤
1

2
a.e., or θτk ≥

1

2
a.e., and

∫

(0,1)
θτk dx = λmin(gτ (kτ)). (2.4.69)

Indeed, if k = 0 this is trivially true. Assume that (2.4.69) holds with k replaced by k− 1. If
λmin(gτ (kτ)) = λmin(gτ ((k−1)τ)) then λmin(gτ (kτ)) ≥ λmin(g(kτ)), and hence, by Corollary
2.16 we have θτk = θτk−1. Otherwise, if λmin(gτ (kτ)) > λmin(gτ ((k−1)τ)) then λmin(gτ (kτ)) =
λmin(g(kτ)), and the conclusion follows by Corollary 2.12. Properties (i)–(iii) then follow by
(2.4.69) taking the limit as τ → 0. �
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We show now that an approximable quasi-static evolution (uε(t), Dε(t)) for EεTot(u,D)
converges (up to subsequences) to a pair (u(t), θ(t)), approximable quasi-static evolution for
Ehom

Tot (u, θ) and viceversa.

Theorem 2.18. Any approximable quasi-static evolution (uε(t), Dε(t)) for EεTot(u,D)
converges (up to subsequences) to a pair (u(t), θ(t)) in the L2 × L1-weak convergence. More-
over, (u(t), θ(t)) is an approximable quasi-static evolution for Ehom

Tot (u, θ).

Conversely, any approximable quasi-static evolution (u(t), θ(t)) for Ehom
Tot (u, θ) is the limit

as ε→ 0 of an approximable quasi-static evolution (uε(t), Dε(t)) for EεTot(u,D).

Proof. By the monotonicity condition of Dε(t), using Helly’s theorem, we can find a
subsequence such that (up to relabelling the apices)

χDε(t)
∗
⇀ θ(t) and χDε(t)∩([0, ε

2
)+εN) ⇀ θ1(t)

in L1(0, 1) for all t.
Since (i)–(iii) of Theorem 2.9 are satisfied for Dε, then, taking the limit as ε→ 0 we deduce
(i)–(iii) of Theorem 2.17 for (u, θ).
On the other hand, let (u(t), θ(t)) be an approximable quasi-static evolution for Ehom

Tot (u, θ).
By Theorem 2.17 it satisfies (i)-(iii) therein. We then construct for all t ∈ [0, T ] the set Dε(t)
as follows

Dε(t) =
⋃

k

(
kε, kε+

∫

(kε,(k+1)ε)
θ(t) dx

)
,

and let uε(t) be the corresponding minimizer of v 7→ EεTot(v,Dε(t)) with boundary conditions
v(0) = 0 and v(1) = g(t). With this definition (uε(t), Dε(t)) satisfy (i)–(iii) of Theorem
2.9 and hence, it is an approximable quasi-static evolution for EεTot(u,D), and converge to
(u(t), θ(t)). �

2.5. Quasi-static evolution for a three-phase material

In this final section, we use the characterization in Theorem 2.17 to show that the limit
evolution can be interpreted as a weak evolution of a three-phase material. To that end, we
introduce a double damage set model that generalizes the one introduced by Francfort and
Marigo as follows. We consider positive constants a < b < c, k1 and k2, the energy

E3P(u,D1, D2) = a

∫

D2

|u′|2 dx+ b

∫

D1

|u′|2 dx+ c

∫

(0,1)\(D1∪D2)
|u′|2 dx (2.5.70)

and the dissipation

D3P(D1, D2) = k1|D1|+ k2|D2| ,
with domain pairs of disjoint subsets D1, D2 of (0, 1). This can be interpreted as the damage
model for a three-phase material, where c is the elastic constant of the undamaged state,
b the one of the ‘partly damaged’ state, and a the one of the ‘totally damaged’ state. The
constant k1 represents the cost of the partly damaged state and k2 the one of the totally
damaged state. In general, we could consider also an ‘intermediate’ dissipation k1,2 which
accounts for the transition from the partly damaged state to the totally damaged state. Our
model corresponds to the case

k1,2 = k2 − k1 .

This assumption reflects the fact that the material in order to reach the totally damaged
state should pass through the intermediate partly damaged state.

36



The incremental problem for this model consists in solving iteratively

min
u,D1,D2

{
E3P(u,D1, D2) +D3P(D1, D2) : D1 ∩D2 = ∅, D1 ∪D2 ⊃ Dk−1

1 ∪Dk−1
2 ,

D2 ⊃ Dk−1
2 , u(0) = 0, u(1) = g(kτ)

}
.

(2.5.71)

The monotonicity conditions on the sets correspond to the assumption that the totally dam-
aged state can only increase, while the partially damaged set can become totally damaged.

We first note that problems (2.5.71) may undergo relaxation with respect to the weak
convergence in H1 for u and weak convergence in L1 for the sets, understood as the weak
convergence of their characteristic functions. We are then lead to considering the following
relaxed functional

E3P
Tot(u, ϕ, ψ) :=

∫

(0,1)
H(ϕ,ψ)|u′|2dx+ k1

∫

(0,1)
ϕdx+ k2

∫

(0,1)
ψ dx. (2.5.72)

where

H(η1, η2) =

[
1− (η1 + η2)

c
+
η1

b
+
η2

a

]−1

. (2.5.73)

The fact that it is the relaxed version of 2.5.70 is an immediate consequence of the charac-
terization of one-dimensional Γ-convergence, once we observe that

E3P(u,D1, D2) =

∫

(0,1)

(
cχ(0,1)\(D1∪D2) + bχD1 + aχD2

)
|u′|2 dx

and we can write

1

cχ(0,1)\(D1∪D2) + bχD1 + aχD2

=
1

c
χ(0,1)\(D1∪D2) +

1

b
χD1 +

1

a
χD2 .

We give a definition of (weak) quasi-static evolution for these energies as follows. Note
that in this definition the monotonicity conditions on D1 and D2 given in problems (2.5.71)
correspond to conditions on the functions ϕ and ϕ+ ψ.

Definition 2.5.1. Given g ∈ AC([0, T ]), with g(0) = 0, we say that (u(t), ϕ(t), ψ(t))
is a (three-phase) quasi-static evolution for the energy (2.5.72) if for all t ∈ [0, T ] we have
u(t) ∈ H1(0, 1), u(0) = 0, u(1) = g(t), ψ(t) ∈ L∞(0, 1), 0 ≤ ψ(t) ≤ 1 , ϕ(t) ∈ L∞(0, 1),
0 ≤ ϕ(t) ≤ 1, ϕ(t) + ψ(t) ≤ 1, and the following properties hold

• Damage irreversibility ψ(t) and ϕ(t) + ψ(t) are increasing in time for each
x ∈ (0, 1),
• Energy Balance

E3P
Tot(u(t), ψ(t), ϕ(t)) = E3P

Tot(u(0), ψ(0), ϕ(0)) + 2

∫ t

0
ġ(s)

∫

(0,1)
H(ϕ,ψ)u′dxds

for all t ∈ [0, T ],
• Minimality Condition

E3P
Tot(u(t), ϕ(t), ψ(t)) ≤ E3P

Tot(v, ϕ̃, ψ̃)

for all v : v−u(t) ∈ H1
0 , and (ϕ̃, ψ̃) such that ψ̃ ≥ ψ(t) and ψ(t)+ϕ(t) ≤ ψ̃+ ϕ̃ ≤ 1.

Now we prove that the limit of the quasi-static evolutions considered in Section 2.3 can
be seen as a quasi-static evolution of a three-phase homogenized material as in Definition
2.5.1. This will be an immediate consequence of the following proposition.
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Proposition 2.19. If (u(t), θ(t)) is a quasi-static evolution according to the Defini-
tion 2.4.1 and we set

(ϕ(t), ψ(t)) =

{
(2θ(t), 0) if θ(t) ∈ [0, 1

2)

(2(1− θ(t)), 2θ(t)− 1) if θ(t) ∈ [1
2 , 1),

(2.5.74)

then (u(t), ψ(t), ϕ(t)) is a quasi-static evolution according to Definition 2.5.1, with

k1 =
γ1

2
and k2 =

γ1 + γ2

2
,

and

a =
2α1α2

α1 + α2
, b =

2α1β2

α1 + β2
, c =

2β1β2

β1 + β2
.

Proof. By the definition of (ψ(t), ϕ(t)) the irreversibility of damage is preserved. More-
over, from a direct computation, using the definition of (ψ,ϕ), k1 and k2, a, b, c and the
following expression for fhom(θ)

fhom(θ) =





[
β1 + β2

2β1β2
(1− 2θ) +

(β2 + α1)

2β2α1
2θ

]−1

if θ ∈ [0, 1
2)

[
β2 + α1

2β2α1
2(1− θ) +

(α1 + α2)

2α1α2
(2θ − 1)

]−1

if θ ∈ [1
2 , 1)

(2.5.75)

we obtain that

fhom(θ) = H(ϕ,ψ) and Dhom(θ) = k1

∫ 1

0
ϕdx+ k2

∫ 1

0
ψ dx,

which implies immediately the energy balance. It remains to prove the minimality property.
To this end we just need to show that for any admissible test pairs (ϕ̃, ψ̃) for E3P

Tot(v, ψ, ϕ)

(i.e. such that ψ̃ ≥ ψ(t) and ψ(t) + ϕ(t) ≤ ψ̃ + ϕ̃ ≤ 1) we can construct an admissible test

functions θ̃ ≥ θ(t) for Ehom
Tot (v, θ) such that

Ehom
Tot (v, θ̃) = E3P

Tot(v, ψ̃, ϕ̃).

It is enough, given (ϕ̃, ψ̃) such that ψ(t) + ϕ(t) ≤ ψ̃ + ϕ̃ ≤ 1, to define θ̃ = ϕ̃/2 if ψ̃ = 0 and

θ̃ = (ψ̃ + 1)/2 otherwise. This choice allows to conclude. �
Corollary 2.20. Let (uε(t), Dε(t)) be a family of approximable quasi-static evolutions

for the inhomogeneous two-phase damage energy EεTot(u,D). Denoting by Dε
1(t) = Dε(t) ∩

([0, ε2) + εN) and Dε
2(t) = Dε(t) \ ([0, ε2) + εN) the triple (uε(t), Dε

1(t), Dε
2(t)) converges (up

to subsequences) to a triple (u(t), θ1(t), θ2(t)) in the L2 × L1 × L1-weak convergence such
that, defining ϕ(t) = 2(θ1(t) − θ2(t)) and ψ(t) = 2θ2(t), (u(t), ψ(t), ϕ(t)) is a (three-phase)
quasi-static evolution in the sense of Definition 2.5.1.

Proof. The proof is an immediate consequence of Theorem 2.18 and the characterization
of θ(t) in terms of θ1(t) and θ2(t) (see Remark 2.15). �
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CHAPTER 3

Convergence of Regularized Damage Evolutions to
Homogenized Threshold Solution

3.1. Main result

The main original result in this chapter is given in Theorem 3.6. We prove that the strong
quasi-static evolution (i.e. without homogenized effects) associated to the perimeter penalized
energy (0.0.19), converges to a weak quasi-static evolution (i.e. with homogenization effects)
related to the relaxed energy in (3.2.1) (see below). The minimality condition which is satisfied
by the limit is proved to be the one introduced in [43] and by this the evolution limit satisfies
threshold properties. We restrict our analysis to a bidimensional body occupying the region
Ω ⊂ R2 with zero boundary conditions, which can move just in the orthogonal direction to
the plane in which the body is embedded (antiplane case) and we consider an external force
f(t) = f(t, x) which acts on the body. For simplicity sometimes we identify sets D with
associated characteristic function χD.

3.2. Introduction

As we explained, when we deal with the energy given by (0.0.11) we can not expect
a quasi-static evolution that maintains a well define region of the damage. Moreover we
remarked that the process of minimizing of (0.0.11) led to consider the relaxed version

Etot(u,A, θ) = Eel(u,A) + k

∫

Ω
θdx (3.2.1)

with

Eel(u,A) =
1

2

∫

Ω
A∇u∇udx− 〈f(t), u〉

where A ∈ Ḡθ(t)(αI, βI).
So, it is reasonable to consider for each time t a “density function” θ = θ(x) (instead of χD(x))
to describe the density damage in x. If we want to maintain the idea that the minimality
condition for an optimal set D at time t is given with respect to the sets D̃ that contains
D, a possible way to translate this property in the relaxed framework is requiring that this
condition is verified by sets Dn that approximate the optimal density function θ (in the sense
of characteristic functions).
Precisely, given A ∈ L∞(Ω;F(α, β)) and θ ∈ L∞(Ω; [0, 1]) and a sequence Dn such that

{
χDn

∗
⇀ θ

σDn
G
⇀ A

we define Ĝθ̃({Dn}) as the subset of G(αI, βI) given by all symmetric matrices Ã that are the

G-limit of a subsequence of σD̃n with D̃n ⊇ Dn and such that χD̃n
∗
⇀ θ̃. The idea, introduced

in [43], is to give a definition of energetic quasi-static evolution for the energy (3.2.1) using
the minimality condition with respect to this set as follows
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Definition 3.1. Given f ∈ W 1,1([0, T ];H−1(Ω)) we say that (A(t), θ(t)) is an energetic
quasi-static evolution for the energy (3.2.1), if for all t ∈ [0, T ] we have θ(t) ∈ L∞(Ω; [0, 1]),
A(t) ∈ Gθ(t)(αI, βI) and the following properties hold:

1. Damage Irreversibility: θ(t) is increasing in time and A(t) is decreasing in time;
2. Energy Balance:

Etot(u(t), A(t), θ(t)) = Etot(u(0), A(0), θ(0))−
∫ t

0
〈ḟ(s), u(s)〉ds;

where u(t) is the solution in H1
0 (Ω) of

−div(A(t)∇v) = f(t) in Ω

3. Minimality Condition: there exists a family of sequences of sets Dn(t) increasing
in time, such that for every t ∈ [0, T ],

{
χDn(t)

∗
⇀ θ

σDn(t)
G−→ A

and for every (Ã, θ̃) such that Ã ∈ Ĝθ̃({Dn}) we have

Etot(u(t), A(t), θ(t)) ≤ Etot(v, Ã, θ̃)
for all v ∈ H1

0 (Ω).

Remark 3.2. In a previous paper (see [33]) a different (weaker) definition of energetic
quasi-static solution was given. The difference was only in the minimality condition, where
the competitors were chosen in a smaller space. Precisely for all t ∈ [0, T ] one required that
θ(t) ∈ L∞(Ω; [0, 1]), A(t) ∈ Gθ(t)(αI, βI) satisfied the following property instead of 3.:

3b. Minimality condition:

Eel(u(t), A(t)) ≤ Eel(v, Ã) + k

∫

Ω
(1− θ(t))θ̃dx

for all v ∈ H1
0 (Ω), θ̃ ∈ L∞(Ω, [0, 1]) and for all Ã ∈ Ḡθ̃(αI,A(t)).

In [33] was proved the existence of an energetic quasi-static evolution with the minimality
condition as in Remark 3.2 and that the evolution (A(t), θ(t)) can be approximated by a
sequence of (damage) sets Dn(t), increasing in time, such that

σDn(t)
G−→ A(t) and χDn(t)

∗
⇀ θ(t)

which guarantees the well-posedness of the minimality condition in the Definition 3.1. It is
important to remark that the set Ĝθ̃({Dn}) is strictly bigger than the set Gθ̃(αI,A(t)) (see
Remark 4 in [43]) which means that Condition 3. implies Condition 3b..

The first result, due to Garroni and Larsen in [43] is the following

Theorem 3.3. There exists (A(t), θ(t)) energetic quasi-static evolution for the energy
(3.2.1) in the sense of Definition 3.1.

At this point in [43] was investigated whether this solution was also a threshold solution,
and to this aim they introduced a relaxed version of the threshold solution of the Definition
0.2:
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Definition 3.4. (A(t), θ(t)) is a threshold solution with threshold λ > 0 if for every

t ∈ [0, T ] there exists a sequence Dn(t) such that σDn(t)
G−→ A(t) and χDn(t)

∗
⇀ θ(t) in L∞

and the following hold

• Monotonicity: Dn(t) is increasing in time;
• Threshold: considering the solution un of

−div(σDn(t)∇v) = f(t)

we have that for every δ > 0, the set in which there is no damage but threshold is
exceeded by at least δ,

Un := {x /∈ Dn(t) : |∇un(t)| > λ+ δ}
satisfies

|Un| −→ 0

• Necessity of Damage: For all En ⊂ Dn(T ) with lim inf |En| > 0, we have that
∀δ > 0 and ∀∆t > 0 small enough, there exists τ < T −∆t such that, setting vn

to be the solution of

−div(σDn(τ+∆t)\∆En∇vn) = f(τ + ∆t)

where ∆En := En ∩ [Dn(τ + ∆t)\Dn(τ)], we have that the subset of ∆En in which
the threshold is almost exceeded,

∆Eδn := {x ∈ ∆En : |∇vn(x)| > λ− δ}
satisfies

lim inf
n−→∞

|∆Eδn| > 0

-If
∫

Ω θ(t)dx is not continuous at T , then we also require that ∀tn ↗ T and ∀En ⊂
Dn(T )\D(tn) with lim inf |En| > 0 and for every δ > 0, the solution vn of

−div(σDn(T )\En∇vn) = f(T )

satisfies
lim inf
n−→∞

|{x ∈ En : |∇vn(x)| > λ− δ}| > 0.

An interesting result proved in [43] is the following

Theorem 3.5. If (A(t), θ(t)) is a quasi-static evolution (Definition 3.1) for the energy
(3.2.1) with dissipation k then it is a threshold solution (Definition 3.4) with threshold λ such
that

k =
λ2β(β − α)

2α
.

In this chapter we start from the results proved in [80] that assure the existence (for each
ε > 0) of a quasi-static evolution (uε(t), Dε(t)) for the total energy

Eεtot(t, u,D) := Eεel(t, u,D) + k|D|+ εPer(D) (3.2.2)

with

Eεel(t, u,D) :=
1

2

∫

Ω
σD|∇u|2dx− 〈f(t), u〉

according to Definition 0.1 in which we consider

θ = χD,

E(t, u, θ) = Eεel(t, u,D) + εPer(D)

and
D̃(θ) = k|D|.

We study the limit of such solution proving the following theorem:
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Theorem 3.6. Given a quasi-static evolution (uε(t), Dε(t)) for (3.2.2), for all t ∈ [0, T ]
there exists θ(t) ∈ L∞(Ω; [0, 1]) and A(t) ∈ Ḡθ(t)(αI, βI) such that (up to subsequences)

χDε(t)
∗
⇀ θ(t), and σDε(t)

G−→ A(t) and , uε(t)
H1

⇀ u(t),

and it holds
lim
ε→0

εPer(Dε(0)) = 0 . (3.2.3)

Moreover assuming that for t > 0

lim
ε−→0

εPer(Dε(t)) = 0, (3.2.4)

we have that (A(t), θ(t)) is a quasi-static evolution in the sense of Definition 3.1.

The rest of the chapter is devoted to the proof of Theorem 3.6. The proof that the quasi-
static evolution with perimeter penalization converges (up to a subsequence) and that the
limit satisfies the monotonicity condition and the energy balance uses standard arguments.
The main difficulty is rather to prove the validity of the minimality condition as in Defi-
nition 3.1. We will show it by using a blow-up argument for which it is fundamental the
assumption (3.2.4).
Even though we assumed (3.2.4) we believe that it must be true in general; our feeling is that
starting from time t = 0 the scale of the damage set becomes fixed and by (3.2.3) it should
be possible to prove (3.2.4) for each t > 0.
We remind a result proved in [43] that it will be useful in what will follow:

Lemma 3.2.1. Let E ⊂ Ω and S ⊂ Ω\E be measurable. Consider the solution uE ∈ H1
0 (Ω)

of the equation
−div(σE∇uE) = f in Ω

where f ∈ H−1(Ω). Then if we set

Eel(E, f) :=
1

2

∫

Ω
σE |∇uE |2dx− 〈f, uE〉

we have

∆Eel := Eel(E, f)− Eel(E ∪ S, f) ≤ (β − α)β

2α
‖∇uE‖2L2(S).

3.3. Compactness argument and convergence of the Perimeter at t = 0

In this section we prove a compactness result for the quasi-static evolution related to the
energy (3.2.2), we prove a Γ-limit result and the convergence (3.2.3), which is fundamental
with assumption (3.2.4), to obtain an energy balance property for the limit of the quasi-static
evolution and to apply a blow up argument to show the minimality condition of the limit.

Lemma 3.3.1. Given (uε(t), χDε(t)) a quasi-static evolution for the energy (3.2.2) there

exists functions u(t) ∈ H1
0 (Ω), θ(t) ∈ L∞(Ω; [0, 1]) and A(t) ∈ L∞(Ω;F(α, β)) such that, up

to subsequences,

uε(t)
H1

⇀ u(t), χDε(t)
∗
⇀ θ(t), σDε(t)

G−→ A(t) (3.3.5)

with θ(t) increasing and A(t) decreasing in time.

Proof. The compactness result is proved by standard techniques. It is enough to note
that by the monotonicity in t of Dε(t) we deduce that σDε(t) has equibounded total variation
with respect to the L∞(Ω,F(α, β)) metric. Then using Helly’s Theorem (see [57] or [33]),
there exists a subsequence of σDε(t) and a matrix A(t) ∈ L∞(Ω,F(α, β)) such that, for each
t ∈ [0, T ]

σDε(t)
G−→ A(t) .
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By the properties of G-convergence, A(t) inherit the monotonicity by σDε(t). The same argu-
ment can be made for χDε(t) in the weak* topology (as noticed in [33]), thus there exists a
decreasing function θ(t), such that, up to subsequence,

χDε(t)
∗
⇀ θ(t)

for each t ∈ [0, T ]. Finally, by the minimality of uε(t) and the definition of G− convergence,
we immediately obtain that there exists a function u(t) ∈ H1(Ω) and a subsequence of uε(t)
such that for each t ∈ [0, T ]

uε(t)
H1

⇀ u(t).

�

We now prove a Γ-convergence result, for the energy in (3.2.2), without constraint, which
will imply the perimeter property (3.2.3).

Lemma 3.3.2. Given u ∈ H1
0 (Ω) and D ⊂ Ω the functional

F ε(u, χD) :=
1

2

∫

Ω
σD|∇u|2dx− 〈f, u〉+ k|D|+ εPer(D) (3.3.6)

Γ- converges to the functional

F (u,A, θ) :=

∫

Ω
A∇u∇udx− 〈f, u〉+ k

∫

Ω
θdx (3.3.7)

with respect to the following convergences

uε
H1

⇀ u χDε
∗
⇀ θ, σDε

G−→ A. (3.3.8)

with u ∈ H1
0 (Ω), θ(x) ∈ [0, 1] and A ∈ L∞(Ω;F(α, β)).

Proof. Obviously we have that

lim inf
ε

{
1

2

∫

Ω
σDε |∇uε|2dx− 〈f, uε〉+ k|Dε|+ εPer(Dε)

}
≥

lim inf
ε

{
1

2

∫

Ω
σDε |∇uε|2dx− 〈f, uε〉+ k|Dε|

}

and since by Theorem 1.10

σDε
G−→ A if and only if

∫

Ω
σDε |∇u|2dx Γ−→

∫

Ω
A∇u∇udx (3.3.9)

we have by (3.3.8) and the lower semicontinuity of the Γ-limit

lim inf
ε

{
1

2

∫

Ω
σDε |∇uε|2dx− 〈f, uε〉+ k|Dε|

}
≥ (3.3.10)

1

2

∫

Ω
A∇u∇udx− 〈f, u〉+k

∫

Ω
θdx (3.3.11)

So the (3.3.11) is the candidate to be the Γ-limit. Now we want to prove lim sup inequality.
Given θ ∈ [0, 1] and A ∈ Ḡθ(αI, βI) there exists (by definition of Gθ(αI, βI)) a sequence
(χDh , σDh) such that

χDh
∗
⇀ θ and σDh

G−→ A,

moreover we can consider the recovery sequence uh of the Γ convergence
∫

Ω
σDh |∇u|2dx

Γ−→
∫

Ω
A∇u∇udx (3.3.12)
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and in so doing we obtain

lim
ε

{
1

2

∫

Ω
σDh |∇uh|2dx− 〈f, uh〉+ k|Dh|+ εPer(Dh)

}
= (3.3.13)

1

2

∫

Ω
σDh |∇uh|2dx− 〈f, uh〉+ k|Dh| (3.3.14)

and since it is a pointwise convergence it implies that, calling F ′′(u,D) the Γ-limsup, we have

F ′′(uh, Dh) ≤ 1

2

∫

Ω
σDh |∇uh|2dx− 〈f, uh〉+ k|Dh|

so, passing to the limit in h and using the lower semicontinuity of the Γ-limsup we conclude
that

lim
h
F ′′(uh, Dh) ≤ 1

2

∫

Ω
A∇u∇udx− 〈f, uh〉+ k

∫

Ω
θdx,

which conclude the computation of the Γ-limit of (3.3.6). �
By previous Lemma we prove the convergence result (3.2.3).

Lemma 3.3.3. Given (uε(t), χDε(t)) quasi-static evolution for the energy (3.2.2) it holds

εPer(Dε(0)) −→ 0 (3.3.15)

when ε goes to zero.

Proof. Since (uε(t), Dε(t)) is a quasi-static evolution we have in particular that, at time
t = 0, (uε(0), Dε(0)) minimizes the functional

F (u,D) :=
1

2

∫

Ω
σD|∇u|2dx− 〈f, u〉+ k|D|+ εPer(D) (3.3.16)

without any restriction on the set. Moreover uε(0) is a mininum point for
∫

Ω
σDε(0)|∇v|2dx− 〈f(0), v〉

so by the property of G-convergence we have∫

Ω
σDε(0)|∇uε(0)|2dx −→

∫

Ω
A(0)∇u(0)∇u(0)dx

So passing to the limit in ε in the functional (3.3.16) with uε(0) and Dε(0) we necessarily
obtain that

εPer(Dε(0)) −→ 0.

�

3.4. Energy Balance and a first minimality property of the limit

In this section we prove that the limit (u(t), θ(t)) of the quasi-static evolution (uε(t), Dε(t))
satisfies properties (1), (2), and (3b) as in Definition 3.1 and Remark 3.2.

Proposition 3.7. Given the limit (u(t), θ(t)) and A(t) of the quasi-static evolution
(uε(t), Dε(t)) and σDε(t) for the energy (3.2.2) according to the convergences in Lemma 3.3.1,
then, assuming (3.2.4), it satisfies the properties (1), (2), and (3b) of Remark 3.2.

Proof. The proof is standard and it follows closely the strategy of Theorem 3.1 in [33].
As proved in Lemma 3.3.1 there exists up to subsequences the limit of uε(t), Dε(t) and σDε(t)
which we call u(t), θ(t) and A(t), such that A(t) is decreasing and θ(t) is increasing and so
the property (1) is satisfied.
The energy balance is immediate: it is consequence of the energy balance at ε fixed passing
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to the limit and using the perimeter convergence assumption (3.2.4).
Now we focus on the minimality property. The minimality of (uε(t), Dε(t)) for the energy
(3.2.2) gives

1

2

∫

Ω
σDε(t)|∇uε(t)|2dx− 〈f(t), uε(t)〉+ k|Dε(t)|+ εPer(Dε(t)) (3.4.17)

≤1

2

∫

Ω
σD′ |∇v|2dx− 〈f(t), v〉+ k|D′|+ εPer(D′) (3.4.18)

for all v ∈ H1
0 (Ω), for all D′ ⊇ Dε(t). Testing the above inequality with D′ε = Dε(t) ∪ E, for

E ⊂ Ω, and using that

Per(Dε(t) ∪ E) ≤ Per(Dε(t)) + Per(E) ,

(3.4.17) becomes

1

2

∫

Ω
σDε(t)|∇uε(t)|2dx− 〈f(t), uε(t)〉 (3.4.19)

≤1

2

∫

Ω
σD′ |∇v|2dx− 〈f(t), v〉+ εPer(E) + k

∫

Ω
(χDε(t)∪E − χDε)dx. (3.4.20)

Since σDε(t)
G−→ A(t) and uε(t) satisfies −div (σDε(t)∇uε(t)) = f(t), we have

1

2

∫

Ω
A(t)∇u(t)∇u(t)dx− 〈f(t), u(t)〉 (3.4.21)

= lim

{
1

2

∫

Ω
σDε(t)|∇uε(t)|2dx−

∫

Ω
f(t)uε(t)dx

}
(3.4.22)

Moreover by the locality of the G-convergence we have

σDε(t)∪E
G−→ A(t)χΩ\E + αχE (3.4.23)

and, by the equivalence with the Γ-convergence (see Theorem 1.10), given v ∈ H1
0 (Ω) there

exists a (recovery) sequence vε ∈ H1
0 (Ω) with vε

H1

⇀ v such that

lim sup

{
1

2

∫

Ω
σDε(t)∪E |∇vε|dx− 〈f(t), vε〉

}
(3.4.24)

=
1

2

∫

Ω
(A(t)χΩ\E + αχE)∇v∇vdx− 〈f(t), v〉. (3.4.25)

Finally noting that εPer(E) −→ 0 and that

lim
ε−→0

{∫

Ω
(χDε(t)∪E − χDε(t))dx

}
=

∫

Ω
(1− θ)χEdx

we obtain (using also (3.4.21) and (3.4.24)) the following inequality
∫

Ω
A(t)∇u(t)∇u(t)dx− 〈f(t), u(t)〉 ≤ 1

2

∫

Ω
A′∇v∇vdx+ k

∫

Ω
(1− θ(t))χEdx

for all v ∈ H1
0 (Ω) and for all A′ = A(t)χΩ\E +αχE for all E ⊂ Ω, and so by density we obtain

the minimality condition (3b) of the Remark 3.2.

�
Remark 3.8. Let note that the possibility to have the energy balance for the limit is equiv-

alent to the convergence of the perimeter (3.2.4). Indeed, let assume that the energy balance
holds for the limit. Using the energy balance for the quasi-static evolution (uε(t), Dε(t)) and
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the fact that εPer(Dε(0)) goes to zero (up to subsequence) we have by the energy balance at
ε fixed that

Eεel(t) + k|Dε(t)|+ εPer(Dε(t)) = Eεtot(0)−
∫ t

0
〈ḟ(t), uε(t)〉ds

and passing to the lim sup we have

Eel(t) + k

∫

Ω
θ(t)dx+ lim sup

ε
(εPer(Dε(t))) = Etot(0)−

∫ t

0
〈ḟ(t), u(t)〉ds

and using the energy balance for the limit of (uε(t), χDε(t)) we have that the right hand side
term is equal to

Eel(t) + k

∫

Ω
θ(t)dx

which implies that up to subsequence

lim
ε−→0

(εPer(Dε(t))) = 0

for all t ∈ [0, T ].
Since the convergence (3.2.4), as we will see, is the key point to prove the minimality condition
as in the Definition 3.1 it means that if we have an increasing function θ(t) (and u(t)) which
is approximated by a quasi-static evolution Dε(t) (and uε(t)) of the energy in (3.2.2) and
such that it satisfies (a priori) the energy balance related to the energy (3.2.1) then it is a
quasi-static evolution for this energy.

3.5. Minimality Condition

In this section we will prove the main Theorem of the Chapter, which reduces now to
prove the minimality conditions in Definition 3.1. It will be consequence of the fact that uε(t)
satisfies a threshold property in the limit (see Step 1 in the proof). This property is implied
by fact that, thank to the (3.2.4), we can have a convergent blow-up of uε(t) on a large
number of squares Qεi ⊂ Ω whose limit satisfies a sharp threshold property (see Proposition
3.10) which is consequence of a minimality property of that limit (see Lemma 3.5.2).
The first part of this section is devoted to the possibility of make the “blow up argument”
which allows us to prove, in the second part of the section, the minimality condition of the
Definition 3.1.

3.5.1. The blow-up argument. In this subsection our purpose is to show that we can
find a region (square) of Ω in which (uε(t), Dε(t)), after a change of scale, has a subsequence

that converges to a pair (ṽ0(t), D̃0(t)) that satisfies a first threshold condition in that region.
To do it we need to construct a partition of Ω with good properties. To avoid heavy notation
we sometimes neglect the dependence of t underlining the dependence of x.
We need also to introduce some notations: given a square Qεi := Qε(xεi ) ⊂ Ω with center in
xεi and length size ρε we define uεi (x) as the restriction of uε(x) on this square and we define
the following blow up on it (see Figure 1)

ṽεi (x) :=
1

ρε
(uεi (ρεx+ xεi )− ūεi ), D̃ε

i :=
1

ρε
(Dε ∩Qεi − xεi ), Q1(0) :=

1

ρε
(Qεi − xεi )

where ūεi is the mean value of uε(x) on Qεi .
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Qεi

1
Q1(0)

Dε

D̃ε

ρε

Figure 1.

Remark 3.9. Let note that, for each ε > 0, we can construct a covering of Ω of disjoint
squares such that

Per(Dε(t),Ω) =
∑

i

Per(Dε(t), Qεi ),

indeed the possibility to choose xεi such that this property is satisfied is due to the fact that
the perimeter of Dε(t) is equibounded. Indeed, fixed arbitrary family xεi , we consider a vector
a = (a1, a2) ∈ [0, ρε]

2 and the related partition made by squares

Qε(xεi + a)

traslation of Qεi on the vertical line of a2 > 0 and on the horizontal line of a1 > 0.
To prove the property we just need to show that

∃a ∈ [0, ρε]
2 such that H1(∂Dε(t) ∩ ∂Qε(xεi + a)) = 0

for every i ∈ N. By contradiction we suppose that

∀a ∈ [0, ρε]
2 ∃ia : H1(∂Dε(t) ∩ ∂Qε(xεia + a)) > 0,

but using the Fubini Theorem we have

H2(∂Dε(t) ∩ Ω) >

∫ ρε

0

∫ ρε

0
H1(∂Dε(t) ∩ ∂Qε(xεia + a))da1da2,

so we have H2(∂Dε(t) ∩ Ω) > 0 which implies that Per(Dε(t),Ω) = H1(∂Dε(t) ∩ Ω) = ∞
that is a contradiction. From now we assume that this property is verified by the family of the
squares will consider in the future.

Now we want to show for every ε > 0 that the squares Qεj that define the partition of Ω

are “almost all” such that the blow-up function vεj (t) has finite norm on it and the perimeter

of Dε
j (t) is equibounded. It will be fundamental to have a convergent subsequence.

So we start defining the set of squares in which, given ρε, there is “too much perimeter”

Jε := {i : Per(Dε(t), Qεi ) > 4ρε} and UJε :=
⋃

i∈Jε
Qεi
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and we note that if j /∈ Jε we have

Per(D̃ε
j (t), Q

1(0)) =
Per(Dε(t), Qεj)

ρε
≤ 4ρε

1

ρε
= 4

Moreover we define the set of squares in which, for each t, the norm of uε(t) is “too large”
i.e. fixing an arbitrary large constant M > 0 we define

IMε := {i : ‖uεi (t)‖H1(Qεi )
> Mρ2

ε} and UIMε :=
⋃

i∈IMε

Qεi .

It is immediate to have an estimate on the measure of UIMε :
∑

i∈IMε

‖uε(t)‖H1(Qεi )
> #IMε ·Mρ2

ε = M |
⋃

i∈IMε

Qεi |

and since ∑

i∈IMε

‖uε(t)‖H1(Qεi )
< ‖uε(t)‖H1(Ω) ≤ C

we obtain

|UIMε | <
C

M
(3.5.26)

Lemma 3.5.1. Assume (3.2.4) holds, then there exists a sequence ρε −→ 0 such that

• it holds

|UJε| −→ 0 (3.5.27)

when ε goes to zero;
• for every δ > 0 there exists a constant c > 0 and a set of indexes

Λδε := {i /∈ Jε : ‖uεi (t)‖H1(Qεi )
≤ cρ2

ε}
such that, considering ε sufficiently small, it holds

|
⋃

i∈Λδε

Qεi | = |Ω| − δ (3.5.28)

• if j ∈ Λδε then for every t > 0 there exist a constant c1 > 0 such that

‖ṽεj (t)‖H1(Q1(0)) ≤ c1 (3.5.29)

with c1 not depending on ε.

Proof. To prove the first property we use Remark 3.9. We have

Per(Dε(t),Ω) =
∑

i

Per(Dε(t), Qεi ) >
∑

i∈Jε
Per(Dε(t), Qεi ) > #Jε · 4ρε

and defining λε := εPer(Dε(t)) we have

#Jε <
λε
ε

1

4ρε
.

Then choosing ρε := ε

λ
1/2
ε

(which goes to zero when ε goes to zero) we obtain

|UJε| ≤ #Jε · ρ2
ε =

λ
1/2
ε

4

that goes to zero.
To prove the second statement we start defining

ΛMε := (Jε)
c ∩ (IMε )c,
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and so we have
⋃

i∈ΛMε

Qεi = Ω\
[ ⋃

i∈Jε
Qεi ∪

⋃

i∈IMε

Qεi

]

which implies using (3.5.26) and (3.5.27)
∣∣∣∣
⋃

i∈ΛMε

Qεi

∣∣∣∣ > |Ω| − |UJε| − |UIMε | > |Ω| − oε(1)− C

M

so choosing ε sufficiently small and M sufficiently large we conclude.
Now we prove the third property. Let remark that since j ∈ Λδε it holds

‖uεj(t)‖H1(Qεj)
≤ cρ2

ε (3.5.30)

Now by the definition of ṽεj it holds (we neglect dependence on t underlining the dependence

on x) ∫

Q1(0)
|∇ṽεj (x)|2dx =

∫

Q1(0)
|∇(

1

ρε
uεj(ρεx+ xεj))|2dx

=

∫

Q1(0)
|(∇uεj)(ρεx+ xεj)|2dx =

1

ρ2
ε

∫

Qεj

|∇uεj(y)|2dx ≤ c,

where the last inequality comes from (3.5.30).
Now, since ṽεj is not (a-priori) zero at the boundary of Q1(0) we need to show a similar bound

for the L2-norm of ṽεj to have the boundness in H1. We have
∫

Q1(0)
|ṽεj (x)|2dx =

∫

Q1(0)
| 1

ρε
(uεj(ρεx+ xεj)− ūεj)|2dx =

1

ρ4
ε

∫

Qεj

|uεj(y)− ūεj |2dy.

Now using Poincare-Wirtinger inequality

1

ρ4
ε

∫

Qεj

|uεj(y)− ūεj |dy ≤ Cρ2
ε

1

ρ4
ε

∫

Qεj

|∇(uεj(y)− ūεj)|dy = C
1

ρ2
ε

∫

Qεj

|∇uεj(y)|dy

and, again, by (3.5.30) we conclude that ṽεj is equibounded also in L2(Q1(0)).
�

Now we prove that, for each t ∈ [0, T ] we can extract in Q1(0) a subsequence of the pair
(ṽεj (t), χD̃εj

(t)) such that it satisfies a minimality condition in this square respect to add more

damage set and respect to functions with the same value of ṽεj on the boundary.

From now the partition {Qεi}i∈N will be fixed and such that it satisfies properties of previous
lemma.

Lemma 3.5.2. Considering the family {Qεi}ε, and an index j ∈ Λδε, there exists, for every

t ∈ [0, T ], a subsequence (ṽεkj (t), χD̃εkj (t)) and a pair (ṽ0(t), D̃0(t)) s.t.

1. ṽεkj (t)
H1

⇀ ṽ0(t), and χD̃εkj (t)
L1

−→ χD̃0(t) in Q1(0),

2. (ṽ0(t), D̃0(t)) satisfies
∫

Q1(0)
σD̃0(t)|∇ṽ0(t)|2dx+ k|D̃0(t)| ≤

∫

Q1(0)
σD|∇v|2dx+ k|D| (3.5.31)

for all D ⊇ D̃0(t), D ⊂ Q1(0) and for all v s.t. (v − ṽ0(t)) ∈ H1
0 (Q1(0)).
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Proof. As we have seen before there exists c1 and c2 positive constants such that

‖ṽεj (t)‖H1(Q1(0)) ≤ c1 and Per(D̃ε
j (t)) ≤ c2

and by the weak compactness property of H1 and compactness property of BV function
(Per(D̃ε

j (t)) is the total variation of the function χD̃εj (t)) we can extract, for every t, a con-

vergent pair of functions, whose limit we call (ṽ0(t), D̃0(t)).
Now we show the minimality property of such limit.
It is useful, for what will follow, to define for S ⊂ Ω the duality between a given f ∈ H−1(Ω)
and u ∈ H1

0 (Ω) as

〈f, u〉S :=

∫

S
g∇udx

where g is (one of) representative function of f , i.e., a function g ∈ L2(Ω) such that −div(g) =
f in weak sense.
We choose as competitor for (uε(t), Dε(t)) in (3.2.2) a pair (v,D) such that v = uε(t) in (Qεj)

c

and D such that D = Dε(t) in (Qεj)
c and D ∩ Qεj = (Dε(t) ∩ Qεj) ∪ Eε with Eε ⊆ Qεj the

rescaling of an arbitrary set E ⊆ Q1(0) . In so doing we obtain by the minimality condition
of uε(t) and by these choice of test functions

∫

Qεj

σDε(t)|∇uεj(t)|2dx− 〈f(t), uεj(t)〉Qεj + k|Dε(t) ∩Qεj |+ εPer(Dε(t) ∩Qεj)

≤
∫

Qεj

σD(t)|∇v|2dx− 〈f(t), v〉Qεj + k|D ∩Qεj |+ εPer(D ∩Qεj),

which becomes, making the scaling x = ρεy + xεi , and defining f ε(y) := f(ρεy + xεj)
∫

Q1(0)
σD̃εj

(t)|∇ṽεj (t)|2dy − ρε〈f ε(t), ṽεj (t)〉Q1
0
− 〈f ε(t), ūεj(t)〉Q1

0

+k|D̃ε
j (t) ∩Q1(0)|+ ε

ρε
Per(D̃ε

j (t) ∩Q1(0)) ≤
∫

Q1(0)
σD̃εj (t)∪E |∇v|2dy − ρε〈f ε(t), v〉Q1

0
+ k|(D̃ε

j (t) ∪ E) ∩Q1(0)|

+
ε

ρε
Per((D̃ε

j (t) ∪ E) ∩Q1(0))

with v such that v = ṽεj (t) + ūεi (t) on the boundary of Q1(0). Now we want to pass to the

limit as ε goes to zero. Note that for the mean value ūεj(t) we have, using Holder inequality

(neglecting dependence on t),

ūεj =
1

|Qεj |

∫

Qεi

uεj(y)dy ≤ 1

|Qεj |

(
|Qεi |

1
2

(∫

Qεi

|uεj(y)|2dy
)1/2)

which goes to zero when ε goes to zero since j ∈ Λδε. Moreover (up to subsequences) xεj is

a convergent sequence and by the definition on ρε we have that (ε/ρε) converges to zero.

Then we remark that, for each t ∈ [0, T ] Per(D̃ε
j (t), Q

1(0)) ≤ c2 and that χD̃εj (t) −→ χD̃0(t)

in L1(Q1(0)). Finally, we have that (up to subsequences) σD̃εj
(t) strongly converges to σD̃0

(t)

in L2(Q1(0)) and that ∇ṽεj (t) weakly converges to ∇ṽ0(t) in L2(Q1(0)). So using all these

properties we can pass to the limit and obtain the energy minimality (3.5.31). �

Now we will show that (ṽ0(t), D̃0(t)) satisfies a threshold condition in Q1(0).
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Proposition 3.10. (ṽ0(t), D̃0(t)) satisfies the following threshold property:

|∇ṽ0(t)| ≤ λ

a.e. in D̃c
0(t) with λ =

√
2αk

β(β−α) for each t ∈ [0, T ].

Proof. The idea is to prove the claim by contradiction using the minimality property
(3.5.31). We suppose (by contradiction) that the set in which |∇ṽ0| exceeds the threshold
outside the damage region has positive measure; we consider a small square Q̄ of this region
and we damage it with a lamination. Then we will show that there exists an admissible test
function for (3.5.31) such that, considered the damage added by lamination, makes the total

energy lower than the one given by (ṽ0, D̃0). We will follow the steps used in [43].
We suppose that the set

U := {x ∈ D̃c
0(t) : |∇ṽ0(t)| > λ}

is such that

|U | > γ > 0.

Now we consider a square Q̄ ⊂ Q1(0) with center in a point x̄ ∈ U such that (see Fig.2)

D̃0

U

Q̄

Q1(0)

∇ṽ0

Figure 2.

1) x̄ is a Lebesgue point for ṽ0 and ∇ṽ0, i.e. it holds

lim
r−→0+

1

|Br(x̄)|

∫

Br(x̄)
|ṽ0(x̄)− ṽ0(y)|pdy = 0

for all p ≥ 1 (and the same for ∇ṽ0), where Br(x̄) is the ball with center x̄ and
radius r.

2) two sides of Q̄ are orthogonal to ∇ṽ0(x̄);
3) defined v̂(x) := ṽ0(x̄) +∇ṽ0(x̄) · (x− x̄) we have

‖ṽ0 − v̂‖2H1(Q̄) ≤ ε|Q̄|

|D̃0 ∩ Q̄| ≤ ε|Q̄|
Note that since we are assuming that in U we have |∇ṽ0| > λ there exists δ > 0 such that
|∇ṽ0(x̄)| = λ+ δ. Graphically we have
We can divide the proof in 3 steps.
As first step we will show that considering in Q̄ test functions with the same boundary
condition of v̂ (instead of ṽ0) we can decrease in this square the total energy given by the
pair (ṽ0, ∅) (without the forcing term) using a process of lamination, i.e. we will show that

inf
w,D′

{
Ewftot (w,D′, Q̄) : (w − v̂) ∈ H1

0 (Q̄), D′ ⊂ Q̄
}
≤ Ewftot (v̂, ∅, Q̄)− 1

2
βδ2|Q̄| (3.5.32)
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D̃0

U
Q̄

Q1(0)

v̂(Q̄)

ṽ0(Q̄)

ṽ0(Q1(0))

Figure 3.

where

Ewftot (v,D, Q̄) :=
1

2

∫

Q̄
σD|∇v|2dx+ k|D ∩ Q̄|

To do it we need a technical result to match the boundary conditions of the test function
(which will be a piecewise linear function) with the boundary conditions of v̂.
In the second step, using the previous one, we will show that in Q̄ we can lower the total
energy given by (ṽ0(t), D̃0(t)) using test functions with the same boundary conditions of ṽ0(t)
and choosing ε sufficiently small, i.e. we will show that

inf
h,D′

{
Ewftot (h,D′, Q̄) : (h− ṽ0(t)) ∈ H1

0 (Q̄), D′ ⊂ Q̄
}
≤ Ewftot (ṽ0(t), D̃0(t), Q̄)− 1

2
βδ2|Q̄|

(3.5.33)

+ oε(1)|Q̄|
(3.5.34)

Finally in the third step we will use the previous steps to construct an admissible pair for the
inequality (3.5.31) that has in Q1(0) a total energy lower than the one given by (ṽ0(t), D̃0(t))
and so the contradiction.
Step 1: To avoid heavy notation we can assume that x̄ = 0 and ṽ0(x̄) = 0 and so we have
v̂(x) = ∇ṽ0(x̄) · x
We consider the continuous periodic function z(y) such that z(0) = 0, z(1) = λ+ δ and

z′(y) =

{
β
αλ, if y ∈ (0, d)

λ, if y ∈ [d, 1)
(3.5.35)

where d is univocally determined and it turns to be d = δα
λ(β−α) and we define

v̂ε(x) := z

(
x

ε
· ∇ṽ0(x̄)

|∇ṽ0(x̄)|

)

D̂ε :=

{
x ∈ Q̄ : z′(

x

ε
· ∇ṽ0(x̄)

|∇ṽ0(x̄)|) =
β

α
λ

}

It is easy to see that v̂ε converges strongly to v̂ in L2(Q̄) and that it is bounded in H1(Q̄).
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D̂ε

v̂ε(x)

v̂(x)

ṽ0(x)

Figure 4.

Now we match the boundary conditions of v̂ε with the ones of v̂ using the cut-off function

φ(y) =

{
1, if y ∈ Q̄\QR
0, if y ∈ QR−µ

(3.5.36)

and such that |∇φ| = 1
µ in QR\QR−µ where R ∈ (0, |Q̄|1/2) and µ ∈ (0, R) and we define

wε = φv̂ + (1− φ)v̂ε.

Let remark that we can choose R such that

lim
µ−→0

lim
ε−→0

∫

QR\QR−µ
|∇wε|2dx = 0 (3.5.37)

lim
µ−→0

lim
ε−→0

∫

QR

|∇wε −∇v̂ε|2dx = 0 (3.5.38)

indeed by definition of wε we only need to prove the first one and we have
∫

QR\QR−µ
|∇wε|2dx ≤

1

µ2

∫

QR\QR−µ
|v̂ε − v̂|2dx+

∫

QR\QR−µ
|∇v̂|2dx+

∫

QR\QR−µ
|∇v̂ε|2dx.

The first term on the right hand side of the inequality goes to zero when ε goes to zero by
the L2 strong convergence of v̂ε to v̂, while the second term goes to zero when µ goes to
zero. To show that also the last term goes to zero we just need to prove that there exists
R ∈ (0, |Q̄|1/2) and a constant C > 0 such that

|∇v̂ε|2 ≤ C in QR\QR−µ
but this is immediate since v̂ε is bounded in H1(Q̄) (choosing µ suitable small). By the

(3.5.37) and the (3.5.38) follows that the energy given by (wε, D̂ε) is arbitrarily close to that

given by (v̂ε, D̂ε) which is (with a simple computation)

1

2
βλ(λ+ δ)|Q̄|+ 1

2
βλδ|Q̄|

The second term is the product of k with the scalar d where k is the dissipation linked to
the threshold λ by the relation in the statement. With this choice of λ we have that the
energy given by v̂(x) (with no damage but exceeding the threshold) can be decreased putting
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damaged in a way to bring the strain outside the damage region down to the threshold λ (see
Remark 1 in [43]). So, we conclude that

inf

{
1

2

∫

Q̄
σD′ |∇w|2dx+ k|D′| : (w − v̂) ∈ H1

0 (Q̄), D′ ⊂ Q̄
}
≤ 1

2
βλ(λ+ δ)|Q̄|+ 1

2
βλδ|Q̄|

(3.5.39)

= Ewftot (v̂, ∅, Q̄)− 1

2
βδ2|Q̄|

(3.5.40)

where the equality comes from the fact that

Ewftot (v̂, ∅, Q̄) =
1

2
β(λ+ δ)2|Q̄|

Step 2: we start showing that by the properties (3) of Q̄ we have for each t ∈ [0, T ]

|Ewftot (ṽ0(t), D̃0(t), Q̄)− Ewftot (v̂, ∅, Q̄)| ≤ oε(1)|Q̄| (3.5.41)

indeed we have

Ewftot (ṽ0(t), D̃0(t), Q̄)− Ewftot (v̂, ∅, Q̄) =

∫

Q̄
σD̃0(t)|∇ṽ0(t)|2dx+ k|D̃0(t) ∩ Q̄| − β

∫

Q̄
|∇v̂|2dx

(3.5.42)

≤ β
∫

Q̄
(|∇ṽ0(t)|2 − |∇v̂|2)dx+ k|D̃0(t) ∩ Q̄| (3.5.43)

and using the property for numbers |a|2 − |b|2 ≤ |a − b|2 + 2|a − b||b| we obtain (using also
Holder inequality) that

Ewftot (ṽ0(t), D̃0(t), Q̄)− Ewftot (v̂, ∅, Q̄) ≤ C
∫

Q̄
|∇ṽ0(t)−∇v̂|2dx+ k|D̃0(t) ∩ Q̄| (3.5.44)

with C > 0, and using the properties (3) we have (3.5.41).
Now considering the inf problem in (3.5.34) we note that we can use as test function h(x) :=
w(x) + (ṽ0(x)− v̂(x)) where w(x) is an arbitrary admissible test function in the inf problem
in (3.5.32), so, using (3.5.41) we obtain the inequality (3.5.34).
Step 3.
We come back to the square Q1(0) and consider the problem

inf
w,D′

{
1

2

∫

Q1(0)
σD′ |∇w|2dx+ k|D′| : (w − ṽ0(t)) ∈ H1

0 (Q1(0)), D′ ⊂ Q1(0), D′ ⊇ D̃0

}
.

Using the previous steps we can construct a pair (w,D′) with D′ ⊇ D̃0 and w = ṽ0(t) outside
Q̄ such that

Etot(w,D
′, Q1(0)) ≤ Etot(ṽ0(t), D̃0(t), Q1(0)) + (−1

2
βδ2 + oε(1))|Q̄|

So for ε << 1 we have a contradiction since with an admissible competitor the total energy
decreases more than the one given by the pait (ṽ0(t), D̃0(t)). �

3.5.2. Proof of the main Theorem.
In this subsection we prove the main result of the chapter stated in Theorem 3.6 that is
considering the quasi-static evolution (uε(t), χDε(t)) we have that, up to subsequences, the
G-limit A(t) of σDε(t), the weak limit u(t) of uε(t) and the weak* limit θ(t) of χDε(t) define
a quasi-static evolution as in Definition 3.1.
To do it we divide the proof in two steps. In the first one we will prove that it holds the
threshold condition of the Definition 3.4 for (uε(t), χDε(t)) and σDε(t), then using this fact,
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in the second step we will prove that A(t), u(t) and θ(t) satisfy the minimality condition
introduce by Garroni and Larsen (see Definition 3.1). In this way since these limits satisfy
the energy balance and the damage irreversibility for the energy (3.2.1) (by Theorem 3.7) we
have that they define a quasi-static evolution in the sense of Definition 3.1.

Proof. Step 1.

Given f(t) ∈ H−1(Ω) we note that by the minimality condition uε(t) is the unique solution
of

−div(σDε(t)∇uε(t)) = f(t).

Now defined

Aδε := {x ∈ (Dε(t))c : |∇uε(t)| > λ+ δ} (3.5.45)

with δ > 0, we want to prove that

|Aδε| −→ 0 (3.5.46)

when ε goes to 0.
We proceed by contradiction: suppose there exists γ > 0 s.t. lim supε |Aδε| = γ. So considering
ε small enough we have |Aδε| > γ

2 and, considering the set of indeces Λνε (see Lemma 3.5.1),

γ

2
< |Aδε| =

∑

i∈Λνε

|Aδε ∩Qεi |+
∑

i/∈Λνε

|Aδε ∩Qεi |

using (3.5.28) we obtain ∑

i∈Λδε

|Aδε ∩Qεi | >
γ

2
− ν

which implies that there exists an index j ∈ Λνε such that

|Aδε ∩Qεj | >
(γ

2
− ν
) |Qεj |
|Ω| . (3.5.47)

Considering this index j we can make in Qεj the blow-up argument of previous section, so

defining (neglecting the dependence on t)

ṽεj (x) :=
1

ρε
(uεj(ρεx+ xεj)− ūεj)

D̃ε
j :=

((
Dε ∩Qεj

)
− xεj

) 1

ρε

we can apply Lemma 3.5.2 and call their limits (up to subsequences) D̃0 and ṽ0.
In this way (3.5.47) becomes

|{x ∈ Q1(0)\D̃ε
j (t) : |∇ṽεj | > λ+ δ}| >

(γ
2
− ν
) |Q1(0)|
|Ω| . (3.5.48)

Now we want to pass to the limit in ε to have a contradiction, and to this aim the weak-
convergence of ∇ṽε(t) is not enough, so we prove that (at fixed t) the convergence is strong
in H1.
We have for each t ∈ [0, T ] (and up to subsequence) ṽεj (t) ⇀ ṽ0(t) in H1(Q1(0)) so, since

H1(Q1(0)) is an Hilbert space we just need to prove the convergence of the norms. By
compactness we have strong convergence for each t ∈ [0, T ] (and up to subsequence) of ṽεj (t)

to ṽ0(t) in L2(Q1(0)), that means we need just to show the L2 strong convergence of the
gradient. To this aim we note that ṽεj (t) satisfy the Euler-Lagrange equation

−div(σD̃εj
∇ṽεj ) = gεj
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with gεj (x) = ρεf(ρεx+xεj), and using as test function v = ṽεj (t)−ṽ0(t) in the weak formulation
we obtain
∫

Q1(0)
σD̃εj (t)|∇ṽεj (t)−∇ṽ0(t)|2dx = 〈gεj , ṽεj (t)− ṽ0(t)〉 −

∫

Q1(0)
σD̃εj (t)∇ṽ0(t)(∇ṽεj (t)−∇ṽ0(t))

and since for each t ∈ [0, T ] (and up to subsequences) ṽεj (t)− ṽ0(t) ⇀ 0 in H1(Ω) and gεj −→ 0

in H−1 the first term on the right hand side converges to zero. At the same time by the L2-
strong convergence of σD̃εj

(t) to σD̃0
(t) we have that also the last term in the right hand-side

goes to zero, and since it holds

α

∫

Q1(0)
|∇ṽεj (t)−∇ṽ0(t)|2dx ≤

∫

Q1(0)
σD̃εj

(t)|∇ṽεj (t)−∇ṽ0(t)|2dx

we obtain the strong L2-convergence of the gradient (up to subsequences). Now passing to
the limit in the subsequences in (3.5.48) we have

|{x ∈ Q1(0)\D̃0(t) : |∇ṽ0(t)| ≥ λ+ δ}| ≥
(
γ

2
− ν
) |Q1(0)|
|Ω| > 0

since ν can be chosen arbitrarily small. Otherwise, since j ∈ Λνε it holds by Proposition 3.10
that

|{x ∈ Q1(0)\D̃0(t) : |∇ṽ0(t)| > λ}| = 0

and so a contradiction.

Step 2.

Now to prove that A(t), u(t) and θ(t) satisfy the minimality condition as in Definition 3.1,
we first show that, for every t ∈ [0, T ] , (uε(t), Dε(t)) is an almost minimizers for (0.0.11) in
the following sense:

Eel(u
ε(t), Dε(t)) + k|Dε(t)| (3.5.49)

≤ min
v∈H1

0 (Ω)

{
Eel(v,D) + k|D|

}
+ oε(1) (3.5.50)

where

Eel(v,D) :=

∫

Ω
σD|∇u|2dx− 〈f, v〉,

for all D ⊇ Dε(t). For each ε and t we fix D and we call the related minimum point in (3.5.49)

v = ûε(t). Considering test set D = D̂ε(t) given by

D̂ε(t) = Dε(t) ∪ Eε

with Eε such that

Eε ∩Dε(t) = ∅
and using Lemma 12 in [43] we have

Eel(u
ε(t), Dε(t))− Eel(ûε(t), D̂ε(t)) ≤ (β − α)β

2α
‖∇uε(t)‖2

L2(D̂ε(t)\Dε(t)). (3.5.51)

Introducing the set

Aδε := {x /∈ Dε(t) : |∇uε(t)| > λ+ δ} and Bδ
ε := {x /∈ Dε(t) : |∇uε(t)| ≤ λ+ δ}
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which divide the undamaged domain (at time t) in two regions, one in which the gradient of
∇uε(t) exceeds the threshold λ + δ and the complementary one the right hand-side term in
(3.5.51) can be written as

(β − α)β

2α

∫

Aε,δ∩Eε
|∇uε(t)|2dx+

(β − α)β

2α

∫

Bε,δ∩Eε
|∇uε(t)|2dx.

It can be proved that |∇uε(t)|2 can be seen as sum of a term which is equiintegrable and
one which goes to zero in measure (see [42] for details) and since by Step 1 uε(t) satisfies
the threshold property, we have |Aδε| goes to zero when ε goes to zero, which implies that the
first term goes to zero in the limit in ε. The second term can be estimated as

(β − α)β

2α

∫

Bε,δ∩Eε
|∇uε(t)|2 ≤ (β − α)β

2α
|Eε|(λ+ δ)2 =

(
k + δ2 (β − α)β

2α
+ δ

(β − α)λβ

α

)
|Eε|

where the last equality comes from the relation between λ and k. So we have

Eel(u
ε(t), Dε(t))− Eel(ûε(t), D̂ε(t)) ≤ oε(1) + k|Eε|+ oδ(1)|Eε|

By this estimates using that Eε ∩Dε(t) = 0 we have

Eel(u
ε(t), Dε(t)) + k|Dε(t)| ≤ Eel(ûε, D̂ε(t)) + k|D̂(t)|+ oε(1) + oδ(1)

and passing to the limit in δ we obtain (3.5.49). Now given θ̂(t) = θ̂(t, x) ∈ [0, 1] and Â(t) =

Â(t, x) ∈ Gθ̂(t,x)(αI, βI) we can consider D̂ε(t) ⊇ Dε(t) such that D̂ε(t)
∗
⇀ θ(t) and σD̂ε(t)

G-converges to Â(t) and passing to the limit in ε we obtain the minimality condition as in
Definition 3.1. �
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CHAPTER 4

Dynamic of the damage: Energy and threshold approach

4.1. Main results

The main original result of this chapter is given in Theorem 4.1. We prove that a mini-
mizing sequence (un(t), Dn(t)) for minimum problems for the time-discrete energy in (0.0.11)
with a discrete version of kinetic term converges to a pair (u(t), θ(t)) satisfying a (weak) ho-
mogenized version of elasto-dynamic equation of (0.0.21), an energy inequality, irreversibility
of the damage and a threshold property. In the second part, using a different approach (deal-
ing directly with the momentum equation), we show that the solution of the problem (0.0.21)
for discrete time considering the damage updated at each time step through a threshold crite-
rion, converges (as the time step goes to zero) to a couple (u(t), θ(t)) satisfying, also with this
approach, a (weak) homogenized version of elasto-dynamic equation of (0.0.21) (see Theorem
4.7). In the final section we suggest a definition of Threshold solution.

4.2. Energy approach

To show the existence of an evolution (in terms of displacement and damage) for the
(weak) homogenized version of Euler-Lagrange equation of (0.0.21) we will apply explicitly
the well-established method for showing existence for rate-independent processes ([59, 61,
66, 67]) adjusted to the coupling with the inertial term. As explained in the Introduction
of this thesis the strategy consists in a discretization of the time and to solve minimum
problems at next time steps. Then, from such solutions, after having defined piecewise and
affine functions the idea is to pass in the limit in the partition of the time through some
compactness property and to verify that the limit satisfies an Euler-Lagrange equation of the
motion. We start defining the formulation of the incremental problem.

4.2.1. The formulation of the incremental problem.
For every n ∈ N, we fix a time scale ∆t = 1

np with 0 < p < 1 (this restriction will be clear
at the end of the proof of the Lemma 4.2.2) and we consider a partition of the time interval
[0, T ] given by points tn0 = 0 and tni with i ≥ 1 such that tni − tni−1 = ∆t. To avoid heavy
notation, sometimes we write ti instead of tni .
Given f ∈W 1,1([0, T ];H−1(Ω)), Ω ⊂ Rn, with n ≥ 1, we consider the energy functional

E(t, u,D) :=
1

2

∫

Ω
σD|∇u|2dx+ k|D| − 〈f(t), u〉 (4.2.1)

and starting from initial conditions D0 := ∅ and (u0, v0) ∈ H1(Ω) × L2(Ω) we define
(un0 , D

n
0 ) := (u0, D0) and iteratively (uni , D

n
i ) ∈ H1

0 (Ω)× P(Ω) as follows:

• We choose (ũn1 , D
n
1 ) such that

E(tn1 , ũ
n
1 , D

n
1 ) +

1

2

∥∥∥∥
ũni − u0

∆t
− v0

∥∥∥∥
2

L2

≤ inf
u∈H1

0 ; D⊇D0

E(tn1 , u,D) +
1

2

∥∥∥∥
u− u0

∆t
− v0

∥∥∥∥
2

L2

+
1

2in

(4.2.2)
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and, fixed Dn
1 , we define un1 be the minimizer of

E(tn1 , u,D
n
i ) +

1

2

∥∥∥∥
u− u0

∆t
− v0

∥∥∥∥
2

L2

. (4.2.3)

• Analogously for i ≥ 1 we choose (ũni+1, D
n
i+1) such that

E(tni+1, ũ
n
i+1, D

n
i+1) +

1

2

∥∥∥∥
ũni+1 − uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

≤

inf
u∈H1

0 ; D⊇Dni
E(tni+1, u,D) +

1

2

∥∥∥∥
u− uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

+
1

2in

(4.2.4)

and fixed Dn
i+1 we define uni+1 be the minimizer of

E(u,Dn
i+1, t

n
i+1) +

1

2

∥∥∥∥
u− uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

. (4.2.5)

We define Dn(0) := D0 and for every t ∈ (tni , t
n
i+1] we define the following piecewise constant

and affine functions

ũn(t) = uni+1 un(t) = uni + (t− tni )
uni+1 − uni

∆t
Dn(t) = Dn

i+1 (4.2.6)

vn(t) =
uni − uni−1

∆t
+

(t− tni )

∆t

(
uni+1 − uni

∆t
− uni − uni−1

∆t

)
fni+1 := f(tni+1). (4.2.7)

ũn(t) un(t)

Dn(t) fn(t)

un1

un2

un0

un1

un2

Dn
1

Dn
2

fn1
fn2

tn1 tn1

tn1 tn1

tn2 tn1

tn1 tn1

Figure 1.
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In this energetic framework the main result that we will prove is the following:

Theorem 4.1. Let (un(t), Dn(t)) as in (4.2.6) and (4.2.7).
Then there exists u ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)), θ(t) ∈ L∞(Ω; [0, 1]) and A(t) ∈
L∞(Ω;F(α, β)) such that, up to subsequences,

un(t)
H1

⇀ u(t), χDn(t)
∗
⇀ θ(t), σDn(t)

G−→ A(t) (4.2.8)

with θ(t) increasing and A(t) decreasing in time.
Moreover (un(t), Dn(t)) and the limit (u(t), θ(t), A(t)) are such that:

• Euler-Lagrange equation: for every φ ∈ L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L2(Ω)) it
holds

−
∫ T

0

∫

Ω
u̇(t)φ̇ dx dt+

∫

Ω
u̇(T )φ(T )dx−

∫

Ω
u̇(0)φ(0)dx+

∫ T

0

∫

Ω
A(t)∇u(t)∇φdx dt =

∫ T

0
〈f(t), φ〉 dt

(4.2.9)
• Energy Balance inequality: given

Etot(t) :=
1

2
‖u̇(t)‖2L2 +

1

2

∫

Ω
A(t)∇u(t)∇u(t)dx+ k

∫

Ω
θ(t)dx− 〈f(t), u(t)〉,

it holds

Etot(t) ≤ Etot(0)−
∫ t

0
〈ḟ(s), u(s)〉ds, (4.2.10)

• Threshold condition: for each δ > 0 it holds

lim
n−→∞

|{x /∈ Dn(t) : |∇un(t)| > λ+ δ}| = 0 (4.2.11)

with λ :=

√
2k

β(β − α)

This result will be consequence of propositions and lemmas proved in next subsections.

4.2.2. Convergence result and threshold condition. In this subsection we want to
prove (4.2.8) using compactness properties and an a priori estimate following [27] . We will
also prove the threshold condition in (4.2.11) following the blow-up argument proposed in
[43] and used in Chapter 3.

Lemma 4.2.1. For each j = 0, ..bT/∆tc it holds

‖u̇n(t)‖2L2 +

∫

Ω
σDn(t)|∇un(tnj+1)|2dx+ ∆t

∫ tnj+1

0
‖v̇n(s)‖2L2ds+ ∆t

∫ tnj+1

0

∫

Ω
σDn(t)|∇u̇n(s)|2dxds

= 2

∫ tnj+1

0
〈fn(s), u̇n(s)〉ds+

∫

Ω
σDn(0)|∇un(0)|2dx+ ‖u̇(0)‖2L2 − (β − α)

j∑

i=0

∫

Dni+1\Dni
|∇uni |2dx

(4.2.12)

Proof. Since uni+1 is the minimum point for the functional in (4.2.5) it satisfies the
following weak Euler-Lagrange equation

∫

Ω
σDni+1

∇uni+1∇ϕdx+

∫

Ω

(
uni+1 − uni

∆t
− uni − uni−1

∆t

)
ϕ

∆t
dx− 〈f i+1

n , ϕ〉 = 0. (4.2.13)

for each ϕ ∈ H1
0 (Ω).

Choosing ϕ = uni+1 − uni we have
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∫

Ω
σDni+1

|∇uni+1|2 −
∫

Ω
σDni+1

∇uni+1∇uni dx+

∫

Ω

∣∣∣∣
uni+1 − uni

∆t

∣∣∣∣
2

dx

−
∫

Ω

uni+1 − uni
∆t

uni − uni−1

∆t
dx− 〈f i+1

n , (uni+1 − uni )〉 = 0

(4.2.14)

and using the identity
1

2
‖g‖2L2 −

∫

Ω
g · hdx =

1

2
‖g − h‖2L2 −

1

2
‖h‖2L2 with g = ∇uni+1

√
σDni+1

and h = ∇uni
√
σDni+1

for the first two terms on the left side of the previous equality and

g =
uni+1 − uni

∆t
and h =

uni − uni−1

∆t
for the second two terms we easily obtain

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

L2

+

∥∥∥∥
uni+1 − uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

+

∫

Ω
σDni+1

|∇uni+1|2dx+

∫

Ω
σDi+1

n
|∇uni+1 −∇uni |2dx

= 2〈f i+1
n , uni+1 − uni 〉+

∫

Ω
σDni+1

|∇uni |2dx+

∥∥∥∥
uni − uni−1

∆t

∥∥∥∥
2

L2

.

Summing over i = 0, .., j and using the identity σDni+1
= σDni − (β − α)χDni+1\Dni we have for

t ∈ (tj , tj+1]

∥∥∥∥
unj+1 − unj

∆t

∥∥∥∥
2

L2

+

j∑

i=0

‖∆tv̇n(t)‖2L2 +

∫

Ω
σDnj+1

|∇unj+1|2dx+

j∑

i=0

∫

Ω
σDni+1

|∇uni+1 −∇uni |2dx

= 2

j∑

i=0

〈f i+1
n (uni+1 − uni )〉+

∫

Ω
σDn(0)|∇un(0)|2dx+ ‖u̇(0)‖2L2 − (β − α)

j∑

i=1

∫

Dni+1\Dni
|∇uni |2dx

From which follows immediately (4.2.12) by definitions in (4.2.6) and (4.2.7). �

Let note that from the previous lemma we have immediately that for each i ≥ 0

‖u̇n(t)‖2L2 + α‖∇un(tni+1)‖2L2 + ∆t

∫ tni+1

0
‖v̇n(t)‖2L2dt+ ∆t

∫ tni+1

0
‖∇u̇n(t)‖2L2dt

≤ β‖∇un(0)‖L2 + ‖u̇(0)‖2L2 + 2‖f‖L2(0,T ;H−1(Ω))T
1/2 max

t∈[0,T ]
‖u̇n(t)‖L2 .

(4.2.15)

in which the right-hand side above is bounded as long as Mn := max
t∈[0,T ]

‖u̇n(t)‖L2 is bounded.

From (4.2.15) we immediately have that

M2
n ≤ β‖∇u(0)‖2L2(Ω) + ‖u̇(0)‖2L2(Ω) + 2‖f‖L2(0,T ;H−1(Ω))T

1/2Mn. (4.2.16)

This implies that Mn is bounded, and so is the right-hand side of (4.2.15). From this
estimates we obtain also that

i) un is bounded in W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H1
0 ),

ii) ũn is bounded in L∞(0, T ;H1(Ω)).

By the definition of the sequences un and vn and the minimality of uni+1 we deduce that for
a.e. t ∈ [0, T ] we have

∫

Ω
v̇n(t)φdx+

∫

Ω
σDn(t)∇ũn(t)∇φdx = 〈fn(t), φ〉 (4.2.17)

61



for every φ ∈ H1
0 (Ω) which implies that

∣∣∣∣
∫

Ω
v̇n(t)φdx

∣∣∣∣ ≤ (β‖ũn(t)‖H1 + ‖fn(t)‖H−1)‖φ‖H1

for every φ ∈ H1
0 (Ω) and hence by i) we have that

iii) vn is bounded in W 1,∞(0, T ;H−1(Ω)).

As in [27] is easy to have that up to subsequence un ⇀ u in H1(0, T ;L2(Ω)) and vn ⇀ v in
H1(0, T ;H−1(Ω)). We also have that u̇(t) = v(t) in L2(Ω) a.e. t ∈ (0, T ). Indeed it holds

‖u̇n(t)− vn(t)‖H−1 = ‖vn(tni+1)− vn(t)‖H−1 ≤
∫ tni+1

tni

‖v̇n(s)‖H−1ds ≤ c∆t

which goes to zero when n −→∞ (remind ∆t = 1/np with p > 0). By this we conclude that
v(t) = u̇(t) in H−1 , and since by (4.2.15) and (4.2.16) we also have that vn is bounded in
W 1,∞(0, T ;L2(Ω)) we obtain by a density argument that

〈v(t), ϕ〉H−1×H1
0

= 〈v(t), ϕ〉L2×L2 = 〈u̇(t), ϕ〉H−1×H1
0

= 〈u̇(t), ϕ〉L2×L2

that is v(t) = u̇(t) in L2(Ω).
Moreover using Helly’s Theorem and properties of G-convergence and arguing as in Lemma
3.3.1 (Chapter 3) it is easy to obtain that there exists a subsequence of (un(t), Dn(t), σDn(t))

and there exists u(t) ∈ H1
0 (Ω), θ(t) ∈ L∞(Ω; [0, 1]) and A(t) ∈ L∞(Ω;F(α, β)) such that (for

such subsequence)

un(t)
H1

⇀ u(t), χDn(t)
∗
⇀ θ(t), σDn(t)

G−→ A(t), (4.2.18)

with θ(t) increasing and A(t) decreasing in time, for each t ∈ [0, T ]. This conclude the first
part of Theorem 4.1. We now prove the threshold property as stated in (4.2.11).

Proposition 4.2. Given (un(t), Dn(t)) as in (4.2.6) it holds the following threshold con-
dition:

lim
n−→∞

|{x /∈ Dn(t) : |∇un(t)| > λ+ δ}| = 0 (4.2.19)

for each δ > 0 and λ :=
√

2k
β(β−α) ,

Proof. We first prove the result for (uni , D
n
i ) then by a convexity argument we will easily

obtain the claim. The first part of the proof is strictly similar to the one in [43] and we will
follow the same steps as done in Chapter 3.
Given a set Q ⊆ Ω we define

E(u,D,Q) :=
1

2

∫

Q
σD∩Q|∇u|+ k|D ∩Q|.

We define
En := Eni,δ := {x /∈ Dn

i : |∇uni | > λ+ δ}
and we suppose by contradiction that there exists δ > 0 such that

lim sup
n−→∞

|Eni,δ| = 2η

with η > 0, which implies that (up to subsequences)

|En| > η (4.2.20)

for n ≥ n̄ for a fixed n̄ >> 1.
In the first part of the proof we show that for n >> 1 (so using (4.2.20)) there exists an

explicit constant c > 0 and (w̃ni , D̃
n
i ) admissible for the minimum problem (4.2.4) such that

E(w̃ni , D̃
n
i ,Ω) ≤ E(uni , D

n
i ,Ω)− c (4.2.21)
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i.e. decreasing the elastic part of the energy in the whole Ω.
In the second part we will consider also the kinetic part of the problem obtaining competitors
which total energy is less the one given by (uni , D

n
i ) and so a contradiction because of the

minimality property of (uni , D
n
i ).

Part 1.
Now for each n ≥ n̄ we consider a covering of En made of squares Q such that

1) the center x̄ of the square is in En and it is a Lebesgue point for uni and ∇uni , i.e.
it holds

lim
r−→0+

1

|Br(x̄)|

∫

Br(x̄)
|uni (x̄)− uni (y)|pdy = 0

(and the same for ∇uni ) for all p ≥ 1, where Br(x̄) is the ball with center x̄ and
radius r.

2) two sides of Q are orthogonal to ∇uni (x̄);
3) defined ūni (x) := uni (x̄) +∇uni (x̄) · (x− x̄) we have

‖uni − ūni ‖2H1(Q) ≤ ε|Q|

|Dn
i ∩Q| ≤ ε|Q|

Let note that since Q is a square of a covering of En it depends on n, δ and i and by definition
it depends also on ε and its measure goes to zero when ε goes to zero. Moreover for each ε it
is a fine covering of En so we can choose a finite number of disjoint square to cover En.

We can divide the proof of the first part in 3 steps.
As first step we will show that considering test functions in each Q with the same boundary
condition of ūni in ∂Q (instead of uni ) we can decrease in this square the elastic energy given
by the pair (ūni , ∅) using a process of lamination, in particular we will show that for each

σ > 0 there exist vni and D̂n
i such that

E(vni , D̂
n
i , Q) ≤ E(ūni , ∅, Q)− 1

2
βδ2|Q|+ σ|Q| (4.2.22)

with vni = ūni on ∂Q.
To do it we recall a technical result (used also in Chapter 3) to match the boundary

conditions of special (almost) test functions (which will be piecewise linear functions) with
the boundary conditions of ūni .
In the second step, using the previous one, we will show that in each square Q we can lower
the energy given by (uni , D

n
i ) using a test function with the same boundary conditions of uni

and choosing ε sufficiently small, i.e. we will show that for each s > 0 we can choose ε small
in such a way that there exists wni and D̂i

n ⊂ Q such that

E(ŵni , D̂
i
n, Q) ≤ E(uni , D

n
i , Q)− 1

2
βδ2|Q|+ σ|Q|+ s|Q| (4.2.23)

with ŵni = uni on ∂Q.
Finally in the third step we will use the previous steps to construct an admissible pair for
the problem (4.2.4) that has in Ω the elastic energy lower than the one given by (uni , D

n
i ).

Step 1.
We consider an arbitrary square of the covering of En. To avoid heavy notation we can assume
that x̄ = 0 and uni (x̄) = 0 and so we have ūni (x) = ∇uni (0) · x
We consider the continuous periodic function z(y) such that z(0) = 0, z(1) = λ+ δ such that

z′(y) =

{
β
αλ, if y ∈ (0, d)

λ, if y ∈ (d, 1)
(4.2.24)

63



where d is univocally determined and it holds d =
(∇uni (0)−λ)α

λ(β−α) and we define

v̄ni,h(x) := z

(
x

h
· ∇u

n
i (0)

|∇uni (0)|

)

D̂n
i,h :=

{
x ∈ Q : z′(

x

h
· ∇u

n
i (0)

|∇uni (0)|) =
β

α
λ

}

It is easy to see that v̄ni,h converges strongly to ūni in L2(Q) when h −→ 0 and that it is

bounded in H1(Q). Now we match the boundary conditions of v̄ni,h with the ones of ūni using

the cut-off function (cfr. details see [43], Remark 12)

φ(y) =

{
1, if y ∈ Q\QR
0, if y ∈ QR−µ

(4.2.25)

and such that |∇φ| = 1
µ in QR\QR−µ where R ∈ (0, |Q|1/2) will be suitable chosen and

µ ∈ (0, R) and we define

vni,h = φūni + (1− φ)v̄ni,h.

Let remark that we can choose R such that

lim
µ−→0

lim
h−→0

∫

QR\QR−µ
|∇vni,h|2 = 0 (4.2.26)

lim
µ−→0

lim
h−→0

∫

QR

|∇vni,h −∇v̄ni,h|2 = 0 (4.2.27)

By the (4.2.26) and the (4.2.27) follows that the energy in |Q| given by (vni,h, D̂
n
i,h) is arbitrarily

close to that given by (v̄ni,h, D̂
n
i,h) which is (with a simple computation)

1

2
βλ(∇uni (0))|Q|+ 1

2
βλδ|Q|

So, we conclude that for each σ > 0 there exists vni := vni,h and D̂n
i := D̂n

i,h (with h << 1)
such that

E(vni , D̂
n
i , Q) ≤ E(v̄ni,h, D̂

n
i,h, Q) + σ = E(ūni , ∅, Q)− 1

2
β(|∇uni (0)| − λ)2|Q|+ σ|Q| (4.2.28)

< E(ūni , ∅, Q)− 1

2
βδ2|Q|+ σ|Q| (4.2.29)

where the last inequality comes from the fact that (|∇uni (0)| − λ) > δ and so the (4.2.22).
Step 2.
We start showing that by the properties (3) of Q we have

|E(uni , D
n
i , Q)− E(ūni , ∅, Q)| ≤ oε(1)|Q| (4.2.30)

indeed we have

E(uni , D
n
i , Q)− E(ūni , ∅, Q) =

∫

Q
σDni |∇u

n
i |2dx+ k|Dn

i ∩Q| − β
∫

Q
|∇ūni |2dx (4.2.31)

≤ β
∫

Q
(|∇uni |2 − |∇ūni |2)dx+ k|Dn

i ∩Q| (4.2.32)

and using the property for numbers |a|2 − |b|2 ≤ |a − b|2 + 2|a − b||b| we obtain (using also
Holder inequality) that

E(uni , D
n
i , Q)− E(ūni , ∅, Q) ≤ C

∫

Q
(|∇uni −∇ūni |2)dx+ k|Dn

i ∩Q| (4.2.33)
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with C > 0, and using the properties (3) we have (4.2.30).
Now considering ŵni := vni + (uni − ūni ), with vni as in (4.2.28), it has the same boundary
condition in Q of uni . So by (4.2.22) and (4.2.30) we have that for each s > 0 we can take ε
sufficiently small in such a way that

E(ŵni , D̂
i
n, Q) ≤ E(uni , D

n
i , Q)− 1

2
βδ2|Q|+ σ|Q|+ s|Q|, (4.2.34)

i.e. the inequality (4.2.23).
Step 3.
We come back to whole Ω and consider the problem

inf
w,D′

{
1

2

∫

Ω
σD′ |∇w|2dx+ k|D′| : (w − uni ) ∈ H1

0 (Ω), D′ ⊇ Dn
i

}
.

Iterating the previous steps for each square of the covering of En we can construct for each
s > 0 and σ > 0 a pair (w̃ni , D̃

n
i ) with D̃n

i ⊇ Dn
i and D̃n

i = Dn
i outside En, and wni = uni

outside En such that

E(w̃ni , D̃
n
i ,Ω) ≤ E(uni , D

n
i ,Ω) + (−1

2
βδ2 + s)|En|+ σ|En| (4.2.35)

And since for n ≥ n̄, ε << 1 and δ > 0 we can have σ and s small as we want we obtain that
there exist c > 0 such that

E(w̃ni , D̃
n
i ,Ω) ≤ E(uni , D

n
i ,Ω)− c

i.e. the inequality (4.2.21).
Part 2.
Now we link the result for the elastic part and dissipation of the energy of (uni , D

n
i ) with the

(almost) minimality property of (uni , D
n
i ) for the total energy (elastic+kinetic) in such a way

to obtain a contradiction and so the validity of (4.2.19). By the (almost) minimality property
of (uni , D

n
i ) we have

E(uni , D
n
i ) +

1

2

∥∥∥∥
uni − uni−1

∆t
− uni−1 − uni−2

∆t

∥∥∥∥
2

L2(Ω)

≤

E(w̃ni , D̃
n
i ) +

1

2

∥∥∥∥
w̃ni − uni−1

∆t
− uni−1 − uni−2

∆t

∥∥∥∥
2

L2(Ω)

+
1

2in

(4.2.36)

with (w̃ni , D̃
n
i ) as in (4.2.35).

Now we focus on the second term of the right side of the inequality, and to avoid heavy
notation we call

A :=
w̃ni − uni−1

∆t
, B :=

uni−1 − uni−2

∆t
, and C :=

uni − uni−1

∆t
.

We have

1

2
‖A−B‖2L2 =

1

2
‖C −B‖2L2 (4.2.37)

+
1

2

[(
‖A−B‖L2 − ‖C −B‖L2

)(
‖A−B‖L2 + ‖C −B‖L2

)]
(4.2.38)

≤ 1

2
‖C −B‖2L2 +

[
‖A− C‖L2

(
‖A− C‖L2 + 4Cn,i

)]
(4.2.39)
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where the constant Cn,i is an upper bound for the kinetic part of the discrete solution i.e. it
is such that:

1

2

∥∥∥∥
uni − uni−1

∆t
− uni−1 − uni−2

∆t

∥∥∥∥
L2(Ω)

≤ Cn,i.

Explicitly we have (in the notation of Part 1)

‖A− C‖L2(Ω) =

∥∥∥∥
w̃ni − uni−1

∆t
− uni − uni−1

∆t

∥∥∥∥
L2(Ω)

=

∥∥∥∥
w̃ni − uni

∆t

∥∥∥∥
L2(Ω)

(4.2.40)

=
∑

Q∈En

∥∥∥∥
ŵni − uni

∆t

∥∥∥∥
L2(Q)

=
∑

Q∈En

∥∥∥∥
vni − ūni

∆t

∥∥∥∥
L2(Q)

(4.2.41)

=
1

∆t

∑

Q∈En

∥∥(1− φ)(v̄ni,h − ūni )
∥∥
L2(Q)

(4.2.42)

By the convergence of v̄ni,h to ūni , when h goes to zero, we obtain finally the estimates

‖A− C‖L2(Ω) ≤
|En|
|Q|

oh(1)

∆t
(4.2.43)

By this estimates we have that the second term of the right side of (4.2.36) satisfies

1

2

∥∥∥∥
w̃ni − uni−1

∆t
− uni−1 − uni−2

∆t

∥∥∥∥
2

L2(Ω)

≤ 1

2

∥∥∥∥
uni − uni−1

∆t
− uni−1 − uni−2

∆t

∥∥∥∥
2

L2(Ω)

+

(
2Cn,i +

|En|
|Q|

oh(1)

2∆t

) |En|
|Q|

oh(1)

∆t

(4.2.44)

and combining (4.2.35), (4.2.36) and (4.2.44) we obtain that for each n

|En|
(
− 1

2
βδ + s+ σ|Q|+

(
2Cn,i +

|En|
|Q|

oh(1)

2∆t

)
oh(1)

|Q|∆t

)
+

1

2in
≥ 0

but, for fixed n ≥ n̄ and ε << 1, we can have (choosing appropriate competitors) h, s and σ
small as we want (as we noticed in step 3 of part 1), so such that

|En|
(
− 1

2
βδ + s+ σ +

(
2Cn,i +

|En|
|Q|

oh(1)

2∆t

)
oh(1)

|Q|∆t

)
+

1

2in
< 0

and so a contradiction.
This proves that for each i ≥ 1

lim
n−→∞

|{x /∈ Dn
i : |∇uni | > λ+ δ}| = 0. (4.2.45)

Finally by a convexity argument we obtain the claim in (4.2.19). Indeed, for each t ∈ [0, T ]
there exists i ≥ 0 such that t ∈ (tni , t

n
i+1] and so by definition of un(t) and Dn(t) we have

|{x /∈ Dn(t) : |∇un(t)| > λ+ δ}| =

|{x /∈ Dn
i+1 :

∣∣∣∣∇uni
(

1− t− tni
∆t

)
+∇uni+1

t− tni
∆t

∣∣∣∣ > λ+ δ}|. (4.2.46)

Obviously we have
∣∣∣∣∇uni

(
1− t− tni

∆t

)
+∇uni+1

t− tni
∆t

∣∣∣∣ ≤ |∇uni |
(

1− t− tni
∆t

)
+ |∇uni+1|

t− tni
∆t

(4.2.47)

and since x /∈ Dn
i+1 we also have that x /∈ Dn

i and by (4.2.45) we obtain that for each ε > 0
there exists n̄ >> 1 such that for each n > n̄
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|∇uni+1| ≤ λ+ δ + ε and |∇uni | ≤ λ+ δ + ε (4.2.48)

for x /∈ Dn
i+1. Combining (4.2.46), (4.2.47) and (4.2.48) we conclude the proof. �

4.2.3. Euler-Lagrange equation and Energy Inequality. In this subsection follow-
ing the strategy in [30] we prove that the limit (u(t), θ(t), A(t)) satisfies the energy inequality
(4.2.10) while following the strategy in [17] we prove that it satisfies a weak form of the
following Euler-Lagrange equation

ü− div(A(t)∇u) = f in Ω (4.2.49)

with zero boundary condition.

Proposition 4.3. Given (u(t), θ(t), A(t)) limit of (un(t), Dn(t), σDn(t)) it holds

−
∫ T

0

∫

Ω
u̇(t)φ̇ dx dt+

∫

Ω
u̇(t)φ(t)dx−

∫

Ω
u(0)φ(0)dx+

∫ T

0

∫

Ω
A(t)∇u(t)∇φdx dt =

∫ T

0
〈f(t), φ〉 dt
(4.2.50)

for every φ ∈ L2(0, T ;H1
0 (Ω)) ∩W 1,1(0, T ;L2(Ω))

Proof. Integrating in time (4.2.17), with φ ∈ L2(0, T ;H1
0 (Ω))∩W 1,1(0, T ;L2(Ω)), taking

the limit as n→ +∞ and denoting by σ(t) the weak limit in L2(Ω) of σDn(t)∇ũn(t) we obtain

−
∫ T

0

∫

Ω
u̇(t)φ̇ dx dt+

∫

Ω
u̇(t)φ(t)dx−

∫

Ω
u(0)φ(0)dx+

∫ T

0

∫

Ω
σ∇φdx dt =

∫ T

0
〈f(t), φ〉 dt

(4.2.51)
We only need to show that σ(t) = A(t)∇u(t) a.e. t ∈ (0, T ). Let us denote by θ(t) the weak-*
limit in L∞(Ω) of χDn(t). By the monotonicity in t of the damage sets Dn(t) we deduce that

Θ(t) =
∫

Ω θ(t) is increasing and hence continuous up to a countable set of points in (0, T ).
Let us fix τ ∈ (0, T ) be a point of continuity of Θ(t) and h > 0. Integrating in time (4.2.17)
from τ − h to τ (and multiplying by 1/h) we get

∫

Ω
σDn(τ)

(
−
∫ τ

τ−h
∇ũn(t) dt

)
∇φdx =

−
∫

Ω

vn(τ)− vn(τ − h)

h
φ dx+

∫

Ω

(
−
∫ τ

τ−h
(σDn(τ) − σDn(t))∇ũn(t) dt

)
∇φdx+−

∫ τ

τ−h
〈fn(t), φ〉

(4.2.52)

with φ ∈ H1
0 (Ω). We define

ūn = −
∫ τ

τ−h
ũn(t) dt ū = −

∫ τ

τ−h
u(t) dt

and we denote by ûn the unique solution of the following elliptic problem

{
−div(σDn(τ)∇ûn) = −div(A(τ)∇ū) in Ω

ûn(τ) = 0 on ∂Ω .
(4.2.53)

As a consequence of the G-convergence of σDn(τ) to A(τ) we deduce that ûn converges to ū

weakly in H1
0 (Ω) and hence that ûn− ūn ⇀ 0 weakly in H1

0 (Ω). Using ûn− ūn as test function
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in (4.2.52) and (4.2.53) we get
∫

Ω
σDn(τ)|∇(ûn − ūn)|2dx =−

∫

Ω

vn(τ)− vn(τ − h)

h
(ûn − ūn) dx

−
∫

Ω

(
−
∫ τ

τ−h
(β − α)χDn(τ)\Dn(t)∇ũn(t) dt

)
∇(ûn − ūn) dx

+−
∫ τ

τ−h
〈fn(t), ûn − ūn〉dt

−
∫

Ω
A(τ)∇ū∇(ûn − ūn)

From this, using the boundness of vn and the convergence to zero of ûn − ūn we get
∫

Ω
σDn(τ)|∇(ûn − ūn)|2dx ≤

∫

Ω

(
−
∫ τ

τ−h
(β − α)χDn(τ)\Dn(t)|∇ũn(t)| dt

)
|∇(ûn − ūn)| dx+ o(1)

≤
[∫

Ω

(
−
∫ τ

τ−h
(β − α)χDn(τ)\Dn(t)|∇ũn(t)| dt

)2

dx

] 1
2

‖∇(ûn − ūn)‖L2 + o(1)

(4.2.54)

where we applied Hölder inequality. Now by Jensen inequality and Remark 1 and (4.2.19),
we get

∫

Ω

(
−
∫ τ

τ−h
χDn(τ)\Dn(t)|∇ũn(t)| dt

)2

dx ≤
∫

Ω
−
∫ τ

τ−h
χDn(τ)\Dn(t)|∇ũn(t)|2 dt dx

≤−
∫ τ

τ−h

∫

Dn(τ)\Dn(t)
|∇ũn(t)|2 dx dt

≤M −
∫ τ

τ−h
|Dn(τ) \Dn(t)| dt+ o(1)

≤M |Dn(τ) \Dn(τ − h)|+ o(1) .

(4.2.55)

Applying Young’s inequality from (4.2.54) and (4.2.55) we obtain that there exists a constant
C > 0 such that

∫

Ω
|∇(ûn − ūn)|2dx ≤ C|Dn(τ) \Dn(τ − h)|+ o(1) , (4.2.56)

i.e.

lim sup
n→∞

∫

Ω
|∇(ûn − ūn)|2dx ≤ C(Θ(τ)−Θ(τ − h)) . (4.2.57)

From this we get

∫

Ω

(
−
∫ τ

τ−h
σDn(t)∇ũn(t) dt− σDn(τ)∇ûn

)2

dx ≤2

∫

Ω

(
−
∫ τ

τ−h
(β − α)χDn(τ)\Dn(t)|∇ũn(t)| dt

)2

dx

+2β2

∫

Ω
|∇(ûn − ūn)|2dx

≤C(Θ(τ)−Θ(τ − h)) + o(1) .

Now by the definition of ûn, taking the limit as n→ +∞ we get

∫

Ω

(
−
∫ τ

τ−h
σ(τ) dt−A(τ)∇ū

)2

dx ≤ C(Θ(τ)−Θ(τ − h)) . (4.2.58)
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Using the fact that a.e. τ ∈ (0, T ) is a Lebesgue point of σ(τ) and u(τ) and a continuity point
for Θ(τ), taking the limit as h→ 0 we get

∫

Ω
|σ(τ)−A(τ)∇u(τ)|2dx ≤ lim

h→0
C(Θ(τ)−Θ(τ − h)) = 0 , (4.2.59)

which concludes the proof. �

Finally remains to prove the energy inequality (4.2.10). This is done in the next Lemma
in which we use the same technique as in [30] We define

Etot(t, u, θ, A) :=
1

2
‖u̇‖2L2 +

1

2

∫

Ω
A∇u∇udx+ k

∫

Ω
θdx− 〈f(t), u〉

Lemma 4.2.2.
Given (u(t), θ(t), A(t)) the limit of (un(t), χDn(t), σDn(t)) and

Etot(t) := Etot(t, u(t), θ(t), A(t))

it holds

Etot(t) ≤ Etot(0)−
∫ t

0
〈ḟ(s), u(s)〉ds

Proof. Considering (uni+1, D
n
i+1) we have by almost minimality condition (4.2.5)

1

2

∫

Ω
σDni+1

|∇uni+1|2dx+ k|Dn
i+1|+

1

2

∥∥∥∥
uni+1 − uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

− 〈fni+1, u
n
i+1〉

≤ 1

2

∫

Ω
σD|∇u|2dx+ k|D|+ 1

2

∥∥∥∥
u− uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

− 〈fni+1, u〉+
1

2in

(4.2.60)

with D ⊇ Dn
i and u ∈ H1(Ω).

We consider as test set D = Dn
i+1\Eλ with Eλ such that

• Dn
i+1 ⊇ Eλ,

• Eλ ∩Dn
i = ∅

• |Eλ| = λ(|Dn
i+1| − |Dn

i |)
with λ ∈ (0, 1).
It is easy to see that it implies

|D| = λ(|Dn
i | − |Dn

i+1|) + |Dn
i+1|, and σD = σDni+1

+ (β − α)χEλ .

We use this test set D in the right hand-side of (4.2.60) which becomes

1

2

∫

Ω
σDni+1

|∇u|2dx+
(β − α)

2

∫

Eλ

|∇u|2dx

+ kλ(|Dn
i | − |Dn

i+1|) + k|Dn
i+1|+

1

2

∥∥∥∥
u− uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

− 〈fni+1, u〉+
1

2in
.

(4.2.61)

Now we consider as test function ū := uni+1 − λ(uni+1 − uni ), and since

1

2

∫

Ω
σDni+1

|∇ū|2dx− 〈fni+1, ū〉 =
1

2

∫

Ω
σDni+1

|∇uni+1|2dx+ λ

(
λ− 2

2

)∫

Ω
σDni+1

|∇uni+1|2dx

+
λ2

2

∫

Ω
σDni+1

|∇uni |2dx+ λ(1− λ)

∫

Ω
σDni+1

∇uni+1∇uni dx− 〈fni+1, u
n
i+1〉+ λ〈fni+1, u

n
i+1 − uni 〉

(4.2.62)
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and

1

2

∥∥∥∥
ū− uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

=
1

2

∥∥∥∥
uni+1 − uni

∆t
− uni − uni−1

∆t

∥∥∥∥
2

L2

+
λ2

2

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

L2

− λ
∫

Ω

(
uni+1 − uni

∆t
− uni − uni−1

∆t

)(
uni+1 − uni

∆t

)
dx.

(4.2.63)

Considering (4.2.60), (4.2.61), (4.2.62), (4.2.63) and dividing by λ we have

(
2− λ

2

)∫

Ω
σDni+1

|∇uni+1|2dx+

∫

Ω

(
uni+1 − uni

∆t
− uni − uni−1

∆t

)
(
uni+1 − uni

∆t
)

− (1− λ)

∫

Ω
σDi+1∇uni ∇uni+1dx

≤ λ

2

∫

Ω
σDni+1

|∇uni |2dx+
λ

2

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

+ k(|Dn
i | − |Dn

i+1|) +
(β − α)

2

∫

Eλ

|∇ū|2dx

+ ∆t〈fni+1,
uni+1 − uni

∆t
〉+

1

λ2in

(4.2.64)

We note that the first and third term of the left hand-side satisfy

(
2− λ

2

)∫

Ω
σDni+1

|∇uni+1|2dx− (1− λ)

∫

Ω
σDi+1∇uni ∇uni+1dx

≥ (1− λ)

∫

Ω
σDni+1

∇uni+1∇(uni+1 − uni )dx.

(4.2.65)

Now considering the following identities (see [30] pag. 14,15-16):

•
∫

Ω
σDni+1

∇uni+1(∇uni+1 −∇uni )dx =
∫ ti+1

ti

∫

Ω
σDni+1

∇un(s)∇u̇n(s)ds+
∆t

2

∫ ti+1

ti

∫

Ω
σDni+1

∇u̇n(s)∇u̇n(s)ds

•
∫

Ω

(
uni+1 − uni

∆t
− uni − uni−1

∆t

)
(
uni+1 − uni

∆t
) =

1

2

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

L2

−1

2

∥∥∥∥
uni − uni−1

∆t

∥∥∥∥
2

L2

+
∆t

2

∫ ti+1

ti

|v̇n(s)|2ds

• λ

2

∫

Ω
σDni+1

|∇uni |2dx =
λ

2∆t

∫ ti+1

ti

∫

Ω
σDni+1

|∇un(s)|2ds

−λ
2

∫ ti+1

ti

∫

Ω
σDni+1

∇un(s)∇u̇(s)ds

+
λ∆t

12

∫ ti+1

ti

∫

Ω
σDni+1

|∇u̇n(s)|2ds
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and using (4.2.65) the inequality (4.2.64) becomes

(1− λ)

∫ ti+1

ti

∫

Ω
σDni+1

∇un(s)∇u̇n(s)ds+ (1− λ)
∆t

2

∫ ti+1

ti

∫

Ω
σDni+1

∇u̇n(s)∇u̇n(s)ds

+
1

2

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

L2

− 1

2

∥∥∥∥
uni − uni−1

∆t

∥∥∥∥
2

L2

+
∆t

2

∫ ti+1

ti

|v̇n(s)|2ds

≤ λ

2∆t

∫ ti+1

ti

∫

Ω
σDni+1

|∇un(s)|2ds− λ

2

∫ ti+1

ti

∫

Ω
σDni+1

∇un(s)∇u̇(s)ds

+
λ∆t

12

∫ ti+1

ti

∫

Ω
σDni+1

|∇u̇n(s)|2ds+
λ

2∆t

∫ ti+1

ti

‖u̇n(s)‖ds

+ k(|Dn
i | − |Dn

i+1|) + (β − α)

∫

Eλ

|∇ū|2dx+

∫ ti+1

ti

〈fni+1, u̇n(s)〉ds+
1

λ2in
(4.2.66)

which can be rewritten in the form

2− λ
2

∫ ti+1

ti

∫

Ω
σDni+1

∇un(s)∇u̇n(s)ds+ k(|Dn
i+1| − |Dn

i |)

+
1

2

∥∥∥∥
uni+1 − uni

∆t

∥∥∥∥
2

L2

− 1

2

∥∥∥∥
uni − uni−1

∆t

∥∥∥∥
2

L2

+
∆t

2

∫ ti+1

ti

|v̇n(s)|2ds

≤ (7λ− 6)∆t

12

∫ ti+1

ti

∫

Ω
σDni+1

|∇u̇n(s)|2ds+
λ

2∆t

∫ ti+1

ti

‖u̇n(s)‖ds

+
λ

2∆t

∫ ti+1

ti

∫

Ω
σDni+1

|∇un(s)|2ds+ +(β − α)

∫

Eλ

|∇ū|2dx−
∫ ti+1

ti

〈ḟ(s), un(s)〉ds+
1

λ2in
(4.2.67)

Moreover let note that the first term on the left side of the inequality is (integrating by part)

2− λ
4

[ ∫

Ω
σDni+1

|∇un(ti+1)|2dx−
∫

Ω
σDni |∇un(ti)|2dx+ (β − α)

∫

Dni+1\Dni
|∇un(ti)|2dx

]

(4.2.68)
with

(β − α)

∫

Dni+1\Dni
|∇un(ti)|2dx ≥ 0 (4.2.69)

Let remind that ∆t = 1
np and let take λ = 1

nq with 0 < p < q < 1. In such a way, summing
over i = 0, 1, ...j and sending n to infinity we have by properties of convergence of un(t),
Dn(t) and σDn(t) that

Etot(u(t), θ(t), A(t)) ≤ Etot(u(0), θ(0), A(0))−
∫ t

0
〈ḟ(s), u(s)ds〉

which concludes the proof.
�
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Remark 4.4. On the opposite energy inequality.
Let note that Theorem 4.1, doesn’t prove that an energy equality holds but only an inequality
one. The inequality missing in the Theorem is

Etot(t) ≥ Etot(0)−
∫ t

0
〈ḟ(s), u(s)〉ds (4.2.70)

It is interesting to note that in literature a lot of models of damage, plasticity, fracture in
which the equality is obtained include a viscosity term, which gives a compactness property
strongly used to prove the opposite inequality (see e.g. [27, 52, 75] and reference therein).
In [30] it is studied a quasi-static evolution for a linearly-plasticity model and the missing
inequality is obtained without the necessity of this compactness property (although it holds).
However, since there’s no damage evolution in such model the elasticity tensor remains con-
stant in time and this helps to prove the opposite inequality. Such difficulty is also stressed in
[76] (Remark 2.7) in which is proved only the same side of our energy inequality but in the
framework of the ”entropic” solution.
Here we want just to show where are the difficulties to prove the opposite inequality using
standard methods. A first possibly approach should be to use minimality (and almost mini-
mality) properties in (4.2.4) (and in (4.2.2)) to obtain and iteration formula, and then pass
to the limit. But in so doing we arrive to obtain the following inequality

E(uni+1, D
n
i+1) + Fi(u

n
i+1) + o(n) ≥ E(uni , D

n
i ) + Fi(u

n
i )

where

E(v,D) =
1

2

∫

Ω
σD|∇v|2dx+ k|D| − 〈f, v〉

and

Fi(v) :=
1

2

∥∥∥∥
v − uni

∆t
− ui − ui−1

∆t

∥∥∥∥
L2(Ω)

which results to be not easily iterable because of the form of the kinetic part.
Another approach could be to start from equality (4.2.12) and pass to the limit using the fact
that

− lim
n−→∞

(β − α)

j∑

i=0

∫

Dni+1\Dni
|∇uni |2dx ≥ −k

∫

Ω
θ(t)dx+ k

∫

Ω
θ(0)dx.

which can be easily proved. But the very big problem in the equality (4.2.12) is the limit

lim
n−→∞

∆t

∫ tnj+1

0

∫

Ω
σDn(t)|∇u̇n(s)|dsdx

Indeed since we have not compactness property for the sequence ∇u̇n(s) we can not prove
that such limit goes to zero. A way to have this compactness property could be to have in the
problem a damping term as in [27], which is not our case.
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4.3. A Threshold approach

In this section, to study the damage evolution of our model defined in (0.0.21) we use
an alternative approach, based on tackle directly equation in (0.0.21) instead of consider the
energy associated. Such idea comes from the fact that both in the energetic approach for
dynamic both in the model with the perimeter (studied in Chapter 3), the solution satisfies a
threshold condition in the undamaged region (see respectively (4.2.19) and (3.5.45)-(3.5.46)).
So this leads to investigate if it’s possible to construct a solution of the problem imposing
directly some threshold condition.

4.3.1. The formulation of the incremental problem.
We fix n ∈ N and we start solving problem (0.0.21) with no damage and until the gradient
of solution u has not exceeded a threshold λ > 0 on a set of measure greater than 1/n.
Then we damage this set and we solve again (0.0.21) with the new damage and updated
initial conditions with the same criterion as in step 1. Iteratively we construct a sequence
of function (vn(t), Dn(t)) that we show (as consequence of results in [17]) to converge to a
pair satisfying, also using this approach, a weak relaxed version of the momentum equation
in (0.0.21).
We also take care to construct the partition of [0, T ] in such a way that the intervals have
size less (or equal) of 1/n.
Starting with fixed initial condition p ∈ H1

0 (Ω) and q ∈ L2(Ω) and external loading f(t) ∈
H−1 we solve step by step the equation (0.0.21), defining at each step the damage set (ac-
cording to the threshold criterion).

Step 1.
We start from t = τ0 := 0, no damage, and fixed threshold λ > 0. We consider vn,0(x, t) the

solution of the problem 



v̈ − div(β∇v) = f(t);
v(t, x) = 0 in ∂Ω
v(0, x) = p(x);
v̇(0, x) = q(x)

(4.3.71)

we define

D̄1(t) := {x ∈ Ω : ∃s ∈ [0, t) : |∇vn,0(x, s)| > λ}
and

τ1
1/n := inf{t > 0 : |D̄1(t)| > 1

n
}.

The first time step of the partition is given by

τ1 := min{τ0 +
1

n
, τ1

1/n, T}.

Let note that by definition the characteristic function χD̄1(t)(x) is monotone (increasing) in
time for each x ∈ Ω, which allows to define the ”updated” damage Dn

1 as

Dn
1 := D̄1(τ+

1 )

where D̄1(τ+
1 ) is characterized by

χD̄1(τ+1 )(x) := lim
s−→τ+1

χD̄1(s)(x).

73



Step 2.
Analogously we consider vn,1(x, t) the solution of the problem





v̈ − div(σDn1∇v) = f(t);
v(t, x) = 0 in ∂Ω
v(τ1, x) = vn,0(τ1);
v̇(τ1, x) = v̇n,0(τ1)

(4.3.72)

and defining as before

D̄2(t) := {x ∈ Ω\Dn
1 : ∃s ∈ [τ1, t) : |∇vn,1(x, s)| > λ}

and

τ2
1/n := inf{t > τ1 : |D̄2(t)| > 1

n
}.

τ2 := min{τ1 +
1

n
, τ2

1/n, T}.
we can define the ”updated” damage Dn

2 as

Dn
2 := Dn

1 ∪ D̄2(τ+
2 )

where D̄2(τ+
2 ) is characterized by

χD̄2(τ+2 )(x) := lim
s−→τ+2

χD̄2(s)(x).

Step k + 1.
Iterating the process we arrive to consider vn,k(x, t) the solution of the problem





v̈ − div(σDnk∇v) = f(t);
v(t, x) = 0 in ∂Ω
v(τk, x) = vn,k−1(τk);
v̇(τk, x) = v̇n,k−1(τk)

(4.3.73)

and again defining

D̄k+1(t) := {x ∈ Ω\Dn
k : ∃s ∈ [τk, t) : |∇vn,k(x, s)| > λ} (4.3.74)

and

τk+1
1/n := inf{t > τk : |D̄k+1(t)| > 1

n
}. (4.3.75)

τk+1 := min{τk +
1

n
, τk+1

1/n , T}. (4.3.76)

we obtain the damage Dn
k+1 as

Dn
k+1 := Dn

k ∪ D̄k+1(τ+
k+1) (4.3.77)

where D̄k+1(τ+
k+1) is characterized by

χD̄k+1(τ+k+1)(x) := lim
s−→τ+k+1

χD̄k+1(s)(x).

At this point we define Dn(t) := ∅ if t ∈ [0, τ1) and

Dn(t) := Dn
k and vn(t) := vn,k(t) (4.3.78)

if t ∈ [τk, τk+1), we have by construction that vn(t) satisfies (at least formally)




v̈ − div(σDn(t)∇v) = f(t);
v(0, x) = p(x);
v̇(0, x) = q(x)

(4.3.79)

for each t ∈ [0, T ].
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Remark 4.5. By definition of the partition given by {τk}k≥0 we have that

τk − τk−1 ≤
1

n

and that there exists M = M(n) such that τM = T

Remark 4.6. The amount of damage added at each time step depends by how τk+1 is
chosen in (4.3.76) and by the property of (dis)continuity of D̄k(t).

In case that τk+1 6= τk+1
1/n (and τk+1 6= T ) we have that

|Dn
k+1\Dn

k | = |D̄k+1(τ+
k+1)| ≤ 1

n
(4.3.80)

In case that τk+1 = τk+1
1/n (and τk+1 6= T ) we have two possibilities:

if τk is a continuity point for |D̄k+1(t)| then

|Dn
k+1\Dn

k | = |D̄k+1(τk+1)| = 1

n
(4.3.81)

otherwise if τk+1 is a discontinuity point for |D̄k+1(t)| then it holds

|Dn
k+1\Dn

k | = |D̄k+1(τ+
k+1)| > 1

n
(4.3.82)

4.3.2. Convergence result and weak momentum equation. In this subsection,
through a more general result due to Casado et al. in [17], we will precise in which sense the
equation in (4.3.79) is solved and we stress a result of homogenization.

Theorem 4.7. Let f ∈W 1,1(0, T ;H−1(Ω)). The pair (vn(t), Dn(t)) constructed as before
satisfies the following weak momentum equation:

∫ T

0

∫

Ω
v̇n(t)ϕ̇(t)dxdt−

∫ T

0
σDn(t)∇vn(t)ϕ(t)dxdt =

∫ t

0

∫

Ω
f(t)ϕ(t)dxdt (4.3.83)

for each ϕ ∈ D([0, T ]) × H1
0 (Ω), with initial boundary conditions (p(x), q(x)). Moreover it

holds a.e. in [0, T ]

‖v̇n(t)‖2L2 + ‖vn(t)‖2H1 ≤ C(‖q‖2H1 + ‖p‖2L2 + ‖f(t)‖2H−1) (4.3.84)

with C > 0.
Furthermore there exists v ∈ L∞(0, T ;H1

0 (Ω)), θ(t) ∈ L∞(0, T ;L∞(Ω)) and A(t) ∈ L∞(0, T ;F(α, β))
such that (up to subsequences)

vn ⇀ v in L∞(0, T ;H1
0 (Ω)) (4.3.85)

χDn ⇀ θ in L∞(0, T ;L∞(Ω)) (4.3.86)

σDn(t)
G−→ A(t) (4.3.87)

with (u(t), A(t)) satisfying the following (weak) momentum equation

∫ T

0

∫

Ω
v̇(t)ϕ̇(t)dxdt−

∫ T

0
A(t)∇vn(t)ϕ(t)dxdt =

∫ t

0

∫

Ω
f(t)ϕ(t)dxdt (4.3.88)

for each ϕ ∈ D([0, T ])×H1
0 (Ω), with initial boundary conditions (p(x), q(x)).

This theorem is consequence of two results proved in [17], the first one is the following
and the second one is given in Theorem 4.9 (we write them in the more abstract form).
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Theorem 4.8. Let V ⊂ H ⊂ V ′ Hilbert space, (·, ·) the scalar product in H and 〈·, ·〉
the dual product between V and V ′. Given A ∈ BV (0, T ;L(V, V ′)) with A(t) symmetric and
hyperbolic operator, f ∈M(0, T,H), g ∈ BV (0, T ;V ), p(x) ∈ V , q(x) ∈ H, then there exists
unique u ∈ L∞(0, T ;V ) with ut ∈ L∞(0, T ;H) solution of




ü+A(t)u(t) = f(t) + g(t);
u(0) = p(x);
u̇(0) = q(x)

(4.3.89)

in the following weak sense



(ü(t), v) + 〈A(t)u(t), v〉 = (f(t), v) + 〈g(t), v〉 in D′(0, T ), for each v ∈ V ;
u(0) = p(x)
u̇(0+) = q(x)

(4.3.90)

Moreover it holds a.e. [0, T ]

‖u̇(t)‖2H + ‖u(t)‖2V ≤ C(‖q‖2V + ‖p‖2V + ‖f‖2M(0,T ;H) + ‖g‖2BV (0,T ;V ′)) (4.3.91)

a.e. in t.

Applying this result with V = H1
0 (Ω), H = L2(Ω), g = 0, f ∈ W 1,1(0, T ;H−1), A such

that A(t)· = −div(σDn(t)∇·) with Dn(t) ⊂ Ω defined as before we have that there exists

unique vn ∈ L∞(0, T ;H1
0 (Ω)) with v̇n ∈ L∞(0, T ;L2(Ω)) satisfying (4.3.83) and (4.3.84). The

only thing that we must prove to apply this theorem is that

A ∈ BV (0, T ;L(H1
0 , H

−1))

i.e. that

‖A‖BV (0,T ;L(H1
0 ,H

−1)) := sup
[0=t0<t1<...<tm=T ]

m∑

i=1

‖A(ti)−A(ti−1)‖L(H1
0 ,H

−1) <∞

We have

‖A(ti)−A(ti−1)‖L(H1
0 ,H

−1) := sup
ϕ∈H1

0 ,‖ϕ‖H1=1

‖(A(ti)−A(ti−1))ϕ‖H−1 (4.3.92)

= sup
ϕ∈H1

0 ,‖ϕ‖H1=1

{ sup
φ∈H1

0 ,‖φ‖H1=1

〈(A(ti)−A(ti−1)ϕ), φ〉} (4.3.93)

= (β − α) sup
ϕ,φ

∫

Dn(ti)\Dn(ti−1)
∇ϕ∇φdx (4.3.94)

≤ (β − α)|Dn(ti)\Dn(ti−1)| (4.3.95)

which implies that

‖A‖BV (0,T ;L(H1
0 ,H

−1)) := sup
[0=t0<t1<...<tm=T ]

m∑

i=1

(β − α)|Dn(ti)\Dn(ti−1)|

= (β − α)|Dn(T )\Dn(0)| <∞ (4.3.96)

so we can apply Theorem 4.8 to our case
The second part of Theorem 4.7 is a direct consequence of the following theorem proved in
[17] that guarantees the possibility to pass in the limit in the problem (4.3.79) having that
the limit of vn satisfies the homogenized version of the hyperbolic equation in (0.0.21).
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Theorem 4.9. Given An ∈ BV (0, T ;L(V, V ′)) symmetric and hyperbolic operator, pn ∈
H1

0 (Ω), qn ∈ L2(Ω), f ∈W 1,1(0, T ;H−1(Ω)) such that for almost every t

An(t)
G−→ A(t) (4.3.97)

pn
H1

⇀ p

qn
L2

⇀ q

then the unique solution un(t) (in the weak sense of (4.3.90)) of



ü− div(An(t)∇u) = f(t);
u(0) = p(x)
u̇(0) = q(x)

(4.3.98)

is such that (up to subsequence)

un
?
⇀ u in L∞(0, T ;H1

0 (Ω))

u̇n
?
⇀ u̇ in L∞(0, T ;L2(Ω))

with u(t) that solves (in the weak sense on (4.3.90)



ü− div(A(t)∇u) = f(t);
u(0) = p(x)
u̇(0) = q(x)

(4.3.99)

Applying this theorem to the problem (4.3.79) we immediately obtain the second part of
the Theorem 4.7.

Remark 4.10. Threshold property.
The evolution (vn(t), Dn(t)) given in (4.3.78), in case of continuity of the measure |D̄k+1(t)|
(see definition (4.3.74)) at the point t = τk+1, satisfies the following threshold property:

|{x ∈ (Dn(t))c : |∇vn(x, t)| > λ}| −→ 0 (4.3.100)

when n goes to infinity. Indeed fixed t ∈ [0, T ] we have that there exists k ≥ 0 such that
t ∈ [τk, τk+1) and by definition of vn(t) and Dn(t) we have that (4.3.100) reduces to prove
that

|{x ∈ (Dn
k+1\Dn

k ) : |∇vnk | > λ}| −→ 0 (4.3.101)

since by construction |∇vnk | ≤ λ in (Dn
k+1)c. Now, since we are supposing that (for each

k ≥ 0) |D̄k+1(t)| is continuous at the point t = τk+1 we have that (see Remark 4.6 equations
(4.3.80) and (4.3.81))

|Dn
k+1\Dn

k | = |D̄k+1(τk+1)| ≤ 1

n
from which follows the validity of (4.3.101) and so the threshold property (4.3.100).

The previous remark and the threshold property proved for the solution obtained through
an energetic approach (see (4.2.19)) suggests to give a definition of evolution in the hyperbolic
case using a threshold formulation as done in the elliptic case as in [43]. This is presented in
the final remarks of the present thesis.
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Conclusions and Perspectives

We have presented a damage model for which the study of the relations between quasi-
static evolutions (q.s.e.), Γ-convergence and homogenization effects turn to be very efficient,
showing moreover interesting threshold properties.
In this framework we proved, in the 1-D case and for an oscillating energy, a commutative re-
sult between q.s.e. and Γ-convergence which is not covered by the well known theory presented
in [64]. To do it we considered approximable q.s.e. which allowed to characterize the measure
for the damage sets. A first open question is whether it is possible to obtain the same result
without require explicitly the approximability property, or in other words, whether each q.s.e.
for the model presented is also an approximable q.s.e.. A second open question is whether
this results can be obtained, and in which sense, in the n-D case. We still believe that the
mechanism will be similar (i.e. the one-dimensional problem captures the main features of
this process). Nevertheless, since in more than one dimension many different microstructures
are possible for a composite material, the precise statement for the corresponding damage
evolution must be more abstract or involve very fine properties of the G-closure.
For the perimeter-regularized energy we proved the convergence of the related q.s.e. to a q.s.e.
for the relaxed energy in the sense of the evolution proposed in [43], which implies threshold
properties for the limit. This result confirms the validity of the homogenized q.s.e. defined
in [43] instead of the previous definition proposed in [33]. We believe that the perimeter
penalization term goes to zero for the optimal damage set (as ε goes to zero), as we assumed,
but till now the proof of it is an open problem (except for the time t = 0).
In the dynamic framework we presented two different approaches to study the damage evolu-
tion that brought to consider homogenization effects for the evolution. We proved that both
limit evolutions can be approximated (by construction), they satisfy a monotonicity property
for the approximating damage sets and a threshold property (in case of continuity of damage
for the threshold approach). By these we propose here a definition of a Threshold evolution
which strictly follows the definition given in [43] for a non-dynamic problem. Such definition
turns to be more intuitive than an energetic one and it could be easier to study through
numerical computation methods:

Definition 4.11. Given the equation

ü− div(A∇u) = f(t) (4.3.102)

we say that (A(t), u(t)), with A(t, x) ∈ G(α, β) and u(t, x) ∈ H1
0 (Ω), is a threshold evolution

if there exist λ > 0 and (Dn(t), un(t)) such that

ün − div(σDn(t)∇un) = f(t)

σDn
G
⇀ A(t), un(t) ⇀ u(t)

and

1) Dn(t) is increasing in time,
2) For each t > 0

|{x ∈ Dc
n(t) : |∇un(x, t)| > λ+ δ}| −→ 0
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for each δ > 0 when n −→∞
3) For each T > 0 and for each En ⊆ Dn(T ) : lim inf |En| > 0 defining

τ := inf{t > 0 : |En ∩Dn(t)| > 0}
and considering vn solution of




v̈n − div(σDn(t)\En∇vn) = f(t)
vn(0, x) = un(0, x)
v̇n(0, x) = u̇n(0, x)

(4.3.103)

then, for each δ > 0, and ∆t << 1, it holds

lim inf |{x ∈ Dn(t) ∩ En : |∇vn(t, x)| > λ− δ, t ∈ [τ, τ + ∆t]}| > 0.

As remarked in Chapter 3, through a very similar definition, it was proved in [43], that
for elliptic problems, a particular solution obtained using an energetic approach is also a
threshold evolution. A first question is whether the same result is still valid in the hyperbolic
case. Moreover is not clear which relation there is between the limit solution found through
the two different approaches and if (at least) one of them is a Threshold evolution according
to Definition 4.11. Finally we think that a threshold criterion could be useful in some way
for the uniqueness of the problem, selecting a solution among all the possible evolutions, but,
till now, this direction is not investigated yet.
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