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Chapter 1

Introduction

The problem of deriving macroscopic evolution equations from the mi-
croscopic laws of motion governed by Newton’s laws of classical mechanics
is one of the most important keystones in mathematical physics. Here we
consider a simple microscopic model, namely a gas of non-interacting parti-
cles in a fixed random configuration of scatterers. This dynamical system is
usually referred to as the Lorentz gas since it was proposed by H. A. Lorentz
in 1905, see [L], to explain the motion of electrons in metals applying the
methods of the kinetic theory of gases. More precisely, at the turn of the
twentieth century, Paul Drude developed a qualitative theory for electrical
conduction in metals. With the purpose of establishing a more solid basis
for the Drude theory, Hendrik Lorentz suggested an idealized model for this
electron transport converting a many-body problem into an effective single-
particle system that consists of a “test” particle and a static background.

Even though this model is quite simple, it is still paradigmatic. It rep-
resents a rare source of exact results in kinetic theory, providing a concrete
example where microscopic reversibility can be reconciled with macroscopic
irreversibility. Indeed complexities and interesting features come up in the
analysis showing new and unexpected macroscopic phenomena.

The Lorentz gas consists of a particle moving through infinitely heavy,
randomly distributed scatterers. The interaction between the Lorentz par-
ticle and the scatterers is specified by a central potential of finite range.
Hence the motion of the Lorentz particle is defined through the solution
of Newton’s equation of motion. Lorentz’s idea was to view electrons as a
gas of light particles colliding with the metallic atoms; neglecting collisions
between electrons, Lorentz described the interaction of electrons with the
metallic atoms by a collision integral analogous to Boltzmann’s. The origi-
nal system is Hamiltonian, the only stochasticity being that of the positions
of the scatterers. This randomness is absolutely necessary to obtain the
correct kinetic description. Indeed, for this system, one can prove, under
suitable scaling limits, a rigorous validation of linear kinetic equations and,
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from this, of diffusion equations.
We can argue in terms of stochastic processes. The motion of the Lorentz

particle is a stochastic process which is non Markovian. The scaling limit
procedure can be understood as a Markovian approximation which leads to
a Markov process whose forward equation is a suitable kinetic equation.

The microscopic dynamics is governed by the following system of ordi-
nary differential equations

{
ẋ(t) = v

v̇(t) =
∑N

i=1 F (x− ci) ,
(1.0.1)

with F a conservative force field, i.e. F = −∇xφ being φ a suitable inter-
action potential. Here (c1, . . . , cN ) is a configuration of scatterers centers.
Throughout this thesis we assume that the distribution of the scatterers is
random, more precisely we choose a Poisson distribution. We remind that
the Poisson distribution of a random variable c = (c1, . . . , cN ), on a subset
of finite measure A ⊂ Rd, with parameter µ > 0 and with values in ∪N∈NAN
satisfies the following properties: the distribution of N is a Possion law of
intensity µ|A|, namely P(N = n) = exp(−µ|A|) (µ|A|)n

n! and for N fixed, the
law of c1 . . . cN is proportional to the Lebesque measure dc1 . . . dcN on AN .
We introduce a small scale parameter ε → 0 which expresses the ratio be-
tween the macroscopic and the microscopic scales. The scaling limits we are
considering consist of a kinetic scaling of space and time, namely t → εt,
x→ εx and a suitable rescaling of the density of the obstacles µ and the in-
tensity of the interaction potential φ. Accordingly to the resulting frequency
of collisions, the mean free path of the particle can have or not macroscopic
length and different kinetic equations arise. Typical examples are the linear
Boltzmann equation and the linear Landau equation.

The first scaling one could consider is the Boltzmann-Grad limit or low
density limit. To deal with a low density regime of scatterers we fix our scale
parameter in such a way that the density is equal to εµ. As a consequence
the typical variations, in space and time, of the distribution of the light
particle are on the order of a mean free time, namely 1/εµ. This suggests
to scale space and time as x → εx, t → εt. For this model, it could be
more phisically intuitive to transfer the scaling on the background medium.
Indeed we consider the equivalent scaling that keep time and space fixed and
rescale instead the range of the interaction and the density of the scatterers,
i.e.

φε(x) = φ(xε )
µε = ε−d+1µ . (1.0.2)

Consequently, the equations of motions (1.0.1) become

{
ẋ(t) = v

v̇(t) = −1
ε

∑N
i=1∇xφ(x−ciε ) .
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According to the rescaling (1.0.2) we have that the fraction of volume oc-
cupied by the obstacles is given by εd ε−d+1 = ε and tends to zero in the
limit ε → 0. Moreover the mean free path of the Lorentz particle remains
constant under the above scaling. In this regime the stochastic process of
the Lorentz particle, converges to a limiting process such that the velocity
process is a Markov jump process and the position is an additive functional
of the velocity process. The corresponding forward equation is the following
linear Boltzmann equation

∂tf(x, v, t) + v · ∇xf(x, v, t) = Lf(x, v, t) (1.0.3)

with

Lf(x, v, t) = πµ|v|
ˆ

dv′ k(v′|v)(f(x, v′, t)− f(x, v, t)).

Here k(v′|v)dv′ is the probability that the velocity of the Lorentz particle
jumps instantaneously from v to v′ in a collision and it is proportional to the
scattering cross section of the interaction potential. We remind that, due
to the energy conservation in a collision, the transition kernel k(v′|v) con-
tains the δ function δ(|v′|− |v|). (See Appendix 6.1 for a detailed discussion
on the linear Boltzmann equation.) For instance, in the case of hard core
potential k(v′|v)dv′ is the normalized uniform distribution on the sphere
with radius |v|. The first result concerning the rigorous derivation of the
linear Boltzmann equation was obtained by Gallavotti in 1969, see [G], who
showed the validity of the linear Boltzmann equation starting from a ran-
dom distribution of fixed hard scatterers in the Boltzmann-Grad limit (low
density), namely when the number of collisions is small, thus the mean free
path of the particle is macroscopic. We want to underline that Gallavotti’s
paper, before Lanford’s fundamental result, must be regarded as an essen-
tial step in the understanding of kinetic theory. Moreover the assumption
of independent heavy particles exclude the possibility that potential cor-
relations among heavy particles may influence the light particle dynamics,
hence the validity of the Boltzmann’s Stosszahlansatz. Gallavotti’s result
was improved and extended to more general distribution by Spohn [S]. In
[BBS] Boldrighini, Bunimovich and Sinai proved that the limiting Boltz-
mann equation holds for almost every scatterer configuration drawn from a
Poisson distribution. Indeed they prove the almost sure convergence and the
techniques used are different from those ones used to prove the convergence
in mean of the test particle density, averaging over obstacle configurations.

As we already pointed out we remind that the randomness of the distri-
bution of the scatterers is essential in the derivation of the linear Boltzmann
equation. In fact for a periodic configuration, when the heavy particles are
located at the vertices of some lattice in the Euclidean space, we face the
maximum amount of correlation between the heavy particles. This entails
a dramatic change in the structure of the equation that one obtains un-
der the same scaling limit that would otherwise lead to a linear Boltzmann
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equation. Indeed the linear Boltzmann equation fails for this model (see
[CG1]) and the random flight process that emerges in the Boltzmann-Grad
limit is substantially more complicated. The first complete proof of the
Boltzmann-Grad limit of the periodic Lorentz gas, valid for all lattices and
in all space dimensions, can be found in [MS]. The mathematical properties
of the generalized linear Boltzmann equation derived are analyzed in [CG2].

Another scaling of interest is the weak coupling limit. The idea of the
weak coupling limit is that, by some kind of central limit effect, very many
but weak collisions should lead to a diffusion type evolution. Therefore
the strength of the interaction between the light particle and the scatterers
becomes small as √

εφ(q)

which fixes our scale parameter. The average change of velocity is zero and
the typical change in a collision is order

√
ε. To have ε−1 collisions per unit

time interval, the time t is scaled as t→ εt. In a t time interval the Lorentz
particle travels over a large distance. Not to lose sight of the particle, we
rescale the space according to x→ εx. We observe that the initial position
is scaled but this scaling is such that the free motion remains invariant. This
define the weak coupling limit for a constant density of scatterers. However,
also in this case, we could perform an equivalent scaling, transferring the
scaling on the background medium. Then x, v, t remain unscaled and, in
d dimension, we rescale the interaction potential and the density of the
scatterers according to

φε(x) =
√
εφ(xε )

µε = ε−dµ. (1.0.4)

Consequently, the equations of motion (1.0.1) become
{
ẋ(t) = v

v̇(t) = − 1√
ε

∑N
i=1∇xφ(x−ciε ) .

According to (1.0.4) we have that a finite fraction of the volume remains
filled with the obstacles, hence the light particle travels freely a time span
ε and then interacts with a scatterer for another time span ε in which its
momentum is deflected on the order

√
ε. We want to compute the total

momentum variation for a unit time. The force acting on the Lorentz particle
in a single collision is order ε−

1
2 on the time interval O(ε). Therefore the

change in velocity due to a single scatterer, i.e. the momentum variation, is
O(
√
ε) since

∆v ' ∇xφε ·∆t ' ε−
1
2 ε ' ε 1

2 .

The number of scatterers met by the test particle is O(ε−1), hence the total
momentum variation for unit time is O(

√
ε
−1

). Thanks to the symmetry of
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the force and the homogeneous gas this variation is zero in average. Assum-
ing that the effect of the scatterers is approximately additive if we compute
the total variance we get 1

εO(
√
ε)2 = O(1). This central limit type argument

suggests a Wiener like diffusion in the velocity variable. Moreover, by con-
servation of energy in a single collision we have that |v| is preserved. Since no
particular direction is singled out due to the Poisson distribution, we expect
a diffusion on the sphere with radius |v|. At this point we are interested in
determining the diffusion coefficient B. The same argument tell us that the
diffusion coefficient B should be proportional to the average of the square of
the change in velocity for the unscaled process with

√
ε F (·) = −√ε∇xφ(·).

Indeed

(v(t)− v(0))2 = ε

ˆ t

0
ds

ˆ t

0
ds′ 〈F (x(s)) · F (x(s′))〉

' ε
ˆ t

0
ds

ˆ t

0
ds′ 〈F (vs) · F (vs′)〉

' ε t 2πµ

ˆ

ddk|k|2|φ̂(k)|2 δ(k · v) ≡ ε t 2 (d− 1)B(|v|),

where φ̂ is the Fourier transform of φ. For further details see [S1] and [S2].
Therefore the correct kinetic equation which is derived in this scaling limit
is the Linear Landau equation

(∂t + v · ∇x)f(x, v, t) = B∆|v|f(x, v, t),

where ∆|v| is the Laplace-Beltrami operator on the d-dimensional sphere
of radius |v|. It is a Fokker-Planck equation for the limiting stochastic
process where the velocity process is a Brownian motion on the (kinetic)
energy sphere, and the position is an additive functional of the velocity
process. The first result concerning the rigorous derivation of the linear
Landau equation was obtained by Kesten and Papanicolau in 1980. They
proved the convergence in law towards a Brownian motion for the stochastic
process of the test particle in Rd, d ≥ 3, in a weak mean zero random force
field. This model is referred to as the stochastic acceleration problem, see
[KP]. Later, in 1987, Dürr, Goldstein and Lebowitz proved that in R2 the
velocity process of the light particle converges in distribution to a Brownian
motion on a surface of constant speed. Their result holds for sufficiently
smooth interaction potentials and for a Poisson distribution of obstacles,
see [DGL]. More recently, Komorowski and Ryzhik handled the stochastic
acceleration problem in two dimensions [KR] complementing in this way the
limit theorem of Kesten and Papanicolaou proved in dimensions d ≥ 3.

The linear Landau equation appears also in an intermediate scale be-
tween the low density and the weak-coupling regime, namely when the
(smooth) interaction potential φ rescales according to φ→ εαφ, α ∈ (0, 1/2)
and we consider the rescaled density µε = ε−2α−(d−1)µ. See for instance
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[DR], [K]. We observe that in this regime the scatterer configuration is still
dilute since µεε = ε−2α−(d−1)ε(d−1) → ∞ and µεε

2 = ε−2α−(d−1)εd → 0.
The limiting cases α = 0 and α = 1/2 correspond respectively to the low
density limit and the weak-coupling limit.

The situation changes radically if we take into account the analogous
quantum model (not discussed in this thesis). Here in the weak-coupling
limit, as well in the low density limit, the kinetic equation approached is the
linear Boltzmann equation (the only difference concerns the scattering cross
section which changes according to the two different scalings). The kinetic
equation is classical and the only quantum macroscopic effect appears in the
cross-section which is computed in terms of the quantum scattering problem.
In the weak coupling limit, in contrast with the classical case where we get a
diffusion, due to a macroscopic tunnel effect we get a Markov jump process.
This results from the asymptotics of a single scattering. In a quantum
setting there is a finite probability of having any scattering angle while for a
classical particle we have surely a small deviation from the free motion. The
first result, concerning the derivation of the linear Boltzmann equation in a
weak-coupling limit, has been obtained in [S4] for a potential given by a field
of Gaussian random variables. This result holds for short times, we refer to
[EY] for the extension to arbitrary times. Moreover the technique of [EY]
can be applied to deal with a Poisson distribution of obstacles. The cross
section appearing in the Boltzmann equation is that computed in the Born
approximation. For what concerns the low-density regime we refer to [EE]
where a linear Boltzmann equation with the full cross-section is approached
in the limit.

The rigorous derivation of hydrodynamical equations grounds on the
heuristic idea that after a few mean free times the Lorentz gas is already
very close to the local equilibrium. Namely the system reaches relatively fast
local equilibrium characterized by the hydrodynamic fields, corresponding to
the locally conserved quantities. These fields subsequently evolve relatively
slowly. Therefore the hydrodynamic limits involve the long time behavior
of the system.

Roughly speaking the macroscopic dynamics is essentially generated by
the conservation law fulfilled by the microscopic dynamics. Moreover there
is a correspondence between conservation laws and transport coefficients,
appearing in the non reversible equations of the macroscopic dynamics as
coefficients. For a system of interacting particles governed by Newton’s equa-
tions there are three classical conservation laws, namely the conservation of
mass, momentum and energy. The corresponding transport coefficients are
called coefficients of diffusion, viscosity and thermal conductivity. For this
system instead the momentum is not conserved since the scatterers do not
move and the conservation of energy is equivalent to the conservation of
mass because there is no redistribution of energy between particles. Hence
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the only conserved quantity is the mass and the only hydrodynamic field is
the spatial density ρ(x, t). Consequently the only hydrodynamic equation
for the Lorentz gas is the diffusion equation which is the analogue of the
Navier Stokes equations in the nonlinear setting. For the hydrodynamic
limits one considers only the spatial component of the stochastic motion,
i.e.

x(t) = x+

ˆ t

0
ds v(s).

To obtain the analogue of the Euler equations (for this model it is just
∂t ρ(x, t) = 0) we have to look at the evolution of the Lorentz particle over
distances on the order ε−1 and over times on the order ε−1. To obtain instead
the diffusion equation one has to consider the evolution over distances on
the order ε−1 and over times on the order ε−2. Hence we would expect
that, under the previous diffusive scaling, the distribution density of the
test particle converges to that of a diffusion process. Unfortunately, the
rigorous derivation of the heat equation from the mechanical system given
by the Lorentz gas is actually a very difficult and still unsolved problem.
The only rigorous result in this direction was achieved by Bunimovich and
Sinai in 1980 (see [BS]) by showing that such diffusive limit holds when
the scatterers are fixed and periodically distributed. More precisely they
consider a point particle elastically colliding with a periodic distribution of
scatterers in the case of finite horizon, namely when the length of a free path
of the moving particle is bounded. The centers of the hard disks are located
at the points of a two dimensional triangular lattice and the initial conditions
are distributed according to a probability measure, absolutely continuous
with respect to the Lebesgue measure. Hence the only stochasticity is in the
initial condition being the dynamics completely deterministic. The rescaled
trajectory reads as

xε(t) =
√
ε x(t/ε), t ∈ [0, 1] (1.0.5)

and belongs to C([0, 1];R2). The initial measure induces a probability dis-
tribution on the space of all continuous trajectories which converges weakly
to a Wiener measure as ε→ 0. In other words they proved the validity of a
central limit theorem for the displacement of the test particle at large times
t, by showing the convergence of the stochastic process given by (1.0.5) to-
wards a Wiener process with diffusion coefficient D. According to Einstein
formula, which relates D to the time integral of the time autocorrelation
function of the mass current, it results

D =
2

d

ˆ ∞

0
〈v(0), v(t)〉 dt,

where 〈·, ·〉 is the expectation with respect to the invariant measure. The
above Einstein formula is the first one in the hierarchy of the Green-Kubo
formulas for the transport coefficients. Hence we have the existence of a non
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degenerate transport coefficient D and the validity of the diffusion equation.
As a consequence this result is one of the most important in the transition
from the microscopic to the macroscopic description.

Nonetheless one can handle this problem by deriving the diffusion equa-
tion from the correct kinetic equation which arises, according to the suitable
kinetic scaling performed, from the random Lorentz gas. We remark, how-
ever, that the hydrodynamics for the Lorentz model is not equivalent to the
hydrodynamics for the kinetic equation.

In this direction, in the second chapter where we present [BNP], we
provide a rigorous derivation of the heat equation from the particle system
(the Lorentz model) using the linear Landau equation as a bridge between
our original mechanical system and the diffusion equation. It works once
having an explicit control of the error in the kinetic limit (see also [DP],
where the set of bad configurations are explicitly estimated). The diffusive
limit can be achieved since the control of memory effects still holds for a
longer time scale.

Moreover, since it is well known how important and challenging is the
characterization of stationary nonequilibrium states exhibiting transport
phenomena in the rigorous approach to nonequilibrium Statistical Mechan-
ics, we are also interested in considering the Lorentz model out of equilib-
rium. Energy or mass transport in non equilibrium macroscopic systems are
described phenomenologically by Fourier’s and Fick’s law respectively. We
notice that there are very few rigorous results in this direction in the current
literature (see for instance [LS], [LS1], [LS2]). In the third chapter, where in
the first section we present [BNPP], we give a contribution in this direction,
by validating the Fick’s law for the Lorentz model in a low density regime.
Moreover further recent developments, strictly connected to this problem,
are faced in the same chapter. Indeed in the last section we observe that the
strategy used to prove the above result, suitably modified, allow to validate
the Fick’s Law in a weak coupling regime.

In the previous chapters we analyzed diffusive limits for the Lorentz Gas
while in the last two chapters we focus instead on kinetic limits. More
precisely in the fourth chapter we observe that, also in a linear case, the
notion of Propagation of Chaos can be established. Indeed we validate the
Propagation of Chaos for the full wind-tree model, proposed originally by
Gallavotti in [G], in the low density limit. Namely we look at the evolution of
the j (light) particle correlation functions and we prove that the factorization
property is recovered in the limit.

In the last chapter instead we present [N1]. We deal with the rigorous
derivation of linear kinetic equations from the microscopic model given by
the Lorentz gas in presence of an external field, in particular we consider a
uniform magnetic field. The interest for this problems emerges from recent
results, see for instance [BMHH1], [BMHH2], where it has been proved that
the presence of an external magnetic field is not innocent in the derivation
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of the linear Boltzmann equation in a low density regime. In contrast to this
results we show that, in a weak coupling limit, the Lorentz particle distri-
bution behaves according to the linear Landau equation with the magnetic
field. Moreover we show that, in the low density limit, when each obstacles
generates an inverse power law potential, the particle distribution behaves
according to the linear Boltzmann equation with the magnetic field.

This thesis contains the following papers: the published paper [BNP] writ-
ten in collaboration with G. Basile and M. Pulvirenti, which is presented in
Chapter 2; the submitted paper [BNPP], available on arXiv:1404.4186, writ-
ten in collaboration with G. Basile, F. Pezzotti and M. Pulvirenti, presented
in Chapter 3, Section 3.1; my recent preprint [N3] available on arXiv:1411.6474,
presented in Chapter 3, Section 3.2; my recent work in progress [N1] pre-
sented in Chapter 4.



Chapter 2

A diffusion limit for a test particle in a Random Distribution of
scatterers [J. Stat. Phys. 155, 1087-1111, 2014]

In the present Chapter we present [BNP].

A diffusion limit for a test particle in a random
distribution of scatterers

Abstract. We consider a point particle moving in a random distribution
of obstacles described by a potential barrier. We show that, in a weak-
coupling regime, under a diffusion limit suggested by the potential itself,
the probability distribution of the particle converges to the solution of the
heat equation. The diffusion coefficient is given by the Green-Kubo formula
associated to the generator of the diffusion process dictated by the linear
Landau equation.

2.1 Introduction

The evolution of the density of a test particle moving in a configura-
tion of obstacles, usually called Lorentz gas [L], is described at mesoscopic
level by linear kinetic equations. They are obtained from the microscopic
Hamiltonian dynamics under a kinetic scaling of space and time, namely
t → εt, x → εx and a suitable rescaling of the density of the obstacles and
the intensity of the interaction. Accordingly to the resulting frequency of
collisions, the mean free path of the particle can have or not macroscopic
length and different kinetic equations arise. Typical examples are the linear
Boltzmann equation and the linear Landau equation.

The first rigorous result appeared in 1969 in the paper of Gallavotti [G],
who derived a linear Boltzmann equation starting from a random distri-
bution of fixed hard scatterers in the Boltzmann-Grad limit (low density),
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namely when the number of collisions is small, thus the mean free path
of the particle is macroscopic. The result was improved by Spohn [S]. In
[BBS] Boldrighini, Bunimovich and Sinai proved that the limiting Boltz-
mann equation holds for typical configurations.

In the weak-coupling regime, when there are very many but weak colli-
sions, a linear Landau equation appears

(∂t + v · ∇x)f(x, v, t) = B∆|v|f(x, v, t), (2.1.1)

where ∆|v| is the Laplace-Beltrami operator on the d-dimensional sphere
of radius |v|. It is a Fokker-Planck equation for the stochastic process
(V (t), X(t)), where the velocity process V is a Brownian motion on the
(kinetic) energy sphere, and the position X is an additive functional of V .
The velocity diffusion follows from the facts that there are many elastic col-
lisions. The diffusion coefficient B is proportional to the variance of the
transferred momentum in a single collision and depends on the shape of
the interaction potential. The first result in this direction was obtained by
Kesten and Papanicolau for a particle in R3 in a weak mean zero random
force field [KP]. Dürr, Goldstein and Lebowitz proved that in R2 the ve-
locity process converges in distribution to Brownian motion on a surface of
constant speed for sufficiently smooth interaction potentials [DGL].

The linear Landau equation appears also in an intermediate scale be-
tween low density and weak-coupling regime, namely when the (smooth)
interaction potential φ rescales according to φ → εαφ, α ∈ (0, 1/2) and the
density of the obstacles is of order ε−2α−(d−1) ([DR], [K]). The limiting cases
α = 0 and α = 1/2 correspond respectively to the low density limit and the
weak-coupling limit.

In the present paper we consider an interaction potential given by a
circular potential barrier, in dimension two (dimension three is easier). We
want to investigate the limit ε → 0 in the intermediate case, namely when
α > 0 but sufficiently small. In this case, due to lack of smoothness of the
potential, new features emerge at mesoscopic level.

The physical interest of this problem is connected to the geometric optics
since the trajectory of the test particle is that of a light ray traveling in a
medium (say water) in presence of circular drops of a different substance
with smaller refractive index (say air). The opposite situation, namely drops
of water in a medium of air, can be described as well by the circular well
potential. Our analysis applies also to this case with minor modifications,
yielding the same result, but we consider only the case of potential barrier
for sake of concreteness.

The novelty of this choice is that in this case the diffusion coefficient B
diverges logarithmically. Roughly speaking, the asymptotic equation for the
density of the Lorentz particle reads

(∂t + v · ∇x)f(x, v, t) ∼ | log ε|B∆|v|f(x, v, t), (2.1.2)



Main results 15

which suggests to look at a longer time scale t → | log ε|t. As expected, a
diffusion in space arises.

The proof follows the original constructive idea, due to Gallavotti [G],
for the low-density limit of a hard-sphere system. This approach is based
on a suitable change of variables which leads to a Markovian approximation
described by a linear Boltzmann equation. This presents some technical
difficulties since some of the random configurations lead to trajectories that
“remember” too much preventing the Markov property of the limit. In
the two-dimensional case the probability of those bad behaviors producing
memory effects (correlation between the past and the present) is nontrivial.
Thus we need to control the unphysical trajectories: we estimate explicitly
the set of bad configurations of the scatterers (such as the set of configura-
tions yielding recollisions or interferences) showing that it is negligible in the
limit (see [DP], where the set of bad configurations are explicitly estimated).
The control of memory effects still holds for a longer time scale | log ε| which
allows to get the heat equation from the rescaled linear Boltzmann equation.

We remark that the diffusive limit analyzed in the present paper is sug-
gested by the divergence of the diffusion coefficient for the particular choice
of the potential we are considering. However the same techniques could work
in presence of a smooth, radial, short-range potential φ. Also in this case we
obtain a diffusive equation as longer time scale limit of a linear Boltzmann
equation (Section 5). Same spirit as in [KR] and [LE].

2.2 Main results

Consider a point particle of mass one in R2, moving in a random distri-
bution of fixed scatterers whose center are denoted by c1, . . . , cN ∈ R2. The
equation of motion are

{
ẋ = v

v̇ = −∑N
i=1∇φ(|x− ci|) ,

(2.2.1)

where (x, v) denote position and velocity of the test particle, t the time
and, as usual, Ȧ = dA

dt indicates the time derivative for any time dependent
variable A.
Finally φ : R+ → R is a given spherically symmetric potential.

To outline a kinetic behavior of the particle, we usually introduce a scale
parameter ε > 0, indicating the ratio between the macroscopic and the
microscopic variables, and rescale according to

x→ εx, t→ εt, φ→ εαφ

with α ∈ [0, 1/2]. Then Eq.ns (2.2.1) become
{
ẋ = v

v̇ = −εα−1
∑

i∇φ( |x−ci|ε ) .
(2.2.2)
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We assume the scatterers cN = (c1, . . . , cN ) distributed according to a
Poisson distribution of intensity µε = µε−δ, where δ = 1 + 2α. This means
that the probability density of finding N obstacles in a bounded measurable
set Λ ⊂ R2 is given by

Pε( dcN ) = e−µε|Λ|
µNε
N !

dc1 . . . dcN , (2.2.3)

where |Λ| = measΛ.
Now let T tcN (x, v) be the Hamiltonian flow solution of Eq.n (2.2.2) with

initial datum (x, v) in a given sample cN = (c1, . . . , cN ) of obstacles (skip-
ping the ε dependence for notational simplicity) and, for a given initial
probability distribution f0 = f0(x, v), consider the quantity

fε(x, v, t) = Eε[f0(T−tcN
(x, v))], (2.2.4)

where Eε is the expectation with respect to the measure Pε given by (2.2.3).
In the limit ε → 0 we expect that the probability distribution (2.2.4)

solves a linear kinetic equation depending on the value of α. More precisely
if α = 0 (low-density or Boltzmann-Grad limit) then fε converges to f , the
solution of the following linear Boltzmann equation

(∂t + v · ∇x)f(x, v, t) = Lf(x, v, t), (2.2.5)

where

Lf(x, v, t) = µ|v|
ˆ 1

−1
dρ{f(v′)− f(v)}, (2.2.6)

and where
v′ = v − 2(ω · v)ω. (2.2.7)

Here we are assuming φ of range one i.e. φ(r) = 0 if r > 1, and ω = ω(ρ, |v|)
is the unit vector obtained by solving the scattering problem associated to φ
(see Figure 2.1). This result was proven and discussed in [BBS],[DP],[G],[S].
On the other hand, if α = 1/2, the corresponding limit, called weak-coupling
limit, yields the linear Landau equation (see [DGL] and [K])

(∂t + v · ∇x)f(x, v, t) = Lf(x, v, t), (2.2.8)

where for every g ∈ C0(S|v|)

Lg(v) = B∆|v|g(v), (2.2.9)

and

B =
πµ

|v|

ˆ ∞

0
ζ2φ̂(ζ)2 dζ, (2.2.10)

where φ̂, the Fourier transform of the potential φ, is real and spherically
symmetric.
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In the present paper we want to investigate the limit ε → 0, in case
α > 0 sufficiently small, when the diffusion coefficient B given by (2.2.10)
is diverging. Actually we consider the specific example

φ(r) =

{
1 if r < 1
0 otherwise ,

(2.2.11)

namely a circular potential barrier.
For a potential of the form (2.2.11) a simple computation shows that B

defined in (2.2.10) diverges since ζ2φ̂(ζ)2 is not integrable. Therefore we are
interested in characterizing the asymptotic behavior of fε(x, v, t), given by
(2.2.4), under the scaling illustrated above. The main results of the present
paper can be summarized in the following theorems.

Theorem 2.2.1. Suppose f0 ∈ C0(R2 × R2) a continuous, compactly sup-
ported initial probability density. Suppose also that |Dk

xf0| ≤ C, where Dx is
any partial derivative with respect to x and k = 1, 2. Assume µε = ε−2α−1,
with α ∈ (0, 1/8). Then the following statement holds

lim
ε→0

fε(x, v, t) = 〈f0〉 :=
1

2π

1

|v|

ˆ

S|v|
f0(x, v) dv, (2.2.12)

∀t ∈ (0, T ], T > 0. The convergence is in L2(R2 × S|v|).
Moreover, define Fε(x, v, t) := fε(x, v, t| log ε|). Then, for all t ∈ [0, T ),

T > 0,
lim
ε→0

Fε(x, v, t) = ρ(x, t),

where ρ solves the following heat equation
{
∂t% = D∆%

%(x, 0) = 〈f0〉,
(2.2.13)

with D given by the Green-Kubo formula

D =
2

µ
|v|
ˆ

S|v|
v ·
(
−∆−1

|v|
)
v dv =

2π

µ
|v|2
ˆ ∞

0
E
[
v · V (t, v)

]
dt, (2.2.14)

where V (t, v) is the stochastic process generated by ∆|v| starting from v and
E[·] denotes the expectation with respect to the invariant measure, namely
the uniform measure on S|v|. The convergence is in L2(R2 × S|v|).

Some comments are in order. As we shall prove in Sections 3 and 4,
the asymptotic behavior of the mechanical system we are considering is the
same as the Markov process ruled by the linear Landau equation with a
diverging factor in front of L. This is equivalent to consider the limit in the
Euler scaling of the linear Landau equation, which is trivial. The system
quickly thermalizes to the local equilibrium just given by 〈f0〉, see (2.2.12).
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To detect something non-trivial we have to exploit longer times in which the
local equilibrium starts to evolve (according to the diffusion equation), see
(2.2.13).

Note however that, rescaling differently the density of the Poisson pro-
cess, we can recover the kinetic picture given by Landau equation (with a
renormalized diffusion coefficient B) as in [DR]. This is stated in the next
Theorem.

Theorem 2.2.2. Suppose f0 ∈ C0(R2 × R2) a continuous, compactly sup-
ported initial probability density. Suppose also that |Dk

xf0| ≤ C, where Dx is

any partial derivative with respect to x and k = 1, 2. Assume µε = ε−2α−1

| log ε| ,

with α ∈ (0, 1/8). The following statement holds

lim
ε→0

fε(x, v, t) = f(x, v, t),

∀t ∈ (0, T ], T > 0. Here f solves the Landau equation (2.2.8) with a renor-
malized diffusion coefficient

B := lim
ε→0

µε
2
ε |v|
ˆ 1

−1
θ2
ε(ρ) dρ, (2.2.15)

where θε is the scattering angle defined in (A.6), (A.5). The convergence is
in L2(R2 × S|v|).

We finally remark that the results of the above theorems are made pos-
sible because the recollisions set (see below for the precise definition) is
negligible, as established in Section 5. We believe that the present result
could be recovered also in high-density regimes α ∈

(
1
8 ,

1
2

]
, namely also when

the recollisions are not negligible anymore. However in this case different
ideas and techniques are indeed necessary.

The plan of the paper is the following. In the next Section we illustrate
our strategy and establish some preliminary results. In Section 4 we prove
Theorem 2.2.1 and 2.2.2. Finally in Section 5 we prove a basic Lemma
showing that our non-Markovian system can indeed be approximated by a
Markovian one, easier to handle with.

2.3 Strategy

We follow the explicit approach in [G], [DP] and [DR].
By (2.2.4) we have, for (x, v) ∈ R2 × R2, t > 0,

fε(x, v, t) = e−µε|Bt(x,v)|∑

N≥0

µNε
N !

ˆ

Bt(x,v)N
dcN f0(T−tcN

(x, v)), (2.3.1)
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Figure 2.1: Scattering

where T tcN (x, v) is the Hamiltonian flow generated by the Hamiltonian

1

2
v2 + εα

∑

j

φ

( |x− cj |
ε

)
, (2.3.2)

where φ is given by (2.2.11), and initial datum (x, v). For this choice of the
potential ∇φ is not well defined. However the explicit solution of the equa-
tion of motion is obtained by solving the single scattering problem by using
the energy and angular momentum conservation (see Figure 2.1). Finally
we define Bt(x, v) := B(x, |v|t), where here and in the following, B(x,R)
denotes the disk of center x and radius R.

Here we represent the scattering of a particle entering in the ball

B(0, 1) = {x s.t. |x| < 1}

toward a potential barrier of intensity φ(x) = εα.
We have an explicit expression for the refractive index

nε =
sinα

sinβ
=
|v̄|
|v| =

√
1− 2εα

v2
, (2.3.3)

where v is the initial velocity, v̄ the velocity inside the barrier, α the angle
of incidence and β the angle of refraction. The scattering angle is Θ =
π − 2ϕ0 = 2(β − α) and the impact parameter is ρ = sinα. (See Appendix
2.7 for a detailed analysis of the scattering problem.)
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Figure 2.2: Elastic reflection

Remark 2.3.1. Formula (2.3.3) makes sense if 2εα

v2
< 1 or ρ = sinα <√

1− 2εα

v2
.

When one of such two inequalities is violated, the outgoing velocity is the
one given by the elastic reflection.

After the scaling
x→ εx, t→ εt

the scattering process takes place in a disk of radius ε, but the velocities (and
hence the angles) are invariant. A picture of a typical trajectory is given as
in Figure 3. Here we are not considering possible overlappings of obstacles.
The scattering process can be solved in this case as well. However, as we
shall see, this event is negligible because of the moderate densities we are
considering.

Coming back to Eq.n (2.3.1), we distinguish the obstacles of the config-
uration cN = c1 . . . cN which, up to the time t, influence the motion, called
internal obstacles, and the external ones. More precisely ci is internal if

inf
−t≤s≤0

|xε(s)− ci| < ε, (2.3.4)

while ci is external if
inf

−t≤s≤0
|xε(s)− ci| ≥ ε. (2.3.5)

Here (xε(s), vε(s)) = T sc (x, v).
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Figure 2.3: A typical trajectory

Note that the integration over the external obstacles can be performed
so that

fε(x, v, t) =
∑

Q≥0

µQε
Q!

ˆ

Bt(x,v)Q
dbQ e

−µε|T (bQ)|f0(T−tbQ
(x, v))

χ({the bQ are internal}).
(2.3.6)

Here and in the sequel χ({. . . }) is the characteristic function of the event
{. . . }.
Moreover T (bQ) is the tube:

T (bQ) = {y ∈ Bt(x, v) s.t. ∃s ∈ (−t, 0) s.t. |y − xε(s)| < ε}. (2.3.7)

Note that
|T (bQ)| ≤ 2ε|v|t. (2.3.8)

Instead of considering fε we introduce

f̃ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε
Q!

ˆ

Bt(x,v)Q
dbQ

χ({the bQ are internal})χ1(bQ)f0(T−tbQ
(x, v)),

(2.3.9)

where

χ1(bQ) = χ{bQ s.t. bi /∈ B(x, ε) and bi /∈ B(xε(−t), ε) for all i = 1, . . . , Q}.
(2.3.10)
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Figure 2.4: The change of variables

Obviously
fε ≥ f̃ε. (2.3.11)

Following [G],[DP],[DR] we would like to perform the following change
of variables

0 ≤ t1 < t2 < · · · < tQ ≤ t
b1, . . . , bQ → ρ1, t1, . . . , ρQ, tQ, (2.3.12)

where, after ordering the obstacles b1, . . . , bQ according to the scattering
sequence, ρi and ti are the impact parameter and the entrance time of the
light particle in the protection disk around bi, i.e. B(bi, ε).

More precisely, fixed an impact parameter ρ and an entrance time t,
by using elementary geometrical arguments, we can construct uniquely b =
b(ρ, t), the center of the obstacle. Then we perform the backward scattering
and iterate the procedure to construct a trajectory (ξε(s), ηε(s)), s ∈ [−t, 0].
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Figure 2.5: Recollisions (backward)

However (ξε(s), ηε(s)) = (xε(s), vε(s)) (therefore the mapping (2.3.12) is
one-to-one) only outside the following pathological situations.
i) Overlapping.
If bi and bj are both internal then B(bi, ε) ∩B(bj , ε) 6= ∅ .
ii) Recollisions.
There exists bi such that for s̃ ∈ (tj , tj+1), j > i, ξε(−s̃) ∈ B(bi, ε).
iii) Interferences.
There exists bi such that ξε(−s̃) ∈ B(bi, ε) for s̃ ∈ (tj , tj+1), j < i.

We simply skip such events by setting

χov = χ({bQ s.t. i) is realized}),

χrec = χ({bQ s.t. ii) is realized}),
χint = χ({bQ s.t. iii) is realized}),

and defining

f̄ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dtQ . . .

ˆ t2

0
dt1

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ χ1(1− χov)(1− χrec)(1− χint)f0(ξε(−t), ηε(−t)).

(2.3.13)

Note that f̄ε ≤ f̃ε ≤ fε. Note also that in (2.3.13) we have used the
change of variables (2.3.12) for which, outside the pathological sets i), ii),
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Figure 2.6: Interferences (backward)

iii), T−tbQ
(x, v) = (ξε(−t), ηε(−t)).

Next we remove χ1(1− χov)(1− χrec)(1− χint) by setting

h̄ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dtQ . . .

ˆ t2

0
dt1

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ f0(ξε(−t), ηε(−t)).

(2.3.14)

Proposition 2.3.2. We have

f̄ε(t) = h̄ε(t) + ϕ1(ε, t),

where ‖ϕ1(ε, t)‖L1 → 0 as ε→ 0 for all t ∈ [0, T ].
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Remark 2.3.3. Proposition 2.3.2 still holds for longer times, namely:

‖ϕ1(ε, t)‖L1 −→
ε→0

0 ∀t ∈ [0, | log ε|T ], T > 0.

We postpone the proof of the above Proposition to the last Section.
Next we consider the limiting trajectory ξ̄ε(s), η̄ε(s) obtained by considering
the collision as instantaneous.
More precisely, for the sequence t1, . . . , tQ ρ1, . . . ρQ consider the sequence
v1, . . . , vQ of incoming velocities before the Q collisions. Then

{
ξ̄ε(−t) = x− vt1 − v1(t2 − t1) · · · − vQ(t− tQ)
η̄ε(−t) = vQ.

(2.3.15)

We define

hε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dtQ . . .

ˆ t2

0
dt1

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ f0(ξ̄ε(−t), η̄ε(−t)).

(2.3.16)

Due to the Lipschitz continuity of f0 we can assert that

h̄ε(x, v, t) = hε(x, v, t) + ϕ2(x, v, t), (2.3.17)

where
sup

x,v,t∈[0,T ]
|ϕ2(x, v, t)| ≤ Cε1−2αT. (2.3.18)

For more details see [DP], Section 3. As matter of facts, since we realize
that hε is the solution of the following Boltzmann equation

(∂t + v · ∇x)hε(x, v, t) = Lεhε(x, v, t), (2.3.19)

where

Lεh(v) = µε−2α|v|
ˆ 1

−1
dρ{h(v′)− h(v)}, (2.3.20)

we have reduced the problem, thanks to Proposition 2.3.2, to the analysis
of a Markov process which is an easier task.

2.4 Proof of the main theorems

Let be ηε = | log ε|. We rewrite the linear Boltzmann equation (2.3.19)
in the following way

(
∂t + v · ∇x

)
hε(x, v, t) = ηε L̃εhε(x, v, t), (2.4.1)
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where L̃ε = L/ηε, namely

L̃εf(v) = µ|v| ε
−2α

| log ε|

ˆ 1

−1
dρ
[
f(v′)− f(v)

]
. (2.4.2)

We will show that for ηε → ∞ we get a trivial result (Theorem 2.2.1),
then we should look at the solution for times ηεt, so that we obtain the
diffusive scaling for space and time. Denoting by h̃ε := hε(x, v, ηεt), where
hε solves (2.4.1), h̃ε solves

(
∂t + ηε v · ∇x

)
h̃ε = η2

ε L̃εh̃ε. (2.4.3)

It is convenient to introduce the Cauchy problem associated to the fol-
lowing rescaled Landau equation:

{ (
∂t + η v · ∇x

)
gη(x, v, t) = η2Lgη(x, v, t),

gη(t = 0) = f0.
(2.4.4)

where L = µ
2

1
|v|∆|v| and η = ηε.

We observe preliminarily that eq. (2.4.4) propagates the regularity of
the derivatives with respect to the x variable and, due to the presence of
L, gains regularity with respect to the transverse component of the velocity.
Indeed, for any fixed |v|, denoting by S|v| the circle of radius |v|, under the
hypothesis of Theorem 2.2.1 on f0, the solution gη : R2×S|v| → R+ satisfies
the bounds

|Dk
xgη(x, v)| ≤ C, |Dh

vgη(x, v)| ≤ C ∀k ≤ 2, h ≥ 0, (2.4.5)

∀t ∈ (0, T ], where C = C(f0, T ) and Dv is the derivative with respect to the
transverse component of the velocity. In particular the solutions of (2.4.4)
we are considering are classical.

Before analyzing the asymptotic behavior of the solution of (2.4.4) we
first need a preliminary Lemma.

Lemma 2.4.1. Let 〈gη〉 be the average of gη with respect to the invariant
measure ν, namely 〈gη〉 := 1

2π
1
|v|
´

S|v|
dv gη(x, v). Under the hypothesis of

Theorem 2.2.1

(1) gη − 〈gη〉 −→ 0
η→∞

in L∞((0, T ];L2(R2 × S|v|)).

Moreover, setting tη = 1
ηω for ω > 2 then

(2) gη(tη)− 〈f0〉 −→ 0
η→∞

in L2(R2 × S|v|),

where 〈f0〉 = 1
2π

1
|v|
´

S|v|
dv f0.
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Proof. Let Rη = gη − 〈gη〉. We have

(
∂t + η v · ∇x

)
Rη(x, v, t) = η2LRη(x, v, t) + ϕ, (2.4.6)

where

ϕ = −
(
η v · ∇x〈gη〉+ ∂t〈gη〉

)

= η
( 1

2π

1

|v|

ˆ

S|v|
v′ · ∇xgη dv′ − v · ∇x〈gη〉

)
.

(2.4.7)

We can estimate the last quantity by (2.4.5):

sup
t≤T
‖ϕ‖L2 ≤ Cη‖∇xgη‖L2 ≤ Cη.

Therefore by (2.4.6) we have

1

2

d

dt
‖Rη(t)‖2L2 = η2(Rη,LRη) + (Rη, ϕ)

≤ −η2λ‖Rη‖2L2 + ‖Rη‖L2‖ϕ‖L2 ,

where λ is the first positive eigenvalue of L. Here we used that Rη ⊥ 1 in
L2. Hence

‖Rη(t)‖L2 ≤ e−η2λt‖Rη(0)‖L2 +

ˆ t

0
ds e−η

2λ(t−s)‖ϕ(s)‖L2

≤ e−η2λt‖Rη(0)‖L2 +
C

η
(1− e−η2λt),

so that (1) is proven.
To prove (2) observe that, thanks to the fact L is negative, we have

1

2

d

dt
‖gη(t)− f0‖2L2 ≤ −η(gη − f0, v · ∇xf0) + η2(gη − f0,Lf0)

≤ ‖gη − f0‖L2

(
η|v| ‖∇xf0‖+ η2‖Lf0‖

)
.

Therefore

‖gη(tη)− f0‖L2 ≤ 1

ηω
(
η|v| ‖∇xf0‖+ η2‖Lf0‖

)
, (2.4.8)

which vanishes as η →∞. Finally, recalling that 〈f0〉 = 1
2π

1
|v|ρ0, we have

‖gη(tη)− 〈f0〉‖L2 ≤ sup
t∈(0,T ]

‖gη − 〈gη〉‖L2 + ‖〈gη(tη)〉 − 〈f0〉‖L2

≤ sup
t∈(0,T ]

‖gη − 〈gη〉‖L2 + c‖gη(tη)− f0‖L2 .

By (2.4.8) and (1) we conclude the proof.
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Lemma 2.4.2. Let gη be the solution of (2.4.4). Under the hypothesis of
Theorem 2.2.1 for the initial datum f0, for η → ∞ gη converges to the
solution of the diffusion equation

{
∂t% = D∆%

%(x, 0) = 〈f0〉,
(2.4.9)

where 〈f0〉 = 1
2π

1
|v|
´

S|v|
dv f0 and

D =
2

µ
|v|
ˆ

S|v|
v ·
(
−∆−1

|v|
)
v dv. (2.4.10)

Convergence is in L∞([0, T ];L2(R2 × S|v|)).

Proof. The proof of the above Lemma is rather straightforward (see e.g.
[EP]).

Suppose for the moment that the initial datum depends only on the posi-
tion variables, namely the initial datum has the form of a local equilibrium.
We assume that gη has the following form

gη(x, v, t) = g(0)(x, t) +
1

η
g(1)(x, v, t) +

1

η2
g(2)(x, v, t) +

1

η
Rη,

where g(i), i = 0, 1, 2 are the first three coefficient of a Hilbert expansion
in η, and Rη is the reminder. Comparing terms of the same order in η we
obtain the following equations:

(i) v · ∇xg(0) =
µ

2

1

|v| ∆|v|g
(1)

(ii) ∂t g
(0) + v · ∇xg(1) =

µ

2

1

|v| ∆|v|g
(2)

(iii)
(
∂t + η v · ∇x

)
Rη = η2µ

2

1

|v| ∆|v|Rη −Aη(t),

with Aη(t) = Aη(x, v, t) = ∂tg
(1) + 1

η∂tg
(2) + v · ∇xg(2). Since v · ∇xg(0)

is an odd function of v, the integral with respect to v of the left hand
side of (i) vanishes. Then we can invert the operator ∆|v| and set g(1) =
2
µ |v|∆−1

|v| v · ∇xg(0), where g(1) is an odd function of the velocity. Now we
integrate the second equation with respect to the velocity. By observing
that

´

S|v|
dv∆|v|g(2) = 0, since dv|S|v| is proportional the invariant measure,

we obtain

∂t g
(0) +

2

µ
|v|
ˆ

S|v|
dv v · ∇x

(
∆−1
|v| v · ∇xg

(0)
)

= 0.
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We define the 2 × 2 matrix D as Dij = − 2
µ |v|
´

S|v|
vi∆

−1
|v| vj and we observe

that Dij = 0 for i 6= j and D11 = D22 = D, where

D =
2

µ
|v|
ˆ

S|v|
dv v ·

(
−∆−1

|v|
)
v.

Therefore
∂t g

(0) −D∆xg
(0) = 0,

where g(0) satisfies the initial condition g(0)(x, 0) = g(t = 0). Moreover, the
L2-norm of g(1) is bounded. If we show that also the L2-norm of g(2) and
Rη are bounded, we deduce that gη converges to g(0) for η →∞.

From equation (ii) and the diffusion equation for g(0) we derive that the
integral with respect to v of the left hand side of (ii) vanishes. Therefore
we can invert the operator ∆|v| and obtain

g(2) =
2

µ
|v|∆−1

|v|

(
∂tg

(0) +
2

µ
|v| v · ∇x(∆−1

|v| v · ∇xg
(0)
))

=
2

µ
|v|
∑

i,j

∂xi∂xjg
(0) ∆−1

|v|

[ 2

µ
∆−1
|v| vivj +Dij

]
.

Therefore the L2-norm of g(2) is bounded.
We derive from equation (iii)

1

2
∂t‖Rη‖2 = −η2

(
Rη, −∆|v|Rη

)
−
(
Rη, Aη(t)

)
,

where (·, ·) denotes the scalar product in L2. Using positivity of −∆|v| and
Cauchy-Schwartz we deduce ∂t‖Rη‖ ≤ ‖Aη‖. Recall the explicit expression
for Aη, namely Aη = ∂tg

(1) + 1
η∂tg

(2) + v · ∇xg(2). By direct computation

∂tg
(1) =

2

µ
|v|∆−1

|v|

[
v · ∇x

(
D∆xg

(0)
)]
,

from which we deduce that the L2-norm of ∂tg
(1) is bounded. We deduce

similar estimates for ∂tg
(2) and v · ∇xg(2), then ‖Aη‖ is uniformly bounded

in [0, T ] and ‖Rη‖ ≤ CT .
To complete the proof we consider more general initial data f0 depending

also on the velocity variable. Let A := L − ηv · ∇x. We compare gη with
ḡη, the solution (2.4.4) with initial datum 〈f0〉. By the same argument as in
Lemma 2.4.1, item (2), we have that ∀t ≥ tη

‖ḡη(t− tη)− ḡη(t)‖L2 ≤ C

ηω−2
,

where C depends on the L2-norm of 〈f0〉 and ∇〈f0〉. Since gη(t) = eAtf0 =
eA(t−tη)gη(tη) and ḡη(t− tη) = eA(t−tη)〈f0〉 we derive

‖gη(t)− ḡη(t− tω)‖L2 ≤ C‖g(tη)− 〈f0〉‖L2 .
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Thus, by Lemma 2.4.1, item (2), we obtain that gη(t) and ḡη(t) have the
same asymptotics and this concludes the proof of Lemma (2.4.2).

Proposition 2.4.3. Let f0 be an initial datum for h̃ε solution of (2.4.3).
Under the hypothesis of Theorem 2.2.1 h̃ε converges to % as ε → 0, where
% : R2 × [0, T ]→ R+ is the solution of the diffusion equation

{
∂t% = D∆%

%(x, 0) = 〈f0〉,
, (2.4.11)

with 〈f0〉 = 1
2π

1
|v|
´

S|v|
dv f0. The diffusion coefficient is D given by the

Green-Kubo formula. Convergence is in L2(R2×S|v|) uniformly in t ∈ (0, T ].

Proof. Let gηε be solution of (2.4.4) with η = ηε := | log ε| and initial con-
dition f0. We look at the evolution of h̃ε − gηε , namely

(
∂t + ηε v · ∇x

)(
h̃ε − gηε) = η2

ε

(
L̃εh̃ε − Lgηε

)
,

where L := µ
2

1
|v|∆|v|. Then we obtain

1

2
∂t‖h̃ε − gηε‖2 =− η2

ε

(
h̃ε − gηε , −L̃ε

[
h̃ε − gηε

])

+ η2
ε

(
h̃ε − gηε ,

[
L̃ε − L

]
gηε
)
,

from which, using positivity of −L̃ε and Cauchy-Schwartz,

1

2
∂t‖h̃ε − gηε‖ ≤ η2

ε

∥∥(L̃ε − L
)
gηε
∥∥.

Recalling that

L̃εgηε = µ|v| ε
−2α

| log ε|

ˆ 1

−1
dρ
[
gηε(x, v

′, t)− gηε(x, v, t)
]
,

we set

gηε(v
′)− gηε(v)

= (v′ − v) · ∇|S|v|gηε(v)

+
1

2
(v′ − v)⊗ (v′ − v)∇|S|v|∇|S|v|gηε(v)

+
1

6
(v′ − v)⊗ (v′ − v)⊗ (v′ − v)∇|S|v|∇|S|v|∇|S|v|gηε(v) +Rηε ,

with Rηε = O(|v − v′|4). Integrating with respect to v and using symmetry
arguments we obtain

L̃εgηε = µ|v| ε
−2α

| log ε|
{1

2
∆|v|gηε

ˆ 1

−1
dρ |v′ − v|2 +

ˆ 1

−1
dρRηε

}
.
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Observe that |v′ − v|2 = 4 sin2 θ(ρ)
2 , then by direct computation (see Ap-

pendix)

lim
ε→0

ε−2α

| log ε|

ˆ 1

−1
dρ |v′ − v|2 = 2

α

|v|4

and
ε−2α

| log ε|

ˆ 1

−1
dρ |v − v′|4 = εα| log ε|β, −1 < β <

5

2
α− 1.

Therefore
∥∥(L̃ε −L

)
gηε
∥∥ ≤ εα| log ε|β ‖∆2

|S|v|
gηε‖ ≤ εα| log ε|β C, which van-

ishes for ε→ 0.

In order to complete the proof of Theorem 2.2.1, namely equation (2.2.1),
we need to show that fε(ηεt) converges to h̃ε(t) in L2(R2 × R2), for every
t ∈ [0, T ]. By Proposition 2.3.2 and Remark 2.3.3 we have that f̄ε(ηεt)
defined in (2.3.13) converges to h̄ε(ηεt), (2.3.14), in L1(R2 × R2), for every
t ∈ [0, T ]. Moreover, using (2.3.18) and the fact that the initial datum has
compact support, we have that h̄ε(ηεt) converges to h̃ε(t) in L1(R2×R2), for
every t ∈ [0, T ]. Under hypotheses of Theorem 2.2.1, f̄ε(ηεt) and h̃ε(t) are
uniformly bounded for every t ∈ [0, T ], therefore convergence in L1 implies
convergence in L2. Since f̄ε ≤ fε and using the fact that at t = 0 the equality
holds and the linear Boltzmann equation 2.4.3 preserves the total mass, then
also fε(ηεt) converges to h̃ε(t) in L2(R2 × S|v|), for every t ∈ [0, T ].

Now we go back to equation (2.4.1). Using the same strategy of the
proof of Proposition 2.4.3 we can replace L̃ε with L, and we denote g̃η the
solution of (

∂t + v · ∇x
)
g̃η = ηLg̃η,

with initial datum f0. By the same arguments as in Lemma 2.4.1, item (i),
one can prove that for η → ∞ g̃η → 〈g̃η〉 and ∇xg̃η → ∇x〈g̃η〉. We observe
that

∂t〈g̃η〉+∇x
ˆ

dv
(
g̃η − 〈g̃η〉

)
v = 0,

therefore 〈g̃η〉 converges to 〈f̃0〉 as η → ∞, which concludes the proof of
item 1).

The proof of Theorem 2.2.2 is included in the proof of Proposition 2.4.3.

2.5 The control of the pathological sets

In this section we prove Proposition 2.3.2.
Clearly

1− χ1(1− χov)(1− χrec)(1− χint) ≤ (1− χ1) + χov + χrec + χint (2.5.1)
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and we estimate separately all the events in the right hand side of (2.5.1).
We denote by ξε(s), ηε(s) the backward Markov process defined, for s ∈

(−t, 0), in Section 2 and we set

Ex,v(u) = e−2|v|ε−2αt
∑

Q≥0

(2|v|µε)Q
ˆ t

0
dtQ . . .

ˆ t2

0
dt1

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ u(ξε, ηε),

(2.5.2)

for any measurable function u of the process (ξε, ηε). We have

Ex,v((1− χ1)f0(ξε(−t), ηε(−t)))

≤ 2ε

|v|e
−2|v|ε−2αt‖f0‖L∞

∑

Q>0

(2|v|ε−2α)Q

(Q− 1)!
tQ−1

≤ 4‖f0‖L∞ε1−2α ≤ Cεγ ,

(2.5.3)

for γ > 0, α < 1/2 and ε sufficiently small.
Here and in the sequel t is allowed to behave as c| log(ε)|.

Estimate (2.5.3) is obvious. Indeed if χ1 = 0 the last or the first collision
must satisfy either |t − tQ| ≤ 2ε/|v| or t1 ≤ 2ε/|v|. Hence (2.5.3) follows
easily.
A similar argument can be used to estimate χov. Indeed if χov = 1 it must
be ti+1 − ti ≤ 2ε/|v| for some i = 1, . . . , (Q − 1). Therefore proceeding as
before

Ex,v(χovf0(ξε(−t), ηε(−t)))

≤ 2ε

|v|e
−2|v|ε−2αt‖f0‖L∞

∑

Q>1

(Q− 1)
(2|v|ε−2α)Q

(Q− 1)!
tQ−1

≤ 2ε

|v|‖f0‖L∞t(2|v|ε−2α)2 ≤ C|v|εγt,

(2.5.4)

for some γ > 0, α < 1/4 and ε sufficiently small.
Next we pass to the control of the recollision event. We proceed similarly

as in [DP] and in [DR]. Let ti the first time the light particle hits the i-th
scattering (backward trajectory), v−i the incoming velocity, v+

i the outgoing
velocity and t+i the exit time. Moreover we fix the axis in such a way that
v−i is parallel to the x axis (see Figure 2.7). We have

χrec ≤
Q∑

i=1

∑

j>i

χi,jrec, (2.5.5)

where χi,jrec = 1 if and only if bi (constructed via the sequence t1, ρ1, . . . , ti, ρi)
is recollided in the time interval (−tj+1,−t−j ).
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Figure 2.7: Backward recollision
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Note that, since |θi| ≤ Cεα, where θi is the i-th scattering angle, in order
to have a recollision it must be an intermediate velocity vk, k = i+1, . . . , j−1
such that

|v−k · v−j | ≤ Cεα|v|2, (2.5.6)

namely v−k is almost orthogonal to v−j (see Figure 2.7). Then

χrec ≤
Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χi,j,krec , (2.5.7)

where χi,j,krec = 1 if and only if χi,jrec = 1 and (2.5.6) is fulfilled.
Fix now all the parameters ρ1, . . . , ρQ, t1, . . . , tQ but tk+1 and perform

such a time integration. The two branches of the trajectory l1, l2 are rigid
so that, if the recollision happen the time integration with respect to tk+1

is restricted to a time interval proportional to AB. More precisely it is
bounded by

2ε

|v| cosCεα
≤ 4ε

|v| .

Performing all the other integrations and summing over i, j, k we obtain

Ex,v(χrecf0(ξε(−t), ηε(−t)))

≤ 4ε

|v|e
−2|v|ε−2αt‖f0‖L∞

∑

Q≥3

(Q− 1)(Q− 2)(Q− 3)
(2|v|ε−2α)Q

(Q− 1)!
tQ−1

≤ C|v|3t3ε1−8α ≤ C|v|3εγt3,
(2.5.8)

for some γ > 0, α < 1/8 and ε sufficiently small.
We finally estimate the event χint. To do this we fix a sequence of

parameters ρ1, . . . , ρQ, t1, . . . , tQ. For instance consider the case in Figure
2.8 in which we exhibit an unphysical trajectory.

Consider the integral

I =

ˆ

B(0,M)
f0(ξ(−t), η(−t))χint dxdv. (2.5.9)

Here χint = 1 for those values of x, v for which an interference takes place
and

B(0,M) := {(x, v) ∈ R2 × R2; s.t. |x|2 + |v|2 < M}.
By the Liouville Theorem we can integrate over the variables

(
ξε(−t), ηε(−t)

)
=

(x0, v0) as independent variables

I =

ˆ

Bt(0,M)
f0(x0, v0)χrec dx0dv0, (2.5.10)
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Figure 2.8:

where
Bt(0,M) =

{(
ξε(−t), ηε(−t)

)
s.t. (x, v) ∈ B(0,M)

}
.

Note that
χint(x, v) = χrec(x0, v0),

since a backward interference is a forward recollision. Clearly

Bt(0,M) ⊂ B(0,M(1 + t)), (2.5.11)

where B(0,M(1 + t)) is the ball of radius M(1 + t) in R4.
Thus

I ≤
ˆ

B(0,M(1+t))
f0(x0, v0)χrec dx0dv0. (2.5.12)

Therefore, by using estimate (2.5.8) and (2.5.12)

ˆ

B(0,M)
Ex,v(χintf0(ξε(−t), ηε(−t))) dxdv

≤ CεγM7(1 + t)7.

(2.5.13)

This concludes the proof of Proposition 2.3.2.
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2.6 Concluding Remarks

The diffusive limit analyzed in the present paper is suggested by the di-
vergence of B for the particular choice of the potential we are considering.
However the same techniques could work in presence of a smooth, radial,
short-range potential φ. In this case we recover the previous logarithmic
divergence (see (2.1.2)) by increasing suitably the density of the scatterers.
We notice that we can implement this program thanks to the explicit esti-
mates of the set of bad configurations, which allow stronger divergence in
time and density.

Theorem 2.6.1. Under the same hypothesis of Theorem 2.2.1, assume φ ∈
C2([0, 1]). Scale the variables, the density and the potential according to





x→ εx

t→ ελεt

µε = ε−(2α+λ+1)µ
φ→ εαφ.

(2.6.1)

Then, for t > 0 and ε→ 0, there exists λ0 = λ(α) s.t. for λ < λ(α)

fε(x, v, t)→ ρ(x, t)

solution of the heat equation

{
∂t% = D∆%

%(x, 0) = 〈f0〉,
(2.6.2)

with D given by the Green-Kubo formula

D =
2

µ
|v|
ˆ

S|v|
v ·
(
−∆−1

|v|
)
v dv. (2.6.3)

The convergence is in L2(R2 × R2).

The significance and the proof of the above theorem is clear. The kinetic
regime describes the system for kinetic times O(1) (i.e. λ = 0). One can go
further to diffusive times provided that λ > 0 is not too large. Indeed the
distribution function fε “almost” solves

(
ελ∂t + v · ∇x

)
fε ≈ ε−2α−λLεfε

≈ ε−λc∆|v|fε,
(2.6.4)

for which the arguments of Section 3 do apply. In other words there is a
scale of time for which the system diffuses. However such times are not so
large to prevent the Markov property. Obviously the diffusion coefficient is
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computed in terms of the limiting Markov process. We can give an estimate,
certainly not optimal, of the coefficient λ appearing in (2.6.1). Estimating
recollisions and interferences as in Section 4, setting γ = 1 − 8(α + λ

2 ), the
condition on λ is (see (2.5.13))

γ − 7λ > 0 i.e. λ <
1− 8α

11
.

Although the scaling we are considering in Theorem 2.6.1 is quite par-
ticular, the aim is the same as in [LE] where the same problem has been
approached for the weak-coupling limit (α = 1

2) of a quantum system.
Recently we were aware of a result concerning the diffusion limit of a

test particle of a hard-core system at thermal equilibrium [BGS-R]. Also in
this case the quantitative control of the pathological trajectories allows to
reach larger times in which a diffusive regime is outlined.

Acknowledgments.
We are indebted to S. Simonella and H. Spohn for illuminating discussions.

2.7 Appendix (on the scattering problem associ-
ated to a circular potential barrier)

The potential energy for a finite potential barrier is given by

φ(r) =

{
u0 if r ≤ 1

0 if r > 1.
(A.1)

The light particle, of unitary mass, moves in a straight line with energy
E = 1

2v
2 > u0, where u0 > 0. Let ρ be the impact parameter. For small

impact parameters the particle will pass through the barrier, for large ones
the particle will be reflected. Inside the barrier the velocity is a constant
v = v̄ (v̄ < v). The complete trajectory of the light particle which passes
through the barrier consists of three straight lines and is symmetrical about
a radial line perpendicular to the interior path. For a general reference to
the scattering problem, see [LL], chapter 4.

Let α be the angle of incidence (the inside angle between the trajectory
and a radial line to the point of contact with the barrier at r = 1) and β
the angle of refraction (the corresponding external angle). We assume that
the radius of the circle is r = 1. According to the geometry of the problem
α and β are such that

sinβ =
v

v̄
sinα,
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where sinα = ρ.
The angle of deflection is θ = 2(β−α). Thanks to the energy and angular

momentum conservation the expression for the refractive index becomes

n =
sinα

sinβ
=
v̄

v
=

√
1− 2u0

v2
(A.2)

and so we have a scattering angle defined in the following way:

θ(ρ) =

{
2
(
arcsin

( ρ
n

)
− arcsin(ρ)

)
if ρ ≤ n

2 arccos(ρ) if ρ > n.
(A.3)

In the first case the particle passes through the barrier (for ρ ≤ n), and
in the second one the particle is reflected (for ρ > n). The maximum
scattering angle θmax = 2 arccos(n) is the angle at which the particle scatters
tangentially to the barrier. The differential scattering cross section

Ψ(θ) =

∣∣∣∣
∂ρ

∂θ

∣∣∣∣

is then:

Ψ(θ) =

{
n[cos(θ/2)−n][1−n cos(θ/2)]

(1+n2−2n cos(θ/2))3/2
if θ ≤ 2 arccos(n)

[1− cos2(θ/2)]1/2 otherwise .
(A.4)

Scaling now the potential as φ(r) → εαφ(r), the previous formulas still
hold. Thus, according to this scaling, the refractive index becomes

nε =

√
1− 2εαu0

v2
(A.5)

to replace into (A.4). The scattering angle (A.3) reads now

θε(ρ) =

{
2
(

arcsin
(
ρ
nε

)
− arcsin(ρ)

)
if ρ ≤ nε

2 arccos(ρ) if ρ > nε.
(A.6)

2.8 Appendix (on the diffusion coefficient)

In this section we show that the diffusion coefficient is divergent for the
circular potential barrier (A.1). At this level we assume that u0 = 1 to
simplify the following expressions.

We need to compute

B̃ := lim
ε→0

µε−2α

2
|v|
ˆ 1

−1
θ2
ε(ρ) dρ. (B.1)
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Thanks to the symmetry for the scattering problem

ε−2α

ˆ 1

−1
θ2
ε(ρ) dρ = 2ε−2α

ˆ 1

0
θ2
ε(ρ) dρ. (B.2)

According to (A.3):

2ε−2α

ˆ 1

0
θ2
ε(ρ) dρ = 2ε−2α

(
ˆ nε

0
θ2
ε(ρ) dρ+

ˆ 1

nε

θ2
ε(ρ) dρ

)
. (B.3)

Our aim is to perform a Taylor expansion of the first branch of θε(ρ) for
ρ ≥ 0,
ρ/nε < (1− δ), with δ > 0. We have

arcsin (ρ/nε) = arcsin(ρ) +
1√

1− ρ2

(
ρ

nε
− ρ
)

+R1 (ρ/nε) ,

where

R1 (ρ/nε) =
ρ̄

2(1− ρ̄2)
3
2

(
ρ

nε
− ρ
)2

ρ < ρ̄ <
ρ

nε
. (B.4)

Then, looking at the first integral in the r.h.s of (B.3), we have to split it as

ε−2α

ˆ nε

0
θ2
ε(ρ) dρ = ε−2α

ˆ nε(1−δ)

0
θ2
ε(ρ) dρ

︸ ︷︷ ︸
A

+ ε−2α

ˆ nε

nε(1−δ)
θ2
ε(ρ) dρ

︸ ︷︷ ︸
B

.

Thus

A = ε−2α

ˆ nε(1−δ)

0
[2(arcsin (ρ/nε)− arcsin(ρ))]2 dρ

≤ 4ε−2α

[
ˆ nε(1−δ)

0

(1− nε)2

n2
ε

ρ2

(1− ρ2)
dρ+

ˆ nε(1−δ)

0
R1 (ρ/nε)

2 dρ

]
+

4ε−2α



(
ˆ nε(1−δ)

0
R1 (ρ/nε)

2

) 1
2
(
ˆ nε(1−δ)

0

(1− nε)2

n2
ε

ρ2

(1− ρ2)
dρ

) 1
2


 .

(B.5)

It is sufficient to compute the first two integrals . Let A1 and A2 be the
first and the second integrals respectively. We have

A1 = ε−2α (1− nε)2

n2
ε

ˆ nε(1−δ)

0

ρ2

1− ρ2
dρ

= −ε
−2α

2

(1− nε)2

n2
ε

[2nε(1− δ) + log(1− nε(1− δ))− log(1 + nε(1− δ))].
(B.6)
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Using that nε = 1− εα

|v|2 + o(ε2α), from (B.6) it is clear that

A1 ' −
ε−2α

2
(1−nε)2(log(1−nε(1−δ))) = −ε

−2α

2

(
ε2α

|v|4
)

log(εα(1−δ)+δ).

A straightforward computation shows that the right hand side of the previ-
ous expression is

− ε−2α

2

ε2α

|v|4
(

log(εα) + log(1− δ +
δ

εα
)
)

= − 1

2|v|4
(

log(εα) + δ(1− 1

εα
)
)

=
α

2|v|4 | log(ε)|
(

1 +
δ(1− 1

εα )

| log(εα)|
)
.

(B.7)

Choosing δ = εα

| log ε|γ with γ ∈ (0, α/2), it follows δ/εα −→
ε→0

0.

In order to compute A2, we need the following estimate for the remainder
term

|R1 (ρ/nε) | ≤
1

2

ρ

nε

1

(1− ρ2

n2
ε
)
3
2

(
ρ

nε
− ρ
)2

. (B.8)

Then

A2 ≤
ε−2α

4

ˆ nε(1−δ)

0

ρ2

n2
ε

1

(1− ρ2

n2
ε
)3

(
ρ

nε
− ρ
)4

dρ

=
u= ρ

nε

ε−2αnε

ˆ 1−δ

0

u2

2(1− u2)3
u4(1− nε)4 du

=
v=1−u

ε−2αnε
2

ˆ 1

δ

(1− v)6

v3
(1− nε)4 dv ' ε−2αnε

2

(1− nε)4

δ2
.

(B.9)

Also in this case, the only significant contribution is given by

ε−2α(1− nε)4

δ2
' ε−2αε4α

δ2
−→
ε→0

0

again for δ = εα

| log ε|γ with γ ∈ (0, α/2). This shows that

A = A1(1 +O(ε)).

Now we compute B in (B.3), namely

B = ε−2α

ˆ nε

nε(1−δ)
[2(arcsin (ρ/nε)− arcsin(ρ))]2 dρ

= ε−2α

ˆ nε

nε(1−δ)

(
ˆ

ρ
nε

ρ
dx

1√
1− x2

)2

dρ.

(B.10)
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Since

ˆ

ρ
nε

ρ
dx

1√
1− x2

=

ˆ

ρ
nε

ρ
dx

1√
(1− x)

√
(1 + x)

≤ 1

1 + ρ

ˆ

ρ
nε

ρ
dx

1√
(1− x)

=
u=1−x

ˆ 1−ρ

1− ρ
nε

1√
u

=
1√

(1− ρ)

(√
(1− ρ)−

√
(1− ρ/nε)

)
,

in (B.10) we have

B = ε−2α

ˆ nε

nε(1−δ)

1

(1− ρ)

(√
(1− ρ)−

√
(1− ρ/nε)

)2
dρ

≤
(1− ρ

nε
<1−ρ)

ε−2α

ˆ nε

nε(1−δ)
(ρ/nε − ρ) dρ

= ε−2αnε(1− nε)[1− (1− δ)2] ' ε−2αε2αδ.

Again, with the previous choice for δ, this term vanishes in the limit for
ε→ 0.

The second integral in the right hand side of (B.3) reads

ε−2α

ˆ 1

nε

θ2
ε(ρ) dρ = ε−2α

ˆ 1

nε

(π − 2 arcsin(ρ))2 dρ

' ε−2α(1− nε)2 ' ε−2α ε
2α

|v|2 =
1

|v|2 .
(B.11)

Therefore the only contribution in the limit is the one given by (B.7) and
we obtain

B̃ := lim
ε→0

µε−2α

2
|v|
ˆ 1

−1
θ2
ε(ρ) dρ = lim

ε→0
µ

[
2α

|v|3 | log(ε)|
]

= +∞, (B.12)

and finally

B := lim
ε→0

µε−2α

2| log ε| |v|
ˆ 1

−1
θ2
ε(ρ) dρ =

2α

|v|3µ.
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Chapter 3

3.1 Derivation of the Fick’s law for the Lorentz model in a low density
regime [arXiv: 1404.4186] [To appear in Comm. Math. Phys.]

In the present Chapter we present [BNPP].

Derivation of the Fick’s law for the Lorentz model in a
low density regime

Abstract. We consider the Lorentz model in a slab with two mass reservoirs
at the boundaries. We show that, in a low density regime, there exists a
unique stationary solution for the microscopic dynamics which converges to
the stationary solution of the heat equation, namely to the linear profile of
the density. In the same regime the macroscopic current in the stationary
state is given by the Fick’s law, with the diffusion coefficient determined by
the Green-Kubo formula.

3.1.1 Introduction

One of the most important and challenging problem in the rigorous ap-
proach to non-equilibrium Statistical Mechanics is the characterization of
stationary nonequilibrium states exhibiting transport phenomena such as
energy or mass transport, which are macroscopically described by Fourier’s
and Fick’s law respectively. A simple microscopic model to validate the
Fick’s Law is the Lorentz gas, namely a system of non interacting light
particles in a distribution of scatterers, in contact with two mass reservoirs.
One expects that under a suitable space-time scaling (hydrodynamical limit)
the stationary mass current is proportional to the gradient of the density.
However the rigorous proof of that is a difficult and still open problem.

In this paper we propose a contribution in this direction in a situa-
tion of low density. The system we study is the following. Consider the

44
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two-dimensional strip Λ = (0, L) × R. In the left and in the right of the
boundaries, {0}×R and {L}×R respectively, there are two mass reservoirs
constituted by free point particles at equilibrium at different densities ρ1,
ρ2. Inside the strip there is a random distribution of hard disks of radius
ε, distributed according to a Poisson law with density µε. Here ε is a small
scale parameter and we let it go to zero. In the mean time µε is diverg-
ing in such a way that µεε → ∞ and µεε

2 → 0. Therefore the scatterer
configuration is dilute.

The light particles are flowing through the boundaries, from right with
density ρ2 and from left with density ρ1 They are not interacting among
themselves, but are elastically reflected by the obstacles. Their mean free
paths vanish as ε→ 0, but not too quickly. More precisely they can vanish at
most as ε1−δ, 0 < δ < 1, in order to have a dilute configuration of scatterers.

We expect that there exists a stationary state for which

J ≈ −D∇ρ (3.1.1)

where J is the mass current, ρ is the mass density and D > 0 is the diffusion
coefficient. Formula (3.1.1) is the well known Fick’s law which we want to
prove in the present context.

We underline preliminary that our result holds in a low-density regime.
This means that we can use the linear Boltzmann equation as a bridge
between our original mechanical system and the diffusion equation. This
basic idea has been used in [ESY] [BGS-R] [BNP] to obtain the heat equation
from a particle system in different contexts. It works once having an explicit
control of the error in the kinetic limit, which suggests the scale of times for
which the diffusive limit can be achieved. As a consequence the diffusion
coefficient D is given by the Green-Kubo formula for the kinetic equation
at hand (namely linear Quantum Boltzmann for [ESY], linear Boltzmann
for [BGS-R], linear Landau for [BNP]). In the present paper we work in a
stationary situation for which we face new problems which will be discussed
later on.

The idea of using the linear Boltzmann equation for the Lorentz gas
in not new. In [LS] the authors consider exactly our system but with two
thermal reservoirs at different temperatures at the boundaries. The aim was
to study the energy flux in a stationary regime. However, as pointed out in
[LS], due to the energy conservation of a single elastic collision, the energy
is not diffused, there is no local equilibrium and hence the local temperature
is not defined. As a consequence the Fourier’s law fails to hold, at least in
the conventional sense.

This is the reason why we consider here the mass transport, being the
heat equation for the mass density the unique hydrodynamical equation.

It may be worth to mention that, for a suitable stochastic dynamics, the
Fourier’s law can indeed be derived, see [KMP], [GKMP].
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Concerning the Fick’s law we mention the papers [LS1], [LS2], for the
self-diffusion of a tagged particle in a gas at equilibrium.

Our paper is organized as follows. The starting point is the transition
from the mechanical system to the Boltzmann equation in a low density
regime. We follow the classical analysis due to Gallavotti [G], complemented
by an explicit analysis of the bad events preventing the Markovianity, in the
same spirit of [DP], [DR] . This is necessary to reach a diffusive behavior
on a longer time scale as in [BGS-R], [BNP].

Moreover we point out that our initial boundary value problem presents
a new feature due to the presence of the first exit (stopping) time. This
difficulty is handled by an extension procedure which essentially reduces
our problem to the corresponding one in the whole space.

The transition from the mechanical system to the linear Boltzmann
regime is presented in Section 3.1.7.

However we are interested in a stationary problem. This is handled, more
conveniently, in terms of a Neumann series to overcome problems connected
with the exchange of the limits t→∞, ε→ 0. To the best of our knowledge
this is a new tool. This analysis is presented in Section 3.1.3. The basic idea
is that the explicit solution of the heat equation and the control of the time
dependent problem allow us to characterize the stationary solution of the
linear Boltzmann equation and this turns out to be the basic tool to obtain
the stationary solution of the mechanical system which is the basic object
of our investigation.

Finally the transition from Boltzmann to the diffusion equation is clas-
sical and ruled out by the Hilbert expansion method which is presented in
Section 3.1.4. This step is discussed in detail, not only for completeness,
but also because we need an apparently new analysis in L∞, for the time
dependent problem (needed for the control of the Neumann series) and a L2

analysis for the stationary problem.

3.1.2 The model and main results

Let Λ ⊂ R2 be the strip (0, L) × R. We consider a Poisson distribution
of fixed hard disks (scatterers) of radius ε in Λ and denote by c1, . . . , cN ∈ Λ
their centers. This means that, given µ > 0, the probability density of
finding N obstacles in a bounded measurable set A ⊂ Λ is

P( dcN ) = e−µ|A|
µN

N !
dc1 . . . dcN (3.1.2)

where |A| = measA and cN = (c1, . . . , cN ).

A particle in Λ moves freely up to the first instant of contact with an
obstacle. Then it is elastically reflected and so on. Since the modulus of the



The model and main results 47

velocity of the test particle is constant, we assume it to be equal to one, so
that the phase space of our system is Λ× S1.

We rescale the intensity µ of the obstacles as

µε = ε−1ηεµ,

where, from now on, µ > 0 is fixed and ηε is slowly diverging as ε → 0.
More precisely we make the following assumption.

Assumption 1. As ε→ 0, ηε diverges in such a way that

ε
1
2 η6
ε → 0. (3.1.3)

The behaviour (3.1.3) is dictated mostly by the recollision estimates in
Section 3.1.10.

We denote by Pε the probability density (3.1.2) with µ replaced by µε.
Eε will be the expectation with respect to the measure Pε restricted on those
configurations of the obstacles whose centers do not belong to the disk of
center x and radius ε.

For a given configuration of obstacles cN , we denote by T−tcN
(x, v) the

(backward) flow with initial datum (x, v) ∈ Λ × S1 and define t − τ , τ =
τ(x, v, t, cN ), as the first (backward) hitting time with the boundary. We use
the notation τ = 0 to indicate the event such that the trajectory T−scN

(x, v),
s ∈ [0, t], never hits the boundary. For any t ≥ 0 the one-particle correlation
function reads

fε(x, v, t) = Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[f0(T−tcN

(x, v))χ(τ = 0)],
(3.1.4)

where f0 ∈ L∞(Λ× S1) and the boundary value fB is defined by

fB(x, v) :=





ρ1M(v) if x ∈ {0} × R, v1 > 0,

ρ2M(v) if x ∈ {L} × R, v1 < 0,

with M(v) the density of the uniform distribution on S1 and ρ1, ρ2 > 0.
Here v1 denotes the horizontal component of the velocity v. Without loss
of generality we assume ρ2 > ρ1. Since M(v) = 1

2π , from now on we will
absorb it in the definition of the boundary values ρ1, ρ2. Therefore we set

fB(x, v) :=





ρ1 if x ∈ {0} × R, v1 > 0,

ρ2 if x ∈ {L} × R, v1 < 0.
(3.1.5)

Remark. Here we allow overlapping of scatterers, namely the Poisson mea-
sure is that of a free gas. It would also be possible to consider the Pois-
son measure restricted to non-overlapping configurations, namely the Gibbs
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measure for a systems of hard disks in the plane. However the two measures
are asymptotically equivalent and the result does hold also in the last case.

Note also that the dynamics T tcN is well defined only almost everywhere
with respect to Pε.

We are interested in the stationary solutions fSε of the above problem.
More precisely for any t ≥ 0 fSε (x, v) solves

fSε (x, v) = Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[fSε (T−tcN

(x, v))χ(τ = 0)].
(3.1.6)

The main result of the present paper can be summarized in the following
theorem.

Theorem 3.1.1. For ε sufficiently small there exists a unique L∞ stationary
solution fSε for the microscopic dynamics (i.e. satisfying (3.1.6)). Moreover,
as ε→ 0

fSε → %S , (3.1.7)

where %S is the stationary solution of the heat equation with the following
boundary conditions





%S(x) = ρ1, x ∈ {0} × R,

%S(x) = ρ2, x ∈ {L} × R.
(3.1.8)

The convergence is in L2((0, L)× S1).

Some remarks on the above Theorem are in order. The boundary condi-
tions of the problem depend on the space variable only through the horizon-
tal component. As a consequence, the stationary solution fSε of the micro-
scopic problem, as well as the stationary solution %S of the heat equation,
inherits the same feature. This justifies the convergence in L2((0, L) × S1)
instead of in L2(Λ×S1). The explicit expression for the stationary solution
%S reads

%S(x) =
ρ1(L− x1) + ρ2x1

L
, (3.1.9)

where x1 is the horizontal component of the space variable x. We note that
in order to prove Theorem 3.1.1 it is enough to assume that ε

1
2 η5
ε → 0. The

stronger Assumption 1 is needed to prove Theorem 3.1.2 below.

Next we discuss the Fick’s law by introducing the stationary mass flux

JSε (x) = ηε

ˆ

S1

v fSε (x, v) dv, (3.1.10)

and the stationary mass density

%Sε (x) =

ˆ

S1

fSε (x, v) dv. (3.1.11)
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Note that JSε is the total amount of mass flowing through a unit area in
a unit time interval. Although in a stationary problem there is no typical
time scale, the factor ηε appearing in the definition of JSε , is reminiscent of
the time scaling necessary to obtain a diffusive limit.

Theorem 3.1.2 (Fick’s law). We have

JSε +D∇x%Sε → 0 (3.1.12)

as ε→ 0. The convergence is in D′(0, L) and D > 0 is given by the Green-
Kubo formula (see (3.1.26) below). Moreover

JS = lim
ε→0

JSε (x), (3.1.13)

where the convergence is in L2(0, L) and

JS = −D∇%S = −D ρ2 − ρ1

L
, (3.1.14)

where %S is the linear profile (3.1.9).

Observe that, as expected by physical arguments, the stationary flux
JS does not depend on the space variable. Furthermore the diffusion coef-
ficient D is determined by the behavior of the system at equilibrium and
in particular it is equal to the diffusion coefficient for the time dependent
problem.

Remark (The scaling). We have formulated our result in macroscopic vari-
ables x, t. Another point of view is to argue in terms of microscopic variables.

Let us set our problem in these variables denoted by (q, t′). This means
that the radius of the disks is unitary while the strip, seen in micro-variables,
is (0, ε−1L)× R.

To deal with a low density situation, we rescale the density as ηεεµ, µ > 0
where ηε is gently diverging. Note that in the usual Boltzmann-Grad limit
ηε = 1. At times of order ε−1, one particle has an average number of collisions
of order ηε. At larger times, namely of order ηεε

−1, we expect a diffusive
behavior. Actually this emerges from the linear Boltzmann equation (see
equation (3.1.24) and Proposition 3.1.4 below) which is derived from the
microscopic dynamics through the scaling x = εq and t = εη−1

ε t′.

In this paper we consider a two dimensional case but our techniques apply
in higher dimensions as well since in this case the pathological events are
less likely. Moreover we consider the easier geometrical setting. However we
believe that there are no serious obstructions to extend our results to more
general geometries.
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3.1.3 Proofs

In this section we prove Theorems 3.1.1 and 3.1.2, postponing the techni-
cal details to the next sections. In order to prove Theorem 3.1.1 our strategy
is the following. We introduce the stationary linear Boltzmann equation





(
v · ∇x

)
hSε (x, v) = ηε LhSε (x, v),

hSε (x, v) = ρ1, x ∈ {0} × R, v1 > 0,

hSε (x, v) = ρ2, x ∈ {L} × R, v1 < 0,

(3.1.15)

where L is the linear Boltzmann operator defined as

Lf(v) = µ

ˆ 1

−1
dρ
[
f(v′)− f(v)

]
, f ∈ L1(S1) (3.1.16)

with
v′ = v − 2(n · v)n (3.1.17)

and n = n(ρ) the outward normal to the hard disk (see Figure 3.1). Here ρ
is the impact parameter, namely ρ = sinα with α the angle of incidence.

Figure 3.1:

Since the boundary conditions depend on the space variable only through
the horizontal component, the stationary solution hSε inherits the same fea-
ture, as well as fSε and %S .

The strategy of the proof consists of two steps. First we prove that there
exists a unique hSε which converges, as ε → 0, to %S given by (3.1.9). See
Proposition 3.1.5 below. Secondly we show that there exists a unique fSε
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asymptotically equivalent to hSε . See Proposition 3.1.8 below. This result
is achieved by showing that the memory effects of the mechanical system,
preventing the Markovianity, are indeed negligible.

Let hε be the solution of the problem




(
∂t + v · ∇x

)
hε(x, v, t) = ηε Lhε(x, v, t),

hε(x, v, 0) = f0(x, v), f0 ∈ L∞(Λ× S1),

hε(x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

hε(x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.1.18)

Then hε has the following explicit representation

hε(x, v, t) =
∑

N≥0

(µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ < tN )χ(τ > 0) e−2µεε (t−τ) fB(γ−(t−τ)(x, v))+

+
∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0) f0(γ−t(x, v)),

(3.1.19)

with fB defined in (3.1.5). Given x, v, t1 . . . tN , ρ1 . . . ρN , γ−t(x, v) denotes
the trajectory whose position and velocity are

(x− v(t− t1)− v1(t1 − t2) · · · − vN tN , vN ).

The transitions v → v1 → v2 · · · → vN are obtained by means of a scattering
with an hard disk with impact parameter ρi via (3.1.17). As before t − τ ,
τ = τ(x, v, t1 . . . , tN , ρ1 . . . ρN ), is the first (backward) hitting time with the
boundary. We remind that µεε = µηε.

In formula (3.1.19) hε(t) results as the sum of two contributions, one due
to the backward trajectories hitting the boundary and the other one due to
the trajectories which never leave Λ. Therefore we set

hε(x, v, t) = houtε (x, v, t) + hinε (x, v, t),

where houtε and hinε are respectively the first and the second sum on the right
hand side of (3.1.19). Observe that houtε solves





(
∂t + v · ∇x

)
houtε (x, v, t) = ηε Lhoutε (x, v, t),

houtε (x, v, 0) = 0, x ∈ Λ,

houtε (x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

houtε (x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.1.20)
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We denote by S0
ε (t) the Markov semigroup associated to the second sum,

namely

(S0
ε (t)`)(x, v) =

∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0) `(γ−t(x, v)),

with ` ∈ L∞(Λ× S1). In particular

hinε (t) = S0
ε (t)f0.

We observe that hSε , solution of (3.1.15), satisfies, for t0 > 0

hSε = houtε (t0) + S0
ε (t0)hSε ,

so that we can formally express hSε as the Neumann series

hSε =
∑

n≥0

(S0
ε (t0))nhoutε (t0). (3.1.21)

Remark. Note that hSε is a fixed point of the map f0 → hε(t0) solution
to (3.1.18). Hence hSε belongs to a periodic orbit, of period t0, of the flow
f0 → hε(t). But this orbit consists of a single point because the Neumann
series, being convergent, identifies a single element. This implies that hSε is
constant with respect to the flow (3.1.18) and hence stationary.

We now establish existence and uniqueness of hSε by showing that the
Neumann series (3.1.21) converges. In order to do it we need to extend the
action of the semigroup S0

ε (t) to the space L∞(R2 × S1), namely

S0
ε (t)`0(x, v) = χΛ(x)

∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0) `0(γ−t(x, v)),

(3.1.22)

for any `0(x, v) ∈ L∞(R2 × S1). Here χΛ is the characteristic function of Λ.

Proposition 3.1.3. There exists ε0 > 0 such that for any ε < ε0 and for
any `0 ∈ L∞(R2 × S1) we have

||S0
ε (ηε)`0||∞ ≤ α ||`0||∞, α < 1. (3.1.23)

As a consequence there exists a unique stationary solution hSε ∈ L∞(Λ×S1)
satisfying (3.1.15).
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To prove Proposition 3.1.3 we have first to exploit the diffusive limit of
the linear Boltzmann equation in a L∞ setting and in the whole space. We
introduce h̃ε : R2 × S1 × [0, T ] → R+ the solution of the following rescaled
linear Boltzmann equation





(
∂t + ηε v · ∇x

)
h̃ε = η2

ε Lh̃ε

h̃ε(x, v, 0) = %0(x),
(3.1.24)

with %0 is a smooth function of the variable x only (local equilibrium).
We can prove

Proposition 3.1.4. Let h̃ε be the solution of (3.1.24), with an initial datum
%0 ∈ C∞0 (R2). Then, as ε → 0, h̃ε converges to the solution of the heat
equation 




∂t%−D∆% = 0

%(x, 0) = %0(x),
(3.1.25)

where D is given by the Green-Kubo formula

D =
1

4π

ˆ

S1

dv v ·
(
− L

)−1
v. (3.1.26)

The convergence is in L∞([0, T ];L∞(R2 × S1)).

We postpone the proof of Proposition (3.1.4) to Section 3.1.5. The proof
relies on the Hilbert expansion and, to make it work, we need smoothness
of the initial datum %0.

Proof of Proposition 3.1.3. We can rewrite (3.1.22) as

S0
ε (t)`0(x, v) = χΛ(x)

∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0) `0(γ−t(x, v))χΛ(γ−tv (x)),

where γ−tv (x) = x− v(t− t1)− v1(t1 − t2) · · · − vN tN is the first component
of γ−t(x, v). Note that the insertion of χΛ(γ−tv (x)) is due to the constraint
χ(τ = 0). Therefore

S0
ε (t)`0 ≤ ||`0||∞

∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χΛ(γ−tv (x)).
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We denote by χδΛ a mollified version of χΛ, namely χδΛ ∈ C∞0 (R2), χδΛ(x) ≤ 1,
χδΛ ≥ χΛ and supp(χδΛ) ⊂ (−δ, L+ δ)× R. Therefore

S0
ε (t)`0 ≤ ||`0||∞

∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ

δ
Λ(γ−tv (x)).

(3.1.27)

The series on the right hand side of (3.1.27) defines a function F which
solves {

(∂t + v · ∇x)F (x, v, t) = ηεLF (x, v, t),

F (x, v, 0) = χδΛ(x).

Moreover, defining Gε(x, v, t) := F (x, v, ηεt) then Gε solves (3.1.24) with
initial datum %0 = χδΛ. By virtue of Proposition 3.1.4

‖Gε(1)− %δ(1)‖∞ ≤ ω(ε)

where %δ(t) is the solution of (3.1.25) with initial datum χδΛ. Here and in
the sequel ω(ε) denotes a positive function vanishing with ε. On the other
hand

%δ(x, 1) =

ˆ

R2

dy
1

4πD
e−
|x−y|2

4D χδΛ(y) =

ˆ L+δ

−δ
dy1

1√
4πD

e−
|x1−y1|2

4D < 1.

Therefore for ε small enough

||S0
ε (ηε)`0||∞ ≤ ||`0||∞||S0

ε (ηε)χ
δ
Λ||∞

≤ ||`0||∞(‖Gε(1)− %δ(1)‖∞ + ||%δ(1)||∞)

≤ ||`0||∞(ω(ε) + ||%δ(1)||∞) < α||`0||∞, α < 1.

We are using (3.1.27) for t = ηε.
Finally, since α < 1, by (3.1.21) we get

||hSε ||∞ ≤
1

(1− α)
||houtε (ηε)||∞ ≤

1

(1− α)
ρ2.

As we will discuss later on, we find convenient to obtain the stationary
solution hSε via the Neumann series (3.1.21) rather than as the limit of hε(t)
as t→∞. For further details see Remark 3.1.9.

Remark (L∞ vs. L2). The control of the Neumann series (3.1.21) in a
L∞ setting seems quite natural. This is provided by the bound (3.1.23). It
basically means that for a time ηε the probability of a backward trajectory to
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fall out of Λ is strictly positive. To prove rigorously this rather intuitive fact,
we use Proposition 3.1.4 and explicit properties of the solution of the heat
equation. The price we pay is to develop an L∞ Hilbert expansion analysis
(see Section 3.1.5) which is, however, interesting in itself. On the other
hand the use of the well known L2 version of Proposition 3.1.4 requires a L2

control of the Neumann series which seems harder, weaker and less natural.

The last step is the proof of the convergence of hSε to the stationary
solution of the diffusion problem





∂t%−D∆% = 0

%(x, t) = ρ1, x ∈ {0} × R, t ≥ 0

%(x, t) = ρ2, x ∈ {L} × R, t ≥ 0,

(3.1.28)

with the diffusion coefficient D given by the Green-Kubo formula (3.1.26).
We remind that the stationary solution %S to the problem (3.1.28) has the
following explicit expression

%S(x) =
ρ1(L− x1) + ρ2x1

L
, (3.1.29)

where x = (x1, x2).
By using again the Hilbert expansion technique (this time in L2) we can

prove

Proposition 3.1.5. Let hSε ∈ L∞((0, L)×S1) be the solution to the problem
(3.1.15). Then

hSε → %S (3.1.30)

as ε→ 0, where %S(x) is given by (3.1.29). The convergence is in L2((0, L)×
S1).

The proof is postponed to Section 3.1.6.
This concludes our analysis of the Markov part of the proof.

Recalling the expression (3.1.4) for the one-particle correlation function
fε, we introduce a decomposition analogous to the one used for hε(t), namely

foutε (x, v, t) := Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] (3.1.31)

and
f inε (x, v, t) := Eε[f0(T−tcN

(x, v))χ(τ = 0)], (3.1.32)

so that
fε(x, v, t) = foutε (x, v, t) + f inε (x, v, t).
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Here foutε is the contribution due to the trajectories that do leave Λ at times
smaller than t, while f inε is the contribution due to the trajectories that stay
internal to Λ. We introduce the flow F 0

ε (t) such that

(F 0
ε (t)`)(x, v) = Eε[`(T−tcN

(x, v))χ(τ = 0)], ` ∈ L∞(Λ× S1)

and remark that F 0
ε is just the dynamics ”inside” Λ. In particular f inε (t) =

F 0
ε (t)f0.

To detect the stationary solution fSε for the microscopic dynamics we
proceed as for the Boltzmann evolution (see (3.1.6)) by setting, for t0 > 0,

fSε = foutε (t0) + F 0
ε (t0)fSε

and we can formally express the stationary solution as the Neumann series

fSε =
∑

n≥0

(F 0
ε (t0))nfoutε (t0). (3.1.33)

To show the convergence of the series (3.1.33) and hence existence of fSε we
first need the following two Propositions.

Proposition 3.1.6. Let T > 0. For any t ∈ (0, T ]

‖foutε (t)− houtε (t)‖L∞(Λ×S1) ≤ Cε
1
2 η3

ε t
2, (3.1.34)

where houtε solves (3.1.20).

Proposition 3.1.7. For every `0 ∈ L∞(Λ× S1)

||
(
F 0
ε (t)− S0

ε (t)
)
`0||∞ ≤ C||`0||∞ ε

1
2 η3
ε t

2, ∀t ∈ [0, T ]. (3.1.35)

The proof of the above two Propositions is postponed to Section 3.1.7.
As a corollary we can prove

Proposition 3.1.8. For ε sufficiently small there exists a unique stationary
solution fSε ∈ L∞(Λ× S1) satisfying (3.1.6). Moreover

‖hSε − fSε ‖∞ ≤ Cε
1
2 η5
ε . (3.1.36)

Proof. We prove the existence and uniqueness of the stationary solution by
showing that the Neumann series (3.1.33) converges, namely

||F 0
ε (ηε)f0||∞ ≤ α′ ||f0||∞, α′ < 1. (3.1.37)

This implies

||fSε ||∞ ≤
1

(1− α′) ||f
out
ε (ηε)||∞ ≤

1

(1− α′) ρ2, α′ < 1.
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In fact, since

||F 0
ε (ηε)f0||∞ ≤ ||

(
F 0
ε (ηε)− S0

ε (ηε)
)
f0||∞ + ||S0

ε (ηε)f0||∞,

thanks to Propositions 3.1.3 and 3.1.7 we get

||F 0
ε (ηε)f0||∞ ≤ ||f0||∞Cε

1
2 η5
ε + ||S0

ε (ηε)f0||∞
≤ (Cε

1
2 η5
ε + α)||f0||∞ ≤ α′||f0||∞,

(3.1.38)

with α′ < 1, for ε sufficiently small (remind that ε
1
2 η5
ε → 0 as ε → 0).

This guarantees the existence and uniqueness of the microscopic stationary
solution fSε .

In order to prove (3.1.36) we compare the two Neumann series repre-
senting fSε and hSε ,

‖fSε − hSε ‖∞ = ‖
∑

n≥0

(
(F 0

ε (ηε))
nfoutε (ηε)− (S0

ε (ηε))
nhoutε (ηε)

)
‖∞

≤
∑

n≥0

‖(F 0
ε (ηε))

n(foutε (ηε)− houtε (ηε))‖∞

+
∑

n≥0

‖
(
(F 0

ε (ηε))
n − (S0

ε (ηε))
n
)
houtε (ηε)‖∞.

(3.1.39)

By (3.1.38), using Proposition 3.1.6, the first sum on the right hand side of
(3.1.39) is bounded by

1

1− α′ ‖f
out
ε (ηε)− houtε (ηε)‖∞ ≤ Cε

1
2 η5
ε .

As regard to the second sum on the right hand side of (3.1.39) we have

∑

n≥0

‖
(
(F 0

ε (ηε))
n − (S0

ε (ηε))
n
)
houtε (ηε)‖∞

≤
∑

n≥0

n−1∑

k=0

‖(F 0
ε (ηε))

n−k−1
(
F 0
ε (ηε)− S0

ε (ηε)
)
(S0
ε (ηε))

khoutε (ηε)‖∞

≤
∑

k,`≥0

‖(F 0
ε (ηε))

`
(
F 0
ε (ηε)− S0

ε (ηε)
)
(S0
ε (ηε))

khoutε (ηε)‖∞

≤ C ‖houtε (ηε)‖∞ε
1
2 η5
ε ,

by virtue of (3.1.23), (3.1.38) and (3.1.35). This concludes the proof of
Proposition 3.1.8.

At this point the proof of Theorem 3.1.1 follows from Propositions 3.1.5
and 3.1.8.
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Remark 3.1.9. One could try to characterize hSε and fSε in terms of the
long (macroscopic) time asymptotics of hε(t) and fε(t). The trick of express-
ing both stationary states by means of Neumann series avoids the problem
of controlling the convergence rates, as t → ∞, with respect to the scale
parameter ε.

We conclude by proving Theorem 3.1.2 which actually is a Corollary of
the previous analysis.

Proof of Theorem 3.1.2. By standard computations (see e.g. Section 3.1.6)
we have

hSε = %S +
1

ηε
h(1) +

1

ηε
Rηε ,

where

h(1)(v) = L−1(v · ∇x%S) =
ρ2 − ρ1

L
L−1(v1)

and, as we shall see in Section 3.1.6, Rηε = O( 1√
ηε

) in L2((0, L) × S1).

Therefore, since
´

S1
v%Sdv = 0,

ηε

ˆ

S1

vhSε (x, v)dv = −D∇x%S +O(
1√
ηε

), (3.1.40)

where D is given by (3.1.26). By Theorem 3.1.1 the right hand side of
(3.1.40) is close to D∇x%Sε in D′((0, L)× S1), where %Sε is given by (3.1.11).
On the other hand, by Proposition 3.1.8 and Assumption 1, the left hand
side of (3.1.40) is close in L∞((0, L)×S1) to JSε (x) defined in (3.1.10). This
concludes the proof of (3.1.12). Moreover (3.1.13) and (3.1.14) follow by
(3.1.40).

3.1.4 The Hilbert expansions

3.1.5 Proof of Proposition 3.1.4

Let h̃ε : R2 × S1 × [0, T ] → R+ be the solution of the problem (3.1.24)
that we recall here for the reader’s convenience





(
∂t + ηε v · ∇x

)
h̃ε = η2

ε Lh̃ε

h̃ε(x, v, 0) = %0(x),
(3.1.41)

where %0 is a smooth function of the variable x only. We will prove that h̃ε
converges to the solution of the heat equation by using the Hilbert expansion
technique (see e.g. [EP] and [CIP]), namely we assume that h̃ε has the
following form

h̃ε(x, v, t) = h(0)(x, t) +
+∞∑

k=1

(
1

ηε

)k
h(k)(x, v, t),
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where the coefficients h(k) are independent of ηε. The well known idea is
to determine them recursively, by imposing that h̃ε is a solution of (3.1.41).
Comparing terms of the same order we get

v · ∇xh(0) = Lh(1)

∂t h
(k) + v · ∇xh(k+1) = Lh(k+2), k ≥ 0.

We require h(0) to satisfy the same initial condition as the whole solution
h̃ε, namely

h(0)(x, 0) = %0(x).

First we will show that each coefficient h(k)(t) ∈ L∞(R2 × S1). We discuss
in detail the cases k = 0, 1, 2. The same procedure can be iterated for any
k. The determination of the other coefficients h(k) is standard and we do
not discuss it further. Then we will show that, in the truncated expansion
at order η−2

ε , namely

h̃ε(x, v, t) = h(0)(x, t) +
1

ηε
h(1)(x, v, t) +

1

η2
ε

h(2)(x, v, t) +
1

ηε
Rηε(x, v, t),

(3.1.42)
the remainder Rηε is uniformly bounded in L∞. Therefore h̃ε converges to
h(0) in L∞ for ηε →∞.

In order to prove that h(k)(t) ∈ L∞(R2 × S1) we need the following
Lemma.

Lemma 3.1.10. Let L be the linear Boltzmann operator defined in (3.1.16).

Then for any g ∈ L∞(S1) such that

ˆ

S1

dv g(v) = 0

||L−1g||∞ ≤ C||g||∞, (3.1.43)

with C > 0.

Proof. We want to solve the equation Lh = g, with

ˆ

S1

dv g(v) = 0. The

operator L can be written as L = 2µ(K − I), where

(Kf)(v) :=
1

2

ˆ 1

−1
dρ f(v′)

is self-adjoint in L2(S1). Therefore

h = − g

2µ
+Kh

and, by iterating,

h = − g

2µ
− Kg

2µ
− · · · − Kng

2µ
+Kn+1h, ∀n ≥ 0.
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Then L−1 can be formally defined through the Neumann series

h = L−1g := − 1

2µ

∞∑

n=0

Kng.

In order to prove that the series converges we need to show that

||Kg||∞ ≤ β ||g||∞, β < 1, (3.1.44)
ˆ

S1

dv (Kg)(v) = 0, (3.1.45)

for any g ∈ L∞(S1) such that

ˆ

S1

dv g(v) = 0. Indeed (3.1.44) and (3.1.45)

imply

||L−1g||∞ ≤
1

2µ(1− β)
||g||∞.

The self-adjointness of K and the fact that K1 = 1 imply (3.1.45).
We focus on the proof of (3.1.44). For any given v, fix a reference system

in such a way that v = (− cos ζ,− sin ζ), with ζ ∈ [−π, π) (see Figure 3.1).
Then for every bounded function g with zero average we have

(Kg)(v) =
1

2

ˆ

π
2

−π
2

dα
dρ

dα
g(cos(ζ + 2α), sin(ζ + 2α))

=
1

2

ˆ

π
2

−π
2

dα cosα g(cos(ζ + 2α), sin(ζ + 2α)),

where we used that ρ = sinα. Observe that for any γ ∈ [−π, π)

ˆ

π
2

−π
2

dα g(cos(γ + 2α), sin(γ + 2α)) =
1

2

ˆ π

−π
dα g(cosα, sinα) = 0.

Then we can write

(Kg)(v) =
1

2

ˆ

π
2

−π
2

dα (cosα− 1) g(cos(ζ + 2α), sin(ζ + 2α)),

which implies

|(Kg)(v)| ≤ ||g||∞
1

2

ˆ

π
2

−π
2

dα (1− cosα) = β ||g||∞, β < 1.

Next we consider the first two equations arising from the Hilbert expan-
sion, namely



Proof of Proposition 3.1.4 61

(i) v · ∇xh(0) = Lh(1),

(ii) ∂th
(0) + v · ∇xh(1) = Lh(2).

We remind that the linear Boltzmann operator L on L2(S1) is selfadjoint
and has the form L = 2µ(K−I) where K is a compact operator. Therefore,
by the Fredholm alternative, equation (i) has a solution if and only if the
left hand side belongs to (KerL)⊥. Since the null space of L is constituted
by the constant functions, it follows that

(KerL)⊥ = {g ∈ L2(S1) :

ˆ

S1

g(v) dv = 0}

and, in order to solve equation (i), we have to show that v · ∇xh(0) ∈
(KerL)⊥. This follows by the fact that v · ∇xh(0) is an odd function of
v. Then we can invert the operator L and set

h(1)(x, v, t) = L−1(v · ∇xh(0)(x, t)) + ξ(1)(x, t), (3.1.46)

where ξ(1)(x, t) belongs to the kernel of the operator L. On the other hand,
since L−1 preserves the parity (see e.g. [EP]), L−1(v · ∇xh(0)) is an odd
function of the velocity.

We integrate equation (ii) with respect to the uniform measure on S1.
Since

´

S1
dvLh(2) = 0, using equation (3.1.46), we obtain

∂t h
(0) +

1

2π

ˆ

S1

dv v · ∇x
(
L−1v · ∇xh(0)

)
= 0.

Notice that the term ξ(1)(x, t) gives no contribution since
´

S1
dv v·∇xξ(1)(x, t) =

0. We define the 2 × 2 matrix Dij = 1
2π

´

S1
dv vi(−L)−1vj and we observe

that Dij = 0 for i 6= j and D11 = D22 = D > 0, where

D =
1

4π

ˆ

S1

dv v ·
(
− L

)−1
v.

Therefore h(0) satisfies the heat equation




∂t h
(0) −D∆xh

(0) = 0,

h(0)(x, 0) = %0(x).
(3.1.47)

In particular h(0)(t) ∈ L∞(R2 × S1) for any t ≥ 0.
Let us consider equation (ii). By integrating with respect to the uni-

form measure on S1 the left hand side vanishes, due to equation (3.1.47).
Therefore we can invert the operator L to obtain

h(2)(x, v, t) = L−1
(
∂th

(0)(x, t) + v · ∇x(L−1(v · ∇x)h(0)(x, t))
)

+

+ L−1
(
v · ∇xξ(1)(x, t)

)
+ ξ(2)(x, t), (3.1.48)
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where ξ(2)(x, t) belongs to the kernel of the operator L.
The equation for h(1) reads

∂t h
(1) + v · ∇xh(2)(x, v, t) = Lh(3). (3.1.49)

Therefore, integrating with respect to the uniform measure on S1, using
(3.1.48), we get the following closed equation for ξ(1)(x, t)

∂t ξ
(1) −D∆xξ

(1) = 0. (3.1.50)

Since there are no restrictions on the initial condition, we make the simplest
choice ξ(1)(x, 0) = 0. Therefore ξ(1)(x, t) = 0 for any t ≥ 0 and hence we
have the following expression for h(1)

h(1)(x, v, t) = L−1(v · ∇xh(0)(x, t)).

Thanks to Lemma 3.1.10 and the smoothness of h(0) we have

sup
t∈[0,T ]

‖h(1)(t)‖∞ ≤
1

2µ(1− β)
sup
t∈[0,T ]

‖∇xh(0)(t)‖∞ < +∞.

The expression for the second order coefficient h(2) now reads

h(2)(x, v, t) = h
(2)
⊥ (x, v, t) + ξ(2)(x, t),

where we set

h
(2)
⊥ (x, v, t) = L−1

(
∂th

(0)(x, t) + v · ∇x(L−1(v · ∇x)h(0)(x, t))
)
.

We observe that, since h(0) solves the heat equation (3.1.47), using Lemma

3.1.10 it follows that h
(2)
⊥ ∈ L∞

(
[0, T ];L∞(R2 × S1)

)
. Moreover any spatial

derivative of h
(2)
⊥ belongs to L∞

(
[0, T ];L∞(R2 × S1)

)
as well.

By using (3.1.50), the left hand side of (3.1.49) belongs to (KerL)⊥.
Therefore we can invert operator L obtaining

h(3)(x, v, t) = L−1
(
∂t h

(1) + v · ∇xh(2)(x, v, t)
)

+ ξ(3)(x, t),

= L−1
(
∂t L−1(v · ∇xh(0)(x, t)) + v · ∇xh(2)(x, v, t)

)
+ ξ(3)(x, t),

where ξ(3)(x, t) ∈ KerL. The equation for h(2) reads

∂t h
(2) + v · ∇xh(3) = Lh(4).

Integrating with respect to the uniform measure on S1 and using the above
expressions for h(3) and h(2) we find the following equation for ξ(2)(x, t)

∂t ξ
(2) +D∆xξ

(2) = S(x, t), (3.1.51)



Proof of Proposition 3.1.4 63

where

S(x, t) = − 1

2π

ˆ

S1

dv v · ∇x L−1
(
∂t L−1(v · ∇xh(0)(x, t))

)

− 1

2π

ˆ

S1

dv v · ∇x L−1
(
v · ∇x h(2)

⊥ (x, v, t)
)
.

We notice that S ∈ L∞
(
[0, T ];L∞(R2)

)
. As before we make the assumption

ξ(2)(x, 0) = 0, then ξ(2) ∈ L∞
(
[0, T ];L∞(R2)

)
and its spatial derivatives as

well.
Now we consider the truncated expression (3.1.42). The first three coef-

ficients are uniformly bounded. The remainder Rηε satisfies

(
∂t + ηε v · ∇x

)
Rηε = η2

εLRηε −Aηε , (3.1.52)

with initial condition

Rηε(x, v, 0) =: R̄ηε(x, v) = −h(1)(x, v, 0)− 1

ηε
h(2)(x, v, 0).

Here Aηε = ∂th
(1)+ 1

ηε
∂t h

(2)+v·∇xh(2), then Aηε ∈ L∞
(
[0, T ];L∞(R2×S1)

)
.

Note that the smoothness hypothesis on %0 ensures that R̄ηε ∈ L∞.
We denote by Sηε(t) the semigroup associated to the generator −ηε

(
v ·

∇x − ηεL
)
. By equation (3.1.52) we get

Rηε(t) = Sηε(t)Rηε(0) +

ˆ t

0
ds Sηε(t− s)Aηε(s).

By the usual series expansion for Sηε(t) we obtain

Rηε(x, v, t) =
∑

N≥0

e−2µηε2t (µηε)
N
ˆ ηεt

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN R̄ηε(γ

−ηεt(x, v))+

+

ˆ t

0
ds
∑

N≥0

e−2µηε2(t−s) (µηε)
N
ˆ ηε(t−s)

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN Aηε(γ

−ηε(t−s)(x, v), s).

Therefore

sup
t∈[0,T ]

‖Rηε(t)‖∞ ≤ ‖R̄ηε‖∞ + T sup
t∈[0,T ]

‖Aηε(t)‖∞ ≤ C < +∞.

2
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3.1.6 Proof of Proposition 3.1.5

The proof makes use of the Hilbert expansion in L2 (see e.g. [EP] and
[CIP]). Indeed we follow the same strategy of the previous subsection. Let
hSε be the solution of the following equation





v1∂x1h
S
ε (x1, v) = ηε LhSε (x1, v),

hSε (x1, v) = ρ1, x1 = 0, v1 > 0,

hSε (x1, v) = ρ2, x1 = L, v1 < 0.

We assume that hSε has the following form

hSε (x1, v) = h(0)(x1) +
+∞∑

k=1

(
1

ηε

)k
h(k)(x1, v).

We require h(0) to satisfy the same boundary conditions as the whole solution
hSε , namely 




h(0)(x1) = ρ1, x1 = 0,

h(0)(x1) = ρ2, x1 = L.
(3.1.53)

Comparing terms of the same order we get

v1∂x1h
(k) = Lh(k+1), k ≥ 0.

The first two equations read

(i) v1∂x1h
(0) = Lh(1),

(ii) v1∂x1h
(1) = Lh(2),

which have a solution if and only if the left hand side belongs to (KerL)⊥ =
{g ∈ L2(S1) :

´

S1
g(v) dv = 0}. Since v1∂x1h

(0) is an odd function of v we
can invert the operator L and set

h(1)(x1, v) = L−1(v1∂x1h
(0)) + ξ(1)(x1), (3.1.54)

where ξ(1) ∈ KerL. We integrate equation (ii) with respect to the uniform
measure on S1. Observing that

´

S1
dvLh(2) = 0, by (3.1.54) we obtain

(
ˆ

S1

dv v1L−1v1

)
∂2
x1h

(0) = 0,

with the boundary conditions (3.1.53). Therefore

h(0)(x1) =
ρ1(L− x1) + ρ2x1

L
.
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With the same strategy as the previous subsection, one can prove that

ξ(1)(x1) ≡ 0. Hence

h(1)(x1, v) = h(1)(v1) =

(
ρ2 − ρ1

L

)
L−1(v1). (3.1.55)

Moreover by equation (ii) we get

h(2)(x1, v) = L−1
(
v1∂x1h

(1)(x1, v)
)

+ ξ(2)(x1)

= ξ(2)(x1),

where in the last step we used (3.1.55). By iterating the same procedure of
the previous subsection, since in this case the source term in (3.1.51) is zero,
we have that ξ(2) satisfies ∂2

x1ξ
(2) = 0. We choose zero boundary conditions

so that ξ(2)(x1) ≡ 0. Then

h(2)(x1, v) ≡ 0.

We consider the truncated expansion

hSε = h(0) +
1

ηε
h(1) +

1

ηε
Rηε . (3.1.56)

The remainder Rηε satisfies

v1∂x1 Rηε = ηεLRηε . (3.1.57)

We required h(0) to satisfy the same boundary conditions as the whole so-
lution hSε , then the boundary conditions for Rηε read





Rηε(x1, v) = −
(
ρ2 − ρ1

L

)
L−1(v1), x1 = 0, v1 > 0,

Rηε(x1, v) = −
(
ρ2 − ρ1

L

)
L−1(v1), x1 = L, v1 < 0.

The unique solution of the above problem is

Rηε(x1, v) =− e
ηε
v1
x1L
(
ρ2 − ρ1

L

)
L−1(v1)χ(v1 > 0)

− e−
ηε
v1

(L−x1)L
(
ρ2 − ρ1

L

)
L−1(v1)χ(v1 < 0).

By (3.1.57) we get
−ηε

(
Rηε , −LRηε

)
= −bηε ,

where the boundary term bηε is given by

bηε = −
ˆ

v1>0
dv v1

(
ρ2 − ρ1

L

)2 (
L−1(v1)

)2 [
e
ηε
v1
LL − 1

]
.
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We remark that (·, ·) and ‖ · ‖2 denote the scalar product and the norm in
L2((0, L) × S1) respectively. Observe that bηε ≥ 0. Using the spectral gap
of the operator L we get

− bηε = −ηε
(
Rηε , −LRηε

)
≤ −ληε‖Rηε‖22, (3.1.58)

where λ is the first positive eigenvalue of −L. Therefore we obtain

‖Rηε‖2 ≤
C√
ηε
.

Since the coefficients h(1) and h(2) are bounded, we have that hSε converges
to h(0) in L2((0, L)× S1) for ηε →∞.

2

3.1.7 The kinetic description

3.1.8 The extension argument

We remind that houtε is the solution of the Boltzmann equation (3.1.20),
therefore it can be expressed as

houtε (x, v, t) =
∑

n≥0

(µεε)
n

ˆ t

0
dt1 . . .

ˆ tn−1

0
dtn

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρn χ(τ < tn)χ(τ > 0) e−2µεε(t−τ)fB(γ−(t−τ)(x, v)),

(3.1.59)

with fB(x, v) defined in (3.1.5) and

γ−(t−τ)(x, v) = (x− v(t− τ − t1)− v1(t1 − t2) · · · − vntn, vn). (3.1.60)

Lemma 3.1.11. Let houtε be the solution of the Boltzmann equation (3.1.20)
defined in (3.1.59). Then

houtε (x, v, t) =
∑

N≥0

e−2µεεt(µεε)
N

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ > 0) fB(γ−(t−τ)(x, v)).

(3.1.61)

The above identity follows from the fact that in the last term we added
fictitious jumps, those in the time interval (0, τ) which do not affect
fB(γ−(t−τ)(x, v)) but allows us to remove the indicator function χ(tn > τ)
replacing consequently the factor e−2µεε(t−τ) by the more handable factor
e−2µεεt. In view of the particle interpretation it is convenient to think the
trajectory γ−s, s ∈ (0, t) as extended outside Λ, see Figure 3.2. The dashed
part of the trajectory is ininfluent for the evaluation of houtε .



The extension argument 67

Figure 3.2:

Proof. Observe that for τ > 0, τ given,

1 =
∑

m≥0

(µεε)
m

ˆ t

0
ds1 . . .

ˆ sm−1

0
dsm χ(s1 ≤ τ)

ˆ 1

−1
dξ1 . . .

ˆ 1

−1
dξm e

−2µεετ .

Using the previous identity we can express houtε as

houtε (x, v, t) =
∑

N≥0

e−2µεεt(µεε)
N

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN

(
N∑

n=0

χ(tn > τ)χ(tn+1 ≤ τ)

)
χ(τ > 0) fB(γ−(t−τ)(x, v)),

with the convention that t0 = t, tN+1 = 0. Since

(
N∑

n=0

χ(tn > τ)χ(tn+1 ≤ τ)

)
= 1,

we obtain the desired result.
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3.1.9 Proof of Proposition 3.1.6

By (3.1.31) for (x, v) ∈ Λ× S1, t > 0 we have

foutε (x, v, t) = e−µε|Bt(x)∩Λ\Bε(x)|∑

q≥0

µqε
q!

ˆ

(Bt(x)∩Λ\Bε(x))q
dcq

χ(τ > 0)fB(T
−(t−τ)
cq (x, v)).

Here T
−(t−τ)
cq (x, v) is the flow associated to the initial datum (x, v) for a

given scatterers configuration cq, Bt(x) and Bε(x) denote the disks centered
in x with radius t and ε respectively.

Since fB(T
−(t−τ)
cq (x, v)) depends only on the scatterer configurations in-

side Λ ∩ Bt(x), we want to add fictitious scatterers outside Λ which do not

affect the value fB(T
−(t−τ)
cq (x, v)) in the same spirit of Lemma 3.1.11. How-

ever there is a small difficulty because the scatterers located in the vertical
strips [−ε, 0]×R and [L,L+ ε]×R actually can modify the value of τ . For
this reason we introduce

f̆outε (x, v, t) = e−µε|B
ε
t (x)|∑

Q≥0

µQε
Q!

ˆ

(Bεt (x))Q
dcQ χ(τ > 0)

(
1− χ∂Λ(cQ)

)
fB(T

−(t−τ)
cQ (x, v)),

where

χ∂Λ(cQ) = χ{cQ : ∃i = 1, . . . Q s.t. ci ∈ [−ε, 0]× R ∪ [L,L+ ε]× R
and |xε(−s)− ci| = ε, s ∈ [0, t]},

(3.1.62)

allows to have a consistency in the definition of the hitting time for the
extended dynamics. Here Bε

t (x) := Bt(x) \ Bε(x). We expect that the
contribution due to the obstacles with centers in the vertical strips [−ε, 0]×
R, [L,L+ ε]×R influencing the trajectory is indeed negligible in the limit.
This fact will be discussed later on (see Section 3.1.10).

Since |Bε
t (x) \ {[−ε, 0]×R∪ [L,L+ ε]×R}| ≤ |Bε

t (x)|, then foutε ≥ f̆outε .
We distinguish the obstacles of the configuration cQ = c1 . . . cQ which,

up to the time t, influence the motion, called internal obstacles, and the
external ones. More precisely, ci is internal if

inf
0≤s≤t

|xε(−s)− ci| = ε,

while ci is external if
inf

0≤s≤t
|xε(−s)− ci| > ε.
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Here (xε(−s), vε(−s)) = T−scQ
(x, v), s ∈ [0, t]. We observe that the char-

acteristic function χ∂Λ depends only on internal obstacles. Therefore, by
integrating over the external obstacles we obtain

f̆outε (x, v, t) =
∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN e

−µε|Tt(bN )| χ(τ > 0)

χ({bN internal})
(
1− χ∂Λ(bN )

)
fB(T

−(t−τ)
bN

(x, v)),

where Tt(bN ) is the tube

Tt(bN ) = {y ∈ Bε
t (x) s.t. ∃s ∈ [0, t] s.t. |y − xε(−s)| ≤ ε}.

We define

f̃outε (x, v, t) =e−2µεεt
∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN χ({bN internal})

(1− χ∂Λ(bN )
)
fB(T

−(t−τ)
bN

(x, v))χ(τ > 0).

Since |Tt(bN )| ≤ 2εt, then foutε ≥ f̆outε ≥ f̃outε .
Note that, according to a classical argument introduced in [G] (see also

[DP], [DR]), we remove from f̃outε all the bad events, namely those untypical
with respect to the Markov process described by houtε . Then we will show
they are unlikely.

For any fixed initial condition (x, v) we order the obstacles b1, . . . , bN
according to the scattering sequence. Let ρi and ti be the impact parameter
and the hitting time of the light particle with ∂Bε(bi) respectively. Then we
perform the following change of variables

b1, . . . , bN → ρ1, t1, . . . , ρN , tN (3.1.63)

with
0 ≤ tN < tN−1 < · · · < t1 ≤ t.

Conversely, fixed the impact parameters {ρi} and the hitting times {ti} we
construct the centers of the obstacles bi = b(ρi, ti). By performing the back-
ward scattering we construct a trajectory γ−s(x, v) := (ξε(−s), ωε(−s)), s ∈
[0, t], where

{
ξε(−t) = x− v(t− t1)− v1(t1 − t2) · · · − vN tN
ωε(−t) = vN .

(3.1.64)

Here v1, . . . , vN are the incoming velocities. We remark that ωε is an au-
tonomous jump process and ξε is an additive functional of ωε.

Observe that the map (3.1.63) is one-to-one, and so (ξε(−s), ωε(−s)) =
(xε(−s), vε(−s)), only outside the following pathological situations.
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i) Recollisions.
There exists bi such that for s ∈ (tj+1, tj), j > i, ξε(−s) ∈ ∂B(bi, ε).

ii) Interferences.
There exists bj such that ξε(−s) ∈ B(bj , ε) for s ∈ (ti+1, ti), j > i.

In order to skip such events we define

f̄outε (x, v, t) =e−2µεεt
∑

N≥0

µNε

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρN

χ(τ > 0) (1− χ∂Λ)(1− χrec)(1− χint)fB(γ−(t−τ)(x, v)),

(3.1.65)

where

χrec =χ({bN s.t. i) is realized})
χint =χ({bN s.t. ii) is realized}). (3.1.66)

Observe that in (3.1.65) γ−(t−τ)(x, v) = (xε(−(t− τ)), vε(−(t− τ))). More-
over

f̄outε ≤ f̃outε ≤ f̆outε ≤ foutε .

Next we represent, thanks to Lemma 3.1.11, houtε , solution to equation
(3.1.20), as

houtε (x, v, t) =e−2µεεt
∑

N≥0

µNε

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρN χ(τ > 0) fB(γ−(t−τ)(x, v)).

(3.1.67)

Observe that

1− (1− χ∂Λ)(1− χrec)(1− χint) ≤ χ∂Λ + χrec + χint. (3.1.68)

Then by (3.1.65) and (3.1.67) we obtain

|houtε (t)− f̄outε (t)| ≤ ϕ1(ε, t), (3.1.69)

with

ϕ1(ε, t) := ‖fB‖∞e−2µεεt
∑

N≥0

(µε)
N

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρN {χ∂Λ + χrec + χint}.

(3.1.70)

We state the following result. The proof is postponed to Section 3.1.10.
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Lemma 3.1.12. Let ϕ1(ε, t) be defined in (3.1.70). For any t ∈ [0, T ] we
have

‖ϕ1(ε, t)‖L∞ ≤ Cε
1
2 η3

ε t
2. (3.1.71)

Let us estimate the difference
∣∣foutε (t)− houtε (t)

∣∣. By (3.1.69) we have

∣∣foutε (t)− houtε (t)
∣∣ ≤

∣∣foutε (t)− f̄outε (t)
∣∣+
∣∣f̄outε (t)− houtε (t)

∣∣
≤
∣∣foutε (t)− f̄outε (t)

∣∣+ ϕ1(ε, t).
(3.1.72)

Since f̄outε ≤ foutε , the difference foutε (t)− f̄outε (t) is non negative and we can
skip the absolute value. Moreover

foutε (t)− f̄outε (t) ≤
(
foutε (t)− f̆outε (t)

)
+
(
f̆outε (t)− f̄outε (t)

)
. (3.1.73)

Using the fact that the map (3.1.63) is one-to-one outside the patholog-
ical sets we can write f̄outε in (3.1.65) as

f̄outε (t) = e−2µεεt
∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN χ({bN internal})χ(τ > 0)

(1− χ∂Λ)(1− χrec)(1− χint)fB(T
−(t−τ)
bN

(x, v)).

Hence

f̆outε (t)− f̄outε (t) =
∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN fB(T

−(t−τ)
bN

(x, v)) χ({bN internal})χ(τ > 0)

(1− χ∂Λ)
(
e−µε|Tt(bN )| − e−2µεε t (1− χrec)(1− χint)

)

≤ ||fB||∞
∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN χ({bN internal})

(
e−µε|Tt(bN )| − e−2µεε t (1− χrec)(1− χint)

)
.

By observing that

∑

N≥0

µNε
N !

ˆ

Bεt (x)N
dbN χ({bN internal}) e−µε|Tt(bN )| = 1,

we obtain

f̆outε (t)− f̄outε (t) ≤ ||fB||∞
(
1− e−2µεε t

∑

N≥0

µNε

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρN (1− χrec)(1− χint)

)
.
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Observe that
1− (1− χrec)(1− χint) ≤ χrec + χint.

Hence we get
f̆outε (t)− f̄outε (t) ≤ ϕ1(ε, t), (3.1.74)

with ϕ1 defined in (3.1.70).
Now we consider foutε (t)− f̆outε (t). We observe that

foutε (x, v, t) = e−µε|B
ε
t (x)\∂Λε|∑

Q≥0

µQε
Q!

ˆ

(Bεt (x))Q
dcQ χ(τ > 0)

(
1− χ∂Λ(cQ)

)
fB(T

−(t−τ)
cQ (x, v)),

where ∂Λε :=
(
[−ε, 0] ∪ [L,L+ ε]

)
×R. By using the previous strategy one

can prove
foutε (t)− f̆outε (t) ≤ ϕ1(ε, t). (3.1.75)

Therefore (3.1.72), (3.1.74), (3.1.75) and (3.1.71) imply

‖foutε (t)− houtε (t)‖∞ ≤ Cε
1
2 η3

ε t
2.

3.1.10 Proof of Lemma 3.1.12 (the control of the pathological
sets)

For any measurable function u of the process (ξε, ωε) defined in (3.1.64)
we set

Ex,v(u) = e−2µεεt
∑

N≥0

(µε)
N

ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρN u(ξε, ωε).

Then we realize that

ϕ1(ε, t) = ‖fB‖∞ Ex,v[χ∂Λ + χrec + χint]

and we estimate separately the events in (3.1.62) and (3.1.66).
We consider the interference event. Let ti the first time the light particle

hits the i-th scatterer, v−i the incoming velocity and v+
i the outgoing velocity

(for the backward trajectory). Moreover we fix the axis in such a way that
v+
i is parallel to the x axis. We have

χint ≤
N∑

i=1

∑

j>i

χi,jint,

where χi,jint = 1 if the obstacle with center bj belongs to the tube spanned by
ξε(−s) for s ∈ (ti+1, ti). We denote by α the angle between v+

i and v+
j−1. We
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have two situations, when the velocity v+
j−1 is transverse to v+

i (i.e. α > εγ

for a suitable positive γ) or when the velocity v+
j−1 is almost parallel to v+

i

(i.e. α ≤ εγ). Then

Ex,v[χint] ≤ Ex,v
[ N∑

i=1

∑

j>i

χi,jintχ(α > εγ)
]

+ Ex,v
[ N∑

i=1

∑

j>i

χi,jintχ(α ≤ εγ)
]
.

(3.1.76)

Figure 3.3: Backward Interference-First case

We estimate separately the two contributions. To estimate the first term
we fix all the variables {th}Nh=1, {ρh}Nh=1 except tj . By a simple geometrical
argument we argue that the integral over tj is restricted over an interval of
measure at most Cε1−γ . Hence we get

Ex,v
[ N∑

i=1

∑

j>i

χi,jintχ(α > εγ)
]

≤ e−2µεεt
∑

N≥1

(N)2(2µεε)
N tN−1

(N − 1)!
Cε1−γ

≤ e−2µεεt(2µεε)
3t2
∑

N≥3

(2µεε)
N−3 tN−3

(N − 3)!
Cε1−γ

≤ Cε1−γη3
ε t

2.

(3.1.77)

Concerning the second term in (3.1.76), the condition α ≤ εγ implies
that the (j − 1)-th scattering angle θj−1 can varies at most εγ (see Figure
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Figure 3.4: Backward Interference-Second case

3.4). Then, fixing all the variables {th}Nh=1, {ρh}Nh=1 except ρj−1, performing
the change of variable ρj−1 → θj−1 and recalling that the scattering cross

section for a disk of unitary radius is given by dρ
dθ = 1

2 sin θ
2 we obtain

Ex,v
[ N∑

i=1

∑

j>i

χi,jintχ(α ≤ εγ)
]
≤ e−2µεεt

∑

N≥1

(N)2(2µεε)
N tN

(N)!
Cεγ

≤Cεγη2
ε t

2.

(3.1.78)

By choosing γ = 1/2, from (3.1.77) and (3.1.78) we obtain

Ex,v[χint] ≤ Cε
1
2 η3
ε t

2. (3.1.79)

Finally we consider the recollision event. We have

χrec ≤
N∑

i=1

∑

j>i

χi,jrec,

where χi,jrec = 1 if the i-th obstacle is recollided in the time interval (tj , tj−1).
Also in this case we have to take into account two possible situations, when
|bi − bj−1| > εγ for a suitable positive γ or when |bi − bj−1| ≤ εγ . Then

Ex,v[χrec] ≤Ex,v
[ N∑

i=1

∑

j>i

χi,jrecχ
(
|bi − bj−1| > εγ

)]

+ Ex,v
[ N∑

i=1

∑

j>i

χi,jrecχ
(
|bi − bj−1| ≤ εγ

)]
.

(3.1.80)

We look at the first term. Using geometric arguments the condition
|bi − bj−1| > εγ gives a bound for the (j − 1)-th scattering angle θj−1 (see
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Figure 3.5: Backward Recollision-First case

Figure 3.5). In particular it can varies at most ε/εγ = ε1−γ . Therefore,
performing the change of variable ρj−1 → θj−1 as before, we get

Ex,v
[ N∑

i=1

∑

j>i

χi,jrecχ
(
|bi − bj−1| > εγ

)]

≤ e−2µεεt
∑

N≥1

(N)2(2µεε)
N tN

(N)!
Cε1−γ

≤ Cε1−γη2
ε t

2.

(3.1.81)

If |bi − bj−1| ≤ εγ a simple geometrical argument shows that the time
interval |tj−1 − tj | is bounded by εγ (see Figure 3.6). Hence, following the
same strategy as in (3.1.77), we obtain

Ex,v
[ N∑

i=1

∑

j>i

χi,jrecχ
(
|bi − bj−1| ≤ εγ

)]

≤ e−2µεεt
∑

N≥1

(N)2(2µεε)
N tN−1

(N − 1)!
Cεγ

≤ Cεγη3
ε t

2.

(3.1.82)

As before we choose γ = 1/2. Then from (3.1.81) and (3.1.82) we obtain

Ex,v[χrec] ≤ Cε
1
2 η3
ε t

2. (3.1.83)



Proof of Proposition 3.1.7 76

Figure 3.6: Backward Recollision-Second case

We now consider the expectation value for (1 − χ∂Λ), with χ∂Λ defined
in (3.1.62). Observe that χ∂Λ = 1 implies that ξε(−(t − tj)) ∈ Λc and
d(ξε(−(t− tj)), ∂Λ) ≤ ε for some j = 1, . . . , N . As we can see in Figure 3.7,
by the same argument used to estimate the interference events in (3.1.77)
and (3.1.78) we obtain

Ex,v[χ∂Λ] ≤ Cε 1
2 η3
ε t

2. (3.1.84)

By estimates (3.1.79), (3.1.83) and (3.1.84) we obtain

‖ϕ1(ε, t)‖∞ ≤ Cε
1
2 η3
ε t

2,

for some C > 0.

3.1.11 Proof of Proposition 3.1.7

The proof follows the same strategy of the proof of Proposition 3.1.6.
Actually it is easier since it does not require the extension trick, but it
follows directly by the recollision and interference estimates.
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Figure 3.7: Λ ∪ {[−ε, 0]× R ∪ [L,L+ ε]× R}
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3.2

In the present Chapter we present [N3].

Fick’s Law for the Lorentz Model in a weak coupling
regime

Abstract. In this paper we deal with further recent developments strictly
connected to the results obtained in [BNPP]. We consider the Lorentz gas
out of equilibrium in a weak coupling regime. Each obstacle of the Lorentz
gas generates a smooth radially symmetric potential with compact support.
We prove that the macroscopic current in the stationary state is given by the
Fick’s law of diffusion. The diffusion coefficient is given by the Green-Kubo
formula associated to the generator of the diffusion process dictated by the
linear Landau equation.

3.2.1 Introduction

The understanding of transport phenomena of nonequilibrium thermody-
namics starting form the microscopic dynamics is one of the most challenging
problem in statistical mechanics.

Nonequilibrium stationary states describe the state of a mechanical sys-
tem driven and maintained out of equilibrium. The main characteristic of
nonequilibrium stationary states is that they commonly exhibit transport
phenomena. They sustain steady flows, for example energy flow, particles
flow or momentum flows. The usually conserved quantities, mass, momen-
tum and energy, flow in response to a gradient. For instance the heat flow
and the mass flow appears in response to a temperature gradient and a
concentration gradient respectively. These processes are well described by
phenomenological linear laws, the Fourier’s and Fick’s law respectively.

In the current literature there are very few rigorous results concerning
the derivation of the these phenomenological laws from a microscopic model
(see for instance [LS], [LS1], [LS2]). A contribution in this direction is the
validation of the Fick’s law for the Lorentz model in a low density situation
which has been recently proven in [BNPP]. To consider the system out of
equilibrium, in [BNPP], they consider the Lorentz gas in a bounded region in
the plane and couple the system with two mass reservoirs at the boundaries.
More precisely they consider the slice Λ = (0, L) × R in the plane. In the
left half plane there is a free gas of light particles at density ρ1, in the
right half plane there is a free gas of light particles at density ρ2 which play
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the role of mass reservoirs. The light particles are not interacting among
themselves. Inside Λ there is a Poisson distribution of intensity µ of hard
core scatterers Λ. The light particles flow through the boundaries and are
elastically reflected by the scatterers. For this model they prove the existence
of a stationary state for which

J ≈ −D∇ρ (3.2.1)

where J is the mass current, ρ is the mass density and D > 0 is the diffusion
coefficient. Formula (3.2.1) is the well known Fick’s law whose validity
has been proven in [BNPP]. We remind that according to the low-density
regime considered they can use the linear Boltzmann equation as a bridge
between the original mechanical system and the diffusion equation. This
strategy works since they provide an explicit control of the error in the
kinetic limit which suggests the scale of times for which the diffusive limit
can be achieved. The result is presented in a two dimensional setting but
it holds in dimension higher than two. The two dimensional case is the
most interesting to analyze since the pathologic configurations preventing
the Markovianity on a kinetic scale are harder to estimate in this case.

We can wonder if the same result can be achieved if we slightly modify
the model. We consider the same geometry described above but inside Λ
now we have a Poisson distribution of scatterers which are no longer hard
cores. We assume that each obstacle generates a smooth, radial, short-range
potential. In the same spirit as in [BNP], [ESY], we scale the range of the
interaction and the density of the scatterers according to

φε(x) = εαφ(xε )

µε = ε−(2α+λ+1)µ. (3.2.2)

with α ∈ (0, 1
2) and λ > 0.

The scaling (3.2.2) means that the kinetic regime describes the system
for kinetic times O(1) (i.e. λ = 0). Observe that when λ = 0 the limiting
cases α = 0 and α = 1/2 correspond respectively to the low density limit and
the weak-coupling limit. In this intermediate scale between the low density
and the weak-coupling regime the kinetic equation that appears in the limit
is the linear Landau equation. One can go further to diffusive times provided
that λ > 0 is not too large. The intermediate level of description between the
mechanical system and the diffusion equation is given by the linear Landau
equation with a divergent factor in front of the collision operator. Since the
scale of time for which the system diffuses should not prevent the Markov
property, there is a constraint on λ. More precisely there exists a threshold
λ0 = λ(α), emerging from the explicit estimate of the set of pathological
configurations producing memory effects, s.t. for λ < λ(α), the microscopic
solution of the time dependent problem converges to the solution of the heat
equation in the limit ε→ 0. We refer to [BNP], Section 6, for further details.
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This result concerns the time dependent problem. We are now interested in
the stationary situation. In this paper we provide a rigorous derivation of
Fick’s law of diffusion for this model. We prove that there exists a unique
stationary solution for the microscopic dynamics which converges to the
stationary solution of the heat equation, namely to the linear profile of the
density. We underline that in order to obtain the stationary solution of the
microscopic dynamics we need to characterize the stationary solution of the
linear Landau equation. To handle this problem we will use the analysis of
the time dependent problem and the explicit solution of the heat equation.

3.2.2 The model and main results

Let Λ ⊂ R2 be the strip (0, L)×R. We consider a Poisson distribution of
fixed disks (scatterers) of radius ε in Λ and denote by c1, . . . , cN ∈ Λ their
centers. This means that, given µ > 0, the probability density of finding N
obstacles in a bounded measurable set A ⊂ Λ is

P( dcN ) = e−µ|A|
µN

N !
dc1 . . . dcN (3.2.3)

where |A| = measA and cN = (c1, . . . , cN ). Since the modulus of the velocity
of the test particle is constant, we assume it to be equal to one, so that the
phase space of our system is Λ× S1.

We rescale the intensity µ of the obstacles as

µε = ε−2α−1ε−λµ, α ∈ (0, 1/8), λ > 0

where, from now on, µ > 0 is fixed. More precisely we make the following
assumption.

Assumption 2. We set γ = 1− 8(α+ λ/2), the parameter λ is such that as
ε→ 0,

εγ−4λ → 0, (3.2.4)

namely λ < 1−8α
8 .

Accordingly, we denote by Pε the probability density (3.2.3) with µ re-
placed by µε. Eε will be the expectation with respect to the measure Pε.

We now introduce a radial potential φ(r) such that

• φ ∈ C2([0, 1]),

• φ(0) > 0 and r → φ(r) is strictly decreasing in [0, 1].

We rescale the intensity of the interaction potential as

φ→ εαφ.
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Then the Equations of motion are
{
ẋ = v

v̇ = −εα−1
∑

i∇φ( |x−ci|ε ) .
(3.2.5)

For a given configuration of obstacles cN , we denote by T−tcN
(x, v) the (back-

ward) flow, solution of (3.2.5), with initial datum (x, v) ∈ Λ×S1 and define
t−τ , τ = τ(x, v, t, cN ), as the first (backward) hitting time with the bound-
ary. We use the notation τ = 0 to indicate the event such that the trajectory
T−scN

(x, v), s ∈ [0, t], never hits the boundary. For any t ≥ 0 the one-particle
correlation function reads

fε(x, v, t) = Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[f0(T−tcN

(x, v))χ(τ = 0)],
(3.2.6)

where f0 ∈ L∞(Λ× S1) and the boundary value fB is defined by

fB(x, v) :=





ρ1M(v) if x ∈ {0} × R, v1 > 0,

ρ2M(v) if x ∈ {L} × R, v1 < 0,

with M(v) the density of the uniform distribution on S1 and ρ1, ρ2 > 0.
Here v1 denotes the horizontal component of the velocity v. Without loss
of generality we assume ρ2 > ρ1. Since M(v) = 1

2π , from now on we will
absorb it in the definition of the boundary values ρ1, ρ2. Therefore we set

fB(x, v) :=





ρ1 if x ∈ {0} × R, v1 > 0,

ρ2 if x ∈ {L} × R, v1 < 0.
(3.2.7)

We are interested in the stationary solutions fSε of the above problem.
More precisely fSε (x, v) solves

fSε (x, v) = Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[fSε (T−tcN

(x, v))χ(τ = 0)].
(3.2.8)

The main result of the present paper can be summarized in the following
theorem.

Theorem 3.2.1. For ε sufficiently small there exists a unique L∞ stationary
solution fSε for the microscopic dynamics (i.e. satisfying (3.2.8)). Moreover,
as ε→ 0

fSε → %S , (3.2.9)

where %S is the stationary solution of the heat equation with the following
boundary conditions





%S(x) = ρ1, x ∈ {0} × R,

%S(x) = ρ2, x ∈ {L} × R.
(3.2.10)

The convergence is in L2((0, L)× S1).
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Some remarks on the above Theorem are in order. The boundary condi-
tions of the problem depend on the space variable only through the horizon-
tal component. As a consequence, the stationary solution fSε of the micro-
scopic problem, as well as the stationary solution %S of the heat equation,
inherits the same feature. This justifies the convergence in L2((0, L) × S1)
instead of in L2(Λ×S1). The explicit expression for the stationary solution
%S reads

%S(x) =
ρ1(L− x1) + ρ2x1

L
, (3.2.11)

where x1 is the horizontal component of the space variable x. We note that
in order to prove Theorem 3.2.1 it is enough to assume that εγ−3λ → 0,
i.e. λ < 1−8α

7 . The stronger Assumption 2 is needed to prove Theorem 3.2.2
below.

Next, to discuss the Fick’s law, we introduce the stationary mass flux

JSε (x) = ε−λ
ˆ

S1

v fSε (x, v) dv, (3.2.12)

and the stationary mass density

%Sε (x) =

ˆ

S1

fSε (x, v) dv. (3.2.13)

Note that JSε is the total amount of mass flowing through a unit area in
a unit time interval. Although in a stationary problem there is no typical
time scale, the factor ε−λ appearing in the definition of JSε , is reminiscent
of the time scaling necessary to obtain a diffusive limit.

Theorem 3.2.2 (Fick’s law). We have

JSε +D∇x%Sε → 0 (3.2.14)

as ε→ 0. The convergence is in D′(0, L) and D > 0 is given by the Green-
Kubo formula

D =
2

µ

ˆ

S1

v ·
(
−∆−1

|v|
)
v dv. (3.2.15)

Moreover
JS = lim

ε→0
JSε (x), (3.2.16)

where the convergence is in L2(0, L) and

JS = −D∇%S = −D ρ2 − ρ1

L
, (3.2.17)

where %S is the linear profile (3.2.11).
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Observe that, as expected by physical arguments, the stationary flux
JS does not depend on the space variable. Furthermore the diffusion coef-
ficient D is determined by the behavior of the system at equilibrium and
in particular it is equal to the diffusion coefficient for the time dependent
problem.

3.2.3 Proofs

In order to prove Theorem 3.2.1 our strategy is the following. We intro-
duce the stationary linear Landau equation





(
v · ∇x

)
gSε (x, v) = ε−λ LgSε (x, v),

gSε (x, v) = ρ1, x ∈ {0} × R, v1 > 0,

gSε (x, v) = ρ2, x ∈ {L} × R, v1 < 0,

(3.2.18)

where L = µ
2 ∆|v| and ∆|v| is the Laplace Beltrami operator on the circle

of radius |v| = 1, namely S1. Moreover we introduce the stationary linear
Boltzmann equation





(
v · ∇x

)
hSε (x, v) = ε−λ Lεh

S
ε (x, v),

hSε (x, v) = ρ1, x ∈ {0} × R, v1 > 0,

hSε (x, v) = ρ2, x ∈ {L} × R, v1 < 0,

(3.2.19)

where Lε := ε−2αL and L is the linear Boltzmann operator defined as

Lf(v) = µ

ˆ 1

−1
dρ
[
f(v′)− f(v)

]
, f ∈ L1(S1) (3.2.20)

with
v′ = v − 2(ω · v)ω (3.2.21)

and ω is the unit vector bisecting the angle between the incoming velocity
v and the outgoing velocity v′ as specified in Figure 3.8.

Since the boundary conditions depend on the space variable only trough
the horizontal component, the stationary solution hSε and gSε inherit the
same feature, as well as fSε and %S .

The strategy of the proof consists of two steps. First we prove that there
exists a unique gSε which converges, as ε → 0, to %S given by (3.2.11). See
Proposition 3.2.6 below. Secondly we show that there exists a unique fSε
asymptotically equivalent to gSε . See Proposition 3.2.9 below. This result
is achieved using two steps. The first one concerns the convergence of fSε
towards hSε , the stationary solution of the linear Boltzmann equation, by
showing that the memory effects of the mechanical system, preventing the
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Figure 3.8: The scattering problem

Markovianity, are indeed negligible. The second one concerns the grazing
collision limit which guarantees the asymptotic equivalence of hSε and gSε .

Let gε be the solution of the problem




(
∂t + v · ∇x

)
gε(x, v, t) = ε−λ Lgε(x, v, t),

gε(x, v, 0) = f0(x, v), f0 ∈ L∞(Λ× S1),

gε(x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

gε(x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.2.22)

We can write gε(t) as the sum of two contributions, one due to the
backward trajectories hitting the boundary and the other one due to the
trajectories which never leave Λ. Therefore we set

gε(x, v, t) = goutε (x, v, t) + ginε (x, v, t).

Observe that goutε solves





(
∂t + v · ∇x

)
goutε (x, v, t) = ε−λ Lgoutε (x, v, t),

goutε (x, v, 0) = 0, x ∈ Λ,

goutε (x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

goutε (x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.2.23)

We set L̃ := ε−λ L− v ·∇x. Let G0
ε(t) be the semigroup whose generator
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is the operator L̃, i.e. G0
ε(t) = etL̃. Hence

ginε (t) = G0
ε(t)f0.

We observe that gSε , solution of (3.2.18), satysfies, for t0 > 0

gSε = goutε (t0) +G0
ε(t0)gSε ,

so that we can formally express gSε as the Neumann series

gSε =
∑

n≥0

(G0
ε(t0))ngoutε (t0). (3.2.24)

We now establish existence and uniqueness of gSε by showing that the Neu-
mann series (3.2.28) converges. In order to do it we extend the action of the
semigroup G0

ε(t) to the space L∞(R2 × S1), namely

G0
ε(t)`0(x, v) = χΛ(x)G̃0

ε(t)`0(x, v)

for any `0(x, v) ∈ L∞(R2 × S1). Here χΛ is the characteristic function of Λ
and G̃0

ε is the extension of the semigroup to the whole space R2 × S1. For
the sake of simplicity from now on we set G̃0

ε := G0
ε.

As we proved in [BNPP], the same technique works for hε, solution of
the following Boltzmann equation





(
∂t + v · ∇x

)
hε(x, v, t) = ε−λ Lεhε(x, v, t),

hε(x, v, 0) = f0(x, v), f0 ∈ L∞(Λ× S1),

hε(x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

hε(x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.2.25)

The solution hε of the problem (3.2.25) has the following explicit represen-
tation

hε(x, v, t) =
∑

N≥0

(µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ < tN )χ(τ > 0) e−2µεε (t−τ) fB(γ−(t−τ)(x, v))+

+
∑

N≥0

e−2µεε t (µεε)
N
ˆ t

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0) f0(γ−t(x, v)),

(3.2.26)
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with fB defined in (3.2.7). Given x, v, t1 . . . tN , ρ1 . . . ρN , γ−t(x, v) denotes
the trajectory whose position and velocity are

(x− v(t− t1)− v1(t1 − t2) · · · − vN tN , vN ).

The transitions v → v1 → v2 · · · → vN are obtained by means of a scattering
with an hard disk with impact parameter ρi via (3.2.21). As before t − τ ,
τ = τ(x, v, t1 . . . , tN , ρ1 . . . ρN ), is the first (backward) hitting time with the
boundary. We remind that µεε = µε−2α−λ.

We set
hε(x, v, t) = houtε (x, v, t) + hinε (x, v, t).

Observe that houtε solves





(
∂t + v · ∇x

)
houtε (x, v, t) = ε−λ Lεh

out
ε (x, v, t),

houtε (x, v, 0) = 0, x ∈ Λ,

houtε (x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

houtε (x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

(3.2.27)

Let S0
ε (t) be the Markov semigroup associated to the second sum in (3.2.26),

hence hinε (t) = S0
ε (t)f0. Moreover hSε , solution of (3.2.19), satysfies, for

t0 > 0
hSε = houtε (t0) + S0

ε (t0)hSε ,

so that we can formally express hSε as the Neumann series

hSε =
∑

n≥0

(S0
ε (t0))nhoutε (t0). (3.2.28)

Proposition 3.2.3. There exists ε0 > 0 such that for any ε < ε0 and for
any `0 ∈ L∞(R2 × S1) we have

||G0
ε(ε
−λ)`0||∞ ≤ β̃ ||`0||∞, β̃ < 1. (3.2.29)

As a consequence there exists a unique stationary solution gSε ∈ L∞(Λ×S1)
satisfying (3.2.18).

To prove Proposition 3.2.3 we also need the following result

Proposition 3.2.4. For every `0 ∈ L∞(R2 × S1)

||
(
G0
ε(ε
−λt)− S0

ε (ε−λt)
)
`0||∞ ≤ Cε2(α−λ). (3.2.30)

Proof. We look at the evolution of hinε (ε−λt)− ginε (ε−λt), namely

(
∂t + ε−λv · ∇x

)(
hinε − ginε ) = ε−2λ

(
L̃εh

in
ε − Lginε

)
, (3.2.31)
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where L := µ
2 ∆|v|. We observe that we can write (3.2.31) as

(
∂t + ε−λv · ∇x

)(
hinε − ginε ) = ε−2λ

[
L̃ε
(
hinε − ginε ) +

(
L̃ε − L

)
ginε

]
. (3.2.32)

Hence we can consider
(
L̃ε −L

)
ginε , in (3.2.32), as a source term. Recalling

that

L̃εg
in
ε = µε−2α

ˆ 1

−1
dρ
[
ginε (v′)− ginε (v)

]
,

we set

ginε (v′)− ginε (v)

= (v′ − v) · ∇|S1g
in
ε (v)

+
1

2
(v′ − v)⊗ (v′ − v)∇|S1∇|S1g

in
ε (v)

+
1

6
(v′ − v)⊗ (v′ − v)⊗ (v′ − v)∇|S1∇|S1∇|S1g

in
ε (v) +Rε,

with Rε = O(|v − v′|4). Integrating with respect to v and using symmetry
arguments we obtain

L̃εg
in
ε = µε−2α

{1

2
∆|v|g

in
ε

ˆ 1

−1
dρ |v′ − v|2 +

ˆ 1

−1
dρRε

}
.

Observe that |v′ − v|2 = 4 sin2 θε(ρ)
2 . (See Figure 3.8). We remind that the

scattering angle
θε(ρ) ≤ πεα sup

r∈[0,1]
|r φ′(r)|+ C̃ε2α

and maxρ∈[0,1] θε(ρ) ≤ Cεα (see [DR], Section 3, for further details). More-
over

B := lim
ε→0

µ

2
ε−2α

ˆ 1

−1
θε(ρ)2dρ

is the diffusion coefficient of the Landau equation, B <∞, hence

L̃εg
in
ε = B∆|v|g

in
ε +

µ

2
ε−2α

ˆ 1

−1
dρRε.

Therefore ∥∥(L̃ε − L
)
ginε
∥∥
∞ ≤ Cε

2α, (3.2.33)

which vanishes for ε→ 0.
For a smooth reading we set wε := hinε − ginε and Aε := ε−2λ

(
L̃ε−L

)
ginε .

Hence (3.2.32) becomes

(
∂t + ε−λv · ∇x

)
wε = ε−2λL̃εwε +Aε.
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Let S̃ε(t) := S0
ε (ε−λt) be the semigroup associated to the generator −ε−λ

(
v ·

∇x − ε−λ L̃ε
)
. By equation (3.2.32) we get

wε(t) = S̃ε(t)wε(0) +

ˆ t

0
ds S̃ε(t− s)Aε(s).

Since wε(0) = 0 we get

wε(t) =

ˆ t

0
ds S̃ε(t− s)Aε(s).

By the usual series expansion for S̃ε(t) we obtain

wε(x, v, t) =

ˆ t

0
ds
∑

N≥0

e−2µε−2α−2λ(t−s) (µεε)
N
ˆ ε−λ(t−s)

0
dt1 . . .

ˆ tN−1

0
dtN

ˆ 1

−1
dρ1 . . .

ˆ 1

−1
dρN χ(τ = 0)Aε(γ

−ε−λ(t−s)(x, v), s).

Thanks to (3.2.33) we have that Aε vanishes in the limit, therefore

‖wε(t)‖∞ ≤ T‖Aε(t)‖∞ ≤ Cε2α−2λ

Hence hinε and ginε are asymptotically equivalent in L∞.

Proposition 3.2.5. Let T > 0. For any t ∈ (0, T ]

‖houtε (ε−λt)− goutε (ε−λt)‖∞ ≤ Cε2(α−λ) (3.2.34)

The proof is essentially the same of Proposition (3.2.4), and to let it
work we observe that we need the extension procedure discussed in [BNPP],
Section 5, for houtε .

Proof of Proposition 3.2.3. From Proposition 2.1 in [BNPP], for any `0 ∈
L∞(R2 × S1), we have

||S0
ε (ε−λ)`0||∞ ≤ β ||`0||∞, β < 1. (3.2.35)

Therefore for ε small enough

||G0
ε(ε
−λ)`0||∞ ≤ ||(G0

ε(ε
−λ)− S0

ε (ε−λ))`0||∞ + ||S0
ε (t)`0||∞

≤ ||(G0
ε(ε
−λ)− S0

ε (ε−λ))`0||∞ + β ||`0||∞
(3.2.36)

Hence, using (3.2.30) in (3.2.36), we get

||G0
ε(ε
−λ)`0||∞ ≤ ||(G0

ε(ε
−λ)− S0

ε (ε−λ))`0||∞ + β ||`0||∞||
≤ ω̃(ε) + β ||`0||∞ < β̃ ||`0||∞, β̃ < 1.
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Here ω̃(ε) = C ε2(α−λ).
Finally, since β̃ < 1, by (3.2.28) we get

||gSε ||∞ ≤
1

(1− β̃)
||goutε (ε−λ)||∞ ≤

1

(1− β̃)
ρ2.

The last step is the proof of the convergence of gSε to the stationary
solution of the diffusion problem





∂t%−D∆% = 0

%(x, t) = ρ1, x ∈ {0} × R, t ≥ 0

%(x, t) = ρ2, x ∈ {L} × R, t ≥ 0,

(3.2.37)

with the diffusion coefficient D given by the Green-Kubo formula (3.2.15).
We remind that the stationary solution %S to the problem (3.2.37) has the
following explicit expression

%S(x) =
ρ1(L− x1) + ρ2x1

L
, (3.2.38)

where x = (x1, x2).
By using the Hilbert expansion technique in L2 we can prove

Proposition 3.2.6. Let gSε ∈ L∞((0, L)×S1) be the solution to the problem
(3.2.18). Then

gSε → %S (3.2.39)

as ε→ 0, where %S(x) is given by (3.2.38). The convergence is in L2((0, L)×
S1).

For the proof we refer to [BNPP], Section 4.2. This concludes our anal-
ysis of the Markov part of the proof.

Recalling the expression (3.2.6) for the one-particle correlation function
fε, we introduce a decomposition analogous to those ones used for gε(t) and
hε(t), namely

foutε (x, v, t) := Eε[fB(T
−(t−τ)
cN (x, v))χ(τ > 0)] (3.2.40)

and
f inε (x, v, t) := Eε[f0(T−tcN

(x, v))χ(τ = 0)], (3.2.41)

so that
fε(x, v, t) = foutε (x, v, t) + f inε (x, v, t).
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Here foutε is the contribution due to the trajectories that do leave Λ at times
smaller than t, while f inε is the contribution due to the trajectories that stay
internal to Λ. We introduce the flow F 0

ε (t) such that

(F 0
ε (t)`)(x, v) = Eε[`(T−tcN

(x, v))χ(τ = 0)], ` ∈ L∞(Λ× S1)

and remark that F 0
ε is just the dynamics ”inside” Λ. In particular f inε (t) =

F 0
ε (t)f0.

To detect the stationary solution fSε for the microscopic dynamics we
proceed as for the Boltzmann evolution (see (3.2.8)) by setting, for t0 > 0,

fSε = foutε (t0) + F 0
ε (t0)fSε

and we can formally express the stationary solution as the Neumann series

fSε =
∑

n≥0

(F 0
ε (t0))nfoutε (t0). (3.2.42)

To show the convergence of the series (3.2.42) and hence existence of fSε we
first need the following Propositions.

Proposition 3.2.7. Let T > 0. For any t ∈ (0, T ]

‖foutε (t)− houtε (t)‖L∞(Λ×S1) ≤ Cεγ t3, (3.2.43)

where houtε solves (3.2.27) and γ = 1− 8(α− λ
2 ).

Proposition 3.2.8. For every `0 ∈ L∞(Λ× S1)

||
(
F 0
ε (t)− S0

ε (t)
)
`0||∞ ≤ C||`0||∞ εγ t3, ∀t ∈ [0, T ], (3.2.44)

where γ = 1− 8(α− λ
2 ).

See Section 5 and Section 6 in [BNP], and Section 5 in [BNPP] for the
proof. As a corollary we can prove

Proposition 3.2.9. For ε sufficiently small there exists a unique stationary
solution fSε ∈ L∞(Λ× S1) satisfying (3.2.8). Moreover

‖fSε − gSε ‖∞ ≤ Cεγ−3λ, (3.2.45)

where γ = 1− 8(α− λ
2 ).

Proof. We prove the existence and uniqueness of the stationary solution by
showing that the Neumann series (3.2.42) converges, namely

||F 0
ε (ε−λ)f0||∞ ≤ β′ ||f0||∞, β′ < 1. (3.2.46)
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This implies

||fSε ||∞ ≤
1

(1− β′) ||f
out
ε (ε−λ)||∞ ≤

1

(1− β′) ρ2, β′ < 1.

In fact, since

||F 0
ε (ε−λ)f0||∞ ≤ ||

(
F 0
ε (ε−λ)− S0

ε (ε−λ)
)
f0||∞ + ||S0

ε (ε−λ)f0||∞,

thanks to 3.2.8 and Propositions 2.1 in [BNPP] we get

||F 0
ε (ε−λ)f0||∞ ≤ ||f0||∞Cεγ−3λ + ||S0

ε (ε−λ)f0||∞
≤ (Cεγ−3λ + β)||f0||∞ ≤ β′||f0||∞,

(3.2.47)

with β′ < 1, for ε sufficiently small (remind that εγ−3λ → 0 as ε → 0).
This guarantees the existence and uniqueness of the microscopic stationary
solution fSε .

In order to prove (3.2.45) we observe that

‖fSε − gSε ‖∞ ≤ ‖fSε − hSε ‖∞ + ‖hSε − gSε ‖∞.

We compare the two Neumann series representing fSε and hSε ,

‖fSε − hSε ‖∞ = ‖
∑

n≥0

(
(F 0

ε (ε−λ))nfoutε (ε−λ)− (S0
ε (ε−λ))nhoutε (ε−λ)

)
‖∞

≤
∑

n≥0

‖(F 0
ε (ε−λ))n(foutε (ε−λ)− houtε (ε−λ))‖∞

+
∑

n≥0

‖
(
(F 0

ε (ε−λ))n − (S0
ε (ε−λ))n

)
houtε (ε−λ)‖∞.

(3.2.48)

By (3.2.47), using Proposition 3.2.7, the first sum on the right hand side of
(3.2.48) is bounded by

1

1− β′ ‖f
out
ε (ε−λ)− houtε (ε−λ)‖∞ ≤ Cεγ−3λ.

As regard to the second sum on the right hand side of (3.2.48) we have
∑

n≥0

‖
(
(F 0

ε (ε−λ)n − (S0
ε (ε−λ))n

)
houtε (ε−λ)‖∞

≤
∑

n≥0

n−1∑

k=0

‖(F 0
ε (ε−λ))n−k−1

(
F 0
ε (ε−λ)− S0

ε (ε−λ)
)
(S0
ε (ε−λ))khoutε (ε−λ)‖∞

≤
∑

k,`≥0

‖(F 0
ε (ε−λ))`

(
F 0
ε (ε−λ)− S0

ε (ε−λ)
)
(S0
ε (ε−λ))khoutε (ε−λ)‖∞

≤ C ‖houtε (ε−λ)‖∞ εγ−3λ,

(3.2.49)
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by virtue of (3.2.29), (3.2.47) and (3.2.44).
We compare the two Neumann series representing hSε and gSε ,

‖hSε − gSε ‖∞ = ‖
∑

n≥0

(
(S0
ε (ε−λ))nhoutε (ε−λ)− (G0

ε(ε
−λ))ngoutε (ε−λ)

)
‖∞

≤
∑

n≥0

‖(S0
ε (ε−λ))n(houtε (ε−λ)− goutε (ε−λ))‖∞

+
∑

n≥0

‖
(
(S0
ε (ε−λ))n − (G0

ε(ε
−λ))n

)
goutε (ε−λ)‖∞.

(3.2.50)

By using Proposition 3.2.5 the first sum on the right hand side of (3.2.50)
is bounded by

1

1− β′ ‖h
out
ε (ε−λ)− goutε (ε−λ)‖∞ ≤ Cε2(α−λ).

As regard to the second sum on the right hand side of (3.2.50) by means of
the same trick used in (3.2.49) we get
∑

n≥0

‖
(
(S0
ε (ε−λ))n − (G0

ε(ε
−λ))n

)
goutε (ε−λ)‖∞ ≤ C ‖goutε (ε−λ)‖∞ ε2(α−λ).

This concludes the proof of Proposition 3.2.9.

Hence the proof of Theorem 3.2.1 follows from Proposition 3.2.6 and
Proposition 3.2.9. We conclude by proving Theorem 3.2.2 which actually is
a Corollary of the previous analysis.

Proof of Theorem 3.2.2. By standard computations (see e.g. Section [BNPP],
Section 4.2) we have

gSε = %S +
1

ε−λ
g(1) +

1

ε−λ
Rε,

where

g(1)(v) = L−1(v · ∇x%S) =
ρ2 − ρ1

L
L−1(v1)

and, as we see in [BNPP], Section 4.2, Rε = O(ε
λ
2 ) in L2((0, L) × S1).

Therefore, since
´

S1
v%Sdv = 0,

ε−λ
ˆ

S1

vgSε (x, v)dv = D∇x%S +O(ε
λ
2 ), (3.2.51)

where D is given by (3.2.15). By Theorem 3.2.1 the right hand side of
(3.2.51) is close to D∇x%Sε in D′((0, L)× S1), where %Sε is given by (3.2.13).
On the other hand, by Proposition 3.2.9 and Assumption 2, the left hand
side of (3.2.51) is close in L∞((0, L)×S1) to JSε (x) defined in (3.2.12). This
concludes the proof of (3.2.14). Moreover (3.2.16) and (3.2.17) follow by
(3.2.51).
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Chapter 4

Propagation of Chaos in the wind tree model

J-particle correlation functions

We consider a system with two kinds of particles. The light particles (or
wind particles) do not interact between themselves but they interact with
the heavy particles (or tree particles) which are supposed to be infinitely
heavy compared to the tree particles and are supposed to be at rest and
randomly distributed in the plane. We assume that the heavy particles or
scatterers are distributed as the space distribution of a perfect gas, i.e. a
Poisson distribution of intensity µ. Moreover we suppose that the scatterers
are, with respect to the light particles, hard disks of radius ε reflecting the
light particles on their surface. Let (c1, . . . , cN ) in R2 be the centers of the
hard disks. This means that, given µ > 0, the probability density of finding
N obstacles in a bounded measurable set A ⊂ R2 is

P( dcN ) = e−µ|A|
µN

N !
dc1 . . . dcN (4.0.1)

where |A| = meas(A) and cN = (c1, . . . , cN ).
A particle in R2 moves freely up to the first instant of contact with an
obstacle. Then it is elastically reflected and so on. Since the modulus of the
velocity of the test particle is constant, we assume it to be equal to one, so
that the phase space of our system is (R2 × S1)j .

To outline a kinetic behavior we rescale the intensity as µε = ε−1µ, with
µ > 0 since we are dealing with a low density regime. Accordingly, we denote
by Pε the probability density (4.0.1) with µ replaced by µε. Eε will be the
expectation with respect to the measure Pε restricted on those configurations
of the obstacles whose centers do not belong to the disks of center xi and
radius ε for every i = 1, . . . , j. For a given configuration of obstacles cQ,
we denote by T tcQ(x1, v1, . . . , xj , vj) the configuration into which the initial
datum (x1, v1, . . . , xj , vj) evolves in presence of the hard disks cQ in the time

96
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t. For t ≥ 0 we look at the j particle correlation functions

fε,j(x1, v1, . . . , xj , vj , t) = Eε[f0(T−tcQ
(x1, v1)) . . . . . . f0(T−tcQ

(xj , vj))].
(4.0.2)

Here we assumed that the initial distribution f0,j := f0,j(x1, v1, . . . , xj , vj)
factorize, namely

f0,j = f⊗j0 ,

where the one particle initial distribution f0 is a continuous, compactly
supported function, i.e. f0 ∈ C0(R2×S1), with bounded partial derivatives.

The main result can be summarized in the following

Theorem 4.0.10. Let fε,j be defined in (4.0.2). Let T > 0. For any
t ∈ (0, T ], j ∈ N we have

fε,j(t) −→
ε→0

h⊗j(t) in L1((R2 × S1)j) (4.0.3)

where h solves





(
∂t + v · ∇x

)
h(x, v, t) = Lh(x, v, t),

h(x, v, 0) = f0(x, v),
(4.0.4)

with f0 ∈ C0(R2 × S1), with bounded partial derivatives, and

Lh(v) = µ

ˆ 1

−1
dρ{h(v′)− h(v)}.

Proof of Theorem 4.0.10. We follow the direct approach proposed by Gallavotti
in [G]. We consider

fε,j(x1, v1, . . . , xj , vj , t) = e−µε|B(x̃)|∑

Q≥0

µQε
Q!

ˆ

(B(x̃))Q
dcQ f0(T−tcQ

(x1, v1))

. . . f0(T−tcQ
(xj , vj)).

(4.0.5)

Here T−tcQ
(xk, vk) is the flow associated to the initial datum (xk, vk) for the

k−th light particle, k = 1, . . . , j, and for a given scatterers configuration cQ.

B(x̃) for x̃ ∈ R2 is the smallest open disk such that ∪jk=1B
ε
t (xk) ⊂ B(x̃) and

Bε
t (xk) := Bt(xk) \ Bε(xk) where Bt(xk) and Bε(xk), for any k = 1, . . . , j,

denote the disks centered in xk with radius t and ε respectively.
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We distinguish the obstacles of the configuration cQ = c1 . . . cQ which,
up to the time t, influence the motion, called internal obstacles, and the
external ones. More precisely we call ci internal if

inf
0≤s≤t

|xkε(−s)− ci| = ε, k = 1, . . . , j

while ci is external if

inf
0≤s≤t

|xkε(−s)− ci| > ε, ∀k = 1, . . . , j.

Here (xkε(−s), vkε (−s)) = T−scQ
(xk, vk), s ∈ [0, t]. Therefore, by integrating

over the external obstacles we obtain

fε,j(x1, v1, . . . , xj , vj , t) =
∑

N≥0

µNε
N !

ˆ

B(x̃)N
dbN e

−µε|T̃t(bN )| χ({bN internal})

f0(T−tbN
(x1, v1)) . . . f0(T−tbN

(xj , vj)).

(4.0.6)

Here T̃t(bN ) := ∪jk=1T kt (bN ) where

T kt (bN ) = {y ∈ Bε
t (xk) s.t. ∃s ∈ [0, t] s.t. |y − xkε(−s)| ≤ ε}.

Observe that

χ({bN internal}) = χ({bN ⊂ ∪jk=1T kt (bN )}).

We introduce

f̃ε,j(x1, v1, . . . , xj , vj , t) = e−2µεεjt
∑

N≥0

µNε
N !

ˆ

B(x̃)N
dbN χ({bN internal)

f0(T−tbN
(x1, v1)) . . . f0(T−tbN

(xj , vj)).

(4.0.7)

Since

|T̃t(bN )| ≤
j∑

k=1

|T kt (bN )| ≤ 2εjt, (4.0.8)

it follows that
fε,j ≥ f̃ε,j . (4.0.9)

We set
bN = bn1 ∪ bn2 · · · ∪ bnj−1 ∪ bnj ,

where nk is the number of obstacles influencing the trajectory of the particle

k up to time t. Let ρ
(k)
i and t

(k)
i be the impact parameter and the hitting
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time of the light particle with ∂Bε(b
(k)
i ) respectively. Then we perform the

following change of variables

b
(k)
1 . . . b(k)

nk
→ ρ

(k)
1 , . . . , ρ(k)

nk
, t

(k)
1 , . . . , t(k)

nk
(4.0.10)

with
0 ≤ t(k)

nk
< t

(k)
nk−1 < · · · < t

(k)
1 ≤ t

for each wind particle k = 1, . . . j. Conversely, for each wind particle k =

1, . . . j, fixed the impact parameters {ρ(k)
i } and the hitting times {t(k)

i } we

construct the centers of the obstacles b
(k)
i = b(ρ

(k)
i , t

(k)
i ). By performing the

backward scattering we construct a trajectory γs(xk, vk) = (ξkε (s), ωkε (s)) s ∈
(−t, 0), where

{
ξkε (−t) = xk − vk(t− t(k)

1 )− v(k)
1 (t

(k)
1 − t

(k)
2 ) · · · − v(k)

nk t
(k)
nk

ωkε (−t) = v
(k)
nk .

(4.0.11)

Here v
(k)
1 , . . . , v

(k)
nk are the incoming velocities.

Also in this case (ξkε (s), ωkε (s)) = (xkε(s), v
k
ε (s)) (therefore the mapping

(4.0.10) is one-to-one) only outside the following pathological situations

i) Recollisions

There exists b
(k)
u u = 1, . . . , nk, k = 1, . . . , j, s.t. for s ∈ (t

(l)
v , t

(l)
v+1),

t
(l)
v > t

(k)
u , l = 1, . . . , j, ξ

(l)
ε (−s) ∈ ∂B(b

(k)
u , ε).

ii) Interferences

There exists b
(k)
u , u = 1, . . . , nk, k = 1, . . . , j, such that ξ

(l)
ε (−s) ∈

B(b
(k)
u , ε) for s ∈ (t

(l)
v , t

(l)
v+1), t

(l)
v < t

(k)
u .

iii) Same obstacles collided by different particles

There exists b
(k)
u , i = 1, . . . , nk, k = 1, . . . , j, such that ξ

(l)
ε (t

(l)
v ) ∈

∂B(b
(k)
u , ε), l 6= k, v = 1, . . . , nl.

We observe that when l = k in i), ii), we recover the pathological events
for the trajectory of one test particle, see [BNPP] Section 5.2. We simply
skip such events by setting

χrec = χ({bN s.t. i) is realized}),
χint = χ({bN s.t. ii) is realized}),
χso = χ({bN s.t. iii) is realized}), (4.0.12)
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and defining

f̄ε,j(x1, v1, . . . , xj , vj , t) = e−2µεεjt
∑

n1≥0

· · ·
∑

nj≥0

µn1
ε . . . µ

nj
ε

ˆ t

0
dt11 . . . dt

1
n1
. . .

ˆ tjnj−1

0
dtjnj

ˆ ε

−ε
dρ1

1 . . . dρ
1
n1
. . .

ˆ ε

−ε
dρjnj

(1− χrec) (1− χint)(1− χso)
f0(γ−t(x1, v1)) . . . f0(γ−t(xj , vj))).

(4.0.13)

Note that fε,j ≥ f̃ε,j ≥ f̄ε,j .

Next we remove (1− χrec)(1− χint)(1− χso) by setting

hj(x1, v1, . . . , xj , vj , t) = e−2µεεjt
∑

n1≥0

· · ·
∑

nj≥0

µn1
ε . . . µ

nj
ε

ˆ t

0
dt11 . . . dt

1
n1
. . .

ˆ tjnj−1

0
dtjnj

ˆ ε

−ε
dρ1

1 . . . dρ
1
n1
. . .

ˆ ε

−ε
dρjnj

f0(γ−t(x1, v1))) . . . f0(γ−t(xj , vj))).
(4.0.14)

We observe that
hj(t) = h(t)⊗j , (4.0.15)

where h(x, v, t) is the solution of (4.0.4), i.e. of the following Boltzmann
equation {

(∂t + v · ∇x)h(x, v, t) = Lh(x, v, t),

f0(x, v) = 0,

with

Lh(v) = µεε

ˆ 1

−1
dρ{h(v′)− h(v)} = µ

ˆ 1

−1
dρ{h(v′)− h(v)}.

Observe that

1− (1− χrec)(1− χint)(1− χso) ≤ χrec + χint + χso. (4.0.16)

Then by (4.0.13) and (4.0.14) we obtain

‖hj(t)− f̄ε,j(t)‖L1 ≤ ‖ϕ1(ε, t)‖L1 , (4.0.17)
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with

ϕ1(ε, t) := e−2µεεjt
∑

n1≥0

· · ·
∑

nj≥0

µn1
ε . . . µ

nj
ε

ˆ t

0
dt11 . . . dt

1
n1
. . .

ˆ tjnj−1

0
dtjnj

ˆ ε

−ε
dρ1

1 . . . dρ
1
n1
. . .

ˆ ε

−ε
dρjnj (χrec + χint + χso)

f0(γ−t(x1, v1))) . . . f0(γ−t(xj , vj))).
(4.0.18)

We can state the following result

Proposition 4.0.11. Let ϕ1(ε, t) be defined in (4.0.18). For any t ∈ [0, T ]
we have

‖ϕ1(ε, t)‖L1 → 0 as ε→ 0.

Hence, thanks to Proposition 4.0.11, we have reduced the problem to the
analysis of a Markov process which is an easier task.

To conclude the proof of Theorem 4.0.10 let us estimate ‖fε,j(t)−hj(t)‖L1 .
By (4.0.17) we have

‖fε,j(t)− hj(t)‖L1 ≤ ‖fε,j(t)− f̄ε,j(t)‖L1 + ‖f̄ε,j(t)− hj(t)‖L1

≤ ‖fε,j(t)− f̄ε,j(t)‖L1 + ‖ϕ1(ε, t)‖L1 .

Since f̄ε,j ≤ fε,j , the difference fε,j(t) − f̄ε,j(t) is non negative and we
can skip the absolute value. Moreover, by using mass conservation for the
linear Boltzmann equation, i.e.

ˆ

f0,j dx1dv1 . . . dxjdvj =

ˆ

hj(t) dx1dv1 . . . dxjdvj

and
ˆ

fε,j(t) dx1dv1 . . . dxjdvj =

ˆ

f0,j dx1dv1 . . . dxjdvj

and Proposition 4.0.11 we obtain that

‖fε,j(t)− hj(t)‖L1 → 0 as ε→ 0.
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Proof of Proposition 4.0.11 (Pathological configurations). For any measur-
able function u of the process (ξkε (s), ωkε (s)) defined in (4.0.11) we set

E(u) = e−2µεεjt
∑

n1≥0

· · ·
∑

nj≥0

µn1
ε . . . µ

nj
ε

ˆ t

0
dt11 . . . dt

1
n1
. . .

ˆ tjnj−1

0
dtjnj

ˆ ε

−ε
dρ1

1 . . . dρ
1
n1
. . .

ˆ ε

−ε
dρjnj u(ξkε , ω

k
ε ).

Here E = Ex1,v1,...,xj ,vj and we skip this dependence for notational simplicity.
We realize that

ϕ1(ε, t) ≤ ‖f0‖jL∞ E[χrec + χint + χso]

We estimate separately the events in (4.0.12). We consider the contribution
due to the pathological event iii) and we notice that

χso ≤ χ({d(ξ(k)
ε (t(k)

u ), ξ(l)
ε (t(l)v )) ≤ ε, l 6= k = 1, . . . j,

u = 1, . . . , nk, v = 1, . . . nl}).
(4.0.19)

Since the estimates for E[χrec] and E[χint] follow directly, suitably modified,
from those ones obtained for a single light particle we obtain

E[χrec] ≤ C j2ε
1
2 t2 (4.0.20)

and
E[χint] ≤ C j2ε

1
2 t2. (4.0.21)

See [BNPP], Section 5.3, for the detailed computation. We focus instead on
E[χso] and we observe that

χso ≤
j∑

k=1

j∑

l=1

χk,l, (4.0.22)

χk,l ≤
nk∑

u=1

nl∑

v=1

χk,lu,v (4.0.23)

where χk,lu,v = 1 if the light particles k and l collide the same obstacle at
times tu and tv respectively. Hence we get

χso ≤
j∑

k=1

j∑

l=1

nk∑

u=1

nl∑

v=1

χk,lu,v. (4.0.24)

Moreover, the condition d(ξ
(k)
ε (t

(k)
u ), ξ

(l)
ε (t

(l)
v )) ≤ ε implies that |t(k)

u −t(l)v | ≤ ε.
Hence the time integration with respect to tku is restricted to a time interval
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proportional to ε. Performing all the other integrations and summing over
k, l, u, v we obtain

E[χso] ≤ e−2µεεjt
∑

n1≥0

· · ·
∑

nj≥0

µn1
ε . . . µ

nj
ε

ˆ t

0
dt11 . . . dt

1
n1
. . .

ˆ tjnj−1

0
dtjnj

ˆ ε

−ε
dρ1

1 . . . dρ
1
n1
. . .

ˆ ε

−ε
dρjnj

j∑

k=1

j∑

l=1

nk∑

u=1

nl∑

v=1

χk,lu,v

≤ j2 e−2µεεjt
∑

n1

tn1

n1!
(2µεε)

n1 · · ·
∑

nk−1

tnk−1

nk−1!
(2µεε)

nk−1

∑

nk

nk
tnk−1

nk − 1!
(2µεε)

nkCε
∑

nl

nl
tnl

nl!
(2µεε)

nl · · ·
∑

nj

tnj

nj !
(2µεε)

nj

≤ C j2 ε (2µεε)
3t2.

(4.0.25)

We remind that µεε = µ. Hence, the above quantity is vanishing in the limit
ε→ 0. Therefore, by estimates (4.0.20), (4.0.21) and (4.0.25) it results that

ϕ1(ε, t) ≤ C‖f0‖jL∞ j2 ε
1
2 t2 ≤ Cj j2 ε

1
2 t2

for some C > 0.



Chapter 5

Linear kinetic equations with magnetic field: a rigorous derivation from
the Lorentz model [In preparation]

In the present Chapter we present [N1].

Linear kinetic equation with magnetic field: a rigorous
derivation from the Lorentz model

Abstract. We consider a test particle moving in random distribution of
obstacles in the plane, under the action of a uniform magnetic field, orthog-
onal to the plane. We show that, in a weak coupling limit, the particle
distribution behaves according to the linear Landau equation with the mag-
netic field. Moreover we show that, in the Boltzmann Grad limit, when each
obstacles generates an inverse power law potential, the particle distribution
behaves according to the linear Boltzmann equation with the magnetic field.
This is in contrast with a recent result which shows that memory effects are
not negligible in the Boltzmann-Grad limit.

5.1 Introduction

Consider a point particle of mass one in Rd, d = 2, 3 moving in a random
distribution of fixed scatterers, whose centers are denoted by (c1, . . . , cN ).
The equations of motion are

{
ẋ = v
v̇ = −∑i∇φ(|x− ci|) ,

(5.1.1)

here (x, v) denote position and velocity of the test particle, t the time and
Ȧ = dA

dt for any time dependent variable A.

104
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To outline a kinetic behavior it is usually introduced a scaling of the
space-time variables and the density of the scatterer distribution. More pre-
cisely let ε > 0 be a parameter indicating the ratio between the macroscopic
and microscopic variables, then rescale according to the law

x→ εx, t→ εt, φ→ εαφ

where α ∈ [0, 1
2 ] is a suitable parameter. In the new variables Eq.n (5.1.1)

becomes {
ẋ = v

v̇ = −εα−1
∑

i∇φ( |x−ci|ε ) .
(5.1.2)

We assume that the scatterers are distributed according to a Poisson distri-
bution of parameter µε = µε−δ, where δ = d − 1 + 2α and d = 2, 3 is the
dimension of the physical space. This means that the probability of finding
N obstacles in a bounded measurable set Λ ⊂ Rd is given by

Pε( dcN ) = e−µε|Λ|
µNε
N !

dc1, . . . , dcN (5.1.3)

where cN = c1, . . . , cN and |Λ| = meas(Λ). Now let T tcN (x, v) be the Hamil-
tonian flow solution to Eq.n (5.1.2) with initial datum (x, v) in a given
sample of obstacles (skipping the ε dependence for notational simplicity)
and, for a given probability distribution f0 = f0(x, v), consider the quantity

fε(x, v, t) = Eε[f0(T−tcN
(x, v))] (5.1.4)

where Eε is the expectation with respect to the measure Pε given by (5.1.3).
In the limit ε → 0 we expect that the probability distribution (5.1.4)

solves a linear kinetic equation depending on the value of α. If α = 0 the
limit corresponding to such a scaling is called low-density (or Boltzmann-
Grad) limit. Then fε converges to the solution of a linear Boltzmann equa-
tion. See [G], [S], [BBS], [DP]. On the other hand, if α = 1

2 , the correspond-
ing limit, called weak-coupling limit, yields the linear Landau equation as
proven in [KP], [DGL], [K]. The intermediate scaling, namely α ∈ (0, 1

2),
although refer to a low-density situation, leads to the linear Landau equa-
tion again. We note that the first group of references make use of abstract
techniques while the second ones follow the original constructive idea, due
to Gallavotti (see [G]), for the Boltzmann-Grad limit based on a suitable
change of variables which can be implemented outside a pathological set of
events, such as the recollisions, which, however, can be proven to be a set
of negligible Pε measure.

To be more precise consider, as in [G], the hard-sphere potential. Since
the Boltzmann equation is the law of a Markov jump process in the velocity
variable, events like recollisions, must be negligible in the limit (otherwise
the fourth jump cannot be independent of the first three). For an explicit
control of the error in the kinetic limit see for instance [BNPP].
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In [DR] and [K] it was proven that even if α > 0, but sufficiently small,
the recollisions are still negligible. Incidentally we note that if α is close to
1
2 , this is not true anymore and it would be interesting to derive the Landau
equation in this regime, by means of an explicit constructive approach.

Recently it has been observed that the presence of a given external field
is not innocent in the derivation of the linear Boltzmann equation in the
Boltzmann-Grad limit. Bobylev et al, in [BMHH1] (see also [BMHH2]),
showed that when the test particle moves in a plane, in a Poisson distri-
bution of hard disks, in presence of an external fixed magnetic field (hence
performing arcs of circle between two consecutive collisions) the set of patho-
logical configuration is no longer negligible. The situation is described in
Figure 5.1. Moreover the probability PR of performing an entire Larmor

circle without hitting an obstacle is not vanishing in the limit ε→ 0, since

PR ' e−µ
2πR
|v| .

Here v is the velocity of the particle and R is the Larmor radius. There-
fore, in [BMHH1] and [BMHH2], the authors derive a kinetic equation with
memory, i.e. a generalized Boltzmann equation, taking into account these
effects. Let f(x, v, t) be the probability density of finding the moving par-
ticle at time t at position x with velocity v. This non-markovian kinetic
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equation which describes the evolution of f(x, v, t) reads as

D

Dt
fG(x, v, t) =µεε

[t/TL]∑

k=0

e−νkTL
ˆ

S1

dn (v · n)

[χ(v · n)bn + χ(−v · n)]fG(x, S−k0 v, t− kTL),

(5.1.5)

where

fG(x, v, t) =

{
f(x, v, t) if 0 < t < TL
(1− e−νTL)f(x, v, t) if t > TL.

(5.1.6)

Here ν = 2|v|µεε is the collision frequency and TL the cyclotron period.
Furthermore

D

Dt
= (∂t + v · ∇x + (v ×B) · ∇v)

is the generator of free cyclotron motion with frequency ω = qB
m , and [t/TL]

the number of cyclotron periods TL = 2π
ω completed before time t. The

angular integration over the unit vector n in (5.1.5) is over the entire unit
sphere S1 centered at the origin. In the gain term (positive contribution)the
operator bn is defined by

bnφ(v) = φ(v − 2(v · n)n)

where φ(v) is an arbitrary function of v. The precollisional velocity v′ =
v − 2(v · n)n becomes v after the elastic collision with the hard disk. Note
that v′ · n < 0. In the loss term (negative contribution), the precollisional
velocity, v, is also from the hemisphere v · n < 0. Finally, the shift operator
S−k0 , when acting on v, rotates the velocity through the angle −kθ, where θ
is the scattering angle (from v′ to v).

For further readings in this direction we refer to [DR1], [DR2], where a
suitable stochastic Lorentz model with an external force field is considered.
They show that certain fields prevent the limit process from being Marko-
vian and they prove that the markovianity of the limit can be recovered
by introducing an additional stochasticity in the velocity distribution of the
obstacles.

In this paper we consider the case of a random distribution of scatterers
where each obstacle generates a smooth positive and short-range potential
φ, with α > 0 and sufficiently small. We show that, in this case, the solution
of the microscopic dynamics converges, in the intermediate limit (when α ∈
(0, 1/8)), to the solution of the linear Landau equation with the additional
term due to the magnetic field. Roughly speaking, the heuristic motivation
is that, in this case,

PR ' e−µε
2α 2πR
|v|
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which vanishes as ε → 0. Therefore we recover the Markovianity in the
limit. In Section 5.2 we establish the model and formulate the result; in
Section 5.3 we present the proof.

Furthermore, we observe that if we consider a long range inverse power
law interaction potential, in a low density regime (when α = 0), we can
prove that the memory is lost in the limit. More precisely in Section 5.4 we
prove that the microscopic solution converges to the solution of the linear
Boltzmann equation with the additional term due to the magnetic field.
This comes out from the fact that the probability PR of performing an
intere Larmor circle without hitting an obstacle is approximatively

PR ' e−µε
2πεγR
|v| = e

−µε−1 2πεγR
|v| = e

−µε−1+γ 2πR
|v|

which vanishes as ε→ 0, for γ < 1. This shows how the non-markovian be-
haviour of the limit process, discussed in [BMHH1], [BMHH2], disappears
as soon as we slightly modify the microscopic model given by the two di-
mensional Lorentz Gas.

Along this paper our purpose is to provide a rigorous validation of these
linear kinetic equations with magnetic field by using the constructive strat-
egy due to Gallavotti. We remark that, as in [DP], [DR], [BNP], [BNPP] we
need explicit estimates of the error in the kinetic limit and this is the crucial
part. Moreover, as a future target, it could be interesting to understand
if a rigorous derivation of the Generalized Boltzmann equation proposed
in [BMHH1], [BMHH2], can be achieved by using the same constructive
techniques.

5.2 The Model and the result

We consider the system (5.1.2) in the plane (d = 2) under the action of an
additional, constant magnetic field, orthogonal to the plane. The equations
of motion are {

ẋ = v

v̇ = Bv⊥ − εα−1
∑

i∇φ( |x−ci|ε ) ,
(5.2.1)

where B > 0 is the magnitude of the magnetic field and v⊥ = (v2,−v1).
We assume that the potential φ : R+ → R+ is smooth and of range 1 i.e.
φ(r) = 0 if r > 1. Therefore the particle is influenced by the scatterer ci if
|x− ci| < ε.

Starting at t = 0 from the point x with velocity v, the particle moves
under the action of the Lorentz force Bv⊥. Suppose that the particle has
unitary mass and unitary charge, namely m, q = 1, hence between two
consecutive scatterers, the particle moves with constant angular velocity
ω = qB

m = B and performs an arc of circle of radius R = |v|
B . R is the radius
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of the cyclotron orbit whose center is situated at the point

xc = x+
R(π2 ) · v

ω
,

where the tensor R(ψ) denotes the rotation of angle ψ.
The precise assumptions on the potential are the following:

A1) φ ∈ C2([0,∞));

A2) φ ≥ 0, φ′ ≤ 0 in (0, 1);

A3) suppφ ⊂ [0, 1].

On f0 we assume that

A4) f0 ∈ L1 ∩ L∞ ∩ C(R2 × R2), f0 ≥ 0,

ˆ

f0 dx dv = 1.

Moreover we assume

A5) The scatterers are distributed according to a Poisson distribution (5.1.3)
of intensity µε = µε−δ with δ = 1 + 2α, α ∈ (0, 1

8).

Next we define the Hamiltonian flow T tcN (x, v), associated to the initial
datum (x, v), solution of (5.2.1) for a given configuration cN of scatterers,
and we set

fε(x, v, t) = Eε[f0(T−tcN
(x, v))]

where Eε denotes the expectation with respect to the Poisson distribution.
The first result of the present paper is summarized in the following theorem.

Theorem 5.2.1. Under assumption A1-A5, for all t ∈ [0, T ],

lim
ε→0

fε(·; t) = f(·; t) ∈ C([0, T ];D′)

where f is the unique weak solution to the Landau equation with magnetic
field

{
(∂t + v · ∇x +B v⊥ · ∇v)f(x, v, t) = ξ∆|v|f(x, v, t)

f(x, v, 0) = f0(x, v) ,
(5.2.2)

where ∆|v| is the Laplace-Beltrami operator on the circle S|v| of radius |v|and
ξ > 0.

We shall give later explicit expressions of ξ.
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5.3 Proof

Following [DP], [DR] and [BNP] we are led to compare fε with the
solution hε of the following Boltzmann equation

{
(∂t + v · ∇x +B v⊥ · ∇v)hε(x, v, t) = Lεhε(x, v, t),
hε(x, v, 0) = f0(x, v) ,

(5.3.1)

where

Lεhε(v) = µε|v|
ˆ ε

−ε
dρ[hε(v

′)− hε(v)], (5.3.2)

where v′ = v− 2(ω · v)ω = R(θε)v is the outgoing velocity after a scattering
with incoming velocity v and impact parameter ρ ∈ [−ε, ε] generated by the
potential εαφ( rε). ω = ω(ρ) is the versor bisecting the angle between the
incoming and outgoing velocity, θ is the scattering angle and R(θε) is the
rotation of angle θε.
By using the invariance of the scattering angle with respect to the space
scale, we rewrite the collision operator in the right hand side of (5.3.1) as

Lεhε(v) = µεε|v|
ˆ 1

−1
dρ[hε(v

′)− hε(v)]. (5.3.3)

We set

hε(v
′)− hε(v) = (v′ − v) · ∇|S|v|hε(v)

+
1

2
(v′ − v)⊗ (v′ − v)∇|S|v|∇|S|v|hε(v)

+
1

6
(v′ − v)⊗ (v′ − v)⊗ (v′ − v)∇|S|v|∇|S|v|∇|S|v|hε(v) +Rηε ,

with Rηε = O(|v − v′|4). Integrating with respect to v and using symmetry
arguments we obtain

Lεhε = µ|v|ε−2α

{
1

2
∆|v|hε

ˆ 1

−1
dρ |v′ − v|2 +

ˆ 1

−1
dρRηε

}
.

Observe that |v′ − v|2 = 4 sin2 θε(ρ)
2 , then by direct computation

lim
ε→0

µε−2α|v|
2

ˆ 1

−1
dρ |v′ − v|2 = lim

ε→0

µε−2α|v|
2

ˆ 1

−1
θ2
ε(ρ) dρ.

Therefore it is rather straightforward to show the following Proposition.

Proposition 5.3.1. Under the assumptions A1-A4, hε → f in C([0, T ];D′)
where f is the unique weak solution to the Landau equation with magnetic
field

{
(∂t + v · ∇x +B v⊥ · ∇v)f(x, v, t) = ξ∆|v|f(x, v, t)

f(x, v, 0) = f0(x, v) ,
(5.3.4)
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where

ξ = lim
ε→0

µε−2α|v|
2

ˆ 1

−1
θ2
ε(ρ) dρ (5.3.5)

is the diffusion coefficient.

Remark 5.3.2. We have still to show that the limit (5.3.5) does exist.
An explicit expression of ξ has been obtained in [DR]. It is

ξ =
µ|v|

2

ˆ 1

−1

(
ˆ 1

ρ

ρ

u
φ′(

ρ

u
)

du√
1− u2

)2

dρ (5.3.6)

An equivalent expression can be found in [K]:

ξ =
πµ

|v|

ˆ ∞

0
r2φ̂(r)2 dr (5.3.7)

where φ̂ denotes the Fourier transform of the potential, i.e.

φ̂(k) =
1

2π

ˆ

R
e−ik·xφ(|x|) dx.

Since φ̂ is real and spherically symmetric, we used the usual notational abuse
φ̂(r) = φ̂(k) if r = |k|.

Remark 5.3.3. Following [DR] we have split the original problem into two
parts, one concerning the grazing collision limit discussed up to now, the
other concerning the asymptotic equivalence of the hε and fε and this is
the crucial part. Note that the presence of the magnetic field is completely
irrelevant as regards the first part.

Remark 5.3.4. We avoided to introduce the cross-section ψ(θε) =
dρ

dθε
of

the problem because the map ρ→ θε(ρ) is not monotonic in general.
Indeed if φ is bounded and ε sufficiently small, 1

2v
2 > εαφ(0) so that θ = 0

for ρ = 0 and ρ = ±1. As a consequence ψε is neither single valued nor
bounded.

Before proving Theorem 5.2.1 we need the following preliminary result
concerning the asymptotic behavior of the scattering angle as a function of
the impact parameter in the limit when the potential is rescaled as φ→ εαφ,
with ε→ 0, α > 0.

Lemma 5.3.5. The deflection angle θε(ρ) of a particle with impact param-
eter ρ due to a scatterer generating a radial potential εαφ under the action
of the Lorentz force Bv⊥ satisfies

|θε(ρ)| ≤ Cεα. (5.3.8)
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Proof. As established in [DR] (Section 3) estimate (5.3.5) holds when the
test particle moves freely with no external field. Hence we just need to
compare the dynamics of the particle in presence of the constant magnetic
field with the free dynamics. Let (x(t), v(t)) be the solution of the following

{
ẋ = v

v̇ = −εα−1
∑

i∇φ( |x−ci|ε ) .
(5.3.9)

Let τ be the collision time. Since τ ≤ Cε, C > 0, we get

|v(τ)− v(τ)| =
∣∣∣∣εα−1

ˆ τ

0
ds
(
F
(
x(s)/ε

)
− F

(
x(s)/ε

))
+

ˆ τ

0
ds v⊥B

∣∣∣∣

≤ εα−1

ˆ τ

0
ds |F

(
x(s)/ε

)
− F

(
x(s)/ε

)
|+ C1ε

≤ εα−2C2

ˆ τ

0
ds |x(s)− x(s)|+ C1ε

= εα−2C2

ˆ τ

0
ds

ˆ s

0
dt |v(t)− v(t)|+ C1ε

≤ εα−2C2

ˆ τ

0
ds

ˆ τ

0
dt |v(t)− v(t)|+ C1ε.

By using Gronwall’s inequality we obtain

|v(τ)− v(τ)| ≤ C1 ε e
C3εα−1τ ≤ C1 ε e

C3εα ,

for α > 0 and ε sufficiently small. Hence the velocities v and v are asymp-
totically equivalent up to an error term of order ε. This implies the validity
of Eq.n (5.3.8) and concludes the proof.

5.3.1 Strategy

Following the explicit approach in [G], [DR], [DP] we will show the
asymptotic equivalence of fε, defined by (5.1.4), and hε solution of the fol-
lowing Boltzmann equation

(∂t + v · ∇x +B v⊥ · ∇v)hε(x, v, t) = Lεhε(x, v, t), (5.3.10)

where

Lεh(v) = µε−2α|v|
ˆ 1

−1
dρ{h(v′)− h(v)}. (5.3.11)

This allows to reduce the problem to the analysis of a Markov process which
is an easier task. Indeed, the series expansion defining hε (obtained per-
turbing around the loss term) reads as

hε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dtQ . . .

ˆ t2

0
dt1

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ f0(ξ̄ε(−t), η̄ε(−t)).

(5.3.12)
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Eq.n (5.3.12) is an evolution equation for the probability density associated
to a particle performing random jumps in the velocity variable at random
Markov times.

We consider the microscopic solution fε defined by (5.1.4). For (x, v) ∈
R2 × R2, t > 0, we have

fε(x, v, t) = e−µε|Bt(x,v)|∑

N≥0

µNε
N !

ˆ

Bt(x,v)N
dcN f0(T−tcN

(x, v)), (5.3.13)

where T tcN (x, v) is the Hamiltonian flow with initial datum (x, v). Finally
Bt(x, v) = B(x, |v|t), where here and in the following, B(x,R) denotes the
disk of center x and radius R.

Coming back to Eq.n (5.3.13), we distinguish the obstacles of the config-
uration cN = c1 . . . cN which, up to the time t, influence the motion, called
internal obstacles, and the external ones. More precisely ci is internal if

inf
0≤s≤t

|xε(−s)− ci| < ε, (5.3.14)

while ci is external if
inf

0≤s≤t
|xε(−s)− ci| ≥ ε. (5.3.15)

Here (xε(−s), vε(−s)) = T−sc (x, v), s ∈ [0, t].
Note that the integration over the external obstacles can be performed

so that

fε(x, v, t) =
∑

Q≥0

µQε
Q!

ˆ

Bt(x,v)Q
dbQ e

−µε|T (bQ)|χ({bQ internal})f0(T−tbQ
(x, v)),

(5.3.16)
where T (bQ) is the tube

T (bQ) = {y ∈ Bt(x, v) s.t. ∃s ∈ (0, t) s.t. |y − xε(−s)| < ε}. (5.3.17)

Here and in the sequel χ({·}) is the characteristic function of the event
{·}. Here we are not considering possible overlappings of obstacles. The
scattering process can be solved in this case as well. However, as we shall see,
this event is negligible because of the moderate densities we are considering.
With this purpose we introduce

χ1(bQ) = χ{bQ s.t. bi /∈ B(x, ε) and bi /∈ B(x(−t), ε) for all i = 1, . . . , Q}.
(5.3.18)

Moreover, to avoid a first cyclotron orbit completed without suffering col-
lisions and to avoid a repeated collision with the same scatterer without
suffering any collision in the meantime (see Figure 5.1), we introduce

χcirc(bQ) = χ ({bQ s.t. |T (bQ)| ≥ 4πεR}) (5.3.19)



Strategy 114

Figure 5.1: Periodic orbit

and we define

f̆ε(x, v, t) =
∑

Q≥0

µQε
Q!

ˆ

Bt(x,v)Q
dbQe

−µε|T (bQ)|χ({bQ internal})

(1− χcirc(bQ))χ1(bQ)f0(T−tbQ
(x, v)).

(5.3.20)

We can show that the contribution due to χcirc is vanishing in the limit as
ε→ 0 (see Section 5.3.2 for the explicit computation). Therefore

fε ≥ f̆ε.

Observe that for times smaller than the Larmor period TL we expected to
be true the approximation with the dynamics of the test particle in absence
of the external field. The unexpected fact is that for times comparable
with the Larmor period this still holds due to the smallness of the error
term produced by (5.3.19). Hence, for a given configuration bQ such that
χ1[1−χcirc](bQ) = 1, we have that the measure of the tube can be estimated
by

|T (bQ)| ≤ 2ε|v|t. (5.3.21)

At this point we define

f̃ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε
Q!

ˆ

Bt(x,v)Q
dbQχ({bQ internal})

(1− χcirc(bQ))χ1(bQ)f0(T−tbQ
(x, v)).

(5.3.22)

Thanks to (5.3.21) we get
fε ≥ f̆ε ≥ f̃ε. (5.3.23)
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Note that, according to a classical argument introduced in [G] (see also [DP],
[DR], [BNP]), we remove from f̃ε all the bad events, namely those untypical
with respect to the Markov process described by houtε . Then we will show
they are unlikely.

For any fixed initial conditions (x, v) we order the obstacles b1, . . . , bN
according to the scattering sequence. Let ρi and ti be the impact parameter
and the entrance time of the light particle in the protection disk around bi,
namely Bε(bi). Then we perform the following change of variables

b1, . . . , bN → ρ1, t1, . . . , ρN , tN (5.3.24)

with
0 ≤ tN < tN−1 < · · · < t1 ≤ t.

Conversely, fixed the impact parameters {ρi} and the hitting times {ti} we
construct the centers of the obstacles bi = b(ρi, ti). By performing the back-
ward scattering we construct a trajectory γ−s(x, v) := (ξε(−s), ηε(−s)), s ∈
[0, t],

However γ−s(x, v) = (xε(−s), vε(−s)) (therefore the mapping (5.3.24) is
one-to-one) only outside the following pathological situations.

i) Overlapping.
If bi and bj are both internal then B(bi, ε) ∩B(bj , ε) 6= ∅.

ii) Recollisions.
There exists bi such that for s ∈ (tj+1, tj), j > i, ξε(−s) ∈ B(bi, ε).

iii) Interferences.
There exists bi such that ξε(−s) ∈ B(bj , ε) for s ∈ (ti+1, ti), j > i.

We simply skip such events by setting

χov = χ({bQ s.t. i) is realized}),

χrec = χ({bQ s.t. iii) is realized}),
χint = χ({bQ s.t. iv) is realized}),

and defining

f̄ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ

χ1(1− χcirc)(1− χov)(1− χrec)(1− χint)f0(γ−t(x, v)).

(5.3.25)

Note that
f̄ε ≤ f̃ε ≤ f̆ε ≤ fε.
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Note also that in (5.3.25) we have used the change of variables (5.3.24) for
which, outside the pathological sets i), ii), iii), iv) T−tbQ

(x, v) = (xε(−t), vε(−t)).
Next we remove χ1(1− χcirc)(1− χov)(1− χrec)(1− χint) by setting

h̄ε(x, v, t) = e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ f0(γ−t(x, v)).

(5.3.26)

We observe that

1−χ1(1−χov)(1−χcir)(1−χrec)(1−χint) ≤ (1−χ1)+χov+χcir+χrec+χint.
(5.3.27)

Then by (5.3.25) and (5.3.26) we obtain

|h̄ε(t)− f̄ε(t)| ≤ ϕ1(ε, t)

with

ϕ1(ε, t) = ‖f0‖∞ e−2ε−2α|v|t∑

Q≥0

µQε

ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ

(1− χ1) + χov + χcir + χrec + χint.

(5.3.28)

We state the following result. The proof is postponed to Section 5.3.2.

Proposition 5.3.6. Let ϕ1(ε, t) be defined as in (5.3.28). For any t ∈ [0, T ]

‖ϕ1(ε, t)‖L1 → 0

as ε→ 0.

Since we are working to achieve the asymptotic equivalence of fε and
hε, we need to compare h̄ε with hε. This is fulfilled once we consider
the collision as instantaneous. More precisely, for the sequence t1, . . . , tQ
ρ1, . . . ρQ consider the sequence v1, . . . , vQ of incoming velocities before the
Q collisions. This allows to construct the limiting trajectory γ̄−s(x, v) =
(ξ̄ε(−s), η̄ε(−s)), s ∈ [0, t], which approximates the trajectory γ−s(x, v) up
to an error vanishing in the limit. Indeed, since

|ξε(−t)− ξ̄ε(−t)| ≤ Qε

and Eq.n (5.3.8) holds, due to the Lipschitz continuity of f0, we can assert

that
h̄ε(x, v, t) = hε(x, v, t) + ϕ2(x, v, t), (5.3.29)

where
sup

x,v,t∈[0,T ]
|ϕ2(x, v, t)| ≤ Cε1−2α T. (5.3.30)

For more details see [DP], Section 3.
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5.3.2 The control of the pathological sets

In this section we prove Proposition 5.3.6. For any measurable function
u of the backward Markov process (ξε, ηε) we set

Ex,v[u] = e−2|v|µεεt
∑

Q≥0

(2|v|µε)Q
ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ ε

−ε
dρ1 . . .

ˆ ε

−ε
dρQ u(ξε, ηε).

Then we realize that

ϕ1(ε, t) = ‖f0‖∞Ex,v[(1− χ1) + χov + χcir + χrec + χint]

and we estimate separately all the events in the right hand side of (5.3.27).
We can skip the estimates of the first two contributions, i.e. Ex,v[(1 −

χ1)] and Ex,v[χov], since the presence of the external field does not affect
the classical arguments which can be found in [BNP], [DR], [DP]. The
presence of the magnetic field and consequently the circular motion of the
test particle strongly affect the explicit estimates of the pathological events
ii), iii). Therefore we need a detailed analysis for χcir, χrec and χint.

For what concerns the pathological event due to a recollision with the
same scatterer (see Figure 5.2) we observe that χcir = 1 if there exists an
entrance time ti such that |ti−ti+1| ≥ TL for some i = 0, . . . Q−1 (assuming
t0 = 0). Therefore it results

EMx,v[χcir] = e−2tµεε|v|
∑

Q≥1

(2|v|µε)Q
ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ ε

−ε
dρ1

. . .

ˆ ε

−ε
dρQ

Q−1∑

i=0

χ({|ti − ti+1| > TL})

≤ e−2tµεε|v|
∑

Q≥1

Q
(2|v|µεε)Q
(Q− 1)!

(t− TL)Q−1

≤ 2 (t− TL)e−2ε−2αTL(2|v|µεε)2

≤ C|v|e−2ε−2αTLε−4αt,

(5.3.31)

for α > 0 and ε sufficiently small.
Next we pass to the control of the recollision event. Let ti the first time

the light particle hits the i-th scattering, v−i the incoming velocity, v+
i the

outgoing velocity and t+i the exit time. Moreover we fix the axis in such a
way that v+

i is parallel to the x axis . We have

χrec ≤
Q∑

i=1

∑

j>1

χi,jrec, (5.3.32)
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Figure 5.2: Recollision with the same scatter.

where χi,jrec = 1 if and only if bi (constructed via the sequence t1, ρ1, . . . , ti, ρi)
is recollided in the time interval (tj , tj−1).
Note that, since |θi| ≤ Cεα, where θi is the i-th scattering angle, in order to
have a recollision it must be an intermediate velocity vk, k = i+ 1, . . . , j− 1
such that

|v+
k · v+

j | ≤ Cεα|v|2, (5.3.33)

namely v+
k is almost orthogonal to v+

j . Then

χrec ≤
Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χi,j,krec , (5.3.34)

where χi,j,krec = 1 if and only if χi,jrec = 1 and (5.3.33) is fulfilled.
Moreover, due to the presence of the magnetic field B we need to take

into account two different cases. Since the test particle follows a circular
trajectory, it could happen that v+

k is almost orthogonal to v+
j despite there

are no scatterers between bi and bk. It means that the orthogonality is due to
a rotation of π

2 in a time interval proportional to TL
4 . We have the following

decomposition

χrec ≤
Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χi,j,krec ≤
Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

(
χ̃i,j,krec + χ̄i,j,krec

)
, (5.3.35)

where

χ̃i,j,krec := χ

({
|tk−1 − tk| >

TL
4

for some k = i+ 1, . . . j − 1

})
.
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Therefore

Ex,v[χrec] ≤ Ex,v




Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χ̃i,j,krec


+ Ex,v




Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χ̄i,j,krec




(5.3.36)

and we estimate the two contributions separately. We look at the first one

EMx,v




Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χ̃i,j,krec




≤ e−2|v|ε−2αt
∑

Q≥3

(Q− 1)(Q− 2)(Q− 3)
(2|v|ε−2α)Q

Q!

(
t− TL

4

)Q

≤ 2C |v|3
(
t− TL

4

)3
e−2ε−2αTLε−6α ≤ C |v|3t3e−2ε−2α TL

4 ε−6α,

(5.3.37)

for α > 0 and ε sufficiently small. We now consider the second contribution
in (5.3.36). Once we fix all the parameters ρ1, . . . , ρQ, t1, . . . , tQ but tk+1 we
perform such a time integration. The two branches of the trajectory l1, l2
are rigid so that, if the recollision happen the time integration with respect
to tk+1 is restricted to a time interval proportional to AB. More precisely
it is bounded by Cε (see for instance [BNP], section 5 ). Performing all the
other integrations and summing over i, j, k we obtain

Ex,v




Q∑

i=1

Q∑

j=1

j−1∑

k=i+1

χ̄i,j,krec




≤ Cε e−2|v|ε−2αt
∑

Q≥3

(Q− 1)(Q− 2)(Q− 3)
(2|v|ε−2α)Q

(Q− 1)!
tQ−1

≤ C|v|3t3ε1−8α,

(5.3.38)

for α < 1/8 and ε sufficiently small.
Following the strategy used in [BNP], since a backward interference is a

forward recollision, the estimate for the interference event can be performed
by using the Liouville Theorem.

5.4 Concluding Remarks

In this paper we provided a rigorous derivation of the the Linear Landau
equation with magnetic field starting from the microscopic dynamics of the
Lorentz gas in the intermediate scaling (α ∈ (0, 1

2)).
We can argue that the same techniques, suitably modified, can be used

to derive the Linear Boltzmann equation from the Lorentz model with long-
range forces and magnetic field in a low density limit (i.e. the endpoint case
α = 0).
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More precisely we can assume that each obstacle of radius ε generates
an inverse power law potential φε(

|x−c|
ε ) where the unrescaled φ is an inverse

power law potential cutoffed at large distances, i.e.
{
φ(x) = 1

|x|s |x| < εγ−1

φ(x) = ε−s(γ−1) |x| ≥ εγ−1 ,
(5.4.1)

with γ ∈ (0, 1) and s > 2. The distribution of the scatterers is a Poisson
law of intensity µε = ε−1µ, µ > 0.

The equation of motion, in macroscopic variables, are
{
ẋ = v

v̇ = Bv⊥ − ε−1
∑

i∇φ( |x−ci|ε ) ,
(5.4.2)

with φ given by (5.4.1).
Let T tcN (x, v) be the Hamiltonian flow solution to Eq.n (5.4.2) with initial

datum (x, v) in a given sample of obstacles and, for a given probability
distribution f0 = f0(x, v), consider the quantity

fε(x, v, t) = Eε[f0(T−tcN
(x, v))] (5.4.3)

where Eε is the expectation with respect to the measure Pε given by (5.1.3).

Theorem 5.4.1. Let fε be defined in (5.4.3). Then, for any T > 0,

lim
ε→0

fε(·; t) = f(·; t) ∈ C([0, T ];D′)

where f is the unique weak solution to the linear Boltzmann equation with
magnetic field

{
(∂t + v · ∇x +B v⊥ · ∇v)f(t, x, v) = Lf(t, x, v)

f(x, v, 0) = f0(x, v),
(5.4.4)

with

Lf(v) = µ|v|
ˆ π

−π
B(Θ) {f(RΘ(v))− f(v)} dΘ.

To prove the transition from the particle system we are considering to
the uncutoffed linear Boltzmann equation (5.4.4) we need the following pre-
liminary result

Proposition 5.4.2. Let fε be defined in (5.4.3). Then, for any T > 0,

lim
ε→0
‖fε − h̃ε‖L∞([0,T ];L1(R2×S1)) = 0 (5.4.5)

where h̃ε is the unique weak solution of the cutoffed linear Boltzmann equa-
tion with magnetic field

{
(∂t + v · ∇x +B v⊥ · ∇v)h̃ε(t, x, v) = L̃h̃ε(t, x, v)

h̃ε(x, v, 0) = f0(x, v) ,
(5.4.6)
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with

L̃f(v) = µ|v|
ˆ π

−π
Bε,γ(θ) {f(RΘ(v))− f(v)} dθ.

This allows to reduce the problem of the transition from the solution of
the cutoffed linear Boltzmann equation to the solution of the uncutoffed lin-
ear Boltzmann equation to a partial differential equation problem. Indeed,
as in [DP], we can prove that

Proposition 5.4.3. Let h̃ε solution of (5.4.6). Then, for any T > 0,

h̃ε → f in C([0, T ];D′) (5.4.7)

where f is the unique weak solution of (5.4.4).

Some comments are in order. The proof of Proposition 5.4.3 is exactly
the same performed in [DP]. We remark that due to the presence of the
magnetic field B, we obtain a complicate expression for the scattering angle
θ(M), being M the angular momentum. The explicit expression is given
in (A.4), see Appendix 5.5.1 for the detailed computation. Moreover it is
possible to compute the scattering cross section by using Eq.n (A.9) which
gives a complicate explicit expression for dθ/dM . To overcome this difficulty
we observe that the scattering cross section in a constant magnetic field is
asymptotically close to the free cross section Bε,γ , since the error vanishes
in the limit ε→ 0.

To prove Proposition 5.4.2 we follow the approach proposed in Section
5.3.1. Roughly speaking, it works since we can show that the probability of
finding a closed orbit is vanishing in the limit, namely

e
−µε 2πεγR

|v| = e
−µε−1 2πεγR

|v| = e
−µε−1+γ 2πR

|v| → 0 as γ < 1. (5.4.8)

The estimates of the pathological events obtained in Section 5.3.2, modify
according to the low density regime and the interaction potential we are
considering in this setting. For instance we consider the pathological event
due to a circling trajectory and

χcirc(bQ) = χ ({bQ s.t. |T (bQ)| ≥ 4πεγR}) .
By estimating the contribution due to χcirc we get

EMx,v[χcir] = e−2tµεεγ
∑

Q≥1

µQε

ˆ t

0
dt1 . . .

ˆ tQ−1

0
dtQ

ˆ εγ

−εγ
dρ1

. . .

ˆ εγ

−εγ
dρQ

Q−1∑

i=0

χ({|ti − ti+1| > TL})

≤ e−2tµεε|v|
∑

Q≥1

Q
(2|v|µεε)Q
(Q− 1)!

(t− TL)Q−1

≤ 2C (t− TL)e−2tµεεγTL(2tµεε
γ)2

≤ Ce−2tµεεγTLε2(γ−1)t,

(5.4.9)
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for γ ∈ (0, 1) and ε sufficiently small.
To control the recollision event, the analogous of ii) in Section 5.3.1, we

can follow the same strategy used in [DP] (Proof of Proposition 3.1). Also in
this case, as we observed in Section 5.3.2, the presence of the magnetic field
slightly modify the estimate and we obtain the analogous of Eq.n (5.3.35).

5.5 Appendix

5.5.1 The cross-section

We remind the classical formula giving the scattering angle Θ in terms
of the impact parameter ρ for a particle moving in a potential Φ(r) = r−s,
s > 2.

Θ(ρ) = π − 2

ˆ +∞

r∗

ρ dr

r2
√

1− 2Φeff (r)
, (A.1)

where r∗ is a zero of the radicand and

Φeff (r) = Φ(r) +
ρ2

2r2
= r−s +

ρ2

2r2
.

See [L], Eq.n (18.2). Furthermore, since we deal with a cutoffed inverse
power law potential given by (5.4.1), i.e.

{
φ(x) = 1

|x|s , |x| < εγ−1

φ(x) = ε−s(γ−1) |x| ≥ εγ−1 .

with γ ∈ (0, 1) and s > 2, we need to solve the corresponding scattering
problem.

Let θ̃ = π − 2φ̃0 be the scattering angle. We set A := εγ−1, it results
that

φ̃0(ρ) = arcsin
( ρ
A

)
+

ˆ A

r∗

ρ dr

r2
√

1− 2φeff (r)
(A.2)

and

dφ̃0

dρ
=

1√
1− ρ2


1− 1

1− φ′(A−)
ρ2




+

ˆ π/2

arcsin ( ρA)
dϕ

sinϕ
(
y − ρ

y2
φ′(ρy )

)3

[
ρ

y2
φ′′
(
ρ

y

)
+

2

y
φ′
(
ρ

y

)
+

ρ

y4

(
φ′
(
ρ

y

))2
]
,

(A.3)

for 0 < ρ < A. Since φ has a discontinuity of the first derivative in |x| = A,
here φ′(A−) indicates the limit of the derivative as |x| → A from below. See
[PSS], Appendix, for further details. We are now interested in computing
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the scattering angle θ for a particle moving in a cutoffed inverse power law
potential φ(r), given by (5.4.1), in presence of a uniform magnetic field B.
For the sake of simplicity, it is more convenient to express the scattering
angle θ in terms of the conserved momentum M , namely θ = θ(M). We
notice that, as soon as the light particle hits the obstacle, M = ρ + εB2 .
Hence it follows that

θ(M) = arcsin

(
M

A
− εB

2
A

)
+

ˆ A

r∗

(M − εB2 r2) dr

r2
√

1− 2φeff (r)
(A.4)

where

φeff (r) = φ(r) +
1

2

(
M

r
− ε

2
Br

)2

= φ(r) +
M2

2r2
+
ε2

8
B2r2 − ε

2
BM,

and r∗ is defined as the solution of the following

2φeff (r∗) = 1.

Let u = M
r , du = −M

r2
dr, than

θ(M) = arcsin

(
M

A
− εB

2
A

)
+

+

ˆ

M
r∗

M
A

du√
1− 2φeff (Mu )

+

ˆ

M
r∗

M
A

εB2 (M
u2

) du√
1− 2φeff (Mu )

.
(A.5)

To validate the previous computation we observe that

φeff

(
M

u

)
= φ

(
M

u

)
+
u2

2
+
ε2

8
B2

(
M

u

)2

− ε

2
BM, (A.6)

φ′eff

(
M

u

)
= −φ′

(
M

u

)
M

u2
+ u− ε2

4

(
B2M2

u3

)
, (A.7)

hence φeff (Mu ) is non decreasing for u ∈
[
M
A ,

M
r∗

]
. In fact, since

φ′eff (A) = −φ′(A)

(
A2

M

)
+
M

A
− ε2

4

(
B2A3

M

)
, (A.8)

it follows that φ′eff (A)→ 0 for A→ +∞ as soon as γ ∈ (1/2, 1).
We change variables again and we set

2φeff

(
M

u

)
= sin2 ϕ,

then

du =
sinϕ cosϕdϕ(

u− φ′
(
M
u

)
M
u2
− ε2

4

(
B2M2

u3

)) .
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Substituting this expression into (A.5) we get

θ(M) = arcsin

(
M

A
− εB

2
A

)
+

ˆ

π
2

arcsin(MA −
εB
2
A)

sinϕdϕ(
u− φ′

(
M
u

)
M
u2
− ε2

4

(
B2M2

u3

))

+

ˆ

π
2

arcsin(MA −
εB
2
A)

ε

2

BM

u2

sinϕdϕ(
u− φ′

(
M
u

)
M
u2
− ε2

4

(
B2M2

u3

)) .

Thanks to a straightforward computation we obtain

dθ

dM
=

1

A

√
1−

(
M
A − εB

2 A
)2

+

ˆ

π
2

arcsin(MA −
εB
2
A)

sinϕ

(u− φ′(M/u) M
u2
− ε2

4

(
B2M2

u3

)
)3

×
(

2φ′ (M/u)
1

u
+ φ′′(M/u)

M

u2
+ φ′(M/u)2 M

u4

)
dϕ

+

ˆ

π
2

arcsin(MA −
εB
2
A)

sinϕ

(u− φ′(M/u) M
u2
− ε2

4

(
B2M2

u3

)
)3

×
[
φ′(M/u)

ε2B2M2

u5
− φ′′(M/u)

εBM2

2u4
+
ε4B4

16

M3

u6
− 3M2ε3B3

8u4
− εB

2

]
dϕ

+

ˆ

π
2

arcsin(MA −
εB
2
A)

(
εB2

M
u2

)
sinϕ

(u− φ′(M/u) M
u2
− ε2

4

(
B2M2

u3

)
)3

×
[
φ′(M/u)

1

u

(
2 +

ε2B2M2

u4

)
+ φ′′(M/u)

M

u2
+ φ′(M/u)2 M

u4

− φ′′(M/u)
εBM2

2u4
+

(
ε2B2

4

)2
M3

u6
− 3M2ε3B3

8u4
− εB

2

]

+

(
εB2 (M

u2
)
)

sinϕ

(u− φ′(M/u) M
u2
− ε2

4

(
B2M2

u3

)
)2

×


 1

u2
+

2M

u3

φ′(M/u) 1
u + ε2B2M

4u2
− εB

2

u− φ′(M/u) M
u2
− ε2

4

(
B2M2

u3

)


 dϕ

−
(

1 +
εB

2

A2

M

) (
M
A − εB

2 A
)

M

√
1−

(
M
A − εB

2 A
)2

1(
1− φ′(A) A

3

M2 − ε2B2A4

4M2

) .

(A.9)
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Chapter 6

Appendix

6.1 On the solution of the Linear Boltzmann equa-
tion

With the linear Boltzmann equation we enter the world of nonreversible
equations. It combines free transport with scattering off of a medium and
it is used to model many systems, including neutronic dynamics, radiation
transfer, cometary flow and dust particles. The linear Boltzmann equation
reads as {

∂tf(x, v, t) + v · ∇xf(x, v, t) = Lf(x, v, t)
f(x, v, 0) = f0(x, v) .

(A.1)

with x ∈ R2 or in T2, v ∈ S1, t ∈ R+. Here Lf = (K − I)f where

Kf(v′) =

ˆ

S1

dv k(v|v′)f(v)

and k(v|v′) is a transition probability density k : S1 × S1 → R+ and
´

S1 k(v|v′) dv′ = 1 for all v belonging to S1. (Here we are considering the
two-dimensional case for simplicity, however all our considerations can be
extended easily to the three dimensional case.)

Observe that the linear Boltzmann equation involves “exchange phenom-
ena” in velocity, thanks to the integral kernel k. It is thus not possible to
only consider v as a parameter. As a consequence of this, there is no longer
an explicit solution formula based on characteristics. Characteristic lines are
now replaced by stochastic functions from a Markov process. This is because
the right hand side of equation (A.1) can not be interpreted as something
producing characteristics. Instead, we will often regard the right hand side
as a source term. We assume that the initial probability distribution f0 is a
bounded, continuous function expressing the initial distribution of our test
particle. Hence we can rewrite the equation as

f(x, v, t) = f0(x− vt, v) +

ˆ t

0
(Lf)(x− v(t− s), v, s) ds

127



On the solution of the Linear Boltzmann equation 128

where L denotes the linear operator on the right hand side of the equation.
This is just Duhamel’s principle, and can be checked by differentiation. Note
that the operator ∂t+v ·∇x applied to the first term and the term inside the
integral gives zero, so the only nonzero term is ∂t applied to the integral,
which gives Lf , the right hand side of the equation, as desired. Observe
that this yields a nice integral equation for f , but not an explicit formula.

Remark 6.1.1. Recall that Duhamel’s principle is based on the idea of
solving a linear PDE with a source term and initial data, i.e. a linear
inhomogeneous PDE like





∂tf + Tf︸︷︷︸
lin.op

= U︸︷︷︸
source

f |t=0 = f0 .

by solving separately the PDE without the source term but with the initial
data, and the PDE with the source term but zero initial data. Then, by a
linear combination, we obtain the complete solution. Applying this to the
linear Boltzmann equation, we can choose T = v · ∇x and Uf = Lf =
(K − I)f . In this case, we can easily write

e−tT g(x, v) = g(x− vt, v)

so we have

f(x, v, t) = f0(x− vt, v) +

ˆ t

0
(Lf)(x− v(t− s), v, s) ds.

Alternatively, we could let T = v · ∇x + I. Hence

e−tT g(x, v) = g(x− vt, v)e−t

and we obtain

f(x, v, t) = f0(x− vt, v)e−t +

ˆ t

0
e−(t−s)(Kf)(x− v(t− s), v, s) ds. (A.2)

The process described by (A.1) is that of a particle with velocity of mod-
ulus one, having random transitions (collisions) which preserve the energy.
We introduce a physical mechanism for such transitions. Consider a parti-
cle, with initial velocity v ∈ S1, hitting a circular obstacle of unit diameter,
whose center c is random. If we denote by ρ the impact parameter and n the
outward normal in the collision point, we can compute the outgoing velocity
v′ (in terms of energy and angular momentum conservation) finding

v′ = v − 2(v · n)n.

We want to associate a probability k(v|v′) dv′ related to the transition v →
v′. A reasonable choice is to assume ρ as a random variable uniformly
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distributed in [−1/2, 1/2], so that the probability to have the transition
v → v′ is dρ = dρ

dv′dv
′. However, instead of computing k(v|v′) explicitly, we

find more convenient to express the operator K, by means of an integration
with respect to the angle α. Using

dρ =

∣∣∣∣
dρ

dα

∣∣∣∣ dα = |n · v| dn

we get

Kf(v′) =

ˆ

S1

dn |n · v| f(v)χ(n · v ≤ 0)

=

ˆ

S1

dn |n · v| f(v)χ(n · v′) ≥ 0,

Note that what distinguishes if v′ is incoming or outgoing is the scalar
product n · v which is positive or negative if v is outgoing or incoming,
respectively. If we consider instead the collision of the particle by an obstacle
generating a smooth potential φ we obtain different transition probabilities.
In this case we have an analogous expression for the operator K, i.e.

Kf(v′) =

ˆ

S1

dnB(n, |v|) f(v),

with B(n, |v|) proportional to the cross section associated to the potential φ,

namely
∣∣∣ dρdα
∣∣∣. Moreover in this case we have that v′ = v− 2(ω · v)ω, where ω

is the unit vector bisecting the angle between the incoming and the outgoing
velocity.

It is obvious that the Cauchy problem associated to the Linear Boltz-
mann equation has a unique global solution in any reasonable space. Indeed,
we can give the explicit solution. We consider (A.1) in the integral form
(A.2). If we set S(t)f0(x, v) := f0(x− vt, v)e−t, from (A.2) we get

f(x, v, t) = S(t)f0(x, v) +

ˆ t

0
S(t− s)(Kf)(x, v, s) ds.

By iterating we find the following formal series expansion

f(x, v, t) =S(t)f0(x, v)

+
∑

m>0

ˆ t1

0
dt1

ˆ t2

0
dt2 . . .

ˆ tm−1

0
dtm

S(t− t− 1)KS(t1 − t− 2) . . .KS(tm)f0,
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or, equivalently,

f(x, v, t) = e−tf0(x− vt, v)

+ e−t
∑

m>0

ˆ t1

0
dt1

ˆ t2

0
dt2 . . .

ˆ tm−1

0
dtm

ˆ

dv1 . . .

ˆ

dvm

k(v|v1)k(v1|v2) . . . k(vm−1|vm)

f0(x− v(t− t1)− v1(t1 − t2)− . . . vmtm, vm).

(A.3)

Hence, if f0 ∈ L∞(R2×S1) the series converges uniformly in R2×S1× [0, T ],
for any T > 0. We are interested in the physical interpretation of (A.3). The

Figure 6.1: Markov jump process

value of f in (x, v) at time t is a sum of infinitely many contributions. The
term e−tf0(x− vt, v) is the value of the initial datum in the backward tra-
jectory ( the weight e−t takes into account the mass loss) and is interpreted
as the zero collision contribution. The first term of the series in the right
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hand side of (A.3), i.e.

e−t
∑

m>0

ˆ t1

0
dt1

ˆ

dv1 k(v|v1) f0(x− v(t− t1)− v1t1, v1),

is the contribution to the probability density to be in (x, v) at time t after a
collision and is called the one-collision term. The generic m-collision term in
(A.3) can be interpreted analogously. Fixed (x, v) we consider the backward
free trajectory in the time interval (t − t1). At this time, being the unit
vector n1 fixed, the particle collides having the transition v → v1 = v −
2n1(n1 · v). Now the particle moves with the new velocity v1 in the time
interval (t1 − t2) and a new collision happens with the same rules and so
on. (See Figure 6.1.) We compute now the value of the initial datum at the
point (x − v(t − t1) − v1(t1 − t2) − . . . vmtm, vm). Hence we integrate with
respect to the times t1, . . . , tm and to the velocities v1, . . . , vn. This is the
contribution to the probability density at time t, due to the fact that the
particle performed m collisions in this time.

Remark. A straightforward consequence of (A.3) is that the solution prop-
agates with velocity which can be at maximum 1. This means that if f0 is
supported, with respect to the x variable, in B(0, R) i.e. the disk of radius
R > 0 and centre 0, it follows that f(·, t) is supported in B(0, R+t). Indeed,
it is enough to prove that

|v(t− t1) + v1(t1 − t2) + · · ·+ vmtm| ≤ 1

for v1, . . . , vm ∈ S1 and 0 ≤ tm ≤ · · · ≤ t1 ≤ t.
On the other hand

‖f(·, t)‖∞ ≤ e−t
(

1 +
∑

m>0

tm

m!

)
‖f0‖∞ ≤ ‖f0‖∞.

Therefore the maximum principle holds.

6.2 On the solution of the linear Landau equation

We consider here the linear Landau equation

(∂t + v · ∇x)f(x, v, t) = B∆|v|f(x, v, t), (A.1)

where ∆|v| is the Laplace-Beltrami operator on the d-dimensional sphere
of radius |v|. Due to its linearity, equation (A.1) can be solved explicitly.
The direct method to solve this equation is reminiscent of the analogous one
valid for the linear diffusion equation, and consists in resorting to Fourier
transform. Let f0(x, v) be an initial distribution function, which we assume
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to be integrable in Rd × Rd. Let us consider the Fourier transform of the
distribution f , with respect to both x and v

f̂(η, ξ, t) =

ˆ

Rd

ˆ

Rd
f(x, v, t)e−i(η·x+ξ·v)dxdv. (A.2)

Hence Equation (A.1) becomes

(∂t − η · ∇ξ)f̂(η, ξ, t) +B|ξ|2f̂(η, ξ, t) = 0. (A.3)

It can be easily verified that the solution of equation (A.3) takes the form

f̂(η, ξ, t) = f̂0(η, ξ + ηt)e
−B

„
|ξ|2t−ξ·η t2− |η|

2t3

3

«
. (A.4)

More precisely, to obtain (A.4), we need to introduce the characteristic
differential system associated to

(∂t − η · ∇ξ)f̂(η, ξ, t) = 0

which reads as {
η̇ = 0

ξ̇ = −η .
(A.5)

Let T t(η, ξ) = (T t1(η, ξ), T t2(η, ξ)) = (η, ξ − ηt) be the solution of (A.5).
Hence, since the solution of (A.3) is given by

f̂(η, ξ, t) = f̂0(T−t(η, ξ))e
´ t
0 |T

s−t
2 (η,ξ)|2 ds,

by using the explicit expression for T t(η, ξ) we get (A.4).
Now, by applying the inverse Fourier transform F−1, we obtain

f(x, v, t) = F−1
(
f̂0(η, ξ + ηt)

)
? F−1

(
e
−B

„
|ξ|2t−ξ·η t2− |η|

2t3

3

«)
. (A.6)

Hence

f(x, v, t) =

ˆ

Rd

ˆ

Rd
G(x, v, t;x′, v′)f0(x′, v′). (A.7)

where G indicates the Green function corresponding to initial datum

f0(x, v) = δ(x− x′)δ(v − v′).

Observe that

G(s, v, t) = F−1

(
e
−B

„
|ξ|2t−ξ·η t2− |η|

2t3

3

«)
.
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[MS] J. Marklof, A. Strömbergsson. The Boltzmann-Grad limit of the
periodic Lorentz gas. Ann. of Math. 174, 225-298, 2011

[N1] A. Nota. Linear kinetic equations with magnetic field: a rigorous
derivation from the Lorentz model. In preparation (2014)

[N2] A. Nota. Diffusive limit for the random Lorentz gas. To appear in
Springer Proceedings of the conference PSPDE 2013, From Particle
Systems to PDEs (2014).

[N3] A. Nota. Fick’s Law for the Lorentz Model in a weak coupling
regime. arXiv:1411.6474

[S] H. Spohn. The Lorentz flight process converges to a random flight
process. Comm. Math. Phys. 60, 277-D0290, 1978.

[S1] H. Spohn Large scale dynamics of interacting particles. Texts and
Monographs in Physics, Springer Verlag, Heidelberg, 1991.

[S2] H. Spohn. Kinetic equations from Hamiltonian dynamics: Marko-
vian limits. Review of Modern Physics 53, 569–615, 1980.

[S3] H. Spohn. Fluctuation Theory for the Boltzmann Equation.
Nonequilibrium Phenomena I: The Boltzmann Equation, Amster-
dam, North–Holland Pub. Co., 1983

[S4] H. Spohn. Derivation of the transport equation for electrons moving
through random impurities. J. Statist. Phys. 17, 385–412, 1977.


